_id
stringlengths 2
5
| partition
stringclasses 2
values | text
stringlengths 5
289k
| language
stringclasses 1
value | meta_information
dict | title
stringclasses 1
value |
---|---|---|---|---|---|
d1601 | train | t=int(input())
for _ in range(t):
n=int(input())
arr=list(map(int,input().split()))
d={}
for i in range(n):
if arr[i] in d:
d[arr[i]].append(i)
else:
d[arr[i]]=[i]
q=int(input())
for i in range(q):
m=int(input())
if len(d[m])==1:
print(n)
elif len(d[m])==2:
print(min((d[m][1]-d[m][0]),((n-d[m][1])+d[m][0])))
else:
k=100000
for j in range(len(d[m])-1):
if (d[m][j+1]-d[m][j])<k:
k=d[m][j+1]-d[m][j]
else:
pass
print(min(k,((n-d[m][len(d[m])-1])+d[m][0])))
| PYTHON | {
"starter_code": "",
"url": "https://www.codechef.com/CCWC2018/problems/WFORT"
} | |
d1602 | train | for __ in range(int(input())):
n,p=list(map(int,input().split()))
d=n%(n//2+1)
if(d==0):
t=p*p*p
else:
t=(p-d)*(p-d)+(p-d)*(p-n)+(p-n)*(p-n)
print(t)
| PYTHON | {
"starter_code": "",
"url": "https://www.codechef.com/problems/MGAME"
} | |
d1603 | train | for t in range(int(input().strip())):
n = int(input().strip())
x = int(input().strip())
arr = list(map(int, input().strip().split()))
arr.sort()
day = 1
acc = 0
isPossible = True
for a in arr:
acc += 1
if acc > x:
day += 1
acc = 1
if day >= a:
isPossible = False
break
print("Possible" if isPossible else "Impossible")
| PYTHON | {
"starter_code": "",
"url": "https://www.codechef.com/BTCH2020/problems/AKACHOCO"
} | |
d1604 | train | # Bartek Kostka
# You are not prepared!
#include "bits/stdc++.h"
n = int(input())
W = {}
for i in range(n):
adr = input()
adr = adr.split("/")
if adr[-1] == '':
adr[-1] = '?'
domena = "/".join(adr[:3])
adres = "/".join(adr[3:])
#print(domena, adres)
if domena not in W:
W[domena] = set()
W[domena].add(adres)
E = {}
for key, ele in list(W.items()):
#print(key, ele)
lele = "#".join(sorted(list(ele)))
if lele not in E:
E[lele] = []
E[lele].append(key)
res = 0
for key, ele in list(E.items()):
if len(ele) > 1:
res += 1
print(res)
for key, ele in list(E.items()):
if len(ele) > 1:
print(" ".join(ele))
| PYTHON | {
"starter_code": "",
"url": "https://codeforces.com/problemset/problem/644/C"
} | |
d1605 | train | def getSum(dp, pos, s, e, type_):
if e < s:
return 0
if type_=='D':
if e==m-1:
return dp[pos][s]
return dp[pos][s]-dp[pos][e+1]
else:
if e==n-1:
return dp[s][pos]
return dp[s][pos]-dp[e+1][pos]
mod = 10**9+7
n, m = map(int, input().split())
a = [list(list(map(lambda x: 1 if x=='R' else 0, input()))) for _ in range(n)]
SD = [[0]*m for _ in range(n)]
SN = [[0]*m for _ in range(n)]
dpD = [[0]*m for _ in range(n)]
dpN = [[0]*m for _ in range(n)]
for i in range(n-1, -1, -1):
for j in range(m-1, -1, -1):
if i == n-1:
SD[i][j]=a[i][j]
else:
SD[i][j]=SD[i+1][j]+a[i][j]
if j == m-1:
SN[i][j]=a[i][j]
else:
SN[i][j]=SN[i][j+1]+a[i][j]
for j in range(m-1,-1,-1):
if a[n-1][j]==1:
break
dpD[n-1][j]=1
dpN[n-1][j]=1
for i in range(n-1,-1,-1):
if a[i][m-1]==1:
break
dpD[i][m-1]=1
dpN[i][m-1]=1
for j in range(m-2, -1, -1):
if i==n-1:
break
dpD[n-1][j]+=dpD[n-1][j+1]
for i in range(n-2,-1,-1):
if j==m-1:
break
dpN[i][m-1]+=dpN[i+1][m-1]
for i in range(n-2,-1,-1):
for j in range(m-2,-1,-1):
s, e = j, m-SN[i][j]-1
#print(i, j, s, e, 'N')
dpN[i][j] = getSum(dpD, i+1, s, e, 'D')
dpN[i][j] = (dpN[i][j] + dpN[i+1][j]) % mod
s, e = i, n-SD[i][j]-1
#print(i, j, s, e, 'D')
dpD[i][j] = getSum(dpN, j+1, s, e, 'N')
if i != 0:
for j in range(m-2,-1,-1):
dpD[i][j] = (dpD[i][j] + dpD[i][j+1]) % mod
print(dpD[0][0] % mod) | PYTHON | {
"starter_code": "",
"url": "https://codeforces.com/problemset/problem/1225/E"
} | |
d1606 | train | a,b=map(int,input().split())
print(((b-1)*a*b//2+(a+1)*a*b*b*(b-1)//4)%1000000007) | PYTHON | {
"starter_code": "",
"url": "https://codeforces.com/problemset/problem/476/C"
} | |
d1607 | train | l,r = map(int, input().split(" "))
if l == r:
print (l)
else:
print (2) | PYTHON | {
"starter_code": "",
"url": "https://codeforces.com/problemset/problem/805/A"
} | |
d1608 | train | s=input()
ans = 0
for i in range(len(s)):
if s[i] == 'A':
ans += s[:i].count('Q') * s[i:].count('Q')
print(ans) | PYTHON | {
"starter_code": "",
"url": "https://codeforces.com/problemset/problem/894/A"
} | |
d1609 | train | def determinant(m):
a = 0
if len(m) == 1:
a = m[0][0]
else:
for n in xrange(len(m)):
if (n + 1) % 2 == 0:
a -= m[0][n] * determinant([o[:n] + o[n+1:] for o in m[1:]])
else:
a += m[0][n] * determinant([o[:n] + o[n+1:] for o in m[1:]])
return a | PYTHON | {
"starter_code": "\ndef determinant(matrix):\n\t",
"url": "https://www.codewars.com/kata/52a382ee44408cea2500074c"
} | |
d1610 | train | def sum_of_intervals(intervals):
s, top = 0, float("-inf")
for a,b in sorted(intervals):
if top < a: top = a
if top < b: s, top = s+b-top, b
return s | PYTHON | {
"starter_code": "\ndef sum_of_intervals(intervals):\n\t",
"url": "https://www.codewars.com/kata/52b7ed099cdc285c300001cd"
} | |
d1611 | train | def subsets_parity(n, k):
return 'EVEN' if ~n & k else 'ODD' | PYTHON | {
"starter_code": "\ndef subsets_parity(n,k):\n\t",
"url": "https://www.codewars.com/kata/589d5c80c31aa590e300006b"
} | |
d1612 | train | from collections import defaultdict
from itertools import chain
import re
PARSE = re.compile(r'[pP]\d+|q')
def magic_call_depth_number(prog):
def parse(it, p=''):
for m in it:
if m[0].startswith('p'): parse(it, m[0])
elif m[0]=='q': return
else: pCmds[p].append(m[0].lower())
def travel(p, seen, d=1):
if not pCmds[p]:
yield 0
else:
for n in pCmds[p]:
if n in seen: yield d
else: yield from travel(n, seen|{n}, d+1)
pCmds = defaultdict(list)
parse(PARSE.finditer(prog))
inf = list(chain.from_iterable(travel(p, {p}) for p in pCmds['']))
return [min(inf, default=0), max(inf, default=0)]
| PYTHON | {
"starter_code": "\ndef magic_call_depth_number(pattern):\n\t",
"url": "https://www.codewars.com/kata/5c1b23aa34fb628f2e000043"
} | |
d1613 | train | def primeFactors(n):
factors = []
while n % 2 == 0:
n /= 2
factors.append(2)
for i in range(3, int(n**.5) + 1,2):
while n % i == 0:
n /= i
factors.insert(0, i)
if n > 2: factors.insert(0, int(n))
return factors
def score(p):
last, xp, s = p[0], p[0], 0
for j in p[1:]:
if j == last:
xp *= j
else:
s += xp
xp, last = j, j
return (s + xp) * len(p)
def prod(lst):
res = 1
for v in lst: res *= v
return res
def multiply_partitions(partition): return [prod(sub) for sub in partition]
def partition(collection):
if len(collection) == 1:
yield [collection]
return
first = collection[0]
for smaller in partition(collection[1:]):
for n, subset in enumerate(smaller):
yield smaller[:n] + [[ first ] + subset] + smaller[n+1:]
yield [ [ first ] ] + smaller
def find_spec_prod_part(n, com):
factors = primeFactors(n)
if len(factors) == 1: return 'It is a prime number'
fn = min if com == 'min' else max
mplist = []
best = [factors, score(factors)]
for p in partition(factors):
mp = multiply_partitions(p)
if mp in mplist or mp[0]==n:
continue
mplist.append(mp)
best = fn(best, [mp, score(mp)], key=lambda x: x[1])
return [sorted(best[0], reverse=True), best[1]] | PYTHON | {
"starter_code": "\ndef find_spec_prod_part(n, com):\n\t",
"url": "https://www.codewars.com/kata/571dd22c2b97f2ce400010d4"
} | |
d1614 | train | def solution(string,markers):
parts = string.split('\n')
for s in markers:
parts = [v.split(s)[0].rstrip() for v in parts]
return '\n'.join(parts) | PYTHON | {
"starter_code": "\ndef solution(string,markers):\n\t",
"url": "https://www.codewars.com/kata/51c8e37cee245da6b40000bd"
} | |
d1615 | train | COLUMNS, ROWS = 'ABCDEFG', range(6)
LINES = [{(COLUMNS[i+k], ROWS[j]) for k in range(4)}
for i in range(len(COLUMNS) - 3) for j in range(len(ROWS))] \
+ [{(COLUMNS[i], ROWS[j+k]) for k in range(4)}
for i in range(len(COLUMNS)) for j in range(len(ROWS) - 3)] \
+ [{(COLUMNS[i+k], ROWS[j+k]) for k in range(4)}
for i in range(len(COLUMNS) - 3) for j in range(len(ROWS) - 3)] \
+ [{(COLUMNS[i+k], ROWS[j-k]) for k in range(4)}
for i in range(len(COLUMNS) - 3) for j in range(3, len(ROWS))]
def who_is_winner(pieces_positions):
players = {}
board = dict.fromkeys(COLUMNS, 0)
for position in pieces_positions:
column, player = position.split('_')
pos = (column, board[column])
board[column] += 1
players.setdefault(player, set()).add(pos)
if any(line <= players[player] for line in LINES):
return player
return "Draw" | PYTHON | {
"starter_code": "\ndef who_is_winner(pieces_position_list):\n\t",
"url": "https://www.codewars.com/kata/56882731514ec3ec3d000009"
} | |
d1616 | train | def longest_slide_down(p):
res = p.pop()
while p:
tmp = p.pop()
res = [tmp[i] + max(res[i],res[i+1]) for i in range(len(tmp))]
return res.pop() | PYTHON | {
"starter_code": "\ndef longest_slide_down(pyramid):\n\t",
"url": "https://www.codewars.com/kata/551f23362ff852e2ab000037"
} | |
d1617 | train | words = {w: n for n, w in enumerate('zero one two three four five six seven eight nine ten eleven twelve thirteen fourteen fifteen sixteen seventeen eighteen nineteen'.split())}
words.update({w: 10 * n for n, w in enumerate('twenty thirty forty fifty sixty seventy eighty ninety hundred'.split(), 2)})
thousands = {w: 1000 ** n for n, w in enumerate('thousand million billion trillion quadrillion quintillion sextillion septillion octillion nonillion decillion'.split(), 1)}
def parse_int(strng):
num = group = 0
for w in strng.replace(' and ', ' ').replace('-', ' ').split():
if w == 'hundred': group *= words[w]
elif w in words: group += words[w]
else:
num += group * thousands[w]
group = 0
return num + group | PYTHON | {
"starter_code": "\ndef parse_int(string):\n\t",
"url": "https://www.codewars.com/kata/525c7c5ab6aecef16e0001a5"
} | |
d1618 | train | from math import *
DIGS = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ'
def converter(n, decimals=0, base=pi):
lst,n = ['-'*(n<0)], abs(n)
pMax = max(0, n and int(log(n,base)))
for p in reversed(range(-decimals,pMax+1)):
if p==-1: lst.append('.')
p = base**p
d,n = n/p, n%p
lst.append(DIGS[int(d)])
return ''.join(lst) | PYTHON | {
"starter_code": "\ndef converter(n, decimals=0, base=pi):\n\t",
"url": "https://www.codewars.com/kata/5509609d1dbf20a324000714"
} | |
d1619 | train | from collections import defaultdict
import re
P = re.compile(r'\+?(-?\d*)(x\^?)?(\d*)')
def differentiate(eq, x):
derivate = defaultdict(int)
for coef,var,exp in P.findall(eq):
exp = int(exp or var and '1' or '0')
coef = int(coef!='-' and coef or coef and '-1' or '1')
if exp: derivate[exp-1] += exp * coef
return sum(coef * x**exp for exp,coef in derivate.items()) | PYTHON | {
"starter_code": "\ndef differentiate(equation, point):\n\t",
"url": "https://www.codewars.com/kata/566584e3309db1b17d000027"
} | |
d1620 | train | def decompose(n):
total = 0
answer = [n]
while len(answer):
temp = answer.pop()
total += temp ** 2
for i in range(temp - 1, 0, -1):
if total - (i ** 2) >= 0:
total -= i ** 2
answer.append(i)
if total == 0:
return sorted(answer)
return None | PYTHON | {
"starter_code": "\ndef decompose(n):\n\t",
"url": "https://www.codewars.com/kata/54eb33e5bc1a25440d000891"
} | |
d1621 | train | from heapq import *
def n_linear(ms, n):
lst = [1] * (n+1)
q = [(1+v,v,1) for v in ms]
heapify(q)
for i in range(1,n+1):
v,x,j = heappop(q)
lst[i] = v
heappush(q, (lst[j]*x+1, x, j+1) )
while q[0][0]==lst[i]:
v,x,j = heappop(q)
heappush(q, (lst[j]*x+1, x, j+1) )
return lst[n] | PYTHON | {
"starter_code": "\ndef n_linear(m,n):\n\t",
"url": "https://www.codewars.com/kata/5aa417aa4a6b344e2200009d"
} | |
d1622 | train | def count_change(money, coins):
if money<0:
return 0
if money == 0:
return 1
if money>0 and not coins:
return 0
return count_change(money-coins[-1],coins) + count_change(money,coins[:-1]) | PYTHON | {
"starter_code": "\ndef count_change(money, coins):\n\t",
"url": "https://www.codewars.com/kata/541af676b589989aed0009e7"
} | |
d1623 | train | def bowling_score(frames):
rolls = list(frames.replace(' ',''))
for i, hit in enumerate(rolls):
if hit == 'X':
rolls[i] = 10
elif hit == '/':
rolls[i] = 10 - rolls[i - 1]
else:
rolls[i] = int(hit)
score = 0
for i in range(10):
frame = rolls.pop(0)
if frame == 10:
score += frame + rolls[0] + rolls[1] # Strike!
else:
frame += rolls.pop(0)
score += frame
if frame == 10:
score += rolls[0] # Spare!
return score | PYTHON | {
"starter_code": "\ndef bowling_score(frames):\n\t",
"url": "https://www.codewars.com/kata/5531abe4855bcc8d1f00004c"
} | |
d1624 | train | from fractions import Fraction as frac
def ber():
res, m = [], 0
while True:
res.append(frac(1, m+1))
for j in range(m, 0, -1):
res[j-1] = j*(res[j-1] - res[j])
yield res[0]
m += 1
def bernoulli_number(n):
if n == 1: return Fraction(-1, 2)
if n % 2 == 1: return 0
bn2 = [ix for ix in zip(range(n + 2), ber())]
bn2 = [b for _, b in bn2]
return bn2[n] | PYTHON | {
"starter_code": "\ndef bernoulli_number(n):\n\t",
"url": "https://www.codewars.com/kata/567ffb369f7f92e53800005b"
} | |
d1625 | train | sq_cub_rev_prime = (None, 89, 271, 325, 328, 890, 1025, 1055, 1081, 1129, 1169, 1241, 2657, 2710, 3112, 3121, 3149, 3244, 3250, 3263, 3280, 3335, 3346, 3403, 4193, 4222, 4231, 4289, 4291, 5531, 5584, 5653, 5678, 5716, 5791, 5795, 5836, 5837, 8882, 8900, 8926, 8942, 9664, 9794, 9875, 9962, 10178, 10250, 10393, 10429, 10499, 10550, 10577, 10651, 10679, 10717, 10718, 10739, 10756, 10762, 10810, 10844, 10895, 10898, 10943, 10996, 11035, 11039, 11084, 11137, 11159, 11164, 11182, 11191, 11290, 11351, 11371, 11575, 11690, 11695, 11707, 11722, 11732, 11795, 11827, 11861, 11885, 12109, 12124, 12242, 12268, 12304, 12361, 12362, 12410, 12433, 12436, 12535, 19144, 19267, 19271, 19273, 19385, 19433, 19442, 19451, 19501, 19564, 19597, 19603, 19631, 19637, 19766, 19846, 19865, 19871, 19909, 19927, 26464, 26491, 26570, 26579, 26621, 26704, 26944, 26965, 27001, 27029, 27052, 27100, 27101, 31120, 31210, 31223, 31237, 31261, 31327, 31331, 31351, 31463, 31469, 31490, 31534, 31561, 31657, 31726, 31739, 31784, 31807, 31883, 31928, 31978, 32066, 32072, 32213, 32255, 32308, 32431, 32440, 32446, 32500, 32539, 32564, 32573, 32630, 32656, 32708, 32749, 32759, 32800, 32888, 32969, 33059, 33254, 33325, 33338, 33350, 33404, 33460, 33475, 33509, 33568, 33575, 33701, 33833, 34030, 34112, 34159, 34163, 41351, 41429, 41473, 41501, 41608, 41639, 41839, 41879, 41930, 41933, 41992, 42029, 42089, 42103, 42121, 42179, 42220, 42235, 42310, 42326, 42385, 42463, 42466, 42524, 42575, 42607, 42682, 42782, 42839, 42890, 42910, 42982, 43045, 43049, 54986, 54991, 55073, 55310, 55492, 55589, 55598, 55603, 55651).__getitem__ | PYTHON | {
"starter_code": "\ndef sq_cub_rev_prime(n):\n\t",
"url": "https://www.codewars.com/kata/5644a69f7849c9c097000073"
} | |
d1626 | train | LETTERS = 'abcdefgh' # Defining some constants
NUMBERS = '87654321'
W, B = WB = 'Pp'
EMPTY, CAPTURE = '.x'
WHITEHOME = '12'
BLACKHOME = '87'
JUMP = '54'
def pawn_move_tracker(moves):
board = {letter + number : # Representing board as
B if number == BLACKHOME[1] else # a dictionary for easy
W if number == WHITEHOME[1] else EMPTY # access
for letter in LETTERS for number in NUMBERS}
whitemove = True # Move side switcher
for move in moves:
target = move[-2:] # Finding target
mover = move[0] + str(int(move[-1]) + 1 - whitemove * 2) # Finding mover
if move[-1] in JUMP[whitemove] and board[mover] == EMPTY: # Mover for the jump
mover = move[0] + str(int(move[-1]) + 2 - whitemove * 4)
if (move[-1] in (BLACKHOME, WHITEHOME)[whitemove] or # Is the move valid?
board[target] != (EMPTY, WB[whitemove])[move[1] == CAPTURE] or
board[mover] != WB[not whitemove]):
return "{} is invalid".format(move)
whitemove = not whitemove # Switching side
board[mover] = EMPTY # Empty the source cell
board[target] = WB[whitemove] # Fill the target
return [[board[letter + number] for letter in LETTERS] for number in NUMBERS] # Return representation | PYTHON | {
"starter_code": "\ndef pawn_move_tracker(moves):\n\t",
"url": "https://www.codewars.com/kata/56b012bbee8829c4ea00002c"
} | |
d1627 | train | def solve(n):
def length(n):
s = 0
for i in range(20):
o = 10 ** i - 1
if o > n: break
s += (n - o) * (n - o + 1) // 2
return s
def binary_search(k):
n = 0
for p in range(63, -1, -1):
if length(n + 2 ** p) < k: n += 2 ** p
return n
def sequence(n):
if n < 10: return n
for i in range(1, 19):
segment = i * 9 * 10 ** (i - 1)
if n <= segment:
return str(10 ** (i - 1) + (n - 1) // i)[(n - 1) % i]
else:
n -= segment
return int(sequence(n - length(binary_search(n)))) | PYTHON | {
"starter_code": "\ndef solve(n):\n\t",
"url": "https://www.codewars.com/kata/5e1ab1b9fe268c0033680e5f"
} | |
d1628 | train | l = {j:i for i,j in enumerate('0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz')}
l_ = dict(enumerate('0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'))
is_polydivisible = lambda n, base:next((0 for i in range(1, len(n) + 1) if get_base(n[:i], base) % i),1)
get_base = lambda n, base:sum(int(l[j]) * (base ** i) for i, j in enumerate(n[::-1]))
def get_polydivisible(n, base):
c = i = 0; r = ''
while c < n:
t = to_base(i, base)
if is_polydivisible(t, base) : c += 1 ; r = t
i += 1
return ''.join(r) or '0'
def to_base(n, base):
li = []
while n:
n, b = divmod(n, base)
li.append(l_[b])
return li[::-1] | PYTHON | {
"starter_code": "\ndef is_polydivisible(s, b):\n\t",
"url": "https://www.codewars.com/kata/556206664efbe6376700005c"
} | |
d1629 | train | def proper_fractions(n):
phi = n > 1 and n
for p in range(2, int(n ** .5) + 1):
if not n % p:
phi -= phi // p
while not n % p:
n //= p
if n > 1: phi -= phi // n
return phi | PYTHON | {
"starter_code": "\ndef proper_fractions(n):\n\t",
"url": "https://www.codewars.com/kata/55b7bb74a0256d4467000070"
} | |
d1630 | train | from collections import Counter
def exchange_sort(sequence):
"""Greedy algorithm based on permutation cycle decomposition:
1. Search for transposition placing TWO elements correctly.
2. Search iteratively for transposition placing ONE elements correctly."""
swaps, cnt = 0, Counter()
for a, b in zip(sequence, sorted(sequence)):
if cnt[b,a] > 0:
cnt[b,a] -= 1
swaps += 1
elif a != b:
cnt[a,b] += 1
# Special case: as there are only three keys at most,
# all remaining cycles will be 3-length cycles that
# need 2 transpositions to place 3 elements correctly.
return swaps + sum(cnt.values()) // 3 * 2 | PYTHON | {
"starter_code": "\ndef exchange_sort(sequence):\n\t",
"url": "https://www.codewars.com/kata/58aa8b0538cf2eced5000115"
} | |
d1631 | train | from functools import reduce
from math import gcd
def survivor(a):
"""Round Robin by Bocker & Liptak"""
def __residue_table(a):
n = [0] + [None] * (a[0] - 1)
for i in range(1, len(a)):
d = gcd(a[0], a[i])
for r in range(d):
try:
nn = min(n[q] for q in range(r, a[0], d) if n[q] is not None)
except ValueError:
continue
for _ in range(a[0] // d):
nn += a[i]
p = nn % a[0]
if n[p] is not None: nn = min(nn, n[p])
n[p] = nn
return n
a.sort()
if len(a) < 1 or reduce(gcd, a) > 1: return -1
if a[0] == 1: return 0
return max(__residue_table(a)) - a[0] | PYTHON | {
"starter_code": "\ndef survivor(zombies):\n\t",
"url": "https://www.codewars.com/kata/5d9b52214a336600216bbd0e"
} | |
d1632 | train | def snail(array):
ret = []
if array and array[0]:
size = len(array)
for n in range((size + 1) // 2):
for x in range(n, size - n):
ret.append(array[n][x])
for y in range(1 + n, size - n):
ret.append(array[y][-1 - n])
for x in range(2 + n, size - n + 1):
ret.append(array[-1 - n][-x])
for y in range(2 + n, size - n):
ret.append(array[-y][n])
return ret
| PYTHON | {
"starter_code": "\ndef snail(array):\n\t",
"url": "https://www.codewars.com/kata/521c2db8ddc89b9b7a0000c1"
} | |
d1633 | train | import math
def count(n):
if n is 0: return 0
x = int(math.log(n, 2))
return x * 2 ** (x - 1) + n - 2 ** x + 1 + count(n - 2 ** x)
def countOnes(left, right):
return count(right) - count(left - 1) | PYTHON | {
"starter_code": "\ndef countOnes(left, right):\n\t",
"url": "https://www.codewars.com/kata/596d34df24a04ee1e3000a25"
} | |
d1634 | train | import re
NEG, DOT, _, *DIGS = "负点 零一二三四五六七八九"
POWS = " 十 百 千 万".split(' ')
NUMS = {str(i):c for i,c in enumerate(DIGS)}
for n in range(10): NUMS[str(n+10)] = POWS[1] + DIGS[n]*bool(n)
def to_chinese_numeral(n):
ss = str(abs(n)).split('.')
return NEG*(n<0) + parse(ss[0]) + (len(ss)>1 and decimals(ss[1]) or '')
def decimals(digs): return DOT + ''.join(NUMS[d] for d in digs)
def parse(s):
if s in NUMS: return NUMS[s]
s = ''.join(reversed([ NUMS[d] + POWS[i]*(d!='0') for i,d in enumerate(reversed(s)) ]))
return re.sub(f'零+$|(?<=零)零+', '', s) | PYTHON | {
"starter_code": "\ndef to_chinese_numeral(n):\n\t",
"url": "https://www.codewars.com/kata/52608f5345d4a19bed000b31"
} | |
d1635 | train | from math import factorial as fac
def xCy(x, y):
return fac(x) // fac(y) // fac(x - y)
def total_inc_dec(x):
return 1+sum([xCy(8+i,i) + xCy(9+i,i) - 10 for i in range(1,x+1)])
| PYTHON | {
"starter_code": "\ndef total_inc_dec(x):\n\t",
"url": "https://www.codewars.com/kata/55b195a69a6cc409ba000053"
} | |
d1636 | train | def middle_permutation(string):
s = sorted(string)
if len(s) % 2 ==0:
return s.pop(len(s)//2-1) +''.join(s[::-1])
else:
return s.pop(len(s)//2) + middle_permutation(s) | PYTHON | {
"starter_code": "\ndef middle_permutation(string):\n\t",
"url": "https://www.codewars.com/kata/58ad317d1541651a740000c5"
} | |
d1637 | train | def productsum(n):
pass # Your code here
def productsum(kmax):
def prodsum2(p, s, c, start):
k = p - s + c # product - sum + number of factors
if k < kmax:
if p < n[k]: n[k] = p
for i in range(start, kmax//p*2 + 1):
prodsum2(p*i, s+i, c+1, i)
kmax += 1
n = [2*kmax] * kmax
prodsum2(1, 1, 1, 2)
return sum(set(n[2:])) | PYTHON | {
"starter_code": "\ndef productsum(n):\n\t",
"url": "https://www.codewars.com/kata/5b16bbd2c8c47ec58300016e"
} | |
d1638 | train | def encode(s):
lst = sorted( s[i or len(s):] + s[:i or len(s)] for i in reversed(range(len(s))) )
return ''.join(ss[-1] for ss in lst), s and lst.index(s) or 0
def decode(s, n):
out, lst = [], sorted((c,i) for i,c in enumerate(s))
for _ in range(len(s)):
c,n = lst[n]
out.append(c)
return ''.join(out) | PYTHON | {
"starter_code": "\ndef encode(s):\n\t",
"url": "https://www.codewars.com/kata/54ce4c6804fcc440a1000ecb"
} | |
d1639 | train | '''
Write a function that returns the longest contiguous palindromic substring in s.
