context
stringlengths
5
6.31k
question
stringlengths
13
640
answer
stringlengths
4
2.42k
Cross-linking and immunoprecipitation (CLIP) is increasingly used to map transcriptome-wide binding sites of RNA-binding proteins. We developed a method for CLIP data analysis, and applied it to compare CLIP with photoactivatable ribonucleoside-enhanced CLIP (PAR-CLIP) and to uncover how differences in cross-linking and ribonuclease digestion affect the identified sites. We found only small differences in accuracies of these methods in identifying binding sites of HuR, which binds low-complexity sequences, and Argonaute 2, which has a complex binding specificity. We found that cross-link-induced mutations led to single-nucleotide resolution for both PAR-CLIP and CLIP. Our results confirm the expectation from original CLIP publications that RNA-binding proteins do not protect their binding sites sufficiently under the denaturing conditions used during the CLIP procedure, and we show that extensive digestion with sequence-specific RNases strongly biases the recovered binding sites. This bias can be substantially reduced by milder nuclease digestion conditions.
What is the principle of the PAR-CLIP methodology?
ross-linking and immunoprecipitation (CLIP) is increasingly used to map transcriptome-wide binding sites of RNA-binding proteins.
Antibody therapy has been used to treat a variety of diseases and the success of ZMapp and other monoclonal antibody-based therapies during the 2014-2016 West African Ebola outbreak has shown this countermeasure can be a successful therapy for Ebola hemorrhagic fever. This study utilized transchromosomal bovines (TcB) vaccinated with a DNA plasmid encoding Ebola virus glycoprotein sequence to produce human polyclonal antibodies directed against Ebola virus glycoprotein. When administered 1 day postinfection, these TcB polyclonal antibodies provided partial protection and resulted in a 50% survival rate following a lethal challenge of Ebola virus Makona in rhesus macaques.
Which disease is treated with ZMapp?
Antibody therapy has been used to treat a variety of diseases and the success of ZMapp and other monoclonal antibody-based therapies during the 2014-2016 West African Ebola outbreak has shown this countermeasure can be a successful therapy for Ebola hemorrhagic fever.
Over a half of patients with Systemic Lupus Erythematosus will develop lupus nephritis (LN). The diagnosis of LN, suspected based on clinical data (proteinuria, active urinary sediment, renal dysfunction), is confirmed with renal biopsy. The immunosuppressive treatment of proliferative classes of LN is based on an induction phase, where high-dose steroids are used in conjunction with mycophenolate mofetil (MMF) or cyclophosphamide, and a subsequent maintenance phase, that combines low-dose steroids with MMF or azathioprine. Different classes of drugs (calcineurin inhibitors, anti-CD20) can be used as an alternative, or in resistant forms of LN, although their role is less well-established. Recently published (or nearing completion) studies have opened up the possibility of using new drugs in LN. In particular, depletion (Obinutuzumab, anti-CD20 monoclonal antibody) or neutralization (Belimumab, anti-"B-cell activating factor" monoclonal antibody) of B lymphocytes, and the use of a calcineurin inhibitor with a low profile of renal and systemic toxicity (Voclosporin) demonstrated an improvement in renal response in addition to standard therapy.
Is Belimumab used for lupus nephritis?
In particular, depletion (Obinutuzumab, anti-CD20 monoclonal antibody) or neutralization (Belimumab, anti-"B-cell activating factor" monoclonal antibody) of B lymphocytes, and the use of a calcineurin inhibitor with a low profile of renal and systemic toxicity (Voclosporin) demonstrated an improvement in renal response in addition to standard therapy.
We tested the effect of two different concentrations (150μg/l and 0.15μg/l) of mycotoxin zearalenone (ZEA) on the reproductive parameters and expression of testicular genes in male mice. In adult males, no reduction of body or reproductive organ weight was observed, and the seminiferous tubules were morphologically normal with ongoing spermatogenesis. However, we found decreased sperm concentration, increase of morphologically abnormal spermatozoa and increased binding of apoptotic marker annexin V. This study was also focused on the evaluation of gene expression profiles of 28 genes playing important roles during the processes occurring in the testicular tissue. We detected changes in the expression of genes important for proper spermatogenesis. Surprisingly, we observed a stronger effect after exposure to the lower dose of ZEA.
Is Annexin V an apoptotic marker?
However, we found decreased sperm concentration, increase of morphologically abnormal spermatozoa and increased binding of apoptotic marker annexin V.
The 70-gene signature (MammaPrint) is a prognostic tool used to guide adjuvant treatment decisions. The aim of this study was to assess its value to predict chemosensitivity in the neoadjuvant setting. We obtained the 70-gene profile of stage II-III patients prior to neoadjuvant chemotherapy and classified the prognosis-signatures. Pathological complete remission (pCR) was used to measure chemosensitivity. Among 167 patients, 144 (86%) were having a poor and 23 (14%) a good prognosis-signature. None of the good prognosis-signature patients achieved a pCR (0/23), whereas 29/144 patients (20%) in the poor prognosis-signature group did (P = 0.015). All triple-negative tumors (n = 38) had a poor prognosis-signature. Within the non triple-negative subgroup, the response of the primary tumor remained associated with the classification of the prognosis-signature (P = 0.023). A pCR is unlikely to be achieved in tumors that have a good prognosis-signature. Tumors with a poor prognosis-signature are more sensitive to chemotherapy.
How many genes are in the gene signature screened by MammaPrint?
the 70-gene profile
Apixaban is a direct inhibitor of factor Xa, and is a potential alternative for the treatment of acute venous thromboembolism. This study sought to evaluate the efficacy and safety of apixaban versus enoxaparin. A systematic search of the literature for randomized controlled trials of apixaban thromboprophylaxis versus enoxaparin was conducted using three databases: PubMed, EMBASE, and the Cochrane library. Five studies that included a total of 12,938 patients were analyzed using Bayesian random-effects meta-analysis. To evaluate efficacy, a composite of venous thromboembolism and death during follow-up was measured. To evaluate safety, major and total bleeding events were considered. The odds ratio (OR) for the composite outcome of efficacy was 0.66 (95 % CI 0.33-1.29) for apixaban compared to enoxaparin, while there was a similar risk of major bleeding (OR 1.03, 95 % CI 0.36-3.73) and total bleeding (OR 0.92, 95 % CI 0.64-1.20). These results suggest a lack of clear superiority of apixaban relative to enoxaparin. Apixaban is an oral alternative with similar efficacy and safety to existing anticoagulant therapies.
Is apixaban effective for treatment of acute venous thromboembolism?
Apixaban is a direct inhibitor of factor Xa, and is a potential alternative for the treatment of acute venous thromboembolism.
Pluripotency denotes the flexible capacity of single cells to give rise to all somatic lineages and typically also the germline. Mouse ES cells and post-implantation epiblast-derived stem cells (EpiSC) are widely used pluripotent cell culture systems. These two in vitro stem cell types have divergent characteristics. They are considered as representative of distinct developmental stages, distinguished by using the terms "naïve" and "primed". A binary description is an over-simplification, however. Here, we discuss an intermediate stage of pluripotency that we term "formative". Formative pluripotency features a gene regulatory network switch from the naïve state and comprises capacitation of enhancers, signaling pathways and epigenetic machinery in order to install competence for lineage specification.
What is formative pluripotency?
Here, we discuss an intermediate stage of pluripotency that we term "formative". Formative pluripotency features a gene regulatory network switch from the naïve state and comprises capacitation of enhancers, signaling pathways and epigenetic machinery in order to install competence for lineage specification
Peroxiredoxin-2 (Prdx2), a potent peroxide reductant, is the third most abundant protein in the erythrocyte and might be expected to play a major role in the cell's oxidative defenses. However, in this study, experiments with erythrocytes from mice with a disrupted Prdx2 gene found that the cells were not more sensitive to exogenous H(2)O(2) or organic peroxides than wild type. Intraerythrocytic H(2)O(2) was increased, however, indicating an important role for Prdx2 in detoxifying endogenously generated H(2)O(2). These results are consistent with proposals that red cell Prdx2 acts stoichiometrically, not catalytically, in reducing peroxides. Additional experiments with mice with disrupted catalase or glutathione peroxidase (Gpx1) genes showed that Gpx1 is the only erythrocyte enzyme that reduces organic peroxides. Catalase(-/-) cells were readily oxidized by exogenous H(2)O(2). Cells lacking both catalase and Gpx1 were more sensitive to exogenous H(2)O(2) than cells lacking only catalase. A kinetic model proposed earlier to rationalize results with Gpx1(-/-) erythrocytes also fits the data with Prdx2(-/-) cells and indicates that although Gpx1 and Prdx2 both participate in removing endogenous H(2)O(2), Prdx2 plays a larger role. Although the rate of H(2)O(2) production in the red cell is quite low, Prdx2-deficient mice are anemic, suggesting an important role in erythropoiesis.
What type of enzyme is peroxiredoxin 2 (PRDX2)?
Peroxiredoxin-2 (Prdx2), a potent peroxide reductant, is the third most abundant protein in the erythrocyte and might be expected to play a major role in the cell's oxidative defenses.
Pre- and postnatal growth retardation of unknown pathogenesis is a common clinical feature in patients with Williams-Beuren syndrome (WBS). However, growth hormone deficiency (GHD) has not been considered a major cause of growth retardation. There is only one patient in the literature with confirmed GHD who responded well to human growth hormone (hGH) therapy. We report a female infant with confirmed WBS who, through provocative testing, was found to have GHD and who responded satisfactorily to hGH therapy. Height SDS was -4.2 at the age of 12 months when hGH was initiated and increased to -0.8 at the age of 4.25 years. The pathogenesis of GHD in our patient is unclear. Nevertheless, the elevated levels of prolactin and the response of hGH to growth hormone releasing hormone (GHRH) administration are indicative of a hypothalamic rather than pituitary defect. In conclusion, GH deficiency might contribute to the growth failure in a number of patients with WBS and in such cases hGH therapy will most likely improve final height.
Which hormone abnormalities are common in Williams syndrome
the elevated levels of prolactin and the response of hGH to growth hormone releasing hormone (GHRH) administration are indicative of a hypothalamic rather than pituitary defect. In conclusion, GH deficiency might contribute to the growth failure in a number of patients with WBS
Hirschsprung disease is a congenital form of aganglionic megacolon that results from cristopathy. Hirschsprung disease usually occurs as a sporadic disease, although it may be associated with several inherited conditions, such as multiple endocrine neoplasia type 2. The rearranged during transfection (RET) proto-oncogene is the major susceptibility gene for Hirschsprung disease, and germline mutations in RET have been reported in up to 50% of the inherited forms of Hirschsprung disease and in 15-20% of sporadic cases of Hirschsprung disease. The prevalence of Hirschsprung disease in multiple endocrine neoplasia type 2 cases was recently determined to be 7.5% and the cooccurrence of Hirschsprung disease and multiple endocrine neoplasia type 2 has been reported in at least 22 families so far. It was initially thought that Hirschsprung disease could be due to disturbances in apoptosis or due to a tendency of the mutated RET receptor to be retained in the Golgi apparatus. Presently, there is strong evidence favoring the hypothesis that specific inactivating haplotypes play a key role in the fetal development of congenital megacolon/Hirschsprung disease. In the present study, we report the genetic findings in a novel family with multiple endocrine neoplasia type 2: a specific RET haplotype was documented in patients with Hirschsprung disease associated with medullary thyroid carcinoma, but it was absent in patients with only medullary thyroid carcinoma. Despite the limited number of cases, the present data favor the hypothesis that specific haplotypes not linked to RET germline mutations are the genetic causes of Hirschsprung disease.
