Search is not available for this dataset
repo_id
stringlengths
12
110
file_path
stringlengths
24
164
content
stringlengths
3
89.3M
__index_level_0__
int64
0
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/text/bleu.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # referenced from # Library Name: torchtext # Authors: torchtext authors and @sluks # Date: 2020-07-18 # Link: https://pytorch.org/text/_modules/torchtext/data/metrics.html#bleu_score from collections import Counter from typing import Callable, Optional, Sequence, Tuple, Union import torch from torch import Tensor, tensor def _count_ngram(ngram_input_list: Sequence[str], n_gram: int) -> Counter: """Count how many times each word appears in a given text with ngram. Args: ngram_input_list: A list of translated text or reference texts n_gram: gram value ranged 1 to 4 Return: ngram_counter: a collections.Counter object of ngram """ ngram_counter: Counter = Counter() for i in range(1, n_gram + 1): for j in range(len(ngram_input_list) - i + 1): ngram_key = tuple(ngram_input_list[j : (i + j)]) ngram_counter[ngram_key] += 1 return ngram_counter def _tokenize_fn(sentence: str) -> Sequence[str]: """Tokenizes sentence into list of words. Args: sentence: A sentence separated by white space. Return: List of words """ return sentence.split() def _bleu_score_update( preds: Sequence[str], target: Sequence[Sequence[str]], numerator: Tensor, denominator: Tensor, preds_len: Tensor, target_len: Tensor, n_gram: int = 4, tokenizer: Callable[[str], Sequence[str]] = _tokenize_fn, ) -> Tuple[Tensor, Tensor]: """Update and returns variables required to compute the BLEU score. Args: preds: An iterable of machine translated corpus target: An iterable of iterables of reference corpus numerator: Numerator of precision score (true positives) denominator: Denominator of precision score (true positives + false positives) preds_len: count of words in a candidate prediction target_len: count of words in a reference translation target: count of words in a reference translation n_gram: gram value ranged 1 to 4 tokenizer: A function that turns sentence into list of words """ target_: Sequence[Sequence[Sequence[str]]] = [[tokenizer(line) if line else [] for line in t] for t in target] preds_: Sequence[Sequence[str]] = [tokenizer(line) if line else [] for line in preds] for pred, targets in zip(preds_, target_): preds_len += len(pred) target_len_list = [len(tgt) for tgt in targets] target_len_diff = [abs(len(pred) - x) for x in target_len_list] target_len += target_len_list[target_len_diff.index(min(target_len_diff))] preds_counter: Counter = _count_ngram(pred, n_gram) target_counter: Counter = Counter() for tgt in targets: target_counter |= _count_ngram(tgt, n_gram) ngram_counter_clip = preds_counter & target_counter for counter_clip in ngram_counter_clip: numerator[len(counter_clip) - 1] += ngram_counter_clip[counter_clip] for counter in preds_counter: denominator[len(counter) - 1] += preds_counter[counter] return preds_len, target_len def _bleu_score_compute( preds_len: Tensor, target_len: Tensor, numerator: Tensor, denominator: Tensor, n_gram: int, weights: Sequence[float], smooth: bool, ) -> Tensor: """Compute the BLEU score. Args: preds_len: count of words in a candidate translation target_len: count of words in a reference translation numerator: Numerator of precision score (true positives) denominator: Denominator of precision score (true positives + false positives) n_gram: gram value ranged 1 to 4 weights: Weights used for unigrams, bigrams, etc. to calculate BLEU score. smooth: Whether to apply smoothing """ device = numerator.device if min(numerator) == 0.0: return tensor(0.0, device=device) if smooth: precision_scores = torch.div( torch.add(numerator, torch.ones(n_gram, device=device)), torch.add(denominator, torch.ones(n_gram, device=device)), ) precision_scores[0] = numerator[0] / denominator[0] else: precision_scores = numerator / denominator log_precision_scores = tensor(weights, device=device) * torch.log(precision_scores) geometric_mean = torch.exp(torch.sum(log_precision_scores)) brevity_penalty = tensor(1.0, device=device) if preds_len > target_len else torch.exp(1 - (target_len / preds_len)) return brevity_penalty * geometric_mean def bleu_score( preds: Union[str, Sequence[str]], target: Sequence[Union[str, Sequence[str]]], n_gram: int = 4, smooth: bool = False, weights: Optional[Sequence[float]] = None, ) -> Tensor: """Calculate `BLEU score`_ of machine translated text with one or more references. Args: preds: An iterable of machine translated corpus target: An iterable of iterables of reference corpus n_gram: Gram value ranged from 1 to 4 smooth: Whether to apply smoothing - see [2] weights: Weights used for unigrams, bigrams, etc. to calculate BLEU score. If not provided, uniform weights are used. Return: Tensor with BLEU Score Raises: ValueError: If ``preds`` and ``target`` corpus have different lengths. ValueError: If a length of a list of weights is not ``None`` and not equal to ``n_gram``. Example: >>> from torchmetrics.functional.text import bleu_score >>> preds = ['the cat is on the mat'] >>> target = [['there is a cat on the mat', 'a cat is on the mat']] >>> bleu_score(preds, target) tensor(0.7598) References: [1] BLEU: a Method for Automatic Evaluation of Machine Translation by Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu `BLEU`_ [2] Automatic Evaluation of Machine Translation Quality Using Longest Common Subsequence and Skip-Bigram Statistics by Chin-Yew Lin and Franz Josef Och `Machine Translation Evolution`_ """ preds_ = [preds] if isinstance(preds, str) else preds target_ = [[tgt] if isinstance(tgt, str) else tgt for tgt in target] if len(preds_) != len(target_): raise ValueError(f"Corpus has different size {len(preds_)} != {len(target_)}") if weights is not None and len(weights) != n_gram: raise ValueError(f"List of weights has different weights than `n_gram`: {len(weights)} != {n_gram}") if weights is None: weights = [1.0 / n_gram] * n_gram numerator = torch.zeros(n_gram) denominator = torch.zeros(n_gram) preds_len = tensor(0.0) target_len = tensor(0.0) preds_len, target_len = _bleu_score_update( preds_, target_, numerator, denominator, preds_len, target_len, n_gram, _tokenize_fn ) return _bleu_score_compute(preds_len, target_len, numerator, denominator, n_gram, weights, smooth)
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/text/__init__.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from torchmetrics.functional.text.bleu import bleu_score from torchmetrics.functional.text.cer import char_error_rate from torchmetrics.functional.text.chrf import chrf_score from torchmetrics.functional.text.edit import edit_distance from torchmetrics.functional.text.eed import extended_edit_distance from torchmetrics.functional.text.mer import match_error_rate from torchmetrics.functional.text.perplexity import perplexity from torchmetrics.functional.text.rouge import rouge_score from torchmetrics.functional.text.sacre_bleu import sacre_bleu_score from torchmetrics.functional.text.squad import squad from torchmetrics.functional.text.ter import translation_edit_rate from torchmetrics.functional.text.wer import word_error_rate from torchmetrics.functional.text.wil import word_information_lost from torchmetrics.functional.text.wip import word_information_preserved from torchmetrics.utilities.imports import _TRANSFORMERS_GREATER_EQUAL_4_4 __all__ = [ "bleu_score", "char_error_rate", "chrf_score", "edit_distance", "extended_edit_distance", "match_error_rate", "perplexity", "rouge_score", "sacre_bleu_score", "squad", "translation_edit_rate", "word_error_rate", "word_information_lost", "word_information_preserved", ] if _TRANSFORMERS_GREATER_EQUAL_4_4: from torchmetrics.functional.text.bert import bert_score from torchmetrics.functional.text.infolm import infolm __all__ += ["bert_score", "infolm"]
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/text/edit.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Literal, Optional, Sequence, Union import torch from torch import Tensor from torchmetrics.functional.text.helper import _LevenshteinEditDistance as _LE_distance def _edit_distance_update( preds: Union[str, Sequence[str]], target: Union[str, Sequence[str]], substitution_cost: int = 1, ) -> Tensor: if isinstance(preds, str): preds = [preds] if isinstance(target, str): target = [target] if not all(isinstance(x, str) for x in preds): raise ValueError(f"Expected all values in argument `preds` to be string type, but got {preds}") if not all(isinstance(x, str) for x in target): raise ValueError(f"Expected all values in argument `target` to be string type, but got {target}") if len(preds) != len(target): raise ValueError( f"Expected argument `preds` and `target` to have same length, but got {len(preds)} and {len(target)}" ) distance = [ _LE_distance(t, op_substitute=substitution_cost)(p)[0] for p, t in zip(preds, target) # type: ignore[arg-type] ] return torch.tensor(distance, dtype=torch.int) def _edit_distance_compute( edit_scores: Tensor, num_elements: Union[Tensor, int], reduction: Optional[Literal["mean", "sum", "none"]] = "mean", ) -> Tensor: """Compute final edit distance reduced over the batch.""" if edit_scores.numel() == 0: return torch.tensor(0, dtype=torch.int32) if reduction == "mean": return edit_scores.sum() / num_elements if reduction == "sum": return edit_scores.sum() if reduction is None or reduction == "none": return edit_scores raise ValueError("Expected argument `reduction` to either be 'sum', 'mean', 'none' or None") def edit_distance( preds: Union[str, Sequence[str]], target: Union[str, Sequence[str]], substitution_cost: int = 1, reduction: Optional[Literal["mean", "sum", "none"]] = "mean", ) -> Tensor: """Calculates the Levenshtein edit distance between two sequences. The edit distance is the number of characters that need to be substituted, inserted, or deleted, to transform the predicted text into the reference text. The lower the distance, the more accurate the model is considered to be. Implementation is similar to `nltk.edit_distance <https://www.nltk.org/_modules/nltk/metrics/distance.html>`_. Args: preds: An iterable of predicted texts (strings). target: An iterable of reference texts (strings). substitution_cost: The cost of substituting one character for another. reduction: a method to reduce metric score over samples. - ``'mean'``: takes the mean over samples - ``'sum'``: takes the sum over samples - ``None`` or ``'none'``: return the score per sample Raises: ValueError: If ``preds`` and ``target`` do not have the same length. ValueError: If ``preds`` or ``target`` contain non-string values. Example:: Basic example with two strings. Going from “rain” -> “sain” -> “shin” -> “shine” takes 3 edits: >>> from torchmetrics.functional.text import edit_distance >>> edit_distance(["rain"], ["shine"]) tensor(3.) Example:: Basic example with two strings and substitution cost of 2. Going from “rain” -> “sain” -> “shin” -> “shine” takes 3 edits, where two of them are substitutions: >>> from torchmetrics.functional.text import edit_distance >>> edit_distance(["rain"], ["shine"], substitution_cost=2) tensor(5.) Example:: Multiple strings example: >>> from torchmetrics.functional.text import edit_distance >>> edit_distance(["rain", "lnaguaeg"], ["shine", "language"], reduction=None) tensor([3, 4], dtype=torch.int32) >>> edit_distance(["rain", "lnaguaeg"], ["shine", "language"], reduction="mean") tensor(3.5000) """ distance = _edit_distance_update(preds, target, substitution_cost) return _edit_distance_compute(distance, num_elements=distance.numel(), reduction=reduction)
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/audio/pesq.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from torch import Tensor from torchmetrics.utilities.checks import _check_same_shape from torchmetrics.utilities.imports import _MULTIPROCESSING_AVAILABLE, _PESQ_AVAILABLE __doctest_requires__ = {("perceptual_evaluation_speech_quality",): ["pesq"]} def perceptual_evaluation_speech_quality( preds: Tensor, target: Tensor, fs: int, mode: str, keep_same_device: bool = False, n_processes: int = 1, ) -> Tensor: r"""Calculate `Perceptual Evaluation of Speech Quality`_ (PESQ). It's a recognized industry standard for audio quality that takes into considerations characteristics such as: audio sharpness, call volume, background noise, clipping, audio interference etc. PESQ returns a score between -0.5 and 4.5 with the higher scores indicating a better quality. This metric is a wrapper for the `pesq package`_. Note that input will be moved to `cpu` to perform the metric calculation. .. note:: using this metrics requires you to have ``pesq`` install. Either install as ``pip install torchmetrics[audio]`` or ``pip install pesq``. Note that ``pesq`` will compile with your currently installed version of numpy, meaning that if you upgrade numpy at some point in the future you will most likely have to reinstall ``pesq``. Args: preds: float tensor with shape ``(...,time)`` target: float tensor with shape ``(...,time)`` fs: sampling frequency, should be 16000 or 8000 (Hz) mode: ``'wb'`` (wide-band) or ``'nb'`` (narrow-band) keep_same_device: whether to move the pesq value to the device of preds n_processes: integer specifying the number of processes to run in parallel for the metric calculation. Only applies to batches of data and if ``multiprocessing`` package is installed. Returns: Float tensor with shape ``(...,)`` of PESQ values per sample Raises: ModuleNotFoundError: If ``pesq`` package is not installed ValueError: If ``fs`` is not either ``8000`` or ``16000`` ValueError: If ``mode`` is not either ``"wb"`` or ``"nb"`` RuntimeError: If ``preds`` and ``target`` do not have the same shape Example: >>> from torch import randn >>> from torchmetrics.functional.audio.pesq import perceptual_evaluation_speech_quality >>> g = torch.manual_seed(1) >>> preds = randn(8000) >>> target = randn(8000) >>> perceptual_evaluation_speech_quality(preds, target, 8000, 'nb') tensor(2.2076) >>> perceptual_evaluation_speech_quality(preds, target, 16000, 'wb') tensor(1.7359) """ if not _PESQ_AVAILABLE: raise ModuleNotFoundError( "PESQ metric requires that pesq is installed." " Either install as `pip install torchmetrics[audio]` or `pip install pesq`." ) import pesq as pesq_backend if fs not in (8000, 16000): raise ValueError(f"Expected argument `fs` to either be 8000 or 16000 but got {fs}") if mode not in ("wb", "nb"): raise ValueError(f"Expected argument `mode` to either be 'wb' or 'nb' but got {mode}") _check_same_shape(preds, target) if preds.ndim == 1: pesq_val_np = pesq_backend.pesq(fs, target.detach().cpu().numpy(), preds.detach().cpu().numpy(), mode) pesq_val = torch.tensor(pesq_val_np) else: preds_np = preds.reshape(-1, preds.shape[-1]).detach().cpu().numpy() target_np = target.reshape(-1, preds.shape[-1]).detach().cpu().numpy() if _MULTIPROCESSING_AVAILABLE and n_processes != 1: pesq_val_np = pesq_backend.pesq_batch(fs, target_np, preds_np, mode, n_processor=n_processes) pesq_val_np = np.array(pesq_val_np) else: pesq_val_np = np.empty(shape=(preds_np.shape[0])) for b in range(preds_np.shape[0]): pesq_val_np[b] = pesq_backend.pesq(fs, target_np[b, :], preds_np[b, :], mode) pesq_val = torch.from_numpy(pesq_val_np) pesq_val = pesq_val.reshape(preds.shape[:-1]) if keep_same_device: return pesq_val.to(preds.device) return pesq_val
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/audio/pit.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from itertools import permutations from typing import Any, Callable, Tuple import numpy as np import torch from torch import Tensor from typing_extensions import Literal from torchmetrics.utilities import rank_zero_warn from torchmetrics.utilities.imports import _SCIPY_AVAILABLE # _ps_dict: cache of permutations # it's necessary to cache it, otherwise it will consume a large amount of time _ps_dict: dict = {} # _ps_dict[str(spk_num)+str(device)] = permutations def _gen_permutations(spk_num: int, device: torch.device) -> Tensor: key = str(spk_num) + str(device) if key not in _ps_dict: # ps: all the permutations, shape [perm_num, spk_num] # ps: In i-th permutation, the predcition corresponds to the j-th target is ps[j,i] ps = torch.tensor(list(permutations(range(spk_num))), device=device) _ps_dict[key] = ps else: ps = _ps_dict[key] # all the permutations, shape [perm_num, spk_num] return ps def _find_best_perm_by_linear_sum_assignment( metric_mtx: Tensor, eval_func: Callable, ) -> Tuple[Tensor, Tensor]: """Solves the linear sum assignment problem. This implementation uses scipy and input is therefore transferred to cpu during calculations. Args: metric_mtx: the metric matrix, shape [batch_size, spk_num, spk_num] eval_func: the function to reduce the metric values of different the permutations Returns: best_metric: shape ``[batch]`` best_perm: shape ``[batch, spk]`` """ from scipy.optimize import linear_sum_assignment mmtx = metric_mtx.detach().cpu() best_perm = torch.tensor(np.array([linear_sum_assignment(pwm, eval_func == torch.max)[1] for pwm in mmtx])) best_perm = best_perm.to(metric_mtx.device) best_metric = torch.gather(metric_mtx, 2, best_perm[:, :, None]).mean([-1, -2]) return best_metric, best_perm # shape [batch], shape [batch, spk] def _find_best_perm_by_exhaustive_method( metric_mtx: Tensor, eval_func: Callable, ) -> Tuple[Tensor, Tensor]: """Solves the linear sum assignment problem using exhaustive method. This is done by exhaustively calculating the metric values of all possible permutations, and returns the best metric values and the corresponding permutations. Args: metric_mtx: the metric matrix, shape ``[batch_size, spk_num, spk_num]`` eval_func: the function to reduce the metric values of different the permutations Returns: best_metric: shape ``[batch]`` best_perm: shape ``[batch, spk]`` """ # create/read/cache the permutations and its indexes # reading from cache would be much faster than creating in CPU then moving to GPU batch_size, spk_num = metric_mtx.shape[:2] ps = _gen_permutations(spk_num=spk_num, device=metric_mtx.device) # [perm_num, spk_num] # find the metric of each permutation perm_num = ps.shape[0] # shape of [batch_size, spk_num, perm_num] bps = ps.T[None, ...].expand(batch_size, spk_num, perm_num) # shape of [batch_size, spk_num, perm_num] metric_of_ps_details = torch.gather(metric_mtx, 2, bps) # shape of [batch_size, perm_num] metric_of_ps = metric_of_ps_details.mean(dim=1) # find the best metric and best permutation best_metric, best_indexes = eval_func(metric_of_ps, dim=1) best_indexes = best_indexes.detach() best_perm = ps[best_indexes, :] return best_metric, best_perm # shape [batch], shape [batch, spk] def permutation_invariant_training( preds: Tensor, target: Tensor, metric_func: Callable, mode: Literal["speaker-wise", "permutation-wise"] = "speaker-wise", eval_func: Literal["max", "min"] = "max", **kwargs: Any, ) -> Tuple[Tensor, Tensor]: """Calculate `Permutation invariant training`_ (PIT). This metric can evaluate models for speaker independent multi-talker speech separation in a permutation invariant way. Args: preds: float tensor with shape ``(batch_size,num_speakers,...)`` target: float tensor with shape ``(batch_size,num_speakers,...)`` metric_func: a metric function accept a batch of target and estimate. if `mode`==`'speaker-wise'`, then ``metric_func(preds[:, i, ...], target[:, j, ...])`` is called and expected to return a batch of metric tensors ``(batch,)``; if `mode`==`'permutation-wise'`, then ``metric_func(preds[:, p, ...], target[:, :, ...])`` is called, where `p` is one possible permutation, e.g. [0,1] or [1,0] for 2-speaker case, and expected to return a batch of metric tensors ``(batch,)``; mode: can be `'speaker-wise'` or `'permutation-wise'`. eval_func: the function to find the best permutation, can be ``'min'`` or ``'max'``, i.e. the smaller the better or the larger the better. kwargs: Additional args for metric_func Returns: Tuple of two float tensors. First tensor with shape ``(batch,)`` contains the best metric value for each sample and second tensor with shape ``(batch,)`` contains the best permutation. Example: >>> from torchmetrics.functional.audio import scale_invariant_signal_distortion_ratio >>> # [batch, spk, time] >>> preds = torch.tensor([[[-0.0579, 0.3560, -0.9604], [-0.1719, 0.3205, 0.2951]]]) >>> target = torch.tensor([[[ 1.0958, -0.1648, 0.5228], [-0.4100, 1.1942, -0.5103]]]) >>> best_metric, best_perm = permutation_invariant_training( ... preds, target, scale_invariant_signal_distortion_ratio, ... mode="speaker-wise", eval_func="max") >>> best_metric tensor([-5.1091]) >>> best_perm tensor([[0, 1]]) >>> pit_permutate(preds, best_perm) tensor([[[-0.0579, 0.3560, -0.9604], [-0.1719, 0.3205, 0.2951]]]) """ if preds.shape[0:2] != target.shape[0:2]: raise RuntimeError( "Predictions and targets are expected to have the same shape at the batch and speaker dimensions" ) if eval_func not in ["max", "min"]: raise ValueError(f'eval_func can only be "max" or "min" but got {eval_func}') if mode not in ["speaker-wise", "permutation-wise"]: raise ValueError(f'mode can only be "speaker-wise" or "permutation-wise" but got {eval_func}') if target.ndim < 2: raise ValueError(f"Inputs must be of shape [batch, spk, ...], got {target.shape} and {preds.shape} instead") eval_op = torch.max if eval_func == "max" else torch.min # calculate the metric matrix batch_size, spk_num = target.shape[0:2] if mode == "permutation-wise": perms = _gen_permutations(spk_num=spk_num, device=preds.device) # [perm_num, spk_num] perm_num = perms.shape[0] # shape of ppreds and ptarget: [batch_size*perm_num, spk_num, ...] ppreds = torch.index_select(preds, dim=1, index=perms.reshape(-1)).reshape( batch_size * perm_num, *preds.shape[1:] ) ptarget = target.repeat_interleave(repeats=perm_num, dim=0) # shape of metric_of_ps [batch_size*perm_num] or [batch_size*perm_num, spk_num] metric_of_ps = metric_func(ppreds, ptarget) metric_of_ps = torch.mean(metric_of_ps.reshape(batch_size, len(perms), -1), dim=-1) # find the best metric and best permutation best_metric, best_indexes = eval_op(metric_of_ps, dim=1) # type: ignore[call-overload] best_indexes = best_indexes.detach() best_perm = perms[best_indexes, :] return best_metric, best_perm # speaker-wise first_ele = metric_func(preds[:, 0, ...], target[:, 0, ...], **kwargs) # needed for dtype and device metric_mtx = torch.empty((batch_size, spk_num, spk_num), dtype=first_ele.dtype, device=first_ele.device) metric_mtx[:, 0, 0] = first_ele for target_idx in range(spk_num): # we have spk_num speeches in target in each sample for preds_idx in range(spk_num): # we have spk_num speeches in preds in each sample if target_idx == 0 and preds_idx == 0: # already calculated continue metric_mtx[:, target_idx, preds_idx] = metric_func( preds[:, preds_idx, ...], target[:, target_idx, ...], **kwargs ) # find best if spk_num < 3 or not _SCIPY_AVAILABLE: if spk_num >= 3 and not _SCIPY_AVAILABLE: rank_zero_warn( f"In pit metric for speaker-num {spk_num}>3, we recommend installing scipy for better performance" ) best_metric, best_perm = _find_best_perm_by_exhaustive_method(metric_mtx, eval_op) else: best_metric, best_perm = _find_best_perm_by_linear_sum_assignment(metric_mtx, eval_op) return best_metric, best_perm def pit_permutate(preds: Tensor, perm: Tensor) -> Tensor: """Permutate estimate according to perm. Args: preds: the estimates you want to permutate, shape [batch, spk, ...] perm: the permutation returned from permutation_invariant_training, shape [batch, spk] Returns: Tensor: the permutated version of estimate """ return torch.stack([torch.index_select(pred, 0, p) for pred, p in zip(preds, perm)])
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/audio/sdr.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Optional, Tuple import torch from torch import Tensor # import or def the norm/solve function from torch.linalg import norm from torchmetrics.utilities import rank_zero_warn from torchmetrics.utilities.checks import _check_same_shape from torchmetrics.utilities.imports import _FAST_BSS_EVAL_AVAILABLE def _symmetric_toeplitz(vector: Tensor) -> Tensor: """Construct a symmetric Toeplitz matrix using one vector. Args: vector: shape [..., L] Example: >>> from torch import tensor >>> from torchmetrics.functional.audio.sdr import _symmetric_toeplitz >>> v = tensor([0, 1, 2, 3, 4]) >>> _symmetric_toeplitz(v) tensor([[0, 1, 2, 3, 4], [1, 0, 1, 2, 3], [2, 1, 0, 1, 2], [3, 2, 1, 0, 1], [4, 3, 2, 1, 0]]) Returns: a symmetric Toeplitz matrix of shape [..., L, L] """ vec_exp = torch.cat([torch.flip(vector, dims=(-1,)), vector[..., 1:]], dim=-1) v_len = vector.shape[-1] return torch.as_strided( vec_exp, size=vec_exp.shape[:-1] + (v_len, v_len), stride=vec_exp.stride()[:-1] + (1, 1) ).flip(dims=(-1,)) def _compute_autocorr_crosscorr(target: Tensor, preds: Tensor, corr_len: int) -> Tuple[Tensor, Tensor]: r"""Compute the auto correlation of `target` and the cross correlation of `target` and `preds`. This calculation is done using the fast Fourier transform (FFT). Let's denotes the symmetric Toeplitz metric of the auto correlation of `target` as `R`, the cross correlation as 'b', then solving the equation `Rh=b` could have `h` as the coordinate of `preds` in the column space of the `corr_len` shifts of `target`. Args: target: the target (reference) signal of shape [..., time] preds: the preds (estimated) signal of shape [..., time] corr_len: the length of the auto correlation and cross correlation Returns: the auto correlation of `target` of shape [..., corr_len] the cross correlation of `target` and `preds` of shape [..., corr_len] """ # the valid length for the signal after convolution n_fft = 2 ** math.ceil(math.log2(preds.shape[-1] + target.shape[-1] - 1)) # computes the auto correlation of `target` # r_0 is the first row of the symmetric Toeplitz metric t_fft = torch.fft.rfft(target, n=n_fft, dim=-1) r_0 = torch.fft.irfft(t_fft.real**2 + t_fft.imag**2, n=n_fft)[..., :corr_len] # computes the cross-correlation of `target` and `preds` p_fft = torch.fft.rfft(preds, n=n_fft, dim=-1) b = torch.fft.irfft(t_fft.conj() * p_fft, n=n_fft, dim=-1)[..., :corr_len] return r_0, b def signal_distortion_ratio( preds: Tensor, target: Tensor, use_cg_iter: Optional[int] = None, filter_length: int = 512, zero_mean: bool = False, load_diag: Optional[float] = None, ) -> Tensor: r"""Calculate Signal to Distortion Ratio (SDR) metric. See `SDR ref1`_ and `SDR ref2`_ for details on the metric. .. note: The metric currently does not seem to work with Pytorch v1.11 and specific GPU hardware. Args: preds: float tensor with shape ``(...,time)`` target: float tensor with shape ``(...,time)`` use_cg_iter: If provided, conjugate gradient descent is used to solve for the distortion filter coefficients instead of direct Gaussian elimination, which requires that ``fast-bss-eval`` is installed and pytorch version >= 1.8. This can speed up the computation of the metrics in case the filters are long. Using a value of 10 here has been shown to provide good accuracy in most cases and is sufficient when using this loss to train neural separation networks. filter_length: The length of the distortion filter allowed zero_mean: When set to True, the mean of all signals is subtracted prior to computation of the metrics load_diag: If provided, this small value is added to the diagonal coefficients of the system metrics when solving for the filter coefficients. This can help stabilize the metric in the case where some reference signals may sometimes be zero Returns: Float tensor with shape ``(...,)`` of SDR values per sample Raises: RuntimeError: If ``preds`` and ``target`` does not have the same shape Example: >>> import torch >>> from torchmetrics.functional.audio import signal_distortion_ratio >>> g = torch.manual_seed(1) >>> preds = torch.randn(8000) >>> target = torch.randn(8000) >>> signal_distortion_ratio(preds, target) tensor(-12.0589) >>> # use with permutation_invariant_training >>> from torchmetrics.functional.audio import permutation_invariant_training >>> preds = torch.randn(4, 2, 8000) # [batch, spk, time] >>> target = torch.randn(4, 2, 8000) >>> best_metric, best_perm = permutation_invariant_training(preds, target, signal_distortion_ratio) >>> best_metric tensor([-11.6375, -11.4358, -11.7148, -11.6325]) >>> best_perm tensor([[1, 0], [0, 1], [1, 0], [0, 1]]) """ _check_same_shape(preds, target) # use double precision preds_dtype = preds.dtype preds = preds.double() target = target.double() if zero_mean: preds = preds - preds.mean(dim=-1, keepdim=True) target = target - target.mean(dim=-1, keepdim=True) # normalize along time-axis to make preds and target have unit norm target = target / torch.clamp(norm(target, dim=-1, keepdim=True), min=1e-6) preds = preds / torch.clamp(norm(preds, dim=-1, keepdim=True), min=1e-6) # solve for the optimal filter # compute auto-correlation and cross-correlation r_0, b = _compute_autocorr_crosscorr(target, preds, corr_len=filter_length) if load_diag is not None: # the diagonal factor of the Toeplitz matrix is the first coefficient of r_0 r_0[..., 0] += load_diag if use_cg_iter is not None and _FAST_BSS_EVAL_AVAILABLE: from fast_bss_eval.torch.cgd import toeplitz_conjugate_gradient # use preconditioned conjugate gradient sol = toeplitz_conjugate_gradient(r_0, b, n_iter=use_cg_iter) else: if use_cg_iter is not None and not _FAST_BSS_EVAL_AVAILABLE: rank_zero_warn( "The `use_cg_iter` parameter of `SDR` requires that `fast-bss-eval` is installed. " "To make this this warning disappear, you could install `fast-bss-eval` using " "`pip install fast-bss-eval` or set `use_cg_iter=None`. For this time, the solver " "provided by Pytorch is used.", UserWarning, ) # regular matrix solver r = _symmetric_toeplitz(r_0) # the auto-correlation of the L shifts of `target` sol = torch.linalg.solve(r, b) # compute the coherence coh = torch.einsum("...l,...l->...", b, sol) # transform to decibels ratio = coh / (1 - coh) val = 10.0 * torch.log10(ratio) if preds_dtype == torch.float64: return val return val.float() def scale_invariant_signal_distortion_ratio(preds: Tensor, target: Tensor, zero_mean: bool = False) -> Tensor: """`Scale-invariant signal-to-distortion ratio`_ (SI-SDR). The SI-SDR value is in general considered an overall measure of how good a source sound. Args: preds: float tensor with shape ``(...,time)`` target: float tensor with shape ``(...,time)`` zero_mean: If to zero mean target and preds or not Returns: Float tensor with shape ``(...,)`` of SDR values per sample Raises: RuntimeError: If ``preds`` and ``target`` does not have the same shape Example: >>> from torchmetrics.functional.audio import scale_invariant_signal_distortion_ratio >>> target = torch.tensor([3.0, -0.5, 2.0, 7.0]) >>> preds = torch.tensor([2.5, 0.0, 2.0, 8.0]) >>> scale_invariant_signal_distortion_ratio(preds, target) tensor(18.4030) """ _check_same_shape(preds, target) eps = torch.finfo(preds.dtype).eps if zero_mean: target = target - torch.mean(target, dim=-1, keepdim=True) preds = preds - torch.mean(preds, dim=-1, keepdim=True) alpha = (torch.sum(preds * target, dim=-1, keepdim=True) + eps) / ( torch.sum(target**2, dim=-1, keepdim=True) + eps ) target_scaled = alpha * target noise = target_scaled - preds val = (torch.sum(target_scaled**2, dim=-1) + eps) / (torch.sum(noise**2, dim=-1) + eps) return 10 * torch.log10(val) def source_aggregated_signal_distortion_ratio( preds: Tensor, target: Tensor, scale_invariant: bool = True, zero_mean: bool = False, ) -> Tensor: """`Source-aggregated signal-to-distortion ratio`_ (SA-SDR). The SA-SDR is proposed to provide a stable gradient for meeting style source separation, where one-speaker and multiple-speaker scenes coexist. Args: preds: float tensor with shape ``(..., spk, time)`` target: float tensor with shape ``(..., spk, time)`` scale_invariant: if True, scale the targets of different speakers with the same alpha zero_mean: If to zero mean target and preds or not Returns: SA-SDR with shape ``(...)`` Example: >>> import torch >>> from torchmetrics.functional.audio import source_aggregated_signal_distortion_ratio >>> g = torch.manual_seed(1) >>> preds = torch.randn(2, 8000) # [..., spk, time] >>> target = torch.randn(2, 8000) >>> source_aggregated_signal_distortion_ratio(preds, target) tensor(-41.6579) >>> # use with permutation_invariant_training >>> from torchmetrics.functional.audio import permutation_invariant_training >>> preds = torch.randn(4, 2, 8000) # [batch, spk, time] >>> target = torch.randn(4, 2, 8000) >>> best_metric, best_perm = permutation_invariant_training(preds, target, ... source_aggregated_signal_distortion_ratio, mode="permutation-wise") >>> best_metric tensor([-37.9511, -41.9124, -42.7369, -42.5155]) >>> best_perm tensor([[1, 0], [1, 0], [0, 1], [1, 0]]) """ _check_same_shape(preds, target) if preds.ndim < 2: raise RuntimeError(f"The preds and target should have the shape (..., spk, time), but {preds.shape} found") eps = torch.finfo(preds.dtype).eps if zero_mean: target = target - torch.mean(target, dim=-1, keepdim=True) preds = preds - torch.mean(preds, dim=-1, keepdim=True) if scale_invariant: # scale the targets of different speakers with the same alpha (shape [..., 1, 1]) alpha = ((preds * target).sum(dim=-1, keepdim=True).sum(dim=-2, keepdim=True) + eps) / ( (target**2).sum(dim=-1, keepdim=True).sum(dim=-2, keepdim=True) + eps ) target = alpha * target distortion = target - preds val = ((target**2).sum(dim=-1).sum(dim=-1) + eps) / ((distortion**2).sum(dim=-1).sum(dim=-1) + eps) return 10 * torch.log10(val)
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/audio/srmr.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Note: without special mention, the functions in this file are mainly translated from # the SRMRpy package for batched processing with pytorch from functools import lru_cache from math import ceil, pi from typing import Optional, Tuple import torch from torch import Tensor from torch.nn.functional import pad from torchmetrics.utilities import rank_zero_warn from torchmetrics.utilities.imports import ( _GAMMATONE_AVAILABLE, _TORCHAUDIO_AVAILABLE, _TORCHAUDIO_GREATER_EQUAL_0_10, ) if not _TORCHAUDIO_AVAILABLE or not _TORCHAUDIO_GREATER_EQUAL_0_10 or not _GAMMATONE_AVAILABLE: __doctest_skip__ = ["speech_reverberation_modulation_energy_ratio"] @lru_cache(maxsize=100) def _calc_erbs(low_freq: float, fs: int, n_filters: int, device: torch.device) -> Tensor: from gammatone.filters import centre_freqs ear_q = 9.26449 # Glasberg and Moore Parameters min_bw = 24.7 order = 1 erbs = ((centre_freqs(fs, n_filters, low_freq) / ear_q) ** order + min_bw**order) ** (1 / order) return torch.tensor(erbs, device=device) @lru_cache(maxsize=100) def _make_erb_filters(fs: int, num_freqs: int, cutoff: float, device: torch.device) -> Tensor: from gammatone.filters import centre_freqs, make_erb_filters cfs = centre_freqs(fs, num_freqs, cutoff) fcoefs = make_erb_filters(fs, cfs) return torch.tensor(fcoefs, device=device) @lru_cache(maxsize=100) def _compute_modulation_filterbank_and_cutoffs( min_cf: float, max_cf: float, n: int, fs: float, q: int, device: torch.device ) -> Tuple[Tensor, Tensor, Tensor, Tensor]: # this function is translated from the SRMRpy packaged spacing_factor = (max_cf / min_cf) ** (1.0 / (n - 1)) cfs = torch.zeros(n, dtype=torch.float64) cfs[0] = min_cf for k in range(1, n): cfs[k] = cfs[k - 1] * spacing_factor def _make_modulation_filter(w0: Tensor, q: int) -> Tensor: w0 = torch.tan(w0 / 2) b0 = w0 / q b = torch.tensor([b0, 0, -b0], dtype=torch.float64) a = torch.tensor([(1 + b0 + w0**2), (2 * w0**2 - 2), (1 - b0 + w0**2)], dtype=torch.float64) return torch.stack([b, a], dim=0) mfb = torch.stack([_make_modulation_filter(w0, q) for w0 in 2 * pi * cfs / fs], dim=0) def _calc_cutoffs(cfs: Tensor, fs: float, q: int) -> Tuple[Tensor, Tensor]: # Calculates cutoff frequencies (3 dB) for 2nd order bandpass w0 = 2 * pi * cfs / fs b0 = torch.tan(w0 / 2) / q ll = cfs - (b0 * fs / (2 * pi)) rr = cfs + (b0 * fs / (2 * pi)) return ll, rr cfs = cfs.to(device=device) mfb = mfb.to(device=device) ll, rr = _calc_cutoffs(cfs, fs, q) return cfs, mfb, ll, rr def _hilbert(x: Tensor, n: Optional[int] = None) -> Tensor: if x.is_complex(): raise ValueError("x must be real.") if n is None: n = x.shape[-1] # Make N multiple of 16 to make sure the transform will be fast if n % 16: n = ceil(n / 16) * 16 if n <= 0: raise ValueError("N must be positive.") x_fft = torch.fft.fft(x, n=n, dim=-1) h = torch.zeros(n, dtype=x.dtype, device=x.device, requires_grad=False) if n % 2 == 0: h[0] = h[n // 2] = 1 h[1 : n // 2] = 2 else: h[0] = 1 h[1 : (n + 1) // 2] = 2 y = torch.fft.ifft(x_fft * h, dim=-1) return y[..., : x.shape[-1]] def _erb_filterbank(wave: Tensor, coefs: Tensor) -> Tensor: """Translated from gammatone package. Args: wave: shape [B, time] coefs: shape [N, 10] Returns: Tensor: shape [B, N, time] """ from torchaudio.functional.filtering import lfilter num_batch, time = wave.shape wave = wave.to(dtype=coefs.dtype).reshape(num_batch, 1, time) # [B, time] wave = wave.expand(-1, coefs.shape[0], -1) # [B, N, time] gain = coefs[:, 9] as1 = coefs[:, (0, 1, 5)] # A0, A11, A2 as2 = coefs[:, (0, 2, 5)] # A0, A12, A2 as3 = coefs[:, (0, 3, 5)] # A0, A13, A2 as4 = coefs[:, (0, 4, 5)] # A0, A14, A2 bs = coefs[:, 6:9] # B0, B1, B2 y1 = lfilter(wave, bs, as1, batching=True) y2 = lfilter(y1, bs, as2, batching=True) y3 = lfilter(y2, bs, as3, batching=True) y4 = lfilter(y3, bs, as4, batching=True) return y4 / gain.reshape(1, -1, 1) def _normalize_energy(energy: Tensor, drange: float = 30.0) -> Tensor: """Normalize energy to a dynamic range of 30 dB. Args: energy: shape [B, N_filters, 8, n_frames] drange: dynamic range in dB """ peak_energy = torch.mean(energy, dim=1, keepdim=True).max(dim=2, keepdim=True).values peak_energy = peak_energy.max(dim=3, keepdim=True).values min_energy = peak_energy * 10.0 ** (-drange / 10.0) energy = torch.where(energy < min_energy, min_energy, energy) return torch.where(energy > peak_energy, peak_energy, energy) def _cal_srmr_score(bw: Tensor, avg_energy: Tensor, cutoffs: Tensor) -> Tensor: """Calculate srmr score.""" if (cutoffs[4] <= bw) and (cutoffs[5] > bw): kstar = 5 elif (cutoffs[5] <= bw) and (cutoffs[6] > bw): kstar = 6 elif (cutoffs[6] <= bw) and (cutoffs[7] > bw): kstar = 7 elif cutoffs[7] <= bw: kstar = 8 else: raise ValueError("Something wrong with the cutoffs compared to bw values.") return torch.sum(avg_energy[:, :4]) / torch.sum(avg_energy[:, 4:kstar]) def speech_reverberation_modulation_energy_ratio( preds: Tensor, fs: int, n_cochlear_filters: int = 23, low_freq: float = 125, min_cf: float = 4, max_cf: Optional[float] = None, norm: bool = False, fast: bool = False, ) -> Tensor: """Calculate `Speech-to-Reverberation Modulation Energy Ratio`_ (SRMR). SRMR is a non-intrusive metric for speech quality and intelligibility based on a modulation spectral representation of the speech signal. This code is translated from `SRMRToolbox`_ and `SRMRpy`_. Args: preds: shape ``(..., time)`` fs: the sampling rate n_cochlear_filters: Number of filters in the acoustic filterbank low_freq: determines the frequency cutoff for the corresponding gammatone filterbank. min_cf: Center frequency in Hz of the first modulation filter. max_cf: Center frequency in Hz of the last modulation filter. If None is given, then 30 Hz will be used for `norm==False`, otherwise 128 Hz will be used. norm: Use modulation spectrum energy normalization fast: Use the faster version based on the gammatonegram. Note: this argument is inherited from `SRMRpy`_. As the translated code is based to pytorch, setting `fast=True` may slow down the speed for calculating this metric on GPU. .. note:: using this metrics requires you to have ``gammatone`` and ``torchaudio`` installed. Either install as ``pip install torchmetrics[audio]`` or ``pip install torchaudio`` and ``pip install git+https://github.com/detly/gammatone``. .. note:: This implementation is experimental, and might not be consistent with the matlab implementation `SRMRToolbox`_, especially the fast implementation. The slow versions, a) fast=False, norm=False, max_cf=128, b) fast=False, norm=True, max_cf=30, have a relatively small inconsistence. Returns: Scalar tensor with srmr value with shape ``(...)`` Raises: ModuleNotFoundError: If ``gammatone`` or ``torchaudio`` package is not installed Example: >>> import torch >>> from torchmetrics.functional.audio import speech_reverberation_modulation_energy_ratio >>> g = torch.manual_seed(1) >>> preds = torch.randn(8000) >>> speech_reverberation_modulation_energy_ratio(preds, 8000) tensor([0.3354], dtype=torch.float64) """ if not _TORCHAUDIO_AVAILABLE or not _TORCHAUDIO_GREATER_EQUAL_0_10 or not _GAMMATONE_AVAILABLE: raise ModuleNotFoundError( "speech_reverberation_modulation_energy_ratio requires you to have `gammatone` and" " `torchaudio>=0.10` installed. Either install as ``pip install torchmetrics[audio]`` or " "``pip install torchaudio>=0.10`` and ``pip install git+https://github.com/detly/gammatone``" ) from gammatone.fftweight import fft_gtgram from torchaudio.functional.filtering import lfilter _srmr_arg_validate( fs=fs, n_cochlear_filters=n_cochlear_filters, low_freq=low_freq, min_cf=min_cf, max_cf=max_cf, norm=norm, fast=fast, ) shape = preds.shape preds = preds.reshape(1, -1) if len(shape) == 1 else preds.reshape(-1, shape[-1]) num_batch, time = preds.shape # convert int type to float if not torch.is_floating_point(preds): preds = preds.to(torch.float64) / torch.finfo(preds.dtype).max # norm values in preds to [-1, 1], as lfilter requires an input in this range max_vals = preds.abs().max(dim=-1, keepdim=True).values val_norm = torch.where( max_vals > 1, max_vals, torch.tensor(1.0, dtype=max_vals.dtype, device=max_vals.device), ) preds = preds / val_norm w_length_s = 0.256 w_inc_s = 0.064 # Computing gammatone envelopes if fast: rank_zero_warn("`fast=True` may slow down the speed of SRMR metric on GPU.") mfs = 400.0 temp = [] preds_np = preds.detach().cpu().numpy() for b in range(num_batch): gt_env_b = fft_gtgram(preds_np[b], fs, 0.010, 0.0025, n_cochlear_filters, low_freq) temp.append(torch.tensor(gt_env_b)) gt_env = torch.stack(temp, dim=0).to(device=preds.device) else: fcoefs = _make_erb_filters(fs, n_cochlear_filters, low_freq, device=preds.device) # [N_filters, 10] gt_env = torch.abs(_hilbert(_erb_filterbank(preds, fcoefs))) # [B, N_filters, time] mfs = fs w_length = ceil(w_length_s * mfs) w_inc = ceil(w_inc_s * mfs) # Computing modulation filterbank with Q = 2 and 8 channels if max_cf is None: max_cf = 30 if norm else 128 _, mf, cutoffs, _ = _compute_modulation_filterbank_and_cutoffs( min_cf, max_cf, n=8, fs=mfs, q=2, device=preds.device ) num_frames = int(1 + (time - w_length) // w_inc) w = torch.hamming_window(w_length + 1, dtype=torch.float64, device=preds.device)[:-1] mod_out = lfilter( gt_env.unsqueeze(-2).expand(-1, -1, mf.shape[0], -1), mf[:, 1, :], mf[:, 0, :], clamp=False, batching=True ) # [B, N_filters, 8, time] # pad signal if it's shorter than window or it is not multiple of wInc padding = (0, max(ceil(time / w_inc) * w_inc - time, w_length - time)) mod_out_pad = pad(mod_out, pad=padding, mode="constant", value=0) mod_out_frame = mod_out_pad.unfold(-1, w_length, w_inc) energy = ((mod_out_frame[..., :num_frames, :] * w) ** 2).sum(dim=-1) # [B, N_filters, 8, n_frames] if norm: energy = _normalize_energy(energy) erbs = torch.flipud(_calc_erbs(low_freq, fs, n_cochlear_filters, device=preds.device)) avg_energy = torch.mean(energy, dim=-1) total_energy = torch.sum(avg_energy.reshape(num_batch, -1), dim=-1) ac_energy = torch.sum(avg_energy, dim=2) ac_perc = ac_energy * 100 / total_energy.reshape(-1, 1) ac_perc_cumsum = ac_perc.flip(-1).cumsum(-1) k90perc_idx = torch.nonzero((ac_perc_cumsum > 90).cumsum(-1) == 1)[:, 1] bw = erbs[k90perc_idx] temp = [] for b in range(num_batch): score = _cal_srmr_score(bw[b], avg_energy[b], cutoffs=cutoffs) temp.append(score) score = torch.stack(temp) return score.reshape(*shape[:-1]) if len(shape) > 1 else score # recover original shape def _srmr_arg_validate( fs: int, n_cochlear_filters: int = 23, low_freq: float = 125, min_cf: float = 4, max_cf: Optional[float] = 128, norm: bool = False, fast: bool = False, ) -> None: """Validate the arguments for speech_reverberation_modulation_energy_ratio. Args: fs: the sampling rate n_cochlear_filters: Number of filters in the acoustic filterbank low_freq: determines the frequency cutoff for the corresponding gammatone filterbank. min_cf: Center frequency in Hz of the first modulation filter. max_cf: Center frequency in Hz of the last modulation filter. If None is given, norm: Use modulation spectrum energy normalization fast: Use the faster version based on the gammatonegram. """ if not (isinstance(fs, int) and fs > 0): raise ValueError(f"Expected argument `fs` to be an int larger than 0, but got {fs}") if not (isinstance(n_cochlear_filters, int) and n_cochlear_filters > 0): raise ValueError( f"Expected argument `n_cochlear_filters` to be an int larger than 0, but got {n_cochlear_filters}" ) if not ((isinstance(low_freq, (float, int))) and low_freq > 0): raise ValueError(f"Expected argument `low_freq` to be a float larger than 0, but got {low_freq}") if not ((isinstance(min_cf, (float, int))) and min_cf > 0): raise ValueError(f"Expected argument `min_cf` to be a float larger than 0, but got {min_cf}") if max_cf is not None and not ((isinstance(max_cf, (float, int))) and max_cf > 0): raise ValueError(f"Expected argument `max_cf` to be a float larger than 0, but got {max_cf}") if not isinstance(norm, bool): raise ValueError("Expected argument `norm` to be a bool value") if not isinstance(fast, bool): raise ValueError("Expected argument `fast` to be a bool value")
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/audio/stoi.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from torch import Tensor from torchmetrics.utilities.checks import _check_same_shape from torchmetrics.utilities.imports import _PYSTOI_AVAILABLE if not _PYSTOI_AVAILABLE: __doctest_skip__ = ["short_time_objective_intelligibility"] def short_time_objective_intelligibility( preds: Tensor, target: Tensor, fs: int, extended: bool = False, keep_same_device: bool = False ) -> Tensor: r"""Calculate STOI (Short-Time Objective Intelligibility) metric for evaluating speech signals. Intelligibility measure which is highly correlated with the intelligibility of degraded speech signals, e.g., due to additive noise, single-/multi-channel noise reduction, binary masking and vocoded speech as in CI simulations. The STOI-measure is intrusive, i.e., a function of the clean and degraded speech signals. STOI may be a good alternative to the speech intelligibility index (SII) or the speech transmission index (STI), when you are interested in the effect of nonlinear processing to noisy speech, e.g., noise reduction, binary masking algorithms, on speech intelligibility. Description taken from `Cees Taal's website`_ and for further details see `STOI ref1`_ and `STOI ref2`_. This metric is a wrapper for the `pystoi package`_. As the implementation backend implementation only supports calculations on CPU, all input will automatically be moved to CPU to perform the metric calculation before being moved back to the original device. .. note:: using this metrics requires you to have ``pystoi`` install. Either install as ``pip install torchmetrics[audio]`` or ``pip install pystoi`` Args: preds: float tensor with shape ``(...,time)`` target: float tensor with shape ``(...,time)`` fs: sampling frequency (Hz) extended: whether to use the extended STOI described in `STOI ref3`_. keep_same_device: whether to move the stoi value to the device of preds Returns: stoi value of shape [...] Raises: ModuleNotFoundError: If ``pystoi`` package is not installed RuntimeError: If ``preds`` and ``target`` does not have the same shape Example: >>> import torch >>> from torchmetrics.functional.audio.stoi import short_time_objective_intelligibility >>> g = torch.manual_seed(1) >>> preds = torch.randn(8000) >>> target = torch.randn(8000) >>> short_time_objective_intelligibility(preds, target, 8000).float() tensor(-0.0100) """ if not _PYSTOI_AVAILABLE: raise ModuleNotFoundError( "ShortTimeObjectiveIntelligibility metric requires that `pystoi` is installed." " Either install as `pip install torchmetrics[audio]` or `pip install pystoi`." ) from pystoi import stoi as stoi_backend _check_same_shape(preds, target) if len(preds.shape) == 1: stoi_val_np = stoi_backend(target.detach().cpu().numpy(), preds.detach().cpu().numpy(), fs, extended) stoi_val = torch.tensor(stoi_val_np) else: preds_np = preds.reshape(-1, preds.shape[-1]).detach().cpu().numpy() target_np = target.reshape(-1, preds.shape[-1]).detach().cpu().numpy() stoi_val_np = np.empty(shape=(preds_np.shape[0])) for b in range(preds_np.shape[0]): stoi_val_np[b] = stoi_backend(target_np[b, :], preds_np[b, :], fs, extended) stoi_val = torch.from_numpy(stoi_val_np) stoi_val = stoi_val.reshape(preds.shape[:-1]) if keep_same_device: return stoi_val.to(preds.device) return stoi_val
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/audio/_deprecated.py
from typing import Any, Callable, Optional, Tuple from torch import Tensor from typing_extensions import Literal from torchmetrics.functional.audio.pit import permutation_invariant_training, pit_permutate from torchmetrics.functional.audio.sdr import scale_invariant_signal_distortion_ratio, signal_distortion_ratio from torchmetrics.functional.audio.snr import scale_invariant_signal_noise_ratio, signal_noise_ratio from torchmetrics.utilities.prints import _deprecated_root_import_func def _permutation_invariant_training( preds: Tensor, target: Tensor, metric_func: Callable, mode: Literal["speaker-wise", "permutation-wise"] = "speaker-wise", eval_func: Literal["max", "min"] = "max", **kwargs: Any ) -> Tuple[Tensor, Tensor]: """Wrapper for deprecated import. >>> from torch import tensor >>> preds = tensor([[[-0.0579, 0.3560, -0.9604], [-0.1719, 0.3205, 0.2951]]]) >>> target = tensor([[[ 1.0958, -0.1648, 0.5228], [-0.4100, 1.1942, -0.5103]]]) >>> best_metric, best_perm = _permutation_invariant_training( ... preds, target, _scale_invariant_signal_distortion_ratio) >>> best_metric tensor([-5.1091]) >>> best_perm tensor([[0, 1]]) >>> pit_permutate(preds, best_perm) tensor([[[-0.0579, 0.3560, -0.9604], [-0.1719, 0.3205, 0.2951]]]) """ _deprecated_root_import_func("permutation_invariant_training", "audio") return permutation_invariant_training( preds=preds, target=target, metric_func=metric_func, mode=mode, eval_func=eval_func, **kwargs ) def _pit_permutate(preds: Tensor, perm: Tensor) -> Tensor: """Wrapper for deprecated import.""" _deprecated_root_import_func("pit_permutate", "audio") return pit_permutate(preds=preds, perm=perm) def _scale_invariant_signal_distortion_ratio(preds: Tensor, target: Tensor, zero_mean: bool = False) -> Tensor: """Wrapper for deprecated import. >>> from torch import tensor >>> target = tensor([3.0, -0.5, 2.0, 7.0]) >>> preds = tensor([2.5, 0.0, 2.0, 8.0]) >>> _scale_invariant_signal_distortion_ratio(preds, target) tensor(18.4030) """ _deprecated_root_import_func("scale_invariant_signal_distortion_ratio", "audio") return scale_invariant_signal_distortion_ratio(preds=preds, target=target, zero_mean=zero_mean) def _signal_distortion_ratio( preds: Tensor, target: Tensor, use_cg_iter: Optional[int] = None, filter_length: int = 512, zero_mean: bool = False, load_diag: Optional[float] = None, ) -> Tensor: """Wrapper for deprecated import. >>> import torch >>> g = torch.manual_seed(1) >>> preds = torch.randn(8000) >>> target = torch.randn(8000) >>> _signal_distortion_ratio(preds, target) tensor(-12.0589) >>> # use with permutation_invariant_training >>> preds = torch.randn(4, 2, 8000) # [batch, spk, time] >>> target = torch.randn(4, 2, 8000) >>> best_metric, best_perm = _permutation_invariant_training(preds, target, _signal_distortion_ratio) >>> best_metric tensor([-11.6375, -11.4358, -11.7148, -11.6325]) >>> best_perm tensor([[1, 0], [0, 1], [1, 0], [0, 1]]) """ _deprecated_root_import_func("signal_distortion_ratio", "audio") return signal_distortion_ratio( preds=preds, target=target, use_cg_iter=use_cg_iter, filter_length=filter_length, zero_mean=zero_mean, load_diag=load_diag, ) def _scale_invariant_signal_noise_ratio(preds: Tensor, target: Tensor) -> Tensor: """Wrapper for deprecated import. >>> from torch import tensor >>> target = tensor([3.0, -0.5, 2.0, 7.0]) >>> preds = tensor([2.5, 0.0, 2.0, 8.0]) >>> _scale_invariant_signal_noise_ratio(preds, target) tensor(15.0918) """ _deprecated_root_import_func("scale_invariant_signal_noise_ratio", "audio") return scale_invariant_signal_noise_ratio(preds=preds, target=target) def _signal_noise_ratio(preds: Tensor, target: Tensor, zero_mean: bool = False) -> Tensor: """Wrapper for deprecated import. >>> from torch import tensor >>> target = tensor([3.0, -0.5, 2.0, 7.0]) >>> preds = tensor([2.5, 0.0, 2.0, 8.0]) >>> _signal_noise_ratio(preds, target) tensor(16.1805) """ _deprecated_root_import_func("signal_noise_ratio", "audio") return signal_noise_ratio(preds=preds, target=target, zero_mean=zero_mean)
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/audio/snr.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch import Tensor from torchmetrics.functional.audio.sdr import scale_invariant_signal_distortion_ratio from torchmetrics.utilities.checks import _check_same_shape def signal_noise_ratio(preds: Tensor, target: Tensor, zero_mean: bool = False) -> Tensor: r"""Calculate `Signal-to-noise ratio`_ (SNR_) meric for evaluating quality of audio. .. math:: \text{SNR} = \frac{P_{signal}}{P_{noise}} where :math:`P` denotes the power of each signal. The SNR metric compares the level of the desired signal to the level of background noise. Therefore, a high value of SNR means that the audio is clear. Args: preds: float tensor with shape ``(...,time)`` target: float tensor with shape ``(...,time)`` zero_mean: if to zero mean target and preds or not Returns: Float tensor with shape ``(...,)`` of SNR values per sample Raises: RuntimeError: If ``preds`` and ``target`` does not have the same shape Example: >>> from torchmetrics.functional.audio import signal_noise_ratio >>> target = torch.tensor([3.0, -0.5, 2.0, 7.0]) >>> preds = torch.tensor([2.5, 0.0, 2.0, 8.0]) >>> signal_noise_ratio(preds, target) tensor(16.1805) """ _check_same_shape(preds, target) eps = torch.finfo(preds.dtype).eps if zero_mean: target = target - torch.mean(target, dim=-1, keepdim=True) preds = preds - torch.mean(preds, dim=-1, keepdim=True) noise = target - preds snr_value = (torch.sum(target**2, dim=-1) + eps) / (torch.sum(noise**2, dim=-1) + eps) return 10 * torch.log10(snr_value) def scale_invariant_signal_noise_ratio(preds: Tensor, target: Tensor) -> Tensor: """`Scale-invariant signal-to-noise ratio`_ (SI-SNR). Args: preds: float tensor with shape ``(...,time)`` target: float tensor with shape ``(...,time)`` Returns: Float tensor with shape ``(...,)`` of SI-SNR values per sample Raises: RuntimeError: If ``preds`` and ``target`` does not have the same shape Example: >>> import torch >>> from torchmetrics.functional.audio import scale_invariant_signal_noise_ratio >>> target = torch.tensor([3.0, -0.5, 2.0, 7.0]) >>> preds = torch.tensor([2.5, 0.0, 2.0, 8.0]) >>> scale_invariant_signal_noise_ratio(preds, target) tensor(15.0918) """ return scale_invariant_signal_distortion_ratio(preds=preds, target=target, zero_mean=True) def complex_scale_invariant_signal_noise_ratio(preds: Tensor, target: Tensor, zero_mean: bool = False) -> Tensor: """`Complex scale-invariant signal-to-noise ratio`_ (C-SI-SNR). Args: preds: real float tensor with shape ``(...,frequency,time,2)`` or complex float tensor with shape ``(..., frequency,time)`` target: real float tensor with shape ``(...,frequency,time,2)`` or complex float tensor with shape ``(..., frequency,time)`` zero_mean: When set to True, the mean of all signals is subtracted prior to computation of the metrics Returns: Float tensor with shape ``(...,)`` of C-SI-SNR values per sample Raises: RuntimeError: If ``preds`` is not the shape (...,frequency,time,2) (after being converted to real if it is complex). If ``preds`` and ``target`` does not have the same shape. Example: >>> import torch >>> from torchmetrics.functional.audio import complex_scale_invariant_signal_noise_ratio >>> g = torch.manual_seed(1) >>> preds = torch.randn((1,257,100,2)) >>> target = torch.randn((1,257,100,2)) >>> complex_scale_invariant_signal_noise_ratio(preds, target) tensor([-63.4849]) """ if preds.is_complex(): preds = torch.view_as_real(preds) if target.is_complex(): target = torch.view_as_real(target) if (preds.ndim < 3 or preds.shape[-1] != 2) or (target.ndim < 3 or target.shape[-1] != 2): raise RuntimeError( "Predictions and targets are expected to have the shape (..., frequency, time, 2)," " but got {preds.shape} and {target.shape}." ) preds = preds.reshape(*preds.shape[:-3], -1) target = target.reshape(*target.shape[:-3], -1) return scale_invariant_signal_distortion_ratio(preds=preds, target=target, zero_mean=zero_mean)
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/audio/__init__.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from torchmetrics.functional.audio.pit import permutation_invariant_training, pit_permutate from torchmetrics.functional.audio.sdr import ( scale_invariant_signal_distortion_ratio, signal_distortion_ratio, source_aggregated_signal_distortion_ratio, ) from torchmetrics.functional.audio.snr import ( complex_scale_invariant_signal_noise_ratio, scale_invariant_signal_noise_ratio, signal_noise_ratio, ) from torchmetrics.utilities.imports import ( _GAMMATONE_AVAILABLE, _PESQ_AVAILABLE, _PYSTOI_AVAILABLE, _TORCHAUDIO_AVAILABLE, _TORCHAUDIO_GREATER_EQUAL_0_10, ) __all__ = [ "permutation_invariant_training", "pit_permutate", "scale_invariant_signal_distortion_ratio", "source_aggregated_signal_distortion_ratio", "signal_distortion_ratio", "scale_invariant_signal_noise_ratio", "signal_noise_ratio", "complex_scale_invariant_signal_noise_ratio", ] if _PESQ_AVAILABLE: from torchmetrics.functional.audio.pesq import perceptual_evaluation_speech_quality __all__ += ["perceptual_evaluation_speech_quality"] if _PYSTOI_AVAILABLE: from torchmetrics.functional.audio.stoi import short_time_objective_intelligibility __all__ += ["short_time_objective_intelligibility"] if _GAMMATONE_AVAILABLE and _TORCHAUDIO_AVAILABLE and _TORCHAUDIO_GREATER_EQUAL_0_10: from torchmetrics.functional.audio.srmr import speech_reverberation_modulation_energy_ratio __all__ += ["speech_reverberation_modulation_energy_ratio"]
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/retrieval/reciprocal_rank.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import torch from torch import Tensor, tensor from torchmetrics.utilities.checks import _check_retrieval_functional_inputs def retrieval_reciprocal_rank(preds: Tensor, target: Tensor, top_k: Optional[int] = None) -> Tensor: """Compute reciprocal rank (for information retrieval). See `Mean Reciprocal Rank`_. ``preds`` and ``target`` should be of the same shape and live on the same device. If no ``target`` is ``True``, 0 is returned. ``target`` must be either `bool` or `integers` and ``preds`` must be ``float``, otherwise an error is raised. Args: preds: estimated probabilities of each document to be relevant. target: ground truth about each document being relevant or not. top_k: consider only the top k elements (default: ``None``, which considers them all) Return: a single-value tensor with the reciprocal rank (RR) of the predictions ``preds`` wrt the labels ``target``. Raises: ValueError: If ``top_k`` is not ``None`` or an integer larger than 0. Example: >>> from torchmetrics.functional.retrieval import retrieval_reciprocal_rank >>> preds = torch.tensor([0.2, 0.3, 0.5]) >>> target = torch.tensor([False, True, False]) >>> retrieval_reciprocal_rank(preds, target) tensor(0.5000) """ preds, target = _check_retrieval_functional_inputs(preds, target) top_k = top_k or preds.shape[-1] if not isinstance(top_k, int) and top_k <= 0: raise ValueError(f"Argument ``top_k`` has to be a positive integer or None, but got {top_k}.") target = target[preds.topk(min(top_k, preds.shape[-1]), sorted=True, dim=-1)[1]] if not target.sum(): return tensor(0.0, device=preds.device) position = torch.nonzero(target).view(-1) return 1.0 / (position[0] + 1.0)
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/retrieval/fall_out.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import torch from torch import Tensor, tensor from torchmetrics.utilities.checks import _check_retrieval_functional_inputs def retrieval_fall_out(preds: Tensor, target: Tensor, top_k: Optional[int] = None) -> Tensor: """Compute the Fall-out for information retrieval, as explained in `IR Fall-out`_. Fall-out is the fraction of non-relevant documents retrieved among all the non-relevant documents. ``preds`` and ``target`` should be of the same shape and live on the same device. If no ``target`` is ``True``, ``0`` is returned. ``target`` must be either `bool` or `integers` and ``preds`` must be ``float``, otherwise an error is raised. If you want to measure Fall-out@K, ``top_k`` must be a positive integer. Args: preds: estimated probabilities of each document to be relevant. target: ground truth about each document being relevant or not. top_k: consider only the top k elements (default: ``None``, which considers them all) Returns: A single-value tensor with the fall-out (at ``top_k``) of the predictions ``preds`` w.r.t. the labels ``target`` Raises: ValueError: If ``top_k`` parameter is not `None` or an integer larger than 0 Example: >>> from torchmetrics.functional import retrieval_fall_out >>> preds = tensor([0.2, 0.3, 0.5]) >>> target = tensor([True, False, True]) >>> retrieval_fall_out(preds, target, top_k=2) tensor(1.) """ preds, target = _check_retrieval_functional_inputs(preds, target) top_k = preds.shape[-1] if top_k is None else top_k if not (isinstance(top_k, int) and top_k > 0): raise ValueError("`top_k` has to be a positive integer or None") target = 1 - target # we want to compute the probability of getting a non-relevant doc among all non-relevant docs if not target.sum(): return tensor(0.0, device=preds.device) relevant = target[torch.argsort(preds, dim=-1, descending=True)][:top_k].sum().float() return relevant / target.sum()
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/retrieval/average_precision.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import torch from torch import Tensor, tensor from torchmetrics.utilities.checks import _check_retrieval_functional_inputs def retrieval_average_precision(preds: Tensor, target: Tensor, top_k: Optional[int] = None) -> Tensor: """Compute average precision (for information retrieval), as explained in `IR Average precision`_. ``preds`` and ``target`` should be of the same shape and live on the same device. If no ``target`` is ``True``, ``0`` is returned. ``target`` must be either `bool` or `integers` and ``preds`` must be ``float``, otherwise an error is raised. Args: preds: estimated probabilities of each document to be relevant. target: ground truth about each document being relevant or not. top_k: consider only the top k elements (default: ``None``, which considers them all) Return: a single-value tensor with the average precision (AP) of the predictions ``preds`` w.r.t. the labels ``target``. Raises: ValueError: If ``top_k`` is not ``None`` or an integer larger than 0. Example: >>> from torchmetrics.functional.retrieval import retrieval_average_precision >>> preds = tensor([0.2, 0.3, 0.5]) >>> target = tensor([True, False, True]) >>> retrieval_average_precision(preds, target) tensor(0.8333) """ preds, target = _check_retrieval_functional_inputs(preds, target) top_k = top_k or preds.shape[-1] if not isinstance(top_k, int) and top_k <= 0: raise ValueError(f"Argument ``top_k`` has to be a positive integer or None, but got {top_k}.") target = target[preds.topk(min(top_k, preds.shape[-1]), sorted=True, dim=-1)[1]] if not target.sum(): return tensor(0.0, device=preds.device) positions = torch.arange(1, len(target) + 1, device=target.device, dtype=torch.float32)[target > 0] return torch.div((torch.arange(len(positions), device=positions.device, dtype=torch.float32) + 1), positions).mean()
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/retrieval/hit_rate.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import torch from torch import Tensor from torchmetrics.utilities.checks import _check_retrieval_functional_inputs def retrieval_hit_rate(preds: Tensor, target: Tensor, top_k: Optional[int] = None) -> Tensor: """Compute the hit rate for information retrieval. The hit rate is 1.0 if there is at least one relevant document among all the top `k` retrieved documents. ``preds`` and ``target`` should be of the same shape and live on the same device. If no ``target`` is ``True``, ``0`` is returned. ``target`` must be either `bool` or `integers` and ``preds`` must be ``float``, otherwise an error is raised. If you want to measure HitRate@K, ``top_k`` must be a positive integer. Args: preds: estimated probabilities of each document to be relevant. target: ground truth about each document being relevant or not. top_k: consider only the top k elements (default: `None`, which considers them all) Returns: A single-value tensor with the hit rate (at ``top_k``) of the predictions ``preds`` w.r.t. the labels ``target``. Raises: ValueError: If ``top_k`` parameter is not `None` or an integer larger than 0 Example: >>> from torch import tensor >>> preds = tensor([0.2, 0.3, 0.5]) >>> target = tensor([True, False, True]) >>> retrieval_hit_rate(preds, target, top_k=2) tensor(1.) """ preds, target = _check_retrieval_functional_inputs(preds, target) if top_k is None: top_k = preds.shape[-1] if not (isinstance(top_k, int) and top_k > 0): raise ValueError("`top_k` has to be a positive integer or None") relevant = target[torch.argsort(preds, dim=-1, descending=True)][:top_k].sum() return (relevant > 0).float()
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/retrieval/precision_recall_curve.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple import torch from torch import Tensor from torch.nn.functional import pad from torchmetrics.utilities.checks import _check_retrieval_functional_inputs from torchmetrics.utilities.data import _cumsum def retrieval_precision_recall_curve( preds: Tensor, target: Tensor, max_k: Optional[int] = None, adaptive_k: bool = False ) -> Tuple[Tensor, Tensor, Tensor]: """Compute precision-recall pairs for different k (from 1 to `max_k`). In a ranked retrieval context, appropriate sets of retrieved documents are naturally given by the top k retrieved documents. Recall is the fraction of relevant documents retrieved among all the relevant documents. Precision is the fraction of relevant documents among all the retrieved documents. For each such set, precision and recall values can be plotted to give a recall-precision curve. ``preds`` and ``target`` should be of the same shape and live on the same device. If no ``target`` is ``True``, ``0`` is returned. ``target`` must be either `bool` or `integers` and ``preds`` must be ``float``, otherwise an error is raised. Args: preds: estimated probabilities of each document to be relevant. target: ground truth about each document being relevant or not. max_k: Calculate recall and precision for all possible top k from 1 to max_k (default: `None`, which considers all possible top k) adaptive_k: adjust `max_k` to `min(max_k, number of documents)` for each query Returns: Tensor with the precision values for each k (at ``top_k``) from 1 to `max_k` Tensor with the recall values for each k (at ``top_k``) from 1 to `max_k` Tensor with all possibles k Raises: ValueError: If ``max_k`` is not `None` or an integer larger than 0. ValueError: If ``adaptive_k`` is not boolean. Example: >>> from torch import tensor >>> from torchmetrics.functional import retrieval_precision_recall_curve >>> preds = tensor([0.2, 0.3, 0.5]) >>> target = tensor([True, False, True]) >>> precisions, recalls, top_k = retrieval_precision_recall_curve(preds, target, max_k=2) >>> precisions tensor([1.0000, 0.5000]) >>> recalls tensor([0.5000, 0.5000]) >>> top_k tensor([1, 2]) """ preds, target = _check_retrieval_functional_inputs(preds, target) if not isinstance(adaptive_k, bool): raise ValueError("`adaptive_k` has to be a boolean") if max_k is None: max_k = preds.shape[-1] if not (isinstance(max_k, int) and max_k > 0): raise ValueError("`max_k` has to be a positive integer or None") if adaptive_k and max_k > preds.shape[-1]: topk = torch.arange(1, preds.shape[-1] + 1, device=preds.device) topk = pad(topk, (0, max_k - preds.shape[-1]), "constant", float(preds.shape[-1])) else: topk = torch.arange(1, max_k + 1, device=preds.device) if not target.sum(): return torch.zeros(max_k, device=preds.device), torch.zeros(max_k, device=preds.device), topk relevant = target[preds.topk(min(max_k, preds.shape[-1]), dim=-1)[1]].float() relevant = _cumsum(pad(relevant, (0, max(0, max_k - len(relevant))), "constant", 0.0), dim=0) recall = relevant / target.sum() precision = relevant / topk return precision, recall, topk
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/retrieval/r_precision.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch import Tensor, tensor from torchmetrics.utilities.checks import _check_retrieval_functional_inputs def retrieval_r_precision(preds: Tensor, target: Tensor) -> Tensor: """Compute the r-precision metric for information retrieval. R-Precision is the fraction of relevant documents among all the top ``k`` retrieved documents where ``k`` is equal to the total number of relevant documents. ``preds`` and ``target`` should be of the same shape and live on the same device. If no ``target`` is ``True``, ``0`` is returned. ``target`` must be either `bool` or `integers` and ``preds`` must be ``float``, otherwise an error is raised. If you want to measure Precision@K, ``top_k`` must be a positive integer. Args: preds: estimated probabilities of each document to be relevant. target: ground truth about each document being relevant or not. Returns: A single-value tensor with the r-precision of the predictions ``preds`` w.r.t. the labels ``target``. Example: >>> preds = tensor([0.2, 0.3, 0.5]) >>> target = tensor([True, False, True]) >>> retrieval_r_precision(preds, target) tensor(0.5000) """ preds, target = _check_retrieval_functional_inputs(preds, target) relevant_number = target.sum() if not relevant_number: return tensor(0.0, device=preds.device) relevant = target[torch.argsort(preds, dim=-1, descending=True)][:relevant_number].sum().float() return relevant / relevant_number
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/retrieval/precision.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional from torch import Tensor, tensor from torchmetrics.utilities.checks import _check_retrieval_functional_inputs def retrieval_precision(preds: Tensor, target: Tensor, top_k: Optional[int] = None, adaptive_k: bool = False) -> Tensor: """Compute the precision metric for information retrieval. Precision is the fraction of relevant documents among all the retrieved documents. ``preds`` and ``target`` should be of the same shape and live on the same device. If no ``target`` is ``True``, ``0`` is returned. ``target`` must be either `bool` or `integers` and ``preds`` must be ``float``, otherwise an error is raised. If you want to measure Precision@K, ``top_k`` must be a positive integer. Args: preds: estimated probabilities of each document to be relevant. target: ground truth about each document being relevant or not. top_k: consider only the top k elements (default: ``None``, which considers them all) adaptive_k: adjust `k` to `min(k, number of documents)` for each query Returns: A single-value tensor with the precision (at ``top_k``) of the predictions ``preds`` w.r.t. the labels ``target``. Raises: ValueError: If ``top_k`` is not `None` or an integer larger than 0. ValueError: If ``adaptive_k`` is not boolean. Example: >>> preds = tensor([0.2, 0.3, 0.5]) >>> target = tensor([True, False, True]) >>> retrieval_precision(preds, target, top_k=2) tensor(0.5000) """ preds, target = _check_retrieval_functional_inputs(preds, target) if not isinstance(adaptive_k, bool): raise ValueError("`adaptive_k` has to be a boolean") if top_k is None or (adaptive_k and top_k > preds.shape[-1]): top_k = preds.shape[-1] if not (isinstance(top_k, int) and top_k > 0): raise ValueError("`top_k` has to be a positive integer or None") if not target.sum(): return tensor(0.0, device=preds.device) relevant = target[preds.topk(min(top_k, preds.shape[-1]), dim=-1)[1]].sum().float() return relevant / top_k
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/retrieval/ndcg.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import torch from torch import Tensor from torchmetrics.utilities.checks import _check_retrieval_functional_inputs def _tie_average_dcg(target: Tensor, preds: Tensor, discount_cumsum: Tensor) -> Tensor: """Translated version of sklearns `_tie_average_dcg` function. Args: target: ground truth about each document relevance. preds: estimated probabilities of each document to be relevant. discount_cumsum: cumulative sum of the discount. Returns: The cumulative gain of the tied elements. """ _, inv, counts = torch.unique(-preds, return_inverse=True, return_counts=True) ranked = torch.zeros_like(counts, dtype=torch.float32) ranked.scatter_add_(0, inv, target.to(dtype=ranked.dtype)) ranked = ranked / counts groups = counts.cumsum(dim=0) - 1 discount_sums = torch.zeros_like(counts, dtype=torch.float32) discount_sums[0] = discount_cumsum[groups[0]] discount_sums[1:] = discount_cumsum[groups].diff() return (ranked * discount_sums).sum() def _dcg_sample_scores(target: Tensor, preds: Tensor, top_k: int, ignore_ties: bool) -> Tensor: """Translated version of sklearns `_dcg_sample_scores` function. Args: target: ground truth about each document relevance. preds: estimated probabilities of each document to be relevant. top_k: consider only the top k elements ignore_ties: If True, ties are ignored. If False, ties are averaged. Returns: The cumulative gain """ discount = 1.0 / (torch.log2(torch.arange(target.shape[-1], device=target.device) + 2.0)) discount[top_k:] = 0.0 if ignore_ties: ranking = preds.argsort(descending=True) ranked = target[ranking] cumulative_gain = (discount * ranked).sum() else: discount_cumsum = discount.cumsum(dim=-1) cumulative_gain = _tie_average_dcg(target, preds, discount_cumsum) return cumulative_gain def retrieval_normalized_dcg(preds: Tensor, target: Tensor, top_k: Optional[int] = None) -> Tensor: """Compute `Normalized Discounted Cumulative Gain`_ (for information retrieval). ``preds`` and ``target`` should be of the same shape and live on the same device. ``target`` must be either `bool` or `integers` and ``preds`` must be ``float``, otherwise an error is raised. Args: preds: estimated probabilities of each document to be relevant. target: ground truth about each document relevance. top_k: consider only the top k elements (default: ``None``, which considers them all) Return: A single-value tensor with the nDCG of the predictions ``preds`` w.r.t. the labels ``target``. Raises: ValueError: If ``top_k`` parameter is not `None` or an integer larger than 0 Example: >>> from torchmetrics.functional.retrieval import retrieval_normalized_dcg >>> preds = torch.tensor([.1, .2, .3, 4, 70]) >>> target = torch.tensor([10, 0, 0, 1, 5]) >>> retrieval_normalized_dcg(preds, target) tensor(0.6957) """ preds, target = _check_retrieval_functional_inputs(preds, target, allow_non_binary_target=True) top_k = preds.shape[-1] if top_k is None else top_k if not (isinstance(top_k, int) and top_k > 0): raise ValueError("`top_k` has to be a positive integer or None") gain = _dcg_sample_scores(target, preds, top_k, ignore_ties=False) normalized_gain = _dcg_sample_scores(target, target, top_k, ignore_ties=True) # filter undefined scores all_irrelevant = normalized_gain == 0 gain[all_irrelevant] = 0 gain[~all_irrelevant] /= normalized_gain[~all_irrelevant] return gain.mean()
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/retrieval/recall.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import torch from torch import Tensor, tensor from torchmetrics.utilities.checks import _check_retrieval_functional_inputs def retrieval_recall(preds: Tensor, target: Tensor, top_k: Optional[int] = None) -> Tensor: """Compute the recall metric for information retrieval. Recall is the fraction of relevant documents retrieved among all the relevant documents. ``preds`` and ``target`` should be of the same shape and live on the same device. If no ``target`` is ``True``, ``0`` is returned. ``target`` must be either `bool` or `integers` and ``preds`` must be ``float``, otherwise an error is raised. If you want to measure Recall@K, ``top_k`` must be a positive integer. Args: preds: estimated probabilities of each document to be relevant. target: ground truth about each document being relevant or not. top_k: consider only the top k elements (default: `None`, which considers them all) Returns: A single-value tensor with the recall (at ``top_k``) of the predictions ``preds`` w.r.t. the labels ``target``. Raises: ValueError: If ``top_k`` parameter is not `None` or an integer larger than 0 Example: >>> from torchmetrics.functional import retrieval_recall >>> preds = tensor([0.2, 0.3, 0.5]) >>> target = tensor([True, False, True]) >>> retrieval_recall(preds, target, top_k=2) tensor(0.5000) """ preds, target = _check_retrieval_functional_inputs(preds, target) if top_k is None: top_k = preds.shape[-1] if not (isinstance(top_k, int) and top_k > 0): raise ValueError("`top_k` has to be a positive integer or None") if not target.sum(): return tensor(0.0, device=preds.device) relevant = target[torch.argsort(preds, dim=-1, descending=True)][:top_k].sum().float() return relevant / target.sum()
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/retrieval/_deprecated.py
from typing import Optional, Tuple from torch import Tensor from torchmetrics.functional.retrieval.average_precision import retrieval_average_precision from torchmetrics.functional.retrieval.fall_out import retrieval_fall_out from torchmetrics.functional.retrieval.hit_rate import retrieval_hit_rate from torchmetrics.functional.retrieval.ndcg import retrieval_normalized_dcg from torchmetrics.functional.retrieval.precision import retrieval_precision from torchmetrics.functional.retrieval.precision_recall_curve import retrieval_precision_recall_curve from torchmetrics.functional.retrieval.r_precision import retrieval_r_precision from torchmetrics.functional.retrieval.recall import retrieval_recall from torchmetrics.functional.retrieval.reciprocal_rank import retrieval_reciprocal_rank from torchmetrics.utilities.prints import _deprecated_root_import_func def _retrieval_average_precision(preds: Tensor, target: Tensor, top_k: Optional[int] = None) -> Tensor: """Wrapper for deprecated import. >>> from torch import tensor >>> preds = tensor([0.2, 0.3, 0.5]) >>> target = tensor([True, False, True]) >>> _retrieval_average_precision(preds, target) tensor(0.8333) """ _deprecated_root_import_func("retrieval_average_precision", "retrieval") return retrieval_average_precision(preds=preds, target=target, top_k=top_k) def _retrieval_fall_out(preds: Tensor, target: Tensor, top_k: Optional[int] = None) -> Tensor: """Wrapper for deprecated import. >>> from torch import tensor >>> preds = tensor([0.2, 0.3, 0.5]) >>> target = tensor([True, False, True]) >>> _retrieval_fall_out(preds, target, top_k=2) tensor(1.) """ _deprecated_root_import_func("retrieval_fall_out", "retrieval") return retrieval_fall_out(preds=preds, target=target, top_k=top_k) def _retrieval_hit_rate(preds: Tensor, target: Tensor, top_k: Optional[int] = None) -> Tensor: """Wrapper for deprecated import. >>> from torch import tensor >>> preds = tensor([0.2, 0.3, 0.5]) >>> target = tensor([True, False, True]) >>> _retrieval_hit_rate(preds, target, top_k=2) tensor(1.) """ _deprecated_root_import_func("retrieval_hit_rate", "retrieval") return retrieval_hit_rate(preds=preds, target=target, top_k=top_k) def _retrieval_normalized_dcg(preds: Tensor, target: Tensor, top_k: Optional[int] = None) -> Tensor: """Wrapper for deprecated import. >>> from torch import tensor >>> preds = tensor([.1, .2, .3, 4, 70]) >>> target = tensor([10, 0, 0, 1, 5]) >>> _retrieval_normalized_dcg(preds, target) tensor(0.6957) """ _deprecated_root_import_func("retrieval_normalized_dcg", "retrieval") return retrieval_normalized_dcg(preds=preds, target=target, top_k=top_k) def _retrieval_precision( preds: Tensor, target: Tensor, top_k: Optional[int] = None, adaptive_k: bool = False ) -> Tensor: """Wrapper for deprecated import. >>> from torch import tensor >>> preds = tensor([0.2, 0.3, 0.5]) >>> target = tensor([True, False, True]) >>> _retrieval_precision(preds, target, top_k=2) tensor(0.5000) """ _deprecated_root_import_func("retrieval_precision", "retrieval") return retrieval_precision(preds=preds, target=target, top_k=top_k, adaptive_k=adaptive_k) def _retrieval_precision_recall_curve( preds: Tensor, target: Tensor, max_k: Optional[int] = None, adaptive_k: bool = False ) -> Tuple[Tensor, Tensor, Tensor]: """Wrapper for deprecated import. >>> from torch import tensor >>> preds = tensor([0.2, 0.3, 0.5]) >>> target = tensor([True, False, True]) >>> precisions, recalls, top_k = _retrieval_precision_recall_curve(preds, target, max_k=2) >>> precisions tensor([1.0000, 0.5000]) >>> recalls tensor([0.5000, 0.5000]) >>> top_k tensor([1, 2]) """ _deprecated_root_import_func("retrieval_precision_recall_curve", "retrieval") return retrieval_precision_recall_curve(preds=preds, target=target, max_k=max_k, adaptive_k=adaptive_k) def _retrieval_r_precision(preds: Tensor, target: Tensor) -> Tensor: """Wrapper for deprecated import. >>> from torch import tensor >>> preds = tensor([0.2, 0.3, 0.5]) >>> target = tensor([True, False, True]) >>> _retrieval_r_precision(preds, target) tensor(0.5000) """ _deprecated_root_import_func("retrieval_r_precision", "retrieval") return retrieval_r_precision(preds=preds, target=target) def _retrieval_recall(preds: Tensor, target: Tensor, top_k: Optional[int] = None) -> Tensor: """Wrapper for deprecated import. >>> from torch import tensor >>> preds = tensor([0.2, 0.3, 0.5]) >>> target = tensor([True, False, True]) >>> _retrieval_recall(preds, target, top_k=2) tensor(0.5000) """ _deprecated_root_import_func("retrieval_recall", "retrieval") return retrieval_recall(preds=preds, target=target, top_k=top_k) def _retrieval_reciprocal_rank(preds: Tensor, target: Tensor) -> Tensor: """Wrapper for deprecated import. >>> from torch import tensor >>> preds = tensor([0.2, 0.3, 0.5]) >>> target = tensor([False, True, False]) >>> _retrieval_reciprocal_rank(preds, target) tensor(0.5000) """ _deprecated_root_import_func("retrieval_reciprocal_rank", "retrieval") return retrieval_reciprocal_rank(preds=preds, target=target)
