Unnamed: 0
int64
12
40.3k
problem
stringlengths
19
5.15k
ground_truth
stringlengths
1
1.22k
solved_percentage
float64
0
0
2,246
If $\frac{x}{y}=\frac{3}{4}$, then the incorrect expression in the following is:
$\frac{1}{4}$
0
2,261
The sum to infinity of the terms of an infinite geometric progression is $6$. The sum of the first two terms is $4\frac{1}{2}$. The first term of the progression is:
9 or 3
0
2,266
In how many ways can $345$ be written as the sum of an increasing sequence of two or more consecutive positive integers?
6
0
2,285
If $x$ and $\log_{10} x$ are real numbers and $\log_{10} x<0$, then:
$0<x<1$
0
2,292
Chandra pays an on-line service provider a fixed monthly fee plus an hourly charge for connect time. Her December bill was $12.48, but in January her bill was $17.54 because she used twice as much connect time as in December. What is the fixed monthly fee?
6.24
0
2,299
Andy the Ant lives on a coordinate plane and is currently at $(-20, 20)$ facing east (that is, in the positive $x$-direction). Andy moves $1$ unit and then turns $90^{\circ}$ left. From there, Andy moves $2$ units (north) and then turns $90^{\circ}$ left. He then moves $3$ units (west) and again turns $90^{\circ}$ left. Andy continues his progress, increasing his distance each time by $1$ unit and always turning left. What is the location of the point at which Andy makes the $2020$th left turn?
$(-1030, -990)$
0
2,304
The function $x^2+px+q$ with $p$ and $q$ greater than zero has its minimum value when:
$x=\frac{-p}{2}$
0
2,307
The school store sells 7 pencils and 8 notebooks for $4.15. It also sells 5 pencils and 3 notebooks for $1.77. How much do 16 pencils and 10 notebooks cost?
$5.84
0
2,309
A recipe that makes $5$ servings of hot chocolate requires $2$ squares of chocolate, $\frac{1}{4}$ cup sugar, $1$ cup water and $4$ cups milk. Jordan has $5$ squares of chocolate, $2$ cups of sugar, lots of water, and $7$ cups of milk. If he maintains the same ratio of ingredients, what is the greatest number of servings of hot chocolate he can make?
8 \frac{3}{4}
0
2,311
If $P$ is the product of $n$ quantities in Geometric Progression, $S$ their sum, and $S'$ the sum of their reciprocals, then $P$ in terms of $S, S'$, and $n$ is
$(S/S')^{\frac{1}{2}n}$
0
2,313
A fly trapped inside a cubical box with side length $1$ meter decides to relieve its boredom by visiting each corner of the box. It will begin and end in the same corner and visit each of the other corners exactly once. To get from a corner to any other corner, it will either fly or crawl in a straight line. What is the maximum possible length, in meters, of its path?
$4\sqrt{2}+4\sqrt{3}$
0
2,315
If the $whatsis$ is $so$ when the $whosis$ is $is$ and the $so$ and $so$ is $is \cdot so$, what is the $whosis \cdot whatsis$ when the $whosis$ is $so$, the $so$ and $so$ is $so \cdot so$ and the $is$ is two ($whatsis, whosis, is$ and $so$ are variables taking positive values)?
$so \text{ and } so$
0
2,318
Let $a, b, c, d$ be real numbers. Suppose that all the roots of $z^4+az^3+bz^2+cz+d=0$ are complex numbers lying on a circle in the complex plane centered at $0+0i$ and having radius $1$. The sum of the reciprocals of the roots is necessarily
$-a$
0
2,322
The altitudes of a triangle are $12, 15,$ and $20.$ The largest angle in this triangle is
$90^\circ$
0
2,326
In the right triangle $ABC$, $AC=12$, $BC=5$, and angle $C$ is a right angle. A semicircle is inscribed in the triangle as shown. What is the radius of the semicircle?