In the event that there are multiple longest palindromic substrings, return the
first to occur.
'''
def longest_palindrome(s, sep=" "):
# Interpolate some inert character between input characters
# so we only have to find odd-length palindromes
t = sep + sep.join(s) + sep
r = 0 # Rightmost index in any palindrome found so far ...
c = 0 # ... and the index of the centre of that palindrome.
spans = [] # Length of the longest substring in T[i:] mirrored in T[i::-1]
# Manacher's algorithm
for i,_ in enumerate(t):
span = min(spans[2*c-i], r-i-1) if i < r else 0
while span <= i < len(t)-span and t[i-span] == t[i+span]:
span += 1
r, c = max((r, c), (i+span, i))
spans.append(span)
span = max(spans)
middle = spans.index(span)
return t[middle-span+1:middle+span].replace(sep, "") | PYTHON | {
"starter_code": "\ndef longest_palindrome(s):\n\t",
"url": "https://www.codewars.com/kata/5dcde0b9fcb0d100349cb5c0"
} | |
d1640 | train | import math
def gta(limit, *args):
return sum_up(limit, make_pattern(limit, *args))
def binomial_coeff(n, k):
"""N choose K"""
return math.factorial(n) / math.factorial(n-k)
def sum_up(limit, items):
"""
Basic Idea:
The number of cominations is simply N choose K. We calcuate this n-times up to the limit.
To sum up all the digits we don't have to calculate the sum of each permuation, rather, we simply have to
realise that the digit "1" will appear N times.
For example: [1,2,3], pick = 3.
If there are 6 combinations of length 3 for 3 numbers then each number much appear once in each combination.
Thus the sum is: (1 * 6) + (2 * 6) + (3 * 6)
In cases where we have N numbers and need to pick K of them then that means not all numbers appear in all combinations.
It turns out combinations_total / (N / limit) gives us how many times N appears in the list of all combinations.
For example: [1,2,3] pick 2
[1,2]
[2,1]
[1,3]
[3,1]
[2,3]
[3,2]
We can see that 1 appears 4/6 times.
combinations_total = 6, N = 3, limit = 2.
6 / (3/2) = 4
"""
total = 0
for i in range(1, limit + 1):
combin = binomial_coeff(len(items), i)
ratio = len(items) / float(i)
for element in items:
total += (element * (combin / ratio))
return total
def make_pattern(limit, *args):
seen = set()
pattern = []
items = list(map(str, args))
k = 0
while len(pattern) < limit:
for i in range(len(items)):
try:
v = items[i][k]
except IndexError:
pass
if v not in seen:
seen.add(v)
pattern.append(int(v))
if len(pattern) == limit:
break
k += 1
return pattern | PYTHON | {
"starter_code": "\ndef gta(limit, *args):\n\t",
"url": "https://www.codewars.com/kata/568f2d5762282da21d000011"
} | |
d1641 | train |
def mix(s1, s2):
hist = {}
for ch in "abcdefghijklmnopqrstuvwxyz":
val1, val2 = s1.count(ch), s2.count(ch)
if max(val1, val2) > 1:
which = "1" if val1 > val2 else "2" if val2 > val1 else "="
hist[ch] = (-max(val1, val2), which + ":" + ch * max(val1, val2))
return "/".join(hist[ch][1] for ch in sorted(hist, key=lambda x: hist[x]))
| PYTHON | {
"starter_code": "\ndef mix(s1, s2):\n\t",
"url": "https://www.codewars.com/kata/5629db57620258aa9d000014"
} | |
d1642 | train | from itertools import zip_longest
def normalize(lst, growing=0):
def seeker(lst, d=1):
yield len(lst), d
for elt in lst:
if isinstance(elt,list):
yield from seeker(elt, d+1)
def grower(lst, d=1):
return [ grower(o if isinstance(o,list) else [o]*size, d+1)
if d != depth else o
for o,_ in zip_longest(lst,range(size), fillvalue=growing) ]
size,depth = map(max, zip(*seeker(lst)))
return grower(lst) | PYTHON | {
"starter_code": "\ndef normalize(nested_list, growing_value=0):\n\t",
"url": "https://www.codewars.com/kata/5aa859ad4a6b3408920002be"
} | |
d1643 | train | from scipy.special import comb
def multiply(n, k):
r, d = 1, 2
while d * d <= n:
i = 0
while n % d == 0:
i += 1
n //= d
r *= comb(i + k - 1, k - 1, exact=True)
d += 1
if n > 1:
r *= k
return r | PYTHON | {
"starter_code": "\ndef multiply(n, k):\n\t",
"url": "https://www.codewars.com/kata/5f1891d30970800010626843"
} | |
d1644 | train | from scipy.special import comb
def almost_everywhere_zero(n, k):
if k == 0: return 1
first, *rest = str(n)
l = len(rest)
return 9**k*comb(l, k, exact=True) +\
(int(first)-1)*9**(k-1)*comb(l, k-1, exact=True) +\
almost_everywhere_zero(int("".join(rest) or 0), k-1) | PYTHON | {
"starter_code": "\ndef almost_everywhere_zero(n, k):\n\t",
"url": "https://www.codewars.com/kata/5e64cc85f45989000f61526c"
} | |
d1645 | train | from math import ceil
def b91decode(strng):
ret = ''
base91_alphabet = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',
'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z',
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm',
'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '!', '#', '$',
'%', '&', '(', ')', '*', '+', ',', '.', '/', ':', ';', '<', '=',
'>', '?', '@', '[', ']', '^', '_', '`', '{', '|', '}', '~', '"']
strng_arr = [strng[i:i+2] for i in range(0, len(strng), 2)]
origin_bin = ''
for str in strng_arr:
num = 0
if len(str) == 1:
num += base91_alphabet.index(str[0])
origin_bin = bin(num)[2:] + origin_bin
else:
num += base91_alphabet.index(str[0])
num += base91_alphabet.index(str[1])*91
if num & 8191 > 88:
origin_bin = bin(num)[2:].zfill(13) + origin_bin
else:
origin_bin = bin(num)[2:].zfill(14) + origin_bin
origin_bin = origin_bin.zfill(int(ceil(len(origin_bin)/8.0))*8)
ret = [origin_bin[i:i+8] for i in range(0, len(origin_bin), 8)]
return ''.join(map(lambda x:chr(int(x, 2)), ret))[::-1]
def b91encode(strng):
base91_alphabet = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',
'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z',
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm',
'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '!', '#', '$',
'%', '&', '(', ')', '*', '+', ',', '.', '/', ':', ';', '<', '=',
'>', '?', '@', '[', ']', '^', '_', '`', '{', '|', '}', '~', '"']
ret = ''
strng_bin = map(lambda x:bin(ord(x))[2:].zfill(8), list(strng))
strng_bin_r = ''
for i in range(len(strng_bin)):
strng_bin_r = strng_bin[i] + strng_bin_r
strng_bin_r = strng_bin_r[::-1]
index = 0
while index < len(strng_bin_r):
num = int(strng_bin_r[index:index+13][::-1], 2)
if num > 88:
index += 13
ret += base91_alphabet[num%91] + base91_alphabet[num/91]
else:
num = int(strng_bin_r[index:index+14][::-1], 2)
index += 14
ret += base91_alphabet[num%91] + base91_alphabet[num/91]
ret = ret[0:len(ret)-2]
if num > 90:
ret += base91_alphabet[num%91] + base91_alphabet[num/91]
else:
ret += base91_alphabet[num%91]
return ret | PYTHON | {
"starter_code": "\ndef b91decode(strng):\n\t",
"url": "https://www.codewars.com/kata/58a57c6bcebc069d7e0001fe"
} | |
d1646 | train | def one_square(n):
return round(n ** .5) ** 2 == n
def two_squares(n):
while n % 2 == 0: n //= 2
p = 3
while p * p <= n:
while n % (p * p) == 0:
n //= p * p
while n % p == 0:
if p % 4 == 3: return False
n //= p
p += 2
return n % 4 == 1
def three_squares(n):
while n % 4 == 0: n //= 4
return n % 8 != 7
def sum_of_squares(n):
if one_square(n): return 1
if two_squares(n): return 2
if three_squares(n): return 3
return 4 | PYTHON | {
"starter_code": "\ndef sum_of_squares(n):\n\t",
"url": "https://www.codewars.com/kata/5a3af5b1ee1aaeabfe000084"
} | |
d1647 | train | out = [1, 5, 6]
def green(n):
f = 5
s = 6
q = 1
while n >= len(out):
q = 10 * q
f = f**2 % q
s = (1 - (s - 1)**2) % q
out.extend(sorted(j for j in [f, s] if j not in out))
return out[n-1] | PYTHON | {
"starter_code": "\ndef green(n):\n\t",
"url": "https://www.codewars.com/kata/584dee06fe9c9aef810001e8"
} | |
d1648 | train | import itertools
def next_bigger(n):
s = list(str(n))
for i in range(len(s)-2,-1,-1):
if s[i] < s[i+1]:
t = s[i:]
m = min([x for x in t if x>t[0]])
t.remove(m)
t.sort()
s[i:] = [m] + t
return int("".join(s))
return -1
| PYTHON | {
"starter_code": "\ndef next_bigger(n):\n\t",
"url": "https://www.codewars.com/kata/55983863da40caa2c900004e"
} | |
d1649 | train | def spinning_rings(inner_max, outer_max):
p = inner_max + 1
q = outer_max + 1
move = 1
while (-move) % p != move % q:
if (-move) % p >= q:
move = move // p * p + p - q + 1
elif move % q >= p:
move = move // q * q + q
elif (-move) % p > move % q and ((-move) % p + move % q) % 2 == 0:
move += ((-move) % p - move % q) // 2
else:
move = min((move - 1) // p * p + p, (move - 1) // q * q + q) + 1
return move | PYTHON | {
"starter_code": "\ndef spinning_rings(inner_max, outer_max):\n\t",
"url": "https://www.codewars.com/kata/59b0b7cd2a00d219ab0000c5"
} | |
d1650 | train | STATE_TO_COMMANDS = {
'CLOSED': {
'APP_PASSIVE_OPEN': 'LISTEN',
'APP_ACTIVE_OPEN': 'SYN_SENT'
},
'LISTEN': {
'RCV_SYN': 'SYN_RCVD',
'APP_SEND': 'SYN_SENT',
'APP_CLOSE': 'CLOSED'
},
'SYN_RCVD': {
'APP_CLOSE': 'FIN_WAIT_1',
'RCV_ACK': 'ESTABLISHED'
},
'SYN_SENT': {
'RCV_SYN': 'SYN_RCVD',
'RCV_SYN_ACK': 'ESTABLISHED',
'APP_CLOSE': 'CLOSED'
},
'ESTABLISHED': {
'APP_CLOSE': 'FIN_WAIT_1',
'RCV_FIN': 'CLOSE_WAIT'
},
'FIN_WAIT_1': {
'RCV_FIN': 'CLOSING',
'RCV_FIN_ACK': 'TIME_WAIT',
'RCV_ACK': 'FIN_WAIT_2'
},
'CLOSING': {
'RCV_ACK': 'TIME_WAIT'
},
'FIN_WAIT_2': {
'RCV_FIN': 'TIME_WAIT'
},
'TIME_WAIT': {
'APP_TIMEOUT': 'CLOSED'
},
'CLOSE_WAIT': {
'APP_CLOSE': 'LAST_ACK'
},
'LAST_ACK': {
'RCV_ACK': 'CLOSED'
}
}
def traverse_TCP_states(events):
state = "CLOSED" # initial state, always
for event in events:
if event not in STATE_TO_COMMANDS[state]:
return 'ERROR'
state = STATE_TO_COMMANDS[state][event]
return state | PYTHON | {
"starter_code": "\ndef traverse_TCP_states(events):\n\t",
"url": "https://www.codewars.com/kata/54acc128329e634e9a000362"
} | |
d1651 | train | from itertools import combinations_with_replacement
def find_all(sum_dig, digs):
combs = combinations_with_replacement(list(range(1, 10)), digs)
target = [''.join(str (x) for x in list(comb)) for comb in combs if sum(comb) == sum_dig]
if not target:
return []
return [len(target), int(target[0]), int(target[-1])]
| PYTHON | {
"starter_code": "\ndef find_all(sum_dig, digs):\n\t",
"url": "https://www.codewars.com/kata/5877e7d568909e5ff90017e6"
} | |
d1652 | train | def solution(args):
out = []
beg = end = args[0]
for n in args[1:] + [""]:
if n != end + 1:
if end == beg:
out.append( str(beg) )
elif end == beg + 1:
out.extend( [str(beg), str(end)] )
else:
out.append( str(beg) + "-" + str(end) )
beg = n
end = n
return ",".join(out) | PYTHON | {
"starter_code": "\ndef solution(args):\n\t",
"url": "https://www.codewars.com/kata/51ba717bb08c1cd60f00002f"
} | |
d1653 | train | times = [("year", 365 * 24 * 60 * 60),
("day", 24 * 60 * 60),
("hour", 60 * 60),
("minute", 60),
("second", 1)]
def format_duration(seconds):
if not seconds:
return "now"
chunks = []
for name, secs in times:
qty = seconds // secs
if qty:
if qty > 1:
name += "s"
chunks.append(str(qty) + " " + name)
seconds = seconds % secs
return ', '.join(chunks[:-1]) + ' and ' + chunks[-1] if len(chunks) > 1 else chunks[0]
| PYTHON | {
"starter_code": "\ndef format_duration(seconds):\n\t",
"url": "https://www.codewars.com/kata/52742f58faf5485cae000b9a"
} | |
d1654 | train | def fibfusc(n, num_digits=None):
if n < 2: return (1 - n, n)
b = bin(n)[2:]
x, y = fibfusc(int(b[0]))
for bit in b[1:]:
if bit == "1":
x, y = (-y*(2*x + 3*y), (x + 2*y)*(x + 4*y))
else:
x, y = ((x + y) * (x - y), y * (2*x + 3*y))
if num_digits:
x, y = x % 10 ** num_digits - 10**num_digits, y % 10 ** num_digits
return x, y
| PYTHON | {
"starter_code": "\ndef fibfusc(n, num_digits=None):\n\t",
"url": "https://www.codewars.com/kata/570f1c56cd0531d88e000832"
} | |
d1655 | train | import re
def solve_runes(runes):
for d in sorted(set("0123456789") - set(runes)):
toTest = runes.replace("?",d)
if re.search(r'([^\d]|\b)0\d+', toTest): continue
l,r = toTest.split("=")
if eval(l) == eval(r): return int(d)
return -1 | PYTHON | {
"starter_code": "\ndef solve_runes(runes):\n\t",
"url": "https://www.codewars.com/kata/546d15cebed2e10334000ed9"
} | |
d1656 | train | from itertools import combinations
def count_col_triang(a):
p, r = {}, {}
for xy, col in a:
p[col] = p.get(col, []) + [xy]
for k in p:
r[k] = sum(1 for c in combinations(p[k], 3) if triangle(*c))
mx = max(r.values())
return [len(a), len(p), sum(r.values()), sorted(k for k in r if r[k] == mx) + [mx] if mx else []]
def triangle(a, b, c):
return area(*[((p[0] - q[0])**2 + (p[1] - q[1])**2)**0.5 for p, q in [(a, b), (a, c), (b, c)]]) > 0.0
def area(a, b, c):
s = 0.5 * (a + b + c)
return round(max((s*((s-a)*(s-b)*(s-c))), 0.0)**0.5, 4) | PYTHON | {
"starter_code": "\ndef count_col_triang(a):\n\t",
"url": "https://www.codewars.com/kata/57cebf1472f98327760003cd"
} | |
d1657 | train | def count_subsequences(needle, haystack):
count = [1] + [0] * len(needle)
for a in haystack:
count = [1] + [count[i] + count[i-1] * (a == b)
for i, b in enumerate(needle, 1)]
return count[-1] % 10 ** 8 | PYTHON | {
"starter_code": "\ndef count_subsequences(a, b):\n\t",
"url": "https://www.codewars.com/kata/52f7892a747862fc9a0009a6"
} | |
d1658 | train | def string_func(s, n):
l, s = [s], list(s)
while True:
s[::2], s[1::2] = s[:len(s)//2-1:-1], s[:len(s)//2]
l.append(''.join(s))
if l[0] == l[-1]: del l[-1]; break
return l[n % len(l)] | PYTHON | {
"starter_code": "\ndef string_func(s, n):\n\t",
"url": "https://www.codewars.com/kata/5ae64f28d2ee274164000118"
} | |
d1659 | train | from fractions import Fraction
def expand(x, digit):
step = 0
fact = 1
expo = Fraction(1)
n = 10 ** len(str(x).split('.')[-1])
x = Fraction(int(x * n), n)
while expo.numerator < 10 ** (digit - 1):
step += 1
fact *= step
expo += x ** step / fact
return [expo.numerator, expo.denominator] | PYTHON | {
"starter_code": "\ndef expand(x, digit):\n\t",
"url": "https://www.codewars.com/kata/54f5f22a00ecc4184c000034"
} | |
d1660 | train | ANSWERS = {
0: 1,
1: 1,
2: 2,
3: 3,
4: 5,
5: 7,
6: 11,
7: 15,
8: 22,
9: 30,
10: 42,
11: 56,
12: 77,
13: 101,
14: 135,
15: 176,
16: 231,
17: 297,
18: 385,
19: 490,
20: 627,
21: 792,
22: 1002,
23: 1255,
24: 1575,
25: 1958,
26: 2436,
27: 3010,
28: 3718,
29: 4565,
30: 5604,
31: 6842,
32: 8349,
33: 10143,
34: 12310,
35: 14883,
36: 17977,
37: 21637,
38: 26015,
39: 31185,
40: 37338,
41: 44583,
42: 53174,
43: 63261,
44: 75175,
45: 89134,
46: 105558,
47: 124754,
48: 147273,
49: 173525,
50: 204226,
51: 239943,
52: 281589,
53: 329931,
54: 386155,
55: 451276,
56: 526823,
57: 614154,
58: 715220,
59: 831820,
60: 966467,
61: 1121505,
62: 1300156,
63: 1505499,
64: 1741630,
65: 2012558,
66: 2323520,
67: 2679689,
68: 3087735,
69: 3554345,
70: 4087968,
71: 4697205,
72: 5392783,
73: 6185689,
74: 7089500,
75: 8118264,
76: 9289091,
77: 10619863,
78: 12132164,
79: 13848650,
80: 15796476,
81: 18004327,
82: 20506255,
83: 23338469,
84: 26543660,
85: 30167357,
86: 34262962,
87: 38887673,
88: 44108109,
89: 49995925,
90: 56634173,
91: 64112359,
92: 72533807,
93: 82010177,
94: 92669720,
95: 104651419,
96: 118114304,
97: 133230930,
98: 150198136,
99: 169229875,
100: 190569292,
101: 214481126,
102: 241265379,
103: 271248950,
104: 304801365,
105: 342325709,
106: 384276336,
107: 431149389,
108: 483502844,
109: 541946240,
110: 607163746,
111: 679903203,
112: 761002156,
113: 851376628,
114: 952050665,
115: 1064144451,
116: 1188908248,
117: 1327710076,
118: 1482074143,
119: 1653668665,
120: 1844349560,
121: 2056148051,
122: 2291320912,
123: 2552338241,
124: 2841940500,
125: 3163127352,
126: 3519222692,
127: 3913864295,
128: 4351078600,
129: 4835271870,
130: 5371315400,
131: 5964539504,
132: 6620830889,
133: 7346629512,
134: 8149040695,
135: 9035836076,
136: 10015581680,
137: 11097645016,
138: 12292341831,
139: 13610949895,
140: 15065878135,
141: 16670689208,
142: 18440293320,
143: 20390982757,
144: 22540654445,
145: 24908858009,
146: 27517052599,
147: 30388671978,
148: 33549419497,
149: 37027355200,
150: 40853235313,
151: 45060624582,
152: 49686288421,
153: 54770336324,
154: 60356673280,
155: 66493182097,
156: 73232243759,
157: 80630964769,
158: 88751778802,
159: 97662728555,
160: 107438159466,
161: 118159068427,
162: 129913904637,
163: 142798995930,
164: 156919475295,
165: 172389800255,
166: 189334822579,
167: 207890420102,
168: 228204732751,
169: 250438925115,
170: 274768617130,
171: 301384802048,
172: 330495499613,
173: 362326859895,
174: 397125074750,
175: 435157697830,
176: 476715857290,
177: 522115831195,
178: 571701605655,
179: 625846753120,
180: 684957390936,
181: 749474411781,
182: 819876908323,
183: 896684817527,
184: 980462880430,
185: 1071823774337,
186: 1171432692373,
187: 1280011042268,
188: 1398341745571,
189: 1527273599625,
190: 1667727404093,
191: 1820701100652,
192: 1987276856363,
193: 2168627105469,
194: 2366022741845,
195: 2580840212973,
196: 2814570987591,
197: 3068829878530,
198: 3345365983698,
199: 3646072432125,
200: 3972999029388,
201: 4328363658647,
202: 4714566886083,
203: 5134205287973,
204: 5590088317495,
205: 6085253859260,
206: 6622987708040,
207: 7206841706490,
208: 7840656226137,
209: 8528581302375,
210: 9275102575355,
211: 10085065885767,
212: 10963707205259,
213: 11916681236278,
214: 12950095925895,
215: 14070545699287,
216: 15285151248481,
217: 16601598107914,
218: 18028182516671,
219: 19573856161145,
220: 21248279009367,
221: 23061871173849,
222: 25025873760111,
223: 27152408925615,
224: 29454549941750,
225: 31946390696157,
226: 34643126322519,
227: 37561133582570,
228: 40718063627362,
229: 44132934884255,
230: 47826239745920,
231: 51820051838712,
232: 56138148670947,
233: 60806135438329,
234: 65851585970275,
235: 71304185514919,
236: 77195892663512,
237: 83561103925871,
238: 90436839668817,
239: 97862933703585,
240: 105882246722733,
241: 114540884553038,
242: 123888443077259,
243: 133978259344888,
244: 144867692496445,
245: 156618412527946,
246: 169296722391554,
247: 182973889854026,
248: 197726516681672,
249: 213636919820625,
250: 230793554364681,
251: 249291451168559,
252: 269232701252579,
253: 290726957916112,
254: 313891991306665,
255: 338854264248680,
256: 365749566870782,
257: 394723676655357,
258: 425933084409356,
259: 459545750448675,
260: 495741934760846,
261: 534715062908609,
262: 576672674947168,
263: 621837416509615,
264: 670448123060170,
265: 722760953690372,
266: 779050629562167,
267: 839611730366814,
268: 904760108316360,
269: 974834369944625,
270: 1050197489931117,
271: 1131238503938606,
272: 1218374349844333,
273: 1312051800816215,
274: 1412749565173450,
275: 1520980492851175,
276: 1637293969337171,
277: 1762278433057269,
278: 1896564103591584,
279: 2040825852575075,
280: 2195786311682516,
281: 2362219145337711,
282: 2540952590045698,
283: 2732873183547535,
284: 2938929793929555,
285: 3160137867148997,
286: 3397584011986773,
287: 3652430836071053,
288: 3925922161489422,
289: 4219388528587095,
290: 4534253126900886,
291: 4872038056472084,
292: 5234371069753672,
293: 5622992691950605,
294: 6039763882095515,
295: 6486674127079088,
296: 6965850144195831,
297: 7479565078510584,
298: 8030248384943040,
299: 8620496275465025,
300: 9253082936723602,
301: 9930972392403501,
302: 10657331232548839,
303: 11435542077822104,
304: 12269218019229465,
305: 13162217895057704,
306: 14118662665280005,
307: 15142952738857194,
308: 16239786535829663,
309: 17414180133147295,
310: 18671488299600364,
311: 20017426762576945,
312: 21458096037352891,
313: 23000006655487337,
314: 24650106150830490,
315: 26415807633566326,
316: 28305020340996003,
317: 30326181989842964,
318: 32488293351466654,
319: 34800954869440830,
320: 37274405776748077,
321: 39919565526999991,
322: 42748078035954696,
323: 45772358543578028,
324: 49005643635237875,
325: 52462044228828641,
326: 56156602112874289,
327: 60105349839666544,
328: 64325374609114550,
329: 68834885946073850,
330: 73653287861850339,
331: 78801255302666615,
332: 84300815636225119,
333: 90175434980549623,
334: 96450110192202760,
335: 103151466321735325,
336: 110307860425292772,
337: 117949491546113972,
338: 126108517833796355,
339: 134819180623301520,
340: 144117936527873832,
341: 154043597379576030,
342: 164637479165761044,
343: 175943559810422753,
344: 188008647052292980,
345: 200882556287683159,
346: 214618299743286299,
347: 229272286871217150,
348: 244904537455382406,
349: 261578907351144125,
350: 279363328483702152,
351: 298330063062758076,
352: 318555973788329084,
353: 340122810048577428,
354: 363117512048110005,
355: 387632532919029223,
356: 413766180933342362,
357: 441622981929358437,
358: 471314064268398780,
359: 502957566506000020,
360: 536679070310691121,
361: 572612058898037559,
362: 610898403751884101,
363: 651688879997206959,
364: 695143713458946040,
365: 741433159884081684,
366: 790738119649411319,
367: 843250788562528427,
368: 899175348396088349,
369: 958728697912338045,
370: 1022141228367345362,
371: 1089657644424399782,
372: 1161537834849962850,
373: 1238057794119125085,
374: 1319510599727473500,
375: 1406207446561484054,
376: 1498478743590581081,
377: 1596675274490756791,
378: 1701169427975813525,
379: 1812356499739472950,
380: 1930656072350465812,
381: 2056513475336633805,
382: 2190401332423765131,
383: 2332821198543892336,
384: 2484305294265418180,
385: 2645418340688763701,
386: 2816759503217942792,
387: 2998964447736452194,
388: 3192707518433532826,
389: 3398704041358160275,
390: 3617712763867604423,
391: 3850538434667429186,
392: 4098034535626594791,
393: 4361106170762284114,
394: 4640713124699623515,
395: 4937873096788191655,
396: 5253665124416975163,
397: 5589233202595404488,
398: 5945790114707874597,
399: 6324621482504294325,
400: 6727090051741041926,
401: 7154640222653942321,
402: 7608802843339879269,
403: 8091200276484465581,
404: 8603551759348655060,
405: 9147679068859117602,
406: 9725512513742021729,
407: 10339097267123947241,
408: 10990600063775926994,
409: 11682316277192317780,
410: 12416677403151190382,
411: 13196258966925435702,
412: 14023788883518847344,
413: 14902156290309948968,
414: 15834420884488187770,
415: 16823822787139235544,
416: 17873792969689876004,
417: 18987964267331664557,
418: 20170183018805933659,
419: 21424521360255636320,
420: 22755290216580025259,
421: 24167053021441363961,
422: 25664640213837714846,
423: 27253164546230421739,
424: 28938037257084798150,
425: 30724985147095051099,
426: 32620068617410232189,
427: 34629700713903575934,
428: 36760667241831527309,
429: 39020148000237259665,
430: 41415739207102358378,
431: 43955477170518116534,
432: 46647863284229267991,
433: 49501890409405150715,
434: 52527070729108240605,
435: 55733465144636286656,
436: 59131714309169618645,
437: 62733071376043079215,
438: 66549436566966297367,
439: 70593393646562135510,
440: 74878248419470886233,
441: 79418069346443402240,
442: 84227730407729499781,
443: 89322956321353645667,
444: 94720370257893471820,
445: 100437544171752847604,
446: 106493051905239118581,
447: 112906525199196103354,
448: 119698712782720205954,
449: 126891542690981418000,
450: 134508188001572923840,
451: 142573136155347404229,
452: 151112262071917313678,
453: 160152905244553715585,
454: 169723951046458040965,
455: 179855916453958267598,
456: 190581040442651931034,
457: 201933379285114688629,
458: 213948907032733069132,
459: 226665621435831345565,
460: 240123655613925192081,
461: 254365395758574199975,
462: 269435605212954994471,
463: 285381555241961986287,
464: 302253162872576636605,
465: 320103136152993290544,
466: 338987127249525432549,
467: 358963893768162876613,
468: 380095468763120598477,
469: 402447339861711475160,
470: 426088638015652413417,
471: 451092336355096099864,
472: 477535459708164115593,
473: 505499305314204629558,
474: 535069675351607262125,
475: 566337121865805599675,
476: 599397204782301852926,
477: 634350763653787028583,
478: 671304203896731807232,
479: 710369798236628238005,
480: 751666004194993125591,
481: 795317798414758232180,
482: 841457028742823649455,
483: 890222784951928088294,
484: 941761789114997698055,
485: 996228806608573411012,
486: 1053787078862455346513,
487: 1114608778936426484248,
488: 1178875491155735802646,
489: 1246778716001272919665,
490: 1318520401612270233223,
491: 1394313503224447816939,
492: 1474382572040363953132,
493: 1558964374994977806173,
494: 1648308547066172438760,
495: 1742678277747760981187,
496: 1842351033503159891466,
497: 1947619317987658064007,
498: 2058791472042884901563,
499: 2176192515439287461625,
500: 2300165032574323995027,
501: 2431070104309287327876,
502: 2569288288377098289281,
503: 2715220650772245313220,
504: 2869289850802400662045,
505: 3031941282464413132742,
506: 3203644275096202070012,