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/retrieval/__init__.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from torchmetrics.functional.retrieval.average_precision import retrieval_average_precision from torchmetrics.functional.retrieval.fall_out import retrieval_fall_out from torchmetrics.functional.retrieval.hit_rate import retrieval_hit_rate from torchmetrics.functional.retrieval.ndcg import retrieval_normalized_dcg from torchmetrics.functional.retrieval.precision import retrieval_precision from torchmetrics.functional.retrieval.precision_recall_curve import retrieval_precision_recall_curve from torchmetrics.functional.retrieval.r_precision import retrieval_r_precision from torchmetrics.functional.retrieval.recall import retrieval_recall from torchmetrics.functional.retrieval.reciprocal_rank import retrieval_reciprocal_rank __all__ = [ "retrieval_average_precision", "retrieval_fall_out", "retrieval_hit_rate", "retrieval_normalized_dcg", "retrieval_precision", "retrieval_precision_recall_curve", "retrieval_r_precision", "retrieval_recall", "retrieval_reciprocal_rank", ]
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/multimodal/clip_iqa.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Literal, Tuple, Union import torch from torch import Tensor from torchmetrics.functional.multimodal.clip_score import _get_clip_model_and_processor from torchmetrics.utilities.checks import _SKIP_SLOW_DOCTEST, _try_proceed_with_timeout from torchmetrics.utilities.imports import _PIQ_GREATER_EQUAL_0_8, _TRANSFORMERS_GREATER_EQUAL_4_10 if _TRANSFORMERS_GREATER_EQUAL_4_10: from transformers import CLIPModel as _CLIPModel from transformers import CLIPProcessor as _CLIPProcessor def _download_clip() -> None: _CLIPModel.from_pretrained("openai/clip-vit-base-patch16") _CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16") if _SKIP_SLOW_DOCTEST and not _try_proceed_with_timeout(_download_clip): __doctest_skip__ = ["clip_score"] else: __doctest_skip__ = ["clip_image_quality_assessment"] _CLIPModel = None _CLIPProcessor = None if not _PIQ_GREATER_EQUAL_0_8: __doctest_skip__ = ["clip_image_quality_assessment"] _PROMPTS: Dict[str, Tuple[str, str]] = { "quality": ("Good photo.", "Bad photo."), "brightness": ("Bright photo.", "Dark photo."), "noisiness": ("Clean photo.", "Noisy photo."), "colorfullness": ("Colorful photo.", "Dull photo."), "sharpness": ("Sharp photo.", "Blurry photo."), "contrast": ("High contrast photo.", "Low contrast photo."), "complexity": ("Complex photo.", "Simple photo."), "natural": ("Natural photo.", "Synthetic photo."), "happy": ("Happy photo.", "Sad photo."), "scary": ("Scary photo.", "Peaceful photo."), "new": ("New photo.", "Old photo."), "warm": ("Warm photo.", "Cold photo."), "real": ("Real photo.", "Abstract photo."), "beautiful": ("Beautiful photo.", "Ugly photo."), "lonely": ("Lonely photo.", "Sociable photo."), "relaxing": ("Relaxing photo.", "Stressful photo."), } def _get_clip_iqa_model_and_processor( model_name_or_path: Literal[ "clip_iqa", "openai/clip-vit-base-patch16", "openai/clip-vit-base-patch32", "openai/clip-vit-large-patch14-336", "openai/clip-vit-large-patch14", ] ) -> Tuple[_CLIPModel, _CLIPProcessor]: """Extract the CLIP model and processor from the model name or path.""" if model_name_or_path == "clip_iqa": if not _PIQ_GREATER_EQUAL_0_8: raise ValueError( "For metric `clip_iqa` to work with argument `model_name_or_path` set to default value `'clip_iqa'`" ", package `piq` version v0.8.0 or later must be installed. Either install with `pip install piq` or" "`pip install torchmetrics[multimodal]`" ) import piq model = piq.clip_iqa.clip.load().eval() # any model checkpoint can be used here because the tokenizer is the same for all processor = _CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16") return model, processor return _get_clip_model_and_processor(model_name_or_path) def _clip_iqa_format_prompts(prompts: Tuple[Union[str, Tuple[str, str]]] = ("quality",)) -> Tuple[List[str], List[str]]: """Converts the provided keywords into a list of prompts for the model to calculate the anchor vectors. Args: prompts: A string, tuple of strings or nested tuple of strings. If a single string is provided, it must be one of the available prompts (see above). Else the input is expected to be a tuple, where each element can be one of two things: either a string or a tuple of strings. If a string is provided, it must be one of the available prompts (see above). If tuple is provided, it must be of length 2 and the first string must be a positive prompt and the second string must be a negative prompt. Returns: Tuple containing a list of prompts and a list of the names of the prompts. The first list is double the length of the second list. Examples:: >>> # single prompt >>> _clip_iqa_format_prompts(("quality",)) (['Good photo.', 'Bad photo.'], ['quality']) >>> # multiple prompts >>> _clip_iqa_format_prompts(("quality", "brightness")) (['Good photo.', 'Bad photo.', 'Bright photo.', 'Dark photo.'], ['quality', 'brightness']) >>> # Custom prompts >>> _clip_iqa_format_prompts(("quality", ("Super good photo.", "Super bad photo."))) (['Good photo.', 'Bad photo.', 'Super good photo.', 'Super bad photo.'], ['quality', 'user_defined_0']) """ if not isinstance(prompts, tuple): raise ValueError("Argument `prompts` must be a tuple containing strings or tuples of strings") prompts_names: List[str] = [] prompts_list: List[str] = [] count = 0 for p in prompts: if not isinstance(p, (str, tuple)): raise ValueError("Argument `prompts` must be a tuple containing strings or tuples of strings") if isinstance(p, str): if p not in _PROMPTS: raise ValueError( f"All elements of `prompts` must be one of {_PROMPTS.keys()} if not custom tuple prompts, got {p}." ) prompts_names.append(p) prompts_list.extend(_PROMPTS[p]) if isinstance(p, tuple) and len(p) != 2: raise ValueError("If a tuple is provided in argument `prompts`, it must be of length 2") if isinstance(p, tuple): prompts_names.append(f"user_defined_{count}") prompts_list.extend(p) count += 1 return prompts_list, prompts_names def _clip_iqa_get_anchor_vectors( model_name_or_path: str, model: _CLIPModel, processor: _CLIPProcessor, prompts_list: List[str], device: Union[str, torch.device], ) -> Tensor: """Calculates the anchor vectors for the CLIP IQA metric. Args: model_name_or_path: string indicating the version of the CLIP model to use. model: The CLIP model processor: The CLIP processor prompts_list: A list of prompts device: The device to use for the calculation """ if model_name_or_path == "clip_iqa": text_processed = processor(text=prompts_list) anchors_text = torch.zeros( len(prompts_list), processor.tokenizer.model_max_length, dtype=torch.long, device=device ) for i, tp in enumerate(text_processed["input_ids"]): anchors_text[i, : len(tp)] = torch.tensor(tp, dtype=torch.long, device=device) anchors = model.encode_text(anchors_text).float() else: text_processed = processor(text=prompts_list, return_tensors="pt", padding=True) anchors = model.get_text_features( text_processed["input_ids"].to(device), text_processed["attention_mask"].to(device) ) return anchors / anchors.norm(p=2, dim=-1, keepdim=True) def _clip_iqa_update( model_name_or_path: str, images: Tensor, model: _CLIPModel, processor: _CLIPProcessor, data_range: float, device: Union[str, torch.device], ) -> Tensor: images = images / float(data_range) """Update function for CLIP IQA.""" if model_name_or_path == "clip_iqa": # default mean and std from clip paper, see: # https://github.com/huggingface/transformers/blob/main/src/transformers/utils/constants.py default_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073], device=device).view(1, 3, 1, 1) default_std = torch.tensor([0.26862954, 0.26130258, 0.27577711], device=device).view(1, 3, 1, 1) images = (images - default_mean) / default_std img_features = model.encode_image(images.float(), pos_embedding=False).float() else: processed_input = processor(images=[i.cpu() for i in images], return_tensors="pt", padding=True) img_features = model.get_image_features(processed_input["pixel_values"].to(device)) return img_features / img_features.norm(p=2, dim=-1, keepdim=True) def _clip_iqa_compute( img_features: Tensor, anchors: Tensor, prompts_names: List[str], format_as_dict: bool = True, ) -> Union[Tensor, Dict[str, Tensor]]: """Final computation of CLIP IQA.""" logits_per_image = 100 * img_features @ anchors.t() probs = logits_per_image.reshape(logits_per_image.shape[0], -1, 2).softmax(-1)[:, :, 0] if len(prompts_names) == 1: return probs.squeeze() if format_as_dict: return {p: probs[:, i] for i, p in enumerate(prompts_names)} return probs def clip_image_quality_assessment( images: Tensor, model_name_or_path: Literal[ "clip_iqa", "openai/clip-vit-base-patch16", "openai/clip-vit-base-patch32", "openai/clip-vit-large-patch14-336", "openai/clip-vit-large-patch14", ] = "clip_iqa", data_range: float = 1.0, prompts: Tuple[Union[str, Tuple[str, str]]] = ("quality",), ) -> Union[Tensor, Dict[str, Tensor]]: """Calculates `CLIP-IQA`_, that can be used to measure the visual content of images. The metric is based on the `CLIP`_ model, which is a neural network trained on a variety of (image, text) pairs to be able to generate a vector representation of the image and the text that is similar if the image and text are semantically similar. The metric works by calculating the cosine similarity between user provided images and pre-defined prompts. The prompts always come in pairs of "positive" and "negative" such as "Good photo." and "Bad photo.". By calculating the similartity between image embeddings and both the "positive" and "negative" prompt, the metric can determine which prompt the image is more similar to. The metric then returns the probability that the image is more similar to the first prompt than the second prompt. Build in prompts are: * quality: "Good photo." vs "Bad photo." * brightness: "Bright photo." vs "Dark photo." * noisiness: "Clean photo." vs "Noisy photo." * colorfullness: "Colorful photo." vs "Dull photo." * sharpness: "Sharp photo." vs "Blurry photo." * contrast: "High contrast photo." vs "Low contrast photo." * complexity: "Complex photo." vs "Simple photo." * natural: "Natural photo." vs "Synthetic photo." * happy: "Happy photo." vs "Sad photo." * scary: "Scary photo." vs "Peaceful photo." * new: "New photo." vs "Old photo." * warm: "Warm photo." vs "Cold photo." * real: "Real photo." vs "Abstract photo." * beautiful: "Beautiful photo." vs "Ugly photo." * lonely: "Lonely photo." vs "Sociable photo." * relaxing: "Relaxing photo." vs "Stressful photo." Args: images: Either a single ``[N, C, H, W]`` tensor or a list of ``[C, H, W]`` tensors model_name_or_path: string indicating the version of the CLIP model to use. By default this argument is set to ``clip_iqa`` which corresponds to the model used in the original paper. Other available models are `"openai/clip-vit-base-patch16"`, `"openai/clip-vit-base-patch32"`, `"openai/clip-vit-large-patch14-336"` and `"openai/clip-vit-large-patch14"` data_range: The maximum value of the input tensor. For example, if the input images are in range [0, 255], data_range should be 255. The images are normalized by this value. prompts: A string, tuple of strings or nested tuple of strings. If a single string is provided, it must be one of the available prompts (see above). Else the input is expected to be a tuple, where each element can be one of two things: either a string or a tuple of strings. If a string is provided, it must be one of the available prompts (see above). If tuple is provided, it must be of length 2 and the first string must be a positive prompt and the second string must be a negative prompt. .. note:: If using the default `clip_iqa` model, the package `piq` must be installed. Either install with `pip install piq` or `pip install torchmetrics[multimodal]`. Returns: A tensor of shape ``(N,)`` if a single prompts is provided. If a list of prompts is provided, a dictionary of with the prompts as keys and tensors of shape ``(N,)`` as values. Raises: ModuleNotFoundError: If transformers package is not installed or version is lower than 4.10.0 ValueError: If not all images have format [C, H, W] ValueError: If prompts is a tuple and it is not of length 2 ValueError: If prompts is a string and it is not one of the available prompts ValueError: If prompts is a list of strings and not all strings are one of the available prompts Example:: Single prompt: >>> from torchmetrics.functional.multimodal import clip_image_quality_assessment >>> import torch >>> _ = torch.manual_seed(42) >>> imgs = torch.randint(255, (2, 3, 224, 224)).float() >>> clip_image_quality_assessment(imgs, prompts=("quality",)) tensor([0.8894, 0.8902]) Example:: Multiple prompts: >>> from torchmetrics.functional.multimodal import clip_image_quality_assessment >>> import torch >>> _ = torch.manual_seed(42) >>> imgs = torch.randint(255, (2, 3, 224, 224)).float() >>> clip_image_quality_assessment(imgs, prompts=("quality", "brightness")) {'quality': tensor([0.8894, 0.8902]), 'brightness': tensor([0.5507, 0.5208])} Example:: Custom prompts. Must always be a tuple of length 2, with a positive and negative prompt. >>> from torchmetrics.functional.multimodal import clip_image_quality_assessment >>> import torch >>> _ = torch.manual_seed(42) >>> imgs = torch.randint(255, (2, 3, 224, 224)).float() >>> clip_image_quality_assessment(imgs, prompts=(("Super good photo.", "Super bad photo."), "brightness")) {'user_defined_0': tensor([0.9652, 0.9629]), 'brightness': tensor([0.5507, 0.5208])} """ prompts_list, prompts_names = _clip_iqa_format_prompts(prompts) model, processor = _get_clip_iqa_model_and_processor(model_name_or_path) device = images.device model = model.to(device) with torch.inference_mode(): anchors = _clip_iqa_get_anchor_vectors(model_name_or_path, model, processor, prompts_list, device) img_features = _clip_iqa_update(model_name_or_path, images, model, processor, data_range, device) return _clip_iqa_compute(img_features, anchors, prompts_names)
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/multimodal/clip_score.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Tuple, Union import torch from torch import Tensor from typing_extensions import Literal from torchmetrics.utilities import rank_zero_warn from torchmetrics.utilities.checks import _SKIP_SLOW_DOCTEST, _try_proceed_with_timeout from torchmetrics.utilities.imports import _TRANSFORMERS_GREATER_EQUAL_4_10 if _TRANSFORMERS_GREATER_EQUAL_4_10: from transformers import CLIPModel as _CLIPModel from transformers import CLIPProcessor as _CLIPProcessor def _download_clip() -> None: _CLIPModel.from_pretrained("openai/clip-vit-large-patch14") _CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14") if _SKIP_SLOW_DOCTEST and not _try_proceed_with_timeout(_download_clip): __doctest_skip__ = ["clip_score"] else: __doctest_skip__ = ["clip_score"] _CLIPModel = None _CLIPProcessor = None def _clip_score_update( images: Union[Tensor, List[Tensor]], text: Union[str, List[str]], model: _CLIPModel, processor: _CLIPProcessor, ) -> Tuple[Tensor, int]: if not isinstance(images, list): if images.ndim == 3: images = [images] else: # unwrap into list images = list(images) if not all(i.ndim == 3 for i in images): raise ValueError("Expected all images to be 3d but found image that has either more or less") if not isinstance(text, list): text = [text] if len(text) != len(images): raise ValueError( f"Expected the number of images and text examples to be the same but got {len(images)} and {len(text)}" ) device = images[0].device processed_input = processor(text=text, images=[i.cpu() for i in images], return_tensors="pt", padding=True) img_features = model.get_image_features(processed_input["pixel_values"].to(device)) img_features = img_features / img_features.norm(p=2, dim=-1, keepdim=True) max_position_embeddings = model.config.text_config.max_position_embeddings if processed_input["attention_mask"].shape[-1] > max_position_embeddings: rank_zero_warn( f"Encountered caption longer than {max_position_embeddings=}. Will truncate captions to this length." "If longer captions are needed, initialize argument `model_name_or_path` with a model that supports" "longer sequences", UserWarning, ) processed_input["attention_mask"] = processed_input["attention_mask"][..., :max_position_embeddings] processed_input["input_ids"] = processed_input["input_ids"][..., :max_position_embeddings] txt_features = model.get_text_features( processed_input["input_ids"].to(device), processed_input["attention_mask"].to(device) ) txt_features = txt_features / txt_features.norm(p=2, dim=-1, keepdim=True) # cosine similarity between feature vectors score = 100 * (img_features * txt_features).sum(axis=-1) return score, len(text) def _get_clip_model_and_processor( model_name_or_path: Literal[ "openai/clip-vit-base-patch16", "openai/clip-vit-base-patch32", "openai/clip-vit-large-patch14-336", "openai/clip-vit-large-patch14", ] = "openai/clip-vit-large-patch14", ) -> Tuple[_CLIPModel, _CLIPProcessor]: if _TRANSFORMERS_GREATER_EQUAL_4_10: model = _CLIPModel.from_pretrained(model_name_or_path) processor = _CLIPProcessor.from_pretrained(model_name_or_path) return model, processor raise ModuleNotFoundError( "`clip_score` metric requires `transformers` package be installed." " Either install with `pip install transformers>=4.10.0` or `pip install torchmetrics[multimodal]`." ) def clip_score( images: Union[Tensor, List[Tensor]], text: Union[str, List[str]], model_name_or_path: Literal[ "openai/clip-vit-base-patch16", "openai/clip-vit-base-patch32", "openai/clip-vit-large-patch14-336", "openai/clip-vit-large-patch14", ] = "openai/clip-vit-large-patch14", ) -> Tensor: r"""Calculate `CLIP Score`_ which is a text-to-image similarity metric. CLIP Score is a reference free metric that can be used to evaluate the correlation between a generated caption for an image and the actual content of the image. It has been found to be highly correlated with human judgement. The metric is defined as: .. math:: \text{CLIPScore(I, C)} = max(100 * cos(E_I, E_C), 0) which corresponds to the cosine similarity between visual `CLIP`_ embedding :math:`E_i` for an image :math:`i` and textual CLIP embedding :math:`E_C` for an caption :math:`C`. The score is bound between 0 and 100 and the closer to 100 the better. .. note:: Metric is not scriptable Args: images: Either a single [N, C, H, W] tensor or a list of [C, H, W] tensors text: Either a single caption or a list of captions model_name_or_path: string indicating the version of the CLIP model to use. Available models are `"openai/clip-vit-base-patch16"`, `"openai/clip-vit-base-patch32"`, `"openai/clip-vit-large-patch14-336"` and `"openai/clip-vit-large-patch14"`, Raises: ModuleNotFoundError: If transformers package is not installed or version is lower than 4.10.0 ValueError: If not all images have format [C, H, W] ValueError: If the number of images and captions do not match Example: >>> import torch >>> _ = torch.manual_seed(42) >>> from torchmetrics.functional.multimodal import clip_score >>> score = clip_score(torch.randint(255, (3, 224, 224)), "a photo of a cat", "openai/clip-vit-base-patch16") >>> score.detach() tensor(24.4255) """ model, processor = _get_clip_model_and_processor(model_name_or_path) device = images.device if isinstance(images, Tensor) else images[0].device score, _ = _clip_score_update(images, text, model.to(device), processor) score = score.mean(0) return torch.max(score, torch.zeros_like(score))
0
public_repos/torchmetrics/src/torchmetrics/functional
public_repos/torchmetrics/src/torchmetrics/functional/multimodal/__init__.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from torchmetrics.utilities.imports import _TRANSFORMERS_GREATER_EQUAL_4_10 if _TRANSFORMERS_GREATER_EQUAL_4_10: from torchmetrics.functional.multimodal.clip_iqa import clip_image_quality_assessment from torchmetrics.functional.multimodal.clip_score import clip_score __all__ = ["clip_score", "clip_image_quality_assessment"]
0
public_repos/torchmetrics/src/torchmetrics
public_repos/torchmetrics/src/torchmetrics/multimodal/clip_iqa.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Literal, Optional, Sequence, Tuple, Union import torch from torch import Tensor from torchmetrics.functional.multimodal.clip_iqa import ( _clip_iqa_compute, _clip_iqa_format_prompts, _clip_iqa_get_anchor_vectors, _clip_iqa_update, _get_clip_iqa_model_and_processor, ) from torchmetrics.metric import Metric from torchmetrics.utilities.checks import _SKIP_SLOW_DOCTEST, _try_proceed_with_timeout from torchmetrics.utilities.data import dim_zero_cat from torchmetrics.utilities.imports import ( _MATPLOTLIB_AVAILABLE, _PIQ_GREATER_EQUAL_0_8, _TRANSFORMERS_GREATER_EQUAL_4_10, ) from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE if not _PIQ_GREATER_EQUAL_0_8: __doctest_skip__ = ["CLIPImageQualityAssessment", "CLIPImageQualityAssessment.plot"] if not _MATPLOTLIB_AVAILABLE: __doctest_skip__ = ["CLIPImageQualityAssessment.plot"] if _TRANSFORMERS_GREATER_EQUAL_4_10: from transformers import CLIPModel as _CLIPModel from transformers import CLIPProcessor as _CLIPProcessor def _download_clip() -> None: _CLIPModel.from_pretrained("openai/clip-vit-large-patch14") _CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14") if _SKIP_SLOW_DOCTEST and not _try_proceed_with_timeout(_download_clip): __doctest_skip__ = ["CLIPImageQualityAssessment", "CLIPImageQualityAssessment.plot"] else: __doctest_skip__ = ["CLIPImageQualityAssessment", "CLIPImageQualityAssessment.plot"] class CLIPImageQualityAssessment(Metric): """Calculates `CLIP-IQA`_, that can be used to measure the visual content of images. The metric is based on the `CLIP`_ model, which is a neural network trained on a variety of (image, text) pairs to be able to generate a vector representation of the image and the text that is similar if the image and text are semantically similar. The metric works by calculating the cosine similarity between user provided images and pre-defined prompts. The prompts always comes in pairs of "positive" and "negative" such as "Good photo." and "Bad photo.". By calculating the similartity between image embeddings and both the "positive" and "negative" prompt, the metric can determine which prompt the image is more similar to. The metric then returns the probability that the image is more similar to the first prompt than the second prompt. Build in prompts are: * quality: "Good photo." vs "Bad photo." * brightness: "Bright photo." vs "Dark photo." * noisiness: "Clean photo." vs "Noisy photo." * colorfullness: "Colorful photo." vs "Dull photo." * sharpness: "Sharp photo." vs "Blurry photo." * contrast: "High contrast photo." vs "Low contrast photo." * complexity: "Complex photo." vs "Simple photo." * natural: "Natural photo." vs "Synthetic photo." * happy: "Happy photo." vs "Sad photo." * scary: "Scary photo." vs "Peaceful photo." * new: "New photo." vs "Old photo." * warm: "Warm photo." vs "Cold photo." * real: "Real photo." vs "Abstract photo." * beautiful: "Beautiful photo." vs "Ugly photo." * lonely: "Lonely photo." vs "Sociable photo." * relaxing: "Relaxing photo." vs "Stressful photo." As input to ``forward`` and ``update`` the metric accepts the following input - ``images`` (:class:`~torch.Tensor`): tensor with images feed to the feature extractor with shape ``(N,C,H,W)`` As output of `forward` and `compute` the metric returns the following output - ``clip_iqa`` (:class:`~torch.Tensor` or dict of tensors): tensor with the CLIP-IQA score. If a single prompt is provided, a single tensor with shape ``(N,)`` is returned. If a list of prompts is provided, a dict of tensors is returned with the prompt as key and the tensor with shape ``(N,)`` as value. Args: model_name_or_path: string indicating the version of the CLIP model to use. Available models are: - `"clip_iqa"`, model corresponding to the CLIP-IQA paper. - `"openai/clip-vit-base-patch16"` - `"openai/clip-vit-base-patch32"` - `"openai/clip-vit-large-patch14-336"` - `"openai/clip-vit-large-patch14"` data_range: The maximum value of the input tensor. For example, if the input images are in range [0, 255], data_range should be 255. The images are normalized by this value. prompts: A string, tuple of strings or nested tuple of strings. If a single string is provided, it must be one of the available prompts (see above). Else the input is expected to be a tuple, where each element can be one of two things: either a string or a tuple of strings. If a string is provided, it must be one of the available prompts (see above). If tuple is provided, it must be of length 2 and the first string must be a positive prompt and the second string must be a negative prompt. kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. .. note:: If using the default `clip_iqa` model, the package `piq` must be installed. Either install with `pip install piq` or `pip install torchmetrics[image]`. Raises: ModuleNotFoundError: If transformers package is not installed or version is lower than 4.10.0 ValueError: If `prompts` is a tuple and it is not of length 2 ValueError: If `prompts` is a string and it is not one of the available prompts ValueError: If `prompts` is a list of strings and not all strings are one of the available prompts Example:: Single prompt: >>> from torchmetrics.multimodal import CLIPImageQualityAssessment >>> import torch >>> _ = torch.manual_seed(42) >>> imgs = torch.randint(255, (2, 3, 224, 224)).float() >>> metric = CLIPImageQualityAssessment() >>> metric(imgs) tensor([0.8894, 0.8902]) Example:: Multiple prompts: >>> from torchmetrics.multimodal import CLIPImageQualityAssessment >>> import torch >>> _ = torch.manual_seed(42) >>> imgs = torch.randint(255, (2, 3, 224, 224)).float() >>> metric = CLIPImageQualityAssessment(prompts=("quality", "brightness")) >>> metric(imgs) {'quality': tensor([0.8894, 0.8902]), 'brightness': tensor([0.5507, 0.5208])} Example:: Custom prompts. Must always be a tuple of length 2, with a positive and negative prompt. >>> from torchmetrics.multimodal import CLIPImageQualityAssessment >>> import torch >>> _ = torch.manual_seed(42) >>> imgs = torch.randint(255, (2, 3, 224, 224)).float() >>> metric = CLIPImageQualityAssessment(prompts=(("Super good photo.", "Super bad photo."), "brightness")) >>> metric(imgs) {'user_defined_0': tensor([0.9652, 0.9629]), 'brightness': tensor([0.5507, 0.5208])} """ is_differentiable: bool = False higher_is_better: bool = True full_state_update: bool = True plot_lower_bound = 0.0 plot_upper_bound = 100.0 anchors: Tensor probs_list: List[Tensor] def __init__( self, model_name_or_path: Literal[ "clip_iqa", "openai/clip-vit-base-patch16", "openai/clip-vit-base-patch32", "openai/clip-vit-large-patch14-336", "openai/clip-vit-large-patch14", ] = "clip_iqa", data_range: float = 1.0, prompts: Tuple[Union[str, Tuple[str, str]]] = ("quality",), **kwargs: Any ) -> None: super().__init__(**kwargs) if not (isinstance(data_range, (int, float)) and data_range > 0): raise ValueError("Argument `data_range` should be a positive number.") self.data_range = data_range prompts_list, prompts_name = _clip_iqa_format_prompts(prompts) self.prompts_list = prompts_list self.prompts_name = prompts_name self.model, self.processor = _get_clip_iqa_model_and_processor(model_name_or_path) self.model_name_or_path = model_name_or_path with torch.inference_mode(): anchors = _clip_iqa_get_anchor_vectors( model_name_or_path, self.model, self.processor, self.prompts_list, self.device ) self.register_buffer("anchors", anchors) self.add_state("probs_list", [], dist_reduce_fx="cat") def update(self, images: Tensor) -> None: """Update metric state with new data.""" with torch.inference_mode(): img_features = _clip_iqa_update( self.model_name_or_path, images, self.model, self.processor, self.data_range, self.device ) probs = _clip_iqa_compute(img_features, self.anchors, self.prompts_name, format_as_dict=False) if not isinstance(probs, Tensor): raise ValueError("Output probs should be a tensor") self.probs_list.append(probs) def compute(self) -> Union[Tensor, Dict[str, Tensor]]: """Compute metric.""" probs = dim_zero_cat(self.probs_list) if len(self.prompts_name) == 1: return probs.squeeze() return {p: probs[:, i] for i, p in enumerate(self.prompts_name)} def plot(self, val: Union[Tensor, Sequence[Tensor], None] = None, ax: Optional[_AX_TYPE] = None) -> _PLOT_OUT_TYPE: """Plot a single or multiple values from the metric. Args: val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. If no value is provided, will automatically call `metric.compute` and plot that result. ax: An matplotlib axis object. If provided will add plot to that axis Returns: Figure and Axes object Raises: ModuleNotFoundError: If `matplotlib` is not installed .. plot:: :scale: 75 >>> # Example plotting a single value >>> import torch >>> from torchmetrics.multimodal.clip_iqa import CLIPImageQualityAssessment >>> metric = CLIPImageQualityAssessment() >>> metric.update(torch.rand(1, 3, 224, 224)) >>> fig_, ax_ = metric.plot() .. plot:: :scale: 75 >>> # Example plotting multiple values >>> import torch >>> from torchmetrics.multimodal.clip_iqa import CLIPImageQualityAssessment >>> metric = CLIPImageQualityAssessment() >>> values = [ ] >>> for _ in range(10): ... values.append(metric(torch.rand(1, 3, 224, 224))) >>> fig_, ax_ = metric.plot(values) """ return self._plot(val, ax)
0
public_repos/torchmetrics/src/torchmetrics
public_repos/torchmetrics/src/torchmetrics/multimodal/clip_score.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, List, Optional, Sequence, Union import torch from torch import Tensor from typing_extensions import Literal from torchmetrics import Metric from torchmetrics.functional.multimodal.clip_score import _clip_score_update, _get_clip_model_and_processor from torchmetrics.utilities.checks import _SKIP_SLOW_DOCTEST, _try_proceed_with_timeout from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE, _TRANSFORMERS_GREATER_EQUAL_4_10 from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE if not _MATPLOTLIB_AVAILABLE: __doctest_skip__ = ["CLIPScore.plot"] if _TRANSFORMERS_GREATER_EQUAL_4_10: from transformers import CLIPModel as _CLIPModel from transformers import CLIPProcessor as _CLIPProcessor def _download_clip() -> None: _CLIPModel.from_pretrained("openai/clip-vit-large-patch14") _CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14") if _SKIP_SLOW_DOCTEST and not _try_proceed_with_timeout(_download_clip): __doctest_skip__ = ["CLIPScore", "CLIPScore.plot"] else: __doctest_skip__ = ["CLIPScore", "CLIPScore.plot"] class CLIPScore(Metric): r"""Calculates `CLIP Score`_ which is a text-to-image similarity metric. CLIP Score is a reference free metric that can be used to evaluate the correlation between a generated caption for an image and the actual content of the image. It has been found to be highly correlated with human judgement. The metric is defined as: .. math:: \text{CLIPScore(I, C)} = max(100 * cos(E_I, E_C), 0) which corresponds to the cosine similarity between visual `CLIP`_ embedding :math:`E_i` for an image :math:`i` and textual CLIP embedding :math:`E_C` for an caption :math:`C`. The score is bound between 0 and 100 and the closer to 100 the better. .. note:: Metric is not scriptable As input to ``forward`` and ``update`` the metric accepts the following input - ``images`` (:class:`~torch.Tensor` or list of tensors): tensor with images feed to the feature extractor with. If a single tensor it should have shape ``(N, C, H, W)``. If a list of tensors, each tensor should have shape ``(C, H, W)``. ``C`` is the number of channels, ``H`` and ``W`` are the height and width of the image. - ``text`` (:class:`~str` or :class:`~list` of :class:`~str`): text to compare with the images, one for each image. As output of `forward` and `compute` the metric returns the following output - ``clip_score`` (:class:`~torch.Tensor`): float scalar tensor with mean CLIP score over samples Args: model_name_or_path: string indicating the version of the CLIP model to use. Available models are: - `"openai/clip-vit-base-patch16"` - `"openai/clip-vit-base-patch32"` - `"openai/clip-vit-large-patch14-336"` - `"openai/clip-vit-large-patch14"` kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. Raises: ModuleNotFoundError: If transformers package is not installed or version is lower than 4.10.0 Example: >>> import torch >>> from torchmetrics.multimodal.clip_score import CLIPScore >>> metric = CLIPScore(model_name_or_path="openai/clip-vit-base-patch16") >>> score = metric(torch.randint(255, (3, 224, 224), generator=torch.manual_seed(42)), "a photo of a cat") >>> score.detach() tensor(24.4255) """ is_differentiable: bool = False higher_is_better: bool = True full_state_update: bool = True plot_lower_bound: float = 0.0 plot_upper_bound = 100.0 score: Tensor n_samples: Tensor def __init__( self, model_name_or_path: Literal[ "openai/clip-vit-base-patch16", "openai/clip-vit-base-patch32", "openai/clip-vit-large-patch14-336", "openai/clip-vit-large-patch14", ] = "openai/clip-vit-large-patch14", **kwargs: Any, ) -> None: super().__init__(**kwargs) self.model, self.processor = _get_clip_model_and_processor(model_name_or_path) self.add_state("score", torch.tensor(0.0), dist_reduce_fx="sum") self.add_state("n_samples", torch.tensor(0, dtype=torch.long), dist_reduce_fx="sum") def update(self, images: Union[Tensor, List[Tensor]], text: Union[str, List[str]]) -> None: """Update CLIP score on a batch of images and text. Args: images: Either a single [N, C, H, W] tensor or a list of [C, H, W] tensors text: Either a single caption or a list of captions Raises: ValueError: If not all images have format [C, H, W] ValueError: If the number of images and captions do not match """ score, n_samples = _clip_score_update(images, text, self.model, self.processor) self.score += score.sum(0) self.n_samples += n_samples def compute(self) -> Tensor: """Compute accumulated clip score.""" return torch.max(self.score / self.n_samples, torch.zeros_like(self.score)) def plot(self, val: Union[Tensor, Sequence[Tensor], None] = None, ax: Optional[_AX_TYPE] = None) -> _PLOT_OUT_TYPE: """Plot a single or multiple values from the metric. Args: val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. If no value is provided, will automatically call `metric.compute` and plot that result. ax: An matplotlib axis object. If provided will add plot to that axis Returns: Figure and Axes object Raises: ModuleNotFoundError: If `matplotlib` is not installed .. plot:: :scale: 75 >>> # Example plotting a single value >>> import torch >>> from torchmetrics.multimodal.clip_score import CLIPScore >>> metric = CLIPScore(model_name_or_path="openai/clip-vit-base-patch16") >>> metric.update(torch.randint(255, (3, 224, 224)), "a photo of a cat") >>> fig_, ax_ = metric.plot() .. plot:: :scale: 75 >>> # Example plotting multiple values >>> import torch >>> from torchmetrics.multimodal.clip_score import CLIPScore >>> metric = CLIPScore(model_name_or_path="openai/clip-vit-base-patch16") >>> values = [ ] >>> for _ in range(10): ... values.append(metric(torch.randint(255, (3, 224, 224)), "a photo of a cat")) >>> fig_, ax_ = metric.plot(values) """ return self._plot(val, ax)
0
public_repos/torchmetrics/src/torchmetrics
public_repos/torchmetrics/src/torchmetrics/multimodal/__init__.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from torchmetrics.utilities.imports import _TRANSFORMERS_GREATER_EQUAL_4_10 if _TRANSFORMERS_GREATER_EQUAL_4_10: from torchmetrics.multimodal.clip_iqa import CLIPImageQualityAssessment from torchmetrics.multimodal.clip_score import CLIPScore __all__ = ["CLIPScore", "CLIPImageQualityAssessment"]
0
public_repos/torchmetrics
public_repos/torchmetrics/.devcontainer/devcontainer.json
// For format details, see https://aka.ms/devcontainer.json. For config options, see the README at: // https://github.com/microsoft/vscode-dev-containers/tree/v0.194.0/containers/python-3 { "name": "PyTorch Lightning Metrics", "image": "pytorchlightning/torchmetrics:devcontainer-py3.9", // If you want to use a different Python version, uncomment the build object below // "build": { // "dockerfile": "Dockerfile", // "context": "..", // "args": { // // Update 'VARIANT' to pick a Python version: 3, 3.6, 3.7, 3.8, 3.9 // "VARIANT": "3.9", // // Options // "NODE_VERSION": "none" // } // }, "runArgs": [ // Enable GPU passthrough, requires WSL2 on Windows //"--gpus=all", // One of the following options is required for torch multiprocessing //"--ipc=host", //"--shm-size=4gb", ], // Set *default* container specific settings.json values on container create. "customizations": { "vscode": { "settings": { "editor.formatOnSave": true, "editor.rulers": [120], "files.exclude": { "**/__pycache__": true }, "python.pythonPath": "/usr/local/bin/python", "python.defaultInterpreterPath": "/usr/local/bin/python", "python.languageServer": "Pylance", "python.autoComplete.addBrackets": true, "python.analysis.autoImportCompletions": true, "python.analysis.completeFunctionParens": true, "python.analysis.autoSearchPaths": true, "python.analysis.useImportHeuristic": true, "python.sortImports": true, "isort.args": ["--settings-path=${workspaceFolder}/pyproject.toml"], "python.formatting.autopep8Path": "/usr/local/py-utils/bin/autopep8", "python.formatting.blackPath": "/usr/local/py-utils/bin/black", "python.formatting.provider": "black", "python.formatting.blackArgs": ["--config=${workspaceFolder}/pyproject.toml"], "python.linting.banditPath": "/usr/local/py-utils/bin/bandit", "python.linting.flake8Path": "/usr/local/py-utils/bin/flake8", "python.linting.mypyPath": "/usr/local/py-utils/bin/mypy", "python.linting.pycodestylePath": "/usr/local/py-utils/bin/pycodestyle", "python.linting.pydocstylePath": "/usr/local/py-utils/bin/pydocstyle", "python.linting.pylintPath": "/usr/local/py-utils/bin/pylint", "python.linting.enabled": true, "python.linting.pylintEnabled": false, "python.linting.flake8Enabled": true, "python.linting.flake8Args": ["--config=${workspaceFolder}/setup.cfg", "--verbose"], "python.testing.pytestArgs": ["tests"], "python.testing.unittestEnabled": false, "python.testing.pytestEnabled": true, "esbonio.sphinx.confDir": "${workspaceFolder}/docs/source", "esbonio.sphinx.buildDir": "${workspaceFolder}/docs/build", "[python]": { "editor.codeActionsOnSave": { "source.organizeImports": true } } }, // Add the IDs of extensions you want installed when the container is created. "extensions": [ "ms-python.python", "ms-python.vscode-pylance", "visualstudioexptteam.vscodeintellicode", "kevinrose.vsc-python-indent", "littlefoxteam.vscode-python-test-adapter", "hbenl.vscode-test-explorer", "medo64.render-crlf", "shardulm94.trailing-spaces", "njqdev.vscode-python-typehint", "lextudio.restructuredtext", "trond-snekvik.simple-rst" ] } }, // Use 'forwardPorts' to make a list of ports inside the container available locally. // "forwardPorts": [], // Use 'postCreateCommand' to run commands after the container is created. "postCreateCommand": "pre-commit install", // Comment out connect as root instead. More info: https://aka.ms/vscode-remote/containers/non-root. "remoteUser": "vscode" }
0
public_repos/torchmetrics
public_repos/torchmetrics/.devcontainer/Dockerfile
# See here for image contents: https://github.com/microsoft/vscode-dev-containers/tree/v0.194.0/containers/python-3/.devcontainer/base.Dockerfile # [Choice] Python version: 3, 3.9, 3.8, 3.7, 3.6 ARG VARIANT="3.9" FROM mcr.microsoft.com/vscode/devcontainers/python:${VARIANT} # [Choice] Node.js version: none, lts/*, 16, 14, 12, 10 ARG NODE_VERSION="none" RUN if [ "${NODE_VERSION}" != "none" ]; then \ su vscode -c "umask 0002 && . /usr/local/share/nvm/nvm.sh && nvm install ${NODE_VERSION} 2>&1"; \ fi COPY requirements/ /tmp/pip-tmp/requirements/ RUN \ pip3 install awscli && \ aws s3 sync --no-sign-request s3://sphinx-packages/ dist/ && \ # trying to resolve pesq installation issue pip3 install -q "numpy<1.24" && \ pip3 --disable-pip-version-check --no-cache-dir install \ -r /tmp/pip-tmp/requirements/_devel.txt \ -r /tmp/pip-tmp/requirements/_docs.txt \ --find-links="https://download.pytorch.org/whl/cpu/torch_stable.html" \ --find-links="dist/" && \ rm -rf /tmp/pip-tmp # [Optional] If your pip requirements rarely change, uncomment this section to add them to the image. # RUN pip3 --disable-pip-version-check --no-cache-dir install -r /tmp/pip-tmp/requirements/base.txt \ # && rm -rf /tmp/pip-tmp # [Optional] Uncomment this section to install additional OS packages. # RUN apt-get update && export DEBIAN_FRONTEND=noninteractive \ # && apt-get -y install --no-install-recommends <your-package-list-here> # [Optional] Uncomment this line to install global node packages. # RUN su vscode -c "source /usr/local/share/nvm/nvm.sh && npm install -g <your-package-here>" 2>&1
0
public_repos/torchmetrics
public_repos/torchmetrics/.azure/gpu-unittests.yml
# Create and test a Python package on multiple PyTorch versions. trigger: tags: include: - "*" branches: include: - master - release/* - refs/tags/* pr: - master - release/* jobs: - job: unitest_GPU strategy: matrix: "PyTorch | 1.10": # Torch does not have build wheels with old Torch versions for newer CUDA docker-image: "pytorchlightning/torchmetrics:ubuntu20.04-cuda11.3.1-py3.9-torch1.10" torch-ver: "1.10.2" "PyTorch | 1.X": docker-image: "pytorchlightning/torchmetrics:ubuntu22.04-cuda11.8.0-py3.9-torch1.13" torch-ver: "1.13.1" "PyTorch | 2.X": docker-image: "pytorchlightning/torchmetrics:ubuntu22.04-cuda12.1.0-py3.11-torch2.1" torch-ver: "2.1.0" # how long to run the job before automatically cancelling timeoutInMinutes: "120" # how much time to give 'run always even if cancelled tasks' before stopping them cancelTimeoutInMinutes: "2" pool: "lit-rtx-3090" variables: DEVICES: $( python -c 'name = "$(Agent.Name)" ; gpus = name.split("_")[-1] if "_" in name else "0,1"; print(gpus)' ) # these two caches assume to run repetitively on the same set of machines # see: https://github.com/microsoft/azure-pipelines-agent/issues/4113#issuecomment-1439241481 TORCH_HOME: "/var/tmp/torch" TRANSFORMERS_CACHE: "/var/tmp/huggingface" PIP_CACHE_DIR: "/var/tmp/pip" # MKL_THREADING_LAYER: "GNU" MKL_SERVICE_FORCE_INTEL: 1 # todo: consider unfreeze for master too FREEZE_REQUIREMENTS: 1 container: image: "$(docker-image)" options: "--gpus=all --shm-size=8g -v /var/tmp:/var/tmp" workspace: clean: all steps: - bash: | echo "##vso[task.setvariable variable=CUDA_VISIBLE_DEVICES]$(DEVICES)" CUDA_version=$(nvcc --version | sed -n 's/^.*release \([0-9]\+\.[0-9]\+\).*$/\1/p') CUDA_version_mm="${CUDA_version//'.'/''}" echo "##vso[task.setvariable variable=CUDA_VERSION_MM]$CUDA_version_mm" echo "##vso[task.setvariable variable=TORCH_URL]https://download.pytorch.org/whl/cu${CUDA_version_mm}/torch_stable.html" displayName: "set Env. vars" - bash: | whoami && id lspci | egrep 'VGA|3D' whereis nvidia nvidia-smi echo $CUDA_VISIBLE_DEVICES echo $TORCH_URL python --version pip --version pip cache dir pip list displayName: "Image info & NVIDIA" - bash: | pip install -q packaging wget https://raw.githubusercontent.com/Lightning-AI/utilities/main/scripts/adjust-torch-versions.py for fpath in `ls requirements/*.txt`; do # torch version shall be sourced based on the used docker python adjust-torch-versions.py $fpath done displayName: "Adjust versions" - bash: | pip install . -U -r ./requirements/_devel.txt --prefer-binary --find-links=${TORCH_URL} displayName: "Install environment" - bash: | set -e pip list python -c "from torch import __version__ as ver ; assert str(ver).split('+')[0] == '$(torch-ver)', f'PyTorch: {ver}'" python -c "import torch ; mgpu = torch.cuda.device_count() ; assert mgpu >= 2, f'found GPUs: {mgpu}'" displayName: "Sanity check" - bash: | printf "cache location: $(TORCH_HOME)\n" mkdir -p $(TORCH_HOME) # in case cache was void ls -lh $(TORCH_HOME) printf "cache location: $(TRANSFORMERS_CACHE)\n" mkdir -p $(TRANSFORMERS_CACHE) # in case cache was void ls -lh $(TRANSFORMERS_CACHE) displayName: "Show caches" - bash: python -m pytest torchmetrics --timeout=240 --durations=50 env: DOCTEST_DOWNLOAD_TIMEOUT: "240" SKIP_SLOW_DOCTEST: "1" workingDirectory: src displayName: "DocTesting" - bash: | wget https://pl-public-data.s3.amazonaws.com/metrics/data.zip unzip -o data.zip ls -l _data/* workingDirectory: tests displayName: "Pull testing data from S3" - bash: python -m pytest unittests -v --cov=torchmetrics --timeout=240 --durations=500 env: CUDA_LAUNCH_BLOCKING: "1" workingDirectory: tests displayName: "UnitTesting" - bash: | python -m coverage report python -m coverage xml python -m codecov --token=$(CODECOV_TOKEN) --name="GPU-coverage" \ --commit=$(Build.SourceVersion) --flags=gpu,unittest --env=linux,azure ls -l workingDirectory: tests displayName: "Statistics" - bash: | set -e FILES="*.py" for fn in $FILES do echo "Processing $fn example..." python $fn done workingDirectory: examples displayName: "Examples" - bash: | printf "cache location: $(TRANSFORMERS_CACHE)\n" ls -lh $(TRANSFORMERS_CACHE) # show what was restored... displayName: "Show HF artifacts"
0
public_repos/torchmetrics
public_repos/torchmetrics/.azure/gpu-integrations.yml
# Create and test a Python package on multiple dependencies versions. trigger: tags: include: - "*" branches: include: - master - release/* - refs/tags/* pr: - master - release/* jobs: - job: integrate_GPU strategy: matrix: "oldest": docker-image: "pytorch/pytorch:1.11.0-cuda11.3-cudnn8-runtime" torch-ver: "1.11.0" requires: "oldest" "latest": docker-image: "pytorch/pytorch:2.1.0-cuda12.1-cudnn8-runtime" torch-ver: "2.1.0" # how long to run the job before automatically cancelling timeoutInMinutes: "40" # how much time to give 'run always even if cancelled tasks' before stopping them cancelTimeoutInMinutes: "2" pool: "lit-rtx-3090" variables: DEVICES: $( python -c 'name = "$(Agent.Name)" ; gpus = name.split("_")[-1] if "_" in name else "0,1"; print(gpus)' ) # these two caches assume to run repetitively on the same set of machines TORCH_HOME: "/var/tmp/torch" TRANSFORMERS_CACHE: "/var/tmp/huggingface" PIP_CACHE_DIR: "/var/tmp/pip" container: image: "$(docker-image)" options: "--gpus=all --shm-size=8g -v /usr/bin/docker:/tmp/docker:ro -v /var/tmp:/var/tmp" workspace: clean: all steps: - bash: | echo "##vso[task.setvariable variable=CUDA_VISIBLE_DEVICES]$(DEVICES)" CUDA_version=$(nvcc --version | sed -n 's/^.*release \([0-9]\+\.[0-9]\+\).*$/\1/p') CUDA_version_mm="${CUDA_version//'.'/''}" echo "##vso[task.setvariable variable=CUDA_VERSION_MM]$CUDA_version_mm" echo "##vso[task.setvariable variable=TORCH_URL]https://download.pytorch.org/whl/cu${CUDA_version_mm}/torch_stable.html" # packages for running assistant pip install -q packaging fire requests wget displayName: "set Env. vars" - bash: | whoami && id lspci | egrep 'VGA|3D' whereis nvidia nvidia-smi echo $CUDA_VISIBLE_DEVICES echo $TORCH_URL python --version pip --version pip cache dir pip list displayName: "Image info & NVIDIA" - bash: | set -e python .github/assistant.py set-oldest-versions --req_files='["requirements/_integrate.txt"]' cat requirements/_integrate.txt condition: eq(variables['requires'], 'oldest') displayName: "Setting oldest req." - bash: | set -e python -m wget https://raw.githubusercontent.com/Lightning-AI/utilities/main/scripts/adjust-torch-versions.py for fpath in `ls requirements/*.txt`; do # torch version shall be sourced based on the used docker python adjust-torch-versions.py $fpath done displayName: "Adjust versions" - bash: | pip install -q -r requirements/_integrate.txt # force reinstall TM as it could be overwritten by integration's dependencies pip install . -U -r requirements/_tests.txt --find-links ${TORCH_URL} displayName: "Install package & integrations" - bash: | set -e pip list python -c "from torch import __version__ as ver ; assert str(ver).split('+')[0] == '$(torch-ver)', f'PyTorch: {ver}'" python -c "import torch ; mgpu = torch.cuda.device_count() ; assert mgpu >= 2, f'found GPUs: {mgpu}'" displayName: "Sanity check" - bash: python -m pytest integrations -v --durations=25 env: PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION: "python" workingDirectory: tests displayName: "Test integrations"
0
public_repos/torchmetrics/tests
public_repos/torchmetrics/tests/integrations/test_lightning.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest import mock import torch from lightning_utilities import module_available from torch import tensor from torch.nn import Linear if module_available("lightning"): from lightning.pytorch import LightningModule, Trainer from lightning.pytorch.loggers import CSVLogger else: from pytorch_lightning import LightningModule, Trainer from pytorch_lightning.loggers import CSVLogger from torchmetrics import MetricCollection from torchmetrics.aggregation import SumMetric from torchmetrics.classification import BinaryAccuracy, BinaryAveragePrecision from torchmetrics.regression import MeanSquaredError from torchmetrics.wrappers import MultitaskWrapper from integrations.helpers import no_warning_call from integrations.lightning.boring_model import BoringModel class DiffMetric(SumMetric): """DiffMetric inherited from `SumMetric` by overidding its `update` method.""" def update(self, value): """Update state.""" super().update(-value) def test_metric_lightning(tmpdir): """Test that including a metric inside a lightning module calculates a simple sum correctly.""" class TestModel(BoringModel): def __init__(self) -> None: super().__init__() self.metric = SumMetric() self.register_buffer("sum", torch.tensor(0.0)) def training_step(self, batch, batch_idx): x = batch self.metric(x.sum()) self.sum += x.sum() return self.step(x) def on_training_epoch_end(self): if not torch.allclose(self.sum, self.metric.compute()): raise ValueError("Sum and computed value must be equal") self.sum = 0.0 self.metric.reset() model = TestModel() model.val_dataloader = None trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=2, max_epochs=2, log_every_n_steps=1, ) trainer.fit(model) def test_metrics_reset(tmpdir): """Tests that metrics are reset correctly after the end of the train/val/test epoch. Taken from: `Metric Test for Reset`_ """ class TestModel(BoringModel): def __init__(self) -> None: super().__init__() self.layer = torch.nn.Linear(32, 1) for stage in ["train", "val", "test"]: acc = BinaryAccuracy() acc.reset = mock.Mock(side_effect=acc.reset) ap = BinaryAveragePrecision() ap.reset = mock.Mock(side_effect=ap.reset) self.add_module(f"acc_{stage}", acc) self.add_module(f"ap_{stage}", ap) def forward(self, x): return self.layer(x) def _step(self, stage, batch): labels = (batch.detach().sum(1) > 0).float() # Fake some targets logits = self.forward(batch) loss = torch.nn.functional.binary_cross_entropy_with_logits(logits, labels.unsqueeze(1)) probs = torch.sigmoid(logits.detach()) self.log(f"loss/{stage}", loss) acc = self._modules[f"acc_{stage}"] ap = self._modules[f"ap_{stage}"] labels_int = labels.to(torch.long) acc(probs.flatten(), labels_int) ap(probs.flatten(), labels_int) # Metric.forward calls reset so reset the mocks here acc.reset.reset_mock() ap.reset.reset_mock() self.log(f"{stage}/accuracy", acc) self.log(f"{stage}/ap", ap) return loss def training_step(self, batch, batch_idx): return self._step("train", batch) def validation_step(self, batch, batch_idx): return self._step("val", batch) def test_step(self, batch, batch_idx): return self._step("test", batch) def _assert_epoch_end(self, stage): acc = self._modules[f"acc_{stage}"] ap = self._modules[f"ap_{stage}"] acc.reset.asset_not_called() ap.reset.assert_not_called() def on_train_epoch_end(self): self._assert_epoch_end("train") def on_validation_epoch_end(self): self._assert_epoch_end("val") def on_test_epoch_end(self): self._assert_epoch_end("test") def _assert_called(model, stage): acc = model._modules[f"acc_{stage}"] ap = model._modules[f"ap_{stage}"] acc.reset.assert_called_once() acc.reset.reset_mock() ap.reset.assert_called_once() ap.reset.reset_mock() model = TestModel() trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=2, limit_test_batches=2, max_epochs=1, ) trainer.fit(model) _assert_called(model, "train") _assert_called(model, "val") trainer.validate(model) _assert_called(model, "val") trainer.test(model) _assert_called(model, "test") def test_metric_lightning_log(tmpdir): """Test logging a metric object and that the metric state gets reset after each epoch.""" class TestModel(BoringModel): def __init__(self) -> None: super().__init__() # initialize one metric for every combination of `on_step` and `on_epoch` and `forward` and `update` self.metric_update = SumMetric() self.metric_update_step = SumMetric() self.metric_update_epoch = SumMetric() self.metric_forward = SumMetric() self.metric_forward_step = SumMetric() self.metric_forward_epoch = SumMetric() self.compo_update = SumMetric() + SumMetric() self.compo_update_step = SumMetric() + SumMetric() self.compo_update_epoch = SumMetric() + SumMetric() self.compo_forward = SumMetric() + SumMetric() self.compo_forward_step = SumMetric() + SumMetric() self.compo_forward_epoch = SumMetric() + SumMetric() self.sum = [] def training_step(self, batch, batch_idx): x = batch s = x.sum() for metric in [self.metric_update, self.metric_update_step, self.metric_update_epoch]: metric.update(s) for metric in [self.metric_forward, self.metric_forward_step, self.metric_forward_epoch]: _ = metric(s) for metric in [self.compo_update, self.compo_update_step, self.compo_update_epoch]: metric.update(s) for metric in [self.compo_forward, self.compo_forward_step, self.compo_forward_epoch]: _ = metric(s) self.sum.append(s) self.log("metric_update", self.metric_update) self.log("metric_update_step", self.metric_update_step, on_epoch=False, on_step=True) self.log("metric_update_epoch", self.metric_update_epoch, on_epoch=True, on_step=False) self.log("metric_forward", self.metric_forward) self.log("metric_forward_step", self.metric_forward_step, on_epoch=False, on_step=True) self.log("metric_forward_epoch", self.metric_forward_epoch, on_epoch=True, on_step=False) self.log("compo_update", self.compo_update) self.log("compo_update_step", self.compo_update_step, on_epoch=False, on_step=True) self.log("compo_update_epoch", self.compo_update_epoch, on_epoch=True, on_step=False) self.log("compo_forward", self.compo_forward) self.log("compo_forward_step", self.compo_forward_step, on_epoch=False, on_step=True) self.log("compo_forward_epoch", self.compo_forward_epoch, on_epoch=True, on_step=False) return self.step(x) model = TestModel() logger = CSVLogger("tmpdir/logs") trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=0, max_epochs=2, log_every_n_steps=1, logger=logger, ) with no_warning_call( UserWarning, match="Torchmetrics v0.9 introduced a new argument class property called.*", ): trainer.fit(model) logged_metrics = logger._experiment.metrics epoch_0_step_0 = logged_metrics[0] assert "metric_forward" in epoch_0_step_0 assert epoch_0_step_0["metric_forward"] == model.sum[0] assert "metric_forward_step" in epoch_0_step_0 assert epoch_0_step_0["metric_forward_step"] == model.sum[0] assert "compo_forward" in epoch_0_step_0 assert epoch_0_step_0["compo_forward"] == 2 * model.sum[0] assert "compo_forward_step" in epoch_0_step_0 assert epoch_0_step_0["compo_forward_step"] == 2 * model.sum[0] epoch_0_step_1 = logged_metrics[1] assert "metric_forward" in epoch_0_step_1 assert epoch_0_step_1["metric_forward"] == model.sum[1] assert "metric_forward_step" in epoch_0_step_1 assert epoch_0_step_1["metric_forward_step"] == model.sum[1] assert "compo_forward" in epoch_0_step_1 assert epoch_0_step_1["compo_forward"] == 2 * model.sum[1] assert "compo_forward_step" in epoch_0_step_1 assert epoch_0_step_1["compo_forward_step"] == 2 * model.sum[1] epoch_0 = logged_metrics[2] assert "metric_update_epoch" in epoch_0 assert epoch_0["metric_update_epoch"] == sum([model.sum[0], model.sum[1]]) assert "metric_forward_epoch" in epoch_0 assert epoch_0["metric_forward_epoch"] == sum([model.sum[0], model.sum[1]]) assert "compo_update_epoch" in epoch_0 assert epoch_0["compo_update_epoch"] == 2 * sum([model.sum[0], model.sum[1]]) assert "compo_forward_epoch" in epoch_0 assert epoch_0["compo_forward_epoch"] == 2 * sum([model.sum[0], model.sum[1]]) epoch_1_step_0 = logged_metrics[3] assert "metric_forward" in epoch_1_step_0 assert epoch_1_step_0["metric_forward"] == model.sum[2] assert "metric_forward_step" in epoch_1_step_0 assert epoch_1_step_0["metric_forward_step"] == model.sum[2] assert "compo_forward" in epoch_1_step_0 assert epoch_1_step_0["compo_forward"] == 2 * model.sum[2] assert "compo_forward_step" in epoch_1_step_0 assert epoch_1_step_0["compo_forward_step"] == 2 * model.sum[2] epoch_1_step_1 = logged_metrics[4] assert "metric_forward" in epoch_1_step_1 assert epoch_1_step_1["metric_forward"] == model.sum[3] assert "metric_forward_step" in epoch_1_step_1 assert epoch_1_step_1["metric_forward_step"] == model.sum[3] assert "compo_forward" in epoch_1_step_1 assert epoch_1_step_1["compo_forward"] == 2 * model.sum[3] assert "compo_forward_step" in epoch_1_step_1 assert epoch_1_step_1["compo_forward_step"] == 2 * model.sum[3] epoch_1 = logged_metrics[5] assert "metric_update_epoch" in epoch_1 assert epoch_1["metric_update_epoch"] == sum([model.sum[2], model.sum[3]]) assert "metric_forward_epoch" in epoch_1 assert epoch_1["metric_forward_epoch"] == sum([model.sum[2], model.sum[3]]) assert "compo_update_epoch" in epoch_1 assert epoch_1["compo_update_epoch"] == 2 * sum([model.sum[2], model.sum[3]]) assert "compo_forward_epoch" in epoch_1 assert epoch_1["compo_forward_epoch"] == 2 * sum([model.sum[2], model.sum[3]]) def test_metric_collection_lightning_log(tmpdir): """Test that MetricCollection works with Lightning modules.""" class TestModel(BoringModel): def __init__(self) -> None: super().__init__() self.metric = MetricCollection([SumMetric(), DiffMetric()]) self.register_buffer("sum", torch.tensor(0.0)) self.register_buffer("diff", torch.tensor(0.0)) def training_step(self, batch, batch_idx): x = batch metric_vals = self.metric(x.sum()) self.sum += x.sum() self.diff -= x.sum() self.log_dict({f"{k}_step": v for k, v in metric_vals.items()}) return self.step(x) def on_train_epoch_end(self): metric_vals = self.metric.compute() self.log_dict({f"{k}_epoch": v for k, v in metric_vals.items()}) model = TestModel() trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=0, max_epochs=1, log_every_n_steps=1, ) with no_warning_call( UserWarning, match="Torchmetrics v0.9 introduced a new argument class property called.*", ): trainer.fit(model) logged = trainer.logged_metrics assert torch.allclose(tensor(logged["SumMetric_epoch"]), model.sum, atol=2e-4) assert torch.allclose(tensor(logged["DiffMetric_epoch"]), model.diff, atol=2e-4) def test_task_wrapper_lightning_logging(tmpdir): """Test that MultiTaskWrapper works with Lightning modules.""" class TestModel(BoringModel): def __init__(self) -> None: super().__init__() self.metric = MultitaskWrapper({"classification": BinaryAccuracy(), "regression": MeanSquaredError()}) self.accuracy = BinaryAccuracy() self.mse = MeanSquaredError() def training_step(self, batch, batch_idx): preds = torch.rand(10) target = torch.rand(10) self.metric( {"classification": preds.round(), "regression": preds}, {"classification": target.round(), "regression": target}, ) self.accuracy(preds.round(), target.round()) self.mse(preds, target) self.log("accuracy", self.accuracy, on_epoch=True) self.log("mse", self.mse, on_epoch=True) self.log_dict(self.metric, on_epoch=True) return self.step(batch) model = TestModel() trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=0, max_epochs=1, log_every_n_steps=1, ) with no_warning_call( UserWarning, match="Torchmetrics v0.9 introduced a new argument class property called.*", ): trainer.fit(model) logged = trainer.logged_metrics assert torch.allclose(logged["accuracy_step"], logged["classification_step"]) assert torch.allclose(logged["accuracy_epoch"], logged["classification_epoch"]) assert torch.allclose(logged["mse_step"], logged["regression_step"]) assert torch.allclose(logged["mse_epoch"], logged["regression_epoch"]) def test_scriptable(tmpdir): """Test that lightning modules can still be scripted even if metrics cannot.""" class TestModel(BoringModel): def __init__(self) -> None: super().__init__() # the metric is not used in the module's `forward` # so the module should be exportable to TorchScript self.metric = SumMetric() self.register_buffer("sum", torch.tensor(0.0)) def training_step(self, batch, batch_idx): x = batch self.metric(x.sum()) self.sum += x.sum() self.log("sum", self.metric, on_epoch=True, on_step=False) return self.step(x) model = TestModel() trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=2, max_epochs=1, log_every_n_steps=1, logger=False, ) trainer.fit(model) rand_input = torch.randn(10, 32) script_model = model.to_torchscript() # test that we can still do inference output = model(rand_input) script_output = script_model(rand_input) assert torch.allclose(output, script_output) def test_dtype_in_pl_module_transfer(tmpdir): """Test that metric states don't change dtype when .half() or .float() is called on the LightningModule.""" class BoringModel(LightningModule): def __init__(self, metric_dtype=torch.float32) -> None: super().__init__() self.layer = Linear(32, 32) self.metric = SumMetric() self.metric.set_dtype(metric_dtype) def forward(self, x): return self.layer(x) def training_step(self, batch, batch_idx): pred = self.forward(batch) loss = self(batch).sum() self.metric.update(torch.flatten(pred), torch.flatten(batch)) return {"loss": loss} def configure_optimizers(self): return torch.optim.SGD(self.layer.parameters(), lr=0.1) model = BoringModel() assert model.metric.sum_value.dtype == torch.float32 model = model.half() assert model.metric.sum_value.dtype == torch.float32 model = BoringModel() assert model.metric.sum_value.dtype == torch.float32 model = model.double() assert model.metric.sum_value.dtype == torch.float32 model = BoringModel(metric_dtype=torch.float16) assert model.metric.sum_value.dtype == torch.float16 model = model.float() assert model.metric.sum_value.dtype == torch.float16 model = BoringModel() assert model.metric.sum_value.dtype == torch.float32 model = model.type(torch.half) assert model.metric.sum_value.dtype == torch.float32
0
public_repos/torchmetrics/tests
public_repos/torchmetrics/tests/integrations/conftest.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import pytest # GitHub Actions use this path to cache datasets. # Use `datadir` fixture where possible and use `DATASETS_PATH` in # `pytest.mark.parametrize()` where you cannot use `datadir`. # https://github.com/pytest-dev/pytest/issues/349 from integrations import _PATH_DATASETS @pytest.fixture(scope="session") def datadir(): """Global data dir for location of datasets.""" return Path(_PATH_DATASETS) def pytest_configure(config): """Local configuration of pytest.""" config.addinivalue_line("markers", "spawn: spawn test in a separate process using torch.multiprocessing.spawn")
0
public_repos/torchmetrics/tests
public_repos/torchmetrics/tests/integrations/helpers.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from contextlib import contextmanager from typing import Optional, Type import pytest @contextmanager def no_warning_call(expected_warning: Type[Warning] = UserWarning, match: Optional[str] = None): """Context manager to make sure that no warning is raised for a given call.""" with pytest.warns(None) as record: yield if match is None: try: w = record.pop(expected_warning) except AssertionError: # no warning raised return else: for w in record.list: if w.category is expected_warning and re.compile(match).search(w.message.args[0]): break else: return msg = "A warning" if expected_warning is None else f"`{expected_warning.__name__}`" raise AssertionError(f"{msg} was raised: {w}")
0
public_repos/torchmetrics/tests
public_repos/torchmetrics/tests/integrations/__init__.py
import os _INTEGRATION_ROOT = os.path.realpath(os.path.dirname(__file__)) _PACKAGE_ROOT = os.path.dirname(_INTEGRATION_ROOT) _PATH_DATASETS = os.path.join(_PACKAGE_ROOT, "datasets")
0
public_repos/torchmetrics/tests/integrations
public_repos/torchmetrics/tests/integrations/lightning/boring_model.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from lightning_utilities import module_available from torch.utils.data import Dataset if module_available("lightning"): from lightning.pytorch import LightningModule else: from pytorch_lightning import LightningModule class RandomDictStringDataset(Dataset): """Class for creating a dictionary of random strings.""" def __init__(self, size, length) -> None: self.len = length self.data = torch.randn(length, size) def __getitem__(self, index) -> dict: """Get datapoint.""" return {"id": str(index), "x": self.data[index]} def __len__(self) -> int: """Return length of dataset.""" return self.len class RandomDataset(Dataset): """Random dataset for testing PL Module.""" def __init__(self, size, length) -> None: self.len = length self.data = torch.randn(length, size) def __getitem__(self, index) -> torch.Tensor: """Get datapoint.""" return self.data[index] def __len__(self) -> int: """Get length of dataset.""" return self.len class BoringModel(LightningModule): """Testing PL Module. Use as follows: - subclass - modify the behavior for what you want class TestModel(BaseTestModel): def training_step(...): # do your own thing or: model = BaseTestModel() model.validation_step = None """ def __init__(self) -> None: super().__init__() self.layer = torch.nn.Linear(32, 2) def forward(self, x): """Forward pass of x through model.""" return self.layer(x) @staticmethod def loss(_, prediction) -> torch.Tensor: """Arbitrary loss.""" return torch.nn.functional.mse_loss(prediction, torch.ones_like(prediction)) def step(self, x): """Single step in model.""" x = self(x) return torch.nn.functional.mse_loss(x, torch.ones_like(x)) def training_step(self, batch, batch_idx): """Single training step in model.""" output = self.layer(batch) loss = self.loss(batch, output) return {"loss": loss} def validation_step(self, batch, batch_idx): """Single validation step in the model.""" output = self.layer(batch) loss = self.loss(batch, output) return {"x": loss} def test_step(self, batch, batch_idx): """Single test step in the model.""" output = self.layer(batch) loss = self.loss(batch, output) return {"y": loss} def configure_optimizers(self): """Configure which optimizer to use when training the model.""" optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1) lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9) return {"optimizer": optimizer, "scheduler": lr_scheduler} def train_dataloader(self): """Define train dataloader used for training the model.""" return torch.utils.data.DataLoader(RandomDataset(32, 64)) def val_dataloader(self): """Define validation dataloader used for validating the model.""" return torch.utils.data.DataLoader(RandomDataset(32, 64)) def test_dataloader(self): """Define test dataloader used for testing the model.""" return torch.utils.data.DataLoader(RandomDataset(32, 64))
0
public_repos/torchmetrics/tests
public_repos/torchmetrics/tests/unittests/conftest.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import os import sys from functools import wraps from typing import Any, Callable, Optional import pytest import torch from torch.multiprocessing import Pool, set_sharing_strategy, set_start_method with contextlib.suppress(RuntimeError): set_start_method("spawn") set_sharing_strategy("file_system") NUM_PROCESSES = 2 # torch.cuda.device_count() if torch.cuda.is_available() else 2 NUM_BATCHES = 2 * NUM_PROCESSES # Need to be divisible with the number of processes BATCH_SIZE = 32 NUM_CLASSES = 5 EXTRA_DIM = 3 THRESHOLD = 0.5 MAX_PORT = 8100 START_PORT = 8088 CURRENT_PORT = START_PORT def setup_ddp(rank, world_size): """Initialize ddp environment.""" global CURRENT_PORT os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = str(CURRENT_PORT) CURRENT_PORT += 1 if CURRENT_PORT > MAX_PORT: CURRENT_PORT = START_PORT if torch.distributed.is_available() and sys.platform not in ("win32", "cygwin"): torch.distributed.init_process_group("gloo", rank=rank, world_size=world_size) def pytest_sessionstart(): """Global initialization of multiprocessing pool. Runs before any test. """ pool = Pool(processes=NUM_PROCESSES) pool.starmap(setup_ddp, [(rank, NUM_PROCESSES) for rank in range(NUM_PROCESSES)]) pytest.pool = pool def pytest_sessionfinish(): """Correctly closes the global multiprocessing pool. Runs after all tests. """ pytest.pool.close() pytest.pool.join() def skip_on_running_out_of_memory(reason: str = "Skipping test as it ran out of memory."): """Handle tests that sometimes runs out of memory, by simply skipping them.""" def test_decorator(function: Callable, *args: Any, **kwargs: Any) -> Optional[Callable]: @wraps(function) def run_test(*args: Any, **kwargs: Any) -> Optional[Any]: try: return function(*args, **kwargs) except RuntimeError as ex: if "DefaultCPUAllocator: not enough memory:" not in str(ex): raise ex pytest.skip(reason) return run_test return test_decorator
0
public_repos/torchmetrics/tests
public_repos/torchmetrics/tests/unittests/__init__.py
import os.path from typing import NamedTuple import numpy import torch from torch import Tensor from unittests.conftest import ( BATCH_SIZE, EXTRA_DIM, NUM_BATCHES, NUM_CLASSES, NUM_PROCESSES, THRESHOLD, setup_ddp, skip_on_running_out_of_memory, ) # adding compatibility for numpy >= 1.24 for tp_name, tp_ins in [("object", object), ("bool", bool), ("int", int), ("float", float)]: if not hasattr(numpy, tp_name): setattr(numpy, tp_name, tp_ins) _PATH_TESTS = os.path.dirname(__file__) _PATH_ROOT = os.path.dirname(_PATH_TESTS) if torch.cuda.is_available(): torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cudnn.allow_tf32 = False class _Input(NamedTuple): preds: Tensor target: Tensor class _GroupInput(NamedTuple): preds: Tensor target: Tensor groups: Tensor __all__ = [ "BATCH_SIZE", "EXTRA_DIM", "_Input", "_GroupInput", "NUM_BATCHES", "NUM_CLASSES", "NUM_PROCESSES", "THRESHOLD", "setup_ddp", "skip_on_running_out_of_memory", ]
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/utilities/test_auc.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from typing import NamedTuple import numpy as np import pytest from sklearn.metrics import auc as _sk_auc from torch import Tensor, tensor from torchmetrics.utilities.compute import auc from unittests import NUM_BATCHES from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester seed_all(42) class _Input(NamedTuple): x: Tensor y: Tensor def sk_auc(x, y, reorder=False): """Comparison function for correctness of auc implementation.""" x = x.flatten() y = y.flatten() if reorder: idx = np.argsort(x, kind="stable") x = x[idx] y = y[idx] return _sk_auc(x, y) _examples = [] # generate already ordered samples, sorted in both directions for batch_size in (8, 4049): for i in range(4): x = np.random.rand(NUM_BATCHES * batch_size) y = np.random.rand(NUM_BATCHES * batch_size) idx = np.argsort(x, kind="stable") x = x[idx] if i % 2 == 0 else x[idx[::-1]] y = y[idx] if i % 2 == 0 else x[idx[::-1]] x = x.reshape(NUM_BATCHES, batch_size) y = y.reshape(NUM_BATCHES, batch_size) _examples.append(_Input(x=tensor(x), y=tensor(y))) @pytest.mark.parametrize("x, y", _examples) class TestAUC(MetricTester): """Test class for `AUC`.""" @pytest.mark.parametrize("reorder", [True, False]) def test_auc_functional(self, x, y, reorder): """Test functional implementation.""" self.run_functional_metric_test( x, y, metric_functional=auc, reference_metric=partial(sk_auc, reorder=reorder), metric_args={"reorder": reorder}, ) @pytest.mark.parametrize("unsqueeze_x", [True, False]) @pytest.mark.parametrize("unsqueeze_y", [True, False]) @pytest.mark.parametrize( ("x", "y", "expected"), [ ([0, 1], [0, 1], 0.5), ([1, 0], [0, 1], 0.5), ([1, 0, 0], [0, 1, 1], 0.5), ([0, 1], [1, 1], 1), ([0, 0.5, 1], [0, 0.5, 1], 0.5), ], ) def test_auc(x, y, expected, unsqueeze_x, unsqueeze_y): """Test that auc function gives the expected result.""" x = tensor(x) y = tensor(y) if unsqueeze_x: x = x.unsqueeze(-1) if unsqueeze_y: y = y.unsqueeze(-1) # Test Area Under Curve (AUC) computation assert auc(x, y, reorder=True) == expected