\frac{10}{3}
0
2,333
The set of $x$-values satisfying the inequality $2 \leq |x-1| \leq 5$ is:
-4\leq x\leq-1\text{ or }3\leq x\leq 6
0
2,334
A plane flew straight against a wind between two towns in 84 minutes and returned with that wind in 9 minutes less than it would take in still air. The number of minutes (2 answers) for the return trip was
63 or 12
0
2,337
The roots of the equation $2\sqrt{x} + 2x^{-\frac{1}{2}} = 5$ can be found by solving:
4x^2-17x+4 = 0
0
2,352
A collection of circles in the upper half-plane, all tangent to the $x$-axis, is constructed in layers as follows. Layer $L_0$ consists of two circles of radii $70^2$ and $73^2$ that are externally tangent. For $k \ge 1$, the circles in $\bigcup_{j=0}^{k-1}L_j$ are ordered according to their points of tangency with the $x$-axis. For every pair of consecutive circles in this order, a new circle is constructed externally tangent to each of the two circles in the pair. Layer $L_k$ consists of the $2^{k-1}$ circles constructed in this way. Let $S=\bigcup_{j=0}^{6}L_j$, and for every circle $C$ denote by $r(C)$ its radius. What is \[\sum_{C\in S} \frac{1}{\sqrt{r(C)}}?\] [asy] import olympiad; size(350); defaultpen(linewidth(0.7)); // define a bunch of arrays and starting points pair[] coord = new pair[65]; int[] trav = {32,16,8,4,2,1}; coord[0] = (0,73^2); coord[64] = (2*73*70,70^2); // draw the big circles and the bottom line path arc1 = arc(coord[0],coord[0].y,260,360); path arc2 = arc(coord[64],coord[64].y,175,280); fill((coord[0].x-910,coord[0].y)--arc1--cycle,gray(0.75)); fill((coord[64].x+870,coord[64].y+425)--arc2--cycle,gray(0.75)); draw(arc1^^arc2); draw((-930,0)--(70^2+73^2+850,0)); // We now apply the findCenter function 63 times to get // the location of the centers of all 63 constructed circles. // The complicated array setup ensures that all the circles // will be taken in the right order for(int i = 0;i<=5;i=i+1) { int skip = trav[i]; for(int k=skip;k<=64 - skip; k = k + 2*skip) { pair cent1 = coord[k-skip], cent2 = coord[k+skip]; real r1 = cent1.y, r2 = cent2.y, rn=r1*r2/((sqrt(r1)+sqrt(r2))^2); real shiftx = cent1.x + sqrt(4*r1*rn); coord[k] = (shiftx,rn); } // Draw the remaining 63 circles } for(int i=1;i<=63;i=i+1) { filldraw(circle(coord[i],coord[i].y),gray(0.75)); }[/asy]
\frac{143}{14}
0
2,364
There are two positive numbers that may be inserted between $3$ and $9$ such that the first three are in geometric progression while the last three are in arithmetic progression. The sum of those two positive numbers is
11\frac{1}{4}
0
2,386
If $a$ and $b$ are two unequal positive numbers, then:
\frac {a + b}{2} > \sqrt {ab} > \frac {2ab}{a + b}
0
2,389
A rectangular piece of paper 6 inches wide is folded as in the diagram so that one corner touches the opposite side. The length in inches of the crease L in terms of angle $\theta$ is
$3\sec ^2\theta\csc\theta$
0
2,396
The bar graph shows the results of a survey on color preferences. What percent preferred blue?
24\%
0
2,398
Sale prices at the Ajax Outlet Store are $50\%$ below original prices. On Saturdays an additional discount of $20\%$ off the sale price is given. What is the Saturday price of a coat whose original price is $\$ 180$?
$72
0
2,407
The figure below is a map showing $12$ cities and $17$ roads connecting certain pairs of cities. Paula wishes to travel along exactly $13$ of those roads, starting at city $A$ and ending at city $L$, without traveling along any portion of a road more than once. (Paula is allowed to visit a city more than once.) How many different routes can Paula take?
4
0
2,416
Margie bought $3$ apples at a cost of $50$ cents per apple. She paid with a 5-dollar bill. How much change did Margie receive?
$3.50
0
2,419
Equilateral $\triangle ABC$ has side length $1$, and squares $ABDE$, $BCHI$, $CAFG$ lie outside the triangle. What is the area of hexagon $DEFGHI$?
3+\sqrt3
0
2,423
A positive number $x$ satisfies the inequality $\sqrt{x} < 2x$ if and only if
\frac{1}{4}
0
2,442
Al gets the disease algebritis and must take one green pill and one pink pill each day for two weeks. A green pill costs $1 more than a pink pill, and Al's pills cost a total of $546 for the two weeks. How much does one green pill cost?