507: 3384893356244349844341,
508: 3576209579998154653671,
509: 3778141924035171537110,
510: 3991268758958164118300,
511: 4216199393504640098482,
512: 4453575699570940947378,
513: 4704073821002175842062,
514: 4968405970488126319775,
515: 5247322318923878793976,
516: 5541612982013113936133,
517: 5852110108921301661040,
518: 6179690078238084808000,
519: 6525275806549652788115,
520: 6889839175409542385648,
521: 7274403582551733377346,
522: 7680046623716094332553,
523: 8107902911527474124146,
524: 8559167038437716736150,
525: 9035096690829005915201,
526: 9537015921990240021538,
527: 10066318591787500106586,
528: 10624471981512075020731,
529: 11213020592521695111580,
530: 11833590138006300416410,
531: 12487891737367521803652,
532: 13177726323474524612308,
533: 13904989273245567335012,
534: 14671675272840783232475,
535: 15479883428970761068959,
536: 16331822638729701493803,
537: 17229817230617210720599,
538: 18176312890390861435034,
539: 19173882885687454484110,
540: 20225234604409151266221,
541: 21333216422211708570598,
542: 22500824915577356165493,
543: 23731212437346370138355,
544: 25027695072821279146420,
545: 26393760995005382968154,
546: 27833079238879849385687,
547: 29349508915133986374841,
548: 30947108885217475101876,
549: 32630147920163234060900,
550: 34403115367205050943160,
551: 36270732348871285128752,
552: 38237963520943177237554,
553: 40310029416409244587122,
554: 42492419404397720872600,
555: 44790905293907018009131,
556: 47211555614160398040338,
557: 49760750604354432757376,
558: 52445197947746313627407,
559: 55271949286085137715955,
560: 58248417552751868050007,
561: 61382395164161775318496,
562: 64682073111542943380454,
563: 68156060996536236172174,
564: 71813408056839596203570,
565: 75663625229609055443637,
566: 79716708303343130521599,
567: 83983162210640880002321,
568: 88474026517495817981253,
569: 93200902166643654187580,
570: 98175979536033971312388,
571: 103412067875563710992446,
572: 108922626189067392956037,
573: 114721795630860408658491,
574: 120824433490320564237125,
575: 127246148840551966562301,
576: 134003339931725153597473,
577: 141113233412529912746558,
578: 148593925468119890197615,
579: 156464424966082817448060,
580: 164744698707340387584240,
581: 173455718882380096095248,
582: 182619512839056823919887,
583: 192259215272078129526277,
584: 202399122950629095580175,
585: 213064752104884207160129,
586: 224282898599046831034631,
587: 236081701023305130945921,
588: 248490706844586261413858,
589: 261540941761240642265710,
590: 275264982414934173206642,
591: 289697032618827122974972,
592: 304873003269975366031783,
593: 320830596120295386610807,
594: 337609391590065169560935,
595: 355250940815002702558187,
596: 373798862128436852709430,
597: 393298942187883251157044,
598: 413799241966727832978027,
599: 435350207840317348270000,
600: 458004788008144308553622,
601: 481818554503286362923739,
602: 506849831053734861481872,
603: 533159827070679866278987,
604: 560812778053476538349420,
605: 589876092712502332463864,
606: 620420507127059714307352,
607: 652520246268116112057164,
608: 686253193233019826880477,
609: 721701066553229757379480,
610: 758949605954969709105721,
611: 798088766967999186006767,
612: 839212924798226411060795,
613: 882421087896683264554175,
614: 927817121679723721849795,
615: 975509982873756796925504,
616: 1025613964982134990453294,
617: 1078248955392080004474789,
618: 1133540704665979618906662,
619: 1191621108583631746910145,
620: 1252628503530795506440909,
621: 1316707975853817969920561,
622: 1384011685831426958558879,
623: 1454699206941558115141676,
624: 1528937881135168275063375,
625: 1606903190858354689128371,
626: 1688779148601189609516729,
627: 1774758704783877366657989,
628: 1865044174831202682776536,
629: 1959847686321528964669495,
630: 2059391647140527228529479,
631: 2163909235608484556362424,
632: 2273644913597837330081136,
633: 2388854963699932382735982,
634: 2509808051552031608082535,
635: 2636785814481962651219075,
636: 2770083477684418110395121,
637: 2910010499193691843303014,
638: 3056891244979232231862474,
639: 3211065695545980277248740,
640: 3372890185488482409685019,
641: 3542738177508596708707874,
642: 3721001072479541451508397,
643: 3908089057205582486668934,
644: 4104431991606013700457110,
645: 4310480337124871462076948,
646: 4526706128254173781044298,
647: 4753603989138067267826945,
648: 4991692197319220372390544,
649: 5241513796775816319683700,
650: 5503637762499727151307095,
651: 5778660218961559003723580,
652: 6067205714919484306343541,
653: 6369928557132709817142929,
654: 6687514205661440172553650,
655: 7020680733548749464953877,
656: 7370180353811425547662139,
657: 7736801016790889035132284,
658: 8121368081058512888507057,
659: 8524746061205131302394950,
660: 8947840456000332817673697,
661: 9391599660555044587641517,
662: 9857016966290401433259592,
663: 10345132652677367520056676,
664: 10857036174895938656583295,
665: 11393868451739000294452939,
666: 11956824258286445517629485,
667: 12547154728067493595502055,
668: 13166169969647255482980383,
669: 13815241802783448943206160,
670: 14495806619536377005379418,
671: 15209368375944215483241988,
672: 15957501720133631304230773,
673: 16741855262985451980947171,
674: 17564154997755650263621500,
675: 18426207875324210441995136,
676: 19329905542049511423199336,
677: 20277228247502764885900784,
678: 21270248929688765106878025,
679: 22311137485682880566295780,
680: 23402165235974892374954302,
681: 24545709591163085124246501,
682: 25744258930034131533263392,
683: 27000417698448800353553865,
684: 28316911738879831363625420,
685: 29696593860867277871605321,
686: 31142449663120060247020395,
687: 32657603618448918933404658,
688: 34245325433219728719773420,
689: 35909036693513349075724695,
690: 37652317810725762600765183,
691: 39478915279883795756623331,
692: 41392749264546866860893416,
693: 43397921522754943172592795,
694: 45498723689129703063649450,
695: 47699645928878027716139269,
696: 50005385980149860746062163,
697: 52420858601901549459658530,
698: 54951205445179608281719072,
699: 57601805366500810491219000,
700: 60378285202834474611028659,
701: 63286531028521032840985510,
702: 66332699915362724119980694,
703: 69523232218023552371152320,
704: 72864864407855341219969825,
705: 76364642479247406973532354,
706: 80029935953661656574123574,
707: 83868452507581852374822598,
708: 87888253251761884175130183,
709: 92097768690318501305952845,
710: 96505815389469697877049934,
711: 101121613386982294887579670,
712: 105954804374756131323439197,
713: 111015470688345108146850290,
714: 116314155138696524440183805,
715: 121861881722882938654960142,
716: 127670177252209281782740521,
717: 133751093937700984130081285,
718: 140117232974725477106760252,
719: 146781769170263852819573505,
720: 153758476658245881594406593,
721: 161061755750279477635534762,
722: 168706660971164630122439117,
723: 176708930330666271859881567,
724: 185085015885255746880625875,
725: 193852115645795752984189381,
726: 203028206889569986197651315,
727: 212632080937520072186590492,
728: 222683379460186024851577401,
729: 233202632378520643600875145,
730: 244211297428606706709925517,
731: 255731801462210865865001525,
732: 267787583558210323920375877,
733: 280403140023083872114273884,
734: 293604071362025285843562670,
735: 307417131305664218954016427,
736: 321870277981032622582593573,
737: 336992727319136467572139095,
738: 352815008795455957133215652,
739: 369369023603738655757458075,
740: 386688105367749941220651375,
741: 404807083500032850651734059,
742: 423762349321394151918928481,
743: 443591925059596733749014862,
744: 464335535850798483634138280,
745: 486034684872448271784326296,
746: 508732731741838107613602755,
747: 532474974320122372524707631,
748: 557308734067567635805394638,
749: 583283445101886813536239875,
750: 610450747117966916191771809,
751: 638864582333908382360557376,
752: 668581296635294279311393900,
753: 699659745096778286894322787,
754: 732161402067670820574405230,
755: 766150476015982127183457373,
756: 801694029333610862568750951,
757: 838862103313805798709299373,
758: 877727848520950325159242658,
759: 918367660781873199488134935,
760: 960861323037560814483873080,
761: 1005292153304074193879898920,
762: 1051747159001957690209588887,
763: 1100317197924192833923669753,
764: 1151097146124113726578727360,
765: 1204186073016375022219516992,
766: 1259687423996378387111229150,
767: 1317709210896221493178043552,
768: 1378364210608578997366598385,
769: 1441770172223648126550509165,
770: 1508050033038752490738311726,
771: 1577332143815074048889599022,
772: 1649750503671651735806603894,
773: 1725445005022910006140645612,
774: 1804561688982956164492944650,
775: 1887253011677361609828822380,
776: 1973678121921532286407950000,
777: 2064003150743712843868729636,
778: 2158401513250589964731360493,
779: 2257054223353982965849642005,
780: 2360150221898687182164777966,
781: 2467886718753771981901721670,
782: 2580469549453004933593920862,
783: 2698113546994164480174756373,
784: 2821042929432312216467202070,
785: 2949491703928193388274450292,
786: 3083704087940340693022764503,
787: 3223934948277725160271634798,
788: 3370450258759473520427114109,
789: 3523527577258789108163787100,
790: 3683456542940343404363084600,
791: 3850539394533563994343413787,
792: 4025091510519029370421431033,
793: 4207441972141088280734057870,
794: 4397934150197476827913759850,
795: 4596926316595586652827474186,
796: 4804792281705797515062559743,
797: 5021922058584382849328869242,
798: 5248722555182613689484387822,
799: 5485618295704258477069984050,
800: 5733052172321422504456911979,
801: 5991486228508002426815719537,
802: 6261402475301701333080509487,
803: 6543303741858946450905285538,
804: 6837714561722963378455094385,
805: 7145182096283051986707103605,
806: 7466277096963606051213804496,
807: 7801594907743960700949000443,
808: 8151756509675604512522473567,
809: 8517409609130970421571757565,
810: 8899229771588828461969917962,
811: 9297921602834531195851268718,
812: 9714219979529959777862768265,
813: 10148891331187245215547993864,
814: 10602734975663191221223594155,
815: 11076584510377034355391142064,
816: 11571309261543787320061392679,
817: 12087815793808125625662163707,
818: 12627049482760689878061744701,
819: 13189996152918959195978870030,
820: 13777683783859651786576215682,
821: 14391184287298069419105856949,
822: 15031615358023124634594092724,
823: 15700142401714084441377203063,
824: 16397980542787591098996821750,
825: 17126396715550358417594267021,
826: 17886711842065410771034749979,
827: 18680303100276877491522988120,
828: 19508606286081561360311437674,
829: 20373118273183778133458320225,
830: 21275399574724765449983360003,
831: 22217077010838260632179411313,
832: 23199846486451169343993151122,
833: 24225475883821531494697782922,
834: 25295808074486832813101046425,
835: 26412764055483014097178757689,
836: 27578346214889968804237171486,
837: 28794641731961759722351371983,
838: 30063826117310982372086476080,
839: 31388166898835484452139885750,
840: 32770027459303858556350798600,
841: 34211871031752548278772284453,
842: 35716264859093977687647313415,
843: 37285884524590579748861394570,
844: 38923518460115987806848673270,
845: 40632072639400673752129300324,
846: 42414575463747094337180792099,
847: 44274182847997609942310578598,
848: 46214183514849300594196193732,
849: 48238004505931946889525421000,
850: 50349216918401212177548479675,
851: 52551541876147039010384562987,
852: 54848856745079917639394818823,
853: 57245201602333536237114022805,
854: 59744785969613964515539259105,
855: 62351995821331449988466091712,
856: 65071400878573831543609957267,
857: 67907762200418949875852866531,
858: 70866040084540107092698343096,
859: 73951402289532005957331751320,
860: 77169232591877674590168543277,
861: 80525139690988018278755885205,
862: 84024966476277979232856334449,
863: 87674799670795146675673859587,
864: 91480979866491345649258758095,
865: 95450111966823518214883921610,
866: 99589076052990565170686659417,
867: 103905038690755971019484297576,
868: 108405464695475636367939373595,
869: 113098129373644577851404473535,
870: 117991131259998859170817958839,
871: 123092905369958432777075796052,
872: 128412236987976529870072690275,
873: 133958276013169939669531019316,
874: 139740551884446204479331411000,
875: 145768989108216487062234772851,
876: 152053923412691097170490155923,
877: 158606118553696417431847045996,
878: 165436783797931931934295220337,
879: 172557592110602218633091543840,
880: 179980699075416049556058362840,
881: 187718762576041099642814429720,
882: 195784963269243383580949581161,
883: 204193025881123335512830178821,
884: 212957241359090878236182734445,
885: 222092489913497780851227603386,
886: 231614264984172822820073009257,
887: 241538698168481624527315178361,
888: 251882585148964518765460484674,
889: 262663412660090356154504995095,
890: 273899386535208029575034561337,
891: 285609460876378579895067651923,
892: 297813368391435715163322531331,
893: 310531651944349233813920512829,
894: 323785697366761254448562966675,
895: 337597767580427105501057917306,
896: 351991038082228660789452118410,
897: 366989633845435601723754690835,
898: 382618667692977386826261193199,
899: 398904280200653395819254517900,
900: 415873681190459054784114365430,
901: 433555192876539531087229255477,
902: 451978294728708525214023001725,
903: 471173670120985588372050797999,
904: 491173254835220446432862090800,
905: 512010287492584845146484412308,
906: 533719361988531136324395159455,
907: 556336482009740068071399064008,
908: 579899117714618242279047917300,
909: 604446264662056374189988834755,
910: 630018505076433611630379753807,
911: 656658071540248718776792346785,
912: 684408913209287275550344075013,
913: 713316764648893234122621625751,
914: 743429217393715213042975617565,
915: 774795794337240928934816284899,
916: 807468027061529837515792402675,
917: 841499536221802614337232047468,
918: 876946115104959930393838357571,
919: 913865816485680423486405066750,
920: 952319042908502961911588247808,
921: 992368640529229737341624411924,
922: 1034079996654109332431762911842,
923: 1077521141120571341397403386532,
924: 1122762851668802145076610697775,
925: 1169878763459173895733432737528,
926: 1218945482896482311379736998403,
927: 1270042705928112564209840426896,
928: 1323253340989653981276400185806,
929: 1378663636778122744608506419570,
930: 1436363315039845896899358328033,
931: 1496445708567209282036578487803,
932: 1559007904605896258842021462474,
933: 1624150893881942976244820893255,
934: 1691979725465930503404211099660,
935: 1762603667699924360130192603237,
936: 1836136375421380008668856717532,
937: 1912696063727159213943851080855,
938: 1992405688530070149968413761596,
939: 2075393134169954709485716047155,
940: 2161791408351324312330912522447,
941: 2251738844689892053427982289844,
942: 2345379313161090374436414551558,
943: 2442862438754801545567295092897,
944: 2544343828652090726779455860435,
945: 2649985308251720770267133439311,
946: 2759955166386673475403099789409,
947: 2874428410083806869907819978392,
948: 2993587029233173241168779714732,
949: 3117620271547411926979127053250,
950: 3246724928206047105940972859506,
951: 3381105630594468612010288127863,
952: 3520975158562887897616477410546,
953: 3666554760646647127956344306190,
954: 3818074486705953843294627812035,
955: 3975773533460423034845675035419,
956: 4139900603411771887815710365915,
957: 4310714277666637214536144927329,
958: 4488483403190813123215639907302,
959: 4673487495046245204241629451110,
960: 4866017154182911354694265206413,
961: 5066374501379277964399166419563,
962: 5274873627947390097986152243705,
963: 5491841063841846500452896053582,
964: 5717616263835974099255567733750,
965: 5952552112453464578853008309794,
966: 6197015448369619941842104648894,
967: 6451387609023188709970129910797,
968: 6716064996207615136996693074302,
969: 6991459663439386169435859778910,
970: 7277999925931103886207676505429,
971: 7576130994027952290703815097177,
972: 7886315630998429231248733036419,
973: 8209034836103596418058528755338,
974: 8544788553903729460741526714750,
975: 8894096410797147287955714755082,
976: 9257498479823236816318777820416,
977: 9635556074800288403768986034253,
978: 10028852574908795418824727341746,
979: 10437994280872373856676062879735,
980: 10863611303931504965592652844878,
981: 11306358488849924787366667765407,
982: 11766916372239763961801564990016,
983: 12245992177539511607834487453052,
984: 12744320848028628464246059627690,
985: 13262666119314202551196742822008,
986: 13801821632778520931079437719552,
987: 14362612091531863067120268402228,
988: 14945894460472306341153073892017,
989: 15552559212113915719970799358900,
990: 16183531619906475296861224625027,
991: 16839773100833956878604913215477,
992: 17522282609145324707635966077022,
993: 18232098083140097717852712346115,
994: 18970297947002453464660671155990,
995: 19738002669751617842096992232436,
996: 20536376383452971700767593594021,
997: 21366628562913781584556907794729,
998: 22230015769169865076825741905555,
999: 23127843459154899464880444632250,
1000: 24061467864032622473692149727991,
1001: 25032297938763929621013218349796,
1002: 26041797385576000582369625213281,
1003: 27091486754099167408984061096127,
1004: 28182945621039436811282417218990,
1005: 29317814852360484763188469380980,
1006: 30497798951058731380716134731126,
1007: 31724668493728872881006491578226,
1008: 33000262659235183814081519827753,
1009: 34326491852926110526276105821510,
1010: 35705340429956356495500048880518,
1011: 37138869521411924622451440267117,
1012: 38629219967069644267226780200798,
1013: 40178615358763694337831877170404,
1014: 41789365198477765393682507986660,
1015: 43463868175432916528376380161993,
1016: 45204615566598118821992112719830,
1017: 47014194765213080671467587361162,
1018: 48895292942081479136595740785155,
1019: 50850700844567331975836762416180,
1020: 52883316738408211899530127054215,
1021: 54996150497646497195116039121846,
1022: 57192327848174163803231700285962,
1023: 59475094770587936660132803278445,
1024: 61847822068260244309086870983975,
1025: 64314010106747559065438412709786,
1026: 66877293730881687431325192921834,
1027: 69541447366121616918816177545634,
1028: 72310390310983979753319152713934,
1029: 75188192227619293524858181464065,
1030: 78179078837859260757658669457252,
1031: 81287437832327804842152878336251,
1032: 84517825000485590628268677129623,
1033: 87874970589764795726619149717517,
1034: 91363785902248291467082481888195,
1035: 94989370137655453801161398756590,
1036: 98757017491716010698603869808070,
1037: 102672224519343960454073227246547,
1038: 106740697772366151410092496101554,
1039: 110968361721914939732387042839470,
1040: 115361366975961956826368092270559,
1041: 119926098802850790583643914139778,
1042: 124669185972080868004022654618279,
1043: 129597509924003418690815024769614,
1044: 134718214280513689012974236132740,
1045: 140038714709261994367964528304147,
1046: 145566709154360370820516947589011,
1047: 151310188447031979898125505211430,
1048: 157277447310137702096803724432844,
1049: 163477095771019024080265786609550,
1050: 169918070997619096807349078318498,
1051: 176609649573385253852206425342508,
1052: 183561460227017093724267411668558,
1053: 190783497033705025399011223174627,
1054: 198286133105105766051740791002035,
1055: 206080134785924286913455951259466,
1056: 214176676375616994965530422655441,
1057: 222587355394399185288134561600051,
1058: 231324208413431926871476886628488,
1059: 240399727469780275150398352541295,
1060: 249826877087477024806306436682550,
1061: 259619111926794902903903858282467,
1062: 269790395084626208521306859330203,
1063: 280355217069693265922512204254601,
1064: 291328615477166797747643128851965,
1065: 302726195388153340970512449363108,
1066: 314564150520428320398942429589829,
1067: 326859285157739328217944658021195,
1068: 339629036885985812650521091739503,
1069: 352891500165597792693064105229860,
1070: 366665450770488753893927654278831,
1071: 380970371125047658469252263285168,
1072: 395826476571763477972460354798893,
1073: 411254742603244027745802489871124,
1074: 427276933093600703409672633110750,
1075: 443915629565423279460548833975619,
1076: 461194261529865886819548193737883,
1077: 479137137938708024340405275972933,
1078: 497769479788644748304553495300446,
1079: 517117453919499510741582247311995,
1080: 537208208049543370281513128274546,
1081: 558069907092647074919064078269009,
1082: 579731770803589829653889090465310,
1083: 602224112799502127836867703068534,
1084: 625578381007131993715400129218655,
1085: 649827199587396195485096741151797,
1086: 675004412390512738195023734124239,
1087: 701145127996910209394091171983043,
1088: 728285766401075776846633724874013,
1089: 756464107397538946738052845597325,
1090: 785719340730295196686468011045384,
1091: 816092118069154575020287144949660,
1092: 847624606878758096201928227674051,
1093: 880360546248341702038727418718373,
1094: 914345304752746677204951178080640,
1095: 949625940417679322961779585842763,
1096: 986251262864814583017230902369159,
1097: 1024271897715020987348060381346241,
1098: 1063740353330761125682320075116819,
1099: 1104711089981595892462307006170625,
1100: 1147240591519695580043346988281283,
1101: 1191387439655339764253910592315288,
1102: 1237212390925574690626025966996290,
1103: 1284778456452494990829233226377379,
1104: 1334150984591030161739618104847170,
1105: 1385397746569649033264079085023363,
1106: 1438589025231051837956193683375282,
1107: 1493797706983703451005350179037500,
1108: 1551099377078977592324977502565855,
1109: 1610572418332734533482318570551190,
1110: 1672298113414349146588255526290127,
1111: 1736360750830546535004742869861557,
1112: 1802847734735894350158767668809929,
1113: 1871849698706449115822481531031302,
1114: 1943460623617864164855763103650900,
1115: 2017777959774244383161311335135412,
1116: 2094902753439183950276117590000925,
1117: 2174939777925753277977786731439319,
1118: 2257997669407716887103312005936867,
1119: 2344189067619971039484826726136835,
1120: 2433630761622095504505007624351926,
1121: 2526443840805024325560621670846260,
1122: 2622753851327163276606626468293628,
1123: 2722690958172823755991785784326387,
1124: 2826390113032612069265970456163500,
1125: 2933991228212416784843441604124699,
1126: 3045639356784883554548008634432380,
1127: 3161484879204764376319516386806829,
1128: 3281683696617285755657387337131749,
1129: 3406397431096706053660787897070925,
1130: 3535793633060536116646611744883745,
1131: 3670045996113488118329838058723628,
1132: 3809334579584105681944821254585338,
1133: 3953846039026223475533484851711932,
1134: 4103773864966917551549475742004630,
1135: 4259318630192449100691154502765975,
1136: 4420688245873885709566584952625897,
1137: 4588098226844616747507844508037264,
1138: 4761771966352875646576237849731855,
1139: 4941941020623653451737160975884815,
1140: 5128845403576048431946742302750170,
1141: 5322733892054158457915227866236060,
1142: 5523864341942100491068450472029219,
1143: 5732504015546648477080676455520535,
1144: 5948929920644332374606657683899745,
1145: 6173429161603651508297858791951031,
1146: 6406299303007341112943259722223788,
1147: 6647848746214407376439536432805536,
1148: 6898397119316930779355317551024978,
1149: 7158275680962446691834888697663475,
1150: 7427827738529064471293660118664110,
1151: 7707409081157399483953096394984678,
1152: 7997388428160886234821473483000555,
1153: 8298147893354134143293856722998488,
1154: 8610083465857701451154337181278065,
1155: 8933605507957017621037375468973282,
1156: 9269139270613202791504126859283685,
1157: 9617125427244236129299819591578718,
1158: 9978020626416337178370164768812546,
1159: 10352298064107568778430054733760345,
1160: 10740448076228572334937735566562385,
1161: 11142978752109030998555590333304243,
1162: 11560416569682950887414131083801684,
1163: 11993307053131181401163436777097233,
1164: 12442215453765791987839842332792770,
1165: 12907727454968012800119940123354311,
1166: 13390449902019461518054086533162960,
1167: 13891011557695348536983250121102793,
1168: 14410063884518310798493113995825913,
1169: 14948281854602503175542820411276425,
1170: 15506364788049610799716682308517542,
1171: 16085037220891570656183958875514689,
1172: 16685049803609043819824168449851071,
1173: 17307180231290097851615771678718278,
1174: 17952234206530182283975172821446800,
1175: 18621046436212348314484589328413725,
1176: 19314481663345819649385158162679300,