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/utilities/test_plot.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from functools import partial from typing import Callable import matplotlib import matplotlib.pyplot as plt import numpy as np import pytest import torch from torch import tensor from torchmetrics import MetricCollection from torchmetrics.aggregation import MaxMetric, MeanMetric, MinMetric, SumMetric from torchmetrics.audio import ( ComplexScaleInvariantSignalNoiseRatio, ScaleInvariantSignalDistortionRatio, ScaleInvariantSignalNoiseRatio, ShortTimeObjectiveIntelligibility, SignalDistortionRatio, SignalNoiseRatio, ) from torchmetrics.audio.pesq import PerceptualEvaluationSpeechQuality from torchmetrics.audio.pit import PermutationInvariantTraining from torchmetrics.audio.srmr import SpeechReverberationModulationEnergyRatio from torchmetrics.classification import ( BinaryAccuracy, BinaryAUROC, BinaryAveragePrecision, BinaryCalibrationError, BinaryCohenKappa, BinaryConfusionMatrix, BinaryF1Score, BinaryFairness, BinaryFBetaScore, BinaryHammingDistance, BinaryHingeLoss, BinaryJaccardIndex, BinaryMatthewsCorrCoef, BinaryPrecision, BinaryPrecisionRecallCurve, BinaryRecall, BinaryRecallAtFixedPrecision, BinaryROC, BinarySpecificity, Dice, MulticlassAccuracy, MulticlassAUROC, MulticlassAveragePrecision, MulticlassCalibrationError, MulticlassCohenKappa, MulticlassConfusionMatrix, MulticlassExactMatch, MulticlassF1Score, MulticlassFBetaScore, MulticlassHammingDistance, MulticlassHingeLoss, MulticlassJaccardIndex, MulticlassMatthewsCorrCoef, MulticlassPrecision, MulticlassPrecisionRecallCurve, MulticlassRecall, MulticlassRecallAtFixedPrecision, MulticlassROC, MulticlassSpecificity, MultilabelAveragePrecision, MultilabelConfusionMatrix, MultilabelCoverageError, MultilabelExactMatch, MultilabelF1Score, MultilabelFBetaScore, MultilabelHammingDistance, MultilabelJaccardIndex, MultilabelMatthewsCorrCoef, MultilabelPrecision, MultilabelPrecisionRecallCurve, MultilabelRankingAveragePrecision, MultilabelRankingLoss, MultilabelRecall, MultilabelRecallAtFixedPrecision, MultilabelROC, MultilabelSpecificity, ) from torchmetrics.clustering import ( AdjustedRandScore, CalinskiHarabaszScore, DunnIndex, MutualInfoScore, NormalizedMutualInfoScore, RandScore, ) from torchmetrics.detection import PanopticQuality from torchmetrics.detection.mean_ap import MeanAveragePrecision from torchmetrics.functional.audio import scale_invariant_signal_noise_ratio from torchmetrics.image import ( ErrorRelativeGlobalDimensionlessSynthesis, FrechetInceptionDistance, InceptionScore, KernelInceptionDistance, LearnedPerceptualImagePatchSimilarity, MemorizationInformedFrechetInceptionDistance, MultiScaleStructuralSimilarityIndexMeasure, PeakSignalNoiseRatio, RelativeAverageSpectralError, RootMeanSquaredErrorUsingSlidingWindow, SpectralAngleMapper, SpectralDistortionIndex, StructuralSimilarityIndexMeasure, TotalVariation, UniversalImageQualityIndex, ) from torchmetrics.nominal import CramersV, FleissKappa, PearsonsContingencyCoefficient, TheilsU, TschuprowsT from torchmetrics.regression import ( ConcordanceCorrCoef, CosineSimilarity, ExplainedVariance, KendallRankCorrCoef, KLDivergence, LogCoshError, MeanAbsoluteError, MeanAbsolutePercentageError, MeanSquaredError, MeanSquaredLogError, MinkowskiDistance, PearsonCorrCoef, R2Score, RelativeSquaredError, SpearmanCorrCoef, SymmetricMeanAbsolutePercentageError, TweedieDevianceScore, WeightedMeanAbsolutePercentageError, ) from torchmetrics.retrieval import ( RetrievalFallOut, RetrievalHitRate, RetrievalMAP, RetrievalMRR, RetrievalNormalizedDCG, RetrievalPrecision, RetrievalPrecisionRecallCurve, RetrievalRecall, RetrievalRecallAtFixedPrecision, RetrievalRPrecision, ) from torchmetrics.text import ( BERTScore, BLEUScore, CharErrorRate, CHRFScore, EditDistance, ExtendedEditDistance, InfoLM, MatchErrorRate, Perplexity, ROUGEScore, SacreBLEUScore, SQuAD, TranslationEditRate, WordErrorRate, WordInfoLost, WordInfoPreserved, ) from torchmetrics.utilities.imports import ( _TORCHAUDIO_GREATER_EQUAL_0_10, ) from torchmetrics.utilities.plot import _get_col_row_split from torchmetrics.wrappers import ( BootStrapper, ClasswiseWrapper, MetricTracker, MinMaxMetric, MultioutputWrapper, Running, ) _rand_input = lambda: torch.rand(10) _binary_randint_input = lambda: torch.randint(2, (10,)) _multiclass_randint_input = lambda: torch.randint(3, (10,)) _multiclass_randn_input = lambda: torch.randn(10, 3).softmax(dim=-1) _multilabel_rand_input = lambda: torch.rand(10, 3) _multilabel_randint_input = lambda: torch.randint(2, (10, 3)) _audio_input = lambda: torch.randn(8000) _image_input = lambda: torch.rand([8, 3, 16, 16]) _panoptic_input = lambda: torch.multinomial( torch.tensor([1, 1, 0, 0, 0, 0, 1, 1]).float(), 40, replacement=True ).reshape(1, 5, 4, 2) _nominal_input = lambda: torch.randint(0, 4, (100,)) _text_input_1 = lambda: ["this is the prediction", "there is an other sample"] _text_input_2 = lambda: ["this is the reference", "there is another one"] _text_input_3 = lambda: ["the cat is on the mat"] _text_input_4 = lambda: [["there is a cat on the mat", "a cat is on the mat"]] @pytest.mark.parametrize( ("metric_class", "preds", "target"), [ pytest.param(BinaryAccuracy, _rand_input, _binary_randint_input, id="binary accuracy"), pytest.param( partial(MulticlassAccuracy, num_classes=3), _multiclass_randint_input, _multiclass_randint_input, id="multiclass accuracy", ), pytest.param( partial(MulticlassAccuracy, num_classes=3, average=None), _multiclass_randint_input, _multiclass_randint_input, id="multiclass accuracy and average=None", ), # AUROC pytest.param( BinaryAUROC, _rand_input, _binary_randint_input, id="binary auroc", ), pytest.param( partial(MulticlassAUROC, num_classes=3), _multiclass_randn_input, _multiclass_randint_input, id="multiclass auroc", ), pytest.param( partial(MulticlassAUROC, num_classes=3, average=None), _multiclass_randn_input, _multiclass_randint_input, id="multiclass auroc and average=None", ), pytest.param( partial(PearsonsContingencyCoefficient, num_classes=5), _nominal_input, _nominal_input, id="pearson contigency coef", ), pytest.param(partial(TheilsU, num_classes=5), _nominal_input, _nominal_input, id="theils U"), pytest.param(partial(TschuprowsT, num_classes=5), _nominal_input, _nominal_input, id="tschuprows T"), pytest.param(partial(CramersV, num_classes=5), _nominal_input, _nominal_input, id="cramers V"), pytest.param(partial(FleissKappa, mode="probs"), lambda: torch.randn(10, 3, 5), None, id="fleiss kappa"), pytest.param( SpectralDistortionIndex, _image_input, _image_input, id="spectral distortion index", ), pytest.param( ErrorRelativeGlobalDimensionlessSynthesis, _image_input, _image_input, id="error relative global dimensionless synthesis", ), pytest.param( PeakSignalNoiseRatio, lambda: torch.tensor([[0.0, 1.0], [2.0, 3.0]]), lambda: torch.tensor([[3.0, 2.0], [1.0, 0.0]]), id="peak signal noise ratio", ), pytest.param( SpectralAngleMapper, _image_input, _image_input, id="spectral angle mapper", ), pytest.param( StructuralSimilarityIndexMeasure, _image_input, _image_input, id="structural similarity index_measure", ), pytest.param( MultiScaleStructuralSimilarityIndexMeasure, lambda: torch.rand(3, 3, 180, 180), lambda: torch.rand(3, 3, 180, 180), id="multiscale structural similarity index measure", ), pytest.param( UniversalImageQualityIndex, _image_input, _image_input, id="universal image quality index", ), pytest.param( partial(PerceptualEvaluationSpeechQuality, fs=8000, mode="nb"), _audio_input, _audio_input, id="perceptual_evaluation_speech_quality", ), pytest.param(SignalDistortionRatio, _audio_input, _audio_input, id="signal_distortion_ratio"), pytest.param( ScaleInvariantSignalDistortionRatio, _rand_input, _rand_input, id="scale_invariant_signal_distortion_ratio" ), pytest.param(SignalNoiseRatio, _rand_input, _rand_input, id="signal_noise_ratio"), pytest.param( ComplexScaleInvariantSignalNoiseRatio, lambda: torch.randn(10, 3, 5, 2), lambda: torch.randn(10, 3, 5, 2), id="complex scale invariant signal noise ratio", ), pytest.param(ScaleInvariantSignalNoiseRatio, _rand_input, _rand_input, id="scale_invariant_signal_noise_ratio"), pytest.param( partial(ShortTimeObjectiveIntelligibility, fs=8000, extended=False), _audio_input, _audio_input, id="short_time_objective_intelligibility", ), pytest.param( partial(SpeechReverberationModulationEnergyRatio, fs=8000), _audio_input, None, id="speech_reverberation_modulation_energy_ratio", marks=pytest.mark.skipif(not _TORCHAUDIO_GREATER_EQUAL_0_10, reason="test requires torchaudio>=0.10"), ), pytest.param( partial(PermutationInvariantTraining, metric_func=scale_invariant_signal_noise_ratio, eval_func="max"), lambda: torch.randn(3, 2, 5), lambda: torch.randn(3, 2, 5), id="permutation_invariant_training", ), pytest.param(MeanSquaredError, _rand_input, _rand_input, id="mean squared error"), pytest.param(SumMetric, _rand_input, None, id="sum metric"), pytest.param(MeanMetric, _rand_input, None, id="mean metric"), pytest.param(MinMetric, _rand_input, None, id="min metric"), pytest.param(MaxMetric, _rand_input, None, id="min metric"), pytest.param( MeanAveragePrecision, lambda: [ {"boxes": tensor([[258.0, 41.0, 606.0, 285.0]]), "scores": tensor([0.536]), "labels": tensor([0])} ], lambda: [{"boxes": tensor([[214.0, 41.0, 562.0, 285.0]]), "labels": tensor([0])}], id="mean average precision", ), pytest.param( partial(PanopticQuality, things={0, 1}, stuffs={6, 7}), _panoptic_input, _panoptic_input, id="panoptic quality", ), pytest.param(BinaryAveragePrecision, _rand_input, _binary_randint_input, id="binary average precision"), pytest.param( partial(BinaryCalibrationError, n_bins=2, norm="l1"), _rand_input, _binary_randint_input, id="binary calibration error", ), pytest.param(BinaryCohenKappa, _rand_input, _binary_randint_input, id="binary cohen kappa"), pytest.param( partial(MulticlassAveragePrecision, num_classes=3), _multiclass_randn_input, _multiclass_randint_input, id="multiclass average precision", ), pytest.param( partial(MulticlassCalibrationError, num_classes=3, n_bins=3, norm="l1"), _multiclass_randn_input, _multiclass_randint_input, id="multiclass calibration error", ), pytest.param( partial(MulticlassCohenKappa, num_classes=3), _multiclass_randn_input, _multiclass_randint_input, id="multiclass cohen kappa", ), pytest.param( partial(MultilabelAveragePrecision, num_labels=3), _multilabel_rand_input, _multilabel_randint_input, id="multilabel average precision", ), pytest.param(BinarySpecificity, _rand_input, _binary_randint_input, id="binary specificity"), pytest.param( partial(MulticlassSpecificity, num_classes=3), _multiclass_randn_input, _multiclass_randint_input, id="multiclass specificity", ), pytest.param( partial(MultilabelSpecificity, num_labels=3), _multilabel_rand_input, _multilabel_randint_input, id="multilabel specificity", ), pytest.param( partial(BinaryRecallAtFixedPrecision, min_precision=0.5), _rand_input, _binary_randint_input, id="binary recall at fixed precision", ), pytest.param( partial(MulticlassRecallAtFixedPrecision, num_classes=3, min_precision=0.5), _multiclass_randn_input, _multiclass_randint_input, id="multiclass recall at fixed precision", ), pytest.param( partial(MultilabelRecallAtFixedPrecision, num_labels=3, min_precision=0.5), _multilabel_rand_input, _multilabel_randint_input, id="multilabel recall at fixed precision", ), pytest.param( partial(MultilabelCoverageError, num_labels=3), _multilabel_rand_input, _multilabel_randint_input, id="multilabel coverage error", ), pytest.param( partial(MultilabelRankingAveragePrecision, num_labels=3), _multilabel_rand_input, _multilabel_randint_input, id="multilabel ranking average precision", ), pytest.param( partial(MultilabelRankingLoss, num_labels=3), _multilabel_rand_input, _multilabel_randint_input, id="multilabel ranking loss", ), pytest.param(BinaryPrecision, _rand_input, _binary_randint_input, id="binary precision"), pytest.param( partial(MulticlassPrecision, num_classes=3), _multiclass_randn_input, _multiclass_randint_input, id="multiclass precision", ), pytest.param( partial(MultilabelPrecision, num_labels=3), _multilabel_rand_input, _multilabel_randint_input, id="multilabel precision", ), pytest.param(BinaryRecall, _rand_input, _binary_randint_input, id="binary recall"), pytest.param( partial(MulticlassRecall, num_classes=3), _multiclass_randn_input, _multiclass_randint_input, id="multiclass recall", ), pytest.param( partial(MultilabelRecall, num_labels=3), _multilabel_rand_input, _multilabel_randint_input, id="multilabel recall", ), pytest.param(BinaryMatthewsCorrCoef, _rand_input, _binary_randint_input, id="binary matthews corr coef"), pytest.param( partial(MulticlassMatthewsCorrCoef, num_classes=3), _multiclass_randn_input, _multiclass_randint_input, id="multiclass matthews corr coef", ), pytest.param( partial(MultilabelMatthewsCorrCoef, num_labels=3), _multilabel_rand_input, _multilabel_randint_input, id="multilabel matthews corr coef", ), pytest.param(TotalVariation, _image_input, None, id="total variation"), pytest.param( RootMeanSquaredErrorUsingSlidingWindow, _image_input, _image_input, id="root mean squared error using sliding window", ), pytest.param(RelativeAverageSpectralError, _image_input, _image_input, id="relative average spectral error"), pytest.param( LearnedPerceptualImagePatchSimilarity, lambda: torch.rand(10, 3, 100, 100), lambda: torch.rand(10, 3, 100, 100), id="learned perceptual image patch similarity", ), pytest.param(ConcordanceCorrCoef, _rand_input, _rand_input, id="concordance corr coef"), pytest.param(CosineSimilarity, _rand_input, _rand_input, id="cosine similarity"), pytest.param(ExplainedVariance, _rand_input, _rand_input, id="explained variance"), pytest.param(KendallRankCorrCoef, _rand_input, _rand_input, id="kendall rank corr coef"), pytest.param( KLDivergence, lambda: torch.randn(10, 3).softmax(dim=-1), lambda: torch.randn(10, 3).softmax(dim=-1), id="kl divergence", ), pytest.param(LogCoshError, _rand_input, _rand_input, id="log cosh error"), pytest.param(MeanSquaredLogError, _rand_input, _rand_input, id="mean squared log error"), pytest.param(MeanAbsoluteError, _rand_input, _rand_input, id="mean absolute error"), pytest.param(MeanAbsolutePercentageError, _rand_input, _rand_input, id="mean absolute percentage error"), pytest.param(partial(MinkowskiDistance, p=3), _rand_input, _rand_input, id="minkowski distance"), pytest.param(PearsonCorrCoef, _rand_input, _rand_input, id="pearson corr coef"), pytest.param(R2Score, _rand_input, _rand_input, id="r2 score"), pytest.param(RelativeSquaredError, _rand_input, _rand_input, id="relative squared error"), pytest.param(SpearmanCorrCoef, _rand_input, _rand_input, id="spearman corr coef"), pytest.param(SymmetricMeanAbsolutePercentageError, _rand_input, _rand_input, id="symmetric mape"), pytest.param(TweedieDevianceScore, _rand_input, _rand_input, id="tweedie deviance score"), pytest.param(WeightedMeanAbsolutePercentageError, _rand_input, _rand_input, id="weighted mape"), pytest.param( partial(BootStrapper, base_metric=BinaryAccuracy()), _rand_input, _binary_randint_input, id="bootstrapper" ), pytest.param( partial(ClasswiseWrapper, metric=MulticlassAccuracy(num_classes=3, average=None)), _multiclass_randn_input, _multiclass_randint_input, id="classwise wrapper", ), pytest.param( partial(MinMaxMetric, base_metric=BinaryAccuracy()), _rand_input, _binary_randint_input, id="minmax wrapper" ), pytest.param( partial(MultioutputWrapper, base_metric=MeanSquaredError(), num_outputs=3), _multilabel_rand_input, _multilabel_rand_input, id="multioutput wrapper", ), pytest.param( partial(Running, base_metric=MeanSquaredError(), window=3), _rand_input, _rand_input, id="running metric wrapper", ), pytest.param(Dice, _multiclass_randint_input, _multiclass_randint_input, id="dice"), pytest.param( partial(MulticlassExactMatch, num_classes=3), lambda: torch.randint(3, (20, 5)), lambda: torch.randint(3, (20, 5)), id="multiclass exact match", ), pytest.param( partial(MultilabelExactMatch, num_labels=3), lambda: torch.randint(2, (20, 3, 5)), lambda: torch.randint(2, (20, 3, 5)), id="multilabel exact match", ), pytest.param(BinaryHammingDistance, _rand_input, _binary_randint_input, id="binary hamming distance"), pytest.param( partial(MulticlassHammingDistance, num_classes=3), _multiclass_randn_input, _multiclass_randint_input, id="multiclass hamming distance", ), pytest.param( partial(MultilabelHammingDistance, num_labels=3), _multilabel_rand_input, _multilabel_randint_input, id="multilabel hamming distance", ), pytest.param(BinaryHingeLoss, _rand_input, _binary_randint_input, id="binary hinge loss"), pytest.param( partial(MulticlassHingeLoss, num_classes=3), _multiclass_randn_input, _multiclass_randint_input, id="multiclass hinge loss", ), pytest.param(BinaryJaccardIndex, _rand_input, _binary_randint_input, id="binary jaccard index"), pytest.param( partial(MulticlassJaccardIndex, num_classes=3), _multiclass_randn_input, _multiclass_randint_input, id="multiclass jaccard index", ), pytest.param( partial(MultilabelJaccardIndex, num_labels=3), _multilabel_rand_input, _multilabel_randint_input, id="multilabel jaccard index", ), pytest.param(BinaryF1Score, _rand_input, _binary_randint_input, id="binary f1 score"), pytest.param(partial(BinaryFBetaScore, beta=2.0), _rand_input, _binary_randint_input, id="binary fbeta score"), pytest.param( partial(MulticlassF1Score, num_classes=3), _multiclass_randn_input, _multiclass_randint_input, id="multiclass f1 score", ), pytest.param( partial(MulticlassFBetaScore, beta=2.0, num_classes=3), _multiclass_randn_input, _multiclass_randint_input, id="multiclass fbeta score", ), pytest.param( partial(MultilabelF1Score, num_labels=3), _multilabel_rand_input, _multilabel_randint_input, id="multilabel f1 score", ), pytest.param( partial(MultilabelFBetaScore, beta=2.0, num_labels=3), _multilabel_rand_input, _multilabel_randint_input, id="multilabel fbeta score", ), pytest.param(WordInfoPreserved, _text_input_1, _text_input_2, id="word info preserved"), pytest.param(WordInfoLost, _text_input_1, _text_input_2, id="word info lost"), pytest.param(WordErrorRate, _text_input_1, _text_input_2, id="word error rate"), pytest.param(CharErrorRate, _text_input_1, _text_input_2, id="character error rate"), pytest.param(ExtendedEditDistance, _text_input_1, _text_input_2, id="extended edit distance"), pytest.param(EditDistance, _text_input_1, _text_input_2, id="edit distance"), pytest.param(MatchErrorRate, _text_input_1, _text_input_2, id="match error rate"), pytest.param(BLEUScore, _text_input_3, _text_input_4, id="bleu score"), pytest.param(CHRFScore, _text_input_3, _text_input_4, id="bleu score"), pytest.param( partial(InfoLM, model_name_or_path="google/bert_uncased_L-2_H-128_A-2", idf=False, verbose=False), _text_input_1, _text_input_2, id="info lm", ), pytest.param(Perplexity, lambda: torch.rand(2, 8, 5), lambda: torch.randint(5, (2, 8)), id="perplexity"), pytest.param(ROUGEScore, lambda: "My name is John", lambda: "Is your name John", id="rouge score"), pytest.param(SacreBLEUScore, _text_input_3, _text_input_4, id="sacre bleu score"), pytest.param( SQuAD, lambda: [{"prediction_text": "1976", "id": "56e10a3be3433e1400422b22"}], lambda: [{"answers": {"answer_start": [97], "text": ["1976"]}, "id": "56e10a3be3433e1400422b22"}], id="squad", ), pytest.param(TranslationEditRate, _text_input_3, _text_input_4, id="translation edit rate"), pytest.param(MutualInfoScore, _nominal_input, _nominal_input, id="mutual info score"), pytest.param(RandScore, _nominal_input, _nominal_input, id="rand score"), pytest.param(AdjustedRandScore, _nominal_input, _nominal_input, id="adjusted rand score"), pytest.param(CalinskiHarabaszScore, lambda: torch.randn(100, 3), _nominal_input, id="calinski harabasz score"), pytest.param(NormalizedMutualInfoScore, _nominal_input, _nominal_input, id="normalized mutual info score"), pytest.param(DunnIndex, lambda: torch.randn(100, 3), _nominal_input, id="dunn index"), ], ) @pytest.mark.parametrize("num_vals", [1, 3]) def test_plot_methods(metric_class: object, preds: Callable, target: Callable, num_vals: int): """Test the plot method of metrics that only output a single tensor scalar.""" metric = metric_class() inputs = (lambda: (preds(),)) if target is None else lambda: (preds(), target()) if num_vals == 1: metric.update(*inputs()) fig, ax = metric.plot() else: vals = [] for _ in range(num_vals): val = metric(*inputs()) vals.append(val[0] if isinstance(val, tuple) else val) fig, ax = metric.plot(vals) assert isinstance(fig, plt.Figure) assert isinstance(ax, matplotlib.axes.Axes) plt.close(fig) @pytest.mark.parametrize( ("metric_class", "preds", "target", "index_0"), [ pytest.param( partial(KernelInceptionDistance, feature=64, subsets=3, subset_size=20), lambda: torch.randint(0, 200, (30, 3, 299, 299), dtype=torch.uint8), lambda: torch.randint(0, 200, (30, 3, 299, 299), dtype=torch.uint8), True, id="kernel inception distance", ), pytest.param( partial(FrechetInceptionDistance, feature=64), lambda: torch.randint(0, 200, (30, 3, 299, 299), dtype=torch.uint8), lambda: torch.randint(0, 200, (30, 3, 299, 299), dtype=torch.uint8), False, id="frechet inception distance", ), pytest.param( partial(InceptionScore, feature=64), lambda: torch.randint(0, 255, (30, 3, 299, 299), dtype=torch.uint8), None, True, id="inception score", ), pytest.param( partial(MemorizationInformedFrechetInceptionDistance, feature=64), lambda: torch.randint(0, 200, (30, 3, 299, 299), dtype=torch.uint8), lambda: torch.randint(0, 200, (30, 3, 299, 299), dtype=torch.uint8), False, id="memorization informed frechet inception distance", ), ], ) @pytest.mark.parametrize("num_vals", [1, 2]) def test_plot_methods_special_image_metrics(metric_class, preds, target, index_0, num_vals): """Test the plot method of metrics that only output a single tensor scalar. This takes care of FID, KID and inception score image metrics as these have a slightly different call and update signature than other metrics. """ metric = metric_class() if num_vals == 1: if target is None: metric.update(preds()) else: metric.update(preds(), real=True) metric.update(target(), real=False) fig, ax = metric.plot() else: vals = [] for _ in range(num_vals): if target is None: vals.append(metric(preds())[0]) else: metric.update(preds(), real=True) metric.update(target(), real=False) vals.append(metric.compute() if not index_0 else metric.compute()[0]) metric.reset() fig, ax = metric.plot(vals) assert isinstance(fig, plt.Figure) assert isinstance(ax, matplotlib.axes.Axes) plt.close(fig) @pytest.mark.skipif(sys.platform == "win32", reason="DDP not supported on windows") def test_plot_methods_special_text_metrics(): """Test the plot method for text metrics that does not fit the default testing format.""" metric = BERTScore() metric.update(_text_input_1(), _text_input_2()) fig, ax = metric.plot() assert isinstance(fig, plt.Figure) assert isinstance(ax, matplotlib.axes.Axes) plt.close(fig) @pytest.mark.parametrize( ("metric_class", "preds", "target", "indexes"), [ pytest.param(RetrievalMRR, _rand_input, _binary_randint_input, _binary_randint_input, id="retrieval mrr"), pytest.param( RetrievalPrecision, _rand_input, _binary_randint_input, _binary_randint_input, id="retrieval precision" ), pytest.param( RetrievalRPrecision, _rand_input, _binary_randint_input, _binary_randint_input, id="retrieval r precision" ), pytest.param(RetrievalRecall, _rand_input, _binary_randint_input, _binary_randint_input, id="retrieval recall"), pytest.param( RetrievalFallOut, _rand_input, _binary_randint_input, _binary_randint_input, id="retrieval fallout" ), pytest.param( RetrievalHitRate, _rand_input, _binary_randint_input, _binary_randint_input, id="retrieval hitrate" ), pytest.param(RetrievalMAP, _rand_input, _binary_randint_input, _binary_randint_input, id="retrieval map"), pytest.param( RetrievalNormalizedDCG, _rand_input, _binary_randint_input, _binary_randint_input, id="retrieval normalized dcg", ), pytest.param( RetrievalRecallAtFixedPrecision, _rand_input, _binary_randint_input, _binary_randint_input, id="retrieval recall at fixed precision", ), pytest.param( RetrievalPrecisionRecallCurve, _rand_input, _binary_randint_input, _binary_randint_input, id="retrieval precision recall curve", ), pytest.param( partial(BinaryFairness, num_groups=2), _rand_input, _binary_randint_input, lambda: torch.ones(10).long(), id="binary fairness", ), ], ) @pytest.mark.parametrize("num_vals", [1, 2]) def test_plot_methods_retrieval(metric_class, preds, target, indexes, num_vals): """Test the plot method for retrieval metrics by themselves, since retrieval metrics requires an extra argument.""" metric = metric_class() if num_vals != 1 and isinstance(metric, RetrievalPrecisionRecallCurve): pytest.skip("curve objects does not support plotting multiple steps") if num_vals != 1 and isinstance(metric, BinaryFairness): pytest.skip("randomness in input leads to different keys for `BinaryFairness` metric and breaks plotting") if num_vals == 1: metric.update(preds(), target(), indexes()) fig, ax = metric.plot() else: vals = [] for _ in range(num_vals): res = metric(preds(), target(), indexes()) vals.append(res[0] if isinstance(res, tuple) else res) fig, ax = metric.plot(vals) assert isinstance(fig, plt.Figure) assert isinstance(ax, matplotlib.axes.Axes) plt.close(fig) @pytest.mark.parametrize( ("n", "expected_row", "expected_col"), [(1, 1, 1), (2, 1, 2), (3, 2, 2), (4, 2, 2), (5, 2, 3), (6, 2, 3), (7, 3, 3), (8, 3, 3), (9, 3, 3), (10, 3, 4)], ) def test_row_col_splitter(n, expected_row, expected_col): """Test the row col splitter function works as expected.""" row, col = _get_col_row_split(n) assert row == expected_row assert col == expected_col @pytest.mark.parametrize( ("metric_class", "preds", "target", "labels"), [ pytest.param( BinaryConfusionMatrix, _rand_input, _binary_randint_input, ["cat", "dog"], id="binary confusion matrix", ), pytest.param( partial(MulticlassConfusionMatrix, num_classes=3), _multiclass_randint_input, _multiclass_randint_input, ["cat", "dog", "bird"], id="multiclass confusion matrix", ), pytest.param( partial(MultilabelConfusionMatrix, num_labels=3), _multilabel_randint_input, _multilabel_randint_input, ["cat", "dog", "bird"], id="multilabel confusion matrix", ), ], ) @pytest.mark.parametrize("use_labels", [False, True]) def test_confusion_matrix_plotter(metric_class, preds, target, labels, use_labels): """Test confusion matrix that uses specialized plot function.""" metric = metric_class() metric.update(preds(), target()) labels = labels if use_labels else None fig, axs = metric.plot(add_text=True, labels=labels) assert isinstance(fig, plt.Figure) cond1 = isinstance(axs, matplotlib.axes.Axes) cond2 = isinstance(axs, np.ndarray) and all(isinstance(a, matplotlib.axes.Axes) for a in axs) assert cond1 or cond2 plt.close(fig) @pytest.mark.parametrize("together", [True, False]) @pytest.mark.parametrize("num_vals", [1, 2]) def test_plot_method_collection(together, num_vals): """Test the plot method of metric collection.""" m_collection = MetricCollection( BinaryAccuracy(), BinaryPrecision(), BinaryRecall(), ) if num_vals == 1: m_collection.update(torch.randint(0, 2, size=(10,)), torch.randint(0, 2, size=(10,))) fig_ax = m_collection.plot(together=together) else: vals = [m_collection(torch.randint(0, 2, size=(10,)), torch.randint(0, 2, size=(10,))) for _ in range(num_vals)] fig_ax = m_collection.plot(val=vals, together=together) if together: assert isinstance(fig_ax, tuple) assert len(fig_ax) == 2 fig, ax = fig_ax assert isinstance(fig, plt.Figure) assert isinstance(ax, matplotlib.axes.Axes) else: assert isinstance(fig_ax, list) assert all(isinstance(f[0], plt.Figure) for f in fig_ax) assert all(isinstance(f[1], matplotlib.axes.Axes) for f in fig_ax) # test ax arg fig, ax = plt.subplots(nrows=len(m_collection), ncols=1) m_collection.plot(ax=ax.tolist()) fig, ax = plt.subplots(nrows=len(m_collection) + 1, ncols=1) with pytest.raises(ValueError, match="Expected argument `ax` to be a sequence of matplotlib axis objects with.*"): m_collection.plot(ax=ax.tolist()) plt.close(fig) @pytest.mark.parametrize( ("metric_class", "preds", "target"), [ pytest.param( BinaryROC, lambda: torch.rand( 100, ), lambda: torch.randint(0, 2, size=(100,)), id="binary roc", ), pytest.param( partial(MulticlassROC, num_classes=3), lambda: torch.randn(100, 3).softmax(dim=-1), lambda: torch.randint(0, 3, size=(100,)), id="multiclass roc", ), pytest.param( partial(MultilabelROC, num_labels=3), lambda: torch.rand(100, 3), lambda: torch.randint(0, 2, size=(100, 3)), id="multilabel roc", ), pytest.param( BinaryPrecisionRecallCurve, lambda: torch.rand( 100, ), lambda: torch.randint(0, 2, size=(100,)), id="binary precision recall curve", ), pytest.param( partial(MulticlassPrecisionRecallCurve, num_classes=3), lambda: torch.randn(100, 3).softmax(dim=-1), lambda: torch.randint(0, 3, size=(100,)), id="multiclass precision recall curve", ), pytest.param( partial(MultilabelPrecisionRecallCurve, num_labels=3), lambda: torch.rand(100, 3), lambda: torch.randint(0, 2, size=(100, 3)), id="multilabel precision recall curve", ), ], ) @pytest.mark.parametrize("thresholds", [None, 10]) @pytest.mark.parametrize("score", [False, True]) def test_plot_method_curve_metrics(metric_class, preds, target, thresholds, score): """Test that the plot method works for metrics that plot curve objects.""" metric = metric_class(thresholds=thresholds) metric.update(preds(), target()) fig, ax = metric.plot(score=score) assert isinstance(fig, plt.Figure) assert isinstance(ax, matplotlib.axes.Axes) plt.close(fig) def test_tracker_plotter(): """Test tracker that uses specialized plot function.""" tracker = MetricTracker(BinaryAccuracy()) for _ in range(5): tracker.increment() for _ in range(5): tracker.update(torch.randint(2, (10,)), torch.randint(2, (10,))) fig, ax = tracker.plot() # plot all epochs assert isinstance(fig, plt.Figure) assert isinstance(ax, matplotlib.axes.Axes) plt.close(fig)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/utilities/test_utilities.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import numpy as np import pytest import torch from torch import tensor from torchmetrics.regression import MeanSquaredError, PearsonCorrCoef from torchmetrics.utilities import check_forward_full_state_property, rank_zero_debug, rank_zero_info, rank_zero_warn from torchmetrics.utilities.checks import _allclose_recursive from torchmetrics.utilities.data import _bincount, _cumsum, _flatten, _flatten_dict, to_categorical, to_onehot from torchmetrics.utilities.distributed import class_reduce, reduce from torchmetrics.utilities.exceptions import TorchMetricsUserWarning from torchmetrics.utilities.imports import _TORCH_GREATER_EQUAL_1_13 def test_prints(): """Test that the different rank zero only functions works as expected.""" rank_zero_debug("DEBUG") rank_zero_info("INFO") rank_zero_warn("WARN") def test_reduce(): """Test that reduction function works as expected and also raises error on wrong input.""" start_tensor = torch.rand(50, 40, 30) assert torch.allclose(reduce(start_tensor, "elementwise_mean"), torch.mean(start_tensor)) assert torch.allclose(reduce(start_tensor, "sum"), torch.sum(start_tensor)) assert torch.allclose(reduce(start_tensor, "none"), start_tensor) with pytest.raises(ValueError, match="Reduction parameter unknown."): reduce(start_tensor, "error_reduction") def test_class_reduce(): """Test that class reduce function works as expected.""" num = torch.randint(1, 10, (100,)).float() denom = torch.randint(10, 20, (100,)).float() weights = torch.randint(1, 100, (100,)).float() assert torch.allclose(class_reduce(num, denom, weights, "micro"), torch.sum(num) / torch.sum(denom)) assert torch.allclose(class_reduce(num, denom, weights, "macro"), torch.mean(num / denom)) assert torch.allclose( class_reduce(num, denom, weights, "weighted"), torch.sum(num / denom * (weights / torch.sum(weights))) ) assert torch.allclose(class_reduce(num, denom, weights, "none"), num / denom) def test_onehot(): """Test that casting to onehot works as expected.""" test_tensor = tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) expected = torch.stack( [ torch.cat([torch.eye(5, dtype=int), torch.zeros((5, 5), dtype=int)]), torch.cat([torch.zeros((5, 5), dtype=int), torch.eye(5, dtype=int)]), ] ) assert test_tensor.shape == (2, 5) assert expected.shape == (2, 10, 5) onehot_classes = to_onehot(test_tensor, num_classes=10) onehot_no_classes = to_onehot(test_tensor) assert torch.allclose(onehot_classes, onehot_no_classes) assert onehot_classes.shape == expected.shape assert onehot_no_classes.shape == expected.shape assert torch.allclose(expected.to(onehot_no_classes), onehot_no_classes) assert torch.allclose(expected.to(onehot_classes), onehot_classes) def test_to_categorical(): """Test that casting to categorical works as expected.""" test_tensor = torch.stack( [ torch.cat([torch.eye(5, dtype=int), torch.zeros((5, 5), dtype=int)]), torch.cat([torch.zeros((5, 5), dtype=int), torch.eye(5, dtype=int)]), ] ).to(torch.float) expected = tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) assert expected.shape == (2, 5) assert test_tensor.shape == (2, 10, 5) result = to_categorical(test_tensor) assert result.shape == expected.shape assert torch.allclose(result, expected.to(result.dtype)) def test_flatten_list(): """Check that _flatten utility function works as expected.""" inp = [[1, 2, 3], [4, 5], [6]] out = _flatten(inp) assert out == [1, 2, 3, 4, 5, 6] def test_flatten_dict(): """Check that _flatten_dict utility function works as expected.""" inp = {"a": {"b": 1, "c": 2}, "d": 3} out_dict, out_dup = _flatten_dict(inp) assert out_dict == {"b": 1, "c": 2, "d": 3} assert out_dup is False @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires gpu") def test_bincount(): """Test that bincount works in deterministic setting on GPU.""" torch.use_deterministic_algorithms(True) x = torch.randint(10, size=(100,)) # uses custom implementation res1 = _bincount(x, minlength=10) torch.use_deterministic_algorithms(False) # uses torch.bincount res2 = _bincount(x, minlength=10) # explicit call to make sure, that res2 is not by accident using our manual implementation res3 = torch.bincount(x, minlength=10) # check for correctness assert torch.allclose(res1, res2) assert torch.allclose(res1, res3) @pytest.mark.parametrize(("metric_class", "expected"), [(MeanSquaredError, False), (PearsonCorrCoef, True)]) def test_check_full_state_update_fn(capsys, metric_class, expected): """Test that the check function works as it should.""" check_forward_full_state_property( metric_class=metric_class, input_args={"preds": torch.randn(1000), "target": torch.randn(1000)}, num_update_to_compare=[10000], reps=5, ) captured = capsys.readouterr() assert f"Recommended setting `full_state_update={expected}`" in captured.out @pytest.mark.parametrize( ("inputs", "expected"), [ ((torch.ones(2), torch.ones(2)), True), ((torch.rand(2), torch.rand(2)), False), (([torch.ones(2) for _ in range(2)], [torch.ones(2) for _ in range(2)]), True), (([torch.rand(2) for _ in range(2)], [torch.rand(2) for _ in range(2)]), False), (({f"{i}": torch.ones(2) for i in range(2)}, {f"{i}": torch.ones(2) for i in range(2)}), True), (({f"{i}": torch.rand(2) for i in range(2)}, {f"{i}": torch.rand(2) for i in range(2)}), False), ], ) def test_recursive_allclose(inputs, expected): """Test the recursive allclose works as expected.""" res = _allclose_recursive(*inputs) assert res == expected @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU") @pytest.mark.xfail(sys.platform == "win32", reason="test will only fail on non-windows systems") @pytest.mark.skipif( not _TORCH_GREATER_EQUAL_1_13, reason="earlier versions was silently non-deterministic, even in deterministic mode" ) def test_cumsum_still_not_supported(): """Make sure that cumsum on gpu and deterministic mode still fails. If this test begins to passes, it means newer Pytorch versions support this and we can drop internal support. """ torch.use_deterministic_algorithms(True) with pytest.raises(RuntimeError, match="cumsum_cuda_kernel does not have a deterministic implementation.*"): torch.arange(10).float().cuda().cumsum(0) torch.use_deterministic_algorithms(False) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU") def test_custom_cumsum(): """Test custom cumsum implementation.""" torch.use_deterministic_algorithms(True) x = torch.arange(100).float().cuda() if sys.platform != "win32": with pytest.warns( TorchMetricsUserWarning, match="You are trying to use a metric in deterministic mode on GPU that.*" ): res = _cumsum(x, dim=0).cpu() else: res = _cumsum(x, dim=0).cpu() res2 = np.cumsum(x.cpu(), axis=0) assert torch.allclose(res, res2)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/pairwise/test_pairwise_distance.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from typing import NamedTuple import pytest import torch from sklearn.metrics.pairwise import ( cosine_similarity, euclidean_distances, linear_kernel, manhattan_distances, pairwise_distances, ) from torch import Tensor from torchmetrics.functional import ( pairwise_cosine_similarity, pairwise_euclidean_distance, pairwise_linear_similarity, pairwise_manhattan_distance, pairwise_minkowski_distance, ) from unittests import BATCH_SIZE, NUM_BATCHES from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester seed_all(42) extra_dim = 5 class _Input(NamedTuple): x: Tensor y: Tensor _inputs1 = _Input( x=torch.rand(NUM_BATCHES, BATCH_SIZE, extra_dim), y=torch.rand(NUM_BATCHES, BATCH_SIZE, extra_dim), ) _inputs2 = _Input( x=torch.rand(NUM_BATCHES, BATCH_SIZE, extra_dim), y=torch.rand(NUM_BATCHES, BATCH_SIZE, extra_dim), ) def _wrap_reduction(x, y, sk_fn, reduction): x = x.view(-1, extra_dim).numpy() y = y.view(-1, extra_dim).numpy() res = sk_fn(x, y) if reduction == "sum": return res.sum(axis=-1) if reduction == "mean": return res.mean(axis=-1) return res @pytest.mark.parametrize( "x, y", [ (_inputs1.x, _inputs1.y), (_inputs2.x, _inputs2.y), ], ) @pytest.mark.parametrize( "metric_functional, sk_fn", [ pytest.param(pairwise_cosine_similarity, cosine_similarity, id="cosine"), pytest.param(pairwise_euclidean_distance, euclidean_distances, id="euclidean"), pytest.param(pairwise_manhattan_distance, manhattan_distances, id="manhatten"), pytest.param(pairwise_linear_similarity, linear_kernel, id="linear"), pytest.param( partial(pairwise_minkowski_distance, exponent=3), partial(pairwise_distances, metric="minkowski", p=3), id="minkowski-3", ), pytest.param( partial(pairwise_minkowski_distance, exponent=4), partial(pairwise_distances, metric="minkowski", p=4), id="minkowski-4", ), ], ) @pytest.mark.parametrize("reduction", ["sum", "mean", None]) class TestPairwise(MetricTester): """Test pairwise implementations.""" atol = 1e-4 def test_pairwise_functional(self, x, y, metric_functional, sk_fn, reduction): """Test functional pairwise implementations.""" self.run_functional_metric_test( preds=x, target=y, metric_functional=metric_functional, reference_metric=partial(_wrap_reduction, sk_fn=sk_fn, reduction=reduction), metric_args={"reduction": reduction}, ) def test_pairwise_half_cpu(self, x, y, metric_functional, sk_fn, reduction, request): """Test half precision support on cpu.""" if "euclidean" in request.node.callspec.id: pytest.xfail("pairwise_euclidean_distance metric does not support cpu + half precision") self.run_precision_test_cpu(x, y, None, metric_functional, metric_args={"reduction": reduction}) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") def test_pairwise_half_gpu(self, x, y, metric_functional, sk_fn, reduction): """Test half precision support on gpu.""" self.run_precision_test_gpu(x, y, None, metric_functional, metric_args={"reduction": reduction}) @pytest.mark.parametrize( "metric", [ pairwise_cosine_similarity, pairwise_euclidean_distance, pairwise_manhattan_distance, partial(pairwise_minkowski_distance, exponent=3), ], ) def test_error_on_wrong_shapes(metric): """Test errors are raised on wrong input.""" with pytest.raises(ValueError, match="Expected argument `x` to be a 2D tensor .*"): metric(torch.randn(10)) with pytest.raises(ValueError, match="Expected argument `y` to be a 2D tensor .*"): metric(torch.randn(10, 5), torch.randn(5, 3)) with pytest.raises(ValueError, match="Expected reduction to be one of .*"): metric(torch.randn(10, 5), torch.randn(10, 5), reduction=1) @pytest.mark.parametrize( ("metric_functional", "sk_fn"), [ (pairwise_cosine_similarity, cosine_similarity), (pairwise_euclidean_distance, euclidean_distances), (pairwise_manhattan_distance, manhattan_distances), (pairwise_linear_similarity, linear_kernel), (partial(pairwise_minkowski_distance, exponent=3), partial(pairwise_distances, metric="minkowski", p=3)), ], ) def test_precision_case(metric_functional, sk_fn): """Test that metrics are robust towars cases where high precision is needed.""" x = torch.tensor([[772.0, 112.0], [772.20001, 112.0]]) res1 = metric_functional(x, zero_diagonal=False) res2 = sk_fn(x) assert torch.allclose(res1, torch.tensor(res2, dtype=torch.float32))
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/detection/test_panoptic_quality.py
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict import numpy as np import pytest import torch from torchmetrics.detection.panoptic_qualities import PanopticQuality from torchmetrics.functional.detection.panoptic_qualities import panoptic_quality from unittests import _Input from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester seed_all(42) _INPUTS_0 = _Input( # Shape of input tensors is (num_batches, batch_size, height, width, 2). preds=torch.tensor( [ [[6, 0], [0, 0], [6, 0], [6, 0], [0, 1]], [[0, 0], [0, 0], [6, 0], [0, 1], [0, 1]], [[0, 0], [0, 0], [6, 0], [0, 1], [1, 0]], [[0, 0], [7, 0], [6, 0], [1, 0], [1, 0]], [[0, 0], [7, 0], [7, 0], [7, 0], [7, 0]], ] ) .reshape((1, 1, 5, 5, 2)) .repeat(2, 1, 1, 1, 1), target=torch.tensor( [ [[6, 0], [6, 0], [6, 0], [6, 0], [0, 0]], [[0, 1], [0, 1], [6, 0], [0, 0], [0, 0]], [[0, 1], [0, 1], [6, 0], [1, 0], [1, 0]], [[0, 1], [7, 0], [7, 0], [1, 0], [1, 0]], [[0, 1], [7, 0], [7, 0], [7, 0], [7, 0]], ] ) .reshape((1, 1, 5, 5, 2)) .repeat(2, 1, 1, 1, 1), ) _INPUTS_1 = _Input( # Shape of input tensors is (num_batches, batch_size, num_points, 2). preds=torch.tensor( [[10, 0], [10, 123], [0, 1], [10, 0], [1, 2]], ) .reshape((1, 1, 5, 2)) .repeat(2, 1, 1, 1), target=torch.tensor( [[10, 0], [10, 0], [0, 0], [0, 1], [1, 0]], ) .reshape((1, 1, 5, 2)) .repeat(2, 1, 1, 1), ) _ARGS_0 = {"things": {0, 1}, "stuffs": {6, 7}} _ARGS_1 = {"things": {2}, "stuffs": {3}, "allow_unknown_preds_category": True} _ARGS_2 = {"things": {0, 1}, "stuffs": {10, 11}} # TODO: Improve _compare_fn by calling https://github.com/cocodataset/panopticapi/blob/master/panopticapi/evaluation.py # directly and compare at runtime on multiple examples. def _compare_fn_0_0(preds, target) -> np.ndarray: """Baseline result for the _INPUTS_0, _ARGS_0 combination.""" return np.array([0.7753]) def _compare_fn_0_1(preds, target) -> np.ndarray: """Baseline result for the _INPUTS_0, _ARGS_1 combination.""" return np.array([np.nan]) def _compare_fn_1_2(preds, target) -> np.ndarray: """Baseline result for the _INPUTS_1, _ARGS_2 combination.""" return np.array([(2 / 3 + 1 + 2 / 3) / 3]) class TestPanopticQuality(MetricTester): """Test class for `PanopticQuality` metric.""" @pytest.mark.parametrize("ddp", [False, True]) @pytest.mark.parametrize( ("inputs", "args", "reference_metric"), [ (_INPUTS_0, _ARGS_0, _compare_fn_0_0), (_INPUTS_0, _ARGS_1, _compare_fn_0_1), (_INPUTS_1, _ARGS_2, _compare_fn_1_2), ], ) def test_panoptic_quality_class(self, ddp, inputs, args, reference_metric): """Test class implementation of metric.""" self.run_class_metric_test( ddp=ddp, preds=inputs.preds, target=inputs.target, metric_class=PanopticQuality, reference_metric=reference_metric, check_batch=False, metric_args=args, ) def test_panoptic_quality_functional(self): """Test functional implementation of metric.""" self.run_functional_metric_test( _INPUTS_0.preds, _INPUTS_0.target, metric_functional=panoptic_quality, reference_metric=_compare_fn_0_0, metric_args=_ARGS_0, ) def test_empty_metric(): """Test empty metric.""" with pytest.raises(ValueError, match="At least one of `things` and `stuffs` must be non-empty"): metric = PanopticQuality(things=[], stuffs=[]) metric = PanopticQuality(things=[0], stuffs=[]) assert torch.isnan(metric.compute()) def test_error_on_wrong_input(): """Test class input validation.""" with pytest.raises(TypeError, match="Expected argument `stuffs` to contain `int` categories.*"): PanopticQuality(things={0}, stuffs={"sky"}) with pytest.raises(ValueError, match="Expected arguments `things` and `stuffs` to have distinct keys.*"): PanopticQuality(things={0}, stuffs={0}) metric = PanopticQuality(things={0, 1, 3}, stuffs={2, 8}, allow_unknown_preds_category=True) valid_images = torch.randint(low=0, high=9, size=(8, 64, 64, 2)) metric.update(valid_images, valid_images) valid_point_clouds = torch.randint(low=0, high=9, size=(1, 100, 2)) metric.update(valid_point_clouds, valid_point_clouds) with pytest.raises(TypeError, match="Expected argument `preds` to be of type `torch.Tensor`.*"): metric.update([], valid_images) with pytest.raises(TypeError, match="Expected argument `target` to be of type `torch.Tensor`.*"): metric.update(valid_images, []) preds = torch.randint(low=0, high=9, size=(2, 400, 300, 2)) target = torch.randint(low=0, high=9, size=(2, 30, 40, 2)) with pytest.raises(ValueError, match="Expected argument `preds` and `target` to have the same shape.*"): metric.update(preds, target) preds = torch.randint(low=0, high=9, size=(1, 2)) with pytest.raises(ValueError, match="Expected argument `preds` to have at least one spatial dimension.*"): metric.update(preds, preds) preds = torch.randint(low=0, high=9, size=(1, 64, 64, 8)) with pytest.raises( ValueError, match="Expected argument `preds` to have exactly 2 channels in the last dimension.*" ): metric.update(preds, preds) metric = PanopticQuality(things=[0], stuffs=[1], allow_unknown_preds_category=False) preds = torch.randint(low=0, high=1, size=(1, 100, 2)) preds[0, 0, 0] = 2 with pytest.raises(ValueError, match="Unknown categories found.*"): metric.update(preds, preds) def test_extreme_values(): """Test that the metric returns expected values in trivial cases.""" # Exact match between preds and target => metric is 1 assert panoptic_quality(_INPUTS_0.target[0], _INPUTS_0.target[0], **_ARGS_0) == 1.0 # Every element of the prediction is wrong => metric is 0 assert panoptic_quality(_INPUTS_0.target[0], _INPUTS_0.target[0] + 1, **_ARGS_0) == 0.0 @pytest.mark.parametrize( ("inputs", "args", "cat_dim"), [ (_INPUTS_0, _ARGS_0, 0), (_INPUTS_0, _ARGS_0, 1), (_INPUTS_0, _ARGS_0, 2), (_INPUTS_1, _ARGS_2, 0), (_INPUTS_1, _ARGS_2, 1), ], ) def test_ignore_mask(inputs: _Input, args: Dict[str, Any], cat_dim: int): """Test that the metric correctly ignores regions of the inputs that do not map to a know category ID.""" preds = inputs.preds[0] target = inputs.target[0] value = panoptic_quality(preds, target, **args) ignored_regions = torch.zeros_like(preds) ignored_regions[..., 0] = 255 preds_new = torch.cat([preds, preds], dim=cat_dim) target_new = torch.cat([target, ignored_regions], dim=cat_dim) value_new = panoptic_quality(preds_new, target_new, **args) assert value == value_new
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/detection/test_modified_panoptic_quality.py
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict import numpy as np import pytest import torch from torchmetrics.detection import ModifiedPanopticQuality from torchmetrics.functional.detection import modified_panoptic_quality from unittests import _Input from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester seed_all(42) _INPUTS_0 = _Input( # Shape of input tensors is (num_batches, batch_size, height, width, 2). preds=torch.tensor( [ [[6, 0], [0, 0], [6, 0], [6, 0], [0, 1]], [[0, 0], [0, 0], [6, 0], [0, 1], [0, 1]], [[0, 0], [0, 0], [6, 0], [0, 1], [1, 0]], [[0, 0], [7, 0], [6, 0], [1, 0], [1, 0]], [[0, 0], [7, 0], [7, 0], [7, 0], [7, 0]], ] ) .reshape((1, 1, 5, 5, 2)) .repeat(2, 1, 1, 1, 1), target=torch.tensor( [ [[6, 0], [6, 0], [6, 0], [6, 0], [0, 0]], [[0, 1], [0, 1], [6, 0], [0, 0], [0, 0]], [[0, 1], [0, 1], [6, 0], [1, 0], [1, 0]], [[0, 1], [7, 0], [7, 0], [1, 0], [1, 0]], [[0, 1], [7, 0], [7, 0], [7, 0], [7, 0]], ] ) .reshape((1, 1, 5, 5, 2)) .repeat(2, 1, 1, 1, 1), ) _INPUTS_1 = _Input( # Shape of input tensors is (num_batches, batch_size, num_points, 2). # NOTE: IoU for stuff category 6 is < 0.5, modified PQ behaves differently there. preds=torch.tensor([[0, 0], [0, 1], [6, 0], [7, 0], [0, 2], [1, 0]]).reshape((1, 1, 6, 2)).repeat(2, 1, 1, 1), target=torch.tensor([[0, 1], [0, 0], [6, 0], [7, 0], [6, 0], [255, 0]]).reshape((1, 1, 6, 2)).repeat(2, 1, 1, 1), ) _ARGS_0 = {"things": {0, 1}, "stuffs": {6, 7}} _ARGS_1 = {"things": {2}, "stuffs": {3}, "allow_unknown_preds_category": True} _ARGS_2 = {"things": {0, 1}, "stuffs": {6, 7}} # TODO: Improve _compare_fn by calling https://github.com/cocodataset/panopticapi/blob/master/panopticapi/evaluation.py # directly and compare at runtime on multiple examples. def _compare_fn_0_0(preds, target) -> np.ndarray: """Baseline result for the _INPUTS_0, _ARGS_0 combination.""" return np.array([0.7753]) def _compare_fn_0_1(preds, target) -> np.ndarray: """Baseline result for the _INPUTS_0, _ARGS_1 combination.""" return np.array([np.nan]) def _compare_fn_1_2(preds, target) -> np.ndarray: """Baseline result for the _INPUTS_1, _ARGS_2 combination.""" return np.array([23 / 30]) class TestModifiedPanopticQuality(MetricTester): """Test class for `ModifiedPanopticQuality` metric.""" @pytest.mark.parametrize("ddp", [False, True]) @pytest.mark.parametrize( ("inputs", "args", "reference_metric"), [ (_INPUTS_0, _ARGS_0, _compare_fn_0_0), (_INPUTS_0, _ARGS_1, _compare_fn_0_1), (_INPUTS_1, _ARGS_2, _compare_fn_1_2), ], ) def test_panoptic_quality_class(self, ddp, inputs, args, reference_metric): """Test class implementation of metric.""" self.run_class_metric_test( ddp=ddp, preds=inputs.preds, target=inputs.target, metric_class=ModifiedPanopticQuality, reference_metric=reference_metric, check_batch=False, metric_args=args, ) def test_panoptic_quality_functional(self): """Test functional implementation of metric.""" self.run_functional_metric_test( _INPUTS_0.preds, _INPUTS_0.target, metric_functional=modified_panoptic_quality, reference_metric=_compare_fn_0_0, metric_args=_ARGS_0, ) def test_empty_metric(): """Test empty metric.""" with pytest.raises(ValueError, match="At least one of `things` and `stuffs` must be non-empty"): metric = ModifiedPanopticQuality(things=[], stuffs=[]) metric = ModifiedPanopticQuality(things=[0], stuffs=[]) assert torch.isnan(metric.compute()) def test_error_on_wrong_input(): """Test class input validation.""" with pytest.raises(TypeError, match="Expected argument `stuffs` to contain `int` categories.*"): ModifiedPanopticQuality(things={0}, stuffs={"sky"}) with pytest.raises(ValueError, match="Expected arguments `things` and `stuffs` to have distinct keys.*"): ModifiedPanopticQuality(things={0}, stuffs={0}) metric = ModifiedPanopticQuality(things={0, 1, 3}, stuffs={2, 8}, allow_unknown_preds_category=True) valid_images = torch.randint(low=0, high=9, size=(8, 64, 64, 2)) metric.update(valid_images, valid_images) valid_point_clouds = torch.randint(low=0, high=9, size=(1, 100, 2)) metric.update(valid_point_clouds, valid_point_clouds) with pytest.raises(TypeError, match="Expected argument `preds` to be of type `torch.Tensor`.*"): metric.update([], valid_images) with pytest.raises(TypeError, match="Expected argument `target` to be of type `torch.Tensor`.*"): metric.update(valid_images, []) preds = torch.randint(low=0, high=9, size=(2, 400, 300, 2)) target = torch.randint(low=0, high=9, size=(2, 30, 40, 2)) with pytest.raises(ValueError, match="Expected argument `preds` and `target` to have the same shape.*"): metric.update(preds, target) preds = torch.randint(low=0, high=9, size=(1, 2)) with pytest.raises(ValueError, match="Expected argument `preds` to have at least one spatial dimension.*"): metric.update(preds, preds) preds = torch.randint(low=0, high=9, size=(1, 64, 64, 8)) with pytest.raises( ValueError, match="Expected argument `preds` to have exactly 2 channels in the last dimension.*" ): metric.update(preds, preds) metric = ModifiedPanopticQuality(things=[0], stuffs=[1], allow_unknown_preds_category=False) preds = torch.randint(low=0, high=1, size=(1, 100, 2)) preds[0, 0, 0] = 2 with pytest.raises(ValueError, match="Unknown categories found.*"): metric.update(preds, preds) def test_extreme_values(): """Test that the metric returns expected values in trivial cases.""" # Exact match between preds and target => metric is 1 assert modified_panoptic_quality(_INPUTS_0.target[0], _INPUTS_0.target[0], **_ARGS_0) == 1.0 # Every element of the prediction is wrong => metric is 0 assert modified_panoptic_quality(_INPUTS_0.target[0], _INPUTS_0.target[0] + 1, **_ARGS_0) == 0.0 @pytest.mark.parametrize( ("inputs", "args", "cat_dim"), [ (_INPUTS_0, _ARGS_0, 0), (_INPUTS_0, _ARGS_0, 1), (_INPUTS_0, _ARGS_0, 2), (_INPUTS_1, _ARGS_2, 0), (_INPUTS_1, _ARGS_2, 1), ], ) def test_ignore_mask(inputs: _Input, args: Dict[str, Any], cat_dim: int): """Test that the metric correctly ignores regions of the inputs that do not map to a know category ID.""" preds = inputs.preds[0] target = inputs.target[0] value = modified_panoptic_quality(preds, target, **args) ignored_regions = torch.zeros_like(preds) ignored_regions[..., 0] = 255 preds_new = torch.cat([preds, preds], dim=cat_dim) target_new = torch.cat([target, ignored_regions], dim=cat_dim) value_new = modified_panoptic_quality(preds_new, target_new, **args) assert value == value_new
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/detection/test_intersection.py
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import pytest import torch from torch import IntTensor, Tensor from torchmetrics.detection.ciou import CompleteIntersectionOverUnion from torchmetrics.detection.diou import DistanceIntersectionOverUnion from torchmetrics.detection.giou import GeneralizedIntersectionOverUnion from torchmetrics.detection.iou import IntersectionOverUnion from torchmetrics.functional.detection.ciou import complete_intersection_over_union from torchmetrics.functional.detection.diou import distance_intersection_over_union from torchmetrics.functional.detection.giou import generalized_intersection_over_union from torchmetrics.functional.detection.iou import intersection_over_union from torchmetrics.utilities.imports import _TORCHVISION_GREATER_EQUAL_0_13 # todo: check if some older versions have these functions too? if _TORCHVISION_GREATER_EQUAL_0_13: from torchvision.ops import box_iou as tv_iou from torchvision.ops import complete_box_iou as tv_ciou from torchvision.ops import distance_box_iou as tv_diou from torchvision.ops import generalized_box_iou as tv_giou else: tv_iou, tv_ciou, tv_diou, tv_giou = ..., ..., ..., ... from unittests.helpers.testers import MetricTester def _tv_wrapper(preds, target, base_fn, aggregate=True, iou_threshold=None): out = base_fn(preds, target) if iou_threshold is not None: out[out < iou_threshold] = 0 if aggregate: return out.diag().mean() return out def _tv_wrapper_class(preds, target, base_fn, respect_labels, iou_threshold, class_metrics): iou = [] classes = [] for p, t in zip(preds, target): out = base_fn(p["boxes"], t["boxes"]) if iou_threshold is not None: out[out < iou_threshold] = -1 if respect_labels: labels_eq = p["labels"].unsqueeze(1) == t["labels"].unsqueeze(0) out[~labels_eq] = -1 iou.append(out) classes.append(t["labels"]) score = torch.cat([i[i != -1] for i in iou]).mean() base_name = {tv_ciou: "ciou", tv_diou: "diou", tv_giou: "giou", tv_iou: "iou"}[base_fn] result = {f"{base_name}": score.cpu()} if class_metrics: for cl in torch.cat(classes).unique().tolist(): class_score, numel = 0, 0 for s, c in zip(iou, classes): masked_s = s[:, c == cl] class_score += masked_s[masked_s != -1].sum() numel += masked_s[masked_s != -1].numel() result.update({f"{base_name}/cl_{cl}": class_score.cpu() / numel}) return result _preds_fn = ( torch.tensor( [ [296.55, 93.96, 314.97, 152.79], [328.94, 97.05, 342.49, 122.98], [356.62, 95.47, 372.33, 147.55], ] ) .unsqueeze(0) .repeat(4, 1, 1) ) _target_fn = ( torch.tensor( [ [300.00, 100.00, 315.00, 150.00], [330.00, 100.00, 350.00, 125.00], [350.00, 100.00, 375.00, 150.00], ] ) .unsqueeze(0) .repeat(4, 1, 1) ) _preds_class = [ [ { "boxes": torch.tensor([[296.55, 93.96, 314.97, 152.79], [298.55, 98.96, 314.97, 151.79]]), "labels": torch.tensor([4, 5]), } ], [ { "boxes": torch.tensor([[296.55, 93.96, 314.97, 152.79], [298.55, 98.96, 314.97, 151.79]]), "labels": torch.tensor([4, 5]), } ], [ { "boxes": torch.tensor([[328.94, 97.05, 342.49, 122.98]]), "labels": torch.tensor([4]), }, { "boxes": torch.tensor([[356.62, 95.47, 372.33, 147.55]]), "labels": torch.tensor([4]), }, ], [ { "boxes": torch.tensor([[328.94, 97.05, 342.49, 122.98]]), "labels": torch.tensor([5]), }, { "boxes": torch.tensor([[356.62, 95.47, 372.33, 147.55]]), "labels": torch.tensor([5]), }, ], ] _target_class = [ [ { "boxes": torch.tensor([[300.00, 100.00, 315.00, 150.00]]), "labels": torch.tensor([5]), } ], [ { "boxes": torch.tensor([[300.00, 100.00, 315.00, 150.00]]), "labels": torch.tensor([5]), } ], [ { "boxes": torch.tensor([[330.00, 100.00, 350.00, 125.00]]), "labels": torch.tensor([4]), }, { "boxes": torch.tensor([[350.00, 100.00, 375.00, 150.00]]), "labels": torch.tensor([4]), }, ], [ { "boxes": torch.tensor([[330.00, 100.00, 350.00, 125.00]]), "labels": torch.tensor([5]), }, { "boxes": torch.tensor([[350.00, 100.00, 375.00, 150.00]]), "labels": torch.tensor([4]), }, ], ] def _add_noise(x, scale=10): """Add noise to boxes and labels to make testing non-deterministic.""" if isinstance(x, torch.Tensor): return x + scale * torch.rand_like(x) for batch in x: for sample in batch: sample["boxes"] = _add_noise(sample["boxes"], scale) sample["labels"] += abs(torch.randint_like(sample["labels"], 0, 10)) return x @pytest.mark.parametrize( "class_metric, functional_metric, reference_metric", [ (IntersectionOverUnion, intersection_over_union, tv_iou), (CompleteIntersectionOverUnion, complete_intersection_over_union, tv_ciou), (DistanceIntersectionOverUnion, distance_intersection_over_union, tv_diou), (GeneralizedIntersectionOverUnion, generalized_intersection_over_union, tv_giou), ], ) @pytest.mark.skipif(not _TORCHVISION_GREATER_EQUAL_0_13, reason="test requires torchvision >= 0.13") class TestIntersectionMetrics(MetricTester): """Tester class for the different intersection metrics.""" @pytest.mark.parametrize( ("preds", "target"), [(_preds_class, _target_class), (_add_noise(_preds_class), _add_noise(_target_class))] ) @pytest.mark.parametrize("respect_labels", [True, False]) @pytest.mark.parametrize("iou_threshold", [None, 0.5, 0.7, 0.9]) @pytest.mark.parametrize("class_metrics", [True, False]) @pytest.mark.parametrize("ddp", [False, True]) def test_intersection_class( self, class_metric, functional_metric, reference_metric, preds, target, respect_labels, iou_threshold, class_metrics, ddp, ): """Test class implementation for correctness.""" self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=class_metric, reference_metric=partial( _tv_wrapper_class, base_fn=reference_metric, respect_labels=respect_labels, iou_threshold=iou_threshold, class_metrics=class_metrics, ), metric_args={ "respect_labels": respect_labels, "iou_threshold": iou_threshold, "class_metrics": class_metrics, }, check_batch=not class_metrics, ) @pytest.mark.parametrize( ("preds", "target"), [ (_preds_fn, _target_fn), (_add_noise(_preds_fn), _add_noise(_target_fn)), ], ) @pytest.mark.parametrize("aggregate", [True, False]) @pytest.mark.parametrize("iou_threshold", [None, 0.5, 0.7, 0.9]) def test_intersection_function( self, class_metric, functional_metric, reference_metric, preds, target, aggregate, iou_threshold ): """Test functional implementation for correctness.""" self.run_functional_metric_test( preds=preds, target=target, metric_functional=functional_metric, reference_metric=partial( _tv_wrapper, base_fn=reference_metric, aggregate=aggregate, iou_threshold=iou_threshold ), metric_args={"aggregate": aggregate, "iou_threshold": iou_threshold}, ) def test_error_on_wrong_input(self, class_metric, functional_metric, reference_metric): """Test class input validation.""" metric = class_metric() metric.update([], []) # no error with pytest.raises(ValueError, match="Expected argument `preds` to be of type Sequence"): metric.update(Tensor(), []) # type: ignore with pytest.raises(ValueError, match="Expected argument `target` to be of type Sequence"): metric.update([], Tensor()) # type: ignore with pytest.raises(ValueError, match="Expected argument `preds` and `target` to have the same length"): metric.update([{}], [{}, {}]) with pytest.raises(ValueError, match="Expected all dicts in `preds` to contain the `boxes` key"): metric.update( [{"scores": Tensor(), "labels": IntTensor}], [{"boxes": Tensor(), "labels": IntTensor()}], ) with pytest.raises(ValueError, match="Expected all dicts in `preds` to contain the `labels` key"): metric.update( [{"boxes": Tensor(), "scores": IntTensor}], [{"boxes": Tensor(), "labels": IntTensor()}], ) with pytest.raises(ValueError, match="Expected all dicts in `target` to contain the `boxes` key"): metric.update( [{"boxes": Tensor(), "scores": IntTensor, "labels": IntTensor}], [{"labels": IntTensor()}], ) with pytest.raises(ValueError, match="Expected all dicts in `target` to contain the `labels` key"): metric.update( [{"boxes": Tensor(), "scores": IntTensor, "labels": IntTensor}], [{"boxes": IntTensor()}], ) with pytest.raises(ValueError, match="Expected all boxes in `preds` to be of type Tensor"): metric.update( [{"boxes": [], "scores": Tensor(), "labels": IntTensor()}], [{"boxes": Tensor(), "labels": IntTensor()}], ) with pytest.raises(ValueError, match="Expected all labels in `preds` to be of type Tensor"): metric.update( [{"boxes": Tensor(), "scores": Tensor(), "labels": []}], [{"boxes": Tensor(), "labels": IntTensor()}], ) with pytest.raises(ValueError, match="Expected all boxes in `target` to be of type Tensor"): metric.update( [{"boxes": Tensor(), "scores": Tensor(), "labels": IntTensor()}], [{"boxes": [], "labels": IntTensor()}], ) with pytest.raises(ValueError, match="Expected all labels in `target` to be of type Tensor"): metric.update( [{"boxes": Tensor(), "scores": Tensor(), "labels": IntTensor()}], [{"boxes": Tensor(), "labels": []}], ) def test_corner_case(): """See issue: https://github.com/Lightning-AI/torchmetrics/issues/1921.""" preds = [ { "boxes": torch.tensor([[300.00, 100.00, 315.00, 150.00], [298.55, 98.96, 314.97, 151.79]]), "scores": torch.tensor([0.236, 0.56]), "labels": torch.tensor([4, 5]), } ] target = [ { "boxes": torch.tensor([[300.00, 100.00, 315.00, 150.00], [298.55, 98.96, 314.97, 151.79]]), "labels": torch.tensor([4, 5]), } ] metric = IntersectionOverUnion(class_metrics=True, iou_threshold=0.75, respect_labels=True) iou = metric(preds, target) for val in iou.values(): assert val == torch.tensor(1.0)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/detection/test_map.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import io import json from copy import deepcopy from functools import partial from itertools import product import numpy as np import pytest import torch from lightning_utilities import apply_to_collection from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from torch import IntTensor, Tensor from torchmetrics.detection.mean_ap import MeanAveragePrecision from torchmetrics.utilities.imports import ( _FASTER_COCO_EVAL_AVAILABLE, _PYCOCOTOOLS_AVAILABLE, _TORCHVISION_GREATER_EQUAL_0_8, ) from unittests.detection import _DETECTION_BBOX, _DETECTION_SEGM, _DETECTION_VAL from unittests.helpers.testers import MetricTester _pytest_condition = not (_PYCOCOTOOLS_AVAILABLE and _TORCHVISION_GREATER_EQUAL_0_8) def _skip_if_faster_coco_eval_missing(backend): if backend == "faster_coco_eval" and not _FASTER_COCO_EVAL_AVAILABLE: pytest.skip("test requires that faster_coco_eval is installed") def _generate_coco_inputs(iou_type): """Generates inputs for the MAP metric. The inputs are generated from the official COCO results json files: https://github.com/cocodataset/cocoapi/tree/master/results and should therefore correspond directly to the result on the webpage """ batched_preds, batched_target = MeanAveragePrecision.coco_to_tm( _DETECTION_BBOX if iou_type == "bbox" else _DETECTION_SEGM, _DETECTION_VAL, iou_type ) # create 10 batches of 10 preds/targets each batched_preds = [batched_preds[10 * i : 10 * (i + 1)] for i in range(10)] batched_target = [batched_target[10 * i : 10 * (i + 1)] for i in range(10)] return batched_preds, batched_target _coco_bbox_input = _generate_coco_inputs("bbox") _coco_segm_input = _generate_coco_inputs("segm") def _compare_against_coco_fn(preds, target, iou_type, iou_thresholds=None, rec_thresholds=None, class_metrics=True): """Taken from https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb.""" with contextlib.redirect_stdout(io.StringIO()): gt = COCO(_DETECTION_VAL) dt = gt.loadRes(_DETECTION_BBOX) if iou_type == "bbox" else gt.loadRes(_DETECTION_SEGM) coco_eval = COCOeval(gt, dt, iou_type) if iou_thresholds is not None: coco_eval.params.iouThrs = np.array(iou_thresholds, dtype=np.float64) if rec_thresholds is not None: coco_eval.params.recThrs = np.array(rec_thresholds, dtype=np.float64) coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() global_stats = deepcopy(coco_eval.stats) map_per_class_values = torch.Tensor([-1]) mar_100_per_class_values = torch.Tensor([-1]) classes = torch.tensor( list(set(torch.arange(91).tolist()) - {0, 12, 19, 26, 29, 30, 45, 66, 68, 69, 71, 76, 83, 87, 89}) ) if class_metrics: map_per_class_list = [] mar_100_per_class_list = [] for class_id in classes.tolist(): coco_eval.params.catIds = [class_id] with contextlib.redirect_stdout(io.StringIO()): coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() class_stats = coco_eval.stats map_per_class_list.append(torch.Tensor([class_stats[0]])) mar_100_per_class_list.append(torch.Tensor([class_stats[8]])) map_per_class_values = torch.Tensor(map_per_class_list) mar_100_per_class_values = torch.Tensor(mar_100_per_class_list) return { "map": Tensor([global_stats[0]]), "map_50": Tensor([global_stats[1]]), "map_75": Tensor([global_stats[2]]), "map_small": Tensor([global_stats[3]]), "map_medium": Tensor([global_stats[4]]), "map_large": Tensor([global_stats[5]]), "mar_1": Tensor([global_stats[6]]), "mar_10": Tensor([global_stats[7]]), "mar_100": Tensor([global_stats[8]]), "mar_small": Tensor([global_stats[9]]), "mar_medium": Tensor([global_stats[10]]), "mar_large": Tensor([global_stats[11]]), "map_per_class": map_per_class_values, "mar_100_per_class": mar_100_per_class_values, "classes": classes, } @pytest.mark.skipif(_pytest_condition, reason="test requires that torchvision=>0.8.0 and pycocotools is installed") @pytest.mark.parametrize("iou_type", ["bbox", "segm"]) @pytest.mark.parametrize("ddp", [False, True]) @pytest.mark.parametrize("backend", ["pycocotools", "faster_coco_eval"]) class TestMAPUsingCOCOReference(MetricTester): """Test map metric on the reference coco data.""" @pytest.mark.parametrize("iou_thresholds", [None, [0.25, 0.5, 0.75]]) @pytest.mark.parametrize("rec_thresholds", [None, [0.25, 0.5, 0.75]]) def test_map(self, iou_type, iou_thresholds, rec_thresholds, ddp, backend): """Test modular implementation for correctness.""" _skip_if_faster_coco_eval_missing(backend) preds, target = _coco_bbox_input if iou_type == "bbox" else _coco_segm_input self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MeanAveragePrecision, reference_metric=partial( _compare_against_coco_fn, iou_type=iou_type, iou_thresholds=iou_thresholds, rec_thresholds=rec_thresholds, class_metrics=False, ), metric_args={ "iou_type": iou_type, "iou_thresholds": iou_thresholds, "rec_thresholds": rec_thresholds, "class_metrics": False, "box_format": "xywh", "backend": backend, }, check_batch=False, atol=1e-2, ) def test_map_classwise(self, iou_type, ddp, backend): """Test modular implementation for correctness with classwise=True. Needs bigger atol to be stable. """ _skip_if_faster_coco_eval_missing(backend) preds, target = _coco_bbox_input if iou_type == "bbox" else _coco_segm_input self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MeanAveragePrecision, reference_metric=partial(_compare_against_coco_fn, iou_type=iou_type, class_metrics=True), metric_args={"box_format": "xywh", "iou_type": iou_type, "class_metrics": True, "backend": backend}, check_batch=False, atol=1e-1, ) @pytest.mark.parametrize("backend", ["pycocotools", "faster_coco_eval"]) def test_compare_both_same_time(tmpdir, backend): """Test that the class support evaluating both bbox and segm at the same time.""" _skip_if_faster_coco_eval_missing(backend) with open(_DETECTION_BBOX) as f: boxes = json.load(f) with open(_DETECTION_SEGM) as f: segmentations = json.load(f) combined = [{**box, **seg} for box, seg in zip(boxes, segmentations)] with open(f"{tmpdir}/combined.json", "w") as f: json.dump(combined, f) batched_preds, batched_target = MeanAveragePrecision.coco_to_tm( f"{tmpdir}/combined.json", _DETECTION_VAL, iou_type=["bbox", "segm"] ) batched_preds = [batched_preds[10 * i : 10 * (i + 1)] for i in range(10)] batched_target = [batched_target[10 * i : 10 * (i + 1)] for i in range(10)] metric = MeanAveragePrecision(iou_type=["bbox", "segm"], box_format="xywh", backend=backend) for bp, bt in zip(batched_preds, batched_target): metric.update(bp, bt) res = metric.compute() res1 = _compare_against_coco_fn([], [], iou_type="bbox", class_metrics=False) res2 = _compare_against_coco_fn([], [], iou_type="segm", class_metrics=False) for k, v in res1.items(): if k == "classes": continue assert f"bbox_{k}" in res assert torch.allclose(res[f"bbox_{k}"], v, atol=1e-2) for k, v in res2.items(): if k == "classes": continue assert f"segm_{k}" in res assert torch.allclose(res[f"segm_{k}"], v, atol=1e-2) _inputs = { "preds": [ [ { "boxes": Tensor([[258.15, 41.29, 606.41, 285.07]]), "scores": Tensor([0.236]), "labels": IntTensor([4]), }, # coco image id 42 { "boxes": Tensor([[61.00, 22.75, 565.00, 632.42], [12.66, 3.32, 281.26, 275.23]]), "scores": Tensor([0.318, 0.726]), "labels": IntTensor([3, 2]), }, # coco image id 73 ], [ { "boxes": Tensor( [ [87.87, 276.25, 384.29, 379.43], [0.00, 3.66, 142.15, 316.06], [296.55, 93.96, 314.97, 152.79], [328.94, 97.05, 342.49, 122.98], [356.62, 95.47, 372.33, 147.55], [464.08, 105.09, 495.74, 146.99], [276.11, 103.84, 291.44, 150.72], ] ), "scores": Tensor([0.546, 0.3, 0.407, 0.611, 0.335, 0.805, 0.953]), "labels": IntTensor([4, 1, 0, 0, 0, 0, 0]), }, # coco image id 74 { "boxes": Tensor( [ [72.92, 45.96, 91.23, 80.57], [45.17, 45.34, 66.28, 79.83], [82.28, 47.04, 99.66, 78.50], [59.96, 46.17, 80.35, 80.48], [75.29, 23.01, 91.85, 50.85], [71.14, 1.10, 96.96, 28.33], [61.34, 55.23, 77.14, 79.57], [41.17, 45.78, 60.99, 78.48], [56.18, 44.80, 64.42, 56.25], ] ), "scores": Tensor([0.532, 0.204, 0.782, 0.202, 0.883, 0.271, 0.561, 0.204, 0.349]), "labels": IntTensor([49, 49, 49, 49, 49, 49, 49, 49, 49]), }, # coco image id 987 category_id 49 ], ], "target": [ [ { "boxes": Tensor([[214.1500, 41.2900, 562.4100, 285.0700]]), "labels": IntTensor([4]), }, # coco image id 42 { "boxes": Tensor( [ [13.00, 22.75, 548.98, 632.42], [1.66, 3.32, 270.26, 275.23], ] ), "labels": IntTensor([2, 2]), }, # coco image id 73 ], [ { "boxes": Tensor( [ [61.87, 276.25, 358.29, 379.43], [2.75, 3.66, 162.15, 316.06], [295.55, 93.96, 313.97, 152.79], [326.94, 97.05, 340.49, 122.98], [356.62, 95.47, 372.33, 147.55], [462.08, 105.09, 493.74, 146.99], [277.11, 103.84, 292.44, 150.72], ] ), "labels": IntTensor([4, 1, 0, 0, 0, 0, 0]), }, # coco image id 74 { "boxes": Tensor( [ [72.92, 45.96, 91.23, 80.57], [50.17, 45.34, 71.28, 79.83], [81.28, 47.04, 98.66, 78.50], [63.96, 46.17, 84.35, 80.48], [75.29, 23.01, 91.85, 50.85], [56.39, 21.65, 75.66, 45.54], [73.14, 1.10, 98.96, 28.33], [62.34, 55.23, 78.14, 79.57], [44.17, 45.78, 63.99, 78.48], [58.18, 44.80, 66.42, 56.25], ] ), "labels": IntTensor([49, 49, 49, 49, 49, 49, 49, 49, 49, 49]), }, # coco image id 987 category_id 49 ], ], } # example from this issue https://github.com/Lightning-AI/torchmetrics/issues/943 _inputs2 = { "preds": [ [ { "boxes": Tensor([[258.0, 41.0, 606.0, 285.0]]), "scores": Tensor([0.536]), "labels": IntTensor([0]), }, ], [ { "boxes": Tensor([[258.0, 41.0, 606.0, 285.0]]), "scores": Tensor([0.536]), "labels": IntTensor([0]), } ], ], "target": [ [ { "boxes": Tensor([[214.0, 41.0, 562.0, 285.0]]), "labels": IntTensor([0]), } ], [ { "boxes": Tensor([]), "labels": IntTensor([]), } ], ], } # Test empty preds case, to ensure bool inputs are properly casted to uint8 # From https://github.com/Lightning-AI/torchmetrics/issues/981 # and https://github.com/Lightning-AI/torchmetrics/issues/1147 _inputs3 = { "preds": [ [ { "boxes": Tensor([[258.0, 41.0, 606.0, 285.0]]), "scores": Tensor([0.536]), "labels": IntTensor([0]), }, ], [ {"boxes": Tensor([]), "scores": Tensor([]), "labels": Tensor([])}, ], ], "target": [ [ { "boxes": Tensor([[214.0, 41.0, 562.0, 285.0]]), "labels": IntTensor([0]), } ], [ { "boxes": Tensor([[1.0, 2.0, 3.0, 4.0]]), "scores": Tensor([0.8]), # target does not have scores "labels": IntTensor([1]), }, ], ], } def _generate_random_segm_input(device, batch_size=2, num_preds_size=10, num_gt_size=10, random_size=True): """Generate random inputs for mAP when iou_type=segm.""" preds = [] targets = [] for _ in range(batch_size): result = {} num_preds = torch.randint(0, num_preds_size, (1,)).item() if random_size else num_preds_size result["scores"] = torch.rand((num_preds,), device=device) result["labels"] = torch.randint(0, 10, (num_preds,), device=device) result["masks"] = torch.randint(0, 2, (num_preds, 10, 10), device=device).bool() preds.append(result) gt = {} num_gt = torch.randint(0, num_gt_size, (1,)).item() if random_size else num_gt_size gt["labels"] = torch.randint(0, 10, (num_gt,), device=device) gt["masks"] = torch.randint(0, 2, (num_gt, 10, 10), device=device).bool() targets.append(gt) return preds, targets @pytest.mark.skipif(_pytest_condition, reason="test requires that torchvision=>0.8.0 is installed") @pytest.mark.parametrize( "backend", [ pytest.param("pycocotools"), pytest.param( "faster_coco_eval", marks=pytest.mark.skipif( not _FASTER_COCO_EVAL_AVAILABLE, reason="test requires that faster_coco_eval is installed" ), ), ], ) class TestMapProperties: """Test class collection different tests for different properties parametrized by backend argument.""" def test_error_on_wrong_init(self, backend): """Test class raises the expected errors.""" MeanAveragePrecision(backend=backend) # no error with pytest.raises(ValueError, match="Expected argument `class_metrics` to be a boolean"): MeanAveragePrecision(class_metrics=0, backend=backend) def test_empty_preds(self, backend): """Test empty predictions.""" metric = MeanAveragePrecision(backend=backend) metric.update( [{"boxes": Tensor([]), "scores": Tensor([]), "labels": IntTensor([])}], [{"boxes": Tensor([[214.1500, 41.2900, 562.4100, 285.0700]]), "labels": IntTensor([4])}], ) metric.compute() def test_empty_ground_truths(self, backend): """Test empty ground truths.""" metric = MeanAveragePrecision(backend=backend) metric.update( [ { "boxes": Tensor([[214.1500, 41.2900, 562.4100, 285.0700]]), "scores": Tensor([0.5]), "labels": IntTensor([4]), } ], [{"boxes": Tensor([]), "labels": IntTensor([])}], ) metric.compute() def test_empty_ground_truths_xywh(self, backend): """Test empty ground truths in xywh format.""" metric = MeanAveragePrecision(box_format="xywh", backend=backend) metric.update( [ { "boxes": Tensor([[214.1500, 41.2900, 348.2600, 243.7800]]), "scores": Tensor([0.5]), "labels": IntTensor([4]), } ], [{"boxes": Tensor([]), "labels": IntTensor([])}], ) metric.compute() def test_empty_preds_xywh(self, backend): """Test empty predictions in xywh format.""" metric = MeanAveragePrecision(box_format="xywh", backend=backend) metric.update( [{"boxes": Tensor([]), "scores": Tensor([]), "labels": IntTensor([])}], [{"boxes": Tensor([[214.1500, 41.2900, 348.2600, 243.7800]]), "labels": IntTensor([4])}], ) metric.compute() def test_empty_ground_truths_cxcywh(self, backend): """Test empty ground truths in cxcywh format.""" metric = MeanAveragePrecision(box_format="cxcywh", backend=backend) metric.update( [ { "boxes": Tensor([[388.2800, 163.1800, 348.2600, 243.7800]]), "scores": Tensor([0.5]), "labels": IntTensor([4]), } ], [{"boxes": Tensor([]), "labels": IntTensor([])}], ) metric.compute() def test_empty_preds_cxcywh(self, backend): """Test empty predictions in cxcywh format.""" metric = MeanAveragePrecision(box_format="cxcywh", backend=backend) metric.update( [{"boxes": Tensor([]), "scores": Tensor([]), "labels": IntTensor([])}], [{"boxes": Tensor([[388.2800, 163.1800, 348.2600, 243.7800]]), "labels": IntTensor([4])}], ) metric.compute() @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires CUDA availability") @pytest.mark.parametrize("inputs", [_inputs, _inputs2, _inputs3]) def test_map_gpu(self, backend, inputs): """Test predictions on single gpu.""" metric = MeanAveragePrecision(backend=backend) metric = metric.to("cuda") for preds, targets in zip(deepcopy(inputs["preds"]), deepcopy(inputs["target"])): metric.update( apply_to_collection(preds, Tensor, lambda x: x.to("cuda")), apply_to_collection(targets, Tensor, lambda x: x.to("cuda")), ) metric.compute() @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires CUDA availability") def test_map_with_custom_thresholds(self, backend): """Test that map works with custom iou thresholds.""" metric = MeanAveragePrecision(iou_thresholds=[0.1, 0.2], backend=backend) metric = metric.to("cuda") for preds, targets in zip(deepcopy(_inputs["preds"]), deepcopy(_inputs["target"])): metric.update( apply_to_collection(preds, Tensor, lambda x: x.to("cuda")), apply_to_collection(targets, Tensor, lambda x: x.to("cuda")), ) res = metric.compute() assert res["map_50"].item() == -1 assert res["map_75"].item() == -1 def test_empty_metric(self, backend): """Test empty metric.""" metric = MeanAveragePrecision(backend=backend) metric.compute() def test_missing_pred(self, backend): """One good detection, one false negative. Map should be lower than 1. Actually it is 0.5, but the exact value depends on where we are sampling (i.e. recall's values) """ gts = [ {"boxes": Tensor([[10, 20, 15, 25]]), "labels": IntTensor([0])}, {"boxes": Tensor([[10, 20, 15, 25]]), "labels": IntTensor([0])}, ] preds = [ {"boxes": Tensor([[10, 20, 15, 25]]), "scores": Tensor([0.9]), "labels": IntTensor([0])}, # Empty prediction {"boxes": Tensor([]), "scores": Tensor([]), "labels": IntTensor([])}, ] metric = MeanAveragePrecision(backend=backend) metric.update(preds, gts) result = metric.compute() assert result["map"] < 1, "MAP cannot be 1, as there is a missing prediction." def test_missing_gt(self, backend): """The symmetric case of test_missing_pred. One good detection, one false positive. Map should be lower than 1. Actually it is 0.5, but the exact value depends on where we are sampling (i.e. recall's values) """ gts = [ {"boxes": Tensor([[10, 20, 15, 25]]), "labels": IntTensor([0])}, {"boxes": Tensor([]), "labels": IntTensor([])}, ] preds = [ {"boxes": Tensor([[10, 20, 15, 25]]), "scores": Tensor([0.9]), "labels": IntTensor([0])}, {"boxes": Tensor([[10, 20, 15, 25]]), "scores": Tensor([0.95]), "labels": IntTensor([0])}, ] metric = MeanAveragePrecision(backend=backend) metric.update(preds, gts) result = metric.compute() assert result["map"] < 1, "MAP cannot be 1, as there is an image with no ground truth, but some predictions." def test_segm_iou_empty_gt_mask(self, backend): """Test empty ground truths.""" metric = MeanAveragePrecision(iou_type="segm", backend=backend) metric.update( [{"masks": torch.randint(0, 1, (1, 10, 10)).bool(), "scores": Tensor([0.5]), "labels": IntTensor([4])}], [{"masks": Tensor([]), "labels": IntTensor([])}], ) metric.compute() def test_segm_iou_empty_pred_mask(self, backend): """Test empty predictions.""" metric = MeanAveragePrecision(iou_type="segm", backend=backend) metric.update( [{"masks": torch.BoolTensor([]), "scores": Tensor([]), "labels": IntTensor([])}], [{"masks": torch.randint(0, 1, (1, 10, 10)).bool(), "labels": IntTensor([4])}], ) metric.compute() def test_error_on_wrong_input(self, backend): """Test class input validation.""" metric = MeanAveragePrecision(backend=backend) metric.update([], []) # no error with pytest.raises(ValueError, match="Expected argument `preds` to be of type Sequence"): metric.update(Tensor(), []) # type: ignore with pytest.raises(ValueError, match="Expected argument `target` to be of type Sequence"): metric.update([], Tensor()) # type: ignore with pytest.raises(ValueError, match="Expected argument `preds` and `target` to have the same length"): metric.update([{}], [{}, {}]) with pytest.raises(ValueError, match="Expected all dicts in `preds` to contain the `boxes` key"): metric.update( [{"scores": Tensor(), "labels": IntTensor}], [{"boxes": Tensor(), "labels": IntTensor()}], ) with pytest.raises(ValueError, match="Expected all dicts in `preds` to contain the `scores` key"): metric.update( [{"boxes": Tensor(), "labels": IntTensor}], [{"boxes": Tensor(), "labels": IntTensor()}], ) with pytest.raises(ValueError, match="Expected all dicts in `preds` to contain the `labels` key"): metric.update( [{"boxes": Tensor(), "scores": IntTensor}], [{"boxes": Tensor(), "labels": IntTensor()}], ) with pytest.raises(ValueError, match="Expected all dicts in `target` to contain the `boxes` key"): metric.update( [{"boxes": Tensor(), "scores": IntTensor, "labels": IntTensor}], [{"labels": IntTensor()}], ) with pytest.raises(ValueError, match="Expected all dicts in `target` to contain the `labels` key"): metric.update( [{"boxes": Tensor(), "scores": IntTensor, "labels": IntTensor}], [{"boxes": IntTensor()}], ) with pytest.raises(ValueError, match="Expected all boxes in `preds` to be of type Tensor"): metric.update( [{"boxes": [], "scores": Tensor(), "labels": IntTensor()}], [{"boxes": Tensor(), "labels": IntTensor()}], ) with pytest.raises(ValueError, match="Expected all scores in `preds` to be of type Tensor"): metric.update( [{"boxes": Tensor(), "scores": [], "labels": IntTensor()}], [{"boxes": Tensor(), "labels": IntTensor()}], ) with pytest.raises(ValueError, match="Expected all labels in `preds` to be of type Tensor"): metric.update( [{"boxes": Tensor(), "scores": Tensor(), "labels": []}], [{"boxes": Tensor(), "labels": IntTensor()}], ) with pytest.raises(ValueError, match="Expected all boxes in `target` to be of type Tensor"): metric.update( [{"boxes": Tensor(), "scores": Tensor(), "labels": IntTensor()}], [{"boxes": [], "labels": IntTensor()}], ) with pytest.raises(ValueError, match="Expected all labels in `target` to be of type Tensor"): metric.update( [{"boxes": Tensor(), "scores": Tensor(), "labels": IntTensor()}], [{"boxes": Tensor(), "labels": []}], ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") def test_device_changing(self, backend): """See issue: https://github.com/Lightning-AI/torchmetrics/issues/1743. Checks that the custom apply function of the metric works as expected. """ device = "cuda" metric = MeanAveragePrecision(iou_type="segm", backend=backend).to(device) for _ in range(2): preds, targets = _generate_random_segm_input(device) metric.update(preds, targets) metric = metric.cpu() val = metric.compute() assert isinstance(val, dict) @pytest.mark.parametrize( ("box_format", "iou_val_expected", "map_val_expected"), [ ("xyxy", 0.25, 1), ("xywh", 0.143, 0.0), ("cxcywh", 0.143, 0.0), ], ) def test_for_box_format(self, box_format, iou_val_expected, map_val_expected, backend): """Test that only the correct box format lead to a score of 1. See issue: https://github.com/Lightning-AI/torchmetrics/issues/1908. """ predictions = [ {"boxes": torch.tensor([[0.5, 0.5, 1, 1]]), "scores": torch.tensor([1.0]), "labels": torch.tensor([0])} ] targets = [{"boxes": torch.tensor([[0, 0, 1, 1]]), "labels": torch.tensor([0])}] metric = MeanAveragePrecision( box_format=box_format, iou_thresholds=[0.2], extended_summary=True, backend=backend ) metric.update(predictions, targets) result = metric.compute() assert result["map"].item() == map_val_expected assert round(float(result["ious"][(0, 0)]), 3) == iou_val_expected @pytest.mark.parametrize("iou_type", ["bbox", "segm"]) def test_warning_on_many_detections(self, iou_type, backend): """Test that a warning is raised when there are many detections.""" if iou_type == "bbox": preds = [ { "boxes": torch.tensor([[0.5, 0.5, 1, 1]]).repeat(101, 1), "scores": torch.tensor([1.0]).repeat(101), "labels": torch.tensor([0]).repeat(101), } ] targets = [{"boxes": torch.tensor([[0, 0, 1, 1]]), "labels": torch.tensor([0])}] else: preds, targets = _generate_random_segm_input("cpu", 1, 101, 10, False) metric = MeanAveragePrecision(iou_type=iou_type, backend=backend) with pytest.warns(UserWarning, match="Encountered more than 100 detections in a single image.*"): metric.update(preds, targets) @pytest.mark.parametrize( ("preds", "target", "expected_iou_len", "iou_keys", "precision_shape", "recall_shape"), [ ( [ [ { "boxes": torch.tensor([[0.5, 0.5, 1, 1]]), "scores": torch.tensor([1.0]), "labels": torch.tensor([0]), } ] ], [[{"boxes": torch.tensor([[0, 0, 1, 1]]), "labels": torch.tensor([0])}]], 1, # 1 image x 1 class = 1 [(0, 0)], (10, 101, 1, 4, 3), (10, 1, 4, 3), ), ( _inputs["preds"], _inputs["target"], 24, # 4 images x 6 classes = 24 list(product([0, 1, 2, 3], [0, 1, 2, 3, 4, 49])), (10, 101, 6, 4, 3), (10, 6, 4, 3), ), ], ) def test_for_extended_stats( self, preds, target, expected_iou_len, iou_keys, precision_shape, recall_shape, backend ): """Test that extended stats are computed correctly.""" metric = MeanAveragePrecision(extended_summary=True, backend=backend) for p, t in zip(preds, target): metric.update(p, t) result = metric.compute() ious = result["ious"] assert isinstance(ious, dict) assert len(ious) == expected_iou_len for key in ious: assert key in iou_keys precision = result["precision"] assert isinstance(precision, Tensor) assert precision.shape == precision_shape recall = result["recall"] assert isinstance(recall, Tensor) assert recall.shape == recall_shape @pytest.mark.parametrize("class_metrics", [False, True]) def test_average_argument(self, class_metrics, backend): """Test that average argument works. Calculating macro on inputs that only have one label should be the same as micro. Calculating class metrics should be the same regardless of average argument. """ if class_metrics: _preds = _inputs["preds"] _target = _inputs["target"] else: _preds = apply_to_collection(deepcopy(_inputs["preds"]), IntTensor, lambda x: torch.ones_like(x)) _target = apply_to_collection(deepcopy(_inputs["target"]), IntTensor, lambda x: torch.ones_like(x)) metric_macro = MeanAveragePrecision(average="macro", class_metrics=class_metrics, backend=backend) metric_macro.update(_preds[0], _target[0]) metric_macro.update(_preds[1], _target[1]) result_macro = metric_macro.compute() metric_micro = MeanAveragePrecision(average="micro", class_metrics=class_metrics, backend=backend) metric_micro.update(_inputs["preds"][0], _inputs["target"][0]) metric_micro.update(_inputs["preds"][1], _inputs["target"][1]) result_micro = metric_micro.compute() if class_metrics: assert torch.allclose(result_macro["map_per_class"], result_micro["map_per_class"]) assert torch.allclose(result_macro["mar_100_per_class"], result_micro["mar_100_per_class"]) else: for key in result_macro: if key == "classes": continue assert torch.allclose(result_macro[key], result_micro[key]) def test_many_detection_thresholds(self, backend): """Test how metric behaves when there are many detection thresholds. Known to fail with the default pycocotools backend. See issue: https://github.com/Lightning-AI/torchmetrics/issues/1153 """ preds = [ { "boxes": torch.tensor([[258.0, 41.0, 606.0, 285.0]]), "scores": torch.tensor([0.536]), "labels": torch.tensor([0]), } ] target = [ { "boxes": torch.tensor([[214.0, 41.0, 562.0, 285.0]]), "labels": torch.tensor([0]), } ] metric = MeanAveragePrecision(max_detection_thresholds=[1, 10, 1000], backend=backend) res = metric(preds, target) if backend == "pycocotools": assert round(res["map"].item(), 5) != 0.6 else: assert round(res["map"].item(), 5) == 0.6
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/detection/__init__.py
import os from unittests import _PATH_ROOT _SAMPLE_DETECTION_SEGMENTATION = os.path.join(_PATH_ROOT, "_data", "detection", "instance_segmentation_inputs.json") _DETECTION_VAL = os.path.join(_PATH_ROOT, "_data", "detection", "instances_val2014_100.json") _DETECTION_BBOX = os.path.join(_PATH_ROOT, "_data", "detection", "instances_val2014_fakebbox100_results.json") _DETECTION_SEGM = os.path.join(_PATH_ROOT, "_data", "detection", "instances_val2014_fakesegm100_results.json")
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/bases/test_aggregation.py