$20
0
2,450
In the figure, $\triangle ABC$ has $\angle A =45^{\circ}$ and $\angle B =30^{\circ}$. A line $DE$, with $D$ on $AB$ and $\angle ADE =60^{\circ}$, divides $\triangle ABC$ into two pieces of equal area. (Note: the figure may not be accurate; perhaps $E$ is on $CB$ instead of $AC.)$ The ratio $\frac{AD}{AB}$ is
\frac{1}{\sqrt[4]{12}}
0
2,452
Three cubes are each formed from the pattern shown. They are then stacked on a table one on top of another so that the $13$ visible numbers have the greatest possible sum. What is that sum?
164
0
2,453
If $x-y>x$ and $x+y<y$, then
$x<0,y<0$
0
2,455
\(\triangle ABC\) is isosceles with base \(AC\). Points \(P\) and \(Q\) are respectively in \(CB\) and \(AB\) and such that \(AC=AP=PQ=QB\). The number of degrees in \(\angle B\) is:
25\frac{5}{7}
0
2,458
If $78$ is divided into three parts which are proportional to $1, \frac{1}{3}, \frac{1}{6},$ the middle part is:
17\frac{1}{3}
0
2,469
If rose bushes are spaced about $1$ foot apart, approximately how many bushes are needed to surround a circular patio whose radius is $12$ feet?
48
0
2,471
Jack had a bag of $128$ apples. He sold $25\%$ of them to Jill. Next he sold $25\%$ of those remaining to June. Of those apples still in his bag, he gave the shiniest one to his teacher. How many apples did Jack have then?
65
0
2,474
The product $(1.8)(40.3 + .07)$ is closest to
74
0
2,476
From among $2^{1/2}, 3^{1/3}, 8^{1/8}, 9^{1/9}$ those which have the greatest and the next to the greatest values, in that order, are
$3^{1/3},\ 2^{1/2}$
0
2,479
Circles with radii $1$, $2$, and $3$ are mutually externally tangent. What is the area of the triangle determined by the points of tangency?
\frac{6}{5}
0
2,482
Points $A(11, 9)$ and $B(2, -3)$ are vertices of $ riangle ABC$ with $AB=AC$. The altitude from $A$ meets the opposite side at $D(-1, 3)$. What are the coordinates of point $C$?
$\left( -4, 9 \right)$
0
2,490
The symbol $|a|$ means $a$ is a positive number or zero, and $-a$ if $a$ is a negative number. For all real values of $t$ the expression $\sqrt{t^4+t^2}$ is equal to?
|t|\sqrt{1+t^2}
0
2,494
If $t = \frac{1}{1 - \sqrt[4]{2}}$, then $t$ equals
$-(1+\sqrt[4]{2})(1+\sqrt{2})$
0
2,508
The percent that $M$ is greater than $N$ is:
\frac{100(M-N)}{N}
0
2,510
If $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \cdot d - b \cdot c$, what is the value of $\begin{vmatrix} 3 & 4 \\ 1 & 2 \end{vmatrix}$?
$2$
0
2,512
Mr. Garcia asked the members of his health class how many days last week they exercised for at least 30 minutes. The results are summarized in the following bar graph, where the heights of the bars represent the number of students. What was the mean number of days of exercise last week, rounded to the nearest hundredth, reported by the students in Mr. Garcia's class?
4.36
0
2,515
If the product $\frac{3}{2} \cdot \frac{4}{3} \cdot \frac{5}{4} \cdot \frac{6}{5} \cdot \ldots \cdot \frac{a}{b} = 9$, what is the sum of $a$ and $b$?
37
0
2,526
A box $2$ centimeters high, $3$ centimeters wide, and $5$ centimeters long can hold $40$ grams of clay. A second box with twice the height, three times the width, and the same length as the first box can hold $n$ grams of clay. What is $n$?