1177: 20033435735181507108244024178275807,
1178: 20778836708864920831259413450679734,
1179: 21551645995930215818617016034137500,
1180: 22352859546983857840754489692613399,
1181: 23183509077972665661421886007454584,
1182: 24044663339478824029548767493555588,
1183: 24937429430533921473492651656959612,
1184: 25862954158495203059166455452470495,
1185: 26822425446580095904068198565803164,
1186: 27817073790709723558345700246365971,
1187: 28848173767368633057992125893483779,
1188: 29917045594246378653834785571179351,
1189: 31025056745487001593014803461929555,
1190: 32173623623434883211416744742294747,
1191: 33364213288829995905464566634140396,
1192: 34598345251472305106432161856883007,
1193: 35877593323444056632515580254383154,
1194: 37203587537049994338271609307035630,
1195: 38578016129709269105524749061283955,
1196: 40002627598109003613035027587346239,
1197: 41479232824008249429294178038617951,
1198: 43009707274162500911950054844789890,
1199: 44595993276923101114218051405894000,
1200: 46240102378152881298913555099661657,
1201: 47944117779189310556261099429006223,
1202: 49710196859679394486867802358932901,
1203: 51540573788206651013836802198036893,
1204: 53437562223729812777303406841914935,
1205: 55403558110955564979344325681437822,
1206: 57441042572873737644094937785113022,
1207: 59552584903793044889004529388335732,
1208: 61740845666328821093587961517238033,
1209: 64008579895911365238424857597692590,
1210: 66358640416504598253672231293216761,
1211: 68793981271349892486345394543503614,
1212: 71317661272679283934970057444157431,
1213: 73932847674475963853859804733408932,
1214: 76642819972498112301511348487927130,
1215: 79450973835924928534740056571220837,
1216: 82360825175131287067719845184002304,
1217: 85376014350249959857626768802856615,
1218: 88500310525337959944194241004565748,
1219: 91737616173126446538485123122674660,
1220: 95091971735501962459496140992085663,
1221: 98567560445040729668418191983592407,
1222: 102168713313097495533124764187939944,
1223: 105899914290136190948927875636615483,
1224: 109765805604181632042444034426405625,
1225: 113771193283469872120310539095739833,
1226: 117921052869579803514689801523449638,
1227: 122220535327540435729044764084697099,
1228: 126674973159627164610485151798391797,
1229: 131289886729786527240095013237443045,
1230: 136070990805862651658706033366694460,
1231: 141024201327040104811696041691045190,
1232: 146155642404167375009402954907061316,
1233: 151471653560883058451095421311451141,
1234: 156978797223733228787865722354959930,
1235: 162683866469743733376335192519362494,
1236: 168593893040195573779320686453020964,
1237: 174716155629645388794651866300906835,
1238: 181058188459536679140275000227478496,
1239: 187627790146061111217741961494883890,
1240: 194433032872253346998515292619988830,
1241: 201482271874637706375741021005730181,
1242: 208784155255090933098578892158986338,
1243: 216347634128942766400406396453655835,
1244: 224181973120705296790445342451587490,
1245: 232296761219203590802475861123264133,
1246: 240701923004274209788971782007579802,
1247: 249407730257605432130910077287592727,
1248: 258424813970713646981839124047488243,
1249: 267764176763484957967824140618533500,
1250: 277437205727159975794000686688315348,
1251: 287455685706103555386947650491244181,
1252: 297831813033180334721514504126791124,
1253: 308578209734051855476222280888835192,
1254: 319707938216222310789920115620477565,
1255: 331234516459188101998422700026723439,
1256: 343171933722591949005782567849433641,
1257: 355534666789845852070090701405470932,
1258: 368337696765269337188595637416276068,
1259: 381596526443390734228095202493032600,
1260: 395327198269680365975835178420652411,
1261: 409546312912626108164576640399383898,
1262: 424271048467724485839916892830607059,
1263: 439519180314644983035319377172158032,
1264: 455309101649532274915393819410766690,
1265: 471659844715141371979173526935980437,
1266: 488591102752254955447569352295355812,
1267: 506123252696611256922641286254645760,
1268: 524277378646375504218896129395592376,
1269: 543075296126019045035073055561928520,
1270: 562539577173328634024088141916141596,
1271: 582693576277154906994867051360796655,
1272: 603561457194424687753064451343608383,
1273: 625168220675887416175494833282535136,
1274: 647539733131042629585359752478706350,
1275: 670702756263704072335812679441391888,
1276: 694684977710697693392039019806832594,
1277: 719515042717266582828863521396088515,
1278: 745222586883866905899271646915240282,
1279: 771838270020186251303063741763018130,
1280: 799393811143400700904158178331205389,
1281: 827922024658910558926936487548336568,
1282: 857456857763058308684876665745077292,
1283: 888033429108637280324653641355847207,
1284: 919688068775347054572190680423598070,
1285: 952458359588743164917093657911776850,
1286: 986383179832665621554422059019604497,
1287: 1021502747401614623677846147487591813,
1288: 1057858665441074072255055670604124719,
1289: 1095493969525365696982675003469664810,
1290: 1134453176424250386882487822532585142,
1291: 1174782334511180318623311370757902964,
1292: 1216529075867847432892383159101984374,
1293: 1259742670141472479018316728428818781,
1294: 1304474080213136065603158197122179375,
1295: 1350776019737370796417180820702333527,
1296: 1398703012615213588677365804960180341,
1297: 1448311454464961662889458094993182194,
1298: 1499659676156986538068572255824972432,
1299: 1552808009481139790520320395733292300,
1300: 1607818855017534550841511230454411672,
1301: 1664756752283809987147800849591201736,
1302: 1723688452234384707674372422071320679,
1303: 1784682992189681523983975379146100758,
1304: 1847811773275862853601073393199008865,
1305: 1913148640458255774876416600453369682,
1306: 1980769965254371045106648307068906619,
1307: 2050754731215233987976941410834180457,
1308: 2123184622266649887649796215921782211,
1309: 2198144114005025303125952328225613580,
1310: 2275720568045462559712283145467243327,
1311: 2356004329523040680859896842728890474,
1312: 2439088827851495409213115816339495726,
1313: 2525070680846917026164254568053937634,
1314: 2614049802327600836872111661056230165,
1315: 2706129513304814950403979441635984290,
1316: 2801416656882996994241981980679918559,
1317: 2900021716991759392273170147031719072,
1318: 3002058941076075680836616507226015622,
1319: 3107646466875142011769945929778234485,
1320: 3216906453424662618200536823961141148,
1321: 3329965216421699826558324552595808770,
1322: 3446953368095762574438358199469775528,
1323: 3568005961734486838351757966808790919,
1324: 3693262641017091556254336031236632750,
1325: 3822867794313779335421691039194332368,
1326: 3956970714114397433384120384166003416,
1327: 4095725761754986283464866437718755283,
1328: 4239292537616325490949332681096528358,
1329: 4387836056974246172531213471126988170,
1330: 4541526931687319371792477450694975225,
1331: 4700541557913558825461268913956492487,
1332: 4865062310053998559115610911870100035,
1333: 5035277741127427794082646196764289585,
1334: 5211382789787193810929017395424321210,
1335: 5393578994197824268512706677957552625,
1336: 5582074712996280787878705083147454523,
1337: 5777085353569942323599828874448120571,
1338: 5978833607890937159258923653545207827,
1339: 6187549696154203668120613167259109435,
1340: 6403471618474669930531089742522848797,
1341: 6626845414907208756853259936695984136,
1342: 6857925434061555771629308454994509373,
1343: 7096974610593182332652154711768629954,
1344: 7344264751860200848154682253520601870,
1345: 7600076834045756410267481267000412856,
1346: 7864701308055034793828023244287340980,
1347: 8138438415506002236313232141990462682,
1348: 8421598515143296812402544776496284973,
1349: 8714502420015324706702901500511538625,
1350: 9017481745765587687202719206979752339,
1351: 9330879270400591290587334955958115107,
1352: 9655049305908367725798746534773552348,
1353: 9990358082113704664098849646925432237,
1354: 10337184143168612691406936474627379320,
1355: 10695918757089402353832391602114778863,
1356: 11066966338764988954966020552846311185,
1357: 11450744886874712432979257653673465667,
1358: 11847686435168064074325478460954986607,
1359: 12258237518573265193633495987026371935,
1360: 12682859654616659385819889316805008574,
1361: 13122029840650374087829702479479965035,
1362: 13576241067401694028191547060980833568,
1363: 14046002849374084164798517831067165046,
1364: 14531841772646818920248481411605550560,
1365: 15034302060637734370093170532411179780,
1366: 15553946158411737537905952886830918329,
1367: 16091355336136399592075372322853441977,
1368: 16647130312305245611392419213169232605,
1369: 17221891897369251284144496300865473815,
1370: 17816281658437585657529146257903261665,
1371: 18430962605729818628447970674590396131,
1372: 19066619901483662703451906966061889217,
1373: 19723961592044861669045607586672623550,
1374: 20403719363889095930868650315257219250,
1375: 21106649324349767740001100592550916016,
1376: 21833532807850282420908580590825862986,
1377: 22585177208464977793681819296712788065,
1378: 23362416839659197789401547387242312544,
1379: 24166113822086183031380235679888630795,
1380: 24997159000346486985219767235597236100,
1381: 25856472889644547994140059803514309099,
1382: 26745006653306882839626895694957692242,
1383: 27663743112157144914230446319916689190,
1384: 28613697786775039130057416743650633105,
1385: 29595919973698836617070193875375888205,
1386: 30611493856665016404478212802210021309,
1387: 31661539654013410832232951778996345076,
1388: 32747214803422179685312303680676279243,
1389: 33869715185174019207110095647396061120,
1390: 35030276385193261591559928994266853030,
1391: 36230174999132974647956742131787699078,
1392: 37470729978831867653000833781535492047,
1393: 38753304022502786601002774984625192104,
1394: 40079305010057880061198034072619085310,
1395: 41450187485020176719746625583516317963,
1396: 42867454184517379844972195257339462150,
1397: 44332657618901196005888853882051385939,
1398: 45847401702584520468158717245312104000,
1399: 47413343437739346154537960139775251600,
1400: 49032194652550394774839040691532998261,
1401: 50705723795773236966373450556265512689,
1402: 52435757789401123913939450130086135644,
1403: 54224183941301948277230817879517159495,
1404: 56072951919745741389655873424027752720,
1405: 57984075791803952210030966295696158116,
1406: 59959636127664498822125654803605200455,
1407: 62001782172971294457628166694777458740,
1408: 64112734091363688056165357762141754716,
1409: 66294785279460087023332346767177823090,
1410: 68550304756601011890673498202891728627,
1411: 70881739631740035679525259959146526016,
1412: 73291617649946553739726907624791770380,
1413: 75782549821062183481895201583751205263,
1414: 78357233133132880842076215608511229415,
1415: 81018453353321656721019131504035339537,
1416: 83769087919092159661630333467319344902,
1417: 86612108922541440552472192615179632742,
1418: 89550586190851013626818983550558814889,
1419: 92587690465918960312381724727166445110,
1420: 95726696686332376146505918443171660625,
1421: 98970987374939026118276437676742560264,
1422: 102324056135379743432459471263142178485,
1423: 105789511261048976512902596439531532566,
1424: 109371079460060057837671640558228717300,
1425: 113072609699904337559514844445146843472,
1426: 116898077175609399692092533607036637857,
1427: 120851587405321266865514819340648620862,
1428: 124937380457358912643772141796859437854,
1429: 129159835312916652764103424563956670300,
1430: 133523474368721196662101633251149823925,
1431: 138032968084085429989744342641002104875,
1432: 142693139776940493084095678732486636969,
1433: 147508970573571548730224671300676243591,
1434: 152485604516930928407097683383484266510,
1435: 157628353838555246722760639034336216136,
1436: 162942704399270720489853224525723269795,
1437: 168434321304033467550147269349447360294,
1438: 174109054696419141315515890296286539118,
1439: 179972945738449034728553750103340839325,
1440: 186032232781617921513478910563182232444,
1441: 192293357735172557401982780429019456969,
1442: 198762972637879108865432799270626669004,
1443: 205447946439712986100137659510287259781,
1444: 212355372000105810413242676805207816705,
1445: 219492573309591728816879034317080350983,
1446: 226867112941909191440813277312570747145,
1447: 234486799743834826784604048875528356971,
1448: 242359696770253388472695000770509170206,
1449: 250494129472202113601016657658116885375,
1450: 258898694145869442049569648660373941152,
1451: 267582266650777119653998333871688332247,
1452: 276554011405631474170238269248906446792,
1453: 285823390670594346502222808229127105074,
1454: 295400174124997022998049389765214784995,
1455: 305294448749801797154111873648107967492,
1456: 315516629024405747970164359073870491229,
1457: 326077467447680222173319384811207626600,
1458: 336988065393447621514574974879775699372,
1459: 348259884310914705271679879631949049780,
1460: 359904757280909011630794460361074410538,
1461: 371934900939102477916959218389244857418,
1462: 384362927777754206102413138268506970021,
1463: 397201858837862893052822862772992037235,
1464: 410465136803989050790556876831592919085,
1465: 424166639514388116438037562729473373486,
1466: 438320693899488240621648045435196959242,
1467: 452942090362151303283202948578566379295,
1468: 468046097613572904390385124958730619192,
1469: 483648477979107092056857426409232236010,
1470: 499765503188744811845488653259134061244,
1471: 516413970667431889729975411863080081224,
1472: 533611220340883210895592492267492392503,
1473: 551375151973035052959106187501778547015,
1474: 569724243051777714078869714336553502625,
1475: 588677567240126095472954965375170347997,
1476: 608254813410517219620274841577537789254,
1477: 628476305280471269092869681239382035111,
1478: 649363021668417110482089106581996800736,
1479: 670936617389064931646215631627734512060,
1480: 693219444808308092528746108408911793239,
1481: 716234576078254109447577888083725273959,
1482: 740005826073621415936329176309708825539,
1483: 764557776051394742131574284792974302805,
1484: 789915798056308219059157433980611758115,
1485: 816106080095422250986408555099636706156,
1486: 843155652105778433840074131252109568468,
1487: 871092412739856974449839116812405949463,
1488: 899945156994323847635597208986502059289,
1489: 929743604708340998940330812008055415670,
1490: 960518429958522963981451968247615571768,
1491: 992301291378458055449596203783102865285,
1492: 1025124863431572512298240504372933893698,
1493: 1059022868667002481099668362066093137208,
1494: 1094030110989052198741424671895432081910,
1495: 1130182509971758083662737515471154158801,
1496: 1167517136251048459523457118438435734632,
1497: 1206072248027988195015615498189010425646,
1498: 1245887328717627537181110407053143579875,
1499: 1287003125779035759903231323132670516000,
1500: 1329461690763193888825263136701886891117,
1501: 1373306420616547671126845059808771245199,
1502: 1418582100279183135137313919163744611210,
1503: 1465334946617783561814630036179107930696,
1504: 1513612653734759530017526259861629678205,
1505: 1563464439696213993716384678301014319431,
1506: 1614941094722713228367155822930278965324,
1507: 1668095030888183105149797247519563263487,
1508: 1722980333373639710221714255936544610213,
1509: 1779652813323895051112691937493275900640,
1510: 1838170062356853750560836014387165897751,
1511: 1898591508776536523215092101916644734126,
1512: 1960978475542532205781057345396110080746,
1513: 2025394240050193548750246784190116959083,
1514: 2091904095777554301862779830720186765825,
1515: 2160575415856657801620130127396601613839,
1516: 2231477718628751807313395954393627156678,
1517: 2304682735244622286166458817442330457493,
1518: 2380264479373211819043135033180865953593,
1519: 2458299319083597933290739975588639913960,
1520: 2538866050967394665741511337736337646822,
1521: 2622045976570688763353306228619701197220,
1522: 2707922981206731940550655607258234921458,
1523: 2796583615222784382740474040856321114152,
1524: 2888117177796744121961996863481080757250,
1525: 2982615803341503976179051696005120224577,
1526: 3080174550597354460133578989992600710402,
1527: 3180891494495199523837557418419727460583,
1528: 3284867820875874297854866890890114734440,
1529: 3392207924153452428300151849140308700620,
1530: 3503019508013107340706503153715459439135,
1531: 3617413689236849218690486699230663550120,
1532: 3735505104753300028632631618647052984126,
1533: 3857412022010595043668172932897782160438,
1534: 3983256452774513571402317362452698824910,
1535: 4113164270457046596687344259862579939532,
1536: 4247265331083807518632379721321456268679,
1537: 4385693598011986873811172464601561040968,
1538: 4528587270513945762405321738705440092603,
1539: 4676088916345038581429933773569294261235,
1540: 4828345608417856657751813260670405103571,
1541: 4985509065708793590462102906287902242693,
1542: 5147735798526653777473353718656776051935,
1543: 5315187258276961029029844229698454778001,
1544: 5488029991859677773715074283837789258005,
1545: 5666435800842220652541448314024017081118,
1546: 5850581905553958890153341953182905874297,
1547: 6040651114252811450773802339294340809537,
1548: 6236831997519121462431059121804263835744,
1549: 6439319068036685669987130768251283335700,
1550: 6648312965925656816271400679772663779731,
1551: 6864020649797022030147590897007762961557,
1552: 7086655593703494823378002063833638733692,
1553: 7316437990166946592699616833531354911573,
1554: 7553594959467950148686513765206276332400,
1555: 7798360765388617440490476800142578927168,
1556: 8050977037605691145961262617379106893607,
1557: 8311693000936800120986617647413681760089,
1558: 8580765711648916968128569908862807858077,
1559: 8858460301044367459544239649173485609090,
1560: 9145050226546241655095435675456471213374,
1561: 9440817530511750873400887128525102883050,
1562: 9746053107008968945969854946579275550253,
1563: 10061056976799496323982724378320247274070,
1564: 10386138570776897699583240005533846228720,
1565: 10721617022118294111300879958656795681727,
1566: 11067821467414245473548388055474400555521,
1567: 11425091357050045737330444087123696839842,
1568: 11793776775119777282986614097061549565288,
1569: 12174238769162940693809364157051309012420,
1570: 12566849690022197996332017608789608083314,
1571: 12971993542129749223451407990577313551957,
1572: 13390066344539111423681390555352209300441,
1573: 13821476503028593889295382128265725457026,
1574: 14266645193612571525140101316505187638875,
1575: 14726006757806758281011522810861817647486,
1576: 15200009110004083021400239371051767831673,
1577: 15689114157328479953978540694207577474781,
1578: 16193798232344933888778097136641377589301,
1579: 16714552539015476523707617004948193446275,
1580: 17251883612302523293667801378616630723938,
1581: 17806313791832981004049940595952236488989,
1582: 18378381710048954709565959117356034045626,
1583: 18968642795283648606471174187975250526914,
1584: 19577669790214200898277149916663590160135,
1585: 20206053286156727802917377116665528100452,
1586: 20854402273682788549513827814948445887987,
1587: 21523344710050833153156141436233019518750,
1588: 22213528103960970088758743797991090055558,
1589: 22925620118156604193077050587843661667620,
1590: 23660309190412159054931489112539937306848,
1591: 24418305173462226026373553546995875617627,
1592: 25200339994444087406536213435901662689794,
1593: 26007168334442658312725535116810982082161,
1594: 26839568328744494665699148030346372021260,
1595: 27698342288425638399643940633635778570228,
1596: 28584317443916730715736989648170031498488,
1597: 29498346711208035625096160181520548669694,
1598: 30441309481376795323275876211869020871017,
1599: 31414112434139702720919278494304352579875,
1600: 32417690376154241824102577250721959572183,
1601: 33453007104814231206634568834252067530087,
1602: 34521056298307127650200260789840693447039,
1603: 35622862432723524773564047600591620474611,
1604: 36759481727032834297334619181982868193810,
1605: 37932003116763385216396036596083684144149,
1606: 39141549257250138871243034824146893141432,
1607: 40389277557338916599575631087245664105779,
1608: 41676381244462492794128018619459154745923,
1609: 43004090462031141893576046232131339283625,
1610: 44373673400108265833414174147846823131033,
1611: 45786437460370592180018097454654125762209,
1612: 47243730456382146639125256475201485557926,
1613: 48746941850241791637271332996842921594539,
1614: 50297504026695610706485495279896144769485,
1615: 51896893605837832676324724372468638684687,
1616: 53546632795557357169752166455397628534844,
1617: 55248290784921291361962286829338022618145,
1618: 57003485179722265948521834701738678421349,
1619: 58813883481452695155464304054870553436360,
1620: 60681204611006611632952513664174735563434,
1621: 62607220478448273296879161314388228250413,
1622: 64593757600226437608809675150800761682315,
1623: 66642698765254062321100804776702438717922,
1624: 68755984751315254218264566880232672144875,
1625: 70935616093304583685847007991159666098679,
1626: 73183654904848448867540438473174344075670,
1627: 75502226754904045590148716826986516533057,
1628: 77893522600978716067675261669847531834806,
1629: 80359800780661049649804576562965921695475,
1630: 82903389063205132690374405132401276101050,
1631: 85526686762960833261150746165714536727005,
1632: 88232166916496002397533755182876654157205,
1633: 91022378525311020523414800627504843113662,
1634: 93899948866102260607570160618726171594330,
1635: 96867585870588824684642587049077568806146,
1636: 99928080576976385190854302771818195507418,
1637: 103084309655193176038845274579543287624753,
1638: 106339238008096180814672350296895542938848,
1639: 109695921450910408688484641855278054316360,
1640: 113157509471230885841519620824589853318260,
1641: 116727248071985676199747488789041121983568,
1642: 120408482699828936375465082551662467674163,
1643: 124204661261505763907840490901149694071182,
1644: 128119337230805474780434782661196752002675,
1645: 132156172848797007097973143732608413596901,
1646: 136318942420119455804633282594364118870621,
1647: 140611535708182363299559887896839185406573,
1648: 145037961432214389489427685180617331098024,
1649: 149602350869185430852497209043356597608875,
1650: 154308961563716222079735293780517268790662,
1651: 159162181149181008424137378091161149008138,
1652: 164166531283303096726173462843072095335410,
1653: 169326671701640055015539018518705699850330,
1654: 174647404392455113639317800019372440640580,
1655: 180133677896574006306024799468201257241780,
1656: 185790591735932160859341593488427864239206,
1657: 191623400974625892978847721669762887224010,
1658: 197637520916393159778610138707329017740693,
1659: 203838531942564585384018857484505756167480,
1660: 210232184494643970555920434333513855824223,
1661: 216824404205799439501151597527348613503086,
1662: 223621297185671858108005694276757667011704,
1663: 230629155463036280733315769829856728366831,
1664: 237854462590985052006674013310829555807395,
1665: 245303899419437913541037116166052239846061,
1666: 252984350039925153650180418719145316631826,
1667: 260902907907734605017003921684746498516403,
1668: 269066882146662257820916698151184555362272,
1669: 277483804041759534527674431707495428212025,
1670: 286161433725627991209904771339900788624872,
1671: 295107767063974496251592243518106809957385,
1672: 304331042746306921569506210339059205494747,
1673: 313839749587822198745641666552447374489321,
1674: 323642634048715381224461508374001874352425,
1675: 333748707977320256428395802157949938763484,
1676: 344167256583679214774724367914264615318981,
1677: 354907846650332656774577448740278805781989,
1678: 365980334987316359577499492665661423156220,
1679: 377394877138559089794329589034333523822720,
1680: 389161936347082504011271085636055422264324,
1681: 401292292786621190557291178310378056588836,
1682: 413797053067502749043669672231562125696658,
1683: 426687660024856256094871226711613620285845,
1684: 439975902797452509721828685778957458838000,
1685: 453673927205721269316833783775783610703320,
1686: 467794246437739506976775111608393022209053,
1687: 482349752052240657962887540925835136720740,
1688: 497353725307958208396664918548576500570384,
1689: 512819848828887897371554062220903289550130,
1690: 528762218615331555088826226879544901167527,
1691: 545195356410872371074704272735369048924689,
1692: 562134222435726415975597022642148002675881,
1693: 579594228497218762288102882601473336765100,
1694: 597591251488444805746508999799665944566660,
1695: 616141647286498628873307956507246249662412,
