_id
stringlengths
2
5
partition
stringclasses
2 values
text
stringlengths
5
289k
language
stringclasses
1 value
meta_information
dict
title
stringclasses
1 value
d1901
train
class Solution: def widthOfBinaryTree(self, root): """ :type root: TreeNode :rtype: int """ if not root: return 0 s=1 a=[[root,1]] while 1: b=[] for p in a: if p[0].left: b.append([p[0].left,2*p[1]-1]) if p[0].right: b.append([p[0].right,2*p[1]]) a=b if a: s=max(s,a[-1][1]-a[0][1]+1) else: break return s
PYTHON
{ "starter_code": "\n# Definition for a binary tree node.\nclass TreeNode:\n def __init__(self, val=0, left=None, right=None):\n self.val = val\n self.left = left\n self.right = right\nclass Solution:\n def widthOfBinaryTree(self, root: TreeNode) -> int:\n ", "url": "https://leetcode.com/problems/maximum-width-of-binary-tree/" }
d1902
train
class Solution: def largestIsland(self, grid: List[List[int]]) -> int: directions = [(-1, 0), (1, 0), (0, -1), (0, 1)] for i in range(len(grid)): grid[i].insert(0, 0) grid[i].append(0) grid.insert(0, [0 for i in range(len(grid[0]))]) grid.append([0 for i in range(len(grid[0]))]) islands = [] max_length = 1 for i in range(1, len(grid) - 1): for j in range(1, len(grid[0]) - 1): if grid[i][j] != 1: continue island_id = len(islands) length = 0 connect_length = 0 queue = [(i, j)] grid[i][j] = 2 + island_id while queue: x, y = queue.pop() for dx, dy in directions: this_grid = grid[x + dx][y + dy] if this_grid == 1: grid[x + dx][y + dy] = 2 + island_id queue.append((x + dx, y + dy)) elif isinstance(this_grid, list): new_connect = 0 already = False for old_island_id in this_grid: if old_island_id != island_id: new_connect += islands[old_island_id] else: already = True if not already: connect_length = max(connect_length, new_connect) this_grid.append(island_id) else: grid[x + dx][y + dy] = [island_id] length += 1 islands.append(length) max_length = max(max_length, length + connect_length + 1) return min(max_length, (len(grid) - 2) * (len(grid[0]) - 2))
PYTHON
{ "starter_code": "\nclass Solution:\n def largestIsland(self, grid: List[List[int]]) -> int:\n ", "url": "https://leetcode.com/problems/making-a-large-island/" }
d1903
train
class Solution: def sequentialDigits(self, low: int, high: int) -> List[int]: l=len(str(low)) f=len(str(high)) s=len(str(low)[0]) a=[] for i in range(l,f+1): while True: t='' if i+s>10: break for j in range(s,i+s): t+=str(j) if int(t)>high: break if int(t)<low: s+=1 continue s+=1 a.append(t) s=1 return a
PYTHON
{ "starter_code": "\nclass Solution:\n def sequentialDigits(self, low: int, high: int) -> List[int]:\n ", "url": "https://leetcode.com/problems/sequential-digits/" }
d1904
train
class Solution: def minCostConnectPoints(self, points: List[List[int]]) -> int: n = len(points) dist = [float(\"inf\")] * n remain = set() for i in range(0,n): remain.add(i) dist[0] = 0 remain.discard(0) curr = 0 res = 0 while len(remain) > 0: lo = float(\"inf\") loind = -1 # curr is the next lowest a,b = points[curr] for r in remain: x,y = points[r] tempdist = abs(x-a) + abs(y-b) if tempdist < dist[r]: dist[r] = tempdist tempdist = dist[r] if tempdist < lo: lo = tempdist loind = r res += lo curr = loind # remove curr from remain remain.discard(curr) return res
PYTHON
{ "starter_code": "\nclass Solution:\n def minCostConnectPoints(self, points: List[List[int]]) -> int:\n ", "url": "https://leetcode.com/problems/min-cost-to-connect-all-points/" }
d1905
train
class Solution: def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]: points.sort(key = lambda x: x[0]*x[0] + x[1]*x[1]) return points[:K]
PYTHON
{ "starter_code": "\nclass Solution:\n def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]:\n ", "url": "https://leetcode.com/problems/k-closest-points-to-origin/" }
d1906
train
from math import sqrt class Solution: def largestDivisibleSubset(self, nums): """ :type nums: List[int] :rtype: List[int] """ nums.sort() l, prev = {}, {} # length, previous number(largest divisor in nums) max_l, end_number = 0, None for i in nums: tmp_l, tmp_prev = 0, None for j in range(1, 1 + int(sqrt(i))): if i % j == 0: tmp = i // j if tmp in prev and l[tmp] > tmp_l: tmp_l, tmp_prev = l[tmp], tmp if j in prev and l[j] > tmp_l: tmp_l, tmp_prev = l[j], j tmp_l += 1 prev[i], l[i] = tmp_prev, tmp_l if tmp_l > max_l: max_l, end_number = tmp_l, i ans = [] while end_number is not None: ans.append(end_number) end_number = prev[end_number] return ans
PYTHON
{ "starter_code": "\nclass Solution:\n def largestDivisibleSubset(self, nums: List[int]) -> List[int]:\n ", "url": "https://leetcode.com/problems/largest-divisible-subset/" }
d1907
train
class Solution: def reconstructQueue(self, people): """ :type people: List[List[int]] :rtype: List[List[int]] """ people.sort(key = lambda x: (-x[0], x[1])) queue = [] for p in people: queue.insert(p[1], p) return queue
PYTHON
{ "starter_code": "\nclass Solution:\n def reconstructQueue(self, people: List[List[int]]) -> List[List[int]]:\n ", "url": "https://leetcode.com/problems/queue-reconstruction-by-height/" }
d1908
train
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def getTargetCopy(self, original: TreeNode, cloned: TreeNode, target: TreeNode) -> TreeNode: def getnode(root): if not root: return None elif root.val == target.val: return root else: return getnode(root.left) or getnode(root.right) return getnode(cloned)
PYTHON
{ "starter_code": "\n# Definition for a binary tree node.\n# class TreeNode:\n# def __init__(self, x):\n# self.val = x\n# self.left = None\n# self.right = None\nclass Solution:\n def getTargetCopy(self, original: TreeNode, cloned: TreeNode, target: TreeNode) -> TreeNode:\n ", "url": "https://leetcode.com/problems/find-a-corresponding-node-of-a-binary-tree-in-a-clone-of-that-tree/" }
d1909
train
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def countNodes(self, root): """ :type root: TreeNode :rtype: int """ node = root depth = 0 while node: depth += 1 node = node.left if depth <= 1: return depth lo, hi = 0, 2**(depth-2) while lo < hi: l = depth-3 mi = (lo+hi)//2 node = root while l >= 0: d = mi & 2**l node = node.right if d > 0 else node.left l -= 1 if node.left and node.right: lo = mi+1 elif not node.left and not node.right: hi = mi else: break l, node = depth-3, root while l >= 0: d = mi & 2**l node = node.right if d > 0 else node.left l -= 1 return 2**(depth-1)-1 + 2*mi + int(node.left is not None) + int(node.right is not None)
PYTHON
{ "starter_code": "\n# Definition for a binary tree node.\nclass TreeNode:\n def __init__(self, val=0, left=None, right=None):\n self.val = val\n self.left = left\n self.right = right\nclass Solution:\n def countNodes(self, root: TreeNode) -> int:\n ", "url": "https://leetcode.com/problems/count-complete-tree-nodes/" }
d1910
train
class Solution: def largest1BorderedSquare(self, grid: List[List[int]]) -> int: rows = len(grid) cols = len(grid[0]) memo = [[0 for j in range(cols)] for i in range(rows)] ans = 0 if grid[0][0] == 1: memo[0][0] = (1,1) ans = 1 else: memo[0][0] = (0,0) for i in range(1,rows): if grid[i][0] == 0: memo[i][0] = (0,0) else: memo[i][0] = (memo[i-1][0][0]+1,1) ans = 1 for j in range(1,cols): if grid[0][j] == 0: memo[0][j] = (0,0) else: memo[0][j] = (1,memo[0][j-1][1]+1) ans = 1 for i in range(1,rows): for j in range(1,cols): if grid[i][j] == 0: memo[i][j] = (0,0) else: memo[i][j] = (memo[i-1][j][0]+1, memo[i][j-1][1]+1) ans = 1 for i in range(rows-1,0,-1): for j in range(cols-1,0,-1): l_min = min(memo[i][j][0],memo[i][j][1]) while l_min>ans: if memo[i][j-l_min+1][0]>=l_min and memo[i-l_min+1][j][1]>=l_min: ans = l_min l_min -= 1 return ans*ans
PYTHON
{ "starter_code": "\nclass Solution:\n def largest1BorderedSquare(self, grid: List[List[int]]) -> int:\n ", "url": "https://leetcode.com/problems/largest-1-bordered-square/" }
d1911
train
# Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def kth(self, v, k): for i in range(k-1): if not v: return None v=v.next return v def reverseKGroup(self, head, k): """ :type head: ListNode :type k: int :rtype: ListNode """ if k==1: return head kthnode=self.kth(head, k) v=head head=kthnode if kthnode else head i=0 tmphead=v while kthnode: vprev=kthnode.next for i in range(k): v.next, v, vprev = vprev, v.next, v kthnode=None if not kthnode else kthnode.next tmphead.next=kthnode if kthnode else v tmphead=v return head
PYTHON
{ "starter_code": "\n# Definition for singly-linked list.\nclass ListNode:\n def __init__(self, val=0, next=None):\n self.val = val\n self.next = next\nclass Solution:\n def reverseKGroup(self, head: ListNode, k: int) -> ListNode:\n ", "url": "https://leetcode.com/problems/reverse-nodes-in-k-group/" }
d1912
train
# Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def sortList(self, head): """ :type head: ListNode :rtype: ListNode """ arr = [] p = head while p: arr.append(p.val) p = p.next arr.sort() p = head for el in arr: p.val = el p = p.next return head
PYTHON
{ "starter_code": "\n# Definition for singly-linked list.\nclass ListNode:\n def __init__(self, val=0, next=None):\n self.val = val\n self.next = next\nclass Solution:\n def sortList(self, head: ListNode) -> ListNode:\n ", "url": "https://leetcode.com/problems/sort-list/" }
d1913
train
class Solution: def nextGreatestLetter(self, letters, target): """ :type letters: List[str] :type target: str :rtype: str """ if ord(letters[-1]) <= ord(target): return letters[0] li = 0 ri = len(letters) - 1 while li <= ri: if li == ri: return letters[li] mi = li + (ri - li)//2 if ord(letters[mi]) > ord(target): ri = mi else: li = mi + 1
PYTHON
{ "starter_code": "\nclass WordFilter:\n def __init__(self, words: List[str]):\n def f(self, prefix: str, suffix: str) -> int:\n# Your WordFilter object will be instantiated and called as such:\n# obj = WordFilter(words)\n# param_1 = obj.f(prefix,suffix)", "url": "https://leetcode.com/problems/prefix-and-suffix-search/" }
d1914
train
class Solution: def prevPermOpt1(self, A: List[int]) -> List[int]: n = len(A) if n == 1: return A tidx = -1 for i in range(n-2, -1, -1): if A[i] > A[i+1]: tidx = i break if tidx < 0: return A sidx = -1 for j in range(n-1, tidx, -1): if A[j] == A[j-1]: continue if A[j] < A[tidx]: sidx = j break A[tidx], A[sidx] = A[sidx], A[tidx] return A
PYTHON
{ "starter_code": "\nclass Solution:\n def prevPermOpt1(self, A: List[int]) -> List[int]:\n ", "url": "https://leetcode.com/problems/previous-permutation-with-one-swap/" }
d1915
train
class Solution: def twoCitySchedCost(self, costs: List[List[int]]) -> int: dcosts = sorted(costs, key=lambda i: i[0] - i[1]) n = len(costs) // 2 acost = sum(c[0] for c in dcosts[:n]) bcost = sum(c[1] for c in dcosts[n:]) return acost + bcost
PYTHON
{ "starter_code": "\nclass Solution:\n def twoCitySchedCost(self, costs: List[List[int]]) -> int:\n ", "url": "https://leetcode.com/problems/two-city-scheduling/" }
d1916
train