200
0
2,542
If $f(x)$ is a real valued function of the real variable $x$, and $f(x)$ is not identically zero, and for all $a$ and $b$, $f(a+b)+f(a-b)=2f(a)+2f(b)$, then for all $x$ and $y$
$f(-x)=f(x)$
0
2,546
The coordinates of $A, B$ and $C$ are $(5,5), (2,1)$ and $(0,k)$ respectively. The value of $k$ that makes $\overline{AC}+\overline{BC}$ as small as possible is:
2\frac{1}{7}
0
2,549
$A$ and $B$ move uniformly along two straight paths intersecting at right angles in point $O$. When $A$ is at $O$, $B$ is $500$ yards short of $O$. In two minutes they are equidistant from $O$, and in $8$ minutes more they are again equidistant from $O$. Then the ratio of $A$'s speed to $B$'s speed is:
5/6
0
2,559
If the line $L$ in the $xy$-plane has half the slope and twice the $y$-intercept of the line $y = \frac{2}{3} x + 4$, then an equation for $L$ is:
$y = \frac{1}{3} x + 8$
0
2,571
In the unit circle shown in the figure, chords $PQ$ and $MN$ are parallel to the unit radius $OR$ of the circle with center at $O$. Chords $MP$, $PQ$, and $NR$ are each $s$ units long and chord $MN$ is $d$ units long. Of the three equations \begin{equation*} \label{eq:1} d-s=1, \qquad ds=1, \qquad d^2-s^2=\sqrt{5} \end{equation*}those which are necessarily true are
I, II and III
0
2,576
Rectangle $DEFA$ below is a $3 \times 4$ rectangle with $DC=CB=BA=1$. The area of the "bat wings" (shaded area) is
3 \frac{1}{2}
0
2,577
A right circular cone has for its base a circle having the same radius as a given sphere. The volume of the cone is one-half that of the sphere. The ratio of the altitude of the cone to the radius of its base is:
2/1
0
2,582
Distinct planes $p_1, p_2, \dots, p_k$ intersect the interior of a cube $Q$. Let $S$ be the union of the faces of $Q$ and let $P = \bigcup_{j=1}^{k} p_j$. The intersection of $P$ and $S$ consists of the union of all segments joining the midpoints of every pair of edges belonging to the same face of $Q$. What is the difference between the maximum and minimum possible values of $k$?
20
0
2,585
Triangle $ABC$ has $AB=13,BC=14$ and $AC=15$. Let $P$ be the point on $\overline{AC}$ such that $PC=10$. There are exactly two points $D$ and $E$ on line $BP$ such that quadrilaterals $ABCD$ and $ABCE$ are trapezoids. What is the distance $DE?$
12\sqrt2
0
2,598
Points $A=(6,13)$ and $B=(12,11)$ lie on circle $\omega$ in the plane. Suppose that the tangent lines to $\omega$ at $A$ and $B$ intersect at a point on the $x$-axis. What is the area of $\omega$?
\frac{85\pi}{8}
0
2,608
Circles with centers $P, Q$ and $R$, having radii $1, 2$ and $3$, respectively, lie on the same side of line $l$ and are tangent to $l$ at $P', Q'$ and $R'$, respectively, with $Q'$ between $P'$ and $R'$. The circle with center $Q$ is externally tangent to each of the other two circles. What is the area of triangle $PQR$?
0
0
2,612
In July 1861, $366$ inches of rain fell in Cherrapunji, India. What was the average rainfall in inches per hour during that month?
\frac{366}{31 \times 24}
0
2,616
Semicircle $\widehat{AB}$ has center $C$ and radius $1$. Point $D$ is on $\widehat{AB}$ and $\overline{CD} \perp \overline{AB}$. Extend $\overline{BD}$ and $\overline{AD}$ to $E$ and $F$, respectively, so that circular arcs $\widehat{AE}$ and $\widehat{BF}$ have $B$ and $A$ as their respective centers. Circular arc $\widehat{EF}$ has center $D$. The area of the shaded "smile" $AEFBDA$, is
$2\pi-\pi \sqrt{2}-1$
0
2,618
Students from three middle schools worked on a summer project. Seven students from Allen school worked for 3 days. Four students from Balboa school worked for 5 days. Five students from Carver school worked for 9 days. The total amount paid for the students' work was 744. Assuming each student received the same amount for a day's work, how much did the students from Balboa school earn altogether?
180.00
0
2,624
A contest began at noon one day and ended $1000$ minutes later. At what time did the contest end?
4:40 a.m.
0
2,625
The large cube shown is made up of $27$ identical sized smaller cubes. For each face of the large cube, the opposite face is shaded the same way. The total number of smaller cubes that must have at least one face shaded is
20
0
2,634
Two different cubes of the same size are to be painted, with the color of each face being chosen independently and at random to be either black or white. What is the probability that after they are painted, the cubes can be rotated to be identical in appearance?
\frac{147}{1024}
0
2,639
Of the following sets, the one that includes all values of $x$ which will satisfy $2x - 3 > 7 - x$ is:
$x >\frac{10}{3}$
0
2,640
An athlete's target heart rate, in beats per minute, is $80\%$ of the theoretical maximum heart rate. The maximum heart rate is found by subtracting the athlete's age, in years, from $220$. To the nearest whole number, what is the target heart rate of an athlete who is $26$ years old?