1696: 635262265061980727342758633558885467930686,
1697: 654970462011837401470060834112028353314761,
1698: 675284118527933869908522234215965152162520,
1699: 696221653814122968723573796976021441661750,
1700: 717802041964941442478681516751205185010007,
1701: 740044828519446608929091853958115568986164,
1702: 762970147504097887787893822256219849371554,
1703: 786598738978990637725956554797278124357808,
1704: 810951967102164263980984405643613443347625,
1705: 836051838727132970358751925465426223753244,
1706: 861921022549226171951777077723669881527186,
1707: 888582868816776806015468170319304987709289,
1708: 916061429623659935353293704664261165680563,
1709: 944381479800161498529884419450242134471605,
1710: 973568538419648201851756811932637866236071,
1711: 1003648890939014757529114525804772812444576,
1712: 1034649611991404349880377024889805948451966,
1713: 1066598588850232767185892564930056790115492,
1714: 1099524545584096492698787529446425808960485,
1715: 1133457067922710638072138797746330685194571,
1716: 1168426628854604371943988173648061076656356,
1717: 1204464614977899904017040550277724793430409,
1718: 1241603353626116601935133531509635427501801,
1719: 1279876140791574929056038110412443745546155,
1720: 1319317269869626093912245397158785002901753,
1721: 1359962061247603108750056330533001022811146,
1722: 1401846892763077891420050435782921418973709,
1723: 1445009231056717653171633051674494164837538,
1724: 1489487663845762650867366119648959070605125,
1725: 1535321933144897017630429081796659362863565,
1726: 1582552969462055408849028210050341395113316,
1727: 1631222926997501215103529967929557707274660,
1728: 1681375219875327721201833943152266777825092,
1729: 1733054559437372469717283290044275542482740,
1730: 1786306992630397874710969065930279993530728,
1731: 1841179941518278501517284167616876198477309,
1732: 1897722243951848075290887164802970670035779,
1733: 1955984195429997917538913727371549522655006,
1734: 2016017592186583869120124322228807307858970,
1735: 2077875775538691593667272042037771337062872,
1736: 2141613677532831241625032098057988491948517,
1737: 2207287867926682588244859017849269988676029,
1738: 2274956602545091757332316519809900057062533,
1739: 2344679873050131347512524469147852330603290,
1740: 2416519458166178053962910323080826683013954,
1741: 2490538976402136614754617183069000726495038,
1742: 2566803940314147020741857199436825485292885,
1743: 2645381812353354350387072647528700656565179,
1744: 2726342062344598291243970336667065409029860,
1745: 2809756226643193380147979076327264594704745,
1746: 2895697969018322254247325865029474629995508,
1747: 2984243143312953802987213049129995837626487,
1748: 3075469857931627124375487934417729522202013,
1749: 3169458542208911724615579730356050273697000,
1750: 3266292014712865596629588272103919719684547,
1751: 3366055553539366839888542445766361166135204,
1752: 3468836968654792543650918885868953010691040,
1753: 3574726676346161983924385238571158169261725,
1754: 3683817775839551051322373817401051497424420,
1755: 3796206128149322537872121900182662159228241,
1756: 3911990437222503807420937006192549828899684,
1757: 4031272333444480835500888704164496363681686,
1758: 4154156459574067047582172896269352052007031,
1759: 4280750559177948266124532321685590709003370,
1760: 4411165567636502893727652799725970383582718,
1761: 4545515705795050750500358651870382988186314,
1762: 4683918576336696329734155119529513589827658,
1763: 4826495262955104262123827190438060829061153,
1764: 4973370432407778155253526316242844344573385,
1765: 5124672439532710418254508515826522600609941,
1766: 5280533435313631955425559713040649796775465,
1767: 5441089478081518530016413892489308199319929,
1768: 5606480647942507023374562583725669127988521,
1769: 5776851164524941659873115036048663114937695,
1770: 5952349508140909502130662763236950728528684,
1771: 6133128544460338166089749412557583307068767,
1772: 6319345652798518839604562697210438023241550,
1773: 6511162858120786446819766577778364926946013,
1774: 6708746966871038378408979787060247103179750,
1775: 6912269706733805859936155115580770892194054,
1776: 7121907870442710074828422368434553047727682,
1777: 7337843463751340976339671250105665526337260,
1778: 7560263857685892761905455418833343917244062,
1779: 7789361945202278758472065509114228369126600,
1780: 8025336302373932563237571980294779250756300,
1781: 8268391354240084356595173268406241855198176,
1782: 8518737545447984082077112629884273268761094,
1783: 8776591515826329476185591848477738781761689,
1784: 9042176281031049610986292577509011838783245,
1785: 9315721418408596645489064435708989370524469,
1786: 9597463258226012911089716132158337004512929,
1787: 9887645080421270408475092400425112950304770,
1788: 10186517317031728481382143156507032880864866,
1789: 10494337760463026157910800552509870425432010,
1790: 10811371777765321805152346144711499265489879,
1791: 11137892531088517813516189325593809889812108,
1792: 11474181204492965595127263976240658672733891,
1793: 11820527237297139926370474832027317722017807,
1794: 12177228564148905369732416163985994571309670,
1795: 12544591862012275060173347722472359244046903,
1796: 12922932804266987528897386291108558284524280,
1797: 13312576322123804564848753689176255125112158,
1798: 13713856873564166596625513497299706749207160,
1799: 14127118720018736045636750699617456881311725,
1800: 14552716211005418005132948684850541312590849,
1801: 14991014076953676011289439394970540421861988,
1802: 15442387730448363289492676946827168544596921,
1803: 15907223576132871507960364168750022280398562,
1804: 16385919329518164710931105850817769087241385,
1805: 16878884344951220830025131180984215659580858,
1806: 17386539953003552219964871974446413826117272,
1807: 17909319807547825412134603270711842061393357,
1808: 18447670242798154252456532648116438246904907,
1809: 19002050640597405466197703977606842321053540,
1810: 19572933808242837304672225027800498209481360,
1811: 20160806367149596270203427106156960870472824,
1812: 20766169152660030143204019897118002904900168,
1813: 21389537625315443974415368124511782893607123,
1814: 22031442293915835855052489509763576677617505,
1815: 22692429150702307814484325155610270148732358,
1816: 23373060119006260978552660565770602425866730,
1817: 24073913513719160198707702330267411589158084,
1818: 24795584514946598972622146485353975132184526,
1819: 25538685655220618058549873928821959736691905,
1820: 26303847320654738379516399526912590943781620,
1821: 27091718266436968469332058999564180929593866,
1822: 27902966147067146894819024985472934375689121,
1823: 28738278061756389082181003004910619210874204,
1824: 29598361115418134291077518460315335403586750,
1825: 30483942995692340860959609721949330792795099,
1826: 31395772566456765282571775715588003409132613,
1827: 32334620478291992350263579043602637456626234,
1828: 33301279796379969106727880491661424703794769,
1829: 34296566646329244238310747147664839490574535,
1830: 35321320878433937019039707727760782467717785,
1831: 36376406750887666110543978036746824592455791,
1832: 37462713632488269058784695792011875893039111,
1833: 38581156725384149030225659607573893303383795,
1834: 39732677808428507338475836002967756141425565,
1835: 40918246001723570069537718918088365292496141,
1836: 42138858552953206373244111655326855421732185,
1837: 43395541646119076823784928057386091817027588,
1838: 44689351233312655065605577356497222364030752,
1839: 46021373890173147491957400810472661489846635,
1840: 47392727695699507038180086415408337440470086,
1841: 48804563137103411752378288723762455918172986,
1842: 50258064040409270440055764682612968116562013,
1843: 51754448527527040549257397842950059733038281,
1844: 53294970000543912137117431914902281880953875,
1845: 54880918154001741201408795026747551723720527,
1846: 56513620015948521242261975310131861303268895,
1847: 58194441018574179427502571579696887885537742,
1848: 59924786099263589386584792985885004002385100,
1849: 61706100832922923109471297093651456522575000,
1850: 63539872596459336786702846316806859551222764,
1851: 65427631766318517268030842666066129833124679,
1852: 67370952950009825188774721810114716943378422,
1853: 69371456252574676254257996014226320491002233,
1854: 71430808578980422724679205565325409535341535,
1855: 73550724973449352362958820460243849915161295,
1856: 75732969996760532083864127998517020593740791,
1857: 77979359142591108905489195759391328910134418,
1858: 80291760293993362744249170815935430293952943,
1859: 82672095221134305875868191384112819286758200,
1860: 85122341121455964860570648618210990142492639,
1861: 87644532203446685358824902714882088097498633,
1862: 90240761315246892123800470058435668367783935,
1863: 92913181619346739765141403639335218061558813,
1864: 95664008314668029507699782676107535163671365,
1865: 98495520407358668662814112828386043342039288,
1866: 101410062531664839123433827120996801871554118,
1867: 104410046822283945831589672011997862390810762,
1868: 107497954839640363519148716631132136446924023,
1869: 110676339549566018509524250906452596245408440,
1870: 113947827358908961175629034752466582068886470,
1871: 117315120208635333752283890034504840221064086,
1872: 120780997726033548383095326244127836720276225,
1873: 124348319437674093156601079636921240241787962,
1874: 128020027044824211921357710559027384266649000,
1875: 131799146763063790207250005304405120478900361,
1876: 135688791727897158862480183289001251910301886,
1877: 139692164468205234207238255169848532611147557,
1878: 143812559449433484718637448310794816419480218,
1879: 148053365688463686582704780998822076298210405,
1880: 152418069442171341962802939167993644252844977,
1881: 156910256971726023650131079907915129924767174,
1882: 161533617384748818044426030157299715901448409,
1883: 166291945557499506406187783344043042314534878,
1884: 171189145139326194380356742395417581059236130,
1885: 176229231641671815409487530302217850452007387,
1886: 181416335613995339496338175675291780004357523,
1887: 186754705909030660706666553292223320927706878,
1888: 192248713039873061921465120214608474899151280,
1889: 197902852631451912018290889751846175017276700,
1890: 203721748969018888548080806839085873409222663,
1891: 209710158646353589075380551065506324110555541,
1892: 215872974316462949034790068311792114803360768,
1893: 222215228547627476999327377660931337519227930,
1894: 228742097787726004875938672290676073251112495,
1895: 235458906439851487440117948662414751746035425,
1896: 242371131052313431017875037233367567350390976,
1897: 249484404626207844803286441041017222801266718,
1898: 256804521043823251651497040551112296246458295,
1899: 264337439621241331244215401011574782781334700,
1900: 272089289788583262011466359201428623427767364,
1901: 280066375901447845568248481717977121765830398,
1902: 288275182187185106927480861934498895209154826,
1903: 296722377829749335448869068867067104949579464,
1904: 305414822196978537321624475491324386207138350,
1905: 314359570214253084228181897886953506729950270,
1906: 323563877888595040544848710079341268243350278,
1907: 333035207987381310882223234930566921371066351,
1908: 342781235875958450915909855966319285240611144,
1909: 352809855518564809408156722848357746339640390,
1910: 363129185647086702371268910149149152584766993,
1911: 373747576102299648025575523786476989131026713,
1912: 384673614352373402423945044973430693054218643,
1913: 395916132193550721591800039752382776657876433,
1914: 407484212638044530444951338680763930621994820,
1915: 419387196994336597778328640988515637140928750,
1916: 431634692145202999016827948773519398239274548,
1917: 444236578028937695571550278721551746219224713,
1918: 457203015329395575643972370763403591173830810,
1919: 470544453380630393038248327984084169870052370,
1920: 484271638292061317700921219995285769876393805,
1921: 498395621300264386957594139661914904785275330,
1922: 512927767353652135411965358701027725220931707,
1923: 527879763936476202951968110645920036905758794,
1924: 543263630138763896173977941441058199308011100,
1925: 559091725978980633941148481298313317618632967,
1926: 575376761986396071222827176058084413124270202,
1927: 592131809050322598728023510231907577504041350,
1928: 609370308543590994569721078158344505753246979,
1929: 627106082727829397306582084065079630894972195,
1930: 645353345448318619933615779058934561872409372,
1931: 664126713126409278261223804893870154281524038,
1932: 683441216057704415059243252710086070145621992,
1933: 703312310024435417776917212697059694728111811,
1934: 723755888230689211116144545349876787252027480,
1935: 744788293569381118983800284897623329523811384,
1936: 766426331230110600455862693324715237997598939,
1937: 788687281657286442867926694461098498097562065,
1938: 811588913868164118077309502293768840003949925,
1939: 835149499140701056072067990291237777551833530,
1940: 859387825081405748983159033075649135425638325,
1941: 884323210083634058665255574996164926064666511,
1942: 909975518187071057883524303147934812769277935,
1943: 936365174349429389500998978473009079907862954,
1944: 963513180141695685953126594506747030515761180,
1945: 991441129878565264237073831290682236831192947,
1946: 1020171227196022316757683410004293870517496706,
1947: 1049726302088348378540247976304143049122065214,
1948: 1080129828417176195331669321286587690711167057,
1949: 1111405941905549479818145590739116367242780000,
1950: 1143579458630301665664240006110545368915059329,
1951: 1176675894026428898785508782184245465533665048,
1952: 1210721482417504396219216523662601652136179376,
1953: 1245743197086563215894590527223118960072913202,
1954: 1281768770902278683167516719540860443130307320,
1955: 1318826717515654486899160825985211020969456836,
1956: 1356946353142870071117550937780046987060960843,
1957: 1396157818950341697358512735475562356104045295,
1958: 1436492104058497734745724852296636956267964954,
1959: 1477981069181214654702422049514025480619599210,
1960: 1520657470918320177914639277247113472181645153,
1961: 1564554986719042364085227429425894281463674979,
1962: 1609708240534768479916261201915809290266567989,
1963: 1656152829179975566133060952832169077820577902,
1964: 1703925349420706097654088225457498186848567210,
1965: 1753063425810487348828764073209783931216955698,
1966: 1803605739294132404035202382553315081341190088,
1967: 1855592056600414568536728473961840601327835478,
1968: 1909063260445175620937659060948648856259756235,
1969: 1964061380567012302624155966071951926644451875,
1970: 2020629625618285067432170725261207144994992239,
1971: 2078812415934808833368620144510853807585221613,
1972: 2138655417208217715431844885515291279369574680,
1973: 2200205575085644913617857845505033592721522553,
1974: 2263511150722025533817142690940119270064496250,
1975: 2328621757311014594133664064174539456980750339,
1976: 2395588397621215290008835331658621643021314292,
1977: 2464463502565134245725579502592034085209328984,
1978: 2535300970829021467547395315846813198183591546,
1979: 2608156209592513548223075037746157905702847505,
1980: 2683086176367779880674969950590007819202341357,
1981: 2760149421988673761061033114268064448054050548,
1982: 2839406134781213852952373747778159055380262422,
1983: 2920918185947567114582770377976676661508796149,
1984: 3004749176196572544459946686955919368234128060,
1985: 3090964483654736576896042159262866214940589314,
1986: 3179631313092546273793802882159493889001969611,
1987: 3270818746501886244063493400323024051287288941,
1988: 3364597795061310125684361619251416376860936489,
1989: 3461041452526908153028282986522280729367368365,
1990: 3560224750087529486464584716859554522268776125,
1991: 3662224812724162303217742306542356590926722479,
1992: 3767120917114346857096063738777247515406335526,
1993: 3874994551123597548057533501867770741416429535,
1994: 3985929474926940257994009093217001343955328335,
1995: 4100011783804831583821441379839563991285227198,
1996: 4217329972658917930562969936711305445974785514,
1997: 4337975002294315534109569503386742455494341143,
1998: 4462040367516348205694592687945941817364967127,
1999: 4589622167090968789784046573687400867942870250,
2000: 4720819175619413888601432406799959512200344166,
2001: 4855732917379000237574365609687488912697273143,
2002: 4994467742183366148074839035447416380393781644,
2003: 5137130903316893622770745464235084139384928426,
2004: 5283832637599517075572081746564260420858901705,
2005: 5434686247639634059061258993904042430607990074,
2006: 5589808186334383050291570992756471405633041387,
2007: 5749318143678144230778676663789672984169195116,
2008: 5913339135941752405965378691599572441324623941,
2009: 6081997597286587859405678030809218670282246785,
2010: 6255423473879432172551153347179787953125682826,
2011: 6433750320575743037411316728215679204642749660,
2012: 6617115400240816052275556661314890288999332009,
2013: 6805659785780163657391920602286596663406217911,
2014: 6999528464952353007567067145415164276505069670,
2015: 7198870448039506994791503590601126801607534137,
2016: 7403838878452687162912842119176262318542314409,
2017: 7614591146351445269661694564912786246445478891,
2018: 7831289005358953156344654888013498638339711692,
2019: 8054098692456299826324570548607480763080403880,
2020: 8283191051141781691732068101840743191755759916,
2021: 8518741657943308344041302580996941768179250799,
2022: 8760930952374403498169602637389577451855415964,
2023: 9009944370426700552244228695797096011740585251,
2024: 9265972481694316138437595284729122693073711400,
2025: 9529211130228034799395854632912272457677896880,
2026: 9799861579219855238744997642818047729388291567,
2027: 10078130659621135236933601810787303619515113811,
2028: 10364230922800330115415428619787879783434758914,
2029: 10658380797349150440403847607713189208549844510,
2030: 10960804750148870398245267228037581609577682339,
2031: 11271733451811500913798689538973402825112404379,
2032: 11591403946613603138135282386492611425148475178,
2033: 11920059827043660471886625110700606109457615243,
2034: 12257951413087152938966999455842406831025654415,
2035: 12605335936376788660643906067688568691477294599,
2036: 12962477729338745637101954446070534143126297085,
2037: 13329648419469265315863347103932314055721954884,
2038: 13707127128879519866370496154104287110788727040,
2039: 14095200679250350101462435045670967566714006190,
2040: 14494163802342243065803242497250145705564482929,
2041: 14904319356209789989230727462504226498494263931,
2042: 15325978547273839186092526952960232758544597811,
2043: 15759461158408637244144834830819680263402565217,
2044: 16205095783205438232082764786847977319531548455,
2045: 16663220066578357477963673318612506891057322162,
2046: 17134180951882656619355889974597586372298980947,
2047: 17618334934720173062514849536736413843694654543,
2048: 18116048323611252751541173214616030020513022685,
2049: 18627697507717313357328883548487129542980353125,
2050: 19153669231803058848943059805108758933859747374,
2051: 19694360878632389188479682121479772827588278091,
2052: 20250180758997203961018562965051517467373563574,
2053: 20821548409583589567679943310731809893410960813,
2054: 21408894898885309715106534167513145969112337635,
2055: 22012663141380091963647773040348591535494857021,
2056: 22633308220189922777870335143856096247251187948,
2057: 23271297718452433681930253947266040250043569734,
2058: 23927112059636485682887466272819725468557276242,
2059: 24601244857041242112722641487525252331485884885,
2060: 25294203272724365584159904646608138971697036406,
2061: 26006508386111487092631615069752229687889047419,
2062: 26738695572545778772495897103306702147812265676,
2063: 27491314892043320887814631666080168776331811888,
2064: 28264931488526992879603605279805458570836160570,
2065: 29060125999818842393508123538658855855869573724,
2066: 29877494978678299986437859187588252356283557915,
2067: 30717651325181215594079225685922159612710890246,
2068: 31581224730742500897001026737587458361246031363,
2069: 32468862134093174645484430948409904593113694670,
2070: 33381228189530831120385246576357623531476650368,
2071: 34319005747770990684777087747947525376490393829,
2072: 35282896349735451425203004555804514075824949148,
2073: 36273620733622647942922713748119798292462316154,
2074: 37291919355614143333586997222803939193763027250,
2075: 38338552924580739339245889549713324449360541521,
2076: 39414302951161293776274047281093717842584188891,
2077: 40519972311597190003244878215733219997449415843,
2078: 41656385826715516924455731088372893657996361228,
2079: 42824390856464396526209228476474575762774879465,
2080: 44024857910414546084950481401735302373848095782,
2081: 45258681274652091016547586287700221970008068755,
2082: 46526779655498859083237494859206365034702358134,
2083: 47830096840507894753763929606166424148960110424,
2084: 49169602377193741528342591922356853935149504975,
2085: 50546292269969157794099110029993948769746687671,
2086: 51961189695772366269783089381199090558960547606,
2087: 53415345738881696537662435419712492307334180478,
2088: 54909840145427572963129830596638040418770704515,
2089: 56445782098125235102442269204682620745124030885,
2090: 58024311011765363351557172881384457469348901699,
2091: 59646597350013928176910703744766844433767270677,
2092: 61313843464087096107973721257849778294625405081,
2093: 63027284453881919316292784641070835053831354052,
2094: 64788189052158817856342546799691255570877518150,
2095: 66597860532387544551063529093372826237515675728,
2096: 68457637640884412378329010378860869685804024262,
2097: 70368895553885073626926030071097479233359907864,
2098: 72333046860214079886074787715712944920415424984,
2099: 74351542570229833233029956235268391407949627875,
2100: 76425873151741373195807749021080021459080291165,
2101: 78557569593611742891613633197716231871513782517,
2102: 80748204497781453174729297053600127492388932998,
2103: 82999393200464827976246067679320326020971457938,
2104: 85312794923291779902869927934730036659721510375,
2105: 87690113955187845526792666366851401712801134274,
2106: 90133100865806117918203480753613859038381596324,
2107: 92643553751346063460833585063932351673594098859,
2108: 95223319513616114811576859302283546424619314506,
2109: 97874295173219406337291510865301717288885200445,
2110: 100598429217765077170980775830078597915978709260,
2111: 103397722986031225236603653787203378188231402292,
2112: 106274232089029868642533106912359104776603150690,
2113: 109230067868949174578477633685673008965957469120,
2114: 112267398896973766514395710229044460157179222920,
2115: 115388452511010134752244464747991318862444784689,
2116: 118595516394371070307305070689995677519803374830,
2117: 121890940196500635216372474879596908517840948778,
2118: 125277137196849491653446187682001921308870438795,
2119: 128756586013039456106279781429309224204637155235,
2120: 132331832354485942225817194731144948296095338913,
2121: 136005490822677526183628341619662696228169437779,
2122: 139780246759343231332496879136294914183920566235,
2123: 143658858143770305041408732118198629930850140819,
2124: 147644157540568270666807354340091712330909224000,
2125: 151739054099208903158067016467162544501125246216,
2126: 155946535606706519753573960842521384418556790909,
2127: 160269670594838620141199867367375227901178121673,
2128: 164711610503343476443764262455655533446463188624,
2129: 169275591900568786145109713871008667212574145360,
2130: 173964938763083984897646967444489323060065487907,
2131: 178783064815808295968062329270497666350416021621,
2132: 183733475934247094438727208707795835845879643176,
2133: 188819772610470713392617031395550078686410106988,
2134: 194045652484512443040038057363040342445733893240,
2135: 199414912942906199650168544999618866932966543484,
2136: 204931453786129197483756438132982529754356479553,
2137: 210599279966760972657750340621024569609658319243,
2138: 216422504400217312716806872498425178952708753752,
2139: 222405350849966070103844047835296998593257719870,
2140: 228552156889181512949138540918848061266047740791,
2141: 234867376940844824665120188180587152072518199582,
2142: 241355585398350637585388084310633650150819331465,
2143: 248021479828733108998565670865001643954560554353,
2144: 254869884260680054932039940494913967190530868955,
2145: 261905752559560083345100350260758248905652921875,
2146: 269134171891745550301357546978902318483150550307,
2147: 276560366280573537433149830945908221546675684073,
2148: 284189700256347954756384460822072399114186994724,
2149: 292027682602848348780952829894171946286185196525,
2150: 300079970202875082019467410865495625479979094694,