''' \"aabcaca\" 0123456 x devide conquer 先找到第一个stamp把string分成左右两部分(必须要)(On 然后从长到短用stamp的头match左边的部分,直到match到最头 如果不能到最头则退出 从长到短用stamp的尾巴match右边,直到match到尾巴,如果不能match到最尾巴 则 继续找下一个stamp 能把他分成左右 这时的左边有个offset了,比如****b** offset是3,只要stamp的长度不超过头且能match上,就可以 这个解法可以有nwin*M^2 其中m平方是在用stamp去match的时候最坏能从stamp最长match到1 可以给出最短match路径 ''' class Solution: def movesToStamp(self, stamp: str, target: str) -> List[int]: ans = [] offset = 0 while target!='': x = target.find(stamp) if x==-1: return [] ans.append(x+offset) can_stamp,indices = self.moveLeft(stamp,target[:x],offset) if not can_stamp: return [] ans.extend(indices) offset,target,indices = self.moveRight(stamp,target[x+len(stamp):], offset+x+len(stamp)) ans.extend(indices) return ans[::-1] def moveLeft(self,stamp,s,offset): ans = [] while s: for ind in range(1,len(stamp)): additional = 0 if ind>len(s): if offset == 0: continue additional = ind - len(s) if stamp[additional:ind]==s[-ind:]: ans.append(offset+len(s)-ind) s=s[:-ind] break else: return False,[] return True,ans def moveRight(self,stamp,s,offset): ans = [] while s: for ind in range(1,len(stamp)): if stamp[-ind:]==s[:ind]: ans.append(offset+ind-len(stamp)) offset+=ind s=s[ind:] break else: return offset,s,ans return offset,s,ans
PYTHON
{ "starter_code": "\nclass Solution:\n def movesToStamp(self, stamp: str, target: str) -> List[int]:\n ", "url": "https://leetcode.com/problems/stamping-the-sequence/" }
d1917
train
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def currentmax(self,root): leftval = 0 if root.left != None: leftval = self.currentmax(root.left) leftval = 0 if leftval < 0 else leftval rightval = 0 if root.right != None: rightval = self.currentmax(root.right) rightval = 0 if rightval < 0 else rightval currentnode = leftval + rightval + root.val if self.flag == 0: self.ans = currentnode self.flag = 1 else: self.ans = self.ans if self.ans > currentnode else currentnode return root.val + (leftval if leftval > rightval else rightval) def maxPathSum(self, root): self.ans = 0 self.flag = 0 self.currentmax(root) return self.ans
PYTHON
{ "starter_code": "\n# Definition for a binary tree node.\nclass TreeNode:\n def __init__(self, val=0, left=None, right=None):\n self.val = val\n self.left = left\n self.right = right\nclass Solution:\n def maxPathSum(self, root: TreeNode) -> int:\n ", "url": "https://leetcode.com/problems/binary-tree-maximum-path-sum/" }
d1918
train
class Solution(object): loc=0 lastloc=-1 f='' def getNext(self,formular,locked=False): stype=0 # 0:null, 1:numeric, 2/20: Elem, 3: parenthesis ret=0 if self.loc==self.lastloc: return (0,0) i=self.loc while i <len(formular): if stype in (0,1) and formular[i].isnumeric(): ret=int(formular[i])+ret*10 stype=1 elif stype==0 and formular[i].isupper(): stype=20 ret=formular[i] elif stype in (20,2) and formular[i].islower(): stype=2 ret+=formular[i] elif stype==0 and formular[i] in "()": stype=3+"()".index(formular[i]) ret=formular[i] else: break i+=1 if not locked: self.lastloc=self.loc self.loc=i return (stype,ret) def countOfAtoms(self, formula): stk=[] cnt={} r='' self.loc=0 n=self.getNext(formula) while n!=(0,0): if n[0] in (2,3,20): stk.append([n[1],1]) elif n[0]==1: stk[-1][1]=n[1] elif n[0]==4: time=1 i=-1 if self.getNext(formula,True)[0]==1: time=self.getNext(formula)[1] while stk[i][0]!='(': stk[i][1]*=time i-=1 stk[i][0]='$' n=self.getNext(formula) while any(stk): n=stk.pop() if n[0]!='$': cnt[n[0]]=cnt.get(n[0],0)+n[1] for i in sorted(cnt.keys()): r+="%s%d"%(i,cnt[i]) if cnt[i]>1 else i return r
PYTHON
{ "starter_code": "\nclass Solution:\n def countOfAtoms(self, formula: str) -> str:\n ", "url": "https://leetcode.com/problems/number-of-atoms/" }
d1919
train
from collections import defaultdict class Solution: def findItinerary(self, tickets): """ :type tickets: List[List[str]] :rtype: List[str] """ graph = defaultdict(list) for from_, to_ in tickets: graph[from_].append(to_) for each in graph: graph[each].sort() res = [] self.dfs(graph, "JFK", res) return res[::-1] def dfs(self, graph, from_, results): while graph[from_]: curr = graph[from_].pop(0) self.dfs(graph, curr, results) results.append(from_)
PYTHON
{ "starter_code": "\nclass Solution:\n def findItinerary(self, tickets: List[List[str]]) -> List[str]:\n ", "url": "https://leetcode.com/problems/reconstruct-itinerary/" }
d1920
train
class Solution: def findOrder(self, numCourses, prerequisites): """ :type numCourses: int :type prerequisites: List[List[int]] :rtype: List[int] """ n = numCourses graph = {} for post, pre in prerequisites: if pre in graph: graph[pre].append(post) else: graph[pre] = [post] WHITE = 0 # never explored. NOT CHECKED GREY = 1 # in the stack, exploring. CHECKING BLACK = 2 # finished explored and we know for a fact there's no loop originated from this. CHECKED state = [WHITE for _ in range(0, n)] res = [] def dfs(i): state[i] = GREY for child in graph.get(i, []): if state[child] == GREY: return False elif state[child] == WHITE: if not dfs(child): return False state[i] = BLACK res.insert(0, i) return True for i in range(0, n): if state[i] != BLACK: if not dfs(i): return [] return res
PYTHON
{ "starter_code": "\nclass Solution:\n def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:\n ", "url": "https://leetcode.com/problems/course-schedule-ii/" }
d1921
train
class TimeMap: def __init__(self): \"\"\" Initialize your data structure here. \"\"\" self.store = {} self.times = {} def set(self, key: str, value: str, timestamp: int) -> None: if key not in self.store: self.store[key] = [value] self.times[key] = [timestamp] else: self.store[key].append(value) self.times[key].append(timestamp) def get(self, key: str, timestamp: int) -> str: if key not in self.store: return \"\" else: lst = self.times[key] if timestamp < lst[0]: return \"\" elif timestamp >=lst[-1]: return self.store[key][-1] else: l = 0 r = len(lst)-1 while l < r: mid = (l+r)//2 if lst[mid] < timestamp: r = mid elif lst[mid] == timestamp: return self.store[key][mid] else: l = mid return self.store[key][r] # Your TimeMap object will be instantiated and called as such: # obj = TimeMap() # obj.set(key,value,timestamp) # param_2 = obj.get(key,timestamp)
PYTHON
{ "starter_code": "\nclass TimeMap:\n def __init__(self):\n \"\"\"\n Initialize your data structure here.\n \"\"\"\n def set(self, key: str, value: str, timestamp: int) -> None:\n def get(self, key: str, timestamp: int) -> str:\n# Your TimeMap object will be instantiated and called as such:\n# obj = TimeMap()\n# obj.set(key,value,timestamp)\n# param_2 = obj.get(key,timestamp)", "url": "https://leetcode.com/problems/time-based-key-value-store/" }
d1922
train
from heapq import heapify, heappush, heappop class DinnerPlates: # index * cap -> access start of stack at index # index * cap + (cap - 1) -> access last element of stack at index def __init__(self, capacity: int): self.stack = [] # just one array to simulate all the stacks self.cap = capacity self.idx = [] # min-heap to track empty indicies def push(self, val: int) -> None: if len(self.idx) > 0: while len(self.idx) > 0: i = heappop(self.idx) # Given that we just push index but don't validate the cache while # poping we need to check if this index is within current limits if i < len(self.stack): self.stack[i] = val return # we didn't find empty spaces so we add to the end self.stack.append(val) def pop(self) -> int: n = len(self.stack) - 1 if n < 0: return -1 while n > -1: if self.stack[n] != -1: v = self.stack[n] self.stack[n] = -1 # Add the empty index to the heap heappush(self.idx , n) return v else: # Because those appear at the end the list we free those memory spaces so # later pop operations are optimized del(self.stack[n]) n -= 1 # All stacks are empty return -1 def popAtStack(self, index: int) -> int: # additional check that is [optional] just to skip any effort # if index is already out of current limits count = len(self.stack) // self.cap if index > count: return -1 # capture the boundaries of this stack leftptr = (index * self.cap) rightptr = leftptr + self.cap - 1 if rightptr > (len(self.stack) - 1): # edge case rightptr = (len(self.stack) - 1) # traverse within the stack at this index until we empty it or we find an occupied location while self.stack[rightptr] == -1 and rightptr >= leftptr: rightptr -=1 # if it isn't empty it means we found occupied position if rightptr >= leftptr: v = self.stack[rightptr] self.stack[rightptr] = -1 # Add the empty index to the heap heappush(self.idx , rightptr) return v else: return -1
PYTHON
{ "starter_code": "\nclass DinnerPlates:\n def __init__(self, capacity: int):\n def push(self, val: int) -> None:\n def pop(self) -> int:\n def popAtStack(self, index: int) -> int:\n# Your DinnerPlates object will be instantiated and called as such:\n# obj = DinnerPlates(capacity)\n# obj.push(val)\n# param_2 = obj.pop()\n# param_3 = obj.popAtStack(index)", "url": "https://leetcode.com/problems/dinner-plate-stacks/" }
d1923
train
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def minCameraCover(self, root: TreeNode) -> int: def dfs(node): if not node: return 2 left = dfs(node.left) right = dfs(node.right) if left == 0 or right == 0: self.res += 1 return 1 if left == 1 or right == 1: return 2 else: return 0 self.res = 0 return (dfs(root) == 0) + self.res
PYTHON
{ "starter_code": "\n# Definition for a binary tree node.\nclass TreeNode:\n def __init__(self, val=0, left=None, right=None):\n self.val = val\n self.left = left\n self.right = right\nclass Solution:\n def minCameraCover(self, root: TreeNode) -> int:\n ", "url": "https://leetcode.com/problems/binary-tree-cameras/" }
d1924
train
class Solution: def countSmaller(self, nums): """ :type nums: List[int] :rtype: List[int] """ s = sorted(nums) c = [] for n in nums: p = bisect.bisect_left(s, n) c.append(p) s.pop(p) return c
PYTHON
{ "starter_code": "\nclass Solution:\n def countSmaller(self, nums: List[int]) -> List[int]:\n ", "url": "https://leetcode.com/problems/count-of-smaller-numbers-after-self/" }
d1925
train
class Transaction: def __init__(self, name, time, amount, city): self.name = name self.time = int(time) self.amount = int(amount) self.city = city def array(self): return f\"{self.name},{self.time},{self.amount},{self.city}\" from collections import defaultdict class Solution: def invalidTransactions(self, transactions): transactions = [Transaction(*transaction.split(',')) for transaction in transactions] transactions.sort(key=lambda t: t.time) # O(nlogn) time trans_indexes = defaultdict(list) for i, t in enumerate(transactions): # O(n) time trans_indexes[t.name].append(i) res = [] for name, indexes in trans_indexes.items(): # O(n) time left = right = 0 for i, t_index in enumerate(indexes): t = transactions[t_index] if (t.amount > 1000): res.append(\"{},{},{},{}\".format(t.name, t.time, t.amount, t.city)) continue while left <= t_index and transactions[indexes[left]].time < t.time - 60: # O(60) time left += 1 while right <= len(indexes)-2 and transactions[indexes[right+1]].time <= t.time + 60: # O(60) time right += 1 for i in range(left,right+1): # O(120) time if transactions[indexes[i]].city != t.city: res.append(t.array()) break return res
PYTHON
{ "starter_code": "\nclass Solution:\n def invalidTransactions(self, transactions: List[str]) -> List[str]:\n ", "url": "https://leetcode.com/problems/invalid-transactions/" }
