ID
stringlengths
36
36
Language
stringclasses
1 value
Repository Name
stringclasses
13 values
File Name
stringlengths
2
48
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
13
116
Code
stringlengths
0
278k
Unit Test - (Ground Truth)
stringlengths
78
663k
Code Url
stringlengths
91
198
Test Code Url
stringlengths
93
203
Commit Hash
stringclasses
13 values
02d4b049-ec00-4653-bf8f-7bb9bd5e4cf6
cpp
google/tensorstore
http_request
tensorstore/internal/http/http_request.cc
tensorstore/internal/http/http_request_test.cc
#include "tensorstore/internal/http/http_request.h" #include <cassert> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/functional/function_ref.h" #include "absl/strings/ascii.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorstore/internal/uri_utils.h" #include "tensorstore/kvstore/byte_range.h" namespace tensorstore { namespace internal_http { std::optional<std::string> FormatRangeHeader( OptionalByteRangeRequest byte_range) { assert(byte_range.SatisfiesInvariants()); if (byte_range.IsRange() && byte_range.exclusive_max > byte_range.inclusive_min) { return absl::StrFormat("Range: bytes=%d-%d", byte_range.inclusive_min, byte_range.exclusive_max - 1); } if (byte_range.IsSuffix()) { return absl::StrFormat("Range: bytes=%d-", byte_range.inclusive_min); } if (byte_range.IsSuffixLength()) { return absl::StrFormat("Range: bytes=%d", byte_range.inclusive_min); } return std::nullopt; } std::optional<std::string> FormatCacheControlMaxAgeHeader( absl::Duration max_age) { if (max_age >= absl::InfiniteDuration()) { return std::nullopt; } auto max_age_seconds = absl::ToInt64Seconds(max_age); if (max_age_seconds > 0) { return absl::StrFormat("cache-control: max-age=%d", max_age_seconds); } else { return "cache-control: no-cache"; } } std::optional<std::string> FormatStalenessBoundCacheControlHeader( absl::Time staleness_bound) { if (staleness_bound == absl::InfinitePast()) { return std::nullopt; } absl::Time now; absl::Duration duration = absl::ZeroDuration(); if (staleness_bound != absl::InfiniteFuture() && (now = absl::Now()) > staleness_bound) { duration = now - staleness_bound; } return FormatCacheControlMaxAgeHeader(duration); } HttpRequestBuilder::HttpRequestBuilder( std::string_view method, std::string base_url, absl::FunctionRef<std::string(std::string_view)> uri_encoder) : uri_encoder_(uri_encoder), request_{std::string(method), std::move(base_url)}, query_parameter_separator_("?") { assert(!request_.method.empty()); assert(request_.method == absl::AsciiStrToUpper(std::string_view(request_.method))); if (request_.url.find_last_of('?') != std::string::npos) { query_parameter_separator_ = "&"; } } HttpRequest HttpRequestBuilder::BuildRequest() { return std::move(request_); } HttpRequestBuilder& HttpRequestBuilder::AddHeader(std::string header) { if (!header.empty()) { request_.headers.push_back(std::move(header)); } return *this; } HttpRequestBuilder& HttpRequestBuilder::AddQueryParameter( std::string_view key, std::string_view value) { assert(!key.empty()); if (value.empty()) { absl::StrAppend(&request_.url, query_parameter_separator_, uri_encoder_(key)); } else { absl::StrAppend(&request_.url, query_parameter_separator_, uri_encoder_(key), "=", uri_encoder_(value)); } query_parameter_separator_ = "&"; return *this; } HttpRequestBuilder& HttpRequestBuilder::EnableAcceptEncoding() { request_.accept_encoding = true; return *this; } HttpRequestBuilder& HttpRequestBuilder::MaybeAddRangeHeader( OptionalByteRangeRequest byte_range) { return AddHeader(FormatRangeHeader(std::move(byte_range))); } HttpRequestBuilder& HttpRequestBuilder::MaybeAddCacheControlMaxAgeHeader( absl::Duration max_age) { return AddHeader(FormatCacheControlMaxAgeHeader(max_age)); } HttpRequestBuilder& HttpRequestBuilder::MaybeAddStalenessBoundCacheControlHeader( absl::Time staleness_bound) { return AddHeader(FormatStalenessBoundCacheControlHeader(staleness_bound)); } HttpRequestBuilder& HttpRequestBuilder::AddHostHeader(std::string_view host) { if (host.empty()) { host = internal::ParseGenericUri(request_.url).authority; } return AddHeader(absl::StrFormat("host: %s", host)); } } }
#include "tensorstore/internal/http/http_request.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorstore/kvstore/byte_range.h" namespace { using ::tensorstore::OptionalByteRangeRequest; using ::tensorstore::internal_http::HttpRequestBuilder; using ::testing::AnyOf; using ::testing::ElementsAre; TEST(HttpRequestBuilder, BuildRequest) { auto request = HttpRequestBuilder("GET", "http: .AddHeader("X-foo: bar") .AddQueryParameter("name", "dragon") .AddQueryParameter("age", "1234") .EnableAcceptEncoding() .BuildRequest(); EXPECT_EQ("http: EXPECT_TRUE(request.accept_encoding); EXPECT_EQ("GET", request.method); EXPECT_THAT(request.headers, testing::ElementsAre("X-foo: bar")); } TEST(HttpRequestBuilder, AddCacheControlMaxAgeHeader) { { HttpRequestBuilder builder("GET", "http: builder.MaybeAddCacheControlMaxAgeHeader(absl::InfiniteDuration()); EXPECT_THAT(builder.BuildRequest().headers, ::testing::IsEmpty()); } { HttpRequestBuilder builder("GET", "http: builder.MaybeAddCacheControlMaxAgeHeader(absl::ZeroDuration()); EXPECT_THAT(builder.BuildRequest().headers, ElementsAre("cache-control: no-cache")); } { HttpRequestBuilder builder("GET", "http: builder.MaybeAddCacheControlMaxAgeHeader(absl::Seconds(10)); EXPECT_THAT(builder.BuildRequest().headers, ElementsAre("cache-control: max-age=10")); } { HttpRequestBuilder builder("GET", "http: builder.MaybeAddCacheControlMaxAgeHeader(-absl::Seconds(10)); EXPECT_THAT(builder.BuildRequest().headers, ElementsAre("cache-control: no-cache")); } } TEST(HttpRequestBuilder, AddStalenessBoundCacheControlHeader) { { HttpRequestBuilder builder("GET", "http: builder.MaybeAddStalenessBoundCacheControlHeader(absl::InfinitePast()); EXPECT_THAT(builder.BuildRequest().headers, ::testing::IsEmpty()); } { HttpRequestBuilder builder("GET", "http: builder.MaybeAddStalenessBoundCacheControlHeader(absl::InfiniteFuture()); EXPECT_THAT(builder.BuildRequest().headers, ElementsAre("cache-control: no-cache")); } { const absl::Time kFutureTime = absl::Now() + absl::Minutes(525600); HttpRequestBuilder builder("GET", "http: builder.MaybeAddStalenessBoundCacheControlHeader(kFutureTime); EXPECT_THAT(builder.BuildRequest().headers, ElementsAre("cache-control: no-cache")); } { HttpRequestBuilder builder("GET", "http: builder.MaybeAddStalenessBoundCacheControlHeader(absl::Now() - absl::Milliseconds(5900)); EXPECT_THAT(builder.BuildRequest().headers, ElementsAre(AnyOf("cache-control: max-age=4", "cache-control: max-age=5"))); } } TEST(HttpRequestBuilder, MaybeAddRangeHeader) { { HttpRequestBuilder builder("GET", "http: builder.MaybeAddRangeHeader({}); EXPECT_THAT(builder.BuildRequest().headers, ::testing::IsEmpty()); } { HttpRequestBuilder builder("GET", "http: builder.MaybeAddRangeHeader(OptionalByteRangeRequest::Suffix(1)); EXPECT_THAT(builder.BuildRequest().headers, ElementsAre("Range: bytes=1-")); } { HttpRequestBuilder builder("GET", "http: builder.MaybeAddRangeHeader(OptionalByteRangeRequest::SuffixLength(5)); EXPECT_THAT(builder.BuildRequest().headers, ElementsAre("Range: bytes=-5")); } { HttpRequestBuilder builder("GET", "http: builder.MaybeAddRangeHeader(OptionalByteRangeRequest{1, 2}); EXPECT_THAT(builder.BuildRequest().headers, ElementsAre("Range: bytes=1-1")); } } TEST(HttpRequestBuilder, AddHostHeader) { { HttpRequestBuilder builder("GET", "http: builder.AddHostHeader({}); EXPECT_THAT(builder.BuildRequest().headers, ElementsAre("host: 127.0.0.1")); } { HttpRequestBuilder builder("GET", "http: builder.AddHostHeader("host.header"); EXPECT_THAT(builder.BuildRequest().headers, ElementsAre("host: host.header")); } { HttpRequestBuilder builder("GET", "http: builder.AddHostHeader({}); EXPECT_THAT(builder.BuildRequest().headers, ElementsAre("host: localhost:1234")); } } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/http/http_request.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/http/http_request_test.cc
4f887a6430414cd6088e1743555015b10f116d50
e88c2c63-3fd1-4c20-8428-dd2ab61e3679
cpp
google/tensorstore
http_header
tensorstore/internal/http/http_header.cc
tensorstore/internal/http/http_header_test.cc
#include "tensorstore/internal/http/http_header.h" #include <stddef.h> #include <iterator> #include <optional> #include <string> #include <string_view> #include <tuple> #include <utility> #include "absl/container/btree_map.h" #include "absl/status/status.h" #include "absl/strings/ascii.h" #include "absl/strings/numbers.h" #include "absl/strings/str_split.h" #include "re2/re2.h" #include "tensorstore/internal/uri_utils.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_http { namespace { static inline constexpr internal::AsciiSet kTChar{ "abcdefghijklmnopqrstuvwxyz" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "0123456789" R"(!#$%&'*+-.)"}; inline bool IsTchar(char ch) { return kTChar.Test(ch); } inline bool IsOWS(char ch) { return ch == ' ' || ch == '\t'; } } absl::Status ValidateHttpHeader(std::string_view header) { static LazyRE2 kHeaderPattern = { "[!#\\$%&'*+\\-\\.\\^_`|~0-9a-zA-Z]+" ":" "[\t\x20-\x7e\x80-\xff]*", RE2::Latin1}; if (!RE2::FullMatch(header, *kHeaderPattern)) { return absl::InvalidArgumentError(tensorstore::StrCat( "Invalid HTTP header: ", tensorstore::QuoteString(header))); } return absl::OkStatus(); } size_t AppendHeaderData(absl::btree_multimap<std::string, std::string>& headers, std::string_view data) { if (data.empty() || *data.rbegin() != '\n') return data.size(); for (std::string_view field : absl::StrSplit(data, '\n', absl::SkipEmpty())) { if (field.empty() || *field.rbegin() != '\r') break; field.remove_suffix(1); while (!field.empty() && IsOWS(*field.rbegin())) field.remove_suffix(1); if (field.empty()) continue; auto it = field.begin(); for (; it != field.end() && IsTchar(*it); ++it) { } if (it == field.begin() || it == field.end() || *it != ':') { continue; } std::string field_name = absl::AsciiStrToLower( std::string_view(field.data(), std::distance(field.begin(), it))); field.remove_prefix(field_name.size() + 1); while (!field.empty() && IsOWS(*field.begin())) field.remove_prefix(1); headers.emplace(std::move(field_name), std::string(field)); } return data.size(); } std::optional<std::tuple<size_t, size_t, size_t>> TryParseContentRangeHeader( const absl::btree_multimap<std::string, std::string>& headers) { auto it = headers.find("content-range"); if (it == headers.end()) { return std::nullopt; } static LazyRE2 kContentRange1 = {R"(^bytes (\d+)-(\d+)/(\d+))"}; static LazyRE2 kContentRange2 = {R"(^bytes (\d+)-(\d+)(/[*])?)"}; std::tuple<size_t, size_t, size_t> result(0, 0, 0); if (RE2::FullMatch(it->second, *kContentRange1, &std::get<0>(result), &std::get<1>(result), &std::get<2>(result))) { return result; } if (RE2::FullMatch(it->second, *kContentRange2, &std::get<0>(result), &std::get<1>(result))) { return result; } return std::nullopt; } std::optional<bool> TryParseBoolHeader( const absl::btree_multimap<std::string, std::string>& headers, std::string_view header) { auto it = headers.find(header); bool result; if (it != headers.end() && absl::SimpleAtob(it->second, &result)) { return result; } return std::nullopt; } std::optional<size_t> TryGetContentLength( const absl::btree_multimap<std::string, std::string>& headers) { std::optional<size_t> content_length; if (headers.find("transfer-encoding") == headers.end() && headers.find("content-encoding") == headers.end()) { content_length = TryParseIntHeader<size_t>(headers, "content-length"); } if (!content_length) { auto content_range = TryParseContentRangeHeader(headers); if (content_range) { content_length = 1 + std::get<1>(*content_range) - std::get<0>(*content_range); } } return content_length; } } }
#include "tensorstore/internal/http/http_header.h" #include <stddef.h> #include <optional> #include <string> #include <tuple> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/btree_map.h" #include "absl/status/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::MatchesStatus; using ::tensorstore::internal_http::AppendHeaderData; using ::tensorstore::internal_http::TryParseBoolHeader; using ::tensorstore::internal_http::TryParseContentRangeHeader; using ::tensorstore::internal_http::TryParseIntHeader; using ::tensorstore::internal_http::ValidateHttpHeader; TEST(ValidateHttpHeaderTest, Valid) { TENSORSTORE_EXPECT_OK(ValidateHttpHeader("a!#$%&'*+-.^_`|~3X: b\xfe")); } TEST(ValidateHttpHeaderTest, Invalid) { EXPECT_THAT(ValidateHttpHeader("a"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ValidateHttpHeader("a: \n"), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(AppendHeaderData, BadHeaders) { absl::btree_multimap<std::string, std::string> headers; EXPECT_EQ(0, AppendHeaderData(headers, "")); EXPECT_EQ(2, AppendHeaderData(headers, "\r\n")); EXPECT_EQ(8, AppendHeaderData(headers, "foo: bar")); EXPECT_EQ(5, AppendHeaderData(headers, "foo\r\n")); EXPECT_EQ(7, AppendHeaderData(headers, "fo@: \r\n")); EXPECT_TRUE(headers.empty()); } TEST(AppendHeaderData, GoodHeaders) { { absl::btree_multimap<std::string, std::string> headers; EXPECT_EQ(10, AppendHeaderData(headers, "bar: baz\r\n")); EXPECT_FALSE(headers.empty()); ASSERT_EQ(1, headers.count("bar")); auto range = headers.equal_range("bar"); EXPECT_EQ("baz", range.first->second); } { absl::btree_multimap<std::string, std::string> headers; EXPECT_EQ(6, AppendHeaderData(headers, "foo:\r\n")); ASSERT_EQ(1, headers.count("foo")); auto range = headers.equal_range("foo"); EXPECT_EQ("", range.first->second); } { absl::btree_multimap<std::string, std::string> headers; EXPECT_EQ(16, AppendHeaderData(headers, "bAr: \t baz \t\r\n")); ASSERT_EQ(1, headers.count("bar")); auto range = headers.equal_range("bar"); EXPECT_EQ("baz", range.first->second); } { absl::btree_multimap<std::string, std::string> headers; EXPECT_EQ(16, AppendHeaderData(headers, "bAr: \t one \t\r\n")); EXPECT_EQ(10, AppendHeaderData(headers, "bar: two\r\n")); ASSERT_EQ(2, headers.count("bar")); auto range = headers.equal_range("bar"); EXPECT_EQ("one", range.first->second); ++range.first; EXPECT_EQ("two", range.first->second); } } TEST(TryParse, ContentRangeHeader) { EXPECT_THAT( TryParseContentRangeHeader({{"content-range", "bytes 10-20/100"}}), ::testing::Optional( testing::Eq(std::tuple<size_t, size_t, size_t>(10, 20, 100)))); EXPECT_THAT(TryParseContentRangeHeader({{"content-range", "bytes 10-20/*"}}), ::testing::Optional( testing::Eq(std::tuple<size_t, size_t, size_t>(10, 20, 0)))); EXPECT_THAT(TryParseContentRangeHeader({{"content-range", "bytes 10-20"}}), ::testing::Optional( testing::Eq(std::tuple<size_t, size_t, size_t>(10, 20, 0)))); EXPECT_THAT( TryParseContentRangeHeader({{"content-range", "bytes 1-abc/100"}}), ::testing::Eq(std::nullopt)); } TEST(TryParse, BoolHeader) { EXPECT_THAT(TryParseBoolHeader({{"bool-header", "true"}}, "bool-header"), ::testing::Optional(testing::Eq(true))); } TEST(TryParse, IntHeader) { EXPECT_THAT(TryParseIntHeader<size_t>({{"int-header", "100"}}, "int-header"), ::testing::Optional(testing::Eq(100))); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/http/http_header.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/http/http_header_test.cc
4f887a6430414cd6088e1743555015b10f116d50
321c5dd0-c284-4e83-8f76-cc62c4ee08b6
cpp
google/tensorstore
http_response
tensorstore/internal/http/http_response.cc
tensorstore/internal/http/http_response_test.cc
#include "tensorstore/internal/http/http_response.h" #include <stddef.h> #include <stdint.h> #include <limits> #include <optional> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_format.h" #include "re2/re2.h" #include "tensorstore/internal/source_location.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_http { const char* HttpResponseCodeToMessage(const HttpResponse& response) { switch (response.status_code) { case 400: return "Bad Request"; case 401: return "Unauthorized"; case 402: return "Payment Required"; case 403: return "Forbidden"; case 404: return "Not Found"; case 405: return "Method Not Allowed"; case 406: return "Not Acceptable"; case 407: return "Proxy Authentication Required"; case 408: return "Request Timeout"; case 409: return "Conflict"; case 410: return "Gone"; case 411: return "Length Required"; case 412: return "Precondition Failed"; case 413: return "Payload Too Large"; case 414: return "URI Too Long"; case 415: return "Unsupported Media Type"; case 416: return "Range Not Satisfiable"; case 417: return "Expectation Failed"; case 418: return "I'm a teapot"; case 421: return "Misdirected Request"; case 422: return "Unprocessable Content"; case 423: return "Locked"; case 424: return "Failed Dependency"; case 425: return "Too Early"; case 426: return "Upgrade Required"; case 428: return "Precondition Required"; case 429: return "Too Many Requests"; case 431: return "Request Header Fields Too Large"; case 451: return "Unavailable For Legal Reasons"; case 500: return "Internal Server Error"; case 501: return "Not Implemented"; case 502: return "Bad Gateway"; case 503: return "Service Unavailable"; case 504: return "Gateway Timeout"; case 505: return "HTTP Version Not Supported"; case 506: return "Variant Also Negotiates"; case 507: return "Insufficient Storage"; case 508: return "Loop Detected"; case 510: return "Not Extended"; case 511: return "Network Authentication Required"; default: return nullptr; } } absl::StatusCode HttpResponseCodeToStatusCode(const HttpResponse& response) { switch (response.status_code) { case 200: case 201: case 202: case 204: case 206: return absl::StatusCode::kOk; case 400: case 411: return absl::StatusCode::kInvalidArgument; case 401: case 403: return absl::StatusCode::kPermissionDenied; case 404: case 410: return absl::StatusCode::kNotFound; case 302: case 303: case 304: case 307: case 412: case 413: return absl::StatusCode::kFailedPrecondition; case 416: return absl::StatusCode::kOutOfRange; case 308: case 408: case 409: case 429: case 500: case 502: case 503: case 504: return absl::StatusCode::kUnavailable; } if (response.status_code < 300) { return absl::StatusCode::kOk; } return absl::StatusCode::kUnknown; } absl::Status HttpResponseCodeToStatus(const HttpResponse& response, SourceLocation loc) { auto code = HttpResponseCodeToStatusCode(response); if (code == absl::StatusCode::kOk) { return absl::OkStatus(); } auto status_message = HttpResponseCodeToMessage(response); if (!status_message) status_message = "Unknown"; absl::Status status(code, status_message); if (!response.payload.empty()) { status.SetPayload( "http_response_body", response.payload.Subcord( 0, response.payload.size() < 256 ? response.payload.size() : 256)); } MaybeAddSourceLocation(status, loc); status.SetPayload("http_response_code", absl::Cord(tensorstore::StrCat(response.status_code))); return status; } Result<ParsedContentRange> ParseContentRangeHeader( const HttpResponse& response) { auto it = response.headers.find("content-range"); if (it == response.headers.end()) { if (response.status_code != 206) { return absl::FailedPreconditionError( tensorstore::StrCat("No Content-Range header expected with HTTP ", response.status_code, " response")); } return absl::FailedPreconditionError( "Expected Content-Range header with HTTP 206 response"); } static const RE2 kContentRangeRegex(R"(^bytes (\d+)-(\d+)/(?:(\d+)|\*))"); int64_t a, b; std::optional<int64_t> total_size; if (!RE2::FullMatch(it->second, kContentRangeRegex, &a, &b, &total_size) || a > b || (total_size && b >= *total_size) || b == std::numeric_limits<int64_t>::max()) { return absl::FailedPreconditionError(tensorstore::StrCat( "Unexpected Content-Range header received: ", QuoteString(it->second))); } return ParsedContentRange{a, b + 1, total_size.value_or(-1)}; } } }
#include "tensorstore/internal/http/http_response.h" #include <set> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::IsOkAndHolds; using ::tensorstore::internal_http::HttpResponse; TEST(HttpResponseCodeToStatusTest, AllCodes) { using ::tensorstore::internal_http::HttpResponseCodeToStatus; absl::flat_hash_set<int> seen; for (auto code : {200, 201, 204, 206}) { seen.insert(code); EXPECT_TRUE(HttpResponseCodeToStatus({code, {}, {}}).ok()) << code; } for (auto code : {400, 411}) { seen.insert(code); EXPECT_EQ(absl::StatusCode::kInvalidArgument, HttpResponseCodeToStatus({code, {}, {}}).code()) << code; } for (auto code : {401, 403}) { seen.insert(code); EXPECT_EQ(absl::StatusCode::kPermissionDenied, HttpResponseCodeToStatus({code, {}, {}}).code()) << code; } for (auto code : {404, 410}) { seen.insert(code); EXPECT_EQ(absl::StatusCode::kNotFound, HttpResponseCodeToStatus({code, {}, {}}).code()) << code; } for (auto code : {302, 303, 304, 307, 412, 413}) { seen.insert(code); EXPECT_EQ(absl::StatusCode::kFailedPrecondition, HttpResponseCodeToStatus({code, {}, {}}).code()) << code; } for (auto code : {416}) { seen.insert(code); EXPECT_EQ(absl::StatusCode::kOutOfRange, HttpResponseCodeToStatus({code, {}, {}}).code()) << code; } for (auto code : {308, 408, 409, 429, 500, 502, 503, 504}) { seen.insert(code); EXPECT_EQ(absl::StatusCode::kUnavailable, HttpResponseCodeToStatus({code, {}, {}}).code()) << code; } for (int i = 300; i < 600; i++) { if (seen.count(i) > 0) continue; EXPECT_EQ(absl::StatusCode::kUnknown, HttpResponseCodeToStatus({i, {}, {}}).code()) << i; } } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/http/http_response.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/http/http_response_test.cc
4f887a6430414cd6088e1743555015b10f116d50
2bd5b8cb-2a69-4e2d-8ee5-48abd5be59bf
cpp
google/tensorstore
curl_wrappers
tensorstore/internal/http/curl_wrappers.cc
tensorstore/internal/http/curl_wrappers_test.cc
#include "tensorstore/internal/http/curl_wrappers.h" #include <string> #include <string_view> #include "absl/status/status.h" #include "absl/strings/cord.h" #include <curl/curl.h> #include "tensorstore/internal/source_location.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_http { void CurlPtrCleanup::operator()(CURL* c) { curl_easy_cleanup(c); } void CurlMultiCleanup::operator()(CURLM* m) { curl_multi_cleanup(m); } void CurlSlistCleanup::operator()(curl_slist* s) { curl_slist_free_all(s); } std::string GetCurlUserAgentSuffix() { static std::string agent = tensorstore::StrCat("tensorstore/0.1 ", curl_version()); return agent; } absl::Status CurlCodeToStatus(CURLcode code, std::string_view detail, SourceLocation loc) { auto error_code = absl::StatusCode::kUnknown; switch (code) { case CURLE_OK: return absl::OkStatus(); case CURLE_COULDNT_RESOLVE_PROXY: error_code = absl::StatusCode::kUnavailable; if (detail.empty()) detail = "Failed to resolve proxy"; break; case CURLE_OPERATION_TIMEDOUT: error_code = absl::StatusCode::kDeadlineExceeded; if (detail.empty()) detail = "Timed out"; break; case CURLE_COULDNT_CONNECT: case CURLE_COULDNT_RESOLVE_HOST: case CURLE_GOT_NOTHING: case CURLE_HTTP2: case CURLE_HTTP2_STREAM: case CURLE_PARTIAL_FILE: case CURLE_RECV_ERROR: case CURLE_SEND_ERROR: case CURLE_SSL_CONNECT_ERROR: case CURLE_UNSUPPORTED_PROTOCOL: error_code = absl::StatusCode::kUnavailable; break; case CURLE_URL_MALFORMAT: error_code = absl::StatusCode::kInvalidArgument; break; case CURLE_WRITE_ERROR: error_code = absl::StatusCode::kCancelled; break; case CURLE_ABORTED_BY_CALLBACK: error_code = absl::StatusCode::kAborted; break; case CURLE_REMOTE_ACCESS_DENIED: error_code = absl::StatusCode::kPermissionDenied; break; case CURLE_SEND_FAIL_REWIND: case CURLE_RANGE_ERROR: error_code = absl::StatusCode::kInternal; break; case CURLE_BAD_FUNCTION_ARGUMENT: case CURLE_OUT_OF_MEMORY: case CURLE_NOT_BUILT_IN: case CURLE_UNKNOWN_OPTION: case CURLE_BAD_DOWNLOAD_RESUME: error_code = absl::StatusCode::kInternal; break; default: break; } absl::Status status( error_code, tensorstore::StrCat("CURL error ", curl_easy_strerror(code), detail.empty() ? "" : ": ", detail)); status.SetPayload("curl_code", absl::Cord(tensorstore::StrCat(code))); MaybeAddSourceLocation(status, loc); return status; } absl::Status CurlMCodeToStatus(CURLMcode code, std::string_view detail, SourceLocation loc) { if (code == CURLM_OK) { return absl::OkStatus(); } absl::Status status( absl::StatusCode::kInternal, tensorstore::StrCat("CURLM error ", curl_multi_strerror(code), detail.empty() ? "" : ": ", detail)); status.SetPayload("curlm_code", absl::Cord(tensorstore::StrCat(code))); MaybeAddSourceLocation(status, loc); return status; } } }
#include "tensorstore/internal/http/curl_wrappers.h" #include <gtest/gtest.h> namespace { using ::tensorstore::internal_http::CurlCodeToStatus; using ::tensorstore::internal_http::CurlMCodeToStatus; TEST(CurlFactoryTest, CurlCodeToStatus) { struct { CURLcode curl; absl::StatusCode expected; } expected_codes[]{ {CURLE_OK, absl::StatusCode::kOk}, {CURLE_RECV_ERROR, absl::StatusCode::kUnavailable}, {CURLE_SEND_ERROR, absl::StatusCode::kUnavailable}, {CURLE_PARTIAL_FILE, absl::StatusCode::kUnavailable}, {CURLE_SSL_CONNECT_ERROR, absl::StatusCode::kUnavailable}, {CURLE_COULDNT_RESOLVE_HOST, absl::StatusCode::kUnavailable}, {CURLE_COULDNT_RESOLVE_PROXY, absl::StatusCode::kUnavailable}, {CURLE_COULDNT_CONNECT, absl::StatusCode::kUnavailable}, {CURLE_REMOTE_ACCESS_DENIED, absl::StatusCode::kPermissionDenied}, {CURLE_OPERATION_TIMEDOUT, absl::StatusCode::kDeadlineExceeded}, {CURLE_ABORTED_BY_CALLBACK, absl::StatusCode::kAborted}, {CURLE_FAILED_INIT, absl::StatusCode::kUnknown}, {CURLE_GOT_NOTHING, absl::StatusCode::kUnavailable}, {CURLE_AGAIN, absl::StatusCode::kUnknown}, {CURLE_HTTP2, absl::StatusCode::kUnavailable}, {CURLE_BAD_DOWNLOAD_RESUME, absl::StatusCode::kInternal}, {CURLE_RANGE_ERROR, absl::StatusCode::kInternal}, {CURLE_UNSUPPORTED_PROTOCOL, absl::StatusCode::kUnavailable}, }; for (auto const& t : expected_codes) { auto actual = CurlCodeToStatus(t.curl, {}); EXPECT_EQ(t.expected, actual.code()) << "CURL code=" << t.curl; } } TEST(CurlFactoryTest, CurlMCodeToStatus) { struct { CURLMcode curl; absl::StatusCode expected; } expected_codes[]{ {CURLM_OK, absl::StatusCode::kOk}, {CURLM_BAD_HANDLE, absl::StatusCode::kInternal}, {CURLM_BAD_EASY_HANDLE, absl::StatusCode::kInternal}, {CURLM_OUT_OF_MEMORY, absl::StatusCode::kInternal}, {CURLM_INTERNAL_ERROR, absl::StatusCode::kInternal}, }; for (auto const& t : expected_codes) { auto actual = CurlMCodeToStatus(t.curl, {}); EXPECT_EQ(t.expected, actual.code()) << "CURLM code=" << t.curl; } } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/http/curl_wrappers.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/http/curl_wrappers_test.cc
4f887a6430414cd6088e1743555015b10f116d50
28bbb614-9b57-4c27-aa28-be37452264de
cpp
google/tensorstore
curl_transport
tensorstore/internal/http/curl_transport.cc
tensorstore/internal/http/curl_transport_test.cc
#include "tensorstore/internal/http/curl_transport.h" #include <stddef.h> #include <stdint.h> #include <algorithm> #include <atomic> #include <cassert> #include <cerrno> #include <cstdio> #include <cstdlib> #include <limits> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/base/const_init.h" #include "absl/flags/flag.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include <curl/curl.h> #include "tensorstore/internal/container/circular_queue.h" #include "tensorstore/internal/cord_util.h" #include "tensorstore/internal/env.h" #include "tensorstore/internal/http/curl_factory.h" #include "tensorstore/internal/http/curl_handle.h" #include "tensorstore/internal/http/curl_wrappers.h" #include "tensorstore/internal/http/http_request.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/internal/metrics/counter.h" #include "tensorstore/internal/metrics/gauge.h" #include "tensorstore/internal/metrics/histogram.h" #include "tensorstore/internal/metrics/metadata.h" #include "tensorstore/internal/thread/thread.h" ABSL_FLAG(std::optional<uint32_t>, tensorstore_http_threads, std::nullopt, "Threads to use for http requests. " "Overrides TENSORSTORE_HTTP_THREADS."); using ::tensorstore::internal::GetFlagOrEnvValue; using ::tensorstore::internal_container::CircularQueue; using ::tensorstore::internal_metrics::MetricMetadata; namespace tensorstore { namespace internal_http { namespace { auto& http_request_started = internal_metrics::Counter<int64_t>::New( "/tensorstore/http/request_started", MetricMetadata("HTTP requests started")); auto& http_request_completed = internal_metrics::Counter<int64_t>::New( "/tensorstore/http/request_completed", MetricMetadata("HTTP requests completed")); auto& http_request_bytes = internal_metrics::Histogram<internal_metrics::DefaultBucketer>::New( "/tensorstore/http/request_bytes", MetricMetadata("HTTP request bytes transmitted", internal_metrics::Units::kBytes)); auto& http_request_header_bytes = internal_metrics::Histogram<internal_metrics::DefaultBucketer>::New( "/tensorstore/http/request_header_bytes", MetricMetadata("HTTP request bytes transmitted", internal_metrics::Units::kBytes)); auto& http_response_codes = internal_metrics::Counter<int64_t, int>::New( "/tensorstore/http/response_codes", "code", MetricMetadata("HTTP response status code counts")); auto& http_response_bytes = internal_metrics::Histogram<internal_metrics::DefaultBucketer>::New( "/tensorstore/http/response_bytes", MetricMetadata("HTTP response bytes received", internal_metrics::Units::kBytes)); auto& http_active = internal_metrics::Gauge<int64_t>::New( "/tensorstore/http/active", MetricMetadata("HTTP requests considered active")); auto& http_total_time_ms = internal_metrics::Histogram<internal_metrics::DefaultBucketer>::New( "/tensorstore/http/total_time_ms", MetricMetadata("HTTP total latency (ms)", internal_metrics::Units::kMilliseconds)); auto& http_first_byte_latency_us = internal_metrics::Histogram<internal_metrics::DefaultBucketer>::New( "/tensorstore/http/first_byte_latency_us", MetricMetadata("HTTP first byte received latency (us)", internal_metrics::Units::kMicroseconds)); auto& http_poll_time_ns = internal_metrics::Histogram<internal_metrics::DefaultBucketer>::New( "/tensorstore/http/http_poll_time_ns", MetricMetadata("HTTP time spent in curl_multi_poll (ns)", internal_metrics::Units::kNanoseconds)); uint32_t GetHttpThreads() { return std::max(1u, GetFlagOrEnvValue(FLAGS_tensorstore_http_threads, "TENSORSTORE_HTTP_THREADS") .value_or(4u)); } struct CurlRequestState { std::shared_ptr<CurlHandleFactory> factory_; CurlHandle handle_; CurlHeaders headers_; absl::Cord payload_; absl::Cord::CharIterator payload_it_; size_t payload_remaining_; HttpResponseHandler* response_handler_ = nullptr; size_t response_payload_size_ = 0; bool status_set = false; char error_buffer_[CURL_ERROR_SIZE]; CurlRequestState(std::shared_ptr<CurlHandleFactory> factory) : factory_(std::move(factory)), handle_(CurlHandle::Create(*factory_)) { error_buffer_[0] = 0; handle_.SetOption(CURLOPT_ERRORBUFFER, error_buffer_); handle_.SetOption(CURLOPT_BUFFERSIZE, 512 * 1024); handle_.SetOption(CURLOPT_TCP_NODELAY, 1L); handle_.SetOption(CURLOPT_WRITEDATA, this); handle_.SetOption(CURLOPT_WRITEFUNCTION, &CurlRequestState::CurlWriteCallback); handle_.SetOption(CURLOPT_HEADERDATA, this); handle_.SetOption(CURLOPT_HEADERFUNCTION, &CurlRequestState::CurlHeaderCallback); } ~CurlRequestState() { handle_.SetOption(CURLOPT_WRITEDATA, nullptr); handle_.SetOption(CURLOPT_WRITEFUNCTION, nullptr); handle_.SetOption(CURLOPT_READDATA, nullptr); handle_.SetOption(CURLOPT_READFUNCTION, nullptr); handle_.SetOption(CURLOPT_SEEKDATA, nullptr); handle_.SetOption(CURLOPT_SEEKFUNCTION, nullptr); handle_.SetOption(CURLOPT_HEADERDATA, nullptr); handle_.SetOption(CURLOPT_HEADERFUNCTION, nullptr); handle_.SetOption(CURLOPT_ERRORBUFFER, nullptr); CurlHandle::Cleanup(*factory_, std::move(handle_)); } void Prepare(const HttpRequest& request, IssueRequestOptions options) { handle_.SetOption(CURLOPT_URL, request.url.c_str()); std::string user_agent = request.user_agent + GetCurlUserAgentSuffix(); handle_.SetOption(CURLOPT_USERAGENT, user_agent.c_str()); curl_slist* head = nullptr; size_t header_bytes_ = 0; for (const std::string& h : request.headers) { head = curl_slist_append(head, h.c_str()); header_bytes_ += h.size(); } headers_.reset(head); handle_.SetOption(CURLOPT_HTTPHEADER, headers_.get()); if (request.accept_encoding) { handle_.SetOption(CURLOPT_ACCEPT_ENCODING, ""); } if (options.request_timeout > absl::ZeroDuration()) { auto ms = absl::ToInt64Milliseconds(options.request_timeout); handle_.SetOption(CURLOPT_TIMEOUT_MS, ms > 0 ? ms : 1); } if (options.connect_timeout > absl::ZeroDuration()) { auto ms = absl::ToInt64Milliseconds(options.connect_timeout); handle_.SetOption(CURLOPT_CONNECTTIMEOUT_MS, ms > 0 ? ms : 1); } payload_ = std::move(options.payload); payload_remaining_ = payload_.size(); if (payload_remaining_ > 0) { payload_it_ = payload_.char_begin(); handle_.SetOption(CURLOPT_READDATA, this); handle_.SetOption(CURLOPT_READFUNCTION, &CurlRequestState::CurlReadCallback); handle_.SetOption(CURLOPT_SEEKDATA, this); handle_.SetOption(CURLOPT_SEEKFUNCTION, &CurlRequestState::CurlSeekCallback); } if (request.method == "GET") { handle_.SetOption(CURLOPT_PIPEWAIT, 1L); handle_.SetOption(CURLOPT_HTTPGET, 1L); } else if (request.method == "HEAD") { handle_.SetOption(CURLOPT_NOBODY, 1L); } else if (request.method == "PUT") { handle_.SetOption(CURLOPT_UPLOAD, 1L); handle_.SetOption(CURLOPT_PUT, 1L); handle_.SetOption(CURLOPT_INFILESIZE_LARGE, payload_remaining_); } else if (request.method == "POST") { handle_.SetOption(CURLOPT_POST, 1L); handle_.SetOption(CURLOPT_POSTFIELDSIZE_LARGE, payload_remaining_); } else if (request.method == "PATCH") { handle_.SetOption(CURLOPT_UPLOAD, 1L); handle_.SetOption(CURLOPT_CUSTOMREQUEST, "PATCH"); handle_.SetOption(CURLOPT_POSTFIELDSIZE_LARGE, payload_remaining_); } else { handle_.SetOption(CURLOPT_CUSTOMREQUEST, request.method.c_str()); } switch (options.http_version) { case IssueRequestOptions::HttpVersion::kHttp1: handle_.SetOption(CURLOPT_HTTP_VERSION, CURL_HTTP_VERSION_1_1); break; case IssueRequestOptions::HttpVersion::kHttp2: handle_.SetOption(CURLOPT_HTTP_VERSION, CURL_HTTP_VERSION_2_0); break; case IssueRequestOptions::HttpVersion::kHttp2TLS: handle_.SetOption(CURLOPT_HTTP_VERSION, CURL_HTTP_VERSION_2TLS); break; case IssueRequestOptions::HttpVersion::kHttp2PriorKnowledge: handle_.SetOption(CURLOPT_HTTP_VERSION, CURL_HTTP_VERSION_2_PRIOR_KNOWLEDGE); break; default: break; } http_request_started.Increment(); http_request_bytes.Observe(payload_remaining_); http_request_header_bytes.Observe(header_bytes_); } void SetForbidReuse() { handle_.SetOption(CURLOPT_FORBID_REUSE, 1); } bool MaybeSetStatusAndProcess() { if (status_set) return true; auto status_code = handle_.GetResponseCode(); if (status_code < 200) return false; response_handler_->OnStatus(status_code); status_set = true; return true; } static size_t CurlHeaderCallback(void* contents, size_t size, size_t nmemb, void* userdata) { auto* self = static_cast<CurlRequestState*>(userdata); auto data = std::string_view(static_cast<char const*>(contents), size * nmemb); if (self->MaybeSetStatusAndProcess()) { self->response_handler_->OnResponseHeader(data); } return data.size(); } static size_t CurlWriteCallback(void* contents, size_t size, size_t nmemb, void* userdata) { auto* self = static_cast<CurlRequestState*>(userdata); auto data = std::string_view(static_cast<char const*>(contents), size * nmemb); if (self->MaybeSetStatusAndProcess()) { self->response_payload_size_ += data.size(); self->response_handler_->OnResponseBody(data); } return data.size(); } static size_t CurlReadCallback(void* contents, size_t size, size_t nmemb, void* userdata) { auto* self = static_cast<CurlRequestState*>(userdata); size_t n = std::min(size * nmemb, self->payload_remaining_); internal::CopyCordToSpan(self->payload_it_, {static_cast<char*>(contents), static_cast<ptrdiff_t>(n)}); self->payload_remaining_ -= n; return n; } static int CurlSeekCallback(void* userdata, curl_off_t offset, int origin) { if (origin != SEEK_SET) { return CURL_SEEKFUNC_CANTSEEK; } auto* self = static_cast<CurlRequestState*>(userdata); if (offset < 0 || offset > self->payload_.size()) { return CURL_SEEKFUNC_FAIL; } self->payload_it_ = self->payload_.char_begin(); absl::Cord::Advance(&self->payload_it_, static_cast<size_t>(offset)); self->payload_remaining_ = self->payload_.size() - static_cast<size_t>(offset); return CURL_SEEKFUNC_OK; } }; class MultiTransportImpl { public: MultiTransportImpl(std::shared_ptr<CurlHandleFactory> factory, size_t nthreads); ~MultiTransportImpl(); void EnqueueRequest(const HttpRequest& request, IssueRequestOptions options, HttpResponseHandler* response_handler); void FinishRequest(std::unique_ptr<CurlRequestState> state, CURLcode code); private: struct ThreadData { std::atomic<int64_t> count = 0; CurlMulti multi; absl::Mutex mutex; CircularQueue<std::unique_ptr<CurlRequestState>> pending{16}; bool done = false; }; void Run(ThreadData& thread_data); void MaybeAddPendingTransfers(ThreadData& thread_data); void RemoveCompletedTransfers(ThreadData& thread_data); std::shared_ptr<CurlHandleFactory> factory_; std::atomic<bool> done_{false}; std::unique_ptr<ThreadData[]> thread_data_; std::vector<internal::Thread> threads_; }; MultiTransportImpl::MultiTransportImpl( std::shared_ptr<CurlHandleFactory> factory, size_t nthreads) : factory_(std::move(factory)) { assert(factory_); threads_.reserve(nthreads); thread_data_ = std::make_unique<ThreadData[]>(nthreads); for (size_t i = 0; i < nthreads; ++i) { thread_data_[i].multi = factory_->CreateMultiHandle(); threads_.push_back( internal::Thread({"curl_multi_thread"}, [this, index = i] { Run(thread_data_[index]); })); } } MultiTransportImpl::~MultiTransportImpl() { done_ = true; for (size_t i = 0; i < threads_.size(); ++i) { auto& thread_data = thread_data_[i]; absl::MutexLock l(&thread_data.mutex); thread_data.done = true; curl_multi_wakeup(thread_data.multi.get()); } for (auto& thread : threads_) { thread.Join(); } for (size_t i = 0; i < threads_.size(); ++i) { factory_->CleanupMultiHandle(std::move(thread_data_[i].multi)); } } void MultiTransportImpl::EnqueueRequest(const HttpRequest& request, IssueRequestOptions options, HttpResponseHandler* response_handler) { if (done_.load()) { response_handler->OnFailure( absl::InternalError("MultiTransportImpl is shutting down")); return; } auto state = std::make_unique<CurlRequestState>(factory_); state->response_handler_ = response_handler; state->Prepare(request, std::move(options)); size_t selected_index = 0; for (size_t i = 1; i < threads_.size(); ++i) { if (thread_data_[i].count < thread_data_[selected_index].count) { selected_index = i; } } auto& selected = thread_data_[selected_index]; absl::MutexLock l(&selected.mutex); selected.pending.push_back(std::move(state)); selected.count++; curl_multi_wakeup(selected.multi.get()); } void MultiTransportImpl::FinishRequest(std::unique_ptr<CurlRequestState> state, CURLcode code) { if (code == CURLE_HTTP2) { ABSL_LOG(WARNING) << "CURLE_HTTP2 " << state->error_buffer_; state->SetForbidReuse(); } http_request_completed.Increment(); http_response_bytes.Observe(state->response_payload_size_); { curl_off_t first_byte_us = 0; state->handle_.GetInfo(CURLINFO_STARTTRANSFER_TIME_T, &first_byte_us); http_first_byte_latency_us.Observe(first_byte_us); } { curl_off_t total_time_us = 0; state->handle_.GetInfo(CURLINFO_TOTAL_TIME_T, &total_time_us); http_total_time_ms.Observe(total_time_us / 1000); } if (code != CURLE_OK) { state->response_handler_->OnFailure( CurlCodeToStatus(code, state->error_buffer_)); return; } http_response_codes.Increment(state->handle_.GetResponseCode()); assert(state->status_set); state->response_handler_->OnComplete(); } void MultiTransportImpl::Run(ThreadData& thread_data) { for (;;) { MaybeAddPendingTransfers(thread_data); if (thread_data.count == 0) { absl::MutexLock l(&thread_data.mutex); if (thread_data.done) break; thread_data.mutex.Await(absl::Condition( +[](ThreadData* td) { return !td->pending.empty() || td->done; }, &thread_data)); if (thread_data.done) break; continue; } const int timeout_ms = std::numeric_limits<int>::max(); int numfds = 0; errno = 0; auto start_poll = absl::Now(); CURLMcode mcode = curl_multi_poll(thread_data.multi.get(), nullptr, 0, timeout_ms, &numfds); if (mcode != CURLM_OK) { ABSL_LOG(WARNING) << CurlMCodeToStatus(mcode, "in curl_multi_poll"); } http_poll_time_ns.Observe( absl::ToInt64Nanoseconds(absl::Now() - start_poll)); { int running_handles = 0; CURLMcode mcode; do { mcode = curl_multi_perform(thread_data.multi.get(), &running_handles); http_active.Set(running_handles); } while (mcode == CURLM_CALL_MULTI_PERFORM); if (mcode != CURLM_OK) { ABSL_LOG(WARNING) << CurlMCodeToStatus(mcode, "in curl_multi_perform"); } } RemoveCompletedTransfers(thread_data); } assert(thread_data.count == 0); } void MultiTransportImpl::MaybeAddPendingTransfers(ThreadData& thread_data) { absl::MutexLock l(&thread_data.mutex); while (!thread_data.pending.empty()) { std::unique_ptr<CurlRequestState> state = std::move(thread_data.pending.front()); thread_data.pending.pop_front(); assert(state != nullptr); state->handle_.SetOption(CURLOPT_PRIVATE, state.get()); CURL* e = state->handle_.get(); CURLMcode mcode = curl_multi_add_handle(thread_data.multi.get(), e); if (mcode == CURLM_OK) { state.release(); } else { thread_data.count--; state->handle_.SetOption(CURLOPT_PRIVATE, nullptr); state->response_handler_->OnFailure( CurlMCodeToStatus(mcode, "in curl_multi_add_handle")); } }; } void MultiTransportImpl::RemoveCompletedTransfers(ThreadData& thread_data) { CURLMsg* m = nullptr; do { int messages_in_queue; m = curl_multi_info_read(thread_data.multi.get(), &messages_in_queue); if (m && m->msg == CURLMSG_DONE) { CURLcode result = m->data.result; CURL* e = m->easy_handle; curl_multi_remove_handle(thread_data.multi.get(), e); thread_data.count--; CurlRequestState* pvt = nullptr; curl_easy_getinfo(e, CURLINFO_PRIVATE, &pvt); assert(pvt); std::unique_ptr<CurlRequestState> state(pvt); state->handle_.SetOption(CURLOPT_PRIVATE, nullptr); FinishRequest(std::move(state), result); } } while (m != nullptr); } } class CurlTransport::Impl : public MultiTransportImpl { public: using MultiTransportImpl::MultiTransportImpl; }; CurlTransport::CurlTransport(std::shared_ptr<CurlHandleFactory> factory) : impl_(std::make_unique<Impl>(std::move(factory), GetHttpThreads())) {} CurlTransport::~CurlTransport() = default; void CurlTransport::IssueRequestWithHandler( const HttpRequest& request, IssueRequestOptions options, HttpResponseHandler* response_handler) { assert(impl_); impl_->EnqueueRequest(request, std::move(options), response_handler); } namespace { struct GlobalTransport { std::shared_ptr<HttpTransport> transport_; std::shared_ptr<HttpTransport> Get() { if (!transport_) { transport_ = std::make_shared<CurlTransport>(GetDefaultCurlHandleFactory()); } return transport_; } void Set(std::shared_ptr<HttpTransport> transport) { transport_ = std::move(transport); } }; ABSL_CONST_INIT absl::Mutex global_mu(absl::kConstInit); static GlobalTransport& GetGlobalTransport() { static auto* g = new GlobalTransport(); return *g; } } std::shared_ptr<HttpTransport> GetDefaultHttpTransport() { absl::MutexLock l(&global_mu); return GetGlobalTransport().Get(); } void SetDefaultHttpTransport(std::shared_ptr<HttpTransport> t) { absl::MutexLock l(&global_mu); return GetGlobalTransport().Set(std::move(t)); } } }
#ifdef _WIN32 #undef UNICODE #define WIN32_LEAN_AND_MEAN #endif #include "tensorstore/internal/http/curl_transport.h" #include <optional> #include <string> #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/absl_check.h" #include "absl/log/absl_log.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/internal/http/transport_test_utils.h" #include "tensorstore/internal/thread/thread.h" using ::tensorstore::internal_http::HttpRequestBuilder; using ::tensorstore::internal_http::IssueRequestOptions; using ::tensorstore::transport_test_utils::AcceptNonBlocking; using ::tensorstore::transport_test_utils::AssertSend; using ::tensorstore::transport_test_utils::CloseSocket; using ::tensorstore::transport_test_utils::CreateBoundSocket; using ::tensorstore::transport_test_utils::FormatSocketAddress; using ::tensorstore::transport_test_utils::ReceiveAvailable; using ::tensorstore::transport_test_utils::socket_t; using ::testing::HasSubstr; namespace { class CurlTransportTest : public ::testing::Test { public: }; TEST_F(CurlTransportTest, Http1) { auto transport = ::tensorstore::internal_http::GetDefaultHttpTransport(); auto socket = CreateBoundSocket(); ABSL_CHECK(socket.has_value()); auto hostport = FormatSocketAddress(*socket); ABSL_CHECK(!hostport.empty()); static constexpr char kResponse[] = "HTTP/1.1 200 OK\r\n" "Content-Type: text/html\r\n" "\r\n" "<html>\n<body>\n<h1>Hello, World!</h1>\n</body>\n</html>\n"; std::string initial_request; tensorstore::internal::Thread serve_thread({"serve_thread"}, [&] { auto client_fd = AcceptNonBlocking(*socket); ABSL_CHECK(client_fd.has_value()); initial_request = ReceiveAvailable(*client_fd); AssertSend(*client_fd, kResponse); CloseSocket(*client_fd); }); auto response = transport->IssueRequest( HttpRequestBuilder("POST", absl::StrCat("http: .AddHeader("X-foo: bar") .AddQueryParameter("name", "dragon") .AddQueryParameter("age", "1234") .EnableAcceptEncoding() .BuildRequest(), IssueRequestOptions(absl::Cord("Hello"))); ABSL_LOG(INFO) << response.status(); ABSL_LOG(INFO) << "Wait on server"; serve_thread.Join(); CloseSocket(*socket); EXPECT_THAT(initial_request, HasSubstr("POST /?name=dragon&age=1234")); EXPECT_THAT(initial_request, HasSubstr(absl::StrCat("Host: ", hostport, "\r\n"))); EXPECT_THAT(initial_request, HasSubstr("Accept: **\r\n")); EXPECT_THAT(request, HasSubstr("X-foo: bar\r\n")); EXPECT_THAT(request, HasSubstr("Content-Length: 5")); EXPECT_THAT( request, HasSubstr("Content-Type: application/x-www-form-urlencoded\r\n")); EXPECT_THAT(request, HasSubstr("Hello")); } } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/http/curl_transport.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/http/curl_transport_test.cc
4f887a6430414cd6088e1743555015b10f116d50
3ba84d55-f639-42ee-a830-911c1b3bb133
cpp
google/tensorstore
zlib
tensorstore/internal/compression/zlib.cc
tensorstore/internal/compression/zlib_test.cc
#include "tensorstore/internal/compression/zlib.h" #include "absl/base/optimization.h" #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "tensorstore/internal/compression/cord_stream_manager.h" #include <zlib.h> namespace tensorstore { namespace zlib { namespace { struct InflateOp { static int Init(z_stream* s, [[maybe_unused]] int level, int header_option) { return inflateInit2(s, 15 + header_option); } static int Process(z_stream* s, int flags) { return inflate(s, flags); } static int Destroy(z_stream* s) { return inflateEnd(s); } static constexpr bool kDataErrorPossible = true; }; struct DeflateOp { static int Init(z_stream* s, int level, int header_option) { return deflateInit2(s, level, Z_DEFLATED, 15 + header_option, 8 , Z_DEFAULT_STRATEGY); } static int Process(z_stream* s, int flags) { return deflate(s, flags); } static int Destroy(z_stream* s) { return deflateEnd(s); } static constexpr bool kDataErrorPossible = false; }; template <typename Op> absl::Status ProcessZlib(const absl::Cord& input, absl::Cord* output, int level, bool use_gzip_header) { z_stream s = {}; internal::CordStreamManager<z_stream, 16 * 1024> stream_manager(s, input, output); const int header_option = use_gzip_header ? 16 : 0; int err = Op::Init(&s, level, header_option); if (err != Z_OK) { ABSL_CHECK(false); } struct StreamDestroyer { z_stream* s; ~StreamDestroyer() { Op::Destroy(s); } } stream_destroyer{&s}; while (true) { const bool input_complete = stream_manager.FeedInputAndOutputBuffers(); err = Op::Process(&s, input_complete ? Z_FINISH : Z_NO_FLUSH); const bool made_progress = stream_manager.HandleOutput(); if (err == Z_OK) continue; if (err == Z_BUF_ERROR && made_progress) continue; break; } switch (err) { case Z_STREAM_END: if (!stream_manager.has_input_remaining()) { return absl::OkStatus(); } [[fallthrough]]; case Z_NEED_DICT: case Z_DATA_ERROR: case Z_BUF_ERROR: if (!Op::kDataErrorPossible) { ABSL_CHECK(false); } return absl::InvalidArgumentError("Error decoding zlib-compressed data"); default: ABSL_CHECK(false); } ABSL_UNREACHABLE(); } } void Encode(const absl::Cord& input, absl::Cord* output, const Options& options) { ProcessZlib<DeflateOp>(input, output, options.level, options.use_gzip_header) .IgnoreError(); } absl::Status Decode(const absl::Cord& input, absl::Cord* output, bool use_gzip_header) { return ProcessZlib<InflateOp>(input, output, 0, use_gzip_header); } } }
#include "tensorstore/internal/compression/zlib.h" #include <cstddef> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/cord_test_helpers.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::MatchesStatus; namespace zlib = tensorstore::zlib; class ZlibCompressorTest : public ::testing::TestWithParam<bool> {}; INSTANTIATE_TEST_SUITE_P(ZlibCompressorTestCases, ZlibCompressorTest, ::testing::Values(false, true)); TEST_P(ZlibCompressorTest, SmallRoundtrip) { const bool use_gzip_header = GetParam(); zlib::Options options{6, use_gzip_header}; const absl::Cord input("The quick brown fox jumped over the lazy dog."); absl::Cord encode_result("abc"), decode_result("def"); zlib::Encode(input, &encode_result, options); ASSERT_GE(encode_result.size(), 3); EXPECT_EQ("abc", encode_result.Subcord(0, 3)); TENSORSTORE_ASSERT_OK( zlib::Decode(encode_result.Subcord(3, encode_result.size() - 3), &decode_result, options.use_gzip_header)); EXPECT_EQ("def" + std::string(input), decode_result); } TEST_P(ZlibCompressorTest, SmallRoundtripFragmented) { const bool use_gzip_header = GetParam(); zlib::Options options{6, use_gzip_header}; const absl::Cord input = absl::MakeFragmentedCord( {"The quick", " brown fox", " jumped over", " ", "the lazy dog."}); absl::Cord encode_result("abc"), decode_result("def"); zlib::Encode(input, &encode_result, options); ASSERT_GE(encode_result.size(), 3); EXPECT_EQ("abc", encode_result.Subcord(0, 3)); std::vector<std::string> encode_result_fragments; for (size_t i = 3; i < encode_result.size(); ++i) { encode_result_fragments.push_back(std::string(encode_result.Subcord(i, 1))); } TENSORSTORE_ASSERT_OK( zlib::Decode(absl::MakeFragmentedCord(encode_result_fragments), &decode_result, options.use_gzip_header)); EXPECT_EQ("def" + std::string(input), decode_result); } TEST_P(ZlibCompressorTest, LargeRoundtrip) { const bool use_gzip_header = GetParam(); std::string input(100000, '\0'); unsigned char x = 0; for (auto& v : input) { v = x; x += 7; } zlib::Options options{6, use_gzip_header}; absl::Cord encode_result, decode_result; zlib::Encode(absl::Cord(input), &encode_result, options); ASSERT_EQ(absl::OkStatus(), zlib::Decode(encode_result, &decode_result, options.use_gzip_header)); EXPECT_EQ(input, decode_result); } TEST_P(ZlibCompressorTest, NonDefaultLevel) { const bool use_gzip_header = GetParam(); zlib::Options options1{ 0, use_gzip_header}; zlib::Options options2{9, use_gzip_header}; const absl::Cord input("The quick brown fox jumped over the lazy dog."); absl::Cord encode_result1, encode_result2; zlib::Encode(input, &encode_result1, options1); zlib::Encode(input, &encode_result2, options2); EXPECT_NE(encode_result1, encode_result2); absl::Cord decode_result; TENSORSTORE_ASSERT_OK( zlib::Decode(encode_result2, &decode_result, options2.use_gzip_header)); EXPECT_EQ(input, decode_result); } TEST_P(ZlibCompressorTest, DecodeCorruptData) { const bool use_gzip_header = GetParam(); zlib::Options options{6, use_gzip_header}; const absl::Cord input("The quick brown fox jumped over the lazy dog."); { absl::Cord encode_result, decode_result; zlib::Encode(input, &encode_result, options); ASSERT_GE(encode_result.size(), 1); std::string corrupted(encode_result); corrupted[0] = 0; EXPECT_THAT(zlib::Decode(absl::Cord(corrupted), &decode_result, options.use_gzip_header), MatchesStatus(absl::StatusCode::kInvalidArgument)); } { absl::Cord encode_result, decode_result; zlib::Encode(input, &encode_result, options); ASSERT_GE(encode_result.size(), 1); std::string corrupted(encode_result); corrupted.resize(corrupted.size() - 1); EXPECT_THAT(zlib::Decode(absl::Cord(corrupted), &decode_result, options.use_gzip_header), MatchesStatus(absl::StatusCode::kInvalidArgument)); } } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/compression/zlib.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/compression/zlib_test.cc
4f887a6430414cd6088e1743555015b10f116d50
75a7738d-254a-4171-9083-e75edd0bb8bc
cpp
google/tensorstore
neuroglancer_compressed_segmentation
tensorstore/internal/compression/neuroglancer_compressed_segmentation.cc
tensorstore/internal/compression/neuroglancer_compressed_segmentation_test.cc
#include "tensorstore/internal/compression/neuroglancer_compressed_segmentation.h" #include <stddef.h> #include <stdint.h> #include <algorithm> #include <cassert> #include <string> #include <string_view> #include <vector> #include "absl/base/internal/endian.h" #include "absl/container/flat_hash_map.h" namespace tensorstore { namespace neuroglancer_compressed_segmentation { constexpr size_t kBlockHeaderSize = 2; void WriteBlockHeader(size_t encoded_value_base_offset, size_t table_base_offset, size_t encoding_bits, void* output) { absl::little_endian::Store32(output, table_base_offset | (encoding_bits << 24)); absl::little_endian::Store32(static_cast<char*>(output) + 4, encoded_value_base_offset); } template <typename Label> void EncodeBlock(const Label* input, const ptrdiff_t input_shape[3], const ptrdiff_t input_byte_strides[3], const ptrdiff_t block_shape[3], size_t base_offset, size_t* encoded_bits_output, size_t* table_offset_output, EncodedValueCache<Label>* cache, std::string* output) { if (input_shape[0] == 0 && input_shape[1] == 0 && input_shape[2] == 0) { *encoded_bits_output = 0; *table_offset_output = 0; return; } constexpr size_t num_32bit_words_per_label = sizeof(Label) / 4; absl::flat_hash_map<Label, uint32_t> seen_values; std::vector<Label> seen_values_inv; const auto ForEachElement = [&](auto func) { auto* input_z = reinterpret_cast<const char*>(input); for (ptrdiff_t z = 0; z < input_shape[0]; ++z) { auto* input_y = input_z; for (ptrdiff_t y = 0; y < input_shape[1]; ++y) { auto* input_x = input_y; for (ptrdiff_t x = 0; x < input_shape[2]; ++x) { func(z, y, x, *reinterpret_cast<const Label*>(input_x)); input_x += input_byte_strides[2]; } input_y += input_byte_strides[1]; } input_z += input_byte_strides[0]; } }; Label previous_value = input[0] + 1; ForEachElement([&](size_t z, size_t y, size_t x, Label value) { if (value != previous_value) { previous_value = value; if (seen_values.emplace(value, 0).second) { seen_values_inv.push_back(value); } } }); std::sort(seen_values_inv.begin(), seen_values_inv.end()); for (size_t i = 0; i < seen_values_inv.size(); ++i) { seen_values[seen_values_inv[i]] = static_cast<uint32_t>(i); } size_t encoded_bits = 0; if (seen_values.size() != 1) { encoded_bits = 1; while ((size_t(1) << encoded_bits) < seen_values.size()) { encoded_bits *= 2; } } *encoded_bits_output = encoded_bits; const size_t encoded_size_32bits = (encoded_bits * block_shape[0] * block_shape[1] * block_shape[2] + 31) / 32; const size_t encoded_value_base_offset = output->size(); assert((encoded_value_base_offset - base_offset) % 4 == 0); size_t elements_to_write = encoded_size_32bits; bool write_table; { auto it = cache->find(seen_values_inv); if (it == cache->end()) { write_table = true; elements_to_write += seen_values.size() * num_32bit_words_per_label; *table_offset_output = (encoded_value_base_offset - base_offset) / 4 + encoded_size_32bits; } else { write_table = false; *table_offset_output = it->second; } } output->resize(encoded_value_base_offset + elements_to_write * 4); char* output_ptr = output->data() + encoded_value_base_offset; ForEachElement([&](size_t z, size_t y, size_t x, Label value) { uint32_t index = seen_values.at(value); size_t output_offset = x + block_shape[2] * (y + block_shape[1] * z); void* cur_ptr = output_ptr + output_offset * encoded_bits / 32 * 4; absl::little_endian::Store32( cur_ptr, absl::little_endian::Load32(cur_ptr) | (index << (output_offset * encoded_bits % 32))); }); if (write_table) { output_ptr = output->data() + encoded_value_base_offset + encoded_size_32bits * 4; for (auto value : seen_values_inv) { for (size_t word_i = 0; word_i < num_32bit_words_per_label; ++word_i) { absl::little_endian::Store32( output_ptr + word_i * 4, static_cast<uint32_t>(value >> (32 * word_i))); } output_ptr += num_32bit_words_per_label * 4; } cache->emplace(seen_values_inv, static_cast<uint32_t>(*table_offset_output)); } } template <class Label> void EncodeChannel(const Label* input, const ptrdiff_t input_shape[3], const ptrdiff_t input_byte_strides[3], const ptrdiff_t block_shape[3], std::string* output) { EncodedValueCache<Label> cache; const size_t base_offset = output->size(); ptrdiff_t grid_shape[3]; size_t block_index_size = kBlockHeaderSize; for (size_t i = 0; i < 3; ++i) { grid_shape[i] = (input_shape[i] + block_shape[i] - 1) / block_shape[i]; block_index_size *= grid_shape[i]; } output->resize(base_offset + block_index_size * 4); ptrdiff_t block[3]; for (block[0] = 0; block[0] < grid_shape[0]; ++block[0]) { for (block[1] = 0; block[1] < grid_shape[1]; ++block[1]) { for (block[2] = 0; block[2] < grid_shape[2]; ++block[2]) { const size_t block_offset = block[2] + grid_shape[2] * (block[1] + grid_shape[1] * block[0]); ptrdiff_t input_block_shape[3]; ptrdiff_t input_offset = 0; for (size_t i = 0; i < 3; ++i) { auto pos = block[i] * block_shape[i]; input_block_shape[i] = std::min(block_shape[i], input_shape[i] - pos); input_offset += pos * input_byte_strides[i]; } const size_t encoded_value_base_offset = (output->size() - base_offset) / 4; size_t encoded_bits, table_offset; EncodeBlock(reinterpret_cast<const Label*>( reinterpret_cast<const char*>(input) + input_offset), input_block_shape, input_byte_strides, block_shape, base_offset, &encoded_bits, &table_offset, &cache, output); WriteBlockHeader( encoded_value_base_offset, table_offset, encoded_bits, output->data() + base_offset + block_offset * kBlockHeaderSize * 4); } } } } template <class Label> void EncodeChannels(const Label* input, const ptrdiff_t input_shape[3 + 1], const ptrdiff_t input_byte_strides[3 + 1], const ptrdiff_t block_shape[3], std::string* output) { const size_t base_offset = output->size(); output->resize(base_offset + input_shape[0] * 4); for (ptrdiff_t channel_i = 0; channel_i < input_shape[0]; ++channel_i) { absl::little_endian::Store32(output->data() + base_offset + channel_i * 4, (output->size() - base_offset) / 4); EncodeChannel( reinterpret_cast<const Label*>(reinterpret_cast<const char*>(input) + input_byte_strides[0] * channel_i), input_shape + 1, input_byte_strides + 1, block_shape, output); } } void ReadBlockHeader(const void* header, size_t* encoded_value_base_offset, size_t* table_base_offset, size_t* encoding_bits) { auto h = absl::little_endian::Load64(header); *table_base_offset = h & 0xffffff; *encoding_bits = (h >> 24) & 0xff; *encoded_value_base_offset = (h >> 32) & 0xffffff; } template <typename Label> bool DecodeBlock(size_t encoded_bits, const char* encoded_input, const char* table_input, size_t table_size, const ptrdiff_t block_shape[3], const ptrdiff_t output_shape[3], const ptrdiff_t output_byte_strides[3], Label* output) { const auto for_each_position = [&](auto callback) { auto* output_z = reinterpret_cast<char*>(output); for (ptrdiff_t z = 0; z < output_shape[0]; ++z) { auto* output_y = output_z; for (ptrdiff_t y = 0; y < output_shape[1]; ++y) { auto* output_x = output_y; for (ptrdiff_t x = 0; x < output_shape[2]; ++x) { auto& label = *reinterpret_cast<Label*>(output_x); if (!callback(label, z, y, x)) return false; output_x += output_byte_strides[2]; } output_y += output_byte_strides[1]; } output_z += output_byte_strides[0]; } return true; }; const auto read_label = [&](size_t index) -> Label { if constexpr (sizeof(Label) == 4) { return absl::little_endian::Load32(table_input + index * sizeof(Label)); } else { return absl::little_endian::Load64(table_input + index * sizeof(Label)); } }; if (encoded_bits == 0) { if (table_size == 0) return false; const Label label = read_label(0); return for_each_position( [&](Label& output_label, ptrdiff_t z, ptrdiff_t y, ptrdiff_t x) { output_label = label; return true; }); } const uint32_t encoded_value_mask = (1U << encoded_bits) - 1; return for_each_position([&](Label& output_label, ptrdiff_t z, ptrdiff_t y, ptrdiff_t x) { size_t encoded_offset = x + block_shape[2] * (y + block_shape[1] * z); auto index = absl::little_endian::Load32( encoded_input + encoded_offset * encoded_bits / 32 * 4) >> (encoded_offset * encoded_bits % 32) & encoded_value_mask; if (index >= table_size) return false; output_label = read_label(index); return true; }); return true; } template <typename Label> bool DecodeChannel(std::string_view input, const ptrdiff_t block_shape[3], const ptrdiff_t output_shape[3], const ptrdiff_t output_byte_strides[3], Label* output) { if ((input.size() % 4) != 0) return false; ptrdiff_t grid_shape[3]; size_t block_index_size = kBlockHeaderSize; for (size_t i = 0; i < 3; ++i) { grid_shape[i] = (output_shape[i] + block_shape[i] - 1) / block_shape[i]; block_index_size *= grid_shape[i]; } if (input.size() / 4 < block_index_size) { return false; } ptrdiff_t block[3]; for (block[0] = 0; block[0] < grid_shape[0]; ++block[0]) { for (block[1] = 0; block[1] < grid_shape[1]; ++block[1]) { for (block[2] = 0; block[2] < grid_shape[2]; ++block[2]) { const size_t block_offset = block[2] + grid_shape[2] * (block[1] + grid_shape[1] * block[0]); ptrdiff_t output_block_shape[3]; ptrdiff_t output_offset = 0; for (size_t i = 0; i < 3; ++i) { auto pos = block[i] * block_shape[i]; output_block_shape[i] = std::min(block_shape[i], output_shape[i] - pos); output_offset += pos * output_byte_strides[i]; } size_t encoded_value_base_offset; size_t encoded_bits, table_offset; ReadBlockHeader(input.data() + block_offset * kBlockHeaderSize * 4, &encoded_value_base_offset, &table_offset, &encoded_bits); if (encoded_bits > 32 || (encoded_bits & (encoded_bits - 1)) != 0) { return false; } if (encoded_value_base_offset > input.size() / 4 || table_offset > input.size() / 4) { return false; } const size_t encoded_size_32bits = (encoded_bits * block_shape[0] * block_shape[1] * block_shape[2] + 31) / 32; if ((encoded_value_base_offset + encoded_size_32bits) * 4 > input.size()) { return false; } auto* block_output = reinterpret_cast<Label*>( reinterpret_cast<char*>(output) + output_offset); const char* encoded_input = input.data() + encoded_value_base_offset * 4; const char* table_input = input.data() + table_offset * 4; const size_t table_size = (input.size() - table_offset * 4) / sizeof(Label); if (!DecodeBlock(encoded_bits, encoded_input, table_input, table_size, block_shape, output_block_shape, output_byte_strides, block_output)) { return false; } } } } return true; } template <typename Label> bool DecodeChannels(std::string_view input, const ptrdiff_t block_shape[3], const ptrdiff_t output_shape[3 + 1], const ptrdiff_t output_byte_strides[3 + 1], Label* output) { if ((input.size() % 4) != 0) return false; if (input.size() / 4 < static_cast<size_t>(output_shape[0])) { return false; } for (ptrdiff_t channel_i = 0; channel_i < output_shape[0]; ++channel_i) { const size_t offset = absl::little_endian::Load32(input.data() + channel_i * 4); if (offset > input.size() / 4) { return false; } if (!DecodeChannel( input.substr(offset * 4), block_shape, output_shape + 1, output_byte_strides + 1, reinterpret_cast<Label*>(reinterpret_cast<char*>(output) + output_byte_strides[0] * channel_i))) { return false; } } return true; } #define DO_INSTANTIATE(Label) \ template void EncodeBlock<Label>( \ const Label* input, const ptrdiff_t input_shape[3], \ const ptrdiff_t input_byte_strides[3], const ptrdiff_t block_shape[3], \ size_t base_offset, size_t* encoded_bits_output, \ size_t* table_offset_output, EncodedValueCache<Label>* cache, \ std::string* output); \ template void EncodeChannel<Label>( \ const Label* input, const ptrdiff_t input_shape[3], \ const ptrdiff_t input_byte_strides[3], const ptrdiff_t block_shape[3], \ std::string* output); \ template void EncodeChannels<Label>( \ const Label* input, const ptrdiff_t input_shape[3 + 1], \ const ptrdiff_t input_byte_strides[3 + 1], \ const ptrdiff_t block_shape[3], std::string* output); \ template bool DecodeBlock( \ size_t encoded_bits, const char* encoded_input, const char* table_input, \ size_t table_size, const ptrdiff_t block_shape[3], \ const ptrdiff_t output_shape[3], const ptrdiff_t output_byte_strides[3], \ Label* output); \ template bool DecodeChannel<Label>( \ std::string_view input, const ptrdiff_t block_shape[3], \ const ptrdiff_t output_shape[3], const ptrdiff_t output_byte_strides[3], \ Label* output); \ template bool DecodeChannels( \ std::string_view input, const ptrdiff_t block_shape[3], \ const ptrdiff_t output_shape[3 + 1], \ const ptrdiff_t output_byte_strides[3 + 1], Label* output); \ DO_INSTANTIATE(uint32_t) DO_INSTANTIATE(uint64_t) #undef DO_INSTANTIATE } }
#include "tensorstore/internal/compression/neuroglancer_compressed_segmentation.h" #include <cstddef> #include <cstdint> #include <string> #include <string_view> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/random/random.h" namespace { using ::tensorstore::neuroglancer_compressed_segmentation::DecodeBlock; using ::tensorstore::neuroglancer_compressed_segmentation::DecodeChannel; using ::tensorstore::neuroglancer_compressed_segmentation::DecodeChannels; using ::tensorstore::neuroglancer_compressed_segmentation::EncodeBlock; using ::tensorstore::neuroglancer_compressed_segmentation::EncodeChannel; using ::tensorstore::neuroglancer_compressed_segmentation::EncodeChannels; using ::tensorstore::neuroglancer_compressed_segmentation::EncodedValueCache; std::vector<uint32_t> AsVec(std::string_view s) { EXPECT_EQ(0, s.size() % 4); std::vector<uint32_t> out(s.size() / 4); for (size_t i = 0; i < out.size(); ++i) { out[i] = absl::little_endian::Load32(s.data() + i * 4); } return out; } std::string FromVec(std::vector<uint32_t> v) { std::string s; s.resize(v.size() * 4); for (size_t i = 0; i < v.size(); ++i) { absl::little_endian::Store32(s.data() + i * 4, v[i]); } return s; } template <typename T> void TestBlockRoundTrip(std::vector<T> input, const std::ptrdiff_t (&input_shape)[3], const std::ptrdiff_t (&block_shape)[3], size_t expected_encoded_bits, size_t expected_table_offset, std::vector<uint32_t> expected_output, EncodedValueCache<T> expected_cache) { std::string output{1, 2, 3}; ASSERT_EQ(input_shape[0] * input_shape[1] * input_shape[2], input.size()); constexpr std::ptrdiff_t s = sizeof(T); const std::ptrdiff_t input_byte_strides[3] = { input_shape[1] * input_shape[2] * s, input_shape[2] * s, s}; size_t encoded_bits; size_t table_offset; EncodedValueCache<uint64_t> cache; const size_t initial_offset = output.size(); EncodeBlock(input.data(), input_shape, input_byte_strides, block_shape, initial_offset, &encoded_bits, &table_offset, &cache, &output); ASSERT_THAT(output.substr(0, 3), ::testing::ElementsAre(1, 2, 3)); EXPECT_EQ(expected_encoded_bits, encoded_bits); EXPECT_EQ(expected_table_offset, table_offset); EXPECT_EQ(expected_output, AsVec(output.substr(initial_offset))); EXPECT_EQ(expected_cache, cache); std::vector<T> decoded_output(input.size()); EXPECT_TRUE(DecodeBlock( encoded_bits, output.data() + initial_offset, output.data() + initial_offset + table_offset * 4, (output.size() - (initial_offset + table_offset * 4)) / sizeof(T), block_shape, input_shape, input_byte_strides, decoded_output.data())); EXPECT_EQ(input, decoded_output); } template <typename T> void TestSingleChannelRoundTrip(std::vector<T> input, const std::ptrdiff_t (&input_shape)[3], const std::ptrdiff_t (&block_shape)[3], std::vector<uint32_t> expected_output) { std::string output{1, 2, 3}; ASSERT_EQ(input_shape[0] * input_shape[1] * input_shape[2], input.size()); constexpr std::ptrdiff_t s = sizeof(T); const std::ptrdiff_t input_byte_strides[3] = { input_shape[1] * input_shape[2] * s, input_shape[2] * s, s}; const size_t initial_offset = output.size(); EncodeChannel(input.data(), input_shape, input_byte_strides, block_shape, &output); ASSERT_THAT(output.substr(0, 3), ::testing::ElementsAre(1, 2, 3)); EXPECT_EQ(expected_output, AsVec(output.substr(initial_offset))); std::vector<T> decoded_output(input.size()); std::vector<char> output_copy(output.begin() + initial_offset, output.end()); EXPECT_TRUE(DecodeChannel( std::string_view(output_copy.data(), output_copy.size()), block_shape, input_shape, input_byte_strides, decoded_output.data())); EXPECT_EQ(input, decoded_output); } template <typename T> void TestDecodeChannelError(std::string_view input, const std::ptrdiff_t (&block_shape)[3], const std::ptrdiff_t (&input_shape)[3]) { constexpr std::ptrdiff_t s = sizeof(T); const std::ptrdiff_t input_byte_strides[3] = { input_shape[1] * input_shape[2] * s, input_shape[2] * s, s}; std::vector<T> decoded_output(input_shape[0] * input_shape[1] * input_shape[2]); EXPECT_FALSE(DecodeChannel(input, block_shape, input_shape, input_byte_strides, decoded_output.data())); } template <typename T> void TestMultipleChannelsRoundTripBytes( std::vector<T> input, const std::ptrdiff_t (&input_shape)[4], const std::ptrdiff_t (&block_shape)[4], std::vector<unsigned char> expected_output) { std::string output{1, 2, 3}; ASSERT_EQ(input_shape[0] * input_shape[1] * input_shape[2] * input_shape[3], input.size()); constexpr std::ptrdiff_t s = sizeof(T); const std::ptrdiff_t input_byte_strides[4] = { input_shape[1] * input_shape[2] * input_shape[3] * s, input_shape[2] * input_shape[3] * s, input_shape[3] * s, s}; const size_t initial_offset = output.size(); EncodeChannels(input.data(), input_shape, input_byte_strides, block_shape, &output); ASSERT_THAT(output.substr(0, 3), ::testing::ElementsAre(1, 2, 3)); EXPECT_THAT(output.substr(initial_offset), ::testing::ElementsAreArray(expected_output)); std::vector<T> decoded_output(input.size()); EXPECT_TRUE(DecodeChannels(output.substr(initial_offset), block_shape, input_shape, input_byte_strides, decoded_output.data())); EXPECT_EQ(input, decoded_output); } TEST(EncodeBlockTest, Basic0) { TestBlockRoundTrip<uint64_t>({3, 3, 3, 3}, {1, 2, 2}, {1, 2, 2}, 0, 0, {3, 0}, {{{3}, 0}}); } TEST(EncodeBlockTest, Basic1) { TestBlockRoundTrip<uint64_t>( {4, 3, 4, 4}, {1, 2, 2}, {1, 2, 2}, 1, 1, {0b1101, 3, 0, 4, 0}, {{{3, 4}, 1}}); } TEST(EncodeBlockTest, SizeMismatch) { TestBlockRoundTrip<uint64_t>( {4, 3, 4, 3}, {1, 2, 2}, {1, 2, 3}, 1, 1, {0b001001, 3, 0, 4, 0}, {{{3, 4}, 1}}); } TEST(EncodeBlockTest, Basic2) { TestBlockRoundTrip<uint64_t>( {4, 3, 5, 4}, {1, 2, 2}, {1, 2, 2}, 2, 1, {0b01100001, 3, 0, 4, 0, 5, 0}, {{{3, 4, 5}, 1}}); } TEST(EncodeChannelTest, Basic) { TestSingleChannelRoundTrip<uint64_t>( {4, 3, 5, 4, 1, 3, 3, 3}, {2, 2, 2}, {1, 2, 2}, {5 | (2 << 24), 4, 12 | (1 << 24), 11, 0b01100001, 3, 0, 4, 0, 5, 0, 0b1110, 1, 0, 3, 0}); } TEST(EncodeChannelTest, BasicCached) { TestSingleChannelRoundTrip<uint64_t>( { 4, 3, 5, 4, 1, 3, 3, 3, 3, 1, 1, 1, 5, 5, 3, 4, }, {4, 2, 2}, {1, 2, 2}, { 9 | (2 << 24), 8, 16 | (1 << 24), 15, 16 | (1 << 24), 20, 9 | (2 << 24), 21, 0b01100001, 3, 0, 4, 0, 5, 0, 0b1110, 1, 0, 3, 0, 0b00000001, 0b01001010, }); } TEST(EncodeChannelTest, BasicCachedZeroBitsAtEnd) { TestSingleChannelRoundTrip<uint64_t>( { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, }, {4, 2, 2}, {1, 2, 2}, { 8 | (0 << 24), 8, 8 | (0 << 24), 10, 8 | (0 << 24), 10, 8 | (0 << 24), 10, 3, 0, }); } TEST(EncodeChannelTest, BasicCached32) { TestSingleChannelRoundTrip<uint32_t>( { 4, 3, 5, 4, 1, 3, 3, 3, 3, 1, 1, 1, 5, 5, 3, 4, }, {4, 2, 2}, {1, 2, 2}, { 9 | (2 << 24), 8, 13 | (1 << 24), 12, 13 | (1 << 24), 15, 9 | (2 << 24), 16, 0b01100001, 3, 4, 5, 0b1110, 1, 3, 0b00000001, 0b01001010, }); } TEST(EncodeChannelsTest, Basic1Channel1Block) { TestMultipleChannelsRoundTripBytes<uint64_t>( {4, 0, 4, 0}, {1, 1, 2, 2}, {1, 2, 2}, { 1, 0, 0, 0, 3, 0, 0, 1, 2, 0, 0, 0, 0b0101, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, }); } TEST(DecodeChannelTest, SizeNotMultipleOf4) { auto input = FromVec({5 | (2 << 24), 4, 12 | (1 << 24), 11, 0b01100001, 3, 0, 4, 0, 5, 0, 0b1110, 1, 0, 3, 0}); input.resize(input.size() - 1); TestDecodeChannelError<uint64_t>( input, {1, 2, 2}, {2, 2, 2}); } TEST(DecodeChannelTest, Truncated) { auto input = FromVec({5 | (2 << 24), 4, 12 | (1 << 24), 11, 0b01100001, 3, 0, 4, 0, 5, 0, 0b1110, 1, 0, 3, 0}); input.resize(input.size() - 4); TestDecodeChannelError<uint64_t>( input, {1, 2, 2}, {2, 2, 2}); } TEST(DecodeChannelTest, NonPowerOf2EncodedBits) { auto input = FromVec({5 | (3 << 24), 4, 12 | (1 << 24), 11, 0b01100001, 3, 0, 4, 0, 5, 0, 0b1110, 1, 0, 3, 0}); TestDecodeChannelError<uint64_t>( input, {1, 2, 2}, {2, 2, 2}); } TEST(DecodeChannelTest, MoreThan32EncodedBits) { auto input = FromVec({5 | (33 << 24), 4, 12 | (1 << 24), 11, 0b01100001, 3, 0, 4, 0, 5, 0, 0b1110, 1, 0, 3, 0}); TestDecodeChannelError<uint64_t>( input, {1, 2, 2}, {2, 2, 2}); } TEST(DecodeChannelTest, MissingBlockHeaders) { auto input = FromVec({5 | (3 << 24), 4, 12 | (1 << 24)}); TestDecodeChannelError<uint64_t>( input, {1, 2, 2}, {2, 2, 2}); } TEST(DecodeChannelTest, InvalidEncodedValueOffset) { auto input = FromVec({5 | (2 << 24), 16, 12 | (1 << 24), 11, 0b01100001, 3, 0, 4, 0, 5, 0, 0b1110, 1, 0, 3, 0}); TestDecodeChannelError<uint64_t>( input, {1, 2, 2}, {2, 2, 2}); } TEST(DecodeChannelTest, InvalidTableOffset) { auto input = FromVec({16 | (2 << 24), 4, 12 | (1 << 24), 11, 0b01100001, 3, 0, 4, 0, 5, 0, 0b1110, 1, 0, 3, 0}); TestDecodeChannelError<uint64_t>( input, {1, 2, 2}, {2, 2, 2}); } TEST(DecodeChannelTest, MissingEncodedValues) { auto input = FromVec( {5 | (2 << 24), 4, 0 | (1 << 24), 11, 0b01100001, 3, 0, 4, 0, 5, 0}); TestDecodeChannelError<uint64_t>( input, {1, 2, 2}, {2, 2, 2}); } template <typename T> void RandomRoundTrip(size_t max_block_size, size_t max_input_size, size_t max_channels, size_t max_distinct_ids, size_t num_iterations) { absl::BitGen gen; for (size_t iter = 0; iter < num_iterations; ++iter) { std::ptrdiff_t block_shape[3]; std::ptrdiff_t input_shape[4]; input_shape[0] = absl::Uniform(gen, 1u, max_channels + 1); for (int i = 0; i < 3; ++i) { block_shape[i] = absl::Uniform(gen, 1u, max_block_size + 1); input_shape[i + 1] = absl::Uniform(gen, 1u, max_input_size + 1); } std::vector<T> input(input_shape[0] * input_shape[1] * input_shape[2] * input_shape[3]); std::vector<T> labels(max_distinct_ids); for (auto& label : labels) { label = absl::Uniform<T>(gen); } for (auto& label : input) { label = labels[absl::Uniform(gen, 0u, labels.size())]; } constexpr std::ptrdiff_t s = sizeof(T); const std::ptrdiff_t input_byte_strides[4] = { input_shape[1] * input_shape[2] * input_shape[3] * s, input_shape[2] * input_shape[3] * s, input_shape[3] * s, s}; std::string output; EncodeChannels(input.data(), input_shape, input_byte_strides, block_shape, &output); std::vector<T> decoded_output(input.size()); EXPECT_TRUE(DecodeChannels(output, block_shape, input_shape, input_byte_strides, decoded_output.data())); EXPECT_EQ(input, decoded_output); } } void RandomRoundTripBothDataTypes(size_t max_block_size, size_t max_input_size, size_t max_channels, size_t max_distinct_ids, size_t num_iterations) { RandomRoundTrip<uint32_t>(max_block_size, max_input_size, max_channels, max_distinct_ids, num_iterations); RandomRoundTrip<uint64_t>(max_block_size, max_input_size, max_channels, max_distinct_ids, num_iterations); } TEST(RoundTripTest, Random) { RandomRoundTripBothDataTypes(4, 10, 3, 16, 100); RandomRoundTripBothDataTypes(10, 16, 3, 1000, 100); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/compression/neuroglancer_compressed_segmentation.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/compression/neuroglancer_compressed_segmentation_test.cc
4f887a6430414cd6088e1743555015b10f116d50
66a0bc89-4701-4131-b068-d96673fd7351
cpp
google/tensorstore
zip_details
tensorstore/internal/compression/zip_details.cc
tensorstore/internal/compression/zip_details_test.cc
#include "tensorstore/internal/compression/zip_details.h" #include <stdint.h> #include <algorithm> #include <cassert> #include <ctime> #include <ios> #include <limits> #include <memory> #include <string_view> #include <utility> #include <variant> #include "absl/base/attributes.h" #include "absl/log/absl_log.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/str_format.h" #include "absl/time/time.h" #include "riegeli/bytes/limiting_reader.h" #include "riegeli/bytes/prefix_limiting_reader.h" #include "riegeli/bytes/reader.h" #include "riegeli/bzip2/bzip2_reader.h" #include "riegeli/endian/endian_reading.h" #include "riegeli/xz/xz_reader.h" #include "riegeli/zlib/zlib_reader.h" #include "riegeli/zstd/zstd_reader.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/internal/riegeli/find.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_zip { namespace { using ::riegeli::ReadLittleEndian16; using ::riegeli::ReadLittleEndian32; using ::riegeli::ReadLittleEndian64; using ::riegeli::ReadLittleEndianSigned64; ABSL_CONST_INIT internal_log::VerboseFlag zip_logging("zip_details"); const absl::Time kWindowsEpoch = ::absl::UnixEpoch() - ::absl::Seconds(11644473600); absl::Time MakeMSDOSTime(uint16_t date, uint16_t time) { struct tm dos_tm; dos_tm.tm_mday = (uint16_t)(date & 0x1f); dos_tm.tm_mon = (uint16_t)((date >> 5) & 0xf) - 1; dos_tm.tm_year = (uint16_t)(date >> 9) + 80; dos_tm.tm_hour = (uint16_t)(time >> 11); dos_tm.tm_min = (uint16_t)((time >> 5) & 0x1f); dos_tm.tm_sec = (uint16_t)(2 * (time & 0x1f)); dos_tm.tm_isdst = -1; return absl::FromTM(dos_tm, absl::UTCTimeZone()); } absl::Status ReadExtraField_Zip64_0001(riegeli::Reader &reader, uint16_t tag_size, ZipEntry &entry) { assert(tag_size >= 8); entry.is_zip64 = true; do { if (tag_size >= 8 && entry.uncompressed_size == std::numeric_limits<uint32_t>::max()) { if (!ReadLittleEndian64(reader, entry.uncompressed_size)) break; tag_size -= 8; } if (tag_size >= 8 && entry.compressed_size == std::numeric_limits<uint32_t>::max()) { if (!ReadLittleEndian64(reader, entry.compressed_size)) break; tag_size -= 8; } if (tag_size >= 8 && entry.local_header_offset == std::numeric_limits<uint32_t>::max()) { if (!ReadLittleEndian64(reader, entry.local_header_offset)) break; tag_size -= 8; } return absl::OkStatus(); } while (false); return absl::InvalidArgumentError("Failed to read ZIP64 extra field"); } absl::Status ReadExtraField_Unix_000D(riegeli::Reader &reader, uint16_t tag_size, ZipEntry &entry) { assert(tag_size >= 12); uint32_t ignored32; uint32_t mtime; uint32_t atime; if (!ReadLittleEndian32(reader, atime) || !ReadLittleEndian32(reader, mtime) || !ReadLittleEndian32(reader, ignored32) ) { return absl::InvalidArgumentError("Failed to read UNIX extra field"); } entry.atime = absl::FromUnixSeconds(atime); entry.mtime = absl::FromUnixSeconds(mtime); return absl::OkStatus(); } absl::Status ReadExtraField_NTFS_000A(riegeli::Reader &reader, uint16_t tag_size, ZipEntry &entry) { assert(tag_size >= 8); uint32_t ignored32; if (!ReadLittleEndian32(reader, ignored32)) { return absl::InvalidArgumentError("Failed to read NTFS extra field"); } tag_size -= 4; uint16_t ntfs_tag, ntfs_size; while (tag_size > 4) { if (!ReadLittleEndian16(reader, ntfs_tag) || !ReadLittleEndian16(reader, ntfs_size)) { break; } tag_size -= 4; tag_size -= ntfs_size; if (ntfs_tag == 0x0001 && ntfs_size == 24) { uint64_t mtime; uint64_t atime; uint64_t ctime; if (!ReadLittleEndian64(reader, mtime) || !ReadLittleEndian64(reader, atime) || !ReadLittleEndian64(reader, ctime)) { return absl::InvalidArgumentError("Failed to read NTFS extra field"); } entry.mtime = kWindowsEpoch + absl::Nanoseconds(mtime * 100); entry.atime = kWindowsEpoch + absl::Nanoseconds(atime * 100); } else { reader.Skip(ntfs_size); } } return absl::OkStatus(); } absl::Status ReadExtraField_Unix_5455(riegeli::Reader &reader, uint16_t tag_size, ZipEntry &entry) { assert(tag_size >= 1); uint8_t flags = 0; uint32_t tstamp = 0; do { if (!reader.ReadByte(flags)) break; --tag_size; if (flags & 0x01 && tag_size >= 4) { if (!ReadLittleEndian32(reader, tstamp)) break; tag_size -= 4; entry.mtime = absl::FromUnixSeconds(tstamp); } if (flags & 0x02 && tag_size >= 4) { if (!ReadLittleEndian32(reader, tstamp)) break; tag_size -= 4; entry.atime = absl::FromUnixSeconds(tstamp); } if (flags & 0x04 && tag_size >= 4) { if (!ReadLittleEndian32(reader, tstamp)) break; tag_size -= 4; } return absl::OkStatus(); } while (false); return absl::InvalidArgumentError( "Failed to read unix timestamp extra field"); } absl::Status ReadExtraField(riegeli::Reader &reader, ZipEntry &entry) { uint16_t tag, tag_size; absl::Status status; while (reader.ok()) { if (!ReadLittleEndian16(reader, tag) || !ReadLittleEndian16(reader, tag_size)) { return absl::OkStatus(); } ABSL_LOG_IF(INFO, zip_logging) << std::hex << "extra tag " << tag << " size " << tag_size; auto pos = reader.pos(); switch (tag) { case 0x0001: status.Update(ReadExtraField_Zip64_0001(reader, tag_size, entry)); break; case 0x000d: status.Update(ReadExtraField_Unix_000D(reader, tag_size, entry)); break; case 0x000a: status.Update(ReadExtraField_NTFS_000A(reader, tag_size, entry)); break; case 0x5455: status.Update(ReadExtraField_Unix_5455(reader, tag_size, entry)); break; case 0x7875: break; default: break; } assert(reader.pos() <= pos + tag_size); reader.Seek(pos + tag_size); } return status; } } absl::Status ReadEOCD64Locator(riegeli::Reader &reader, ZipEOCD64Locator &locator) { if (!reader.Pull(ZipEOCD64Locator::kRecordSize)) { return absl::InvalidArgumentError( "ZIP EOCD64 Locator Entry insufficient data available"); } uint32_t signature; ReadLittleEndian32(reader, signature); if (signature != 0x07064b50) { return absl::InvalidArgumentError(absl::StrFormat( "Failed to read ZIP64 End of Central Directory Locator signature %08x", signature)); } uint32_t ignored32; ReadLittleEndian32(reader, locator.disk_number_with_cd); ReadLittleEndianSigned64(reader, locator.cd_offset); ReadLittleEndian32(reader, ignored32); if (locator.cd_offset < 0) { ABSL_LOG_IF(INFO, zip_logging && !reader.ok()) << reader.status(); return absl::InvalidArgumentError( "Failed to read ZIP64 End of Central Directory Locator"); } return absl::OkStatus(); } absl::Status ReadEOCD64(riegeli::Reader &reader, ZipEOCD &eocd) { if (!reader.Pull(ZipEOCD::kEOCD64RecordSize)) { return absl::InvalidArgumentError( "ZIP EOCD Entry insufficient data available"); } auto eocd_pos = reader.pos(); uint32_t signature; ReadLittleEndian32(reader, signature); if (signature != 0x06064b50) { return absl::InvalidArgumentError( "Failed to read ZIP64 Central Directory Entry signature"); } uint64_t eocd_size; ReadLittleEndian64(reader, eocd_size); if (eocd_size < 44 || !reader.Pull(eocd_size)) { return absl::InvalidArgumentError( "Failed to read ZIP64 End of Central Directory"); } riegeli::LimitingReader oecd64_reader( &reader, riegeli::LimitingReaderBase::Options().set_exact_length(eocd_size)); uint16_t version_madeby; uint16_t version_needed_to_extract; uint32_t disk_number; uint32_t disk_number_with_cd; uint64_t total_num_entries; ReadLittleEndian16(oecd64_reader, version_madeby); ReadLittleEndian16(oecd64_reader, version_needed_to_extract); ReadLittleEndian32(oecd64_reader, disk_number); ReadLittleEndian32(oecd64_reader, disk_number_with_cd); ReadLittleEndian64(oecd64_reader, eocd.num_entries); ReadLittleEndian64(oecd64_reader, total_num_entries); ReadLittleEndianSigned64(oecd64_reader, eocd.cd_size); ReadLittleEndianSigned64(oecd64_reader, eocd.cd_offset); if (disk_number != disk_number_with_cd || eocd.num_entries != total_num_entries || eocd.num_entries == std::numeric_limits<uint16_t>::max() || eocd.cd_size == std::numeric_limits<uint16_t>::max() || eocd.cd_offset == std::numeric_limits<uint32_t>::max() || eocd.cd_size < 0 || eocd.cd_offset < 0) { return absl::InvalidArgumentError( "Failed to read ZIP64 End of Central Directory"); } oecd64_reader.Seek(eocd_size); eocd.record_offset = eocd_pos; return absl::OkStatus(); } absl::Status ReadEOCD(riegeli::Reader &reader, ZipEOCD &eocd) { if (!reader.Pull(ZipEOCD::kEOCDRecordSize)) { return absl::InvalidArgumentError( "ZIP EOCD Entry insufficient data available"); } auto eocd_pos = reader.pos(); uint32_t signature; ReadLittleEndian32(reader, signature); if (signature != 0x06054b50) { return absl::InvalidArgumentError( "Failed to read ZIP Central Directory Entry signature"); } uint16_t disk_number; uint16_t disk_number_with_cd; uint16_t num_entries; uint16_t total_num_entries; uint32_t cd_size; uint32_t cd_offset; uint16_t comment_length; ReadLittleEndian16(reader, disk_number); ReadLittleEndian16(reader, disk_number_with_cd); ReadLittleEndian16(reader, num_entries); ReadLittleEndian16(reader, total_num_entries); ReadLittleEndian32(reader, cd_size); ReadLittleEndian32(reader, cd_offset); ReadLittleEndian16(reader, comment_length); if (num_entries != total_num_entries) { ABSL_LOG(INFO) << "ZIP num_entries mismatch " << num_entries << " vs " << total_num_entries; return absl::InvalidArgumentError( "Failed to read ZIP End of Central Directory"); } if (disk_number != disk_number_with_cd) { ABSL_LOG(INFO) << "ZIP disk_number mismatch " << disk_number << " vs " << disk_number_with_cd; return absl::InvalidArgumentError( "Failed to read ZIP End of Central Directory"); } if (comment_length > 0 && !reader.Read(comment_length, eocd.comment)) { return absl::InvalidArgumentError( "Failed to read ZIP End of Central Directory"); } reader.VerifyEnd(); if (!reader.status().ok()) { return absl::InvalidArgumentError( "Failed to read ZIP End of Central Directory"); } eocd.record_offset = eocd_pos; eocd.num_entries = num_entries; eocd.cd_size = cd_size; eocd.cd_offset = cd_offset; if (total_num_entries == std::numeric_limits<uint16_t>::max() || cd_offset == std::numeric_limits<uint32_t>::max()) { eocd.cd_offset = std::numeric_limits<uint32_t>::max(); } return absl::OkStatus(); } std::variant<absl::Status, int64_t> TryReadFullEOCD(riegeli::Reader &reader, ZipEOCD &eocd, int64_t offset_adjustment) { if (!internal::FindLast( reader, std::string_view(reinterpret_cast<const char *>(kEOCDLiteral), sizeof(kEOCDLiteral)))) { return absl::InvalidArgumentError("Failed to find valid ZIP EOCD"); } int64_t eocd_start = reader.pos(); ZipEOCD last_eocd{}; TENSORSTORE_RETURN_IF_ERROR(ReadEOCD(reader, last_eocd)); if (last_eocd.cd_offset != std::numeric_limits<uint32_t>::max()) { eocd = last_eocd; reader.Seek(eocd_start + 4); return absl::OkStatus(); } if (eocd_start < ZipEOCD64Locator::kRecordSize) { return absl::InvalidArgumentError("Block does not contain EOCD64 Locator"); } if (!reader.Seek(eocd_start - ZipEOCD64Locator::kRecordSize)) { if (!reader.ok() && !reader.status().ok()) { return MaybeAnnotateStatus(reader.status(), "Failed to read EOCD64 Locator"); } return absl::InvalidArgumentError("Failed to read EOCD64 Locator"); } ZipEOCD64Locator locator; TENSORSTORE_RETURN_IF_ERROR(ReadEOCD64Locator(reader, locator)); if (offset_adjustment < 0) { return locator.cd_offset; } auto target_pos = locator.cd_offset - offset_adjustment; if (target_pos < 0) { assert(offset_adjustment > 0); return locator.cd_offset; } if (!reader.Seek(target_pos)) { if (!reader.ok() && !reader.status().ok()) { return MaybeAnnotateStatus(reader.status(), "Failed to read EOCD64"); } return absl::InvalidArgumentError("Failed to read EOCD64"); } TENSORSTORE_RETURN_IF_ERROR(ReadEOCD64(reader, last_eocd)); eocd = last_eocd; reader.Seek(eocd_start + 4); return absl::OkStatus(); } absl::Status ReadCentralDirectoryEntry(riegeli::Reader &reader, ZipEntry &entry) { if (!reader.Pull(ZipEntry::kCentralRecordSize)) { return absl::InvalidArgumentError( "ZIP Central Directory Entry insufficient data available"); } uint32_t signature; ReadLittleEndian32(reader, signature); if (signature != 0x02014b50) { return absl::InvalidArgumentError( "Failed to read ZIP Central Directory Entry signature"); } uint32_t uncompressed_size = 0; uint32_t compressed_size; uint32_t relative_header_offset = 0; uint16_t file_name_length = 0; uint16_t extra_field_length = 0; uint16_t file_comment_length = 0; uint16_t last_mod_time; uint16_t last_mod_date; uint16_t ignored16; uint16_t compression_method; ReadLittleEndian16(reader, entry.version_madeby); ReadLittleEndian16(reader, ignored16); ReadLittleEndian16(reader, entry.flags); ReadLittleEndian16(reader, compression_method); ReadLittleEndian16(reader, last_mod_time); ReadLittleEndian16(reader, last_mod_date); ReadLittleEndian32(reader, entry.crc); ReadLittleEndian32(reader, compressed_size); ReadLittleEndian32(reader, uncompressed_size); ReadLittleEndian16(reader, file_name_length); ReadLittleEndian16(reader, extra_field_length); ReadLittleEndian16(reader, file_comment_length); ReadLittleEndian16(reader, ignored16); ReadLittleEndian16(reader, entry.internal_fa); ReadLittleEndian32(reader, entry.external_fa); ReadLittleEndian32(reader, relative_header_offset); entry.compressed_size = compressed_size; entry.uncompressed_size = uncompressed_size; entry.local_header_offset = relative_header_offset; entry.mtime = MakeMSDOSTime(last_mod_date, last_mod_time); entry.compression_method = static_cast<ZipCompression>(compression_method); if (file_name_length > 0 && !reader.Read(file_name_length, entry.filename)) { return absl::InvalidArgumentError( "Failed to read ZIP Central Directory Entry (filename)"); } assert(entry.filename.size() == file_name_length); if (extra_field_length > 0) { assert(extra_field_length > 4); riegeli::LimitingReader extra_reader( &reader, riegeli::LimitingReaderBase::Options().set_exact_length( extra_field_length)); extra_reader.SetReadAllHint(true); if (auto status = ReadExtraField(extra_reader, entry); !status.ok()) { return status; } extra_reader.Seek(extra_field_length); } if (file_comment_length > 0 && !reader.Read(file_comment_length, entry.comment)) { return absl::InvalidArgumentError( "Failed to read ZIP Central Directory Entry (comment)"); } entry.end_of_header_offset = reader.pos(); entry.estimated_read_size = std::max(entry.compressed_size, entry.uncompressed_size) + file_name_length + extra_field_length + ZipEntry::kLocalRecordSize + (entry.flags & kHasDataDescriptor ? 12 : 0); return absl::OkStatus(); } absl::Status ReadLocalEntry(riegeli::Reader &reader, ZipEntry &entry) { if (!reader.Pull(ZipEntry::kLocalRecordSize)) { return absl::InvalidArgumentError( "ZIP Local Entry insufficient data available"); } uint32_t signature; ReadLittleEndian32(reader, signature); if (signature != 0x04034b50) { return absl::InvalidArgumentError( "Failed to read ZIP Local Entry signature"); } uint16_t ignored16; uint16_t compression_method; uint16_t last_mod_time; uint16_t last_mod_date; uint32_t uncompressed_size; uint32_t compressed_size; uint16_t file_name_length = 0; uint16_t extra_field_length = 0; ReadLittleEndian16(reader, ignored16); ReadLittleEndian16(reader, entry.flags); ReadLittleEndian16(reader, compression_method); ReadLittleEndian16(reader, last_mod_time); ReadLittleEndian16(reader, last_mod_date); ReadLittleEndian32(reader, entry.crc); ReadLittleEndian32(reader, compressed_size); ReadLittleEndian32(reader, uncompressed_size); ReadLittleEndian16(reader, file_name_length); ReadLittleEndian16(reader, extra_field_length); entry.version_madeby = 0; entry.internal_fa = 0; entry.external_fa = 0; entry.local_header_offset = 0; entry.estimated_read_size = 0; entry.compressed_size = compressed_size; entry.uncompressed_size = uncompressed_size; entry.mtime = MakeMSDOSTime(last_mod_date, last_mod_time); entry.compression_method = static_cast<ZipCompression>(compression_method); if (file_name_length > 0 && !reader.Read(file_name_length, entry.filename)) { return absl::InvalidArgumentError( "Failed to read ZIP Local Entry (filename)"); } assert(entry.filename.size() == file_name_length); entry.end_of_header_offset = reader.pos() + extra_field_length; if (extra_field_length > 0) { assert(extra_field_length > 4); riegeli::LimitingReader extra_reader( &reader, riegeli::LimitingReaderBase::Options().set_exact_length( extra_field_length)); extra_reader.SetReadAllHint(true); if (auto status = ReadExtraField(extra_reader, entry); !status.ok()) { return status; } extra_reader.Seek(extra_field_length); } return absl::OkStatus(); } absl::Status ValidateEntryIsSupported(const ZipEntry &entry) { if (entry.flags & 0x01 || entry.flags & (uint16_t{1} << 6) || entry.flags & (uint16_t{1} << 13) || entry.compression_method == ZipCompression::kAes) { return absl::InvalidArgumentError( tensorstore::StrCat("ZIP encryption is not supported")); } if (entry.compression_method != ZipCompression::kStore && entry.compression_method != ZipCompression::kDeflate && entry.compression_method != ZipCompression::kBzip2 && entry.compression_method != ZipCompression::kZStd && entry.compression_method != ZipCompression::kXZ) { return absl::InvalidArgumentError( tensorstore::StrCat("ZIP compression method ", entry.compression_method, " is not supported")); } if (absl::EndsWith(entry.filename, "/")) { return absl::InvalidArgumentError("ZIP directory entries cannot be read"); } return absl::OkStatus(); } tensorstore::Result<std::unique_ptr<riegeli::Reader>> GetRawReader( riegeli::Reader *reader, ZipEntry &entry) { assert(reader != nullptr); if (entry.flags & kHasDataDescriptor) { const auto start_pos = reader->pos(); if (!reader->Skip(entry.compressed_size)) { return reader->status(); } static constexpr size_t kZipDataDescriptorSize = 16; static constexpr size_t kZip64DataDescriptorSize = 24; if (!reader->Pull(entry.is_zip64 ? kZip64DataDescriptorSize : kZipDataDescriptorSize)) { return absl::DataLossError("Failed to read ZIP DataDescriptor"); } uint32_t signature, crc32; ReadLittleEndian32(*reader, signature); ReadLittleEndian32(*reader, crc32); if (signature != 0x08074b50) { return absl::DataLossError(absl::StrFormat( "Failed to read ZIP DataDescriptor signature %08x", signature)); } if (entry.crc == 0) entry.crc = crc32; if (entry.is_zip64) { uint64_t compressed_size, uncompressed_size; ReadLittleEndian64(*reader, compressed_size); ReadLittleEndian64(*reader, uncompressed_size); if (entry.compressed_size == 0) entry.compressed_size = compressed_size; if (entry.uncompressed_size == 0) entry.uncompressed_size = uncompressed_size; } else { uint32_t compressed_size, uncompressed_size; ReadLittleEndian32(*reader, compressed_size); ReadLittleEndian32(*reader, uncompressed_size); if (entry.compressed_size == 0) { entry.compressed_size = compressed_size; } if (entry.uncompressed_size == 0) { entry.uncompressed_size = uncompressed_size; } } if (!reader->Seek(start_pos)) { return reader->status(); } } using Reader = riegeli::LimitingReader<riegeli::Reader *>; return std::make_unique<Reader>( reader, riegeli::LimitingReaderBase::Options().set_exact_length( entry.compressed_size)); } tensorstore::Result<std::unique_ptr<riegeli::Reader>> GetReader( riegeli::Reader *reader, ZipEntry &entry) { TENSORSTORE_ASSIGN_OR_RETURN(std::unique_ptr<riegeli::Reader> base_reader, GetRawReader(reader, entry)); switch (entry.compression_method) { case ZipCompression::kStore: { using PLReader = riegeli::PrefixLimitingReader<std::unique_ptr<riegeli::Reader>>; return std::make_unique<PLReader>( std::move(base_reader), PLReader::Options().set_base_pos(reader->pos())); } case ZipCompression::kDeflate: { using DeflateReader = riegeli::ZlibReader<std::unique_ptr<riegeli::Reader>>; return std::make_unique<DeflateReader>( std::move(base_reader), DeflateReader::Options().set_header(DeflateReader::Header::kRaw)); } case ZipCompression::kBzip2: { using Bzip2Reader = riegeli::Bzip2Reader<std::unique_ptr<riegeli::Reader>>; return std::make_unique<Bzip2Reader>(std::move(base_reader)); } case ZipCompression::kZStd: { using ZStdReader = riegeli::ZstdReader<std::unique_ptr<riegeli::Reader>>; return std::make_unique<ZStdReader>(std::move(base_reader)); } case ZipCompression::kXZ: { using XzReader = riegeli::XzReader<std::unique_ptr<riegeli::Reader>>; return std::make_unique<XzReader>( std::move(base_reader), XzReader::Options() .set_container(XzReader::Container::kXz) .set_concatenate(true) ); } default: break; } return absl::InvalidArgumentError(tensorstore::StrCat( "Unsupported ZIP compression method ", entry.compression_method)); } } }
#include "tensorstore/internal/compression/zip_details.h" #include <stddef.h> #include <stdint.h> #include <string> #include <string_view> #include <utility> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/flags/flag.h" #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/time/time.h" #include "riegeli/bytes/cord_reader.h" #include "riegeli/bytes/fd_reader.h" #include "riegeli/bytes/read_all.h" #include "riegeli/bytes/reader.h" #include "riegeli/bytes/string_reader.h" #include "tensorstore/internal/riegeli/find.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" using ::tensorstore::internal::FindFirst; using ::tensorstore::internal::StartsWith; using ::tensorstore::internal_zip::kCentralHeaderLiteral; using ::tensorstore::internal_zip::kEOCDLiteral; using ::tensorstore::internal_zip::kLocalHeaderLiteral; using ::tensorstore::internal_zip::ReadCentralDirectoryEntry; using ::tensorstore::internal_zip::ReadEOCD; using ::tensorstore::internal_zip::ReadEOCD64Locator; using ::tensorstore::internal_zip::ReadLocalEntry; using ::tensorstore::internal_zip::TryReadFullEOCD; using ::tensorstore::internal_zip::ZipCompression; using ::tensorstore::internal_zip::ZipEntry; using ::tensorstore::internal_zip::ZipEOCD; using ::tensorstore::internal_zip::ZipEOCD64Locator; using ::tensorstore::internal_zip::kCentralHeaderLiteral; using ::tensorstore::internal_zip::kEOCD64Literal; using ::tensorstore::internal_zip::kEOCD64LocatorLiteral; using ::tensorstore::internal_zip::kEOCDLiteral; using ::tensorstore::internal_zip::kLocalHeaderLiteral; ABSL_FLAG(std::string, tensorstore_test_data, "", "Path to internal/compression/testdata/data.zip"); namespace { absl::Cord GetTestZipFileData() { ABSL_CHECK(!absl::GetFlag(FLAGS_tensorstore_test_data).empty()); absl::Cord filedata; TENSORSTORE_CHECK_OK(riegeli::ReadAll( riegeli::FdReader(absl::GetFlag(FLAGS_tensorstore_test_data)), filedata)); ABSL_CHECK_EQ(filedata.size(), 319482); return filedata; } static constexpr unsigned char kMinimalZip[] = { 0x50, 0x4b, 0x5, 0x6, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}; static constexpr unsigned char kZip64OneEmptyFile[] = { 0x50, 0x4b, 0x03, 0x04, 0x2d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x4f, 0x72, 0x5b, 0x40, 0x07, 0xa1, 0xea, 0xdd, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x01, 0x00, 0x14, 0x00, 0x2d, 0x01, 0x00, 0x10, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x61, 0x0a, 0x50, 0x4b, 0x01, 0x02, 0x1e, 0x03, 0x2d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x4f, 0x72, 0x5b, 0x40, 0x07, 0xa1, 0xea, 0xdd, 0x02, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00, 0x00, 0x2d, 0x50, 0x4b, 0x06, 0x06, 0x2c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1e, 0x03, 0x2d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x2f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x35, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x50, 0x4b, 0x06, 0x07, 0x00, 0x00, 0x00, 0x00, 0x64, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x50, 0x4b, 0x05, 0x06, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x2f, 0x00, 0x00, 0x00, 0x35, 0x00, 0x00, 0x00, 0x00, 0x00, }; static constexpr unsigned char kZipTest2[] = { 0x50, 0x4b, 0x03, 0x04, 0x0a, 0x00, 0x02, 0x00, 0x00, 0x00, 0xd5, 0x7d, 0x46, 0x2f, 0xc6, 0x35, 0xb9, 0x3b, 0x05, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x04, 0x00, 0x15, 0x00, 0x74, 0x65, 0x73, 0x74, 0x55, 0x54, 0x09, 0x00, 0x03, 0x41, 0x72, 0x81, 0x3f, 0x41, 0x72, 0x81, 0x3f, 0x55, 0x78, 0x04, 0x00, 0x64, 0x00, 0x14, 0x00, 0x74, 0x65, 0x73, 0x74, 0x0a, 0x50, 0x4b, 0x03, 0x04, 0x0a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7b, 0x98, 0x2b, 0x32, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x15, 0x00, 0x74, 0x65, 0x73, 0x74, 0x64, 0x69, 0x72, 0x2f, 0x55, 0x54, 0x09, 0x00, 0x03, 0x09, 0x15, 0xe4, 0x41, 0x9a, 0x15, 0xe4, 0x41, 0x55, 0x78, 0x04, 0x00, 0xe8, 0x03, 0x64, 0x00, 0x50, 0x4b, 0x03, 0x04, 0x0a, 0x00, 0x02, 0x00, 0x00, 0x00, 0xd5, 0x7d, 0x46, 0x2f, 0xc6, 0x35, 0xb9, 0x3b, 0x05, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x0d, 0x00, 0x15, 0x00, 0x74, 0x65, 0x73, 0x74, 0x64, 0x69, 0x72, 0x2f, 0x74, 0x65, 0x73, 0x74, 0x32, 0x55, 0x54, 0x09, 0x00, 0x03, 0x41, 0x72, 0x81, 0x3f, 0x41, 0x72, 0x81, 0x3f, 0x55, 0x78, 0x04, 0x00, 0xe8, 0x03, 0x64, 0x00, 0x74, 0x65, 0x73, 0x74, 0x0a, 0x50, 0x4b, 0x01, 0x02, 0x17, 0x03, 0x0a, 0x00, 0x02, 0x00, 0x00, 0x00, 0xd5, 0x7d, 0x46, 0x2f, 0xc6, 0x35, 0xb9, 0x3b, 0x05, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x04, 0x00, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xb4, 0x81, 0x00, 0x00, 0x00, 0x00, 0x74, 0x65, 0x73, 0x74, 0x55, 0x54, 0x05, 0x00, 0x03, 0x41, 0x72, 0x81, 0x3f, 0x55, 0x78, 0x00, 0x00, 0x50, 0x4b, 0x01, 0x02, 0x17, 0x03, 0x0a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7b, 0x98, 0x2b, 0x32, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0xed, 0x41, 0x3c, 0x00, 0x00, 0x00, 0x74, 0x65, 0x73, 0x74, 0x64, 0x69, 0x72, 0x2f, 0x55, 0x54, 0x05, 0x00, 0x03, 0x09, 0x15, 0xe4, 0x41, 0x55, 0x78, 0x00, 0x00, 0x50, 0x4b, 0x01, 0x02, 0x17, 0x03, 0x0a, 0x00, 0x02, 0x00, 0x00, 0x00, 0xd5, 0x7d, 0x46, 0x2f, 0xc6, 0x35, 0xb9, 0x3b, 0x05, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x0d, 0x00, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xb4, 0x81, 0x77, 0x00, 0x00, 0x00, 0x74, 0x65, 0x73, 0x74, 0x64, 0x69, 0x72, 0x2f, 0x74, 0x65, 0x73, 0x74, 0x32, 0x55, 0x54, 0x05, 0x00, 0x03, 0x41, 0x72, 0x81, 0x3f, 0x55, 0x78, 0x00, 0x00, 0x50, 0x4b, 0x05, 0x06, 0x00, 0x00, 0x00, 0x00, 0x03, 0x00, 0x03, 0x00, 0xca, 0x00, 0x00, 0x00, 0xbc, 0x00, 0x00, 0x00, 0x00, 0x00, }; template <size_t N> std::string_view StringViewOf(const unsigned char (&str)[N]) { return std::string_view(reinterpret_cast<const char*>(str), N); } TEST(ZipDetailsTest, DecodeEOCD) { riegeli::StringReader string_reader(StringViewOf(kMinimalZip)); EXPECT_TRUE(FindFirst(string_reader, StringViewOf(kEOCDLiteral))); ZipEOCD eocd; ASSERT_THAT(ReadEOCD(string_reader, eocd), ::tensorstore::IsOk()); EXPECT_EQ(eocd.num_entries, 0); EXPECT_EQ(eocd.cd_size, 0); EXPECT_EQ(eocd.cd_offset, 0); } TEST(ZipDetailsTest, ReadEOCDZip64) { riegeli::StringReader string_reader(StringViewOf(kZip64OneEmptyFile)); EXPECT_TRUE(FindFirst(string_reader, StringViewOf(kEOCDLiteral))); ZipEOCD eocd; ASSERT_THAT(ReadEOCD(string_reader, eocd), ::tensorstore::IsOk()); EXPECT_EQ(eocd.num_entries, 1); EXPECT_EQ(eocd.cd_size, 47); EXPECT_EQ(eocd.cd_offset, 53); } TEST(ZipDetailsTest, ReadEOCD6LocatorZip64) { riegeli::StringReader string_reader(StringViewOf(kZip64OneEmptyFile)); EXPECT_TRUE(FindFirst(string_reader, StringViewOf(kEOCD64LocatorLiteral))); ZipEOCD64Locator eocd64_locator; ASSERT_THAT(ReadEOCD64Locator(string_reader, eocd64_locator), ::tensorstore::IsOk()); EXPECT_EQ(eocd64_locator.disk_number_with_cd, 0); EXPECT_EQ(eocd64_locator.cd_offset, 100); } TEST(ZipDetailsTest, ReadEOCD64Zip64) { riegeli::StringReader string_reader(StringViewOf(kZip64OneEmptyFile)); EXPECT_TRUE(FindFirst(string_reader, StringViewOf(kEOCD64Literal))); EXPECT_EQ(100, string_reader.pos()); ZipEOCD eocd64; ASSERT_THAT(ReadEOCD64(string_reader, eocd64), ::tensorstore::IsOk()); EXPECT_EQ(eocd64.num_entries, 1); EXPECT_EQ(eocd64.cd_size, 47); EXPECT_EQ(eocd64.cd_offset, 53); } TEST(ZipDetailsTest, TryReadFullEOCDZip64) { riegeli::StringReader string_reader(StringViewOf(kZip64OneEmptyFile)); EXPECT_TRUE(FindFirst(string_reader, StringViewOf(kEOCD64Literal))); EXPECT_EQ(100, string_reader.pos()); ZipEOCD eocd64; ASSERT_THAT(TryReadFullEOCD(string_reader, eocd64, 0), ::testing::VariantWith<absl::Status>(::tensorstore::IsOk())); EXPECT_EQ(eocd64.num_entries, 1); EXPECT_EQ(eocd64.cd_size, 47); EXPECT_EQ(eocd64.cd_offset, 53); } TEST(ZipDetailsTest, ReadCentralHeaderZip64) { riegeli::StringReader string_reader(StringViewOf(kZip64OneEmptyFile)); EXPECT_TRUE(FindFirst(string_reader, StringViewOf(kCentralHeaderLiteral))); EXPECT_EQ(53, string_reader.pos()); ZipEntry central_header; ASSERT_THAT(ReadCentralDirectoryEntry(string_reader, central_header), ::tensorstore::IsOk()); EXPECT_EQ(central_header.version_madeby, 798); EXPECT_EQ(central_header.flags, 0); EXPECT_EQ(central_header.compression_method, ZipCompression::kStore); EXPECT_EQ(central_header.crc, 3723141383); EXPECT_EQ(central_header.compressed_size, 2); EXPECT_EQ(central_header.uncompressed_size, 2); EXPECT_EQ(central_header.internal_fa, 1); EXPECT_EQ(central_header.external_fa, 293601280); EXPECT_EQ(central_header.local_header_offset, 0); EXPECT_EQ(central_header.filename, "-"); EXPECT_EQ(central_header.comment, ""); EXPECT_GT(central_header.mtime, absl::UnixEpoch()); } TEST(ZipDetailsTest, ReadLocalHeaderZip64) { riegeli::StringReader string_reader( reinterpret_cast<const char*>(kZip64OneEmptyFile), sizeof(kZip64OneEmptyFile)); EXPECT_TRUE(FindFirst(string_reader, StringViewOf(kLocalHeaderLiteral))); ZipEntry local_header; ASSERT_THAT(ReadLocalEntry(string_reader, local_header), ::tensorstore::IsOk()); EXPECT_EQ(local_header.version_madeby, 0); EXPECT_EQ(local_header.flags, 0); EXPECT_EQ(local_header.compression_method, ZipCompression::kStore); EXPECT_EQ(local_header.crc, 3723141383); EXPECT_EQ(local_header.compressed_size, 2); EXPECT_EQ(local_header.uncompressed_size, 2); EXPECT_EQ(local_header.internal_fa, 0); EXPECT_EQ(local_header.external_fa, 0); EXPECT_EQ(local_header.local_header_offset, 0); EXPECT_EQ(local_header.filename, "-"); EXPECT_EQ(local_header.comment, ""); EXPECT_GT(local_header.mtime, absl::UnixEpoch()); } TEST(ZipDetailsTest, Decode) { riegeli::StringReader string_reader(reinterpret_cast<const char*>(kZipTest2), sizeof(kZipTest2)); EXPECT_TRUE(FindFirst(string_reader, StringViewOf(kEOCDLiteral))); ZipEOCD eocd; ASSERT_THAT(ReadEOCD(string_reader, eocd), ::tensorstore::IsOk()); EXPECT_EQ(eocd.num_entries, 3); EXPECT_EQ(eocd.cd_size, 202); EXPECT_EQ(eocd.cd_offset, 188); string_reader.Seek(eocd.cd_offset); std::vector<ZipEntry> central_headers; for (size_t i = 0; i < eocd.num_entries; ++i) { EXPECT_TRUE(StartsWith(string_reader, StringViewOf(kCentralHeaderLiteral))) << i; ZipEntry header; ASSERT_THAT(ReadCentralDirectoryEntry(string_reader, header), ::tensorstore::IsOk()); central_headers.push_back(std::move(header)); } std::vector<ZipEntry> local_headers; for (const auto& header : central_headers) { ZipEntry local_header; string_reader.Seek(header.local_header_offset); EXPECT_TRUE(StartsWith(string_reader, StringViewOf(kLocalHeaderLiteral))); ASSERT_THAT(ReadLocalEntry(string_reader, local_header), ::tensorstore::IsOk()); local_headers.push_back(std::move(local_header)); absl::Cord data; string_reader.Read(local_headers.back().compressed_size, data); } ASSERT_THAT(local_headers.size(), 3); for (size_t i = 0; i < local_headers.size(); ++i) { EXPECT_EQ(local_headers[i].flags, central_headers[i].flags); EXPECT_EQ(local_headers[i].compression_method, central_headers[i].compression_method); EXPECT_EQ(local_headers[i].crc, central_headers[i].crc); EXPECT_EQ(local_headers[i].compressed_size, central_headers[i].compressed_size); EXPECT_EQ(local_headers[i].uncompressed_size, central_headers[i].uncompressed_size); EXPECT_EQ(local_headers[i].filename, central_headers[i].filename); } } struct ZipDirectory { ZipEOCD eocd; std::vector<ZipEntry> entries; }; absl::Status ReadDirectory(riegeli::Reader& reader, ZipDirectory& directory) { int64_t initial_pos = reader.pos(); auto response = tensorstore::internal_zip::TryReadFullEOCD(reader, directory.eocd, -1); if (std::holds_alternative<int64_t>(response)) { reader.Seek(initial_pos); response = tensorstore::internal_zip::TryReadFullEOCD(reader, directory.eocd, 0); } if (auto* status = std::get_if<absl::Status>(&response); status != nullptr && !status->ok()) { return std::move(*status); } if (std::holds_alternative<int64_t>(response)) { return absl::InternalError("ZIP incomplete"); } reader.Seek(directory.eocd.cd_offset); std::vector<ZipEntry> central_headers; for (size_t i = 0; i < directory.eocd.num_entries; ++i) { ZipEntry header{}; if (auto entry_status = ReadCentralDirectoryEntry(reader, header); !entry_status.ok()) { return entry_status; } directory.entries.push_back(std::move(header)); } return absl::OkStatus(); } TEST(ZipDetailsTest, ReadDirectory) { riegeli::StringReader string_reader(reinterpret_cast<const char*>(kZipTest2), sizeof(kZipTest2)); ZipDirectory dir; EXPECT_THAT(ReadDirectory(string_reader, dir), ::tensorstore::IsOk()); std::vector<ZipEntry> local_headers; for (const auto& header : dir.entries) { ZipEntry local_header; string_reader.Seek(header.local_header_offset); EXPECT_TRUE(StartsWith(string_reader, StringViewOf(kLocalHeaderLiteral))); EXPECT_THAT(ReadLocalEntry(string_reader, local_header), ::tensorstore::IsOk()); local_headers.push_back(std::move(local_header)); } EXPECT_THAT(local_headers.size(), 3); for (size_t i = 0; i < local_headers.size(); ++i) { EXPECT_EQ(local_headers[i].flags, dir.entries[i].flags); EXPECT_EQ(local_headers[i].compression_method, dir.entries[i].compression_method); EXPECT_EQ(local_headers[i].crc, dir.entries[i].crc); EXPECT_EQ(local_headers[i].compressed_size, dir.entries[i].compressed_size); EXPECT_EQ(local_headers[i].uncompressed_size, dir.entries[i].uncompressed_size); EXPECT_EQ(local_headers[i].filename, dir.entries[i].filename); } TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto reader, GetReader(&string_reader, local_headers[0])); std::string data; EXPECT_THAT(riegeli::ReadAll(*reader, data), ::tensorstore::IsOk()); EXPECT_EQ(data, "test\n"); EXPECT_EQ(data.size(), local_headers[0].uncompressed_size); } TEST(ZipDetailsTest, Xz) { static constexpr unsigned char kXZ[] = { 0x50, 0x4b, 0x03, 0x04, 0x14, 0x00, 0x00, 0x00, 0x5f, 0x00, 0x89, 0x8a, 0x36, 0x4f, 0x28, 0xe2, 0xde, 0xa0, 0x48, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x0f, 0x00, 0x00, 0x00, 0x61, 0x62, 0x61, 0x63, 0x2d, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x2e, 0x74, 0x78, 0x74, 0xfd, 0x37, 0x7a, 0x58, 0x5a, 0x00, 0x00, 0x00, 0xff, 0x12, 0xd9, 0x41, 0x02, 0x00, 0x21, 0x01, 0x00, 0x00, 0x00, 0x00, 0x37, 0x27, 0x97, 0xd6, 0xe0, 0x00, 0x3f, 0x00, 0x11, 0x5e, 0x00, 0x30, 0xec, 0xbd, 0xa0, 0xa3, 0x19, 0xd7, 0x9c, 0xf2, 0xec, 0x93, 0x6b, 0xfe, 0x81, 0xb3, 0x7a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x25, 0x40, 0x5c, 0x24, 0xa9, 0xbe, 0x06, 0x72, 0x9e, 0x7a, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x59, 0x5a, 0x50, 0x4b, 0x01, 0x02, 0x14, 0x00, 0x14, 0x00, 0x00, 0x00, 0x5f, 0x00, 0x89, 0x8a, 0x36, 0x4f, 0x28, 0xe2, 0xde, 0xa0, 0x48, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x61, 0x62, 0x61, 0x63, 0x2d, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x2e, 0x74, 0x78, 0x74, 0x50, 0x4b, 0x05, 0x06, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x3d, 0x00, 0x00, 0x00, 0x75, 0x00, 0x00, 0x00, 0x00, 0x00, }; riegeli::StringReader string_reader(reinterpret_cast<const char*>(kXZ), sizeof(kXZ)); ZipDirectory dir; ASSERT_THAT(ReadDirectory(string_reader, dir), ::tensorstore::IsOk()); EXPECT_THAT(dir.entries.size(), ::testing::Gt(0)); ZipEntry local_header; string_reader.Seek(dir.entries[0].local_header_offset); EXPECT_TRUE(StartsWith(string_reader, StringViewOf(kLocalHeaderLiteral))); ASSERT_THAT(ReadLocalEntry(string_reader, local_header), ::tensorstore::IsOk()); EXPECT_EQ(local_header.compression_method, ZipCompression::kXZ); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto reader, GetReader(&string_reader, local_header)); std::string data; EXPECT_THAT(riegeli::ReadAll(*reader, data), ::tensorstore::IsOk()); EXPECT_EQ(data, "aaaaaaaaaaaaaa\r\nbbbbbbbbbbbbbb\r\naaaaaaaaaaaaaa\r\ncccccccccccc" "cc\r\n"); EXPECT_EQ(data.size(), local_header.uncompressed_size); } TEST(ZipDetailsTest, Zstd) { static constexpr unsigned char kZStd[] = { 0x50, 0x4b, 0x03, 0x04, 0x3f, 0x00, 0x00, 0x00, 0x5d, 0x00, 0xa2, 0x69, 0xf2, 0x50, 0x28, 0xe2, 0xde, 0xa0, 0x20, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x0f, 0x00, 0x00, 0x00, 0x61, 0x62, 0x61, 0x63, 0x2d, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x2e, 0x74, 0x78, 0x74, 0x28, 0xb5, 0x2f, 0xfd, 0x20, 0x40, 0xbd, 0x00, 0x00, 0x68, 0x61, 0x61, 0x0d, 0x0a, 0x62, 0x0d, 0x0a, 0x61, 0x0d, 0x0a, 0x63, 0x0d, 0x0a, 0x04, 0x10, 0x00, 0xc7, 0x38, 0xc6, 0x31, 0x38, 0x2c, 0x50, 0x4b, 0x01, 0x02, 0x3f, 0x00, 0x3f, 0x00, 0x00, 0x00, 0x5d, 0x00, 0xa2, 0x69, 0xf2, 0x50, 0x28, 0xe2, 0xde, 0xa0, 0x20, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x61, 0x62, 0x61, 0x63, 0x2d, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x2e, 0x74, 0x78, 0x74, 0x50, 0x4b, 0x05, 0x06, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x3d, 0x00, 0x00, 0x00, 0x4d, 0x00, 0x00, 0x00, 0x00, 0x00, }; riegeli::StringReader string_reader(StringViewOf(kZStd)); ZipDirectory dir; ASSERT_THAT(ReadDirectory(string_reader, dir), ::tensorstore::IsOk()); EXPECT_THAT(dir.entries.size(), ::testing::Gt(0)); ZipEntry local_header; string_reader.Seek(dir.entries[0].local_header_offset); EXPECT_TRUE(StartsWith(string_reader, StringViewOf(kLocalHeaderLiteral))); ASSERT_THAT(ReadLocalEntry(string_reader, local_header), ::tensorstore::IsOk()); EXPECT_EQ(local_header.compression_method, ZipCompression::kZStd); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto reader, GetReader(&string_reader, local_header)); std::string data; EXPECT_THAT(riegeli::ReadAll(*reader, data), ::tensorstore::IsOk()); EXPECT_EQ(data, "aaaaaaaaaaaaaa\r\nbbbbbbbbbbbbbb\r\naaaaaaaaaaaaaa\r\ncccccccccccc" "cc\r\n"); EXPECT_EQ(data.size(), local_header.uncompressed_size); } TEST(ZipDetailsTest, Bzip2) { static constexpr unsigned char kBzip2[] = { 0x50, 0x4b, 0x03, 0x04, 0x0a, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x54, 0x74, 0x45, 0x3c, 0x48, 0x40, 0x35, 0xb0, 0x2f, 0x00, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x00, 0x0f, 0x00, 0x00, 0x00, 0x61, 0x62, 0x61, 0x63, 0x2d, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x2e, 0x74, 0x78, 0x74, 0x42, 0x5a, 0x68, 0x39, 0x31, 0x41, 0x59, 0x26, 0x53, 0x59, 0x03, 0x64, 0xc8, 0x04, 0x00, 0x00, 0x07, 0x41, 0x00, 0x00, 0x10, 0x38, 0x00, 0x20, 0x00, 0x30, 0xcd, 0x34, 0x12, 0x6a, 0x7a, 0x95, 0x10, 0x26, 0x4e, 0xcd, 0x9f, 0x17, 0x72, 0x45, 0x38, 0x50, 0x90, 0x03, 0x64, 0xc8, 0x04, 0x50, 0x4b, 0x01, 0x02, 0x1e, 0x03, 0x0a, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x54, 0x74, 0x45, 0x3c, 0x48, 0x40, 0x35, 0xb0, 0x2f, 0x00, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x00, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xfd, 0x81, 0x00, 0x00, 0x00, 0x00, 0x61, 0x62, 0x61, 0x63, 0x2d, 0x72, 0x65, 0x70, 0x65, 0x61, 0x74, 0x2e, 0x74, 0x78, 0x74, 0x50, 0x4b, 0x05, 0x06, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x3d, 0x00, 0x00, 0x00, 0x5c, 0x00, 0x00, 0x00, 0x00, 0x00, }; riegeli::StringReader string_reader(StringViewOf(kBzip2)); ZipDirectory dir; ASSERT_THAT(ReadDirectory(string_reader, dir), ::tensorstore::IsOk()); EXPECT_THAT(dir.entries.size(), ::testing::Gt(0)); ZipEntry local_header; string_reader.Seek(dir.entries[0].local_header_offset); EXPECT_TRUE(StartsWith(string_reader, StringViewOf(kLocalHeaderLiteral))); ASSERT_THAT(ReadLocalEntry(string_reader, local_header), ::tensorstore::IsOk()); EXPECT_EQ(local_header.compression_method, ZipCompression::kBzip2); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto reader, GetReader(&string_reader, local_header)); std::string data; EXPECT_THAT(riegeli::ReadAll(*reader, data), ::tensorstore::IsOk()); EXPECT_EQ(data, "aaaaaaaaaaaaaa\nbbbbbbbbbbbbbb\naaaaaaaaaaaaaa\ncccccccccccccc\n"); EXPECT_EQ(data.size(), local_header.uncompressed_size); } TEST(ZipDetailsTest, Deflate) { static constexpr unsigned char kDeflate[] = { 0x50, 0x4b, 0x03, 0x04, 0x14, 0x00, 0x00, 0x00, 0x08, 0x00, 0x56, 0x5e, 0x9c, 0x40, 0xb0, 0x91, 0x01, 0x58, 0x12, 0x00, 0x00, 0x00, 0x13, 0x00, 0x00, 0x00, 0x0b, 0x00, 0x00, 0x00, 0x66, 0x69, 0x72, 0x73, 0x74, 0x73, 0x65, 0x63, 0x6f, 0x6e, 0x64, 0x4b, 0xcb, 0x2c, 0x2a, 0x2e, 0x29, 0x48, 0x2c, 0x2a, 0x29, 0x4e, 0x4d, 0xce, 0xcf, 0x4b, 0x01, 0xb1, 0x00, 0x50, 0x4b, 0x01, 0x02, 0x1e, 0x03, 0x14, 0x00, 0x00, 0x00, 0x08, 0x00, 0x56, 0x5e, 0x9c, 0x40, 0xb0, 0x91, 0x01, 0x58, 0x12, 0x00, 0x00, 0x00, 0x13, 0x00, 0x00, 0x00, 0x0b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xb4, 0x81, 0x00, 0x00, 0x00, 0x00, 0x66, 0x69, 0x72, 0x73, 0x74, 0x73, 0x65, 0x63, 0x6f, 0x6e, 0x64, 0x50, 0x4b, 0x05, 0x06, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x39, 0x00, 0x00, 0x00, 0x3b, 0x00, 0x00, 0x00, 0x00, 0x00, }; riegeli::StringReader string_reader(StringViewOf(kDeflate)); ZipDirectory dir; ASSERT_THAT(ReadDirectory(string_reader, dir), ::tensorstore::IsOk()); EXPECT_THAT(dir.entries.size(), ::testing::Gt(0)); ZipEntry local_header; string_reader.Seek(dir.entries[0].local_header_offset); EXPECT_TRUE(StartsWith(string_reader, StringViewOf(kLocalHeaderLiteral))); ASSERT_THAT(ReadLocalEntry(string_reader, local_header), ::tensorstore::IsOk()); EXPECT_EQ(local_header.compression_method, ZipCompression::kDeflate); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto reader, GetReader(&string_reader, local_header)); std::string data; EXPECT_THAT(riegeli::ReadAll(*reader, data), ::tensorstore::IsOk()); EXPECT_EQ(data, "firstpartsecondpart"); EXPECT_EQ(data.size(), local_header.uncompressed_size); } TEST(TestdataTest, HeaderPositions) { riegeli::CordReader reader(GetTestZipFileData()); EXPECT_TRUE(FindFirst(reader, StringViewOf(kLocalHeaderLiteral))); EXPECT_TRUE(StartsWith(reader, StringViewOf(kLocalHeaderLiteral))); EXPECT_THAT(reader.pos(), 0); reader.Skip(4); EXPECT_TRUE(FindFirst(reader, StringViewOf(kLocalHeaderLiteral))); EXPECT_TRUE(StartsWith(reader, StringViewOf(kLocalHeaderLiteral))); EXPECT_THAT(reader.pos(), 0x19FA6); reader.Skip(4); EXPECT_TRUE(FindFirst(reader, StringViewOf(kLocalHeaderLiteral))); EXPECT_TRUE(StartsWith(reader, StringViewOf(kLocalHeaderLiteral))); EXPECT_THAT(reader.pos(), 0x33F4D); reader.Seek(0); EXPECT_TRUE(FindFirst(reader, StringViewOf(kCentralHeaderLiteral))); EXPECT_TRUE(StartsWith(reader, StringViewOf(kCentralHeaderLiteral))); EXPECT_THAT(reader.pos(), 0x4DEF3); reader.Skip(4); EXPECT_TRUE(FindFirst(reader, StringViewOf(kCentralHeaderLiteral))); EXPECT_TRUE(StartsWith(reader, StringViewOf(kCentralHeaderLiteral))); EXPECT_THAT(reader.pos(), 0x4DF43); reader.Skip(4); EXPECT_TRUE(FindFirst(reader, StringViewOf(kCentralHeaderLiteral))); EXPECT_TRUE(StartsWith(reader, StringViewOf(kCentralHeaderLiteral))); EXPECT_THAT(reader.pos(), 0x4DF94); reader.Seek(0); EXPECT_TRUE(FindFirst(reader, StringViewOf(kEOCDLiteral))); EXPECT_TRUE(StartsWith(reader, StringViewOf(kEOCDLiteral))); EXPECT_THAT(reader.pos(), 0x4DFE4); } TEST(TestdataTest, LocalHeaderEntry) { riegeli::CordReader reader(GetTestZipFileData()); ZipEntry header; EXPECT_TRUE(StartsWith(reader, StringViewOf(kLocalHeaderLiteral))); EXPECT_THAT(reader.pos(), 0); ASSERT_THAT(ReadLocalEntry(reader, header), ::tensorstore::IsOk()); EXPECT_THAT(header.version_madeby, 0); EXPECT_THAT(header.flags, 0x2); EXPECT_THAT(header.compression_method, ZipCompression::kDeflate); EXPECT_THAT(header.crc, 0x94EE1E3E); EXPECT_THAT(header.compressed_size, 0x00019F62); EXPECT_THAT(header.uncompressed_size, 0x00019F6F); EXPECT_THAT(header.internal_fa, 0); EXPECT_THAT(header.external_fa, 0); EXPECT_THAT(header.local_header_offset, 0); EXPECT_THAT(header.end_of_header_offset, 68); EXPECT_THAT(header.filename, "data/a.png"); EXPECT_THAT(header.comment, ""); EXPECT_THAT(header.is_zip64, false); } TEST(TestdataTest, CentralHeaderEntry) { riegeli::CordReader reader(GetTestZipFileData()); reader.Seek(0x4DEF3); ASSERT_TRUE(FindFirst(reader, StringViewOf(kCentralHeaderLiteral))); EXPECT_TRUE(StartsWith(reader, StringViewOf(kCentralHeaderLiteral))); EXPECT_THAT(reader.pos(), 0x4DEF3); ZipEntry header{}; ASSERT_THAT(ReadCentralDirectoryEntry(reader, header), ::tensorstore::IsOk()); EXPECT_THAT(header.flags, 0x2); EXPECT_THAT(header.compression_method, ZipCompression::kDeflate); EXPECT_THAT(header.crc, 0x94EE1E3E); EXPECT_THAT(header.compressed_size, 0x00019F62); EXPECT_THAT(header.uncompressed_size, 0x00019F6F); EXPECT_THAT(header.local_header_offset, 0); EXPECT_THAT(header.end_of_header_offset, 24); EXPECT_THAT(header.filename, "data/a.png"); EXPECT_THAT(header.comment, ""); EXPECT_THAT(header.is_zip64, false); EXPECT_THAT(header.version_madeby, 0x031E); EXPECT_THAT(header.internal_fa, 0); EXPECT_THAT(header.external_fa, 0x81240001); EXPECT_THAT(header.local_header_offset, 0); EXPECT_THAT(header.estimated_read_size, 106415); } TEST(TestdataTest, EOCD) { riegeli::CordReader reader(GetTestZipFileData()); ASSERT_TRUE(FindFirst(reader, StringViewOf(kEOCDLiteral))); EXPECT_TRUE(StartsWith(reader, StringViewOf(kEOCDLiteral))); EXPECT_THAT(reader.pos(), 0x4DFE4); ::tensorstore::internal_zip::ZipEOCD eocd{}; ASSERT_THAT(ReadEOCD(reader, eocd), ::tensorstore::IsOk()); EXPECT_THAT(eocd.num_entries, 3); EXPECT_THAT(eocd.cd_size, 0x000000F1); EXPECT_THAT(eocd.cd_offset, 0x0004DEF3); EXPECT_THAT(eocd.comment, ""); } TEST(TestdataTest, FileData) { riegeli::CordReader reader(GetTestZipFileData()); ZipEntry header; ASSERT_THAT(ReadLocalEntry(reader, header), ::tensorstore::IsOk()); EXPECT_THAT(reader.pos(), 0x0044); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto entry_reader, tensorstore::internal_zip::GetReader(&reader, header)); std::string data; EXPECT_THAT(riegeli::ReadAll(*entry_reader, data), ::tensorstore::IsOk()); EXPECT_EQ(data.size(), header.uncompressed_size); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/compression/zip_details.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/compression/zip_details_test.cc
4f887a6430414cd6088e1743555015b10f116d50
31510ab2-ecd4-4755-b6bd-8f4bd89138d6
cpp
google/tensorstore
raw_bytes_hex
tensorstore/internal/json_binding/raw_bytes_hex.cc
tensorstore/internal/json_binding/raw_bytes_hex_test.cc
#include "tensorstore/internal/json_binding/raw_bytes_hex.h" #include <string_view> #include "absl/status/status.h" #include "absl/strings/escaping.h" #include "absl/strings/str_format.h" namespace tensorstore { namespace internal_json_binding { namespace { bool IsHexString(std::string_view s) { for (char c : s) { if (!(c >= '0' && c <= '9') && !(c >= 'a' && c <= 'f') && !(c >= 'A' && c <= 'F')) { return false; } } return true; } } namespace raw_bytes_hex_binder { absl::Status RawBytesHexImpl::operator()(std::true_type is_loading, NoOptions, void* obj, ::nlohmann::json* j) const { auto* s = j->get_ptr<const std::string*>(); if (!s || s->size() != 2 * num_bytes || !internal_json_binding::IsHexString(*s)) { return absl::InvalidArgumentError( absl::StrFormat("Expected string with %d hex digits, but received: %s", num_bytes * 2, j->dump())); } std::string temp = absl::HexStringToBytes(*s); assert(temp.size() == num_bytes); std::memcpy(obj, temp.data(), num_bytes); return absl::OkStatus(); } absl::Status RawBytesHexImpl::operator()(std::false_type is_loading, NoOptions, const void* obj, ::nlohmann::json* j) const { *j = absl::BytesToHexString( absl::string_view(reinterpret_cast<const char*>(obj), num_bytes)); return absl::OkStatus(); } } } }
#include "tensorstore/internal/json_binding/raw_bytes_hex.h" #include <string> #include <tuple> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include <nlohmann/json_fwd.hpp> #include "tensorstore/internal/json_binding/gtest.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/util/status_testutil.h" namespace jb = tensorstore::internal_json_binding; namespace { using ::tensorstore::MatchesStatus; TEST(RawBytesHexTest, RoundTrip) { tensorstore::TestJsonBinderRoundTrip<std::array<unsigned char, 3>>( { {{{1, 2, 0xab}}, "0102ab"}, }, jb::RawBytesHex); tensorstore::TestJsonBinderRoundTripJsonOnlyInexact< std::array<unsigned char, 3>>( { {"0102AB", "0102ab"}, }, jb::RawBytesHex); } TEST(RawBytesHexTest, Invalid) { tensorstore::TestJsonBinderFromJson<std::array<unsigned char, 3>>( { {1, MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected string with 6 hex digits, but received: 1")}, {"0102zb", MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected string with 6 hex " "digits, but received: \"0102zb\"")}, }, jb::RawBytesHex); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/json_binding/raw_bytes_hex.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/json_binding/raw_bytes_hex_test.cc
4f887a6430414cd6088e1743555015b10f116d50
ca4f7ed1-b2c4-4390-98ec-f748a7ec5ee4
cpp
google/tensorstore
staleness_bound
tensorstore/internal/json_binding/staleness_bound.cc
tensorstore/internal/json_binding/staleness_bound_test.cc
#include "tensorstore/internal/json_binding/staleness_bound.h" #include "absl/status/status.h" #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/json/value_as.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" namespace tensorstore { namespace internal { TENSORSTORE_DEFINE_JSON_BINDER( StalenessBoundJsonBinder, [](auto is_loading, const auto& options, auto* obj, ::nlohmann::json* j) -> absl::Status { if constexpr (is_loading) { if (const auto* b = j->get_ptr<const bool*>()) { *obj = *b ? absl::InfiniteFuture() : absl::InfinitePast(); } else if (j->is_number()) { const double t = static_cast<double>(*j); *obj = absl::UnixEpoch() + absl::Seconds(t); } else if (*j == "open") { obj->time = absl::InfiniteFuture(); obj->bounded_by_open_time = true; } else { return internal_json::ExpectedError(*j, "boolean, number, or \"open\""); } } else { if (obj->bounded_by_open_time) { *j = "open"; } else { const absl::Time& t = obj->time; if (t == absl::InfiniteFuture()) { *j = true; } else if (t == absl::InfinitePast()) { *j = false; } else { *j = absl::ToDoubleSeconds(t - absl::UnixEpoch()); } } } return absl::OkStatus(); }) } }
#include "tensorstore/internal/json_binding/staleness_bound.h" #include <memory> #include <type_traits> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/gtest.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/staleness_bound.h" using ::tensorstore::MatchesJson; using ::tensorstore::StalenessBound; using ::testing::Optional; namespace { TEST(StalenessBoundJsonBinderTest, RoundTrip) { tensorstore::TestJsonBinderToJson<StalenessBound>({ {StalenessBound{absl::InfinitePast()}, Optional(MatchesJson(false))}, {StalenessBound{absl::InfiniteFuture()}, Optional(MatchesJson(true))}, {StalenessBound::BoundedByOpen(), Optional(MatchesJson("open"))}, {StalenessBound{absl::UnixEpoch()}, Optional(MatchesJson(0))}, {StalenessBound{absl::UnixEpoch() + absl::Seconds(1)}, Optional(MatchesJson(1))}, }); } TEST(StalenessBoundJsonBinderTest, FromJson) { tensorstore::TestJsonBinderFromJson<StalenessBound>({ {false, ::testing::Optional(::testing::AllOf( ::testing::Field(&StalenessBound::time, absl::InfinitePast()), ::testing::Field(&StalenessBound::bounded_by_open_time, false)))}, {true, ::testing::Optional(::testing::AllOf( ::testing::Field(&StalenessBound::time, absl::InfiniteFuture()), ::testing::Field(&StalenessBound::bounded_by_open_time, false)))}, {"open", ::testing::Optional(::testing::Field( &StalenessBound::bounded_by_open_time, true))}, {0, ::testing::Optional(::testing::AllOf( ::testing::Field(&StalenessBound::time, absl::UnixEpoch()), ::testing::Field(&StalenessBound::bounded_by_open_time, false)))}, {1, ::testing::Optional(::testing::AllOf( ::testing::Field(&StalenessBound::time, absl::UnixEpoch() + absl::Seconds(1)), ::testing::Field(&StalenessBound::bounded_by_open_time, false)))}, {1u, ::testing::Optional(::testing::AllOf( ::testing::Field(&StalenessBound::time, absl::UnixEpoch() + absl::Seconds(1)), ::testing::Field(&StalenessBound::bounded_by_open_time, false)))}, {1.5, ::testing::Optional(::testing::AllOf( ::testing::Field(&StalenessBound::time, absl::UnixEpoch() + absl::Milliseconds(1500)), ::testing::Field(&StalenessBound::bounded_by_open_time, false)))}, }); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/json_binding/staleness_bound.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/json_binding/staleness_bound_test.cc
4f887a6430414cd6088e1743555015b10f116d50
5d214a45-f9ca-4faa-9496-7df736893bdf
cpp
google/tensorstore
std_variant
tensorstore/internal/json_binding/std_variant.cc
tensorstore/internal/json_binding/std_variant_test.cc
#include <stddef.h> #include <string> #include "absl/status/status.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_json_binding { absl::Status GetVariantErrorStatus(span<const absl::Status> status_values) { std::string error = "No matching value binder: "; for (size_t i = 0; i < status_values.size(); ++i) { if (i != 0) error += "; "; error += status_values[i].message(); } return absl::InvalidArgumentError(error); } } }
#include "tensorstore/internal/json_binding/std_variant.h" #include <string> #include <type_traits> #include <utility> #include <variant> #include <gtest/gtest.h> #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/gtest.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" namespace jb = ::tensorstore::internal_json_binding; namespace { using ::tensorstore::MatchesStatus; TEST(JsonBindingTest, VariantDefaultBinder) { tensorstore::TestJsonBinderRoundTrip<std::variant<int, std::string>>({ {3, ::nlohmann::json(3)}, {"abc", ::nlohmann::json("abc")}, }); } TEST(JsonBindingTest, VariantDefaultBinderError) { EXPECT_THAT( (jb::FromJson<std::variant<int, std::string>>(::nlohmann::json(false))), MatchesStatus(absl::StatusCode::kInvalidArgument, "No matching value binder: " "Expected integer in the range .*, but received: false; " "Expected string, but received: false")); } TEST(JsonBindingTest, VariantExplicitBinder) { auto binder = jb::Object(jb::Variant(jb::Member("a"), jb::Member("b"))); tensorstore::TestJsonBinderRoundTrip<std::variant<int, std::string>>( { {3, {{"a", 3}}}, {"abc", {{"b", "abc"}}}, }, binder); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/json_binding/std_variant.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/json_binding/std_variant_test.cc
4f887a6430414cd6088e1743555015b10f116d50
09263936-949c-419b-9c6c-b6f3f0944461
cpp
google/tensorstore
array_endian_codec
tensorstore/internal/riegeli/array_endian_codec.cc
tensorstore/internal/riegeli/array_endian_codec_test.cc
#include "tensorstore/internal/riegeli/array_endian_codec.h" #include <stddef.h> #include <stdint.h> #include <cassert> #include <memory> #include <string_view> #include <utility> #include "absl/meta/type_traits.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "riegeli/base/chain.h" #include "riegeli/bytes/copy_all.h" #include "riegeli/bytes/limiting_reader.h" #include "riegeli/bytes/writer.h" #include "tensorstore/array.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/internal/elementwise_function.h" #include "tensorstore/internal/metrics/counter.h" #include "tensorstore/internal/metrics/metadata.h" #include "tensorstore/internal/unaligned_data_type_functions.h" #include "tensorstore/util/element_pointer.h" #include "tensorstore/util/endian.h" #include "tensorstore/util/extents.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" using ::tensorstore::internal_metrics::MetricMetadata; namespace tensorstore { namespace internal { namespace { auto& contiguous_bytes = internal_metrics::Counter<int64_t>::New( "/tensorstore/internal/riegeli/contiguous_bytes", MetricMetadata("Endian codec bytes from contiguous buffers", internal_metrics::Units::kBytes)); auto& noncontiguous_bytes = internal_metrics::Counter<int64_t>::New( "/tensorstore/internal/riegeli/noncontiguous_bytes", MetricMetadata("Endian codec bytes from non-contiguous buffers", internal_metrics::Units::kBytes)); } [[nodiscard]] bool EncodeArrayEndian(SharedArrayView<const void> decoded, endian encoded_endian, ContiguousLayoutOrder order, riegeli::Writer& writer) { const auto& functions = kUnalignedDataTypeFunctions[static_cast<size_t>(decoded.dtype().id())]; assert(functions.copy != nullptr); if ((encoded_endian == endian::native || functions.swap_endian_inplace == nullptr) && IsContiguousLayout(decoded, order)) { const size_t length = decoded.num_elements() * decoded.dtype().size(); if (writer.PrefersCopying()) { return writer.Write(std::string_view( reinterpret_cast<const char*>(decoded.data()), length)); } return writer.Write( internal::MakeCordFromSharedPtr(std::move(decoded.pointer()), length)); } const internal::ElementwiseFunction<1, void*>* write_func = encoded_endian == endian::native ? &functions.write_native_endian : &functions.write_swapped_endian; return internal::IterateOverArrays( {write_func, &writer}, nullptr, {order, include_repeated_elements}, decoded); } namespace { class ContiguousBufferSinkWriter : public riegeli::Writer { public: std::shared_ptr<const void> data; size_t expected_length; size_t expected_alignment; void DoFail() { Fail(absl::UnimplementedError("")); } bool PushSlow(size_t min_length, size_t recommended_length) override { DoFail(); return false; } bool ValidateContiguousBuffer(std::string_view buf) { if (buf.size() != expected_length || (reinterpret_cast<uintptr_t>(buf.data()) % expected_alignment) != 0) { DoFail(); return false; } return true; } template <typename T> bool WriteCordLike(T&& src) { if (this->data) { DoFail(); return false; } auto buf = src.TryFlat(); if (!buf) { DoFail(); return false; } if (!ValidateContiguousBuffer(*buf)) return false; auto data = std::make_shared<absl::remove_cvref_t<T>>(std::forward<T>(src)); buf = data->TryFlat(); if (!buf) { DoFail(); return false; } if (!ValidateContiguousBuffer(*buf)) return false; this->data = std::shared_ptr<const void>(std::move(data), buf->data()); return true; } bool WriteSlow(const riegeli::Chain& src) override { return WriteCordLike(src); } bool WriteSlow(const absl::Cord& src) override { return WriteCordLike(src); } }; } Result<SharedArray<const void>> DecodeArrayEndian( riegeli::Reader& reader, DataType dtype, span<const Index> decoded_shape, endian encoded_endian, ContiguousLayoutOrder order) { const auto& functions = kUnalignedDataTypeFunctions[static_cast<size_t>(dtype.id())]; assert(functions.copy != nullptr); size_t expected_length = dtype.size() * ProductOfExtents(decoded_shape); const auto may_be_contiguous = [&] { if (encoded_endian != endian::native && functions.swap_endian_inplace != nullptr) { return false; } if (!reader.SupportsRewind()) { return false; } if (!reader.SupportsSize()) { return false; } auto size_opt = reader.Size(); if (!size_opt) return false; if (*size_opt < expected_length || *size_opt - expected_length != reader.pos()) { return false; } return true; }; if (may_be_contiguous()) { auto pos = reader.pos(); ContiguousBufferSinkWriter buffer_sink_writer; buffer_sink_writer.expected_length = expected_length; buffer_sink_writer.expected_alignment = dtype->alignment; if (riegeli::CopyAll(reader, buffer_sink_writer, expected_length).ok()) { absl::Status status; if (functions.validate) { if (!(*functions.validate)[IterationBufferKind::kContiguous]( nullptr, {1, static_cast<Index>(expected_length)}, IterationBufferPointer( const_cast<void*>(buffer_sink_writer.data.get()), 0, dtype.size()), &status)) { return status; } } contiguous_bytes.IncrementBy(expected_length); return tensorstore::SharedArray<const void>( SharedElementPointer<const void>(std::move(buffer_sink_writer.data), dtype), decoded_shape, order); } if (!reader.Seek(pos)) { return reader.status(); } } auto decoded = tensorstore::AllocateArray(decoded_shape, order, default_init, dtype); TENSORSTORE_RETURN_IF_ERROR( DecodeArrayEndian(reader, encoded_endian, order, decoded)); reader.VerifyEnd(); if (!reader.ok()) { return reader.status(); } noncontiguous_bytes.IncrementBy(expected_length); return decoded; } absl::Status DecodeArrayEndian(riegeli::Reader& reader, endian encoded_endian, ContiguousLayoutOrder order, ArrayView<void> decoded) { const auto& functions = kUnalignedDataTypeFunctions[static_cast<size_t>(decoded.dtype().id())]; assert(functions.copy != nullptr); riegeli::LimitingReader limiting_reader( &reader, riegeli::LimitingReaderBase::Options().set_exact_length( decoded.dtype().size() * decoded.num_elements())); [[maybe_unused]] const auto unused_result = internal::IterateOverArrays( {encoded_endian == endian::native ? &functions.read_native_endian : &functions.read_swapped_endian, &limiting_reader}, nullptr, {order, include_repeated_elements}, decoded); if (!limiting_reader.VerifyEndAndClose()) { return limiting_reader.status(); } return absl::OkStatus(); } } }
#include "tensorstore/internal/riegeli/array_endian_codec.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/cord.h" #include "absl/strings/cord_test_helpers.h" #include "riegeli/bytes/cord_reader.h" #include "riegeli/bytes/cord_writer.h" #include "riegeli/bytes/string_reader.h" #include "riegeli/zlib/zlib_reader.h" #include "riegeli/zlib/zlib_writer.h" #include "tensorstore/array.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/internal/flat_cord_builder.h" #include "tensorstore/util/endian.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status_testutil.h" namespace { using tensorstore::AllocateArray; using tensorstore::c_order; using tensorstore::ContiguousLayoutOrder; using tensorstore::DataType; using tensorstore::dtype_v; using tensorstore::endian; using tensorstore::fortran_order; using tensorstore::Index; using tensorstore::IsContiguousLayout; using tensorstore::MatchesStatus; using tensorstore::Result; using tensorstore::SharedArray; using tensorstore::span; using tensorstore::internal::DecodeArrayEndian; using tensorstore::internal::EncodeArrayEndian; using tensorstore::internal::FlatCordBuilder; Result<absl::Cord> EncodeArrayAsCord(SharedArray<const void> array, endian endianness, ContiguousLayoutOrder order) { absl::Cord encoded; riegeli::CordWriter writer{&encoded}; if (EncodeArrayEndian(array, endianness, order, writer) && writer.Close()) { return encoded; } return writer.status(); } Result<SharedArray<const void>> DecodeArrayFromCord( DataType dtype, span<const Index> decoded_shape, absl::Cord encoded, endian endianness, ContiguousLayoutOrder order) { riegeli::CordReader reader{&encoded}; return DecodeArrayEndian(reader, dtype, decoded_shape, endianness, order); } template <typename T = uint32_t> SharedArray<const void> MakeTestArray(ContiguousLayoutOrder order = c_order, Index a = 1000, Index b = 2000) { auto c_array = AllocateArray<T>({a, b}, order, tensorstore::default_init); for (Index a_i = 0; a_i < a; ++a_i) { for (Index b_i = 0; b_i < b; ++b_i) { c_array(a_i, b_i) = static_cast<T>(a_i * b + b_i); } } return c_array; } TEST(EncodeArrayEndianTest, ContiguousLayout) { auto c_array = MakeTestArray(); auto f_array = tensorstore::MakeCopy(c_array, fortran_order); Index num_elements = c_array.num_elements(); ASSERT_TRUE(IsContiguousLayout(c_array, c_order)); ASSERT_TRUE(IsContiguousLayout(f_array, fortran_order)); TENSORSTORE_ASSERT_OK_AND_ASSIGN( absl::Cord c_encoded, EncodeArrayAsCord(c_array, endian::native, c_order)); { auto flat = c_encoded.TryFlat(); ASSERT_TRUE(flat); EXPECT_EQ(reinterpret_cast<const char*>(c_array.data()), flat->data()); EXPECT_EQ(num_elements * c_array.dtype().size(), flat->size()); } TENSORSTORE_ASSERT_OK_AND_ASSIGN( absl::Cord f_encoded, EncodeArrayAsCord(f_array, endian::native, fortran_order)); { auto flat = f_encoded.TryFlat(); ASSERT_TRUE(flat); EXPECT_EQ(reinterpret_cast<const char*>(f_array.data()), flat->data()); EXPECT_EQ(num_elements * c_array.dtype().size(), flat->size()); } { TENSORSTORE_ASSERT_OK_AND_ASSIGN( absl::Cord encoded, EncodeArrayAsCord(c_array, endian::native, fortran_order)); EXPECT_EQ(f_encoded, encoded); } { TENSORSTORE_ASSERT_OK_AND_ASSIGN( absl::Cord encoded, EncodeArrayAsCord(f_array, endian::native, c_order)); EXPECT_EQ(c_encoded, encoded); } } Result<SharedArray<const void>> RoundTripArrayViaCord( SharedArray<const void> array, endian endianness, ContiguousLayoutOrder order) { TENSORSTORE_ASSIGN_OR_RETURN(auto encoded, EncodeArrayAsCord(array, endianness, order)); return DecodeArrayFromCord(array.dtype(), array.shape(), encoded, endianness, order); } template <typename T = uint16_t> void TestRoundTripNoCopy(ContiguousLayoutOrder order) { auto orig_array = MakeTestArray<T>(order); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto decoded, RoundTripArrayViaCord(orig_array, endian::native, order)); ASSERT_EQ(orig_array.data(), decoded.data()); } template <typename T = uint16_t> void TestRoundTripCopy(ContiguousLayoutOrder order, endian endianness) { auto orig_array = MakeTestArray<T>(order, 2, 3); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto decoded, RoundTripArrayViaCord(orig_array, endianness, order)); ASSERT_TRUE(tensorstore::AreArraysIdenticallyEqual(orig_array, decoded)) << "orig_array=" << orig_array << ", decoded=" << decoded; } TEST(EncodeArrayEndianTest, BigEndian) { auto orig_array = MakeTestArray<uint16_t>(c_order, 2, 3); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto encoded, EncodeArrayAsCord(orig_array, endian::big, c_order)); EXPECT_THAT(encoded.Flatten(), ::testing::ElementsAreArray({ 0, 0, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, })); } TEST(DecodeArrayEndianTest, BigEndian) { auto orig_array = MakeTestArray<uint16_t>(c_order, 2, 3); std::string encoded{ 0, 0, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, }; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto decoded, DecodeArrayFromCord(orig_array.dtype(), orig_array.shape(), absl::Cord(encoded), endian::big, c_order)); EXPECT_EQ(orig_array, decoded); } TEST(EncodeArrayEndianTest, RoundTripNoCopyCOrder) { TestRoundTripNoCopy(c_order); } TEST(EncodeArrayEndianTest, RoundTripNoCopyCOrderBool) { TestRoundTripNoCopy<bool>(c_order); } TEST(DecodeArrayEndianTest, InvalidBool) { std::string encoded{0, 1, 2, 1}; EXPECT_THAT(DecodeArrayFromCord(dtype_v<bool>, {{2, 2}}, absl::Cord(encoded), endian::native, c_order), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid bool value: 2; at byte 2")); } TEST(DecodeArrayEndianTest, InvalidBoolNoCopy) { std::string encoded; FlatCordBuilder builder(1000 * 2000); std::fill_n(builder.data(), builder.size(), 0); builder.data()[builder.size() - 1] = 2; EXPECT_THAT( DecodeArrayFromCord(dtype_v<bool>, {{1000, 2000}}, std::move(builder).Build(), endian::native, c_order), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid bool value: 2")); } TEST(EncodeArrayEndianTest, RoundTripNoCopyFOrder) { TestRoundTripNoCopy(fortran_order); } TEST(EncodeArrayEndianTest, RoundTripCopyCOrderBig) { TestRoundTripCopy(c_order, endian::big); } TEST(EncodeArrayEndianTest, RoundTripCopyCOrderLittle) { TestRoundTripCopy(c_order, endian::little); } TEST(EncodeArrayEndianTest, RoundTripCopyFOrderBig) { TestRoundTripCopy(fortran_order, endian::big); } TEST(EncodeArrayEndianTest, RoundTripCopyFOrderLittle) { TestRoundTripCopy(fortran_order, endian::little); } TEST(DecodeArrayEndianTest, StringReader) { auto orig_array = MakeTestArray<uint8_t>(c_order, 2, 3); std::string encoded{ 0, 1, 2, 3, 4, 5, }; riegeli::StringReader reader{encoded}; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto decoded, DecodeArrayEndian(reader, orig_array.dtype(), orig_array.shape(), endian::native, c_order)); EXPECT_EQ(orig_array, decoded); } TEST(DecodeArrayEndianTest, LengthTooShort) { auto orig_array = MakeTestArray<uint8_t>(c_order, 2, 3); std::string encoded{ 0, 1, 2, 3, 4, }; riegeli::StringReader reader{encoded}; EXPECT_THAT( DecodeArrayEndian(reader, orig_array.dtype(), orig_array.shape(), endian::native, c_order), MatchesStatus(absl::StatusCode::kInvalidArgument, "Not enough data.*")); } TEST(DecodeArrayEndianTest, LengthTooLong) { auto orig_array = MakeTestArray<uint8_t>(c_order, 2, 3); std::string encoded{ 0, 1, 2, 3, 4, 5, 6, }; riegeli::StringReader reader{encoded}; EXPECT_THAT(DecodeArrayEndian(reader, orig_array.dtype(), orig_array.shape(), endian::native, c_order), MatchesStatus(absl::StatusCode::kInvalidArgument, "End of data expected.*")); } TEST(EncodeArrayEndianTest, Zlib) { auto orig_array = MakeTestArray<uint16_t>(c_order); absl::Cord encoded; { riegeli::ZlibWriter writer{riegeli::CordWriter{&encoded}}; ASSERT_TRUE(EncodeArrayEndian(orig_array, endian::native, c_order, writer)); ASSERT_TRUE(writer.Close()); } { riegeli::ZlibReader reader{riegeli::CordReader{encoded}}; EXPECT_THAT(DecodeArrayEndian(reader, orig_array.dtype(), orig_array.shape(), endian::native, c_order), ::testing::Optional(orig_array)); } } TEST(DecodeArrayEndianTest, Misaligned) { int a = 1000, b = 2000; int num_elements = a * b; size_t buffer_size = 1000 * 2000 * 2 + 1; std::unique_ptr<char[]> source(new char[1000 * 2000 * 2 + 1]); for (int i = 0; i < num_elements; ++i) { uint16_t x = static_cast<uint16_t>(i); memcpy(&source[i * 2 + 1], &x, 2); } auto cord = absl::MakeCordFromExternal( std::string_view(source.get() + 1, buffer_size - 1), [] {}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto decoded, DecodeArrayFromCord(dtype_v<uint16_t>, {{1000, 2000}}, cord, endian::native, c_order)); ASSERT_NE(decoded.data(), &source[1]); EXPECT_THAT(decoded, MakeTestArray<uint16_t>(c_order)); } TEST(DecodeArrayEndianTest, Fragmented) { auto c_array = MakeTestArray<uint16_t>(); size_t total_bytes = c_array.num_elements() * c_array.dtype().size(); std::vector<absl::Cord> parts{ absl::MakeCordFromExternal( std::string_view(reinterpret_cast<const char*>(c_array.data()), total_bytes / 2), [] {}), absl::MakeCordFromExternal( std::string_view( reinterpret_cast<const char*>(c_array.data()) + total_bytes / 2, total_bytes / 2), [] {})}; absl::Cord cord = absl::MakeFragmentedCord(parts); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto decoded, DecodeArrayFromCord(dtype_v<uint16_t>, {{1000, 2000}}, cord, endian::native, c_order)); EXPECT_THAT(decoded, MakeTestArray<uint16_t>(c_order)); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/riegeli/array_endian_codec.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/riegeli/array_endian_codec_test.cc
4f887a6430414cd6088e1743555015b10f116d50
8a5a62c4-9b13-49de-ba2d-2ae94814a8b0
cpp
google/tensorstore
find
tensorstore/internal/riegeli/find.cc
tensorstore/internal/riegeli/find_test.cc
#include "tensorstore/internal/riegeli/find.h" #include <stddef.h> #include <stdint.h> #include <algorithm> #include <cstring> #include <optional> #include <string_view> #include "riegeli/bytes/reader.h" namespace tensorstore { namespace internal { bool StartsWith(riegeli::Reader &reader, std::string_view needle) { return reader.ok() && reader.Pull(needle.size()) && memcmp(reader.cursor(), needle.data(), needle.size()) == 0; } bool FindFirst(riegeli::Reader &reader, std::string_view needle) { while (true) { if (!reader.Pull(needle.size())) break; auto end = reader.cursor() + reader.available(); auto pos = std::search(reader.cursor(), end, needle.begin(), needle.end()); if (pos != end) { reader.move_cursor(pos - reader.cursor()); return true; } reader.move_cursor(1 + reader.available() - needle.size()); } return false; } bool FindLast(riegeli::Reader &reader, std::string_view needle) { if (reader.SupportsSize()) { auto size = reader.Size(); if (size && reader.Pull(*size)) { auto found_pos = std::string_view(reader.cursor(), *size).rfind(needle); if (found_pos == std::string_view::npos) return false; return reader.Seek(found_pos + reader.pos()); } } std::optional<uint64_t> found; while (reader.ok()) { for (size_t available = reader.available(); available > needle.size(); available = reader.available()) { if (memcmp(reader.cursor(), needle.data(), needle.size()) == 0) { found = reader.pos(); } const char *pos = static_cast<const char *>( memchr(reader.cursor() + 1, needle[0], available - 1)); if (pos == nullptr) { reader.move_cursor(available); break; } reader.move_cursor(pos - reader.cursor()); } if (!reader.Pull(needle.size() - reader.available())) break; } return found.has_value() && reader.Seek(*found); } } }
#include "tensorstore/internal/riegeli/find.h" #include <stddef.h> #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "riegeli/bytes/string_reader.h" namespace { using ::tensorstore::internal::FindFirst; using ::tensorstore::internal::FindLast; using ::tensorstore::internal::StartsWith; static constexpr unsigned char kData[] = { 0x17, 0x16, 0xa1, 0xcb, 0xff, 0xff, 0xef, 0xff, 0xff, 0xff, 0xfe, 0xff, 0x03, 0x04, 0xbb, 0xcc, 0xc7, 0xb6, 0xbe, 0x5d, 0x7c, 0x2d, 0x23, 0x44, 0xa0, 0xbe, 0x13, 0x1b, 0x9a, 0x2d, 0xf2, 0x13, 0x6a, 0xfb, 0xad, 0xdb, 0x73, 0xf9, 0x3d, 0xbc, 0x5d, 0x7c, 0x6f, 0x41, 0xc0, 0xad, 0xf3, 0x31, 0x79, 0x7f, 0x89, 0xb2, 0xe4, 0xa9, 0xf5, 0x9d, 0xc0, 0x30, 0x23, 0x32, 0x99, 0x2c, 0x16, 0x42, 0xf5, 0x48, 0xd1, 0x79, 0xdb, 0x98, 0xb9, 0xc3, 0x6c, 0xa6, 0x50, 0xcd, 0x86, 0xb6, 0xd3, 0xa7, 0x57, 0x3b, 0xe6, 0x1d, 0xa5, 0xe2, 0x79, 0xe9, 0x2d, 0x19, 0xec, 0xa6, 0xf3, 0xa3, 0x50, 0x65, 0x03, 0x04, 0xbb, 0xcc, 0x1a, 0xc9, 0xec, 0xb2, 0xa6, 0x3e, 0xe0, 0x49, 0x6a, 0x30, 0xd7, 0x1f, 0x90, 0x08, 0x1c, 0x2a, 0x6b, 0xbd, 0x06, 0x9c, 0xef, 0xd2, 0x79, 0x20, 0x64, 0xbc, 0xb7, 0x75, 0xbb, 0xcd, 0xcc, 0xa8, 0x49, 0x8b, 0x30, 0x4f, 0x73, 0x7c, 0xb5, 0x6e, 0x08, 0x1b, 0xc2, 0x7f, 0xfb, 0xb1, 0xc4, 0x49, 0x89, 0x74, 0xe7, 0x8e, 0x9d, 0x6f, 0x44, 0x14, 0xbd, 0xdc, 0x6a, 0xd9, 0xcb, 0x53, 0x2b, 0xdc, 0x48, 0x6c, 0xa3, 0x14, 0x4e, 0xc0, 0x3b, 0x6b, 0x47, 0x50, 0xd5, 0x97, 0x84, 0x30, 0xd5, 0x28, 0x03, 0x04, 0xbb, 0xcc, 0xff, 0xff, 0xef, 0xff, 0xff, 0xff, 0xfe, 0xff, }; constexpr const unsigned char kLiteral1[4] = {0x03, 0x04, 0xbb, 0xcc}; constexpr const unsigned char kLiteral2[3] = {0xff, 0xfe, 0xff}; TEST(FindTest, FindFirst) { const std::string_view literal1(reinterpret_cast<const char*>(kLiteral1), sizeof(kLiteral1)); const std::string_view literal2(reinterpret_cast<const char*>(kLiteral2), sizeof(kLiteral2)); riegeli::StringReader string_reader(reinterpret_cast<const char*>(kData), sizeof(kData)); size_t positions[3] = {0, 0, 0}; for (int i = 0; i < 3; ++i) { EXPECT_TRUE(FindFirst(string_reader, literal1)); EXPECT_TRUE(StartsWith(string_reader, literal1)); positions[i] = string_reader.pos(); string_reader.Skip(sizeof(kLiteral1)); } EXPECT_FALSE(FindFirst(string_reader, literal1)); EXPECT_THAT(positions, ::testing::ElementsAre(12, 96, 180)); string_reader.Seek(0); EXPECT_TRUE(FindFirst(string_reader, literal2)); EXPECT_THAT(string_reader.pos(), 9); } TEST(FindTest, FindLast) { const std::string_view literal1(reinterpret_cast<const char*>(kLiteral1), sizeof(kLiteral1)); const std::string_view literal2(reinterpret_cast<const char*>(kLiteral2), sizeof(kLiteral2)); riegeli::StringReader string_reader(reinterpret_cast<const char*>(kData), sizeof(kData)); EXPECT_TRUE(FindLast(string_reader, literal1)); EXPECT_TRUE(StartsWith(string_reader, literal1)); EXPECT_THAT(string_reader.pos(), 180); string_reader.Seek(0); EXPECT_TRUE(FindLast(string_reader, literal2)); EXPECT_THAT(string_reader.pos(), 189); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/riegeli/find.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/riegeli/find_test.cc
4f887a6430414cd6088e1743555015b10f116d50
f0985b7a-a24b-4d9e-9677-12ff0a6d68d6
cpp
google/tensorstore
verbose_flag
tensorstore/internal/log/verbose_flag.cc
tensorstore/internal/log/verbose_flag_test.cc
#include "tensorstore/internal/log/verbose_flag.h" #include <stddef.h> #include <atomic> #include <cassert> #include <string> #include <string_view> #include <type_traits> #include <utility> #include "absl/base/attributes.h" #include "absl/base/const_init.h" #include "absl/base/no_destructor.h" #include "absl/base/optimization.h" #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/flags/flag.h" #include "absl/log/absl_log.h" #include "absl/strings/numbers.h" #include "absl/strings/str_split.h" #include "absl/synchronization/mutex.h" #include "tensorstore/internal/env.h" ABSL_FLAG(std::string, tensorstore_verbose_logging, {}, "comma-separated list of tensorstore verbose logging flags") .OnUpdate([]() { if (!absl::GetFlag(FLAGS_tensorstore_verbose_logging).empty()) { tensorstore::internal_log::UpdateVerboseLogging( absl::GetFlag(FLAGS_tensorstore_verbose_logging), true); } }); namespace tensorstore { namespace internal_log { namespace { ABSL_CONST_INIT absl::Mutex g_mutex(absl::kConstInit); ABSL_CONST_INIT VerboseFlag* g_list_head ABSL_GUARDED_BY(g_mutex) = nullptr; struct LoggingLevelConfig { int default_level = -1; absl::flat_hash_map<std::string, int> levels; }; void UpdateLoggingLevelConfig(LoggingLevelConfig& config, std::string_view input) { auto& levels = config.levels; for (std::string_view flag : absl::StrSplit(input, ',', absl::SkipEmpty())) { const size_t eq = flag.rfind('='); if (eq == flag.npos) { levels.insert_or_assign(std::string(flag), 0); continue; } if (eq == 0) continue; int level; if (!absl::SimpleAtoi(flag.substr(eq + 1), &level)) continue; if (level < -1) { level = -1; } else if (level > 1000) { level = 1000; } levels.insert_or_assign(std::string(flag.substr(0, eq)), level); } config.default_level = -1; if (auto it = levels.find("all"); it != levels.end()) { config.default_level = it->second; } } int GetLevelForVerboseFlag(const LoggingLevelConfig& config, std::string_view name) { while (!name.empty()) { auto it = config.levels.find(name); if (it != config.levels.end()) { return it->second; } auto pos = name.rfind('.'); if (pos == name.npos) { break; } name = name.substr(0, pos); } return config.default_level; } LoggingLevelConfig& GetLoggingLevelConfig() ABSL_EXCLUSIVE_LOCKS_REQUIRED(g_mutex) { static absl::NoDestructor<LoggingLevelConfig> flags{[] { LoggingLevelConfig config; if (auto env = internal::GetEnv("TENSORSTORE_VERBOSE_LOGGING"); env) { UpdateLoggingLevelConfig(config, *env); } return config; }()}; return *flags; } } void UpdateVerboseLogging(std::string_view input, bool overwrite) ABSL_LOCKS_EXCLUDED(g_mutex) { ABSL_LOG(INFO) << "--tensorstore_verbose_logging=" << input; LoggingLevelConfig config; UpdateLoggingLevelConfig(config, input); absl::MutexLock lock(&g_mutex); VerboseFlag* slist = g_list_head; LoggingLevelConfig& global_config = GetLoggingLevelConfig(); std::swap(global_config.levels, config.levels); std::swap(global_config.default_level, config.default_level); if (!overwrite) { if (global_config.levels.count("all")) { global_config.default_level = config.default_level; } global_config.levels.merge(config.levels); } int vlevel = GetLevelForVerboseFlag(global_config, "verbose_logging"); while (slist != nullptr) { int value = GetLevelForVerboseFlag(global_config, slist->name_); ABSL_LOG_IF(INFO, vlevel >= 1) << slist->name_ << "=" << value; slist->value_.store(value, std::memory_order_seq_cst); slist = slist->next_; } } int VerboseFlag::RegisterVerboseFlag(VerboseFlag* flag) { absl::MutexLock lock(&g_mutex); int old_v = flag->value_.load(std::memory_order_relaxed); if (old_v == kValueUninitialized) { const auto& config = GetLoggingLevelConfig(); old_v = GetLevelForVerboseFlag(config, flag->name_); flag->value_.store(old_v, std::memory_order_relaxed); flag->next_ = std::exchange(g_list_head, flag); } return old_v; } bool VerboseFlag::VerboseFlagSlowPath(VerboseFlag* flag, int old_v, int level) { if (ABSL_PREDICT_TRUE(old_v != kValueUninitialized)) { return old_v >= level; } old_v = RegisterVerboseFlag(flag); return ABSL_PREDICT_FALSE(old_v >= level); } static_assert(std::is_trivially_destructible<VerboseFlag>::value, "VerboseFlag must be trivially destructible"); } }
#include "tensorstore/internal/log/verbose_flag.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/base/attributes.h" using ::tensorstore::internal_log::UpdateVerboseLogging; using ::tensorstore::internal_log::VerboseFlag; #define TENSORSTORE_VERBOSE_FLAG(X) \ []() -> ::tensorstore::internal_log::VerboseFlag& { \ ABSL_CONST_INIT static ::tensorstore::internal_log::VerboseFlag flag(X); \ return flag; \ }() namespace { TEST(VerboseFlag, Basic) { UpdateVerboseLogging("a=2", true); ABSL_CONST_INIT static VerboseFlag a("a"); ABSL_CONST_INIT static VerboseFlag ab("a.b"); auto& b = TENSORSTORE_VERBOSE_FLAG("b"); EXPECT_THAT((bool)a, true); EXPECT_THAT(a.Level(0), true); EXPECT_THAT(a.Level(1), true); EXPECT_THAT(a.Level(2), true); EXPECT_THAT(a.Level(3), false); EXPECT_THAT(ab.Level(3), false); EXPECT_THAT(ab.Level(2), true); EXPECT_THAT(ab.Level(1), true); EXPECT_THAT(ab.Level(0), true); EXPECT_THAT((bool)ab, true); EXPECT_THAT((bool)b, false); EXPECT_THAT(b.Level(0), false); UpdateVerboseLogging("b,a=-1,a.b=1", false); EXPECT_THAT((bool)a, false); EXPECT_THAT(a.Level(0), false); EXPECT_THAT(a.Level(1), false); EXPECT_THAT((bool)ab, true); EXPECT_THAT(ab.Level(0), true); EXPECT_THAT(ab.Level(1), true); EXPECT_THAT(ab.Level(2), false); EXPECT_THAT((bool)b, true); EXPECT_THAT(b.Level(0), true); EXPECT_THAT(b.Level(1), false); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/log/verbose_flag.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/log/verbose_flag_test.cc
4f887a6430414cd6088e1743555015b10f116d50
4c8b14a4-a2fa-45f8-ab69-619597b9724e
cpp
google/tensorstore
admission_queue
tensorstore/internal/rate_limiter/admission_queue.cc
tensorstore/internal/rate_limiter/admission_queue_test.cc
#include "tensorstore/internal/rate_limiter/admission_queue.h" #include <stddef.h> #include <cassert> #include <limits> #include "absl/synchronization/mutex.h" #include "tensorstore/internal/container/intrusive_linked_list.h" #include "tensorstore/internal/rate_limiter/rate_limiter.h" namespace tensorstore { namespace internal { AdmissionQueue::AdmissionQueue(size_t limit) : limit_(limit == 0 ? std::numeric_limits<size_t>::max() : limit) {} void AdmissionQueue::Admit(RateLimiterNode* node, RateLimiterNode::StartFn fn) { assert(node->next_ == nullptr); assert(node->prev_ == nullptr); assert(node->start_fn_ == nullptr); node->start_fn_ = fn; { absl::MutexLock lock(&mutex_); if (in_flight_++ >= limit_) { internal::intrusive_linked_list::InsertBefore(RateLimiterNodeAccessor{}, &head_, node); return; } } RunStartFunction(node); } void AdmissionQueue::Finish(RateLimiterNode* node) { assert(node->next_ == nullptr); RateLimiterNode* next_node = nullptr; { absl::MutexLock lock(&mutex_); in_flight_--; next_node = head_.next_; if (next_node == &head_) return; internal::intrusive_linked_list::Remove(RateLimiterNodeAccessor{}, next_node); } RunStartFunction(next_node); } } }
#include "tensorstore/internal/rate_limiter/admission_queue.h" #include <stddef.h> #include <atomic> #include <utility> #include <gtest/gtest.h> #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/rate_limiter/rate_limiter.h" #include "tensorstore/util/executor.h" namespace { using ::tensorstore::Executor; using ::tensorstore::ExecutorTask; using ::tensorstore::internal::AdmissionQueue; using ::tensorstore::internal::adopt_object_ref; using ::tensorstore::internal::AtomicReferenceCount; using ::tensorstore::internal::IntrusivePtr; using ::tensorstore::internal::MakeIntrusivePtr; using ::tensorstore::internal::RateLimiterNode; struct Node : public RateLimiterNode, public AtomicReferenceCount<Node> { AdmissionQueue* queue_; ExecutorTask task_; Node(AdmissionQueue* queue, ExecutorTask task) : queue_(queue), task_(std::move(task)) {} ~Node() { queue_->Finish(this); } static void Start(void* task) { IntrusivePtr<Node> self(reinterpret_cast<Node*>(task), adopt_object_ref); std::move(self->task_)(); } }; TEST(AdmissionQueueTest, Basic) { AdmissionQueue queue(1); std::atomic<size_t> done{0}; EXPECT_EQ(1, queue.limit()); EXPECT_EQ(0, queue.in_flight()); { for (int i = 0; i < 100; i++) { auto node = MakeIntrusivePtr<Node>(&queue, [&done] { done++; }); intrusive_ptr_increment(node.get()); queue.Admit(node.get(), &Node::Start); } } EXPECT_EQ(100, done); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/rate_limiter/admission_queue.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/rate_limiter/admission_queue_test.cc
4f887a6430414cd6088e1743555015b10f116d50
f3ea2835-ae58-4400-aa72-323aa7b250ca
cpp
google/tensorstore
scaling_rate_limiter
tensorstore/internal/rate_limiter/scaling_rate_limiter.cc
tensorstore/internal/rate_limiter/scaling_rate_limiter_test.cc
#include "tensorstore/internal/rate_limiter/scaling_rate_limiter.h" #include <algorithm> #include <cassert> #include <cmath> #include <functional> #include <limits> #include <utility> #include "absl/log/absl_check.h" #include "absl/time/time.h" #include "tensorstore/internal/rate_limiter/token_bucket_rate_limiter.h" namespace tensorstore { namespace internal { namespace { double GetLogA(absl::Duration doubling_time) { if (doubling_time <= absl::ZeroDuration() || doubling_time == absl::InfiniteDuration()) { return 0; } return 0.69314718055994530941723212145817656 / absl::ToDoubleSeconds(doubling_time); } double GetMaxAvailable(double initial_rate) { return std::min(initial_rate * 1000.0, 2000.0); } } DoublingRateLimiter::DoublingRateLimiter(double initial_rate, absl::Duration doubling_time) : TokenBucketRateLimiter(GetMaxAvailable(initial_rate)), initial_rate_(initial_rate), doubling_time_(doubling_time), a_(GetLogA(doubling_time)) { ABSL_CHECK_GT(initial_rate, std::numeric_limits<double>::min()); ABSL_CHECK_GT(a_, 0); } DoublingRateLimiter::DoublingRateLimiter(double initial_rate, absl::Duration doubling_time, std::function<absl::Time()> clock) : TokenBucketRateLimiter(GetMaxAvailable(initial_rate), std::move(clock)), initial_rate_(initial_rate), doubling_time_(doubling_time), a_(GetLogA(doubling_time)) { ABSL_CHECK_GT(initial_rate, std::numeric_limits<double>::min()); ABSL_CHECK_GT(a_, 0); } double DoublingRateLimiter::TokensToAdd(absl::Time current, absl::Time previous) const { double int_current = std::exp(a_ * absl::ToDoubleSeconds(current - start_time_)); double int_prev = std::exp(a_ * absl::ToDoubleSeconds(previous - start_time_)); return initial_rate_ * (int_current - int_prev) / a_; } absl::Duration DoublingRateLimiter::GetSchedulerDelay() const { return absl::Milliseconds(10); } ConstantRateLimiter::ConstantRateLimiter(double initial_rate) : TokenBucketRateLimiter(GetMaxAvailable(initial_rate)), initial_rate_(initial_rate), r_(absl::Seconds(1.0 / initial_rate)) { ABSL_CHECK_GT(initial_rate, std::numeric_limits<double>::min()); } ConstantRateLimiter::ConstantRateLimiter(double initial_rate, std::function<absl::Time()> clock) : TokenBucketRateLimiter(GetMaxAvailable(initial_rate), std::move(clock)), initial_rate_(initial_rate), r_(absl::Seconds(1.0 / initial_rate)) { ABSL_CHECK_GT(initial_rate, std::numeric_limits<double>::min()); } double ConstantRateLimiter::TokensToAdd(absl::Time current, absl::Time previous) const { return initial_rate_ * absl::ToDoubleSeconds(current - previous); } absl::Duration ConstantRateLimiter::GetSchedulerDelay() const { return std::max(r_, absl::Milliseconds(10)); } } }
#include "tensorstore/internal/rate_limiter/scaling_rate_limiter.h" #include <stddef.h> #include <atomic> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/rate_limiter/rate_limiter.h" #include "tensorstore/util/executor.h" namespace { using ::tensorstore::Executor; using ::tensorstore::ExecutorTask; using ::tensorstore::internal::adopt_object_ref; using ::tensorstore::internal::AtomicReferenceCount; using ::tensorstore::internal::ConstantRateLimiter; using ::tensorstore::internal::DoublingRateLimiter; using ::tensorstore::internal::IntrusivePtr; using ::tensorstore::internal::MakeIntrusivePtr; using ::tensorstore::internal::RateLimiter; using ::tensorstore::internal::RateLimiterNode; struct Node : public RateLimiterNode, public AtomicReferenceCount<Node> { RateLimiter* queue_; ExecutorTask task_; Node(RateLimiter* queue, ExecutorTask task) : queue_(queue), task_(std::move(task)) {} ~Node() { queue_->Finish(this); } static void Start(void* task) { IntrusivePtr<Node> self(reinterpret_cast<Node*>(task), adopt_object_ref); std::move(self->task_)(); } }; TEST(ConstantRateLimiter, Basic) { absl::Time now = absl::Now(); ConstantRateLimiter queue(0.2, [&now]() { return now; }); EXPECT_EQ(0.2, queue.initial_rate()); EXPECT_EQ(now, queue.start_time()); EXPECT_EQ(now, queue.last_update()); EXPECT_EQ(0, queue.available()); EXPECT_EQ(0, queue.TokensToAdd(now, now)); EXPECT_EQ(2, queue.TokensToAdd(now + absl::Seconds(10), now)); EXPECT_EQ(60, queue.TokensToAdd(now + absl::Seconds(300), now)); std::atomic<size_t> done{0}; { for (int i = 0; i < 100; i++) { auto node = MakeIntrusivePtr<Node>(&queue, [&done] { done++; }); intrusive_ptr_increment(node.get()); queue.Admit(node.get(), &Node::Start); } } now += absl::Seconds(10); queue.PeriodicCallForTesting(); EXPECT_EQ(2, done); now += absl::Seconds(100); queue.PeriodicCallForTesting(); EXPECT_EQ(22, done); now += absl::Seconds(400); queue.PeriodicCallForTesting(); EXPECT_EQ(100, done); } TEST(DoublingRateLimiter, Basic) { absl::Time now = absl::Now(); DoublingRateLimiter queue(2, absl::Seconds(10), [&now]() { return now; }); EXPECT_EQ(2, queue.initial_rate()); EXPECT_EQ(absl::Seconds(10), queue.doubling_time()); EXPECT_EQ(0, queue.available()); EXPECT_EQ(0, queue.TokensToAdd(now, now)); EXPECT_THAT( queue.TokensToAdd(now + absl::Seconds(11), now + absl::Seconds(10)), ::testing::Gt(4)); EXPECT_THAT( queue.TokensToAdd(now + absl::Seconds(21), now + absl::Seconds(20)), ::testing::Gt(8)); std::atomic<size_t> done{0}; { for (int i = 0; i < 100; i++) { auto node = MakeIntrusivePtr<Node>(&queue, [&done] { done++; }); intrusive_ptr_increment(node.get()); queue.Admit(node.get(), &Node::Start); } } EXPECT_EQ(0, done); now += absl::Seconds(1); queue.PeriodicCallForTesting(); EXPECT_EQ(2, done); now += absl::Seconds(10); queue.PeriodicCallForTesting(); EXPECT_EQ(32, done); now += absl::Seconds(20); queue.PeriodicCallForTesting(); EXPECT_EQ(100, done); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/rate_limiter/scaling_rate_limiter.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/rate_limiter/scaling_rate_limiter_test.cc
4f887a6430414cd6088e1743555015b10f116d50
b9679af0-338e-4468-b3c2-67b768a45f76
cpp
google/tensorstore
schedule_at
tensorstore/internal/thread/schedule_at.cc
tensorstore/internal/thread/schedule_at_test.cc
#include "tensorstore/internal/thread/schedule_at.h" #include <stdint.h> #include <algorithm> #include <atomic> #include <iterator> #include <memory> #include <utility> #include "absl/base/attributes.h" #include "absl/base/no_destructor.h" #include "absl/base/optimization.h" #include "absl/base/thread_annotations.h" #include "absl/functional/any_invocable.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "absl/types/compare.h" #include "tensorstore/internal/container/intrusive_red_black_tree.h" #include "tensorstore/internal/metrics/gauge.h" #include "tensorstore/internal/metrics/histogram.h" #include "tensorstore/internal/metrics/metadata.h" #include "tensorstore/internal/metrics/value.h" #include "tensorstore/internal/tagged_ptr.h" #include "tensorstore/internal/thread/thread.h" #include "tensorstore/internal/tracing/tracing.h" #include "tensorstore/util/stop_token.h" using ::tensorstore::internal_metrics::MetricMetadata; namespace tensorstore { namespace internal { namespace { using ScheduleAtTask = absl::AnyInvocable<void() &&>; auto& schedule_at_queued_ops = internal_metrics::Gauge<int64_t>::New( "/tensorstore/internal/thread/schedule_at/queued_ops", MetricMetadata("Operations in flight on the schedule_at thread")); auto& schedule_at_next_event = internal_metrics::Value<absl::Time>::New( "/tensorstore/internal/thread/schedule_at/next_event", MetricMetadata("Time of the next in-flight schedule_at operation")); auto& schedule_at_insert_histogram_ms = internal_metrics::Histogram<internal_metrics::DefaultBucketer>::New( "/tensorstore/internal/thread/schedule_at/insert_histogram_ms", MetricMetadata("Histogram of schedule_at insert delays (ms)", internal_metrics::Units::kMilliseconds)); class DeadlineTaskQueue; using TaggedQueuePointer = TaggedPtr<DeadlineTaskQueue, 1>; struct DeadlineTaskNode; using DeadlineTaskTree = intrusive_red_black_tree::Tree<DeadlineTaskNode>; struct DeadlineTaskStopCallback { DeadlineTaskNode& node; void operator()() const; }; struct DeadlineTaskNode : public DeadlineTaskTree::NodeBase { DeadlineTaskNode(absl::Time deadline, ScheduleAtTask&& task, const StopToken& token) : deadline(deadline), task(std::move(task)), trace_context(internal_tracing::TraceContext::kThread), queue(TaggedQueuePointer{}), stop_callback(token, DeadlineTaskStopCallback{*this}) {} void RunAndDelete(); absl::Time deadline; ScheduleAtTask task; ABSL_ATTRIBUTE_NO_UNIQUE_ADDRESS internal_tracing::TraceContext trace_context; std::atomic<TaggedQueuePointer> queue; StopCallback<DeadlineTaskStopCallback> stop_callback; }; using RunImmediatelyQueueAccessor = intrusive_red_black_tree::LinkedListAccessor<DeadlineTaskNode>; class DeadlineTaskQueue { public: explicit DeadlineTaskQueue() : run_immediately_queue_(nullptr), next_wakeup_(absl::InfinitePast()), woken_up_(absl::InfinitePast()), thread_({"TensorstoreScheduleAt"}, &DeadlineTaskQueue::Run, this) {} ~DeadlineTaskQueue() { ABSL_UNREACHABLE(); } void ScheduleAt(absl::Time target_time, ScheduleAtTask task, const StopToken& stop_token); void Run(); private: friend struct DeadlineTaskNode; friend struct DeadlineTaskStopCallback; void TryRemove(DeadlineTaskNode& node); absl::Mutex mutex_; absl::CondVar cond_var_; DeadlineTaskTree tree_ ABSL_GUARDED_BY(mutex_); DeadlineTaskNode* run_immediately_queue_ ABSL_GUARDED_BY(mutex_); absl::Time next_wakeup_ ABSL_GUARDED_BY(mutex_); absl::Time woken_up_ ABSL_GUARDED_BY(mutex_); Thread thread_; }; void DeadlineTaskQueue::ScheduleAt(absl::Time target_time, ScheduleAtTask task, const StopToken& stop_token) { schedule_at_queued_ops.Increment(); schedule_at_insert_histogram_ms.Observe( absl::ToInt64Milliseconds(target_time - absl::Now())); auto node = std::make_unique<DeadlineTaskNode>(target_time, std::move(task), stop_token); absl::MutexLock l(&mutex_); auto tagged_queue_ptr = node->queue.exchange(TaggedQueuePointer(this)); if (tagged_queue_ptr.tag()) { return; } if (target_time <= woken_up_) { RunImmediatelyQueueAccessor{}.SetNext(node.get(), nullptr); if (run_immediately_queue_) { RunImmediatelyQueueAccessor{}.SetNext( RunImmediatelyQueueAccessor{}.GetPrev(run_immediately_queue_), node.get()); RunImmediatelyQueueAccessor{}.SetPrev(run_immediately_queue_, node.get()); } else { run_immediately_queue_ = node.get(); RunImmediatelyQueueAccessor{}.SetPrev(node.get(), node.get()); } if (next_wakeup_ != absl::InfinitePast()) { next_wakeup_ = absl::InfinitePast(); cond_var_.Signal(); } node.release(); return; } tree_.FindOrInsert( [&](DeadlineTaskNode& other) { return target_time < other.deadline ? absl::weak_ordering::less : absl::weak_ordering::greater; }, [&] { return node.release(); }); if (target_time < next_wakeup_) { next_wakeup_ = target_time; cond_var_.Signal(); } } void DeadlineTaskQueue::Run() { while (true) { DeadlineTaskTree runnable; DeadlineTaskNode* run_immediately = nullptr; { absl::MutexLock l(&mutex_); do { run_immediately = std::exchange(run_immediately_queue_, nullptr); if (!run_immediately) { next_wakeup_ = tree_.empty() ? absl::InfiniteFuture() : tree_.begin()->deadline; schedule_at_next_event.Set(next_wakeup_); cond_var_.WaitWithDeadline(&mutex_, next_wakeup_); } auto woken_up = woken_up_ = std::max(woken_up_, absl::Now()); auto split_result = tree_.FindSplit([&](DeadlineTaskNode& node) { return node.deadline <= woken_up ? absl::weak_ordering::greater : absl::weak_ordering::less; }); runnable = std::move(split_result.trees[0]); tree_ = std::move(split_result.trees[1]); } while (runnable.empty() && !run_immediately); next_wakeup_ = absl::InfinitePast(); } internal_tracing::TraceContext base = internal_tracing::TraceContext(internal_tracing::TraceContext::kThread); while (run_immediately) { auto* next = RunImmediatelyQueueAccessor{}.GetNext(run_immediately); run_immediately->RunAndDelete(); run_immediately = next; } for (DeadlineTaskTree::iterator it = runnable.begin(), next; it != runnable.end(); it = next) { next = std::next(it); runnable.Remove(*it); it->RunAndDelete(); } internal_tracing::SwapCurrentTraceContext(&base); } } void DeadlineTaskNode::RunAndDelete() { schedule_at_queued_ops.Decrement(); if (queue.load(std::memory_order_relaxed).tag()) { } else { internal_tracing::SwapCurrentTraceContext(&trace_context); std::move(task)(); } delete this; } void DeadlineTaskStopCallback::operator()() const { auto tagged_queue_ptr = node.queue.exchange(TaggedQueuePointer{nullptr, 1}); auto* queue_ptr = tagged_queue_ptr.get(); if (!queue_ptr) { return; } queue_ptr->TryRemove(node); } void DeadlineTaskQueue::TryRemove(DeadlineTaskNode& node) { { absl::MutexLock lock(&mutex_); if (node.deadline <= woken_up_) { return; } tree_.Remove(node); } delete &node; schedule_at_queued_ops.Decrement(); } } void ScheduleAt(absl::Time target_time, ScheduleAtTask task, const StopToken& stop_token) { static absl::NoDestructor<DeadlineTaskQueue> g_queue; g_queue->ScheduleAt(std::move(target_time), std::move(task), stop_token); } } }
#include "tensorstore/internal/thread/schedule_at.h" #include <memory> #include <thread> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/synchronization/notification.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorstore/util/stop_token.h" namespace { using ::tensorstore::StopSource; using ::tensorstore::internal::ScheduleAt; TEST(ScheduleAtTest, Basic) { absl::Notification a, b; auto now = absl::Now(); ScheduleAt(now + absl::Milliseconds(1), [&] { a.Notify(); }); ScheduleAt(now + absl::Milliseconds(5), [&] { b.Notify(); }); EXPECT_FALSE(b.HasBeenNotified()); b.WaitForNotification(); EXPECT_TRUE(a.HasBeenNotified()); } TEST(ScheduleAtTest, RunImmediately) { auto notification = std::make_shared<absl::Notification>(); ScheduleAt(absl::InfinitePast(), [=] { notification->Notify(); }); notification->WaitForNotification(); } TEST(ScheduleAtTest, RunMultipleImmediately) { auto notification = std::make_shared<absl::Notification>(); ScheduleAt(absl::Now(), [=] { notification->WaitForNotification(); }); auto notification1 = std::make_shared<absl::Notification>(); auto notification2 = std::make_shared<absl::Notification>(); ScheduleAt(absl::InfinitePast(), [=] { EXPECT_FALSE(notification2->HasBeenNotified()); notification1->Notify(); }); ScheduleAt(absl::InfinitePast(), [=] { notification2->Notify(); }); notification->Notify(); notification1->WaitForNotification(); notification2->WaitForNotification(); } TEST(ScheduleAtTest, Cancel) { auto notification = std::make_shared<absl::Notification>(); EXPECT_EQ(1, notification.use_count()); StopSource stop_source; ScheduleAt( absl::InfiniteFuture(), [notification] { notification->Notify(); }, stop_source.get_token()); EXPECT_EQ(2, notification.use_count()); stop_source.request_stop(); EXPECT_EQ(1, notification.use_count()); EXPECT_FALSE(notification->HasBeenNotified()); } TEST(ScheduleAtTest, CancelImmediately) { auto notification = std::make_shared<absl::Notification>(); EXPECT_EQ(1, notification.use_count()); StopSource stop_source; stop_source.request_stop(); ScheduleAt( absl::InfinitePast(), [notification] { notification->Notify(); }, stop_source.get_token()); EXPECT_EQ(1, notification.use_count()); EXPECT_FALSE(notification->HasBeenNotified()); } TEST(ScheduleAtTest, CancelWhileRunning) { auto notification1 = std::make_shared<absl::Notification>(); StopSource stop_source; ScheduleAt(absl::InfinitePast(), [=] { notification1->WaitForNotification(); stop_source.request_stop(); }); auto notification2 = std::make_shared<absl::Notification>(); auto notification3 = std::make_shared<absl::Notification>(); ScheduleAt( absl::InfinitePast(), [=] { notification2->Notify(); }, stop_source.get_token()); ScheduleAt(absl::InfinitePast(), [=] { notification3->Notify(); }); notification1->Notify(); notification3->WaitForNotification(); EXPECT_FALSE(notification2->HasBeenNotified()); EXPECT_EQ(1, notification2.use_count()); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/thread/schedule_at.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/thread/schedule_at_test.cc
4f887a6430414cd6088e1743555015b10f116d50
295b54a4-a0b7-4604-a9ef-4a8f545a5f55
cpp
google/tensorstore
thread_pool
tensorstore/internal/thread/thread_pool.cc
tensorstore/internal/thread/thread_pool_test.cc
#include "tensorstore/internal/thread/thread_pool.h" #include <stddef.h> #include <cassert> #include <limits> #include <memory> #include <thread> #include <utility> #include "absl/base/no_destructor.h" #include "absl/log/absl_check.h" #include "absl/log/absl_log.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/thread/pool_impl.h" #include "tensorstore/internal/thread/task.h" #include "tensorstore/internal/thread/task_group_impl.h" #include "tensorstore/util/executor.h" namespace tensorstore { namespace internal { namespace { Executor DefaultThreadPool(size_t num_threads) { static absl::NoDestructor<internal_thread_impl::SharedThreadPool> pool_; intrusive_ptr_increment(pool_.get()); if (num_threads == 0 || num_threads == std::numeric_limits<size_t>::max()) { num_threads = std::thread::hardware_concurrency() * 16; if (num_threads == 0) num_threads = 1024; ABSL_LOG_FIRST_N(INFO, 1) << "DetachedThreadPool should specify num_threads; using " << num_threads; } auto task_group = internal_thread_impl::TaskGroup::Make( internal::IntrusivePtr<internal_thread_impl::SharedThreadPool>( pool_.get()), num_threads); return [task_group = std::move(task_group)](ExecutorTask task) { task_group->AddTask( std::make_unique<internal_thread_impl::InFlightTask>(std::move(task))); }; } } Executor DetachedThreadPool(size_t num_threads) { return DefaultThreadPool(num_threads); } } }
#include "tensorstore/internal/thread/thread_pool.h" #include <string> #include "absl/flags/commandlineflag.h" #include "absl/flags/reflection.h" void SetupThreadPoolTestEnv() { } #include "tensorstore/internal/thread/thread_pool_test.inc"
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/thread/thread_pool.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/thread/thread_pool_test.cc
4f887a6430414cd6088e1743555015b10f116d50
de90b948-f9da-4f2f-a393-343a2fe93719
cpp
google/tensorstore
pool_impl
tensorstore/internal/thread/pool_impl.cc
tensorstore/internal/thread/pool_impl_test.cc
#include "tensorstore/internal/thread/pool_impl.h" #include <stddef.h> #include <stdint.h> #include <algorithm> #include <cassert> #include <utility> #include "absl/base/attributes.h" #include "absl/base/thread_annotations.h" #include "absl/log/absl_log.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/internal/metrics/counter.h" #include "tensorstore/internal/metrics/gauge.h" #include "tensorstore/internal/metrics/metadata.h" #include "tensorstore/internal/thread/task_provider.h" #include "tensorstore/internal/thread/thread.h" using ::tensorstore::internal_metrics::MetricMetadata; namespace tensorstore { namespace internal_thread_impl { namespace { constexpr absl::Duration kThreadStartDelay = absl::Milliseconds(5); constexpr absl::Duration kThreadExitDelay = absl::Milliseconds(5); constexpr absl::Duration kThreadIdleBeforeExit = absl::Seconds(20); constexpr absl::Duration kOverseerIdleBeforeExit = absl::Seconds(20); auto& thread_pool_started = internal_metrics::Counter<int64_t>::New( "/tensorstore/thread_pool/started", MetricMetadata("Threads started by SharedThreadPool")); auto& thread_pool_active = internal_metrics::Gauge<int64_t>::New( "/tensorstore/thread_pool/active", MetricMetadata("Active threads managed by SharedThreadPool")); auto& thread_pool_task_providers = internal_metrics::Gauge<int64_t>::New( "/tensorstore/thread_pool/task_providers", MetricMetadata("TaskProviders requesting threads from SharedThreadPool")); ABSL_CONST_INIT internal_log::VerboseFlag thread_pool_logging("thread_pool"); } SharedThreadPool::SharedThreadPool() : waiting_(128) { ABSL_LOG_IF(INFO, thread_pool_logging) << "SharedThreadPool: " << this; } void SharedThreadPool::NotifyWorkAvailable( internal::IntrusivePtr<TaskProvider> task_provider) { absl::MutexLock lock(&mutex_); if (in_queue_.insert(task_provider.get()).second) { waiting_.push_back(std::move(task_provider)); } if (!overseer_running_) { StartOverseer(); } else { overseer_condvar_.Signal(); } } internal::IntrusivePtr<TaskProvider> SharedThreadPool::FindActiveTaskProvider() { for (int i = waiting_.size(); i > 0; i--) { internal::IntrusivePtr<TaskProvider> ptr = std::move(waiting_.front()); waiting_.pop_front(); auto work = ptr->EstimateThreadsRequired(); if (work == 0) { in_queue_.erase(ptr.get()); continue; } if (work == 1) { in_queue_.erase(ptr.get()); } else { waiting_.push_back(ptr); } thread_pool_task_providers.Set(waiting_.size()); return ptr; } return nullptr; } struct SharedThreadPool::Overseer { internal::IntrusivePtr<SharedThreadPool> pool_; mutable absl::Time idle_start_time_; void operator()() const; void OverseerBody(); absl::Time MaybeStartWorker(absl::Time now) ABSL_EXCLUSIVE_LOCKS_REQUIRED(pool_->mutex_); }; void SharedThreadPool::StartOverseer() { assert(!overseer_running_); overseer_running_ = true; tensorstore::internal::Thread::StartDetached( {"ts_pool_overseer"}, SharedThreadPool::Overseer{ internal::IntrusivePtr<SharedThreadPool>(this)}); } void SharedThreadPool::Overseer::operator()() const { const_cast<SharedThreadPool::Overseer*>(this)->OverseerBody(); } void SharedThreadPool::Overseer::OverseerBody() { ABSL_LOG_IF(INFO, thread_pool_logging.Level(1)) << "Overseer: " << this; absl::Time now = absl::Now(); idle_start_time_ = now; absl::Time deadline = absl::InfinitePast(); absl::MutexLock lock(&pool_->mutex_); while (true) { pool_->overseer_condvar_.WaitWithDeadline(&pool_->mutex_, deadline); now = absl::Now(); deadline = MaybeStartWorker(now); if (deadline < now) break; } ABSL_LOG_IF(INFO, thread_pool_logging.Level(1)) << "~Overseer: " << this; pool_->overseer_running_ = false; } absl::Time SharedThreadPool::Overseer::MaybeStartWorker(absl::Time now) { if (pool_->idle_threads_ || pool_->waiting_.empty()) { return idle_start_time_ + kOverseerIdleBeforeExit; } if (now < pool_->last_thread_start_time_ + kThreadStartDelay) { return pool_->last_thread_start_time_ + kThreadStartDelay; } if (now < pool_->queue_assignment_time_ + kThreadStartDelay) { return pool_->queue_assignment_time_ + kThreadStartDelay; } auto task_provider = pool_->FindActiveTaskProvider(); if (!task_provider) { return idle_start_time_ + kOverseerIdleBeforeExit; } pool_->StartWorker(std::move(task_provider), now); idle_start_time_ = now; return now + kThreadStartDelay; } struct SharedThreadPool::Worker { internal::IntrusivePtr<SharedThreadPool> pool_; internal::IntrusivePtr<TaskProvider> task_provider_; void operator()() const; void WorkerBody(); }; void SharedThreadPool::StartWorker( internal::IntrusivePtr<TaskProvider> task_provider, absl::Time now) { last_thread_start_time_ = now; worker_threads_++; thread_pool_started.Increment(); tensorstore::internal::Thread::StartDetached( {"ts_pool_worker"}, Worker{internal::IntrusivePtr<SharedThreadPool>(this), std::move(task_provider)}); } void SharedThreadPool::Worker::operator()() const { const_cast<SharedThreadPool::Worker*>(this)->WorkerBody(); } void SharedThreadPool::Worker::WorkerBody() { struct ScopedIncDec { size_t& x_; ScopedIncDec(size_t& x) : x_(x) { x_++; } ~ScopedIncDec() { x_--; } }; thread_pool_active.Increment(); ABSL_LOG_IF(INFO, thread_pool_logging.Level(1)) << "Worker: " << this; while (true) { if (task_provider_) { task_provider_->DoWorkOnThread(); task_provider_ = nullptr; } ABSL_LOG_IF(INFO, thread_pool_logging.Level(1)) << "Idle: " << this; absl::Time now = absl::Now(); absl::Time deadline = now + kThreadIdleBeforeExit; { absl::MutexLock lock(&pool_->mutex_); ScopedIncDec idle(pool_->idle_threads_); while (!task_provider_) { bool active = pool_->mutex_.AwaitWithDeadline( absl::Condition( +[](SharedThreadPool* self) ABSL_EXCLUSIVE_LOCKS_REQUIRED( self->mutex_) { return !self->waiting_.empty(); }, pool_.get()), deadline); now = absl::Now(); if (active) { task_provider_ = pool_->FindActiveTaskProvider(); } else { deadline = std::max(deadline, pool_->last_thread_exit_time_ + kThreadExitDelay); if (deadline < now) { break; } } } if (task_provider_) { pool_->queue_assignment_time_ = now; } else { pool_->worker_threads_--; pool_->last_thread_exit_time_ = now; break; } } } thread_pool_active.Decrement(); ABSL_LOG_IF(INFO, thread_pool_logging.Level(1)) << "~Worker: " << this; } } }
#include "tensorstore/internal/thread/pool_impl.h" #include <stddef.h> #include <stdint.h> #include <cassert> #include <memory> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/base/thread_annotations.h" #include "absl/synchronization/blocking_counter.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/thread/task.h" #include "tensorstore/internal/thread/task_provider.h" namespace { using ::tensorstore::internal::IntrusivePtr; using ::tensorstore::internal::MakeIntrusivePtr; using ::tensorstore::internal_thread_impl::InFlightTask; using ::tensorstore::internal_thread_impl::SharedThreadPool; using ::tensorstore::internal_thread_impl::TaskProvider; struct SingleTaskProvider : public TaskProvider { struct private_t {}; public: static IntrusivePtr<SingleTaskProvider> Make( IntrusivePtr<SharedThreadPool> pool, std::unique_ptr<InFlightTask> task) { return MakeIntrusivePtr<SingleTaskProvider>(private_t{}, std::move(pool), std::move(task)); } SingleTaskProvider(private_t, IntrusivePtr<SharedThreadPool> pool, std::unique_ptr<InFlightTask> task) : pool_(std::move(pool)), task_(std::move(task)) {} ~SingleTaskProvider() override = default; int64_t EstimateThreadsRequired() override { absl::MutexLock lock(&mutex_); flags_ += 2; return task_ ? 1 : 0; } void Trigger() { pool_->NotifyWorkAvailable(IntrusivePtr<TaskProvider>(this)); } void DoWorkOnThread() override { std::unique_ptr<InFlightTask> task; { absl::MutexLock lock(&mutex_); flags_ |= 1; if (task_) { task = std::move(task_); } } if (task) { task->Run(); } } IntrusivePtr<SharedThreadPool> pool_; absl::Mutex mutex_; std::unique_ptr<InFlightTask> task_ ABSL_GUARDED_BY(mutex_); int64_t flags_ = 0; }; TEST(SharedThreadPoolTest, Basic) { auto pool = MakeIntrusivePtr<SharedThreadPool>(); { absl::Notification notification; auto provider = SingleTaskProvider::Make( pool, std::make_unique<InFlightTask>([&] { notification.Notify(); })); provider->Trigger(); provider->Trigger(); notification.WaitForNotification(); } } TEST(SharedThreadPoolTest, LotsOfProviders) { auto pool = MakeIntrusivePtr<SharedThreadPool>(); std::vector<IntrusivePtr<SingleTaskProvider>> providers; providers.reserve(1000); for (int i = 2; i < 1000; i = i * 2) { absl::BlockingCounter a(i); for (int j = 0; j < i; j++) { providers.push_back(SingleTaskProvider::Make( pool, std::make_unique<InFlightTask>([&] { a.DecrementCount(); }))); } for (auto& p : providers) p->Trigger(); a.Wait(); for (auto& p : providers) p->Trigger(); providers.clear(); } } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/thread/pool_impl.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/thread/pool_impl_test.cc
4f887a6430414cd6088e1743555015b10f116d50
4006e144-3709-4d64-8719-d31365871b0e
cpp
google/tensorstore
thread
tensorstore/internal/thread/thread.cc
tensorstore/internal/thread/thread_test.cc
#if defined(__linux__) || defined(__APPLE__) #include <pthread.h> #endif #include <thread> #include <type_traits> namespace tensorstore { namespace internal { void TrySetCurrentThreadName(const char* name) { if (name == nullptr) return; #if defined(__linux__) pthread_setname_np(pthread_self(), name); #endif #if defined(__APPLE__) pthread_setname_np(name); #endif } } }
#include "tensorstore/internal/thread/thread.h" #include <gtest/gtest.h> namespace { TEST(ThreadTest, Basic) { tensorstore::internal::Thread my_thread; int x = 0; tensorstore::internal::Thread::Id id[2]; my_thread = tensorstore::internal::Thread({}, [&x, &id]() { x = 1; id[1] = tensorstore::internal::Thread::this_thread_id(); }); id[0] = my_thread.get_id(); my_thread.Join(); EXPECT_EQ(id[0], id[1]); EXPECT_EQ(1, x); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/thread/thread.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/thread/thread_test.cc
4f887a6430414cd6088e1743555015b10f116d50
4e94c2d6-5c4b-4866-8f55-4f6af0728204
cpp
google/tensorstore
storage
tensorstore/internal/poly/storage.cc
tensorstore/internal/poly/storage_test.cc
#include "tensorstore/internal/poly/storage.h" namespace tensorstore { namespace internal_poly_storage { constexpr VTableBase NullVTable::vtable; } }
#include "tensorstore/internal/poly/storage.h" #include <gtest/gtest.h> namespace { using ::tensorstore::internal_poly_storage::ActualInlineSize; using ::tensorstore::internal_poly_storage::GetVTableBase; using ::tensorstore::internal_poly_storage::HeapStorageOps; using ::tensorstore::internal_poly_storage::InlineStorageOps; using ::tensorstore::internal_poly_storage::Storage; using ::tensorstore::internal_poly_storage::VTableBase; static constexpr size_t kStorageSize = ActualInlineSize(8); static_assert(80 == ActualInlineSize(79)); static_assert(80 == ActualInlineSize(80)); TEST(ObjectOps, InlineTrivial) { using S = Storage<kStorageSize, true>; using Ops = typename S::Ops<int>; static_assert(std::is_same_v<Ops, InlineStorageOps<int>>); static_assert(Ops::UsesInlineStorage()); S a, b; EXPECT_EQ(nullptr, a.template get_if<int>()); Ops::Construct(a.storage(), 7); Ops::Relocate(b.storage(), a.storage()); Ops::Copy(a.storage(), b.storage()); EXPECT_EQ(7, Ops::Get(a.storage())); EXPECT_EQ(7, Ops::Get(b.storage())); Ops::Destroy(a.storage()); Ops::Destroy(b.storage()); } TEST(ObjectOps, NotInlineTrivial) { struct X { double x; double y; double z; }; using S = Storage<kStorageSize, true>; using Ops = typename S::Ops<X>; static_assert(std::is_same_v<Ops, HeapStorageOps<X>>); static_assert(!Ops::UsesInlineStorage()); S a, b; EXPECT_EQ(nullptr, a.get_if<int>()); Ops::Construct(a.storage(), X{7, 8, 9}); Ops::Relocate(b.storage(), a.storage()); Ops::Copy(a.storage(), b.storage()); EXPECT_EQ(7, Ops::Get(a.storage()).x); EXPECT_EQ(9, Ops::Get(b.storage()).z); Ops::Destroy(a.storage()); Ops::Destroy(b.storage()); } template <typename Ops, bool Copyable> static const VTableBase* GetVTable() { static VTableBase vtable = GetVTableBase<Ops, Copyable>(); return &vtable; } TEST(Storage, MoveOnly) { using S = Storage<16, false>; using Ops = typename S::Ops<int>; { S a; EXPECT_TRUE(a.null()); EXPECT_EQ(nullptr, a.get_if<int>()); } { S a; a.ConstructT<int>(GetVTable<Ops, false>(), 7); ASSERT_FALSE(a.null()); ASSERT_NE(nullptr, a.get_if<int>()); EXPECT_EQ(7, *a.get_if<int>()); } { S a; a.ConstructT<int>(GetVTable<Ops, false>(), 8); S b = std::move(a); ASSERT_FALSE(b.null()); ASSERT_NE(nullptr, b.get_if<int>()); EXPECT_EQ(8, *b.get_if<int>()); S c(std::move(b)); ASSERT_FALSE(c.null()); ASSERT_NE(nullptr, c.get_if<int>()); EXPECT_EQ(8, *c.get_if<int>()); } } TEST(Storage, Copy) { using S = Storage<16, true>; using Ops = typename S::Ops<int>; { S a; EXPECT_TRUE(a.null()); EXPECT_EQ(nullptr, a.get_if<int>()); } { S a; a.ConstructT<int>(GetVTable<Ops, true>(), 7); ASSERT_FALSE(a.null()); ASSERT_NE(nullptr, a.get_if<int>()); EXPECT_EQ(7, *a.get_if<int>()); } { S a; a.ConstructT<int>(GetVTable<Ops, true>(), 8); S b = a; ASSERT_NE(nullptr, b.get_if<int>()); EXPECT_EQ(8, *b.get_if<int>()); S c(a); EXPECT_FALSE(a.null()); ASSERT_FALSE(c.null()); ASSERT_NE(nullptr, c.get_if<int>()); EXPECT_EQ(8, *c.get_if<int>()); a.Destroy(); EXPECT_TRUE(a.null()); EXPECT_EQ(nullptr, a.get_if<int>()); } } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/poly/storage.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/poly/storage_test.cc
4f887a6430414cd6088e1743555015b10f116d50
da7108be-91df-4133-aa86-1e9506bd2dda
cpp
google/tensorstore
key_range
tensorstore/kvstore/key_range.cc
tensorstore/kvstore/key_range_test.cc
#include "tensorstore/kvstore/key_range.h" #include <algorithm> #include <cstddef> #include <ostream> #include <string> #include <string_view> #include <utility> #include "absl/strings/match.h" #include "absl/types/compare.h" #include "tensorstore/internal/compare.h" #include "tensorstore/util/quote_string.h" namespace tensorstore { namespace { std::string_view PartialPrefix(std::string_view prefix) { while (!prefix.empty() && prefix.back() == '\xff') { prefix.remove_suffix(1); } return prefix; } std::string_view MinExclusiveMax(std::string_view a, std::string_view b) { return KeyRange::CompareExclusiveMax(a, b) < 0 ? a : b; } } KeyRange KeyRange::Prefix(std::string prefix) { KeyRange range; range.exclusive_max = PrefixExclusiveMax(prefix); range.inclusive_min = std::move(prefix); return range; } std::string KeyRange::Successor(std::string_view key) { std::string successor; successor.reserve(key.size() + 1); successor.append(key); successor += '\x00'; return successor; } KeyRange KeyRange::Singleton(std::string key) { auto exclusive_max = Successor(key); return KeyRange(std::move(key), std::move(exclusive_max)); } bool KeyRange::is_singleton() const { return exclusive_max.size() == (inclusive_min.size() + 1) && exclusive_max.back() == '\x00' && std::string_view(exclusive_max).substr(0, inclusive_min.size()) == inclusive_min; } bool KeyRange::is_non_empty_prefix() const { std::string_view prefix = PartialPrefix(inclusive_min); return !full() && exclusive_max.size() == prefix.size() && (prefix.empty() || (exclusive_max.back() == (prefix.back() + 1) && std::string_view(exclusive_max).substr(0, prefix.size() - 1) == prefix.substr(0, prefix.size() - 1))); } std::string KeyRange::PrefixExclusiveMax(std::string_view prefix) { std::string prefix_copy(PartialPrefix(prefix)); if (!prefix_copy.empty()) { auto& last_byte = prefix_copy.back(); last_byte = static_cast<unsigned char>(last_byte) + 1; } return prefix_copy; } absl::weak_ordering KeyRange::CompareKeyAndExclusiveMax( std::string_view key, std::string_view bound) { return bound.empty() ? absl::weak_ordering::less : internal::CompareResultAsWeakOrdering(key.compare(bound)); } absl::weak_ordering KeyRange::CompareExclusiveMax(std::string_view a, std::string_view b) { return a.empty() != b.empty() ? (a.empty() ? absl::weak_ordering::greater : absl::weak_ordering::less) : internal::CompareResultAsWeakOrdering(a.compare(b)); } bool Contains(const KeyRange& haystack, std::string_view needle) { return haystack.inclusive_min <= needle && KeyRange::CompareKeyAndExclusiveMax(needle, haystack.exclusive_max) < 0; } KeyRange Intersect(const KeyRange& a, const KeyRange& b) { const auto* a_ptr = &a; const auto* b_ptr = &b; if (a_ptr->inclusive_min > b_ptr->inclusive_min) { std::swap(a_ptr, b_ptr); } KeyRange result; result.inclusive_min = b_ptr->inclusive_min; result.exclusive_max = std::string(MinExclusiveMax(a_ptr->exclusive_max, b_ptr->exclusive_max)); if (result.empty()) { result.exclusive_max = result.inclusive_min; } return result; } bool Intersects(const KeyRange& a, const KeyRange& b) { return !Intersect(a, b).empty(); } bool Contains(const KeyRange& haystack, const KeyRange& needle) { return haystack.inclusive_min <= needle.inclusive_min && KeyRange::CompareExclusiveMax(needle.exclusive_max, haystack.exclusive_max) <= 0; } std::string_view LongestPrefix(const KeyRange& range) { std::string_view inclusive_min = range.inclusive_min; std::string_view exclusive_max = range.exclusive_max; size_t i = 0; if (exclusive_max.empty()) { while (i < inclusive_min.size() && inclusive_min[i] == '\xff') { ++i; } } else { size_t min_length = std::min(inclusive_min.size(), exclusive_max.size()); while (i < min_length && inclusive_min[i] == exclusive_max[i]) { ++i; } if (i + 1 == min_length && inclusive_min[i] != '\xff' && static_cast<unsigned char>(inclusive_min[i]) + 1 == static_cast<unsigned char>(exclusive_max[i])) { ++i; while (i < inclusive_min.size() && inclusive_min[i] == '\xff') { ++i; } } } return inclusive_min.substr(0, i); } bool ContainsPrefix(const KeyRange& haystack, std::string_view prefix) { return tensorstore::Contains(haystack, KeyRange::Prefix(std::string(prefix))); } bool IntersectsPrefix(const KeyRange& a, std::string_view prefix) { return tensorstore::Intersects(a, KeyRange::Prefix(std::string(prefix))); } std::ostream& operator<<(std::ostream& os, const KeyRange& range) { return os << "[" << tensorstore::QuoteString(range.inclusive_min) << ", " << tensorstore::QuoteString(range.exclusive_max) << ")"; } KeyRange KeyRange::AddPrefix(std::string_view prefix, KeyRange range) { if (prefix.empty()) return range; range.inclusive_min.insert(0, prefix); if (range.exclusive_max.empty()) { range.exclusive_max = KeyRange::PrefixExclusiveMax(std::string(prefix)); } else { range.exclusive_max.insert(0, prefix); } return range; } KeyRange KeyRange::RemovePrefix(std::string_view prefix, KeyRange range) { if (prefix.empty()) return range; if (prefix >= range.inclusive_min) { range.inclusive_min.clear(); } else { if (!absl::StartsWith(range.inclusive_min, prefix)) return EmptyRange(); range.inclusive_min.erase(0, prefix.size()); } const auto c = CompareKeyAndExclusiveMax(prefix, range.exclusive_max); if (c < 0) { if (absl::StartsWith(range.exclusive_max, prefix)) { range.exclusive_max.erase(0, prefix.size()); } else { range.exclusive_max.clear(); } } else { return EmptyRange(); } return range; } KeyRange KeyRange::RemovePrefixLength(size_t n, const KeyRange& range) { std::string_view inclusive_min(range.inclusive_min); if (n < inclusive_min.size()) { inclusive_min.remove_prefix(n); } else { inclusive_min = {}; } std::string_view exclusive_max(range.exclusive_max); if (n < exclusive_max.size()) { exclusive_max.remove_prefix(n); } else { exclusive_max = {}; } return KeyRange(std::string(inclusive_min), std::string(exclusive_max)); } }