Is RET the major gene involved in Hirschsprung disease?
The rearranged during transfection (RET) proto-oncogene is the major susceptibility gene for Hirschsprung disease, and germline mutations in RET have been reported in up to 50% of the inherited forms of Hirschsprung disease and in 15-20% of sporadic cases of Hirschsprung disease
The neuronal RNA-binding protein (RBP) HuD plays an important role in brain development, synaptic plasticity and neurodegenerative diseases such as Parkinson's (PD) and Alzheimer's (AD). Bioinformatics analysis of the human SOD1 mRNA 3' untranslated region (3'UTR) demonstrated the presence of HuD binding adenine-uridine (AU)-rich instability-conferring elements (AREs). Using differentiated SH-SY5Y cells along with brain tissues from sporadic amyotrophic lateral sclerosis (sALS) patients, we assessed HuD-dependent regulation of SOD1 mRNA. In vitro binding and mRNA decay assays demonstrate that HuD specifically binds to SOD1 ARE motifs promoting mRNA stabilization. In SH-SY5Y cells, overexpression of full-length HuD increased SOD1 mRNA and protein levels while a dominant negative form of the RBP downregulated its expression. HuD regulation of SOD1 mRNA was also found to be oxidative stress (OS)-dependent, as shown by the increased HuD binding and upregulation of this mRNA after HO exposure. This treatment also induced a shift in alternative polyadenylation (APA) site usage in SOD1 3'UTR, increasing the levels of a long variant bearing HuD binding sites. The requirement of HuD for SOD1 upregulation during oxidative damage was validated using a specific siRNA that downregulated HuD protein levels to 36% and prevented upregulation of SOD1 and 91 additional genes. In the motor cortex from sALS patients, we found increases in SOD1 and HuD mRNAs and proteins, accompanied by greater HuD binding to this mRNA as confirmed by RNA-immunoprecipitation (RIP) assays. Altogether, our results suggest a role of HuD in the post-transcriptional regulation of SOD1 expression during ALS pathogenesis.
Do RNA binding Proteins that bind to adenine uridine (AU)-rich elements (AREs) in the 5' untranslated region (UTR) of mRNAs (AU-RBPs) regulate the DNA Damage Response?
Bioinformatics analysis of the human SOD1 mRNA 3' untranslated region (3'UTR) demonstrated the presence of HuD binding adenine-uridine (AU)-rich instability-conferring elements (AREs).
Interleukin-1β (IL-1β) is a proinflammatory cytokine that is implicated in many autoinflammatory disorders, but is also important in defense against pathogens. Thus, there is a need to safely and effectively modulate IL-1β activity to reduce pathology while maintaining function. Gevokizumab is a potent anti-IL-1β antibody being developed as a treatment for diseases in which IL-1β has been associated with pathogenesis. Previous data indicated that gevokizumab negatively modulates IL-1β signaling through an allosteric mechanism. Because IL-1β signaling is a complex, dynamic process involving multiple components, it is important to understand the kinetics of IL-1β signaling and the impact of gevokizumab on this process. In the present study, we measured the impact of gevokizumab on the IL-1β system using Schild analysis and surface plasmon resonance studies, both of which demonstrated that gevokizumab decreases the binding affinity of IL-1β for the IL-1 receptor type I (IL-1RI) signaling receptor, but not the IL-1 counter-regulatory decoy receptor (IL-1 receptor type II). Gevokizumab inhibits both the binding of IL-1β to IL-1RI and the subsequent recruitment of IL-1 accessory protein primarily by reducing the association rates of these interactions. Based on this information and recently published structural data, we propose that gevokizumab decreases the association rate for binding of IL-1β to its receptor by altering the electrostatic surface potential of IL-1β, thus reducing the contribution of electrostatic steering to the rapid association rate. These data indicate, therefore, that gevokizumab is a unique inhibitor of IL-1β signaling that may offer an alternative to current therapies for IL-1β-associated autoinflammatory diseases.
Which molecule is targeted by the drug Gevokizumab?
In the present study, we measured the impact of gevokizumab on the IL-1β system using Schild analysis and surface plasmon resonance studies, both of which demonstrated that gevokizumab decreases the binding affinity of IL-1β for the IL-1 receptor type I (IL-1RI) signaling receptor, but not the IL-1 counter-regulatory decoy receptor (IL-1 receptor type II).
Treatment of childhood uveitis associated with juvenile idiopathic arthritis (JIA) is a challenge for both, ophthalmologists and pediatricians. In this study, we use the tools of evidence based medicine (EBM) to analyse studies concerning disease-modifying antirheumatic drugs (DMARD)/ immunosuppressive drugs and tumor necrosis factor alpha (TNFalpha) blocking agents. Most experience among DMARD's/ immunosuppressive drugs has been obtained with methotrexate (MTX) in juvenile idiopathic arthritis. However, controlled studies in uveitis are still missing, so that treatment with MTX and all other immunosuppressive drugs (ciclosporine A, azathioprine, mycophenolate mofetil) only reaches an evidence level III (expert opinion, clinical experience or descriptive study). Studies on TNFalpha-blocking agents reach an evidence level II-III, depending on the substance. In future, MTX will have to be examined in comparison to the new biological substance classes (e.g., tumor necrosis factor-alpha-blockers) for the treatment of uveitis in juvenile idiopathic arthritis. Controlled studies which have led to the approval of drugs for JIA are needed for uveitis in order to have the most effective and safe therapy for children with uveitis, who do not respond to conventional therapy with local and systemic steroids.
What is the effect of methotrexate in treating uveitis due to juvenile idiopathic arthritis ?
Most experience among DMARD's/ immunosuppressive drugs has been obtained with methotrexate (MTX) in juvenile idiopathic arthritis. However, controlled studies in uveitis are still missing, so that treatment with MTX and all other immunosuppressive drugs (ciclosporine A, azathioprine, mycophenolate mofetil) only reaches an evidence level III (expert opinion, clinical experience or descriptive study)
Purpose Trop-2, expressed in most triple-negative breast cancers (TNBCs), may be a potential target for antibody-drug conjugates. Sacituzumab govitecan, an antibody-drug conjugate, targets Trop-2 for the selective delivery of SN-38, the active metabolite of irinotecan. Patients and Methods We evaluated sacituzumab govitecan in a single-arm, multicenter trial in patients with relapsed/refractory metastatic TNBC who received a 10 mg/kg starting dose on days 1 and 8 of 21-day repeated cycles. The primary end points were safety and objective response rate; secondary end points were progression-free survival and overall survival. Results In 69 patients who received a median of five prior therapies (range, one to 12) since diagnosis, the confirmed objective response rate was 30% (partial response, n = 19; complete response, n = 2), the median response duration was 8.9 (95% CI, 6.1 to 11.3) months, and the clinical benefit rate (complete response + partial response + stable disease ≥ 6 months) was 46%. These responses occurred early, with a median onset of 1.9 months. Median progression-free survival was 6.0 (95% CI, 5.0 to 7.3) months, and median overall survival was 16.6 (95% CI, 11.1 to 20.6) months. Grade ≥ 3 adverse events included neutropenia (39%), leukopenia (16%), anemia (14%), and diarrhea (13%); the incidence of febrile neutropenia was 7%. The majority of archival tumor specimens (88%) were moderately to strongly positive for Trop-2 by immunohistochemistry. No neutralizing antibodies to the ADC or antibody were detected, despite repeated cycles developed. Conclusion Sacituzumab govitecan was well tolerated and induced early and durable responses in heavily pretreated patients with metastatic TNBC. As a therapeutic target and predictive biomarker, Trop-2 warrants further research.
Is sacituzumab govitecan effective for breast cancer?
Conclusion Sacituzumab govitecan was well tolerated and induced early and durable responses in heavily pretreated patients with metastatic TNBC.
Coactivators represent a large class of proteins that partner with nuclear receptors and other transcription factors to regulate gene expression. Given their pleiotropic roles in the control of transcription, coactivators have been implicated in a broad range of human disease states, including cancer. This is best typified by the three members of the steroid receptor coactivator (SRC) family, each of which integrates steroid hormone signaling and growth factor pathways to drive oncogenic gene expression programs in breast, endometrial, ovarian, prostate, and other cancers. Because of this, coactivators represent emerging targets for cancer therapeutics, and efforts are now being made to develop SRC-targeting agents, such as the SI-2 inhibitor and the novel SRC stimulator, MCB-613, that are able to block cancer growth in cell culture and animal model systems. Here, we will discuss the mechanisms through which coactivators drive cancer progression and how targeting coactivators represent a novel conceptual approach to combat tumor growth that is distinct from the use of other targeted therapeutic agents. We also will describe efforts to develop next-generation SRC inhibitors and stimulators that can be taken into the clinic for the treatment of recurrent, drug-resistant cancers. Clin Cancer Res; 22(22); 5403-7. ©2016 AACR.
What are coactivators?
Coactivators represent a large class of proteins that partner with nuclear receptors and other transcription factors to regulate gene expression.
EMT (epithelial-mesenchymal transition) is crucial for cancer cells to acquire invasive phenotypes. In A549 lung adenocarcinoma cells, TGF-β elicited EMT in Smad-dependent manner and TNF-α accelerated this process, as confirmed by cell morphology, expression of EMT markers, capacity of gelatin lysis and cell invasion. TNF-α stimulated the phosphorylation of Smad2 linker region, and this effect was attenuated by inhibiting MEK or JNK pathway. Comprehensive expression analysis unraveled genes differentially regulated by TGF-β and TNF-α, such as cytokines, chemokines, growth factors and ECM (extracellular matrices), suggesting the drastic change in autocrine/paracrine signals as well as cell-to-ECM interactions. Integrated analysis of microRNA signature enabled us to identify a subset of genes, potentially regulated by microRNAs. Among them, we confirmed TGF-β-mediated induction of miR-23a in lung epithelial cell lines, target genes of which were further identified by gene expression profiling. Combined with in silico approaches, we determined HMGN2 as a downstream target of miR-23a. These findings provide a line of evidence that the effects of TGF-β and TNF-α were partially mediated by microRNAs, and shed light on the complexity of molecular events elicited by TGF-β and TNF-α.