import numpy as np import pytest import torch from torchmetrics.aggregation import CatMetric, MaxMetric, MeanMetric, MinMetric, SumMetric from torchmetrics.collections import MetricCollection from unittests import BATCH_SIZE, NUM_BATCHES from unittests.helpers.testers import MetricTester def compare_mean(values, weights): """Baseline implementation for mean aggregation.""" return np.average(values.numpy(), weights=weights) def compare_sum(values, weights): """Baseline implementation for sum aggregation.""" return np.sum(values.numpy()) def compare_min(values, weights): """Baseline implementation for min aggregation.""" return np.min(values.numpy()) def compare_max(values, weights): """Baseline implementation for max aggregation.""" return np.max(values.numpy()) # wrap all other than mean metric to take an additional argument # this lets them fit into the testing framework class WrappedMinMetric(MinMetric): """Wrapped min metric.""" def update(self, values, weights): """Only pass values on.""" super().update(values) class WrappedMaxMetric(MaxMetric): """Wrapped max metric.""" def update(self, values, weights): """Only pass values on.""" super().update(values) class WrappedSumMetric(SumMetric): """Wrapped min metric.""" def update(self, values, weights): """Only pass values on.""" super().update(values) class WrappedCatMetric(CatMetric): """Wrapped cat metric.""" def update(self, values, weights): """Only pass values on.""" super().update(values) @pytest.mark.parametrize( "values, weights", [ (torch.rand(NUM_BATCHES, BATCH_SIZE), torch.ones(NUM_BATCHES, BATCH_SIZE)), (torch.rand(NUM_BATCHES, BATCH_SIZE), torch.rand(NUM_BATCHES, BATCH_SIZE) > 0.5), (torch.rand(NUM_BATCHES, BATCH_SIZE, 2), torch.rand(NUM_BATCHES, BATCH_SIZE, 2) > 0.5), ], ) @pytest.mark.parametrize( "metric_class, compare_fn", [ (WrappedMinMetric, compare_min), (WrappedMaxMetric, compare_max), (WrappedSumMetric, compare_sum), (MeanMetric, compare_mean), ], ) class TestAggregation(MetricTester): """Test aggregation metrics.""" @pytest.mark.parametrize("ddp", [False, True]) def test_aggreagation(self, ddp, metric_class, compare_fn, values, weights): """Test modular implementation.""" self.run_class_metric_test( ddp=ddp, metric_class=metric_class, reference_metric=compare_fn, check_scriptable=True, # Abuse of names here preds=values, target=weights, ) _case1 = float("nan") * torch.ones(5) _case2 = torch.tensor([1.0, 2.0, float("nan"), 4.0, 5.0]) @pytest.mark.parametrize("value", [_case1, _case2]) @pytest.mark.parametrize("nan_strategy", ["error", "warn"]) @pytest.mark.parametrize("metric_class", [MinMetric, MaxMetric, SumMetric, MeanMetric, CatMetric]) def test_nan_error(value, nan_strategy, metric_class): """Test correct errors are raised.""" metric = metric_class(nan_strategy=nan_strategy) if nan_strategy == "error": with pytest.raises(RuntimeError, match="Encountered `nan` values in tensor"): metric(value.clone()) elif nan_strategy == "warn": with pytest.warns(UserWarning, match="Encountered `nan` values in tensor"): metric(value.clone()) @pytest.mark.parametrize( ("metric_class", "nan_strategy", "value", "expected"), [ (MinMetric, "ignore", _case1, torch.tensor(float("inf"))), (MinMetric, 2.0, _case1, 2.0), (MinMetric, "ignore", _case2, 1.0), (MinMetric, 2.0, _case2, 1.0), (MaxMetric, "ignore", _case1, -torch.tensor(float("inf"))), (MaxMetric, 2.0, _case1, 2.0), (MaxMetric, "ignore", _case2, 5.0), (MaxMetric, 2.0, _case2, 5.0), (SumMetric, "ignore", _case1, 0.0), (SumMetric, 2.0, _case1, 10.0), (SumMetric, "ignore", _case2, 12.0), (SumMetric, 2.0, _case2, 14.0), (MeanMetric, "ignore", _case1, torch.tensor([float("nan")])), (MeanMetric, 2.0, _case1, 2.0), (MeanMetric, "ignore", _case2, 3.0), (MeanMetric, 2.0, _case2, 2.8), (CatMetric, "ignore", _case1, []), (CatMetric, 2.0, _case1, torch.tensor([2.0, 2.0, 2.0, 2.0, 2.0])), (CatMetric, "ignore", _case2, torch.tensor([1.0, 2.0, 4.0, 5.0])), (CatMetric, 2.0, _case2, torch.tensor([1.0, 2.0, 2.0, 4.0, 5.0])), (CatMetric, "ignore", torch.zeros(5), torch.zeros(5)), ], ) def test_nan_expected(metric_class, nan_strategy, value, expected): """Test that nan values are handled correctly.""" metric = metric_class(nan_strategy=nan_strategy) metric.update(value.clone()) out = metric.compute() assert np.allclose(out, expected, equal_nan=True) @pytest.mark.parametrize("metric_class", [MinMetric, MaxMetric, SumMetric, MeanMetric, CatMetric]) def test_error_on_wrong_nan_strategy(metric_class): """Test error raised on wrong nan_strategy argument.""" with pytest.raises(ValueError, match="Arg `nan_strategy` should either .*"): metric_class(nan_strategy=[]) @pytest.mark.skipif(not hasattr(torch, "broadcast_to"), reason="PyTorch <1.8 does not have broadcast_to") @pytest.mark.parametrize( ("weights", "expected"), [(1, 11.5), (torch.ones(2, 1, 1), 11.5), (torch.tensor([1, 2]).reshape(2, 1, 1), 13.5)] ) def test_mean_metric_broadcasting(weights, expected): """Check that weight broadcasting works for mean metric.""" values = torch.arange(24).reshape(2, 3, 4) avg = MeanMetric() assert avg(values, weights) == expected def test_aggregation_in_collection_with_compute_groups(): """Check that aggregation metrics work in MetricCollection with compute_groups=True.""" m = MetricCollection(MinMetric(), MaxMetric(), SumMetric(), MeanMetric(), compute_groups=True) assert len(m.compute_groups) == 4, "Expected 4 compute groups" m.update(1) assert len(m.compute_groups) == 4, "Expected 4 compute groups" m.update(2) assert len(m.compute_groups) == 4, "Expected 4 compute groups" res = m.compute() assert res["MinMetric"] == 1 assert res["MaxMetric"] == 2 assert res["SumMetric"] == 3 assert res["MeanMetric"] == 1.5 @pytest.mark.skipif(not hasattr(torch, "broadcast_to"), reason="PyTorch <1.8 does not have broadcast_to") @pytest.mark.parametrize("nan_strategy", ["ignore", "warn"]) def test_mean_metric_broadcast(nan_strategy): """Check that weights gets broadcasted correctly when Nans are present.""" metric = MeanMetric(nan_strategy=nan_strategy) x = torch.arange(5).float() x[1] = torch.tensor(float("nan")) w = torch.arange(5).float() metric.update(x, w) res = metric.compute() assert round(res.item(), 4) == 3.2222 # (0*0 + 2*2 + 3*3 + 4*4) / (0 + 2 + 3 + 4) x = torch.arange(5).float() w = torch.arange(5).float() w[1] = torch.tensor(float("nan")) metric.update(x, w) res = metric.compute() assert round(res.item(), 4) == 3.2222 # (0*0 + 2*2 + 3*3 + 4*4) / (0 + 2 + 3 + 4)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/bases/test_composition.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from operator import neg, pos from typing import Any import pytest import torch from torch import tensor from torchmetrics.metric import CompositionalMetric, Metric class DummyMetric(Metric): """DummyMetric class for testing composition component.""" full_state_update = True def __init__(self, val_to_return) -> None: super().__init__() self.add_state("_num_updates", tensor(0), dist_reduce_fx="sum") self._val_to_return = val_to_return def update(self, *args: Any, **kwargs: Any) -> None: """Compute state.""" self._num_updates += 1 def compute(self): """Compute result.""" return tensor(self._val_to_return) @pytest.mark.parametrize( ("second_operand", "expected_result"), [ (DummyMetric(2), tensor(4)), (2, tensor(4)), (2.0, tensor(4.0)), pytest.param(tensor(2), tensor(4)), ], ) def test_metrics_add(second_operand, expected_result): """Test that `add` operator works and returns a compositional metric.""" first_metric = DummyMetric(2) final_add = first_metric + second_operand final_radd = second_operand + first_metric assert isinstance(final_add, CompositionalMetric) assert isinstance(final_radd, CompositionalMetric) final_add.update() final_radd.update() assert torch.allclose(expected_result, final_add.compute()) assert torch.allclose(expected_result, final_radd.compute()) @pytest.mark.parametrize( ("second_operand", "expected_result"), [(DummyMetric(3), tensor(2)), (3, tensor(2)), (tensor(3), tensor(2))], ) def test_metrics_and(second_operand, expected_result): """Test that `and` operator works and returns a compositional metric.""" first_metric = DummyMetric(2) final_and = first_metric & second_operand final_rand = second_operand & first_metric assert isinstance(final_and, CompositionalMetric) assert isinstance(final_rand, CompositionalMetric) final_and.update() final_rand.update() assert torch.allclose(expected_result, final_and.compute()) assert torch.allclose(expected_result, final_rand.compute()) @pytest.mark.parametrize( ("second_operand", "expected_result"), [ (DummyMetric(2), tensor(True)), (2, tensor(True)), (2.0, tensor(True)), (tensor(2), tensor(True)), ], ) def test_metrics_eq(second_operand, expected_result): """Test that `eq` operator works and returns a compositional metric.""" first_metric = DummyMetric(2) final_eq = first_metric == second_operand assert isinstance(final_eq, CompositionalMetric) final_eq.update() # can't use allclose for bool tensors assert (expected_result == final_eq.compute()).all() @pytest.mark.parametrize( ("second_operand", "expected_result"), [ (DummyMetric(2), tensor(2)), (2, tensor(2)), (2.0, tensor(2.0)), (tensor(2), tensor(2)), ], ) def test_metrics_floordiv(second_operand, expected_result): """Test that `floordiv` operator works and returns a compositional metric.""" first_metric = DummyMetric(5) final_floordiv = first_metric // second_operand assert isinstance(final_floordiv, CompositionalMetric) final_floordiv.update() assert torch.allclose(expected_result, final_floordiv.compute()) @pytest.mark.parametrize( ("second_operand", "expected_result"), [ (DummyMetric(2), tensor(True)), (2, tensor(True)), (2.0, tensor(True)), (tensor(2), tensor(True)), ], ) def test_metrics_ge(second_operand, expected_result): """Test that `ge` operator works and returns a compositional metric.""" first_metric = DummyMetric(5) final_ge = first_metric >= second_operand assert isinstance(final_ge, CompositionalMetric) final_ge.update() # can't use allclose for bool tensors assert (expected_result == final_ge.compute()).all() @pytest.mark.parametrize( ("second_operand", "expected_result"), [ (DummyMetric(2), tensor(True)), (2, tensor(True)), (2.0, tensor(True)), (tensor(2), tensor(True)), ], ) def test_metrics_gt(second_operand, expected_result): """Test that `gt` operator works and returns a compositional metric.""" first_metric = DummyMetric(5) final_gt = first_metric > second_operand assert isinstance(final_gt, CompositionalMetric) final_gt.update() # can't use allclose for bool tensors assert (expected_result == final_gt.compute()).all() @pytest.mark.parametrize( ("second_operand", "expected_result"), [ (DummyMetric(2), tensor(False)), (2, tensor(False)), (2.0, tensor(False)), (tensor(2), tensor(False)), ], ) def test_metrics_le(second_operand, expected_result): """Test that `le` operator works and returns a compositional metric.""" first_metric = DummyMetric(5) final_le = first_metric <= second_operand assert isinstance(final_le, CompositionalMetric) final_le.update() # can't use allclose for bool tensors assert (expected_result == final_le.compute()).all() @pytest.mark.parametrize( ("second_operand", "expected_result"), [ (DummyMetric(2), tensor(False)), (2, tensor(False)), (2.0, tensor(False)), (tensor(2), tensor(False)), ], ) def test_metrics_lt(second_operand, expected_result): """Test that `lt` operator works and returns a compositional metric.""" first_metric = DummyMetric(5) final_lt = first_metric < second_operand assert isinstance(final_lt, CompositionalMetric) final_lt.update() # can't use allclose for bool tensors assert (expected_result == final_lt.compute()).all() @pytest.mark.parametrize( ("second_operand", "expected_result"), [(DummyMetric([2, 2, 2]), tensor(12)), (tensor([2, 2, 2]), tensor(12))], ) def test_metrics_matmul(second_operand, expected_result): """Test that `matmul` operator works and returns a compositional metric.""" first_metric = DummyMetric([2, 2, 2]) final_matmul = first_metric @ second_operand assert isinstance(final_matmul, CompositionalMetric) final_matmul.update() assert torch.allclose(expected_result, final_matmul.compute()) @pytest.mark.parametrize( ("second_operand", "expected_result"), [ (DummyMetric(2), tensor(1)), (2, tensor(1)), (2.0, tensor(1)), (tensor(2), tensor(1)), ], ) def test_metrics_mod(second_operand, expected_result): """Test that `mod` operator works and returns a compositional metric.""" first_metric = DummyMetric(5) final_mod = first_metric % second_operand assert isinstance(final_mod, CompositionalMetric) final_mod.update() # prevent Runtime error for PT 1.8 - Long did not match Float assert torch.allclose(expected_result.to(float), final_mod.compute().to(float)) @pytest.mark.parametrize( ("second_operand", "expected_result"), [ (DummyMetric(2), tensor(4)), (2, tensor(4)), (2.0, tensor(4.0)), pytest.param(tensor(2), tensor(4)), ], ) def test_metrics_mul(second_operand, expected_result): """Test that `mul` operator works and returns a compositional metric.""" first_metric = DummyMetric(2) final_mul = first_metric * second_operand final_rmul = second_operand * first_metric assert isinstance(final_mul, CompositionalMetric) assert isinstance(final_rmul, CompositionalMetric) final_mul.update() final_rmul.update() assert torch.allclose(expected_result, final_mul.compute()) assert torch.allclose(expected_result, final_rmul.compute()) @pytest.mark.parametrize( ("second_operand", "expected_result"), [ (DummyMetric(2), tensor(False)), (2, tensor(False)), (2.0, tensor(False)), (tensor(2), tensor(False)), ], ) def test_metrics_ne(second_operand, expected_result): """Test that `ne` operator works and returns a compositional metric.""" first_metric = DummyMetric(2) final_ne = first_metric != second_operand assert isinstance(final_ne, CompositionalMetric) final_ne.update() # can't use allclose for bool tensors assert (expected_result == final_ne.compute()).all() @pytest.mark.parametrize( ("second_operand", "expected_result"), [(DummyMetric([1, 0, 3]), tensor([-1, -2, 3])), (tensor([1, 0, 3]), tensor([-1, -2, 3]))], ) def test_metrics_or(second_operand, expected_result): """Test that `or` operator works and returns a compositional metric.""" first_metric = DummyMetric([-1, -2, 3]) final_or = first_metric | second_operand final_ror = second_operand | first_metric assert isinstance(final_or, CompositionalMetric) assert isinstance(final_ror, CompositionalMetric) final_or.update() final_ror.update() assert torch.allclose(expected_result, final_or.compute()) assert torch.allclose(expected_result, final_ror.compute()) @pytest.mark.parametrize( ("second_operand", "expected_result"), [ (DummyMetric(2), tensor(4)), (2, tensor(4)), pytest.param(2.0, tensor(4.0)), (tensor(2), tensor(4)), ], ) def test_metrics_pow(second_operand, expected_result): """Test that `pow` operator works and returns a compositional metric.""" first_metric = DummyMetric(2) final_pow = first_metric**second_operand assert isinstance(final_pow, CompositionalMetric) final_pow.update() assert torch.allclose(expected_result, final_pow.compute()) @pytest.mark.parametrize( ("first_operand", "expected_result"), [(5, tensor(2)), (5.0, tensor(2.0)), (tensor(5), tensor(2))], ) def test_metrics_rfloordiv(first_operand, expected_result): """Test that `rfloordiv` operator works and returns a compositional metric.""" second_operand = DummyMetric(2) final_rfloordiv = first_operand // second_operand assert isinstance(final_rfloordiv, CompositionalMetric) final_rfloordiv.update() assert torch.allclose(expected_result, final_rfloordiv.compute()) @pytest.mark.parametrize( ("first_operand", "expected_result"), [pytest.param(tensor([2, 2, 2]), tensor(12))], ) def test_metrics_rmatmul(first_operand, expected_result): """Test that `rmatmul` operator works and returns a compositional metric.""" second_operand = DummyMetric([2, 2, 2]) final_rmatmul = first_operand @ second_operand assert isinstance(final_rmatmul, CompositionalMetric) final_rmatmul.update() assert torch.allclose(expected_result, final_rmatmul.compute()) @pytest.mark.parametrize( ("first_operand", "expected_result"), [pytest.param(tensor(2), tensor(2))], ) def test_metrics_rmod(first_operand, expected_result): """Test that `rmod` operator works and returns a compositional metric.""" second_operand = DummyMetric(5) final_rmod = first_operand % second_operand assert isinstance(final_rmod, CompositionalMetric) final_rmod.update() assert torch.allclose(expected_result, final_rmod.compute()) @pytest.mark.parametrize( ("first_operand", "expected_result"), [ (DummyMetric(2), tensor(4)), (2, tensor(4)), pytest.param(2.0, tensor(4.0)), ], ) def test_metrics_rpow(first_operand, expected_result): """Test that `rpow` operator works and returns a compositional metric.""" second_operand = DummyMetric(2) final_rpow = first_operand**second_operand assert isinstance(final_rpow, CompositionalMetric) final_rpow.update() assert torch.allclose(expected_result, final_rpow.compute()) @pytest.mark.parametrize( ("first_operand", "expected_result"), [ (DummyMetric(3), tensor(1)), (3, tensor(1)), (3.0, tensor(1.0)), pytest.param(tensor(3), tensor(1)), ], ) def test_metrics_rsub(first_operand, expected_result): """Test that `rsub` operator works and returns a compositional metric.""" second_operand = DummyMetric(2) final_rsub = first_operand - second_operand assert isinstance(final_rsub, CompositionalMetric) final_rsub.update() assert torch.allclose(expected_result, final_rsub.compute()) @pytest.mark.parametrize( ("first_operand", "expected_result"), [ (DummyMetric(6), tensor(2.0)), (6, tensor(2.0)), (6.0, tensor(2.0)), (tensor(6), tensor(2.0)), ], ) def test_metrics_rtruediv(first_operand, expected_result): """Test that `rtruediv` operator works and returns a compositional metric.""" second_operand = DummyMetric(3) final_rtruediv = first_operand / second_operand assert isinstance(final_rtruediv, CompositionalMetric) final_rtruediv.update() assert torch.allclose(expected_result, final_rtruediv.compute()) @pytest.mark.parametrize( ("second_operand", "expected_result"), [ (DummyMetric(2), tensor(1)), (2, tensor(1)), (2.0, tensor(1.0)), (tensor(2), tensor(1)), ], ) def test_metrics_sub(second_operand, expected_result): """Test that `sub` operator works and returns a compositional metric.""" first_metric = DummyMetric(3) final_sub = first_metric - second_operand assert isinstance(final_sub, CompositionalMetric) final_sub.update() assert torch.allclose(expected_result, final_sub.compute()) @pytest.mark.parametrize( ("second_operand", "expected_result"), [ (DummyMetric(3), tensor(2.0)), (3, tensor(2.0)), (3.0, tensor(2.0)), (tensor(3), tensor(2.0)), ], ) def test_metrics_truediv(second_operand, expected_result): """Test that `truediv` operator works and returns a compositional metric.""" first_metric = DummyMetric(6) final_truediv = first_metric / second_operand assert isinstance(final_truediv, CompositionalMetric) final_truediv.update() assert torch.allclose(expected_result, final_truediv.compute()) @pytest.mark.parametrize( ("second_operand", "expected_result"), [(DummyMetric([1, 0, 3]), tensor([-2, -2, 0])), (tensor([1, 0, 3]), tensor([-2, -2, 0]))], ) def test_metrics_xor(second_operand, expected_result): """Test that `xor` operator works and returns a compositional metric.""" first_metric = DummyMetric([-1, -2, 3]) final_xor = first_metric ^ second_operand final_rxor = second_operand ^ first_metric assert isinstance(final_xor, CompositionalMetric) assert isinstance(final_rxor, CompositionalMetric) final_xor.update() final_rxor.update() assert torch.allclose(expected_result, final_xor.compute()) assert torch.allclose(expected_result, final_rxor.compute()) def test_metrics_abs(): """Test that `abs` operator works and returns a compositional metric.""" first_metric = DummyMetric(-1) final_abs = abs(first_metric) assert isinstance(final_abs, CompositionalMetric) final_abs.update() assert torch.allclose(tensor(1), final_abs.compute()) def test_metrics_invert(): """Test that `invert` operator works and returns a compositional metric.""" first_metric = DummyMetric(1) final_inverse = ~first_metric assert isinstance(final_inverse, CompositionalMetric) final_inverse.update() assert torch.allclose(tensor(-2), final_inverse.compute()) def test_metrics_neg(): """Test that `neg` operator works and returns a compositional metric.""" first_metric = DummyMetric(1) final_neg = neg(first_metric) assert isinstance(final_neg, CompositionalMetric) final_neg.update() assert torch.allclose(tensor(-1), final_neg.compute()) def test_metrics_pos(): """Test that `pos` operator works and returns a compositional metric.""" first_metric = DummyMetric(-1) final_pos = pos(first_metric) assert isinstance(final_pos, CompositionalMetric) final_pos.update() assert torch.allclose(tensor(1), final_pos.compute()) @pytest.mark.parametrize( ("value", "idx", "expected_result"), [([1, 2, 3], 1, tensor(2)), ([[0, 1], [2, 3]], (1, 0), tensor(2)), ([[0, 1], [2, 3]], 1, tensor([2, 3]))], ) def test_metrics_getitem(value, idx, expected_result): """Test that `getitem` operator works and returns a compositional metric.""" first_metric = DummyMetric(value) final_getitem = first_metric[idx] assert isinstance(final_getitem, CompositionalMetric) final_getitem.update() assert torch.allclose(expected_result, final_getitem.compute()) def test_compositional_metrics_update(): """Test update method for compositional metrics.""" compos = DummyMetric(5) + DummyMetric(4) assert isinstance(compos, CompositionalMetric) compos.update() compos.update() compos.update() assert isinstance(compos.metric_a, DummyMetric) assert isinstance(compos.metric_b, DummyMetric) assert compos.metric_a._num_updates == 3 assert compos.metric_b._num_updates == 3
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/bases/test_metric.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle from collections import OrderedDict from typing import Any from unittest.mock import Mock import cloudpickle import numpy as np import psutil import pytest import torch from torch import Tensor, tensor from torch.nn import Module, Parameter from torchmetrics.classification import BinaryAccuracy from torchmetrics.regression import PearsonCorrCoef from unittests.helpers import seed_all from unittests.helpers.testers import DummyListMetric, DummyMetric, DummyMetricMultiOutput, DummyMetricSum from unittests.helpers.utilities import no_warning_call seed_all(42) def test_error_on_wrong_input(): """Test that base metric class raises error on wrong input types.""" with pytest.raises(ValueError, match="Expected keyword argument `dist_sync_on_step` to be an `bool` but.*"): DummyMetric(dist_sync_on_step=None) with pytest.raises(ValueError, match="Expected keyword argument `dist_sync_fn` to be an callable function.*"): DummyMetric(dist_sync_fn=[2, 3]) with pytest.raises(ValueError, match="Expected keyword argument `compute_on_cpu` to be an `bool` but.*"): DummyMetric(compute_on_cpu=None) with pytest.raises(ValueError, match="Expected keyword argument `sync_on_compute` to be a `bool` but.*"): DummyMetric(sync_on_compute=None) with pytest.raises(ValueError, match="Expected keyword argument `compute_with_cache` to be a `bool` but got.*"): DummyMetric(compute_with_cache=None) with pytest.raises(ValueError, match="Unexpected keyword arguments: `foo`"): DummyMetric(foo=True) with pytest.raises(ValueError, match="Unexpected keyword arguments: `bar`, `foo`"): DummyMetric(foo=True, bar=42) def test_inherit(): """Test that metric that inherits can be instantiated.""" DummyMetric() def test_add_state(): """Test that add state method works as expected.""" metric = DummyMetric() metric.add_state("a", tensor(0), "sum") assert metric._reductions["a"](tensor([1, 1])) == 2 metric.add_state("b", tensor(0), "mean") assert np.allclose(metric._reductions["b"](tensor([1.0, 2.0])).numpy(), 1.5) metric.add_state("c", tensor(0), "cat") assert metric._reductions["c"]([tensor([1]), tensor([1])]).shape == (2,) with pytest.raises(ValueError, match="`dist_reduce_fx` must be callable or one of .*"): metric.add_state("d1", tensor(0), "xyz") with pytest.raises(ValueError, match="`dist_reduce_fx` must be callable or one of .*"): metric.add_state("d2", tensor(0), 42) with pytest.raises(ValueError, match="state variable must be a tensor or any empty list .*"): metric.add_state("d3", [tensor(0)], "sum") with pytest.raises(ValueError, match="state variable must be a tensor or any empty list .*"): metric.add_state("d4", 42, "sum") def custom_fx(_): return -1 metric.add_state("e", tensor(0), custom_fx) assert metric._reductions["e"](tensor([1, 1])) == -1 def test_add_state_persistent(): """Test that metric states are not added to the normal state dict.""" metric = DummyMetric() metric.add_state("a", tensor(0), "sum", persistent=True) assert "a" in metric.state_dict() metric.add_state("b", tensor(0), "sum", persistent=False) assert "a" in metric.metric_state assert "b" in metric.metric_state def test_reset(): """Test that reset method works as expected.""" class A(DummyMetric): pass class B(DummyListMetric): pass metric = A() assert metric.x == 0 metric.x = tensor(5) metric.reset() assert metric.x == 0 metric = B() assert isinstance(metric.x, list) assert len(metric.x) == 0 metric.x = tensor(5) metric.reset() assert isinstance(metric.x, list) assert len(metric.x) == 0 def test_reset_compute(): """Test that `reset`+`compute` methods works as expected.""" metric = DummyMetricSum() assert metric.metric_state == {"x": tensor(0)} metric.update(tensor(5)) assert metric.metric_state == {"x": tensor(5)} assert metric.compute() == 5 metric.reset() assert metric.metric_state == {"x": tensor(0)} assert metric.compute() == 0 def test_update(): """Test that `update` method works as expected.""" class A(DummyMetric): def update(self, x): self.x += x a = A() assert a.metric_state == {"x": tensor(0)} assert a._computed is None a.update(1) assert a._computed is None assert a.metric_state == {"x": tensor(1)} a.update(2) assert a.metric_state == {"x": tensor(3)} assert a._computed is None @pytest.mark.parametrize("compute_with_cache", [True, False]) def test_compute(compute_with_cache): """Test that `compute` method works as expected.""" metric = DummyMetricSum(compute_with_cache=compute_with_cache) assert metric.compute() == 0 assert metric.metric_state == {"x": tensor(0)} metric.update(1) assert metric._computed is None assert metric.compute() == 1 assert metric._computed == 1 if compute_with_cache else metric._computed is None assert metric.metric_state == {"x": tensor(1)} metric.update(2) assert metric._computed is None assert metric.compute() == 3 assert metric._computed == 3 if compute_with_cache else metric._computed is None assert metric.metric_state == {"x": tensor(3)} # called without update, should return cached value metric._computed = 5 assert metric.compute() == 5 assert metric.metric_state == {"x": tensor(3)} def test_hash(): """Test that hashes for different metrics are different, even if states are the same.""" metric_1 = DummyMetric() metric_2 = DummyMetric() assert hash(metric_1) != hash(metric_2) metric_1 = DummyListMetric() metric_2 = DummyListMetric() assert hash(metric_1) != hash(metric_2) # different ids assert isinstance(metric_1.x, list) assert len(metric_1.x) == 0 metric_1.x.append(tensor(5)) assert isinstance(hash(metric_1), int) # <- check that nothing crashes assert isinstance(metric_1.x, list) assert len(metric_1.x) == 1 metric_2.x.append(tensor(5)) # Sanity: assert isinstance(metric_2.x, list) assert len(metric_2.x) == 1 # Now that they have tensor contents, they should have different hashes: assert hash(metric_1) != hash(metric_2) def test_forward(): """Test that `forward` method works as expected.""" metric = DummyMetricSum() assert metric(5) == 5 assert metric._forward_cache == 5 assert metric.metric_state == {"x": tensor(5)} assert metric(8) == 8 assert metric._forward_cache == 8 assert metric.metric_state == {"x": tensor(13)} assert metric.compute() == 13 def test_pickle(tmpdir): """Test that metric can be pickled.""" # doesn't tests for DDP a = DummyMetricSum() a.update(1) metric_pickled = pickle.dumps(a) metric_loaded = pickle.loads(metric_pickled) assert metric_loaded.compute() == 1 metric_loaded.update(5) assert metric_loaded.compute() == 6 metric_pickled = cloudpickle.dumps(a) metric_loaded = cloudpickle.loads(metric_pickled) assert metric_loaded.compute() == 1 def test_state_dict(tmpdir): """Test that metric states can be removed and added to state dict.""" metric = DummyMetric() assert metric.state_dict() == OrderedDict() metric.persistent(True) assert metric.state_dict() == OrderedDict(x=0) metric.persistent(False) assert metric.state_dict() == OrderedDict() def test_load_state_dict(tmpdir): """Test that metric states can be loaded with state dict.""" metric = DummyMetricSum() metric.persistent(True) metric.update(5) loaded_metric = DummyMetricSum() loaded_metric.load_state_dict(metric.state_dict()) assert metric.compute() == 5 def test_check_register_not_in_metric_state(): """Check that calling `register_buffer` or `register_parameter` does not get added to metric state.""" class TempDummyMetric(DummyMetricSum): def __init__(self) -> None: super().__init__() self.register_buffer("buffer", tensor(0, dtype=torch.float)) self.register_parameter("parameter", Parameter(tensor(0, dtype=torch.float))) metric = TempDummyMetric() assert metric.metric_state == {"x": tensor(0)} def test_child_metric_state_dict(): """Test that child metric states will be added to parent state dict.""" class TestModule(Module): def __init__(self) -> None: super().__init__() self.metric = DummyMetric() self.metric.add_state("a", tensor(0), persistent=True) self.metric.add_state("b", [], persistent=True) self.metric.register_buffer("c", tensor(0)) module = TestModule() expected_state_dict = { "metric.a": tensor(0), "metric.b": [], "metric.c": tensor(0), } assert module.state_dict() == expected_state_dict @pytest.mark.skipif(not torch.cuda.is_available(), reason="Test requires GPU.") def test_device_and_dtype_transfer(tmpdir): """Test that device and dtypes are correctly updated when appropriate methods are called.""" metric = DummyMetricSum() assert metric.x.is_cuda is False assert metric.device == torch.device("cpu") assert metric.x.dtype == torch.float32 metric = metric.to(device="cuda") assert metric.x.is_cuda assert metric.device == torch.device("cuda", index=0) metric.set_dtype(torch.double) assert metric.x.dtype == torch.float64 metric.reset() assert metric.x.dtype == torch.float64 metric.set_dtype(torch.half) assert metric.x.dtype == torch.float16 metric.reset() assert metric.x.dtype == torch.float16 def test_disable_of_normal_dtype_methods(): """Check that the default dtype changing methods does nothing.""" metric = DummyMetricSum() assert metric.x.dtype == torch.float32 metric = metric.half() assert metric.x.dtype == torch.float32 metric = metric.double() assert metric.x.dtype == torch.float32 metric = metric.type(torch.half) assert metric.x.dtype == torch.float32 def test_warning_on_compute_before_update(): """Test that an warning is raised if user tries to call compute before update.""" metric = DummyMetricSum() # make sure everything is fine with forward with pytest.warns(None) as record: val = metric(1) assert not record metric.reset() with pytest.warns(UserWarning, match=r"The ``compute`` method of metric .*"): val = metric.compute() assert val == 0.0 # after update things should be fine metric.update(2.0) with pytest.warns(None) as record: val = metric.compute() assert not record assert val == 2.0 @pytest.mark.parametrize("metric_class", [DummyMetric, DummyMetricSum, DummyMetricMultiOutput, DummyListMetric]) def test_metric_scripts(metric_class): """Test that metrics are scriptable.""" torch.jit.script(metric_class()) def test_metric_forward_cache_reset(): """Test that forward cache is reset when `reset` is called.""" metric = DummyMetricSum() _ = metric(2.0) assert metric._forward_cache == 2.0 metric.reset() assert metric._forward_cache is None @pytest.mark.skipif(not torch.cuda.is_available(), reason="Test requires GPU.") @pytest.mark.parametrize("metric_class", [DummyMetricSum, DummyMetricMultiOutput]) def test_forward_and_compute_to_device(metric_class): """Test that the `_forward_cache` and `_computed` attributes are on correct device.""" metric = metric_class() metric(1) metric.to(device="cuda") assert metric._forward_cache is not None is_cuda = ( metric._forward_cache[0].is_cuda if isinstance(metric._forward_cache, list) else metric._forward_cache.is_cuda ) assert is_cuda, "forward cache was not moved to the correct device" metric.compute() assert metric._computed is not None is_cuda = metric._computed[0].is_cuda if isinstance(metric._computed, list) else metric._computed.is_cuda assert is_cuda, "computed result was not moved to the correct device" @pytest.mark.skipif(not torch.cuda.is_available(), reason="Test requires GPU.") @pytest.mark.parametrize("metric_class", [DummyMetricSum, DummyMetricMultiOutput]) def test_device_if_child_module(metric_class): """Test that if a metric is a child module all values gets moved to the correct device.""" class TestModule(Module): def __init__(self) -> None: super().__init__() self.metric = metric_class() self.register_buffer("dummy", torch.zeros(1)) @property def device(self): return self.dummy.device module = TestModule() assert module.device == module.metric.device if isinstance(module.metric.x, Tensor): assert module.device == module.metric.x.device module.to(device="cuda") assert module.device == module.metric.device if isinstance(module.metric.x, Tensor): assert module.device == module.metric.x.device @pytest.mark.parametrize("device", ["cpu", "cuda"]) @pytest.mark.parametrize("requires_grad", [True, False]) def test_constant_memory(device, requires_grad): """Checks that when updating a metric the memory does not increase.""" if not torch.cuda.is_available() and device == "cuda": pytest.skip("Test requires GPU support") def get_memory_usage(): if device == "cpu": pid = os.getpid() py = psutil.Process(pid) return py.memory_info()[0] / 2.0**30 return torch.cuda.memory_allocated() x = torch.randn(10, requires_grad=requires_grad, device=device) # try update method metric = DummyMetricSum().to(device) metric.update(x.sum()) # we allow for 5% flucturation due to measuring base_memory_level = 1.05 * get_memory_usage() for _ in range(10): metric.update(x.sum()) memory = get_memory_usage() assert base_memory_level >= memory, "memory increased above base level" # try forward method metric = DummyMetricSum().to(device) metric(x.sum()) # we allow for 5% flucturation due to measuring base_memory_level = 1.05 * get_memory_usage() for _ in range(10): metric.update(x.sum()) memory = get_memory_usage() assert base_memory_level >= memory, "memory increased above base level" @pytest.mark.skipif(not torch.cuda.is_available(), reason="Test requires GPU.") def test_constant_memory_on_repeat_init(): """Test that when initializing a metric multiple times the memory does not increase. This only works for metrics with `compute_with_cache=False` as otherwise the cache will keep a reference that python gc will not be able to collect and clean. """ def mem(): return torch.cuda.memory_allocated() / 1024**2 x = torch.randn(10000).cuda() for i in range(100): m = DummyListMetric(compute_with_cache=False).cuda() m(x) if i == 0: after_one_iter = mem() # allow for 5% flucturation due to measuring assert after_one_iter * 1.05 >= mem(), "memory increased too much above base level" @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires gpu") def test_specific_error_on_wrong_device(): """Test that a specific error is raised if we detect input and metric are on different devices.""" metric = PearsonCorrCoef() preds = torch.tensor(range(10), device="cuda", dtype=torch.float) target = torch.tensor(range(10), device="cuda", dtype=torch.float) with pytest.raises( RuntimeError, match="This could be due to the metric class not being on the same device as input" ): _ = metric(preds, target) @pytest.mark.parametrize("metric_class", [DummyListMetric, DummyMetric, DummyMetricMultiOutput, DummyMetricSum]) def test_no_warning_on_custom_forward(metric_class): """If metric is using custom forward, full_state_update is irrelevant.""" class UnsetProperty(metric_class): full_state_update = None def forward(self, *args: Any, **kwargs: Any): self.update(*args, **kwargs) with no_warning_call( UserWarning, match="Torchmetrics v0.9 introduced a new argument class property called.*", ): UnsetProperty() def test_custom_availability_check_and_sync_fn(): """Test that custom `dist_sync_fn` can be provided to metric.""" dummy_availability_check = Mock(return_value=True) dummy_dist_sync_fn = Mock(wraps=lambda x, group: [x]) acc = BinaryAccuracy(dist_sync_fn=dummy_dist_sync_fn, distributed_available_fn=dummy_availability_check) acc.update(torch.tensor([[1], [1], [1], [1]]), torch.tensor([[1], [1], [1], [1]])) dummy_dist_sync_fn.assert_not_called() dummy_availability_check.assert_not_called() acc.compute() dummy_availability_check.assert_called_once() assert dummy_dist_sync_fn.call_count == 4 # tp, fp, tn, fn def test_no_iteration_allowed(): """Test that no iteration of metric is allowed.""" metric = DummyMetric() with pytest.raises(TypeError, match="'DummyMetric' object is not iterable"): # noqa: PT012 for _m in metric: continue @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("method", ["forward", "update"]) def test_compute_on_cpu_arg_forward(method): """Test the `compute_on_cpu` argument works in combination with `forward` method.""" metric = DummyListMetric(compute_on_cpu=True) x = torch.randn(10).cuda() if method == "update": metric.update(x) metric.update(x) else: _ = metric(x) _ = metric(x) val = metric.compute() assert all(str(v.device) == "cpu" for v in val) assert all(torch.allclose(v, x.cpu()) for v in val) @pytest.mark.parametrize("method", ["forward", "update"]) @pytest.mark.parametrize("metric", [DummyMetricSum, DummyListMetric]) def test_update_properties(metric, method): """Test that `update_called` and `update_count` attributes is correctly updated.""" m = metric() x = torch.randn( 1, ).squeeze() for i in range(10): if method == "update": m.update(x) if method == "forward": _ = m(x) assert m.update_called assert m.update_count == i + 1 m.reset() assert not m.update_called assert m.update_count == 0
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/bases/test_ddp.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys from copy import deepcopy from functools import partial import pytest import torch from torch import tensor from torchmetrics import Metric from torchmetrics.utilities.distributed import gather_all_tensors from torchmetrics.utilities.exceptions import TorchMetricsUserError from unittests import NUM_PROCESSES from unittests.helpers import seed_all from unittests.helpers.testers import DummyListMetric, DummyMetric, DummyMetricSum seed_all(42) def _test_ddp_sum(rank: int, worldsize: int = NUM_PROCESSES) -> None: dummy = DummyMetric() dummy._reductions = {"foo": torch.sum} dummy.foo = tensor(1) dummy._sync_dist() assert dummy.foo == worldsize def _test_ddp_cat(rank: int, worldsize: int = NUM_PROCESSES) -> None: dummy = DummyMetric() dummy._reductions = {"foo": torch.cat} dummy.foo = [tensor([1])] dummy._sync_dist() assert torch.all(torch.eq(dummy.foo, tensor([1, 1]))) def _test_ddp_sum_cat(rank: int, worldsize: int = NUM_PROCESSES) -> None: dummy = DummyMetric() dummy._reductions = {"foo": torch.cat, "bar": torch.sum} dummy.foo = [tensor([1])] dummy.bar = tensor(1) dummy._sync_dist() assert torch.all(torch.eq(dummy.foo, tensor([1, 1]))) assert dummy.bar == worldsize def _test_ddp_gather_uneven_tensors(rank: int, worldsize: int = NUM_PROCESSES) -> None: tensor = torch.ones(rank) result = gather_all_tensors(tensor) assert len(result) == worldsize for idx in range(worldsize): assert (result[idx] == torch.ones_like(result[idx])).all() def _test_ddp_gather_uneven_tensors_multidim(rank: int, worldsize: int = NUM_PROCESSES) -> None: tensor = torch.ones(rank + 1, 2 - rank) result = gather_all_tensors(tensor) assert len(result) == worldsize for idx in range(worldsize): val = result[idx] assert (val == torch.ones_like(val)).all() def _test_ddp_compositional_tensor(rank: int, worldsize: int = NUM_PROCESSES) -> None: dummy = DummyMetricSum() dummy._reductions = {"x": torch.sum} dummy = dummy.clone() + dummy.clone() dummy.update(tensor(1)) val = dummy.compute() assert val == 2 * worldsize @pytest.mark.skipif(sys.platform == "win32", reason="DDP not available on windows") @pytest.mark.parametrize( "process", [ _test_ddp_cat, _test_ddp_sum, _test_ddp_sum_cat, _test_ddp_gather_uneven_tensors, _test_ddp_gather_uneven_tensors_multidim, _test_ddp_compositional_tensor, ], ) def test_ddp(process): """Test ddp functions.""" pytest.pool.map(process, range(NUM_PROCESSES)) def _test_non_contiguous_tensors(rank): class DummyCatMetric(Metric): full_state_update = True def __init__(self) -> None: super().__init__() self.add_state("x", default=[], dist_reduce_fx=None) def update(self, x): self.x.append(x) def compute(self): x = torch.cat(self.x, dim=0) return x.sum() metric = DummyCatMetric() metric.update(torch.randn(10, 5)[:, 0]) @pytest.mark.skipif(sys.platform == "win32", reason="DDP not available on windows") def test_non_contiguous_tensors(): """Test that gather_all operation works for non contiguous tensors.""" pytest.pool.map(_test_non_contiguous_tensors, range(NUM_PROCESSES)) def _test_state_dict_is_synced(rank, tmpdir): class DummyCatMetric(Metric): full_state_update = True def __init__(self) -> None: super().__init__() self.add_state("x", torch.tensor(0), dist_reduce_fx=torch.sum) self.add_state("c", torch.tensor(0), dist_reduce_fx=torch.sum) def update(self, x): self.x += x self.c += 1 def compute(self): return self.x // self.c def __repr__(self) -> str: return f"DummyCatMetric(x={self.x}, c={self.c})" metric = DummyCatMetric() metric.persistent(True) def verify_metric(metric, i, world_size): state_dict = metric.state_dict() exp_sum = i * (i + 1) / 2 assert state_dict["x"] == exp_sum * world_size assert metric.x == exp_sum * world_size assert metric.c == (i + 1) * world_size assert state_dict["c"] == metric.c steps = 5 for i in range(steps): if metric._is_synced: with pytest.raises(TorchMetricsUserError, match="The Metric shouldn't be synced when performing"): metric(i) metric.unsync() metric(i) verify_metric(metric, i, 1) metric.sync() assert metric._is_synced with pytest.raises(TorchMetricsUserError, match="The Metric has already been synced."): metric.sync() verify_metric(metric, i, 2) metric.unsync() assert not metric._is_synced with pytest.raises(TorchMetricsUserError, match="The Metric has already been un-synced."): metric.unsync() with metric.sync_context(): assert metric._is_synced verify_metric(metric, i, 2) with metric.sync_context(should_unsync=False): assert metric._is_synced verify_metric(metric, i, 2) assert metric._is_synced metric.unsync() assert not metric._is_synced metric.sync() cache = metric._cache metric._cache = None with pytest.raises(TorchMetricsUserError, match="The internal cache should exist to unsync the Metric."): metric.unsync() metric._cache = cache def reload_state_dict(state_dict, expected_x, expected_c): metric = DummyCatMetric() metric.load_state_dict(state_dict) assert metric.x == expected_x assert metric.c == expected_c reload_state_dict(deepcopy(metric.state_dict()), 20, 10) metric.unsync() reload_state_dict(deepcopy(metric.state_dict()), 10, 5) metric.sync() filepath = os.path.join(tmpdir, f"weights-{rank}.pt") torch.save(metric.state_dict(), filepath) metric.unsync() with metric.sync_context(): torch.save(metric.state_dict(), filepath) @pytest.mark.skipif(sys.platform == "win32", reason="DDP not available on windows") def test_state_dict_is_synced(tmpdir): """Tests that metrics are synced while creating the state dict but restored after to continue accumulation.""" pytest.pool.map(partial(_test_state_dict_is_synced, tmpdir=tmpdir), range(NUM_PROCESSES)) def _test_sync_on_compute_tensor_state(rank, sync_on_compute): dummy = DummyMetricSum(sync_on_compute=sync_on_compute) dummy.update(tensor(rank + 1)) val = dummy.compute() if sync_on_compute: assert val == 3 else: assert val == rank + 1 def _test_sync_on_compute_list_state(rank, sync_on_compute): dummy = DummyListMetric(sync_on_compute=sync_on_compute) dummy.update(tensor(rank + 1)) val = dummy.compute() if sync_on_compute: assert val.sum() == 3 assert torch.allclose(val, tensor([1, 2])) or torch.allclose(val, tensor([2, 1])) else: assert val == [tensor(rank + 1)] @pytest.mark.skipif(sys.platform == "win32", reason="DDP not available on windows") @pytest.mark.parametrize("sync_on_compute", [True, False]) @pytest.mark.parametrize("test_func", [_test_sync_on_compute_list_state, _test_sync_on_compute_tensor_state]) def test_sync_on_compute(sync_on_compute, test_func): """Test that synchronization of states can be enabled and disabled for compute.""" pytest.pool.map(partial(test_func, sync_on_compute=sync_on_compute), range(NUM_PROCESSES)) def _test_sync_with_empty_lists(rank): dummy = DummyListMetric() val = dummy.compute() assert val == [] @pytest.mark.skipif(sys.platform == "win32", reason="DDP not available on windows") def test_sync_with_empty_lists(): """Test that synchronization of states can be enabled and disabled for compute.""" pytest.pool.map(_test_sync_with_empty_lists, range(NUM_PROCESSES))
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/bases/test_collections.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pickle import time from copy import deepcopy from typing import Any import pytest import torch from torchmetrics import Metric, MetricCollection from torchmetrics.classification import ( BinaryAccuracy, MulticlassAccuracy, MulticlassAUROC, MulticlassAveragePrecision, MulticlassCohenKappa, MulticlassConfusionMatrix, MulticlassF1Score, MulticlassMatthewsCorrCoef, MulticlassPrecision, MulticlassRecall, MultilabelAUROC, MultilabelAveragePrecision, ) from torchmetrics.utilities.checks import _allclose_recursive from unittests.helpers import seed_all from unittests.helpers.testers import DummyMetricDiff, DummyMetricMultiOutputDict, DummyMetricSum seed_all(42) def test_metric_collection(tmpdir): """Test that updating the metric collection is equal to individually updating metrics in the collection.""" m1 = DummyMetricSum() m2 = DummyMetricDiff() metric_collection = MetricCollection([m1, m2]) # Test correct dict structure assert len(metric_collection) == 2 assert metric_collection["DummyMetricSum"] == m1 assert metric_collection["DummyMetricDiff"] == m2 # Test correct initialization for name, metric in metric_collection.items(): assert metric.x == 0, f"Metric {name} not initialized correctly" # Test every metric gets updated metric_collection.update(5) for name, metric in metric_collection.items(): assert metric.x.abs() == 5, f"Metric {name} not updated correctly" # Test compute on each metric metric_collection.update(-5) metric_vals = metric_collection.compute() assert len(metric_vals) == 2 for name, metric_val in metric_vals.items(): assert metric_val == 0, f"Metric {name}.compute not called correctly" # Test that everything is reset for name, metric in metric_collection.items(): assert metric.x == 0, f"Metric {name} not reset correctly" # Test pickable metric_pickled = pickle.dumps(metric_collection) metric_loaded = pickle.loads(metric_pickled) assert isinstance(metric_loaded, MetricCollection) @pytest.mark.skipif(not torch.cuda.is_available(), reason="Test requires GPU.") def test_device_and_dtype_transfer_metriccollection(tmpdir): """Test that metrics in the collection correctly gets updated their dtype and device.""" m1 = DummyMetricSum() m2 = DummyMetricDiff() metric_collection = MetricCollection([m1, m2]) for metric in metric_collection.values(): assert metric.x.is_cuda is False assert metric.x.dtype == torch.float32 metric_collection = metric_collection.to(device="cuda") for metric in metric_collection.values(): assert metric.x.is_cuda metric_collection = metric_collection.set_dtype(torch.double) for metric in metric_collection.values(): assert metric.x.dtype == torch.float64 metric_collection = metric_collection.set_dtype(torch.half) for metric in metric_collection.values(): assert metric.x.dtype == torch.float16 def test_metric_collection_wrong_input(tmpdir): """Check that errors are raised on wrong input.""" dms = DummyMetricSum() # Not all input are metrics (list) with pytest.raises(ValueError, match="Input .* to `MetricCollection` is not a instance of .*"): _ = MetricCollection([dms, 5]) # Not all input are metrics (dict) with pytest.raises(ValueError, match="Value .* belonging to key .* is not an instance of .*"): _ = MetricCollection({"metric1": dms, "metric2": 5}) # Same metric passed in multiple times with pytest.raises(ValueError, match="Encountered two metrics both named *."): _ = MetricCollection([dms, dms]) # Not a list or dict passed in with pytest.warns(Warning, match=" which are not `Metric` so they will be ignored."): _ = MetricCollection(dms, [dms]) def test_metric_collection_args_kwargs(tmpdir): """Check that args and kwargs gets passed correctly in metric collection, checks both update and forward.""" m1 = DummyMetricSum() m2 = DummyMetricDiff() metric_collection = MetricCollection([m1, m2]) # args gets passed to all metrics metric_collection.update(5) assert metric_collection["DummyMetricSum"].x == 5 assert metric_collection["DummyMetricDiff"].x == -5 metric_collection.reset() _ = metric_collection(5) assert metric_collection["DummyMetricSum"].x == 5 assert metric_collection["DummyMetricDiff"].x == -5 metric_collection.reset() # kwargs gets only passed to metrics that it matches metric_collection.update(x=10, y=20) assert metric_collection["DummyMetricSum"].x == 10 assert metric_collection["DummyMetricDiff"].x == -20 metric_collection.reset() _ = metric_collection(x=10, y=20) assert metric_collection["DummyMetricSum"].x == 10 assert metric_collection["DummyMetricDiff"].x == -20 @pytest.mark.parametrize( ("prefix", "postfix"), [ (None, None), ("prefix_", None), (None, "_postfix"), ("prefix_", "_postfix"), ], ) def test_metric_collection_prefix_postfix_args(prefix, postfix): """Test that the prefix arg alters the keywords in the output.""" m1 = DummyMetricSum() m2 = DummyMetricDiff() names = ["DummyMetricSum", "DummyMetricDiff"] names = [prefix + n if prefix is not None else n for n in names] names = [n + postfix if postfix is not None else n for n in names] metric_collection = MetricCollection([m1, m2], prefix=prefix, postfix=postfix) # test forward out = metric_collection(5) for name in names: assert name in out, "prefix or postfix argument not working as intended with forward method" # test compute out = metric_collection.compute() for name in names: assert name in out, "prefix or postfix argument not working as intended with compute method" # test clone new_metric_collection = metric_collection.clone(prefix="new_prefix_") out = new_metric_collection(5) names = [n[len(prefix) :] if prefix is not None else n for n in names] # strip away old prefix for name in names: assert f"new_prefix_{name}" in out, "prefix argument not working as intended with clone method" for k in new_metric_collection: assert "new_prefix_" in k for k in new_metric_collection.keys(keep_base=False): assert "new_prefix_" in k for k in new_metric_collection.keys(keep_base=True): assert "new_prefix_" not in k assert isinstance(new_metric_collection.keys(keep_base=True), type(new_metric_collection.keys(keep_base=False))) assert isinstance(new_metric_collection.items(keep_base=True), type(new_metric_collection.items(keep_base=False))) new_metric_collection = new_metric_collection.clone(postfix="_new_postfix") out = new_metric_collection(5) names = [n[: -len(postfix)] if postfix is not None else n for n in names] # strip away old postfix for name in names: assert f"new_prefix_{name}_new_postfix" in out, "postfix argument not working as intended with clone method" def test_metric_collection_repr(): """Test MetricCollection.""" class A(DummyMetricSum): pass class B(DummyMetricDiff): pass m1 = A() m2 = B() metric_collection = MetricCollection([m1, m2], prefix=None, postfix=None) expected = "MetricCollection(\n (A): A()\n (B): B()\n)" assert metric_collection.__repr__() == expected metric_collection = MetricCollection([m1, m2], prefix="a", postfix=None) expected = "MetricCollection(\n (A): A()\n (B): B(),\n prefix=a\n)" assert metric_collection.__repr__() == expected metric_collection = MetricCollection([m1, m2], prefix=None, postfix="a") expected = "MetricCollection(\n (A): A()\n (B): B(),\n postfix=a\n)" assert metric_collection.__repr__() == expected metric_collection = MetricCollection([m1, m2], prefix="a", postfix="b") expected = "MetricCollection(\n (A): A()\n (B): B(),\n prefix=a,\n postfix=b\n)" assert metric_collection.__repr__() == expected def test_metric_collection_same_order(): """Test that metrics are stored internally in the same order, regardless of input order.""" m1 = DummyMetricSum() m2 = DummyMetricDiff() col1 = MetricCollection({"a": m1, "b": m2}) col2 = MetricCollection({"b": m2, "a": m1}) for k1, k2 in zip(col1.keys(), col2.keys()): assert k1 == k2 def test_collection_add_metrics(): """Test that `add_metrics` function called multiple times works as expected.""" m1 = DummyMetricSum() m2 = DummyMetricDiff() collection = MetricCollection([m1]) collection.add_metrics({"m1_": DummyMetricSum()}) collection.add_metrics(m2) collection.update(5) results = collection.compute() assert results["DummyMetricSum"] == results["m1_"] assert results["m1_"] == 5 assert results["DummyMetricDiff"] == -5 def test_collection_check_arg(): """Test that the `_check_arg` method works as expected.""" assert MetricCollection._check_arg(None, "prefix") is None assert MetricCollection._check_arg("sample", "prefix") == "sample" with pytest.raises(ValueError, match="Expected input `postfix` to be a string, but got"): MetricCollection._check_arg(1, "postfix") def test_collection_filtering(): """Test that collections works with the kwargs argument.""" class DummyMetric(Metric): full_state_update = True def __init__(self) -> None: super().__init__() def update(self, *args: Any, kwarg: Any): pass def compute(self): return class MyAccuracy(Metric): full_state_update = True def __init__(self) -> None: super().__init__() def update(self, preds, target, kwarg2): pass def compute(self): return mc = MetricCollection([BinaryAccuracy(), DummyMetric()]) mc2 = MetricCollection([MyAccuracy(), DummyMetric()]) mc(torch.tensor([0, 1]), torch.tensor([0, 1]), kwarg="kwarg") mc2(torch.tensor([0, 1]), torch.tensor([0, 1]), kwarg="kwarg", kwarg2="kwarg2") # function for generating _mc_preds = torch.randn(10, 3, 2).softmax(dim=1) _mc_target = torch.randint(3, (10, 2)) _ml_preds = torch.rand(10, 3) _ml_target = torch.randint(2, (10, 3)) @pytest.mark.parametrize( "metrics, expected, preds, target", [ # single metric forms its own compute group (MulticlassAccuracy(num_classes=3), {0: ["MulticlassAccuracy"]}, _mc_preds, _mc_target), # two metrics of same class forms a compute group ( {"acc0": MulticlassAccuracy(num_classes=3), "acc1": MulticlassAccuracy(num_classes=3)}, {0: ["acc0", "acc1"]}, _mc_preds, _mc_target, ), # two metrics from registry forms a compute group ( [MulticlassPrecision(num_classes=3), MulticlassRecall(num_classes=3)], {0: ["MulticlassPrecision", "MulticlassRecall"]}, _mc_preds, _mc_target, ), # two metrics from different classes gives two compute groups ( [MulticlassConfusionMatrix(num_classes=3), MulticlassRecall(num_classes=3)], {0: ["MulticlassConfusionMatrix"], 1: ["MulticlassRecall"]}, _mc_preds, _mc_target, ), # multi group multi metric ( [ MulticlassConfusionMatrix(num_classes=3), MulticlassCohenKappa(num_classes=3), MulticlassRecall(num_classes=3), MulticlassPrecision(num_classes=3), ], {0: ["MulticlassConfusionMatrix", "MulticlassCohenKappa"], 1: ["MulticlassRecall", "MulticlassPrecision"]}, _mc_preds, _mc_target, ), # Complex example ( { "acc": MulticlassAccuracy(num_classes=3), "acc2": MulticlassAccuracy(num_classes=3), "acc3": MulticlassAccuracy(num_classes=3, multidim_average="samplewise"), "f1": MulticlassF1Score(num_classes=3), "recall": MulticlassRecall(num_classes=3), "confmat": MulticlassConfusionMatrix(num_classes=3), }, {0: ["acc", "acc2", "f1", "recall"], 1: ["acc3"], 2: ["confmat"]}, _mc_preds, _mc_target, ), # With list states ( [ MulticlassAUROC(num_classes=3, average="macro"), MulticlassAveragePrecision(num_classes=3, average="macro"), ], {0: ["MulticlassAUROC", "MulticlassAveragePrecision"]}, _mc_preds, _mc_target, ), # Nested collections ( [ MetricCollection( MultilabelAUROC(num_labels=3, average="micro"), MultilabelAveragePrecision(num_labels=3, average="micro"), postfix="_micro", ), MetricCollection( MultilabelAUROC(num_labels=3, average="macro"), MultilabelAveragePrecision(num_labels=3, average="macro"), postfix="_macro", ), ], { 0: [ "MultilabelAUROC_micro", "MultilabelAveragePrecision_micro", "MultilabelAUROC_macro", "MultilabelAveragePrecision_macro", ] }, _ml_preds, _ml_target, ), ], ) class TestComputeGroups: """Test class for testing groups computation.""" @pytest.mark.parametrize( ("prefix", "postfix"), [ (None, None), ("prefix_", None), (None, "_postfix"), ("prefix_", "_postfix"), ], ) def test_check_compute_groups_correctness(self, metrics, expected, preds, target, prefix, postfix): """Check that compute groups are formed after initialization and that metrics are correctly computed.""" if isinstance(metrics, MetricCollection): prefix, postfix = None, None # disable for nested collections m = MetricCollection(deepcopy(metrics), prefix=prefix, postfix=postfix, compute_groups=True) # Construct without for comparison m2 = MetricCollection(deepcopy(metrics), prefix=prefix, postfix=postfix, compute_groups=False) assert len(m.compute_groups) == len(m) assert m2.compute_groups == {} for _ in range(2): # repeat to emulate effect of multiple epochs m.update(preds, target) m2.update(preds, target) for member in m.values(): assert member.update_called assert m.compute_groups == expected assert m2.compute_groups == {} # compute groups should kick in here m.update(preds, target) m2.update(preds, target) for member in m.values(): assert member.update_called # compare results for correctness res_cg = m.compute() res_without_cg = m2.compute() for key in res_cg: assert torch.allclose(res_cg[key], res_without_cg[key]) m.reset() m2.reset() @pytest.mark.parametrize("method", ["items", "values", "keys"]) def test_check_compute_groups_items_and_values(self, metrics, expected, preds, target, method): """Check states are copied instead of passed by ref when a single metric in the collection is access.""" m = MetricCollection(deepcopy(metrics), compute_groups=True) m2 = MetricCollection(deepcopy(metrics), compute_groups=False) for _ in range(2): # repeat to emulate effect of multiple epochs for _ in range(2): # repeat to emulate effect of multiple batches m.update(preds, target) m2.update(preds, target) def _compare(m1, m2): for state in m1._defaults: assert _allclose_recursive(getattr(m1, state), getattr(m2, state)) # if states are still by reference the reset will make following metrics fail m1.reset() m2.reset() if method == "items": for (name_cg, metric_cg), (name_no_cg, metric_no_cg) in zip(m.items(), m2.items()): assert name_cg == name_no_cg _compare(metric_cg, metric_no_cg) if method == "values": for metric_cg, metric_no_cg in zip(m.values(), m2.values()): _compare(metric_cg, metric_no_cg) if method == "keys": for key in m: metric_cg, metric_no_cg = m[key], m2[key] _compare(metric_cg, metric_no_cg) @pytest.mark.parametrize( "metrics", [ {"acc0": MulticlassAccuracy(3), "acc1": MulticlassAccuracy(3)}, [MulticlassPrecision(3), MulticlassRecall(3)], [MulticlassConfusionMatrix(3), MulticlassCohenKappa(3), MulticlassRecall(3), MulticlassPrecision(3)], { "acc": MulticlassAccuracy(3), "acc2": MulticlassAccuracy(3), "acc3": MulticlassAccuracy(num_classes=3, average="macro"), "f1": MulticlassF1Score(3), "recall": MulticlassRecall(3), "confmat": MulticlassConfusionMatrix(3), }, ], ) @pytest.mark.parametrize("steps", [1000]) def test_check_compute_groups_is_faster(metrics, steps): """Check that compute groups are formed after initialization.""" m = MetricCollection(deepcopy(metrics), compute_groups=True) # Construct without for comparison m2 = MetricCollection(deepcopy(metrics), compute_groups=False) preds = torch.randn(10, 3).softmax(dim=-1) target = torch.randint(3, (10,)) start = time.time() for _ in range(steps): m.update(preds, target) time_cg = time.time() - start start = time.time() for _ in range(steps): m2.update(preds, target) time_no_cg = time.time() - start assert time_cg < time_no_cg, "using compute groups were not faster" def test_compute_group_define_by_user(): """Check that user can provide compute groups.""" m = MetricCollection( MulticlassConfusionMatrix(3), MulticlassRecall(3), MulticlassPrecision(3), compute_groups=[["MulticlassConfusionMatrix"], ["MulticlassRecall", "MulticlassPrecision"]], ) # Check that we are not going to check the groups in the first update assert m._groups_checked assert m.compute_groups == {0: ["MulticlassConfusionMatrix"], 1: ["MulticlassRecall", "MulticlassPrecision"]} preds = torch.randn(10, 3).softmax(dim=-1) target = torch.randint(3, (10,)) m.update(preds, target) assert m.compute() def test_compute_on_different_dtype(): """Check that extraction of compute groups are robust towards difference in dtype.""" m = MetricCollection( [ MulticlassConfusionMatrix(num_classes=3), MulticlassMatthewsCorrCoef(num_classes=3), ] ) assert not m._groups_checked assert m.compute_groups == {0: ["MulticlassConfusionMatrix"], 1: ["MulticlassMatthewsCorrCoef"]} preds = torch.randn(10, 3).softmax(dim=-1) target = torch.randint(3, (10,)) for _ in range(2): m.update(preds, target) assert m.compute_groups == {0: ["MulticlassConfusionMatrix", "MulticlassMatthewsCorrCoef"]} assert m.compute() def test_error_on_wrong_specified_compute_groups(): """Test that error is raised if user miss-specify the compute groups.""" with pytest.raises(ValueError, match="Input MulticlassAccuracy in `compute_groups`.*"): MetricCollection( MulticlassConfusionMatrix(3), MulticlassRecall(3), MulticlassPrecision(3), compute_groups=[["MulticlassConfusionMatrix"], ["MulticlassRecall", "MulticlassAccuracy"]], ) @pytest.mark.parametrize( "input_collections", [ [ MetricCollection( [ MulticlassAccuracy(num_classes=3, average="macro"), MulticlassPrecision(num_classes=3, average="macro"), ], prefix="macro_", ), MetricCollection( [ MulticlassAccuracy(num_classes=3, average="micro"), MulticlassPrecision(num_classes=3, average="micro"), ], prefix="micro_", ), ], { "macro": MetricCollection( [ MulticlassAccuracy(num_classes=3, average="macro"), MulticlassPrecision(num_classes=3, average="macro"), ] ), "micro": MetricCollection( [ MulticlassAccuracy(num_classes=3, average="micro"), MulticlassPrecision(num_classes=3, average="micro"), ] ), }, ], ) def test_nested_collections(input_collections): """Test that nested collections gets flattened to a single collection.""" metrics = MetricCollection(input_collections, prefix="valmetrics/") preds = torch.randn(10, 3).softmax(dim=-1) target = torch.randint(3, (10,)) val = metrics(preds, target) assert "valmetrics/macro_MulticlassAccuracy" in val assert "valmetrics/macro_MulticlassPrecision" in val assert "valmetrics/micro_MulticlassAccuracy" in val assert "valmetrics/micro_MulticlassPrecision" in val @pytest.mark.parametrize( ("base_metrics", "expected"), [ ( DummyMetricMultiOutputDict(), ( "prefix2_prefix1_output1_postfix1_postfix2", "prefix2_prefix1_output2_postfix1_postfix2", ), ), ( {"metric1": DummyMetricMultiOutputDict(), "metric2": DummyMetricMultiOutputDict()}, ( "prefix2_prefix1_metric1_output1_postfix1_postfix2", "prefix2_prefix1_metric1_output2_postfix1_postfix2", "prefix2_prefix1_metric2_output1_postfix1_postfix2", "prefix2_prefix1_metric2_output2_postfix1_postfix2", ), ), ], ) def test_double_nested_collections(base_metrics, expected): """Test that double nested collections gets flattened to a single collection.""" collection1 = MetricCollection(base_metrics, prefix="prefix1_", postfix="_postfix1") collection2 = MetricCollection([collection1], prefix="prefix2_", postfix="_postfix2") x = torch.randn(10).sum() val = collection2(x) for key in val: assert key in expected def test_with_custom_prefix_postfix(): """Test that metric collection does not clash with custom prefix and postfix in users metrics. See issue: https://github.com/Lightning-AI/torchmetrics/issues/2065 """ class CustomAccuracy(MulticlassAccuracy): prefix = "my_prefix" postfix = "my_postfix" def compute(self): value = super().compute() return {f"{self.prefix}/accuracy/{self.postfix}": value} class CustomPrecision(MulticlassAccuracy): prefix = "my_prefix" postfix = "my_postfix" def compute(self): value = super().compute() return {f"{self.prefix}/precision/{self.postfix}": value} metrics = MetricCollection([CustomAccuracy(num_classes=2), CustomPrecision(num_classes=2)]) # Update metrics with current batch res = metrics(torch.tensor([1, 0, 0, 1]), torch.tensor([1, 0, 0, 0])) # Print the calculated metrics assert "my_prefix/accuracy/my_postfix" in res assert "my_prefix/precision/my_postfix" in res
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/bases/test_hashing.py
import pytest from unittests.helpers.testers import DummyListMetric, DummyMetric @pytest.mark.parametrize( "metric_cls", [ DummyMetric, DummyListMetric, ], ) def test_metric_hashing(metric_cls): """Tests that hashes are different. See the Metric's hash function for details on why this is required. """ instance_1 = metric_cls() instance_2 = metric_cls() assert hash(instance_1) != hash(instance_2) assert id(instance_1) != id(instance_2)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/regression/test_kendall.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import operator import sys from functools import partial import pytest import torch from lightning_utilities.core.imports import compare_version from scipy.stats import kendalltau from torchmetrics.functional.regression.kendall import kendall_rank_corrcoef from torchmetrics.regression.kendall import KendallRankCorrCoef from torchmetrics.utilities.imports import _SCIPY_GREATER_EQUAL_1_8, _TORCH_LOWER_2_0 from unittests import BATCH_SIZE, EXTRA_DIM, NUM_BATCHES, _Input from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester seed_all(42) _single_inputs1 = _Input(preds=torch.rand(NUM_BATCHES, BATCH_SIZE), target=torch.rand(NUM_BATCHES, BATCH_SIZE)) _single_inputs2 = _Input(preds=torch.randn(NUM_BATCHES, BATCH_SIZE), target=torch.randn(NUM_BATCHES, BATCH_SIZE)) _single_inputs3 = _Input( preds=torch.randint(-10, 10, (NUM_BATCHES, BATCH_SIZE)), target=torch.randint(-10, 10, (NUM_BATCHES, BATCH_SIZE)) ) _multi_inputs1 = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM), target=torch.rand(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM) ) _multi_inputs2 = _Input( preds=torch.randn(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM), target=torch.randn(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM) ) _multi_inputs3 = _Input( preds=torch.randint(-10, 10, (NUM_BATCHES, BATCH_SIZE, EXTRA_DIM)), target=torch.randint(-10, 10, (NUM_BATCHES, BATCH_SIZE, EXTRA_DIM)), ) def _scipy_kendall(preds, target, alternative, variant): metric_args = {} if _SCIPY_GREATER_EQUAL_1_8: metric_args = {"alternative": alternative or "two-sided"} # scipy cannot accept `None` if preds.ndim == 2: out = [ kendalltau(p.numpy(), t.numpy(), method="asymptotic", variant=variant, **metric_args) for p, t in zip(preds.T, target.T) ] tau = torch.cat([torch.tensor(o[0]).unsqueeze(0) for o in out]) p_value = torch.cat([torch.tensor(o[1]).unsqueeze(0) for o in out]) if alternative is not None: return tau, p_value return tau tau, p_value = kendalltau(preds.numpy(), target.numpy(), method="asymptotic", variant=variant, **metric_args) if alternative is not None: return torch.tensor(tau), torch.tensor(p_value) return torch.tensor(tau) @pytest.mark.parametrize( "preds, target, alternative", [ (_single_inputs1.preds, _single_inputs1.target, None), (_single_inputs2.preds, _single_inputs2.target, "less"), (_single_inputs3.preds, _single_inputs3.target, "greater"), (_multi_inputs1.preds, _multi_inputs1.target, None), (_multi_inputs2.preds, _multi_inputs2.target, "two-sided"), (_multi_inputs3.preds, _multi_inputs3.target, "greater"), ], ) @pytest.mark.parametrize("variant", ["b", "c"]) class TestKendallRankCorrCoef(MetricTester): """Test class for `KendallRankCorrCoef` metric.""" # TODO @pytest.mark.skipif( sys.platform == "darwin" and not _TORCH_LOWER_2_0, reason="Tests are not working on mac for newer version of PyTorch.", ) @pytest.mark.parametrize("ddp", [False, True]) def test_kendall_rank_corrcoef(self, preds, target, alternative, variant, ddp): """Test class implementation of metric.""" num_outputs = EXTRA_DIM if preds.ndim == 3 else 1 t_test = bool(alternative is not None) _sk_kendall_tau = partial(_scipy_kendall, alternative=alternative, variant=variant) alternative = _adjust_alternative_to_scipy(alternative) self.run_class_metric_test( ddp, preds, target, KendallRankCorrCoef, _sk_kendall_tau, metric_args={"t_test": t_test, "alternative": alternative, "variant": variant, "num_outputs": num_outputs}, ) def test_kendall_rank_corrcoef_functional(self, preds, target, alternative, variant): """Test functional implementation of metric.""" t_test = bool(alternative is not None) alternative = _adjust_alternative_to_scipy(alternative) metric_args = {"t_test": t_test, "alternative": alternative, "variant": variant} _sk_kendall_tau = partial(_scipy_kendall, alternative=alternative, variant=variant) self.run_functional_metric_test(preds, target, kendall_rank_corrcoef, _sk_kendall_tau, metric_args=metric_args) def test_kendall_rank_corrcoef_differentiability(self, preds, target, alternative, variant): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" num_outputs = EXTRA_DIM if preds.ndim == 3 else 1 self.run_differentiability_test( preds=preds, target=target, metric_module=partial(KendallRankCorrCoef, num_outputs=num_outputs), metric_functional=kendall_rank_corrcoef, ) def _adjust_alternative_to_scipy(alternative): """Scipy<1.8.0 supports only two-sided hypothesis testing.""" if alternative is not None and not compare_version("scipy", operator.ge, "1.8.0"): return "two-sided" return alternative
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/regression/test_cosine_similarity.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from sklearn.metrics.pairwise import cosine_similarity as sk_cosine from torchmetrics.functional.regression.cosine_similarity import cosine_similarity from torchmetrics.regression.cosine_similarity import CosineSimilarity from unittests import BATCH_SIZE, NUM_BATCHES, _Input from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester seed_all(42) num_targets = 5 _single_target_inputs = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE), target=torch.rand(NUM_BATCHES, BATCH_SIZE), ) _multi_target_inputs = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE, num_targets), target=torch.rand(NUM_BATCHES, BATCH_SIZE, num_targets), ) def _multi_target_ref_metric(preds, target, reduction, sk_fn=sk_cosine): sk_preds = preds.view(-1, num_targets).numpy() sk_target = target.view(-1, num_targets).numpy() result_array = sk_fn(sk_target, sk_preds) col = np.diagonal(result_array) col_sum = col.sum() if reduction == "sum": return col_sum if reduction == "mean": return col_sum / len(col) return col def _single_target_ref_metric(preds, target, reduction, sk_fn=sk_cosine): sk_preds = preds.view(-1).numpy() sk_target = target.view(-1).numpy() result_array = sk_fn(np.expand_dims(sk_preds, axis=0), np.expand_dims(sk_target, axis=0)) col = np.diagonal(result_array) col_sum = col.sum() if reduction == "sum": return col_sum if reduction == "mean": return col_sum / len(col) return col @pytest.mark.parametrize("reduction", ["sum", "mean"]) @pytest.mark.parametrize( "preds, target, ref_metric", [ (_single_target_inputs.preds, _single_target_inputs.target, _single_target_ref_metric), (_multi_target_inputs.preds, _multi_target_inputs.target, _multi_target_ref_metric), ], ) class TestCosineSimilarity(MetricTester): """Test class for `CosineSimilarity` metric.""" @pytest.mark.parametrize("ddp", [True, False]) def test_cosine_similarity(self, reduction, preds, target, ref_metric, ddp): """Test class implementation of metric.""" self.run_class_metric_test( ddp, preds, target, CosineSimilarity, partial(ref_metric, reduction=reduction), metric_args={"reduction": reduction}, ) def test_cosine_similarity_functional(self, reduction, preds, target, ref_metric): """Test functional implementation of metric.""" self.run_functional_metric_test( preds, target, cosine_similarity, partial(ref_metric, reduction=reduction), metric_args={"reduction": reduction}, ) def test_error_on_different_shape(metric_class=CosineSimilarity): """Test that error is raised on different shapes of input.""" metric = metric_class() with pytest.raises(RuntimeError, match="Predictions and targets are expected to have the same shape"): metric(torch.randn(100), torch.randn(50))
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/regression/test_tweedie_deviance.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import pytest import torch from sklearn.metrics import mean_tweedie_deviance from torch import Tensor from torchmetrics.functional.regression.tweedie_deviance import tweedie_deviance_score from torchmetrics.regression.tweedie_deviance import TweedieDevianceScore from unittests import BATCH_SIZE, NUM_BATCHES, _Input from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester seed_all(42) _single_target_inputs1 = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE), target=torch.rand(NUM_BATCHES, BATCH_SIZE), ) _single_target_inputs2 = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE), target=torch.rand(NUM_BATCHES, BATCH_SIZE), ) _multi_target_inputs = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE, 5), target=torch.rand(NUM_BATCHES, BATCH_SIZE, 5), ) def _sklearn_deviance(preds: Tensor, targets: Tensor, power: float): sk_preds = preds.view(-1).numpy() sk_target = targets.view(-1).numpy() return mean_tweedie_deviance(sk_target, sk_preds, power=power) @pytest.mark.parametrize("power", [-0.5, 0, 1, 1.5, 2, 3]) @pytest.mark.parametrize( "preds, target", [ (_single_target_inputs2.preds, _single_target_inputs2.target), (_single_target_inputs1.preds, _single_target_inputs1.target), (_multi_target_inputs.preds, _multi_target_inputs.target), ], ) class TestDevianceScore(MetricTester): """Test class for `TweedieDevianceScore` metric.""" @pytest.mark.parametrize("ddp", [True, False]) def test_deviance_scores_class(self, ddp, preds, target, power): """Test class implementation of metric.""" self.run_class_metric_test( ddp, preds, target, TweedieDevianceScore, partial(_sklearn_deviance, power=power), metric_args={"power": power}, ) def test_deviance_scores_functional(self, preds, target, power): """Test functional implementation of metric.""" self.run_functional_metric_test( preds, target, tweedie_deviance_score, partial(_sklearn_deviance, power=power), metric_args={"power": power}, ) def test_deviance_scores_differentiability(self, preds, target, power): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" self.run_differentiability_test( preds, target, metric_module=TweedieDevianceScore, metric_functional=tweedie_deviance_score ) # Tweedie Deviance Score half + cpu does not work for power=[1,2] due to missing support in torch.log def test_deviance_scores_half_cpu(self, preds, target, power): """Test dtype support of the metric on CPU.""" if power in [1, 2]: pytest.skip( "Tweedie Deviance Score half + cpu does not work for power=[1,2] due to missing support in torch.log" ) metric_args = {"power": power} self.run_precision_test_cpu( preds, target, metric_module=TweedieDevianceScore, metric_functional=tweedie_deviance_score, metric_args=metric_args, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") def test_deviance_scores_half_gpu(self, preds, target, power): """Test dtype support of the metric on GPU.""" metric_args = {"power": power} self.run_precision_test_gpu( preds, target, metric_module=TweedieDevianceScore, metric_functional=tweedie_deviance_score, metric_args=metric_args, ) def test_error_on_different_shape(metric_class=TweedieDevianceScore): """Test that error is raised on different shapes of input.""" metric = metric_class() with pytest.raises(RuntimeError, match="Predictions and targets are expected to have the same shape"): metric(torch.randn(100), torch.randn(50)) def test_error_on_invalid_inputs(metric_class=TweedieDevianceScore): """Test that error is raised on wrong argument combinations.""" with pytest.raises(ValueError, match="Deviance Score is not defined for power=0.5."): metric_class(power=0.5) metric = metric_class(power=1) with pytest.raises( ValueError, match="For power=1, 'preds' has to be strictly positive and 'targets' cannot be negative." ): metric(torch.tensor([-1.0, 2.0, 3.0]), torch.rand(3)) with pytest.raises( ValueError, match="For power=1, 'preds' has to be strictly positive and 'targets' cannot be negative." ): metric(torch.rand(3), torch.tensor([-1.0, 2.0, 3.0])) metric = metric_class(power=2) with pytest.raises(ValueError, match="For power=2, both 'preds' and 'targets' have to be strictly positive."): metric(torch.tensor([-1.0, 2.0, 3.0]), torch.rand(3)) with pytest.raises(ValueError, match="For power=2, both 'preds' and 'targets' have to be strictly positive."): metric(torch.rand(3), torch.tensor([-1.0, 2.0, 3.0])) def test_corner_case_for_power_at_1(metric_class=TweedieDevianceScore): """Test that corner case for power=1.0 produce valid result.""" metric = TweedieDevianceScore() targets = torch.tensor([0, 1, 0, 1]) preds = torch.tensor([0.1, 0.1, 0.1, 0.1]) val = metric(preds, targets) assert val != 0.0 assert not torch.isnan(val)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/regression/test_kl_divergence.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from typing import NamedTuple, Optional import numpy as np import pytest import torch from scipy.stats import entropy from torch import Tensor from torchmetrics.functional.regression.kl_divergence import kl_divergence from torchmetrics.regression.kl_divergence import KLDivergence from torchmetrics.utilities.imports import _TORCH_GREATER_EQUAL_2_1 from unittests import BATCH_SIZE, EXTRA_DIM, NUM_BATCHES from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester seed_all(42) class _Input(NamedTuple): p: Tensor q: Tensor _probs_inputs = _Input( p=torch.rand(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM), q=torch.rand(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM), ) _log_probs_inputs = _Input( p=torch.rand(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM).softmax(dim=-1).log(), q=torch.rand(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM).softmax(dim=-1).log(), ) def _wrap_reduction(p: Tensor, q: Tensor, log_prob: bool, reduction: Optional[str] = "mean"): if log_prob: p = p.softmax(dim=-1) q = q.softmax(dim=-1) res = entropy(p, q, axis=1) if reduction == "mean": return np.mean(res) if reduction == "sum": return np.sum(res) return res @pytest.mark.parametrize("reduction", ["mean", "sum"]) @pytest.mark.parametrize( "p, q, log_prob", [(_probs_inputs.p, _probs_inputs.q, False), (_log_probs_inputs.p, _log_probs_inputs.q, True)] ) class TestKLDivergence(MetricTester): """Test class for `KLDivergence` metric.""" atol = 1e-6 @pytest.mark.parametrize("ddp", [True, False]) def test_kldivergence(self, reduction, p, q, log_prob, ddp): """Test class implementation of metric.""" self.run_class_metric_test( ddp, p, q, KLDivergence, partial(_wrap_reduction, log_prob=log_prob, reduction=reduction), metric_args={"log_prob": log_prob, "reduction": reduction}, ) def test_kldivergence_functional(self, reduction, p, q, log_prob): """Test functional implementation of metric.""" self.run_functional_metric_test( p, q, kl_divergence, partial(_wrap_reduction, log_prob=log_prob, reduction=reduction), metric_args={"log_prob": log_prob, "reduction": reduction}, ) def test_kldivergence_differentiability(self, reduction, p, q, log_prob): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" self.run_differentiability_test( p, q, metric_module=KLDivergence, metric_functional=kl_divergence, metric_args={"log_prob": log_prob, "reduction": reduction}, ) # KLDivergence half + cpu does not work due to missing support in torch.clamp @pytest.mark.skipif( not _TORCH_GREATER_EQUAL_2_1, reason="Pytoch below 2.1 does not support cpu + half precision used in KLDivergence metric", ) def test_kldivergence_half_cpu(self, reduction, p, q, log_prob): """Test dtype support of the metric on CPU.""" self.run_precision_test_cpu(p, q, KLDivergence, kl_divergence, {"log_prob": log_prob, "reduction": reduction}) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") def test_kldivergence_half_gpu(self, reduction, p, q, log_prob): """Test dtype support of the metric on GPU.""" self.run_precision_test_gpu(p, q, KLDivergence, kl_divergence, {"log_prob": log_prob, "reduction": reduction}) def test_error_on_different_shape(): """Test that error is raised on different shapes of input.""" metric = KLDivergence() with pytest.raises(RuntimeError, match="Predictions and targets are expected to have the same shape"): metric(torch.randn(100), torch.randn(50)) def test_error_on_multidim_tensors(): """Test that error is raised if a larger than 2D tensor is given as input.""" metric = KLDivergence() with pytest.raises(ValueError, match="Expected both p and q distribution to be 2D but got 3 and 3 respectively"): metric(torch.randn(10, 20, 5), torch.randn(10, 20, 5)) def test_zero_probability(): """When p = 0 in kl divergence the score should not output Nan.""" metric = KLDivergence() metric.update( torch.tensor([[1.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 1.0]]), torch.tensor(torch.randn(3, 3).softmax(dim=-1)), ) assert not torch.isnan(metric.compute()) def test_inf_case(): """When q = 0 in kl divergence the score should be inf.""" metric = KLDivergence() metric.update(torch.tensor([[0.3, 0.3, 0.4]]), torch.tensor([[0.5, 0.5, 0]])) assert not torch.isfinite(metric.compute())
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/regression/test_log_cosh_error.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from torchmetrics.functional.regression.log_cosh import log_cosh_error from torchmetrics.regression.log_cosh import LogCoshError from unittests import BATCH_SIZE, NUM_BATCHES, _Input from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester seed_all(42) num_targets = 5 _single_target_inputs = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE), target=torch.rand(NUM_BATCHES, BATCH_SIZE), ) _multi_target_inputs = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE, num_targets), target=torch.rand(NUM_BATCHES, BATCH_SIZE, num_targets), ) def _sk_log_cosh_error(preds, target): preds, target = preds.numpy(), target.numpy() diff = preds - target if diff.ndim == 1: return np.mean(np.log((np.exp(diff) + np.exp(-diff)) / 2)) return np.mean(np.log((np.exp(diff) + np.exp(-diff)) / 2), axis=0) @pytest.mark.parametrize( "preds, target", [ (_single_target_inputs.preds, _single_target_inputs.target), (_multi_target_inputs.preds, _multi_target_inputs.target), ], ) class TestLogCoshError(MetricTester): """Test class for `LogCoshError` metric.""" @pytest.mark.parametrize("ddp", [True, False]) def test_log_cosh_error_class(self, ddp, preds, target): """Test class implementation of metric.""" num_outputs = 1 if preds.ndim == 2 else num_targets self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=LogCoshError, reference_metric=_sk_log_cosh_error, metric_args={"num_outputs": num_outputs}, ) def test_log_cosh_error_functional(self, preds, target): """Test functional implementation of metric.""" self.run_functional_metric_test( preds=preds, target=target, metric_functional=log_cosh_error, reference_metric=_sk_log_cosh_error, ) def test_log_cosh_error_differentiability(self, preds, target): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" num_outputs = 1 if preds.ndim == 2 else num_targets self.run_differentiability_test( preds=preds, target=target, metric_module=partial(LogCoshError, num_outputs=num_outputs), metric_functional=log_cosh_error, )