#include "tensorstore/kvstore/key_range.h" #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/types/compare.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::KeyRange; TEST(KeyRangeTest, Comparison) { KeyRange r1("a", "b"); EXPECT_EQ("a", r1.inclusive_min); EXPECT_EQ("b", r1.exclusive_max); KeyRange r2("a", "c"); KeyRange r3("", "b"); KeyRange r4("", "c"); EXPECT_EQ(r1, r1); EXPECT_EQ(r2, r2); EXPECT_EQ(r3, r3); EXPECT_EQ(r4, r4); EXPECT_NE(r1, r2); EXPECT_NE(r1, r3); EXPECT_NE(r1, r4); EXPECT_NE(r2, r3); EXPECT_NE(r2, r4); EXPECT_NE(r3, r4); } TEST(KeyRangeTest, Full) { KeyRange full; EXPECT_TRUE(full.full()); EXPECT_EQ(std::string(), full.inclusive_min); EXPECT_EQ(std::string(), full.exclusive_max); EXPECT_EQ(full, KeyRange({}, {})); EXPECT_NE(full, KeyRange("a", "b")); EXPECT_NE(full, KeyRange("", "b")); EXPECT_NE(full, KeyRange("a", "")); EXPECT_FALSE(full.empty()); EXPECT_EQ("", tensorstore::LongestPrefix(full)); EXPECT_TRUE(tensorstore::Contains(full, "abc")); EXPECT_EQ(KeyRange::Prefix(""), full); } TEST(KeyRangeTest, Empty) { EXPECT_FALSE(KeyRange("a", "b").empty()); EXPECT_FALSE(KeyRange("a", "").empty()); EXPECT_TRUE(KeyRange("b", "a").empty()); EXPECT_TRUE(KeyRange("b", "b").empty()); } TEST(KeyRangeTest, Prefix) { EXPECT_EQ(KeyRange(), KeyRange::Prefix("")); EXPECT_EQ(KeyRange("abc", "abd"), KeyRange::Prefix("abc")); EXPECT_EQ(KeyRange("ab\xff", "ac"), KeyRange::Prefix("ab\xff")); EXPECT_EQ(KeyRange("ab\xff\xff\xff", "ac"), KeyRange::Prefix("ab\xff\xff\xff")); EXPECT_EQ(KeyRange("\xff", ""), KeyRange::Prefix("\xff")); EXPECT_EQ(KeyRange("\xff\xff\xff", ""), KeyRange::Prefix("\xff\xff\xff")); EXPECT_FALSE(KeyRange::Prefix("").is_non_empty_prefix()); EXPECT_TRUE(KeyRange::Prefix("abc").is_non_empty_prefix()); EXPECT_TRUE(KeyRange::Prefix("ab\xff").is_non_empty_prefix()); EXPECT_TRUE(KeyRange::Prefix("ab\xff\xff\xff").is_non_empty_prefix()); EXPECT_TRUE(KeyRange::Prefix("\xff").is_non_empty_prefix()); EXPECT_TRUE(KeyRange::Prefix("\xff\xff\xff").is_non_empty_prefix()); EXPECT_FALSE(KeyRange::Prefix("ab\xff").full()); EXPECT_FALSE(KeyRange::Prefix("ab\xff").is_singleton()); } TEST(KeyRangeTest, Successor) { EXPECT_EQ(std::string({'a', 'b', 'c', '\x00'}), KeyRange::Successor("abc")); EXPECT_EQ(std::string({'\x00'}), KeyRange::Successor("")); } TEST(KeyRangeTest, ContainsKey) { EXPECT_TRUE(tensorstore::Contains(KeyRange("a", "c"), "a")); EXPECT_TRUE(tensorstore::Contains(KeyRange("a", "c"), "ab")); EXPECT_TRUE(tensorstore::Contains(KeyRange("a", "c"), "abc")); EXPECT_TRUE(tensorstore::Contains(KeyRange("a", "c"), "b")); EXPECT_TRUE(tensorstore::Contains(KeyRange("a", "c"), "ba")); EXPECT_FALSE(tensorstore::Contains(KeyRange("a", "c"), "c")); EXPECT_FALSE(tensorstore::Contains(KeyRange("a", "c"), "ca")); EXPECT_FALSE(tensorstore::Contains(KeyRange("a", "c"), "d")); } TEST(KeyRangeTest, ContainsRange) { EXPECT_TRUE(tensorstore::Contains(KeyRange(), KeyRange("ab", "cd"))); EXPECT_TRUE(tensorstore::Contains(KeyRange("a", "c"), KeyRange("a", "c"))); EXPECT_TRUE(tensorstore::Contains(KeyRange("a", "c"), KeyRange("ab", "c"))); EXPECT_TRUE(tensorstore::Contains(KeyRange("a", "c"), KeyRange("ab", "ba"))); EXPECT_TRUE(tensorstore::Contains(KeyRange("a", "c"), KeyRange("b", "ba"))); EXPECT_TRUE(tensorstore::Contains(KeyRange("a", "c"), KeyRange::Prefix("a"))); EXPECT_TRUE( tensorstore::Contains(KeyRange("a", "c"), KeyRange::Prefix("ab"))); EXPECT_TRUE(tensorstore::Contains(KeyRange("a", "c"), KeyRange::Prefix("b"))); EXPECT_FALSE(tensorstore::Contains(KeyRange("a", "c"), KeyRange("a", "ca"))); EXPECT_FALSE(tensorstore::Contains(KeyRange("a", "c"), KeyRange("0", "a"))); EXPECT_FALSE(tensorstore::Contains(KeyRange("a", "c"), KeyRange())); } TEST(KeyRangeTest, Intersect) { EXPECT_EQ(KeyRange("b", "b"), tensorstore::Intersect(KeyRange("a", "b"), KeyRange("b", "c"))); EXPECT_EQ(KeyRange("c", "c"), tensorstore::Intersect(KeyRange("a", "b"), KeyRange("c", "d"))); EXPECT_EQ(KeyRange("b", "b"), tensorstore::Intersect(KeyRange("", "b"), KeyRange("b", ""))); EXPECT_EQ(KeyRange("a", "b"), tensorstore::Intersect(KeyRange(), KeyRange("a", "b"))); EXPECT_EQ(KeyRange("a", "b"), tensorstore::Intersect(KeyRange("a", "b"), KeyRange())); EXPECT_EQ(KeyRange("a", "b"), tensorstore::Intersect(KeyRange("a", "b"), KeyRange("a", "c"))); EXPECT_EQ(KeyRange("a", "b"), tensorstore::Intersect(KeyRange("a", "c"), KeyRange("a", "b"))); EXPECT_EQ(KeyRange("b", "c"), tensorstore::Intersect(KeyRange("a", "c"), KeyRange("b", "c"))); EXPECT_EQ(KeyRange("aa", "b"), tensorstore::Intersect(KeyRange("aa", "c"), KeyRange("a", "b"))); EXPECT_EQ(KeyRange("aa", "b"), tensorstore::Intersect(KeyRange("aa", ""), KeyRange("a", "b"))); } TEST(KeyRangeTest, LongestPrefix) { EXPECT_EQ("", tensorstore::LongestPrefix(KeyRange("a", "c"))); EXPECT_EQ("a", tensorstore::LongestPrefix(KeyRange("a", "b"))); EXPECT_EQ("a", tensorstore::LongestPrefix(KeyRange("aa", "b"))); EXPECT_EQ("abc", tensorstore::LongestPrefix(KeyRange("abc", "abcd"))); EXPECT_EQ("abc", tensorstore::LongestPrefix(KeyRange("abc", "abd"))); EXPECT_EQ("ab", tensorstore::LongestPrefix(KeyRange("abc", "abe"))); EXPECT_EQ("ab\xff", tensorstore::LongestPrefix(KeyRange("ab\xff", "ac"))); EXPECT_EQ("ab\xff\xff", tensorstore::LongestPrefix(KeyRange("ab\xff\xff", "ac"))); EXPECT_EQ("\xff", tensorstore::LongestPrefix(KeyRange("\xff", ""))); EXPECT_EQ("\xff\xff", tensorstore::LongestPrefix(KeyRange("\xff\xff", ""))); } TEST(KeyRangeTest, Ostream) { EXPECT_EQ("[\"a\", \"b\")", tensorstore::StrCat(KeyRange("a", "b"))); EXPECT_EQ("[\"a\", \"ba\")", tensorstore::StrCat(KeyRange("a", "ba"))); } TEST(KeyRangeTest, CompareKeyAndExclusiveMax) { EXPECT_THAT(KeyRange::CompareKeyAndExclusiveMax("a", "a"), ::testing::Eq(absl::weak_ordering::equivalent)); EXPECT_THAT(KeyRange::CompareKeyAndExclusiveMax("a", "b"), ::testing::Eq(absl::weak_ordering::less)); EXPECT_THAT(KeyRange::CompareKeyAndExclusiveMax("b", "a"), ::testing::Eq(absl::weak_ordering::greater)); EXPECT_THAT(KeyRange::CompareKeyAndExclusiveMax("", ""), ::testing::Eq(absl::weak_ordering::less)); EXPECT_THAT(KeyRange::CompareKeyAndExclusiveMax("a", ""), ::testing::Eq(absl::weak_ordering::less)); EXPECT_THAT(KeyRange::CompareExclusiveMaxAndKey("a", "a"), ::testing::Eq(absl::weak_ordering::equivalent)); EXPECT_THAT(KeyRange::CompareExclusiveMaxAndKey("a", "b"), ::testing::Eq(absl::weak_ordering::less)); EXPECT_THAT(KeyRange::CompareExclusiveMaxAndKey("b", "a"), ::testing::Eq(absl::weak_ordering::greater)); EXPECT_THAT(KeyRange::CompareExclusiveMaxAndKey("", ""), ::testing::Eq(absl::weak_ordering::greater)); EXPECT_THAT(KeyRange::CompareExclusiveMaxAndKey("", "a"), ::testing::Eq(absl::weak_ordering::greater)); } TEST(KeyRangeTest, CompareExclusiveMax) { EXPECT_THAT(KeyRange::CompareExclusiveMax("", ""), ::testing::Eq(absl::weak_ordering::equivalent)); EXPECT_THAT(KeyRange::CompareExclusiveMax("a", "a"), ::testing::Eq(absl::weak_ordering::equivalent)); EXPECT_THAT(KeyRange::CompareExclusiveMax("a", "b"), ::testing::Eq(absl::weak_ordering::less)); EXPECT_THAT(KeyRange::CompareExclusiveMax("b", "a"), ::testing::Eq(absl::weak_ordering::greater)); EXPECT_THAT(KeyRange::CompareExclusiveMax("a", ""), ::testing::Eq(absl::weak_ordering::less)); EXPECT_THAT(KeyRange::CompareExclusiveMax("", "a"), ::testing::Eq(absl::weak_ordering::greater)); } TEST(KeyRangeTest, AddPrefix) { EXPECT_THAT(KeyRange::AddPrefix("", KeyRange("a", "b")), ::testing::Eq(KeyRange("a", "b"))); EXPECT_THAT(KeyRange::AddPrefix("x", KeyRange("a", "b")), ::testing::Eq(KeyRange("xa", "xb"))); EXPECT_THAT(KeyRange::AddPrefix("x", KeyRange("a", "")), ::testing::Eq(KeyRange("xa", "y"))); } TEST(KeyRangeTest, EmptyRange) { auto range = KeyRange::EmptyRange(); EXPECT_TRUE(range.empty()); EXPECT_EQ(range.inclusive_min, range.exclusive_max); } TEST(KeyRangeTest, RemovePrefix) { EXPECT_THAT(KeyRange::RemovePrefix("", KeyRange("a", "b")), ::testing::Eq(KeyRange("a", "b"))); EXPECT_THAT(KeyRange::RemovePrefix("a/", KeyRange("a/b", "a/d")), ::testing::Eq(KeyRange("b", "d"))); EXPECT_THAT(KeyRange::RemovePrefix("a/b", KeyRange("a/b", "a/d")), ::testing::Eq(KeyRange())); EXPECT_THAT(KeyRange::RemovePrefix("a/d", KeyRange("a/b", "a/d")), ::testing::Eq(KeyRange::EmptyRange())); EXPECT_THAT(KeyRange::RemovePrefix("a/bc", KeyRange("a/b", "a/bcb")), ::testing::Eq(KeyRange("", "b"))); EXPECT_THAT(KeyRange::RemovePrefix("x", KeyRange("xa", "y")), ::testing::Eq(KeyRange("a", ""))); EXPECT_THAT(KeyRange::RemovePrefix("ab", KeyRange::Prefix("ab")), ::testing::Eq(KeyRange())); EXPECT_THAT(KeyRange::RemovePrefix("ab", KeyRange::Prefix("ab\xff")), ::testing::Eq(KeyRange("\xff", ""))); } TEST(KeyRangeTest, RemovePrefixLength) { EXPECT_THAT(KeyRange::RemovePrefixLength(0, KeyRange("a", "b")), ::testing::Eq(KeyRange("a", "b"))); EXPECT_THAT(KeyRange::RemovePrefixLength(2, KeyRange("a/b", "a/d")), ::testing::Eq(KeyRange("b", "d"))); EXPECT_THAT(KeyRange::RemovePrefixLength(3, KeyRange("a/b", "a/d")), ::testing::Eq(KeyRange())); EXPECT_THAT(KeyRange::RemovePrefixLength(4, KeyRange("a/b", "a/bcb")), ::testing::Eq(KeyRange("", "b"))); EXPECT_THAT(KeyRange::RemovePrefixLength(1, KeyRange("xa", "y")), ::testing::Eq(KeyRange("a", ""))); EXPECT_THAT(KeyRange::RemovePrefixLength(2, KeyRange::Prefix("ab")), ::testing::Eq(KeyRange())); EXPECT_THAT(KeyRange::RemovePrefixLength(2, KeyRange::Prefix("ab\xff")), ::testing::Eq(KeyRange("\xff", ""))); } TEST(KeyRangeTest, Singleton) { auto r = KeyRange::Singleton("x"); EXPECT_TRUE(Contains(r, "x")); EXPECT_FALSE(Contains(r, KeyRange::Successor("x"))); EXPECT_EQ(KeyRange("x", KeyRange::Successor("x")), r); EXPECT_TRUE(KeyRange::Singleton("x").is_singleton()); EXPECT_FALSE(KeyRange::Singleton("y").full()); EXPECT_FALSE(KeyRange::Singleton("x").is_non_empty_prefix()); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/key_range.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/key_range_test.cc
4f887a6430414cd6088e1743555015b10f116d50
29b5e76f-177d-4976-9b2a-49a08a665656
cpp
google/tensorstore
byte_range
tensorstore/kvstore/byte_range.cc
tensorstore/kvstore/byte_range_test.cc
#include "tensorstore/kvstore/byte_range.h" #include <cassert> #include <optional> #include <ostream> #include <string> #include "absl/status/status.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/std_optional.h" #include "tensorstore/util/result.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { std::ostream& operator<<(std::ostream& os, const OptionalByteRangeRequest& r) { os << "[" << r.inclusive_min << ", "; if (r.exclusive_max != -1) { os << r.exclusive_max; } else { os << "?"; } os << ")"; return os; } std::ostream& operator<<(std::ostream& os, const ByteRange& r) { return os << "[" << r.inclusive_min << ", " << r.exclusive_max << ")"; } Result<ByteRange> OptionalByteRangeRequest::Validate(int64_t size) const { assert(SatisfiesInvariants()); int64_t inclusive_min = this->inclusive_min; int64_t exclusive_max = this->exclusive_max; if (exclusive_max == -1) exclusive_max = size; if (inclusive_min < 0) { inclusive_min += size; } if (inclusive_min < 0 || exclusive_max > size || inclusive_min > exclusive_max) { return absl::OutOfRangeError( tensorstore::StrCat("Requested byte range ", *this, " is not valid for value of size ", size)); } return ByteRange{inclusive_min, exclusive_max}; } } TENSORSTORE_DEFINE_SERIALIZER_SPECIALIZATION( tensorstore::ByteRange, tensorstore::serialization::ApplyMembersSerializer< tensorstore::ByteRange>()) TENSORSTORE_DEFINE_SERIALIZER_SPECIALIZATION( tensorstore::OptionalByteRangeRequest, tensorstore::serialization::ApplyMembersSerializer< tensorstore::OptionalByteRangeRequest>())
#include "tensorstore/kvstore/byte_range.h" #include <optional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/test_util.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::ByteRange; using ::tensorstore::MatchesStatus; using ::tensorstore::OptionalByteRangeRequest; using ::tensorstore::StrCat; using ::tensorstore::internal::GetSubCord; using ::tensorstore::serialization::TestSerializationRoundTrip; TEST(ByteRangeTest, SatisfiesInvariants) { EXPECT_TRUE((ByteRange{0, 0}).SatisfiesInvariants()); EXPECT_TRUE((ByteRange{0, 1}).SatisfiesInvariants()); EXPECT_TRUE((ByteRange{0, 100}).SatisfiesInvariants()); EXPECT_TRUE((ByteRange{10, 100}).SatisfiesInvariants()); EXPECT_TRUE((ByteRange{100, 100}).SatisfiesInvariants()); EXPECT_FALSE((ByteRange{100, 99}).SatisfiesInvariants()); EXPECT_FALSE((ByteRange{100, 0}).SatisfiesInvariants()); EXPECT_FALSE((ByteRange{-100, 0}).SatisfiesInvariants()); } TEST(ByteRangeTest, Size) { EXPECT_EQ(5, (ByteRange{2, 7}.size())); EXPECT_EQ(0, (ByteRange{2, 2}.size())); } TEST(ByteRangeTest, Comparison) { ByteRange a{1, 2}; ByteRange b{1, 3}; ByteRange c{2, 3}; EXPECT_TRUE(a == a); EXPECT_TRUE(b == b); EXPECT_TRUE(c == c); EXPECT_FALSE(a != a); EXPECT_FALSE(b != b); EXPECT_FALSE(c != c); EXPECT_FALSE(a == b); EXPECT_TRUE(a != b); EXPECT_NE(a, c); EXPECT_NE(b, c); } TEST(ByteRangeTest, Ostream) { EXPECT_EQ("[1, 10)", tensorstore::StrCat(ByteRange{1, 10})); } TEST(OptionalByteRangeRequestTest, DefaultConstruct) { OptionalByteRangeRequest r; EXPECT_EQ(0, r.inclusive_min); EXPECT_EQ(-1, r.exclusive_max); } TEST(OptionalByteRangeRequestTest, ConstructInclusiveMin) { OptionalByteRangeRequest r(5); EXPECT_EQ(5, r.inclusive_min); EXPECT_EQ(-1, r.exclusive_max); } TEST(OptionalByteRangeRequestTest, ConstructInclusiveMinExclusiveMax) { OptionalByteRangeRequest r(5, 10); EXPECT_EQ(5, r.inclusive_min); EXPECT_EQ(10, r.exclusive_max); } TEST(OptionalByteRangeRequestTest, ConstructByteRange) { OptionalByteRangeRequest r(ByteRange{5, 10}); EXPECT_EQ(5, r.inclusive_min); EXPECT_EQ(10, r.exclusive_max); } TEST(OptionalByteRangeRequestTest, Comparison) { OptionalByteRangeRequest a{1, 2}; OptionalByteRangeRequest b{1, 3}; OptionalByteRangeRequest c{2, 3}; OptionalByteRangeRequest d{1, -1}; EXPECT_TRUE(a == a); EXPECT_TRUE(b == b); EXPECT_TRUE(c == c); EXPECT_TRUE(d == d); EXPECT_FALSE(a != a); EXPECT_FALSE(a == b); EXPECT_TRUE(a != b); EXPECT_TRUE(a != c); EXPECT_TRUE(a != d); EXPECT_TRUE(b != d); EXPECT_TRUE(c != d); } TEST(OptionalByteRangeRequestTest, SatisfiesInvariants) { EXPECT_TRUE(OptionalByteRangeRequest().SatisfiesInvariants()); EXPECT_TRUE(OptionalByteRangeRequest(10).SatisfiesInvariants()); EXPECT_TRUE(OptionalByteRangeRequest(0, 1).SatisfiesInvariants()); EXPECT_TRUE(OptionalByteRangeRequest(0, 0).SatisfiesInvariants()); EXPECT_TRUE(OptionalByteRangeRequest(0, 100).SatisfiesInvariants()); EXPECT_TRUE(OptionalByteRangeRequest(10, 100).SatisfiesInvariants()); EXPECT_TRUE(OptionalByteRangeRequest(100, 100).SatisfiesInvariants()); EXPECT_FALSE(OptionalByteRangeRequest(100, 99).SatisfiesInvariants()); EXPECT_FALSE(OptionalByteRangeRequest(100, 0).SatisfiesInvariants()); EXPECT_FALSE(OptionalByteRangeRequest(-5, 0).SatisfiesInvariants()); EXPECT_FALSE(OptionalByteRangeRequest(-5, 3).SatisfiesInvariants()); EXPECT_FALSE(OptionalByteRangeRequest(3, -2).SatisfiesInvariants()); } TEST(OptionalByteRangeRequestTest, Ostream) { EXPECT_EQ("[5, 10)", StrCat(OptionalByteRangeRequest(5, 10))); EXPECT_EQ("[5, ?)", StrCat(OptionalByteRangeRequest(5))); } TEST(OptionalByteRangeRequestTest, Validate) { EXPECT_THAT(OptionalByteRangeRequest().Validate(0), ::testing::Optional(ByteRange{0, 0})); EXPECT_THAT(OptionalByteRangeRequest().Validate(1), ::testing::Optional(ByteRange{0, 1})); EXPECT_THAT(OptionalByteRangeRequest(5, 10).Validate(20), ::testing::Optional(ByteRange{5, 10})); EXPECT_THAT(OptionalByteRangeRequest(5, 10).Validate(10), ::testing::Optional(ByteRange{5, 10})); EXPECT_THAT(OptionalByteRangeRequest(5).Validate(10), ::testing::Optional(ByteRange{5, 10})); EXPECT_THAT(OptionalByteRangeRequest(-3).Validate(10), ::testing::Optional(ByteRange{7, 10})); EXPECT_THAT(OptionalByteRangeRequest(-10).Validate(10), ::testing::Optional(ByteRange{0, 10})); EXPECT_THAT(OptionalByteRangeRequest(5, 10).Validate(9), MatchesStatus(absl::StatusCode::kOutOfRange, "Requested byte range \\[5, 10\\) is not valid for " "value of size 9")); EXPECT_THAT( OptionalByteRangeRequest(10, 15).Validate(9), MatchesStatus(absl::StatusCode::kOutOfRange, "Requested byte range \\[10, 15\\) is not valid for " "value of size 9")); EXPECT_THAT( OptionalByteRangeRequest(-10).Validate(9), MatchesStatus(absl::StatusCode::kOutOfRange, "Requested byte range \\[-10, \\?\\) is not valid for " "value of size 9")); } TEST(GetSubStringTest, Basic) { EXPECT_EQ("bcd", GetSubCord(absl::Cord("abcde"), {1, 4})); EXPECT_EQ("bcd", GetSubCord(absl::Cord("abcde"), {1, 4})); EXPECT_EQ("abcde", GetSubCord(absl::Cord("abcde"), {0, 5})); } TEST(ByteRangeSerializationTest, Basic) { TestSerializationRoundTrip(ByteRange{1, 5}); } TEST(OptionalByteRangeRequestSerializationTest, Basic) { TestSerializationRoundTrip(OptionalByteRangeRequest{1, 5}); TestSerializationRoundTrip(OptionalByteRangeRequest{1}); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/byte_range.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/byte_range_test.cc
4f887a6430414cd6088e1743555015b10f116d50
a182fb05-afd0-428d-a2cb-989b5f45682f
cpp
google/tensorstore
generation
tensorstore/kvstore/generation.cc
tensorstore/kvstore/generation_test.cc
#include "tensorstore/kvstore/generation.h" #include <stddef.h> #include <stdint.h> #include <cstring> #include <ostream> #include <string_view> #include <utility> #include "absl/time/time.h" #include "tensorstore/serialization/absl_time.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/util/quote_string.h" namespace tensorstore { namespace { std::string_view CanonicalGeneration(std::string_view generation) { size_t new_size = generation.size(); while (new_size && generation[new_size - 1] == 0) { --new_size; } return generation.substr(0, new_size); } } std::ostream& operator<<(std::ostream& os, const StorageGeneration& g) { return os << QuoteString(g.value); } std::ostream& operator<<(std::ostream& os, const TimestampedStorageGeneration& x) { return os << "{generation=" << x.generation << ", time=" << x.time << "}"; } bool StorageGeneration::Equivalent(std::string_view a, std::string_view b) { return CanonicalGeneration(a) == CanonicalGeneration(b); } StorageGeneration StorageGeneration::Clean(StorageGeneration generation) { size_t new_size = generation.value.size(); while (new_size) { if (generation.value[new_size - 1] & kBaseGeneration) { generation.value[new_size - 1] &= ~(kDirty | kNewlyDirty); break; } --new_size; } generation.value.resize(new_size); return generation; } void StorageGeneration::MarkDirty() { if (value.empty()) { value = (kDirty | kNewlyDirty); } else { value.back() |= (kDirty | kNewlyDirty); } } StorageGeneration StorageGeneration::Dirty(StorageGeneration generation) { if (generation.value.empty()) { return StorageGeneration{std::string(1, kDirty)}; } generation.value.back() |= kDirty; return generation; } StorageGeneration StorageGeneration::FromUint64(uint64_t n) { StorageGeneration generation; generation.value.resize(9); std::memcpy(generation.value.data(), &n, 8); generation.value[8] = kBaseGeneration; return generation; } StorageGeneration StorageGeneration::FromString(std::string_view s) { StorageGeneration generation; generation.value.reserve(s.size() + 1); generation.value += s; generation.value += kBaseGeneration; return generation; } StorageGeneration StorageGeneration::Condition( const StorageGeneration& generation, StorageGeneration condition) { if (IsDirty(generation)) { return Dirty(Clean(std::move(condition))); } return Clean(std::move(condition)); } bool StorageGeneration::IsDirty(const StorageGeneration& generation) { auto canonical = CanonicalGeneration(generation.value); return !canonical.empty() && (canonical.back() & kDirty); } bool StorageGeneration::IsInnerLayerDirty(const StorageGeneration& generation) { return !generation.value.empty() && (generation.value.back() & kDirty); } StorageGeneration StorageGeneration::AddLayer(StorageGeneration generation) { generation.value.resize(generation.value.size() + 1); return generation; } bool StorageGeneration::IsConditional(const StorageGeneration& generation) { size_t new_size = generation.value.size(); while (new_size && !(generation.value[new_size - 1] & kBaseGeneration)) { --new_size; } return (new_size != 0); } bool StorageGeneration::IsConditionalOn(const StorageGeneration& generation, const StorageGeneration& condition) { size_t size = generation.value.size(); return size != 0 && condition.value.size() == size && std::memcmp(generation.value.data(), condition.value.data(), size - 1) == 0 && (generation.value[size] | kDirty | kNewlyDirty) == (condition.value[size] | kDirty | kNewlyDirty); } std::string_view StorageGeneration::DecodeString( const StorageGeneration& generation) { std::string_view s = generation.value; if (s.empty()) return {}; while (true) { bool start_of_tags = static_cast<bool>(s.back() & kBaseGeneration); s.remove_suffix(1); if (start_of_tags || s.empty()) break; } return s; } } TENSORSTORE_DEFINE_SERIALIZER_SPECIALIZATION( tensorstore::StorageGeneration, tensorstore::serialization::ApplyMembersSerializer< tensorstore::StorageGeneration>()) TENSORSTORE_DEFINE_SERIALIZER_SPECIALIZATION( tensorstore::TimestampedStorageGeneration, tensorstore::serialization::ApplyMembersSerializer< tensorstore::TimestampedStorageGeneration>())
#include "tensorstore/kvstore/generation.h" #include <gtest/gtest.h> #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/test_util.h" namespace { using ::tensorstore::StorageGeneration; using ::tensorstore::TimestampedStorageGeneration; using ::tensorstore::serialization::TestSerializationRoundTrip; TEST(StorageGenerationTest, Basic) { EXPECT_TRUE(StorageGeneration::IsUnknown(StorageGeneration::Unknown())); EXPECT_FALSE(StorageGeneration::IsUnknown(StorageGeneration::NoValue())); EXPECT_FALSE(StorageGeneration::IsNoValue(StorageGeneration::Unknown())); EXPECT_TRUE(StorageGeneration::IsNoValue(StorageGeneration::NoValue())); EXPECT_EQ(StorageGeneration{std::string{StorageGeneration::kDirty}}, StorageGeneration::Dirty(StorageGeneration::Unknown())); StorageGeneration gen{ std::string{1, 2, 3, 4, 5, StorageGeneration::kBaseGeneration}}; StorageGeneration local_gen{std::string{ 1, 2, 3, 4, 5, StorageGeneration::kBaseGeneration | StorageGeneration::kDirty}}; EXPECT_FALSE(StorageGeneration::IsUnknown(gen)); EXPECT_FALSE(StorageGeneration::IsUnknown(local_gen)); EXPECT_TRUE(StorageGeneration::IsClean(gen)); EXPECT_FALSE(StorageGeneration::IsClean(local_gen)); EXPECT_FALSE(StorageGeneration::IsDirty(gen)); EXPECT_TRUE(StorageGeneration::IsDirty(local_gen)); EXPECT_EQ(local_gen, StorageGeneration::Dirty(gen)); EXPECT_EQ(gen, StorageGeneration::Clean(local_gen)); EXPECT_TRUE(StorageGeneration::IsClean(StorageGeneration::NoValue())); EXPECT_FALSE(StorageGeneration::IsClean(StorageGeneration::Unknown())); EXPECT_EQ(StorageGeneration::NoValue(), StorageGeneration::Clean(StorageGeneration::NoValue())); } TEST(StorageGenerationTest, Uint64) { auto g = StorageGeneration::FromUint64(12345); EXPECT_TRUE(StorageGeneration::IsUint64(g)); EXPECT_EQ(12345, StorageGeneration::ToUint64(g)); EXPECT_FALSE(StorageGeneration::IsUint64(StorageGeneration::Unknown())); EXPECT_FALSE(StorageGeneration::IsUint64(StorageGeneration::NoValue())); EXPECT_FALSE(StorageGeneration::IsUint64(StorageGeneration::Invalid())); } TEST(StorageGenerationSerializationTest, Basic) { TestSerializationRoundTrip(StorageGeneration::Unknown()); TestSerializationRoundTrip(StorageGeneration::FromUint64(12345)); } TEST(TimestampedStorageGenerationSerializationTest, Basic) { TestSerializationRoundTrip(TimestampedStorageGeneration( StorageGeneration::FromUint64(12345), absl::InfinitePast())); TestSerializationRoundTrip(TimestampedStorageGeneration( StorageGeneration::FromUint64(12345), absl::InfiniteFuture())); } TEST(StorageGenerationTest, IsCleanValidValue) { EXPECT_FALSE( StorageGeneration::IsCleanValidValue(StorageGeneration::Unknown())); EXPECT_FALSE( StorageGeneration::IsCleanValidValue(StorageGeneration::NoValue())); EXPECT_FALSE( StorageGeneration::IsCleanValidValue(StorageGeneration::Invalid())); EXPECT_TRUE(StorageGeneration::IsCleanValidValue( StorageGeneration::FromString("abc"))); EXPECT_TRUE( StorageGeneration::IsCleanValidValue(StorageGeneration::FromUint64(42))); } TEST(StorageGenerationTest, DecodeString) { EXPECT_EQ("abc", StorageGeneration::DecodeString( StorageGeneration::FromString("abc"))); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/generation.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/generation_test.cc
4f887a6430414cd6088e1743555015b10f116d50
81f8af8a-489b-4b14-9049-bb797e3be1da
cpp
google/tensorstore
aws_credentials_resource
tensorstore/kvstore/s3/aws_credentials_resource.cc
tensorstore/kvstore/s3/aws_credentials_resource_test.cc
#include "tensorstore/kvstore/s3/aws_credentials_resource.h" #include <stddef.h> #include <cassert> #include <memory> #include <optional> #include <type_traits> #include <utility> #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/context.h" #include "tensorstore/context_resource_provider.h" #include "tensorstore/internal/http/curl_transport.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/json_serialization_options.h" #include "tensorstore/kvstore/s3/credentials/aws_credentials.h" #include "tensorstore/kvstore/s3/credentials/default_credential_provider.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" namespace jb = tensorstore::internal_json_binding; namespace tensorstore { namespace internal_kvstore_s3 { using Spec = ::tensorstore::internal_kvstore_s3::AwsCredentialsResource::Spec; using Resource = ::tensorstore::internal_kvstore_s3::AwsCredentialsResource::Resource; const internal::ContextResourceRegistration<AwsCredentialsResource> aws_credentials_registration; Result<Resource> AwsCredentialsResource::Create( const Spec& spec, internal::ContextResourceCreationContext context) const { if (spec.anonymous) { return Resource{spec, nullptr}; } auto result = GetAwsCredentialProvider( spec.filename, spec.profile, spec.metadata_endpoint, internal_http::GetDefaultHttpTransport()); if (!result.ok() && absl::IsNotFound(result.status())) { return Resource{spec, nullptr}; } TENSORSTORE_RETURN_IF_ERROR(result); return Resource{spec, *std::move(result)}; } Result<std::optional<AwsCredentials>> AwsCredentialsResource::Resource::GetCredentials() { if (!credential_provider_) return std::nullopt; auto credential_result_ = credential_provider_->GetCredentials(); if (!credential_result_.ok() && absl::IsNotFound(credential_result_.status())) { return std::nullopt; } return credential_result_; } namespace { static constexpr auto kAnonymousBinder = jb::Object(jb::Member( "anonymous", jb::Projection<&Spec::anonymous>( jb::Validate([](const auto& options, bool* x) { if (*x != true) { return absl::InvalidArgumentError( "\"anonymous\" must be true or not present in " "\"aws_credentials\""); } return absl::OkStatus(); })))); static constexpr auto kParameterBinder = jb::Object( jb::OptionalMember("profile", jb::Projection<&Spec::profile>()), jb::OptionalMember("filename", jb::Projection<&Spec::filename>()), jb::OptionalMember("metadata_endpoint", jb::Projection<&Spec::metadata_endpoint>())); } absl::Status AwsCredentialsResource::FromJsonImpl( const JsonSerializationOptions& options, Spec* spec, ::nlohmann::json* j) { if (auto* j_obj = j->template get_ptr<::nlohmann::json::object_t*>(); j_obj && j_obj->find("anonymous") != j_obj->end()) { return kAnonymousBinder(std::true_type{}, options, spec, j); } return kParameterBinder(std::true_type{}, options, spec, j); } absl::Status AwsCredentialsResource::ToJsonImpl( const JsonSerializationOptions& options, const Spec* spec, ::nlohmann::json* j) { if (spec->anonymous) { return kAnonymousBinder(std::false_type{}, options, spec, j); } return kParameterBinder(std::false_type{}, options, spec, j); } } }
#include "tensorstore/kvstore/s3/aws_credentials_resource.h" #include <optional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include <nlohmann/json_fwd.hpp> #include <nlohmann/json.hpp> #include "tensorstore/context.h" #include "tensorstore/util/status_testutil.h" using ::tensorstore::Context; using ::tensorstore::MatchesStatus; using ::tensorstore::internal_kvstore_s3::AwsCredentialsResource; namespace { TEST(AwsCredentialsResourceTest, InvalidDirectSpec) { EXPECT_THAT(Context::Resource<AwsCredentialsResource>::FromJson(nullptr), MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected non-null value, but received: null")); EXPECT_THAT(Context::Resource<AwsCredentialsResource>::FromJson(3), MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected object, but received: 3")); EXPECT_THAT( Context::Resource<AwsCredentialsResource>::FromJson("anonymous"), MatchesStatus( absl::StatusCode::kInvalidArgument, "Invalid reference to \"aws_credentials\" resource: \"anonymous\"")); } TEST(AwsCredentialsResourceTest, Default) { auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<AwsCredentialsResource>::FromJson("aws_credentials")); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource, context.GetResource(resource_spec)); EXPECT_THAT(resource->spec.filename, ::testing::IsEmpty()); EXPECT_THAT(resource->spec.profile, ::testing::IsEmpty()); EXPECT_THAT(resource->spec.metadata_endpoint, ::testing::IsEmpty()); EXPECT_THAT(resource->spec.anonymous, false); } TEST(AwsCredentialsResourceTest, ExplicitDefault) { auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<AwsCredentialsResource>::FromJson( ::nlohmann::json::object_t())); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource, context.GetResource(resource_spec)); EXPECT_THAT(resource->spec.filename, ::testing::IsEmpty()); EXPECT_THAT(resource->spec.profile, ::testing::IsEmpty()); EXPECT_THAT(resource->spec.metadata_endpoint, ::testing::IsEmpty()); EXPECT_THAT(resource->spec.anonymous, false); } TEST(AwsCredentialsResourceTest, ValidSpec) { auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<AwsCredentialsResource>::FromJson( {{"profile", "my_profile"}})); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource, context.GetResource(resource_spec)); EXPECT_THAT(resource->spec.filename, ::testing::IsEmpty()); EXPECT_THAT(resource->spec.profile, "my_profile"); EXPECT_THAT(resource->spec.metadata_endpoint, ::testing::IsEmpty()); EXPECT_THAT(resource->spec.anonymous, false); } TEST(AwsCredentialsResourceTest, ValidAnonymousSpec) { auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<AwsCredentialsResource>::FromJson( {{"anonymous", true}})); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource, context.GetResource(resource_spec)); EXPECT_THAT(resource->spec.filename, ::testing::IsEmpty()); EXPECT_THAT(resource->spec.profile, ::testing::IsEmpty()); EXPECT_THAT(resource->spec.metadata_endpoint, ::testing::IsEmpty()); EXPECT_THAT(resource->spec.anonymous, true); EXPECT_THAT(resource->GetCredentials(), tensorstore::IsOkAndHolds(::testing::Eq(std::nullopt))); } TEST(AwsCredentialsResourceTest, InvalidSpecs) { EXPECT_THAT(Context::Resource<AwsCredentialsResource>::FromJson({ {"anonymous", true}, {"profile", "xyz"}, }), MatchesStatus(absl::StatusCode::kInvalidArgument)); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/aws_credentials_resource.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/aws_credentials_resource_test.cc
4f887a6430414cd6088e1743555015b10f116d50
6b142648-b737-4464-859c-a7183799af5a
cpp
google/tensorstore
s3_request_builder
tensorstore/kvstore/s3/s3_request_builder.cc
tensorstore/kvstore/s3/s3_request_builder_test.cc
#ifdef _WIN32 #define WIN32_LEAN_AND_MEAN #endif #include "tensorstore/kvstore/s3/s3_request_builder.h" #include <stddef.h> #include <algorithm> #include <cassert> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/log/absl_check.h" #include "absl/log/absl_log.h" #include "absl/strings/ascii.h" #include "absl/strings/escaping.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/time/time.h" #include <openssl/evp.h> #include <openssl/hmac.h> #include "tensorstore/internal/digest/sha256.h" #include "tensorstore/internal/http/http_request.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/internal/uri_utils.h" #include "tensorstore/kvstore/s3/credentials/aws_credentials.h" #include "tensorstore/kvstore/s3/s3_uri_utils.h" using ::tensorstore::internal::ParseGenericUri; using ::tensorstore::internal::SHA256Digester; using ::tensorstore::internal_http::HttpRequest; namespace tensorstore { namespace internal_kvstore_s3 { namespace { ABSL_CONST_INIT internal_log::VerboseFlag s3_logging("s3"); constexpr static size_t kHmacSize = 32; void ComputeHmac(std::string_view key, std::string_view message, unsigned char (&hmac)[kHmacSize]) { unsigned int md_len = kHmacSize; ABSL_CHECK( HMAC(EVP_sha256(), reinterpret_cast<const unsigned char*>(key.data()), key.size(), reinterpret_cast<const unsigned char*>(message.data()), message.size(), hmac, &md_len) && md_len == kHmacSize); } void ComputeHmac(unsigned char (&key)[kHmacSize], std::string_view message, unsigned char (&hmac)[kHmacSize]) { unsigned int md_len = kHmacSize; ABSL_CHECK(HMAC(EVP_sha256(), key, kHmacSize, reinterpret_cast<const unsigned char*>(message.data()), message.size(), hmac, &md_len) && md_len == kHmacSize); } std::string CanonicalRequest( std::string_view method, std::string_view path, std::string_view query, std::string_view payload_hash, const std::vector<std::pair<std::string, std::string_view>>& headers) { std::string canonical = absl::StrCat(method, "\n", S3UriObjectKeyEncode(path), "\n", query, "\n"); std::vector<std::string_view> signed_headers; signed_headers.reserve(headers.size()); for (auto& pair : headers) { absl::StrAppend(&canonical, pair.first, ":", pair.second, "\n"); signed_headers.push_back(pair.first); } absl::StrAppend(&canonical, "\n", absl::StrJoin(signed_headers, ";"), "\n", payload_hash); return canonical; } std::string SigningString(std::string_view canonical_request, const absl::Time& time, std::string_view scope) { absl::TimeZone utc = absl::UTCTimeZone(); SHA256Digester sha256; sha256.Write(canonical_request); const auto digest = sha256.Digest(); auto digest_sv = std::string_view(reinterpret_cast<const char*>(&digest[0]), digest.size()); return absl::StrFormat("AWS4-HMAC-SHA256\n%s\n%s\n%s", absl::FormatTime("%Y%m%dT%H%M%SZ", time, utc), scope, absl::BytesToHexString(digest_sv)); } void GetSigningKey(std::string_view aws_secret_access_key, std::string_view aws_region, const absl::Time& time, unsigned char (&signing_key)[kHmacSize]) { absl::TimeZone utc = absl::UTCTimeZone(); unsigned char date_key[kHmacSize]; unsigned char date_region_key[kHmacSize]; unsigned char date_region_service_key[kHmacSize]; ComputeHmac(absl::StrCat("AWS4", aws_secret_access_key), absl::FormatTime("%Y%m%d", time, utc), date_key); ComputeHmac(date_key, aws_region, date_region_key); ComputeHmac(date_region_key, "s3", date_region_service_key); ComputeHmac(date_region_service_key, "aws4_request", signing_key); } std::string AuthorizationHeader( std::string_view access_key, std::string_view scope, std::string_view signature_hex, const std::vector<std::pair<std::string, std::string_view>>& headers) { return absl::StrFormat( "Authorization: AWS4-HMAC-SHA256 " "Credential=%s/%s, " "SignedHeaders=%s, " "Signature=%s", access_key, scope, absl::StrJoin(headers, ";", [](std::string* out, auto pair) { absl::StrAppend(out, pair.first); }), signature_hex); } static constexpr char kAmzContentSha256Header[] = "x-amz-content-sha256: "; static constexpr char kAmzSecurityTokenHeader[] = "x-amz-security-token: "; static constexpr char kAmzRequesterPayerHeader[] = "x-amz-requester-payer: requester"; } S3RequestBuilder& S3RequestBuilder::MaybeAddRequesterPayer( bool requester_payer) { if (requester_payer) { builder_.AddHeader(kAmzRequesterPayerHeader); } return *this; } HttpRequest S3RequestBuilder::BuildRequest(std::string_view host_header, const AwsCredentials& credentials, std::string_view aws_region, std::string_view payload_sha256_hash, const absl::Time& time) { builder_.AddHostHeader(host_header); builder_.AddHeader( absl::StrCat(kAmzContentSha256Header, payload_sha256_hash)); builder_.AddHeader(absl::FormatTime("x-amz-date: %Y%m%dT%H%M%SZ", time, absl::UTCTimeZone())); std::stable_sort(std::begin(query_params_), std::end(query_params_)); for (const auto& [k, v] : query_params_) { builder_.AddQueryParameter(k, v); } if (credentials.IsAnonymous()) { return builder_.BuildRequest(); } if (!credentials.session_token.empty()) { builder_.AddHeader( absl::StrCat(kAmzSecurityTokenHeader, credentials.session_token)); } auto request = builder_.BuildRequest(); std::vector<std::pair<std::string, std::string_view>> signed_headers; signed_headers.reserve(request.headers.size()); for (const auto& header_str : request.headers) { std::string_view header = header_str; auto pos = header.find(':'); assert(pos != std::string::npos); auto key = absl::AsciiStrToLower( absl::StripAsciiWhitespace(header.substr(0, pos))); auto value = absl::StripAsciiWhitespace(header.substr(pos + 1)); signed_headers.push_back({std::move(key), std::move(value)}); } std::stable_sort(std::begin(signed_headers), std::end(signed_headers)); auto parsed_uri = ParseGenericUri(request.url); assert(!parsed_uri.path.empty()); std::string scope = absl::StrFormat( "%s/%s/s3/aws4_request", absl::FormatTime("%Y%m%d", time, absl::UTCTimeZone()), aws_region); canonical_request_ = CanonicalRequest(request.method, parsed_uri.path, parsed_uri.query, payload_sha256_hash, signed_headers); signing_string_ = SigningString(canonical_request_, time, scope); unsigned char signing_key[kHmacSize]; GetSigningKey(credentials.secret_key, aws_region, time, signing_key); unsigned char signature[kHmacSize]; ComputeHmac(signing_key, signing_string_, signature); signature_ = absl::BytesToHexString( std::string_view(reinterpret_cast<char*>(&signature[0]), kHmacSize)); std::string auth_header = AuthorizationHeader(credentials.access_key, scope, signature_, signed_headers); ABSL_LOG_IF(INFO, s3_logging.Level(1)) << "Canonical Request\n" << canonical_request_ << "\n\nSigning String\n" << signing_string_ << "\n\nSigning Key\n" << absl::BytesToHexString(std::string_view( reinterpret_cast<char*>(signing_key), kHmacSize)) << "\n\nAuthorization Header\n" << auth_header; request.headers.emplace_back(std::move(auth_header)); return request; } } }
#include "tensorstore/kvstore/s3/s3_request_builder.h" #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/time/civil_time.h" #include "absl/time/time.h" #include "tensorstore/internal/http/http_request.h" #include "tensorstore/kvstore/s3/credentials/aws_credentials.h" using ::tensorstore::internal_kvstore_s3::AwsCredentials; using ::tensorstore::internal_kvstore_s3::S3RequestBuilder; namespace { static const AwsCredentials credentials{ "AKIAIOSFODNN7EXAMPLE", "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY", ""}; static const absl::TimeZone utc = absl::UTCTimeZone(); static constexpr char aws_region[] = "us-east-1"; static constexpr char bucket[] = "examplebucket"; TEST(S3RequestBuilderTest, SignatureMethods) { const auto now = absl::FromCivil(absl::CivilSecond(2024, 2, 21, 03, 02, 05), utc); auto builder = S3RequestBuilder( "PUT", "https: .AddHeader("content-md5: 1B2M2Y8AsgTpgAmY7PhCfg==") .AddHeader("content-type: text/plain"); auto request = builder.BuildRequest( "bucket.s3.us-west-2.amazonaws.com", credentials, "us-west-2", "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855", now); auto expected_canonical_request = "PUT\n" "/bucket/tensorstore/a-_.~%24%26%2C%3A%3D%40z/b/file.txt\n" "\n" "content-md5:1B2M2Y8AsgTpgAmY7PhCfg==\n" "content-type:text/plain\n" "host:bucket.s3.us-west-2.amazonaws.com\n" "x-amz-content-sha256:" "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855\n" "x-amz-date:20240221T030205Z\n" "\n" "content-md5;content-type;host;x-amz-content-sha256;x-amz-date\n" "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"; auto expected_signing_string = "AWS4-HMAC-SHA256\n" "20240221T030205Z\n" "20240221/us-west-2/s3/aws4_request\n" "28c393b04c83956e1d4056351030e34bffa3dd877cf6cf2d0c83d2114bef7940"; auto expected_signature = "c3bf762eae82b8a87dc5f7af8c2ad8973d4a0132c49bd8c46d025d4a1aa175fb"; EXPECT_EQ(builder.GetCanonicalRequest(), expected_canonical_request); EXPECT_EQ(builder.GetSigningString(), expected_signing_string); EXPECT_EQ(builder.GetSignature(), expected_signature); } TEST(S3RequestBuilderTest, AWS4SignatureGetExample) { auto url = absl::StrFormat("https: auto builder = S3RequestBuilder("GET", url).AddHeader("range: bytes=0-9"); auto request = builder.BuildRequest( "", credentials, aws_region, "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855", absl::FromCivil(absl::CivilSecond(2013, 5, 24, 0, 0, 0), utc)); auto expected_canonical_request = "GET\n" "/test.txt\n" "\n" "host:examplebucket.s3.amazonaws.com\n" "range:bytes=0-9\n" "x-amz-content-sha256:" "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855\n" "x-amz-date:20130524T000000Z\n" "\n" "host;range;x-amz-content-sha256;x-amz-date\n" "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"; auto expected_signing_string = "AWS4-HMAC-SHA256\n" "20130524T000000Z\n" "20130524/us-east-1/s3/aws4_request\n" "7344ae5b7ee6c3e7e6b0fe0640412a37625d1fbfff95c48bbb2dc43964946972"; auto expected_signature = "f0e8bdb87c964420e857bd35b5d6ed310bd44f0170aba48dd91039c6036bdb41"; auto expected_auth_header = "Authorization: AWS4-HMAC-SHA256 " "Credential=AKIAIOSFODNN7EXAMPLE/20130524/us-east-1/s3/aws4_request, " "SignedHeaders=host;range;x-amz-content-sha256;x-amz-date, " "Signature=" "f0e8bdb87c964420e857bd35b5d6ed310bd44f0170aba48dd91039c6036bdb41"; EXPECT_EQ(builder.GetCanonicalRequest(), expected_canonical_request); EXPECT_EQ(builder.GetSigningString(), expected_signing_string); EXPECT_EQ(builder.GetSignature(), expected_signature); EXPECT_EQ(request.url, url); EXPECT_THAT( request.headers, ::testing::UnorderedElementsAre( expected_auth_header, "host: examplebucket.s3.amazonaws.com", "x-amz-content-sha256: " "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855", "x-amz-date: 20130524T000000Z", "range: bytes=0-9")); } TEST(S3RequestBuilderTest, AWS4SignaturePutExample) { auto url = absl::StrFormat("s3: auto builder = S3RequestBuilder("PUT", url) .AddHeader("date: Fri, 24 May 2013 00:00:00 GMT") .AddHeader("x-amz-storage-class: REDUCED_REDUNDANCY"); auto request = builder.BuildRequest( absl::StrFormat("%s.s3.amazonaws.com", bucket), credentials, aws_region, "44ce7dd67c959e0d3524ffac1771dfbba87d2b6b4b4e99e42034a8b803f8b072", absl::FromCivil(absl::CivilSecond(2013, 5, 24, 0, 0, 0), utc)); auto expected_canonical_request = "PUT\n" "/test%24file.text\n" "\n" "date:Fri, 24 May 2013 00:00:00 GMT\n" "host:examplebucket.s3.amazonaws.com\n" "x-amz-content-sha256:" "44ce7dd67c959e0d3524ffac1771dfbba87d2b6b4b4e99e42034a8b803f8b072\n" "x-amz-date:20130524T000000Z\n" "x-amz-storage-class:REDUCED_REDUNDANCY\n" "\n" "date;host;x-amz-content-sha256;x-amz-date;x-amz-storage-class\n" "44ce7dd67c959e0d3524ffac1771dfbba87d2b6b4b4e99e42034a8b803f8b072"; auto expected_signing_string = "AWS4-HMAC-SHA256\n" "20130524T000000Z\n" "20130524/us-east-1/s3/aws4_request\n" "9e0e90d9c76de8fa5b200d8c849cd5b8dc7a3be3951ddb7f6a76b4158342019d"; auto expected_signature = "98ad721746da40c64f1a55b78f14c238d841ea1380cd77a1b5971af0ece108bd"; auto expected_auth_header = "Authorization: AWS4-HMAC-SHA256 " "Credential=AKIAIOSFODNN7EXAMPLE/20130524/us-east-1/s3/aws4_request, " "SignedHeaders=date;host;x-amz-content-sha256;x-amz-date;x-amz-storage-" "class, " "Signature=" "98ad721746da40c64f1a55b78f14c238d841ea1380cd77a1b5971af0ece108bd"; EXPECT_EQ(builder.GetCanonicalRequest(), expected_canonical_request); EXPECT_EQ(builder.GetSigningString(), expected_signing_string); EXPECT_EQ(builder.GetSignature(), expected_signature); EXPECT_EQ(request.url, url); EXPECT_EQ(request.headers.size(), 6); EXPECT_THAT( request.headers, ::testing::UnorderedElementsAre( expected_auth_header, "date: Fri, 24 May 2013 00:00:00 GMT", "host: examplebucket.s3.amazonaws.com", "x-amz-content-sha256: " "44ce7dd67c959e0d3524ffac1771dfbba87d2b6b4b4e99e42034a8b803f8b072", "x-amz-date: 20130524T000000Z", "x-amz-storage-class: REDUCED_REDUNDANCY")); } TEST(S3RequestBuilderTest, AWS4SignatureListObjectsExample) { auto url = absl::StrFormat("https: auto builder = S3RequestBuilder("GET", url) .AddQueryParameter("prefix", "J") .AddQueryParameter("max-keys", "2"); auto request = builder.BuildRequest( absl::StrFormat("%s.s3.amazonaws.com", bucket), credentials, aws_region, "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855", absl::FromCivil(absl::CivilSecond(2013, 5, 24, 0, 0, 0), utc)); auto expected_canonical_request = "GET\n" "/\n" "max-keys=2&prefix=J\n" "host:examplebucket.s3.amazonaws.com\n" "x-amz-content-sha256:" "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855\n" "x-amz-date:20130524T000000Z\n" "\n" "host;x-amz-content-sha256;x-amz-date\n" "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"; auto expected_signing_string = "AWS4-HMAC-SHA256\n" "20130524T000000Z\n" "20130524/us-east-1/s3/aws4_request\n" "df57d21db20da04d7fa30298dd4488ba3a2b47ca3a489c74750e0f1e7df1b9b7"; auto expected_signature = "34b48302e7b5fa45bde8084f4b7868a86f0a534bc59db6670ed5711ef69dc6f7"; auto expected_auth_header = "Authorization: AWS4-HMAC-SHA256 " "Credential=AKIAIOSFODNN7EXAMPLE/20130524/us-east-1/s3/aws4_request, " "SignedHeaders=host;x-amz-content-sha256;x-amz-date, " "Signature=" "34b48302e7b5fa45bde8084f4b7868a86f0a534bc59db6670ed5711ef69dc6f7"; EXPECT_EQ(builder.GetCanonicalRequest(), expected_canonical_request); EXPECT_EQ(builder.GetSigningString(), expected_signing_string); EXPECT_EQ(builder.GetSignature(), expected_signature); EXPECT_EQ(request.url, absl::StrCat(url, "?max-keys=2&prefix=J")); EXPECT_EQ(request.headers.size(), 4); EXPECT_THAT( request.headers, ::testing::UnorderedElementsAre( expected_auth_header, "host: examplebucket.s3.amazonaws.com", "x-amz-content-sha256: " "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855", "x-amz-date: 20130524T000000Z")); } TEST(S3RequestBuilderTest, AnonymousCredentials) { auto url = absl::StrFormat("https: auto builder = S3RequestBuilder("GET", url).AddQueryParameter("test", "this"); auto request = builder.BuildRequest( absl::StrFormat("%s.s3.amazonaws.com", bucket), AwsCredentials{}, aws_region, "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855", absl::FromCivil(absl::CivilSecond(2013, 5, 24, 0, 0, 0), utc)); EXPECT_EQ(request.url, absl::StrCat(url, "?test=this")); EXPECT_EQ(request.headers.size(), 3); EXPECT_THAT(request.headers, ::testing::Not(::testing::Contains( ::testing::HasSubstr("Authorization:")))); EXPECT_THAT( request.headers, ::testing::UnorderedElementsAre( "host: examplebucket.s3.amazonaws.com", "x-amz-content-sha256: " "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855", "x-amz-date: 20130524T000000Z")); } TEST(S3RequestBuilderTest, AwsSessionTokenHeaderAdded) { auto token = "abcdef1234567890"; auto sts_credentials = AwsCredentials{credentials.access_key, credentials.secret_key, token}; auto builder = S3RequestBuilder("GET", absl::StrFormat("https: auto request = builder.BuildRequest( absl::StrFormat("%s.s3.amazonaws.com", bucket), sts_credentials, aws_region, "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855", absl::FromCivil(absl::CivilSecond(2013, 5, 24, 0, 0, 0), utc)); EXPECT_EQ(request.headers.size(), 5); EXPECT_THAT(request.headers, ::testing::Contains(::testing::HasSubstr("Authorization: "))); EXPECT_THAT(request.headers, ::testing::Contains(absl::StrCat( "x-amz-security-token: ", token))); } TEST(S3RequestBuilderTest, AwsRequesterPaysHeaderAdded) { auto request = S3RequestBuilder("GET", absl::StrFormat("https: .MaybeAddRequesterPayer(false) .BuildRequest( absl::StrFormat("%s.s3.amazonaws.com", bucket), credentials, aws_region, "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b85" "5", absl::FromCivil(absl::CivilSecond(2013, 5, 24, 0, 0, 0), utc)); EXPECT_THAT(request.headers, ::testing::Not(::testing::Contains( ::testing::HasSubstr("x-amz-requester-payer")))); request = S3RequestBuilder("GET", absl::StrFormat("https: .MaybeAddRequesterPayer(true) .BuildRequest( absl::StrFormat("%s.s3.amazonaws.com", bucket), credentials, aws_region, "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b85" "5", absl::FromCivil(absl::CivilSecond(2013, 5, 24, 0, 0, 0), utc)); EXPECT_THAT(request.headers, ::testing::Contains("x-amz-requester-payer: requester")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/s3_request_builder.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/s3_request_builder_test.cc
4f887a6430414cd6088e1743555015b10f116d50
a8ed8874-de57-43b2-817a-53cedca9fb8e
cpp
google/tensorstore
validate
tensorstore/kvstore/gcs/validate.cc
tensorstore/kvstore/gcs/validate_test.cc
#include "tensorstore/kvstore/gcs/validate.h" #include <iterator> #include <string> #include <string_view> #include "absl/status/status.h" #include "absl/strings/ascii.h" #include "absl/strings/cord.h" #include "absl/strings/match.h" #include "absl/strings/str_format.h" #include "absl/strings/str_split.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/http/http_response.h" #include "tensorstore/internal/json/json.h" #include "tensorstore/internal/source_location.h" #include "tensorstore/internal/utf8.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/util/status.h" namespace tensorstore { namespace internal_storage_gcs { bool IsValidBucketName(std::string_view bucket) { if (bucket.size() < 3 || bucket.size() > 222) return false; if (!absl::ascii_isdigit(*bucket.begin()) && !absl::ascii_islower(*bucket.begin())) { return false; } if (!absl::ascii_isdigit(*bucket.rbegin()) && !absl::ascii_islower(*bucket.rbegin())) { return false; } for (std::string_view v : absl::StrSplit(bucket, absl::ByChar('.'))) { if (v.empty()) return false; if (v.size() > 63) return false; if (*v.begin() == '-') return false; if (*v.rbegin() == '-') return false; for (const auto ch : v) { if (ch != '-' && ch != '_' && !absl::ascii_isdigit(ch) && !absl::ascii_islower(ch)) { return false; } } } return true; } bool IsValidObjectName(std::string_view name) { if (name.empty() || name.size() > 1024) return false; if (name == "." || name == "..") return false; if (absl::StartsWith(name, ".well-known/acme-challenge")) return false; for (const auto ch : name) { if (ch == '\r' || ch == '\n') return false; if (absl::ascii_iscntrl(ch)) return false; } return internal::IsValidUtf8(name); } bool IsValidStorageGeneration(const StorageGeneration& gen) { return StorageGeneration::IsUnknown(gen) || StorageGeneration::IsNoValue(gen) || (StorageGeneration::IsUint64(gen) && StorageGeneration::ToUint64(gen) > 0); } absl::Status GcsHttpResponseToStatus( const internal_http::HttpResponse& response, bool& retryable, SourceLocation loc) { auto absl_status_code = HttpResponseCodeToStatusCode(response); if (absl_status_code == absl::StatusCode::kOk) { return absl::OkStatus(); } retryable = (response.status_code == 429 || response.status_code == 408 || response.status_code >= 500 ); std::string error_message; auto payload = response.payload; auto payload_str = payload.Flatten(); if (auto j_obj = internal::ParseJson(payload_str); j_obj.is_object()) { if (auto j_error = internal_json::JsonExtractMember( j_obj.template get_ptr<::nlohmann::json::object_t*>(), "error"); j_error.is_object()) { if (auto j_message = internal_json::JsonExtractMember( j_error.template get_ptr<::nlohmann::json::object_t*>(), "message"); j_message.is_string()) { error_message = j_message.template get<std::string>(); } } } if (error_message.empty()) { error_message = HttpResponseCodeToMessage(response); if (error_message.empty()) { error_message = "Unknown"; } } absl::Status status(absl_status_code, error_message); status.SetPayload("http_response_code", absl::Cord(absl::StrFormat("%d", response.status_code))); if (!payload_str.empty()) { status.SetPayload( "http_response_body", payload.Subcord(0, payload_str.size() < 256 ? payload_str.size() : 256)); } if (auto id_header = response.headers.find("x-guploader-uploadid"); id_header != response.headers.end()) { status.SetPayload("x-guploader-uploadid", absl::Cord(id_header->second)); } MaybeAddSourceLocation(status, loc); return status; } } }
#include "tensorstore/kvstore/gcs/validate.h" #include <gtest/gtest.h> namespace { using ::tensorstore::internal_storage_gcs::IsValidBucketName; using ::tensorstore::internal_storage_gcs::IsValidObjectName; TEST(ValidateTest, IsValidBucketName) { EXPECT_TRUE(IsValidBucketName("foo")); EXPECT_TRUE(IsValidBucketName("a.b")); EXPECT_TRUE(IsValidBucketName("a-b")); EXPECT_TRUE(IsValidBucketName("1.2.3.4")); EXPECT_FALSE(IsValidBucketName("_abc")); EXPECT_FALSE(IsValidBucketName("abc_")); EXPECT_FALSE( IsValidBucketName("1234567890b123456789012345678901234567890" "1234567890b123456789012345678901234567890" "abcd")); EXPECT_TRUE(IsValidBucketName("a._b")); EXPECT_TRUE(IsValidBucketName("a_.b")); EXPECT_FALSE(IsValidBucketName(".")); EXPECT_FALSE(IsValidBucketName("..")); EXPECT_FALSE(IsValidBucketName("aa")); EXPECT_FALSE(IsValidBucketName("_foo")); EXPECT_FALSE(IsValidBucketName("foo_")); EXPECT_FALSE(IsValidBucketName("a..b")); EXPECT_FALSE(IsValidBucketName("a.-b")); EXPECT_FALSE(IsValidBucketName("a-.b")); EXPECT_FALSE( IsValidBucketName("1234567890b123456789012345678901234567890" "1234567890b123456789012345678901234567890" "abcd.b")); } TEST(ValidateTest, IsValidObjectName) { EXPECT_TRUE(IsValidObjectName("foo")); EXPECT_TRUE(IsValidObjectName("foo.bar")); EXPECT_TRUE(IsValidObjectName("foo/bar\\baz")); EXPECT_FALSE(IsValidObjectName("")); EXPECT_FALSE(IsValidObjectName(".")); EXPECT_FALSE(IsValidObjectName("..")); EXPECT_FALSE(IsValidObjectName(".well-known/acme-challenge")); EXPECT_FALSE(IsValidObjectName("foo\rbar")); EXPECT_FALSE(IsValidObjectName("foo\nbar")); EXPECT_TRUE(IsValidObjectName("foo[*?#]")); EXPECT_FALSE(IsValidObjectName("foo\004bar")); EXPECT_FALSE(IsValidObjectName("foo\tbar")); EXPECT_FALSE(IsValidObjectName("\xfe\xfe\xff\xff")); EXPECT_FALSE(IsValidObjectName("\xfc\x80\x80\x80\x80\xaf")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/gcs/validate.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/gcs/validate_test.cc
4f887a6430414cd6088e1743555015b10f116d50
0df8f891-2efd-4dd7-ba09-7e8edd2d97e0
cpp
google/tensorstore
s3_key_value_store
tensorstore/kvstore/s3/s3_key_value_store.cc
tensorstore/kvstore/s3/s3_key_value_store_test.cc
#include <stddef.h> #include <stdint.h> #include <atomic> #include <cassert> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <variant> #include "absl/base/attributes.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/escaping.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorstore/context.h" #include "tensorstore/internal/data_copy_concurrency_resource.h" #include "tensorstore/internal/digest/sha256.h" #include "tensorstore/internal/http/curl_transport.h" #include "tensorstore/internal/http/http_request.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/internal/metrics/counter.h" #include "tensorstore/internal/metrics/histogram.h" #include "tensorstore/internal/rate_limiter/rate_limiter.h" #include "tensorstore/internal/source_location.h" #include "tensorstore/internal/thread/schedule_at.h" #include "tensorstore/internal/uri_utils.h" #include "tensorstore/kvstore/batch_util.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/common_metrics.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/generic_coalescing_batch_util.h" #include "tensorstore/kvstore/http/byte_range_util.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/registry.h" #include "tensorstore/kvstore/s3/aws_credentials_resource.h" #include "tensorstore/kvstore/s3/credentials/aws_credentials.h" #include "tensorstore/kvstore/s3/s3_endpoint.h" #include "tensorstore/kvstore/s3/s3_metadata.h" #include "tensorstore/kvstore/s3/s3_request_builder.h" #include "tensorstore/kvstore/s3/s3_resource.h" #include "tensorstore/kvstore/s3/s3_uri_utils.h" #include "tensorstore/kvstore/s3/validate.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/url_registry.h" #include "tensorstore/util/execution/any_receiver.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/fwd.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" #include "tinyxml2.h" #include "tensorstore/internal/cache_key/std_optional.h" #include "tensorstore/internal/json_binding/std_array.h" #include "tensorstore/internal/json_binding/std_optional.h" #include "tensorstore/serialization/fwd.h" #include "tensorstore/serialization/std_optional.h" #include "tensorstore/util/garbage_collection/std_optional.h" using ::tensorstore::internal::DataCopyConcurrencyResource; using ::tensorstore::internal::IntrusivePtr; using ::tensorstore::internal::RateLimiter; using ::tensorstore::internal::RateLimiterNode; using ::tensorstore::internal::ScheduleAt; using ::tensorstore::internal::SHA256Digester; using ::tensorstore::internal_http::HttpRequest; using ::tensorstore::internal_http::HttpResponse; using ::tensorstore::internal_http::HttpTransport; using ::tensorstore::internal_kvstore_s3::AwsCredentials; using ::tensorstore::internal_kvstore_s3::AwsCredentialsResource; using ::tensorstore::internal_kvstore_s3::AwsHttpResponseToStatus; using ::tensorstore::internal_kvstore_s3::GetNodeInt; using ::tensorstore::internal_kvstore_s3::GetNodeText; using ::tensorstore::internal_kvstore_s3::IsValidBucketName; using ::tensorstore::internal_kvstore_s3::IsValidObjectName; using ::tensorstore::internal_kvstore_s3::IsValidStorageGeneration; using ::tensorstore::internal_kvstore_s3::S3ConcurrencyResource; using ::tensorstore::internal_kvstore_s3::S3EndpointRegion; using ::tensorstore::internal_kvstore_s3::S3RateLimiterResource; using ::tensorstore::internal_kvstore_s3::S3RequestBuilder; using ::tensorstore::internal_kvstore_s3::S3RequestRetries; using ::tensorstore::internal_kvstore_s3::S3UriEncode; using ::tensorstore::internal_kvstore_s3::StorageGenerationFromHeaders; using ::tensorstore::kvstore::Key; using ::tensorstore::kvstore::ListEntry; using ::tensorstore::kvstore::ListOptions; using ::tensorstore::kvstore::ListReceiver; namespace tensorstore { namespace { namespace jb = tensorstore::internal_json_binding; struct S3Metrics : public internal_kvstore::CommonMetrics { internal_metrics::Counter<int64_t>& retries; }; auto s3_metrics = []() -> S3Metrics { return { TENSORSTORE_KVSTORE_COMMON_METRICS(s3), TENSORSTORE_KVSTORE_COUNTER_IMPL( s3, retries, "count of all retried requests (read/write/delete)")}; }(); ABSL_CONST_INIT internal_log::VerboseFlag s3_logging("s3"); static constexpr char kUriScheme[] = "s3"; static constexpr char kEmptySha256[] = "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"; static constexpr char kEmptyEtag[] = "\"\""; static constexpr size_t kMaxS3PutSize = size_t{5} * 1024 * 1024 * 1024; bool AddGenerationHeader(S3RequestBuilder* builder, std::string_view header, const StorageGeneration& gen) { if (StorageGeneration::IsUnknown(gen)) { return false; } auto etag = StorageGeneration::IsNoValue(gen) ? kEmptyEtag : StorageGeneration::DecodeString(gen); builder->AddHeader(absl::StrCat(header, ": ", etag)); return true; } std::string payload_sha256(const absl::Cord& cord = absl::Cord()) { SHA256Digester sha256; sha256.Write(cord); auto digest = sha256.Digest(); auto digest_sv = std::string_view(reinterpret_cast<const char*>(&digest[0]), digest.size()); return absl::BytesToHexString(digest_sv); } bool DefaultIsRetryableCode(absl::StatusCode code) { return code == absl::StatusCode::kDeadlineExceeded || code == absl::StatusCode::kUnavailable; } struct S3KeyValueStoreSpecData { std::string bucket; bool requester_pays; std::optional<std::string> endpoint; std::optional<std::string> host_header; std::string aws_region; Context::Resource<AwsCredentialsResource> aws_credentials; Context::Resource<S3ConcurrencyResource> request_concurrency; std::optional<Context::Resource<S3RateLimiterResource>> rate_limiter; Context::Resource<S3RequestRetries> retries; Context::Resource<DataCopyConcurrencyResource> data_copy_concurrency; constexpr static auto ApplyMembers = [](auto& x, auto f) { return f(x.bucket, x.requester_pays, x.endpoint, x.host_header, x.aws_region, x.aws_credentials, x.request_concurrency, x.rate_limiter, x.retries, x.data_copy_concurrency); }; constexpr static auto default_json_binder = jb::Object( jb::Member("bucket", jb::Projection<&S3KeyValueStoreSpecData::bucket>(jb::Validate( [](const auto& options, const std::string* x) { if (!IsValidBucketName(*x)) { return absl::InvalidArgumentError(tensorstore::StrCat( "Invalid S3 bucket name: ", QuoteString(*x))); } return absl::OkStatus(); }))), jb::Member("requester_pays", jb::Projection<&S3KeyValueStoreSpecData::requester_pays>( jb::DefaultValue([](auto* v) { *v = false; }))), jb::Member("host_header", jb::Projection<&S3KeyValueStoreSpecData::host_header>()), jb::Member("endpoint", jb::Projection<&S3KeyValueStoreSpecData::endpoint>()), jb::Member("aws_region", jb::Projection<&S3KeyValueStoreSpecData::aws_region>( jb::DefaultValue([](auto* v) { *v = ""; }))), jb::Member(AwsCredentialsResource::id, jb::Projection<&S3KeyValueStoreSpecData::aws_credentials>()), jb::Member( S3ConcurrencyResource::id, jb::Projection<&S3KeyValueStoreSpecData::request_concurrency>()), jb::Member(S3RateLimiterResource::id, jb::Projection<&S3KeyValueStoreSpecData::rate_limiter>()), jb::Member(S3RequestRetries::id, jb::Projection<&S3KeyValueStoreSpecData::retries>()), jb::Member(DataCopyConcurrencyResource::id, jb::Projection< &S3KeyValueStoreSpecData::data_copy_concurrency>()) ); }; std::string GetS3Url(std::string_view bucket, std::string_view path) { return tensorstore::StrCat(kUriScheme, ": } class S3KeyValueStoreSpec : public internal_kvstore::RegisteredDriverSpec<S3KeyValueStoreSpec, S3KeyValueStoreSpecData> { public: static constexpr char id[] = "s3"; Future<kvstore::DriverPtr> DoOpen() const override; Result<std::string> ToUrl(std::string_view path) const override { return GetS3Url(data_.bucket, path); } }; class S3KeyValueStore : public internal_kvstore::RegisteredDriver<S3KeyValueStore, S3KeyValueStoreSpec> { public: S3KeyValueStore(std::shared_ptr<HttpTransport> transport, S3KeyValueStoreSpecData spec) : transport_(std::move(transport)), spec_(std::move(spec)), host_header_(spec_.host_header.value_or(std::string())) {} internal_kvstore_batch::CoalescingOptions GetBatchReadCoalescingOptions() const { internal_kvstore_batch::CoalescingOptions options; options.max_extra_read_bytes = 4095; options.target_coalesced_size = 128 * 1024 * 1024; return options; } Future<ReadResult> Read(Key key, ReadOptions options) override; Future<ReadResult> ReadImpl(Key&& key, ReadOptions&& options); Future<TimestampedStorageGeneration> Write(Key key, std::optional<Value> value, WriteOptions options) override; void ListImpl(ListOptions options, ListReceiver receiver) override; Future<const void> DeleteRange(KeyRange range) override; absl::Status GetBoundSpecData(SpecData& spec) const { spec = spec_; return absl::OkStatus(); } const Executor& executor() const { return spec_.data_copy_concurrency->executor; } RateLimiter& read_rate_limiter() { if (spec_.rate_limiter.has_value()) { return *(spec_.rate_limiter.value()->read_limiter); } return no_rate_limiter_; } RateLimiter& write_rate_limiter() { if (spec_.rate_limiter.has_value()) { return *(spec_.rate_limiter.value()->write_limiter); } return no_rate_limiter_; } RateLimiter& admission_queue() { return *spec_.request_concurrency->queue; } Result<std::optional<AwsCredentials>> GetCredentials() { return spec_.aws_credentials->GetCredentials(); } Future<const S3EndpointRegion> MaybeResolveRegion(); template <typename Task> absl::Status BackoffForAttemptAsync( absl::Status status, int attempt, Task* task, SourceLocation loc = ::tensorstore::SourceLocation::current()) { assert(task != nullptr); auto delay = spec_.retries->BackoffForAttempt(attempt); if (!delay) { return MaybeAnnotateStatus(std::move(status), absl::StrFormat("All %d retry attempts failed", spec_.retries->max_retries), absl::StatusCode::kAborted, loc); } s3_metrics.retries.Increment(); ScheduleAt(absl::Now() + *delay, WithExecutor(executor(), [task = IntrusivePtr<Task>(task)] { task->Retry(); })); return absl::OkStatus(); } internal::NoRateLimiter no_rate_limiter_; std::shared_ptr<HttpTransport> transport_; S3KeyValueStoreSpecData spec_; std::string host_header_; absl::Mutex mutex_; Future<const S3EndpointRegion> resolve_ehr_; }; struct ReadTask : public RateLimiterNode, public internal::AtomicReferenceCount<ReadTask> { IntrusivePtr<S3KeyValueStore> owner; std::string object_name; kvstore::ReadOptions options; Promise<kvstore::ReadResult> promise; std::string read_url_; ReadyFuture<const S3EndpointRegion> endpoint_region_; int attempt_ = 0; absl::Time start_time_; ReadTask(IntrusivePtr<S3KeyValueStore> owner, std::string object_name, kvstore::ReadOptions options, Promise<kvstore::ReadResult> promise) : owner(std::move(owner)), object_name(std::move(object_name)), options(std::move(options)), promise(std::move(promise)) {} ~ReadTask() { owner->admission_queue().Finish(this); } static void Start(void* task) { auto* self = reinterpret_cast<ReadTask*>(task); self->owner->read_rate_limiter().Finish(self); self->owner->admission_queue().Admit(self, &ReadTask::Admit); } static void Admit(void* task) { auto* self = reinterpret_cast<ReadTask*>(task); self->owner->executor()( [state = IntrusivePtr<ReadTask>(self, internal::adopt_object_ref)] { state->Retry(); }); } void Retry() { if (!promise.result_needed()) { return; } AwsCredentials credentials; if (auto maybe_credentials = owner->GetCredentials(); !maybe_credentials.ok()) { promise.SetResult(maybe_credentials.status()); return; } else if (maybe_credentials.value().has_value()) { credentials = std::move(*maybe_credentials.value()); } auto request_builder = S3RequestBuilder( options.byte_range.size() == 0 ? "HEAD" : "GET", read_url_); AddGenerationHeader(&request_builder, "if-none-match", options.generation_conditions.if_not_equal); AddGenerationHeader(&request_builder, "if-match", options.generation_conditions.if_equal); if (options.byte_range.size() != 0) { request_builder.MaybeAddRangeHeader(options.byte_range); } const auto& ehr = endpoint_region_.value(); start_time_ = absl::Now(); auto request = request_builder.EnableAcceptEncoding() .MaybeAddRequesterPayer(owner->spec_.requester_pays) .BuildRequest(owner->host_header_, credentials, ehr.aws_region, kEmptySha256, start_time_); ABSL_LOG_IF(INFO, s3_logging) << "ReadTask: " << request; auto future = owner->transport_->IssueRequest(request, {}); future.ExecuteWhenReady([self = IntrusivePtr<ReadTask>(this)]( ReadyFuture<HttpResponse> response) { self->OnResponse(response.result()); }); } void OnResponse(const Result<HttpResponse>& response) { if (!promise.result_needed()) { return; } ABSL_LOG_IF(INFO, s3_logging.Level(1) && response.ok()) << "ReadTask " << *response; bool is_retryable = false; absl::Status status = [&]() -> absl::Status { if (!response.ok()) { is_retryable = DefaultIsRetryableCode(response.status().code()); return response.status(); } switch (response.value().status_code) { case 412: case 404: case 304: return absl::OkStatus(); } return AwsHttpResponseToStatus(response.value(), is_retryable); }(); if (!status.ok() && is_retryable) { status = owner->BackoffForAttemptAsync(std::move(status), attempt_++, this); if (status.ok()) { return; } } if (!status.ok()) { promise.SetResult(status); } else { promise.SetResult(FinishResponse(response.value())); } } Result<kvstore::ReadResult> FinishResponse(const HttpResponse& httpresponse) { s3_metrics.bytes_read.IncrementBy(httpresponse.payload.size()); auto latency = absl::Now() - start_time_; s3_metrics.read_latency_ms.Observe(absl::ToInt64Milliseconds(latency)); switch (httpresponse.status_code) { case 204: case 404: return kvstore::ReadResult::Missing(start_time_); case 412: return kvstore::ReadResult::Unspecified(TimestampedStorageGeneration{ StorageGeneration::Unknown(), start_time_}); case 304: return kvstore::ReadResult::Unspecified(TimestampedStorageGeneration{ options.generation_conditions.if_not_equal, start_time_}); } absl::Cord value; if (options.byte_range.size() != 0) { ByteRange byte_range; int64_t total_size; TENSORSTORE_RETURN_IF_ERROR(internal_http::ValidateResponseByteRange( httpresponse, options.byte_range, value, byte_range, total_size)); } TENSORSTORE_ASSIGN_OR_RETURN( auto generation, StorageGenerationFromHeaders(httpresponse.headers)); return kvstore::ReadResult::Value( std::move(value), TimestampedStorageGeneration{std::move(generation), start_time_}); } }; Future<kvstore::ReadResult> S3KeyValueStore::Read(Key key, ReadOptions options) { s3_metrics.read.Increment(); if (!IsValidObjectName(key)) { return absl::InvalidArgumentError("Invalid S3 object name"); } if (!IsValidStorageGeneration(options.generation_conditions.if_equal) || !IsValidStorageGeneration(options.generation_conditions.if_not_equal)) { return absl::InvalidArgumentError("Malformed StorageGeneration"); } return internal_kvstore_batch::HandleBatchRequestByGenericByteRangeCoalescing( *this, std::move(key), std::move(options)); } Future<kvstore::ReadResult> S3KeyValueStore::ReadImpl(Key&& key, ReadOptions&& options) { s3_metrics.batch_read.Increment(); auto op = PromiseFuturePair<ReadResult>::Make(); auto state = internal::MakeIntrusivePtr<ReadTask>( internal::IntrusivePtr<S3KeyValueStore>(this), key, std::move(options), std::move(op.promise)); MaybeResolveRegion().ExecuteWhenReady( [state = std::move(state)](ReadyFuture<const S3EndpointRegion> ready) { if (!ready.status().ok()) { state->promise.SetResult(ready.status()); return; } state->read_url_ = tensorstore::StrCat(ready.value().endpoint, "/", state->object_name); state->endpoint_region_ = std::move(ready); intrusive_ptr_increment(state.get()); state->owner->read_rate_limiter().Admit(state.get(), &ReadTask::Start); }); return std::move(op.future); } template <typename Base> struct ConditionTask : public RateLimiterNode, public internal::AtomicReferenceCount<Base> { using Self = ConditionTask<Base>; IntrusivePtr<S3KeyValueStore> owner; kvstore::WriteOptions options_; ReadyFuture<const S3EndpointRegion> endpoint_region_; std::string object_url_; AwsCredentials credentials_; ConditionTask(IntrusivePtr<S3KeyValueStore> owner, kvstore::WriteOptions options, ReadyFuture<const S3EndpointRegion> endpoint_region, std::string object_url) : owner(std::move(owner)), options_(std::move(options)), endpoint_region_(std::move(endpoint_region)), object_url_(std::move(object_url)) {} static void Start(void* task) { auto* self = reinterpret_cast<Base*>(task); self->owner->write_rate_limiter().Finish(self); self->owner->admission_queue().Admit(self, &Base::Admit); } static void Admit(void* task) { auto* self = reinterpret_cast<Base*>(task); self->owner->executor()( [state = IntrusivePtr<Base>(self, internal::adopt_object_ref)] { state->Retry(); }); } void Retry() { if (static_cast<Base*>(this)->IsCancelled()) { return; } if (auto maybe_credentials = owner->GetCredentials(); !maybe_credentials.ok()) { static_cast<Base*>(this)->Fail(maybe_credentials.status()); return; } else if (maybe_credentials.value().has_value()) { credentials_ = std::move(*maybe_credentials.value()); } if (StorageGeneration::IsUnknown(options_.generation_conditions.if_equal)) { static_cast<Base*>(this)->AfterHeadRequest(); return; } auto builder = S3RequestBuilder("HEAD", object_url_); AddGenerationHeader(&builder, "if-match", options_.generation_conditions.if_equal); auto now = absl::Now(); const auto& ehr = endpoint_region_.value(); auto request = builder.MaybeAddRequesterPayer(owner->spec_.requester_pays) .BuildRequest(owner->host_header_, credentials_, ehr.aws_region, kEmptySha256, now); ABSL_LOG_IF(INFO, s3_logging) << "Peek: " << request; auto future = owner->transport_->IssueRequest(request, {}); future.ExecuteWhenReady([self = IntrusivePtr<Base>(static_cast<Base*>( this))](ReadyFuture<HttpResponse> response) { ABSL_LOG_IF(INFO, s3_logging.Level(1) && response.result().ok()) << "Peek (Response): " << response.value(); if (self->IsCancelled()) return; self->OnHeadResponse(response.result()); }); } }; struct WriteTask : public ConditionTask<WriteTask> { using Base = ConditionTask<WriteTask>; absl::Cord value_; Promise<TimestampedStorageGeneration> promise; int attempt_ = 0; absl::Time start_time_; WriteTask(IntrusivePtr<S3KeyValueStore> o, kvstore::WriteOptions options, ReadyFuture<const S3EndpointRegion> endpoint_region, std::string object_url, absl::Cord value, Promise<TimestampedStorageGeneration> promise) : Base(std::move(o), std::move(options), std::move(endpoint_region), std::move(object_url)), value_(std::move(value)), promise(std::move(promise)) {} ~WriteTask() { owner->admission_queue().Finish(this); } bool IsCancelled() { return !promise.result_needed(); } void Fail(absl::Status status) { promise.SetResult(std::move(status)); } void OnHeadResponse(const Result<HttpResponse>& response) { if (!response.ok()) { Fail(response.status()); return; } TimestampedStorageGeneration r; r.time = absl::Now(); switch (response.value().status_code) { case 304: [[fallthrough]]; case 412: r.generation = StorageGeneration::Unknown(); promise.SetResult(r); return; case 404: if (!options_.generation_conditions.MatchesNoValue()) { r.generation = StorageGeneration::Unknown(); promise.SetResult(r); return; } break; default: break; } AfterHeadRequest(); } void AfterHeadRequest() { start_time_ = absl::Now(); auto content_sha256 = payload_sha256(value_); const auto& ehr = endpoint_region_.value(); auto request = S3RequestBuilder("PUT", object_url_) .AddHeader("Content-Type: application/octet-stream") .AddHeader(absl::StrCat("Content-Length: ", value_.size())) .MaybeAddRequesterPayer(owner->spec_.requester_pays) .BuildRequest(owner->host_header_, credentials_, ehr.aws_region, content_sha256, start_time_); ABSL_LOG_IF(INFO, s3_logging) << "WriteTask: " << request << " size=" << value_.size(); auto future = owner->transport_->IssueRequest( request, internal_http::IssueRequestOptions(value_)); future.ExecuteWhenReady([self = IntrusivePtr<WriteTask>(this)]( ReadyFuture<HttpResponse> response) { self->OnResponse(response.result()); }); } void OnResponse(const Result<HttpResponse>& response) { if (!promise.result_needed()) { return; } ABSL_LOG_IF(INFO, s3_logging.Level(1) && response.ok()) << "WriteTask " << *response; bool is_retryable = false; absl::Status status = [&]() -> absl::Status { if (!response.ok()) { is_retryable = DefaultIsRetryableCode(response.status().code()); return response.status(); } return AwsHttpResponseToStatus(response.value(), is_retryable); }(); if (!status.ok() && is_retryable) { status = owner->BackoffForAttemptAsync(std::move(status), attempt_++, this); if (status.ok()) { return; } } if (!status.ok()) { promise.SetResult(status); return; } promise.SetResult(FinishResponse(response.value())); } Result<TimestampedStorageGeneration> FinishResponse( const HttpResponse& response) { TimestampedStorageGeneration r; r.time = start_time_; switch (response.status_code) { case 404: if (!StorageGeneration::IsUnknown( options_.generation_conditions.if_equal)) { r.generation = StorageGeneration::Unknown(); return r; } } auto latency = absl::Now() - start_time_; s3_metrics.write_latency_ms.Observe(absl::ToInt64Milliseconds(latency)); s3_metrics.bytes_written.IncrementBy(value_.size()); TENSORSTORE_ASSIGN_OR_RETURN( r.generation, StorageGenerationFromHeaders(response.headers)); return r; } }; struct DeleteTask : public ConditionTask<DeleteTask> { using Base = ConditionTask<DeleteTask>; Promise<TimestampedStorageGeneration> promise; int attempt_ = 0; absl::Time start_time_; DeleteTask(IntrusivePtr<S3KeyValueStore> o, kvstore::WriteOptions options, ReadyFuture<const S3EndpointRegion> endpoint_region, std::string object_url, Promise<TimestampedStorageGeneration> promise) : Base(std::move(o), std::move(options), std::move(endpoint_region), std::move(object_url)), promise(std::move(promise)) {} ~DeleteTask() { owner->admission_queue().Finish(this); } bool IsCancelled() { return !promise.result_needed(); } void Fail(absl::Status status) { promise.SetResult(std::move(status)); } void OnHeadResponse(const Result<HttpResponse>& response) { if (!response.ok()) { promise.SetResult(response.status()); return; } TimestampedStorageGeneration r; r.time = absl::Now(); switch (response.value().status_code) { case 412: r.generation = StorageGeneration::Unknown(); promise.SetResult(std::move(r)); return; case 404: if (!options_.generation_conditions.MatchesNoValue()) { r.generation = StorageGeneration::Unknown(); promise.SetResult(std::move(r)); return; } break; default: break; } AfterHeadRequest(); } void AfterHeadRequest() { start_time_ = absl::Now(); const auto& ehr = endpoint_region_.value(); auto request = S3RequestBuilder("DELETE", object_url_) .MaybeAddRequesterPayer(owner->spec_.requester_pays) .BuildRequest(owner->host_header_, credentials_, ehr.aws_region, kEmptySha256, start_time_); ABSL_LOG_IF(INFO, s3_logging) << "DeleteTask: " << request; auto future = owner->transport_->IssueRequest(request, {}); future.ExecuteWhenReady([self = IntrusivePtr<DeleteTask>(this)]( ReadyFuture<HttpResponse> response) { self->OnResponse(response.result()); }); } void OnResponse(const Result<HttpResponse>& response) { if (!promise.result_needed()) { return; } ABSL_LOG_IF(INFO, s3_logging.Level(1) && response.ok()) << "DeleteTask " << *response; bool is_retryable = false; absl::Status status = [&]() -> absl::Status { if (!response.ok()) { is_retryable = DefaultIsRetryableCode(response.status().code()); return response.status(); } switch (response.value().status_code) { case 404: return absl::OkStatus(); default: break; } return AwsHttpResponseToStatus(response.value(), is_retryable); }(); if (!status.ok() && is_retryable) { status = owner->BackoffForAttemptAsync(std::move(status), attempt_++, this); if (status.ok()) { return; } } if (!status.ok()) { promise.SetResult(status); return; } TimestampedStorageGeneration r; r.time = start_time_; switch (response.value().status_code) { case 404: if (!StorageGeneration::IsNoValue( options_.generation_conditions.if_equal) && !StorageGeneration::IsUnknown( options_.generation_conditions.if_equal)) { r.generation = StorageGeneration::Unknown(); break; } [[fallthrough]]; default: r.generation = StorageGeneration::NoValue(); break; } promise.SetResult(std::move(r)); } }; Future<TimestampedStorageGeneration> S3KeyValueStore::Write( Key key, std::optional<Value> value, WriteOptions options) { s3_metrics.write.Increment(); if (!IsValidObjectName(key)) { return absl::InvalidArgumentError("Invalid S3 object name"); } if (!IsValidStorageGeneration(options.generation_conditions.if_equal)) { return absl::InvalidArgumentError("Malformed StorageGeneration"); } if (value && value->size() > kMaxS3PutSize) { return absl::InvalidArgumentError(absl::StrCat( "Object size ", value->size(), " exceeds S3 limit of ", kMaxS3PutSize)); } auto op = PromiseFuturePair<TimestampedStorageGeneration>::Make(); MaybeResolveRegion().ExecuteWhenReady( [self = IntrusivePtr<S3KeyValueStore>(this), promise = std::move(op.promise), key = std::move(key), value = std::move(value), options = std::move(options)]( ReadyFuture<const S3EndpointRegion> ready) { if (!ready.status().ok()) { promise.SetResult(ready.status()); return; } std::string object_url = tensorstore::StrCat(ready.value().endpoint, "/", key); if (!value) { auto state = internal::MakeIntrusivePtr<DeleteTask>( std::move(self), std::move(options), std::move(ready), std::move(object_url), std::move(promise)); intrusive_ptr_increment( state.get()); state->owner->write_rate_limiter().Admit(state.get(), &DeleteTask::Start); return; } auto state = internal::MakeIntrusivePtr<WriteTask>( std::move(self), std::move(options), std::move(ready), std::move(object_url), *std::move(value), std::move(promise)); intrusive_ptr_increment(state.get()); state->owner->write_rate_limiter().Admit(state.get(), &WriteTask::Start); }); return std::move(op.future); } struct ListTask : public RateLimiterNode, public internal::AtomicReferenceCount<ListTask> { internal::IntrusivePtr<S3KeyValueStore> owner_; ListOptions options_; ListReceiver receiver_; std::string resource_; ReadyFuture<const S3EndpointRegion> endpoint_region_; std::string continuation_token_; absl::Time start_time_; int attempt_ = 0; bool has_query_parameters_; std::atomic<bool> cancelled_{false}; ListTask(internal::IntrusivePtr<S3KeyValueStore>&& owner, ListOptions&& options, ListReceiver&& receiver) : owner_(std::move(owner)), options_(std::move(options)), receiver_(std::move(receiver)) { execution::set_starting(receiver_, [this] { cancelled_.store(true, std::memory_order_relaxed); }); } ~ListTask() { execution::set_stopping(receiver_); owner_->admission_queue().Finish(this); } inline bool is_cancelled() { return cancelled_.load(std::memory_order_relaxed); } static void Start(void* task) { auto* self = reinterpret_cast<ListTask*>(task); self->owner_->read_rate_limiter().Finish(self); self->owner_->admission_queue().Admit(self, &ListTask::Admit); } static void Admit(void* task) { auto* self = reinterpret_cast<ListTask*>(task); self->owner_->executor()( [state = IntrusivePtr<ListTask>(self, internal::adopt_object_ref)] { state->IssueRequest(); }); } void Retry() { IssueRequest(); } void IssueRequest() { if (is_cancelled()) { execution::set_done(receiver_); return; } auto request_builder = S3RequestBuilder("GET", resource_).AddQueryParameter("list-type", "2"); if (auto prefix = LongestPrefix(options_.range); !prefix.empty()) { request_builder.AddQueryParameter("prefix", std::string(prefix)); } if (!continuation_token_.empty()) { request_builder.AddQueryParameter("continuation-token", continuation_token_); } AwsCredentials credentials; if (auto maybe_credentials = owner_->GetCredentials(); !maybe_credentials.ok()) { execution::set_error(receiver_, std::move(maybe_credentials).status()); return; } else if (maybe_credentials.value().has_value()) { credentials = std::move(*maybe_credentials.value()); } const auto& ehr = endpoint_region_.value(); start_time_ = absl::Now(); auto request = request_builder.BuildRequest(owner_->host_header_, credentials, ehr.aws_region, kEmptySha256, start_time_); ABSL_LOG_IF(INFO, s3_logging) << "List: " << request; auto future = owner_->transport_->IssueRequest(request, {}); future.ExecuteWhenReady(WithExecutor( owner_->executor(), [self = IntrusivePtr<ListTask>(this)]( ReadyFuture<HttpResponse> response) { self->OnResponse(response.result()); })); } void OnResponse(const Result<HttpResponse>& response) { auto status = OnResponseImpl(response); if (absl::IsCancelled(status)) { execution::set_done(receiver_); return; } if (!status.ok()) { execution::set_error(receiver_, std::move(status)); return; } } absl::Status OnResponseImpl(const Result<HttpResponse>& response) { if (is_cancelled()) { return absl::CancelledError(); } ABSL_LOG_IF(INFO, s3_logging.Level(1) && response.ok()) << "List " << *response; bool is_retryable = false; absl::Status status = [&]() -> absl::Status { if (!response.ok()) { is_retryable = DefaultIsRetryableCode(response.status().code()); return response.status(); } return AwsHttpResponseToStatus(response.value(), is_retryable); }(); if (!status.ok() && is_retryable) { return owner_->BackoffForAttemptAsync(std::move(status), attempt_++, this); } auto cord = response->payload; auto payload = cord.Flatten(); tinyxml2::XMLDocument xmlDocument; if (int xmlcode = xmlDocument.Parse(payload.data(), payload.size()); xmlcode != tinyxml2::XML_SUCCESS) { return absl::InvalidArgumentError( absl::StrCat("Malformed List response: ", xmlcode)); } auto* root = xmlDocument.FirstChildElement("ListBucketResult"); if (root == nullptr) { return absl::InvalidArgumentError( "Malformed List response: missing <ListBucketResult>"); } for (auto* contents = root->FirstChildElement("Contents"); contents != nullptr; contents = contents->NextSiblingElement("Contents")) { if (is_cancelled()) { return absl::CancelledError(); } auto* key_node = contents->FirstChildElement("Key"); if (key_node == nullptr) { return absl::InvalidArgumentError( "Malformed List response: missing <Key> in <Contents>"); } std::string key = GetNodeText(key_node); if (key < options_.range.inclusive_min) continue; if (KeyRange::CompareKeyAndExclusiveMax( key, options_.range.exclusive_max) >= 0) { execution::set_done(receiver_); return absl::OkStatus(); } int64_t size = GetNodeInt(contents->FirstChildElement("Size")).value_or(-1); if (key.size() > options_.strip_prefix_length) { execution::set_value( receiver_, ListEntry{key.substr(options_.strip_prefix_length), size}); } } attempt_ = 0; if (GetNodeText(root->FirstChildElement("IsTruncated")) == "true") { auto* next_continuation_token = root->FirstChildElement("NextContinuationToken"); if (next_continuation_token == nullptr) { return absl::InvalidArgumentError( "Malformed List response: missing <NextContinuationToken>"); } continuation_token_ = GetNodeText(next_continuation_token); IssueRequest(); } else { execution::set_done(receiver_); } return absl::OkStatus(); } }; void S3KeyValueStore::ListImpl(ListOptions options, ListReceiver receiver) { s3_metrics.list.Increment(); if (options.range.empty()) { execution::set_starting(receiver, [] {}); execution::set_done(receiver); execution::set_stopping(receiver); return; } auto state = internal::MakeIntrusivePtr<ListTask>( IntrusivePtr<S3KeyValueStore>(this), std::move(options), std::move(receiver)); MaybeResolveRegion().ExecuteWhenReady( [state = std::move(state)](ReadyFuture<const S3EndpointRegion> ready) { if (!ready.status().ok()) { execution::set_error(state->receiver_, ready.status()); return; } state->resource_ = tensorstore::StrCat(ready.value().endpoint, "/"); state->endpoint_region_ = std::move(ready); intrusive_ptr_increment(state.get()); state->owner_->read_rate_limiter().Admit(state.get(), &ListTask::Start); }); } struct DeleteRangeListReceiver { IntrusivePtr<S3KeyValueStore> owner_; Promise<void> promise_; FutureCallbackRegistration cancel_registration_; void set_starting(AnyCancelReceiver cancel) { cancel_registration_ = promise_.ExecuteWhenNotNeeded(std::move(cancel)); } void set_value(ListEntry entry) { assert(!entry.key.empty()); if (!entry.key.empty()) { LinkError(promise_, owner_->Delete(std::move(entry.key))); } } void set_error(absl::Status error) { SetDeferredResult(promise_, std::move(error)); promise_ = Promise<void>(); } void set_done() { promise_ = Promise<void>(); } void set_stopping() { cancel_registration_.Unregister(); } }; Future<const void> S3KeyValueStore::DeleteRange(KeyRange range) { s3_metrics.delete_range.Increment(); if (range.empty()) return absl::OkStatus(); auto op = PromiseFuturePair<void>::Make(tensorstore::MakeResult()); ListOptions list_options; list_options.range = std::move(range); ListImpl(list_options, DeleteRangeListReceiver{ internal::IntrusivePtr<S3KeyValueStore>(this), std::move(op.promise)}); return std::move(op.future); } Future<const S3EndpointRegion> S3KeyValueStore::MaybeResolveRegion() { absl::MutexLock l(&mutex_); if (!resolve_ehr_.null()) return resolve_ehr_; resolve_ehr_ = internal_kvstore_s3::ResolveEndpointRegion( spec_.bucket, !spec_.endpoint.has_value() || spec_.endpoint.value().empty() ? std::string_view{} : std::string_view(spec_.endpoint.value()), spec_.host_header.value_or(std::string{}), transport_); resolve_ehr_.ExecuteWhenReady([](ReadyFuture<const S3EndpointRegion> ready) { if (!ready.status().ok()) { ABSL_LOG_IF(INFO, s3_logging) << "S3 driver failed to resolve endpoint: " << ready.status(); } else { ABSL_LOG_IF(INFO, s3_logging) << "S3 driver using endpoint [" << ready.value() << "]"; } }); return resolve_ehr_; } Future<kvstore::DriverPtr> S3KeyValueStoreSpec::DoOpen() const { auto driver = internal::MakeIntrusivePtr<S3KeyValueStore>( internal_http::GetDefaultHttpTransport(), data_); if (data_.rate_limiter.has_value()) { ABSL_LOG_IF(INFO, s3_logging) << "Using experimental_s3_rate_limiter"; } auto result = internal_kvstore_s3::ValidateEndpoint( data_.bucket, data_.aws_region, data_.endpoint.value_or(std::string{}), driver->host_header_); if (auto* status = std::get_if<absl::Status>(&result); status != nullptr && !status->ok()) { return std::move(*status); } if (auto* ehr = std::get_if<S3EndpointRegion>(&result); ehr != nullptr) { ABSL_LOG_IF(INFO, s3_logging) << "S3 driver using endpoint [" << *ehr << "]"; driver->resolve_ehr_ = MakeReadyFuture<S3EndpointRegion>(std::move(*ehr)); } return driver; } Result<kvstore::Spec> ParseS3Url(std::string_view url) { auto parsed = internal::ParseGenericUri(url); assert(parsed.scheme == kUriScheme); if (!parsed.query.empty()) { return absl::InvalidArgumentError("Query string not supported"); } if (!parsed.fragment.empty()) { return absl::InvalidArgumentError("Fragment identifier not supported"); } if (!IsValidBucketName(parsed.authority)) { return absl::InvalidArgumentError(tensorstore::StrCat( "Invalid S3 bucket name: ", QuoteString(parsed.authority))); } auto decoded_path = parsed.path.empty() ? std::string() : internal::PercentDecode(parsed.path.substr(1)); auto driver_spec = internal::MakeIntrusivePtr<S3KeyValueStoreSpec>(); driver_spec->data_.bucket = std::string(parsed.authority); driver_spec->data_.requester_pays = false; driver_spec->data_.aws_credentials = Context::Resource<AwsCredentialsResource>::DefaultSpec(); driver_spec->data_.request_concurrency = Context::Resource<S3ConcurrencyResource>::DefaultSpec(); driver_spec->data_.retries = Context::Resource<S3RequestRetries>::DefaultSpec(); driver_spec->data_.data_copy_concurrency = Context::Resource<DataCopyConcurrencyResource>::DefaultSpec(); return {std::in_place, std::move(driver_spec), std::move(decoded_path)}; } const tensorstore::internal_kvstore::DriverRegistration< tensorstore::S3KeyValueStoreSpec> registration; const tensorstore::internal_kvstore::UrlSchemeRegistration url_scheme_registration{kUriScheme, tensorstore::ParseS3Url}; } } TENSORSTORE_DECLARE_GARBAGE_COLLECTION_NOT_REQUIRED( tensorstore::S3KeyValueStore)
#include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/match.h" #include "tensorstore/context.h" #include "tensorstore/internal/http/curl_transport.h" #include "tensorstore/internal/http/http_request.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/internal/http/mock_http_transport.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/test_matchers.h" #include "tensorstore/kvstore/test_util.h" #include "tensorstore/util/future.h" #include "tensorstore/util/status_testutil.h" namespace kvstore = ::tensorstore::kvstore; using ::tensorstore::Context; using ::tensorstore::MatchesStatus; using ::tensorstore::StatusIs; using ::tensorstore::StorageGeneration; using ::tensorstore::internal::MatchesKvsReadResult; using ::tensorstore::internal::MatchesListEntry; using ::tensorstore::internal::MatchesTimestampedStorageGeneration; using ::tensorstore::internal_http::DefaultMockHttpTransport; using ::tensorstore::internal_http::HttpResponse; using ::tensorstore::internal_http::HttpTransport; using ::tensorstore::internal_http::SetDefaultHttpTransport; namespace { Context DefaultTestContext() { return Context{Context::Spec::FromJson({ {"s3_request_retries", {{"max_retries", 2}, {"initial_delay", "1ms"}, {"max_delay", "2ms"}}}, }) .value()}; } TEST(S3KeyValueStoreTest, BadBucketNames) { auto context = DefaultTestContext(); for (auto bucket : {"a", "_abc", "abc_", "a..b", "a.-.b"}) { EXPECT_FALSE(kvstore::Open({{"driver", "s3"}, {"bucket", bucket}, {"endpoint", "https: context) .result()) << "bucket: " << bucket; } for (auto bucket : {"abc", "abc.1-2-3.abc", "a." "0123456789123456789012345678912345678901234567891234567890" "1234567891234567890123456789123456789012345678912345678901" "23456789123456789.B"}) { EXPECT_TRUE(kvstore::Open({{"driver", "s3"}, {"bucket", bucket}, {"endpoint", "https: {"aws_region", "us-east-1"}}, context) .result()) << "bucket: " << bucket; } } TEST(S3KeyValueStoreTest, SpecRoundtrip) { tensorstore::internal::KeyValueStoreSpecRoundtripOptions options; options.check_write_read = false; options.check_data_persists = false; options.check_data_after_serialization = false; options.full_spec = {{"driver", "s3"}, {"bucket", "mybucket"}}; tensorstore::internal::TestKeyValueStoreSpecRoundtrip(options); } TEST(S3KeyValueStoreTest, InvalidSpec) { auto context = DefaultTestContext(); EXPECT_THAT(kvstore::Open( {{"driver", "s3"}, {"bucket", "my-bucket"}, {"extra", "key"}}, context) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(kvstore::Open({{"driver", "s3"}}, context).result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( kvstore::Open({{"driver", "s3"}, {"bucket", "a"}}, context).result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } struct DefaultHttpTransportSetter { DefaultHttpTransportSetter(std::shared_ptr<HttpTransport> transport) { SetDefaultHttpTransport(transport); } ~DefaultHttpTransportSetter() { SetDefaultHttpTransport(nullptr); } }; TEST(S3KeyValueStoreTest, SimpleMock_VirtualHost) { absl::flat_hash_map<std::string, HttpResponse> url_to_response{ {"HEAD https: HttpResponse{200, absl::Cord(), {{"x-amz-bucket-region", "us-east-1"}}}}, {"GET https: HttpResponse{200, absl::Cord("abcd"), {{"etag", "900150983cd24fb0d6963f7d28e17f72"}}}}, {"PUT https: HttpResponse{ 200, absl::Cord(), {{"etag", "900150983cd24fb0d6963f7d28e17f72"}}}}, }; auto mock_transport = std::make_shared<DefaultMockHttpTransport>(url_to_response); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open( {{"driver", "s3"}, {"bucket", "my-bucket"}, {"path", "tmp:1/"}}, context) .result()); auto read_result = kvstore::Read(store, "key_read").result(); EXPECT_THAT(read_result, MatchesKvsReadResult(absl::Cord("abcd"), StorageGeneration::FromString( "900150983cd24fb0d6963f7d28e17f72"))); EXPECT_THAT(kvstore::Write(store, "key_write", absl::Cord("xyz")).result(), MatchesTimestampedStorageGeneration(StorageGeneration::FromString( "900150983cd24fb0d6963f7d28e17f72"))); TENSORSTORE_EXPECT_OK(kvstore::Delete(store, "key_delete")); int host_header_validated = 0; for (const auto& request : mock_transport->requests()) { if (absl::StartsWith(request.url, "https: host_header_validated++; EXPECT_THAT( request.headers, testing::Contains("host: my-bucket.s3.us-east-1.amazonaws.com")); } } EXPECT_THAT(host_header_validated, testing::Ge(2)); } TEST(S3KeyValueStoreTest, SimpleMock_NoVirtualHost) { absl::flat_hash_map<std::string, HttpResponse> url_to_response{ {"HEAD https: HttpResponse{200, absl::Cord(), {{"x-amz-bucket-region", "us-east-1"}}}}, {"GET https: HttpResponse{200, absl::Cord("abcd"), {{"etag", "900150983cd24fb0d6963f7d28e17f72"}}}}, {"PUT https: HttpResponse{ 200, absl::Cord(), {{"etag", "900150983cd24fb0d6963f7d28e17f72"}}}}, }; auto mock_transport = std::make_shared<DefaultMockHttpTransport>(url_to_response); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto store, kvstore::Open({{"driver", "s3"}, {"bucket", "my.bucket"}, {"aws_region", "us-east-1"}}, context) .result()); auto read_result = kvstore::Read(store, "key_read").result(); EXPECT_THAT(read_result, MatchesKvsReadResult(absl::Cord("abcd"), StorageGeneration::FromString( "900150983cd24fb0d6963f7d28e17f72"))); EXPECT_THAT(kvstore::Write(store, "key_write", absl::Cord("xyz")).result(), MatchesTimestampedStorageGeneration(StorageGeneration::FromString( "900150983cd24fb0d6963f7d28e17f72"))); TENSORSTORE_EXPECT_OK(kvstore::Delete(store, "key_delete")); int host_header_validated = 0; for (const auto& request : mock_transport->requests()) { if (absl::StartsWith(request.url, "https: host_header_validated++; EXPECT_THAT(request.headers, testing::Contains("host: s3.us-east-1.amazonaws.com")); } } EXPECT_THAT(host_header_validated, testing::Ge(2)); } TEST(S3KeyValueStoreTest, SimpleMock_Endpoint) { absl::flat_hash_map<std::string, HttpResponse> url_to_response{ {"HEAD https: HttpResponse{200, absl::Cord(), {{"x-amz-bucket-region", "us-east-1"}}}}, {"GET https: HttpResponse{200, absl::Cord("abcd"), {{"etag", "900150983cd24fb0d6963f7d28e17f72"}}}}, {"PUT https: HttpResponse{ 200, absl::Cord(), {{"etag", "900150983cd24fb0d6963f7d28e17f72"}}}}, }; auto mock_transport = std::make_shared<DefaultMockHttpTransport>(url_to_response); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", "s3"}, {"bucket", "my-bucket"}, {"endpoint", "https: {"aws_credentials", {{"anonymous", true}}}, {"path", "tmp:1/"}}, context) .result()); auto read_result = kvstore::Read(store, "key_read").result(); EXPECT_THAT(read_result, MatchesKvsReadResult(absl::Cord("abcd"), StorageGeneration::FromString( "900150983cd24fb0d6963f7d28e17f72"))); EXPECT_THAT(kvstore::Write(store, "key_write", absl::Cord("xyz")).result(), MatchesTimestampedStorageGeneration(StorageGeneration::FromString( "900150983cd24fb0d6963f7d28e17f72"))); TENSORSTORE_EXPECT_OK(kvstore::Delete(store, "key_delete")); int host_header_validated = 0; for (const auto& request : mock_transport->requests()) { if (absl::StartsWith(request.url, "https: host_header_validated++; EXPECT_THAT(request.headers, testing::Contains("host: localhost:1234")); } } EXPECT_THAT(host_header_validated, testing::Ge(2)); } TEST(S3KeyValueStoreTest, SimpleMock_List) { const auto kListResultA = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>" "<ListBucketResult xmlns=\"http: "<Name>bucket</Name>" "<Prefix></Prefix>" "<KeyCount>3</KeyCount>" "<MaxKeys>1000</MaxKeys>" "<IsTruncated>true</IsTruncated>" "<NextContinuationToken>CONTINUE</NextContinuationToken>" "<Contents><Key>a</Key>" "<LastModified>2023-09-06T17:53:27.000Z</LastModified>" "<ETag>&quot;d41d8cd98f00b204e9800998ecf8427e&quot;</ETag>" "<Size>0</Size><StorageClass>STANDARD</StorageClass></Contents>" "<Contents><Key>b</Key>" "<LastModified>2023-09-06T17:53:28.000Z</LastModified>" "<ETag>&quot;d41d8cd98f00b204e9800998ecf8427e&quot;</ETag>" "<Size>0</Size><StorageClass>STANDARD</StorageClass></Contents>" "<Contents><Key>b/a</Key>" "<LastModified>2023-09-06T17:53:28.000Z</LastModified>" "<ETag>&quot;d41d8cd98f00b204e9800998ecf8427e&quot;</ETag>" "<Size>0</Size><StorageClass>STANDARD</StorageClass></Contents>" "</ListBucketResult>"; const auto kListResultB = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>" "<ListBucketResult xmlns=\"http: "<Name>bucket</Name>" "<Prefix></Prefix>" "<KeyCount>2</KeyCount>" "<MaxKeys>1000</MaxKeys>" "<IsTruncated>false</IsTruncated>" "<Contents><Key>b/b</Key>" "<LastModified>2023-09-06T17:53:28.000Z</LastModified>" "<ETag>&quot;d41d8cd98f00b204e9800998ecf8427e&quot;</ETag>" "<Size>0</Size><StorageClass>STANDARD</StorageClass></Contents>" "<Contents><Key>c</Key>" "<LastModified>2023-09-06T17:53:28.000Z</LastModified>" "<ETag>&quot;d41d8cd98f00b204e9800998ecf8427e&quot;</ETag>" "<Size>0</Size><StorageClass>STANDARD</StorageClass></Contents>" "</ListBucketResult>"; absl::flat_hash_map<std::string, HttpResponse> url_to_response{ {"HEAD https: HttpResponse{200, absl::Cord(), {{"x-amz-bucket-region", "us-east-1"}}}}, {"GET https: HttpResponse{200, absl::Cord(kListResultA), {}}}, {"GET " "https: "?continuation-token=CONTINUE&list-type=2", HttpResponse{200, absl::Cord(kListResultB), {}}}, }; auto mock_transport = std::make_shared<DefaultMockHttpTransport>(url_to_response); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", "s3"}, {"bucket", "my-bucket"}}, context) .result()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto list_result, kvstore::ListFuture(store, {}).result()); EXPECT_THAT(list_result, ::testing::ElementsAre( MatchesListEntry("a"), MatchesListEntry("b"), MatchesListEntry("b/a"), MatchesListEntry("b/b"), MatchesListEntry("c"))); } TEST(S3KeyValueStoreTest, SimpleMock_ListPrefix) { const auto kListResult = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>" "<ListBucketResult xmlns=\"http: "<Name>bucket</Name>" "<Prefix>b</Prefix>" "<KeyCount>4</KeyCount>" "<MaxKeys>1000</MaxKeys>" "<IsTruncated>false</IsTruncated>" "<Contents><Key>b</Key>" "<LastModified>2023-09-06T17:53:28.000Z</LastModified>" "<ETag>&quot;d41d8cd98f00b204e9800998ecf8427e&quot;</ETag>" "<Size>0</Size><StorageClass>STANDARD</StorageClass></Contents>" "<Contents><Key>b/a</Key>" "<LastModified>2023-09-06T17:53:28.000Z</LastModified>" "<ETag>&quot;d41d8cd98f00b204e9800998ecf8427e&quot;</ETag>" "<Size>0</Size><StorageClass>STANDARD</StorageClass></Contents>" "<Contents><Key>b/b</Key>" "<LastModified>2023-09-06T17:53:28.000Z</LastModified>" "<ETag>&quot;d41d8cd98f00b204e9800998ecf8427e&quot;</ETag>" "<Size>0</Size><StorageClass>STANDARD</StorageClass></Contents>" "<Contents><Key>c</Key>" "<LastModified>2023-09-06T17:53:28.000Z</LastModified>" "<ETag>&quot;d41d8cd98f00b204e9800998ecf8427e&quot;</ETag>" "<Size>0</Size><StorageClass>STANDARD</StorageClass></Contents>" "</ListBucketResult>"; absl::flat_hash_map<std::string, HttpResponse> url_to_response{ {"HEAD https: HttpResponse{200, absl::Cord(), {{"x-amz-bucket-region", "us-east-1"}}}}, {"GET " "https: "?list-type=2&prefix=b", HttpResponse{200, absl::Cord(kListResult), {{"etag", "900150983cd24fb0d6963f7d28e17f72"}}}}, }; auto mock_transport = std::make_shared<DefaultMockHttpTransport>(url_to_response); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", "s3"}, {"bucket", "my-bucket"}}, context) .result()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto list_result, kvstore::ListFuture(store, {::tensorstore::KeyRange::Prefix("b")}) .result()); EXPECT_THAT(list_result, ::testing::ElementsAre(MatchesListEntry("b"), MatchesListEntry("b/a"), MatchesListEntry("b/b"))); } TEST(S3KeyValueStoreTest, SimpleMock_RetryTimesOut) { absl::flat_hash_map<std::string, HttpResponse> url_to_response{ {"HEAD https: HttpResponse{200, absl::Cord(), {{"x-amz-bucket-region", "us-east-1"}}}}, {"GET https: HttpResponse{400, absl::Cord(R"(<?xml version="1.0" encoding="UTF-8"?> <Error> <Code>ThrottledException</Code> <Message>Endless retry</Message> <Resource>/my-bucket/tmp:1/key_read</Resource> <RequestId>4442587FB7D0A2F9</RequestId> </Error> )"), {{"etag", "900150983cd24fb0d6963f7d28e17f72"}}}}, }; auto mock_transport = std::make_shared<DefaultMockHttpTransport>(url_to_response); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", "s3"}, {"bucket", "my-bucket"}, {"endpoint", "https: {"path", "tmp:1/"}}, context) .result()); auto read_result = kvstore::Read(store, "key_read").result(); EXPECT_THAT(read_result, StatusIs(absl::StatusCode::kAborted)); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/s3_key_value_store.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/s3_key_value_store_test.cc
4f887a6430414cd6088e1743555015b10f116d50
b2e3dc4c-9f53-49f1-8f40-d936b4c2f102
cpp
google/tensorstore
s3_metadata
tensorstore/kvstore/s3/s3_metadata.cc
tensorstore/kvstore/s3/s3_metadata_test.cc
#include "tensorstore/kvstore/s3/s3_metadata.h" #include <stddef.h> #include <stdint.h> #include <cassert> #include <initializer_list> #include <optional> #include <string> #include <string_view> #include <utility> #include "absl/base/no_destructor.h" #include "absl/container/btree_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/numbers.h" #include "absl/strings/str_format.h" #include "absl/time/time.h" #include "re2/re2.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/internal/source_location.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tinyxml2.h" using ::tensorstore::internal_http::HttpResponse; namespace tensorstore { namespace internal_kvstore_s3 { namespace { static constexpr char kEtag[] = "etag"; static constexpr char kLt[] = "&lt;"; static constexpr char kGt[] = "&gt;"; static constexpr char kQuot[] = "&quot;"; static constexpr char kApos[] = "&apos;"; static constexpr char kAmp[] = "&amp;"; std::string UnescapeXml(std::string_view data) { static LazyRE2 kSpecialXmlSymbols = {"(&gt;|&lt;|&quot;|&apos;|&amp;)"}; std::string_view search = data; std::string_view symbol; size_t result_len = data.length(); while (RE2::FindAndConsume(&search, *kSpecialXmlSymbols, &symbol)) { result_len -= symbol.length() - 1; } if (result_len == data.length()) { return std::string(data); } search = data; size_t pos = 0; size_t res_pos = 0; auto result = std::string(result_len, '0'); while (RE2::FindAndConsume(&search, *kSpecialXmlSymbols, &symbol)) { size_t next = data.length() - search.length(); for (size_t i = pos; i < next - symbol.length(); ++i, ++res_pos) { result[res_pos] = data[i]; } if (symbol == kGt) { result[res_pos++] = '>'; } else if (symbol == kLt) { result[res_pos++] = '<'; } else if (symbol == kQuot) { result[res_pos++] = '"'; } else if (symbol == kApos) { result[res_pos++] = '`'; } else if (symbol == kAmp) { result[res_pos++] = '&'; } else { assert(false); } pos = next; } for (size_t i = pos; i < data.length(); ++i, ++res_pos) { result[res_pos] = data[i]; } return result; } bool IsRetryableAwsStatusCode(int32_t status_code) { switch (status_code) { case 408: case 419: case 429: case 440: case 500: case 502: case 503: case 504: case 509: case 598: case 599: return true; default: return false; } } bool IsRetryableAwsMessageCode(std::string_view code) { static const absl::NoDestructor<absl::flat_hash_set<std::string_view>> kRetryableMessages(absl::flat_hash_set<std::string_view>({ "InternalFailureException", "InternalFailure", "InternalServerError", "InternalError", "RequestExpiredException", "RequestExpired", "ServiceUnavailableException", "ServiceUnavailableError", "ServiceUnavailable", "RequestThrottledException", "RequestThrottled", "ThrottlingException", "ThrottledException", "Throttling", "SlowDownException", "SlowDown", "RequestTimeTooSkewedException", "RequestTimeTooSkewed", "RequestTimeoutException", "RequestTimeout", })); return kRetryableMessages->contains(code); } } std::optional<int64_t> GetNodeInt(tinyxml2::XMLNode* node) { if (!node) { return std::nullopt; } tinyxml2::XMLPrinter printer; for (auto* child = node->FirstChild(); child != nullptr; child = child->NextSibling()) { child->Accept(&printer); } int64_t result; if (absl::SimpleAtoi(printer.CStr(), &result)) { return result; } return std::nullopt; } std::optional<absl::Time> GetNodeTimestamp(tinyxml2::XMLNode* node) { if (!node) { return std::nullopt; } tinyxml2::XMLPrinter printer; for (auto* child = node->FirstChild(); child != nullptr; child = child->NextSibling()) { child->Accept(&printer); } absl::Time result; if (absl::ParseTime(absl::RFC3339_full, printer.CStr(), absl::UTCTimeZone(), &result, nullptr)) { return result; } return std::nullopt; } std::string GetNodeText(tinyxml2::XMLNode* node) { if (!node) { return ""; } tinyxml2::XMLPrinter printer; for (auto* child = node->FirstChild(); child != nullptr; child = child->NextSibling()) { child->Accept(&printer); } return UnescapeXml(printer.CStr()); } Result<StorageGeneration> StorageGenerationFromHeaders( const absl::btree_multimap<std::string, std::string>& headers) { if (auto it = headers.find(kEtag); it != headers.end()) { return StorageGeneration::FromString(it->second); } return absl::NotFoundError("etag not found in response headers"); } absl::Status AwsHttpResponseToStatus(const HttpResponse& response, bool& retryable, SourceLocation loc) { auto absl_status_code = internal_http::HttpResponseCodeToStatusCode(response); if (absl_status_code == absl::StatusCode::kOk) { return absl::OkStatus(); } std::string error_type; if (auto error_header = response.headers.find("x-amzn-errortype"); error_header != response.headers.end()) { error_type = error_header->second; } absl::Cord request_id; if (auto request_id_header = response.headers.find("x-amzn-requestid"); request_id_header != response.headers.end()) { request_id = request_id_header->second; } std::string message; auto payload = response.payload; auto payload_str = payload.Flatten(); [&]() { if (payload.empty()) return; tinyxml2::XMLDocument xmlDocument; if (int xmlcode = xmlDocument.Parse(payload_str.data(), payload_str.size()); xmlcode != tinyxml2::XML_SUCCESS) { return; } auto* root_node = xmlDocument.FirstChildElement("Error"); if (root_node == nullptr) return; if (error_type.empty()) { error_type = GetNodeText(root_node->FirstChildElement("Code")); } if (request_id.empty()) { request_id = GetNodeText(root_node->FirstChildElement("RequestId")); } message = GetNodeText(root_node->FirstChildElement("Message")); }(); retryable = error_type.empty() ? IsRetryableAwsStatusCode(response.status_code) : IsRetryableAwsMessageCode(error_type); if (error_type.empty()) { error_type = "Unknown"; } absl::Status status(absl_status_code, absl::StrFormat("%s%s%s", error_type, message.empty() ? "" : ": ", message)); status.SetPayload("http_response_code", absl::Cord(absl::StrFormat("%d", response.status_code))); if (!payload_str.empty()) { status.SetPayload( "http_response_body", payload.Subcord(0, payload_str.size() < 256 ? payload_str.size() : 256)); } if (!request_id.empty()) { status.SetPayload("x-amzn-requestid", request_id); } MaybeAddSourceLocation(status, loc); return status; } } }
#include "tensorstore/kvstore/s3/s3_metadata.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/time/time.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/util/status_testutil.h" #include "tinyxml2.h" namespace { using ::tensorstore::StatusIs; using ::tensorstore::internal_http::HttpResponse; using ::tensorstore::internal_kvstore_s3::AwsHttpResponseToStatus; using ::tensorstore::internal_kvstore_s3::GetNodeInt; using ::tensorstore::internal_kvstore_s3::GetNodeText; using ::tensorstore::internal_kvstore_s3::GetNodeTimestamp; static constexpr char kListXml[] = R"(<ListBucketResult xmlns="http: R"(<Name>i-dont-exist</Name>)" R"(<Prefix>tensorstore/test/</Prefix>)" R"(<KeyCount>3</KeyCount>)" R"(<MaxKeys>1000</MaxKeys>)" R"(<IsTruncated>false</IsTruncated>)" R"(<Contents>)" R"(<Key>tensorstore/test/abc</Key>)" R"(<LastModified>2023-07-08T15:26:55.000Z</LastModified>)" R"(<ETag>&quot;900150983cd24fb0d6963f7d28e17f72&quot;</ETag>)" R"(<ChecksumAlgorithm>SHA256</ChecksumAlgorithm>)" R"(<Size>3</Size>)" R"(<StorageClass>STANDARD</StorageClass>)" R"(</Contents>)" R"(<Contents>)" R"(<Key>tensorstore/test/ab&gt;cd</Key>)" R"(<LastModified>2023-07-08T15:26:55.000Z</LastModified>)" R"(<ETag>&quot;e2fc714c4727ee9395f324cd2e7f331f&quot;</ETag>)" R"(<ChecksumAlgorithm>SHA256</ChecksumAlgorithm>)" R"(<Size>4</Size>)" R"(<StorageClass>STANDARD</StorageClass>)" R"(</Contents>)" R"(<Contents>)" R"(<Key>tensorstore/test/abcde</Key>)" R"(<LastModified>2023-07-08T15:26:55.000Z</LastModified>)" R"(<ETag>&quot;ab56b4d92b40713acc5af89985d4b786&quot;</ETag>)" R"(<ChecksumAlgorithm>SHA256</ChecksumAlgorithm>)" R"(<Size>5</Size>)" R"(<StorageClass>STANDARD</StorageClass>)" R"(</Contents>)" R"(</ListBucketResult>)"; TEST(XmlSearchTest, GetNodeValues) { tinyxml2::XMLDocument xmlDocument; ASSERT_EQ(xmlDocument.Parse(kListXml), tinyxml2::XML_SUCCESS); auto* root = xmlDocument.FirstChildElement("ListBucketResult"); ASSERT_NE(root, nullptr); EXPECT_EQ("i-dont-exist", GetNodeText(root->FirstChildElement("Name"))); auto* contents = root->FirstChildElement("Contents"); ASSERT_NE(contents, nullptr); EXPECT_EQ(R"("900150983cd24fb0d6963f7d28e17f72")", GetNodeText(contents->FirstChildElement("ETag"))); EXPECT_THAT(GetNodeInt(contents->FirstChildElement("Size")), ::testing::Optional(::testing::Eq(3))); EXPECT_THAT( GetNodeTimestamp(contents->FirstChildElement("LastModified")), ::testing::Optional(::testing::Eq(absl::FromUnixSeconds(1688830015)))); } TEST(S3MetadataTest, AwsHttpResponseToStatus) { HttpResponse response; { response.status_code = 404; bool retryable = false; EXPECT_THAT(AwsHttpResponseToStatus(response, retryable), StatusIs(absl::StatusCode::kNotFound)); EXPECT_FALSE(retryable); } { response.status_code = 429; bool retryable = false; EXPECT_THAT(AwsHttpResponseToStatus(response, retryable), StatusIs(absl::StatusCode::kUnavailable)); EXPECT_TRUE(retryable); } { response.status_code = 400; response.payload = absl::Cord(R"(<?xml version="1.0" encoding="UTF-8"?> <Error> <Code>UnknownError</Code> <Message>Unknown message</Message> <Resource>/mybucket/myfoto.jpg</Resource> <RequestId>4442587FB7D0A2F9</RequestId> </Error> )"); bool retryable = false; EXPECT_THAT(AwsHttpResponseToStatus(response, retryable), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_FALSE(retryable); } { response.status_code = 400; response.payload = absl::Cord(R"(<?xml version="1.0" encoding="UTF-8"?> <Error> <Code>ThrottledException</Code> <Message>Throttled message</Message> <Resource>/mybucket/myfoto.jpg</Resource> <RequestId>4442587FB7D0A2F9</RequestId> </Error> )"); bool retryable = false; EXPECT_THAT(AwsHttpResponseToStatus(response, retryable), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_TRUE(retryable); } { response.status_code = 400; response.headers.emplace("x-amzn-errortype", "UnknownError"); bool retryable = false; EXPECT_THAT(AwsHttpResponseToStatus(response, retryable), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_FALSE(retryable); } { response.status_code = 400; response.headers.clear(); response.headers.emplace("x-amzn-errortype", "ThrottledException"); bool retryable = false; EXPECT_THAT(AwsHttpResponseToStatus(response, retryable), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_TRUE(retryable); } } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/s3_metadata.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/s3_metadata_test.cc
4f887a6430414cd6088e1743555015b10f116d50
f63c0329-0154-4e2c-bcda-f6fe9aac6a03
cpp
google/tensorstore
s3_endpoint
tensorstore/kvstore/s3/s3_endpoint.cc
tensorstore/kvstore/s3/s3_endpoint_test.cc
#include "tensorstore/kvstore/s3/s3_endpoint.h" #include <cassert> #include <memory> #include <string> #include <string_view> #include <utility> #include <variant> #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/str_format.h" #include "tensorstore/internal/http/http_request.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/internal/uri_utils.h" #include "tensorstore/kvstore/s3/validate.h" #include "tensorstore/util/future.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/str_cat.h" using ::tensorstore::internal_http::HttpRequestBuilder; using ::tensorstore::internal_http::HttpResponse; using ::tensorstore::internal_http::HttpTransport; namespace tensorstore { namespace internal_kvstore_s3 { namespace { static constexpr char kAmzBucketRegionHeader[] = "x-amz-bucket-region"; struct S3VirtualHostFormatter { std::string GetEndpoint(std::string_view bucket, std::string_view aws_region) const { return absl::StrFormat("https: aws_region); } }; struct S3PathFormatter { std::string GetEndpoint(std::string_view bucket, std::string_view aws_region) const { return absl::StrFormat("https: bucket); } }; struct S3CustomFormatter { std::string endpoint; std::string GetEndpoint(std::string_view bucket, std::string_view aws_region) const { return absl::StrFormat("%s/%s", endpoint, bucket); } }; template <typename Formatter> struct ResolveHost { std::string bucket; std::string default_aws_region; Formatter formatter; void operator()(Promise<S3EndpointRegion> promise, ReadyFuture<HttpResponse> ready) { if (!promise.result_needed()) return; auto& headers = ready.value().headers; if (auto it = headers.find(kAmzBucketRegionHeader); it != headers.end()) { promise.SetResult(S3EndpointRegion{ formatter.GetEndpoint(bucket, it->second), it->second, }); } if (!default_aws_region.empty()) { promise.SetResult(S3EndpointRegion{ formatter.GetEndpoint(bucket, default_aws_region), default_aws_region, }); } promise.SetResult(absl::FailedPreconditionError(tensorstore::StrCat( "Failed to resolve aws_region for bucket ", QuoteString(bucket)))); } }; } std::variant<absl::Status, S3EndpointRegion> ValidateEndpoint( std::string_view bucket, std::string aws_region, std::string_view endpoint, std::string host_header) { ABSL_CHECK(!bucket.empty()); if (!host_header.empty() && endpoint.empty()) { return absl::InvalidArgumentError( "\"host_header\" cannot be set without also setting \"endpoint\""); } if (internal_kvstore_s3::ClassifyBucketName(bucket) == internal_kvstore_s3::BucketNameType::kOldUSEast1) { if (!aws_region.empty() && aws_region != "us-east-1") { return absl::InvalidArgumentError(tensorstore::StrCat( "Bucket ", QuoteString(bucket), " requires aws_region \"us-east-1\", not ", QuoteString(aws_region))); } aws_region = "us-east-1"; } if (endpoint.empty()) { if (!aws_region.empty()) { if (!absl::StrContains(bucket, ".")) { S3VirtualHostFormatter formatter; return S3EndpointRegion{ formatter.GetEndpoint(bucket, aws_region), aws_region, }; } S3PathFormatter formatter; return S3EndpointRegion{ formatter.GetEndpoint(bucket, aws_region), aws_region, }; } return absl::OkStatus(); } auto parsed = internal::ParseGenericUri(endpoint); if (parsed.scheme != "http" && parsed.scheme != "https") { return absl::InvalidArgumentError( tensorstore::StrCat("Endpoint ", endpoint, " has invalid scheme ", parsed.scheme, ". Should be http(s).")); } if (!parsed.query.empty()) { return absl::InvalidArgumentError( tensorstore::StrCat("Query in endpoint unsupported ", endpoint)); } if (!parsed.fragment.empty()) { return absl::InvalidArgumentError( tensorstore::StrCat("Fragment in endpoint unsupported ", endpoint)); } if (!aws_region.empty()) { S3CustomFormatter formatter{std::string(endpoint)}; return S3EndpointRegion{ formatter.GetEndpoint(bucket, aws_region), aws_region, }; } return absl::OkStatus(); } Future<S3EndpointRegion> ResolveEndpointRegion( std::string bucket, std::string_view endpoint, std::string host_header, std::shared_ptr<internal_http::HttpTransport> transport) { assert(!bucket.empty()); assert(transport); assert(IsValidBucketName(bucket)); if (endpoint.empty()) { if (!absl::StrContains(bucket, ".")) { std::string url = absl::StrFormat("https: return PromiseFuturePair<S3EndpointRegion>::Link( ResolveHost<S3VirtualHostFormatter>{ std::move(bucket), {}, S3VirtualHostFormatter{}}, transport->IssueRequest( HttpRequestBuilder("HEAD", std::move(url)) .AddHostHeader(host_header) .BuildRequest(), {})) .future; } std::string url = absl::StrFormat("https: return PromiseFuturePair<S3EndpointRegion>::Link( ResolveHost<S3PathFormatter>{ std::move(bucket), {}, S3PathFormatter{}}, transport->IssueRequest( HttpRequestBuilder("HEAD", std ::move(url)) .AddHostHeader(host_header) .BuildRequest(), {})) .future; } std::string url = absl::StrFormat("%s/%s", endpoint, bucket); return PromiseFuturePair<S3EndpointRegion>::Link( ResolveHost<S3CustomFormatter>{ std::move(bucket), "us-east-1", S3CustomFormatter{std::string(endpoint)}}, transport->IssueRequest(HttpRequestBuilder("HEAD", std::move(url)) .AddHostHeader(host_header) .BuildRequest(), {})) .future; } } }
#include "tensorstore/kvstore/s3/s3_endpoint.h" #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/internal/http/mock_http_transport.h" #include "tensorstore/util/future.h" #include "tensorstore/util/status_testutil.h" using ::tensorstore::internal_http::DefaultMockHttpTransport; using ::tensorstore::internal_http::HttpResponse; using ::tensorstore::internal_kvstore_s3::ResolveEndpointRegion; using ::tensorstore::internal_kvstore_s3::S3EndpointRegion; using ::tensorstore::internal_kvstore_s3::ValidateEndpoint; namespace { TEST(ValidateEndpointTest, Basic) { EXPECT_THAT(ValidateEndpoint("testbucket", {}, {}, {}), ::testing::VariantWith<absl::Status>(absl::OkStatus())); EXPECT_THAT(ValidateEndpoint("test.bucket", {}, {}, {}), ::testing::VariantWith<absl::Status>(absl::OkStatus())); EXPECT_THAT(ValidateEndpoint("testbucket", "us-east-1", {}, {}), ::testing::VariantWith<S3EndpointRegion>(testing::_)); EXPECT_THAT(ValidateEndpoint("OldBucket", "us-east-1", {}, {}), ::testing::VariantWith<S3EndpointRegion>(testing::_)); EXPECT_THAT(ValidateEndpoint("OldBucket", {}, {}, {}), ::testing::VariantWith<S3EndpointRegion>(testing::_)); EXPECT_THAT(ValidateEndpoint("OldBucket", "us-west-1", {}, {}), ::testing::VariantWith<absl::Status>( tensorstore::StatusIs(absl::StatusCode::kInvalidArgument))); EXPECT_THAT(ValidateEndpoint("testbucket", "region", "http: ::testing::VariantWith<S3EndpointRegion>( S3EndpointRegion{"http: EXPECT_THAT( ValidateEndpoint("testbucket", "region", "http: ::testing::VariantWith<S3EndpointRegion>( S3EndpointRegion{"http: EXPECT_THAT(ValidateEndpoint("testbucket", {}, {}, "my.header"), ::testing::VariantWith<absl::Status>( tensorstore::StatusIs(absl::StatusCode::kInvalidArgument))); } TEST(ResolveEndpointRegion, Basic) { absl::flat_hash_map<std::string, HttpResponse> url_to_response{ {"HEAD https: HttpResponse{200, absl::Cord(), {{"x-amz-bucket-region", "us-east-1"}}}}, {"HEAD https: HttpResponse{200, absl::Cord(), {{"x-amz-bucket-region", "us-east-1"}}}}, {"HEAD http: HttpResponse{200, absl::Cord(), {{"x-amz-bucket-region", "us-east-1"}}}}, }; auto mock_transport = std::make_shared<DefaultMockHttpTransport>(url_to_response); S3EndpointRegion ehr; TENSORSTORE_ASSERT_OK_AND_ASSIGN( ehr, ResolveEndpointRegion("testbucket", {}, {}, mock_transport).result()); EXPECT_THAT(ehr.endpoint, "https: EXPECT_THAT(ehr.aws_region, "us-east-1"); TENSORSTORE_ASSERT_OK_AND_ASSIGN( ehr, ResolveEndpointRegion("test.bucket", {}, {}, mock_transport).result()); EXPECT_THAT(ehr.endpoint, "https: EXPECT_THAT(ehr.aws_region, "us-east-1"); TENSORSTORE_ASSERT_OK_AND_ASSIGN( ehr, ResolveEndpointRegion("test.bucket", "http: mock_transport) .result()); EXPECT_THAT(ehr.endpoint, "http: EXPECT_THAT(ehr.aws_region, "us-east-1"); TENSORSTORE_ASSERT_OK_AND_ASSIGN( ehr, ResolveEndpointRegion("test.bucket", "http: "s3.localhost.com", mock_transport) .result()); EXPECT_THAT(ehr.endpoint, "http: EXPECT_THAT(ehr.aws_region, "us-east-1"); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/s3_endpoint.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/s3_endpoint_test.cc
4f887a6430414cd6088e1743555015b10f116d50
b9fa1a4d-c983-4a54-ac81-e55fce5a564f
cpp
google/tensorstore
default_credential_provider
tensorstore/kvstore/s3/credentials/default_credential_provider.cc
tensorstore/kvstore/s3/credentials/default_credential_provider_test.cc
#include "tensorstore/kvstore/s3/credentials/default_credential_provider.h" #include <algorithm> #include <memory> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/base/no_destructor.h" #include "absl/functional/function_ref.h" #include "absl/log/absl_log.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/kvstore/s3/credentials/aws_credentials.h" #include "tensorstore/kvstore/s3/credentials/ec2_credential_provider.h" #include "tensorstore/kvstore/s3/credentials/environment_credential_provider.h" #include "tensorstore/kvstore/s3/credentials/file_credential_provider.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_kvstore_s3 { namespace { ABSL_CONST_INIT internal_log::VerboseFlag s3_logging("s3"); struct AwsCredentialProviderRegistry { std::vector<std::pair<int, AwsCredentialProviderFn>> providers; absl::Mutex mutex; }; AwsCredentialProviderRegistry& GetAwsProviderRegistry() { static absl::NoDestructor<AwsCredentialProviderRegistry> registry; return *registry; } } void RegisterAwsCredentialProviderProvider(AwsCredentialProviderFn provider, int priority) { auto& registry = GetAwsProviderRegistry(); absl::WriterMutexLock lock(&registry.mutex); registry.providers.emplace_back(priority, std::move(provider)); std::sort(registry.providers.begin(), registry.providers.end(), [](const auto& a, const auto& b) { return a.first < b.first; }); } Result<std::unique_ptr<AwsCredentialProvider>> GetAwsCredentialProvider( std::string_view filename, std::string_view profile, std::string_view metadata_endpoint, std::shared_ptr<internal_http::HttpTransport> transport) { auto& registry = GetAwsProviderRegistry(); absl::WriterMutexLock lock(&registry.mutex); for (const auto& provider : registry.providers) { auto credentials = provider.second(); if (credentials.ok()) return credentials; } return std::make_unique<DefaultAwsCredentialsProvider>( DefaultAwsCredentialsProvider::Options{ std::string{filename}, std::string{profile}, std::string{metadata_endpoint}, transport}); } DefaultAwsCredentialsProvider::DefaultAwsCredentialsProvider( Options options, absl::FunctionRef<absl::Time()> clock) : options_(std::move(options)), clock_(clock), credentials_{{}, {}, {}, absl::InfinitePast()} {} Result<AwsCredentials> DefaultAwsCredentialsProvider::GetCredentials() { { absl::ReaderMutexLock lock(&mutex_); if (credentials_.expires_at > clock_()) { return credentials_; } } absl::WriterMutexLock lock(&mutex_); if (provider_) { auto credentials_result = provider_->GetCredentials(); if (credentials_result.ok()) { credentials_ = credentials_result.value(); return credentials_; } } bool only_default_options = options_.filename.empty() && options_.profile.empty() && options_.endpoint.empty(); if (only_default_options) { provider_ = std::make_unique<EnvironmentCredentialProvider>(); if (auto credentials_result = provider_->GetCredentials(); credentials_result.ok()) { credentials_ = std::move(credentials_result).value(); return credentials_; } else if (s3_logging) { ABSL_LOG_FIRST_N(INFO, 1) << "Could not acquire credentials from environment: " << credentials_result.status(); } } if (only_default_options || !options_.filename.empty() || !options_.profile.empty()) { provider_ = std::make_unique<FileCredentialProvider>(options_.filename, options_.profile); if (auto credentials_result = provider_->GetCredentials(); credentials_result.ok()) { credentials_ = std::move(credentials_result).value(); return credentials_; } else if (s3_logging) { ABSL_LOG_FIRST_N(INFO, 1) << "Could not acquire credentials from file/profile: " << credentials_result.status(); } } if (only_default_options || !options_.endpoint.empty()) { provider_ = std::make_unique<EC2MetadataCredentialProvider>( options_.endpoint, options_.transport); if (auto credentials_result = provider_->GetCredentials(); credentials_result.ok()) { credentials_ = std::move(credentials_result).value(); return credentials_; } else if (s3_logging) { ABSL_LOG(INFO) << "Could not acquire credentials from EC2 Metadata Server " << options_.endpoint << ": " << credentials_result.status(); } } provider_ = nullptr; credentials_ = AwsCredentials::Anonymous(); return credentials_; } } }
#include "tensorstore/kvstore/s3/credentials/default_credential_provider.h" #include <fstream> #include <memory> #include <string> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/strings/cord.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorstore/internal/env.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/internal/http/mock_http_transport.h" #include "tensorstore/internal/path.h" #include "tensorstore/internal/testing/scoped_directory.h" #include "tensorstore/kvstore/s3/credentials/test_utils.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::internal::JoinPath; using ::tensorstore::internal::SetEnv; using ::tensorstore::internal::UnsetEnv; using ::tensorstore::internal_http::DefaultMockHttpTransport; using ::tensorstore::internal_http::HttpResponse; using ::tensorstore::internal_kvstore_s3::DefaultAwsCredentialsProvider; using ::tensorstore::internal_kvstore_s3::DefaultEC2MetadataFlow; using Options = ::tensorstore::internal_kvstore_s3::DefaultAwsCredentialsProvider::Options; static constexpr char kEndpoint[] = "http: class CredentialFileFactory : public tensorstore::internal_testing::ScopedTemporaryDirectory { public: std::string WriteCredentialsFile() { auto p = JoinPath(path(), "aws_config"); std::ofstream ofs(p); ofs << "[alice]\n" "aws_access_key_id = AKIAIOSFODNN6EXAMPLE\n" "aws_secret_access_key = " "wJalrXUtnFEMI/K7MDENG/bPxRfiCZEXAMPLEKEY\n" "aws_session_token = abcdef1234567890\n" "\n"; ofs.close(); return p; } }; class DefaultCredentialProviderTest : public ::testing::Test { protected: void SetUp() override { UnsetEnv("AWS_ACCESS_KEY_ID"); UnsetEnv("AWS_SECRET_ACCESS_KEY"); UnsetEnv("AWS_SESSION_TOKEN"); } }; TEST_F(DefaultCredentialProviderTest, AnonymousCredentials) { auto mock_transport = std::make_shared<DefaultMockHttpTransport>( absl::flat_hash_map<std::string, HttpResponse>()); auto provider = std::make_unique<DefaultAwsCredentialsProvider>( Options{{}, {}, {}, mock_transport}); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto credentials, provider->GetCredentials()); EXPECT_TRUE(credentials.IsAnonymous()); EXPECT_EQ(credentials.expires_at, absl::InfiniteFuture()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto credentials2, provider->GetCredentials()); EXPECT_TRUE(credentials2.IsAnonymous()); EXPECT_EQ(credentials2.expires_at, absl::InfiniteFuture()); } TEST_F(DefaultCredentialProviderTest, EnvironmentCredentialIdempotency) { SetEnv("AWS_ACCESS_KEY_ID", "access"); SetEnv("AWS_SECRET_ACCESS_KEY", "secret"); SetEnv("AWS_SESSION_TOKEN", "token"); auto provider = std::make_unique<DefaultAwsCredentialsProvider>(); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto credentials, provider->GetCredentials()); EXPECT_EQ(credentials.access_key, "access"); EXPECT_EQ(credentials.secret_key, "secret"); EXPECT_EQ(credentials.session_token, "token"); EXPECT_EQ(credentials.expires_at, absl::InfiniteFuture()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto credentials2, provider->GetCredentials()); EXPECT_EQ(credentials.access_key, credentials2.access_key); EXPECT_EQ(credentials.secret_key, credentials2.secret_key); EXPECT_EQ(credentials.session_token, credentials2.session_token); EXPECT_EQ(credentials.expires_at, credentials2.expires_at); } TEST_F(DefaultCredentialProviderTest, ConfigureFileProviderFromOptions) { auto factory = CredentialFileFactory{}; auto credentials_file = factory.WriteCredentialsFile(); auto provider = std::make_unique<DefaultAwsCredentialsProvider>( Options{credentials_file, "alice"}); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto credentials, provider->GetCredentials()); EXPECT_EQ(credentials.access_key, "AKIAIOSFODNN6EXAMPLE"); EXPECT_EQ(credentials.secret_key, "wJalrXUtnFEMI/K7MDENG/bPxRfiCZEXAMPLEKEY"); EXPECT_EQ(credentials.session_token, "abcdef1234567890"); EXPECT_EQ(credentials.expires_at, absl::InfiniteFuture()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto credentials2, provider->GetCredentials()); EXPECT_EQ(credentials.access_key, credentials2.access_key); EXPECT_EQ(credentials.secret_key, credentials2.secret_key); EXPECT_EQ(credentials.session_token, credentials2.session_token); EXPECT_EQ(credentials.expires_at, credentials2.expires_at); } TEST_F(DefaultCredentialProviderTest, ConfigureEC2ProviderFromOptions) { auto now = absl::Now(); auto stuck_clock = [&]() -> absl::Time { return now; }; auto expiry = now + absl::Seconds(200); auto mock_transport = std::make_shared<DefaultMockHttpTransport>( DefaultEC2MetadataFlow(kEndpoint, "1234", "ASIA1234567890", "1234567890abcdef", "token", expiry)); auto provider = std::make_unique<DefaultAwsCredentialsProvider>( Options{{}, {}, kEndpoint, mock_transport}, stuck_clock); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto credentials, provider->GetCredentials()); EXPECT_EQ(credentials.access_key, "ASIA1234567890"); EXPECT_EQ(credentials.secret_key, "1234567890abcdef"); EXPECT_EQ(credentials.session_token, "token"); EXPECT_EQ(credentials.expires_at, expiry - absl::Seconds(60)); mock_transport->Reset(absl::flat_hash_map<std::string, HttpResponse>{ {"POST http: HttpResponse{404, absl::Cord{""}}}, }); TENSORSTORE_ASSERT_OK_AND_ASSIGN(credentials, provider->GetCredentials()); EXPECT_EQ(credentials.access_key, "ASIA1234567890"); EXPECT_EQ(credentials.secret_key, "1234567890abcdef"); EXPECT_EQ(credentials.session_token, "token"); EXPECT_EQ(credentials.expires_at, expiry - absl::Seconds(60)); now += absl::Seconds(300); mock_transport->Reset( DefaultEC2MetadataFlow(kEndpoint, "1234", "ASIA1234567890", "1234567890abcdef", "TOKEN", expiry)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(credentials, provider->GetCredentials()); EXPECT_EQ(credentials.access_key, "ASIA1234567890"); EXPECT_EQ(credentials.secret_key, "1234567890abcdef"); EXPECT_EQ(credentials.session_token, "TOKEN"); EXPECT_EQ(credentials.expires_at, expiry - absl::Seconds(60)); mock_transport->Reset(absl::flat_hash_map<std::string, HttpResponse>{ {"POST http: HttpResponse{404, absl::Cord{""}}}, }); TENSORSTORE_ASSERT_OK_AND_ASSIGN(credentials, provider->GetCredentials()); EXPECT_EQ(credentials.access_key, ""); EXPECT_EQ(credentials.secret_key, ""); EXPECT_EQ(credentials.session_token, ""); EXPECT_EQ(credentials.expires_at, absl::InfiniteFuture()); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/credentials/default_credential_provider.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/credentials/default_credential_provider_test.cc
4f887a6430414cd6088e1743555015b10f116d50
a3f54d00-50ef-4c35-82d3-1ecbc16f183e
cpp
google/tensorstore
environment_credential_provider
tensorstore/kvstore/s3/credentials/environment_credential_provider.cc
tensorstore/kvstore/s3/credentials/environment_credential_provider_test.cc
#include "tensorstore/kvstore/s3/credentials/environment_credential_provider.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/time/time.h" #include "tensorstore/internal/env.h" #include "tensorstore/kvstore/s3/credentials/aws_credentials.h" #include "tensorstore/util/result.h" using ::tensorstore::internal::GetEnv; namespace tensorstore { namespace internal_kvstore_s3 { namespace { static constexpr char kEnvAwsAccessKeyId[] = "AWS_ACCESS_KEY_ID"; static constexpr char kEnvAwsSecretAccessKey[] = "AWS_SECRET_ACCESS_KEY"; static constexpr char kEnvAwsSessionToken[] = "AWS_SESSION_TOKEN"; } Result<AwsCredentials> EnvironmentCredentialProvider::GetCredentials() { auto access_key = GetEnv(kEnvAwsAccessKeyId); if (!access_key) { return absl::NotFoundError(absl::StrCat(kEnvAwsAccessKeyId, " not set")); } auto secret_key = GetEnv(kEnvAwsSecretAccessKey); if (!secret_key) { return absl::NotFoundError( absl::StrCat(kEnvAwsSecretAccessKey, " not set")); } ABSL_LOG_FIRST_N(INFO, 1) << "Using Environment Variable " << kEnvAwsAccessKeyId; auto credentials = AwsCredentials{*access_key, *secret_key}; if (auto session_token = GetEnv(kEnvAwsSessionToken); session_token) { credentials.session_token = *session_token; } credentials.expires_at = absl::InfiniteFuture(); return credentials; } } }
#include "tensorstore/kvstore/s3/credentials/environment_credential_provider.h" #include <gtest/gtest.h> #include "tensorstore/internal/env.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::internal::SetEnv; using ::tensorstore::internal::UnsetEnv; using ::tensorstore::internal_kvstore_s3::EnvironmentCredentialProvider; class EnvironmentCredentialProviderTest : public ::testing::Test { protected: void SetUp() override { for (const char* var : {"AWS_SHARED_CREDENTIALS_FILE", "AWS_ACCESS_KEY_ID", "AWS_SECRET_ACCESS_KEY", "AWS_SESSION_TOKEN", "AWS_PROFILE"}) { UnsetEnv(var); } } }; #ifndef _WIN32 TEST_F(EnvironmentCredentialProviderTest, ProviderNoCredentials) { auto provider = EnvironmentCredentialProvider(); ASSERT_FALSE(provider.GetCredentials().ok()); SetEnv("AWS_ACCESS_KEY_ID", "foo"); SetEnv("AWS_SECRET_ACCESS_KEY", ""); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto credentials, provider.GetCredentials()); ASSERT_EQ(credentials.access_key, "foo"); ASSERT_TRUE(credentials.secret_key.empty()); ASSERT_TRUE(credentials.session_token.empty()); } #endif TEST_F(EnvironmentCredentialProviderTest, ProviderAwsCredentialsFromEnv) { SetEnv("AWS_ACCESS_KEY_ID", "foo"); SetEnv("AWS_SECRET_ACCESS_KEY", "bar"); SetEnv("AWS_SESSION_TOKEN", "qux"); auto provider = EnvironmentCredentialProvider(); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto credentials, provider.GetCredentials()); ASSERT_EQ(credentials.access_key, "foo"); ASSERT_EQ(credentials.secret_key, "bar"); ASSERT_EQ(credentials.session_token, "qux"); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/credentials/environment_credential_provider.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/credentials/environment_credential_provider_test.cc
4f887a6430414cd6088e1743555015b10f116d50
17337708-4d38-49da-ac30-9296214bfc5a
cpp
google/tensorstore
file_credential_provider
tensorstore/kvstore/s3/credentials/file_credential_provider.cc
tensorstore/kvstore/s3/credentials/file_credential_provider_test.cc
#include "tensorstore/kvstore/s3/credentials/file_credential_provider.h" #include <optional> #include <string> #include <string_view> #include <utility> #include "absl/base/attributes.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/ascii.h" #include "absl/strings/str_format.h" #include "absl/strings/str_split.h" #include "absl/time/time.h" #include "riegeli/bytes/fd_reader.h" #include "riegeli/lines/line_reading.h" #include "tensorstore/internal/env.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/internal/path.h" #include "tensorstore/kvstore/s3/credentials/aws_credentials.h" #include "tensorstore/util/result.h" using ::tensorstore::internal::GetEnv; using ::tensorstore::internal::JoinPath; namespace tensorstore { namespace internal_kvstore_s3 { namespace { ABSL_CONST_INIT internal_log::VerboseFlag s3_logging("s3"); static constexpr char kEnvAwsCredentialsFile[] = "AWS_SHARED_CREDENTIALS_FILE"; static constexpr char kDefaultAwsCredentialsFilePath[] = ".aws/credentials"; static constexpr char kCfgAwsAccessKeyId[] = "aws_access_key_id"; static constexpr char kCfgAwsSecretAccessKeyId[] = "aws_secret_access_key"; static constexpr char kCfgAwsSessionToken[] = "aws_session_token"; static constexpr char kEnvAwsProfile[] = "AWS_PROFILE"; static constexpr char kDefaultProfile[] = "default"; std::optional<std::string> GetAwsCredentialsFileName() { if (auto credentials_file = GetEnv(kEnvAwsCredentialsFile); credentials_file) { return credentials_file; } if (auto home_dir = GetEnv("HOME"); home_dir) { return JoinPath(*home_dir, kDefaultAwsCredentialsFilePath); } return std::nullopt; } } FileCredentialProvider::FileCredentialProvider(std::string_view filename, std::string_view profile) : filename_(filename), profile_(profile) { if (filename_.empty()) { if (auto credentials_file = GetAwsCredentialsFileName(); credentials_file) { filename_ = *std::move(credentials_file); } } if (profile_.empty()) { profile_ = GetEnv(kEnvAwsProfile).value_or(kDefaultProfile); } } Result<AwsCredentials> FileCredentialProvider::GetCredentials() { if (filename_.empty()) { return absl::NotFoundError("No credentials file specified"); } riegeli::FdReader reader(filename_); if (!reader.ok()) { return absl::NotFoundError( absl::StrFormat("Could not open credentials file [%s]", filename_)); } AwsCredentials credentials{}; std::string_view line; bool profile_found = false; while (riegeli::ReadLine(reader, line)) { auto sline = absl::StripAsciiWhitespace(line); if (sline.empty() || sline[0] == '#') continue; if (sline[0] == '[' && sline[sline.size() - 1] == ']') { if (profile_found) break; auto section_name = absl::StripAsciiWhitespace(sline.substr(1, sline.size() - 2)); ABSL_LOG_IF(INFO, s3_logging) << "Found section name [" << section_name << "] in file [" << filename_ << "]"; profile_found = (section_name == profile_); continue; } if (profile_found) { std::pair<std::string_view, std::string_view> kv = absl::StrSplit(sline, absl::MaxSplits('=', 1)); kv.first = absl::StripAsciiWhitespace(kv.first); kv.second = absl::StripAsciiWhitespace(kv.second); if (kv.first == kCfgAwsAccessKeyId) { credentials.access_key = kv.second; } else if (kv.first == kCfgAwsSecretAccessKeyId) { credentials.secret_key = kv.second; } else if (kv.first == kCfgAwsSessionToken) { credentials.session_token = kv.second; } } } if (!profile_found) { return absl::NotFoundError( absl::StrFormat("Profile [%s] not found in credentials file [%s]", profile_, filename_)); } ABSL_LOG_FIRST_N(INFO, 1) << "Using profile [" << profile_ << "] in file [" << filename_ << "]"; credentials.expires_at = absl::InfiniteFuture(); return credentials; } } }
#include "tensorstore/kvstore/s3/credentials/file_credential_provider.h" #include <fstream> #include <memory> #include <string> #include <gtest/gtest.h> #include "absl/time/time.h" #include "tensorstore/internal/env.h" #include "tensorstore/internal/path.h" #include "tensorstore/internal/testing/scoped_directory.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::internal::JoinPath; using ::tensorstore::internal::SetEnv; using ::tensorstore::internal::UnsetEnv; using ::tensorstore::internal_kvstore_s3::FileCredentialProvider; class TestData : public tensorstore::internal_testing::ScopedTemporaryDirectory { public: std::string WriteCredentialsFile() { auto p = JoinPath(path(), "aws_config"); std::ofstream ofs(p); ofs << "discarded_value = 500\n" "\n" "[default]\n" "aws_access_key_id =AKIAIOSFODNN7EXAMPLE\n" "aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY\n" "aws_session_token= abcdef1234567890 \n" "\n" "[alice]\n" "aws_access_key_id = AKIAIOSFODNN6EXAMPLE\n" "aws_secret_access_key = " "wJalrXUtnFEMI/K7MDENG/bPxRfiCZEXAMPLEKEY\n" "\n"; ofs.close(); return p; } }; class FileCredentialProviderTest : public ::testing::Test { protected: void SetUp() override { UnsetEnv("AWS_SHARED_CREDENTIALS_FILE"); UnsetEnv("AWS_PROFILE"); } }; TEST_F(FileCredentialProviderTest, ProviderAwsCredentialsFromFileDefault) { TestData test_data; std::string credentials_filename = test_data.WriteCredentialsFile(); SetEnv("AWS_SHARED_CREDENTIALS_FILE", credentials_filename.c_str()); auto provider = FileCredentialProvider("", ""); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto credentials, provider.GetCredentials()); ASSERT_EQ(provider.GetFileName(), credentials_filename); ASSERT_EQ(provider.GetProfile(), "default"); ASSERT_EQ(credentials.access_key, "AKIAIOSFODNN7EXAMPLE"); ASSERT_EQ(credentials.secret_key, "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"); ASSERT_EQ(credentials.session_token, "abcdef1234567890"); ASSERT_EQ(credentials.expires_at, absl::InfiniteFuture()); } TEST_F(FileCredentialProviderTest, ProviderAwsCredentialsFromFileProfileOverride) { TestData test_data; auto credentials_filename = test_data.WriteCredentialsFile(); SetEnv("AWS_SHARED_CREDENTIALS_FILE", credentials_filename.c_str()); auto provider = FileCredentialProvider("", "alice"); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto credentials, provider.GetCredentials()); ASSERT_EQ(provider.GetFileName(), credentials_filename); ASSERT_EQ(provider.GetProfile(), "alice"); ASSERT_EQ(credentials.access_key, "AKIAIOSFODNN6EXAMPLE"); ASSERT_EQ(credentials.secret_key, "wJalrXUtnFEMI/K7MDENG/bPxRfiCZEXAMPLEKEY"); ASSERT_EQ(credentials.session_token, ""); ASSERT_EQ(credentials.expires_at, absl::InfiniteFuture()); } TEST_F(FileCredentialProviderTest, ProviderAwsCredentialsFromFileProfileEnv) { TestData test_data; auto credentials_filename = test_data.WriteCredentialsFile(); SetEnv("AWS_SHARED_CREDENTIALS_FILE", credentials_filename.c_str()); SetEnv("AWS_PROFILE", "alice"); auto provider = FileCredentialProvider("", ""); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto credentials, provider.GetCredentials()); ASSERT_EQ(provider.GetFileName(), credentials_filename); ASSERT_EQ(provider.GetProfile(), "alice"); ASSERT_EQ(credentials.access_key, "AKIAIOSFODNN6EXAMPLE"); ASSERT_EQ(credentials.secret_key, "wJalrXUtnFEMI/K7MDENG/bPxRfiCZEXAMPLEKEY"); ASSERT_EQ(credentials.session_token, ""); ASSERT_EQ(credentials.expires_at, absl::InfiniteFuture()); } TEST_F(FileCredentialProviderTest, ProviderAwsCredentialsFromFileInvalidProfileEnv) { TestData test_data; auto credentials_filename = test_data.WriteCredentialsFile(); SetEnv("AWS_SHARED_CREDENTIALS_FILE", credentials_filename.c_str()); SetEnv("AWS_PROFILE", "bob"); auto provider = FileCredentialProvider("", ""); ASSERT_FALSE(provider.GetCredentials().ok()); ASSERT_EQ(provider.GetFileName(), credentials_filename); ASSERT_EQ(provider.GetProfile(), "bob"); } TEST_F(FileCredentialProviderTest, ProviderAwsCredentialsFromFileOverride) { TestData test_data; auto credentials_filename = test_data.WriteCredentialsFile(); auto provider = std::make_unique<FileCredentialProvider>(credentials_filename, ""); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto credentials, provider->GetCredentials()); ASSERT_EQ(provider->GetFileName(), credentials_filename); ASSERT_EQ(provider->GetProfile(), "default"); ASSERT_EQ(credentials.access_key, "AKIAIOSFODNN7EXAMPLE"); ASSERT_EQ(credentials.secret_key, "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"); ASSERT_EQ(credentials.session_token, "abcdef1234567890"); ASSERT_EQ(credentials.expires_at, absl::InfiniteFuture()); provider = std::make_unique<FileCredentialProvider>(credentials_filename, "alice"); TENSORSTORE_ASSERT_OK_AND_ASSIGN(credentials, provider->GetCredentials()); ASSERT_EQ(provider->GetFileName(), credentials_filename); ASSERT_EQ(provider->GetProfile(), "alice"); ASSERT_EQ(credentials.access_key, "AKIAIOSFODNN6EXAMPLE"); ASSERT_EQ(credentials.secret_key, "wJalrXUtnFEMI/K7MDENG/bPxRfiCZEXAMPLEKEY"); ASSERT_EQ(credentials.session_token, ""); ASSERT_EQ(credentials.expires_at, absl::InfiniteFuture()); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/credentials/file_credential_provider.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/credentials/file_credential_provider_test.cc
4f887a6430414cd6088e1743555015b10f116d50
a7970c6c-3eda-4e9f-9136-c7919de2cdd1
cpp
google/tensorstore
ec2_credential_provider
tensorstore/kvstore/s3/credentials/ec2_credential_provider.cc
tensorstore/kvstore/s3/credentials/ec2_credential_provider_test.cc
#include "tensorstore/kvstore/s3/credentials/ec2_credential_provider.h" #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/flags/flag.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/env.h" #include "tensorstore/internal/http/http_request.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/internal/json/json.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/kvstore/s3/credentials/aws_credentials.h" #include "tensorstore/kvstore/s3/s3_metadata.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" #include "tensorstore/internal/json_binding/absl_time.h" #include "tensorstore/internal/json_binding/std_optional.h" ABSL_FLAG(std::optional<std::string>, tensorstore_aws_ec2_metadata_service_endpoint, std::nullopt, "Endpoint to used for http access AWS metadata service. " "Overrides AWS_EC2_METADATA_SERVICE_ENDPOINT."); using ::tensorstore::Result; using ::tensorstore::internal::GetFlagOrEnvValue; using ::tensorstore::internal::ParseJson; using ::tensorstore::internal_http::HttpRequestBuilder; namespace jb = tensorstore::internal_json_binding; namespace tensorstore { namespace internal_kvstore_s3 { namespace { static constexpr char kMetadataTokenHeader[] = "x-aws-ec2-metadata-token:"; static constexpr char kIamCredentialsPath[] = "/latest/meta-data/iam/security-credentials/"; static constexpr absl::Duration kConnectTimeout = absl::Milliseconds(200); static constexpr absl::Duration kDefaultTimeout = absl::Minutes(5); static constexpr char kSuccess[] = "Success"; std::string GetEC2MetadataServiceEndpoint() { return GetFlagOrEnvValue(FLAGS_tensorstore_aws_ec2_metadata_service_endpoint, "AWS_EC2_METADATA_SERVICE_ENDPOINT") .value_or("http: } struct EC2CredentialsResponse { std::string code; std::optional<absl::Time> last_updated; std::optional<std::string> type; std::optional<std::string> access_key_id; std::optional<std::string> secret_access_key; std::optional<std::string> token; std::optional<absl::Time> expiration; }; inline constexpr auto EC2CredentialsResponseBinder = jb::Object( jb::Member("Code", jb::Projection(&EC2CredentialsResponse::code)), jb::OptionalMember("LastUpdated", jb::Projection(&EC2CredentialsResponse::last_updated)), jb::OptionalMember("Type", jb::Projection(&EC2CredentialsResponse::type)), jb::OptionalMember("AccessKeyId", jb::Projection(&EC2CredentialsResponse::access_key_id)), jb::OptionalMember( "SecretAccessKey", jb::Projection(&EC2CredentialsResponse::secret_access_key)), jb::OptionalMember("Token", jb::Projection(&EC2CredentialsResponse::token)), jb::OptionalMember("Expiration", jb::Projection(&EC2CredentialsResponse::expiration))); Result<absl::Cord> GetEC2ApiToken(std::string_view endpoint, internal_http::HttpTransport& transport) { const std::string token_url = tensorstore::StrCat(endpoint, "/latest/api/token"); const std::string request_header = "x-aws-ec2-metadata-token-ttl-seconds: 21600"; const auto request_options = internal_http::IssueRequestOptions() .SetRequestTimeout(absl::InfiniteDuration()) .SetConnectTimeout(kConnectTimeout); for (auto method : {std::string_view("POST"), std::string_view("PUT")}) { auto token_request = HttpRequestBuilder(method, token_url) .AddHeader(request_header) .BuildRequest(); TENSORSTORE_ASSIGN_OR_RETURN( auto token_response, transport.IssueRequest(token_request, request_options).result()); if (method == "POST" && (token_response.status_code == 405 || token_response.status_code == 401)) { continue; } bool is_retryable = false; TENSORSTORE_RETURN_IF_ERROR( AwsHttpResponseToStatus(token_response, is_retryable)); return std::move(token_response.payload); } return absl::NotFoundError( "Failed to obtain EC2 API token from either IMDSv1 or IMDSv2"); } } Result<AwsCredentials> EC2MetadataCredentialProvider::GetCredentials() { if (endpoint_.empty()) { endpoint_ = GetEC2MetadataServiceEndpoint(); } TENSORSTORE_ASSIGN_OR_RETURN(auto api_token, GetEC2ApiToken(endpoint_, *transport_)); auto token_header = tensorstore::StrCat(kMetadataTokenHeader, api_token); auto iam_role_request = HttpRequestBuilder("GET", tensorstore::StrCat(endpoint_, kIamCredentialsPath)) .AddHeader(token_header) .BuildRequest(); TENSORSTORE_ASSIGN_OR_RETURN( auto iam_role_response, transport_->IssueRequest(iam_role_request, {}).result()); auto iam_role_plain_text = iam_role_response.payload.Flatten(); bool is_retryable = false; TENSORSTORE_RETURN_IF_ERROR( AwsHttpResponseToStatus(iam_role_response, is_retryable)); std::vector<std::string_view> iam_roles = absl::StrSplit(iam_role_plain_text, '\n', absl::SkipWhitespace()); if (iam_roles.empty()) { return absl::NotFoundError("Empty EC2 Role list"); } auto iam_credentials_request_url = tensorstore::StrCat(endpoint_, kIamCredentialsPath, iam_roles[0]); auto iam_credentials_request = HttpRequestBuilder("GET", iam_credentials_request_url) .AddHeader(token_header) .BuildRequest(); TENSORSTORE_ASSIGN_OR_RETURN( auto iam_credentials_response, transport_->IssueRequest(iam_credentials_request, {}).result()); auto iam_credentials_plain_text = iam_credentials_response.payload.Flatten(); TENSORSTORE_RETURN_IF_ERROR( AwsHttpResponseToStatus(iam_credentials_response, is_retryable)); auto json_credentials = ParseJson(iam_credentials_plain_text); TENSORSTORE_ASSIGN_OR_RETURN( auto iam_credentials, jb::FromJson<EC2CredentialsResponse>(json_credentials, EC2CredentialsResponseBinder)); if (iam_credentials.code != kSuccess) { return absl::NotFoundError( absl::StrCat("EC2Metadata request to [", iam_credentials_request_url, "] failed with code ", iam_credentials.code)); } auto default_timeout = absl::Now() + kDefaultTimeout; auto expires_at = iam_credentials.expiration.value_or(default_timeout) - absl::Seconds(60); return AwsCredentials{iam_credentials.access_key_id.value_or(""), iam_credentials.secret_access_key.value_or(""), iam_credentials.token.value_or(""), expires_at}; } } }
#include "tensorstore/kvstore/s3/credentials/ec2_credential_provider.h" #include <memory> #include <string> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorstore/internal/env.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/internal/http/mock_http_transport.h" #include "tensorstore/kvstore/s3/credentials/test_utils.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" using ::tensorstore::internal::SetEnv; using ::tensorstore::internal::UnsetEnv; namespace { using ::tensorstore::MatchesStatus; using ::tensorstore::internal_http::DefaultMockHttpTransport; using ::tensorstore::internal_http::HttpResponse; using ::tensorstore::internal_kvstore_s3::DefaultEC2MetadataFlow; using ::tensorstore::internal_kvstore_s3::EC2MetadataCredentialProvider; static constexpr char kDefaultEndpoint[] = "http: static constexpr char kCustomEndpoint[] = "http: static constexpr char kApiToken[] = "1234567890"; static constexpr char kAccessKey[] = "ASIA1234567890"; static constexpr char kSecretKey[] = "1234567890abcdef"; static constexpr char kSessionToken[] = "abcdef123456790"; class EC2MetadataCredentialProviderTest : public ::testing::Test { protected: void SetUp() override { UnsetEnv("AWS_EC2_METADATA_SERVICE_ENDPOINT"); } }; TEST_F(EC2MetadataCredentialProviderTest, CredentialRetrievalFlow) { auto expiry = absl::Now() + absl::Seconds(200); auto mock_transport = std::make_shared<DefaultMockHttpTransport>( DefaultEC2MetadataFlow(kDefaultEndpoint, kApiToken, kAccessKey, kSecretKey, kSessionToken, expiry)); auto provider = std::make_shared<EC2MetadataCredentialProvider>("", mock_transport); TENSORSTORE_CHECK_OK_AND_ASSIGN(auto credentials, provider->GetCredentials()); ASSERT_EQ(provider->GetEndpoint(), kDefaultEndpoint); ASSERT_EQ(credentials.access_key, kAccessKey); ASSERT_EQ(credentials.secret_key, kSecretKey); ASSERT_EQ(credentials.session_token, kSessionToken); ASSERT_EQ(credentials.expires_at, expiry - absl::Seconds(60)); } TEST_F(EC2MetadataCredentialProviderTest, EnvironmentVariableMetadataServer) { SetEnv("AWS_EC2_METADATA_SERVICE_ENDPOINT", kCustomEndpoint); auto expiry = absl::Now() + absl::Seconds(200); auto mock_transport = std::make_shared<DefaultMockHttpTransport>( DefaultEC2MetadataFlow(kCustomEndpoint, kApiToken, kAccessKey, kSecretKey, kSessionToken, expiry)); auto provider = std::make_shared<EC2MetadataCredentialProvider>("", mock_transport); TENSORSTORE_CHECK_OK_AND_ASSIGN(auto credentials, provider->GetCredentials()); ASSERT_EQ(provider->GetEndpoint(), kCustomEndpoint); ASSERT_EQ(credentials.access_key, kAccessKey); ASSERT_EQ(credentials.secret_key, kSecretKey); ASSERT_EQ(credentials.session_token, kSessionToken); ASSERT_EQ(credentials.expires_at, expiry - absl::Seconds(60)); } TEST_F(EC2MetadataCredentialProviderTest, InjectedMetadataServer) { auto expiry = absl::Now() + absl::Seconds(200); auto mock_transport = std::make_shared<DefaultMockHttpTransport>( DefaultEC2MetadataFlow(kCustomEndpoint, kApiToken, kAccessKey, kSecretKey, kSessionToken, expiry)); auto provider = std::make_shared<EC2MetadataCredentialProvider>( kCustomEndpoint, mock_transport); TENSORSTORE_CHECK_OK_AND_ASSIGN(auto credentials, provider->GetCredentials()); ASSERT_EQ(provider->GetEndpoint(), kCustomEndpoint); ASSERT_EQ(credentials.access_key, kAccessKey); ASSERT_EQ(credentials.secret_key, kSecretKey); ASSERT_EQ(credentials.session_token, kSessionToken); ASSERT_EQ(credentials.expires_at, expiry - absl::Seconds(60)); } TEST_F(EC2MetadataCredentialProviderTest, NoIamRolesInSecurityCredentials) { auto url_to_response = absl::flat_hash_map<std::string, HttpResponse>{ {"POST http: HttpResponse{200, absl::Cord{kApiToken}}}, {"GET http: HttpResponse{ 200, absl::Cord{""}, {{"x-aws-ec2-metadata-token", kApiToken}}}}, }; auto mock_transport = std::make_shared<DefaultMockHttpTransport>(std::move(url_to_response)); auto provider = std::make_shared<EC2MetadataCredentialProvider>("", mock_transport); ASSERT_FALSE(provider->GetCredentials()); ASSERT_EQ(provider->GetEndpoint(), kDefaultEndpoint); EXPECT_THAT(provider->GetCredentials().status().ToString(), ::testing::HasSubstr("Empty EC2 Role list")); } TEST_F(EC2MetadataCredentialProviderTest, UnsuccessfulJsonResponse) { auto url_to_response = absl::flat_hash_map<std::string, HttpResponse>{ {"POST http: HttpResponse{200, absl::Cord{kApiToken}}}, {"GET http: HttpResponse{ 200, absl::Cord{"info"}, {{"x-aws-ec2-metadata-token", kApiToken}}}}, {"GET http: HttpResponse{200, absl::Cord{"mock-iam-role"}, {{"x-aws-ec2-metadata-token", kApiToken}}}}, {"GET " "http: "mock-iam-role", HttpResponse{200, absl::Cord(R"({"Code": "EntirelyUnsuccessful"})"), {{"x-aws-ec2-metadata-token", kApiToken}}}}}; auto mock_transport = std::make_shared<DefaultMockHttpTransport>(std::move(url_to_response)); auto provider = std::make_shared<EC2MetadataCredentialProvider>("", mock_transport); auto credentials = provider->GetCredentials(); EXPECT_THAT(credentials.status(), MatchesStatus(absl::StatusCode::kNotFound)); EXPECT_THAT(credentials.status().ToString(), ::testing::AllOf(::testing::HasSubstr("EC2Metadata request"), ::testing::HasSubstr("EntirelyUnsuccessful"))); } TEST_F(EC2MetadataCredentialProviderTest, IMDSv2AfterFailure) { auto url_to_response = absl::flat_hash_map<std::string, HttpResponse>{ {"POST http: HttpResponse{405, absl::Cord()}}, {"PUT http: HttpResponse{401, absl::Cord{}}}, }; auto mock_transport = std::make_shared<DefaultMockHttpTransport>(std::move(url_to_response)); auto provider = std::make_shared<EC2MetadataCredentialProvider>("", mock_transport); auto credentials = provider->GetCredentials(); EXPECT_THAT(credentials.status(), MatchesStatus(absl::StatusCode::kPermissionDenied)); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/credentials/ec2_credential_provider.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/s3/credentials/ec2_credential_provider_test.cc
4f887a6430414cd6088e1743555015b10f116d50
07d7b812-5975-4ca6-ad06-b484fe868faf
cpp
google/tensorstore
gcs_key_value_store
tensorstore/kvstore/gcs_http/gcs_key_value_store.cc
tensorstore/kvstore/gcs_http/gcs_key_value_store_test.cc
#include <stddef.h> #include <stdint.h> #include <atomic> #include <cassert> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/base/thread_annotations.h" #include "absl/flags/flag.h" #include "absl/log/absl_log.h" #include "absl/random/random.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/context.h" #include "tensorstore/internal/concurrency_resource.h" #include "tensorstore/internal/data_copy_concurrency_resource.h" #include "tensorstore/internal/env.h" #include "tensorstore/internal/http/curl_transport.h" #include "tensorstore/internal/http/http_request.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json/json.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/internal/metrics/counter.h" #include "tensorstore/internal/metrics/histogram.h" #include "tensorstore/internal/oauth2/auth_provider.h" #include "tensorstore/internal/oauth2/google_auth_provider.h" #include "tensorstore/internal/path.h" #include "tensorstore/internal/rate_limiter/rate_limiter.h" #include "tensorstore/internal/retries_context_resource.h" #include "tensorstore/internal/source_location.h" #include "tensorstore/internal/thread/schedule_at.h" #include "tensorstore/internal/uri_utils.h" #include "tensorstore/kvstore/batch_util.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/common_metrics.h" #include "tensorstore/kvstore/driver.h" #include "tensorstore/kvstore/gcs/gcs_resource.h" #include "tensorstore/kvstore/gcs/validate.h" #include "tensorstore/kvstore/gcs_http/gcs_resource.h" #include "tensorstore/kvstore/gcs_http/object_metadata.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/generic_coalescing_batch_util.h" #include "tensorstore/kvstore/http/byte_range_util.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/registry.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/supported_features.h" #include "tensorstore/kvstore/url_registry.h" #include "tensorstore/util/execution/any_receiver.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/fwd.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/internal/cache_key/std_optional.h" #include "tensorstore/internal/json_binding/std_array.h" #include "tensorstore/internal/json_binding/std_optional.h" #include "tensorstore/serialization/fwd.h" #include "tensorstore/serialization/std_optional.h" #include "tensorstore/util/garbage_collection/std_optional.h" ABSL_FLAG(std::optional<std::string>, tensorstore_gcs_http_url, std::nullopt, "Url to used for http access to google cloud storage. " "Overrides TENSORSTORE_GCS_HTTP_URL."); ABSL_FLAG(std::optional<std::string>, tensorstore_gcs_http_version, std::nullopt, "Url to used for http access to google cloud storage. " "Overrides TENSORSTORE_GCS_HTTP_VERSION."); using ::tensorstore::internal::DataCopyConcurrencyResource; using ::tensorstore::internal::GetFlagOrEnvValue; using ::tensorstore::internal::IntrusivePtr; using ::tensorstore::internal::NoRateLimiter; using ::tensorstore::internal::RateLimiter; using ::tensorstore::internal::RateLimiterNode; using ::tensorstore::internal::ScheduleAt; using ::tensorstore::internal_http::HttpRequest; using ::tensorstore::internal_http::HttpRequestBuilder; using ::tensorstore::internal_http::HttpResponse; using ::tensorstore::internal_http::HttpTransport; using ::tensorstore::internal_http::IssueRequestOptions; using ::tensorstore::internal_kvstore_gcs_http::GcsConcurrencyResource; using ::tensorstore::internal_kvstore_gcs_http::GcsRateLimiterResource; using ::tensorstore::internal_kvstore_gcs_http::ObjectMetadata; using ::tensorstore::internal_kvstore_gcs_http::ParseObjectMetadata; using ::tensorstore::internal_storage_gcs::GcsHttpResponseToStatus; using ::tensorstore::internal_storage_gcs::GcsRequestRetries; using ::tensorstore::internal_storage_gcs::GcsUserProjectResource; using ::tensorstore::internal_storage_gcs::IsRetriable; using ::tensorstore::internal_storage_gcs::IsValidBucketName; using ::tensorstore::internal_storage_gcs::IsValidObjectName; using ::tensorstore::internal_storage_gcs::IsValidStorageGeneration; using ::tensorstore::kvstore::Key; using ::tensorstore::kvstore::ListEntry; using ::tensorstore::kvstore::ListOptions; using ::tensorstore::kvstore::ListReceiver; using ::tensorstore::kvstore::SupportedFeatures; namespace { static constexpr char kUriScheme[] = "gs"; } namespace tensorstore { namespace { namespace jb = tensorstore::internal_json_binding; struct GcsMetrics : public internal_kvstore::CommonMetrics { internal_metrics::Counter<int64_t>& retries; }; auto gcs_metrics = []() -> GcsMetrics { return { TENSORSTORE_KVSTORE_COMMON_METRICS(gcs), TENSORSTORE_KVSTORE_COUNTER_IMPL( gcs, retries, "count of all retried requests (read/write/delete)")}; }(); ABSL_CONST_INIT internal_log::VerboseFlag gcs_http_logging("gcs_http"); std::string GetGcsBaseUrl() { return GetFlagOrEnvValue(FLAGS_tensorstore_gcs_http_url, "TENSORSTORE_GCS_HTTP_URL") .value_or("https: } IssueRequestOptions::HttpVersion GetHttpVersion() { using HttpVersion = IssueRequestOptions::HttpVersion; static auto http_version = []() -> HttpVersion { auto version = GetFlagOrEnvValue(FLAGS_tensorstore_gcs_http_version, "TENSORSTORE_GCS_HTTP_VERSION"); if (!version) { ABSL_LOG_IF(INFO, gcs_http_logging) << "--tensorstore_gcs_http_version unset"; return HttpVersion::kDefault; } ABSL_LOG_IF(INFO, gcs_http_logging) << "--tensorstore_gcs_http_version=" << *version; if (*version == "1" || *version == "1.1") { return HttpVersion::kHttp1; } if (*version == "2" || *version == "2.0") { return HttpVersion::kHttp2PriorKnowledge; } return HttpVersion::kHttp2TLS; }(); return http_version; } bool AddGenerationParam(std::string* url, const bool has_query, std::string_view param_name, const StorageGeneration& gen) { if (StorageGeneration::IsUnknown(gen)) { return false; } else { absl::StrAppend(url, (has_query ? "&" : "?"), param_name, "=", StorageGeneration::ToUint64(gen)); return true; } } bool AddUserProjectParam(std::string* url, const bool has_query, std::string_view encoded_user_project) { if (!encoded_user_project.empty()) { absl::StrAppend(url, (has_query ? "&" : "?"), "userProject=", encoded_user_project); return true; } return false; } std::string BucketResourceRoot(std::string_view bucket) { const char kVersion[] = "v1"; return absl::StrCat(GetGcsBaseUrl(), "/storage/", kVersion, "/b/", bucket); } std::string BucketUploadRoot(std::string_view bucket) { const char kVersion[] = "v1"; return absl::StrCat(GetGcsBaseUrl(), "/upload/storage/", kVersion, "/b/", bucket); } struct GcsKeyValueStoreSpecData { std::string bucket; Context::Resource<GcsConcurrencyResource> request_concurrency; std::optional<Context::Resource<GcsRateLimiterResource>> rate_limiter; Context::Resource<GcsUserProjectResource> user_project; Context::Resource<GcsRequestRetries> retries; Context::Resource<DataCopyConcurrencyResource> data_copy_concurrency; constexpr static auto ApplyMembers = [](auto& x, auto f) { return f(x.bucket, x.request_concurrency, x.rate_limiter, x.user_project, x.retries, x.data_copy_concurrency); }; constexpr static auto default_json_binder = jb::Object( jb::Member("bucket", jb::Projection<&GcsKeyValueStoreSpecData::bucket>(jb::Validate( [](const auto& options, const std::string* x) { if (!IsValidBucketName(*x)) { return absl::InvalidArgumentError(absl::StrCat( "Invalid GCS bucket name: ", QuoteString(*x))); } return absl::OkStatus(); }))), jb::Member( GcsConcurrencyResource::id, jb::Projection<&GcsKeyValueStoreSpecData::request_concurrency>()), jb::Member(GcsRateLimiterResource::id, jb::Projection<&GcsKeyValueStoreSpecData::rate_limiter>()), jb::Member(GcsUserProjectResource::id, jb::Projection<&GcsKeyValueStoreSpecData::user_project>()), jb::Member(GcsRequestRetries::id, jb::Projection<&GcsKeyValueStoreSpecData::retries>()), jb::Member(DataCopyConcurrencyResource::id, jb::Projection< &GcsKeyValueStoreSpecData::data_copy_concurrency>()) ); }; std::string GetGcsUrl(std::string_view bucket, std::string_view path) { return absl::StrCat(kUriScheme, ": internal::PercentEncodeUriPath(path)); } class GcsKeyValueStoreSpec : public internal_kvstore::RegisteredDriverSpec<GcsKeyValueStoreSpec, GcsKeyValueStoreSpecData> { public: static constexpr char id[] = "gcs"; absl::Status NormalizeSpec(std::string& path) override { if (!path.empty() && !IsValidObjectName(path)) { return absl::InvalidArgumentError( absl::StrCat("Invalid GCS path: ", QuoteString(path))); } return absl::OkStatus(); } Future<kvstore::DriverPtr> DoOpen() const override; Result<std::string> ToUrl(std::string_view path) const override { return GetGcsUrl(data_.bucket, path); } }; class GcsKeyValueStore : public internal_kvstore::RegisteredDriver<GcsKeyValueStore, GcsKeyValueStoreSpec> { public: const std::string& resource_root() const { return resource_root_; } const std::string& upload_root() const { return upload_root_; } const std::string& encoded_user_project() const { return encoded_user_project_; } internal_kvstore_batch::CoalescingOptions GetBatchReadCoalescingOptions() const { return internal_kvstore_batch::kDefaultRemoteStorageCoalescingOptions; } Future<ReadResult> Read(Key key, ReadOptions options) override; Future<ReadResult> ReadImpl(Key&& key, ReadOptions&& options); Future<TimestampedStorageGeneration> Write(Key key, std::optional<Value> value, WriteOptions options) override; void ListImpl(ListOptions options, ListReceiver receiver) override; Future<const void> DeleteRange(KeyRange range) override; Result<std::optional<std::string>> GetAuthHeader() { absl::MutexLock lock(&auth_provider_mutex_); if (!auth_provider_) { auto result = tensorstore::internal_oauth2::GetSharedGoogleAuthProvider(); if (!result.ok() && absl::IsNotFound(result.status())) { auth_provider_ = nullptr; } else { TENSORSTORE_RETURN_IF_ERROR(result); auth_provider_ = *std::move(result); } } if (!*auth_provider_) return std::nullopt; auto auth_header_result = (*auth_provider_)->GetAuthHeader(); if (!auth_header_result.ok() && absl::IsNotFound(auth_header_result.status())) { return std::nullopt; } return auth_header_result; } const Executor& executor() const { return spec_.data_copy_concurrency->executor; } RateLimiter& read_rate_limiter() { if (spec_.rate_limiter.has_value()) { return *(spec_.rate_limiter.value()->read_limiter); } return no_rate_limiter_; } RateLimiter& write_rate_limiter() { if (spec_.rate_limiter.has_value()) { return *(spec_.rate_limiter.value()->write_limiter); } return no_rate_limiter_; } RateLimiter& admission_queue() { return *spec_.request_concurrency->queue; } absl::Status GetBoundSpecData(SpecData& spec) const { spec = spec_; return absl::OkStatus(); } std::string DescribeKey(std::string_view key) override { return GetGcsUrl(spec_.bucket, key); } SupportedFeatures GetSupportedFeatures( const KeyRange& key_range) const final { return SupportedFeatures::kSingleKeyAtomicReadModifyWrite | SupportedFeatures::kAtomicWriteWithoutOverwrite; } template <typename Task> absl::Status BackoffForAttemptAsync( absl::Status status, int attempt, Task* task, SourceLocation loc = ::tensorstore::SourceLocation::current()) { assert(task != nullptr); auto delay = spec_.retries->BackoffForAttempt(attempt); if (!delay) { return MaybeAnnotateStatus(std::move(status), absl::StrFormat("All %d retry attempts failed", spec_.retries->max_retries), absl::StatusCode::kAborted, loc); } gcs_metrics.retries.Increment(); ScheduleAt(absl::Now() + *delay, WithExecutor(executor(), [task = IntrusivePtr<Task>(task)] { task->Retry(); })); return absl::OkStatus(); } SpecData spec_; std::string resource_root_; std::string upload_root_; std::string encoded_user_project_; NoRateLimiter no_rate_limiter_; std::shared_ptr<HttpTransport> transport_; absl::Mutex auth_provider_mutex_; std::optional<std::shared_ptr<internal_oauth2::AuthProvider>> auth_provider_; }; Future<kvstore::DriverPtr> GcsKeyValueStoreSpec::DoOpen() const { auto driver = internal::MakeIntrusivePtr<GcsKeyValueStore>(); driver->spec_ = data_; driver->resource_root_ = BucketResourceRoot(data_.bucket); driver->upload_root_ = BucketUploadRoot(data_.bucket); driver->transport_ = internal_http::GetDefaultHttpTransport(); if (data_.rate_limiter.has_value()) { ABSL_LOG_IF(INFO, gcs_http_logging) << "Using experimental_gcs_rate_limiter"; } if (const auto& project_id = data_.user_project->project_id) { driver->encoded_user_project_ = internal::PercentEncodeUriComponent(*project_id); } return driver; } void AddUniqueQueryParameterToDisableCaching(std::string& url) { struct RandomState { absl::Mutex mutex; absl::BitGen gen ABSL_GUARDED_BY(mutex); }; static RandomState random_state; uint64_t uuid[2]; absl::MutexLock lock(&random_state.mutex); for (auto& x : uuid) { x = absl::Uniform<uint64_t>(random_state.gen); } absl::StrAppend(&url, "&tensorstore=", absl::Hex(uuid[0], absl::kZeroPad16), absl::Hex(uuid[1], absl::kZeroPad16)); } struct ReadTask : public RateLimiterNode, public internal::AtomicReferenceCount<ReadTask> { IntrusivePtr<GcsKeyValueStore> owner; std::string resource; kvstore::ReadOptions options; Promise<kvstore::ReadResult> promise; int attempt_ = 0; absl::Time start_time_; ReadTask(IntrusivePtr<GcsKeyValueStore> owner, std::string resource, kvstore::ReadOptions options, Promise<kvstore::ReadResult> promise) : owner(std::move(owner)), resource(std::move(resource)), options(std::move(options)), promise(std::move(promise)) {} ~ReadTask() { owner->admission_queue().Finish(this); } static void Start(void* task) { auto* self = reinterpret_cast<ReadTask*>(task); self->owner->read_rate_limiter().Finish(self); self->owner->admission_queue().Admit(self, &ReadTask::Admit); } static void Admit(void* task) { auto* self = reinterpret_cast<ReadTask*>(task); self->owner->executor()( [state = IntrusivePtr<ReadTask>(self, internal::adopt_object_ref)] { state->Retry(); }); } void Retry() { if (!promise.result_needed()) { return; } std::string media_url = absl::StrCat( resource, options.byte_range.size() == 0 ? "?alt=json" : "?alt=media"); AddGenerationParam(&media_url, true, "ifGenerationNotMatch", options.generation_conditions.if_not_equal); AddGenerationParam(&media_url, true, "ifGenerationMatch", options.generation_conditions.if_equal); AddUserProjectParam(&media_url, true, owner->encoded_user_project()); AddUniqueQueryParameterToDisableCaching(media_url); auto maybe_auth_header = owner->GetAuthHeader(); if (!maybe_auth_header.ok()) { promise.SetResult(maybe_auth_header.status()); return; } HttpRequestBuilder request_builder("GET", media_url); if (maybe_auth_header.value().has_value()) { request_builder.AddHeader(*maybe_auth_header.value()); } if (options.byte_range.size() != 0) { request_builder.MaybeAddRangeHeader(options.byte_range); } auto request = request_builder.EnableAcceptEncoding().BuildRequest(); start_time_ = absl::Now(); ABSL_LOG_IF(INFO, gcs_http_logging) << "ReadTask: " << request; auto future = owner->transport_->IssueRequest( request, IssueRequestOptions().SetHttpVersion(GetHttpVersion())); future.ExecuteWhenReady([self = IntrusivePtr<ReadTask>(this)]( ReadyFuture<HttpResponse> response) { self->OnResponse(response.result()); }); } void OnResponse(const Result<HttpResponse>& response) { if (!promise.result_needed()) { return; } ABSL_LOG_IF(INFO, gcs_http_logging.Level(1) && response.ok()) << "ReadTask " << *response; bool is_retryable = IsRetriable(response.status()); absl::Status status = [&]() -> absl::Status { if (!response.ok()) return response.status(); switch (response.value().status_code) { case 412: case 404: case 304: return absl::OkStatus(); } return GcsHttpResponseToStatus(response.value(), is_retryable); }(); if (!status.ok() && is_retryable) { status = owner->BackoffForAttemptAsync(std::move(status), attempt_++, this); if (status.ok()) { return; } } if (!status.ok()) { promise.SetResult(status); } else { promise.SetResult(FinishResponse(response.value())); } } Result<kvstore::ReadResult> FinishResponse(const HttpResponse& httpresponse) { gcs_metrics.bytes_read.IncrementBy(httpresponse.payload.size()); auto latency = absl::Now() - start_time_; gcs_metrics.read_latency_ms.Observe(absl::ToInt64Milliseconds(latency)); switch (httpresponse.status_code) { case 204: case 404: return kvstore::ReadResult::Missing(start_time_); case 412: return kvstore::ReadResult::Unspecified(TimestampedStorageGeneration{ StorageGeneration::Unknown(), start_time_}); case 304: return kvstore::ReadResult::Unspecified(TimestampedStorageGeneration{ options.generation_conditions.if_not_equal, start_time_}); } absl::Cord value; ObjectMetadata metadata; if (options.byte_range.size() != 0) { ByteRange byte_range; int64_t total_size; TENSORSTORE_RETURN_IF_ERROR(internal_http::ValidateResponseByteRange( httpresponse, options.byte_range, value, byte_range, total_size)); SetObjectMetadataFromHeaders(httpresponse.headers, &metadata); } else { absl::Cord cord = httpresponse.payload; TENSORSTORE_ASSIGN_OR_RETURN(metadata, ParseObjectMetadata(cord.Flatten())); } auto generation = StorageGeneration::FromUint64(metadata.generation); return kvstore::ReadResult::Value( std::move(value), TimestampedStorageGeneration{std::move(generation), start_time_}); } }; Future<kvstore::ReadResult> GcsKeyValueStore::Read(Key key, ReadOptions options) { gcs_metrics.read.Increment(); if (!IsValidObjectName(key)) { return absl::InvalidArgumentError("Invalid GCS object name"); } if (!IsValidStorageGeneration(options.generation_conditions.if_equal) || !IsValidStorageGeneration(options.generation_conditions.if_not_equal)) { return absl::InvalidArgumentError("Malformed StorageGeneration"); } return internal_kvstore_batch::HandleBatchRequestByGenericByteRangeCoalescing( *this, std::move(key), std::move(options)); } Future<kvstore::ReadResult> GcsKeyValueStore::ReadImpl(Key&& key, ReadOptions&& options) { gcs_metrics.batch_read.Increment(); auto encoded_object_name = internal::PercentEncodeUriComponent(key); std::string resource = tensorstore::internal::JoinPath(resource_root_, "/o/", encoded_object_name); auto op = PromiseFuturePair<ReadResult>::Make(); auto state = internal::MakeIntrusivePtr<ReadTask>( internal::IntrusivePtr<GcsKeyValueStore>(this), std::move(resource), std::move(options), std::move(op.promise)); intrusive_ptr_increment(state.get()); read_rate_limiter().Admit(state.get(), &ReadTask::Start); return std::move(op.future); } struct WriteTask : public RateLimiterNode, public internal::AtomicReferenceCount<WriteTask> { IntrusivePtr<GcsKeyValueStore> owner; std::string encoded_object_name; absl::Cord value; kvstore::WriteOptions options; Promise<TimestampedStorageGeneration> promise; int attempt_ = 0; absl::Time start_time_; WriteTask(IntrusivePtr<GcsKeyValueStore> owner, std::string encoded_object_name, absl::Cord value, kvstore::WriteOptions options, Promise<TimestampedStorageGeneration> promise) : owner(std::move(owner)), encoded_object_name(std::move(encoded_object_name)), value(std::move(value)), options(std::move(options)), promise(std::move(promise)) {} ~WriteTask() { owner->admission_queue().Finish(this); } static void Start(void* task) { auto* self = reinterpret_cast<WriteTask*>(task); self->owner->write_rate_limiter().Finish(self); self->owner->admission_queue().Admit(self, &WriteTask::Admit); } static void Admit(void* task) { auto* self = reinterpret_cast<WriteTask*>(task); self->owner->executor()( [state = IntrusivePtr<WriteTask>(self, internal::adopt_object_ref)] { state->Retry(); }); } void Retry() { if (!promise.result_needed()) { return; } std::string upload_url = absl::StrCat(owner->upload_root(), "/o", "?uploadType=media", "&name=", encoded_object_name); AddGenerationParam(&upload_url, true, "ifGenerationMatch", options.generation_conditions.if_equal); AddUserProjectParam(&upload_url, true, owner->encoded_user_project()); auto maybe_auth_header = owner->GetAuthHeader(); if (!maybe_auth_header.ok()) { promise.SetResult(maybe_auth_header.status()); return; } HttpRequestBuilder request_builder("POST", upload_url); if (maybe_auth_header.value().has_value()) { request_builder.AddHeader(*maybe_auth_header.value()); } auto request = request_builder.AddHeader("Content-Type: application/octet-stream") .AddHeader(absl::StrCat("Content-Length: ", value.size())) .BuildRequest(); start_time_ = absl::Now(); ABSL_LOG_IF(INFO, gcs_http_logging) << "WriteTask: " << request << " size=" << value.size(); auto future = owner->transport_->IssueRequest( request, IssueRequestOptions(value).SetHttpVersion(GetHttpVersion())); future.ExecuteWhenReady([self = IntrusivePtr<WriteTask>(this)]( ReadyFuture<HttpResponse> response) { self->OnResponse(response.result()); }); } void OnResponse(const Result<HttpResponse>& response) { if (!promise.result_needed()) { return; } ABSL_LOG_IF(INFO, gcs_http_logging.Level(1) && response.ok()) << "WriteTask " << *response; bool is_retryable = IsRetriable(response.status()); absl::Status status = [&]() -> absl::Status { if (!response.ok()) return response.status(); switch (response.value().status_code) { case 304: [[fallthrough]]; case 412: return absl::OkStatus(); case 404: if (!options.generation_conditions.MatchesNoValue()) { return absl::OkStatus(); } break; default: break; } return GcsHttpResponseToStatus(response.value(), is_retryable); }(); if (!status.ok() && is_retryable) { status = owner->BackoffForAttemptAsync(std::move(status), attempt_++, this); if (status.ok()) { return; } } if (!status.ok()) { promise.SetResult(status); } else { promise.SetResult(FinishResponse(response.value())); } } Result<TimestampedStorageGeneration> FinishResponse( const HttpResponse& httpresponse) { TimestampedStorageGeneration r; r.time = start_time_; switch (httpresponse.status_code) { case 304: [[fallthrough]]; case 412: r.generation = StorageGeneration::Unknown(); return r; case 404: if (!StorageGeneration::IsUnknown( options.generation_conditions.if_equal)) { r.generation = StorageGeneration::Unknown(); return r; } } auto latency = absl::Now() - start_time_; gcs_metrics.write_latency_ms.Observe(absl::ToInt64Milliseconds(latency)); gcs_metrics.bytes_written.IncrementBy(value.size()); auto payload = httpresponse.payload; auto parsed_object_metadata = ParseObjectMetadata(payload.Flatten()); TENSORSTORE_RETURN_IF_ERROR(parsed_object_metadata); r.generation = StorageGeneration::FromUint64(parsed_object_metadata->generation); return r; } }; struct DeleteTask : public RateLimiterNode, public internal::AtomicReferenceCount<DeleteTask> { IntrusivePtr<GcsKeyValueStore> owner; std::string resource; kvstore::WriteOptions options; Promise<TimestampedStorageGeneration> promise; int attempt_ = 0; absl::Time start_time_; DeleteTask(IntrusivePtr<GcsKeyValueStore> owner, std::string resource, kvstore::WriteOptions options, Promise<TimestampedStorageGeneration> promise) : owner(std::move(owner)), resource(std::move(resource)), options(std::move(options)), promise(std::move(promise)) {} ~DeleteTask() { owner->admission_queue().Finish(this); } static void Start(void* task) { auto* self = reinterpret_cast<DeleteTask*>(task); self->owner->write_rate_limiter().Finish(self); self->owner->admission_queue().Admit(self, &DeleteTask::Admit); } static void Admit(void* task) { auto* self = reinterpret_cast<DeleteTask*>(task); self->owner->executor()( [state = IntrusivePtr<DeleteTask>(self, internal::adopt_object_ref)] { state->Retry(); }); } void Retry() { if (!promise.result_needed()) { return; } std::string delete_url = resource; bool has_query = AddGenerationParam(&delete_url, false, "ifGenerationMatch", options.generation_conditions.if_equal); AddUserProjectParam(&delete_url, has_query, owner->encoded_user_project()); auto maybe_auth_header = owner->GetAuthHeader(); if (!maybe_auth_header.ok()) { promise.SetResult(maybe_auth_header.status()); return; } HttpRequestBuilder request_builder("DELETE", delete_url); if (maybe_auth_header.value().has_value()) { request_builder.AddHeader(*maybe_auth_header.value()); } auto request = request_builder.BuildRequest(); start_time_ = absl::Now(); ABSL_LOG_IF(INFO, gcs_http_logging) << "DeleteTask: " << request; auto future = owner->transport_->IssueRequest( request, IssueRequestOptions().SetHttpVersion(GetHttpVersion())); future.ExecuteWhenReady([self = IntrusivePtr<DeleteTask>(this)]( ReadyFuture<HttpResponse> response) { self->OnResponse(response.result()); }); } void OnResponse(const Result<HttpResponse>& response) { if (!promise.result_needed()) { return; } ABSL_LOG_IF(INFO, gcs_http_logging.Level(1) && response.ok()) << "DeleteTask " << *response; bool is_retryable = IsRetriable(response.status()); absl::Status status = [&]() -> absl::Status { if (!response.ok()) return response.status(); switch (response.value().status_code) { case 412: [[fallthrough]]; case 404: return absl::OkStatus(); default: break; } return GcsHttpResponseToStatus(response.value(), is_retryable); }(); if (!status.ok() && is_retryable) { status = owner->BackoffForAttemptAsync(std::move(status), attempt_++, this); if (status.ok()) { return; } } if (!status.ok()) { promise.SetResult(status); return; } TimestampedStorageGeneration r; r.time = start_time_; switch (response.value().status_code) { case 412: r.generation = StorageGeneration::Unknown(); break; case 404: if (!options.generation_conditions.MatchesNoValue()) { r.generation = StorageGeneration::Unknown(); break; } [[fallthrough]]; default: r.generation = StorageGeneration::NoValue(); break; } promise.SetResult(std::move(r)); } }; Future<TimestampedStorageGeneration> GcsKeyValueStore::Write( Key key, std::optional<Value> value, WriteOptions options) { gcs_metrics.write.Increment(); if (!IsValidObjectName(key)) { return absl::InvalidArgumentError("Invalid GCS object name"); } if (!IsValidStorageGeneration(options.generation_conditions.if_equal)) { return absl::InvalidArgumentError("Malformed StorageGeneration"); } std::string encoded_object_name = internal::PercentEncodeUriComponent(key); auto op = PromiseFuturePair<TimestampedStorageGeneration>::Make(); if (value) { auto state = internal::MakeIntrusivePtr<WriteTask>( IntrusivePtr<GcsKeyValueStore>(this), std::move(encoded_object_name), *std::move(value), std::move(options), std::move(op.promise)); intrusive_ptr_increment(state.get()); write_rate_limiter().Admit(state.get(), &WriteTask::Start); } else { std::string resource = tensorstore::internal::JoinPath( resource_root_, "/o/", encoded_object_name); auto state = internal::MakeIntrusivePtr<DeleteTask>( IntrusivePtr<GcsKeyValueStore>(this), std::move(resource), std::move(options), std::move(op.promise)); intrusive_ptr_increment(state.get()); write_rate_limiter().Admit(state.get(), &DeleteTask::Start); } return std::move(op.future); } struct GcsListResponsePayload { std::string next_page_token; std::vector<ObjectMetadata> items; }; constexpr static auto GcsListResponsePayloadBinder = jb::Object( jb::Member("nextPageToken", jb::Projection(&GcsListResponsePayload::next_page_token, jb::DefaultInitializedValue())), jb::Member("items", jb::Projection(&GcsListResponsePayload::items, jb::DefaultInitializedValue())), jb::DiscardExtraMembers); struct ListTask : public RateLimiterNode, public internal::AtomicReferenceCount<ListTask> { internal::IntrusivePtr<GcsKeyValueStore> owner_; ListOptions options_; ListReceiver receiver_; std::string resource_; std::string base_list_url_; std::string next_page_token_; int attempt_ = 0; bool has_query_parameters_; std::atomic<bool> cancelled_{false}; ListTask(internal::IntrusivePtr<GcsKeyValueStore>&& owner, ListOptions&& options, ListReceiver&& receiver, std::string&& resource) : owner_(std::move(owner)), options_(std::move(options)), receiver_(std::move(receiver)), resource_(std::move(resource)) { base_list_url_ = resource_; has_query_parameters_ = AddUserProjectParam(&base_list_url_, false, owner_->encoded_user_project()); if (auto& inclusive_min = options_.range.inclusive_min; !inclusive_min.empty()) { absl::StrAppend( &base_list_url_, (has_query_parameters_ ? "&" : "?"), "startOffset=", internal::PercentEncodeUriComponent(inclusive_min)); has_query_parameters_ = true; } if (auto& exclusive_max = options_.range.exclusive_max; !exclusive_max.empty()) { absl::StrAppend( &base_list_url_, (has_query_parameters_ ? "&" : "?"), "endOffset=", internal::PercentEncodeUriComponent(exclusive_max)); has_query_parameters_ = true; } } ~ListTask() { owner_->admission_queue().Finish(this); } inline bool is_cancelled() { return cancelled_.load(std::memory_order_relaxed); } static void Start(void* task) { auto* self = reinterpret_cast<ListTask*>(task); self->owner_->read_rate_limiter().Finish(self); self->owner_->admission_queue().Admit(self, &ListTask::Admit); } static void Admit(void* task) { auto* self = reinterpret_cast<ListTask*>(task); execution::set_starting(self->receiver_, [self] { self->cancelled_.store(true, std::memory_order_relaxed); }); self->owner_->executor()( [state = IntrusivePtr<ListTask>(self, internal::adopt_object_ref)] { state->IssueRequest(); }); } void Retry() { IssueRequest(); } void IssueRequest() { if (is_cancelled()) { execution::set_done(receiver_); execution::set_stopping(receiver_); return; } std::string list_url = base_list_url_; if (!next_page_token_.empty()) { absl::StrAppend(&list_url, (has_query_parameters_ ? "&" : "?"), "pageToken=", next_page_token_); } auto auth_header = owner_->GetAuthHeader(); if (!auth_header.ok()) { execution::set_error(receiver_, std::move(auth_header).status()); execution::set_stopping(receiver_); return; } HttpRequestBuilder request_builder("GET", list_url); if (auth_header->has_value()) { request_builder.AddHeader(auth_header->value()); } auto request = request_builder.BuildRequest(); ABSL_LOG_IF(INFO, gcs_http_logging) << "List: " << request; auto future = owner_->transport_->IssueRequest( request, IssueRequestOptions().SetHttpVersion(GetHttpVersion())); future.ExecuteWhenReady(WithExecutor( owner_->executor(), [self = IntrusivePtr<ListTask>(this)]( ReadyFuture<HttpResponse> response) { self->OnResponse(response.result()); })); } void OnResponse(const Result<HttpResponse>& response) { auto status = OnResponseImpl(response); if (absl::IsCancelled(status)) { execution::set_done(receiver_); execution::set_stopping(receiver_); return; } if (!status.ok()) { execution::set_error(receiver_, std::move(status)); execution::set_stopping(receiver_); return; } } absl::Status OnResponseImpl(const Result<HttpResponse>& response) { if (is_cancelled()) { return absl::CancelledError(); } ABSL_LOG_IF(INFO, gcs_http_logging.Level(1) && response.ok()) << "List " << *response; bool is_retryable = IsRetriable(response.status()); absl::Status status = response.ok() ? GcsHttpResponseToStatus(response.value(), is_retryable) : response.status(); if (!status.ok() && is_retryable) { return owner_->BackoffForAttemptAsync(std::move(status), attempt_++, this); } auto payload = response->payload; auto j = internal::ParseJson(payload.Flatten()); if (j.is_discarded()) { return absl::InternalError(absl::StrCat( "Failed to parse response metadata: ", payload.Flatten())); } TENSORSTORE_ASSIGN_OR_RETURN( auto parsed_payload, jb::FromJson<GcsListResponsePayload>(j, GcsListResponsePayloadBinder)); for (auto& metadata : parsed_payload.items) { if (is_cancelled()) { return absl::CancelledError(); } std::string_view name = metadata.name; if (options_.strip_prefix_length) { name = name.substr(options_.strip_prefix_length); } execution::set_value(receiver_, ListEntry{ std::string(name), ListEntry::checked_size(metadata.size), }); } attempt_ = 0; next_page_token_ = std::move(parsed_payload.next_page_token); if (!next_page_token_.empty()) { IssueRequest(); } else { execution::set_done(receiver_); execution::set_stopping(receiver_); } return absl::OkStatus(); } }; void GcsKeyValueStore::ListImpl(ListOptions options, ListReceiver receiver) { gcs_metrics.list.Increment(); if (options.range.empty()) { execution::set_starting(receiver, [] {}); execution::set_done(receiver); execution::set_stopping(receiver); return; } auto state = internal::MakeIntrusivePtr<ListTask>( IntrusivePtr<GcsKeyValueStore>(this), std::move(options), std::move(receiver), tensorstore::internal::JoinPath(resource_root_, "/o")); intrusive_ptr_increment(state.get()); read_rate_limiter().Admit(state.get(), &ListTask::Start); } struct DeleteRangeListReceiver { IntrusivePtr<GcsKeyValueStore> owner_; Promise<void> promise_; FutureCallbackRegistration cancel_registration_; void set_starting(AnyCancelReceiver cancel) { cancel_registration_ = promise_.ExecuteWhenNotNeeded(std::move(cancel)); } void set_value(ListEntry entry) { assert(!entry.key.empty()); if (!entry.key.empty()) { LinkError(promise_, owner_->Delete(std::move(entry.key))); } } void set_error(absl::Status error) { SetDeferredResult(promise_, std::move(error)); promise_ = Promise<void>(); } void set_done() { promise_ = Promise<void>(); } void set_stopping() { cancel_registration_.Unregister(); } }; Future<const void> GcsKeyValueStore::DeleteRange(KeyRange range) { gcs_metrics.delete_range.Increment(); if (range.empty()) return absl::OkStatus(); auto op = PromiseFuturePair<void>::Make(tensorstore::MakeResult()); ListOptions list_options; list_options.range = std::move(range); ListImpl(list_options, DeleteRangeListReceiver{ internal::IntrusivePtr<GcsKeyValueStore>(this), std::move(op.promise)}); return std::move(op.future); } Result<kvstore::Spec> ParseGcsUrl(std::string_view url) { auto parsed = internal::ParseGenericUri(url); assert(parsed.scheme == kUriScheme); if (!parsed.query.empty()) { return absl::InvalidArgumentError("Query string not supported"); } if (!parsed.fragment.empty()) { return absl::InvalidArgumentError("Fragment identifier not supported"); } if (!IsValidBucketName(parsed.authority)) { return absl::InvalidArgumentError(absl::StrCat( "Invalid GCS bucket name: ", QuoteString(parsed.authority))); } auto decoded_path = parsed.path.empty() ? std::string() : internal::PercentDecode(parsed.path.substr(1)); auto driver_spec = internal::MakeIntrusivePtr<GcsKeyValueStoreSpec>(); driver_spec->data_.bucket = std::string(parsed.authority); driver_spec->data_.request_concurrency = Context::Resource<GcsConcurrencyResource>::DefaultSpec(); driver_spec->data_.user_project = Context::Resource<GcsUserProjectResource>::DefaultSpec(); driver_spec->data_.retries = Context::Resource<GcsRequestRetries>::DefaultSpec(); driver_spec->data_.data_copy_concurrency = Context::Resource<DataCopyConcurrencyResource>::DefaultSpec(); return {std::in_place, std::move(driver_spec), std::move(decoded_path)}; } } } TENSORSTORE_DECLARE_GARBAGE_COLLECTION_NOT_REQUIRED( tensorstore::GcsKeyValueStore) namespace { const tensorstore::internal_kvstore::DriverRegistration< tensorstore::GcsKeyValueStoreSpec> registration; const tensorstore::internal_kvstore::UrlSchemeRegistration url_scheme_registration{kUriScheme, tensorstore::ParseGcsUrl}; }