d1926
train
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def bstFromPreorder(self, preorder: List[int]) -> TreeNode: # time O(n); space O(n) vals = deque(preorder) def build(min_val, max_val): if vals and min_val < vals[0] < max_val: val = vals.popleft() node = TreeNode(val) node.left = build(min_val, val) node.right = build(val, max_val) return node return build(float('-inf'), float('inf'))
PYTHON
{ "starter_code": "\n# Definition for a binary tree node.\nclass TreeNode:\n def __init__(self, val=0, left=None, right=None):\n self.val = val\n self.left = left\n self.right = right\nclass Solution:\n def bstFromPreorder(self, preorder: List[int]) -> TreeNode:\n ", "url": "https://leetcode.com/problems/construct-binary-search-tree-from-preorder-traversal/" }
d1927
train
import collections import itertools def prime_factors(n): i = 2 while i * i <= n: if n % i == 0: n /= i yield i else: i += 1 if n > 1: yield n def prod(iterable): result = 1 for i in iterable: result *= i return result def get_divisors(n): pf = prime_factors(n) pf_with_multiplicity = collections.Counter(pf) powers = [ [factor ** i for i in range(count + 1)] for factor, count in list(pf_with_multiplicity.items()) ] for prime_power_combo in itertools.product(*powers): yield prod(prime_power_combo) class Solution: def closestDivisors(self, num: int) -> List[int]: d1 = sorted(list(get_divisors(num+1))) d2 = sorted(list(get_divisors(num+2))) if len(d1) % 2 == 1: mid = d1[int((len(d1) - 1)/2)] return [int(mid), int(mid)] if len(d2) % 2 == 1: mid = d2[int((len(d2) - 1)/2)] return [int(mid), int(mid)] l1, r1 = d1[int(len(d1)/2)],d1[int(len(d1)/2)-1] l2, r2 = d2[int(len(d2)/2)],d2[int(len(d2)/2)-1] if abs(l1-r1) < abs(l2-r2): return [int(l1),int(r1)] else: return [int(l2),int(r2)]
PYTHON
{ "starter_code": "\nclass Solution:\n def closestDivisors(self, num: int) -> List[int]:\n ", "url": "https://leetcode.com/problems/closest-divisors/" }
d1928
train
class Solution: def asteroidCollision(self, asteroids): """ :type asteroids: List[int] :rtype: List[int] """ l=len(asteroids) if l<2: return asteroids ans=[] stack=[] for a in asteroids: if a>0: stack.append(a) else: a=-a equal_flag=False while stack: cur=stack.pop() if cur==a: equal_flag=True break elif cur>a: stack.append(cur) break if equal_flag: continue if not stack: ans.append(-a) return ans+stack
PYTHON
{ "starter_code": "\nclass Solution:\n def asteroidCollision(self, asteroids: List[int]) -> List[int]:\n ", "url": "https://leetcode.com/problems/asteroid-collision/" }
d1929
train
# """ # This is the interface that allows for creating nested lists. # You should not implement it, or speculate about its implementation # """ #class NestedInteger: # def __init__(self, value=None): # """ # If value is not specified, initializes an empty list. # Otherwise initializes a single integer equal to value. # """ # # def isInteger(self): # """ # @return True if this NestedInteger holds a single integer, rather than a nested list. # :rtype bool # """ # # def add(self, elem): # """ # Set this NestedInteger to hold a nested list and adds a nested integer elem to it. # :rtype void # """ # # def setInteger(self, value): # """ # Set this NestedInteger to hold a single integer equal to value. # :rtype void # """ # # def getInteger(self): # """ # @return the single integer that this NestedInteger holds, if it holds a single integer # Return None if this NestedInteger holds a nested list # :rtype int # """ # # def getList(self): # """ # @return the nested list that this NestedInteger holds, if it holds a nested list # Return None if this NestedInteger holds a single integer # :rtype List[NestedInteger] # """ class Solution: def deserialize(self, s): """ :type s: str :rtype: NestedInteger """ root_ni = NestedInteger() ni_stack = collections.deque() current_ni = root_ni active_number = None is_positive = True for i, c in enumerate(s): if c == '-': is_positive = False active_number = 0 elif c.isdigit(): # Check if the previous was a digit as well. if active_number is None: active_number = int(c) else: active_number = int(c) + active_number * 10 else: if active_number is not None: if not is_positive: active_number *= -1 current_ni.add(active_number) active_number = None is_positive = True if c == '[' and i > 0: ni_stack.append(current_ni) current_ni = NestedInteger() elif c == ']' and len(ni_stack) > 0: ni_stack[-1].add(current_ni) current_ni = ni_stack.pop() if active_number is not None: if not is_positive: active_number *= -1 if not current_ni.getList(): current_ni.setInteger(active_number) else: current_ni.add(active_number) return root_ni
PYTHON
{ "starter_code": "\n# \"\"\"\n# This is the interface that allows for creating nested lists.\n# You should not implement it, or speculate about its implementation\n# \"\"\"\n#class NestedInteger:\n# def __init__(self, value=None):\n# \"\"\"\n# If value is not specified, initializes an empty list.\n# Otherwise initializes a single integer equal to value.\n# \"\"\"\n#\n# def isInteger(self):\n# \"\"\"\n# @return True if this NestedInteger holds a single integer, rather than a nested list.\n# :rtype bool\n# \"\"\"\n#\n# def add(self, elem):\n# \"\"\"\n# Set this NestedInteger to hold a nested list and adds a nested integer elem to it.\n# :rtype void\n# \"\"\"\n#\n# def setInteger(self, value):\n# \"\"\"\n# Set this NestedInteger to hold a single integer equal to value.\n# :rtype void\n# \"\"\"\n#\n# def getInteger(self):\n# \"\"\"\n# @return the single integer that this NestedInteger holds, if it holds a single integer\n# Return None if this NestedInteger holds a nested list\n# :rtype int\n# \"\"\"\n#\n# def getList(self):\n# \"\"\"\n# @return the nested list that this NestedInteger holds, if it holds a nested list\n# Return None if this NestedInteger holds a single integer\n# :rtype List[NestedInteger]\n# \"\"\"\nclass Solution:\n def deserialize(self, s: str) -> NestedInteger:\n ", "url": "https://leetcode.com/problems/mini-parser/" }
d1930
train
class StreamChecker: def __init__(self, words: List[str]): #reverse trie self.trie = {} self.stream = deque([]) for word in set(words): node = self.trie for ch in word[::-1]: if not ch in node: node[ch] = {} node = node[ch] node['$'] = word def query(self, letter: str) -> bool: self.stream.appendleft(letter) node = self.trie for ch in self.stream: if '$' in node: return True if not ch in node: return False node = node[ch] return '$' in node # Your StreamChecker object will be instantiated and called as such: # obj = StreamChecker(words) # param_1 = obj.query(letter)
PYTHON
{ "starter_code": "\nclass StreamChecker:\n def __init__(self, words: List[str]):\n def query(self, letter: str) -> bool:\n# Your StreamChecker object will be instantiated and called as such:\n# obj = StreamChecker(words)\n# param_1 = obj.query(letter)", "url": "https://leetcode.com/problems/stream-of-characters/" }
d1931
train
class Cashier: def __init__(self, n: int, discount: int, products: List[int], prices: List[int]): self.n = n self.count = 0 self.discount = discount self.products = {} for i in range(0, len(products)): self.products[products[i]] = prices[i] def getBill(self, product: List[int], amount: List[int]) -> float: self.count += 1 subtotal = 0 for i in range(0, len(product)): subtotal += self.products[product[i]] * amount[i] if self.count == self.n: subtotal = subtotal - (self.discount * subtotal) / 100 self.count = 0 return subtotal # Your Cashier object will be instantiated and called as such: # obj = Cashier(n, discount, products, prices) # param_1 = obj.getBill(product,amount)
PYTHON
{ "starter_code": "\nclass Cashier:\n def __init__(self, n: int, discount: int, products: List[int], prices: List[int]):\n def getBill(self, product: List[int], amount: List[int]) -> float:\n# Your Cashier object will be instantiated and called as such:\n# obj = Cashier(n, discount, products, prices)\n# param_1 = obj.getBill(product,amount)", "url": "https://leetcode.com/problems/apply-discount-every-n-orders/" }
d1932
train
class Solution(object): def isSubPath(self, h, r0): h_vals = [] while h: h_vals.append(str(h.val)) h = h.next h_str = ('-'.join(h_vals)) + '-' # serialized list st = [(r0, '-')] # DFS stack while st: r, pre = st.pop() if not r: continue pre = pre + str(r.val) + '-' if pre.endswith(h_str): return True st.append((r.left, pre)) st.append((r.right, pre)) return False
PYTHON
{ "starter_code": "\n# Definition for singly-linked list.\nclass ListNode:\n def __init__(self, val=0, next=None):\n self.val = val\n self.next = next\n# Definition for a binary tree node.\nclass TreeNode:\n def __init__(self, val=0, left=None, right=None):\n self.val = val\n self.left = left\n self.right = right\nclass Solution:\n def isSubPath(self, head: ListNode, root: TreeNode) -> bool:\n ", "url": "https://leetcode.com/problems/linked-list-in-binary-tree/" }
d1933
train
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def btreeGameWinningMove(self, root: TreeNode, n: int, x: int) -> bool: def count(node): if not node: return 0 return 1 + count(node.left) + count(node.right) xNode = [0, 0] def process(node): if node: if node.val == x: xNode[0] = count(node.left) xNode[1] = count(node.right) else: process(node.left) process(node.right) return process(root) player2 = max(xNode[0], xNode[1], n - (xNode[0] + xNode[1] + 1)) # the maximum nodes I can color return player2 > n // 2
PYTHON
{ "starter_code": "\n# Definition for a binary tree node.\nclass TreeNode:\n def __init__(self, val=0, left=None, right=None):\n self.val = val\n self.left = left\n self.right = right\nclass Solution:\n def btreeGameWinningMove(self, root: TreeNode, n: int, x: int) -> bool:\n ", "url": "https://leetcode.com/problems/binary-tree-coloring-game/" }
d1934
train
class Solution: def complexNumberMultiply(self, a, b): """ :type a: str :type b: str :rtype: str """ a = a.split('+') b = b.split('+') a[1] = a[1][:-1] b[1] = b[1][:-1] a = list(map(int, a)) b = list(map(int, b)) print((a, b)) r = a[0]*b[0] - a[1]*b[1] i = a[1]*b[0] + a[0]*b[1] print((r, i)) return "{0}+{1}i".format(r, i)
PYTHON
{ "starter_code": "\nclass Solution:\n def complexNumberMultiply(self, a: str, b: str) -> str:\n ", "url": "https://leetcode.com/problems/complex-number-multiplication/" }
d1935
train
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def zigzagLevelOrder(self, root): """ :type root: TreeNode :rtype: List[List[int]] """ if root is None: return [] res = [] level_num = 1 level = [root] while len(level) != 0: level_size = len(level) level_res = [None]*level_size for i in range(level_size): curr = level.pop(0) level_res[i] = curr.val if curr.left is not None: level.append(curr.left) if curr.right is not None: level.append(curr.right) if level_num % 2: res.append(level_res) else: level_res.reverse() res.append(level_res) level_num += 1 return res
PYTHON
{ "starter_code": "\n# Definition for a binary tree node.\nclass TreeNode:\n def __init__(self, val=0, left=None, right=None):\n self.val = val\n self.left = left\n self.right = right\nclass Solution:\n def zigzagLevelOrder(self, root: TreeNode) -> List[List[int]]:\n ", "url": "https://leetcode.com/problems/binary-tree-zigzag-level-order-traversal/" }