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/regression/test_minkowski_distance.py
from functools import partial import pytest import torch from scipy.spatial.distance import minkowski as scipy_minkowski from torchmetrics.functional import minkowski_distance from torchmetrics.regression import MinkowskiDistance from torchmetrics.utilities.exceptions import TorchMetricsUserError from unittests import BATCH_SIZE, NUM_BATCHES, _Input from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester seed_all(42) num_targets = 5 _single_target_inputs = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE), target=torch.rand(NUM_BATCHES, BATCH_SIZE), ) _multi_target_inputs = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE, num_targets), target=torch.rand(NUM_BATCHES, BATCH_SIZE, num_targets), ) def _sk_metric_single_target(preds, target, p): sk_preds = preds.view(-1).numpy() sk_target = target.view(-1).numpy() return scipy_minkowski(sk_preds, sk_target, p=p) def _sk_metric_multi_target(preds, target, p): sk_preds = preds.view(-1).numpy() sk_target = target.view(-1).numpy() return scipy_minkowski(sk_preds, sk_target, p=p) @pytest.mark.parametrize( "preds, target, ref_metric", [ (_single_target_inputs.preds, _single_target_inputs.target, _sk_metric_single_target), (_multi_target_inputs.preds, _multi_target_inputs.target, _sk_metric_multi_target), ], ) @pytest.mark.parametrize("p", [1, 2, 4, 1.5]) class TestMinkowskiDistance(MetricTester): """Test class for `MinkowskiDistance` metric.""" @pytest.mark.parametrize("ddp", [True, False]) @pytest.mark.parametrize("dist_sync_on_step", [True, False]) def test_minkowski_distance_class(self, preds, target, ref_metric, p, ddp, dist_sync_on_step): """Test class implementation of metric.""" self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MinkowskiDistance, reference_metric=partial(ref_metric, p=p), dist_sync_on_step=dist_sync_on_step, metric_args={"p": p}, ) def test_minkowski_distance_functional(self, preds, target, ref_metric, p): """Test functional implementation of metric.""" self.run_functional_metric_test( preds=preds, target=target, metric_functional=minkowski_distance, reference_metric=partial(ref_metric, p=p), metric_args={"p": p}, ) def test_minkowski_distance_half_cpu(self, preds, target, ref_metric, p): """Test dtype support of the metric on CPU.""" self.run_precision_test_cpu(preds, target, MinkowskiDistance, minkowski_distance, metric_args={"p": p}) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") def test_minkowski_distance_half_gpu(self, preds, target, ref_metric, p): """Test dtype support of the metric on GPU.""" self.run_precision_test_gpu(preds, target, MinkowskiDistance, minkowski_distance, metric_args={"p": p}) def test_error_on_different_shape(): """Test that error is raised on different shapes of input.""" metric = MinkowskiDistance(5.1) with pytest.raises(RuntimeError, match="Predictions and targets are expected to have the same shape"): metric(torch.randn(50), torch.randn(100)) def test_error_on_wrong_p_arg(): """Test that error is raised if wrongly p argument is provided.""" with pytest.raises(TorchMetricsUserError, match="Argument ``p`` must be a float.*"): MinkowskiDistance(p=-10)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/regression/test_explained_variance.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import pytest import torch from sklearn.metrics import explained_variance_score from torchmetrics.functional import explained_variance from torchmetrics.regression import ExplainedVariance from unittests import BATCH_SIZE, NUM_BATCHES, _Input from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester seed_all(42) num_targets = 5 _single_target_inputs = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE), target=torch.rand(NUM_BATCHES, BATCH_SIZE), ) _multi_target_inputs = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE, num_targets), target=torch.rand(NUM_BATCHES, BATCH_SIZE, num_targets), ) def _single_target_ref_metric(preds, target, sk_fn=explained_variance_score): sk_preds = preds.view(-1).numpy() sk_target = target.view(-1).numpy() return sk_fn(sk_target, sk_preds) def _multi_target_ref_metric(preds, target, sk_fn=explained_variance_score): sk_preds = preds.view(-1, num_targets).numpy() sk_target = target.view(-1, num_targets).numpy() return sk_fn(sk_target, sk_preds) @pytest.mark.parametrize("multioutput", ["raw_values", "uniform_average", "variance_weighted"]) @pytest.mark.parametrize( "preds, target, ref_metric", [ (_single_target_inputs.preds, _single_target_inputs.target, _single_target_ref_metric), (_multi_target_inputs.preds, _multi_target_inputs.target, _multi_target_ref_metric), ], ) class TestExplainedVariance(MetricTester): """Test class for `ExplainedVariance` metric.""" @pytest.mark.parametrize("ddp", [True, False]) def test_explained_variance(self, multioutput, preds, target, ref_metric, ddp): """Test class implementation of metric.""" self.run_class_metric_test( ddp, preds, target, ExplainedVariance, partial(ref_metric, sk_fn=partial(explained_variance_score, multioutput=multioutput)), metric_args={"multioutput": multioutput}, ) def test_explained_variance_functional(self, multioutput, preds, target, ref_metric): """Test functional implementation of metric.""" self.run_functional_metric_test( preds, target, explained_variance, partial(ref_metric, sk_fn=partial(explained_variance_score, multioutput=multioutput)), metric_args={"multioutput": multioutput}, ) def test_explained_variance_differentiability(self, multioutput, preds, target, ref_metric): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" self.run_differentiability_test( preds=preds, target=target, metric_module=ExplainedVariance, metric_functional=explained_variance, metric_args={"multioutput": multioutput}, ) def test_explained_variance_half_cpu(self, multioutput, preds, target, ref_metric): """Test dtype support of the metric on CPU.""" self.run_precision_test_cpu(preds, target, ExplainedVariance, explained_variance) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") def test_explained_variance_half_gpu(self, multioutput, preds, target, ref_metric): """Test dtype support of the metric on GPU.""" self.run_precision_test_gpu(preds, target, ExplainedVariance, explained_variance) def test_error_on_different_shape(metric_class=ExplainedVariance): """Test that error is raised on different shapes of input.""" metric = metric_class() with pytest.raises(RuntimeError, match="Predictions and targets are expected to have the same shape"): metric(torch.randn(100), torch.randn(50))
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/regression/test_concordance.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from scipy.stats import pearsonr from torchmetrics.functional.regression.concordance import concordance_corrcoef from torchmetrics.regression.concordance import ConcordanceCorrCoef from torchmetrics.utilities.imports import _TORCH_GREATER_EQUAL_2_1 from unittests import BATCH_SIZE, EXTRA_DIM, NUM_BATCHES, _Input from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester seed_all(42) _single_target_inputs1 = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE), target=torch.rand(NUM_BATCHES, BATCH_SIZE), ) _single_target_inputs2 = _Input( preds=torch.randn(NUM_BATCHES, BATCH_SIZE), target=torch.randn(NUM_BATCHES, BATCH_SIZE), ) _multi_target_inputs1 = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM), target=torch.rand(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM), ) _multi_target_inputs2 = _Input( preds=torch.randn(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM), target=torch.randn(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM), ) def _scipy_concordance(preds, target): preds, target = preds.numpy(), target.numpy() if preds.ndim == 2: mean_pred = np.mean(preds, axis=0) mean_gt = np.mean(target, axis=0) std_pred = np.std(preds, axis=0) std_gt = np.std(target, axis=0) pearson = np.stack([pearsonr(t, p)[0] for t, p in zip(target.T, preds.T)]) else: mean_pred = np.mean(preds) mean_gt = np.mean(target) std_pred = np.std(preds) std_gt = np.std(target) pearson = pearsonr(target, preds)[0] return 2.0 * pearson * std_pred * std_gt / (std_pred**2 + std_gt**2 + (mean_pred - mean_gt) ** 2) @pytest.mark.parametrize( "preds, target", [ (_single_target_inputs1.preds, _single_target_inputs1.target), (_single_target_inputs2.preds, _single_target_inputs2.target), (_multi_target_inputs1.preds, _multi_target_inputs1.target), (_multi_target_inputs2.preds, _multi_target_inputs2.target), ], ) class TestConcordanceCorrCoef(MetricTester): """Test class for `ConcordanceCorrCoef` metric.""" atol = 1e-3 @pytest.mark.parametrize("ddp", [True, False]) def test_concordance_corrcoef(self, preds, target, ddp): """Test class implementation of metric.""" num_outputs = EXTRA_DIM if preds.ndim == 3 else 1 self.run_class_metric_test( ddp, preds, target, ConcordanceCorrCoef, _scipy_concordance, metric_args={"num_outputs": num_outputs}, ) def test_concordance_corrcoef_functional(self, preds, target): """Test functional implementation of metric.""" self.run_functional_metric_test(preds, target, concordance_corrcoef, _scipy_concordance) def test_concordance_corrcoef_differentiability(self, preds, target): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" num_outputs = EXTRA_DIM if preds.ndim == 3 else 1 self.run_differentiability_test( preds=preds, target=target, metric_module=partial(ConcordanceCorrCoef, num_outputs=num_outputs), metric_functional=concordance_corrcoef, ) # Spearman half + cpu does not work due to missing support in torch.arange @pytest.mark.skipif( not _TORCH_GREATER_EQUAL_2_1, reason="Pytoch below 2.1 does not support cpu + half precision used in Concordance metric", ) def test_concordance_corrcoef_half_cpu(self, preds, target): """Test dtype support of the metric on CPU.""" num_outputs = EXTRA_DIM if preds.ndim == 3 else 1 self.run_precision_test_cpu( preds, target, partial(ConcordanceCorrCoef, num_outputs=num_outputs), concordance_corrcoef ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") def test_concordance_corrcoef_half_gpu(self, preds, target): """Test dtype support of the metric on GPU.""" num_outputs = EXTRA_DIM if preds.ndim == 3 else 1 self.run_precision_test_gpu( preds, target, partial(ConcordanceCorrCoef, num_outputs=num_outputs), concordance_corrcoef ) def test_error_on_different_shape(): """Test that error is raised on different shapes of input.""" metric = ConcordanceCorrCoef(num_outputs=1) with pytest.raises(RuntimeError, match="Predictions and targets are expected to have the same shape"): metric(torch.randn(100), torch.randn(50)) metric = ConcordanceCorrCoef(num_outputs=5) with pytest.raises(ValueError, match="Expected both predictions and target to be either 1- or 2-.*"): metric(torch.randn(100, 2, 5), torch.randn(100, 2, 5)) metric = ConcordanceCorrCoef(num_outputs=2) with pytest.raises(ValueError, match="Expected argument `num_outputs` to match the second dimension of input.*"): metric(torch.randn(100, 5), torch.randn(100, 5))
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/regression/test_rse.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from torchmetrics.functional import relative_squared_error from torchmetrics.regression import RelativeSquaredError from torchmetrics.utilities.imports import _TORCH_GREATER_EQUAL_2_1 from unittests import BATCH_SIZE, NUM_BATCHES, _Input from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester seed_all(42) num_targets = 5 _single_target_inputs = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE), target=torch.rand(NUM_BATCHES, BATCH_SIZE), ) _multi_target_inputs = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE, num_targets), target=torch.rand(NUM_BATCHES, BATCH_SIZE, num_targets), ) def _sk_rse(target, preds, squared): mean = np.mean(target, axis=0, keepdims=True) error = target - preds sum_squared_error = np.sum(error * error, axis=0) deviation = target - mean sum_squared_deviation = np.sum(deviation * deviation, axis=0) rse = sum_squared_error / np.maximum(sum_squared_deviation, 1.17e-06) if not squared: rse = np.sqrt(rse) return np.mean(rse) def _single_target_ref_metric(preds, target, squared): sk_preds = preds.view(-1).numpy() sk_target = target.view(-1).numpy() return _sk_rse(sk_target, sk_preds, squared=squared) def _multi_target_ref_metric(preds, target, squared): sk_preds = preds.view(-1, num_targets).numpy() sk_target = target.view(-1, num_targets).numpy() return _sk_rse(sk_target, sk_preds, squared=squared) @pytest.mark.parametrize("squared", [False, True]) @pytest.mark.parametrize( "preds, target, ref_metric, num_outputs", [ (_single_target_inputs.preds, _single_target_inputs.target, _single_target_ref_metric, 1), (_multi_target_inputs.preds, _multi_target_inputs.target, _multi_target_ref_metric, num_targets), ], ) class TestRelativeSquaredError(MetricTester): """Test class for `RelativeSquaredError` metric.""" @pytest.mark.parametrize("ddp", [True, False]) def test_rse(self, squared, preds, target, ref_metric, num_outputs, ddp): """Test class implementation of metric.""" self.run_class_metric_test( ddp, preds, target, RelativeSquaredError, partial(ref_metric, squared=squared), metric_args={"squared": squared, "num_outputs": num_outputs}, ) def test_rse_functional(self, squared, preds, target, ref_metric, num_outputs): """Test functional implementation of metric.""" self.run_functional_metric_test( preds, target, relative_squared_error, partial(ref_metric, squared=squared), metric_args={"squared": squared}, ) def test_rse_differentiability(self, squared, preds, target, ref_metric, num_outputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" self.run_differentiability_test( preds=preds, target=target, metric_module=partial(RelativeSquaredError, num_outputs=num_outputs), metric_functional=relative_squared_error, metric_args={"squared": squared}, ) @pytest.mark.skipif( not _TORCH_GREATER_EQUAL_2_1, reason="Pytoch below 2.1 does not support cpu + half precision used in `clamp_min_cpu`", ) def test_rse_half_cpu(self, squared, preds, target, ref_metric, num_outputs): """Test dtype support of the metric on CPU.""" self.run_precision_test_cpu( preds, target, partial(RelativeSquaredError, num_outputs=num_outputs), relative_squared_error, {"squared": squared}, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") def test_rse_half_gpu(self, squared, preds, target, ref_metric, num_outputs): """Test dtype support of the metric on GPU.""" self.run_precision_test_gpu( preds, target, partial(RelativeSquaredError, num_outputs=num_outputs), relative_squared_error, {"squared": squared}, ) def test_error_on_different_shape(metric_class=RelativeSquaredError): """Test that error is raised on different shapes of input.""" metric = metric_class() with pytest.raises(RuntimeError, match="Predictions and targets are expected to have the same shape"): metric(torch.randn(100), torch.randn(50)) def test_error_on_multidim_tensors(metric_class=RelativeSquaredError): """Test that error is raised if a larger than 2D tensor is given as input.""" metric = metric_class() with pytest.raises( ValueError, match=r"Expected both prediction and target to be 1D or 2D tensors, but received tensors with dimension .", ): metric(torch.randn(10, 20, 5), torch.randn(10, 20, 5))
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/regression/test_mean_error.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from functools import partial from typing import Optional import numpy as np import pytest import torch from sklearn.metrics import mean_absolute_error as sk_mean_absolute_error from sklearn.metrics import mean_absolute_percentage_error as sk_mean_abs_percentage_error from sklearn.metrics import mean_squared_error as sk_mean_squared_error from sklearn.metrics import mean_squared_log_error as sk_mean_squared_log_error from sklearn.metrics._regression import _check_reg_targets from sklearn.utils import check_consistent_length from torchmetrics.functional import ( mean_absolute_error, mean_absolute_percentage_error, mean_squared_error, mean_squared_log_error, weighted_mean_absolute_percentage_error, ) from torchmetrics.functional.regression.symmetric_mape import symmetric_mean_absolute_percentage_error from torchmetrics.regression import ( MeanAbsoluteError, MeanAbsolutePercentageError, MeanSquaredError, MeanSquaredLogError, WeightedMeanAbsolutePercentageError, ) from torchmetrics.regression.symmetric_mape import SymmetricMeanAbsolutePercentageError from unittests import BATCH_SIZE, NUM_BATCHES, _Input from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester seed_all(42) num_targets = 5 _single_target_inputs = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE), target=torch.rand(NUM_BATCHES, BATCH_SIZE), ) _multi_target_inputs = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE, num_targets), target=torch.rand(NUM_BATCHES, BATCH_SIZE, num_targets), ) def _baseline_symmetric_mape( y_true: np.ndarray, y_pred: np.ndarray, sample_weight: Optional[np.ndarray] = None, multioutput: str = "uniform_average", ): r"""Symmetric mean absolute percentage error regression loss (SMAPE_). .. math:: \text{SMAPE} = \frac{2}{n}\sum_1^n\frac{max(| y_i - \hat{y_i} |}{| y_i | + | \hat{y_i} |, \epsilon)} Where :math:`y` is a tensor of target values, and :math:`\hat{y}` is a tensor of predictions. Args: y_true: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {'raw_values', 'uniform_average'} or array-like Defines aggregating of multiple output values. Array-like value defines weights used to average errors. If input is list then the shape must be (n_outputs,). - 'raw_values': Returns a full set of errors in case of multioutput input. - 'uniform_average': Errors of all outputs are averaged with uniform weight. Returns: loss: float or ndarray of floats in the range [0, 1] If multi-output is 'raw_values', then symmetric mean absolute percentage error is returned for each output separately. If multi-output is 'uniform_average' or a ndarray of weights, then the weighted average of all output errors is returned. MAPE output is non-negative floating point. The best value is 0.0. But note the fact that bad predictions can lead to arbitrarily large MAPE values, especially if some y_true values are very close to zero. Note that we return a large value instead of `inf` when y_true is zero. """ _, y_true, y_pred, multioutput = _check_reg_targets(y_true, y_pred, multioutput) check_consistent_length(y_true, y_pred, sample_weight) epsilon = np.finfo(np.float64).eps smape = 2 * np.abs(y_pred - y_true) / np.maximum(np.abs(y_true) + np.abs(y_pred), epsilon) output_errors = np.average(smape, weights=sample_weight, axis=0) if isinstance(multioutput, str): if multioutput == "raw_values": return output_errors # pass None as weights to np.average: uniform mean multioutput = None return np.average(output_errors, weights=multioutput) def _sk_weighted_mean_abs_percentage_error(target, preds): return np.sum(np.abs(target - preds)) / np.sum(np.abs(target)) def _single_target_ref_metric(preds, target, sk_fn, metric_args): sk_preds = preds.view(-1).numpy() sk_target = target.view(-1).numpy() res = sk_fn(sk_target, sk_preds) return math.sqrt(res) if (metric_args and not metric_args["squared"]) else res def _multi_target_ref_metric(preds, target, sk_fn, metric_args): sk_preds = preds.view(-1, num_targets).numpy() sk_target = target.view(-1, num_targets).numpy() sk_kwargs = {"multioutput": "raw_values"} if metric_args and "num_outputs" in metric_args else {} res = sk_fn(sk_target, sk_preds, **sk_kwargs) return math.sqrt(res) if (metric_args and not metric_args["squared"]) else res @pytest.mark.parametrize( "preds, target, ref_metric", [ (_single_target_inputs.preds, _single_target_inputs.target, _single_target_ref_metric), (_multi_target_inputs.preds, _multi_target_inputs.target, _multi_target_ref_metric), ], ) @pytest.mark.parametrize( "metric_class, metric_functional, sk_fn, metric_args", [ (MeanSquaredError, mean_squared_error, sk_mean_squared_error, {"squared": True}), (MeanSquaredError, mean_squared_error, sk_mean_squared_error, {"squared": False}), (MeanSquaredError, mean_squared_error, sk_mean_squared_error, {"squared": True, "num_outputs": num_targets}), (MeanAbsoluteError, mean_absolute_error, sk_mean_absolute_error, {}), (MeanAbsolutePercentageError, mean_absolute_percentage_error, sk_mean_abs_percentage_error, {}), ( SymmetricMeanAbsolutePercentageError, symmetric_mean_absolute_percentage_error, _baseline_symmetric_mape, {}, ), (MeanSquaredLogError, mean_squared_log_error, sk_mean_squared_log_error, {}), ( WeightedMeanAbsolutePercentageError, weighted_mean_absolute_percentage_error, _sk_weighted_mean_abs_percentage_error, {}, ), ], ) class TestMeanError(MetricTester): """Test class for `MeanError` metric.""" @pytest.mark.parametrize("ddp", [True, False]) def test_mean_error_class( self, preds, target, ref_metric, metric_class, metric_functional, sk_fn, metric_args, ddp ): """Test class implementation of metric.""" self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=metric_class, reference_metric=partial(ref_metric, sk_fn=sk_fn, metric_args=metric_args), metric_args=metric_args, ) def test_mean_error_functional( self, preds, target, ref_metric, metric_class, metric_functional, sk_fn, metric_args ): """Test functional implementation of metric.""" self.run_functional_metric_test( preds=preds, target=target, metric_functional=metric_functional, reference_metric=partial(ref_metric, sk_fn=sk_fn, metric_args=metric_args), metric_args=metric_args, ) def test_mean_error_differentiability( self, preds, target, ref_metric, metric_class, metric_functional, sk_fn, metric_args ): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" self.run_differentiability_test( preds=preds, target=target, metric_module=metric_class, metric_functional=metric_functional, metric_args=metric_args, ) def test_mean_error_half_cpu(self, preds, target, ref_metric, metric_class, metric_functional, sk_fn, metric_args): """Test dtype support of the metric on CPU.""" if metric_class == MeanSquaredLogError: # MeanSquaredLogError half + cpu does not work due to missing support in torch.log pytest.xfail("MeanSquaredLogError metric does not support cpu + half precision") if metric_class == MeanAbsolutePercentageError: # MeanSquaredPercentageError half + cpu does not work due to missing support in torch.log pytest.xfail("MeanSquaredPercentageError metric does not support cpu + half precision") if metric_class == SymmetricMeanAbsolutePercentageError: # MeanSquaredPercentageError half + cpu does not work due to missing support in torch.log pytest.xfail("SymmetricMeanAbsolutePercentageError metric does not support cpu + half precision") if metric_class == WeightedMeanAbsolutePercentageError: # WeightedMeanAbsolutePercentageError half + cpu does not work due to missing support in torch.clamp pytest.xfail("WeightedMeanAbsolutePercentageError metric does not support cpu + half precision") self.run_precision_test_cpu(preds, target, metric_class, metric_functional) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") def test_mean_error_half_gpu(self, preds, target, ref_metric, metric_class, metric_functional, sk_fn, metric_args): """Test dtype support of the metric on GPU.""" self.run_precision_test_gpu(preds, target, metric_class, metric_functional) @pytest.mark.parametrize( "metric_class", [MeanSquaredError, MeanAbsoluteError, MeanSquaredLogError, MeanAbsolutePercentageError] ) def test_error_on_different_shape(metric_class): """Test that error is raised on different shapes of input.""" metric = metric_class() with pytest.raises(RuntimeError, match="Predictions and targets are expected to have the same shape"): metric(torch.randn(100), torch.randn(50))
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/regression/test_pearson.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import pytest import torch from scipy.stats import pearsonr from torchmetrics.functional.regression.pearson import pearson_corrcoef from torchmetrics.regression.pearson import PearsonCorrCoef, _final_aggregation from unittests import BATCH_SIZE, EXTRA_DIM, NUM_BATCHES, _Input from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester seed_all(42) _single_target_inputs1 = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE), target=torch.rand(NUM_BATCHES, BATCH_SIZE), ) _single_target_inputs2 = _Input( preds=torch.randn(NUM_BATCHES, BATCH_SIZE), target=torch.randn(NUM_BATCHES, BATCH_SIZE), ) _multi_target_inputs1 = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM), target=torch.rand(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM), ) _multi_target_inputs2 = _Input( preds=torch.randn(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM), target=torch.randn(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM), ) def _scipy_pearson(preds, target): if preds.ndim == 2: return [pearsonr(t.numpy(), p.numpy())[0] for t, p in zip(target.T, preds.T)] return pearsonr(target.numpy(), preds.numpy())[0] @pytest.mark.parametrize( "preds, target", [ (_single_target_inputs1.preds, _single_target_inputs1.target), (_single_target_inputs2.preds, _single_target_inputs2.target), (_multi_target_inputs1.preds, _multi_target_inputs1.target), (_multi_target_inputs2.preds, _multi_target_inputs2.target), ], ) class TestPearsonCorrCoef(MetricTester): """Test class for `PearsonCorrCoef` metric.""" atol = 1e-3 @pytest.mark.parametrize("compute_on_cpu", [True, False]) @pytest.mark.parametrize("ddp", [True, False]) def test_pearson_corrcoef(self, preds, target, compute_on_cpu, ddp): """Test class implementation of metric.""" num_outputs = EXTRA_DIM if preds.ndim == 3 else 1 self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=PearsonCorrCoef, reference_metric=_scipy_pearson, metric_args={"num_outputs": num_outputs, "compute_on_cpu": compute_on_cpu}, ) def test_pearson_corrcoef_functional(self, preds, target): """Test functional implementation of metric.""" self.run_functional_metric_test( preds=preds, target=target, metric_functional=pearson_corrcoef, reference_metric=_scipy_pearson ) def test_pearson_corrcoef_differentiability(self, preds, target): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" num_outputs = EXTRA_DIM if preds.ndim == 3 else 1 self.run_differentiability_test( preds=preds, target=target, metric_module=partial(PearsonCorrCoef, num_outputs=num_outputs), metric_functional=pearson_corrcoef, ) def test_pearson_corrcoef_half_cpu(self, preds, target): """Test dtype support of the metric on CPU.""" num_outputs = EXTRA_DIM if preds.ndim == 3 else 1 self.run_precision_test_cpu(preds, target, partial(PearsonCorrCoef, num_outputs=num_outputs), pearson_corrcoef) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") def test_pearson_corrcoef_half_gpu(self, preds, target): """Test dtype support of the metric on GPU.""" num_outputs = EXTRA_DIM if preds.ndim == 3 else 1 self.run_precision_test_gpu(preds, target, partial(PearsonCorrCoef, num_outputs=num_outputs), pearson_corrcoef) def test_error_on_different_shape(): """Test that error is raised on different shapes of input.""" metric = PearsonCorrCoef(num_outputs=1) with pytest.raises(RuntimeError, match="Predictions and targets are expected to have the same shape"): metric(torch.randn(100), torch.randn(50)) metric = PearsonCorrCoef(num_outputs=5) with pytest.raises(ValueError, match="Expected both predictions and target to be either 1- or 2-.*"): metric(torch.randn(100, 2, 5), torch.randn(100, 2, 5)) metric = PearsonCorrCoef(num_outputs=2) with pytest.raises(ValueError, match="Expected argument `num_outputs` to match the second dimension of input.*"): metric(torch.randn(100, 5), torch.randn(100, 5)) def test_1d_input_allowed(): """Check that both input of the form [N,] and [N,1] is allowed with default num_outputs argument.""" assert isinstance(pearson_corrcoef(torch.randn(10, 1), torch.randn(10, 1)), torch.Tensor) assert isinstance(pearson_corrcoef(torch.randn(10), torch.randn(10)), torch.Tensor) @pytest.mark.parametrize("shapes", [(5,), (1, 5), (2, 5)]) def test_final_aggregation_function(shapes): """Test that final aggregation function can take various shapes of input.""" input_fn = lambda: torch.rand(shapes) output = _final_aggregation(input_fn(), input_fn(), input_fn(), input_fn(), input_fn(), torch.randint(10, shapes)) assert all(isinstance(out, torch.Tensor) for out in output) assert all(out.ndim == input_fn().ndim - 1 for out in output) @pytest.mark.parametrize(("dtype", "scale"), [(torch.float16, 1e-4), (torch.float32, 1e-8), (torch.float64, 1e-16)]) def test_pearsons_warning_on_small_input(dtype, scale): """Check that a user warning is raised for small input.""" preds = scale * torch.randn(100, dtype=dtype) target = scale * torch.randn(100, dtype=dtype) with pytest.warns(UserWarning, match="The variance of predictions or target is close to zero.*"): pearson_corrcoef(preds, target) def test_single_sample_update(): """See issue: https://github.com/Lightning-AI/torchmetrics/issues/2014.""" metric = PearsonCorrCoef() # Works metric(torch.tensor([3.0, -0.5, 2.0, 7.0]), torch.tensor([2.5, 0.0, 2.0, 8.0])) res1 = metric.compute() metric.reset() metric(torch.tensor([3.0]), torch.tensor([2.5])) metric(torch.tensor([-0.5]), torch.tensor([0.0])) metric(torch.tensor([2.0]), torch.tensor([2.0])) metric(torch.tensor([7.0]), torch.tensor([8.0])) res2 = metric.compute() assert torch.allclose(res1, res2)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/regression/test_spearman.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import pytest import torch from scipy.stats import rankdata, spearmanr from torchmetrics.functional.regression.spearman import _rank_data, spearman_corrcoef from torchmetrics.regression.spearman import SpearmanCorrCoef from torchmetrics.utilities.imports import _TORCH_GREATER_EQUAL_2_1 from unittests import BATCH_SIZE, EXTRA_DIM, NUM_BATCHES, _Input from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester seed_all(42) _single_target_inputs1 = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE), target=torch.rand(NUM_BATCHES, BATCH_SIZE), ) _single_target_inputs2 = _Input( preds=torch.randn(NUM_BATCHES, BATCH_SIZE), target=torch.randn(NUM_BATCHES, BATCH_SIZE), ) _multi_target_inputs1 = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM), target=torch.rand(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM), ) _multi_target_inputs2 = _Input( preds=torch.randn(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM), target=torch.randn(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM), ) _specific_input = _Input( preds=torch.stack([torch.tensor([1.0, 0.0, 4.0, 1.0, 0.0, 3.0, 0.0]) for _ in range(NUM_BATCHES)]), target=torch.stack([torch.tensor([4.0, 0.0, 3.0, 3.0, 3.0, 1.0, 1.0]) for _ in range(NUM_BATCHES)]), ) @pytest.mark.parametrize( ("preds", "target"), [ (_single_target_inputs1.preds, _single_target_inputs1.target), (_single_target_inputs2.preds, _single_target_inputs2.target), (_specific_input.preds, _specific_input.target), ], ) def test_ranking(preds, target): """Test that ranking function works as expected.""" for p, t in zip(preds, target): scipy_ranking = [rankdata(p.numpy()), rankdata(t.numpy())] tm_ranking = [_rank_data(p), _rank_data(t)] assert (torch.tensor(scipy_ranking[0]) == tm_ranking[0]).all() assert (torch.tensor(scipy_ranking[1]) == tm_ranking[1]).all() def _scipy_spearman(preds, target): if preds.ndim == 2: return [spearmanr(t.numpy(), p.numpy())[0] for t, p in zip(target.T, preds.T)] return spearmanr(target.numpy(), preds.numpy())[0] @pytest.mark.parametrize( "preds, target", [ (_single_target_inputs1.preds, _single_target_inputs1.target), (_single_target_inputs2.preds, _single_target_inputs2.target), (_multi_target_inputs1.preds, _multi_target_inputs1.target), (_multi_target_inputs2.preds, _multi_target_inputs2.target), (_specific_input.preds, _specific_input.target), ], ) class TestSpearmanCorrCoef(MetricTester): """Test class for `SpearmanCorrCoef` metric.""" atol = 1e-2 @pytest.mark.parametrize("ddp", [True, False]) def test_spearman_corrcoef(self, preds, target, ddp): """Test class implementation of metric.""" num_outputs = EXTRA_DIM if preds.ndim == 3 else 1 self.run_class_metric_test( ddp, preds, target, SpearmanCorrCoef, _scipy_spearman, metric_args={"num_outputs": num_outputs}, ) def test_spearman_corrcoef_functional(self, preds, target): """Test functional implementation of metric.""" self.run_functional_metric_test(preds, target, spearman_corrcoef, _scipy_spearman) def test_spearman_corrcoef_differentiability(self, preds, target): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" num_outputs = EXTRA_DIM if preds.ndim == 3 else 1 self.run_differentiability_test( preds=preds, target=target, metric_module=partial(SpearmanCorrCoef, num_outputs=num_outputs), metric_functional=spearman_corrcoef, ) # Spearman half + cpu does not work due to missing support in torch.arange @pytest.mark.skipif( not _TORCH_GREATER_EQUAL_2_1, reason="Pytoch below 2.1 does not support cpu + half precision used in Spearman metric", ) def test_spearman_corrcoef_half_cpu(self, preds, target): """Test dtype support of the metric on CPU.""" num_outputs = EXTRA_DIM if preds.ndim == 3 else 1 self.run_precision_test_cpu( preds, target, partial(SpearmanCorrCoef, num_outputs=num_outputs), spearman_corrcoef ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") def test_spearman_corrcoef_half_gpu(self, preds, target): """Test dtype support of the metric on GPU.""" num_outputs = EXTRA_DIM if preds.ndim == 3 else 1 self.run_precision_test_gpu( preds, target, partial(SpearmanCorrCoef, num_outputs=num_outputs), spearman_corrcoef ) def test_error_on_different_shape(): """Test that error is raised when the preds and target shapes are not what is expected of the metric.""" metric = SpearmanCorrCoef(num_outputs=1) with pytest.raises(TypeError, match="Expected `preds` and `target` both to be floating point tensors.*"): metric(torch.randint(5, (100,)), torch.randn(100)) with pytest.raises(RuntimeError, match="Predictions and targets are expected to have the same shape"): metric(torch.randn(100), torch.randn(50)) metric = SpearmanCorrCoef(num_outputs=5) with pytest.raises(ValueError, match="Expected both predictions and target to be either 1- or 2-dimensional.*"): metric(torch.randn(100, 2, 5), torch.randn(100, 2, 5)) metric = SpearmanCorrCoef(num_outputs=2) with pytest.raises(ValueError, match="Expected argument `num_outputs` to match the second dimension of input.*"): metric(torch.randn(100, 5), torch.randn(100, 5))
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/regression/test_r2.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import pytest import torch from sklearn.metrics import r2_score as sk_r2score from torchmetrics.functional import r2_score from torchmetrics.regression import R2Score from unittests import BATCH_SIZE, NUM_BATCHES, _Input from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester seed_all(42) num_targets = 5 _single_target_inputs = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE), target=torch.rand(NUM_BATCHES, BATCH_SIZE), ) _multi_target_inputs = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE, num_targets), target=torch.rand(NUM_BATCHES, BATCH_SIZE, num_targets), ) def _single_target_ref_metric(preds, target, adjusted, multioutput): sk_preds = preds.view(-1).numpy() sk_target = target.view(-1).numpy() r2_score = sk_r2score(sk_target, sk_preds, multioutput=multioutput) if adjusted != 0: return 1 - (1 - r2_score) * (sk_preds.shape[0] - 1) / (sk_preds.shape[0] - adjusted - 1) return r2_score def _multi_target_ref_metric(preds, target, adjusted, multioutput): sk_preds = preds.view(-1, num_targets).numpy() sk_target = target.view(-1, num_targets).numpy() r2_score = sk_r2score(sk_target, sk_preds, multioutput=multioutput) if adjusted != 0: return 1 - (1 - r2_score) * (sk_preds.shape[0] - 1) / (sk_preds.shape[0] - adjusted - 1) return r2_score @pytest.mark.parametrize("adjusted", [0, 5, 10]) @pytest.mark.parametrize("multioutput", ["raw_values", "uniform_average", "variance_weighted"]) @pytest.mark.parametrize( "preds, target, ref_metric, num_outputs", [ (_single_target_inputs.preds, _single_target_inputs.target, _single_target_ref_metric, 1), (_multi_target_inputs.preds, _multi_target_inputs.target, _multi_target_ref_metric, num_targets), ], ) class TestR2Score(MetricTester): """Test class for `R2Score` metric.""" @pytest.mark.parametrize("ddp", [True, False]) def test_r2(self, adjusted, multioutput, preds, target, ref_metric, num_outputs, ddp): """Test class implementation of metric.""" self.run_class_metric_test( ddp, preds, target, R2Score, partial(ref_metric, adjusted=adjusted, multioutput=multioutput), metric_args={"adjusted": adjusted, "multioutput": multioutput, "num_outputs": num_outputs}, ) def test_r2_functional(self, adjusted, multioutput, preds, target, ref_metric, num_outputs): """Test functional implementation of metric.""" self.run_functional_metric_test( preds, target, r2_score, partial(ref_metric, adjusted=adjusted, multioutput=multioutput), metric_args={"adjusted": adjusted, "multioutput": multioutput}, ) def test_r2_differentiability(self, adjusted, multioutput, preds, target, ref_metric, num_outputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" self.run_differentiability_test( preds=preds, target=target, metric_module=partial(R2Score, num_outputs=num_outputs), metric_functional=r2_score, metric_args={"adjusted": adjusted, "multioutput": multioutput}, ) def test_r2_half_cpu(self, adjusted, multioutput, preds, target, ref_metric, num_outputs): """Test dtype support of the metric on CPU.""" self.run_precision_test_cpu( preds, target, partial(R2Score, num_outputs=num_outputs), r2_score, {"adjusted": adjusted, "multioutput": multioutput}, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") def test_r2_half_gpu(self, adjusted, multioutput, preds, target, ref_metric, num_outputs): """Test dtype support of the metric on GPU.""" self.run_precision_test_gpu( preds, target, partial(R2Score, num_outputs=num_outputs), r2_score, {"adjusted": adjusted, "multioutput": multioutput}, ) def test_error_on_different_shape(metric_class=R2Score): """Test that error is raised on different shapes of input.""" metric = metric_class() with pytest.raises(RuntimeError, match="Predictions and targets are expected to have the same shape"): metric(torch.randn(100), torch.randn(50)) def test_error_on_multidim_tensors(metric_class=R2Score): """Test that error is raised if a larger than 2D tensor is given as input.""" metric = metric_class() with pytest.raises( ValueError, match=r"Expected both prediction and target to be 1D or 2D tensors, but received tensors with dimension .", ): metric(torch.randn(10, 20, 5), torch.randn(10, 20, 5)) def test_error_on_too_few_samples(metric_class=R2Score): """Test that error is raised if too few samples are provided.""" metric = metric_class() with pytest.raises(ValueError, match="Needs at least two samples to calculate r2 score."): metric(torch.randn(1), torch.randn(1)) metric.reset() # calling update twice should still work metric.update(torch.randn(1), torch.randn(1)) metric.update(torch.randn(1), torch.randn(1)) assert metric.compute() def test_warning_on_too_large_adjusted(metric_class=R2Score): """Test that warning is raised if adjusted argument is set to more than or equal to the number of datapoints.""" metric = metric_class(adjusted=10) with pytest.warns( UserWarning, match="More independent regressions than data points in adjusted r2 score. Falls back to standard r2 score.", ): metric(torch.randn(10), torch.randn(10)) with pytest.warns(UserWarning, match="Division by zero in adjusted r2 score. Falls back to standard r2 score."): metric(torch.randn(11), torch.randn(11)) def test_constant_target(): """Check for a near constant target that a value of 0 is returned.""" y_true = torch.tensor([-5.1608, -5.1609, -5.1608, -5.1608, -5.1608, -5.1608]) y_pred = torch.tensor([-3.9865, -5.4648, -5.0238, -4.3899, -5.6672, -4.7336]) score = r2_score(preds=y_pred, target=y_true) assert score == 0
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/nominal/test_fleiss_kappa.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from statsmodels.stats.inter_rater import fleiss_kappa as sk_fleiss_kappa from torchmetrics.functional.nominal.fleiss_kappa import fleiss_kappa from torchmetrics.nominal.fleiss_kappa import FleissKappa from unittests import BATCH_SIZE, NUM_BATCHES, NUM_CLASSES from unittests.helpers.testers import MetricTester NUM_RATERS = 20 NUM_CATEGORIES = NUM_CLASSES def _compare_func(preds, target, mode): if mode == "probs": counts = np.zeros((preds.shape[0], preds.shape[1])) preds = preds.argmax(dim=1) for participant in range(preds.shape[0]): for rater in range(preds.shape[1]): counts[participant, preds[participant, rater]] += 1 return sk_fleiss_kappa(counts) return sk_fleiss_kappa(preds) def wrapped_fleiss_kappa(preds, target, mode): """Wrapped function for `fleiss_kappa` to support testing framework.""" return fleiss_kappa(preds, mode) class WrappedFleissKappa(FleissKappa): """Wrapped class for `FleissKappa` to support testing framework.""" def update(self, preds, target): """Update function.""" super().update(preds) def _random_counts(high, size): """Generate random counts matrix that is fully ranked. Interface is similar to torch.randint. """ x = torch.randint(high=high, size=size) x_sum = x.sum(-1) x_total = x_sum.max() x[:, :, -1] = x_total - (x_sum - x[:, :, -1]) return x @pytest.mark.parametrize( "preds, target, mode", [ # target is not used in any of the functions ( _random_counts(high=NUM_RATERS, size=(NUM_BATCHES, BATCH_SIZE, NUM_CATEGORIES)), _random_counts(high=NUM_RATERS, size=(NUM_BATCHES, BATCH_SIZE, NUM_CATEGORIES)), "counts", ), ( torch.randn(NUM_BATCHES, BATCH_SIZE, NUM_CATEGORIES, NUM_RATERS), torch.randn(NUM_BATCHES, BATCH_SIZE, NUM_CATEGORIES, NUM_RATERS), "probs", ), ], ) class TestFleissKappa(MetricTester): """Test class for `FleissKappa` metric.""" atol = 1e-5 @pytest.mark.parametrize("ddp", [False, True]) def test_fleiss_kappa(self, ddp, preds, target, mode): """Test class implementation of metric.""" self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=WrappedFleissKappa, reference_metric=partial(_compare_func, mode=mode), metric_args={"mode": mode}, ) def test_fleiss_kappa_functional(self, preds, target, mode): """Test functional implementation of metric.""" self.run_functional_metric_test( preds, target, metric_functional=wrapped_fleiss_kappa, reference_metric=partial(_compare_func, mode=mode), metric_args={"mode": mode}, ) def test_fleiss_kappa_differentiability(self, preds, target, mode): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" self.run_differentiability_test( preds, target, metric_module=WrappedFleissKappa, metric_functional=wrapped_fleiss_kappa, metric_args={"mode": mode}, )
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/nominal/test_tschuprows.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import operator import pandas as pd import pytest import torch from lightning_utilities.core.imports import compare_version from scipy.stats.contingency import association from torchmetrics.functional.nominal.tschuprows import tschuprows_t, tschuprows_t_matrix from torchmetrics.nominal.tschuprows import TschuprowsT from unittests import BATCH_SIZE, NUM_BATCHES, _Input from unittests.helpers.testers import MetricTester NUM_CLASSES = 4 _input_default = _Input( preds=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE)), target=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE)), ) _input_logits = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES), target=torch.rand(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES) ) # No testing with replacing NaN's values is done as not supported in SciPy @pytest.fixture() def tschuprows_matrix_input(): """Define input in matrix format for the metric.""" return torch.cat( [ torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES * BATCH_SIZE, 1), dtype=torch.float), torch.randint(high=NUM_CLASSES + 2, size=(NUM_BATCHES * BATCH_SIZE, 1), dtype=torch.float), torch.randint(high=2, size=(NUM_BATCHES * BATCH_SIZE, 1), dtype=torch.float), ], dim=-1, ) def _pd_tschuprows_t(preds, target): preds = preds.argmax(1) if preds.ndim == 2 else preds target = target.argmax(1) if target.ndim == 2 else target preds, target = preds.numpy().astype(int), target.numpy().astype(int) observed_values = pd.crosstab(preds, target) t = association(observed=observed_values, method="tschuprow") return torch.tensor(t) def _pd_tschuprows_t_matrix(matrix): num_variables = matrix.shape[1] tschuprows_t_matrix_value = torch.ones(num_variables, num_variables) for i, j in itertools.combinations(range(num_variables), 2): x, y = matrix[:, i], matrix[:, j] tschuprows_t_matrix_value[i, j] = tschuprows_t_matrix_value[j, i] = _pd_tschuprows_t(x, y) return tschuprows_t_matrix_value @pytest.mark.skipif(compare_version("pandas", operator.lt, "1.3.2"), reason="`dython` package requires `pandas>=1.3.2`") @pytest.mark.parametrize( "preds, target", [ (_input_default.preds, _input_default.target), (_input_logits.preds, _input_logits.target), ], ) class TestTschuprowsT(MetricTester): """Test class for `TschuprowsT` metric.""" atol = 1e-5 @pytest.mark.parametrize("ddp", [False, True]) def test_tschuprows_ta(self, ddp, preds, target): """Test class implementation of metric.""" metric_args = {"bias_correction": False, "num_classes": NUM_CLASSES} self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=TschuprowsT, reference_metric=_pd_tschuprows_t, metric_args=metric_args, ) def test_tschuprows_t_functional(self, preds, target): """Test functional implementation of metric.""" metric_args = {"bias_correction": False} self.run_functional_metric_test( preds, target, metric_functional=tschuprows_t, reference_metric=_pd_tschuprows_t, metric_args=metric_args ) def test_tschuprows_t_differentiability(self, preds, target): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" metric_args = {"bias_correction": False, "num_classes": NUM_CLASSES} self.run_differentiability_test( preds, target, metric_module=TschuprowsT, metric_functional=tschuprows_t, metric_args=metric_args, ) @pytest.mark.skipif(compare_version("pandas", operator.lt, "1.3.2"), reason="`dython` package requires `pandas>=1.3.2`") def test_tschuprows_t_matrix(tschuprows_matrix_input): """Test matrix version of metric works as expected.""" tm_score = tschuprows_t_matrix(tschuprows_matrix_input, bias_correction=False) reference_score = _pd_tschuprows_t_matrix(tschuprows_matrix_input) assert torch.allclose(tm_score, reference_score)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/nominal/test_theils_u.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import operator from functools import partial import pytest import torch from dython.nominal import theils_u as dython_theils_u from lightning_utilities.core.imports import compare_version from torchmetrics.functional.nominal.theils_u import theils_u, theils_u_matrix from torchmetrics.nominal import TheilsU from unittests import BATCH_SIZE, NUM_BATCHES, _Input from unittests.helpers.testers import MetricTester NUM_CLASSES = 4 _input_default = _Input( preds=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE)), target=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE)), ) # Requires float type to pass NaNs _preds = torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE), dtype=torch.float) _preds[0, 0] = float("nan") _preds[-1, -1] = float("nan") _target = torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE), dtype=torch.float) _target[1, 0] = float("nan") _target[-1, 0] = float("nan") _input_with_nans = _Input(preds=_preds, target=_target) _input_logits = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES), target=torch.rand(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES) ) @pytest.fixture() def theils_u_matrix_input(): """Define input in matrix format for the metric.""" matrix = torch.cat( [ torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES * BATCH_SIZE, 1), dtype=torch.float), torch.randint(high=NUM_CLASSES + 2, size=(NUM_BATCHES * BATCH_SIZE, 1), dtype=torch.float), torch.randint(high=2, size=(NUM_BATCHES * BATCH_SIZE, 1), dtype=torch.float), ], dim=-1, ) matrix[0, 0] = float("nan") matrix[-1, -1] = float("nan") return matrix def _dython_theils_u(preds, target, nan_strategy, nan_replace_value): preds = preds.argmax(1) if preds.ndim == 2 else preds target = target.argmax(1) if target.ndim == 2 else target v = dython_theils_u( preds.numpy(), target.numpy(), nan_strategy=nan_strategy, nan_replace_value=nan_replace_value, ) return torch.tensor(v) def _dython_theils_u_matrix(matrix, nan_strategy, nan_replace_value): num_variables = matrix.shape[1] theils_u_matrix_value = torch.ones(num_variables, num_variables) for i, j in itertools.combinations(range(num_variables), 2): x, y = matrix[:, i], matrix[:, j] theils_u_matrix_value[i, j] = _dython_theils_u(x, y, nan_strategy, nan_replace_value) theils_u_matrix_value[j, i] = _dython_theils_u(y, x, nan_strategy, nan_replace_value) return theils_u_matrix_value @pytest.mark.skipif(compare_version("pandas", operator.lt, "1.3.2"), reason="`dython` package requires `pandas>=1.3.2`") @pytest.mark.parametrize( "preds, target", [ (_input_default.preds, _input_default.target), (_input_with_nans.preds, _input_with_nans.target), (_input_logits.preds, _input_logits.target), ], ) @pytest.mark.parametrize("nan_strategy, nan_replace_value", [("replace", 0.0), ("drop", None)]) class TestTheilsU(MetricTester): """Test class for `TheilsU` metric.""" atol = 1e-5 @pytest.mark.parametrize("ddp", [False, True]) def test_theils_u(self, ddp, preds, target, nan_strategy, nan_replace_value): """Test class implementation of metric.""" metric_args = { "nan_strategy": nan_strategy, "nan_replace_value": nan_replace_value, "num_classes": NUM_CLASSES, } reference_metric = partial( _dython_theils_u, nan_strategy=nan_strategy, nan_replace_value=nan_replace_value, ) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=TheilsU, reference_metric=reference_metric, metric_args=metric_args, ) def test_theils_u_functional(self, preds, target, nan_strategy, nan_replace_value): """Test functional implementation of metric.""" metric_args = { "nan_strategy": nan_strategy, "nan_replace_value": nan_replace_value, } reference_metric = partial( _dython_theils_u, nan_strategy=nan_strategy, nan_replace_value=nan_replace_value, ) self.run_functional_metric_test( preds, target, metric_functional=theils_u, reference_metric=reference_metric, metric_args=metric_args ) def test_theils_u_differentiability(self, preds, target, nan_strategy, nan_replace_value): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" metric_args = { "nan_strategy": nan_strategy, "nan_replace_value": nan_replace_value, "num_classes": NUM_CLASSES, } self.run_differentiability_test( preds, target, metric_module=TheilsU, metric_functional=theils_u, metric_args=metric_args, ) @pytest.mark.skipif(compare_version("pandas", operator.lt, "1.3.2"), reason="`dython` package requires `pandas>=1.3.2`") @pytest.mark.parametrize(("nan_strategy", "nan_replace_value"), [("replace", 1.0), ("drop", None)]) def test_theils_u_matrix(theils_u_matrix_input, nan_strategy, nan_replace_value): """Test matrix version of metric works as expected.""" tm_score = theils_u_matrix(theils_u_matrix_input, nan_strategy, nan_replace_value) reference_score = _dython_theils_u_matrix(theils_u_matrix_input, nan_strategy, nan_replace_value) assert torch.allclose(tm_score, reference_score, atol=1e-6)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/nominal/test_cramers.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import operator from functools import partial import pytest import torch from dython.nominal import cramers_v as dython_cramers_v from lightning_utilities.core.imports import compare_version from torchmetrics.functional.nominal.cramers import cramers_v, cramers_v_matrix from torchmetrics.nominal.cramers import CramersV from unittests import BATCH_SIZE, NUM_BATCHES, _Input from unittests.helpers.testers import MetricTester NUM_CLASSES = 4 _input_default = _Input( preds=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE)), target=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE)), ) # Requires float type to pass NaNs _preds = torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE), dtype=torch.float) _preds[0, 0] = float("nan") _preds[-1, -1] = float("nan") _target = torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE), dtype=torch.float) _target[1, 0] = float("nan") _target[-1, 0] = float("nan") _input_with_nans = _Input(preds=_preds, target=_target) _input_logits = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES), target=torch.rand(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES) ) @pytest.fixture() def cramers_matrix_input(): """Define input in matrix format for the metric.""" matrix = torch.cat( [ torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES * BATCH_SIZE, 1), dtype=torch.float), torch.randint(high=NUM_CLASSES + 2, size=(NUM_BATCHES * BATCH_SIZE, 1), dtype=torch.float), torch.randint(high=2, size=(NUM_BATCHES * BATCH_SIZE, 1), dtype=torch.float), ], dim=-1, ) matrix[0, 0] = float("nan") matrix[-1, -1] = float("nan") return matrix def _dython_cramers_v(preds, target, bias_correction, nan_strategy, nan_replace_value): preds = preds.argmax(1) if preds.ndim == 2 else preds target = target.argmax(1) if target.ndim == 2 else target v = dython_cramers_v( preds.numpy(), target.numpy(), bias_correction=bias_correction, nan_strategy=nan_strategy, nan_replace_value=nan_replace_value, ) return torch.tensor(v) def _dython_cramers_v_matrix(matrix, bias_correction, nan_strategy, nan_replace_value): num_variables = matrix.shape[1] cramers_v_matrix_value = torch.ones(num_variables, num_variables) for i, j in itertools.combinations(range(num_variables), 2): x, y = matrix[:, i], matrix[:, j] cramers_v_matrix_value[i, j] = cramers_v_matrix_value[j, i] = _dython_cramers_v( x, y, bias_correction, nan_strategy, nan_replace_value ) return cramers_v_matrix_value @pytest.mark.skipif(compare_version("pandas", operator.lt, "1.3.2"), reason="`dython` package requires `pandas>=1.3.2`") @pytest.mark.parametrize( "preds, target", [ (_input_default.preds, _input_default.target), (_input_with_nans.preds, _input_with_nans.target), (_input_logits.preds, _input_logits.target), ], ) @pytest.mark.parametrize("bias_correction", [False, True]) @pytest.mark.parametrize("nan_strategy, nan_replace_value", [("replace", 0.0), ("drop", None)]) class TestCramersV(MetricTester): """Test class for `CramersV` metric.""" atol = 1e-5 @pytest.mark.parametrize("ddp", [False, True]) def test_cramers_v(self, ddp, preds, target, bias_correction, nan_strategy, nan_replace_value): """Test class implementation of metric.""" metric_args = { "bias_correction": bias_correction, "nan_strategy": nan_strategy, "nan_replace_value": nan_replace_value, "num_classes": NUM_CLASSES, } reference_metric = partial( _dython_cramers_v, bias_correction=bias_correction, nan_strategy=nan_strategy, nan_replace_value=nan_replace_value, ) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=CramersV, reference_metric=reference_metric, metric_args=metric_args, ) def test_cramers_v_functional(self, preds, target, bias_correction, nan_strategy, nan_replace_value): """Test functional implementation of metric.""" metric_args = { "bias_correction": bias_correction, "nan_strategy": nan_strategy, "nan_replace_value": nan_replace_value, } reference_metric = partial( _dython_cramers_v, bias_correction=bias_correction, nan_strategy=nan_strategy, nan_replace_value=nan_replace_value, ) self.run_functional_metric_test( preds, target, metric_functional=cramers_v, reference_metric=reference_metric, metric_args=metric_args ) def test_cramers_v_differentiability(self, preds, target, bias_correction, nan_strategy, nan_replace_value): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" metric_args = { "bias_correction": bias_correction, "nan_strategy": nan_strategy, "nan_replace_value": nan_replace_value, "num_classes": NUM_CLASSES, } self.run_differentiability_test( preds, target, metric_module=CramersV, metric_functional=cramers_v, metric_args=metric_args, ) @pytest.mark.skipif(compare_version("pandas", operator.lt, "1.3.2"), reason="`dython` package requires `pandas>=1.3.2`") @pytest.mark.parametrize("bias_correction", [False, True]) @pytest.mark.parametrize(("nan_strategy", "nan_replace_value"), [("replace", 1.0), ("drop", None)]) def test_cramers_v_matrix(cramers_matrix_input, bias_correction, nan_strategy, nan_replace_value): """Test matrix version of metric works as expected.""" tm_score = cramers_v_matrix(cramers_matrix_input, bias_correction, nan_strategy, nan_replace_value) reference_score = _dython_cramers_v_matrix(cramers_matrix_input, bias_correction, nan_strategy, nan_replace_value) assert torch.allclose(tm_score, reference_score)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/nominal/test_pearson.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import operator import pandas as pd import pytest import torch from lightning_utilities.core.imports import compare_version from scipy.stats.contingency import association from torchmetrics.functional.nominal.pearson import ( pearsons_contingency_coefficient, pearsons_contingency_coefficient_matrix, ) from torchmetrics.nominal.pearson import PearsonsContingencyCoefficient from unittests import BATCH_SIZE, NUM_BATCHES, _Input from unittests.helpers.testers import MetricTester NUM_CLASSES = 4 _input_default = _Input( preds=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE)), target=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE)), ) _input_logits = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES), target=torch.rand(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES) ) # No testing with replacing NaN's values is done as not supported in SciPy @pytest.fixture() def pearson_matrix_input(): """Define input in matrix format for the metric.""" return torch.cat( [ torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES * BATCH_SIZE, 1), dtype=torch.float), torch.randint(high=NUM_CLASSES + 2, size=(NUM_BATCHES * BATCH_SIZE, 1), dtype=torch.float), torch.randint(high=2, size=(NUM_BATCHES * BATCH_SIZE, 1), dtype=torch.float), ], dim=-1, ) def _pd_pearsons_t(preds, target): preds = preds.argmax(1) if preds.ndim == 2 else preds target = target.argmax(1) if target.ndim == 2 else target preds, target = preds.numpy().astype(int), target.numpy().astype(int) observed_values = pd.crosstab(preds, target) t = association(observed=observed_values, method="pearson") return torch.tensor(t) def _pd_pearsons_t_matrix(matrix): num_variables = matrix.shape[1] pearsons_t_matrix_value = torch.ones(num_variables, num_variables) for i, j in itertools.combinations(range(num_variables), 2): x, y = matrix[:, i], matrix[:, j] pearsons_t_matrix_value[i, j] = pearsons_t_matrix_value[j, i] = _pd_pearsons_t(x, y) return pearsons_t_matrix_value @pytest.mark.skipif(compare_version("pandas", operator.lt, "1.3.2"), reason="`dython` package requires `pandas>=1.3.2`") @pytest.mark.parametrize( "preds, target", [ (_input_default.preds, _input_default.target), (_input_logits.preds, _input_logits.target), ], ) class TestPearsonsContingencyCoefficient(MetricTester): """Test class for `PearsonsContingencyCoefficient` metric.""" atol = 1e-5 @pytest.mark.parametrize("ddp", [False, True]) def test_pearsons_ta(self, ddp, preds, target): """Test class implementation of metric.""" metric_args = {"num_classes": NUM_CLASSES} self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=PearsonsContingencyCoefficient, reference_metric=_pd_pearsons_t, metric_args=metric_args, ) def test_pearsons_t_functional(self, preds, target): """Test functional implementation of metric.""" self.run_functional_metric_test( preds, target, metric_functional=pearsons_contingency_coefficient, reference_metric=_pd_pearsons_t ) def test_pearsons_t_differentiability(self, preds, target): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" metric_args = {"num_classes": NUM_CLASSES} self.run_differentiability_test( preds, target, metric_module=PearsonsContingencyCoefficient, metric_functional=pearsons_contingency_coefficient, metric_args=metric_args, ) @pytest.mark.skipif(compare_version("pandas", operator.lt, "1.3.2"), reason="`dython` package requires `pandas>=1.3.2`") def test_pearsons_contingency_coefficient_matrix(pearson_matrix_input): """Test matrix version of metric works as expected.""" tm_score = pearsons_contingency_coefficient_matrix(pearson_matrix_input) reference_score = _pd_pearsons_t_matrix(pearson_matrix_input) assert torch.allclose(tm_score, reference_score)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/classification/test_calibration_error.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from netcal.metrics import ECE, MCE from scipy.special import expit as sigmoid from scipy.special import softmax from torchmetrics.classification.calibration_error import ( BinaryCalibrationError, CalibrationError, MulticlassCalibrationError, ) from torchmetrics.functional.classification.calibration_error import ( binary_calibration_error, multiclass_calibration_error, ) from torchmetrics.metric import Metric from torchmetrics.utilities.imports import _TORCH_GREATER_EQUAL_1_13 from unittests import NUM_CLASSES from unittests.classification.inputs import _binary_cases, _multiclass_cases from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester, inject_ignore_index, remove_ignore_index seed_all(42) def _netcal_binary_calibration_error(preds, target, n_bins, norm, ignore_index): preds = preds.numpy().flatten() target = target.numpy().flatten() if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) target, preds = remove_ignore_index(target, preds, ignore_index) metric = ECE if norm == "l1" else MCE return metric(n_bins).measure(preds, target) @pytest.mark.parametrize("inputs", (_binary_cases[1], _binary_cases[2], _binary_cases[4], _binary_cases[5])) class TestBinaryCalibrationError(MetricTester): """Test class for `BinaryCalibrationError` metric.""" @pytest.mark.parametrize("n_bins", [10, 15, 20]) @pytest.mark.parametrize("norm", ["l1", "max"]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) @pytest.mark.parametrize("ddp", [True, False]) def test_binary_calibration_error(self, inputs, ddp, n_bins, norm, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=BinaryCalibrationError, reference_metric=partial( _netcal_binary_calibration_error, n_bins=n_bins, norm=norm, ignore_index=ignore_index ), metric_args={ "n_bins": n_bins, "norm": norm, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("n_bins", [10, 15, 20]) @pytest.mark.parametrize("norm", ["l1", "max"]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) def test_binary_calibration_error_functional(self, inputs, n_bins, norm, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=binary_calibration_error, reference_metric=partial( _netcal_binary_calibration_error, n_bins=n_bins, norm=norm, ignore_index=ignore_index ), metric_args={ "n_bins": n_bins, "norm": norm, "ignore_index": ignore_index, }, ) def test_binary_calibration_error_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=BinaryCalibrationError, metric_functional=binary_calibration_error, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_calibration_error_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if dtype == torch.half and not _TORCH_GREATER_EQUAL_1_13: pytest.xfail(reason="torch.linspace in metric not supported before pytorch v1.13 for cpu + half") if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=BinaryCalibrationError, metric_functional=binary_calibration_error, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_calibration_error_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" if dtype == torch.half and not _TORCH_GREATER_EQUAL_1_13: pytest.xfail(reason="torch.searchsorted in metric not supported before pytorch v1.13 for gpu + half") preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=BinaryCalibrationError, metric_functional=binary_calibration_error, dtype=dtype, ) def test_binary_with_zero_pred(): """Test that metric works with edge case where confidence is zero for a bin.""" preds = torch.tensor([1.0, 1.0, 1.0, 1.0, 0.0]) target = torch.tensor([0, 0, 1, 1, 1]) assert binary_calibration_error(preds, target, n_bins=2, norm="l1") == torch.tensor(0.6) def _netcal_multiclass_calibration_error(preds, target, n_bins, norm, ignore_index): preds = preds.numpy() target = target.numpy().flatten() if not ((preds > 0) & (preds < 1)).all(): preds = softmax(preds, 1) preds = np.moveaxis(preds, 1, -1).reshape((-1, preds.shape[1])) target, preds = remove_ignore_index(target, preds, ignore_index) metric = ECE if norm == "l1" else MCE return metric(n_bins).measure(preds, target) @pytest.mark.parametrize( "inputs", (_multiclass_cases[1], _multiclass_cases[2], _multiclass_cases[4], _multiclass_cases[5]) ) class TestMulticlassCalibrationError(MetricTester): """Test class for `MulticlassCalibrationError` metric.""" @pytest.mark.parametrize("n_bins", [15, 20]) @pytest.mark.parametrize("norm", ["l1", "max"]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) @pytest.mark.parametrize("ddp", [True, False]) def test_multiclass_calibration_error(self, inputs, ddp, n_bins, norm, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MulticlassCalibrationError, reference_metric=partial( _netcal_multiclass_calibration_error, n_bins=n_bins, norm=norm, ignore_index=ignore_index ), metric_args={ "num_classes": NUM_CLASSES, "n_bins": n_bins, "norm": norm, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("n_bins", [15, 20]) @pytest.mark.parametrize("norm", ["l1", "max"]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) def test_multiclass_calibration_error_functional(self, inputs, n_bins, norm, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=multiclass_calibration_error, reference_metric=partial( _netcal_multiclass_calibration_error, n_bins=n_bins, norm=norm, ignore_index=ignore_index ), metric_args={ "num_classes": NUM_CLASSES, "n_bins": n_bins, "norm": norm, "ignore_index": ignore_index, }, ) def test_multiclass_calibration_error_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MulticlassCalibrationError, metric_functional=multiclass_calibration_error, metric_args={"num_classes": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_calibration_error_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.softmax in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MulticlassCalibrationError, metric_functional=multiclass_calibration_error, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_calibration_error_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MulticlassCalibrationError, metric_functional=multiclass_calibration_error, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) def test_corner_case_due_to_dtype(): """Test that metric works with edge case where the precision is really important for the right result. See issue: https://github.com/Lightning-AI/torchmetrics/issues/1907 """ preds = torch.tensor( [0.9000, 0.9000, 0.9000, 0.9000, 0.9000, 0.8000, 0.8000, 0.0100, 0.3300, 0.3400, 0.9900, 0.6100], dtype=torch.float64, ) target = torch.tensor([1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0]) assert np.allclose( ECE(99).measure(preds.numpy(), target.numpy()), binary_calibration_error(preds, target, n_bins=99) ), "The metric should be close to the netcal implementation" assert np.allclose( ECE(100).measure(preds.numpy(), target.numpy()), binary_calibration_error(preds, target, n_bins=100) ), "The metric should be close to the netcal implementation" @pytest.mark.parametrize( ("metric", "kwargs"), [ (BinaryCalibrationError, {"task": "binary"}), (MulticlassCalibrationError, {"task": "multiclass", "num_classes": 3}), (None, {"task": "not_valid_task"}), ], ) def test_wrapper_class(metric, kwargs, base_metric=CalibrationError): """Test the wrapper class.""" assert issubclass(base_metric, Metric) if metric is None: with pytest.raises(ValueError, match=r"Invalid *"): base_metric(**kwargs) else: instance = base_metric(**kwargs) assert isinstance(instance, metric) assert isinstance(instance, Metric)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/classification/test_jaccard.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from scipy.special import expit as sigmoid from sklearn.metrics import confusion_matrix as sk_confusion_matrix from sklearn.metrics import jaccard_score as sk_jaccard_index from torchmetrics.classification.jaccard import ( BinaryJaccardIndex, JaccardIndex, MulticlassJaccardIndex, MultilabelJaccardIndex, ) from torchmetrics.functional.classification.jaccard import ( binary_jaccard_index, multiclass_jaccard_index, multilabel_jaccard_index, ) from torchmetrics.metric import Metric from unittests import NUM_CLASSES, THRESHOLD from unittests.classification.inputs import _binary_cases, _multiclass_cases, _multilabel_cases from unittests.helpers.testers import MetricTester, inject_ignore_index, remove_ignore_index def _sklearn_jaccard_index_binary(preds, target, ignore_index=None): preds = preds.view(-1).numpy() target = target.view(-1).numpy() if np.issubdtype(preds.dtype, np.floating): if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) preds = (preds >= THRESHOLD).astype(np.uint8) target, preds = remove_ignore_index(target, preds, ignore_index) return sk_jaccard_index(y_true=target, y_pred=preds) @pytest.mark.parametrize("inputs", _binary_cases) class TestBinaryJaccardIndex(MetricTester): """Test class for `BinaryJaccardIndex` metric.""" @pytest.mark.parametrize("ignore_index", [None, -1, 0]) @pytest.mark.parametrize("ddp", [True, False]) def test_binary_jaccard_index(self, inputs, ddp, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=BinaryJaccardIndex, reference_metric=partial(_sklearn_jaccard_index_binary, ignore_index=ignore_index), metric_args={ "threshold": THRESHOLD, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) def test_binary_jaccard_index_functional(self, inputs, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=binary_jaccard_index, reference_metric=partial(_sklearn_jaccard_index_binary, ignore_index=ignore_index), metric_args={ "threshold": THRESHOLD, "ignore_index": ignore_index, }, ) def test_binary_jaccard_index_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=BinaryJaccardIndex, metric_functional=binary_jaccard_index, metric_args={"threshold": THRESHOLD}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_jaccard_index_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=BinaryJaccardIndex, metric_functional=binary_jaccard_index, metric_args={"threshold": THRESHOLD}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_jaccard_index_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=BinaryJaccardIndex, metric_functional=binary_jaccard_index, metric_args={"threshold": THRESHOLD}, dtype=dtype, ) def _sklearn_jaccard_index_multiclass(preds, target, ignore_index=None, average="macro"): preds = preds.numpy() target = target.numpy() if np.issubdtype(preds.dtype, np.floating): preds = np.argmax(preds, axis=1) preds = preds.flatten() target = target.flatten() target, preds = remove_ignore_index(target, preds, ignore_index) if ignore_index is not None and 0 <= ignore_index < NUM_CLASSES: labels = [i for i in range(NUM_CLASSES) if i != ignore_index] res = sk_jaccard_index(y_true=target, y_pred=preds, average=average, labels=labels) return np.insert(res, ignore_index, 0.0) if average is None else res if average is None: return sk_jaccard_index(y_true=target, y_pred=preds, average=average, labels=list(range(NUM_CLASSES))) return sk_jaccard_index(y_true=target, y_pred=preds, average=average) @pytest.mark.parametrize("inputs", _multiclass_cases) class TestMulticlassJaccardIndex(MetricTester): """Test class for `MulticlassJaccardIndex` metric.""" @pytest.mark.parametrize("average", ["macro", "micro", "weighted", None]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) @pytest.mark.parametrize("ddp", [True, False]) def test_multiclass_jaccard_index(self, inputs, ddp, ignore_index, average): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MulticlassJaccardIndex, reference_metric=partial(_sklearn_jaccard_index_multiclass, ignore_index=ignore_index, average=average), metric_args={ "num_classes": NUM_CLASSES, "ignore_index": ignore_index, "average": average, }, ) @pytest.mark.parametrize("average", ["macro", "micro", "weighted", None]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) def test_multiclass_jaccard_index_functional(self, inputs, ignore_index, average): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=multiclass_jaccard_index, reference_metric=partial(_sklearn_jaccard_index_multiclass, ignore_index=ignore_index, average=average), metric_args={ "num_classes": NUM_CLASSES, "ignore_index": ignore_index, "average": average, }, ) def test_multiclass_jaccard_index_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MulticlassJaccardIndex, metric_functional=multiclass_jaccard_index, metric_args={"num_classes": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_jaccard_index_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs self.run_precision_test_cpu( preds=preds, target=target, metric_module=MulticlassJaccardIndex, metric_functional=multiclass_jaccard_index, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_jaccard_index_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MulticlassJaccardIndex, metric_functional=multiclass_jaccard_index, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) def _sklearn_jaccard_index_multilabel(preds, target, ignore_index=None, average="macro"): preds = preds.numpy() target = target.numpy() if np.issubdtype(preds.dtype, np.floating): if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) preds = (preds >= THRESHOLD).astype(np.uint8) preds = np.moveaxis(preds, 1, -1).reshape((-1, preds.shape[1])) target = np.moveaxis(target, 1, -1).reshape((-1, target.shape[1])) if ignore_index is None: return sk_jaccard_index(y_true=target, y_pred=preds, average=average) if average == "micro": return _sklearn_jaccard_index_binary(torch.tensor(preds), torch.tensor(target), ignore_index) scores, weights = [], [] for i in range(preds.shape[1]): pred, true = preds[:, i], target[:, i] true, pred = remove_ignore_index(true, pred, ignore_index) confmat = sk_confusion_matrix(true, pred, labels=[0, 1]) scores.append(sk_jaccard_index(true, pred)) weights.append(confmat[1, 0] + confmat[1, 1]) scores = np.stack(scores, axis=0) weights = np.stack(weights, axis=0) if average is None or average == "none": return scores if average == "macro": return scores.mean() return ((scores * weights) / weights.sum()).sum() @pytest.mark.parametrize("inputs", _multilabel_cases) class TestMultilabelJaccardIndex(MetricTester): """Test class for `MultilabelJaccardIndex` metric.""" @pytest.mark.parametrize("average", ["macro", "micro", "weighted", None]) @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("ddp", [True, False]) def test_multilabel_jaccard_index(self, inputs, ddp, ignore_index, average): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MultilabelJaccardIndex, reference_metric=partial(_sklearn_jaccard_index_multilabel, ignore_index=ignore_index, average=average), metric_args={ "num_labels": NUM_CLASSES, "ignore_index": ignore_index, "average": average, }, ) @pytest.mark.parametrize("average", ["macro", "micro", "weighted", None]) @pytest.mark.parametrize("ignore_index", [None, -1]) def test_multilabel_jaccard_index_functional(self, inputs, ignore_index, average): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=multilabel_jaccard_index, reference_metric=partial(_sklearn_jaccard_index_multilabel, ignore_index=ignore_index, average=average), metric_args={ "num_labels": NUM_CLASSES, "ignore_index": ignore_index, "average": average, }, ) def test_multilabel_jaccard_index_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MultilabelJaccardIndex, metric_functional=multilabel_jaccard_index, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_jaccard_index_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MultilabelJaccardIndex, metric_functional=multilabel_jaccard_index, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_jaccard_index_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MultilabelJaccardIndex, metric_functional=multilabel_jaccard_index, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, dtype=dtype, ) def test_corner_case(): """Issue: https://github.com/Lightning-AI/torchmetrics/issues/1693.""" # edge case: class 2 is not present in the target AND the prediction target = torch.tensor([0, 1, 0, 0]) preds = torch.tensor([0, 1, 0, 1]) metric = MulticlassJaccardIndex(num_classes=3, average="none") res = metric(preds, target) assert torch.allclose(res, torch.tensor([2.0 / 3.0, 0.5000, 0.0000])) metric = MulticlassJaccardIndex(num_classes=3, average="macro") res = metric(preds, target) assert torch.allclose(res, torch.tensor(0.5833333)) target = torch.tensor([0, 1]) pred = torch.tensor([0, 1]) out = torch.tensor([1, 1, 0, 0, 0, 0, 0, 0, 0, 0]).float() res = multiclass_jaccard_index(pred, target, num_classes=10) assert torch.allclose(res, torch.ones_like(res)) res = multiclass_jaccard_index(pred, target, num_classes=10, average="none") assert torch.allclose(res, out) @pytest.mark.parametrize( ("metric", "kwargs"), [ (BinaryJaccardIndex, {"task": "binary"}), (MulticlassJaccardIndex, {"task": "multiclass", "num_classes": 3}), (MultilabelJaccardIndex, {"task": "multilabel", "num_labels": 3}), (None, {"task": "not_valid_task"}), ], ) def test_wrapper_class(metric, kwargs, base_metric=JaccardIndex): """Test the wrapper class.""" assert issubclass(base_metric, Metric) if metric is None: with pytest.raises(ValueError, match=r"Invalid *"): base_metric(**kwargs) else: instance = base_metric(**kwargs) assert isinstance(instance, metric) assert isinstance(instance, Metric)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/classification/test_average_precision.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from scipy.special import expit as sigmoid from scipy.special import softmax from sklearn.metrics import average_precision_score as sk_average_precision_score from torchmetrics.classification.average_precision import ( AveragePrecision, BinaryAveragePrecision, MulticlassAveragePrecision, MultilabelAveragePrecision, ) from torchmetrics.functional.classification.average_precision import ( binary_average_precision, multiclass_average_precision, multilabel_average_precision, ) from torchmetrics.functional.classification.precision_recall_curve import binary_precision_recall_curve from torchmetrics.metric import Metric from unittests import NUM_CLASSES from unittests.classification.inputs import _binary_cases, _multiclass_cases, _multilabel_cases from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester, inject_ignore_index, remove_ignore_index seed_all(42) def _sklearn_avg_precision_binary(preds, target, ignore_index=None): preds = preds.flatten().numpy() target = target.flatten().numpy() if np.issubdtype(preds.dtype, np.floating) and not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) target, preds = remove_ignore_index(target, preds, ignore_index) return sk_average_precision_score(target, preds) @pytest.mark.parametrize("inputs", (_binary_cases[1], _binary_cases[2], _binary_cases[4], _binary_cases[5])) class TestBinaryAveragePrecision(MetricTester): """Test class for `BinaryAveragePrecision` metric.""" @pytest.mark.parametrize("ignore_index", [None, -1, 0]) @pytest.mark.parametrize("ddp", [True, False]) def test_binary_average_precision(self, inputs, ddp, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=BinaryAveragePrecision, reference_metric=partial(_sklearn_avg_precision_binary, ignore_index=ignore_index), metric_args={ "thresholds": None, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) def test_binary_average_precision_functional(self, inputs, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=binary_average_precision, reference_metric=partial(_sklearn_avg_precision_binary, ignore_index=ignore_index), metric_args={ "thresholds": None, "ignore_index": ignore_index, }, ) def test_binary_average_precision_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=BinaryAveragePrecision, metric_functional=binary_average_precision, metric_args={"thresholds": None}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_average_precision_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=BinaryAveragePrecision, metric_functional=binary_average_precision, metric_args={"thresholds": None}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_average_precision_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=BinaryAveragePrecision, metric_functional=binary_average_precision, metric_args={"thresholds": None}, dtype=dtype, ) @pytest.mark.parametrize("threshold_fn", [lambda x: x, lambda x: x.numpy().tolist()], ids=["as tensor", "as list"]) def test_binary_average_precision_threshold_arg(self, inputs, threshold_fn): """Test that different types of `thresholds` argument lead to same result.""" preds, target = inputs for pred, true in zip(preds, target): _, _, t = binary_precision_recall_curve(pred, true, thresholds=None) ap1 = binary_average_precision(pred, true, thresholds=None) ap2 = binary_average_precision(pred, true, thresholds=threshold_fn(t)) assert torch.allclose(ap1, ap2) def _sklearn_avg_precision_multiclass(preds, target, average="macro", ignore_index=None): preds = np.moveaxis(preds.numpy(), 1, -1).reshape((-1, preds.shape[1])) target = target.numpy().flatten() if not ((preds > 0) & (preds < 1)).all(): preds = softmax(preds, 1) target, preds = remove_ignore_index(target, preds, ignore_index) res = [] for i in range(NUM_CLASSES): y_true_temp = np.zeros_like(target) y_true_temp[target == i] = 1 res.append(sk_average_precision_score(y_true_temp, preds[:, i])) if average == "macro": return np.array(res)[~np.isnan(res)].mean() if average == "weighted": weights = np.bincount(target) weights = weights / sum(weights) return (np.array(res) * weights)[~np.isnan(res)].sum() return res @pytest.mark.parametrize( "inputs", (_multiclass_cases[1], _multiclass_cases[2], _multiclass_cases[4], _multiclass_cases[5]) ) class TestMulticlassAveragePrecision(MetricTester): """Test class for `MulticlassAveragePrecision` metric.""" @pytest.mark.parametrize("average", ["macro", "weighted", None]) @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("ddp", [True, False]) def test_multiclass_average_precision(self, inputs, average, ddp, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MulticlassAveragePrecision, reference_metric=partial(_sklearn_avg_precision_multiclass, average=average, ignore_index=ignore_index), metric_args={ "thresholds": None, "num_classes": NUM_CLASSES, "average": average, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("average", ["macro", "weighted", None]) @pytest.mark.parametrize("ignore_index", [None, -1]) def test_multiclass_average_precision_functional(self, inputs, average, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=multiclass_average_precision, reference_metric=partial(_sklearn_avg_precision_multiclass, average=average, ignore_index=ignore_index), metric_args={ "thresholds": None, "num_classes": NUM_CLASSES, "average": average, "ignore_index": ignore_index, }, ) def test_multiclass_average_precision_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MulticlassAveragePrecision, metric_functional=multiclass_average_precision, metric_args={"thresholds": None, "num_classes": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_average_precision_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if dtype == torch.half and not ((preds > 0) & (preds < 1)).all(): pytest.xfail(reason="half support for torch.softmax on cpu not implemented") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MulticlassAveragePrecision, metric_functional=multiclass_average_precision, metric_args={"thresholds": None, "num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_average_precision_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MulticlassAveragePrecision, metric_functional=multiclass_average_precision, metric_args={"thresholds": None, "num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.parametrize("average", ["macro", "weighted", None]) def test_multiclass_average_precision_threshold_arg(self, inputs, average): """Test that different types of `thresholds` argument lead to same result.""" preds, target = inputs if (preds < 0).any(): preds = preds.softmax(dim=-1) for pred, true in zip(preds, target): pred = torch.tensor(np.round(pred.numpy(), 2)) + 1e-6 # rounding will simulate binning ap1 = multiclass_average_precision(pred, true, num_classes=NUM_CLASSES, average=average, thresholds=None) ap2 = multiclass_average_precision( pred, true, num_classes=NUM_CLASSES, average=average, thresholds=torch.linspace(0, 1, 100) ) assert torch.allclose(ap1, ap2) def _sklearn_avg_precision_multilabel(preds, target, average="macro", ignore_index=None): if average == "micro": return _sklearn_avg_precision_binary(preds.flatten(), target.flatten(), ignore_index) res = [_sklearn_avg_precision_binary(preds[:, i], target[:, i], ignore_index) for i in range(NUM_CLASSES)] if average == "macro": return np.array(res)[~np.isnan(res)].mean() if average == "weighted": weights = ((target == 1).sum([0, 2]) if target.ndim == 3 else (target == 1).sum(0)).numpy() weights = weights / sum(weights) return (np.array(res) * weights)[~np.isnan(res)].sum() return res @pytest.mark.parametrize( "inputs", (_multilabel_cases[1], _multilabel_cases[2], _multilabel_cases[4], _multilabel_cases[5]) ) class TestMultilabelAveragePrecision(MetricTester): """Test class for `MultilabelAveragePrecision` metric.""" @pytest.mark.parametrize("average", ["micro", "macro", "weighted", None]) @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("ddp", [True, False]) def test_multilabel_average_precision(self, inputs, ddp, average, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MultilabelAveragePrecision, reference_metric=partial(_sklearn_avg_precision_multilabel, average=average, ignore_index=ignore_index), metric_args={ "thresholds": None, "num_labels": NUM_CLASSES, "average": average, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("average", ["micro", "macro", "weighted", None]) @pytest.mark.parametrize("ignore_index", [None, -1]) def test_multilabel_average_precision_functional(self, inputs, average, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=multilabel_average_precision, reference_metric=partial(_sklearn_avg_precision_multilabel, average=average, ignore_index=ignore_index), metric_args={ "thresholds": None, "num_labels": NUM_CLASSES, "average": average, "ignore_index": ignore_index, }, ) def test_multiclass_average_precision_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MultilabelAveragePrecision, metric_functional=multilabel_average_precision, metric_args={"thresholds": None, "num_labels": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_average_precision_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if dtype == torch.half and not ((preds > 0) & (preds < 1)).all(): pytest.xfail(reason="half support for torch.softmax on cpu not implemented") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MultilabelAveragePrecision, metric_functional=multilabel_average_precision, metric_args={"thresholds": None, "num_labels": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_average_precision_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MultilabelAveragePrecision, metric_functional=multilabel_average_precision, metric_args={"thresholds": None, "num_labels": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.parametrize("average", ["micro", "macro", "weighted", None]) def test_multilabel_average_precision_threshold_arg(self, inputs, average): """Test that different types of `thresholds` argument lead to same result.""" preds, target = inputs if (preds < 0).any(): preds = sigmoid(preds) for pred, true in zip(preds, target): pred = torch.tensor(np.round(pred.numpy(), 1)) + 1e-6 # rounding will simulate binning ap1 = multilabel_average_precision(pred, true, num_labels=NUM_CLASSES, average=average, thresholds=None) ap2 = multilabel_average_precision( pred, true, num_labels=NUM_CLASSES, average=average, thresholds=torch.linspace(0, 1, 100) ) assert torch.allclose(ap1, ap2) @pytest.mark.parametrize( "metric", [ BinaryAveragePrecision, partial(MulticlassAveragePrecision, num_classes=NUM_CLASSES), partial(MultilabelAveragePrecision, num_labels=NUM_CLASSES), ], ) @pytest.mark.parametrize("thresholds", [None, 100, [0.3, 0.5, 0.7, 0.9], torch.linspace(0, 1, 10)]) def test_valid_input_thresholds(metric, thresholds): """Test valid formats of the threshold argument.""" with pytest.warns(None) as record: metric(thresholds=thresholds) assert len(record) == 0 @pytest.mark.parametrize( ("metric", "kwargs"), [ (BinaryAveragePrecision, {"task": "binary"}), (MulticlassAveragePrecision, {"task": "multiclass", "num_classes": 3}), (MultilabelAveragePrecision, {"task": "multilabel", "num_labels": 3}), (None, {"task": "not_valid_task"}), ], ) def test_wrapper_class(metric, kwargs, base_metric=AveragePrecision): """Test the wrapper class.""" assert issubclass(base_metric, Metric) if metric is None: with pytest.raises(ValueError, match=r"Invalid *"): base_metric(**kwargs) else: instance = base_metric(**kwargs) assert isinstance(instance, metric) assert isinstance(instance, Metric)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/classification/test_dice.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from typing import Optional import pytest from scipy.spatial.distance import dice as sc_dice from torch import Tensor, tensor from torchmetrics.classification import Dice from torchmetrics.functional import dice from torchmetrics.functional.classification.stat_scores import _del_column from torchmetrics.utilities.checks import _input_format_classification from torchmetrics.utilities.enums import DataType from unittests.classification.inputs import _input_binary, _input_binary_logits, _input_binary_prob from unittests.classification.inputs import _input_multiclass as _input_mcls from unittests.classification.inputs import _input_multiclass_logits as _input_mcls_logits from unittests.classification.inputs import _input_multiclass_prob as _input_mcls_prob from unittests.classification.inputs import _input_multiclass_with_missing_class as _input_miss_class from unittests.classification.inputs import _input_multilabel as _input_mlb from unittests.classification.inputs import _input_multilabel_logits as _input_mlb_logits from unittests.classification.inputs import _input_multilabel_multidim as _input_mlmd from unittests.classification.inputs import _input_multilabel_multidim_prob as _input_mlmd_prob from unittests.classification.inputs import _input_multilabel_prob as _input_mlb_prob from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester seed_all(42) def _scipy_dice( preds: Tensor, target: Tensor, ignore_index: Optional[int] = None, ) -> float: """Compute dice score from prediction and target. Used scipy implementation of main dice logic. Args: preds: prediction tensor target: target tensor ignore_index: Integer specifying a target class to ignore. Recommend set to index of background class. Return: Float dice score """ sk_preds, sk_target, mode = _input_format_classification(preds, target) if ignore_index is not None and mode != DataType.BINARY: sk_preds = _del_column(sk_preds, ignore_index) sk_target = _del_column(sk_target, ignore_index) sk_preds, sk_target = sk_preds.numpy(), sk_target.numpy() return 1 - sc_dice(sk_preds.reshape(-1), sk_target.reshape(-1)) @pytest.mark.parametrize( ("pred", "target", "expected"), [ ([[0, 0], [1, 1]], [[0, 0], [1, 1]], 1.0), ([[1, 1], [0, 0]], [[0, 0], [1, 1]], 0.0), ([[1, 1], [1, 1]], [[1, 1], [0, 0]], 2 / 3), ([[1, 1], [0, 0]], [[1, 1], [0, 0]], 1.0), ], ) def test_dice(pred, target, expected): """Test that implementation returns the correct result.""" score = dice(tensor(pred), tensor(target), ignore_index=0) assert score == expected @pytest.mark.parametrize( "preds, target", [ (_input_binary.preds, _input_binary.target), (_input_binary_logits.preds, _input_binary_logits.target), (_input_binary_prob.preds, _input_binary_prob.target), ], ) @pytest.mark.parametrize("ignore_index", [None]) class TestDiceBinary(MetricTester): """Test class for `Dice` metric inf binary setting.""" @pytest.mark.parametrize("ddp", [False]) def test_dice_class(self, ddp, preds, target, ignore_index): """Test class implementation of metric.""" self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=Dice, reference_metric=partial(_scipy_dice, ignore_index=ignore_index), metric_args={"ignore_index": ignore_index}, ) def test_dice_fn(self, preds, target, ignore_index): """Test functional implementation of metric.""" self.run_functional_metric_test( preds, target, metric_functional=dice, reference_metric=partial(_scipy_dice, ignore_index=ignore_index), metric_args={"ignore_index": ignore_index}, ) @pytest.mark.parametrize( "preds, target", [ (_input_mcls.preds, _input_mcls.target), (_input_mcls_logits.preds, _input_mcls_logits.target), (_input_mcls_prob.preds, _input_mcls_prob.target), (_input_miss_class.preds, _input_miss_class.target), (_input_mlb.preds, _input_mlb.target), (_input_mlb_logits.preds, _input_mlb_logits.target), (_input_mlmd.preds, _input_mlmd.target), (_input_mlmd_prob.preds, _input_mlmd_prob.target), (_input_mlb_prob.preds, _input_mlb_prob.target), ], ) @pytest.mark.parametrize("ignore_index", [None, 0]) class TestDiceMulti(MetricTester): """Test class for `Dice` metric in multi-class setting..""" @pytest.mark.parametrize("ddp", [False]) def test_dice_class(self, ddp, preds, target, ignore_index): """Test class implementation of metric.""" self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=Dice, reference_metric=partial(_scipy_dice, ignore_index=ignore_index), metric_args={"ignore_index": ignore_index}, ) def test_dice_fn(self, preds, target, ignore_index): """Test functional implementation of metric.""" self.run_functional_metric_test( preds, target, metric_functional=dice, reference_metric=partial(_scipy_dice, ignore_index=ignore_index), metric_args={"ignore_index": ignore_index}, )