#include <stddef.h> #include <algorithm> #include <atomic> #include <memory> #include <string> #include <string_view> #include <tuple> #include <type_traits> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/match.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/context.h" #include "tensorstore/internal/http/curl_transport.h" #include "tensorstore/internal/http/http_request.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/internal/http/mock_http_transport.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/internal/oauth2/google_auth_provider.h" #include "tensorstore/internal/oauth2/google_auth_test_utils.h" #include "tensorstore/internal/thread/schedule_at.h" #include "tensorstore/internal/uri_utils.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/kvstore/batch_util.h" #include "tensorstore/kvstore/gcs_http/gcs_mock.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/test_matchers.h" #include "tensorstore/kvstore/test_util.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/execution/sender_testutil.h" #include "tensorstore/util/future.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { namespace kvstore = ::tensorstore::kvstore; using ::tensorstore::CompletionNotifyingReceiver; using ::tensorstore::Context; using ::tensorstore::Future; using ::tensorstore::GCSMockStorageBucket; using ::tensorstore::KeyRange; using ::tensorstore::MatchesJson; using ::tensorstore::MatchesStatus; using ::tensorstore::Result; using ::tensorstore::StorageGeneration; using ::tensorstore::internal::MatchesListEntry; using ::tensorstore::internal::ScheduleAt; using ::tensorstore::internal_http::ApplyResponseToHandler; using ::tensorstore::internal_http::HttpRequest; using ::tensorstore::internal_http::HttpResponse; using ::tensorstore::internal_http::HttpResponseHandler; using ::tensorstore::internal_http::HttpTransport; using ::tensorstore::internal_http::IssueRequestOptions; using ::tensorstore::internal_http::SetDefaultHttpTransport; using ::tensorstore::internal_oauth2::GoogleAuthTestScope; static constexpr char kDriver[] = "gcs"; class MetadataMockHelper { public: tensorstore::Result<HttpResponse> GetResponse(const HttpRequest& request) { auto parsed = tensorstore::internal::ParseGenericUri(request.url); if (!absl::StartsWith(parsed.authority_and_path, "metadata.google.internal/")) { return absl::UnimplementedError("Mock cannot satisfy the request."); } constexpr char kOAuthPath[] = "metadata.google.internal/computeMetadata/v1/" "instance/service-accounts/user@nowhere.com/token"; if (absl::StartsWith(parsed.authority_and_path, kOAuthPath)) { return HttpResponse{ 200, absl::Cord( R"({ "token_type" : "refresh", "access_token": "abc", "expires_in": 3600 })")}; } constexpr char kServiceAccountPath[] = "metadata.google.internal/computeMetadata/v1/" "instance/service-accounts/default/"; if (absl::StartsWith(parsed.authority_and_path, kServiceAccountPath)) { return HttpResponse{ 200, absl::Cord( R"({ "email": "user@nowhere.com", "scopes": [ "test" ] })")}; } return HttpResponse{200, absl::Cord()}; } GoogleAuthTestScope google_auth_test_scope; }; class MyMockTransport : public HttpTransport { public: void IssueRequestWithHandler(const HttpRequest& request, IssueRequestOptions options, HttpResponseHandler* response_handler) override { ApplyResponseToHandler( [&]() -> Result<HttpResponse> { auto result = metadata_mock_.GetResponse(request); if (result.ok()) return result; for (auto* bucket : buckets_) { result = bucket->IssueRequest(request, options.payload); if (result.ok()) break; } return result; }(), response_handler); } MetadataMockHelper metadata_mock_; std::vector<GCSMockStorageBucket*> buckets_; }; struct DefaultHttpTransportSetter { DefaultHttpTransportSetter(std::shared_ptr<HttpTransport> transport) { SetDefaultHttpTransport(transport); tensorstore::internal_oauth2::ResetSharedGoogleAuthProvider(); } ~DefaultHttpTransportSetter() { tensorstore::internal_oauth2::ResetSharedGoogleAuthProvider(); SetDefaultHttpTransport(nullptr); } }; Context DefaultTestContext() { return Context{Context::Spec::FromJson({{"gcs_request_retries", {{"max_retries", 4}, {"initial_delay", "1ms"}, {"max_delay", "5ms"}}}}) .value()}; } TEST(GcsKeyValueStoreTest, BadBucketNames) { auto context = DefaultTestContext(); for (auto bucket : {"a", "_abc", "abc_", "ABC", "a..b", "a.-.b", "a." "0123456789123456789012345678912345678901234567891234567890" "1234567891234567890123456789123456789012345678912345678901" "23456789123456789.b"}) { EXPECT_FALSE( kvstore::Open({{"driver", kDriver}, {"bucket", bucket}}, context) .result()) << "bucket: " << bucket; } for (auto bucket : {"abc", "abc.1-2_3.abc"}) { EXPECT_TRUE( kvstore::Open({{"driver", kDriver}, {"bucket", bucket}}, context) .result()) << "bucket: " << bucket; } } TEST(GcsKeyValueStoreTest, BadObjectNames) { auto mock_transport = std::make_shared<MyMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); mock_transport->buckets_.push_back(&bucket); auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", kDriver}, {"bucket", "my-bucket"}}, context) .result()); EXPECT_THAT(kvstore::Read(store, ".").result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(kvstore::Read(store, "..").result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(kvstore::Read(store, ".well-known/acme-challenge").result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(kvstore::Read(store, "foo\nbar").result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(kvstore::Read(store, "foo\rbar").result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); { kvstore::ReadOptions options; options.generation_conditions.if_not_equal = StorageGeneration::FromString("abc123"); EXPECT_THAT(kvstore::Read(store, "abc", options).result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } } TEST(GcsKeyValueStoreTest, Basic) { auto mock_transport = std::make_shared<MyMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); mock_transport->buckets_.push_back(&bucket); auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", kDriver}, {"bucket", "my-bucket"}}, context) .result()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto spec, store.spec()); EXPECT_THAT(spec.ToJson(tensorstore::IncludeDefaults{false}), ::testing::Optional( MatchesJson({{"driver", kDriver}, {"bucket", "my-bucket"}}))); tensorstore::internal::TestKeyValueReadWriteOps(store); } TEST(GcsKeyValueStoreTest, Retry) { for (int max_retries : {2, 3, 4}) { for (bool fail : {false, true}) { ABSL_LOG(INFO) << max_retries << (fail ? " fail" : " success"); auto mock_transport = std::make_shared<MyMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); mock_transport->buckets_.push_back(&bucket); auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", kDriver}, {"bucket", "my-bucket"}, {"context", { {"gcs_request_retries", {{"max_retries", max_retries}, {"initial_delay", "1ms"}, {"max_delay", "10ms"}}}, }}}, context) .result()); if (fail) { bucket.TriggerErrors(max_retries + 1); EXPECT_THAT(kvstore::Read(store, "x").result(), MatchesStatus(absl::StatusCode::kAborted)); } else { bucket.TriggerErrors(max_retries - 2); TENSORSTORE_EXPECT_OK(kvstore::Read(store, "x").result()); } } } } TEST(GcsKeyValueStoreTest, List) { auto mock_transport = std::make_shared<MyMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); mock_transport->buckets_.push_back(&bucket); auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", kDriver}, {"bucket", "my-bucket"}}, context) .result()); { absl::Notification notification; std::vector<std::string> log; tensorstore::execution::submit( kvstore::List(store, {}), CompletionNotifyingReceiver{&notification, tensorstore::LoggingReceiver{&log}}); notification.WaitForNotification(); EXPECT_THAT(log, ::testing::ElementsAre("set_starting", "set_done", "set_stopping")); } EXPECT_THAT(ListFuture(store, {}).result(), ::testing::Optional(::testing::ElementsAre())); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/b", absl::Cord("xyz"))); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/d", absl::Cord("xyz"))); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/c/x", absl::Cord("xyz"))); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/c/y", absl::Cord("xyz"))); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/c/z/e", absl::Cord("xyz"))); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/c/z/f", absl::Cord("xyz"))); { absl::Notification notification; std::vector<std::string> log; tensorstore::execution::submit( kvstore::List(store, {}), CompletionNotifyingReceiver{&notification, tensorstore::LoggingReceiver{&log}}); notification.WaitForNotification(); EXPECT_THAT( log, ::testing::UnorderedElementsAre( "set_starting", "set_value: a/d", "set_value: a/c/z/f", "set_value: a/c/y", "set_value: a/c/z/e", "set_value: a/c/x", "set_value: a/b", "set_done", "set_stopping")); } EXPECT_THAT(ListFuture(store, {}).result(), ::testing::Optional(::testing::UnorderedElementsAre( MatchesListEntry("a/d"), MatchesListEntry("a/c/z/f"), MatchesListEntry("a/c/y"), MatchesListEntry("a/c/z/e"), MatchesListEntry("a/c/x"), MatchesListEntry("a/b")))); { absl::Notification notification; std::vector<std::string> log; tensorstore::execution::submit( kvstore::List(store, {KeyRange::Prefix("a/c/")}), CompletionNotifyingReceiver{&notification, tensorstore::LoggingReceiver{&log}}); notification.WaitForNotification(); EXPECT_THAT(log, ::testing::UnorderedElementsAre( "set_starting", "set_value: a/c/z/f", "set_value: a/c/y", "set_value: a/c/z/e", "set_value: a/c/x", "set_done", "set_stopping")); } { absl::Notification notification; std::vector<std::string> log; tensorstore::execution::submit( kvstore::List(store, {}), CompletionNotifyingReceiver{ &notification, tensorstore::CancelOnStartingReceiver{{&log}}}); notification.WaitForNotification(); EXPECT_THAT(log, ::testing::ElementsAre("set_starting", "set_done", "set_stopping")); } { absl::Notification notification; std::vector<std::string> log; tensorstore::execution::submit( kvstore::List(store, {}), CompletionNotifyingReceiver{ &notification, tensorstore::CancelAfterNReceiver<2>{{&log}}}); notification.WaitForNotification(); EXPECT_THAT(log, ::testing::Contains("set_starting")); EXPECT_THAT(log, ::testing::Contains("set_done")); EXPECT_THAT(log, ::testing::Contains("set_stopping")); EXPECT_LE(4, log.size()); EXPECT_THAT( log, ::testing::Contains(::testing::AnyOf( "set_value: a/d", "set_value: a/c/z/f", "set_value: a/c/y", "set_value: a/c/z/e", "set_value: a/c/x", "set_value: a/b"))); } EXPECT_THAT(ListFuture(store, {KeyRange::Prefix("a/c/")}).result(), ::testing::Optional(::testing::UnorderedElementsAre( MatchesListEntry("a/c/z/f"), MatchesListEntry("a/c/y"), MatchesListEntry("a/c/z/e"), MatchesListEntry("a/c/x")))); } TEST(GcsKeyValueStoreTest, SpecRoundtrip) { auto mock_transport = std::make_shared<MyMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); mock_transport->buckets_.push_back(&bucket); tensorstore::internal::KeyValueStoreSpecRoundtripOptions options; options.full_spec = {{"driver", kDriver}, {"bucket", "my-bucket"}}; tensorstore::internal::TestKeyValueStoreSpecRoundtrip(options); } TEST(GcsKeyValueStoreTest, InvalidSpec) { auto mock_transport = std::make_shared<MyMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; auto context = DefaultTestContext(); EXPECT_THAT( kvstore::Open( {{"driver", kDriver}, {"bucket", "my-bucket"}, {"extra", "key"}}, context) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(kvstore::Open({{"driver", kDriver}}, context).result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( kvstore::Open({{"driver", kDriver}, {"bucket", 5}}, context).result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( kvstore::Open( {{"driver", kDriver}, {"bucket", "my-bucket"}, {"path", "a\tb"}}, context) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*Invalid GCS path.*")); } TEST(GcsKeyValueStoreTest, RequestorPays) { auto mock_transport = std::make_shared<MyMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket1("my-bucket1"); GCSMockStorageBucket bucket2("my-bucket2", "myproject"); mock_transport->buckets_.push_back(&bucket1); mock_transport->buckets_.push_back(&bucket2); const auto TestWrite = [&](Context context, auto bucket2_status_matcher) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store1, kvstore::Open({{"driver", kDriver}, {"bucket", "my-bucket1"}, {"context", { {"gcs_request_retries", {{"max_retries", 3}, {"initial_delay", "1ms"}, {"max_delay", "10ms"}}}, }}}, context) .result()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store2, kvstore::Open({{"driver", kDriver}, {"bucket", "my-bucket2"}, {"context", { {"gcs_request_retries", {{"max_retries", 3}, {"initial_delay", "1ms"}, {"max_delay", "10ms"}}}, }}}, context) .result()); TENSORSTORE_EXPECT_OK(kvstore::Write(store1, "abc", absl::Cord("xyz"))); EXPECT_THAT(kvstore::Write(store2, "abc", absl::Cord("xyz")).status(), bucket2_status_matcher); }; TestWrite(Context::Default(), MatchesStatus(absl::StatusCode::kInvalidArgument)); TestWrite(Context(Context::Spec::FromJson( {{"gcs_user_project", {{"project_id", "badproject"}}}}) .value()), MatchesStatus(absl::StatusCode::kInvalidArgument)); TestWrite(Context(Context::Spec::FromJson( {{"gcs_user_project", {{"project_id", "myproject"}}}}) .value()), absl::OkStatus()); } TEST(GcsKeyValueStoreTest, DeletePrefix) { auto mock_transport = std::make_shared<MyMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); mock_transport->buckets_.push_back(&bucket); auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", kDriver}, {"bucket", "my-bucket"}}, context) .result()); tensorstore::internal::TestKeyValueStoreDeletePrefix(store); } TEST(GcsKeyValueStoreTest, DeleteRange) { auto mock_transport = std::make_shared<MyMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); bucket.SetErrorRate(0.02); mock_transport->buckets_.push_back(&bucket); auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", kDriver}, {"bucket", "my-bucket"}}, context) .result()); tensorstore::internal::TestKeyValueStoreDeleteRange(store); } TEST(GcsKeyValueStoreTest, DeleteRangeToEnd) { auto mock_transport = std::make_shared<MyMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); mock_transport->buckets_.push_back(&bucket); auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", kDriver}, {"bucket", "my-bucket"}}, context) .result()); tensorstore::internal::TestKeyValueStoreDeleteRangeToEnd(store); } TEST(GcsKeyValueStoreTest, DeleteRangeFromBeginning) { auto mock_transport = std::make_shared<MyMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); mock_transport->buckets_.push_back(&bucket); auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", kDriver}, {"bucket", "my-bucket"}}, context) .result()); tensorstore::internal::TestKeyValueStoreDeleteRangeFromBeginning(store); } class MyDeleteRangeCancellationMockTransport : public MyMockTransport { public: void IssueRequestWithHandler(const HttpRequest& request, IssueRequestOptions options, HttpResponseHandler* response_handler) final { if (request.method == "DELETE") { cancellation_notification_.WaitForNotification(); ++total_delete_requests_; } MyMockTransport::IssueRequestWithHandler(request, std::move(options), response_handler); } std::atomic<size_t> total_delete_requests_{0}; absl::Notification cancellation_notification_; }; TEST(GcsKeyValueStoreTest, DeleteRangeCancellation) { auto mock_transport = std::make_shared<MyDeleteRangeCancellationMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); mock_transport->buckets_.push_back(&bucket); auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open( { {"driver", kDriver}, {"bucket", "my-bucket"}, {"context", {{"gcs_request_concurrency", {{"limit", 1}}}}}, }, context) .result()); for (std::string key : {"a/b", "a/c/a", "a/c/b", "a/c/d", "a/d"}) { TENSORSTORE_ASSERT_OK(kvstore::Write(store, key, absl::Cord())); } { [[maybe_unused]] auto future = kvstore::DeleteRange(store, tensorstore::KeyRange{"a/ba", "a/ca"}); } mock_transport->cancellation_notification_.Notify(); absl::SleepFor(absl::Milliseconds(100)); EXPECT_GE(1, mock_transport->total_delete_requests_.load()); EXPECT_THAT(ListFuture(store).result(), ::testing::Optional(::testing::SizeIs(::testing::Ge(4)))); } class MyConcurrentMockTransport : public MyMockTransport { public: size_t reset() { absl::MutexLock lock(&concurrent_request_mutex_); cur_concurrent_requests_ = 0; return std::exchange(max_concurrent_requests_, 0); } void IssueRequestWithHandler(const HttpRequest& request, IssueRequestOptions options, HttpResponseHandler* response_handler) final { auto parsed = tensorstore::internal::ParseGenericUri(request.url); if (absl::StartsWith(parsed.authority_and_path, "metadata.google.internal/")) { MyMockTransport::IssueRequestWithHandler(request, std::move(options), response_handler); return; } { absl::MutexLock lock(&concurrent_request_mutex_); ++cur_concurrent_requests_; max_concurrent_requests_ = std::max(max_concurrent_requests_, cur_concurrent_requests_); } auto op = tensorstore::PromiseFuturePair<HttpResponse>::Make(); ScheduleAt(absl::Now() + absl::Milliseconds(5), [this, r = request, o = std::move(options), response_handler] { absl::MutexLock lock(&concurrent_request_mutex_); --cur_concurrent_requests_; MyMockTransport::IssueRequestWithHandler(r, std::move(o), response_handler); }); } size_t cur_concurrent_requests_ = 0; size_t max_concurrent_requests_ = 0; absl::Mutex concurrent_request_mutex_; }; TEST(GcsKeyValueStoreTest, Concurrency) { auto mock_transport = std::make_shared<MyConcurrentMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); mock_transport->buckets_.push_back(&bucket); const auto TestConcurrency = [&](size_t limit) { auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open( { {"driver", kDriver}, {"bucket", "my-bucket"}, {"context", {{"gcs_request_concurrency", {{"limit", limit}}}}} }, context) .result()); std::vector<tensorstore::Future<kvstore::ReadResult>> futures; for (size_t i = 0; i < 10 * limit; ++i) { futures.push_back(kvstore::Read(store, "abc")); } for (const auto& future : futures) { future.Wait(); } }; TestConcurrency(1); EXPECT_EQ(1, mock_transport->reset()); TestConcurrency(2); EXPECT_EQ(2, mock_transport->reset()); TestConcurrency(3); EXPECT_EQ(3, mock_transport->reset()); } class MyRateLimitedMockTransport : public MyMockTransport { public: std::tuple<absl::Time, absl::Time, size_t> reset() { absl::MutexLock l(&request_timing_mutex_); return {min_time_, max_time_, std::exchange(count_, 0)}; } void IssueRequestWithHandler(const HttpRequest& request, IssueRequestOptions options, HttpResponseHandler* response_handler) final { auto parsed = tensorstore::internal::ParseGenericUri(request.url); if (absl::StartsWith(parsed.authority_and_path, "metadata.google.internal/")) { MyMockTransport::IssueRequestWithHandler(request, std::move(options), response_handler); return; } { absl::MutexLock l(&request_timing_mutex_); max_time_ = absl::Now(); if (count_++ == 0) { min_time_ = max_time_; } } MyMockTransport::IssueRequestWithHandler(request, std::move(options), response_handler); } absl::Time min_time_; absl::Time max_time_; size_t count_; absl::Mutex request_timing_mutex_; }; TEST(GcsKeyValueStoreTest, RateLimited) { auto mock_transport = std::make_shared<MyRateLimitedMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); mock_transport->buckets_.push_back(&bucket); const auto TestRateLimiting = [&](size_t limit) { tensorstore::Context context{ tensorstore::Context::Spec::FromJson( { {"gcs_request_concurrency", {{"limit", 128}}}, {"data_copy_concurrency", {{"limit", 128}}}, {"experimental_gcs_rate_limiter", {{"read_rate", limit}, {"write_rate", limit}, {"doubling_time", "20m"}}}, }) .value()}; TENSORSTORE_CHECK_OK_AND_ASSIGN(auto store, kvstore::Open( { {"driver", kDriver}, {"bucket", "my-bucket"}, }, context) .result()); kvstore::Read(store, "xyz").Wait(); mock_transport->reset(); std::vector<tensorstore::Future<kvstore::ReadResult>> futures; for (size_t i = 0; i < 100; ++i) { futures.push_back(kvstore::Read(store, "abc")); } for (const auto& future : futures) { future.Wait(); } auto t = mock_transport->reset(); return std::get<1>(t) - std::get<0>(t); }; [[maybe_unused]] auto a = TestRateLimiting(10); [[maybe_unused]] auto b = TestRateLimiting(1000); #if 0 EXPECT_THAT(b, testing::Lt(a)); #endif } TEST(GcsKeyValueStoreTest, UrlRoundtrip) { tensorstore::internal::TestKeyValueStoreUrlRoundtrip( {{"driver", kDriver}, {"bucket", "my-bucket"}, {"path", "abc"}}, "gs: tensorstore::internal::TestKeyValueStoreUrlRoundtrip( {{"driver", kDriver}, {"bucket", "my-bucket"}, {"path", "abc def"}}, "gs: } TEST(GcsKeyValueStoreTest, InvalidUri) { EXPECT_THAT(kvstore::Spec::FromUrl("gs: MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(kvstore::Spec::FromUrl("gs: MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(kvstore::Spec::FromUrl("gs: MatchesStatus(absl::StatusCode::kInvalidArgument, ".*: Invalid GCS bucket name: \"bucket:xyz\"")); EXPECT_THAT(kvstore::Spec::FromUrl("gs: MatchesStatus(absl::StatusCode::kInvalidArgument, ".*: Query string not supported")); EXPECT_THAT(kvstore::Spec::FromUrl("gs: MatchesStatus(absl::StatusCode::kInvalidArgument, ".*: Fragment identifier not supported")); EXPECT_THAT(kvstore::Spec::FromUrl("gs: MatchesStatus(absl::StatusCode::kInvalidArgument, ".*Invalid GCS path.*")); } TEST(GcsKeyValueStoreTest, BatchRead) { auto mock_transport = std::make_shared<MyMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); mock_transport->buckets_.push_back(&bucket); auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", kDriver}, {"bucket", "my-bucket"}}, context) .result()); tensorstore::internal::BatchReadGenericCoalescingTestOptions options; options.coalescing_options = tensorstore::internal_kvstore_batch:: kDefaultRemoteStorageCoalescingOptions; options.metric_prefix = "/tensorstore/kvstore/gcs/"; tensorstore::internal::TestBatchReadGenericCoalescing(store, options); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/gcs_http/gcs_key_value_store.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/gcs_http/gcs_key_value_store_test.cc
4f887a6430414cd6088e1743555015b10f116d50
12e48cfe-031f-436c-9713-e2ad67992e60
cpp
google/tensorstore
object_metadata
tensorstore/kvstore/gcs_http/object_metadata.cc
tensorstore/kvstore/gcs_http/object_metadata_test.cc
#include "tensorstore/kvstore/gcs_http/object_metadata.h" #include <stdint.h> #include <optional> #include <string> #include <string_view> #include <utility> #include "absl/container/btree_map.h" #include "absl/status/status.h" #include "absl/strings/numbers.h" #include "absl/strings/str_split.h" #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/http/http_header.h" #include "tensorstore/internal/json/json.h" #include "tensorstore/internal/json_binding/absl_time.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/util/result.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_kvstore_gcs_http { using ::tensorstore::internal_http::TryParseIntHeader; using ::tensorstore::internal_json_binding::DefaultInitializedValue; namespace jb = tensorstore::internal_json_binding; inline constexpr auto ObjectMetadataBinder = jb::Object( jb::Member("name", jb::Projection(&ObjectMetadata::name)), jb::Member("md5Hash", jb::Projection(&ObjectMetadata::md5_hash, DefaultInitializedValue())), jb::Member("crc32c", jb::Projection(&ObjectMetadata::crc32c, DefaultInitializedValue())), jb::Member("size", jb::Projection(&ObjectMetadata::size, jb::DefaultInitializedValue( jb::LooseValueAsBinder))), jb::Member("generation", jb::Projection(&ObjectMetadata::generation, jb::DefaultInitializedValue( jb::LooseValueAsBinder))), jb::Member("metageneration", jb::Projection(&ObjectMetadata::metageneration, jb::DefaultInitializedValue( jb::LooseValueAsBinder))), jb::Member("timeCreated", jb::Projection(&ObjectMetadata::time_created, jb::DefaultValue([](auto* x) { *x = absl::InfinitePast(); }))), jb::Member("updated", jb::Projection(&ObjectMetadata::updated, jb::DefaultValue([](auto* x) { *x = absl::InfinitePast(); }))), jb::Member("timeDeleted", jb::Projection(&ObjectMetadata::time_deleted, jb::DefaultValue([](auto* x) { *x = absl::InfinitePast(); }))), jb::DiscardExtraMembers); TENSORSTORE_DEFINE_JSON_DEFAULT_BINDER(ObjectMetadata, [](auto is_loading, const auto& options, auto* obj, ::nlohmann::json* j) { return ObjectMetadataBinder( is_loading, options, obj, j); }) void SetObjectMetadataFromHeaders( const absl::btree_multimap<std::string, std::string>& headers, ObjectMetadata* result) { result->size = TryParseIntHeader<uint64_t>(headers, "content-length").value_or(0); result->generation = TryParseIntHeader<int64_t>(headers, "x-goog-generation").value_or(0); result->metageneration = TryParseIntHeader<uint64_t>(headers, "x-goog-metageneration").value_or(0); auto it = headers.find("x-goog-hash"); if (it != headers.end()) { for (std::string_view kv : absl::StrSplit(it->second, absl::ByChar(','))) { std::pair<std::string_view, std::string_view> split = absl::StrSplit(kv, absl::MaxSplits('=', 1)); if (split.first == "crc32c") { result->crc32c = std::string(split.second); } else if (split.first == "md5") { result->md5_hash = std::string(split.second); } } } } Result<ObjectMetadata> ParseObjectMetadata(std::string_view source) { auto json = internal::ParseJson(source); if (json.is_discarded()) { return absl::InvalidArgumentError( tensorstore::StrCat("Failed to parse object metadata: ", source)); } return jb::FromJson<ObjectMetadata>(std::move(json)); } } }
#include "tensorstore/kvstore/gcs_http/object_metadata.h" #include <string> #include <gtest/gtest.h> #include "absl/time/time.h" #include "tensorstore/util/result.h" namespace { using ::tensorstore::internal_kvstore_gcs_http::ParseObjectMetadata; const char kObjectMetadata[] = R"""({ "acl": [{ "kind": "storage#objectAccessControl", "id": "acl-id-0", "selfLink": "https: "bucket": "foo-bar", "object": "foo", "generation": 12345, "entity": "user-qux", "role": "OWNER", "email": "qux@example.com", "entityId": "user-qux-id-123", "domain": "example.com", "projectTeam": { "projectNumber": "4567", "team": "owners" }, "etag": "AYX=" }, { "kind": "storage#objectAccessControl", "id": "acl-id-1", "selfLink": "https: "bucket": "foo-bar", "object": "foo", "generation": 12345, "entity": "user-quux", "role": "READER", "email": "qux@example.com", "entityId": "user-quux-id-123", "domain": "example.com", "projectTeam": { "projectNumber": "4567", "team": "viewers" }, "etag": "AYX=" } ], "bucket": "foo-bar", "cacheControl": "no-cache", "componentCount": 7, "contentDisposition": "a-disposition", "contentEncoding": "an-encoding", "contentLanguage": "a-language", "contentType": "application/octet-stream", "crc32c": "deadbeef", "customerEncryption": { "encryptionAlgorithm": "some-algo", "keySha256": "abc123" }, "etag": "XYZ=", "eventBasedHold": true, "generation": "12345", "id": "foo-bar/baz/12345", "kind": "storage#object", "kmsKeyName": "/foo/bar/baz/key", "md5Hash": "deaderBeef=", "mediaLink": "https: "metadata": { "foo": "bar", "baz": "qux" }, "metageneration": "4", "name": "baz", "owner": { "entity": "user-qux", "entityId": "user-qux-id-123" }, "retentionExpirationTime": "2019-01-01T00:00:00Z", "selfLink": "https: "size": 102400, "storageClass": "STANDARD", "temporaryHold": true, "timeCreated": "2018-05-19T19:31:14Z", "timeDeleted": "2018-05-19T19:32:24Z", "timeStorageClassUpdated": "2018-05-19T19:31:34Z", "updated": "2018-05-19T19:31:24Z" })"""; absl::Time AsTime(const std::string& time) { absl::Time result; if (absl::ParseTime(absl::RFC3339_full, time, &result, nullptr)) { return result; } return absl::InfinitePast(); } TEST(ParseObjectMetadata, Basic) { EXPECT_FALSE(ParseObjectMetadata("").ok()); auto result = ParseObjectMetadata(kObjectMetadata); ASSERT_TRUE(result.ok()) << result.status(); EXPECT_EQ("baz", result->name); EXPECT_EQ("deaderBeef=", result->md5_hash); EXPECT_EQ(102400u, result->size); EXPECT_EQ(12345, result->generation); EXPECT_EQ(4, result->metageneration); EXPECT_EQ(AsTime("2018-05-19T12:31:14-07:00"), result->time_created); EXPECT_EQ(AsTime("2018-05-19T12:31:24-07:00"), result->updated); EXPECT_EQ(AsTime("2018-05-19T12:32:24-07:00"), result->time_deleted); } const char kObjectMetadata2[] = R"""({ "name": "fafb_v14/fafb_v14_clahe/128_128_160/0-64_1408-1472_896-960", "kind": "storage#object", "id": "neuroglancer-fafb-data/fafb_v14/fafb_v14_clahe/128_128_160/0-64_1408-1472_896-960/1540426531840872", "bucket": "neuroglancer-fafb-data", "generation": "1540426531840872", "contentType": "image/jpeg", "timeCreated": "2018-10-25T00:15:31.840Z", "updated": "2018-10-25T00:15:31.840Z", "timeStorageClassUpdated": "2018-10-25T00:15:31.840Z", "size": "3404" })"""; TEST(ParseObjectMetadata, Example2) { EXPECT_FALSE(ParseObjectMetadata("").ok()); auto result = ParseObjectMetadata(kObjectMetadata2); ASSERT_TRUE(result.ok()) << result.status(); EXPECT_EQ("fafb_v14/fafb_v14_clahe/128_128_160/0-64_1408-1472_896-960", result->name); EXPECT_EQ(3404u, result->size); EXPECT_EQ(1540426531840872, result->generation); EXPECT_EQ(AsTime("2018-10-24T17:15:31.84-07:00"), result->time_created); EXPECT_EQ(AsTime("2018-10-24T17:15:31.84-07:00"), result->updated); EXPECT_EQ(0, result->metageneration); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/gcs_http/object_metadata.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/gcs_http/object_metadata_test.cc
4f887a6430414cd6088e1743555015b10f116d50
fe75d615-573a-4be2-9609-b996505d1261
cpp
google/tensorstore
memory_key_value_store
tensorstore/kvstore/memory/memory_key_value_store.cc
tensorstore/kvstore/memory/memory_key_value_store_test.cc
#include "tensorstore/kvstore/memory/memory_key_value_store.h" #include <stddef.h> #include <stdint.h> #include <algorithm> #include <atomic> #include <cassert> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/btree_map.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/context.h" #include "tensorstore/context_resource_provider.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/mutex.h" #include "tensorstore/internal/uri_utils.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/driver.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/registry.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/supported_features.h" #include "tensorstore/kvstore/transaction.h" #include "tensorstore/kvstore/url_registry.h" #include "tensorstore/transaction.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/fwd.h" #include "tensorstore/util/result.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace { namespace jb = tensorstore::internal_json_binding; using ::tensorstore::internal_kvstore::DeleteRangeEntry; using ::tensorstore::internal_kvstore::kReadModifyWrite; using ::tensorstore::kvstore::ListEntry; using ::tensorstore::kvstore::ReadResult; using ::tensorstore::kvstore::SupportedFeatures; TimestampedStorageGeneration GenerationNow(StorageGeneration generation) { return TimestampedStorageGeneration{std::move(generation), absl::Now()}; } struct StoredKeyValuePairs : public internal::AtomicReferenceCount<StoredKeyValuePairs> { using Ptr = internal::IntrusivePtr<StoredKeyValuePairs>; struct ValueWithGenerationNumber { absl::Cord value; uint64_t generation_number; StorageGeneration generation() const { return StorageGeneration::FromUint64(generation_number); } }; using Map = absl::btree_map<std::string, ValueWithGenerationNumber>; std::pair<Map::iterator, Map::iterator> Find(const std::string& inclusive_min, const std::string& exclusive_max) ABSL_SHARED_LOCKS_REQUIRED(mutex) { return {values.lower_bound(inclusive_min), exclusive_max.empty() ? values.end() : values.lower_bound(exclusive_max)}; } std::pair<Map::iterator, Map::iterator> Find(const KeyRange& range) ABSL_SHARED_LOCKS_REQUIRED(mutex) { return Find(range.inclusive_min, range.exclusive_max); } absl::Mutex mutex; uint64_t next_generation_number ABSL_GUARDED_BY(mutex) = 0; Map values ABSL_GUARDED_BY(mutex); }; struct MemoryKeyValueStoreResource : public internal::ContextResourceTraits<MemoryKeyValueStoreResource> { constexpr static char id[] = "memory_key_value_store"; struct Spec {}; using Resource = StoredKeyValuePairs::Ptr; static Spec Default() { return {}; } static constexpr auto JsonBinder() { return jb::Object(); } static Result<Resource> Create( Spec, internal::ContextResourceCreationContext context) { return StoredKeyValuePairs::Ptr(new StoredKeyValuePairs); } static Spec GetSpec(const Resource&, const internal::ContextSpecBuilder& builder) { return {}; } }; const internal::ContextResourceRegistration<MemoryKeyValueStoreResource> resource_registration; struct MemoryDriverSpecData { Context::Resource<MemoryKeyValueStoreResource> memory_key_value_store; bool atomic = true; constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.memory_key_value_store, x.atomic); }; constexpr static auto default_json_binder = jb::Object( jb::Member( MemoryKeyValueStoreResource::id, jb::Projection<&MemoryDriverSpecData::memory_key_value_store>()), jb::Member("atomic", jb::Projection<&MemoryDriverSpecData::atomic>( jb::DefaultValue([](auto* y) { *y = true; })))); }; class MemoryDriverSpec : public internal_kvstore::RegisteredDriverSpec<MemoryDriverSpec, MemoryDriverSpecData> { public: static constexpr char id[] = "memory"; Future<kvstore::DriverPtr> DoOpen() const override; Result<std::string> ToUrl(std::string_view path) const override { return tensorstore::StrCat(id, ": } }; class MemoryDriver : public internal_kvstore::RegisteredDriver<MemoryDriver, MemoryDriverSpec> { public: Future<ReadResult> Read(Key key, ReadOptions options) override; Future<TimestampedStorageGeneration> Write(Key key, std::optional<Value> value, WriteOptions options) override; Future<const void> DeleteRange(KeyRange range) override; void ListImpl(ListOptions options, ListReceiver receiver) override; absl::Status ReadModifyWrite(internal::OpenTransactionPtr& transaction, size_t& phase, Key key, ReadModifyWriteSource& source) override; absl::Status TransactionalDeleteRange( const internal::OpenTransactionPtr& transaction, KeyRange range) override; class TransactionNode; StoredKeyValuePairs& data() { return **spec_.memory_key_value_store; } absl::Status GetBoundSpecData(MemoryDriverSpecData& spec) const { spec = spec_; return absl::Status(); } SupportedFeatures GetSupportedFeatures( const KeyRange& key_range) const final { return SupportedFeatures::kSingleKeyAtomicReadModifyWrite | SupportedFeatures::kAtomicWriteWithoutOverwrite; } SpecData spec_; }; Future<kvstore::DriverPtr> MemoryDriverSpec::DoOpen() const { auto driver = internal::MakeIntrusivePtr<MemoryDriver>(); driver->spec_ = data_; return driver; } using BufferedReadModifyWriteEntry = internal_kvstore::AtomicMultiPhaseMutation::BufferedReadModifyWriteEntry; class MemoryDriver::TransactionNode : public internal_kvstore::AtomicTransactionNode { using Base = internal_kvstore::AtomicTransactionNode; public: using Base::Base; void AllEntriesDone( internal_kvstore::SinglePhaseMutation& single_phase_mutation) override ABSL_NO_THREAD_SAFETY_ANALYSIS { if (!single_phase_mutation.remaining_entries_.HasError()) { auto& data = static_cast<MemoryDriver&>(*this->driver()).data(); TimestampedStorageGeneration generation; UniqueWriterLock lock(data.mutex); absl::Time commit_time = absl::Now(); if (!ValidateEntryConditions(data, single_phase_mutation, commit_time)) { lock.unlock(); this->RetryAtomicWriteback(commit_time); return; } ApplyMutation(data, single_phase_mutation, commit_time); lock.unlock(); this->AtomicCommitWritebackSuccess(); } else { internal_kvstore::WritebackError(single_phase_mutation); } MultiPhaseMutation::AllEntriesDone(single_phase_mutation); } static bool ValidateEntryConditions( StoredKeyValuePairs& data, internal_kvstore::SinglePhaseMutation& single_phase_mutation, const absl::Time& commit_time) ABSL_SHARED_LOCKS_REQUIRED(data.mutex) { bool validated = true; for (auto& entry : single_phase_mutation.entries_) { if (!ValidateEntryConditions(data, entry, commit_time)) { validated = false; } } return validated; } static bool ValidateEntryConditions(StoredKeyValuePairs& data, internal_kvstore::MutationEntry& entry, const absl::Time& commit_time) ABSL_SHARED_LOCKS_REQUIRED(data.mutex) { if (entry.entry_type() == kReadModifyWrite) { return ValidateEntryConditions( data, static_cast<BufferedReadModifyWriteEntry&>(entry), commit_time); } auto& dr_entry = static_cast<DeleteRangeEntry&>(entry); bool validated = true; for (auto& deleted_entry : dr_entry.superseded_) { if (!ValidateEntryConditions( data, static_cast<BufferedReadModifyWriteEntry&>(deleted_entry), commit_time)) { validated = false; } } return validated; } static bool ValidateEntryConditions(StoredKeyValuePairs& data, BufferedReadModifyWriteEntry& entry, const absl::Time& commit_time) ABSL_SHARED_LOCKS_REQUIRED(data.mutex) { auto& stamp = entry.stamp(); auto if_equal = StorageGeneration::Clean(stamp.generation); if (StorageGeneration::IsUnknown(if_equal)) { assert(stamp.time == absl::InfiniteFuture()); return true; } auto it = data.values.find(entry.key_); if (it == data.values.end()) { if (StorageGeneration::IsNoValue(if_equal)) { stamp.time = commit_time; return true; } } else if (if_equal == it->second.generation()) { stamp.time = commit_time; return true; } return false; } static void ApplyMutation( StoredKeyValuePairs& data, internal_kvstore::SinglePhaseMutation& single_phase_mutation, const absl::Time& commit_time) ABSL_EXCLUSIVE_LOCKS_REQUIRED(data.mutex) { for (auto& entry : single_phase_mutation.entries_) { if (entry.entry_type() == kReadModifyWrite) { auto& rmw_entry = static_cast<BufferedReadModifyWriteEntry&>(entry); auto& stamp = rmw_entry.stamp(); stamp.time = commit_time; auto value_state = rmw_entry.value_state_; if (!StorageGeneration::IsDirty(stamp.generation)) { } else if (value_state == ReadResult::kMissing) { data.values.erase(rmw_entry.key_); stamp.generation = StorageGeneration::NoValue(); } else { assert(value_state == ReadResult::kValue); auto& v = data.values[rmw_entry.key_]; v.generation_number = data.next_generation_number++; v.value = std::move(rmw_entry.value_); stamp.generation = v.generation(); } } else { auto& dr_entry = static_cast<DeleteRangeEntry&>(entry); auto it_range = data.Find(dr_entry.key_, dr_entry.exclusive_max_); data.values.erase(it_range.first, it_range.second); } } } }; Future<ReadResult> MemoryDriver::Read(Key key, ReadOptions options) { auto& data = this->data(); absl::ReaderMutexLock lock(&data.mutex); auto& values = data.values; auto it = values.find(key); if (it == values.end()) { return ReadResult::Missing(GenerationNow(StorageGeneration::NoValue())); } auto stamp = GenerationNow(it->second.generation()); if (!options.generation_conditions.Matches(it->second.generation())) { return ReadResult::Unspecified(std::move(stamp)); } TENSORSTORE_ASSIGN_OR_RETURN( auto byte_range, options.byte_range.Validate(it->second.value.size())); return ReadResult::Value(internal::GetSubCord(it->second.value, byte_range), std::move(stamp)); } Future<TimestampedStorageGeneration> MemoryDriver::Write( Key key, std::optional<Value> value, WriteOptions options) { using ValueWithGenerationNumber = StoredKeyValuePairs::ValueWithGenerationNumber; auto& data = this->data(); absl::WriterMutexLock lock(&data.mutex); auto& values = data.values; auto it = values.find(key); if (it == values.end()) { if (!options.generation_conditions.MatchesNoValue()) { return GenerationNow(StorageGeneration::Unknown()); } if (!value) { return GenerationNow(StorageGeneration::NoValue()); } it = values .emplace(std::move(key), ValueWithGenerationNumber{*std::move(value), data.next_generation_number++}) .first; return GenerationNow(it->second.generation()); } if (!options.generation_conditions.Matches(it->second.generation())) { return GenerationNow(StorageGeneration::Unknown()); } if (!value) { values.erase(it); return GenerationNow(StorageGeneration::NoValue()); } it->second.generation_number = data.next_generation_number++; it->second.value = *std::move(value); return GenerationNow(it->second.generation()); } Future<const void> MemoryDriver::DeleteRange(KeyRange range) { auto& data = this->data(); absl::WriterMutexLock lock(&data.mutex); if (!range.empty()) { auto it_range = data.Find(range); data.values.erase(it_range.first, it_range.second); } return absl::OkStatus(); } void MemoryDriver::ListImpl(ListOptions options, ListReceiver receiver) { auto& data = this->data(); std::atomic<bool> cancelled{false}; execution::set_starting(receiver, [&cancelled] { cancelled.store(true, std::memory_order_relaxed); }); std::vector<ListEntry> entries; { absl::ReaderMutexLock lock(&data.mutex); auto it_range = data.Find(options.range); for (auto it = it_range.first; it != it_range.second; ++it) { if (cancelled.load(std::memory_order_relaxed)) break; std::string_view key = it->first; entries.push_back(ListEntry{ std::string( key.substr(std::min(options.strip_prefix_length, key.size()))), ListEntry::checked_size(it->second.value.size()), }); } } for (auto& entry : entries) { if (cancelled.load(std::memory_order_relaxed)) break; execution::set_value(receiver, std::move(entry)); } execution::set_done(receiver); execution::set_stopping(receiver); } absl::Status MemoryDriver::ReadModifyWrite( internal::OpenTransactionPtr& transaction, size_t& phase, Key key, ReadModifyWriteSource& source) { if (!spec_.atomic) { return Driver::ReadModifyWrite(transaction, phase, std::move(key), source); } return internal_kvstore::AddReadModifyWrite<TransactionNode>( this, transaction, phase, std::move(key), source); } absl::Status MemoryDriver::TransactionalDeleteRange( const internal::OpenTransactionPtr& transaction, KeyRange range) { if (!spec_.atomic) { return Driver::TransactionalDeleteRange(transaction, std::move(range)); } return internal_kvstore::AddDeleteRange<TransactionNode>(this, transaction, std::move(range)); } Result<kvstore::Spec> ParseMemoryUrl(std::string_view url) { auto parsed = internal::ParseGenericUri(url); assert(parsed.scheme == tensorstore::MemoryDriverSpec::id); if (!parsed.query.empty()) { return absl::InvalidArgumentError("Query string not supported"); } if (!parsed.fragment.empty()) { return absl::InvalidArgumentError("Fragment identifier not supported"); } auto driver_spec = internal::MakeIntrusivePtr<MemoryDriverSpec>(); driver_spec->data_.memory_key_value_store = Context::Resource<MemoryKeyValueStoreResource>::DefaultSpec(); return {std::in_place, std::move(driver_spec), internal::PercentDecode(parsed.authority_and_path)}; } } kvstore::DriverPtr GetMemoryKeyValueStore(bool atomic) { auto ptr = internal::MakeIntrusivePtr<MemoryDriver>(); ptr->spec_.memory_key_value_store = Context::Default().GetResource<MemoryKeyValueStoreResource>().value(); ptr->spec_.atomic = atomic; return ptr; } } TENSORSTORE_DECLARE_GARBAGE_COLLECTION_NOT_REQUIRED(tensorstore::MemoryDriver) namespace { const tensorstore::internal_kvstore::DriverRegistration< tensorstore::MemoryDriverSpec> registration; const tensorstore::internal_kvstore::UrlSchemeRegistration url_scheme_registration{tensorstore::MemoryDriverSpec::id, tensorstore::ParseMemoryUrl}; }
#include "tensorstore/kvstore/memory/memory_key_value_store.h" #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/cord.h" #include <nlohmann/json.hpp> #include "tensorstore/context.h" #include "tensorstore/internal/cache_key/cache_key.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/test_matchers.h" #include "tensorstore/kvstore/test_util.h" #include "tensorstore/serialization/test_util.h" #include "tensorstore/util/future.h" #include "tensorstore/util/status_testutil.h" namespace { namespace kvstore = tensorstore::kvstore; using ::tensorstore::Context; using ::tensorstore::KvStore; using ::tensorstore::MatchesJson; using ::tensorstore::MatchesStatus; using ::tensorstore::internal::MatchesKvsReadResult; using ::tensorstore::internal::MatchesKvsReadResultNotFound; using ::tensorstore::serialization::SerializationRoundTrip; TEST(MemoryKeyValueStoreTest, Basic) { auto store = tensorstore::GetMemoryKeyValueStore(); tensorstore::internal::TestKeyValueReadWriteOps(store); } TEST(MemoryKeyValueStoreTest, DeletePrefix) { auto store = tensorstore::GetMemoryKeyValueStore(); tensorstore::internal::TestKeyValueStoreDeletePrefix(store); } TEST(MemoryKeyValueStoreTest, DeleteRange) { auto store = tensorstore::GetMemoryKeyValueStore(); tensorstore::internal::TestKeyValueStoreDeleteRange(store); } TEST(MemoryKeyValueStoreTest, DeleteRangeToEnd) { auto store = tensorstore::GetMemoryKeyValueStore(); tensorstore::internal::TestKeyValueStoreDeleteRangeToEnd(store); } TEST(MemoryKeyValueStoreTest, DeleteRangeFromBeginning) { auto store = tensorstore::GetMemoryKeyValueStore(); tensorstore::internal::TestKeyValueStoreDeleteRangeFromBeginning(store); } #if 0 TEST(MemoryKeyValueStoreTest, CopyRange) { auto store = tensorstore::GetMemoryKeyValueStore(); tensorstore::internal::TestKeyValueStoreCopyRange(store); } #endif TEST(MemoryKeyValueStoreTest, List) { auto store = tensorstore::GetMemoryKeyValueStore(); tensorstore::internal::TestKeyValueStoreList(store); } TEST(MemoryKeyValueStoreTest, Open) { auto context = Context::Default(); { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", "memory"}}, context).result()); TENSORSTORE_ASSERT_OK(kvstore::Write(store, "key", absl::Cord("value"))); { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store2, kvstore::Open({{"driver", "memory"}}, context).result()); EXPECT_THAT(kvstore::Read(store2, "key").result(), MatchesKvsReadResult(absl::Cord("value"))); } TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto other_context, Context::FromJson({{"memory_key_value_store", ::nlohmann::json::object_t{}}}, context)); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store3, kvstore::Open({{"driver", "memory"}}, other_context).result()); EXPECT_THAT(kvstore::Read(store3, "key").result(), MatchesKvsReadResultNotFound()); } { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", "memory"}}, context).result()); EXPECT_EQ("value", kvstore::Read(store, "key").value().value); } } TEST(MemoryKeyValueStoreTest, ListWithPath) { auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", "memory"}, {"path", "p/"}}, context).result()); tensorstore::internal::TestKeyValueStoreList(store); } TEST(MemoryKeyValueStoreTest, SpecRoundtrip) { tensorstore::internal::KeyValueStoreSpecRoundtripOptions options; options.full_spec = { {"driver", "memory"}, }; options.check_data_after_serialization = false; tensorstore::internal::TestKeyValueStoreSpecRoundtrip(options); } TEST(MemoryKeyValueStoreTest, SpecRoundtripWithContextSpec) { tensorstore::internal::KeyValueStoreSpecRoundtripOptions options; options.spec_request_options.Set(tensorstore::unbind_context).IgnoreError(); options.full_spec = { {"driver", "memory"}, {"memory_key_value_store", "memory_key_value_store#a"}, {"context", { {"memory_key_value_store#a", ::nlohmann::json::object_t()}, }}, }; options.check_data_persists = false; options.check_data_after_serialization = false; tensorstore::internal::TestKeyValueStoreSpecRoundtrip(options); } TEST(MemoryKeyValueStoreTest, InvalidSpec) { auto context = tensorstore::Context::Default(); EXPECT_THAT( kvstore::Open({{"driver", "memory"}, {"extra", "key"}}, context).result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(MemoryKeyValueStoreTest, BoundSpec) { auto context = tensorstore::Context::Default(); ::nlohmann::json json_spec{{"driver", "memory"}}; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto spec, kvstore::Spec::FromJson(json_spec)); TENSORSTORE_ASSERT_OK(spec.BindContext(context)); std::string bound_spec_cache_key; tensorstore::internal::EncodeCacheKey(&bound_spec_cache_key, spec.driver); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto store, kvstore::Open(spec).result()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto new_spec, store.spec(tensorstore::retain_context)); std::string store_cache_key; tensorstore::internal::EncodeCacheKey(&store_cache_key, store.driver); EXPECT_EQ(bound_spec_cache_key, store_cache_key); new_spec.StripContext(); EXPECT_THAT(new_spec.ToJson(tensorstore::IncludeDefaults{false}), ::testing::Optional(json_spec)); { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store2, kvstore::Open(json_spec, context).result()); std::string store2_cache_key; tensorstore::internal::EncodeCacheKey(&store2_cache_key, store2.driver); EXPECT_EQ(store_cache_key, store2_cache_key); } { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store2, kvstore::Open( {{"driver", "memory"}, {"context", {{"memory_key_value_store#a", "memory_key_value_store"}}}, {"memory_key_value_store", "memory_key_value_store#a"}}, context) .result()); std::string store2_cache_key; tensorstore::internal::EncodeCacheKey(&store2_cache_key, store2.driver); EXPECT_EQ(store_cache_key, store2_cache_key); } { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto store3, kvstore::Open(json_spec).result()); std::string store3_cache_key; tensorstore::internal::EncodeCacheKey(&store3_cache_key, store3.driver); EXPECT_NE(store_cache_key, store3_cache_key); } } TEST(MemoryKeyValueStoreTest, OpenCache) { auto context = tensorstore::Context::Default(); ::nlohmann::json json_spec{{"driver", "memory"}}; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto store1, kvstore::Open(json_spec, context).result()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto store2, kvstore::Open(json_spec, context).result()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto store3, kvstore::Open(json_spec).result()); EXPECT_EQ(store1.driver.get(), store2.driver.get()); EXPECT_NE(store1.driver.get(), store3.driver.get()); std::string cache_key1, cache_key3; tensorstore::internal::EncodeCacheKey(&cache_key1, store1.driver); tensorstore::internal::EncodeCacheKey(&cache_key3, store3.driver); EXPECT_NE(cache_key1, cache_key3); } TEST(MemoryKeyValueStoreTest, ContextBinding) { auto context1 = Context::Default(); auto context2 = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto base_spec, kvstore::Spec::FromJson({{"driver", "memory"}})); auto base_spec1 = base_spec; TENSORSTORE_ASSERT_OK(base_spec1.Set(context1)); EXPECT_THAT( base_spec1.ToJson(), ::testing::Optional(MatchesJson( {{"driver", "memory"}, {"context", {{"memory_key_value_store", ::nlohmann::json::object_t()}}}}))); auto base_spec2 = base_spec; TENSORSTORE_ASSERT_OK(base_spec2.Set(context2)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto store1, kvstore::Open(base_spec, context1).result()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto store2, kvstore::Open(base_spec, context2).result()); ASSERT_NE(store1.driver, store2.driver); EXPECT_THAT(kvstore::Open(base_spec1).result(), ::testing::Optional(store1)); EXPECT_THAT(kvstore::Open(base_spec2).result(), ::testing::Optional(store2)); auto base_spec3 = base_spec1; TENSORSTORE_ASSERT_OK(base_spec3.Set(context2)); EXPECT_THAT(kvstore::Open(base_spec3).result(), ::testing::Optional(store1)); TENSORSTORE_ASSERT_OK(base_spec3.Set(tensorstore::strip_context, context2)); EXPECT_THAT(kvstore::Open(base_spec3).result(), ::testing::Optional(store2)); } TEST(MemoryKeyValueStoreTest, SpecSerialization) { ::nlohmann::json json_spec{{"driver", "memory"}, {"path", "abc/"}}; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto spec, kvstore::Spec::FromJson(json_spec)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto spec_roundtripped, SerializationRoundTrip(spec)); EXPECT_THAT(spec_roundtripped.ToJson(), ::testing::Optional(MatchesJson(json_spec))); } TEST(MemoryKeyValueStoreTest, KvStoreSerialization) { ::nlohmann::json json_spec{{"driver", "memory"}, {"path", "abc/"}}; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto store, kvstore::Open(json_spec).result()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto store_roundtripped, SerializationRoundTrip(store)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto spec_roundtripped, store_roundtripped.spec()); EXPECT_THAT(spec_roundtripped.ToJson(), ::testing::Optional(MatchesJson(json_spec))); } TEST(MemoryKeyValueStoreTest, UrlRoundtrip) { tensorstore::internal::TestKeyValueStoreUrlRoundtrip({{"driver", "memory"}}, "memory: tensorstore::internal::TestKeyValueStoreUrlRoundtrip( {{"driver", "memory"}, {"path", "abc/"}}, "memory: tensorstore::internal::TestKeyValueStoreUrlRoundtrip( {{"driver", "memory"}, {"path", "abc def/"}}, "memory: } TEST(MemoryKeyValueStoreTest, InvalidUri) { EXPECT_THAT(kvstore::Spec::FromUrl("memory: MatchesStatus(absl::StatusCode::kInvalidArgument, ".*: Query string not supported")); EXPECT_THAT(kvstore::Spec::FromUrl("memory: MatchesStatus(absl::StatusCode::kInvalidArgument, ".*: Fragment identifier not supported")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/memory/memory_key_value_store.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/memory/memory_key_value_store_test.cc
4f887a6430414cd6088e1743555015b10f116d50
b2be1087-b57b-4417-9ce3-1d4c196ea137
cpp
google/tensorstore
file_key_value_store
tensorstore/kvstore/file/file_key_value_store.cc
tensorstore/kvstore/file/file_key_value_store_test.cc
#include <stddef.h> #include <stdint.h> #include <atomic> #include <cassert> #include <optional> #include <string> #include <string_view> #include <tuple> #include <type_traits> #include <utility> #include "absl/base/attributes.h" #include "absl/functional/function_ref.h" #include "absl/log/absl_check.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorstore/batch.h" #include "tensorstore/context.h" #include "tensorstore/internal/cache_key/cache_key.h" #include "tensorstore/internal/context_binding.h" #include "tensorstore/internal/file_io_concurrency_resource.h" #include "tensorstore/internal/flat_cord_builder.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/internal/metrics/counter.h" #include "tensorstore/internal/metrics/metadata.h" #include "tensorstore/internal/os/error_code.h" #include "tensorstore/internal/os/unique_handle.h" #include "tensorstore/internal/path.h" #include "tensorstore/internal/uri_utils.h" #include "tensorstore/kvstore/batch_util.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/common_metrics.h" #include "tensorstore/kvstore/file/file_resource.h" #include "tensorstore/kvstore/file/util.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/registry.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/supported_features.h" #include "tensorstore/kvstore/url_registry.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/fwd.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/internal/os/file_lister.h" #include "tensorstore/internal/os/file_util.h" using ::tensorstore::internal::OsErrorCode; using ::tensorstore::internal_file_util::IsKeyValid; using ::tensorstore::internal_file_util::LongestDirectoryPrefix; using ::tensorstore::internal_os::FileDescriptor; using ::tensorstore::internal_os::FileInfo; using ::tensorstore::internal_os::kLockSuffix; using ::tensorstore::internal_os::UniqueFileDescriptor; using ::tensorstore::kvstore::ListEntry; using ::tensorstore::kvstore::ListReceiver; using ::tensorstore::kvstore::ReadResult; using ::tensorstore::kvstore::SupportedFeatures; namespace tensorstore { namespace internal_file_kvstore { namespace { namespace jb = tensorstore::internal_json_binding; struct FileMetrics : public internal_kvstore::CommonMetrics { internal_metrics::Counter<int64_t>& open_read; internal_metrics::Counter<int64_t>& lock_contention; }; auto file_metrics = []() -> FileMetrics { return {TENSORSTORE_KVSTORE_COMMON_METRICS(file), TENSORSTORE_KVSTORE_COUNTER_IMPL( file, open_read, "Number of times a file is opened for reading"), TENSORSTORE_KVSTORE_COUNTER_IMPL(file, lock_contention, " kvstore::Write lock contention")}; }(); ABSL_CONST_INIT internal_log::VerboseFlag file_logging("file"); bool IsFileKvstorePathValid(std::string_view path) { if (path.empty() || path == "/") return true; if (path.back() == '/' || path.back() == '\\') { path.remove_suffix(1); } return IsKeyValid(path, kLockSuffix); } struct FileKeyValueStoreSpecData { Context::Resource<internal::FileIoConcurrencyResource> file_io_concurrency; Context::Resource<FileIoSyncResource> file_io_sync; constexpr static auto ApplyMembers = [](auto& x, auto f) { return f(x.file_io_concurrency, x.file_io_sync); }; constexpr static auto default_json_binder = jb::Object( jb::Member( internal::FileIoConcurrencyResource::id, jb::Projection<&FileKeyValueStoreSpecData::file_io_concurrency>()), jb::Member(FileIoSyncResource::id, jb::Projection<&FileKeyValueStoreSpecData::file_io_sync>()) ); }; class FileKeyValueStoreSpec : public internal_kvstore::RegisteredDriverSpec<FileKeyValueStoreSpec, FileKeyValueStoreSpecData> { public: static constexpr char id[] = "file"; absl::Status NormalizeSpec(std::string& path) override { if (!IsFileKvstorePathValid(path)) { return absl::InvalidArgumentError( absl::StrCat("Invalid file path: ", QuoteString(path))); } path = internal::LexicalNormalizePath(path); return absl::OkStatus(); } Future<kvstore::DriverPtr> DoOpen() const override; Result<std::string> ToUrl(std::string_view path) const override { return absl::StrCat(id, ": } }; class FileKeyValueStore : public internal_kvstore::RegisteredDriver<FileKeyValueStore, FileKeyValueStoreSpec> { public: Future<ReadResult> Read(Key key, ReadOptions options) override; Future<TimestampedStorageGeneration> Write(Key key, std::optional<Value> value, WriteOptions options) override; Future<const void> DeleteRange(KeyRange range) override; void ListImpl(ListOptions options, ListReceiver receiver) override; const Executor& executor() { return spec_.file_io_concurrency->executor; } std::string DescribeKey(std::string_view key) override { return absl::StrCat("local file ", QuoteString(key)); } absl::Status GetBoundSpecData(FileKeyValueStoreSpecData& spec) const { spec = spec_; return absl::OkStatus(); } SupportedFeatures GetSupportedFeatures( const KeyRange& key_range) const final { return SupportedFeatures::kSingleKeyAtomicReadModifyWrite | SupportedFeatures::kAtomicWriteWithoutOverwrite; } bool sync() const { return *spec_.file_io_sync; } SpecData spec_; }; absl::Status ValidateKey(std::string_view key) { if (!IsKeyValid(key, kLockSuffix)) { return absl::InvalidArgumentError( absl::StrCat("Invalid key: ", QuoteString(key))); } return absl::OkStatus(); } absl::Status ValidateKeyRange(const KeyRange& range) { auto prefix = LongestDirectoryPrefix(range); if (prefix.empty()) return absl::OkStatus(); return ValidateKey(prefix); } StorageGeneration GetFileGeneration(const FileInfo& info) { return StorageGeneration::FromValues( internal_os::GetDeviceId(info), internal_os::GetFileId(info), absl::ToUnixNanos(internal_os::GetMTime(info))); } Result<UniqueFileDescriptor> OpenParentDirectory(std::string path) { size_t end_pos = path.size(); Result<UniqueFileDescriptor> fd; while (true) { size_t separator_pos = end_pos; while (separator_pos != 0 && !internal_os::IsDirSeparator(path[separator_pos - 1])) { --separator_pos; } --separator_pos; const char* dir_path; if (separator_pos == std::string::npos) { dir_path = "."; } else if (separator_pos == 0) { dir_path = "/"; } else { path[separator_pos] = '\0'; dir_path = path.c_str(); end_pos = separator_pos; } fd = internal_os::OpenDirectoryDescriptor(dir_path); if (!fd.ok()) { if (absl::IsNotFound(fd.status())) { assert(separator_pos != 0 && separator_pos != std::string::npos); end_pos = separator_pos - 1; continue; } return fd.status(); } if (dir_path == path.c_str()) path[separator_pos] = '/'; break; } while (true) { size_t separator_pos = path.find('\0', end_pos); if (separator_pos == std::string::npos) { return fd; } TENSORSTORE_RETURN_IF_ERROR(internal_os::MakeDirectory(path)); fd = internal_os::OpenDirectoryDescriptor(path); TENSORSTORE_RETURN_IF_ERROR(fd.status()); path[separator_pos] = '/'; end_pos = separator_pos + 1; } } Result<UniqueFileDescriptor> OpenValueFile(const std::string& path, StorageGeneration* generation, int64_t* size = nullptr) { auto fd = internal_os::OpenExistingFileForReading(path); if (!fd.ok()) { if (absl::IsNotFound(fd.status())) { *generation = StorageGeneration::NoValue(); return UniqueFileDescriptor{}; } return fd; } FileInfo info; TENSORSTORE_RETURN_IF_ERROR(internal_os::GetFileInfo(fd->get(), &info)); if (!internal_os::IsRegularFile(info)) { return absl::FailedPreconditionError( absl::StrCat("Not a regular file: ", QuoteString(path))); } if (size) *size = internal_os::GetSize(info); *generation = GetFileGeneration(info); return fd; } Result<absl::Cord> ReadFromFileDescriptor(FileDescriptor fd, ByteRange byte_range) { file_metrics.batch_read.Increment(); absl::Time start_time = absl::Now(); internal::FlatCordBuilder buffer(byte_range.size(), false); size_t offset = 0; while (offset < buffer.size()) { TENSORSTORE_ASSIGN_OR_RETURN( auto n, internal_os::ReadFromFile(fd, buffer.data() + offset, buffer.size() - offset, byte_range.inclusive_min + offset)); if (n > 0) { file_metrics.bytes_read.IncrementBy(n); offset += n; buffer.set_inuse(offset); continue; } if (n == 0) { return absl::UnavailableError("Length changed while reading"); } } file_metrics.read_latency_ms.Observe( absl::ToInt64Milliseconds(absl::Now() - start_time)); return std::move(buffer).Build(); } class BatchReadTask; using BatchReadTaskBase = internal_kvstore_batch::BatchReadEntry< FileKeyValueStore, internal_kvstore_batch::ReadRequest<kvstore::ReadGenerationConditions>, std::string >; class BatchReadTask final : public BatchReadTaskBase, public internal::AtomicReferenceCount<BatchReadTask> { private: TimestampedStorageGeneration stamp_; UniqueFileDescriptor fd_; int64_t size_; public: BatchReadTask(BatchEntryKey&& batch_entry_key_) : BatchReadTaskBase(std::move(batch_entry_key_)), internal::AtomicReferenceCount<BatchReadTask>(1) { } void Submit(Batch::View batch) final { if (request_batch.requests.empty()) return; driver().executor()( [self = internal::IntrusivePtr<BatchReadTask>( this, internal::adopt_object_ref)] { self->ProcessBatch(); }); } Result<kvstore::ReadResult> DoByteRangeRead(ByteRange byte_range) { absl::Cord value; TENSORSTORE_ASSIGN_OR_RETURN( value, ReadFromFileDescriptor(fd_.get(), byte_range), tensorstore::MaybeAnnotateStatus(_, "Error reading from open file")); return kvstore::ReadResult::Value(std::move(value), stamp_); } void ProcessBatch() { ABSL_LOG_IF(INFO, file_logging) << "BatchReadTask " << std::get<std::string>(batch_entry_key); stamp_.time = absl::Now(); file_metrics.open_read.Increment(); auto& requests = request_batch.requests; TENSORSTORE_ASSIGN_OR_RETURN( fd_, OpenValueFile(std::get<std::string>(batch_entry_key), &stamp_.generation, &size_), internal_kvstore_batch::SetCommonResult(requests, std::move(_))); if (!fd_.valid()) { internal_kvstore_batch::SetCommonResult( requests, kvstore::ReadResult::Missing(stamp_.time)); return; } internal_kvstore_batch::ValidateGenerationsAndByteRanges(requests, stamp_, size_); if (requests.empty()) return; if (requests.size() == 1) { auto& byte_range_request = std::get<internal_kvstore_batch::ByteRangeReadRequest>(requests[0]); byte_range_request.promise.SetResult( DoByteRangeRead(byte_range_request.byte_range.AsByteRange())); return; } const auto& executor = driver().executor(); internal_kvstore_batch::CoalescingOptions coalescing_options; coalescing_options.max_extra_read_bytes = 255; internal_kvstore_batch::ForEachCoalescedRequest<Request>( requests, coalescing_options, [&](ByteRange coalesced_byte_range, tensorstore::span<Request> coalesced_requests) { auto self = internal::IntrusivePtr<BatchReadTask>(this); executor([self = std::move(self), coalesced_byte_range, coalesced_requests] { self->ProcessCoalescedRead(coalesced_byte_range, coalesced_requests); }); }); } void ProcessCoalescedRead(ByteRange coalesced_byte_range, tensorstore::span<Request> coalesced_requests) { TENSORSTORE_ASSIGN_OR_RETURN(auto read_result, DoByteRangeRead(coalesced_byte_range), internal_kvstore_batch::SetCommonResult( coalesced_requests, std::move(_))); internal_kvstore_batch::ResolveCoalescedRequests( coalesced_byte_range, coalesced_requests, std::move(read_result)); } }; Future<ReadResult> FileKeyValueStore::Read(Key key, ReadOptions options) { file_metrics.read.Increment(); TENSORSTORE_RETURN_IF_ERROR(ValidateKey(key)); auto [promise, future] = PromiseFuturePair<kvstore::ReadResult>::Make(); BatchReadTask::MakeRequest<BatchReadTask>( *this, {std::move(key)}, options.batch, options.staleness_bound, BatchReadTask::Request{{std::move(promise), options.byte_range}, std::move(options.generation_conditions)}); return std::move(future); } Result<StorageGeneration> WriteWithSyncAndRename( FileDescriptor fd, const std::string& fd_path, absl::Cord value, bool sync, const std::string& rename_path) { auto start_write = absl::Now(); while (!value.empty()) { TENSORSTORE_ASSIGN_OR_RETURN( auto n, internal_os::WriteCordToFile(fd, value), MaybeAnnotateStatus( _, absl::StrCat("Failed writing: ", QuoteString(fd_path)))); file_metrics.bytes_written.IncrementBy(n); if (n == value.size()) break; value.RemovePrefix(n); } if (sync) { TENSORSTORE_RETURN_IF_ERROR(internal_os::FsyncFile(fd)); } FileInfo info; TENSORSTORE_RETURN_IF_ERROR(internal_os::GetFileInfo(fd, &info)); TENSORSTORE_RETURN_IF_ERROR( internal_os::RenameOpenFile(fd, fd_path, rename_path)); #if 0 FileInfo debug_info; ABSL_CHECK_OK(internal_os::GetFileInfo(fd, &debug_info)); ABSL_CHECK_EQ(GetFileGeneration(info), GetFileGeneration(debug_info)); #endif file_metrics.write_latency_ms.Observe( absl::ToInt64Milliseconds(absl::Now() - start_write)); return GetFileGeneration(info); } Result<UniqueFileDescriptor> OpenLockFile(const std::string& path, FileInfo* info) { auto fd = internal_os::OpenFileForWriting(path); if (!fd.ok()) return fd; TENSORSTORE_RETURN_IF_ERROR(internal_os::GetFileInfo(fd->get(), info)); if (!internal_os::IsRegularFile(*info)) { return absl::FailedPreconditionError( absl::StrCat("Not a regular file: ", path)); } return fd; } struct WriteLockHelper { std::string lock_path; UniqueFileDescriptor lock_fd; std::optional<internal_os::UnlockFn> unlock_fn; WriteLockHelper(const std::string& path) : lock_path(absl::StrCat(path, kLockSuffix)) {} ~WriteLockHelper() { Unlock(); } absl::Status CreateAndAcquire() { FileInfo a, b; FileInfo* info = &a; TENSORSTORE_ASSIGN_OR_RETURN(lock_fd, OpenLockFile(lock_path, info)); while (true) { TENSORSTORE_ASSIGN_OR_RETURN( unlock_fn, internal_os::AcquireFdLock(lock_fd.get()), MaybeAnnotateStatus(_, absl::StrCat("Failed to acquire lock on file: ", QuoteString(lock_path)))); FileInfo* other_info = info == &a ? &b : &a; TENSORSTORE_ASSIGN_OR_RETURN(UniqueFileDescriptor other_fd, OpenLockFile(lock_path, other_info)); if (internal_os::GetDeviceId(a) == internal_os::GetDeviceId(b) && internal_os::GetFileId(a) == internal_os::GetFileId(b)) { return absl::OkStatus(); } Unlock(); info = other_info; lock_fd = std::move(other_fd); file_metrics.lock_contention.Increment(); } } absl::Status Delete() { auto status = internal_os::DeleteOpenFile(lock_fd.get(), lock_path); if (status.ok() || absl::IsNotFound(status)) { return absl::OkStatus(); } return MaybeAnnotateStatus(std::move(status), "Failed to clean lock file"); } void Unlock() { if (unlock_fn) { std::move (*unlock_fn)(lock_fd.get()); unlock_fn = std::nullopt; } } }; struct WriteTask { std::string full_path; absl::Cord value; kvstore::WriteOptions options; bool sync; Result<TimestampedStorageGeneration> operator()() const { ABSL_LOG_IF(INFO, file_logging) << "WriteTask " << full_path; TimestampedStorageGeneration r; r.time = absl::Now(); TENSORSTORE_ASSIGN_OR_RETURN(auto dir_fd, OpenParentDirectory(full_path)); WriteLockHelper lock_helper(full_path); TENSORSTORE_RETURN_IF_ERROR(lock_helper.CreateAndAcquire()); bool delete_lock_file = true; FileDescriptor fd = lock_helper.lock_fd.get(); const std::string& lock_path = lock_helper.lock_path; auto generation_result = [&]() -> Result<StorageGeneration> { if (!StorageGeneration::IsUnknown( options.generation_conditions.if_equal)) { StorageGeneration generation; TENSORSTORE_ASSIGN_OR_RETURN(UniqueFileDescriptor value_fd, OpenValueFile(full_path, &generation)); if (generation != options.generation_conditions.if_equal) { return StorageGeneration::Unknown(); } } TENSORSTORE_ASSIGN_OR_RETURN( auto generation, WriteWithSyncAndRename(fd, lock_path, value, sync, full_path)); delete_lock_file = false; if (sync) { TENSORSTORE_RETURN_IF_ERROR( internal_os::FsyncDirectory(dir_fd.get()), MaybeAnnotateStatus( _, absl::StrCat("Error calling fsync on parent directory of: ", full_path))); } lock_helper.Unlock(); return generation; }(); if (delete_lock_file) { lock_helper.Delete().IgnoreError(); } if (!generation_result) { return std::move(generation_result).status(); } r.generation = *std::move(generation_result); return r; } }; struct DeleteTask { std::string full_path; kvstore::WriteOptions options; bool sync; Result<TimestampedStorageGeneration> operator()() const { ABSL_LOG_IF(INFO, file_logging) << "DeleteTask " << full_path; TimestampedStorageGeneration r; r.time = absl::Now(); WriteLockHelper lock_helper(full_path); TENSORSTORE_ASSIGN_OR_RETURN(auto dir_fd, OpenParentDirectory(full_path)); TENSORSTORE_RETURN_IF_ERROR(lock_helper.CreateAndAcquire()); bool fsync_directory = false; auto generation_result = [&]() -> Result<StorageGeneration> { if (!StorageGeneration::IsUnknown( options.generation_conditions.if_equal)) { StorageGeneration generation; TENSORSTORE_ASSIGN_OR_RETURN(UniqueFileDescriptor value_fd, OpenValueFile(full_path, &generation)); if (generation != options.generation_conditions.if_equal) { return StorageGeneration::Unknown(); } } auto status = internal_os::DeleteFile(full_path); if (!status.ok() && !absl::IsNotFound(status)) { return status; } fsync_directory = sync; return StorageGeneration::NoValue(); }(); TENSORSTORE_RETURN_IF_ERROR(lock_helper.Delete()); if (fsync_directory) { TENSORSTORE_RETURN_IF_ERROR( internal_os::FsyncDirectory(dir_fd.get()), MaybeAnnotateStatus( _, absl::StrCat("Error calling fsync on parent directory of: ", QuoteString(full_path)))); } if (!generation_result) { return std::move(generation_result).status(); } r.generation = *std::move(generation_result); return r; } }; Future<TimestampedStorageGeneration> FileKeyValueStore::Write( Key key, std::optional<Value> value, WriteOptions options) { file_metrics.write.Increment(); TENSORSTORE_RETURN_IF_ERROR(ValidateKey(key)); if (value) { return MapFuture(executor(), WriteTask{std::move(key), *std::move(value), std::move(options), this->sync()}); } else { return MapFuture(executor(), DeleteTask{std::move(key), std::move(options), this->sync()}); } } struct DeleteRangeTask { KeyRange range; void operator()(Promise<void> promise) { ABSL_LOG_IF(INFO, file_logging) << "DeleteRangeTask " << range; std::string prefix(internal_file_util::LongestDirectoryPrefix(range)); absl::Status delete_status; auto status = internal_os::RecursiveFileList( prefix, [&](std::string_view path) { return tensorstore::IntersectsPrefix(range, path); }, [&](auto entry) -> absl::Status { if (!promise.result_needed()) return absl::CancelledError(""); bool do_delete = false; if (entry.IsDirectory()) { do_delete = tensorstore::ContainsPrefix(range, entry.GetFullPath()); } else { do_delete = tensorstore::Contains(range, entry.GetFullPath()); } if (do_delete) { auto s = entry.Delete(); if (!s.ok() && !absl::IsNotFound(s) && !absl::IsFailedPrecondition(s)) { ABSL_LOG_IF(INFO, file_logging) << s; delete_status.Update(s); } } return absl::OkStatus(); }); if (!status.ok()) { promise.SetResult(MakeResult(std::move(status))); } promise.SetResult(MakeResult(std::move(delete_status))); } }; Future<const void> FileKeyValueStore::DeleteRange(KeyRange range) { file_metrics.delete_range.Increment(); if (range.empty()) return absl::OkStatus(); TENSORSTORE_RETURN_IF_ERROR(ValidateKeyRange(range)); return PromiseFuturePair<void>::Link( WithExecutor(executor(), DeleteRangeTask{std::move(range)})) .future; } struct ListTask { kvstore::ListOptions options; ListReceiver receiver; void operator()() { ABSL_LOG_IF(INFO, file_logging) << "ListTask " << options.range; std::atomic<bool> cancelled = false; execution::set_starting(receiver, [&cancelled] { cancelled.store(true, std::memory_order_relaxed); }); std::string prefix( internal_file_util::LongestDirectoryPrefix(options.range)); auto status = internal_os::RecursiveFileList( prefix, [&](std::string_view path) { return tensorstore::IntersectsPrefix(options.range, path); }, [&](auto entry) -> absl::Status { if (cancelled.load(std::memory_order_relaxed)) { return absl::CancelledError(""); } if (entry.IsDirectory()) return absl::OkStatus(); std::string_view path = entry.GetFullPath(); if (tensorstore::Contains(options.range, path) && !absl::EndsWith(path, kLockSuffix)) { path.remove_prefix(options.strip_prefix_length); execution::set_value(receiver, ListEntry{std::string(path), entry.GetSize()}); } return absl::OkStatus(); }); if (!status.ok() && !cancelled.load(std::memory_order_relaxed)) { execution::set_error(receiver, std::move(status)); execution::set_stopping(receiver); return; } execution::set_done(receiver); execution::set_stopping(receiver); } }; void FileKeyValueStore::ListImpl(ListOptions options, ListReceiver receiver) { file_metrics.list.Increment(); if (options.range.empty()) { execution::set_starting(receiver, [] {}); execution::set_done(receiver); execution::set_stopping(receiver); return; } if (auto error = ValidateKeyRange(options.range); !error.ok()) { execution::set_starting(receiver, [] {}); execution::set_error(receiver, std::move(error)); execution::set_stopping(receiver); return; } executor()(ListTask{std::move(options), std::move(receiver)}); } Future<kvstore::DriverPtr> FileKeyValueStoreSpec::DoOpen() const { auto driver_ptr = internal::MakeIntrusivePtr<FileKeyValueStore>(); driver_ptr->spec_ = data_; return driver_ptr; } Result<kvstore::Spec> ParseFileUrl(std::string_view url) { auto parsed = internal::ParseGenericUri(url); assert(parsed.scheme == internal_file_kvstore::FileKeyValueStoreSpec::id); if (!parsed.query.empty()) { return absl::InvalidArgumentError("Query string not supported"); } if (!parsed.fragment.empty()) { return absl::InvalidArgumentError("Fragment identifier not supported"); } std::string path = internal::PercentDecode(parsed.authority_and_path); auto driver_spec = internal::MakeIntrusivePtr<FileKeyValueStoreSpec>(); driver_spec->data_.file_io_concurrency = Context::Resource<internal::FileIoConcurrencyResource>::DefaultSpec(); driver_spec->data_.file_io_sync = Context::Resource<FileIoSyncResource>::DefaultSpec(); return {std::in_place, std::move(driver_spec), std::move(path)}; } } } } TENSORSTORE_DECLARE_GARBAGE_COLLECTION_NOT_REQUIRED( tensorstore::internal_file_kvstore::FileKeyValueStore) namespace { const tensorstore::internal_kvstore::DriverRegistration< tensorstore::internal_file_kvstore::FileKeyValueStoreSpec> registration; const tensorstore::internal_kvstore::UrlSchemeRegistration url_scheme_registration{ tensorstore::internal_file_kvstore::FileKeyValueStoreSpec::id, tensorstore::internal_file_kvstore::ParseFileUrl}; }
#include <errno.h> #include <stddef.h> #include <cstring> #include <fstream> #include <string> #include <type_traits> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/synchronization/notification.h" #include <nlohmann/json.hpp> #include "tensorstore/context.h" #include "tensorstore/internal/os/filesystem.h" #include "tensorstore/internal/testing/scoped_directory.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/test_matchers.h" #include "tensorstore/kvstore/test_util.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/execution/sender_testutil.h" #include "tensorstore/util/future.h" #include "tensorstore/util/status_testutil.h" #ifndef _WIN32 #include <sys/stat.h> #include <unistd.h> #endif namespace { namespace kvstore = tensorstore::kvstore; using ::tensorstore::CompletionNotifyingReceiver; using ::tensorstore::IsOkAndHolds; using ::tensorstore::KeyRange; using ::tensorstore::KvStore; using ::tensorstore::MatchesStatus; using ::tensorstore::StorageGeneration; using ::tensorstore::internal::MatchesKvsReadResultNotFound; using ::tensorstore::internal::MatchesListEntry; using ::tensorstore::internal::MatchesTimestampedStorageGeneration; using ::tensorstore::internal_os::GetDirectoryContents; using ::tensorstore::internal_testing::ScopedCurrentWorkingDirectory; using ::tensorstore::internal_testing::ScopedTemporaryDirectory; using ::testing::HasSubstr; KvStore GetStore(std::string root) { return kvstore::Open({{"driver", "file"}, {"path", root + "/"}}).value(); } TEST(FileKeyValueStoreTest, Basic) { ScopedTemporaryDirectory tempdir; std::string root = tempdir.path() + "/root"; auto store = GetStore(root); tensorstore::internal::TestKeyValueReadWriteOps(store); } TEST(FileKeyValueStoreTest, InvalidKey) { ScopedTemporaryDirectory tempdir; std::string root = tempdir.path() + "/root"; auto store = GetStore(root); EXPECT_THAT(kvstore::Read(store, "this_is_a_long_key").result(), MatchesKvsReadResultNotFound()); EXPECT_THAT( kvstore::Read(store, "").result(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid key: .*")); EXPECT_THAT( kvstore::Read(store, std::string("\0", 1)).result(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid key: .*")); EXPECT_THAT( kvstore::Write(store, "", {}).result(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid key: .*")); EXPECT_THAT( kvstore::Read(store, "/").result(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid key: .*")); EXPECT_THAT( kvstore::Read(store, ".").result(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid key: .*")); EXPECT_THAT( kvstore::Read(store, "..").result(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid key: .*")); EXPECT_THAT( kvstore::Read(store, "a/./b").result(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid key: .*")); EXPECT_THAT( kvstore::Read(store, "a/../b").result(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid key: .*")); EXPECT_THAT( kvstore::Read(store, "a/").result(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid key: .*")); EXPECT_THAT( kvstore::Read(store, "a.__lock").result(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid key: .*")); EXPECT_THAT( kvstore::Read(store, "a/b.__lock/c").result(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid key: .*")); EXPECT_THAT( kvstore::Read(store, " MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid key: .*")); } TEST(FileKeyValueStoreTest, LockFiles) { ScopedTemporaryDirectory tempdir; std::string root = tempdir.path() + "/root"; auto store = GetStore(root); TENSORSTORE_ASSERT_OK( kvstore::Write(store, "a/foo", absl::Cord("xyz"), {StorageGeneration::NoValue()}) .result()); EXPECT_THAT(GetDirectoryContents(root), ::testing::UnorderedElementsAre("a", "a/foo")); EXPECT_THAT( kvstore::Write(store, "a/foo", absl::Cord("qqq"), {StorageGeneration::NoValue()}) .result(), MatchesTimestampedStorageGeneration(StorageGeneration::Unknown())); EXPECT_THAT(GetDirectoryContents(root), ::testing::UnorderedElementsAre("a", "a/foo")); { std::ofstream x(root + "/a/foo.__lock"); } EXPECT_THAT(GetDirectoryContents(root), ::testing::UnorderedElementsAre("a", "a/foo", "a/foo.__lock")); EXPECT_THAT( ListFuture(store).result(), IsOkAndHolds(::testing::UnorderedElementsAre(MatchesListEntry("a/foo")))); TENSORSTORE_ASSERT_OK( kvstore::Write(store, "a/foo", absl::Cord("xyz")).result()); { std::ofstream x(root + "/a/foo.__lock"); } TENSORSTORE_EXPECT_OK(kvstore::DeleteRange(store, KeyRange::Prefix("a/"))); EXPECT_THAT(GetDirectoryContents(root), ::testing::UnorderedElementsAre("a")); } TEST(FileKeyValueStoreTest, NestedDirectories) { ScopedTemporaryDirectory tempdir; std::string root = tempdir.path() + "/root"; auto store = GetStore(root); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/foo", absl::Cord("xyz"))); TENSORSTORE_EXPECT_OK( kvstore::Write(store, "a/ba/ccc/dddd", absl::Cord("xyz"))); TENSORSTORE_EXPECT_OK( kvstore::Write(store, "a/ba/ccc/foo", absl::Cord("xyz"))); EXPECT_THAT( kvstore::Write(store, "a/ba/ccc", absl::Cord("xyz")).result(), ::testing::AnyOf(MatchesStatus(absl::StatusCode::kPermissionDenied), MatchesStatus(absl::StatusCode::kFailedPrecondition))); } TEST(FileKeyValueStoreTest, ConcurrentWrites) { ScopedTemporaryDirectory tempdir; std::string root = tempdir.path() + "/root"; tensorstore::internal::TestConcurrentWritesOptions options; options.get_store = [&] { return GetStore(root); }; tensorstore::internal::TestConcurrentWrites(options); } #ifndef _WIN32 TEST(FileKeyValueStoreTest, Permissions) { if (::geteuid() == 0) { return; } ScopedTemporaryDirectory tempdir; std::string root = tempdir.path() + "/root"; auto store = GetStore(root); TENSORSTORE_ASSERT_OK( kvstore::Write(store, "foo", absl::Cord("xyz")).result()); ASSERT_EQ(0, ::chmod(root.c_str(), 0500)) << "Error " << errno << ": " << ::strerror(errno); struct RestoreWritePermission { std::string path; ~RestoreWritePermission() { EXPECT_EQ(0, ::chmod(path.c_str(), 0700)) << "Error " << errno << ": " << ::strerror(errno); } }; RestoreWritePermission restore{root}; EXPECT_EQ("xyz", kvstore::Read(store, "foo").value().value); EXPECT_THAT(kvstore::Write(store, "foo", absl::Cord("abc")).result(), MatchesStatus(absl::StatusCode::kPermissionDenied)); EXPECT_EQ("xyz", kvstore::Read(store, "foo").value().value); EXPECT_THAT(kvstore::Write(store, "bar", absl::Cord("abc")).result(), MatchesStatus(absl::StatusCode::kPermissionDenied)); EXPECT_THAT(kvstore::Read(store, "bar").result(), MatchesKvsReadResultNotFound()); EXPECT_THAT(kvstore::Delete(store, "foo").result(), MatchesStatus(absl::StatusCode::kPermissionDenied)); ASSERT_EQ(0, ::chmod((root + "/foo").c_str(), 0)) << "Error " << errno << ": " << ::strerror(errno); EXPECT_THAT(kvstore::Read(store, "foo").result(), MatchesStatus(absl::StatusCode::kPermissionDenied)); } #endif TEST(FileKeyValueStoreTest, DeletePrefix) { ScopedTemporaryDirectory tempdir; std::string root = tempdir.path() + "/root"; auto store = GetStore(root); tensorstore::internal::TestKeyValueStoreDeletePrefix(store); } TEST(FileKeyValueStoreTest, DeleteRange) { ScopedTemporaryDirectory tempdir; std::string root = tempdir.path() + "/root"; auto store = GetStore(root); tensorstore::internal::TestKeyValueStoreDeleteRange(store); } TEST(FileKeyValueStoreTest, DeleteRangeToEnd) { ScopedTemporaryDirectory tempdir; std::string root = tempdir.path() + "/root"; auto store = GetStore(root); tensorstore::internal::TestKeyValueStoreDeleteRangeToEnd(store); } TEST(FileKeyValueStoreTest, DeleteRangeFromBeginning) { ScopedTemporaryDirectory tempdir; std::string root = tempdir.path() + "/root"; auto store = GetStore(root); tensorstore::internal::TestKeyValueStoreDeleteRangeFromBeginning(store); } #if 0 TEST(FileKeyValueStoreTest, CopyRange) { ScopedTemporaryDirectory tempdir; std::string root = tempdir.path() + "/root"; auto store = GetStore(root); tensorstore::internal::TestKeyValueStoreCopyRange(store); } #endif TEST(FileKeyValueStoreTest, ListErrors) { ScopedTemporaryDirectory tempdir; std::string root = tempdir.path() + "/root"; auto store = GetStore(root); { absl::Notification notification; std::vector<std::string> log; tensorstore::execution::submit( kvstore::List(store, {KeyRange::Prefix("a CompletionNotifyingReceiver{&notification, tensorstore::LoggingReceiver{&log}}); notification.WaitForNotification(); EXPECT_THAT(log, ::testing::ElementsAre( "set_starting", HasSubstr("set_error: INVALID_ARGUMENT: Invalid key: "), "set_stopping")); } } TEST(FileKeyValueStoreTest, List) { ScopedTemporaryDirectory tempdir; std::string root = tempdir.path() + "/root"; auto store = GetStore(root); tensorstore::internal::TestKeyValueStoreList(store, false); } TEST(FileKeyValueStoreTest, SpecRoundtrip) { ScopedTemporaryDirectory tempdir; std::string root = tempdir.path() + "/root"; tensorstore::internal::KeyValueStoreSpecRoundtripOptions options; options.full_spec = {{"driver", "file"}, {"path", root}}; tensorstore::internal::TestKeyValueStoreSpecRoundtrip(options); } TEST(FileKeyValueStoreTest, SpecRoundtripSync) { ScopedTemporaryDirectory tempdir; std::string root = tempdir.path() + "/root"; tensorstore::internal::KeyValueStoreSpecRoundtripOptions options; options.full_spec = { {"driver", "file"}, {"path", root}, {"file_io_sync", false}, {"context", { {"file_io_concurrency", ::nlohmann::json::object_t()}, }}, }; options.spec_request_options.Set(tensorstore::retain_context).IgnoreError(); tensorstore::internal::TestKeyValueStoreSpecRoundtrip(options); } TEST(FileKeyValueStoreTest, InvalidSpec) { ScopedTemporaryDirectory tempdir; std::string root = tempdir.path() + "/root"; auto context = tensorstore::Context::Default(); EXPECT_THAT( kvstore::Open({{"driver", "file"}, {"path", root}, {"extra", "key"}}, context) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( kvstore::Open({{"driver", "file"}, {"path", 5}}, context).result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(kvstore::Open({{"driver", "file"}, {"path", "/a/../b/"}}, context) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*Invalid file path.*")); } TEST(FileKeyValueStoreTest, UrlRoundtrip) { tensorstore::internal::TestKeyValueStoreUrlRoundtrip({{"driver", "file"}}, "file: tensorstore::internal::TestKeyValueStoreUrlRoundtrip( {{"driver", "file"}, {"path", "/abc/"}}, "file: tensorstore::internal::TestKeyValueStoreUrlRoundtrip( {{"driver", "file"}, {"path", "/abc def/"}}, "file: } TEST(FileKeyValueStoreTest, UrlOpen) { ScopedTemporaryDirectory tempdir; std::string root = tempdir.path() + "/root"; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto store, kvstore::Open("file: tensorstore::internal::TestKeyValueReadWriteOps(store); } TEST(FileKeyValueStoreTest, InvalidUri) { EXPECT_THAT(kvstore::Spec::FromUrl("file: EXPECT_THAT(kvstore::Spec::FromUrl("file: EXPECT_THAT(kvstore::Spec::FromUrl("file: MatchesStatus(absl::StatusCode::kInvalidArgument, ".*: Query string not supported")); EXPECT_THAT(kvstore::Spec::FromUrl("file: MatchesStatus(absl::StatusCode::kInvalidArgument, ".*: Fragment identifier not supported")); EXPECT_THAT(kvstore::Spec::FromUrl("file: MatchesStatus(absl::StatusCode::kInvalidArgument, ".*Invalid file path.*")); } TEST(FileKeyValueStoreTest, RelativePath) { ScopedTemporaryDirectory tempdir; ScopedCurrentWorkingDirectory scoped_cwd(tempdir.path()); auto store = GetStore("tmp/dataset"); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "abc", {}).result()); } TEST(FileKeyValueStoreTest, BatchRead) { ScopedTemporaryDirectory tempdir; auto store = GetStore(tempdir.path()); tensorstore::internal::BatchReadGenericCoalescingTestOptions options; options.coalescing_options.max_extra_read_bytes = 255; options.metric_prefix = "/tensorstore/kvstore/file/"; options.has_file_open_metric = true; tensorstore::internal::TestBatchReadGenericCoalescing(store, options); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/file/file_key_value_store.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/file/file_key_value_store_test.cc
4f887a6430414cd6088e1743555015b10f116d50
850ceba7-2580-4f7f-8fe5-1dbc2dc1582c
cpp
google/tensorstore
util
tensorstore/kvstore/file/util.cc
tensorstore/kvstore/file/util_test.cc
#include "tensorstore/kvstore/file/util.h" #include <stddef.h> #include <string_view> #include "absl/strings/match.h" #include "absl/strings/str_split.h" #include "tensorstore/kvstore/key_range.h" namespace tensorstore { namespace internal_file_util { bool IsKeyValid(std::string_view key, std::string_view lock_suffix) { if (absl::StrContains(key, '\0')) return false; if (key.empty()) return false; if (key.back() == '/' || key.back() == '\\') { return false; } if (key.front() == '/' || key.front() == '\\') { key = key.substr(1); } for (std::string_view component : absl::StrSplit(key, absl::ByAnyChar("/\\"))) { if (component.empty()) return false; if (component == ".") return false; if (component == "..") return false; if (!lock_suffix.empty() && component.size() >= lock_suffix.size() && absl::EndsWith(component, lock_suffix)) { return false; } } return true; } std::string_view LongestDirectoryPrefix(const KeyRange& range) { std::string_view prefix = tensorstore::LongestPrefix(range); const size_t i = prefix.rfind('/'); if (i == std::string_view::npos) return {}; return prefix.substr(0, i); } } }
#include "tensorstore/kvstore/file/util.h" #include <string_view> #include <gtest/gtest.h> #include "tensorstore/kvstore/key_range.h" namespace { using ::tensorstore::KeyRange; using ::tensorstore::internal_file_util::IsKeyValid; using ::tensorstore::internal_file_util::LongestDirectoryPrefix; TEST(IsKeyValid, Basic) { EXPECT_TRUE(IsKeyValid("tmp/root", "")); EXPECT_TRUE(IsKeyValid("a", "")); EXPECT_TRUE(IsKeyValid("a/b", "")); EXPECT_TRUE(IsKeyValid("/tmp/root", "")); EXPECT_TRUE(IsKeyValid("a\\b", "")); EXPECT_FALSE(IsKeyValid("", "")); EXPECT_FALSE(IsKeyValid("/", "")); EXPECT_FALSE(IsKeyValid(" EXPECT_FALSE(IsKeyValid(" EXPECT_FALSE(IsKeyValid("/tmp/root/", "")); EXPECT_FALSE(IsKeyValid("tmp EXPECT_FALSE(IsKeyValid("tmp/./root", "")); EXPECT_FALSE(IsKeyValid("tmp/../root", "")); EXPECT_FALSE(IsKeyValid("tmp/root/", "")); EXPECT_FALSE(IsKeyValid("tmp/.lock/a", ".lock")); EXPECT_FALSE(IsKeyValid("tmp/foo.lock/a", ".lock")); EXPECT_FALSE(IsKeyValid("\\", "")); EXPECT_FALSE(IsKeyValid("tmp\\..\\root", "")); EXPECT_FALSE(IsKeyValid("tmp\\root\\", "")); EXPECT_FALSE(IsKeyValid(std::string_view("tmp/\0bar", 8), "")); } TEST(LongestDirectoryPrefix, Basic) { EXPECT_EQ("", LongestDirectoryPrefix(KeyRange{"a", "b"})); EXPECT_EQ("", LongestDirectoryPrefix(KeyRange{"/a", "/b"})); EXPECT_EQ("/a", LongestDirectoryPrefix(KeyRange{"/a/a", "/a/b"})); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/file/util.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/file/util_test.cc
4f887a6430414cd6088e1743555015b10f116d50
ecb453fe-d729-4840-a504-6bf8700709b8
cpp
google/tensorstore
kvstore_server
tensorstore/kvstore/tsgrpc/kvstore_server.cc
tensorstore/kvstore/tsgrpc/kvstore_server_test.cc
#include "tensorstore/kvstore/tsgrpc/kvstore_server.h" #include <stddef.h> #include <atomic> #include <cassert> #include <cstdint> #include <memory> #include <optional> #include <string> #include <type_traits> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/base/thread_annotations.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/synchronization/mutex.h" #include "grpcpp/server.h" #include "grpcpp/server_builder.h" #include "grpcpp/server_context.h" #include "grpcpp/support/server_callback.h" #include "grpcpp/support/status.h" #include <nlohmann/json.hpp> #include "tensorstore/context.h" #include "tensorstore/internal/grpc/server_credentials.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/json_binding/std_array.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/internal/metrics/counter.h" #include "tensorstore/internal/metrics/metadata.h" #include "tensorstore/internal/path.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/tsgrpc/common.h" #include "tensorstore/kvstore/tsgrpc/common.pb.h" #include "tensorstore/kvstore/tsgrpc/handler_template.h" #include "tensorstore/proto/encode_time.h" #include "tensorstore/proto/proto_util.h" #include "tensorstore/util/execution/any_receiver.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/future.h" #include "tensorstore/util/result.h" #include "tensorstore/kvstore/tsgrpc/kvstore.grpc.pb.h" #include "tensorstore/kvstore/tsgrpc/kvstore.pb.h" #include "tensorstore/util/span.h" using ::grpc::CallbackServerContext; using ::tensorstore::internal_metrics::MetricMetadata; using ::tensorstore::kvstore::ListEntry; using ::tensorstore_grpc::EncodeGenerationAndTimestamp; using ::tensorstore_grpc::Handler; using ::tensorstore_grpc::StreamHandler; using ::tensorstore_grpc::kvstore::DeleteRequest; using ::tensorstore_grpc::kvstore::DeleteResponse; using ::tensorstore_grpc::kvstore::ListRequest; using ::tensorstore_grpc::kvstore::ListResponse; using ::tensorstore_grpc::kvstore::ReadRequest; using ::tensorstore_grpc::kvstore::ReadResponse; using ::tensorstore_grpc::kvstore::WriteRequest; using ::tensorstore_grpc::kvstore::WriteResponse; using ::tensorstore_grpc::kvstore::grpc_gen::KvStoreService; namespace tensorstore { namespace { namespace jb = ::tensorstore::internal_json_binding; auto& read_metric = internal_metrics::Counter<int64_t>::New( "/tensorstore/kvstore/tsgrpc_server/read", MetricMetadata("KvStoreService::Read calls")); auto& write_metric = internal_metrics::Counter<int64_t>::New( "/tensorstore/kvstore/tsgrpc_server/write", MetricMetadata("KvStoreService::Write calls")); auto& delete_metric = internal_metrics::Counter<int64_t>::New( "/tensorstore/kvstore/tsgrpc_server/delete", MetricMetadata("KvStoreService::Delete calls")); auto& list_metric = internal_metrics::Counter<int64_t>::New( "/tensorstore/kvstore/tsgrpc_server/list", MetricMetadata("KvStoreService::List calls")); ABSL_CONST_INIT internal_log::VerboseFlag verbose_logging("tsgrpc_kvstore"); class ReadHandler final : public Handler<ReadRequest, ReadResponse> { using Base = Handler<ReadRequest, ReadResponse>; public: ReadHandler(CallbackServerContext* grpc_context, const Request* request, Response* response, KvStore kvstore) : Base(grpc_context, request, response), kvstore_(std::move(kvstore)) {} void Run() { ABSL_LOG_IF(INFO, verbose_logging) << "ReadHandler " << ConciseDebugString(*request()); kvstore::ReadOptions options{}; options.generation_conditions.if_equal.value = request()->generation_if_equal(); options.generation_conditions.if_not_equal.value = request()->generation_if_not_equal(); if (request()->has_byte_range()) { options.byte_range.inclusive_min = request()->byte_range().inclusive_min(); options.byte_range.exclusive_max = request()->byte_range().exclusive_max(); if (!options.byte_range.SatisfiesInvariants()) { Finish(absl::InvalidArgumentError("Invalid byte range")); return; } } if (request()->has_staleness_bound()) { TENSORSTORE_ASSIGN_OR_RETURN( options.staleness_bound, internal::ProtoToAbslTime(request()->staleness_bound()), Finish(_)); } internal::IntrusivePtr<ReadHandler> self{this}; future_ = PromiseFuturePair<void>::Link( [self = std::move(self)](tensorstore::Promise<void> promise, auto read_result) { if (!promise.result_needed()) return; promise.SetResult(self->HandleResult(read_result.result())); }, tensorstore::kvstore::Read(kvstore_, request()->key(), options)) .future; } void OnCancel() final { if (future_.ready()) return; future_ = {}; Finish(::grpc::Status(::grpc::StatusCode::CANCELLED, "")); } absl::Status HandleResult(const Result<kvstore::ReadResult>& result) { auto status = result.status(); if (status.ok()) { auto& r = result.value(); response()->set_state(static_cast<ReadResponse::State>(r.state)); EncodeGenerationAndTimestamp(r.stamp, response()); if (r.has_value()) { response()->set_value(r.value); } } Finish(status); return status; } private: KvStore kvstore_; Future<void> future_; }; class WriteHandler final : public Handler<WriteRequest, WriteResponse> { using Base = Handler<WriteRequest, WriteResponse>; public: WriteHandler(CallbackServerContext* grpc_context, const Request* request, Response* response, KvStore kvstore) : Base(grpc_context, request, response), kvstore_(std::move(kvstore)) {} void Run() { ABSL_LOG_IF(INFO, verbose_logging) << "WriteHandler " << ConciseDebugString(*request()); tensorstore::kvstore::WriteOptions options{}; options.generation_conditions.if_equal.value = request()->generation_if_equal(); internal::IntrusivePtr<WriteHandler> self{this}; future_ = PromiseFuturePair<void>::Link( [self = std::move(self)](Promise<void> promise, auto write_result) { if (!promise.result_needed()) return; promise.SetResult(self->HandleResult(write_result.result())); }, kvstore::Write(kvstore_, request()->key(), absl::Cord(request()->value()), options)) .future; } void OnCancel() final { if (future_.ready()) return; future_ = {}; Finish(::grpc::Status(::grpc::StatusCode::CANCELLED, "")); } absl::Status HandleResult( const tensorstore::Result<TimestampedStorageGeneration>& result) { auto status = result.status(); if (status.ok()) { EncodeGenerationAndTimestamp(result.value(), response()); } Finish(status); return status; } private: KvStore kvstore_; Future<void> future_; }; class DeleteHandler final : public Handler<DeleteRequest, DeleteResponse> { using Base = Handler<DeleteRequest, DeleteResponse>; public: DeleteHandler(CallbackServerContext* grpc_context, const Request* request, Response* response, KvStore kvstore) : Base(grpc_context, request, response), kvstore_(std::move(kvstore)) {} void Run() { ABSL_LOG_IF(INFO, verbose_logging) << "DeleteHandler " << ConciseDebugString(*request()); internal::IntrusivePtr<DeleteHandler> self{this}; auto callback = [self = std::move(self)](Promise<void> promise, auto del_result) { if (!promise.result_needed()) return; promise.SetResult(self->HandleResult(del_result.result())); }; if (request()->has_range()) { future_ = PromiseFuturePair<void>::Link( std::move(callback), kvstore::DeleteRange( kvstore_, KeyRange(request()->range().inclusive_min(), request()->range().exclusive_max()))) .future; } else if (!request()->key().empty()) { kvstore::WriteOptions options{}; options.generation_conditions.if_equal.value = request()->generation_if_equal(); future_ = PromiseFuturePair<void>::Link( std::move(callback), tensorstore::kvstore::Delete(kvstore_, request()->key(), options)) .future; } else { Finish(absl::InvalidArgumentError("Invalid request")); } } void OnCancel() final { if (future_.ready()) return; future_ = {}; Finish(::grpc::Status(::grpc::StatusCode::CANCELLED, "")); } absl::Status HandleResult(const tensorstore::Result<void>& result) { auto status = result.status(); Finish(status); return status; } absl::Status HandleResult( const tensorstore::Result<TimestampedStorageGeneration>& result) { auto status = result.status(); if (status.ok()) { EncodeGenerationAndTimestamp(result.value(), response()); } Finish(status); return status; } private: tensorstore::KvStore kvstore_; tensorstore::Future<void> future_; }; class ListHandler final : public StreamHandler<ListRequest, ListResponse> { using Base = StreamHandler<ListRequest, ListResponse>; public: ListHandler(CallbackServerContext* grpc_context, const Request* request, tensorstore::KvStore kvstore) : Base(grpc_context, request), kvstore_(std::move(kvstore)), estimated_size_(0), cancel_([] {}) {} void Run(); void OnCancel() final { cancel_(); } void OnWriteDone(bool ok) final { absl::MutexLock l(&mu_); in_flight_msg_ = nullptr; MaybeWrite(); } void MaybeWrite() ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (in_flight_msg_ != nullptr) return; if (!current_) return; if (done_) { if (!status_.ok()) { current_ = nullptr; Finish(status_); } else if (current_->entry().empty()) { current_ = nullptr; Finish(grpc::Status::OK); } else { in_flight_msg_ = std::move(current_); StartWriteAndFinish(in_flight_msg_.get(), {}, grpc::Status::OK); } return; } constexpr size_t kTargetSize = 16 * 1024; if (estimated_size_ < kTargetSize) return; in_flight_msg_ = std::move(current_); StartWrite(in_flight_msg_.get()); current_ = std::make_unique<ListResponse>(); estimated_size_ = 0; } [[maybe_unused]] friend void set_starting( internal::IntrusivePtr<ListHandler>& self, AnyCancelReceiver cancel) { absl::MutexLock l(&self->mu_); self->cancel_ = std::move(cancel); self->done_ = false; self->current_ = std::make_unique<ListResponse>(); self->estimated_size_ = 0; } [[maybe_unused]] friend void set_value( internal::IntrusivePtr<ListHandler>& self, ListEntry entry) { absl::MutexLock l(&self->mu_); auto* e = self->current_->add_entry(); e->set_key(entry.key); e->set_size(entry.size); self->estimated_size_ += entry.key.size(); self->MaybeWrite(); } [[maybe_unused]] friend void set_done( internal::IntrusivePtr<ListHandler>& self) { self->cancel_ = [] {}; } [[maybe_unused]] friend void set_error( internal::IntrusivePtr<ListHandler>& self, absl::Status s) { absl::MutexLock l(&self->mu_); self->cancel_ = [] {}; self->status_ = s; } [[maybe_unused]] friend void set_stopping( internal::IntrusivePtr<ListHandler>& self) { absl::MutexLock l(&self->mu_); self->done_ = true; self->MaybeWrite(); } private: tensorstore::KvStore kvstore_; absl::Mutex mu_; absl::Status status_ ABSL_GUARDED_BY(mu_); std::unique_ptr<ListResponse> current_ ABSL_GUARDED_BY(mu_); std::unique_ptr<ListResponse> in_flight_msg_ ABSL_GUARDED_BY(mu_); size_t estimated_size_ ABSL_GUARDED_BY(mu_); tensorstore::AnyCancelReceiver cancel_; std::atomic<bool> done_{true}; }; void ListHandler::Run() { ABSL_LOG_IF(INFO, verbose_logging) << "ListHandler " << ConciseDebugString(*request()); tensorstore::kvstore::ListOptions options; options.range = tensorstore::KeyRange(request()->range().inclusive_min(), request()->range().exclusive_max()); options.strip_prefix_length = request()->strip_prefix_length(); if (request()->has_staleness_bound()) { TENSORSTORE_ASSIGN_OR_RETURN( options.staleness_bound, internal::ProtoToAbslTime(request()->staleness_bound()), Finish(_)); } internal::IntrusivePtr<ListHandler> self{this}; tensorstore::execution::submit( tensorstore::kvstore::List(self->kvstore_, options), self); } } namespace grpc_kvstore { TENSORSTORE_DEFINE_JSON_DEFAULT_BINDER( KvStoreServer::Spec, jb::Object(jb::Member("base", jb::Projection<&KvStoreServer::Spec::base>()), jb::Initialize([](auto* obj) { internal::EnsureDirectoryPath(obj->base.path); return absl::OkStatus(); }), jb::Member("bind_addresses", jb::Projection<&KvStoreServer::Spec::bind_addresses>( jb::DefaultInitializedValue())))); class KvStoreServer::Impl final : public KvStoreService::CallbackService { public: Impl(KvStore kvstore) : kvstore_(std::move(kvstore)) {} ::grpc::ServerUnaryReactor* Read(::grpc::CallbackServerContext* context, const ReadRequest* request, ReadResponse* response) override { read_metric.Increment(); internal::IntrusivePtr<ReadHandler> handler( new ReadHandler(context, request, response, kvstore_)); assert(handler->use_count() == 2); handler->Run(); assert(handler->use_count() > 0); if (handler->use_count() == 1) return nullptr; return handler.get(); } ::grpc::ServerUnaryReactor* Write(::grpc::CallbackServerContext* context, const WriteRequest* request, WriteResponse* response) override { write_metric.Increment(); internal::IntrusivePtr<WriteHandler> handler( new WriteHandler(context, request, response, kvstore_)); assert(handler->use_count() == 2); handler->Run(); assert(handler->use_count() > 0); if (handler->use_count() == 1) return nullptr; return handler.get(); } ::grpc::ServerUnaryReactor* Delete(::grpc::CallbackServerContext* context, const DeleteRequest* request, DeleteResponse* response) override { delete_metric.Increment(); internal::IntrusivePtr<DeleteHandler> handler( new DeleteHandler(context, request, response, kvstore_)); assert(handler->use_count() == 2); handler->Run(); assert(handler->use_count() > 0); if (handler->use_count() == 1) return nullptr; return handler.get(); } ::grpc::ServerWriteReactor< ::tensorstore_grpc::kvstore::ListResponse>* List( ::grpc::CallbackServerContext* context, const ListRequest* request) override { list_metric.Increment(); internal::IntrusivePtr<ListHandler> handler( new ListHandler(context, request, kvstore_)); assert(handler->use_count() == 2); handler->Run(); if (handler->use_count() == 1) return nullptr; return handler.get(); } const KvStore& kvstore() const { return kvstore_; } private: friend class KvStoreServer; KvStore kvstore_; std::vector<int> listening_ports_; std::unique_ptr<grpc::Server> server_; }; KvStoreServer::KvStoreServer() = default; KvStoreServer::~KvStoreServer() = default; KvStoreServer::KvStoreServer(KvStoreServer&&) = default; KvStoreServer& KvStoreServer::operator=(KvStoreServer&&) = default; tensorstore::span<const int> KvStoreServer::ports() const { return impl_->listening_ports_; } int KvStoreServer::port() const { return impl_->listening_ports_.front(); } void KvStoreServer::Wait() { impl_->server_->Wait(); } tensorstore::Result<KvStoreServer> KvStoreServer::Start(Spec spec, Context context) { TENSORSTORE_ASSIGN_OR_RETURN( auto kv, tensorstore::kvstore::Open(spec.base, context).result()); auto impl = std::make_unique<KvStoreServer::Impl>(std::move(kv)); auto creds = context.GetResource<tensorstore::GrpcServerCredentials>() .value() ->GetCredentials(); grpc::ServerBuilder builder; builder.RegisterService(impl.get()); if (spec.bind_addresses.empty()) { spec.bind_addresses.push_back("[::]:0"); } impl->listening_ports_.resize(spec.bind_addresses.size()); for (size_t i = 0; i < spec.bind_addresses.size(); ++i) { builder.AddListeningPort(spec.bind_addresses[i], creds, &impl->listening_ports_[i]); } impl->server_ = builder.BuildAndStart(); KvStoreServer server; server.impl_ = std::move(impl); return server; } } }
#include "tensorstore/kvstore/tsgrpc/kvstore_server.h" #include <string> #include <type_traits> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/cord.h" #include "absl/strings/str_format.h" #include "absl/synchronization/notification.h" #include <nlohmann/json.hpp> #include "tensorstore/context.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/test_matchers.h" #include "tensorstore/kvstore/test_util.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/execution/sender_testutil.h" #include "tensorstore/util/future.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" namespace { namespace kvstore = ::tensorstore::kvstore; using ::tensorstore::KeyRange; using ::tensorstore::grpc_kvstore::KvStoreServer; using ::tensorstore::internal::MatchesKvsReadResultNotFound; class KvStoreSingleton { public: KvStoreSingleton() : ctx_(tensorstore::Context::Default()) { server_ = KvStoreServer::Start(KvStoreServer::Spec::FromJson( { {"bind_addresses", {"localhost:0"}}, {"base", "memory: }) .value(), ctx_) .value(); address_ = absl::StrFormat("localhost:%d", server_.port()); } const std::string& address() const { return address_; } private: tensorstore::Context ctx_; KvStoreServer server_; std::string address_; }; const KvStoreSingleton& GetSingleton() { static const KvStoreSingleton* const kSingleton = new KvStoreSingleton(); return *kSingleton; } class KvStoreTest : public testing::Test { public: const std::string& address() const { return GetSingleton().address(); } }; TEST_F(KvStoreTest, Basic) { auto context = tensorstore::Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, tensorstore::kvstore::Open({{"driver", "tsgrpc_kvstore"}, {"address", address()}, {"path", "basic/"}}, context) .result()); tensorstore::internal::TestKeyValueReadWriteOps(store); } TEST_F(KvStoreTest, DeleteRange) { auto context = tensorstore::Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, tensorstore::kvstore::Open({{"driver", "tsgrpc_kvstore"}, {"address", address()}, {"path", "delete_range/"}}, context) .result()); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/b", absl::Cord("xyz"))); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/d", absl::Cord("xyz"))); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/c/x", absl::Cord("xyz"))); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/c/y", absl::Cord("xyz"))); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/c/z/e", absl::Cord("xyz"))); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/c/z/f", absl::Cord("xyz"))); TENSORSTORE_EXPECT_OK(kvstore::DeleteRange(store, KeyRange::Prefix("a/c"))); EXPECT_EQ("xyz", kvstore::Read(store, "a/b").value().value); EXPECT_EQ("xyz", kvstore::Read(store, "a/d").value().value); EXPECT_THAT(kvstore::Read(store, "a/c/x").result(), MatchesKvsReadResultNotFound()); EXPECT_THAT(kvstore::Read(store, "a/c/y").result(), MatchesKvsReadResultNotFound()); EXPECT_THAT(kvstore::Read(store, "a/c/z/e").result(), MatchesKvsReadResultNotFound()); EXPECT_THAT(kvstore::Read(store, "a/c/z/f").result(), MatchesKvsReadResultNotFound()); } TEST_F(KvStoreTest, List) { auto context = tensorstore::Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, tensorstore::kvstore::Open({{"driver", "tsgrpc_kvstore"}, {"address", address()}, {"path", "list/"}}, context) .result()); { std::vector<std::string> log; absl::Notification notification; tensorstore::execution::submit( kvstore::List(store, {}), tensorstore::CompletionNotifyingReceiver{ &notification, tensorstore::LoggingReceiver{&log}}); notification.WaitForNotification(); EXPECT_THAT(log, ::testing::ElementsAre("set_starting", "set_done", "set_stopping")); } TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/b", absl::Cord("xyz"))); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/d", absl::Cord("xyz"))); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/c/x", absl::Cord("xyz"))); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/c/y", absl::Cord("xyz"))); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/c/z/e", absl::Cord("xyz"))); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/c/z/f", absl::Cord("xyz"))); { std::vector<std::string> log; absl::Notification notification; tensorstore::execution::submit( kvstore::List(store, {}), tensorstore::CompletionNotifyingReceiver{ &notification, tensorstore::LoggingReceiver{&log}}); notification.WaitForNotification(); EXPECT_THAT( log, ::testing::UnorderedElementsAre( "set_starting", "set_value: a/d", "set_value: a/c/z/f", "set_value: a/c/y", "set_value: a/c/z/e", "set_value: a/c/x", "set_value: a/b", "set_done", "set_stopping")); } { std::vector<std::string> log; absl::Notification notification; tensorstore::execution::submit( kvstore::List(store, {KeyRange::Prefix("a/c/")}), tensorstore::CompletionNotifyingReceiver{ &notification, tensorstore::LoggingReceiver{&log}}); notification.WaitForNotification(); EXPECT_THAT(log, ::testing::UnorderedElementsAre( "set_starting", "set_value: a/c/z/f", "set_value: a/c/y", "set_value: a/c/z/e", "set_value: a/c/x", "set_done", "set_stopping")); } { std::vector<std::string> log; absl::Notification notification; tensorstore::execution::submit( kvstore::List(store, {}), tensorstore::CompletionNotifyingReceiver{ &notification, tensorstore::CancelOnStartingReceiver{{&log}}}); notification.WaitForNotification(); EXPECT_THAT(log, ::testing::ElementsAre("set_starting", "set_done", "set_stopping")); } { std::vector<std::string> log; absl::Notification notification; tensorstore::execution::submit( kvstore::List(store, {}), tensorstore::CompletionNotifyingReceiver{ &notification, tensorstore::CancelAfterNReceiver<2>{{&log}}}); notification.WaitForNotification(); EXPECT_THAT(log, ::testing::ElementsAre( "set_starting", ::testing::AnyOf("set_value: a/d", "set_value: a/c/z/f", "set_value: a/c/y", "set_value: a/c/z/e", "set_value: a/c/x", "set_value: a/b"), "set_done", "set_stopping")); } } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/tsgrpc/kvstore_server.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/tsgrpc/kvstore_server_test.cc
4f887a6430414cd6088e1743555015b10f116d50
6e37f9e9-a68a-4e08-8899-9c880461c192
cpp
google/tensorstore
tsgrpc
tensorstore/kvstore/tsgrpc/tsgrpc.cc
tensorstore/kvstore/tsgrpc/tsgrpc_test.cc
#include <stdint.h> #include <atomic> #include <memory> #include <optional> #include <string> #include <utility> #include "absl/base/attributes.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "grpcpp/channel.h" #include "grpcpp/client_context.h" #include "grpcpp/create_channel.h" #include "grpcpp/support/status.h" #include "grpcpp/support/sync_stream.h" #include "tensorstore/context.h" #include "tensorstore/internal/concurrency_resource.h" #include "tensorstore/internal/context_binding.h" #include "tensorstore/internal/data_copy_concurrency_resource.h" #include "tensorstore/internal/grpc/client_credentials.h" #include "tensorstore/internal/grpc/utils.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/internal/metrics/counter.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/common_metrics.h" #include "tensorstore/kvstore/driver.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/registry.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/tsgrpc/common.h" #include "tensorstore/proto/encode_time.h" #include "tensorstore/proto/proto_util.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/fwd.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/internal/cache_key/absl_time.h" #include "tensorstore/internal/cache_key/std_optional.h" #include "tensorstore/internal/json_binding/absl_time.h" #include "tensorstore/serialization/absl_time.h" #include "tensorstore/kvstore/tsgrpc/common.pb.h" #include "tensorstore/kvstore/tsgrpc/kvstore.grpc.pb.h" #include "tensorstore/kvstore/tsgrpc/kvstore.pb.h" using ::tensorstore::GrpcClientCredentials; using ::tensorstore::internal::AbslTimeToProto; using ::tensorstore::internal::DataCopyConcurrencyResource; using ::tensorstore::internal::GrpcStatusToAbslStatus; using ::tensorstore::kvstore::ListEntry; using ::tensorstore::kvstore::ListReceiver; using ::tensorstore_grpc::DecodeGenerationAndTimestamp; using ::tensorstore_grpc::GetMessageStatus; using ::tensorstore_grpc::kvstore::DeleteRequest; using ::tensorstore_grpc::kvstore::DeleteResponse; using ::tensorstore_grpc::kvstore::ListRequest; using ::tensorstore_grpc::kvstore::ListResponse; using ::tensorstore_grpc::kvstore::ReadRequest; using ::tensorstore_grpc::kvstore::ReadResponse; using ::tensorstore_grpc::kvstore::WriteRequest; using ::tensorstore_grpc::kvstore::WriteResponse; using ::tensorstore_grpc::kvstore::grpc_gen::KvStoreService; namespace tensorstore { namespace { namespace jb = tensorstore::internal_json_binding; struct TsGrpcMetrics : public internal_kvstore::CommonReadMetrics, public internal_kvstore::CommonWriteMetrics { internal_metrics::Counter<int64_t>& delete_calls; }; auto tsgrpc_metrics = []() -> TsGrpcMetrics { return {TENSORSTORE_KVSTORE_COMMON_READ_METRICS(tsgrpc), TENSORSTORE_KVSTORE_COMMON_WRITE_METRICS(tsgrpc), TENSORSTORE_KVSTORE_COUNTER_IMPL( tsgrpc, delete_calls, "kvstore::Write calls deleting a key")}; }(); ABSL_CONST_INIT internal_log::VerboseFlag verbose_logging("tsgrpc_kvstore"); struct TsGrpcKeyValueStoreSpecData { std::string address; absl::Duration timeout; Context::Resource<GrpcClientCredentials> credentials; Context::Resource<DataCopyConcurrencyResource> data_copy_concurrency; constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.address, x.timeout, x.credentials, x.data_copy_concurrency); }; constexpr static auto default_json_binder = jb::Object( jb::Member(GrpcClientCredentials::id, jb::Projection<&TsGrpcKeyValueStoreSpecData::credentials>()), jb::Member("address", jb::Projection<&TsGrpcKeyValueStoreSpecData::address>()), jb::Member("timeout", jb::Projection<&TsGrpcKeyValueStoreSpecData::timeout>( jb::DefaultValue<jb::kNeverIncludeDefaults>( [](auto* x) { *x = absl::Seconds(60); }))), jb::Member( DataCopyConcurrencyResource::id, jb::Projection< &TsGrpcKeyValueStoreSpecData::data_copy_concurrency>()) ); }; class TsGrpcKeyValueStoreSpec : public internal_kvstore::RegisteredDriverSpec< TsGrpcKeyValueStoreSpec, TsGrpcKeyValueStoreSpecData> { public: static constexpr char id[] = "tsgrpc_kvstore"; Future<kvstore::DriverPtr> DoOpen() const override; }; class TsGrpcKeyValueStore : public internal_kvstore::RegisteredDriver<TsGrpcKeyValueStore, TsGrpcKeyValueStoreSpec> { public: void MaybeSetDeadline(grpc::ClientContext& context) { if (spec_.timeout > absl::ZeroDuration() && spec_.timeout != absl::InfiniteDuration()) { context.set_deadline(absl::ToChronoTime(absl::Now() + spec_.timeout)); } } const Executor& executor() const { return spec_.data_copy_concurrency->executor; } KvStoreService::StubInterface* stub() { return stub_.get(); } absl::Status GetBoundSpecData(SpecData& spec) const { spec = spec_; return absl::OkStatus(); } Future<ReadResult> Read(Key key, ReadOptions options) override; Future<TimestampedStorageGeneration> Write(Key key, std::optional<Value> value, WriteOptions options) override; Future<const void> DeleteRange(KeyRange range) override; void ListImpl(ListOptions options, ListReceiver receiver) override; SpecData spec_; std::shared_ptr<grpc::Channel> channel_; std::unique_ptr<KvStoreService::StubInterface> stub_; }; struct ReadTask : public internal::AtomicReferenceCount<ReadTask> { internal::IntrusivePtr<TsGrpcKeyValueStore> driver; grpc::ClientContext context; ReadRequest request; ReadResponse response; Future<kvstore::ReadResult> Start(kvstore::Key key, const kvstore::ReadOptions& options) { request.set_key(std::move(key)); request.set_generation_if_equal( options.generation_conditions.if_equal.value); request.set_generation_if_not_equal( options.generation_conditions.if_not_equal.value); if (!options.byte_range.IsFull()) { request.mutable_byte_range()->set_inclusive_min( options.byte_range.inclusive_min); request.mutable_byte_range()->set_exclusive_max( options.byte_range.exclusive_max); } if (options.staleness_bound != absl::InfiniteFuture()) { AbslTimeToProto(options.staleness_bound, request.mutable_staleness_bound()); } driver->MaybeSetDeadline(context); internal::IntrusivePtr<ReadTask> self(this); auto pair = tensorstore::PromiseFuturePair<kvstore::ReadResult>::Make(); pair.promise.ExecuteWhenNotNeeded([self] { self->context.TryCancel(); }); driver->stub()->async()->Read( &context, &request, &response, WithExecutor(driver->executor(), [self = std::move(self), promise = std::move(pair.promise)]( ::grpc::Status s) { if (!promise.result_needed()) return; promise.SetResult(self->Ready(GrpcStatusToAbslStatus(s))); })); return std::move(pair.future); } Result<kvstore::ReadResult> Ready(absl::Status status) { ABSL_LOG_IF(INFO, verbose_logging) << "ReadTask::Ready " << ConciseDebugString(response) << " " << status; TENSORSTORE_RETURN_IF_ERROR(status); TENSORSTORE_RETURN_IF_ERROR(GetMessageStatus(response)); TENSORSTORE_ASSIGN_OR_RETURN(auto stamp, DecodeGenerationAndTimestamp(response)); return kvstore::ReadResult{ static_cast<kvstore::ReadResult::State>(response.state()), absl::Cord(response.value()), std::move(stamp), }; } }; struct WriteTask : public internal::AtomicReferenceCount<WriteTask> { internal::IntrusivePtr<TsGrpcKeyValueStore> driver; grpc::ClientContext context; WriteRequest request; WriteResponse response; Future<TimestampedStorageGeneration> Start( kvstore::Key key, const absl::Cord value, const kvstore::WriteOptions& options) { request.set_key(std::move(key)); request.set_value(value); request.set_generation_if_equal( options.generation_conditions.if_equal.value); driver->MaybeSetDeadline(context); internal::IntrusivePtr<WriteTask> self(this); auto pair = tensorstore::PromiseFuturePair<TimestampedStorageGeneration>::Make(); pair.promise.ExecuteWhenNotNeeded([self] { self->context.TryCancel(); }); driver->stub()->async()->Write( &context, &request, &response, WithExecutor(driver->executor(), [self = std::move(self), promise = std::move(pair.promise)]( ::grpc::Status s) { if (!promise.result_needed()) return; promise.SetResult(self->Ready(GrpcStatusToAbslStatus(s))); })); return std::move(pair.future); } Result<TimestampedStorageGeneration> Ready(absl::Status status) { ABSL_LOG_IF(INFO, verbose_logging) << "WriteTask::Ready " << ConciseDebugString(response) << " " << status; TENSORSTORE_RETURN_IF_ERROR(status); TENSORSTORE_RETURN_IF_ERROR(GetMessageStatus(response)); return DecodeGenerationAndTimestamp(response); } }; struct DeleteTask : public internal::AtomicReferenceCount<DeleteTask> { internal::IntrusivePtr<TsGrpcKeyValueStore> driver; grpc::ClientContext context; DeleteRequest request; DeleteResponse response; Future<TimestampedStorageGeneration> Start( kvstore::Key key, const kvstore::WriteOptions options) { request.set_key(std::move(key)); request.set_generation_if_equal( options.generation_conditions.if_equal.value); return StartImpl(); } Future<TimestampedStorageGeneration> StartRange(KeyRange range) { request.mutable_range()->set_inclusive_min(range.inclusive_min); request.mutable_range()->set_exclusive_max(range.exclusive_max); return StartImpl(); } Future<TimestampedStorageGeneration> StartImpl() { driver->MaybeSetDeadline(context); internal::IntrusivePtr<DeleteTask> self(this); auto pair = tensorstore::PromiseFuturePair<TimestampedStorageGeneration>::Make(); pair.promise.ExecuteWhenNotNeeded([self] { self->context.TryCancel(); }); driver->stub()->async()->Delete( &context, &request, &response, WithExecutor(driver->executor(), [self = std::move(self), promise = std::move(pair.promise)]( ::grpc::Status s) { if (!promise.result_needed()) return; promise.SetResult(self->Ready(GrpcStatusToAbslStatus(s))); })); return std::move(pair.future); } Result<TimestampedStorageGeneration> Ready(absl::Status status) { ABSL_LOG_IF(INFO, verbose_logging) << "DeleteTask::Ready " << ConciseDebugString(response) << " " << status; TENSORSTORE_RETURN_IF_ERROR(status); TENSORSTORE_RETURN_IF_ERROR(GetMessageStatus(response)); return DecodeGenerationAndTimestamp(response); } }; struct ListTask { internal::IntrusivePtr<TsGrpcKeyValueStore> driver; ListReceiver receiver; grpc::ClientContext context; std::atomic<bool> cancelled = false; ListRequest request; ListTask(internal::IntrusivePtr<TsGrpcKeyValueStore>&& driver, ListReceiver&& receiver) : driver(std::move(driver)), receiver(std::move(receiver)) {} bool is_cancelled() { return cancelled.load(std::memory_order_relaxed); } void try_cancel() { if (!cancelled.load()) { cancelled.store(true, std::memory_order_relaxed); context.TryCancel(); } } void Run() { driver->MaybeSetDeadline(context); auto reader = driver->stub()->List(&context, request); execution::set_starting(receiver, [this] { try_cancel(); }); absl::Status msg_status; ListResponse response; while (reader->Read(&response)) { msg_status = GetMessageStatus(response); if (!msg_status.ok()) { try_cancel(); break; } for (const auto& entry : response.entry()) { execution::set_value(receiver, ListEntry{entry.key(), entry.size()}); if (is_cancelled()) break; } if (is_cancelled()) break; } auto s = reader->Finish(); if (!msg_status.ok()) { execution::set_error(receiver, msg_status); } else if (s.ok() || is_cancelled()) { execution::set_done(receiver); } else { execution::set_error(receiver, GrpcStatusToAbslStatus(s)); } execution::set_stopping(receiver); } }; Future<kvstore::ReadResult> TsGrpcKeyValueStore::Read(Key key, ReadOptions options) { tsgrpc_metrics.read.Increment(); auto task = internal::MakeIntrusivePtr<ReadTask>(); task->driver = internal::IntrusivePtr<TsGrpcKeyValueStore>(this); return task->Start(std::move(key), options); } Future<TimestampedStorageGeneration> TsGrpcKeyValueStore::Write( Key key, std::optional<Value> value, WriteOptions options) { if (value) { tsgrpc_metrics.write.Increment(); auto task = internal::MakeIntrusivePtr<WriteTask>(); task->driver = internal::IntrusivePtr<TsGrpcKeyValueStore>(this); return task->Start(std::move(key), value.value(), options); } else { tsgrpc_metrics.delete_calls.Increment(); auto task = internal::MakeIntrusivePtr<DeleteTask>(); task->driver = internal::IntrusivePtr<TsGrpcKeyValueStore>(this); return task->Start(std::move(key), options); } } Future<const void> TsGrpcKeyValueStore::DeleteRange(KeyRange range) { if (range.empty()) return absl::OkStatus(); tsgrpc_metrics.delete_range.Increment(); auto task = internal::MakeIntrusivePtr<DeleteTask>(); task->driver = internal::IntrusivePtr<TsGrpcKeyValueStore>(this); return MapFuture( InlineExecutor{}, [](const Result<TimestampedStorageGeneration>& result) { return MakeResult(result.status()); }, task->StartRange(std::move(range))); } void TsGrpcKeyValueStore::ListImpl(ListOptions options, ListReceiver receiver) { if (options.range.empty()) { execution::set_starting(receiver, [] {}); execution::set_done(receiver); execution::set_stopping(receiver); return; } tsgrpc_metrics.list.Increment(); auto task = std::make_unique<ListTask>( internal::IntrusivePtr<TsGrpcKeyValueStore>(this), std::move(receiver)); task->request.mutable_range()->set_inclusive_min(options.range.inclusive_min); task->request.mutable_range()->set_exclusive_max(options.range.exclusive_max); task->request.set_strip_prefix_length(options.strip_prefix_length); if (options.staleness_bound != absl::InfiniteFuture()) { AbslTimeToProto(options.staleness_bound, task->request.mutable_staleness_bound()); } executor()([task = std::move(task)] { task->Run(); }); } Future<kvstore::DriverPtr> TsGrpcKeyValueStoreSpec::DoOpen() const { auto driver = internal::MakeIntrusivePtr<TsGrpcKeyValueStore>(); driver->spec_ = data_; ABSL_LOG_IF(INFO, verbose_logging) << "tsgrpc_kvstore address=" << data_.address; driver->channel_ = grpc::CreateChannel(data_.address, data_.credentials->GetCredentials()); driver->stub_ = KvStoreService::NewStub(driver->channel_); return driver; } } } TENSORSTORE_DECLARE_GARBAGE_COLLECTION_NOT_REQUIRED( tensorstore::TsGrpcKeyValueStore) namespace { const tensorstore::internal_kvstore::DriverRegistration< tensorstore::TsGrpcKeyValueStoreSpec> registration; }
#include <optional> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/cord.h" #include "absl/synchronization/notification.h" #include "absl/time/time.h" #include "grpcpp/grpcpp.h" #include "grpcpp/support/status.h" #include "grpcpp/support/sync_stream.h" #include "tensorstore/internal/grpc/grpc_mock.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/tsgrpc/mock_kvstore_service.h" #include "tensorstore/proto/parse_text_proto_or_die.h" #include "tensorstore/proto/protobuf_matchers.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/execution/sender_testutil.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/kvstore/tsgrpc/kvstore.grpc.pb.h" #include "tensorstore/kvstore/tsgrpc/kvstore.pb.h" namespace { namespace kvstore = ::tensorstore::kvstore; using ::protobuf_matchers::EqualsProto; using ::tensorstore::KeyRange; using ::tensorstore::OptionalByteRangeRequest; using ::tensorstore::ParseTextProtoOrDie; using ::tensorstore::StorageGeneration; using ::testing::_; using ::testing::DoAll; using ::testing::Return; using ::testing::SetArgPointee; using ::tensorstore_grpc::MockKvStoreService; using ::tensorstore_grpc::kvstore::DeleteRequest; using ::tensorstore_grpc::kvstore::DeleteResponse; using ::tensorstore_grpc::kvstore::ListRequest; using ::tensorstore_grpc::kvstore::ListResponse; using ::tensorstore_grpc::kvstore::ReadRequest; using ::tensorstore_grpc::kvstore::ReadResponse; using ::tensorstore_grpc::kvstore::WriteRequest; using ::tensorstore_grpc::kvstore::WriteResponse; class TsGrpcMockTest : public testing::Test { public: ~TsGrpcMockTest() override { mock_service_.Shutdown(); } TsGrpcMockTest() { ON_CALL(mock(), Read).WillByDefault(Return(grpc::Status::CANCELLED)); ON_CALL(mock(), Write).WillByDefault(Return(grpc::Status::CANCELLED)); ON_CALL(mock(), Delete).WillByDefault(Return(grpc::Status::CANCELLED)); ON_CALL(mock(), List).WillByDefault(Return(grpc::Status::CANCELLED)); } tensorstore::KvStore OpenStore() { return kvstore::Open({ {"driver", "tsgrpc_kvstore"}, {"address", mock_service_.server_address()}, }) .value(); } MockKvStoreService& mock() { return *mock_service_.service(); } tensorstore::grpc_mocker::MockGrpcServer<MockKvStoreService> mock_service_; }; TEST_F(TsGrpcMockTest, Read) { ReadRequest expected_request = ParseTextProtoOrDie(R"pb( key: 'abc' )pb"); ReadResponse response = ParseTextProtoOrDie(R"pb( state: 2 value: '1234' generation_and_timestamp { generation: '1\001' timestamp { seconds: 1634327736 nanos: 123456 } } )pb"); EXPECT_CALL(mock(), Read(_, EqualsProto(expected_request), _)) .WillOnce(DoAll(SetArgPointee<2>(response), Return(grpc::Status::OK))); kvstore::ReadResult result; { auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( result, kvstore::Read(store, expected_request.key()).result()); } EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value, "1234"); EXPECT_EQ(result.stamp.time, absl::FromUnixSeconds(1634327736) + absl::Nanoseconds(123456)); EXPECT_EQ(result.stamp.generation, StorageGeneration::FromString("1")); } TEST_F(TsGrpcMockTest, ReadWithOptions) { ReadRequest expected_request = ParseTextProtoOrDie(R"pb( key: "abc" generation_if_not_equal: "abc\001" generation_if_equal: "xyz\001" byte_range { inclusive_min: 1 exclusive_max: 10 } )pb"); EXPECT_CALL(mock(), Read(_, EqualsProto(expected_request), _)) .WillOnce(Return(grpc::Status::OK)); kvstore::ReadResult result; { kvstore::ReadOptions options; options.generation_conditions.if_not_equal = StorageGeneration::FromString("abc"); options.generation_conditions.if_equal = StorageGeneration::FromString("xyz"); options.staleness_bound = absl::InfiniteFuture(); options.byte_range = OptionalByteRangeRequest{1, 10}; auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( result, kvstore::Read(store, expected_request.key(), options).result()); } EXPECT_EQ(result.stamp.generation, StorageGeneration::Unknown()); } TEST_F(TsGrpcMockTest, Write) { WriteRequest expected_request = ParseTextProtoOrDie(R"pb( key: 'abc' value: '1234' )pb"); WriteResponse response = ParseTextProtoOrDie(R"pb( generation_and_timestamp { generation: '1\001' timestamp { seconds: 1634327736 nanos: 123456 } } )pb"); EXPECT_CALL(mock(), Write(_, EqualsProto(expected_request), _)) .WillOnce(DoAll(SetArgPointee<2>(response), Return(grpc::Status::OK))); tensorstore::TimestampedStorageGeneration result; { auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( result, kvstore::Write(store, expected_request.key(), absl::Cord(expected_request.value())) .result()); } EXPECT_EQ(result.generation, StorageGeneration::FromString("1")); } TEST_F(TsGrpcMockTest, WriteEmpty) { WriteRequest expected_request = ParseTextProtoOrDie(R"pb( key: 'abc' generation_if_equal: '\005' )pb"); WriteResponse response = ParseTextProtoOrDie(R"pb( generation_and_timestamp { generation: '1\001' timestamp { seconds: 1634327736 nanos: 123456 } } )pb"); EXPECT_CALL(mock(), Write(_, EqualsProto(expected_request), _)) .WillOnce(DoAll(SetArgPointee<2>(response), Return(grpc::Status::OK))); tensorstore::TimestampedStorageGeneration result; { auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( result, kvstore::Write(store, expected_request.key(), absl::Cord(), {StorageGeneration::NoValue()}) .result()); } EXPECT_EQ(result.generation, StorageGeneration::FromString("1")); } TEST_F(TsGrpcMockTest, WriteWithOptions) { WriteRequest expected_request = ParseTextProtoOrDie(R"pb( key: 'abc' value: '1234' generation_if_equal: "abc\001" )pb"); WriteResponse response = ParseTextProtoOrDie(R"pb( generation_and_timestamp { generation: '1\001' timestamp { seconds: 1634327736 nanos: 123456 } } )pb"); EXPECT_CALL(mock(), Write(_, EqualsProto(expected_request), _)) .WillOnce(DoAll(SetArgPointee<2>(response), Return(grpc::Status::OK))); tensorstore::TimestampedStorageGeneration result; { auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( result, kvstore::Write(store, expected_request.key(), absl::Cord(expected_request.value()), {StorageGeneration::FromString("abc")}) .result()); } EXPECT_EQ(result.generation, StorageGeneration::FromString("1")); } TEST_F(TsGrpcMockTest, WriteNullopt) { DeleteRequest expected_request = ParseTextProtoOrDie(R"pb( key: 'abc' generation_if_equal: '\005' )pb"); DeleteResponse response = ParseTextProtoOrDie(R"pb( generation_and_timestamp { generation: '1\001' timestamp { seconds: 1634327736 nanos: 123456 } } )pb"); EXPECT_CALL(mock(), Delete(_, EqualsProto(expected_request), _)) .WillOnce(DoAll(SetArgPointee<2>(response), Return(grpc::Status::OK))); tensorstore::TimestampedStorageGeneration result; { auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( result, kvstore::Write(store, expected_request.key(), std::nullopt, {StorageGeneration::NoValue()}) .result()); } EXPECT_EQ(result.generation, StorageGeneration::FromString("1")); } TEST_F(TsGrpcMockTest, Delete) { DeleteRequest expected_request = ParseTextProtoOrDie(R"pb( key: 'abc' )pb"); DeleteResponse response = ParseTextProtoOrDie(R"pb( generation_and_timestamp { generation: '1\001' timestamp { seconds: 1634327736 nanos: 123456 } } )pb"); EXPECT_CALL(mock(), Delete(_, EqualsProto(expected_request), _)) .WillOnce(DoAll(SetArgPointee<2>(response), Return(grpc::Status::OK))); tensorstore::TimestampedStorageGeneration result; { auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( result, kvstore::Delete(store, expected_request.key()).result()); } EXPECT_EQ(result.generation, StorageGeneration::FromString("1")); } TEST_F(TsGrpcMockTest, DeleteWithOptions) { DeleteRequest expected_request = ParseTextProtoOrDie(R"pb( key: 'abc' generation_if_equal: "abc\001" )pb"); DeleteResponse response = ParseTextProtoOrDie(R"pb( generation_and_timestamp { generation: '1\001' timestamp { seconds: 1634327736 nanos: 123456 } } )pb"); EXPECT_CALL(mock(), Delete(_, EqualsProto(expected_request), _)) .WillOnce(DoAll(SetArgPointee<2>(response), Return(grpc::Status::OK))); tensorstore::TimestampedStorageGeneration result; { auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( result, kvstore::Delete(store, expected_request.key(), {StorageGeneration::FromString("abc")}) .result()); } EXPECT_EQ(result.generation, StorageGeneration::FromString("1")); } TEST_F(TsGrpcMockTest, DeleteRange) { DeleteRequest expected_request = ParseTextProtoOrDie(R"pb( range { inclusive_min: 'a/c' exclusive_max: 'a/d' } )pb"); EXPECT_CALL(mock(), Delete(_, EqualsProto(expected_request), _)) .WillOnce(Return(grpc::Status::OK)); { auto store = OpenStore(); TENSORSTORE_EXPECT_OK( kvstore::DeleteRange(store, KeyRange::Prefix("a/c")).result()); } } TEST_F(TsGrpcMockTest, List) { ListRequest expected_request = ParseTextProtoOrDie(R"pb( range: {} )pb"); ListResponse response = ParseTextProtoOrDie(R"pb( entry { key: 'a' } entry { key: 'b' } entry { key: 'c' } )pb"); EXPECT_CALL(mock(), List(_, EqualsProto(expected_request), _)) .WillOnce(testing::Invoke( [=](auto*, auto*, grpc::ServerWriter<ListResponse>* resp) -> ::grpc::Status { resp->Write(response); return grpc::Status::OK; })); std::vector<std::string> log; { auto store = OpenStore(); absl::Notification notification; tensorstore::execution::submit( tensorstore::kvstore::List(store, {}), tensorstore::CompletionNotifyingReceiver{ &notification, tensorstore::LoggingReceiver{&log}}); notification.WaitForNotification(); } EXPECT_THAT(log, ::testing::UnorderedElementsAre( "set_starting", "set_value: a", "set_value: b", "set_value: c", "set_done", "set_stopping")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/tsgrpc/tsgrpc.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/tsgrpc/tsgrpc_test.cc
4f887a6430414cd6088e1743555015b10f116d50
8e4c68dd-bf7a-461f-8359-b00cdc6e5b6d
cpp
google/tensorstore
gcs_grpc
tensorstore/kvstore/gcs_grpc/gcs_grpc.cc
tensorstore/kvstore/gcs_grpc/gcs_grpc_test.cc
#include <stddef.h> #include <stdint.h> #include <algorithm> #include <cassert> #include <functional> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include "absl/base/attributes.h" #include "absl/base/thread_annotations.h" #include "absl/crc/crc32c.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_format.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "grpcpp/client_context.h" #include "grpcpp/security/credentials.h" #include "grpcpp/support/client_callback.h" #include "grpcpp/support/status.h" #include "tensorstore/context.h" #include "tensorstore/internal/data_copy_concurrency_resource.h" #include "tensorstore/internal/grpc/utils.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/internal/metrics/counter.h" #include "tensorstore/internal/metrics/histogram.h" #include "tensorstore/internal/source_location.h" #include "tensorstore/internal/thread/schedule_at.h" #include "tensorstore/internal/uri_utils.h" #include "tensorstore/kvstore/batch_util.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/common_metrics.h" #include "tensorstore/kvstore/driver.h" #include "tensorstore/kvstore/gcs/gcs_resource.h" #include "tensorstore/kvstore/gcs/validate.h" #include "tensorstore/kvstore/gcs_grpc/get_credentials.h" #include "tensorstore/kvstore/gcs_grpc/storage_stub_pool.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/generic_coalescing_batch_util.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/registry.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/supported_features.h" #include "tensorstore/kvstore/url_registry.h" #include "tensorstore/util/execution/any_receiver.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/fwd.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" #include "tensorstore/internal/cache_key/absl_time.h" #include "tensorstore/internal/cache_key/std_optional.h" #include "tensorstore/internal/context_binding.h" #include "tensorstore/internal/json_binding/absl_time.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/enum.h" #include "tensorstore/serialization/absl_time.h" #include "tensorstore/serialization/fwd.h" #include "google/protobuf/empty.pb.h" #include "google/storage/v2/storage.grpc.pb.h" #include "google/storage/v2/storage.pb.h" using ::tensorstore::internal::DataCopyConcurrencyResource; using ::tensorstore::internal::GrpcStatusToAbslStatus; using ::tensorstore::internal::ScheduleAt; using ::tensorstore::internal_gcs_grpc::GetCredentialsForEndpoint; using ::tensorstore::internal_gcs_grpc::GetSharedStorageStubPool; using ::tensorstore::internal_gcs_grpc::StorageStubPool; using ::tensorstore::internal_storage_gcs::GcsUserProjectResource; using ::tensorstore::internal_storage_gcs::IsRetriable; using ::tensorstore::internal_storage_gcs::IsValidBucketName; using ::tensorstore::internal_storage_gcs::IsValidObjectName; using ::tensorstore::internal_storage_gcs::IsValidStorageGeneration; using ::tensorstore::kvstore::ListEntry; using ::tensorstore::kvstore::ListReceiver; using ::tensorstore::kvstore::SupportedFeatures; using ::google::storage::v2::DeleteObjectRequest; using ::google::storage::v2::ListObjectsRequest; using ::google::storage::v2::ListObjectsResponse; using ::google::storage::v2::ReadObjectRequest; using ::google::storage::v2::ReadObjectResponse; using ::google::storage::v2::ServiceConstants; using ::google::storage::v2::WriteObjectRequest; using ::google::storage::v2::WriteObjectResponse; using ::google::storage::v2::Storage; namespace { static constexpr char kUriScheme[] = "gcs_grpc"; static constexpr size_t kMaxWriteBytes = ServiceConstants::MAX_WRITE_CHUNK_BYTES; } namespace tensorstore { namespace { namespace jb = tensorstore::internal_json_binding; struct GcsMetrics : public internal_kvstore::CommonMetrics { internal_metrics::Counter<int64_t>& retries; }; auto gcs_grpc_metrics = []() -> GcsMetrics { return {TENSORSTORE_KVSTORE_COMMON_METRICS(gcs_grpc), TENSORSTORE_KVSTORE_COUNTER_IMPL( gcs_grpc, retries, "Ccunt of all retried requests (read/write/delete)")}; }(); ABSL_CONST_INIT internal_log::VerboseFlag gcs_grpc_logging("gcs_grpc"); struct GcsGrpcKeyValueStoreSpecData { std::string bucket; std::string endpoint; uint32_t num_channels = 0; absl::Duration timeout = absl::ZeroDuration(); absl::Duration wait_for_connection = absl::ZeroDuration(); Context::Resource<GcsUserProjectResource> user_project; Context::Resource<internal_storage_gcs::GcsRequestRetries> retries; Context::Resource<DataCopyConcurrencyResource> data_copy_concurrency; constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.bucket, x.endpoint, x.num_channels, x.timeout, x.wait_for_connection, x.user_project, x.retries, x.data_copy_concurrency); }; constexpr static auto default_json_binder = jb::Object( jb::Member( "bucket", jb::Projection<&GcsGrpcKeyValueStoreSpecData::bucket>( jb::Validate([](const auto& options, const std::string* x) { if (!IsValidBucketName(*x)) { return absl::InvalidArgumentError(tensorstore::StrCat( "Invalid GCS bucket name: ", QuoteString(*x))); } return absl::OkStatus(); }))), jb::Member("endpoint", jb::Projection<&GcsGrpcKeyValueStoreSpecData::endpoint>( jb::DefaultInitializedValue())), jb::Member("num_channels", jb::Projection<&GcsGrpcKeyValueStoreSpecData::num_channels>( jb::DefaultInitializedValue())), jb::Member("timeout", jb::Projection<&GcsGrpcKeyValueStoreSpecData::timeout>( jb::DefaultValue<jb::kNeverIncludeDefaults>( [](auto* x) { *x = absl::ZeroDuration(); }))), jb::Member( "wait_for_connection", jb::Projection<&GcsGrpcKeyValueStoreSpecData::wait_for_connection>( jb::DefaultValue<jb::kNeverIncludeDefaults>( [](auto* x) { *x = absl::ZeroDuration(); }))), jb::Member(GcsUserProjectResource::id, jb::Projection<&GcsGrpcKeyValueStoreSpecData::user_project>()), jb::Member(internal_storage_gcs::GcsRequestRetries::id, jb::Projection<&GcsGrpcKeyValueStoreSpecData::retries>()), jb::Member( DataCopyConcurrencyResource::id, jb::Projection< &GcsGrpcKeyValueStoreSpecData::data_copy_concurrency>()), jb::DiscardExtraMembers); }; class GcsGrpcKeyValueStoreSpec : public internal_kvstore::RegisteredDriverSpec< GcsGrpcKeyValueStoreSpec, GcsGrpcKeyValueStoreSpecData> { public: static constexpr char id[] = "gcs_grpc"; Future<kvstore::DriverPtr> DoOpen() const override; absl::Status NormalizeSpec(std::string& path) override { if (!path.empty() && !IsValidObjectName(path)) { return absl::InvalidArgumentError( tensorstore::StrCat("Invalid GCS path: ", QuoteString(path))); } return absl::OkStatus(); } Result<std::string> ToUrl(std::string_view path) const override { if (!data_.endpoint.empty()) { return absl::UnimplementedError( "URL representation does not support test endpoints"); } return tensorstore::StrCat(kUriScheme, ": internal::PercentEncodeUriPath(path)); } }; class GcsGrpcKeyValueStore : public internal_kvstore::RegisteredDriver<GcsGrpcKeyValueStore, GcsGrpcKeyValueStoreSpec> { public: internal_kvstore_batch::CoalescingOptions GetBatchReadCoalescingOptions() const { return internal_kvstore_batch::kDefaultRemoteStorageCoalescingOptions; } Future<ReadResult> Read(Key key, ReadOptions options) override; Future<ReadResult> ReadImpl(Key&& key, ReadOptions&& options); Future<TimestampedStorageGeneration> Write(Key key, std::optional<Value> value, WriteOptions options) override; void ListImpl(ListOptions options, ListReceiver receiver) override; Future<const void> DeleteRange(KeyRange range) override; absl::Status GetBoundSpecData(SpecData& spec) const { spec = spec_; return absl::OkStatus(); } SupportedFeatures GetSupportedFeatures( const KeyRange& key_range) const final { return SupportedFeatures::kSingleKeyAtomicReadModifyWrite | SupportedFeatures::kAtomicWriteWithoutOverwrite; } const Executor& executor() const { return spec_.data_copy_concurrency->executor; } std::string bucket_name() { return bucket_; } std::shared_ptr<Storage::StubInterface> get_stub() { return storage_stub_pool_->get_next_stub(); } std::unique_ptr<grpc::ClientContext> AllocateContext() { auto context = std::make_unique<grpc::ClientContext>(); if (spec_.user_project->project_id && !spec_.user_project->project_id->empty()) { context->AddMetadata("x-goog-user-project", *spec_.user_project->project_id); } context->AddMetadata("x-goog-request-params", absl::StrFormat("bucket=%s", bucket_name())); if (spec_.timeout > absl::ZeroDuration() && spec_.timeout < absl::InfiniteDuration()) { context->set_deadline(absl::ToChronoTime(absl::Now() + spec_.timeout)); } if (call_credentials_fn_) { context->set_credentials(call_credentials_fn_()); } return context; } template <typename Task> absl::Status BackoffForAttemptAsync( absl::Status status, int attempt, Task* task, SourceLocation loc = ::tensorstore::SourceLocation::current()) { assert(task != nullptr); auto delay = spec_.retries->BackoffForAttempt(attempt); if (!delay) { return MaybeAnnotateStatus(std::move(status), absl::StrFormat("All %d retry attempts failed", spec_.retries->max_retries), absl::StatusCode::kAborted, loc); } gcs_grpc_metrics.retries.Increment(); ScheduleAt(absl::Now() + *delay, WithExecutor(executor(), [task = internal::IntrusivePtr<Task>( task)] { task->Retry(); })); return absl::OkStatus(); } SpecData spec_; std::string bucket_; std::shared_ptr<StorageStubPool> storage_stub_pool_; std::function<std::shared_ptr<grpc::CallCredentials>()> call_credentials_fn_; }; absl::crc32c_t ComputeCrc32c(const absl::Cord& cord) { absl::crc32c_t crc{0}; for (auto chunk : cord.Chunks()) { crc = absl::ExtendCrc32c(crc, chunk); } return crc; } struct ReadTask : public internal::AtomicReferenceCount<ReadTask>, public grpc::ClientReadReactor<ReadObjectResponse> { internal::IntrusivePtr<GcsGrpcKeyValueStore> driver_; kvstore::ReadOptions options_; Promise<kvstore::ReadResult> promise_; Storage::StubInterface* stub_ = nullptr; ReadObjectRequest request_; ReadObjectResponse response_; std::optional<absl::crc32c_t> crc32c_; TimestampedStorageGeneration storage_generation_; absl::Cord value_; int attempt_ = 0; absl::Mutex mutex_; std::unique_ptr<grpc::ClientContext> context_ ABSL_GUARDED_BY(mutex_); void TryCancel() ABSL_LOCKS_EXCLUDED(mutex_) { absl::MutexLock lock(&mutex_); if (context_) context_->TryCancel(); } void Start(const std::string& object_name) { ABSL_LOG_IF(INFO, gcs_grpc_logging) << "ReadTask " << object_name; stub_ = driver_->get_stub().get(); promise_.ExecuteWhenNotNeeded( [self = internal::IntrusivePtr<ReadTask>(this)] { self->TryCancel(); }); request_.set_bucket(driver_->bucket_name()); request_.set_object(object_name); if (!StorageGeneration::IsUnknown( options_.generation_conditions.if_equal)) { uint64_t gen = StorageGeneration::IsNoValue(options_.generation_conditions.if_equal) ? 0 : StorageGeneration::ToUint64( options_.generation_conditions.if_equal); request_.set_if_generation_match(gen); } if (!StorageGeneration::IsUnknown( options_.generation_conditions.if_not_equal)) { uint64_t gen = StorageGeneration::IsNoValue( options_.generation_conditions.if_not_equal) ? 0 : StorageGeneration::ToUint64( options_.generation_conditions.if_not_equal); request_.set_if_generation_not_match(gen); } if (options_.byte_range.inclusive_min != 0) { request_.set_read_offset(options_.byte_range.inclusive_min); } if (options_.byte_range.exclusive_max != -1) { auto target_size = options_.byte_range.size(); assert(target_size >= 0); request_.set_read_limit(target_size == 0 ? 1 : target_size); } Retry(); } void Retry() ABSL_LOCKS_EXCLUDED(mutex_) { if (!promise_.result_needed()) { return; } value_.Clear(); storage_generation_ = TimestampedStorageGeneration{StorageGeneration::Unknown(), absl::Now()}; { absl::MutexLock lock(&mutex_); assert(context_ == nullptr); context_ = driver_->AllocateContext(); intrusive_ptr_increment(this); stub_->async()->ReadObject(context_.get(), &request_, this); } StartRead(&response_); StartCall(); } void OnReadDone(bool ok) override { if (!ok) return; if (!promise_.result_needed()) { TryCancel(); return; } if (response_.has_metadata()) { storage_generation_.generation = StorageGeneration::FromUint64(response_.metadata().generation()); } if (response_.has_object_checksums() && response_.object_checksums().crc32c() != 0 && options_.byte_range.inclusive_min == 0 && !options_.byte_range.exclusive_max) { crc32c_ = absl::crc32c_t(response_.object_checksums().crc32c()); } if (response_.has_content_range()) { auto returned_size = response_.content_range().end() - response_.content_range().start(); if (auto size = options_.byte_range.size(); (size > 0 && size != returned_size) || (options_.byte_range.inclusive_min >= 0 && response_.content_range().start() != options_.byte_range.inclusive_min)) { promise_.SetResult(absl::OutOfRangeError( tensorstore::StrCat("Requested byte range ", options_.byte_range, " was not satisfied by GCS object with size ", response_.content_range().complete_length()))); TryCancel(); return; } } if (response_.has_checksummed_data() && response_.checksummed_data().has_crc32c() && response_.checksummed_data().crc32c() != 0) { auto content_crc32c = ComputeCrc32c(response_.checksummed_data().content()); if (content_crc32c != absl::crc32c_t(response_.checksummed_data().crc32c())) { promise_.SetResult(absl::DataLossError(absl::StrFormat( "Object fragment crc32c %08x does not match expected crc32c %08x", static_cast<uint32_t>(content_crc32c), response_.checksummed_data().crc32c()))); TryCancel(); return; } } if (response_.has_checksummed_data()) { gcs_grpc_metrics.bytes_read.IncrementBy( response_.checksummed_data().content().size()); value_.Append(response_.checksummed_data().content()); } StartRead(&response_); } void OnDone(const grpc::Status& s) override { internal::IntrusivePtr<ReadTask> self(this, internal::adopt_object_ref); driver_->executor()( [self = std::move(self), status = GrpcStatusToAbslStatus(s)]() { self->ReadFinished(std::move(status)); }); } void ReadFinished(absl::Status status) { if (!promise_.result_needed()) { return; } { absl::MutexLock lock(&mutex_); context_ = nullptr; } if (!status.ok() && attempt_ == 0 && status.code() == absl::StatusCode::kUnauthenticated) { attempt_++; Retry(); return; } if (!status.ok() && IsRetriable(status)) { status = driver_->BackoffForAttemptAsync(std::move(status), attempt_++, this); if (status.ok()) { return; } } auto latency = absl::Now() - storage_generation_.time; gcs_grpc_metrics.read_latency_ms.Observe( absl::ToInt64Milliseconds(latency)); if (!status.ok()) { if (absl::IsFailedPrecondition(status) || absl::IsAborted(status)) { if (!StorageGeneration::IsUnknown( options_.generation_conditions.if_equal)) { storage_generation_.generation = StorageGeneration::Unknown(); } else { storage_generation_.generation = options_.generation_conditions.if_not_equal; } promise_.SetResult( kvstore::ReadResult::Unspecified(std::move(storage_generation_))); return; } if (absl::IsNotFound(status)) { promise_.SetResult( kvstore::ReadResult::Missing(storage_generation_.time)); return; } promise_.SetResult(std::move(status)); return; } if (StorageGeneration::IsUnknown(storage_generation_.generation)) { promise_.SetResult( absl::InternalError("Object missing a valid generation")); return; } if (options_.byte_range.size() == 0) { value_.Clear(); } else if (crc32c_.has_value() && ComputeCrc32c(value_) != *crc32c_) { promise_.SetResult( absl::DataLossError("Object crc32c does not match expected crc32c")); return; } promise_.SetResult(kvstore::ReadResult::Value( std::move(value_), std::move(storage_generation_))); } }; struct WriteTask : public internal::AtomicReferenceCount<WriteTask>, public grpc::ClientWriteReactor<WriteObjectRequest> { internal::IntrusivePtr<GcsGrpcKeyValueStore> driver_; kvstore::WriteOptions options_; Promise<TimestampedStorageGeneration> promise_; std::string object_name_; absl::Cord value_; Storage::StubInterface* stub_ = nullptr; WriteObjectRequest request_; WriteObjectResponse response_; TimestampedStorageGeneration write_result_; size_t write_offset_; absl::crc32c_t crc32c_; int attempt_ = 0; absl::Mutex mutex_; std::unique_ptr<grpc::ClientContext> context_ ABSL_GUARDED_BY(mutex_); void TryCancel() ABSL_LOCKS_EXCLUDED(mutex_) { absl::MutexLock lock(&mutex_); if (context_) context_->TryCancel(); } void UpdateRequestForNextWrite() ABSL_LOCKS_EXCLUDED(mutex_) { absl::MutexLock lock(&mutex_); if (write_offset_ == 0) { write_result_.time = absl::Now(); auto& resource = *request_.mutable_write_object_spec()->mutable_resource(); resource.set_bucket(driver_->bucket_name()); resource.set_name(object_name_); request_.mutable_write_object_spec()->set_object_size(value_.size()); if (!StorageGeneration::IsUnknown( options_.generation_conditions.if_equal)) { auto gen = StorageGeneration::ToUint64( options_.generation_conditions.if_equal); request_.mutable_write_object_spec()->set_if_generation_match(gen); } } else { request_.clear_write_object_spec(); } request_.set_write_offset(write_offset_); size_t next_write_offset = std::min(write_offset_ + kMaxWriteBytes, value_.size()); auto& checksummed_data = *request_.mutable_checksummed_data(); checksummed_data.set_content( value_.Subcord(write_offset_, next_write_offset - write_offset_)); auto chunk_crc32c = ComputeCrc32c(checksummed_data.content()); checksummed_data.set_crc32c(static_cast<uint32_t>(chunk_crc32c)); crc32c_ = absl::ConcatCrc32c(crc32c_, chunk_crc32c, checksummed_data.content().size()); write_offset_ = next_write_offset; if (write_offset_ == value_.size()) { request_.mutable_object_checksums()->set_crc32c( static_cast<uint32_t>(crc32c_)); request_.set_finish_write(true); } } void Start(std::string object_name, absl::Cord value) { ABSL_LOG_IF(INFO, gcs_grpc_logging) << "WriteTask " << object_name; object_name_ = std::move(object_name); value_ = std::move(value); stub_ = driver_->get_stub().get(); promise_.ExecuteWhenNotNeeded([self = internal::IntrusivePtr<WriteTask>( this)] { self->TryCancel(); }); Retry(); } void Retry() ABSL_LOCKS_EXCLUDED(mutex_) { if (!promise_.result_needed()) { return; } write_offset_ = 0; crc32c_ = absl::crc32c_t{0}; request_.Clear(); { absl::MutexLock lock(&mutex_); assert(context_ == nullptr); context_ = driver_->AllocateContext(); intrusive_ptr_increment(this); stub_->async()->WriteObject(context_.get(), &response_, this); } UpdateRequestForNextWrite(); auto options = grpc::WriteOptions(); if (request_.finish_write()) { options.set_last_message(); } StartWrite(&request_, options); StartCall(); } void OnWriteDone(bool ok) override { if (!ok) return; if (request_.finish_write()) return; UpdateRequestForNextWrite(); auto options = grpc::WriteOptions(); if (request_.finish_write()) { options.set_last_message(); } StartWrite(&request_, options); } void OnDone(const grpc::Status& s) override { internal::IntrusivePtr<WriteTask> self(this, internal::adopt_object_ref); driver_->executor()( [self = std::move(self), status = GrpcStatusToAbslStatus(s)] { self->WriteFinished(std::move(status)); }); } void WriteFinished(absl::Status status) { if (!promise_.result_needed()) { return; } auto latency = absl::Now() - write_result_.time; gcs_grpc_metrics.write_latency_ms.Observe( absl::ToInt64Milliseconds(latency)); { absl::MutexLock lock(&mutex_); context_ = nullptr; } if (!status.ok() && attempt_ == 0 && status.code() == absl::StatusCode::kUnauthenticated) { attempt_++; Retry(); return; } if (!status.ok() && IsRetriable(status)) { status = driver_->BackoffForAttemptAsync(std::move(status), attempt_++, this); if (status.ok()) { return; } } if (response_.has_resource()) { write_result_.generation = StorageGeneration::FromUint64(response_.resource().generation()); } if (absl::IsFailedPrecondition(status) || absl::IsAlreadyExists(status)) { write_result_.generation = StorageGeneration::Unknown(); promise_.SetResult(std::move(write_result_)); } else if (absl::IsNotFound(status) && !StorageGeneration::IsUnknown( options_.generation_conditions.if_equal)) { write_result_.generation = StorageGeneration::Unknown(); promise_.SetResult(std::move(write_result_)); } else if (!status.ok()) { promise_.SetResult(status); } else { promise_.SetResult(std::move(write_result_)); } } }; struct DeleteTask : public internal::AtomicReferenceCount<DeleteTask> { internal::IntrusivePtr<GcsGrpcKeyValueStore> driver_; kvstore::WriteOptions options_; Promise<TimestampedStorageGeneration> promise_; Storage::StubInterface* stub_ = nullptr; absl::Time start_time_; DeleteObjectRequest request_; ::google::protobuf::Empty response_; int attempt_ = 0; absl::Mutex mutex_; std::unique_ptr<grpc::ClientContext> context_ ABSL_GUARDED_BY(mutex_); void TryCancel() ABSL_LOCKS_EXCLUDED(mutex_) { absl::MutexLock lock(&mutex_); if (context_) context_->TryCancel(); } void Start(const std::string& object_name) { ABSL_LOG_IF(INFO, gcs_grpc_logging) << "DeleteTask " << object_name; stub_ = driver_->get_stub().get(); promise_.ExecuteWhenNotNeeded([self = internal::IntrusivePtr<DeleteTask>( this)] { self->TryCancel(); }); request_.set_bucket(driver_->bucket_name()); request_.set_object(object_name); if (!StorageGeneration::IsUnknown( options_.generation_conditions.if_equal)) { auto gen = StorageGeneration::ToUint64(options_.generation_conditions.if_equal); request_.set_if_generation_match(gen); } Retry(); } void Retry() ABSL_LOCKS_EXCLUDED(mutex_) { if (!promise_.result_needed()) { return; } start_time_ = absl::Now(); { absl::MutexLock lock(&mutex_); assert(context_ == nullptr); context_ = driver_->AllocateContext(); intrusive_ptr_increment(this); stub_->async()->DeleteObject( context_.get(), &request_, &response_, WithExecutor(driver_->executor(), [this](::grpc::Status s) { internal::IntrusivePtr<DeleteTask> self(this, internal::adopt_object_ref); self->DeleteFinished(GrpcStatusToAbslStatus(s)); })); } } void DeleteFinished(absl::Status status) { if (!promise_.result_needed()) { return; } { absl::MutexLock lock(&mutex_); context_ = nullptr; } if (!status.ok() && attempt_ == 0 && status.code() == absl::StatusCode::kUnauthenticated) { attempt_++; Retry(); return; } if (!status.ok() && IsRetriable(status)) { status = driver_->BackoffForAttemptAsync(std::move(status), attempt_++, this); if (status.ok()) { return; } } TimestampedStorageGeneration r; r.time = start_time_; r.generation = StorageGeneration::NoValue(); if (absl::IsFailedPrecondition(status)) { r.generation = StorageGeneration::Unknown(); } else if (absl::IsNotFound(status)) { if (!options_.generation_conditions.MatchesNoValue()) { r.generation = StorageGeneration::Unknown(); } } else if (!status.ok()) { promise_.SetResult(std::move(status)); return; } promise_.SetResult(std::move(r)); } }; struct ListTask : public internal::AtomicReferenceCount<ListTask> { internal::IntrusivePtr<GcsGrpcKeyValueStore> driver_; kvstore::ListOptions options_; ListReceiver receiver_; Storage::StubInterface* stub_ = nullptr; ListObjectsRequest request; ListObjectsResponse response; int attempt_ = 0; absl::Mutex mutex_; std::unique_ptr<grpc::ClientContext> context_ ABSL_GUARDED_BY(mutex_); bool cancelled_ ABSL_GUARDED_BY(mutex_) = false; ListTask(internal::IntrusivePtr<GcsGrpcKeyValueStore>&& driver, kvstore::ListOptions&& options, ListReceiver&& receiver) : driver_(std::move(driver)), options_(std::move(options)), receiver_(std::move(receiver)) { execution::set_starting(receiver_, [this] { TryCancel(); }); } ~ListTask() { { absl::MutexLock l(&mutex_); context_ = nullptr; } driver_ = {}; execution::set_stopping(receiver_); } bool is_cancelled() ABSL_LOCKS_EXCLUDED(mutex_) { absl::MutexLock l(&mutex_); return cancelled_; } void TryCancel() ABSL_LOCKS_EXCLUDED(mutex_) { absl::MutexLock l(&mutex_); if (!cancelled_) { cancelled_ = true; if (context_) context_->TryCancel(); } } void Start() { ABSL_LOG_IF(INFO, gcs_grpc_logging) << "ListTask " << options_.range; stub_ = driver_->get_stub().get(); request.set_lexicographic_start(options_.range.inclusive_min); request.set_lexicographic_end(options_.range.exclusive_max); request.set_parent(driver_->bucket_name()); request.set_page_size(1000); Retry(); } void Retry() ABSL_LOCKS_EXCLUDED(mutex_) { if (is_cancelled()) { execution::set_done(receiver_); return; } { absl::MutexLock lock(&mutex_); context_ = driver_->AllocateContext(); intrusive_ptr_increment(this); stub_->async()->ListObjects( context_.get(), &request, &response, WithExecutor(driver_->executor(), [this](::grpc::Status s) { internal::IntrusivePtr<ListTask> self(this, internal::adopt_object_ref); self->ListFinished(GrpcStatusToAbslStatus(s)); })); } } void ListFinished(absl::Status status) { if (is_cancelled()) { execution::set_done(receiver_); return; } if (!status.ok() && IsRetriable(status)) { status = driver_->BackoffForAttemptAsync(std::move(status), attempt_++, this); if (status.ok()) { return; } } if (!status.ok()) { execution::set_error(receiver_, std::move(status)); return; } bool done = false; for (const auto& o : response.objects()) { if (is_cancelled()) { done = true; break; } std::string_view name = o.name(); if (!Contains(options_.range, name)) { if (KeyRange::CompareKeyAndExclusiveMax( name, options_.range.exclusive_max) >= 0) { done = true; break; } continue; } if (options_.strip_prefix_length) { name = name.substr(options_.strip_prefix_length); } execution::set_value(receiver_, ListEntry{ std::string(name), ListEntry::checked_size(o.size()), }); } if (!done && !response.next_page_token().empty()) { request.set_page_token(response.next_page_token()); response.Clear(); attempt_ = 0; Retry(); return; } execution::set_done(receiver_); } }; struct DeleteRangeListReceiver { internal::IntrusivePtr<GcsGrpcKeyValueStore> driver_; Promise<void> promise_; FutureCallbackRegistration cancel_registration_; void set_starting(AnyCancelReceiver cancel) { cancel_registration_ = promise_.ExecuteWhenNotNeeded(std::move(cancel)); } void set_value(ListEntry entry) { assert(!entry.key.empty()); if (!entry.key.empty()) { LinkError(promise_, driver_->Delete(std::move(entry.key))); } } void set_error(absl::Status error) { SetDeferredResult(promise_, std::move(error)); promise_ = Promise<void>(); } void set_done() { promise_ = Promise<void>(); } void set_stopping() { cancel_registration_.Unregister(); driver_ = {}; } }; Future<kvstore::ReadResult> GcsGrpcKeyValueStore::Read(Key key, ReadOptions options) { gcs_grpc_metrics.read.Increment(); if (!IsValidObjectName(key)) { return absl::InvalidArgumentError("Invalid blob object name"); } if (!IsValidStorageGeneration(options.generation_conditions.if_equal) || !IsValidStorageGeneration(options.generation_conditions.if_not_equal)) { return absl::InvalidArgumentError("Malformed StorageGeneration"); } return internal_kvstore_batch::HandleBatchRequestByGenericByteRangeCoalescing( *this, std::move(key), std::move(options)); } Future<kvstore::ReadResult> GcsGrpcKeyValueStore::ReadImpl( Key&& key, ReadOptions&& options) { gcs_grpc_metrics.batch_read.Increment(); auto op = PromiseFuturePair<ReadResult>::Make(); auto task = internal::MakeIntrusivePtr<ReadTask>(); task->driver_ = internal::IntrusivePtr<GcsGrpcKeyValueStore>(this); task->options_ = std::move(options); task->promise_ = std::move(op.promise); task->Start(key); return std::move(op.future); } Future<TimestampedStorageGeneration> GcsGrpcKeyValueStore::Write( Key key, std::optional<Value> value, WriteOptions options) { gcs_grpc_metrics.write.Increment(); if (!IsValidObjectName(key)) { return absl::InvalidArgumentError("Invalid blob object name"); } if (!IsValidStorageGeneration(options.generation_conditions.if_equal)) { return absl::InvalidArgumentError("Malformed StorageGeneration"); } auto op = PromiseFuturePair<TimestampedStorageGeneration>::Make(); if (!value) { auto task = internal::MakeIntrusivePtr<DeleteTask>(); task->driver_ = internal::IntrusivePtr<GcsGrpcKeyValueStore>(this); task->options_ = std::move(options); task->promise_ = std::move(op.promise); task->Start(key); } else { auto task = internal::MakeIntrusivePtr<WriteTask>(); task->driver_ = internal::IntrusivePtr<GcsGrpcKeyValueStore>(this); task->options_ = std::move(options); task->promise_ = std::move(op.promise); task->Start(key, *std::move(value)); } return std::move(op.future); } void GcsGrpcKeyValueStore::ListImpl(ListOptions options, ListReceiver receiver) { gcs_grpc_metrics.list.Increment(); if (options.range.empty()) { execution::set_starting(receiver, [] {}); execution::set_done(receiver); execution::set_stopping(receiver); return; } auto task = internal::MakeIntrusivePtr<ListTask>( internal::IntrusivePtr<GcsGrpcKeyValueStore>(this), std::move(options), std::move(receiver)); task->Start(); } Future<const void> GcsGrpcKeyValueStore::DeleteRange(KeyRange range) { gcs_grpc_metrics.delete_range.Increment(); if (range.empty()) return absl::OkStatus(); auto op = PromiseFuturePair<void>::Make(tensorstore::MakeResult()); ListOptions list_options; list_options.range = std::move(range); ListImpl(list_options, DeleteRangeListReceiver{ internal::IntrusivePtr<GcsGrpcKeyValueStore>(this), std::move(op.promise)}); return std::move(op.future); } Future<kvstore::DriverPtr> GcsGrpcKeyValueStoreSpec::DoOpen() const { auto driver = internal::MakeIntrusivePtr<GcsGrpcKeyValueStore>(); driver->spec_ = data_; driver->bucket_ = absl::StrFormat("projects/_/buckets/%s", data_.bucket); std::string endpoint = data_.endpoint; if (endpoint.empty()) { endpoint = "dns: } auto channel_credentials = GetCredentialsForEndpoint(endpoint, driver->call_credentials_fn_); driver->storage_stub_pool_ = GetSharedStorageStubPool( endpoint, data_.num_channels, std::move(channel_credentials)); if (driver->spec_.wait_for_connection > absl::ZeroDuration()) { driver->storage_stub_pool_->WaitForConnected( driver->spec_.wait_for_connection); } return driver; } Result<kvstore::Spec> ParseGcsGrpcUrl(std::string_view url) { auto parsed = internal::ParseGenericUri(url); assert(parsed.scheme == kUriScheme); if (!parsed.query.empty()) { return absl::InvalidArgumentError("Query string not supported"); } if (!parsed.fragment.empty()) { return absl::InvalidArgumentError("Fragment identifier not supported"); } if (!IsValidBucketName(parsed.authority)) { return absl::InvalidArgumentError(tensorstore::StrCat( "Invalid GCS bucket name: ", QuoteString(parsed.authority))); } auto decoded_path = parsed.path.empty() ? std::string() : internal::PercentDecode(parsed.path.substr(1)); auto driver_spec = internal::MakeIntrusivePtr<GcsGrpcKeyValueStoreSpec>(); driver_spec->data_.bucket = std::string(parsed.authority); driver_spec->data_.user_project = Context::Resource<GcsUserProjectResource>::DefaultSpec(); driver_spec->data_.retries = Context::Resource<internal_storage_gcs::GcsRequestRetries>::DefaultSpec(); driver_spec->data_.data_copy_concurrency = Context::Resource<DataCopyConcurrencyResource>::DefaultSpec(); return {std::in_place, std::move(driver_spec), std::move(decoded_path)}; } } } TENSORSTORE_DECLARE_GARBAGE_COLLECTION_NOT_REQUIRED( tensorstore::GcsGrpcKeyValueStore) namespace { const tensorstore::internal_kvstore::DriverRegistration< tensorstore::GcsGrpcKeyValueStoreSpec> registration; const tensorstore::internal_kvstore::UrlSchemeRegistration url_scheme_registration{kUriScheme, tensorstore::ParseGcsGrpcUrl}; }
#include <stddef.h> #include <cstring> #include <optional> #include <string> #include <type_traits> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_format.h" #include "absl/synchronization/notification.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "grpcpp/support/sync_stream.h" #include "tensorstore/context.h" #include "tensorstore/internal/flat_cord_builder.h" #include "tensorstore/internal/grpc/grpc_mock.h" #include "tensorstore/internal/grpc/utils.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/gcs_grpc/mock_storage_service.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/test_util.h" #include "tensorstore/proto/parse_text_proto_or_die.h" #include "tensorstore/proto/protobuf_matchers.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/execution/sender_testutil.h" #include "tensorstore/util/future.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status_testutil.h" #include "google/storage/v2/storage.pb.h" namespace { namespace kvstore = ::tensorstore::kvstore; using ::protobuf_matchers::EqualsProto; using ::tensorstore::CompletionNotifyingReceiver; using ::tensorstore::Context; using ::tensorstore::KeyRange; using ::tensorstore::KvStore; using ::tensorstore::MatchesStatus; using ::tensorstore::OptionalByteRangeRequest; using ::tensorstore::ParseTextProtoOrDie; using ::tensorstore::StorageGeneration; using ::tensorstore::grpc_mocker::MockGrpcServer; using ::tensorstore::internal::AbslStatusToGrpcStatus; using ::tensorstore::internal::FlatCordBuilder; using ::tensorstore_grpc::MockStorage; using ::testing::_; using ::testing::AtLeast; using ::testing::DoAll; using ::testing::Return; using ::testing::SetArgPointee; using ::google::storage::v2::DeleteObjectRequest; using ::google::storage::v2::ListObjectsRequest; using ::google::storage::v2::ListObjectsResponse; using ::google::storage::v2::ReadObjectRequest; using ::google::storage::v2::ReadObjectResponse; using ::google::storage::v2::WriteObjectRequest; using ::google::storage::v2::WriteObjectResponse; class GcsGrpcTest : public testing::Test { public: tensorstore::KvStore OpenStore() { ABSL_LOG(INFO) << "Using " << mock_service_.server_address(); return kvstore::Open({{"driver", "gcs_grpc"}, {"endpoint", mock_service_.server_address()}, {"bucket", "bucket"}, {"timeout", "100ms"}}) .value(); } MockStorage& mock() { return *mock_service_.service(); } tensorstore::grpc_mocker::MockGrpcServer<MockStorage> mock_service_; }; TEST_F(GcsGrpcTest, Read) { ReadObjectRequest expected_request = ParseTextProtoOrDie(R"pb( bucket: 'projects/_/buckets/bucket' object: 'abc' )pb"); ReadObjectResponse response = ParseTextProtoOrDie(R"pb( metadata { generation: 2 } checksummed_data { content: '1234' } )pb"); EXPECT_CALL(mock(), ReadObject(_, EqualsProto(expected_request), _)) .Times(AtLeast(1)) .WillRepeatedly(testing::Invoke( [&](auto*, auto*, grpc::ServerWriter<ReadObjectResponse>* resp) -> ::grpc::Status { resp->Write(response); return grpc::Status::OK; })); auto start = absl::Now(); auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto result, kvstore::Read(store, expected_request.object()).result()); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value, "1234"); EXPECT_GT(result.stamp.time, start); EXPECT_EQ(result.stamp.generation, StorageGeneration::FromUint64(2)); } TEST_F(GcsGrpcTest, ReadRetry) { ReadObjectRequest expected_request = ParseTextProtoOrDie(R"pb( bucket: 'projects/_/buckets/bucket' object: 'abc' )pb"); ReadObjectResponse response = ParseTextProtoOrDie(R"pb( metadata { generation: 2 } checksummed_data { content: '1234' } )pb"); ::testing::Sequence s1; EXPECT_CALL(mock(), ReadObject(_, EqualsProto(expected_request), _)) .Times(2) .InSequence(s1) .WillRepeatedly(testing::Return( AbslStatusToGrpcStatus(absl::ResourceExhaustedError("")))); EXPECT_CALL(mock(), ReadObject(_, EqualsProto(expected_request), _)) .Times(AtLeast(1)) .InSequence(s1) .WillRepeatedly(testing::Invoke( [&](auto*, auto*, grpc::ServerWriter<ReadObjectResponse>* resp) -> ::grpc::Status { resp->Write(response); return grpc::Status::OK; })); auto start = absl::Now(); auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto result, kvstore::Read(store, expected_request.object()).result()); EXPECT_TRUE(result.has_value()); EXPECT_EQ(result.value, "1234"); EXPECT_GT(result.stamp.time, start); EXPECT_EQ(result.stamp.generation, StorageGeneration::FromUint64(2)); } TEST_F(GcsGrpcTest, ReadWithOptions) { ReadObjectRequest expected_request = ParseTextProtoOrDie(R"pb( bucket: 'projects/_/buckets/bucket' object: 'abc' if_generation_not_match: 3 if_generation_match: 1 read_offset: 1 read_limit: 9 )pb"); ReadObjectResponse response = ParseTextProtoOrDie(R"pb( metadata { generation: 2 } checksummed_data { content: '1234' } )pb"); EXPECT_CALL(mock(), ReadObject(_, EqualsProto(expected_request), _)) .Times(AtLeast(1)) .WillRepeatedly(testing::Invoke( [&](auto*, auto*, grpc::ServerWriter<ReadObjectResponse>* resp) -> ::grpc::Status { resp->Write(response); return grpc::Status::OK; })); kvstore::ReadOptions options; options.generation_conditions.if_not_equal = StorageGeneration::FromUint64(3); options.generation_conditions.if_equal = StorageGeneration::FromUint64(1); options.staleness_bound = absl::InfiniteFuture(); options.byte_range = OptionalByteRangeRequest{1, 10}; auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto result, kvstore::Read(store, expected_request.object(), options).result()); } TEST_F(GcsGrpcTest, Write) { std::vector<WriteObjectRequest> requests; WriteObjectResponse response = ParseTextProtoOrDie(R"pb( resource { name: 'abc' bucket: "projects/_/buckets/bucket" generation: 1 } )pb"); EXPECT_CALL(mock(), WriteObject(_, _, _)) .Times(AtLeast(1)) .WillRepeatedly(testing::Invoke( [&](auto*, grpc::ServerReader<WriteObjectRequest>* reader, auto* resp) -> ::grpc::Status { WriteObjectRequest req; while (reader->Read(&req)) { requests.push_back(std::move(req)); } resp->CopyFrom(response); return grpc::Status::OK; })); auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto generation, kvstore::Write(store, response.resource().name(), absl::Cord("abcd")) .result()); EXPECT_THAT( requests, testing::AllOf( testing::SizeIs(testing::Ge(1)), testing::Each(EqualsProto<WriteObjectRequest>(R"pb( write_object_spec { resource { name: "abc" bucket: "projects/_/buckets/bucket" } object_size: 4 } checksummed_data { content: "abcd" crc32c: 2462583345 } object_checksums { crc32c: 2462583345 } finish_write: true write_offset: 0 )pb")))); } TEST_F(GcsGrpcTest, WriteRetry) { std::vector<WriteObjectRequest> requests; WriteObjectResponse response = ParseTextProtoOrDie(R"pb( resource { name: 'abc' bucket: 'bucket' generation: 1 } )pb"); ::testing::Sequence s1; EXPECT_CALL(mock(), WriteObject) .InSequence(s1) .WillOnce(testing::Return( AbslStatusToGrpcStatus(absl::ResourceExhaustedError("")))); EXPECT_CALL(mock(), WriteObject) .InSequence(s1) .WillOnce(testing::Invoke( [&](auto*, grpc::ServerReader<WriteObjectRequest>* reader, auto* resp) -> ::grpc::Status { WriteObjectRequest req; if (reader->Read(&req)) { requests.push_back(req); } return AbslStatusToGrpcStatus(absl::ResourceExhaustedError("")); })); EXPECT_CALL(mock(), WriteObject) .Times(AtLeast(1)) .InSequence(s1) .WillRepeatedly(testing::Invoke( [&](auto*, grpc::ServerReader<WriteObjectRequest>* reader, auto* resp) -> ::grpc::Status { WriteObjectRequest req; while (reader->Read(&req)) { requests.push_back(std::move(req)); } resp->CopyFrom(response); return grpc::Status::OK; })); auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto generation, kvstore::Write(store, response.resource().name(), absl::Cord("abcd")) .result()); EXPECT_THAT( requests, testing::AllOf( testing::SizeIs(testing::Ge(2)), testing::Each(EqualsProto<WriteObjectRequest>(R"pb( write_object_spec { resource { name: "abc" bucket: "projects/_/buckets/bucket" } object_size: 4 } checksummed_data { content: "abcd" crc32c: 2462583345 } object_checksums { crc32c: 2462583345 } finish_write: true write_offset: 0 )pb")))); } TEST_F(GcsGrpcTest, WriteEmpty) { std::vector<WriteObjectRequest> requests; WriteObjectResponse response = ParseTextProtoOrDie(R"pb( resource { name: 'abc' bucket: 'projects/_/buckets/bucket' generation: 1 } )pb"); EXPECT_CALL(mock(), WriteObject) .Times(AtLeast(1)) .WillRepeatedly(testing::Invoke( [&](auto*, grpc::ServerReader<WriteObjectRequest>* reader, auto* resp) -> ::grpc::Status { WriteObjectRequest req; while (reader->Read(&req)) { requests.push_back(std::move(req)); } resp->CopyFrom(response); return grpc::Status::OK; })); auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto generation, kvstore::Write(store, response.resource().name(), absl::Cord()).result()); EXPECT_THAT( requests, testing::AllOf( testing::SizeIs(testing::Ge(1)), testing::Each(EqualsProto<WriteObjectRequest>(R"pb( write_object_spec { resource { name: "abc" bucket: "projects/_/buckets/bucket" } object_size: 0 } checksummed_data { crc32c: 0 } object_checksums { crc32c: 0 } finish_write: true write_offset: 0 )pb")))); } TEST_F(GcsGrpcTest, WriteWithOptions) { std::vector<WriteObjectRequest> requests; WriteObjectResponse response = ParseTextProtoOrDie(R"pb( resource { name: 'abc' bucket: "projects/_/buckets/bucket" generation: 1 } )pb"); EXPECT_CALL(mock(), WriteObject) .Times(AtLeast(1)) .WillRepeatedly(testing::Invoke( [&](auto*, grpc::ServerReader<WriteObjectRequest>* reader, auto* resp) -> ::grpc::Status { WriteObjectRequest req; while (reader->Read(&req)) { requests.push_back(std::move(req)); } resp->CopyFrom(response); return grpc::Status::OK; })); auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto generation, kvstore::Write(store, response.resource().name(), absl::Cord("abcd"), {StorageGeneration::FromUint64(3)}) .result()); EXPECT_THAT( requests, testing::AllOf( testing::SizeIs(testing::Ge(1)), testing::Each(EqualsProto<WriteObjectRequest>(R"pb( write_object_spec { resource { name: "abc" bucket: "projects/_/buckets/bucket" } if_generation_match: 3 object_size: 4 } checksummed_data { content: "abcd" crc32c: 2462583345 } object_checksums { crc32c: 2462583345 } finish_write: true write_offset: 0 )pb")))); } TEST_F(GcsGrpcTest, WriteMultipleRequests) { WriteObjectResponse response = ParseTextProtoOrDie(R"pb( resource { name: 'bigly' bucket: "projects/_/buckets/bucket" generation: 1 } )pb"); std::vector<WriteObjectRequest> requests; EXPECT_CALL(mock(), WriteObject) .Times(AtLeast(1)) .WillRepeatedly(testing::Invoke( [&](auto*, grpc::ServerReader<WriteObjectRequest>* reader, auto* resp) -> ::grpc::Status { WriteObjectRequest req; while (reader->Read(&req)) { size_t len = req.checksummed_data().content().size(); req.mutable_checksummed_data()->set_content( absl::StrFormat("size: %d", len)); requests.push_back(std::move(req)); } resp->CopyFrom(response); return grpc::Status::OK; })); FlatCordBuilder cord_builder(16 + 2 * 1048576); memset(cord_builder.data(), 0x37, cord_builder.size()); absl::Cord data = std::move(cord_builder).Build(); data.Append("abcd"); EXPECT_EQ(data.size(), 2097172); auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto generation, kvstore::Write(store, response.resource().name(), data).result()); ASSERT_THAT(requests, testing::SizeIs(testing::Ge(2))); EXPECT_THAT( tensorstore::span(&requests[requests.size() - 2], 2), testing::ElementsAre( EqualsProto<WriteObjectRequest>(R"pb( write_object_spec { resource { name: "bigly" bucket: "projects/_/buckets/bucket" } object_size: 2097172 } checksummed_data { content: "size: 2097152", crc32c: 2470751355 } write_offset: 0 )pb"), EqualsProto<WriteObjectRequest>(R"pb( checksummed_data { content: "size: 20", crc32c: 2394860217 } object_checksums { crc32c: 1181131586 } finish_write: true write_offset: 2097152 )pb"))); } TEST_F(GcsGrpcTest, WriteNullopt) { DeleteObjectRequest expected_request = ParseTextProtoOrDie(R"pb( bucket: 'projects/_/buckets/bucket' object: 'abc' if_generation_match: 0 )pb"); EXPECT_CALL(mock(), DeleteObject(_, EqualsProto(expected_request), _)) .Times(AtLeast(1)) .WillRepeatedly(Return(grpc::Status::OK)); auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto generation, kvstore::Write(store, expected_request.object(), std::nullopt, {StorageGeneration::NoValue()}) .result()); } TEST_F(GcsGrpcTest, Delete) { DeleteObjectRequest expected_request = ParseTextProtoOrDie(R"pb( bucket: 'projects/_/buckets/bucket' object: 'abc' )pb"); EXPECT_CALL(mock(), DeleteObject(_, EqualsProto(expected_request), _)) .Times(AtLeast(1)) .WillRepeatedly(Return(grpc::Status::OK)); auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto generation, kvstore::Delete(store, expected_request.object()).result()); } TEST_F(GcsGrpcTest, DeleteWithOptions) { DeleteObjectRequest expected_request = ParseTextProtoOrDie(R"pb( bucket: 'projects/_/buckets/bucket' object: 'abc' if_generation_match: 2 )pb"); EXPECT_CALL(mock(), DeleteObject(_, EqualsProto(expected_request), _)) .Times(AtLeast(1)) .WillRepeatedly(Return(grpc::Status::OK)); auto store = OpenStore(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto generation, kvstore::Delete(store, expected_request.object(), {StorageGeneration::FromUint64(2)}) .result()); } TEST_F(GcsGrpcTest, DeleteRange) { ListObjectsRequest request1 = ParseTextProtoOrDie(R"pb( parent: 'projects/_/buckets/bucket' page_size: 1000 lexicographic_start: 'a/c' lexicographic_end: 'a/d' )pb"); ListObjectsResponse response1 = ParseTextProtoOrDie(R"pb( objects { name: 'a/c' } objects { name: 'a/ce' } )pb"); DeleteObjectRequest request2 = ParseTextProtoOrDie(R"pb( bucket: 'projects/_/buckets/bucket' object: 'a/c' )pb"); DeleteObjectRequest request3 = ParseTextProtoOrDie(R"pb( bucket: 'projects/_/buckets/bucket' object: 'a/ce' )pb"); EXPECT_CALL(mock(), ListObjects(_, EqualsProto(request1), _)) .Times(AtLeast(1)) .WillRepeatedly( DoAll(SetArgPointee<2>(response1), Return(grpc::Status::OK))); EXPECT_CALL(mock(), DeleteObject(_, EqualsProto(request2), _)) .Times(AtLeast(1)) .WillRepeatedly(Return(grpc::Status::OK)); EXPECT_CALL(mock(), DeleteObject(_, EqualsProto(request3), _)) .Times(AtLeast(1)) .WillRepeatedly(Return(grpc::Status::OK)); auto store = OpenStore(); TENSORSTORE_EXPECT_OK( kvstore::DeleteRange(store, KeyRange::Prefix("a/c")).result()); } TEST_F(GcsGrpcTest, List) { ListObjectsRequest request1 = ParseTextProtoOrDie(R"pb( parent: 'projects/_/buckets/bucket' page_size: 1000 )pb"); ListObjectsRequest request2 = ParseTextProtoOrDie(R"pb( parent: 'projects/_/buckets/bucket' page_size: 1000 page_token: 'next-page-token' )pb"); ListObjectsResponse response1 = ParseTextProtoOrDie(R"pb( objects { name: 'a' } objects { name: 'b' } next_page_token: 'next-page-token' )pb"); ListObjectsResponse response2 = ParseTextProtoOrDie(R"pb( objects { name: 'c' } )pb"); EXPECT_CALL(mock(), ListObjects(_, EqualsProto(request1), _)) .Times(AtLeast(1)) .WillRepeatedly( DoAll(SetArgPointee<2>(response1), Return(grpc::Status::OK))); EXPECT_CALL(mock(), ListObjects(_, EqualsProto(request2), _)) .Times(AtLeast(1)) .WillRepeatedly( DoAll(SetArgPointee<2>(response2), Return(grpc::Status::OK))); auto store = OpenStore(); absl::Notification notification; std::vector<std::string> log; tensorstore::execution::submit( tensorstore::kvstore::List(store, {}), tensorstore::CompletionNotifyingReceiver{ &notification, tensorstore::LoggingReceiver{&log}}); notification.WaitForNotification(); EXPECT_THAT(log, ::testing::UnorderedElementsAre( "set_starting", "set_value: a", "set_value: b", "set_value: c", "set_done", "set_stopping")); } TEST(GcsGrpcSpecTest, InvalidSpec) { auto context = Context::Default(); EXPECT_THAT(kvstore::Open({{"driver", "gcs_grpc"}}, context).result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( kvstore::Open({{"driver", "gcs_grpc"}, {"bucket", "bucket:xyz"}}, context) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( kvstore::Open( {{"driver", "gcs_grpc"}, {"bucket", "my-bucket"}, {"path", "a\tb"}}, context) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*Invalid GCS path.*")); } TEST(GcsGrpcUrlTest, UrlRoundtrip) { tensorstore::internal::TestKeyValueStoreUrlRoundtrip( {{"driver", "gcs_grpc"}, {"bucket", "my-bucket"}, {"path", "abc"}}, "gcs_grpc: tensorstore::internal::TestKeyValueStoreUrlRoundtrip( {{"driver", "gcs_grpc"}, {"bucket", "my-bucket"}, {"path", "abc def"}}, "gcs_grpc: } TEST(GcsGrpcUrlTest, InvalidUri) { EXPECT_THAT(kvstore::Spec::FromUrl("gcs_grpc: MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(kvstore::Spec::FromUrl("gcs_grpc: MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(kvstore::Spec::FromUrl("gcs_grpc: MatchesStatus(absl::StatusCode::kInvalidArgument, ".*: Invalid GCS bucket name: \"bucket:xyz\"")); EXPECT_THAT(kvstore::Spec::FromUrl("gcs_grpc: MatchesStatus(absl::StatusCode::kInvalidArgument, ".*: Query string not supported")); EXPECT_THAT(kvstore::Spec::FromUrl("gcs_grpc: MatchesStatus(absl::StatusCode::kInvalidArgument, ".*: Fragment identifier not supported")); EXPECT_THAT(kvstore::Spec::FromUrl("gcs_grpc: MatchesStatus(absl::StatusCode::kInvalidArgument, ".*Invalid GCS path.*")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/gcs_grpc/gcs_grpc.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/gcs_grpc/gcs_grpc_test.cc
4f887a6430414cd6088e1743555015b10f116d50
dc8ace3e-4756-4385-8a98-8b67b7737979
cpp
google/tensorstore
zip_dir_cache
tensorstore/kvstore/zip/zip_dir_cache.cc
tensorstore/kvstore/zip/zip_dir_cache_test.cc
#include "tensorstore/kvstore/zip/zip_dir_cache.h" #include <stddef.h> #include <stdint.h> #include <algorithm> #include <cassert> #include <memory> #include <string> #include <tuple> #include <utility> #include <variant> #include <vector> #include "absl/base/attributes.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/time/time.h" #include "riegeli/bytes/cord_reader.h" #include "riegeli/bytes/cord_writer.h" #include "tensorstore/internal/cache/async_cache.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/compression/zip_details.h" #include "tensorstore/internal/estimate_heap_usage/estimate_heap_usage.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/driver.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/util/future.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/internal/estimate_heap_usage/std_vector.h" namespace tensorstore { namespace internal_zip_kvstore { namespace { ABSL_CONST_INIT internal_log::VerboseFlag zip_logging("zip"); struct ReadDirectoryOp : public internal::AtomicReferenceCount<ReadDirectoryOp> { ZipDirectoryCache::Entry* entry_; std::shared_ptr<const Directory> existing_read_data_; kvstore::ReadOptions options_; internal_zip::ZipEOCD eocd_; void StartEOCDBlockRead() { auto& cache = internal::GetOwningCache(*entry_); ABSL_LOG_IF(INFO, zip_logging) << "StartEOCDBlockRead " << entry_->key() << " " << options_.byte_range; auto future = cache.kvstore_driver_->Read(std::string(entry_->key()), options_); future.Force(); future.ExecuteWhenReady( [self = internal::IntrusivePtr<ReadDirectoryOp>(this)]( ReadyFuture<kvstore::ReadResult> ready) { self->OnEOCDBlockRead(std::move(ready)); }); } void OnEOCDBlockRead(ReadyFuture<kvstore::ReadResult> ready) { auto& r = ready.result(); if (!r.ok()) { ABSL_LOG_IF(INFO, zip_logging) << r.status(); if (absl::IsOutOfRange(r.status())) { assert(!options_.byte_range.IsFull()); options_.byte_range = OptionalByteRangeRequest{}; StartEOCDBlockRead(); return; } entry_->ReadError( internal::ConvertInvalidArgumentToFailedPrecondition(r.status())); return; } auto& read_result = *r; if (read_result.aborted()) { entry_->ReadSuccess(ZipDirectoryCache::ReadState{ entry_->read_request_state_.read_state.data, std::move(read_result.stamp)}); return; } if (read_result.not_found()) { entry_->ReadError(absl::NotFoundError("")); return; } GetOwningCache(*entry_).executor()( [self = internal::IntrusivePtr<ReadDirectoryOp>(this), ready = std::move(ready)]() { self->DoDecodeEOCDBlock(std::move(ready)); }); } void DoDecodeEOCDBlock(ReadyFuture<kvstore::ReadResult> ready) { absl::Cord* eocd_block = &ready.value().value; riegeli::CordReader<absl::Cord*> reader(eocd_block); int64_t block_offset = options_.byte_range.IsFull() ? 0 : options_.byte_range.inclusive_min; auto read_eocd_variant = TryReadFullEOCD(reader, eocd_, block_offset); if (auto* status = std::get_if<absl::Status>(&read_eocd_variant); status != nullptr && !status->ok()) { entry_->ReadError(std::move(*status)); return; } if (auto* inclusive_min = std::get_if<int64_t>(&read_eocd_variant); inclusive_min != nullptr) { assert(!options_.byte_range.IsFull()); options_.byte_range = OptionalByteRangeRequest::Suffix(*inclusive_min); StartEOCDBlockRead(); return; } if (block_offset >= 0 && block_offset <= eocd_.cd_offset) { DoDecodeDirectory(std::move(ready), eocd_.cd_offset - block_offset); return; } kvstore::ReadOptions other_options = options_; other_options.generation_conditions.if_equal = ready.value().stamp.generation; other_options.byte_range = OptionalByteRangeRequest::Range( eocd_.cd_offset, eocd_.cd_offset + eocd_.cd_size); auto& cache = internal::GetOwningCache(*entry_); auto future = cache.kvstore_driver_->Read(std::string(entry_->key()), other_options); future.Force(); future.ExecuteWhenReady( [self = internal::IntrusivePtr<ReadDirectoryOp>(this)]( ReadyFuture<kvstore::ReadResult> ready) { self->OnDirectoryBlockRead(std::move(ready)); }); } void OnDirectoryBlockRead(ReadyFuture<kvstore::ReadResult> ready) { auto& r = ready.result(); if (!r.ok()) { ABSL_LOG_IF(INFO, zip_logging) << r.status(); entry_->ReadError( internal::ConvertInvalidArgumentToFailedPrecondition(r.status())); return; } auto& read_result = *r; if (read_result.aborted() || read_result.not_found() || !ready.value().has_value()) { entry_->ReadError( absl::InvalidArgumentError("Faild to read ZIP directory")); return; } GetOwningCache(*entry_).executor()( [self = internal::IntrusivePtr<ReadDirectoryOp>(this), ready = std::move(ready)]() { self->DoDecodeDirectory(std::move(ready), 0); }); } void DoDecodeDirectory(ReadyFuture<kvstore::ReadResult> ready, size_t seek_pos) { absl::Cord* cd_block = &ready.value().value; riegeli::CordReader<absl::Cord*> reader(cd_block); if (seek_pos > 0) { reader.Seek(seek_pos); } Directory dir{}; dir.full_read = options_.byte_range.IsFull(); dir.entries.reserve(eocd_.num_entries); for (size_t i = 0; i < eocd_.num_entries; ++i) { internal_zip::ZipEntry entry{}; if (auto entry_status = ReadCentralDirectoryEntry(reader, entry); !entry_status.ok()) { entry_->ReadError(entry_status); return; } if (ValidateEntryIsSupported(entry).ok()) { ABSL_LOG_IF(INFO, zip_logging) << "Adding " << entry; dir.entries.push_back( Directory::Entry{entry.filename, entry.crc, entry.compressed_size, entry.uncompressed_size, entry.local_header_offset, entry.estimated_read_size}); } else { ABSL_LOG_IF(INFO, zip_logging) << "Skipping " << entry; } } std::sort(dir.entries.begin(), dir.entries.end(), [](const auto& a, const auto& b) { return std::tie(a.local_header_offset, a.filename) < std::tie(b.local_header_offset, b.filename); }); auto last_header_offset = eocd_.cd_offset; for (auto it = dir.entries.rbegin(); it != dir.entries.rend(); ++it) { it->estimated_size = last_header_offset - it->local_header_offset; last_header_offset = it->local_header_offset; } std::sort(dir.entries.begin(), dir.entries.end(), [](const auto& a, const auto& b) { return std::tie(a.filename, a.local_header_offset) < std::tie(b.filename, a.local_header_offset); }); ABSL_LOG_IF(INFO, zip_logging) << dir; entry_->ReadSuccess(ZipDirectoryCache::ReadState{ std::make_shared<const Directory>(std::move(dir)), std::move(ready.value().stamp)}); } }; } size_t ZipDirectoryCache::Entry::ComputeReadDataSizeInBytes( const void* read_data) { return internal::EstimateHeapUsage(*static_cast<const ReadData*>(read_data)); } void ZipDirectoryCache::Entry::DoRead(AsyncCacheReadRequest request) { auto state = internal::MakeIntrusivePtr<ReadDirectoryOp>(); state->entry_ = this; { ZipDirectoryCache::ReadLock<ZipDirectoryCache::ReadData> lock(*this); state->existing_read_data_ = lock.shared_data(); state->options_.generation_conditions.if_not_equal = lock.read_state().stamp.generation; } state->options_.staleness_bound = request.staleness_bound; if (state->existing_read_data_ && state->existing_read_data_->full_read) { state->options_.byte_range = OptionalByteRangeRequest{}; } else { state->options_.byte_range = OptionalByteRangeRequest::SuffixLength(internal_zip::kEOCDBlockSize); } state->StartEOCDBlockRead(); } ZipDirectoryCache::Entry* ZipDirectoryCache::DoAllocateEntry() { return new Entry; } size_t ZipDirectoryCache::DoGetSizeofEntry() { return sizeof(Entry); } } }
#include "tensorstore/kvstore/zip/zip_dir_cache.h" #include <memory> #include <string> #include <string_view> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/flags/flag.h" #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/time/time.h" #include "riegeli/bytes/fd_reader.h" #include "riegeli/bytes/read_all.h" #include "tensorstore/context.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" using ::tensorstore::Context; using ::tensorstore::InlineExecutor; using ::tensorstore::internal::CachePool; using ::tensorstore::internal::GetCache; using ::tensorstore::internal_zip_kvstore::Directory; using ::tensorstore::internal_zip_kvstore::ZipDirectoryCache; using ::tensorstore::kvstore::DriverPtr; ABSL_FLAG(std::string, tensorstore_test_data, "", "Path to internal/compression/testdata/data.zip"); namespace { absl::Cord GetTestZipFileData() { ABSL_CHECK(!absl::GetFlag(FLAGS_tensorstore_test_data).empty()); absl::Cord filedata; TENSORSTORE_CHECK_OK(riegeli::ReadAll( riegeli::FdReader(absl::GetFlag(FLAGS_tensorstore_test_data)), filedata)); ABSL_CHECK_EQ(filedata.size(), 319482); return filedata; } TEST(ZipDirectoryKvsTest, Basic) { auto context = Context::Default(); auto pool = CachePool::Make(CachePool::Limits{}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( tensorstore::KvStore memory, tensorstore::kvstore::Open({{"driver", "memory"}}, context).result()); ASSERT_THAT( tensorstore::kvstore::Write(memory, "data.zip", GetTestZipFileData()) .result(), ::tensorstore::IsOk()); auto cache = GetCache<ZipDirectoryCache>(pool.get(), "", [&] { return std::make_unique<ZipDirectoryCache>(memory.driver, InlineExecutor{}); }); auto entry = GetCacheEntry(cache, "data.zip"); auto status = entry->Read({absl::InfinitePast()}).status(); ASSERT_THAT(status, ::tensorstore::IsOk()); ZipDirectoryCache::ReadLock<ZipDirectoryCache::ReadData> lock(*entry); auto* dir = lock.data(); ASSERT_THAT(dir, ::testing::NotNull()); ASSERT_THAT(dir->entries, ::testing::SizeIs(3)); EXPECT_THAT(dir->entries[0].filename, "data/a.png"); EXPECT_THAT(dir->entries[1].filename, "data/bb.png"); EXPECT_THAT(dir->entries[2].filename, "data/c.png"); } TEST(ZipDirectoryKvsTest, MissingEntry) { auto context = Context::Default(); auto pool = CachePool::Make(CachePool::Limits{}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( tensorstore::KvStore memory, tensorstore::kvstore::Open({{"driver", "memory"}}, context).result()); auto cache = GetCache<ZipDirectoryCache>(pool.get(), "", [&] { return std::make_unique<ZipDirectoryCache>(memory.driver, InlineExecutor{}); }); auto entry = GetCacheEntry(cache, "data.zip"); auto status = entry->Read({absl::InfinitePast()}).status(); EXPECT_THAT(status, ::tensorstore::StatusIs(absl::StatusCode::kNotFound)); } static constexpr unsigned char kZipTest2[] = { 0x50, 0x4b, 0x03, 0x04, 0x0a, 0x00, 0x02, 0x00, 0x00, 0x00, 0xd5, 0x7d, 0x46, 0x2f, 0xc6, 0x35, 0xb9, 0x3b, 0x05, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x04, 0x00, 0x15, 0x00, 0x74, 0x65, 0x73, 0x74, 0x55, 0x54, 0x09, 0x00, 0x03, 0x41, 0x72, 0x81, 0x3f, 0x41, 0x72, 0x81, 0x3f, 0x55, 0x78, 0x04, 0x00, 0x64, 0x00, 0x14, 0x00, 0x74, 0x65, 0x73, 0x74, 0x0a, 0x50, 0x4b, 0x03, 0x04, 0x0a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7b, 0x98, 0x2b, 0x32, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x15, 0x00, 0x74, 0x65, 0x73, 0x74, 0x64, 0x69, 0x72, 0x2f, 0x55, 0x54, 0x09, 0x00, 0x03, 0x09, 0x15, 0xe4, 0x41, 0x9a, 0x15, 0xe4, 0x41, 0x55, 0x78, 0x04, 0x00, 0xe8, 0x03, 0x64, 0x00, 0x50, 0x4b, 0x03, 0x04, 0x0a, 0x00, 0x02, 0x00, 0x00, 0x00, 0xd5, 0x7d, 0x46, 0x2f, 0xc6, 0x35, 0xb9, 0x3b, 0x05, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x0d, 0x00, 0x15, 0x00, 0x74, 0x65, 0x73, 0x74, 0x64, 0x69, 0x72, 0x2f, 0x74, 0x65, 0x73, 0x74, 0x32, 0x55, 0x54, 0x09, 0x00, 0x03, 0x41, 0x72, 0x81, 0x3f, 0x41, 0x72, 0x81, 0x3f, 0x55, 0x78, 0x04, 0x00, 0xe8, 0x03, 0x64, 0x00, 0x74, 0x65, 0x73, 0x74, 0x0a, 0x50, 0x4b, 0x01, 0x02, 0x17, 0x03, 0x0a, 0x00, 0x02, 0x00, 0x00, 0x00, 0xd5, 0x7d, 0x46, 0x2f, 0xc6, 0x35, 0xb9, 0x3b, 0x05, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x04, 0x00, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xb4, 0x81, 0x00, 0x00, 0x00, 0x00, 0x74, 0x65, 0x73, 0x74, 0x55, 0x54, 0x05, 0x00, 0x03, 0x41, 0x72, 0x81, 0x3f, 0x55, 0x78, 0x00, 0x00, 0x50, 0x4b, 0x01, 0x02, 0x17, 0x03, 0x0a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7b, 0x98, 0x2b, 0x32, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0xed, 0x41, 0x3c, 0x00, 0x00, 0x00, 0x74, 0x65, 0x73, 0x74, 0x64, 0x69, 0x72, 0x2f, 0x55, 0x54, 0x05, 0x00, 0x03, 0x09, 0x15, 0xe4, 0x41, 0x55, 0x78, 0x00, 0x00, 0x50, 0x4b, 0x01, 0x02, 0x17, 0x03, 0x0a, 0x00, 0x02, 0x00, 0x00, 0x00, 0xd5, 0x7d, 0x46, 0x2f, 0xc6, 0x35, 0xb9, 0x3b, 0x05, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x0d, 0x00, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xb4, 0x81, 0x77, 0x00, 0x00, 0x00, 0x74, 0x65, 0x73, 0x74, 0x64, 0x69, 0x72, 0x2f, 0x74, 0x65, 0x73, 0x74, 0x32, 0x55, 0x54, 0x05, 0x00, 0x03, 0x41, 0x72, 0x81, 0x3f, 0x55, 0x78, 0x00, 0x00, 0x50, 0x4b, 0x05, 0x06, 0x00, 0x00, 0x00, 0x00, 0x03, 0x00, 0x03, 0x00, 0xca, 0x00, 0x00, 0x00, 0xbc, 0x00, 0x00, 0x00, 0x00, 0x00, }; TEST(ZipDirectoryKvsTest, MinimalZip) { auto context = Context::Default(); auto pool = CachePool::Make(CachePool::Limits{}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( tensorstore::KvStore memory, tensorstore::kvstore::Open({{"driver", "memory"}}, context).result()); ASSERT_THAT(tensorstore::kvstore::Write( memory, "data.zip", absl::MakeCordFromExternal( std::string_view(reinterpret_cast<const char*>(kZipTest2), sizeof(kZipTest2)), [](auto) {})) .result(), ::tensorstore::IsOk()); auto cache = GetCache<ZipDirectoryCache>(pool.get(), "", [&] { return std::make_unique<ZipDirectoryCache>(memory.driver, InlineExecutor{}); }); auto entry = GetCacheEntry(cache, "data.zip"); auto status = entry->Read({absl::InfinitePast()}).status(); ASSERT_THAT(status, ::tensorstore::IsOk()); ZipDirectoryCache::ReadLock<ZipDirectoryCache::ReadData> lock(*entry); auto* dir = lock.data(); ASSERT_THAT(dir, ::testing::NotNull()); ASSERT_THAT(dir->entries, ::testing::SizeIs(2)); EXPECT_THAT(dir->entries[0].filename, "test"); EXPECT_THAT(dir->entries[1].filename, "testdir/test2"); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/zip/zip_dir_cache.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/zip/zip_dir_cache_test.cc
4f887a6430414cd6088e1743555015b10f116d50
d5e0aae3-f28b-414d-a342-b691170f8ef7
cpp
google/tensorstore
zip_key_value_store
tensorstore/kvstore/zip/zip_key_value_store.cc
tensorstore/kvstore/zip/zip_key_value_store_test.cc