d1936
train
class Solution: def isToeplitzMatrix(self, matrix): """ :type matrix: List[List[int]] :rtype: bool """ if not matrix: return False colSize = len(matrix[0]) - 1 for row in range(len(matrix) - 1): if matrix[row][:colSize] != matrix[row+1][1:colSize+1]: return False return True
PYTHON
{ "starter_code": "\nclass Solution:\n def canTransform(self, start: str, end: str) -> bool:\n ", "url": "https://leetcode.com/problems/swap-adjacent-in-lr-string/" }
d1937
train
class Solution: def pathInZigZagTree(self, label: int) -> List[int]: res = [] level = 0 nodes_count = 0 while nodes_count < label: nodes_count += 2**level level += 1 while label != 0: res.append(label) level_max = (2**level) - 1 level_min = 2**(level-1) label = (level_max + level_min - label) // 2 level -= 1 return res[::-1]
PYTHON
{ "starter_code": "\nclass Solution:\n def pathInZigZagTree(self, label: int) -> List[int]:\n ", "url": "https://leetcode.com/problems/path-in-zigzag-labelled-binary-tree/" }
d1938
train
class ThroneInheritance: def __init__(self, kingName: str): self.graph = collections.defaultdict(list) self.deaths = set() self.root = kingName def birth(self, parentName: str, childName: str) -> None: self.graph[parentName].append(childName) def death(self, name: str) -> None: self.deaths.add(name) def inorder(self, root, res): if root not in self.deaths: res.append(root) children = self.graph[root] for child in children: self.inorder(child, res) def getInheritanceOrder(self) -> List[str]: res = [] self.inorder(self.root, res) return res # Your ThroneInheritance object will be instantiated and called as such: # obj = ThroneInheritance(kingName) # obj.birth(parentName,childName) # obj.death(name) # param_3 = obj.getInheritanceOrder()
PYTHON
{ "starter_code": "\nclass ThroneInheritance:\n def __init__(self, kingName: str):\n def birth(self, parentName: str, childName: str) -> None:\n def death(self, name: str) -> None:\n def getInheritanceOrder(self) -> List[str]:\n# Your ThroneInheritance object will be instantiated and called as such:\n# obj = ThroneInheritance(kingName)\n# obj.birth(parentName,childName)\n# obj.death(name)\n# param_3 = obj.getInheritanceOrder()", "url": "https://leetcode.com/problems/throne-inheritance/" }
d1939
train
class Solution: def rectangleArea(self, rectangles: List[List[int]]) -> int: def getArea(width): res = 0 prev_low = 0 for low, high in intervals: low = max(prev_low, low) if high > low: res += (high - low)*width prev_low = high return res MOD = 10**9 + 7 # convert list of rectangles to events events = [] for x1, y1, x2, y2 in rectangles: events.append((x1, 0, y1, y2)) #in events.append((x2, 1, y1, y2)) #out events.sort(key = lambda x : (x[0], x[1])) # sweep to calculate area intervals = [] area = 0 prev_x = 0 for event in events: cur_x, type, low, high = event area += getArea(cur_x - prev_x) if type == 1: intervals.remove((low, high)) else: intervals.append((low, high)) intervals.sort() prev_x = cur_x return area % MOD
PYTHON
{ "starter_code": "\nclass Solution:\n def rectangleArea(self, rectangles: List[List[int]]) -> int:\n ", "url": "https://leetcode.com/problems/rectangle-area-ii/" }
d1940
train
class Solution: def spellchecker(self, wordlist: List[str], queries: List[str]) -> List[str]: original = set(wordlist) insensitive = {w.lower(): w for w in reversed(wordlist)} vowels = {} for c in reversed(wordlist): w = c.lower() t = w.replace('a', '_').replace('e', '_').replace('i', '_').replace('o', '_').replace('u', '_') vowels[t] = c results = [] for q in queries: if q in original: results.append(q) continue low = q.lower() if low in insensitive: results.append(insensitive[low]) continue # vowel replace t = low.replace('a', '_').replace('e', '_').replace('i', '_').replace('o', '_').replace('u', '_') if t in vowels: results.append(vowels[t]) continue results.append(\"\") return results
PYTHON
{ "starter_code": "\nclass Solution:\n def spellchecker(self, wordlist: List[str], queries: List[str]) -> List[str]:\n ", "url": "https://leetcode.com/problems/vowel-spellchecker/" }
d1941
train
# Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def nextLargerNodes(self, head: ListNode) -> List[int]: if head==None: return 0 temp=head arr=[] stack=[] while temp: arr.append(temp.val) temp=temp.__next__ output=[0]*len(arr) for i in range(len(arr)): while stack and arr[stack[-1]]<arr[i]: output[stack.pop()]=arr[i] stack.append(i) return output
PYTHON
{ "starter_code": "\n# Definition for singly-linked list.\nclass ListNode:\n def __init__(self, val=0, next=None):\n self.val = val\n self.next = next\nclass Solution:\n def nextLargerNodes(self, head: ListNode) -> List[int]:\n ", "url": "https://leetcode.com/problems/next-greater-node-in-linked-list/" }
d1942
train
class Solution: def findNumOfValidWords(self, words: List[str], puzzles: List[str]) -> List[int]: # 1st step # construct a mask for each word # note that there may be duplicate mask for different words # so we need a dict to count the number orda = ord('a') # 97 mask = defaultdict(int) # word mask for w in words: m = 0 for c in w: m |= 1 << (ord(c) - orda) mask[m] += 1 # 2nd step # for each puzzle, construct the corresponding mask for each possible valid word, check whether the word is in mask res = [] for p in puzzles: ones = [] # separate current puzzle into ones, 'bdeg' -> 0b1011010 -> [0b10(b), 0b1000(d), 0b10000(e), 0b1000000(g)] for c in p: ones.append(1 << (ord(c) - orda)) # generate all valid words for the current puzzle # equivalent to generate all subsets of ones[1:] # reuse code from [78. Subsets] valid = [ones[0]] # valid word must contains the first char of current puzzle for i in range(1,7): # bfs to generate all valid words valid.extend([ones[i] + v for v in valid]) # for each valid word, check whether it's in mask novw = 0 # number of valid words for current puzzle for v in valid: if v in mask: novw += mask[v] res.append(novw) return res
PYTHON
{ "starter_code": "\nclass Solution:\n def findNumOfValidWords(self, words: List[str], puzzles: List[str]) -> List[int]:\n ", "url": "https://leetcode.com/problems/number-of-valid-words-for-each-puzzle/" }
d1943
train
class Solution: def peopleIndexes(self, favoriteCompanies: List[List[str]]) -> List[int]: result = [] fcSet = [set(fc) for fc in favoriteCompanies] n = len(favoriteCompanies) for i, fcs1 in enumerate(fcSet): for j, fcs2 in enumerate(fcSet): if i==j: continue if fcs1<fcs2: break else: result.append(i) return result
PYTHON
{ "starter_code": "\nclass Solution:\n def peopleIndexes(self, favoriteCompanies: List[List[str]]) -> List[int]:\n ", "url": "https://leetcode.com/problems/people-whose-list-of-favorite-companies-is-not-a-subset-of-another-list/" }
d1944
train
class Solution: def intervalIntersection(self, A: List[List[int]], B: List[List[int]]) -> List[List[int]]: result = [] i = j = 0 while i < len(A) and j < len(B): low = max(A[i][0], B[j][0]) high = min(A[i][1], B[j][1]) if low <= high: result.append([low, high]) if A[i][1] > B[j][1]: j += 1 elif A[i][1] < B[j][1]: i += 1 else: i += 1 j += 1 return result
PYTHON
{ "starter_code": "\nclass Solution:\n def intervalIntersection(self, A: List[List[int]], B: List[List[int]]) -> List[List[int]]:\n ", "url": "https://leetcode.com/problems/interval-list-intersections/" }
d1945
train
class Solution: def calc(self, part): part += "+" ## added tmp symbol in the end to sum last item within the loop start = x = n = 0 coeff = 1 for end, char in enumerate(part): # print("charIdx:", equation[end], "char: ", char, char == "+" or char == "-", "slice: ", equation[start:end]) if char == "+" or char == "-": var = part[start:end] if var == "": continue if "x" in var: var = var[:-1] if var in ["", "+"]: var = 1 elif var == "-": var = -1 x += int(var) * coeff start = end else: n += int(var) * coeff start = end return x, n def solveEquation(self, equation): """ :type equation: str :rtype: str """ # how big is N # time vs. space complexity? # split by "=" to left and right; time complexity: O(N) # sums Xs and consts on both sides (left and right) # take a difference b/w the sides' sums # simplify dividing by X's coeff # if x==0 and n==0 on the other - infinite # if x==0 and a constant on the other - no solution # if x on one side, and a constant on the other - solution # test: 2-x+2x-x-x+1=x # test2: "x+5-3+x=6+x-2" # test2: "+5-3+x=6+x-2" # -x=-1 left, right = equation.split("=") x1, n1 = self.calc(left) # O(leftN) x2, n2 = self.calc(right) # O(rightN) x, n = x1 - x2, n1 - n2 n = n / x if (x != 0) else n x = 1 if (x != 0) else x if x == 0 and n != 0: return "No solution" if x == 0 and n == 0: return "Infinite solutions" return "x={}".format(int(-n)) # time complexity O(N)
PYTHON
{ "starter_code": "\nclass Solution:\n def solveEquation(self, equation: str) -> str:\n ", "url": "https://leetcode.com/problems/solve-the-equation/" }
d1946
train
class Solution: def maxEqualRowsAfterFlips(self, matrix: List[List[int]]) -> int: dict_ = {} for row in matrix: curr_tuple = tuple(row) dict_[curr_tuple] = 1 + dict_.get(curr_tuple,0) visited = set() max_same = 0 for row in matrix: curr_tuple = tuple(row) if curr_tuple in visited: continue visited.add(curr_tuple) inverse = [1] * len(row) for i in range (len(row)): if row[i]: inverse[i] = 0 curr_inv = tuple(inverse) visited.add(curr_inv) curr_sum = 0 curr_sum = dict_[curr_tuple] if curr_inv in dict_: curr_sum += dict_[curr_inv] if curr_sum > max_same: max_same = curr_sum return max_same
PYTHON
{ "starter_code": "\nclass Solution:\n def maxEqualRowsAfterFlips(self, matrix: List[List[int]]) -> int:\n ", "url": "https://leetcode.com/problems/flip-columns-for-maximum-number-of-equal-rows/" }
d1947
train
from collections import defaultdict, deque from heapq import merge from itertools import islice class Twitter: def __init__(self): """ Initialize your data structure here. """ self.id2tweets = defaultdict(deque) self.id2follows = defaultdict(set) self.uid = 0 def postTweet(self, userId, tweetId): """ Compose a new tweet. :type userId: int :type tweetId: int :rtype: void """ self.id2tweets[userId].appendleft((self.uid, tweetId)) self.uid -= 1 #print(userId, 'POST', tweetId, self.id2tweets) def getNewsFeed(self, userId): """ Retrieve the 10 most recent tweet ids in the user's news feed. Each item in the news feed must be posted by users who the user followed or by the user herself. Tweets must be ordered from most recent to least recent. :type userId: int :rtype: List[int] """ #print('GET', userId, self.id2tweets, self.id2follows) tweets = heapq.merge(*(self.id2tweets[u] for u in self.id2follows[userId] | {userId})) return [tweet_id for _, tweet_id in islice(tweets, 10)] def follow(self, followerId, followeeId): """ Follower follows a followee. If the operation is invalid, it should be a no-op. :type followerId: int :type followeeId: int :rtype: void """ self.id2follows[followerId].add(followeeId) #print(followerId, 'FOLLOW', followeeId, self.id2follows) def unfollow(self, followerId, followeeId): """ Follower unfollows a followee. If the operation is invalid, it should be a no-op. :type followerId: int :type followeeId: int :rtype: void """ self.id2follows[followerId].discard(followeeId) #print(followerId, 'UNFOLLOW', followeeId, self.id2follows) # Your Twitter object will be instantiated and called as such: # obj = Twitter() # obj.postTweet(userId,tweetId) # param_2 = obj.getNewsFeed(userId) # obj.follow(followerId,followeeId) # obj.unfollow(followerId,followeeId)