Which growth factors are known to be involved in the induction of EMT?
Comprehensive expression analysis unraveled genes differentially regulated by TGF-β and TNF-α, such as cytokines, chemokines, growth factors and ECM (extracellular matrices), suggesting the drastic change in autocrine/paracrine signals as well as cell-to-ECM interactions.
Phospholamban (PLN) is a type II membrane protein that inhibits the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA), thereby regulating calcium homeostasis in cardiac muscle. In membranes, PLN forms pentamers that have been proposed to function either as a storage for active monomers or as ion channels. Here, we report the T-state structure of pentameric PLN solved by a hybrid solution and solid-state NMR method. In lipid bilayers, PLN adopts a pinwheel topology with a narrow hydrophobic pore, which excludes ion transport. In the T state, the cytoplasmic amphipathic helices (domains Ia) are absorbed into the lipid bilayer with the transmembrane domains arranged in a left-handed coiled-coil configuration, crossing the bilayer with a tilt angle of approximately 11° with respect to the membrane normal. The tilt angle difference between the monomer and pentamer is approximately 13°, showing that intramembrane helix-helix association forces dominate over the hydrophobic mismatch, driving the overall topology of the transmembrane assembly. Our data reveal that both topology and function of PLN are shaped by the interactions with lipids, which fine-tune the regulation of SERCA.
Is phospholamban a regulatory/inhibitory protein of the Ca ATPase SERCA?
Phospholamban (PLN) is a type II membrane protein that inhibits the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA), thereby regulating calcium homeostasis in cardiac muscle. In membranes, PLN forms pentamers that have been proposed to function either as a storage for active monomers or as ion channels.
The products of the human Arg gene and human, mouse, Drosophila, and nematode Abl genes characterize the Abelson family of nonreceptor tyrosine protein kinase. The Arg gene, expressed as a 12-kb transcript, codes a protein highly related to c-abl in the tyrosine kinase, SH2, and SH3 domains, and both proteins have a myristoylated isoform. The C-terminal domains of Arg and c-abl, poorly similar to each other, may account for their different functions. Arg is cytoplasmic, c-abl also has nuclear localization, and their products have different transforming activity. To gain insight about the role of Arg in myeloid differentiation we investigated Arg gene expression in HL-60 cells differentiated with all-trans retinoic acid and 12-O-tetradecanoyl-phorbol-13-acetate. With a semiquantitative reverse transcriptase-polymerase chain reaction assay it was evident that the Arg transcript level in HL-60 cells differentiated toward granulocyte and macrophage-like lineage was, respectively, 3.5- and 2.8-fold the Arg level evidenced in undifferentiated HL-60 cells. In the HL-60 cells, under the same differentiating conditions, the c-abl RNA level did not change significantly, showing that Arg and c-abl responded in a different way to the inducers of differentiation used.
Does the Abelson-related gene (ARG) gene encode for a serine kinase?
The products of the human Arg gene and human, mouse, Drosophila, and nematode Abl genes characterize the Abelson family of nonreceptor tyrosine protein kinase.
Nephrotic syndrome is an unusual manifestation of IgA Nephropathy (IgAN). Some cases respond to steroid treatment. Here we describe a case-series of IgAN patients with steroid-responsive nephrotic syndrome. Twelve patients with IgAN with steroid-responsive nephrotic syndrome were evaluated and followed up. All patients presented with generalized edema. Renal insufficiency was found in two patients. The renal biopsy of eight patients revealed wide foot process effacement in addition to the typical features of IgAN. They showed complete remission after steroid therapy. Seven relapses were reported in five patients; six of the relapsed cases responded to steroid therapy. Compared with steroid-non-responsive patients, the patients with steroid-responsive nephrotic syndrome had shorter symptom duration, more weight gain, more proteinuria, and lower histologic grade than did those that had steroid-non-responsive nephrotic syndrome at presentation. None of the responders progressed to end stage renal disease, whereas five (38%) non-responders required dialysis or renal transplantation. Patients with IgAN who have steroid-responsive nephrotic syndrome likely have both minimal change disease and IgAN. The clinical features of sudden onset of generalized edema, initial heavy proteinuria and initial severe hypoalbuminemia might help identify the subset of patients, especially in low grade IgAN.
Is edema a symptom of nephrotic syndrome?
Nephrotic syndrome is an unusual manifestation of IgA Nephropathy (IgAN).
Prolactinoma is the most common secreting pituitary adenoma. It is typically diagnosed in women of reproductive age and is common cause of infertility. Currently the treatment of choice is pharmacotherapy with dopamine agonists, whereas surgical treatment is reserved for a selected group of patients. Pituitary-tumor apoplexy is a rare, life-threatening condition associated with significant morbidity and mortality. The authors present the case of a 25-year-old woman with prolactinoma treated with dopamine agonist. In course of such a treatment the patient became pregnant. The bromocriptine was gradually withdrawn. In the 14th week of pregnancy she was admitted for symptoms suggesting pituitary tumor apoplexy. The treatment with bromocriptine was reinitiated. In the 20th week of pregnancy further deterioration of the patient's neurological condition and visual-field abnormalities were observed. The patient was qualified for surgical treatment - selective transsphenoidal adenomectomy. The successful surgery led to improvement of neurological condition. The early postoperative PRL level decreased significantly and hormonal function of the pituitary was preserved. The pregnancy ended in 38th week with a caesarean section. Endocrinological evaluation conducted after the uneventful delivery confirmed normal function of the pituitary. Magnetic resonance imaging (MRI) did not reveal tumor re-growth. The patient is kept under constant medical care. In this case study the authors discussed therapeutic management and reviewed literature regarding gestational pituitary-tumor apoplexy with particular emphasis on surgical treatment.
Which pituitary adenoma is common cause of infertility is women?
Prolactinoma is the most common secreting pituitary adenoma. It is typically diagnosed in women of reproductive age and is common cause of infertility.
Optogenetic techniques provide powerful tools for bidirectional control of neuronal activity and investigating alterations occurring in excitability disorders, such as epilepsy. In particular, the possibility to specifically activate by light-determined interneuron populations expressing channelrhodopsin-2 provides an unprecedented opportunity of exploring their contribution to physiological and pathological network activity. There are several subclasses of interneurons in cortical areas with different functional connectivity to the principal neurons (e.g., targeting their perisomatic or dendritic compartments). Therefore, one could optogenetically activate specific or a mixed population of interneurons and dissect their selective or concerted inhibitory action on principal cells. We chose to explore a conceptually novel strategy involving simultaneous activation of mixed populations of interneurons by optogenetics and study their impact on ongoing epileptiform activity in mouse acute hippocampal slices. Here we demonstrate that such approach results in a brief initial action potential discharge in CA3 pyramidal neurons, followed by prolonged suppression of ongoing epileptiform activity during light exposure. Such sequence of events was caused by massive light-induced release of GABA from ChR2-expressing interneurons. The inhibition of epileptiform activity was less pronounced if only parvalbumin- or somatostatin-expressing interneurons were activated by light. Our data suggest that global optogenetic activation of mixed interneuron populations is a more effective approach for development of novel therapeutic strategies for epilepsy, but the initial action potential generation in principal neurons needs to be taken in consideration.
Are optogenetics tools used in the study and treatment of epilepsy?
Optogenetic techniques provide powerful tools for bidirectional control of neuronal activity and investigating alterations occurring in excitability disorders, such as epilepsy.
TET2 haplo-insufficiency occurs through different molecular mechanisms and is promptly revealed by array comparative genomic hybridization, single nucleotide polymorphism (SNP) array, and next-generation sequencing (NGS). Fluorescence in situ hybridization (FISH) can effectively demonstrate TET2 deletions and is often used to validate molecular results. In the present study 41 MDS patients with and without 4q abnormalities were analyzed with a series of bacterial artificial chromosome (BAC) probes spanning the 4q22.3-q25 region. On conventional cytogenetic (CC) studies, a structural defect of the long arm of chromosome 4 (4q) was observed in seven patients. In three, one each with a t(1;4)(p21;q24), an ins(5;4)(q23;q24qter), and a t(4;17)(q31;p13) as the sole chromosomal abnormality, FISH with the RP11-356L5 and RP11-16G16 probes, which cover the TET2 locus, produced one signal only. Unexpectedly, this same result was achieved in 3 of the remaining 34 patients. Thus, a TET2 deletion was observed in a total of six patients (14.6%). TET2 deletion was not correlated with any particular clinical findings or outcome. These findings demonstrate that 1) FISH is an effective and economical method to reveal cryptic abnormalities of band 4q22-q24 resulting in TET2 deletions; 2) in these patients, TET2 deletion is the unifying genetic event; and 3) the different breakpoints within the 4q22-q25 region suggest that deletions are not mediated by repetitive sequences.
Which human syndromes have been detected with Fluorescence in situ hybridization (FISH)?
These findings demonstrate that 1) FISH is an effective and economical method to reveal cryptic abnormalities of band 4q22-q24 resulting in TET2 deletions;
Tom Beauchamp and James Childress have always maintained that their four principles approach (otherwise known as principlism) is a globally applicable framework for biomedical ethics. This claim is grounded in their belief that the principles of respect for autonomy, non-maleficence, beneficence and justice form part of a 'common morality', or collection of very general norms to which everyone who is committed to morality subscribes. The difficulty, however, has always been how to demonstrate, at least in the absence of a full-blooded analysis of the concept of morality, whether the four principles are foundational, and so globally applicable, in this way. In the recently published sixth edition of Principles of Biomedical Ethics, an imaginative and non-question-begging empirical method of determining the common morality's norms is suggested. In this paper, I outline this method, before arguing that it is difficult to see how it might be thought to achieve its purpose.
List four principles of medical ethics.
Tom Beauchamp and James Childress have always maintained that their four principles approach (otherwise known as principlism) is a globally applicable framework for biomedical ethics. This claim is grounded in their belief that the principles of respect for autonomy, non-maleficence, beneficence and justice form part of a 'common morality', or collection of very general norms to which everyone who is committed to morality subscribes.
Chronic myeloid leukemia (CML) is characterized by the presence of a BCR-ABL fusion gene, which is the result of a reciprocal translocation between chromosomes 9 and 22, and is cytogenetically visible as a shortened chromosome 22 (Philadelphia). Research during the past two decades has established that BCR-ABL is probably the pathogenetic pathway leading to CML, and that constitutive tyrosine kinase activity is central to BCR-ABL capacity to transform hematopoietic cells in vitro and in vivo. The tyrosine kinase inhibitor imatinib mesylate was introduced into the treatment regimen for CML in 1998. During the last few years, reports on chromosomal changes during imatinib treatment have been described. In this study, we evaluated the random aneuploidy rate with chromosomes 9 and 18 in bone marrow from treated and untreated patients. We found higher aneuploidy rates in both treated and untreated patients compared to the control group. In three patients who were treated with imatinib mesylate for more than 1.5 years, triploidy also appeared in some nuclei. To our knowledge, this is the first report on new chromosomal changes such as random aneuploidy and triploidy under imatinib treatment, but more studies are needed to investigate the long-term effect of the imatinib treatment on genetic instability.