#include <stddef.h> #include <algorithm> #include <cassert> #include <memory> #include <string> #include <string_view> #include <utility> #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_format.h" #include "riegeli/bytes/cord_reader.h" #include "tensorstore/context.h" #include "tensorstore/internal/cache/async_cache.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/cache/cache_pool_resource.h" #include "tensorstore/internal/cache_key/cache_key.h" #include "tensorstore/internal/compression/zip_details.h" #include "tensorstore/internal/data_copy_concurrency_resource.h" #include "tensorstore/internal/estimate_heap_usage/estimate_heap_usage.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/common_metrics.h" #include "tensorstore/kvstore/driver.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/registry.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/supported_features.h" #include "tensorstore/kvstore/zip/zip_dir_cache.h" #include "tensorstore/transaction.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/fwd.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" #include "absl/base/attributes.h" #include "tensorstore/internal/cache_key/std_vector.h" #include "tensorstore/serialization/absl_time.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/std_vector.h" #include "tensorstore/util/garbage_collection/std_vector.h" using ::tensorstore::internal_zip_kvstore::Directory; using ::tensorstore::internal_zip_kvstore::ZipDirectoryCache; using ::tensorstore::kvstore::ListEntry; using ::tensorstore::kvstore::ListReceiver; namespace tensorstore { namespace { namespace jb = tensorstore::internal_json_binding; ABSL_CONST_INIT internal_log::VerboseFlag zip_logging("zip"); auto zip_metrics = TENSORSTORE_KVSTORE_COMMON_READ_METRICS(zip); struct ZipKvStoreSpecData { kvstore::Spec base; Context::Resource<internal::CachePoolResource> cache_pool; Context::Resource<internal::DataCopyConcurrencyResource> data_copy_concurrency; constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.base, x.cache_pool, x.data_copy_concurrency); }; constexpr static auto default_json_binder = jb::Object( jb::Member("base", jb::Projection<&ZipKvStoreSpecData::base>()), jb::Member(internal::CachePoolResource::id, jb::Projection<&ZipKvStoreSpecData::cache_pool>()), jb::Member( internal::DataCopyConcurrencyResource::id, jb::Projection<&ZipKvStoreSpecData::data_copy_concurrency>()) ); }; class ZipKvStoreSpec : public internal_kvstore::RegisteredDriverSpec<ZipKvStoreSpec, ZipKvStoreSpecData> { public: static constexpr char id[] = "zip"; Future<kvstore::DriverPtr> DoOpen() const override; absl::Status ApplyOptions(kvstore::DriverSpecOptions&& options) override { return data_.base.driver.Set(std::move(options)); } Result<kvstore::Spec> GetBase(std::string_view path) const override { return data_.base; } }; class ZipKvStore : public internal_kvstore::RegisteredDriver<ZipKvStore, ZipKvStoreSpec> { public: Future<ReadResult> Read(Key key, ReadOptions options) override; std::string DescribeKey(std::string_view key) override { return tensorstore::StrCat(QuoteString(key), " in ", base_.driver->DescribeKey(base_.path)); } void ListImpl(ListOptions options, ListReceiver receiver) override; absl::Status GetBoundSpecData(ZipKvStoreSpecData& spec) const { spec = spec_data_; return absl::OkStatus(); } kvstore::SupportedFeatures GetSupportedFeatures( const KeyRange& key_range) const final { return base_.driver->GetSupportedFeatures(KeyRange::Singleton(base_.path)); } Result<KvStore> GetBase(std::string_view path, const Transaction& transaction) const override { return KvStore(base_.driver, base_.path, transaction); } const Executor& executor() const { return spec_data_.data_copy_concurrency->executor; } ZipKvStoreSpecData spec_data_; kvstore::KvStore base_; internal::PinnedCacheEntry<ZipDirectoryCache> cache_entry_; }; Future<kvstore::DriverPtr> ZipKvStoreSpec::DoOpen() const { return MapFutureValue( InlineExecutor{}, [spec = internal::IntrusivePtr<const ZipKvStoreSpec>(this)]( kvstore::KvStore& base_kvstore) mutable -> Result<kvstore::DriverPtr> { std::string cache_key; internal::EncodeCacheKey(&cache_key, base_kvstore.driver, base_kvstore.path, spec->data_.data_copy_concurrency); auto& cache_pool = *spec->data_.cache_pool; auto directory_cache = internal::GetCache<ZipDirectoryCache>( cache_pool.get(), cache_key, [&] { return std::make_unique<ZipDirectoryCache>( base_kvstore.driver, spec->data_.data_copy_concurrency->executor); }); auto driver = internal::MakeIntrusivePtr<ZipKvStore>(); driver->base_ = std::move(base_kvstore); driver->spec_data_ = std::move(spec->data_); driver->cache_entry_ = GetCacheEntry(directory_cache, driver->base_.path); return driver; }, kvstore::Open(data_.base)); } struct ReadState : public internal::AtomicReferenceCount<ReadState> { internal::IntrusivePtr<ZipKvStore> owner_; kvstore::Key key_; kvstore::ReadOptions options_; void OnDirectoryReady(Promise<kvstore::ReadResult> promise) { TimestampedStorageGeneration stamp; kvstore::ReadOptions options; options.staleness_bound = options_.staleness_bound; options.byte_range = OptionalByteRangeRequest{}; size_t seek_pos = 0; { ZipDirectoryCache::ReadLock<ZipDirectoryCache::ReadData> lock( *(owner_->cache_entry_)); stamp = lock.stamp(); assert(lock.data()); const ZipDirectoryCache::ReadData& dir = *lock.data(); ABSL_LOG_IF(INFO, zip_logging) << dir; auto it = std::lower_bound( dir.entries.begin(), dir.entries.end(), key_, [](const auto& e, const std::string& k) { return e.filename < k; }); if (it == dir.entries.end() || it->filename != key_) { promise.SetResult(kvstore::ReadResult::Missing(std::move(stamp))); return; } if (!options_.generation_conditions.Matches(stamp.generation)) { promise.SetResult(kvstore::ReadResult::Unspecified(std::move(stamp))); return; } if (dir.full_read) { seek_pos = it->local_header_offset; } else { seek_pos = 0; options.byte_range = OptionalByteRangeRequest::Range( it->local_header_offset, it->local_header_offset + it->estimated_size); } } options.generation_conditions.if_equal = stamp.generation; Link(WithExecutor(owner_->executor(), [self = internal::IntrusivePtr<ReadState>(this), seek_pos](Promise<kvstore::ReadResult> promise, ReadyFuture<kvstore::ReadResult> ready) { self->OnValueRead(std::move(promise), std::move(ready), seek_pos); }), std::move(promise), kvstore::Read(owner_->base_, {}, std::move(options))); } void OnValueRead(Promise<kvstore::ReadResult> promise, ReadyFuture<kvstore::ReadResult> ready, size_t seek_pos) { if (!promise.result_needed()) return; if (!ready.status().ok()) { promise.SetResult(ready.status()); return; } internal_zip::ZipEntry local_header{}; auto result = [&]() -> Result<kvstore::ReadResult> { kvstore::ReadResult read_result = std::move(ready.value()); if (!read_result.has_value()) { return read_result; } absl::Cord source = std::move(read_result.value); riegeli::CordReader reader(&source); reader.Seek(seek_pos); TENSORSTORE_RETURN_IF_ERROR(ReadLocalEntry(reader, local_header)); TENSORSTORE_RETURN_IF_ERROR(ValidateEntryIsSupported(local_header)); TENSORSTORE_ASSIGN_OR_RETURN( auto byte_range, options_.byte_range.Validate(local_header.uncompressed_size)); TENSORSTORE_ASSIGN_OR_RETURN( auto entry_reader, internal_zip::GetReader(&reader, local_header)); if (byte_range.inclusive_min > 0) { entry_reader->Skip(byte_range.inclusive_min); } if (!entry_reader->Read(byte_range.size(), read_result.value)) { if (entry_reader->status().ok()) { return absl::OutOfRangeError("Failed to read range"); } return entry_reader->status(); } return read_result; }(); ABSL_LOG_IF(INFO, zip_logging && !result.ok()) << result.status() << "\n" << local_header; promise.SetResult(std::move(result)); } }; Future<kvstore::ReadResult> ZipKvStore::Read(Key key, ReadOptions options) { auto state = internal::MakeIntrusivePtr<ReadState>(); state->owner_ = internal::IntrusivePtr<ZipKvStore>(this); state->key_ = std::move(key); state->options_ = options; zip_metrics.read.Increment(); return PromiseFuturePair<kvstore::ReadResult>::LinkValue( WithExecutor( executor(), [state = std::move(state)](Promise<ReadResult> promise, ReadyFuture<const void>) { if (!promise.result_needed()) return; state->OnDirectoryReady(std::move(promise)); }), cache_entry_->Read({options.staleness_bound})) .future; } struct ListState : public internal::AtomicReferenceCount<ListState> { internal::IntrusivePtr<ZipKvStore> owner_; kvstore::ListOptions options_; ListReceiver receiver_; Promise<void> promise_; Future<void> future_; ListState(internal::IntrusivePtr<ZipKvStore>&& owner, kvstore::ListOptions&& options, ListReceiver&& receiver) : owner_(std::move(owner)), options_(std::move(options)), receiver_(std::move(receiver)) { auto [promise, future] = PromiseFuturePair<void>::Make(MakeResult()); this->promise_ = std::move(promise); this->future_ = std::move(future); future_.Force(); execution::set_starting(receiver_, [promise = promise_] { promise.SetResult(absl::CancelledError("")); }); } ~ListState() { auto& r = promise_.raw_result(); if (r.ok()) { execution::set_done(receiver_); } else { execution::set_error(receiver_, r.status()); } execution::set_stopping(receiver_); } void OnDirectoryReady() { auto dir = ZipDirectoryCache::ReadLock<ZipDirectoryCache::ReadData>( *(owner_->cache_entry_)) .shared_data(); assert(dir); auto it = std::lower_bound( dir->entries.begin(), dir->entries.end(), options_.range.inclusive_min, [](const auto& e, const std::string& k) { return e.filename < k; }); for (; it != dir->entries.end(); ++it) { if (KeyRange::CompareKeyAndExclusiveMax( it->filename, options_.range.exclusive_max) >= 0) { break; } if (it->filename.size() >= options_.strip_prefix_length) { execution::set_value( receiver_, ListEntry{it->filename.substr(options_.strip_prefix_length), ListEntry::checked_size(it->uncompressed_size)}); } } } }; void ZipKvStore::ListImpl(ListOptions options, ListReceiver receiver) { auto state = internal::MakeIntrusivePtr<ListState>( internal::IntrusivePtr<ZipKvStore>(this), std::move(options), std::move(receiver)); auto* state_ptr = state.get(); zip_metrics.list.Increment(); LinkValue(WithExecutor(executor(), [state = std::move(state)](Promise<void> promise, ReadyFuture<const void>) { state->OnDirectoryReady(); }), state_ptr->promise_, cache_entry_->Read({state_ptr->options_.staleness_bound})); } } } TENSORSTORE_DECLARE_GARBAGE_COLLECTION_NOT_REQUIRED(tensorstore::ZipKvStore) namespace { const tensorstore::internal_kvstore::DriverRegistration< tensorstore::ZipKvStoreSpec> registration; }
#include <string> #include <string_view> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/flags/flag.h" #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/synchronization/notification.h" #include <nlohmann/json.hpp> #include "riegeli/bytes/fd_reader.h" #include "riegeli/bytes/read_all.h" #include "tensorstore/context.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/test_matchers.h" #include "tensorstore/kvstore/test_util.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/execution/sender_testutil.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" ABSL_FLAG(std::string, tensorstore_test_data, "", "Path to internal/compression/testdata/data.zip"); namespace { namespace kvstore = tensorstore::kvstore; using ::tensorstore::Context; using ::tensorstore::KvStore; using ::tensorstore::MatchesStatus; using ::tensorstore::internal::MatchesKvsReadResult; using ::tensorstore::internal::MatchesKvsReadResultNotFound; static constexpr unsigned char kReadOpZip[] = { 0x50, 0x4b, 0x03, 0x04, 0x0a, 0x00, 0x00, 0x00, 0x00, 0x00, 0xb8, 0x5b, 0x19, 0x57, 0x93, 0xc0, 0x3a, 0x94, 0x10, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x03, 0x00, 0x1c, 0x00, 0x6b, 0x65, 0x79, 0x55, 0x54, 0x09, 0x00, 0x03, 0x1b, 0xf3, 0xe8, 0x64, 0x1c, 0xf3, 0xe8, 0x64, 0x75, 0x78, 0x0b, 0x00, 0x01, 0x04, 0x6c, 0x35, 0x00, 0x00, 0x04, 0x53, 0x5f, 0x01, 0x00, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x50, 0x4b, 0x01, 0x02, 0x1e, 0x03, 0x0a, 0x00, 0x00, 0x00, 0x00, 0x00, 0xb8, 0x5b, 0x19, 0x57, 0x93, 0xc0, 0x3a, 0x94, 0x10, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x03, 0x00, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xa4, 0x81, 0x00, 0x00, 0x00, 0x00, 0x6b, 0x65, 0x79, 0x55, 0x54, 0x05, 0x00, 0x03, 0x1b, 0xf3, 0xe8, 0x64, 0x75, 0x78, 0x0b, 0x00, 0x01, 0x04, 0x6c, 0x35, 0x00, 0x00, 0x04, 0x53, 0x5f, 0x01, 0x00, 0x50, 0x4b, 0x05, 0x06, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x49, 0x00, 0x00, 0x00, 0x4d, 0x00, 0x00, 0x00, 0x00, 0x00, }; absl::Cord GetReadOpZip() { return absl::MakeCordFromExternal( std::string_view(reinterpret_cast<const char*>(kReadOpZip), sizeof(kReadOpZip)), [](auto) {}); } absl::Cord GetTestZipFileData() { ABSL_CHECK(!absl::GetFlag(FLAGS_tensorstore_test_data).empty()); absl::Cord filedata; TENSORSTORE_CHECK_OK(riegeli::ReadAll( riegeli::FdReader(absl::GetFlag(FLAGS_tensorstore_test_data)), filedata)); ABSL_CHECK_EQ(filedata.size(), 319482); return filedata; } class ZipKeyValueStoreTest : public ::testing::Test { public: ZipKeyValueStoreTest() : context_(Context::Default()) {} void PrepareMemoryKvstore(absl::Cord value) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( tensorstore::KvStore memory, tensorstore::kvstore::Open({{"driver", "memory"}}, context_).result()); TENSORSTORE_CHECK_OK( tensorstore::kvstore::Write(memory, "data.zip", value).result()); } tensorstore::Context context_; }; TEST_F(ZipKeyValueStoreTest, Simple) { PrepareMemoryKvstore(GetTestZipFileData()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", "zip"}, {"base", {{"driver", "memory"}, {"path", "data.zip"}}}}, context_) .result()); for (int i = 0; i < 2; ++i) { absl::Notification notification; std::vector<std::string> log; tensorstore::execution::submit( kvstore::List(store, {}), tensorstore::CompletionNotifyingReceiver{ &notification, tensorstore::LoggingReceiver{&log}}); notification.WaitForNotification(); EXPECT_THAT(log, ::testing::UnorderedElementsAre( "set_starting", "set_value: data/a.png", "set_value: data/bb.png", "set_value: data/c.png", "set_done", "set_stopping")) << i; } { kvstore::ListOptions options; options.range = options.range.Prefix("data/b"); options.strip_prefix_length = 5; absl::Notification notification; std::vector<std::string> log; tensorstore::execution::submit( kvstore::List(store, options), tensorstore::CompletionNotifyingReceiver{ &notification, tensorstore::LoggingReceiver{&log}}); notification.WaitForNotification(); EXPECT_THAT(log, ::testing::UnorderedElementsAre( "set_starting", "set_value: bb.png", "set_done", "set_stopping")); } { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto read_result, kvstore::Read(store, "data/bb.png").result()); EXPECT_THAT(read_result, MatchesKvsReadResult( ::testing::_, ::testing::Not(tensorstore::StorageGeneration::Unknown()))); EXPECT_THAT(read_result.value.size(), 106351); } { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto read_result, kvstore::Read(store, "data/zz.png").result()); EXPECT_THAT(read_result, MatchesKvsReadResultNotFound()); } } TEST_F(ZipKeyValueStoreTest, ReadOps) { PrepareMemoryKvstore(GetReadOpZip()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", "zip"}, {"base", {{"driver", "memory"}, {"path", "data.zip"}}}}, context_) .result()); ::tensorstore::internal::TestKeyValueStoreReadOps( store, "key", absl::Cord("abcdefghijklmnop"), "missing_key"); } TEST_F(ZipKeyValueStoreTest, InvalidSpec) { auto context = tensorstore::Context::Default(); EXPECT_THAT( kvstore::Open({{"driver", "zip"}, {"extra", "key"}}, context).result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST_F(ZipKeyValueStoreTest, SpecRoundtrip) { tensorstore::internal::KeyValueStoreSpecRoundtripOptions options; options.check_data_persists = false; options.check_write_read = false; options.check_data_after_serialization = false; options.check_store_serialization = true; options.full_spec = {{"driver", "zip"}, {"base", {{"driver", "memory"}, {"path", "abc.zip"}}}}; options.full_base_spec = {{"driver", "memory"}, {"path", "abc.zip"}}; tensorstore::internal::TestKeyValueStoreSpecRoundtrip(options); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/zip/zip_key_value_store.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/zip/zip_key_value_store_test.cc
4f887a6430414cd6088e1743555015b10f116d50
95e40c78-e8f4-43ff-9fff-211c5845b9a2
cpp
google/tensorstore
shard_format
tensorstore/kvstore/zarr3_sharding_indexed/shard_format.cc
tensorstore/kvstore/zarr3_sharding_indexed/shard_format_test.cc
#include "tensorstore/kvstore/zarr3_sharding_indexed/shard_format.h" #include <stddef.h> #include <stdint.h> #include <algorithm> #include <cassert> #include <limits> #include <optional> #include <utility> #include <vector> #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_format.h" #include "riegeli/bytes/cord_writer.h" #include "riegeli/bytes/wrapping_writer.h" #include "riegeli/bytes/writer.h" #include "tensorstore/array.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/driver/zarr3/codec/codec.h" #include "tensorstore/driver/zarr3/codec/codec_spec.h" #include "tensorstore/index.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/enum.h" #include "tensorstore/internal/unowned_to_shared.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/zarr3_sharding_indexed/key.h" #include "tensorstore/rank.h" #include "tensorstore/static_cast.h" #include "tensorstore/util/extents.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace zarr3_sharding_indexed { namespace jb = ::tensorstore::internal_json_binding; TENSORSTORE_DEFINE_JSON_BINDER(ShardIndexLocationJsonBinder, jb::Enum<ShardIndexLocation, const char*>({ {ShardIndexLocation::kStart, "start"}, {ShardIndexLocation::kEnd, "end"}, })); absl::Status ShardIndexEntry::Validate(EntryId entry_id) const { if (!IsMissing()) { uint64_t exclusive_max; if (internal::AddOverflow(offset, length, &exclusive_max) || exclusive_max > std::numeric_limits<int64_t>::max()) { return absl::DataLossError(absl::StrFormat( "Invalid shard index entry %d with offset=%d, length=%d", entry_id, offset, length)); } } return absl::OkStatus(); } absl::Status ShardIndexEntry::Validate(EntryId entry_id, int64_t total_size) const { if (auto status = Validate(entry_id); !status.ok()) return status; auto byte_range = AsByteRange(); if (byte_range.exclusive_max > total_size) { return absl::DataLossError(tensorstore::StrCat( "Shard index entry ", entry_id, " with byte range ", byte_range, " is invalid for shard of size ", total_size)); } return absl::OkStatus(); } Result<ShardIndex> DecodeShardIndex(const absl::Cord& input, const ShardIndexParameters& parameters) { assert(parameters.index_shape.back() == 2); SharedArray<const void> entries; TENSORSTORE_ASSIGN_OR_RETURN( entries, parameters.index_codec_state->DecodeArray(parameters.index_shape, input)); if (!IsContiguousLayout(entries, c_order)) { entries = MakeCopy(entries); } return ShardIndex{ StaticDataTypeCast<const uint64_t, unchecked>(std::move(entries))}; } Result<ShardIndex> DecodeShardIndexFromFullShard( const absl::Cord& shard_data, const ShardIndexParameters& shard_index_parameters) { int64_t shard_index_size = shard_index_parameters.index_codec_state->encoded_size(); if (shard_index_size > shard_data.size()) { return absl::DataLossError(absl::StrFormat( "Existing shard has size of %d bytes, but expected at least %d bytes", shard_data.size(), shard_index_size)); } absl::Cord encoded_shard_index; switch (shard_index_parameters.index_location) { case ShardIndexLocation::kStart: encoded_shard_index = shard_data.Subcord(0, shard_index_size); break; case ShardIndexLocation::kEnd: encoded_shard_index = shard_data.Subcord( shard_data.size() - shard_index_size, shard_index_size); break; } TENSORSTORE_ASSIGN_OR_RETURN( auto shard_index, DecodeShardIndex(encoded_shard_index, shard_index_parameters), tensorstore::MaybeAnnotateStatus(_, "Error decoding shard index")); return shard_index; } absl::Status EncodeShardIndex(riegeli::Writer& writer, const ShardIndex& shard_index, const ShardIndexParameters& parameters) { riegeli::WrappingWriter wrapping_writer{&writer}; return parameters.index_codec_state->EncodeArray(shard_index.entries, wrapping_writer); } absl::Status ValidateGridShape(span<const Index> grid_shape) { if (grid_shape.size() > kMaxRank - 1) { return absl::InvalidArgumentError( absl::StrFormat("grid rank of %d exceeds maximum of %d", grid_shape.size(), kMaxRank - 1)); } if (ProductOfExtents(grid_shape) > kMaxNumEntries) { return absl::InvalidArgumentError( tensorstore::StrCat("grid shape of ", grid_shape, " has more than ", kMaxNumEntries, " entries")); } return absl::OkStatus(); } Result<ZarrCodecChain::Ptr> InitializeIndexCodecChain( const ZarrCodecChainSpec& codec_chain_spec, DimensionIndex grid_rank, ZarrCodecChainSpec* resolved_codec_chain_spec) { if (grid_rank > kMaxRank - 1) { return absl::InvalidArgumentError(absl::StrFormat( "Rank of %d exceeds maximum ran of %d supported for sharding_indexed", grid_rank, kMaxRank - 1)); } static const uint64_t fill_value{std::numeric_limits<uint64_t>::max()}; internal_zarr3::ArrayCodecResolveParameters array_params; array_params.dtype = dtype_v<uint64_t>; array_params.rank = grid_rank + 1; array_params.fill_value = SharedArray<const void>(internal::UnownedToShared(&fill_value)); internal_zarr3::BytesCodecResolveParameters bytes_params; return codec_chain_spec.Resolve(std::move(array_params), bytes_params, resolved_codec_chain_spec); } absl::Status ShardIndexParameters::InitializeIndexShape( span<const Index> grid_shape) { TENSORSTORE_RETURN_IF_ERROR(ValidateGridShape(grid_shape)); num_entries = ProductOfExtents(grid_shape); index_shape.resize(grid_shape.size() + 1); std::copy(grid_shape.begin(), grid_shape.end(), index_shape.begin()); index_shape.back() = 2; return absl::OkStatus(); } absl::Status ShardIndexParameters::Initialize( const ZarrCodecChainSpec& codec_chain_spec, span<const Index> grid_shape, ZarrCodecChainSpec* resolved_codec_chain_spec) { TENSORSTORE_ASSIGN_OR_RETURN( index_codec_chain, InitializeIndexCodecChain(codec_chain_spec, grid_shape.size(), resolved_codec_chain_spec)); return Initialize(*index_codec_chain, grid_shape); return absl::OkStatus(); } absl::Status ShardIndexParameters::Initialize(const ZarrCodecChain& codec_chain, span<const Index> grid_shape) { if (index_codec_chain.get() != &codec_chain) { index_codec_chain.reset(&codec_chain); } TENSORSTORE_RETURN_IF_ERROR(InitializeIndexShape(grid_shape)); TENSORSTORE_ASSIGN_OR_RETURN(index_codec_state, index_codec_chain->Prepare(index_shape)); if (index_codec_state->encoded_size() == -1) { return absl::InvalidArgumentError( "Invalid index_codecs specified: only fixed-size encodings are " "supported"); } return absl::OkStatus(); } Result<ShardEntries> DecodeShard( const absl::Cord& shard_data, const ShardIndexParameters& shard_index_parameters) { const int64_t num_entries = shard_index_parameters.num_entries; ShardEntries entries; entries.entries.resize(num_entries); TENSORSTORE_ASSIGN_OR_RETURN( auto shard_index, DecodeShardIndexFromFullShard(shard_data, shard_index_parameters)); for (int64_t i = 0; i < num_entries; ++i) { const auto entry_index = shard_index[i]; if (entry_index.IsMissing()) continue; TENSORSTORE_RETURN_IF_ERROR(entry_index.Validate(i, shard_data.size())); entries.entries[i] = internal::GetSubCord(shard_data, entry_index.AsByteRange()); } return entries; } Result<std::optional<absl::Cord>> EncodeShard( const ShardEntries& entries, const ShardIndexParameters& shard_index_parameters) { int64_t shard_index_size = shard_index_parameters.index_codec_state->encoded_size(); absl::Cord shard_data; riegeli::CordWriter writer{&shard_data}; auto shard_index_array = AllocateArray<uint64_t>( shard_index_parameters.index_shape, c_order, default_init); bool has_entry = false; uint64_t offset = shard_index_parameters.index_location == ShardIndexLocation::kStart ? shard_index_size : 0; for (size_t i = 0; i < entries.entries.size(); ++i) { const auto& entry = entries.entries[i]; uint64_t entry_offset; uint64_t length; if (entry) { has_entry = true; length = entry->size(); entry_offset = offset; offset += length; ABSL_CHECK(writer.Write(*entry)); } else { entry_offset = std::numeric_limits<uint64_t>::max(); length = std::numeric_limits<uint64_t>::max(); } shard_index_array.data()[i * 2] = entry_offset; shard_index_array.data()[i * 2 + 1] = length; } if (!has_entry) return std::nullopt; switch (shard_index_parameters.index_location) { case ShardIndexLocation::kStart: { ABSL_CHECK(writer.Close()); absl::Cord encoded_shard_index; riegeli::CordWriter index_writer{&encoded_shard_index}; TENSORSTORE_RETURN_IF_ERROR(EncodeShardIndex( index_writer, ShardIndex{std::move(shard_index_array)}, shard_index_parameters)); ABSL_CHECK(index_writer.Close()); encoded_shard_index.Append(std::move(shard_data)); shard_data = std::move(encoded_shard_index); break; } case ShardIndexLocation::kEnd: { TENSORSTORE_RETURN_IF_ERROR( EncodeShardIndex(writer, ShardIndex{std::move(shard_index_array)}, shard_index_parameters)); ABSL_CHECK(writer.Close()); break; } } return shard_data; } } }
#include "tensorstore/kvstore/zarr3_sharding_indexed/shard_format.h" #include <optional> #include <string_view> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/cord.h" #include <nlohmann/json.hpp> #include "tensorstore/driver/zarr3/codec/codec_chain_spec.h" #include "tensorstore/driver/zarr3/codec/codec_test_util.h" #include "tensorstore/index.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::Index; using ::tensorstore::MatchesStatus; using ::tensorstore::Result; using ::tensorstore::internal_zarr3::GetDefaultBytesCodecJson; using ::tensorstore::internal_zarr3::ZarrCodecChainSpec; using ::tensorstore::zarr3_sharding_indexed::DecodeShard; using ::tensorstore::zarr3_sharding_indexed::EncodeShard; using ::tensorstore::zarr3_sharding_indexed::ShardEntries; using ::tensorstore::zarr3_sharding_indexed::ShardIndexLocation; using ::tensorstore::zarr3_sharding_indexed::ShardIndexParameters; Result<ShardIndexParameters> GetParams( ShardIndexLocation index_location, std::vector<Index> grid_shape, ::nlohmann::json::array_t index_codecs_json = {GetDefaultBytesCodecJson(), {{"name", "crc32c"}}}) { TENSORSTORE_ASSIGN_OR_RETURN(auto index_codecs, ZarrCodecChainSpec::FromJson(index_codecs_json)); ShardIndexParameters p; p.index_location = index_location; TENSORSTORE_RETURN_IF_ERROR(p.Initialize(index_codecs, grid_shape)); return p; } TEST(InitializeTest, Success) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto p, GetParams(ShardIndexLocation::kEnd, {2, 3})); EXPECT_EQ(6, p.num_entries); EXPECT_THAT(p.index_shape, ::testing::ElementsAre(2, 3, 2)); } TEST(InitializeTest, InvalidIndexCodecs) { EXPECT_THAT( GetParams(ShardIndexLocation::kEnd, {2, 3}, {GetDefaultBytesCodecJson(), {{"name", "gzip"}, {"configuration", {{"level", 5}}}}}), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*: only fixed-size encodings are supported")); } TEST(InitializeTest, InvalidGridShape) { EXPECT_THAT( GetParams(ShardIndexLocation::kEnd, {1024 * 1024 * 1024 + 1}), MatchesStatus(absl::StatusCode::kInvalidArgument, "grid shape of .* has more than 1073741824 entries")); } TEST(EncodeShardTest, RoundTrip) { for (auto index_location : {ShardIndexLocation::kStart, ShardIndexLocation::kEnd}) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto p, GetParams(index_location, {2, 3})); ShardEntries entries; entries.entries = { absl::Cord("(0, 0)"), absl::Cord("(0, 1)"), std::nullopt, std::nullopt, absl::Cord("(1, 1)"), std::nullopt }; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded, EncodeShard(entries, p)); ASSERT_TRUE(encoded.has_value()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto decoded_entries, DecodeShard(*encoded, p)); EXPECT_THAT(decoded_entries.entries, ::testing::ElementsAreArray(entries.entries)); } } TEST(EncodeShardTest, RoundTripEmpty) { for (auto index_location : {ShardIndexLocation::kStart, ShardIndexLocation::kEnd}) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto p, GetParams(index_location, {2, 3})); ShardEntries entries; entries.entries.resize(6); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded, EncodeShard(entries, p)); ASSERT_FALSE(encoded.has_value()); } } TEST(DecodeShardTest, TooShort) { absl::Cord encoded(std::string{1, 2, 3}); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto p, GetParams(ShardIndexLocation::kEnd, {2})); EXPECT_THAT(DecodeShard(encoded, p), MatchesStatus(absl::StatusCode::kDataLoss, "Existing shard has size of 3 bytes, but expected " "at least .* bytes")); } TEST(DecodeShardTest, ByteRangeOutOfRange) { absl::Cord encoded(std::string{ 0, 0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 0, 0, 0, 0, 0, }); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto p, GetParams(ShardIndexLocation::kEnd, {1}, {{{"name", "bytes"}, {"configuration", {{"endian", "little"}}}}})); EXPECT_THAT( DecodeShard(encoded, p), MatchesStatus(absl::StatusCode::kDataLoss, "Shard index entry 0 with byte range .* is invalid .*")); } TEST(DecodeShardTest, ByteRangeInvalid) { unsigned char data[] = { 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 1, 0, 0, 0, 0, 0, 0, 0, }; absl::Cord encoded( std::string_view(reinterpret_cast<const char*>(data), sizeof(data))); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto p, GetParams(ShardIndexLocation::kEnd, {1}, {{{"name", "bytes"}, {"configuration", {{"endian", "little"}}}}})); EXPECT_THAT(DecodeShard(encoded, p), MatchesStatus(absl::StatusCode::kDataLoss, "Invalid shard index entry 0 with .*")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/zarr3_sharding_indexed/shard_format.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/zarr3_sharding_indexed/shard_format_test.cc
4f887a6430414cd6088e1743555015b10f116d50
61928d7e-efb0-4f2c-8acc-2f59f7b04420
cpp
google/tensorstore
key
tensorstore/kvstore/zarr3_sharding_indexed/key.cc
tensorstore/kvstore/zarr3_sharding_indexed/key_test.cc
#include "tensorstore/kvstore/zarr3_sharding_indexed/key.h" #include <stddef.h> #include <stdint.h> #include <algorithm> #include <cassert> #include <cstring> #include <optional> #include <string> #include <string_view> #include <utility> #include "absl/base/internal/endian.h" #include "absl/status/status.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/index.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/rank.h" #include "tensorstore/util/extents.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace zarr3_sharding_indexed { std::string IndicesToKey(span<const Index> grid_cell_indices) { std::string key; key.resize(grid_cell_indices.size() * 4); for (DimensionIndex i = 0; i < grid_cell_indices.size(); ++i) { absl::big_endian::Store32(key.data() + i * 4, grid_cell_indices[i]); } return key; } bool KeyToIndices(std::string_view key, span<Index> grid_cell_indices) { if (key.size() != grid_cell_indices.size() * 4) { return false; } for (DimensionIndex i = 0; i < grid_cell_indices.size(); ++i) { grid_cell_indices[i] = absl::big_endian::Load32(key.data() + i * 4); } return true; } std::optional<EntryId> KeyToEntryId(std::string_view key, span<const Index> grid_shape) { const DimensionIndex rank = grid_shape.size(); if (rank * sizeof(uint32_t) != key.size()) return {}; EntryId id = 0; for (DimensionIndex i = 0; i < rank; ++i) { auto index = absl::big_endian::Load32(key.data() + i * 4); if (index >= grid_shape[i]) return {}; id *= grid_shape[i]; id += index; } return id; } Result<EntryId> KeyToEntryIdOrError(std::string_view key, span<const Index> grid_shape) { if (auto entry_id = KeyToEntryId(key, grid_shape)) { return *entry_id; } return absl::InvalidArgumentError( tensorstore::StrCat("Invalid key (grid_shape=", grid_shape, "): ", tensorstore::QuoteString(key))); } std::string EntryIdToKey(EntryId entry_id, span<const Index> grid_shape) { std::string key; key.resize(grid_shape.size() * 4); for (DimensionIndex i = grid_shape.size(); i--;) { const Index size = grid_shape[i]; absl::big_endian::Store32(key.data() + i * 4, entry_id % size); entry_id /= size; } return key; } EntryId LowerBoundToEntryId(std::string_view key, span<const Index> grid_shape) { char key_padded[kMaxRank * 4]; const size_t full_key_size = grid_shape.size() * 4; const size_t key_bytes_to_copy = std::min(full_key_size, key.size()); std::memcpy(key_padded, key.data(), key_bytes_to_copy); std::memset(key_padded + key_bytes_to_copy, 0, full_key_size - key_bytes_to_copy); EntryId entry_id = 0; EntryId remaining_indices_mask = ~static_cast<EntryId>(0); EntryId max_entry_id = 1; for (DimensionIndex i = 0; i < grid_shape.size(); ++i) { const EntryId size = grid_shape[i]; max_entry_id *= size; EntryId index = absl::big_endian::Load32(&key_padded[i * 4]); entry_id *= size; if (index >= size) { entry_id += (size & remaining_indices_mask); remaining_indices_mask = 0; } else { entry_id += (index & remaining_indices_mask); } } assert(entry_id <= max_entry_id); if (key.size() > full_key_size) { if (entry_id < max_entry_id) { ++entry_id; } } return entry_id; } std::pair<EntryId, EntryId> KeyRangeToEntryRange(std::string_view inclusive_min, std::string_view exclusive_max, span<const Index> grid_shape) { EntryId lower_bound = LowerBoundToEntryId(inclusive_min, grid_shape); EntryId upper_bound; if (exclusive_max.empty()) { upper_bound = static_cast<EntryId>(ProductOfExtents(grid_shape)); } else { upper_bound = LowerBoundToEntryId(exclusive_max, grid_shape); } return {lower_bound, upper_bound}; } EntryId InternalKeyLowerBoundToEntryId(std::string_view key, int64_t num_entries_per_shard) { char key_bytes[4] = {}; std::memcpy(key_bytes, key.data(), std::min(static_cast<size_t>(4), key.size())); EntryId entry_id = absl::big_endian::Load32(key_bytes); if (entry_id > num_entries_per_shard) { entry_id = num_entries_per_shard; } if (key.size() > 4 && entry_id < num_entries_per_shard) { ++entry_id; } return entry_id; } std::pair<EntryId, EntryId> InternalKeyRangeToEntryRange( std::string_view inclusive_min, std::string_view exclusive_max, int64_t num_entries_per_shard) { return {InternalKeyLowerBoundToEntryId(inclusive_min, num_entries_per_shard), exclusive_max.empty() ? EntryId(num_entries_per_shard) : InternalKeyLowerBoundToEntryId( exclusive_max, num_entries_per_shard)}; } std::string EntryIdToInternalKey(EntryId entry_id) { std::string key; key.resize(4); absl::big_endian::Store32(key.data(), entry_id); return key; } EntryId InternalKeyToEntryId(std::string_view key) { assert(key.size() == 4); return static_cast<EntryId>(absl::big_endian::Load32(key.data())); } KeyRange KeyRangeToInternalKeyRange(const KeyRange& range, span<const Index> grid_shape) { auto [inclusive_min_entry, exclusive_max_entry] = KeyRangeToEntryRange( range.inclusive_min, range.exclusive_max, grid_shape); return KeyRange{EntryIdToInternalKey(inclusive_min_entry), EntryIdToInternalKey(exclusive_max_entry)}; } std::string DescribeEntryId(EntryId entry_id, span<const Index> grid_shape) { Index indices[kMaxRank]; span<Index> indices_span(&indices[0], grid_shape.size()); GetContiguousIndices<c_order, Index>(entry_id, grid_shape, indices_span); return tensorstore::StrCat("shard entry ", indices_span, "/", grid_shape); } std::string DescribeKey(std::string_view key, span<const Index> grid_shape) { if (auto entry_id = KeyToEntryId(key, grid_shape)) { return DescribeEntryId(*entry_id, grid_shape); } return tensorstore::StrCat("invalid shard entry ", tensorstore::QuoteString(key), "/", grid_shape); } std::string DescribeInternalKey(std::string_view key, span<const Index> grid_shape) { return DescribeEntryId(InternalKeyToEntryId(key), grid_shape); } } }
#include "tensorstore/kvstore/zarr3_sharding_indexed/key.h" #include <optional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index.h" #include "tensorstore/kvstore/key_range.h" namespace { using ::tensorstore::Index; using ::tensorstore::KeyRange; using ::tensorstore::zarr3_sharding_indexed::EntryId; using ::tensorstore::zarr3_sharding_indexed::EntryIdToInternalKey; using ::tensorstore::zarr3_sharding_indexed::EntryIdToKey; using ::tensorstore::zarr3_sharding_indexed::IndicesToKey; using ::tensorstore::zarr3_sharding_indexed::InternalKeyLowerBoundToEntryId; using ::tensorstore::zarr3_sharding_indexed::InternalKeyRangeToEntryRange; using ::tensorstore::zarr3_sharding_indexed::InternalKeyToEntryId; using ::tensorstore::zarr3_sharding_indexed::KeyRangeToEntryRange; using ::tensorstore::zarr3_sharding_indexed::KeyRangeToInternalKeyRange; using ::tensorstore::zarr3_sharding_indexed::KeyToEntryId; using ::tensorstore::zarr3_sharding_indexed::KeyToIndices; using ::tensorstore::zarr3_sharding_indexed::LowerBoundToEntryId; TEST(KeyToEntryIdTest, Basic) { EntryId entry_id = 1 * 5 * 6 + 2 * 6 + 3; std::string key{0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3}; Index grid_shape[] = {4, 5, 6}; EXPECT_THAT(KeyToEntryId(key, grid_shape), ::testing::Optional(entry_id)); EXPECT_THAT(EntryIdToKey(entry_id, grid_shape), ::testing::Eq(key)); } TEST(KeyToEntryIdTest, OutOfRange) { EXPECT_THAT(KeyToEntryId(std::string{0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 3}, {{4, 5, 6}}), ::testing::Eq(std::nullopt)); } TEST(KeyToEntryIdTest, Invalid) { EXPECT_THAT( KeyToEntryId(std::string{0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0}, {{4, 5, 6}}), ::testing::Eq(std::nullopt)); } TEST(IndicesToKeyTest, Basic) { const Index indices[] = {1, 2, 3}; std::string key{0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3}; EXPECT_THAT(IndicesToKey(indices), ::testing::Eq(key)); Index decoded_indices[3]; EXPECT_TRUE(KeyToIndices(key, decoded_indices)); EXPECT_THAT(decoded_indices, ::testing::ElementsAreArray(indices)); EXPECT_FALSE(KeyToIndices(key.substr(1), decoded_indices)); } TEST(LowerBoundToEntryId, Exact) { Index grid_shape[] = {4, 5, 6}; EXPECT_THAT(LowerBoundToEntryId( std::string{0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3}, grid_shape), ::testing::Eq(1 * 5 * 6 + 2 * 6 + 3)); } TEST(LowerBoundToEntryId, Longer) { Index grid_shape[] = {4, 5, 6}; EXPECT_THAT( LowerBoundToEntryId(std::string{0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0}, grid_shape), ::testing::Eq(1 * 5 * 6 + 2 * 6 + 4)); } TEST(KeyRangeToEntryRange, Full) { Index grid_shape[] = {4, 5, 6}; EXPECT_THAT(KeyRangeToEntryRange("", "", grid_shape), ::testing::Pair(0, 4 * 5 * 6)); } TEST(KeyRangeToEntryRange, Partial) { Index grid_shape[] = {4, 5, 6}; EXPECT_THAT( KeyRangeToEntryRange( std::string{ 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, }, std::string{ 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 5, }, grid_shape), ::testing::Pair(2 * (5 * 6) + 3 * 6 + 4, 2 * (5 * 6) + 4 * 6 + 5)); EXPECT_THAT(KeyRangeToInternalKeyRange(KeyRange{std::string{ 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, }, std::string{ 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 5, }}, grid_shape), KeyRange(EntryIdToInternalKey(2 * (5 * 6) + 3 * 6 + 4), EntryIdToInternalKey(2 * (5 * 6) + 4 * 6 + 5))); } TEST(EntryIdToInternalKeyTest, Basic) { EntryId entry_id = 0x01020304; std::string internal_key{0x01, 0x02, 0x03, 0x04}; EXPECT_THAT(EntryIdToInternalKey(entry_id), ::testing::Eq(internal_key)); EXPECT_THAT(InternalKeyToEntryId(internal_key), ::testing::Eq(entry_id)); } TEST(InternalKeyLowerBoundToEntryIdTest, Basic) { EXPECT_THAT(InternalKeyLowerBoundToEntryId( std::string{0x01, 0x02, 0x03, 0x04}, 0x88888888), ::testing::Eq(0x01020304)); EXPECT_THAT(InternalKeyLowerBoundToEntryId( std::string{0x01, 0x02, 0x03, 0x04, 0x0}, 0x88888888), ::testing::Eq(0x01020304 + 1)); EXPECT_THAT( InternalKeyLowerBoundToEntryId(std::string{0x01, 0x02, 0x03}, 0x88888888), ::testing::Eq(0x01020300)); EXPECT_THAT(InternalKeyLowerBoundToEntryId( std::string{0x01, 0x02, 0x03, 0x04}, 0x01020302), ::testing::Eq(0x01020302)); } TEST(InternalKeyRangeToEntryRange, Basic) { EXPECT_THAT(InternalKeyRangeToEntryRange(std::string{0x01, 0x02, 0x03, 0x04}, std::string{0x01, 0x02, 0x03, 0x07}, 0x88888888), ::testing::Pair(0x01020304, 0x01020307)); EXPECT_THAT(InternalKeyRangeToEntryRange(std::string{0x01, 0x02, 0x03, 0x04}, {}, 0x88888888), ::testing::Pair(0x01020304, 0x88888888)); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/zarr3_sharding_indexed/key.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/zarr3_sharding_indexed/key_test.cc
4f887a6430414cd6088e1743555015b10f116d50
e0018a36-efb1-402e-a04d-3986a28f728c
cpp
google/tensorstore
zarr3_sharding_indexed
tensorstore/kvstore/zarr3_sharding_indexed/zarr3_sharding_indexed.cc
tensorstore/kvstore/zarr3_sharding_indexed/zarr3_sharding_indexed_test.cc
#include "tensorstore/kvstore/zarr3_sharding_indexed/zarr3_sharding_indexed.h" #include <stddef.h> #include <stdint.h> #include <cassert> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/base/optimization.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_format.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/batch.h" #include "tensorstore/context.h" #include "tensorstore/driver/zarr3/codec/codec_chain_spec.h" #include "tensorstore/index.h" #include "tensorstore/internal/cache/async_cache.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/cache/cache_pool_resource.h" #include "tensorstore/internal/cache/kvs_backed_cache.h" #include "tensorstore/internal/cache_key/cache_key.h" #include "tensorstore/internal/data_copy_concurrency_resource.h" #include "tensorstore/internal/estimate_heap_usage/estimate_heap_usage.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/dimension_indexed.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/mutex.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/kvstore/batch_util.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/driver.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_modify_write.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/registry.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/supported_features.h" #include "tensorstore/kvstore/transaction.h" #include "tensorstore/kvstore/zarr3_sharding_indexed/key.h" #include "tensorstore/kvstore/zarr3_sharding_indexed/shard_format.h" #include "tensorstore/transaction.h" #include "tensorstore/util/bit_vec.h" #include "tensorstore/util/execution/any_receiver.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/execution/flow_sender_operation_state.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/fwd.h" #include "tensorstore/util/garbage_collection/garbage_collection.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" #include "tensorstore/internal/cache_key/std_vector.h" #include "tensorstore/internal/estimate_heap_usage/std_optional.h" #include "tensorstore/internal/estimate_heap_usage/std_vector.h" #include "tensorstore/serialization/std_vector.h" #include "tensorstore/util/execution/result_sender.h" #include "tensorstore/util/garbage_collection/std_vector.h" namespace tensorstore { namespace zarr3_sharding_indexed { namespace { using ::tensorstore::internal_kvstore::DeleteRangeEntry; using ::tensorstore::internal_kvstore::kReadModifyWrite; using ::tensorstore::kvstore::ListEntry; using ::tensorstore::kvstore::ListReceiver; class ShardIndexKeyValueStore : public kvstore::Driver { public: explicit ShardIndexKeyValueStore(kvstore::DriverPtr base, ShardIndexLocation index_location, int64_t index_size_in_bytes) : base_(std::move(base)), index_location_(index_location), index_size_in_bytes_(index_size_in_bytes) {} Future<kvstore::ReadResult> Read(kvstore::Key key, kvstore::ReadOptions options) override { assert(options.byte_range == OptionalByteRangeRequest{}); switch (index_location_) { case ShardIndexLocation::kStart: options.byte_range = OptionalByteRangeRequest::Range(0, index_size_in_bytes_); break; case ShardIndexLocation::kEnd: options.byte_range = OptionalByteRangeRequest::SuffixLength(index_size_in_bytes_); break; } return MapFutureError( InlineExecutor{}, [](const absl::Status& status) { return internal::ConvertInvalidArgumentToFailedPrecondition(status); }, base_->Read(std::move(key), std::move(options))); } std::string DescribeKey(std::string_view key) override { return tensorstore::StrCat("shard index in ", base_->DescribeKey(key)); } void GarbageCollectionVisit( garbage_collection::GarbageCollectionVisitor& visitor) const final { } kvstore::Driver* base() { return base_.get(); } private: kvstore::DriverPtr base_; ShardIndexLocation index_location_; int64_t index_size_in_bytes_; }; class ShardIndexCache : public internal::KvsBackedCache<ShardIndexCache, internal::AsyncCache> { using Base = internal::KvsBackedCache<ShardIndexCache, internal::AsyncCache>; public: using ReadData = ShardIndex; class Entry : public Base::Entry { public: using OwningCache = ShardIndexCache; size_t ComputeReadDataSizeInBytes(const void* read_data) override { const auto& cache = GetOwningCache(*this); return read_data ? cache.shard_index_params().num_entries * sizeof(uint64_t) * 2 : 0; } std::string GetKeyValueStoreKey() override { return GetOwningCache(*this).base_kvstore_path_; } void DoDecode(std::optional<absl::Cord> value, DecodeReceiver receiver) override { GetOwningCache(*this).executor()( [this, value = std::move(value), receiver = std::move(receiver)]() mutable { std::shared_ptr<ReadData> read_data; if (value) { TENSORSTORE_ASSIGN_OR_RETURN( auto shard_index, DecodeShardIndex(*value, GetOwningCache(*this).shard_index_params()), static_cast<void>(execution::set_error(receiver, _))); read_data = std::make_shared<ReadData>(std::move(shard_index)); } execution::set_value(receiver, std::move(read_data)); }); } }; Entry* DoAllocateEntry() final { return new Entry; } size_t DoGetSizeofEntry() final { return sizeof(Entry); } TransactionNode* DoAllocateTransactionNode(AsyncCache::Entry& entry) final { ABSL_UNREACHABLE(); } explicit ShardIndexCache(kvstore::DriverPtr base_kvstore, std::string base_kvstore_path, Executor executor, ShardIndexParameters&& params) : Base(kvstore::DriverPtr(new ShardIndexKeyValueStore( std::move(base_kvstore), params.index_location, params.index_codec_state->encoded_size()))), base_kvstore_path_(std::move(base_kvstore_path)), executor_(std::move(executor)), shard_index_params_(std::move(params)) {} ShardIndexKeyValueStore* shard_index_kvstore_driver() { return static_cast<ShardIndexKeyValueStore*>(this->Base::kvstore_driver()); } kvstore::Driver* base_kvstore_driver() { return shard_index_kvstore_driver()->base(); } const std::string& base_kvstore_path() const { return base_kvstore_path_; } const Executor& executor() { return executor_; } span<const Index> grid_shape() const { return span<const Index>(shard_index_params_.index_shape.data(), shard_index_params_.index_shape.size() - 1); } const ShardIndexParameters& shard_index_params() const { return shard_index_params_; } std::string base_kvstore_path_; Executor executor_; ShardIndexParameters shard_index_params_; }; class ShardedKeyValueStoreWriteCache : public internal::KvsBackedCache<ShardedKeyValueStoreWriteCache, internal::AsyncCache> { using Base = internal::KvsBackedCache<ShardedKeyValueStoreWriteCache, internal::AsyncCache>; public: using ReadData = ShardEntries; explicit ShardedKeyValueStoreWriteCache( internal::CachePtr<ShardIndexCache> shard_index_cache) : Base(kvstore::DriverPtr(shard_index_cache->base_kvstore_driver())), shard_index_cache_(std::move(shard_index_cache)) {} class Entry : public Base::Entry { public: using OwningCache = ShardedKeyValueStoreWriteCache; size_t ComputeReadDataSizeInBytes(const void* data) override { return internal::EstimateHeapUsage(*static_cast<const ReadData*>(data)); } void DoDecode(std::optional<absl::Cord> value, DecodeReceiver receiver) override { GetOwningCache(*this).executor()( [this, value = std::move(value), receiver = std::move(receiver)]() mutable { ShardEntries entries; const auto& shard_index_params = GetOwningCache(*this).shard_index_params(); if (value) { TENSORSTORE_ASSIGN_OR_RETURN( entries, DecodeShard(*value, shard_index_params), static_cast<void>(execution::set_error(receiver, _))); } else { entries.entries.resize(shard_index_params.num_entries); } execution::set_value( receiver, std::make_shared<ShardEntries>(std::move(entries))); }); } void DoEncode(std::shared_ptr<const ShardEntries> data, EncodeReceiver receiver) override { TENSORSTORE_ASSIGN_OR_RETURN( auto encoded_shard, EncodeShard(*data, GetOwningCache(*this).shard_index_params()), static_cast<void>(execution::set_error(receiver, _))); execution::set_value(receiver, std::move(encoded_shard)); } std::string GetKeyValueStoreKey() override { return GetOwningCache(*this).base_kvstore_path(); } }; class TransactionNode : public Base::TransactionNode, public internal_kvstore::AtomicMultiPhaseMutation { public: using OwningCache = ShardedKeyValueStoreWriteCache; using Base::TransactionNode::TransactionNode; absl::Mutex& mutex() override { return this->mutex_; } void PhaseCommitDone(size_t next_phase) override {} internal::TransactionState::Node& GetTransactionNode() override { return *this; } void Abort() override { this->AbortRemainingPhases(); Base::TransactionNode::Abort(); } std::string DescribeKey(std::string_view key) override { auto& cache = GetOwningCache(*this); return tensorstore::StrCat( DescribeInternalKey(key, cache.shard_index_params().grid_shape()), " in ", cache.kvstore_driver()->DescribeKey(cache.base_kvstore_path())); } void DoApply(ApplyOptions options, ApplyReceiver receiver) override; void StartApply(); void AllEntriesDone( internal_kvstore::SinglePhaseMutation& single_phase_mutation) override; void MergeForWriteback(bool conditional); void RecordEntryWritebackError( internal_kvstore::ReadModifyWriteEntry& entry, absl::Status error) override { absl::MutexLock lock(&mutex_); if (apply_status_.ok()) { apply_status_ = std::move(error); } } void Revoke() override { Base::TransactionNode::Revoke(); { UniqueWriterLock(*this); } this->RevokeAllEntries(); } void WritebackSuccess(ReadState&& read_state) override; void WritebackError() override; void InvalidateReadState() override; bool MultiPhaseReadsCommitted() override { return this->reads_committed_; } void Read( internal_kvstore::ReadModifyWriteEntry& entry, kvstore::ReadModifyWriteTarget::TransactionalReadOptions&& options, kvstore::ReadModifyWriteTarget::ReadReceiver&& receiver) override { this->AsyncCache::TransactionNode::Read({options.staleness_bound}) .ExecuteWhenReady(WithExecutor( GetOwningCache(*this).executor(), [&entry, if_not_equal = std::move(options.generation_conditions.if_not_equal), receiver = std::move(receiver)]( ReadyFuture<const void> future) mutable { if (!future.result().ok()) { execution::set_error(receiver, future.result().status()); return; } execution::submit(HandleShardReadSuccess(entry, if_not_equal), receiver); })); } static Result<kvstore::ReadResult> HandleShardReadSuccess( internal_kvstore::ReadModifyWriteEntry& entry, const StorageGeneration& if_not_equal) { auto& self = static_cast<TransactionNode&>(entry.multi_phase()); TimestampedStorageGeneration stamp; std::shared_ptr<const ShardEntries> entries; { AsyncCache::ReadLock<ShardEntries> lock{self}; stamp = lock.stamp(); entries = lock.shared_data(); } if (!StorageGeneration::IsUnknown(stamp.generation) && stamp.generation == if_not_equal) { return kvstore::ReadResult::Unspecified(std::move(stamp)); } if (StorageGeneration::IsDirty(stamp.generation)) { stamp.generation = StorageGeneration::AddLayer(std::move(stamp.generation)); } auto entry_id = InternalKeyToEntryId(entry.key_); const auto& shard_entry = entries->entries[entry_id]; if (!shard_entry) { return kvstore::ReadResult::Missing(std::move(stamp)); } else { return kvstore::ReadResult::Value(*shard_entry, std::move(stamp)); } } ApplyReceiver apply_receiver_; ApplyOptions apply_options_; absl::Status apply_status_; }; Entry* DoAllocateEntry() final { return new Entry; } size_t DoGetSizeofEntry() final { return sizeof(Entry); } TransactionNode* DoAllocateTransactionNode(AsyncCache::Entry& entry) final { return new TransactionNode(static_cast<Entry&>(entry)); } const internal::CachePtr<ShardIndexCache>& shard_index_cache() const { return shard_index_cache_; } const Executor& executor() { return shard_index_cache()->executor(); } const ShardIndexParameters& shard_index_params() const { return shard_index_cache_->shard_index_params(); } int64_t num_entries_per_shard() const { return shard_index_cache_->shard_index_params().num_entries; } const std::string& base_kvstore_path() const { return shard_index_cache_->base_kvstore_path(); } internal::CachePtr<ShardIndexCache> shard_index_cache_; }; void ShardedKeyValueStoreWriteCache::TransactionNode::InvalidateReadState() { Base::TransactionNode::InvalidateReadState(); internal_kvstore::InvalidateReadState(phases_); } void ShardedKeyValueStoreWriteCache::TransactionNode::DoApply( ApplyOptions options, ApplyReceiver receiver) { apply_receiver_ = std::move(receiver); apply_options_ = options; apply_status_ = absl::OkStatus(); GetOwningCache(*this).executor()([this] { this->StartApply(); }); } void ShardedKeyValueStoreWriteCache::TransactionNode::StartApply() { RetryAtomicWriteback(apply_options_.staleness_bound); } void ShardedKeyValueStoreWriteCache::TransactionNode::AllEntriesDone( internal_kvstore::SinglePhaseMutation& single_phase_mutation) { if (!apply_status_.ok()) { execution::set_error(std::exchange(apply_receiver_, {}), std::exchange(apply_status_, {})); return; } auto& self = *this; GetOwningCache(*this).executor()([&self] { TimestampedStorageGeneration stamp; bool mismatch = false; bool modified = false; int64_t num_entries = 0; auto& cache = GetOwningCache(self); const int64_t num_entries_per_shard = cache.num_entries_per_shard(); for (auto& entry : self.phases_.entries_) { if (entry.entry_type() != kReadModifyWrite) { auto& dr_entry = static_cast<DeleteRangeEntry&>(entry); auto [begin_id, end_id] = InternalKeyRangeToEntryRange( dr_entry.key_, dr_entry.exclusive_max_, num_entries_per_shard); modified = true; num_entries += end_id - begin_id; continue; } auto& buffered_entry = static_cast<AtomicMultiPhaseMutation::BufferedReadModifyWriteEntry&>( entry); if (buffered_entry.value_state_ != kvstore::ReadResult::kUnspecified) { modified = true; ++num_entries; } auto& entry_stamp = buffered_entry.stamp(); if (StorageGeneration::IsConditional(entry_stamp.generation)) { if (!StorageGeneration::IsUnknown(stamp.generation) && StorageGeneration::Clean(stamp.generation) != StorageGeneration::Clean(entry_stamp.generation)) { mismatch = true; break; } else { stamp = entry_stamp; } } } if (mismatch) { self.apply_options_.staleness_bound = absl::Now(); self.StartApply(); return; } if (!modified && StorageGeneration::IsUnknown(stamp.generation) && self.apply_options_.apply_mode != ApplyOptions::ApplyMode::kSpecifyUnchanged) { internal::AsyncCache::ReadState update; update.stamp = TimestampedStorageGeneration::Unconditional(); execution::set_value(std::exchange(self.apply_receiver_, {}), std::move(update)); return; } if (!StorageGeneration::IsUnknown(stamp.generation) || num_entries != num_entries_per_shard) { self.internal::AsyncCache::TransactionNode::Read( {self.apply_options_.staleness_bound}) .ExecuteWhenReady([&self](ReadyFuture<const void> future) { if (!future.result().ok()) { execution::set_error(std::exchange(self.apply_receiver_, {}), future.result().status()); return; } GetOwningCache(self).executor()( [&self] { self.MergeForWriteback(true); }); }); return; } self.MergeForWriteback(false); }); } void ShardedKeyValueStoreWriteCache::TransactionNode::MergeForWriteback( bool conditional) { TimestampedStorageGeneration stamp; ShardEntries new_entries; if (conditional) { auto lock = internal::AsyncCache::ReadLock<ShardEntries>{*this}; stamp = lock.stamp(); new_entries = *lock.shared_data(); } else { stamp = TimestampedStorageGeneration::Unconditional(); } auto& cache = GetOwningCache(*this); const int64_t num_entries_per_shard = cache.num_entries_per_shard(); const bool has_existing_entries = !new_entries.entries.empty(); new_entries.entries.resize(num_entries_per_shard); bool mismatch = false; bool changed = false; for (auto& entry : phases_.entries_) { if (entry.entry_type() != kReadModifyWrite) { auto& dr_entry = static_cast<DeleteRangeEntry&>(entry); auto [begin_id, end_id] = InternalKeyRangeToEntryRange( dr_entry.key_, dr_entry.exclusive_max_, num_entries_per_shard); if (has_existing_entries) { for (EntryId id = begin_id; id < end_id; ++id) { new_entries.entries[id] = std::nullopt; } } changed = true; continue; } auto& buffered_entry = static_cast<internal_kvstore::AtomicMultiPhaseMutation:: BufferedReadModifyWriteEntry&>(entry); auto& entry_stamp = buffered_entry.stamp(); if (StorageGeneration::IsConditional(entry_stamp.generation) && StorageGeneration::Clean(entry_stamp.generation) != StorageGeneration::Clean(stamp.generation)) { mismatch = true; break; } if (buffered_entry.value_state_ == kvstore::ReadResult::kUnspecified || !StorageGeneration::IsInnerLayerDirty(entry_stamp.generation)) { continue; } auto entry_id = InternalKeyToEntryId(buffered_entry.key_); auto& new_entry = new_entries.entries[entry_id]; if (buffered_entry.value_state_ == kvstore::ReadResult::kValue) { new_entry = buffered_entry.value_; changed = true; } else if (new_entry) { new_entry = std::nullopt; changed = true; } else if (!conditional) { changed = true; } } if (mismatch) { apply_options_.staleness_bound = absl::Now(); this->StartApply(); return; } internal::AsyncCache::ReadState update; update.stamp = std::move(stamp); if (changed) { update.stamp.generation.MarkDirty(); } update.data = std::make_shared<ShardEntries>(std::move(new_entries)); execution::set_value(std::exchange(apply_receiver_, {}), std::move(update)); } void ShardedKeyValueStoreWriteCache::TransactionNode::WritebackSuccess( ReadState&& read_state) { for (auto& entry : phases_.entries_) { if (entry.entry_type() != kReadModifyWrite) { internal_kvstore::WritebackSuccess(static_cast<DeleteRangeEntry&>(entry)); } else { internal_kvstore::WritebackSuccess( static_cast<internal_kvstore::ReadModifyWriteEntry&>(entry), read_state.stamp); } } internal_kvstore::DestroyPhaseEntries(phases_); Base::TransactionNode::WritebackSuccess(std::move(read_state)); } void ShardedKeyValueStoreWriteCache::TransactionNode::WritebackError() { internal_kvstore::WritebackError(phases_); internal_kvstore::DestroyPhaseEntries(phases_); Base::TransactionNode::WritebackError(); } struct ShardedKeyValueStoreSpecData { Context::Resource<internal::CachePoolResource> cache_pool; Context::Resource<internal::DataCopyConcurrencyResource> data_copy_concurrency; kvstore::Spec base; std::vector<Index> grid_shape; internal_zarr3::ZarrCodecChainSpec index_codecs; ShardIndexLocation index_location; TENSORSTORE_DECLARE_JSON_DEFAULT_BINDER(ShardedKeyValueStoreSpecData, internal_json_binding::NoOptions, IncludeDefaults, ::nlohmann::json::object_t) constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.cache_pool, x.data_copy_concurrency, x.base, x.grid_shape, x.index_codecs, x.index_location); }; }; namespace jb = ::tensorstore::internal_json_binding; TENSORSTORE_DEFINE_JSON_DEFAULT_BINDER( ShardedKeyValueStoreSpecData, jb::Object( jb::Member("base", jb::Projection<&ShardedKeyValueStoreSpecData::base>()), jb::Member( "grid_shape", jb::Projection<&ShardedKeyValueStoreSpecData::grid_shape>( jb::Validate([](const auto& options, auto* obj) { return ValidateGridShape(*obj); }, jb::ChunkShapeVector(nullptr)))), jb::Member("index_codecs", jb::Projection<&ShardedKeyValueStoreSpecData::index_codecs>( internal_zarr3::ZarrCodecChainJsonBinder< false>)), jb::Member( "index_location", jb::Projection<&ShardedKeyValueStoreSpecData::index_location>( jb::DefaultValue<jb::kAlwaysIncludeDefaults>([](auto* x) { *x = ShardIndexLocation::kEnd; }))), jb::Member(internal::CachePoolResource::id, jb::Projection<&ShardedKeyValueStoreSpecData::cache_pool>()), jb::Member( internal::DataCopyConcurrencyResource::id, jb::Projection< &ShardedKeyValueStoreSpecData::data_copy_concurrency>()))); class ShardedKeyValueStoreSpec : public internal_kvstore::RegisteredDriverSpec< ShardedKeyValueStoreSpec, ShardedKeyValueStoreSpecData> { public: static constexpr char id[] = "zarr3_sharding_indexed"; Future<kvstore::DriverPtr> DoOpen() const override; Result<kvstore::Spec> GetBase(std::string_view path) const override { return data_.base; } }; class ShardedKeyValueStore : public internal_kvstore::RegisteredDriver<ShardedKeyValueStore, ShardedKeyValueStoreSpec> { public: explicit ShardedKeyValueStore(ShardedKeyValueStoreParameters&& params, std::string_view shared_cache_key = {}); Future<ReadResult> Read(Key key, ReadOptions options) override; void ListImpl(ListOptions options, ListReceiver receiver) override; Future<TimestampedStorageGeneration> Write(Key key, std::optional<Value> value, WriteOptions options) override; absl::Status ReadModifyWrite(internal::OpenTransactionPtr& transaction, size_t& phase, Key key, ReadModifyWriteSource& source) override; absl::Status TransactionalDeleteRange( const internal::OpenTransactionPtr& transaction, KeyRange range) override; Future<const void> DeleteRange(KeyRange range) override; std::string DescribeKey(std::string_view key) override; kvstore::SupportedFeatures GetSupportedFeatures( const KeyRange& key_range) const final; Result<KvStore> GetBase(std::string_view path, const Transaction& transaction) const override; kvstore::Driver* base_kvstore_driver() const { return shard_index_cache()->base_kvstore_driver(); } const ShardIndexParameters& shard_index_params() const { return shard_index_cache()->shard_index_params(); } const Executor& executor() const { return shard_index_cache()->executor(); } const std::string& base_kvstore_path() const { return shard_index_cache()->base_kvstore_path(); } const internal::CachePtr<ShardIndexCache>& shard_index_cache() const { return write_cache_->shard_index_cache_; } absl::Status GetBoundSpecData(ShardedKeyValueStoreSpecData& spec) const; internal::CachePtr<ShardedKeyValueStoreWriteCache> write_cache_; struct DataForSpec { Context::Resource<internal::CachePoolResource> cache_pool_resource; Context::Resource<internal::DataCopyConcurrencyResource> data_copy_concurrency_resource; ZarrCodecChainSpec index_codecs; }; std::unique_ptr<DataForSpec> data_for_spec_; }; ShardedKeyValueStore::ShardedKeyValueStore( ShardedKeyValueStoreParameters&& params, std::string_view shared_cache_key) { write_cache_ = internal::GetCache<ShardedKeyValueStoreWriteCache>( params.cache_pool.get(), shared_cache_key, [&] { return std::make_unique<ShardedKeyValueStoreWriteCache>( internal::GetCache<ShardIndexCache>( params.cache_pool.get(), "", [&] { return std::make_unique<ShardIndexCache>( std::move(params.base_kvstore), std::move(params.base_kvstore_path), std::move(params.executor), std::move(params.index_params)); })); }); this->SetBatchNestingDepth( this->base_kvstore_driver()->BatchNestingDepth() + 1 + 1 ); } class ReadOperationState; using ReadOperationStateBase = internal_kvstore_batch::BatchReadEntry< ShardedKeyValueStore, internal_kvstore_batch::ReadRequest< EntryId, kvstore::ReadGenerationConditions>>; class ReadOperationState : public ReadOperationStateBase, public internal::AtomicReferenceCount<ReadOperationState> { public: explicit ReadOperationState(BatchEntryKey&& batch_entry_key_) : ReadOperationStateBase(std::move(batch_entry_key_)), internal::AtomicReferenceCount<ReadOperationState>( 1) {} private: internal::PinnedCacheEntry<ShardIndexCache> shard_index_cache_entry_; Batch successor_batch_{no_batch}; void Submit(Batch::View batch) override { const auto& executor = driver().executor(); executor( [this, batch = Batch(batch)] { this->ProcessBatch(std::move(batch)); }); } void ProcessBatch(Batch batch) { internal::IntrusivePtr<ReadOperationState> self(this, internal::adopt_object_ref); if (ShouldReadEntireShard()) { ReadEntireShard(std::move(self), std::move(batch)); return; } shard_index_cache_entry_ = GetCacheEntry(driver().shard_index_cache(), std::string_view{}); auto shard_index_read_future = shard_index_cache_entry_->Read( {this->request_batch.staleness_bound, batch}); if (batch) { if (!shard_index_read_future.ready()) { successor_batch_ = Batch::New(); } else { successor_batch_ = std::move(batch); } } std::move(shard_index_read_future) .ExecuteWhenReady( [self = std::move(self)](ReadyFuture<const void> future) mutable { const auto& executor = self->driver().executor(); executor([self = std::move(self), status = future.status()] { if (!status.ok()) { internal_kvstore_batch::SetCommonResult<Request>( self->request_batch.requests, {status}); return; } OnShardIndexReady(std::move(self)); }); }); } bool ShouldReadEntireShard() { const int64_t num_entries_per_shard = driver().shard_index_params().num_entries; if (request_batch.requests.size() < num_entries_per_shard) { return false; } const auto& first_request = request_batch.requests[0]; BitVec<> covered_entries(num_entries_per_shard); int64_t num_covered = 0; for (const auto& request : request_batch.requests) { if (std::get<kvstore::ReadGenerationConditions>(request) != std::get<kvstore::ReadGenerationConditions>(first_request)) { return false; } if (std::get<internal_kvstore_batch::ByteRangeReadRequest>(request) .byte_range.IsFull()) { auto ref = covered_entries[std::get<EntryId>(request)]; if (!ref) ++num_covered; ref = true; } } if (num_covered != num_entries_per_shard) { return false; } return true; } static void ReadEntireShard(internal::IntrusivePtr<ReadOperationState> self, Batch batch) { auto& first_request = self->request_batch.requests[0]; kvstore::ReadOptions read_options; read_options.batch = std::move(batch); read_options.generation_conditions = std::move(std::get<kvstore::ReadGenerationConditions>(first_request)); read_options.staleness_bound = self->request_batch.staleness_bound; auto& driver = self->driver(); driver.base_kvstore_driver() ->Read(driver.base_kvstore_path(), std::move(read_options)) .ExecuteWhenReady([self = std::move(self)]( ReadyFuture<kvstore::ReadResult> future) mutable { const auto& executor = self->driver().executor(); executor([self = std::move(self), future = std::move(future)] { OnFullShardReady(std::move(self), std::move(future.result())); }); }); } static void OnFullShardReady(internal::IntrusivePtr<ReadOperationState> self, Result<kvstore::ReadResult>&& result) { if (!result.ok() || !result->has_value()) { internal_kvstore_batch::SetCommonResult(self->request_batch.requests, std::move(result)); return; } auto& read_result = *result; TENSORSTORE_ASSIGN_OR_RETURN( auto shard_index, DecodeShardIndexFromFullShard(read_result.value, self->driver().shard_index_params()), internal_kvstore_batch::SetCommonResult(self->request_batch.requests, _)); const auto complete_request = [&](Request& request) { auto& byte_range_request = std::get<internal_kvstore_batch::ByteRangeReadRequest>(request); const auto index_entry = shard_index[std::get<EntryId>(request)]; if (index_entry.IsMissing()) { byte_range_request.promise.SetResult( kvstore::ReadResult::Missing(read_result.stamp)); return; } TENSORSTORE_RETURN_IF_ERROR( index_entry.Validate(std::get<EntryId>(request), read_result.value.size()), static_cast<void>(byte_range_request.promise.SetResult(_))); TENSORSTORE_ASSIGN_OR_RETURN( auto validated_byte_range, byte_range_request.byte_range.Validate(index_entry.length), static_cast<void>(byte_range_request.promise.SetResult(_))); validated_byte_range.inclusive_min += index_entry.offset; validated_byte_range.exclusive_max += index_entry.offset; kvstore::ReadResult request_read_result; request_read_result.stamp = read_result.stamp; request_read_result.state = kvstore::ReadResult::kValue; request_read_result.value = internal::GetSubCord(read_result.value, validated_byte_range); byte_range_request.promise.SetResult(std::move(request_read_result)); }; for (auto& request : self->request_batch.requests) { complete_request(request); } } static void OnShardIndexReady( internal::IntrusivePtr<ReadOperationState> self) { std::shared_ptr<const ShardIndex> shard_index; TimestampedStorageGeneration stamp; { auto lock = internal::AsyncCache::ReadLock<ShardIndexCache::ReadData>( *self->shard_index_cache_entry_); stamp = lock.stamp(); shard_index = lock.shared_data(); } assert(!StorageGeneration::IsUnknown(stamp.generation)); if (!shard_index) { internal_kvstore_batch::SetCommonResult( self->request_batch.requests, kvstore::ReadResult::Missing(std::move(stamp))); return; } auto successor_batch = std::move(self->successor_batch_); if (successor_batch) { self->successor_batch_ = Batch::New(); } const auto process_request = [&](Request& request) { ShardIndexEntry index_entry = ShardIndexEntry::Missing(); kvstore::ReadResult::State state; if (!std::get<kvstore::ReadGenerationConditions>(request).Matches( stamp.generation)) { state = kvstore::ReadResult::kUnspecified; } else { index_entry = (*shard_index)[std::get<EntryId>(request)]; state = kvstore::ReadResult::kMissing; } auto& byte_range_request = std::get<internal_kvstore_batch::ByteRangeReadRequest>(request); if (index_entry.IsMissing()) { byte_range_request.promise.SetResult( kvstore::ReadResult{state, {}, stamp}); return; } TENSORSTORE_RETURN_IF_ERROR( index_entry.Validate(std::get<EntryId>(request)), static_cast<void>(byte_range_request.promise.SetResult( self->shard_index_cache_entry_->AnnotateError( _, true)))); assert(byte_range_request.byte_range.SatisfiesInvariants()); TENSORSTORE_ASSIGN_OR_RETURN( auto validated_byte_range, byte_range_request.byte_range.Validate(index_entry.length), static_cast<void>(byte_range_request.promise.SetResult(_))); if (validated_byte_range.inclusive_min == validated_byte_range.exclusive_max) { byte_range_request.promise.SetResult(kvstore::ReadResult{ kvstore::ReadResult::kValue, absl::Cord(), stamp}); return; } kvstore::ReadOptions kvs_read_options; kvs_read_options.generation_conditions.if_equal = stamp.generation; kvs_read_options.staleness_bound = self->request_batch.staleness_bound; kvs_read_options.batch = successor_batch; kvs_read_options.byte_range = ByteRange{static_cast<int64_t>(index_entry.offset + validated_byte_range.inclusive_min), static_cast<int64_t>(index_entry.offset + validated_byte_range.exclusive_max)}; self->driver() .base_kvstore_driver() ->Read(std::string(self->driver().base_kvstore_path()), std::move(kvs_read_options)) .ExecuteWhenReady([self, &request](ReadyFuture<kvstore::ReadResult> future) mutable { const auto& status = future.status(); if (!status.ok()) { std::get<internal_kvstore_batch::ByteRangeReadRequest>(request) .promise.SetResult(status); return; } const auto& executor = self->driver().executor(); executor([self = std::move(self), &request, future = std::move(future)] { OnValueReady(std::move(self), request, std::move(future.value())); }); }); }; for (auto& request : self->request_batch.requests) { process_request(request); } } static void OnValueReady(internal::IntrusivePtr<ReadOperationState> self, Request& request, kvstore::ReadResult&& value) { if (value.aborted()) { MakeRequest<ReadOperationState>(self->driver(), self->successor_batch_, value.stamp.time, std::move(request)); return; } std::get<internal_kvstore_batch::ByteRangeReadRequest>(request) .promise.SetResult(std::move(value)); } }; Future<kvstore::ReadResult> ShardedKeyValueStore::Read(Key key, ReadOptions options) { TENSORSTORE_ASSIGN_OR_RETURN( EntryId entry_id, KeyToEntryIdOrError(key, shard_index_params().grid_shape())); auto [promise, future] = PromiseFuturePair<kvstore::ReadResult>::Make(); ReadOperationState::MakeRequest<ReadOperationState>( *this, options.batch, options.staleness_bound, ReadOperationState::Request{{std::move(promise), options.byte_range}, {entry_id}, std::move(options.generation_conditions)}); return std::move(future); } struct ListOperationState : public internal::FlowSenderOperationState<kvstore::ListEntry> { using Base = internal::FlowSenderOperationState<kvstore::ListEntry>; using Base::Base; internal::PinnedCacheEntry<ShardIndexCache> shard_index_cache_entry_; kvstore::ListOptions options_; static void Start(ShardedKeyValueStore& store, kvstore::ListOptions&& options, ListReceiver&& receiver) { options.range = KeyRangeToInternalKeyRange( options.range, store.shard_index_params().grid_shape()); auto self = internal::MakeIntrusivePtr<ListOperationState>(std::move(receiver)); self->options_ = std::move(options); self->shard_index_cache_entry_ = GetCacheEntry(store.shard_index_cache(), std::string_view{}); auto shard_index_read_future = self->shard_index_cache_entry_->Read({self->options_.staleness_bound}); auto* self_ptr = self.get(); LinkValue( WithExecutor(store.executor(), [self = std::move(self)](Promise<void> promise, ReadyFuture<const void> future) { if (self->cancelled()) return; self->OnShardIndexReady(); }), self_ptr->promise, std::move(shard_index_read_future)); } void OnShardIndexReady() { auto shard_index = internal::AsyncCache::ReadLock<ShardIndex>(*shard_index_cache_entry_) .shared_data(); if (!shard_index) { return; } const auto& shard_index_params = GetOwningCache(*shard_index_cache_entry_).shard_index_params(); span<const Index> grid_shape = shard_index_params.grid_shape(); auto start_index = InternalKeyToEntryId(options_.range.inclusive_min); auto end_index = InternalKeyToEntryId(options_.range.exclusive_max); auto& receiver = shared_receiver->receiver; for (EntryId i = start_index; i < end_index; ++i) { auto index_entry = (*shard_index)[i]; if (index_entry.IsMissing()) continue; auto key = EntryIdToKey(i, grid_shape); key.erase(0, options_.strip_prefix_length); execution::set_value(receiver, ListEntry{ std::move(key), ListEntry::checked_size(index_entry.length), }); } } }; void ShardedKeyValueStore::ListImpl(ListOptions options, ListReceiver receiver) { ListOperationState::Start(*this, std::move(options), std::move(receiver)); } Future<TimestampedStorageGeneration> ShardedKeyValueStore::Write( Key key, std::optional<Value> value, WriteOptions options) { return internal_kvstore::WriteViaTransaction( this, std::move(key), std::move(value), std::move(options)); } absl::Status ShardedKeyValueStore::ReadModifyWrite( internal::OpenTransactionPtr& transaction, size_t& phase, Key key, ReadModifyWriteSource& source) { TENSORSTORE_ASSIGN_OR_RETURN( EntryId entry_id, KeyToEntryIdOrError(key, shard_index_params().grid_shape())); key = EntryIdToInternalKey(entry_id); auto entry = GetCacheEntry(write_cache_, std::string_view{}); TENSORSTORE_ASSIGN_OR_RETURN( auto node, GetWriteLockedTransactionNode(*entry, transaction)); node->ReadModifyWrite(phase, std::move(key), source); if (!transaction) { transaction.reset(node.unlock()->transaction()); } return absl::OkStatus(); } absl::Status ShardedKeyValueStore::TransactionalDeleteRange( const internal::OpenTransactionPtr& transaction, KeyRange range) { range = KeyRangeToInternalKeyRange(range, shard_index_params().grid_shape()); auto entry = GetCacheEntry(write_cache_, std::string_view{}); TENSORSTORE_ASSIGN_OR_RETURN( auto node, GetWriteLockedTransactionNode(*entry, transaction)); node->DeleteRange(std::move(range)); return absl::OkStatus(); } Future<const void> ShardedKeyValueStore::DeleteRange(KeyRange range) { range = KeyRangeToInternalKeyRange(range, shard_index_params().grid_shape()); internal::OpenTransactionPtr transaction; auto entry = GetCacheEntry(write_cache_, std::string_view{}); TENSORSTORE_ASSIGN_OR_RETURN( auto node, GetWriteLockedTransactionNode(*entry, transaction)); node->DeleteRange(std::move(range)); return node->transaction()->future(); } std::string ShardedKeyValueStore::DescribeKey(std::string_view key) { return tensorstore::StrCat( zarr3_sharding_indexed::DescribeKey(key, shard_index_params().grid_shape()), " in ", base_kvstore_driver()->DescribeKey(base_kvstore_path())); } kvstore::SupportedFeatures ShardedKeyValueStore::GetSupportedFeatures( const KeyRange& key_range) const { return base_kvstore_driver()->GetSupportedFeatures( KeyRange::Singleton(base_kvstore_path())); } Result<KvStore> ShardedKeyValueStore::GetBase( std::string_view path, const Transaction& transaction) const { return KvStore(kvstore::DriverPtr(base_kvstore_driver()), base_kvstore_path(), transaction); } } } namespace garbage_collection { template <> struct GarbageCollection<zarr3_sharding_indexed::ShardedKeyValueStore> { static void Visit(GarbageCollectionVisitor& visitor, const zarr3_sharding_indexed::ShardedKeyValueStore& value) { garbage_collection::GarbageCollectionVisit(visitor, *value.base_kvstore_driver()); } }; } namespace zarr3_sharding_indexed { absl::Status ShardedKeyValueStore::GetBoundSpecData( ShardedKeyValueStoreSpecData& spec) const { if (!data_for_spec_) { return absl::UnimplementedError(""); } TENSORSTORE_ASSIGN_OR_RETURN(spec.base.driver, base_kvstore_driver()->GetBoundSpec()); spec.base.path = base_kvstore_path(); spec.data_copy_concurrency = data_for_spec_->data_copy_concurrency_resource; spec.cache_pool = data_for_spec_->cache_pool_resource; spec.index_codecs = data_for_spec_->index_codecs; const auto& shard_index_params = this->shard_index_params(); spec.index_location = shard_index_params.index_location; spec.grid_shape.assign(shard_index_params.index_shape.begin(), shard_index_params.index_shape.end() - 1); return absl::OkStatus(); } Future<kvstore::DriverPtr> ShardedKeyValueStoreSpec::DoOpen() const { ShardIndexParameters index_params; index_params.index_location = data_.index_location; TENSORSTORE_RETURN_IF_ERROR( index_params.Initialize(data_.index_codecs, data_.grid_shape)); return MapFutureValue( InlineExecutor{}, [spec = internal::IntrusivePtr<const ShardedKeyValueStoreSpec>(this), index_params = std::move(index_params)](kvstore::KvStore& base_kvstore) mutable -> Result<kvstore::DriverPtr> { std::string cache_key; internal::EncodeCacheKey( &cache_key, base_kvstore.driver, base_kvstore.path, spec->data_.data_copy_concurrency, spec->data_.grid_shape, spec->data_.index_codecs); ShardedKeyValueStoreParameters params; params.base_kvstore = std::move(base_kvstore.driver); params.base_kvstore_path = std::move(base_kvstore.path); params.executor = spec->data_.data_copy_concurrency->executor; params.cache_pool = *spec->data_.cache_pool; params.index_params = std::move(index_params); auto driver = internal::MakeIntrusivePtr<ShardedKeyValueStore>( std::move(params), cache_key); driver->data_for_spec_.reset(new ShardedKeyValueStore::DataForSpec{ spec->data_.cache_pool, spec->data_.data_copy_concurrency, spec->data_.index_codecs, }); return driver; }, kvstore::Open(data_.base)); } kvstore::DriverPtr GetShardedKeyValueStore( ShardedKeyValueStoreParameters&& parameters) { return kvstore::DriverPtr(new ShardedKeyValueStore(std::move(parameters))); } } } namespace { const tensorstore::internal_kvstore::DriverRegistration< tensorstore::zarr3_sharding_indexed::ShardedKeyValueStoreSpec> registration; }
#include "tensorstore/kvstore/zarr3_sharding_indexed/zarr3_sharding_indexed.h" #include <stddef.h> #include <stdint.h> #include <functional> #include <initializer_list> #include <map> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/log/absl_check.h" #include "absl/random/random.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "re2/re2.h" #include "riegeli/bytes/cord_writer.h" #include "riegeli/bytes/write.h" #include "riegeli/digests/crc32c_digester.h" #include "tensorstore/batch.h" #include "tensorstore/context.h" #include "tensorstore/driver/zarr3/codec/codec_chain_spec.h" #include "tensorstore/index.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/cache/kvs_backed_cache_testutil.h" #include "tensorstore/internal/global_initializer.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/riegeli/digest_suffixed_writer.h" #include "tensorstore/internal/testing/scoped_directory.h" #include "tensorstore/internal/thread/thread_pool.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/memory/memory_key_value_store.h" #include "tensorstore/kvstore/mock_kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/test_matchers.h" #include "tensorstore/kvstore/test_util.h" #include "tensorstore/kvstore/zarr3_sharding_indexed/key.h" #include "tensorstore/transaction.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/extents.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { namespace kvstore = ::tensorstore::kvstore; using ::tensorstore::Batch; using ::tensorstore::Executor; using ::tensorstore::Future; using ::tensorstore::Index; using ::tensorstore::KvStore; using ::tensorstore::MatchesStatus; using ::tensorstore::OptionalByteRangeRequest; using ::tensorstore::Result; using ::tensorstore::span; using ::tensorstore::StorageGeneration; using ::tensorstore::TimestampedStorageGeneration; using ::tensorstore::Transaction; using ::tensorstore::internal::CachePool; using ::tensorstore::internal::GetCache; using ::tensorstore::internal::KvsBackedTestCache; using ::tensorstore::internal::MatchesKvsReadResult; using ::tensorstore::internal::MatchesKvsReadResultNotFound; using ::tensorstore::internal::MatchesTimestampedStorageGeneration; using ::tensorstore::internal::MockKeyValueStore; using ::tensorstore::internal::UniqueNow; using ::tensorstore::internal_zarr3::ZarrCodecChainSpec; using ::tensorstore::kvstore::ReadResult; using ::tensorstore::zarr3_sharding_indexed::EntryId; using ::tensorstore::zarr3_sharding_indexed::EntryIdToKey; using ::tensorstore::zarr3_sharding_indexed::GetShardedKeyValueStore; using ::tensorstore::zarr3_sharding_indexed::ShardedKeyValueStoreParameters; using ::tensorstore::zarr3_sharding_indexed::ShardIndexLocation; constexpr CachePool::Limits kSmallCacheLimits{10000000}; absl::Cord Bytes(std::initializer_list<unsigned char> x) { return absl::Cord(std::string(x.begin(), x.end())); } absl::Cord WithCrc32c(absl::Cord input) { absl::Cord output; riegeli::CordWriter writer{&output}; TENSORSTORE_CHECK_OK(riegeli::Write( input, tensorstore::internal::DigestSuffixedWriter< riegeli::Crc32cDigester, tensorstore::internal::LittleEndianDigestWriter>{&writer})); ABSL_CHECK(writer.Close()); return output; } class GetKey { public: GetKey(bool sequential, std::vector<Index> grid_shape) : sequential_(sequential), grid_shape_(std::move(grid_shape)), num_entries_( tensorstore::ProductOfExtents(span<const Index>(grid_shape_))) {} std::string operator()(std::string key) const { auto it = key_to_entry_id_.find(key); if (it == key_to_entry_id_.end()) { ABSL_CHECK_LT(entry_id_to_key_.size(), num_entries_); while (true) { auto x = sequential_ ? next_entry_id_++ : absl::Uniform<EntryId>(gen_); x = x % num_entries_; if (entry_id_to_key_.emplace(x, key).second) { it = key_to_entry_id_.emplace(key, x).first; break; } } } return EntryIdToKey(it->second, grid_shape_); } private: bool sequential_; std::vector<Index> grid_shape_; EntryId num_entries_; mutable EntryId next_entry_id_ = 0; mutable absl::BitGen gen_; mutable absl::flat_hash_map<std::string, EntryId> key_to_entry_id_; mutable absl::flat_hash_map<EntryId, std::string> entry_id_to_key_; }; kvstore::DriverPtr GetDefaultStore(kvstore::DriverPtr base_kvstore, std::string base_kvstore_path, Executor executor, CachePool::StrongPtr cache_pool, const std::vector<Index>& grid_shape) { ShardedKeyValueStoreParameters params; params.base_kvstore = base_kvstore; params.base_kvstore_path = base_kvstore_path; params.executor = executor; params.cache_pool = CachePool::WeakPtr(cache_pool); TENSORSTORE_CHECK_OK_AND_ASSIGN( auto index_codecs, ZarrCodecChainSpec::FromJson( {{{"name", "bytes"}, {"configuration", {{"endian", "little"}}}}, {{"name", "crc32c"}}})); params.index_params.index_location = ShardIndexLocation::kEnd; TENSORSTORE_CHECK_OK( params.index_params.Initialize(index_codecs, grid_shape)); return GetShardedKeyValueStore(std::move(params)); } TEST(ShardedKeyValueStoreTest, BasicFunctionality) { std::vector<std::pair<std::string, tensorstore::Executor>> executors{ {"inline", tensorstore::InlineExecutor{}}, {"thread_pool", tensorstore::internal::DetachedThreadPool(2)}}; for (const auto& [executor_name, executor] : executors) { for (const auto sequential_ids : {true, false}) { auto cache_pool = CachePool::Make(kSmallCacheLimits); auto base_kv_store = tensorstore::GetMemoryKeyValueStore(); const int64_t num_entries = 100; SCOPED_TRACE(executor_name); auto store = GetDefaultStore(base_kv_store, "shard_path", executor, cache_pool, {num_entries}); GetKey get_key_fn(sequential_ids, {num_entries}); tensorstore::internal::TestKeyValueReadWriteOps(store, get_key_fn); } } } TEST(ShardedKeyValueStoreTest, DescribeKey) { CachePool::StrongPtr cache_pool = CachePool::Make(kSmallCacheLimits); kvstore::DriverPtr base_kv_store = tensorstore::GetMemoryKeyValueStore(); int64_t num_entries = 100; std::vector<Index> grid_shape{num_entries}; kvstore::DriverPtr store = GetDefaultStore(base_kv_store, "shard_path", tensorstore::InlineExecutor{}, cache_pool, grid_shape); for (const auto& [key, description] : std::vector<std::pair<uint32_t, std::string>>{ {0, "shard entry {0}/{100} in \"shard_path\""}, {1, "shard entry {1}/{100} in \"shard_path\""}, }) { EXPECT_EQ(description, store->DescribeKey(EntryIdToKey(key, grid_shape))); } } class RawEncodingTest : public ::testing::Test { protected: CachePool::StrongPtr cache_pool = CachePool::Make(kSmallCacheLimits); kvstore::DriverPtr base_kv_store = tensorstore::GetMemoryKeyValueStore(); kvstore::DriverPtr GetStore(const std::vector<Index>& grid_shape) { return GetDefaultStore(base_kv_store, "shard_path", tensorstore::InlineExecutor{}, cache_pool, grid_shape); } }; TEST_F(RawEncodingTest, MultipleUnconditionalWrites) { std::vector<Index> grid_shape{100}; kvstore::DriverPtr store = GetStore(grid_shape); std::vector<absl::Cord> values{absl::Cord("abc"), absl::Cord("aaaaa"), absl::Cord("efgh")}; std::vector<Future<TimestampedStorageGeneration>> futures; auto key = EntryIdToKey(10, grid_shape); tensorstore::Transaction txn(tensorstore::isolated); for (auto value : values) { futures.push_back(kvstore::WriteCommitted(KvStore{store, txn}, key, value)); } txn.CommitAsync().IgnoreFuture(); std::vector<Result<TimestampedStorageGeneration>> results; for (const auto& future : futures) { results.push_back(future.result()); } TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto shard_read, base_kv_store->Read("shard_path").result()); EXPECT_THAT( results, ::testing::UnorderedElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::Invalid()), MatchesTimestampedStorageGeneration(StorageGeneration::Invalid()), MatchesTimestampedStorageGeneration(shard_read.stamp.generation))); for (size_t i = 0; i < results.size(); ++i) { if (results[i] && results[i]->generation == shard_read.stamp.generation) { EXPECT_THAT(store->Read(key).result(), MatchesKvsReadResult(values[i], results[i]->generation)); } } } TEST_F(RawEncodingTest, List) { std::vector<Index> grid_shape{100}; kvstore::DriverPtr store = GetStore(grid_shape); std::map<std::string, absl::Cord> values{ {EntryIdToKey(1, grid_shape), absl::Cord("a")}, {EntryIdToKey(2, grid_shape), absl::Cord("bc")}, {EntryIdToKey(3, grid_shape), absl::Cord("def")}, {EntryIdToKey(10, grid_shape), absl::Cord("xyz")}}; for (auto [key, value] : values) { TENSORSTORE_EXPECT_OK(store->Write(key, value)); } EXPECT_THAT(tensorstore::internal::GetMap(store), ::testing::Optional(::testing::ElementsAreArray(values))); } TEST_F(RawEncodingTest, WritesAndDeletes) { std::vector<Index> grid_shape{100}; kvstore::DriverPtr store = GetStore(grid_shape); StorageGeneration gen1, gen2, gen3; { tensorstore::Transaction txn(tensorstore::isolated); auto init_future1 = kvstore::WriteCommitted( KvStore{store, txn}, EntryIdToKey(1, grid_shape), absl::Cord("a")); auto init_future2 = kvstore::WriteCommitted( KvStore{store, txn}, EntryIdToKey(2, grid_shape), absl::Cord("bc")); auto init_future3 = kvstore::WriteCommitted( KvStore{store, txn}, EntryIdToKey(3, grid_shape), absl::Cord("def")); txn.CommitAsync().IgnoreFuture(); gen1 = init_future1.value().generation; gen2 = init_future2.value().generation; gen3 = init_future3.value().generation; } tensorstore::Transaction txn(tensorstore::isolated); auto future1 = kvstore::DeleteCommitted(KvStore{store, txn}, EntryIdToKey(1, grid_shape), {StorageGeneration::NoValue()}); auto future2 = kvstore::WriteCommitted(KvStore{store, txn}, EntryIdToKey(2, grid_shape), absl::Cord("ww"), {gen2}); auto future3 = kvstore::WriteCommitted(KvStore{store, txn}, EntryIdToKey(2, grid_shape), absl::Cord("xx"), {gen2}); auto future4 = kvstore::WriteCommitted(KvStore{store, txn}, EntryIdToKey(4, grid_shape), absl::Cord("zz"), {StorageGeneration::NoValue()}); auto future5 = kvstore::DeleteCommitted(KvStore{store, txn}, EntryIdToKey(3, grid_shape), {gen3}); txn.CommitAsync().IgnoreFuture(); EXPECT_THAT(future1.result(), MatchesTimestampedStorageGeneration( StorageGeneration::Unknown())); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto shard_read, base_kv_store->Read("shard_path").result()); EXPECT_THAT( std::vector({future2.result(), future3.result()}), ::testing::UnorderedElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::Unknown()), MatchesTimestampedStorageGeneration(shard_read.stamp.generation))); EXPECT_THAT(store->Read(EntryIdToKey(1, grid_shape)).result(), MatchesKvsReadResult(absl::Cord("a"))); EXPECT_THAT(store->Read(EntryIdToKey(2, grid_shape)).result(), MatchesKvsReadResult( !StorageGeneration::IsUnknown(future2.result()->generation) ? absl::Cord("ww") : absl::Cord("xx"))); EXPECT_THAT(store->Read(EntryIdToKey(3, grid_shape)).result(), MatchesKvsReadResultNotFound()); EXPECT_THAT(store->Read(EntryIdToKey(4, grid_shape)).result(), MatchesKvsReadResult(absl::Cord("zz"))); } std::vector<std::vector<Result<TimestampedStorageGeneration>>> TestOrderDependentWrites( std::function<void()> init, std::function<Future<TimestampedStorageGeneration>()> op0, std::function<Future<TimestampedStorageGeneration>()> op1, std::function<void()> finalize) { std::vector<std::vector<Result<TimestampedStorageGeneration>>> all_results; for (int i = 0; i < 2; ++i) { std::vector<Future<TimestampedStorageGeneration>> futures(2); init(); if (i == 0) { futures[0] = op0(); futures[1] = op1(); } else { futures[1] = op1(); futures[0] = op0(); } finalize(); all_results.push_back({futures[0].result(), futures[1].result()}); } return all_results; } TEST_F(RawEncodingTest, WriteThenDelete) { std::vector<Index> grid_shape{100}; kvstore::DriverPtr store = GetStore(grid_shape); TENSORSTORE_ASSERT_OK( store->Write(EntryIdToKey(1, grid_shape), absl::Cord("a")).result()); EXPECT_THAT(store->Read(EntryIdToKey(1, grid_shape)).result(), MatchesKvsReadResult(absl::Cord("a"))); TENSORSTORE_ASSERT_OK(store->Delete(EntryIdToKey(1, grid_shape)).result()); EXPECT_THAT(store->Read(EntryIdToKey(1, grid_shape)).result(), MatchesKvsReadResultNotFound()); } TEST_F(RawEncodingTest, MultipleDeleteExisting) { std::vector<Index> grid_shape{100}; kvstore::DriverPtr store = GetStore(grid_shape); StorageGeneration gen; tensorstore::Transaction txn{tensorstore::no_transaction}; EXPECT_THAT( TestOrderDependentWrites( [&] { gen = store->Write(EntryIdToKey(1, grid_shape), absl::Cord("a")) .value() .generation; txn = tensorstore::Transaction(tensorstore::isolated); }, [&] { return kvstore::DeleteCommitted(KvStore{store, txn}, EntryIdToKey(1, grid_shape), {gen}); }, [&] { return kvstore::DeleteCommitted( KvStore{store, txn}, EntryIdToKey(1, grid_shape), {StorageGeneration::NoValue()}); }, [&] { txn.CommitAsync().IgnoreFuture(); }), ::testing::UnorderedElementsAre( ::testing::ElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::Invalid()), MatchesTimestampedStorageGeneration( StorageGeneration::NoValue())), ::testing::ElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::NoValue()), MatchesTimestampedStorageGeneration( StorageGeneration::Unknown())))); } TEST_F(RawEncodingTest, WriteWithUnmatchedConditionAfterDelete) { std::vector<Index> grid_shape{100}; kvstore::DriverPtr store = GetStore(grid_shape); tensorstore::Transaction txn{tensorstore::no_transaction}; EXPECT_THAT( TestOrderDependentWrites( [&] { store->Delete(EntryIdToKey(0, grid_shape)).value(); txn = tensorstore::Transaction(tensorstore::isolated); }, [&] { return kvstore::WriteCommitted(KvStore{store, txn}, EntryIdToKey(0, grid_shape), absl::Cord("a")); }, [&] { return kvstore::WriteCommitted( KvStore{store, txn}, EntryIdToKey(0, grid_shape), absl::Cord("b"), {StorageGeneration::FromString("g")}); }, [&] { txn.CommitAsync().IgnoreFuture(); }), ::testing::Each(::testing::ElementsAre( MatchesTimestampedStorageGeneration( ::testing::AllOf(::testing::Not(StorageGeneration::NoValue()), ::testing::Not(StorageGeneration::Invalid()))), MatchesTimestampedStorageGeneration(StorageGeneration::Unknown())))); } TEST_F(RawEncodingTest, MultipleDeleteNonExisting) { std::vector<Index> grid_shape{100}; kvstore::DriverPtr store = GetStore(grid_shape); tensorstore::Transaction txn(tensorstore::isolated); std::vector futures{ kvstore::DeleteCommitted(KvStore{store, txn}, EntryIdToKey(1, grid_shape), {StorageGeneration::NoValue()}), kvstore::DeleteCommitted(KvStore{store, txn}, EntryIdToKey(1, grid_shape), {StorageGeneration::NoValue()})}; txn.CommitAsync().IgnoreFuture(); std::vector results{futures[0].result(), futures[1].result()}; EXPECT_THAT( results, ::testing::UnorderedElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::Invalid()), MatchesTimestampedStorageGeneration(StorageGeneration::NoValue()))); } TEST_F(RawEncodingTest, ShardIndexTooShort) { std::vector<Index> grid_shape{100}; kvstore::DriverPtr store = GetStore(grid_shape); base_kv_store->Write("shard_path", Bytes({1, 2, 3})).value(); EXPECT_THAT(store->Read(EntryIdToKey(1, grid_shape)).result(), MatchesStatus( absl::StatusCode::kFailedPrecondition, RE2::QuoteMeta("Error reading shard index in \"shard_path\": " "Requested byte range [-1604, ?) is not valid " "for value of size 3"))); EXPECT_THAT( store->Write(EntryIdToKey(10, grid_shape), absl::Cord("abc")).result(), MatchesStatus(absl::StatusCode::kDataLoss, "Error reading \"shard_path\": " "Existing shard has size of 3 bytes, but expected at least " "1604 bytes")); } TEST_F(RawEncodingTest, ShardIndexByteRangeOverflow) { std::vector<Index> grid_shape{2}; kvstore::DriverPtr store = GetStore(grid_shape); auto content = WithCrc32c(Bytes({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, })); TENSORSTORE_ASSERT_OK(base_kv_store->Write("shard_path", content)); EXPECT_THAT( store->Read(EntryIdToKey(1, grid_shape)).result(), MatchesStatus(absl::StatusCode::kDataLoss, "Error reading shard index in \"shard_path\": " "Invalid shard index entry 1 with offset=.*, length=.*")); } TEST_F(RawEncodingTest, ShardIndexEntryByteRangeOutOfRange) { std::vector<Index> grid_shape{2}; kvstore::DriverPtr store = GetStore(grid_shape); auto content = WithCrc32c(Bytes({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 37, 0, 0, 0, 0, 0, 0, 0, })); TENSORSTORE_ASSERT_OK(base_kv_store->Write("shard_path", content)); EXPECT_THAT( store->Write(EntryIdToKey(1, grid_shape), absl::Cord("x")).result(), MatchesStatus(absl::StatusCode::kDataLoss, "Error reading \"shard_path\": " "Shard index entry 1 with byte range .* is invalid " "for shard of size .*")); } TEST_F(RawEncodingTest, ShardIndexInvalidChecksum) { std::vector<Index> grid_shape{2}; kvstore::DriverPtr store = GetStore(grid_shape); auto content = Bytes({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, }); content.Append("abcd"); TENSORSTORE_ASSERT_OK(base_kv_store->Write("shard_path", content)); EXPECT_THAT(store->Read(EntryIdToKey(1, grid_shape)).result(), MatchesStatus(absl::StatusCode::kDataLoss, "Error reading shard index in \"shard_path\": " "Digest mismatch.*")); } class UnderlyingKeyValueStoreTest : public ::testing::Test { protected: CachePool::StrongPtr cache_pool = CachePool::Make(kSmallCacheLimits); MockKeyValueStore::MockPtr mock_store = MockKeyValueStore::Make(); kvstore::DriverPtr GetStore(std::vector<Index> grid_shape) { return GetDefaultStore(mock_store, "shard_path", tensorstore::InlineExecutor{}, cache_pool, grid_shape); } std::vector<Index> grid_shape{5}; kvstore::DriverPtr store = GetStore(grid_shape); }; TEST_F(UnderlyingKeyValueStoreTest, Read) { absl::Time init_time = UniqueNow(); absl::Time shard_index_time; { auto future = store->Read(EntryIdToKey(2, grid_shape), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest::SuffixLength(5 * 16 + 4), req.options.byte_range); EXPECT_THAT(req.options.staleness_bound, ::testing::Gt(init_time)); shard_index_time = absl::Now(); req.promise.SetResult( ReadResult{ReadResult::kValue, WithCrc32c(Bytes({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 10, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, })), {StorageGeneration::FromString("g0"), shard_index_time}}); } ASSERT_FALSE(future.ready()) << future.status(); absl::Time read_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(10, 15), req.options.byte_range); read_time = absl::Now(); req.promise.SetResult( ReadResult{ReadResult::kValue, Bytes({5, 6, 7, 8, 9}), {StorageGeneration::FromString("g0"), read_time}}); } ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_TRUE(future.ready()); EXPECT_THAT( future.result(), MatchesKvsReadResult(Bytes({5, 6, 7, 8, 9}), StorageGeneration::FromString("g0"), read_time)); } { kvstore::ReadOptions options; options.staleness_bound = init_time; auto future = store->Read(EntryIdToKey(3, grid_shape), options); ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesKvsReadResultNotFound(shard_index_time)); } { auto req_time = UniqueNow(); auto future = store->Read(EntryIdToKey(3, grid_shape), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest::SuffixLength(5 * 16 + 4), req.options.byte_range); EXPECT_THAT(req.options.staleness_bound, ::testing::Gt(req_time)); shard_index_time = absl::Now(); req.promise.SetResult(ReadResult::Unspecified( {StorageGeneration::FromString("g0"), shard_index_time})); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesKvsReadResultNotFound(shard_index_time)); } { kvstore::ReadOptions options; options.staleness_bound = init_time; auto future = store->Read(EntryIdToKey(2, grid_shape), options); absl::Time read_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(10, 15), req.options.byte_range); EXPECT_EQ(init_time, req.options.staleness_bound); read_time = absl::Now(); req.promise.SetResult( ReadResult{ReadResult::kValue, Bytes({5, 6, 7, 8, 9}), {StorageGeneration::FromString("g0"), read_time}}); } ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_TRUE(future.ready()); EXPECT_THAT( future.result(), MatchesKvsReadResult(Bytes({5, 6, 7, 8, 9}), StorageGeneration::FromString("g0"), read_time)); } { kvstore::ReadOptions options; options.staleness_bound = init_time; auto future = store->Read(EntryIdToKey(2, grid_shape), options); absl::Time abort_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(init_time, req.options.staleness_bound); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(10, 15), req.options.byte_range); abort_time = absl::Now(); req.promise.SetResult(ReadResult::Unspecified( {StorageGeneration::FromString("g0"), abort_time})); } { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest::SuffixLength(5 * 16 + 4), req.options.byte_range); EXPECT_THAT(req.options.staleness_bound, ::testing::Ge(abort_time)); shard_index_time = absl::Now(); req.promise.SetResult( ReadResult{ReadResult::kValue, WithCrc32c(Bytes({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 10, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, })), {StorageGeneration::FromString("g1"), shard_index_time}}); } absl::Time read_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g1"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(10, 16), req.options.byte_range); read_time = absl::Now(); req.promise.SetResult( ReadResult{ReadResult::kValue, Bytes({4, 5, 6, 7, 8, 9}), {StorageGeneration::FromString("g1"), read_time}}); } ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_TRUE(future.ready()); EXPECT_THAT( future.result(), MatchesKvsReadResult(Bytes({4, 5, 6, 7, 8, 9}), StorageGeneration::FromString("g1"), read_time)); } } TEST_F(UnderlyingKeyValueStoreTest, TransactionReadThenCommit) { tensorstore::Transaction txn(tensorstore::isolated); auto memory_store = tensorstore::GetMemoryKeyValueStore(); { auto future = kvstore::Read(KvStore{store, txn}, EntryIdToKey(2, grid_shape), {}); { auto req = mock_store->read_requests.pop(); req(memory_store); ASSERT_EQ(0, mock_store->read_requests.size()); } EXPECT_THAT(future.result(), ::testing::Optional(MatchesKvsReadResultNotFound())); } auto commit_future = txn.CommitAsync(); TENSORSTORE_ASSERT_OK(commit_future.result()); EXPECT_EQ(0, mock_store->read_requests.size()); } TEST_F(UnderlyingKeyValueStoreTest, ReadConcurrentDeleteAfterReadingMinishardIndex) { auto req_time = UniqueNow(); auto future = store->Read(EntryIdToKey(2, grid_shape), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_THAT(req.options.staleness_bound, ::testing::Gt(req_time)); EXPECT_EQ(OptionalByteRangeRequest::SuffixLength(5 * 16 + 4), req.options.byte_range); req.promise.SetResult( ReadResult{ReadResult::kValue, WithCrc32c(Bytes({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 10, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, })), {StorageGeneration::FromString("g0"), absl::Now()}}); } absl::Time read_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(10, 15), req.options.byte_range); read_time = absl::Now(); req.promise.SetResult(ReadResult{ ReadResult::kMissing, {}, {StorageGeneration::NoValue(), read_time}}); } ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesKvsReadResultNotFound(read_time)); } TEST_F(UnderlyingKeyValueStoreTest, ReadErrorReadingShardIndex) { auto future = store->Read(EntryIdToKey(2, grid_shape), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(OptionalByteRangeRequest::SuffixLength(5 * 16 + 4), req.options.byte_range); req.promise.SetResult(absl::UnknownError("Read error")); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kUnknown, "Error reading shard index in \"shard_path\": " "Read error")); } TEST_F(UnderlyingKeyValueStoreTest, ReadErrorReadingData) { auto future = store->Read(EntryIdToKey(0x2, grid_shape), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(OptionalByteRangeRequest::SuffixLength(5 * 16 + 4), req.options.byte_range); req.promise.SetResult( ReadResult{ReadResult::kValue, WithCrc32c(Bytes({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 10, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, })), {StorageGeneration::FromString("g0"), absl::Now()}}); } ASSERT_FALSE(future.ready()) << future.status(); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(OptionalByteRangeRequest(10, 15), req.options.byte_range); req.promise.SetResult(absl::UnknownError("Read error")); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kUnknown, "Read error")); } TEST_F(UnderlyingKeyValueStoreTest, ReadInvalidKey) { auto future = store->Read("abc", {}); ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST_F(UnderlyingKeyValueStoreTest, WriteInvalidKey) { auto future = store->Write("abc", absl::Cord("x")); ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST_F(UnderlyingKeyValueStoreTest, DeleteInvalidKey) { auto future = store->Delete("abc"); ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST_F(UnderlyingKeyValueStoreTest, WriteWithNoExistingShard) { grid_shape = {2}; store = GetStore(grid_shape); auto future = store->Write(EntryIdToKey(1, grid_shape), Bytes({1, 2, 3})); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); req.promise.SetResult(ReadResult{ ReadResult::kMissing, {}, {StorageGeneration::NoValue(), absl::Now()}}); } absl::Time write_time; { auto req = mock_store->write_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->write_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::NoValue(), req.options.generation_conditions.if_equal); auto expected = Bytes({ 1, 2, 3, }); expected.Append(WithCrc32c(Bytes({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, }))); EXPECT_THAT(req.value, ::testing::Optional(expected)); write_time = absl::Now(); req.promise.SetResult(std::in_place, StorageGeneration::FromString("g0"), write_time); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesTimestampedStorageGeneration( StorageGeneration::FromString("g0"), write_time)); } TEST_F(UnderlyingKeyValueStoreTest, UnconditionalWrite) { grid_shape = {2}; store = GetStore(grid_shape); auto txn = Transaction(tensorstore::isolated); auto future1 = kvstore::WriteCommitted( KvStore{store, txn}, EntryIdToKey(0, grid_shape), Bytes({1, 2, 3})); auto future2 = kvstore::WriteCommitted( KvStore{store, txn}, EntryIdToKey(1, grid_shape), Bytes({4, 5, 6})); ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_EQ(0, mock_store->write_requests.size()); txn.CommitAsync().IgnoreFuture(); ASSERT_EQ(0, mock_store->read_requests.size()); absl::Time write_time; { auto req = mock_store->write_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->write_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); auto expected = Bytes({ 1, 2, 3, 4, 5, 6, }); expected.Append(WithCrc32c(Bytes({ 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, }))); EXPECT_THAT(req.value, ::testing::Optional(expected)); write_time = absl::Now(); req.promise.SetResult(std::in_place, StorageGeneration::FromString("g0"), write_time); } ASSERT_TRUE(future1.ready()); ASSERT_TRUE(future2.ready()); EXPECT_THAT(future1.result(), MatchesTimestampedStorageGeneration( StorageGeneration::FromString("g0"), write_time)); EXPECT_THAT(future2.result(), MatchesTimestampedStorageGeneration( StorageGeneration::FromString("g0"), write_time)); } TEST_F(UnderlyingKeyValueStoreTest, ConditionalWriteDespiteMaxChunks) { grid_shape = {2}; store = GetStore(grid_shape); auto future = store->Write(EntryIdToKey(0, grid_shape), Bytes({1, 2, 3}), {StorageGeneration::NoValue()}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); req.promise.SetResult(ReadResult{ ReadResult::kMissing, {}, {StorageGeneration::NoValue(), absl::Now()}}); } { auto req = mock_store->write_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->write_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::NoValue(), req.options.generation_conditions.if_equal); } } TEST_F(UnderlyingKeyValueStoreTest, WriteWithNoExistingShardError) { auto future = store->Write(EntryIdToKey(1, grid_shape), Bytes({1, 2, 3})); future.Force(); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); req.promise.SetResult(ReadResult{ ReadResult::kMissing, {}, {StorageGeneration::NoValue(), absl::Now()}}); } { auto req = mock_store->write_requests.pop_nonblock().value(); req.promise.SetResult(absl::UnknownError("Write error")); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kUnknown, "Error writing \"shard_path\": " "Write error")); } TEST_F(UnderlyingKeyValueStoreTest, WriteWithExistingShard) { grid_shape = {2}; store = GetStore(grid_shape); auto future = store->Write(EntryIdToKey(0, grid_shape), Bytes({1, 2, 3})); ASSERT_FALSE(future.ready()) << future.status(); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); auto content = Bytes({ 4, 5, 6, }); content.Append(WithCrc32c(Bytes({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, }))); req.promise.SetResult( ReadResult{ReadResult::kValue, content, {StorageGeneration::FromString("g0"), absl::Now()}}); } ASSERT_FALSE(future.ready()) << future.status(); absl::Time write_time; { auto req = mock_store->write_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->write_requests.size()); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); auto content = Bytes({ 1, 2, 3, 4, 5, 6, }); content.Append(WithCrc32c(Bytes({ 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, }))); EXPECT_THAT(req.value, content); write_time = absl::Now(); req.promise.SetResult(std::in_place, StorageGeneration::FromString("g1"), write_time); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesTimestampedStorageGeneration( StorageGeneration::FromString("g1"), write_time)); } TEST_F(UnderlyingKeyValueStoreTest, WriteWithExistingShardReadError) { auto future = store->Write(EntryIdToKey(1, grid_shape), Bytes({1, 2, 3})); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); req.promise.SetResult(absl::UnknownError("Read error")); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kUnknown, "Error reading \"shard_path\": " "Read error")); } TEST_F(UnderlyingKeyValueStoreTest, DeleteRangeWhenEmpty) { grid_shape = {2}; store = GetStore(grid_shape); auto future = store->DeleteRange({}); future.Force(); { auto req = mock_store->write_requests.pop(); ASSERT_EQ(0, mock_store->write_requests.size()); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_TRUE(StorageGeneration::IsUnknown( req.options.generation_conditions.if_equal)); EXPECT_EQ(std::nullopt, req.value); req.promise.SetResult(std::in_place, StorageGeneration::FromString("g1"), absl::Now()); } ASSERT_TRUE(future.ready()); TENSORSTORE_ASSERT_OK(future); } TEST_F(UnderlyingKeyValueStoreTest, BatchRead) { cache_pool = CachePool::Make({}); auto memory_store = tensorstore::GetMemoryKeyValueStore(); mock_store->forward_to = memory_store; mock_store->log_requests = true; mock_store->handle_batch_requests = true; grid_shape = {3}; store = GetStore(grid_shape); TENSORSTORE_ASSERT_OK( store->Write(EntryIdToKey(0, grid_shape), absl::Cord("abc")).result()); TENSORSTORE_ASSERT_OK( store->Write(EntryIdToKey(1, grid_shape), absl::Cord("def")).result()); mock_store->request_log.pop_all(); { std::vector<Future<kvstore::ReadResult>> futures; { kvstore::ReadOptions options; options.batch = Batch::New(); futures = { store->Read(EntryIdToKey(0, grid_shape), options), store->Read(EntryIdToKey(1, grid_shape), options), }; } EXPECT_THAT(futures[0].result(), MatchesKvsReadResult(absl::Cord("abc"))); EXPECT_THAT(futures[1].result(), MatchesKvsReadResult(absl::Cord("def"))); EXPECT_THAT(mock_store->request_log.pop_all(), ::testing::SizeIs(2)); } { std::vector<Future<kvstore::ReadResult>> futures; { kvstore::ReadOptions options; options.batch = Batch::New(); futures = { store->Read(EntryIdToKey(0, grid_shape), options), store->Read(EntryIdToKey(1, grid_shape), options), store->Read(EntryIdToKey(2, grid_shape), options), }; } EXPECT_THAT(futures[0].result(), MatchesKvsReadResult(absl::Cord("abc"))); EXPECT_THAT(futures[1].result(), MatchesKvsReadResult(absl::Cord("def"))); EXPECT_THAT(futures[2].result(), MatchesKvsReadResultNotFound()); EXPECT_THAT(mock_store->request_log.pop_all(), ::testing::SizeIs(1)); } { std::vector<Future<kvstore::ReadResult>> futures; { kvstore::ReadOptions options1; options1.batch = Batch::New(); kvstore::ReadOptions options2; options2.batch = options1.batch; options2.generation_conditions.if_not_equal = StorageGeneration::Invalid(); futures = { store->Read(EntryIdToKey(0, grid_shape), options1), store->Read(EntryIdToKey(1, grid_shape), options1), store->Read(EntryIdToKey(2, grid_shape), options2), }; } EXPECT_THAT(futures[0].result(), MatchesKvsReadResult(absl::Cord("abc"))); EXPECT_THAT(futures[1].result(), MatchesKvsReadResult(absl::Cord("def"))); EXPECT_THAT(futures[2].result(), MatchesKvsReadResultNotFound()); EXPECT_THAT(mock_store->request_log.pop_all(), ::testing::SizeIs(2)); } } class ReadModifyWriteTest : public ::testing::Test { protected: MockKeyValueStore::MockPtr mock_store = MockKeyValueStore::Make(); tensorstore::kvstore::DriverPtr memory_store = tensorstore::GetMemoryKeyValueStore(); kvstore::DriverPtr GetStore(int64_t num_entries = 100) { return GetDefaultStore(mock_store, "shard_path", tensorstore::InlineExecutor{}, CachePool::Make(CachePool::Limits{}), {num_entries}); } auto GetKvsBackedCache(kvstore::DriverPtr store = {}) { if (!store) store = GetStore(); return GetCache<KvsBackedTestCache>( CachePool::Make(CachePool::Limits{}).get(), "", [&] { return std::make_unique<KvsBackedTestCache>(store); }); } }; TEST_F(ReadModifyWriteTest, MultipleCaches) { std::vector<Index> grid_shape{100}; auto cache1 = GetKvsBackedCache(); auto cache2 = GetKvsBackedCache(); auto transaction = Transaction(tensorstore::isolated); { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto open_transaction, tensorstore::internal::AcquireOpenTransactionPtrOrError(transaction)); TENSORSTORE_ASSERT_OK(GetCacheEntry(cache1, EntryIdToKey(0x0, grid_shape)) ->Modify(open_transaction, false, "abc")); TENSORSTORE_ASSERT_OK(GetCacheEntry(cache2, EntryIdToKey(0x0, grid_shape)) ->Modify(open_transaction, false, "def")); auto read_future = GetCacheEntry(cache1, EntryIdToKey(0x0, grid_shape)) ->ReadValue(open_transaction); mock_store->read_requests.pop()(memory_store); mock_store->read_requests.pop()(memory_store); EXPECT_THAT(read_future.result(), ::testing::Optional(absl::Cord("abcdef"))); } transaction.CommitAsync().IgnoreFuture(); auto write_req = mock_store->write_requests.pop(); write_req(memory_store); TENSORSTORE_EXPECT_OK(transaction.future()); } TEST_F(ReadModifyWriteTest, MultiplePhasesMultipleCaches) { std::vector<Index> grid_shape{100}; auto cache1 = GetKvsBackedCache(); auto cache2 = GetKvsBackedCache(); auto transaction = Transaction(tensorstore::isolated); { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto open_transaction, tensorstore::internal::AcquireOpenTransactionPtrOrError(transaction)); TENSORSTORE_ASSERT_OK(GetCacheEntry(cache1, EntryIdToKey(0x0, grid_shape)) ->Modify(open_transaction, false, "abc")); TENSORSTORE_ASSERT_OK(GetCacheEntry(cache2, EntryIdToKey(0x0, grid_shape)) ->Modify(open_transaction, false, "def")); open_transaction->Barrier(); TENSORSTORE_ASSERT_OK(GetCacheEntry(cache1, EntryIdToKey(0x0, grid_shape)) ->Modify(open_transaction, false, "ghi")); TENSORSTORE_ASSERT_OK(GetCacheEntry(cache2, EntryIdToKey(0x0, grid_shape)) ->Modify(open_transaction, false, "jkl")); auto read_future = GetCacheEntry(cache1, EntryIdToKey(0x0, grid_shape)) ->ReadValue(open_transaction); mock_store->read_requests.pop()(memory_store); mock_store->read_requests.pop()(memory_store); EXPECT_THAT(read_future.result(), ::testing::Optional(absl::Cord("abcdefghijkl"))); } transaction.CommitAsync().IgnoreFuture(); mock_store->write_requests.pop()(memory_store); mock_store->read_requests.pop()(memory_store); mock_store->read_requests.pop()(memory_store); mock_store->read_requests.pop()(memory_store); mock_store->write_requests.pop()(memory_store); TENSORSTORE_EXPECT_OK(transaction.future()); } TENSORSTORE_GLOBAL_INITIALIZER { using ::tensorstore::internal::KvsBackedCacheBasicTransactionalTestOptions; using ::tensorstore::internal::RegisterKvsBackedCacheBasicTransactionalTest; for (bool underlying_atomic : {false, true}) { KvsBackedCacheBasicTransactionalTestOptions options; const int64_t num_entries = 100; options.test_name = tensorstore::StrCat( "ZarrShardingIndexed/underlying_atomic=", underlying_atomic); options.get_store = [=] { return GetDefaultStore( tensorstore::GetMemoryKeyValueStore(underlying_atomic), "shard_path", tensorstore::InlineExecutor{}, CachePool::Make(CachePool::Limits{}), {num_entries}); }; options.delete_range_supported = true; options.multi_key_atomic_supported = true; options.get_key_getter = [=] { return [getter = std::make_shared<GetKey>( true, std::vector<Index>{num_entries})]( auto key) { return (*getter)(key); }; }; RegisterKvsBackedCacheBasicTransactionalTest(options); } } TEST(ShardedKeyValueStoreTest, SpecRoundtrip) { tensorstore::internal::KeyValueStoreSpecRoundtripOptions options; options.roundtrip_key = std::string(8, '\0'); options.full_base_spec = {{"driver", "memory"}, {"path", "shard_path"}}; options.full_spec = { {"driver", "zarr3_sharding_indexed"}, {"base", options.full_base_spec}, {"grid_shape", {100, 200}}, {"index_location", "end"}, {"index_codecs", {{{"name", "bytes"}, {"configuration", {{"endian", "little"}}}}}}, }; options.check_data_after_serialization = false; tensorstore::internal::TestKeyValueStoreSpecRoundtrip(options); } TEST(ShardedKeyValueStoreTest, SpecRoundtripFile) { tensorstore::internal_testing::ScopedTemporaryDirectory tempdir; tensorstore::internal::KeyValueStoreSpecRoundtripOptions options; options.roundtrip_key = std::string(8, '\0'); options.full_base_spec = {{"driver", "file"}, {"path", tempdir.path() + "/shard_path"}}; options.full_spec = { {"driver", "zarr3_sharding_indexed"}, {"base", options.full_base_spec}, {"grid_shape", {100, 200}}, {"index_location", "end"}, {"index_codecs", {{{"name", "bytes"}, {"configuration", {{"endian", "little"}}}}}}, }; tensorstore::internal::TestKeyValueStoreSpecRoundtrip(options); } TEST(ShardedKeyValueStoreTest, Base) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto spec, kvstore::Spec::FromJson( {{"driver", "zarr3_sharding_indexed"}, {"base", "memory: {"grid_shape", {100, 200}}, {"index_location", "end"}, {"index_codecs", {{{"name", "bytes"}, {"configuration", {{"endian", "little"}}}}}}, {"path", "1"}})); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto base_spec, kvstore::Spec::FromJson("memory: EXPECT_THAT(spec.base(), ::testing::Optional(base_spec)); auto context = tensorstore::Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto store, kvstore::Open(spec, context).result()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto base_store, kvstore::Open(base_spec, context).result()); EXPECT_THAT(store.base(), ::testing::Optional(base_store)); auto transaction = tensorstore::Transaction(tensorstore::atomic_isolated); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto store_with_txn, store | transaction); EXPECT_THAT(store_with_txn.base(), base_store | transaction); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/zarr3_sharding_indexed/zarr3_sharding_indexed.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/zarr3_sharding_indexed/zarr3_sharding_indexed_test.cc
4f887a6430414cd6088e1743555015b10f116d50
cd683c63-0679-46b1-95e4-b2624b9ce00a
cpp
google/tensorstore
uint64_sharded
tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded.cc
tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_test.cc
#include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded.h" #include <algorithm> #include "absl/base/optimization.h" #include "absl/strings/str_format.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/internal/json_binding/enum.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/path.h" #include "tensorstore/kvstore/neuroglancer_uint64_sharded/murmurhash3.h" #include "tensorstore/util/division.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace neuroglancer_uint64_sharded { namespace { namespace jb = tensorstore::internal_json_binding; constexpr auto HashFunctionBinder = [](auto is_loading, const auto& options, auto* obj, auto* j) { using HashFunction = ShardingSpec::HashFunction; return jb::Enum<HashFunction, const char*>({ {HashFunction::identity, "identity"}, {HashFunction::murmurhash3_x86_128, "murmurhash3_x86_128"}, })(is_loading, options, obj, j); }; constexpr auto DefaultableDataEncodingJsonBinder = [](auto is_loading, const auto& options, auto* obj, auto* j) { using DataEncoding = ShardingSpec::DataEncoding; return jb::DefaultValue<jb::kAlwaysIncludeDefaults>( [](auto* v) { *v = DataEncoding::raw; }, DataEncodingJsonBinder)( is_loading, options, obj, j); }; } TENSORSTORE_DEFINE_JSON_BINDER( DataEncodingJsonBinder, jb::Enum<ShardingSpec::DataEncoding, const char*>({ {ShardingSpec::DataEncoding::raw, "raw"}, {ShardingSpec::DataEncoding::gzip, "gzip"}, })) std::ostream& operator<<(std::ostream& os, ShardingSpec::HashFunction x) { return os << jb::ToJson(x, HashFunctionBinder).value(); } void to_json(::nlohmann::json& out, ShardingSpec::HashFunction x) { out = jb::ToJson(x, HashFunctionBinder).value(); } std::ostream& operator<<(std::ostream& os, ShardingSpec::DataEncoding x) { return os << jb::ToJson(x, DataEncodingJsonBinder).value(); } std::ostream& operator<<(std::ostream& os, const ShardingSpec& x) { return os << jb::ToJson(x).value(); } TENSORSTORE_DEFINE_JSON_DEFAULT_BINDER(ShardingSpec, [](auto is_loading, const auto& options, auto* obj, auto* j) { return jb::Object( jb::Member("@type", jb::Constant([] { return "neuroglancer_uint64_sharded_v1"; })), jb::Member("preshift_bits", jb::Projection(&ShardingSpec::preshift_bits, jb::Integer<int>(0, 64))), jb::Member("minishard_bits", jb::Projection(&ShardingSpec::minishard_bits, jb::Integer<int>(0, 32))), jb::Member("shard_bits", jb::Dependent([](auto is_loading, const auto& options, auto* obj, auto* j) { return jb::Projection( &ShardingSpec::shard_bits, jb::Integer<int>(0, 64 - obj->minishard_bits)); })), jb::Member("hash", jb::Projection(&ShardingSpec::hash_function, HashFunctionBinder)), jb::Member("data_encoding", jb::Projection(&ShardingSpec::data_encoding, DefaultableDataEncodingJsonBinder)), jb::Member("minishard_index_encoding", jb::Projection(&ShardingSpec::minishard_index_encoding, DefaultableDataEncodingJsonBinder)))( is_loading, options, obj, j); }) bool operator==(const ShardingSpec& a, const ShardingSpec& b) { return a.hash_function == b.hash_function && a.preshift_bits == b.preshift_bits && a.minishard_bits == b.minishard_bits && a.shard_bits == b.shard_bits && a.data_encoding == b.data_encoding && a.minishard_index_encoding == b.minishard_index_encoding; } std::string GetShardKey(const ShardingSpec& sharding_spec, std::string_view prefix, uint64_t shard_number) { return internal::JoinPath( prefix, absl::StrFormat("%0*x.shard", CeilOfRatio(sharding_spec.shard_bits, 4), shard_number)); } namespace { constexpr uint64_t ShiftRightUpTo64(uint64_t x, int amount) { if (amount == 64) return 0; return x >> amount; } uint64_t GetLowBitMask(int num_bits) { if (num_bits == 64) return ~uint64_t(0); return (uint64_t(1) << num_bits) - 1; } } uint64_t HashChunkId(ShardingSpec::HashFunction h, uint64_t key) { switch (h) { case ShardingSpec::HashFunction::identity: return key; case ShardingSpec::HashFunction::murmurhash3_x86_128: { uint32_t out[4] = {0, 0, 0}; MurmurHash3_x86_128Hash64Bits(key, out); return (static_cast<uint64_t>(out[1]) << 32) | out[0]; } } ABSL_UNREACHABLE(); } ChunkCombinedShardInfo GetChunkShardInfo(const ShardingSpec& sharding_spec, ChunkId chunk_id) { ChunkCombinedShardInfo result; const uint64_t hash_input = ShiftRightUpTo64(chunk_id.value, sharding_spec.preshift_bits); const uint64_t hash_output = HashChunkId(sharding_spec.hash_function, hash_input); result.shard_and_minishard = hash_output & GetLowBitMask(sharding_spec.minishard_bits + sharding_spec.shard_bits); return result; } ChunkSplitShardInfo GetSplitShardInfo(const ShardingSpec& sharding_spec, ChunkCombinedShardInfo combined_info) { ChunkSplitShardInfo result; result.minishard = combined_info.shard_and_minishard & GetLowBitMask(sharding_spec.minishard_bits); result.shard = ShiftRightUpTo64(combined_info.shard_and_minishard, sharding_spec.minishard_bits) & GetLowBitMask(sharding_spec.shard_bits); return result; } ChunkCombinedShardInfo GetCombinedShardInfo(const ShardingSpec& sharding_spec, ChunkSplitShardInfo split_info) { ChunkCombinedShardInfo result; result.shard_and_minishard = split_info.minishard; if (sharding_spec.minishard_bits != 64) { result.shard_and_minishard |= (split_info.shard << sharding_spec.minishard_bits); } return result; } int64_t ShardIndexSize(const ShardingSpec& sharding_spec) { return static_cast<int64_t>(16) << sharding_spec.minishard_bits; } Result<ByteRange> GetAbsoluteShardByteRange(ByteRange relative_range, const ShardingSpec& sharding_spec) { const int64_t offset = ShardIndexSize(sharding_spec); ByteRange result; if (internal::AddOverflow(relative_range.inclusive_min, offset, &result.inclusive_min) || internal::AddOverflow(relative_range.exclusive_max, offset, &result.exclusive_max)) { return absl::FailedPreconditionError(tensorstore::StrCat( "Byte range ", relative_range, " relative to the end of the shard index (", offset, ") is not valid")); } return result; } const EncodedChunk* FindChunk(span<const EncodedChunk> chunks, MinishardAndChunkId minishard_and_chunk_id) { const auto chunk_it = std::lower_bound( chunks.begin(), chunks.end(), minishard_and_chunk_id, [](const auto& chunk, const auto& minishard_and_chunk_id) { return chunk.minishard_and_chunk_id < minishard_and_chunk_id; }); if (chunk_it == chunks.end() || chunk_it->minishard_and_chunk_id != minishard_and_chunk_id) { return nullptr; } return &*chunk_it; } } }
#include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::MatchesStatus; using ::tensorstore::neuroglancer_uint64_sharded::MinishardIndexEntry; using ::tensorstore::neuroglancer_uint64_sharded::ShardingSpec; TEST(ShardingSpecTest, Comparison) { ShardingSpec a{ ShardingSpec::HashFunction::identity, 1, 2, 3, ShardingSpec::DataEncoding::raw, ShardingSpec::DataEncoding::gzip, }; ShardingSpec b{ ShardingSpec::HashFunction::murmurhash3_x86_128, 1, 2, 3, ShardingSpec::DataEncoding::raw, ShardingSpec::DataEncoding::gzip, }; ShardingSpec c{ ShardingSpec::HashFunction::identity, 2, 2, 3, ShardingSpec::DataEncoding::raw, ShardingSpec::DataEncoding::gzip, }; ShardingSpec d{ ShardingSpec::HashFunction::identity, 1, 5, 3, ShardingSpec::DataEncoding::raw, ShardingSpec::DataEncoding::gzip, }; ShardingSpec e{ ShardingSpec::HashFunction::identity, 1, 2, 9, ShardingSpec::DataEncoding::raw, ShardingSpec::DataEncoding::gzip, }; ShardingSpec f{ ShardingSpec::HashFunction::identity, 1, 2, 3, ShardingSpec::DataEncoding::gzip, ShardingSpec::DataEncoding::gzip, }; ShardingSpec g{ ShardingSpec::HashFunction::identity, 1, 2, 3, ShardingSpec::DataEncoding::raw, ShardingSpec::DataEncoding::raw, }; EXPECT_EQ(a, a); EXPECT_EQ(b, b); EXPECT_EQ(c, c); EXPECT_EQ(d, d); EXPECT_EQ(e, e); EXPECT_EQ(f, f); EXPECT_EQ(g, g); EXPECT_NE(a, b); EXPECT_NE(a, c); EXPECT_NE(a, d); EXPECT_NE(a, e); EXPECT_NE(a, f); EXPECT_NE(a, g); } TEST(ShardingSpecTest, ToJson) { ShardingSpec a{ ShardingSpec::HashFunction::identity, 1, 2, 3, ShardingSpec::DataEncoding::raw, ShardingSpec::DataEncoding::gzip, }; EXPECT_EQ(::nlohmann::json({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 1}, {"minishard_bits", 2}, {"shard_bits", 3}, {"data_encoding", "raw"}, {"minishard_index_encoding", "gzip"}}), ::nlohmann::json(a)); } TEST(ShardingSpecTest, Parse) { for (auto h : {ShardingSpec::HashFunction::identity, ShardingSpec::HashFunction::murmurhash3_x86_128}) { EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", ::nlohmann::json(h)}, {"preshift_bits", 1}, {"minishard_bits", 2}, {"shard_bits", 3}, {"data_encoding", "raw"}, {"minishard_index_encoding", "gzip"}}), ::testing::Optional(ShardingSpec{ h, 1, 2, 3, ShardingSpec::DataEncoding::raw, ShardingSpec::DataEncoding::gzip, })); } EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "murmurhash3_x86_128"}, {"preshift_bits", 1}, {"minishard_bits", 2}, {"shard_bits", 3}, {"minishard_index_encoding", "gzip"}}), ::testing::Optional(ShardingSpec{ ShardingSpec::HashFunction::murmurhash3_x86_128, 1, 2, 3, ShardingSpec::DataEncoding::raw, ShardingSpec::DataEncoding::gzip, })); EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "murmurhash3_x86_128"}, {"preshift_bits", 1}, {"minishard_bits", 2}, {"shard_bits", 3}, {"data_encoding", "gzip"}}), ::testing::Optional(ShardingSpec{ ShardingSpec::HashFunction::murmurhash3_x86_128, 1, 2, 3, ShardingSpec::DataEncoding::gzip, ShardingSpec::DataEncoding::raw, })); for (const char* k : {"@type", "hash", "preshift_bits", "minishard_bits", "shard_bits"}) { ::nlohmann::json j{{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "murmurhash3_x86_128"}, {"preshift_bits", 1}, {"minishard_bits", 2}, {"shard_bits", 3}, {"minishard_index_encoding", "raw"}, {"data_encoding", "gzip"}}; j.erase(k); EXPECT_THAT(ShardingSpec::FromJson(j), MatchesStatus(absl::StatusCode::kInvalidArgument)); j[k] = nullptr; EXPECT_THAT(ShardingSpec::FromJson(j), MatchesStatus(absl::StatusCode::kInvalidArgument)); } EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v2"}, {"hash", "murmurhash3_x86_128"}, {"preshift_bits", 1}, {"minishard_bits", 2}, {"shard_bits", 3}, {"minishard_index_encoding", "raw"}, {"data_encoding", "gzip"}}), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*\"neuroglancer_uint64_sharded_v2\".*")); EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "invalid_hash"}, {"preshift_bits", 1}, {"minishard_bits", 2}, {"shard_bits", 3}, {"minishard_index_encoding", "raw"}, {"data_encoding", "gzip"}}), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*\"invalid_hash\".*")); EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 1}, {"minishard_bits", 2}, {"shard_bits", 3}, {"minishard_index_encoding", "raw"}, {"data_encoding", 1234}}), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*1234.*")); EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 1}, {"minishard_bits", 2}, {"shard_bits", 3}, {"minishard_index_encoding", "raw"}, {"data_encoding", "invalid_encoding"}}), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*\"invalid_encoding\".*")); for (int i : {0, 1, 63, 64}) { EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", i}, {"minishard_bits", 2}, {"shard_bits", 3}}), ::testing::Optional(ShardingSpec{ ShardingSpec::HashFunction::identity, i, 2, 3, ShardingSpec::DataEncoding::raw, ShardingSpec::DataEncoding::raw, })); } for (int i : {-1, -2, 65, 66}) { EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", i}, {"minishard_bits", 2}, {"shard_bits", 3}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); } for (int i : {0, 1, 31, 32}) { EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 1}, {"minishard_bits", i}, {"shard_bits", 0}}), ::testing::Optional(ShardingSpec{ ShardingSpec::HashFunction::identity, 1, i, 0, ShardingSpec::DataEncoding::raw, ShardingSpec::DataEncoding::raw, })); } for (int i : {-1, -2, 33, 34, 35}) { EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 1}, {"minishard_bits", i}, {"shard_bits", 0}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); } for (int i : {0, 1, 64 - 8, 64 - 7}) { EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 1}, {"minishard_bits", 7}, {"shard_bits", i}}), ::testing::Optional(ShardingSpec{ ShardingSpec::HashFunction::identity, 1, 7, i, ShardingSpec::DataEncoding::raw, ShardingSpec::DataEncoding::raw, })); } for (int i : {-1, -2, 64 - 6, 64 - 5, 65, 66}) { EXPECT_THAT( ShardingSpec::FromJson({{"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 1}, {"minishard_bits", 7}, {"shard_bits", i}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); } EXPECT_THAT(ShardingSpec::FromJson("invalid"), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(MinishardIndexEntryTest, Comparison) { MinishardIndexEntry a{{1}, {2, 3}}; MinishardIndexEntry b{{1}, {3, 4}}; MinishardIndexEntry c{{2}, {2, 3}}; MinishardIndexEntry d{{2}, {3, 4}}; EXPECT_EQ(a, a); EXPECT_EQ(b, b); EXPECT_EQ(c, c); EXPECT_EQ(d, d); EXPECT_FALSE(a != a); EXPECT_FALSE(a == b); EXPECT_NE(a, c); EXPECT_NE(a, d); EXPECT_NE(b, c); EXPECT_NE(b, d); EXPECT_NE(c, d); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_test.cc
4f887a6430414cd6088e1743555015b10f116d50
6ac94486-7e5d-4dfb-9030-e1765d91f8e5
cpp
google/tensorstore
uint64_sharded_encoder
tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_encoder.cc
tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_encoder_test.cc
#include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_encoder.h" #include <stddef.h> #include <stdint.h> #include <optional> #include <string> #include <utility> #include "absl/base/internal/endian.h" #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "tensorstore/internal/compression/zlib.h" #include "tensorstore/internal/flat_cord_builder.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace neuroglancer_uint64_sharded { absl::Cord EncodeMinishardIndex( span<const MinishardIndexEntry> minishard_index) { internal::FlatCordBuilder builder(minishard_index.size() * 24); ChunkId prev_chunk_id{0}; int64_t prev_offset = 0; for (ptrdiff_t i = 0; i < minishard_index.size(); ++i) { const auto& e = minishard_index[i]; absl::little_endian::Store64(builder.data() + i * 8, e.chunk_id.value - prev_chunk_id.value); absl::little_endian::Store64( builder.data() + minishard_index.size() * 8 + i * 8, e.byte_range.inclusive_min - prev_offset); absl::little_endian::Store64( builder.data() + minishard_index.size() * 16 + i * 8, e.byte_range.exclusive_max - e.byte_range.inclusive_min); prev_chunk_id = e.chunk_id; prev_offset = e.byte_range.exclusive_max; } return std::move(builder).Build(); } absl::Cord EncodeShardIndex(span<const ShardIndexEntry> shard_index) { internal::FlatCordBuilder builder(shard_index.size() * 16); for (ptrdiff_t i = 0; i < shard_index.size(); ++i) { const auto& e = shard_index[i]; absl::little_endian::Store64(builder.data() + i * 16, e.inclusive_min); absl::little_endian::Store64(builder.data() + i * 16 + 8, e.exclusive_max); } return std::move(builder).Build(); } ShardEncoder::ShardEncoder(const ShardingSpec& sharding_spec, WriteFunction write_function) : sharding_spec_(sharding_spec), write_function_(std::move(write_function)), shard_index_(static_cast<size_t>(1) << sharding_spec_.minishard_bits), cur_minishard_(0), data_file_offset_(0) {} ShardEncoder::ShardEncoder(const ShardingSpec& sharding_spec, absl::Cord& out) : ShardEncoder(sharding_spec, [&out](const absl::Cord& buffer) { out.Append(buffer); return absl::OkStatus(); }) {} namespace { Result<int64_t> EncodeData( const absl::Cord& input, ShardingSpec::DataEncoding encoding, absl::FunctionRef<absl::Status(const absl::Cord& buffer)> write_function) { auto encoded = EncodeData(input, encoding); if (auto status = write_function(encoded); status.ok()) { return encoded.size(); } else { return status; } } } absl::Status ShardEncoder::FinalizeMinishard() { if (minishard_index_.empty()) return absl::OkStatus(); auto uncompressed_minishard_index = EncodeMinishardIndex(minishard_index_); TENSORSTORE_ASSIGN_OR_RETURN( auto num_bytes, EncodeData(uncompressed_minishard_index, sharding_spec_.minishard_index_encoding, write_function_)); shard_index_[cur_minishard_] = {data_file_offset_, data_file_offset_ + num_bytes}; data_file_offset_ += num_bytes; minishard_index_.clear(); return absl::OkStatus(); } Result<absl::Cord> ShardEncoder::Finalize() { TENSORSTORE_RETURN_IF_ERROR(FinalizeMinishard()); return EncodeShardIndex(shard_index_); } Result<ByteRange> ShardEncoder::WriteUnindexedEntry(std::uint64_t minishard, const absl::Cord& data, bool compress) { if (minishard != cur_minishard_) { if (minishard < cur_minishard_) { return absl::InvalidArgumentError( tensorstore::StrCat("Minishard ", minishard, " cannot be written after ", cur_minishard_)); } TENSORSTORE_RETURN_IF_ERROR(FinalizeMinishard()); cur_minishard_ = minishard; } std::string output; auto start_offset = data_file_offset_; TENSORSTORE_ASSIGN_OR_RETURN( auto num_bytes, EncodeData(data, compress ? sharding_spec_.data_encoding : ShardingSpec::DataEncoding::raw, write_function_)); data_file_offset_ += num_bytes; return ByteRange{start_offset, data_file_offset_}; } absl::Status ShardEncoder::WriteIndexedEntry(uint64_t minishard, ChunkId chunk_id, const absl::Cord& data, bool compress) { TENSORSTORE_ASSIGN_OR_RETURN(auto byte_range, WriteUnindexedEntry(minishard, data, compress)); minishard_index_.push_back({chunk_id, byte_range}); return absl::OkStatus(); } ShardEncoder::~ShardEncoder() = default; std::optional<absl::Cord> EncodeShard(const ShardingSpec& spec, span<const EncodedChunk> chunks) { absl::Cord shard_data; ShardEncoder encoder(spec, shard_data); for (const auto& chunk : chunks) { TENSORSTORE_CHECK_OK( encoder.WriteIndexedEntry(chunk.minishard_and_chunk_id.minishard, chunk.minishard_and_chunk_id.chunk_id, chunk.encoded_data, false)); } auto shard_index = encoder.Finalize().value(); if (shard_data.empty()) return std::nullopt; shard_index.Append(shard_data); return shard_index; } absl::Cord EncodeData(const absl::Cord& input, ShardingSpec::DataEncoding encoding) { if (encoding == ShardingSpec::DataEncoding::raw) { return input; } absl::Cord compressed; zlib::Options options; options.level = 9; options.use_gzip_header = true; zlib::Encode(input, &compressed, options); return compressed; } } }
#include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_encoder.h" #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/internal/compression/zlib.h" #include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { namespace zlib = tensorstore::zlib; using ::tensorstore::neuroglancer_uint64_sharded::EncodeMinishardIndex; using ::tensorstore::neuroglancer_uint64_sharded::EncodeShardIndex; using ::tensorstore::neuroglancer_uint64_sharded::MinishardIndexEntry; using ::tensorstore::neuroglancer_uint64_sharded::ShardEncoder; using ::tensorstore::neuroglancer_uint64_sharded::ShardIndexEntry; using ::tensorstore::neuroglancer_uint64_sharded::ShardingSpec; absl::Cord Bytes(std::vector<unsigned char> bytes) { return absl::Cord(std::string_view( reinterpret_cast<const char*>(bytes.data()), bytes.size())); } TEST(EncodeMinishardIndexTest, Empty) { auto out = EncodeMinishardIndex({}); EXPECT_EQ("", out); } TEST(EncodeMinishardIndexTest, SingleEntry) { auto out = EncodeMinishardIndex( std::vector<MinishardIndexEntry>{{{0x0123456789abcdef}, {0x11, 0x23}}}); EXPECT_THAT(out, Bytes({ 0xef, 0xcd, 0xab, 0x89, 0x67, 0x45, 0x23, 0x01, 0x11, 0, 0, 0, 0, 0, 0, 0, 0x12, 0, 0, 0, 0, 0, 0, 0, })); } TEST(EncodeMinishardIndexTest, MultipleEntries) { auto out = EncodeMinishardIndex(std::vector<MinishardIndexEntry>{ {{1}, {3, 10}}, {{7}, {12, 15}}, }); EXPECT_THAT(out, Bytes({ 1, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, })); } TEST(EncodeShardIndexTest, Basic) { std::vector<ShardIndexEntry> shard_index{{1, 5}, {7, 10}}; auto out = EncodeShardIndex(shard_index); EXPECT_THAT(out, Bytes({ 1, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, })); } TEST(ShardEncoderTest, Raw) { ::nlohmann::json sharding_spec_json{ {"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 0}, {"minishard_bits", 1}, {"shard_bits", 0}, {"data_encoding", "raw"}, {"minishard_index_encoding", "raw"}}; ShardingSpec sharding_spec = ShardingSpec::FromJson(sharding_spec_json).value(); absl::Cord encoded_shard_data; ShardEncoder shard_encoder(sharding_spec, encoded_shard_data); TENSORSTORE_ASSERT_OK(shard_encoder.WriteIndexedEntry(0, {2}, Bytes({1, 2, 3, 4}), false)); TENSORSTORE_ASSERT_OK(shard_encoder.WriteIndexedEntry(0, {8}, Bytes({6, 7, 8}), false)); TENSORSTORE_ASSERT_OK(shard_encoder.WriteIndexedEntry(1, {3}, Bytes({9, 10}), false)); auto encoded_shard_index = shard_encoder.Finalize().value(); EXPECT_THAT(encoded_shard_data, Bytes({ 1, 2, 3, 4, 6, 7, 8, 2, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 9, 10, 3, 0, 0, 0, 0, 0, 0, 0, 55, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, })); EXPECT_THAT(encoded_shard_index, Bytes({ 7, 0, 0, 0, 0, 0, 0, 0, 55, 0, 0, 0, 0, 0, 0, 0, 57, 0, 0, 0, 0, 0, 0, 0, 81, 0, 0, 0, 0, 0, 0, 0, })); } TEST(ShardEncoderTest, Gzip) { ::nlohmann::json sharding_spec_json{ {"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 0}, {"minishard_bits", 1}, {"shard_bits", 0}, {"data_encoding", "gzip"}, {"minishard_index_encoding", "gzip"}}; ShardingSpec sharding_spec = ShardingSpec::FromJson(sharding_spec_json).value(); absl::Cord encoded_shard_data; ShardEncoder shard_encoder(sharding_spec, encoded_shard_data); TENSORSTORE_ASSERT_OK(shard_encoder.WriteIndexedEntry(0, {2}, Bytes({1, 2, 3, 4}), true)); TENSORSTORE_ASSERT_OK(shard_encoder.WriteIndexedEntry(0, {8}, Bytes({6, 7, 8}), true)); TENSORSTORE_ASSERT_OK(shard_encoder.WriteIndexedEntry(1, {3}, Bytes({9, 10}), false)); absl::Cord encoded_shard_index = shard_encoder.Finalize().value(); absl::Cord expected_shard_data; zlib::Options options{9, true}; std::vector<ShardIndexEntry> shard_index(2); { std::vector<MinishardIndexEntry> minishard_index(2); minishard_index[0].chunk_id = {2}; minishard_index[0].byte_range.inclusive_min = expected_shard_data.size(); zlib::Encode(Bytes({1, 2, 3, 4}), &expected_shard_data, options); minishard_index[0].byte_range.exclusive_max = expected_shard_data.size(); minishard_index[1].chunk_id = {8}; minishard_index[1].byte_range.inclusive_min = expected_shard_data.size(); zlib::Encode(Bytes({6, 7, 8}), &expected_shard_data, options); minishard_index[1].byte_range.exclusive_max = expected_shard_data.size(); shard_index[0].inclusive_min = expected_shard_data.size(); zlib::Encode(EncodeMinishardIndex(minishard_index), &expected_shard_data, options); shard_index[0].exclusive_max = expected_shard_data.size(); } { std::vector<MinishardIndexEntry> minishard_index(1); minishard_index[0].chunk_id = {3}; minishard_index[0].byte_range.inclusive_min = expected_shard_data.size(); expected_shard_data.Append(Bytes({9, 10})); minishard_index[0].byte_range.exclusive_max = expected_shard_data.size(); shard_index[1].inclusive_min = expected_shard_data.size(); zlib::Encode(EncodeMinishardIndex(minishard_index), &expected_shard_data, options); shard_index[1].exclusive_max = expected_shard_data.size(); } auto expected_shard_index = EncodeShardIndex(shard_index); EXPECT_EQ(expected_shard_data, encoded_shard_data); EXPECT_EQ(expected_shard_index, encoded_shard_index); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_encoder.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_encoder_test.cc
4f887a6430414cd6088e1743555015b10f116d50
9973afe3-dec3-41d3-a3be-739f6757b498
cpp
google/tensorstore
uint64_sharded_decoder
tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_decoder.cc
tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_decoder_test.cc
#include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_decoder.h" #include <stddef.h> #include <stdint.h> #include <optional> #include <string_view> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/internal/endian.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "tensorstore/internal/compression/zlib.h" #include "tensorstore/internal/cord_util.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace neuroglancer_uint64_sharded { Result<std::vector<MinishardIndexEntry>> DecodeMinishardIndex( const absl::Cord& input, ShardingSpec::DataEncoding encoding) { absl::Cord decoded_input; if (encoding != ShardingSpec::DataEncoding::raw) { TENSORSTORE_ASSIGN_OR_RETURN(decoded_input, DecodeData(input, encoding)); } else { decoded_input = input; } if ((decoded_input.size() % 24) != 0) { return absl::InvalidArgumentError(tensorstore::StrCat( "Invalid minishard index length: ", decoded_input.size())); } std::vector<MinishardIndexEntry> result(decoded_input.size() / 24); static_assert(sizeof(MinishardIndexEntry) == 24); auto decoded_flat = decoded_input.Flatten(); ChunkId chunk_id{0}; uint64_t byte_offset = 0; for (size_t i = 0; i < result.size(); ++i) { auto& entry = result[i]; chunk_id.value += absl::little_endian::Load64(decoded_flat.data() + i * 8); entry.chunk_id = chunk_id; byte_offset += absl::little_endian::Load64(decoded_flat.data() + i * 8 + 8 * result.size()); entry.byte_range.inclusive_min = byte_offset; byte_offset += absl::little_endian::Load64(decoded_flat.data() + i * 8 + 16 * result.size()); entry.byte_range.exclusive_max = byte_offset; if (!entry.byte_range.SatisfiesInvariants()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Invalid byte range in minishard index for chunk ", entry.chunk_id.value, ": ", entry.byte_range)); } } absl::c_sort(result, [](const MinishardIndexEntry& a, const MinishardIndexEntry& b) { return a.chunk_id.value < b.chunk_id.value; }); return result; } std::optional<ByteRange> FindChunkInMinishard( span<const MinishardIndexEntry> minishard_index, ChunkId chunk_id) { auto it = absl::c_lower_bound(minishard_index, chunk_id, [](const MinishardIndexEntry& e, ChunkId chunk_id) { return e.chunk_id.value < chunk_id.value; }); if (it == minishard_index.end() || it->chunk_id.value != chunk_id.value) { return std::nullopt; } return it->byte_range; } Result<absl::Cord> DecodeData(const absl::Cord& input, ShardingSpec::DataEncoding encoding) { if (encoding == ShardingSpec::DataEncoding::raw) { return input; } absl::Cord uncompressed; TENSORSTORE_RETURN_IF_ERROR( zlib::Decode(input, &uncompressed, true)); return uncompressed; } Result<ByteRange> DecodeShardIndexEntry(std::string_view input) { if (input.size() != 16) { return absl::FailedPreconditionError(tensorstore::StrCat( "Expected 16 bytes, but received: ", input.size(), " bytes")); } ByteRange r; r.inclusive_min = absl::little_endian::Load64(input.data()); r.exclusive_max = absl::little_endian::Load64(input.data() + 8); if (!r.SatisfiesInvariants()) { return absl::FailedPreconditionError( tensorstore::StrCat("Shard index specified invalid byte range: ", r)); } return r; } Result<std::vector<MinishardIndexEntry>> DecodeMinishardIndexAndAdjustByteRanges(const absl::Cord& encoded, const ShardingSpec& sharding_spec) { TENSORSTORE_ASSIGN_OR_RETURN( auto minishard_index, DecodeMinishardIndex(encoded, sharding_spec.minishard_index_encoding)); for (auto& entry : minishard_index) { auto result = GetAbsoluteShardByteRange(entry.byte_range, sharding_spec); if (!result.ok()) { return MaybeAnnotateStatus( result.status(), tensorstore::StrCat("Error decoding minishard index entry for chunk ", entry.chunk_id.value)); } entry.byte_range = std::move(result).value(); } return minishard_index; } namespace { absl::Status SplitMinishard(const ShardingSpec& sharding_spec, const absl::Cord& shard_data, uint64_t minishard, span<const MinishardIndexEntry> minishard_index, std::vector<EncodedChunk>& chunks) { std::optional<ChunkId> prev_chunk_id; for (const auto& existing_entry : minishard_index) { if (prev_chunk_id && existing_entry.chunk_id.value == prev_chunk_id->value) { return absl::FailedPreconditionError( tensorstore::StrCat("Chunk ", existing_entry.chunk_id.value, " occurs more than once in the minishard index " "for minishard ", minishard)); } prev_chunk_id = existing_entry.chunk_id; const auto GetChunkByteRange = [&]() -> Result<ByteRange> { TENSORSTORE_RETURN_IF_ERROR( OptionalByteRangeRequest(existing_entry.byte_range) .Validate(shard_data.size())); return existing_entry.byte_range; }; TENSORSTORE_ASSIGN_OR_RETURN( auto chunk_byte_range, GetChunkByteRange(), tensorstore::MaybeAnnotateStatus( _, tensorstore::StrCat("Invalid existing byte range for chunk ", existing_entry.chunk_id.value))); chunks.push_back( EncodedChunk{{minishard, existing_entry.chunk_id}, internal::GetSubCord(shard_data, chunk_byte_range)}); } return absl::OkStatus(); } } Result<std::vector<EncodedChunk>> SplitShard(const ShardingSpec& sharding_spec, const absl::Cord& shard_data) { std::vector<EncodedChunk> chunks; if (shard_data.empty()) return chunks; const uint64_t num_minishards = sharding_spec.num_minishards(); if (shard_data.size() < num_minishards * 16) { return absl::FailedPreconditionError( tensorstore::StrCat("Existing shard has size ", shard_data.size(), ", but expected at least: ", num_minishards * 16)); } std::vector<char> shard_index(16 * num_minishards); internal::CopyCordToSpan(shard_data, shard_index); for (uint64_t minishard = 0; minishard < num_minishards; ++minishard) { const auto GetMinishardIndexByteRange = [&]() -> Result<ByteRange> { TENSORSTORE_ASSIGN_OR_RETURN( auto minishard_index_byte_range, DecodeShardIndexEntry( std::string_view(shard_index.data() + 16 * minishard, 16))); TENSORSTORE_ASSIGN_OR_RETURN( minishard_index_byte_range, GetAbsoluteShardByteRange(minishard_index_byte_range, sharding_spec)); TENSORSTORE_RETURN_IF_ERROR( OptionalByteRangeRequest(minishard_index_byte_range) .Validate(shard_data.size())); return minishard_index_byte_range; }; TENSORSTORE_ASSIGN_OR_RETURN( auto minishard_ibr, GetMinishardIndexByteRange(), tensorstore::MaybeAnnotateStatus( _, tensorstore::StrCat( "Error decoding existing shard index entry for minishard ", minishard))); if (minishard_ibr.size() == 0) continue; TENSORSTORE_ASSIGN_OR_RETURN( auto minishard_index, DecodeMinishardIndexAndAdjustByteRanges( internal::GetSubCord(shard_data, minishard_ibr), sharding_spec), tensorstore::MaybeAnnotateStatus( _, tensorstore::StrCat( "Error decoding existing minishard index for minishard ", minishard))); TENSORSTORE_RETURN_IF_ERROR(SplitMinishard( sharding_spec, shard_data, minishard, minishard_index, chunks)); } return chunks; } } }
#include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_decoder.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/internal/compression/zlib.h" #include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded.h" #include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_encoder.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { namespace zlib = tensorstore::zlib; using ::tensorstore::MatchesStatus; using ::tensorstore::neuroglancer_uint64_sharded::DecodeMinishardIndex; using ::tensorstore::neuroglancer_uint64_sharded::EncodeMinishardIndex; using ::tensorstore::neuroglancer_uint64_sharded::MinishardIndexEntry; using ::tensorstore::neuroglancer_uint64_sharded::ShardIndexEntry; using ::tensorstore::neuroglancer_uint64_sharded::ShardingSpec; void TestEncodeMinishardRoundTrip( std::vector<MinishardIndexEntry> minishard_index) { auto out = EncodeMinishardIndex(minishard_index); absl::Cord compressed; zlib::Options options{9, true}; zlib::Encode(out, &compressed, options); EXPECT_THAT( DecodeMinishardIndex(out, ShardingSpec::DataEncoding::raw), ::testing::Optional(::testing::ElementsAreArray(minishard_index))); EXPECT_THAT( DecodeMinishardIndex(compressed, ShardingSpec::DataEncoding::gzip), ::testing::Optional(::testing::ElementsAreArray(minishard_index))); } TEST(DecodeMinishardIndexTest, Empty) { TestEncodeMinishardRoundTrip({}); } TEST(DecodeMinishardIndexTest, SingleEntry) { TestEncodeMinishardRoundTrip({{{0x0123456789abcdef}, {0x11, 0x23}}}); } TEST(DecodeMinishardIndexTest, MultipleEntries) { TestEncodeMinishardRoundTrip({ {{1}, {3, 10}}, {{7}, {12, 15}}, }); } TEST(DecodeMinishardIndexTest, InvalidGzip) { EXPECT_THAT( DecodeMinishardIndex(absl::Cord("abc"), ShardingSpec::DataEncoding::gzip), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error decoding zlib-compressed data")); } TEST(DecodeMinishardIndexTest, InvalidSizeRaw) { EXPECT_THAT( DecodeMinishardIndex(absl::Cord("abc"), ShardingSpec::DataEncoding::raw), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid minishard index length: 3")); } TEST(DecodeMinishardIndexTest, InvalidSizeGzip) { absl::Cord temp; zlib::Options options{9, true}; zlib::Encode(absl::Cord("abc"), &temp, options); EXPECT_THAT(DecodeMinishardIndex(temp, ShardingSpec::DataEncoding::gzip), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid minishard index length: 3")); } TEST(DecodeMinishardIndexTest, InvalidInterval) { std::vector<MinishardIndexEntry> minishard_index{{{3}, {1, 0}}}; auto encoded = EncodeMinishardIndex(minishard_index); EXPECT_THAT( DecodeMinishardIndex(encoded, ShardingSpec::DataEncoding::raw), MatchesStatus( absl::StatusCode::kInvalidArgument, "Invalid byte range in minishard index for chunk 3: \\[1, 0\\)")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_decoder.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_decoder_test.cc
4f887a6430414cd6088e1743555015b10f116d50
25ce80e0-cfc7-41c8-8494-1706993cefd2
cpp
google/tensorstore
neuroglancer_uint64_sharded
tensorstore/kvstore/neuroglancer_uint64_sharded/neuroglancer_uint64_sharded.cc
tensorstore/kvstore/neuroglancer_uint64_sharded/neuroglancer_uint64_sharded_test.cc
#include "tensorstore/kvstore/neuroglancer_uint64_sharded/neuroglancer_uint64_sharded.h" #include <stddef.h> #include <stdint.h> #include <algorithm> #include <cassert> #include <cstring> #include <limits> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/base/internal/endian.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/batch.h" #include "tensorstore/context.h" #include "tensorstore/internal/cache/async_cache.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/cache/cache_pool_resource.h" #include "tensorstore/internal/cache/kvs_backed_cache.h" #include "tensorstore/internal/data_copy_concurrency_resource.h" #include "tensorstore/internal/estimate_heap_usage/estimate_heap_usage.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/mutex.h" #include "tensorstore/internal/path.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/kvstore/batch_util.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/driver.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded.h" #include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_decoder.h" #include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded_encoder.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_modify_write.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/registry.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/supported_features.h" #include "tensorstore/kvstore/transaction.h" #include "tensorstore/transaction.h" #include "tensorstore/util/execution/any_receiver.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/fwd.h" #include "tensorstore/util/garbage_collection/garbage_collection.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" #include "tensorstore/internal/estimate_heap_usage/std_vector.h" #include "tensorstore/util/execution/result_sender.h" namespace tensorstore { namespace neuroglancer_uint64_sharded { namespace { using ::tensorstore::internal::ConvertInvalidArgumentToFailedPrecondition; using ::tensorstore::internal::IntrusivePtr; using ::tensorstore::kvstore::ListEntry; using ::tensorstore::kvstore::ListReceiver; using ::tensorstore::kvstore::SupportedFeatures; class MinishardIndexKeyValueStore : public kvstore::Driver { public: explicit MinishardIndexKeyValueStore(kvstore::DriverPtr base, Executor executor, std::string key_prefix, const ShardingSpec& sharding_spec) : base_(std::move(base)), executor_(std::move(executor)), key_prefix_(key_prefix), sharding_spec_(sharding_spec) {} Future<ReadResult> Read(Key key, ReadOptions options) override; std::string DescribeKey(std::string_view key) override { ChunkCombinedShardInfo combined_info; if (key.size() != sizeof(combined_info)) { return tensorstore::StrCat("invalid key ", tensorstore::QuoteString(key)); } std::memcpy(&combined_info, key.data(), sizeof(combined_info)); auto split_info = GetSplitShardInfo(sharding_spec_, combined_info); return tensorstore::StrCat( "minishard ", split_info.minishard, " in ", base_->DescribeKey( GetShardKey(sharding_spec_, key_prefix_, split_info.shard))); } void GarbageCollectionVisit( garbage_collection::GarbageCollectionVisitor& visitor) const final { } kvstore::Driver* base() { return base_.get(); } const ShardingSpec& sharding_spec() { return sharding_spec_; } const std::string& key_prefix() const { return key_prefix_; } const Executor& executor() const { return executor_; } kvstore::DriverPtr base_; Executor executor_; std::string key_prefix_; ShardingSpec sharding_spec_; }; namespace { using ShardIndex = uint64_t; using MinishardIndex = uint64_t; class MinishardIndexReadOperationState; using MinishardIndexReadOperationStateBase = internal_kvstore_batch::BatchReadEntry< MinishardIndexKeyValueStore, internal_kvstore_batch::ReadRequest<MinishardIndex>, ShardIndex, kvstore::ReadGenerationConditions>; ; class MinishardIndexReadOperationState : public MinishardIndexReadOperationStateBase, public internal::AtomicReferenceCount<MinishardIndexReadOperationState> { public: explicit MinishardIndexReadOperationState(BatchEntryKey&& batch_entry_key_) : MinishardIndexReadOperationStateBase(std::move(batch_entry_key_)), internal::AtomicReferenceCount<MinishardIndexReadOperationState>( 1) {} private: Batch retry_batch_{no_batch}; void Submit(Batch::View batch) override { const auto& executor = driver().executor(); executor( [this, batch = Batch(batch)] { this->ProcessBatch(std::move(batch)); }); } void ProcessBatch(Batch batch) { internal::IntrusivePtr<MinishardIndexReadOperationState> self( this, internal::adopt_object_ref); retry_batch_ = Batch::New(); auto minishard_fetch_batch = Batch::New(); for (auto& request : request_batch.requests) { ProcessMinishard(batch, request, minishard_fetch_batch); } } std::string ShardKey() { const auto& sharding_spec = driver().sharding_spec(); return GetShardKey(sharding_spec, driver().key_prefix(), std::get<ShardIndex>(batch_entry_key)); } void ProcessMinishard(Batch::View batch, Request& request, Batch minishard_fetch_batch) { kvstore::ReadOptions kvstore_read_options; kvstore_read_options.generation_conditions = std::get<kvstore::ReadGenerationConditions>(this->batch_entry_key); kvstore_read_options.staleness_bound = this->request_batch.staleness_bound; auto key = std::get<MinishardIndex>(request); kvstore_read_options.byte_range = OptionalByteRangeRequest{ static_cast<int64_t>(key * 16), static_cast<int64_t>((key + 1) * 16)}; kvstore_read_options.batch = batch; auto shard_index_read_future = this->driver().base()->Read( this->ShardKey(), std::move(kvstore_read_options)); shard_index_read_future.Force(); shard_index_read_future.ExecuteWhenReady( [self = internal::IntrusivePtr<MinishardIndexReadOperationState>(this), minishard_fetch_batch = std::move(minishard_fetch_batch), &request](ReadyFuture<kvstore::ReadResult> future) mutable { const auto& executor = self->driver().executor(); executor([self = std::move(self), &request, minishard_fetch_batch = std::move(minishard_fetch_batch), future = std::move(future)] { OnShardIndexReady(std::move(self), request, std::move(minishard_fetch_batch), std::move(future.result())); }); }); } static void OnShardIndexReady( internal::IntrusivePtr<MinishardIndexReadOperationState> self, Request& request, Batch minishard_fetch_batch, Result<kvstore::ReadResult>&& result) { auto& byte_range_request = std::get<internal_kvstore_batch::ByteRangeReadRequest>(request); const auto set_error = [&](absl::Status status) { byte_range_request.promise.SetResult(MaybeAnnotateStatus( ConvertInvalidArgumentToFailedPrecondition(std::move(status)), "Error retrieving shard index entry")); }; TENSORSTORE_ASSIGN_OR_RETURN(auto&& read_result, result, set_error(std::move(_))); if ( read_result.aborted() || read_result.not_found()) { byte_range_request.promise.SetResult(std::move(read_result)); return; } TENSORSTORE_ASSIGN_OR_RETURN( auto byte_range, DecodeShardIndexEntry(read_result.value.Flatten()), set_error(std::move(_))); TENSORSTORE_ASSIGN_OR_RETURN( byte_range, GetAbsoluteShardByteRange(byte_range, self->driver().sharding_spec()), set_error(std::move(_))); if (byte_range.size() == 0) { read_result.value.Clear(); read_result.state = kvstore::ReadResult::kMissing; byte_range_request.promise.SetResult(std::move(read_result)); return; } kvstore::ReadOptions kvstore_read_options; kvstore_read_options.generation_conditions.if_equal = std::move(read_result.stamp.generation); kvstore_read_options.staleness_bound = self->request_batch.staleness_bound; kvstore_read_options.byte_range = byte_range; kvstore_read_options.batch = std::move(minishard_fetch_batch); auto read_future = self->driver().base()->Read( self->ShardKey(), std::move(kvstore_read_options)); read_future.Force(); read_future.ExecuteWhenReady( [self = std::move(self), &request](ReadyFuture<kvstore::ReadResult> future) mutable { const auto& executor = self->driver().executor(); executor([self = std::move(self), &request, future = std::move(future)]() mutable { self->OnMinishardIndexReadReady(request, std::move(future.result())); }); }); } void OnMinishardIndexReadReady(Request& request, Result<kvstore::ReadResult>&& result) { auto& byte_range_request = std::get<internal_kvstore_batch::ByteRangeReadRequest>(request); TENSORSTORE_ASSIGN_OR_RETURN( auto&& read_result, result, static_cast<void>(byte_range_request.promise.SetResult( internal::ConvertInvalidArgumentToFailedPrecondition( std::move(_))))); if (read_result.aborted()) { MakeRequest<MinishardIndexReadOperationState>( driver(), std::get<ShardIndex>(batch_entry_key), kvstore::ReadGenerationConditions( std::get<kvstore::ReadGenerationConditions>(batch_entry_key)), retry_batch_, read_result.stamp.time, std::move(request)); return; } byte_range_request.promise.SetResult(std::move(read_result)); } }; } Future<kvstore::ReadResult> MinishardIndexKeyValueStore::Read( Key key, ReadOptions options) { ChunkCombinedShardInfo combined_info; if (key.size() != sizeof(combined_info)) { return absl::InvalidArgumentError("Key does not specify a minishard"); } std::memcpy(&combined_info, key.data(), sizeof(combined_info)); auto split_info = GetSplitShardInfo(sharding_spec_, combined_info); if (options.byte_range != OptionalByteRangeRequest()) { return absl::InvalidArgumentError("Byte ranges not supported"); } auto [promise, future] = PromiseFuturePair<ReadResult>::Make(); MinishardIndexReadOperationState::MakeRequest< MinishardIndexReadOperationState>( *this, split_info.shard, std::move(options.generation_conditions), options.batch, options.staleness_bound, MinishardIndexReadOperationState::Request{{std::move(promise)}, split_info.minishard}); return std::move(future); } class MinishardIndexCache : public internal::KvsBackedCache<MinishardIndexCache, internal::AsyncCache> { using Base = internal::KvsBackedCache<MinishardIndexCache, internal::AsyncCache>; public: using ReadData = std::vector<MinishardIndexEntry>; class Entry : public Base::Entry { public: using OwningCache = MinishardIndexCache; ChunkSplitShardInfo shard_info() { ChunkCombinedShardInfo combined_info; assert(this->key().size() == sizeof(combined_info)); std::memcpy(&combined_info, this->key().data(), sizeof(combined_info)); return GetSplitShardInfo(GetOwningCache(*this).sharding_spec(), combined_info); } size_t ComputeReadDataSizeInBytes(const void* read_data) override { return internal::EstimateHeapUsage( *static_cast<const ReadData*>(read_data)); } void DoDecode(std::optional<absl::Cord> value, DecodeReceiver receiver) override { GetOwningCache(*this).executor()( [this, value = std::move(value), receiver = std::move(receiver)]() mutable { std::shared_ptr<ReadData> read_data; if (value) { if (auto result = DecodeMinishardIndexAndAdjustByteRanges( *value, GetOwningCache(*this).sharding_spec()); result.ok()) { read_data = std::make_shared<ReadData>(*std::move(result)); } else { execution::set_error(receiver, ConvertInvalidArgumentToFailedPrecondition( std::move(result).status())); return; } } execution::set_value(receiver, std::move(read_data)); }); } }; Entry* DoAllocateEntry() final { return new Entry; } size_t DoGetSizeofEntry() final { return sizeof(Entry); } TransactionNode* DoAllocateTransactionNode(AsyncCache::Entry& entry) final { return new TransactionNode(static_cast<Entry&>(entry)); } explicit MinishardIndexCache(kvstore::DriverPtr base_kvstore, Executor executor, std::string key_prefix, const ShardingSpec& sharding_spec) : Base(kvstore::DriverPtr(new MinishardIndexKeyValueStore( std::move(base_kvstore), executor, std::move(key_prefix), sharding_spec))) {} MinishardIndexKeyValueStore* kvstore_driver() { return static_cast<MinishardIndexKeyValueStore*>( this->Base::kvstore_driver()); } const ShardingSpec& sharding_spec() { return kvstore_driver()->sharding_spec(); } kvstore::Driver* base_kvstore_driver() { return kvstore_driver()->base(); } const Executor& executor() { return kvstore_driver()->executor(); } const std::string& key_prefix() { return kvstore_driver()->key_prefix(); } }; MinishardAndChunkId GetMinishardAndChunkId(std::string_view key) { assert(key.size() == 16); return {absl::big_endian::Load64(key.data()), {absl::big_endian::Load64(key.data() + 8)}}; } class ShardedKeyValueStoreWriteCache : public internal::KvsBackedCache<ShardedKeyValueStoreWriteCache, internal::AsyncCache> { using Base = internal::KvsBackedCache<ShardedKeyValueStoreWriteCache, internal::AsyncCache>; public: using ReadData = EncodedChunks; static std::string ShardToKey(ShardIndex shard) { std::string key; key.resize(sizeof(ShardIndex)); absl::big_endian::Store64(key.data(), shard); return key; } static ShardIndex KeyToShard(std::string_view key) { assert(key.size() == sizeof(ShardIndex)); return absl::big_endian::Load64(key.data()); } class Entry : public Base::Entry { public: using OwningCache = ShardedKeyValueStoreWriteCache; ShardIndex shard() { return KeyToShard(key()); } size_t ComputeReadDataSizeInBytes(const void* data) override { return internal::EstimateHeapUsage(*static_cast<const ReadData*>(data)); } void DoDecode(std::optional<absl::Cord> value, DecodeReceiver receiver) override { GetOwningCache(*this).executor()( [this, value = std::move(value), receiver = std::move(receiver)]() mutable { EncodedChunks chunks; if (value) { if (auto result = SplitShard(GetOwningCache(*this).sharding_spec(), *value); result.ok()) { chunks = *std::move(result); } else { execution::set_error(receiver, ConvertInvalidArgumentToFailedPrecondition( std::move(result).status())); return; } } execution::set_value( receiver, std::make_shared<EncodedChunks>(std::move(chunks))); }); } void DoEncode(std::shared_ptr<const EncodedChunks> data, EncodeReceiver receiver) override { execution::set_value( receiver, EncodeShard(GetOwningCache(*this).sharding_spec(), *data)); } std::string GetKeyValueStoreKey() override { auto& cache = GetOwningCache(*this); return GetShardKey(cache.sharding_spec(), cache.key_prefix(), this->shard()); } }; class TransactionNode : public Base::TransactionNode, public internal_kvstore::AtomicMultiPhaseMutation { public: using OwningCache = ShardedKeyValueStoreWriteCache; using Base::TransactionNode::TransactionNode; absl::Mutex& mutex() override { return this->mutex_; } void PhaseCommitDone(size_t next_phase) override {} internal::TransactionState::Node& GetTransactionNode() override { return *this; } void Abort() override { this->AbortRemainingPhases(); Base::TransactionNode::Abort(); } std::string DescribeKey(std::string_view key) override { auto& entry = GetOwningEntry(*this); auto& cache = GetOwningCache(entry); auto minishard_and_chunk_id = GetMinishardAndChunkId(key); return tensorstore::StrCat( "chunk ", minishard_and_chunk_id.chunk_id.value, " in minishard ", minishard_and_chunk_id.minishard, " in ", cache.kvstore_driver()->DescribeKey(entry.GetKeyValueStoreKey())); } void DoApply(ApplyOptions options, ApplyReceiver receiver) override; void AllEntriesDone( internal_kvstore::SinglePhaseMutation& single_phase_mutation) override; void RecordEntryWritebackError( internal_kvstore::ReadModifyWriteEntry& entry, absl::Status error) override { absl::MutexLock lock(&mutex_); if (apply_status_.ok()) { apply_status_ = std::move(error); } } void Revoke() override { Base::TransactionNode::Revoke(); { UniqueWriterLock(*this); } this->RevokeAllEntries(); } void WritebackSuccess(ReadState&& read_state) override; void WritebackError() override; void InvalidateReadState() override; bool MultiPhaseReadsCommitted() override { return this->reads_committed_; } void Read( internal_kvstore::ReadModifyWriteEntry& entry, kvstore::ReadModifyWriteTarget::TransactionalReadOptions&& options, kvstore::ReadModifyWriteTarget::ReadReceiver&& receiver) override { this->AsyncCache::TransactionNode::Read({options.staleness_bound}) .ExecuteWhenReady(WithExecutor( GetOwningCache(*this).executor(), [&entry, if_not_equal = std::move(options.generation_conditions.if_not_equal), receiver = std::move(receiver)]( ReadyFuture<const void> future) mutable { if (!future.result().ok()) { execution::set_error(receiver, future.result().status()); return; } execution::submit(HandleShardReadSuccess(entry, if_not_equal), receiver); })); } static Result<kvstore::ReadResult> HandleShardReadSuccess( internal_kvstore::ReadModifyWriteEntry& entry, const StorageGeneration& if_not_equal) { auto& self = static_cast<TransactionNode&>(entry.multi_phase()); TimestampedStorageGeneration stamp; std::shared_ptr<const EncodedChunks> encoded_chunks; { AsyncCache::ReadLock<EncodedChunks> lock{self}; stamp = lock.stamp(); encoded_chunks = lock.shared_data(); } if (!StorageGeneration::IsUnknown(stamp.generation) && stamp.generation == if_not_equal) { return kvstore::ReadResult::Unspecified(std::move(stamp)); } if (StorageGeneration::IsDirty(stamp.generation)) { stamp.generation = StorageGeneration::AddLayer(std::move(stamp.generation)); } auto* chunk = FindChunk(*encoded_chunks, GetMinishardAndChunkId(entry.key_)); if (!chunk) { return kvstore::ReadResult::Missing(std::move(stamp)); } else { TENSORSTORE_ASSIGN_OR_RETURN( absl::Cord value, DecodeData(chunk->encoded_data, GetOwningCache(self).sharding_spec().data_encoding)); return kvstore::ReadResult::Value(std::move(value), std::move(stamp)); } } void Writeback(internal_kvstore::ReadModifyWriteEntry& entry, internal_kvstore::ReadModifyWriteEntry& source_entry, kvstore::ReadResult&& read_result) override { auto& value = read_result.value; if (read_result.state == kvstore::ReadResult::kValue) { value = EncodeData(value, GetOwningCache(*this).sharding_spec().data_encoding); } internal_kvstore::AtomicMultiPhaseMutation::Writeback( entry, entry, std::move(read_result)); } ApplyReceiver apply_receiver_; ApplyOptions apply_options_; absl::Status apply_status_; }; Entry* DoAllocateEntry() final { return new Entry; } size_t DoGetSizeofEntry() final { return sizeof(Entry); } TransactionNode* DoAllocateTransactionNode(AsyncCache::Entry& entry) final { return new TransactionNode(static_cast<Entry&>(entry)); } explicit ShardedKeyValueStoreWriteCache( internal::CachePtr<MinishardIndexCache> minishard_index_cache, GetMaxChunksPerShardFunction get_max_chunks_per_shard) : Base(kvstore::DriverPtr(minishard_index_cache->base_kvstore_driver())), minishard_index_cache_(std::move(minishard_index_cache)), get_max_chunks_per_shard_(std::move(get_max_chunks_per_shard)) {} const ShardingSpec& sharding_spec() const { return minishard_index_cache()->sharding_spec(); } const std::string& key_prefix() const { return minishard_index_cache()->key_prefix(); } const internal::CachePtr<MinishardIndexCache>& minishard_index_cache() const { return minishard_index_cache_; } const Executor& executor() { return minishard_index_cache()->executor(); } internal::CachePtr<MinishardIndexCache> minishard_index_cache_; GetMaxChunksPerShardFunction get_max_chunks_per_shard_; }; void ShardedKeyValueStoreWriteCache::TransactionNode::InvalidateReadState() { Base::TransactionNode::InvalidateReadState(); internal_kvstore::InvalidateReadState(phases_); } void ShardedKeyValueStoreWriteCache::TransactionNode::WritebackSuccess( ReadState&& read_state) { for (auto& entry : phases_.entries_) { internal_kvstore::WritebackSuccess( static_cast<internal_kvstore::ReadModifyWriteEntry&>(entry), read_state.stamp); } internal_kvstore::DestroyPhaseEntries(phases_); Base::TransactionNode::WritebackSuccess(std::move(read_state)); } void ShardedKeyValueStoreWriteCache::TransactionNode::WritebackError() { internal_kvstore::WritebackError(phases_); internal_kvstore::DestroyPhaseEntries(phases_); Base::TransactionNode::WritebackError(); } namespace { void StartApply(ShardedKeyValueStoreWriteCache::TransactionNode& node) { node.RetryAtomicWriteback(node.apply_options_.staleness_bound); } void MergeForWriteback(ShardedKeyValueStoreWriteCache::TransactionNode& node, bool conditional) { TimestampedStorageGeneration stamp; std::shared_ptr<const EncodedChunks> shared_existing_chunks; span<const EncodedChunk> existing_chunks; if (conditional) { auto lock = internal::AsyncCache::ReadLock<EncodedChunks>{node}; stamp = lock.stamp(); shared_existing_chunks = lock.shared_data(); existing_chunks = *shared_existing_chunks; } else { stamp = TimestampedStorageGeneration::Unconditional(); } std::vector<EncodedChunk> chunks; size_t existing_index = 0; bool mismatch = false; bool changed = false; for (auto& entry : node.phases_.entries_) { auto& buffered_entry = static_cast<internal_kvstore::AtomicMultiPhaseMutation:: BufferedReadModifyWriteEntry&>(entry); auto& entry_stamp = buffered_entry.stamp(); if (StorageGeneration::IsConditional(entry_stamp.generation) && StorageGeneration::Clean(entry_stamp.generation) != StorageGeneration::Clean(stamp.generation)) { mismatch = true; break; } if (buffered_entry.value_state_ == kvstore::ReadResult::kUnspecified || !StorageGeneration::IsInnerLayerDirty(entry_stamp.generation)) { continue; } auto minishard_and_chunk_id = GetMinishardAndChunkId(buffered_entry.key_); while (existing_index < static_cast<size_t>(existing_chunks.size())) { auto& existing_chunk = existing_chunks[existing_index]; if (existing_chunk.minishard_and_chunk_id < minishard_and_chunk_id) { chunks.push_back(existing_chunk); ++existing_index; } else if (existing_chunk.minishard_and_chunk_id == minishard_and_chunk_id) { changed = true; ++existing_index; break; } else { break; } } if (buffered_entry.value_state_ == kvstore::ReadResult::kValue) { chunks.push_back( EncodedChunk{minishard_and_chunk_id, buffered_entry.value_}); changed = true; } } if (mismatch) { node.apply_options_.staleness_bound = absl::Now(); StartApply(node); return; } chunks.insert(chunks.end(), existing_chunks.begin() + existing_index, existing_chunks.end()); internal::AsyncCache::ReadState update; update.stamp = std::move(stamp); if (changed) { update.stamp.generation.MarkDirty(); } update.data = std::make_shared<EncodedChunks>(std::move(chunks)); execution::set_value(std::exchange(node.apply_receiver_, {}), std::move(update)); } } void ShardedKeyValueStoreWriteCache::TransactionNode::DoApply( ApplyOptions options, ApplyReceiver receiver) { apply_receiver_ = std::move(receiver); apply_options_ = options; apply_status_ = absl::Status(); GetOwningCache(*this).executor()([this] { StartApply(*this); }); } void ShardedKeyValueStoreWriteCache::TransactionNode::AllEntriesDone( internal_kvstore::SinglePhaseMutation& single_phase_mutation) { if (!apply_status_.ok()) { execution::set_error(std::exchange(apply_receiver_, {}), std::exchange(apply_status_, {})); return; } auto& self = *this; GetOwningCache(*this).executor()([&self] { TimestampedStorageGeneration stamp; bool mismatch = false; bool modified = false; size_t num_chunks = 0; for (auto& entry : self.phases_.entries_) { auto& buffered_entry = static_cast<AtomicMultiPhaseMutation::BufferedReadModifyWriteEntry&>( entry); if (buffered_entry.value_state_ != kvstore::ReadResult::kUnspecified) { modified = true; ++num_chunks; } auto& entry_stamp = buffered_entry.stamp(); if (StorageGeneration::IsConditional(entry_stamp.generation)) { if (!StorageGeneration::IsUnknown(stamp.generation) && StorageGeneration::Clean(stamp.generation) != StorageGeneration::Clean(entry_stamp.generation)) { mismatch = true; break; } else { stamp = entry_stamp; } } } if (mismatch) { self.apply_options_.staleness_bound = absl::Now(); StartApply(self); return; } auto& cache = GetOwningCache(self); if (!modified && StorageGeneration::IsUnknown(stamp.generation) && self.apply_options_.apply_mode != ApplyOptions::ApplyMode::kSpecifyUnchanged) { internal::AsyncCache::ReadState update; update.stamp = TimestampedStorageGeneration::Unconditional(); execution::set_value(std::exchange(self.apply_receiver_, {}), std::move(update)); return; } if (!StorageGeneration::IsUnknown(stamp.generation) || !cache.get_max_chunks_per_shard_ || cache.get_max_chunks_per_shard_(GetOwningEntry(self).shard()) != num_chunks) { self.internal::AsyncCache::TransactionNode::Read( {self.apply_options_.staleness_bound}) .ExecuteWhenReady([&self](ReadyFuture<const void> future) { if (!future.result().ok()) { execution::set_error(std::exchange(self.apply_receiver_, {}), future.result().status()); return; } GetOwningCache(self).executor()( [&self] { MergeForWriteback(self, true); }); }); return; } MergeForWriteback(self, false); }); } Result<ChunkId> KeyToChunkIdOrError(std::string_view key) { if (auto chunk_id = KeyToChunkId(key)) { return *chunk_id; } return absl::InvalidArgumentError( tensorstore::StrCat("Invalid key: ", tensorstore::QuoteString(key))); } } struct ShardedKeyValueStoreSpecData { Context::Resource<internal::CachePoolResource> cache_pool; Context::Resource<internal::DataCopyConcurrencyResource> data_copy_concurrency; kvstore::Spec base; ShardingSpec metadata; TENSORSTORE_DECLARE_JSON_DEFAULT_BINDER(ShardedKeyValueStoreSpecData, internal_json_binding::NoOptions, IncludeDefaults, ::nlohmann::json::object_t) constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.cache_pool, x.data_copy_concurrency, x.base, x.metadata); }; }; namespace jb = ::tensorstore::internal_json_binding; TENSORSTORE_DEFINE_JSON_DEFAULT_BINDER( ShardedKeyValueStoreSpecData, jb::Object( jb::Member("base", jb::Projection<&ShardedKeyValueStoreSpecData::base>()), jb::Initialize([](auto* obj) { internal::EnsureDirectoryPath(obj->base.path); return absl::OkStatus(); }), jb::Member("metadata", jb::Projection<&ShardedKeyValueStoreSpecData::metadata>( jb::DefaultInitializedValue())), jb::Member(internal::CachePoolResource::id, jb::Projection<&ShardedKeyValueStoreSpecData::cache_pool>()), jb::Member( internal::DataCopyConcurrencyResource::id, jb::Projection< &ShardedKeyValueStoreSpecData::data_copy_concurrency>()))); class ShardedKeyValueStoreSpec : public internal_kvstore::RegisteredDriverSpec< ShardedKeyValueStoreSpec, ShardedKeyValueStoreSpecData> { public: static constexpr char id[] = "neuroglancer_uint64_sharded"; Future<kvstore::DriverPtr> DoOpen() const override; Result<kvstore::Spec> GetBase(std::string_view path) const override { return data_.base; } }; class ShardedKeyValueStore : public internal_kvstore::RegisteredDriver<ShardedKeyValueStore, ShardedKeyValueStoreSpec> { public: explicit ShardedKeyValueStore( kvstore::DriverPtr base_kvstore, Executor executor, std::string key_prefix, const ShardingSpec& sharding_spec, internal::CachePool::WeakPtr cache_pool, GetMaxChunksPerShardFunction get_max_chunks_per_shard = {}) : write_cache_(internal::GetCache<ShardedKeyValueStoreWriteCache>( cache_pool.get(), "", [&] { return std::make_unique<ShardedKeyValueStoreWriteCache>( internal::GetCache<MinishardIndexCache>( cache_pool.get(), "", [&] { return std::make_unique<MinishardIndexCache>( std::move(base_kvstore), std::move(executor), std::move(key_prefix), sharding_spec); }), std::move(get_max_chunks_per_shard)); })), is_raw_encoding_(sharding_spec.data_encoding == ShardingSpec::DataEncoding::raw) {} Future<ReadResult> Read(Key key, ReadOptions options) override; void ListImpl(ListOptions options, ListReceiver receiver) override { struct State { ListReceiver receiver_; Promise<void> promise_; Future<void> future_; ListOptions options_; explicit State(ListReceiver&& receiver, ListOptions&& options) : receiver_(std::move(receiver)), options_(std::move(options)) { auto [promise, future] = PromiseFuturePair<void>::Make(MakeResult()); this->promise_ = std::move(promise); this->future_ = std::move(future); future_.Force(); execution::set_starting(receiver_, [promise = promise_] { promise.SetResult(absl::CancelledError("")); }); } ~State() { auto& r = promise_.raw_result(); if (r.ok()) { execution::set_done(receiver_); } else { execution::set_error(receiver_, r.status()); } execution::set_stopping(receiver_); } }; auto state = std::make_shared<State>(std::move(receiver), std::move(options)); ShardIndex num_shards = ShardIndex{1} << sharding_spec().shard_bits; for (ShardIndex shard = 0; shard < num_shards; ++shard) { auto entry = GetCacheEntry( write_cache_, ShardedKeyValueStoreWriteCache::ShardToKey(shard)); LinkValue( [state, entry, is_raw_encoding = is_raw_encoding_]( Promise<void> promise, ReadyFuture<const void> future) { auto chunks = internal::AsyncCache::ReadLock<EncodedChunks>(*entry) .shared_data(); if (!chunks) return; for (auto& chunk : *chunks) { auto key = ChunkIdToKey(chunk.minishard_and_chunk_id.chunk_id); if (!Contains(state->options_.range, key)) continue; key.erase(0, state->options_.strip_prefix_length); execution::set_value( state->receiver_, ListEntry{ std::move(key), is_raw_encoding ? ListEntry::checked_size(chunk.encoded_data.size()) : -1, }); } }, state->promise_, entry->Read({absl::InfiniteFuture()})); } } Future<TimestampedStorageGeneration> Write(Key key, std::optional<Value> value, WriteOptions options) override { return internal_kvstore::WriteViaTransaction( this, std::move(key), std::move(value), std::move(options)); } absl::Status ReadModifyWrite(internal::OpenTransactionPtr& transaction, size_t& phase, Key key, ReadModifyWriteSource& source) override { TENSORSTORE_ASSIGN_OR_RETURN(ChunkId chunk_id, KeyToChunkIdOrError(key)); const auto& sharding_spec = this->sharding_spec(); const auto shard_info = GetSplitShardInfo( sharding_spec, GetChunkShardInfo(sharding_spec, chunk_id)); const ShardIndex shard = shard_info.shard; auto entry = GetCacheEntry( write_cache_, ShardedKeyValueStoreWriteCache::ShardToKey(shard)); std::string key_within_shard; key_within_shard.resize(16); absl::big_endian::Store64(key_within_shard.data(), shard_info.minishard); absl::big_endian::Store64(key_within_shard.data() + 8, chunk_id.value); TENSORSTORE_ASSIGN_OR_RETURN( auto node, GetWriteLockedTransactionNode(*entry, transaction)); node->ReadModifyWrite(phase, std::move(key_within_shard), source); if (!transaction) { transaction.reset(node.unlock()->transaction()); } return absl::OkStatus(); } absl::Status TransactionalDeleteRange( const internal::OpenTransactionPtr& transaction, KeyRange range) override { return absl::UnimplementedError("DeleteRange not supported"); } std::string DescribeKey(std::string_view key) override { auto chunk_id_opt = KeyToChunkId(key); if (!chunk_id_opt) { return tensorstore::StrCat("invalid key ", tensorstore::QuoteString(key)); } const auto& sharding_spec = this->sharding_spec(); const auto shard_info = GetSplitShardInfo( sharding_spec, GetChunkShardInfo(sharding_spec, *chunk_id_opt)); return tensorstore::StrCat( "chunk ", chunk_id_opt->value, " in minishard ", shard_info.minishard, " in ", base_kvstore_driver()->DescribeKey( GetShardKey(sharding_spec, key_prefix(), shard_info.shard))); } SupportedFeatures GetSupportedFeatures( const KeyRange& key_range) const final { return base_kvstore_driver()->GetSupportedFeatures( KeyRange::Prefix(key_prefix())); } Result<KvStore> GetBase(std::string_view path, const Transaction& transaction) const override { return KvStore(kvstore::DriverPtr(base_kvstore_driver()), key_prefix(), transaction); } kvstore::Driver* base_kvstore_driver() const { return minishard_index_cache()->base_kvstore_driver(); } const ShardingSpec& sharding_spec() const { return minishard_index_cache()->sharding_spec(); } const Executor& executor() const { return minishard_index_cache()->executor(); } const std::string& key_prefix() const { return minishard_index_cache()->key_prefix(); } const internal::CachePtr<MinishardIndexCache>& minishard_index_cache() const { return write_cache_->minishard_index_cache_; } absl::Status GetBoundSpecData(ShardedKeyValueStoreSpecData& spec) const; internal::CachePtr<ShardedKeyValueStoreWriteCache> write_cache_; Context::Resource<internal::CachePoolResource> cache_pool_resource_; Context::Resource<internal::DataCopyConcurrencyResource> data_copy_concurrency_resource_; bool is_raw_encoding_ = false; }; namespace { class ReadOperationState; using ReadOperationStateBase = internal_kvstore_batch::BatchReadEntry< ShardedKeyValueStore, internal_kvstore_batch::ReadRequest<MinishardAndChunkId, kvstore::ReadGenerationConditions>, ShardIndex>; class ReadOperationState : public ReadOperationStateBase, public internal::AtomicReferenceCount<ReadOperationState> { public: explicit ReadOperationState(BatchEntryKey&& batch_entry_key_) : ReadOperationStateBase(std::move(batch_entry_key_)), internal::AtomicReferenceCount<ReadOperationState>( 1) {} private: Batch retry_batch_{no_batch}; void Submit(Batch::View batch) override { const auto& executor = driver().executor(); executor( [this, batch = Batch(batch)] { this->ProcessBatch(std::move(batch)); }); } void ProcessBatch(Batch batch) { internal::IntrusivePtr<ReadOperationState> self(this, internal::adopt_object_ref); span<Request> requests = request_batch.requests; std::sort(request_batch.requests.begin(), request_batch.requests.end(), [](const Request& a, const Request& b) { return std::get<MinishardAndChunkId>(a) < std::get<MinishardAndChunkId>(b); }); if (ShouldReadEntireShard()) { ReadEntireShard(std::move(self), std::move(batch)); return; } retry_batch_ = Batch::New(); Batch data_fetch_batch{no_batch}; for (size_t minishard_start_i = 0; minishard_start_i < requests.size();) { size_t minishard_end_i = minishard_start_i + 1; auto minishard = std::get<MinishardAndChunkId>(requests[minishard_start_i]).minishard; while ( minishard_end_i < requests.size() && std::get<MinishardAndChunkId>(requests[minishard_end_i]).minishard == minishard) { ++minishard_end_i; } ProcessMinishard(batch, minishard, requests.subspan(minishard_start_i, minishard_end_i - minishard_start_i), data_fetch_batch); minishard_start_i = minishard_end_i; } } bool ShouldReadEntireShard() { const auto& get_max_chunks_per_shard = driver().write_cache_->get_max_chunks_per_shard_; if (!get_max_chunks_per_shard) return false; uint64_t max_chunks = get_max_chunks_per_shard(std::get<ShardIndex>(batch_entry_key)); if (request_batch.requests.size() < max_chunks) { return false; } const auto& first_request = request_batch.requests[0]; uint64_t num_chunks_covered = 0; std::optional<uint64_t> prev_chunk_covered; for (const auto& request : request_batch.requests) { if (std::get<kvstore::ReadGenerationConditions>(request) != std::get<kvstore::ReadGenerationConditions>(first_request)) { return false; } if (std::get<internal_kvstore_batch::ByteRangeReadRequest>(request) .byte_range.IsFull()) { uint64_t chunk_id = std::get<MinishardAndChunkId>(request).chunk_id.value; if (chunk_id != prev_chunk_covered) { prev_chunk_covered = chunk_id; ++num_chunks_covered; } } } return (num_chunks_covered == max_chunks); } std::string ShardKey() { const auto& sharding_spec = driver().sharding_spec(); return GetShardKey(sharding_spec, driver().key_prefix(), std::get<ShardIndex>(batch_entry_key)); } static void ReadEntireShard(internal::IntrusivePtr<ReadOperationState> self, Batch batch) { auto& first_request = self->request_batch.requests[0]; kvstore::ReadOptions read_options; read_options.batch = std::move(batch); read_options.generation_conditions = std::move(std::get<kvstore::ReadGenerationConditions>(first_request)); read_options.staleness_bound = self->request_batch.staleness_bound; auto& driver = self->driver(); auto read_future = driver.base_kvstore_driver()->Read( GetShardKey(driver.sharding_spec(), driver.key_prefix(), std::get<ShardIndex>(self->batch_entry_key)), std::move(read_options)); read_future.Force(); std::move(read_future) .ExecuteWhenReady([self = std::move(self)]( ReadyFuture<kvstore::ReadResult> future) mutable { const auto& executor = self->driver().executor(); executor([self = std::move(self), future = std::move(future)] { OnEntireShardReady(std::move(self), std::move(future.result())); }); }); } static void OnEntireShardReady( internal::IntrusivePtr<ReadOperationState> self, Result<kvstore::ReadResult>&& result) { if (!result.ok() || !result->has_value()) { internal_kvstore_batch::SetCommonResult(self->request_batch.requests, std::move(result)); return; } auto& read_result = *result; const auto& sharding_spec = self->driver().sharding_spec(); TENSORSTORE_ASSIGN_OR_RETURN(auto encoded_chunks, SplitShard(sharding_spec, read_result.value), internal_kvstore_batch::SetCommonResult( self->request_batch.requests, _)); span<Request> requests = self->request_batch.requests; size_t request_i = 0; const auto complete_not_found = [&](Request& request) { std::get<internal_kvstore_batch::ByteRangeReadRequest>(request) .promise.SetResult(kvstore::ReadResult::Missing(read_result.stamp)); }; for (const auto& encoded_chunk : encoded_chunks) { auto decoded_data_result = DecodeData(encoded_chunk.encoded_data, sharding_spec.data_encoding); const auto complete_request = [&](Request& request) -> Result<kvstore::ReadResult> { TENSORSTORE_ASSIGN_OR_RETURN( const auto& decoded_data, decoded_data_result, internal::ConvertInvalidArgumentToFailedPrecondition(_)); TENSORSTORE_ASSIGN_OR_RETURN( auto validated_byte_range, std::get<internal_kvstore_batch::ByteRangeReadRequest>(request) .byte_range.Validate(decoded_data.size())); kvstore::ReadResult request_read_result; request_read_result.stamp = read_result.stamp; request_read_result.state = kvstore::ReadResult::kValue; request_read_result.value = internal::GetSubCord(decoded_data, validated_byte_range); return request_read_result; }; auto decoded_key = encoded_chunk.minishard_and_chunk_id; for (; request_i < requests.size(); ++request_i) { auto& request = requests[request_i]; auto request_key = std::get<MinishardAndChunkId>(request); if (request_key < decoded_key) { complete_not_found(request); } else if (request_key == decoded_key) { std::get<internal_kvstore_batch::ByteRangeReadRequest>(request) .promise.SetResult(complete_request(request)); } else { break; } } } for (; request_i < requests.size(); ++request_i) { complete_not_found(requests[request_i]); } } void ProcessMinishard(Batch::View batch, MinishardIndex minishard, span<Request> requests, Batch& data_fetch_batch) { ChunkSplitShardInfo split_shard_info; split_shard_info.shard = std::get<ShardIndex>(batch_entry_key); split_shard_info.minishard = minishard; auto shard_info = GetCombinedShardInfo(driver().sharding_spec(), split_shard_info); auto minishard_index_cache_entry = GetCacheEntry( driver().minishard_index_cache(), std::string_view(reinterpret_cast<const char*>(&shard_info), sizeof(shard_info))); auto minishard_index_read_future = minishard_index_cache_entry->Read( {request_batch.staleness_bound, batch}); Batch successor_batch{no_batch}; if (batch) { if (minishard_index_read_future.ready()) { successor_batch = batch; } else { if (!data_fetch_batch) { data_fetch_batch = Batch::New(); } successor_batch = data_fetch_batch; } } const auto& executor = driver().executor(); std::move(minishard_index_read_future) .ExecuteWhenReady(WithExecutor( executor, [self = internal::IntrusivePtr<ReadOperationState>(this), requests, minishard_index_cache_entry = std::move(minishard_index_cache_entry), successor_batch = std::move(successor_batch)]( ReadyFuture<const void> future) mutable { const auto& status = future.status(); if (!status.ok()) { internal_kvstore_batch::SetCommonResult<Request>(requests, {status}); return; } OnMinishardIndexReady(std::move(self), requests, std::move(successor_batch), std::move(minishard_index_cache_entry)); })); } static void OnMinishardIndexReady( internal::IntrusivePtr<ReadOperationState> self, span<Request> requests, Batch successor_batch, internal::PinnedCacheEntry<MinishardIndexCache> minishard_index_cache_entry) { std::shared_ptr<const std::vector<MinishardIndexEntry>> minishard_index; TimestampedStorageGeneration stamp; { auto lock = internal::AsyncCache::ReadLock<MinishardIndexCache::ReadData>( *minishard_index_cache_entry); stamp = lock.stamp(); minishard_index = lock.shared_data(); } assert(!StorageGeneration::IsUnknown(stamp.generation)); if (!minishard_index) { internal_kvstore_batch::SetCommonResult( requests, kvstore::ReadResult::Missing(std::move(stamp))); return; } const auto& sharding_spec = self->driver().sharding_spec(); const auto process_chunk = [&](ChunkId chunk_id, span<Request> chunk_requests) { auto byte_range = FindChunkInMinishard(*minishard_index, chunk_id); if (!byte_range) { internal_kvstore_batch::SetCommonResult( chunk_requests, kvstore::ReadResult::Missing(stamp)); return; } int64_t size = byte_range->size(); chunk_requests = chunk_requests.first( std::remove_if( chunk_requests.begin(), chunk_requests.end(), [&](Request& request) { return !internal_kvstore_batch::ValidateRequestGeneration( request, stamp); }) - chunk_requests.begin()); if (sharding_spec.data_encoding == ShardingSpec::DataEncoding::raw) { const auto process_request = [&](Request& request) { auto& byte_range_request = std::get<internal_kvstore_batch::ByteRangeReadRequest>(request); TENSORSTORE_ASSIGN_OR_RETURN( auto sub_byte_range, byte_range_request.byte_range.Validate(size), static_cast<void>(byte_range_request.promise.SetResult(_))); kvstore::ReadOptions kvstore_read_options; kvstore_read_options.generation_conditions.if_equal = stamp.generation; kvstore_read_options.staleness_bound = self->request_batch.staleness_bound; kvstore_read_options.byte_range = ByteRange{ byte_range->inclusive_min + sub_byte_range.inclusive_min, byte_range->inclusive_min + sub_byte_range.exclusive_max}; kvstore_read_options.batch = successor_batch; auto value_read_future = self->driver().base_kvstore_driver()->Read( self->ShardKey(), std::move(kvstore_read_options)); value_read_future.Force(); std::move(value_read_future) .ExecuteWhenReady([self, &request](ReadyFuture<kvstore::ReadResult> future) mutable { TENSORSTORE_ASSIGN_OR_RETURN( auto&& read_result, std::move(future.result()), static_cast<void>( std::get<internal_kvstore_batch::ByteRangeReadRequest>( request) .promise.SetResult(_))); self->OnRawValueReady(request, std::move(read_result)); }); }; for (auto& request : chunk_requests) { process_request(request); } } else { kvstore::ReadOptions kvstore_read_options; kvstore_read_options.generation_conditions.if_equal = stamp.generation; kvstore_read_options.staleness_bound = self->request_batch.staleness_bound; kvstore_read_options.byte_range = *byte_range; kvstore_read_options.batch = successor_batch; auto value_read_future = self->driver().base_kvstore_driver()->Read( self->ShardKey(), std::move(kvstore_read_options)); value_read_future.Force(); std::move(value_read_future) .ExecuteWhenReady( [self, chunk_requests]( ReadyFuture<kvstore::ReadResult> future) mutable { const auto& executor = self->driver().executor(); executor([self = std::move(self), chunk_requests, future = std::move(future)] { TENSORSTORE_ASSIGN_OR_RETURN( auto&& read_result, std::move(future.result()), internal_kvstore_batch::SetCommonResult(chunk_requests, _)); self->OnEncodedValueReady(chunk_requests, std::move(read_result)); }); }); } }; for (size_t request_i = 0; request_i < requests.size();) { ChunkId chunk_id = std::get<MinishardAndChunkId>(requests[request_i]).chunk_id; size_t end_request_i; for (end_request_i = request_i + 1; end_request_i < requests.size(); ++end_request_i) { if (std::get<MinishardAndChunkId>(requests[end_request_i]).chunk_id != chunk_id) break; } process_chunk(chunk_id, requests.subspan(request_i, end_request_i - request_i)); request_i = end_request_i; } } void OnRawValueReady(Request& request, kvstore::ReadResult&& read_result) { if (read_result.aborted()) { MakeRequest<ReadOperationState>( driver(), std::get<ShardIndex>(batch_entry_key), retry_batch_, read_result.stamp.time, std::move(request)); return; } std::get<internal_kvstore_batch::ByteRangeReadRequest>(request) .promise.SetResult(std::move(read_result)); } void OnEncodedValueReady(span<Request> chunk_requests, kvstore::ReadResult&& read_result) { if (read_result.aborted()) { for (auto& request : chunk_requests) { MakeRequest<ReadOperationState>( driver(), std::get<ShardIndex>(batch_entry_key), retry_batch_, read_result.stamp.time, std::move(request)); } return; } if (!read_result.has_value()) { internal_kvstore_batch::SetCommonResult(chunk_requests, std::move(read_result)); return; } TENSORSTORE_ASSIGN_OR_RETURN( auto decoded_value, DecodeData(read_result.value, driver().sharding_spec().data_encoding), internal_kvstore_batch::SetCommonResult( chunk_requests, internal::ConvertInvalidArgumentToFailedPrecondition(_))); const auto process_request = [&](Request& request) -> Result<kvstore::ReadResult> { auto& byte_range_request = std::get<internal_kvstore_batch::ByteRangeReadRequest>(request); TENSORSTORE_ASSIGN_OR_RETURN( auto byte_range, byte_range_request.byte_range.Validate(decoded_value.size())); return kvstore::ReadResult::Value( internal::GetSubCord(decoded_value, byte_range), read_result.stamp); }; for (auto& request : chunk_requests) { std::get<internal_kvstore_batch::ByteRangeReadRequest>(request) .promise.SetResult(process_request(request)); } } }; } Future<kvstore::ReadResult> ShardedKeyValueStore::Read(Key key, ReadOptions options) { TENSORSTORE_ASSIGN_OR_RETURN(ChunkId chunk_id, KeyToChunkIdOrError(key)); const auto& sharding_spec = this->sharding_spec(); auto shard_info = GetChunkShardInfo(sharding_spec, chunk_id); auto split_shard_info = GetSplitShardInfo(sharding_spec, shard_info); auto [promise, future] = PromiseFuturePair<kvstore::ReadResult>::Make(); ReadOperationState::MakeRequest<ReadOperationState>( *this, split_shard_info.shard, options.batch, options.staleness_bound, ReadOperationState::Request{ {std::move(promise), options.byte_range}, MinishardAndChunkId{split_shard_info.minishard, chunk_id}, std::move(options.generation_conditions)}); return std::move(future); } } namespace garbage_collection { template <> struct GarbageCollection<neuroglancer_uint64_sharded::ShardedKeyValueStore> { static void Visit( GarbageCollectionVisitor& visitor, const neuroglancer_uint64_sharded::ShardedKeyValueStore& value) { garbage_collection::GarbageCollectionVisit(visitor, *value.base_kvstore_driver()); } }; } namespace neuroglancer_uint64_sharded { absl::Status ShardedKeyValueStore::GetBoundSpecData( ShardedKeyValueStoreSpecData& spec) const { TENSORSTORE_ASSIGN_OR_RETURN(spec.base.driver, base_kvstore_driver()->GetBoundSpec()); spec.base.path = key_prefix(); if (!data_copy_concurrency_resource_.has_resource() || !cache_pool_resource_.has_resource()) { return absl::InternalError("JSON representation not supported"); } spec.data_copy_concurrency = data_copy_concurrency_resource_; spec.cache_pool = cache_pool_resource_; spec.metadata = sharding_spec(); return absl::Status(); } Future<kvstore::DriverPtr> ShardedKeyValueStoreSpec::DoOpen() const { return MapFutureValue( InlineExecutor{}, [spec = internal::IntrusivePtr<const ShardedKeyValueStoreSpec>(this)]( kvstore::KvStore& base_kvstore) -> Result<kvstore::DriverPtr> { auto driver = internal::MakeIntrusivePtr<ShardedKeyValueStore>( std::move(base_kvstore.driver), spec->data_.data_copy_concurrency->executor, std::move(base_kvstore.path), spec->data_.metadata, *spec->data_.cache_pool); driver->data_copy_concurrency_resource_ = spec->data_.data_copy_concurrency; driver->cache_pool_resource_ = spec->data_.cache_pool; return driver; }, kvstore::Open(data_.base)); } kvstore::DriverPtr GetShardedKeyValueStore( kvstore::DriverPtr base_kvstore, Executor executor, std::string key_prefix, const ShardingSpec& sharding_spec, internal::CachePool::WeakPtr cache_pool, GetMaxChunksPerShardFunction get_max_chunks_per_shard) { return kvstore::DriverPtr(new ShardedKeyValueStore( std::move(base_kvstore), std::move(executor), std::move(key_prefix), sharding_spec, std::move(cache_pool), std::move(get_max_chunks_per_shard))); } std::string ChunkIdToKey(ChunkId chunk_id) { std::string key; key.resize(sizeof(uint64_t)); absl::big_endian::Store64(key.data(), chunk_id.value); return key; } std::optional<ChunkId> KeyToChunkId(std::string_view key) { if (key.size() != 8) return std::nullopt; return ChunkId{absl::big_endian::Load64(key.data())}; } } } namespace { const tensorstore::internal_kvstore::DriverRegistration< tensorstore::neuroglancer_uint64_sharded::ShardedKeyValueStoreSpec> registration; }