PYTHON
{ "starter_code": "\nclass Twitter:\n def __init__(self):\n \"\"\"\n Initialize your data structure here.\n \"\"\"\n def postTweet(self, userId: int, tweetId: int) -> None:\n \"\"\"\n Compose a new tweet.\n \"\"\"\n def getNewsFeed(self, userId: int) -> List[int]:\n \"\"\"\n Retrieve the 10 most recent tweet ids in the user's news feed. Each item in the news feed must be posted by users who the user followed or by the user herself. Tweets must be ordered from most recent to least recent.\n \"\"\"\n def follow(self, followerId: int, followeeId: int) -> None:\n \"\"\"\n Follower follows a followee. If the operation is invalid, it should be a no-op.\n \"\"\"\n def unfollow(self, followerId: int, followeeId: int) -> None:\n \"\"\"\n Follower unfollows a followee. If the operation is invalid, it should be a no-op.\n \"\"\"\n# Your Twitter object will be instantiated and called as such:\n# obj = Twitter()\n# obj.postTweet(userId,tweetId)\n# param_2 = obj.getNewsFeed(userId)\n# obj.follow(followerId,followeeId)\n# obj.unfollow(followerId,followeeId)", "url": "https://leetcode.com/problems/design-twitter/" }
d1948
train
class Solution: def wordSubsets(self, A: List[str], B: List[str]) -> List[str]: s = set(A) letters_required = {} for i in B: for j in i: count = i.count(j) if j not in letters_required or count > letters_required[j]: letters_required[j] = count for i in A: for j in letters_required: if i.count(j) < letters_required[j]: s.remove(i) break return list(s)
PYTHON
{ "starter_code": "\nclass Solution:\n def wordSubsets(self, A: List[str], B: List[str]) -> List[str]:\n ", "url": "https://leetcode.com/problems/word-subsets/" }
d1949
train
class Solution: def numPoints(self, points: List[List[int]], r: int) -> int: ans = 1 for x, y in points: angles = [] for x1, y1 in points: if (x1 != x or y1 != y) and (d:=sqrt((x1-x)**2 + (y1-y)**2)) <= 2*r: angle = atan2(y1-y, x1-x) delta = acos(d/(2*r)) angles.append((angle-delta, +1)) #entry angles.append((angle+delta, -1)) #exit angles.sort(key=lambda x: (x[0], -x[1])) val = 1 for _, entry in angles: ans = max(ans, val := val+entry) return ans #https://www.geeksforgeeks.org/angular-sweep-maximum-points-can-enclosed-circle-given-radius/ # class Solution { # public int numPoints(int[][] points, int r) { # int count = 1; # for(int i = 0; i < points.length; i++) { # Map<Double, Integer> angles = new HashMap<>(); # for(int j = 0; j < points.length; j++) { # if (i != j) { # if (points[i][0] != points[j][0] || points[i][1] != points[j][1]) { # int d = (points[i][0] - points[j][0]) * (points[i][0] - points[j][0]) + (points[i][1] - points[j][1]) * (points[i][1] - points[j][1]); # double angle = Math.atan2(points[j][1] - points[i][1], points[j][0] - points[i][0]); # double delta = acos(d / (2 * r)); # double entry = angle - delta; # double exit = angle + delta; # map.put(entry, map.getOrDefault(entry, 0) + 1); # map.put(exit, map.getOrDefault(exit, 0) - 1); # } # } # } # Map<String, Integer> result = angles.entrySet().stream() # .sorted(Map.Entry.comparingByValue(Comparator.reverseOrder())) # .collect(Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue, # (oldValue, newValue) -> oldValue, LinkedHashMap::new)); # # } # return count; # } #}
PYTHON
{ "starter_code": "\nclass Solution:\n def numPoints(self, points: List[List[int]], r: int) -> int:\n ", "url": "https://leetcode.com/problems/maximum-number-of-darts-inside-of-a-circular-dartboard/" }
d1950
train
class Solution: def getMaximumGold(self, grid: List[List[int]]) -> int: height = len(grid) width = len(grid[0]) max_path = 0 # generator for legal indices to check def index_gen(index): i,j = index if i > 0 and grid[i-1][j] > 0: yield (i-1, j) if i < height - 1 and grid[i+1][j] > 0: yield (i+1, j) if j > 0 and grid[i][j-1] > 0: yield (i, j-1) if j < width - 1 and grid[i][j+1] > 0: yield (i, j+1) # if a node branches off in 2 directions it can't be a leaf def is_viable(index): non_zero = 0 neighbors = [grid[a][b] for a,b in index_gen(index)] for x in neighbors: if x != 0: non_zero += 1 return non_zero < 2 def dfs(index, count): nonlocal max_path count += grid[index[0]][index[1]] max_path = max(max_path, count) grid[index[0]][index[1]] *= -1 # clever idea from George Zhou to mark visited for direction in index_gen(index): dfs(direction, count) grid[index[0]][index[1]] *= -1 # unmark node when done with this path for i in range(height): for j in range(width): if grid[i][j] != 0 and is_viable((i,j)): dfs((i,j), 0) # if there are no 'leaf' nodes, then every node is accessible return max_path if max_path > 0 else sum(sum(row) for row in grid )
PYTHON
{ "starter_code": "\nclass Solution:\n def getMaximumGold(self, grid: List[List[int]]) -> int:\n ", "url": "https://leetcode.com/problems/path-with-maximum-gold/" }
d1951
train
# Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def deleteDuplicates(self, head): """ :type head: ListNode :rtype: ListNode """ if not head or not head.next: return head fakehead = ListNode(0) fakehead.next = head prev = fakehead slow = head fast = head.next while fast: if fast.val == slow.val: while fast and fast.val == slow.val: fast = fast.next slow = prev else: prev = slow slow = slow.next slow.val = fast.val fast = fast.next slow.next = None return fakehead.next
PYTHON
{ "starter_code": "\n# Definition for singly-linked list.\nclass ListNode:\n def __init__(self, val=0, next=None):\n self.val = val\n self.next = next\nclass Solution:\n def deleteDuplicates(self, head: ListNode) -> ListNode:\n ", "url": "https://leetcode.com/problems/remove-duplicates-from-sorted-list-ii/" }
d1952
train
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def insertIntoMaxTree(self, root: TreeNode, val: int) -> TreeNode: if root and root.val > val: root.right = self.insertIntoMaxTree(root.right, val) return root node = TreeNode(val) node.left = root return node
PYTHON
{ "starter_code": "\n# Definition for a binary tree node.\nclass TreeNode:\n def __init__(self, val=0, left=None, right=None):\n self.val = val\n self.left = left\n self.right = right\nclass Solution:\n def insertIntoMaxTree(self, root: TreeNode, val: int) -> TreeNode:\n ", "url": "https://leetcode.com/problems/maximum-binary-tree-ii/" }
d1953
train
class Solution: def reverseBetween(self, head, m, n): """ :type head: ListNode :type m: int :type n: int :rtype: ListNode """ if head is None or head.__next__ is None or m == n: return head h = ListNode(-1) h.next = head fast = slow = h for _ in range(n - m + 1): fast = fast.__next__ for _ in range(m - 1): fast = fast.__next__ slow = slow.__next__ prev = fast.__next__ curr = slow.__next__ while prev != fast: temp = curr.__next__ curr.next = prev prev = curr curr = temp slow.next = prev return h.__next__
PYTHON
{ "starter_code": "\n# Definition for singly-linked list.\nclass ListNode:\n def __init__(self, val=0, next=None):\n self.val = val\n self.next = next\nclass Solution:\n def reverseBetween(self, head: ListNode, m: int, n: int) -> ListNode:\n ", "url": "https://leetcode.com/problems/reverse-linked-list-ii/" }
d1954
train
# Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: # @return a ListNode def removeNthFromEnd(self, head, n): dummy=ListNode(0); dummy.next=head p1=p2=dummy for i in range(n): p1=p1.next while p1.next: p1=p1.next; p2=p2.next p2.next=p2.next.next return dummy.next
PYTHON
{ "starter_code": "\n# Definition for singly-linked list.\nclass ListNode:\n def __init__(self, val=0, next=None):\n self.val = val\n self.next = next\nclass Solution:\n def removeNthFromEnd(self, head: ListNode, n: int) -> ListNode:\n ", "url": "https://leetcode.com/problems/remove-nth-node-from-end-of-list/" }
d1955
train
class Solution: def smallestSufficientTeam(self, req_skills: List[str], people: List[List[str]]) -> List[int]: def fulfill_skills(skills, person): remaining_skills = deque() for skill in skills: if skill not in people[person]: remaining_skills.appendleft(skill) return remaining_skills # BFS by # of people # can reduce expansion by searching rarest skills first # map required skills to people # has_skill[\"java\"] == a list of people (int index into people) who have that skill has_skill = dict() for person, skills in enumerate(people): for skill in skills: experts = has_skill.get(skill, []) experts.append(person) has_skill[skill] = experts # sort skills by rarity rare_skills = [(len(people), skill) for (skill, people) in list(has_skill.items())] rare_skills.sort() rare_skills = [skill for _, skill in rare_skills] for i in range(1, 17): # stack holds pairs: # (skills, team) stack = [ (deque(rare_skills), []) ] while stack: skills, team = stack.pop() # print(skills, team) if not skills: return team if len(team) + 1 > i: continue # choose a member to fulfill next rarest skill skill = skills[0] for person in has_skill[skill]: remaining_skills = fulfill_skills(skills, person) stack.append( (remaining_skills, team + [person]) ) # print(f\"i {i} failed\") return -1
PYTHON
{ "starter_code": "\nclass Solution:\n def smallestSufficientTeam(self, req_skills: List[str], people: List[List[str]]) -> List[int]:\n ", "url": "https://leetcode.com/problems/smallest-sufficient-team/" }
d1956
train
class Solution: def smallestStringWithSwaps(self, s: str, pairs: List[List[int]]) -> str: pr=[i for i in range(len(s))] def union(x,y): p1=find(x) p2=find(y) if p1!=p2: pr[p1]=p2 def find(x): while pr[x]!=x: pr[x]=pr[pr[x]] x=pr[x] return x for i in pairs: union(i[0],i[1]) from collections import defaultdict dp=defaultdict(list) for i in range(len(s)): ld=find(i) dp[ld].append(i) ans=[0]*len(s) for i in dp: dp[i].sort() st='' for j in dp[i]: st+=s[j] st=sorted(st) c=0 for j in dp[i]: ans[j]=st[c] c+=1 return ''.join(ans)
PYTHON
{ "starter_code": "\nclass Solution:\n def smallestStringWithSwaps(self, s: str, pairs: List[List[int]]) -> str:\n ", "url": "https://leetcode.com/problems/smallest-string-with-swaps/" }
d1957
train