What tyrosine kinase, involved in a Philadelphia- chromosome positive chronic myelogenous leukemia, is the target of Imatinib (Gleevec)?
imatinib mesylate was introduced into the treatment regimen for CML
Heterochromatin assembly in budding yeast requires the SIR complex, which contains the NAD-dependent deacetylase Sir2 and the Sir3 and Sir4 proteins. Sir3 binds to nucleosomes containing deacetylated histone H4 lysine 16 (H4K16) and, with Sir4, promotes spreading of Sir2 and deacetylation along the chromatin fiber. Combined action of histone modifying and binding activities is a conserved hallmark of heterochromatin, but the relative contribution of each activity to silencing has remained unclear. Here, we reconstitute SIR-chromatin complexes using purified components and show that the SIR complex efficiently deacetylates chromatin templates and promotes the assembly of altered structures that silence Gal4-VP16-activated transcription. Silencing requires all three Sir proteins, even with fully deacetylated chromatin, and involves the specific association of Sir3 with deacetylated H4K16. These results define a minimal set of components that mediate heterochromatic gene silencing and demonstrate distinct contributions for histone deacetylation and nucleosome binding in the silencing mechanism.
How histone deacetylation causes transcriptional gene silencing?
Silencing requires all three Sir proteins, even with fully deacetylated chromatin, and involves the specific association of Sir3 with deacetylated H4K16. These results define a minimal set of components that mediate heterochromatic gene silencing and demonstrate distinct contributions for histone deacetylation and nucleosome binding in the silencing mechanism
Finding and characterizing mRNAs, their transcription start sites (TSS), and their associated promoters is a major focus in post-genome biology. Mammalian cells have at least 5-10 magnitudes more TSS than previously believed, and deeper sequencing is necessary to detect all active promoters in a given tissue. Here, we present a new method for high-throughput sequencing of 5' cDNA tags-DeepCAGE: merging the Cap Analysis of Gene Expression method with ultra-high-throughput sequence technology. We apply DeepCAGE to characterize 1.4 million sequenced TSS from mouse hippocampus and reveal a wealth of novel core promoters that are preferentially used in hippocampus: This is the most comprehensive promoter data set for any tissue to date. Using these data, we present evidence indicating a key role for the Arnt2 transcription factor in hippocampus gene regulation. DeepCAGE can also detect promoters used only in a small subset of cells within the complex tissue.
What is DeepCAGE?
Mammalian cells have at least 5-10 magnitudes more TSS than previously believed, and deeper sequencing is necessary to detect all active promoters in a given tissue. Here, we present a new method for high-throughput sequencing of 5' cDNA tags-DeepCAGE: merging the Cap Analysis of Gene Expression method with ultra-high-throughput sequence technology.
Chemotherapeutic regimens in present use for recurrent glioma have substantial toxicity. Activity against recurrent gliomas has been reported for both tamoxifen and interferon alpha, agents that have more acceptable toxicity profiles and that can be administered in an outpatient setting. We tested the efficacy and toxicity of the combination of high-dose tamoxifen and interferon alpha in adults with recurrent glioma in a phase II trial. Eligible patients had radiographically measurable recurrent gliomas of any grade after initial radiation therapy. Interferon-alpha [6 x 10(6) U subcutaneously three times per week] and tamoxifen (240 mg/m2/day orally) were administered continuously. Treatment response was assessed at 6 week intervals using clinical and radiographic criteria. Eighteen patients (11 males and 7 females) were enrolled. Median age was 41 years (range 23-61 years). All patients had gliomas that progressed after radiation therapy and nitrosourea chemotherapy. The histologic diagnosis of the original tumor was glioblastoma multiforme in 8 patients, anaplastic astrocytoma in 5 patients, astrocytoma in 4 patients and mixed malignant glioma in 1 patient. Reversible moderate to severe neurological toxicity manifested by dizziness and unsteady gait was seen at tamoxifen doses of 240 mg/m2/day. Although the initial tamoxifen dose was reduced to 120 mg/m2/day, moderate neurotoxicity was noted at this dose as well and the trial was closed early. The combination of oral tamoxifen (120 to 240 mg/m2/day) and subcutaneous interferon-alpha [6 x 10(6) U three times per week] was associated with significant neurotoxicity in this group of recurrent glioma patients, resulting in early study closure. Of 16 evaluable patients, 12 had progressive disease after one cycle of treatment, 3 had stable disease, and there was one minor response. Gradual dose escalation may be required if similar patients are to be treated with high dose tamoxifen in conjunction with interferon.
Was tamoxifen tested for treatment of glioma patients?
The combination of oral tamoxifen (120 to 240 mg/m2/day) and subcutaneous interferon-alpha [6 x 10(6) U three times per week] was associated with significant neurotoxicity in this group of recurrent glioma patients, resulting in early study closure.
Anti-tumor necrosis factor alpha (anti-TNF) biologic therapy is a widely used treatment for rheumatoid arthritis (RA). It is unknown why some RA patients fail to respond adequately to anti-TNF therapy, which limits the development of clinical biomarkers to predict response or new drugs to target refractory cases. To understand the biological basis of response to anti-TNF therapy, we conducted a genome-wide association study (GWAS) meta-analysis of more than 2 million common variants in 2,706 RA patients from 13 different collections. Patients were treated with one of three anti-TNF medications: etanercept (n = 733), infliximab (n = 894), or adalimumab (n = 1,071). We identified a SNP (rs6427528) at the 1q23 locus that was associated with change in disease activity score (ΔDAS) in the etanercept subset of patients (P = 8 × 10(-8)), but not in the infliximab or adalimumab subsets (P>0.05). The SNP is predicted to disrupt transcription factor binding site motifs in the 3' UTR of an immune-related gene, CD84, and the allele associated with better response to etanercept was associated with higher CD84 gene expression in peripheral blood mononuclear cells (P = 1 × 10(-11) in 228 non-RA patients and P = 0.004 in 132 RA patients). Consistent with the genetic findings, higher CD84 gene expression correlated with lower cross-sectional DAS (P = 0.02, n = 210) and showed a non-significant trend for better ΔDAS in a subset of RA patients with gene expression data (n = 31, etanercept-treated). A small, multi-ethnic replication showed a non-significant trend towards an association among etanercept-treated RA patients of Portuguese ancestry (n = 139, P = 0.4), but no association among patients of Japanese ancestry (n = 151, P = 0.8). Our study demonstrates that an allele associated with response to etanercept therapy is also associated with CD84 gene expression, and further that CD84 expression correlates with disease activity. These findings support a model in which CD84 genotypes and/or expression may serve as a useful biomarker for response to etanercept treatment in RA patients of European ancestry.
Is CD84 genetically associated with arthritis?
The SNP is predicted to disrupt transcription factor binding site motifs in the 3' UTR of an immune-related gene, CD84, and the allele associated with better response to etanercept was associated with higher CD84 gene expression in peripheral blood mononuclear cells (P = 1 × 10(-11) in 228 non-RA patients and P = 0.004 in 132 RA patients)
Benralizumab is a humanized anti-IL5 receptor α (IL5Rα) monoclonal antibody (mAb) with enhanced (afucosylation) antibody-dependent cell-mediated cytotoxicity (ADCC) function. An ADCC reporter cell-based neutralizing antibody (NAb) assay was developed and characterized to detect NAb against benralizumab in human serum to support the clinical development of benralizumab. The optimal ratio of target cells to effector cells was 3:1. Neither parental benralizumab (fucosylated) nor benralizumab Fab resulted in ADCC activity, confirming the requirement for ADCC activity in the NAb assay. The serum tolerance of the cells was determined to be 2.5%. The cut point derived from normal and asthma serum samples was comparable. The effective range of benralizumab was determined, and 35 ng/mL [80% maximal effective concentration (EC80)] was chosen as the standard concentration to run in the assessment of NAb. An affinity purified goat anti-benralizumab polyclonal idiotype antibody preparation was shown to have NAb since it inhibited ADCC activity in a dose-dependent fashion. The low endogenous concentrations of IL5 and soluble IL5 receptor (sIL5R) did not demonstrate to interfere with the assay. The estimated assay sensitivities at the cut point were 1.02 and 1.10 μg/mL as determined by the surrogate neutralizing goat polyclonal and mouse monoclonal anti-drug antibody (ADA) controls, respectively. The assay can detect NAb (at 2.5 μg/mL) in the presence of 0.78 μg/mL benralizumab. The assay was not susceptible to non-specific matrix effects. This study provides an approach and feasibility of developing an ADCC cell-based NAb assay to support biopharmaceuticals with an ADCC function.
What is mechanism of action of Benralizumab?
Benralizumab is a humanized anti-IL5 receptor α (IL5Rα) monoclonal antibody (mAb) with enhanced (afucosylation) antibody-dependent cell-mediated cytotoxicity (ADCC) function.
The classic concept of the viability thresholds of ischemia differentiates between two critical flow rates, the threshold of electrical failure and the threshold of membrane failure. These thresholds mark the upper and lower flow limits of the ischemic penumbra which is thought to suffer only functional but not structural injury. Recent studies of the functional and metabolic disturbances suggest a more complex pattern of thresholds. At declining flow rates, protein synthesis is inhibited at first (at a threshold of about 0.55 ml/gm/min), followed by a stimulation of anaerobic glycolysis (at 0.35 ml/gm/min), the release of neurotransmitters and the beginning disturbance of energy metabolism (at about 0.20 ml/min), and finally the anoxic depolarization (< 0.15 ml/gm/min). The penumbra, as defined by the classic flow thresholds, does not remain viable for extended periods. Since viability of the tissue requires maintenance of energy-dependent metabolic processes, penumbra is redefined as a region of constrained blood supply in which the energy metabolism is preserved. Imaging of the penumbra by combining autoradiographic cerebral blood flow measurements with bioluminescent images of adenosine triphosphate (ATP) demonstrates a gradual expansion of the infarct core (in which ATP is depleted) into the penumbra until, after a few hours, the penumbra has disappeared. It is suggested that the limited survival of the penumbra is due to periinfarct depolarizations, which result in repeated episodes of tissue hypoxia, because the increased metabolic workload is not coupled to an adequate increase of collateral blood supply. This explains pharmacological suppression of periinfarct depolarizations lowering the threshold of metabolic disturbances and reducing the volume of the ischemic infarct.
Does cortical spreading depression appear in ischemic penumbra following ischemic stroke?