#include "tensorstore/kvstore/neuroglancer_uint64_sharded/neuroglancer_uint64_sharded.h" #include <stddef.h> #include <stdint.h> #include <functional> #include <initializer_list> #include <map> #include <memory> #include <string> #include <string_view> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/random/random.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/batch.h" #include "tensorstore/context.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/cache/kvs_backed_cache_testutil.h" #include "tensorstore/internal/compression/zlib.h" #include "tensorstore/internal/global_initializer.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/testing/scoped_directory.h" #include "tensorstore/internal/thread/thread_pool.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/memory/memory_key_value_store.h" #include "tensorstore/kvstore/mock_kvstore.h" #include "tensorstore/kvstore/neuroglancer_uint64_sharded/uint64_sharded.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/test_matchers.h" #include "tensorstore/kvstore/test_util.h" #include "tensorstore/transaction.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { namespace zlib = ::tensorstore::zlib; namespace kvstore = ::tensorstore::kvstore; using ::tensorstore::Batch; using ::tensorstore::Future; using ::tensorstore::KvStore; using ::tensorstore::MatchesStatus; using ::tensorstore::OptionalByteRangeRequest; using ::tensorstore::Result; using ::tensorstore::StorageGeneration; using ::tensorstore::TimestampedStorageGeneration; using ::tensorstore::Transaction; using ::tensorstore::internal::CachePool; using ::tensorstore::internal::GetCache; using ::tensorstore::internal::KvsBackedTestCache; using ::tensorstore::internal::MatchesKvsReadResult; using ::tensorstore::internal::MatchesKvsReadResultAborted; using ::tensorstore::internal::MatchesKvsReadResultNotFound; using ::tensorstore::internal::MatchesTimestampedStorageGeneration; using ::tensorstore::internal::MockKeyValueStore; using ::tensorstore::internal::UniqueNow; using ::tensorstore::kvstore::ReadResult; using ::tensorstore::neuroglancer_uint64_sharded::ChunkIdToKey; using ::tensorstore::neuroglancer_uint64_sharded::GetShardedKeyValueStore; using ::tensorstore::neuroglancer_uint64_sharded::ShardingSpec; constexpr CachePool::Limits kSmallCacheLimits{10000000}; absl::Cord Bytes(std::initializer_list<unsigned char> x) { return absl::Cord(std::string(x.begin(), x.end())); } std::string GetChunkKey(uint64_t chunk_id) { return ChunkIdToKey({chunk_id}); } class GetUint64Key { public: GetUint64Key(bool sequential) : sequential_(sequential) {} std::string operator()(std::string key) const { auto it = key_to_uint64_.find(key); if (it == key_to_uint64_.end()) { while (true) { auto x = sequential_ ? next_chunk_id_++ : absl::Uniform<uint64_t>(gen_); if (uint64_to_key_.emplace(x, key).second) { it = key_to_uint64_.emplace(key, x).first; break; } } } return GetChunkKey(it->second); } private: bool sequential_; mutable uint64_t next_chunk_id_ = 0; mutable absl::BitGen gen_; mutable absl::flat_hash_map<std::string, uint64_t> key_to_uint64_; mutable absl::flat_hash_map<uint64_t, std::string> uint64_to_key_; }; tensorstore::Executor GetExecutor(std::string_view executor_name) { if (executor_name == "inline") return tensorstore::InlineExecutor{}; return tensorstore::internal::DetachedThreadPool(2); } struct BasicFunctionalityTestOptions { std::string_view executor_name = "thread_pool"; bool sequential_ids = false; std::string_view hash = "identity"; std::string_view data_encoding = "raw"; std::string_view minishard_index_encoding = "raw"; bool all_zero_bits = false; }; void TestReadWriteOps(BasicFunctionalityTestOptions options) { ::nlohmann::json sharding_spec_json{ {"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", options.hash}, {"preshift_bits", options.all_zero_bits ? 0 : 1}, {"minishard_bits", options.all_zero_bits ? 0 : 2}, {"shard_bits", options.all_zero_bits ? 0 : 3}, {"data_encoding", options.data_encoding}, {"minishard_index_encoding", options.minishard_index_encoding}}; auto cache_pool = CachePool::Make(kSmallCacheLimits); auto base_kv_store = tensorstore::GetMemoryKeyValueStore(); auto sharding_spec = ShardingSpec::FromJson(sharding_spec_json).value(); SCOPED_TRACE(options.executor_name); SCOPED_TRACE(sharding_spec_json.dump()); auto store = GetShardedKeyValueStore( base_kv_store, GetExecutor(options.executor_name), "prefix", sharding_spec, CachePool::WeakPtr(cache_pool)); GetUint64Key get_key_fn(options.sequential_ids); tensorstore::internal::TestKeyValueReadWriteOps(store, get_key_fn); } TEST(Uint64ShardedKeyValueStoreTest, BasicFunctionality) { { BasicFunctionalityTestOptions options; TestReadWriteOps(options); options.sequential_ids = true; TestReadWriteOps(options); } { BasicFunctionalityTestOptions options; options.hash = "murmurhash3_x86_128"; TestReadWriteOps(options); } { BasicFunctionalityTestOptions options; options.data_encoding = "gzip"; TestReadWriteOps(options); } { BasicFunctionalityTestOptions options; options.minishard_index_encoding = "gzip"; TestReadWriteOps(options); } { BasicFunctionalityTestOptions options; options.all_zero_bits = true; TestReadWriteOps(options); } { BasicFunctionalityTestOptions options; options.executor_name = "inline"; TestReadWriteOps(options); } } TEST(Uint64ShardedKeyValueStoreTest, DescribeKey) { ::nlohmann::json sharding_spec_json{ {"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 0}, {"minishard_bits", 1}, {"shard_bits", 1}, {"data_encoding", "raw"}, {"minishard_index_encoding", "raw"}}; ShardingSpec sharding_spec = ShardingSpec::FromJson(sharding_spec_json).value(); CachePool::StrongPtr cache_pool = CachePool::Make(kSmallCacheLimits); kvstore::DriverPtr base_kv_store = tensorstore::GetMemoryKeyValueStore(); kvstore::DriverPtr store = GetShardedKeyValueStore( base_kv_store, tensorstore::InlineExecutor{}, "prefix", sharding_spec, CachePool::WeakPtr(cache_pool)); for (const auto& [key, description] : std::vector<std::pair<uint64_t, std::string>>{ {0, "chunk 0 in minishard 0 in \"prefix/0.shard\""}, {1, "chunk 1 in minishard 1 in \"prefix/0.shard\""}, {2, "chunk 2 in minishard 0 in \"prefix/1.shard\""}, {3, "chunk 3 in minishard 1 in \"prefix/1.shard\""}, }) { EXPECT_EQ(description, store->DescribeKey(GetChunkKey(key))); } } class RawEncodingTest : public ::testing::Test { protected: ::nlohmann::json sharding_spec_json{ {"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 0}, {"minishard_bits", 0}, {"shard_bits", 0}, {"data_encoding", "raw"}, {"minishard_index_encoding", "raw"}}; ShardingSpec sharding_spec = ShardingSpec::FromJson(sharding_spec_json).value(); CachePool::StrongPtr cache_pool = CachePool::Make(kSmallCacheLimits); kvstore::DriverPtr base_kv_store = tensorstore::GetMemoryKeyValueStore(); kvstore::DriverPtr store = GetShardedKeyValueStore( base_kv_store, tensorstore::InlineExecutor{}, "prefix", sharding_spec, CachePool::WeakPtr(cache_pool)); }; TEST_F(RawEncodingTest, MultipleUnconditionalWrites) { std::vector<absl::Cord> values{absl::Cord("abc"), absl::Cord("aaaaa"), absl::Cord("efgh")}; std::vector<Future<TimestampedStorageGeneration>> futures; auto key = GetChunkKey(10); tensorstore::Transaction txn(tensorstore::isolated); for (auto value : values) { futures.push_back(kvstore::WriteCommitted(KvStore{store, txn}, key, value)); } txn.CommitAsync().IgnoreFuture(); std::vector<Result<TimestampedStorageGeneration>> results; for (const auto& future : futures) { results.push_back(future.result()); } TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto shard_read, base_kv_store->Read("prefix/0.shard").result()); EXPECT_THAT( results, ::testing::UnorderedElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::Invalid()), MatchesTimestampedStorageGeneration(StorageGeneration::Invalid()), MatchesTimestampedStorageGeneration(shard_read.stamp.generation))); for (size_t i = 0; i < results.size(); ++i) { if (results[i] && results[i]->generation == shard_read.stamp.generation) { EXPECT_THAT(store->Read(key).result(), MatchesKvsReadResult(values[i], results[i]->generation)); } } } TEST_F(RawEncodingTest, List) { std::map<std::string, absl::Cord> values{ {GetChunkKey(1), absl::Cord("a")}, {GetChunkKey(2), absl::Cord("bc")}, {GetChunkKey(3), absl::Cord("def")}, {GetChunkKey(10), absl::Cord("xyz")}}; for (auto [key, value] : values) { TENSORSTORE_EXPECT_OK(store->Write(key, value)); } EXPECT_THAT(tensorstore::internal::GetMap(store), ::testing::Optional(::testing::ElementsAreArray(values))); } TEST_F(RawEncodingTest, WritesAndDeletes) { StorageGeneration gen1, gen2, gen3; { tensorstore::Transaction txn(tensorstore::isolated); auto init_future1 = kvstore::WriteCommitted( KvStore{store, txn}, GetChunkKey(1), absl::Cord("a")); auto init_future2 = kvstore::WriteCommitted( KvStore{store, txn}, GetChunkKey(2), absl::Cord("bc")); auto init_future3 = kvstore::WriteCommitted( KvStore{store, txn}, GetChunkKey(3), absl::Cord("def")); txn.CommitAsync().IgnoreFuture(); gen1 = init_future1.value().generation; gen2 = init_future2.value().generation; gen3 = init_future3.value().generation; } tensorstore::Transaction txn(tensorstore::isolated); auto future1 = kvstore::DeleteCommitted(KvStore{store, txn}, GetChunkKey(1), {StorageGeneration::NoValue()}); auto future2 = kvstore::WriteCommitted(KvStore{store, txn}, GetChunkKey(2), absl::Cord("ww"), {gen2}); auto future3 = kvstore::WriteCommitted(KvStore{store, txn}, GetChunkKey(2), absl::Cord("xx"), {gen2}); auto future4 = kvstore::WriteCommitted(KvStore{store, txn}, GetChunkKey(4), absl::Cord("zz"), {StorageGeneration::NoValue()}); auto future5 = kvstore::DeleteCommitted(KvStore{store, txn}, GetChunkKey(3), {gen3}); txn.CommitAsync().IgnoreFuture(); EXPECT_THAT(future1.result(), MatchesTimestampedStorageGeneration( StorageGeneration::Unknown())); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto shard_read, base_kv_store->Read("prefix/0.shard").result()); EXPECT_THAT( std::vector({future2.result(), future3.result()}), ::testing::UnorderedElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::Unknown()), MatchesTimestampedStorageGeneration(shard_read.stamp.generation))); EXPECT_THAT(store->Read(GetChunkKey(1)).result(), MatchesKvsReadResult(absl::Cord("a"))); EXPECT_THAT(store->Read(GetChunkKey(2)).result(), MatchesKvsReadResult( !StorageGeneration::IsUnknown(future2.result()->generation) ? absl::Cord("ww") : absl::Cord("xx"))); EXPECT_THAT(store->Read(GetChunkKey(3)).result(), MatchesKvsReadResultNotFound()); EXPECT_THAT(store->Read(GetChunkKey(4)).result(), MatchesKvsReadResult(absl::Cord("zz"))); } std::vector<std::vector<Result<TimestampedStorageGeneration>>> TestOrderDependentWrites( std::function<void()> init, std::function<Future<TimestampedStorageGeneration>()> op0, std::function<Future<TimestampedStorageGeneration>()> op1, std::function<void()> finalize) { std::vector<std::vector<Result<TimestampedStorageGeneration>>> all_results; for (int i = 0; i < 2; ++i) { std::vector<Future<TimestampedStorageGeneration>> futures(2); init(); if (i == 0) { futures[0] = op0(); futures[1] = op1(); } else { futures[1] = op1(); futures[0] = op0(); } finalize(); all_results.push_back({futures[0].result(), futures[1].result()}); } return all_results; } TEST_F(RawEncodingTest, WriteThenDelete) { TENSORSTORE_ASSERT_OK(store->Write(GetChunkKey(1), absl::Cord("a")).result()); EXPECT_THAT(store->Read(GetChunkKey(1)).result(), MatchesKvsReadResult(absl::Cord("a"))); TENSORSTORE_ASSERT_OK(store->Delete(GetChunkKey(1)).result()); EXPECT_THAT(store->Read(GetChunkKey(1)).result(), MatchesKvsReadResultNotFound()); } TEST_F(RawEncodingTest, MultipleDeleteExisting) { StorageGeneration gen; tensorstore::Transaction txn{tensorstore::no_transaction}; EXPECT_THAT( TestOrderDependentWrites( [&] { gen = store->Write(GetChunkKey(1), absl::Cord("a")) .value() .generation; txn = tensorstore::Transaction(tensorstore::isolated); }, [&] { return kvstore::DeleteCommitted(KvStore{store, txn}, GetChunkKey(1), {gen}); }, [&] { return kvstore::DeleteCommitted( KvStore{store, txn}, GetChunkKey(1), {StorageGeneration::NoValue()}); }, [&] { txn.CommitAsync().IgnoreFuture(); }), ::testing::UnorderedElementsAre( ::testing::ElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::Invalid()), MatchesTimestampedStorageGeneration( StorageGeneration::NoValue())), ::testing::ElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::NoValue()), MatchesTimestampedStorageGeneration( StorageGeneration::Unknown())))); } TEST_F(RawEncodingTest, WriteWithUnmatchedConditionAfterDelete) { tensorstore::Transaction txn{tensorstore::no_transaction}; EXPECT_THAT( TestOrderDependentWrites( [&] { store->Delete(GetChunkKey(0)).value(); txn = tensorstore::Transaction(tensorstore::isolated); }, [&] { return kvstore::WriteCommitted(KvStore{store, txn}, GetChunkKey(0), absl::Cord("a")); }, [&] { return kvstore::WriteCommitted( KvStore{store, txn}, GetChunkKey(0), absl::Cord("b"), {StorageGeneration::FromString("g")}); }, [&] { txn.CommitAsync().IgnoreFuture(); }), ::testing::Each(::testing::ElementsAre( MatchesTimestampedStorageGeneration( ::testing::AllOf(::testing::Not(StorageGeneration::NoValue()), ::testing::Not(StorageGeneration::Invalid()))), MatchesTimestampedStorageGeneration(StorageGeneration::Unknown())))); } TEST_F(RawEncodingTest, MultipleDeleteNonExisting) { tensorstore::Transaction txn(tensorstore::isolated); std::vector futures{ kvstore::DeleteCommitted(KvStore{store, txn}, GetChunkKey(1), {StorageGeneration::NoValue()}), kvstore::DeleteCommitted(KvStore{store, txn}, GetChunkKey(1), {StorageGeneration::NoValue()})}; txn.CommitAsync().IgnoreFuture(); std::vector results{futures[0].result(), futures[1].result()}; EXPECT_THAT( results, ::testing::UnorderedElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::Invalid()), MatchesTimestampedStorageGeneration(StorageGeneration::NoValue()))); } TEST_F(RawEncodingTest, ShardIndexTooShort) { base_kv_store->Write("prefix/0.shard", Bytes({1, 2, 3})).value(); EXPECT_THAT( store->Read(GetChunkKey(10)).result(), MatchesStatus( absl::StatusCode::kFailedPrecondition, "Error reading minishard 0 in \"prefix/0\\.shard\": " "Error retrieving shard index entry: " "Requested byte range \\[0, 16\\) is not valid for value of size 3")); EXPECT_THAT( store->Write(GetChunkKey(10), absl::Cord("abc")).result(), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Error reading \"prefix/0\\.shard\": " "Existing shard has size 3, but expected at least: 16")); } TEST_F(RawEncodingTest, ShardIndexInvalidByteRange) { base_kv_store ->Write("prefix/0.shard", Bytes({10, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0})) .value(); EXPECT_THAT( store->Read(GetChunkKey(10)).result(), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Error reading minishard 0 in \"prefix/0\\.shard\": " "Error retrieving shard index entry: " "Shard index specified invalid byte range: \\[10, 2\\)")); EXPECT_THAT(store->Write(GetChunkKey(10), absl::Cord("abc")).result(), MatchesStatus( absl::StatusCode::kFailedPrecondition, "Error reading \"prefix/0\\.shard\": " "Error decoding existing shard index entry for minishard 0: " "Shard index specified invalid byte range: \\[10, 2\\)")); } TEST_F(RawEncodingTest, ShardIndexByteRangeOverflow) { base_kv_store ->Write("prefix/0.shard", Bytes({ 10, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, })) .value(); EXPECT_THAT( store->Read(GetChunkKey(10)).result(), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Error reading minishard 0 in \"prefix/0\\.shard\": " "Error retrieving shard index entry: " "Byte range .* relative to the end of " "the shard index \\(16\\) is not valid")); EXPECT_THAT(store->Write(GetChunkKey(10), absl::Cord("abc")).result(), MatchesStatus( absl::StatusCode::kFailedPrecondition, "Error reading \"prefix/0\\.shard\": " "Error decoding existing shard index entry for minishard 0: " "Byte range .* relative to the end of " "the shard index \\(16\\) is not valid")); } TEST_F(RawEncodingTest, MinishardIndexOutOfRange) { base_kv_store ->Write("prefix/0.shard", Bytes({0, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 0, 0})) .value(); EXPECT_THAT( store->Read(GetChunkKey(10)).result(), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Error reading minishard 0 in \"prefix/0\\.shard\": " "Requested byte range \\[16, 64\\) is " "not valid for value of size 16")); EXPECT_THAT(store->Write(GetChunkKey(10), absl::Cord("abc")).result(), MatchesStatus( absl::StatusCode::kFailedPrecondition, "Error reading \"prefix/0\\.shard\": " "Error decoding existing shard index entry for minishard 0: " "Requested byte range .* is not valid for value of size 16")); } TEST_F(RawEncodingTest, MinishardIndexInvalidSize) { base_kv_store ->Write("prefix/0.shard", Bytes({0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0})) .value(); EXPECT_THAT( store->Read(GetChunkKey(10)).result(), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Error reading minishard 0 in \"prefix/0\\.shard\": " "Invalid minishard index length: 1")); EXPECT_THAT( store->Write(GetChunkKey(10), absl::Cord("abc")).result(), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Error reading \"prefix/0\\.shard\": " "Error decoding existing minishard index for minishard 0: " "Invalid minishard index length: 1")); } TEST_F(RawEncodingTest, MinishardIndexByteRangeOverflow) { base_kv_store ->Write("prefix/0.shard", Bytes({ 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, })) .value(); EXPECT_THAT( store->Read(GetChunkKey(10)).result(), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Error reading minishard 0 in \"prefix/0\\.shard\": " "Error decoding minishard index entry " "for chunk 10: Byte range .* relative to the end " "of the shard index \\(16\\) is not valid")); } TEST_F(RawEncodingTest, MinishardIndexEntryByteRangeOutOfRange) { base_kv_store ->Write("prefix/0.shard", Bytes({ 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 200, 0, 0, 0, 0, 0, 0, 0, })) .value(); EXPECT_THAT(store->Write(GetChunkKey(1), absl::Cord("x")).result(), MatchesStatus( absl::StatusCode::kFailedPrecondition, "Error reading \"prefix/0\\.shard\": " "Invalid existing byte range for chunk 10: " "Requested byte range .* is not valid for value of size .*")); } TEST_F(RawEncodingTest, MinishardIndexWithDuplicateChunkId) { base_kv_store ->Write("prefix/0.shard", Bytes({ 0, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, })) .value(); EXPECT_THAT(store->Write(GetChunkKey(10), absl::Cord("abc")).result(), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Error reading \"prefix/0\\.shard\": " "Chunk 10 occurs more than once in the minishard " "index for minishard 0")); } class GzipEncodingTest : public ::testing::Test { protected: ::nlohmann::json sharding_spec_json{ {"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 0}, {"minishard_bits", 0}, {"shard_bits", 0}, {"data_encoding", "gzip"}, {"minishard_index_encoding", "gzip"}}; ShardingSpec sharding_spec = ShardingSpec::FromJson(sharding_spec_json).value(); CachePool::StrongPtr cache_pool = CachePool::Make(kSmallCacheLimits); kvstore::DriverPtr base_kv_store = tensorstore::GetMemoryKeyValueStore(); kvstore::DriverPtr store = GetShardedKeyValueStore( base_kv_store, tensorstore::InlineExecutor{}, "prefix", sharding_spec, CachePool::WeakPtr(cache_pool)); }; TEST_F(GzipEncodingTest, CorruptMinishardGzipEncoding) { base_kv_store ->Write("prefix/0.shard", Bytes({ 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, })) .value(); EXPECT_THAT( store->Read(GetChunkKey(10)).result(), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Error reading minishard 0 in \"prefix/0\\.shard\": " "Error decoding zlib-compressed data")); EXPECT_THAT( store->Write(GetChunkKey(10), absl::Cord("abc")).result(), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Error reading \"prefix/0\\.shard\": " "Error decoding existing minishard index for minishard 0: " "Error decoding zlib-compressed data")); } TEST_F(GzipEncodingTest, CorruptDataGzipEncoding) { absl::Cord shard_data("abc"); zlib::Options zlib_options; zlib_options.use_gzip_header = true; zlib::Encode(Bytes({ 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, }), &shard_data, zlib_options); const unsigned char n = static_cast<unsigned char>(shard_data.size()); absl::Cord temp = Bytes({ 3, 0, 0, 0, 0, 0, 0, 0, n, 0, 0, 0, 0, 0, 0, 0, }); temp.Append(shard_data); TENSORSTORE_ASSERT_OK(base_kv_store->Write("prefix/0.shard", temp)); EXPECT_THAT(store->Read(GetChunkKey(10)).result(), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Error decoding zlib-compressed data")); } class UnderlyingKeyValueStoreTest : public ::testing::Test { protected: ::nlohmann::json sharding_spec_json{ {"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 0}, {"minishard_bits", 1}, {"shard_bits", 1}, {"data_encoding", "raw"}, {"minishard_index_encoding", "raw"}}; ShardingSpec sharding_spec = ShardingSpec::FromJson(sharding_spec_json).value(); CachePool::StrongPtr cache_pool = CachePool::Make(kSmallCacheLimits); MockKeyValueStore::MockPtr mock_store = MockKeyValueStore::Make(); kvstore::DriverPtr GetStore( tensorstore::neuroglancer_uint64_sharded::GetMaxChunksPerShardFunction get_max_chunks_per_shard = {}) { return GetShardedKeyValueStore( mock_store, tensorstore::InlineExecutor{}, "prefix", sharding_spec, CachePool::WeakPtr(cache_pool), std::move(get_max_chunks_per_shard)); } kvstore::DriverPtr store = GetStore(); }; TEST_F(UnderlyingKeyValueStoreTest, Read) { absl::Time init_time = UniqueNow(); absl::Time minishard_index_time; { auto future = store->Read(GetChunkKey(0x50), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(0, 16), req.options.byte_range); EXPECT_THAT(req.options.staleness_bound, ::testing::Gt(init_time)); req.promise.SetResult(ReadResult::Value( Bytes({ 5, 0, 0, 0, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g0"), absl::Now()})); } { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(37, 63), req.options.byte_range); minishard_index_time = absl::Now(); req.promise.SetResult(ReadResult::Value( Bytes({ 0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g0"), minishard_index_time})); } absl::Time read_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(32, 37), req.options.byte_range); read_time = absl::Now(); req.promise.SetResult( ReadResult::Value(Bytes({5, 6, 7, 8, 9}), {StorageGeneration::FromString("g0"), read_time})); } ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_TRUE(future.ready()); EXPECT_THAT( future.result(), MatchesKvsReadResult(Bytes({5, 6, 7, 8, 9}), StorageGeneration::FromString("g0"), read_time)); } { kvstore::ReadOptions options; options.staleness_bound = init_time; auto future = store->Read(GetChunkKey(0x60), options); ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesKvsReadResultNotFound(minishard_index_time)); } { auto req_time = UniqueNow(); auto future = store->Read(GetChunkKey(0x60), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(0, 16), req.options.byte_range); EXPECT_THAT(req.options.staleness_bound, ::testing::Gt(req_time)); minishard_index_time = absl::Now(); req.promise.SetResult(ReadResult::Unspecified( {StorageGeneration::FromString("g0"), minishard_index_time})); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesKvsReadResultNotFound(minishard_index_time)); } { kvstore::ReadOptions options; options.staleness_bound = init_time; auto future = store->Read(GetChunkKey(0x50), options); absl::Time read_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(32, 37), req.options.byte_range); EXPECT_EQ(init_time, req.options.staleness_bound); read_time = absl::Now(); req.promise.SetResult( ReadResult::Value(Bytes({5, 6, 7, 8, 9}), {StorageGeneration::FromString("g0"), read_time})); } ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_TRUE(future.ready()); EXPECT_THAT( future.result(), MatchesKvsReadResult(Bytes({5, 6, 7, 8, 9}), StorageGeneration::FromString("g0"), read_time)); } { kvstore::ReadOptions options; options.staleness_bound = init_time; auto future = store->Read(GetChunkKey(0x50), options); absl::Time abort_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(init_time, req.options.staleness_bound); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(32, 37), req.options.byte_range); abort_time = absl::Now(); req.promise.SetResult(ReadResult::Unspecified( {StorageGeneration::FromString("g0"), abort_time})); } { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(0, 16), req.options.byte_range); EXPECT_THAT(req.options.staleness_bound, ::testing::Ge(abort_time)); req.promise.SetResult(ReadResult::Value( Bytes({ 6, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g1"), absl::Now()})); } { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g1"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(38, 64), req.options.byte_range); minishard_index_time = absl::Now(); req.promise.SetResult(ReadResult::Value( Bytes({ 0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g1"), minishard_index_time})); } absl::Time read_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g1"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(32, 38), req.options.byte_range); read_time = absl::Now(); req.promise.SetResult( ReadResult::Value(Bytes({4, 5, 6, 7, 8, 9}), {StorageGeneration::FromString("g1"), read_time})); } ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_TRUE(future.ready()); EXPECT_THAT( future.result(), MatchesKvsReadResult(Bytes({4, 5, 6, 7, 8, 9}), StorageGeneration::FromString("g1"), read_time)); } } TEST_F(UnderlyingKeyValueStoreTest, TransactionReadThenCommit) { tensorstore::Transaction txn(tensorstore::isolated); auto memory_store = tensorstore::GetMemoryKeyValueStore(); { auto future = kvstore::Read(KvStore{store, txn}, GetChunkKey(0x50), {}); { auto req = mock_store->read_requests.pop(); req(memory_store); ASSERT_EQ(0, mock_store->read_requests.size()); } EXPECT_THAT(future.result(), ::testing::Optional(MatchesKvsReadResultNotFound())); } auto commit_future = txn.CommitAsync(); TENSORSTORE_ASSERT_OK(commit_future.result()); } TEST_F(UnderlyingKeyValueStoreTest, ReadConcurrentModificationAfterReadingShardIndex) { absl::Time init_time = absl::Now(); kvstore::ReadOptions options; options.staleness_bound = init_time; auto future = store->Read(GetChunkKey(0x1), options); absl::Time abort_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(init_time, req.options.staleness_bound); EXPECT_EQ(OptionalByteRangeRequest(16, 32), req.options.byte_range); req.promise.SetResult( ReadResult::Value(Bytes({ 6, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g2"), absl::Now()})); } { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g2"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(38, 64), req.options.byte_range); abort_time = absl::Now(); req.promise.SetResult(ReadResult::Unspecified( {StorageGeneration::FromString("g2"), abort_time})); } { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_THAT(req.options.staleness_bound, ::testing::Ge(abort_time)); EXPECT_EQ(OptionalByteRangeRequest(16, 32), req.options.byte_range); req.promise.SetResult( ReadResult::Value(Bytes({ 7, 0, 0, 0, 0, 0, 0, 0, 33, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g3"), absl::Now()})); } { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g3"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(39, 65), req.options.byte_range); req.promise.SetResult( ReadResult::Value(Bytes({ 0x1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g3"), absl::Now()})); } absl::Time read_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g3"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(32, 36), req.options.byte_range); read_time = absl::Now(); req.promise.SetResult(ReadResult::Value( Bytes({4, 5, 6, 7}), {StorageGeneration::FromString("g3"), read_time})); } ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_TRUE(future.ready()); EXPECT_THAT( future.result(), MatchesKvsReadResult(Bytes({4, 5, 6, 7}), StorageGeneration::FromString("g3"), read_time)); } TEST_F(UnderlyingKeyValueStoreTest, ReadConcurrentDeleteAfterReadingShardIndex) { auto req_time = UniqueNow(); auto future = store->Read(GetChunkKey(0x1), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_THAT(req.options.staleness_bound, ::testing::Gt(req_time)); EXPECT_EQ(OptionalByteRangeRequest(16, 32), req.options.byte_range); req.promise.SetResult( ReadResult::Value(Bytes({ 6, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g4"), absl::Now()})); } absl::Time read_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g4"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(38, 64), req.options.byte_range); read_time = absl::Now(); req.promise.SetResult(ReadResult::Missing(read_time)); } ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesKvsReadResultNotFound(read_time)); } TEST_F(UnderlyingKeyValueStoreTest, ReadConcurrentDeleteAfterReadingMinishardIndex) { auto req_time = UniqueNow(); auto future = store->Read(GetChunkKey(0x1), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_THAT(req.options.staleness_bound, ::testing::Gt(req_time)); EXPECT_EQ(OptionalByteRangeRequest(16, 32), req.options.byte_range); req.promise.SetResult( ReadResult::Value(Bytes({ 6, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g0"), absl::Now()})); } { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(38, 64), req.options.byte_range); req.promise.SetResult( ReadResult::Value(Bytes({ 0x1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g0"), absl::Now()})); } absl::Time read_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(32, 36), req.options.byte_range); read_time = absl::Now(); req.promise.SetResult(ReadResult::Missing(read_time)); } ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesKvsReadResultNotFound(read_time)); } TEST_F(UnderlyingKeyValueStoreTest, ReadErrorReadingShardIndex) { auto future = store->Read(GetChunkKey(0x50), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(OptionalByteRangeRequest(0, 16), req.options.byte_range); req.promise.SetResult(absl::UnknownError("Read error")); } ASSERT_TRUE(future.ready()); EXPECT_THAT( future.result(), MatchesStatus(absl::StatusCode::kUnknown, "Error reading minishard 0 in \"prefix/0\\.shard\": " "Error retrieving shard index entry: " "Read error")); } TEST_F(UnderlyingKeyValueStoreTest, ReadErrorReadingMinishardShardIndex) { auto future = store->Read(GetChunkKey(0x1), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(OptionalByteRangeRequest(16, 32), req.options.byte_range); req.promise.SetResult( ReadResult::Value(Bytes({ 6, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g0"), absl::Now()})); } { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(OptionalByteRangeRequest(38, 64), req.options.byte_range); req.promise.SetResult(absl::UnknownError("Read error")); } ASSERT_TRUE(future.ready()); EXPECT_THAT( future.result(), MatchesStatus(absl::StatusCode::kUnknown, "Error reading minishard 1 in \"prefix/0\\.shard\": " "Read error")); } TEST_F(UnderlyingKeyValueStoreTest, ReadErrorReadingData) { auto future = store->Read(GetChunkKey(0x1), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(OptionalByteRangeRequest(16, 32), req.options.byte_range); req.promise.SetResult( ReadResult::Value(Bytes({ 6, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g0"), absl::Now()})); } { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(OptionalByteRangeRequest(38, 64), req.options.byte_range); req.promise.SetResult( ReadResult::Value(Bytes({ 0x1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g0"), absl::Now()})); } { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(OptionalByteRangeRequest(32, 36), req.options.byte_range); req.promise.SetResult(absl::UnknownError("Read error")); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kUnknown, "Read error")); } TEST_F(UnderlyingKeyValueStoreTest, ReadInvalidKey) { auto future = store->Read("abc", {}); ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST_F(UnderlyingKeyValueStoreTest, WriteInvalidKey) { auto future = store->Write("abc", absl::Cord("x")); ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST_F(UnderlyingKeyValueStoreTest, DeleteInvalidKey) { auto future = store->Delete("abc"); ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST_F(UnderlyingKeyValueStoreTest, WriteWithNoExistingShard) { for (const bool with_max_chunks : {false, true}) { SCOPED_TRACE(tensorstore::StrCat("with_max_chunks=", with_max_chunks)); if (with_max_chunks) { store = GetStore( [](uint64_t shard) -> uint64_t { return 2; }); } else { store = GetStore(); } auto future = store->Write(GetChunkKey(0x50), Bytes({1, 2, 3})); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); req.promise.SetResult(ReadResult::Missing(absl::Now())); } absl::Time write_time; { auto req = mock_store->write_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->write_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::NoValue(), req.options.generation_conditions.if_equal); EXPECT_THAT(req.value, ::testing::Optional(Bytes({ 3, 0, 0, 0, 0, 0, 0, 0, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, }))); write_time = absl::Now(); req.promise.SetResult(std::in_place, StorageGeneration::FromString("g0"), write_time); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesTimestampedStorageGeneration( StorageGeneration::FromString("g0"), write_time)); } } TEST_F(UnderlyingKeyValueStoreTest, UnconditionalWrite) { store = GetStore( [](uint64_t shard) -> uint64_t { return 2; }); auto txn = Transaction(tensorstore::isolated); auto future1 = kvstore::WriteCommitted(KvStore{store, txn}, GetChunkKey(0x50), Bytes({1, 2, 3})); auto future2 = kvstore::WriteCommitted(KvStore{store, txn}, GetChunkKey(0x54), Bytes({4, 5, 6})); ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_EQ(0, mock_store->write_requests.size()); txn.CommitAsync().IgnoreFuture(); ASSERT_EQ(0, mock_store->read_requests.size()); absl::Time write_time; { auto req = mock_store->write_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->write_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_THAT(req.value, ::testing::Optional(Bytes({ 6, 0, 0, 0, 0, 0, 0, 0, 54, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 0x50, 0, 0, 0, 0, 0, 0, 0, 0x04, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, }))); write_time = absl::Now(); req.promise.SetResult(std::in_place, StorageGeneration::FromString("g0"), write_time); } ASSERT_TRUE(future1.ready()); ASSERT_TRUE(future2.ready()); EXPECT_THAT(future1.result(), MatchesTimestampedStorageGeneration( StorageGeneration::FromString("g0"), write_time)); EXPECT_THAT(future2.result(), MatchesTimestampedStorageGeneration( StorageGeneration::FromString("g0"), write_time)); } TEST_F(UnderlyingKeyValueStoreTest, ConditionalWriteDespiteMaxChunks) { store = GetStore( [](uint64_t shard) -> uint64_t { return 1; }); auto future = store->Write(GetChunkKey(0x50), Bytes({1, 2, 3}), {StorageGeneration::NoValue()}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); req.promise.SetResult(ReadResult::Missing(absl::Now())); } { auto req = mock_store->write_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->write_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::NoValue(), req.options.generation_conditions.if_equal); } } TEST_F(UnderlyingKeyValueStoreTest, WriteWithNoExistingShardError) { auto future = store->Write(GetChunkKey(0x50), Bytes({1, 2, 3})); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); req.promise.SetResult(ReadResult::Missing(absl::Now())); } { auto req = mock_store->write_requests.pop_nonblock().value(); req.promise.SetResult(absl::UnknownError("Write error")); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kUnknown, "Error writing \"prefix/0\\.shard\": " "Write error")); } TEST_F(UnderlyingKeyValueStoreTest, WriteWithExistingShard) { auto future = store->Write(GetChunkKey(0x50), Bytes({1, 2, 3})); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); req.promise.SetResult( ReadResult::Value(Bytes({ 3, 0, 0, 0, 0, 0, 0, 0, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 6, 0x70, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, }), {StorageGeneration::FromString("g0"), absl::Now()})); } absl::Time write_time; { auto req = mock_store->write_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->write_requests.size()); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_THAT(req.value, ::testing::Optional(Bytes({ 6, 0, 0, 0, 0, 0, 0, 0, 54, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 0x50, 0, 0, 0, 0, 0, 0, 0, 0x20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, }))); write_time = absl::Now(); req.promise.SetResult(std::in_place, StorageGeneration::FromString("g1"), write_time); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesTimestampedStorageGeneration( StorageGeneration::FromString("g1"), write_time)); } TEST_F(UnderlyingKeyValueStoreTest, WriteMaxChunksWithExistingShard) { for (const bool specify_max_chunks : {false, true}) { if (specify_max_chunks) { store = GetStore( [](uint64_t shard) -> uint64_t { return 1; }); } auto future = store->Write(GetChunkKey(0x50), Bytes({1, 2, 3})); if (!specify_max_chunks) { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); req.promise.SetResult(ReadResult::Missing(absl::Now())); } absl::Time write_time; { auto req = mock_store->write_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->write_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ((specify_max_chunks ? StorageGeneration::Unknown() : StorageGeneration::NoValue()), req.options.generation_conditions.if_equal); EXPECT_THAT(req.value, ::testing::Optional(Bytes({ 3, 0, 0, 0, 0, 0, 0, 0, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, }))); write_time = absl::Now(); req.promise.SetResult(std::in_place, StorageGeneration::FromString("g0"), write_time); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesTimestampedStorageGeneration( StorageGeneration::FromString("g0"), write_time)); } } TEST_F(UnderlyingKeyValueStoreTest, WriteWithExistingShardReadError) { auto future = store->Write(GetChunkKey(0x50), Bytes({1, 2, 3})); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("prefix/0.shard", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); req.promise.SetResult(absl::UnknownError("Read error")); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kUnknown, "Error reading \"prefix/0\\.shard\": " "Read error")); } TEST_F(UnderlyingKeyValueStoreTest, DeleteRangeUnimplemented) { EXPECT_THAT(store->DeleteRange(tensorstore::KeyRange::Prefix("abc")).result(), MatchesStatus(absl::StatusCode::kUnimplemented)); } TEST_F(UnderlyingKeyValueStoreTest, TransactionalDeleteRangeUnimplemented) { EXPECT_THAT( store->TransactionalDeleteRange({}, tensorstore::KeyRange::Prefix("abc")), MatchesStatus(absl::StatusCode::kUnimplemented)); } TEST_F(UnderlyingKeyValueStoreTest, BatchRead) { cache_pool = CachePool::Make({}); auto memory_store = tensorstore::GetMemoryKeyValueStore(); mock_store->forward_to = memory_store; mock_store->log_requests = true; mock_store->handle_batch_requests = true; auto store = GetStore( [](uint64_t shard) -> uint64_t { return 6; }); auto key0 = GetChunkKey(0x50); auto key1 = GetChunkKey(0x54); auto key2 = GetChunkKey(0x58); auto key3 = GetChunkKey(0x51); auto key4 = GetChunkKey(0x55); auto key5 = GetChunkKey(0x59); auto key6 = GetChunkKey(0x52); auto key7 = GetChunkKey(0x56); auto key8 = GetChunkKey(0x5a); TENSORSTORE_ASSERT_OK(store->Write(key0, absl::Cord("abc")).result()); TENSORSTORE_ASSERT_OK(store->Write(key1, absl::Cord("def")).result()); TENSORSTORE_ASSERT_OK(store->Write(key3, absl::Cord("key3-")).result()); TENSORSTORE_ASSERT_OK(store->Write(key4, absl::Cord("key4--")).result()); TENSORSTORE_ASSERT_OK(store->Write(key5, absl::Cord("key5---")).result()); TENSORSTORE_ASSERT_OK(store->Write(key6, absl::Cord("key6----")).result()); TENSORSTORE_ASSERT_OK(store->Write(key7, absl::Cord("key6-----")).result()); TENSORSTORE_ASSERT_OK(store->Write(key8, absl::Cord("key6------")).result()); mock_store->request_log.pop_all(); { SCOPED_TRACE( "Read 2/6 chunks from the same shard (same minibatch) in a single " "batch"); std::vector<Future<kvstore::ReadResult>> futures; { kvstore::ReadOptions options; options.batch = Batch::New(); futures = { store->Read(key0, options), store->Read(key1, options), }; } EXPECT_THAT(futures[0].result(), MatchesKvsReadResult(absl::Cord("abc"))); EXPECT_THAT(futures[1].result(), MatchesKvsReadResult(absl::Cord("def"))); EXPECT_THAT(mock_store->request_log.pop_all(), ::testing::SizeIs(3)); } { SCOPED_TRACE("Read 6/6 entries from the same shard in a single batch"); std::vector<Future<kvstore::ReadResult>> futures; { kvstore::ReadOptions options; options.batch = Batch::New(); futures = { store->Read(key0, options), store->Read(key1, options), store->Read(key2, options), store->Read(key3, options), store->Read(key4, options), store->Read(key5, options), }; } EXPECT_THAT(futures[0].result(), MatchesKvsReadResult(absl::Cord("abc"))); EXPECT_THAT(futures[1].result(), MatchesKvsReadResult(absl::Cord("def"))); EXPECT_THAT(futures[2].result(), MatchesKvsReadResultNotFound()); EXPECT_THAT(futures[3].result(), MatchesKvsReadResult(absl::Cord("key3-"))); EXPECT_THAT(futures[4].result(), MatchesKvsReadResult(absl::Cord("key4--"))); EXPECT_THAT(futures[5].result(), MatchesKvsReadResult(absl::Cord("key5---"))); EXPECT_THAT(mock_store->request_log.pop_all(), ::testing::SizeIs(1)); } { SCOPED_TRACE( "Read 6/6 entries from the same shard with inconsistent generation " "constraints"); std::vector<Future<kvstore::ReadResult>> futures; { kvstore::ReadOptions options1; options1.batch = Batch::New(); kvstore::ReadOptions options2; options2.batch = options1.batch; options2.generation_conditions.if_not_equal = StorageGeneration::Invalid(); kvstore::ReadOptions options3; options3.batch = options1.batch; options3.generation_conditions.if_equal = StorageGeneration::Invalid(); futures = { store->Read(key0, options1), store->Read(key1, options1), store->Read(key2, options2), store->Read(key3, options1), store->Read(key4, options3), store->Read(key5, options1), }; } EXPECT_THAT(futures[0].result(), MatchesKvsReadResult(absl::Cord("abc"))); EXPECT_THAT(futures[1].result(), MatchesKvsReadResult(absl::Cord("def"))); EXPECT_THAT(futures[2].result(), MatchesKvsReadResultNotFound()); EXPECT_THAT(futures[3].result(), MatchesKvsReadResult(absl::Cord("key3-"))); EXPECT_THAT(futures[4].result(), MatchesKvsReadResultAborted()); EXPECT_THAT(futures[5].result(), MatchesKvsReadResult(absl::Cord("key5---"))); EXPECT_THAT(mock_store->request_log.pop_all(), ::testing::SizeIs(3)); } { SCOPED_TRACE("Read 1 entry from each of two shards in a single batch"); std::vector<Future<kvstore::ReadResult>> futures; { kvstore::ReadOptions options; options.batch = Batch::New(); futures = { store->Read(key0, options), store->Read(key6, options), }; } EXPECT_THAT(futures[0].result(), MatchesKvsReadResult(absl::Cord("abc"))); EXPECT_THAT(futures[1].result(), MatchesKvsReadResult(absl::Cord("key6----"))); EXPECT_THAT(mock_store->request_log.pop_all(), ::testing::SizeIs(6)); } } class ReadModifyWriteTest : public ::testing::Test { protected: ::nlohmann::json sharding_spec_json{ {"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 0}, {"minishard_bits", 1}, {"shard_bits", 1}, {"data_encoding", "raw"}, {"minishard_index_encoding", "raw"}}; ShardingSpec sharding_spec = ShardingSpec::FromJson(sharding_spec_json).value(); MockKeyValueStore::MockPtr mock_store = MockKeyValueStore::Make(); tensorstore::kvstore::DriverPtr memory_store = tensorstore::GetMemoryKeyValueStore(); kvstore::DriverPtr GetStore( tensorstore::neuroglancer_uint64_sharded::GetMaxChunksPerShardFunction get_max_chunks_per_shard = {}) { return GetShardedKeyValueStore( mock_store, tensorstore::InlineExecutor{}, "prefix", sharding_spec, CachePool::WeakPtr(CachePool::Make(CachePool::Limits{})), std::move(get_max_chunks_per_shard)); } auto GetKvsBackedCache(kvstore::DriverPtr store = {}) { if (!store) store = GetStore(); return GetCache<KvsBackedTestCache>( CachePool::Make(CachePool::Limits{}).get(), "", [&] { return std::make_unique<KvsBackedTestCache>(store); }); } }; TEST_F(ReadModifyWriteTest, MultipleCaches) { auto cache1 = GetKvsBackedCache(); auto cache2 = GetKvsBackedCache(); auto transaction = Transaction(tensorstore::isolated); { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto open_transaction, tensorstore::internal::AcquireOpenTransactionPtrOrError(transaction)); TENSORSTORE_ASSERT_OK(GetCacheEntry(cache1, GetChunkKey(0x0)) ->Modify(open_transaction, false, "abc")); TENSORSTORE_ASSERT_OK(GetCacheEntry(cache2, GetChunkKey(0x0)) ->Modify(open_transaction, false, "def")); auto read_future = GetCacheEntry(cache1, GetChunkKey(0x0))->ReadValue(open_transaction); mock_store->read_requests.pop()(memory_store); mock_store->read_requests.pop()(memory_store); EXPECT_THAT(read_future.result(), ::testing::Optional(absl::Cord("abcdef"))); } transaction.CommitAsync().IgnoreFuture(); auto write_req = mock_store->write_requests.pop(); write_req(memory_store); TENSORSTORE_EXPECT_OK(transaction.future()); } TEST_F(ReadModifyWriteTest, MultiplePhasesMultipleCaches) { auto cache1 = GetKvsBackedCache(); auto cache2 = GetKvsBackedCache(); auto transaction = Transaction(tensorstore::isolated); { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto open_transaction, tensorstore::internal::AcquireOpenTransactionPtrOrError(transaction)); TENSORSTORE_ASSERT_OK(GetCacheEntry(cache1, GetChunkKey(0x0)) ->Modify(open_transaction, false, "abc")); TENSORSTORE_ASSERT_OK(GetCacheEntry(cache2, GetChunkKey(0x0)) ->Modify(open_transaction, false, "def")); open_transaction->Barrier(); TENSORSTORE_ASSERT_OK(GetCacheEntry(cache1, GetChunkKey(0x0)) ->Modify(open_transaction, false, "ghi")); TENSORSTORE_ASSERT_OK(GetCacheEntry(cache2, GetChunkKey(0x0)) ->Modify(open_transaction, false, "jkl")); auto read_future = GetCacheEntry(cache1, GetChunkKey(0x0))->ReadValue(open_transaction); mock_store->read_requests.pop()(memory_store); mock_store->read_requests.pop()(memory_store); EXPECT_THAT(read_future.result(), ::testing::Optional(absl::Cord("abcdefghijkl"))); } transaction.CommitAsync().IgnoreFuture(); mock_store->write_requests.pop()(memory_store); mock_store->read_requests.pop()(memory_store); mock_store->read_requests.pop()(memory_store); mock_store->read_requests.pop()(memory_store); mock_store->write_requests.pop()(memory_store); TENSORSTORE_EXPECT_OK(transaction.future()); } TENSORSTORE_GLOBAL_INITIALIZER { using ::tensorstore::internal::KvsBackedCacheBasicTransactionalTestOptions; using ::tensorstore::internal::RegisterKvsBackedCacheBasicTransactionalTest; ::nlohmann::json sharding_spec_json{ {"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 0}, {"minishard_bits", 1}, {"shard_bits", 1}, {"data_encoding", "raw"}, {"minishard_index_encoding", "raw"}}; ShardingSpec sharding_spec = ShardingSpec::FromJson(sharding_spec_json).value(); for (bool underlying_atomic : {false, true}) { KvsBackedCacheBasicTransactionalTestOptions options; options.test_name = tensorstore::StrCat("Uint64Sharded/underlying_atomic=", underlying_atomic); options.get_store = [=] { return GetShardedKeyValueStore( tensorstore::GetMemoryKeyValueStore(underlying_atomic), tensorstore::InlineExecutor{}, "prefix", sharding_spec, CachePool::WeakPtr(CachePool::Make(CachePool::Limits{})), {}); }; options.delete_range_supported = false; options.multi_key_atomic_supported = true; options.get_key_getter = [] { return [getter = std::make_shared<GetUint64Key>(true)]( auto key) { return (*getter)(key); }; }; RegisterKvsBackedCacheBasicTransactionalTest(options); } } TEST(ShardedKeyValueStoreTest, SpecRoundtrip) { ::nlohmann::json sharding_spec_json{ {"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 0}, {"minishard_bits", 1}, {"shard_bits", 1}, {"data_encoding", "raw"}, {"minishard_index_encoding", "raw"}}; tensorstore::internal::KeyValueStoreSpecRoundtripOptions options; options.roundtrip_key = std::string(8, '\0'); options.full_base_spec = {{"driver", "memory"}, {"path", "abc/"}}; options.full_spec = {{"driver", "neuroglancer_uint64_sharded"}, {"base", options.full_base_spec}, {"metadata", sharding_spec_json}}; options.check_data_after_serialization = false; tensorstore::internal::TestKeyValueStoreSpecRoundtrip(options); } TEST(ShardedKeyValueStoreTest, SpecRoundtripFile) { tensorstore::internal_testing::ScopedTemporaryDirectory tempdir; ::nlohmann::json sharding_spec_json{ {"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 0}, {"minishard_bits", 1}, {"shard_bits", 1}, {"data_encoding", "raw"}, {"minishard_index_encoding", "raw"}}; tensorstore::internal::KeyValueStoreSpecRoundtripOptions options; options.roundtrip_key = std::string(8, '\0'); options.full_base_spec = {{"driver", "file"}, {"path", tempdir.path() + "/"}}; options.full_spec = {{"driver", "neuroglancer_uint64_sharded"}, {"base", options.full_base_spec}, {"metadata", sharding_spec_json}}; tensorstore::internal::TestKeyValueStoreSpecRoundtrip(options); } TEST(ShardedKeyValueStoreTest, Base) { ::nlohmann::json sharding_spec_json{ {"@type", "neuroglancer_uint64_sharded_v1"}, {"hash", "identity"}, {"preshift_bits", 0}, {"minishard_bits", 1}, {"shard_bits", 1}, {"data_encoding", "raw"}, {"minishard_index_encoding", "raw"}}; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto spec, kvstore::Spec::FromJson({{"driver", "neuroglancer_uint64_sharded"}, {"base", "memory: {"metadata", sharding_spec_json}, {"path", "1"}})); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto base_spec, kvstore::Spec::FromJson("memory: EXPECT_THAT(spec.base(), ::testing::Optional(base_spec)); auto context = tensorstore::Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto store, kvstore::Open(spec, context).result()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto base_store, kvstore::Open(base_spec, context).result()); EXPECT_THAT(store.base(), ::testing::Optional(base_store)); auto transaction = tensorstore::Transaction(tensorstore::atomic_isolated); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto store_with_txn, store | transaction); EXPECT_THAT(store_with_txn.base(), base_store | transaction); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/neuroglancer_uint64_sharded/neuroglancer_uint64_sharded.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/neuroglancer_uint64_sharded/neuroglancer_uint64_sharded_test.cc
4f887a6430414cd6088e1743555015b10f116d50
84a69cff-dda7-4779-a36a-8b037048acc0
cpp
google/tensorstore
murmurhash3
tensorstore/kvstore/neuroglancer_uint64_sharded/murmurhash3.cc
tensorstore/kvstore/neuroglancer_uint64_sharded/murmurhash3_test.cc
#include "tensorstore/kvstore/neuroglancer_uint64_sharded/murmurhash3.h" #include <cstdint> namespace tensorstore { namespace neuroglancer_uint64_sharded { namespace { constexpr uint32_t MurmurHash3_x86_128Mix(uint32_t h) { h ^= h >> 16; h *= 0x85ebca6b; h ^= h >> 13; h *= 0xc2b2ae35; h ^= h >> 16; return h; } constexpr uint32_t RotateLeft(uint32_t x, int r) { return (x << r) | (x >> (32 - r)); } } void MurmurHash3_x86_128Hash64Bits(uint64_t input, uint32_t h[4]) { uint64_t h1 = h[0], h2 = h[1], h3 = h[2], h4 = h[3]; const uint32_t c1 = 0x239b961b; const uint32_t c2 = 0xab0e9789; const uint32_t c3 = 0x38b34ae5; const uint32_t low = static_cast<uint32_t>(input); const uint32_t high = input >> 32; uint32_t k2 = high * c2; k2 = RotateLeft(k2, 16); k2 *= c3; h2 ^= k2; uint32_t k1 = low * c1; k1 = RotateLeft(k1, 15); k1 *= c2; h1 ^= k1; const uint32_t len = 8; h1 ^= len; h2 ^= len; h3 ^= len; h4 ^= len; h1 += h2; h1 += h3; h1 += h4; h2 += h1; h3 += h1; h4 += h1; h1 = MurmurHash3_x86_128Mix(h1); h2 = MurmurHash3_x86_128Mix(h2); h3 = MurmurHash3_x86_128Mix(h3); h4 = MurmurHash3_x86_128Mix(h4); h1 += h2; h1 += h3; h1 += h4; h2 += h1; h3 += h1; h4 += h1; h[0] = h1; h[1] = h2; h[2] = h3; h[3] = h4; } } }
#include "tensorstore/kvstore/neuroglancer_uint64_sharded/murmurhash3.h" #include <cstdint> #include <gmock/gmock.h> #include <gtest/gtest.h> namespace { using ::tensorstore::neuroglancer_uint64_sharded::MurmurHash3_x86_128Hash64Bits; TEST(MurmurHash3Test, Basic) { uint32_t h[4]; h[0] = h[1] = h[2] = h[3] = 0; MurmurHash3_x86_128Hash64Bits(0, h); EXPECT_THAT(h, ::testing::ElementsAre(0x00000000e028ae41, 0x000000004772b084, 0x000000004772b084, 0x000000004772b084)); h[0] = h[1] = h[2] = h[3] = 1; MurmurHash3_x86_128Hash64Bits(0, h); EXPECT_THAT(h, ::testing::ElementsAre(0x000000005ad58a7e, 0x0000000054337108, 0x0000000054337108, 0x0000000054337108)); h[0] = h[1] = h[2] = h[3] = 2; MurmurHash3_x86_128Hash64Bits(0, h); EXPECT_THAT(h, ::testing::ElementsAre(0x0000000064010da2, 0x0000000062e8bc17, 0x0000000062e8bc17, 0x0000000062e8bc17)); h[0] = h[1] = h[2] = h[3] = 0; MurmurHash3_x86_128Hash64Bits(1, h); EXPECT_THAT(h, ::testing::ElementsAre(0x0000000016d4ce9a, 0x00000000e8bd67d6, 0x00000000e8bd67d6, 0x00000000e8bd67d6)); h[0] = h[1] = h[2] = h[3] = 1; MurmurHash3_x86_128Hash64Bits(1, h); EXPECT_THAT(h, ::testing::ElementsAre(0x000000004b7ab8c6, 0x00000000eb555955, 0x00000000eb555955, 0x00000000eb555955)); h[0] = h[1] = h[2] = h[3] = 2; MurmurHash3_x86_128Hash64Bits(1, h); EXPECT_THAT(h, ::testing::ElementsAre(0x00000000eb2301be, 0x0000000048e12494, 0x0000000048e12494, 0x0000000048e12494)); h[0] = h[1] = h[2] = h[3] = 0; MurmurHash3_x86_128Hash64Bits(42, h); EXPECT_THAT(h, ::testing::ElementsAre(0x000000005119f47a, 0x00000000c20b94f9, 0x00000000c20b94f9, 0x00000000c20b94f9)); h[0] = h[1] = h[2] = h[3] = 1; MurmurHash3_x86_128Hash64Bits(42, h); EXPECT_THAT(h, ::testing::ElementsAre(0x00000000d6b51bca, 0x00000000a25ad86b, 0x00000000a25ad86b, 0x00000000a25ad86b)); h[0] = h[1] = h[2] = h[3] = 2; MurmurHash3_x86_128Hash64Bits(42, h); EXPECT_THAT(h, ::testing::ElementsAre(0x000000002d83d9c7, 0x00000000082115eb, 0x00000000082115eb, 0x00000000082115eb)); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/neuroglancer_uint64_sharded/murmurhash3.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/neuroglancer_uint64_sharded/murmurhash3_test.cc
4f887a6430414cd6088e1743555015b10f116d50
8367ff2e-15a0-4c35-9cf2-3c250ad2a825
cpp
google/tensorstore
coordinator_server
tensorstore/kvstore/ocdbt/distributed/coordinator_server.cc
tensorstore/kvstore/ocdbt/distributed/coordinator_server_test.cc
#include "tensorstore/kvstore/ocdbt/distributed/coordinator_server.h" #include <stddef.h> #include <stdint.h> #include <functional> #include <iterator> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/log/absl_log.h" #include "absl/meta/type_traits.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "absl/types/compare.h" #include "grpcpp/security/server_credentials.h" #include "grpcpp/server.h" #include "grpcpp/server_builder.h" #include "grpcpp/server_context.h" #include "grpcpp/support/server_callback.h" #include "tensorstore/internal/container/heterogeneous_container.h" #include "tensorstore/internal/container/intrusive_red_black_tree.h" #include "tensorstore/internal/grpc/peer_address.h" #include "tensorstore/internal/grpc/utils.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/json_binding/std_array.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/kvstore/ocdbt/distributed/coordinator.grpc.pb.h" #include "tensorstore/kvstore/ocdbt/distributed/coordinator.pb.h" #include "tensorstore/kvstore/ocdbt/distributed/rpc_security.h" #include "tensorstore/kvstore/ocdbt/distributed/rpc_security_registry.h" #include "tensorstore/proto/encode_time.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace ocdbt { namespace { ABSL_CONST_INIT internal_log::VerboseFlag ocdbt_logging("ocdbt"); struct LeaseNode; using LeaseTree = internal::intrusive_red_black_tree::Tree<LeaseNode>; struct LeaseNode : public LeaseTree::NodeBase { std::string key; std::string owner; absl::Time expiration_time; uint64_t lease_id; }; } namespace jb = ::tensorstore::internal_json_binding; TENSORSTORE_DEFINE_JSON_DEFAULT_BINDER( CoordinatorServer::Spec, jb::Object( jb::Member("security", jb::Projection<&CoordinatorServer::Spec::security>( internal_ocdbt::RpcSecurityMethodJsonBinder)), jb::Member("bind_addresses", jb::Projection<&CoordinatorServer::Spec::bind_addresses>( jb::DefaultInitializedValue())))); CoordinatorServer::CoordinatorServer() = default; CoordinatorServer::~CoordinatorServer() = default; CoordinatorServer::CoordinatorServer(CoordinatorServer&&) = default; CoordinatorServer& CoordinatorServer::operator=(CoordinatorServer&&) = default; class CoordinatorServer::Impl : public internal_ocdbt::grpc_gen::Coordinator::CallbackService { public: std::vector<int> listening_ports_; std::unique_ptr<grpc::Server> server_; internal_ocdbt::RpcSecurityMethod::Ptr security_; Clock clock_; grpc::ServerUnaryReactor* RequestLease( grpc::CallbackServerContext* context, const internal_ocdbt::grpc_gen::LeaseRequest* request, internal_ocdbt::grpc_gen::LeaseResponse* response) override; void PurgeExpiredLeases() ABSL_EXCLUSIVE_LOCKS_REQUIRED(mutex_); absl::Mutex mutex_; LeaseTree leases_by_expiration_time_ ABSL_GUARDED_BY(mutex_); using LeaseSet = internal::HeterogeneousHashSet<std::unique_ptr<LeaseNode>, std::string_view, &LeaseNode::key>; LeaseSet leases_by_key_ ABSL_GUARDED_BY(mutex_); }; span<const int> CoordinatorServer::ports() const { return impl_->listening_ports_; } int CoordinatorServer::port() const { return impl_->listening_ports_.front(); } void CoordinatorServer::Impl::PurgeExpiredLeases() { auto now = clock_(); for (LeaseTree::iterator it = leases_by_expiration_time_.begin(), next; it != leases_by_expiration_time_.end() && it->expiration_time < now; it = next) { next = std::next(it); LeaseNode& node = *it; leases_by_expiration_time_.Remove(node); leases_by_key_.erase(node.key); } } grpc::ServerUnaryReactor* CoordinatorServer::Impl::RequestLease( grpc::CallbackServerContext* context, const internal_ocdbt::grpc_gen::LeaseRequest* request, internal_ocdbt::grpc_gen::LeaseResponse* response) { auto* reactor = context->DefaultReactor(); if (auto status = security_->ValidateServerRequest(context); !status.ok()) { reactor->Finish(internal::AbslStatusToGrpcStatus(status)); return reactor; } auto peer_address = internal::GetGrpcPeerAddressAndPort(context); if (!peer_address.ok()) { reactor->Finish(grpc::Status(grpc::StatusCode::INTERNAL, std::string(peer_address.status().message()))); ABSL_LOG_IF(INFO, ocdbt_logging) << "Coordinator: internal error: request=" << *request; return reactor; } TENSORSTORE_ASSIGN_OR_RETURN( auto lease_duration, internal::ProtoToAbslDuration(request->lease_duration()), (reactor->Finish(grpc::Status( grpc::StatusCode::INVALID_ARGUMENT, tensorstore::StrCat("Invalid lease duration: ", _.message()))), reactor)); { absl::MutexLock lock(&mutex_); PurgeExpiredLeases(); LeaseNode* node; bool assign_new_lease = false; bool renew_lease = false; if (auto it = leases_by_key_.find(request->key()); it != leases_by_key_.end()) { node = it->get(); if (request->has_renew_lease_id() && request->renew_lease_id() == node->lease_id) { leases_by_expiration_time_.Remove(*node); renew_lease = true; } else if (request->has_uncooperative_lease_id() && request->uncooperative_lease_id() == node->lease_id) { leases_by_expiration_time_.Remove(*node); assign_new_lease = true; } } else { auto new_node = std::make_unique<LeaseNode>(); new_node->key = request->key(); node = new_node.get(); leases_by_key_.insert(std::move(new_node)); assign_new_lease = true; } if (assign_new_lease || renew_lease) { auto cur_time = clock_(); node->expiration_time = cur_time + lease_duration; if (assign_new_lease) { node->lease_id = static_cast<uint64_t>( absl::ToInt64Nanoseconds(cur_time - absl::UnixEpoch())); node->owner = tensorstore::StrCat(peer_address->first, ":", request->cooperator_port()); } response->set_is_owner(true); leases_by_expiration_time_.FindOrInsert( [&](LeaseNode& other) { return node->expiration_time > other.expiration_time ? absl::weak_ordering::greater : absl::weak_ordering::less; }, [&] { return node; }); } response->set_owner(node->owner); internal::AbslTimeToProto(node->expiration_time, response->mutable_expiration_time()); response->set_lease_id(node->lease_id); } ABSL_LOG_IF(INFO, ocdbt_logging) << "Coordinator: request=" << *request << ", response=" << *response; reactor->Finish(grpc::Status()); return reactor; } Result<CoordinatorServer> CoordinatorServer::Start(Options options) { auto impl = std::make_unique<Impl>(); if (options.clock) { impl->clock_ = std::move(options.clock); } else { impl->clock_ = [] { return absl::Now(); }; } impl->security_ = options.spec.security; if (!impl->security_) { impl->security_ = internal_ocdbt::GetInsecureRpcSecurityMethod(); } grpc::ServerBuilder builder; builder.RegisterService(impl.get()); auto creds = impl->security_->GetServerCredentials(); if (options.spec.bind_addresses.empty()) { options.spec.bind_addresses.push_back("[::]:0"); } impl->listening_ports_.resize(options.spec.bind_addresses.size()); for (size_t i = 0; i < options.spec.bind_addresses.size(); ++i) { builder.AddListeningPort(options.spec.bind_addresses[i], creds, &impl->listening_ports_[i]); } impl->server_ = builder.BuildAndStart(); CoordinatorServer server; server.impl_ = std::move(impl); return server; } } }
#include "tensorstore/kvstore/ocdbt/distributed/coordinator_server.h" #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/absl_log.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "grpcpp/create_channel.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/ocdbt/distributed/btree_node_identifier.h" #include "tensorstore/kvstore/ocdbt/distributed/coordinator.grpc.pb.h" #include "tensorstore/kvstore/ocdbt/distributed/lease_cache_for_cooperator.h" #include "tensorstore/kvstore/ocdbt/distributed/rpc_security.h" #include "tensorstore/util/future.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::KeyRange; using ::tensorstore::internal_ocdbt::BtreeNodeIdentifier; using ::tensorstore::internal_ocdbt_cooperator::LeaseCacheForCooperator; using ::tensorstore::ocdbt::CoordinatorServer; class CoordinatorServerTest : public ::testing::Test { protected: absl::Time cur_time; CoordinatorServer server_; LeaseCacheForCooperator lease_cache; void SetUp() override { auto security = ::tensorstore::internal_ocdbt::GetInsecureRpcSecurityMethod(); CoordinatorServer::Options options; options.spec.security = security; options.spec.bind_addresses.push_back("localhost:0"); options.clock = [this] { return cur_time; }; TENSORSTORE_CHECK_OK_AND_ASSIGN( server_, CoordinatorServer::Start(std::move(options))); std::string address = tensorstore::StrCat("localhost:", server_.port()); auto channel = ::grpc::CreateChannel(address, security->GetClientCredentials()); if (!channel->WaitForConnected( absl::ToChronoTime(absl::Now() + absl::Milliseconds(100)))) { ABSL_LOG(WARNING) << "Failed to connect to coordinator after 100ms: " << address; } LeaseCacheForCooperator::Options lease_cache_options; lease_cache_options.clock = {}; lease_cache_options.cooperator_port = 42; lease_cache_options.coordinator_stub = tensorstore::internal_ocdbt::grpc_gen::Coordinator::NewStub( std::move(channel)); lease_cache_options.security = security; lease_cache = LeaseCacheForCooperator(std::move(lease_cache_options)); } }; TEST_F(CoordinatorServerTest, Basic) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto lease_info, lease_cache .GetLease("key", BtreeNodeIdentifier{1, KeyRange{"abc", "def"}}) .result()); EXPECT_FALSE(lease_info->peer_stub); EXPECT_THAT(lease_info->peer_address, ::testing::MatchesRegex(".*:42")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/ocdbt/distributed/coordinator_server.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/ocdbt/distributed/coordinator_server_test.cc
4f887a6430414cd6088e1743555015b10f116d50
d2e0d6b4-ac57-4181-aa0e-9c667da975dc
cpp
google/tensorstore
coalesce_kvstore
tensorstore/kvstore/ocdbt/io/coalesce_kvstore.cc
tensorstore/kvstore/ocdbt/io/coalesce_kvstore_test.cc
#include "tensorstore/kvstore/ocdbt/io/coalesce_kvstore.h" #include <stddef.h> #include <algorithm> #include <cassert> #include <cstring> #include <limits> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_set.h" #include "absl/hash/hash.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorstore/internal/flat_cord_builder.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/internal/thread/schedule_at.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/driver.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/supported_features.h" #include "tensorstore/transaction.h" #include "tensorstore/util/execution/any_receiver.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/garbage_collection.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_ocdbt { namespace { ABSL_CONST_INIT internal_log::VerboseFlag ocdbt_logging("ocdbt"); absl::Cord DeepCopyCord(const absl::Cord& cord) { if (std::optional<absl::string_view> flat = cord.TryFlat(); flat.has_value()) { return absl::Cord(*flat); } internal::FlatCordBuilder builder(cord.size(), false); for (absl::string_view s : cord.Chunks()) { builder.Append(s); } return std::move(builder).Build(); } absl::Cord MaybeDeepCopyCord(absl::Cord cord) { if (cord.EstimatedMemoryUsage() > (cord.size() * 1.2)) { return DeepCopyCord(cord); } return cord; } struct PendingRead : public internal::AtomicReferenceCount<PendingRead> { kvstore::Key key; struct Op { kvstore::ReadOptions options; Promise<kvstore::ReadResult> promise; }; std::vector<Op> pending_ops; }; struct PendingReadEq { using is_transparent = void; inline bool operator()(const PendingRead& a, const PendingRead& b) const { return a.key == b.key; } inline bool operator()(std::string_view a, std::string_view b) const { return a == b; } inline bool operator()(const PendingRead& a, std::string_view b) const { return a.key == b; } inline bool operator()(std::string_view a, const PendingRead& b) const { return a == b.key; } inline bool operator()(std::string_view a, const internal::IntrusivePtr<PendingRead>& b) const { return b == nullptr ? false : PendingReadEq{}(a, *b); } inline bool operator()(const internal::IntrusivePtr<PendingRead>& a, std::string_view b) const { return a == nullptr ? false : PendingReadEq{}(*a, b); } inline bool operator()(const internal::IntrusivePtr<PendingRead>& a, const internal::IntrusivePtr<PendingRead>& b) const { return a->key == b->key; } }; struct PendingReadHash { using is_transparent = void; size_t operator()(std::string_view k) const { return absl::HashOf(k); } size_t operator()(const internal::IntrusivePtr<PendingRead>& k) const { return absl::HashOf(k->key); } }; class CoalesceKvStoreDriver final : public kvstore::Driver { public: explicit CoalesceKvStoreDriver(kvstore::DriverPtr base, size_t threshold, size_t merged_threshold, absl::Duration interval, Executor executor) : base_(std::move(base)), threshold_(threshold), merged_threshold_(merged_threshold), interval_(interval), thread_pool_executor_(std::move(executor)) {} ~CoalesceKvStoreDriver() override = default; Future<ReadResult> Read(Key key, ReadOptions options = {}) override; Future<TimestampedStorageGeneration> Write(Key key, std::optional<Value> value, WriteOptions options) override { return base_->Write(std::move(key), std::move(value), std::move(options)); } absl::Status ReadModifyWrite(internal::OpenTransactionPtr& transaction, size_t& phase, Key key, ReadModifyWriteSource& source) override { return base_->ReadModifyWrite(transaction, phase, std::move(key), source); } absl::Status TransactionalDeleteRange( const internal::OpenTransactionPtr& transaction, KeyRange range) override { return base_->TransactionalDeleteRange(transaction, std::move(range)); } Future<const void> DeleteRange(KeyRange range) override { return base_->DeleteRange(std::move(range)); } void ListImpl(ListOptions options, ListReceiver receiver) override { return base_->ListImpl(std::move(options), std::move(receiver)); } std::string DescribeKey(std::string_view key) override { return base_->DescribeKey(key); } Result<kvstore::DriverSpecPtr> GetBoundSpec() const override { return base_->GetBoundSpec(); } kvstore::SupportedFeatures GetSupportedFeatures( const KeyRange& key_range) const final { return base_->GetSupportedFeatures(key_range); } void GarbageCollectionVisit( garbage_collection::GarbageCollectionVisitor& visitor) const override { return base_->GarbageCollectionVisit(visitor); } void StartNextRead(internal::IntrusivePtr<PendingRead> state_ptr); private: kvstore::DriverPtr base_; size_t threshold_; size_t merged_threshold_; absl::Duration interval_; Executor thread_pool_executor_; absl::Mutex mu_; absl::flat_hash_set<internal::IntrusivePtr<PendingRead>, PendingReadHash, PendingReadEq> pending_ ABSL_GUARDED_BY(mu_); }; Future<kvstore::ReadResult> CoalesceKvStoreDriver::Read(Key key, ReadOptions options) { internal::IntrusivePtr<PendingRead> state_ptr; { absl::MutexLock l(&mu_); auto it = pending_.find(std::string_view(key)); if (it != pending_.end()) { auto& state = *it; auto op = PromiseFuturePair<ReadResult>::Make(); state->pending_ops.emplace_back( PendingRead::Op{std::move(options), std::move(op.promise)}); return std::move(op.future); } else { state_ptr = internal::MakeIntrusivePtr<PendingRead>(); state_ptr->key = key; bool inserted; std::tie(it, inserted) = pending_.insert(state_ptr); if (interval_ != absl::ZeroDuration()) { internal::ScheduleAt( absl::Now() + interval_, [self = internal::IntrusivePtr<CoalesceKvStoreDriver>(this), state = std::move(state_ptr)] { auto& executor = self->thread_pool_executor_; executor([self = std::move(self), state = std::move(state)] { self->StartNextRead(std::move(state)); }); }); auto& state = *it; auto op = PromiseFuturePair<ReadResult>::Make(); state->pending_ops.emplace_back( PendingRead::Op{std::move(options), std::move(op.promise)}); return std::move(op.future); } } } auto future = base_->Read(key, std::move(options)); future.ExecuteWhenReady( [self = internal::IntrusivePtr<CoalesceKvStoreDriver>(this), state = std::move(state_ptr)](ReadyFuture<ReadResult>) { auto& executor = self->thread_pool_executor_; executor([self = std::move(self), state = std::move(state)] { self->StartNextRead(std::move(state)); }); }); return future; } struct MergeValue { kvstore::ReadOptions options; struct Entry { OptionalByteRangeRequest byte_range; Promise<kvstore::ReadResult> promise; }; std::vector<Entry> subreads; }; void OnReadComplete(MergeValue merge_values, ReadyFuture<kvstore::ReadResult> ready) { if (!ready.result().ok() || !ready.value().has_value() || merge_values.subreads.size() == 1) { for (const auto& e : merge_values.subreads) { e.promise.SetResult(ready.result()); } } else { kvstore::ReadResult result = ready.value(); absl::Cord value = std::move(result.value); for (const auto& e : merge_values.subreads) { size_t request_start, request_size; if (e.byte_range.inclusive_min < 0) { request_start = value.size() + e.byte_range.inclusive_min; } else { request_start = e.byte_range.inclusive_min - merge_values.options.byte_range.inclusive_min; } if (e.byte_range.exclusive_max == -1) { request_size = std::numeric_limits<size_t>::max(); } else { request_size = e.byte_range.exclusive_max - e.byte_range.inclusive_min; } result.value = MaybeDeepCopyCord(value.Subcord(request_start, request_size)); e.promise.SetResult(result); } } } void CoalesceKvStoreDriver::StartNextRead( internal::IntrusivePtr<PendingRead> state_ptr) { std::vector<PendingRead::Op> pending; { absl::MutexLock l(&mu_); if (state_ptr->pending_ops.empty()) { pending_.erase(state_ptr->key); return; } else { std::swap(pending, state_ptr->pending_ops); } } if (interval_ != absl::ZeroDuration()) { internal::ScheduleAt( absl::Now() + interval_, [self = internal::IntrusivePtr<CoalesceKvStoreDriver>(this), state = state_ptr] { auto& executor = self->thread_pool_executor_; executor([self = std::move(self), state = std::move(state)] { self->StartNextRead(std::move(state)); }); }); } std::sort(pending.begin(), pending.end(), [](const auto& a, const auto& b) { return std::tie(a.options.generation_conditions.if_equal.value, a.options.generation_conditions.if_not_equal.value, a.options.byte_range.inclusive_min, a.options.byte_range.exclusive_max) < std::tie(b.options.generation_conditions.if_equal.value, b.options.generation_conditions.if_not_equal.value, b.options.byte_range.inclusive_min, b.options.byte_range.exclusive_max); }); kvstore::Key key = state_ptr->key; MergeValue merged; const auto& first_pending = pending.front(); merged.options = first_pending.options; merged.subreads.emplace_back( MergeValue::Entry{std::move(first_pending.options.byte_range), std::move(first_pending.promise)}); for (size_t i = 1; i < pending.size(); ++i) { auto& e = pending[i]; if (e.options.generation_conditions.if_equal != merged.options.generation_conditions.if_equal || e.options.generation_conditions.if_not_equal != merged.options.generation_conditions.if_not_equal || (e.options.byte_range.inclusive_min < 0) != (merged.options.byte_range.inclusive_min < 0)) { assert(!merged.subreads.empty()); auto f = base_->Read(key, merged.options); f.ExecuteWhenReady( [merged = std::move(merged)](ReadyFuture<kvstore::ReadResult> ready) { OnReadComplete(std::move(merged), std::move(ready)); }); merged = MergeValue{}; merged.options = e.options; } else if (merged.options.byte_range.exclusive_max != -1 && ((e.options.byte_range.inclusive_min - merged.options.byte_range.exclusive_max > threshold_) || (merged_threshold_ > 0 && merged.options.byte_range.size() > merged_threshold_))) { assert(!merged.subreads.empty()); auto f = base_->Read(key, merged.options); f.ExecuteWhenReady( [merged = std::move(merged)](ReadyFuture<kvstore::ReadResult> ready) { OnReadComplete(std::move(merged), std::move(ready)); }); merged = MergeValue{}; merged.options = e.options; } else { merged.options.staleness_bound = std::max(merged.options.staleness_bound, e.options.staleness_bound); merged.options.byte_range.inclusive_min = std::min(merged.options.byte_range.inclusive_min, e.options.byte_range.inclusive_min); if (merged.options.byte_range.exclusive_max != -1) { if (e.options.byte_range.exclusive_max != -1) { merged.options.byte_range.exclusive_max = std::max(merged.options.byte_range.exclusive_max, e.options.byte_range.exclusive_max); } else { merged.options.byte_range.exclusive_max = -1; } } } merged.subreads.emplace_back(MergeValue::Entry{ std::move(e.options.byte_range), std::move(e.promise)}); } assert(!merged.subreads.empty()); auto f = base_->Read(key, merged.options); f.ExecuteWhenReady( [self = internal::IntrusivePtr<CoalesceKvStoreDriver>(this), merged = std::move(merged), state = std::move(state_ptr)](ReadyFuture<kvstore::ReadResult> ready) { auto& executor = self->thread_pool_executor_; executor([self = std::move(self), merged = std::move(merged), state = std::move(state), ready = std::move(ready)] { OnReadComplete(std::move(merged), std::move(ready)); if (self->interval_ == absl::ZeroDuration()) { self->StartNextRead(std::move(state)); } }); }); } } kvstore::DriverPtr MakeCoalesceKvStoreDriver(kvstore::DriverPtr base, size_t threshold, size_t merged_threshold, absl::Duration interval, Executor executor) { ABSL_LOG_IF(INFO, ocdbt_logging) << "Coalescing reads with threshold: " << threshold << ", merged_threshold: " << merged_threshold << ", interval: " << interval; return internal::MakeIntrusivePtr<CoalesceKvStoreDriver>( std::move(base), threshold, merged_threshold, interval, std::move(executor)); } } }
#include "tensorstore/kvstore/ocdbt/io/coalesce_kvstore.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/cord.h" #include "absl/time/time.h" #include "tensorstore/internal/thread/thread_pool.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/mock_kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/util/status_testutil.h" namespace { namespace kvstore = ::tensorstore::kvstore; using ::tensorstore::Context; using ::tensorstore::OptionalByteRangeRequest; using ::tensorstore::internal::MockKeyValueStore; using ::tensorstore::internal_ocdbt::MakeCoalesceKvStoreDriver; using ::tensorstore::kvstore::ReadOptions; TEST(CoalesceKvstoreTest, SimpleRead) { auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto base_store, kvstore::Open("memory: auto mock_key_value_store = MockKeyValueStore::Make(); auto coalesce_driver = MakeCoalesceKvStoreDriver( mock_key_value_store, 100, 0, absl::ZeroDuration(), tensorstore::internal::DetachedThreadPool(1)); auto write_future = kvstore::Write(coalesce_driver, "a", absl::Cord("a")); write_future.Force(); { auto req = mock_key_value_store->write_requests.pop(); EXPECT_EQ("a", req.key); req(base_store.driver); } auto read_future = kvstore::Read(coalesce_driver, "a"); read_future.Force(); { auto req = mock_key_value_store->read_requests.pop(); EXPECT_EQ("a", req.key); req(base_store.driver); } ASSERT_TRUE(read_future.result().has_value()); ASSERT_TRUE(read_future.result().value().has_value()); EXPECT_EQ(read_future.result().value().value, absl::Cord("a")); } TEST(CoalesceKvstoreTest, ReadWithThreshold) { auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto base_store, kvstore::Open("memory: auto mock_key_value_store = MockKeyValueStore::Make(); auto coalesce_driver = MakeCoalesceKvStoreDriver( mock_key_value_store, 1, 0, absl::ZeroDuration(), tensorstore::internal::DetachedThreadPool(1)); auto write_future = kvstore::Write(coalesce_driver, "a", absl::Cord("0123456789")); write_future.Force(); { auto req = mock_key_value_store->write_requests.pop(); EXPECT_EQ("a", req.key); req(base_store.driver); } ReadOptions ro1, ro2, ro3, ro4; ro1.byte_range = OptionalByteRangeRequest(0, 1); ro2.byte_range = OptionalByteRangeRequest(2, 3); ro3.byte_range = OptionalByteRangeRequest(4, 5); ro4.byte_range = OptionalByteRangeRequest(7, 8); auto read_future1 = kvstore::Read(coalesce_driver, "a", ro1); auto read_future2 = kvstore::Read(coalesce_driver, "a", ro2); auto read_future3 = kvstore::Read(coalesce_driver, "a", ro3); auto read_future4 = kvstore::Read(coalesce_driver, "a", ro4); { auto req = mock_key_value_store->read_requests.pop(); EXPECT_EQ("a", req.key); EXPECT_EQ(req.options.byte_range, ro1.byte_range); req(base_store.driver); } TENSORSTORE_EXPECT_OK(read_future1.result()); EXPECT_EQ(read_future1.result().value().value, absl::Cord("0")); { auto req = mock_key_value_store->read_requests.pop(); EXPECT_EQ("a", req.key); EXPECT_EQ(req.options.byte_range, OptionalByteRangeRequest(2, 5)); req(base_store.driver); } TENSORSTORE_EXPECT_OK(read_future2.result()); EXPECT_EQ(read_future2.result().value().value, absl::Cord("2")); TENSORSTORE_EXPECT_OK(read_future3.result()); EXPECT_EQ(read_future3.result().value().value, absl::Cord("4")); { auto req = mock_key_value_store->read_requests.pop(); EXPECT_EQ("a", req.key); EXPECT_EQ(req.options.byte_range, OptionalByteRangeRequest(7, 8)); req(base_store.driver); } TENSORSTORE_EXPECT_OK(read_future4.result()); EXPECT_EQ(read_future4.result().value().value, absl::Cord("7")); } TEST(CoalesceKvstoreTest, ReadWithMergedThreshold) { auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto base_store, kvstore::Open("memory: auto mock_key_value_store = MockKeyValueStore::Make(); auto coalesce_driver = MakeCoalesceKvStoreDriver( mock_key_value_store, 1, 2, absl::ZeroDuration(), tensorstore::internal::DetachedThreadPool(1)); auto write_future = kvstore::Write(coalesce_driver, "a", absl::Cord("0123456789")); write_future.Force(); { auto req = mock_key_value_store->write_requests.pop(); EXPECT_EQ("a", req.key); req(base_store.driver); } ReadOptions ro1, ro2, ro3, ro4, ro5; ro1.byte_range = OptionalByteRangeRequest(0, 1); ro2.byte_range = OptionalByteRangeRequest(2, 3); ro3.byte_range = OptionalByteRangeRequest(4, 5); ro4.byte_range = OptionalByteRangeRequest(6, 7); ro5.byte_range = OptionalByteRangeRequest(8, 9); auto read_future1 = kvstore::Read(coalesce_driver, "a", ro1); auto read_future2 = kvstore::Read(coalesce_driver, "a", ro2); auto read_future3 = kvstore::Read(coalesce_driver, "a", ro3); auto read_future4 = kvstore::Read(coalesce_driver, "a", ro4); auto read_future5 = kvstore::Read(coalesce_driver, "a", ro5); { auto req = mock_key_value_store->read_requests.pop(); EXPECT_EQ("a", req.key); EXPECT_EQ(req.options.byte_range, ro1.byte_range); req(base_store.driver); } TENSORSTORE_EXPECT_OK(read_future1.result()); EXPECT_EQ(read_future1.result().value().value, absl::Cord("0")); { auto req = mock_key_value_store->read_requests.pop(); EXPECT_EQ("a", req.key); EXPECT_EQ(req.options.byte_range, OptionalByteRangeRequest(2, 5)); req(base_store.driver); } TENSORSTORE_EXPECT_OK(read_future2.result()); EXPECT_EQ(read_future2.result().value().value, absl::Cord("2")); TENSORSTORE_EXPECT_OK(read_future3.result()); EXPECT_EQ(read_future3.result().value().value, absl::Cord("4")); { auto req = mock_key_value_store->read_requests.pop(); EXPECT_EQ("a", req.key); EXPECT_EQ(req.options.byte_range, OptionalByteRangeRequest(6, 9)); req(base_store.driver); } TENSORSTORE_EXPECT_OK(read_future4.result()); EXPECT_EQ(read_future4.result().value().value, absl::Cord("6")); TENSORSTORE_EXPECT_OK(read_future5.result()); EXPECT_EQ(read_future5.result().value().value, absl::Cord("8")); } TEST(CoalesceKvstoreTest, ReadWithInterval) { auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto base_store, kvstore::Open("memory: auto mock_key_value_store = MockKeyValueStore::Make(); auto coalesce_driver = MakeCoalesceKvStoreDriver( mock_key_value_store, 1, 0, absl::Milliseconds(10), tensorstore::internal::DetachedThreadPool(1)); auto write_future = kvstore::Write(coalesce_driver, "a", absl::Cord("0123456789")); write_future.Force(); { auto req = mock_key_value_store->write_requests.pop(); EXPECT_EQ("a", req.key); req(base_store.driver); } ReadOptions ro1, ro2, ro3, ro4; ro1.byte_range = OptionalByteRangeRequest(0, 1); ro2.byte_range = OptionalByteRangeRequest(2, 3); ro3.byte_range = OptionalByteRangeRequest(4, 5); ro4.byte_range = OptionalByteRangeRequest(7, 8); auto read_future1 = kvstore::Read(coalesce_driver, "a", ro1); auto read_future2 = kvstore::Read(coalesce_driver, "a", ro2); auto read_future3 = kvstore::Read(coalesce_driver, "a", ro3); auto read_future4 = kvstore::Read(coalesce_driver, "a", ro4); { auto req = mock_key_value_store->read_requests.pop(); EXPECT_EQ("a", req.key); EXPECT_EQ(req.options.byte_range, OptionalByteRangeRequest(0, 5)); req(base_store.driver); } TENSORSTORE_EXPECT_OK(read_future1.result()); EXPECT_EQ(read_future1.result().value().value, absl::Cord("0")); TENSORSTORE_EXPECT_OK(read_future2.result()); EXPECT_EQ(read_future2.result().value().value, absl::Cord("2")); TENSORSTORE_EXPECT_OK(read_future3.result()); EXPECT_EQ(read_future3.result().value().value, absl::Cord("4")); { auto req = mock_key_value_store->read_requests.pop(); EXPECT_EQ("a", req.key); EXPECT_EQ(req.options.byte_range, OptionalByteRangeRequest(7, 8)); req(base_store.driver); } TENSORSTORE_EXPECT_OK(read_future4.result()); EXPECT_EQ(read_future4.result().value().value, absl::Cord("7")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/ocdbt/io/coalesce_kvstore.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/ocdbt/io/coalesce_kvstore_test.cc
4f887a6430414cd6088e1743555015b10f116d50
750c58e8-c353-449d-8065-8f1bc4edfbe2
cpp
google/tensorstore
indirect_data_writer
tensorstore/kvstore/ocdbt/io/indirect_data_writer.cc
tensorstore/kvstore/ocdbt/io/indirect_data_writer_test.cc
#include "tensorstore/kvstore/ocdbt/io/indirect_data_writer.h" #include <stddef.h> #include <cassert> #include <string> #include <utility> #include "absl/base/attributes.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/synchronization/mutex.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/internal/metrics/histogram.h" #include "tensorstore/internal/metrics/metadata.h" #include "tensorstore/internal/mutex.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/ocdbt/format/data_file_id.h" #include "tensorstore/kvstore/ocdbt/format/indirect_data_reference.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/util/future.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_ocdbt { namespace { auto& indirect_data_writer_histogram = internal_metrics::Histogram<internal_metrics::DefaultBucketer>::New( "/tensorstore/kvstore/ocdbt/indirect_data_write_size", internal_metrics::MetricMetadata( "Histogram of OCDBT buffered write sizes.", internal_metrics::Units::kBytes)); ABSL_CONST_INIT internal_log::VerboseFlag ocdbt_logging("ocdbt"); } class IndirectDataWriter : public internal::AtomicReferenceCount<IndirectDataWriter> { public: explicit IndirectDataWriter(kvstore::KvStore kvstore, std::string prefix, size_t target_size) : kvstore_(std::move(kvstore)), prefix_(std::move(prefix)), target_size_(target_size) {} kvstore::KvStore kvstore_; std::string prefix_; size_t target_size_; absl::Mutex mutex_; size_t in_flight_ = 0; bool flush_requested_ = false; absl::Cord buffer_; Promise<void> promise_; DataFileId data_file_id_; }; void intrusive_ptr_increment(IndirectDataWriter* p) { intrusive_ptr_increment( static_cast<internal::AtomicReferenceCount<IndirectDataWriter>*>(p)); } void intrusive_ptr_decrement(IndirectDataWriter* p) { intrusive_ptr_decrement( static_cast<internal::AtomicReferenceCount<IndirectDataWriter>*>(p)); } namespace { void MaybeFlush(IndirectDataWriter& self, UniqueWriterLock<absl::Mutex> lock) { bool buffer_at_target = self.target_size_ > 0 && self.buffer_.size() >= self.target_size_; ABSL_LOG_IF(INFO, ocdbt_logging) << "MaybeFlush: flush_requested=" << self.flush_requested_ << ", in_flight=" << self.in_flight_ << ", buffer_at_target=" << buffer_at_target; if (buffer_at_target) { } else if (!self.flush_requested_ || self.in_flight_ > 0) { return; } self.in_flight_++; self.flush_requested_ = false; Promise<void> promise = std::exchange(self.promise_, {}); absl::Cord buffer = std::exchange(self.buffer_, {}); DataFileId data_file_id = self.data_file_id_; lock.unlock(); indirect_data_writer_histogram.Observe(buffer.size()); ABSL_LOG_IF(INFO, ocdbt_logging) << "Flushing " << buffer.size() << " bytes to " << data_file_id; auto write_future = kvstore::Write(self.kvstore_, data_file_id.FullPath(), std::move(buffer)); write_future.Force(); write_future.ExecuteWhenReady( [promise = std::move(promise), data_file_id = std::move(data_file_id), self = internal::IntrusivePtr<IndirectDataWriter>(&self)]( ReadyFuture<TimestampedStorageGeneration> future) { auto& r = future.result(); ABSL_LOG_IF(INFO, ocdbt_logging) << "Done flushing data to " << data_file_id << ": " << r.status(); if (!r.ok()) { promise.SetResult(r.status()); } else if (StorageGeneration::IsUnknown(r->generation)) { promise.SetResult(absl::UnavailableError("Non-unique file id")); } else { promise.SetResult(absl::OkStatus()); } UniqueWriterLock lock{self->mutex_}; assert(self->in_flight_ > 0); self->in_flight_--; MaybeFlush(*self, std::move(lock)); }); } } Future<const void> Write(IndirectDataWriter& self, absl::Cord data, IndirectDataReference& ref) { ABSL_LOG_IF(INFO, ocdbt_logging) << "Write indirect data: size=" << data.size(); if (data.empty()) { ref.file_id = DataFileId{}; ref.offset = 0; ref.length = 0; return absl::OkStatus(); } UniqueWriterLock lock{self.mutex_}; Future<const void> future; if (self.promise_.null() || (future = self.promise_.future()).null()) { self.data_file_id_ = GenerateDataFileId(self.prefix_); auto p = PromiseFuturePair<void>::Make(); self.promise_ = std::move(p.promise); future = std::move(p.future); self.promise_.ExecuteWhenForced( [self = internal::IntrusivePtr<IndirectDataWriter>(&self)]( Promise<void> promise) { ABSL_LOG_IF(INFO, ocdbt_logging) << "Force called"; UniqueWriterLock lock{self->mutex_}; if (!HaveSameSharedState(promise, self->promise_)) return; self->flush_requested_ = true; MaybeFlush(*self, std::move(lock)); }); } ref.file_id = self.data_file_id_; ref.offset = self.buffer_.size(); ref.length = data.size(); self.buffer_.Append(std::move(data)); if (self.target_size_ > 0 && self.buffer_.size() >= self.target_size_) { MaybeFlush(self, std::move(lock)); } return future; } IndirectDataWriterPtr MakeIndirectDataWriter(kvstore::KvStore kvstore, std::string prefix, size_t target_size) { return internal::MakeIntrusivePtr<IndirectDataWriter>( std::move(kvstore), std::move(prefix), target_size); } } }
#include "tensorstore/kvstore/ocdbt/io/indirect_data_writer.h" #include <algorithm> #include <cstring> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/cord.h" #include "tensorstore/internal/flat_cord_builder.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/memory/memory_key_value_store.h" #include "tensorstore/kvstore/mock_kvstore.h" #include "tensorstore/kvstore/ocdbt/format/indirect_data_reference.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/util/future.h" #include "tensorstore/util/status_testutil.h" using ::tensorstore::Future; using ::tensorstore::internal::FlatCordBuilder; using ::tensorstore::internal::MockKeyValueStore; using ::tensorstore::internal_ocdbt::IndirectDataReference; using ::tensorstore::internal_ocdbt::MakeIndirectDataWriter; using ::tensorstore::internal_ocdbt::Write; namespace { absl::Cord GetCord(size_t size) { FlatCordBuilder cord_builder(size); memset(cord_builder.data(), 0x37, cord_builder.size()); return std::move(cord_builder).Build(); } template <typename T> std::vector<std::string> ListEntriesToFiles(T& entries) { std::vector<std::string> files; files.reserve(entries.size()); for (auto& e : entries) { files.push_back(std::move(e.key)); } std::sort(files.begin(), files.end()); return files; } TEST(IndirectDataWriter, UnlimitedSize) { auto data = GetCord(260); auto memory_store = tensorstore::GetMemoryKeyValueStore(); auto mock_key_value_store = MockKeyValueStore::Make(); auto writer = MakeIndirectDataWriter( tensorstore::kvstore::KvStore(mock_key_value_store), "d/", 0); std::vector<Future<const void>> futures; std::vector<std::string> refs; for (int i = 0; i < 1000; ++i) { IndirectDataReference ref; auto f = Write(*writer, data, ref); if (refs.empty() || refs.back() != ref.file_id.FullPath()) { refs.push_back(ref.file_id.FullPath()); } f.Force(); futures.push_back(std::move(f)); } std::sort(refs.begin(), refs.end()); EXPECT_THAT(refs, ::testing::SizeIs(::testing::Eq(2))); while (!mock_key_value_store->write_requests.empty()) { EXPECT_THAT(mock_key_value_store->write_requests.size(), ::testing::Eq(1)); auto r = mock_key_value_store->write_requests.pop(); r(memory_store); } for (auto& f : futures) { TENSORSTORE_ASSERT_OK(f.status()); } TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto entries, tensorstore::kvstore::ListFuture(memory_store.get()).result()); auto files = ListEntriesToFiles(entries); EXPECT_THAT(files, ::testing::SizeIs(2)); EXPECT_THAT(files, ::testing::ElementsAreArray(refs)); } TEST(IndirectDataWriter, LimitedSize) { constexpr size_t kTargetSize = 1024; auto data = GetCord(260); auto memory_store = tensorstore::GetMemoryKeyValueStore(); auto mock_key_value_store = MockKeyValueStore::Make(); auto writer = MakeIndirectDataWriter( tensorstore::kvstore::KvStore(mock_key_value_store), "d/", kTargetSize); std::vector<Future<const void>> futures; std::vector<std::string> refs; for (int i = 0; i < 1000; ++i) { IndirectDataReference ref; auto f = Write(*writer, data, ref); EXPECT_THAT(ref.offset, testing::Le(kTargetSize)); if (refs.empty() || refs.back() != ref.file_id.FullPath()) { refs.push_back(ref.file_id.FullPath()); } f.Force(); futures.push_back(std::move(f)); } std::sort(refs.begin(), refs.end()); EXPECT_THAT(refs, ::testing::SizeIs(::testing::Ge(250))); EXPECT_THAT(mock_key_value_store->write_requests.size(), ::testing::Gt(1)); while (!mock_key_value_store->write_requests.empty()) { auto r = mock_key_value_store->write_requests.pop(); r(memory_store); } for (auto& f : futures) { TENSORSTORE_ASSERT_OK(f.status()); } TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto entries, tensorstore::kvstore::ListFuture(memory_store.get()).result()); auto files = ListEntriesToFiles(entries); EXPECT_THAT(files, ::testing::SizeIs(refs.size())); EXPECT_THAT(files, ::testing::ElementsAreArray(refs)); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/ocdbt/io/indirect_data_writer.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/ocdbt/io/indirect_data_writer_test.cc
4f887a6430414cd6088e1743555015b10f116d50
f41746de-0a2d-465c-afe8-d44b6c3c4991
cpp
google/tensorstore
read_version
tensorstore/kvstore/ocdbt/non_distributed/read_version.cc
tensorstore/kvstore/ocdbt/read_version_test.cc
#include "tensorstore/kvstore/ocdbt/non_distributed/read_version.h" #include <cassert> #include <memory> #include <utility> #include <variant> #include "absl/base/attributes.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/str_format.h" #include "absl/time/time.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/kvstore/ocdbt/format/indirect_data_reference.h" #include "tensorstore/kvstore/ocdbt/format/manifest.h" #include "tensorstore/kvstore/ocdbt/format/version_tree.h" #include "tensorstore/kvstore/ocdbt/io_handle.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future.h" #include "tensorstore/util/status.h" namespace tensorstore { namespace internal_ocdbt { namespace { ABSL_CONST_INIT internal_log::VerboseFlag ocdbt_logging("ocdbt"); struct ReadVersionOperation : public internal::AtomicReferenceCount<ReadVersionOperation> { using Ptr = internal::IntrusivePtr<ReadVersionOperation>; using PromiseType = Promise<BtreeGenerationReference>; ReadonlyIoHandle::Ptr io_handle; VersionSpec version_spec; absl::Time staleness_bound; static Future<BtreeGenerationReference> Start(ReadonlyIoHandle::Ptr io_handle, VersionSpec version_spec, absl::Time staleness_bound) { auto op = internal::MakeIntrusivePtr<ReadVersionOperation>(); op->io_handle = std::move(io_handle); op->version_spec = version_spec; op->staleness_bound = staleness_bound; auto [promise, future] = PromiseFuturePair<BtreeGenerationReference>::Make(); RequestManifest(std::move(op), std::move(promise), absl::InfinitePast()); return std::move(future); } static void RequestManifest(ReadVersionOperation::Ptr op, PromiseType promise, absl::Time staleness_bound) { auto* op_ptr = op.get(); LinkValue( WithExecutor(op_ptr->io_handle->executor, [op = std::move(op)]( PromiseType promise, ReadyFuture<const ManifestWithTime> future) mutable { ManifestReady(std::move(op), std::move(promise), future.value()); }), std::move(promise), op_ptr->io_handle->GetManifest(staleness_bound)); } static void ManifestReady(ReadVersionOperation::Ptr op, PromiseType promise, const ManifestWithTime& manifest_with_time) { if (!manifest_with_time.manifest || CompareVersionSpecToVersion( op->version_spec, manifest_with_time.manifest->latest_version()) > 0) { if (manifest_with_time.time < op->staleness_bound) { auto staleness_bound = op->staleness_bound; RequestManifest(std::move(op), std::move(promise), staleness_bound); return; } if (!manifest_with_time.manifest || IsVersionSpecExact(op->version_spec)) { op->VersionNotPresent(promise); return; } } const auto& manifest = *manifest_with_time.manifest; if (CompareVersionSpecToVersion(op->version_spec, manifest.versions.front()) >= 0) { if (auto* ref = internal_ocdbt::FindVersion(manifest.versions, op->version_spec)) { promise.SetResult(*ref); return; } op->VersionNotPresent(promise); return; } auto* ref = internal_ocdbt::FindVersion( manifest.config.version_tree_arity_log2, manifest.version_tree_nodes, op->version_spec); if (!ref) { op->VersionNotPresent(promise); return; } LookupNodeReference(std::move(op), std::move(promise), *ref); } void VersionNotPresent(const PromiseType& promise) { promise.SetResult(absl::NotFoundError(absl::StrFormat( "Version where %s not present", FormatVersionSpec(version_spec)))); } static void LookupNodeReference(ReadVersionOperation::Ptr op, PromiseType promise, const VersionNodeReference& node_ref) { ABSL_LOG_IF(INFO, ocdbt_logging) << "ReadVersion: " << FormatVersionSpec(op->version_spec) << ", node_ref=" << node_ref; auto read_future = op->io_handle->GetVersionTreeNode(node_ref.location); auto executor = op->io_handle->executor; LinkValue(WithExecutor(std::move(executor), NodeReadyCallback{std::move(op), node_ref}), std::move(promise), std::move(read_future)); } struct NodeReadyCallback { ReadVersionOperation::Ptr op; VersionNodeReference node_ref; void operator()( PromiseType promise, ReadyFuture<const std::shared_ptr<const VersionTreeNode>> read_future) { auto node = read_future.value(); auto* config = op->io_handle->config_state->GetExistingConfig(); assert(config); TENSORSTORE_RETURN_IF_ERROR( ValidateVersionTreeNodeReference( *node, *config, node_ref.generation_number, node_ref.height), static_cast<void>(promise.SetResult(_))); if (node->height > 0) { VisitInteriorNode(std::move(op), *node, std::move(promise)); } else { VisitLeafNode(std::move(op), *node, std::move(promise)); } } }; static void VisitInteriorNode(ReadVersionOperation::Ptr op, const VersionTreeNode& node, PromiseType promise) { auto& entries = std::get<VersionTreeNode::InteriorNodeEntries>(node.entries); auto* config = op->io_handle->config_state->GetExistingConfig(); assert(config); auto* node_ref = internal_ocdbt::FindVersion( config->version_tree_arity_log2, entries, op->version_spec); if (!node_ref) { op->VersionNotPresent(std::move(promise)); return; } LookupNodeReference(std::move(op), std::move(promise), *node_ref); } static void VisitLeafNode(ReadVersionOperation::Ptr op, const VersionTreeNode& node, PromiseType promise) { auto& entries = std::get<VersionTreeNode::LeafNodeEntries>(node.entries); auto* ref = internal_ocdbt::FindVersion(entries, op->version_spec); if (!ref) { op->VersionNotPresent(std::move(promise)); return; } promise.SetResult(*ref); } }; } Future<BtreeGenerationReference> ReadVersion(ReadonlyIoHandle::Ptr io_handle, VersionSpec version_spec, absl::Time staleness_bound) { if (const GenerationNumber* generation_number = std::get_if<GenerationNumber>(&version_spec)) { if (*generation_number == 0) { return absl::InvalidArgumentError("Generation number must be positive"); } } return ReadVersionOperation::Start(std::move(io_handle), version_spec, std::move(staleness_bound)); } } }
#include "tensorstore/kvstore/ocdbt/non_distributed/read_version.h" #include <stddef.h> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_format.h" #include <nlohmann/json.hpp> #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/ocdbt/driver.h" #include "tensorstore/kvstore/ocdbt/format/version_tree.h" #include "tensorstore/kvstore/ocdbt/non_distributed/create_new_manifest.h" #include "tensorstore/kvstore/ocdbt/non_distributed/list_versions.h" #include "tensorstore/kvstore/ocdbt/test_util.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/test_util.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status_testutil.h" namespace { namespace kvstore = ::tensorstore::kvstore; using ::tensorstore::MatchesStatus; using ::tensorstore::span; using ::tensorstore::internal::UniqueNow; using ::tensorstore::internal_ocdbt::BtreeGenerationReference; using ::tensorstore::internal_ocdbt::CommitTime; using ::tensorstore::internal_ocdbt::CommitTimeUpperBound; using ::tensorstore::internal_ocdbt::EnsureExistingManifest; using ::tensorstore::internal_ocdbt::GenerationNumber; using ::tensorstore::internal_ocdbt::GetOcdbtIoHandle; using ::tensorstore::internal_ocdbt::ListVersionsFuture; using ::tensorstore::internal_ocdbt::ListVersionsOptions; using ::tensorstore::internal_ocdbt::OcdbtDriver; using ::tensorstore::internal_ocdbt::ReadManifest; using ::tensorstore::internal_ocdbt::ReadVersion; void TestVersioning(::nlohmann::json config_json, size_t num_writes) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto ocdbt_store, kvstore::Open( {{"driver", "ocdbt"}, {"config", config_json}, {"base", "memory: .result()); auto io_handle = GetOcdbtIoHandle(*ocdbt_store.driver); std::vector<BtreeGenerationReference> generations; TENSORSTORE_ASSERT_OK(EnsureExistingManifest(io_handle)); { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto manifest, ReadManifest(static_cast<OcdbtDriver&>(*ocdbt_store.driver))); ASSERT_TRUE(manifest); ASSERT_EQ(1, manifest->latest_generation()); generations.push_back(manifest->latest_version()); } for (int i = 0; i < num_writes; ++i) { UniqueNow(absl::Nanoseconds(2)); TENSORSTORE_ASSERT_OK( kvstore::Write(ocdbt_store, "a", absl::Cord(tensorstore::StrCat(i)))); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto manifest, ReadManifest(static_cast<OcdbtDriver&>(*ocdbt_store.driver))); ASSERT_TRUE(manifest); ASSERT_EQ(i + 2, manifest->latest_generation()); generations.push_back(manifest->latest_version()); } TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto manifest, ReadManifest(static_cast<OcdbtDriver&>(*ocdbt_store.driver))); ASSERT_TRUE(manifest); SCOPED_TRACE(tensorstore::StrCat(*manifest)); { ListVersionsOptions list_versions_options; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto final_generations, ListVersionsFuture(io_handle, list_versions_options).result()); EXPECT_EQ(generations, final_generations); } for (size_t version_i = 0; version_i < generations.size(); ++version_i) { const auto& version = generations[version_i]; EXPECT_THAT(ReadVersion(io_handle, version.generation_number).result(), ::testing::Optional(version)); EXPECT_THAT(ReadVersion(io_handle, version.commit_time).result(), ::testing::Optional(version)); EXPECT_THAT( ReadVersion(io_handle, CommitTimeUpperBound{version.commit_time}) .result(), ::testing::Optional(version)); { CommitTime newer_commit_time = version.commit_time; newer_commit_time.value++; EXPECT_THAT( ReadVersion(io_handle, CommitTimeUpperBound{newer_commit_time}) .result(), ::testing::Optional(version)); } } EXPECT_THAT(ReadVersion(io_handle, GenerationNumber(0)).result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( ReadVersion(io_handle, generations.back().generation_number + 1).result(), MatchesStatus(absl::StatusCode::kNotFound)); { CommitTime newer_commit_time = generations.back().commit_time; newer_commit_time.value++; EXPECT_THAT(ReadVersion(io_handle, newer_commit_time).result(), MatchesStatus(absl::StatusCode::kNotFound)); } { CommitTime older_commit_time = generations.front().commit_time; older_commit_time.value--; EXPECT_THAT(ReadVersion(io_handle, older_commit_time).result(), MatchesStatus(absl::StatusCode::kNotFound)); EXPECT_THAT(ReadVersion(io_handle, CommitTimeUpperBound{older_commit_time}) .result(), MatchesStatus(absl::StatusCode::kNotFound)); } for (ptrdiff_t version_i = -1; version_i <= generations.size(); ++version_i) { SCOPED_TRACE(absl::StrFormat("version_i=%d", version_i)); GenerationNumber generation_number = static_cast<GenerationNumber>(version_i + 1); CommitTime intermediate_commit_time, exact_commit_time; if (version_i == -1) { exact_commit_time = generations[0].commit_time; --exact_commit_time.value; intermediate_commit_time = exact_commit_time; } else if (version_i < generations.size()) { exact_commit_time = generations[0].commit_time; intermediate_commit_time = exact_commit_time; intermediate_commit_time.value--; } else { exact_commit_time = generations.back().commit_time; exact_commit_time.value++; intermediate_commit_time = exact_commit_time; } { auto expected_generations = span(generations).subspan(std::max(ptrdiff_t(0), version_i)); { ListVersionsOptions list_versions_options; list_versions_options.min_generation_number = generation_number; EXPECT_THAT( ListVersionsFuture(io_handle, list_versions_options).result(), ::testing::Optional( ::testing::ElementsAreArray(expected_generations))); } { ListVersionsOptions list_versions_options; list_versions_options.min_commit_time = exact_commit_time; EXPECT_THAT( ListVersionsFuture(io_handle, list_versions_options).result(), ::testing::Optional( ::testing::ElementsAreArray(expected_generations))); } { ListVersionsOptions list_versions_options; list_versions_options.min_commit_time = intermediate_commit_time; EXPECT_THAT( ListVersionsFuture(io_handle, list_versions_options).result(), ::testing::Optional( ::testing::ElementsAreArray(expected_generations))); } } { auto expected_generations = span(generations) .subspan(0, std::min(ptrdiff_t(generations.size()), version_i + 1)); { ListVersionsOptions list_versions_options; list_versions_options.max_generation_number = generation_number; EXPECT_THAT( ListVersionsFuture(io_handle, list_versions_options).result(), ::testing::Optional( ::testing::ElementsAreArray(expected_generations))); } { ListVersionsOptions list_versions_options; list_versions_options.max_commit_time = exact_commit_time; EXPECT_THAT( ListVersionsFuture(io_handle, list_versions_options).result(), ::testing::Optional( ::testing::ElementsAreArray(expected_generations))); } { auto expected_generations = span(generations).subspan(0, std::max(ptrdiff_t(0), version_i)); ListVersionsOptions list_versions_options; list_versions_options.max_commit_time = intermediate_commit_time; EXPECT_THAT( ListVersionsFuture(io_handle, list_versions_options).result(), ::testing::Optional( ::testing::ElementsAreArray(expected_generations))); } } } } TEST(ReadVersionTest, VersionTreeArityLog2_1) { TestVersioning({{"version_tree_arity_log2", 1}}, 10); } TEST(ReadVersionTest, VersionTreeArityLog2_2) { TestVersioning({{"version_tree_arity_log2", 2}}, 10); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/ocdbt/non_distributed/read_version.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/ocdbt/read_version_test.cc
4f887a6430414cd6088e1743555015b10f116d50
189ba346-65b2-4a18-9e26-4f064de7f3b7
cpp
google/tensorstore
dump
tensorstore/kvstore/ocdbt/format/dump.cc
tensorstore/kvstore/ocdbt/format/dump_test.cc
#include "tensorstore/kvstore/ocdbt/format/dump.h" #include <map> #include <string> #include <string_view> #include <type_traits> #include <utility> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/escaping.h" #include <nlohmann/json.hpp> #include "re2/re2.h" #include "tensorstore/internal/json/value_as.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/json_binding/std_array.h" #include "tensorstore/internal/json_binding/std_variant.h" #include "tensorstore/internal/path.h" #include "tensorstore/internal/uri_utils.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/kvstore/ocdbt/config.h" #include "tensorstore/kvstore/ocdbt/format/btree.h" #include "tensorstore/kvstore/ocdbt/format/indirect_data_reference.h" #include "tensorstore/kvstore/ocdbt/format/manifest.h" #include "tensorstore/kvstore/ocdbt/format/version_tree.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_ocdbt { Result<LabeledIndirectDataReference> LabeledIndirectDataReference::Parse( std::string_view s) { LabeledIndirectDataReference r; static LazyRE2 kPattern = {"([^:]+):([^:]*):([^:]*):([0-9]+):([0-9]+)"}; std::string_view label, encoded_base_path, encoded_relative_path; if (!RE2::FullMatch(s, *kPattern, &label, &encoded_base_path, &encoded_relative_path, &r.location.offset, &r.location.length)) { return absl::InvalidArgumentError(tensorstore::StrCat( "Invalid indirect data reference: ", tensorstore::QuoteString(s))); } TENSORSTORE_ASSIGN_OR_RETURN(r.kind, ParseIndirectDataKind(label)); r.location.file_id.base_path = internal::PercentDecode(encoded_base_path); r.location.file_id.relative_path = internal::PercentDecode(encoded_relative_path); TENSORSTORE_RETURN_IF_ERROR(r.location.Validate(false)); return r; } namespace { namespace jb = tensorstore::internal_json_binding; constexpr auto ConfigBinder = jb::Compose<ConfigConstraints>( [](auto is_loading, const auto& options, auto* obj, auto* constraints) { if constexpr (is_loading) { CreateConfig(constraints, *obj); if (ConfigConstraints(*obj) != *constraints) { return absl::InvalidArgumentError("Config is not fully specified"); } } else { *constraints = ConfigConstraints(*obj); } return absl::OkStatus(); }); static inline constexpr internal::AsciiSet kLabeledIndirectDataReferenceUnreservedChars{ "abcdefghijklmnopqrstuvwxyz" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "0123456789" "-_./"}; constexpr auto LabeledIndirectDataReferenceBinder = [](auto is_loading, const auto& options, auto* obj, auto* j) { if constexpr (is_loading) { if (auto* s = j->template get_ptr<const std::string*>()) { TENSORSTORE_ASSIGN_OR_RETURN(*obj, LabeledIndirectDataReference::Parse(*s)); } else { return internal_json::ExpectedError(*j, "string"); } } else { if (obj->location.IsMissing()) { *j = ::nlohmann::json::value_t::discarded; } else { *j = tensorstore::StrCat( IndirectDataKindToString(obj->kind), ":", internal::PercentEncodeReserved( obj->location.file_id.base_path, kLabeledIndirectDataReferenceUnreservedChars), ":", internal::PercentEncodeReserved( obj->location.file_id.relative_path, kLabeledIndirectDataReferenceUnreservedChars), ":", obj->location.offset, ":", obj->location.length); } } return absl::OkStatus(); }; constexpr auto IndirectDataReferenceBinder(IndirectDataKind kind) { return jb::Compose<LabeledIndirectDataReference>( [kind](auto is_loading, const auto& options, auto* obj, auto* j) { if constexpr (is_loading) { *obj = j->location; } else { j->location = *obj; j->kind = kind; } return absl::OkStatus(); }, LabeledIndirectDataReferenceBinder); } constexpr auto CommitTimeBinder = jb::Projection<&CommitTime::value>(); constexpr auto BtreeNodeStatisticsBinder = jb::Object( jb::Member( "num_indirect_value_bytes", jb::Projection<&BtreeNodeStatistics::num_indirect_value_bytes>()), jb::Member("num_tree_bytes", jb::Projection<&BtreeNodeStatistics::num_tree_bytes>()), jb::Member("num_keys", jb::Projection<&BtreeNodeStatistics::num_keys>())); constexpr auto BtreeNodeReferenceBinder = jb::Object( jb::Member("location", jb::Projection<&BtreeNodeReference::location>( IndirectDataReferenceBinder(IndirectDataKind::kBtreeNode))), jb::Member("statistics", jb::Projection<&BtreeNodeReference::statistics>( BtreeNodeStatisticsBinder))); constexpr auto BtreeGenerationReferenceBinder = jb::Object( jb::Member("root", jb::Projection<&BtreeGenerationReference::root>( BtreeNodeReferenceBinder)), jb::Member("generation_number", jb::Projection<&BtreeGenerationReference::generation_number>()), jb::Member("root_height", jb::Projection<&BtreeGenerationReference::root_height>()), jb::Member("commit_time", jb::Projection<&BtreeGenerationReference::commit_time>( CommitTimeBinder))); constexpr auto VersionNodeReferenceBinder = jb::Object( jb::Member("location", jb::Projection<&VersionNodeReference::location>( IndirectDataReferenceBinder( IndirectDataKind::kVersionNode))), jb::Member("generation_number", jb::Projection<&VersionNodeReference::generation_number>()), jb::Member("height", jb::Projection<&VersionNodeReference::height>()), jb::Member("num_generations", jb::Projection<&VersionNodeReference::num_generations>()), jb::Member( "commit_time", jb::Projection<&VersionNodeReference::commit_time>(CommitTimeBinder))); constexpr auto ManifestBinder = jb::Object( jb::Member("config", jb::Projection<&Manifest::config>(ConfigBinder)), jb::Member("versions", jb::Projection<&Manifest::versions>( jb::Array(BtreeGenerationReferenceBinder))), jb::Member("version_tree_nodes", jb::Projection<&Manifest::version_tree_nodes>( jb::Array(VersionNodeReferenceBinder)))); constexpr auto BinaryCordBinder = [](auto is_loading, const auto& options, auto* obj, auto* j) { if constexpr (is_loading) { if (auto* b = j->template get_ptr<const ::nlohmann::json::binary_t*>()) { *obj = absl::Cord(std::string_view( reinterpret_cast<const char*>(b->data()), b->size())); return absl::OkStatus(); } else if (auto* s = j->template get_ptr<const std::string*>()) { *obj = absl::Cord(*s); return absl::OkStatus(); } else { return internal_json::ExpectedError(*j, "string or byte string"); } } else { ::nlohmann::json::binary_t v; v.reserve(obj->size()); for (std::string_view chunk : obj->Chunks()) { v.insert(v.end(), chunk.begin(), chunk.end()); } *j = std::move(v); return absl::OkStatus(); } }; constexpr auto LeafNodeValueReferenceBinder = jb::Variant( jb::Member("inline_value", BinaryCordBinder), jb::Member("indirect_value", IndirectDataReferenceBinder(IndirectDataKind::kValue))); constexpr auto BtreeLeafNodeEntryBinder(std::string_view key_prefix) { return [=](std::false_type is_loading, const auto& options, auto* obj, auto* j) { ::nlohmann::json::binary_t key; key.insert(key.end(), key_prefix.begin(), key_prefix.end()); key.insert(key.end(), obj->key.begin(), obj->key.end()); ::nlohmann::json::object_t x{{"key", key}}; TENSORSTORE_RETURN_IF_ERROR(LeafNodeValueReferenceBinder( std::false_type{}, IncludeDefaults{}, &obj->value_reference, &x)); *j = std::move(x); return absl::OkStatus(); }; } constexpr auto BtreeInteriorNodeEntryBinder(std::string_view key_prefix) { return [=](std::false_type is_loading, const auto& options, auto* obj, auto* j) { ::nlohmann::json::binary_t key; key.insert(key.end(), key_prefix.begin(), key_prefix.end()); key.insert(key.end(), obj->key.begin(), obj->key.end()); auto common_prefix = key; common_prefix.resize(obj->subtree_common_prefix_length + key_prefix.size()); ::nlohmann::json::object_t x; TENSORSTORE_RETURN_IF_ERROR(BtreeNodeReferenceBinder( std::false_type{}, IncludeDefaults{}, &obj->node, &x)); x["key"] = key; x["subtree_common_prefix"] = common_prefix; *j = std::move(x); return absl::OkStatus(); }; } constexpr auto BtreeNodeBinder = jb::Object( jb::Member("height", jb::Projection<&BtreeNode::height>()), jb::Member("entries", [](auto is_loading, const auto& options, auto* obj, auto* j) { return jb::Variant( jb::Array(BtreeLeafNodeEntryBinder(obj->key_prefix)), jb::Array(BtreeInteriorNodeEntryBinder(obj->key_prefix)))( is_loading, options, &obj->entries, j); })); constexpr auto VersionTreeNodeBinder = jb::Object( jb::Member("height", jb::Projection<&VersionTreeNode::height>()), jb::Member("version_tree_arity_log2", jb::Projection<&VersionTreeNode::version_tree_arity_log2>()), jb::Member("entries", jb::Projection<&VersionTreeNode::entries>(jb::Variant( jb::Array(BtreeGenerationReferenceBinder), jb::Array(VersionNodeReferenceBinder))))); } ::nlohmann::json Dump(const Manifest& manifest) { return jb::ToJson(manifest, ManifestBinder).value(); } ::nlohmann::json Dump(const BtreeNode& node) { return jb::ToJson(node, BtreeNodeBinder).value(); } ::nlohmann::json Dump(const VersionTreeNode& node) { return jb::ToJson(node, VersionTreeNodeBinder).value(); } } }
#include "tensorstore/kvstore/ocdbt/format/dump.h" #include <string_view> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/cord.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/json_gtest.h" #include "tensorstore/kvstore/ocdbt/format/btree.h" #include "tensorstore/kvstore/ocdbt/format/config.h" #include "tensorstore/kvstore/ocdbt/format/indirect_data_reference.h" #include "tensorstore/kvstore/ocdbt/format/manifest.h" #include "tensorstore/kvstore/ocdbt/format/version_tree.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::MatchesJson; using ::tensorstore::MatchesStatus; using ::tensorstore::internal_ocdbt::BtreeNode; using ::tensorstore::internal_ocdbt::CommitTime; using ::tensorstore::internal_ocdbt::DataFileId; using ::tensorstore::internal_ocdbt::Dump; using ::tensorstore::internal_ocdbt::IndirectDataKind; using ::tensorstore::internal_ocdbt::IndirectDataReference; using ::tensorstore::internal_ocdbt::LabeledIndirectDataReference; using ::tensorstore::internal_ocdbt::Manifest; TEST(LabeledIndirectDataReferenceTest, ParseBtreeNode) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto value, LabeledIndirectDataReference::Parse("btreenode:abc:def%20:1:36")); EXPECT_EQ(IndirectDataKind::kBtreeNode, value.kind); EXPECT_EQ((DataFileId{"abc", "def "}), value.location.file_id); EXPECT_EQ(1, value.location.offset); EXPECT_EQ(36, value.location.length); } TEST(LabeledIndirectDataReferenceTest, ParseValue) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto value, LabeledIndirectDataReference::Parse("value:abc:def%20:1:36")); EXPECT_EQ(IndirectDataKind::kValue, value.kind); EXPECT_EQ((DataFileId{"abc", "def "}), value.location.file_id); EXPECT_EQ(1, value.location.offset); EXPECT_EQ(36, value.location.length); } TEST(LabeledIndirectDataReferenceTest, ParseVersionNode) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto value, LabeledIndirectDataReference::Parse("versionnode:abc:def%20:1:36")); EXPECT_EQ(IndirectDataKind::kVersionNode, value.kind); EXPECT_EQ((DataFileId{"abc", "def "}), value.location.file_id); EXPECT_EQ(1, value.location.offset); EXPECT_EQ(36, value.location.length); } TEST(LabeledIndirectDataReferenceTest, MaxOffset) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto value, LabeledIndirectDataReference::Parse( "btreenode:abc:def%20:9223372036854775807:0")); EXPECT_EQ(IndirectDataKind::kBtreeNode, value.kind); EXPECT_EQ((DataFileId{"abc", "def "}), value.location.file_id); EXPECT_EQ(9223372036854775807, value.location.offset); EXPECT_EQ(0, value.location.length); } TEST(LabeledIndirectDataReferenceTest, MaxOffsetAndLength) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto value, LabeledIndirectDataReference::Parse( "btreenode:abc:def%20:9223372036854775806:1")); EXPECT_EQ(IndirectDataKind::kBtreeNode, value.kind); EXPECT_EQ((DataFileId{"abc", "def "}), value.location.file_id); EXPECT_EQ(9223372036854775806, value.location.offset); EXPECT_EQ(1, value.location.length); } TEST(LabeledIndirectDataReferenceTest, OffsetTooLarge) { EXPECT_THAT( LabeledIndirectDataReference::Parse( "btreenode:abc:def%20:9223372036854775808:0"), MatchesStatus(absl::StatusCode::kDataLoss, "Invalid offset/length .*")); } TEST(LabeledIndirectDataReferenceTest, InvalidKind) { EXPECT_THAT(LabeledIndirectDataReference::Parse("abc:abc:def:0:10"), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid indirect data kind: abc")); } TEST(LabeledIndirectDataReferenceTest, LengthTooLarge) { EXPECT_THAT( LabeledIndirectDataReference::Parse( "btreenode:abc:def%20:9223372036854775807:1"), MatchesStatus(absl::StatusCode::kDataLoss, "Invalid offset/length .*")); } TEST(DumpTest, Manifest) { Manifest manifest; manifest.config.uuid = { {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}}; manifest.config.version_tree_arity_log2 = 1; { auto& x = manifest.versions.emplace_back(); x.root.location.file_id = {"abc", "def"}; x.root.location.offset = 10; x.root.location.length = 42; x.generation_number = 15; x.root.statistics.num_indirect_value_bytes = 101; x.root.statistics.num_tree_bytes = 220; x.root.statistics.num_keys = 8; x.root_height = 0; x.commit_time = CommitTime{10}; } { auto& x = manifest.version_tree_nodes.emplace_back(); x.location.file_id = {"abc", "def"}; x.location.offset = 10; x.location.length = 42; x.generation_number = 8; x.height = 3; x.commit_time = CommitTime{1}; x.num_generations = 8; } { auto& x = manifest.version_tree_nodes.emplace_back(); x.location.file_id = {"abc", "def"}; x.location.offset = 10; x.location.length = 42; x.generation_number = 12; x.height = 2; x.commit_time = CommitTime{5}; x.num_generations = 4; } { auto& x = manifest.version_tree_nodes.emplace_back(); x.location.file_id = {"abc", "def"}; x.location.offset = 10; x.location.length = 42; x.generation_number = 14; x.height = 1; x.commit_time = CommitTime{8}; x.num_generations = 2; } EXPECT_THAT(Dump(manifest), MatchesJson({ {"config", {{"uuid", "000102030405060708090a0b0c0d0e0f"}, {"compression", {{"id", "zstd"}}}, {"max_decoded_node_bytes", 8388608}, {"max_inline_value_bytes", 100}, {"version_tree_arity_log2", 1}}}, {"version_tree_nodes", {{ {"commit_time", 1}, {"generation_number", 8}, {"height", 3}, {"location", "versionnode:abc:def:10:42"}, {"num_generations", 8}, }, { {"commit_time", 5}, {"generation_number", 12}, {"height", 2}, {"location", "versionnode:abc:def:10:42"}, {"num_generations", 4}, }, { {"commit_time", 8}, {"generation_number", 14}, {"height", 1}, {"location", "versionnode:abc:def:10:42"}, {"num_generations", 2}, }}}, {"versions", {{{"commit_time", 10}, {"root", {{"location", "btreenode:abc:def:10:42"}, {"statistics", {{"num_indirect_value_bytes", 101}, {"num_keys", 8}, {"num_tree_bytes", 220}}}}}, {"generation_number", 15}, {"root_height", 0}}}}, })); } TEST(DumpTest, BtreeLeafNode) { BtreeNode node; node.height = 0; node.key_prefix = "ab"; auto& entries = node.entries.emplace<BtreeNode::LeafNodeEntries>(); entries.push_back({"c", absl::Cord("value1")}); entries.push_back({"d", absl::Cord("value2")}); entries.push_back({"e", IndirectDataReference{{"abc", "def"}, 1, 25}}); EXPECT_THAT( Dump(node), MatchesJson({ {"entries", { { {"inline_value", ::nlohmann::json::binary_t{ std::vector<uint8_t>{'v', 'a', 'l', 'u', 'e', '1'}}}, {"key", ::nlohmann::json::binary_t{std::vector<uint8_t>{ 'a', 'b', 'c'}}}, }, { {"inline_value", ::nlohmann::json::binary_t{ std::vector<uint8_t>{'v', 'a', 'l', 'u', 'e', '2'}}}, {"key", ::nlohmann::json::binary_t{std::vector<uint8_t>{ 'a', 'b', 'd'}}}, }, { {"indirect_value", "value:abc:def:1:25"}, {"key", ::nlohmann::json::binary_t{std::vector<uint8_t>{ 'a', 'b', 'e'}}}, }, }}, {"height", 0}, })); } TEST(DumpTest, BtreeInteriorNode) { BtreeNode node; node.height = 2; auto& entries = node.entries.emplace<BtreeNode::InteriorNodeEntries>(); entries.push_back({"abc", 1, { { {"abc", "def"}, 5, 6, }, { 100, 200, 5, }, }}); entries.push_back({"def", 1, { { {"ghi", "jkl"}, 42, 9, }, { 101, 220, 8, }, }}); EXPECT_THAT( Dump(node), MatchesJson({ {"entries", { {{"location", "btreenode:abc:def:5:6"}, {"key", ::nlohmann::json::binary_t{std::vector<uint8_t>{ 'a', 'b', 'c'}}}, {"subtree_common_prefix", ::nlohmann::json::binary_t{std::vector<uint8_t>{'a'}}}, { "statistics", {{"num_indirect_value_bytes", 100}, {"num_keys", 5}, {"num_tree_bytes", 200}}, }}, { {"location", "btreenode:ghi:jkl:42:9"}, {"key", ::nlohmann::json::binary_t{std::vector<uint8_t>{ 'd', 'e', 'f'}}}, {"subtree_common_prefix", ::nlohmann::json::binary_t{std::vector<uint8_t>{'d'}}}, {"statistics", {{"num_indirect_value_bytes", 101}, {"num_keys", 8}, {"num_tree_bytes", 220}}}, }, }}, {"height", 2}, })); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/ocdbt/format/dump.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/ocdbt/format/dump_test.cc
4f887a6430414cd6088e1743555015b10f116d50
618654a3-d58e-4f05-82a9-934801a00f6f
cpp
google/tensorstore
data_file_id_codec
tensorstore/kvstore/ocdbt/format/data_file_id_codec.cc
tensorstore/kvstore/ocdbt/format/data_file_id_codec_test.cc
#include "tensorstore/kvstore/ocdbt/format/data_file_id_codec.h" #include <algorithm> #include <string_view> #include <vector> #include "absl/container/flat_hash_map.h" #include "riegeli/bytes/reader.h" #include "riegeli/bytes/writer.h" #include "riegeli/varint/varint_reading.h" #include "riegeli/varint/varint_writing.h" #include "tensorstore/internal/ref_counted_string.h" #include "tensorstore/kvstore/ocdbt/format/data_file_id.h" namespace tensorstore { namespace internal_ocdbt { namespace { using PathLengthCodec = VarintCodec<PathLength>; } void DataFileTableBuilder::Add(const DataFileId& data_file_id) { data_files_.emplace(data_file_id, 0); } bool DataFileTableBuilder::Finalize(riegeli::Writer& writer) { if (!riegeli::WriteVarint64(data_files_.size(), writer)) return false; if (data_files_.empty()) return true; std::vector<DataFileId> sorted_data_files; sorted_data_files.reserve(data_files_.size()); for (const auto& p : data_files_) { sorted_data_files.push_back(p.first); } std::sort(sorted_data_files.begin(), sorted_data_files.end(), [&](const DataFileId& a, const DataFileId& b) { if (int c = std::string_view(a.base_path) .compare(std::string_view(b.base_path)); c != 0) { return c < 0; } return std::string_view(a.relative_path) < std::string_view(b.relative_path); }); std::vector<size_t> prefix_lengths(sorted_data_files.size()); prefix_lengths[0] = 0; for (size_t i = 1; i < sorted_data_files.size(); ++i) { auto& cur = sorted_data_files[i]; auto& prev = sorted_data_files[i - 1]; std::string_view prev_base_path = prev.base_path; std::string_view cur_base_path = cur.base_path; size_t prefix_length = FindCommonPrefixLength(prev_base_path, cur_base_path); if (prev_base_path.size() == cur_base_path.size() && cur_base_path.size() == prefix_length) { prefix_length += FindCommonPrefixLength(prev.relative_path, cur.relative_path); } prefix_lengths[i] = prefix_length; if (!PathLengthCodec{}(writer, prefix_length)) return false; } for (size_t i = 0; i < sorted_data_files.size(); ++i) { const auto& data_file = sorted_data_files[i]; assert(data_file.base_path.size() + data_file.relative_path.size() <= kMaxPathLength); if (!PathLengthCodec{}(writer, data_file.base_path.size() + data_file.relative_path.size() - prefix_lengths[i])) { return false; } } for (size_t i = 0; i < sorted_data_files.size(); ++i) { const auto& data_file = sorted_data_files[i]; if (!PathLengthCodec{}(writer, data_file.base_path.size())) { return false; } } for (size_t i = 0; i < sorted_data_files.size(); ++i) { const auto& data_file = sorted_data_files[i]; size_t prefix_length = prefix_lengths[i]; std::string_view base_path = data_file.base_path; size_t base_path_prefix_length = std::min(prefix_length, base_path.size()); if (!writer.Write(base_path.substr(base_path_prefix_length))) return false; std::string_view relative_path = data_file.relative_path; if (!writer.Write( relative_path.substr(prefix_length - base_path_prefix_length))) { return false; } auto it = data_files_.find(data_file); assert(it != data_files_.end()); it->second = i; } return true; } size_t DataFileTableBuilder::GetIndex(const DataFileId& data_file_id) const { return data_files_.at(data_file_id); } void DataFileTableBuilder::Clear() { data_files_.clear(); } [[nodiscard]] bool ReadDataFileTable(riegeli::Reader& reader, const BasePath& transitive_path, DataFileTable& value) { ABSL_CHECK_LE(transitive_path.size(), kMaxPathLength); std::string_view transitive_path_sv = transitive_path; const size_t max_path_length = kMaxPathLength - transitive_path_sv.size(); uint64_t num_files; if (!riegeli::ReadVarint64(reader, num_files)) return false; std::vector<PathLength> path_length_buffer; constexpr uint64_t kMaxReserve = 1024; path_length_buffer.reserve(std::min(kMaxReserve, num_files) * 3); path_length_buffer.push_back(0); for (uint64_t i = 1; i < num_files; ++i) { PathLength prefix_length; if (!PathLengthCodec{}(reader, prefix_length)) return false; path_length_buffer.push_back(prefix_length); } for (uint64_t i = 0; i < num_files; ++i) { PathLength suffix_length; if (!PathLengthCodec{}(reader, suffix_length)) return false; path_length_buffer.push_back(suffix_length); } PathLength prev_base_path_length = 0; for (uint64_t i = 0; i < num_files; ++i) { PathLength base_path_length; if (!PathLengthCodec{}(reader, base_path_length)) return false; size_t prefix_length = path_length_buffer[i]; size_t suffix_length = path_length_buffer[num_files + i]; size_t path_length = prefix_length + suffix_length; if (path_length > max_path_length) { reader.Fail(absl::DataLossError(absl::StrFormat( "path_length[%d] = prefix_length(%d) + " "suffix_length(%d) = %d > %d - transitive_length(%d) = %d", i, prefix_length, suffix_length, path_length, kMaxPathLength, transitive_path.size(), max_path_length))); return false; } if (base_path_length > path_length) { reader.Fail(absl::DataLossError(absl::StrFormat( "base_path_length[%d] = %d > path_length[%d] = %d = " "prefix_length(%d) + suffix_length(%d)", i, base_path_length, i, path_length, prefix_length, suffix_length))); return false; } if (prefix_length > std::min(prev_base_path_length, base_path_length) && base_path_length != prev_base_path_length) { reader.Fail(absl::DataLossError(absl::StrFormat( "path_prefix_length[%d] = %d > " "min(base_path_length[%d] = %d, base_path_length[%d] = %d) is not " "valid if " "base_path_length[%d] != base_path_length[%d]", i - 1, prefix_length, i - 1, prev_base_path_length, i, base_path_length, i - 1, i))); return false; } path_length_buffer.push_back(base_path_length); prev_base_path_length = base_path_length; } auto& files = value.files; files.resize(num_files); size_t prev_relative_path_length = 0; for (uint64_t i = 0; i < num_files; ++i) { size_t prefix_length = path_length_buffer[i]; size_t suffix_length = path_length_buffer[num_files + i]; size_t base_path_length = path_length_buffer[2 * num_files + i]; size_t relative_path_length = prefix_length + suffix_length - base_path_length; if (!reader.Pull(suffix_length)) return false; auto& file = files[i]; if (base_path_length == 0) { file.base_path = transitive_path; } else if (prefix_length >= base_path_length) { assert(files[i - 1].base_path.size() == base_path_length + transitive_path.size()); file.base_path = files[i - 1].base_path; prefix_length -= base_path_length; } else { internal::RefCountedStringWriter writer(base_path_length + transitive_path_sv.size()); std::memcpy(writer.data(), transitive_path_sv.data(), transitive_path_sv.size()); size_t offset = transitive_path_sv.size(); size_t base_suffix_length = base_path_length > prefix_length ? base_path_length - prefix_length : 0; if (prefix_length > 0) { std::string_view prev_base_path = files[i - 1].base_path; prev_base_path.remove_prefix(transitive_path_sv.size()); size_t base_prefix_length = std::min(prefix_length, base_path_length); assert(base_prefix_length <= prev_base_path.size()); std::memcpy(writer.data() + offset, prev_base_path.data(), base_prefix_length); offset += base_prefix_length; prefix_length -= base_prefix_length; } if (base_suffix_length) { std::memcpy(writer.data() + offset, reader.cursor(), base_suffix_length); reader.move_cursor(base_suffix_length); suffix_length -= base_suffix_length; } file.base_path = std::move(writer); } if (relative_path_length == 0) { assert(suffix_length == 0); prev_relative_path_length = 0; continue; } if (suffix_length == 0 && relative_path_length == prev_relative_path_length) { assert(file.base_path == files[i - 1].base_path); file.relative_path = files[i - 1].relative_path; continue; } internal::RefCountedStringWriter writer(relative_path_length); size_t offset = 0; if (prefix_length) { assert(file.base_path == files[i - 1].base_path); assert(prefix_length <= relative_path_length); std::memcpy(writer.data(), files[i - 1].relative_path.data(), prefix_length); offset += prefix_length; } if (suffix_length > 0) { assert(offset + suffix_length == relative_path_length); std::memcpy(writer.data() + offset, reader.cursor(), suffix_length); reader.move_cursor(suffix_length); } file.relative_path = std::move(writer); prev_relative_path_length = relative_path_length; } return true; } [[nodiscard]] bool DataFileIdCodec<riegeli::Reader>::operator()( riegeli::Reader& reader, DataFileId& value) const { uint64_t index; if (!DataFileIndexCodec{}(reader, index)) return false; if (index >= data_file_table.files.size()) { reader.Fail(absl::DataLossError( absl::StrFormat("Data file id %d is outside range [0, %d)", index, data_file_table.files.size()))); return false; } value = data_file_table.files[index]; return true; } } }
#include "tensorstore/kvstore/ocdbt/format/data_file_id_codec.h" #include <string> #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/cord.h" #include "riegeli/bytes/cord_reader.h" #include "riegeli/bytes/cord_writer.h" #include "riegeli/varint/varint_writing.h" #include "tensorstore/kvstore/ocdbt/format/data_file_id.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::MatchesStatus; using ::tensorstore::Result; using ::tensorstore::internal_ocdbt::BasePath; using ::tensorstore::internal_ocdbt::DataFileId; using ::tensorstore::internal_ocdbt::DataFileTable; using ::tensorstore::internal_ocdbt::DataFileTableBuilder; using ::tensorstore::internal_ocdbt::FinalizeReader; using ::tensorstore::internal_ocdbt::FinalizeWriter; using ::tensorstore::internal_ocdbt::kMaxPathLength; using ::tensorstore::internal_ocdbt::ReadDataFileTable; Result<absl::Cord> Encode(const DataFileTable& table) { DataFileTableBuilder builder; for (const auto& file : table.files) { builder.Add(file); } absl::Cord cord; { riegeli::CordWriter writer{&cord}; bool success = builder.Finalize(writer); TENSORSTORE_RETURN_IF_ERROR(FinalizeWriter(writer, success)); } return cord; } Result<DataFileTable> Decode(const absl::Cord& cord, const BasePath& base_path = {}) { DataFileTable new_table; { riegeli::CordReader reader{&cord}; bool success = ReadDataFileTable(reader, base_path, new_table); TENSORSTORE_RETURN_IF_ERROR(FinalizeReader(reader, success)); } return new_table; } Result<DataFileTable> RoundTrip(const DataFileTable& table, const BasePath& base_path = {}) { TENSORSTORE_ASSIGN_OR_RETURN(auto cord, Encode(table)); return Decode(cord, base_path); } TEST(DataFileBuilderTest, Empty) { DataFileTable table; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded, Encode(table)); EXPECT_EQ(1, encoded.size()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto new_table, Decode(encoded)); EXPECT_EQ(table.files, new_table.files); } TEST(DataFileBuilderTest, Simple) { DataFileTable table; table.files = { {"b", "d"}, {"a", "c"}, {"a", "b"}, {"b", "e"}, {"b", "d"}, }; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto new_table, RoundTrip(table, "")); ASSERT_THAT(new_table.files, ::testing::ElementsAreArray({ DataFileId{"a", "b"}, DataFileId{"a", "c"}, DataFileId{"b", "d"}, DataFileId{"b", "e"}, })); } TEST(DataFileBuilderTest, Prefixes) { DataFileTable table; table.files = { {"", ""}, {"", "a"}, {"", "ab"}, {"", "ac"}, {"a", ""}, {"a", "x"}, {"a", "xy"}, {"a", "xyz"}, {"ab", ""}, {"ab", "xy"}, {"ab", "xyz"}, {"ac", "xy"}, }; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto new_table, RoundTrip(table, "")); ASSERT_THAT(new_table.files, ::testing::ElementsAreArray(table.files)); } TEST(DataFileBuilderTest, AddBasePath) { DataFileTable table; table.files = { {"b", "d"}, {"a", "c"}, {"a", "b"}, {"b", "e"}, {"b", "d"}, {"", "y"}, }; BasePath base_path = "x/"; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto new_table, RoundTrip(table, base_path)); ASSERT_THAT(new_table.files, ::testing::ElementsAreArray({ DataFileId{"x/", "y"}, DataFileId{"x/a", "b"}, DataFileId{"x/a", "c"}, DataFileId{"x/b", "d"}, DataFileId{"x/b", "e"}, })); EXPECT_EQ(base_path.data(), new_table.files[0].base_path.data()); EXPECT_EQ(new_table.files[1].base_path.data(), new_table.files[2].base_path.data()); EXPECT_EQ(new_table.files[3].base_path.data(), new_table.files[4].base_path.data()); } TEST(DataFileBuilderTest, Truncated) { DataFileTable table; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded, Encode(table)); ASSERT_EQ(1, encoded.size()); EXPECT_THAT(Decode(encoded.Subcord(0, 0)), MatchesStatus(absl::StatusCode::kDataLoss)); } TEST(DataFileBuilderTest, BasePathTooLongWithPrefix) { DataFileTable table; DataFileId long_id{std::string_view(std::string(kMaxPathLength, 'x'))}; table.files = {long_id}; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded, Encode(table)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto decoded, Decode(encoded)); ASSERT_EQ(table.files, decoded.files); EXPECT_THAT(Decode(encoded, "z"), MatchesStatus(absl::StatusCode::kDataLoss, "path_length.*")); } TEST(DataFileBuilderTest, SuffixLengthTooLong) { absl::Cord encoded; riegeli::CordWriter writer{&encoded}; ASSERT_TRUE(riegeli::WriteVarint64(1, writer)); ASSERT_TRUE(riegeli::WriteVarint64(kMaxPathLength + 1, writer)); ASSERT_TRUE(writer.Close()); EXPECT_THAT(Decode(encoded), MatchesStatus(absl::StatusCode::kDataLoss, "Invalid 16-bit varint value.*")); } TEST(DataFileBuilderTest, BasePathLengthTooLong) { absl::Cord encoded; riegeli::CordWriter writer{&encoded}; ASSERT_TRUE(riegeli::WriteVarint64(1, writer)); ASSERT_TRUE(riegeli::WriteVarint64(5, writer)); ASSERT_TRUE(riegeli::WriteVarint64(65536, writer)); ASSERT_TRUE(writer.Close()); EXPECT_THAT(Decode(encoded), MatchesStatus(absl::StatusCode::kDataLoss, "Invalid 16-bit varint value.*")); } TEST(DataFileBuilderTest, PrefixLengthTooLong) { absl::Cord encoded; riegeli::CordWriter writer{&encoded}; ASSERT_TRUE(riegeli::WriteVarint64(2, writer)); ASSERT_TRUE(riegeli::WriteVarint64(kMaxPathLength + 1, writer)); ASSERT_TRUE(writer.Close()); EXPECT_THAT(Decode(encoded), MatchesStatus(absl::StatusCode::kDataLoss, "Invalid 16-bit varint value.*")); } TEST(DataFileBuilderTest, BasePathLongerThanPath) { absl::Cord encoded; riegeli::CordWriter writer{&encoded}; ASSERT_TRUE(riegeli::WriteVarint64(1, writer)); ASSERT_TRUE(riegeli::WriteVarint64(5, writer)); ASSERT_TRUE(riegeli::WriteVarint64(6, writer)); ASSERT_TRUE(writer.Close()); EXPECT_THAT(Decode(encoded), MatchesStatus(absl::StatusCode::kDataLoss, "base_path_length.*")); } TEST(DataFileBuilderTest, PrefixLengthLongerThanPrevBasePath) { absl::Cord encoded; riegeli::CordWriter writer{&encoded}; ASSERT_TRUE(riegeli::WriteVarint64(2, writer)); ASSERT_TRUE(riegeli::WriteVarint64(2, writer)); ASSERT_TRUE(riegeli::WriteVarint64(2, writer)); ASSERT_TRUE(riegeli::WriteVarint64(0, writer)); ASSERT_TRUE(riegeli::WriteVarint64(0, writer)); ASSERT_TRUE(riegeli::WriteVarint64(1, writer)); ASSERT_TRUE(writer.Close()); EXPECT_THAT(Decode(encoded), MatchesStatus(absl::StatusCode::kDataLoss, "path_prefix_length.*")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/ocdbt/format/data_file_id_codec.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/ocdbt/format/data_file_id_codec_test.cc
4f887a6430414cd6088e1743555015b10f116d50
753e4b82-adbd-4336-a554-86e584815eb5
cpp
google/tensorstore
btree
tensorstore/kvstore/ocdbt/format/btree.cc
tensorstore/kvstore/ocdbt/format/btree_test.cc
#include "tensorstore/kvstore/ocdbt/format/btree.h" #include <algorithm> #include <cassert> #include <cstring> #include <limits> #include <memory> #include <ostream> #include <string> #include <string_view> #include <variant> #include <vector> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_format.h" #include "riegeli/bytes/reader.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/kvstore/ocdbt/format/btree_codec.h" #include "tensorstore/kvstore/ocdbt/format/codec_util.h" #include "tensorstore/kvstore/ocdbt/format/config.h" #include "tensorstore/kvstore/ocdbt/format/data_file_id_codec.h" #include "tensorstore/kvstore/ocdbt/format/indirect_data_reference.h" #include "tensorstore/kvstore/ocdbt/format/indirect_data_reference_codec.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_ocdbt { namespace { bool ReadKeyPrefixLengths(riegeli::Reader& reader, span<KeyLength> prefix_lengths, KeyLength& common_prefix_length) { KeyLength min_prefix_length = kMaxKeyLength; for (auto& prefix_length : prefix_lengths) { if (!KeyLengthCodec{}(reader, prefix_length)) return false; min_prefix_length = std::min(min_prefix_length, prefix_length); } common_prefix_length = min_prefix_length; return true; } bool ReadKeySuffixLengths(riegeli::Reader& reader, span<KeyLength> suffix_lengths) { for (auto& length : suffix_lengths) { if (!KeyLengthCodec{}(reader, length)) return false; } return true; } template <typename Entry> bool ReadKeys(riegeli::Reader& reader, std::string_view& common_prefix, BtreeNode::KeyBuffer& key_buffer, span<Entry> entries) { const size_t num_entries = entries.size(); KeyLength common_prefix_length; std::vector<KeyLength> key_length_buffer(num_entries * 2); span<KeyLength> prefix_lengths(key_length_buffer.data(), num_entries); span<KeyLength> suffix_lengths(key_length_buffer.data() + num_entries, num_entries); if (!ReadKeyPrefixLengths(reader, prefix_lengths.subspan(1), common_prefix_length)) { return false; } if (!ReadKeySuffixLengths(reader, suffix_lengths)) return false; if constexpr (std::is_same_v<Entry, InteriorNodeEntry>) { for (auto& entry : entries) { if (!KeyLengthCodec{}(reader, entry.subtree_common_prefix_length)) { return false; } common_prefix_length = std::min(common_prefix_length, entry.subtree_common_prefix_length); } } common_prefix_length = std::min(suffix_lengths[0], common_prefix_length); size_t key_buffer_size = common_prefix_length; for (size_t i = 0, prev_length = 0; i < num_entries; ++i) { size_t prefix_length = prefix_lengths[i]; if (prefix_length > prev_length) { reader.Fail(absl::DataLossError(absl::StrFormat( "Child %d: Prefix length of %d exceeds previous key length %d", i, prefix_length, prev_length))); return false; } size_t suffix_length = suffix_lengths[i]; size_t key_length = prefix_length + suffix_length; if (key_length > kMaxKeyLength) { reader.Fail(absl::DataLossError( absl::StrFormat("Child %d: Key length %d exceeds limit of %d", i, key_length, kMaxKeyLength))); return false; } if constexpr (std::is_same_v<Entry, InteriorNodeEntry>) { auto& entry = entries[i]; if (entry.subtree_common_prefix_length > key_length) { reader.Fail(absl::DataLossError(absl::StrFormat( "Key %d: subtree common prefix length of %d exceeds key length of " "%d", i, entry.subtree_common_prefix_length, key_length))); return false; } assert(entry.subtree_common_prefix_length >= common_prefix_length); entry.subtree_common_prefix_length -= common_prefix_length; } prev_length = key_length; key_buffer_size += key_length - common_prefix_length; } key_buffer = BtreeNode::KeyBuffer(key_buffer_size); char* key_buffer_ptr = key_buffer.data.get(); const auto append_key_data = [&](auto... parts) { std::string_view s(key_buffer_ptr, (parts.size() + ...)); (static_cast<void>(std::memcpy(key_buffer_ptr, parts.data(), parts.size()), key_buffer_ptr += parts.size()), ...); return s; }; { size_t key_length = suffix_lengths[0]; if (!reader.Pull(key_length)) return false; auto full_first_key = append_key_data(std::string_view(reader.cursor(), key_length)); common_prefix = full_first_key.substr(0, common_prefix_length); entries[0].key = full_first_key.substr(common_prefix_length); reader.move_cursor(key_length); } for (size_t i = 1; i < num_entries; ++i) { size_t prefix_length = prefix_lengths[i] - common_prefix_length; size_t suffix_length = suffix_lengths[i]; if (!reader.Pull(suffix_length)) return false; auto prev_key = std::string_view(entries[i - 1].key); auto suffix = std::string_view(reader.cursor(), suffix_length); if (prev_key.substr(prefix_length) >= suffix) { reader.Fail(absl::DataLossError("Invalid key order")); return false; } entries[i].key = append_key_data(prev_key.substr(0, prefix_length), suffix); reader.move_cursor(suffix_length); } return true; } template <typename Entry> bool ReadBtreeNodeEntries(riegeli::Reader& reader, const DataFileTable& data_file_table, uint64_t num_entries, BtreeNode& node) { auto& entries = node.entries.emplace<std::vector<Entry>>(); entries.resize(num_entries); if (!ReadKeys<Entry>(reader, node.key_prefix, node.key_buffer, entries)) { return false; } if constexpr (std::is_same_v<Entry, InteriorNodeEntry>) { return BtreeNodeReferenceArrayCodec{data_file_table, [](auto& entry) -> decltype(auto) { return (entry.node); }}(reader, entries); } else { return LeafNodeValueReferenceArrayCodec{data_file_table, [](auto& entry) -> decltype(auto) { return (entry.value_reference); }}(reader, entries); } } } Result<BtreeNode> DecodeBtreeNode(const absl::Cord& encoded, const BasePath& base_path) { BtreeNode node; auto status = DecodeWithOptionalCompression( encoded, kBtreeNodeMagic, kBtreeNodeFormatVersion, [&](riegeli::Reader& reader, uint32_t version) -> bool { if (!reader.ReadByte(node.height)) return false; DataFileTable data_file_table; if (!ReadDataFileTable(reader, base_path, data_file_table)) { return false; } uint32_t num_entries; if (!ReadVarintChecked(reader, num_entries)) return false; if (num_entries == 0) { reader.Fail(absl::DataLossError("Empty b-tree node")); return false; } if (num_entries > kMaxNodeArity) { reader.Fail(absl::DataLossError(absl::StrFormat( "B-tree node has arity %d, which exceeds limit of %d", num_entries, kMaxNodeArity))); return false; } if (node.height == 0) { return ReadBtreeNodeEntries<LeafNodeEntry>(reader, data_file_table, num_entries, node); } else { return ReadBtreeNodeEntries<InteriorNodeEntry>( reader, data_file_table, num_entries, node); } }); if (!status.ok()) { return tensorstore::MaybeAnnotateStatus(status, "Error decoding b-tree node"); } #ifndef NDEBUG CheckBtreeNodeInvariants(node); #endif return node; } absl::Status ValidateBtreeNodeReference(const BtreeNode& node, BtreeNodeHeight height, std::string_view inclusive_min_key) { if (node.height != height) { return absl::DataLossError(absl::StrFormat( "Expected height of %d but received: %d", height, node.height)); } return std::visit( [&](auto& entries) { if (ComparePrefixedKeyToUnprefixedKey{node.key_prefix}( entries.front().key, inclusive_min_key) < 0) { return absl::DataLossError( tensorstore::StrCat("First key ", tensorstore::QuoteString(tensorstore::StrCat( node.key_prefix, entries.front().key)), " is less than inclusive_min ", tensorstore::QuoteString(inclusive_min_key), " specified by parent node")); } return absl::OkStatus(); }, node.entries); } bool operator==(const BtreeNodeStatistics& a, const BtreeNodeStatistics& b) { return a.num_indirect_value_bytes == b.num_indirect_value_bytes && a.num_tree_bytes == b.num_tree_bytes && a.num_keys == b.num_keys; } std::ostream& operator<<(std::ostream& os, const BtreeNodeStatistics& x) { return os << "{num_indirect_value_bytes=" << x.num_indirect_value_bytes << ", num_tree_bytes=" << x.num_tree_bytes << ", num_keys=" << x.num_keys << "}"; } BtreeNodeStatistics& BtreeNodeStatistics::operator+=( const BtreeNodeStatistics& other) { num_indirect_value_bytes = internal::AddSaturate( num_indirect_value_bytes, other.num_indirect_value_bytes); num_tree_bytes = internal::AddSaturate(num_tree_bytes, other.num_tree_bytes); num_keys = internal::AddSaturate(num_keys, other.num_keys); return *this; } bool operator==(const LeafNodeEntry& a, const LeafNodeEntry& b) { return a.key == b.key && a.value_reference == b.value_reference; } std::ostream& operator<<(std::ostream& os, const LeafNodeValueReference& x) { if (auto* value = std::get_if<absl::Cord>(&x)) { return os << tensorstore::QuoteString(std::string(*value)); } else { return os << std::get<IndirectDataReference>(x); } } std::ostream& operator<<(std::ostream& os, const LeafNodeEntry& e) { return os << "{key=" << tensorstore::QuoteString(e.key) << ", value_reference=" << e.value_reference << "}"; } bool operator==(const BtreeNodeReference& a, const BtreeNodeReference& b) { return a.location == b.location && a.statistics == b.statistics; } std::ostream& operator<<(std::ostream& os, const BtreeNodeReference& x) { return os << "{location=" << x.location << ", statistics=" << x.statistics << "}"; } std::ostream& operator<<(std::ostream& os, const InteriorNodeEntry& e) { return os << "{key=" << tensorstore::QuoteString(e.key) << ", subtree_common_prefix_length=" << e.subtree_common_prefix_length << ", node=" << e.node << "}"; } const LeafNodeEntry* FindBtreeEntry(span<const LeafNodeEntry> entries, std::string_view key) { const LeafNodeEntry* entry = FindBtreeEntryLowerBound(entries, key); if (entry == entries.data() + entries.size() || entry->key != key) { return nullptr; } return entry; } const LeafNodeEntry* FindBtreeEntryLowerBound(span<const LeafNodeEntry> entries, std::string_view inclusive_min) { return std::lower_bound( entries.data(), entries.data() + entries.size(), inclusive_min, [](const LeafNodeEntry& entry, std::string_view inclusive_min) { return entry.key < inclusive_min; }); } span<const LeafNodeEntry> FindBtreeEntryRange(span<const LeafNodeEntry> entries, std::string_view inclusive_min, std::string_view exclusive_max) { const LeafNodeEntry* lower = FindBtreeEntryLowerBound(entries, inclusive_min); const LeafNodeEntry* upper = entries.data() + entries.size(); if (!exclusive_max.empty()) { upper = std::lower_bound( lower, upper, exclusive_max, [](const LeafNodeEntry& entry, std::string_view exclusive_max) { return entry.key < exclusive_max; }); } return {lower, upper}; } const InteriorNodeEntry* FindBtreeEntry(span<const InteriorNodeEntry> entries, std::string_view key) { auto it = std::lower_bound( entries.data(), entries.data() + entries.size(), key, [](const InteriorNodeEntry& entry, std::string_view inclusive_min) { return entry.key <= inclusive_min; }); if (it == entries.data()) { return nullptr; } return it - 1; } const InteriorNodeEntry* FindBtreeEntryLowerBound( span<const InteriorNodeEntry> entries, std::string_view inclusive_min) { auto it = std::lower_bound( entries.data(), entries.data() + entries.size(), inclusive_min, [](const InteriorNodeEntry& entry, std::string_view inclusive_min) { return entry.key <= inclusive_min; }); if (it != entries.data()) --it; return it; } span<const InteriorNodeEntry> FindBtreeEntryRange( span<const InteriorNodeEntry> entries, std::string_view inclusive_min, std::string_view exclusive_max) { const InteriorNodeEntry* lower = FindBtreeEntryLowerBound(entries, inclusive_min); const InteriorNodeEntry* upper = entries.data() + entries.size(); if (!exclusive_max.empty()) { upper = std::lower_bound( lower, upper, exclusive_max, [](const InteriorNodeEntry& entry, std::string_view exclusive_max) { return entry.key < exclusive_max; }); } return {lower, upper}; } #ifndef NDEBUG void CheckBtreeNodeInvariants(const BtreeNode& node) { if (node.height == 0) { assert(std::holds_alternative<BtreeNode::LeafNodeEntries>(node.entries)); auto& entries = std::get<BtreeNode::LeafNodeEntries>(node.entries); assert(!entries.empty()); assert(entries.size() <= kMaxNodeArity); for (size_t i = 0; i < entries.size(); ++i) { auto& entry = entries[i]; if (auto* location = std::get_if<IndirectDataReference>(&entry.value_reference)) { assert(!location->IsMissing()); } if (i != 0) { assert(entry.key > entries[i - 1].key); } } } else { assert( std::holds_alternative<BtreeNode::InteriorNodeEntries>(node.entries)); auto& entries = std::get<BtreeNode::InteriorNodeEntries>(node.entries); assert(!entries.empty()); assert(entries.size() <= kMaxNodeArity); for (size_t i = 0; i < entries.size(); ++i) { auto& entry = entries[i]; assert(entry.subtree_common_prefix_length <= entry.key.size()); assert(!entry.node.location.IsMissing()); if (i != 0) { assert(entry.key > entries[i - 1].key); } } } } #endif } }
#include "tensorstore/kvstore/ocdbt/format/btree.h" #include <stddef.h> #include <algorithm> #include <string> #include <string_view> #include <type_traits> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_format.h" #include "riegeli/bytes/writer.h" #include "tensorstore/kvstore/ocdbt/format/btree_codec.h" #include "tensorstore/kvstore/ocdbt/format/btree_node_encoder.h" #include "tensorstore/kvstore/ocdbt/format/codec_util.h" #include "tensorstore/kvstore/ocdbt/format/config.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::MatchesStatus; using ::tensorstore::Result; using ::tensorstore::internal_ocdbt::BtreeNode; using ::tensorstore::internal_ocdbt::BtreeNodeEncoder; using ::tensorstore::internal_ocdbt::Config; using ::tensorstore::internal_ocdbt::DecodeBtreeNode; using ::tensorstore::internal_ocdbt::EncodedNode; using ::tensorstore::internal_ocdbt::InteriorNodeEntry; using ::tensorstore::internal_ocdbt::kMaxNodeArity; using ::tensorstore::internal_ocdbt::LeafNodeEntry; Result<std::vector<EncodedNode>> EncodeExistingNode(const Config& config, const BtreeNode& node) { return std::visit( [&](const auto& entries) { using Entry = typename std::decay_t<decltype(entries)>::value_type; BtreeNodeEncoder<Entry> encoder(config, node.height, node.key_prefix); for (const auto& entry : entries) { encoder.AddEntry(true, Entry(entry)); } return encoder.Finalize(false); }, node.entries); } void TestBtreeNodeRoundTrip(const Config& config, const BtreeNode& node) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded_nodes, EncodeExistingNode(config, node)); ASSERT_EQ(1, encoded_nodes.size()); auto& encoded_node = encoded_nodes[0]; EXPECT_EQ(node.key_prefix, encoded_node.info.inclusive_min_key.substr( 0, encoded_node.info.excluded_prefix_length)); SCOPED_TRACE(tensorstore::StrCat( "data=", tensorstore::QuoteString(std::string(encoded_node.encoded_node)))); std::visit( [&](const auto& entries) { using Entry = typename std::decay_t<decltype(entries)>::value_type; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto decoded_node, DecodeBtreeNode(encoded_nodes[0].encoded_node, {})); EXPECT_EQ(node.key_prefix, tensorstore::StrCat( encoded_node.info.inclusive_min_key.substr( 0, encoded_node.info.excluded_prefix_length), decoded_node.key_prefix)); EXPECT_THAT(decoded_node.entries, ::testing::VariantWith<std::vector<Entry>>(entries)); }, node.entries); } TEST(BtreeNodeTest, LeafNodeRoundTrip) { Config config; config.compression = Config::NoCompression{}; BtreeNode node; node.height = 0; node.key_prefix = "ab"; auto& entries = node.entries.emplace<BtreeNode::LeafNodeEntries>(); entries.push_back({"c", absl::Cord("value1")}); entries.push_back({"d", absl::Cord("value2")}); TestBtreeNodeRoundTrip(config, node); } TEST(BtreeNodeTest, InteriorNodeRoundTrip) { Config config; BtreeNode node; node.height = 2; auto& entries = node.entries.emplace<BtreeNode::InteriorNodeEntries>(); { InteriorNodeEntry entry; entry.key = "abc"; entry.subtree_common_prefix_length = 1; entry.node.location.file_id.base_path = "abc"; entry.node.location.file_id.relative_path = "def"; entry.node.location.offset = 5; entry.node.location.length = 6; entry.node.statistics.num_indirect_value_bytes = 100; entry.node.statistics.num_tree_bytes = 200; entry.node.statistics.num_keys = 5; entries.push_back(entry); } { InteriorNodeEntry entry; entry.key = "def"; entry.subtree_common_prefix_length = 1; entry.node.location.file_id.base_path = "abc1"; entry.node.location.file_id.relative_path = "def1"; entry.node.location.offset = 42; entry.node.location.length = 9; entry.node.statistics.num_indirect_value_bytes = 101; entry.node.statistics.num_tree_bytes = 220; entry.node.statistics.num_keys = 8; entries.push_back(entry); } TestBtreeNodeRoundTrip(config, node); } TEST(BtreeNodeTest, InteriorNodeBasePath) { Config config; BtreeNode node; node.height = 2; auto& entries = node.entries.emplace<BtreeNode::InteriorNodeEntries>(); { InteriorNodeEntry entry; entry.key = "abc"; entry.subtree_common_prefix_length = 1; entry.node.location.file_id.base_path = "abc"; entry.node.location.file_id.relative_path = "def"; entry.node.location.offset = 5; entry.node.location.length = 6; entry.node.statistics.num_indirect_value_bytes = 100; entry.node.statistics.num_tree_bytes = 200; entry.node.statistics.num_keys = 5; entries.push_back(entry); } { InteriorNodeEntry entry; entry.key = "def"; entry.subtree_common_prefix_length = 1; entry.node.location.file_id.base_path = "abc1"; entry.node.location.file_id.relative_path = "def1"; entry.node.location.offset = 42; entry.node.location.length = 9; entry.node.statistics.num_indirect_value_bytes = 101; entry.node.statistics.num_tree_bytes = 220; entry.node.statistics.num_keys = 8; entries.push_back(entry); } { InteriorNodeEntry entry; entry.key = "ghi"; entry.subtree_common_prefix_length = 1; entry.node.location.file_id.base_path = "abc1"; entry.node.location.file_id.relative_path = "def2"; entry.node.location.offset = 43; entry.node.location.length = 10; entry.node.statistics.num_indirect_value_bytes = 102; entry.node.statistics.num_tree_bytes = 230; entry.node.statistics.num_keys = 9; entries.push_back(entry); } { InteriorNodeEntry entry; entry.key = "jkl"; entry.subtree_common_prefix_length = 1; entry.node.location.file_id.base_path = "abc1"; entry.node.location.file_id.relative_path = "def1"; entry.node.location.offset = 43; entry.node.location.length = 10; entry.node.statistics.num_indirect_value_bytes = 102; entry.node.statistics.num_tree_bytes = 230; entry.node.statistics.num_keys = 9; entries.push_back(entry); } TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded_nodes, EncodeExistingNode(config, node)); ASSERT_EQ(1, encoded_nodes.size()); auto& encoded_node = encoded_nodes[0]; EXPECT_EQ(node.key_prefix, encoded_node.info.inclusive_min_key.substr( 0, encoded_node.info.excluded_prefix_length)); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto decoded_node, DecodeBtreeNode(encoded_nodes[0].encoded_node, "xyz/")); entries[0].node.location.file_id.base_path = "xyz/abc"; entries[1].node.location.file_id.base_path = "xyz/abc1"; entries[2].node.location.file_id.base_path = "xyz/abc1"; entries[3].node.location.file_id.base_path = "xyz/abc1"; EXPECT_THAT(decoded_node.entries, ::testing::VariantWith<std::vector<InteriorNodeEntry>>(entries)); } absl::Cord EncodeRawBtree(const std::vector<unsigned char>& data) { using ::tensorstore::internal_ocdbt::kBtreeNodeFormatVersion; using ::tensorstore::internal_ocdbt::kBtreeNodeMagic; Config config; config.compression = Config::NoCompression{}; return EncodeWithOptionalCompression( config, kBtreeNodeMagic, kBtreeNodeFormatVersion, [&](riegeli::Writer& writer) -> bool { return writer.Write(std::string_view( reinterpret_cast<const char*>(data.data()), data.size())); }) .value(); } absl::Status RoundTripRawBtree(const std::vector<unsigned char>& data) { return DecodeBtreeNode(EncodeRawBtree(data), {}).status(); } TEST(BtreeNodeTest, CorruptTruncateBodyZeroSize) { EXPECT_THAT( RoundTripRawBtree({}), MatchesStatus(absl::StatusCode::kDataLoss, "Error decoding b-tree node: Unexpected end of data; .*")); } TEST(BtreeNodeTest, CorruptLeafTruncatedNumEntries) { EXPECT_THAT( RoundTripRawBtree({ 0, }), MatchesStatus(absl::StatusCode::kDataLoss, "Error decoding b-tree node: Unexpected end of data; .*")); } TEST(BtreeNodeTest, CorruptLeafZeroNumEntries) { EXPECT_THAT( RoundTripRawBtree({ 0, 0, 0, 0, }), MatchesStatus(absl::StatusCode::kDataLoss, "Error decoding b-tree node: Empty b-tree node; .*")); } TEST(BtreeNodeTest, CorruptInteriorZeroNumEntries) { EXPECT_THAT( RoundTripRawBtree({ 1, 0, 0, 0, }), MatchesStatus(absl::StatusCode::kDataLoss, "Error decoding b-tree node: Empty b-tree node; .*")); } TEST(BtreeNodeTest, MaxArity) { Config config; config.compression = Config::NoCompression{}; config.max_decoded_node_bytes = 1000000000; BtreeNode node; node.height = 0; auto& entries = node.entries.emplace<BtreeNode::LeafNodeEntries>(); std::vector<std::string> keys; for (size_t i = 0; i <= kMaxNodeArity; ++i) { keys.push_back(absl::StrFormat("%07d", i)); } std::sort(keys.begin(), keys.end()); const auto add_entry = [&](size_t i) { entries.push_back({keys[i], absl::Cord()}); }; for (size_t i = 0; i < kMaxNodeArity; ++i) { add_entry(i); } TestBtreeNodeRoundTrip(config, node); add_entry(kMaxNodeArity); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded_nodes, EncodeExistingNode(config, node)); ASSERT_EQ(2, encoded_nodes.size()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto decoded_node1, DecodeBtreeNode(encoded_nodes[0].encoded_node, {})); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto decoded_node2, DecodeBtreeNode(encoded_nodes[1].encoded_node, {})); EXPECT_EQ(kMaxNodeArity / 2 + 1, std::get<BtreeNode::LeafNodeEntries>(decoded_node1.entries).size()); EXPECT_EQ(kMaxNodeArity / 2, std::get<BtreeNode::LeafNodeEntries>(decoded_node2.entries).size()); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/ocdbt/format/btree.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/ocdbt/format/btree_test.cc
4f887a6430414cd6088e1743555015b10f116d50
804e3b77-9552-4354-8330-c9484f9ebfcd
cpp
google/tensorstore
manifest
tensorstore/kvstore/ocdbt/format/manifest.cc
tensorstore/kvstore/ocdbt/format/manifest_test.cc
#include "tensorstore/kvstore/ocdbt/format/manifest.h" #include <cassert> #include <ostream> #include <string> #include <string_view> #include <vector> #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_format.h" #include "riegeli/bytes/reader.h" #include "riegeli/bytes/writer.h" #include "tensorstore/internal/path.h" #include "tensorstore/kvstore/ocdbt/format/codec_util.h" #include "tensorstore/kvstore/ocdbt/format/config.h" #include "tensorstore/kvstore/ocdbt/format/config_codec.h" #include "tensorstore/kvstore/ocdbt/format/data_file_id_codec.h" #include "tensorstore/kvstore/ocdbt/format/version_tree.h" #include "tensorstore/kvstore/ocdbt/format/version_tree_codec.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_ocdbt { constexpr uint32_t kManifestMagic = 0x0cdb3a2a; constexpr uint8_t kManifestFormatVersion = 0; void ForEachManifestVersionTreeNodeRef( GenerationNumber generation_number, uint8_t version_tree_arity_log2, absl::FunctionRef<void(GenerationNumber min_generation_number, GenerationNumber max_generation_number, VersionTreeHeight height)> callback) { generation_number = (generation_number - 1) >> version_tree_arity_log2 << version_tree_arity_log2; VersionTreeHeight height = 1; while (generation_number) { GenerationNumber next_generation_number = (generation_number - 1) >> (height + 1) * version_tree_arity_log2 << (height + 1) * version_tree_arity_log2; GenerationNumber min_generation_number = next_generation_number + 1; callback(min_generation_number, generation_number, height); ++height; generation_number = next_generation_number; } } absl::Status ValidateManifestVersionTreeNodes( VersionTreeArityLog2 version_tree_arity_log2, GenerationNumber last_generation_number, const std::vector<VersionNodeReference>& entries) { const auto max_height = GetMaxVersionTreeHeight(version_tree_arity_log2); for (size_t i = 0; i < entries.size(); ++i) { auto& entry = entries[i]; if (entry.height == 0 || entry.height > max_height) { return absl::DataLossError(absl::StrFormat( "entry_height[%d] outside valid range [1, %d]", i, max_height)); } if (entry.generation_number == 0) { return absl::DataLossError( absl::StrFormat("generation_number[%d] must be non-zero", i)); } if (i > 0) { if (entry.generation_number <= entries[i - 1].generation_number) { return absl::DataLossError(absl::StrFormat( "generation_number[%d]=%d <= generation_number[%d]=%d", i, entry.generation_number, i - 1, entries[i - 1].generation_number)); } if (entry.height >= entries[i - 1].height) { return absl::DataLossError( absl::StrFormat("entry_height[%d]=%d >= entry_height[%d]=%d", i, entry.height, i - 1, entries[i - 1].height)); } } } size_t i = entries.size(); absl::Status status; ForEachManifestVersionTreeNodeRef( last_generation_number, version_tree_arity_log2, [&](GenerationNumber min_generation_number, GenerationNumber max_generation_number, VersionTreeHeight height) { if (!status.ok()) { return; } if (i == 0) { return; } auto& entry = entries[i - 1]; if (entry.height != height) { return; } --i; if (entry.generation_number < min_generation_number || entry.generation_number > max_generation_number) { status = absl::DataLossError( absl::StrFormat("generation_number[%d]=%d is outside expected " "range [%d, %d] for height %d", i, entry.generation_number, min_generation_number, max_generation_number, entry.height)); } }); if (!status.ok()) return status; if (i != 0) { return absl::DataLossError( absl::StrFormat("Unexpected child with generation_number[%d]=%d and " "entry_height[%d]=%d given last generation_number=%d", i - 1, entries[i - 1].generation_number, i - 1, entries[i - 1].height, last_generation_number)); } return absl::OkStatus(); } bool ReadManifestVersionTreeNodes( riegeli::Reader& reader, VersionTreeArityLog2 version_tree_arity_log2, const DataFileTable& data_file_table, std::vector<VersionNodeReference>& version_tree_nodes, GenerationNumber last_generation_number) { const size_t max_num_entries = GetMaxVersionTreeHeight(version_tree_arity_log2); if (!VersionTreeInteriorNodeEntryArrayCodec<DataFileTable>{ data_file_table, max_num_entries, true}( reader, version_tree_nodes)) { return false; } TENSORSTORE_RETURN_IF_ERROR( ValidateManifestVersionTreeNodes( version_tree_arity_log2, last_generation_number, version_tree_nodes), reader.Fail(_), false); return true; } Result<absl::Cord> EncodeManifest(const Manifest& manifest, bool encode_as_single) { #ifndef NDEBUG CheckManifestInvariants(manifest, encode_as_single); #endif return EncodeWithOptionalCompression( manifest.config, kManifestMagic, kManifestFormatVersion, [&](riegeli::Writer& writer) -> bool { if (encode_as_single) { Config new_config = manifest.config; new_config.manifest_kind = ManifestKind::kSingle; if (!ConfigCodec{}(writer, new_config)) return false; } else { if (!ConfigCodec{}(writer, manifest.config)) return false; if (manifest.config.manifest_kind != ManifestKind::kSingle) { return true; } } DataFileTableBuilder data_file_table; internal_ocdbt::AddDataFiles(data_file_table, manifest.versions); internal_ocdbt::AddDataFiles(data_file_table, manifest.version_tree_nodes); if (!data_file_table.Finalize(writer)) return false; if (!WriteVersionTreeNodeEntries(manifest.config, writer, data_file_table, manifest.versions)) { return false; } if (!VersionTreeInteriorNodeEntryArrayCodec<DataFileTableBuilder>{ data_file_table, GetMaxVersionTreeHeight( manifest.config.version_tree_arity_log2), true}(writer, manifest.version_tree_nodes)) { return false; } return true; }); } Result<Manifest> DecodeManifest(const absl::Cord& encoded) { Manifest manifest; auto status = DecodeWithOptionalCompression( encoded, kManifestMagic, kManifestFormatVersion, [&](riegeli::Reader& reader, uint32_t version) -> bool { if (!ConfigCodec{}(reader, manifest.config)) return false; if (manifest.config.manifest_kind != ManifestKind::kSingle) { return true; } DataFileTable data_file_table; if (!ReadDataFileTable(reader, {}, data_file_table)) { return false; } if (!ReadVersionTreeLeafNode(manifest.config.version_tree_arity_log2, reader, data_file_table, manifest.versions)) { return false; } if (!ReadManifestVersionTreeNodes( reader, manifest.config.version_tree_arity_log2, data_file_table, manifest.version_tree_nodes, manifest.versions.back().generation_number)) { return false; } return true; }); if (!status.ok()) { return tensorstore::MaybeAnnotateStatus(status, "Error decoding manifest"); } #ifndef NDEBUG CheckManifestInvariants(manifest); #endif return manifest; } bool operator==(const Manifest& a, const Manifest& b) { return a.config == b.config && a.versions == b.versions && a.version_tree_nodes == b.version_tree_nodes; } std::ostream& operator<<(std::ostream& os, const Manifest& e) { os << "{config=" << e.config; if (e.config.manifest_kind == ManifestKind::kSingle) { os << ", versions=" << tensorstore::span(e.versions) << ", version_tree_nodes=" << tensorstore::span(e.version_tree_nodes); } return os << "}"; } std::string GetManifestPath(std::string_view base_path) { return tensorstore::StrCat(base_path, "manifest.ocdbt"); } std::string GetNumberedManifestPath(std::string_view base_path, GenerationNumber generation_number) { return absl::StrFormat("%smanifest.%016x", base_path, generation_number); } #ifndef NDEBUG void CheckManifestInvariants(const Manifest& manifest, bool assume_single) { assert(manifest.config.version_tree_arity_log2 > 0); assert(manifest.config.version_tree_arity_log2 <= kMaxVersionTreeArityLog2); if (manifest.config.manifest_kind == ManifestKind::kSingle || assume_single) { TENSORSTORE_CHECK_OK(ValidateVersionTreeLeafNodeEntries( manifest.config.version_tree_arity_log2, manifest.versions)); TENSORSTORE_CHECK_OK(ValidateManifestVersionTreeNodes( manifest.config.version_tree_arity_log2, manifest.versions.back().generation_number, manifest.version_tree_nodes)); } else { assert(manifest.versions.empty()); assert(manifest.version_tree_nodes.empty()); } } #endif } }
#include "tensorstore/kvstore/ocdbt/format/manifest.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_format.h" #include "tensorstore/kvstore/ocdbt/format/btree.h" #include "tensorstore/kvstore/ocdbt/format/config.h" #include "tensorstore/kvstore/ocdbt/format/indirect_data_reference.h" #include "tensorstore/kvstore/ocdbt/format/version_tree.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::MatchesStatus; using ::tensorstore::Result; using ::tensorstore::internal_ocdbt::CommitTime; using ::tensorstore::internal_ocdbt::DecodeManifest; using ::tensorstore::internal_ocdbt::Manifest; Result<absl::Time> RoundTripCommitTime(absl::Time time) { TENSORSTORE_ASSIGN_OR_RETURN(auto commit_time, CommitTime::FromAbslTime(time)); return static_cast<absl::Time>(commit_time); } TEST(CommitTimeTest, Simple) { EXPECT_THAT(RoundTripCommitTime(absl::FromUnixNanos(0)), ::testing::Optional(absl::FromUnixNanos(0))); EXPECT_THAT(RoundTripCommitTime(absl::FromUnixNanos(-1)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(RoundTripCommitTime( absl::FromUnixNanos(std::numeric_limits<int64_t>::max())), ::testing::Optional( absl::FromUnixNanos(std::numeric_limits<int64_t>::max()))); EXPECT_THAT(RoundTripCommitTime( absl::FromUnixNanos(std::numeric_limits<int64_t>::max()) + absl::Nanoseconds(1)), MatchesStatus(absl::StatusCode::kInvalidArgument)); } void TestManifestRoundTrip(const Manifest& manifest) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded, EncodeManifest(manifest)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto decoded, DecodeManifest(encoded)); EXPECT_EQ(manifest, decoded); } Manifest GetSimpleManifest() { Manifest manifest; auto& x = manifest.versions.emplace_back(); x.root.location.file_id.base_path = "abc"; x.root.location.file_id.relative_path = "defgh"; x.root.location.offset = 10; x.root.location.length = 42; x.generation_number = 1; x.root.statistics.num_indirect_value_bytes = 101; x.root.statistics.num_tree_bytes = 220; x.root.statistics.num_keys = 8; x.root_height = 0; x.commit_time = CommitTime{1}; return manifest; } TEST(ManifestTest, RoundTrip) { TestManifestRoundTrip(GetSimpleManifest()); } TEST(ManifestTest, RoundTripNonZeroHeight) { Manifest manifest; { auto& x = manifest.versions.emplace_back(); x.root.location.file_id.base_path = "abc"; x.root.location.file_id.relative_path = "defgh"; x.root.location.offset = 10; x.root.location.length = 42; x.generation_number = 1; x.root.statistics.num_indirect_value_bytes = 101; x.root.statistics.num_tree_bytes = 220; x.root.statistics.num_keys = 8; x.root_height = 5; x.commit_time = CommitTime{1}; } TestManifestRoundTrip(manifest); } TEST(ManifestTest, CorruptMagic) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded, EncodeManifest(GetSimpleManifest())); absl::Cord corrupt = encoded; corrupt.RemovePrefix(4); corrupt.Prepend("abcd"); EXPECT_THAT(DecodeManifest(corrupt), MatchesStatus( absl::StatusCode::kDataLoss, ".*: Expected to start with hex bytes .* but received: .*")); } TEST(ManifestTest, CorruptLength) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded, EncodeManifest(GetSimpleManifest())); auto corrupt = encoded; corrupt.Append("x"); EXPECT_THAT( DecodeManifest(corrupt), MatchesStatus(absl::StatusCode::kDataLoss, ".*: Length in header .*")); } TEST(ManifestTest, InvalidVersion) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded, EncodeManifest(GetSimpleManifest())); auto corrupt = encoded.Subcord(0, 12); corrupt.Append(std::string(1, 1)); corrupt.Append(encoded.Subcord(13, -1)); EXPECT_THAT( DecodeManifest(corrupt), MatchesStatus(absl::StatusCode::kDataLoss, ".*: Maximum supported version is 0 but received: 1.*")); } TEST(ManifestTest, CorruptChecksum) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded, EncodeManifest(GetSimpleManifest())); auto corrupt = encoded; auto sv = corrupt.Flatten(); unsigned char final_char = sv.back(); ++final_char; corrupt.RemoveSuffix(1); corrupt.Append(std::string(1, final_char)); EXPECT_THAT(DecodeManifest(corrupt), MatchesStatus(absl::StatusCode::kDataLoss, ".*: CRC-32C checksum verification failed.*")); } TEST(ManifestTest, RoundTripMultipleVersions) { Manifest manifest; manifest.config.version_tree_arity_log2 = 1; { auto& x = manifest.versions.emplace_back(); x.root.location.file_id.base_path = "abc"; x.root.location.file_id.relative_path = "defgh"; x.root.location.offset = 10; x.root.location.length = 42; x.generation_number = 15; x.root.statistics.num_indirect_value_bytes = 101; x.root.statistics.num_tree_bytes = 220; x.root.statistics.num_keys = 8; x.root_height = 0; x.commit_time = CommitTime{10}; } { auto& x = manifest.version_tree_nodes.emplace_back(); x.location.file_id.base_path = "abc"; x.location.file_id.relative_path = "defgh"; x.location.offset = 10; x.location.length = 42; x.generation_number = 8; x.height = 3; x.commit_time = CommitTime{1}; x.num_generations = 8; } { auto& x = manifest.version_tree_nodes.emplace_back(); x.location.file_id.base_path = "abc"; x.location.file_id.relative_path = "defgh1"; x.location.offset = 10; x.location.length = 42; x.generation_number = 12; x.height = 2; x.commit_time = CommitTime{5}; x.num_generations = 4; } { auto& x = manifest.version_tree_nodes.emplace_back(); x.location.file_id.base_path = "abc1"; x.location.file_id.relative_path = "defgh"; x.location.offset = 10; x.location.length = 42; x.generation_number = 14; x.height = 1; x.commit_time = CommitTime{8}; x.num_generations = 2; } TestManifestRoundTrip(manifest); } namespace for_each_manifest_version_tree_node_ref { using ::tensorstore::internal_ocdbt::ForEachManifestVersionTreeNodeRef; using ::tensorstore::internal_ocdbt::GenerationNumber; using ::tensorstore::internal_ocdbt::VersionTreeArityLog2; using R = std::tuple<GenerationNumber, GenerationNumber, int>; std::vector<R> GetRanges(GenerationNumber generation_number, VersionTreeArityLog2 version_tree_arity_log2) { std::vector<R> results; ForEachManifestVersionTreeNodeRef( generation_number, version_tree_arity_log2, [&](GenerationNumber min_generation_number, GenerationNumber max_generation_number, VersionTreeArityLog2 height) { results.emplace_back(min_generation_number, max_generation_number, height); }); return results; } TEST(ForEachManifestVersionTreeNodeRefTest, SimpleCases) { EXPECT_THAT(GetRanges(8, 2), ::testing::ElementsAre(R{1, 4, 1})); EXPECT_THAT(GetRanges(9, 2), ::testing::ElementsAre(R{1, 8, 1})); EXPECT_THAT(GetRanges(17, 2), ::testing::ElementsAre(R{1, 16, 1})); EXPECT_THAT(GetRanges(30, 2), ::testing::ElementsAre(R{17, 28, 1}, R{1, 16, 2})); EXPECT_THAT(GetRanges(43, 2), ::testing::ElementsAre(R{33, 40, 1}, R{1, 32, 2})); EXPECT_THAT(GetRanges(17, 1), ::testing::ElementsAre(R{13, 16, 1}, R{9, 12, 2}, R{1, 8, 3})); } class ForEachManifestVersionTreeNodeRefPropertyTest : public ::testing::TestWithParam<std::tuple<GenerationNumber, int>> {}; TEST_P(ForEachManifestVersionTreeNodeRefPropertyTest, Properties) { auto [generation_number, version_tree_arity_log2] = GetParam(); auto range = GetRanges(generation_number, version_tree_arity_log2); SCOPED_TRACE( absl::StrFormat("generation_number=%d, version_tree_arity_log2=%d", generation_number, version_tree_arity_log2)); SCOPED_TRACE(::testing::PrintToString(range)); for (size_t i = 0; i < range.size(); ++i) { auto [min_gen, max_gen, height] = range[i]; SCOPED_TRACE( absl::StrFormat("i=%d,height=%d,min_generation=%d,max_generation=%d", i, height, min_gen, max_gen)); EXPECT_EQ(height, i + 1); EXPECT_LT(max_gen, generation_number); EXPECT_GT(max_gen, 0); EXPECT_GT(min_gen, 0); EXPECT_LT(min_gen, max_gen); EXPECT_EQ( 0, max_gen % (GenerationNumber(1) << height * version_tree_arity_log2)); if (i == 0) { EXPECT_GE(max_gen + (GenerationNumber(1) << version_tree_arity_log2), generation_number); } if (i > 0) { auto [prev_min_gen, prev_max_gen, prev_height] = range[i - 1]; EXPECT_EQ(prev_min_gen, max_gen + 1); } } } std::string PrintPropertyTestValue( const ::testing::TestParamInfo<std::tuple<GenerationNumber, int>>& info) { const auto [generation_number, version_tree_arity_log2] = info.param; return absl::StrFormat("%d_%d", generation_number, version_tree_arity_log2); } INSTANTIATE_TEST_SUITE_P( Combinations, ForEachManifestVersionTreeNodeRefPropertyTest, ::testing::Combine(::testing::ValuesIn<GenerationNumber>({ 1, 2, 101, 12345, 567890, }), ::testing::ValuesIn<int>({ 1, 2, 3, 4, })), PrintPropertyTestValue); INSTANTIATE_TEST_SUITE_P( Simple, ForEachManifestVersionTreeNodeRefPropertyTest, (::testing::ValuesIn<std::tuple<GenerationNumber, int>>({ {8, 2}, {9, 2}, {17, 2}, {43, 2}, {17, 1}, })), PrintPropertyTestValue); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/ocdbt/format/manifest.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/ocdbt/format/manifest_test.cc
4f887a6430414cd6088e1743555015b10f116d50
bd4944f1-a2be-4199-8289-233b06c073b9
cpp
google/tensorstore
gcs_testbench
tensorstore/kvstore/gcs/gcs_testbench.cc
tensorstore/kvstore/gcs_http/gcs_testbench_test.cc
#include "tensorstore/kvstore/gcs/gcs_testbench.h" #include <memory> #include <optional> #include <string> #include <utility> #include "absl/flags/flag.h" #include "absl/log/absl_check.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/numbers.h" #include "absl/strings/str_format.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "grpcpp/channel.h" #include "grpcpp/client_context.h" #include "grpcpp/create_channel.h" #include "grpcpp/security/credentials.h" #include "grpcpp/support/status.h" #include "tensorstore/internal/grpc/utils.h" #include "tensorstore/internal/http/curl_transport.h" #include "tensorstore/internal/http/http_request.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/internal/http/transport_test_utils.h" #include "tensorstore/internal/os/subprocess.h" #include "tensorstore/proto/parse_text_proto_or_die.h" #include "tensorstore/util/future.h" #include "tensorstore/util/result.h" #include "google/storage/v2/storage.grpc.pb.h" #include "google/storage/v2/storage.pb.h" ABSL_FLAG(std::string, testbench_binary, "", "Path to the gcs storage-testbench rest_server"); namespace gcs_testbench { using ::google::storage::v2::Storage; using ::tensorstore::internal::GrpcStatusToAbslStatus; using ::tensorstore::internal::SpawnSubprocess; using ::tensorstore::internal::Subprocess; using ::tensorstore::internal::SubprocessOptions; using ::tensorstore::internal_http::GetDefaultHttpTransport; using ::tensorstore::internal_http::HttpRequestBuilder; using ::tensorstore::internal_http::IssueRequestOptions; using ::tensorstore::transport_test_utils::TryPickUnusedPort; StorageTestbench::StorageTestbench() = default; std::string StorageTestbench::http_address() { return absl::StrFormat("localhost:%d", http_port); } std::string StorageTestbench::grpc_address() { return absl::StrFormat("localhost:%d", grpc_port); } void StorageTestbench::SpawnProcess() { if (running) return; const auto start_child = [&] { http_port = TryPickUnusedPort().value_or(0); ABSL_CHECK(http_port > 0); ABSL_LOG(INFO) << "Spawning testbench: http: { SubprocessOptions options{absl::GetFlag(FLAGS_testbench_binary), {absl::StrFormat("--port=%d", http_port)}}; TENSORSTORE_CHECK_OK_AND_ASSIGN(child, SpawnSubprocess(options)); } }; start_child(); for (auto deadline = absl::Now() + absl::Seconds(30);;) { absl::SleepFor(absl::Milliseconds(200)); if (!absl::IsUnavailable(child->Join(false).status())) { start_child(); } auto result = GetDefaultHttpTransport() ->IssueRequest( HttpRequestBuilder( "GET", absl::StrFormat("http: http_port)) .BuildRequest(), IssueRequestOptions() .SetRequestTimeout(absl::Seconds(15)) .SetConnectTimeout(absl::Seconds(15))) .result(); if (result.ok()) { if (result->status_code != 200) { ABSL_LOG(ERROR) << "Failed to start grpc server: " << *result; } else if (!absl::SimpleAtoi(result->payload.Flatten(), &grpc_port)) { ABSL_LOG(ERROR) << "Unexpected response from start_grpc: " << *result; } else { break; } } else { ABSL_LOG(ERROR) << "Failed to start grpc server: " << result.status(); } if (absl::Now() < deadline && absl::IsUnavailable(result.status())) { continue; } ABSL_LOG(FATAL) << "Failed to start testbench: " << result.status(); } running = true; } StorageTestbench::~StorageTestbench() { if (child) { child->Kill().IgnoreError(); auto join_result = child->Join(); if (!join_result.ok()) { ABSL_LOG(ERROR) << "Joining storage_testbench subprocess failed: " << join_result.status(); } } } absl::Status StorageTestbench::CreateBucket(std::string grpc_endpoint, std::string bucket) { google::storage::v2::CreateBucketRequest bucket_request = tensorstore::ParseTextProtoOrDie(R"pb( parent: 'projects/12345' bucket: { location: 'US' storage_class: 'STANDARD' } bucket_id: 'bucket' predefined_acl: 'publicReadWrite' predefined_default_object_acl: 'publicReadWrite' )pb"); bucket_request.set_bucket_id(bucket); google::storage::v2::Bucket bucket_response; std::shared_ptr<grpc::Channel> channel = grpc::CreateChannel( grpc_endpoint, grpc::InsecureChannelCredentials()); if (!channel->WaitForConnected( absl::ToChronoTime(absl::Now() + absl::Milliseconds(100)))) { ABSL_LOG(WARNING) << "Failed to connect to grpc endpoint after 100ms: " << grpc_endpoint; } auto stub = Storage::NewStub(std::move(channel)); grpc::ClientContext client_context; grpc::Status status = stub->CreateBucket(&client_context, bucket_request, &bucket_response); return GrpcStatusToAbslStatus(status); } }
#include "tensorstore/kvstore/gcs/gcs_testbench.h" #include <stddef.h> #include <cstring> #include <string> #include <vector> #include <gtest/gtest.h> #include "absl/base/call_once.h" #include "absl/base/no_destructor.h" #include "absl/log/absl_check.h" #include "absl/log/absl_log.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "tensorstore/internal/env.h" #include "tensorstore/internal/thread/thread.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/test_util.h" #include "tensorstore/util/future.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" namespace kvstore = ::tensorstore::kvstore; using ::gcs_testbench::StorageTestbench; using ::tensorstore::KvStore; using ::tensorstore::StorageGeneration; namespace { StorageTestbench& GetTestBench() { static absl::NoDestructor<StorageTestbench> testbench; static absl::once_flag init_once; absl::call_once(init_once, [&]() { testbench->SpawnProcess(); static std::string http_address = testbench->http_address(); ::tensorstore::internal::SetEnv("TENSORSTORE_GCS_HTTP_URL", http_address.c_str()); ::tensorstore::internal::SetEnv("GOOGLE_AUTH_TOKEN_FOR_TESTING", "abc"); ABSL_LOG(INFO) << "Using " << http_address; ABSL_LOG(INFO) << "Creating bucket: " << StorageTestbench::CreateBucket(testbench->grpc_address(), "test_bucket"); }); return *testbench; } class GcsTestbenchTest : public testing::Test { public: tensorstore::KvStore OpenStore(std::string path = "") { GetTestBench(); return kvstore::Open( {{"driver", "gcs"}, {"bucket", "test_bucket"}, {"path", path}}) .value(); } }; TEST_F(GcsTestbenchTest, Basic) { auto store = OpenStore(); tensorstore::internal::TestKeyValueReadWriteOps(store); } TEST_F(GcsTestbenchTest, DeletePrefix) { auto store = OpenStore(); tensorstore::internal::TestKeyValueStoreDeletePrefix(store); } TEST_F(GcsTestbenchTest, DeleteRange) { auto store = OpenStore(); tensorstore::internal::TestKeyValueStoreDeleteRange(store); } TEST_F(GcsTestbenchTest, DeleteRangeToEnd) { auto store = OpenStore(); tensorstore::internal::TestKeyValueStoreDeleteRangeToEnd(store); } TEST_F(GcsTestbenchTest, DeleteRangeFromBeginning) { auto store = OpenStore(); tensorstore::internal::TestKeyValueStoreDeleteRangeFromBeginning(store); } TEST_F(GcsTestbenchTest, List) { auto store = OpenStore("list/"); tensorstore::internal::TestKeyValueStoreList(store); } TEST_F(GcsTestbenchTest, CancellationDoesNotCrash) { auto store = OpenStore("cancellation/"); static constexpr size_t kCount = 1000; std::vector<std::string> keys; keys.reserve(kCount); for (size_t i = 0; i < kCount; ++i) { keys.push_back(absl::StrCat(i)); } absl::Cord value("xyzzyx"); std::vector<tensorstore::AnyFuture> futures; futures.reserve(kCount * 2); for (const auto& key : keys) { futures.push_back(kvstore::Write(store, key, value)); } for (const auto& key : keys) { futures.push_back(kvstore::Read(store, key)); } futures = {}; for (const auto& key : keys) { futures.push_back(kvstore::Delete(store, key)); } for (auto& future : futures) { future.Wait(); } } TEST_F(GcsTestbenchTest, ConcurrentWrites) { tensorstore::internal::TestConcurrentWritesOptions options; auto store = OpenStore("concurrent_writes/"); options.get_store = [&] { return store; }; options.num_iterations = 0x3f; tensorstore::internal::TestConcurrentWrites(options); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/gcs/gcs_testbench.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/gcs_http/gcs_testbench_test.cc
4f887a6430414cd6088e1743555015b10f116d50
dd9bc663-fd0f-418e-9cc8-144ac62321b0
cpp
google/tensorstore
index_vector_or_scalar
tensorstore/index_space/index_vector_or_scalar.cc
tensorstore/index_space/index_vector_or_scalar_test.cc
#include "tensorstore/index_space/index_vector_or_scalar.h" #include <system_error> #include "absl/status/status.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { absl::Status CheckIndexVectorSize(IndexVectorOrScalarView indices, DimensionIndex size) { if (indices.pointer && indices.size_or_scalar != size) return absl::InvalidArgumentError(tensorstore::StrCat( "Number of dimensions (", size, ") does not match number of indices (", indices.size_or_scalar, ")")); return absl::OkStatus(); } } }
#include "tensorstore/index_space/index_vector_or_scalar.h" #include <cstdint> #include <system_error> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::dynamic_extent; using ::tensorstore::Index; using ::tensorstore::IsIndexVectorOrScalar; using ::tensorstore::MatchesStatus; using ::tensorstore::span; using ::tensorstore::internal_index_space::CheckIndexVectorSize; using ::tensorstore::internal_index_space::IndexVectorOrScalarView; static_assert(IsIndexVectorOrScalar<Index>::value == true); static_assert(IsIndexVectorOrScalar<std::int32_t>::value == true); static_assert(IsIndexVectorOrScalar<float>::value == false); static_assert( std::is_same_v< typename IsIndexVectorOrScalar<std::int32_t>::normalized_type, Index>); static_assert(IsIndexVectorOrScalar<std::int32_t>::extent == dynamic_extent); static_assert(IsIndexVectorOrScalar<std::vector<std::int32_t>>::value == false); static_assert(IsIndexVectorOrScalar<const std::vector<Index>>::value == true); static_assert(std::is_same_v<typename IsIndexVectorOrScalar< const std::vector<Index>>::normalized_type, span<const Index>>); static_assert(IsIndexVectorOrScalar<const std::vector<Index>>::extent == dynamic_extent); static_assert(IsIndexVectorOrScalar<span<const Index>>::value == true); static_assert( std::is_same_v<typename IsIndexVectorOrScalar<span<Index>>::normalized_type, span<const Index>>); static_assert(IsIndexVectorOrScalar<span<const Index>>::extent == dynamic_extent); static_assert(IsIndexVectorOrScalar<span<const Index, 5>>::value == true); static_assert(std::is_same_v< typename IsIndexVectorOrScalar<span<Index, 5>>::normalized_type, span<const Index, 5>>); static_assert(IsIndexVectorOrScalar<span<Index, 5>>::extent == 5); TEST(IndexVectorOrScalarTest, Scalar) { IndexVectorOrScalarView v(5); EXPECT_EQ(5, v.size_or_scalar); EXPECT_EQ(nullptr, v.pointer); EXPECT_EQ(5, v[0]); EXPECT_EQ(5, v[1]); EXPECT_TRUE(CheckIndexVectorSize(v, 3).ok()); } TEST(IndexVectorOrScalarTest, Vector) { const Index arr[] = {1, 2, 3}; IndexVectorOrScalarView v{span(arr)}; EXPECT_EQ(3, v.size_or_scalar); EXPECT_EQ(&arr[0], v.pointer); EXPECT_EQ(1, v[0]); EXPECT_EQ(2, v[1]); EXPECT_EQ(3, v[2]); EXPECT_TRUE(CheckIndexVectorSize(v, 3).ok()); EXPECT_THAT(CheckIndexVectorSize(v, 5), tensorstore::MatchesStatus(absl::StatusCode::kInvalidArgument)); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/index_vector_or_scalar.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/index_vector_or_scalar_test.cc
4f887a6430414cd6088e1743555015b10f116d50
08971125-e01f-4a75-81b3-81a1c6420689
cpp
google/tensorstore
index_transform_builder
tensorstore/index_space/index_transform_builder.cc
tensorstore/index_space/index_transform_builder_test.cc
#include "tensorstore/index_space/index_transform_builder.h" #include "absl/base/optimization.h" #include "absl/status/status.h" #include "tensorstore/index.h" #include "tensorstore/index_space/internal/transform_rep_impl.h" #include "tensorstore/internal/dimension_labels.h" #include "tensorstore/internal/integer_overflow.h" namespace tensorstore { namespace internal_index_space { void InitializeTransformRepForBuilder(TransformRep* data) { assert(data != nullptr); const DimensionIndex output_rank = data->output_rank; span<OutputIndexMap> maps = data->output_index_maps().first(output_rank); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { auto& map = maps[output_dim]; map.stride() = 0; map.offset() = 0; } } absl::Status SetOutputIndexMapsAndValidateTransformRep( TransformRep* data, span<const OutputIndexMapInitializer> output_index_maps, IntervalForm interval_form, BuilderFlags flags) { const DimensionIndex input_rank = data->input_rank; const DimensionIndex output_rank = data->output_rank; assert(output_index_maps.size() == output_rank); span<Index> input_origin = data->input_origin().first(input_rank); span<Index> input_shape = data->input_shape().first(input_rank); auto& implicit_lower_bounds = data->implicit_lower_bounds; auto& implicit_upper_bounds = data->implicit_upper_bounds; const auto implicit_mask = DimensionSet::UpTo(input_rank); if ((flags & BuilderFlags::kSetLower) == BuilderFlags::kDefault) { Index val = (interval_form == IntervalForm::sized) && ((flags & BuilderFlags::kSetUpper) == BuilderFlags::kSetUpper) ? 0 : -kInfIndex; std::fill(input_origin.begin(), input_origin.end(), val); } if ((flags & BuilderFlags::kSetUpper) == BuilderFlags::kDefault) { interval_form = IntervalForm::half_open; std::fill(input_shape.begin(), input_shape.end(), kInfIndex + 1); } if ((flags & BuilderFlags::kSetImplicitLower) == BuilderFlags::kDefault) { implicit_lower_bounds = ((flags & BuilderFlags::kSetLower) == BuilderFlags::kDefault) && interval_form != IntervalForm::sized; } if ((flags & BuilderFlags::kSetImplicitUpper) == BuilderFlags::kDefault) { implicit_upper_bounds = (flags & BuilderFlags::kSetUpper) == BuilderFlags::kDefault; } implicit_lower_bounds &= implicit_mask; implicit_upper_bounds &= implicit_mask; TENSORSTORE_RETURN_IF_ERROR(internal::ValidateDimensionLabelsAreUnique( data->input_labels().first(input_rank))); span<OutputIndexMap> maps = data->output_index_maps().first(output_rank); switch (interval_form) { case IntervalForm::sized: for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { Index& size = input_shape[input_dim]; if (size == kInfSize) { size = kInfIndex + 1 - input_origin[input_dim]; } TENSORSTORE_RETURN_IF_ERROR( IndexInterval::Sized(input_origin[input_dim], size)); } break; case IntervalForm::closed: for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { TENSORSTORE_ASSIGN_OR_RETURN( auto interval, IndexInterval::Closed(input_origin[input_dim], input_shape[input_dim])); input_shape[input_dim] = interval.size(); } break; case IntervalForm::half_open: for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { TENSORSTORE_ASSIGN_OR_RETURN( auto interval, IndexInterval::HalfOpen(input_origin[input_dim], input_shape[input_dim])); input_shape[input_dim] = interval.size(); } break; default: ABSL_UNREACHABLE(); } const bool domain_is_explicitly_empty = IsDomainExplicitlyEmpty(data); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const auto& initializer = output_index_maps[output_dim]; auto& map = maps[output_dim]; if (initializer.index_array.valid()) { TENSORSTORE_RETURN_IF_ERROR(initializer.index_array_bounds); span<const Index> shape = initializer.index_array.shape(); const Index* byte_strides = initializer.index_array.byte_strides().data(); if (shape.size() != input_rank) { return absl::InvalidArgumentError(tensorstore::StrCat( "Index array for output dimension ", output_dim, " has rank ", shape.size(), " but must have rank ", input_rank)); } auto& index_array_data = map.SetArrayIndexing(shape.size()); for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { const Index array_dim_size = shape[input_dim]; if (array_dim_size == 1) { index_array_data.byte_strides[input_dim] = 0; continue; } const Index input_size = input_shape[input_dim]; if (array_dim_size != input_size) { return absl::InvalidArgumentError(tensorstore::StrCat( "Index array for output dimension ", output_dim, " has shape ", shape, " which does not match input_shape ", input_shape)); } if (byte_strides[input_dim] == 0 && array_dim_size != 0) { index_array_data.byte_strides[input_dim] = 0; continue; } if (implicit_lower_bounds[input_dim] || implicit_upper_bounds[input_dim]) { return absl::InvalidArgumentError( tensorstore::StrCat("Index array for output dimension ", output_dim, " depends on input dimension ", input_dim, " with implicit bounds")); } if (!IsFinite(IndexInterval::UncheckedSized(input_origin[input_dim], input_size))) { return absl::InvalidArgumentError( tensorstore::StrCat("Index array for output dimension ", output_dim, " depends on input dimension ", input_dim, " with infinite bounds")); } index_array_data.byte_strides[input_dim] = byte_strides[input_dim]; } if (domain_is_explicitly_empty) { map.SetConstant(); map.offset() = 0; map.stride() = 0; } else { index_array_data.index_range = *initializer.index_array_bounds; index_array_data.element_pointer = AddByteOffset( initializer.index_array.element_pointer(), internal::wrap_on_overflow::Subtract( initializer.index_array.layout().origin_byte_offset(), IndexInnerProduct(input_rank, input_origin.data(), index_array_data.byte_strides))); } } else if (initializer.input_dimension) { const DimensionIndex input_dim = *initializer.input_dimension; if (input_dim < 0 || input_dim >= input_rank) { return absl::InvalidArgumentError(tensorstore::StrCat( "Input dimension ", input_dim, " specified for output dimension ", output_dim, " is outside valid range [0, ", input_rank, ")")); } if (map.stride() == 0) { map.SetConstant(); } else { map.SetSingleInputDimension(input_dim); } } else { map.SetConstant(); map.stride() = 0; } } internal_index_space::DebugCheckInvariants(data); return absl::OkStatus(); } } }