class Solution: def FindValid(self): a="123456789" d,val={},{} for i in range(9): for j in range(9): temp=self.board[i][j] if temp!='.': d[("r",i)]=d.get(("r",i),[])+[temp] d[("c",j)]=d.get(("c",j),[])+[temp] d[(i//3,j//3)]=d.get((i//3,j//3),[])+[temp] else: val[(i,j)]=[] for (i,j) in list(val.keys()): invalid=d.get(("r",i),[])+d.get(("c",j),[])+d.get((i//3,j//3),[]) val[(i,j)]=[ele for ele in a if ele not in invalid] return val def CheckingSolution(self,ele,Pos,Updata): self.board[Pos[0]][Pos[1]]=ele del self.val[Pos] i,j=Pos for invalid in list(self.val.keys()): if ele in self.val[invalid]: if invalid[0]==i or invalid[1]==j or (invalid[0]//3,invalid[1]//3)==(i//3,j//3): Updata[invalid]=ele self.val[invalid].remove(ele) if len(self.val[invalid])==0: return False return True def Sudo(self,Pos,Updata): self.board[Pos[0]][Pos[1]]="." for i in Updata: if i not in self.val: self.val[i]=Updata[i] else: self.val[i].append(Updata[i]) def FindSolution(self): if len(self.val)==0: return True Pos=min(list(self.val.keys()),key=lambda x:len(self.val[x])) nums=self.val[Pos] for ele in nums: updata={Pos:self.val[Pos]} if self.CheckingSolution(ele,Pos,updata): if self.FindSolution(): return True self.Sudo(Pos,updata) return False def solveSudoku(self, board): """ :type board: List[List[str]] :rtype: void Do not return anything, modify board in-place instead. """ self.board=board self.val=self.FindValid() self.FindSolution()
PYTHON
{ "starter_code": "\nclass Solution:\n def solveSudoku(self, board: List[List[str]]) -> None:\n \"\"\"\n Do not return anything, modify board in-place instead.\n \"\"\"\n ", "url": "https://leetcode.com/problems/sudoku-solver/" }
d1958
train
# O(M*N*K) class Solution: def shortestPath(self, grid: List[List[int]], k: int) -> int: rows, cols = len(grid), len(grid[0]) steps, min_steps = 0, rows + cols - 2 if k >= min_steps - 1: return min_steps visited = [[-1] * cols for _ in range(rows)] visited[0][0] = k q = deque([(0, 0, k)]) while q: steps += 1 prev_min = min_steps for _ in range(len(q)): r, c, p = q.popleft() for dx, dy in [[1, 0], [-1, 0], [0, 1], [0, -1]]: x, y = c + dx, r + dy if x < 0 or x >= cols or y < 0 or y >= rows: continue kk = p-grid[y][x] if kk <= visited[y][x]: # have visited here on a better path. continue # early stop if there's shortcut (-1 because goal cell != 1) # But only applies when, comming from to_target = rows - y + cols - x - 2 # rows-r-1 + cols-c-1 if kk >= to_target-1 and visited[y][x] == -1: #to_target == prev_min-1: return steps + to_target q.append((y, x, kk)) visited[y][x] = kk min_steps = min(min_steps, to_target) return -1
PYTHON
{ "starter_code": "\nclass Solution:\n def shortestPath(self, grid: List[List[int]], k: int) -> int:\n ", "url": "https://leetcode.com/problems/shortest-path-in-a-grid-with-obstacles-elimination/" }
d1959
train
class Solution: def groupThePeople(self, groupSizes: List[int]) -> List[List[int]]: # mine # res = collections.defaultdict(list) # res_return = [] # for i,j in enumerate(groupSizes): # res[j].append(i) # for j in res: # temp = [res[j][0:j]] # if len(res[j])>j: # # print(j,res[j][1]) # # sub_nums = int(len(res[j])/j) # for num in range(j,len(res[j]),j): # temp = temp + [res[j][num:num+j]] # # print(temp) # res[j]=temp # res_return = res_return+temp # # print(res) # # print(res_return) # return res_return # other perple groups = defaultdict(list) result = [] for index, size in enumerate(groupSizes): groups[size].append(index) if len(groups[size]) == size: result.append(groups.pop(size)) return result
PYTHON
{ "starter_code": "\nclass Solution:\n def groupThePeople(self, groupSizes: List[int]) -> List[List[int]]:\n ", "url": "https://leetcode.com/problems/group-the-people-given-the-group-size-they-belong-to/" }
d1960
train
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def addValueToList(self, root, lst): if root is not None: lst.append(root.val) self.addValueToList(root.left, lst) self.addValueToList(root.right, lst) def minDiffInBST(self, root): """ :type root: TreeNode :rtype: int """ values = [] self.addValueToList(root, values) sorted_values = sorted(values) max_diff = sorted_values[-1] - sorted_values[0] for i in range(len(values)-1): if sorted_values[i+1] - sorted_values[i] < max_diff: max_diff = sorted_values[i+1] - sorted_values[i] return max_diff
PYTHON
{ "starter_code": "\nclass Solution:\n def champagneTower(self, poured: int, query_row: int, query_glass: int) -> float:\n ", "url": "https://leetcode.com/problems/champagne-tower/" }
d1961
train
class Solution: def processQueries(self, queries: List[int], m: int) -> List[int]: if not queries: return [] p = list(range(1, m+1)) res = [] for i in queries: z = p.index(i) res.append(z) del p[z] p.insert(0,i) return res
PYTHON
{ "starter_code": "\nclass Solution:\n def processQueries(self, queries: List[int], m: int) -> List[int]:\n ", "url": "https://leetcode.com/problems/queries-on-a-permutation-with-key/" }
d1962
train
class BrowserHistory: def __init__(self, homepage: str): self.hashM = {} self.maxIndex, self.currIndex = 0, 0 self.hashM[self.currIndex] = homepage def visit(self, url: str) -> None: self.hashM[self.currIndex + 1] = url self.currIndex = self.currIndex + 1 self.maxIndex = self.currIndex return(url) def back(self, steps: int) -> str: if self.currIndex - steps < 0: self.currIndex = 0 else: self.currIndex = self.currIndex - steps return(self.hashM[self.currIndex]) def forward(self, steps: int) -> str: if self.currIndex + steps > self.maxIndex: self.currIndex = self.maxIndex else: self.currIndex = self.currIndex + steps return(self.hashM[self.currIndex]) # Your BrowserHistory object will be instantiated and called as such: # obj = BrowserHistory(homepage) # obj.visit(url) # param_2 = obj.back(steps) # param_3 = obj.forward(steps)
PYTHON
{ "starter_code": "\nclass BrowserHistory:\n def __init__(self, homepage: str):\n def visit(self, url: str) -> None:\n def back(self, steps: int) -> str:\n def forward(self, steps: int) -> str:\n# Your BrowserHistory object will be instantiated and called as such:\n# obj = BrowserHistory(homepage)\n# obj.visit(url)\n# param_2 = obj.back(steps)\n# param_3 = obj.forward(steps)", "url": "https://leetcode.com/problems/design-browser-history/" }
d1963
train
class Solution: def dominantIndex(self, nums): """ :type nums: List[int] :rtype: int """ if len(nums) <= 1: return 0 m = max(nums) ind = nums.index(m) del nums[ind] m_2 = max(nums) return ind if m >= 2*m_2 else -1
PYTHON
{ "starter_code": "\nclass Solution:\n def shortestCompletingWord(self, licensePlate: str, words: List[str]) -> str:\n ", "url": "https://leetcode.com/problems/shortest-completing-word/" }
d1964
train
class Solution: def shoppingOffers(self, price, special, needs): """ :type price: List[int] :type special: List[List[int]] :type needs: List[int] :rtype: int """ def dfs(curr, special, needs): p=curr+sum(p*needs[i] for i,p in enumerate(price)) for si in range(len(special)): s = special[si] if all(n>=s[i] for i,n in enumerate(needs)): p=min(p, dfs(curr+s[-1], special[si:], [n-s[i] for i,n in enumerate(needs)])) # else: p=min(p, dfs(curr, special[si+1:], needs)) return p return dfs(0, special, needs)
PYTHON
{ "starter_code": "\nclass Solution:\n def shoppingOffers(self, price: List[int], special: List[List[int]], needs: List[int]) -> int:\n ", "url": "https://leetcode.com/problems/shopping-offers/" }
d1965
train
def get_tree_height(node, parent_node_height): if node is None: return 0 node.height = parent_node_height + 1 if node.left is None and node.right is None: return 1 return max(get_tree_height(node.left, node.height), get_tree_height(node.right, node.height)) + 1 def fill_in_array(result, node, root_index, width): if node is None: return result[node.height - 1][root_index] = str(node.val) new_width = width // 2 fill_in_array(result, node.left, root_index - new_width // 2 - 1, new_width) fill_in_array(result, node.right, root_index + new_width // 2 + 1, new_width) class Solution: def printTree(self, root): """ :type root: TreeNode :rtype: List[List[str]] """ height = get_tree_height(root, 0) rows = height cols = 0 for i in range(height): cols = cols * 2 + 1 result = [[""] * cols for _ in range(rows)] fill_in_array(result, root, cols // 2, cols) return result
PYTHON
{ "starter_code": "\n# Definition for a binary tree node.\nclass TreeNode:\n def __init__(self, val=0, left=None, right=None):\n self.val = val\n self.left = left\n self.right = right\nclass Solution:\n def printTree(self, root: TreeNode) -> List[List[str]]:\n ", "url": "https://leetcode.com/problems/print-binary-tree/" }
d1966
train
class Solution: def maxNumEdgesToRemove(self, n: int, edges: List[List[int]]) -> int: if len(edges) == 0: return 0 if n == 0 else -1 p = [i for i in range(n)] def getP(ind): nonlocal p if p[ind] == ind: return ind else: res = getP(p[ind]) p[ind] = res return res cnt = 0 for t,u,v in edges: if t == 3: pu,pv = getP(u-1), getP(v-1) if pu != pv: p[pv] = pu cnt += 1 if cnt != (n - 1): pa = list(p) for t,u,v in edges: if t == 1: pu,pv = getP(u-1), getP(v-1) if pu != pv: p[pv] = pu cnt += 1 targetP = getP(0) for v in range(n): if getP(v) != targetP: return -1 p = pa for t,u,v in edges: if t == 2: pu,pv = getP(u-1), getP(v-1) if pu != pv: p[pv] = pu cnt += 1 targetP = getP(0) for v in range(n): if getP(v) != targetP: return -1 return len(edges) - cnt
PYTHON
{ "starter_code": "\nclass Solution:\n def maxNumEdgesToRemove(self, n: int, edges: List[List[int]]) -> int:\n ", "url": "https://leetcode.com/problems/remove-max-number-of-edges-to-keep-graph-fully-traversable/" }
d1967
train
class Solution: def numSubmat(self, mat: List[List[int]]) -> int: n, m = len(mat), len(mat[0]) heights = [0] * m res = 0 for i in range(0, n): stack = [] count = 0 for j in range(0, m): if mat[i][j] == 1: heights[j] += 1 else: heights[j] = 0 for index, height in enumerate(heights): while stack and height < heights[stack[-1]]: curr = stack.pop() left = stack[-1] if stack else -1 count -= (heights[curr] - height) * (curr - left) count += height res += count stack.append(index) return res
PYTHON
{ "starter_code": "\nclass Solution:\n def numSubmat(self, mat: List[List[int]]) -> int:\n ", "url": "https://leetcode.com/problems/count-submatrices-with-all-ones/" }
d1968
train
class Solution(object): def splitIntoFibonacci(self, S): \"\"\" :type S: str :rtype: List[int] \"\"\" n = len(S) for i in range(1, 11): for j in range(1, 11): if i + j >= n: break L = self.buildFibo(S, i, j) if L: return L return [] def buildFibo(self, s, i, j): a = s[:i] b = s[i:i+j] if a[0] == '0' and i > 1: return [] if b[0] == '0' and j > 1: return [] offset = i + j n = len(s) x, y = int(a), int(b) arr = [x, y] while offset < n: z = x + y if z > 2147483647: return [] c = str(z) k = len(c) if offset + k > n or s[offset:offset+k] != c: return [] offset += k arr.append(z) x, y = y, z return arr
PYTHON
{ "starter_code": "\nclass Solution:\n def splitIntoFibonacci(self, S: str) -> List[int]:\n ", "url": "https://leetcode.com/problems/split-array-into-fibonacci-sequence/" }
d1969
train
class Solution: def removeSubfolders(self, folder): folders = folder folders.sort() output = [] parent = ' ' for folder in folders: if not folder.startswith(parent): output.append(folder) parent = folder + '/' return output
PYTHON
{ "starter_code": "\nclass Solution:\n def removeSubfolders(self, folder: List[str]) -> List[str]:\n ", "url": "https://leetcode.com/problems/remove-sub-folders-from-the-filesystem/" }
d1970
train
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def sumNumbers(self, root): """ :type root: TreeNode :rtype: int """ def dfs(node, cur_num): if node is None: return 0 my_num = cur_num * 10 + node.val if node.left is None and node.right is None: return my_num return dfs(node.left, my_num) + dfs(node.right, my_num) return dfs(root,0)