It is suggested that the limited survival of the penumbra is due to periinfarct depolarizations, which result in repeated episodes of tissue hypoxia, because the increased metabolic workload is not coupled to an adequate increase of collateral blood supply.
Thyroid involvement in Williams syndrome (WS) was recently reported in two small groups of patients, both showing an increased prevalence of elevation of TSH serum concentration; in one of the two reports, 70% of the patients demonstrated a hypoplasia of thyroid gland as well. In our institution, we currently follow a large population of WS patients who periodically undergo a multispecialist clinical evaluation that includes ultrasound evaluation of the thyroid gland, and levels of FT3, FT4, TSH, and anti-thyroid antibodies. Here, we report on the prevalence of thyroid structural and functional anomalies, in a population of 95 WS patients, half of them followed for more than 5 years. Our study confirms the increased incidence of both elevated TSH serum values (37.9% in our sample) and thyroid gland hypoplasia (74.7%). Moreover, we demonstrated that TSH elevation declines with age. For this reason, we suggest that a complete thyroid evaluation be performed in every patient with WS, and that this medical complication should be periodically searched for in follow-up visits.
Which hormone abnormalities are common in Williams syndrome ?
Our study confirms the increased incidence of both elevated TSH serum values (37.9% in our sample) and thyroid gland hypoplasia (74.7%).
Research focusing on the canonical adult myogenic progenitor, the skeletal muscle satellite cell, is still an ever-growing field 46 years from their initial description. Recent publications revealed numerous new aspects of satellite cell biology, starting from their developmental life to their role as the principal self-renewing myogenic stem cell in adult skeletal muscle and finally their loss during aging. The myogenic potential of satellite cells is under the molecular control of specific paired-box and bHLH transcription factors whose tightly orchestrated balance accounts for an effective skeletal muscle regeneration. New reports also demonstrate satellite cells relationships with blood vessels and the high myogenic potential of stem cell subsets related to both lineages.
What are the skeletal muscle satellite cells?
Research focusing on the canonical adult myogenic progenitor, the skeletal muscle satellite cell, is still an ever-growing field 46 years from their initial description.
The Melkersson-Rosenthal syndrome consists of a triad of recurrent lip and/or face swelling, fissured tongue, and intermittent facial palsy. Onset of the symptoms may occur during childhood, and treatment of the condition is difficult. We describe two children with Melkersson-Rosenthal syndrome in whom combination treatment with prednisone and minocycline proved effective and well tolerated.
List the classical triad of symptoms of the Melkersson–Rosenthal syndrome.
The Melkersson-Rosenthal syndrome consists of a triad of recurrent lip and/or face swelling, fissured tongue, and intermittent facial palsy.
The c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family and are activated by environmental stress. JNK is also activated by proinflammatory cytokines, such as TNF and IL-1, and Toll-like receptor ligands. This pathway, therefore, can act as a critical convergence point in immune system signaling for both adaptive and innate responses. Like other MAPKs, the JNKs are activated via the sequential activation of protein kinases that includes two dual-specificity MAP kinase kinases (MKK4 and MKK7) and multiple MAP kinase kinase kinases. MAPKs, including JNKs, can be deactivated by a specialized group of phosphatases, called MAP kinase phosphatases. JNK phosphorylates and regulates the activity of transcription factors other than c-Jun, including ATF2, Elk-1, p53 and c-Myc and non-transcription factors, such as members of the Bcl-2 family. The pathway plays a critical role in cell proliferation, apoptosis, angiogenesis and migration. In this review, an overview of the functions that are related to rheumatic diseases is presented. In addition, some diseases in which JNK participates will be highlighted.
Which MAP kinase phosphorylates the transcription factor c-jun?
The c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family and are activated by environmental stress.
Active enhancers in mammals produce enhancer RNAs (eRNAs) that are bidirectionally transcribed, unspliced, and unstable. Enhancer regions are also enriched with long noncoding RNA (lncRNA) transcripts, which are typically spliced and substantially more stable. In order to explore the relationship between these two classes of RNAs, we analyzed DNase hypersensitive sites with evidence of bidirectional transcription, which we termed eRNA-producing centers (EPCs). EPCs found very close to transcription start sites of lncRNAs exhibit attributes of both enhancers and promoters, including distinctive DNA motifs and a characteristic chromatin landscape. These EPCs are associated with higher enhancer activity, driven at least in part by the presence of conserved, directional splicing signals that promote lncRNA production, pointing at a causal role of lncRNA processing in enhancer activity. Together, our results suggest that the conserved ability of some enhancers to produce lncRNAs augments their activity in a manner likely mediated through lncRNA maturation.
What are the eRNA-producing centers (EPCs)?
In order to explore the relationship between these two classes of RNAs, we analyzed DNase hypersensitive sites with evidence of bidirectional transcription, which we termed eRNA-producing centers (EPCs).
The diagnosis and treatment of multiple myeloma (MM) are progressing continuously. This article aims at summarizing the current status in the diagnosis and treatment of MM, emphasizing a clinical point of view. Prognostic factors can be determined by clinical parameters, molecular analyses and patient characteristics (e.g. age and comorbidities). The international staging system (ISS) and cytogenetics, such as the high-risk aberrations 17p deletion, translocation (4;14) and insertion 1q21 > 2 copies, are key factors in risk stratification of MM patients. Induction therapy based on novel agents, namely bortezomib, followed by subsequent high-dose melphalan and autologous stem cell transplantation is considered the standard of care for younger, newly diagnosed MM patients (≤ 70 years). Transplant-ineligible patients should receive thalidomide or bortezomib-based chemotherapy. The combination of bortezomib, melphalan and prednisone (VMP) was shown to significantly improve overall survival (OS) compared to melphalan and prednisone (MP, 56.4 vs. 43.1 months, p = < 0.01). Recent results suggest that lenalidomide-based therapy not incorporating alkylating agents might be a competitive alternative with a favorable toxicity profile for transplant-ineligible patients. Maintenance therapies are of increasing clinical significance in MM as they have the ability to prolong overall survival; however, thalidomide maintenance therapy should not be used in MM patients with high-risk cytogenetics as it shortens OS. Refractory or relapsed MM treatment continues to improve with the development of second and third generation immunomodulatory agents and proteasome inhibitors. For example, pomalidomide and dexamethasone vs. high-dose dexamethasone significantly improved OS (12.7 vs. 8.1 months, p = 0.03). Novel therapy strategies include targeted and stroma-directed approaches. Antibodies targeting CS-1 (elotuzumab) and CD38 (daratumumab) in particular are currently undergoing advanced clinical phase II/III trials.
Which molecule is targeted by Daratumumab?
Antibodies targeting CS-1 (elotuzumab) and CD38 (daratumumab) in particular are currently undergoing advanced clinical phase II/III trials.
Polycystic kidney disease (PKD) includes a group of disorders that are characterized by the presence of cysts in the kidney and other organs, including the pancreas. Here we show that in orpk mice, a model system for PKD that harbors a mutation in the gene that encodes the polaris protein, pancreatic defects start to occur at the end of gestation, with an initial expansion of the developing pancreatic ducts. Ductal dilation continues rapidly after birth and results in the formation of large, interconnected cysts. Expansion of pancreatic ducts is accompanied by apoptosis of neighboring acinar cells, whereas endocrine cell differentiation and islet formation appears to be unaffected. Polaris has been shown to co-localize with primary cilia, and these structures have been implicated in the formation of renal cysts. In the orpk pancreas, cilia numbers are reduced and cilia length is decreased. Expression of polycystin-2, a protein involved in PKD, is mislocalized in orpk mice. Furthermore, the cellular localization of beta-catenin, a protein involved in cell adhesion and Wnt signaling, is altered. Thus, polaris and primary cilia function are required for the maturation and maintenance of proper tissue organization in the pancreas.
Which is the most common disease attributed to malfunction or absence of primary cilia?
Polaris has been shown to co-localize with primary cilia, and these structures have been implicated in the formation of renal cysts
Allgrove syndrome (triple A syndrome) is an autosomal recessive disorder characterised by adrenocortical insufficiency, achalasia and alacrima. Patients also suffer from diverse neurological disorders. Allgrove syndrome is caused by mutations in the AAAS gene located at chromosome 12q13, which encodes for a tryptophan-aspartic acid (WD) repeat protein (aladin). The exact function of this protein is still not known.
List symptoms of Allgrove syndrome.
Allgrove syndrome (triple A syndrome) is an autosomal recessive disorder characterised by adrenocortical insufficiency, achalasia and alacrima.
Hereditary angioedema (HAE) manifests as intermittent, painful attacks of submucosal oedema affecting the larynx, gastrointestinal tract or limbs. Currently, acute treatment is available in Europe but not USA, and requires intravenous administration of a pooled blood product. HAE is most likely caused by dysinhibition of the contact cascade, resulting in overproduction of bradykinin. DX-88 (ecallantide, Dyax Corp.) is a highly specific recombinant plasma kallikrein inhibitor that halts the production of bradykinin and can be dosed subcutaneously. In a placebo-controlled Phase II trial in patients with HAE, DX-88 resulted in significant improvement in symptoms compared with placebo. A Phase III trial is ongoing. This review explains the pathophysiology of HAE and the mechanism by which DX-88, a non-intravenous, nonplasma-derived therapy, might improve the disease, and discusses the clinical course of HAE and available treatments. Finally, it explores the potential value and efficacy of DX-88 in treating HAE.
DX-88 is investigational name of which drug?
DX-88 (ecallantide, Dyax Corp.) is a highly specific recombinant plasma kallikrein inhibitor that halts the production of bradykinin and can be dosed subcutaneously.
In animals, RNA binding proteins (RBPs) and microRNAs (miRNAs) post-transcriptionally regulate the expression of virtually all genes by binding to RNA. Recent advances in experimental and computational methods facilitate transcriptome-wide mapping of these interactions. It is thought that the combinatorial action of RBPs and miRNAs on target mRNAs form a post-transcriptional regulatory code. We provide a database that supports the quest for deciphering this regulatory code. Within doRiNA, we are systematically curating, storing and integrating binding site data for RBPs and miRNAs. Users are free to take a target (mRNA) or regulator (RBP and/or miRNA) centric view on the data. We have implemented a database framework with short query response times for complex searches (e.g. asking for all targets of a particular combination of regulators). All search results can be browsed, inspected and analyzed in conjunction with a huge selection of other genome-wide data, because our database is directly linked to a local copy of the UCSC genome browser. At the time of writing, doRiNA encompasses RBP data for the human, mouse and worm genomes. For computational miRNA target site predictions, we provide an update of PicTar predictions.
What is the doRiNA database?