134
0
2,659
Aaron the ant walks on the coordinate plane according to the following rules. He starts at the origin $p_0=(0,0)$ facing to the east and walks one unit, arriving at $p_1=(1,0)$. For $n=1,2,3,\dots$, right after arriving at the point $p_n$, if Aaron can turn $90^\circ$ left and walk one unit to an unvisited point $p_{n+1}$, he does that. Otherwise, he walks one unit straight ahead to reach $p_{n+1}$. Thus the sequence of points continues $p_2=(1,1), p_3=(0,1), p_4=(-1,1), p_5=(-1,0)$, and so on in a counterclockwise spiral pattern. What is $p_{2015}$?
(13,-22)
0
2,666
ABCD is a rectangle, D is the center of the circle, and B is on the circle. If AD=4 and CD=3, then the area of the shaded region is between
7 and 8
0
2,668
When the sum of the first ten terms of an arithmetic progression is four times the sum of the first five terms, the ratio of the first term to the common difference is:
1: 2
0
2,673
A paper triangle with sides of lengths $3,4,$ and $5$ inches, as shown, is folded so that point $A$ falls on point $B$. What is the length in inches of the crease?
$\frac{15}{8}$
0
2,674
The formula expressing the relationship between $x$ and $y$ in the table is: \begin{tabular}{|c|c|c|c|c|c|} \hline x & 2 & 3 & 4 & 5 & 6\ \hline y & 0 & 2 & 6 & 12 & 20\ \hline \end{tabular}
$y = x^{2}-3x+2$
0
2,676
When Dave walks to school, he averages $90$ steps per minute, and each of his steps is $75$ cm long. It takes him $16$ minutes to get to school. His brother, Jack, going to the same school by the same route, averages $100$ steps per minute, but his steps are only $60$ cm long. How long does it take Jack to get to school?
18 minutes
0
2,681
Aunt Anna is $42$ years old. Caitlin is $5$ years younger than Brianna, and Brianna is half as old as Aunt Anna. How old is Caitlin?
17
0
2,684
Five times $A$'s money added to $B$'s money is more than $51.00$. Three times $A$'s money minus $B$'s money is $21.00$. If $a$ represents $A$'s money in dollars and $b$ represents $B$'s money in dollars, then:
$a>9, b>6$
0
2,689
If $b$ and $c$ are constants and $(x + 2)(x + b) = x^2 + cx + 6$, then $c$ is
$5$
0
2,691
The numerator of a fraction is $6x + 1$, then denominator is $7 - 4x$, and $x$ can have any value between $-2$ and $2$, both included. The values of $x$ for which the numerator is greater than the denominator are:
\frac{3}{5} < x \le 2
0
2,694
Which one of the following is not equivalent to $0.000000375$?
$\frac{3}{8} \times 10^{-7}$
0
2,698
Points $A=(6,13)$ and $B=(12,11)$ lie on circle $\omega$ in the plane. Suppose that the tangent lines to $\omega$ at $A$ and $B$ intersect at a point on the $x$-axis. What is the area of $\omega$?
\frac{85\pi}{8}
0
2,702
The symbol $|a|$ means $+a$ if $a$ is greater than or equal to zero, and $-a$ if a is less than or equal to zero; the symbol $<$ means "less than"; the symbol $>$ means "greater than." The set of values $x$ satisfying the inequality $|3-x|<4$ consists of all $x$ such that:
$-1<x<7$
0
2,705
In $\triangle ABC$, point $F$ divides side $AC$ in the ratio $1:2$. Let $E$ be the point of intersection of side $BC$ and $AG$ where $G$ is the midpoints of $BF$. The point $E$ divides side $BC$ in the ratio
1/3
0
2,715
Let $ABCD$ be an isosceles trapezoid with $AD=BC$ and $AB<CD.$ Suppose that the distances from $A$ to the lines $BC,CD,$ and $BD$ are $15,18,$ and $10,$ respectively. Let $K$ be the area of $ABCD.$ Find $\sqrt2 \cdot K.$
270
0
2,725
The area of polygon $ABCDEF$, in square units, is
46
0
2,730
Let $ABC$ be an equilateral triangle. Extend side $\overline{AB}$ beyond $B$ to a point $B'$ so that $BB'=3 \cdot AB$. Similarly, extend side $\overline{BC}$ beyond $C$ to a point $C'$ so that $CC'=3 \cdot BC$, and extend side $\overline{CA}$ beyond $A$ to a point $A'$ so that $AA'=3 \cdot CA$. What is the ratio of the area of $\triangle A'B'C'$ to the area of $\triangle ABC$?