PYTHON
{ "starter_code": "\n# Definition for a binary tree node.\nclass TreeNode:\n def __init__(self, val=0, left=None, right=None):\n self.val = val\n self.left = left\n self.right = right\nclass Solution:\n def sumNumbers(self, root: TreeNode) -> int:\n ", "url": "https://leetcode.com/problems/sum-root-to-leaf-numbers/" }
d1971
train
class Solution: def nearestPalindromic(self, num): """ :type n: str :rtype: str """ K = len(num) candidates = set([10**K + 1, 10**(K-1) - 1]) Prefix = int(num[:(K+1)//2]) for start in map(str, [Prefix-1, Prefix, Prefix+1]): candidates.add(start + [start, start[:-1]][K & 1][::-1]) candidates.discard(num) return str(min(candidates, key=lambda x: (abs(int(x) - int(num)), int(x))))
PYTHON
{ "starter_code": "\nclass Solution:\n def nearestPalindromic(self, n: str) -> str:\n ", "url": "https://leetcode.com/problems/find-the-closest-palindrome/" }
d1972
train
class Solution: def maximalSquare(self, matrix): """ :type matrix: List[List[str]] :rtype: int """ if not matrix: return 0 m, n = len(matrix), len(matrix[0]) dp = [int(matrix[i][0]) for i in range(m)] vmax = max(dp) pre = 0 for j in range(1, n): pre, dp[0] = int(matrix[0][j-1]), int(matrix[0][j]) for i in range(1, m): cur = dp[i] dp[i] = 0 if matrix[i][j] == '0' else (min(dp[i-1], dp[i], pre) + 1) pre = cur vmax = max(vmax, max(dp)) return vmax ** 2
PYTHON
{ "starter_code": "\nclass Solution:\n def maximalSquare(self, matrix: List[List[str]]) -> int:\n ", "url": "https://leetcode.com/problems/maximal-square/" }
d1973
train
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def splitBST(self, root,target): """ :type root: TreeNode :type V: int :rtype: List[TreeNode] """ def split_bst_recur(root, target): if not root: return (None, None) if not root.left and not root.right: if root.val <= target: return (root, None) else: return(None, root) if root.val > target: l, r = split_bst_recur(root.left, target) root.left = r return (l, root) else: l, r = split_bst_recur(root.right, target) root.right = l return (root, r) if not root: return [[],[]] l, r = split_bst_recur(root, target) return [l, r]
PYTHON
{ "starter_code": "\nclass Solution:\n def customSortString(self, S: str, T: str) -> str:\n ", "url": "https://leetcode.com/problems/custom-sort-string/" }
d1974
train
class Solution: def isIdealPermutation(self, A): """ :type A: List[int] :rtype: bool """ # tle # for i in range(len(A)-2): # if A[i] > min(A[i+2:]): # return False # return True # ac for i in range(len(A)): if abs(A[i] - i) > 1: return False return True
PYTHON
{ "starter_code": "\nclass Solution:\n def numTilings(self, N: int) -> int:\n ", "url": "https://leetcode.com/problems/domino-and-tromino-tiling/" }
d1975
train
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def postorderTraversal(self, root): """ :type root: TreeNode :rtype: List[int] """ if root==None: return [] stack=[] stack_left=[1] while stack_left!=[]: stack.append(root.val) if root.left!=None and root.right==None: root=root.left elif root.left==None and root.right!=None: root=root.right elif root.left!=None and root.right!=None: stack_left.append(root.left) root=root.right else: if stack_left==[1]: stack_left=[] else: root=stack_left.pop() #print(stack) stack.reverse() return stack
PYTHON
{ "starter_code": "\n# Definition for a binary tree node.\nclass TreeNode:\n def __init__(self, val=0, left=None, right=None):\n self.val = val\n self.left = left\n self.right = right\nclass Solution:\n def postorderTraversal(self, root: TreeNode) -> List[int]:\n ", "url": "https://leetcode.com/problems/binary-tree-postorder-traversal/" }
d1976
train
class CustomStack: def __init__(self, maxSize: int): self.stack = [] self.add = [] self.limit = maxSize def push(self, x: int) -> None: if len(self.stack) < self.limit: self.stack.append(x) self.add.append(0) def pop(self) -> int: if len(self.stack) == 0: return -1 result = self.stack.pop() left = self.add.pop() if len(self.add) > 0: self.add[-1] += left return result + left def increment(self, k: int, val: int) -> None: if len(self.stack) > 0: if k > len(self.stack): self.add[-1] += val return self.add[k-1] += val # Your CustomStack object will be instantiated and called as such: # obj = CustomStack(maxSize) # obj.push(x) # param_2 = obj.pop() # obj.increment(k,val)
PYTHON
{ "starter_code": "\nclass CustomStack:\n def __init__(self, maxSize: int):\n def push(self, x: int) -> None:\n def pop(self) -> int:\n def increment(self, k: int, val: int) -> None:\n# Your CustomStack object will be instantiated and called as such:\n# obj = CustomStack(maxSize)\n# obj.push(x)\n# param_2 = obj.pop()\n# obj.increment(k,val)", "url": "https://leetcode.com/problems/design-a-stack-with-increment-operation/" }
d1977
train
class MagicDictionary: def __init__(self): """ Initialize your data structure here. """ self.l = [] def buildDict(self, dict): """ Build a dictionary through a list of words :type dict: List[str] :rtype: void """ self.l= dict def search(self, word): """ Returns if there is any word in the trie that equals to the given word after modifying exactly one character :type word: str :rtype: bool """ def diffnumber(a,b): count = 0 for i in range(len(a)): if a[i] !=b[i]: count +=1 return count for x in self.l: if len(x) == len(word) and diffnumber(x,word) ==1: return True return False # Your MagicDictionary object will be instantiated and called as such: # obj = MagicDictionary() # obj.buildDict(dict) # param_2 = obj.search(word)
PYTHON
{ "starter_code": "\nclass MagicDictionary:\n def __init__(self):\n \"\"\"\n Initialize your data structure here.\n \"\"\"\n def buildDict(self, dictionary: List[str]) -> None:\n def search(self, searchWord: str) -> bool:\n# Your MagicDictionary object will be instantiated and called as such:\n# obj = MagicDictionary()\n# obj.buildDict(dictionary)\n# param_2 = obj.search(searchWord)", "url": "https://leetcode.com/problems/implement-magic-dictionary/" }
d1978
train
class Solution: def closedIsland(self, grid: List[List[int]]) -> int: count = 0 for i in range(1,len(grid)-1): for j in range(1,len(grid[0])-1): if grid[i][j] ==0 and self.dfs(grid,i,j): count+=1 return count def dfs(self,grid,i,j): if grid[i][j]==1: return True if i<=0 or j<=0 or i>=len(grid)-1 or j>= len(grid[0])-1: return False grid[i][j]=1 up= self.dfs(grid,i+1,j) down= self.dfs(grid,i-1,j) left= self.dfs(grid,i,j-1) right= self.dfs(grid,i,j+1) return up and down and left and right
PYTHON
{ "starter_code": "\nclass Solution:\n def closedIsland(self, grid: List[List[int]]) -> int:\n ", "url": "https://leetcode.com/problems/number-of-closed-islands/" }
d1979
train
class Solution: def findAndReplacePattern(self, words: List[str], pattern: str) -> List[str]: out = [] for word in words: pat_dict = dict() used = set() if len(word) == len(pattern): can_be = True for i in range(len(word)): if word[i] not in pat_dict: if pattern[i] not in used: pat_dict[word[i]] = pattern[i] used.add(pattern[i]) else: can_be = False break else: if pat_dict[word[i]] != pattern[i]: can_be = False break if can_be == True: out.append(word) return out
PYTHON
{ "starter_code": "\nclass Solution:\n def findAndReplacePattern(self, words: List[str], pattern: str) -> List[str]:\n ", "url": "https://leetcode.com/problems/find-and-replace-pattern/" }
d1980
train
class Solution: def largestTimeFromDigits(self, A: List[int]) -> str: max_time = -1 # enumerate all possibilities, with the permutation() func for h, i, j, k in itertools.permutations(A): hour = h*10 + i minute = j*10 + k if hour < 24 and minute < 60: max_time = max(max_time, hour * 60 + minute) if max_time == -1: return \"\" else: return \"{:02d}:{:02d}\".format(max_time // 60, max_time % 60)
PYTHON
{ "starter_code": "\nclass Solution:\n def largestTimeFromDigits(self, arr: List[int]) -> str:\n ", "url": "https://leetcode.com/problems/largest-time-for-given-digits/" }
d1981
train
class Skiplist: def __init__(self): self.skip_list={} def search(self, target: int) -> bool: if(target in self.skip_list): if(self.skip_list[target]>0): return True return False def add(self, num: int) -> None: if(num in self.skip_list): self.skip_list[num]+=1 else: self.skip_list[num]=1 def erase(self, num: int) -> bool: if(num in self.skip_list): if(self.skip_list[num]>0): self.skip_list[num]-=1 return True return False
PYTHON
{ "starter_code": "\nclass Skiplist:\n def __init__(self):\n def search(self, target: int) -> bool:\n def add(self, num: int) -> None:\n def erase(self, num: int) -> bool:\n# Your Skiplist object will be instantiated and called as such:\n# obj = Skiplist()\n# param_1 = obj.search(target)\n# obj.add(num)\n# param_3 = obj.erase(num)", "url": "https://leetcode.com/problems/design-skiplist/" }
d1982
train
class Solution: def maxSumRangeQuery(self, nums: List[int], requests: List[List[int]]) -> int: count = [0] * (len(nums) + 1) for start, end in requests: count[start] += 1 count[end + 1] -= 1 for i in range(1, len(nums) + 1): count[i] += count[i - 1] count.pop() res = 0 for n, times in zip(sorted(nums), sorted(count)): res += n * times return res % (10 ** 9 + 7)
PYTHON
{ "starter_code": "\nclass Solution:\n def maxSumRangeQuery(self, nums: List[int], requests: List[List[int]]) -> int:\n ", "url": "https://leetcode.com/problems/maximum-sum-obtained-of-any-permutation/" }
d1983
train
class Solution: def possibleBipartition(self, N: int, dislikes: List[List[int]]) -> bool: if not dislikes: return True group = [None] * (N + 1) group[dislikes[0][0]] = 1 group[dislikes[0][1]] = -1 group1 = set([1]) group2 = set() counter = 2 for i, j in dislikes[1:]: if group[i] and group[j]: if group[i] == group[j]: return False if group[i] in group1: if group[j] in group1 or -group[j] in group2: return False group2.add(group[j]) elif group[i] in group2: if group[j] in group2 or -group[j] in group1: return False group1.add(group[j]) elif group[j] in group1: if group[i] in group1 or -group[i] in group2: return False group2.add(group[i]) elif group[j] in group2: if group[i] in group2 or -group[i] in group1: return False group1.add(group[i]) elif not group[i] and not group[j]: group[i], group[j] = counter, -counter counter += 1 elif group[i]: group[j] = -group[i] elif group[j]: group[i] = -group[j] return True
PYTHON
{ "starter_code": "\nclass Solution:\n def possibleBipartition(self, N: int, dislikes: List[List[int]]) -> bool:\n ", "url": "https://leetcode.com/problems/possible-bipartition/" }
d1984
train
import math class ProductOfNumbers: def __init__(self): self.numbers = [1] self.lastZero = 0 def add(self, num: int) -> None: if num != 0: self.numbers.append(self.numbers[-1] * num) else: self.numbers = [1] def getProduct(self, k: int) -> int: if k < len(self.numbers): return self.numbers[-1] // self.numbers[-k - 1] else: return 0 # Your ProductOfNumbers object will be instantiated and called as such: # obj = ProductOfNumbers() # obj.add(num) # param_2 = obj.getProduct(k)
PYTHON