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/classification/test_roc.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from scipy.special import expit as sigmoid from scipy.special import softmax from sklearn.metrics import roc_curve as sk_roc_curve from torchmetrics.classification.roc import ROC, BinaryROC, MulticlassROC, MultilabelROC from torchmetrics.functional.classification.roc import binary_roc, multiclass_roc, multilabel_roc from torchmetrics.metric import Metric from unittests import NUM_CLASSES from unittests.classification.inputs import _binary_cases, _multiclass_cases, _multilabel_cases from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester, inject_ignore_index, remove_ignore_index seed_all(42) def _sklearn_roc_binary(preds, target, ignore_index=None): preds = preds.flatten().numpy() target = target.flatten().numpy() if np.issubdtype(preds.dtype, np.floating) and not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) target, preds = remove_ignore_index(target, preds, ignore_index) fpr, tpr, thresholds = sk_roc_curve(target, preds, drop_intermediate=False) thresholds[0] = 1.0 return [np.nan_to_num(x, nan=0.0) for x in [fpr, tpr, thresholds]] @pytest.mark.parametrize("inputs", (_binary_cases[1], _binary_cases[2], _binary_cases[4], _binary_cases[5])) class TestBinaryROC(MetricTester): """Test class for `BinaryROC` metric.""" @pytest.mark.parametrize("ignore_index", [None, -1, 0]) @pytest.mark.parametrize("ddp", [True, False]) def test_binary_roc(self, inputs, ddp, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=BinaryROC, reference_metric=partial(_sklearn_roc_binary, ignore_index=ignore_index), metric_args={ "thresholds": None, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) def test_binary_roc_functional(self, inputs, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=binary_roc, reference_metric=partial(_sklearn_roc_binary, ignore_index=ignore_index), metric_args={ "thresholds": None, "ignore_index": ignore_index, }, ) def test_binary_roc_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=BinaryROC, metric_functional=binary_roc, metric_args={"thresholds": None}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_roc_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=BinaryROC, metric_functional=binary_roc, metric_args={"thresholds": None}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_roc_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=BinaryROC, metric_functional=binary_roc, metric_args={"thresholds": None}, dtype=dtype, ) @pytest.mark.parametrize("threshold_fn", [lambda x: x, lambda x: x.numpy().tolist()], ids=["as tensor", "as list"]) def test_binary_roc_threshold_arg(self, inputs, threshold_fn): """Test that different types of `thresholds` argument lead to same result.""" preds, target = inputs for pred, true in zip(preds, target): p1, r1, t1 = binary_roc(pred, true, thresholds=None) p2, r2, t2 = binary_roc(pred, true, thresholds=threshold_fn(t1.flip(0))) assert torch.allclose(p1, p2) assert torch.allclose(r1, r2) assert torch.allclose(t1, t2) def _sklearn_roc_multiclass(preds, target, ignore_index=None): preds = np.moveaxis(preds.numpy(), 1, -1).reshape((-1, preds.shape[1])) target = target.numpy().flatten() if not ((preds > 0) & (preds < 1)).all(): preds = softmax(preds, 1) target, preds = remove_ignore_index(target, preds, ignore_index) fpr, tpr, thresholds = [], [], [] for i in range(NUM_CLASSES): target_temp = np.zeros_like(target) target_temp[target == i] = 1 res = sk_roc_curve(target_temp, preds[:, i], drop_intermediate=False) res[2][0] = 1.0 fpr.append(res[0]) tpr.append(res[1]) thresholds.append(res[2]) return [np.nan_to_num(x, nan=0.0) for x in [fpr, tpr, thresholds]] @pytest.mark.parametrize( "inputs", (_multiclass_cases[1], _multiclass_cases[2], _multiclass_cases[4], _multiclass_cases[5]) ) class TestMulticlassROC(MetricTester): """Test class for `MulticlassROC` metric.""" @pytest.mark.parametrize("ignore_index", [None, -1, 0]) @pytest.mark.parametrize("ddp", [True, False]) def test_multiclass_roc(self, inputs, ddp, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MulticlassROC, reference_metric=partial(_sklearn_roc_multiclass, ignore_index=ignore_index), metric_args={ "thresholds": None, "num_classes": NUM_CLASSES, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) def test_multiclass_roc_functional(self, inputs, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=multiclass_roc, reference_metric=partial(_sklearn_roc_multiclass, ignore_index=ignore_index), metric_args={ "thresholds": None, "num_classes": NUM_CLASSES, "ignore_index": ignore_index, }, ) def test_multiclass_roc_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MulticlassROC, metric_functional=multiclass_roc, metric_args={"thresholds": None, "num_classes": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_roc_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if dtype == torch.half and not ((preds > 0) & (preds < 1)).all(): pytest.xfail(reason="half support for torch.softmax on cpu not implemented") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MulticlassROC, metric_functional=multiclass_roc, metric_args={"thresholds": None, "num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_roc_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MulticlassROC, metric_functional=multiclass_roc, metric_args={"thresholds": None, "num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.parametrize("threshold_fn", [lambda x: x, lambda x: x.numpy().tolist()], ids=["as tensor", "as list"]) def test_multiclass_roc_threshold_arg(self, inputs, threshold_fn): """Test that different types of `thresholds` argument lead to same result.""" preds, target = inputs for pred, true in zip(preds, target): p1, r1, t1 = multiclass_roc(pred, true, num_classes=NUM_CLASSES, thresholds=None) for i, t in enumerate(t1): p2, r2, t2 = multiclass_roc(pred, true, num_classes=NUM_CLASSES, thresholds=threshold_fn(t.flip(0))) assert torch.allclose(p1[i], p2[i]) assert torch.allclose(r1[i], r2[i]) assert torch.allclose(t1[i], t2) @pytest.mark.parametrize("average", ["macro", "micro"]) @pytest.mark.parametrize("thresholds", [None, 100]) def test_multiclass_average(self, inputs, average, thresholds): """Test that the average argument works as expected.""" preds, target = inputs output = multiclass_roc(preds[0], target[0], num_classes=NUM_CLASSES, thresholds=thresholds, average=average) assert all(isinstance(o, torch.Tensor) for o in output) none_output = multiclass_roc(preds[0], target[0], num_classes=NUM_CLASSES, thresholds=thresholds, average=None) if average == "macro": assert len(output[0]) == len(none_output[0][0]) * NUM_CLASSES assert len(output[1]) == len(none_output[1][0]) * NUM_CLASSES assert ( len(output[2]) == (len(none_output[2][0]) if thresholds is None else len(none_output[2])) * NUM_CLASSES ) def _sklearn_roc_multilabel(preds, target, ignore_index=None): fpr, tpr, thresholds = [], [], [] for i in range(NUM_CLASSES): res = _sklearn_roc_binary(preds[:, i], target[:, i], ignore_index) fpr.append(res[0]) tpr.append(res[1]) thresholds.append(res[2]) return fpr, tpr, thresholds @pytest.mark.parametrize( "inputs", (_multilabel_cases[1], _multilabel_cases[2], _multilabel_cases[4], _multilabel_cases[5]) ) class TestMultilabelROC(MetricTester): """Test class for `MultilabelROC` metric.""" @pytest.mark.parametrize("ignore_index", [None, -1, 0]) @pytest.mark.parametrize("ddp", [True, False]) def test_multilabel_roc(self, inputs, ddp, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MultilabelROC, reference_metric=partial(_sklearn_roc_multilabel, ignore_index=ignore_index), metric_args={ "thresholds": None, "num_labels": NUM_CLASSES, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) def test_multilabel_roc_functional(self, inputs, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=multilabel_roc, reference_metric=partial(_sklearn_roc_multilabel, ignore_index=ignore_index), metric_args={ "thresholds": None, "num_labels": NUM_CLASSES, "ignore_index": ignore_index, }, ) def test_multiclass_roc_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MultilabelROC, metric_functional=multilabel_roc, metric_args={"thresholds": None, "num_labels": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_roc_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if dtype == torch.half and not ((preds > 0) & (preds < 1)).all(): pytest.xfail(reason="half support for torch.softmax on cpu not implemented") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MultilabelROC, metric_functional=multilabel_roc, metric_args={"thresholds": None, "num_labels": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_roc_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MultilabelROC, metric_functional=multilabel_roc, metric_args={"thresholds": None, "num_labels": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.parametrize("threshold_fn", [lambda x: x, lambda x: x.numpy().tolist()], ids=["as tensor", "as list"]) def test_multilabel_roc_threshold_arg(self, inputs, threshold_fn): """Test that different types of `thresholds` argument lead to same result.""" preds, target = inputs for pred, true in zip(preds, target): p1, r1, t1 = multilabel_roc(pred, true, num_labels=NUM_CLASSES, thresholds=None) for i, t in enumerate(t1): p2, r2, t2 = multilabel_roc(pred, true, num_labels=NUM_CLASSES, thresholds=threshold_fn(t.flip(0))) assert torch.allclose(p1[i], p2[i]) assert torch.allclose(r1[i], r2[i]) assert torch.allclose(t1[i], t2) @pytest.mark.parametrize( "metric", [ BinaryROC, partial(MulticlassROC, num_classes=NUM_CLASSES), partial(MultilabelROC, num_labels=NUM_CLASSES), ], ) @pytest.mark.parametrize("thresholds", [None, 100, [0.3, 0.5, 0.7, 0.9], torch.linspace(0, 1, 10)]) def test_valid_input_thresholds(metric, thresholds): """Test valid formats of the threshold argument.""" with pytest.warns(None) as record: metric(thresholds=thresholds) assert len(record) == 0 @pytest.mark.parametrize( ("metric", "kwargs"), [ (BinaryROC, {"task": "binary"}), (MulticlassROC, {"task": "multiclass", "num_classes": 3}), (MultilabelROC, {"task": "multilabel", "num_labels": 3}), (None, {"task": "not_valid_task"}), ], ) def test_wrapper_class(metric, kwargs, base_metric=ROC): """Test the wrapper class.""" assert issubclass(base_metric, Metric) if metric is None: with pytest.raises(ValueError, match=r"Invalid *"): base_metric(**kwargs) else: instance = base_metric(**kwargs) assert isinstance(instance, metric) assert isinstance(instance, Metric)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/classification/test_ranking.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from scipy.special import expit as sigmoid from sklearn.metrics import coverage_error as sk_coverage_error from sklearn.metrics import label_ranking_average_precision_score as sk_label_ranking from sklearn.metrics import label_ranking_loss as sk_label_ranking_loss from torchmetrics.classification.ranking import ( MultilabelCoverageError, MultilabelRankingAveragePrecision, MultilabelRankingLoss, ) from torchmetrics.functional.classification.ranking import ( multilabel_coverage_error, multilabel_ranking_average_precision, multilabel_ranking_loss, ) from unittests import NUM_CLASSES from unittests.classification.inputs import _multilabel_cases from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester, inject_ignore_index seed_all(42) def _sklearn_ranking(preds, target, fn, ignore_index): preds = preds.numpy() target = target.numpy() if np.issubdtype(preds.dtype, np.floating) and not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) preds = np.moveaxis(preds, 1, -1).reshape((-1, preds.shape[1])) target = np.moveaxis(target, 1, -1).reshape((-1, target.shape[1])) if ignore_index is not None: idx = target == ignore_index target[idx] = -1 return fn(target, preds) @pytest.mark.parametrize( "metric, functional_metric, ref_metric", [ (MultilabelCoverageError, multilabel_coverage_error, sk_coverage_error), (MultilabelRankingAveragePrecision, multilabel_ranking_average_precision, sk_label_ranking), (MultilabelRankingLoss, multilabel_ranking_loss, sk_label_ranking_loss), ], ) @pytest.mark.parametrize( "inputs", (_multilabel_cases[1], _multilabel_cases[2], _multilabel_cases[4], _multilabel_cases[5]) ) class TestMultilabelRanking(MetricTester): """Test class for `MultilabelRanking` metric.""" @pytest.mark.parametrize("ignore_index", [None]) @pytest.mark.parametrize("ddp", [True, False]) def test_multilabel_ranking(self, inputs, metric, functional_metric, ref_metric, ddp, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=metric, reference_metric=partial(_sklearn_ranking, fn=ref_metric, ignore_index=ignore_index), metric_args={ "num_labels": NUM_CLASSES, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("ignore_index", [None]) def test_multilabel_ranking_functional(self, inputs, metric, functional_metric, ref_metric, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=functional_metric, reference_metric=partial(_sklearn_ranking, fn=ref_metric, ignore_index=ignore_index), metric_args={ "num_labels": NUM_CLASSES, "ignore_index": ignore_index, }, ) def test_multilabel_ranking_differentiability(self, inputs, metric, functional_metric, ref_metric): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=metric, metric_functional=functional_metric, metric_args={"num_labels": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_ranking_dtype_cpu(self, inputs, metric, functional_metric, ref_metric, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") if dtype == torch.half and functional_metric == multilabel_ranking_average_precision: pytest.xfail( reason="multilabel_ranking_average_precision requires torch.unique which is not implemented for half" ) self.run_precision_test_cpu( preds=preds, target=target, metric_module=metric, metric_functional=functional_metric, metric_args={"num_labels": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_ranking_dtype_gpu(self, inputs, metric, functional_metric, ref_metric, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=metric, metric_functional=functional_metric, metric_args={"num_labels": NUM_CLASSES}, dtype=dtype, )
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/classification/test_cohen_kappa.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from scipy.special import expit as sigmoid from sklearn.metrics import cohen_kappa_score as sk_cohen_kappa from torchmetrics.classification.cohen_kappa import BinaryCohenKappa, CohenKappa, MulticlassCohenKappa from torchmetrics.functional.classification.cohen_kappa import binary_cohen_kappa, multiclass_cohen_kappa from torchmetrics.metric import Metric from unittests import NUM_CLASSES, THRESHOLD from unittests.classification.inputs import _binary_cases, _multiclass_cases from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester, inject_ignore_index, remove_ignore_index seed_all(42) def _sklearn_cohen_kappa_binary(preds, target, weights=None, ignore_index=None): preds = preds.view(-1).numpy() target = target.view(-1).numpy() if np.issubdtype(preds.dtype, np.floating): if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) preds = (preds >= THRESHOLD).astype(np.uint8) target, preds = remove_ignore_index(target, preds, ignore_index) return sk_cohen_kappa(y1=target, y2=preds, weights=weights) @pytest.mark.parametrize("inputs", _binary_cases) class TestBinaryCohenKappa(MetricTester): """Test class for `BinaryCohenKappa` metric.""" atol = 1e-5 @pytest.mark.parametrize("weights", ["linear", "quadratic", None]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) @pytest.mark.parametrize("ddp", [True, False]) def test_binary_cohen_kappa(self, inputs, ddp, weights, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=BinaryCohenKappa, reference_metric=partial(_sklearn_cohen_kappa_binary, weights=weights, ignore_index=ignore_index), metric_args={ "threshold": THRESHOLD, "weights": weights, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("weights", ["linear", "quadratic", None]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) def test_binary_confusion_matrix_functional(self, inputs, weights, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=binary_cohen_kappa, reference_metric=partial(_sklearn_cohen_kappa_binary, weights=weights, ignore_index=ignore_index), metric_args={ "threshold": THRESHOLD, "weights": weights, "ignore_index": ignore_index, }, ) def test_binary_cohen_kappa_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=BinaryCohenKappa, metric_functional=binary_cohen_kappa, metric_args={"threshold": THRESHOLD}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_cohen_kappa_dtypes_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=BinaryCohenKappa, metric_functional=binary_cohen_kappa, metric_args={"threshold": THRESHOLD}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_confusion_matrix_dtypes_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=BinaryCohenKappa, metric_functional=binary_cohen_kappa, metric_args={"threshold": THRESHOLD}, dtype=dtype, ) def _sklearn_cohen_kappa_multiclass(preds, target, weights, ignore_index=None): preds = preds.numpy() target = target.numpy() if np.issubdtype(preds.dtype, np.floating): preds = np.argmax(preds, axis=1) preds = preds.flatten() target = target.flatten() target, preds = remove_ignore_index(target, preds, ignore_index) return sk_cohen_kappa(y1=target, y2=preds, weights=weights) @pytest.mark.parametrize("inputs", _multiclass_cases) class TestMulticlassCohenKappa(MetricTester): """Test class for `MulticlassCohenKappa` metric.""" atol = 1e-5 @pytest.mark.parametrize("weights", ["linear", "quadratic", None]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) @pytest.mark.parametrize("ddp", [True, False]) def test_multiclass_cohen_kappa(self, inputs, ddp, weights, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MulticlassCohenKappa, reference_metric=partial(_sklearn_cohen_kappa_multiclass, weights=weights, ignore_index=ignore_index), metric_args={ "num_classes": NUM_CLASSES, "weights": weights, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("weights", ["linear", "quadratic", None]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) def test_multiclass_confusion_matrix_functional(self, inputs, weights, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=multiclass_cohen_kappa, reference_metric=partial(_sklearn_cohen_kappa_multiclass, weights=weights, ignore_index=ignore_index), metric_args={ "num_classes": NUM_CLASSES, "weights": weights, "ignore_index": ignore_index, }, ) def test_multiclass_cohen_kappa_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MulticlassCohenKappa, metric_functional=multiclass_cohen_kappa, metric_args={"num_classes": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_cohen_kappa_dtypes_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MulticlassCohenKappa, metric_functional=multiclass_cohen_kappa, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_confusion_matrix_dtypes_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MulticlassCohenKappa, metric_functional=multiclass_cohen_kappa, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.parametrize( ("metric", "kwargs"), [ (BinaryCohenKappa, {"task": "binary"}), (MulticlassCohenKappa, {"task": "multiclass", "num_classes": 3}), (None, {"task": "not_valid_task"}), ], ) def test_wrapper_class(metric, kwargs, base_metric=CohenKappa): """Test the wrapper class.""" assert issubclass(base_metric, Metric) if metric is None: with pytest.raises(ValueError, match=r"Invalid *"): base_metric(**kwargs) else: instance = base_metric(**kwargs) assert isinstance(instance, metric) assert isinstance(instance, Metric)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/classification/test_auroc.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from scipy.special import expit as sigmoid from scipy.special import softmax from sklearn.metrics import roc_auc_score as sk_roc_auc_score from torchmetrics.classification.auroc import AUROC, BinaryAUROC, MulticlassAUROC, MultilabelAUROC from torchmetrics.functional.classification.auroc import binary_auroc, multiclass_auroc, multilabel_auroc from torchmetrics.functional.classification.roc import binary_roc from torchmetrics.metric import Metric from unittests import NUM_CLASSES from unittests.classification.inputs import _binary_cases, _multiclass_cases, _multilabel_cases from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester, inject_ignore_index, remove_ignore_index seed_all(42) def _sklearn_auroc_binary(preds, target, max_fpr=None, ignore_index=None): preds = preds.flatten().numpy() target = target.flatten().numpy() if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) target, preds = remove_ignore_index(target, preds, ignore_index) return sk_roc_auc_score(target, preds, max_fpr=max_fpr) @pytest.mark.parametrize("inputs", (_binary_cases[1], _binary_cases[2], _binary_cases[4], _binary_cases[5])) class TestBinaryAUROC(MetricTester): """Test class for `BinaryAUROC` metric.""" @pytest.mark.parametrize("max_fpr", [None, 0.8, 0.5]) @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("ddp", [True, False]) def test_binary_auroc(self, inputs, ddp, max_fpr, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=BinaryAUROC, reference_metric=partial(_sklearn_auroc_binary, max_fpr=max_fpr, ignore_index=ignore_index), metric_args={ "max_fpr": max_fpr, "thresholds": None, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("max_fpr", [None, 0.8, 0.5]) @pytest.mark.parametrize("ignore_index", [None, -1]) def test_binary_auroc_functional(self, inputs, max_fpr, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=binary_auroc, reference_metric=partial(_sklearn_auroc_binary, max_fpr=max_fpr, ignore_index=ignore_index), metric_args={ "max_fpr": max_fpr, "thresholds": None, "ignore_index": ignore_index, }, ) def test_binary_auroc_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=BinaryAUROC, metric_functional=binary_auroc, metric_args={"thresholds": None}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_auroc_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=BinaryAUROC, metric_functional=binary_auroc, metric_args={"thresholds": None}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_auroc_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=BinaryAUROC, metric_functional=binary_auroc, metric_args={"thresholds": None}, dtype=dtype, ) @pytest.mark.parametrize("threshold_fn", [lambda x: x, lambda x: x.numpy().tolist()], ids=["as tensor", "as list"]) def test_binary_auroc_threshold_arg(self, inputs, threshold_fn): """Test that different types of `thresholds` argument lead to same result.""" preds, target = inputs for pred, true in zip(preds, target): _, _, t = binary_roc(pred, true, thresholds=None) ap1 = binary_auroc(pred, true, thresholds=None) ap2 = binary_auroc(pred, true, thresholds=threshold_fn(t.flip(0))) assert torch.allclose(ap1, ap2) def _sklearn_auroc_multiclass(preds, target, average="macro", ignore_index=None): preds = np.moveaxis(preds.numpy(), 1, -1).reshape((-1, preds.shape[1])) target = target.numpy().flatten() if not ((preds > 0) & (preds < 1)).all(): preds = softmax(preds, 1) target, preds = remove_ignore_index(target, preds, ignore_index) return sk_roc_auc_score(target, preds, average=average, multi_class="ovr", labels=list(range(NUM_CLASSES))) @pytest.mark.parametrize( "inputs", (_multiclass_cases[1], _multiclass_cases[2], _multiclass_cases[4], _multiclass_cases[5]) ) class TestMulticlassAUROC(MetricTester): """Test class for `MulticlassAUROC` metric.""" @pytest.mark.parametrize("average", ["macro", "weighted"]) @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("ddp", [True, False]) def test_multiclass_auroc(self, inputs, average, ddp, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MulticlassAUROC, reference_metric=partial(_sklearn_auroc_multiclass, average=average, ignore_index=ignore_index), metric_args={ "thresholds": None, "num_classes": NUM_CLASSES, "average": average, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("average", ["macro", "weighted"]) @pytest.mark.parametrize("ignore_index", [None, -1]) def test_multiclass_auroc_functional(self, inputs, average, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=multiclass_auroc, reference_metric=partial(_sklearn_auroc_multiclass, average=average, ignore_index=ignore_index), metric_args={ "thresholds": None, "num_classes": NUM_CLASSES, "average": average, "ignore_index": ignore_index, }, ) def test_multiclass_auroc_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MulticlassAUROC, metric_functional=multiclass_auroc, metric_args={"thresholds": None, "num_classes": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_auroc_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if dtype == torch.half and not ((preds > 0) & (preds < 1)).all(): pytest.xfail(reason="half support for torch.softmax on cpu not implemented") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MulticlassAUROC, metric_functional=multiclass_auroc, metric_args={"thresholds": None, "num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_auroc_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MulticlassAUROC, metric_functional=multiclass_auroc, metric_args={"thresholds": None, "num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.parametrize("average", ["macro", "weighted", None]) def test_multiclass_auroc_threshold_arg(self, inputs, average): """Test that different types of `thresholds` argument lead to same result.""" preds, target = inputs if (preds < 0).any(): preds = preds.softmax(dim=-1) for pred, true in zip(preds, target): pred = torch.tensor(np.round(pred.numpy(), 2)) + 1e-6 # rounding will simulate binning ap1 = multiclass_auroc(pred, true, num_classes=NUM_CLASSES, average=average, thresholds=None) ap2 = multiclass_auroc( pred, true, num_classes=NUM_CLASSES, average=average, thresholds=torch.linspace(0, 1, 100) ) assert torch.allclose(ap1, ap2) def _sklearn_auroc_multilabel(preds, target, average="macro", ignore_index=None): if ignore_index is None: if preds.ndim > 2: target = target.transpose(2, 1).reshape(-1, NUM_CLASSES) preds = preds.transpose(2, 1).reshape(-1, NUM_CLASSES) target = target.numpy() preds = preds.numpy() if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) return sk_roc_auc_score(target, preds, average=average, max_fpr=None) if average == "micro": return _sklearn_auroc_binary(preds.flatten(), target.flatten(), max_fpr=None, ignore_index=ignore_index) res = [ _sklearn_auroc_binary(preds[:, i], target[:, i], max_fpr=None, ignore_index=ignore_index) for i in range(NUM_CLASSES) ] if average == "macro": return np.array(res)[~np.isnan(res)].mean() if average == "weighted": weights = ((target == 1).sum([0, 2]) if target.ndim == 3 else (target == 1).sum(0)).numpy() weights = weights / sum(weights) return (np.array(res) * weights)[~np.isnan(res)].sum() return res @pytest.mark.parametrize( "inputs", (_multilabel_cases[1], _multilabel_cases[2], _multilabel_cases[4], _multilabel_cases[5]) ) class TestMultilabelAUROC(MetricTester): """Test class for `MultilabelAUROC` metric.""" @pytest.mark.parametrize("average", ["micro", "macro", "weighted", None]) @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("ddp", [True, False]) def test_multilabel_auroc(self, inputs, ddp, average, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MultilabelAUROC, reference_metric=partial(_sklearn_auroc_multilabel, average=average, ignore_index=ignore_index), metric_args={ "thresholds": None, "num_labels": NUM_CLASSES, "average": average, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("average", ["micro", "macro", "weighted", None]) @pytest.mark.parametrize("ignore_index", [None, -1]) def test_multilabel_auroc_functional(self, inputs, average, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=multilabel_auroc, reference_metric=partial(_sklearn_auroc_multilabel, average=average, ignore_index=ignore_index), metric_args={ "thresholds": None, "num_labels": NUM_CLASSES, "average": average, "ignore_index": ignore_index, }, ) def test_multiclass_auroc_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MultilabelAUROC, metric_functional=multilabel_auroc, metric_args={"thresholds": None, "num_labels": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_auroc_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if dtype == torch.half and not ((preds > 0) & (preds < 1)).all(): pytest.xfail(reason="half support for torch.softmax on cpu not implemented") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MultilabelAUROC, metric_functional=multilabel_auroc, metric_args={"thresholds": None, "num_labels": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_auroc_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MultilabelAUROC, metric_functional=multilabel_auroc, metric_args={"thresholds": None, "num_labels": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.parametrize("average", ["micro", "macro", "weighted", None]) def test_multilabel_auroc_threshold_arg(self, inputs, average): """Test that different types of `thresholds` argument lead to same result.""" preds, target = inputs if (preds < 0).any(): preds = sigmoid(preds) for pred, true in zip(preds, target): pred = torch.tensor(np.round(pred.numpy(), 1)) + 1e-6 # rounding will simulate binning ap1 = multilabel_auroc(pred, true, num_labels=NUM_CLASSES, average=average, thresholds=None) ap2 = multilabel_auroc( pred, true, num_labels=NUM_CLASSES, average=average, thresholds=torch.linspace(0, 1, 100) ) assert torch.allclose(ap1, ap2) @pytest.mark.parametrize( "metric", [ BinaryAUROC, partial(MulticlassAUROC, num_classes=NUM_CLASSES), partial(MultilabelAUROC, num_labels=NUM_CLASSES), ], ) @pytest.mark.parametrize("thresholds", [None, 100, [0.3, 0.5, 0.7, 0.9], torch.linspace(0, 1, 10)]) def test_valid_input_thresholds(metric, thresholds): """Test valid formats of the threshold argument.""" with pytest.warns(None) as record: metric(thresholds=thresholds) assert len(record) == 0 @pytest.mark.parametrize("max_fpr", [None, 0.8, 0.5]) def test_corner_case_max_fpr(max_fpr): """Check that metric returns 0 when one class is missing and `max_fpr` is set.""" preds = torch.tensor([0.1, 0.2, 0.3, 0.4]) target = torch.tensor([0, 0, 0, 0]) metric = BinaryAUROC(max_fpr=max_fpr) assert metric(preds, target) == 0.0 preds = torch.tensor([0.5, 0.6, 0.7, 0.8]) target = torch.tensor([1, 1, 1, 1]) metric = BinaryAUROC(max_fpr=max_fpr) assert metric(preds, target) == 0.0 @pytest.mark.parametrize( ("metric", "kwargs"), [ (BinaryAUROC, {"task": "binary"}), (MulticlassAUROC, {"task": "multiclass", "num_classes": 3}), (MultilabelAUROC, {"task": "multilabel", "num_labels": 3}), (None, {"task": "not_valid_task"}), ], ) def test_wrapper_class(metric, kwargs, base_metric=AUROC): """Test the wrapper class.""" assert issubclass(base_metric, Metric) if metric is None: with pytest.raises(ValueError, match=r"Invalid *"): base_metric(**kwargs) else: instance = base_metric(**kwargs) assert isinstance(instance, metric) assert isinstance(instance, Metric)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/classification/test_matthews_corrcoef.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from scipy.special import expit as sigmoid from sklearn.metrics import matthews_corrcoef as sk_matthews_corrcoef from torchmetrics.classification.matthews_corrcoef import ( BinaryMatthewsCorrCoef, MatthewsCorrCoef, MulticlassMatthewsCorrCoef, MultilabelMatthewsCorrCoef, ) from torchmetrics.functional.classification.matthews_corrcoef import ( binary_matthews_corrcoef, multiclass_matthews_corrcoef, multilabel_matthews_corrcoef, ) from torchmetrics.metric import Metric from unittests import NUM_CLASSES, THRESHOLD from unittests.classification.inputs import _binary_cases, _multiclass_cases, _multilabel_cases from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester, inject_ignore_index, remove_ignore_index seed_all(42) def _sklearn_matthews_corrcoef_binary(preds, target, ignore_index=None): preds = preds.view(-1).numpy() target = target.view(-1).numpy() if np.issubdtype(preds.dtype, np.floating): if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) preds = (preds >= THRESHOLD).astype(np.uint8) target, preds = remove_ignore_index(target, preds, ignore_index) return sk_matthews_corrcoef(y_true=target, y_pred=preds) @pytest.mark.parametrize("inputs", _binary_cases) class TestBinaryMatthewsCorrCoef(MetricTester): """Test class for `BinaryMatthewsCorrCoef` metric.""" @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("ddp", [True, False]) def test_binary_matthews_corrcoef(self, inputs, ddp, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=BinaryMatthewsCorrCoef, reference_metric=partial(_sklearn_matthews_corrcoef_binary, ignore_index=ignore_index), metric_args={ "threshold": THRESHOLD, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("ignore_index", [None, -1]) def test_binary_matthews_corrcoef_functional(self, inputs, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=binary_matthews_corrcoef, reference_metric=partial(_sklearn_matthews_corrcoef_binary, ignore_index=ignore_index), metric_args={ "threshold": THRESHOLD, "ignore_index": ignore_index, }, ) def test_binary_matthews_corrcoef_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=BinaryMatthewsCorrCoef, metric_functional=binary_matthews_corrcoef, metric_args={"threshold": THRESHOLD}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_matthews_corrcoef_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=BinaryMatthewsCorrCoef, metric_functional=binary_matthews_corrcoef, metric_args={"threshold": THRESHOLD}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_matthews_corrcoef_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=BinaryMatthewsCorrCoef, metric_functional=binary_matthews_corrcoef, metric_args={"threshold": THRESHOLD}, dtype=dtype, ) def _sklearn_matthews_corrcoef_multiclass(preds, target, ignore_index=None): preds = preds.numpy() target = target.numpy() if np.issubdtype(preds.dtype, np.floating): preds = np.argmax(preds, axis=1) preds = preds.flatten() target = target.flatten() target, preds = remove_ignore_index(target, preds, ignore_index) return sk_matthews_corrcoef(y_true=target, y_pred=preds) @pytest.mark.parametrize("inputs", _multiclass_cases) class TestMulticlassMatthewsCorrCoef(MetricTester): """Test class for `MulticlassMatthewsCorrCoef` metric.""" @pytest.mark.parametrize("ignore_index", [None, -1, 0]) @pytest.mark.parametrize("ddp", [True, False]) def test_multiclass_matthews_corrcoef(self, inputs, ddp, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MulticlassMatthewsCorrCoef, reference_metric=partial(_sklearn_matthews_corrcoef_multiclass, ignore_index=ignore_index), metric_args={ "num_classes": NUM_CLASSES, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) def test_multiclass_matthews_corrcoef_functional(self, inputs, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=multiclass_matthews_corrcoef, reference_metric=partial(_sklearn_matthews_corrcoef_multiclass, ignore_index=ignore_index), metric_args={ "num_classes": NUM_CLASSES, "ignore_index": ignore_index, }, ) def test_multiclass_matthews_corrcoef_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MulticlassMatthewsCorrCoef, metric_functional=multiclass_matthews_corrcoef, metric_args={"num_classes": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_matthews_corrcoef_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs self.run_precision_test_cpu( preds=preds, target=target, metric_module=MulticlassMatthewsCorrCoef, metric_functional=multiclass_matthews_corrcoef, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_matthews_corrcoef_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MulticlassMatthewsCorrCoef, metric_functional=multiclass_matthews_corrcoef, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) def _sklearn_matthews_corrcoef_multilabel(preds, target, ignore_index=None): preds = preds.view(-1).numpy() target = target.view(-1).numpy() if np.issubdtype(preds.dtype, np.floating): if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) preds = (preds >= THRESHOLD).astype(np.uint8) target, preds = remove_ignore_index(target, preds, ignore_index) return sk_matthews_corrcoef(y_true=target, y_pred=preds) @pytest.mark.parametrize("inputs", _multilabel_cases) class TestMultilabelMatthewsCorrCoef(MetricTester): """Test class for `MultilabelMatthewsCorrCoef` metric.""" @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("ddp", [True, False]) def test_multilabel_matthews_corrcoef(self, inputs, ddp, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MultilabelMatthewsCorrCoef, reference_metric=partial(_sklearn_matthews_corrcoef_multilabel, ignore_index=ignore_index), metric_args={ "num_labels": NUM_CLASSES, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("ignore_index", [None, -1]) def test_multilabel_matthews_corrcoef_functional(self, inputs, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=multilabel_matthews_corrcoef, reference_metric=partial(_sklearn_matthews_corrcoef_multilabel, ignore_index=ignore_index), metric_args={ "num_labels": NUM_CLASSES, "ignore_index": ignore_index, }, ) def test_multilabel_matthews_corrcoef_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MultilabelMatthewsCorrCoef, metric_functional=multilabel_matthews_corrcoef, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_matthews_corrcoef_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MultilabelMatthewsCorrCoef, metric_functional=multilabel_matthews_corrcoef, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_matthews_corrcoef_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MultilabelMatthewsCorrCoef, metric_functional=multilabel_matthews_corrcoef, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, dtype=dtype, ) def test_zero_case_in_multiclass(): """Cases where the denominator in the matthews corrcoef is 0, the score should return 0.""" # Example where neither 1 or 2 is present in the target tensor out = multiclass_matthews_corrcoef(torch.tensor([0, 1, 2]), torch.tensor([0, 0, 0]), 3) assert out == 0.0 @pytest.mark.parametrize( ("metric_fn", "preds", "target", "expected"), [ (binary_matthews_corrcoef, torch.zeros(10), torch.zeros(10), 1.0), (binary_matthews_corrcoef, torch.ones(10), torch.ones(10), 1.0), ( binary_matthews_corrcoef, torch.tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), torch.tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]), 0.0, ), (binary_matthews_corrcoef, torch.zeros(10), torch.ones(10), -1.0), (binary_matthews_corrcoef, torch.ones(10), torch.zeros(10), -1.0), ( partial(multilabel_matthews_corrcoef, num_labels=NUM_CLASSES), torch.zeros(10, NUM_CLASSES).long(), torch.zeros(10, NUM_CLASSES).long(), 1.0, ), ( partial(multilabel_matthews_corrcoef, num_labels=NUM_CLASSES), torch.ones(10, NUM_CLASSES).long(), torch.ones(10, NUM_CLASSES).long(), 1.0, ), ( partial(multilabel_matthews_corrcoef, num_labels=NUM_CLASSES), torch.zeros(10, NUM_CLASSES).long(), torch.ones(10, NUM_CLASSES).long(), -1.0, ), ( partial(multilabel_matthews_corrcoef, num_labels=NUM_CLASSES), torch.ones(10, NUM_CLASSES).long(), torch.zeros(10, NUM_CLASSES).long(), -1.0, ), ], ) def test_corner_cases(metric_fn, preds, target, expected): """Test the corner cases of perfect classifiers or completely random classifiers that they work as expected.""" out = metric_fn(preds, target) assert out == expected @pytest.mark.parametrize( ("metric", "kwargs"), [ (BinaryMatthewsCorrCoef, {"task": "binary"}), (MulticlassMatthewsCorrCoef, {"task": "multiclass", "num_classes": 3}), (MultilabelMatthewsCorrCoef, {"task": "multilabel", "num_labels": 3}), (None, {"task": "not_valid_task"}), ], ) def test_wrapper_class(metric, kwargs, base_metric=MatthewsCorrCoef): """Test the wrapper class.""" assert issubclass(base_metric, Metric) if metric is None: with pytest.raises(ValueError, match=r"Invalid *"): base_metric(**kwargs) else: instance = base_metric(**kwargs) assert isinstance(instance, metric) assert isinstance(instance, Metric)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/classification/inputs.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any import pytest import torch from torch import Tensor from unittests import BATCH_SIZE, EXTRA_DIM, NUM_BATCHES, NUM_CLASSES, _GroupInput, _Input from unittests.helpers import seed_all seed_all(1) def _inv_sigmoid(x: Tensor) -> Tensor: return (x / (1 - x)).log() def _logsoftmax(x: Tensor, dim: int = -1) -> Tensor: return torch.nn.functional.log_softmax(x, dim) _input_binary_prob = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE), target=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE)) ) _input_binary = _Input( preds=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE)), target=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE)), ) _input_binary_logits = _Input( preds=torch.randn(NUM_BATCHES, BATCH_SIZE), target=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE)) ) _input_multilabel_prob = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES), target=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES)), ) _input_multilabel_multidim_prob = _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES, EXTRA_DIM), target=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES, EXTRA_DIM)), ) _input_multilabel_logits = _Input( preds=torch.randn(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES), target=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES)), ) _input_multilabel = _Input( preds=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES)), target=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES)), ) _input_multilabel_multidim = _Input( preds=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES, EXTRA_DIM)), target=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES, EXTRA_DIM)), ) _binary_cases = ( pytest.param( _Input( preds=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE)), target=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE)), ), id="input[single_dim-labels]", ), pytest.param( _Input(preds=torch.rand(NUM_BATCHES, BATCH_SIZE), target=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE))), id="input[single_dim-probs]", ), pytest.param( _Input( preds=_inv_sigmoid(torch.rand(NUM_BATCHES, BATCH_SIZE)), target=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE)), ), id="input[single_dim-logits]", ), pytest.param( _Input( preds=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM)), target=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM)), ), id="input[multi_dim-labels]", ), pytest.param( _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM), target=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM)), ), id="input[multi_dim-probs]", ), pytest.param( _Input( preds=_inv_sigmoid(torch.rand(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM)), target=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM)), ), id="input[multi_dim-logits]", ), ) def _multiclass_with_missing_class(*shape: Any, num_classes=NUM_CLASSES): """Generate multiclass input where a class is missing. Args: shape: shape of the tensor num_classes: number of classes Returns: tensor with missing classes """ x = torch.randint(0, num_classes, shape) x[x == 0] = 2 return x _multiclass_cases = ( pytest.param( _Input( preds=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE)), target=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE)), ), id="input[single_dim-labels]", ), pytest.param( _Input( preds=torch.randn(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES).softmax(-1), target=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE)), ), id="input[single_dim-probs]", ), pytest.param( _Input( preds=_logsoftmax(torch.rand(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES), -1), target=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE)), ), id="input[single_dim-logits]", ), pytest.param( _Input( preds=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM)), target=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM)), ), id="input[multi_dim-labels]", ), pytest.param( _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES, EXTRA_DIM).softmax(-2), target=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM)), ), id="input[multi_dim-probs]", ), pytest.param( _Input( preds=_logsoftmax(torch.rand(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES, EXTRA_DIM), -2), target=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM)), ), id="input[multi_dim-logits]", ), pytest.param( _Input( preds=_multiclass_with_missing_class(NUM_BATCHES, BATCH_SIZE, num_classes=NUM_CLASSES), target=_multiclass_with_missing_class(NUM_BATCHES, BATCH_SIZE, num_classes=NUM_CLASSES), ), id="input[single_dim-labels-missing_class]", ), ) _multilabel_cases = ( pytest.param( _Input( preds=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES)), target=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES)), ), id="input[single_dim-labels]", ), pytest.param( _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES), target=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES)), ), id="input[single_dim-probs]", ), pytest.param( _Input( preds=_inv_sigmoid(torch.rand(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES)), target=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES)), ), id="input[single_dim-logits]", ), pytest.param( _Input( preds=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES, EXTRA_DIM)), target=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES, EXTRA_DIM)), ), id="input[multi_dim-labels]", ), pytest.param( _Input( preds=torch.rand(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES, EXTRA_DIM), target=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES, EXTRA_DIM)), ), id="input[multi_dim-probs]", ), pytest.param( _Input( preds=_inv_sigmoid(torch.rand(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES, EXTRA_DIM)), target=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES, EXTRA_DIM)), ), id="input[multi_dim-logits]", ), ) _group_cases = ( pytest.param( _GroupInput( preds=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE)), target=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE)), groups=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE)), ), id="input[single_dim-labels]", ), pytest.param( _GroupInput( preds=torch.rand(NUM_BATCHES, BATCH_SIZE), target=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE)), groups=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE)), ), id="input[single_dim-probs]", ), pytest.param( _GroupInput( preds=_inv_sigmoid(torch.rand(NUM_BATCHES, BATCH_SIZE)), target=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE)), groups=torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE)), ), id="input[single_dim-logits]", ), ) # Generate edge multilabel edge case, where nothing matches (scores are undefined) __temp_preds = torch.randint(high=2, size=(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES)) __temp_target = abs(__temp_preds - 1) _input_multilabel_no_match = _Input(preds=__temp_preds, target=__temp_target) __mc_prob_logits = 10 * torch.randn(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES) __mc_prob_preds = __mc_prob_logits.abs() / __mc_prob_logits.abs().sum(dim=2, keepdim=True) _input_multiclass_prob = _Input( preds=__mc_prob_preds, target=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE)) ) _input_multiclass_logits = _Input( preds=__mc_prob_logits, target=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE)) ) _input_multiclass = _Input( preds=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE)), target=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE)), ) __mdmc_prob_preds = torch.rand(NUM_BATCHES, BATCH_SIZE, NUM_CLASSES, EXTRA_DIM) __mdmc_prob_preds = __mdmc_prob_preds / __mdmc_prob_preds.sum(dim=2, keepdim=True) _input_multidim_multiclass_prob = _Input( preds=__mdmc_prob_preds, target=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM)) ) _input_multidim_multiclass = _Input( preds=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM)), target=torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE, EXTRA_DIM)), ) # Generate plausible-looking inputs def _generate_plausible_inputs_multilabel(num_classes=NUM_CLASSES, num_batches=NUM_BATCHES, batch_size=BATCH_SIZE): correct_targets = torch.randint(high=num_classes, size=(num_batches, batch_size)) preds = torch.rand(num_batches, batch_size, num_classes) targets = torch.zeros_like(preds, dtype=torch.long) for i in range(preds.shape[0]): for j in range(preds.shape[1]): targets[i, j, correct_targets[i, j]] = 1 preds += torch.rand(num_batches, batch_size, num_classes) * targets / 3 preds = preds / preds.sum(dim=2, keepdim=True) return _Input(preds=preds, target=targets) def _generate_plausible_inputs_binary(num_batches=NUM_BATCHES, batch_size=BATCH_SIZE): targets = torch.randint(high=2, size=(num_batches, batch_size)) preds = torch.rand(num_batches, batch_size) + torch.rand(num_batches, batch_size) * targets / 3 return _Input(preds=preds / (preds.max() + 0.01), target=targets) _input_multilabel_prob_plausible = _generate_plausible_inputs_multilabel() _input_binary_prob_plausible = _generate_plausible_inputs_binary() # randomly remove one class from the input _temp = torch.randint(high=NUM_CLASSES, size=(NUM_BATCHES, BATCH_SIZE)) _class_remove, _class_replace = torch.multinomial(torch.ones(NUM_CLASSES), num_samples=2, replacement=False) _temp[_temp == _class_remove] = _class_replace _input_multiclass_with_missing_class = _Input(_temp.clone(), _temp.clone()) _negmetric_noneavg = { "pred1": torch.tensor([[0.0, 1.0, 0.0], [1.0, 0.0, 0.0]]), "target1": torch.tensor([0, 1]), "res1": torch.tensor([0.0, 0.0, float("nan")]), "pred2": torch.tensor([[0.0, 1.0, 0.0], [1.0, 0.0, 0.0]]), "target2": torch.tensor([0, 2]), "res2": torch.tensor([0.0, 0.0, 0.0]), }
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/classification/test_recall_fixed_precision.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from scipy.special import expit as sigmoid from scipy.special import softmax from sklearn.metrics import precision_recall_curve as sk_precision_recall_curve from torchmetrics.classification.recall_fixed_precision import ( BinaryRecallAtFixedPrecision, MulticlassRecallAtFixedPrecision, MultilabelRecallAtFixedPrecision, RecallAtFixedPrecision, ) from torchmetrics.functional.classification.recall_fixed_precision import ( binary_recall_at_fixed_precision, multiclass_recall_at_fixed_precision, multilabel_recall_at_fixed_precision, ) from torchmetrics.metric import Metric from unittests import NUM_CLASSES from unittests.classification.inputs import _binary_cases, _multiclass_cases, _multilabel_cases from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester, inject_ignore_index, remove_ignore_index seed_all(42) def _recall_at_precision_x_multilabel(predictions, targets, min_precision): precision, recall, thresholds = sk_precision_recall_curve(targets, predictions) try: tuple_all = [(r, p, t) for p, r, t in zip(precision, recall, thresholds) if p >= min_precision] max_recall, _, best_threshold = max(tuple_all) except ValueError: max_recall, best_threshold = 0, 1e6 return float(max_recall), float(best_threshold) def _sklearn_recall_at_fixed_precision_binary(preds, target, min_precision, ignore_index=None): preds = preds.flatten().numpy() target = target.flatten().numpy() if np.issubdtype(preds.dtype, np.floating) and not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) target, preds = remove_ignore_index(target, preds, ignore_index) return _recall_at_precision_x_multilabel(preds, target, min_precision) @pytest.mark.parametrize("inputs", (_binary_cases[1], _binary_cases[2], _binary_cases[4], _binary_cases[5])) class TestBinaryRecallAtFixedPrecision(MetricTester): """Test class for `BinaryRecallAtFixedPrecision` metric.""" @pytest.mark.parametrize("min_precision", [0.05, 0.1, 0.3, 0.5, 0.85]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) @pytest.mark.parametrize("ddp", [True, False]) def test_binary_recall_at_fixed_precision(self, inputs, ddp, min_precision, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=BinaryRecallAtFixedPrecision, reference_metric=partial( _sklearn_recall_at_fixed_precision_binary, min_precision=min_precision, ignore_index=ignore_index ), metric_args={ "min_precision": min_precision, "thresholds": None, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("min_precision", [0.05, 0.5, 0.8]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) def test_binary_recall_at_fixed_precision_functional(self, inputs, min_precision, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=binary_recall_at_fixed_precision, reference_metric=partial( _sklearn_recall_at_fixed_precision_binary, min_precision=min_precision, ignore_index=ignore_index ), metric_args={ "min_precision": min_precision, "thresholds": None, "ignore_index": ignore_index, }, ) def test_binary_recall_at_fixed_precision_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=BinaryRecallAtFixedPrecision, metric_functional=binary_recall_at_fixed_precision, metric_args={"min_precision": 0.5, "thresholds": None}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_recall_at_fixed_precision_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=BinaryRecallAtFixedPrecision, metric_functional=binary_recall_at_fixed_precision, metric_args={"min_precision": 0.5, "thresholds": None}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_recall_at_fixed_precision_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=BinaryRecallAtFixedPrecision, metric_functional=binary_recall_at_fixed_precision, metric_args={"min_precision": 0.5, "thresholds": None}, dtype=dtype, ) @pytest.mark.parametrize("min_precision", [0.05, 0.5, 0.8]) def test_binary_recall_at_fixed_precision_threshold_arg(self, inputs, min_precision): """Test that different types of `thresholds` argument lead to same result.""" preds, target = inputs for pred, true in zip(preds, target): pred = torch.tensor(np.round(pred.numpy(), 1)) + 1e-6 # rounding will simulate binning r1, _ = binary_recall_at_fixed_precision(pred, true, min_precision=min_precision, thresholds=None) r2, _ = binary_recall_at_fixed_precision( pred, true, min_precision=min_precision, thresholds=torch.linspace(0, 1, 100) ) assert torch.allclose(r1, r2) def _sklearn_recall_at_fixed_precision_multiclass(preds, target, min_precision, ignore_index=None): preds = np.moveaxis(preds.numpy(), 1, -1).reshape((-1, preds.shape[1])) target = target.numpy().flatten() if not ((preds > 0) & (preds < 1)).all(): preds = softmax(preds, 1) target, preds = remove_ignore_index(target, preds, ignore_index) recall, thresholds = [], [] for i in range(NUM_CLASSES): target_temp = np.zeros_like(target) target_temp[target == i] = 1 res = _recall_at_precision_x_multilabel(preds[:, i], target_temp, min_precision) recall.append(res[0]) thresholds.append(res[1]) return recall, thresholds @pytest.mark.parametrize( "inputs", (_multiclass_cases[1], _multiclass_cases[2], _multiclass_cases[4], _multiclass_cases[5]) ) class TestMulticlassRecallAtFixedPrecision(MetricTester): """Test class for `MulticlassRecallAtFixedPrecision` metric.""" @pytest.mark.parametrize("min_precision", [0.05, 0.5, 0.8]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) @pytest.mark.parametrize("ddp", [True, False]) def test_multiclass_recall_at_fixed_precision(self, inputs, ddp, min_precision, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MulticlassRecallAtFixedPrecision, reference_metric=partial( _sklearn_recall_at_fixed_precision_multiclass, min_precision=min_precision, ignore_index=ignore_index ), metric_args={ "min_precision": min_precision, "thresholds": None, "num_classes": NUM_CLASSES, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("min_precision", [0.05, 0.5, 0.8]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) def test_multiclass_recall_at_fixed_precision_functional(self, inputs, min_precision, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=multiclass_recall_at_fixed_precision, reference_metric=partial( _sklearn_recall_at_fixed_precision_multiclass, min_precision=min_precision, ignore_index=ignore_index ), metric_args={ "min_precision": min_precision, "thresholds": None, "num_classes": NUM_CLASSES, "ignore_index": ignore_index, }, ) def test_multiclass_recall_at_fixed_precision_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MulticlassRecallAtFixedPrecision, metric_functional=multiclass_recall_at_fixed_precision, metric_args={"min_precision": 0.5, "thresholds": None, "num_classes": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_recall_at_fixed_precision_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if dtype == torch.half and not ((preds > 0) & (preds < 1)).all(): pytest.xfail(reason="half support for torch.softmax on cpu not implemented") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MulticlassRecallAtFixedPrecision, metric_functional=multiclass_recall_at_fixed_precision, metric_args={"min_precision": 0.5, "thresholds": None, "num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_recall_at_fixed_precision_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MulticlassRecallAtFixedPrecision, metric_functional=multiclass_recall_at_fixed_precision, metric_args={"min_precision": 0.5, "thresholds": None, "num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.parametrize("min_precision", [0.05, 0.5, 0.8]) def test_multiclass_recall_at_fixed_precision_threshold_arg(self, inputs, min_precision): """Test that different types of `thresholds` argument lead to same result.""" preds, target = inputs if (preds < 0).any(): preds = preds.softmax(dim=-1) for pred, true in zip(preds, target): pred = torch.tensor(np.round(pred.numpy(), 1)) + 1e-6 # rounding will simulate binning r1, _ = multiclass_recall_at_fixed_precision( pred, true, num_classes=NUM_CLASSES, min_precision=min_precision, thresholds=None ) r2, _ = multiclass_recall_at_fixed_precision( pred, true, num_classes=NUM_CLASSES, min_precision=min_precision, thresholds=torch.linspace(0, 1, 100) ) assert all(torch.allclose(r1[i], r2[i]) for i in range(len(r1))) def _sklearn_recall_at_fixed_precision_multilabel(preds, target, min_precision, ignore_index=None): recall, thresholds = [], [] for i in range(NUM_CLASSES): res = _sklearn_recall_at_fixed_precision_binary(preds[:, i], target[:, i], min_precision, ignore_index) recall.append(res[0]) thresholds.append(res[1]) return recall, thresholds @pytest.mark.parametrize( "inputs", (_multilabel_cases[1], _multilabel_cases[2], _multilabel_cases[4], _multilabel_cases[5]) ) class TestMultilabelRecallAtFixedPrecision(MetricTester): """Test class for `MultilabelRecallAtFixedPrecision` metric.""" @pytest.mark.parametrize("min_precision", [0.05, 0.5, 0.8]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) @pytest.mark.parametrize("ddp", [True, False]) def test_multilabel_recall_at_fixed_precision(self, inputs, ddp, min_precision, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MultilabelRecallAtFixedPrecision, reference_metric=partial( _sklearn_recall_at_fixed_precision_multilabel, min_precision=min_precision, ignore_index=ignore_index ), metric_args={ "min_precision": min_precision, "thresholds": None, "num_labels": NUM_CLASSES, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("min_precision", [0.05, 0.5, 0.8]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) def test_multilabel_recall_at_fixed_precision_functional(self, inputs, min_precision, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=multilabel_recall_at_fixed_precision, reference_metric=partial( _sklearn_recall_at_fixed_precision_multilabel, min_precision=min_precision, ignore_index=ignore_index ), metric_args={ "min_precision": min_precision, "thresholds": None, "num_labels": NUM_CLASSES, "ignore_index": ignore_index, }, ) def test_multiclass_recall_at_fixed_precision_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MultilabelRecallAtFixedPrecision, metric_functional=multilabel_recall_at_fixed_precision, metric_args={"min_precision": 0.5, "thresholds": None, "num_labels": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_recall_at_fixed_precision_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if dtype == torch.half and not ((preds > 0) & (preds < 1)).all(): pytest.xfail(reason="half support for torch.softmax on cpu not implemented") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MultilabelRecallAtFixedPrecision, metric_functional=multilabel_recall_at_fixed_precision, metric_args={"min_precision": 0.5, "thresholds": None, "num_labels": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_recall_at_fixed_precision_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MultilabelRecallAtFixedPrecision, metric_functional=multilabel_recall_at_fixed_precision, metric_args={"min_precision": 0.5, "thresholds": None, "num_labels": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.parametrize("min_precision", [0.05, 0.5, 0.8]) def test_multilabel_recall_at_fixed_precision_threshold_arg(self, inputs, min_precision): """Test that different types of `thresholds` argument lead to same result.""" preds, target = inputs if (preds < 0).any(): preds = sigmoid(preds) for pred, true in zip(preds, target): pred = torch.tensor(np.round(pred.numpy(), 1)) + 1e-6 # rounding will simulate binning r1, _ = multilabel_recall_at_fixed_precision( pred, true, num_labels=NUM_CLASSES, min_precision=min_precision, thresholds=None ) r2, _ = multilabel_recall_at_fixed_precision( pred, true, num_labels=NUM_CLASSES, min_precision=min_precision, thresholds=torch.linspace(0, 1, 100) ) assert all(torch.allclose(r1[i], r2[i]) for i in range(len(r1))) @pytest.mark.parametrize( "metric", [ BinaryRecallAtFixedPrecision, partial(MulticlassRecallAtFixedPrecision, num_classes=NUM_CLASSES), partial(MultilabelRecallAtFixedPrecision, num_labels=NUM_CLASSES), ], ) @pytest.mark.parametrize("thresholds", [None, 100, [0.3, 0.5, 0.7, 0.9], torch.linspace(0, 1, 10)]) def test_valid_input_thresholds(metric, thresholds): """Test valid formats of the threshold argument.""" with pytest.warns(None) as record: metric(min_precision=0.5, thresholds=thresholds) assert len(record) == 0 @pytest.mark.parametrize( ("metric", "kwargs"), [ (BinaryRecallAtFixedPrecision, {"task": "binary", "min_precision": 0.5}), (MulticlassRecallAtFixedPrecision, {"task": "multiclass", "num_classes": 3, "min_precision": 0.5}), (MultilabelRecallAtFixedPrecision, {"task": "multilabel", "num_labels": 3, "min_precision": 0.5}), (None, {"task": "not_valid_task", "min_precision": 0.5}), ], ) def test_wrapper_class(metric, kwargs, base_metric=RecallAtFixedPrecision): """Test the wrapper class.""" assert issubclass(base_metric, Metric) if metric is None: with pytest.raises(ValueError, match=r"Invalid *"): base_metric(**kwargs) else: instance = base_metric(**kwargs) assert isinstance(instance, metric) assert isinstance(instance, Metric)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/classification/test_group_fairness.py
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from functools import partial from typing import Any, Callable, Dict, Optional from unittest import mock import numpy as np import pandas as pd import pytest import torch from fairlearn.metrics import MetricFrame, selection_rate, true_positive_rate from scipy.special import expit as sigmoid from torch import Tensor from torchmetrics import Metric from torchmetrics.classification.group_fairness import BinaryFairness from torchmetrics.functional.classification.group_fairness import binary_fairness from torchmetrics.utilities.imports import _PYTHON_LOWER_3_8 from unittests import THRESHOLD from unittests.classification.inputs import _group_cases from unittests.helpers import seed_all from unittests.helpers.testers import ( MetricTester, _assert_dtype_support, inject_ignore_index, remove_ignore_index_groups, ) from unittests.helpers.testers import _assert_allclose as _core_assert_allclose from unittests.helpers.testers import _assert_requires_grad as _core_assert_requires_grad from unittests.helpers.testers import _assert_tensor as _core_assert_tensor seed_all(42) def _fairlearn_binary(preds, target, groups, ignore_index): metrics = {"dp": selection_rate, "eo": true_positive_rate} preds = preds.numpy() target = target.numpy() groups = groups.numpy() if np.issubdtype(preds.dtype, np.floating): if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) preds = (preds >= THRESHOLD).astype(np.uint8) target, preds, groups = remove_ignore_index_groups(target, preds, groups, ignore_index) mf = MetricFrame(metrics=metrics, y_true=target, y_pred=preds, sensitive_features=groups) mf_group = mf.by_group ratios = mf.ratio() return { f"DP_{pd.to_numeric(mf_group['dp']).idxmin()}_{pd.to_numeric(mf_group['dp']).idxmax()}": torch.tensor( ratios["dp"], dtype=torch.float ), f"EO_{pd.to_numeric(mf_group['eo']).idxmin()}_{pd.to_numeric(mf_group['eo']).idxmax()}": torch.tensor( ratios["eo"], dtype=torch.float ), } def _assert_tensor(pl_result: Dict[str, Tensor], key: Optional[str] = None) -> None: if isinstance(pl_result, dict) and key is None: for key, val in pl_result.items(): assert isinstance(val, Tensor), f"{key!r} is not a Tensor!" else: _core_assert_tensor(pl_result, key) def _assert_allclose( pl_result: Dict[str, Tensor], sk_result: Dict[str, Tensor], atol: float = 1e-8, key: Optional[str] = None ) -> None: if isinstance(pl_result, dict) and key is None: for (pl_key, pl_val), (sk_key, sk_val) in zip(pl_result.items(), sk_result.items()): assert np.allclose( pl_val.detach().cpu().numpy(), sk_val.numpy(), atol=atol, equal_nan=True ), f"{pl_key} != {sk_key}" else: _core_assert_allclose(pl_result, sk_result, atol, key) def _assert_requires_grad(metric: Metric, pl_result: Any, key: Optional[str] = None) -> None: if isinstance(pl_result, dict) and key is None: for res in pl_result.values(): _core_assert_requires_grad(metric, res) else: _core_assert_requires_grad(metric, pl_result, key) class BinaryFairnessTester(MetricTester): """Tester class for `BinaryFairness` metrich overriding some defaults.""" @staticmethod def run_differentiability_test( preds: Tensor, target: Tensor, metric_module: Metric, metric_functional: Optional[Callable] = None, metric_args: Optional[dict] = None, groups: Optional[Tensor] = None, ) -> None: """Test if a metric is differentiable or not. Args: preds: torch tensor with predictions target: torch tensor with targets metric_module: the metric module to test metric_functional: functional version of the metric metric_args: dict with additional arguments used for class initialization groups: Tensor with group identifiers. The group identifiers should be ``0, 1, ..., (num_groups - 1)``. """ metric_args = metric_args or {} # only floating point tensors can require grad metric = metric_module(**metric_args) if preds.is_floating_point(): preds.requires_grad = True out = metric(preds[0, :2], target[0, :2], groups[0, :2] if groups is not None else None) # Check if requires_grad matches is_differentiable attribute _assert_requires_grad(metric, out) if metric.is_differentiable and metric_functional is not None: # check for numerical correctness assert torch.autograd.gradcheck( partial(metric_functional, **metric_args), (preds[0, :2].double(), target[0, :2]) ) # reset as else it will carry over to other tests preds.requires_grad = False @staticmethod def run_precision_test_cpu( preds: Tensor, target: Tensor, metric_module: Optional[Metric] = None, metric_functional: Optional[Callable] = None, metric_args: Optional[dict] = None, dtype: torch.dtype = torch.half, **kwargs_update: Any, ) -> None: """Test if a metric can be used with half precision tensors on cpu. Args: preds: torch tensor with predictions target: torch tensor with targets metric_module: the metric module to test metric_functional: the metric functional to test metric_args: dict with additional arguments used for class initialization dtype: dtype to run test with kwargs_update: Additional keyword arguments that will be passed with preds and target when running update on the metric. """ metric_args = metric_args or {} functional_metric_args = { k: v for k, v in metric_args.items() if k in inspect.signature(metric_functional).parameters } _assert_dtype_support( metric_module(**metric_args) if metric_module is not None else None, partial(metric_functional, **functional_metric_args) if metric_functional is not None else None, preds, target, device="cpu", dtype=dtype, **kwargs_update, ) @staticmethod def run_precision_test_gpu( preds: Tensor, target: Tensor, metric_module: Optional[Metric] = None, metric_functional: Optional[Callable] = None, metric_args: Optional[dict] = None, dtype: torch.dtype = torch.half, **kwargs_update: Any, ) -> None: """Test if a metric can be used with half precision tensors on gpu. Args: preds: torch tensor with predictions target: torch tensor with targets metric_module: the metric module to test metric_functional: the metric functional to test metric_args: dict with additional arguments used for class initialization dtype: dtype to run test with kwargs_update: Additional keyword arguments that will be passed with preds and target when running update on the metric. """ metric_args = metric_args or {} functional_metric_args = { k: v for k, v in metric_args.items() if k in inspect.signature(metric_functional).parameters } _assert_dtype_support( metric_module(**metric_args) if metric_module is not None else None, partial(metric_functional, **functional_metric_args) if metric_functional is not None else None, preds, target, device="cuda", dtype=dtype, **kwargs_update, ) @mock.patch("unittests.helpers.testers._assert_tensor", _assert_tensor) @mock.patch("unittests.helpers.testers._assert_allclose", _assert_allclose) @pytest.mark.skipif(_PYTHON_LOWER_3_8, reason="`TestBinaryFairness` requires `python>=3.8`.") @pytest.mark.parametrize("inputs", _group_cases) class TestBinaryFairness(BinaryFairnessTester): """Test class for `BinaryFairness` metric.""" @pytest.mark.parametrize("ignore_index", [None, 0, -1]) @pytest.mark.parametrize("ddp", [False, True]) def test_binary_fairness(self, ddp, inputs, ignore_index): """Test class implementation of metric.""" preds, target, groups = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=BinaryFairness, reference_metric=partial(_fairlearn_binary, ignore_index=ignore_index), metric_args={"threshold": THRESHOLD, "ignore_index": ignore_index, "num_groups": 2, "task": "all"}, groups=groups, fragment_kwargs=True, ) @pytest.mark.parametrize("ignore_index", [None, 0, -1]) def test_binary_fairness_functional(self, inputs, ignore_index): """Test functional implementation of metric.""" preds, target, groups = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=binary_fairness, reference_metric=partial(_fairlearn_binary, ignore_index=ignore_index), metric_args={ "threshold": THRESHOLD, "ignore_index": ignore_index, "task": "all", }, groups=groups, fragment_kwargs=True, ) def test_binary_fairness_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target, groups = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=BinaryFairness, metric_functional=binary_fairness, metric_args={"threshold": THRESHOLD, "num_groups": 2, "task": "all"}, groups=groups, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_fairness_half_cpu(self, inputs, dtype): """Test class implementation of metric.""" preds, target, groups = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=BinaryFairness, metric_functional=binary_fairness, metric_args={"threshold": THRESHOLD, "num_groups": 2, "task": "all"}, dtype=dtype, groups=groups, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_fairness_half_gpu(self, inputs, dtype): """Test class implementation of metric.""" preds, target, groups = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=BinaryFairness, metric_functional=binary_fairness, metric_args={"threshold": THRESHOLD, "num_groups": 2, "task": "all"}, dtype=dtype, groups=groups, )