#include "tensorstore/index_space/index_transform_builder.h" #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::DimensionSet; using ::tensorstore::Index; using ::tensorstore::IndexDomainBuilder; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransform; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::kInfIndex; using ::tensorstore::kInfSize; using ::tensorstore::MakeArray; using ::tensorstore::MatchesStatus; using ::tensorstore::OutputIndexMethod; using ::tensorstore::span; using ::tensorstore::internal_index_space::TransformAccess; TEST(IndexTransformTest, BuilderValid) { auto index_array = MakeArray<Index>({{{1, 0, 2, 2}}}); auto t = IndexTransformBuilder<3, 4>() .input_origin({1, 2, 3}) .input_shape({2, 2, 4}) .implicit_lower_bounds({0, 1, 0}) .implicit_upper_bounds({1, 0, 0}) .input_labels({"x", "y", "z"}) .output_constant(0, 4) .output_single_input_dimension(1, 5, 7, 2) .output_constant(2, 6) .output_index_array(3, 7, 9, index_array, IndexInterval::Closed(0, 3)) .Finalize() .value(); static_assert(std::is_same_v<decltype(t), IndexTransform<3, 4>>); EXPECT_THAT(t.input_origin(), ::testing::ElementsAre(1, 2, 3)); EXPECT_THAT(t.input_shape(), ::testing::ElementsAre(2, 2, 4)); EXPECT_THAT(t.input_labels(), ::testing::ElementsAre("x", "y", "z")); EXPECT_THAT(t.implicit_lower_bounds(), DimensionSet::FromBools({0, 1, 0})); EXPECT_THAT(t.implicit_upper_bounds(), DimensionSet::FromBools({1, 0, 0})); EXPECT_EQ(IndexInterval::UncheckedSized(1, 2), t.input_domain()[0].interval()); EXPECT_EQ(IndexInterval::UncheckedSized(2, 2), t.input_domain()[1].interval()); EXPECT_EQ(IndexInterval::UncheckedSized(3, 4), t.input_domain()[2].interval()); { auto map = t.output_index_map(0); EXPECT_EQ(OutputIndexMethod::constant, map.method()); EXPECT_EQ(4, map.offset()); EXPECT_EQ(0, map.stride()); } { auto map = t.output_index_map(1); EXPECT_EQ(OutputIndexMethod::single_input_dimension, map.method()); EXPECT_EQ(2, map.input_dimension()); EXPECT_EQ(5, map.offset()); EXPECT_EQ(7, map.stride()); } { auto map = t.output_index_map(2); EXPECT_EQ(OutputIndexMethod::constant, map.method()); EXPECT_EQ(6, map.offset()); EXPECT_EQ(0, map.stride()); } { auto map = t.output_index_map(3); EXPECT_EQ(OutputIndexMethod::array, map.method()); EXPECT_EQ(7, map.offset()); EXPECT_EQ(9, map.stride()); auto index_array_ref = map.index_array(); EXPECT_EQ(&index_array(0, 0, 0), &index_array_ref.array_ref()(1, 2, 3)); EXPECT_THAT(index_array_ref.layout().byte_strides(), ::testing::ElementsAre(0, 0, sizeof(Index))); } { std::array<Index, 4> output_indices; ASSERT_EQ( absl::OkStatus(), t.TransformIndices(span<const Index, 3>({1, 2, 3}), output_indices)); EXPECT_THAT(output_indices, ::testing::ElementsAre(4, 26, 6, 16)); } } TEST(IndexTransformBuilderTest, Nullptr) { IndexTransformBuilder<> builder(nullptr); EXPECT_FALSE(builder.valid()); { IndexTransformBuilder<> other_builder(builder); EXPECT_FALSE(other_builder.valid()); } { IndexTransformBuilder<> other_builder(nullptr); other_builder = builder; EXPECT_FALSE(other_builder.valid()); } } TEST(IndexTransformBuilderTest, Move) { IndexTransformBuilder<> builder(1, 1); EXPECT_TRUE(builder.valid()); builder.input_origin({1}); auto builder2 = std::move(builder); EXPECT_TRUE(builder2.valid()); EXPECT_FALSE(builder.valid()); builder2.output_constant(0, 5); EXPECT_THAT(builder2.Finalize().value(), IndexTransformBuilder<>(1, 1) .input_origin({1}) .output_constant(0, 5) .Finalize() .value()); } TEST(IndexTransformBuilderTest, Copy) { IndexTransformBuilder<> builder(1, 1); EXPECT_TRUE(builder.valid()); builder.input_origin({1}); auto builder2 = builder; EXPECT_TRUE(builder.valid()); EXPECT_TRUE(builder2.valid()); builder.output_constant(0, 4); builder2.output_constant(0, 5); EXPECT_THAT(builder.Finalize().value(), IndexTransformBuilder<>(1, 1) .input_origin({1}) .output_constant(0, 4) .Finalize() .value()); EXPECT_THAT(builder2.Finalize().value(), IndexTransformBuilder<>(1, 1) .input_origin({1}) .output_constant(0, 5) .Finalize() .value()); } TEST(IndexTransformBuilderTest, Default) { auto t = IndexTransformBuilder<>(2, 1).Finalize().value(); EXPECT_THAT(t.input_origin(), ::testing::ElementsAre(-kInfIndex, -kInfIndex)); EXPECT_THAT(t.input_shape(), ::testing::ElementsAre(kInfSize, kInfSize)); EXPECT_THAT(t.implicit_lower_bounds(), DimensionSet::FromBools({1, 1})); EXPECT_THAT(t.implicit_upper_bounds(), DimensionSet::FromBools({1, 1})); EXPECT_THAT(t.input_labels(), ::testing::ElementsAre("", "")); auto map = t.output_index_map(0); EXPECT_EQ(0, map.offset()); EXPECT_EQ(0, map.stride()); EXPECT_EQ(OutputIndexMethod::constant, map.method()); } TEST(IndexTransformBuilderTest, InputOriginSpecified) { auto t = IndexTransformBuilder<>(2, 0).input_origin({1, 2}).Finalize().value(); EXPECT_EQ(t.domain()[0].interval(), IndexInterval::UncheckedClosed(1, kInfIndex)); EXPECT_EQ(t.domain()[1].interval(), IndexInterval::UncheckedClosed(2, kInfIndex)); EXPECT_THAT(t.implicit_lower_bounds(), DimensionSet::FromBools({0, 0})); EXPECT_THAT(t.implicit_upper_bounds(), DimensionSet::FromBools({1, 1})); EXPECT_THAT(t.input_labels(), ::testing::ElementsAre("", "")); } TEST(IndexTransformBuilderTest, ImplicitLowerBoundsSpecified) { auto t = IndexTransformBuilder<>(2, 0) .implicit_lower_bounds({1, 0}) .Finalize() .value(); EXPECT_EQ(t.domain()[0].interval(), IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex)); EXPECT_EQ(t.domain()[1].interval(), IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex)); EXPECT_THAT(t.implicit_lower_bounds(), DimensionSet::FromBools({1, 0})); EXPECT_THAT(t.implicit_upper_bounds(), DimensionSet::FromBools({1, 1})); EXPECT_THAT(t.input_labels(), ::testing::ElementsAre("", "")); } TEST(IndexTransformBuilderTest, InputShapeSpecified) { auto t = IndexTransformBuilder<>(2, 0).input_shape({5, 10}).Finalize().value(); EXPECT_EQ(t.domain()[0].interval(), IndexInterval::UncheckedSized(0, 5)); EXPECT_EQ(t.domain()[1].interval(), IndexInterval::UncheckedSized(0, 10)); EXPECT_THAT(t.implicit_lower_bounds(), DimensionSet::FromBools({0, 0})); EXPECT_THAT(t.implicit_upper_bounds(), DimensionSet::FromBools({0, 0})); EXPECT_THAT(t.input_labels(), ::testing::ElementsAre("", "")); } TEST(IndexTransformBuilderTest, InputInclusiveMaxSpecified) { auto t = IndexTransformBuilder<>(2, 0) .input_inclusive_max({5, 10}) .Finalize() .value(); EXPECT_EQ(t.domain()[0].interval(), IndexInterval::UncheckedClosed(-kInfIndex, 5)); EXPECT_EQ(t.domain()[1].interval(), IndexInterval::UncheckedClosed(-kInfIndex, 10)); EXPECT_THAT(t.implicit_lower_bounds(), DimensionSet::FromBools({1, 1})); EXPECT_THAT(t.implicit_upper_bounds(), DimensionSet::FromBools({0, 0})); EXPECT_THAT(t.input_labels(), ::testing::ElementsAre("", "")); } TEST(IndexTransformBuilderTest, InputExclusiveMaxSpecified) { auto t = IndexTransformBuilder<>(2, 0) .input_exclusive_max({5, 10}) .Finalize() .value(); EXPECT_EQ(t.domain()[0].interval(), IndexInterval::UncheckedHalfOpen(-kInfIndex, 5)); EXPECT_EQ(t.domain()[1].interval(), IndexInterval::UncheckedHalfOpen(-kInfIndex, 10)); EXPECT_THAT(t.implicit_lower_bounds(), DimensionSet::FromBools({1, 1})); EXPECT_THAT(t.implicit_upper_bounds(), DimensionSet::FromBools({0, 0})); EXPECT_THAT(t.input_labels(), ::testing::ElementsAre("", "")); } TEST(IndexTransformBuilderTest, ImplicitUpperBoundsSpecified) { auto t = IndexTransformBuilder<>(2, 0) .implicit_upper_bounds({1, 0}) .Finalize() .value(); EXPECT_EQ(t.domain()[0].interval(), IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex)); EXPECT_EQ(t.domain()[1].interval(), IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex)); EXPECT_THAT(t.implicit_lower_bounds(), DimensionSet::FromBools({1, 1})); EXPECT_THAT(t.implicit_upper_bounds(), DimensionSet::FromBools({1, 0})); EXPECT_THAT(t.input_labels(), ::testing::ElementsAre("", "")); } TEST(IndexTransformBuilderTest, SingleInputDimensionDefaults) { EXPECT_EQ(IndexTransformBuilder<>(3, 1) .output_single_input_dimension(0, 2) .Finalize() .value(), IndexTransformBuilder<>(3, 1) .output_single_input_dimension(0, 2) .Finalize() .value()); } TEST(IndexTransformBuilderTest, InputOriginOutOfRange) { EXPECT_THAT( IndexTransformBuilder<>(2, 1) .input_origin({-kInfIndex - 1, -kInfIndex}) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, ".* do not specify a valid half-open index interval")); } TEST(IndexTransformBuilderTest, InputShapeOutOfRange) { EXPECT_THAT( IndexTransformBuilder<>(2, 1).input_shape({1, -1}).Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "\\(0, -1\\) do not specify a valid sized index interval")); } TEST(IndexTransformBuilderTest, InvalidInputDimensionNegative) { EXPECT_THAT( IndexTransformBuilder<>(2, 1) .output_single_input_dimension(0, 0, 1, -1) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Input dimension -1 specified for output dimension 0 " "is outside valid range \\[0, 2\\)")); } TEST(IndexTransformBuilderTest, InvalidInputDimensionPositive) { EXPECT_THAT( IndexTransformBuilder<>(2, 1) .output_single_input_dimension(0, 2) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Input dimension 2 specified for output dimension 0 " "is outside valid range \\[0, 2\\)")); } TEST(IndexTransformBuilderTest, InvalidIndexArrayRank) { EXPECT_THAT(IndexTransformBuilder<>(2, 1) .output_index_array(0, 0, 1, MakeArray<Index>({1})) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Index array for output dimension 0 " "has rank 1 but must have rank 2")); } TEST(IndexTransformBuilderTest, InvalidIndexArrayShape) { EXPECT_THAT( IndexTransformBuilder<>(2, 1) .input_shape({2, 2}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2}, {3, 4}, {5, 6}})) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Index array for output dimension 0 has shape \\{3, 2\\} " "which does not match input_shape \\{2, 2\\}")); } TEST(IndexTransformBuilderTest, InvalidIndexArrayImplicitLowerBound) { EXPECT_THAT( IndexTransformBuilder<>(2, 1) .input_shape({3, 2}) .implicit_lower_bounds({1, 0}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2}, {3, 4}, {5, 6}})) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Index array for output dimension 0 " "depends on input dimension 0 with implicit bounds")); } TEST(IndexTransformBuilderTest, InvalidIndexArrayImplicitUpperBound) { EXPECT_THAT( IndexTransformBuilder<>(2, 1) .input_shape({3, 2}) .implicit_upper_bounds({1, 0}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2}, {3, 4}, {5, 6}})) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Index array for output dimension 0 " "depends on input dimension 0 with implicit bounds")); } TEST(IndexTransformBuilderTest, InvalidIndexArrayIndexRange) { EXPECT_THAT( IndexTransformBuilder<>(2, 1) .input_shape({2, 2}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2}, {3, 4}}), IndexInterval::Sized(3, -1)) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "\\(3, -1\\) do not specify a valid sized index interval")); } TEST(IndexTransformBuilderTest, InvalidIndexArrayWithUnboundedDomain) { EXPECT_THAT( IndexTransformBuilder(1, 1) .input_origin({tensorstore::kMaxFiniteIndex}) .input_shape({2}) .output_index_array(0, 0, 1, MakeArray<Index>({1, 2})) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Index array for output dimension 0 " "depends on input dimension 0 with infinite bounds")); } TEST(IndexTransformBuilderDeathTest, InvalidArguments) { EXPECT_DEATH((IndexTransformBuilder<>(2, 1).input_origin({1, 2, 3})), "range size mismatch"); EXPECT_DEATH((IndexTransformBuilder<>(2, 1).input_shape({1, 2, 3})), "range size mismatch"); EXPECT_DEATH((IndexTransformBuilder<>(2, 1).implicit_lower_bounds({1, 1, 0})), "range size mismatch"); EXPECT_DEATH((IndexTransformBuilder<>(2, 1).implicit_upper_bounds({1, 1, 0})), "range size mismatch"); EXPECT_DEATH((IndexTransformBuilder<>(2, 1).input_labels({"a"})), "range size mismatch"); EXPECT_DEATH((IndexTransformBuilder<>(2, 1).output_constant(1, 0)), "invalid output dimension"); } TEST(IndexTransformBuilderTest, OutputStrideZero) { auto t = IndexTransformBuilder<>(1, 1) .output_single_input_dimension(0, 1, 0, 0) .Finalize() .value(); auto map = t.output_index_map(0); EXPECT_EQ(1, map.offset()); EXPECT_EQ(0, map.stride()); EXPECT_EQ(OutputIndexMethod::constant, map.method()); } TEST(IndexTransformBuilderTest, InclusiveMax) { auto t = IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_inclusive_max({3, 5}) .Finalize() .value(); EXPECT_THAT(t.input_origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(t.input_shape(), ::testing::ElementsAre(3, 4)); } TEST(IndexTransformBuilderTest, InputShapeInfSize) { auto t = IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_shape({3, kInfSize}) .Finalize() .value(); EXPECT_THAT(t.input_origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(t.input_shape(), ::testing::ElementsAre(3, kInfIndex + 1 - 2)); } TEST(IndexTransformBuilderTest, ExclusiveMax) { auto t = IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_exclusive_max({3, 5}) .Finalize() .value(); EXPECT_THAT(t.input_origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(t.input_shape(), ::testing::ElementsAre(2, 3)); } TEST(IndexTransformBuilderTest, ExclusiveMaxAfterShape) { auto t = IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_shape({15, 16}) .input_exclusive_max({3, 5}) .Finalize() .value(); EXPECT_THAT(t.input_origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(t.input_shape(), ::testing::ElementsAre(2, 3)); } TEST(IndexTransformBuilderTest, InputDomainBox) { auto t = IndexTransformBuilder<>(2, 2) .input_bounds(tensorstore::BoxView({1, 2}, {2, 3})) .Finalize() .value(); EXPECT_THAT(t.input_origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(t.input_shape(), ::testing::ElementsAre(2, 3)); } TEST(IndexTransformBuilderTest, InputDomain) { tensorstore::IndexDomain<2> domain(IndexTransformBuilder<2, 0>() .input_origin({1, 2}) .input_shape({3, 4}) .implicit_lower_bounds({0, 1}) .implicit_upper_bounds({1, 0}) .input_labels({"x", "y"}) .Finalize() .value() .domain()); auto t = IndexTransformBuilder<>(2, 2).input_domain(domain).Finalize().value(); EXPECT_EQ(domain, t.domain()); } TEST(IndexTransformBuilderTest, OutputIdentityTransform) { EXPECT_THAT( IndexTransformBuilder(2, 2).output_identity_transform().Finalize(), ::testing::Optional(tensorstore::IdentityTransform(2))); EXPECT_EQ(IndexTransformBuilder(3, 2) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), IndexTransformBuilder(3, 2) .output_identity_transform() .Finalize() .value()); EXPECT_EQ(IndexTransformBuilder(2, 3) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_constant(2, 0) .Finalize() .value(), IndexTransformBuilder(2, 3) .output_identity_transform() .Finalize() .value()); } TEST(IndexTransformBuilderTest, CopyOutputMap) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t, IndexTransformBuilder(3, 4) .input_origin({1, 2, 3}) .input_shape({2, 2, 4}) .implicit_lower_bounds({0, 1, 0}) .implicit_upper_bounds({1, 0, 0}) .input_labels({"x", "y", "z"}) .output_constant(0, 4) .output_single_input_dimension(1, 5, 7, 2) .output_constant(2, 6) .output_index_array(3, 7, 9, MakeArray<Index>({{{1, 0, 2, 2}}}), IndexInterval::Closed(0, 3)) .Finalize()); EXPECT_THAT(IndexTransformBuilder(3, 4) .input_domain(t.domain()) .output_maps(t.output_index_maps()) .Finalize(), ::testing::Optional(t)); EXPECT_THAT(IndexTransformBuilder(3, 4) .input_domain(t.domain()) .output_constant(0, 4) .output_map(1, t.output_index_maps()[1]) .output_map(2, t.output_index_maps()[2]) .output_map(3, t.output_index_maps()[3]) .Finalize(), ::testing::Optional(t)); } TEST(InitializeTransformRepForBuilder, Basic) { auto source = tensorstore::internal_index_space::TransformRep::Allocate(1, 2); source->output_rank = 2; tensorstore::internal_index_space::InitializeTransformRepForBuilder( source.get()); EXPECT_EQ(0, source->output_index_maps()[0].offset()); EXPECT_EQ(0, source->output_index_maps()[0].stride()); EXPECT_EQ(0, source->output_index_maps()[1].offset()); EXPECT_EQ(0, source->output_index_maps()[1].stride()); } TEST(IndexTransformBuilder, NonUniqueLabels) { EXPECT_THAT( IndexTransformBuilder<>(3, 0).input_labels({"a", "", "a"}).Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Dimension label\\(s\\) \"a\" not unique")); } TEST(IndexTransformBuilderTest, IndexArrayWithEmptyExplicitDomain) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto expected, IndexTransformBuilder(2, 2) .input_shape({0, 2}) .output_constant(0, 0) .output_constant(1, 1) .Finalize()); EXPECT_THAT(IndexTransformBuilder(2, 2) .input_shape({0, 2}) .output_index_array(0, 0, 1, MakeArray<Index>({{2, 3}})) .output_constant(1, 1) .Finalize(), ::testing::Optional(expected)); } TEST(IndexDomainBuilderTest, Null) { IndexDomainBuilder builder(nullptr); EXPECT_FALSE(builder.valid()); } TEST(IndexDomainBuilderTest, Basic) { IndexDomainBuilder builder(3); EXPECT_EQ(3, builder.rank()); builder.origin(span<const Index, 3>({1, 2, 3})); EXPECT_THAT(builder.origin(), ::testing::ElementsAre(1, 2, 3)); builder.shape(span<const Index, 3>({4, 5, 6})); EXPECT_THAT(builder.shape(), ::testing::ElementsAre(4, 5, 6)); builder.exclusive_max(span<const Index, 3>({4, 5, 6})); EXPECT_THAT(builder.exclusive_max(), ::testing::ElementsAre(4, 5, 6)); builder.inclusive_max(span<const Index, 3>({4, 5, 6})); EXPECT_THAT(builder.inclusive_max(), ::testing::ElementsAre(4, 5, 6)); builder.implicit_lower_bounds({0, 1, 1}); builder.implicit_upper_bounds({1, 0, 1}); EXPECT_THAT(builder.implicit_lower_bounds(), DimensionSet::FromBools({0, 1, 1})); EXPECT_THAT(builder.implicit_upper_bounds(), DimensionSet::FromBools({1, 0, 1})); builder.labels(std::vector<std::string>{"x", "y", "z"}); EXPECT_THAT(builder.labels(), ::testing::ElementsAre("x", "y", "z")); } TEST(IndexDomainBuilderTest, Labels) { auto d = IndexDomainBuilder(2).labels({"x", "y"}).Finalize().value(); EXPECT_THAT(d.labels(), ::testing::ElementsAre("x", "y")); } TEST(IndexDomainBuilderTest, InclusiveMax) { auto d = IndexDomainBuilder(2) .origin({1, 2}) .inclusive_max({3, 5}) .Finalize() .value(); EXPECT_THAT(d.origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(d.shape(), ::testing::ElementsAre(3, 4)); } TEST(IndexDomainBuilderTest, Shape) { auto d = IndexDomainBuilder(2).origin({1, 2}).shape({3, 5}).Finalize().value(); EXPECT_THAT(d.origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(d.shape(), ::testing::ElementsAre(3, 5)); } TEST(IndexDomainBuilderTest, ExclusiveMax) { auto d = IndexDomainBuilder(2) .origin({1, 2}) .exclusive_max({3, 5}) .Finalize() .value(); EXPECT_THAT(d.origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(d.shape(), ::testing::ElementsAre(2, 3)); } TEST(IndexDomainBuilderTest, InputDomainBox) { auto d = IndexDomainBuilder(2) .bounds(tensorstore::BoxView({1, 2}, {2, 3})) .Finalize() .value(); EXPECT_THAT(d.origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(d.shape(), ::testing::ElementsAre(2, 3)); } TEST(IndexDomainBuilderTest, InputDomain) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(tensorstore::IndexDomain<2> domain, IndexDomainBuilder<2>() .origin({1, 2}) .shape({3, 4}) .implicit_lower_bounds({0, 1}) .implicit_upper_bounds({1, 0}) .labels({"x", "y"}) .Finalize()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto d, IndexDomainBuilder<>(2).domain(domain).Finalize()); EXPECT_EQ(domain, d); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/index_transform_builder.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/index_transform_builder_test.cc
4f887a6430414cd6088e1743555015b10f116d50
7dc63e63-9db6-4acf-bf59-96ebbb710399
cpp
google/tensorstore
transform_broadcastable_array
tensorstore/index_space/transform_broadcastable_array.cc
tensorstore/index_space/transform_broadcastable_array_test.cc
#include "tensorstore/index_space/transform_broadcastable_array.h" #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/transformed_array.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/result.h" namespace tensorstore { Result<SharedArray<const void>> TransformOutputBroadcastableArray( IndexTransformView<> transform, SharedArrayView<const void> output_array, IndexDomainView<> output_domain) { assert(transform.valid()); Box<dynamic_rank(kMaxRank)> broadcast_domain(transform.output_rank()); if (output_domain.valid()) { broadcast_domain = output_domain.box(); } else { TENSORSTORE_RETURN_IF_ERROR( tensorstore::GetOutputRange(transform, broadcast_domain)); const DimensionIndex output_rank = transform.output_rank(); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const auto map = transform.output_index_maps()[output_dim]; switch (map.method()) { case OutputIndexMethod::constant: break; case OutputIndexMethod::array: { broadcast_domain[output_dim] = IndexInterval(); break; } case OutputIndexMethod::single_input_dimension: { const DimensionIndex input_dim = map.input_dimension(); if (map.stride() != 1 && map.stride() != -1) { broadcast_domain[output_dim] = IndexInterval::Infinite(); } else { const DimensionIndex output_array_dim = output_dim + output_array.rank() - output_rank; if (output_array_dim >= 0 && transform.domain()[input_dim].optionally_implicit_interval() == OptionallyImplicitIndexInterval{IndexInterval::Infinite(), true, true}) { broadcast_domain[output_dim] = output_array.domain()[output_array_dim]; } } break; } } } } TENSORSTORE_ASSIGN_OR_RETURN( auto broadcast_output_array, tensorstore::BroadcastArray(std::move(output_array), broadcast_domain)); TENSORSTORE_ASSIGN_OR_RETURN(auto input_array, std::move(broadcast_output_array) | transform | tensorstore::Materialize()); return UnbroadcastArray(std::move(input_array)); } Result<SharedArray<const void>> TransformInputBroadcastableArray( IndexTransformView<> transform, SharedArrayView<const void> input_array) { assert(transform.valid()); SharedArray<const void> output_array; output_array.layout().set_rank(transform.output_rank()); DimensionSet seen_input_dims; ByteStridedPointer<const void> data_pointer = input_array.byte_strided_pointer(); const DimensionIndex input_rank = transform.input_rank(); for (DimensionIndex output_dim = 0; output_dim < output_array.rank(); ++output_dim) { const auto map = transform.output_index_maps()[output_dim]; if (map.method() != OutputIndexMethod::single_input_dimension) { return absl::InvalidArgumentError( tensorstore::StrCat("Cannot transform input array through ", map.method(), " output index map")); } const DimensionIndex input_dim = map.input_dimension(); if (seen_input_dims[input_dim]) { return absl::InvalidArgumentError( "Cannot transform input array with multiple " "output dimensions mapping to the same input dimension"); } if (std::abs(map.stride()) != 1) { return absl::InvalidArgumentError( "Cannot transform input array through " "non-unit-stride output index map"); } seen_input_dims[input_dim] = true; const DimensionIndex input_array_dim = input_array.rank() - input_rank + input_dim; if (input_array_dim < 0) { output_array.shape()[output_dim] = 1; output_array.byte_strides()[output_dim] = 0; } else { const Index size = input_array.shape()[input_array_dim]; output_array.shape()[output_dim] = size; const Index byte_stride = input_array.byte_strides()[input_array_dim]; const Index stride = map.stride(); output_array.byte_strides()[output_dim] = internal::wrap_on_overflow::Multiply(byte_stride, stride); if (stride == -1 && size != 0) { data_pointer += internal::wrap_on_overflow::Multiply(byte_stride, size - 1); } } } for (DimensionIndex input_array_dim = 0; input_array_dim < input_array.rank(); ++input_array_dim) { if (input_array.shape()[input_array_dim] == 1 || input_array.byte_strides()[input_array_dim] == 0) { continue; } const DimensionIndex input_dim = input_rank - input_array.rank() + input_array_dim; if (input_dim < 0 || !seen_input_dims[input_dim]) { return absl::InvalidArgumentError( tensorstore::StrCat("Cannot transform input array; " "dimension ", input_array_dim, " cannot be mapped")); } } output_array.element_pointer() = SharedElementPointer<const void>( std::shared_ptr<const void>(std::move(input_array.pointer()), data_pointer.get()), input_array.dtype()); return UnbroadcastArray(std::move(output_array)); } }
#include "tensorstore/index_space/transform_broadcastable_array.h" #include <stddef.h> #include <random> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/index.h" #include "tensorstore/index_space/index_domain.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/index_transform_testutil.h" #include "tensorstore/internal/testing/random_seed.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::Index; using ::tensorstore::IndexDomain; using ::tensorstore::IndexDomainView; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::IndexTransformView; using ::tensorstore::MakeArray; using ::tensorstore::MakeScalarArray; using ::tensorstore::MatchesStatus; using ::tensorstore::SharedArray; using ::tensorstore::SharedArrayView; using ::tensorstore::span; using ::tensorstore::TransformInputBroadcastableArray; using ::tensorstore::TransformOutputBroadcastableArray; void TestRoundTrip(IndexTransformView<> transform, SharedArrayView<const void> input_array, SharedArrayView<const void> output_array, IndexDomainView<> output_domain) { SCOPED_TRACE(tensorstore::StrCat( "transform=", transform, ", output_domain=", output_domain, ", input_array.shape=", input_array.shape(), ", output_array.shape=", output_array.shape())); EXPECT_THAT( TransformOutputBroadcastableArray(transform, output_array, output_domain), ::testing::Optional(input_array)); EXPECT_THAT(TransformInputBroadcastableArray(transform, input_array), ::testing::Optional(output_array)); } void TestRoundTrip(IndexTransformView<> transform, SharedArrayView<const void> output_array, IndexDomainView<> output_domain = IndexDomainView<>(), bool test_inverse = false) { SCOPED_TRACE(tensorstore::StrCat( "transform=", transform, ", output_domain=", output_domain, ", output_array.shape=", output_array.shape())); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto input_array, TransformOutputBroadcastableArray( transform, output_array, output_domain)); EXPECT_THAT(TransformInputBroadcastableArray(transform, input_array), ::testing::Optional(output_array)); if (test_inverse) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto inverse_transform, tensorstore::InverseTransform(transform)); EXPECT_THAT( TransformInputBroadcastableArray(inverse_transform, output_array), ::testing::Optional(input_array)); } } SharedArray<int> MakeTestArray(span<const Index> shape) { auto array = tensorstore::AllocateArray<int>(shape); for (Index i = 0, num_elements = array.num_elements(); i < num_elements; ++i) { array.data()[i] = i; } return array; } TEST(RoundTripTest, IdentityTransform) { for (DimensionIndex rank = 0; rank <= 3; ++rank) { SCOPED_TRACE(tensorstore::StrCat("rank=", rank)); std::vector<Index> shape(rank); for (DimensionIndex dim = 0; dim < rank; ++dim) { shape[dim] = dim + 2; } auto array = MakeTestArray(shape); TestRoundTrip(tensorstore::IdentityTransform(shape), array, array, tensorstore::IndexDomain<>()); TestRoundTrip(tensorstore::IdentityTransform(rank), array, array, tensorstore::IndexDomain<>()); TestRoundTrip(tensorstore::IdentityTransform(shape), array, array, tensorstore::IdentityTransform(shape).domain()); } } TEST(RoundTripTest, RandomInvertibleTransform) { constexpr size_t kNumIterations = 100; for (size_t i = 0; i < kNumIterations; ++i) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_TRANSFORM_BROADCASTABLE_ARRAY_TEST_SEED")}; auto box = tensorstore::internal::MakeRandomBox(gen); auto array = tensorstore::UnbroadcastArray(MakeTestArray(box.shape())); auto domain = IndexDomain(box); auto transform = tensorstore::internal::MakeRandomStridedIndexTransformForOutputSpace( gen, domain); TestRoundTrip(transform, array); TestRoundTrip(transform, array, domain); } } TEST(RoundTripTest, RandomInvertibleTransformNoNewDims) { constexpr size_t kNumIterations = 100; for (size_t i = 0; i < kNumIterations; ++i) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_TRANSFORM_BROADCASTABLE_ARRAY_TEST_SEED")}; auto box = tensorstore::internal::MakeRandomBox(gen); auto array = tensorstore::UnbroadcastArray(MakeTestArray(box.shape())); auto domain = IndexDomain(box); tensorstore::internal::MakeStridedIndexTransformForOutputSpaceParameters p; p.max_new_dims = 0; auto transform = tensorstore::internal::MakeRandomStridedIndexTransformForOutputSpace( gen, domain, p); TestRoundTrip(transform, array, IndexDomain(), true); TestRoundTrip(transform, array, domain, true); } } TEST(TransformOutputBroadcastableArrayTest, ConstantMap) { auto array = MakeArray<int>({{1}, {2}, {3}}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, IndexTransformBuilder(1, 2) .output_single_input_dimension(0, 5, -1, 0) .output_constant(1, 42) .Finalize()); EXPECT_THAT( TransformOutputBroadcastableArray(transform, array, IndexDomain()), ::testing::Optional(MakeArray<int>({3, 2, 1}))); } TEST(TransformOutputBroadcastableArrayTest, NonUnitStrideMap) { auto array = MakeArray<int>({{1}, {2}, {3}}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, IndexTransformBuilder(2, 2) .output_single_input_dimension(0, 5, -1, 0) .output_single_input_dimension(1, 42, 2, 1) .Finalize()); EXPECT_THAT( TransformOutputBroadcastableArray(transform, array, IndexDomain()), ::testing::Optional(MakeArray<int>({{3}, {2}, {1}}))); } TEST(TransformOutputBroadcastableArrayTest, ArrayMap) { auto array = MakeArray<int>({{1}, {2}, {3}}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, IndexTransformBuilder(1, 2) .input_shape({3}) .output_single_input_dimension(0, 5, -1, 0) .output_index_array(1, 20, 1, MakeArray<Index>({0, 5, 10})) .Finalize()); EXPECT_THAT( TransformOutputBroadcastableArray(transform, array, IndexDomain()), ::testing::Optional(MakeArray<int>({3, 2, 1}))); } TEST(TransformInputBroadcastableArrayTest, ConstantMap) { auto array = MakeScalarArray<int>(42); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, IndexTransformBuilder(0, 1).output_constant(0, 42).Finalize()); EXPECT_THAT( TransformInputBroadcastableArray(transform, array), MatchesStatus( absl::StatusCode::kInvalidArgument, "Cannot transform input array through constant output index map")); } TEST(TransformInputBroadcastableArrayTest, NonUnitStrideMap) { auto array = MakeArray<int>({1, 2, 3}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, IndexTransformBuilder(1, 1) .output_single_input_dimension(0, 5, 2, 0) .Finalize()); EXPECT_THAT(TransformInputBroadcastableArray(transform, array), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot transform input array through " "non-unit-stride output index map")); } TEST(TransformInputBroadcastableArrayTest, ArrayMap) { auto array = MakeArray<int>({1, 2, 3}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, IndexTransformBuilder(1, 1) .input_shape({3}) .output_index_array(0, 20, 1, MakeArray<Index>({0, 5, 10})) .Finalize()); EXPECT_THAT( TransformInputBroadcastableArray(transform, array), MatchesStatus( absl::StatusCode::kInvalidArgument, "Cannot transform input array through array output index map")); } TEST(TransformInputBroadcastableArrayTest, Diagonal) { auto array = MakeArray<int>({1, 2, 3}); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto transform, IndexTransformBuilder(1, 2) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 0) .Finalize()); EXPECT_THAT( TransformInputBroadcastableArray(transform, array), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot transform input array with multiple " "output dimensions mapping to the same input dimension")); } TEST(TransformInputBroadcastableArrayTest, UnmappedNoError) { auto array = MakeArray<int>({1, 2, 3}); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto transform, IndexTransformBuilder(2, 1) .output_single_input_dimension(0, 1) .Finalize()); EXPECT_THAT(TransformInputBroadcastableArray(transform, array), ::testing::Optional(array)); } TEST(TransformInputBroadcastableArrayTest, UnmappedError) { auto array = MakeArray<int>({1, 2, 3}); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto transform, IndexTransformBuilder(2, 1) .output_single_input_dimension(0, 0) .Finalize()); EXPECT_THAT( TransformInputBroadcastableArray(transform, array), MatchesStatus( absl::StatusCode::kInvalidArgument, "Cannot transform input array; dimension 0 cannot be mapped")); } TEST(TransformInputBroadcastableArrayTest, ExtraDimensionError) { auto array = MakeArray<int>({{1, 2, 3}, {4, 5, 6}}); EXPECT_THAT( TransformInputBroadcastableArray(tensorstore::IdentityTransform(1), array), MatchesStatus( absl::StatusCode::kInvalidArgument, "Cannot transform input array; dimension 0 cannot be mapped")); } TEST(TransformInputBroadcastableArrayTest, ExtraDimensionNoError) { auto array = MakeArray<int>({{1, 2, 3}}); EXPECT_THAT(TransformInputBroadcastableArray( tensorstore::IdentityTransform(1), array), ::testing::Optional(MakeArray<int>({1, 2, 3}))); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/transform_broadcastable_array.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/transform_broadcastable_array_test.cc
4f887a6430414cd6088e1743555015b10f116d50
e27303bd-5458-4010-86a5-e3c07c076a7b
cpp
google/tensorstore
dimension_identifier
tensorstore/index_space/dimension_identifier.cc
tensorstore/index_space/dimension_identifier_test.cc
#include "tensorstore/index_space/dimension_identifier.h" #include <cassert> #include <ostream> #include <string> #include <system_error> #include <variant> #include "absl/status/status.h" #include "absl/strings/str_join.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dimension_index_buffer.h" #include "tensorstore/util/division.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { std::ostream& operator<<(std::ostream& os, const DimensionIdentifier& x) { if (x.label().data()) { return os << QuoteString(x.label()); } return os << x.index(); } Result<DimensionIndex> NormalizeDimensionIndex(DimensionIndex index, DimensionIndex rank) { assert(rank >= 0); if (index < -rank || index >= rank) { return absl::InvalidArgumentError(tensorstore::StrCat( "Dimension index ", index, " is outside valid range [-", rank, ", ", rank, ")")); } return index >= 0 ? index : index + rank; } Result<DimensionIndex> NormalizeDimensionExclusiveStopIndex( DimensionIndex index, DimensionIndex rank) { assert(rank >= 0); if (index < -rank - 1 || index > rank) { return absl::InvalidArgumentError(tensorstore::StrCat( "Dimension exclusive stop index ", index, " is outside valid range [-", rank + 1, ", ", rank, "]")); } return index >= 0 ? index : index + rank; } namespace { template <typename Label> Result<DimensionIndex> NormalizeDimensionLabelImpl(std::string_view label, span<const Label> labels) { if (label.empty()) { return absl::InvalidArgumentError( "Dimension cannot be specified by empty label"); } const DimensionIndex dim = std::find(labels.begin(), labels.end(), label) - labels.begin(); if (dim == labels.size()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Label ", QuoteString(label), " does not match one of {", absl::StrJoin(labels, ", ", [](std::string* out, std::string_view x) { *out += QuoteString(x); }), "}")); } return dim; } } Result<DimensionIndex> NormalizeDimensionLabel(std::string_view label, span<const std::string> labels) { return NormalizeDimensionLabelImpl(label, labels); } Result<DimensionIndex> NormalizeDimensionLabel( std::string_view label, span<const std::string_view> labels) { return NormalizeDimensionLabelImpl(label, labels); } Result<DimensionIndex> NormalizeDimensionIdentifier( DimensionIdentifier identifier, span<const std::string> labels) { if (identifier.label().data()) { return NormalizeDimensionLabel(identifier.label(), labels); } else { return NormalizeDimensionIndex(identifier.index(), labels.size()); } } std::ostream& operator<<(std::ostream& os, const DimRangeSpec& spec) { if (spec.inclusive_start) os << *spec.inclusive_start; os << ':'; if (spec.exclusive_stop) os << *spec.exclusive_stop; if (spec.step != 1) os << ':' << spec.step; return os; } bool operator==(const DimRangeSpec& a, const DimRangeSpec& b) { return a.inclusive_start == b.inclusive_start && a.exclusive_stop == b.exclusive_stop && a.step == b.step; } absl::Status NormalizeDimRangeSpec(const DimRangeSpec& spec, DimensionIndex rank, DimensionIndexBuffer* result) { const DimensionIndex step = spec.step; if (step == 0) { return absl::InvalidArgumentError("step must not be 0"); } DimensionIndex inclusive_start; if (spec.inclusive_start) { TENSORSTORE_ASSIGN_OR_RETURN( inclusive_start, NormalizeDimensionIndex(*spec.inclusive_start, rank)); } else if (step > 0) { inclusive_start = 0; } else { inclusive_start = rank - 1; } DimensionIndex exclusive_stop; if (spec.exclusive_stop) { TENSORSTORE_ASSIGN_OR_RETURN( exclusive_stop, NormalizeDimensionExclusiveStopIndex(*spec.exclusive_stop, rank)); if ((step > 0 && exclusive_stop < inclusive_start) || (step < 0 && exclusive_stop > inclusive_start)) { return absl::InvalidArgumentError( tensorstore::StrCat(spec, " is not a valid range")); } } else if (step > 0) { exclusive_stop = rank; } else { exclusive_stop = -1; } const DimensionIndex size = CeilOfRatio(exclusive_stop - inclusive_start, step); result->reserve(result->size() + size); for (DimensionIndex i = 0; i < size; ++i) { result->push_back(inclusive_start + step * i); } return absl::OkStatus(); } absl::Status NormalizeDynamicDimSpec(const DynamicDimSpec& spec, span<const std::string> labels, DimensionIndexBuffer* result) { struct Visitor { span<const std::string> labels; DimensionIndexBuffer* result; absl::Status operator()(DimensionIndex i) const { TENSORSTORE_ASSIGN_OR_RETURN(DimensionIndex index, NormalizeDimensionIndex(i, labels.size())); result->push_back(index); return absl::OkStatus(); } absl::Status operator()(const std::string& label) const { TENSORSTORE_ASSIGN_OR_RETURN(DimensionIndex index, NormalizeDimensionLabel(label, labels)); result->push_back(index); return absl::OkStatus(); } absl::Status operator()(const DimRangeSpec& s) const { return NormalizeDimRangeSpec(s, labels.size(), result); } }; return std::visit(Visitor{labels, result}, spec); } absl::Status NormalizeDynamicDimSpecs(span<const DynamicDimSpec> specs, span<const std::string> labels, DimensionIndexBuffer* result) { for (const auto& spec : specs) { TENSORSTORE_RETURN_IF_ERROR(NormalizeDynamicDimSpec(spec, labels, result)); } return absl::OkStatus(); } }
#include "tensorstore/index_space/dimension_identifier.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::DimensionIdentifier; using ::tensorstore::DimensionIndexBuffer; using ::tensorstore::DimRangeSpec; using ::tensorstore::DynamicDimSpec; using ::tensorstore::Index; using ::tensorstore::MatchesStatus; using ::tensorstore::NormalizeDimensionIdentifier; using ::tensorstore::NormalizeDimensionIndex; using ::tensorstore::span; using ::tensorstore::StrCat; TEST(DimensionIdentifierTest, ConstructDefault) { DimensionIdentifier d; EXPECT_EQ(std::numeric_limits<Index>::max(), d.index()); EXPECT_EQ(nullptr, d.label().data()); } TEST(DimensionIdentifierTest, ConstructDimensionIndex) { DimensionIdentifier d(5); EXPECT_EQ(5, d.index()); EXPECT_EQ(nullptr, d.label().data()); } TEST(DimensionIdentifierTest, ConstructStringView) { DimensionIdentifier d(std::string_view("hello")); EXPECT_EQ(std::numeric_limits<Index>::max(), d.index()); EXPECT_EQ("hello", d.label()); } TEST(DimensionIdentifierTest, ConstructCString) { DimensionIdentifier d("hello"); EXPECT_EQ(std::numeric_limits<Index>::max(), d.index()); EXPECT_EQ("hello", d.label()); } TEST(DimensionIdentifierTest, ConstructStdString) { std::string s = "hello"; DimensionIdentifier d(s); EXPECT_EQ(std::numeric_limits<Index>::max(), d.index()); EXPECT_EQ("hello", d.label()); } TEST(DimensionIdentifierTest, Compare) { EXPECT_EQ(DimensionIdentifier(3), DimensionIdentifier(3)); EXPECT_EQ(DimensionIdentifier("a"), DimensionIdentifier("a")); EXPECT_NE(DimensionIdentifier("a"), DimensionIdentifier(2)); EXPECT_NE(DimensionIdentifier("a"), DimensionIdentifier("b")); EXPECT_NE(DimensionIdentifier(2), DimensionIdentifier(3)); } TEST(DimensionIdentifierTest, PrintToOstream) { EXPECT_EQ("3", StrCat(DimensionIdentifier(3))); EXPECT_EQ("\"a\"", StrCat(DimensionIdentifier("a"))); } TEST(NormalizeDimensionIndexTest, ValidNonNegative) { EXPECT_EQ(0, NormalizeDimensionIndex(0, 5)); EXPECT_EQ(3, NormalizeDimensionIndex(3, 5)); EXPECT_EQ(4, NormalizeDimensionIndex(4, 5)); } TEST(NormalizeDimensionIndexTest, ValidNegative) { EXPECT_EQ(0, NormalizeDimensionIndex(-5, 5)); EXPECT_EQ(2, NormalizeDimensionIndex(-3, 5)); EXPECT_EQ(4, NormalizeDimensionIndex(-1, 5)); } TEST(NormalizeDimensionIndexTest, InvalidNegative) { EXPECT_THAT(NormalizeDimensionIndex(-6, 5), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(NormalizeDimensionIndex(-7, 5), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(NormalizeDimensionIndexTest, InvalidNonNegative) { EXPECT_THAT(NormalizeDimensionIndex(5, 5), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(NormalizeDimensionIndex(6, 5), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(NormalizeDimensionLabelTest, ValidLabel) { EXPECT_EQ(2, NormalizeDimensionLabel( "x", span<const std::string>({"a", "b", "x", "y"}))); } TEST(NormalizeDimensionLabelTest, MissingLabel) { EXPECT_THAT(NormalizeDimensionLabel( "w", span<const std::string>({"a", "b", "x", "y"})), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(NormalizeDimensionLabelTest, EmptyLabel) { EXPECT_THAT(NormalizeDimensionLabel( "", span<const std::string>({"a", "b", "x", "y"})), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(NormalizeDimensionIdentifierTest, ValidLabel) { EXPECT_EQ(2, NormalizeDimensionIdentifier( "x", span<const std::string>({"a", "b", "x", "y"}))); } TEST(NormalizeDimensionIdentifierTest, ValidPositiveIndex) { EXPECT_EQ(2, NormalizeDimensionIdentifier( 2, span<const std::string>({"a", "b", "x", "y"}))); EXPECT_EQ(0, NormalizeDimensionIdentifier( 0, span<const std::string>({"a", "b", "x", "y"}))); EXPECT_EQ(3, NormalizeDimensionIdentifier( 3, span<const std::string>({"a", "b", "x", "y"}))); } TEST(NormalizeDimensionIdentifierTest, ValidNegativeIndex) { EXPECT_EQ(2, NormalizeDimensionIdentifier( -2, span<const std::string>({"a", "b", "x", "y"}))); EXPECT_EQ(3, NormalizeDimensionIdentifier( -1, span<const std::string>({"a", "b", "x", "y"}))); EXPECT_EQ(0, NormalizeDimensionIdentifier( -4, span<const std::string>({"a", "b", "x", "y"}))); } TEST(NormalizeDimensionIdentifierTest, InvalidIndex) { EXPECT_THAT(NormalizeDimensionIdentifier( 4, span<const std::string>({"a", "b", "x", "y"})), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(NormalizeDimensionIdentifier( -5, span<const std::string>({"a", "b", "x", "y"})), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(DimRangeSpecTest, Comparison) { DimRangeSpec a{1, 5, 1}; DimRangeSpec b{0, 5, 1}; DimRangeSpec c{1, 6, 1}; DimRangeSpec d{1, 6, 2}; EXPECT_EQ(a, a); EXPECT_NE(a, b); EXPECT_NE(a, c); EXPECT_NE(a, d); } TEST(DimRangeSpecTest, PrintToOstream) { EXPECT_EQ("1:5", StrCat(DimRangeSpec{1, 5, 1})); EXPECT_EQ("1:5:2", StrCat(DimRangeSpec{1, 5, 2})); EXPECT_EQ(":5", StrCat(DimRangeSpec{std::nullopt, 5, 1})); EXPECT_EQ("1:", StrCat(DimRangeSpec{1, std::nullopt, 1})); EXPECT_EQ(":", StrCat(DimRangeSpec{std::nullopt, std::nullopt, 1})); EXPECT_EQ("::-1", StrCat(DimRangeSpec{std::nullopt, std::nullopt, -1})); } TEST(NormalizeDimRangeSpecTest, ValidFullySpecifiedStep1) { DimensionIndexBuffer buffer; EXPECT_EQ(absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{2, 10, 1}, 20, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(2, 3, 4, 5, 6, 7, 8, 9)); } TEST(NormalizeDimRangeSpecTest, ValidFullySpecifiedStep2) { DimensionIndexBuffer buffer; EXPECT_EQ(absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{2, 10, 2}, 20, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(2, 4, 6, 8)); } TEST(NormalizeDimRangeSpecTest, ValidFullySpecifiedStep2Floor) { DimensionIndexBuffer buffer; EXPECT_EQ(absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{2, 7, 3}, 20, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(2, 5)); } TEST(NormalizeDimRangeSpecTest, ValidFullySpecifiedStepNeg1) { DimensionIndexBuffer buffer; EXPECT_EQ(absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{9, 1, -1}, 20, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(9, 8, 7, 6, 5, 4, 3, 2)); } TEST(NormalizeDimRangeSpecTest, ValidFullySpecifiedStepNeg2) { DimensionIndexBuffer buffer; EXPECT_EQ(absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{9, 1, -2}, 20, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(9, 7, 5, 3)); } TEST(NormalizeDimRangeSpecTest, ValidStartOnlyStep1) { DimensionIndexBuffer buffer; EXPECT_EQ( absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{15, std::nullopt, 1}, 20, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(15, 16, 17, 18, 19)); } TEST(NormalizeDimRangeSpecTest, ValidStartOnlyStepNegative1) { DimensionIndexBuffer buffer; EXPECT_EQ( absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{5, std::nullopt, -1}, 20, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(5, 4, 3, 2, 1, 0)); } TEST(NormalizeDimRangeSpecTest, ValidNegativeStartOnlyStep1) { DimensionIndexBuffer buffer; EXPECT_EQ( absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{-5, std::nullopt, 1}, 20, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(15, 16, 17, 18, 19)); } TEST(NormalizeDimRangeSpecTest, ValidStopOnlyStep1) { DimensionIndexBuffer buffer; EXPECT_EQ( absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{std::nullopt, 5, 1}, 20, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(0, 1, 2, 3, 4)); } TEST(NormalizeDimRangeSpecTest, ValidNegativeStopOnlyStep1) { DimensionIndexBuffer buffer; EXPECT_EQ( absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{std::nullopt, -15, 1}, 20, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(0, 1, 2, 3, 4)); } TEST(NormalizeDimRangeSpecTest, ValidStopOnlyStepNeg1) { DimensionIndexBuffer buffer; EXPECT_EQ( absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{std::nullopt, 15, -1}, 20, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(19, 18, 17, 16)); } TEST(NormalizeDimRangeSpecTest, ValidNoBoundsStep1) { DimensionIndexBuffer buffer; EXPECT_EQ(absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{std::nullopt, std::nullopt, 1}, 5, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(0, 1, 2, 3, 4)); } TEST(NormalizeDimRangeSpecTest, ValidNoBoundsStep2) { DimensionIndexBuffer buffer; EXPECT_EQ(absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{std::nullopt, std::nullopt, 2}, 5, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(0, 2, 4)); } TEST(NormalizeDimRangeSpecTest, ValidMaxStop) { DimensionIndexBuffer buffer; EXPECT_EQ(absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{1, 5, 1}, 5, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(1, 2, 3, 4)); } TEST(NormalizeDimRangeSpecTest, InvalidStep0) { DimensionIndexBuffer buffer; EXPECT_THAT( NormalizeDimRangeSpec(DimRangeSpec{std::nullopt, std::nullopt, 0}, 5, &buffer), MatchesStatus(absl::StatusCode::kInvalidArgument, "step must not be 0")); } TEST(NormalizeDimRangeSpecTest, InvalidIntervalStep1) { DimensionIndexBuffer buffer; EXPECT_THAT(NormalizeDimRangeSpec(DimRangeSpec{3, 1, 1}, 5, &buffer), MatchesStatus(absl::StatusCode::kInvalidArgument, "3:1 is not a valid range")); } TEST(NormalizeDimRangeSpecTest, InvalidIntervalStepNeg1) { DimensionIndexBuffer buffer; EXPECT_THAT(NormalizeDimRangeSpec(DimRangeSpec{1, 3, -1}, 5, &buffer), MatchesStatus(absl::StatusCode::kInvalidArgument, "1:3:-1 is not a valid range")); } TEST(NormalizeDimRangeSpecTest, InvalidIndex) { DimensionIndexBuffer buffer; EXPECT_THAT(NormalizeDimRangeSpec(DimRangeSpec{1, 8, 1}, 5, &buffer), MatchesStatus(absl::StatusCode::kInvalidArgument, "Dimension exclusive stop index 8 is outside valid " "range \\[-6, 5\\]")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/dimension_identifier.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/dimension_identifier_test.cc
4f887a6430414cd6088e1743555015b10f116d50
ac2af6eb-d6da-4cea-91cc-9358932ac908
cpp
google/tensorstore
transformed_array
tensorstore/index_space/transformed_array.cc
tensorstore/index_space/transformed_array_test.cc
#include "tensorstore/index_space/transformed_array.h" #include <stddef.h> #include <algorithm> #include <array> #include <cassert> #include <string> #include <utility> #include "absl/status/status.h" #include "tensorstore/box.h" #include "tensorstore/data_type.h" #include "tensorstore/data_type_conversion.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/internal/identity_transform.h" #include "tensorstore/index_space/internal/iterate_impl.h" #include "tensorstore/index_space/internal/propagate_bounds.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/index_space/internal/transform_rep_impl.h" #include "tensorstore/index_space/output_index_method.h" #include "tensorstore/internal/element_copy_function.h" #include "tensorstore/internal/elementwise_function.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/rank.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/byte_strided_pointer.h" #include "tensorstore/util/constant_vector.h" #include "tensorstore/util/element_pointer.h" #include "tensorstore/util/internal/iterate_impl.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { std::string DescribeTransformedArrayForCast(DataType dtype, DimensionIndex rank) { return tensorstore::StrCat( "transformed array with ", StaticCastTraits<DataType>::Describe(dtype), " and ", StaticCastTraits<DimensionIndex>::Describe(rank)); } namespace { void MultiplyByteStridesIntoOutputIndexMaps(TransformRep* transform, span<const Index> byte_strides) { const span<OutputIndexMap> output_maps = transform->output_index_maps(); assert(byte_strides.size() == output_maps.size()); for (DimensionIndex i = 0; i < byte_strides.size(); ++i) { auto& map = output_maps[i]; const Index byte_stride = byte_strides[i]; const Index stride = internal::wrap_on_overflow::Multiply(map.stride(), byte_stride); if (stride == 0) { map.SetConstant(); } map.stride() = stride; map.offset() = internal::wrap_on_overflow::Multiply(map.offset(), byte_stride); } } } absl::Status CopyTransformedArrayImpl(TransformedArrayView<const void> source, TransformedArrayView<void> dest) { TENSORSTORE_ASSIGN_OR_RETURN(auto r, internal::GetDataTypeConverterOrError( source.dtype(), dest.dtype())); absl::Status status; using TA = TransformedArrayView<const void>; TENSORSTORE_ASSIGN_OR_RETURN(auto success, internal::IterateOverTransformedArrays<2>( r.closure, &status, skip_repeated_elements, span<const TA, 2>({source, TA(dest)}))); if (!success) { return internal::GetElementCopyErrorStatus(std::move(status)); } return status; } TransformRep::Ptr<> MakeTransformFromStridedLayout( StridedLayoutView<dynamic_rank, offset_origin> layout) { auto result = MakeIdentityTransform(layout.domain()); MultiplyByteStridesIntoOutputIndexMaps(result.get(), layout.byte_strides()); internal_index_space::DebugCheckInvariants(result.get()); return result; } Result<TransformRep::Ptr<>> MakeTransformFromStridedLayoutAndTransform( StridedLayoutView<dynamic_rank, offset_origin> layout, TransformRep::Ptr<> transform) { if (!transform) return MakeTransformFromStridedLayout(layout); if (transform->output_rank != layout.rank()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Transform output rank (", transform->output_rank, ") does not equal array rank (", layout.rank(), ")")); } TENSORSTORE_ASSIGN_OR_RETURN( transform, PropagateExplicitBoundsToTransform(layout.domain(), std::move(transform))); MultiplyByteStridesIntoOutputIndexMaps(transform.get(), layout.byte_strides()); internal_index_space::DebugCheckInvariants(transform.get()); return transform; } StridedLayoutView<dynamic_rank, offset_origin> GetUnboundedLayout( DimensionIndex rank) { return StridedLayoutView<dynamic_rank, offset_origin>( rank, GetConstantVector<Index, -kInfIndex>(rank).data(), GetConstantVector<Index, kInfSize>(rank).data(), GetConstantVector<Index, 1>(rank).data()); } } namespace internal { template <size_t Arity> Result<bool> IterateOverTransformedArrays( ElementwiseClosure<Arity, void*> closure, void* arg, IterationConstraints constraints, span<const TransformedArrayView<const void>, Arity> transformed_arrays) { if (Arity == 0) return true; const DimensionIndex input_rank = transformed_arrays[0].rank(); namespace flags = internal_index_space::input_dimension_iteration_flags; flags::Bitmask input_dimension_flags[kMaxRank]; std::fill_n( &input_dimension_flags[0], input_rank, flags::GetDefaultBitmask(constraints.repeated_elements_constraint())); internal_index_space::SingleArrayIterationState single_array_states[Arity]; Box<dynamic_rank(kNumInlinedDims)> input_bounds(input_rank); bool failed = false; for (size_t i = 0; i < Arity; ++i) { if (transformed_arrays[i].domain().rank() != input_rank) { failed = true; } } if (failed) { DimensionIndex transformed_ranks[Arity]; for (size_t i = 0; i < Arity; ++i) { transformed_ranks[i] = transformed_arrays[i].domain().rank(); } return absl::InvalidArgumentError( tensorstore::StrCat("Transformed array input ranks ", span(transformed_ranks), " do not all match")); } for (size_t i = 0; i < Arity; ++i) { const BoxView<> domain = transformed_arrays[i].domain().box(); TENSORSTORE_RETURN_IF_ERROR( internal_index_space::ValidateAndIntersectBounds( domain, input_bounds, [](IndexInterval a, IndexInterval b) { return AreCompatibleOrUnbounded(a, b); })); } for (DimensionIndex i = 0; i < input_rank; ++i) { if (input_bounds.shape()[i] == 0) { return true; } } bool has_array_indexed_output_dimensions = false; for (size_t i = 0; i < Arity; ++i) { const auto& ta = transformed_arrays[i]; auto& single_array_state = single_array_states[i]; TENSORSTORE_RETURN_IF_ERROR( internal_index_space::InitializeSingleArrayIterationState( ta.element_pointer(), internal_index_space::TransformAccess::rep(ta.transform()), input_bounds.origin().data(), input_bounds.shape().data(), &single_array_state, &input_dimension_flags[0])); if (single_array_state.num_array_indexed_output_dimensions) { has_array_indexed_output_dimensions = true; } } std::array<std::ptrdiff_t, Arity> element_sizes; for (size_t i = 0; i < Arity; ++i) { element_sizes[i] = transformed_arrays[i].dtype()->size; } if (!has_array_indexed_output_dimensions) { std::array<ByteStridedPointer<void>, Arity> pointers; std::array<const Index*, Arity> strides; for (size_t i = 0; i < Arity; ++i) { pointers[i] = single_array_states[i].base_pointer; strides[i] = &single_array_states[i].input_byte_strides[0]; } return IterateOverStridedLayouts<Arity>(closure, arg, input_bounds.shape(), pointers, strides, constraints, element_sizes); } internal_index_space::MarkSingletonDimsAsSkippable(input_bounds.shape(), &input_dimension_flags[0]); internal_index_space::SimplifiedDimensionIterationOrder layout = internal_index_space::SimplifyDimensionIterationOrder<Arity>( internal_index_space::ComputeDimensionIterationOrder<Arity>( single_array_states, span(input_dimension_flags, input_rank), constraints.order_constraint()), input_bounds.shape(), single_array_states); return internal_index_space::IterateUsingSimplifiedLayout<Arity>( layout, input_bounds.shape(), closure, arg, single_array_states, element_sizes); } #define TENSORSTORE_DO_INSTANTIATE_ITERATE_OVER_TRANSFORMED_ARRAYS(Arity) \ template Result<bool> IterateOverTransformedArrays<Arity>( \ ElementwiseClosure<Arity, void*> closure, void* arg, \ IterationConstraints constraints, \ span<const TransformedArrayView<const void>, Arity> transformed_arrays); \ TENSORSTORE_INTERNAL_FOR_EACH_ARITY( TENSORSTORE_DO_INSTANTIATE_ITERATE_OVER_TRANSFORMED_ARRAYS) #undef TENSORSTORE_DO_INSTANTIATE_ITERATE_OVER_TRANSFORMED_ARRAYS Result<ElementPointer<Shared<const void>>> TryConvertToArrayImpl( ElementPointer<Shared<const void>> element_pointer, IndexTransformView<> transform, Index* output_origin, Index* output_shape, Index* output_byte_strides) { const DimensionIndex input_rank = transform.input_rank(); const DimensionIndex output_rank = transform.output_rank(); if (output_origin) { std::copy_n(transform.input_origin().begin(), input_rank, output_origin); } std::copy_n(transform.input_shape().begin(), input_rank, output_shape); Index offset = 0; std::fill_n(output_byte_strides, input_rank, Index(0)); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { auto map = transform.output_index_map(output_dim); offset = internal::wrap_on_overflow::Add(offset, map.offset()); switch (map.method()) { case OutputIndexMethod::constant: break; case OutputIndexMethod::single_input_dimension: { const DimensionIndex input_dim = map.input_dimension(); output_byte_strides[input_dim] = internal::wrap_on_overflow::Add( output_byte_strides[input_dim], map.stride()); break; } case OutputIndexMethod::array: return absl::InvalidArgumentError( "Cannot view transformed array with index arrays as a strided " "array"); } } if (!output_origin) { offset = internal::wrap_on_overflow::Add( offset, IndexInnerProduct(input_rank, transform.input_origin().data(), output_byte_strides)); } return AddByteOffset(std::move(element_pointer), offset); } } }
#include "tensorstore/index_space/transformed_array.h" #include <stddef.h> #include <stdint.h> #include <random> #include <type_traits> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/array_testutil.h" #include "tensorstore/box.h" #include "tensorstore/container_kind.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_domain.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/index_transform_testutil.h" #include "tensorstore/index_space/transform_array_constraints.h" #include "tensorstore/internal/testing/random_seed.h" #include "tensorstore/rank.h" #include "tensorstore/static_cast.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::dynamic_rank; using ::tensorstore::Index; using ::tensorstore::IndexInterval; using ::tensorstore::kImplicit; using ::tensorstore::kInfIndex; using ::tensorstore::kInfSize; using ::tensorstore::MakeArray; using ::tensorstore::MakeOffsetArray; using ::tensorstore::MatchesStatus; using ::tensorstore::Result; using ::tensorstore::Shared; using ::tensorstore::StaticDataTypeCast; using ::tensorstore::StaticRankCast; using ::tensorstore::TransformedArray; using ::tensorstore::dtypes::float32_t; static_assert(std::is_convertible_v<tensorstore::TransformedSharedArray<int, 1>, tensorstore::TransformedArrayView<int, 1>>); static_assert( !std::is_convertible_v<tensorstore::TransformedArrayView<int, 1>, tensorstore::TransformedSharedArray<int, 1>>); static_assert(std::is_convertible_v<tensorstore::TransformedArrayView<int, 1>, tensorstore::TransformedArray<int, 1>>); static_assert( std::is_same_v<typename tensorstore::TransformedArrayView<int, 1>:: template RebindContainerKind<tensorstore::container>, tensorstore::TransformedArray<int, 1>>); static_assert(tensorstore::HasBoxDomain<tensorstore::TransformedArray<int, 1>>); template <typename TA> std::vector<const typename TA::Element*> GetPointers(const TA& a) { using Element = const typename TA::Element; std::vector<Element*> pointers; auto result = IterateOverTransformedArrays( [&](Element* x) { pointers.push_back(x); }, tensorstore::skip_repeated_elements, a); EXPECT_TRUE(result); return pointers; } using TransformedArrayTestTypes = ::testing::Types<tensorstore::TransformedSharedArray<int>, tensorstore::TransformedSharedArray<int, 1>>; template <typename T> class TransformedArrayConstructorTest : public ::testing::Test {}; TYPED_TEST_SUITE(TransformedArrayConstructorTest, TransformedArrayTestTypes); template <typename TransformedArrayType, typename SourceArray> void TestCopyAndMove(SourceArray&& source, std::vector<const int*> expected_pointers) { { TransformedArrayType tb(source); EXPECT_EQ(GetBoxDomainOf(source), GetBoxDomainOf(tb)); EXPECT_EQ(expected_pointers, GetPointers(tb)); } { auto source_copy = source; TransformedArrayType tc(std::move(source_copy)); EXPECT_EQ(GetBoxDomainOf(source), GetBoxDomainOf(tc)); EXPECT_EQ(expected_pointers, GetPointers(tc)); } { TransformedArrayType td; td = source; EXPECT_EQ(GetBoxDomainOf(source), GetBoxDomainOf(td)); EXPECT_EQ(expected_pointers, GetPointers(td)); } { auto source_copy = source; TransformedArrayType td; td = std::move(source_copy); EXPECT_EQ(expected_pointers, GetPointers(td)); EXPECT_EQ(GetBoxDomainOf(source), GetBoxDomainOf(td)); } } TYPED_TEST(TransformedArrayConstructorTest, DefaultConstruct) { TypeParam ta; EXPECT_FALSE(ta.transform()); EXPECT_EQ(nullptr, ta.element_pointer()); } template <typename TransformedArrayType, typename Array> void TestConstructFromArray(Array&& array, std::vector<const int*> expected_pointers) { auto array_copy = array; TransformedArrayType ta(std::forward<Array>(array)); EXPECT_EQ(array_copy.domain(), ta.domain().box()); EXPECT_EQ(array_copy.domain(), GetBoxDomainOf(ta)); auto pointers = GetPointers(ta); EXPECT_EQ(expected_pointers, pointers); TestCopyAndMove<TransformedArrayType>(ta, expected_pointers); TestCopyAndMove<typename TransformedArrayType::template RebindContainerKind< tensorstore::container>>(ta, expected_pointers); } TYPED_TEST(TransformedArrayConstructorTest, ConstructFromZeroOriginArray) { auto a = MakeArray<int>({1, 2, 3}); const std::vector<const int*> expected_pointers{&a(0), &a(1), &a(2)}; TestConstructFromArray<TypeParam>(a, expected_pointers); TestConstructFromArray<TypeParam>(tensorstore::SharedArrayView<int, 1>(a), expected_pointers); } TYPED_TEST(TransformedArrayConstructorTest, ConstructFromOffsetOriginArray) { auto a = MakeOffsetArray<int>({3}, {1, 2, 3}); const std::vector<const int*> expected_pointers{&a(3), &a(4), &a(5)}; TestConstructFromArray<TypeParam>(a, expected_pointers); TestConstructFromArray<TypeParam>( tensorstore::SharedOffsetArrayView<int, 1>(a), expected_pointers); } template <typename TransformedArrayType, typename ElementPointer, typename Transform> void TestConstructFromElementPointerAndTransform( ElementPointer&& element_pointer, Transform&& transform, std::vector<const int*> expected_pointers) { auto element_pointer_copy = element_pointer; auto transform_copy = transform; TransformedArrayType ta(std::forward<ElementPointer>(element_pointer), std::forward<Transform>(transform)); EXPECT_EQ(GetBoxDomainOf(transform_copy), GetBoxDomainOf(ta)); EXPECT_EQ(transform_copy, ta.transform()); EXPECT_EQ(element_pointer_copy, ta.element_pointer()); auto pointers = GetPointers(ta); EXPECT_EQ(expected_pointers, pointers); TestCopyAndMove<TransformedArrayType>(ta, expected_pointers); TestCopyAndMove<typename TransformedArrayType::template RebindContainerKind< tensorstore::container>>(ta, expected_pointers); } TYPED_TEST(TransformedArrayConstructorTest, ConstructFromElementPointerAndTransform) { auto a = MakeArray<int>({1, 2, 3}); const std::vector<const int*> expected_pointers{&a(0), &a(1), &a(2)}; auto t = tensorstore::IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({3}) .output_single_input_dimension(0, 0, sizeof(int), 0) .Finalize() .value(); TestConstructFromElementPointerAndTransform<TypeParam>(a.element_pointer(), t, expected_pointers); auto element_pointer = a.element_pointer(); auto t_copy = t; TestConstructFromElementPointerAndTransform<TypeParam>( std::move(element_pointer), std::move(t_copy), expected_pointers); tensorstore::IndexTransformView<1, 1> t_view = t; TestConstructFromElementPointerAndTransform<TypeParam>( a.element_pointer(), t_view, expected_pointers); } TEST(TransformedArrayTest, Array) { auto a = MakeOffsetArray<int>({3}, {1, 2, 3}); auto ta = tensorstore::TransformedArray(a); static_assert(std::is_same_v<decltype(ta), tensorstore::TransformedSharedArray<int, 1>>); auto a_copy = a; EXPECT_EQ(3, a.pointer().use_count()); auto tb = tensorstore::TransformedArray(std::move(a_copy)); static_assert(std::is_same_v<decltype(tb), tensorstore::TransformedSharedArray<int, 1>>); EXPECT_EQ(3, a.pointer().use_count()); EXPECT_FALSE(a_copy.valid()); } TEST(TransformedArrayTest, TransformedArray) { auto a = MakeOffsetArray<int>({3}, {1, 2, 3}); auto ta = tensorstore::TransformedArray(a); auto tb = tensorstore::TransformedArray(ta); static_assert(std::is_same_v<decltype(tb), tensorstore::TransformedSharedArray<int, 1>>); auto ta_copy = ta; EXPECT_EQ(4, a.pointer().use_count()); auto tc = tensorstore::TransformedArray(std::move(ta_copy)); static_assert(std::is_same_v<decltype(tc), tensorstore::TransformedSharedArray<int, 1>>); EXPECT_EQ(a.element_pointer(), tc.element_pointer()); EXPECT_EQ(4, a.pointer().use_count()); EXPECT_FALSE(ta_copy.element_pointer()); } TEST(TransformedArrayTest, MapTransform) { auto array = MakeArray<int>({1, 2, 3}); tensorstore::TransformedArray<int, 1> tarray(array); auto tarray2 = ChainResult(tarray, tensorstore::Dims(0).SizedInterval(1, 2)).value(); EXPECT_EQ(MakeOffsetArray<int>({1}, {2, 3}), tarray2.Materialize().value()); } TEST(TransformedArrayTest, ArrayAndTransform) { auto a = MakeOffsetArray<int>({3}, {1, 2, 3}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t, (tensorstore::IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({3}) .input_labels({"a"}) .output_single_input_dimension(0, 3, 1, 0) .Finalize())); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto ta, tensorstore::MakeTransformedArray(a, t)); static_assert(std::is_same_v<decltype(ta), tensorstore::TransformedSharedArray<int, 1>>); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto expected_transform, (tensorstore::IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({3}) .input_labels({"a"}) .output_single_input_dimension( 0, 3 * sizeof(int), 1 * sizeof(int), 0) .Finalize())); EXPECT_EQ(expected_transform, ta.transform()); } TEST(TransformedArrayTest, DimExpression) { auto a = MakeOffsetArray<int>({10, 20}, {{1, 2, 3}, {4, 5, 6}}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto ta, a | tensorstore::Dims(0, 1).IndexVectorArraySlice( MakeArray<Index>({{10, 22}, {11, 21}, {11, 22}})) | tensorstore::Dims(0).Label("a")); EXPECT_EQ(ta.transform(), (tensorstore::IndexTransformBuilder<1, 2>() .input_origin({0}) .input_shape({3}) .input_labels({"a"}) .output_index_array(0, 0, sizeof(int) * 3, MakeArray<Index>({10, 11, 11}), IndexInterval::Sized(10, 2)) .output_index_array(1, 0, sizeof(int), MakeArray<Index>({22, 21, 22}), IndexInterval::Sized(20, 3)) .Finalize() .value())); EXPECT_EQ(a.element_pointer(), ta.element_pointer()); EXPECT_EQ(ta.domain().box(), tensorstore::BoxView<1>({3})); } TEST(TransformedArrayTest, MaterializeWithOffsetOrigin) { EXPECT_EQ(MakeOffsetArray<int>({2}, {3, 5, 6}), ChainResult(MakeOffsetArray<int>({10, 20}, {{1, 2, 3}, {4, 5, 6}}), tensorstore::Dims(0, 1) .IndexVectorArraySlice(MakeArray<Index>( {{10, 22}, {11, 21}, {11, 22}})) .TranslateTo(2)) .value() .Materialize()); } TEST(TransformedArrayTest, MaterializeWithZeroOrigin) { EXPECT_EQ(MakeArray<int>({3, 5, 6}), ChainResult(MakeOffsetArray<int>({10, 20}, {{1, 2, 3}, {4, 5, 6}}), tensorstore::Dims(0, 1) .IndexVectorArraySlice(MakeArray<Index>( {{10, 22}, {11, 21}, {11, 22}})) .TranslateTo(2)) .value() .template Materialize<tensorstore::zero_origin>() .value()); } TEST(TransformedArrayTest, MaterializeConstraints) { auto array = MakeOffsetArray<int>({2, 3}, {{3, 4, 5}, {6, 7, 8}}); auto transformed_array = ChainResult(array, tensorstore::Dims(1) .ClosedInterval(kImplicit, kImplicit, 2) .MoveToFront(), tensorstore::Dims(2).AddNew().SizedInterval(5, 3)) .value(); auto expected_array = MakeOffsetArray<int>( {1, 2, 5}, {{{3, 3, 3}, {6, 6, 6}}, {{5, 5, 5}, {8, 8, 8}}}); { auto new_array = transformed_array.Materialize().value(); EXPECT_EQ(GetPointers(transformed_array), GetPointers(new_array)); } const auto ValidateCopy = [&](const Result<tensorstore::SharedOffsetArray<const int, 3>>& new_array, const std::vector<Index>& expected_byte_strides) { TENSORSTORE_ASSERT_OK(new_array); EXPECT_NE(GetPointers(transformed_array), GetPointers(*new_array)); EXPECT_EQ(expected_array, *new_array); EXPECT_THAT(new_array->byte_strides(), ::testing::ElementsAreArray(expected_byte_strides)); }; const auto TestCopyAndMaterialize = [&](tensorstore::TransformArrayConstraints constraints, std::vector<Index> expected_byte_strides) { SCOPED_TRACE(tensorstore::StrCat("TestCopyAndMaterialize: constraints=", constraints.value())); { SCOPED_TRACE("Materialize"); auto new_array = transformed_array.Materialize(constraints); static_assert(std::is_same_v< decltype(new_array), Result<tensorstore::SharedOffsetArray<const int, 3>>>); ValidateCopy(new_array, expected_byte_strides); } { SCOPED_TRACE("MakeCopy"); auto new_array = MakeCopy(transformed_array, constraints.iteration_constraints()); static_assert( std::is_same_v<decltype(new_array), Result<tensorstore::SharedOffsetArray<int, 3>>>); ValidateCopy(new_array, expected_byte_strides); } }; TestCopyAndMaterialize( {tensorstore::skip_repeated_elements, tensorstore::must_allocate}, {sizeof(int), sizeof(int) * 2, 0}); TestCopyAndMaterialize( {tensorstore::c_order, tensorstore::skip_repeated_elements, tensorstore::must_allocate}, {sizeof(int) * 2, sizeof(int), 0}); TestCopyAndMaterialize( {tensorstore::fortran_order, tensorstore::skip_repeated_elements, tensorstore::must_allocate}, {sizeof(int), sizeof(int) * 2, 0}); TestCopyAndMaterialize( {tensorstore::fortran_order, tensorstore::include_repeated_elements, tensorstore::must_allocate}, {sizeof(int), sizeof(int) * 2, sizeof(int) * 2 * 2}); TestCopyAndMaterialize( {tensorstore::c_order, tensorstore::include_repeated_elements, tensorstore::must_allocate}, {sizeof(int) * 2 * 3, sizeof(int) * 3, sizeof(int)}); } TEST(TransformedArrayTest, MaterializeError) { EXPECT_THAT( ChainResult(MakeArray<int>({1, 2}), tensorstore::Dims(0).IndexArraySlice( MakeArray<Index>({3, 4}))) .value() .Materialize(), MatchesStatus(absl::StatusCode::kOutOfRange)); } TEST(TransformedArrayTest, MakeCopy) { EXPECT_THAT(MakeCopy(ChainResult(MakeArray<int>({1, 2}), tensorstore::Dims(0).IndexArraySlice( MakeArray<Index>({3, 4}))) .value()), MatchesStatus(absl::StatusCode::kOutOfRange)); } TEST(TransformedArrayTest, MoveConstructViewFromContainer) { MapResult( [](tensorstore::TransformedSharedArrayView<const void> x) { EXPECT_EQ(tensorstore::BoxView({2, 3}, {2, 2}), GetBoxDomainOf(x)); return absl::OkStatus(); }, tensorstore::MakeTransformedArray( tensorstore::MakeOffsetArray<int>({2, 3}, {{1, 2}, {3, 4}}), tensorstore::IdentityTransform(tensorstore::BoxView({2, 3}, {2, 2})))) .value(); } TEST(ComposeLayoutAndTransformTest, NoTransform) { tensorstore::StridedLayout<tensorstore::dynamic_rank, tensorstore::offset_origin> layout({1, 2}, {3, 4}, {5, 6}); auto transform = tensorstore::ComposeLayoutAndTransform( layout, tensorstore::IndexTransform<>()) .value(); EXPECT_EQ(transform, tensorstore::IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_shape({3, 4}) .output_single_input_dimension(0, 0, 5, 0) .output_single_input_dimension(1, 0, 6, 1) .Finalize() .value()); } TEST(ComposeLayoutAndTransformTest, ExistingTransform) { tensorstore::StridedLayout<tensorstore::dynamic_rank, tensorstore::offset_origin> layout({1, 2}, {3, 4}, {5, 6}); auto transform = tensorstore::ComposeLayoutAndTransform( layout, tensorstore::IndexTransformBuilder<>(2, 2) .input_origin({11, 12}) .input_shape({3, 2}) .input_labels({"x", "y"}) .output_single_input_dimension(0, -10, 1, 0) .output_single_input_dimension(1, -22, 2, 1) .Finalize() .value()) .value(); EXPECT_EQ(transform, tensorstore::IndexTransformBuilder<>(2, 2) .input_origin({11, 12}) .input_shape({3, 2}) .input_labels({"x", "y"}) .output_single_input_dimension(0, -10 * 5, 1 * 5, 0) .output_single_input_dimension(1, -22 * 6, 2 * 6, 1) .Finalize() .value()); } TEST(ComposeLayoutAndTransformTest, RankMismatch) { tensorstore::StridedLayout<tensorstore::dynamic_rank, tensorstore::offset_origin> layout({1, 2}, {3, 4}, {5, 6}); EXPECT_THAT(tensorstore::ComposeLayoutAndTransform( layout, tensorstore::IdentityTransform(3)), MatchesStatus(absl::StatusCode::kInvalidArgument, "Transform output rank \\(3\\) does not equal " "array rank \\(2\\)")); } TEST(MakeTransformedArrayTest, TwoArgumentBaseArrayAndTransform) { auto array = MakeOffsetArray<int>({2, 3}, {{3, 4, 5}, {6, 7, 8}}); auto t = tensorstore::IndexTransformBuilder<1, 2>() .implicit_lower_bounds({1}) .implicit_upper_bounds({1}) .output_single_input_dimension(0, 1, 1, 0) .output_single_input_dimension(1, 2, 1, 0) .Finalize() .value(); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto ta, tensorstore::MakeTransformedArray(array, t)); EXPECT_EQ(array.element_pointer(), ta.element_pointer()); EXPECT_EQ( tensorstore::IndexTransformBuilder<>(1, 2) .input_origin({1}) .input_shape({2}) .output_single_input_dimension(0, sizeof(int) * 3, sizeof(int) * 3, 0) .output_single_input_dimension(1, sizeof(int) * 2, sizeof(int), 0) .Finalize() .value(), ta.transform()); } TEST(GetUnboundedLayoutTest, Basic) { EXPECT_EQ((tensorstore::StridedLayout<tensorstore::dynamic_rank, tensorstore::offset_origin>( {-kInfIndex, -kInfIndex}, {kInfSize, kInfSize}, {1, 1})), tensorstore::internal_index_space::GetUnboundedLayout(2)); } TEST(TransformedArrayTest, StaticDataTypeCast) { TransformedArray<int32_t, 1> ta_orig = MakeArray<int32_t>({3, 4}); TransformedArray<void, 1> ta = ta_orig; auto ta_int = StaticDataTypeCast<int32_t>(ta); static_assert( std::is_same_v<decltype(ta_int), Result<TransformedArray<int, 1>>>); ASSERT_TRUE(ta_int); EXPECT_THAT(GetPointers(*ta_int), ::testing::ElementsAreArray(GetPointers(ta_orig))); } TEST(TransformedArrayTest, CastArrayToTransformedArray) { tensorstore::SharedArray<int32_t> a = MakeArray<int32_t>({1, 2}); auto ta_result = tensorstore::StaticCast<tensorstore::TransformedArrayView<int32_t, 1>>(a); TENSORSTORE_ASSERT_OK(ta_result); EXPECT_THAT(GetPointers(*ta_result), ::testing::ElementsAre(&a(0), &a(1))); } TEST(TransformedArrayTest, StaticDataTypeCastShared) { auto ta_orig = tensorstore::TransformedArray(MakeArray<int32_t>({3, 4})); TransformedArray<Shared<void>, 1> ta = ta_orig; auto ta_int = StaticDataTypeCast<int32_t>(ta); static_assert(std::is_same_v<decltype(ta_int), Result<TransformedArray<Shared<int32_t>, 1>>>); ASSERT_TRUE(ta_int); EXPECT_THAT(GetPointers(*ta_int), ::testing::ElementsAreArray(GetPointers(ta_orig))); } TEST(TransformedArrayTest, StaticRankCast) { TransformedArray<Shared<int32_t>, dynamic_rank> ta = MakeArray<int32_t>({3, 4}); auto ta1 = StaticRankCast<1>(ta); static_assert(std::is_same_v<decltype(ta1), Result<TransformedArray<Shared<int32_t>, 1>>>); ASSERT_TRUE(ta1); EXPECT_THAT(GetPointers(*ta1), ::testing::ElementsAreArray(GetPointers(ta))); EXPECT_THAT( StaticRankCast<2>(ta), MatchesStatus( absl::StatusCode::kInvalidArgument, "Cannot cast transformed array with data type of int32 and rank of 1 " "to transformed array with data type of int32 and rank of 2")); } TEST(TransformedArrayTest, ApplyIndexTransform) { auto array = MakeArray<int>({{1, 2, 3}, {4, 5, 6}}); auto result = ChainResult(array, tensorstore::IdentityTransform<2>()); TENSORSTORE_ASSERT_OK(result); EXPECT_EQ(array, MakeCopy(*result)); } TEST(CopyTransformedArrayTest, Int32ToUint32) { auto a = MakeArray<int32_t>({{1, 2, 3}, {4, 5, 6}}); auto b = tensorstore::AllocateArray<uint32_t>({3, 2}); EXPECT_EQ(absl::OkStatus(), CopyTransformedArray( a, ChainResult(b, tensorstore::Dims(1, 0).Transpose()))); EXPECT_EQ(b, MakeArray<uint32_t>({{1, 4}, {2, 5}, {3, 6}})); } TEST(CopyTransformedArrayTest, Int32ToInt32) { auto a = MakeArray<int32_t>({{1, 2, 3}, {4, 5, 6}}); auto b = tensorstore::AllocateArray<int32_t>({3, 2}); EXPECT_EQ(absl::OkStatus(), CopyTransformedArray( a, ChainResult(b, tensorstore::Dims(1, 0).Transpose()))); EXPECT_EQ(b, MakeArray<int32_t>({{1, 4}, {2, 5}, {3, 6}})); } TEST(CopyTransformedArrayTest, Int32ToFloat32) { auto a = MakeArray<int32_t>({{1, 2, 3}, {4, 5, 6}}); auto b = tensorstore::AllocateArray<float32_t>({3, 2}); EXPECT_EQ(absl::OkStatus(), CopyTransformedArray( ChainResult(a, tensorstore::Dims(1, 0).Transpose()), b)); EXPECT_EQ(b, MakeArray<float32_t>({{1.0, 4.0}, {2.0, 5.0}, {3.0, 6.0}})); } TEST(CopyTransformedArrayTest, InvalidDataType) { auto a = MakeArray<::tensorstore::dtypes::string_t>({"x", "y"}); auto b = tensorstore::AllocateArray<float32_t>({2}); EXPECT_THAT(CopyTransformedArray(a, b), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot convert string -> float32")); } TEST(TransformedArrayTest, UnownedToShared) { auto a = MakeArray<int>({1, 2, 3}); TransformedArray<int> ta = a; auto shared_ta = UnownedToShared(ta); static_assert( std::is_same_v<decltype(shared_ta), TransformedArray<Shared<int>>>); } TEST(TransformedArrayTest, UnownedToSharedAliasing) { auto a = MakeArray<int>({1, 2, 3}); TransformedArray<int> ta = a; EXPECT_EQ(1, a.pointer().use_count()); { auto shared_ta = UnownedToShared(a.pointer(), ta); EXPECT_EQ(2, a.pointer().use_count()); static_assert( std::is_same_v<decltype(shared_ta), TransformedArray<Shared<int>>>); auto shared_ta_copy = UnownedToShared(shared_ta); static_assert( std::is_same_v<decltype(shared_ta), TransformedArray<Shared<int>>>); EXPECT_EQ(3, a.pointer().use_count()); } EXPECT_EQ(1, a.pointer().use_count()); } TEST(TryConvertToArrayTest, Basic) { auto array = tensorstore::AllocateArray<int32_t>({2, 3}, tensorstore::c_order, tensorstore::value_init); EXPECT_THAT(array | tensorstore::IdentityTransform<2>() | tensorstore::TryConvertToArray(), ::testing::Optional(tensorstore::ReferencesSameDataAs(array))); EXPECT_THAT(array | tensorstore::Dims(0).IndexSlice(1) | tensorstore::TryConvertToArray(), ::testing::Optional(tensorstore::ReferencesSameDataAs(array[1]))); EXPECT_THAT(array | tensorstore::Dims(0).TranslateTo(1) | tensorstore::TryConvertToArray<tensorstore::zero_origin>(), ::testing::Optional(tensorstore::ReferencesSameDataAs(array))); EXPECT_THAT(array | tensorstore::Dims(0).OuterIndexArraySlice( tensorstore::MakeArray<Index>({0, 1, 1})) | tensorstore::TryConvertToArray(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(TryConvertToArrayTest, Random) { tensorstore::SharedArray<const void> array = tensorstore::AllocateArray<int32_t>({2, 3}, tensorstore::c_order, tensorstore::value_init); std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_VIEW_AS_ARRAY")}; constexpr size_t kNumIterations = 10; for (size_t iter_i = 0; iter_i < kNumIterations; ++iter_i) { tensorstore::internal::MakeStridedIndexTransformForOutputSpaceParameters p; p.max_stride = 2; auto transform = tensorstore::internal::MakeRandomStridedIndexTransformForOutputSpace( gen, tensorstore::IndexDomain<>(array.domain()), p); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto materialized_zero_origin, array | transform | tensorstore::Materialize<tensorstore::zero_origin>()); EXPECT_THAT(array | transform | tensorstore::TryConvertToArray<tensorstore::zero_origin>(), ::testing::Optional(materialized_zero_origin)); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto materialized_offset_origin, array | transform | tensorstore::Materialize()); EXPECT_THAT(array | transform | tensorstore::TryConvertToArray(), ::testing::Optional(materialized_offset_origin)); } } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/transformed_array.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/transformed_array_test.cc
4f887a6430414cd6088e1743555015b10f116d50
efe8eb53-2350-4abc-aafc-adeb5a15e0e5
cpp
google/tensorstore
dimension_units
tensorstore/index_space/dimension_units.cc
tensorstore/index_space/dimension_units_test.cc
#include "tensorstore/index_space/dimension_units.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { Result<DimensionUnitsVector> TransformInputDimensionUnits( IndexTransformView<> transform, DimensionUnitsVector input_units) { if (!transform.valid()) return input_units; const DimensionIndex input_rank = transform.input_rank(), output_rank = transform.output_rank(); assert(input_units.size() == input_rank); std::optional<Unit> output_units[kMaxRank]; DimensionSet seen_input_dims; for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const auto map = transform.output_index_maps()[output_dim]; if (map.method() != OutputIndexMethod::single_input_dimension) continue; const Index stride = map.stride(); if (stride == 0) continue; const DimensionIndex input_dim = map.input_dimension(); const auto& input_unit = input_units[input_dim]; if (!input_unit) continue; seen_input_dims[input_dim] = true; auto& output_unit = output_units[output_dim]; output_unit = input_unit; *output_unit /= std::abs(static_cast<double>(stride)); } for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { if (!input_units[input_dim] || seen_input_dims[input_dim]) continue; return absl::InvalidArgumentError(tensorstore::StrCat( "No output dimension corresponds to input dimension ", input_dim, " with unit ", *input_units[input_dim])); } input_units.resize(output_rank); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { input_units[output_dim] = std::move(output_units[output_dim]); } return input_units; } DimensionUnitsVector TransformOutputDimensionUnits( IndexTransformView<> transform, DimensionUnitsVector output_units) { if (!transform.valid()) return output_units; const DimensionIndex input_rank = transform.input_rank(), output_rank = transform.output_rank(); assert(output_units.size() == output_rank); DimensionSet one_to_one_input_dims = internal::GetOneToOneInputDimensions(transform).one_to_one; std::optional<Unit> input_units[kMaxRank]; for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const auto& output_unit = output_units[output_dim]; if (!output_unit) continue; const auto map = transform.output_index_maps()[output_dim]; if (map.method() != OutputIndexMethod::single_input_dimension) continue; const Index stride = map.stride(); if (stride == 0) continue; const DimensionIndex input_dim = map.input_dimension(); if (!one_to_one_input_dims[input_dim]) continue; auto& input_unit = input_units[input_dim]; input_unit = output_unit; *input_unit *= std::abs(static_cast<double>(stride)); } output_units.resize(input_rank); for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { output_units[input_dim] = std::move(input_units[input_dim]); } return output_units; } absl::Status MergeDimensionUnits(DimensionUnitsVector& existing_units, span<const std::optional<Unit>> new_units) { assert(existing_units.empty() || existing_units.size() == new_units.size()); existing_units.resize(new_units.size()); for (size_t i = 0; i < new_units.size(); ++i) { auto& existing_unit = existing_units[i]; auto& new_unit = new_units[i]; if (!new_unit) continue; if (existing_unit && existing_unit != new_unit) { return absl::InvalidArgumentError(tensorstore::StrCat( "Cannot merge dimension units ", DimensionUnitsToString(new_units), " and ", DimensionUnitsToString(existing_units))); } } for (size_t i = 0; i < new_units.size(); ++i) { auto& existing_unit = existing_units[i]; auto& new_unit = new_units[i]; if (!new_unit || existing_unit) continue; existing_unit = new_unit; } return absl::OkStatus(); } std::string DimensionUnitsToString(span<const std::optional<Unit>> u) { std::string result = "["; std::string_view sep = ""; for (const auto& unit : u) { result += sep; sep = ", "; if (!unit) { result += "null"; } else { result += tensorstore::QuoteString(tensorstore::StrCat(*unit)); } } result += "]"; return result; } }
#include "tensorstore/index_space/dimension_units.h" #include <stddef.h> #include <iterator> #include <optional> #include <random> #include <string> #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/random/bit_gen_ref.h" #include "absl/random/random.h" #include "absl/status/status.h" #include "tensorstore/index.h" #include "tensorstore/index_space/index_domain.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/index_transform_testutil.h" #include "tensorstore/internal/testing/random_seed.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/unit.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::DimensionUnitsToString; using ::tensorstore::DimensionUnitsVector; using ::tensorstore::MatchesStatus; using ::tensorstore::MergeDimensionUnits; using ::tensorstore::TransformInputDimensionUnits; using ::tensorstore::TransformOutputDimensionUnits; using ::tensorstore::Unit; TEST(DimensionUnitsToStringTest, Basic) { EXPECT_EQ("[null, \"4 nm\"]", DimensionUnitsToString(DimensionUnitsVector{ std::nullopt, Unit("4nm")})); } TEST(MergeDimensionUnitsTest, BothUnspecified) { DimensionUnitsVector existing_units{std::nullopt, std::nullopt}; DimensionUnitsVector new_units{std::nullopt, std::nullopt}; TENSORSTORE_EXPECT_OK(MergeDimensionUnits(existing_units, new_units)); EXPECT_THAT(existing_units, ::testing::ElementsAre(std::nullopt, std::nullopt)); } TEST(MergeDimensionUnitsTest, OneSpecifiedOneUnspecified) { DimensionUnitsVector existing_units{std::nullopt, Unit("4nm")}; DimensionUnitsVector new_units{Unit("8nm"), std::nullopt}; TENSORSTORE_EXPECT_OK(MergeDimensionUnits(existing_units, new_units)); EXPECT_THAT(existing_units, ::testing::ElementsAre(Unit("8nm"), Unit("4nm"))); } TEST(MergeDimensionUnitsTest, BothSpecifiedSame) { DimensionUnitsVector existing_units{Unit("8nm"), Unit("4nm")}; DimensionUnitsVector new_units{Unit("8nm"), std::nullopt}; TENSORSTORE_EXPECT_OK(MergeDimensionUnits(existing_units, new_units)); EXPECT_THAT(existing_units, ::testing::ElementsAre(Unit("8nm"), Unit("4nm"))); } TEST(MergeDimensionUnitsTest, BothSpecifiedDistinct) { DimensionUnitsVector existing_units{std::nullopt, Unit("4nm")}; DimensionUnitsVector new_units{Unit("8nm"), Unit("5nm")}; EXPECT_THAT( MergeDimensionUnits(existing_units, new_units), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot merge dimension units \\[\"8 nm\", \"5 nm\"\\] " "and \\[null, \"4 nm\"\\]")); EXPECT_THAT(existing_units, ::testing::ElementsAre(std::nullopt, Unit("4nm"))); } std::optional<Unit> MakeRandomUnit(absl::BitGenRef gen) { constexpr std::string_view kBaseUnits[] = { "", "nm", "um", }; if (absl::Bernoulli(gen, 0.2)) return std::nullopt; const double multiplier = absl::Uniform<int>(gen, 5, 20); const auto base_unit = kBaseUnits[absl::Uniform<size_t>(gen, 0, std::size(kBaseUnits))]; return Unit(multiplier, std::string(base_unit)); } DimensionUnitsVector MakeRandomDimensionUnits(DimensionIndex rank, absl::BitGenRef gen) { DimensionUnitsVector units(rank); for (auto& unit : units) { unit = MakeRandomUnit(gen); } return units; } TEST(TransformOutputDimensionUnitsTest, InvertibleRoundTrip) { constexpr size_t kNumIterations = 100; for (size_t i = 0; i < kNumIterations; ++i) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_TRANSFORM_DIMENSION_UNITS_TEST_SEED")}; auto box = tensorstore::internal::MakeRandomBox(gen); auto domain = tensorstore::IndexDomain(box); auto transform = tensorstore::internal::MakeRandomStridedIndexTransformForOutputSpace( gen, domain); auto output_units = MakeRandomDimensionUnits(domain.rank(), gen); auto input_units = TransformOutputDimensionUnits(transform, output_units); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto inv_transform, InverseTransform(transform)); EXPECT_THAT(TransformInputDimensionUnits(transform, input_units), ::testing::Optional(::testing::ElementsAreArray(output_units))); EXPECT_THAT(TransformOutputDimensionUnits(inv_transform, input_units), ::testing::ElementsAreArray(output_units)); } } TEST(TransformOutputDimensionUnitsTest, StridedNonInvertibleRoundTrip) { constexpr size_t kNumIterations = 100; for (size_t i = 0; i < kNumIterations; ++i) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_TRANSFORM_DIMENSION_UNITS_TEST_SEED")}; auto box = tensorstore::internal::MakeRandomBox(gen); auto domain = tensorstore::IndexDomain(box); tensorstore::internal::MakeStridedIndexTransformForOutputSpaceParameters p; p.max_stride = 4; auto transform = tensorstore::internal::MakeRandomStridedIndexTransformForOutputSpace( gen, domain, p); auto output_units = MakeRandomDimensionUnits(domain.rank(), gen); auto input_units = TransformOutputDimensionUnits(transform, output_units); EXPECT_THAT(TransformInputDimensionUnits(transform, input_units), ::testing::Optional(::testing::ElementsAreArray(output_units))); } } TEST(TransformInputDimensionUnitsTest, NoCorrespondingOutputDimension) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, tensorstore::IndexTransformBuilder(1, 0).Finalize()); DimensionUnitsVector input_units{"4nm"}; EXPECT_THAT(TransformInputDimensionUnits(transform, input_units), MatchesStatus(absl::StatusCode::kInvalidArgument, "No output dimension corresponds to " "input dimension 0 with unit 4 nm")); } TEST(TransformOutputDimensionUnitsTest, NonUnique) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, tensorstore::IndexTransformBuilder(2, 3) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 0) .output_single_input_dimension(2, 1) .Finalize()); DimensionUnitsVector output_units{"4nm", "5nm", "6nm"}; EXPECT_THAT(TransformOutputDimensionUnits(transform, output_units), ::testing::ElementsAre(std::nullopt, Unit("6nm"))); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/dimension_units.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/dimension_units_test.cc
4f887a6430414cd6088e1743555015b10f116d50
03256495-5ec0-4ac6-9ce5-6a277dd98fb7
cpp
google/tensorstore
dimension_permutation
tensorstore/index_space/dimension_permutation.cc
tensorstore/index_space/dimension_permutation_test.cc
#include "tensorstore/index_space/dimension_permutation.h" #include <algorithm> #include <numeric> #include "tensorstore/contiguous_layout.h" #include "tensorstore/index.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/span.h" namespace tensorstore { void SetPermutation(ContiguousLayoutOrder order, span<DimensionIndex> permutation) { if (order == c_order) { for (DimensionIndex i = 0; i < permutation.size(); ++i) { permutation[i] = i; } } else { for (DimensionIndex i = 0; i < permutation.size(); ++i) { permutation[i] = permutation.size() - 1 - i; } } } bool IsValidPermutation(span<const DimensionIndex> permutation) { DimensionSet seen_dims; const DimensionIndex rank = permutation.size(); if (rank > kMaxRank) return false; for (DimensionIndex i = 0; i < rank; ++i) { DimensionIndex dim = permutation[i]; if (dim < 0 || dim >= rank || seen_dims[dim]) { return false; } seen_dims[dim] = true; } return true; } bool PermutationMatchesOrder(span<const DimensionIndex> permutation, ContiguousLayoutOrder order) { if (order == c_order) { for (DimensionIndex i = 0; i < permutation.size(); ++i) { if (permutation[i] != i) return false; } } else { for (DimensionIndex i = 0; i < permutation.size(); ++i) { if (permutation[i] != permutation.size() - i - 1) return false; } } return true; } void InvertPermutation(DimensionIndex rank, const DimensionIndex* perm, DimensionIndex* inverse_perm) { assert(IsValidPermutation(span(perm, rank))); for (DimensionIndex i = 0; i < rank; ++i) { inverse_perm[perm[i]] = i; } } void SetPermutationFromStridedLayout(StridedLayoutView<> layout, span<DimensionIndex> permutation) { assert(layout.rank() == permutation.size()); std::iota(permutation.begin(), permutation.end(), DimensionIndex(0)); const auto get_effective_byte_stride_nabs = [&](DimensionIndex i) -> Index { const Index byte_stride = layout.byte_strides()[i]; if (byte_stride > 0) return -byte_stride; return byte_stride; }; std::stable_sort(permutation.begin(), permutation.end(), [&](DimensionIndex a, DimensionIndex b) { return get_effective_byte_stride_nabs(a) < get_effective_byte_stride_nabs(b); }); } void TransformOutputDimensionOrder(IndexTransformView<> transform, span<const DimensionIndex> output_perm, span<DimensionIndex> input_perm) { assert(transform.valid()); assert(IsValidPermutation(output_perm)); const DimensionIndex output_rank = transform.output_rank(); const DimensionIndex input_rank = transform.input_rank(); assert(input_rank == input_perm.size()); assert(output_rank == output_perm.size()); DimensionIndex min_output_dim[kMaxRank]; std::fill_n(min_output_dim, input_rank, kMaxRank); for (DimensionIndex orig_perm_i = 0; orig_perm_i < output_rank; ++orig_perm_i) { const DimensionIndex output_dim = output_perm[orig_perm_i]; const auto map = transform.output_index_maps()[output_dim]; if (map.method() != OutputIndexMethod::single_input_dimension) continue; const DimensionIndex input_dim = map.input_dimension(); min_output_dim[input_dim] = std::min(min_output_dim[input_dim], orig_perm_i); } std::iota(input_perm.begin(), input_perm.end(), DimensionIndex(0)); std::sort(input_perm.begin(), input_perm.end(), [&](DimensionIndex a, DimensionIndex b) { DimensionIndex a_ordinal = min_output_dim[a]; DimensionIndex b_ordinal = min_output_dim[b]; if (a_ordinal != b_ordinal) return a_ordinal < b_ordinal; return a < b; }); assert(IsValidPermutation(input_perm)); } void TransformInputDimensionOrder(IndexTransformView<> transform, span<const DimensionIndex> input_perm, span<DimensionIndex> output_perm) { assert(transform.valid()); assert(IsValidPermutation(input_perm)); [[maybe_unused]] const DimensionIndex output_rank = transform.output_rank(); const DimensionIndex input_rank = transform.input_rank(); assert(input_rank == input_perm.size()); assert(output_rank == output_perm.size()); DimensionIndex inverse_input_perm[kMaxRank]; InvertPermutation(input_rank, input_perm.data(), inverse_input_perm); std::iota(output_perm.begin(), output_perm.end(), DimensionIndex(0)); const auto get_output_dim_ordinal = [&](DimensionIndex output_dim) { const auto map = transform.output_index_maps()[output_dim]; if (map.method() != OutputIndexMethod::single_input_dimension) { return kMaxRank; } return inverse_input_perm[map.input_dimension()]; }; std::sort(output_perm.begin(), output_perm.end(), [&](DimensionIndex a, DimensionIndex b) { DimensionIndex a_ordinal = get_output_dim_ordinal(a); DimensionIndex b_ordinal = get_output_dim_ordinal(b); if (a_ordinal != b_ordinal) return a_ordinal < b_ordinal; return a < b; }); assert(IsValidPermutation(output_perm)); } }
#include "tensorstore/index_space/dimension_permutation.h" #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index.h" #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::Dims; using ::tensorstore::IsValidPermutation; using ::tensorstore::PermutationMatchesOrder; using ::tensorstore::span; TEST(SetPermutationTest, Rank0) { std::vector<DimensionIndex> permutation(0); tensorstore::SetPermutation(tensorstore::c_order, permutation); tensorstore::SetPermutation(tensorstore::fortran_order, permutation); } TEST(SetPermutationTest, Rank1COrder) { std::vector<DimensionIndex> permutation(1, 42); tensorstore::SetPermutation(tensorstore::c_order, permutation); EXPECT_THAT(permutation, ::testing::ElementsAre(0)); } TEST(SetPermutationTest, Rank1FortranOrder) { std::vector<DimensionIndex> permutation(1, 42); tensorstore::SetPermutation(tensorstore::fortran_order, permutation); EXPECT_THAT(permutation, ::testing::ElementsAre(0)); } TEST(SetPermutationTest, Rank2COrder) { std::vector<DimensionIndex> permutation(2, 42); tensorstore::SetPermutation(tensorstore::c_order, permutation); EXPECT_THAT(permutation, ::testing::ElementsAre(0, 1)); } TEST(SetPermutationTest, Rank2FortranOrder) { std::vector<DimensionIndex> permutation(2, 42); tensorstore::SetPermutation(tensorstore::fortran_order, permutation); EXPECT_THAT(permutation, ::testing::ElementsAre(1, 0)); } TEST(SetPermutationTest, Rank3COrder) { std::vector<DimensionIndex> permutation(3, 42); tensorstore::SetPermutation(tensorstore::c_order, permutation); EXPECT_THAT(permutation, ::testing::ElementsAre(0, 1, 2)); } TEST(SetPermutationTest, Rank3FortranOrder) { std::vector<DimensionIndex> permutation(3, 42); tensorstore::SetPermutation(tensorstore::fortran_order, permutation); EXPECT_THAT(permutation, ::testing::ElementsAre(2, 1, 0)); } TEST(IsValidPermutationTest, Basic) { EXPECT_TRUE(IsValidPermutation(span<const DimensionIndex>())); EXPECT_TRUE(IsValidPermutation(span<const DimensionIndex>({0}))); EXPECT_FALSE(IsValidPermutation(span<const DimensionIndex>({1}))); EXPECT_FALSE(IsValidPermutation(span<const DimensionIndex>({-1}))); EXPECT_TRUE(IsValidPermutation(span<const DimensionIndex>({0, 1}))); EXPECT_TRUE(IsValidPermutation(span<const DimensionIndex>({1, 0}))); EXPECT_FALSE(IsValidPermutation(span<const DimensionIndex>({1, 1}))); EXPECT_FALSE(IsValidPermutation(span<const DimensionIndex>({0, 0}))); EXPECT_TRUE(IsValidPermutation(span<const DimensionIndex>({1, 2, 0}))); EXPECT_FALSE(IsValidPermutation(span<const DimensionIndex>({1, 2, 1}))); } TEST(PermutationMatchesOrderTest, Basic) { EXPECT_TRUE(PermutationMatchesOrder({}, tensorstore::c_order)); EXPECT_TRUE(PermutationMatchesOrder({}, tensorstore::fortran_order)); EXPECT_TRUE(PermutationMatchesOrder({{0}}, tensorstore::c_order)); EXPECT_TRUE(PermutationMatchesOrder({{0}}, tensorstore::fortran_order)); EXPECT_TRUE(PermutationMatchesOrder({{0, 1}}, tensorstore::c_order)); EXPECT_FALSE(PermutationMatchesOrder({{0, 1}}, tensorstore::fortran_order)); EXPECT_TRUE(PermutationMatchesOrder({{0, 1, 2}}, tensorstore::c_order)); EXPECT_FALSE(PermutationMatchesOrder({{1}}, tensorstore::c_order)); EXPECT_FALSE(PermutationMatchesOrder({{1}}, tensorstore::fortran_order)); EXPECT_FALSE(PermutationMatchesOrder({{1, 0}}, tensorstore::c_order)); EXPECT_TRUE(PermutationMatchesOrder({{1, 0}}, tensorstore::fortran_order)); } TEST(InvertPermutationTest, Rank0) { std::vector<DimensionIndex> source; std::vector<DimensionIndex> dest; tensorstore::InvertPermutation(0, source.data(), dest.data()); } TEST(InvertPermutationTest, Rank1) { std::vector<DimensionIndex> source{0}; std::vector<DimensionIndex> dest(1, 42); tensorstore::InvertPermutation(1, source.data(), dest.data()); EXPECT_THAT(dest, ::testing::ElementsAre(0)); } TEST(InvertPermutationTest, Rank2Identity) { std::vector<DimensionIndex> source{0, 1}; std::vector<DimensionIndex> dest(2, 42); tensorstore::InvertPermutation(2, source.data(), dest.data()); EXPECT_THAT(dest, ::testing::ElementsAre(0, 1)); } TEST(InvertPermutationTest, Rank2Transpose) { std::vector<DimensionIndex> source{1, 0}; std::vector<DimensionIndex> dest(2, 42); tensorstore::InvertPermutation(2, source.data(), dest.data()); EXPECT_THAT(dest, ::testing::ElementsAre(1, 0)); } TEST(InvertPermutationTest, Rank3) { std::vector<DimensionIndex> source{1, 2, 0}; std::vector<DimensionIndex> dest(3, 42); tensorstore::InvertPermutation(3, source.data(), dest.data()); EXPECT_THAT(dest, ::testing::ElementsAre(2, 0, 1)); std::vector<DimensionIndex> source2(3, 42); tensorstore::InvertPermutation(3, dest.data(), source2.data()); EXPECT_EQ(source, source2); } TEST(SetPermutationFromStridedLayoutTest, Rank0) { tensorstore::StridedLayout<> layout(0); std::vector<DimensionIndex> permutation(0); tensorstore::SetPermutationFromStridedLayout(layout, permutation); } TEST(SetPermutationFromStridedLayoutTest, Rank1) { tensorstore::StridedLayout<> layout({5}, {10}); std::vector<DimensionIndex> permutation(1, 42); tensorstore::SetPermutationFromStridedLayout(layout, permutation); EXPECT_THAT(permutation, ::testing::ElementsAre(0)); } TEST(SetPermutationFromStridedLayoutTest, Rank2COrder) { tensorstore::StridedLayout<> layout({5, 6}, {10, 5}); std::vector<DimensionIndex> permutation(2, 42); tensorstore::SetPermutationFromStridedLayout(layout, permutation); EXPECT_THAT(permutation, ::testing::ElementsAre(0, 1)); } TEST(SetPermutationFromStridedLayoutTest, Rank2FortranOrder) { tensorstore::StridedLayout<> layout({5, 6}, {5, 10}); std::vector<DimensionIndex> permutation(2, 42); tensorstore::SetPermutationFromStridedLayout(layout, permutation); EXPECT_THAT(permutation, ::testing::ElementsAre(1, 0)); } TEST(SetPermutationFromStridedLayoutTest, Rank2ZeroStride) { tensorstore::StridedLayout<> layout({5, 6}, {0, 0}); std::vector<DimensionIndex> permutation(2, 42); tensorstore::SetPermutationFromStridedLayout(layout, permutation); EXPECT_THAT(permutation, ::testing::ElementsAre(0, 1)); } TEST(SetPermutationFromStridedLayoutTest, Rank4) { tensorstore::StridedLayout<> layout({5, 6, 7, 8}, {10, 5, 6, 6}); std::vector<DimensionIndex> permutation(4, 42); tensorstore::SetPermutationFromStridedLayout(layout, permutation); EXPECT_THAT(permutation, ::testing::ElementsAre(0, 2, 3, 1)); } TEST(TransformOutputDimensionOrderTest, Rank0) { std::vector<DimensionIndex> source; std::vector<DimensionIndex> dest; tensorstore::TransformOutputDimensionOrder(tensorstore::IdentityTransform(0), source, dest); } TEST(TransformOutputDimensionOrderTest, Rank1Identity) { std::vector<DimensionIndex> source{0}; std::vector<DimensionIndex> dest(1, 42); tensorstore::TransformOutputDimensionOrder(tensorstore::IdentityTransform(1), source, dest); EXPECT_THAT(dest, ::testing::ElementsAre(0)); } TEST(TransformOutputDimensionOrderTest, Rank2COrderIdentity) { std::vector<DimensionIndex> source{0, 1}; std::vector<DimensionIndex> dest(2, 42); std::vector<DimensionIndex> source2(2, 42); auto transform = tensorstore::IdentityTransform(2); tensorstore::TransformOutputDimensionOrder(transform, source, dest); EXPECT_THAT(dest, ::testing::ElementsAre(0, 1)); tensorstore::TransformInputDimensionOrder(transform, dest, source2); EXPECT_EQ(source, source2); } TEST(TransformOutputDimensionOrderTest, Rank2FortranOrderIdentity) { std::vector<DimensionIndex> source{1, 0}; std::vector<DimensionIndex> dest(2, 42); std::vector<DimensionIndex> source2(2, 42); auto transform = tensorstore::IdentityTransform(2); tensorstore::TransformOutputDimensionOrder(transform, source, dest); EXPECT_THAT(dest, ::testing::ElementsAre(1, 0)); tensorstore::TransformInputDimensionOrder(transform, dest, source2); EXPECT_EQ(source, source2); } TEST(TransformOutputDimensionOrderTest, Rank2COrderTranspose) { std::vector<DimensionIndex> source{0, 1}; std::vector<DimensionIndex> dest(2, 42); std::vector<DimensionIndex> source2(2, 42); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, tensorstore::IdentityTransform(2) | Dims(1, 0).Transpose()); tensorstore::TransformOutputDimensionOrder(transform, source, dest); EXPECT_THAT(dest, ::testing::ElementsAre(1, 0)); tensorstore::TransformInputDimensionOrder(transform, dest, source2); EXPECT_EQ(source, source2); } TEST(TransformOutputDimensionOrderTest, Rank2FortranOrderTranspose) { std::vector<DimensionIndex> source{1, 0}; std::vector<DimensionIndex> dest(2, 42); std::vector<DimensionIndex> source2(2, 42); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, tensorstore::IdentityTransform(2) | Dims(1, 0).Transpose()); tensorstore::TransformOutputDimensionOrder(transform, source, dest); EXPECT_THAT(dest, ::testing::ElementsAre(0, 1)); tensorstore::TransformInputDimensionOrder(transform, dest, source2); EXPECT_EQ(source, source2); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/dimension_permutation.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/dimension_permutation_test.cc
4f887a6430414cd6088e1743555015b10f116d50
10851145-94d4-4428-b846-ace1c1731762
cpp
google/tensorstore
alignment
tensorstore/index_space/alignment.cc
tensorstore/index_space/alignment_test.cc
#include "tensorstore/index_space/alignment.h" #include <algorithm> #include <numeric> #include "absl/status/status.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { absl::Status AlignDimensionsTo(IndexDomainView<> source, IndexDomainView<> target, span<DimensionIndex> source_matches, DomainAlignmentOptions options) { assert(source.valid()); assert(target.valid()); const DimensionIndex source_rank = source.rank(); const DimensionIndex target_rank = target.rank(); if (!(options & DomainAlignmentOptions::broadcast) && source_rank != target_rank) { return absl::InvalidArgumentError(tensorstore::StrCat( "Aligning source domain of rank ", source_rank, " to target domain of rank ", target_rank, " requires broadcasting")); } assert(source_matches.size() == source_rank); const auto source_labels = source.labels(); const auto target_labels = target.labels(); if (!(options & DomainAlignmentOptions::permute) || internal_index_space::IsUnlabeled(source_labels) || internal_index_space::IsUnlabeled(target_labels)) { const DimensionIndex match_rank = std::min(source_rank, target_rank); const DimensionIndex source_match_start = source_rank - match_rank; const DimensionIndex target_match_start = target_rank - match_rank; std::fill_n(source_matches.begin(), source_match_start, DimensionIndex(-1)); std::iota(source_matches.begin() + source_match_start, source_matches.end(), target_match_start); } else { DimensionIndex next_potentially_unlabeled_target = target_rank - 1; for (DimensionIndex i = source_rank - 1; i >= 0; --i) { std::string_view source_label = source_labels[i]; DimensionIndex j; if (source_label.empty()) { while (true) { if (next_potentially_unlabeled_target < 0) { j = -1; break; } if (target_labels[next_potentially_unlabeled_target].empty()) { j = next_potentially_unlabeled_target--; break; } --next_potentially_unlabeled_target; } } else { for (j = target_rank - 1; j >= 0; --j) { if (target_labels[j] == source_label) break; } } source_matches[i] = j; } } std::string mismatch_error; const auto source_shape = source.shape(); const auto target_shape = target.shape(); for (DimensionIndex i = 0; i < source_rank; ++i) { DimensionIndex& j = source_matches[i]; const DimensionIndex source_size = source_shape[i]; if (j != -1) { if (!(options & DomainAlignmentOptions::translate) ? source[i] != target[j] : source_size != target_shape[j]) { if (!(options & DomainAlignmentOptions::broadcast) || source_size != 1) { tensorstore::StrAppend(&mismatch_error, "source dimension ", i, " ", source[i], " mismatch with target dimension ", j, " ", target[j], ", "); } j = -1; } } else { if (!(options & DomainAlignmentOptions::broadcast)) { tensorstore::StrAppend(&mismatch_error, "unmatched source dimension ", i, " ", source[i], ", "); } if (source_size != 1) { tensorstore::StrAppend(&mismatch_error, "unmatched source dimension ", i, " ", source[i], " does not have a size of 1, "); } } } if (!mismatch_error.empty()) { mismatch_error.resize(mismatch_error.size() - 2); return absl::InvalidArgumentError( tensorstore::StrCat("Error aligning dimensions: ", mismatch_error)); } return absl::OkStatus(); } Result<IndexTransform<>> AlignDomainTo(IndexDomainView<> source, IndexDomainView<> target, DomainAlignmentOptions options) { using internal_index_space::TransformAccess; assert(source.valid()); assert(target.valid()); const DimensionIndex source_rank = source.rank(); DimensionIndex source_matches[kMaxRank]; TENSORSTORE_RETURN_IF_ERROR(AlignDimensionsTo( source, target, span(source_matches).first(source_rank), options)); const DimensionIndex target_rank = target.rank(); auto alignment = internal_index_space::TransformRep::Allocate(target_rank, source_rank); CopyTransformRepDomain(TransformAccess::rep(target), alignment.get()); alignment->output_rank = source_rank; const auto maps = alignment->output_index_maps(); span<const Index> source_origin = source.origin(); span<const Index> target_origin = target.origin(); for (DimensionIndex i = 0; i < source_rank; ++i) { auto& map = maps[i]; const DimensionIndex j = source_matches[i]; const Index source_origin_value = source_origin[i]; if (j == -1) { map.SetConstant(); map.offset() = source_origin_value; map.stride() = 0; } else { map.SetSingleInputDimension(j); map.offset() = source_origin_value - target_origin[j]; map.stride() = 1; } } internal_index_space::DebugCheckInvariants(alignment.get()); return TransformAccess::Make<IndexTransform<>>(std::move(alignment)); } Result<IndexTransform<>> AlignTransformTo(IndexTransform<> source_transform, IndexDomainView<> target, DomainAlignmentOptions options) { TENSORSTORE_ASSIGN_OR_RETURN( auto alignment, AlignDomainTo(source_transform.domain(), target, options)); return ComposeTransforms(source_transform, alignment); } }
#include "tensorstore/index_space/alignment.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::Index; using ::tensorstore::IndexDomain; using ::tensorstore::IndexDomainBuilder; using ::tensorstore::IndexTransform; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::MatchesStatus; using Dao = tensorstore::DomainAlignmentOptions; TEST(AlignDimensionsToTest, AllUnlabeled) { auto source = IndexDomainBuilder(3) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .origin({2, 0, 6}) .exclusive_max({6, 4, 12}) .Finalize() .value(); for (auto options : {Dao::all, Dao::translate | Dao::broadcast}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches, options)); EXPECT_THAT(source_matches, ::testing::ElementsAre(0, -1, 2)); } { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, source, source_matches, Dao::none)); EXPECT_THAT(source_matches, ::testing::ElementsAre(0, 1, 2)); } { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_THAT( AlignDimensionsTo(source, target, source_matches, Dao::translate), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error aligning dimensions: " "source dimension 1 \\[5, 6\\) mismatch with target " "dimension 1 \\[0, 4\\)")); } { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_THAT( AlignDimensionsTo(source, target, source_matches, Dao::broadcast), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error aligning dimensions: " "source dimension 0 \\[3, 7\\) mismatch with target " "dimension 0 \\[2, 6\\), " "source dimension 2 \\[4, 10\\) mismatch with target " "dimension 2 \\[6, 12\\)")); } } TEST(AlignDimensionsToTest, MismatchedLabelsNoPermute) { auto source = IndexDomainBuilder(3) .labels({"x", "y", "z"}) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .labels({"a", "b", "c"}) .origin({2, 0, 6}) .exclusive_max({6, 4, 12}) .Finalize() .value(); std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches, Dao::translate | Dao::broadcast)); EXPECT_THAT(source_matches, ::testing::ElementsAre(0, -1, 2)); EXPECT_THAT(AlignDimensionsTo(source, target, source_matches, Dao::all), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error aligning dimensions: " "unmatched source dimension 0 \"x\": \\[3, 7\\) " "does not have a size of 1, " "unmatched source dimension 2 \"z\": \\[4, 10\\) " "does not have a size of 1")); } TEST(AlignDimensionsToTest, SourceUnlabeled) { auto source = IndexDomainBuilder(3) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .origin({4, 0, 6}) .labels({"x", "y", "z"}) .exclusive_max({8, 4, 12}) .Finalize() .value(); for (auto options : {Dao::all, Dao::translate | Dao::broadcast}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches, options)); EXPECT_THAT(source_matches, ::testing::ElementsAre(0, -1, 2)); } } TEST(AlignDimensionsToTest, TargetUnlabeled) { auto source = IndexDomainBuilder(3) .origin({3, 5, 4}) .labels({"x", "y", "z"}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .origin({4, 0, 6}) .exclusive_max({8, 4, 12}) .Finalize() .value(); for (auto options : {Dao::all, Dao::translate | Dao::broadcast}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches, options)); EXPECT_THAT(source_matches, ::testing::ElementsAre(0, -1, 2)); } } TEST(AlignDimensionsToTest, AllLabeled) { auto source = IndexDomainBuilder(3) .labels({"x", "y", "z"}) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .labels({"z", "x", "y"}) .origin({6, 4, 0}) .exclusive_max({12, 8, 4}) .Finalize() .value(); std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches)); EXPECT_THAT(source_matches, ::testing::ElementsAre(1, -1, 0)); } TEST(AlignDimensionsToTest, AllLabeledPermuteOnly) { auto source = IndexDomainBuilder(3) .labels({"x", "y", "z"}) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .labels({"z", "x", "y"}) .origin({4, 3, 5}) .exclusive_max({10, 7, 6}) .Finalize() .value(); for (auto options : {Dao::permute, Dao::permute | Dao::translate, Dao::permute | Dao::broadcast, Dao::all}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches, options)); EXPECT_THAT(source_matches, ::testing::ElementsAre(1, 2, 0)); } for (auto options : {Dao::none, Dao::translate, Dao::broadcast, Dao::translate | Dao::broadcast}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_THAT(AlignDimensionsTo(source, target, source_matches, options), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error aligning dimensions: .*")); } } TEST(AlignDimensionsToTest, AllLabeledPermuteTranslateOnly) { auto source = IndexDomainBuilder(3) .labels({"x", "y", "z"}) .origin({3, 5, 4}) .exclusive_max({7, 9, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .labels({"z", "x", "y"}) .origin({6, 4, 0}) .exclusive_max({12, 8, 4}) .Finalize() .value(); std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches)); EXPECT_THAT(source_matches, ::testing::ElementsAre(1, 2, 0)); } TEST(AlignDimensionsToTest, PartiallyLabeled) { auto source = IndexDomainBuilder(3) .labels({"x", "y", ""}) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(4) .labels({"", "", "x", "y"}) .origin({0, 6, 4, 0}) .exclusive_max({10, 12, 8, 4}) .Finalize() .value(); std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches)); EXPECT_THAT(source_matches, ::testing::ElementsAre(2, -1, 1)); EXPECT_THAT(AlignDimensionsTo(source, target, source_matches, Dao::none), MatchesStatus(absl::StatusCode::kInvalidArgument, "Aligning source domain of rank 3 to target " "domain of rank 4 requires broadcasting")); } TEST(AlignDomainToTest, PartiallyLabeled) { auto source = IndexDomainBuilder(3) .labels({"x", "y", ""}) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(4) .labels({"", "", "x", "y"}) .origin({0, 6, 4, 0}) .exclusive_max({10, 12, 8, 4}) .Finalize() .value(); IndexTransform<> alignment = IndexTransformBuilder<>(4, 3) .input_domain(target) .output_single_input_dimension(0, -1, 1, 2) .output_constant(1, 5) .output_single_input_dimension(2, -2, 1, 1) .Finalize() .value(); EXPECT_EQ(alignment, AlignDomainTo(source, target)); } TEST(AlignDimensionsToTest, BroadcastOnly) { auto source = IndexDomainBuilder(2) .origin({2, 3}) .exclusive_max({5, 6}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .origin({1, 2, 3}) .exclusive_max({4, 5, 6}) .Finalize() .value(); for (auto options : {Dao::broadcast, Dao::broadcast | Dao::translate, Dao::broadcast | Dao::permute, Dao::all}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches, options)); EXPECT_THAT(source_matches, ::testing::ElementsAre(1, 2)); } for (auto options : {Dao::none, Dao::permute, Dao::translate, Dao::permute | Dao::translate}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_THAT(AlignDimensionsTo(source, target, source_matches, options), MatchesStatus(absl::StatusCode::kInvalidArgument, "Aligning source domain of rank 2 to target " "domain of rank 3 requires broadcasting")); } } TEST(AlignDimensionsToTest, PermuteAndBroadcast) { auto source = IndexDomainBuilder(2) .origin({2, 3}) .exclusive_max({5, 4}) .labels({"x", "y"}) .Finalize() .value(); auto target = IndexDomainBuilder(2) .origin({2, 5}) .exclusive_max({5, 10}) .labels({"x", "z"}) .Finalize() .value(); for (auto options : {Dao::permute | Dao::broadcast, Dao::all}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches, options)); EXPECT_THAT(source_matches, ::testing::ElementsAre(0, -1)); } for (auto options : {Dao::permute, Dao::permute | Dao::translate}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_THAT( AlignDimensionsTo(source, target, source_matches, options), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error aligning dimensions: " "unmatched source dimension 1 \"y\": \\[3, 4\\)")); } } TEST(AlignDimensionsToTest, UnmatchedUnlabeledSourceDimension) { auto source = IndexDomainBuilder(4) .labels({"x", "y", "", ""}) .origin({3, 5, 7, 4}) .exclusive_max({7, 9, 8, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .labels({"", "x", "y"}) .origin({0, 4, 0}) .exclusive_max({6, 8, 4}) .Finalize() .value(); std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches)); EXPECT_THAT(source_matches, ::testing::ElementsAre(1, 2, -1, 0)); } TEST(AlignDimensionsToTest, MismatchedLabeled) { auto source = IndexDomainBuilder(3) .labels({"x", "y", "z"}) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .labels({"z", "w", "y"}) .origin({6, 4, 0}) .exclusive_max({12, 8, 4}) .Finalize() .value(); std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_THAT(AlignDimensionsTo(source, target, source_matches), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error aligning dimensions: " "unmatched source dimension 0 \"x\": \\[3, 7\\) " "does not have a size of 1")); } TEST(AlignDomainToTest, MismatchedLabeled) { auto source = IndexDomainBuilder(3) .labels({"x", "y", "z"}) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .labels({"z", "w", "y"}) .origin({6, 4, 0}) .exclusive_max({12, 8, 4}) .Finalize() .value(); EXPECT_THAT(AlignDomainTo(source, target), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(AlignDimensionsToTest, MismatchedSizeLabeled) { auto source = IndexDomainBuilder(3) .labels({"x", "y", "z"}) .origin({3, 5, 4}) .exclusive_max({7, 7, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .labels({"z", "x", "y"}) .origin({6, 4, 0}) .exclusive_max({12, 8, 4}) .Finalize() .value(); std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_THAT(AlignDimensionsTo(source, target, source_matches), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error aligning dimensions: " "source dimension 1 \"y\": \\[5, 7\\) mismatch " "with target dimension 2 \"y\": \\[0, 4\\)")); } TEST(AlignDimensionsToTest, MismatchedSizeUnlabeled) { auto source = IndexDomainBuilder(3) .origin({3, 5, 4}) .exclusive_max({7, 7, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .origin({4, 0, 6}) .exclusive_max({8, 4, 12}) .Finalize() .value(); std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_THAT(AlignDimensionsTo(source, target, source_matches), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error aligning dimensions: " "source dimension 1 \\[5, 7\\) mismatch with " "target dimension 1 \\[0, 4\\)")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/alignment.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/alignment_test.cc
4f887a6430414cd6088e1743555015b10f116d50
458c05c5-40e1-494f-bb6d-f746c1850d3f
cpp
google/tensorstore
identity_transform
tensorstore/index_space/internal/identity_transform.cc
tensorstore/index_space/identity_transform_test.cc
#include "tensorstore/index_space/internal/identity_transform.h" namespace tensorstore { namespace internal_index_space { void SetToIdentityTransform(span<OutputIndexMap> maps) { for (DimensionIndex i = 0; i < maps.size(); ++i) { auto& map = maps[i]; map.SetSingleInputDimension(i); map.offset() = 0; map.stride() = 1; } } namespace { void SetUnboundedDomain(TransformRep* data, DimensionIndex rank) { assert(data->input_rank_capacity >= rank); data->input_rank = rank; std::fill_n(data->input_origin().begin(), rank, -kInfIndex); std::fill_n(data->input_shape().begin(), rank, kInfSize); const auto mask = DimensionSet::UpTo(rank); data->implicit_lower_bounds = mask; data->implicit_upper_bounds = mask; } void SetIdentityOutputOrDomainOnly(TransformRep* data, DimensionIndex rank, bool domain_only) { if (domain_only) { data->output_rank = 0; } else { assert(data->output_rank_capacity >= rank); data->output_rank = rank; SetToIdentityTransform(data->output_index_maps().first(rank)); } } void SetToIdentityTransform(TransformRep* data, DimensionIndex rank, bool domain_only) { SetUnboundedDomain(data, rank); SetIdentityOutputOrDomainOnly(data, rank, domain_only); } } TransformRep::Ptr<> MakeIdentityTransform(DimensionIndex rank, bool domain_only) { auto data = TransformRep::Allocate(rank, domain_only ? 0 : rank); SetToIdentityTransform(data.get(), rank, domain_only); internal_index_space::DebugCheckInvariants(data.get()); return data; } TransformRep::Ptr<> MakeIdentityTransform(internal::StringLikeSpan labels, bool domain_only) { const DimensionIndex rank = labels.size(); auto data = TransformRep::Allocate(rank, domain_only ? 0 : rank); SetToIdentityTransform(data.get(), rank, domain_only); span<std::string> input_labels = data->input_labels().first(rank); for (DimensionIndex i = 0; i < rank; ++i) { std::string_view label = labels[i]; input_labels[i].assign(label.data(), label.size()); } internal_index_space::DebugCheckInvariants(data.get()); return data; } TransformRep::Ptr<> MakeIdentityTransformLike(TransformRep* data, bool domain_only) { assert(data != nullptr); const DimensionIndex rank = data->input_rank; auto result = TransformRep::Allocate(rank, domain_only ? 0 : rank); CopyTransformRepDomain(data, result.get()); SetIdentityOutputOrDomainOnly(result.get(), rank, domain_only); internal_index_space::DebugCheckInvariants(result.get()); return result; } TransformRep::Ptr<> MakeIdentityTransform(span<const Index> shape, bool domain_only) { const DimensionIndex rank = shape.size(); auto result = TransformRep::Allocate(rank, domain_only ? 0 : rank); result->input_rank = rank; std::fill_n(result->input_origin().begin(), rank, 0); std::copy_n(shape.begin(), rank, result->input_shape().begin()); result->implicit_lower_bounds = false; result->implicit_upper_bounds = false; SetIdentityOutputOrDomainOnly(result.get(), rank, domain_only); internal_index_space::DebugCheckInvariants(result.get()); return result; } TransformRep::Ptr<> MakeIdentityTransform(BoxView<> domain, bool domain_only) { const DimensionIndex rank = domain.rank(); auto result = TransformRep::Allocate(rank, domain_only ? 0 : rank); result->input_rank = rank; result->input_domain(rank).DeepAssign(domain); result->implicit_lower_bounds = false; result->implicit_upper_bounds = false; SetIdentityOutputOrDomainOnly(result.get(), rank, domain_only); internal_index_space::DebugCheckInvariants(result.get()); return result; } } }
#include <type_traits> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::AllocateArray; using ::tensorstore::Box; using ::tensorstore::IdentityTransform; using ::tensorstore::Index; using ::tensorstore::IndexDomain; using ::tensorstore::IndexTransform; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::span; TEST(IdentityTransformTest, Static) { auto t = IdentityTransform<2>(); static_assert(std::is_same_v<decltype(t), IndexTransform<2, 2>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .implicit_lower_bounds({1, 1}) .implicit_upper_bounds({1, 1}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); auto d = IndexDomain(t.input_rank()); static_assert(std::is_same_v<decltype(d), IndexDomain<2>>); EXPECT_EQ(t.domain(), d); } TEST(IdentityTransformTest, Dynamic) { auto t = IdentityTransform(2); static_assert(std::is_same_v<decltype(t), IndexTransform<>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .implicit_lower_bounds({1, 1}) .implicit_upper_bounds({1, 1}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); auto d = IndexDomain(t.input_rank()); static_assert(std::is_same_v<decltype(d), IndexDomain<>>); EXPECT_EQ(t.domain(), d); } TEST(IdentityTransformTest, LabeledCString) { auto t = IdentityTransform({"x", "y"}); static_assert(std::is_same_v<decltype(t), IndexTransform<2, 2>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .implicit_lower_bounds({1, 1}) .implicit_upper_bounds({1, 1}) .input_labels({"x", "y"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); auto d = IndexDomain({"x", "y"}); static_assert(std::is_same_v<decltype(d), IndexDomain<2>>); EXPECT_EQ(t.domain(), d); } TEST(IdentityTransformTest, LabeledStdString) { auto t = IdentityTransform({std::string("x"), std::string("y")}); static_assert(std::is_same_v<decltype(t), IndexTransform<2, 2>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .implicit_lower_bounds({1, 1}) .implicit_upper_bounds({1, 1}) .input_labels({"x", "y"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); auto d = IndexDomain({std::string("x"), std::string("y")}); static_assert(std::is_same_v<decltype(d), IndexDomain<2>>); EXPECT_EQ(t.domain(), d); } TEST(IndexTransformTest, LabeledStringView) { auto t = IdentityTransform({std::string_view("x"), std::string_view("y")}); static_assert(std::is_same_v<decltype(t), IndexTransform<2, 2>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .implicit_lower_bounds({1, 1}) .implicit_upper_bounds({1, 1}) .input_labels({"x", "y"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); auto d = IndexDomain({std::string_view("x"), std::string_view("y")}); static_assert(std::is_same_v<decltype(d), IndexDomain<2>>); EXPECT_EQ(t.domain(), d); } TEST(IdentityTransformLikeTest, IndexTransform) { EXPECT_EQ((IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({3, 4}) .implicit_lower_bounds({0, 1}) .implicit_upper_bounds({1, 0}) .input_labels({"x", "y"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value()), IdentityTransformLike(IndexTransformBuilder<2, 3>() .input_origin({1, 2}) .input_shape({3, 4}) .implicit_lower_bounds({0, 1}) .implicit_upper_bounds({1, 0}) .input_labels({"x", "y"}) .output_single_input_dimension(0, 5, 7, 1) .output_single_input_dimension(1, 6, 8, 0) .output_single_input_dimension(2, 7, 9, 0) .Finalize() .value())); } TEST(IdentityTransformLikeTest, Array) { EXPECT_EQ((IndexTransformBuilder<2, 2>() .input_origin({0, 0}) .input_shape({3, 5}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value()), IdentityTransformLike(AllocateArray<float>({3, 5}))); } TEST(IdentityTransformTest, StaticBox) { auto box = Box({1, 2}, {3, 4}); auto t = IdentityTransform(box); static_assert(std::is_same_v<decltype(t), IndexTransform<2, 2>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_shape({3, 4}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); EXPECT_EQ(box, t.domain().box()); static_assert(tensorstore::HasBoxDomain<IndexTransform<2, 2>>); EXPECT_EQ(box, GetBoxDomainOf(t)); auto d = IndexDomain(box); static_assert(std::is_same_v<decltype(d), IndexDomain<2>>); EXPECT_EQ(t.domain(), d); } TEST(IdentityTransformTest, DynamicBox) { auto t = IdentityTransform(Box<>({1, 2}, {3, 4})); static_assert(std::is_same_v<decltype(t), IndexTransform<>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_shape({3, 4}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); auto d = IndexDomain(Box<>({1, 2}, {3, 4})); static_assert(std::is_same_v<decltype(d), IndexDomain<>>); EXPECT_EQ(t.domain(), d); } TEST(IdentityTransformTest, FromShape) { auto t = IdentityTransform(span<const Index, 2>({2, 3})); static_assert(std::is_same_v<decltype(t), IndexTransform<2, 2>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .input_origin({0, 0}) .input_shape({2, 3}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); auto d = IndexDomain(span<const Index, 2>({2, 3})); static_assert(std::is_same_v<decltype(d), IndexDomain<2>>); EXPECT_EQ(t.domain(), d); } TEST(IdentityTransformTest, FromShapeBracedList) { auto t = IdentityTransform({2, 3}); static_assert(std::is_same_v<decltype(t), IndexTransform<2, 2>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .input_origin({0, 0}) .input_shape({2, 3}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); auto d = IndexDomain({2, 3}); static_assert(std::is_same_v<decltype(d), IndexDomain<2>>); EXPECT_EQ(t.domain(), d); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/internal/identity_transform.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/identity_transform_test.cc
4f887a6430414cd6088e1743555015b10f116d50
7c56682b-83cb-4b2e-b235-8488d234e334
cpp
google/tensorstore
transpose_op
tensorstore/index_space/internal/transpose_op.cc
tensorstore/index_space/transpose_op_test.cc
#include "tensorstore/index_space/internal/transpose_op.h" #include <cassert> #include <numeric> #include "absl/status/status.h" #include "tensorstore/index_space/dimension_identifier.h" #include "tensorstore/index_space/dimension_permutation.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/internal/transpose.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { namespace { absl::Status MakePermutationFromMoveDimsTarget( DimensionIndexBuffer* dimensions, DimensionIndex target, span<DimensionIndex> permutation) { if (dimensions->empty()) { std::iota(permutation.begin(), permutation.end(), static_cast<DimensionIndex>(0)); return absl::OkStatus(); } const DimensionIndex input_rank = permutation.size(); const DimensionIndex num_dims = dimensions->size(); TENSORSTORE_ASSIGN_OR_RETURN( target, NormalizeDimensionIndex(target, input_rank - num_dims + 1)); std::fill(permutation.begin(), permutation.end(), static_cast<DimensionIndex>(-1)); DimensionSet moved_dims = false; for (DimensionIndex i = 0; i < num_dims; ++i) { DimensionIndex& input_dim = (*dimensions)[i]; moved_dims[input_dim] = true; permutation[target + i] = input_dim; input_dim = target + i; } for (DimensionIndex i = 0, orig_input_dim = 0; i < input_rank; ++i) { if (permutation[i] != -1) continue; while (moved_dims[orig_input_dim]) ++orig_input_dim; permutation[i] = orig_input_dim++; } return absl::OkStatus(); } } Result<IndexTransform<>> ApplyMoveDimsTo(IndexTransform<> transform, DimensionIndexBuffer* dimensions, DimensionIndex target, bool domain_only) { const DimensionIndex input_rank = transform.input_rank(); DimensionIndex permutation[kMaxRank]; TENSORSTORE_RETURN_IF_ERROR(MakePermutationFromMoveDimsTarget( dimensions, target, span<DimensionIndex>(&permutation[0], input_rank))); return TransformAccess::Make<IndexTransform<>>(TransposeInputDimensions( TransformAccess::rep_ptr<container>(std::move(transform)), span<const DimensionIndex>(&permutation[0], input_rank), domain_only)); } Result<IndexTransform<>> ApplyTranspose(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only) { if (static_cast<DimensionIndex>(dimensions->size()) != transform.input_rank()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Number of dimensions (", dimensions->size(), ") must equal input_rank (", transform.input_rank(), ").")); } TransformRep::Ptr<> rep = TransposeInputDimensions( TransformAccess::rep_ptr<container>(std::move(transform)), *dimensions, domain_only); std::iota(dimensions->begin(), dimensions->end(), static_cast<DimensionIndex>(0)); return TransformAccess::Make<IndexTransform<>>(std::move(rep)); } Result<IndexTransform<>> ApplyTransposeTo( IndexTransform<> transform, DimensionIndexBuffer* dimensions, span<const DimensionIndex> target_dimensions, bool domain_only) { const DimensionIndex input_rank = transform.input_rank(); if (static_cast<DimensionIndex>(dimensions->size()) != target_dimensions.size()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Number of selected dimensions (", dimensions->size(), ") must equal number of target dimensions (", target_dimensions.size(), ")")); } DimensionSet seen_existing_dim = false; DimensionIndex permutation[kMaxRank]; std::fill_n(permutation, input_rank, -1); for (DimensionIndex i = 0; i < target_dimensions.size(); ++i) { DimensionIndex& orig_dim = (*dimensions)[i]; TENSORSTORE_ASSIGN_OR_RETURN( const DimensionIndex target_dim, NormalizeDimensionIndex(target_dimensions[i], input_rank)); if (permutation[target_dim] != -1) { return absl::InvalidArgumentError(tensorstore::StrCat( "Target dimension ", target_dim, " occurs more than once")); } seen_existing_dim[orig_dim] = true; permutation[target_dim] = orig_dim; orig_dim = target_dim; } for (DimensionIndex orig_dim = 0, target_dim = 0; orig_dim < input_rank; ++orig_dim) { if (seen_existing_dim[orig_dim]) continue; while (permutation[target_dim] != -1) ++target_dim; permutation[target_dim] = orig_dim; } return TransformAccess::Make<IndexTransform<>>(TransposeInputDimensions( TransformAccess::rep_ptr<container>(std::move(transform)), span<const DimensionIndex>(&permutation[0], input_rank), domain_only)); } Result<IndexTransform<>> ApplyTransposeToDynamic( IndexTransform<> transform, DimensionIndexBuffer* dimensions, span<const DynamicDimSpec> target_dim_specs, bool domain_only) { if (target_dim_specs.size() == 1) { if (auto* target = std::get_if<DimensionIndex>(&target_dim_specs.front())) { return ApplyMoveDimsTo(std::move(transform), dimensions, *target, domain_only); } } DimensionIndexBuffer target_dimensions; const DimensionIndex input_rank = transform.input_rank(); for (const auto& s : target_dim_specs) { if (auto* index = std::get_if<DimensionIndex>(&s)) { target_dimensions.push_back(*index); } else if (auto* r = std::get_if<DimRangeSpec>(&s)) { TENSORSTORE_RETURN_IF_ERROR( NormalizeDimRangeSpec(*r, input_rank, &target_dimensions)); } else { return absl::InvalidArgumentError( "Target dimensions cannot be specified by label"); } } return ApplyTransposeTo(std::move(transform), dimensions, target_dimensions, domain_only); } Result<IndexTransform<>> ApplyTranspose( IndexTransform<> transform, span<const DynamicDimSpec> source_dim_specs, bool domain_only) { DimensionIndexBuffer source_dimensions; source_dimensions.reserve(transform.input_rank()); TENSORSTORE_RETURN_IF_ERROR(NormalizeDynamicDimSpecs( source_dim_specs, transform.input_labels(), &source_dimensions)); if (!IsValidPermutation(source_dimensions)) { return absl::InvalidArgumentError( tensorstore::StrCat("Source dimension list ", span(source_dimensions), " is not a valid dimension permutation for rank ", transform.input_rank())); } return TransformAccess::Make<IndexTransform<>>(TransposeInputDimensions( TransformAccess::rep_ptr<container>(std::move(transform)), source_dimensions, domain_only)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" #include "tensorstore/util/status.h" namespace { using ::tensorstore::Dims; using ::tensorstore::Index; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::MakeArray; using ::tensorstore::internal_index_space::EquivalentIndices; using ::tensorstore::internal_index_space::TestDimExpression; TEST(TransposeTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .implicit_lower_bounds({1, 0, 0}) .implicit_upper_bounds({0, 1, 0}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({3, 1, 2}) .input_shape({2, 3, 4}) .implicit_lower_bounds({0, 1, 0}) .implicit_upper_bounds({0, 0, 1}) .input_labels({"z", "x", "y"}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 2) .output_single_input_dimension(2, 0) .Finalize() .value(); const EquivalentIndices equivalent_indices = {{{2, 3, 4}, {4, 2, 3}}}; TestDimExpression(original_transform, Dims(2, 0, 1).Transpose(), {0, 1, 2}, expected_new_transform, expected_new_transform, equivalent_indices); TestDimExpression(original_transform, Dims("z", "x", "y").Transpose(), {0, 1, 2}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(TransposeTest, Simple) { TestDimExpression( IndexTransformBuilder<4, 2>() .input_origin({1, 2, 3, 4}) .input_shape({5, 6, 4, 8}) .output_single_input_dimension(0, 1, 2, 1) .output_index_array( 1, 2, 3, MakeArray<Index>({{{{1}, {2}, {3}, {4}}}}), IndexInterval::Closed(-3, 10)) .Finalize() .value(), Dims(2, 0, 1, 3).Transpose(), {0, 1, 2, 3}, IndexTransformBuilder<4, 4>() .input_origin({3, 1, 2, 4}) .input_shape({4, 5, 6, 8}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 2) .output_single_input_dimension(2, 0) .output_single_input_dimension(3, 3) .Finalize() .value(), IndexTransformBuilder<4, 2>() .input_origin({3, 1, 2, 4}) .input_shape({4, 5, 6, 8}) .output_single_input_dimension(0, 1, 2, 2) .output_index_array( 1, 2, 3, MakeArray<Index>( {{{{1}}}, {{{2}}}, {{{3}}}, {{{4}}}}), IndexInterval::Closed(-3, 10)) .Finalize() .value(), {{{2, 4, 3, 5}, {3, 2, 4, 5}}}); } TEST(TransposeTest, Constant) { TestDimExpression(IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({5, 6}) .output_constant(0, 1) .output_constant(1, 2) .Finalize() .value(), Dims(1, 0).Transpose(), {0, 1}, IndexTransformBuilder<2, 2>() .input_origin({2, 1}) .input_shape({6, 5}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 0) .Finalize() .value(), IndexTransformBuilder<2, 2>() .input_origin({2, 1}) .input_shape({6, 5}) .output_constant(0, 1) .output_constant(1, 2) .Finalize() .value(), {}); } TEST(TransposeTest, ErrorHandling) { TestDimExpressionError( IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_shape({5, 6}) .output_constant(0, 1) .output_constant(1, 2) .Finalize() .value(), Dims(1).Transpose(), absl::StatusCode::kInvalidArgument, "Number of dimensions \\(1\\) must equal input_rank \\(2\\)\\."); } TEST(TransposeTest, Labeled) { TestDimExpression( IndexTransformBuilder<4, 2>() .input_origin({1, 2, 3, 4}) .input_shape({5, 6, 4, 8}) .input_labels({"a", "b", "c", "d"}) .output_single_input_dimension(0, 1, 2, 1) .output_index_array( 1, 2, 3, MakeArray<Index>({{{{1}, {2}, {3}, {4}}}}), IndexInterval::Closed(-3, 10)) .Finalize() .value(), Dims(2, 0, 1, 3).Transpose(), {0, 1, 2, 3}, IndexTransformBuilder<4, 4>() .input_origin({3, 1, 2, 4}) .input_shape({4, 5, 6, 8}) .input_labels({"c", "a", "b", "d"}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 2) .output_single_input_dimension(2, 0) .output_single_input_dimension(3, 3) .Finalize() .value(), IndexTransformBuilder<4, 2>() .input_origin({3, 1, 2, 4}) .input_shape({4, 5, 6, 8}) .input_labels({"c", "a", "b", "d"}) .output_single_input_dimension(0, 1, 2, 2) .output_index_array( 1, 2, 3, MakeArray<Index>( {{{{1}}}, {{{2}}}, {{{3}}}, {{{4}}}}), IndexInterval::Closed(-3, 10)) .Finalize() .value(), {{{2, 4, 3, 5}, {3, 2, 4, 5}}}); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/internal/transpose_op.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/transpose_op_test.cc
4f887a6430414cd6088e1743555015b10f116d50
31b38434-5c80-41ae-9aa3-f9777e02235e
cpp
google/tensorstore
dimension_selection
tensorstore/index_space/internal/dimension_selection.cc
tensorstore/index_space/dimension_selection_test.cc
#include "tensorstore/index_space/internal/dimension_selection.h" #include <numeric> #include "absl/status/status.h" #include "absl/strings/str_join.h" #include "tensorstore/index_space/dimension_identifier.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { absl::Status CheckAndNormalizeDimensions(DimensionIndex input_rank, span<DimensionIndex> dimensions) { if (dimensions.size() > input_rank) { return absl::InvalidArgumentError( tensorstore::StrCat("Number of dimensions (", dimensions.size(), ") exceeds input rank (", input_rank, ").")); } std::vector<DimensionIndex> error_dimensions; for (DimensionIndex i = 0; i < dimensions.size(); ++i) { TENSORSTORE_ASSIGN_OR_RETURN( const DimensionIndex dim, NormalizeDimensionIndex(dimensions[i], input_rank)); dimensions[i] = dim; for (DimensionIndex j = 0; j < i; ++j) { if (dimensions[j] == dim) { error_dimensions.push_back(dim); } } } if (!error_dimensions.empty()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Input dimensions {", absl::StrJoin(error_dimensions, ", "), "} specified more than once")); } return absl::OkStatus(); } absl::Status GetDimensions(DimensionIndex input_rank, span<const DimensionIndex> dimensions, DimensionIndexBuffer* result) { result->assign(dimensions.begin(), dimensions.end()); return CheckAndNormalizeDimensions(input_rank, *result); } absl::Status GetDimensions(IndexTransformView<> transform, span<const DimensionIndex> dimensions, DimensionIndexBuffer* result) { return GetDimensions(transform.input_rank(), dimensions, result); } absl::Status GetDimensions(IndexTransformView<> transform, span<const DimensionIdentifier> dimensions, DimensionIndexBuffer* result) { const DimensionIndex input_rank = transform.input_rank(); result->resize(dimensions.size()); span<const std::string> input_labels = transform.input_labels(); for (DimensionIndex i = 0; i < dimensions.size(); ++i) { TENSORSTORE_ASSIGN_OR_RETURN( (*result)[i], NormalizeDimensionIdentifier(dimensions[i], input_labels)); } return CheckAndNormalizeDimensions(input_rank, *result); } absl::Status GetNewDimensions(DimensionIndex input_rank, span<const DimensionIndex> dimensions, DimensionIndexBuffer* result) { return GetDimensions(input_rank + dimensions.size(), dimensions, result); } absl::Status GetAllDimensions(DimensionIndex input_rank, DimensionIndexBuffer* result) { result->resize(input_rank); std::iota(result->begin(), result->end(), static_cast<DimensionIndex>(0)); return absl::OkStatus(); } absl::Status GetDimensions(span<const std::string> labels, span<const DynamicDimSpec> dimensions, DimensionIndexBuffer* result) { result->clear(); TENSORSTORE_RETURN_IF_ERROR( NormalizeDynamicDimSpecs(dimensions, labels, result)); return CheckAndNormalizeDimensions(labels.size(), *result); } namespace { Result<DimensionIndex> GetNumNewDimensions(const DimRangeSpec& spec) { const DimensionIndex step = spec.step; if (step == 0) return absl::InvalidArgumentError("step must not be 0"); if (spec.inclusive_start) { const DimensionIndex inclusive_start = *spec.inclusive_start; if (spec.exclusive_stop) { const DimensionIndex exclusive_stop = *spec.exclusive_stop; if ((exclusive_stop < 0) == (inclusive_start < 0) && ((step > 0 && exclusive_stop >= inclusive_start) || (step < 0 && exclusive_stop <= inclusive_start))) { return CeilOfRatio(*spec.exclusive_stop - inclusive_start, step); } } else if (step > 0) { if (inclusive_start < 0) { return CeilOfRatio(-inclusive_start, step); } } else { if (inclusive_start >= 0) { return CeilOfRatio(inclusive_start + 1, -step); } } } else if (spec.exclusive_stop) { const DimensionIndex exclusive_stop = *spec.exclusive_stop; if (step > 0) { if (exclusive_stop >= 0) { return CeilOfRatio(exclusive_stop, step); } } else { if (exclusive_stop < 0) { return CeilOfRatio(-(exclusive_stop + 1), -step); } } } return absl::InvalidArgumentError(tensorstore::StrCat( "`", spec, "` is not a valid specification for new dimensions")); } } absl::Status GetNewDimensions(DimensionIndex input_rank, span<const DynamicDimSpec> dimensions, DimensionIndexBuffer* result) { DimensionIndex new_rank = input_rank; for (const auto& spec : dimensions) { if (auto* r = std::get_if<DimRangeSpec>(&spec)) { TENSORSTORE_ASSIGN_OR_RETURN(DimensionIndex x, GetNumNewDimensions(*r)); new_rank += x; } else { new_rank += 1; } } result->clear(); result->reserve(new_rank); struct Visitor { DimensionIndex new_rank; DimensionIndexBuffer* result; absl::Status operator()(DimensionIndex i) const { TENSORSTORE_ASSIGN_OR_RETURN(DimensionIndex index, NormalizeDimensionIndex(i, new_rank)); result->push_back(index); return absl::OkStatus(); } absl::Status operator()(const std::string& label) const { return absl::InvalidArgumentError( "New dimensions cannot be specified by label"); } absl::Status operator()(const DimRangeSpec& s) const { return NormalizeDimRangeSpec(s, new_rank, result); } }; for (const auto& spec : dimensions) { TENSORSTORE_RETURN_IF_ERROR(std::visit(Visitor{new_rank, result}, spec)); } return CheckAndNormalizeDimensions(new_rank, *result); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" #include "tensorstore/util/status.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::DimensionIndexBuffer; using ::tensorstore::DimRangeSpec; using ::tensorstore::Dims; using ::tensorstore::dynamic_rank; using ::tensorstore::DynamicDims; using ::tensorstore::IndexDomainBuilder; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::span; using ::tensorstore::internal_index_space::TestDimExpressionError; TEST(DimsTest, ErrorHandling) { TestDimExpressionError( IndexTransformBuilder<2, 0>().Finalize().value(), Dims(span<const DimensionIndex>({0, 0, 1})).IndexSlice(0), absl::StatusCode::kInvalidArgument, "Number of dimensions .* exceeds input rank .*"); TestDimExpressionError(IndexTransformBuilder<2, 0>().Finalize().value(), Dims(2).Label("b"), absl::StatusCode::kInvalidArgument, "Dimension index 2 is outside valid range .*"); TestDimExpressionError(IndexTransformBuilder<2, 0>().Finalize().value(), Dims(1, 1).Label("b", "c"), absl::StatusCode::kInvalidArgument, "Input dimensions \\{1\\} specified more than once.*"); } TEST(DimsTest, SelectUsingLabels) { TestDimExpression( IndexTransformBuilder<2, 0>() .input_labels({"x", "y"}) .Finalize() .value(), Dims("x").Label("a"), {0}, IndexTransformBuilder<2, 2>() .input_labels({"a", "y"}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<2, 0>().input_labels({"a", "y"}).Finalize().value(), {}); TestDimExpressionError( IndexTransformBuilder<2, 0>().input_labels({"x", "y"}).Finalize().value(), Dims("a").Label("z"), absl::StatusCode::kInvalidArgument, "Label \"a\" does not match one of \\{\"x\", \"y\"\\}"); TestDimExpressionError( IndexTransformBuilder<2, 0>().input_labels({"", ""}).Finalize().value(), Dims("").Label("z"), absl::StatusCode::kInvalidArgument, "Dimension cannot be specified by empty label"); TestDimExpression( IndexTransformBuilder<2, 0>() .input_labels({"x", "y"}) .Finalize() .value(), Dims({"x", -1}).Label("a", "b"), {0, 1}, IndexTransformBuilder<2, 2>() .input_labels({"a", "b"}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<2, 0>().input_labels({"a", "b"}).Finalize().value(), {}); } TEST(DynamicDimsTest, Existing) { const auto original_transform = IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(); const auto expected_identity_new_transform = IndexTransformBuilder<4, 4>() .input_labels({"a1", "b1", "c1", "d1"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<4, 0>() .input_labels({"a1", "b1", "c1", "d1"}) .Finalize() .value(); TestDimExpression( original_transform, Dims(DimRangeSpec{1, 4, 2}, 0, "c").Label("b1", "d1", "a1", "c1"), {1, 3, 0, 2}, expected_identity_new_transform, expected_new_transform, {}); TestDimExpression( original_transform, DynamicDims({DimRangeSpec{1, 4, 2}, 0, "c"}) .Label("b1", "d1", "a1", "c1"), {1, 3, 0, 2}, expected_identity_new_transform, expected_new_transform, {}); } TEST(DynamicDimsTest, CombinedNew) { TestDimExpression( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{1, 4, 2}, 0, -1).AddNew().Label("e", "f", "g", "h"), {1, 3, 0, 7}, IndexTransformBuilder<dynamic_rank, 4>(8, tensorstore::StaticRank<4>{}) .input_labels({"g", "e", "a", "f", "b", "c", "d", "h"}) .output_single_input_dimension(0, 2) .output_single_input_dimension(1, 4) .output_single_input_dimension(2, 5) .output_single_input_dimension(3, 6) .Finalize() .value(), IndexTransformBuilder<dynamic_rank, 0>(8) .input_labels({"g", "e", "a", "f", "b", "c", "d", "h"}) .Finalize() .value(), {}, false); } TEST(DynamicDimsTest, InvalidNewLabel) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{1, 4, 2}, "x").AddNew(), absl::StatusCode::kInvalidArgument, "New dimensions cannot be specified by label"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewUnbounded) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{std::nullopt, std::nullopt, 1}).AddNew(), absl::StatusCode::kInvalidArgument, "`:` is not a valid specification for new dimensions"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewMissingStop) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{5, std::nullopt, 1}).AddNew(), absl::StatusCode::kInvalidArgument, "`5:` is not a valid specification for new dimensions"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewNegativeStop) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{std::nullopt, -3, 1}).AddNew(), absl::StatusCode::kInvalidArgument, "`:-3` is not a valid specification for new dimensions"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewNegativeStartNegativeStep) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{-5, std::nullopt, -1}).AddNew(), absl::StatusCode::kInvalidArgument, "`-5::-1` is not a valid specification for new dimensions"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewMissingStart) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{std::nullopt, 5, -1}).AddNew(), absl::StatusCode::kInvalidArgument, "`:5:-1` is not a valid specification for new dimensions"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewInvalidInterval) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{6, 5, 1}).AddNew(), absl::StatusCode::kInvalidArgument, "`6:5` is not a valid specification for new dimensions"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewInvalidMixedSigns) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{-1, 4, 1}).AddNew(), absl::StatusCode::kInvalidArgument, "`-1:4` is not a valid specification for new dimensions"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewZeroStep) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{1, 4, 0}).AddNew(), absl::StatusCode::kInvalidArgument, "step must not be 0"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewInvalidIntervalNegativeStep) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{5, 6, -1}).AddNew(), absl::StatusCode::kInvalidArgument, "`5:6:-1` is not a valid specification for new dimensions"); } TEST(DimsTest, DimRangeSpecNegativeStep) { TestDimExpression( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{-4, -7, -2}).AddNew().Label("e", "f"), {2, 0}, IndexTransformBuilder<dynamic_rank, 4>(6) .input_labels({"f", "a", "e", "b", "c", "d"}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 3) .output_single_input_dimension(2, 4) .output_single_input_dimension(3, 5) .Finalize() .value(), IndexTransformBuilder<dynamic_rank, 0>(6) .input_labels({"f", "a", "e", "b", "c", "d"}) .Finalize() .value(), {}, false); } TEST(DimsTest, DimRangeSpecNegativeIndicesNew) { TestDimExpression( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{-6, -3, 2}).AddNew().Label("e", "f"), {0, 2}, IndexTransformBuilder<dynamic_rank, 4>(6) .input_labels({"e", "a", "f", "b", "c", "d"}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 3) .output_single_input_dimension(2, 4) .output_single_input_dimension(3, 5) .Finalize() .value(), IndexTransformBuilder<dynamic_rank, 0>(6) .input_labels({"e", "a", "f", "b", "c", "d"}) .Finalize() .value(), {}, false); } TEST(DimsTest, DimRangeSpecImplicitStopNew) { TestDimExpression( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{-3, std::nullopt, 2}).AddNew().Label("e", "f"), {3, 5}, IndexTransformBuilder<dynamic_rank, 4>(6) .input_labels({"a", "b", "c", "e", "d", "f"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 2) .output_single_input_dimension(3, 4) .Finalize() .value(), IndexTransformBuilder<dynamic_rank, 0>(6) .input_labels({"a", "b", "c", "e", "d", "f"}) .Finalize() .value(), {}, false); } TEST(DimsTest, DimRangeSpecImplicitStopNegativeStepNew) { TestDimExpression( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{1, std::nullopt, -1}).AddNew().Label("e", "f"), {1, 0}, IndexTransformBuilder<dynamic_rank, 4>(6) .input_labels({"f", "e", "a", "b", "c", "d"}) .output_single_input_dimension(0, 2) .output_single_input_dimension(1, 3) .output_single_input_dimension(2, 4) .output_single_input_dimension(3, 5) .Finalize() .value(), IndexTransformBuilder<dynamic_rank, 0>(6) .input_labels({"f", "e", "a", "b", "c", "d"}) .Finalize() .value(), {}, false); } TEST(DimsTest, DimRangeSpecImplicitStartNegativeStepNew) { TestDimExpression( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{std::nullopt, -4, -2}).AddNew().Label("e", "f"), {5, 3}, IndexTransformBuilder<dynamic_rank, 4>(6) .input_labels({"a", "b", "c", "f", "d", "e"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 2) .output_single_input_dimension(3, 4) .Finalize() .value(), IndexTransformBuilder<dynamic_rank, 0>(6) .input_labels({"a", "b", "c", "f", "d", "e"}) .Finalize() .value(), {}, false); } TEST(DimsTest, DimRangeSpecImplicitStartNew) { TestDimExpression( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{std::nullopt, 3, 2}).AddNew().Label("e", "f"), {0, 2}, IndexTransformBuilder<dynamic_rank, 4>(6) .input_labels({"e", "a", "f", "b", "c", "d"}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 3) .output_single_input_dimension(2, 4) .output_single_input_dimension(3, 5) .Finalize() .value(), IndexTransformBuilder<dynamic_rank, 0>(6) .input_labels({"e", "a", "f", "b", "c", "d"}) .Finalize() .value(), {}, false); } TEST(ResolveTest, Example) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto domain, IndexDomainBuilder<3>().labels({"x", "y", "z"}).Finalize()); DimensionIndexBuffer buffer; TENSORSTORE_EXPECT_OK(Dims("x", "z").Resolve(domain, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(0, 2)); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/internal/dimension_selection.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/dimension_selection_test.cc
4f887a6430414cd6088e1743555015b10f116d50
e623c8f3-9336-4f63-a160-ff9b2d0ae2db
cpp
google/tensorstore
label_op
tensorstore/index_space/internal/label_op.cc
tensorstore/index_space/label_op_test.cc
#include "tensorstore/index_space/internal/label_op.h" #include <stddef.h> #include <string> #include <string_view> #include <utility> #include "absl/status/status.h" #include "tensorstore/container_kind.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dimension_index_buffer.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/internal/dimension_labels.h" #include "tensorstore/internal/string_like.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { Result<IndexTransform<>> ApplyLabel(IndexTransform<> transform, DimensionIndexBuffer* dimensions, internal::StringLikeSpan labels, bool domain_only) { if (dimensions->size() != static_cast<size_t>(labels.size())) { return absl::InvalidArgumentError(tensorstore::StrCat( "Number of dimensions (", dimensions->size(), ") does not match number of labels (", labels.size(), ").")); } auto rep = MutableRep( TransformAccess::rep_ptr<container>(std::move(transform)), domain_only); const DimensionIndex input_rank = rep->input_rank; span<std::string> input_labels = rep->input_labels().first(input_rank); for (DimensionIndex i = 0; i < static_cast<DimensionIndex>(dimensions->size()); ++i) { const DimensionIndex input_dim = (*dimensions)[i]; std::string_view label = labels[i]; input_labels[input_dim].assign(label.begin(), label.end()); } TENSORSTORE_RETURN_IF_ERROR( internal::ValidateDimensionLabelsAreUnique(input_labels)); internal_index_space::DebugCheckInvariants(rep.get()); return TransformAccess::Make<IndexTransform<>>(std::move(rep)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" #include "tensorstore/util/status.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::Dims; using ::tensorstore::IdentityTransform; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::span; using ::tensorstore::internal_index_space::TestDimExpression; TEST(LabelTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .input_labels({"a", "y", "b"}) .output_identity_transform() .Finalize() .value(); TestDimExpression(original_transform, Dims(0, 2).Label("a", "b"), {0, 2}, expected_new_transform, expected_new_transform, {}); TestDimExpression(original_transform, Dims("x", "z").Label("a", "b"), {0, 2}, expected_new_transform, expected_new_transform, {}); } TEST(LabelTest, MultipleArguments) { TestDimExpression( IndexTransformBuilder<3, 1>() .output_constant(0, 1) .Finalize() .value(), Dims(1, 0).Label("x", "y"), {1, 0}, IndexTransformBuilder<3, 3>() .input_labels({"y", "x", ""}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<3, 1>() .input_labels({"y", "x", ""}) .output_constant(0, 1) .Finalize() .value(), {}); } TEST(LabelTest, ErrorHandling) { TestDimExpressionError( IdentityTransform(1), Dims(span<const DimensionIndex>({0})).Label("x", "y"), absl::StatusCode::kInvalidArgument, "Number of dimensions \\(1\\) does not match number of " "labels \\(2\\)\\."); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/internal/label_op.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/label_op_test.cc
4f887a6430414cd6088e1743555015b10f116d50
fc22fcd4-0c88-46a4-b421-8053fcf0fff6
cpp
google/tensorstore
compose_transforms
tensorstore/index_space/internal/compose_transforms.cc
tensorstore/index_space/compose_transforms_test.cc
#include "tensorstore/index_space/internal/compose_transforms.h" #include <cassert> #include <sstream> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_replace.h" #include "tensorstore/box.h" #include "tensorstore/container_kind.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/internal/propagate_bounds.h" #include "tensorstore/index_space/internal/transform_array.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/index_space/internal/transform_rep_impl.h" #include "tensorstore/index_space/output_index_method.h" #include "tensorstore/rank.h" #include "tensorstore/static_cast.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/element_pointer.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { namespace { bool IsSingletonIndexArrayMap(StridedLayoutView<> layout) { for (DimensionIndex dim = 0, rank = layout.rank(); dim < rank; ++dim) { if (layout.byte_strides()[dim] == 0) continue; if (layout.shape()[dim] != 1) return false; } return true; } absl::Status ComposeTransformsImpl(TransformRep* b_to_c, bool can_move_from_b_to_c, TransformRep* a_to_b, bool can_move_from_a_to_b, TransformRep* a_to_c, bool domain_only) { assert(b_to_c != nullptr && a_to_b != nullptr && a_to_c != nullptr); const DimensionIndex a_to_c_output_rank = domain_only ? 0 : b_to_c->output_rank; assert(a_to_c_output_rank <= a_to_c->output_rank_capacity && a_to_b->output_rank == b_to_c->input_rank && a_to_b->input_rank <= a_to_c->input_rank_capacity); assert(a_to_c != b_to_c && a_to_c != a_to_b); const DimensionIndex a_rank = a_to_b->input_rank; const DimensionIndex b_rank = a_to_b->output_rank; const DimensionIndex c_rank = b_to_c->output_rank; a_to_c->input_rank = a_rank; a_to_c->output_rank = a_to_c_output_rank; CopyInputLabels(a_to_b, a_to_c, can_move_from_a_to_b); BoxView<> b_to_c_domain = b_to_c->input_domain(b_rank); MutableBoxView<> a_to_c_domain = a_to_c->input_domain(a_rank); TENSORSTORE_RETURN_IF_ERROR(PropagateBounds( b_to_c_domain, b_to_c->implicit_lower_bounds, b_to_c->implicit_upper_bounds, a_to_b, a_to_c_domain, a_to_c->implicit_lower_bounds, a_to_c->implicit_upper_bounds)); if (domain_only) { internal_index_space::DebugCheckInvariants(a_to_c); return absl::OkStatus(); } span<const OutputIndexMap> b_to_c_output_index_maps = b_to_c->output_index_maps().first(c_rank); span<const OutputIndexMap> a_to_b_output_index_maps = a_to_b->output_index_maps().first(b_rank); span<OutputIndexMap> a_to_c_output_index_maps = a_to_c->output_index_maps().first(c_rank); const bool a_to_c_domain_is_explicitly_empty = IsDomainExplicitlyEmpty(a_to_c); for (DimensionIndex c_dim = 0; c_dim < c_rank; ++c_dim) { auto& b_to_c_map = b_to_c_output_index_maps[c_dim]; auto& a_to_c_map = a_to_c_output_index_maps[c_dim]; const OutputIndexMethod b_to_c_method = b_to_c_map.stride() == 0 ? OutputIndexMethod::constant : b_to_c_map.method(); switch (b_to_c_method) { case OutputIndexMethod::constant: { a_to_c_map.SetConstant(); a_to_c_map.stride() = 0; a_to_c_map.offset() = b_to_c_map.offset(); break; } case OutputIndexMethod::single_input_dimension: { const DimensionIndex b_dim = b_to_c_map.input_dimension(); assert(b_dim >= 0 && b_dim < b_rank); auto& a_to_b_map = a_to_b_output_index_maps[b_dim]; const OutputIndexMethod a_to_b_method = a_to_b_map.stride() == 0 ? OutputIndexMethod::constant : a_to_b_map.method(); Index new_output_offset; if (internal::MulOverflow(a_to_b_map.offset(), b_to_c_map.stride(), &new_output_offset) || internal::AddOverflow(b_to_c_map.offset(), new_output_offset, &a_to_c_map.offset())) { return absl::InvalidArgumentError( tensorstore::StrCat("Integer overflow computing output " "offset for output dimension ", c_dim, ".")); } if (a_to_b_method == OutputIndexMethod::constant) { a_to_c_map.SetConstant(); a_to_c_map.stride() = 0; break; } if (internal::MulOverflow(a_to_b_map.stride(), b_to_c_map.stride(), &a_to_c_map.stride())) { return absl::InvalidArgumentError(tensorstore::StrCat( "Integer overflow computing output_strides[", c_dim, "] = ", a_to_b_map.stride(), " * ", b_to_c_map.stride(), ".")); } if (a_to_b_method == OutputIndexMethod::single_input_dimension) { const DimensionIndex a_dim = a_to_b_map.input_dimension(); assert(a_dim >= 0 && a_dim < a_rank); a_to_c_map.SetSingleInputDimension(a_dim); break; } assert(a_to_b_method == OutputIndexMethod::array); if (a_to_c_domain_is_explicitly_empty) { a_to_c_map.SetConstant(); a_to_c_map.offset() = 0; a_to_c_map.stride() = 0; break; } const auto& a_to_b_index_array_data = a_to_b_map.index_array_data(); IndexInterval index_range; { TENSORSTORE_ASSIGN_OR_RETURN( const IndexInterval propagated_bounds, GetAffineTransformDomain( OptionallyImplicitIndexInterval{ b_to_c_domain[b_dim], b_to_c->implicit_lower_bounds[b_dim], b_to_c->implicit_upper_bounds[b_dim]} .effective_interval(), a_to_b_map.offset(), a_to_b_map.stride())); index_range = Intersect(a_to_b_index_array_data.index_range, propagated_bounds); } if (IsSingletonIndexArrayMap( StridedLayoutView<>(a_rank, a_to_c_domain.shape().data(), a_to_b_index_array_data.byte_strides))) { a_to_c_map.SetConstant(); TENSORSTORE_RETURN_IF_ERROR(ReplaceZeroRankIndexArrayIndexMap( *a_to_b_index_array_data.array_view(a_to_b->input_domain(a_rank)) .byte_strided_origin_pointer(), index_range, &a_to_c_map.offset(), &a_to_c_map.stride())); } else { auto& index_array = a_to_c_map.SetArrayIndexing(a_rank, a_to_b_index_array_data); index_array.index_range = index_range; } break; } case OutputIndexMethod::array: { auto& a_to_c_map = a_to_c_output_index_maps[c_dim]; if (a_to_c_domain_is_explicitly_empty) { a_to_c_map.SetConstant(); a_to_c_map.offset() = 0; a_to_c_map.stride() = 0; break; } auto& index_array_data = b_to_c_map.index_array_data(); auto& result_array_data = a_to_c_map.SetArrayIndexing(a_rank); result_array_data.index_range = index_array_data.index_range; TENSORSTORE_ASSIGN_OR_RETURN( auto transformed_element_pointer, TransformArraySubRegion( index_array_data.shared_array_view(b_to_c_domain), a_to_b, a_to_c_domain.origin().data(), a_to_c_domain.shape().data(), result_array_data.byte_strides, {skip_repeated_elements})); auto new_index_array_origin_pointer = StaticDataTypeCast<const Index, unchecked>( std::move(transformed_element_pointer)); result_array_data.element_pointer = AddByteOffset( new_index_array_origin_pointer, -IndexInnerProduct(a_rank, result_array_data.byte_strides, a_to_c_domain.origin().data())); Index output_offset = b_to_c_map.offset(); Index output_stride = b_to_c_map.stride(); if (IsSingletonIndexArrayMap( StridedLayoutView<>(a_rank, a_to_c_domain.shape().data(), result_array_data.byte_strides))) { TENSORSTORE_RETURN_IF_ERROR(ReplaceZeroRankIndexArrayIndexMap( *new_index_array_origin_pointer.data(), result_array_data.index_range, &output_offset, &output_stride)); a_to_c_map.SetConstant(); } a_to_c_map.offset() = output_offset; a_to_c_map.stride() = output_stride; break; } } } internal_index_space::DebugCheckInvariants(a_to_c); return absl::OkStatus(); } } Result<TransformRep::Ptr<>> ComposeTransforms(TransformRep* b_to_c, bool can_move_from_b_to_c, TransformRep* a_to_b, bool can_move_from_a_to_b, bool domain_only) { assert(b_to_c); assert(a_to_b); const DimensionIndex a_rank = a_to_b->input_rank; const DimensionIndex b_rank = a_to_b->output_rank; const DimensionIndex c_rank = b_to_c->output_rank; absl::Status status; if (b_rank == b_to_c->input_rank) { auto data = TransformRep::Allocate(a_rank, domain_only ? 0 : c_rank); status = ComposeTransformsImpl(b_to_c, can_move_from_b_to_c, a_to_b, can_move_from_a_to_b, data.get(), domain_only); if (status.ok()) { return data; } } else { status = absl::InvalidArgumentError( tensorstore::StrCat("Rank ", b_to_c->input_rank, " -> ", c_rank, " transform cannot be composed with rank ", a_rank, " -> ", b_rank, " transform.")); } assert(!status.ok()); auto format_transform = [](TransformRep* rep) { std::ostringstream os; internal_index_space::PrintToOstream(os, rep); std::string str = os.str(); absl::StrReplaceAll({{"\n", " "}}, &str); return absl::Cord(str); }; AddStatusPayload(status, "transform", format_transform(a_to_b)); if (!status.GetPayload("domain").has_value()) { AddStatusPayload(status, "left_transform", format_transform(b_to_c)); } return status; } Result<IndexTransform<dynamic_rank, dynamic_rank, container>> ComposeTransforms( IndexTransform<dynamic_rank, dynamic_rank, container> b_to_c, IndexTransform<dynamic_rank, dynamic_rank, container> a_to_b, bool domain_only) { auto b_to_c_rep = TransformAccess::rep(b_to_c); auto a_to_b_rep = TransformAccess::rep(a_to_b); TENSORSTORE_ASSIGN_OR_RETURN( auto a_to_c_rep, internal_index_space::ComposeTransforms( b_to_c_rep, b_to_c_rep->is_unique(), a_to_b_rep, a_to_b_rep->is_unique(), domain_only)); return TransformAccess::Make<IndexTransform<>>(std::move(a_to_c_rep)); } } }
#include "tensorstore/index_space/internal/compose_transforms.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/array.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::IdentityTransform; using ::tensorstore::Index; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::IndexTransformView; using ::tensorstore::kMaxFiniteIndex; using ::tensorstore::MakeArray; using ::tensorstore::MatchesStatus; TEST(ComposeTransformsTest, EmptyDomain) { auto b_to_c = IndexTransformBuilder<3, 2>() .input_origin({1, 2, 3}) .input_shape({5, 6, 7}) .output_identity_transform() .Finalize() .value(); auto a_to_b = IndexTransformBuilder<2, 3>() .input_origin({1, 2}) .input_shape({5, 0}) .output_identity_transform() .output_constant(2, 5) .Finalize() .value(); auto a_to_c = ComposeTransforms(b_to_c, a_to_b).value(); auto expected_a_to_c = IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({5, 0}) .output_identity_transform() .Finalize() .value(); EXPECT_EQ(expected_a_to_c, a_to_c); } TEST(ComposeTransformsTest, TransformArrayError) { auto b_to_c = IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({2}) .output_index_array(0, 0, 1, MakeArray<Index>({1, 2})) .Finalize() .value(); auto a_to_b = IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({1}) .output_index_array(0, 0, 1, MakeArray<Index>({1}), IndexInterval::Closed(4, 6)) .Finalize() .value(); EXPECT_THAT(ComposeTransforms(b_to_c, a_to_b), MatchesStatus(absl::StatusCode::kOutOfRange)); } TEST(ComposeTransformsTest, BtoCIndexArrayWithSingleIndex) { auto b_to_c = IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({2}) .output_index_array(0, 0, 1, MakeArray<Index>({7, 8})) .Finalize() .value(); auto a_to_b = IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({1}) .output_identity_transform() .Finalize() .value(); auto a_to_c = ComposeTransforms(b_to_c, a_to_b).value(); auto expected_a_to_c = IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({1}) .output_constant(0, 8) .Finalize() .value(); EXPECT_EQ(expected_a_to_c, a_to_c); } TEST(ComposeTransformsTest, BtoCIndexArrayWithInvalidSingleIndex) { auto b_to_c = IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({2}) .output_index_array(0, 0, 1, MakeArray<Index>({7, 8}), IndexInterval::Closed(2, 3)) .Finalize() .value(); auto a_to_b = IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({1}) .output_identity_transform() .Finalize() .value(); EXPECT_THAT(ComposeTransforms(b_to_c, a_to_b), MatchesStatus(absl::StatusCode::kOutOfRange)); } TEST(ComposeTransformsTest, AtoBIndexArrayWithSingleIndex) { auto b_to_c = IndexTransformBuilder<1, 1>() .output_identity_transform() .Finalize() .value(); auto a_to_b = IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({1}) .output_index_array(0, 0, 1, MakeArray<Index>({7})) .Finalize() .value(); auto a_to_c = ComposeTransforms(b_to_c, a_to_b).value(); auto expected_a_to_c = IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({1}) .output_constant(0, 7) .Finalize() .value(); EXPECT_EQ(expected_a_to_c, a_to_c); } TEST(ComposeTransformsTest, AtoBIndexArrayWithInvalidSingleIndex) { auto b_to_c = IndexTransformBuilder<1, 1>() .output_identity_transform() .Finalize() .value(); auto a_to_b = IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({1}) .output_index_array(0, 0, 1, MakeArray<Index>({7}), IndexInterval::Closed(2, 3)) .Finalize() .value(); EXPECT_THAT(ComposeTransforms(b_to_c, a_to_b), MatchesStatus(absl::StatusCode::kOutOfRange)); } TEST(ComposeTransformsTest, ConstantOutOfDomain) { auto b_to_c = IndexTransformBuilder<3, 2>() .input_origin({1, 2, 3}) .input_shape({5, 6, 7}) .output_identity_transform() .Finalize() .value(); auto a_to_b = IndexTransformBuilder<2, 3>() .input_origin({1, 2}) .input_shape({5, 4}) .output_identity_transform() .output_constant(2, 2) .Finalize() .value(); EXPECT_THAT(ComposeTransforms(b_to_c, a_to_b).status(), MatchesStatus(absl::StatusCode::kOutOfRange, ".*Index 2 is outside valid range \\[3, 10\\)")); } TEST(ComposeTransformsTest, ConstantOverflow) { EXPECT_THAT(ComposeTransforms(IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, 0, 100, 0) .Finalize() .value(), IndexTransformBuilder<0, 1>() .output_constant(0, kMaxFiniteIndex) .Finalize() .value()) .status(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( ComposeTransforms(IndexTransformBuilder<1, 1>() .output_single_input_dimension( 0, std::numeric_limits<Index>::max(), 1, 0) .Finalize() .value(), IndexTransformBuilder<0, 1>() .output_constant(0, 100) .Finalize() .value()) .status(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(ComposeTransformsTest, SingleInputDimensionOverflow) { EXPECT_THAT( ComposeTransforms(IndexTransformBuilder<1, 1>() .output_single_input_dimension( 0, std::numeric_limits<Index>::max(), 1, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({10}) .output_single_input_dimension(0, 100, 1, 0) .Finalize() .value()) .status(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ComposeTransforms( IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, 0, 100, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({10}) .output_single_input_dimension(0, kMaxFiniteIndex, 1, 0) .Finalize() .value()) .status(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( ComposeTransforms(IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, 0, 100, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({10}) .output_single_input_dimension( 0, 0, std::numeric_limits<Index>::max() - 1, 0) .Finalize() .value()) .status(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(ComposeTransformsTest, IndexArrayBoundsOverflow) { EXPECT_THAT(ComposeTransforms( IndexTransformBuilder<1, 1>() .input_origin({2}) .input_shape({100}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({2}) .output_index_array(0, std::numeric_limits<Index>::min(), 1, MakeArray<Index>({1, 2}), IndexInterval::Closed(0, 100)) .Finalize() .value()) .status(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(ComposeTransformsTest, RankMismatch) { EXPECT_THAT( ComposeTransforms(IdentityTransform(2), IdentityTransform(3)).status(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Rank 2 -> 2 transform cannot be composed with rank 3 -> 3 " "transform\\.")); } TEST(ComposeTransformsTest, FunctionCallOperator) { const auto t0 = IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({3}) .output_single_input_dimension(0, 10, 1, 0) .Finalize() .value(); const auto t1 = IndexTransformBuilder<1, 1>() .input_origin({10}) .input_shape({5}) .output_single_input_dimension(0, 20, 1, 0) .Finalize() .value(); const auto expected_composed = IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({3}) .output_single_input_dimension(0, 30, 1, 0) .Finalize() .value(); const auto composed = t0(t1).value(); EXPECT_EQ(expected_composed, composed); EXPECT_EQ(expected_composed, ComposeTransforms(t1, t0).value()); } TEST(ComposeTransformsTest, RankZero) { auto t0 = IdentityTransform(0); EXPECT_EQ(t0, ComposeTransforms(t0, t0).value()); } TEST(ComposeTransformsTest, ImplicitOutOfBounds) { const auto t0 = IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({4}) .implicit_lower_bounds({1}) .output_identity_transform() .Finalize() .value(); const auto t1 = IndexTransformBuilder<1, 1>() .input_origin({-1}) .input_exclusive_max({2}) .output_identity_transform() .Finalize() .value(); EXPECT_THAT(ComposeTransforms(t0, t1), ::testing::Optional(t1)); } TEST(ComposeTransformsTest, TransformIndexArraySkipRepeatedElements) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t0, IndexTransformBuilder(2, 2) .input_shape({5, 2}) .output_index_array( 0, 0, 1, MakeArray<Index>({{0}, {1}, {2}, {3}, {4}})) .output_single_input_dimension(1, 1) .Finalize()); EXPECT_THAT(t0.output_index_maps()[0].index_array().byte_strides(), ::testing::ElementsAre(8, 0)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto t1, ComposeTransforms(t0, t0)); EXPECT_EQ(t0, t1); EXPECT_THAT(t1.output_index_maps()[0].index_array().byte_strides(), ::testing::ElementsAre(8, 0)); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/internal/compose_transforms.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/compose_transforms_test.cc
4f887a6430414cd6088e1743555015b10f116d50
d28dc637-0d34-4545-8a45-35b6ed5a752c
cpp
google/tensorstore
propagate_bounds
tensorstore/index_space/internal/propagate_bounds.cc
tensorstore/index_space/propagate_bounds_test.cc
#include "tensorstore/index_space/internal/propagate_bounds.h" #include <algorithm> #include <cassert> #include <sstream> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_replace.h" #include "tensorstore/box.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/internal/identity_transform.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/index_space/output_index_method.h" #include "tensorstore/rank.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { namespace { absl::Status PropagateBoundsImpl(BoxView<> b, DimensionSet b_implicit_lower_bounds, DimensionSet b_implicit_upper_bounds, TransformRep* a_to_b, MutableBoxView<> a) { if (!a_to_b) { assert(a.rank() == b.rank()); a.DeepAssign(b); return absl::OkStatus(); } assert(a_to_b->input_rank == a.rank()); assert(a_to_b->output_rank == b.rank()); a.Fill(); span<const OutputIndexMap> maps = a_to_b->output_index_maps().first(b.rank()); DimensionSet propagated_to_a; DimensionSet inferred_implicit_lower_bounds(true); DimensionSet inferred_implicit_upper_bounds(true); auto& implicit_lower_bounds = a_to_b->implicit_lower_bounds; auto& implicit_upper_bounds = a_to_b->implicit_upper_bounds; const auto existing_input_domain = a_to_b->input_domain(a.rank()); bool is_domain_empty = false; for (DimensionIndex a_dim = 0; a_dim < a.rank(); ++a_dim) { if (!implicit_lower_bounds[a_dim] && !implicit_upper_bounds[a_dim] && existing_input_domain[a_dim].empty()) { is_domain_empty = true; break; } } for (DimensionIndex b_dim = 0; b_dim < b.rank(); ++b_dim) { auto& map = maps[b_dim]; const Index output_stride = map.stride(); if (map.method() == OutputIndexMethod::array) continue; OptionallyImplicitIndexInterval b_bounds_oi{b[b_dim], b_implicit_lower_bounds[b_dim], b_implicit_upper_bounds[b_dim]}; if (output_stride == 0 || map.method() == OutputIndexMethod::constant) { if (!is_domain_empty) { TENSORSTORE_RETURN_IF_ERROR( CheckContains(b_bounds_oi.effective_interval(), map.offset()), MaybeAnnotateStatus( _, tensorstore::StrCat("Checking bounds of constant output " "index map for dimension ", b_dim))); } continue; } const DimensionIndex a_dim = map.input_dimension(); assert(a_dim >= 0 && a_dim < a.rank()); TENSORSTORE_ASSIGN_OR_RETURN( OptionallyImplicitIndexInterval propagated_a_bounds, GetAffineTransformDomain(b_bounds_oi, map.offset(), map.stride()), MaybeAnnotateStatus( _, tensorstore::StrCat("Propagating bounds from dimension ", b_dim, " to input dimension ", a_dim))); propagated_a_bounds = IntersectPreferringExplicit( propagated_a_bounds, OptionallyImplicitIndexInterval{a[a_dim], inferred_implicit_lower_bounds[a_dim], inferred_implicit_upper_bounds[a_dim]}); a[a_dim] = propagated_a_bounds.interval(); inferred_implicit_lower_bounds[a_dim] = propagated_a_bounds.implicit_lower(); inferred_implicit_upper_bounds[a_dim] = propagated_a_bounds.implicit_upper(); propagated_to_a[a_dim] = true; } for (DimensionIndex a_dim = 0; a_dim < a.rank(); ++a_dim) { IndexInterval existing = existing_input_domain[a_dim]; IndexIntervalRef inferred = a[a_dim]; if (!propagated_to_a[a_dim]) { inferred = existing; continue; } const Index inclusive_min = implicit_lower_bounds[a_dim] ? inferred.inclusive_min() : existing.inclusive_min(); const Index inclusive_max = std::max(inclusive_min - 1, implicit_upper_bounds[a_dim] ? inferred.inclusive_max() : existing.inclusive_max()); const IndexInterval combined = IndexInterval::UncheckedClosed(inclusive_min, inclusive_max); const OptionallyImplicitIndexInterval inferred_oi{ inferred, inferred_implicit_lower_bounds[a_dim], inferred_implicit_upper_bounds[a_dim]}; if (!is_domain_empty && !Contains(inferred_oi.effective_interval(), combined)) { std::ostringstream os; os << "Propagated bounds " << inferred_oi; if (inferred_oi.size() != kInfSize) { os << ", with size=" << inferred_oi.size() << ", "; } os << "for dimension " << a_dim << " are incompatible with existing bounds " << combined; if (combined.size() != kInfSize) { os << ", with size=" << combined.size(); } os << "."; return absl::OutOfRangeError(os.str()); } inferred = combined; } return absl::OkStatus(); } void PropagateImplicitBoundState(DimensionIndex b_rank, DimensionSet b_implicit_lower_bounds, DimensionSet b_implicit_upper_bounds, TransformRep* a_to_b, DimensionIndex a_rank, DimensionSet& a_implicit_lower_bounds, DimensionSet& a_implicit_upper_bounds) { if (!a_to_b) { a_implicit_lower_bounds = b_implicit_lower_bounds; a_implicit_upper_bounds = b_implicit_upper_bounds; return; } a_implicit_lower_bounds = a_to_b->implicit_lower_bounds; a_implicit_upper_bounds = a_to_b->implicit_upper_bounds; span<const OutputIndexMap> maps = a_to_b->output_index_maps().first(b_rank); for (DimensionIndex b_dim = 0; b_dim < b_rank; ++b_dim) { auto& map = maps[b_dim]; if (map.method() != OutputIndexMethod::single_input_dimension || map.stride() == 0) { continue; } const DimensionIndex a_dim = map.input_dimension(); assert(a_dim >= 0 && a_dim < a_rank); bool implicit_lower = b_implicit_lower_bounds[b_dim]; bool implicit_upper = b_implicit_upper_bounds[b_dim]; if (map.stride() < 0) { std::swap(implicit_lower, implicit_upper); } if (!implicit_lower) a_implicit_lower_bounds[a_dim] = false; if (!implicit_upper) a_implicit_upper_bounds[a_dim] = false; } } } absl::Status PropagateBounds(BoxView<> b, DimensionSet b_implicit_lower_bounds, DimensionSet b_implicit_upper_bounds, TransformRep* a_to_b, MutableBoxView<> a) { auto status = PropagateBoundsImpl(b, b_implicit_lower_bounds, b_implicit_upper_bounds, a_to_b, a); if (!status.ok()) { std::ostringstream os; internal_index_space::PrintToOstream(os, a_to_b); std::string str = os.str(); absl::StrReplaceAll({{"\n", " "}}, &str); AddStatusPayload(status, "transform", absl::Cord(str)); AddStatusPayload(status, "domain", absl::Cord(tensorstore::StrCat(b))); } return status; } absl::Status PropagateExplicitBounds(BoxView<> b, TransformRep* a_to_b, MutableBoxView<> a) { return PropagateBounds(b, false, false, a_to_b, a); } absl::Status PropagateBounds(BoxView<> b, DimensionSet b_implicit_lower_bounds, DimensionSet b_implicit_upper_bounds, TransformRep* a_to_b, MutableBoxView<> a, DimensionSet& a_implicit_lower_bounds, DimensionSet& a_implicit_upper_bounds) { PropagateImplicitBoundState(b.rank(), b_implicit_lower_bounds, b_implicit_upper_bounds, a_to_b, a.rank(), a_implicit_lower_bounds, a_implicit_upper_bounds); return PropagateBounds(b, b_implicit_lower_bounds, b_implicit_upper_bounds, a_to_b, a); } Result<TransformRep::Ptr<>> PropagateBoundsToTransform( BoxView<> b_domain, DimensionSet b_implicit_lower_bounds, DimensionSet b_implicit_upper_bounds, TransformRep::Ptr<> a_to_b) { const DimensionIndex b_rank = b_domain.rank(); if (!a_to_b) { a_to_b = TransformRep::Allocate(b_rank, b_rank); a_to_b->input_rank = a_to_b->output_rank = b_rank; SetToIdentityTransform(a_to_b->output_index_maps().first(b_rank)); a_to_b->input_domain(b_rank).DeepAssign(b_domain); a_to_b->implicit_lower_bounds = b_implicit_lower_bounds; a_to_b->implicit_upper_bounds = b_implicit_upper_bounds; internal_index_space::DebugCheckInvariants(a_to_b.get()); return a_to_b; } const DimensionIndex a_rank = a_to_b->input_rank; Box<dynamic_rank(internal::kNumInlinedDims)> bounds_temp(a_rank); TENSORSTORE_RETURN_IF_ERROR(PropagateBounds(b_domain, b_implicit_lower_bounds, b_implicit_upper_bounds, a_to_b.get(), bounds_temp)); a_to_b = MutableRep(std::move(a_to_b)); a_to_b->input_domain(a_rank).DeepAssign(bounds_temp); PropagateImplicitBoundState( b_rank, b_implicit_lower_bounds, b_implicit_upper_bounds, a_to_b.get(), a_rank, a_to_b->implicit_lower_bounds, a_to_b->implicit_upper_bounds); const bool domain_is_explicitly_empty = IsDomainExplicitlyEmpty(a_to_b.get()); const auto output_index_maps = a_to_b->output_index_maps().first(b_rank); for (DimensionIndex b_dim = 0; b_dim < b_rank; ++b_dim) { auto& map = output_index_maps[b_dim]; if (map.method() != OutputIndexMethod::array) continue; if (domain_is_explicitly_empty) { map.SetConstant(); map.offset() = 0; map.stride() = 0; continue; } auto& index_array_data = map.index_array_data(); TENSORSTORE_ASSIGN_OR_RETURN( const IndexInterval propagated_bounds, GetAffineTransformDomain( OptionallyImplicitIndexInterval(b_domain[b_dim], b_implicit_lower_bounds[b_dim], b_implicit_upper_bounds[b_dim]) .effective_interval(), map.offset(), map.stride())); index_array_data.index_range = Intersect(propagated_bounds, index_array_data.index_range); } internal_index_space::DebugCheckInvariants(a_to_b.get()); return a_to_b; } Result<TransformRep::Ptr<>> PropagateExplicitBoundsToTransform( BoxView<> b_domain, TransformRep::Ptr<> a_to_b) { return PropagateBoundsToTransform(b_domain, false, false, std::move(a_to_b)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::Box; using ::tensorstore::BoxView; using ::tensorstore::DimensionIndex; using ::tensorstore::DimensionSet; using ::tensorstore::Index; using ::tensorstore::IndexDomainBuilder; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransform; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::kInfIndex; using ::tensorstore::kMinFiniteIndex; using ::tensorstore::MakeArray; using ::tensorstore::MatchesStatus; using ::tensorstore::PropagateBounds; using ::tensorstore::PropagateBoundsToTransform; using ::tensorstore::PropagateExplicitBounds; using ::tensorstore::PropagateExplicitBoundsToTransform; TEST(PropagateExplicitBoundsTest, IdentityTransform) { DimensionIndex rank = 2; const Box<> b({2, 3}, {4, 5}); Box<> a(rank); TENSORSTORE_ASSERT_OK(PropagateExplicitBounds(b, IndexTransform<>(), a)); EXPECT_EQ(a, b); } TEST(PropagateBoundsTest, IdentityTransform) { auto b = Box({2, 3}, {4, 5}); Box<2> a; DimensionSet a_implicit_lower_bounds, a_implicit_upper_bounds; auto b_implicit_lower_bounds = DimensionSet::FromBools({0, 1}); auto b_implicit_upper_bounds = DimensionSet::FromBools({1, 0}); TENSORSTORE_ASSERT_OK( PropagateBounds(b, b_implicit_lower_bounds, b_implicit_upper_bounds, IndexTransform<2, 2>(), a, a_implicit_lower_bounds, a_implicit_upper_bounds)); EXPECT_EQ(a, b); EXPECT_EQ(b_implicit_lower_bounds, a_implicit_lower_bounds); EXPECT_EQ(b_implicit_upper_bounds, a_implicit_upper_bounds); } TEST(PropagateBoundsTest, ValidateOnly) { auto transform = IndexTransformBuilder<2, 3>() .input_origin({2, 3}) .input_shape({5, 10}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 3, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> b({2, 3, 4}, {50, 66, 100}); Box<2> a; DimensionSet b_implicit_lower_bounds = DimensionSet::FromBools({0, 1, 0}); DimensionSet b_implicit_upper_bounds = DimensionSet::FromBools({1, 0, 0}); DimensionSet a_implicit_lower_bounds, a_implicit_upper_bounds; TENSORSTORE_ASSERT_OK(PropagateBounds( b, b_implicit_lower_bounds, b_implicit_upper_bounds, transform, a, a_implicit_lower_bounds, a_implicit_upper_bounds)); EXPECT_EQ(BoxView({2, 3}, {5, 10}), a); EXPECT_THAT(a_implicit_lower_bounds, DimensionSet()); EXPECT_THAT(a_implicit_upper_bounds, DimensionSet()); } TEST(PropagateBoundsTest, Constant) { auto transform = IndexTransformBuilder<0, 2>() .output_constant(0, 1) .output_constant(1, 2) .Finalize() .value(); Box<0> a; TENSORSTORE_ASSERT_OK(PropagateBounds( Box({2, 1}, {2, 3}), DimensionSet::FromBools({1, 0}), DimensionSet::FromBools({0, 0}), transform, a)); } TEST(PropagateBoundsTest, ConstantError) { auto transform = IndexTransformBuilder<0, 2>() .output_constant(0, 1) .output_constant(1, 2) .Finalize() .value(); Box<0> a; EXPECT_THAT(PropagateBounds( Box({2, 1}, {2, 3}), DimensionSet::FromBools({0, 1}), DimensionSet::FromBools({0, 0}), transform, a), MatchesStatus(absl::StatusCode::kOutOfRange, "Checking bounds of constant output index map for " "dimension 0: Index 1 is outside valid range .*")); } TEST(PropagateBoundsTest, ConstantEmptyDomain) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto transform, (IndexTransformBuilder<2, 1>() .input_shape({0, 2}) .output_constant(0, 42) .Finalize())); Box<2> a; TENSORSTORE_EXPECT_OK(PropagateBounds( Box<1>({5}), DimensionSet(), DimensionSet(), transform, a)); EXPECT_EQ(a, BoxView({0, 2})); } TEST(PropagateBoundsTest, Propagate0Upper1Lower) { auto transform = IndexTransformBuilder<2, 3>() .input_origin({2, 3}) .implicit_lower_bounds({0, 1}) .implicit_upper_bounds({1, 0}) .input_shape({5, 10}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 3, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); Box<2> a; DimensionSet a_implicit_lower_bounds, a_implicit_upper_bounds; TENSORSTORE_ASSERT_OK(PropagateBounds( Box({2, 3, 4}, {50, 66, 100}), DimensionSet::FromBools({0, 1, 1}), DimensionSet::FromBools({1, 0, 1}), transform, a, a_implicit_lower_bounds, a_implicit_upper_bounds)); EXPECT_EQ(BoxView({2, -9}, {19 - 2, 13 - -9}), a); EXPECT_THAT(a_implicit_lower_bounds, DimensionSet::FromBools({0, 1})); EXPECT_THAT(a_implicit_upper_bounds, DimensionSet::FromBools({1, 0})); } TEST(PropagateBoundsTest, PropagateImplicitConstraints1) { const auto transform = IndexTransformBuilder<1, 1>() .input_origin({-1}) .input_exclusive_max({2}) .implicit_upper_bounds({1}) .output_identity_transform() .Finalize() .value(); Box<1> a; DimensionSet a_implicit_lower_bounds, a_implicit_upper_bounds; TENSORSTORE_ASSERT_OK( PropagateBounds(Box({0}, {4}), DimensionSet::FromBools({1}), DimensionSet(), transform, a, a_implicit_lower_bounds, a_implicit_upper_bounds)); EXPECT_EQ(BoxView({-1}, {5}), a); EXPECT_THAT(a_implicit_lower_bounds, DimensionSet()); EXPECT_THAT(a_implicit_upper_bounds, DimensionSet()); } TEST(PropagateBoundsTest, PropagateImplicitConstraints2) { const auto transform = IndexTransformBuilder<1, 2>() .input_origin({-1}) .input_exclusive_max({2}) .implicit_upper_bounds({1}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 0) .Finalize() .value(); Box<1> a; DimensionSet a_implicit_lower_bounds, a_implicit_upper_bounds; TENSORSTORE_ASSERT_OK(PropagateBounds( Box({-1, 0}, {3, 4}), DimensionSet::FromBools({1, 1}), DimensionSet::FromBools({1, 0}), transform, a, a_implicit_lower_bounds, a_implicit_upper_bounds)); EXPECT_EQ(BoxView({-1}, {5}), a); EXPECT_THAT(a_implicit_lower_bounds, DimensionSet()); EXPECT_THAT(a_implicit_upper_bounds, DimensionSet()); } TEST(PropagateBoundsTest, PropagateNegativeStride) { auto transform = IndexTransformBuilder<2, 1>() .input_origin({2, 3}) .implicit_lower_bounds({0, 1}) .implicit_upper_bounds({1, 0}) .input_shape({4, 10}) .output_single_input_dimension(0, 15, -2, 0) .Finalize() .value(); const Box<1> b({2}, {50}); Box<2> a; DimensionSet b_implicit_lower_bounds; DimensionSet b_implicit_upper_bounds = DimensionSet::FromBools({1}); DimensionSet a_implicit_lower_bounds, a_implicit_upper_bounds; TENSORSTORE_ASSERT_OK(PropagateBounds( b, b_implicit_lower_bounds, b_implicit_upper_bounds, transform, a, a_implicit_lower_bounds, a_implicit_upper_bounds)); EXPECT_EQ(BoxView({2, 3}, {7 - 2, 10}), a); EXPECT_THAT(a_implicit_lower_bounds, DimensionSet::FromBools({0, 1})); EXPECT_THAT(a_implicit_upper_bounds, DimensionSet::FromBools({0, 0})); } TEST(PropagateExplicitBoundsTest, Propagate0Upper1Upper) { auto transform = IndexTransformBuilder<2, 3>() .input_origin({2, 10}) .input_shape({5, 11}) .implicit_lower_bounds({0, 1}) .implicit_upper_bounds({0, 1}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 3, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> b({2, 3, 4}, {50, 66, 100}); Box<2> a; TENSORSTORE_ASSERT_OK(PropagateExplicitBounds(b, transform, a)); EXPECT_EQ(Box<>({2, -9}, {5, 22}), a); } TEST(PropagateExplicitBoundsTest, PropagateExtraExplicit) { auto transform = IndexTransformBuilder<3, 3>() .input_origin({2, 10, 7}) .input_shape({5, 11, 8}) .implicit_lower_bounds({0, 1, 0}) .implicit_upper_bounds({0, 1, 0}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 3, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> b({2, 3, 4}, {50, 66, 100}); Box<3> a; TENSORSTORE_ASSERT_OK(PropagateExplicitBounds(b, transform, a)); EXPECT_EQ(Box<>({2, -9, 7}, {5, 22, 8}), a); } TEST(PropagateExplicitBoundsTest, PropagateExtraImplicitLower) { auto transform = IndexTransformBuilder<3, 3>() .input_origin({2, 10, 7}) .input_shape({5, 11, 8}) .implicit_lower_bounds({0, 1, 1}) .implicit_upper_bounds({0, 1, 0}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 3, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> b({2, 3, 4}, {50, 66, 100}); Box<3> a; TENSORSTORE_ASSERT_OK(PropagateExplicitBounds(b, transform, a)); EXPECT_EQ(Box<>({2, -9, 7}, {5, 22, 8}), a); } TEST(PropagateExplicitBoundsTest, PropagateExtraImplicitUpper) { auto transform = IndexTransformBuilder<3, 3>() .input_origin({2, 10, 7}) .input_shape({5, 11, 8}) .implicit_lower_bounds({0, 1, 0}) .implicit_upper_bounds({0, 1, 1}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 3, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> b({2, 3, 4}, {50, 66, 100}); Box<3> a; TENSORSTORE_ASSERT_OK(PropagateExplicitBounds(b, transform, a)); EXPECT_EQ(Box<>({2, -9, 7}, {5, 22, 8}), a); } TEST(PropagateExplicitBoundsTest, OutOfBounds) { auto transform = IndexTransformBuilder<2, 3>() .input_origin({2, 3}) .input_shape({5, 10}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 3, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> b({2, 3, 4}, {50, 60, 100}); Box<2> a; EXPECT_THAT( PropagateExplicitBounds(b, transform, a), MatchesStatus( absl::StatusCode::kOutOfRange, "Propagated bounds \\[-9, 11\\), with size=20, for dimension 1 are " "incompatible with existing bounds \\[3, 13\\), with size=10.*")); } TEST(PropagateExplicitBoundsTest, OutOfBoundsEmptyDomain) { auto transform = IndexTransformBuilder<2, 3>() .input_origin({2, 3}) .input_shape({0, 10}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 3, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> b({2, 3, 4}, {50, 60, 100}); Box<2> a; TENSORSTORE_EXPECT_OK(PropagateExplicitBounds(b, transform, a)); } TEST(PropagateExplicitBoundsTest, OutOfBoundsInfLower) { auto transform = IndexTransformBuilder<2, 3>() .input_origin({2, -kInfIndex}) .input_shape({5, kInfIndex + 4}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 3, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> b({2, 3, 4}, {50, 60, 100}); Box<2> a; EXPECT_THAT(PropagateExplicitBounds(b, transform, a), MatchesStatus( absl::StatusCode::kOutOfRange, "Propagated bounds \\[-9, 11\\), with size=20, for dimension " "1 are incompatible with existing bounds \\(-inf, 4\\).*")); } TEST(PropagateExplicitBoundsTest, OutOfBoundsInfUpper) { auto transform = IndexTransformBuilder<2, 3>() .input_origin({2, 2}) .input_shape({5, kInfIndex + 1 - 2}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 3, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> b({2, 3, 4}, {50, 60, 100}); Box<2> a; EXPECT_THAT( PropagateExplicitBounds(b, transform, a), MatchesStatus( absl::StatusCode::kOutOfRange, "Propagated bounds \\[-9, 11\\), with size=20, for dimension 1 are " "incompatible with existing bounds \\[2, \\+inf\\).*")); } TEST(PropagateExplicitBoundsTest, Overflow) { auto transform = IndexTransformBuilder<2, 3>() .input_origin({2, -kInfIndex}) .input_shape({5, kInfIndex + 10}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 1, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> b({2, kMinFiniteIndex, 4}, {50, -kMinFiniteIndex + 69, 100}); Box<2> a; EXPECT_THAT(PropagateExplicitBounds(b, transform, a), MatchesStatus(absl::StatusCode::kInvalidArgument, "Propagating bounds from dimension 1 to input " "dimension 1: Integer overflow propagating .*")); } TEST(PropagateExplicitBoundsTest, ZeroSize) { auto transform = IndexTransformBuilder<2, 3>() .input_origin({2, 3}) .input_shape({5, 0}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 3, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> b({2, 3, 4}, {50, 66, 100}); Box<2> a; TENSORSTORE_ASSERT_OK(PropagateExplicitBounds(b, transform, a)); EXPECT_EQ(BoxView({2, 3}, {5, 0}), a); } TEST(PropagateExplicitBoundsToTransformTest, InvalidTransformTreatedAsIdentityTransformDefaultImplicit) { IndexTransform<2, 2> t; Box<2> output_domain({1, 2}, {3, 4}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t_expected, IndexTransformBuilder(2, 2) .input_bounds(output_domain) .implicit_lower_bounds({0, 0}) .implicit_upper_bounds({0, 0}) .output_identity_transform() .Finalize()); EXPECT_THAT(PropagateExplicitBoundsToTransform(output_domain, t), ::testing::Optional(t_expected)); } TEST(PropagateBoundsToTransformTest, InvalidTransformTreatedAsIdentityTransformImplicit) { IndexTransform<2, 2> t; Box<2> output_domain({1, 2}, {3, 4}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t_expected, IndexTransformBuilder(2, 2) .input_bounds(output_domain) .implicit_lower_bounds({1, 0}) .implicit_upper_bounds({0, 1}) .output_identity_transform() .Finalize()); EXPECT_THAT( PropagateBoundsToTransform(output_domain, DimensionSet::FromBools({1, 0}), DimensionSet::FromBools({0, 1}), t), ::testing::Optional(t_expected)); } TEST(PropagateExplicitBoundsToTransformTest, IndexArrayNoPropagationNeeded) { Box<1> output_domain({1}, {10}); auto t = IndexTransformBuilder<1, 1>() .input_origin({11}) .input_shape({3}) .output_index_array(0, 2, 3, MakeArray<Index>({1, 2, 1}), IndexInterval::Closed(1, 2)) .Finalize() .value(); EXPECT_THAT(PropagateExplicitBoundsToTransform(output_domain, t), ::testing::Optional(t)); } TEST(PropagateExplicitBoundsToTransformTest, IndexArrayZeroElements) { Box<2> output_domain({0, 2}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t, IndexTransformBuilder(2, 2) .input_shape({3, 2}) .implicit_upper_bounds({1, 0}) .output_single_input_dimension(0, 0) .output_index_array(1, 0, 1, MakeArray<Index>({{1, 2}})) .Finalize()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t_expected, IndexTransformBuilder(2, 2) .input_shape({0, 2}) .output_single_input_dimension(0, 0) .output_constant(1, 0) .Finalize()); EXPECT_THAT(PropagateExplicitBoundsToTransform(output_domain, t), ::testing::Optional(t_expected)); } TEST(PropagateExplicitBoundsToTransformTest, SingleInputDimensionNoPropagationNeeded) { Box<1> output_domain({1}, {10}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t, IndexTransformBuilder(1, 1) .input_origin({11}) .input_shape({3}) .output_single_input_dimension(0, -32, 3, 0) .Finalize()); EXPECT_THAT(PropagateExplicitBoundsToTransform(output_domain, t), ::testing::Optional(t)); } TEST(PropagateExplicitBoundsToTransformTest, PropagateToIndexRange) { Box<1> output_domain({1}, {10}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t, IndexTransformBuilder(1, 1) .input_origin({11}) .input_shape({3}) .output_index_array(0, 2, 3, MakeArray<Index>({1, 2, 1})) .Finalize()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t_expected, IndexTransformBuilder(1, 1) .input_origin({11}) .input_shape({3}) .output_index_array(0, 2, 3, MakeArray<Index>({1, 2, 1}), IndexInterval::Closed(0, 2)) .Finalize()); EXPECT_THAT(PropagateExplicitBoundsToTransform(output_domain, t), ::testing::Optional(t_expected)); } TEST(PropagateBoundsToTransformTest, PropagateToIndexRange) { Box<1> output_domain({1}, {10}); const auto get_transform = [](tensorstore::Result<IndexInterval> index_range) { return IndexTransformBuilder<1, 1>() .input_origin({11}) .input_shape({3}) .output_index_array(0, 2, 3, MakeArray<Index>({1, 2, 1}), index_range) .Finalize() .value(); }; EXPECT_THAT( PropagateBoundsToTransform(output_domain, DimensionSet::FromBools({0}), DimensionSet::FromBools({0}), get_transform(IndexInterval())), ::testing::Optional(get_transform(IndexInterval::Closed(0, 2)))); EXPECT_THAT( PropagateBoundsToTransform(output_domain, DimensionSet::FromBools({1}), DimensionSet::FromBools({0}), get_transform(IndexInterval())), ::testing::Optional(get_transform(IndexInterval::Closed(-kInfIndex, 2)))); EXPECT_THAT( PropagateBoundsToTransform(output_domain, DimensionSet::FromBools({0}), DimensionSet::FromBools({1}), get_transform(IndexInterval())), ::testing::Optional(get_transform(IndexInterval::Closed(0, kInfIndex)))); EXPECT_THAT( PropagateBoundsToTransform(output_domain, DimensionSet::FromBools({1}), DimensionSet::FromBools({1}), get_transform(IndexInterval())), ::testing::Optional(get_transform(IndexInterval()))); } TEST(PropagateBoundsToTransformTest, PropagateToInputDomain) { Box<1> output_bounds({1}, {10}); auto t = IndexTransformBuilder<1, 1>() .implicit_lower_bounds({1}) .implicit_upper_bounds({1}) .output_single_input_dimension(0, -32, 3, 0) .Finalize() .value(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto propagated_transform, PropagateBoundsToTransform(output_bounds, DimensionSet::FromBools({1}), DimensionSet::FromBools({0}), t)); auto expected_transform = IndexTransformBuilder<1, 1>() .input_origin({11}) .input_shape({4}) .implicit_lower_bounds({1}) .implicit_upper_bounds({0}) .output_single_input_dimension(0, -32, 3, 0) .Finalize() .value(); EXPECT_EQ(expected_transform, propagated_transform); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto output_domain, IndexDomainBuilder<1>() .bounds(output_bounds) .implicit_lower_bounds({1}) .implicit_upper_bounds({0}) .Finalize()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto propagated_transform2, PropagateBoundsToTransform(output_domain, t)); EXPECT_EQ(expected_transform, propagated_transform2); } TEST(PropagateExplicitBoundsToTransformTest, OutOfBounds) { auto t = IndexTransformBuilder<2, 3>() .input_origin({2, 3}) .input_shape({5, 10}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 3, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> output_domain({2, 3, 4}, {50, 60, 100}); EXPECT_THAT( PropagateExplicitBoundsToTransform(output_domain, t), MatchesStatus( absl::StatusCode::kOutOfRange, "Propagated bounds \\[-9, 11\\), with size=20, for dimension 1 are " "incompatible with existing bounds \\[3, 13\\), with size=10.*")); } TEST(PropagateExplicitBoundsToTransformTest, Overflow) { auto t = IndexTransformBuilder<2, 3>() .input_origin({2, -kInfIndex}) .input_shape({5, kInfIndex + 10}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 1, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> output_domain({2, kMinFiniteIndex, 4}, {50, -kMinFiniteIndex + 69, 100}); EXPECT_THAT(PropagateExplicitBoundsToTransform(output_domain, t), MatchesStatus(absl::StatusCode::kInvalidArgument, "Propagating bounds from dimension 1 to input " "dimension 1: Integer overflow propagating .*")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/internal/propagate_bounds.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/propagate_bounds_test.cc