{ "starter_code": "\nclass ProductOfNumbers:\n def __init__(self):\n def add(self, num: int) -> None:\n def getProduct(self, k: int) -> int:\n# Your ProductOfNumbers object will be instantiated and called as such:\n# obj = ProductOfNumbers()\n# obj.add(num)\n# param_2 = obj.getProduct(k)", "url": "https://leetcode.com/problems/product-of-the-last-k-numbers/" }
d1985
train
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def buildTree(self, preorder, inorder): """ :type preorder: List[int] :type inorder: List[int] :rtype: TreeNode """ def build(stop): if preorder and inorder[-1] != stop: root = TreeNode(preorder.pop()) root.left = build(root.val) inorder.pop() root.right = build(stop) return root return None # can be skipped preorder.reverse() inorder.reverse() return build(None)
PYTHON
{ "starter_code": "\n# Definition for a binary tree node.\nclass TreeNode:\n def __init__(self, val=0, left=None, right=None):\n self.val = val\n self.left = left\n self.right = right\nclass Solution:\n def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:\n ", "url": "https://leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/" }
d1986
train
class Solution: def searchMatrix(self, matrix, target): """ :type matrix: List[List[int]] :type target: int :rtype: bool """ m = len(matrix) if m == 0: return False n = len(matrix[0]) if n == 0: return False row, col = 0, n-1 while row < m and col >= 0: if matrix[row][col] == target: return True elif matrix[row][col] > target: col -= 1 else: row += 1 return False
PYTHON
{ "starter_code": "\nclass Solution:\n def searchMatrix(self, matrix, target):\n \"\"\"\n :type matrix: List[List[int]]\n :type target: int\n :rtype: bool\n \"\"\"\n ", "url": "https://leetcode.com/problems/search-a-2d-matrix-ii/" }
d1987
train
class Solution: def circularPermutation(self, n: int, start: int) -> List[int]: res = [i ^ (i >> 1) for i in range(1 << n)] idx = res.index(start) return res[idx:] + res[:idx]
PYTHON
{ "starter_code": "\nclass Solution:\n def circularPermutation(self, n: int, start: int) -> List[int]:\n ", "url": "https://leetcode.com/problems/circular-permutation-in-binary-representation/" }
d1988
train
import heapq class Solution(object): def pourWater(self, heights, V, K): """ :type heights: List[int] :type V: int :type K: int :rtype: List[int] """ heap = [] heapq.heappush(heap, (heights[K], -1, 0)) l, r = K - 1, K + 1 lh, rh = [], [] for i in range(V): while l >= 0 and heights[l] <= heights[l + 1]: heapq.heappush(lh, (heights[l], -l)) l -= 1 while r < len(heights) and heights[r] <= heights[r - 1]: heapq.heappush(rh, (heights[r], r)) r += 1 if lh and lh[0][0] < heights[K]: h, i = heapq.heappop(lh) heights[-i] += 1 heapq.heappush(lh, (h + 1, i)) continue if rh and rh[0][0] < heights[K]: h, i = heapq.heappop(rh) heights[i] += 1 heapq.heappush(rh, (h + 1, i)) continue heights[K] += 1 return heights
PYTHON
{ "starter_code": "\nclass Solution:\n def pyramidTransition(self, bottom: str, allowed: List[str]) -> bool:\n ", "url": "https://leetcode.com/problems/pyramid-transition-matrix/" }
d1989
train
class Solution: def shortestAlternatingPaths(self, n: int, red_edges: List[List[int]], blue_edges: List[List[int]]) -> List[int]: G = [[[], []] for i in range(n)] for i, j in red_edges: G[i][0].append(j) for i, j in blue_edges: G[i][1].append(j) res = [[0, 0]] + [[n * 2, n * 2] for i in range(n - 1)] bfs = [[0, 0], [0, 1]] for i, c in bfs: # print(i, c) for j in G[i][c]: if res[j][c] == n * 2: res[j][c] = res[i][1 - c] + 1 bfs.append([j, 1 - c]) # print(bfs) return [x if x < n * 2 else -1 for x in map(min, res)]
PYTHON
{ "starter_code": "\nclass Solution:\n def shortestAlternatingPaths(self, n: int, red_edges: List[List[int]], blue_edges: List[List[int]]) -> List[int]:\n ", "url": "https://leetcode.com/problems/shortest-path-with-alternating-colors/" }
d1990
train
class Solution: def longestAwesome(self, s: str) -> int: cum = [0] firsts = {0: -1} lasts = {0: -1} for i, c in enumerate(s): cum.append(cum[-1] ^ (1 << (ord(c) - 48))) if cum[-1] not in firsts: firsts[cum[-1]] = i lasts[cum[-1]] = i mx = 1 for k in firsts: mx = max(mx, lasts[k] - firsts[k]) for off in range(10): o = k ^ (1 << off) if o in firsts: mx = max(mx, lasts[o] - firsts[k]) return mx
PYTHON
{ "starter_code": "\nclass Solution:\n def longestAwesome(self, s: str) -> int:\n ", "url": "https://leetcode.com/problems/find-longest-awesome-substring/" }
d1991
train
class Solution: def findLongestChain(self, pairs): """ :type pairs: List[List[int]] :rtype: int """ pairs = sorted(pairs,key=lambda x:x[1]) res = 1 first = pairs[0] for i in pairs[1:]: if first[-1] < i[0]: res += 1 first = i return res
PYTHON
{ "starter_code": "\nclass Solution:\n def findLongestChain(self, pairs: List[List[int]]) -> int:\n ", "url": "https://leetcode.com/problems/maximum-length-of-pair-chain/" }
d1992
train
class Solution: def countRoutes(self, locations: List[int], start: int, finish: int, fuel: int) -> int: n = len(locations) sloc = sorted([(x,i) for i,x in enumerate(locations)]) froutes = [[0]*n for _ in range(fuel+1) ] st,fn = -1,-1 for i in range(n): if sloc[i][1] == start: st = i if sloc[i][1] == finish: fn = i froutes[fuel][st] = 1 f0 = fuel while fuel > 0: for i, cnt in enumerate(froutes[fuel]): if cnt > 0: for j in range(i-1, -1, -1): dist = sloc[i][0] - sloc[j][0] if dist <= fuel: froutes[fuel - dist][j] += cnt else: break for j in range(i+1, n): dist = sloc[j][0] - sloc[i][0] if dist <= fuel: froutes[fuel - dist][j] += cnt else: break fuel -= 1 res = 0 for i in range(f0+1): res += froutes[i][fn] return res % (10**9+7)
PYTHON
{ "starter_code": "\nclass Solution:\n def countRoutes(self, locations: List[int], start: int, finish: int, fuel: int) -> int:\n ", "url": "https://leetcode.com/problems/count-all-possible-routes/" }
d1993
train
class CombinationIterator: def __init__(self, characters: str, combinationLength: int): self.nextCombIt = combinations(characters, combinationLength) self.nextComb = next(self.nextCombIt, None) def __next__(self) -> str: nextComb = self.nextComb self.nextComb = next(self.nextCombIt, None) return ''.join(nextComb) def hasNext(self) -> bool: return self.nextComb is not None
PYTHON
{ "starter_code": "\nclass CombinationIterator:\n def __init__(self, characters: str, combinationLength: int):\n def next(self) -> str:\n def hasNext(self) -> bool:\n# Your CombinationIterator object will be instantiated and called as such:\n# obj = CombinationIterator(characters, combinationLength)\n# param_1 = obj.next()\n# param_2 = obj.hasNext()", "url": "https://leetcode.com/problems/iterator-for-combination/" }
d1994
train
import re class Solution: def removeComments(self, source): """ :type source: List[str] :rtype: List[str] """ lines = re.sub('//.*|/\*(.|\n)*?\*/', '', '\n'.join(source)).split('\n') return [line for line in lines if line]
PYTHON
{ "starter_code": "\nclass Solution:\n def removeComments(self, source: List[str]) -> List[str]:\n ", "url": "https://leetcode.com/problems/remove-comments/" }
d1995
train
# Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def numComponents(self, head: ListNode, G: List[int]) -> int: s=set(G) prev_in=False c=0 while head: if head.val in s: if not prev_in: c+=1 prev_in=True else: prev_in=False head=head.__next__ return c
PYTHON
{ "starter_code": "\n# Definition for singly-linked list.\nclass ListNode:\n def __init__(self, val=0, next=None):\n self.val = val\n self.next = next\nclass Solution:\n def numComponents(self, head: ListNode, G: List[int]) -> int:\n ", "url": "https://leetcode.com/problems/linked-list-components/" }
d1996
train
class Solution: def carPooling(self, trips: List[List[int]], capacity: int) -> bool: d = defaultdict(int) for a, b, c in trips: d[b] += a d[c] -= a k = 0 for t in sorted(d.keys()): k += d[t] if k > capacity: return False return True
PYTHON
{ "starter_code": "\nclass Solution:\n def carPooling(self, trips: List[List[int]], capacity: int) -> bool:\n ", "url": "https://leetcode.com/problems/car-pooling/" }
d1997
train
class Solution: def eventualSafeNodes(self, graph: List[List[int]]) -> List[int]: \"\"\" Just move along unvisited (-1) nodes and remark them as 0 on the queue while visiting others on the path and finish them as 1. If you meet them again on the queue while visiting (being 0) it means you completed a cycle, in other words it is not safe and return back without adding. \"\"\" visited, result = [-1] * len(graph), [] def explore(i): visited[i] = 0 for v in graph[i]: if visited[v] == 0 or (visited[v]==-1 and explore(v)): return True visited[i] = 1 result.append(i) return False for i in range(len(graph)): if visited[i] == -1: explore(i) return sorted(result)
PYTHON
{ "starter_code": "\nclass Solution:\n def eventualSafeNodes(self, graph: List[List[int]]) -> List[int]:\n ", "url": "https://leetcode.com/problems/find-eventual-safe-states/" }
d1998
train
class Solution: def removeCoveredIntervals(self, intervals: List[List[int]]) -> int: intervals.sort(key=lambda x: (x[0], -x[1])) prev_end = result = 0 for _, end in intervals: if end > prev_end: result += 1; prev_end = end return result
PYTHON
{ "starter_code": "\nclass Solution:\n def removeCoveredIntervals(self, intervals: List[List[int]]) -> int:\n ", "url": "https://leetcode.com/problems/remove-covered-intervals/" }
d1999
train
import collections solved_boards = {((1,2,3),(4,5,0)): 0} class Solution: def slidingPuzzle(self, board): """ :type board: List[List[int]] :rtype: int """ asked = tuple(tuple(row) for row in board) queue = collections.deque([((1,2,3),(4,5,0))]) while queue: tboard = queue.popleft() for next_board in next_boards(tboard): if next_board in solved_boards: continue solved_boards[next_board] = solved_boards[tboard] + 1 queue.append(next_board) return solved_boards.get(asked, -1) def next_boards(board): board = [list(row) for row in board] zy, zx = find_zero(board) for dy, dx in ((-1, 0), (0, 1), (1, 0), (0, -1)): nzy, nzx = zy + dy, zx +dx if nzy in range(2) and nzx in range(3): board[zy][zx],board[nzy][nzx] = board[nzy][nzx],board[zy][zx] yield tuple(tuple(row) for row in board) board[zy][zx],board[nzy][nzx] = board[nzy][nzx],board[zy][zx] def find_zero(board): for y, row in enumerate(board): for x, e in enumerate(row): if e == 0: return y,x
PYTHON
{ "starter_code": "\nclass Solution:\n def findCheapestPrice(self, n: int, flights: List[List[int]], src: int, dst: int, K: int) -> int:\n ", "url": "https://leetcode.com/problems/cheapest-flights-within-k-stops/" }
d2000
train
# Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def removeZeroSumSublists(self, head: ListNode) -> ListNode: seen={} seen[0]=dummy=ListNode(0) dummy.next=head prev=0 while head: prev+=head.val seen[prev]=head head=head.__next__ head=dummy prev=0 while head: prev+=head.val head.next=seen[prev].__next__ head=head.__next__ return dummy.__next__
PYTHON
{ "starter_code": "\n# Definition for singly-linked list.\nclass ListNode:\n def __init__(self, val=0, next=None):\n self.val = val\n self.next = next\nclass Solution:\n def removeZeroSumSublists(self, head: ListNode) -> ListNode:\n ", "url": "https://leetcode.com/problems/remove-zero-sum-consecutive-nodes-from-linked-list/" }