2151: 308352371985426287572392634796034918345831989966,
2152: 316850852977169433649870812195036854291507911207,
2153: 325581538460939500937426146405250734530774231825,
2154: 334550718244066724977417207615678241114465752975,
2155: 343764851039409631696645200323540686552303329604,
2156: 353230568962043743490045985418104968175497835998,
2157: 362954682144632903677995273534058279957414924705,
2158: 372944183474588707707117294510467908715140736065,
2159: 383206253456204090418195791785818308423831594945,
2160: 393748265201029751587449904786884268416346918520,
2161: 404577789549846859589538794509144411672022826612,
2162: 415702600329676409598230534926593885982499170401,
2163: 427130679749354783768755297437892949499654467597,
2164: 438870223937296523272831771890659665602286473475,
2165: 450929648625159134260052749493609306300370136632,
2166: 463317594981220971649101966934064855005088490212,
2167: 476042935597381937471938911243959272191670950572,
2168: 489114780633797957215706040263930987465371910798,
2169: 502542484125264022730810437527574105649622691760,
2170: 516335650453567079927347553251246871212620557984,
2171: 530504140990139261462232960508189648909724886170,
2172: 545058080913453988432836606455557467047353067377,
2173: 560007866205722361999363584087410496745060913524,
2174: 575364170833565108914383039346175332072363129225,
2175: 591137954117456209042263051672264094963902965317,
2176: 607340468294858294890172396576637459876728673686,
2177: 623983266282097051667127111749751355541610352255,
2178: 641078209640152242143041148426227499209194350336,
2179: 658637476749676716333547258428298949880301221655,
2180: 676673571200691926609848235322274189175428592431,
2181: 695199330402549141183113024435698489390907024630,
2182: 714227934419889822186067591088150189762713935508,
2183: 733772915040486600160233205517764582904605949651,
2184: 753848165080998028345195047409661205734061410010,
2185: 774467947936825933802831039011913166290856798904,
2186: 795646907382423796556925927113569848920749045025,
2187: 817400077628568283525440629036885986580578161120,
2188: 839742893643273944545131128461036809985928936965,
2189: 862691201743203249313515607587263855592485446510,
2190: 886261270462600715344592984957682094231262687955,
2191: 910469801706960959527768615813845716032362752763,
2192: 935333942198826213870111109341848015258586306792,
2193: 960871295223299296636466125655717340185883228697,
2194: 987099932681053343467853379878084516482176109430,
2195: 1014038407456819902258601282188003020164821077713,
2196: 1041705766111542406799393149921058024912789843193,
2197: 1070121561906592696806185003711836723976318646033,
2198: 1099305868168664278558814578725663660095230751347,
2199: 1129279292004177556899411779284367814322107068750,
2200: 1160062988372259455129906418328374912794875140516,
2201: 1191678674525592817234330378465180518007035567938,
2202: 1224148644828669903250292851179037002332204681842,
2203: 1257495785963229293609758350537517985043490101070,
2204: 1291743592530906765707814604565428064732892610835,
2205: 1326916183063388353539586696826007823016666575690,
2206: 1363038316450618010620081932775702626766948267742,
2207: 1400135408797883233268006240578157606704308520406,
2208: 1438233550722879835539717164127729784341377881813,
2209: 1477359525104141972742451850876428128946776467300,
2210: 1517540825292515665993072463432902551892845533240,
2211: 1558805673797653668641491334803497135876242089678,
2212: 1601183041461816724044580259727354612842328867083,
2213: 1644702667133581285344348736857245137869671730074,
2214: 1689395077854376798567156661483099222514277324220,
2215: 1735291609571106892437555774714449031725527460139,
2216: 1782424428388448478757191595009703327418571383436,
2217: 1830826552374771058174587388568897962322872702465,
2218: 1880531873935975665104704330318867749822093808655,
2219: 1931575182771919095318938056959674511017686068185,
2220: 1983992189430464568754141912398798172706580941262,
2221: 2037819549474585022525115674537508812727151594151,
2222: 2093094888278340044956073813211683523416074682898,
2223: 2149856826467952296650447653773869417501164619869,
2224: 2208145006024624371311040214176565237134381870625,
2225: 2268000117066162685610486257867691977952149636083,
2226: 2329463925324911418747662088887963091854286975547,
2227: 2392579300339947019867081675868949317697298397221,
2228: 2457390244381942643492189138307718097264928854677,
2229: 2523941922129582344692758164350149756471869195790,
2230: 2592280691116887259141942758496845583141659899537,
2231: 2662454132971310608073787558386111506684369385813,
2232: 2734511085462965511444391934177140596906494183587,
2233: 2808501675385869578994261445169376899379754972068,
2234: 2884477352292623400907075579322579400861330771315,
2235: 2962490923104486707892612022451087039141493329190,
2236: 3042596587619376453548710860694923114675620792521,
2237: 3124849974940885736970186673957557524827120772983,
2238: 3209308180852011686602310843936272621314792055526,
2239: 3296029806157884531966398832249411659082252110525,
2240: 3385074996022409471869790373849802994298808805690,
2241: 3476505480324367989101580130555189921672623462046,
2242: 3570384615059176354982401320439389024740905215964,
2243: 3666777424813166614813801947045518673161561892966,
2244: 3765750646337939759592154130429553527537766985115,
2245: 3867372773253042492891322334008521298830352179629,
2246: 3971714101905938427653556222571377434088646307540,
2247: 4078846778418982139592272233327190495676444439866,
2248: 4188844846953860716858469962505733762730156946697,
2249: 4301784299224742745702713528067084946594634381000,
2250: 4417743125292169536796493320206228992803910550343,
2251: 4536801365670538316236136117174461033288094273661,
2252: 4659041164782862580763013973003868359053553220232,
2253: 4784546825797351362566231731168417844332785838733,
2254: 4913404866881227292111965728061869527659853830530,
2255: 5045704078908103627757617096847635981526636026359,
2256: 5181535584656163391837451036356625290841516214407,
2257: 5320992899535329981545125277691916180855473998805,
2258: 5464171993882588690437588095807084889323827738187,
2259: 5611171356865613078294130300389571289206397311350,
2260: 5762092062035869673687412904560243239930531635515,
2261: 5917037834573419710379575999541430738890622626340,
2262: 6076115120266708126452900640242923623341866228338,
2263: 6239433156271728550695355451490575993085942292134,
2264: 6407104043696079137218319509378718229702705761905,
2265: 6579242822054578576274630855578948789533455298734,
2266: 6755967545644295113522674510292835122483775946206,
2267: 6937399361888054675782970897485983723264323011797,
2268: 7123662591696737970806754341094737575112103730614,
2269: 7314884811901951462222340761939935289641834289395,
2270: 7511196939811964197947649707463044206175866380723,
2271: 7712733319945142389521924617582058172801542180874,
2272: 7919631812996487219317452100595913257543028088576,
2273: 8132033887094289430962576814720449927838393960827,
2274: 8350084711405357694774361105408889911972402015300,
2275: 8573933252148757415018198504928925593185861873742,
2276: 8803732371079513461579268567498022304249933730391,
2277: 9039638926505285189617314422998964084970595438542,
2278: 9281813876900616004271298745383250743059729594527,
2279: 9530422387184993604151073155371828079705355168950,
2280: 9785633937732631891816046069641124632254214557235,
2281: 10047622436183602390848394841406802515973193043806,
2282: 10316566332127702901769041143039403233989122380996,
2283: 10592648734734255132957468343310308444321456043571,
2284: 10876057533402872254341014560334244700946683620780,
2285: 11166985521512132864360358955503173717957792328653,
2286: 11465630523345040885726361109312137419668093929920,
2287: 11772195524272142592252579142228927699835475405262,
2288: 12086888804275213526126666074714236379441857513978,
2289: 12409924074896520730686758323108856061617655222490,
2290: 12741520619700810766902679602920740106349316265795,
2291: 13081903438339372702369995825105861818651826992639,
2292: 13431303394307778991751050067148151893379620506077,
2293: 13789957366491217272065156663906255405414311071587,
2294: 14158108404593693973445004415760318309772932242370,
2295: 14536005888549817728742960090051403934327801222156,
2296: 14923905692020358321733692442892587286459907678047,
2297: 15322070350075326847761463298913968554265401515217,
2298: 15730769231170936413643835624649288938501733002618,
2299: 16150278713529481654471379166675899361510665760775,
2300: 16580882366033921211442301450921091904365926280416,
2301: 17022871133751761754598643267756804218108498650480,
2302: 17476543528205726845562009156571175360531579106807,
2303: 17942205822511650658087298129211531345495818175057,
2304: 18420172251507067091174412069974707159021665744880,
2305: 18910765216997070947078996545777114475682919623589,
2306: 19414315498247211476154846356983916621521411447697,
2307: 19931162467856441629277246980513463599759674413041,
2308: 20461654313146490770914182133145338856645809727187,
2309: 21006148263207456404192932627622104852595304280970,
2310: 21565010821742923705373368869534441911701199887419,
2311: 22138618005861522471365237940368652982888104075000,
2312: 22727355590965521614482418924663783733921186781149,
2313: 23331619361890843810727406215610806254135308857160,
2314: 23951815370456759593096244705083096637451017834880,
2315: 24588360199587493406897494649744406335205727290057,
2316: 25241681234172046294108468111219387029991510514102,
2317: 25912216938832713390963025920891990759428674050912,
2318: 26600417142777051809706408361950504454660772072685,
2319: 27306743331912438295458811467722364839525869129400,
2320: 28031668948406848928849481174161195141360108410956,
2321: 28775679697884097775242882020060349688803476984805,
2322: 29539273864446490518541231137563989837057604952179,
2323: 30322962633722685585711432023667002655631855893969,
2324: 31127270424143511960418282768032077800615961592375,
2325: 31952735226653572764265207581869821725011637243487,
2326: 32799908953071669788426324706615644528794262188810,
2327: 33669357793318419597396187557448074241909961160527,
2328: 34561662581734899786701292837993789078148269659948,
2329: 35477419172721767722086620675579581559062365395875,
2330: 36417238825934036963035091771377814636876895938849,
2331: 37381748601272582004301821355152191840543933044480,
2332: 38371591763919473464910961559285225914454949449279,
2333: 39387428199670427009917909560877277324279071654230,
2334: 40429934840823983789090419362572880622618841036000,
2335: 41499806102893531791299424581039874366426784160676,
2336: 42597754332414930108684698464207986438238414531147,
2337: 43724510266129315639709919648795164529190983190550,
2338: 44880823501827658290753362113015735891775860228025,
2339: 46067462981150790416506320013365490407603364278280,
2340: 47285217484645973326080769865489605746387338228688,
2341: 48534896139388582534016509015707084448606794509814,
2342: 49817328939485198519236927086579980055136752412153,
2343: 51133367279782285645165745517535680609133370052296,
2344: 52483884503112733276871946748564813602003527319855,
2345: 53869776461420824806590383880147822175719204551469,
2346: 55291962091114697184508819760614991511857392669436,
2347: 56751384003004060684283391440819878903446789803099,
2348: 58249009087189871171927544609837628960380623034142,
2349: 59785829133281790377677305788784327434428364970750,
2350: 61362861466328639006942053695686748622617850877171,
2351: 62981149598856648513992946515066172932792511110884,
2352: 64641763899420155681002068750650481144652897951882,
2353: 66345802278079465613952539750862814246981008871159,
2354: 68094390889230939345801166300675543634997580023495,
2355: 69888684852224948030989898005576415781403878920995,
2356: 71729868990218182977254525351745038902483193889528,
2357: 73619158587717925895914811729724245783180985354842,
2358: 75557800167287273321320320811040130784252221919060,
2359: 77547072285891979874115998945868567670402747044445,
2360: 79588286351381543804941144999617740627898062871643,
2361: 81682787459609412105690788920445375282931841060492,
2362: 83831955252709738636327407566454519669269037443061,
2363: 86037204799060994583504133500298291142599767525961,
2364: 88299987495479913719532319572840702828357104994815,
2365: 90621791992202763126914659986946872015595738278003,
2366: 93004145141224771243446359569837640488487305606833,
2367: 95448612968582727407224954007027627693270062216153,
2368: 97956801671180298878693599735216669857785613237715,
2369: 100530358638770501129135789786132580428696541463525,
2370: 103170973501725013759939661850158896906366983382795,
2371: 105880379205235666714568162057607929186246674835477,
2372: 108660353110609438642727243903401536959027659486124,
2373: 111512718124334720773264584058717478384571245088082,
2374: 114439343855613415076071522953096149591716910973500,
2375: 117442147803070664704054798350668120890654926300513,
2376: 120523096571371667803183996442776155815729810091602,
2377: 123684207118493113105268436573489685721321552781151,
2378: 126927548034415307868377394917913546501247383867613,
2379: 130255240852020056553944404306572055559539047530145,
2380: 133669461390998803240347188535274022509125836065110,
2381: 137172441135595483551688849972013947996581871778170,
2382: 140766468647028954484433593096055372616292751308832,
2383: 144453891011460794882135190497537058556764977948995,
2384: 148237115324395707667015292482470242745754168289775,
2385: 152118610212423719809411357105042520067307779240520,
2386: 156100907393235880227548485941067592747534460439448,
2387: 160186603274868212495995174730244824826286924759060,
2388: 164378360595152301854136694694118079266206458932708,
2389: 168678910102375098323537690529566365095195830119715,
2390: 173091052278175313875346442702502205694341724313429,
2391: 177617659103729195986746184184236646145304254737028,
2392: 182261675870304487388520687355584130250935690880972,
2393: 187026123035288047490867195922886699634867141186408,
2394: 191914098124819930404162679326110679178204492902970,
2395: 196928777684194703542432119373410255613845416290627,
2396: 202073419277219465790162920942761564437025278844409,
2397: 207351363535747401800832745531222095970123079470866,
2398: 212766036260635806253027202800291886071043511130893,
2399: 218320950575408346303872686615815518603736687265550,
2400: 224019709133932919957689061390552862746031758458304,
2401: 229866006383458830949778967121025947053151071434926,
2402: 235863630884390155812442175854014517889393984836232,
2403: 242016467688206145276344061824939391497289921344319,
2404: 248328500774974299762177021852107412058234599633660,
2405: 254803815551937407606287486346848530864431251682411,
2406: 261446601414692355496335282873363983668020889836360,
2407: 268261154372515934523018586706764224652758295238166,
2408: 275251879739431193944393927980843975448015734231456,
2409: 282423294892647160394499527988292633580813431968720,
2410: 289780032100044965565638185282633831588088504297253,
2411: 297326841418424633617945474627449518623223932967198,
2412: 305068593664268994544312629723329236676843814611957,
2413: 313010283458824435839645487672681448751536128120719,
2414: 321157032349342507073515697424466804962980378707300,
2415: 329514092008371775927573078641257544141430283832310,
2416: 338086847513035826131406156272669425469096435441169,
2417: 346880820706280914339971199061511110032851886967137,
2418: 355901673642125591813707043622534952223283339280101,
2419: 365155212116994575920151188842851740380508864908970,
2420: 374647389289270354779812696943359199223073776527524,
2421: 384384309389248455327267290257609074709972871788879,
2422: 394372231521736030856900123129107963761511852907062,
2423: 404617573563588459702218138566029837845857058362469,
2424: 415126916158535023731030449746058156911457360217500,
2425: 425907006811702486258611691435747829051036619210903,
2426: 436964764086304546997571902667823798077679571339689,
2427: 448307281905025750783203518734071850525930124835870,
2428: 459941833958690501858441260833172834575927050017497,
2429: 471875878224871422129752689802003581309719671216145,
2430: 484117061599156426525236728117223720907832020184888,
2431: 496673224641860608784678055946833883950031191035725,
2432: 509552406443037374969583492229383313416835733059701,
2433: 522762849608713268897451362983651906277382721179854,
2434: 536313005371342643715460083111040042096768651944785,
2435: 550211538827551788032090316191702467148009553891765,
2436: 564467334306317355502338280181042531694130943361929,
2437: 579089500870801016601654991798984624538203584674550,
2438: 594087377957141194645081615027313378657219091976058,
2439: 609470541153583610086244251156702088407546864564250,
2440: 625248808123415184021445170239142357065496320226974,
2441: 641432244675250690988723453000798446534275367015717,
2442: 658031170984308451084537723836848917759126780943929,
2443: 675056167968400361774985057979390540476824195499264,
2444: 692518083822452741394297527894579793217444427279865,
2445: 710428040715467841255717203419691810125435835218542,
2446: 728797441653931534847387578562876222605215306007682,
2447: 747637977515770665320414243823232108546943571791584,
2448: 766961634259063882272862309538971496456501841189299,
2449: 786780700309812582901493233837104883069651992252500,
2450: 807107774133183849507621375104362485942528919417094,
2451: 827955771992745105077858611205558631300937454362243,
2452: 849337935902320652619232737317794449777545949179711,
2453: 871267841775213384980863950063063429886904651528812,
2454: 893759407775650814410526929963928966861696330836200,
2455: 916826902877433240978780331677009554236212353692084,
2456: 940484955634883423732306479679700600136395142799772,
2457: 964748563171321607096873785043308907920748393645865,
2458: 989633100390417258370972350733200785584553946028102,
2459: 1015154329415899462551538855668088513315200292902465,
2460: 1041328409265241672356796753836476758668568608962817,
2461: 1068171905763073500068056689718618672673472054705623,
2462: 1095701801700212541420510934836771894810436524644206,
2463: 1123935507244352919801698227500042488236652668362464,
2464: 1152890870608594412929146690100187865796230009117415,
2465: 1182586188984146757378861272237745685156851393567877,
2466: 1213040219743698104212153283094735988868458164856735,
2467: 1244272191922094708920237946746471334658921810675089,
2468: 1276301817981140870474529866246359687648227775992726,
2469: 1309149305865493979065272921268867078953610074980355,
2470: 1342835371356799383941072744632607586619060990003342,
2471: 1377381250733383747666895193431311551421473834674537,
2472: 1412808713743003709421434478836269410607157240633931,
2473: 1449140076896329138317020116671377802568526770518725,
2474: 1486398217089027121199419785627770438512228407175000,
2475: 1524606585560504203472825372845600976263733665501642,
2476: 1563789222197560394205351099996482830581156974888244,
2477: 1603970770191409168676519057930382172908445935119463,
2478: 1645176491056723265830534175841536314124424257900655,
2479: 1687432280021576600685684487181671811367617087501755,
2480: 1730764681797368211260238937556940484156749101230455,
2481: 1775200906738034957464112810216480762332001678674799,
2482: 1820768847398085810011063048337611865735620543349686,
2483: 1867497095499222138016227017428624557231848665351291,
2484: 1915414959315545554866069359053268627009894091487255,
2485: 1964552481487597746580633524928622127514294053468578,
2486: 2014940457275725421793253569605575859047900517862975,
2487: 2066610453263518227450300026070406061787487374956619,
2488: 2119594826522328312496888837397949369108992226003579,
2489: 2173926744248147339669532102906132397617461595649235,
2490: 2229640203882390293040946390903966696602633829194840,
2491: 2286770053728415559686499093247615980043870048333375,
2492: 2345352014075897634933772608434944801289607520822444,
2493: 2405422698845462573006497019894423614036351120521629,
2494: 2467019637766297143181469675691820929552138013921170,
2495: 2530181299099750724441152937967329319658147447405249,
2496: 2594947112922264451615392923126900249342712365881980,
2497: 2661357494981285189837685277991457183899724929972336,
2498: 2729453871138152742649660700418835108908145695065284,
2499: 2799278702412287477405614444445747930301938442180000,
2500: 2870875510641352469269629800993561138276373608937244,
2501: 2944288904772419516055596903431635682611440388817684,
2502: 3019564607799532159016586951616642980389816614848623,
2503: 3096749484363431362720513648966835225350796839944705,
2504: 3175891569029590968434327113853291229809825601961265,
2505: 3257040095261100652976951554528119114719453404725007,
2506: 3340245525103334116822171147466786507458445890183988,
2507: 3425559579597749814517587789768024144026745140376550,
2508: 3513035269942590955686749126214187667970579050845937,
2509: 3602726929418680979845445364711401806180203650663725,
2510: 3694690246098950482357992748748848483474524052004611,
2511: 3788982296360781887103496312666448565688651771156677,
2512: 3885661579220719274616818998490729558629719751838590,
2513: 3984788051511562939333648375836061468352863107532895,
2514: 4086423163922351728879727101483809741806177963555690,
2515: 4190629897922231281075551233411026977189480304097898,
2516: 4297472803589713195797719954967455347047259565521535,
2517: 4407018038369349240856665212333154882125704077589469,
2518: 4519333406778376182071537408268876717047377660539309,
2519: 4634488401086431042999613202320599056013666269808095,
2520: 4752554242991993841520963249414089899868727306156151
}
def exp_sum(number):
if number < 0: return 0
return ANSWERS[number] | PYTHON | {
"starter_code": "\ndef exp_sum(n):\n\t",
"url": "https://www.codewars.com/kata/52ec24228a515e620b0005ef"
} | |
d1661 | train | def simplify(poly):
# I'm feeling verbose today
# get 3 parts (even if non-existent) of each term: (+/-, coefficient, variables)
import re
matches = re.findall(r'([+\-]?)(\d*)([a-z]+)', poly)
# get the int equivalent of coefficient (including sign) and the sorted variables (for later comparison)
expanded = [[int(i[0] + (i[1] if i[1] != "" else "1")), ''.join(sorted(i[2]))] for i in matches]
# get the unique variables from above list. Sort them first by length, then alphabetically
variables = sorted(list(set(i[1] for i in expanded)), key=lambda x: (len(x), x))
# get the sum of coefficients (located in expanded) for each variable
coefficients = {v:sum(i[0] for i in expanded if i[1] == v) for v in variables}
# clean-up: join them with + signs, remove '1' coefficients, and change '+-' to '-'
return '+'.join(str(coefficients[v]) + v for v in variables if coefficients[v] != 0).replace('1','').replace('+-','-') | PYTHON | {
"starter_code": "\ndef simplify(poly):\n\t",
"url": "https://www.codewars.com/kata/55f89832ac9a66518f000118"
} | |
d1662 | train | from collections import deque
import re
TOKENIZER = re.compile(r'(R+|F+|L+|\)|\()(\d*)')
def parseCode(code):
cmds = [[]]
for cmd,n in TOKENIZER.findall(code):
s,r = cmd[0], int(n or '1') + len(cmd)-1
if cmd == '(': cmds.append([])
elif cmd == ')': lst = cmds.pop() ; cmds[-1].extend(lst*r)
else: cmds[-1] += [(s, r)]
return cmds[0]
def execute(code):
pos, dirs = (0,0), deque([(0,1), (1,0), (0,-1), (-1,0)])
seens = {pos}
for s,r in parseCode(code):
if s == 'F':
for _ in range(r):
pos = tuple( z+dz for z,dz in zip(pos, dirs[0]) )
seens.add(pos)
else:
dirs.rotate( (r%4) * (-1)**(s == 'R') )
miX, maX = min(x for x,y in seens), max(x for x,y in seens)
miY, maY = min(y for x,y in seens), max(y for x,y in seens)
return '\r\n'.join( ''.join('*' if (x,y) in seens else ' ' for y in range(miY, maY+1))
for x in range(miX, maX+1) ) | PYTHON | {
"starter_code": "\ndef execute(code):\n\t",
"url": "https://www.codewars.com/kata/58738d518ec3b4bf95000192"
} | |
d1663 | train | from collections import deque
def tree_by_levels(node):
if not node:
return []
res, queue = [], deque([node,])
while queue:
n = queue.popleft()
res.append(n.value)
if n.left is not None:
queue.append(n.left)
if n.right is not None:
queue.append(n.right)
return res | PYTHON | {
"starter_code": "\ndef tree_by_levels(node):\n\t",
"url": "https://www.codewars.com/kata/52bef5e3588c56132c0003bc"
} | |
d1664 | train | def count_divisors(n):
"""Counts the integer points under the parabola xy = n.