16:1
0
2,732
A bug travels from A to B along the segments in the hexagonal lattice pictured below. The segments marked with an arrow can be traveled only in the direction of the arrow, and the bug never travels the same segment more than once. How many different paths are there?
2400
0
2,734
Sides $AB$, $BC$, $CD$ and $DA$ of convex quadrilateral $ABCD$ are extended past $B$, $C$, $D$ and $A$ to points $B'$, $C'$, $D'$ and $A'$, respectively. Also, $AB = BB' = 6$, $BC = CC' = 7$, $CD = DD' = 8$ and $DA = AA' = 9$. The area of $ABCD$ is $10$. The area of $A'B'C'D'$ is
114
0
2,737
The figure is constructed from $11$ line segments, each of which has length $2$. The area of pentagon $ABCDE$ can be written as $\sqrt{m} + \sqrt{n}$, where $m$ and $n$ are positive integers. What is $m + n ?$
23
0
2,746
Which triplet of numbers has a sum NOT equal to 1?
1.1 + (-2.1) + 1.0
0
2,749
A regular hexagon has side length 6. Congruent arcs with radius 3 are drawn with the center at each of the vertices, creating circular sectors as shown. The region inside the hexagon but outside the sectors is shaded as shown What is the area of the shaded region?
54\sqrt{3}-18\pi
0
2,750
An $n$-digit positive integer is cute if its $n$ digits are an arrangement of the set $\{1,2,...,n\}$ and its first $k$ digits form an integer that is divisible by $k$, for $k = 1,2,...,n$. For example, $321$ is a cute $3$-digit integer because $1$ divides $3$, $2$ divides $32$, and $3$ divides $321$. How many cute $6$-digit integers are there?
4
0
2,756
What expression is never a prime number when $p$ is a prime number?
$p^2+26$
0
2,762
A circle of radius $r$ is concentric with and outside a regular hexagon of side length $2$. The probability that three entire sides of hexagon are visible from a randomly chosen point on the circle is $1/2$. What is $r$?
$3\sqrt{2}+\sqrt{6}$
0
2,781
The difference between a $6.5\%$ sales tax and a $6\%$ sales tax on an item priced at $\$20$ before tax is
$0.10
0
2,783
In the complex plane, let $A$ be the set of solutions to $z^{3}-8=0$ and let $B$ be the set of solutions to $z^{3}-8z^{2}-8z+64=0.$ What is the greatest distance between a point of $A$ and a point of $B?$
$2\sqrt{21}$
0
2,787
Let $ABCD$ be a trapezoid with $AB \parallel CD$, $AB=11$, $BC=5$, $CD=19$, and $DA=7$. Bisectors of $\angle A$ and $\angle D$ meet at $P$, and bisectors of $\angle B$ and $\angle C$ meet at $Q$. What is the area of hexagon $ABQCDP$?
$30\sqrt{3}$
0
2,791
If $y=x+\frac{1}{x}$, then $x^4+x^3-4x^2+x+1=0$ becomes:
$x^2(y^2+y-6)=0$
0
2,792
Two right circular cones with vertices facing down as shown in the figure below contain the same amount of liquid. The radii of the tops of the liquid surfaces are $3$ cm and $6$ cm. Into each cone is dropped a spherical marble of radius $1$ cm, which sinks to the bottom and is completely submerged without spilling any liquid. What is the ratio of the rise of the liquid level in the narrow cone to the rise of the liquid level in the wide cone?
4:1
0
2,793
What is equal to $\sqrt{9-6\sqrt{2}}+\sqrt{9+6\sqrt{2}}$?
$2\sqrt{6}$
0
2,796
Vertex $E$ of equilateral $\triangle{ABE}$ is in the interior of unit square $ABCD$. Let $R$ be the region consisting of all points inside $ABCD$ and outside $\triangle{ABE}$ whose distance from $AD$ is between $\frac{1}{3}$ and $\frac{2}{3}$. What is the area of $R$?
\frac{3-\sqrt{3}}{9}
0
2,805
A haunted house has six windows. In how many ways can Georgie the Ghost enter the house by one window and leave by a different window?
18
0
2,812
The arithmetic mean (ordinary average) of the fifty-two successive positive integers beginning at 2 is:
27\frac{1}{2}
0