4f887a6430414cd6088e1743555015b10f116d50
a8dce167-0d38-46a8-a3e5-9d04905364a8
cpp
google/tensorstore
mark_explicit_op
tensorstore/index_space/internal/mark_explicit_op.cc
tensorstore/index_space/mark_explicit_op_test.cc
#include "tensorstore/index_space/internal/mark_explicit_op.h" #include "absl/status/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { Result<IndexTransform<>> ApplyChangeImplicitState( IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool implicit, bool lower, bool upper, bool domain_only) { if (!lower && !upper) { return transform; } TransformRep::Ptr<> rep = MutableRep( TransformAccess::rep_ptr<container>(std::move(transform)), domain_only); if (implicit) { for (DimensionIndex output_dim = 0, output_rank = rep->output_rank; output_dim < output_rank; ++output_dim) { auto& map = rep->output_index_maps()[output_dim]; if (map.method() != OutputIndexMethod::array) continue; auto& index_array_data = map.index_array_data(); for (DimensionIndex input_dim : *dimensions) { if (index_array_data.byte_strides[input_dim] != 0) { return absl::InvalidArgumentError(tensorstore::StrCat( "Cannot mark input dimension ", input_dim, " as having implicit bounds because it indexes the index array " "map for output dimension ", output_dim)); } } } } for (DimensionIndex input_dim : *dimensions) { const auto d = rep->input_dimension(input_dim); if (lower) d.implicit_lower_bound() = implicit; if (upper) d.implicit_upper_bound() = implicit; } if (!implicit && IsDomainExplicitlyEmpty(rep.get())) { ReplaceAllIndexArrayMapsWithConstantMaps(rep.get()); } internal_index_space::DebugCheckInvariants(rep.get()); return TransformAccess::Make<IndexTransform<>>(std::move(rep)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/array.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::Dims; using ::tensorstore::Index; using ::tensorstore::IndexDomainBuilder; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::MakeArray; using ::tensorstore::internal_index_space::TestDimExpression; using ::tensorstore::internal_index_space::TestDimExpressionErrorTransformOnly; TEST(MarkBoundsExplicitTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .implicit_lower_bounds({0, 1, 1}) .implicit_upper_bounds({1, 0, 0}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .implicit_lower_bounds({0, 1, 0}) .implicit_upper_bounds({0, 0, 0}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); TestDimExpression(original_transform, Dims(0, 2).MarkBoundsExplicit(), {0, 2}, expected_new_transform, expected_new_transform, {}); TestDimExpression(original_transform, Dims(0, 2).MarkBoundsExplicit(true, true), {0, 2}, expected_new_transform, expected_new_transform, {}); TestDimExpression(original_transform, Dims("x", "z").MarkBoundsExplicit(), {0, 2}, expected_new_transform, expected_new_transform, {}); } TEST(MarkBoundsExplicitTest, IndexArray) { TestDimExpression( IndexTransformBuilder(2, 1) .input_shape({2, 3}) .implicit_upper_bounds({1, 0}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2, 3}})) .Finalize() .value(), Dims(0).MarkBoundsExplicit(), {0}, IndexTransformBuilder(2, 2) .input_shape({2, 3}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder(2, 1) .input_shape({2, 3}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2, 3}})) .Finalize() .value(), {}); } TEST(MarkBoundsExplicitTest, IndexArrayZeroSize) { TestDimExpression( IndexTransformBuilder(2, 1) .input_shape({0, 3}) .implicit_upper_bounds({1, 0}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2, 3}})) .Finalize() .value(), Dims(0).MarkBoundsExplicit(), {0}, IndexTransformBuilder(2, 2) .input_shape({0, 3}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder(2, 1) .input_shape({0, 3}) .output_constant(0, 0) .Finalize() .value(), {}); } TEST(UnsafeMarkBoundsImplicitTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .implicit_lower_bounds({0, 0, 0}) .implicit_upper_bounds({0, 0, 0}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .implicit_lower_bounds({1, 0, 1}) .implicit_upper_bounds({1, 0, 1}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); TestDimExpression(original_transform, Dims(0, 2).UnsafeMarkBoundsImplicit(), {0, 2}, expected_new_transform, expected_new_transform, {}, true, false); TestDimExpression( original_transform, Dims(0, 2).UnsafeMarkBoundsImplicit(true, true), {0, 2}, expected_new_transform, expected_new_transform, {}, true, false); TestDimExpression(original_transform, Dims("x", "z").UnsafeMarkBoundsImplicit(), {0, 2}, expected_new_transform, expected_new_transform, {}, true, false); } TEST(UnsafeMarkBoundsImplicitTest, IndexArray) { TestDimExpression( IndexTransformBuilder(2, 1) .input_shape({2, 3}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2, 3}})) .Finalize() .value(), Dims(0).UnsafeMarkBoundsImplicit(false, true), {0}, IndexTransformBuilder(2, 2) .input_shape({2, 3}) .implicit_upper_bounds({1, 0}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder(2, 1) .input_shape({2, 3}) .implicit_upper_bounds({1, 0}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2, 3}})) .Finalize() .value(), {}, true, false); } TEST(UnsafeMarkBoundsImplicitTest, IndexArrayInvalid) { TestDimExpressionErrorTransformOnly( IndexTransformBuilder(2, 1) .input_shape({2, 3}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2, 3}})) .Finalize() .value(), Dims(1).UnsafeMarkBoundsImplicit(false, true), absl::StatusCode::kInvalidArgument, "Cannot mark input dimension 1 as having implicit bounds because it " "indexes the index array map for output dimension 0", IndexDomainBuilder(2) .shape({2, 3}) .implicit_upper_bounds({0, 1}) .Finalize() .value()); } TEST(MarkBoundsExplicitTest, LowerOnly) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .implicit_lower_bounds({0, 1, 1}) .implicit_upper_bounds({1, 0, 0}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .implicit_lower_bounds({0, 1, 0}) .implicit_upper_bounds({1, 0, 0}) .output_identity_transform() .Finalize() .value(); TestDimExpression(original_transform, Dims(0, 2).MarkBoundsExplicit(true, false), {0, 2}, expected_new_transform, expected_new_transform, {}); } TEST(MarkBoundsExplicitTest, UpperOnly) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .implicit_lower_bounds({0, 1, 1}) .implicit_upper_bounds({1, 0, 0}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .implicit_lower_bounds({0, 1, 1}) .implicit_upper_bounds({0, 0, 0}) .output_identity_transform() .Finalize() .value(); TestDimExpression(original_transform, Dims(0, 2).MarkBoundsExplicit(false, true), {0, 2}, expected_new_transform, expected_new_transform, {}); } TEST(MarkBoundsExplicitTest, None) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .implicit_lower_bounds({0, 1, 1}) .implicit_upper_bounds({1, 0, 0}) .output_identity_transform() .Finalize() .value(); TestDimExpression(original_transform, Dims(0, 2).MarkBoundsExplicit(false, false), {0, 2}, original_transform, original_transform, {}); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/internal/mark_explicit_op.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/mark_explicit_op_test.cc
4f887a6430414cd6088e1743555015b10f116d50
1ee891c3-4dbe-4905-bfd8-607c15821558
cpp
google/tensorstore
inverse_transform
tensorstore/index_space/internal/inverse_transform.cc
tensorstore/index_space/inverse_transform_test.cc
#include "tensorstore/index_space/internal/inverse_transform.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { Result<TransformRep::Ptr<>> InverseTransform(TransformRep* transform) { if (!transform) { return TransformRep::Ptr<>(); } const DimensionIndex input_rank = transform->input_rank; const DimensionIndex output_rank = transform->output_rank; auto new_transform = TransformRep::Allocate(output_rank, input_rank); new_transform->input_rank = output_rank; new_transform->output_rank = input_rank; new_transform->implicit_lower_bounds = false; new_transform->implicit_upper_bounds = false; const auto maps = transform->output_index_maps().first(output_rank); const auto new_maps = new_transform->output_index_maps().first(input_rank); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const auto& map = maps[output_dim]; const auto new_d = new_transform->input_dimension(output_dim); switch (map.method()) { case OutputIndexMethod::array: return absl::InvalidArgumentError(tensorstore::StrCat( "Transform is not invertible due to index array " "map for output dimension ", output_dim)); case OutputIndexMethod::constant: { if (!IsFiniteIndex(map.offset())) { return absl::InvalidArgumentError(tensorstore::StrCat( "Transform is not invertible due to offset ", map.offset(), " outside valid range ", IndexInterval::FiniteRange(), " for output dimension ", output_dim)); } new_d.domain() = IndexInterval::UncheckedSized(map.offset(), 1); new_d.implicit_lower_bound() = false; new_d.implicit_upper_bound() = false; break; } case OutputIndexMethod::single_input_dimension: { if (map.stride() != 1 && map.stride() != -1) { return absl::InvalidArgumentError(tensorstore::StrCat( "Transform is not invertible due to " "stride of ", map.stride(), " for output dimension ", output_dim)); } const DimensionIndex input_dim = map.input_dimension(); auto& new_map = new_maps[input_dim]; if (new_map.method() == OutputIndexMethod::single_input_dimension) { return absl::InvalidArgumentError(tensorstore::StrCat( "Transform is not invertible because input dimension ", input_dim, " maps to output dimensions ", new_map.input_dimension(), " and ", output_dim)); } new_map.SetSingleInputDimension(output_dim); auto new_domain_result = GetAffineTransformRange( transform->input_dimension(input_dim).optionally_implicit_domain(), map.offset(), map.stride()); if (!new_domain_result.ok()) { return MaybeAnnotateStatus( new_domain_result.status(), tensorstore::StrCat("Error inverting map from input dimension ", input_dim, " -> output dimension ", output_dim)); } if (map.offset() == std::numeric_limits<Index>::min()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Integer overflow occurred while inverting map from " "input dimension ", input_dim, " -> output dimension ", output_dim)); } new_map.offset() = -map.offset() * map.stride(); new_map.stride() = map.stride(); new_d.domain() = new_domain_result->interval(); new_d.label() = transform->input_dimension(input_dim).label(); new_d.implicit_lower_bound() = new_domain_result->implicit_lower(); new_d.implicit_upper_bound() = new_domain_result->implicit_upper(); break; } } } for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { auto& new_map = new_maps[input_dim]; if (new_map.method() == OutputIndexMethod::single_input_dimension) { continue; } auto input_domain = transform->input_dimension(input_dim).optionally_implicit_domain(); if (input_domain.implicit_lower() || input_domain.implicit_upper() || input_domain.size() != 1) { return absl::InvalidArgumentError(tensorstore::StrCat( "Transform is not invertible due to non-singleton input dimension ", input_dim, " with domain ", input_domain, " that is not mapped by an output dimension")); } new_map.offset() = input_domain.inclusive_min(); new_map.stride() = 0; } internal_index_space::DebugCheckInvariants(new_transform.get()); return new_transform; } } }
#include <cstddef> #include <limits> #include <random> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/index.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/index_transform_testutil.h" #include "tensorstore/internal/testing/random_seed.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::Index; using ::tensorstore::IndexDomainBuilder; using ::tensorstore::IndexTransform; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::InverseTransform; using ::tensorstore::kMaxFiniteIndex; using ::tensorstore::MakeArray; using ::tensorstore::MatchesStatus; TEST(InverseTransformTest, Null) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto inv, InverseTransform(IndexTransform<>())); EXPECT_FALSE(inv.valid()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto inv_static, InverseTransform(IndexTransform<3, 3>())); EXPECT_FALSE(inv_static.valid()); } TEST(InverseTransformTest, Example) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t, IndexTransformBuilder(3, 3) .input_labels({"x", "", "y"}) .input_origin({1, 3, 2}) .input_exclusive_max({5, 4, 8}) .implicit_lower_bounds({1, 0, 0}) .implicit_upper_bounds({0, 0, 1}) .output_single_input_dimension(0, 5, -1, 2) .output_single_input_dimension(1, 3, 1, 0) .output_constant(2, 7) .Finalize()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto expected_inv, IndexTransformBuilder(3, 3) .input_labels({"y", "x", ""}) .input_origin({-2, 4, 7}) .input_exclusive_max({4, 8, 8}) .implicit_lower_bounds({1, 1, 0}) .implicit_upper_bounds({0, 0, 0}) .output_single_input_dimension(0, -3, 1, 1) .output_constant(1, 3) .output_single_input_dimension(2, 5, -1, 0) .Finalize()); EXPECT_EQ(expected_inv, InverseTransform(t)); EXPECT_EQ(t, InverseTransform(expected_inv)); } TEST(InverseTransformTest, IdentityRank3) { auto t = IndexTransformBuilder<>(3, 3) .input_labels({"x", "y", "z"}) .input_origin({3, 4, 5}) .input_shape({10, 11, 12}) .implicit_lower_bounds({1, 0, 1}) .implicit_upper_bounds({0, 1, 1}) .output_identity_transform() .Finalize() .value(); EXPECT_EQ(t, InverseTransform(t)); } TEST(InverseTransformTest, Offsets) { auto t = IndexTransformBuilder<>(3, 3) .input_labels({"x", "y", "z"}) .input_origin({3, 4, 5}) .input_shape({10, 11, 12}) .implicit_lower_bounds({1, 0, 1}) .implicit_upper_bounds({0, 1, 1}) .output_single_input_dimension(0, 6, 1, 0) .output_single_input_dimension(1, 7, 1, 1) .output_single_input_dimension(2, 8, 1, 2) .Finalize() .value(); auto expected_inv = IndexTransformBuilder<>(3, 3) .input_labels({"x", "y", "z"}) .input_origin({9, 11, 13}) .input_shape({10, 11, 12}) .implicit_lower_bounds({1, 0, 1}) .implicit_upper_bounds({0, 1, 1}) .output_single_input_dimension(0, -6, 1, 0) .output_single_input_dimension(1, -7, 1, 1) .output_single_input_dimension(2, -8, 1, 2) .Finalize() .value(); EXPECT_EQ(expected_inv, InverseTransform(t)); EXPECT_EQ(t, InverseTransform(expected_inv)); } TEST(InverseTransformTest, Strides) { auto t = IndexTransformBuilder<>(3, 3) .input_labels({"x", "y", "z"}) .input_origin({3, 4, 5}) .input_shape({10, 11, 12}) .implicit_lower_bounds({1, 0, 1}) .implicit_upper_bounds({0, 1, 1}) .output_single_input_dimension(0, 0, -1, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 0, -1, 2) .Finalize() .value(); auto expected_inv = IndexTransformBuilder<>(3, 3) .input_labels({"x", "y", "z"}) .input_origin({-12, 4, -16}) .input_shape({10, 11, 12}) .implicit_lower_bounds({0, 0, 1}) .implicit_upper_bounds({1, 1, 1}) .output_single_input_dimension(0, 0, -1, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 0, -1, 2) .Finalize() .value(); EXPECT_EQ(expected_inv, InverseTransform(t)); EXPECT_EQ(t, InverseTransform(expected_inv)); } TEST(InverseTransformTest, Permutation) { auto t = IndexTransformBuilder<>(3, 3) .input_labels({"x", "y", "z"}) .input_origin({3, 4, 5}) .input_shape({10, 11, 12}) .implicit_lower_bounds({1, 0, 1}) .implicit_upper_bounds({0, 1, 1}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 2) .output_single_input_dimension(2, 0) .Finalize() .value(); auto expected_inv = IndexTransformBuilder<>(3, 3) .input_labels({"y", "z", "x"}) .input_origin({4, 5, 3}) .input_shape({11, 12, 10}) .implicit_lower_bounds({0, 1, 1}) .implicit_upper_bounds({1, 1, 0}) .output_single_input_dimension(1, 0) .output_single_input_dimension(2, 1) .output_single_input_dimension(0, 2) .Finalize() .value(); EXPECT_EQ(expected_inv, InverseTransform(t)); EXPECT_EQ(t, InverseTransform(expected_inv)); } TEST(InverseTransformTest, OffsetsAndStrides) { auto t = IndexTransformBuilder<>(3, 3) .input_labels({"x", "y", "z"}) .input_origin({9, 11, 13}) .input_shape({10, 11, 12}) .implicit_lower_bounds({1, 0, 1}) .implicit_upper_bounds({0, 1, 1}) .output_single_input_dimension(0, -6, -1, 0) .output_single_input_dimension(1, -7, 1, 1) .output_single_input_dimension(2, -8, -1, 2) .Finalize() .value(); auto expected_inv = IndexTransformBuilder<>(3, 3) .input_labels({"x", "y", "z"}) .input_origin({-24, 4, -32}) .input_shape({10, 11, 12}) .implicit_lower_bounds({0, 0, 1}) .implicit_upper_bounds({1, 1, 1}) .output_single_input_dimension(0, -6, -1, 0) .output_single_input_dimension(1, 7, 1, 1) .output_single_input_dimension(2, -8, -1, 2) .Finalize() .value(); EXPECT_EQ(expected_inv, InverseTransform(t)); EXPECT_EQ(t, InverseTransform(expected_inv)); } TEST(InverseTransformTest, OffsetsAndStridesAndPermutation) { auto t = IndexTransformBuilder<>(3, 3) .input_labels({"x", "y", "z"}) .input_origin({9, 11, 13}) .input_shape({10, 11, 12}) .implicit_lower_bounds({1, 0, 1}) .implicit_upper_bounds({0, 1, 1}) .output_single_input_dimension(0, -6, -1, 1) .output_single_input_dimension(1, -7, 1, 2) .output_single_input_dimension(2, -8, -1, 0) .Finalize() .value(); auto expected_inv = IndexTransformBuilder<>(3, 3) .input_labels({"y", "z", "x"}) .input_origin({-27, 6, -26}) .input_shape({11, 12, 10}) .implicit_lower_bounds({1, 1, 0}) .implicit_upper_bounds({0, 1, 1}) .output_single_input_dimension(1, -6, -1, 0) .output_single_input_dimension(2, 7, 1, 1) .output_single_input_dimension(0, -8, -1, 2) .Finalize() .value(); EXPECT_EQ(expected_inv, InverseTransform(t)); EXPECT_EQ(t, InverseTransform(expected_inv)); } TEST(InverseTransformTest, ErrorNonSingletonUnmappedInputDimension) { EXPECT_THAT( InverseTransform(IndexTransformBuilder<>(3, 2) .output_identity_transform() .Finalize() .value()), MatchesStatus(absl::StatusCode::kInvalidArgument, "Transform is not invertible due to non-singleton " "input dimension 2 with domain \\(-inf\\*, \\+inf\\*\\) " "that is not mapped by an output dimension")); EXPECT_THAT(InverseTransform(IndexTransformBuilder(1, 0) .input_origin({0}) .input_shape({2}) .Finalize() .value()), MatchesStatus(absl::StatusCode::kInvalidArgument, "Transform is not invertible due to non-singleton " "input dimension 0 with domain \\[0, 2\\) " "that is not mapped by an output dimension")); EXPECT_THAT(InverseTransform(IndexTransformBuilder(1, 0) .input_origin({0}) .input_shape({1}) .implicit_lower_bounds({1}) .Finalize() .value()), MatchesStatus(absl::StatusCode::kInvalidArgument, "Transform is not invertible due to non-singleton " "input dimension 0 with domain \\[0\\*, 1\\) " "that is not mapped by an output dimension")); EXPECT_THAT(InverseTransform(IndexTransformBuilder(1, 0) .input_origin({0}) .input_shape({1}) .implicit_upper_bounds({1}) .Finalize() .value()), MatchesStatus(absl::StatusCode::kInvalidArgument, "Transform is not invertible due to non-singleton " "input dimension 0 with domain \\[0, 1\\*\\) " "that is not mapped by an output dimension")); } TEST(InverseTransformTest, ConstantMap) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t, IndexTransformBuilder(0, 1).output_constant(0, 42).Finalize()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto expected_inv, IndexTransformBuilder(1, 0) .input_origin({42}) .input_shape({1}) .Finalize()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto expected_inv_with_label, IndexTransformBuilder(1, 0) .input_origin({42}) .input_labels({"x"}) .input_shape({1}) .Finalize()); EXPECT_THAT(InverseTransform(t), ::testing::Optional(expected_inv)); EXPECT_THAT(InverseTransform(expected_inv), ::testing::Optional(t)); EXPECT_THAT(InverseTransform(expected_inv_with_label), ::testing::Optional(t)); } TEST(InverseTransformTest, IndexArrayMap) { EXPECT_THAT(InverseTransform( IndexTransformBuilder<>(1, 1) .input_shape({2}) .output_index_array(0, 0, 1, MakeArray<Index>({0, 1})) .Finalize() .value()), MatchesStatus(absl::StatusCode::kInvalidArgument, "Transform is not invertible due to " "index array map for output dimension 0")); } TEST(InverseTransformTest, NonUnitStride) { EXPECT_THAT(InverseTransform(IndexTransformBuilder<>(1, 1) .output_single_input_dimension(0, 0, 2, 0) .Finalize() .value()), MatchesStatus(absl::StatusCode::kInvalidArgument, "Transform is not invertible due to stride of 2 " "for output dimension 0")); } TEST(InverseTransformTest, Diagonal) { EXPECT_THAT(InverseTransform(IndexTransformBuilder<>(2, 2) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 0) .Finalize() .value()), MatchesStatus(absl::StatusCode::kInvalidArgument, "Transform is not invertible because input " "dimension 0 maps to output dimensions 0 and 1")); } TEST(InverseTransformTest, DomainOverflow) { EXPECT_THAT(InverseTransform( IndexTransformBuilder<>(1, 1) .input_origin({10}) .input_shape({5}) .output_single_input_dimension(0, kMaxFiniteIndex, 1, 0) .Finalize() .value()), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error inverting map from input dimension 0 -> " "output dimension 0: Integer overflow .*")); } TEST(InverseTransformTest, OffsetOverflow) { EXPECT_THAT( InverseTransform(IndexTransformBuilder<>(1, 1) .output_single_input_dimension( 0, std::numeric_limits<Index>::min(), 1, 0) .Finalize() .value()), MatchesStatus(absl::StatusCode::kInvalidArgument, "Integer overflow occurred while inverting map from input " "dimension 0 -> output dimension 0")); } TEST(InverseTransformTest, RandomFromOutputSpace) { constexpr size_t kNumIterations = 100; for (size_t i = 0; i < kNumIterations; ++i) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_INVERSE_TRANSFORM_TEST_SEED")}; auto box = tensorstore::internal::MakeRandomBox(gen); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto domain, IndexDomainBuilder(box.rank()).bounds(box).Finalize()); auto transform = tensorstore::internal::MakeRandomStridedIndexTransformForOutputSpace( gen, domain); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto inv_transform, InverseTransform(transform)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto inv_inv_transform, InverseTransform(inv_transform)); EXPECT_EQ(transform, inv_inv_transform); } } TEST(InverseTransformTest, RandomFromInputSpace) { constexpr size_t kNumIterations = 100; for (size_t i = 0; i < kNumIterations; ++i) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_INVERSE_TRANSFORM_TEST_SEED")}; auto box = tensorstore::internal::MakeRandomBox(gen); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto domain, IndexDomainBuilder(box.rank()).bounds(box).Finalize()); auto transform = tensorstore::internal::MakeRandomStridedIndexTransformForInputSpace( gen, domain); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto inv_transform, InverseTransform(transform)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto inv_inv_transform, InverseTransform(inv_transform)); EXPECT_EQ(transform, inv_inv_transform); } } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/internal/inverse_transform.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/inverse_transform_test.cc
4f887a6430414cd6088e1743555015b10f116d50
6a2fe14c-ebdc-42e6-b9c5-437c37204503
cpp
google/tensorstore
transform_rep
tensorstore/index_space/internal/transform_rep.cc
tensorstore/index_space/transform_rep_test.cc
#include "tensorstore/index_space/internal/transform_rep.h" #include <memory> #include <new> #include <utility> #include "absl/base/optimization.h" #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/internal/transform_rep_impl.h" #include "tensorstore/internal/dimension_labels.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/division.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { namespace { void FreeIndexArrayData(IndexArrayData* data) { std::destroy_at(data); std::free(data); } void CopyTrivialFields(TransformRep* source, TransformRep* dest) { assert(dest->input_rank_capacity >= source->input_rank && dest->output_rank_capacity >= source->output_rank); const DimensionIndex input_rank = dest->input_rank = source->input_rank; dest->output_rank = source->output_rank; std::copy_n(source->input_origin().begin(), input_rank, dest->input_origin().begin()); std::copy_n(source->input_shape().begin(), input_rank, dest->input_shape().begin()); dest->implicit_lower_bounds = source->implicit_lower_bounds; dest->implicit_upper_bounds = source->implicit_upper_bounds; } } void CopyInputLabels(TransformRep* source, TransformRep* dest, bool can_move) { assert(dest->input_rank_capacity >= source->input_rank); const DimensionIndex input_rank = source->input_rank; if (can_move) { std::copy_n(std::make_move_iterator(source->input_labels().begin()), input_rank, dest->input_labels().begin()); } else { std::copy_n(source->input_labels().begin(), input_rank, dest->input_labels().begin()); } } void OutputIndexMap::SetConstant() { if (method() == OutputIndexMethod::array) { FreeIndexArrayData(&index_array_data()); } value_ = 0; } void OutputIndexMap::SetSingleInputDimension(DimensionIndex input_dim) { if (method() == OutputIndexMethod::array) { FreeIndexArrayData(&index_array_data()); } value_ = (input_dim << 1) | 1; } IndexArrayData& OutputIndexMap::SetArrayIndexing(DimensionIndex rank) { IndexArrayData* data; if (method() == OutputIndexMethod::array) { data = &index_array_data(); if (data->rank_capacity >= rank) return *data; SharedElementPointer<const Index> element_pointer = std::move(data->element_pointer); auto bounds = data->index_range; std::destroy_at(data); IndexArrayData* new_data = static_cast<IndexArrayData*>( std::realloc(static_cast<void*>(data), sizeof(IndexArrayData) + sizeof(Index) * rank)); if (new_data) data = new_data; new (data) IndexArrayData; data->element_pointer = std::move(element_pointer); data->index_range = bounds; if (!new_data) TENSORSTORE_THROW_BAD_ALLOC; data->rank_capacity = rank; } else { data = static_cast<IndexArrayData*>( std::malloc(sizeof(IndexArrayData) + sizeof(Index) * rank)); if (!data) { TENSORSTORE_THROW_BAD_ALLOC; } new (data) IndexArrayData; data->rank_capacity = rank; } value_ = reinterpret_cast<std::uintptr_t>(data); return *data; } IndexArrayData& OutputIndexMap::SetArrayIndexing(DimensionIndex rank, const IndexArrayData& other) { assert(other.rank_capacity >= rank); auto& data = SetArrayIndexing(rank); data.element_pointer = other.element_pointer; data.index_range = other.index_range; std::memcpy(data.byte_strides, other.byte_strides, sizeof(Index) * rank); return data; } void OutputIndexMap::Assign(DimensionIndex rank, const OutputIndexMap& other) { if (other.method() == OutputIndexMethod::array) { SetArrayIndexing(rank, other.index_array_data()); } else { value_ = other.value_; } offset_ = other.offset_; stride_ = other.stride_; } TransformRep::Ptr<> TransformRep::Allocate( DimensionIndex input_rank_capacity, DimensionIndex output_rank_capacity) { ABSL_CHECK(input_rank_capacity >= 0 && output_rank_capacity >= 0 && input_rank_capacity <= kMaxRank && output_rank_capacity <= kMaxRank); const size_t total_size = sizeof(TransformRep) + sizeof(OutputIndexMap) * output_rank_capacity + input_rank_capacity * (sizeof(Index) * 2 + sizeof(std::string)); char* base_ptr = static_cast<char*>(::operator new(total_size)); TransformRep* ptr = new (base_ptr + sizeof(OutputIndexMap) * output_rank_capacity) TransformRep; ptr->reference_count.store(1, std::memory_order_relaxed); ptr->input_rank_capacity = input_rank_capacity; ptr->output_rank_capacity = output_rank_capacity; std::uninitialized_default_construct_n(ptr->output_index_maps().begin(), output_rank_capacity); std::uninitialized_default_construct_n(ptr->input_labels().begin(), input_rank_capacity); return TransformRep::Ptr<>(ptr, internal::adopt_object_ref); } void DestroyLabelFields(TransformRep* ptr) { std::destroy_n(ptr->input_labels().begin(), ptr->input_rank_capacity); } void TransformRep::Free(TransformRep* ptr) { assert(ptr->reference_count == 0); DestroyLabelFields(ptr); std::destroy_n(ptr->output_index_maps().begin(), ptr->output_rank_capacity); ::operator delete(static_cast<void*>(ptr->output_index_maps().data())); } void CopyTransformRep(TransformRep* source, TransformRep* dest) { assert(source != nullptr); assert(dest != nullptr); assert(dest->output_rank_capacity >= source->output_rank); CopyTransformRepDomain(source, dest); const DimensionIndex input_rank = source->input_rank; const DimensionIndex output_rank = dest->output_rank = source->output_rank; span<const OutputIndexMap> source_maps = source->output_index_maps().first(output_rank); span<OutputIndexMap> dest_maps = dest->output_index_maps().first(output_rank); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { dest_maps[output_dim].Assign(input_rank, source_maps[output_dim]); } } void CopyTransformRepDomain(TransformRep* source, TransformRep* dest) { assert(source != nullptr); assert(dest != nullptr); assert(dest->input_rank_capacity >= source->input_rank); const DimensionIndex input_rank = dest->input_rank = source->input_rank; std::copy_n(source->input_origin().begin(), input_rank, dest->input_origin().begin()); std::copy_n(source->input_shape().begin(), input_rank, dest->input_shape().begin()); dest->implicit_lower_bounds = source->implicit_lower_bounds; dest->implicit_upper_bounds = source->implicit_upper_bounds; std::copy_n(source->input_labels().begin(), input_rank, dest->input_labels().begin()); } void MoveTransformRep(TransformRep* source, TransformRep* dest) { CopyTrivialFields(source, dest); std::copy_n(std::make_move_iterator(source->output_index_maps().begin()), source->output_rank, dest->output_index_maps().begin()); CopyInputLabels(source, dest, true); } void ResetOutputIndexMaps(TransformRep* ptr) { auto output_index_maps = ptr->output_index_maps(); for (DimensionIndex output_dim = 0, output_rank = ptr->output_rank; output_dim < output_rank; ++output_dim) { output_index_maps[output_dim].SetConstant(); } ptr->output_rank = 0; } TransformRep::Ptr<> MutableRep(TransformRep::Ptr<> ptr, bool domain_only) { if (!ptr) return ptr; if (ptr->is_unique()) { if (domain_only) { ResetOutputIndexMaps(ptr.get()); ptr->output_rank = 0; } return ptr; } if (domain_only) { auto new_rep = TransformRep::Allocate(ptr->input_rank, 0); CopyTransformRepDomain(ptr.get(), new_rep.get()); new_rep->output_rank = 0; internal_index_space::DebugCheckInvariants(new_rep.get()); return new_rep; } else { auto new_rep = TransformRep::Allocate(ptr->input_rank, ptr->output_rank); CopyTransformRep(ptr.get(), new_rep.get()); internal_index_space::DebugCheckInvariants(new_rep.get()); return new_rep; } } TransformRep::Ptr<> NewOrMutableRep(TransformRep* ptr, DimensionIndex input_rank_capacity, DimensionIndex output_rank_capacity, bool domain_only) { assert(ptr); if (ptr->input_rank_capacity >= input_rank_capacity && ptr->output_rank_capacity >= output_rank_capacity && ptr->is_unique()) { if (domain_only) { ResetOutputIndexMaps(ptr); } return TransformRep::Ptr<>(ptr); } else { return TransformRep::Allocate(input_rank_capacity, domain_only ? 0 : output_rank_capacity); } } bool IsDomainExplicitlyEmpty(TransformRep* ptr) { DimensionSet implicit_dims = ptr->implicit_dimensions(); const Index* input_shape = ptr->input_shape().data(); for (DimensionIndex input_dim = 0, input_rank = ptr->input_rank; input_dim < input_rank; ++input_dim) { if (!implicit_dims[input_dim] && input_shape[input_dim] == 0) { return true; } } return false; } void ReplaceAllIndexArrayMapsWithConstantMaps(TransformRep* ptr) { for (DimensionIndex output_dim = 0, output_rank = ptr->output_rank; output_dim < output_rank; ++output_dim) { auto& map = ptr->output_index_maps()[output_dim]; if (map.method() != OutputIndexMethod::array) continue; map.SetConstant(); map.offset() = 0; map.stride() = 0; } } bool AreIndexMapsEqual(const OutputIndexMap& a, const OutputIndexMap& b, BoxView<> input_domain) { const auto method = a.method(); if (method != b.method() || a.offset() != b.offset()) return false; switch (method) { case OutputIndexMethod::constant: return true; case OutputIndexMethod::single_input_dimension: return a.input_dimension() == b.input_dimension() && a.stride() == b.stride(); case OutputIndexMethod::array: { const auto& index_array_data_a = a.index_array_data(); const auto& index_array_data_b = b.index_array_data(); if (a.stride() != b.stride()) return false; if (index_array_data_a.index_range != index_array_data_b.index_range) { return false; } return ArrayView<const Index, dynamic_rank, offset_origin>( index_array_data_a.element_pointer, StridedLayoutView<dynamic_rank, offset_origin>( input_domain.rank(), input_domain.origin().data(), input_domain.shape().data(), index_array_data_a.byte_strides)) == ArrayView<const Index, dynamic_rank, offset_origin>( index_array_data_b.element_pointer, StridedLayoutView<dynamic_rank, offset_origin>( input_domain.rank(), input_domain.origin().data(), input_domain.shape().data(), index_array_data_b.byte_strides)); } } ABSL_UNREACHABLE(); } bool AreDomainsEqual(TransformRep* a, TransformRep* b) { if (!a != !b) return false; if (!a) return true; if (a->input_rank != b->input_rank) return false; const DimensionIndex input_rank = a->input_rank; const BoxView<> input_domain_a = a->input_domain(input_rank); if (input_domain_a != b->input_domain(input_rank)) return false; if (a->implicit_lower_bounds != b->implicit_lower_bounds || a->implicit_upper_bounds != b->implicit_upper_bounds) { return false; } span<const std::string> input_labels_a = a->input_labels().first(input_rank); if (!std::equal(input_labels_a.begin(), input_labels_a.end(), b->input_labels().begin())) { return false; } return true; } bool AreEqual(TransformRep* a, TransformRep* b) { if (!AreDomainsEqual(a, b)) return false; if (!a) return true; if (a->output_rank != b->output_rank) return false; const DimensionIndex input_rank = a->input_rank; const DimensionIndex output_rank = a->output_rank; const BoxView<> input_domain_a = a->input_domain(input_rank); span<const OutputIndexMap> a_maps = a->output_index_maps().first(output_rank); span<const OutputIndexMap> b_maps = b->output_index_maps().first(output_rank); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { if (!AreIndexMapsEqual(a_maps[output_dim], b_maps[output_dim], input_domain_a)) { return false; } } return true; } void PrintToOstream(std::ostream& os, TransformRep* transform) { if (!transform) { os << "<Invalid index space transform>"; return; } const DimensionIndex input_rank = transform->input_rank; const DimensionIndex output_rank = transform->output_rank; os << "Rank " << transform->input_rank << " -> " << transform->output_rank << " index space transform:\n"; os << " Input domain:\n"; const BoxView<> input_domain = transform->input_domain(input_rank); for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { const auto d = transform->input_dimension(input_dim); os << " " << input_dim << ": " << d.optionally_implicit_domain(); if (!d.label().empty()) { os << " " << QuoteString(d.label()); } os << '\n'; } span<const OutputIndexMap> maps = transform->output_index_maps().first(output_rank); Index index_array_shape[kMaxRank]; os << " Output index maps:\n"; for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const auto& map = maps[output_dim]; os << " out[" << output_dim << "] = " << map.offset(); if (map.method() != OutputIndexMethod::constant) { os << " + " << map.stride() << " * "; } switch (map.method()) { case OutputIndexMethod::constant: break; case OutputIndexMethod::single_input_dimension: os << "in[" << map.input_dimension() << "]"; break; case OutputIndexMethod::array: { const auto& index_array_data = map.index_array_data(); for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { index_array_shape[input_dim] = index_array_data.byte_strides[input_dim] == 0 ? 1 : input_domain.shape()[input_dim]; } ArrayView<const Index, dynamic_rank> index_array( AddByteOffset( ElementPointer<const Index>(index_array_data.element_pointer), IndexInnerProduct(input_rank, input_domain.origin().data(), index_array_data.byte_strides)), StridedLayoutView<>(input_rank, &index_array_shape[0], index_array_data.byte_strides)); os << "bounded(" << index_array_data.index_range << ", array(in)), where array =\n"; os << " " << index_array; break; } } os << '\n'; } } void PrintDomainToOstream(std::ostream& os, TransformRep* transform) { if (!transform) { os << "<invalid index domain>"; return; } os << "{ "; for (DimensionIndex i = 0, rank = transform->input_rank; i < rank; ++i) { if (i != 0) os << ", "; const InputDimensionRef dim_ref = transform->input_dimension(i); const IndexDomainDimension<view> d{dim_ref.optionally_implicit_domain(), dim_ref.label()}; os << d; } os << " }"; } Result<Index> OutputIndexMap::operator()( span<const Index> input_indices) const { Index base_output_index; switch (method()) { case OutputIndexMethod::constant: base_output_index = 0; break; case OutputIndexMethod::single_input_dimension: { const DimensionIndex input_dim = input_dimension(); assert(input_dim >= 0 && input_dim < input_indices.size()); base_output_index = input_indices[input_dim]; break; } case OutputIndexMethod::array: { const IndexArrayData& data = index_array_data(); assert(data.element_pointer && input_indices.size() <= data.rank_capacity); base_output_index = data.element_pointer.byte_strided_pointer()[IndexInnerProduct( input_indices.size(), input_indices.data(), data.byte_strides)]; TENSORSTORE_RETURN_IF_ERROR( CheckContains(data.index_range, base_output_index), MaybeAnnotateStatus( _, "Checking result of index array output index map")); break; } } return base_output_index * stride() + offset(); } absl::Status TransformIndices(TransformRep* data, span<const Index> input_indices, span<Index> output_indices) { assert(data && data->input_rank == input_indices.size() && data->output_rank == output_indices.size()); const DimensionIndex output_rank = data->output_rank; const DimensionIndex input_rank = data->input_rank; span<const OutputIndexMap> output_index_maps = data->output_index_maps().first(output_rank); for (DimensionIndex i = 0; i < input_rank; ++i) { auto oi_interval = data->input_dimension(i).optionally_implicit_domain(); if (!Contains(oi_interval.effective_interval(), input_indices[i])) { return absl::OutOfRangeError(tensorstore::StrCat( "Index ", input_indices[i], " is not contained in the domain ", oi_interval, " for input dimension ", i)); } } for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { TENSORSTORE_ASSIGN_OR_RETURN( output_indices[output_dim], output_index_maps[output_dim](input_indices), MaybeAnnotateStatus( _, tensorstore::StrCat("Computing index for output dimension ", output_dim))); } return absl::OkStatus(); } absl::Status ReplaceZeroRankIndexArrayIndexMap(Index index, IndexInterval bounds, Index* output_offset, Index* output_stride) { TENSORSTORE_RETURN_IF_ERROR(CheckContains(bounds, index)); Index new_offset; if (internal::MulOverflow(index, *output_stride, &new_offset) || internal::AddOverflow(new_offset, *output_offset, output_offset)) { return absl::InvalidArgumentError(tensorstore::StrCat( "Integer overflow computing offset for output dimension.")); } *output_stride = 0; return absl::OkStatus(); } TransformRep::Ptr<> GetSubDomain(TransformRep* rep, span<const DimensionIndex> dims) { assert(rep); [[maybe_unused]] const DimensionIndex old_rank = rep->input_rank; const DimensionIndex new_rank = dims.size(); auto new_rep = TransformRep::Allocate(new_rank, 0); new_rep->output_rank = 0; new_rep->input_rank = new_rank; #ifndef NDEBUG DimensionSet seen_dims; #endif for (DimensionIndex new_dim = 0; new_dim < dims.size(); ++new_dim) { const DimensionIndex old_dim = dims[new_dim]; assert(old_dim >= 0 && old_dim < old_rank); #ifndef NDEBUG assert(!seen_dims[old_dim]); seen_dims[old_dim] = true; #endif new_rep->input_dimension(new_dim) = rep->input_dimension(old_dim); } return new_rep; } bool IsUnlabeled(span<const std::string> labels) { return std::all_of(labels.begin(), labels.end(), [](std::string_view s) { return s.empty(); }); } DimensionSet GetIndexArrayInputDimensions(TransformRep* transform) { DimensionSet set; const DimensionIndex output_rank = transform->output_rank; const DimensionIndex input_rank = transform->input_rank; auto output_maps = transform->output_index_maps(); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { auto& map = output_maps[output_dim]; if (map.method() != OutputIndexMethod::array) continue; const auto& index_array_data = map.index_array_data(); for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { if (index_array_data.byte_strides[input_dim] != 0) { set[input_dim] = true; } } } return set; } TransformRep::Ptr<> WithImplicitDimensions(TransformRep::Ptr<> transform, DimensionSet implicit_lower_bounds, DimensionSet implicit_upper_bounds, bool domain_only) { transform = MutableRep(std::move(transform), domain_only); if (!domain_only && (implicit_lower_bounds || implicit_upper_bounds)) { auto index_array_dims = internal_index_space::GetIndexArrayInputDimensions(transform.get()); implicit_lower_bounds &= ~index_array_dims; implicit_upper_bounds &= ~index_array_dims; } const auto mask = DimensionSet::UpTo(transform->input_rank); transform->implicit_lower_bounds = implicit_lower_bounds & mask; transform->implicit_upper_bounds = implicit_upper_bounds & mask; return transform; } #ifndef NDEBUG void DebugCheckInvariants(TransformRep* rep) { assert(rep); assert(rep->reference_count > 0); const DimensionIndex input_rank = rep->input_rank, output_rank = rep->output_rank; assert(rep->input_rank_capacity <= kMaxRank); assert(rep->output_rank_capacity <= kMaxRank); assert(input_rank <= rep->input_rank_capacity); assert(output_rank <= rep->output_rank_capacity); assert(input_rank >= 0); assert(output_rank >= 0); const auto mask = DimensionSet::UpTo(rep->input_rank); assert((rep->implicit_lower_bounds & mask) == rep->implicit_lower_bounds); assert((rep->implicit_upper_bounds & mask) == rep->implicit_upper_bounds); TENSORSTORE_CHECK_OK(internal::ValidateDimensionLabelsAreUnique( rep->input_labels().first(input_rank))); auto input_origin = rep->input_origin().data(); auto input_shape = rep->input_shape().data(); for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { TENSORSTORE_CHECK_OK( IndexInterval::Sized(input_origin[input_dim], input_shape[input_dim])); } const bool is_domain_explicitly_empty = IsDomainExplicitlyEmpty(rep); const auto implicit_dims = rep->implicit_dimensions(); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { auto& map = rep->output_index_maps()[output_dim]; switch (map.method()) { case OutputIndexMethod::constant: { assert(map.stride() == 0); break; } case OutputIndexMethod::single_input_dimension: { const DimensionIndex input_dim = map.input_dimension(); assert(input_dim >= 0 && input_dim < input_rank); assert(map.stride() != 0); break; } case OutputIndexMethod::array: { assert(map.stride() != 0); const auto& index_array_data = map.index_array_data(); assert(index_array_data.rank_capacity >= input_rank); assert(index_array_data.rank_capacity <= kMaxRank); assert(!is_domain_explicitly_empty); for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { const Index byte_stride = index_array_data.byte_strides[input_dim]; if (byte_stride == 0) continue; const auto bounds = IndexInterval::UncheckedSized( input_origin[input_dim], input_shape[input_dim]); assert(IsFinite(bounds)); assert(!implicit_dims[input_dim]); } break; } } } for (DimensionIndex output_dim = output_rank, output_rank_capacity = rep->output_rank_capacity; output_dim < output_rank_capacity; ++output_dim) { assert(rep->output_index_maps()[output_dim].method() != OutputIndexMethod::array); } } #endif } }
#include "tensorstore/index_space/internal/transform_rep.h" #include <cstddef> #include <limits> #include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/base/macros.h" #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/container_kind.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/transform_rep_impl.h" #include "tensorstore/index_space/output_index_method.h" #include "tensorstore/internal/testing/concurrent.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { #if ABSL_HAVE_EXCEPTIONS #define TENSORSTORE_EXPECT_OOM(expr) EXPECT_THROW(expr, std::bad_alloc); #else #define TENSORSTORE_EXPECT_OOM(expr) EXPECT_DEATH(expr, "Out of memory"); #endif using ::tensorstore::Box; using ::tensorstore::DimensionIndex; using ::tensorstore::Index; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::kInfIndex; using ::tensorstore::kInfSize; using ::tensorstore::kMaxFiniteIndex; using ::tensorstore::kMinFiniteIndex; using ::tensorstore::MatchesStatus; using ::tensorstore::OutputIndexMethod; using ::tensorstore::internal_index_space::CopyTransformRep; using ::tensorstore::internal_index_space::MoveTransformRep; using ::tensorstore::internal_index_space::MutableRep; using ::tensorstore::internal_index_space::NewOrMutableRep; using ::tensorstore::internal_index_space::OutputIndexMap; using ::tensorstore::internal_index_space::ReplaceZeroRankIndexArrayIndexMap; using ::tensorstore::internal_index_space::TransformAccess; using ::tensorstore::internal_index_space::TransformRep; using ::tensorstore::internal_index_space::ValidateAndIntersectBounds; using ::tensorstore::internal_testing::TestConcurrent; TEST(OutputIndexMapTest, Basic) { OutputIndexMap map; EXPECT_EQ(OutputIndexMethod::constant, map.method()); map.SetSingleInputDimension(2); EXPECT_EQ(OutputIndexMethod::single_input_dimension, map.method()); EXPECT_EQ(2, map.input_dimension()); map.SetSingleInputDimension(3); EXPECT_EQ(OutputIndexMethod::single_input_dimension, map.method()); EXPECT_EQ(3, map.input_dimension()); map.SetConstant(); EXPECT_EQ(OutputIndexMethod::constant, map.method()); { auto& index_array_data = map.SetArrayIndexing(3); EXPECT_EQ(OutputIndexMethod::array, map.method()); EXPECT_EQ(3, index_array_data.rank_capacity); EXPECT_EQ(IndexInterval(), index_array_data.index_range); EXPECT_EQ(nullptr, index_array_data.element_pointer); EXPECT_EQ(&index_array_data, &map.SetArrayIndexing(1)); EXPECT_EQ(3, index_array_data.rank_capacity); auto ptr = std::make_shared<Index>(); index_array_data.element_pointer = ptr; index_array_data.index_range = IndexInterval::UncheckedClosed(1, 10); index_array_data.byte_strides[0] = 1; index_array_data.byte_strides[1] = 2; index_array_data.byte_strides[2] = 3; auto& new_index_array_data = map.SetArrayIndexing(4); EXPECT_EQ(4, new_index_array_data.rank_capacity); EXPECT_EQ(ptr, new_index_array_data.element_pointer.pointer()); EXPECT_EQ(IndexInterval::UncheckedClosed(1, 10), new_index_array_data.index_range); EXPECT_EQ(1, new_index_array_data.byte_strides[0]); EXPECT_EQ(2, new_index_array_data.byte_strides[1]); EXPECT_EQ(3, new_index_array_data.byte_strides[2]); } map.SetSingleInputDimension(3); EXPECT_EQ(OutputIndexMethod::single_input_dimension, map.method()); EXPECT_EQ(3, map.input_dimension()); { auto& index_array_data = map.SetArrayIndexing(3); EXPECT_EQ(OutputIndexMethod::array, map.method()); EXPECT_EQ(3, index_array_data.rank_capacity); } } TEST(OutputIndexMapDeathTest, Basic) { OutputIndexMap map; TENSORSTORE_EXPECT_OOM( map.SetArrayIndexing(static_cast<DimensionIndex>(1) << 60)); map.SetArrayIndexing(5); TENSORSTORE_EXPECT_OOM( map.SetArrayIndexing(static_cast<DimensionIndex>(1) << 60)); } TEST(ReplaceZeroRankIndexArrayIndexMapTest, Basic) { Index output_offset = 5, output_stride = 3; EXPECT_EQ(absl::OkStatus(), ReplaceZeroRankIndexArrayIndexMap( 10, IndexInterval::UncheckedClosed(3, 15), &output_offset, &output_stride)); EXPECT_EQ(5 + 10 * 3, output_offset); EXPECT_EQ(0, output_stride); } TEST(ReplaceZeroRankIndexArrayIndexMapTest, OutOfBounds) { Index output_offset = 5, output_stride = 3; EXPECT_THAT(ReplaceZeroRankIndexArrayIndexMap( 10, IndexInterval::UncheckedClosed(11, 15), &output_offset, &output_stride), MatchesStatus(absl::StatusCode::kOutOfRange, "Index 10 is outside valid range \\[11, 16\\)")); } TEST(ReplaceZeroRankIndexArrayIndexMapTest, OverflowOffset) { Index output_offset = std::numeric_limits<Index>::max(), output_stride = 3; EXPECT_THAT( ReplaceZeroRankIndexArrayIndexMap(10, IndexInterval::UncheckedClosed(5, 15), &output_offset, &output_stride), MatchesStatus( absl::StatusCode::kInvalidArgument, ".*Integer overflow computing offset for output dimension.*")); } TEST(ReplaceZeroRankIndexArrayIndexMapTest, OverflowStride) { Index output_offset = 5, output_stride = 100; EXPECT_THAT( ReplaceZeroRankIndexArrayIndexMap(kMaxFiniteIndex, IndexInterval(), &output_offset, &output_stride), MatchesStatus( absl::StatusCode::kInvalidArgument, ".*Integer overflow computing offset for output dimension.*")); } TEST(Allocate, Basic) { auto ptr = TransformRep::Allocate(3, 2); EXPECT_EQ(3, ptr->input_rank_capacity); EXPECT_EQ(2, ptr->output_rank_capacity); EXPECT_EQ(OutputIndexMethod::constant, ptr->output_index_maps()[0].method()); EXPECT_EQ(OutputIndexMethod::constant, ptr->output_index_maps()[1].method()); EXPECT_TRUE(ptr->input_labels()[0].empty()); EXPECT_TRUE(ptr->input_labels()[1].empty()); EXPECT_TRUE(ptr->input_labels()[2].empty()); } TEST(CopyTransformRep, Basic) { auto source = TransformRep::Allocate(1, 2); source->input_rank = 1; source->output_rank = 2; source->input_origin()[0] = 5; source->input_shape()[0] = 2; auto& source_map = source->output_index_maps()[0]; source_map.offset() = 3; source_map.stride() = 4; auto index_array_ptr = std::make_shared<Index>(); auto& source_index_array_data = source_map.SetArrayIndexing(1); source_index_array_data.element_pointer = index_array_ptr; source_index_array_data.byte_strides[0] = 0; source->input_labels()[0] = "source"; auto dest = TransformRep::Allocate(1, 2); dest->input_rank = 0; dest->output_rank = 0; dest->input_origin()[0] = 6; dest->input_shape()[0] = 7; dest->input_labels()[0] = "dest"; auto& dest_map = dest->output_index_maps()[0]; dest_map.offset() = 10; dest_map.stride() = 11; CopyTransformRep(source.get(), dest.get()); EXPECT_EQ(5, source->input_origin()[0]); EXPECT_EQ(2, source->input_shape()[0]); EXPECT_EQ(3, source_map.offset()); EXPECT_EQ(4, source_map.stride()); EXPECT_EQ(OutputIndexMethod::array, source_map.method()); EXPECT_EQ(&source_index_array_data, &source_map.index_array_data()); EXPECT_EQ(index_array_ptr, source_index_array_data.element_pointer.pointer()); EXPECT_EQ(0, source_index_array_data.byte_strides[0]); EXPECT_EQ("source", source->input_labels()[0]); EXPECT_EQ(1, dest->input_rank); EXPECT_EQ(2, dest->output_rank); EXPECT_EQ(5, dest->input_origin()[0]); EXPECT_EQ(2, dest->input_shape()[0]); EXPECT_EQ(3, dest_map.offset()); EXPECT_EQ(4, dest_map.stride()); EXPECT_EQ(OutputIndexMethod::array, dest_map.method()); auto& dest_index_array_data = dest_map.index_array_data(); EXPECT_EQ(index_array_ptr, dest_index_array_data.element_pointer.pointer()); EXPECT_EQ(0, dest_index_array_data.byte_strides[0]); EXPECT_EQ(3, index_array_ptr.use_count()); EXPECT_EQ("source", dest->input_labels()[0]); } TEST(MoveTransformRep, Basic) { using ::tensorstore::DimensionSet; auto source = TransformRep::Allocate(1, 2); source->input_rank = 1; source->output_rank = 2; source->implicit_lower_bounds = DimensionSet::UpTo(source->input_rank); source->implicit_upper_bounds = DimensionSet::UpTo(source->input_rank); source->input_origin()[0] = 5; source->input_shape()[0] = 2; auto& source_map = source->output_index_maps()[0]; source_map.SetSingleInputDimension(0); source_map.offset() = 3; source_map.stride() = 4; auto index_array_ptr = std::make_shared<Index>(); auto& source_index_array_data = source_map.SetArrayIndexing(1); source_index_array_data.element_pointer = index_array_ptr; source_index_array_data.byte_strides[0] = 0; source->input_labels()[0] = "source"; auto dest = TransformRep::Allocate(1, 2); dest->input_rank = 0; dest->output_rank = 0; dest->input_origin()[0] = 6; dest->input_shape()[0] = 7; dest->input_labels()[0] = "dest"; auto& dest_map = dest->output_index_maps()[0]; dest_map.offset() = 10; dest_map.stride() = 11; MoveTransformRep(source.get(), dest.get()); EXPECT_EQ(5, source->input_origin()[0]); EXPECT_EQ(2, source->input_shape()[0]); EXPECT_EQ(3, source_map.offset()); EXPECT_EQ(4, source_map.stride()); EXPECT_EQ(OutputIndexMethod::constant, source_map.method()); EXPECT_EQ(1, dest->input_rank); EXPECT_EQ(2, dest->output_rank); EXPECT_EQ(5, dest->input_origin()[0]); EXPECT_EQ(2, dest->input_shape()[0]); EXPECT_EQ(3, dest_map.offset()); EXPECT_EQ(4, dest_map.stride()); EXPECT_EQ(OutputIndexMethod::array, dest_map.method()); auto& dest_index_array_data = dest_map.index_array_data(); EXPECT_EQ(&dest_index_array_data, &source_index_array_data); EXPECT_EQ(index_array_ptr, dest_index_array_data.element_pointer.pointer()); EXPECT_EQ(0, dest_index_array_data.byte_strides[0]); EXPECT_EQ(2, index_array_ptr.use_count()); EXPECT_EQ("source", dest->input_labels()[0]); } tensorstore::IndexTransform<> MakeTestTransform() { return IndexTransformBuilder<>(3, 3) .input_origin({1, 2, 3}) .input_shape({2, 3, 4}) .input_labels({"a", "b", "c"}) .implicit_lower_bounds({0, 1, 0}) .implicit_upper_bounds({0, 1, 1}) .output_constant(2, 5) .output_single_input_dimension(1, 5, 7, 2) .output_index_array(0, 8, 11, tensorstore::MakeArray<Index>({{{8}}, {{9}}}), tensorstore::IndexInterval::Sized(7, 3)) .Finalize() .value(); } TEST(MutableRepTest, Basic) { auto transform = MakeTestTransform(); EXPECT_TRUE(TransformAccess::rep(transform)->is_unique()); auto rep1 = TransformAccess::rep_ptr<tensorstore::container>(transform); EXPECT_FALSE(TransformAccess::rep(transform)->is_unique()); auto rep2 = MutableRep(std::move(rep1)); EXPECT_NE(TransformAccess::rep(transform), rep2.get()); EXPECT_EQ(transform, TransformAccess::Make<tensorstore::IndexTransformView<>>( rep2.get())); EXPECT_TRUE(rep2->is_unique()); TransformRep* rep2_ptr = rep2.get(); auto rep3 = MutableRep(std::move(rep2)); EXPECT_EQ(rep2_ptr, rep3.get()); } TEST(MutableRepTest, Concurrent) { auto orig = IndexTransformBuilder<>(1, 1) .input_origin({1}) .input_shape({2}) .input_labels({"a"}) .implicit_lower_bounds({0}) .implicit_upper_bounds({0}) .output_constant(0, 5) .Finalize() .value(); TransformRep* orig_ptr; TransformRep::Ptr<> write_ptr = TransformAccess::rep_ptr(orig); write_ptr->output_rank = 0; TransformRep::Ptr<> read_ptr; [[maybe_unused]] size_t num_reads_before_write = 0; const size_t num_iterations = 1000; TestConcurrent( num_iterations, [&] { write_ptr->input_rank = 1; orig_ptr = write_ptr.get(); read_ptr = write_ptr; }, [&] { EXPECT_EQ(0, write_ptr->input_rank); }, [&] { write_ptr = MutableRep(std::move(write_ptr)); if (orig_ptr == write_ptr.get()) { ++num_reads_before_write; } write_ptr->input_rank = 0; }, [&] { EXPECT_EQ(1, read_ptr->input_rank); read_ptr.reset(); }); #if 0 EXPECT_LT(0, num_reads_before_write); EXPECT_LT(num_reads_before_write, num_iterations); #endif } TEST(NewOrMutableRepTest, Basic) { auto transform = MakeTestTransform(); { auto mutable_rep = NewOrMutableRep(TransformAccess::rep(transform), 3, 3); EXPECT_EQ(TransformAccess::rep(transform), mutable_rep.get()); } { auto mutable_rep = NewOrMutableRep(TransformAccess::rep(transform), 2, 2); EXPECT_EQ(TransformAccess::rep(transform), mutable_rep.get()); } { auto transform_copy = transform; auto mutable_rep = NewOrMutableRep(TransformAccess::rep(transform), 3, 3); EXPECT_NE(TransformAccess::rep(transform), mutable_rep.get()); EXPECT_EQ(3, mutable_rep->input_rank_capacity); EXPECT_EQ(3, mutable_rep->output_rank_capacity); } { auto transform_copy = transform; auto mutable_rep = NewOrMutableRep(TransformAccess::rep(transform), 1, 2); EXPECT_NE(TransformAccess::rep(transform), mutable_rep.get()); EXPECT_EQ(1, mutable_rep->input_rank_capacity); EXPECT_EQ(2, mutable_rep->output_rank_capacity); } { auto mutable_rep = NewOrMutableRep(TransformAccess::rep(transform), 3, 4); EXPECT_NE(TransformAccess::rep(transform), mutable_rep.get()); EXPECT_EQ(3, mutable_rep->input_rank_capacity); EXPECT_EQ(4, mutable_rep->output_rank_capacity); } { auto mutable_rep = NewOrMutableRep(TransformAccess::rep(transform), 4, 3); EXPECT_NE(TransformAccess::rep(transform), mutable_rep.get()); EXPECT_EQ(4, mutable_rep->input_rank_capacity); EXPECT_EQ(3, mutable_rep->output_rank_capacity); } { auto transform_copy = transform; auto mutable_rep = NewOrMutableRep(TransformAccess::rep(transform), 3, 4); EXPECT_NE(TransformAccess::rep(transform), mutable_rep.get()); EXPECT_EQ(3, mutable_rep->input_rank_capacity); EXPECT_EQ(4, mutable_rep->output_rank_capacity); } } TEST(ValidateAndIntersectBoundsTest, Success) { const Box<> inner({-kInfIndex, 6}, {kInfIndex + 8, 3}); Box<> combined({1, 5}, {9, kInfIndex - 5 + 1}); auto status = ValidateAndIntersectBounds( inner, combined, [](IndexInterval outer, IndexInterval inner) { return ContainsOrUnbounded(outer, inner); }); TENSORSTORE_CHECK_OK(status); EXPECT_EQ(Box<>({1, 6}, {7, 3}), combined); } TEST(ValidateAndIntersectBoundsTest, Failure) { const Box<> inner({-kInfIndex, 4}, {kInfIndex + 8, 3}); Box<> combined({1, 5}, {9, kInfIndex - 5 + 1}); auto status = ValidateAndIntersectBounds( inner, combined, [](IndexInterval outer, IndexInterval inner) { return ContainsOrUnbounded(outer, inner); }); EXPECT_THAT( status, MatchesStatus( absl::StatusCode::kOutOfRange, ".*Propagated bounds are incompatible with existing bounds in " "dimension 1 bounds .* vs. propagated bounds.*")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/internal/transform_rep.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/transform_rep_test.cc
4f887a6430414cd6088e1743555015b10f116d50
866239b7-d9d3-4781-9af5-36f32ea4978f
cpp
google/tensorstore
diagonal_op
tensorstore/index_space/internal/diagonal_op.cc
tensorstore/index_space/diagonal_op_test.cc
#include "tensorstore/index_space/internal/diagonal_op.h" #include <algorithm> namespace tensorstore { namespace internal_index_space { namespace { template <typename R> void ShiftRangeForwardByOne(R range) { for (DimensionIndex i = range.size() - 1; i > 0; --i) { range[i] = range[i - 1]; } } void ExtractDiagonal(TransformRep* original, TransformRep* result, DimensionIndexBuffer* dimensions, bool domain_only) { const DimensionIndex orig_input_rank = original->input_rank; const DimensionIndex output_rank = domain_only ? 0 : original->output_rank; const DimensionIndex new_input_rank = orig_input_rank - dimensions->size() + 1; assert(result->input_rank_capacity >= new_input_rank); const DimensionIndex diag_input_dim = 0; DimensionIndex orig_to_new_input_dim[kMaxRank]; std::fill_n(&orig_to_new_input_dim[0], orig_input_rank, static_cast<DimensionIndex>(-1)); bool lower_diagonal_bound_implicit = true, upper_diagonal_bound_implicit = true; IndexInterval diagonal_bounds; for (DimensionIndex orig_input_dim : *dimensions) { orig_to_new_input_dim[orig_input_dim] = diag_input_dim; const auto d = original->input_dimension(orig_input_dim); diagonal_bounds = Intersect(diagonal_bounds, d.domain()); if (!d.implicit_lower_bound()) { lower_diagonal_bound_implicit = false; } if (!d.implicit_upper_bound()) { upper_diagonal_bound_implicit = false; } } for (DimensionIndex orig_input_dim = 0, new_input_dim = 1; orig_input_dim < orig_input_rank; ++orig_input_dim) { if (orig_to_new_input_dim[orig_input_dim] == -1) { orig_to_new_input_dim[orig_input_dim] = new_input_dim++; } } const bool domain_is_explicitly_empty = !lower_diagonal_bound_implicit && !upper_diagonal_bound_implicit && diagonal_bounds.empty(); span<const OutputIndexMap> orig_maps = original->output_index_maps().first(output_rank); span<OutputIndexMap> result_maps = result->output_index_maps().first(output_rank); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const auto& orig_map = orig_maps[output_dim]; auto& result_map = result_maps[output_dim]; result_map.stride() = orig_map.stride(); result_map.offset() = orig_map.offset(); switch (orig_map.method()) { case OutputIndexMethod::constant: result_map.SetConstant(); break; case OutputIndexMethod::single_input_dimension: { const DimensionIndex orig_input_dim = orig_map.input_dimension(); assert(orig_input_dim >= 0 && orig_input_dim < orig_input_rank); const DimensionIndex new_input_dim = orig_to_new_input_dim[orig_input_dim]; result_map.SetSingleInputDimension(new_input_dim); break; } case OutputIndexMethod::array: { if (domain_is_explicitly_empty) { result_map.SetConstant(); result_map.stride() = 0; result_map.offset() = 0; break; } auto& result_index_array = result_map.SetArrayIndexing(new_input_rank); const auto& orig_index_array = orig_map.index_array_data(); assert(orig_index_array.rank_capacity >= orig_input_rank); Index diag_byte_stride = 0; for (DimensionIndex orig_input_dim : *dimensions) { diag_byte_stride += orig_index_array.byte_strides[orig_input_dim]; } for (DimensionIndex orig_input_dim = 0; orig_input_dim < orig_input_rank; ++orig_input_dim) { const DimensionIndex new_input_dim = orig_to_new_input_dim[orig_input_dim]; if (new_input_dim == diag_input_dim) continue; assert(new_input_dim - 1 <= orig_input_dim); result_index_array.byte_strides[new_input_dim - 1] = orig_index_array.byte_strides[orig_input_dim]; } ShiftRangeForwardByOne( span(result_index_array.byte_strides, new_input_rank)); result_index_array.byte_strides[diag_input_dim] = diag_byte_stride; result_index_array.index_range = orig_index_array.index_range; result_index_array.element_pointer = orig_index_array.element_pointer.pointer(); break; } } } for (DimensionIndex orig_input_dim = 0; orig_input_dim < orig_input_rank; ++orig_input_dim) { const DimensionIndex new_input_dim = orig_to_new_input_dim[orig_input_dim]; if (new_input_dim == diag_input_dim) continue; assert(new_input_dim - 1 <= orig_input_dim); result->input_dimension(new_input_dim - 1) = original->input_dimension(orig_input_dim); } ShiftRangeForwardByOne(result->all_input_dimensions(new_input_rank)); { const auto d = result->input_dimension(diag_input_dim); d.domain() = diagonal_bounds; d.implicit_lower_bound() = lower_diagonal_bound_implicit; d.implicit_upper_bound() = upper_diagonal_bound_implicit; d.SetEmptyLabel(); } result->input_rank = new_input_rank; result->output_rank = output_rank; dimensions->clear(); dimensions->push_back(diag_input_dim); NormalizeImplicitBounds(*result); } } Result<IndexTransform<>> ApplyDiagonal(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only) { TransformRep* rep = TransformAccess::rep(transform); const DimensionIndex new_input_rank = rep->input_rank - dimensions->size() + 1; TransformRep::Ptr<> new_rep = NewOrMutableRep(rep, new_input_rank, rep->output_rank, domain_only); ExtractDiagonal(rep, new_rep.get(), dimensions, domain_only); internal_index_space::DebugCheckInvariants(new_rep.get()); return TransformAccess::Make<IndexTransform<>>(std::move(new_rep)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" namespace { using ::tensorstore::Dims; using ::tensorstore::Index; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::kInfIndex; using ::tensorstore::kInfSize; using ::tensorstore::MakeArray; using ::tensorstore::internal_index_space::EquivalentIndices; using ::tensorstore::internal_index_space::TestDimExpression; TEST(DiagonalTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({5, 4, 5}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<2, 3>() .input_origin({3, 2}) .input_shape({3, 4}) .input_labels({"", "y"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 0) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{4, 3, 4}, {4, 3}}, }; TestDimExpression(original_transform, Dims(0, 2).Diagonal(), {0}, expected_new_transform, expected_new_transform, equivalent_indices); TestDimExpression(original_transform, Dims("x", "z").Diagonal(), {0}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(DiagonalTest, ZeroDimensional) { TestDimExpression(IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({5, 4}) .input_labels({"x", "y"}) .output_single_input_dimension(0, 5, 1, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), Dims().Diagonal(), {0}, IndexTransformBuilder<3, 2>() .input_origin({-kInfIndex, 1, 2}) .input_shape({kInfSize, 5, 4}) .implicit_lower_bounds({1, 0, 0}) .implicit_upper_bounds({1, 0, 0}) .input_labels({"", "x", "y"}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 2) .Finalize() .value(), IndexTransformBuilder<3, 2>() .input_origin({-kInfIndex, 1, 2}) .input_shape({kInfSize, 5, 4}) .implicit_lower_bounds({1, 0, 0}) .implicit_upper_bounds({1, 0, 0}) .input_labels({"", "x", "y"}) .output_single_input_dimension(0, 5, 1, 1) .output_single_input_dimension(1, 2) .Finalize() .value(), {{{3, 4}, {8, 3, 4}}}, false); } TEST(DiagonalTest, OneDimensional) { TestDimExpression(IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({5, 4, 5}) .input_labels({"x", "y", "z"}) .output_single_input_dimension(0, 5, 1, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 2) .Finalize() .value(), Dims(1).Diagonal(), {0}, IndexTransformBuilder<3, 3>() .input_origin({2, 1, 3}) .input_shape({4, 5, 5}) .input_labels({"", "x", "z"}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 0) .output_single_input_dimension(2, 2) .Finalize() .value(), IndexTransformBuilder<3, 3>() .input_origin({2, 1, 3}) .input_shape({4, 5, 5}) .input_labels({"", "x", "z"}) .output_single_input_dimension(0, 5, 1, 1) .output_single_input_dimension(1, 0) .output_single_input_dimension(2, 2) .Finalize() .value(), {{{4, 3, 5}, {3, 4, 5}}}); } TEST(DiagonalTest, TwoDimensionalSimple) { TestDimExpression(IndexTransformBuilder<3, 3>() .input_origin({5, 6, 7}) .input_shape({10, 9, 15}) .output_single_input_dimension(0, 1, 1, 1) .output_single_input_dimension(1, 2, 2, 0) .output_single_input_dimension(2, 3, 3, 2) .Finalize() .value(), Dims(2, 0).Diagonal(), {0}, IndexTransformBuilder<2, 3>() .input_origin({7, 6}) .input_shape({8, 9}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 0) .Finalize() .value(), IndexTransformBuilder<2, 3>() .input_origin({7, 6}) .input_shape({8, 9}) .output_single_input_dimension(0, 1, 1, 1) .output_single_input_dimension(1, 2, 2, 0) .output_single_input_dimension(2, 3, 3, 0) .Finalize() .value(), {{{10, 11, 10}, {10, 11}}}); } TEST(DiagonalTest, TwoDimensionalSimpleImplicitLower) { TestDimExpression( IndexTransformBuilder<3, 3>() .input_origin({5, 6, 7}) .input_shape({10, 9, 15}) .implicit_lower_bounds({1, 0, 1}) .output_single_input_dimension(0, 1, 1, 1) .output_single_input_dimension(1, 2, 2, 0) .output_single_input_dimension(2, 3, 3, 2) .Finalize() .value(), Dims(2, 0).Diagonal(), {0}, IndexTransformBuilder<2, 3>() .input_origin({7, 6}) .input_shape({8, 9}) .implicit_lower_bounds({1, 0}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 0) .Finalize() .value(), IndexTransformBuilder<2, 3>() .input_origin({7, 6}) .input_shape({8, 9}) .implicit_lower_bounds({1, 0}) .output_single_input_dimension(0, 1, 1, 1) .output_single_input_dimension(1, 2, 2, 0) .output_single_input_dimension(2, 3, 3, 0) .Finalize() .value(), {{{10, 11, 10}, {10, 11}}}); } TEST(DiagonalTest, TwoDimensionalSimpleImplicitUpper) { TestDimExpression( IndexTransformBuilder<3, 3>() .input_origin({5, 6, 7}) .input_shape({10, 9, 15}) .implicit_upper_bounds({1, 0, 1}) .output_single_input_dimension(0, 1, 1, 1) .output_single_input_dimension(1, 2, 2, 0) .output_single_input_dimension(2, 3, 3, 2) .Finalize() .value(), Dims(2, 0).Diagonal(), {0}, IndexTransformBuilder<2, 3>() .input_origin({7, 6}) .input_shape({8, 9}) .implicit_upper_bounds({1, 0}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 0) .Finalize() .value(), IndexTransformBuilder<2, 3>() .input_origin({7, 6}) .input_shape({8, 9}) .implicit_upper_bounds({1, 0}) .output_single_input_dimension(0, 1, 1, 1) .output_single_input_dimension(1, 2, 2, 0) .output_single_input_dimension(2, 3, 3, 0) .Finalize() .value(), {{{10, 11, 10}, {10, 11}}}); } TEST(DiagonalTest, IndexArray) { TestDimExpression( IndexTransformBuilder<3, 2>() .input_origin({5, 6, 6}) .input_shape({4, 5, 2}) .output_index_array( 0, 2, 3, MakeArray<Index>( {{{1, 4}}, {{2, 5}}, {{3, 6}}, {{4, 7}}})) .output_constant(1, 0) .Finalize() .value(), Dims(0, 2).Diagonal(), {0}, IndexTransformBuilder<2, 3>() .input_origin({6, 6}) .input_shape({2, 5}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 0) .Finalize() .value(), IndexTransformBuilder<2, 2>() .input_origin({6, 6}) .input_shape({2, 5}) .output_index_array(0, 2, 3, MakeArray<Index>({{2}, {6}})) .output_constant(1, 0) .Finalize() .value(), {{{6, 8, 6}, {6, 8}}}); } TEST(DiagonalTest, IndexArrayZeroSize) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_shape({0, 2}) .implicit_upper_bounds({1, 0}) .output_single_input_dimension(0, 0) .output_index_array(1, 0, 1, MakeArray<Index>({{1, 2}})) .Finalize() .value(), Dims(0, 1).Diagonal(), {0}, IndexTransformBuilder<1, 2>() .input_shape({0}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 0) .Finalize() .value(), IndexTransformBuilder<1, 2>() .input_shape({0}) .output_single_input_dimension(0, 0) .output_constant(1, 0) .Finalize() .value(), {}); } TEST(DiagonalTest, Labeled) { TestDimExpression( IndexTransformBuilder<3, 2>() .input_origin({5, 6, 6}) .input_shape({4, 5, 2}) .input_labels({"a", "b", "c"}) .output_index_array( 0, 2, 3, MakeArray<Index>( {{{1, 4}}, {{2, 5}}, {{3, 6}}, {{4, 7}}})) .output_constant(1, 0) .Finalize() .value(), Dims(0, 2).Diagonal().Label("diag"), {0}, IndexTransformBuilder<2, 3>() .input_origin({6, 6}) .input_shape({2, 5}) .input_labels({"diag", "b"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 0) .Finalize() .value(), IndexTransformBuilder<2, 2>() .input_origin({6, 6}) .input_shape({2, 5}) .input_labels({"diag", "b"}) .output_index_array(0, 2, 3, MakeArray<Index>({{2}, {6}})) .output_constant(1, 0) .Finalize() .value(), {{{6, 8, 6}, {6, 8}}}); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/internal/diagonal_op.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/diagonal_op_test.cc
4f887a6430414cd6088e1743555015b10f116d50
58fd0fed-e6ea-4f5d-b2d5-9570483b8c99
cpp
google/tensorstore
single_index_slice_op
tensorstore/index_space/internal/single_index_slice_op.cc
tensorstore/index_space/single_index_slice_op_test.cc
#include "tensorstore/index_space/internal/single_index_slice_op.h" #include "absl/status/status.h" #include "tensorstore/index_space/internal/transform_rep_impl.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { namespace { struct InputDimensionSingletonSliceInfo { DimensionIndex new_input_dim; Index offset; }; struct SingletonSlicingInfo { explicit SingletonSlicingInfo(DimensionIndex original_input_rank, DimensionIndex new_input_rank) : original_input_rank(original_input_rank), new_input_rank(new_input_rank) { std::fill_n(&original_input_dimension_info[0], original_input_rank, InputDimensionSingletonSliceInfo{0, 0}); } DimensionIndex original_input_rank; DimensionIndex new_input_rank; InputDimensionSingletonSliceInfo original_input_dimension_info[kMaxRank]; }; Result<SingletonSlicingInfo> GetSingletonSlicingInfo( TransformRep* original, DimensionIndexBuffer* dimensions_buffer, IndexVectorOrScalarView indices) { const span<const DimensionIndex> dimensions(*dimensions_buffer); const DimensionIndex num_dims = dimensions.size(); const DimensionIndex original_input_rank = original->input_rank; const DimensionIndex new_input_rank = original_input_rank - num_dims; TENSORSTORE_RETURN_IF_ERROR(CheckIndexVectorSize(indices, num_dims)); Result<SingletonSlicingInfo> result(tensorstore::in_place, original_input_rank, new_input_rank); const Index* indices_pointer = indices.pointer ? indices.pointer : &indices.size_or_scalar; const Index indices_stride = indices.pointer ? 1 : 0; std::string slice_error; for (DimensionIndex i = 0; i < num_dims; ++i) { const DimensionIndex original_input_dim = dimensions[i]; const Index index = indices_pointer[i * indices_stride]; const auto domain = original->input_dimension(original_input_dim) .optionally_implicit_domain(); if (!Contains(domain.effective_interval(), index)) { tensorstore::StrAppend(&slice_error, (slice_error.empty() ? "" : ", "), "in input dimension ", original_input_dim, " index ", index, " is outside valid domain ", domain); } result->original_input_dimension_info[original_input_dim] = InputDimensionSingletonSliceInfo{-1, index}; } if (!slice_error.empty()) { result = absl::OutOfRangeError( tensorstore::StrCat("Slice mismatch: ", slice_error)); return result; } for (DimensionIndex original_input_dim = 0, new_input_dim = 0; original_input_dim < original_input_rank; ++original_input_dim) { auto& new_dim = result->original_input_dimension_info[original_input_dim].new_input_dim; if (new_dim == -1) continue; new_dim = new_input_dim; ++new_input_dim; } dimensions_buffer->clear(); return result; } absl::Status PerformSingleIndexSlice(TransformRep* original_transform, TransformRep* new_transform, const SingletonSlicingInfo& info, bool domain_only) { const DimensionIndex original_input_rank = original_transform->input_rank; const DimensionIndex new_input_rank = info.new_input_rank; span<const InputDimensionSingletonSliceInfo> original_input_dimension_info = info.original_input_dimension_info; bool domain_is_explicitly_empty = false; for (DimensionIndex original_input_dim = 0, new_input_dim = 0; original_input_dim < original_input_rank; ++original_input_dim) { if (original_input_dimension_info[original_input_dim].new_input_dim < 0) continue; const InputDimensionRef new_dim_ref = new_transform->input_dimension(new_input_dim); new_dim_ref = original_transform->input_dimension(original_input_dim); if (new_dim_ref.domain().empty() && !new_dim_ref.implicit_lower_bound() && !new_dim_ref.implicit_upper_bound()) { domain_is_explicitly_empty = true; } ++new_input_dim; } const DimensionIndex output_rank = domain_only ? 0 : original_transform->output_rank; span<const OutputIndexMap> original_maps = original_transform->output_index_maps().first(output_rank); span<OutputIndexMap> new_maps = new_transform->output_index_maps().first(output_rank); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const OutputIndexMap& original_map = original_maps[output_dim]; OutputIndexMap& new_map = new_maps[output_dim]; switch (original_map.method()) { case OutputIndexMethod::constant: { new_map.offset() = original_map.offset(); new_map.SetConstant(); new_map.stride() = 0; break; } case OutputIndexMethod::single_input_dimension: { const DimensionIndex original_input_dim = original_map.input_dimension(); assert(original_input_dim >= 0 && original_input_dim < original_input_rank); const auto slice_info = original_input_dimension_info[original_input_dim]; const Index output_stride = original_map.stride(); const Index output_offset = original_map.offset(); if (slice_info.new_input_dim == -1) { Index new_offset; if (internal::MulOverflow(slice_info.offset, output_stride, &new_offset) || internal::AddOverflow(new_offset, output_offset, &new_map.offset())) { return absl::InvalidArgumentError(tensorstore::StrCat( "Integer overflow computing offset for output dimension ", output_dim, ".")); } new_map.SetConstant(); new_map.stride() = 0; } else { new_map.SetSingleInputDimension(slice_info.new_input_dim); new_map.stride() = output_stride; new_map.offset() = output_offset; } break; } case OutputIndexMethod::array: { if (domain_is_explicitly_empty) { new_map.SetConstant(); new_map.offset() = 0; new_map.stride() = 0; break; } const IndexArrayData& original_index_array_data = original_map.index_array_data(); IndexArrayData& new_index_array_data = new_map.SetArrayIndexing(new_input_rank); new_index_array_data.index_range = original_index_array_data.index_range; Index array_byte_offset = 0; bool has_non_zero_byte_strides = false; for (DimensionIndex original_input_dim = 0; original_input_dim < original_input_rank; ++original_input_dim) { const auto slice_info = original_input_dimension_info[original_input_dim]; const Index byte_stride = original_index_array_data.byte_strides[original_input_dim]; if (slice_info.new_input_dim == -1) { array_byte_offset = internal::wrap_on_overflow::Add( array_byte_offset, internal::wrap_on_overflow::Multiply( byte_stride, slice_info.offset)); } else { new_index_array_data.byte_strides[slice_info.new_input_dim] = byte_stride; if (byte_stride != 0) has_non_zero_byte_strides = true; } } Index output_stride = original_map.stride(); Index output_offset = original_map.offset(); if (has_non_zero_byte_strides) { new_index_array_data.element_pointer = AddByteOffset( original_index_array_data.element_pointer, array_byte_offset); } else { TENSORSTORE_RETURN_IF_ERROR(ReplaceZeroRankIndexArrayIndexMap( original_index_array_data.element_pointer .byte_strided_pointer()[array_byte_offset], new_index_array_data.index_range, &output_offset, &output_stride)); new_map.SetConstant(); } new_map.stride() = output_stride; new_map.offset() = output_offset; break; } } } new_transform->input_rank = new_input_rank; new_transform->output_rank = output_rank; NormalizeImplicitBounds(*new_transform); internal_index_space::DebugCheckInvariants(new_transform); return absl::OkStatus(); } } Result<IndexTransform<>> ApplySingleIndexSlice(IndexTransform<> transform, DimensionIndexBuffer* dimensions, IndexVectorOrScalarView indices, bool domain_only) { TransformRep* rep = TransformAccess::rep(transform); auto slicing_info = GetSingletonSlicingInfo(rep, dimensions, indices); if (!slicing_info) return slicing_info.status(); auto new_rep = NewOrMutableRep(rep, slicing_info->new_input_rank, rep->output_rank, domain_only); TENSORSTORE_RETURN_IF_ERROR( PerformSingleIndexSlice(rep, new_rep.get(), *slicing_info, domain_only)); return TransformAccess::Make<IndexTransform<>>(new_rep); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" #include "tensorstore/util/status.h" namespace { using ::tensorstore::AllDims; using ::tensorstore::DimensionIndex; using ::tensorstore::Dims; using ::tensorstore::Index; using ::tensorstore::IndexDomainBuilder; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::kInfIndex; using ::tensorstore::MakeArray; using ::tensorstore::span; using ::tensorstore::internal_index_space::EquivalentIndices; using ::tensorstore::internal_index_space::TestDimExpression; TEST(SingleIndexSliceTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<1, 3>() .input_origin({2}) .input_shape({4}) .input_labels({"y"}) .output_constant(0, 2) .output_single_input_dimension(1, 0) .output_constant(2, 4) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{2, 3, 4}, {3}}, }; TestDimExpression(original_transform, Dims(0, 2).IndexSlice({2, 4}), {}, expected_new_transform, expected_new_transform, equivalent_indices); TestDimExpression(original_transform, Dims("x", "z").IndexSlice({2, 4}), {}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(SingleIndexSliceTest, ImplicitLowerBound) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .implicit_lower_bounds({1, 1, 0}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<1, 3>() .input_origin({2}) .implicit_lower_bounds({1}) .input_shape({4}) .input_labels({"y"}) .output_constant(0, -7) .output_single_input_dimension(1, 0) .output_constant(2, 4) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{-7, 3, 4}, {3}}, }; TestDimExpression(original_transform, Dims(0, 2).IndexSlice({-7, 4}), {}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(SingleIndexSliceTest, DimSubsetUniformIndexArrayRetained) { TestDimExpression( IndexTransformBuilder<3, 4>() .input_origin({1, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7}) .output_single_input_dimension(0, 1, 4, 0) .output_single_input_dimension(1, 2, 3, 2) .output_constant(2, 3) .output_index_array( 3, 4, 1, MakeArray<Index>({{{5}, {6}, {7}, {8}, {9}}, {{15}, {16}, {17}, {18}, {19}}, {{25}, {26}, {27}, {28}, {29}}, {{35}, {36}, {37}, {38}, {39}}})) .Finalize() .value(), Dims(1, 2).IndexSlice(3), {}, IndexTransformBuilder<1, 3>() .input_origin({1}) .input_shape({4}) .output_single_input_dimension(0, 0) .output_constant(1, 3) .output_constant(2, 3) .Finalize() .value(), IndexTransformBuilder<1, 4>() .input_origin({1}) .input_shape({4}) .output_single_input_dimension(0, 1, 4, 0) .output_constant(1, 2 + 3 * 3) .output_constant(2, 3) .output_index_array(3, 4, 1, MakeArray<Index>({6, 16, 26, 36})) .Finalize() .value(), {{{4, 3, 3}, {4}}}); } TEST(SingleIndexSliceTest, DimSubsetUniformIndexArrayEliminated) { TestDimExpression( IndexTransformBuilder<3, 4>() .input_origin({1, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7}) .output_single_input_dimension(0, 1, 4, 0) .output_single_input_dimension(1, 2, 3, 2) .output_constant(2, 3) .output_index_array( 3, 4, 1, MakeArray<Index>({{{5}, {6}, {7}, {8}, {9}}})) .Finalize() .value(), Dims(1, 2).IndexSlice(3), {}, IndexTransformBuilder<1, 3>() .input_origin({1}) .input_shape({4}) .output_single_input_dimension(0, 0) .output_constant(1, 3) .output_constant(2, 3) .Finalize() .value(), IndexTransformBuilder<1, 4>() .input_origin({1}) .input_shape({4}) .output_single_input_dimension(0, 1, 4, 0) .output_constant(1, 2 + 3 * 3) .output_constant(2, 3) .output_constant(3, 4 + 1 * 6) .Finalize() .value(), {{{4, 3, 3}, {4}}}); } TEST(SingleIndexSliceTest, DimSubsetNonUniform) { TestDimExpression( IndexTransformBuilder<3, 4>() .input_origin({1, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7}) .output_single_input_dimension(0, 1, 4, 0) .output_single_input_dimension(1, 2, 3, 2) .output_constant(2, 3) .output_index_array( 3, 4, 1, MakeArray<Index>({{{5}, {6}, {7}, {8}, {9}}, {{15}, {16}, {17}, {18}, {19}}, {{25}, {26}, {27}, {28}, {29}}, {{35}, {36}, {37}, {38}, {39}}})) .Finalize() .value(), Dims(1, 2).IndexSlice({3, 4}), {}, IndexTransformBuilder<1, 3>() .input_origin({1}) .input_shape({4}) .output_single_input_dimension(0, 0) .output_constant(1, 3) .output_constant(2, 4) .Finalize() .value(), IndexTransformBuilder<1, 4>() .input_origin({1}) .input_shape({4}) .output_single_input_dimension(0, 1, 4, 0) .output_constant(1, 2 + 4 * 3) .output_constant(2, 3) .output_index_array(3, 4, 1, MakeArray<Index>({6, 16, 26, 36})) .Finalize() .value(), {{{4, 3, 4}, {4}}}); } TEST(SingleIndexSliceTest, DimSubsetNonUniformLabeled) { TestDimExpression( IndexTransformBuilder<3, 4>() .input_origin({1, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7}) .input_labels({"x", "y", "z"}) .output_single_input_dimension(0, 1, 4, 0) .output_single_input_dimension(1, 2, 3, 2) .output_constant(2, 3) .output_index_array( 3, 4, 1, MakeArray<Index>({{{5}, {6}, {7}, {8}, {9}}, {{15}, {16}, {17}, {18}, {19}}, {{25}, {26}, {27}, {28}, {29}}, {{35}, {36}, {37}, {38}, {39}}})) .Finalize() .value(), Dims(1, 2).IndexSlice({3, 4}), {}, IndexTransformBuilder<1, 3>() .input_origin({1}) .input_shape({4}) .input_labels({"x"}) .output_single_input_dimension(0, 0) .output_constant(1, 3) .output_constant(2, 4) .Finalize() .value(), IndexTransformBuilder<1, 4>() .input_origin({1}) .input_shape({4}) .input_labels({"x"}) .output_single_input_dimension(0, 1, 4, 0) .output_constant(1, 2 + 4 * 3) .output_constant(2, 3) .output_index_array(3, 4, 1, MakeArray<Index>({6, 16, 26, 36})) .Finalize() .value(), {{{4, 3, 4}, {4}}}); } TEST(SingleIndexSliceTest, EmptyDomain) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({0, 3}) .input_labels({"x", "y"}) .output_single_input_dimension(0, 2, 7, 0) .output_index_array(1, 4, 3, MakeArray<Index>({{1, 2, 3}})) .Finalize() .value(), Dims(1).IndexSlice({3}), {}, IndexTransformBuilder<1, 2>() .input_origin({1}) .input_shape({0}) .input_labels({"x"}) .output_single_input_dimension(0, 0) .output_constant(1, 3) .Finalize() .value(), IndexTransformBuilder<1, 2>() .input_origin({1}) .input_shape({0}) .input_labels({"x"}) .output_single_input_dimension(0, 2, 7, 0) .output_constant(1, 0) .Finalize() .value(), {}); } TEST(ErrorHandlingTest, DimensionSelectionRankMismatch) { TestDimExpressionError(IndexTransformBuilder<1, 1>().Finalize().value(), AllDims().IndexSlice(span<const Index>({1, 2})), absl::StatusCode::kInvalidArgument, "Number of dimensions .* does not match number of " "indices .*"); } TEST(ErrorHandlingTest, OutOfBounds) { TestDimExpressionError(IndexTransformBuilder<1, 1>() .input_origin({-10}) .input_shape({15}) .Finalize() .value(), AllDims().IndexSlice({5}), absl::StatusCode::kOutOfRange, "Slice mismatch: .* is outside valid domain .*"); } TEST(ErrorHandlingTest, OutOfBoundsInfinity) { TestDimExpressionError(IndexTransformBuilder<1, 1>() .input_origin({-kInfIndex}) .input_shape({15}) .Finalize() .value(), AllDims().IndexSlice({-kInfIndex}), absl::StatusCode::kOutOfRange, "Slice mismatch: .* is outside valid domain .*"); } TEST(ErrorHandlingTest, SingleInputDimensionMapIntegerOverflow) { TestDimExpressionErrorTransformOnly( IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({10}) .output_single_input_dimension(0, std::numeric_limits<Index>::max(), 1, 0) .Finalize() .value(), AllDims().IndexSlice({1}), absl::StatusCode::kInvalidArgument, "Integer overflow computing offset for output dimension.*", IndexDomainBuilder<0>().Finalize().value()); } TEST(ErrorHandlingTest, IndexArrayMapIntegerOverflow) { TestDimExpressionErrorTransformOnly( IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({3}) .output_index_array(0, std::numeric_limits<Index>::max(), 1, MakeArray<Index>({0, 1, 2})) .Finalize() .value(), AllDims().IndexSlice({1}), absl::StatusCode::kInvalidArgument, "Integer overflow computing offset for output dimension.*", IndexDomainBuilder<0>().Finalize().value()); } TEST(ErrorHandlingTest, IndexArrayMapOutOfBounds) { TestDimExpressionErrorTransformOnly( IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({3}) .output_index_array(0, 0, 1, MakeArray<Index>({0, 1, 2}), IndexInterval::Closed(-5, -3)) .Finalize() .value(), AllDims().IndexSlice({1}), absl::StatusCode::kOutOfRange, "Index .* is outside valid range .*", IndexDomainBuilder<0>().Finalize().value()); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/internal/single_index_slice_op.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/single_index_slice_op_test.cc
4f887a6430414cd6088e1743555015b10f116d50
c6f622d4-32e5-476d-a55e-af17aa112a86
cpp
google/tensorstore
index_array_slice_op
tensorstore/index_space/internal/index_array_slice_op.cc
tensorstore/index_space/index_array_slice_op_test.cc
#include "tensorstore/index_space/internal/index_array_slice_op.h" #include <algorithm> #include <numeric> #include "tensorstore/index_space/dimension_identifier.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { namespace { bool BroadcastSizes(Index source, Index* result) { if (source == *result) return true; if (*result == 1) { *result = source; return true; } else if (source == 1) { return true; } return false; } bool BroadcastShapes(span<const Index> source_shape, span<Index> result_shape) { if (source_shape.size() != result_shape.size()) return false; for (DimensionIndex i = 0; i < source_shape.size(); ++i) { if (!BroadcastSizes(source_shape[i], &result_shape[i])) return false; } return true; } template <typename GetNewDimensionShapeFn, typename GetIndexArrayBasePointerFn, typename GetIndexArrayByteStrideFn> Result<TransformRep::Ptr<>> MakeTransformFromJointIndexArrays( DimensionIndex num_new_dims, TransformRep* orig_transform, DimensionIndexBuffer* dimensions, GetNewDimensionShapeFn get_new_dimension_bounds, GetIndexArrayBasePointerFn get_index_array_base_pointer, GetIndexArrayByteStrideFn get_index_array_byte_stride) { const DimensionIndex num_indexed_dims = dimensions->size(); const DimensionIndex output_rank = orig_transform->input_rank; const DimensionIndex input_rank = output_rank - dimensions->size() + num_new_dims; TENSORSTORE_RETURN_IF_ERROR(ValidateRank(input_rank)); auto result = TransformRep::Allocate(input_rank, output_rank); result->input_rank = input_rank; result->output_rank = output_rank; result->implicit_lower_bounds = false; result->implicit_upper_bounds = false; span<OutputIndexMap> maps = result->output_index_maps().first(output_rank); const DimensionIndex num_preserved_dims = output_rank - num_indexed_dims; for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { maps[output_dim].SetSingleInputDimension(0); } const auto input_domain = result->input_domain(input_rank); for (DimensionIndex new_dim = 0; new_dim < num_new_dims; ++new_dim) { input_domain[new_dim] = get_new_dimension_bounds(new_dim); } for (DimensionIndex indexed_dim = 0; indexed_dim < num_indexed_dims; ++indexed_dim) { const DimensionIndex output_dim = (*dimensions)[indexed_dim]; auto& map = maps[output_dim]; map.offset() = 0; map.stride() = 1; auto& index_array_data = map.SetArrayIndexing(input_rank); std::fill_n(index_array_data.byte_strides + num_new_dims, num_preserved_dims, 0); for (DimensionIndex new_dim = 0; new_dim < num_new_dims; ++new_dim) { index_array_data.byte_strides[new_dim] = get_index_array_byte_stride(indexed_dim, new_dim); } index_array_data.element_pointer = get_index_array_base_pointer(indexed_dim); } for (DimensionIndex output_dim = 0, input_dim = num_new_dims; output_dim < output_rank; ++output_dim) { auto& map = maps[output_dim]; if (map.method() != OutputIndexMethod::single_input_dimension) continue; map.SetSingleInputDimension(input_dim); map.offset() = 0; map.stride() = 1; result->input_dimension(input_dim) = orig_transform->input_dimension(output_dim); ++input_dim; } if (IsDomainExplicitlyEmpty(result.get())) { ReplaceAllIndexArrayMapsWithConstantMaps(result.get()); } dimensions->resize(num_new_dims); std::iota(dimensions->begin(), dimensions->end(), static_cast<DimensionIndex>(0)); internal_index_space::DebugCheckInvariants(result.get()); return result; } Result<TransformRep::Ptr<>> MakeTransformFromIndexArrays( TransformRep* orig_transform, DimensionIndexBuffer* dimensions, span<const SharedArrayView<const Index>> index_arrays) { const DimensionIndex num_indexed_dims = dimensions->size(); if (index_arrays.size() != num_indexed_dims) { return absl::InvalidArgumentError(tensorstore::StrCat( "Number of selected dimensions (", num_indexed_dims, ") does not equal number of index arrays (", index_arrays.size(), ")")); } if (index_arrays.empty()) { return absl::InvalidArgumentError( tensorstore::StrCat("At least one index array must be specified")); } Index shape[kMaxRank]; const DimensionIndex num_new_dims = index_arrays[0].rank(); std::fill_n(&shape[0], num_new_dims, Index(1)); bool error = false; for (DimensionIndex i = 0; i < index_arrays.size(); ++i) { if (!BroadcastShapes(index_arrays[i].shape(), span<Index>(&shape[0], num_new_dims))) { error = true; } } if (error) { std::string shape_msg; for (DimensionIndex i = 0; i < index_arrays.size(); ++i) { tensorstore::StrAppend(&shape_msg, (shape_msg.empty() ? "" : ", "), index_arrays[i].shape()); } return absl::InvalidArgumentError( tensorstore::StrCat("Index arrays with shapes ", shape_msg, " cannot be broadcast to a common shape")); } const auto get_new_dimension_bounds = [&](DimensionIndex new_dim) { return IndexInterval::UncheckedSized(0, shape[new_dim]); }; const auto get_index_array_base_pointer = [&](DimensionIndex indexed_dim) { return index_arrays[indexed_dim].pointer(); }; const auto get_index_array_byte_stride = [&](DimensionIndex indexed_dim, DimensionIndex new_dim) { return index_arrays[indexed_dim].shape()[new_dim] == 1 ? 0 : index_arrays[indexed_dim].byte_strides()[new_dim]; }; return MakeTransformFromJointIndexArrays( num_new_dims, orig_transform, dimensions, get_new_dimension_bounds, get_index_array_base_pointer, get_index_array_byte_stride); } Result<TransformRep::Ptr<>> MakeTransformFromOuterIndexArrays( TransformRep* orig_transform, DimensionIndexBuffer* dimensions, span<const SharedArrayView<const Index>> index_arrays) { const DimensionIndex num_indexed_dims = dimensions->size(); if (index_arrays.size() != num_indexed_dims) { return absl::InvalidArgumentError(tensorstore::StrCat( "Number of selected dimensions (", num_indexed_dims, ") does not equal number of index arrays (", index_arrays.size(), ")")); } const DimensionIndex output_rank = orig_transform->input_rank; DimensionIndex input_rank = output_rank - num_indexed_dims; for (const auto& index_array : index_arrays) { input_rank += index_array.rank(); } TENSORSTORE_RETURN_IF_ERROR(ValidateRank(input_rank)); auto result = TransformRep::Allocate(input_rank, output_rank); result->input_rank = input_rank; result->output_rank = output_rank; result->implicit_lower_bounds = false; result->implicit_upper_bounds = false; DimensionIndex index_array_start_dim[kMaxRank]; DimensionIndex index_array_order[kMaxRank]; std::iota(&index_array_order[0], &index_array_order[num_indexed_dims], static_cast<DimensionIndex>(0)); std::sort(&index_array_order[0], &index_array_order[num_indexed_dims], [&](DimensionIndex a, DimensionIndex b) { return (*dimensions)[a] < (*dimensions)[b]; }); span<Index> input_origin = result->input_origin().first(input_rank); span<Index> input_shape = result->input_shape().first(input_rank); span<OutputIndexMap> maps = result->output_index_maps().first(output_rank); for (DimensionIndex output_dim = 0, reordered_indexed_dim = 0, input_dim = 0; output_dim < output_rank; ++output_dim) { auto& map = maps[output_dim]; map.stride() = 1; map.offset() = 0; if (reordered_indexed_dim < num_indexed_dims) { const DimensionIndex indexed_dim = index_array_order[reordered_indexed_dim]; if ((*dimensions)[indexed_dim] == output_dim) { index_array_start_dim[indexed_dim] = input_dim; const auto& array = index_arrays[indexed_dim]; MutableBoxView<>(input_origin.subspan(input_dim, array.rank()), input_shape.subspan(input_dim, array.rank())) .DeepAssign(array.domain()); const DimensionIndex end_input_dim = input_dim + array.rank(); if (array.num_elements() == 1) { map.SetConstant(); map.offset() = *array.data(); map.stride() = 0; } else { auto& index_array_data = map.SetArrayIndexing(input_rank); index_array_data.element_pointer = array.element_pointer(); std::fill_n(index_array_data.byte_strides, input_dim, 0); std::copy(array.byte_strides().begin(), array.byte_strides().end(), index_array_data.byte_strides + input_dim); std::fill(index_array_data.byte_strides + end_input_dim, index_array_data.byte_strides + input_rank, 0); } input_dim = end_input_dim; ++reordered_indexed_dim; continue; } } result->input_dimension(input_dim) = orig_transform->input_dimension(output_dim); map.SetSingleInputDimension(input_dim); ++input_dim; } if (IsDomainExplicitlyEmpty(result.get())) { ReplaceAllIndexArrayMapsWithConstantMaps(result.get()); } dimensions->clear(); dimensions->reserve(input_rank - output_rank); for (DimensionIndex indexed_dim = 0; indexed_dim < num_indexed_dims; ++indexed_dim) { const DimensionIndex start_input_dim = index_array_start_dim[indexed_dim]; for (DimensionIndex input_dim = start_input_dim, end_input_dim = start_input_dim + index_arrays[indexed_dim].rank(); input_dim != end_input_dim; ++input_dim) { dimensions->push_back(input_dim); } } internal_index_space::DebugCheckInvariants(result.get()); return result; } Result<TransformRep::Ptr<>> MakeTransformFromIndexVectorArray( TransformRep* orig_transform, DimensionIndexBuffer* dimensions, DimensionIndex vector_dimension, const SharedArrayView<const Index>& index_vector_array) { TENSORSTORE_ASSIGN_OR_RETURN( vector_dimension, NormalizeDimensionIndex(vector_dimension, index_vector_array.rank())); const DimensionIndex num_indexed_dims = dimensions->size(); if (index_vector_array.shape()[vector_dimension] != num_indexed_dims) { return absl::InvalidArgumentError( tensorstore::StrCat("Number of selected dimensions (", num_indexed_dims, ") does not equal index vector length (", index_vector_array.shape()[vector_dimension], ")")); } const DimensionIndex num_new_dims = index_vector_array.rank() - 1; const auto get_index_vector_array_dim = [&](DimensionIndex new_dim) { return new_dim >= vector_dimension ? new_dim + 1 : new_dim; }; const auto get_new_dimension_bounds = [&](DimensionIndex new_dim) { return index_vector_array.domain()[get_index_vector_array_dim(new_dim)]; }; const auto get_index_array_base_pointer = [&](DimensionIndex indexed_dim) { return std::shared_ptr<const Index>( index_vector_array.pointer(), index_vector_array.byte_strided_pointer() + index_vector_array.byte_strides()[vector_dimension] * indexed_dim); }; const auto get_index_array_byte_stride = [&](DimensionIndex indexed_dim, DimensionIndex new_dim) { const DimensionIndex index_vector_array_dim = get_index_vector_array_dim(new_dim); return index_vector_array.shape()[index_vector_array_dim] == 1 ? 0 : index_vector_array.byte_strides()[index_vector_array_dim]; }; return MakeTransformFromJointIndexArrays( num_new_dims, orig_transform, dimensions, get_new_dimension_bounds, get_index_array_base_pointer, get_index_array_byte_stride); } } Result<IndexTransform<>> ApplyIndexArraySlice( IndexTransform<> transform, DimensionIndexBuffer* dimensions, span<const SharedArrayView<const Index>> index_arrays, bool outer_indexing, bool domain_only) { TENSORSTORE_ASSIGN_OR_RETURN( auto other_transform, outer_indexing ? MakeTransformFromOuterIndexArrays(TransformAccess::rep(transform), dimensions, index_arrays) : MakeTransformFromIndexArrays(TransformAccess::rep(transform), dimensions, index_arrays)); TENSORSTORE_ASSIGN_OR_RETURN( auto new_rep, ComposeTransforms(TransformAccess::rep(transform), false, other_transform.get(), true, domain_only)); return TransformAccess::Make<IndexTransform<>>(std::move(new_rep)); } Result<IndexTransform<>> ApplyIndexVectorArraySlice( IndexTransform<> transform, DimensionIndexBuffer* dimensions, DimensionIndex vector_dimension, const SharedArrayView<const Index>& index_vector_array, bool domain_only) { TENSORSTORE_ASSIGN_OR_RETURN(auto other_transform, MakeTransformFromIndexVectorArray( TransformAccess::rep(transform), dimensions, vector_dimension, index_vector_array)); TENSORSTORE_ASSIGN_OR_RETURN( auto new_rep, ComposeTransforms(TransformAccess::rep(transform), false, other_transform.get(), true, domain_only)); return TransformAccess::Make<IndexTransform<>>(std::move(new_rep)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" #include "tensorstore/util/status.h" namespace { using ::tensorstore::AllDims; using ::tensorstore::DimensionIndex; using ::tensorstore::Dims; using ::tensorstore::Index; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::MakeArray; using ::tensorstore::SharedArrayView; using ::tensorstore::span; using ::tensorstore::internal_index_space::EquivalentIndices; using ::tensorstore::internal_index_space::TestDimExpression; TEST(IndexArraySliceTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({0, 2, 0}) .input_shape({7, 4, 10}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({0, 0, 2}) .input_shape({2, 3, 4}) .input_labels({"", "", "y"}) .output_index_array( 0, 0, 1, MakeArray<Index>({{{1}, {2}, {3}}, {{4}, {5}, {6}}}), IndexInterval::Sized(0, 7)) .output_single_input_dimension(1, 2) .output_index_array( 2, 0, 1, MakeArray<Index>({{{7}, {8}, {9}}, {{0}, {1}, {2}}}), IndexInterval::Sized(0, 10)) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{1, 3, 7}, {0, 0, 3}}, {{2, 3, 8}, {0, 1, 3}}, {{3, 3, 9}, {0, 2, 3}}, {{6, 3, 2}, {1, 2, 3}}, }; TestDimExpression( original_transform, Dims(0, 2).IndexArraySlice(MakeArray<Index>({{1, 2, 3}, {4, 5, 6}}), MakeArray<Index>({{7, 8, 9}, {0, 1, 2}})), {0, 1}, expected_new_transform, expected_new_transform, equivalent_indices, false); TestDimExpression( original_transform, Dims("x", "z").IndexArraySlice(MakeArray<Index>({{1, 2, 3}, {4, 5, 6}}), MakeArray<Index>({{7, 8, 9}, {0, 1, 2}})), {0, 1}, expected_new_transform, expected_new_transform, equivalent_indices, false); } TEST(IndexVectorArraySliceTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({0, 2, 0}) .input_shape({7, 4, 10}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({0, 0, 2}) .input_shape({2, 3, 4}) .input_labels({"", "", "y"}) .output_index_array( 0, 0, 1, MakeArray<Index>({{{1}, {2}, {3}}, {{4}, {5}, {6}}}), IndexInterval::Sized(0, 7)) .output_single_input_dimension(1, 2) .output_index_array( 2, 0, 1, MakeArray<Index>({{{7}, {8}, {9}}, {{0}, {1}, {2}}}), IndexInterval::Sized(0, 10)) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{2, 3, 8}, {0, 1, 3}}, {{6, 3, 2}, {1, 2, 3}}, }; TestDimExpression(original_transform, Dims(0, 2).IndexVectorArraySlice( MakeArray<Index>({{{1, 7}, {2, 8}, {3, 9}}, {{4, 0}, {5, 1}, {6, 2}}}), -1), {0, 1}, expected_new_transform, expected_new_transform, equivalent_indices, false); TestDimExpression(original_transform, Dims("x", "z").IndexVectorArraySlice( MakeArray<Index>({{{1, 7}, {2, 8}, {3, 9}}, {{4, 0}, {5, 1}, {6, 2}}}), -1), {0, 1}, expected_new_transform, expected_new_transform, equivalent_indices, false); } TEST(IndexArrayOuterIndexArraySliceTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({4, 2, 0}) .input_shape({5, 4, 10}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<4, 3>() .input_origin({0, 2, 0, 0}) .input_shape({2, 4, 2, 2}) .input_labels({"", "y", "", ""}) .output_index_array(0, 0, 1, MakeArray<Index>({{{{6}}}, {{{7}}}}), IndexInterval::Sized(4, 5)) .output_single_input_dimension(1, 1) .output_index_array(2, 0, 1, MakeArray<Index>({{{{2, 3}, {4, 5}}}}), IndexInterval::Sized(0, 10)) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{6, 3, 3}, {0, 3, 0, 1}}, {{7, 3, 4}, {1, 3, 1, 0}}, }; TestDimExpression( original_transform, Dims(2, 0).OuterIndexArraySlice(MakeArray<Index>({{2, 3}, {4, 5}}), MakeArray<Index>({6, 7})), {2, 3, 0}, expected_new_transform, expected_new_transform, equivalent_indices, false); TestDimExpression( original_transform, Dims("z", "x").OuterIndexArraySlice(MakeArray<Index>({{2, 3}, {4, 5}}), MakeArray<Index>({6, 7})), {2, 3, 0}, expected_new_transform, expected_new_transform, equivalent_indices, false); } TEST(IndexArraySliceTest, OneDOutputOneDArray) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_origin({-10, -100}) .input_shape({20, 200}) .output_single_input_dimension(0, -2, -3, 0) .output_single_input_dimension(1, 10, 11, 1) .Finalize() .value(), Dims(0).IndexArraySlice(MakeArray<Index>({1, 2})), {0}, IndexTransformBuilder<2, 2>() .input_origin({0, -100}) .input_shape({2, 200}) .output_index_array(0, 0, 1, MakeArray<Index>({{1}, {2}}), IndexInterval::Sized(-10, 20)) .output_single_input_dimension(1, 1) .Finalize() .value(), IndexTransformBuilder<2, 2>() .input_origin({0, -100}) .input_shape({2, 200}) .output_index_array(0, -2, -3, MakeArray<Index>({{1}, {2}}), IndexInterval::Sized(-10, 20)) .output_single_input_dimension(1, 10, 11, 1) .Finalize() .value(), {{{1, 5}, {0, 5}}, {{2, 5}, {1, 5}}}, false); } TEST(IndexArraySliceTest, ZeroElementIndexArray) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_origin({-10, -100}) .input_shape({20, 200}) .output_single_input_dimension(0, -2, -3, 0) .output_single_input_dimension(1, 10, 11, 1) .Finalize() .value(), Dims(0).IndexArraySlice( tensorstore::AllocateArray<Index>({5, 0, 3})), {0, 1, 2}, IndexTransformBuilder<4, 2>() .input_origin({0, 0, 0, -100}) .input_shape({5, 0, 3, 200}) .output_constant(0, 0) .output_single_input_dimension(1, 3) .Finalize() .value(), IndexTransformBuilder<4, 2>() .input_origin({0, 0, 0, -100}) .input_shape({5, 0, 3, 200}) .output_constant(0, -2) .output_single_input_dimension(1, 10, 11, 3) .Finalize() .value(), {}, false); } TEST(IndexArraySliceTest, OneElementIndexArray) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_origin({-10, -100}) .input_shape({20, 200}) .output_single_input_dimension(0, -2, -3, 0) .output_single_input_dimension(1, 10, 11, 1) .Finalize() .value(), Dims(0).IndexArraySlice(MakeArray<Index>({{5}})), {0, 1}, IndexTransformBuilder<3, 2>() .input_origin({0, 0, -100}) .input_shape({1, 1, 200}) .output_constant(0, 5) .output_single_input_dimension(1, 2) .Finalize() .value(), IndexTransformBuilder<3, 2>() .input_origin({0, 0, -100}) .input_shape({1, 1, 200}) .output_constant(0, -17) .output_single_input_dimension(1, 10, 11, 2) .Finalize() .value(), {{{5, 6}, {0, 0, 6}}}, false); } TEST(IndexArraySliceTest, OneDOutputOneDArrayLabeled) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_origin({-10, -100}) .input_shape({20, 200}) .input_labels({"x", "y"}) .output_single_input_dimension(0, -2, -3, 0) .output_single_input_dimension(1, 10, 11, 1) .Finalize() .value(), Dims(0) .IndexArraySlice(MakeArray<Index>({1, 2})) .Label("index"), {0}, IndexTransformBuilder<2, 2>() .input_origin({0, -100}) .input_shape({2, 200}) .input_labels({"index", "y"}) .output_index_array(0, 0, 1, MakeArray<Index>({{1}, {2}}), IndexInterval::Sized(-10, 20)) .output_single_input_dimension(1, 1) .Finalize() .value(), IndexTransformBuilder<2, 2>() .input_origin({0, -100}) .input_shape({2, 200}) .input_labels({"index", "y"}) .output_index_array(0, -2, -3, MakeArray<Index>({{1}, {2}}), IndexInterval::Sized(-10, 20)) .output_single_input_dimension(1, 10, 11, 1) .Finalize() .value(), {{{1, 5}, {0, 5}}, {{2, 5}, {1, 5}}}, false); } TEST(IndexArraySliceTest, TwoDOutputOneDArray) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_origin({-10, -2}) .input_shape({20, 15}) .output_single_input_dimension(0, -2, -3, 0) .output_single_input_dimension(1, -4, 2, 1) .Finalize() .value(), AllDims() .IndexArraySlice(MakeArray<Index>({1, 2}), MakeArray<Index>({3, 4})) .Label("index"), {0}, IndexTransformBuilder<1, 2>() .input_origin({0}) .input_shape({2}) .input_labels({"index"}) .output_index_array(0, 0, 1, MakeArray<Index>({1, 2}), IndexInterval::Sized(-10, 20)) .output_index_array(1, 0, 1, MakeArray<Index>({3, 4}), IndexInterval::Sized(-2, 15)) .Finalize() .value(), IndexTransformBuilder<1, 2>() .input_origin({0}) .input_shape({2}) .input_labels({"index"}) .output_index_array(0, -2, -3, MakeArray<Index>({1, 2}), IndexInterval::Sized(-10, 20)) .output_index_array(1, -4, 2, MakeArray<Index>({3, 4}), IndexInterval::Sized(-2, 15)) .Finalize() .value(), {{{1, 3}, {0}}, {{2, 4}, {1}}}, false); } TEST(IndexArraySliceTest, TwoDOutputOneDArrayBroadcast) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_origin({-10, -2}) .input_shape({20, 15}) .output_single_input_dimension(0, -2, -3, 0) .output_single_input_dimension(1, -4, 2, 1) .Finalize() .value(), AllDims().IndexArraySlice(MakeArray<Index>({{1, 2}}), MakeArray<Index>({{3}, {4}})), {0, 1}, IndexTransformBuilder<2, 2>() .input_origin({0, 0}) .input_shape({2, 2}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2}}), IndexInterval::Sized(-10, 20)) .output_index_array(1, 0, 1, MakeArray<Index>({{3}, {4}}), IndexInterval::Sized(-2, 15)) .Finalize() .value(), IndexTransformBuilder<2, 2>() .input_origin({0, 0}) .input_shape({2, 2}) .output_index_array(0, -2, -3, MakeArray<Index>({{1, 2}}), IndexInterval::Sized(-10, 20)) .output_index_array(1, -4, 2, MakeArray<Index>({{3}, {4}}), IndexInterval::Sized(-2, 15)) .Finalize() .value(), {{{1, 3}, {0, 0}}, {{1, 4}, {1, 0}}, {{2, 4}, {1, 1}}}, false); } TEST(IndexArraySliceTest, ErrorHandling) { TestDimExpressionError( IndexTransformBuilder<2, 0>().Finalize().value(), Dims(span<const DimensionIndex>({0})) .IndexArraySlice(MakeArray<Index>({1, 2}), MakeArray<Index>({3, 4})), absl::StatusCode::kInvalidArgument, "Number of selected dimensions \\(1\\) does not equal number of index " "arrays \\(2\\)"); TestDimExpressionError( IndexTransformBuilder<1, 0>().Finalize().value(), Dims(span<const DimensionIndex>()) .IndexArraySlice(span<const SharedArrayView<const Index>>()), absl::StatusCode::kInvalidArgument, "At least one index array must be specified"); TestDimExpressionError( IndexTransformBuilder<2, 0>().Finalize().value(), Dims(0, 1).IndexArraySlice(MakeArray<Index>({1, 2}), MakeArray<Index>({3, 4, 5})), absl::StatusCode::kInvalidArgument, "Index arrays with shapes \\{2\\}, \\{3\\} cannot be broadcast " "to a common shape"); } TEST(IndexArraySliceTest, InvalidRank) { auto index_array = tensorstore::AllocateArray<Index>( std::vector<Index>(32, 1), tensorstore::c_order, tensorstore::value_init); TestDimExpressionError(tensorstore::IdentityTransform(2), Dims(0).IndexArraySlice(index_array), absl::StatusCode::kInvalidArgument, "Rank 33 is outside valid range \\[0, 32\\]"); } TEST(IndexVectorArraySliceTest, OneDOutputOneDArray) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_origin({-10, -100}) .input_shape({20, 200}) .output_single_input_dimension(0, -2, -3, 0) .output_single_input_dimension(1, 10, 11, 1) .Finalize() .value(), Dims(0).IndexVectorArraySlice(MakeArray<Index>({{1, 2}}), 0), {0}, IndexTransformBuilder<2, 2>() .input_origin({0, -100}) .input_shape({2, 200}) .output_index_array(0, 0, 1, MakeArray<Index>({{1}, {2}}), IndexInterval::Sized(-10, 20)) .output_single_input_dimension(1, 1) .Finalize() .value(), IndexTransformBuilder<2, 2>() .input_origin({0, -100}) .input_shape({2, 200}) .output_index_array(0, -2, -3, MakeArray<Index>({{1}, {2}}), IndexInterval::Sized(-10, 20)) .output_single_input_dimension(1, 10, 11, 1) .Finalize() .value(), {{{1, 5}, {0, 5}}, {{2, 5}, {1, 5}}}, false); } TEST(IndexVectorArraySliceTest, OneElementIndexArray) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_origin({-10, -100}) .input_shape({20, 200}) .output_single_input_dimension(0, -2, -3, 0) .output_single_input_dimension(1, 10, 11, 1) .Finalize() .value(), Dims(0).IndexVectorArraySlice(MakeArray<Index>({{1}}), 0), {0}, IndexTransformBuilder<2, 2>() .input_origin({0, -100}) .input_shape({1, 200}) .output_constant(0, 1) .output_single_input_dimension(1, 1) .Finalize() .value(), IndexTransformBuilder<2, 2>() .input_origin({0, -100}) .input_shape({1, 200}) .output_constant(0, -5) .output_single_input_dimension(1, 10, 11, 1) .Finalize() .value(), {{{1, 5}, {0, 5}}}, false); } TEST(IndexVectorArraySliceTest, OneDOutputOneDArrayLabeled) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_origin({-10, -100}) .input_shape({20, 200}) .input_labels({"x", "y"}) .output_single_input_dimension(0, -2, -3, 0) .output_single_input_dimension(1, 10, 11, 1) .Finalize() .value(), Dims(0) .IndexVectorArraySlice(MakeArray<Index>({{1, 2}}), 0) .Label("index"), {0}, IndexTransformBuilder<2, 2>() .input_origin({0, -100}) .input_shape({2, 200}) .input_labels({"index", "y"}) .output_index_array(0, 0, 1, MakeArray<Index>({{1}, {2}}), IndexInterval::Sized(-10, 20)) .output_single_input_dimension(1, 1) .Finalize() .value(), IndexTransformBuilder<2, 2>() .input_origin({0, -100}) .input_shape({2, 200}) .input_labels({"index", "y"}) .output_index_array(0, -2, -3, MakeArray<Index>({{1}, {2}}), IndexInterval::Sized(-10, 20)) .output_single_input_dimension(1, 10, 11, 1) .Finalize() .value(), {{{1, 5}, {0, 5}}, {{2, 5}, {1, 5}}}, false); } TEST(IndexVectorArraySliceTest, TwoDOutputOneDArray) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_origin({-10, -2}) .input_shape({20, 15}) .output_single_input_dimension(0, -2, -3, 0) .output_single_input_dimension(1, -4, 2, 1) .Finalize() .value(), AllDims() .IndexVectorArraySlice( MakeArray<Index>({{1, 3}, {2, 4}}), -1) .Label("index"), {0}, IndexTransformBuilder<1, 2>() .input_origin({0}) .input_shape({2}) .input_labels({"index"}) .output_index_array(0, 0, 1, MakeArray<Index>({1, 2}), IndexInterval::Sized(-10, 20)) .output_index_array(1, 0, 1, MakeArray<Index>({3, 4}), IndexInterval::Sized(-2, 15)) .Finalize() .value(), IndexTransformBuilder<1, 2>() .input_origin({0}) .input_shape({2}) .input_labels({"index"}) .output_index_array(0, -2, -3, MakeArray<Index>({1, 2}), IndexInterval::Sized(-10, 20)) .output_index_array(1, -4, 2, MakeArray<Index>({3, 4}), IndexInterval::Sized(-2, 15)) .Finalize() .value(), {{{1, 3}, {0}}, {{2, 4}, {1}}}, false); } TEST(IndexVectorArraySliceTest, ErrorHandling) { TestDimExpressionError( IndexTransformBuilder<2, 0>().Finalize().value(), Dims(0).IndexVectorArraySlice(MakeArray<Index>({1, 2}), 0), absl::StatusCode::kInvalidArgument, "Number of selected dimensions \\(1\\) does not equal index vector " "length \\(2\\)"); TestDimExpressionError( IndexTransformBuilder<2, 0>().Finalize().value(), Dims(0).IndexVectorArraySlice(MakeArray<Index>({1, 2}), 1), absl::StatusCode::kInvalidArgument, "Dimension index 1 is outside valid range \\[-1, 1\\)"); } TEST(IndexVectorArraySliceTest, InvalidRank) { TestDimExpressionError( tensorstore::IdentityTransform(4), Dims(0, 1).IndexVectorArraySlice( tensorstore::AllocateArray<Index>({1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2}, tensorstore::c_order, tensorstore::default_init), -1), absl::StatusCode::kInvalidArgument, "Rank 33 is outside valid range \\[0, 32\\]"); } TEST(OuterIndexArraySliceTest, Integration) { TestDimExpression( IndexTransformBuilder<3, 3>() .input_origin({-10, -100, -2}) .input_shape({21, 200, 15}) .output_single_input_dimension(0, -2, -3, 0) .output_single_input_dimension(1, 6, 5, 1) .output_single_input_dimension(2, -4, 2, 2) .Finalize() .value(), Dims(0, 2).OuterIndexArraySlice( MakeArray<Index>({{3, 4, 5}, {8, 9, 10}}), MakeArray<Index>({1, 2})), {0, 1, 3}, IndexTransformBuilder<4, 3>() .input_origin({0, 0, -100, 0}) .input_shape({2, 3, 200, 2}) .output_index_array( 0, 0, 1, MakeArray<Index>({{{{3}}, {{4}}, {{5}}}, {{{8}}, {{9}}, {{10}}}}), IndexInterval::Sized(-10, 21)) .output_single_input_dimension(1, 2) .output_index_array(2, 0, 1, MakeArray<Index>({{{{1, 2}}}}), IndexInterval::Sized(-2, 15)) .Finalize() .value(), IndexTransformBuilder<4, 3>() .input_origin({0, 0, -100, 0}) .input_shape({2, 3, 200, 2}) .output_index_array( 0, -2, -3, MakeArray<Index>({{{{3}}, {{4}}, {{5}}}, {{{8}}, {{9}}, {{10}}}}), IndexInterval::Sized(-10, 21)) .output_single_input_dimension(1, 6, 5, 2) .output_index_array(2, -4, 2, MakeArray<Index>({{{{1, 2}}}}), IndexInterval::Sized(-2, 15)) .Finalize() .value(), {{{3, 5, 1}, {0, 0, 5, 0}}, {{9, 5, 2}, {1, 1, 5, 1}}, {{8, 5, 2}, {1, 0, 5, 1}}, {{10, 5, 2}, {1, 2, 5, 1}}}, false); } TEST(OuterIndexArraySliceTest, OneElementIndexArray) { TestDimExpression( IndexTransformBuilder<3, 3>() .input_origin({-10, -100, -2}) .input_shape({21, 200, 15}) .output_single_input_dimension(0, -2, -3, 0) .output_single_input_dimension(1, 6, 5, 1) .output_single_input_dimension(2, -4, 2, 2) .Finalize() .value(), Dims(0, 2).OuterIndexArraySlice( MakeArray<Index>({{3, 4, 5}, {8, 9, 10}}), MakeArray<Index>({1})), {0, 1, 3}, IndexTransformBuilder<4, 3>() .input_origin({0, 0, -100, 0}) .input_shape({2, 3, 200, 1}) .output_index_array( 0, 0, 1, MakeArray<Index>({{{{3}}, {{4}}, {{5}}}, {{{8}}, {{9}}, {{10}}}}), IndexInterval::Sized(-10, 21)) .output_single_input_dimension(1, 2) .output_constant(2, 1) .Finalize() .value(), IndexTransformBuilder<4, 3>() .input_origin({0, 0, -100, 0}) .input_shape({2, 3, 200, 1}) .output_index_array( 0, -2, -3, MakeArray<Index>({{{{3}}, {{4}}, {{5}}}, {{{8}}, {{9}}, {{10}}}}), IndexInterval::Sized(-10, 21)) .output_single_input_dimension(1, 6, 5, 2) .output_constant(2, -2) .Finalize() .value(), {{{3, 5, 1}, {0, 0, 5, 0}}}, false); } TEST(OuterIndexArraySliceTest, ErrorHandling) { TestDimExpressionError( IndexTransformBuilder<2, 0>().Finalize().value(), Dims(span<const DimensionIndex>({0})) .OuterIndexArraySlice(MakeArray<Index>({1, 2}), MakeArray<Index>({3, 4})), absl::StatusCode::kInvalidArgument, "Number of selected dimensions \\(1\\) does not equal number of index " "arrays \\(2\\)"); } TEST(OuterIndexArraySliceTest, InvalidRank) { auto index_array = tensorstore::AllocateArray<Index>( std::vector<Index>(17, 1), tensorstore::c_order, tensorstore::value_init); TestDimExpressionError( tensorstore::IdentityTransform(2), Dims(0, 1).OuterIndexArraySlice(index_array, index_array), absl::StatusCode::kInvalidArgument, "Rank 34 is outside valid range \\[0, 32\\]"); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/internal/index_array_slice_op.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/index_array_slice_op_test.cc
4f887a6430414cd6088e1743555015b10f116d50
f8ba3194-ffe1-415c-af89-f97e6987e7a8
cpp
google/tensorstore
transform_array
tensorstore/index_space/internal/transform_array.cc
tensorstore/index_space/transform_array_test.cc
#include "tensorstore/index_space/internal/transform_array.h" #include "absl/status/status.h" #include "tensorstore/index_space/internal/iterate_impl.h" #include "tensorstore/index_space/internal/propagate_bounds.h" #include "tensorstore/index_space/internal/transform_rep_impl.h" namespace tensorstore { namespace internal_index_space { Result<SharedElementPointer<const void>> TransformArraySubRegion( const SharedArrayView<const void, dynamic_rank, offset_origin>& array, TransformRep* transform, const Index* result_origin, const Index* result_shape, Index* result_byte_strides, TransformArrayConstraints constraints) { const DimensionIndex input_rank = transform ? transform->input_rank : array.rank(); for (DimensionIndex i = 0; i < input_rank; ++i) { if (result_shape[i] == 0) { std::fill_n(result_byte_strides, input_rank, 0); return SharedElementPointer<const void>(std::shared_ptr<const void>(), array.dtype()); } } namespace flags = input_dimension_iteration_flags; flags::Bitmask input_dimension_flags[kMaxRank]; std::fill_n( &input_dimension_flags[0], input_rank, flags::GetDefaultBitmask(constraints.repeated_elements_constraint())); SingleArrayIterationState single_array_states[2]; TENSORSTORE_RETURN_IF_ERROR( internal_index_space::InitializeSingleArrayIterationState( array, transform, result_origin, result_shape, &single_array_states[0], &input_dimension_flags[0])); if (single_array_states[0].num_array_indexed_output_dimensions == 0) { if (constraints.allocate_constraint() != must_allocate) { std::copy_n(&single_array_states[0].input_byte_strides[0], input_rank, result_byte_strides); return SharedElementPointer<void>( std::shared_ptr<void>(array.pointer(), single_array_states[0].base_pointer), array.element_pointer().dtype()); } const StridedLayoutView<> source_layout( input_rank, result_shape, &single_array_states[0].input_byte_strides[0]); const StridedLayoutView<> new_layout(input_rank, result_shape, result_byte_strides); auto element_pointer = internal::AllocateArrayLike( array.element_pointer().dtype(), source_layout, result_byte_strides, constraints.iteration_constraints(), default_init); CopyArray(ArrayView<const void>( ElementPointer<void>(single_array_states[0].base_pointer, array.element_pointer().dtype()), source_layout), ArrayView<void>(element_pointer, new_layout)); return element_pointer; } MarkSingletonDimsAsSkippable(span(result_shape, input_rank), &input_dimension_flags[0]); SharedElementPointer<void> new_element_pointer; if (constraints.order_constraint()) { Index new_shape[kMaxRank]; for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { new_shape[input_dim] = input_dimension_flags[input_dim] == flags::can_skip ? 1 : result_shape[input_dim]; } ComputeStrides(constraints.order_constraint().order(), array.dtype()->size, span<const Index>(&new_shape[0], input_rank), span(result_byte_strides, input_rank)); for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { if (new_shape[input_dim] <= 1) result_byte_strides[input_dim] = 0; } const Index new_origin_offset = IndexInnerProduct(input_rank, result_byte_strides, result_origin); new_element_pointer = internal::AllocateAndConstructSharedElements( ProductOfExtents(span<const Index>(new_shape, input_rank)), default_init, array.dtype()); const absl::Status init_status = internal_index_space::InitializeSingleArrayIterationState( ArrayView<void, dynamic_rank, offset_origin>( AddByteOffset(ElementPointer<void>(new_element_pointer), -new_origin_offset), StridedLayoutView<dynamic_rank, offset_origin>( input_rank, result_origin, &new_shape[0], result_byte_strides)), nullptr, result_origin, result_shape, &single_array_states[1], &input_dimension_flags[0]); assert(init_status.ok()); } DimensionIterationOrder base_layout = constraints.order_constraint() ? ComputeDimensionIterationOrder<2>( single_array_states, span(input_dimension_flags).first(input_rank), {}) : ComputeDimensionIterationOrder<1>( {&single_array_states[0], 1}, span(input_dimension_flags).first(input_rank), {}); if (!constraints.order_constraint()) { Index new_shape[kMaxRank]; Index new_byte_strides[kMaxRank]; for (DimensionIndex i = 0; i < base_layout.pure_strided_end_dim; ++i) { const DimensionIndex input_dim = base_layout.input_dimension_order[i]; new_shape[i] = result_shape[input_dim]; } std::fill_n(result_byte_strides, input_rank, 0); ComputeStrides( ContiguousLayoutOrder::c, array.dtype()->size, span<const Index>(&new_shape[0], base_layout.pure_strided_end_dim), span<Index>(&new_byte_strides[0], base_layout.pure_strided_end_dim)); for (DimensionIndex i = 0; i < base_layout.pure_strided_end_dim; ++i) { const DimensionIndex input_dim = base_layout.input_dimension_order[i]; result_byte_strides[input_dim] = new_byte_strides[i]; } new_element_pointer = internal::AllocateAndConstructSharedElements( ProductOfExtents( span<const Index>(&new_shape[0], base_layout.pure_strided_end_dim)), default_init, array.dtype()); const Index new_origin_offset = IndexInnerProduct(input_rank, result_byte_strides, result_origin); const absl::Status init_status = internal_index_space::InitializeSingleArrayIterationState( ArrayView<void, dynamic_rank, offset_origin>( AddByteOffset(ElementPointer<void>(new_element_pointer), -new_origin_offset), StridedLayoutView<dynamic_rank, offset_origin>( input_rank, result_origin, &new_shape[0], result_byte_strides)), nullptr, result_origin, result_shape, &single_array_states[1], &input_dimension_flags[0]); assert(init_status.ok()); } SimplifiedDimensionIterationOrder layout = SimplifyDimensionIterationOrder<2>( base_layout, span(result_shape, input_rank), single_array_states); const std::array<std::ptrdiff_t, 2> element_sizes{array.dtype()->size, array.dtype()->size}; [[maybe_unused]] const bool success = IterateUsingSimplifiedLayout<2>( layout, span(result_shape, input_rank), {&array.dtype()->copy_assign, nullptr}, nullptr, single_array_states, element_sizes); assert(success); return new_element_pointer; } Result<SharedElementPointer<const void>> TransformArrayPreservingOrigin( SharedArrayView<const void, dynamic_rank, offset_origin> array, TransformRep* transform, Index* result_origin, Index* result_shape, Index* result_byte_strides, TransformArrayConstraints constraints) { const DimensionIndex input_rank = transform ? transform->input_rank : array.rank(); TENSORSTORE_RETURN_IF_ERROR(PropagateExplicitBounds( array.domain(), transform, MutableBoxView<>(input_rank, result_origin, result_shape))); TENSORSTORE_ASSIGN_OR_RETURN( auto element_pointer, TransformArraySubRegion(array, transform, result_origin, result_shape, result_byte_strides, constraints)); return AddByteOffset(std::move(element_pointer), -IndexInnerProduct(transform->input_rank, result_byte_strides, result_origin)); } Result<SharedElementPointer<const void>> TransformArrayDiscardingOrigin( SharedArrayView<const void, dynamic_rank, offset_origin> array, TransformRep* transform, Index* result_shape, Index* result_byte_strides, TransformArrayConstraints constraints) { const DimensionIndex input_rank = transform ? transform->input_rank : array.rank(); Index result_origin[kMaxRank]; TENSORSTORE_RETURN_IF_ERROR(PropagateExplicitBounds( array.domain(), transform, MutableBoxView<>(input_rank, &result_origin[0], result_shape))); return TransformArraySubRegion(array, transform, &result_origin[0], result_shape, result_byte_strides, constraints); } } }
#include "tensorstore/index_space/internal/transform_array.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::IdentityTransform; using ::tensorstore::Index; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::IndexTransformView; using ::tensorstore::MakeArray; using ::tensorstore::MakeOffsetArray; using ::tensorstore::MatchesStatus; TEST(TransformArrayTest, OneDimensionalIdentity) { auto original_array = tensorstore::MakeArray<int>({1, 2, 3, 4}); auto new_array = tensorstore::TransformArray(original_array, IdentityTransform<1>()) .value(); EXPECT_EQ(original_array, new_array); } TEST(TransformArrayTest, OneDimensionalIdentityWithOrigin) { auto original_array = tensorstore::MakeOffsetArray<int>({5}, {1, 2, 3, 4}); auto new_array = tensorstore::TransformArray(original_array, IdentityTransform<1>()) .value(); EXPECT_EQ(original_array, new_array); } TEST(TransformArrayTest, OneDimensionalSliceUnstrided) { auto original_array = tensorstore::MakeArray<int>({1, 2, 3, 4}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({2}) .output_single_input_dimension(0, 0) .Finalize() .value()) .value(); EXPECT_EQ(&original_array(1), &new_array(1)); EXPECT_EQ(MakeOffsetArray<int>({1}, {2, 3}), new_array); } TEST(TransformArrayTest, OneDimensionalSliceUnstridedWithOrigin) { auto original_array = tensorstore::MakeOffsetArray<int>({5}, {1, 2, 3, 4}); auto new_array = tensorstore::TransformArray(original_array, IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({2}) .output_single_input_dimension(0, 5, 1, 0) .Finalize() .value()) .value(); EXPECT_EQ(&original_array(6), &new_array(1)); EXPECT_EQ(MakeOffsetArray<int>({1}, {2, 3}), new_array); } TEST(TransformArrayTest, OneDimensionalSliceStrided) { auto original_array = tensorstore::MakeArray<int>({1, 2, 3, 4}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({2}) .output_single_input_dimension(0, -1, 2, 0) .Finalize() .value()) .value(); EXPECT_EQ(&original_array(1), &new_array(1)); EXPECT_EQ(MakeOffsetArray<int>({1}, {2, 4}), new_array); } TEST(TransformArrayTest, OneDimensionalSliceStridedWithOrigin) { auto original_array = tensorstore::MakeOffsetArray<int>({5}, {1, 2, 3, 4}); auto new_array = tensorstore::TransformArray(original_array, IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({2}) .output_single_input_dimension(0, 4, 2, 0) .Finalize() .value()) .value(); EXPECT_EQ(&original_array(6), &new_array(1)); EXPECT_EQ(MakeOffsetArray<int>({1}, {2, 4}), new_array); } TEST(TransformArrayTest, OneDArrayOneDIndexArray) { auto original_array = tensorstore::MakeArray<int>({1, 2, 3, 4}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<1, 1>() .input_origin({2}) .input_shape({4}) .output_index_array(0, 1, 1, MakeArray<Index>({0, 2, 2, 1})) .Finalize() .value()) .value(); EXPECT_EQ(MakeOffsetArray<int>({2}, {2, 4, 4, 3}), new_array); } TEST(TransformArrayTest, OneDArrayOneDIndexArray1025) { constexpr Index kSize = 1025; auto index_array = tensorstore::AllocateArray<Index>({kSize}); for (Index i = 0; i < kSize; ++i) index_array(i) = i; auto new_array = tensorstore::TransformArray(index_array, IndexTransformBuilder<1, 1>() .input_shape({kSize}) .output_index_array(0, 0, 1, index_array) .Finalize() .value()) .value(); EXPECT_EQ(index_array, new_array); } TEST(TransformArrayTest, TwoDArrayOneDIndexArrayRetainZeroStride) { auto index_array = tensorstore::MakeArray<Index>({0, 1, 2, 3, 4}); tensorstore::SharedArray<Index, 2> index_array2; index_array2.element_pointer() = index_array.element_pointer(); index_array2.shape()[0] = 5; index_array2.shape()[1] = 2; index_array2.byte_strides()[0] = index_array.byte_strides()[0]; index_array2.byte_strides()[1] = 0; EXPECT_EQ(index_array2, MakeArray<Index>({{0, 0}, {1, 1}, {2, 2}, {3, 3}, {4, 4}})); auto new_array = tensorstore::TransformArray(index_array2, IndexTransformBuilder<2, 2>() .input_shape({5, 2}) .output_index_array(0, 0, 1, index_array2) .output_single_input_dimension(1, 1) .Finalize() .value()) .value(); EXPECT_EQ(index_array2, new_array); EXPECT_EQ(index_array2.layout(), new_array.layout()); } TEST(TransformArrayTest, IndexArrayBoundsOverflow) { auto original_array = tensorstore::MakeOffsetArray<int>({5}, {1, 2, 3, 4}); EXPECT_THAT(tensorstore::TransformArray( original_array, IndexTransformBuilder<1, 1>() .input_origin({2}) .input_shape({4}) .output_index_array(0, std::numeric_limits<Index>::min(), 1, MakeArray<Index>({0, 2, 2, 1})) .Finalize() .value()) .status(), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*Integer overflow propagating range.*")); } TEST(TransformArrayTest, OneDArrayOneDIndexArrayWithOrigin) { auto original_array = tensorstore::MakeOffsetArray<int>({5}, {1, 2, 3, 4}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<1, 1>() .input_origin({2}) .input_shape({4}) .output_index_array(0, 6, 1, MakeArray<Index>({0, 2, 2, 1})) .Finalize() .value()) .value(); EXPECT_EQ(MakeOffsetArray<int>({2}, {2, 4, 4, 3}), new_array); } TEST(TransformArrayTest, TwoDArrayOneDIndexArray) { auto original_array = tensorstore::MakeArray<int>({{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({2, 4}) .output_single_input_dimension(0, -1, 1, 0) .output_index_array(1, 1, 1, MakeArray<Index>({{0, 2, 2, 1}})) .Finalize() .value()) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2}, {{2, 4, 4, 3}, {6, 8, 8, 7}}), new_array); } TEST(TransformArrayTest, TwoDArrayOneDIndexArrayWithOrigin) { auto original_array = tensorstore::MakeOffsetArray<int>({5, 6}, {{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({2, 4}) .output_single_input_dimension(0, 4, 1, 0) .output_index_array(1, 7, 1, MakeArray<Index>({{0, 2, 2, 1}})) .Finalize() .value()) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2}, {{2, 4, 4, 3}, {6, 8, 8, 7}}), new_array); } TEST(TransformArrayTest, TwoDArrayOneDIndexArrayStrided) { auto original_array = tensorstore::MakeArray<int>({{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({2, 4}) .output_single_input_dimension(0, 2, -1, 0) .output_index_array(1, 1, 2, MakeArray<Index>({{0, 1, 1, 0}})) .Finalize() .value()) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2}, {{6, 8, 8, 6}, {2, 4, 4, 2}}), new_array); } TEST(TransformArrayTest, ArrayIndexOutOfBounds) { auto original_array = tensorstore::MakeArray<int>({{1, 2, 3, 4}, {5, 6, 7, 8}}); EXPECT_THAT( tensorstore::TransformArray( original_array, IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({2, 4}) .output_single_input_dimension(0, 2, -1, 0) .output_index_array(1, 1, 2, MakeArray<Index>({{0, 2, 1, 0}})) .Finalize() .value()) .status(), MatchesStatus(absl::StatusCode::kOutOfRange, ".*Index 2 is outside valid range \\[0, 2\\).*")); EXPECT_THAT( tensorstore::TransformArray( original_array, IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({2, 4}) .output_single_input_dimension(0, 2, -1, 0) .output_index_array(1, 1, 2, MakeArray<Index>({{0, -1, 1, 0}})) .Finalize() .value()) .status(), MatchesStatus(absl::StatusCode::kOutOfRange, ".*Index -1 is outside valid range \\[0, 2\\).*")); } TEST(TransformArrayTest, TwoDArrayOneDIndexArrayStridedWithOrigin) { auto original_array = tensorstore::MakeOffsetArray<int>({5, 6}, {{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({2, 4}) .output_single_input_dimension(0, 7, -1, 0) .output_index_array(1, 7, 2, MakeArray<Index>({{0, 1, 1, 0}})) .Finalize() .value()) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2}, {{6, 8, 8, 6}, {2, 4, 4, 2}}), new_array); EXPECT_THAT(new_array.byte_strides(), ::testing::ElementsAre(sizeof(int), sizeof(int) * 2)); } TEST(TransformArrayTest, IncludeRepeated) { auto original_array = tensorstore::MakeOffsetArray<int>({5, 6}, {{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<3, 2>() .input_origin({1, 2, 3}) .input_shape({2, 4, 2}) .output_single_input_dimension(0, 7, -1, 0) .output_index_array(1, 7, 2, MakeArray<Index>({{{0}, {1}, {1}, {0}}})) .Finalize() .value(), tensorstore::include_repeated_elements) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2, 3}, {{{6, 6}, {8, 8}, {8, 8}, {6, 6}}, {{2, 2}, {4, 4}, {4, 4}, {2, 2}}}), new_array); EXPECT_THAT( new_array.byte_strides(), ::testing::ElementsAre(sizeof(int) * 2, sizeof(int) * 4, sizeof(int))); } TEST(TransformArrayTest, SkipSingleton) { auto original_array = tensorstore::MakeOffsetArray<int>({5, 6}, {{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<3, 2>() .input_origin({1, 2, 3}) .input_shape({2, 4, 1}) .output_single_input_dimension(0, 7, -1, 0) .output_index_array(1, 7, 2, MakeArray<Index>({{{0}, {1}, {1}, {0}}})) .Finalize() .value(), tensorstore::skip_repeated_elements) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2, 3}, {{{6}, {8}, {8}, {6}}, {{2}, {4}, {4}, {2}}}), new_array); EXPECT_THAT(new_array.byte_strides(), ::testing::ElementsAre(sizeof(int), sizeof(int) * 2, 0)); } TEST(TransformArrayTest, SkipRepeated) { auto original_array = tensorstore::MakeOffsetArray<int>({5, 6}, {{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<3, 2>() .input_origin({1, 2, 3}) .input_shape({2, 4, 2}) .output_single_input_dimension(0, 7, -1, 0) .output_index_array(1, 7, 2, MakeArray<Index>({{{0}, {1}, {1}, {0}}})) .Finalize() .value(), tensorstore::skip_repeated_elements) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2, 3}, {{{6, 6}, {8, 8}, {8, 8}, {6, 6}}, {{2, 2}, {4, 4}, {4, 4}, {2, 2}}}), new_array); EXPECT_THAT(new_array.byte_strides(), ::testing::ElementsAre(sizeof(int), sizeof(int) * 2, 0)); } TEST(TransformArrayTest, OrderConstraint) { auto original_array = tensorstore::MakeOffsetArray<int>({5, 6}, {{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({2, 4}) .output_single_input_dimension(0, 7, -1, 0) .output_index_array(1, 7, 2, MakeArray<Index>({{0, 1, 1, 0}})) .Finalize() .value(), tensorstore::c_order) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2}, {{6, 8, 8, 6}, {2, 4, 4, 2}}), new_array); EXPECT_THAT(new_array.byte_strides(), ::testing::ElementsAre(sizeof(int) * 4, sizeof(int))); } TEST(TransformArrayTest, OrderConstraintIncludeRepeated) { auto original_array = tensorstore::MakeOffsetArray<int>({5, 6}, {{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<3, 2>() .input_origin({1, 2, 3}) .input_shape({2, 4, 2}) .output_single_input_dimension(0, 7, -1, 0) .output_index_array(1, 7, 2, MakeArray<Index>({{{0}, {1}, {1}, {0}}})) .Finalize() .value(), {tensorstore::c_order, tensorstore::include_repeated_elements}) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2, 3}, {{{6, 6}, {8, 8}, {8, 8}, {6, 6}}, {{2, 2}, {4, 4}, {4, 4}, {2, 2}}}), new_array); EXPECT_THAT( new_array.byte_strides(), ::testing::ElementsAre(sizeof(int) * 8, sizeof(int) * 2, sizeof(int))); } TEST(TransformArrayTest, OrderConstraintSkipRepeated) { auto original_array = tensorstore::MakeOffsetArray<int>({5, 6}, {{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<3, 2>() .input_origin({1, 2, 3}) .input_shape({2, 4, 2}) .output_single_input_dimension(0, 7, -1, 0) .output_index_array(1, 7, 2, MakeArray<Index>({{{0}, {1}, {1}, {0}}})) .Finalize() .value(), {tensorstore::c_order, tensorstore::skip_repeated_elements}) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2, 3}, {{{6, 6}, {8, 8}, {8, 8}, {6, 6}}, {{2, 2}, {4, 4}, {4, 4}, {2, 2}}}), new_array); EXPECT_THAT(new_array.byte_strides(), ::testing::ElementsAre(sizeof(int) * 4, sizeof(int), 0)); } TEST(TransformArrayTest, MultipleArrayIndexedDimensions) { auto original_array = tensorstore::MakeArray<int>({{1, 2}, {5, 6}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<2, 2>() .input_origin({0, 0}) .input_shape({2, 2}) .output_index_array(0, 0, 1, MakeArray<Index>({{0, 1}})) .output_index_array(1, 0, 1, MakeArray<Index>({{0}, {1}})) .Finalize() .value()) .value(); EXPECT_EQ(MakeArray<int>({{1, 5}, {2, 6}}), new_array); } TEST(TransformArrayTest, EmptyDomain) { auto original_array = tensorstore::MakeArray<int>({{1, 2, 3}, {4, 5, 6}}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, (IndexTransformBuilder<2, 2>() .input_shape({0, 3}) .implicit_upper_bounds({1, 0}) .output_single_input_dimension(0, 0) .output_index_array(0, 0, 1, MakeArray<Index>({{0, 1, 2}})) .Finalize())); EXPECT_THAT(tensorstore::TransformArray(original_array, transform), ::testing::Optional(tensorstore::AllocateArray<int>({0, 3}))); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/internal/transform_array.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/transform_array_test.cc
4f887a6430414cd6088e1743555015b10f116d50
19ac5ec1-6718-4849-b3c2-d2aff780b06c
cpp
google/tensorstore
translate_op
tensorstore/index_space/internal/translate_op.cc
tensorstore/index_space/translate_op_test.cc
#include "tensorstore/index_space/internal/translate_op.h" #include <algorithm> #include "absl/status/status.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { namespace { absl::Status TranslateOutputOffsetsUsingInputOffsets( TransformRep* transform, const Index* input_offsets) { const DimensionIndex output_rank = transform->output_rank; const DimensionIndex input_rank = transform->input_rank; span<OutputIndexMap> maps = transform->output_index_maps().first(output_rank); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { auto& map = maps[output_dim]; switch (map.method()) { case OutputIndexMethod::single_input_dimension: { const DimensionIndex input_dim = map.input_dimension(); const Index offset_change = input_offsets[input_dim]; Index new_offset; if (internal::MulOverflow(offset_change, map.stride(), &new_offset) || internal::SubOverflow(map.offset(), new_offset, &map.offset())) { return absl::InvalidArgumentError(tensorstore::StrCat( "Integer overflow computing output offset for dimension ", output_dim, ".")); } break; } case OutputIndexMethod::array: { auto& index_array_data = map.index_array_data(); index_array_data.element_pointer = AddByteOffset( std::move(index_array_data.element_pointer), -IndexInnerProduct(input_rank, index_array_data.byte_strides, input_offsets)); break; } case OutputIndexMethod::constant: break; } } return absl::OkStatus(); } } Result<IndexTransform<>> ApplyTranslate(IndexTransform<> transform, DimensionIndexBuffer* dimensions, IndexVectorOrScalarView offsets, TranslateOpKind kind, bool domain_only) { const DimensionIndex num_dims = dimensions->size(); const DimensionIndex input_rank = transform.input_rank(); TENSORSTORE_RETURN_IF_ERROR(CheckIndexVectorSize(offsets, num_dims)); TransformRep::Ptr<> rep = MutableRep( TransformAccess::rep_ptr<container>(std::move(transform)), domain_only); const auto input_domain = rep->input_domain(input_rank); Index input_offsets[kMaxRank]; std::fill_n(&input_offsets[0], input_rank, static_cast<Index>(0)); for (DimensionIndex i = 0; i < num_dims; ++i) { const DimensionIndex input_dim = (*dimensions)[i]; Index offset = offsets[i]; if (offset == kImplicit) continue; const IndexInterval old_interval = input_domain[input_dim]; IndexInterval new_interval; switch (kind) { case TranslateOpKind::kTranslateTo: { TENSORSTORE_ASSIGN_OR_RETURN(new_interval, ShiftIntervalTo(old_interval, offset)); offset = new_interval.inclusive_min() - old_interval.inclusive_min(); break; } case TranslateOpKind::kTranslateBackwardBy: { offset = -offset; } [[fallthrough]]; case TranslateOpKind::kTranslateBy: { TENSORSTORE_ASSIGN_OR_RETURN(new_interval, ShiftInterval(old_interval, offset)); break; } } input_domain[input_dim] = new_interval; input_offsets[input_dim] = offset; } TENSORSTORE_RETURN_IF_ERROR( TranslateOutputOffsetsUsingInputOffsets(rep.get(), &input_offsets[0])); internal_index_space::DebugCheckInvariants(rep.get()); return TransformAccess::Make<IndexTransform<>>(std::move(rep)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::AllDims; using ::tensorstore::DimensionIndex; using ::tensorstore::Dims; using ::tensorstore::Index; using ::tensorstore::IndexDomainBuilder; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::kImplicit; using ::tensorstore::kInfIndex; using ::tensorstore::kInfSize; using ::tensorstore::kMaxFiniteIndex; using ::tensorstore::kMinFiniteIndex; using ::tensorstore::MakeArray; using ::tensorstore::MatchesStatus; using ::tensorstore::span; using ::tensorstore::internal_index_space::EquivalentIndices; using ::tensorstore::internal_index_space::TestDimExpression; TEST(TranslateByTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({11, 2, 23}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_single_input_dimension(0, -10, 1, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, -20, 1, 2) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{2, 3, 3}, {12, 3, 23}}, }; TestDimExpression(original_transform, Dims(0, 2).TranslateBy({10, 20}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); TestDimExpression(original_transform, Dims("x", "z").TranslateBy({10, 20}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(TranslateBackwardByTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({-9, 2, -17}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_single_input_dimension(0, 10, 1, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 20, 1, 2) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{2, 3, 3}, {-8, 3, -17}}, }; TestDimExpression(original_transform, Dims(0, 2).TranslateBackwardBy({10, 20}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); TestDimExpression(original_transform, Dims("x", "z").TranslateBackwardBy({10, 20}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(TranslateToTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({10, 2, 20}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_single_input_dimension(0, -9, 1, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, -17, 1, 2) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{2, 3, 3}, {11, 3, 20}}, }; TestDimExpression(original_transform, Dims(0, 2).TranslateTo({10, 20}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); TestDimExpression(original_transform, Dims(0, 2).TranslateTo({10, 20}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(TranslateByTest, OneDimensionalConstant) { TestDimExpression( IndexTransformBuilder<1, 1>() .output_constant(0, 2) .Finalize() .value(), AllDims().TranslateBy(5), {0}, IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, -5, 1, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .output_constant(0, 2) .Finalize() .value(), {{{4}, {9}}}); } TEST(TranslateByTest, OneDimensionalSingleInputDimension) { TestDimExpression( IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, 2, 3, 0) .Finalize() .value(), AllDims().TranslateBy(5), {0}, IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, -5, 1, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, 2 - 3 * 5, 3, 0) .Finalize() .value(), {{{4}, {9}}}); } TEST(TranslateByTest, OneDimensionalSingleInputDimensionImplicit) { TestDimExpression( IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, 2, 3, 0) .Finalize() .value(), AllDims().TranslateBy(kImplicit), {0}, IndexTransformBuilder<1, 1>() .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, 2, 3, 0) .Finalize() .value(), {{{4}, {4}}}); } TEST(TranslateByTest, OneDimensionalIndexArray) { TestDimExpression( IndexTransformBuilder<1, 1>() .input_origin({-2}) .input_shape({5}) .output_index_array(0, 2, 3, MakeArray<Index>({6, 7, 8, 9, 10})) .Finalize() .value(), AllDims().TranslateBy(5), {0}, IndexTransformBuilder<1, 1>() .input_origin({3}) .input_shape({5}) .output_single_input_dimension(0, -5, 1, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({3}) .input_shape({5}) .output_index_array(0, 2, 3, MakeArray<Index>({6, 7, 8, 9, 10})) .Finalize() .value(), {{{1}, {6}}}); } TEST(TranslateByTest, AllDimsUniform) { TestDimExpression( IndexTransformBuilder<3, 5>() .input_origin({-kInfIndex, 5, -kInfIndex}) .input_shape({kInfSize, 30, kInfIndex + 10}) .output_single_input_dimension(0, 1, 4, 0) .output_single_input_dimension(1, 2, 5, 0) .output_constant(2, 3) .output_single_input_dimension(3, 4, 7, 1) .output_single_input_dimension(4, 5, 8, 2) .Finalize() .value(), AllDims().TranslateBy(5), {0, 1, 2}, IndexTransformBuilder<3, 3>() .input_origin({-kInfIndex, 10, -kInfIndex}) .input_shape({kInfSize, 30, kInfIndex + 15}) .output_single_input_dimension(0, -5, 1, 0) .output_single_input_dimension(1, -5, 1, 1) .output_single_input_dimension(2, -5, 1, 2) .Finalize() .value(), IndexTransformBuilder<3, 5>() .input_origin({-kInfIndex, 10, -kInfIndex}) .input_shape({kInfSize, 30, kInfIndex + 15}) .output_single_input_dimension(0, 1 - 4 * 5, 4, 0) .output_single_input_dimension(1, 2 - 5 * 5, 5, 0) .output_constant(2, 3) .output_single_input_dimension(3, 4 - 7 * 5, 7, 1) .output_single_input_dimension(4, 5 - 8 * 5, 8, 2) .Finalize() .value(), {{{4, 5, 6}, {4 + 5, 5 + 5, 6 + 5}}}); } TEST(TranslateByTest, ErrorHandling) { TestDimExpressionError( IndexTransformBuilder<1, 1>().Finalize().value(), AllDims().TranslateBy(span<const Index>({1, 2})), absl::StatusCode::kInvalidArgument, "Number of dimensions \\(1\\) does not match number of " "indices \\(2\\)"); TestDimExpressionError(IndexTransformBuilder<1, 1>() .input_origin({kMinFiniteIndex}) .input_shape({10}) .Finalize() .value(), AllDims().TranslateBy(-kInfIndex), absl::StatusCode::kInvalidArgument, ".* is outside valid range .*"); TestDimExpressionError(IndexTransformBuilder<1, 1>() .input_origin({kMinFiniteIndex}) .input_shape({10}) .Finalize() .value(), AllDims().TranslateBy(-1), absl::StatusCode::kInvalidArgument, ".* is outside valid range .*"); TestDimExpressionError(IndexTransformBuilder<1, 1>() .input_origin({kMaxFiniteIndex - 1}) .input_shape({2}) .Finalize() .value(), AllDims().TranslateBy(1), absl::StatusCode::kInvalidArgument, ".* is outside valid range .*"); TestDimExpressionError(IndexTransformBuilder<1, 1>() .output_single_input_dimension( 0, std::numeric_limits<Index>::min(), 1, 0) .Finalize() .value(), AllDims().TranslateBy(1), absl::StatusCode::kInvalidArgument, "Integer overflow computing output offset .*"); } TEST(TranslateByTest, DimSubsetUniform) { TestDimExpression(IndexTransformBuilder<3, 2>() .input_origin({1, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7}) .output_single_input_dimension(0, 1, 1, 1) .output_single_input_dimension(1, 2, 2, 2) .Finalize() .value(), Dims(0, 2).TranslateBy(5), {0, 2}, IndexTransformBuilder<3, 3>() .input_origin({6, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7 + 5}) .output_single_input_dimension(0, -5, 1, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, -5, 1, 2) .Finalize() .value(), IndexTransformBuilder<3, 2>() .input_origin({6, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7 + 5}) .output_single_input_dimension(0, 1, 1, 1) .output_single_input_dimension(1, 2 - 2 * 5, 2, 2) .Finalize() .value(), {{{4, 5, 6}, {4 + 5, 5, 6 + 5}}}); } TEST(TranslateByTest, DimSubsetNonUniform) { TestDimExpression(IndexTransformBuilder<3, 2>() .input_origin({1, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7}) .output_single_input_dimension(0, 1, 1, 1) .output_single_input_dimension(1, 2, 2, 2) .Finalize() .value(), Dims(0, 2).TranslateBy({5, 6}), {0, 2}, IndexTransformBuilder<3, 3>() .input_origin({6, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7 + 6}) .output_single_input_dimension(0, -5, 1, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, -6, 1, 2) .Finalize() .value(), IndexTransformBuilder<3, 2>() .input_origin({6, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7 + 6}) .output_single_input_dimension(0, 1, 1, 1) .output_single_input_dimension(1, 2 - 2 * 6, 2, 2) .Finalize() .value(), {{{3, 4, 5}, {3 + 5, 4, 5 + 6}}}); } TEST(TranslateToTest, OneDimensionalConstant) { TestDimExpression(IndexTransformBuilder<1, 1>() .input_origin({5}) .input_shape({10}) .output_constant(0, 2) .Finalize() .value(), AllDims().TranslateTo(8), {0}, IndexTransformBuilder<1, 1>() .input_origin({8}) .input_shape({10}) .output_single_input_dimension(0, -3, 1, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({8}) .input_shape({10}) .output_constant(0, 2) .Finalize() .value(), {{{7}, {10}}}); } TEST(TranslateToTest, OneDimensionalSingleInputDimension) { TestDimExpression(IndexTransformBuilder<1, 1>() .input_origin({4}) .input_shape({10}) .output_single_input_dimension(0, 2, 3, 0) .Finalize() .value(), AllDims().TranslateTo(5), {0}, IndexTransformBuilder<1, 1>() .input_origin({5}) .input_shape({10}) .output_single_input_dimension(0, -1, 1, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({5}) .input_shape({10}) .output_single_input_dimension(0, 2 - 3, 3, 0) .Finalize() .value(), {{{6}, {7}}}); } TEST(TranslateToTest, OneDimensionalSingleInputDimensionImplicit) { TestDimExpression(IndexTransformBuilder<1, 1>() .input_origin({4}) .input_shape({10}) .output_single_input_dimension(0, 2, 3, 0) .Finalize() .value(), AllDims().TranslateTo(kImplicit), {0}, IndexTransformBuilder<1, 1>() .input_origin({4}) .input_shape({10}) .output_single_input_dimension(0, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({4}) .input_shape({10}) .output_single_input_dimension(0, 2, 3, 0) .Finalize() .value(), {{{6}, {6}}}); } TEST(TranslateToTest, TwoDimensionalSingleInputDimensionOneImplicit) { TestDimExpression(IndexTransformBuilder<2, 2>() .input_origin({4, 5}) .input_shape({10, 11}) .output_single_input_dimension(0, 2, 3, 0) .output_single_input_dimension(1, 4, 5, 1) .Finalize() .value(), AllDims().TranslateTo({kImplicit, 10}), {0, 1}, IndexTransformBuilder<2, 2>() .input_origin({4, 10}) .input_shape({10, 11}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, -5, 1, 1) .Finalize() .value(), IndexTransformBuilder<2, 2>() .input_origin({4, 10}) .input_shape({10, 11}) .output_single_input_dimension(0, 2, 3, 0) .output_single_input_dimension(1, -25 + 4, 5, 1) .Finalize() .value(), {{{6, 7}, {6, 12}}}); } TEST(TranslateToTest, ErrorHandling) { TestDimExpressionError(IndexTransformBuilder<1, 1>().Finalize().value(), AllDims().TranslateTo(1), absl::StatusCode::kInvalidArgument, "Interval \\(-inf, \\+inf\\) is not bounded below"); TestDimExpressionError( IndexTransformBuilder<1, 1>() .input_origin({-5}) .input_shape({10}) .Finalize() .value(), AllDims().TranslateTo(std::numeric_limits<Index>::max()), absl::StatusCode::kOutOfRange, "Origin [0-9]+ is outside valid range .*"); } TEST(TranslateToTest, IndexDomain) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto domain, IndexDomainBuilder<3>().origin({1, 2, 3}).shape({6, 7, 8}).Finalize()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto translated_domain, IndexDomainBuilder<3>().origin({4, 5, 6}).shape({6, 7, 8}).Finalize()); EXPECT_THAT(domain | AllDims().TranslateTo({4, 5, 6}), ::testing::Optional(translated_domain)); } TEST(TranslateToTest, IndexDomainOverflow) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, IndexTransformBuilder(1, 1) .input_shape({10}) .output_single_input_dimension(0, kMaxFiniteIndex, kMaxFiniteIndex, 0) .Finalize()); auto domain = transform.domain(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto translated_domain, IndexDomainBuilder(1).origin({-5}).shape({10}).Finalize()); EXPECT_THAT(transform | AllDims().TranslateTo({-5}), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(domain | AllDims().TranslateTo({-5}), ::testing::Optional(translated_domain)); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/internal/translate_op.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/translate_op_test.cc
4f887a6430414cd6088e1743555015b10f116d50
4de049ec-a935-430b-bf68-3d954c1ba46f
cpp
google/tensorstore
interval_slice_op
tensorstore/index_space/internal/interval_slice_op.cc
tensorstore/index_space/interval_slice_op_test.cc
#include "tensorstore/index_space/internal/interval_slice_op.h" #include <algorithm> #include "absl/status/status.h" #include "tensorstore/index_space/internal/transform_rep_impl.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/util/division.h" #include "tensorstore/util/span.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { namespace { struct InputDimensionIntervalSliceInfo { Index offset; Index stride; }; absl::Status GetIntervalSliceInfo( span<InputDimensionIntervalSliceInfo> dimension_info, TransformRep* transform, span<const DimensionIndex> dimensions, IntervalForm interval_form, bool translate, IndexVectorOrScalarView start_vector, IndexVectorOrScalarView stop_or_size_vector, IndexVectorOrScalarView stride_vector) { const DimensionIndex input_rank = dimension_info.size(); assert(input_rank == transform->input_rank); for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { dimension_info[input_dim] = InputDimensionIntervalSliceInfo{0, 1}; } auto compute_input_domain_slice = [&](DimensionIndex i, DimensionIndex input_dim) { const Index stride = stride_vector[i]; const InputDimensionRef d = transform->input_dimension(input_dim); auto& info = dimension_info[input_dim]; info.stride = stride; OptionallyImplicitIndexInterval new_domain; TENSORSTORE_RETURN_IF_ERROR(ComputeStridedSliceMap( d.optionally_implicit_domain(), interval_form, translate ? 0 : kImplicit, start_vector[i], stop_or_size_vector[i], stride, &new_domain, &info.offset)); d.domain() = new_domain.interval(); d.implicit_lower_bound() = new_domain.implicit_lower(); d.implicit_upper_bound() = new_domain.implicit_upper(); return absl::OkStatus(); }; for (DimensionIndex i = 0; i < dimensions.size(); ++i) { const DimensionIndex input_dim = dimensions[i]; TENSORSTORE_RETURN_IF_ERROR( compute_input_domain_slice(i, input_dim), MaybeAnnotateStatus( _, tensorstore::StrCat("Computing interval slice for input dimension ", input_dim))); } return absl::OkStatus(); } absl::Status ApplyOffsetsAndStridesToOutputIndexMaps( TransformRep* rep, span<const InputDimensionIntervalSliceInfo> input_dimension_info) { const DimensionIndex input_rank = input_dimension_info.size(); const DimensionIndex output_rank = rep->output_rank; BoxView<> input_domain = rep->input_domain(input_rank); const bool domain_is_explicitly_empty = IsDomainExplicitlyEmpty(rep); span<OutputIndexMap> maps = rep->output_index_maps().first(output_rank); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { auto& map = maps[output_dim]; switch (map.method()) { case OutputIndexMethod::constant: break; case OutputIndexMethod::single_input_dimension: { const DimensionIndex input_dim = map.input_dimension(); const auto& slice_info = input_dimension_info[input_dim]; Index offset; if (internal::MulOverflow(slice_info.offset, map.stride(), &offset) || internal::AddOverflow(offset, map.offset(), &map.offset())) { return absl::InvalidArgumentError(tensorstore::StrCat( "Integer overflow computing offset for output dimension ", output_dim)); } if (internal::MulOverflow(slice_info.stride, map.stride(), &map.stride())) { return absl::InvalidArgumentError(tensorstore::StrCat( "Integer overflow computing stride for output dimension ", output_dim)); } break; } case OutputIndexMethod::array: { if (domain_is_explicitly_empty) { map.SetConstant(); map.offset() = 0; map.stride() = 0; break; } auto& index_array_data = map.index_array_data(); Index element_pointer_byte_offset = 0; bool array_is_singleton = true; for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { const auto& slice_info = input_dimension_info[input_dim]; Index& byte_stride = index_array_data.byte_strides[input_dim]; element_pointer_byte_offset = internal::wrap_on_overflow::Add( element_pointer_byte_offset, internal::wrap_on_overflow::Multiply( byte_stride, slice_info.offset)); byte_stride = internal::wrap_on_overflow::Multiply(byte_stride, slice_info.stride); if (input_domain.shape()[input_dim] == 1) { element_pointer_byte_offset = internal::wrap_on_overflow::Add( element_pointer_byte_offset, internal::wrap_on_overflow::Multiply( byte_stride, input_domain.origin()[input_dim])); byte_stride = 0; } else if (byte_stride != 0) { array_is_singleton = false; } } index_array_data.element_pointer = AddByteOffset(std::move(index_array_data.element_pointer), element_pointer_byte_offset); if (array_is_singleton) { const Index index = *index_array_data.array_view(input_domain) .byte_strided_origin_pointer(); const IndexInterval index_range = index_array_data.index_range; map.SetConstant(); TENSORSTORE_RETURN_IF_ERROR(ReplaceZeroRankIndexArrayIndexMap( index, index_range, &map.offset(), &map.stride())); } break; } } } internal_index_space::DebugCheckInvariants(rep); return absl::OkStatus(); } } Result<IndexTransform<>> ApplyIntervalSliceOp( IndexTransform<> transform, DimensionIndexBuffer* dimensions, IntervalForm interval_form, bool translate, IndexVectorOrScalarView start_vector, IndexVectorOrScalarView stop_or_size_vector, IndexVectorOrScalarView stride_vector, bool domain_only) { const DimensionIndex num_dims = dimensions->size(); const DimensionIndex input_rank = transform.input_rank(); TENSORSTORE_RETURN_IF_ERROR(CheckIndexVectorSize(start_vector, num_dims)); TENSORSTORE_RETURN_IF_ERROR( CheckIndexVectorSize(stop_or_size_vector, num_dims)); TENSORSTORE_RETURN_IF_ERROR(CheckIndexVectorSize(stride_vector, num_dims)); TransformRep::Ptr<> rep = MutableRep( TransformAccess::rep_ptr<container>(std::move(transform)), domain_only); InputDimensionIntervalSliceInfo input_dimension_info[kMaxRank]; TENSORSTORE_RETURN_IF_ERROR( GetIntervalSliceInfo(span(input_dimension_info).first(input_rank), rep.get(), *dimensions, interval_form, translate, start_vector, stop_or_size_vector, stride_vector)); TENSORSTORE_RETURN_IF_ERROR(ApplyOffsetsAndStridesToOutputIndexMaps( rep.get(), span(input_dimension_info).first(input_rank))); return TransformAccess::Make<IndexTransform<>>(std::move(rep)); } Result<IndexTransform<>> ApplyStrideOp(IndexTransform<> transform, DimensionIndexBuffer* dimensions, IndexVectorOrScalarView strides, bool domain_only) { const DimensionIndex num_dims = dimensions->size(); const DimensionIndex input_rank = transform.input_rank(); TENSORSTORE_RETURN_IF_ERROR(CheckIndexVectorSize(strides, num_dims)); TransformRep::Ptr<> rep = MutableRep( TransformAccess::rep_ptr<container>(std::move(transform)), domain_only); InputDimensionIntervalSliceInfo input_dimension_info[kMaxRank]; std::fill_n(&input_dimension_info[0], input_rank, InputDimensionIntervalSliceInfo{0, 1}); const auto compute_input_domain = [&](DimensionIndex i, DimensionIndex input_dim) { const Index stride = strides[i]; if (stride == 0) { return absl::InvalidArgumentError("Stride must be non-zero"); } input_dimension_info[input_dim].stride = stride; const InputDimensionRef d = rep->input_dimension(input_dim); TENSORSTORE_ASSIGN_OR_RETURN( auto new_domain, GetAffineTransformDomain(d.optionally_implicit_domain(), 0, stride)); d.domain() = new_domain.interval(); d.implicit_lower_bound() = new_domain.implicit_lower(); d.implicit_upper_bound() = new_domain.implicit_upper(); return absl::OkStatus(); }; for (DimensionIndex i = 0; i < num_dims; ++i) { const DimensionIndex input_dim = (*dimensions)[i]; TENSORSTORE_RETURN_IF_ERROR( compute_input_domain(i, input_dim), MaybeAnnotateStatus( _, tensorstore::StrCat("Applying stride to input dimension ", input_dim))); } TENSORSTORE_RETURN_IF_ERROR(ApplyOffsetsAndStridesToOutputIndexMaps( rep.get(), span(input_dimension_info).first(input_rank))); return TransformAccess::Make<IndexTransform<>>(std::move(rep)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/box.h" #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" #include "tensorstore/util/status.h" namespace { using ::tensorstore::AllDims; using ::tensorstore::BoxView; using ::tensorstore::Dims; using ::tensorstore::Index; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::kImplicit; using ::tensorstore::kInfIndex; using ::tensorstore::kInfSize; using ::tensorstore::MakeArray; using ::tensorstore::StrCat; using ::tensorstore::internal_index_space::EquivalentIndices; using ::tensorstore::internal_index_space::TestDimExpression; using ::tensorstore::internal_index_space::TestDimExpressionError; TEST(ClosedIntervalTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({0, 2, 0}) .input_shape({7, 4, 10}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, -4}) .input_shape({4, 4, 3}) .input_labels({"x", "y", "z"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 0, -2, 2) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{2, 3, 6}, {2, 3, -3}}, }; TestDimExpression( original_transform, Dims(0, 2).ClosedInterval({1, 8}, {4, 3}, {1, -2}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); TestDimExpression( original_transform, Dims("x", "z").ClosedInterval({1, 8}, {4, 3}, {1, -2}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(ClosedIntervalTest, ExampleWithOffset) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({0, 2, 0}) .input_shape({7, 4, 10}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, -4}) .input_shape({4, 4, 4}) .input_labels({"x", "y", "z"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 1, -2, 2) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{2, 3, 7}, {2, 3, -3}}, }; TestDimExpression( original_transform, Dims(0, 2).ClosedInterval({1, 9}, {4, 3}, {1, -2}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(HalfOpenIntervalTest, Example) { const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, -4}) .input_shape({3, 4, 3}) .input_labels({"x", "y", "z"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 0, -2, 2) .Finalize() .value(); TestDimExpression( IndexTransformBuilder<3, 3>() .input_origin({0, 2, 0}) .input_shape({7, 4, 10}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(), Dims(0, 2).HalfOpenInterval({1, 8}, {4, 3}, {1, -2}), {0, 2}, expected_new_transform, expected_new_transform, {{{2, 3, 6}, {2, 3, -3}}}); } TEST(SizedIntervalTest, Example) { const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, -4}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 0, -2, 2) .Finalize() .value(); TestDimExpression( IndexTransformBuilder<3, 3>() .input_origin({0, 2, 0}) .input_shape({7, 4, 10}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(), Dims(0, 2).SizedInterval({1, 8}, {3, 2}, {1, -2}), {0, 2}, expected_new_transform, expected_new_transform, {{{2, 3, 6}, {2, 3, -3}}}); } TEST(ClosedIntervalTest, OneDimensionalConstantNonStrided) { TestDimExpression(IndexTransformBuilder<1, 1>() .input_origin({-5}) .input_shape({10}) .output_constant(0, 3) .Finalize() .value(), AllDims().ClosedInterval(-3, 4), {0}, IndexTransformBuilder<1, 1>() .input_origin({-3}) .input_shape({8}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({-3}) .input_shape({8}) .output_constant(0, 3) .Finalize() .value(), {{{1}, {1}}}); } TEST(ClosedIntervalTest, OneDimensionalConstantPositiveStrided) { TestDimExpression(IndexTransformBuilder<1, 1>() .input_origin({-5}) .input_shape({12}) .output_constant(0, 3) .Finalize() .value(), AllDims().ClosedInterval(-3, 5, 2), {0}, IndexTransformBuilder<1, 1>() .input_origin({-1}) .input_shape({5}) .output_single_input_dimension(0, -1, 2, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({-1}) .input_shape({5}) .output_constant(0, 3) .Finalize() .value(), {{{1}, {1}}}); } TEST(ClosedIntervalTest, OneDimensionalConstantNegativeStrided) { TestDimExpression(IndexTransformBuilder<1, 1>() .input_origin({-5}) .input_shape({12}) .output_constant(0, 3) .Finalize() .value(), AllDims().ClosedInterval(5, -3, -2), {0}, IndexTransformBuilder<1, 1>() .input_origin({-2}) .input_shape({5}) .output_single_input_dimension(0, 1, -2, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({-2}) .input_shape({5}) .output_constant(0, 3) .Finalize() .value(), {{{1}, {1}}}); } TEST(ClosedIntervalTest, OneDimensionalSingleInputDimensionNonStrided) { TestDimExpression(IndexTransformBuilder<1, 1>() .input_origin({-5}) .input_shape({10}) .output_single_input_dimension(0, 3, 2, 0) .Finalize() .value(), AllDims().ClosedInterval(-3, 4), {0}, IndexTransformBuilder<1, 1>() .input_origin({-3}) .input_shape({8}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({-3}) .input_shape({8}) .output_single_input_dimension(0, 3, 2, 0) .Finalize() .value(), {{{1}, {1}}}); } TEST(ClosedIntervalTest, OneDimensionalSingleInputDimensionPositiveStrided) { TestDimExpression(IndexTransformBuilder<1, 1>() .input_origin({-5}) .input_shape({12}) .output_single_input_dimension(0, 3, 2, 0) .Finalize() .value(), AllDims().ClosedInterval(-3, 5, 2), {0}, IndexTransformBuilder<1, 1>() .input_origin({-1}) .input_shape({5}) .output_single_input_dimension(0, -1, 2, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({-1}) .input_shape({5}) .output_single_input_dimension(0, 1, 4, 0) .Finalize() .value(), {{{-3}, {-1}}, {{-1}, {0}}}); } TEST(ClosedIntervalTest, OneDimensionalArrayNonStrided) { TestDimExpression( IndexTransformBuilder<1, 1>() .input_origin({-2}) .input_shape({4}) .output_index_array(0, 3, 2, MakeArray<Index>({6, 5, 4, 3})) .Finalize() .value(), AllDims().ClosedInterval(-1, 1), {0}, IndexTransformBuilder<1, 1>() .input_origin({-1}) .input_shape({3}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({-1}) .input_shape({3}) .output_index_array(0, 3, 2, MakeArray<Index>({5, 4, 3})) .Finalize() .value(), {{{1}, {1}}}); } TEST(ClosedIntervalTest, OneDimensionalArrayNonStridedZeroElements) { TestDimExpression( IndexTransformBuilder<1, 1>() .input_origin({-2}) .input_shape({4}) .output_index_array(0, 3, 2, MakeArray<Index>({6, 5, 4, 3})) .Finalize() .value(), AllDims().ClosedInterval(-1, -2), {0}, IndexTransformBuilder<1, 1>() .input_origin({-1}) .input_shape({0}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({-1}) .input_shape({0}) .output_constant(0, 0) .Finalize() .value(), {}); } TEST(ClosedIntervalTest, OneDimensionalArrayNonStridedOneElement) { TestDimExpression( IndexTransformBuilder<1, 1>() .input_origin({-2}) .input_shape({4}) .output_index_array(0, 3, 2, MakeArray<Index>({6, 5, 4, 3})) .Finalize() .value(), AllDims().ClosedInterval(-1, -1), {0}, IndexTransformBuilder<1, 1>() .input_origin({-1}) .input_shape({1}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({-1}) .input_shape({1}) .output_constant(0, 13) .Finalize() .value(), {{{-1}, {-1}}}); } TEST(ClosedIntervalTest, OneDimensionalArrayNonStridedInvalidOneElement) { TestDimExpressionError( IndexTransformBuilder<1, 1>() .input_origin({-2}) .input_shape({4}) .output_index_array(0, 3, 2, MakeArray<Index>({6, 5, 4, 3}), IndexInterval::Closed(3, 4)) .Finalize() .value(), AllDims().ClosedInterval(-1, -1), absl::StatusCode::kOutOfRange, "Index 5 is outside valid range \\[3, 5\\)"); } TEST(SliceTranslateClosedIntervalTest, OneDimensionalArrayNonStrided) { TestDimExpression( IndexTransformBuilder<1, 1>() .input_origin({-2}) .input_shape({4}) .output_index_array(0, 3, 2, MakeArray<Index>({6, 5, 4, 3})) .Finalize() .value(), AllDims().TranslateClosedInterval(-1, 1), {0}, IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({3}) .output_single_input_dimension(0, -1, 1, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({3}) .output_index_array(0, 3, 2, MakeArray<Index>({5, 4, 3})) .Finalize() .value(), {{{1}, {2}}}); } TEST(SliceTranslateClosedIntervalTest, OneDimensionalArrayStrided) { TestDimExpression( IndexTransformBuilder<1, 1>() .input_origin({-2}) .input_shape({4}) .output_index_array(0, 3, 2, MakeArray<Index>({6, 5, 4, 3})) .Finalize() .value(), AllDims().TranslateClosedInterval(-1, 1, 2), {0}, IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({2}) .output_single_input_dimension(0, -1, 2, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({2}) .output_index_array(0, 3, 2, MakeArray<Index>({5, 3})) .Finalize() .value(), {{{-1}, {0}}}); } TEST(ClosedIntervalTest, DimSubset) { TestDimExpression( IndexTransformBuilder<4, 4>() .input_origin({-10, 1, 2, -kInfIndex}) .input_shape({kInfIndex + 1, 4, 5, kInfIndex + 7}) .output_single_input_dimension(0, 1, 4, 1) .output_single_input_dimension(1, 2, 3, 3) .output_constant(2, 3) .output_index_array( 3, 4, 1, MakeArray<Index>( {{{{5}, {6}, {7}, {8}, {9}}, {{15}, {16}, {17}, {18}, {19}}, {{25}, {26}, {27}, {28}, {29}}, {{35}, {36}, {37}, {38}, {39}}}})) .Finalize() .value(), Dims(1, 2, 0).ClosedInterval({2, 2, -5}, {3, 4, 10}), {1, 2, 0}, IndexTransformBuilder<4, 4>() .input_origin({-5, 2, 2, -kInfIndex}) .input_shape({16, 2, 3, kInfIndex + 7}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<4, 4>() .input_origin({-5, 2, 2, -kInfIndex}) .input_shape({16, 2, 3, kInfIndex + 7}) .output_single_input_dimension(0, 1, 4, 1) .output_single_input_dimension(1, 2, 3, 3) .output_constant(2, 3) .output_index_array( 3, 4, 1, MakeArray<Index>( {{{{15}, {16}, {17}}, {{25}, {26}, {27}}}})) .Finalize() .value(), {{{1, 2, 3, 4}, {1, 2, 3, 4}}}); } TEST(SliceClosedIntervalTest, DimSubsetStriding) { TestDimExpression( IndexTransformBuilder<4, 4>() .input_origin({-10, 1, 2, -kInfIndex}) .input_shape({kInfIndex + 1, 4, 5, kInfIndex + 7}) .output_single_input_dimension(0, 1, 4, 1) .output_single_input_dimension(1, 2, 3, 3) .output_constant(2, 3) .output_index_array( 3, 4, 1, MakeArray<Index>( {{{{5}, {6}, {7}, {8}, {9}}, {{15}, {16}, {17}, {18}, {19}}, {{25}, {26}, {27}, {28}, {29}}, {{35}, {36}, {37}, {38}, {39}}}})) .Finalize() .value(), Dims(1, 2, 0, 3) .ClosedInterval({3, 2, 10, 1}, {2, 4, -5, kImplicit}, {-1, 2, -2, 4}), {1, 2, 0, 3}, IndexTransformBuilder<4, 4>() .input_origin({-5, -3, 1, 0}) .input_shape({8, 2, 2, 2}) .output_single_input_dimension(0, 0, -2, 0) .output_single_input_dimension(1, 0, -1, 1) .output_single_input_dimension(2, 0, 2, 2) .output_single_input_dimension(3, 1, 4, 3) .Finalize() .value(), IndexTransformBuilder<4, 4>() .input_origin({-5, -3, 1, 0}) .input_shape({8, 2, 2, 2}) .output_single_input_dimension(0, 1, -4, 1) .output_single_input_dimension(1, 5, 12, 3) .output_constant(2, 3) .output_index_array( 3, 4, 1, MakeArray<Index>({{{{25}, {27}}, {{15}, {17}}}})) .Finalize() .value(), {{{2, 2, 2, 5}, {-1, -2, 1, 1}}}); } TEST(SliceClosedIntervalTest, UnboundedStart) { TestDimExpression(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).ClosedInterval(kImplicit, 9), {0}, IndexTransformBuilder<1, 1>() .input_origin({5}) .input_shape({5}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({5}) .Finalize() .value(), {}); } TEST(SliceClosedIntervalTest, OneDimensionalNegativeStridedUnboundedStop) { TestDimExpression(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).ClosedInterval(12, kImplicit, -1), {0}, IndexTransformBuilder<1, 1>() .input_origin({-12}) .input_shape({8}) .output_single_input_dimension(0, 0, -1, 0) .Finalize() .value(), IndexTransformBuilder<1, 0>() .input_origin({-12}) .input_shape({8}) .Finalize() .value(), {}); } TEST(SliceHalfOpenIntervalTest, OneDimensionalUnstrided) { TestDimExpression(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).HalfOpenInterval(6, 10), {0}, IndexTransformBuilder<1, 1>() .input_origin({6}) .input_shape({4}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 0>() .input_origin({6}) .input_shape({4}) .Finalize() .value(), {}); } TEST(SliceHalfOpenIntervalTest, OneDimensionalUnstridedUnboundedStart) { TestDimExpression(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).HalfOpenInterval(kImplicit, 10), {0}, IndexTransformBuilder<1, 1>() .input_origin({5}) .input_shape({5}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({5}) .Finalize() .value(), {}); } TEST(SliceHalfOpenIntervalTest, OneDimensionalUnstridedUnboundedStop) { TestDimExpression(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).HalfOpenInterval(6, kImplicit), {0}, IndexTransformBuilder<1, 1>() .input_origin({6}) .input_shape({9}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 0>() .input_origin({6}) .input_shape({9}) .Finalize() .value(), {}); } TEST(SliceHalfOpenIntervalTest, OneDimensionalNegativeStridedUnboundedStop) { TestDimExpression(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).HalfOpenInterval(12, kImplicit, -1), {0}, IndexTransformBuilder<1, 1>() .input_origin({-12}) .input_shape({8}) .output_single_input_dimension(0, 0, -1, 0) .Finalize() .value(), IndexTransformBuilder<1, 0>() .input_origin({-12}) .input_shape({8}) .Finalize() .value(), {}); } TEST(SliceHalfOpenIntervalTest, ErrorHandling) { TestDimExpressionError( IndexTransformBuilder<1, 0>().Finalize().value(), Dims(0).HalfOpenInterval(6, std::numeric_limits<Index>::min() + 1), absl::StatusCode::kInvalidArgument, StrCat(".* do not specify a valid closed index interval")); } TEST(SliceClosedIntervalTest, ErrorHandling) { TestDimExpressionError(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).ClosedInterval(6, 10, 0), absl::StatusCode::kInvalidArgument, ".*Invalid stride 0"); TestDimExpressionError( IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).ClosedInterval(6, 4), absl::StatusCode::kInvalidArgument, ".*\\(6, 4\\) do not specify a valid closed index interval"); TestDimExpressionError( IndexTransformBuilder<1, 0>().input_shape({10}).Finalize().value(), Dims(0).ClosedInterval(-kInfIndex, 4, 2), absl::StatusCode::kInvalidArgument, ".*Slicing with non-unit stride of 2 requires a finite start index"); TestDimExpressionError( IndexTransformBuilder<1, 0>() .input_origin({2}) .input_shape({kInfIndex - 2 + 1}) .Finalize() .value(), Dims(0).ClosedInterval(kInfIndex, 4, -2), absl::StatusCode::kInvalidArgument, ".*Slicing with non-unit stride of -2 requires a finite start index"); TestDimExpressionError(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).ClosedInterval(6, 15), absl::StatusCode::kOutOfRange, ".*Slice interval \\[6, 16\\) is not " "contained within domain \\[5, 15\\)"); TestDimExpressionError( IndexTransformBuilder<1, 1>() .input_origin({5}) .input_shape({10}) .output_single_input_dimension(0, 0, std::numeric_limits<Index>::max(), 0) .Finalize() .value(), Dims(0).ClosedInterval(5, 10, 3), absl::StatusCode::kInvalidArgument, "Integer overflow computing offset for output dimension 0"); TestDimExpressionError( IndexTransformBuilder<1, 1>() .input_origin({5}) .input_shape({10}) .output_single_input_dimension(0, std::numeric_limits<Index>::max(), 1, 0) .Finalize() .value(), Dims(0).ClosedInterval(5, 10, 3), absl::StatusCode::kInvalidArgument, "Integer overflow computing offset for output dimension 0"); TestDimExpressionError( IndexTransformBuilder<1, 1>() .input_origin({5}) .input_shape({10}) .output_single_input_dimension(0, 0, std::numeric_limits<Index>::max(), 0) .Finalize() .value(), Dims(0).ClosedInterval(5, 10, 2), absl::StatusCode::kInvalidArgument, "Integer overflow computing stride for output dimension 0"); } TEST(SliceTranslateClosedIntervalTest, ErrorHandling) { TestDimExpressionError(IndexTransformBuilder<1, 0>().Finalize().value(), Dims(0).TranslateClosedInterval(-kInfIndex, 100), absl::StatusCode::kInvalidArgument, ".*Interval \\(-inf, 101\\) is not bounded below"); } TEST(SliceSizedIntervalTest, ErrorHandling) { TestDimExpressionError(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).SizedInterval(6, -2), absl::StatusCode::kInvalidArgument, ".*Negative size -2 specified for sized interval"); TestDimExpressionError(IndexTransformBuilder<1, 0>().Finalize().value(), Dims(0).SizedInterval(6, kInfIndex - 1, 100), absl::StatusCode::kOutOfRange, ".*Integer overflow computing slice result"); TestDimExpressionError(IndexTransformBuilder<1, 0>().Finalize().value(), Dims(0).SizedInterval(6, kInfSize - 1), absl::StatusCode::kOutOfRange, ".*Integer overflow computing slice result"); } TEST(SliceSizedIntervalTest, OneDimensionalUnstrided) { TestDimExpression(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).SizedInterval(6, 3), {0}, IndexTransformBuilder<1, 1>() .input_origin({6}) .input_shape({3}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 0>() .input_origin({6}) .input_shape({3}) .Finalize() .value(), {}); } TEST(SliceSizedIntervalTest, OneDimensionalUnstridedUnboundedMin) { TestDimExpression(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).SizedInterval(kImplicit, 3), {0}, IndexTransformBuilder<1, 1>() .input_origin({5}) .input_shape({3}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({3}) .Finalize() .value(), {}); } TEST(SliceSizedIntervalTest, OneDimensionalUnstridedUnboundedSize) { TestDimExpression(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).SizedInterval(6, kImplicit), {0}, IndexTransformBuilder<1, 1>() .input_origin({6}) .input_shape({9}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 0>() .input_origin({6}) .input_shape({9}) .Finalize() .value(), {}); } TEST(SliceSizedIntervalTest, OneDimensionalPositiveStrided) { TestDimExpression(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).SizedInterval(7, 3, 2), {0}, IndexTransformBuilder<1, 1>() .input_origin({3}) .input_shape({3}) .output_single_input_dimension(0, 1, 2, 0) .Finalize() .value(), IndexTransformBuilder<1, 0>() .input_origin({3}) .input_shape({3}) .Finalize() .value(), {}); } TEST(SliceSizedIntervalTest, OneDimensionalPositiveStridedUnboundedSize) { TestDimExpression(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).SizedInterval(6, kImplicit, 2), {0}, IndexTransformBuilder<1, 1>() .input_origin({3}) .input_shape({5}) .output_single_input_dimension(0, 0, 2, 0) .Finalize() .value(), IndexTransformBuilder<1, 0>() .input_origin({3}) .input_shape({5}) .Finalize() .value(), {}); TestDimExpression(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).SizedInterval(7, kImplicit, 2), {0}, IndexTransformBuilder<1, 1>() .input_origin({3}) .input_shape({4}) .output_single_input_dimension(0, 1, 2, 0) .Finalize() .value(), IndexTransformBuilder<1, 0>() .input_origin({3}) .input_shape({4}) .Finalize() .value(), {}); } TEST(SliceSizedIntervalTest, OneDimensionalNegativeStrided) { TestDimExpression(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).SizedInterval(13, 3, -2), {0}, IndexTransformBuilder<1, 1>() .input_origin({-6}) .input_shape({3}) .output_single_input_dimension(0, 1, -2, 0) .Finalize() .value(), IndexTransformBuilder<1, 0>() .input_origin({-6}) .input_shape({3}) .Finalize() .value(), {}); } TEST(SliceSizedIntervalTest, OneDimensionalNegativeStridedUnboundedSize) { TestDimExpression(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).SizedInterval(13, kImplicit, -2), {0}, IndexTransformBuilder<1, 1>() .input_origin({-6}) .input_shape({5}) .output_single_input_dimension(0, 1, -2, 0) .Finalize() .value(), IndexTransformBuilder<1, 0>() .input_origin({-6}) .input_shape({5}) .Finalize() .value(), {}); } TEST(StrideTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({0, 2, 1}) .input_inclusive_max({6, 5, 8}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({-3, 2, 1}) .input_inclusive_max({0, 5, 2}) .input_labels({"x", "y", "z"}) .output_single_input_dimension(0, 0, -2, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 0, 3, 2) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{4, 3, 3}, {-2, 3, 1}}, }; TestDimExpression( original_transform, Dims(0, 2).Stride({-2, 3}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); TestDimExpression( original_transform, Dims("x", "z").Stride({-2, 3}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(StrideTest, ErrorZeroStride) { TestDimExpressionError( IndexTransformBuilder<1, 0>().Finalize().value(), Dims(0).Stride(0), absl::StatusCode::kInvalidArgument, StrCat("Applying stride to input dimension 0: Stride must be non-zero")); } TEST(StrideTest, ErrorStrideOverflow) { TestDimExpressionError( IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, 0, std::numeric_limits<Index>::min(), 0) .Finalize() .value(), Dims(0).Stride(std::numeric_limits<Index>::min()), absl::StatusCode::kInvalidArgument, StrCat("Integer overflow computing stride for output dimension 0")); } TEST(BoxSliceTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({0, 2, 0}) .input_inclusive_max({6, 5, 9}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 4}) .input_inclusive_max({3, 5, 7}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{1, 3, 4}, {1, 3, 4}}, }; TestDimExpression( original_transform, Dims(0, 2).BoxSlice(BoxView({1, 4}, {3, 4})), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); TestDimExpression( original_transform, Dims("x", "z").BoxSlice(BoxView({1, 4}, {3, 4})), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(TranslateBoxSliceTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({0, 2, 0}) .input_inclusive_max({6, 5, 9}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({0, 2, 0}) .input_inclusive_max({2, 5, 3}) .input_labels({"x", "y", "z"}) .output_single_input_dimension(0, 1, 1, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 4, 1, 2) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{1, 3, 4}, {0, 3, 0}}, }; TestDimExpression( original_transform, Dims(0, 2).TranslateBoxSlice(BoxView({1, 4}, {3, 4})), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); TestDimExpression( original_transform, Dims("x", "z").TranslateBoxSlice(BoxView({1, 4}, {3, 4})), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/internal/interval_slice_op.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/interval_slice_op_test.cc
4f887a6430414cd6088e1743555015b10f116d50
d8944e80-26e6-4dc5-8df1-c051bf2b5ecb
cpp
google/tensorstore
add_new_dims_op
tensorstore/index_space/internal/add_new_dims_op.cc
tensorstore/index_space/add_new_dims_op_test.cc
#include "tensorstore/index_space/internal/add_new_dims_op.h" #include <cassert> #include <utility> #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/dimension_index_buffer.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/index_space/output_index_method.h" #include "tensorstore/rank.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" namespace tensorstore { namespace internal_index_space { namespace { void AddNewDims(TransformRep* original, TransformRep* result, DimensionIndexBuffer* dimensions, bool domain_only) { const DimensionIndex orig_input_rank = original->input_rank; const DimensionIndex new_input_rank = orig_input_rank + dimensions->size(); assert(result->input_rank_capacity >= new_input_rank); const DimensionIndex output_rank = domain_only ? 0 : original->output_rank; assert(result->output_rank_capacity >= output_rank); DimensionSet newly_added_input_dims; for (DimensionIndex new_input_dim : *dimensions) { newly_added_input_dims[new_input_dim] = true; } DimensionIndex orig_to_new_input_dim[kMaxRank]; for (DimensionIndex new_input_dim = 0, orig_input_dim = 0; new_input_dim < new_input_rank; ++new_input_dim) { if (newly_added_input_dims[new_input_dim]) continue; orig_to_new_input_dim[orig_input_dim] = new_input_dim; ++orig_input_dim; } span<const OutputIndexMap> orig_maps = original->output_index_maps().first(output_rank); span<OutputIndexMap> result_maps = result->output_index_maps().first(output_rank); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const auto& orig_map = orig_maps[output_dim]; auto& result_map = result_maps[output_dim]; result_map.stride() = orig_map.stride(); result_map.offset() = orig_map.offset(); switch (orig_map.method()) { case OutputIndexMethod::constant: result_map.SetConstant(); break; case OutputIndexMethod::single_input_dimension: { const DimensionIndex orig_input_dim = orig_map.input_dimension(); assert(orig_input_dim >= 0 && orig_input_dim < orig_input_rank); const DimensionIndex new_input_dim = orig_to_new_input_dim[orig_input_dim]; result_map.SetSingleInputDimension(new_input_dim); break; } case OutputIndexMethod::array: { auto& result_index_array = result_map.SetArrayIndexing(new_input_rank); const auto& orig_index_array = orig_map.index_array_data(); for (DimensionIndex orig_input_dim = orig_input_rank - 1; orig_input_dim >= 0; --orig_input_dim) { const DimensionIndex new_input_dim = orig_to_new_input_dim[orig_input_dim]; assert(new_input_dim >= orig_input_dim); result_index_array.byte_strides[new_input_dim] = orig_index_array.byte_strides[orig_input_dim]; } for (const DimensionIndex new_input_dim : *dimensions) { result_index_array.byte_strides[new_input_dim] = 0; } result_index_array.index_range = orig_index_array.index_range; result_index_array.element_pointer = orig_index_array.element_pointer; break; } } } for (DimensionIndex orig_input_dim = orig_input_rank - 1; orig_input_dim >= 0; --orig_input_dim) { const DimensionIndex new_input_dim = orig_to_new_input_dim[orig_input_dim]; result->input_dimension(new_input_dim) = original->input_dimension(orig_input_dim); } for (DimensionIndex new_input_dim : *dimensions) { const auto d = result->input_dimension(new_input_dim); d.domain() = IndexInterval::UncheckedSized(-kInfIndex, kInfSize); d.implicit_lower_bound() = true; d.implicit_upper_bound() = true; d.SetEmptyLabel(); } result->input_rank = new_input_rank; result->output_rank = output_rank; } } Result<IndexTransform<>> ApplyAddNewDims(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only) { const DimensionIndex new_input_rank = transform.input_rank() + dimensions->size(); TENSORSTORE_RETURN_IF_ERROR(ValidateRank(new_input_rank)); auto new_rep = NewOrMutableRep(TransformAccess::rep(transform), new_input_rank, transform.output_rank(), domain_only); AddNewDims(TransformAccess::rep(transform), new_rep.get(), dimensions, domain_only); internal_index_space::DebugCheckInvariants(new_rep.get()); return TransformAccess::Make<IndexTransform<>>(std::move(new_rep)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" namespace { using ::tensorstore::Dims; using ::tensorstore::Index; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::kInfIndex; using ::tensorstore::kInfSize; using ::tensorstore::MakeArray; using ::tensorstore::internal_index_space::TestDimExpression; using ::tensorstore::internal_index_space::TestDimExpressionError; TEST(AddNewTest, Example) { const auto expected_new_transform = IndexTransformBuilder<3, 1>() .input_origin({-kInfIndex, 1, -kInfIndex}) .input_shape({kInfSize, 5, kInfSize}) .implicit_lower_bounds({1, 0, 1}) .implicit_upper_bounds({1, 0, 1}) .input_labels({"", "x", ""}) .output_single_input_dimension(0, 1) .Finalize() .value(); TestDimExpression( IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({5}) .input_labels({"x"}) .output_single_input_dimension(0, 0) .Finalize() .value(), Dims(0, -1).AddNew(), {0, 2}, expected_new_transform, expected_new_transform, { {{2}, {1, 2, 8}}, {{2}, {5, 2, 9}}, }, false); } TEST(AddNewTest, Simple) { TestDimExpression( IndexTransformBuilder<2, 3>() .input_origin({2, 3}) .input_shape({3, 4}) .output_single_input_dimension(0, 1, 3, 1) .output_single_input_dimension(1, 2, 4, 0) .output_index_array(2, 3, 5, MakeArray<Index>({{1, 2, 3, 4}}), IndexInterval::Closed(-1, 10)) .Finalize() .value(), Dims(0, -1).AddNew(), {0, 3}, IndexTransformBuilder<4, 2>() .input_origin({-kInfIndex, 2, 3, -kInfIndex}) .input_shape({kInfSize, 3, 4, kInfSize}) .implicit_lower_bounds({1, 0, 0, 1}) .implicit_upper_bounds({1, 0, 0, 1}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 2) .Finalize() .value(), IndexTransformBuilder<4, 3>() .input_origin({-kInfIndex, 2, 3, -kInfIndex}) .input_shape({kInfSize, 3, 4, kInfSize}) .implicit_lower_bounds({1, 0, 0, 1}) .implicit_upper_bounds({1, 0, 0, 1}) .output_single_input_dimension(0, 1, 3, 2) .output_single_input_dimension(1, 2, 4, 1) .output_index_array( 2, 3, 5, MakeArray<Index>({{{{1}, {2}, {3}, {4}}}}), IndexInterval::Closed(-1, 10)) .Finalize() .value(), { {{3, 4}, {100, 3, 4, 500}}, {{3, 4}, {-100, 3, 4, -500}}, }, false); } TEST(AddNewTest, Constant) { TestDimExpression(IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({5}) .output_constant(0, 1) .Finalize() .value(), Dims(0).AddNew(), {0}, IndexTransformBuilder<2, 1>() .input_origin({-kInfIndex, 1}) .input_shape({kInfSize, 5}) .implicit_lower_bounds({1, 0}) .implicit_upper_bounds({1, 0}) .output_single_input_dimension(0, 1) .Finalize() .value(), IndexTransformBuilder<2, 1>() .input_origin({-kInfIndex, 1}) .input_shape({kInfSize, 5}) .implicit_lower_bounds({1, 0}) .implicit_upper_bounds({1, 0}) .output_constant(0, 1) .Finalize() .value(), { {{1}, {-100, 1}}, {{1}, {100, 1}}, }, false); } TEST(AddNewTest, Labeled) { TestDimExpression(IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({5}) .input_labels({"a"}) .output_constant(0, 1) .Finalize() .value(), Dims(-1, 0).AddNew().Label("x", "y"), {2, 0}, IndexTransformBuilder<3, 1>() .input_origin({-kInfIndex, 1, -kInfIndex}) .input_shape({kInfSize, 5, kInfSize}) .implicit_lower_bounds({1, 0, 1}) .implicit_upper_bounds({1, 0, 1}) .input_labels({"y", "a", "x"}) .output_single_input_dimension(0, 1) .Finalize() .value(), IndexTransformBuilder<3, 1>() .input_origin({-kInfIndex, 1, -kInfIndex}) .input_shape({kInfSize, 5, kInfSize}) .implicit_lower_bounds({1, 0, 1}) .implicit_upper_bounds({1, 0, 1}) .input_labels({"y", "a", "x"}) .output_constant(0, 1) .Finalize() .value(), { {{2}, {1, 2, 8}}, {{2}, {5, 2, 9}}, }, false); } TEST(AddNewTest, EmptyDimensionSelection) { const auto transform = IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({5}) .input_labels({"x"}) .output_single_input_dimension(0, 0) .Finalize() .value(); TestDimExpression( transform, Dims().AddNew(), {}, transform, transform, { {{2}, {2}}, {{3}, {3}}, }, true); } TEST(AddNewTest, InvalidRank) { TestDimExpressionError(tensorstore::IdentityTransform(31), Dims(0, 1).AddNew(), absl::StatusCode::kInvalidArgument, ".*Rank 33 is outside valid range \\[0, 32\\]"); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/internal/add_new_dims_op.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/add_new_dims_op_test.cc
4f887a6430414cd6088e1743555015b10f116d50
9cffab4a-af17-4482-957f-442c9956958a
cpp
google/tensorstore
keyword_arguments
python/tensorstore/keyword_arguments.h
python/tensorstore/keyword_arguments_test.cc
#ifndef PYTHON_TENSORSTORE_KEYWORD_ARGUMENTS_H_ #define PYTHON_TENSORSTORE_KEYWORD_ARGUMENTS_H_ #include <pybind11/pybind11.h> #include <string_view> #include "absl/strings/ascii.h" #include "absl/strings/str_split.h" #include "python/tensorstore/status.h" #include "python/tensorstore/type_name_override.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_python { template <typename T> struct KeywordArgumentPlaceholder { pybind11::object value; constexpr static auto tensorstore_pybind11_type_name_override = pybind11::detail::_("Optional[") + pybind11::detail::make_caster<T>::name + pybind11::detail::_("]"); }; template <typename ParamDef> using KeywordArgument = KeywordArgumentPlaceholder<typename ParamDef::type>; template <typename ParamDef> void AppendKeywordArgumentDoc(std::string& doc) { tensorstore::StrAppend(&doc, " ", ParamDef::name, ": "); std::string_view delim = ""; for (std::string_view line : absl::StrSplit(absl::StripAsciiWhitespace(ParamDef::doc), '\n')) { tensorstore::StrAppend(&doc, delim, line, "\n"); delim = " "; } } template <typename... ParamDef> void AppendKeywordArgumentDocs(std::string& doc, ParamDef... params) { (AppendKeywordArgumentDoc<ParamDef>(doc), ...); } template <typename ParamDef> auto MakeKeywordArgumentPyArg(ParamDef param_def) { return (pybind11::arg(decltype(param_def)::name) = pybind11::none()); } template <typename ParamDef, typename Target> void SetKeywordArgumentOrThrow(Target& target, KeywordArgument<ParamDef>& arg) { if (arg.value.is_none()) return; pybind11::detail::make_caster<typename ParamDef::type> caster; if (!caster.load(arg.value, true)) { throw pybind11::type_error(tensorstore::StrCat("Invalid ", ParamDef::name)); } auto status = ParamDef::Apply( target, pybind11::detail::cast_op<typename ParamDef::type&&>(std::move(caster))); if (!status.ok()) { ThrowStatusException(MaybeAnnotateStatus( status, tensorstore::StrCat("Invalid ", ParamDef::name))); } } template <typename... ParamDef, typename Target> void ApplyKeywordArguments(Target& target, KeywordArgument<ParamDef>&... arg) { (SetKeywordArgumentOrThrow<ParamDef>(target, arg), ...); } } } #endif
#include <pybind11/pybind11.h> #include "python/tensorstore/keyword_arguments.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_python { namespace { namespace py = ::pybind11; struct MyOptions { int a = 42; std::string b; }; struct MyArgA { using type = int; constexpr static const char* name = "a"; constexpr static const char* doc = R"( Specifies a. This documentation string is allowed to be more than one line. )"; static absl::Status Apply(MyOptions& self, type value) { if (value == 0) return absl::InvalidArgumentError("Bad"); self.a = value; return absl::OkStatus(); } }; struct MyArgB { using type = std::string; constexpr static const char* name = "b"; constexpr static const char* doc = "Specifies b."; static absl::Status Apply(MyOptions& self, type value) { self.b = value; return absl::OkStatus(); } }; constexpr auto WithMyKeywordArguments = [](auto callback) { callback(MyArgA{}, MyArgB{}); }; [[maybe_unused]] void RegisterBindings(py::module m) { WithMyKeywordArguments([&](auto... param_def) { std::string doc = R"( Does something or other with keyword arguments. Args: required_arg: This is required )"; AppendKeywordArgumentDocs(doc, param_def...); doc += R"( Overload: components )"; m.def( "myfunc", [](int required_arg, KeywordArgument<decltype(param_def)>... kwarg) { MyOptions options; ApplyKeywordArguments<decltype(param_def)...>(options, kwarg...); return tensorstore::StrCat(options.a, ", ", options.b); }, doc.c_str(), py::arg("required_arg"), py::kw_only(), MakeKeywordArgumentPyArg(param_def)...); }); } } } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/python/tensorstore/keyword_arguments.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/python/tensorstore/keyword_arguments_test.cc
4f887a6430414cd6088e1743555015b10f116d50
34ccf62e-4ef7-427f-ac2d-6abf3f4c45d8
cpp
google/tensorstore
data_type_conversion
tensorstore/data_type_conversion.h
tensorstore/data_type_conversion_test.cc