Because the region is symmetric about x = y, it is only necessary to sum up
to that point (at n^{1/2}), and double it. By this method, a square region is
counted twice, and thus subtracted off the total.
"""
r = int(n**(1/2))
return 2*sum(n // i for i in range(1, r+1)) - r*r | PYTHON | {
"starter_code": "\ndef count_divisors(n):\n\t",
"url": "https://www.codewars.com/kata/58b16300a470d47498000811"
} | |
d1665 | train | from itertools import count
ALL_MOVES = [(1,1), (0,1), ( 1,0), (-1,0), (0,-1), (-1,1), ( 1,-1), (-1,-1)] # Natural directions of moves for king or queen (one step)
AMA_MOVES = [(1,2), (2,1), (-1,2), (2,-1), (1,-2), (-2,1), (-1,-2), (-2,-1)] # Knight moves for amazon queen
def amazon_check_mate(*args):
def posInBoard(x,y): return 0 <= x < 8 and 0 <= y < 8
def getCoveredPos(start, king=None): # Working with the amazon queen is king is provided
covered = {start}
for m in (AMA_MOVES if king else ALL_MOVES): # All "one step" moves (either for queen or king)
pos = tuple( z+dz for z,dz in zip(start,m) )
if posInBoard(*pos): covered.add(pos)
if king: # Get long range moves, for queen only (meaning: if king is provided!)
for dx,dy in ALL_MOVES:
for n in count(1):
pos = (start[0]+dx*n, start[1]+dy*n)
if not posInBoard(*pos) or pos == king: break # Abort if not in board or if white king is on the way
covered.add(pos)
return covered
K, Q = [(ord(s[0])-97, ord(s[1])-49) for s in args] # King and Queen positions as tuples
kCover = getCoveredPos(K) # Positions protected by white king
fullCover = getCoveredPos(Q,K) | kCover # All position protected by white pieces
freeQueen = Q not in kCover # Queen not protected by king
counts = [0] * 4 # Indexes: 2 * "is not check" + 1 * "safe position available around"
for x in range(8):
for y in range(8):
black = (x,y)
if black in kCover or black == Q: continue # No adjacent kings and no king copulating with an amazon...
safePosAround = any( posInBoard(*neigh) and (neigh not in fullCover or neigh == Q and freeQueen) # Neighbour is in board and is a safe place or is the queen and isn't protected by white king
for neigh in ((x+dx, y+dy) for dx,dy in ALL_MOVES) )
counts[ 2*(black not in fullCover) + safePosAround ] += 1 # Update the correct index of "ans"
return counts
| PYTHON | {
"starter_code": "\ndef amazon_check_mate(king, amazon):\n\t",
"url": "https://www.codewars.com/kata/5897f30d948beb78580000b2"
} | |
d1666 | train | def same_structure_as(original,other):
if isinstance(original, list) and isinstance(other, list) and len(original) == len(other):
for o1, o2 in zip(original, other):
if not same_structure_as(o1, o2): return False
else: return True
else: return not isinstance(original, list) and not isinstance(other, list) | PYTHON | {
"starter_code": "\ndef same_structure_as(a, b):\n\t",
"url": "https://www.codewars.com/kata/520446778469526ec0000001"
} | |
d1667 | train | from fractions import gcd
from functools import reduce
def solution(a):
return reduce(gcd, a) * len(a) | PYTHON | {
"starter_code": "\ndef solution(a):\n\t",
"url": "https://www.codewars.com/kata/52f677797c461daaf7000740"
} | |
d1668 | train | unflatten=lambda m,d,c=0:m if c==d else unflatten(parse(m,[0,1][c&1]),d,c+1)
def parse(ar, lr):
sub, i = [], [0, len(ar) - 1][lr]
while 0 <= i < len(ar):
j, r = ar[i], lr == 1
if isinstance(j, list):
sub.append(parse(j, lr))
i += [1, -1][r]
else:
mod = j % len([ar[i:],ar[:i + 1]][r])
sub.append([j, ar[i:i + (mod * [1, -1][r]):[1, -1][r]][::[1, -1][r]]][mod>=3])
i += [mod,1][mod<3] * [1,-1][r]
return sub[::[1, -1][lr]] | PYTHON | {
"starter_code": "\ndef unflatten(flat_array, depth):\n\t",
"url": "https://www.codewars.com/kata/57e5aa1d7fbcc988800001ae"
} | |
d1669 | train | def next_smaller(n):
s = list(str(n))
i = j = len(s) - 1
while i > 0 and s[i - 1] <= s[i]: i -= 1
if i <= 0: return -1
while s[j] >= s[i - 1]: j -= 1
s[i - 1], s[j] = s[j], s[i - 1]
s[i:] = reversed(s[i:])
if s[0] == '0': return -1
return int(''.join(s)) | PYTHON | {
"starter_code": "\ndef next_smaller(n):\n\t",
"url": "https://www.codewars.com/kata/5659c6d896bc135c4c00021e"
} | |
d1670 | train | class Solution:
def isNStraightHand(self, hand: List[int], W: int) -> bool:
# 1, 2, 2, 3, 3, 4, 6, 7, 8
# 1 2 3
# 2 3 4
# 6 7 8
# W length Q
# how many opened
# # of the element is current opened one
q = deque()
opened = 0
last = 0
counter = Counter(hand)
for n in sorted(counter):
count = counter[n]
if n > last + 1 and opened > 0:
return False
if n == last + 1 and count < opened:
return False
q.append(count - opened)
opened = count
if len(q) == W:
opened -= q.popleft()
last = n
return not opened | PYTHON | {
"starter_code": "\nclass Solution:\n def isNStraightHand(self, hand: List[int], W: int) -> bool:\n ",
"url": "https://leetcode.com/problems/hand-of-straights/"
} | |
d1671 | train | import sys
def main():
s = sys.stdin.readline
save = {' ': '%20', '!': '%21', '$': '%24', '%': '%25', '(': '%28', ')': '%29', '*': '%2a'}
string = s().strip()
while True:
output = []
if '#' in string:
return
for i in string:
if i in save:
output.append(save[i])
else:
output.append(i)
print(''.join(output))
string = s().strip()
def __starting_point():
main()
__starting_point() | PYTHON | {
"starter_code": "",
"url": "https://www.codechef.com/CDMT2012/problems/SYNOL"
} | |
d1672 | train | # ------------------- fast io --------------------
import os
import sys
from io import BytesIO, IOBase
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
# ------------------- fast io --------------------
from math import gcd, ceil
def prod(a, mod=10**9+7):
ans = 1
for each in a:
ans = (ans * each) % mod
return ans
def lcm(a, b): return a * b // gcd(a, b)
def binary(x, length=16):
y = bin(x)[2:]
return y if len(y) >= length else "0" * (length - len(y)) + y
for _ in range(int(input()) if True else 1):
n = int(input())
#n, k = map(int, input().split())
#a, b = map(int, input().split())
#c, d = map(int, input().split())
#a = list(map(int, input().split()))
#b = list(map(int, input().split()))
#s = input()
print(*[1]*n) | PYTHON | {
"starter_code": "",
"url": "https://codeforces.com/problemset/problem/1438/A"
} | |
d1673 | train | f={}
f[-40] = '-319993.68'
f[-41] = '-344598.60'
f[-42] = '-370433.52'
f[-43] = '-397528.44'
f[-44] = '-425913.37'
f[-45] = '-455618.29'
f[-46] = '-486673.22'
f[-47] = '-519108.14'
f[-48] = '-552953.07'
f[-49] = '-588238.00'
f[-50] = '-624992.93'
f[-29] = '-121939.61'
f[-30] = '-134994.52'
f[-31] = '-148949.43'
f[-32] = '-163834.34'
f[-33] = '-179679.26'
f[-34] = '-196514.17'
f[-35] = '-214369.08'
f[-36] = '-233274.00'
f[-37] = '-253258.92'
f[-38] = '-274353.84'
f[-39] = '-296588.76'
f[-18] = '-29155.76'
f[-19] = '-34290.64'
f[-20] = '-39995.53'
f[-21] = '-46300.42'
f[-22] = '-53235.31'
f[-23] = '-60830.20'
f[-24] = '-69115.10'
f[-25] = '-78120.00'
f[-26] = '-87874.90'
f[-27] = '-98409.80'
f[-28] = '-109754.71'
f[-8] = '-2557.17'
f[-9] = '-3642.00'
f[-10] = '-4996.84'
f[-11] = '-6651.68'
f[-12] = '-8636.54'
f[-13] = '-10981.39'
f[-14] = '-13716.26'
f[-15] = '-16871.13'
f[-16] = '-20476.00'
f[-17] = '-24560.88'
f[-18] = '-29155.76'
f[3] = '136.73'
f[2] = '41.41'
f[1] = '6.00'
f[0] = '0.00'
f[-1] = '-4.00'
f[-2] = '-38.59'
f[-3] = '-133.27'
f[-4] = '-318.00'
f[-5] = '-622.76'
f[-6] = '-1077.55'
f[-7] = '-1712.35'
f[14] = 'MAGNA NIMIS!'
f[13] = 'MAGNA NIMIS!'
f[12] = 'MAGNA NIMIS!'
f[11] = 'MAGNA NIMIS!'
f[10] = 'MAGNA NIMIS!'
f[9] = 'MAGNA NIMIS!'
f[8] = 'MAGNA NIMIS!'
f[7] = 'MAGNA NIMIS!'
f[6] = 'MAGNA NIMIS!'
f[5] = 'MAGNA NIMIS!'
f[4] = '322.00'
a=[]
for i in range(11):
a+=[int(input())]
for i in a[::-1]:
s=''
if i in f:
s=f[i]
else:
s='MAGNA NIMIS!'
print('f(%d) = %s'%(i, s)) | PYTHON | {
"starter_code": "",
"url": "https://codeforces.com/problemset/problem/1331/G"
} | |
d1674 | train | class Solution:
def minFallingPathSum(self, arr: List[List[int]]) -> int:
dp = [0] * len(arr[0])
for r, row in enumerate(arr):
minNb = min(dp)
min1 = dp.index(minNb)
dp[min1] = float('inf')
min2 = dp.index(min(dp))
dp[min1] = minNb
for c in range(len(row)):
if c != min1:
row[c] += dp[min1]
else:
row[c] += dp[min2]
#row[c] += min(dp[:c]+dp[c+1:])
dp = row[:]
return min(dp) | PYTHON | {
"starter_code": "\nclass Solution:\n def minFallingPathSum(self, arr: List[List[int]]) -> int:\n ",
"url": "https://leetcode.com/problems/minimum-falling-path-sum-ii/"
} | |
d1675 | train | from functools import *
class Solution:
def stoneGameII(self, arr):
a =[]
s=0
n = len(arr)
for i in arr[::-1]:
s+=i
a.append(s)
a=a[::-1]
@lru_cache(None)
def fun(i,m):
if i+2*m>=n:return a[i]
mn = inf
for ii in range(1,2*m+1):
if ii>m:
ans = fun(i+ii,ii)
else:
ans=fun(i+ii,m)
if ans<mn:
mn = ans
return a[i]-mn
return fun(0,1)
| PYTHON | {
"starter_code": "\nclass Solution:\n def stoneGameII(self, piles: List[int]) -> int:\n ",
"url": "https://leetcode.com/problems/stone-game-ii/"
} | |
d1676 | train | from math import sqrt
def get_distance(x1,y1,x2,y2):
return sqrt((x1-x2)**2 + (y1-y2)**2)
T = int(input())
ans = []
for _ in range(T):
blank = input()
N = int(input())
C = [[] for i in range(10**4+1)]
for i in range(N):
x,y = [int(i) for i in input().split()]
C[x].append(y)
distance = 0
lastx = None
lasty = None
for i in range(10**4+1):
if(C[i]!=[]):
max_ci = max(C[i])
min_ci = min(C[i])
if(lastx!=None and lasty!=None):
distance += get_distance(lastx,lasty,i,max_ci)
distance += max_ci - min_ci
lastx = i
lasty = min_ci
# ans.append(round(distance,2))
ans.append("{:.2f}".format(distance))
# ans.append(distance)
for i in ans:
print(i)
| PYTHON | {
"starter_code": "",
"url": "https://www.codechef.com/problems/POINTS"
} | |
d1677 | train | import sys
blocks = {}
for i in range(1, 10):
blocks[i] = [(0, 0)]
for i in range(2, 10, 2):
for j in range(1, i / 2 + 1):
blocks[i].append((j, 0))
blocks[i + 1].append((0, j))
# print blocks
blocks[10] = [(0, 0), (0, 1), (1, 0), (1, 1)]
blocks[11] = [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)]
blocks[12] = [(0, 0), (0, 1), (0, 2), (1, 2), (2, 2)]
blocks[13] = [(0, 2), (1, 2), (2, 0), (2, 1), (2, 2)]
blocks[14] = [(0, 0), (1, 0), (2, 0), (2, 1), (2, 2)]
blocks[15] = [(0, 0), (0, 1), (0, 2), (1, 0), (2, 0)]
blocks[16] = [(0, 0), (0, 1), (1, 0)]
blocks[17] = [(0, 0), (0, 1), (1, 1)]
blocks[18] = [(0, 1), (1, 0), (1, 1)]
blocks[19] = [(0, 0), (1, 0), (1, 1)]
grid = [['.'] * 10] * 10
# print grid
id1, id2, id3 = list(map(int, input().split()))
while not (id1 == id2 == id3 == -1):
print('-1 -1 -1 -1 -1 -1 -1 -1 -1')
sys.stdout.flush()
id1, id2, id3 = list(map(int, input().split()))
| PYTHON | {
"starter_code": "",
"url": "https://www.codechef.com/JUNE16/problems/CHNWGM"
} | |
d1678 | train | #dt = {} for i in x: dt[i] = dt.get(i,0)+1
import sys;input = sys.stdin.readline
#import io,os; input = io.BytesIO(os.read(0,os.fstat(0).st_size)).readline #for pypy
inp,ip = lambda :int(input()),lambda :[int(w) for w in input().split()]
from collections import deque
def getmax(x,n,k):
mx = []
dq = deque()
for i in range(k):
while dq and x[i] >= x[dq[-1]]:
dq.pop()
dq.append(i)
mx.append(x[dq[0]])
for i in range(k,n):
while dq and dq[0] <= i-k:
dq.popleft()
while dq and x[i] >= x[dq[-1]]:
dq.pop()
dq.append(i)
mx.append(x[dq[0]])
return mx
n = inp()
m = n+n
A = ip()
B = ip()
A += A
B += B
pre = [0]*(m+1)
for i in range(1,m+1):
pre[i] += pre[i-1] + B[i-1]
plus = [0]*m
minus = [0]*m
for i in range(m):
plus[i] = A[i]+pre[i]
minus[i] = A[i]-pre[i+1]
a = getmax(plus,m,n-1)
ans = float('-inf')
for i in range(n):
ans = max(ans,minus[i]+a[i+1])
print(max(ans,*A)) | PYTHON | {
"starter_code": "",
"url": "https://www.codechef.com/INOIPRAC/problems/INOI1501"
} | |
d1679 | train | # cook your dish here
n,m = map(int, input().split())
arr1 = list(map(int, input().split()))
arr2 = list(map(int, input().split()))
max1 = arr1.index(max(arr1))
min2 = arr2.index(min(arr2))
arr = []
for i in range(m):
arr.append([max1, i])
for i in range(n):
if i!=max1:
arr.append([i , min2])
for i in arr:
print(*i) | PYTHON | {
"starter_code": "",
"url": "https://www.codechef.com/problems/DPAIRS"
} | |
d1680 | train | # cook your dish here
for _ in range(int(input())):
l,n,x=map(int,input().split())
m=[]
pw1 = (1 << 17);
pw2 = (1 << 18);
if (n == 1) :
m.append(x)
elif (n == 2 and x == 0) :
m.append(-1)
elif (n == 2) :
m.append(x)
m.append(0)
else :
ans = 0;
for i in range(1, n - 2) :
m.append(i)
ans = ans ^ i;
if (ans == x) :
m.append(pw1+pw2)
m.append(pw1)
m.append(pw2)
else:
m.append(pw1)
m.append((pw1 ^ x) ^ ans)
m.append(0)
p=(m)*l
for i in range(0,l):
print(p[i],end=' ')
print()
| PYTHON | {
"starter_code": "",
"url": "https://www.codechef.com/PCR12020/problems/RAAVANCH"
} | |
d1681 | train | #include<stdio.h>
int rev(int k)
{
int j,res=0;
while(k)
{
res=res*10+k%10;
k/=10;
}
return res;
}
int main()
{
int j,a,b,m,k;
while(scanf("%d",&m)!=EOF)
{
for(j=1;j<=m;j++)
{
scanf("%d %d",&a,&b);
k=rev(a)+rev(b);
printf("%d\n",rev(k));
}
}
return 0;
}
| PYTHON | {
"starter_code": "",
"url": "https://www.codechef.com/BUGS2020/problems/IOI1804"
} | |
d1682 | train | for _ in range(int(input())):
x,y=map(int,input().split())
if(x==y):
if(x==1):
print(1)
else:
n=0
for i in range(x-1):
n=i
for _ in range(y):
print(n,end=' ')
n=(n+1)%x
print()
for i in range(x):
print(i,end=' ')
print( )
else:
l=[]
n=min(x,y)
m=max(x,y)
for _ in range(n):
l.append([])
v=n+1
for i in range(n):
u=i
for j in range(m):
if(j<=n):
l[i].append(u)
u=(u+1)%(n+1)
else:
if(j>=v):
l[i].append(j+1)
else:
l[i].append(j)
v=v+1
if(x>y):
for i in range(x):
for j in l:
print(j[i],end=' ')
print( )
else:
for i in l:
for j in i:
print(j,end=' ')
print( ) | PYTHON | {
"starter_code": "",
"url": "https://www.codechef.com/problems/TOTEM"
} | |
d1683 | train | l=list(map(int,input()))
t=-1
x=-1
y=-1
for i in range(len(l)):
s=l[i]
a=i+1
b=i+1
for j in range(i+1,len(l)):
if l[i]<l[j]:
s=s+l[j]
b=j+1
else:
break
if s>t:
t=s
x=a
y=b
print(t,end=":")
print(x,y,sep="-") | PYTHON | {
"starter_code": "",
"url": "https://www.codechef.com/SSCC2020/problems/SSEC0015"
} | |
d1684 | train | ''' J A I ~ S H R E E ~ R A M '''
# Title: cc-CKOJ20D.py
# created on: 20-07-2020 at 20:46:04
# Creator & Template : Udit Gupta "@luctivud"
# https://github.com/luctivud
# https://www.linkedin.com/in/udit-gupta-1b7863135/
import math; from collections import *
import sys; from functools import reduce
from itertools import groupby
# sys.setrecursionlimit(10**6)
def get_ints(): return map(int, input().strip().split())
def get_list(): return list(get_ints())
def get_string(): return list(input().strip().split())
def printxsp(*args): return print(*args, end="")
def printsp(*args): return print(*args, end=" ")
DIRECTIONS = [[0, 1], [0, -1], [1, 0], [1, -1]] #up, down, right, left
NEIGHBOURS = [(i, j) for i in range(-1, 2) for j in range(-1, 2) if (i!=0 or j!=0)]
OrdUnicode_a = ord('a'); OrdUnicode_A = ord('A')
CAPS_ALPHABETS = {chr(i+OrdUnicode_A) : i for i in range(26)}
SMOL_ALPHABETS = {chr(i+OrdUnicode_a) : i for i in range(26)}
MOD_JOHAN = int(1e9)+7; MOD_LIGHT = 998244353; INFINITY = float('inf')
MAXN_EYEPATCH = int(1e5)+1; MAXN_FULLMETAL = 501
# Custom input output is now piped through terminal commands.
def bfs(s):
queue = deque()
visited = set()
visited.add(1)
queue.append((1, 0))
while len(queue):
node, dep = queue.popleft()
dep += 1
for zen in tree[node]:
if zen not in visited:
visited.add(zen)
if dep & 1:
global xorsum
xorsum ^= li[zen]
queue.append((zen, dep))
# print(queue)
# for _testcases_ in range(int(input())):
n = int(input())
li = [0] + get_list()
tree = defaultdict(list)
for _ in range(n-1):
a, b = get_ints()
tree[a].append(b)
tree[b].append(a)
xorsum = 0
bfs(1)
# print(xorsum)
print("First" if xorsum else "Second")
'''
THE LOGIC AND APPROACH IS MINE ( UDIT GUPTA )
Link may be copy-pasted here, otherwise.