At the time of writing, doRiNA encompasses RBP data for the human, mouse and worm genomes
Musclin is a novel skeletal muscle-derived secretory factor, whose mRNA level is markedly regulated by nutritional status. In the present study, we investigated the mechanism of musclin mRNA regulation by insulin. In C2C12 myocytes, insulin-induced upregulation of musclin mRNA was significantly decreased by treatment of phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, and was abolished in C2C12 myocytes stably expressing a constitutively active Foxo1 (Foxo1-3A), suggesting the involvement of Foxo1 in the regulation of musclin mRNA. Promoter deletion analysis of musclin promoter revealed that the region of -303/-123 is important for the repression of promoter activity by Foxo1. Chromatin immunoprecipitation assay showed that Foxo1 bound to musclin promoter. Musclin mRNA level was markedly downregulated in gastrocnemius muscle of Foxo1 transgenic mice. Our results demonstrated that Foxo1 downregulates musclin mRNA expression both in vitro and in vivo, which should explain insulin-mediated upregulation of this gene in muscle cells.
Is Musclin a secretory peptide?
Musclin is a novel skeletal muscle-derived secretory factor,
Musclin is a type of muscle-secreted cytokine and its increased gene expression induces insulin resistance in type 2 diabetes. However, the mechanism underlying increased musclin gene expression is currently unclear. Excessive saturated fatty acids (SFA) can activate the secretion of several muscle-secreted cytokines as well as endoplasmic reticulum (ER) stress pathway, thereby contributing to the development of type 2 diabetes. The purpose of this study was to investigate the mechanisms responsible for the effect of palmitate, the most abundant SFA in the plasma, on the gene expression of musclin in C2C12 myotubes. Treatment of C2C12 myotubes with palmitate or tunicamycin significantly increased the expression of musclin as well as ER stress-related genes, but treatment with oleate did not. Pre-treatment of C2C12 myotubes with 4-phenyl butyrate suppressed the expression of ER stress-related genes, simultaneously, resulting in decreased expression of the musclin gene induced by palmitate or tunicamycin. These results indicate that ER stress is related to palmitate-induced musclin gene expression. Moreover, palmitate-induced musclin gene expression was significantly inhibited in C2C12 myotubes when PERK pathway signaling was suppressed by knockdown of the PERK gene or treatment with GSK2656157, a PERK autophosphorylation inhibitor. However, there was no difference in the palmitate-induced musclin gene expression when IRE1 and ATF6 signaling pathways were suppressed by knockdown of the IRE1 and ATF6 genes. These findings suggest that palmitate increases musclin gene expression via the activation of the PERK signaling pathway in C2C12 myotubes.
Is Musclin a secretory peptide?
Musclin is a type of muscle-secreted cytokine and its increased gene expression induces insulin resistance in type 2 diabetes.
The lack of specific randomized trials enrolling either old or very old subjects, aimed at evaluate the efficacy of hormonal replacement on overall survival and cardiovascular risk reduction along with the negative effects of possible over-treatment, makes the decision to treat older people a still unresolved clinical challenge. Moreover, the possibility that restoring euthyroidism may be harmful in the elderly should be always taken into account.
is pharmacological treatment of subclinical hypothyroidism effective in reducing cardiovascular events?
The lack of specific randomized trials enrolling either old or very old subjects, aimed at evaluate the efficacy of hormonal replacement on overall survival and cardiovascular risk reduction along with the negative effects of possible over-treatment, makes the decision to treat older people a still unresolved clinical challenge
Migraine is a highly prevalent, severe, and disabling neurological condition with a significant unmet need for effective acute therapies. Patients (~50%) are dissatisfied with their currently available therapies. Calcitonin gene-related peptide (CGRP) has emerged as a key neuropeptide involved in the pathophysiology of migraines. As reviewed in this manuscript, a number of small molecule antagonists of the CGRP receptor have been developed for migraine therapy. Incredibly, the majority of the clinical trials conducted have proven positive, demonstrating the importance of this signalling pathway in migraine. Unfortunately, a number of these molecules raised liver toxicity concerns when used daily for as little as 7 days resulting in their discontinuation. Despite the clear safety concerns, clinical trial data suggests that their intermittent use remains a viable and safe alternative, with 2 molecules remaining in clinical development (ubrogepant and rimegepant). Further, these proofs of principle studies identifying CGRP as a viable clinical target have led to the development of several CGRP or CGRP receptor-targeted monoclonal antibodies that continue to show good clinical efficacy.
Is Ubrogepant effective for migraine?
Despite the clear safety concerns, clinical trial data suggests that their intermittent use remains a viable and safe alternative, with 2 molecules remaining in clinical development (ubrogepant and rimegepant).
Here, we report a large-scale analysis of spatial, i.e. 3D, gene-expression data from an entire organ (the mouse brain) for the purpose of evaluating and ranking positional candidate genes, showing that the spatial gene-expression patterns can be successfully exploited for the prediction of gene-phenotype associations not only for mouse phenotypes, but also for human central nervous system-related Mendelian disorders. We apply our method to the case of X-linked mental retardation, compare the predictions to the results obtained from a previous large-scale resequencing study of chromosome X and discuss some promising novel candidates.
Which are the most common methods for gene prioritization analysis?
Here, we report a large-scale analysis of spatial, i.e. 3D, gene-expression data from an entire organ (the mouse brain) for the purpose of evaluating and ranking positional candidate genes, showing that the spatial gene-expression patterns can be successfully exploited for the prediction of gene-phenotype associations not only for mouse phenotypes, but also for human central nervous system-related Mendelian disorders
Bronchopneumonia is a common multiple infection disease under 2 years old. Luteolin is a natural flavonoid widely distributed in plants with anti-inflammatory effect. This study aimed to explore the effects of luteolin on lipopolysaccharide (LPS)-induced bronchopneumonia injury in vitro and in vivo. Firstly, the viability and apoptosis of human bronchial epithelial BEAS-2B cells after luteolin treatment were assessed. Then, cells were treated with 10 μM LPS to simulate inflammatory injury. The potential protective effects of luteolin on LPS-induced BEAS-2B cell inflammatory injury were detected. Moreover, after LPS and/or luteolin treatment, the expression of microRNA-132 (miR-132) in BEAS-2B cells was measured. The roles of miR-132 in protective activity of luteolin were investigated. Finally, the LPS-induced bronchopneumonia murine model was established and the anti-inflammatory effects of luteolin in vivo were analyzed. The results showed that LPS decreased BEAS-2B cell viability, increased cell apoptosis and enhanced inflammatory cytokines expression. Luteolin alleviated the LPS-induced viability loss, apoptosis and elevated expression of inflammatory cytokines in a dose-dependent manner. Moreover, luteolin alleviated the LPS-induced miR-132 expression increase in BEAS-2B cells. Overexpression of miR-132 reversed the protective effects of luteolin on LPS-induced inflammatory injury. Mechanistically, luteolin mitigated LPS-induced activation of NF-κB signaling pathway by down-regulation of miR-132. Furthermore, we also found that luteolin alleviated LPS-induced bronchopneumonia model in vivo. In conclusion, this study revealed that luteolin alleviated LPS-induced bronchopneumonia injury in vitro and in vivo through down-regulating miR-132. These findings provide theoretical basis for deeply exploring the treatment of bronchopneumonia in children by using luteolin.
What is Luteolin?
common multiple infection disease under 2 years old. Luteolin is a natural flavonoid widely distributed in plants with anti-inflammatory effect. This
HercepTestTM (DAKO A/S, Glostrup, Denmark) is an immunohistochemical assay that detects HER2/neu gene products, and evaluates the overexpression status of the HER2/neu protein in determining eligibility for the Trastuzumab (HerceptinR, Genentech, San Francisco, CA, USA) therapy. However, practically, interobserver variability of the HER2/neu interpretation of the immunostained results has caused marked disagreement with regard to the intensity of tumor staining. In this study, we quantitated HER2/neu expression by image analysis, and applied this analyzing system to help to minimize interobserver variability of the interpretation of the HercepTestTM. All the immunostained results were scored semiquantitatively on a range of 0 to 3+ in accordance with the criteria described as per the manufacturer's instructions, and quantitatively evaluated using an image analyzing system with image processing software. Among the 92 cases, 15 were scored as 3+, six were 2+, and 32 were 1+ under intraobservers agreement. When the cases were quantitated, a high correlation was shown between the signal area extracted by image analysis and the corresponding score of staining intensity with the HercepTestTM. By converting the quantitatively extracted data into a scoring system based upon the criteria, the outcome demonstrated a strong concordance with the scoring data obtained from immunostaining. The results indicated that a quantitative scoring system performed by simple image analysis may provide to improve interobserver agreement of the interpretation of the HercepTest TM in clinical practice.
Does HER2 under-expression lead to favorable response to trastuzumab?
HercepTestTM (DAKO A/S, Glostrup, Denmark) is an immunohistochemical assay that detects HER2/neu gene products, and evaluates the overexpression status of the HER2/neu protein in determining eligibility for the Trastuzumab (HerceptinR, Genentech, San Francisco, CA, USA) therapy.
Over the past decade a small evidence base has highlighted the potential importance of seemingly innocuous variables related to one's hands, such as hand dominance and the relative length of the second and fourth digits (2D:4D ratio), to success in sport. This study compared 2D:4D digit ratio and handedness among handball players selected to advance in a national talent development system with those not selected. Participants included 480 youth handball players (240 females and 240 males) being considered as part of the talent selection programme for the German Youth National team. Hand dominance and digit ratio were compared to age-matched control data using standard t-tests. There was a greater proportion of left-handers compared to the normal population in males but not in females. There was also a lower digit ratio in both females and males. However, there were no differences between those selected for the next stage of talent development and those not selected on either handedness or digit ratio. These results add support for general effects for both digit ratio and handedness in elite handball; however, these factors seem inadequate to explain talent selection decisions at this level.
What is 2d 4d ratio in athletes.
There was also a lower digit ratio in both females and males.
The organic cation transporter 3 (OCT3; synonymous: extraneuronal monoamine transporter, EMT, Slc22a3) encodes an isoform of the organic cation transporters and is expressed widely across the whole brain. OCTs are a family of high-capacity, bidirectional, multispecific transporters of organic cations. These also include serotonin, dopamine and norepinephrine making OCTs attractive candidates for a variety of neuropsychiatric disorders including anxiety disorders. OCT3 has been implicated in termination of monoaminergic signalling in the central nervous system. Interestingly, OCT3 mRNA is however also significantly up-regulated in the hippocampus of serotonin transporter knockout mice where it might serve as an alternative reuptake mechanism for serotonin. The examination of the behavioural phenotype of OCT3 knockout mice thus is paramount to assess the role of OCT3. We have therefore subjected mice lacking the OCT3 gene to a comprehensive behavioural test battery. While cognitive functioning in the Morris water maze test and aggression levels measured with the resident-intruder paradigm were in the same range as the respective control animals, OCT3 knockout animals showed a tendency of increased activity and were significantly less anxious in the elevated plus-maze test and the open field test as compared to their respective wild-type controls arguing for a role of OCT3 in the regulation of fear and anxiety, probably by modulating the serotonergic tone in limbic circuitries.