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/classification/test_hamming_distance.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from scipy.special import expit as sigmoid from sklearn.metrics import confusion_matrix as sk_confusion_matrix from sklearn.metrics import hamming_loss as sk_hamming_loss from torchmetrics.classification.hamming import ( BinaryHammingDistance, HammingDistance, MulticlassHammingDistance, MultilabelHammingDistance, ) from torchmetrics.functional.classification.hamming import ( binary_hamming_distance, multiclass_hamming_distance, multilabel_hamming_distance, ) from torchmetrics.metric import Metric from unittests import NUM_CLASSES, THRESHOLD from unittests.classification.inputs import _binary_cases, _multiclass_cases, _multilabel_cases from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester, inject_ignore_index, remove_ignore_index seed_all(42) def _sklearn_hamming_loss(target, preds): score = sk_hamming_loss(target, preds) return score if not np.isnan(score) else 1.0 def _sklearn_hamming_distance_binary(preds, target, ignore_index, multidim_average): if multidim_average == "global": preds = preds.view(-1).numpy() target = target.view(-1).numpy() else: preds = preds.numpy() target = target.numpy() if np.issubdtype(preds.dtype, np.floating): if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) preds = (preds >= THRESHOLD).astype(np.uint8) if multidim_average == "global": target, preds = remove_ignore_index(target, preds, ignore_index) return _sklearn_hamming_loss(target, preds) res = [] for pred, true in zip(preds, target): pred = pred.flatten() true = true.flatten() true, pred = remove_ignore_index(true, pred, ignore_index) res.append(_sklearn_hamming_loss(true, pred)) return np.stack(res) @pytest.mark.parametrize("inputs", _binary_cases) class TestBinaryHammingDistance(MetricTester): """Test class for `BinaryHammingDistance` metric.""" @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("ddp", [False, True]) def test_binary_hamming_distance(self, ddp, inputs, ignore_index, multidim_average): """Test class implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 3: pytest.skip("samplewise and non-multidim arrays are not valid") if multidim_average == "samplewise" and ddp: pytest.skip("samplewise and ddp give different order than non ddp") self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=BinaryHammingDistance, reference_metric=partial( _sklearn_hamming_distance_binary, ignore_index=ignore_index, multidim_average=multidim_average ), metric_args={"threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average}, ) @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) def test_binary_hamming_distance_functional(self, inputs, ignore_index, multidim_average): """Test functional implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 3: pytest.skip("samplewise and non-multidim arrays are not valid") self.run_functional_metric_test( preds=preds, target=target, metric_functional=binary_hamming_distance, reference_metric=partial( _sklearn_hamming_distance_binary, ignore_index=ignore_index, multidim_average=multidim_average ), metric_args={ "threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average, }, ) def test_binary_hamming_distance_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=BinaryHammingDistance, metric_functional=binary_hamming_distance, metric_args={"threshold": THRESHOLD}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_hamming_distance_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=BinaryHammingDistance, metric_functional=binary_hamming_distance, metric_args={"threshold": THRESHOLD}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_hamming_distance_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=BinaryHammingDistance, metric_functional=binary_hamming_distance, metric_args={"threshold": THRESHOLD}, dtype=dtype, ) def _sklearn_hamming_distance_multiclass_global(preds, target, ignore_index, average): preds = preds.numpy().flatten() target = target.numpy().flatten() target, preds = remove_ignore_index(target, preds, ignore_index) if average == "micro": return _sklearn_hamming_loss(target, preds) confmat = sk_confusion_matrix(y_true=target, y_pred=preds, labels=list(range(NUM_CLASSES))) hamming_per_class = 1 - confmat.diagonal() / confmat.sum(axis=1) hamming_per_class[np.isnan(hamming_per_class)] = 1.0 if average == "macro": hamming_per_class = hamming_per_class[ (np.bincount(preds, minlength=NUM_CLASSES) + np.bincount(target, minlength=NUM_CLASSES)) != 0.0 ] return hamming_per_class.mean() if average == "weighted": weights = confmat.sum(1) return ((weights * hamming_per_class) / weights.sum()).sum() return hamming_per_class def _sklearn_hamming_distance_multiclass_local(preds, target, ignore_index, average): preds = preds.numpy() target = target.numpy() res = [] for pred, true in zip(preds, target): pred = pred.flatten() true = true.flatten() true, pred = remove_ignore_index(true, pred, ignore_index) if average == "micro": res.append(_sklearn_hamming_loss(true, pred)) else: confmat = sk_confusion_matrix(true, pred, labels=list(range(NUM_CLASSES))) hamming_per_class = 1 - confmat.diagonal() / confmat.sum(axis=1) hamming_per_class[np.isnan(hamming_per_class)] = 1.0 if average == "macro": hamming_per_class = hamming_per_class[ (np.bincount(pred, minlength=NUM_CLASSES) + np.bincount(true, minlength=NUM_CLASSES)) != 0.0 ] res.append(hamming_per_class.mean() if len(hamming_per_class) > 0 else 0.0) elif average == "weighted": weights = confmat.sum(1) score = ((weights * hamming_per_class) / weights.sum()).sum() res.append(0.0 if np.isnan(score) else score) else: res.append(hamming_per_class) return np.stack(res, 0) def _sklearn_hamming_distance_multiclass(preds, target, ignore_index, multidim_average, average): if preds.ndim == target.ndim + 1: preds = torch.argmax(preds, 1) if multidim_average == "global": return _sklearn_hamming_distance_multiclass_global(preds, target, ignore_index, average) return _sklearn_hamming_distance_multiclass_local(preds, target, ignore_index, average) @pytest.mark.parametrize("inputs", _multiclass_cases) class TestMulticlassHammingDistance(MetricTester): """Test class for `MulticlassHammingDistance` metric.""" @pytest.mark.parametrize("ignore_index", [None, 0, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("average", ["micro", "macro", "weighted", None]) @pytest.mark.parametrize("ddp", [True, False]) def test_multiclass_hamming_distance(self, ddp, inputs, ignore_index, multidim_average, average): """Test class implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and target.ndim < 3: pytest.skip("samplewise and non-multidim arrays are not valid") if multidim_average == "samplewise" and ddp: pytest.skip("samplewise and ddp give different order than non ddp") self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MulticlassHammingDistance, reference_metric=partial( _sklearn_hamming_distance_multiclass, ignore_index=ignore_index, multidim_average=multidim_average, average=average, ), metric_args={ "ignore_index": ignore_index, "multidim_average": multidim_average, "average": average, "num_classes": NUM_CLASSES, }, ) @pytest.mark.parametrize("ignore_index", [None, 0, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("average", ["micro", "macro", "weighted", None]) def test_multiclass_hamming_distance_functional(self, inputs, ignore_index, multidim_average, average): """Test functional implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and target.ndim < 3: pytest.skip("samplewise and non-multidim arrays are not valid") self.run_functional_metric_test( preds=preds, target=target, metric_functional=multiclass_hamming_distance, reference_metric=partial( _sklearn_hamming_distance_multiclass, ignore_index=ignore_index, multidim_average=multidim_average, average=average, ), metric_args={ "ignore_index": ignore_index, "multidim_average": multidim_average, "average": average, "num_classes": NUM_CLASSES, }, ) def test_multiclass_hamming_distance_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MulticlassHammingDistance, metric_functional=multiclass_hamming_distance, metric_args={"num_classes": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_hamming_distance_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MulticlassHammingDistance, metric_functional=multiclass_hamming_distance, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_hamming_distance_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MulticlassHammingDistance, metric_functional=multiclass_hamming_distance, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) def _sklearn_hamming_distance_multilabel_global(preds, target, ignore_index, average): if average == "micro": preds = preds.flatten() target = target.flatten() target, preds = remove_ignore_index(target, preds, ignore_index) return _sklearn_hamming_loss(target, preds) hamming, weights = [], [] for i in range(preds.shape[1]): pred, true = preds[:, i].flatten(), target[:, i].flatten() true, pred = remove_ignore_index(true, pred, ignore_index) confmat = sk_confusion_matrix(true, pred, labels=[0, 1]) hamming.append(_sklearn_hamming_loss(true, pred)) weights.append(confmat[1, 1] + confmat[1, 0]) res = np.stack(hamming, axis=0) if average == "macro": return res.mean(0) if average == "weighted": weights = np.stack(weights, 0).astype(float) weights_norm = weights.sum(-1, keepdims=True) weights_norm[weights_norm == 0] = 1.0 return ((weights * res) / weights_norm).sum(-1) if average is None or average == "none": return res return None def _sklearn_hamming_distance_multilabel_local(preds, target, ignore_index, average): hamming, weights = [], [] for i in range(preds.shape[0]): if average == "micro": pred, true = preds[i].flatten(), target[i].flatten() true, pred = remove_ignore_index(true, pred, ignore_index) hamming.append(_sklearn_hamming_loss(true, pred)) else: scores, w = [], [] for j in range(preds.shape[1]): pred, true = preds[i, j], target[i, j] true, pred = remove_ignore_index(true, pred, ignore_index) scores.append(_sklearn_hamming_loss(true, pred)) confmat = sk_confusion_matrix(true, pred, labels=[0, 1]) w.append(confmat[1, 1] + confmat[1, 0]) hamming.append(np.stack(scores)) weights.append(np.stack(w)) if average == "micro": return np.array(hamming) res = np.stack(hamming, 0) if average == "macro": return res.mean(-1) if average == "weighted": weights = np.stack(weights, 0).astype(float) weights_norm = weights.sum(-1, keepdims=True) weights_norm[weights_norm == 0] = 1.0 return ((weights * res) / weights_norm).sum(-1) if average is None or average == "none": return res return None def _sklearn_hamming_distance_multilabel(preds, target, ignore_index, multidim_average, average): preds = preds.numpy() target = target.numpy() if np.issubdtype(preds.dtype, np.floating): if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) preds = (preds >= THRESHOLD).astype(np.uint8) preds = preds.reshape(*preds.shape[:2], -1) target = target.reshape(*target.shape[:2], -1) if multidim_average == "global": return _sklearn_hamming_distance_multilabel_global(preds, target, ignore_index, average) return _sklearn_hamming_distance_multilabel_local(preds, target, ignore_index, average) @pytest.mark.parametrize("inputs", _multilabel_cases) class TestMultilabelHammingDistance(MetricTester): """Test class for `MultilabelHammingDistance` metric.""" @pytest.mark.parametrize("ddp", [True, False]) @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("average", ["micro", "macro", None]) def test_multilabel_hamming_distance(self, ddp, inputs, ignore_index, multidim_average, average): """Test class implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 4: pytest.skip("samplewise and non-multidim arrays are not valid") if multidim_average == "samplewise" and ddp: pytest.skip("samplewise and ddp give different order than non ddp") self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MultilabelHammingDistance, reference_metric=partial( _sklearn_hamming_distance_multilabel, ignore_index=ignore_index, multidim_average=multidim_average, average=average, ), metric_args={ "num_labels": NUM_CLASSES, "threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average, "average": average, }, ) @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("average", ["micro", "macro", None]) def test_multilabel_hamming_distance_functional(self, inputs, ignore_index, multidim_average, average): """Test functional implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 4: pytest.skip("samplewise and non-multidim arrays are not valid") self.run_functional_metric_test( preds=preds, target=target, metric_functional=multilabel_hamming_distance, reference_metric=partial( _sklearn_hamming_distance_multilabel, ignore_index=ignore_index, multidim_average=multidim_average, average=average, ), metric_args={ "num_labels": NUM_CLASSES, "threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average, "average": average, }, ) def test_multilabel_hamming_distance_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MultilabelHammingDistance, metric_functional=multilabel_hamming_distance, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_hamming_distance_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MultilabelHammingDistance, metric_functional=multilabel_hamming_distance, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_hamming_distance_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MultilabelHammingDistance, metric_functional=multilabel_hamming_distance, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, dtype=dtype, ) @pytest.mark.parametrize( ("metric", "kwargs"), [ (BinaryHammingDistance, {"task": "binary"}), (MulticlassHammingDistance, {"task": "multiclass", "num_classes": 3}), (MultilabelHammingDistance, {"task": "multilabel", "num_labels": 3}), (None, {"task": "not_valid_task"}), ], ) def test_wrapper_class(metric, kwargs, base_metric=HammingDistance): """Test the wrapper class.""" assert issubclass(base_metric, Metric) if metric is None: with pytest.raises(ValueError, match=r"Invalid *"): base_metric(**kwargs) else: instance = base_metric(**kwargs) assert isinstance(instance, metric) assert isinstance(instance, Metric)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/classification/test_specificity_sensitivity.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from scipy.special import expit as sigmoid from scipy.special import softmax from sklearn.metrics import roc_curve as sk_roc_curve from torchmetrics.classification.specificity_sensitivity import ( BinarySpecificityAtSensitivity, MulticlassSpecificityAtSensitivity, MultilabelSpecificityAtSensitivity, SpecificityAtSensitivity, ) from torchmetrics.functional.classification.specificity_sensitivity import ( _convert_fpr_to_specificity, binary_specificity_at_sensitivity, multiclass_specificity_at_sensitivity, multilabel_specificity_at_sensitivity, ) from torchmetrics.metric import Metric from unittests import NUM_CLASSES from unittests.classification.inputs import _binary_cases, _multiclass_cases, _multilabel_cases from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester, inject_ignore_index, remove_ignore_index seed_all(42) def _specificity_at_sensitivity_x_multilabel(predictions, targets, min_sensitivity): # get fpr, tpr and thresholds fpr, sensitivity, thresholds = sk_roc_curve(targets, predictions, pos_label=1.0, drop_intermediate=False) # check if fpr is filled with nan (All positive samples), # replace nan with zero tensor if np.isnan(fpr).all(): fpr = np.zeros_like(thresholds) # convert fpr to specificity (specificity = 1 - fpr) specificity = _convert_fpr_to_specificity(fpr) # get indices where sensitivity is greater than min_sensitivity indices = sensitivity >= min_sensitivity # if no indices are found, max_spec, best_threshold = 0.0, 1e6 if not indices.any(): max_spec, best_threshold = 0.0, 1e6 else: # redefine specificity, sensitivity and threshold tensor based on indices specificity, sensitivity, thresholds = specificity[indices], sensitivity[indices], thresholds[indices] # get argmax idx = np.argmax(specificity) # get max_spec and best_threshold max_spec, best_threshold = specificity[idx], thresholds[idx] return float(max_spec), float(best_threshold) def _sklearn_specificity_at_sensitivity_binary(preds, target, min_sensitivity, ignore_index=None): preds = preds.flatten().numpy() target = target.flatten().numpy() if np.issubdtype(preds.dtype, np.floating) and not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) target, preds = remove_ignore_index(target, preds, ignore_index) return _specificity_at_sensitivity_x_multilabel(preds, target, min_sensitivity) @pytest.mark.parametrize("inputs", (_binary_cases[1], _binary_cases[2], _binary_cases[4], _binary_cases[5])) class TestBinarySpecificityAtSensitivity(MetricTester): """Test class for `BinarySpecificityAtSensitivity` metric.""" @pytest.mark.parametrize("min_sensitivity", [0.05, 0.1, 0.3, 0.5, 0.85]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) @pytest.mark.parametrize("ddp", [True, False]) def test_binary_specificity_at_sensitivity(self, inputs, ddp, min_sensitivity, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=BinarySpecificityAtSensitivity, reference_metric=partial( _sklearn_specificity_at_sensitivity_binary, min_sensitivity=min_sensitivity, ignore_index=ignore_index ), metric_args={ "min_sensitivity": min_sensitivity, "thresholds": None, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("min_sensitivity", [0.05, 0.1, 0.3, 0.5, 0.8]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) def test_binary_specificity_at_sensitivity_functional(self, inputs, min_sensitivity, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=binary_specificity_at_sensitivity, reference_metric=partial( _sklearn_specificity_at_sensitivity_binary, min_sensitivity=min_sensitivity, ignore_index=ignore_index ), metric_args={ "min_sensitivity": min_sensitivity, "thresholds": None, "ignore_index": ignore_index, }, ) def test_binary_specificity_at_sensitivity_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=BinarySpecificityAtSensitivity, metric_functional=binary_specificity_at_sensitivity, metric_args={"min_sensitivity": 0.5, "thresholds": None}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_specificity_at_sensitivity_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=BinarySpecificityAtSensitivity, metric_functional=binary_specificity_at_sensitivity, metric_args={"min_sensitivity": 0.5, "thresholds": None}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_specificity_at_sensitivity_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=BinarySpecificityAtSensitivity, metric_functional=binary_specificity_at_sensitivity, metric_args={"min_sensitivity": 0.5, "thresholds": None}, dtype=dtype, ) @pytest.mark.parametrize("min_sensitivity", [0.05, 0.1, 0.3, 0.5, 0.8]) def test_binary_specificity_at_sensitivity_threshold_arg(self, inputs, min_sensitivity): """Test that different types of `thresholds` argument lead to same result.""" preds, target = inputs for pred, true in zip(preds, target): pred = torch.tensor(np.round(pred.numpy(), 1)) + 1e-6 # rounding will simulate binning r1, _ = binary_specificity_at_sensitivity(pred, true, min_sensitivity=min_sensitivity, thresholds=None) r2, _ = binary_specificity_at_sensitivity( pred, true, min_sensitivity=min_sensitivity, thresholds=torch.linspace(0, 1, 100) ) assert torch.allclose(r1, r2) def _sklearn_specificity_at_sensitivity_multiclass(preds, target, min_sensitivity, ignore_index=None): preds = np.moveaxis(preds.numpy(), 1, -1).reshape((-1, preds.shape[1])) target = target.numpy().flatten() if not ((preds > 0) & (preds < 1)).all(): preds = softmax(preds, 1) target, preds = remove_ignore_index(target, preds, ignore_index) specificity, thresholds = [], [] for i in range(NUM_CLASSES): target_temp = np.zeros_like(target) target_temp[target == i] = 1 res = _specificity_at_sensitivity_x_multilabel(preds[:, i], target_temp, min_sensitivity) specificity.append(res[0]) thresholds.append(res[1]) return specificity, thresholds @pytest.mark.parametrize( "inputs", (_multiclass_cases[1], _multiclass_cases[2], _multiclass_cases[4], _multiclass_cases[5]) ) class TestMulticlassSpecificityAtSensitivity(MetricTester): """Test class for `MulticlassSpecificityAtSensitivity` metric.""" @pytest.mark.parametrize("min_sensitivity", [0.05, 0.1, 0.3, 0.5, 0.8]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) @pytest.mark.parametrize("ddp", [True, False]) def test_multiclass_specificity_at_sensitivity(self, inputs, ddp, min_sensitivity, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MulticlassSpecificityAtSensitivity, reference_metric=partial( _sklearn_specificity_at_sensitivity_multiclass, min_sensitivity=min_sensitivity, ignore_index=ignore_index, ), metric_args={ "min_sensitivity": min_sensitivity, "thresholds": None, "num_classes": NUM_CLASSES, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("min_sensitivity", [0.05, 0.1, 0.3, 0.5, 0.8]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) def test_multiclass_specificity_at_sensitivity_functional(self, inputs, min_sensitivity, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=multiclass_specificity_at_sensitivity, reference_metric=partial( _sklearn_specificity_at_sensitivity_multiclass, min_sensitivity=min_sensitivity, ignore_index=ignore_index, ), metric_args={ "min_sensitivity": min_sensitivity, "thresholds": None, "num_classes": NUM_CLASSES, "ignore_index": ignore_index, }, ) def test_multiclass_specificity_at_sensitivity_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MulticlassSpecificityAtSensitivity, metric_functional=multiclass_specificity_at_sensitivity, metric_args={"min_sensitivity": 0.5, "thresholds": None, "num_classes": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_specificity_at_sensitivity_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if dtype == torch.half and not ((preds > 0) & (preds < 1)).all(): pytest.xfail(reason="half support for torch.softmax on cpu not implemented") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MulticlassSpecificityAtSensitivity, metric_functional=multiclass_specificity_at_sensitivity, metric_args={"min_sensitivity": 0.5, "thresholds": None, "num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_specificity_at_sensitivity_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MulticlassSpecificityAtSensitivity, metric_functional=multiclass_specificity_at_sensitivity, metric_args={"min_sensitivity": 0.5, "thresholds": None, "num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.parametrize("min_sensitivity", [0.05, 0.1, 0.3, 0.5, 0.8]) def test_multiclass_specificity_at_sensitivity_threshold_arg(self, inputs, min_sensitivity): """Test that different types of `thresholds` argument lead to same result.""" preds, target = inputs if (preds < 0).any(): preds = preds.softmax(dim=-1) for pred, true in zip(preds, target): pred = torch.tensor(np.round(pred.detach().numpy(), 1)) + 1e-6 # rounding will simulate binning r1, _ = multiclass_specificity_at_sensitivity( pred, true, num_classes=NUM_CLASSES, min_sensitivity=min_sensitivity, thresholds=None ) r2, _ = multiclass_specificity_at_sensitivity( pred, true, num_classes=NUM_CLASSES, min_sensitivity=min_sensitivity, thresholds=torch.linspace(0, 1, 100), ) assert all(torch.allclose(r1[i], r2[i]) for i in range(len(r1))) def _sklearn_specificity_at_sensitivity_multilabel(preds, target, min_sensitivity, ignore_index=None): specificity, thresholds = [], [] for i in range(NUM_CLASSES): res = _sklearn_specificity_at_sensitivity_binary(preds[:, i], target[:, i], min_sensitivity, ignore_index) specificity.append(res[0]) thresholds.append(res[1]) return specificity, thresholds @pytest.mark.parametrize( "inputs", (_multilabel_cases[1], _multilabel_cases[2], _multilabel_cases[4], _multilabel_cases[5]) ) class TestMultilabelSpecificityAtSensitivity(MetricTester): """Test class for `MultilabelSpecificityAtSensitivity` metric.""" @pytest.mark.parametrize("min_sensitivity", [0.05, 0.1, 0.3, 0.5, 0.8]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) @pytest.mark.parametrize("ddp", [True, False]) def test_multilabel_specificity_at_sensitivity(self, inputs, ddp, min_sensitivity, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MultilabelSpecificityAtSensitivity, reference_metric=partial( _sklearn_specificity_at_sensitivity_multilabel, min_sensitivity=min_sensitivity, ignore_index=ignore_index, ), metric_args={ "min_sensitivity": min_sensitivity, "thresholds": None, "num_labels": NUM_CLASSES, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("min_sensitivity", [0.05, 0.1, 0.3, 0.5, 0.8]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) def test_multilabel_specificity_at_sensitivity_functional(self, inputs, min_sensitivity, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=multilabel_specificity_at_sensitivity, reference_metric=partial( _sklearn_specificity_at_sensitivity_multilabel, min_sensitivity=min_sensitivity, ignore_index=ignore_index, ), metric_args={ "min_sensitivity": min_sensitivity, "thresholds": None, "num_labels": NUM_CLASSES, "ignore_index": ignore_index, }, ) def test_multiclass_specificity_at_sensitivity_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MultilabelSpecificityAtSensitivity, metric_functional=multilabel_specificity_at_sensitivity, metric_args={"min_sensitivity": 0.5, "thresholds": None, "num_labels": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_specificity_at_sensitivity_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if dtype == torch.half and not ((preds > 0) & (preds < 1)).all(): pytest.xfail(reason="half support for torch.softmax on cpu not implemented") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MultilabelSpecificityAtSensitivity, metric_functional=multilabel_specificity_at_sensitivity, metric_args={"min_sensitivity": 0.5, "thresholds": None, "num_labels": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_specificity_at_sensitivity_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MultilabelSpecificityAtSensitivity, metric_functional=multilabel_specificity_at_sensitivity, metric_args={"min_sensitivity": 0.5, "thresholds": None, "num_labels": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.parametrize("min_sensitivity", [0.05, 0.1, 0.3, 0.5, 0.8]) def test_multilabel_specificity_at_sensitivity_threshold_arg(self, inputs, min_sensitivity): """Test that different types of `thresholds` argument lead to same result.""" preds, target = inputs if (preds < 0).any(): preds = sigmoid(preds) for pred, true in zip(preds, target): pred = torch.tensor(np.round(pred.detach().numpy(), 1)) + 1e-6 # rounding will simulate binning r1, _ = multilabel_specificity_at_sensitivity( pred, true, num_labels=NUM_CLASSES, min_sensitivity=min_sensitivity, thresholds=None ) r2, _ = multilabel_specificity_at_sensitivity( pred, true, num_labels=NUM_CLASSES, min_sensitivity=min_sensitivity, thresholds=torch.linspace(0, 1, 100), ) assert all(torch.allclose(r1[i], r2[i]) for i in range(len(r1))) @pytest.mark.parametrize( "metric", [ BinarySpecificityAtSensitivity, partial(MulticlassSpecificityAtSensitivity, num_classes=NUM_CLASSES), partial(MultilabelSpecificityAtSensitivity, num_labels=NUM_CLASSES), ], ) @pytest.mark.parametrize("thresholds", [None, 100, [0.3, 0.5, 0.7, 0.9], torch.linspace(0, 1, 10)]) def test_valid_input_thresholds(metric, thresholds): """Test valid formats of the threshold argument.""" with pytest.warns(None) as record: metric(min_sensitivity=0.5, thresholds=thresholds) assert len(record) == 0 @pytest.mark.parametrize( ("metric", "kwargs"), [ (BinarySpecificityAtSensitivity, {"task": "binary", "min_sensitivity": 0.5}), (MulticlassSpecificityAtSensitivity, {"task": "multiclass", "num_classes": 3, "min_sensitivity": 0.5}), (MultilabelSpecificityAtSensitivity, {"task": "multilabel", "num_labels": 3, "min_sensitivity": 0.5}), (None, {"task": "not_valid_task", "min_sensitivity": 0.5}), ], ) def test_wrapper_class(metric, kwargs, base_metric=SpecificityAtSensitivity): """Test the wrapper class.""" assert issubclass(base_metric, Metric) if metric is None: with pytest.raises(ValueError, match=r"Invalid *"): base_metric(**kwargs) else: instance = base_metric(**kwargs) assert isinstance(instance, metric) assert isinstance(instance, Metric)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/classification/test_precision_recall.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from scipy.special import expit as sigmoid from sklearn.metrics import confusion_matrix as sk_confusion_matrix from sklearn.metrics import precision_score as sk_precision_score from sklearn.metrics import recall_score as sk_recall_score from torch import Tensor, tensor from torchmetrics.classification.precision_recall import ( BinaryPrecision, BinaryRecall, MulticlassPrecision, MulticlassRecall, MultilabelPrecision, MultilabelRecall, Precision, Recall, ) from torchmetrics.functional.classification.precision_recall import ( binary_precision, binary_recall, multiclass_precision, multiclass_recall, multilabel_precision, multilabel_recall, ) from torchmetrics.metric import Metric from unittests import NUM_CLASSES, THRESHOLD from unittests.classification.inputs import _binary_cases, _multiclass_cases, _multilabel_cases from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester, inject_ignore_index, remove_ignore_index seed_all(42) def _sklearn_precision_recall_binary(preds, target, sk_fn, ignore_index, multidim_average): if multidim_average == "global": preds = preds.view(-1).numpy() target = target.view(-1).numpy() else: preds = preds.numpy() target = target.numpy() if np.issubdtype(preds.dtype, np.floating): if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) preds = (preds >= THRESHOLD).astype(np.uint8) if multidim_average == "global": target, preds = remove_ignore_index(target, preds, ignore_index) return sk_fn(target, preds) res = [] for pred, true in zip(preds, target): pred = pred.flatten() true = true.flatten() true, pred = remove_ignore_index(true, pred, ignore_index) res.append(sk_fn(true, pred)) return np.stack(res) @pytest.mark.parametrize("inputs", _binary_cases) @pytest.mark.parametrize( "module, functional, compare", [ (BinaryPrecision, binary_precision, sk_precision_score), (BinaryRecall, binary_recall, sk_recall_score), ], ids=["precision", "recall"], ) class TestBinaryPrecisionRecall(MetricTester): """Test class for `BinaryPrecisionRecall` metric.""" @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("ddp", [False, True]) def test_binary_precision_recall(self, ddp, inputs, module, functional, compare, ignore_index, multidim_average): """Test class implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 3: pytest.skip("samplewise and non-multidim arrays are not valid") if multidim_average == "samplewise" and ddp: pytest.skip("samplewise and ddp give different order than non ddp") self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=module, reference_metric=partial( _sklearn_precision_recall_binary, sk_fn=compare, ignore_index=ignore_index, multidim_average=multidim_average, ), metric_args={"threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average}, ) @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) def test_binary_precision_recall_functional( self, inputs, module, functional, compare, ignore_index, multidim_average ): """Test functional implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 3: pytest.skip("samplewise and non-multidim arrays are not valid") self.run_functional_metric_test( preds=preds, target=target, metric_functional=functional, reference_metric=partial( _sklearn_precision_recall_binary, sk_fn=compare, ignore_index=ignore_index, multidim_average=multidim_average, ), metric_args={ "threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average, }, ) def test_binary_precision_recall_differentiability(self, inputs, module, functional, compare): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=module, metric_functional=functional, metric_args={"threshold": THRESHOLD}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_precision_recall_half_cpu(self, inputs, module, functional, compare, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=module, metric_functional=functional, metric_args={"threshold": THRESHOLD}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_precision_recall_half_gpu(self, inputs, module, functional, compare, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=module, metric_functional=functional, metric_args={"threshold": THRESHOLD}, dtype=dtype, ) def _sklearn_precision_recall_multiclass(preds, target, sk_fn, ignore_index, multidim_average, average): if preds.ndim == target.ndim + 1: preds = torch.argmax(preds, 1) if multidim_average == "global": preds = preds.numpy().flatten() target = target.numpy().flatten() target, preds = remove_ignore_index(target, preds, ignore_index) return sk_fn(target, preds, average=average, labels=list(range(NUM_CLASSES)) if average is None else None) preds = preds.numpy() target = target.numpy() res = [] for pred, true in zip(preds, target): pred = pred.flatten() true = true.flatten() true, pred = remove_ignore_index(true, pred, ignore_index) r = sk_fn(true, pred, average=average, labels=list(range(NUM_CLASSES)) if average is None else None) res.append(0.0 if np.isnan(r).any() else r) return np.stack(res, 0) @pytest.mark.parametrize("inputs", _multiclass_cases) @pytest.mark.parametrize( "module, functional, compare", [ (MulticlassPrecision, multiclass_precision, sk_precision_score), (MulticlassRecall, multiclass_recall, sk_recall_score), ], ids=["precision", "recall"], ) class TestMulticlassPrecisionRecall(MetricTester): """Test class for `MulticlassPrecisionRecall` metric.""" @pytest.mark.parametrize("ignore_index", [None, 0, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("average", ["micro", "macro", "weighted", None]) @pytest.mark.parametrize("ddp", [True, False]) def test_multiclass_precision_recall( self, ddp, inputs, module, functional, compare, ignore_index, multidim_average, average ): """Test class implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and target.ndim < 3: pytest.skip("samplewise and non-multidim arrays are not valid") if multidim_average == "samplewise" and ddp: pytest.skip("samplewise and ddp give different order than non ddp") self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=module, reference_metric=partial( _sklearn_precision_recall_multiclass, sk_fn=compare, ignore_index=ignore_index, multidim_average=multidim_average, average=average, ), metric_args={ "ignore_index": ignore_index, "multidim_average": multidim_average, "average": average, "num_classes": NUM_CLASSES, }, ) @pytest.mark.parametrize("ignore_index", [None, 0, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("average", ["micro", "macro", "weighted", None]) def test_multiclass_precision_recall_functional( self, inputs, module, functional, compare, ignore_index, multidim_average, average ): """Test functional implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and target.ndim < 3: pytest.skip("samplewise and non-multidim arrays are not valid") self.run_functional_metric_test( preds=preds, target=target, metric_functional=functional, reference_metric=partial( _sklearn_precision_recall_multiclass, sk_fn=compare, ignore_index=ignore_index, multidim_average=multidim_average, average=average, ), metric_args={ "ignore_index": ignore_index, "multidim_average": multidim_average, "average": average, "num_classes": NUM_CLASSES, }, ) def test_multiclass_precision_recall_differentiability(self, inputs, module, functional, compare): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=module, metric_functional=functional, metric_args={"num_classes": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_precision_recall_half_cpu(self, inputs, module, functional, compare, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=module, metric_functional=functional, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_precision_recall_half_gpu(self, inputs, module, functional, compare, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=module, metric_functional=functional, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) _mc_k_target = tensor([0, 1, 2]) _mc_k_preds = tensor([[0.35, 0.4, 0.25], [0.1, 0.5, 0.4], [0.2, 0.1, 0.7]]) @pytest.mark.parametrize( ("metric_class", "metric_fn"), [(MulticlassPrecision, multiclass_precision), (MulticlassRecall, multiclass_recall)] ) @pytest.mark.parametrize( ("k", "preds", "target", "average", "expected_prec", "expected_recall"), [ (1, _mc_k_preds, _mc_k_target, "micro", tensor(2 / 3), tensor(2 / 3)), (2, _mc_k_preds, _mc_k_target, "micro", tensor(1 / 2), tensor(1.0)), ], ) def test_top_k( metric_class, metric_fn, k: int, preds: Tensor, target: Tensor, average: str, expected_prec: Tensor, expected_recall: Tensor, ): """A simple test to check that top_k works as expected.""" class_metric = metric_class(top_k=k, average=average, num_classes=3) class_metric.update(preds, target) result = expected_prec if metric_class.__name__ == "MulticlassPrecision" else expected_recall assert torch.equal(class_metric.compute(), result) assert torch.equal(metric_fn(preds, target, top_k=k, average=average, num_classes=3), result) def _sklearn_precision_recall_multilabel_global(preds, target, sk_fn, ignore_index, average): if average == "micro": preds = preds.flatten() target = target.flatten() target, preds = remove_ignore_index(target, preds, ignore_index) return sk_fn(target, preds) precision_recall, weights = [], [] for i in range(preds.shape[1]): pred, true = preds[:, i].flatten(), target[:, i].flatten() true, pred = remove_ignore_index(true, pred, ignore_index) precision_recall.append(sk_fn(true, pred)) confmat = sk_confusion_matrix(true, pred, labels=[0, 1]) weights.append(confmat[1, 1] + confmat[1, 0]) res = np.stack(precision_recall, axis=0) if average == "macro": return res.mean(0) if average == "weighted": weights = np.stack(weights, 0).astype(float) weights_norm = weights.sum(-1, keepdims=True) weights_norm[weights_norm == 0] = 1.0 return ((weights * res) / weights_norm).sum(-1) if average is None or average == "none": return res return None def _sklearn_precision_recall_multilabel_local(preds, target, sk_fn, ignore_index, average): precision_recall, weights = [], [] for i in range(preds.shape[0]): if average == "micro": pred, true = preds[i].flatten(), target[i].flatten() true, pred = remove_ignore_index(true, pred, ignore_index) precision_recall.append(sk_fn(true, pred)) confmat = sk_confusion_matrix(true, pred, labels=[0, 1]) weights.append(confmat[1, 1] + confmat[1, 0]) else: scores, w = [], [] for j in range(preds.shape[1]): pred, true = preds[i, j], target[i, j] true, pred = remove_ignore_index(true, pred, ignore_index) scores.append(sk_fn(true, pred)) confmat = sk_confusion_matrix(true, pred, labels=[0, 1]) w.append(confmat[1, 1] + confmat[1, 0]) precision_recall.append(np.stack(scores)) weights.append(np.stack(w)) if average == "micro": return np.array(precision_recall) res = np.stack(precision_recall, 0) if average == "macro": return res.mean(-1) if average == "weighted": weights = np.stack(weights, 0).astype(float) weights_norm = weights.sum(-1, keepdims=True) weights_norm[weights_norm == 0] = 1.0 return ((weights * res) / weights_norm).sum(-1) if average is None or average == "none": return res return None def _sklearn_precision_recall_multilabel(preds, target, sk_fn, ignore_index, multidim_average, average): preds = preds.numpy() target = target.numpy() if np.issubdtype(preds.dtype, np.floating): if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) preds = (preds >= THRESHOLD).astype(np.uint8) preds = preds.reshape(*preds.shape[:2], -1) target = target.reshape(*target.shape[:2], -1) if ignore_index is None and multidim_average == "global": return sk_fn( target.transpose(0, 2, 1).reshape(-1, NUM_CLASSES), preds.transpose(0, 2, 1).reshape(-1, NUM_CLASSES), average=average, ) if multidim_average == "global": return _sklearn_precision_recall_multilabel_global(preds, target, sk_fn, ignore_index, average) return _sklearn_precision_recall_multilabel_local(preds, target, sk_fn, ignore_index, average) @pytest.mark.parametrize("inputs", _multilabel_cases) @pytest.mark.parametrize( "module, functional, compare", [ (MultilabelPrecision, multilabel_precision, sk_precision_score), (MultilabelRecall, multilabel_recall, sk_recall_score), ], ids=["precision", "recall"], ) class TestMultilabelPrecisionRecall(MetricTester): """Test class for `MultilabelPrecisionRecall` metric.""" @pytest.mark.parametrize("ddp", [True, False]) @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("average", ["micro", "macro", "weighted", None]) def test_multilabel_precision_recall( self, ddp, inputs, module, functional, compare, ignore_index, multidim_average, average ): """Test class implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 4: pytest.skip("samplewise and non-multidim arrays are not valid") if multidim_average == "samplewise" and ddp: pytest.skip("samplewise and ddp give different order than non ddp") self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=module, reference_metric=partial( _sklearn_precision_recall_multilabel, sk_fn=compare, ignore_index=ignore_index, multidim_average=multidim_average, average=average, ), metric_args={ "num_labels": NUM_CLASSES, "threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average, "average": average, }, ) @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("average", ["micro", "macro", "weighted", None]) def test_multilabel_precision_recall_functional( self, inputs, module, functional, compare, ignore_index, multidim_average, average ): """Test functional implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 4: pytest.skip("samplewise and non-multidim arrays are not valid") self.run_functional_metric_test( preds=preds, target=target, metric_functional=functional, reference_metric=partial( _sklearn_precision_recall_multilabel, sk_fn=compare, ignore_index=ignore_index, multidim_average=multidim_average, average=average, ), metric_args={ "num_labels": NUM_CLASSES, "threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average, "average": average, }, ) def test_multilabel_precision_recall_differentiability(self, inputs, module, functional, compare): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=module, metric_functional=functional, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_precision_recall_half_cpu(self, inputs, module, functional, compare, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=module, metric_functional=functional, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_precision_recall_half_gpu(self, inputs, module, functional, compare, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=module, metric_functional=functional, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, dtype=dtype, ) def test_corner_case(): """Issue: https://github.com/Lightning-AI/torchmetrics/issues/1692.""" # simulate the output of a perfect predictor (i.e. preds == target) target = torch.tensor([0, 1, 2, 0, 1, 2]) preds = target.clone() metric = MulticlassPrecision(num_classes=3, average="none", ignore_index=0) res = metric(preds, target) assert torch.allclose(res, torch.tensor([0.0, 1.0, 1.0])) metric = MulticlassRecall(num_classes=3, average="none", ignore_index=0) res = metric(preds, target) assert torch.allclose(res, torch.tensor([0.0, 1.0, 1.0])) metric = MulticlassPrecision(num_classes=3, average="macro", ignore_index=0) res = metric(preds, target) assert res == 1.0 metric = MulticlassRecall(num_classes=3, average="macro", ignore_index=0) res = metric(preds, target) assert res == 1.0 @pytest.mark.parametrize( ("metric", "kwargs", "base_metric"), [ (BinaryPrecision, {"task": "binary"}, Precision), (MulticlassPrecision, {"task": "multiclass", "num_classes": 3}, Precision), (MultilabelPrecision, {"task": "multilabel", "num_labels": 3}, Precision), (None, {"task": "not_valid_task"}, Precision), (BinaryRecall, {"task": "binary"}, Recall), (MulticlassRecall, {"task": "multiclass", "num_classes": 3}, Recall), (MultilabelRecall, {"task": "multilabel", "num_labels": 3}, Recall), (None, {"task": "not_valid_task"}, Recall), ], ) def test_wrapper_class(metric, kwargs, base_metric): """Test the wrapper class.""" assert issubclass(base_metric, Metric) if metric is None: with pytest.raises(ValueError, match=r"Invalid *"): base_metric(**kwargs) else: instance = base_metric(**kwargs) assert isinstance(instance, metric) assert isinstance(instance, Metric)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/classification/test_f_beta.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from scipy.special import expit as sigmoid from sklearn.metrics import confusion_matrix as sk_confusion_matrix from sklearn.metrics import f1_score as sk_f1_score from sklearn.metrics import fbeta_score as sk_fbeta_score from torch import Tensor from torchmetrics.classification.f_beta import ( BinaryF1Score, BinaryFBetaScore, F1Score, FBetaScore, MulticlassF1Score, MulticlassFBetaScore, MultilabelF1Score, MultilabelFBetaScore, ) from torchmetrics.functional.classification.f_beta import ( binary_f1_score, binary_fbeta_score, multiclass_f1_score, multiclass_fbeta_score, multilabel_f1_score, multilabel_fbeta_score, ) from torchmetrics.metric import Metric from unittests import NUM_CLASSES, THRESHOLD from unittests.classification.inputs import _binary_cases, _multiclass_cases, _multilabel_cases from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester, inject_ignore_index, remove_ignore_index seed_all(42) def _sklearn_fbeta_score_binary(preds, target, sk_fn, ignore_index, multidim_average): if multidim_average == "global": preds = preds.view(-1).numpy() target = target.view(-1).numpy() else: preds = preds.numpy() target = target.numpy() if np.issubdtype(preds.dtype, np.floating): if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) preds = (preds >= THRESHOLD).astype(np.uint8) if multidim_average == "global": target, preds = remove_ignore_index(target, preds, ignore_index) return sk_fn(target, preds) res = [] for pred, true in zip(preds, target): pred = pred.flatten() true = true.flatten() true, pred = remove_ignore_index(true, pred, ignore_index) res.append(sk_fn(true, pred)) return np.stack(res) @pytest.mark.parametrize("inputs", _binary_cases) @pytest.mark.parametrize( "module, functional, compare", [ (BinaryF1Score, binary_f1_score, sk_f1_score), (partial(BinaryFBetaScore, beta=2.0), partial(binary_fbeta_score, beta=2.0), partial(sk_fbeta_score, beta=2.0)), ], ids=["f1", "fbeta"], ) class TestBinaryFBetaScore(MetricTester): """Test class for `BinaryFBetaScore` metric.""" @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("ddp", [False, True]) def test_binary_fbeta_score(self, ddp, inputs, module, functional, compare, ignore_index, multidim_average): """Test class implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 3: pytest.skip("samplewise and non-multidim arrays are not valid") if multidim_average == "samplewise" and ddp: pytest.skip("samplewise and ddp give different order than non ddp") self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=module, reference_metric=partial( _sklearn_fbeta_score_binary, sk_fn=compare, ignore_index=ignore_index, multidim_average=multidim_average ), metric_args={"threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average}, ) @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) def test_binary_fbeta_score_functional(self, inputs, module, functional, compare, ignore_index, multidim_average): """Test functional implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 3: pytest.skip("samplewise and non-multidim arrays are not valid") self.run_functional_metric_test( preds=preds, target=target, metric_functional=functional, reference_metric=partial( _sklearn_fbeta_score_binary, sk_fn=compare, ignore_index=ignore_index, multidim_average=multidim_average ), metric_args={ "threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average, }, ) def test_binary_fbeta_score_differentiability(self, inputs, module, functional, compare): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=module, metric_functional=functional, metric_args={"threshold": THRESHOLD}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_fbeta_score_half_cpu(self, inputs, module, functional, compare, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=module, metric_functional=functional, metric_args={"threshold": THRESHOLD}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_fbeta_score_half_gpu(self, inputs, module, functional, compare, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=module, metric_functional=functional, metric_args={"threshold": THRESHOLD}, dtype=dtype, ) def _sklearn_fbeta_score_multiclass(preds, target, sk_fn, ignore_index, multidim_average, average): if preds.ndim == target.ndim + 1: preds = torch.argmax(preds, 1) if multidim_average == "global": preds = preds.numpy().flatten() target = target.numpy().flatten() target, preds = remove_ignore_index(target, preds, ignore_index) return sk_fn(target, preds, average=average, labels=list(range(NUM_CLASSES)) if average is None else None) preds = preds.numpy() target = target.numpy() res = [] for pred, true in zip(preds, target): pred = pred.flatten() true = true.flatten() true, pred = remove_ignore_index(true, pred, ignore_index) r = sk_fn(true, pred, average=average, labels=list(range(NUM_CLASSES)) if average is None else None) res.append(0.0 if np.isnan(r).any() else r) return np.stack(res, 0) @pytest.mark.parametrize("inputs", _multiclass_cases) @pytest.mark.parametrize( "module, functional, compare", [ (MulticlassF1Score, multiclass_f1_score, sk_f1_score), ( partial(MulticlassFBetaScore, beta=2.0), partial(multiclass_fbeta_score, beta=2.0), partial(sk_fbeta_score, beta=2.0), ), ], ids=["f1", "fbeta"], ) class TestMulticlassFBetaScore(MetricTester): """Test class for `MulticlassFBetaScore` metric.""" @pytest.mark.parametrize("ignore_index", [None, 0, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("average", ["micro", "macro", "weighted", None]) @pytest.mark.parametrize("ddp", [True, False]) def test_multiclass_fbeta_score( self, ddp, inputs, module, functional, compare, ignore_index, multidim_average, average ): """Test class implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and target.ndim < 3: pytest.skip("samplewise and non-multidim arrays are not valid") if multidim_average == "samplewise" and ddp: pytest.skip("samplewise and ddp give different order than non ddp") self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=module, reference_metric=partial( _sklearn_fbeta_score_multiclass, sk_fn=compare, ignore_index=ignore_index, multidim_average=multidim_average, average=average, ), metric_args={ "ignore_index": ignore_index, "multidim_average": multidim_average, "average": average, "num_classes": NUM_CLASSES, }, ) @pytest.mark.parametrize("ignore_index", [None, 0, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("average", ["micro", "macro", "weighted", None]) def test_multiclass_fbeta_score_functional( self, inputs, module, functional, compare, ignore_index, multidim_average, average ): """Test functional implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and target.ndim < 3: pytest.skip("samplewise and non-multidim arrays are not valid") self.run_functional_metric_test( preds=preds, target=target, metric_functional=functional, reference_metric=partial( _sklearn_fbeta_score_multiclass, sk_fn=compare, ignore_index=ignore_index, multidim_average=multidim_average, average=average, ), metric_args={ "ignore_index": ignore_index, "multidim_average": multidim_average, "average": average, "num_classes": NUM_CLASSES, }, ) def test_multiclass_fbeta_score_differentiability(self, inputs, module, functional, compare): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=module, metric_functional=functional, metric_args={"num_classes": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_fbeta_score_half_cpu(self, inputs, module, functional, compare, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=module, metric_functional=functional, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_fbeta_score_half_gpu(self, inputs, module, functional, compare, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=module, metric_functional=functional, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) _mc_k_target = torch.tensor([0, 1, 2]) _mc_k_preds = torch.tensor([[0.35, 0.4, 0.25], [0.1, 0.5, 0.4], [0.2, 0.1, 0.7]]) @pytest.mark.parametrize( ("metric_class", "metric_fn"), [ (partial(MulticlassFBetaScore, beta=2.0), partial(multiclass_fbeta_score, beta=2.0)), (MulticlassF1Score, multiclass_f1_score), ], ) @pytest.mark.parametrize( ("k", "preds", "target", "average", "expected_fbeta", "expected_f1"), [ (1, _mc_k_preds, _mc_k_target, "micro", torch.tensor(2 / 3), torch.tensor(2 / 3)), (2, _mc_k_preds, _mc_k_target, "micro", torch.tensor(5 / 6), torch.tensor(2 / 3)), ], ) def test_top_k( metric_class, metric_fn, k: int, preds: Tensor, target: Tensor, average: str, expected_fbeta: Tensor, expected_f1: Tensor, ): """A simple test to check that top_k works as expected.""" class_metric = metric_class(top_k=k, average=average, num_classes=3) class_metric.update(preds, target) result = expected_fbeta if class_metric.beta != 1.0 else expected_f1 assert torch.isclose(class_metric.compute(), result) assert torch.isclose(metric_fn(preds, target, top_k=k, average=average, num_classes=3), result) def _sklearn_fbeta_score_multilabel_global(preds, target, sk_fn, ignore_index, average): if average == "micro": preds = preds.flatten() target = target.flatten() target, preds = remove_ignore_index(target, preds, ignore_index) return sk_fn(target, preds) fbeta_score, weights = [], [] for i in range(preds.shape[1]): pred, true = preds[:, i].flatten(), target[:, i].flatten() true, pred = remove_ignore_index(true, pred, ignore_index) fbeta_score.append(sk_fn(true, pred)) confmat = sk_confusion_matrix(true, pred, labels=[0, 1]) weights.append(confmat[1, 1] + confmat[1, 0]) res = np.stack(fbeta_score, axis=0) if average == "macro": return res.mean(0) if average == "weighted": weights = np.stack(weights, 0).astype(float) weights_norm = weights.sum(-1, keepdims=True) weights_norm[weights_norm == 0] = 1.0 return ((weights * res) / weights_norm).sum(-1) if average is None or average == "none": return res return None def _sklearn_fbeta_score_multilabel_local(preds, target, sk_fn, ignore_index, average): fbeta_score, weights = [], [] for i in range(preds.shape[0]): if average == "micro": pred, true = preds[i].flatten(), target[i].flatten() true, pred = remove_ignore_index(true, pred, ignore_index) fbeta_score.append(sk_fn(true, pred)) confmat = sk_confusion_matrix(true, pred, labels=[0, 1]) weights.append(confmat[1, 1] + confmat[1, 0]) else: scores, w = [], [] for j in range(preds.shape[1]): pred, true = preds[i, j], target[i, j] true, pred = remove_ignore_index(true, pred, ignore_index) scores.append(sk_fn(true, pred)) confmat = sk_confusion_matrix(true, pred, labels=[0, 1]) w.append(confmat[1, 1] + confmat[1, 0]) fbeta_score.append(np.stack(scores)) weights.append(np.stack(w)) if average == "micro": return np.array(fbeta_score) res = np.stack(fbeta_score, 0) if average == "macro": return res.mean(-1) if average == "weighted": weights = np.stack(weights, 0).astype(float) weights_norm = weights.sum(-1, keepdims=True) weights_norm[weights_norm == 0] = 1.0 return ((weights * res) / weights_norm).sum(-1) if average is None or average == "none": return res return None def _sklearn_fbeta_score_multilabel(preds, target, sk_fn, ignore_index, multidim_average, average): preds = preds.numpy() target = target.numpy() if np.issubdtype(preds.dtype, np.floating): if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) preds = (preds >= THRESHOLD).astype(np.uint8) preds = preds.reshape(*preds.shape[:2], -1) target = target.reshape(*target.shape[:2], -1) if ignore_index is None and multidim_average == "global": return sk_fn( target.transpose(0, 2, 1).reshape(-1, NUM_CLASSES), preds.transpose(0, 2, 1).reshape(-1, NUM_CLASSES), average=average, ) if multidim_average == "global": return _sklearn_fbeta_score_multilabel_global(preds, target, sk_fn, ignore_index, average) return _sklearn_fbeta_score_multilabel_local(preds, target, sk_fn, ignore_index, average) @pytest.mark.parametrize("inputs", _multilabel_cases) @pytest.mark.parametrize( "module, functional, compare", [ (MultilabelF1Score, multilabel_f1_score, sk_f1_score), ( partial(MultilabelFBetaScore, beta=2.0), partial(multilabel_fbeta_score, beta=2.0), partial(sk_fbeta_score, beta=2.0), ), ], ids=["f1", "fbeta"], ) class TestMultilabelFBetaScore(MetricTester): """Test class for `MultilabelFBetaScore` metric.""" @pytest.mark.parametrize("ddp", [True, False]) @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("average", ["micro", "macro", "weighted", None]) def test_multilabel_fbeta_score( self, ddp, inputs, module, functional, compare, ignore_index, multidim_average, average ): """Test class implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 4: pytest.skip("samplewise and non-multidim arrays are not valid") if multidim_average == "samplewise" and ddp: pytest.skip("samplewise and ddp give different order than non ddp") self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=module, reference_metric=partial( _sklearn_fbeta_score_multilabel, sk_fn=compare, ignore_index=ignore_index, multidim_average=multidim_average, average=average, ), metric_args={ "num_labels": NUM_CLASSES, "threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average, "average": average, }, ) @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("average", ["micro", "macro", "weighted", None]) def test_multilabel_fbeta_score_functional( self, inputs, module, functional, compare, ignore_index, multidim_average, average ): """Test functional implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 4: pytest.skip("samplewise and non-multidim arrays are not valid") self.run_functional_metric_test( preds=preds, target=target, metric_functional=functional, reference_metric=partial( _sklearn_fbeta_score_multilabel, sk_fn=compare, ignore_index=ignore_index, multidim_average=multidim_average, average=average, ), metric_args={ "num_labels": NUM_CLASSES, "threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average, "average": average, }, ) def test_multilabel_fbeta_score_differentiability(self, inputs, module, functional, compare): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=module, metric_functional=functional, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_fbeta_score_half_cpu(self, inputs, module, functional, compare, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=module, metric_functional=functional, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_fbeta_score_half_gpu(self, inputs, module, functional, compare, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=module, metric_functional=functional, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, dtype=dtype, ) def test_corner_case(): """Issue: https://github.com/Lightning-AI/torchmetrics/issues/1664.""" target = torch.tensor([2, 1, 0, 0]) preds = torch.tensor([2, 1, 0, 1]) for i in range(3, 9): f1_score = MulticlassF1Score(num_classes=i, average="macro") res = f1_score(preds, target) assert res == torch.tensor([0.77777779]) @pytest.mark.parametrize( ("metric", "kwargs", "base_metric"), [ (BinaryF1Score, {"task": "binary"}, F1Score), (MulticlassF1Score, {"task": "multiclass", "num_classes": 3}, F1Score), (MultilabelF1Score, {"task": "multilabel", "num_labels": 3}, F1Score), (None, {"task": "not_valid_task"}, F1Score), (BinaryFBetaScore, {"task": "binary", "beta": 2.0}, FBetaScore), (MulticlassFBetaScore, {"task": "multiclass", "num_classes": 3, "beta": 2.0}, FBetaScore), (MultilabelFBetaScore, {"task": "multilabel", "num_labels": 3, "beta": 2.0}, FBetaScore), (None, {"task": "not_valid_task"}, FBetaScore), ], ) def test_wrapper_class(metric, kwargs, base_metric): """Test the wrapper class.""" assert issubclass(base_metric, Metric) if metric is None: with pytest.raises(ValueError, match=r"Invalid *"): base_metric(**kwargs) else: instance = base_metric(**kwargs) assert isinstance(instance, metric) assert isinstance(instance, Metric)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/classification/test_confusion_matrix.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from scipy.special import expit as sigmoid from sklearn.metrics import confusion_matrix as sk_confusion_matrix from torchmetrics.classification.confusion_matrix import ( BinaryConfusionMatrix, ConfusionMatrix, MulticlassConfusionMatrix, MultilabelConfusionMatrix, ) from torchmetrics.functional.classification.confusion_matrix import ( binary_confusion_matrix, multiclass_confusion_matrix, multilabel_confusion_matrix, ) from torchmetrics.metric import Metric from unittests import NUM_CLASSES, THRESHOLD from unittests.classification.inputs import _binary_cases, _multiclass_cases, _multilabel_cases from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester, inject_ignore_index, remove_ignore_index seed_all(42) def _sklearn_confusion_matrix_binary(preds, target, normalize=None, ignore_index=None): preds = preds.view(-1).numpy() target = target.view(-1).numpy() if np.issubdtype(preds.dtype, np.floating): if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) preds = (preds >= THRESHOLD).astype(np.uint8) target, preds = remove_ignore_index(target, preds, ignore_index) return sk_confusion_matrix(y_true=target, y_pred=preds, labels=[0, 1], normalize=normalize) @pytest.mark.parametrize("inputs", _binary_cases) class TestBinaryConfusionMatrix(MetricTester): """Test class for `BinaryConfusionMatrix` metric.""" @pytest.mark.parametrize("normalize", ["true", "pred", "all", None]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) @pytest.mark.parametrize("ddp", [True, False]) def test_binary_confusion_matrix(self, inputs, ddp, normalize, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=BinaryConfusionMatrix, reference_metric=partial(_sklearn_confusion_matrix_binary, normalize=normalize, ignore_index=ignore_index), metric_args={ "threshold": THRESHOLD, "normalize": normalize, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("normalize", ["true", "pred", "all", None]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) def test_binary_confusion_matrix_functional(self, inputs, normalize, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=binary_confusion_matrix, reference_metric=partial(_sklearn_confusion_matrix_binary, normalize=normalize, ignore_index=ignore_index), metric_args={ "threshold": THRESHOLD, "normalize": normalize, "ignore_index": ignore_index, }, ) def test_binary_confusion_matrix_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=BinaryConfusionMatrix, metric_functional=binary_confusion_matrix, metric_args={"threshold": THRESHOLD}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_confusion_matrix_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=BinaryConfusionMatrix, metric_functional=binary_confusion_matrix, metric_args={"threshold": THRESHOLD}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_confusion_matrix_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=BinaryConfusionMatrix, metric_functional=binary_confusion_matrix, metric_args={"threshold": THRESHOLD}, dtype=dtype, ) def _sklearn_confusion_matrix_multiclass(preds, target, normalize=None, ignore_index=None): preds = preds.numpy() target = target.numpy() if np.issubdtype(preds.dtype, np.floating): preds = np.argmax(preds, axis=1) preds = preds.flatten() target = target.flatten() target, preds = remove_ignore_index(target, preds, ignore_index) return sk_confusion_matrix(y_true=target, y_pred=preds, normalize=normalize, labels=list(range(NUM_CLASSES))) @pytest.mark.parametrize("inputs", _multiclass_cases) class TestMulticlassConfusionMatrix(MetricTester): """Test class for `MultiClassConfusionMatrix` metric.""" @pytest.mark.parametrize("normalize", ["true", "pred", "all", None]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) @pytest.mark.parametrize("ddp", [True, False]) def test_multiclass_confusion_matrix(self, inputs, ddp, normalize, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MulticlassConfusionMatrix, reference_metric=partial( _sklearn_confusion_matrix_multiclass, normalize=normalize, ignore_index=ignore_index ), metric_args={ "num_classes": NUM_CLASSES, "normalize": normalize, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("normalize", ["true", "pred", "all", None]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) def test_multiclass_confusion_matrix_functional(self, inputs, normalize, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=multiclass_confusion_matrix, reference_metric=partial( _sklearn_confusion_matrix_multiclass, normalize=normalize, ignore_index=ignore_index ), metric_args={ "num_classes": NUM_CLASSES, "normalize": normalize, "ignore_index": ignore_index, }, ) def test_multiclass_confusion_matrix_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MulticlassConfusionMatrix, metric_functional=multiclass_confusion_matrix, metric_args={"num_classes": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_confusion_matrix_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs self.run_precision_test_cpu( preds=preds, target=target, metric_module=MulticlassConfusionMatrix, metric_functional=multiclass_confusion_matrix, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_confusion_matrix_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MulticlassConfusionMatrix, metric_functional=multiclass_confusion_matrix, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) def test_multiclass_overflow(): """Test that multiclass computations does not overflow even on byte inputs.""" preds = torch.randint(20, (100,)).byte() target = torch.randint(20, (100,)).byte() m = MulticlassConfusionMatrix(num_classes=20) res = m(preds, target) compare = sk_confusion_matrix(target, preds) assert torch.allclose(res, torch.tensor(compare)) def _sklearn_confusion_matrix_multilabel(preds, target, normalize=None, ignore_index=None): preds = preds.numpy() target = target.numpy() if np.issubdtype(preds.dtype, np.floating): if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) preds = (preds >= THRESHOLD).astype(np.uint8) preds = np.moveaxis(preds, 1, -1).reshape((-1, preds.shape[1])) target = np.moveaxis(target, 1, -1).reshape((-1, target.shape[1])) confmat = [] for i in range(preds.shape[1]): pred, true = preds[:, i], target[:, i] true, pred = remove_ignore_index(true, pred, ignore_index) confmat.append(sk_confusion_matrix(true, pred, normalize=normalize, labels=[0, 1])) return np.stack(confmat, axis=0) @pytest.mark.parametrize("inputs", _multilabel_cases) class TestMultilabelConfusionMatrix(MetricTester): """Test class for `MultilabelConfusionMatrix` metric.""" @pytest.mark.parametrize("normalize", ["true", "pred", "all", None]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) @pytest.mark.parametrize("ddp", [True, False]) def test_multilabel_confusion_matrix(self, inputs, ddp, normalize, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MultilabelConfusionMatrix, reference_metric=partial( _sklearn_confusion_matrix_multilabel, normalize=normalize, ignore_index=ignore_index ), metric_args={ "num_labels": NUM_CLASSES, "normalize": normalize, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("normalize", ["true", "pred", "all", None]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) def test_multilabel_confusion_matrix_functional(self, inputs, normalize, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=multilabel_confusion_matrix, reference_metric=partial( _sklearn_confusion_matrix_multilabel, normalize=normalize, ignore_index=ignore_index ), metric_args={ "num_labels": NUM_CLASSES, "normalize": normalize, "ignore_index": ignore_index, }, ) def test_multilabel_confusion_matrix_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MultilabelConfusionMatrix, metric_functional=multilabel_confusion_matrix, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_confusion_matrix_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MultilabelConfusionMatrix, metric_functional=multilabel_confusion_matrix, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_confusion_matrix_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MultilabelConfusionMatrix, metric_functional=multilabel_confusion_matrix, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, dtype=dtype, ) def test_warning_on_nan(): """Test that a warning is given if division by zero happens during normalization of confusion matrix.""" preds = torch.randint(3, size=(20,)) target = torch.randint(3, size=(20,)) with pytest.warns( UserWarning, match=".* NaN values found in confusion matrix have been replaced with zeros.", ): multiclass_confusion_matrix(preds, target, num_classes=5, normalize="true") @pytest.mark.parametrize( ("metric", "kwargs"), [ (BinaryConfusionMatrix, {"task": "binary"}), (MulticlassConfusionMatrix, {"task": "multiclass", "num_classes": 3}), (MultilabelConfusionMatrix, {"task": "multilabel", "num_labels": 3}), (None, {"task": "not_valid_task"}), ], ) def test_wrapper_class(metric, kwargs, base_metric=ConfusionMatrix): """Test the wrapper class.""" assert issubclass(base_metric, Metric) if metric is None: with pytest.raises(ValueError, match=r"Invalid *"): base_metric(**kwargs) else: instance = base_metric(**kwargs) assert isinstance(instance, metric) assert isinstance(instance, Metric)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/classification/test_accuracy.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from scipy.special import expit as sigmoid from sklearn.metrics import accuracy_score as sk_accuracy from sklearn.metrics import confusion_matrix as sk_confusion_matrix from torchmetrics.classification.accuracy import Accuracy, BinaryAccuracy, MulticlassAccuracy, MultilabelAccuracy from torchmetrics.functional.classification.accuracy import ( accuracy, binary_accuracy, multiclass_accuracy, multilabel_accuracy, ) from torchmetrics.metric import Metric from unittests import NUM_CLASSES, THRESHOLD from unittests.classification.inputs import _binary_cases, _input_binary, _multiclass_cases, _multilabel_cases from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester, inject_ignore_index, remove_ignore_index seed_all(42) def _sklearn_accuracy(target, preds): score = sk_accuracy(target, preds) return score if not np.isnan(score) else 0.0 def _sklearn_accuracy_binary(preds, target, ignore_index, multidim_average): if multidim_average == "global": preds = preds.view(-1).numpy() target = target.view(-1).numpy() else: preds = preds.numpy() target = target.numpy() if np.issubdtype(preds.dtype, np.floating): if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) preds = (preds >= THRESHOLD).astype(np.uint8) if multidim_average == "global": target, preds = remove_ignore_index(target, preds, ignore_index) return _sklearn_accuracy(target, preds) res = [] for pred, true in zip(preds, target): pred = pred.flatten() true = true.flatten() true, pred = remove_ignore_index(true, pred, ignore_index) res.append(_sklearn_accuracy(true, pred)) return np.stack(res) def test_accuracy_functional_raises_invalid_task(): """Tests accuracy task enum from functional.accuracy.""" preds, target = _input_binary task = "NotValidTask" ignore_index = None multidim_average = "global" with pytest.raises(ValueError, match=r"Invalid *"): accuracy( preds, target, threshold=THRESHOLD, task=task, ignore_index=ignore_index, multidim_average=multidim_average, ) @pytest.mark.parametrize("inputs", _binary_cases) class TestBinaryAccuracy(MetricTester): """Test class for `BinaryAccuracy` metric.""" @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("ddp", [False, True]) def test_binary_accuracy(self, ddp, inputs, ignore_index, multidim_average): """Test class implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 3: pytest.skip("samplewise and non-multidim arrays are not valid") if multidim_average == "samplewise" and ddp: pytest.skip("samplewise and ddp give different order than non ddp") self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=BinaryAccuracy, reference_metric=partial( _sklearn_accuracy_binary, ignore_index=ignore_index, multidim_average=multidim_average ), metric_args={"threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average}, ) @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) def test_binary_accuracy_functional(self, inputs, ignore_index, multidim_average): """Test functional implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 3: pytest.skip("samplewise and non-multidim arrays are not valid") self.run_functional_metric_test( preds=preds, target=target, metric_functional=binary_accuracy, reference_metric=partial( _sklearn_accuracy_binary, ignore_index=ignore_index, multidim_average=multidim_average ), metric_args={ "threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average, }, ) def test_binary_accuracy_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=BinaryAccuracy, metric_functional=binary_accuracy, metric_args={"threshold": THRESHOLD}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_accuracy_half_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=BinaryAccuracy, metric_functional=binary_accuracy, metric_args={"threshold": THRESHOLD}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_accuracy_half_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=BinaryAccuracy, metric_functional=binary_accuracy, metric_args={"threshold": THRESHOLD}, dtype=dtype, ) def _sklearn_accuracy_multiclass(preds, target, ignore_index, multidim_average, average): if preds.ndim == target.ndim + 1: preds = torch.argmax(preds, 1) if multidim_average == "global": preds = preds.numpy().flatten() target = target.numpy().flatten() target, preds = remove_ignore_index(target, preds, ignore_index) if average == "micro": return _sklearn_accuracy(target, preds) confmat = sk_confusion_matrix(target, preds, labels=list(range(NUM_CLASSES))) acc_per_class = confmat.diagonal() / confmat.sum(axis=1) acc_per_class[np.isnan(acc_per_class)] = 0.0 if average == "macro": acc_per_class = acc_per_class[ (np.bincount(preds, minlength=NUM_CLASSES) + np.bincount(target, minlength=NUM_CLASSES)) != 0.0 ] return acc_per_class.mean() if average == "weighted": weights = confmat.sum(1) return ((weights * acc_per_class) / weights.sum()).sum() return acc_per_class preds = preds.numpy() target = target.numpy() res = [] for pred, true in zip(preds, target): pred = pred.flatten() true = true.flatten() true, pred = remove_ignore_index(true, pred, ignore_index) if average == "micro": res.append(_sklearn_accuracy(true, pred)) else: confmat = sk_confusion_matrix(true, pred, labels=list(range(NUM_CLASSES))) acc_per_class = confmat.diagonal() / confmat.sum(axis=1) acc_per_class[np.isnan(acc_per_class)] = 0.0 if average == "macro": acc_per_class = acc_per_class[ (np.bincount(pred, minlength=NUM_CLASSES) + np.bincount(true, minlength=NUM_CLASSES)) != 0.0 ] res.append(acc_per_class.mean() if len(acc_per_class) > 0 else 0.0) elif average == "weighted": weights = confmat.sum(1) score = ((weights * acc_per_class) / weights.sum()).sum() res.append(0.0 if np.isnan(score) else score) else: res.append(acc_per_class) return np.stack(res, 0) @pytest.mark.parametrize("inputs", _multiclass_cases) class TestMulticlassAccuracy(MetricTester): """Test class for `MulticlassAccuracy` metric.""" @pytest.mark.parametrize("ignore_index", [None, 0, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("average", ["micro", "macro", "weighted", None]) @pytest.mark.parametrize("ddp", [True, False]) def test_multiclass_accuracy(self, ddp, inputs, ignore_index, multidim_average, average): """Test class implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and target.ndim < 3: pytest.skip("samplewise and non-multidim arrays are not valid") if multidim_average == "samplewise" and ddp: pytest.skip("samplewise and ddp give different order than non ddp") self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MulticlassAccuracy, reference_metric=partial( _sklearn_accuracy_multiclass, ignore_index=ignore_index, multidim_average=multidim_average, average=average, ), metric_args={ "ignore_index": ignore_index, "multidim_average": multidim_average, "average": average, "num_classes": NUM_CLASSES, }, ) @pytest.mark.parametrize("ignore_index", [None, 0, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("average", ["micro", "macro", "weighted", None]) def test_multiclass_accuracy_functional(self, inputs, ignore_index, multidim_average, average): """Test functional implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and target.ndim < 3: pytest.skip("samplewise and non-multidim arrays are not valid") self.run_functional_metric_test( preds=preds, target=target, metric_functional=multiclass_accuracy, reference_metric=partial( _sklearn_accuracy_multiclass, ignore_index=ignore_index, multidim_average=multidim_average, average=average, ), metric_args={ "ignore_index": ignore_index, "multidim_average": multidim_average, "average": average, "num_classes": NUM_CLASSES, }, ) def test_multiclass_accuracy_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MulticlassAccuracy, metric_functional=multiclass_accuracy, metric_args={"num_classes": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_accuracy_half_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MulticlassAccuracy, metric_functional=multiclass_accuracy, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_accuracy_half_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MulticlassAccuracy, metric_functional=multiclass_accuracy, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) _mc_k_target = torch.tensor([0, 1, 2]) _mc_k_preds = torch.tensor([[0.35, 0.4, 0.25], [0.1, 0.5, 0.4], [0.2, 0.1, 0.7]]) @pytest.mark.parametrize( ("k", "preds", "target", "average", "expected"), [ (1, _mc_k_preds, _mc_k_target, "micro", torch.tensor(2 / 3)), (2, _mc_k_preds, _mc_k_target, "micro", torch.tensor(3 / 3)), ], ) def test_top_k(k, preds, target, average, expected): """A simple test to check that top_k works as expected.""" class_metric = MulticlassAccuracy(top_k=k, average=average, num_classes=3) class_metric.update(preds, target) assert torch.isclose(class_metric.compute(), expected) assert torch.isclose(multiclass_accuracy(preds, target, top_k=k, average=average, num_classes=3), expected) def _sklearn_accuracy_multilabel(preds, target, ignore_index, multidim_average, average): preds = preds.numpy() target = target.numpy() if np.issubdtype(preds.dtype, np.floating): if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) preds = (preds >= THRESHOLD).astype(np.uint8) preds = preds.reshape(*preds.shape[:2], -1) target = target.reshape(*target.shape[:2], -1) if multidim_average == "global": if average == "micro": preds = preds.flatten() target = target.flatten() target, preds = remove_ignore_index(target, preds, ignore_index) return _sklearn_accuracy(target, preds) accuracy, weights = [], [] for i in range(preds.shape[1]): pred, true = preds[:, i].flatten(), target[:, i].flatten() true, pred = remove_ignore_index(true, pred, ignore_index) confmat = sk_confusion_matrix(true, pred, labels=[0, 1]) accuracy.append(_sklearn_accuracy(true, pred)) weights.append(confmat[1, 1] + confmat[1, 0]) res = np.stack(accuracy, axis=0) if average == "macro": return res.mean(0) if average == "weighted": weights = np.stack(weights, 0).astype(float) weights_norm = weights.sum(-1, keepdims=True) weights_norm[weights_norm == 0] = 1.0 return ((weights * res) / weights_norm).sum(-1) if average is None or average == "none": return res return None accuracy, weights = [], [] for i in range(preds.shape[0]): if average == "micro": pred, true = preds[i].flatten(), target[i].flatten() true, pred = remove_ignore_index(true, pred, ignore_index) accuracy.append(_sklearn_accuracy(true, pred)) confmat = sk_confusion_matrix(true, pred, labels=[0, 1]) weights.append(confmat[1, 1] + confmat[1, 0]) else: scores, w = [], [] for j in range(preds.shape[1]): pred, true = preds[i, j], target[i, j] true, pred = remove_ignore_index(true, pred, ignore_index) scores.append(_sklearn_accuracy(true, pred)) confmat = sk_confusion_matrix(true, pred, labels=[0, 1]) w.append(confmat[1, 1] + confmat[1, 0]) accuracy.append(np.stack(scores)) weights.append(np.stack(w)) if average == "micro": return np.array(accuracy) res = np.stack(accuracy, 0) if average == "macro": return res.mean(-1) if average == "weighted": weights = np.stack(weights, 0).astype(float) weights_norm = weights.sum(-1, keepdims=True) weights_norm[weights_norm == 0] = 1.0 return ((weights * res) / weights_norm).sum(-1) if average is None or average == "none": return res return None @pytest.mark.parametrize("inputs", _multilabel_cases) class TestMultilabelAccuracy(MetricTester): """Test class for `MultilabelAccuracy` metric.""" @pytest.mark.parametrize("ddp", [True, False]) @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("average", ["micro", "macro", "weighted", None]) def test_multilabel_accuracy(self, ddp, inputs, ignore_index, multidim_average, average): """Test class implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 4: pytest.skip("samplewise and non-multidim arrays are not valid") if multidim_average == "samplewise" and ddp: pytest.skip("samplewise and ddp give different order than non ddp") self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MultilabelAccuracy, reference_metric=partial( _sklearn_accuracy_multilabel, ignore_index=ignore_index, multidim_average=multidim_average, average=average, ), metric_args={ "num_labels": NUM_CLASSES, "threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average, "average": average, }, ) @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("average", ["micro", "macro", "weighted", None]) def test_multilabel_accuracy_functional(self, inputs, ignore_index, multidim_average, average): """Test functional implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 4: pytest.skip("samplewise and non-multidim arrays are not valid") self.run_functional_metric_test( preds=preds, target=target, metric_functional=multilabel_accuracy, reference_metric=partial( _sklearn_accuracy_multilabel, ignore_index=ignore_index, multidim_average=multidim_average, average=average, ), metric_args={ "num_labels": NUM_CLASSES, "threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average, "average": average, }, ) def test_multilabel_accuracy_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MultilabelAccuracy, metric_functional=multilabel_accuracy, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_accuracy_half_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MultilabelAccuracy, metric_functional=multilabel_accuracy, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_accuracy_half_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MultilabelAccuracy, metric_functional=multilabel_accuracy, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, dtype=dtype, ) def test_corner_cases(): """Issue: https://github.com/Lightning-AI/torchmetrics/issues/1691.""" # simulate the output of a perfect predictor (i.e. preds == target) target = torch.tensor([0, 1, 2, 0, 1, 2]) preds = target metric = MulticlassAccuracy(num_classes=3, average="none", ignore_index=0) res = metric(preds, target) assert torch.allclose(res, torch.tensor([0.0, 1.0, 1.0])) metric = MulticlassAccuracy(num_classes=3, average="macro", ignore_index=0) res = metric(preds, target) assert res == 1.0 @pytest.mark.parametrize( ("metric", "kwargs"), [ (BinaryAccuracy, {"task": "binary"}), (MulticlassAccuracy, {"task": "multiclass", "num_classes": 3}), (MultilabelAccuracy, {"task": "multilabel", "num_labels": 3}), (None, {"task": "not_valid_task"}), ], ) def test_wrapper_class(metric, kwargs, base_metric=Accuracy): """Test the wrapper class.""" assert issubclass(base_metric, Metric) if metric is None: with pytest.raises(ValueError, match=r"Invalid *"): base_metric(**kwargs) else: instance = base_metric(**kwargs) assert isinstance(instance, metric) assert isinstance(instance, Metric)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/classification/test_precision_recall_curve.