#ifndef TENSORSTORE_DATA_TYPE_CONVERSION_H_ #define TENSORSTORE_DATA_TYPE_CONVERSION_H_ #include <array> #include <complex> #include <limits> #include <type_traits> #include "tensorstore/data_type.h" #include "tensorstore/internal/elementwise_function.h" #include "tensorstore/util/result.h" namespace tensorstore { template <typename From, typename To> struct ConvertDataType { void operator()(const From* from, To* to, void* arg) const { *to = static_cast<To>(*from); } }; template <typename From, typename To> struct DataTypeConversionTraits { constexpr static DataTypeConversionFlags flags = DataTypeConversionFlags{}; }; template <typename From, typename To, DataTypeConversionFlags AdditionalFlags = DataTypeConversionFlags{}> constexpr inline bool IsDataTypeConversionSupported = ((DataTypeConversionTraits<From, To>::flags & (DataTypeConversionFlags::kSupported | AdditionalFlags)) == (DataTypeConversionFlags::kSupported | AdditionalFlags)); template <typename From, DataTypeConversionFlags AdditionalFlags> constexpr inline bool IsDataTypeConversionSupported<From, void, AdditionalFlags> = true; template <typename To, DataTypeConversionFlags AdditionalFlags> constexpr inline bool IsDataTypeConversionSupported<void, To, AdditionalFlags> = true; template <typename T, DataTypeConversionFlags AdditionalFlags> constexpr inline bool IsDataTypeConversionSupported<T, T, AdditionalFlags> = true; template <DataTypeConversionFlags AdditionalFlags> constexpr inline bool IsDataTypeConversionSupported<void, void, AdditionalFlags> = true; namespace internal { extern const std::array<DataTypeOperations::CanonicalConversionOperations, kNumDataTypeIds> canonical_data_type_conversions; DataTypeConversionLookupResult GetDataTypeConverter(DataType from, DataType to); Result<DataTypeConversionLookupResult> GetDataTypeConverterOrError( DataType from, DataType to, DataTypeConversionFlags required_flags = {}); } namespace internal_data_type { template <typename From, typename To> std::enable_if_t<((DataTypeConversionTraits<From, To>::flags & (DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kCanReinterpretCast)) == DataTypeConversionFlags::kSupported && !std::is_same_v<From, To>), internal::ElementwiseFunction<2, void*>> GetConvertFunction() { return internal::SimpleElementwiseFunction< ConvertDataType<From, To>(From, const To), void*>(); } template <typename From, typename To> std::enable_if_t<((DataTypeConversionTraits<From, To>::flags & (DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kCanReinterpretCast)) != DataTypeConversionFlags::kSupported || std::is_same_v<From, To>), internal::ElementwiseFunction<2, void*>> GetConvertFunction() { return {}; } template <typename From> constexpr internal::DataTypeOperations::CanonicalConversionOperations GetConvertToCanonicalOperations() { return { MapCanonicalDataTypes([](auto dtype) { using X = typename decltype(dtype)::Element; return GetConvertFunction<From, X>(); }), MapCanonicalDataTypes([](auto dtype) { using X = typename decltype(dtype)::Element; return DataTypeConversionTraits<From, X>::flags; }), }; } } namespace internal_data_type { template <typename From, typename To> struct IntegerIntegerDataTypeConversionTraits { constexpr static DataTypeConversionFlags flags = DataTypeConversionFlags::kSupported | ((std::numeric_limits<From>::digits <= std::numeric_limits<To>::digits && std::numeric_limits<From>::is_signed <= std::numeric_limits<To>::is_signed) ? DataTypeConversionFlags::kSafeAndImplicit : DataTypeConversionFlags{}) | ((std::numeric_limits<From>::digits + std::numeric_limits<From>::is_signed == std::numeric_limits<To>::digits + std::numeric_limits<To>::is_signed) ? DataTypeConversionFlags::kCanReinterpretCast : DataTypeConversionFlags{}); }; template <typename From, typename To> struct IntegerFloatDataTypeConversionTraits { constexpr static DataTypeConversionFlags flags = DataTypeConversionFlags::kSupported | ((std::numeric_limits<From>::digits <= std::numeric_limits<To>::digits) ? DataTypeConversionFlags::kSafeAndImplicit : DataTypeConversionFlags{}); }; template <typename From, typename To> struct FloatFloatDataTypeConversionTraits { constexpr static DataTypeConversionFlags flags = DataTypeConversionFlags::kSupported | ((std::numeric_limits<From>::digits <= std::numeric_limits<To>::digits && std::numeric_limits<From>::min_exponent >= std::numeric_limits<To>::min_exponent && std::numeric_limits<From>::max_exponent <= std::numeric_limits<To>::max_exponent) ? DataTypeConversionFlags::kSafeAndImplicit : DataTypeConversionFlags{}); }; template <typename From, typename To> struct NumericComplexDataTypeConversionTraits { constexpr static DataTypeConversionFlags flags = DataTypeConversionTraits<From, typename To::value_type>::flags & (DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit); }; template <typename From, typename To> struct ComplexComplexDataTypeConversionTraits : public DataTypeConversionTraits<typename From::value_type, typename To::value_type> {}; template <typename From, typename To> struct IntegerJsonDataTypeConversionTraits { constexpr static DataTypeConversionFlags flags = DataTypeConversionFlags::kSupported | ((std::numeric_limits<From>::digits <= 64) ? DataTypeConversionFlags::kSafeAndImplicit : DataTypeConversionFlags{}); }; template <typename From, typename To> struct FloatJsonDataTypeConversionTraits { constexpr static DataTypeConversionFlags flags = DataTypeConversionTraits<From, double>::flags & (DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit); }; } template <typename T> struct DataTypeConversionTraits<std::complex<T>, ::tensorstore::dtypes::json_t> : public DataTypeConversionTraits<T, ::tensorstore::dtypes::json_t> {}; #define TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS(FROM, TO, ...) \ template <> \ struct DataTypeConversionTraits<FROM, TO> { \ using From = FROM; \ using To = TO; \ constexpr static DataTypeConversionFlags flags = __VA_ARGS__; \ }; \ #define TENSORSTORE_INTERNAL_INHERITED_CONVERT(FROM, TO, PARENT) \ template <> \ struct DataTypeConversionTraits<FROM, TO> : public PARENT<FROM, TO> {}; \ TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::char_t, ::tensorstore::dtypes::byte_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit | DataTypeConversionFlags::kCanReinterpretCast) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::ustring_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit | DataTypeConversionFlags::kCanReinterpretCast) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::float8_e4m3fn_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::float8_e5m2_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::float16_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::bfloat16_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::float32_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::float64_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::complex64_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::complex128_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bool_t, ::tensorstore::dtypes::json_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::byte_t, ::tensorstore::dtypes::char_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::ustring_t, ::tensorstore::dtypes::json_t, DataTypeConversionFlags::kSupported | DataTypeConversionFlags::kSafeAndImplicit) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::float8_e4m3fn_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::float8_e5m2_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::float16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::bfloat16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::float32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::float64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::float8_e4m3fn_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::float8_e5m2_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::float16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::bfloat16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::float32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::float64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::bool_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::int4_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::int8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::uint8_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::int16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::uint16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::int32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::uint32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::int64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::uint64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::float8_e4m3fn_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::float8_e5m2_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::float16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::bfloat16_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::float32_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::float64_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::string_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::json_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::string_t, ::tensorstore::dtypes::ustring_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS( ::tensorstore::dtypes::string_t, ::tensorstore::dtypes::json_t, DataTypeConversionFlags::kSupported) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::int4_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::int8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::uint8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::int16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::uint16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::int32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::uint32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::int64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::uint64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::int4_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::int8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::uint8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::int16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::uint16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::int32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::uint32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::int64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::uint64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::int4_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::int8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::uint8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::int16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::uint16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::int32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::uint32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::int64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::uint64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::int4_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::int8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::uint8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::int16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::uint16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::int32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::uint32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::int64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::uint64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::int4_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::int8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::uint8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::int16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::uint16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::int32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::uint32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::int64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::uint64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::int4_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::int8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::uint8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::int16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::uint16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::int32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::uint32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::int64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::uint64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::int4_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::int8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::uint8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::int16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::uint16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::int32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::uint32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::int64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::uint64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::int4_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::int8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::uint8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::int16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::uint16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::int32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::uint32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::int64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::uint64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::int4_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::int8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::uint8_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::int16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::uint16_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::int32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::uint32_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::int64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::uint64_t, internal_data_type::IntegerIntegerDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::float16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::float32_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::float64_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::float16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::float32_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::float64_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::float16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::float32_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::float64_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::float16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::float32_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::float64_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::float16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::float32_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::float64_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::float16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::float32_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::float64_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::float16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::float32_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::float64_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::float16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::float32_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::float64_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::float16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::float32_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::float64_t, internal_data_type::IntegerFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int4_t, ::tensorstore::dtypes::json_t, internal_data_type::IntegerJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int8_t, ::tensorstore::dtypes::json_t, internal_data_type::IntegerJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint8_t, ::tensorstore::dtypes::json_t, internal_data_type::IntegerJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int16_t, ::tensorstore::dtypes::json_t, internal_data_type::IntegerJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint16_t, ::tensorstore::dtypes::json_t, internal_data_type::IntegerJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int32_t, ::tensorstore::dtypes::json_t, internal_data_type::IntegerJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint32_t, ::tensorstore::dtypes::json_t, internal_data_type::IntegerJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::int64_t, ::tensorstore::dtypes::json_t, internal_data_type::IntegerJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::uint64_t, ::tensorstore::dtypes::json_t, internal_data_type::IntegerJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::float16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::float32_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::float64_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::float16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::float32_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::float64_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::float16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::float32_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::float64_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::float16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::float32_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::float64_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::float16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::float32_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::float64_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::float16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::float32_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::float64_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::float16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::float32_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::float64_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::float16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::float32_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::float64_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::float8_e4m3fn_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::float8_e4m3fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::float8_e4m3b11fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::float8_e5m2_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::float8_e5m2fnuz_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::float16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::bfloat16_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::float32_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::float64_t, internal_data_type::FloatFloatDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::complex64_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::complex128_t, internal_data_type::NumericComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fn_t, ::tensorstore::dtypes::json_t, internal_data_type::FloatJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3fnuz_t, ::tensorstore::dtypes::json_t, internal_data_type::FloatJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e4m3b11fnuz_t, ::tensorstore::dtypes::json_t, internal_data_type::FloatJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2_t, ::tensorstore::dtypes::json_t, internal_data_type::FloatJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float8_e5m2fnuz_t, ::tensorstore::dtypes::json_t, internal_data_type::FloatJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float16_t, ::tensorstore::dtypes::json_t, internal_data_type::FloatJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::bfloat16_t, ::tensorstore::dtypes::json_t, internal_data_type::FloatJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float32_t, ::tensorstore::dtypes::json_t, internal_data_type::FloatJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::float64_t, ::tensorstore::dtypes::json_t, internal_data_type::FloatJsonDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::complex64_t, internal_data_type::ComplexComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::complex64_t, ::tensorstore::dtypes::complex128_t, internal_data_type::ComplexComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::complex64_t, internal_data_type::ComplexComplexDataTypeConversionTraits) TENSORSTORE_INTERNAL_INHERITED_CONVERT( ::tensorstore::dtypes::complex128_t, ::tensorstore::dtypes::complex128_t, internal_data_type::ComplexComplexDataTypeConversionTraits) #undef TENSORSTORE_INTERNAL_DEFINE_CONVERT_TRAITS #undef TENSORSTORE_INTERNAL_INHERITED_CONVERT } #endif
#include "tensorstore/data_type_conversion.h" #include <type_traits> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/internal/element_copy_function.h" #include "tensorstore/internal/elementwise_function.h" #include "tensorstore/internal/half_gtest.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::DataTypeConversionFlags; using ::tensorstore::DataTypeConversionTraits; using ::tensorstore::dtype_v; using ::tensorstore::Index; using ::tensorstore::IsDataTypeConversionSupported; using ::tensorstore::MatchesStatus; using ::tensorstore::Result; using ::tensorstore::StrCat; using ::tensorstore::internal::GetDataTypeConverter; using ::tensorstore::internal::GetDataTypeConverterOrError; using ::tensorstore::internal::GetElementCopyErrorStatus; using ::tensorstore::internal::IterationBufferKind; using ::tensorstore::internal::IterationBufferPointer; #define X(T, ...) \ using ::tensorstore::dtypes::T; \ TENSORSTORE_FOR_EACH_DATA_TYPE(X) #undef X constexpr DataTypeConversionFlags kSupported = DataTypeConversionFlags::kSupported; constexpr DataTypeConversionFlags kIdentity = DataTypeConversionFlags::kIdentity; constexpr DataTypeConversionFlags kSafeAndImplicit = DataTypeConversionFlags::kSafeAndImplicit; constexpr DataTypeConversionFlags kCanReinterpretCast = DataTypeConversionFlags::kCanReinterpretCast; template <typename From, typename To> void TestUnsupported() { static_assert(DataTypeConversionTraits<From, To>::flags == DataTypeConversionFlags{}); static_assert(!IsDataTypeConversionSupported<From, To>); auto r = GetDataTypeConverter(dtype_v<From>, dtype_v<To>); EXPECT_EQ(DataTypeConversionFlags{}, r.flags); } template <typename To, typename From> Result<To> TestConversion( From from, DataTypeConversionFlags flags = DataTypeConversionFlags{}) { SCOPED_TRACE( StrCat("TestConversion<To=", dtype_v<To>, ", From=", dtype_v<From>, ">") .c_str()); flags = flags | kSupported; if constexpr (!std::is_same_v<To, From>) { EXPECT_EQ(flags, (DataTypeConversionTraits<From, To>::flags)); } EXPECT_EQ(!!(flags & kSafeAndImplicit), (IsDataTypeConversionSupported<From, To, kSafeAndImplicit>)); EXPECT_TRUE((IsDataTypeConversionSupported<From, To>)); auto r = GetDataTypeConverter(dtype_v<From>, dtype_v<To>); EXPECT_EQ(flags, r.flags); To value; absl::Status status; if ((*r.closure.function)[IterationBufferKind::kContiguous]( r.closure.context, {1, 1}, IterationBufferPointer(&from, Index(0), Index(0)), IterationBufferPointer(&value, Index(0), Index(0)), &status) != 1) { return GetElementCopyErrorStatus(std::move(status)); } return value; } TEST(DataTypeConversionTest, Bool) { EXPECT_EQ(false, TestConversion<bool_t>(false, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(true, TestConversion<bool_t>(true, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(0, TestConversion<int4_t>(false, kSafeAndImplicit)); EXPECT_EQ(1, TestConversion<int4_t>(true, kSafeAndImplicit)); EXPECT_EQ(0, TestConversion<int8_t>(false, kSafeAndImplicit)); EXPECT_EQ(1, TestConversion<int8_t>(true, kSafeAndImplicit)); EXPECT_EQ(0, TestConversion<int16_t>(false, kSafeAndImplicit)); EXPECT_EQ(1, TestConversion<int16_t>(true, kSafeAndImplicit)); EXPECT_EQ(0, TestConversion<int32_t>(false, kSafeAndImplicit)); EXPECT_EQ(1, TestConversion<int32_t>(true, kSafeAndImplicit)); EXPECT_EQ(0, TestConversion<int64_t>(false, kSafeAndImplicit)); EXPECT_EQ(1, TestConversion<int64_t>(true, kSafeAndImplicit)); EXPECT_EQ(0u, TestConversion<uint8_t>(false, kSafeAndImplicit)); EXPECT_EQ(1u, TestConversion<uint8_t>(true, kSafeAndImplicit)); EXPECT_EQ(0u, TestConversion<uint16_t>(false, kSafeAndImplicit)); EXPECT_EQ(1u, TestConversion<uint16_t>(true, kSafeAndImplicit)); EXPECT_EQ(0u, TestConversion<uint32_t>(false, kSafeAndImplicit)); EXPECT_EQ(1u, TestConversion<uint32_t>(true, kSafeAndImplicit)); EXPECT_EQ(0u, TestConversion<uint64_t>(false, kSafeAndImplicit)); EXPECT_EQ(1u, TestConversion<uint64_t>(true, kSafeAndImplicit)); EXPECT_EQ(0, TestConversion<float16_t>(false, kSafeAndImplicit)); EXPECT_EQ(1, TestConversion<float16_t>(true, kSafeAndImplicit)); EXPECT_EQ(0, TestConversion<bfloat16_t>(false, kSafeAndImplicit)); EXPECT_EQ(1, TestConversion<bfloat16_t>(true, kSafeAndImplicit)); EXPECT_EQ(0, TestConversion<float32_t>(false, kSafeAndImplicit)); EXPECT_EQ(1, TestConversion<float32_t>(true, kSafeAndImplicit)); EXPECT_EQ(0, TestConversion<float64_t>(false, kSafeAndImplicit)); EXPECT_EQ(1, TestConversion<float64_t>(true, kSafeAndImplicit)); EXPECT_EQ(complex64_t(0), TestConversion<complex64_t>(false, kSafeAndImplicit)); EXPECT_EQ(complex64_t(1), TestConversion<complex64_t>(true, kSafeAndImplicit)); EXPECT_EQ(complex128_t(0), TestConversion<complex128_t>(false, kSafeAndImplicit)); EXPECT_EQ(complex128_t(1), TestConversion<complex128_t>(true, kSafeAndImplicit)); EXPECT_EQ(json_t(false), TestConversion<json_t>(false, kSafeAndImplicit)); EXPECT_EQ(json_t(true), TestConversion<json_t>(true, kSafeAndImplicit)); TestUnsupported<bool, string_t>(); TestUnsupported<bool, ustring_t>(); } TEST(DataTypeConversionTest, Int4) { using T = int4_t; constexpr T pos{7}; constexpr T neg{-8}; EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(true, TestConversion<bool_t>(neg)); EXPECT_EQ(static_cast<int8_t>(neg), TestConversion<int8_t>(neg, kSafeAndImplicit)); EXPECT_EQ(static_cast<int8_t>(pos), TestConversion<int8_t>(pos, kSafeAndImplicit)); EXPECT_EQ(static_cast<int16_t>(neg), TestConversion<int16_t>(neg, kSafeAndImplicit)); EXPECT_EQ(static_cast<int32_t>(neg), TestConversion<int32_t>(neg, kSafeAndImplicit)); EXPECT_EQ(static_cast<int64_t>(neg), TestConversion<int64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(static_cast<uint8_t>(neg), TestConversion<uint8_t>(neg)); EXPECT_EQ(static_cast<uint8_t>(pos), TestConversion<uint8_t>(pos)); EXPECT_EQ(static_cast<uint16_t>(neg), TestConversion<uint16_t>(neg)); EXPECT_EQ(static_cast<uint16_t>(pos), TestConversion<uint16_t>(pos)); EXPECT_EQ(static_cast<uint32_t>(neg), TestConversion<uint32_t>(neg)); EXPECT_EQ(static_cast<uint32_t>(pos), TestConversion<uint32_t>(pos)); EXPECT_EQ(static_cast<uint64_t>(neg), TestConversion<uint64_t>(neg)); EXPECT_EQ(static_cast<uint64_t>(pos), TestConversion<uint64_t>(pos)); EXPECT_EQ(float16_t(neg), TestConversion<float16_t>(neg, kSafeAndImplicit)); EXPECT_EQ(bfloat16_t(neg), TestConversion<bfloat16_t>(neg, kSafeAndImplicit)); EXPECT_EQ(float32_t(neg), TestConversion<float32_t>(neg, kSafeAndImplicit)); EXPECT_EQ(float64_t(neg), TestConversion<float64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(complex64_t(float32_t(neg)), TestConversion<complex64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(complex128_t(float64_t(neg)), TestConversion<complex128_t>(neg, kSafeAndImplicit)); EXPECT_EQ("-8", TestConversion<string_t>(neg)); EXPECT_EQ(ustring_t{"-8"}, TestConversion<ustring_t>(neg)); EXPECT_EQ(json_t(neg), TestConversion<json_t>(neg, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Int8) { using T = int8_t; constexpr T pos = 42; constexpr T neg = -42; EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(true, TestConversion<bool_t>(neg)); EXPECT_EQ(int4_t(neg), TestConversion<int4_t>(neg)); EXPECT_EQ(int4_t(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(int8_t(neg), TestConversion<int8_t>( neg, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(int8_t(pos), TestConversion<int8_t>( pos, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(int16_t(neg), TestConversion<int16_t>(neg, kSafeAndImplicit)); EXPECT_EQ(int32_t(neg), TestConversion<int32_t>(neg, kSafeAndImplicit)); EXPECT_EQ(int64_t(neg), TestConversion<int64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(uint8_t(neg), TestConversion<uint8_t>(neg, kCanReinterpretCast)); EXPECT_EQ(uint8_t(pos), TestConversion<uint8_t>(pos, kCanReinterpretCast)); EXPECT_EQ(uint16_t(neg), TestConversion<uint16_t>(neg)); EXPECT_EQ(uint16_t(pos), TestConversion<uint16_t>(pos)); EXPECT_EQ(uint32_t(neg), TestConversion<uint32_t>(neg)); EXPECT_EQ(uint32_t(pos), TestConversion<uint32_t>(pos)); EXPECT_EQ(uint64_t(neg), TestConversion<uint64_t>(neg)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>(pos)); EXPECT_EQ(float16_t(neg), TestConversion<float16_t>(neg, kSafeAndImplicit)); EXPECT_EQ(bfloat16_t(neg), TestConversion<bfloat16_t>(neg, kSafeAndImplicit)); EXPECT_EQ(float32_t(neg), TestConversion<float32_t>(neg, kSafeAndImplicit)); EXPECT_EQ(float64_t(neg), TestConversion<float64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(complex64_t(float32_t(neg)), TestConversion<complex64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(complex128_t(float64_t(neg)), TestConversion<complex128_t>(neg, kSafeAndImplicit)); EXPECT_EQ("-42", TestConversion<string_t>(neg)); EXPECT_EQ(ustring_t{"-42"}, TestConversion<ustring_t>(neg)); EXPECT_EQ(json_t(neg), TestConversion<json_t>(neg, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Uint8) { using T = uint8_t; constexpr T pos = 42; constexpr T neg = -42; EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(true, TestConversion<bool_t>(neg)); EXPECT_EQ(int4_t(neg), TestConversion<int4_t>(neg)); EXPECT_EQ(int4_t(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(int8_t(neg), TestConversion<int8_t>(neg, kCanReinterpretCast)); EXPECT_EQ(int8_t(pos), TestConversion<int8_t>(pos, kCanReinterpretCast)); EXPECT_EQ(int16_t(neg), TestConversion<int16_t>(neg, kSafeAndImplicit)); EXPECT_EQ(int32_t(neg), TestConversion<int32_t>(neg, kSafeAndImplicit)); EXPECT_EQ(int64_t(neg), TestConversion<int64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(uint8_t(neg), TestConversion<uint8_t>( neg, kCanReinterpretCast | kSafeAndImplicit | kIdentity)); EXPECT_EQ(uint8_t(pos), TestConversion<uint8_t>( pos, kCanReinterpretCast | kSafeAndImplicit | kIdentity)); EXPECT_EQ(uint16_t(neg), TestConversion<uint16_t>(neg, kSafeAndImplicit)); EXPECT_EQ(uint16_t(pos), TestConversion<uint16_t>(pos, kSafeAndImplicit)); EXPECT_EQ(uint32_t(neg), TestConversion<uint32_t>(neg, kSafeAndImplicit)); EXPECT_EQ(uint32_t(pos), TestConversion<uint32_t>(pos, kSafeAndImplicit)); EXPECT_EQ(uint64_t(neg), TestConversion<uint64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>(pos, kSafeAndImplicit)); EXPECT_EQ(float16_t(neg), TestConversion<float16_t>(neg, kSafeAndImplicit)); EXPECT_EQ(bfloat16_t(neg), TestConversion<bfloat16_t>(neg, kSafeAndImplicit)); EXPECT_EQ(float32_t(neg), TestConversion<float32_t>(neg, kSafeAndImplicit)); EXPECT_EQ(float64_t(neg), TestConversion<float64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(complex64_t(float32_t(neg)), TestConversion<complex64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(complex128_t(float64_t(neg)), TestConversion<complex128_t>(neg, kSafeAndImplicit)); EXPECT_EQ("214", TestConversion<string_t>(neg)); EXPECT_EQ(ustring_t{"214"}, TestConversion<ustring_t>(neg)); EXPECT_EQ(json_t(neg), TestConversion<json_t>(neg, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Int16) { using T = int16_t; constexpr T pos = 12345; constexpr T neg = -12345; EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(true, TestConversion<bool_t>(neg)); EXPECT_EQ(int4_t(neg), TestConversion<int4_t>(neg)); EXPECT_EQ(int4_t(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(int8_t(neg), TestConversion<int8_t>(neg)); EXPECT_EQ(int8_t(pos), TestConversion<int8_t>(pos)); EXPECT_EQ(int16_t(neg), TestConversion<int16_t>( neg, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(int32_t(neg), TestConversion<int32_t>(neg, kSafeAndImplicit)); EXPECT_EQ(int64_t(neg), TestConversion<int64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(uint8_t(neg), TestConversion<uint8_t>(neg)); EXPECT_EQ(uint8_t(pos), TestConversion<uint8_t>(pos)); EXPECT_EQ(uint16_t(neg), TestConversion<uint16_t>(neg, kCanReinterpretCast)); EXPECT_EQ(uint16_t(pos), TestConversion<uint16_t>(pos, kCanReinterpretCast)); EXPECT_EQ(uint32_t(neg), TestConversion<uint32_t>(neg)); EXPECT_EQ(uint32_t(pos), TestConversion<uint32_t>(pos)); EXPECT_EQ(uint64_t(neg), TestConversion<uint64_t>(neg)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>(pos)); EXPECT_EQ(float16_t(neg), TestConversion<float16_t>(neg)); EXPECT_EQ(bfloat16_t(neg), TestConversion<bfloat16_t>(neg)); EXPECT_EQ(float32_t(neg), TestConversion<float32_t>(neg, kSafeAndImplicit)); EXPECT_EQ(float64_t(neg), TestConversion<float64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(complex64_t(float32_t(neg)), TestConversion<complex64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(complex128_t(float64_t(neg)), TestConversion<complex128_t>(neg, kSafeAndImplicit)); EXPECT_EQ("-12345", TestConversion<string_t>(neg)); EXPECT_EQ(ustring_t{"-12345"}, TestConversion<ustring_t>(neg)); EXPECT_EQ(json_t(neg), TestConversion<json_t>(neg, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Uint16) { using T = uint16_t; constexpr T pos = 12345; constexpr T neg = -12345; EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(true, TestConversion<bool_t>(neg)); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(true, TestConversion<bool_t>(neg)); EXPECT_EQ(int4_t(neg), TestConversion<int4_t>(neg)); EXPECT_EQ(int4_t(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(int8_t(neg), TestConversion<int8_t>(neg)); EXPECT_EQ(int8_t(pos), TestConversion<int8_t>(pos)); EXPECT_EQ(int16_t(neg), TestConversion<int16_t>(neg, kCanReinterpretCast)); EXPECT_EQ(int32_t(neg), TestConversion<int32_t>(neg, kSafeAndImplicit)); EXPECT_EQ(int64_t(neg), TestConversion<int64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(uint8_t(neg), TestConversion<uint8_t>(neg)); EXPECT_EQ(uint8_t(pos), TestConversion<uint8_t>(pos)); EXPECT_EQ(uint16_t(neg), TestConversion<uint16_t>( neg, kCanReinterpretCast | kIdentity | kSafeAndImplicit)); EXPECT_EQ(uint16_t(pos), TestConversion<uint16_t>( pos, kCanReinterpretCast | kIdentity | kSafeAndImplicit)); EXPECT_EQ(uint32_t(neg), TestConversion<uint32_t>(neg, kSafeAndImplicit)); EXPECT_EQ(uint32_t(pos), TestConversion<uint32_t>(pos, kSafeAndImplicit)); EXPECT_EQ(uint64_t(neg), TestConversion<uint64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>(pos, kSafeAndImplicit)); EXPECT_EQ(float16_t(neg), TestConversion<float16_t>(neg)); EXPECT_EQ(bfloat16_t(neg), TestConversion<bfloat16_t>(neg)); EXPECT_EQ(float32_t(neg), TestConversion<float32_t>(neg, kSafeAndImplicit)); EXPECT_EQ(float64_t(neg), TestConversion<float64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(complex64_t(float32_t(neg)), TestConversion<complex64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(complex128_t(float64_t(neg)), TestConversion<complex128_t>(neg, kSafeAndImplicit)); EXPECT_EQ("53191", TestConversion<string_t>(neg)); EXPECT_EQ(ustring_t{"53191"}, TestConversion<ustring_t>(neg)); EXPECT_EQ(json_t(neg), TestConversion<json_t>(neg, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Int32) { using T = int32_t; constexpr T pos = 123456789; constexpr T neg = -123456789; EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(true, TestConversion<bool_t>(neg)); EXPECT_EQ(int4_t(neg), TestConversion<int4_t>(neg)); EXPECT_EQ(int4_t(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(int8_t(neg), TestConversion<int8_t>(neg)); EXPECT_EQ(int8_t(pos), TestConversion<int8_t>(pos)); EXPECT_EQ(int16_t(neg), TestConversion<int16_t>(neg)); EXPECT_EQ(int32_t(neg), TestConversion<int32_t>( neg, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(int64_t(neg), TestConversion<int64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(uint8_t(neg), TestConversion<uint8_t>(neg)); EXPECT_EQ(uint8_t(pos), TestConversion<uint8_t>(pos)); EXPECT_EQ(uint16_t(neg), TestConversion<uint16_t>(neg)); EXPECT_EQ(uint16_t(pos), TestConversion<uint16_t>(pos)); EXPECT_EQ(uint32_t(neg), TestConversion<uint32_t>(neg, kCanReinterpretCast)); EXPECT_EQ(uint32_t(pos), TestConversion<uint32_t>(pos, kCanReinterpretCast)); EXPECT_EQ(uint64_t(neg), TestConversion<uint64_t>(neg)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>(pos)); EXPECT_EQ(float16_t(static_cast<float>(neg)), TestConversion<float16_t>(neg)); EXPECT_EQ(bfloat16_t(static_cast<float>(neg)), TestConversion<bfloat16_t>(neg)); EXPECT_EQ(float32_t(neg), TestConversion<float32_t>(neg)); EXPECT_EQ(float64_t(neg), TestConversion<float64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(complex64_t(float32_t(neg)), TestConversion<complex64_t>(neg)); EXPECT_EQ(complex128_t(float64_t(neg)), TestConversion<complex128_t>(neg, kSafeAndImplicit)); EXPECT_EQ("-123456789", TestConversion<string_t>(neg)); EXPECT_EQ(ustring_t{"-123456789"}, TestConversion<ustring_t>(neg)); EXPECT_EQ(json_t(neg), TestConversion<json_t>(neg, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Uint32) { using T = uint32_t; constexpr T pos = 123456789; constexpr T neg = -123456789; EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(true, TestConversion<bool_t>(neg)); EXPECT_EQ(int4_t(neg), TestConversion<int4_t>(neg)); EXPECT_EQ(int4_t(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(int8_t(neg), TestConversion<int8_t>(neg)); EXPECT_EQ(int8_t(pos), TestConversion<int8_t>(pos)); EXPECT_EQ(int16_t(neg), TestConversion<int16_t>(neg)); EXPECT_EQ(int32_t(neg), TestConversion<int32_t>(neg, kCanReinterpretCast)); EXPECT_EQ(int64_t(neg), TestConversion<int64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(uint8_t(neg), TestConversion<uint8_t>(neg)); EXPECT_EQ(uint8_t(pos), TestConversion<uint8_t>(pos)); EXPECT_EQ(uint16_t(neg), TestConversion<uint16_t>(neg)); EXPECT_EQ(uint16_t(pos), TestConversion<uint16_t>(pos)); EXPECT_EQ(uint32_t(neg), TestConversion<uint32_t>( neg, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(uint32_t(pos), TestConversion<uint32_t>( pos, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(uint64_t(neg), TestConversion<uint64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>(pos, kSafeAndImplicit)); EXPECT_EQ(float16_t(static_cast<float>(neg)), TestConversion<float16_t>(neg)); EXPECT_EQ(bfloat16_t(static_cast<float>(neg)), TestConversion<bfloat16_t>(neg)); EXPECT_EQ(float32_t(neg), TestConversion<float32_t>(neg)); EXPECT_EQ(float64_t(neg), TestConversion<float64_t>(neg, kSafeAndImplicit)); EXPECT_EQ(complex64_t(float32_t(neg)), TestConversion<complex64_t>(neg)); EXPECT_EQ(complex128_t(float64_t(neg)), TestConversion<complex128_t>(neg, kSafeAndImplicit)); EXPECT_EQ("4171510507", TestConversion<string_t>(neg)); EXPECT_EQ(ustring_t{"4171510507"}, TestConversion<ustring_t>(neg)); EXPECT_EQ(json_t(neg), TestConversion<json_t>(neg, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Int64) { using T = int64_t; constexpr T pos = 123456789012345; constexpr T neg = -123456789012345; EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(true, TestConversion<bool_t>(neg)); EXPECT_EQ(int4_t(neg), TestConversion<int4_t>(neg)); EXPECT_EQ(int4_t(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(int8_t(neg), TestConversion<int8_t>(neg)); EXPECT_EQ(int8_t(pos), TestConversion<int8_t>(pos)); EXPECT_EQ(int16_t(neg), TestConversion<int16_t>(neg)); EXPECT_EQ(int32_t(neg), TestConversion<int32_t>(neg)); EXPECT_EQ(int64_t(neg), TestConversion<int64_t>( neg, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(uint8_t(neg), TestConversion<uint8_t>(neg)); EXPECT_EQ(uint8_t(pos), TestConversion<uint8_t>(pos)); EXPECT_EQ(uint16_t(neg), TestConversion<uint16_t>(neg)); EXPECT_EQ(uint16_t(pos), TestConversion<uint16_t>(pos)); EXPECT_EQ(uint32_t(neg), TestConversion<uint32_t>(neg)); EXPECT_EQ(uint32_t(pos), TestConversion<uint32_t>(pos)); EXPECT_EQ(uint64_t(neg), TestConversion<uint64_t>(neg, kCanReinterpretCast)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>(pos, kCanReinterpretCast)); EXPECT_EQ(float16_t(static_cast<float>(neg)), TestConversion<float16_t>(neg)); EXPECT_EQ(bfloat16_t(static_cast<float>(neg)), TestConversion<bfloat16_t>(neg)); EXPECT_EQ(float32_t(neg), TestConversion<float32_t>(neg)); EXPECT_EQ(float64_t(neg), TestConversion<float64_t>(neg)); EXPECT_EQ(complex64_t(float32_t(neg)), TestConversion<complex64_t>(neg)); EXPECT_EQ(complex128_t(float64_t(neg)), TestConversion<complex128_t>(neg)); EXPECT_EQ("-123456789012345", TestConversion<string_t>(neg)); EXPECT_EQ(ustring_t{"-123456789012345"}, TestConversion<ustring_t>(neg)); EXPECT_EQ(json_t(neg), TestConversion<json_t>(neg, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Uint64) { using T = uint64_t; constexpr T pos = 123456789012345; constexpr T neg = -123456789012345; EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(true, TestConversion<bool_t>(neg)); EXPECT_EQ(int4_t(neg), TestConversion<int4_t>(neg)); EXPECT_EQ(int4_t(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(int8_t(neg), TestConversion<int8_t>(neg)); EXPECT_EQ(int8_t(pos), TestConversion<int8_t>(pos)); EXPECT_EQ(int16_t(neg), TestConversion<int16_t>(neg)); EXPECT_EQ(int32_t(neg), TestConversion<int32_t>(neg)); EXPECT_EQ(int64_t(neg), TestConversion<int64_t>(neg, kCanReinterpretCast)); EXPECT_EQ(uint8_t(neg), TestConversion<uint8_t>(neg)); EXPECT_EQ(uint8_t(pos), TestConversion<uint8_t>(pos)); EXPECT_EQ(uint16_t(neg), TestConversion<uint16_t>(neg)); EXPECT_EQ(uint16_t(pos), TestConversion<uint16_t>(pos)); EXPECT_EQ(uint32_t(neg), TestConversion<uint32_t>(neg)); EXPECT_EQ(uint32_t(pos), TestConversion<uint32_t>(pos)); EXPECT_EQ(uint64_t(neg), TestConversion<uint64_t>( neg, kCanReinterpretCast | kSafeAndImplicit | kIdentity)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>( pos, kCanReinterpretCast | kSafeAndImplicit | kIdentity)); EXPECT_EQ(float16_t(static_cast<float>(neg)), TestConversion<float16_t>(neg)); EXPECT_EQ(bfloat16_t(static_cast<float>(neg)), TestConversion<bfloat16_t>(neg)); EXPECT_EQ(float32_t(neg), TestConversion<float32_t>(neg)); EXPECT_EQ(float64_t(neg), TestConversion<float64_t>(neg)); EXPECT_EQ(complex64_t(float32_t(neg)), TestConversion<complex64_t>(neg)); EXPECT_EQ(complex128_t(float64_t(neg)), TestConversion<complex128_t>(neg)); EXPECT_EQ("18446620616920539271", TestConversion<string_t>(neg)); EXPECT_EQ(ustring_t{"18446620616920539271"}, TestConversion<ustring_t>(neg)); EXPECT_EQ(json_t(neg), TestConversion<json_t>(neg, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Float16) { using T = float16_t; const T pos(42.5); EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(static_cast<int4_t>(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(static_cast<int8_t>(pos), TestConversion<int8_t>(pos)); EXPECT_EQ(static_cast<int16_t>(pos), TestConversion<int16_t>(pos)); EXPECT_EQ(static_cast<int32_t>(pos), TestConversion<int32_t>(pos)); EXPECT_EQ(static_cast<int64_t>(pos), TestConversion<int64_t>(pos)); EXPECT_EQ(static_cast<uint8_t>(pos), TestConversion<uint8_t>(pos)); EXPECT_EQ(static_cast<uint16_t>(pos), TestConversion<uint16_t>(pos)); EXPECT_EQ(static_cast<uint32_t>(pos), TestConversion<uint32_t>(pos)); EXPECT_EQ(static_cast<uint64_t>(pos), TestConversion<uint64_t>(pos)); EXPECT_EQ(static_cast<float16_t>(pos), TestConversion<float16_t>( pos, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(static_cast<bfloat16_t>(pos), TestConversion<bfloat16_t>(pos)); EXPECT_EQ(static_cast<float32_t>(pos), TestConversion<float32_t>(pos, kSafeAndImplicit)); EXPECT_EQ(static_cast<float64_t>(pos), TestConversion<float64_t>(pos, kSafeAndImplicit)); EXPECT_EQ(complex64_t(float32_t(pos)), TestConversion<complex64_t>(pos, kSafeAndImplicit)); EXPECT_EQ(complex128_t(float64_t(pos)), TestConversion<complex128_t>(pos, kSafeAndImplicit)); EXPECT_EQ("42.5", TestConversion<string_t>(pos)); EXPECT_EQ(ustring_t{"42.5"}, TestConversion<ustring_t>(pos)); EXPECT_EQ(json_t(42.5), TestConversion<json_t>(pos, kSafeAndImplicit)); } template <typename InternalFloat> class InternalFloat8Test : public ::testing::Test {}; using InternalFloat8Types = ::testing::Types<float8_e4m3fn_t, float8_e4m3fnuz_t, float8_e4m3b11fnuz_t, float8_e5m2_t, float8_e5m2fnuz_t>; TYPED_TEST_SUITE(InternalFloat8Test, InternalFloat8Types); TYPED_TEST(InternalFloat8Test, DataTypeConversionTest_InternalFloat8Types) { using T = TypeParam; const T pos(3.5); EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(int4_t(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(int8_t(pos), TestConversion<int8_t>(pos)); EXPECT_EQ(int16_t(pos), TestConversion<int16_t>(pos)); EXPECT_EQ(int32_t(pos), TestConversion<int32_t>(pos)); EXPECT_EQ(int64_t(pos), TestConversion<int64_t>(pos)); EXPECT_EQ(uint8_t(pos), TestConversion<uint8_t>(pos)); EXPECT_EQ(uint16_t(pos), TestConversion<uint16_t>(pos)); EXPECT_EQ(uint32_t(pos), TestConversion<uint32_t>(pos)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>(pos)); EXPECT_EQ(T(pos), TestConversion<T>(pos, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); if (!std::is_same_v<T, float8_e4m3fn_t>) { EXPECT_EQ(float8_e4m3fn_t(pos), TestConversion<float8_e4m3fn_t>(pos)); } if (!std::is_same_v<T, float8_e4m3fnuz_t>) { EXPECT_EQ(float8_e4m3fnuz_t(pos), TestConversion<float8_e4m3fnuz_t>(pos)); } if (!std::is_same_v<T, float8_e4m3b11fnuz_t>) { EXPECT_EQ(float8_e4m3b11fnuz_t(pos), TestConversion<float8_e4m3b11fnuz_t>(pos)); } if (!std::is_same_v<T, float8_e5m2fnuz_t>) { if (std::is_same_v<T, float8_e5m2_t>) { EXPECT_EQ(float8_e5m2fnuz_t(pos), TestConversion<float8_e5m2fnuz_t>(pos, kSafeAndImplicit)); } else { EXPECT_EQ(float8_e5m2fnuz_t(pos), TestConversion<float8_e5m2fnuz_t>(pos)); } } if (!std::is_same_v<T, float8_e5m2_t>) { EXPECT_EQ(float8_e5m2_t(pos), TestConversion<float8_e5m2_t>(pos)); } if (std::is_same_v<T, float8_e5m2fnuz_t>) { EXPECT_EQ(float16_t(pos), TestConversion<float16_t>(pos)); } else { EXPECT_EQ(float16_t(pos), TestConversion<float16_t>(pos, kSafeAndImplicit)); } EXPECT_EQ(bfloat16_t(pos), TestConversion<bfloat16_t>(pos, kSafeAndImplicit)); EXPECT_EQ(float32_t(pos), TestConversion<float32_t>(pos, kSafeAndImplicit)); EXPECT_EQ(float64_t(pos), TestConversion<float64_t>(pos, kSafeAndImplicit)); EXPECT_EQ(complex64_t(float32_t(pos)), TestConversion<complex64_t>(pos, kSafeAndImplicit)); EXPECT_EQ(complex128_t(float64_t(pos)), TestConversion<complex128_t>(pos, kSafeAndImplicit)); EXPECT_EQ("3.5", TestConversion<string_t>(pos)); EXPECT_EQ(ustring_t{"3.5"}, TestConversion<ustring_t>(pos)); EXPECT_EQ(json_t(3.5), TestConversion<json_t>(pos, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Bfloat16) { using T = bfloat16_t; const T pos(42.5); EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(int4_t(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(int8_t(pos), TestConversion<int8_t>(pos)); EXPECT_EQ(int16_t(pos), TestConversion<int16_t>(pos)); EXPECT_EQ(int32_t(pos), TestConversion<int32_t>(pos)); EXPECT_EQ(int64_t(pos), TestConversion<int64_t>(pos)); EXPECT_EQ(uint8_t(pos), TestConversion<uint8_t>(pos)); EXPECT_EQ(uint16_t(pos), TestConversion<uint16_t>(pos)); EXPECT_EQ(uint32_t(pos), TestConversion<uint32_t>(pos)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>(pos)); EXPECT_EQ(float16_t(pos), TestConversion<float16_t>(pos)); EXPECT_EQ(bfloat16_t(pos), TestConversion<bfloat16_t>( pos, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(float32_t(pos), TestConversion<float32_t>(pos, kSafeAndImplicit)); EXPECT_EQ(float64_t(pos), TestConversion<float64_t>(pos, kSafeAndImplicit)); EXPECT_EQ(complex64_t(float32_t(pos)), TestConversion<complex64_t>(pos, kSafeAndImplicit)); EXPECT_EQ(complex128_t(float64_t(pos)), TestConversion<complex128_t>(pos, kSafeAndImplicit)); EXPECT_EQ("42.5", TestConversion<string_t>(pos)); EXPECT_EQ(ustring_t{"42.5"}, TestConversion<ustring_t>(pos)); EXPECT_EQ(json_t(42.5), TestConversion<json_t>(pos, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Float32) { using T = float32_t; constexpr T pos = 42.5; EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(int4_t(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(int8_t(pos), TestConversion<int8_t>(pos)); EXPECT_EQ(int16_t(pos), TestConversion<int16_t>(pos)); EXPECT_EQ(int32_t(pos), TestConversion<int32_t>(pos)); EXPECT_EQ(int64_t(pos), TestConversion<int64_t>(pos)); EXPECT_EQ(uint8_t(pos), TestConversion<uint8_t>(pos)); EXPECT_EQ(uint16_t(pos), TestConversion<uint16_t>(pos)); EXPECT_EQ(uint32_t(pos), TestConversion<uint32_t>(pos)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>(pos)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>(pos)); EXPECT_EQ(float16_t(pos), TestConversion<float16_t>(pos)); EXPECT_EQ(bfloat16_t(pos), TestConversion<bfloat16_t>(pos)); EXPECT_EQ(float32_t(pos), TestConversion<float32_t>( pos, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(float64_t(pos), TestConversion<float64_t>(pos, kSafeAndImplicit)); EXPECT_EQ(complex64_t(float32_t(pos)), TestConversion<complex64_t>(pos, kSafeAndImplicit)); EXPECT_EQ(complex128_t(float64_t(pos)), TestConversion<complex128_t>(pos, kSafeAndImplicit)); EXPECT_EQ("42.5", TestConversion<string_t>(pos)); EXPECT_EQ(ustring_t{"42.5"}, TestConversion<ustring_t>(pos)); EXPECT_EQ(json_t(pos), TestConversion<json_t>(pos, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Float64) { using T = float64_t; constexpr T pos = 42.5; EXPECT_EQ(false, TestConversion<bool_t>(T(0))); EXPECT_EQ(true, TestConversion<bool_t>(pos)); EXPECT_EQ(int4_t(pos), TestConversion<int4_t>(pos)); EXPECT_EQ(int8_t(pos), TestConversion<int8_t>(pos)); EXPECT_EQ(int16_t(pos), TestConversion<int16_t>(pos)); EXPECT_EQ(int32_t(pos), TestConversion<int32_t>(pos)); EXPECT_EQ(int64_t(pos), TestConversion<int64_t>(pos)); EXPECT_EQ(uint8_t(pos), TestConversion<uint8_t>(pos)); EXPECT_EQ(uint16_t(pos), TestConversion<uint16_t>(pos)); EXPECT_EQ(uint32_t(pos), TestConversion<uint32_t>(pos)); EXPECT_EQ(uint64_t(pos), TestConversion<uint64_t>(pos)); EXPECT_EQ(float16_t(pos), TestConversion<float16_t>(pos)); EXPECT_EQ(bfloat16_t(pos), TestConversion<bfloat16_t>(pos)); EXPECT_EQ(float32_t(pos), TestConversion<float32_t>(pos)); EXPECT_EQ(float64_t(pos), TestConversion<float64_t>( pos, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(complex64_t(float32_t(pos)), TestConversion<complex64_t>(pos)); EXPECT_EQ(complex128_t(float64_t(pos)), TestConversion<complex128_t>(pos, kSafeAndImplicit)); EXPECT_EQ("42.5", TestConversion<string_t>(pos)); EXPECT_EQ(ustring_t{"42.5"}, TestConversion<ustring_t>(pos)); EXPECT_EQ(json_t(pos), TestConversion<json_t>(pos, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Complex64) { using T = complex64_t; constexpr T value(42.5, 43.5); EXPECT_EQ(int4_t(value.real()), TestConversion<int4_t>(value)); EXPECT_EQ(int8_t(value.real()), TestConversion<int8_t>(value)); EXPECT_EQ(int16_t(value.real()), TestConversion<int16_t>(value)); EXPECT_EQ(int32_t(value.real()), TestConversion<int32_t>(value)); EXPECT_EQ(int64_t(value.real()), TestConversion<int64_t>(value)); EXPECT_EQ(uint8_t(value.real()), TestConversion<uint8_t>(value)); EXPECT_EQ(uint8_t(value.real()), TestConversion<uint8_t>(value)); EXPECT_EQ(uint16_t(value.real()), TestConversion<uint16_t>(value)); EXPECT_EQ(uint16_t(value.real()), TestConversion<uint16_t>(value)); EXPECT_EQ(uint32_t(value.real()), TestConversion<uint32_t>(value)); EXPECT_EQ(uint32_t(value.real()), TestConversion<uint32_t>(value)); EXPECT_EQ(uint64_t(value.real()), TestConversion<uint64_t>(value)); EXPECT_EQ(uint64_t(value.real()), TestConversion<uint64_t>(value)); EXPECT_EQ(float16_t(value.real()), TestConversion<float16_t>(value)); EXPECT_EQ(bfloat16_t(value.real()), TestConversion<bfloat16_t>(value)); EXPECT_EQ(float32_t(value.real()), TestConversion<float32_t>(value)); EXPECT_EQ(float64_t(value.real()), TestConversion<float64_t>(value)); EXPECT_EQ(complex64_t(value), TestConversion<complex64_t>( value, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ(complex128_t(value), TestConversion<complex128_t>(value, kSafeAndImplicit)); EXPECT_EQ("(42.5,43.5)", TestConversion<string_t>(value)); EXPECT_EQ(ustring_t{"(42.5,43.5)"}, TestConversion<ustring_t>(value)); EXPECT_EQ(json_t(json_t::array_t{value.real(), value.imag()}), TestConversion<json_t>(value, kSafeAndImplicit)); TestUnsupported<T, bool>(); } TEST(DataTypeConversionTest, Complex128) { using T = complex128_t; constexpr T value(42.5, 43.5); EXPECT_EQ(int4_t(value.real()), TestConversion<int4_t>(value)); EXPECT_EQ(int8_t(value.real()), TestConversion<int8_t>(value)); EXPECT_EQ(int16_t(value.real()), TestConversion<int16_t>(value)); EXPECT_EQ(int32_t(value.real()), TestConversion<int32_t>(value)); EXPECT_EQ(int64_t(value.real()), TestConversion<int64_t>(value)); EXPECT_EQ(uint8_t(value.real()), TestConversion<uint8_t>(value)); EXPECT_EQ(uint16_t(value.real()), TestConversion<uint16_t>(value)); EXPECT_EQ(uint32_t(value.real()), TestConversion<uint32_t>(value)); EXPECT_EQ(uint64_t(value.real()), TestConversion<uint64_t>(value)); EXPECT_EQ(float16_t(value.real()), TestConversion<float16_t>(value)); EXPECT_EQ(bfloat16_t(value.real()), TestConversion<bfloat16_t>(value)); EXPECT_EQ(float32_t(value.real()), TestConversion<float32_t>(value)); EXPECT_EQ(float64_t(value.real()), TestConversion<float64_t>(value)); EXPECT_EQ(complex64_t(value), TestConversion<complex64_t>(value)); EXPECT_EQ(complex128_t(value), TestConversion<complex128_t>( value, kSafeAndImplicit | kIdentity | kCanReinterpretCast)); EXPECT_EQ("(42.5,43.5)", TestConversion<string_t>(value)); EXPECT_EQ(ustring_t{"(42.5,43.5)"}, TestConversion<ustring_t>(value)); EXPECT_EQ(json_t(json_t::array_t{value.real(), value.imag()}), TestConversion<json_t>(value, kSafeAndImplicit)); TestUnsupported<T, bool>(); } TEST(DataTypeConversionTest, String) { using T = string_t; T value = "test"; T invalid_utf8 = "test\xa0"; TestUnsupported<T, bool>(); TestUnsupported<T, int4_t>(); TestUnsupported<T, int8_t>(); TestUnsupported<T, uint8_t>(); TestUnsupported<T, int16_t>(); TestUnsupported<T, uint16_t>(); TestUnsupported<T, int32_t>(); TestUnsupported<T, uint32_t>(); TestUnsupported<T, int64_t>(); TestUnsupported<T, uint64_t>(); TestUnsupported<T, float16_t>(); TestUnsupported<T, bfloat16_t>(); TestUnsupported<T, float32_t>(); TestUnsupported<T, float64_t>(); TestUnsupported<T, complex64_t>(); TestUnsupported<T, complex128_t>(); EXPECT_EQ(value, TestConversion<string_t>( value, kSafeAndImplicit | kCanReinterpretCast | kIdentity)); EXPECT_EQ(ustring_t{value}, TestConversion<ustring_t>(value)); EXPECT_THAT(TestConversion<ustring_t>(invalid_utf8), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid UTF-8 sequence encountered")); EXPECT_EQ(json_t("test"), TestConversion<json_t>(value)); EXPECT_THAT(TestConversion<json_t>(invalid_utf8), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid UTF-8 sequence encountered")); } TEST(DataTypeConversionTest, Ustring) { using T = ustring_t; T value{"test"}; TestUnsupported<T, bool>(); TestUnsupported<T, int4_t>(); TestUnsupported<T, int8_t>(); TestUnsupported<T, uint8_t>(); TestUnsupported<T, int16_t>(); TestUnsupported<T, uint16_t>(); TestUnsupported<T, int32_t>(); TestUnsupported<T, uint32_t>(); TestUnsupported<T, int64_t>(); TestUnsupported<T, uint64_t>(); TestUnsupported<T, float16_t>(); TestUnsupported<T, bfloat16_t>(); TestUnsupported<T, float32_t>(); TestUnsupported<T, float64_t>(); TestUnsupported<T, complex64_t>(); TestUnsupported<T, complex128_t>(); EXPECT_EQ(value.utf8, TestConversion<string_t>( value, kSafeAndImplicit | kCanReinterpretCast)); EXPECT_EQ(value, TestConversion<ustring_t>( value, kSafeAndImplicit | kCanReinterpretCast | kIdentity)); EXPECT_EQ(json_t("test"), TestConversion<json_t>(value, kSafeAndImplicit)); } TEST(DataTypeConversionTest, Json) { EXPECT_THAT(TestConversion<bool_t>(json_t("hello")), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<bool_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<int4_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<int8_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<int16_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<int32_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<int64_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<uint8_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<uint16_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<uint32_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<uint64_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<float16_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<bfloat16_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<float32_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<float64_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<string_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<ustring_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<string_t>(json_t(nullptr)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_EQ(false, TestConversion<bool_t>(json_t(false))); EXPECT_EQ(false, TestConversion<bool_t>(json_t("false"))); EXPECT_EQ(true, TestConversion<bool_t>(json_t(true))); EXPECT_EQ(true, TestConversion<bool_t>(json_t("true"))); EXPECT_EQ(int4_t(-8), TestConversion<int4_t>(json_t(-8))); EXPECT_EQ(int8_t(58), TestConversion<int8_t>(json_t(58))); EXPECT_EQ(int16_t(1234), TestConversion<int16_t>(json_t(1234))); EXPECT_EQ(int16_t(1234), TestConversion<int16_t>(json_t("1234"))); EXPECT_EQ(int32_t(123456789), TestConversion<int32_t>(json_t(123456789))); EXPECT_EQ(int64_t(1234567890123), TestConversion<int64_t>(json_t(1234567890123))); EXPECT_EQ(uint8_t(254), TestConversion<uint8_t>(json_t(254u))); EXPECT_EQ(uint16_t(45123), TestConversion<uint16_t>(json_t(45123u))); EXPECT_EQ(uint32_t(4012356789), TestConversion<uint32_t>(json_t(4012356789u))); EXPECT_EQ(uint64_t(40123567891234), TestConversion<uint64_t>(json_t(40123567891234))); EXPECT_EQ(float16_t(42.5), TestConversion<float16_t>(json_t(42.5))); EXPECT_EQ(float16_t(42.5), TestConversion<float16_t>(json_t("42.5"))); EXPECT_EQ(bfloat16_t(42.5), TestConversion<bfloat16_t>(json_t(42.5))); EXPECT_EQ(bfloat16_t(42.5), TestConversion<bfloat16_t>(json_t("42.5"))); EXPECT_EQ(float32_t(42.5), TestConversion<float32_t>(json_t(42.5))); EXPECT_EQ(float64_t(42.5), TestConversion<float64_t>(json_t(42.5))); EXPECT_EQ(float64_t(42.5), TestConversion<float64_t>(json_t("42.5"))); TestUnsupported<json_t, complex64_t>(); TestUnsupported<json_t, complex128_t>(); EXPECT_EQ("hello", TestConversion<string_t>(json_t("hello"))); EXPECT_THAT(TestConversion<string_t>(json_t(7)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<string_t>(json_t(true)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<string_t>(json_t(1.5)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(TestConversion<string_t>(json_t::array({2, 3})), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_EQ(ustring_t{"hello"}, TestConversion<ustring_t>(json_t("hello"))); EXPECT_EQ(json_t("hello"), TestConversion<json_t>( json_t("hello"), kSafeAndImplicit | kIdentity | kCanReinterpretCast)); } TEST(GetDataTypeConverterOrErrorTest, Basic) { TENSORSTORE_EXPECT_OK( GetDataTypeConverterOrError(dtype_v<int32_t>, dtype_v<int32_t>)); TENSORSTORE_EXPECT_OK(GetDataTypeConverterOrError( dtype_v<int32_t>, dtype_v<int32_t>, kIdentity)); TENSORSTORE_EXPECT_OK(GetDataTypeConverterOrError( dtype_v<int32_t>, dtype_v<int64_t>, kSafeAndImplicit)); TENSORSTORE_EXPECT_OK(GetDataTypeConverterOrError( dtype_v<int32_t>, dtype_v<uint32_t>, kCanReinterpretCast)); EXPECT_THAT( GetDataTypeConverterOrError(dtype_v<json_t>, dtype_v<complex64_t>), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot convert json -> complex64")); EXPECT_THAT( GetDataTypeConverterOrError(dtype_v<uint32_t>, dtype_v<int32_t>, kSafeAndImplicit), MatchesStatus( absl::StatusCode::kInvalidArgument, "Explicit data type conversion required to convert uint32 -> int32")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/data_type_conversion.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/data_type_conversion_test.cc
4f887a6430414cd6088e1743555015b10f116d50
bd4ce84d-8c2b-4f27-a3b4-90b861b3d323
cpp
google/tensorstore
constant_bit_vector
tensorstore/util/constant_bit_vector.h
tensorstore/util/constant_bit_vector_test.cc
#ifndef TENSORSTORE_UTIL_CONSTANT_BIT_VECTOR_H_ #define TENSORSTORE_UTIL_CONSTANT_BIT_VECTOR_H_ #include <cstddef> #include <type_traits> #include "tensorstore/util/bit_span.h" #include "tensorstore/util/constant_vector.h" namespace tensorstore { template <typename Block, bool value, std::ptrdiff_t Length> constexpr BitSpan<const Block, Length> GetConstantBitVector( std::integral_constant<std::ptrdiff_t, Length> = {}) { return {GetConstantVector< Block, (value ? ~static_cast<Block>(0) : static_cast<Block>(0)), BitVectorSizeInBlocks<Block>(Length)>() .data(), 0, Length}; } template <typename Block, bool value> BitSpan<const Block> GetConstantBitVector(std::ptrdiff_t length) { return {GetConstantVector<Block, (value ? ~static_cast<Block>(0) : static_cast<Block>(0))>( BitVectorSizeInBlocks<Block>(length)) .data(), 0, length}; } } #endif
#include "tensorstore/util/constant_bit_vector.h" #include <cstdint> #include <type_traits> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/util/bit_span.h" namespace { using ::tensorstore::BitSpan; using ::tensorstore::GetConstantBitVector; TEST(GetConstantBitVectorTest, StaticExtentFalse) { constexpr auto v = GetConstantBitVector<uint64_t, false, 113>(); static_assert( std::is_same_v<decltype(v), const BitSpan<const uint64_t, 113>>); EXPECT_THAT(v, ::testing::ElementsAreArray(std::vector<bool>(113, false))); } TEST(GetConstantBitVectorTest, StaticExtentTrue) { constexpr auto v = GetConstantBitVector<uint64_t, true, 113>(); static_assert( std::is_same_v<decltype(v), const BitSpan<const uint64_t, 113>>); EXPECT_THAT(v, ::testing::ElementsAreArray(std::vector<bool>(113, true))); } TEST(GetConstantBitVectorTest, DynamicExtentFalse) { auto v = GetConstantBitVector<uint64_t, false>(113); static_assert(std::is_same_v<decltype(v), BitSpan<const uint64_t>>); EXPECT_THAT(v, ::testing::ElementsAreArray(std::vector<bool>(113, false))); } TEST(GetConstantBitVectorTest, DynamicExtentTrue) { auto v = GetConstantBitVector<uint64_t, true>(113); static_assert(std::is_same_v<decltype(v), BitSpan<const uint64_t>>); EXPECT_THAT(v, ::testing::ElementsAreArray(std::vector<bool>(113, true))); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/constant_bit_vector.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/constant_bit_vector_test.cc
4f887a6430414cd6088e1743555015b10f116d50
5aa739c9-6249-4747-abc4-3b74415156d6
cpp
google/tensorstore
bit_vec
tensorstore/util/bit_vec.h
tensorstore/util/bit_vec_test.cc
#ifndef TENSORSTORE_UTIL_BIT_VEC_H_ #define TENSORSTORE_UTIL_BIT_VEC_H_ #include <algorithm> #include <cassert> #include <cstddef> #include <cstring> #include <type_traits> #include "absl/base/attributes.h" #include "tensorstore/util/bit_span.h" #include "tensorstore/util/bit_vec_impl.h" #include "tensorstore/util/small_bit_set.h" #include "tensorstore/util/span.h" namespace tensorstore { template <ptrdiff_t Extent = dynamic_extent> class BitVec { using Storage = internal_bitvec::BitVecStorage<Extent>; public: using Block = internal_bitvec::Block; using value_type = bool; using difference_type = ptrdiff_t; using size_type = ptrdiff_t; using reference = BitRef<Block>; using const_reference = BitRef<const Block>; using iterator = BitIterator<Block>; using const_iterator = BitIterator<const Block>; static constexpr ptrdiff_t static_extent = Extent; static constexpr ptrdiff_t static_block_extent = Extent == dynamic_extent ? dynamic_extent : BitVectorSizeInBlocks<Block>(Extent); using ExtentType = typename Storage::ExtentType; using BlockExtentType = typename Storage::BlockExtentType; BitVec() : BitVec(ExtentType{}) {} template <ptrdiff_t OtherExtent, typename = std::enable_if_t<(OtherExtent == Extent || Extent == dynamic_extent)> > BitVec(const bool (&arr)[OtherExtent]) : storage_(std::integral_constant<ptrdiff_t, OtherExtent>{}) { std::copy(arr, arr + OtherExtent, begin()); } template <typename OtherBlock, ptrdiff_t OtherExtent, typename = std::enable_if_t<(OtherExtent == Extent || Extent == dynamic_extent)> > explicit BitVec(BitSpan<OtherBlock, OtherExtent> other) : storage_(other.size()) { this->bit_span().DeepAssign(other); } template <ptrdiff_t OtherExtent, std::enable_if_t<(OtherExtent == Extent || Extent == dynamic_extent)>* = nullptr> BitVec(const BitVec<OtherExtent>& other) : storage_(other.size()) { this->bit_span().DeepAssign(other.bit_span()); } explicit BitVec(ExtentType extent, bool value = false) : storage_(extent) { fill(value); } void resize(ExtentType new_size, bool value = false) { storage_.resize(new_size, value); } void fill(bool value) { std::memset( storage_.data(), value ? ~static_cast<unsigned char>(0) : static_cast<unsigned char>(0), storage_.num_blocks() * sizeof(Block)); } tensorstore::span<const Block, static_block_extent> blocks() const { return {storage_.data(), storage_.num_blocks()}; } tensorstore::span<Block, static_block_extent> blocks() { return {storage_.data(), storage_.num_blocks()}; } ExtentType size() const { return storage_.size(); } bool empty() const { return size() == 0; } template <ptrdiff_t OtherExtent, std::enable_if_t<(OtherExtent == Extent || OtherExtent == dynamic_extent)>* = nullptr> operator BitSpan<const Block, OtherExtent>() const { return {storage_.data(), 0, size()}; } template <ptrdiff_t OtherExtent, std::enable_if_t<(OtherExtent == Extent || OtherExtent == dynamic_extent)>* = nullptr> operator BitSpan<Block, OtherExtent>() { return {storage_.data(), 0, size()}; } BitSpan<const Block, Extent> bit_span() const { return *this; } BitSpan<Block, Extent> bit_span() { return *this; } ABSL_ATTRIBUTE_ALWAYS_INLINE BitIterator<const Block> begin() const { return {storage_.data(), 0}; } ABSL_ATTRIBUTE_ALWAYS_INLINE BitIterator<const Block> cbegin() const { return {storage_.data(), 0}; } ABSL_ATTRIBUTE_ALWAYS_INLINE BitIterator<const Block> end() const { return {storage_.data(), storage_.size()}; } ABSL_ATTRIBUTE_ALWAYS_INLINE BitIterator<const Block> cend() const { return {storage_.data(), storage_.size()}; } ABSL_ATTRIBUTE_ALWAYS_INLINE BitIterator<Block> begin() { return {storage_.data(), 0}; } ABSL_ATTRIBUTE_ALWAYS_INLINE BitIterator<Block> end() { return {storage_.data(), storage_.size()}; } ABSL_ATTRIBUTE_ALWAYS_INLINE BitRef<const Block> operator[]( ptrdiff_t i) const { return assert(i >= 0 && i <= size()), *(begin() + i); } ABSL_ATTRIBUTE_ALWAYS_INLINE BitRef<Block> operator[](ptrdiff_t i) { return assert(i >= 0 && i <= size()), *(begin() + i); } friend bool operator==(const BitVec& a, const BitVec& b) { const ptrdiff_t size = a.size(); if (size != b.size()) return false; const ptrdiff_t full_blocks = size / (sizeof(Block) * 8); const Block* a_data = a.storage_.data(); const Block* b_data = b.storage_.data(); if (!std::equal(a_data, a_data + full_blocks, b_data)) { return false; } const Block final_mask = (static_cast<Block>(1) << (size % (sizeof(Block) * 8))) - 1; return (a_data[full_blocks] & final_mask) == (b_data[full_blocks] & final_mask); } friend bool operator!=(const BitVec& a, const BitVec& b) { return !(a == b); } private: Storage storage_; }; template <ptrdiff_t Extent> BitVec(const bool (&arr)[Extent]) -> BitVec<Extent>; template <typename Block, ptrdiff_t Extent> BitVec(BitSpan<Block, Extent>) -> BitVec<Extent>; } #endif
#include "tensorstore/util/bit_vec.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <type_traits> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/util/bit_span.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::BitSpan; using ::tensorstore::BitVec; static_assert(!std::is_convertible_v<BitSpan<uint64_t, 3>, BitVec<>>); static_assert(std::is_constructible_v<BitVec<3>, BitSpan<uint32_t, 3>>); static_assert(std::is_constructible_v<BitVec<>, BitSpan<uint32_t, 3>>); static_assert(!std::is_constructible_v<BitVec<3>, BitVec<>>); static_assert(!std::is_constructible_v<BitVec<3>, BitSpan<uint32_t>>); static_assert(!std::is_constructible_v<BitVec<3>, BitSpan<uint32_t, 4>>); static_assert(!std::is_constructible_v<BitVec<3>, BitVec<4>>); TEST(BitVecTest, StaticDefaultConstruct) { BitVec<9> v; EXPECT_THAT(v, ::testing::ElementsAre(0, 0, 0, 0, 0, 0, 0, 0, 0)); } TEST(BitVecTest, StaticConstructTrue) { BitVec<9> v({}, true); EXPECT_THAT(v, ::testing::ElementsAre(1, 1, 1, 1, 1, 1, 1, 1, 1)); } TEST(BitVecTest, DynamicDefaultConstruct) { BitVec<> v; EXPECT_EQ(0, v.size()); EXPECT_TRUE(v.empty()); v.resize(65); EXPECT_FALSE(v.empty()); EXPECT_THAT(v, ::testing::ElementsAreArray(std::vector<bool>(65, false))); v.fill(true); EXPECT_THAT(v, ::testing::ElementsAreArray(std::vector<bool>(65, true))); } TEST(BitVecTest, DynamicConstructFalse) { BitVec<> v(65); EXPECT_THAT(v, ::testing::ElementsAreArray(std::vector<bool>(65, false))); } TEST(BitVecTest, Subscript) { BitVec<> v(9); const auto& v_ref = v; EXPECT_FALSE(v_ref[3]); v[3] = true; EXPECT_TRUE(v_ref[3]); v[5] = true; v[6] = true; EXPECT_THAT(v, ::testing::ElementsAre(0, 0, 0, 1, 0, 1, 1, 0, 0)); v[8] = true; EXPECT_THAT(v, ::testing::ElementsAre(0, 0, 0, 1, 0, 1, 1, 0, 1)); v[3] = false; EXPECT_THAT(v, ::testing::ElementsAre(0, 0, 0, 0, 0, 1, 1, 0, 1)); } TEST(BitVecTest, CopyConstructInline) { BitVec<> a(9); a[0] = true; a[3] = true; a[5] = true; a[6] = true; BitVec<> b(a); EXPECT_THAT(a, ::testing::ElementsAre(1, 0, 0, 1, 0, 1, 1, 0, 0)); EXPECT_THAT(b, ::testing::ElementsAre(1, 0, 0, 1, 0, 1, 1, 0, 0)); } TEST(BitVecTest, CopyConstructLarge) { BitVec<> a(129); std::vector<bool> expected(129); for (int i : {0, 3, 5, 6, 31, 33, 72, 128}) { expected[i] = true; a[i] = true; } BitVec<> b(a); EXPECT_THAT(a, ::testing::ElementsAreArray(expected)); EXPECT_THAT(b, ::testing::ElementsAreArray(expected)); } TEST(BitVecTest, MoveConstructInline) { BitVec<> a(9); a[0] = true; a[3] = true; a[5] = true; a[6] = true; BitVec<> b(std::move(a)); EXPECT_THAT(b, ::testing::ElementsAre(1, 0, 0, 1, 0, 1, 1, 0, 0)); } TEST(BitVecTest, MoveConstructLarge) { BitVec<> a(129); std::vector<bool> expected(129); for (int i : {0, 3, 5, 6, 31, 33, 72, 128}) { expected[i] = true; a[i] = true; } BitVec<> b(std::move(a)); EXPECT_THAT(b, ::testing::ElementsAreArray(expected)); } TEST(BitVecTest, CopyAssignInline) { BitVec<> a(9); a[0] = true; a[3] = true; a[5] = true; a[6] = true; BitVec<> b(9); b = a; EXPECT_THAT(a, ::testing::ElementsAre(1, 0, 0, 1, 0, 1, 1, 0, 0)); EXPECT_THAT(b, ::testing::ElementsAre(1, 0, 0, 1, 0, 1, 1, 0, 0)); } TEST(BitVecTest, CopyAssignLargeSameNumBlocks) { BitVec<> a(129); std::vector<bool> expected(129); for (int i : {0, 3, 5, 6, 31, 33, 72, 128}) { expected[i] = true; a[i] = true; } BitVec<> b(129); b = a; EXPECT_THAT(a, ::testing::ElementsAreArray(expected)); EXPECT_THAT(b, ::testing::ElementsAreArray(expected)); } TEST(BitVecTest, CopyAssignLargeDifferentNumBlocks) { BitVec<> a(129); std::vector<bool> expected(129); for (int i : {0, 3, 5, 6, 31, 33, 72, 128}) { expected[i] = true; a[i] = true; } BitVec<> b(65); b = a; EXPECT_THAT(a, ::testing::ElementsAreArray(expected)); EXPECT_THAT(b, ::testing::ElementsAreArray(expected)); } TEST(BitVecTest, MoveAssignInline) { BitVec<> a(9); a[0] = true; a[3] = true; a[5] = true; a[6] = true; BitVec<> b(9); b = std::move(a); EXPECT_THAT(b, ::testing::ElementsAre(1, 0, 0, 1, 0, 1, 1, 0, 0)); } TEST(BitVecTest, MoveAssignLarge) { BitVec<> a(129); std::vector<bool> expected(129); for (int i : {0, 3, 5, 6, 31, 33, 72, 128}) { expected[i] = true; a[i] = true; } BitVec<> b(129); b = std::move(a); EXPECT_THAT(b, ::testing::ElementsAreArray(expected)); } TEST(BitVecTest, BracedListConstruct) { BitVec<> a({1, 0, 0, 1, 1}); EXPECT_THAT(a, ::testing::ElementsAre(1, 0, 0, 1, 1)); } TEST(BitVecTest, DeduceBitVec) { auto a = BitVec({true, false, false, true, true}); EXPECT_THAT(a, ::testing::ElementsAre(1, 0, 0, 1, 1)); static_assert(std::is_same_v<decltype(a), BitVec<5>>); auto b = BitVec(a.bit_span()); static_assert(std::is_same_v<decltype(b), BitVec<5>>); EXPECT_THAT(b, ::testing::ElementsAre(1, 0, 0, 1, 1)); } TEST(BitVecTest, BitSpanConstruct) { BitVec<> a(37); a[32] = 1; a[17] = 1; a[2] = 1; EXPECT_THAT(a, ::testing::ElementsAre(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)); BitVec<> b(a.bit_span()); EXPECT_THAT(b, ::testing::ElementsAre(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)); } TEST(BitVecTest, BitVecConvertConstruct) { BitVec<37> a; a[32] = 1; a[17] = 1; a[2] = 1; EXPECT_THAT(a, ::testing::ElementsAre(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)); BitVec<> b = a; EXPECT_THAT(b, ::testing::ElementsAre(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)); } TEST(BitVecTest, ComparisonShort) { BitVec<> a(18); BitVec<> b(17); EXPECT_NE(a, b); b.resize(18); EXPECT_EQ(a, b); b[2] = true; EXPECT_NE(a, b); a[2] = true; EXPECT_EQ(a, b); a[17] = true; EXPECT_NE(a, b); b[17] = true; EXPECT_EQ(a, b); } TEST(BitVecTest, ComparisonLong) { BitVec<> a(150); BitVec<> b(151); EXPECT_NE(a, b); b.resize(150); EXPECT_EQ(a, b); b[2] = true; EXPECT_NE(a, b); a[2] = true; EXPECT_EQ(a, b); a[149] = true; EXPECT_NE(a, b); b[149] = true; EXPECT_EQ(a, b); } TEST(BitVecTest, ConstIterators) { BitVec<> a(7); a[1] = 1; a[4] = 1; { const auto& a_ref = a; std::vector<bool> b(a_ref.begin(), a_ref.end()); EXPECT_THAT(b, ::testing::ElementsAre(0, 1, 0, 0, 1, 0, 0)); } { std::vector<bool> b(a.cbegin(), a.cend()); EXPECT_THAT(b, ::testing::ElementsAre(0, 1, 0, 0, 1, 0, 0)); } } TEST(BitVecTest, NonConstIterators) { BitVec<> a(7); a[1] = 1; a[4] = 1; std::vector<bool> b(a.begin(), a.end()); EXPECT_THAT(b, ::testing::ElementsAre(0, 1, 0, 0, 1, 0, 0)); } TEST(BitVecTest, NonConstIteratorsMutate) { BitVec<> a(7); std::vector<bool> b{0, 1, 0, 0, 1, 0, 0}; std::copy(b.begin(), b.end(), a.begin()); EXPECT_THAT(a, ::testing::ElementsAre(0, 1, 0, 0, 1, 0, 0)); } TEST(BitVecTest, BlocksInline) { BitVec<> a(64); for (int i : {0, 5, 17, 62}) { a[i] = true; } EXPECT_THAT(a.blocks(), ::testing::ElementsAre( (uint64_t(1) << 0) | (uint64_t(1) << 5) | (uint64_t(1) << 17) | (uint64_t(1) << 62))); } TEST(BitVecTest, BlocksLarge) { BitVec<> a(128); for (int i : {0, 5, 17, 62, 90, 127}) { a[i] = true; } EXPECT_THAT(a.blocks(), ::testing::ElementsAre( (uint64_t(1) << 0) | (uint64_t(1) << 5) | (uint64_t(1) << 17) | (uint64_t(1) << 62), (uint64_t(1) << (90 - 64)) | (uint64_t(1) << (127 - 64)))); } TEST(BitVecTest, ResizeStatic) { BitVec<65> b; std::vector<bool> expected(65); for (int i : {0, 3, 7, 29, 35, 64}) { expected[i] = true; b[i] = true; } EXPECT_THAT(b, ::testing::ElementsAreArray(expected)); b.resize(std::integral_constant<std::ptrdiff_t, 65>{}); EXPECT_THAT(b, ::testing::ElementsAreArray(expected)); } void TestResizeDynamic(std::ptrdiff_t orig_size, std::ptrdiff_t new_size, std::vector<int> bits) { SCOPED_TRACE(tensorstore::StrCat("orig_size=", orig_size, ", new_size=", new_size, ", bits=", ::testing::PrintToString(bits))); BitVec<> b(orig_size); std::vector<bool> expected(orig_size); for (int i : bits) { expected[i] = true; b[i] = true; } std::vector<bool> expected_resize_false = expected; expected_resize_false.resize(new_size, false); std::vector<bool> expected_resize_true = expected; expected_resize_true.resize(new_size, true); EXPECT_THAT(b, ::testing::ElementsAreArray(expected)); BitVec<> b_resize_false = b; b_resize_false.resize(new_size, false); BitVec<> b_resize_true = b; b_resize_true.resize(new_size, true); EXPECT_THAT(b_resize_false, ::testing::ElementsAreArray(expected_resize_false)); EXPECT_THAT(b_resize_true, ::testing::ElementsAreArray(expected_resize_true)); } TEST(BitVecTest, ResizeDynamicLargeNoOp) { TestResizeDynamic(65, 65, {0, 3, 7, 29, 35, 64}); } TEST(BitVecTest, ResizeDynamicInlineNoOp) { TestResizeDynamic(62, 62, {0, 3, 7, 29, 35, 61}); } TEST(BitVecTest, ResizeDynamicInlineShrink) { TestResizeDynamic(62, 30, {0, 3, 7, 29, 35, 61}); } TEST(BitVecTest, ResizeDynamicInlineExpand) { TestResizeDynamic(36, 41, {0, 3, 7, 29, 35}); } TEST(BitVecTest, ResizeDynamicShrinkSameNumBlocks) { TestResizeDynamic(150, 132, {0, 3, 7, 29, 35, 64, 127, 131, 149}); } TEST(BitVecTest, ResizeDynamicExpandSameNumBlocks) { TestResizeDynamic(150, 160, {0, 3, 7, 29, 35, 64, 127, 131, 149}); } TEST(BitVecTest, ResizeDynamicShrinkDifferentNumBlocks) { TestResizeDynamic(150, 128, {0, 3, 7, 29, 35, 64, 127, 131, 149}); TestResizeDynamic(150, 126, {0, 3, 7, 29, 35, 64, 127, 131, 149}); } TEST(BitVecTest, ResizeDynamicExpandDifferentNumBlocks) { TestResizeDynamic(150, 250, {0, 3, 7, 29, 35, 64, 127, 131, 149}); } TEST(BitVecTest, ResizeDynamicExpandFromEmpty) { TestResizeDynamic(0, 15, {}); TestResizeDynamic(0, 65, {}); TestResizeDynamic(0, 150, {}); TestResizeDynamic(0, 0, {}); } TEST(BitVecTest, ResizeDynamicShrinkToEmpty) { TestResizeDynamic(13, 0, {1, 2, 12}); TestResizeDynamic(129, 0, {1, 2, 12, 65, 73, 128}); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/bit_vec.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/bit_vec_test.cc
4f887a6430414cd6088e1743555015b10f116d50
812071a9-cc21-46f8-accc-2f96d4671015
cpp
google/tensorstore
small_bit_set
tensorstore/util/small_bit_set.h
tensorstore/util/small_bit_set_test.cc
#ifndef TENSORSTORE_UTIL_SMALL_BIT_SET_H_ #define TENSORSTORE_UTIL_SMALL_BIT_SET_H_ #include <stddef.h> #include <cassert> #include <iterator> #include <ostream> #include <type_traits> #include "absl/base/attributes.h" #include "absl/numeric/bits.h" #include "tensorstore/internal/integer_types.h" namespace tensorstore { template <typename T> class BitRef { static_assert(std::is_unsigned_v<T>, "Storage type T must be unsigned."); public: friend class BitRef<const T>; using block_type = T; using value_type = bool; using element_type = bool; constexpr static ptrdiff_t kBitsPerBlock = sizeof(T) * 8; constexpr BitRef(T* block ABSL_ATTRIBUTE_LIFETIME_BOUND, ptrdiff_t offset) : block_(block), mask_(static_cast<T>(1) << (offset % kBitsPerBlock)) { assert(offset >= 0); } constexpr operator bool() const { return *block_ & mask_; } const BitRef& operator=(bool value) const { *block_ = value ? (*block_ | mask_) : (*block_ & ~mask_); return *this; } const BitRef& operator=(BitRef value) const { return (*this = static_cast<bool>(value)); } friend void swap(BitRef a, bool& x) { bool temp = a; a = x; x = temp; } friend void swap(bool& x, BitRef a) { bool temp = a; a = x; x = temp; } private: T* block_; T mask_; }; template <typename T, typename U> std::enable_if_t<(!std::is_const_v<T> && !std::is_const_v<U>)> swap( BitRef<T> a, BitRef<U> b) { bool temp = a; a = b; b = temp; } template <typename T> std::enable_if_t<(!std::is_const_v<T>)> swap(BitRef<T> a, BitRef<T> b) { bool temp = a; a = b; b = temp; } template <typename T> class BitIterator { static_assert(std::is_unsigned_v<T>, "Storage type T must be unsigned."); public: using pointer = BitIterator<T>; using const_pointer = BitIterator<const T>; using reference = BitRef<T>; using const_reference = BitRef<const T>; using difference_type = ptrdiff_t; using value_type = bool; using iterator_category = std::random_access_iterator_tag; constexpr static ptrdiff_t kBitsPerBlock = sizeof(T) * 8; constexpr BitIterator() : base_(nullptr), offset_(0) {} constexpr BitIterator(T* base ABSL_ATTRIBUTE_LIFETIME_BOUND, ptrdiff_t offset) : base_(base), offset_(offset) {} template <typename U, std::enable_if_t<std::is_same_v<const U, T>>* = nullptr> constexpr BitIterator(BitIterator<U> other) : base_(other.base()), offset_(other.offset()) {} constexpr T* base() const { return base_; } constexpr ptrdiff_t offset() const { return offset_; } constexpr BitRef<T> operator*() const { return BitRef<T>(base() + offset() / kBitsPerBlock, offset()); } constexpr BitRef<T> operator[](ptrdiff_t offset) const { return *(*this + offset); } BitIterator& operator++() { ++offset_; return *this; } BitIterator& operator--() { --offset_; return *this; } BitIterator operator++(int) { BitIterator temp = *this; ++offset_; return temp; } BitIterator operator--(int) { BitIterator temp = *this; --offset_; return temp; } friend BitIterator operator+(BitIterator it, ptrdiff_t offset) { it += offset; return it; } friend BitIterator operator+(ptrdiff_t offset, BitIterator it) { it += offset; return it; } BitIterator& operator+=(ptrdiff_t x) { offset_ += x; return *this; } friend BitIterator operator-(BitIterator it, ptrdiff_t offset) { it -= offset; return it; } BitIterator& operator-=(ptrdiff_t x) { offset_ -= x; return *this; } friend constexpr ptrdiff_t operator-(BitIterator a, BitIterator b) { assert(a.base() == b.base()); return a.offset() - b.offset(); } friend constexpr bool operator==(BitIterator a, BitIterator b) { assert(a.base() == b.base()); return a.offset() == b.offset(); } friend constexpr bool operator!=(BitIterator a, BitIterator b) { assert(a.base() == b.base()); return a.offset() != b.offset(); } friend constexpr bool operator<(BitIterator a, BitIterator b) { assert(a.base() == b.base()); return a.offset() < b.offset(); } friend constexpr bool operator<=(BitIterator a, BitIterator b) { assert(a.base() == b.base()); return a.offset() <= b.offset(); } friend constexpr bool operator>(BitIterator a, BitIterator b) { assert(a.base() == b.base()); return a.offset() > b.offset(); } friend constexpr bool operator>=(BitIterator a, BitIterator b) { assert(a.base() == b.base()); return a.offset() >= b.offset(); } private: T* base_; ptrdiff_t offset_; }; namespace bitset_impl { template <typename Iterator, size_t N> class BoolsView { public: using iterator = Iterator; using value_type = typename iterator::value_type; using difference_type = typename iterator::difference_type; using reference = typename iterator::reference; explicit BoolsView(iterator it) : it_(std::move(it)) {} constexpr iterator begin() const { return it_; } constexpr iterator end() const { return iterator(it_.base(), N); } private: iterator it_; }; template <typename Uint> class OneBitsIterator { public: using value_type = int; using difference_type = int; using reference = int; OneBitsIterator() : value_(0) {} explicit OneBitsIterator(Uint value) : value_(value) {} friend constexpr bool operator==(OneBitsIterator a, OneBitsIterator b) { return a.value_ == b.value_; } friend constexpr bool operator!=(OneBitsIterator a, OneBitsIterator b) { return !(a == b); } constexpr int operator*() const { return absl::countr_zero(value_); } constexpr OneBitsIterator& operator++() { Uint t = value_ & -value_; value_ ^= t; return *this; } constexpr OneBitsIterator operator++(int) { auto copy = *this; ++*this; return copy; } private: Uint value_; }; template <typename Uint> class IndexView { public: IndexView(Uint bits) : bits_(bits) {} using const_iterator = OneBitsIterator<Uint>; using value_type = typename const_iterator::value_type; using difference_type = typename const_iterator::difference_type; using reference = typename const_iterator::reference; constexpr const_iterator begin() const { return const_iterator(bits_); } constexpr const_iterator end() const { return const_iterator(); } constexpr int front() const { return *begin(); } private: Uint bits_; }; } template <size_t N> class SmallBitSet { public: using Uint = typename internal::uint_type<N>::type; using value_type = bool; using reference = BitRef<Uint>; constexpr SmallBitSet() : bits_(0) {} template <typename T, typename = std::enable_if_t<std::is_same_v<T, bool>>> constexpr SmallBitSet(T value) : bits_(value * ~Uint(0)) {} static constexpr SmallBitSet FromUint(Uint bits) { SmallBitSet v; v.bits_ = bits; return v; } template <size_t NumBits, typename = std::enable_if_t<(NumBits <= N)>> static constexpr SmallBitSet FromIndices(const int (&positions)[NumBits]) { return FromIndexRange(std::begin(positions), std::end(positions)); } template <typename Range> static constexpr SmallBitSet FromIndexRange(Range&& range) { return FromIndexRange(range.begin(), range.end()); } template <typename Iterator> static constexpr SmallBitSet FromIndexRange(Iterator begin, Iterator end) { SmallBitSet set; while (begin != end) set.set(*begin++); return set; } template <size_t NumBits, typename = std::enable_if_t<(NumBits <= N)>> static constexpr SmallBitSet FromBools(const bool (&bits)[NumBits]) { return FromBoolRange(std::begin(bits), std::end(bits)); } template <typename Range> static constexpr SmallBitSet FromBoolRange(Range&& range) { return FromBoolRange(range.begin(), range.end()); } template <typename Iterator> static constexpr SmallBitSet FromBoolRange(Iterator begin, Iterator end) { SmallBitSet set; size_t i = 0; while (begin != end) { set.bits_ |= (*begin++ ? Uint(1) : Uint(0)) << i; i++; } assert(i <= N); return set; } static constexpr SmallBitSet UpTo(size_t k) { assert(k <= N); return k == 0 ? SmallBitSet() : SmallBitSet::FromUint(~Uint(0) << (N - k) >> (N - k)); } template <typename T, typename = std::enable_if_t<std::is_same_v<T, bool>>> constexpr SmallBitSet& operator=(T value) { bits_ = ~Uint(0) * value; return *this; } using BoolsView = bitset_impl::BoolsView<BitIterator<Uint>, N>; constexpr BoolsView bools_view() ABSL_ATTRIBUTE_LIFETIME_BOUND { return BoolsView(BitIterator<Uint>(&bits_, 0)); } using ConstBoolsView = bitset_impl::BoolsView<BitIterator<const Uint>, N>; constexpr ConstBoolsView bools_view() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return ConstBoolsView(BitIterator<const Uint>(&bits_, 0)); } using IndexView = bitset_impl::IndexView<Uint>; constexpr IndexView index_view() const { return IndexView(bits_); } constexpr static size_t size() { return N; } constexpr size_t count() const { return absl::popcount(bits_); } constexpr bool none() const { return bits_ == 0; } constexpr bool any() const { return bits_ != 0; } constexpr bool all() const { return bits_ == ~Uint(0); } explicit operator bool() const { return any(); } constexpr SmallBitSet& set() noexcept { bits_ = ~Uint(0); return *this; } constexpr SmallBitSet& reset() noexcept { bits_ = 0; return *this; } constexpr SmallBitSet& flip() noexcept { bits_ = ~bits_; return *this; } constexpr bool test(int pos) const noexcept { assert(pos >= 0 && pos < N); return (bits_ >> pos) & 1; } constexpr SmallBitSet& set(int pos) noexcept { assert(pos >= 0 && pos < N); bits_ |= (static_cast<Uint>(1) << pos); return *this; } constexpr SmallBitSet& reset(int pos) noexcept { assert(pos >= 0 && pos < N); bits_ &= ~(static_cast<Uint>(1) << pos); return *this; } constexpr SmallBitSet& flip(int pos) noexcept { assert(pos >= 0 && pos < N); bits_ ^= (static_cast<Uint>(1) << pos); return *this; } constexpr reference operator[](size_t offset) ABSL_ATTRIBUTE_LIFETIME_BOUND { assert(offset >= 0 && offset < N); return reference(&bits_, offset); } constexpr bool operator[](size_t offset) const { assert(offset >= 0 && offset < N); return test(offset); } constexpr Uint to_uint() const { return bits_; } friend constexpr SmallBitSet operator~(SmallBitSet v) { return SmallBitSet::FromUint(~v.bits_); } friend constexpr SmallBitSet operator&(SmallBitSet a, SmallBitSet b) { return SmallBitSet::FromUint(a.bits_ & b.bits_); } friend constexpr SmallBitSet& operator&=(SmallBitSet& a, SmallBitSet b) { a.bits_ &= b.bits_; return a; } friend constexpr SmallBitSet operator^(SmallBitSet a, SmallBitSet b) { return SmallBitSet::FromUint(a.bits_ ^ b.bits_); } friend constexpr SmallBitSet& operator^=(SmallBitSet& a, SmallBitSet b) { a.bits_ ^= b.bits_; return a; } friend constexpr SmallBitSet operator|(SmallBitSet a, SmallBitSet b) { return SmallBitSet::FromUint(a.bits_ | b.bits_); } friend constexpr SmallBitSet& operator|=(SmallBitSet& a, SmallBitSet b) { a.bits_ |= b.bits_; return a; } friend constexpr bool operator==(SmallBitSet a, SmallBitSet b) { return a.bits_ == b.bits_; } friend constexpr bool operator!=(SmallBitSet a, SmallBitSet b) { return !(a == b); } friend std::ostream& operator<<(std::ostream& os, SmallBitSet v) { for (size_t i = 0; i < N; ++i) { os << (static_cast<bool>(v[i]) ? '1' : '0'); } return os; } private: Uint bits_; }; } #endif
#include "tensorstore/util/small_bit_set.h" #include <stdint.h> #include <type_traits> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::BitIterator; using ::tensorstore::BitRef; using BitSet = ::tensorstore::SmallBitSet<32>; static_assert( std::is_convertible_v<BitIterator<uint32_t>, BitIterator<const uint32_t>>); static_assert( !std::is_convertible_v<BitIterator<const uint32_t>, BitIterator<uint32_t>>); TEST(BitRefTest, Basic) { uint16_t data[2] = {0, 0}; BitRef<uint16_t> ref(data + 1, 19); BitRef<uint16_t> ref2(data, 2); BitRef<const uint16_t> const_ref(data, 3); EXPECT_EQ(false, ref); ref = true; EXPECT_EQ(true, ref); EXPECT_THAT(data, ::testing::ElementsAre(0, 8)); data[0] = 0xffff ; data[1] = 0xffff ; EXPECT_EQ(true, ref); ref = false; EXPECT_EQ(false, ref); EXPECT_THAT(data, ::testing::ElementsAre(0xffff , 0xfff7 )); ref = ref2; EXPECT_THAT(data, ::testing::ElementsAre(0xffff , 0xffff )); data[0] = 0; ref = const_ref; EXPECT_THAT(data, ::testing::ElementsAre(0, 0xfff7 )); } TEST(BitRefTest, Swap) { uint16_t data[2] = {0, 0}; BitRef<uint16_t> ref(data + 1, 19); BitRef<uint16_t> ref2(data, 2); uint32_t data2 = 0; ref = true; ref2 = false; EXPECT_THAT(data, ::testing::ElementsAre(0, 8)); using std::swap; swap(ref, ref2); EXPECT_EQ(false, ref); EXPECT_EQ(true, ref2); EXPECT_THAT(data, ::testing::ElementsAre(4, 0)); bool b = false; swap(b, ref2); EXPECT_THAT(data, ::testing::ElementsAre(0, 0)); EXPECT_EQ(true, b); swap(ref2, b); EXPECT_THAT(data, ::testing::ElementsAre(4, 0)); EXPECT_EQ(false, b); BitRef<uint32_t> ref3(&data2, 1); swap(ref2, ref3); EXPECT_THAT(data, ::testing::ElementsAre(0, 0)); EXPECT_EQ(2, data2); } TEST(BitIteratorTest, Basic) { uint16_t data[2] = {0, 0}; BitIterator<uint16_t> it(data, 19); BitIterator<uint16_t> it2(data, 2); BitIterator<const uint16_t> const_it(data, 3); BitIterator<const uint16_t> const_it2 = it; EXPECT_EQ(data, it.base()); EXPECT_EQ(data, it2.base()); EXPECT_EQ(data, const_it.base()); EXPECT_EQ(data, const_it2.base()); EXPECT_EQ(19, it.offset()); EXPECT_EQ(2, it2.offset()); EXPECT_EQ(3, const_it.offset()); EXPECT_EQ(19, const_it2.offset()); { auto ref = *it; static_assert(std::is_same_v<BitRef<uint16_t>, decltype(ref)>); auto ref_subscript = it[0]; auto ref_subscript2 = it2[17]; static_assert(std::is_same_v<BitRef<uint16_t>, decltype(ref_subscript)>); EXPECT_FALSE(ref_subscript); EXPECT_FALSE(ref_subscript2); ref = true; EXPECT_TRUE(ref); EXPECT_TRUE(ref_subscript); EXPECT_TRUE(ref_subscript2); EXPECT_THAT(data, ::testing::ElementsAre(0, 0x8 )); ref = false; EXPECT_FALSE(ref); EXPECT_THAT(data, ::testing::ElementsAre(0, 0)); data[1] = ~0x8; EXPECT_FALSE(ref); ref = true; EXPECT_TRUE(ref); EXPECT_THAT(data, ::testing::ElementsAre(0, 0xffff)); } { auto ref = *const_it; static_assert(std::is_same_v<BitRef<const uint16_t>, decltype(ref)>); EXPECT_FALSE(ref); data[0] = 0x8 ; EXPECT_TRUE(ref); data[0] = ~data[0]; EXPECT_FALSE(ref); } } TEST(BitIteratorTest, IteratorPlusOffset) { uint16_t data[2] = {0, 0}; auto it = BitIterator<uint16_t>(data, 3) + 5; EXPECT_EQ(data, it.base()); EXPECT_EQ(8, it.offset()); } TEST(BitIteratorTest, OffsetPlusIterator) { uint16_t data[2] = {0, 0}; auto it = 5 + BitIterator<uint16_t>(data, 3); EXPECT_EQ(data, it.base()); EXPECT_EQ(8, it.offset()); } TEST(BitIteratorTest, IteratorMinusOffset) { uint16_t data[2] = {0, 0}; auto it = BitIterator<uint16_t>(data, 7) - 2; EXPECT_EQ(data, it.base()); EXPECT_EQ(5, it.offset()); } TEST(BitIteratorTest, IteratorMinusIterator) { uint16_t data[2] = {0, 0}; EXPECT_EQ(3, BitIterator<uint16_t>(data, 7) - BitIterator<uint16_t>(data, 4)); EXPECT_EQ( 3, BitIterator<uint16_t>(data, 7) - BitIterator<const uint16_t>(data, 4)); EXPECT_EQ( 3, BitIterator<const uint16_t>(data, 7) - BitIterator<uint16_t>(data, 4)); EXPECT_EQ(3, BitIterator<const uint16_t>(data, 7) - BitIterator<const uint16_t>(data, 4)); } TEST(BitIteratorTest, PreIncrement) { uint16_t data[2] = {0, 0}; BitIterator<uint16_t> it(data, 19); auto& x = ++it; EXPECT_EQ(&it, &x); EXPECT_EQ(20, it.offset()); EXPECT_EQ(data, it.base()); } TEST(BitIteratorTest, PreDecrement) { uint16_t data[2] = {0, 0}; BitIterator<uint16_t> it(data, 19); auto& x = --it; EXPECT_EQ(&it, &x); EXPECT_EQ(18, it.offset()); EXPECT_EQ(data, it.base()); } TEST(BitIteratorTest, PostIncrement) { uint16_t data[2] = {0, 0}; BitIterator<uint16_t> it(data, 19); EXPECT_EQ(BitIterator<uint16_t>(data, 19), it++); EXPECT_EQ(20, it.offset()); EXPECT_EQ(data, it.base()); } TEST(BitIteratorTest, PostDecrement) { uint16_t data[2] = {0, 0}; BitIterator<uint16_t> it(data, 19); EXPECT_EQ(BitIterator<uint16_t>(data, 19), it--); EXPECT_EQ(18, it.offset()); EXPECT_EQ(data, it.base()); } TEST(BitIteratorTest, Comparison) { uint16_t data[2] = {0, 0}; EXPECT_EQ(BitIterator<uint16_t>(data, 3), BitIterator<uint16_t>(data, 3)); EXPECT_EQ(BitIterator<uint16_t>(data, 3), BitIterator<const uint16_t>(data, 3)); EXPECT_NE(BitIterator<uint16_t>(data, 3), BitIterator<uint16_t>(data, 4)); EXPECT_NE(BitIterator<uint16_t>(data, 3), BitIterator<const uint16_t>(data, 4)); EXPECT_TRUE(BitIterator<uint16_t>(data, 3) < BitIterator<uint16_t>(data, 4)); EXPECT_TRUE(BitIterator<uint16_t>(data, 3) < BitIterator<const uint16_t>(data, 4)); EXPECT_FALSE(BitIterator<uint16_t>(data, 3) < BitIterator<uint16_t>(data, 3)); EXPECT_TRUE(BitIterator<uint16_t>(data, 3) <= BitIterator<uint16_t>(data, 4)); EXPECT_TRUE(BitIterator<uint16_t>(data, 3) <= BitIterator<uint16_t>(data, 3)); EXPECT_FALSE(BitIterator<uint16_t>(data, 3) <= BitIterator<uint16_t>(data, 2)); EXPECT_TRUE(BitIterator<uint16_t>(data, 3) > BitIterator<uint16_t>(data, 2)); EXPECT_FALSE(BitIterator<uint16_t>(data, 3) > BitIterator<uint16_t>(data, 3)); EXPECT_TRUE(BitIterator<uint16_t>(data, 3) >= BitIterator<uint16_t>(data, 2)); EXPECT_TRUE(BitIterator<uint16_t>(data, 3) >= BitIterator<uint16_t>(data, 3)); EXPECT_FALSE(BitIterator<uint16_t>(data, 2) >= BitIterator<uint16_t>(data, 3)); } TEST(SmallBitSetTest, DefaultConstruct) { BitSet v; EXPECT_FALSE(v); EXPECT_EQ(0, v.to_uint()); EXPECT_EQ(v, v); BitSet v_true = true; EXPECT_EQ(v_true, v_true); EXPECT_NE(v, v_true); EXPECT_THAT(v.bools_view(), ::testing::ElementsAreArray(std::vector<bool>(32))); } TEST(SmallBitSetTest, FromUint) { auto v = BitSet::FromUint(0b11'0111); EXPECT_TRUE(v); EXPECT_EQ(0b110111, v.to_uint()); EXPECT_EQ(true, v[0]); EXPECT_EQ(true, v[1]); EXPECT_EQ(true, v[2]); EXPECT_EQ(false, v[3]); EXPECT_EQ(true, v[4]); EXPECT_EQ(true, v[5]); EXPECT_THAT(v.bools_view(), ::testing::ElementsAre(1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)); EXPECT_THAT(const_cast<const BitSet&>(v).bools_view(), ::testing::ElementsAre(1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)); EXPECT_EQ( "11101100" "00000000" "00000000" "00000000", tensorstore::StrCat(v)); EXPECT_EQ(0b11111111'11111111'11111111'11001000, (~v).to_uint()); auto v1 = BitSet::FromUint(0b101'1100); EXPECT_EQ(0b111'1111, (v | v1).to_uint()); EXPECT_EQ(0b001'0100, (v & v1).to_uint()); EXPECT_EQ(0b110'1011, (v ^ v1).to_uint()); auto v2 = v1; v2 |= v; EXPECT_EQ(0b111'1111, v2.to_uint()); v2 = v1; v2 &= v; EXPECT_EQ(0b001'0100, v2.to_uint()); v2 = v1; v2 ^= v; EXPECT_EQ(0b110'1011, v2.to_uint()); } TEST(SmallBitSetTest, BracedList) { auto v = BitSet::FromBools({0, 1, 1, 0, 0, 1}); EXPECT_EQ(0b100110, v.to_uint()); } TEST(SmallBitSetTest, Reference) { BitSet v; v[2] = true; EXPECT_TRUE(v[2]); EXPECT_FALSE(v[0]); EXPECT_EQ(0b100, v.to_uint()); } TEST(SmallBitSetTest, UpTo) { EXPECT_EQ(0x00000000, BitSet::UpTo(0).to_uint()); EXPECT_EQ(0x00000001, BitSet::UpTo(1).to_uint()); EXPECT_EQ(0x0000ffff, BitSet::UpTo(16).to_uint()); EXPECT_EQ(0x7fffffff, BitSet::UpTo(31).to_uint()); EXPECT_EQ(0xffffffff, BitSet::UpTo(32).to_uint()); EXPECT_EQ(1, BitSet::UpTo(1).count()); } TEST(SmallBitSetTest, FromIndices) { BitSet v = BitSet::FromIndices({1, 3, 10}); EXPECT_FALSE(v.none()); EXPECT_EQ(3, v.count()); EXPECT_EQ((static_cast<uint32_t>(1) << 1) | (static_cast<uint32_t>(1) << 3) | (static_cast<uint32_t>(1) << 10), v.to_uint()); EXPECT_THAT(v.index_view(), ::testing::ElementsAre(1, 3, 10)); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/small_bit_set.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/small_bit_set_test.cc
4f887a6430414cd6088e1743555015b10f116d50
7ea580bf-fc22-4f02-84c7-1813a00b67ee
cpp
google/tensorstore
rational
tensorstore/internal/json_binding/rational.h
tensorstore/internal/json_binding/rational_test.cc
#ifndef TENSORSTORE_INTERNAL_JSON_BINDING_RATIONAL_H_ #define TENSORSTORE_INTERNAL_JSON_BINDING_RATIONAL_H_ #include <stddef.h> #include <string> #include <string_view> #include <type_traits> #include "absl/status/status.h" #include "absl/strings/numbers.h" #include "absl/strings/str_format.h" #include <nlohmann/json_fwd.hpp> #include "tensorstore/internal/json/value_as.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/json_binding/std_array.h" #include "tensorstore/util/rational.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" namespace tensorstore { namespace internal_json_binding { namespace rational_binder { struct RationalBinder { template <typename Options, typename T> absl::Status operator()(std::true_type is_loading, const Options& options, Rational<T>* obj, ::nlohmann::json* j) const { if (j->is_array()) { T values[2]; span<T, 2> values_span(values); TENSORSTORE_RETURN_IF_ERROR( FixedSizeArray()(is_loading, options, &values_span, j)); *obj = Rational<T>(values[0], values[1]); return absl::OkStatus(); } else if (auto* s = j->get_ptr<const std::string*>()) { std::string_view sv = *s; size_t slash_index = sv.find('/'); T numerator; T denominator; if (slash_index == std::string_view::npos) { denominator = 1; if (!absl::SimpleAtoi(sv, &numerator)) { return internal_json::ExpectedError( *j, "number or rational number `a/b`"); } } else { if (!absl::SimpleAtoi(sv.substr(0, slash_index), &numerator) || !absl::SimpleAtoi(sv.substr(slash_index + 1), &denominator)) { return internal_json::ExpectedError(*j, "rational number `a/b`"); } } *obj = Rational<T>(numerator, denominator); return absl::OkStatus(); } T value; TENSORSTORE_RETURN_IF_ERROR( DefaultBinder<>(is_loading, options, &value, j)); *obj = value; return absl::OkStatus(); } template <typename Options, typename T> absl::Status operator()(std::false_type is_loading, const Options& options, const Rational<T>* obj, ::nlohmann::json* j) const { if (obj->denominator() == static_cast<T>(1)) { T num = obj->numerator(); return DefaultBinder<>(is_loading, options, &num, j); } *j = absl::StrFormat("%d/%d", obj->numerator(), obj->denominator()); return absl::OkStatus(); } }; } template <typename T> constexpr inline auto DefaultBinder<Rational<T>> = rational_binder::RationalBinder{}; } } #endif
#include "tensorstore/internal/json_binding/rational.h" #include <memory> #include <utility> #include <gtest/gtest.h> #include "absl/status/status.h" #include <nlohmann/json_fwd.hpp> #include "tensorstore/index.h" #include "tensorstore/internal/json_binding/gtest.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/util/rational.h" #include "tensorstore/util/status_testutil.h" using ::tensorstore::Index; using ::tensorstore::MatchesStatus; using ::tensorstore::Rational; namespace { TEST(JsonBindingTest, Simple) { tensorstore::TestJsonBinderRoundTrip<Rational<Index>>({ {{2, 3}, "2/3"}, {2, 2}, {1, 1}, {0, 0}, }); tensorstore::TestJsonBinderRoundTripJsonOnly<Rational<Index>>({ "2/0", "3/0", "0/0", }); tensorstore::TestJsonBinderRoundTripJsonOnlyInexact<Rational<Index>>({ {{2, 3}, "2/3"}, }); tensorstore::TestJsonBinderFromJson<Rational<Index>>({ {"abc", MatchesStatus( absl::StatusCode::kInvalidArgument, "Expected number or rational number `a/b`, but received: \"abc\"")}, {"12a", MatchesStatus( absl::StatusCode::kInvalidArgument, "Expected number or rational number `a/b`, but received: \"12a\"")}, {"12/a", MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected rational number `a/b`, but received: \"12/a\"")}, {{1}, MatchesStatus(absl::StatusCode::kInvalidArgument, "Array has length 1 but should have length 2")}, {{1, "a"}, MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing value at position 1: " "Expected 64-bit signed integer, but received: \"a\"")}, {{1, 2, 3}, MatchesStatus(absl::StatusCode::kInvalidArgument, "Array has length 3 but should have length 2")}, }); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/json_binding/rational.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/json_binding/rational_test.cc
4f887a6430414cd6088e1743555015b10f116d50
b9327b78-625c-4f69-a147-65f529cff80c
cpp
google/tensorstore
span_json
tensorstore/util/span_json.h
tensorstore/util/span_json_test.cc
#ifndef TENSORSTORE_UTIL_SPAN_JSON_H_ #define TENSORSTORE_UTIL_SPAN_JSON_H_ #include <cstddef> #include <nlohmann/json.hpp> #include "tensorstore/util/span.h" namespace tensorstore { template <typename T, ptrdiff_t Extent> void to_json(::nlohmann::json& out, tensorstore::span<T, Extent> s) { out = ::nlohmann::json::array_t(s.begin(), s.end()); } } #endif
#include "tensorstore/util/span_json.h" #include <gtest/gtest.h> #include <nlohmann/json.hpp> #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/span.h" namespace { using ::tensorstore::span; TEST(SpanJsonTest, Basic) { EXPECT_EQ(::nlohmann::json({1, 2, 3}), ::nlohmann::json(span<const int, 3>({1, 2, 3}))); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/span_json.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/span_json_test.cc
4f887a6430414cd6088e1743555015b10f116d50
1cafbf81-77c4-417f-a640-ffaa19edce43
cpp
google/tensorstore
element_traits
tensorstore/util/element_traits.h
tensorstore/util/element_traits_test.cc
#ifndef TENSORSTORE_UTIL_ELEMENT_TRAITS_H_ #define TENSORSTORE_UTIL_ELEMENT_TRAITS_H_ #include <type_traits> namespace tensorstore { template <typename Source, typename Dest> constexpr inline bool IsElementTypeImplicitlyConvertible = (std::is_const_v<Source> <= std::is_const_v<Dest>)&& (std::is_same_v<const Source, const Dest> || std::is_void_v<Source> < std::is_void_v<Dest>); template <class Source, class Dest> constexpr inline bool IsElementTypeOnlyExplicitlyConvertible = (std::is_void_v<Source> > std::is_void_v<Dest>)&& (std::is_const_v<Source> <= std::is_const_v<Dest>); template <typename Source, typename Dest> constexpr inline bool IsElementTypeExplicitlyConvertible = (std::is_const_v<Source> <= std::is_const_v<Dest>)&& (std::is_void_v<Source> || std::is_void_v<Dest> || std::is_same_v<const Source, const Dest>); template <typename A, typename B> constexpr inline bool AreElementTypesCompatible = (std::is_void_v<A> || std::is_void_v<B> || std::is_same_v<const A, const B>); } #endif
#include "tensorstore/util/element_traits.h" #include <type_traits> namespace { using ::tensorstore::AreElementTypesCompatible; using ::tensorstore::IsElementTypeImplicitlyConvertible; using ::tensorstore::IsElementTypeOnlyExplicitlyConvertible; static_assert(IsElementTypeImplicitlyConvertible<int, int>); static_assert(IsElementTypeImplicitlyConvertible<const int, const int>); static_assert(IsElementTypeImplicitlyConvertible<int, const int>); static_assert(IsElementTypeImplicitlyConvertible<const int, const int>); static_assert(!IsElementTypeImplicitlyConvertible<const int, int>); static_assert(!IsElementTypeImplicitlyConvertible<int, float>); static_assert(!IsElementTypeImplicitlyConvertible<const int, const float>); static_assert(IsElementTypeImplicitlyConvertible<int, void>); static_assert(IsElementTypeImplicitlyConvertible<int, const void>); static_assert(IsElementTypeImplicitlyConvertible<const int, const void>); static_assert(!IsElementTypeImplicitlyConvertible<const int, void>); static_assert(!IsElementTypeOnlyExplicitlyConvertible<int, int>); static_assert(!IsElementTypeOnlyExplicitlyConvertible<int, void>); static_assert(IsElementTypeOnlyExplicitlyConvertible<void, int>); static_assert(IsElementTypeOnlyExplicitlyConvertible<void, const int>); static_assert(IsElementTypeOnlyExplicitlyConvertible<const void, const int>); static_assert(!IsElementTypeOnlyExplicitlyConvertible<const void, int>); static_assert(AreElementTypesCompatible<int, int>); static_assert(AreElementTypesCompatible<const int, int>); static_assert(AreElementTypesCompatible<int, const int>); static_assert(AreElementTypesCompatible<const int, const int>); static_assert(AreElementTypesCompatible<const int, void>); static_assert(AreElementTypesCompatible<const int, const void>); static_assert(AreElementTypesCompatible<int, void>); static_assert(AreElementTypesCompatible<int, const void>); static_assert(AreElementTypesCompatible<void, const int>); static_assert(AreElementTypesCompatible<const void, const int>); static_assert(AreElementTypesCompatible<void, int>); static_assert(AreElementTypesCompatible<const void, const int>); static_assert(AreElementTypesCompatible<void, int>); static_assert(AreElementTypesCompatible<const void, int>); static_assert(!AreElementTypesCompatible<int, float>); static_assert(!AreElementTypesCompatible<const int, float>); static_assert(!AreElementTypesCompatible<int, const float>); static_assert(!AreElementTypesCompatible<const int, const float>); }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/element_traits.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/element_traits_test.cc
4f887a6430414cd6088e1743555015b10f116d50
b33caddb-e189-4706-ad85-019b3a5d26d2
cpp
google/tensorstore
iterate_over_index_range
tensorstore/util/iterate_over_index_range.h
tensorstore/util/iterate_over_index_range_test.cc
#ifndef TENSORSTORE_UTIL_ITERATE_OVER_INDEX_RANGE_H_ #define TENSORSTORE_UTIL_ITERATE_OVER_INDEX_RANGE_H_ #include <cassert> #include <type_traits> #include "tensorstore/box.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/index.h" #include "tensorstore/internal/void_wrapper.h" #include "tensorstore/rank.h" #include "tensorstore/util/constant_vector.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_iterate { inline constexpr DimensionIndex GetLoopDimension(ContiguousLayoutOrder order, DimensionIndex outer_dims, DimensionIndex total_dims) { return order == ContiguousLayoutOrder::c ? outer_dims : total_dims - 1 - outer_dims; } template <typename Func, typename IndexType, DimensionIndex Rank> using IterateOverIndexRangeResult = std::decay_t< std::invoke_result_t<Func, tensorstore::span<const IndexType, Rank>>>; template <ContiguousLayoutOrder Order, typename Func, typename IndexType, DimensionIndex Rank> struct IterateOverIndexRangeHelper { using IndicesSpan = tensorstore::span<const IndexType, Rank>; using ResultType = IterateOverIndexRangeResult<Func, IndexType, Rank>; using WrappedResultType = internal::Void::WrappedType<ResultType>; static WrappedResultType LoopImpl( Func func, DimensionIndex outer_dims, const IndexType* origin, const IndexType* shape, tensorstore::span<IndexType, Rank> indices) { WrappedResultType result = internal::DefaultIterationResult<WrappedResultType>::value(); const DimensionIndex cur_dim = GetLoopDimension(Order, outer_dims, indices.size()); const IndexType start = origin[cur_dim]; const IndexType stop = shape[cur_dim] + start; if (outer_dims + 1 == indices.size()) { for (IndexType i = start; i < stop; ++i) { indices[cur_dim] = i; result = internal::Void::CallAndWrap(func, IndicesSpan(indices)); if (!result) break; } } else { for (IndexType i = start; i < stop; ++i) { indices[cur_dim] = i; result = LoopImpl(func, outer_dims + 1, origin, shape, indices); if (!result) break; } } return result; } static ResultType Start(Func func, const IndexType* origin, IndicesSpan shape) { if (shape.size() == 0) { return func(tensorstore::span<const IndexType, Rank>()); } assert(shape.size() <= kMaxRank); IndexType indices[kMaxRank]; return internal::Void::Unwrap(LoopImpl( func, 0, &origin[0], &shape[0], tensorstore::span<IndexType, Rank>(&indices[0], shape.size()))); } }; } template <ContiguousLayoutOrder Order = ContiguousLayoutOrder::c, typename IndexType, DimensionIndex Rank, typename Func> internal_iterate::IterateOverIndexRangeResult< Func, std::remove_const_t<IndexType>, Rank> IterateOverIndexRange(tensorstore::span<IndexType, Rank> origin, tensorstore::span<IndexType, Rank> shape, Func&& func) { assert(origin.size() == shape.size()); return internal_iterate::IterateOverIndexRangeHelper< Order, Func, std::remove_const_t<IndexType>, Rank>::Start(func, origin.data(), shape); } template <ContiguousLayoutOrder Order = ContiguousLayoutOrder::c, typename BoxType, typename Func> std::enable_if_t<IsBoxLike<BoxType>, internal_iterate::IterateOverIndexRangeResult< Func, Index, BoxType::static_rank>> IterateOverIndexRange(const BoxType& box, Func&& func, ContiguousLayoutOrder order = ContiguousLayoutOrder::c) { return internal_iterate::IterateOverIndexRangeHelper< Order, Func, Index, BoxType::static_rank>::Start(func, box.origin().data(), box.shape()); } template <ContiguousLayoutOrder Order = ContiguousLayoutOrder::c, typename IndexType, DimensionIndex Rank, typename Func> internal_iterate::IterateOverIndexRangeResult< Func, std::remove_const_t<IndexType>, Rank> IterateOverIndexRange(tensorstore::span<IndexType, Rank> shape, Func&& func) { using NonConstIndex = std::remove_const_t<IndexType>; return internal_iterate:: IterateOverIndexRangeHelper<Order, Func, NonConstIndex, Rank>::Start( func, GetConstantVector<NonConstIndex, 0>(GetStaticOrDynamicExtent(shape)) .data(), shape); } } #endif
#include "tensorstore/util/iterate_over_index_range.h" #include <vector> #include <gtest/gtest.h> #include "tensorstore/box.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/index.h" #include "tensorstore/util/span.h" namespace { using ::tensorstore::ContiguousLayoutOrder; using ::tensorstore::Index; using ::tensorstore::IterateOverIndexRange; using ::tensorstore::span; TEST(IterateOverIndexRange, COrder) { using R = std::vector<int>; std::vector<R> result; const std::vector<R> expected_result{{0, 0}, {0, 1}, {0, 2}, {1, 0}, {1, 1}, {1, 2}}; IterateOverIndexRange<ContiguousLayoutOrder::c>( span({2, 3}), [&](span<const int, 2> x) { result.emplace_back(x.begin(), x.end()); }); EXPECT_EQ(expected_result, result); } TEST(IterateOverIndexRange, FortranOrder) { using R = std::vector<int>; std::vector<R> result; const std::vector<R> expected_result{{0, 0}, {1, 0}, {0, 1}, {1, 1}, {0, 2}, {1, 2}}; IterateOverIndexRange<ContiguousLayoutOrder::fortran>( span({2, 3}), [&](span<const int, 2> x) { result.emplace_back(x.begin(), x.end()); }); EXPECT_EQ(expected_result, result); } TEST(IterateOverIndexRange, COrderWithOrigin) { using R = std::vector<int>; std::vector<R> result; const std::vector<R> expected_result{{0, 1}, {0, 2}, {1, 1}, {1, 2}}; IterateOverIndexRange<ContiguousLayoutOrder::c>( span({0, 1}), span({2, 2}), [&](span<const int, 2> x) { result.emplace_back(x.begin(), x.end()); }); EXPECT_EQ(expected_result, result); } TEST(IterateOverIndexRange, FortranOrderWithOrigin) { using R = std::vector<int>; std::vector<R> result; const std::vector<R> expected_result{{0, 1}, {1, 1}, {0, 2}, {1, 2}}; IterateOverIndexRange<ContiguousLayoutOrder::fortran>( span({0, 1}), span({2, 2}), [&](span<const int, 2> x) { result.emplace_back(x.begin(), x.end()); }); EXPECT_EQ(expected_result, result); } TEST(IterateOverIndexRange, COrderWithBox) { using R = std::vector<Index>; std::vector<R> result; const std::vector<R> expected_result{{0, 1}, {0, 2}, {1, 1}, {1, 2}}; IterateOverIndexRange( tensorstore::BoxView({0, 1}, {2, 2}), [&](span<const Index, 2> x) { result.emplace_back(x.begin(), x.end()); }, ContiguousLayoutOrder::c); EXPECT_EQ(expected_result, result); } TEST(IterateOverIndexRange, RankZero) { using R = std::vector<int>; std::vector<R> result; const std::vector<R> expected_result{R{}}; IterateOverIndexRange<ContiguousLayoutOrder::fortran>( span<const int, 0>(), [&](span<const int, 0> x) { result.emplace_back(x.begin(), x.end()); }); EXPECT_EQ(expected_result, result); } TEST(IterateOverIndexRange, Stop) { using R = std::vector<int>; std::vector<R> result; const std::vector<R> expected_result{{0, 0}, {0, 1}}; EXPECT_EQ(false, IterateOverIndexRange<ContiguousLayoutOrder::c>( span({2, 3}), [&](span<const int, 2> x) { result.emplace_back(x.begin(), x.end()); return x[1] != 1; })); EXPECT_EQ(expected_result, result); } TEST(IterateOverIndexRange, ZeroElementsBoolReturn) { EXPECT_EQ(true, IterateOverIndexRange<ContiguousLayoutOrder::c>( span({0}), [&](span<const int, 1> x) { return false; })); } TEST(IterateOverIndexRange, StaticRankZero) { using R = std::vector<int>; std::vector<R> result; const std::vector<R> expected_result{R{}}; IterateOverIndexRange(span<const int, 0>{}, [&](span<const int, 0> x) { result.emplace_back(x.begin(), x.end()); }); EXPECT_EQ(expected_result, result); } TEST(IterateOverIndexRange, DynamicRankZero) { using R = std::vector<int>; std::vector<R> result; const std::vector<R> expected_result{R{}}; IterateOverIndexRange(span<const int>(nullptr, 0), [&](span<const int> x) { result.emplace_back(x.begin(), x.end()); }); EXPECT_EQ(expected_result, result); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/iterate_over_index_range.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/iterate_over_index_range_test.cc
4f887a6430414cd6088e1743555015b10f116d50
d35cffbe-967b-4c8d-96bd-dc614f18ca06
cpp
google/tensorstore
float8
tensorstore/util/float8.h
tensorstore/util/float8_test.cc
#ifndef TENSORSTORE_UTIL_FLOAT8_H_ #define TENSORSTORE_UTIL_FLOAT8_H_ #include <algorithm> #include <cmath> #include <cstddef> #include <cstdint> #include <limits> #include <ostream> #include <type_traits> #include <utility> #include "absl/base/casts.h" #include <half.hpp> #include <nlohmann/json_fwd.hpp> #include "tensorstore/util/bfloat16.h" #if (defined(__cpp_lib_bitops) && __cpp_lib_bitops >= 201907L) #include <bit> #endif namespace tensorstore { namespace float8_internal { class Float8e4m3fn; class Float8e4m3fnuz; class Float8e4m3b11fnuz; class Float8e5m2; class Float8e5m2fnuz; template <typename Derived> class Float8Base { protected: struct ConstructFromRepTag {}; constexpr Float8Base(uint8_t rep, ConstructFromRepTag) : rep_{rep} {} public: constexpr Float8Base() : rep_(0) {} template <typename T, typename EnableIf = std::enable_if<std::is_arithmetic_v<T>>> explicit Float8Base(T f) : Float8Base(ConvertFrom(static_cast<float>(f)).rep(), ConstructFromRepTag{}) {} explicit Float8Base(double f64) : Float8Base(ConvertFrom(f64).rep(), ConstructFromRepTag{}) {} explicit Float8Base(float f32) : Float8Base(ConvertFrom(f32).rep(), ConstructFromRepTag{}) {} explicit Float8Base(BFloat16 bf16) : Float8Base(ConvertFrom(bf16).rep(), ConstructFromRepTag{}) {} explicit Float8Base(::half_float::half f16) : Float8Base(ConvertFrom(f16).rep(), ConstructFromRepTag{}) {} constexpr uint8_t rep() const { return rep_; } template <typename T, typename EnableIf = std::enable_if<std::is_arithmetic_v<T>>> explicit operator T() const { return static_cast<T>(static_cast<float>(derived())); } explicit operator double() const { return ConvertTo<double>(derived()); } explicit operator float() const { return ConvertTo<float>(derived()); } explicit operator BFloat16() const { return ConvertTo<BFloat16>(derived()); } explicit operator ::half_float::half() const { return ConvertTo<::half_float::half>(derived()); } explicit operator bool() const { return (rep() & 0x7F) != 0; } constexpr Derived operator-() const { return Derived(static_cast<uint8_t>(rep() ^ 0x80), ConstructFromRepTag{}); } constexpr const Derived& derived() const { return *static_cast<const Derived*>(this); } constexpr Derived& derived() { return *static_cast<Derived*>(this); } static constexpr Derived FromRep(uint8_t rep) { return Derived(rep, ConstructFromRepTag{}); } template <bool kSaturate = false, bool kTruncate = false, typename From> static Derived ConvertFrom(const From& from); template <typename To, bool kSaturate = false, bool kTruncate = false> static To ConvertTo(const Derived& from); Derived operator+(const Derived& other) const { return Derived{float{derived()} + float{other}}; } Derived operator-(const Derived& other) const { return Derived{float{derived()} - float{other}}; } Derived operator*(const Derived& other) const { return Derived{float{derived()} * float{other}}; } Derived operator/(const Derived& other) const { return Derived{float{derived()} / float{other}}; } constexpr bool operator==(const Derived& other) const { return Compare(derived(), other) == Ordering::kEquivalent; } constexpr bool operator!=(const Derived& other) const { return Compare(derived(), other) != Ordering::kEquivalent; } bool operator<(const Derived& other) const { return Compare(derived(), other) == Ordering::kLess; } bool operator<=(const Derived& other) const { return Compare(derived(), other) <= Ordering::kEquivalent; } bool operator>(const Derived& other) const { return Compare(derived(), other) == Ordering::kGreater; } bool operator>=(const Derived& other) const { Ordering ordering = Compare(derived(), other); return ordering == Ordering::kGreater || ordering == Ordering::kEquivalent; } Derived& operator+=(const Derived& other) { derived() = derived() + other; return derived(); } friend float operator+=(const float& a, Derived b) { return a + static_cast<float>(b); } Derived& operator-=(const Derived& other) { derived() = derived() - other; return derived(); } Derived& operator*=(const Derived& other) { derived() = derived() * other; return derived(); } Derived& operator/=(const Derived& other) { derived() = derived() / other; return derived(); } template <template <typename U, typename V, typename... Args> class ObjectType , template <typename U, typename... Args> class ArrayType , class StringType , class BooleanType , class NumberIntegerType , class NumberUnsignedType , class NumberFloatType , template <typename U> class AllocatorType , template <typename T, typename SFINAE = void> class JSONSerializer , class BinaryType > friend void to_json( ::nlohmann::basic_json<ObjectType, ArrayType, StringType, BooleanType, NumberIntegerType, NumberUnsignedType, NumberFloatType, AllocatorType, JSONSerializer, BinaryType>& j, Derived v) { j = static_cast<NumberFloatType>(v); } private: static std::pair<uint8_t, uint8_t> SignAndMagnitude(Derived x) { const uint8_t x_abs_bits = absl::bit_cast<uint8_t>(abs(x)); const uint8_t x_bits = absl::bit_cast<uint8_t>(x); const uint8_t x_sign = x_bits ^ x_abs_bits; return {x_sign, x_abs_bits}; } static int8_t SignAndMagnitudeToTwosComplement(uint8_t sign, uint8_t magnitude) { return magnitude ^ (static_cast<int8_t>(sign) < 0 ? -1 : 0); } enum Ordering : int8_t { kLess = -1, kEquivalent = 0, kGreater = 1, kUnordered = 2, }; friend Ordering Compare(const Derived& lhs, const Derived& rhs) { if (isnan(lhs) || isnan(rhs)) { return Ordering::kUnordered; } auto [lhs_sign, lhs_mag] = SignAndMagnitude(lhs); auto [rhs_sign, rhs_mag] = SignAndMagnitude(rhs); if (lhs_mag == 0 && rhs_mag == 0) { return Ordering::kEquivalent; } int8_t lhs_twos_complement = SignAndMagnitudeToTwosComplement(lhs_sign, lhs_mag); int8_t rhs_twos_complement = SignAndMagnitudeToTwosComplement(rhs_sign, rhs_mag); if (lhs_twos_complement < rhs_twos_complement) { return Ordering::kLess; } if (lhs_twos_complement > rhs_twos_complement) { return Ordering::kGreater; } return Ordering::kEquivalent; } uint8_t rep_; }; class Float8e4m3fn : public Float8Base<Float8e4m3fn> { private: using Base = Float8Base<Float8e4m3fn>; friend class Float8Base<Float8e4m3fn>; using Base::Float8Base; public: explicit Float8e4m3fn(const Float8e5m2& f8) : Float8e4m3fn(ConvertFrom(f8)) {} explicit Float8e4m3fn(const Float8e4m3b11fnuz& f8) : Float8e4m3fn(ConvertFrom(f8)) {} }; class Float8e4m3b11fnuz : public Float8Base<Float8e4m3b11fnuz> { private: using Base = Float8Base<Float8e4m3b11fnuz>; friend class Float8Base<Float8e4m3b11fnuz>; using Base::Float8Base; public: explicit Float8e4m3b11fnuz(const Float8e5m2& f8) : Float8e4m3b11fnuz(ConvertFrom(f8)) {} explicit Float8e4m3b11fnuz(const Float8e5m2fnuz& f8) : Float8e4m3b11fnuz(ConvertFrom(f8)) {} explicit Float8e4m3b11fnuz(const Float8e4m3fn& f8) : Float8e4m3b11fnuz(ConvertFrom(f8)) {} explicit Float8e4m3b11fnuz(const Float8e4m3fnuz& f8) : Float8e4m3b11fnuz(ConvertFrom(f8)) {} constexpr Float8e4m3b11fnuz operator-() const { if ((rep() & 0x7f) == 0x00) { return *this; } return Base::operator-(); } Float8e4m3b11fnuz operator-(const Float8e4m3b11fnuz& other) const { return Base::operator-(other); } explicit operator bool() const { return rep() != 0; } }; class Float8e4m3fnuz : public Float8Base<Float8e4m3fnuz> { private: using Base = Float8Base<Float8e4m3fnuz>; friend class Float8Base<Float8e4m3fnuz>; using Base::Float8Base; public: explicit Float8e4m3fnuz(const Float8e5m2& f8) : Float8e4m3fnuz(ConvertFrom(f8)) {} explicit Float8e4m3fnuz(const Float8e5m2fnuz& f8) : Float8e4m3fnuz(ConvertFrom(f8)) {} explicit Float8e4m3fnuz(const Float8e4m3b11fnuz& f8) : Float8e4m3fnuz(ConvertFrom(f8)) {} explicit Float8e4m3fnuz(const Float8e4m3fn& f8) : Float8e4m3fnuz(ConvertFrom(f8)) {} constexpr Float8e4m3fnuz operator-() const { if ((rep() & 0x7f) == 0x00) { return *this; } return Base::operator-(); } Float8e4m3fnuz operator-(const Float8e4m3fnuz& other) const { return Base::operator-(other); } explicit operator bool() const { return rep() != 0; } }; class Float8e5m2 : public Float8Base<Float8e5m2> { private: using Base = Float8Base<Float8e5m2>; friend class Float8Base<Float8e5m2>; using Base::Float8Base; public: explicit Float8e5m2(Float8e4m3fn f8) : Float8e5m2(ConvertFrom(f8)) {} explicit Float8e5m2(Float8e4m3fnuz f8) : Float8e5m2(ConvertFrom(f8)) {} explicit Float8e5m2(Float8e4m3b11fnuz f8) : Float8e5m2(ConvertFrom(f8)) {} explicit Float8e5m2(Float8e5m2fnuz& f8) : Float8e5m2(ConvertFrom(f8)) {} }; class Float8e5m2fnuz : public Float8Base<Float8e5m2fnuz> { private: using Base = Float8Base<Float8e5m2fnuz>; friend class Float8Base<Float8e5m2fnuz>; using Base::Float8Base; public: explicit Float8e5m2fnuz(const Float8e5m2& f8) : Float8e5m2fnuz(ConvertFrom(f8)) {} explicit Float8e5m2fnuz(const Float8e4m3b11fnuz& f8) : Float8e5m2fnuz(ConvertFrom(f8)) {} explicit Float8e5m2fnuz(const Float8e4m3fn& f8) : Float8e5m2fnuz(ConvertFrom(f8)) {} explicit Float8e5m2fnuz(const Float8e4m3fnuz& f8) : Float8e5m2fnuz(ConvertFrom(f8)) {} constexpr Float8e5m2fnuz operator-() const { if ((rep() & 0x7f) == 0x00) { return *this; } return Base::operator-(); } Float8e5m2fnuz operator-(const Float8e5m2fnuz& other) const { return Base::operator-(other); } explicit operator bool() const { return rep() != 0; } }; constexpr double ConstexprAbs(double x) { return x < 0.0 ? -x : x; } constexpr double ConstexprCeil(double x) { constexpr double kIntegerThreshold = uint64_t{1} << (std::numeric_limits<double>::digits - 1); if (!(ConstexprAbs(x) < kIntegerThreshold)) { return x; } const double x_trunc = static_cast<double>(static_cast<int64_t>(x)); return x_trunc < x ? x_trunc + 1.0 : x_trunc; } constexpr double ConstexprFloor(double x) { return -ConstexprCeil(-x); } constexpr double kLog10Of2 = 0.3010299956639812; constexpr int Digits10FromDigits(int digits) { return static_cast<int>(ConstexprFloor((digits - 1) * kLog10Of2)); } constexpr int MaxDigits10FromDigits(int digits) { return static_cast<int>(ConstexprCeil(1.0 + (digits * kLog10Of2))); } constexpr int MinExponent10FromMinExponent(int min_exponent) { return static_cast<int>(ConstexprCeil((min_exponent - 1) * kLog10Of2)); } constexpr int MaxExponent10FromMaxExponentAndDigits(int max_exponent, int digits) { constexpr double kLog10OfOnePredecessor[] = { -0.057991946977686754, -0.028028723600243537, }; return static_cast<int>(ConstexprFloor(kLog10OfOnePredecessor[digits - 3] + max_exponent * kLog10Of2)); } struct numeric_limits_float8_base { static inline constexpr const bool is_specialized = true; static inline constexpr const bool is_signed = true; static inline constexpr const bool is_integer = false; static inline constexpr const bool is_exact = false; static inline constexpr const bool has_quiet_NaN = true; static inline constexpr const std::float_denorm_style has_denorm = std::denorm_present; static inline constexpr const bool has_denorm_loss = false; static inline constexpr const std::float_round_style round_style = std::round_to_nearest; static inline constexpr const bool is_bounded = true; static inline constexpr const bool is_modulo = false; static inline constexpr const int radix = std::numeric_limits<float>::radix; static inline constexpr const bool traps = std::numeric_limits<float>::traps; static inline constexpr const bool tinyness_before = std::numeric_limits<float>::tinyness_before; }; struct numeric_limits_float8_e4m3fn : public numeric_limits_float8_base { private: static inline constexpr const int kExponentBias = 7; static inline constexpr const int kMantissaBits = 3; public: static inline constexpr const int digits = kMantissaBits + 1; static inline constexpr const int digits10 = Digits10FromDigits(digits); static inline constexpr const int max_digits10 = MaxDigits10FromDigits(digits); static inline constexpr const int min_exponent = (1 - kExponentBias) + 1; static inline constexpr const int min_exponent10 = MinExponent10FromMinExponent(min_exponent); static inline constexpr const int max_exponent = (0b1111 - 7) + 1; static inline constexpr const int max_exponent10 = MaxExponent10FromMaxExponentAndDigits(max_exponent, digits); static inline constexpr const bool is_iec559 = false; static inline constexpr const bool has_infinity = false; static inline constexpr const bool has_signaling_NaN = false; static constexpr Float8e4m3fn min() { return Float8e4m3fn::FromRep(0b0'0001 << kMantissaBits); } static constexpr Float8e4m3fn lowest() { return Float8e4m3fn::FromRep(0b1'1111'110); } static constexpr Float8e4m3fn max() { return Float8e4m3fn::FromRep(0b0'1111'110); } static constexpr Float8e4m3fn epsilon() { return Float8e4m3fn::FromRep((-kMantissaBits + kExponentBias) << kMantissaBits); } static constexpr Float8e4m3fn round_error() { return Float8e4m3fn::FromRep((-1 + kExponentBias) << kMantissaBits); } static constexpr Float8e4m3fn infinity() { return Float8e4m3fn::FromRep(0b0'1111'111); } static constexpr Float8e4m3fn quiet_NaN() { return Float8e4m3fn::FromRep(0b0'1111'111); } static constexpr Float8e4m3fn signaling_NaN() { return Float8e4m3fn::FromRep(0b0'1111'111); } static constexpr Float8e4m3fn denorm_min() { return Float8e4m3fn::FromRep(0b0'0000'001); } }; struct numeric_limits_float8_e4m3b11fnuz : public numeric_limits_float8_base { private: static inline constexpr const int kExponentBias = 11; static inline constexpr const int kMantissaBits = 3; public: static inline constexpr const int digits = kMantissaBits + 1; static inline constexpr const int digits10 = Digits10FromDigits(digits); static inline constexpr const int max_digits10 = MaxDigits10FromDigits(digits); static inline constexpr const int min_exponent = (1 - kExponentBias) + 1; static inline constexpr const int min_exponent10 = MinExponent10FromMinExponent(min_exponent); static inline constexpr const int max_exponent = (0b1111 - kExponentBias) + 1; static inline constexpr const int max_exponent10 = MaxExponent10FromMaxExponentAndDigits(max_exponent, digits); static inline constexpr const bool is_iec559 = false; static inline constexpr const bool has_infinity = false; static inline constexpr const bool has_signaling_NaN = false; static constexpr Float8e4m3b11fnuz min() { return Float8e4m3b11fnuz::FromRep(1 << kMantissaBits); } static constexpr Float8e4m3b11fnuz lowest() { return Float8e4m3b11fnuz::FromRep(0b1'1111'111); } static constexpr Float8e4m3b11fnuz max() { return Float8e4m3b11fnuz::FromRep(0b0'1111'111); } static constexpr Float8e4m3b11fnuz epsilon() { return Float8e4m3b11fnuz::FromRep((-kMantissaBits + kExponentBias) << kMantissaBits); } static constexpr Float8e4m3b11fnuz round_error() { return Float8e4m3b11fnuz::FromRep((-1 + kExponentBias) << kMantissaBits); } static constexpr Float8e4m3b11fnuz infinity() { return Float8e4m3b11fnuz::FromRep(0b1'0000'000); } static constexpr Float8e4m3b11fnuz quiet_NaN() { return Float8e4m3b11fnuz::FromRep(0b1'0000'000); } static constexpr Float8e4m3b11fnuz signaling_NaN() { return Float8e4m3b11fnuz::FromRep(0b1'0000'000); } static constexpr Float8e4m3b11fnuz denorm_min() { return Float8e4m3b11fnuz::FromRep(0b0'0000'001); } }; struct numeric_limits_float8_e4m3fnuz : public numeric_limits_float8_base { private: static inline constexpr const int kExponentBias = 8; static inline constexpr const int kMantissaBits = 3; public: static inline constexpr const int digits = kMantissaBits + 1; static inline constexpr const int digits10 = Digits10FromDigits(digits); static inline constexpr const int max_digits10 = MaxDigits10FromDigits(digits); static inline constexpr const int min_exponent = (1 - kExponentBias) + 1; static inline constexpr const int min_exponent10 = MinExponent10FromMinExponent(min_exponent); static inline constexpr const int max_exponent = (0b1111 - kExponentBias) + 1; static inline constexpr const int max_exponent10 = MaxExponent10FromMaxExponentAndDigits(max_exponent, digits); static inline constexpr const bool is_iec559 = false; static inline constexpr const bool has_infinity = false; static inline constexpr const bool has_signaling_NaN = false; static constexpr Float8e4m3fnuz min() { return Float8e4m3fnuz::FromRep(0x08); } static constexpr Float8e4m3fnuz lowest() { return Float8e4m3fnuz::FromRep(0xFF); } static constexpr Float8e4m3fnuz max() { return Float8e4m3fnuz::FromRep(0x7F); } static constexpr Float8e4m3fnuz epsilon() { return Float8e4m3fnuz::FromRep((-kMantissaBits + kExponentBias) << kMantissaBits); } static constexpr Float8e4m3fnuz round_error() { return Float8e4m3fnuz::FromRep((-1 + kExponentBias) << kMantissaBits); } static constexpr Float8e4m3fnuz infinity() { return Float8e4m3fnuz::FromRep(0x80); } static constexpr Float8e4m3fnuz quiet_NaN() { return Float8e4m3fnuz::FromRep(0x80); } static constexpr Float8e4m3fnuz signaling_NaN() { return Float8e4m3fnuz::FromRep(0x80); } static constexpr Float8e4m3fnuz denorm_min() { return Float8e4m3fnuz::FromRep(0x01); } }; struct numeric_limits_float8_e5m2 : public numeric_limits_float8_base { private: static inline constexpr const int kExponentBias = 15; static inline constexpr const int kMantissaBits = 2; public: static inline constexpr const int digits = kMantissaBits + 1; static inline constexpr const int digits10 = Digits10FromDigits(digits); static inline constexpr const int max_digits10 = MaxDigits10FromDigits(digits); static inline constexpr const int min_exponent = (1 - kExponentBias) + 1; static inline constexpr const int min_exponent10 = MinExponent10FromMinExponent(min_exponent); static inline constexpr const int max_exponent = 0b11111 - kExponentBias; static inline constexpr const int max_exponent10 = MaxExponent10FromMaxExponentAndDigits(max_exponent, digits); static inline constexpr const bool is_iec559 = true; static inline constexpr const bool has_infinity = true; static inline constexpr const bool has_signaling_NaN = true; static constexpr Float8e5m2 min() { return Float8e5m2::FromRep(1 << kMantissaBits); } static constexpr Float8e5m2 lowest() { return Float8e5m2::FromRep(0b1'11110'11); } static constexpr Float8e5m2 max() { return Float8e5m2::FromRep(0b0'11110'11); } static constexpr Float8e5m2 epsilon() { return Float8e5m2::FromRep((-kMantissaBits + kExponentBias) << kMantissaBits); } static constexpr Float8e5m2 round_error() { return Float8e5m2::FromRep((-1 + kExponentBias) << kMantissaBits); } static constexpr Float8e5m2 infinity() { return Float8e5m2::FromRep(0b0'11111'00); } static constexpr Float8e5m2 quiet_NaN() { return Float8e5m2::FromRep(0b0'11111'10); } static constexpr Float8e5m2 signaling_NaN() { return Float8e5m2::FromRep(0b0'11111'01); } static constexpr Float8e5m2 denorm_min() { return Float8e5m2::FromRep(0b0'00000'01); } }; struct numeric_limits_float8_e5m2fnuz : public numeric_limits_float8_base { private: static inline constexpr const int kExponentBias = 16; static inline constexpr const int kMantissaBits = 2; public: static inline constexpr const int digits = kMantissaBits + 1; static inline constexpr const int digits10 = Digits10FromDigits(digits); static inline constexpr const int max_digits10 = MaxDigits10FromDigits(digits); static inline constexpr const int min_exponent = (1 - kExponentBias) + 1; static inline constexpr const int min_exponent10 = MinExponent10FromMinExponent(min_exponent); static inline constexpr const int max_exponent = (0b11111 - kExponentBias) + 1; static inline constexpr const int max_exponent10 = MaxExponent10FromMaxExponentAndDigits(max_exponent, digits); static inline constexpr const bool is_iec559 = false; static inline constexpr const bool has_infinity = false; static inline constexpr const bool has_signaling_NaN = false; static constexpr Float8e5m2fnuz min() { return Float8e5m2fnuz::FromRep(0x04); } static constexpr Float8e5m2fnuz lowest() { return Float8e5m2fnuz::FromRep(0xFF); } static constexpr Float8e5m2fnuz max() { return Float8e5m2fnuz::FromRep(0x7F); } static constexpr Float8e5m2fnuz epsilon() { return Float8e5m2fnuz::FromRep((-kMantissaBits + kExponentBias) << kMantissaBits); } static constexpr Float8e5m2fnuz round_error() { return Float8e5m2fnuz::FromRep((-1 + kExponentBias) << kMantissaBits); } static constexpr Float8e5m2fnuz infinity() { return Float8e5m2fnuz::FromRep(0x80); } static constexpr Float8e5m2fnuz quiet_NaN() { return Float8e5m2fnuz::FromRep(0x80); } static constexpr Float8e5m2fnuz signaling_NaN() { return Float8e5m2fnuz::FromRep(0x80); } static constexpr Float8e5m2fnuz denorm_min() { return Float8e5m2fnuz::FromRep(0x01); } }; } } namespace std { template <> struct numeric_limits<tensorstore::float8_internal::Float8e4m3fn> : public tensorstore::float8_internal::numeric_limits_float8_e4m3fn {}; template <> struct numeric_limits<tensorstore::float8_internal::Float8e4m3b11fnuz> : public tensorstore::float8_internal::numeric_limits_float8_e4m3b11fnuz {}; template <> struct numeric_limits<tensorstore::float8_internal::Float8e4m3fnuz> : public tensorstore::float8_internal::numeric_limits_float8_e4m3fnuz {}; template <> struct numeric_limits<tensorstore::float8_internal::Float8e5m2> : public tensorstore::float8_internal::numeric_limits_float8_e5m2 {}; template <> struct numeric_limits<tensorstore::float8_internal::Float8e5m2fnuz> : public tensorstore::float8_internal::numeric_limits_float8_e5m2fnuz {}; } namespace tensorstore { namespace float8_internal { constexpr inline Float8e4m3fn abs(const Float8e4m3fn& a) { return Float8e4m3fn::FromRep(a.rep() & 0b0'1111'111); } constexpr inline bool(isnan)(const Float8e4m3fn& a) { return abs(a).rep() == std::numeric_limits<Float8e4m3fn>::quiet_NaN().rep(); } constexpr inline Float8e4m3b11fnuz abs(const Float8e4m3b11fnuz& a) { return (a.rep() & 0b0'1111'111) == 0 ? Float8e4m3b11fnuz::FromRep(a.rep()) : Float8e4m3b11fnuz::FromRep(a.rep() & 0b0'1111'111); } constexpr inline bool(isnan)(const Float8e4m3b11fnuz& a) { return a.rep() == std::numeric_limits<Float8e4m3b11fnuz>::quiet_NaN().rep(); } constexpr inline Float8e4m3fnuz abs(const Float8e4m3fnuz& a) { return (a.rep() & 0x7F) == 0 ? Float8e4m3fnuz::FromRep(a.rep()) : Float8e4m3fnuz::FromRep(a.rep() & 0x7F); } constexpr inline bool(isnan)(const Float8e4m3fnuz& a) { return abs(a).rep() == std::numeric_limits<Float8e4m3fnuz>::quiet_NaN().rep(); } constexpr inline Float8e5m2 abs(const Float8e5m2& a) { return Float8e5m2::FromRep(a.rep() & 0b0'11111'11); } constexpr inline bool(isnan)(const Float8e5m2& a) { return abs(a).rep() > std::numeric_limits<Float8e5m2>::infinity().rep(); } constexpr inline Float8e5m2fnuz abs(const Float8e5m2fnuz& a) { return (a.rep() & 0x7F) == 0 ? Float8e5m2fnuz::FromRep(a.rep()) : Float8e5m2fnuz::FromRep(a.rep() & 0x7F); } constexpr inline bool isnan(const Float8e5m2fnuz& a) { return a.rep() == 0x80; } template <typename Float8> constexpr inline bool(isinf)(const Float8Base<Float8>& a) { return std::numeric_limits<Float8>::has_infinity ? abs(a.derived()).rep() == std::numeric_limits<Float8>::infinity().rep() : false; } template <typename Float8> constexpr inline bool(isfinite)(const Float8Base<Float8>& a) { return !isnan(a.derived()) && !isinf(a.derived()); } template <typename Float8> std::ostream& operator<<(std::ostream& os, const Float8Base<Float8>& f8) { os << static_cast<float>(f8.derived()); return os; } template <size_t Size> struct get_integer_by_size { typedef void signed_type; typedef void unsigned_type; }; template <> struct get_integer_by_size<1> { typedef int8_t signed_type; typedef uint8_t unsigned_type; }; template <> struct get_integer_by_size<2> { typedef int16_t signed_type; typedef uint16_t unsigned_type; }; template <> struct get_integer_by_size<4> { typedef int32_t signed_type; typedef uint32_t unsigned_type; }; template <> struct get_integer_by_size<8> { typedef int64_t signed_type; typedef uint64_t unsigned_type; }; template <int kNumBytes> using GetUnsignedInteger = typename get_integer_by_size<kNumBytes>::unsigned_type; template <typename From, typename To, bool kSaturate, bool kTruncate, typename EnableIf = void> struct ConvertImpl; template <typename Scalar> struct IdentityConversion { static inline Scalar run(const Scalar& from) { return from; } }; template <typename Scalar> struct ConvertImpl<Scalar, Scalar, false, false, void> : public IdentityConversion<Scalar> {}; template <typename Scalar> struct ConvertImpl<Scalar, Scalar, false, true, void> : public IdentityConversion<Scalar> {}; template <typename Scalar> struct ConvertImpl<Scalar, Scalar, true, false, void> : public IdentityConversion<Scalar> {}; template <typename Scalar> struct ConvertImpl<Scalar, Scalar, true, true, void> : public IdentityConversion<Scalar> {}; template <typename Float> struct TraitsBase { using BitsType = GetUnsignedInteger<sizeof(Float)>; static constexpr int kBits = sizeof(Float) * CHAR_BIT; static constexpr int kMantissaBits = std::numeric_limits<Float>::digits - 1; static constexpr int kExponentBits = kBits - kMantissaBits - 1; static constexpr BitsType kExponentMask = ((BitsType{1} << kExponentBits) - 1) << kMantissaBits; static constexpr BitsType kMantissaMask = (BitsType{1} << kMantissaBits) - 1; static constexpr int kExponentBias = (1 << (kExponentBits - 1)) - 1; }; template <typename Float> struct Traits : public TraitsBase<Float> {}; template <> struct Traits<Float8e4m3b11fnuz> : public TraitsBase<Float8e4m3b11fnuz> { static constexpr int kExponentBias = 11; }; template <> struct Traits<Float8e4m3fnuz> : public TraitsBase<Float8e4m3fnuz> { using Base = TraitsBase<Float8e4m3fnuz>; static constexpr int kExponentBias = Base::kExponentBias + 1; }; template <> struct Traits<Float8e5m2fnuz> : public TraitsBase<Float8e5m2fnuz> { using Base = TraitsBase<Float8e5m2fnuz>; static constexpr int kExponentBias = Base::kExponentBias + 1; }; template <typename Bits> constexpr inline Bits RoundBitsToNearestEven(Bits bits, int roundoff) { Bits bias = roundoff == 0 ? 0 : ((bits >> roundoff) & 1) + (Bits{1} << (roundoff - 1)) - 1; return bits + bias; } #if (defined(__cpp_lib_bitops) && __cpp_lib_bitops >= 201907L) using std::countl_zero; #else static constexpr inline int countl_zero(uint64_t x) { int zeroes = 60; if (x >> 32) { zeroes -= 32; x >>= 32; } if (x >> 16) { zeroes -= 16; x >>= 16; } if (x >> 8) { zeroes -= 8; x >>= 8; } if (x >> 4) { zeroes -= 4; x >>= 4; } return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0"[x] + zeroes; } static constexpr inline int countl_zero(uint32_t x) { int zeroes = 28; if (x >> 16) { zeroes -= 16; x >>= 16; } if (x >> 8) { zeroes -= 8; x >>= 8; } if (x >> 4) { zeroes -= 4; x >>= 4; } return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0"[x] + zeroes; } static constexpr inline int countl_zero(uint16_t x) { int zeroes = 12; if (x >> 8) { zeroes -= 8; x >>= 8; } if (x >> 4) { zeroes -= 4; x >>= 4; } return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0"[x] + zeroes; } static constexpr inline int countl_zero(uint8_t x) { int zeroes = 4; if (x >> 4) { zeroes -= 4; x >>= 4; } return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0"[x] + zeroes; } #endif template <typename From, typename To, bool kSaturate, bool kTruncate> struct ConvertImpl<From, To, kSaturate, kTruncate, std::enable_if_t<!std::is_same_v<From, To>>> { using FromTraits = Traits<From>; using FromBits = typename FromTraits::BitsType; static constexpr int kFromBits = FromTraits::kBits; static constexpr int kFromMantissaBits = FromTraits::kMantissaBits; static constexpr int kFromExponentBits = FromTraits::kExponentBits; static constexpr int kFromExponentBias = FromTraits::kExponentBias; static constexpr FromBits kFromExponentMask = FromTraits::kExponentMask; using ToTraits = Traits<To>; using ToBits = typename ToTraits::BitsType; static constexpr int kToBits = ToTraits::kBits; static constexpr int kToMantissaBits = ToTraits::kMantissaBits; static constexpr int kToExponentBits = ToTraits::kExponentBits; static constexpr int kToExponentBias = ToTraits::kExponentBias; static constexpr ToBits kToExponentMask = ToTraits::kExponentMask; static constexpr int kWideBits = (std::max(kToMantissaBits, kFromMantissaBits)) + (std::max(kToExponentBits, kFromExponentBits)); static constexpr int kWideBytes = (kWideBits + (CHAR_BIT - 1)) / CHAR_BIT; using WideBits = GetUnsignedInteger<kWideBytes>; static constexpr int kExponentOffset = kToExponentBias - kFromExponentBias; static constexpr int kDigitShift = kToMantissaBits - kFromMantissaBits; static inline To run(const From& from) { using std::abs; using std::isinf; using std::isnan; const bool from_sign_bit = absl::bit_cast<FromBits>(from) >> (kFromBits - 1); const FromBits from_bits = absl::bit_cast<FromBits>(abs(from)); if (isinf(from)) { return from_sign_bit ? -std::numeric_limits<To>::infinity() : std::numeric_limits<To>::infinity(); } if (isnan(from)) { return from_sign_bit ? -std::numeric_limits<To>::quiet_NaN() : std::numeric_limits<To>::quiet_NaN(); } if (from_bits == 0) { return from_sign_bit ? -To{} : To{}; } const int biased_from_exponent = from_bits >> kFromMantissaBits; if constexpr (std::numeric_limits<To>::min_exponent < std::numeric_limits<From>::min_exponent) { if (biased_from_exponent == 0) { WideBits bits = from_bits; const int normalization_factor = countl_zero(from_bits) - (kFromBits - kFromMantissaBits) + 1; const int biased_exponent = kExponentOffset - normalization_factor + 1; if (biased_exponent <= 0) { if constexpr (kExponentOffset < sizeof(WideBits) * CHAR_BIT) { bits <<= kExponentOffset; } } else { bits <<= normalization_factor; bits &= ~(WideBits{1} << kFromMantissaBits); bits |= static_cast<WideBits>(biased_exponent) << kFromMantissaBits; } if constexpr (kDigitShift > 0) { bits <<= kDigitShift; } else { if constexpr (!kTruncate) { bits = RoundBitsToNearestEven(bits, -kDigitShift); } bits >>= -kDigitShift; } To to = absl::bit_cast<To>(static_cast<ToBits>(bits)); return from_sign_bit ? -to : to; } } if constexpr (std::numeric_limits<To>::min_exponent > std::numeric_limits<From>::min_exponent) { const int unbiased_exponent = biased_from_exponent - kFromExponentBias; const int biased_to_exponent = unbiased_exponent + kToExponentBias; if (biased_to_exponent <= 0) { FromBits from_has_leading_one = (biased_from_exponent > 0 ? 1 : 0); int exponent_shift = -kDigitShift - biased_to_exponent + from_has_leading_one; FromBits rounded_from_bits = (from_bits & FromTraits::kMantissaMask) | (from_has_leading_one << kFromMantissaBits); ToBits bits = 0; if (exponent_shift <= kFromMantissaBits + 1) { if constexpr (!kTruncate) { rounded_from_bits = RoundBitsToNearestEven(rounded_from_bits, exponent_shift); } bits = (rounded_from_bits >> exponent_shift); } To to = absl::bit_cast<To>(bits); return from_sign_bit ? -to : to; } } WideBits rounded_from_bits = from_bits; if constexpr (kDigitShift < 0) { if constexpr (!kTruncate) { rounded_from_bits = RoundBitsToNearestEven(from_bits, -kDigitShift); } rounded_from_bits &= ~((WideBits{1} << (-kDigitShift)) - 1); } rounded_from_bits += static_cast<WideBits>(kExponentOffset) << kFromMantissaBits; ToBits bits; const WideBits kToHighestRep = absl::bit_cast<ToBits>(std::numeric_limits<To>::max()); WideBits aligned_highest{kToHighestRep}; if constexpr (kDigitShift < 0) { aligned_highest <<= -kDigitShift; bits = static_cast<ToBits>(rounded_from_bits >> -kDigitShift); } else if constexpr (kDigitShift >= 0) { rounded_from_bits <<= kDigitShift; bits = ToBits{rounded_from_bits}; } To to = absl::bit_cast<To>(bits); if constexpr (std::make_pair(std::numeric_limits<To>::max_exponent, std::numeric_limits<To>::digits) < std::make_pair(std::numeric_limits<From>::max_exponent, std::numeric_limits<From>::digits)) { if (rounded_from_bits > aligned_highest) { to = kSaturate ? std::numeric_limits<To>::max() : std::numeric_limits<To>::infinity(); } } return from_sign_bit ? -to : to; } }; template <bool kTruncate> struct ConvertImpl<Float8e4m3fn, Float8e5m2, true, kTruncate> { static inline Float8e5m2 run(const Float8e4m3fn& from) { return ConvertImpl<Float8e4m3fn, Float8e5m2, false, kTruncate>::run(from); } }; template <bool kSaturate, bool kTruncate> struct ConvertImpl<::half_float::half, Float8e5m2, kSaturate, kTruncate> { static inline Float8e5m2 run(const ::half_float::half& from) { uint16_t from_bits = absl::bit_cast<uint16_t>(from); uint16_t abs_bits = from_bits & 0x7FFF; if (abs_bits == 0x7C00) { return Float8e5m2::FromRep(from_bits >> 8); } else if (abs_bits > 0x7C00) { return Float8e5m2::FromRep((from_bits >> 8) | 0b0'00000'10); } if constexpr (!kTruncate) { from_bits = RoundBitsToNearestEven(from_bits, 8); if constexpr (kSaturate) { const Float8e5m2 kHighest = std::numeric_limits<Float8e5m2>::max(); if ((from_bits & 0x7F00) > static_cast<uint16_t>(kHighest.rep()) << 8) { const bool from_sign_bit = from_bits >> 15; return from_sign_bit ? -kHighest : kHighest; } } } return Float8e5m2::FromRep(from_bits >> 8); } }; template <> struct ConvertImpl<Float8e5m2, ::half_float::half, false, false> { static inline ::half_float::half run(const Float8e5m2& from) { return absl::bit_cast<::half_float::half>( static_cast<uint16_t>(static_cast<uint16_t>(from.rep()) << 8)); } }; template <bool kSaturate, bool kTruncate> struct ConvertImpl<Float8e5m2, ::half_float::half, kSaturate, kTruncate> { static inline ::half_float::half run(const Float8e5m2& from) { return absl::bit_cast<::half_float::half>( static_cast<uint16_t>(static_cast<uint16_t>(from.rep()) << 8)); } }; template <bool kSaturate, bool kTruncate> struct ConvertImpl<Float8e5m2fnuz, ::half_float::half, kSaturate, kTruncate> { static inline ::half_float::half run(const Float8e5m2fnuz& from) { return static_cast<::half_float::half>(static_cast<float>(from)); } }; template <typename Derived> template <bool kSaturate, bool kTruncate, typename From> Derived Float8Base<Derived>::ConvertFrom(const From& from) { return ConvertImpl<From, Derived, kSaturate, kTruncate>::run(from); } template <typename Derived> template <typename To, bool kSaturate, bool kTruncate> To Float8Base<Derived>::ConvertTo(const Derived& from) { return ConvertImpl<Derived, To, kSaturate, kTruncate>::run(from); } #ifdef _MSC_VER #define TENSORSTORE_INTERNAL_FPCLASSIFY(Float8) \ inline int fpclassify(Float8 a) noexcept { \ if (tensorstore::float8_internal::isnan(a)) return FP_NAN; \ if (tensorstore::float8_internal::isinf(a)) return FP_INFINITE; \ Float8 abs_value = tensorstore::float8_internal::abs(a); \ if (abs_value.rep() == 0x00) return FP_ZERO; \ if ((abs_value.rep() & Traits<Float8>::kExponentMask) == 0) \ return FP_SUBNORMAL; \ return FP_NORMAL; \ } TENSORSTORE_INTERNAL_FPCLASSIFY(Float8e4m3fn); TENSORSTORE_INTERNAL_FPCLASSIFY(Float8e4m3fnuz); TENSORSTORE_INTERNAL_FPCLASSIFY(Float8e4m3b11fnuz); TENSORSTORE_INTERNAL_FPCLASSIFY(Float8e5m2); TENSORSTORE_INTERNAL_FPCLASSIFY(Float8e5m2fnuz); #undef TENSORSTORE_INTERNAL_FPCLASSIFY #endif } using Float8e4m3fn = float8_internal::Float8e4m3fn; using Float8e4m3fnuz = float8_internal::Float8e4m3fnuz; using Float8e4m3b11fnuz = float8_internal::Float8e4m3b11fnuz; using Float8e5m2 = float8_internal::Float8e5m2; using Float8e5m2fnuz = float8_internal::Float8e5m2fnuz; } #endif
#include "tensorstore/util/float8.h" #include <cmath> #include <cstdint> #include <limits> #include <string> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/base/casts.h" #include "absl/strings/str_cat.h" #include <half.hpp> #include "tensorstore/util/bfloat16.h" namespace tensorstore { namespace { using std::isfinite; using std::isinf; using std::isnan; template <typename Float8_> class Float8Test : public ::testing::Test {}; struct Float8TestParamNames { template <typename TypeParam> static std::string GetName(int idx) { if constexpr (std::is_same_v<TypeParam, Float8e4m3fn>) { return "Float8e4m3fn"; } else if constexpr (std::is_same_v<TypeParam, Float8e4m3b11fnuz>) { return "Float8e4m3b11fnuz"; } else if constexpr (std::is_same_v<TypeParam, Float8e5m2>) { return "Float8e5m2"; } else if constexpr (std::is_same_v<TypeParam, Float8e4m3fnuz>) { return "Float8e4m3fnuz"; } else if constexpr (std::is_same_v<TypeParam, Float8e5m2fnuz>) { return "Float8e5m2fnuz"; } return absl::StrCat(idx); } }; using Float8Types = ::testing::Types<Float8e4m3fn, Float8e5m2, Float8e4m3b11fnuz, Float8e4m3fnuz, Float8e5m2fnuz>; TYPED_TEST_SUITE(Float8Test, Float8Types, Float8TestParamNames); TEST(Float8E4m3fnTest, NumericLimits) { EXPECT_TRUE(isnan(std::numeric_limits<Float8e4m3fn>::quiet_NaN())); EXPECT_TRUE(isnan(std::numeric_limits<Float8e4m3fn>::signaling_NaN())); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e4m3fn>::min()), std::exp2(-6)); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e4m3fn>::max()), 448); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e4m3fn>::lowest()), -448); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e4m3fn>::epsilon()), 0.125); EXPECT_EQ( static_cast<float>(std::numeric_limits<Float8e4m3fn>::round_error()), 0.5); EXPECT_TRUE(isnan(std::numeric_limits<Float8e4m3fn>::infinity())); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e4m3fn>::denorm_min()), std::exp2(-9)); EXPECT_EQ(std::numeric_limits<Float8e4m3fn>::digits, 4); EXPECT_EQ(std::numeric_limits<Float8e4m3fn>::digits10, 0); EXPECT_EQ(std::numeric_limits<Float8e4m3fn>::max_digits10, 3); EXPECT_EQ(std::numeric_limits<Float8e4m3fn>::min_exponent, -5); EXPECT_EQ(std::numeric_limits<Float8e4m3fn>::min_exponent10, -1); EXPECT_EQ(std::numeric_limits<Float8e4m3fn>::max_exponent, 9); EXPECT_EQ(std::numeric_limits<Float8e4m3fn>::max_exponent10, 2); EXPECT_EQ(std::numeric_limits<Float8e4m3fn>::is_iec559, false); EXPECT_EQ(std::numeric_limits<Float8e4m3fn>::has_infinity, false); EXPECT_EQ(std::numeric_limits<Float8e4m3fn>::has_signaling_NaN, false); } TEST(Float8E4m3b11fnuzTest, NumericLimits) { EXPECT_TRUE(isnan(std::numeric_limits<Float8e4m3b11fnuz>::quiet_NaN())); EXPECT_TRUE(isnan(std::numeric_limits<Float8e4m3b11fnuz>::signaling_NaN())); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e4m3b11fnuz>::min()), std::exp2(-10)); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e4m3b11fnuz>::max()), 30); EXPECT_EQ( static_cast<float>(std::numeric_limits<Float8e4m3b11fnuz>::lowest()), -30); EXPECT_EQ( static_cast<float>(std::numeric_limits<Float8e4m3b11fnuz>::epsilon()), 0.125); EXPECT_EQ( static_cast<float>(std::numeric_limits<Float8e4m3b11fnuz>::round_error()), 0.5); EXPECT_TRUE(isnan(std::numeric_limits<Float8e4m3b11fnuz>::infinity())); EXPECT_EQ( static_cast<float>(std::numeric_limits<Float8e4m3b11fnuz>::denorm_min()), std::exp2(-13)); EXPECT_EQ(std::numeric_limits<Float8e4m3b11fnuz>::digits, 4); EXPECT_EQ(std::numeric_limits<Float8e4m3b11fnuz>::digits10, 0); EXPECT_EQ(std::numeric_limits<Float8e4m3b11fnuz>::max_digits10, 3); EXPECT_EQ(std::numeric_limits<Float8e4m3b11fnuz>::min_exponent, -9); EXPECT_EQ(std::numeric_limits<Float8e4m3b11fnuz>::min_exponent10, -3); EXPECT_EQ(std::numeric_limits<Float8e4m3b11fnuz>::max_exponent, 5); EXPECT_EQ(std::numeric_limits<Float8e4m3b11fnuz>::max_exponent10, 1); EXPECT_EQ(std::numeric_limits<Float8e4m3b11fnuz>::is_iec559, false); EXPECT_EQ(std::numeric_limits<Float8e4m3b11fnuz>::has_infinity, false); EXPECT_EQ(std::numeric_limits<Float8e4m3b11fnuz>::has_signaling_NaN, false); } TEST(Float8E4m3fnuzTest, NumericLimits) { EXPECT_TRUE(isnan(std::numeric_limits<Float8e4m3fnuz>::quiet_NaN())); EXPECT_TRUE(isnan(std::numeric_limits<Float8e4m3fnuz>::signaling_NaN())); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e4m3fnuz>::min()), std::exp2(-7)); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e4m3fnuz>::max()), 240); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e4m3fnuz>::lowest()), -240); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e4m3fnuz>::epsilon()), 0.125); EXPECT_EQ( static_cast<float>(std::numeric_limits<Float8e4m3fnuz>::round_error()), 0.5); EXPECT_TRUE(isnan(std::numeric_limits<Float8e4m3fnuz>::infinity())); EXPECT_EQ( static_cast<float>(std::numeric_limits<Float8e4m3fnuz>::denorm_min()), std::exp2(-10)); EXPECT_EQ(std::numeric_limits<Float8e4m3fnuz>::digits, 4); EXPECT_EQ(std::numeric_limits<Float8e4m3fnuz>::digits10, 0); EXPECT_EQ(std::numeric_limits<Float8e4m3fnuz>::max_digits10, 3); EXPECT_EQ(std::numeric_limits<Float8e4m3fnuz>::min_exponent, -6); EXPECT_EQ(std::numeric_limits<Float8e4m3fnuz>::min_exponent10, -2); EXPECT_EQ(std::numeric_limits<Float8e4m3fnuz>::max_exponent, 8); EXPECT_EQ(std::numeric_limits<Float8e4m3fnuz>::max_exponent10, 2); EXPECT_EQ(std::numeric_limits<Float8e4m3fnuz>::is_iec559, false); EXPECT_EQ(std::numeric_limits<Float8e4m3fnuz>::has_infinity, false); EXPECT_EQ(std::numeric_limits<Float8e4m3fnuz>::has_signaling_NaN, false); } TEST(Float8E5m2Test, NumericLimits) { EXPECT_TRUE(isnan(std::numeric_limits<Float8e5m2>::quiet_NaN())); EXPECT_TRUE(isnan(std::numeric_limits<Float8e5m2>::signaling_NaN())); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e5m2>::min()), std::exp2(-14)); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e5m2>::max()), 57344); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e5m2>::lowest()), -57344); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e5m2>::epsilon()), 0.25); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e5m2>::round_error()), 0.5); EXPECT_TRUE(isinf(std::numeric_limits<Float8e5m2>::infinity())); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e5m2>::denorm_min()), std::exp2(-16)); EXPECT_EQ(std::numeric_limits<Float8e5m2>::digits, 3); EXPECT_EQ(std::numeric_limits<Float8e5m2>::digits10, 0); EXPECT_EQ(std::numeric_limits<Float8e5m2>::max_digits10, 2); EXPECT_EQ(std::numeric_limits<Float8e5m2>::min_exponent, -13); EXPECT_EQ(std::numeric_limits<Float8e5m2>::min_exponent10, -4); EXPECT_EQ(std::numeric_limits<Float8e5m2>::max_exponent, 16); EXPECT_EQ(std::numeric_limits<Float8e5m2>::max_exponent10, 4); EXPECT_EQ(std::numeric_limits<Float8e5m2>::is_iec559, true); EXPECT_EQ(std::numeric_limits<Float8e5m2>::has_infinity, true); EXPECT_EQ(std::numeric_limits<Float8e5m2>::has_signaling_NaN, true); } TEST(Float8E5m2fnuzTest, NumericLimits) { EXPECT_TRUE(isnan(std::numeric_limits<Float8e5m2fnuz>::quiet_NaN())); EXPECT_TRUE(isnan(std::numeric_limits<Float8e5m2fnuz>::signaling_NaN())); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e5m2fnuz>::min()), std::exp2(-15)); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e5m2fnuz>::max()), 57344); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e5m2fnuz>::lowest()), -57344); EXPECT_EQ(static_cast<float>(std::numeric_limits<Float8e5m2fnuz>::epsilon()), 0.25); EXPECT_EQ( static_cast<float>(std::numeric_limits<Float8e5m2fnuz>::round_error()), 0.5); EXPECT_TRUE(isnan(std::numeric_limits<Float8e5m2fnuz>::infinity())); EXPECT_EQ( static_cast<float>(std::numeric_limits<Float8e5m2fnuz>::denorm_min()), std::exp2(-17)); EXPECT_EQ(std::numeric_limits<Float8e5m2fnuz>::digits, 3); EXPECT_EQ(std::numeric_limits<Float8e5m2fnuz>::digits10, 0); EXPECT_EQ(std::numeric_limits<Float8e5m2fnuz>::max_digits10, 2); EXPECT_EQ(std::numeric_limits<Float8e5m2fnuz>::min_exponent, -14); EXPECT_EQ(std::numeric_limits<Float8e5m2fnuz>::min_exponent10, -4); EXPECT_EQ(std::numeric_limits<Float8e5m2fnuz>::max_exponent, 16); EXPECT_EQ(std::numeric_limits<Float8e5m2fnuz>::max_exponent10, 4); EXPECT_EQ(std::numeric_limits<Float8e5m2fnuz>::is_iec559, false); EXPECT_EQ(std::numeric_limits<Float8e5m2fnuz>::has_infinity, false); EXPECT_EQ(std::numeric_limits<Float8e5m2fnuz>::has_signaling_NaN, false); } TYPED_TEST(Float8Test, FromRep) { using Float8 = TypeParam; Float8 x = Float8::FromRep(0x4F); EXPECT_EQ(x.rep(), 0x4F); } TYPED_TEST(Float8Test, Negate) { using Float8 = TypeParam; Float8 x = -Float8::FromRep(0x4F); EXPECT_EQ(x.rep(), 0x80 | 0x4F); Float8 nan = -std::numeric_limits<Float8>::quiet_NaN(); EXPECT_TRUE(isnan(nan)); } TYPED_TEST(Float8Test, BitCasts) { using Float8 = TypeParam; Float8 x = Float8::FromRep(0x47); EXPECT_EQ(absl::bit_cast<uint8_t>(x), 0x47); EXPECT_EQ(absl::bit_cast<Float8>(x.rep()).rep(), 0x47); } TYPED_TEST(Float8Test, UpCasts) { using Float8 = TypeParam; for (int i = 0x00; i <= 0xFF; ++i) { Float8 f8 = Float8::FromRep(i); double f64 = static_cast<double>(f8); float f32 = static_cast<float>(f8); tensorstore::BFloat16 bf16 = static_cast<tensorstore::BFloat16>(f8); ::half_float::half f16 = static_cast<::half_float::half>(f8); if (isnan(f8)) { EXPECT_TRUE(std::isnan(f64)); EXPECT_TRUE(std::isnan(f32)); EXPECT_TRUE(tensorstore::isnan(bf16)); EXPECT_TRUE(::half_float::isnan(f16)); } else { EXPECT_EQ(f64, f32); EXPECT_EQ(f32, bf16); EXPECT_EQ(bf16, f16); } } } TYPED_TEST(Float8Test, DownCasts) { using Float8 = TypeParam; for (int i = 0x00; i <= 0xFF; ++i) { float x = static_cast<float>(Float8::FromRep(i)); Float8 f64 = static_cast<Float8>(static_cast<double>(x)); Float8 f32 = static_cast<Float8>(static_cast<float>(x)); Float8 bf16 = static_cast<Float8>(static_cast<tensorstore::BFloat16>(x)); Float8 f16 = static_cast<Float8>(static_cast<::half_float::half>(x)); if (std::isnan(x)) { EXPECT_TRUE(isnan(f64)); EXPECT_TRUE(isnan(f32)); EXPECT_TRUE(isnan(bf16)); EXPECT_TRUE(isnan(f16)); } else { EXPECT_EQ(f64.rep(), i) << i; EXPECT_EQ(f32.rep(), i) << i; EXPECT_EQ(bf16.rep(), i) << i; EXPECT_EQ(f16.rep(), i) << i; } } } TYPED_TEST(Float8Test, ConvertFromWithSaturation) { using Float8 = TypeParam; Float8 upper = Float8::template ConvertFrom<true, false>( static_cast<float>(std::numeric_limits<Float8>::max()) * 2); EXPECT_EQ(upper, std::numeric_limits<Float8>::max()); Float8 lower = Float8::template ConvertFrom<true, false>( static_cast<float>(std::numeric_limits<Float8>::lowest()) * 2); EXPECT_EQ(lower, std::numeric_limits<Float8>::lowest()); Float8 nan = Float8::template ConvertFrom<true, true>( std::numeric_limits<float>::quiet_NaN()); EXPECT_TRUE(isnan(nan)); Float8 inf = Float8::template ConvertFrom<true, true>( std::numeric_limits<float>::infinity()); EXPECT_TRUE(std::numeric_limits<Float8>::has_infinity ? isinf(inf) : isnan(inf)); Float8 ninf = Float8::template ConvertFrom<true, true>( -std::numeric_limits<float>::infinity()); EXPECT_TRUE(std::numeric_limits<Float8>::has_infinity ? isinf(ninf) : isnan(ninf)); } TYPED_TEST(Float8Test, ConvertFromWithTruncation) { using Float8 = TypeParam; float less_than_two = absl::bit_cast<float>(0x3FFFFFFF); Float8 truncated = Float8::template ConvertFrom<false, true>( less_than_two); EXPECT_LT(static_cast<float>(truncated), 2); Float8 rounded = Float8::template ConvertFrom<false, false>( less_than_two); EXPECT_EQ(static_cast<float>(rounded), 2); double kLarge = 0x1.c001p+16; EXPECT_EQ( (Float8::template ConvertFrom<false, true>( kLarge) .rep()), std::numeric_limits<Float8>::infinity().rep()); EXPECT_EQ( (Float8::template ConvertFrom<false, false>( kLarge) .rep()), std::numeric_limits<Float8>::infinity().rep()); for (int i = 0x01; i < 0x04; ++i) { float less_than_subnorm = std::nexttoward(static_cast<float>(Float8::FromRep(i)), 0); Float8 truncated_subnorm = Float8::template ConvertFrom<false, true>( less_than_subnorm); EXPECT_EQ(truncated_subnorm.rep(), i - 1); Float8 rounded_subnorm = Float8::template ConvertFrom<false, false>( less_than_subnorm); EXPECT_EQ(rounded_subnorm.rep(), i); } } TYPED_TEST(Float8Test, ConvertTo) { using Float8 = TypeParam; for (int i = 0x00; i <= 0xFF; ++i) { Float8 f8 = Float8::FromRep(i); float f32 = static_cast<float>(f8); if (isnan(f8)) { EXPECT_TRUE(isnan(Float8::template ConvertTo<float, false, false>(f8))); EXPECT_TRUE(isnan(Float8::template ConvertTo<float, false, true>(f8))); EXPECT_TRUE(isnan(Float8::template ConvertTo<float, true, false>(f8))); EXPECT_TRUE(isnan(Float8::template ConvertTo<float, true, true>(f8))); } else { EXPECT_EQ(f32, (Float8::template ConvertTo<float, false, false>(f8))); EXPECT_EQ(f32, (Float8::template ConvertTo<float, false, true>(f8))); EXPECT_EQ(f32, (Float8::template ConvertTo<float, true, false>(f8))); EXPECT_EQ(f32, (Float8::template ConvertTo<float, true, true>(f8))); } } } TEST(Float8Test, Float8E5m2_To_Float8E4m3) { Float8e5m2 max = std::numeric_limits<Float8e5m2>::max(); Float8e4m3fn saturated = Float8e4m3fn::ConvertFrom<true>(max); EXPECT_EQ(saturated, std::numeric_limits<Float8e4m3fn>::max()); saturated = Float8e5m2::ConvertTo<Float8e4m3fn, true>(max); EXPECT_EQ(saturated, std::numeric_limits<Float8e4m3fn>::max()); Float8e5m2 less_than_subnorm = Float8e5m2::FromRep(0x1F); Float8e4m3fn rounded_subnorm = Float8e4m3fn::ConvertFrom<false, false>( less_than_subnorm); EXPECT_EQ(rounded_subnorm.rep(), 0x04); Float8e4m3fn truncated_subnorm = Float8e4m3fn::ConvertFrom<false, true>( less_than_subnorm); EXPECT_EQ(truncated_subnorm.rep(), 0x03); } TEST(Float8Test, Half_To_Float8E4m3) { ::half_float::half big_half(0x1.dfcp+8f); Float8e4m3fn big_e4m3 = Float8e4m3fn::ConvertFrom<true, false>( big_half); EXPECT_EQ(big_e4m3.rep(), std::numeric_limits<Float8e4m3fn>::max().rep()); } TEST(Float8Test, Float8E5m2_To_Float8E4m3b11fnuz) { Float8e5m2 max = std::numeric_limits<Float8e5m2>::max(); Float8e4m3b11fnuz saturated = Float8e4m3b11fnuz::ConvertFrom<true>(max); EXPECT_EQ(saturated, std::numeric_limits<Float8e4m3b11fnuz>::max()); saturated = Float8e5m2::ConvertTo<Float8e4m3b11fnuz, true>(max); EXPECT_EQ(saturated, std::numeric_limits<Float8e4m3b11fnuz>::max()); Float8e5m2 less_than_subnorm = Float8e5m2::FromRep(0x0F); Float8e4m3b11fnuz rounded_subnorm = Float8e4m3b11fnuz::ConvertFrom<false, false>( less_than_subnorm); EXPECT_EQ(rounded_subnorm.rep(), 0x04); Float8e4m3b11fnuz truncated_subnorm = Float8e4m3b11fnuz::ConvertFrom<false, true>( less_than_subnorm); EXPECT_EQ(truncated_subnorm.rep(), 0x03); for (uint8_t i = 0; i < std::numeric_limits<Float8e5m2>::infinity().rep(); ++i) { Float8e5m2 big_e5m2 = absl::bit_cast<Float8e5m2>(i); EXPECT_TRUE(isfinite(big_e5m2)) << uint16_t{i}; float big_float = static_cast<float>(big_e5m2); auto big_e4m3 = Float8e4m3b11fnuz::ConvertFrom<true, false>(big_float); if (i > 0x4f) { EXPECT_EQ(big_e4m3.rep(), std::numeric_limits<Float8e4m3b11fnuz>::max().rep()) << uint16_t{i}; } EXPECT_EQ((Float8e4m3b11fnuz::ConvertFrom<true, false>(big_e5m2) .rep()), big_e4m3.rep()) << i; EXPECT_EQ((Float8e4m3b11fnuz::ConvertFrom<true, false>(-big_e5m2) .rep()), (-big_e4m3).rep()) << i; } } TEST(Float8Test, Float8E4m3b11fnuz_To_Float8E4m3) { Float8e4m3b11fnuz max = std::numeric_limits<Float8e4m3b11fnuz>::max(); Float8e4m3fn saturated = Float8e4m3fn::ConvertFrom<true>(max); EXPECT_EQ(static_cast<float>(saturated), static_cast<float>(std::numeric_limits<Float8e4m3b11fnuz>::max())); saturated = Float8e4m3b11fnuz::ConvertTo<Float8e4m3fn, true>(max); EXPECT_EQ(static_cast<float>(saturated), static_cast<float>(std::numeric_limits<Float8e4m3b11fnuz>::max())); Float8e4m3b11fnuz less_than_subnorm = Float8e4m3b11fnuz::FromRep(0b0011'110); Float8e4m3fn rounded_subnorm = Float8e4m3fn::ConvertFrom<false, false>( less_than_subnorm); EXPECT_EQ(rounded_subnorm.rep(), 0x04); Float8e4m3fn truncated_subnorm = Float8e4m3fn::ConvertFrom<false, true>( less_than_subnorm); EXPECT_EQ(truncated_subnorm.rep(), 0x03); for (uint8_t i = 0; i < std::numeric_limits<Float8e4m3b11fnuz>::infinity().rep(); ++i) { Float8e4m3b11fnuz big_e4m3b11fnuz = absl::bit_cast<Float8e4m3b11fnuz>(i); EXPECT_TRUE(isfinite(big_e4m3b11fnuz)) << uint16_t{i}; float big_float = static_cast<float>(big_e4m3b11fnuz); auto big_e4m3 = Float8e4m3fn::ConvertFrom<true, false>( big_float); EXPECT_EQ( (Float8e4m3fn::ConvertFrom<true, false>( big_e4m3b11fnuz) .rep()), big_e4m3.rep()) << i; EXPECT_EQ( (Float8e4m3fn::ConvertFrom<true, false>( -big_e4m3b11fnuz) .rep()), (big_float > 0.0f ? -big_e4m3 : big_e4m3).rep()) << i; } } TEST(Float8Test, Float8E4m3_To_Float8E5m2) { Float8e4m3fn less_than_two = Float8e4m3fn::FromRep(0x3F); Float8e5m2 truncated = Float8e5m2::template ConvertFrom<false, true>(less_than_two); EXPECT_LT(static_cast<float>(truncated), 2); Float8e5m2 rounded = Float8e5m2::template ConvertFrom<false, false>(less_than_two); EXPECT_EQ(static_cast<float>(rounded), 2); } TEST(Float8Test, Half_To_Float8E5m2) { ::half_float::half inf = absl::bit_cast<::half_float::half>(static_cast<uint16_t>(0x7C00)); EXPECT_EQ(static_cast<Float8e5m2>(inf).rep(), 0x7C); ::half_float::half ninf = absl::bit_cast<::half_float::half>(static_cast<uint16_t>(0xFC00)); EXPECT_EQ(static_cast<Float8e5m2>(ninf).rep(), 0xFC); ::half_float::half nan = absl::bit_cast<::half_float::half>(static_cast<uint16_t>(0x7C01)); EXPECT_EQ(static_cast<Float8e5m2>(nan).rep(), 0x7E); ::half_float::half nnan = absl::bit_cast<::half_float::half>(static_cast<uint16_t>(0xFC01)); EXPECT_EQ(static_cast<Float8e5m2>(nnan).rep(), 0xFE); ::half_float::half less_than_two = absl::bit_cast<::half_float::half>(static_cast<uint16_t>(0x3FFF)); EXPECT_EQ((Float8e5m2::ConvertFrom<false, false>(less_than_two) .rep()), 0x40); EXPECT_EQ((Float8e5m2::ConvertFrom<false, true>(less_than_two) .rep()), 0x3F); EXPECT_EQ((Float8e5m2::ConvertFrom<false, false>(-less_than_two) .rep()), 0xC0); EXPECT_EQ((Float8e5m2::ConvertFrom<false, true>(-less_than_two) .rep()), 0xBF); for (uint16_t i = static_cast<uint16_t>(absl::bit_cast<uint8_t>( std::numeric_limits<Float8e5m2>::max())) << 8; i < absl::bit_cast<uint16_t>( std::numeric_limits<::half_float::half>::infinity()); ++i) { ::half_float::half big_half = absl::bit_cast<::half_float::half>(i); float big_float = static_cast<float>(big_half); EXPECT_EQ((Float8e5m2::ConvertFrom<true, false>( big_half) .rep()), (Float8e5m2::ConvertFrom<true, false>( big_float) .rep())) << i; EXPECT_EQ((Float8e5m2::ConvertFrom<true, false>( -big_half) .rep()), (Float8e5m2::ConvertFrom<true, false>( -big_float) .rep())) << i; } } using ::testing::Eq; using ::testing::IsTrue; MATCHER_P(EqOrIsNan, other, "") { if (isnan(other)) { return ExplainMatchResult(IsTrue(), isnan(arg), result_listener); } return ExplainMatchResult(Eq(other), arg, result_listener); } TYPED_TEST(Float8Test, CallTheOperator) { using Float8 = TypeParam; for (int i = 0x00; i <= 0xFF; ++i) { Float8 a = Float8::FromRep(i); for (int j = 0x00; j <= 0xFF; ++j) { Float8 b = Float8::FromRep(j); EXPECT_THAT(a + b, EqOrIsNan<Float8>(Float8{float{a} + float{b}})); EXPECT_THAT(a - b, EqOrIsNan<Float8>(Float8{float{a} - float{b}})); EXPECT_THAT(a * b, EqOrIsNan<Float8>(Float8{float{a} * float{b}})); EXPECT_THAT(a / b, EqOrIsNan<Float8>(Float8{float{a} / float{b}})); Float8 c; EXPECT_THAT((c = a, c += b), EqOrIsNan<Float8>(Float8{float{a} + float{b}})); EXPECT_THAT((c = a, c -= b), EqOrIsNan<Float8>(Float8{float{a} - float{b}})); EXPECT_THAT((c = a, c *= b), EqOrIsNan<Float8>(Float8{float{a} * float{b}})); EXPECT_THAT((c = a, c /= b), EqOrIsNan<Float8>(Float8{float{a} / float{b}})); EXPECT_EQ(a == b, float{a} == float{b}) << float{a} << " vs " << float{b}; EXPECT_EQ(a != b, float{a} != float{b}); EXPECT_EQ(a < b, float{a} < float{b}); EXPECT_EQ(a <= b, float{a} <= float{b}); EXPECT_EQ(a > b, float{a} > float{b}); EXPECT_EQ(a >= b, float{a} >= float{b}); } } } TYPED_TEST(Float8Test, CallTheConstOperator) { using Float8 = TypeParam; for (int i = 0x00; i <= 0xFF; ++i) { const Float8 a = Float8::FromRep(i); for (int j = 0x00; j <= 0xFF; ++j) { const Float8 b = Float8::FromRep(j); EXPECT_THAT(a + b, EqOrIsNan<Float8>(Float8{float{a} + float{b}})); EXPECT_THAT(a - b, EqOrIsNan<Float8>(Float8{float{a} - float{b}})); EXPECT_THAT(a * b, EqOrIsNan<Float8>(Float8{float{a} * float{b}})); EXPECT_THAT(a / b, EqOrIsNan<Float8>(Float8{float{a} / float{b}})); Float8 c; EXPECT_THAT((c = a, c += b), EqOrIsNan<Float8>(Float8{float{a} + float{b}})); EXPECT_THAT((c = a, c -= b), EqOrIsNan<Float8>(Float8{float{a} - float{b}})); EXPECT_THAT((c = a, c *= b), EqOrIsNan<Float8>(Float8{float{a} * float{b}})); EXPECT_THAT((c = a, c /= b), EqOrIsNan<Float8>(Float8{float{a} / float{b}})); EXPECT_EQ(a == b, float{a} == float{b}) << float{a} << " vs " << float{b}; EXPECT_EQ(a != b, float{a} != float{b}); EXPECT_EQ(a < b, float{a} < float{b}) << float{a} << " vs " << float{b}; EXPECT_EQ(a <= b, float{a} <= float{b}); EXPECT_EQ(a > b, float{a} > float{b}) << float{a} << " vs " << float{b}; EXPECT_EQ(a >= b, float{a} >= float{b}); } } } TEST(Float855m2Test, SmallCastToDenormal) { float x = std::ldexp(1.3125, -15); Float8e5m2 y = static_cast<Float8e5m2>(x); float z = static_cast<float>(y); EXPECT_EQ(z, std::ldexp(1.5, -15)); } struct Float8CastTestParamNames { template <typename TypeParam> static std::string GetName(int idx) { using first_type = typename TypeParam::first_type; using second_type = typename TypeParam::second_type; return absl::StrCat(::testing::internal::GetTypeName<first_type>(), "_", ::testing::internal::GetTypeName<second_type>()); } }; #define GEN_LONG_DOUBLE_PAIR(Type) std::pair<Type, long double>, #define GEN_DEST_TYPES(Type) \ GEN_LONG_DOUBLE_PAIR(Type) \ std::pair<Type, double>, std::pair<Type, float>, \ std::pair<Type, tensorstore::BFloat16>, \ std::pair<Type, ::half_float::half>, std::pair<Type, Float8e4m3fn>, \ std::pair<Type, Float8e4m3b11fnuz>, std::pair<Type, Float8e4m3fnuz>, \ std::pair<Type, Float8e5m2fnuz>, std::pair<Type, Float8e5m2>, \ std::pair<Type, bool>, std::pair<Type, int32_t>, \ std::pair<Type, int64_t> #define GEN_TYPE_PAIRS() \ GEN_DEST_TYPES(Float8e4m3fn), GEN_DEST_TYPES(Float8e4m3b11fnuz), \ GEN_DEST_TYPES(Float8e5m2), GEN_DEST_TYPES(Float8e4m3fnuz), \ GEN_DEST_TYPES(Float8e5m2fnuz) using Float8CastTypePairs = ::testing::Types<GEN_TYPE_PAIRS()>; template <typename CastPair> class Float8CastTest : public ::testing::Test {}; TYPED_TEST_SUITE(Float8CastTest, Float8CastTypePairs, Float8CastTestParamNames); TYPED_TEST(Float8CastTest, CastThroughFloat) { using Float8 = typename TypeParam::first_type; using DestType = typename TypeParam::second_type; for (int i = 0x00; i <= 0xFF; ++i) { Float8 f8 = Float8::FromRep(i); if constexpr (std::numeric_limits<DestType>::is_integer && !std::is_same_v<DestType, bool>) { if (!isfinite(f8)) { continue; } } DestType dest = static_cast<DestType>(f8); DestType expected = static_cast<DestType>(static_cast<float>(f8)); if constexpr (std::numeric_limits<DestType>::is_integer) { EXPECT_EQ(dest, expected); } else { EXPECT_THAT(dest, EqOrIsNan<DestType>(expected)); } } } } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/float8.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/float8_test.cc
4f887a6430414cd6088e1743555015b10f116d50
43526799-73a2-492f-aa82-ab1df36fdb29
cpp
google/tensorstore
result
tensorstore/serialization/result.h
tensorstore/serialization/result_test.cc
#ifndef TENSORSTORE_SERIALIZATION_RESULT_H_ #define TENSORSTORE_SERIALIZATION_RESULT_H_ #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/status.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace serialization { template <typename T> struct Serializer<Result<T>> { [[nodiscard]] static bool Encode(EncodeSink& sink, const Result<T>& value) { return serialization::Encode(sink, value.ok()) && (value.ok() ? serialization::Encode(sink, *value) : serialization::Encode(sink, value.status())); } [[nodiscard]] static bool Decode(DecodeSource& source, Result<T>& value) { bool has_value; if (!serialization::Decode(source, has_value)) return false; if (has_value) { return serialization::Decode(source, value.emplace()); } else { absl::Status status; if (!ErrorStatusSerializer::Decode(source, status)) return false; value = std::move(status); return true; } } }; } } #endif
#include "tensorstore/serialization/result.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/test_util.h" #include "tensorstore/util/result.h" namespace { using ::tensorstore::serialization::TestSerializationRoundTrip; TEST(ResultTest, OkRoundTrip) { TestSerializationRoundTrip(tensorstore::Result<int>(3)); TestSerializationRoundTrip(tensorstore::Result<int>(4)); } TEST(StatusTest, ErrorRoundTrip) { TestSerializationRoundTrip( tensorstore::Result<int>(absl::InternalError("abc"))); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/serialization/result.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/serialization/result_test.cc
4f887a6430414cd6088e1743555015b10f116d50
18f87e2e-9b1a-444a-9ef9-eca87df828f3
cpp
google/tensorstore
stop_token
tensorstore/util/stop_token.h
tensorstore/util/stop_token_test.cc
#ifndef TENSORSTORE_UTIL_STOP_TOKEN_H_ #define TENSORSTORE_UTIL_STOP_TOKEN_H_ #include <atomic> #include <cstddef> #include <type_traits> #include <utility> #include "absl/base/attributes.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/util/stop_token_impl.h" namespace tensorstore { class StopSource; template <typename Callback> class StopCallback; class StopToken { public: StopToken() noexcept = default; ~StopToken() noexcept = default; StopToken(const StopToken&) noexcept = default; StopToken(StopToken&&) noexcept = default; StopToken& operator=(const StopToken&) noexcept = default; StopToken& operator=(StopToken&&) noexcept = default; [[nodiscard]] bool stop_possible() const noexcept { return state_ != nullptr; } [[nodiscard]] bool stop_requested() const noexcept { return state_ != nullptr && state_->stop_requested(); } friend bool operator==(const StopToken& a, const StopToken& b) { return a.state_ == b.state_; } friend bool operator!=(const StopToken& a, const StopToken& b) { return !(a == b); } private: friend class StopSource; template <typename Callback> friend class StopCallback; StopToken(internal::IntrusivePtr<internal_stop_token::StopState> state) : state_(std::move(state)) {} internal::IntrusivePtr<internal_stop_token::StopState> state_{nullptr}; }; class StopSource { public: StopSource() noexcept : state_(internal::MakeIntrusivePtr<internal_stop_token::StopState>()) {} explicit StopSource(std::nullptr_t) noexcept : state_(nullptr) {} ~StopSource() noexcept = default; StopSource(const StopSource& b) noexcept = default; StopSource(StopSource&&) noexcept = default; StopSource& operator=(const StopSource& b) noexcept = default; StopSource& operator=(StopSource&&) noexcept = default; [[nodiscard]] bool stop_possible() const noexcept { return state_ != nullptr; } [[nodiscard]] bool stop_requested() const noexcept { return state_ != nullptr && state_->stop_requested(); } bool request_stop() const noexcept { if (state_ != nullptr) { return state_->RequestStop(); } return false; } [[nodiscard]] StopToken get_token() const noexcept { return StopToken(state_); } private: internal::IntrusivePtr<internal_stop_token::StopState> state_; }; template <typename Callback> class StopCallback : private internal_stop_token::StopCallbackBase { static_assert(std::is_invocable_v<Callback>); public: using callback_type = Callback; StopCallback(const StopCallback&) = delete; StopCallback& operator=(const StopCallback&) = delete; StopCallback(StopCallback&&) = delete; StopCallback& operator=(StopCallback&&) = delete; template < typename... Args, std::enable_if_t<std::is_constructible_v<Callback, Args...>, int> = 0> explicit StopCallback(const StopToken& token, Args&&... args) : callback_(std::forward<Args>(args)...) { internal_stop_token::StopState* state = token.state_.get(); if (state) { invoker_ = &StopCallback::Invoker; state->RegisterImpl(*this); } } ~StopCallback() { internal_stop_token::StopState* state = state_.exchange(nullptr, std::memory_order_acq_rel); if (state != nullptr) { state->UnregisterImpl(*this); } } private: static void Invoker(internal_stop_token::StopCallbackBase& self) noexcept { static_cast<Callback&&>(static_cast<StopCallback&&>(self).callback_)(); } ABSL_ATTRIBUTE_NO_UNIQUE_ADDRESS Callback callback_; }; template <typename Callback> StopCallback(StopToken token, Callback callback) -> StopCallback<Callback>; } #endif
#include "tensorstore/util/stop_token.h" #include <functional> #include <optional> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/internal/testing/concurrent.h" namespace { TEST(StopTokenTest, Invariants) { tensorstore::StopSource source; EXPECT_TRUE(source.stop_possible()); EXPECT_FALSE(source.stop_requested()); tensorstore::StopToken token = source.get_token(); EXPECT_TRUE(source.stop_possible()); EXPECT_FALSE(source.stop_requested()); EXPECT_EQ(token, source.get_token()); EXPECT_TRUE(source.request_stop()); EXPECT_TRUE(source.stop_possible()); EXPECT_TRUE(source.stop_requested()); EXPECT_TRUE(token.stop_requested()); { tensorstore::StopSource source2; EXPECT_NE(token, source2.get_token()); } } TEST(StopTokenTest, Invariants_Null) { tensorstore::StopSource source(nullptr); EXPECT_FALSE(source.stop_possible()); EXPECT_FALSE(source.stop_requested()); tensorstore::StopToken token = source.get_token(); EXPECT_FALSE(source.stop_possible()); EXPECT_FALSE(source.stop_requested()); EXPECT_EQ(token, source.get_token()); EXPECT_FALSE(source.request_stop()); EXPECT_FALSE(source.stop_possible()); EXPECT_FALSE(source.stop_requested()); EXPECT_FALSE(token.stop_requested()); { tensorstore::StopSource source2; EXPECT_NE(token, source2.get_token()); } } TEST(StopTokenTest, Basic_InScope) { tensorstore::StopSource source; bool called = false; { tensorstore::StopCallback callback(source.get_token(), [&]() { called = true; }); EXPECT_FALSE(called); EXPECT_TRUE(source.request_stop()); } EXPECT_TRUE(called); } TEST(StopTokenTest, Basic_NotInScope) { tensorstore::StopSource source; bool called = false; { tensorstore::StopCallback callback(source.get_token(), [&]() { called = true; }); EXPECT_FALSE(called); } EXPECT_TRUE(source.request_stop()); EXPECT_FALSE(called); } TEST(StopTokenTest, Basic_Null) { tensorstore::StopSource source(nullptr); bool called = false; { tensorstore::StopCallback callback(source.get_token(), [&]() { called = true; }); EXPECT_FALSE(called); EXPECT_FALSE(source.request_stop()); } EXPECT_FALSE(called); } TEST(StopTokenTest, StopAlreadyRequested) { tensorstore::StopSource source; EXPECT_TRUE(source.request_stop()); bool called = false; tensorstore::StopCallback callback(source.get_token(), [&]() { called = true; }); EXPECT_TRUE(called); } TEST(StopTokenTest, CallbackOrder) { bool called[3] = {}; auto do_nothing = []() {}; using DoNothingCallback = tensorstore::StopCallback<decltype(do_nothing)>; tensorstore::StopSource source; auto x = std::make_unique<DoNothingCallback>(source.get_token(), do_nothing); tensorstore::StopCallback callback0(source.get_token(), [&]() { EXPECT_TRUE(called[1]); called[0] = true; }); tensorstore::StopCallback callback1(source.get_token(), [&]() { EXPECT_TRUE(called[2]); called[1] = true; }); tensorstore::StopCallback callback2(source.get_token(), [&]() { EXPECT_FALSE(called[0]); called[2] = true; }); { DoNothingCallback tmp(source.get_token(), do_nothing); } x = nullptr; EXPECT_TRUE(source.request_stop()); EXPECT_TRUE(called[2]); } TEST(StopCallbackTest, InvokeValueCategory) { struct Callback { void operator()() const& { value += 1; } void operator()() && { value += 100; } int& value; }; tensorstore::StopSource source; int counts[3] = {}; tensorstore::StopCallback stop_callback0(source.get_token(), Callback{counts[0]}); Callback callback1{counts[1]}; tensorstore::StopCallback<Callback&> stop_callback1(source.get_token(), callback1); tensorstore::StopCallback<const Callback> stop_callback2(source.get_token(), Callback{counts[2]}); source.request_stop(); EXPECT_THAT(counts, ::testing::ElementsAre(100, 1, 1)); } TEST(StopTokenTest, SelfDeregister) { tensorstore::StopSource source; std::optional<tensorstore::StopCallback<std::function<void()>>> callback{ std::in_place, source.get_token(), [&] { callback = std::nullopt; }}; EXPECT_TRUE(source.request_stop()); EXPECT_FALSE(callback.has_value()); } TEST(StopTokenTest, Concurrent) { tensorstore::StopSource source; bool called = false; std::optional<tensorstore::StopCallback<std::function<void()>>> callback; ::tensorstore::internal_testing::TestConcurrent( 100, [&] { tensorstore::StopSource new_source; source = std::move(new_source); called = false; }, [&] { EXPECT_TRUE(source.stop_requested()); callback = std::nullopt; EXPECT_TRUE(called); }, [&] { callback.emplace(source.get_token(), [&]() { called = true; }); }, [&] { source.request_stop(); }, [&] { tensorstore::StopCallback callback(source.get_token(), []() {}); } ); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/stop_token.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/stop_token_test.cc
4f887a6430414cd6088e1743555015b10f116d50
ac09648e-4986-4aff-bf5f-113cdfb15936
cpp
google/tensorstore
int4
tensorstore/util/int4.h
tensorstore/util/int4_test.cc
#ifndef TENSORSTORE_UTIL_INT4_H_ #define TENSORSTORE_UTIL_INT4_H_ #include <cmath> #include <cstdint> #include <limits> #include <type_traits> #include <nlohmann/json_fwd.hpp> namespace tensorstore { class Int4Padded; } namespace std { template <> struct numeric_limits<::tensorstore::Int4Padded>; } namespace tensorstore { namespace internal { constexpr int8_t SignedTrunc4(int8_t x) { return static_cast<int8_t>(static_cast<uint8_t>(x) << 4) >> 4; } } class Int4Padded { public: constexpr Int4Padded() : rep_(0) {} template <typename T, typename = std::enable_if_t<std::is_convertible_v<T, int8_t>>> constexpr explicit Int4Padded(T x) : rep_(internal::SignedTrunc4(static_cast<int8_t>(x))) {} constexpr operator int8_t() const { return internal::SignedTrunc4(rep_); } Int4Padded& operator=(bool v) { return *this = static_cast<Int4Padded>(v); } template <typename T> std::enable_if_t<std::numeric_limits<T>::is_integer, Int4Padded&> operator=( T v) { return *this = static_cast<Int4Padded>(v); } #define TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_OP(OP) \ friend Int4Padded operator OP(Int4Padded a, Int4Padded b) { \ return Int4Padded(a.rep_ OP b.rep_); \ } \ template <typename T> \ friend std::enable_if_t<std::numeric_limits<T>::is_integer, Int4Padded> \ operator OP(Int4Padded a, T b) { \ return Int4Padded(a.rep_ OP b); \ } \ template <typename T> \ friend std::enable_if_t<std::numeric_limits<T>::is_integer, Int4Padded> \ operator OP(T a, Int4Padded b) { \ return Int4Padded(a OP b.rep_); \ } \ #define TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_ASSIGN_OP(OP) \ friend Int4Padded& operator OP##=(Int4Padded& a, Int4Padded b) { \ return a = Int4Padded(a.rep_ OP b.rep_); \ } \ template <typename T> \ friend std::enable_if_t<std::numeric_limits<T>::is_integer, Int4Padded&> \ operator OP##=(Int4Padded& a, T b) { \ return a = Int4Padded(a.rep_ OP b); \ } \ TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_OP(+) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_ASSIGN_OP(+) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_OP(-) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_ASSIGN_OP(-) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_OP(*) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_ASSIGN_OP(*) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_OP(/) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_ASSIGN_OP(/) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_OP(%) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_ASSIGN_OP(%) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_OP(&) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_ASSIGN_OP(&) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_OP(|) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_ASSIGN_OP(|) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_OP(^) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_ASSIGN_OP(^) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_OP(<<) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_ASSIGN_OP(<<) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_OP(>>) TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_ASSIGN_OP(>>) #undef TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_OP #undef TENSORSTORE_INTERNAL_INT4_PADDED_ARITHMETIC_ASSIGN_OP friend Int4Padded operator~(Int4Padded a) { Int4Padded result; result.rep_ = internal::SignedTrunc4(~a.rep_); return result; } friend Int4Padded operator-(Int4Padded a) { Int4Padded result; result.rep_ = internal::SignedTrunc4(-a.rep_); return result; } friend Int4Padded operator+(Int4Padded a) { return a; } friend Int4Padded operator++(Int4Padded& a) { a += Int4Padded(1); return a; } friend Int4Padded operator--(Int4Padded& a) { a -= Int4Padded(1); return a; } friend Int4Padded operator++(Int4Padded& a, int) { Int4Padded original_value = a; ++a; return original_value; } friend Int4Padded operator--(Int4Padded& a, int) { Int4Padded original_value = a; --a; return original_value; } template <template <typename U, typename V, typename... Args> class ObjectType , template <typename U, typename... Args> class ArrayType , class StringType , class BooleanType , class NumberIntegerType , class NumberUnsignedType , class NumberFloatType , template <typename U> class AllocatorType , template <typename T, typename SFINAE = void> class JSONSerializer , class BinaryType > friend void to_json( ::nlohmann::basic_json<ObjectType, ArrayType, StringType, BooleanType, NumberIntegerType, NumberUnsignedType, NumberFloatType, AllocatorType, JSONSerializer, BinaryType>& j, Int4Padded v) { j = static_cast<NumberIntegerType>(v); } constexpr friend bool operator==(const Int4Padded& a, const Int4Padded& b) { return internal::SignedTrunc4(a.rep_) == internal::SignedTrunc4(b.rep_); } constexpr friend bool operator!=(const Int4Padded& a, const Int4Padded& b) { return !(a == b); } struct bitcast_construct_t {}; explicit constexpr Int4Padded(bitcast_construct_t, int8_t rep) : rep_(rep) {} int8_t rep_; }; inline Int4Padded abs(Int4Padded x) { x.rep_ = internal::SignedTrunc4(::std::abs(x.rep_)); return x; } inline Int4Padded pow(Int4Padded x, Int4Padded y) { return Int4Padded(std::pow(static_cast<int8_t>(x), static_cast<int8_t>(y))); } } namespace std { template <> struct numeric_limits<tensorstore::Int4Padded> { static constexpr bool is_specialized = true; static constexpr bool is_signed = true; static constexpr bool is_integer = true; static constexpr bool is_exact = true; static constexpr bool has_infinity = false; static constexpr bool has_quiet_NaN = false; static constexpr bool has_signaling_NaN = false; static constexpr bool is_bounded = true; static constexpr bool is_modulo = true; static constexpr int digits = 3; static constexpr int digits10 = 0; static constexpr int max_digits10 = 0; static constexpr int radix = 2; static constexpr tensorstore::Int4Padded min() { return tensorstore::Int4Padded( tensorstore::Int4Padded::bitcast_construct_t{}, int8_t{-8}); } static constexpr tensorstore::Int4Padded lowest() { return tensorstore::Int4Padded( tensorstore::Int4Padded::bitcast_construct_t{}, int8_t{-8}); } static constexpr tensorstore::Int4Padded max() { return tensorstore::Int4Padded( tensorstore::Int4Padded::bitcast_construct_t{}, int8_t{7}); } }; } #endif
#include "tensorstore/util/int4.h" #include <cmath> #include <cstdint> #include <cstring> #include <limits> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/base/casts.h" #include <nlohmann/json_fwd.hpp> #include "tensorstore/internal/json_gtest.h" namespace { using Int4 = tensorstore::Int4Padded; Int4 Bitcast(int8_t x) { return absl::bit_cast<Int4>(x); } constexpr std::pair<int8_t, Int4> kInt8ToInt4[] = { {-10, Int4(6)}, {-9, Int4(7)}, {-8, Int4(-8)}, {-7, Int4(-7)}, {-6, Int4(-6)}, {-5, Int4(-5)}, {-4, Int4(-4)}, {-3, Int4(-3)}, {-2, Int4(-2)}, {-1, Int4(-1)}, {0, Int4(0)}, {1, Int4(1)}, {2, Int4(2)}, {3, Int4(3)}, {4, Int4(4)}, {5, Int4(5)}, {6, Int4(6)}, {7, Int4(7)}, {8, Int4(-8)}, {9, Int4(-7)}, {10, Int4(-6)}, }; constexpr std::pair<Int4, int8_t> kInt4ToInt8[] = { {Int4(-8), -8}, {Int4(-7), -7}, {Int4(-6), -6}, {Int4(-5), -5}, {Int4(-4), -4}, {Int4(-3), -3}, {Int4(-2), -2}, {Int4(-1), -1}, {Int4(0), 0}, {Int4(1), 1}, {Int4(2), 2}, {Int4(3), 3}, {Int4(4), 4}, {Int4(5), 5}, {Int4(6), 6}, {Int4(7), 7}, }; TEST(Int4Test, Int8ToInt4) { for (const auto& [i8, i4] : kInt8ToInt4) { EXPECT_EQ(static_cast<Int4>(i8), i4); } } TEST(Int4Test, Int4ToInt8) { for (const auto& [i4, i8] : kInt4ToInt8) { EXPECT_EQ(static_cast<int8_t>(i4), i8); } } template <typename X> void TestInt4ToXToInt4() { for (const auto& [i4, i8] : kInt4ToInt8) { EXPECT_EQ(static_cast<Int4>(static_cast<X>(i4)), i4); } } TEST(Int4Test, Int4ToInt32ToInt4) { TestInt4ToXToInt4<int32_t>(); } TEST(Int4Test, Int4ToFloatToInt4) { TestInt4ToXToInt4<float>(); } TEST(Int4Test, Int4ToDoubleToInt4) { TestInt4ToXToInt4<double>(); } TEST(Int4Test, Arithmetic) { EXPECT_EQ(Int4(1) + Int4(2), Int4(3)); EXPECT_EQ(Int4(7) + Int4(2), Int4(-7)); EXPECT_EQ(Int4(3) - Int4(5), Int4(-2)); EXPECT_EQ(Int4(5) * Int4(-7), Int4(-3)); EXPECT_EQ(Int4(-8) / Int4(3), Int4(-2)); EXPECT_EQ(Int4(-7) % Int4(3), Int4(-1)); } TEST(Int4Test, BitwiseBinary) { EXPECT_EQ(Int4(0b0110) & Int4(0b1011), Int4(0b0010)); EXPECT_EQ(Int4(0b0110) | Int4(0b1011), Int4(0b1111)); EXPECT_EQ(Int4(0b0110) ^ Int4(0b1011), Int4(0b1101)); } TEST(Int4Test, BitwiseUnaryInverse) { EXPECT_EQ(~Int4(0b1011), Int4(0b0100)); EXPECT_EQ(~Int4(0b0110), Int4(0b1001)); } TEST(Int4Test, BitwiseShift) { EXPECT_EQ(Int4(0b0011) << Int4(0), Int4(0b0011)); EXPECT_EQ(Int4(0b0011) << Int4(1), Int4(0b0110)); EXPECT_EQ(Int4(0b0011) << Int4(2), Int4(0b1100)); EXPECT_EQ(Int4(0b0011) << Int4(3), Int4(0b1000)); EXPECT_EQ(Int4(0b0011) << Int4(4), Int4(0b0000)); EXPECT_EQ(Int4(0b0011) << Int4(5), Int4(0b0000)); EXPECT_EQ(Int4(0b0011) << int8_t{0}, Int4(0b0011)); EXPECT_EQ(Int4(0b0011) << int8_t{1}, Int4(0b0110)); EXPECT_EQ(Int4(0b0011) << int8_t{2}, Int4(0b1100)); EXPECT_EQ(Int4(0b0011) << int8_t{3}, Int4(0b1000)); EXPECT_EQ(Int4(0b0011) << int8_t{4}, Int4(0b0000)); EXPECT_EQ(Int4(0b0011) << int8_t{5}, Int4(0b0000)); EXPECT_EQ(Int4(0b0100) >> Int4(0), Int4(0b0100)); EXPECT_EQ(Int4(0b0100) >> Int4(1), Int4(0b0010)); EXPECT_EQ(Int4(0b0100) >> Int4(2), Int4(0b0001)); EXPECT_EQ(Int4(0b0100) >> Int4(3), Int4(0b0000)); EXPECT_EQ(Int4(0b0100) >> Int4(4), Int4(0b0000)); EXPECT_EQ(Int4(0b0100) >> Int4(5), Int4(0b0000)); EXPECT_EQ(Int4(0b0100) >> int8_t{0}, Int4(0b0100)); EXPECT_EQ(Int4(0b0100) >> int8_t{1}, Int4(0b0010)); EXPECT_EQ(Int4(0b0100) >> int8_t{2}, Int4(0b0001)); EXPECT_EQ(Int4(0b0100) >> int8_t{3}, Int4(0b0000)); EXPECT_EQ(Int4(0b0100) >> int8_t{4}, Int4(0b0000)); EXPECT_EQ(Int4(0b0100) >> int8_t{5}, Int4(0b0000)); EXPECT_EQ(Int4(0b1010) >> Int4(0), Int4(0b1010)); EXPECT_EQ(Int4(0b1010) >> Int4(1), Int4(0b1101)); EXPECT_EQ(Int4(0b1010) >> Int4(2), Int4(0b1110)); EXPECT_EQ(Int4(0b1010) >> Int4(3), Int4(0b1111)); EXPECT_EQ(Int4(0b1010) >> Int4(4), Int4(0b1111)); EXPECT_EQ(Int4(0b1010) >> Int4(5), Int4(0b1111)); EXPECT_EQ(Int4(0b1010) >> int8_t{0}, Int4(0b1010)); EXPECT_EQ(Int4(0b1010) >> int8_t{1}, Int4(0b1101)); EXPECT_EQ(Int4(0b1010) >> int8_t{2}, Int4(0b1110)); EXPECT_EQ(Int4(0b1010) >> int8_t{3}, Int4(0b1111)); EXPECT_EQ(Int4(0b1010) >> int8_t{4}, Int4(0b1111)); EXPECT_EQ(Int4(0b1010) >> int8_t{5}, Int4(0b1111)); } TEST(Int4Test, Abs) { EXPECT_EQ(abs(Int4(7)), Int4(7)); EXPECT_EQ(abs(Int4(0)), Int4(0)); EXPECT_EQ(abs(Int4(-7)), Int4(7)); EXPECT_EQ(abs(Int4(-8)), Int4(-8)); } TEST(Int4Test, Pow) { EXPECT_EQ(pow(Int4(2), Int4(0)), Int4(1)); EXPECT_EQ(pow(Int4(2), Int4(1)), Int4(2)); EXPECT_EQ(pow(Int4(2), Int4(2)), Int4(4)); } TEST(Int4Test, Comparison) { for (int i = 0; i <= 15; i++) { const Int4 a = kInt4ToInt8[i].first; EXPECT_EQ(a, a); EXPECT_LE(a, a); EXPECT_GE(a, a); for (int j = i + 1; j <= 15; j++) { const Int4 b = kInt4ToInt8[j].first; EXPECT_NE(a, b); EXPECT_LT(a, b); EXPECT_LE(a, b); EXPECT_GT(b, a); EXPECT_GE(b, a); } } } TEST(Int4Test, EquivalentRepresentationsCompareEqual) { for (int low_nibble = 0; low_nibble <= 15; low_nibble++) { const Int4 answer = Int4(low_nibble); for (int high_nibble_a = 0; high_nibble_a <= 15; high_nibble_a++) { for (int high_nibble_b = 0; high_nibble_b <= 15; high_nibble_b++) { const int8_t a = low_nibble | (high_nibble_a << 4); const int8_t b = low_nibble | (high_nibble_b << 4); const Int4 a4 = Bitcast(a); const Int4 b4 = Bitcast(b); EXPECT_EQ(a4, answer); EXPECT_EQ(b4, answer); EXPECT_EQ(a4, b4); } } } } TEST(Int4Test, NonCanonicalRepresentationsCompareCorrectly) { EXPECT_LT(Bitcast(0xD3), Bitcast(0xE5)); EXPECT_LE(Bitcast(0xD3), Bitcast(0xE5)); EXPECT_GT(Bitcast(0x33), Bitcast(0x4A)); EXPECT_GE(Bitcast(0x33), Bitcast(0x4A)); } TEST(Int4Test, JsonConversion) { for (const auto& [i4, i8] : kInt4ToInt8) { EXPECT_THAT(::nlohmann::json(i4), tensorstore::MatchesJson(i8)); } } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/int4.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/int4_test.cc
4f887a6430414cd6088e1743555015b10f116d50
286832a6-e242-4090-a201-48cb5d2db23c
cpp
google/tensorstore
json_absl_flag
tensorstore/util/json_absl_flag.h
tensorstore/util/json_absl_flag_test.cc
#ifndef TENSORSTORE_UTIL_JSON_ABSL_FLAG_H_ #define TENSORSTORE_UTIL_JSON_ABSL_FLAG_H_ #include <string> #include <string_view> #include <type_traits> #include "absl/flags/marshalling.h" #include "absl/status/status.h" #include "absl/strings/str_format.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/util/result.h" namespace tensorstore { template <typename T> struct JsonAbslFlag { T value; JsonAbslFlag() = default; template <typename... U, typename = std::enable_if_t<std::is_constructible_v<T, U&&...>>> JsonAbslFlag(U&&... arg) : value(std::forward<U>(arg)...) {} friend std::string AbslUnparseFlag(const JsonAbslFlag& json_flag) { TENSORSTORE_ASSIGN_OR_RETURN( auto j, internal_json_binding::ToJson(json_flag.value), ""); if (j.is_discarded()) return {}; return absl::UnparseFlag(j.dump()); } friend bool AbslParseFlag(std::string_view in, JsonAbslFlag* out, std::string* error) { if (in.empty()) { out->value = {}; return true; } ::nlohmann::json j = ::nlohmann::json::parse(in, nullptr, false); if (j.is_discarded()) { *error = absl::StrFormat("Failed to parse JSON: '%s'", in); return false; } T new_value = {}; absl::Status status = internal_json_binding::DefaultBinder<>( std::true_type{}, internal_json_binding::NoOptions{}, &new_value, &j); if (!status.ok()) { *error = absl::StrFormat("Failed to bind JSON: %s", status.message()); return false; } out->value = std::move(new_value); return true; } }; } #endif
#include "tensorstore/util/json_absl_flag.h" #include <cstdint> #include <string> #include <gtest/gtest.h> #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/kvstore/spec.h" namespace { TEST(JsonAbslFlag, IntFlag) { tensorstore::JsonAbslFlag<int64_t> flag = {}; std::string default_value = AbslUnparseFlag(flag); std::string error; EXPECT_TRUE(AbslParseFlag(default_value, &flag, &error)); EXPECT_TRUE(error.empty()); } TEST(JsonAbslFlag, KvStoreSpecFlag) { tensorstore::JsonAbslFlag<tensorstore::kvstore::Spec> flag = {}; std::string default_value = AbslUnparseFlag(flag); std::string error; EXPECT_TRUE(AbslParseFlag(default_value, &flag, &error)) << "value: " << default_value; EXPECT_TRUE(error.empty()) << error; } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/json_absl_flag.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/json_absl_flag_test.cc
4f887a6430414cd6088e1743555015b10f116d50
24bb0006-b05f-484b-99d7-4f82b5dc15ee
cpp
google/tensorstore
executor
tensorstore/util/executor.h
tensorstore/util/executor_test.cc
#ifndef TENSORSTORE_UTIL_EXECUTOR_H_ #define TENSORSTORE_UTIL_EXECUTOR_H_ #include <functional> #include <type_traits> #include <utility> #include "absl/base/attributes.h" #include "absl/functional/any_invocable.h" #include "absl/meta/type_traits.h" #include "tensorstore/internal/poly/poly.h" #include "tensorstore/internal/type_traits.h" namespace tensorstore { using ExecutorTask = absl::AnyInvocable<void() &&>; using Executor = poly::Poly<0, true, void(ExecutorTask) const>; class InlineExecutor { public: template <typename Func> void operator()(Func&& func) const { std::forward<Func>(func)(); } }; template <typename ExecutorType, typename FunctionType> class ExecutorBoundFunction { public: using Executor = ExecutorType; using Function = FunctionType; template <typename... T> std::enable_if_t<std::is_invocable_v<Function&, T...>> operator()(T&&... arg) { executor(std::bind(std::move(function), std::forward<T>(arg)...)); } template <typename... T> std::enable_if_t<std::is_invocable_v<const Function&, T...>> operator()( T&&... arg) const { executor(std::bind(function, std::forward<T>(arg)...)); } ABSL_ATTRIBUTE_NO_UNIQUE_ADDRESS Executor executor; ABSL_ATTRIBUTE_NO_UNIQUE_ADDRESS Function function; }; template <typename Executor, typename Function> std::enable_if_t< !std::is_same_v<absl::remove_cvref_t<Executor>, InlineExecutor>, ExecutorBoundFunction<absl::remove_cvref_t<Executor>, absl::remove_cvref_t<Function>>> WithExecutor(Executor&& executor, Function&& function) { return {std::forward<Executor>(executor), std::forward<Function>(function)}; } template <typename Executor, typename Function> std::enable_if_t<std::is_same_v<absl::remove_cvref_t<Executor>, InlineExecutor>, Function&&> WithExecutor(Executor&& executor, Function&& function) { return std::forward<Function>(function); } } #endif
#include "tensorstore/util/executor.h" #include <functional> #include <memory> #include <gtest/gtest.h> namespace { using ::tensorstore::Executor; using ::tensorstore::InlineExecutor; using ::tensorstore::WithExecutor; TEST(InlineExecutorTest, Basic) { Executor executor = InlineExecutor{}; bool invoked = false; executor([&] { invoked = true; }); EXPECT_TRUE(invoked); } TEST(WithExecutorTest, NonConst) { InlineExecutor executor; bool invoked = false; struct Func { void operator()(bool* x) const = delete; void operator()(bool* x) { *x = true; } }; auto with_executor = WithExecutor(executor, Func{}); with_executor(&invoked); EXPECT_TRUE(invoked); } TEST(WithExecutorTest, Const) { InlineExecutor executor; bool invoked = false; struct Func { void operator()(bool* x) const { *x = true; } void operator()(bool*) = delete; }; const auto with_executor = WithExecutor(executor, Func{}); with_executor(&invoked); EXPECT_TRUE(invoked); } TEST(ExecutorTest, MoveOnly) { Executor executor = InlineExecutor{}; int value = 0; executor(std::bind([&](const std::unique_ptr<int>& ptr) { value = *ptr; }, std::make_unique<int>(3))); EXPECT_EQ(3, value); } TEST(WithExecutorTest, MoveOnly) { Executor executor = InlineExecutor{}; int value = 0; auto with_executor = WithExecutor( executor, std::bind([&](const std::unique_ptr<int>& ptr) { value = *ptr; }, std::make_unique<int>(3))); with_executor(); EXPECT_EQ(3, value); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/executor.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/executor_test.cc
4f887a6430414cd6088e1743555015b10f116d50