Is SLC22A3 expressed in the brain?
The organic cation transporter 3 (OCT3; synonymous: extraneuronal monoamine transporter, EMT, Slc22a3) encodes an isoform of the organic cation transporters and is expressed widely across the whole brain.
Exercise-induced oxidative stress is implicated in muscle damage and fatigue which has led athletes to embark on antioxidant supplementation regimes to negate these effects. This study investigated the intake of vitamin C (VC) (1 g), blackcurrant (BC) juice (15 mg VC, 300 mg anthocyanins) and placebo in isocaloric drink form on training progression, incremental running test and 5-km time-trial performance. Twenty-three trained female runners (age, 31 ± 8 y; mean ± SD) completed three blocks of high-intensity training for 3 wks and 3 days, separated by a washout (~3.7 wks). Changes in training and performance with each treatment were analysed with a mixed linear model, adjusting for performance at the beginning of each training block. Markers of oxidative status included protein carbonyl, malondialdehyde (in plasma and in vitro erythrocytes), ascorbic acid, uric acid and erythrocyte enzyme activity of superoxide dismutase, catalase and glutathione peroxidase were analysed. There was a likely harmful effect on mean running speed during training when taking VC (1.3%; 90% confidence limits ±1.3%). Effects of the two treatments relative to placebo on mean performance in the incremental test and time trial were unclear, but runners faster by 1 SD of peak speed demonstrated a possible improvement on peak running speed with BC juice (1.9%; ±2.5%). Following VC, certain oxidative markers were elevated: catalase at rest (23%; ±21%), protein carbonyls at rest (27%; ±38%) and superoxide dismutase post-exercise (8.3%; ±9.3%). In conclusion, athletes should be cautioned about taking VC chronically, however, BC may improve performance in the elite.
Which are the supplemental antioxidant in athletes?
Effects of the two treatments relative to placebo on mean performance in the incremental test and time trial were unclear, but runners faster by 1 SD of peak speed demonstrated a possible improvement on peak running speed with BC juice (1.9%; ±2.5%).
CTCF sites are abundant in the genomes of diverse species but their function is enigmatic. We used chromosome conformation capture to determine long-range interactions among CTCF/cohesin sites over 2 Mb on human chromosome 11 encompassing the beta-globin locus and flanking olfactory receptor genes. Although CTCF occupies these sites in both erythroid K562 cells and fibroblast 293T cells, the long-range interaction frequencies among the sites are highly cell type specific, revealing a more densely clustered organization in the absence of globin gene activity. Both CTCF and cohesins are required for the cell-type-specific chromatin conformation. Furthermore, loss of the organizational loops in K562 cells through reduction of CTCF with shRNA results in acquisition of repressive histone marks in the globin locus and reduces globin gene expression whereas silent flanking olfactory receptor genes are unaffected. These results support a genome-wide role for CTCF/cohesin sites through loop formation that both influences transcription and contributes to cell-type-specific chromatin organization and function.
Does the CTCF protein co-localize with cohesin?
We used chromosome conformation capture to determine long-range interactions among CTCF/cohesin sites over 2 Mb on human chromosome 11 encompassing the beta-globin locus and flanking olfactory receptor genes
Honey bee research is believed to be influenced dramatically by colony collapse disorder (CCD) and the sequenced genome release in 2006, but this assertion has never been tested. By employing text-mining approaches, research trends were tested by analyzing over 14,000 publications during the period of 1957 to 2017. Quantitatively, the data revealed an exponential growth until 2010 when the number of articles published per year ceased following the trend. Analysis of author-assigned keywords revealed that changes in keywords occurred roughly every decade with the most fundamental change in 1991-1992, instead of 2006. This change might be due to several factors including the research intensification on the mite. The genome release and CCD had quantitively only minor effects, mainly on honey bee health-related topics post-2006. Further analysis revealed that computational topic modeling can provide potentially hidden information and connections between some topics that might be ignored in author-assigned keywords.
Is the Apis mellifera genome available?
Honey bee research is believed to be influenced dramatically by colony collapse disorder (CCD) and the sequenced genome release in 2006, but this assertion has never been tested.
Adult grade II low-grade gliomas (LGG) are classified according to the WHO as astrocytomas, oligodendrogliomas or mixed gliomas. TP53 mutations and 1p19q codeletion are the main molecular abnormalities recorded, respectively, in astrocytomas and oligodendrogliomas and in mixed gliomas. Although IDH mutations (IDH1 or IDH2) are recorded in up to 85 % of low-grade gliomas, IDH negative gliomas do occur. We have searched for p53 expression, 1p19q codeletion and IDH status (immunohistochemical detection of the common R132H IDH1 mutation and IDH direct sequencing). Internexin alpha (INA) expression previously recorded to be associated with 1p19q codeletion (1p19q+) gliomas was also analysed. Low-grade gliomas were accurately classified into four groups: group 1, IDH+/p53-/1p19q-; group 2, IDH+/p53-/1p19q+; group 3, IDH+/p53+/1p19q-; and group 4, triple negative gliomas. In contrast to the WHO classification, this molecular classification predicts overall survival on uni- and multivariate analysis (P = 0.001 and P = 0.007, respectively). Group 4 carries the worst prognosis and group 2 the best. Interestingly, p53 +/INA- expression predicts lack of 1p19q codeletion (specificity 100 %, VPP 100 %). The combined use of these three molecular markers allow for an accurate prediction of survival in LGG. These findings could significantly modify LGG classification and may represent a new tool to guide patient-tailored therapy. Moreover, immunohistochemical detection of p53, INA and mR132H IDH1 expression could represent an interesting prescreening test to be performed before 1p19q codeletion, IDH1 minor mutation and IDH2 mutation detection.
How are triple negative gliomas characterized?
Low-grade gliomas were accurately classified into four groups: group 1, IDH+/p53-/1p19q-; group 2, IDH+/p53-/1p19q+; group 3, IDH+/p53+/1p19q-; and group 4, triple negative gliomas.
In Aspergillus nidulans, loss-of-function mutations in the uapA and azgA genes, encoding the major uric acid-xanthine and hypoxanthine-adenine-guanine permeases, respectively, result in impaired utilization of these purines as sole nitrogen sources. The residual growth of the mutant strains is due to the activity of a broad specificity purine permease. We have identified uapC, the gene coding for this third permease through the isolation of both gain-of-function and loss-of-function mutations. Uptake studies with wild-type and mutant strains confirmed the genetic analysis and showed that the UapC protein contributes 30% and 8-10% to uric acid and hypoxanthine transport rates, respectively. The uapC gene was cloned, its expression studied, its sequence and transcript map established, and the sequence of its putative product analyzed. uapC message accumulation is: (i) weakly induced by 2-thiouric acid; (ii) repressed by ammonium; (iii) dependent on functional uaY and areA regulatory gene products (mediating uric acid induction and nitrogen metabolite repression, respectively); (iv) increased by uapC gain-of-function mutations which specifically, but partially, suppress a leucine to valine mutation in the zinc finger of the protein coded by the areA gene. The putative uapC gene product is a highly hydrophobic protein of 580 amino acids (M(r) = 61,251) including 12-14 putative transmembrane segments. The UapC protein is highly similar (58% identity) to the UapA permease and significantly similar (23-34% identity) to a number of bacterial transporters. Comparisons of the sequences and hydropathy profiles of members of this novel family of transporters yield insights into their structure, functionally important residues, and possible evolutionary relationships.
List representatives of the major fungal hypoxanthine-adenine-guanine transporter families.
In Aspergillus nidulans, loss-of-function mutations in the uapA and azgA genes, encoding the major uric acid-xanthine and hypoxanthine-adenine-guanine permeases, respectively, result in impaired utilization of these purines as sole nitrogen sources.
A neonate born to an Ebola virus-positive woman was diagnosed with Ebola virus infection on her first day of life. The patient was treated with monoclonal antibodies (ZMapp), a buffy coat transfusion from an Ebola survivor, and the broad-spectrum antiviral GS-5734. On day 20, a venous blood specimen tested negative for Ebola virus by quantitative reverse-transcription polymerase chain reaction. The patient was discharged in good health on day 33 of life. Further follow-up consultations showed age-appropriate weight gain and neurodevelopment at the age of 12 months. This patient is the first neonate documented to have survived congenital infection with Ebola virus.
Which disease is treated with ZMapp?
The patient was treated with monoclonal antibodies (ZMapp), a buffy coat transfusion from an Ebola survivor, and the broad-spectrum antiviral GS-5734.
Omecamtiv mecarbil (OM), an activator of cardiac myosin, strongly affects contractile characteristics of the ventricles and, to a much lesser extent, the characteristics of atrial contraction. We compared the molecular mechanism of action of OM on the interaction of atrial and ventricular myosin with actin using an optical trap and an in vitro motility assay. In concentrations up to 0.5 μM, OM did not affect the step size of a myosin molecule but reduced it at a higher OM level. OM substantially prolonged the interaction of both isoforms of myosin with actin. However, the interaction characteristics of ventricular myosin with actin were more sensitive to OM than those of atrial myosin. Our results, obtained at the level of isolated proteins, can explain why the impact of OM in therapeutic concentrations on the contractile function of the atrium is less significant as compared to those of the ventricle.
Describe the mechanism of action of Omecamtiv Mecarbil.
Omecamtiv mecarbil (OM), an activator of cardiac myosin, strongly affects contractile characteristics of the ventricles and, to a much lesser extent, the characteristics of atrial contraction.
The imprinted H19 gene product is an oncofetal RNA molecule in humans. It is expressed in fetal bladder, down-regulated postnatally and is re-expressed in human bladder carcinoma. This study was designed to investigate the dynamics of the expression of H19 in the mouse bladder carcinoma induced by N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) and its relation to stages of neoplastic transformation. BBN was administered to mice in the drinking water for 26-28 weeks. The bladders were removed at 5-10 week intervals for histopathological examination and for in situ hybridization for H19 RNA, using a 35S-labeled probe. Following BBN administration expression of H19 first appeared after 5 weeks in the lamina propria adjacent to the basement membrane, concomitant with mucosal hyperplasia. At 11 weeks focal expression was noted in epithelial cells. Invasive carcinomas, of the transitional and squamous sub-types, were seen after 20 weeks and more of BBN administration. At this stage H19 expression was observed in scattered tumor cells, in the connective tissue stroma of the tumor and in the lamina propria underlying the remaining hyperplastic/dysplastic mucosa. Abundant expression of H19 was evident in fetal bladder but was absent in normal adult bladder. We conclude that, similar to humans, the H19 gene product is an oncofetal RNA molecule in the experimental mouse model of bladder carcinoma. In this model H19 is expressed in the connective tissue of the lamina propria prior to its expression in epithelial cells, concurrent with preneoplastic changes in the transitional epithelium of the bladder.