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from scipy.special import expit as sigmoid from scipy.special import softmax from sklearn.metrics import precision_recall_curve as sk_precision_recall_curve from torchmetrics.classification.precision_recall_curve import ( BinaryPrecisionRecallCurve, MulticlassPrecisionRecallCurve, MultilabelPrecisionRecallCurve, PrecisionRecallCurve, ) from torchmetrics.functional.classification.precision_recall_curve import ( binary_precision_recall_curve, multiclass_precision_recall_curve, multilabel_precision_recall_curve, ) from torchmetrics.metric import Metric from unittests import NUM_CLASSES from unittests.classification.inputs import _binary_cases, _multiclass_cases, _multilabel_cases from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester, inject_ignore_index, remove_ignore_index seed_all(42) def _sklearn_precision_recall_curve_binary(preds, target, ignore_index=None): preds = preds.flatten().numpy() target = target.flatten().numpy() if np.issubdtype(preds.dtype, np.floating) and not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) target, preds = remove_ignore_index(target, preds, ignore_index) return sk_precision_recall_curve(target, preds) @pytest.mark.parametrize("inputs", (_binary_cases[1], _binary_cases[2], _binary_cases[4], _binary_cases[5])) class TestBinaryPrecisionRecallCurve(MetricTester): """Test class for `BinaryPrecisionRecallCurve` metric.""" @pytest.mark.parametrize("ignore_index", [None, -1, 0]) @pytest.mark.parametrize("ddp", [True, False]) def test_binary_precision_recall_curve(self, inputs, ddp, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=BinaryPrecisionRecallCurve, reference_metric=partial(_sklearn_precision_recall_curve_binary, ignore_index=ignore_index), metric_args={ "thresholds": None, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) def test_binary_precision_recall_curve_functional(self, inputs, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=binary_precision_recall_curve, reference_metric=partial(_sklearn_precision_recall_curve_binary, ignore_index=ignore_index), metric_args={ "thresholds": None, "ignore_index": ignore_index, }, ) def test_binary_precision_recall_curve_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=BinaryPrecisionRecallCurve, metric_functional=binary_precision_recall_curve, metric_args={"thresholds": None}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_precision_recall_curve_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=BinaryPrecisionRecallCurve, metric_functional=binary_precision_recall_curve, metric_args={"thresholds": None}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_precision_recall_curve_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=BinaryPrecisionRecallCurve, metric_functional=binary_precision_recall_curve, metric_args={"thresholds": None}, dtype=dtype, ) @pytest.mark.parametrize("threshold_fn", [lambda x: x, lambda x: x.numpy().tolist()], ids=["as tensor", "as list"]) def test_binary_precision_recall_curve_threshold_arg(self, inputs, threshold_fn): """Test that different types of `thresholds` argument lead to same result.""" preds, target = inputs for pred, true in zip(preds, target): p1, r1, t1 = binary_precision_recall_curve(pred, true, thresholds=None) p2, r2, t2 = binary_precision_recall_curve(pred, true, thresholds=threshold_fn(t1)) assert torch.allclose(p1, p2) assert torch.allclose(r1, r2) assert torch.allclose(t1, t2) def test_binary_error_on_wrong_dtypes(self, inputs): """Test that error are raised on wrong dtype.""" preds, target = inputs with pytest.raises(ValueError, match="Expected argument `target` to be an int or long tensor with ground.*"): binary_precision_recall_curve(preds[0], target[0].to(torch.float32)) with pytest.raises(ValueError, match="Expected argument `preds` to be an floating tensor with probability.*"): binary_precision_recall_curve(preds[0].long(), target[0]) def _sklearn_precision_recall_curve_multiclass(preds, target, ignore_index=None): preds = np.moveaxis(preds.numpy(), 1, -1).reshape((-1, preds.shape[1])) target = target.numpy().flatten() if not ((preds > 0) & (preds < 1)).all(): preds = softmax(preds, 1) target, preds = remove_ignore_index(target, preds, ignore_index) precision, recall, thresholds = [], [], [] for i in range(NUM_CLASSES): target_temp = np.zeros_like(target) target_temp[target == i] = 1 res = sk_precision_recall_curve(target_temp, preds[:, i]) precision.append(res[0]) recall.append(res[1]) thresholds.append(res[2]) return [np.nan_to_num(x, nan=0.0) for x in [precision, recall, thresholds]] @pytest.mark.parametrize( "inputs", (_multiclass_cases[1], _multiclass_cases[2], _multiclass_cases[4], _multiclass_cases[5]) ) class TestMulticlassPrecisionRecallCurve(MetricTester): """Test class for `MulticlassPrecisionRecallCurve` metric.""" @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("ddp", [True, False]) def test_multiclass_precision_recall_curve(self, inputs, ddp, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MulticlassPrecisionRecallCurve, reference_metric=partial(_sklearn_precision_recall_curve_multiclass, ignore_index=ignore_index), metric_args={ "thresholds": None, "num_classes": NUM_CLASSES, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("ignore_index", [None, -1]) def test_multiclass_precision_recall_curve_functional(self, inputs, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=multiclass_precision_recall_curve, reference_metric=partial(_sklearn_precision_recall_curve_multiclass, ignore_index=ignore_index), metric_args={ "thresholds": None, "num_classes": NUM_CLASSES, "ignore_index": ignore_index, }, ) def test_multiclass_precision_recall_curve_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MulticlassPrecisionRecallCurve, metric_functional=multiclass_precision_recall_curve, metric_args={"thresholds": None, "num_classes": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_precision_recall_curve_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if dtype == torch.half and not ((preds > 0) & (preds < 1)).all(): pytest.xfail(reason="half support for torch.softmax on cpu not implemented") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MulticlassPrecisionRecallCurve, metric_functional=multiclass_precision_recall_curve, metric_args={"thresholds": None, "num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_precision_recall_curve_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MulticlassPrecisionRecallCurve, metric_functional=multiclass_precision_recall_curve, metric_args={"thresholds": None, "num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.parametrize("threshold_fn", [lambda x: x, lambda x: x.numpy().tolist()], ids=["as tensor", "as list"]) def test_multiclass_precision_recall_curve_threshold_arg(self, inputs, threshold_fn): """Test that different types of `thresholds` argument lead to same result.""" preds, target = inputs for pred, true in zip(preds, target): p1, r1, t1 = multiclass_precision_recall_curve(pred, true, num_classes=NUM_CLASSES, thresholds=None) for i, t in enumerate(t1): p2, r2, t2 = multiclass_precision_recall_curve( pred, true, num_classes=NUM_CLASSES, thresholds=threshold_fn(t) ) assert torch.allclose(p1[i], p2[i]) assert torch.allclose(r1[i], r2[i]) assert torch.allclose(t1[i], t2) def test_multiclass_error_on_wrong_dtypes(self, inputs): """Test that error are raised on wrong dtype.""" preds, target = inputs with pytest.raises(ValueError, match="Expected argument `target` to be an int or long tensor, but got.*"): multiclass_precision_recall_curve(preds[0], target[0].to(torch.float32), num_classes=NUM_CLASSES) with pytest.raises(ValueError, match="Expected `preds` to be a float tensor, but got.*"): multiclass_precision_recall_curve(preds[0].long(), target[0], num_classes=NUM_CLASSES) @pytest.mark.parametrize("average", ["macro", "micro"]) @pytest.mark.parametrize("thresholds", [None, 100]) def test_multiclass_average(self, inputs, average, thresholds): """Test that the average argument works as expected.""" preds, target = inputs output = multiclass_precision_recall_curve( preds[0], target[0], num_classes=NUM_CLASSES, thresholds=thresholds, average=average ) assert all(isinstance(o, torch.Tensor) for o in output) none_output = multiclass_precision_recall_curve( preds[0], target[0], num_classes=NUM_CLASSES, thresholds=thresholds, average=None ) if average == "macro": assert len(output[0]) == len(none_output[0][0]) * NUM_CLASSES assert len(output[1]) == len(none_output[1][0]) * NUM_CLASSES assert ( len(output[2]) == (len(none_output[2][0]) if thresholds is None else len(none_output[2])) * NUM_CLASSES ) def _sklearn_precision_recall_curve_multilabel(preds, target, ignore_index=None): precision, recall, thresholds = [], [], [] for i in range(NUM_CLASSES): res = _sklearn_precision_recall_curve_binary(preds[:, i], target[:, i], ignore_index) precision.append(res[0]) recall.append(res[1]) thresholds.append(res[2]) return precision, recall, thresholds @pytest.mark.parametrize( "inputs", (_multilabel_cases[1], _multilabel_cases[2], _multilabel_cases[4], _multilabel_cases[5]) ) class TestMultilabelPrecisionRecallCurve(MetricTester): """Test class for `MultilabelPrecisionRecallCurve` metric.""" @pytest.mark.parametrize("ignore_index", [None, -1, 0]) @pytest.mark.parametrize("ddp", [True, False]) def test_multilabel_precision_recall_curve(self, inputs, ddp, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MultilabelPrecisionRecallCurve, reference_metric=partial(_sklearn_precision_recall_curve_multilabel, ignore_index=ignore_index), metric_args={ "thresholds": None, "num_labels": NUM_CLASSES, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) def test_multilabel_precision_recall_curve_functional(self, inputs, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=multilabel_precision_recall_curve, reference_metric=partial(_sklearn_precision_recall_curve_multilabel, ignore_index=ignore_index), metric_args={ "thresholds": None, "num_labels": NUM_CLASSES, "ignore_index": ignore_index, }, ) def test_multiclass_precision_recall_curve_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MultilabelPrecisionRecallCurve, metric_functional=multilabel_precision_recall_curve, metric_args={"thresholds": None, "num_labels": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_precision_recall_curve_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if dtype == torch.half and not ((preds > 0) & (preds < 1)).all(): pytest.xfail(reason="half support for torch.softmax on cpu not implemented") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MultilabelPrecisionRecallCurve, metric_functional=multilabel_precision_recall_curve, metric_args={"thresholds": None, "num_labels": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_precision_recall_curve_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MultilabelPrecisionRecallCurve, metric_functional=multilabel_precision_recall_curve, metric_args={"thresholds": None, "num_labels": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.parametrize("threshold_fn", [lambda x: x, lambda x: x.numpy().tolist()], ids=["as tensor", "as list"]) def test_multilabel_precision_recall_curve_threshold_arg(self, inputs, threshold_fn): """Test that different types of `thresholds` argument lead to same result.""" preds, target = inputs for pred, true in zip(preds, target): p1, r1, t1 = multilabel_precision_recall_curve(pred, true, num_labels=NUM_CLASSES, thresholds=None) for i, t in enumerate(t1): p2, r2, t2 = multilabel_precision_recall_curve( pred, true, num_labels=NUM_CLASSES, thresholds=threshold_fn(t) ) assert torch.allclose(p1[i], p2[i]) assert torch.allclose(r1[i], r2[i]) assert torch.allclose(t1[i], t2) def test_multilabel_error_on_wrong_dtypes(self, inputs): """Test that error are raised on wrong dtype.""" preds, target = inputs with pytest.raises(ValueError, match="Expected argument `target` to be an int or long tensor with ground.*"): multilabel_precision_recall_curve(preds[0], target[0].to(torch.float32), num_labels=NUM_CLASSES) with pytest.raises(ValueError, match="Expected argument `preds` to be an floating tensor with probability.*"): multilabel_precision_recall_curve(preds[0].long(), target[0], num_labels=NUM_CLASSES) @pytest.mark.parametrize( "metric", [ BinaryPrecisionRecallCurve, partial(MulticlassPrecisionRecallCurve, num_classes=NUM_CLASSES), partial(MultilabelPrecisionRecallCurve, num_labels=NUM_CLASSES), ], ) @pytest.mark.parametrize("thresholds", [None, 100, [0.3, 0.5, 0.7, 0.9], torch.linspace(0, 1, 10)]) def test_valid_input_thresholds(metric, thresholds): """Test valid formats of the threshold argument.""" with pytest.warns(None) as record: metric(thresholds=thresholds) assert len(record) == 0 @pytest.mark.parametrize( "metric", [ BinaryPrecisionRecallCurve, partial(MulticlassPrecisionRecallCurve, num_classes=NUM_CLASSES), partial(MultilabelPrecisionRecallCurve, num_labels=NUM_CLASSES), ], ) @pytest.mark.parametrize("thresholds", [None, 100, [0.3, 0.5, 0.7, 0.9], torch.linspace(0, 1, 10)]) def test_empty_state_dict(metric, thresholds): """Test that metric have an empty state dict.""" m = metric(thresholds=thresholds) assert m.state_dict() == {}, "Metric state dict should be empty." @pytest.mark.parametrize( ("metric", "kwargs"), [ (BinaryPrecisionRecallCurve, {"task": "binary"}), (MulticlassPrecisionRecallCurve, {"task": "multiclass", "num_classes": 3}), (MultilabelPrecisionRecallCurve, {"task": "multilabel", "num_labels": 3}), (None, {"task": "not_valid_task"}), ], ) def test_wrapper_class(metric, kwargs, base_metric=PrecisionRecallCurve): """Test the wrapper class.""" assert issubclass(base_metric, Metric) if metric is None: with pytest.raises(ValueError, match=r"Invalid *"): base_metric(**kwargs) else: instance = base_metric(**kwargs) assert isinstance(instance, metric) assert isinstance(instance, Metric)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/classification/test_hinge.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from scipy.special import expit as sigmoid from scipy.special import softmax from sklearn.metrics import hinge_loss as sk_hinge from sklearn.preprocessing import OneHotEncoder from torchmetrics.classification.hinge import BinaryHingeLoss, HingeLoss, MulticlassHingeLoss from torchmetrics.functional.classification.hinge import binary_hinge_loss, multiclass_hinge_loss from torchmetrics.metric import Metric from unittests import NUM_CLASSES from unittests.classification.inputs import _binary_cases, _multiclass_cases from unittests.helpers.testers import MetricTester, inject_ignore_index, remove_ignore_index torch.manual_seed(42) def _sklearn_binary_hinge_loss(preds, target, ignore_index): preds = preds.numpy().flatten() target = target.numpy().flatten() if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) target, preds = remove_ignore_index(target, preds, ignore_index) target = 2 * target - 1 return sk_hinge(target, preds) @pytest.mark.parametrize("inputs", (_binary_cases[1], _binary_cases[2], _binary_cases[4], _binary_cases[5])) class TestBinaryHingeLoss(MetricTester): """Test class for `BinaryHingeLoss` metric.""" @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("ddp", [True, False]) def test_binary_hinge_loss(self, inputs, ddp, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=BinaryHingeLoss, reference_metric=partial(_sklearn_binary_hinge_loss, ignore_index=ignore_index), metric_args={ "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("ignore_index", [None, -1]) def test_binary_hinge_loss_functional(self, inputs, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=binary_hinge_loss, reference_metric=partial(_sklearn_binary_hinge_loss, ignore_index=ignore_index), metric_args={ "ignore_index": ignore_index, }, ) def test_binary_hinge_loss_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=BinaryHingeLoss, metric_functional=binary_hinge_loss, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_hinge_loss_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if dtype == torch.half: pytest.xfail(reason="torch.clamp does not support cpu + half") self.run_precision_test_cpu( preds=preds, target=target, metric_module=BinaryHingeLoss, metric_functional=binary_hinge_loss, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_hinge_loss_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=BinaryHingeLoss, metric_functional=binary_hinge_loss, dtype=dtype, ) def _sklearn_multiclass_hinge_loss(preds, target, multiclass_mode, ignore_index): preds = preds.numpy() target = target.numpy().flatten() if not ((preds > 0) & (preds < 1)).all(): preds = softmax(preds, 1) preds = np.moveaxis(preds, 1, -1).reshape((-1, preds.shape[1])) target, preds = remove_ignore_index(target, preds, ignore_index) if multiclass_mode == "one-vs-all": enc = OneHotEncoder() enc.fit(target.reshape(-1, 1)) target = enc.transform(target.reshape(-1, 1)).toarray() target = 2 * target - 1 result = np.zeros(preds.shape[1]) for i in range(result.shape[0]): result[i] = sk_hinge(y_true=target[:, i], pred_decision=preds[:, i]) return result return sk_hinge(target, preds) @pytest.mark.parametrize( "inputs", (_multiclass_cases[1], _multiclass_cases[2], _multiclass_cases[4], _multiclass_cases[5]) ) class TestMulticlassHingeLoss(MetricTester): """Test class for `MulticlassHingeLoss` metric.""" @pytest.mark.parametrize("multiclass_mode", ["crammer-singer", "one-vs-all"]) @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("ddp", [True, False]) def test_multiclass_hinge_loss(self, inputs, ddp, multiclass_mode, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MulticlassHingeLoss, reference_metric=partial( _sklearn_multiclass_hinge_loss, multiclass_mode=multiclass_mode, ignore_index=ignore_index ), metric_args={ "num_classes": NUM_CLASSES, "multiclass_mode": multiclass_mode, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("multiclass_mode", ["crammer-singer", "one-vs-all"]) @pytest.mark.parametrize("ignore_index", [None, -1]) def test_multiclass_hinge_loss_functional(self, inputs, multiclass_mode, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=multiclass_hinge_loss, reference_metric=partial( _sklearn_multiclass_hinge_loss, multiclass_mode=multiclass_mode, ignore_index=ignore_index ), metric_args={ "num_classes": NUM_CLASSES, "multiclass_mode": multiclass_mode, "ignore_index": ignore_index, }, ) def test_multiclass_hinge_loss_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MulticlassHingeLoss, metric_functional=multiclass_hinge_loss, metric_args={"num_classes": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_hinge_loss_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if dtype == torch.half: pytest.xfail(reason="torch.clamp does not support cpu + half") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MulticlassHingeLoss, metric_functional=multiclass_hinge_loss, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_hinge_loss_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MulticlassHingeLoss, metric_functional=multiclass_hinge_loss, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.parametrize( ("metric", "kwargs"), [ (BinaryHingeLoss, {"task": "binary"}), (MulticlassHingeLoss, {"task": "multiclass", "num_classes": 3}), (None, {"task": "not_valid_task"}), ], ) def test_wrapper_class(metric, kwargs, base_metric=HingeLoss): """Test the wrapper class.""" assert issubclass(base_metric, Metric) if metric is None: with pytest.raises(ValueError, match=r"Invalid *"): base_metric(**kwargs) else: instance = base_metric(**kwargs) assert isinstance(instance, metric) assert isinstance(instance, Metric)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/classification/test_exact_match.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from scipy.special import expit as sigmoid from torchmetrics.classification.exact_match import ExactMatch, MulticlassExactMatch, MultilabelExactMatch from torchmetrics.functional.classification.exact_match import multiclass_exact_match, multilabel_exact_match from torchmetrics.metric import Metric from unittests import NUM_CLASSES, THRESHOLD from unittests.classification.inputs import _multiclass_cases, _multilabel_cases from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester, inject_ignore_index seed_all(42) def _baseline_exact_match_multiclass(preds, target, ignore_index, multidim_average): if preds.ndim == target.ndim + 1: preds = torch.argmax(preds, 1) preds = preds.numpy() target = target.numpy() if ignore_index is not None: preds = np.copy(preds) preds[target == ignore_index] = ignore_index correct = (preds == target).sum(-1) == preds.shape[1] correct = correct.sum() if multidim_average == "global" else correct total = len(preds) if multidim_average == "global" else 1 return correct / total @pytest.mark.parametrize("inputs", _multiclass_cases) class TestMulticlassExactMatch(MetricTester): """Test class for `MulticlassExactMatch` metric.""" @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("ddp", [True, False]) def test_multiclass_exact_match(self, ddp, inputs, ignore_index, multidim_average): """Test class implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if target.ndim < 3: pytest.skip("non-multidim arrays are not valid") if multidim_average == "samplewise" and ddp: pytest.skip("samplewise and ddp give different order than non ddp") self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MulticlassExactMatch, reference_metric=partial( _baseline_exact_match_multiclass, ignore_index=ignore_index, multidim_average=multidim_average, ), metric_args={ "ignore_index": ignore_index, "num_classes": NUM_CLASSES, "multidim_average": multidim_average, }, ) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("ignore_index", [None, -1]) def test_multiclass_exact_match_functional(self, inputs, ignore_index, multidim_average): """Test functional implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if target.ndim < 3: pytest.skip("non-multidim arrays are not valid") self.run_functional_metric_test( preds=preds, target=target, metric_functional=multiclass_exact_match, reference_metric=partial( _baseline_exact_match_multiclass, ignore_index=ignore_index, multidim_average=multidim_average, ), metric_args={ "ignore_index": ignore_index, "num_classes": NUM_CLASSES, "multidim_average": multidim_average, }, ) def test_multiclass_exact_match_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MulticlassExactMatch, metric_functional=multiclass_exact_match, metric_args={"num_classes": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_exact_match_half_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MulticlassExactMatch, metric_functional=multiclass_exact_match, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_exact_match_half_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MulticlassExactMatch, metric_functional=multiclass_exact_match, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) def _baseline_exact_match_multilabel(preds, target, ignore_index, multidim_average): preds = preds.numpy() target = target.numpy() if np.issubdtype(preds.dtype, np.floating): if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) preds = (preds >= THRESHOLD).astype(np.uint8) preds = preds.reshape(*preds.shape[:2], -1) target = target.reshape(*target.shape[:2], -1) if ignore_index is not None: target = np.copy(target) target[target == ignore_index] = -1 if multidim_average == "global": preds = np.moveaxis(preds, 1, -1).reshape(-1, NUM_CLASSES) target = np.moveaxis(target, 1, -1).reshape(-1, NUM_CLASSES) correct = ((preds == target).sum(1) == NUM_CLASSES).sum() total = preds.shape[0] else: correct = ((preds == target).sum(1) == NUM_CLASSES).sum(1) total = preds.shape[2] return correct / total @pytest.mark.parametrize("inputs", _multilabel_cases) class TestMultilabelExactMatch(MetricTester): """Test class for `MultilabelExactMatch` metric.""" @pytest.mark.parametrize("ddp", [True, False]) @pytest.mark.parametrize("ignore_index", [None, 0, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) def test_multilabel_exact_match(self, ddp, inputs, ignore_index, multidim_average): """Test class implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 4: pytest.skip("samplewise and non-multidim arrays are not valid") if multidim_average == "samplewise" and ddp: pytest.skip("samplewise and ddp give different order than non ddp") self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MultilabelExactMatch, reference_metric=partial( _baseline_exact_match_multilabel, ignore_index=ignore_index, multidim_average=multidim_average, ), metric_args={ "num_labels": NUM_CLASSES, "threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average, }, ) @pytest.mark.parametrize("ignore_index", [None, 0, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) def test_multilabel_exact_match_functional(self, inputs, ignore_index, multidim_average): """Test functional implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 4: pytest.skip("samplewise and non-multidim arrays are not valid") self.run_functional_metric_test( preds=preds, target=target, metric_functional=multilabel_exact_match, reference_metric=partial( _baseline_exact_match_multilabel, ignore_index=ignore_index, multidim_average=multidim_average, ), metric_args={ "num_labels": NUM_CLASSES, "threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average, }, ) def test_multilabel_exact_match_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MultilabelExactMatch, metric_functional=multilabel_exact_match, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_exact_match_half_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MultilabelExactMatch, metric_functional=multilabel_exact_match, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_exact_match_half_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MultilabelExactMatch, metric_functional=multilabel_exact_match, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, dtype=dtype, ) @pytest.mark.parametrize( ("metric", "kwargs"), [ (MulticlassExactMatch, {"task": "multiclass", "num_classes": 3}), (MultilabelExactMatch, {"task": "multilabel", "num_labels": 3}), (None, {"task": "not_valid_task"}), ], ) def test_wrapper_class(metric, kwargs, base_metric=ExactMatch): """Test the wrapper class.""" assert issubclass(base_metric, Metric) if metric is None: with pytest.raises(ValueError, match=r"Invalid *"): base_metric(**kwargs) else: instance = base_metric(**kwargs) assert isinstance(instance, metric) assert isinstance(instance, Metric)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/classification/test_precision_fixed_recall.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from scipy.special import expit as sigmoid from scipy.special import softmax from sklearn.metrics import precision_recall_curve as sk_precision_recall_curve from torchmetrics.classification.precision_fixed_recall import ( BinaryPrecisionAtFixedRecall, MulticlassPrecisionAtFixedRecall, MultilabelPrecisionAtFixedRecall, PrecisionAtFixedRecall, ) from torchmetrics.functional.classification.precision_fixed_recall import ( binary_precision_at_fixed_recall, multiclass_precision_at_fixed_recall, multilabel_precision_at_fixed_recall, ) from torchmetrics.metric import Metric from unittests import NUM_CLASSES from unittests.classification.inputs import _binary_cases, _multiclass_cases, _multilabel_cases from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester, inject_ignore_index, remove_ignore_index seed_all(42) def _precision_at_recall_x_multilabel(predictions, targets, min_recall): precision, recall, thresholds = sk_precision_recall_curve(targets, predictions) try: tuple_all = [(p, r, t) for p, r, t in zip(precision, recall, thresholds) if r >= min_recall] max_precision, _, best_threshold = max(tuple_all) except ValueError: max_precision, best_threshold = 0, 1e6 return float(max_precision), float(best_threshold) def _sklearn_precision_at_fixed_recall_binary(preds, target, min_recall, ignore_index=None): preds = preds.flatten().numpy() target = target.flatten().numpy() if np.issubdtype(preds.dtype, np.floating) and not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) target, preds = remove_ignore_index(target, preds, ignore_index) return _precision_at_recall_x_multilabel(preds, target, min_recall) @pytest.mark.parametrize("inputs", (_binary_cases[1], _binary_cases[2], _binary_cases[4], _binary_cases[5])) class TestBinaryPrecisionAtFixedRecall(MetricTester): """Test class for `BinaryPrecisionAtFixedRecall` metric.""" @pytest.mark.parametrize("min_recall", [0.05, 0.1, 0.3, 0.5, 0.85]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) @pytest.mark.parametrize("ddp", [True, False]) def test_binary_precision_at_fixed_recall(self, inputs, ddp, min_recall, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=BinaryPrecisionAtFixedRecall, reference_metric=partial( _sklearn_precision_at_fixed_recall_binary, min_recall=min_recall, ignore_index=ignore_index ), metric_args={ "min_recall": min_recall, "thresholds": None, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("min_recall", [0.05, 0.5, 0.8]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) def test_binary_precision_at_fixed_recall_functional(self, inputs, min_recall, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=binary_precision_at_fixed_recall, reference_metric=partial( _sklearn_precision_at_fixed_recall_binary, min_recall=min_recall, ignore_index=ignore_index ), metric_args={ "min_recall": min_recall, "thresholds": None, "ignore_index": ignore_index, }, ) def test_binary_precision_at_fixed_recall_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=BinaryPrecisionAtFixedRecall, metric_functional=binary_precision_at_fixed_recall, metric_args={"min_recall": 0.5, "thresholds": None}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_precision_at_fixed_recall_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=BinaryPrecisionAtFixedRecall, metric_functional=binary_precision_at_fixed_recall, metric_args={"min_recall": 0.5, "thresholds": None}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_precision_at_fixed_recall_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=BinaryPrecisionAtFixedRecall, metric_functional=binary_precision_at_fixed_recall, metric_args={"min_recall": 0.5, "thresholds": None}, dtype=dtype, ) @pytest.mark.parametrize("min_recall", [0.05, 0.5, 0.8]) def test_binary_precision_at_fixed_recall_threshold_arg(self, inputs, min_recall): """Test that different types of `thresholds` argument lead to same result.""" preds, target = inputs for pred, true in zip(preds, target): pred = torch.tensor(np.round(pred.numpy(), 1)) + 1e-6 # rounding will simulate binning r1, _ = binary_precision_at_fixed_recall(pred, true, min_recall=min_recall, thresholds=None) r2, _ = binary_precision_at_fixed_recall( pred, true, min_recall=min_recall, thresholds=torch.linspace(0, 1, 100) ) assert torch.allclose(r1, r2) def _sklearn_precision_at_fixed_recall_multiclass(preds, target, min_recall, ignore_index=None): preds = np.moveaxis(preds.numpy(), 1, -1).reshape((-1, preds.shape[1])) target = target.numpy().flatten() if not ((preds > 0) & (preds < 1)).all(): preds = softmax(preds, 1) target, preds = remove_ignore_index(target, preds, ignore_index) precision, thresholds = [], [] for i in range(NUM_CLASSES): target_temp = np.zeros_like(target) target_temp[target == i] = 1 res = _precision_at_recall_x_multilabel(preds[:, i], target_temp, min_recall) precision.append(res[0]) thresholds.append(res[1]) return precision, thresholds @pytest.mark.parametrize( "inputs", (_multiclass_cases[1], _multiclass_cases[2], _multiclass_cases[4], _multiclass_cases[5]) ) class TestMulticlassPrecisionAtFixedRecall(MetricTester): """Test class for `MulticlassPrecisionAtFixedRecall` metric.""" @pytest.mark.parametrize("min_recall", [0.05, 0.5, 0.8]) @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("ddp", [True, False]) def test_multiclass_precision_at_fixed_recall(self, inputs, ddp, min_recall, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MulticlassPrecisionAtFixedRecall, reference_metric=partial( _sklearn_precision_at_fixed_recall_multiclass, min_recall=min_recall, ignore_index=ignore_index ), metric_args={ "min_recall": min_recall, "thresholds": None, "num_classes": NUM_CLASSES, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("min_recall", [0.05, 0.5, 0.8]) @pytest.mark.parametrize("ignore_index", [None, -1]) def test_multiclass_precision_at_fixed_recall_functional(self, inputs, min_recall, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=multiclass_precision_at_fixed_recall, reference_metric=partial( _sklearn_precision_at_fixed_recall_multiclass, min_recall=min_recall, ignore_index=ignore_index ), metric_args={ "min_recall": min_recall, "thresholds": None, "num_classes": NUM_CLASSES, "ignore_index": ignore_index, }, ) def test_multiclass_precision_at_fixed_recall_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MulticlassPrecisionAtFixedRecall, metric_functional=multiclass_precision_at_fixed_recall, metric_args={"min_recall": 0.5, "thresholds": None, "num_classes": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_precision_at_fixed_recall_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if dtype == torch.half and not ((preds > 0) & (preds < 1)).all(): pytest.xfail(reason="half support for torch.softmax on cpu not implemented") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MulticlassPrecisionAtFixedRecall, metric_functional=multiclass_precision_at_fixed_recall, metric_args={"min_recall": 0.5, "thresholds": None, "num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_precision_at_fixed_recall_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MulticlassPrecisionAtFixedRecall, metric_functional=multiclass_precision_at_fixed_recall, metric_args={"min_recall": 0.5, "thresholds": None, "num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.parametrize("min_recall", [0.05, 0.5, 0.8]) def test_multiclass_precision_at_fixed_recall_threshold_arg(self, inputs, min_recall): """Test that different types of `thresholds` argument lead to same result.""" preds, target = inputs if (preds < 0).any(): preds = preds.softmax(dim=-1) for pred, true in zip(preds, target): pred = torch.tensor(np.round(pred.numpy(), 1)) + 1e-6 # rounding will simulate binning r1, _ = multiclass_precision_at_fixed_recall( pred, true, num_classes=NUM_CLASSES, min_recall=min_recall, thresholds=None ) r2, _ = multiclass_precision_at_fixed_recall( pred, true, num_classes=NUM_CLASSES, min_recall=min_recall, thresholds=torch.linspace(0, 1, 100) ) assert all(torch.allclose(r1[i], r2[i]) for i in range(len(r1))) def _sklearn_precision_at_fixed_recall_multilabel(preds, target, min_recall, ignore_index=None): precision, thresholds = [], [] for i in range(NUM_CLASSES): res = _sklearn_precision_at_fixed_recall_binary(preds[:, i], target[:, i], min_recall, ignore_index) precision.append(res[0]) thresholds.append(res[1]) return precision, thresholds @pytest.mark.parametrize( "inputs", (_multilabel_cases[1], _multilabel_cases[2], _multilabel_cases[4], _multilabel_cases[5]) ) class TestMultilabelPrecisionAtFixedRecall(MetricTester): """Test class for `MultilabelPrecisionAtFixedRecall` metric.""" @pytest.mark.parametrize("min_recall", [0.05, 0.5, 0.8]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) @pytest.mark.parametrize("ddp", [True, False]) def test_multilabel_precision_at_fixed_recall(self, inputs, ddp, min_recall, ignore_index): """Test class implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MultilabelPrecisionAtFixedRecall, reference_metric=partial( _sklearn_precision_at_fixed_recall_multilabel, min_recall=min_recall, ignore_index=ignore_index ), metric_args={ "min_recall": min_recall, "thresholds": None, "num_labels": NUM_CLASSES, "ignore_index": ignore_index, }, ) @pytest.mark.parametrize("min_recall", [0.05, 0.5, 0.8]) @pytest.mark.parametrize("ignore_index", [None, -1, 0]) def test_multilabel_precision_at_fixed_recall_functional(self, inputs, min_recall, ignore_index): """Test functional implementation of metric.""" preds, target = inputs if ignore_index is not None: target = inject_ignore_index(target, ignore_index) self.run_functional_metric_test( preds=preds, target=target, metric_functional=multilabel_precision_at_fixed_recall, reference_metric=partial( _sklearn_precision_at_fixed_recall_multilabel, min_recall=min_recall, ignore_index=ignore_index ), metric_args={ "min_recall": min_recall, "thresholds": None, "num_labels": NUM_CLASSES, "ignore_index": ignore_index, }, ) def test_multiclass_precision_at_fixed_recall_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MultilabelPrecisionAtFixedRecall, metric_functional=multilabel_precision_at_fixed_recall, metric_args={"min_recall": 0.5, "thresholds": None, "num_labels": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_precision_at_fixed_recall_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if dtype == torch.half and not ((preds > 0) & (preds < 1)).all(): pytest.xfail(reason="half support for torch.softmax on cpu not implemented") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MultilabelPrecisionAtFixedRecall, metric_functional=multilabel_precision_at_fixed_recall, metric_args={"min_recall": 0.5, "thresholds": None, "num_labels": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_precision_at_fixed_recall_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MultilabelPrecisionAtFixedRecall, metric_functional=multilabel_precision_at_fixed_recall, metric_args={"min_recall": 0.5, "thresholds": None, "num_labels": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.parametrize("min_recall", [0.05, 0.5, 0.8]) def test_multilabel_precision_at_fixed_recall_threshold_arg(self, inputs, min_recall): """Test that different types of `thresholds` argument lead to same result.""" preds, target = inputs if (preds < 0).any(): preds = sigmoid(preds) for pred, true in zip(preds, target): pred = torch.tensor(np.round(pred.numpy(), 1)) + 1e-6 # rounding will simulate binning r1, _ = multilabel_precision_at_fixed_recall( pred, true, num_labels=NUM_CLASSES, min_recall=min_recall, thresholds=None ) r2, _ = multilabel_precision_at_fixed_recall( pred, true, num_labels=NUM_CLASSES, min_recall=min_recall, thresholds=torch.linspace(0, 1, 100) ) assert all(torch.allclose(r1[i], r2[i]) for i in range(len(r1))) @pytest.mark.parametrize( "metric", [ BinaryPrecisionAtFixedRecall, partial(MulticlassPrecisionAtFixedRecall, num_classes=NUM_CLASSES), partial(MultilabelPrecisionAtFixedRecall, num_labels=NUM_CLASSES), ], ) @pytest.mark.parametrize("thresholds", [None, 100, [0.3, 0.5, 0.7, 0.9], torch.linspace(0, 1, 10)]) def test_valid_input_thresholds(metric, thresholds): """Test valid formats of the threshold argument.""" with pytest.warns(None) as record: metric(min_recall=0.5, thresholds=thresholds) assert len(record) == 0 @pytest.mark.parametrize( ("metric", "kwargs"), [ (BinaryPrecisionAtFixedRecall, {"task": "binary", "min_recall": 0.5}), (MulticlassPrecisionAtFixedRecall, {"task": "multiclass", "num_classes": 3, "min_recall": 0.5}), (MultilabelPrecisionAtFixedRecall, {"task": "multilabel", "num_labels": 3, "min_recall": 0.5}), (None, {"task": "not_valid_task", "min_recall": 0.5}), ], ) def test_wrapper_class(metric, kwargs, base_metric=PrecisionAtFixedRecall): """Test the wrapper class.""" assert issubclass(base_metric, Metric) if metric is None: with pytest.raises(ValueError, match=r"Invalid *"): base_metric(**kwargs) else: instance = base_metric(**kwargs) assert isinstance(instance, metric) assert isinstance(instance, Metric)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/classification/test_stat_scores.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from scipy.special import expit as sigmoid from sklearn.metrics import confusion_matrix as sk_confusion_matrix from torchmetrics.classification.stat_scores import ( BinaryStatScores, MulticlassStatScores, MultilabelStatScores, StatScores, ) from torchmetrics.functional.classification.stat_scores import ( binary_stat_scores, multiclass_stat_scores, multilabel_stat_scores, ) from torchmetrics.metric import Metric from unittests import NUM_CLASSES, THRESHOLD from unittests.classification.inputs import _binary_cases, _multiclass_cases, _multilabel_cases from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester, inject_ignore_index, remove_ignore_index seed_all(42) def _sklearn_stat_scores_binary(preds, target, ignore_index, multidim_average): if multidim_average == "global": preds = preds.view(-1).numpy() target = target.view(-1).numpy() else: preds = preds.numpy() target = target.numpy() if np.issubdtype(preds.dtype, np.floating): if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) preds = (preds >= THRESHOLD).astype(np.uint8) if multidim_average == "global": target, preds = remove_ignore_index(target, preds, ignore_index) tn, fp, fn, tp = sk_confusion_matrix(y_true=target, y_pred=preds, labels=[0, 1]).ravel() return np.array([tp, fp, tn, fn, tp + fn]) res = [] for pred, true in zip(preds, target): pred = pred.flatten() true = true.flatten() true, pred = remove_ignore_index(true, pred, ignore_index) tn, fp, fn, tp = sk_confusion_matrix(y_true=true, y_pred=pred, labels=[0, 1]).ravel() res.append(np.array([tp, fp, tn, fn, tp + fn])) return np.stack(res) @pytest.mark.parametrize("inputs", _binary_cases) class TestBinaryStatScores(MetricTester): """Test class for `BinaryStatScores` metric.""" @pytest.mark.parametrize("ignore_index", [None, 0, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("ddp", [False, True]) def test_binary_stat_scores(self, ddp, inputs, ignore_index, multidim_average): """Test class implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 3: pytest.skip("samplewise and non-multidim arrays are not valid") if multidim_average == "samplewise" and ddp: pytest.skip("samplewise and ddp give different order than non ddp") self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=BinaryStatScores, reference_metric=partial( _sklearn_stat_scores_binary, ignore_index=ignore_index, multidim_average=multidim_average ), metric_args={"threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average}, ) @pytest.mark.parametrize("ignore_index", [None, 0, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) def test_binary_stat_scores_functional(self, inputs, ignore_index, multidim_average): """Test functional implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 3: pytest.skip("samplewise and non-multidim arrays are not valid") self.run_functional_metric_test( preds=preds, target=target, metric_functional=binary_stat_scores, reference_metric=partial( _sklearn_stat_scores_binary, ignore_index=ignore_index, multidim_average=multidim_average ), metric_args={ "threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average, }, ) def test_binary_stat_scores_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=BinaryStatScores, metric_functional=binary_stat_scores, metric_args={"threshold": THRESHOLD}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_stat_scores_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=BinaryStatScores, metric_functional=binary_stat_scores, metric_args={"threshold": THRESHOLD}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_stat_scores_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=BinaryStatScores, metric_functional=binary_stat_scores, metric_args={"threshold": THRESHOLD}, dtype=dtype, ) def _sklearn_stat_scores_multiclass_global(preds, target, ignore_index, average): preds = preds.numpy().flatten() target = target.numpy().flatten() target, preds = remove_ignore_index(target, preds, ignore_index) confmat = sk_confusion_matrix(y_true=target, y_pred=preds, labels=list(range(NUM_CLASSES))) tp = np.diag(confmat) fp = confmat.sum(0) - tp fn = confmat.sum(1) - tp tn = confmat.sum() - (fp + fn + tp) res = np.stack([tp, fp, tn, fn, tp + fn], 1) if average == "micro": return res.sum(0) if average == "macro": return res.mean(0) if average == "weighted": w = tp + fn return (res * (w / w.sum()).reshape(-1, 1)).sum(0) if average is None or average == "none": return res return None def _sklearn_stat_scores_multiclass_local(preds, target, ignore_index, average): preds = preds.numpy() target = target.numpy() res = [] for pred, true in zip(preds, target): pred = pred.flatten() true = true.flatten() true, pred = remove_ignore_index(true, pred, ignore_index) confmat = sk_confusion_matrix(y_true=true, y_pred=pred, labels=list(range(NUM_CLASSES))) tp = np.diag(confmat) fp = confmat.sum(0) - tp fn = confmat.sum(1) - tp tn = confmat.sum() - (fp + fn + tp) r = np.stack([tp, fp, tn, fn, tp + fn], 1) if average == "micro": res.append(r.sum(0)) elif average == "macro": res.append(r.mean(0)) elif average == "weighted": w = tp + fn res.append((r * (w / w.sum()).reshape(-1, 1)).sum(0)) elif average is None or average == "none": res.append(r) return np.stack(res, 0) def _sklearn_stat_scores_multiclass(preds, target, ignore_index, multidim_average, average): if preds.ndim == target.ndim + 1: preds = torch.argmax(preds, 1) if multidim_average == "global": return _sklearn_stat_scores_multiclass_global(preds, target, ignore_index, average) return _sklearn_stat_scores_multiclass_local(preds, target, ignore_index, average) @pytest.mark.parametrize("inputs", _multiclass_cases) class TestMulticlassStatScores(MetricTester): """Test class for `MulticlassStatScores` metric.""" @pytest.mark.parametrize("ignore_index", [None, 0, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("average", ["micro", "macro", None]) @pytest.mark.parametrize("ddp", [True, False]) def test_multiclass_stat_scores(self, ddp, inputs, ignore_index, multidim_average, average): """Test class implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and target.ndim < 3: pytest.skip("samplewise and non-multidim arrays are not valid") if multidim_average == "samplewise" and ddp: pytest.skip("samplewise and ddp give different order than non ddp") self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MulticlassStatScores, reference_metric=partial( _sklearn_stat_scores_multiclass, ignore_index=ignore_index, multidim_average=multidim_average, average=average, ), metric_args={ "ignore_index": ignore_index, "multidim_average": multidim_average, "average": average, "num_classes": NUM_CLASSES, }, ) @pytest.mark.parametrize("ignore_index", [None, 0, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("average", ["micro", "macro", None]) def test_multiclass_stat_scores_functional(self, inputs, ignore_index, multidim_average, average): """Test functional implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and target.ndim < 3: pytest.skip("samplewise and non-multidim arrays are not valid") self.run_functional_metric_test( preds=preds, target=target, metric_functional=multiclass_stat_scores, reference_metric=partial( _sklearn_stat_scores_multiclass, ignore_index=ignore_index, multidim_average=multidim_average, average=average, ), metric_args={ "ignore_index": ignore_index, "multidim_average": multidim_average, "average": average, "num_classes": NUM_CLASSES, }, ) def test_multiclass_stat_scores_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MulticlassStatScores, metric_functional=multiclass_stat_scores, metric_args={"num_classes": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_stat_scores_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MulticlassStatScores, metric_functional=multiclass_stat_scores, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_stat_scores_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MulticlassStatScores, metric_functional=multiclass_stat_scores, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) _mc_k_target = torch.tensor([0, 1, 2]) _mc_k_preds = torch.tensor([[0.35, 0.4, 0.25], [0.1, 0.5, 0.4], [0.2, 0.1, 0.7]]) @pytest.mark.parametrize( ("k", "preds", "target", "average", "expected"), [ (1, _mc_k_preds, _mc_k_target, "micro", torch.tensor([2, 1, 5, 1, 3])), (2, _mc_k_preds, _mc_k_target, "micro", torch.tensor([3, 3, 3, 0, 3])), (1, _mc_k_preds, _mc_k_target, None, torch.tensor([[0, 1, 1], [0, 1, 0], [2, 1, 2], [1, 0, 0], [1, 1, 1]])), (2, _mc_k_preds, _mc_k_target, None, torch.tensor([[1, 1, 1], [1, 1, 1], [1, 1, 1], [0, 0, 0], [1, 1, 1]])), ], ) def test_top_k_multiclass(k, preds, target, average, expected): """A simple test to check that top_k works as expected.""" class_metric = MulticlassStatScores(top_k=k, average=average, num_classes=3) class_metric.update(preds, target) assert torch.allclose(class_metric.compute().long(), expected.T) assert torch.allclose( multiclass_stat_scores(preds, target, top_k=k, average=average, num_classes=3).long(), expected.T ) def test_top_k_ignore_index_multiclass(): """Test that top_k argument works together with ignore_index.""" preds_without = torch.randn(10, 3).softmax(dim=-1) target_without = torch.randint(3, (10,)) preds_with = torch.cat([preds_without, torch.randn(10, 3).softmax(dim=-1)], 0) target_with = torch.cat([target_without, -100 * torch.ones(10)], 0).long() res_without = multiclass_stat_scores(preds_without, target_without, num_classes=3, average="micro", top_k=2) res_with = multiclass_stat_scores( preds_with, target_with, num_classes=3, average="micro", top_k=2, ignore_index=-100 ) assert torch.allclose(res_without, res_with) def test_multiclass_overflow(): """Test that multiclass computations does not overflow even on byte input.""" preds = torch.randint(20, (100,)).byte() target = torch.randint(20, (100,)).byte() m = MulticlassStatScores(num_classes=20, average=None) res = m(preds, target) confmat = sk_confusion_matrix(target, preds) fp = confmat.sum(axis=0) - np.diag(confmat) fn = confmat.sum(axis=1) - np.diag(confmat) tp = np.diag(confmat) tn = confmat.sum() - (fp + fn + tp) compare = np.stack([tp, fp, tn, fn, tp + fn]).T assert torch.allclose(res, torch.tensor(compare)) def _sklearn_stat_scores_multilabel(preds, target, ignore_index, multidim_average, average): preds = preds.numpy() target = target.numpy() if np.issubdtype(preds.dtype, np.floating): if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) preds = (preds >= THRESHOLD).astype(np.uint8) preds = preds.reshape(*preds.shape[:2], -1) target = target.reshape(*target.shape[:2], -1) if multidim_average == "global": stat_scores = [] for i in range(preds.shape[1]): pred, true = preds[:, i].flatten(), target[:, i].flatten() true, pred = remove_ignore_index(true, pred, ignore_index) tn, fp, fn, tp = sk_confusion_matrix(true, pred, labels=[0, 1]).ravel() stat_scores.append(np.array([tp, fp, tn, fn, tp + fn])) res = np.stack(stat_scores, axis=0) if average == "micro": return res.sum(0) if average == "macro": return res.mean(0) if average == "weighted": w = res[:, 0] + res[:, 3] return (res * (w / w.sum()).reshape(-1, 1)).sum(0) if average is None or average == "none": return res return None stat_scores = [] for i in range(preds.shape[0]): scores = [] for j in range(preds.shape[1]): pred, true = preds[i, j], target[i, j] true, pred = remove_ignore_index(true, pred, ignore_index) tn, fp, fn, tp = sk_confusion_matrix(true, pred, labels=[0, 1]).ravel() scores.append(np.array([tp, fp, tn, fn, tp + fn])) stat_scores.append(np.stack(scores, 1)) res = np.stack(stat_scores, 0) if average == "micro": return res.sum(-1) if average == "macro": return res.mean(-1) if average == "weighted": w = res[:, 0, :] + res[:, 3, :] return (res * (w / w.sum())[:, np.newaxis]).sum(-1) if average is None or average == "none": return np.moveaxis(res, 1, -1) return None @pytest.mark.parametrize("inputs", _multilabel_cases) class TestMultilabelStatScores(MetricTester): """Test class for `MultilabelStatScores` metric.""" @pytest.mark.parametrize("ddp", [True, False]) @pytest.mark.parametrize("ignore_index", [None, 0, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("average", ["micro", "macro", None]) def test_multilabel_stat_scores(self, ddp, inputs, ignore_index, multidim_average, average): """Test class implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 4: pytest.skip("samplewise and non-multidim arrays are not valid") if multidim_average == "samplewise" and ddp: pytest.skip("samplewise and ddp give different order than non ddp") self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MultilabelStatScores, reference_metric=partial( _sklearn_stat_scores_multilabel, ignore_index=ignore_index, multidim_average=multidim_average, average=average, ), metric_args={ "num_labels": NUM_CLASSES, "threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average, "average": average, }, ) @pytest.mark.parametrize("ignore_index", [None, 0, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("average", ["micro", "macro", None]) def test_multilabel_stat_scores_functional(self, inputs, ignore_index, multidim_average, average): """Test functional implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 4: pytest.skip("samplewise and non-multidim arrays are not valid") self.run_functional_metric_test( preds=preds, target=target, metric_functional=multilabel_stat_scores, reference_metric=partial( _sklearn_stat_scores_multilabel, ignore_index=ignore_index, multidim_average=multidim_average, average=average, ), metric_args={ "num_labels": NUM_CLASSES, "threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average, "average": average, }, ) def test_multilabel_stat_scores_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MultilabelStatScores, metric_functional=multilabel_stat_scores, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_stat_scores_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MultilabelStatScores, metric_functional=multilabel_stat_scores, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_stat_scores_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MultilabelStatScores, metric_functional=multilabel_stat_scores, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, dtype=dtype, ) def test_support_for_int(): """See issue: https://github.com/Lightning-AI/torchmetrics/issues/1970.""" metric = MulticlassStatScores(num_classes=4, average="none", multidim_average="samplewise", ignore_index=0) prediction = torch.randint(low=0, high=4, size=(1, 224, 224)).to(torch.uint8) label = torch.randint(low=0, high=4, size=(1, 224, 224)).to(torch.uint8) score = metric(preds=prediction, target=label) assert score.shape == (1, 4, 5) @pytest.mark.parametrize( ("metric", "kwargs"), [ (BinaryStatScores, {"task": "binary"}), (MulticlassStatScores, {"task": "multiclass", "num_classes": 3}), (MultilabelStatScores, {"task": "multilabel", "num_labels": 3}), (None, {"task": "not_valid_task"}), ], ) def test_wrapper_class(metric, kwargs, base_metric=StatScores): """Test the wrapper class.""" assert issubclass(base_metric, Metric) if metric is None: with pytest.raises(ValueError, match=r"Invalid *"): base_metric(**kwargs) else: instance = base_metric(**kwargs) assert isinstance(instance, metric) assert isinstance(instance, Metric)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/classification/test_specificity.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np import pytest import torch from scipy.special import expit as sigmoid from sklearn.metrics import confusion_matrix as sk_confusion_matrix from torch import Tensor, tensor from torchmetrics.classification.specificity import ( BinarySpecificity, MulticlassSpecificity, MultilabelSpecificity, Specificity, ) from torchmetrics.functional.classification.specificity import ( binary_specificity, multiclass_specificity, multilabel_specificity, ) from torchmetrics.metric import Metric from unittests import NUM_CLASSES, THRESHOLD from unittests.classification.inputs import _binary_cases, _multiclass_cases, _multilabel_cases from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester, inject_ignore_index seed_all(42) def _calc_specificity(tn, fp): """Safely calculate specificity.""" denom = tn + fp if np.isscalar(tn): denom = 1.0 if denom == 0 else denom else: denom[denom == 0] = 1.0 return tn / denom def _baseline_specificity_binary(preds, target, ignore_index, multidim_average): if multidim_average == "global": preds = preds.view(-1).numpy() target = target.view(-1).numpy() else: preds = preds.numpy() target = target.numpy() if np.issubdtype(preds.dtype, np.floating): if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) preds = (preds >= THRESHOLD).astype(np.uint8) if multidim_average == "global": if ignore_index is not None: idx = target == ignore_index target = target[~idx] preds = preds[~idx] tn, fp, _, _ = sk_confusion_matrix(y_true=target, y_pred=preds, labels=[0, 1]).ravel() return _calc_specificity(tn, fp) res = [] for pred, true in zip(preds, target): pred = pred.flatten() true = true.flatten() if ignore_index is not None: idx = true == ignore_index true = true[~idx] pred = pred[~idx] tn, fp, _, _ = sk_confusion_matrix(y_true=true, y_pred=pred, labels=[0, 1]).ravel() res.append(_calc_specificity(tn, fp)) return np.stack(res) @pytest.mark.parametrize("inputs", _binary_cases) class TestBinarySpecificity(MetricTester): """Test class for `BinarySpecificity` metric.""" @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("ddp", [False, True]) def test_binary_specificity(self, ddp, inputs, ignore_index, multidim_average): """Test class implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 3: pytest.skip("samplewise and non-multidim arrays are not valid") if multidim_average == "samplewise" and ddp: pytest.skip("samplewise and ddp give different order than non ddp") self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=BinarySpecificity, reference_metric=partial( _baseline_specificity_binary, ignore_index=ignore_index, multidim_average=multidim_average ), metric_args={"threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average}, ) @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) def test_binary_specificity_functional(self, inputs, ignore_index, multidim_average): """Test functional implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 3: pytest.skip("samplewise and non-multidim arrays are not valid") self.run_functional_metric_test( preds=preds, target=target, metric_functional=binary_specificity, reference_metric=partial( _baseline_specificity_binary, ignore_index=ignore_index, multidim_average=multidim_average ), metric_args={ "threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average, }, ) def test_binary_specificity_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=BinarySpecificity, metric_functional=binary_specificity, metric_args={"threshold": THRESHOLD}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_specificity_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=BinarySpecificity, metric_functional=binary_specificity, metric_args={"threshold": THRESHOLD}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_binary_specificity_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=BinarySpecificity, metric_functional=binary_specificity, metric_args={"threshold": THRESHOLD}, dtype=dtype, ) def _baseline_specificity_multiclass_global(preds, target, ignore_index, average): preds = preds.numpy().flatten() target = target.numpy().flatten() if ignore_index is not None: idx = target == ignore_index target = target[~idx] preds = preds[~idx] confmat = sk_confusion_matrix(y_true=target, y_pred=preds, labels=list(range(NUM_CLASSES))) tp = np.diag(confmat) fp = confmat.sum(0) - tp fn = confmat.sum(1) - tp tn = confmat.sum() - (fp + fn + tp) if average == "micro": return _calc_specificity(tn.sum(), fp.sum()) res = _calc_specificity(tn, fp) if average == "macro": res = res[(np.bincount(preds, minlength=NUM_CLASSES) + np.bincount(target, minlength=NUM_CLASSES)) != 0.0] return res.mean(0) if average == "weighted": w = tp + fn return (res * (w / w.sum()).reshape(-1, 1)).sum(0) if average is None or average == "none": return res return None def _baseline_specificity_multiclass_local(preds, target, ignore_index, average): preds = preds.numpy() target = target.numpy() res = [] for pred, true in zip(preds, target): pred = pred.flatten() true = true.flatten() if ignore_index is not None: idx = true == ignore_index true = true[~idx] pred = pred[~idx] confmat = sk_confusion_matrix(y_true=true, y_pred=pred, labels=list(range(NUM_CLASSES))) tp = np.diag(confmat) fp = confmat.sum(0) - tp fn = confmat.sum(1) - tp tn = confmat.sum() - (fp + fn + tp) if average == "micro": res.append(_calc_specificity(tn.sum(), fp.sum())) r = _calc_specificity(tn, fp) if average == "macro": r = r[(np.bincount(pred, minlength=NUM_CLASSES) + np.bincount(true, minlength=NUM_CLASSES)) != 0.0] res.append(r.mean(0) if len(r) > 0 else 0.0) elif average == "weighted": w = tp + fn res.append((r * (w / w.sum()).reshape(-1, 1)).sum(0)) elif average is None or average == "none": res.append(r) return np.stack(res, 0) def _baseline_specificity_multiclass(preds, target, ignore_index, multidim_average, average): if preds.ndim == target.ndim + 1: preds = torch.argmax(preds, 1) if multidim_average == "global": return _baseline_specificity_multiclass_global(preds, target, ignore_index, average) return _baseline_specificity_multiclass_local(preds, target, ignore_index, average) @pytest.mark.parametrize("inputs", _multiclass_cases) class TestMulticlassSpecificity(MetricTester): """Test class for `MulticlassSpecificity` metric.""" @pytest.mark.parametrize("ignore_index", [None, 0, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("average", ["micro", "macro", None]) @pytest.mark.parametrize("ddp", [True, False]) def test_multiclass_specificity(self, ddp, inputs, ignore_index, multidim_average, average): """Test class implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and target.ndim < 3: pytest.skip("samplewise and non-multidim arrays are not valid") if multidim_average == "samplewise" and ddp: pytest.skip("samplewise and ddp give different order than non ddp") self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MulticlassSpecificity, reference_metric=partial( _baseline_specificity_multiclass, ignore_index=ignore_index, multidim_average=multidim_average, average=average, ), metric_args={ "ignore_index": ignore_index, "multidim_average": multidim_average, "average": average, "num_classes": NUM_CLASSES, }, ) @pytest.mark.parametrize("ignore_index", [None, 0, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("average", ["micro", "macro", None]) def test_multiclass_specificity_functional(self, inputs, ignore_index, multidim_average, average): """Test functional implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and target.ndim < 3: pytest.skip("samplewise and non-multidim arrays are not valid") self.run_functional_metric_test( preds=preds, target=target, metric_functional=multiclass_specificity, reference_metric=partial( _baseline_specificity_multiclass, ignore_index=ignore_index, multidim_average=multidim_average, average=average, ), metric_args={ "ignore_index": ignore_index, "multidim_average": multidim_average, "average": average, "num_classes": NUM_CLASSES, }, ) def test_multiclass_specificity_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MulticlassSpecificity, metric_functional=multiclass_specificity, metric_args={"num_classes": NUM_CLASSES}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_specificity_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MulticlassSpecificity, metric_functional=multiclass_specificity, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multiclass_specificity_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MulticlassSpecificity, metric_functional=multiclass_specificity, metric_args={"num_classes": NUM_CLASSES}, dtype=dtype, ) _mc_k_target = tensor([0, 1, 2]) _mc_k_preds = tensor([[0.35, 0.4, 0.25], [0.1, 0.5, 0.4], [0.2, 0.1, 0.7]]) @pytest.mark.parametrize( ("k", "preds", "target", "average", "expected_spec"), [ (1, _mc_k_preds, _mc_k_target, "micro", tensor(5 / 6)), (2, _mc_k_preds, _mc_k_target, "micro", tensor(1 / 2)), ], ) def test_top_k(k: int, preds: Tensor, target: Tensor, average: str, expected_spec: Tensor): """A simple test to check that top_k works as expected.""" class_metric = MulticlassSpecificity(top_k=k, average=average, num_classes=3) class_metric.update(preds, target) assert torch.equal(class_metric.compute(), expected_spec) assert torch.equal(multiclass_specificity(preds, target, top_k=k, average=average, num_classes=3), expected_spec) def _baseline_specificity_multilabel_global(preds, target, ignore_index, average): tns, fps = [], [] for i in range(preds.shape[1]): p, t = preds[:, i].flatten(), target[:, i].flatten() if ignore_index is not None: idx = t == ignore_index t = t[~idx] p = p[~idx] tn, fp, fn, tp = sk_confusion_matrix(t, p, labels=[0, 1]).ravel() tns.append(tn) fps.append(fp) tn = np.array(tns) fp = np.array(fps) if average == "micro": return _calc_specificity(tn.sum(), fp.sum()) res = _calc_specificity(tn, fp) if average == "macro": return res.mean(0) if average == "weighted": w = res[:, 0] + res[:, 3] return (res * (w / w.sum()).reshape(-1, 1)).sum(0) if average is None or average == "none": return res return None def _baseline_specificity_multilabel_local(preds, target, ignore_index, average): specificity = [] for i in range(preds.shape[0]): tns, fps = [], [] for j in range(preds.shape[1]): pred, true = preds[i, j], target[i, j] if ignore_index is not None: idx = true == ignore_index true = true[~idx] pred = pred[~idx] tn, fp, _, _ = sk_confusion_matrix(true, pred, labels=[0, 1]).ravel() tns.append(tn) fps.append(fp) tn = np.array(tns) fp = np.array(fps) if average == "micro": specificity.append(_calc_specificity(tn.sum(), fp.sum())) else: specificity.append(_calc_specificity(tn, fp)) res = np.stack(specificity, 0) if average == "micro" or average is None or average == "none": return res if average == "macro": return res.mean(-1) if average == "weighted": w = res[:, 0, :] + res[:, 3, :] return (res * (w / w.sum())[:, np.newaxis]).sum(-1) if average is None or average == "none": return np.moveaxis(res, 1, -1) return None def _baseline_specificity_multilabel(preds, target, ignore_index, multidim_average, average): preds = preds.numpy() target = target.numpy() if np.issubdtype(preds.dtype, np.floating): if not ((preds > 0) & (preds < 1)).all(): preds = sigmoid(preds) preds = (preds >= THRESHOLD).astype(np.uint8) preds = preds.reshape(*preds.shape[:2], -1) target = target.reshape(*target.shape[:2], -1) if multidim_average == "global": return _baseline_specificity_multilabel_global(preds, target, ignore_index, average) return _baseline_specificity_multilabel_local(preds, target, ignore_index, average) @pytest.mark.parametrize("inputs", _multilabel_cases) class TestMultilabelSpecificity(MetricTester): """Test class for `MultilabelSpecificity` metric.""" @pytest.mark.parametrize("ddp", [True, False]) @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("average", ["micro", "macro", None]) def test_multilabel_specificity(self, ddp, inputs, ignore_index, multidim_average, average): """Test class implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 4: pytest.skip("samplewise and non-multidim arrays are not valid") if multidim_average == "samplewise" and ddp: pytest.skip("samplewise and ddp give different order than non ddp") self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=MultilabelSpecificity, reference_metric=partial( _baseline_specificity_multilabel, ignore_index=ignore_index, multidim_average=multidim_average, average=average, ), metric_args={ "num_labels": NUM_CLASSES, "threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average, "average": average, }, ) @pytest.mark.parametrize("ignore_index", [None, -1]) @pytest.mark.parametrize("multidim_average", ["global", "samplewise"]) @pytest.mark.parametrize("average", ["micro", "macro", None]) def test_multilabel_specificity_functional(self, inputs, ignore_index, multidim_average, average): """Test functional implementation of metric.""" preds, target = inputs if ignore_index == -1: target = inject_ignore_index(target, ignore_index) if multidim_average == "samplewise" and preds.ndim < 4: pytest.skip("samplewise and non-multidim arrays are not valid") self.run_functional_metric_test( preds=preds, target=target, metric_functional=multilabel_specificity, reference_metric=partial( _baseline_specificity_multilabel, ignore_index=ignore_index, multidim_average=multidim_average, average=average, ), metric_args={ "num_labels": NUM_CLASSES, "threshold": THRESHOLD, "ignore_index": ignore_index, "multidim_average": multidim_average, "average": average, }, ) def test_multilabel_specificity_differentiability(self, inputs): """Test the differentiability of the metric, according to its `is_differentiable` attribute.""" preds, target = inputs self.run_differentiability_test( preds=preds, target=target, metric_module=MultilabelSpecificity, metric_functional=multilabel_specificity, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, ) @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_specificity_dtype_cpu(self, inputs, dtype): """Test dtype support of the metric on CPU.""" preds, target = inputs if (preds < 0).any() and dtype == torch.half: pytest.xfail(reason="torch.sigmoid in metric does not support cpu + half precision") self.run_precision_test_cpu( preds=preds, target=target, metric_module=MultilabelSpecificity, metric_functional=multilabel_specificity, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, dtype=dtype, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires cuda") @pytest.mark.parametrize("dtype", [torch.half, torch.double]) def test_multilabel_specificity_dtype_gpu(self, inputs, dtype): """Test dtype support of the metric on GPU.""" preds, target = inputs self.run_precision_test_gpu( preds=preds, target=target, metric_module=MultilabelSpecificity, metric_functional=multilabel_specificity, metric_args={"num_labels": NUM_CLASSES, "threshold": THRESHOLD}, dtype=dtype, ) def test_corner_cases(): """Test corner cases for specificity metric.""" # simulate the output of a perfect predictor (i.e. preds == target) target = torch.tensor([0, 1, 2, 0, 1, 2]) preds = target metric = MulticlassSpecificity(num_classes=3, average="none", ignore_index=0) res = metric(preds, target) assert torch.allclose(res, torch.tensor([1.0, 1.0, 1.0])) metric = MulticlassSpecificity(num_classes=3, average="macro", ignore_index=0) res = metric(preds, target) assert res == 1.0 @pytest.mark.parametrize( ("metric", "kwargs"), [ (BinarySpecificity, {"task": "binary"}), (MulticlassSpecificity, {"task": "multiclass", "num_classes": 3}), (MultilabelSpecificity, {"task": "multilabel", "num_labels": 3}), (None, {"task": "not_valid_task"}), ], ) def test_wrapper_class(metric, kwargs, base_metric=Specificity): """Test the wrapper class.""" assert issubclass(base_metric, Metric) if metric is None: with pytest.raises(ValueError, match=r"Invalid *"): base_metric(**kwargs) else: instance = base_metric(**kwargs) assert isinstance(instance, metric) assert isinstance(instance, Metric)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/clustering/test_dunn_index.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from itertools import combinations import numpy as np import pytest from torchmetrics.clustering.dunn_index import DunnIndex from torchmetrics.functional.clustering.dunn_index import dunn_index from unittests.clustering.inputs import ( _single_target_intrinsic1, _single_target_intrinsic2, ) from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester seed_all(42) def _np_dunn_index(data, labels, p): unique_labels, inverse_indices = np.unique(labels, return_inverse=True) clusters = [data[inverse_indices == label_idx] for label_idx in range(len(unique_labels))] centroids = [c.mean(axis=0) for c in clusters] intercluster_distance = np.linalg.norm( np.stack([a - b for a, b in combinations(centroids, 2)], axis=0), ord=p, axis=1 ) max_intracluster_distance = np.stack( [np.linalg.norm(ci - mu, ord=p, axis=1).max() for ci, mu in zip(clusters, centroids)] ) return intercluster_distance.min() / max_intracluster_distance.max() @pytest.mark.parametrize( "data, labels", [ (_single_target_intrinsic1.data, _single_target_intrinsic1.labels), (_single_target_intrinsic2.data, _single_target_intrinsic2.labels), ], ) @pytest.mark.parametrize( "p", [0, 1, 2], ) class TestDunnIndex(MetricTester): """Test class for `DunnIndex` metric.""" atol = 1e-5 @pytest.mark.parametrize("ddp", [True, False]) def test_dunn_index(self, data, labels, p, ddp): """Test class implementation of metric.""" self.run_class_metric_test( ddp=ddp, preds=data, target=labels, metric_class=DunnIndex, reference_metric=partial(_np_dunn_index, p=p), metric_args={"p": p}, ) def test_dunn_index_functional(self, data, labels, p): """Test functional implementation of metric.""" self.run_functional_metric_test( preds=data, target=labels, metric_functional=dunn_index, reference_metric=partial(_np_dunn_index, p=p), p=p, )
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/clustering/test_davies_bouldin_score.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from sklearn.metrics import davies_bouldin_score as sklearn_davies_bouldin_score from torchmetrics.clustering.davies_bouldin_score import DaviesBouldinScore from torchmetrics.functional.clustering.davies_bouldin_score import davies_bouldin_score from unittests.clustering.inputs import _single_target_intrinsic1, _single_target_intrinsic2 from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester seed_all(42) @pytest.mark.parametrize( "data, labels", [ (_single_target_intrinsic1.data, _single_target_intrinsic1.labels), (_single_target_intrinsic2.data, _single_target_intrinsic2.labels), ], ) class TestDaviesBouldinScore(MetricTester): """Test class for `DaviesBouldinScore` metric.""" atol = 1e-5 @pytest.mark.parametrize("ddp", [True, False]) def test_davies_bouldin_score(self, data, labels, ddp): """Test class implementation of metric.""" self.run_class_metric_test( ddp=ddp, preds=data, target=labels, metric_class=DaviesBouldinScore, reference_metric=sklearn_davies_bouldin_score, ) def test_davies_bouldin_score_functional(self, data, labels): """Test functional implementation of metric.""" self.run_functional_metric_test( preds=data, target=labels, metric_functional=davies_bouldin_score, reference_metric=sklearn_davies_bouldin_score, )
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/clustering/test_homogeneity_completeness_v_measure.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import pytest from sklearn.metrics import completeness_score as sklearn_completeness_score from sklearn.metrics import homogeneity_score as sklearn_homogeneity_score from sklearn.metrics import v_measure_score as sklearn_v_measure_score from torchmetrics.clustering.homogeneity_completeness_v_measure import ( CompletenessScore, HomogeneityScore, VMeasureScore, ) from torchmetrics.functional.clustering.homogeneity_completeness_v_measure import ( completeness_score, homogeneity_score, v_measure_score, ) from unittests.clustering.inputs import _float_inputs_extrinsic, _single_target_extrinsic1, _single_target_extrinsic2 from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester seed_all(42) def _sk_reference(preds, target, fn): """Compute reference values using sklearn.""" return fn(target, preds) @pytest.mark.parametrize( "modular_metric, functional_metric, reference_metric", [ (HomogeneityScore, homogeneity_score, sklearn_homogeneity_score), (CompletenessScore, completeness_score, sklearn_completeness_score), (VMeasureScore, v_measure_score, sklearn_v_measure_score), ( partial(VMeasureScore, beta=2.0), partial(v_measure_score, beta=2.0), partial(sklearn_v_measure_score, beta=2.0), ), ], ) @pytest.mark.parametrize( "preds, target", [ (_single_target_extrinsic1.preds, _single_target_extrinsic1.target), (_single_target_extrinsic2.preds, _single_target_extrinsic2.target), ], ) class TestHomogeneityCompletenessVmeasur(MetricTester): """Test class for testing homogeneity, completeness and v-measure metrics.""" atol = 1e-5 @pytest.mark.parametrize("ddp", [True, False]) def test_homogeneity_completeness_vmeasure( self, modular_metric, functional_metric, reference_metric, preds, target, ddp ): """Test class implementation of metric.""" self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=modular_metric, reference_metric=partial(_sk_reference, fn=reference_metric), ) def test_homogeneity_completeness_vmeasure_functional( self, modular_metric, functional_metric, reference_metric, preds, target ): """Test functional implementation of metric.""" self.run_functional_metric_test( preds=preds, target=target, metric_functional=functional_metric, reference_metric=partial(_sk_reference, fn=reference_metric), ) @pytest.mark.parametrize("functional_metric", [homogeneity_score, completeness_score, v_measure_score]) def test_homogeneity_completeness_vmeasure_functional_raises_invalid_task(functional_metric): """Check that metric rejects continuous-valued inputs.""" preds, target = _float_inputs_extrinsic with pytest.raises(ValueError, match=r"Expected *"): functional_metric(preds, target)
0
public_repos/torchmetrics/tests/unittests
public_repos/torchmetrics/tests/unittests/clustering/test_rand_score.py
# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import torch from sklearn.metrics import rand_score as sklearn_rand_score from torchmetrics.clustering.rand_score import RandScore from torchmetrics.functional.clustering.rand_score import rand_score from unittests.clustering.inputs import _float_inputs_extrinsic, _single_target_extrinsic1, _single_target_extrinsic2 from unittests.helpers import seed_all from unittests.helpers.testers import MetricTester seed_all(42) @pytest.mark.parametrize( "preds, target", [ (_single_target_extrinsic1.preds, _single_target_extrinsic1.target), (_single_target_extrinsic2.preds, _single_target_extrinsic2.target), ], ) class TestRandScore(MetricTester): """Test class for `RandScore` metric.""" atol = 1e-5 @pytest.mark.parametrize("ddp", [True, False]) def test_rand_score(self, preds, target, ddp): """Test class implementation of metric.""" self.run_class_metric_test( ddp=ddp, preds=preds, target=target, metric_class=RandScore, reference_metric=sklearn_rand_score, ) def test_rand_score_functional(self, preds, target): """Test functional implementation of metric.""" self.run_functional_metric_test( preds=preds, target=target, metric_functional=rand_score, reference_metric=sklearn_rand_score, ) def test_rand_score_functional_raises_invalid_task(): """Check that metric rejects continuous-valued inputs.""" preds, target = _float_inputs_extrinsic with pytest.raises(ValueError, match=r"Expected *"): rand_score(preds, target) def test_rand_score_functional_is_symmetric( preds=_single_target_extrinsic1.preds, target=_single_target_extrinsic1.target ): """Check that the metric functional is symmetric.""" for p, t in zip(preds, target): assert torch.allclose(rand_score(p, t), rand_score(t, p))
0