'''
| PYTHON | {
"starter_code": "",
"url": "https://www.codechef.com/COJK2020/problems/CKOJ20D"
} | |
d1685 | train | # cook your dish here
t = int(input())
while(t>0):
n = int(input())
k=1
while(k<=n):
print(k, end=' ')
k+=1
print('\n')
t-=1 | PYTHON | {
"starter_code": "",
"url": "https://www.codechef.com/PCR12020/problems/LAXMAN"
} | |
d1686 | train | from collections import deque
from sys import stdin
import psyco
psyco.full()
graph = [[]]
WHITE, GRAY, BLACK = 0, 1, 2
def notoriety(x, f_count):
queue = deque([x])
d = [0 for i in range(f_count+1)]
p = [0 for i in range(f_count+1)]
color = [WHITE for i in range(f_count+1)]
while len(queue) > 0:
top = queue.pop()
for node in graph[top]:
if color[node] == WHITE:
queue.appendleft(node)
color[node], p[node], d[node] = GRAY, top, d[top] + 1
color[top] = BLACK
return sum(d)/(f_count*1.0)
def main():
groups = int(stdin.readline())
for g in range(groups):
global graph
graph = [[]]
no_of_friends = int(stdin.readline())
for i in range(no_of_friends):
graph.append(list(map(int,stdin.readline().split())))
min_notoriety, popular = 10000000, -1 # yet another magic number
for f in range(1,no_of_friends+1):
curr_not = notoriety(f, no_of_friends)
if curr_not < min_notoriety:
min_notoriety,popular = curr_not, f
assert popular != -1
print(popular, "%.6f" %min_notoriety)
def __starting_point():
main()
__starting_point() | PYTHON | {
"starter_code": "",
"url": "https://www.codechef.com/JULY11/problems/LOKBIL"
} | |
d1687 | train | class PathNode:
def __init__(self, row, col, st_x, st_y, p_count=0):
self.x = row
self.y = col
self.pathCount = p_count
def __str__(self):
return str(self.x) + " | " + str(self.y) + " | " + str(self.pathCount)
class GraphUtil:
def __init__(self, mat, R,C, d):
self.mat = mat
self.R = R
self.C = C
self.d = d
self.tab = {}
def isValidMove(self, r, c, blockVal):
return r < self.R and c < self.C and self.mat[r][c] != blockVal
def possbilePathUtil(self, r, c, blockVal, step,direction):
if(not self.isValidMove(r, c, 0)):
return 0
if (r == self.R - 1 and c == self.C - 1):
return 1
if ((r,c,step,direction) in self.tab):
return self.tab[(r,c,step,direction)]
result = 0
if direction == 1:
if step < self.d:
result = (result + self.possbilePathUtil(r, c + 1, blockVal, step + 1,1)) % 20011
result = (result + self.possbilePathUtil(r+1, c, blockVal, 1,2)) % 20011
else:
if step < self.d:
result = (result + self.possbilePathUtil(r + 1, c, blockVal, step + 1, 2)) % 20011
result = (result + self.possbilePathUtil(r, c + 1, blockVal, 1,1)) % 20011
self.tab[(r,c,step,direction)] = result
return result
def possbilePath(self):
if (not self.mat or len(self.mat) < 1):
return 0
return self.possbilePathUtil(0, 0, 0,0,2)
numbers = [int(n) for n in input().split()]
mat = [[int(n) for n in input().split()] for r in range(0, numbers[0])]
result = GraphUtil(mat, numbers[0], numbers[1], numbers[2])
print(result.possbilePath())
# print(result.count)# cook your dish here
| PYTHON | {
"starter_code": "",
"url": "https://www.codechef.com/INOIPRAC/problems/INOI1401"
} | |
d1688 | train | for _ in range(int(input())):
n,k=[int(x) for x in input().split()]
if k%4==0:
for i in range(0,k,4):
print(i,i+1)
print(i+1,i+2)
print(i+2,i+3)
print(i+3,i)
elif k%4==1:
for i in range(4,k-1,4):
print(i,i+1)
print(i+1,i+2)
print(i+2,i+3)
print(i+3,i)
print(0,1)
print(1,2)
print(2,3)
print(3,(1<<n)-1)
print((1<<n)-1,0)
elif k%4==2:
for i in range(4,k-2,4):
print(i,i+1)
print(i+1,i+2)
print(i+2,i+3)
print(i+3,i)
print(0,1)
print(1,2)
print(2,3)
print(3,(1<<n)-2)
print((1<<n)-2,(1<<n)-1)
print((1<<n)-1,0)
elif k!=3:
n=1<<n
n-=1
for i in range(4,k-3,4):
print(i,i+1)
print(i+1,i+2)
print(i+2,i+3)
print(i+3,i)
print(2,3)
print(3,n-1)
print(n-1,0)
print(0,1)
print(1,n-2)
print(n-2,n)
print(n,2)
else:
print(0,1)
print(1,3)
print(3,00)
| PYTHON | {
"starter_code": "",
"url": "https://www.codechef.com/problems/UWCOI21F"
} | |
d1689 | train | m=int(input())
while m:
m-=1
n=int(input())
t=[i for i in input().split()]
print(''.join(t)) | PYTHON | {
"starter_code": "",
"url": "https://www.codechef.com/problems/LISDIGIT"
} | |
d1690 | train | # import all important libraries and inbuilt functions
from fractions import Fraction
import numpy as np
import sys,bisect,copyreg,copy,statistics,os
from math import *
from collections import Counter,defaultdict,deque,OrderedDict
from itertools import combinations,permutations,accumulate
from numpy.linalg import matrix_power as mp
from bisect import bisect_left,bisect_right,bisect,insort,insort_left,insort_right
from statistics import mode
from functools import reduce,cmp_to_key
from io import BytesIO, IOBase
from scipy.spatial import ConvexHull
from heapq import *
from decimal import *
from queue import Queue,PriorityQueue
from re import sub,subn
# end of library import
# map system version faults
if sys.version_info[0] < 3:
from builtins import xrange as range
from future_builtins import ascii, filter, hex, map, oct, zip
# template of many functions used in competitive programming can add more later
# based on need we will use this commonly.
# bfs in a graph
def bfs(adj,v): # a schema of bfs
visited=[False]*(v+1);q=deque()
while q:pass
# definition of vertex of a graph
def graph(vertex): return [[] for i in range(vertex+1)]
def powermodulo(x, y, p) :
res = 1;x = x % p
if (x == 0) : return 0
while (y > 0) :
if ((y & 1) == 1) : res = (res * x) % p
y = y >> 1
x = (x * x) % p
return res
def lcm(a,b): return (a*b)//gcd(a,b)
# most common list in a array of lists
def most_frequent(List):return Counter(List).most_common(1)[0][0]
# element with highest frequency
def most_common(List):return(mode(List))
#In number theory, the Chinese remainder theorem states that
#if one knows the remainders of the Euclidean division of an integer n by
#several integers, then one can determine uniquely the remainder of the
#division of n by the product of these integers, under the condition
#that the divisors are pairwise coprime.
def chinese_remainder(a, p):
prod = reduce(op.mul, p, 1);x = [prod // pi for pi in p]
return sum(a[i] * powermodulo(x[i], p[i] - 2, p[i]) * x[i] for i in range(len(a))) % prod
# make a matrix
def createMatrix(rowCount, colCount, dataList):
mat = []
for i in range (rowCount):
rowList = []
for j in range (colCount):
if dataList[j] not in mat:rowList.append(dataList[j])
mat.append(rowList)
return mat
# input for a binary tree
def readTree():
v=int(inp());adj=[set() for i in range(v+1)]
for i in range(v-1):u1,u2=In(); adj[u1].add(u2);adj[u2].add(u1)
return adj,v
# sieve of prime numbers
def sieve():
li=[True]*1000001;li[0],li[1]=False,False;prime=[]
for i in range(2,len(li),1):
if li[i]==True:
for j in range(i*i,len(li),i):li[j]=False
for i in range(1000001):
if li[i]==True:prime.append(i)
return prime
#count setbits of a number.
def setBit(n):
count=0
while n!=0:n=n&(n-1);count+=1
return count
# sum of digits of a number
def digitsSum(n):
if n == 0:return 0
r = 0
while n > 0:r += n % 10;n //= 10
return r
# ncr efficiently
def ncr(n, r):
r = min(r, n - r);numer = reduce(op.mul, list(range(n, n - r, -1)), 1);denom = reduce(op.mul, list(range(1, r + 1)), 1)
return numer // denom # or / in Python 2
#factors of a number
def factors(n):return list(set(reduce(list.__add__, ([i, n // i] for i in range(1, int(n**0.5) + 1) if n % i == 0))))
#prime fators of a number
def prime_factors(n):
i = 2;factors = []
while i * i <= n:
if n % i:i += 1
else:n //= i;factors.append(i)
if n > 1:factors.append(n)
return len(set(factors))
def prefixSum(arr):
for i in range(1, len(arr)):arr[i] = arr[i] + arr[i-1]
return arr
def binomial_coefficient(n, k):
if 0 <= k <= n:
ntok = 1;ktok = 1
for t in range(1, min(k, n - k) + 1):ntok *= n;ktok *= t;n -= 1
return ntok // ktok
else:return 0
def powerOfK(k, max):
if k == 1:return [1]
if k == -1:return [-1, 1]
result = [];n = 1
while n <= max:result.append(n);n *= k
return result
# maximum subarray sum use kadane's algorithm
def kadane(a,size):
max_so_far = 0;max_ending_here = 0
for i in range(0, size):
max_ending_here = max_ending_here + a[i]
if (max_so_far < max_ending_here):max_so_far = max_ending_here
if max_ending_here < 0:max_ending_here = 0
return max_so_far
def divisors(n):
result = []
for i in range(1,ceil(sqrt(n))+1):
if n%i == 0:
if n/i == i:result.append(i)
else:result.append(i);result.append(n/i)
return result
def sumtilln(n): return ((n*(n+1))//2)
def isPrime(n) :
if (n <= 1) :return False
if (n <= 3) :return True
if (n % 2 == 0 or n % 3 == 0) :return False
for i in range(5,ceil(sqrt(n))+1,6):
if (n % i == 0 or n % (i + 2) == 0) :return False
return True
def isPowerOf2(n):
while n % 2 == 0:n //= 2
return (True if n == 1 else False)
def power2(n):
k = 0
while n % 2 == 0:k += 1;n //= 2
return k
def sqsum(n):return ((n*(n+1))*(2*n+1)//6)
def cusum(n):return ((sumn(n))**2)
def pa(a):
for i in range(len(a)):print(a[i], end = " ")
print()
def pm(a,rown,coln):
for i in range(rown):
for j in range(coln):print(a[i][j],end = " ")
print()
def pmasstring(a,rown,coln):
for i in range(rown):
for j in range(coln):print(a[i][j],end = "")
print()
def isPerfectSquare(n):return pow(floor(sqrt(n)),2) == n
def nC2(n,m):return (((n*(n-1))//2) % m)
def modInverse(n,p):return powermodulo(n,p-2,p)
def ncrmodp(n, r, p):
num = den = 1
for i in range(r):num = (num * (n - i)) % p ;den = (den * (i + 1)) % p
return (num * powermodulo(den,p - 2, p)) % p
def reverse(string):return "".join(reversed(string))
def listtostr(s):return ' '.join([str(elem) for elem in s])
def binarySearch(arr, l, r, x):
while l <= r:
mid = l + (r - l) // 2;
if arr[mid] == x:return mid
elif arr[mid] < x:l = mid + 1
else:r = mid - 1
return -1
def isarrayodd(a):
r = True
for i in range(len(a)):
if a[i] % 2 == 0:
r = False
break
return r
def isPalindrome(s):return s == s[::-1]
def gt(x,h,c,t):return ((x*h+(x-1)*c)/(2*x-1))
def CountFrequency(my_list):
freq = {}
for item in my_list:freq[item] = (freq[item] + 1 if (item in freq) else 1)
return freq
def CountFrequencyasPair(my_list1,my_list2,freq):
for item in my_list1:freq[item][0] = (freq[item][0] + 1 if (item in freq) else 1)
for item in my_list2:freq[item][1] = (freq[item][1] + 1 if (item in freq) else 1)
return freq
def binarySearchCount(arr, n, key):
left = 0;right = n - 1;count = 0
while (left <= right):
mid = int((right + left) / 2)
if (arr[mid] <= key):count,left = mid + 1,mid + 1
else:right = mid - 1
return count
def primes(n):
sieve,l = [True] * (n+1),[]
for p in range(2, n+1):
if (sieve[p]):
l.append(p)
for i in range(p, n+1, p):sieve[i] = False
return l
def Next_Greater_Element_for_all_in_array(arr):
s,n,reta,retb = list(),len(arr),[],[];arr1 = [list([0,i]) for i in range(n)]
for i in range(n - 1, -1, -1):
while (len(s) > 0 and s[-1][0] <= arr[i]):s.pop()
if (len(s) == 0):arr1[i][0] = -1
else:arr1[i][0] = s[-1]
s.append(list([arr[i],i]))
for i in range(n):reta.append(list([arr[i],i]));retb.append(arr1[i][0])
return reta,retb
def polygonArea(X,Y,n):
area = 0.0;j = n - 1
for i in range(n):area += (X[j] + X[i]) * (Y[j] - Y[i]);j = i
return abs(area / 2.0)
#defining a LRU Cache
# where we can set values and get values based on our requirement
class LRUCache:
# initialising capacity
def __init__(self, capacity: int):
self.cache = OrderedDict()
self.capacity = capacity
# we return the value of the key
# that is queried in O(1) and return -1 if we
# don't find the key in out dict / cache.
# And also move the key to the end
# to show that it was recently used.
def get(self, key: int) -> int:
if key not in self.cache:return -1
else:self.cache.move_to_end(key);return self.cache[key]
# first, we add / update the key by conventional methods.
# And also move the key to the end to show that it was recently used.
# But here we will also check whether the length of our
# ordered dictionary has exceeded our capacity,
# If so we remove the first key (least recently used)
def put(self, key: int, value: int) -> None:
self.cache[key] = value;self.cache.move_to_end(key)
if len(self.cache) > self.capacity:self.cache.popitem(last = False)
class segtree:
def __init__(self,n):
self.m = 1
while self.m < n:self.m *= 2
self.data = [0] * (2 * self.m)
def __setitem__(self,i,x):
x = +(x != 1);i += self.m;self.data[i] = x;i >>= 1
while i:self.data[i] = self.data[2 * i] + self.data[2 * i + 1];i >>= 1
def __call__(self,l,r):
l += self.m;r += self.m;s = 0
while l < r:
if l & 1:s += self.data[l];l += 1
if r & 1:r -= 1;s += self.data[r]
l >>= 1;r >>= 1
return s
class FenwickTree:
def __init__(self, n):self.n = n;self.bit = [0]*(n+1)
def update(self, x, d):
while x <= self.n:self.bit[x] += d;x += (x & (-x))
def query(self, x):
res = 0
while x > 0:res += self.bit[x];x -= (x & (-x))
return res
def range_query(self, l, r):return self.query(r) - self.query(l-1)
# can add more template functions here
# end of template functions
# To enable the file I/O i the below 2 lines are uncommented.
# read from in.txt if uncommented
if os.path.exists('in.txt'): sys.stdin=open('in.txt','r')
# will print on Console if file I/O is not activated
#if os.path.exists('out.txt'): sys.stdout=open('out.txt', 'w')
# inputs template
#for fast input we areusing sys.stdin
def inp(): return sys.stdin.readline().strip()
#for fast output, always take string
def out(var): sys.stdout.write(str(var))
# cusom base input needed for the program
def I():return (inp())
def II():return (int(inp()))
def FI():return (float(inp()))
def SI():return (list(str(inp())))
def MI():return (map(int,inp().split()))
def LI():return (list(MI()))
def SLI():return (sorted(LI()))
def MF():return (map(float,inp().split()))
def LF():return (list(MF()))
# end of inputs template
# common modulo values used in competitive programming
MOD = 998244353
mod = 10**9+7
# any particular user-defined functions for the code.
# can be written here.
def solve():
n,m = MI();ss = []
for _ in range(n):ss.append(list(I()) + ['#'])
ss.append(['#']*(m+1))
for i in range(n-1, -1, -1):
for j in range(m-1, -1, -1):
if ss[i+1][j] == '#' and ss[i][j+1] == '#' and (i,j) != (n-1, m-1):ss[i][j] = '#'
res = [ss[0][0]];cend = {(0,0)}
for _ in range(n+m-2):
ncend = set();mn = 'z'
for i,j in cend:
if ss[i+1][j] != '#' and ss[i+1][j] <= mn:ncend.add((i+1, j));mn = ss[i+1][j]
if ss[i][j+1] != '#' and ss[i][j+1] <= mn:ncend.add((i, j+1));mn = ss[i][j+1]
res.append(mn)
cend = {(i,j) for (i,j) in ncend if ss[i][j] == mn}
print(''.join(res))
# end of any user-defined functions
# main functions for execution of the program.
def __starting_point():
# execute your program from here.
# start your main code from here
# Write your code here
for _ in range(II()):solve()
# end of main code
# end of program
# This program is written by :
# Shubham Gupta
# B.Tech (2019-2023)
# Computer Science and Engineering,
# Department of EECS
# Contact No:8431624358
# Indian Institute of Technology(IIT),Bhilai
# Sejbahar,
# Datrenga,
# Raipur,
# Chhattisgarh
# 492015
# THANK YOU FOR
#YOUR KIND PATIENCE FOR READING THE PROGRAM.
__starting_point() | PYTHON | {
"starter_code": "",
"url": "https://www.codechef.com/problems/CLLEXO"
} | |
d1691 | train | def check_relative(i,j):
if is_relative[i]:return
if len(land[i].intersection(land[j]))>=k:
is_relative[i]=True
for ii in range(n):
check_relative(ii,i)
n,k=map(int,input().split())
land=[]
is_relative=[True]+[False]*(n-1)
for i in range(n):
p,*q=input().split()
land.append(set(map(int,q)))
for i in range(n):
check_relative(i,0)
print(is_relative.count(True)) | PYTHON | {
"starter_code": "",
"url": "https://www.codechef.com/INOIPRAC/problems/INOI1302"
} | |
d1692 | train | # CHNGSS.py
import sys
from random import *
n,m,c = list(map(int,input().split()))
arr = [[1]*m for i in range(n)];
saved = 0;
for i in range(n):
for j in range(m):
print(1,(i+1),(i+1),(j+1),(j+1),1,25)
sys.stdout.flush()
a = int(input())
if a == 1 :
saved += 1;
arr[i][j] = randint(1,25);
else:
arr[i][j] = randint(25,50);
print(3);
sys.stdout.flush()
for a in arr :
print(' '.join(map(str,a)));
sys.stdout.flush()
# sys.exit(0); | PYTHON | {
"starter_code": "",
"url": "https://www.codechef.com/MARCH16/problems/CHNGSS"
} | |
d1693 | train | print(302)
print("0 1000000")
coord, rad = 17321*2, 300
for i in range(300):
print(coord, rad)
coord, rad = coord+600, rad-1
print("1000000 1000000")
| PYTHON | {
"starter_code": "",
"url": "https://codeforces.com/problemset/problem/241/G"
} | |
d1694 | train | from math import *
n = int(input())
for _ in range(n):
a = [int(i) for i in input().split()]
c = len(a)
avg = sum(a)/c
ulik = log(2*avg + 1)*(-c)
plik = 0
for k in a:
plik += log(avg)*k
plik += -avg
for i in range(1, k+1):
plik -= log(i)
isu = ulik > plik
ans = ["poisson", "uniform"][isu]
print(ans)
| PYTHON | {
"starter_code": "",
"url": "https://codeforces.com/problemset/problem/802/D"
} | |
d1695 | train | v = int(input())
eps = 170
def ans(a):
a.sort()
if len(a) % 2 == 0:
med = a[len(a)//2]
else:
med = (a[len(a)//2] + a[len(a)//2 - 1]) // 2
l = med - med // 2
r = med + med // 2
c1 = c2 = 0
for i in a:
if i >= l and i <= r:
c1 += 1
else:
c2 += 1
if abs(c1 - c2) <= eps:
return (med, "uniform")
else:
return (med, "poisson")
for i in range(v):
cur = [int(i) for i in input().split()]
b = ans(cur)
if b[1] == "poisson":
print(b[0])
else:
print((max(cur) - min(cur)) // 2)
| PYTHON | {
"starter_code": "",
"url": "https://codeforces.com/problemset/problem/802/E"
} | |
d1696 | train | def __starting_point():
print(2001)
for i in range(1000):
print(str(i + 1) + ' ' + str(1) + ' ' + str(i + 1) + ' ' +str(2))
print(str(1) + " " + str(1) + " " +str(1) + " " + str(2))
for i in range(1000):
print(str(i + 1) + ' ' + str(1) + ' ' + str(i + 1) + ' ' +str(2))
__starting_point() | PYTHON | {
"starter_code": "",
"url": "https://codeforces.com/problemset/problem/575/D"
} | |
d1697 | train | def sampleVariance(V):
X = sum(V) / len(V)
S = 0.0
for x in V:
S += (X-x)**2
S /= (len(V)-1)
return (X, S)
#That awkward moment when you realized that variance is sigma^2 but you just took the stat course this semester
for i in range(int(input())):
V = list(map(int, input().split()))
X, S = sampleVariance(V)
print("{}".format("uniform" if max(V) < 1.9*(S**0.5) else "poisson")) | PYTHON | {
"starter_code": "",
"url": "https://codeforces.com/problemset/problem/802/F"
} | |
d1698 | train | import itertools
class Nonogram:
poss = {(1,1,1): set([(1,0,1,0,1)]),
(1,1): set([(0,0,1,0,1),(0,1,0,1,0),(1,0,1,0,0),(0,1,0,0,1),(1,0,0,1,0),(1,0,0,0,1)]),
(1,2): set([(1,0,1,1,0),(1,0,0,1,1),(0,1,0,1,1)]),
(1,3): set([(1,0,1,1,1)]),
(2,1): set([(1,1,0,1,0),(1,1,0,0,1),(0,1,1,0,1)]),
(2,2): set([(1,1,0,1,1)]),
(3,1): set([(1,1,1,0,1)]),
(1,): set([(0,0,0,0,1),(0,0,0,1,0),(0,0,1,0,0),(0,1,0,0,0),(1,0,0,0,0)]),
(2,): set([(0,0,0,1,1),(0,0,1,1,0),(0,1,1,0,0),(1,1,0,0,0)]),
(3,): set([(0,0,1,1,1),(0,1,1,1,0),(1,1,1,0,0)]),
(4,): set([(0,1,1,1,1),(1,1,1,1,0)]),
(5,): set([(1,1,1,1,1)])}
def __init__(self, clues):
self.h,self.w=(tuple(Nonogram.poss[clue] for clue in side) for side in clues)
def solve(self):
for r in itertools.product(*self.w):
if all(c in self.h[i] for i,c in enumerate(zip(*r))): return r
| PYTHON | {
"starter_code": "\ndef __init__(self, clues):\n\t",
"url": "https://www.codewars.com/kata/5a479247e6be385a41000064"
} | |
d1699 | train | from collections import deque
def dbl_linear(n):
h = 1; cnt = 0; q2, q3 = deque([]), deque([])
while True:
if (cnt >= n):
return h
q2.append(2 * h + 1)
q3.append(3 * h + 1)
h = min(q2[0], q3[0])
if h == q2[0]: h = q2.popleft()
if h == q3[0]: h = q3.popleft()
cnt += 1
| PYTHON | {
"starter_code": "\ndef dbl_linear(n):\n\t",
"url": "https://www.codewars.com/kata/5672682212c8ecf83e000050"
} | |
d1700 | train | def doubles(maxk, maxn):
return sum([ sum([ (n+1)**(-2*k) for n in range(1, maxn+1) ])/k for k in range(1, maxk+1) ]) | PYTHON | {
"starter_code": "\ndef doubles(maxk, maxn):\n\t",
"url": "https://www.codewars.com/kata/56c04261c3fcf33f2d000534"
} |