Which are the most abundant human lincRNA?
Abundant expression of H19 was evident in fetal bladder but was absent in normal adult bladder
Surgical or pharmacologic methods to control gonadal androgen biosynthesis are effective approaches in the treatment of a variety of non-neoplastic and neoplastic diseases. For example, androgen ablation and its consequent reduction in circulating levels of testosterone is an effective therapy for advanced prostate cancers. Unfortunately, the therapeutic effectiveness of this approach is often temporary because of disease progression to the 'castration resistant' (CRPC) state, a situation for which there are limited treatment options. One mechanism thought to be responsible for the development of CRPC is extra-gonadal androgen synthesis and the resulting impact of these residual extra-gonadal androgens on prostate tumor cell proliferation. An important enzyme responsible for the synthesis of extra-gonadal androgens is CYP17A1 which possesses both 17,20-lyase and 17-hydroxylase catalytic activities with the 17,20-lyase activity being key in the androgen biosynthetic process. Orteronel (TAK-700), a novel, selective, and potent inhibitor of 17,20-lyase is under development as a drug to inhibit androgen synthesis. In this study, we quantified the inhibitory activity and specificity of orteronel for testicular and adrenal androgen production by evaluating its effects on CYP17A1 enzymatic activity, steroid production in monkey adrenal cells and human adrenal tumor cells, and serum levels of dehydroepiandrosterone (DHEA), cortisol, and testosterone after oral dosing in castrated and intact male cynomolgus monkeys. We report that orteronel potently suppresses androgen production in monkey adrenal cells but only weakly suppresses corticosterone and aldosterone production; the IC(50) value of orteronel for cortisol was ~3-fold higher than that for DHEA. After single oral dosing, serum levels of DHEA, cortisol, and testosterone were rapidly suppressed in intact cynomolgus monkeys. In castrated monkeys treated twice daily with orteronel, suppression of DHEA and testosterone persisted throughout the treatment period. In both in vivo models and in agreement with our in vitro data, suppression of serum cortisol levels following oral dosing was less than that seen for DHEA. In terms of human CYP17A1 and human adrenal tumor cells, orteronel inhibited 17,20-lyase activity 5.4 times more potently than 17-hydroxylase activity in cell-free enzyme assays and DHEA production 27 times more potently than cortisol production in human adrenal tumor cells, suggesting greater specificity of inhibition between 17,20-lyase and 17-hydroxylase activities in humans vs monkeys. In summary, orteronel potently inhibited the 17,20-lyase activity of monkey and human CYP17A1 and reduced serum androgen levels in vivo in monkeys. These findings suggest that orteronel may be an effective therapeutic option for diseases where androgen suppression is critical, such as androgen sensitive and CRPC.
Which enzyme is inhibited by Orteronel?
In summary, orteronel potently inhibited the 17,20-lyase activity of monkey and human CYP17A1 and reduced serum androgen levels in vivo in monkeys.
The accelerated development of systemic lupus erythematosus (SLE) in BXSB male mice is associated with the presence of an as yet unidentified mutant gene, Yaa (Y-linked autoimmune acceleration). In view of a possible role of marginal zone (MZ) B cells in murine SLE, we have explored whether the expression of the Yaa mutation affects the differentiation of MZ and follicular B cells, thereby implicating the acceleration of the disease. In this study, we show that both BXSB and C57BL/6 Yaa mice, including two different substrains of BXSB Yaa males that are protected from SLE, displayed an impaired development of MZ B cells early in life. Studies in bone marrow chimeras revealed that the loss of MZ B cells resulted from a defect intrinsic to B cells expressing the Yaa mutation. The lack of selective expansion of MZ B cells in diseased BXSB Yaa males strongly argues against a major role of MZ B cells in the generation of pathogenic autoantibodies in the BXSB model of SLE. Furthermore, a comparative analysis with mice deficient in CD22 or expressing an IgM anti-trinitrophenyl/DNA transgene suggests that the hyperreactive phenotype of Yaa B cells, as judged by a markedly increased spontaneous IgM secretion, is likely to contribute to the enhanced maturation toward follicular B cells and the block in the MZ B cell generation.
Which diseases are associated with the Yaa gene?
The accelerated development of systemic lupus erythematosus (SLE) in BXSB male mice is associated with the presence of an as yet unidentified mutant gene, Yaa (Y-linked autoimmune acceleration). In vi
Release of extracellular vesicles (EVs) is a common feature among eukaryotes, archaea, and bacteria. However, the biogenesis and downstream biological effects of EVs released from gram-positive bacteria remain poorly characterized. Here, we report that EVs purified from a community-associated methicillin-resistant strain were internalized into human macrophages in vitro and that this process was blocked by inhibition of the dynamin-dependent endocytic pathway. Human macrophages responded to EVs by TLR2 signaling and activation of NLRP3 inflammasomes through K efflux, leading to the recruitment of ASC and activation of caspase-1. Cleavage of pro-interleukin (IL)-1β, pro-IL-18, and gasdermin-D by activated caspase-1 resulted in the cellular release of the mature cytokines IL-1β and IL-18 and induction of pyroptosis. Consistent with this result, a dose-dependent cytokine response was detected in the extracellular fluids of mice challenged intraperitoneally with EVs. Pore-forming toxins associated with EVs were critical for NLRP3-dependent caspase-1 activation of human macrophages, but not for TLR2 signaling. In contrast, EV-associated lipoproteins not only mediated TLR2 signaling to initiate the priming step of NLRP3 activation but also modulated EV biogenesis and the toxin content of EVs, resulting in alterations in IL-1β, IL-18, and caspase-1 activity. Collectively, our study describes mechanisms by which EVs induce inflammasome activation and reveals an unexpected role of staphylococcal lipoproteins in EV biogenesis. EVs may serve as a novel secretory pathway for to transport protected cargo in a concentrated form to host cells during infections to modulate cellular functions.
Are Gram positive bacteria able to release extracellular vesicles?
Release of extracellular vesicles (EVs) is a common feature among eukaryotes, archaea, and bacteria. However, the biogenesis and downstream biological effects of EVs released from gram-positive bacteria remain poorly characterized.
The human thymine-DNA glycosylase has a sequence homolog in Escherichia coli that is described to excise uracils from U.G mismatches (Gallinari, P., and Jiricny, J. (1996) Nature 383, 735-738) and is named mismatched uracil glycosylase (Mug). It has also been described to remove 3,N(4)-ethenocytosine (epsilonC) from epsilonC.G mismatches (Saparbaev, M., and Laval, J. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 8508-8513). We used a mug mutant to clarify the role of this protein in DNA repair and mutation avoidance. We find that inactivation of mug has no effect on C to T or 5-methylcytosine to T mutations in E. coli and that this contrasts with the effect of ung defect on C to T mutations and of vsr defect on 5-methylcytosine to T mutations. Even under conditions where it is overproduced in cells, Mug has little effect on the frequency of C to T mutations. Because uracil-DNA glycosylase (Ung) and Vsr are known to repair U.G and T.G mismatches, respectively, we conclude that Mug does not repair U.G or T.G mismatches in vivo. A defect in mug also has little effect on forward mutations, suggesting that Mug does not play a role in avoiding mutations due to endogenous damage to DNA in growing E. coli. Cell-free extracts from mug(+) ung cells show very little ability to remove uracil from DNA, but can excise epsilonC. The latter activity is missing in extracts from mug cells, suggesting that Mug may be the only enzyme in E. coli that can remove this mutagenic adduct. Thus, the principal role of Mug in E. coli may be to help repair damage to DNA caused by exogenous chemical agents such as chloroacetaldehyde.
What is the role of mismatched uracil glycosylase (Mug) in DNA repair?
excise epsilonC. The latter activity is missing in extracts from mug cells, suggesting that Mug may be the only enzyme in E. coli that can remove this mutagenic adduct.
Shift work is a term that applies to a wide array of nontraditional work schedules. Shift work disorder (SWD) is a circadian rhythm sleep disorder experienced by a subset of shift workers that is characterized by excessive sleepiness during work and/or insomnia during scheduled sleep times. It is estimated to affect up to 2 million Americans, and is associated with increased morbidity and mortality from metabolic risk factors, cardiovascular and gastrointestinal diseases, depression, accidents, and some kinds of cancers. Patient history is all that is needed to make a diagnosis with the International Classification of Sleep Disorders-Second Edition criteria as described herein. Circadian rhythm disorders, in which an underlying misalignment of circadian rhythm with the sleep-wake cycle occurs, may be treated by behavioral and pharmacologic approaches, including the use of hypnotics to improve the duration of sleep. However, evidence is limited with these approaches in patients diagnosed with SWD. Other treatment options may include pharmacologic interventions such as modafinil and armodafinil, which have shown efficacy in this population. Combined therapy can reduce insomnia and excessive sleepiness, and improve attention and alertness during work shifts and the subsequent commute home.
Is armodafinil used for treatment of insomnia?
Other treatment options may include pharmacologic interventions such as modafinil and armodafinil, which have shown efficacy in this population.
Since large animal transgenesis has been successfully attempted for the first time about 25 years ago, the technology has been applied in various lines of transgenic pigs. Nevertheless one of the concerns with the technology--animal welfare--has not been approached through systematic assessment and statements regarding the welfare of transgenic pigs have been based on anecdotal observations during early stages of transgenic programs. The main aim of the present study was therefore to perform an extensive welfare assessment comparing heterozygous transgenic animals expressing GFP with wildtype animals along various stages of post natal development. The protocol used covered reproductory performance and behaviour in GFP and wildtype sows and general health and development, social behaviour, exploratory behaviour and emotionality in GFP and wildtype littermates from birth until an age of roughly 4 months. The absence of significant differences between GFP and wildtype animals in the parameters observed suggests that the transgenic animals in question are unlikely to suffer from deleterious effects of transgene expression on their welfare and thus support existing anecdotal observations of pigs expressing GFP as healthy. Although the results are not surprising in the light of previous experience, they give a more solid fundament to the evaluation of GFP expression as being relatively non-invasive in pigs. The present study may furthermore serve as starting point for researchers aiming at a systematic characterization of welfare relevant effects in the line of transgenic pigs they are working with.
Has the protein GFP been used in transgenesis for live protein imaging?
transgenic animals expressing GFP with wildtype animals along various stages of post natal development
Background Calcitonin gene-related peptide plays an important role in migraine pathophysiology. Erenumab, a human monoclonal antibody that inhibits the calcitonin gene-related peptide receptor, is being evaluated for migraine prevention. Methods In this randomized, double-blind, placebo-controlled, phase 3 study, 577 adults with episodic migraine were randomized to placebo or 70 mg erenumab; 570 patients were included in efficacy analyses. Primary endpoint was change in monthly migraine days. Secondary endpoints were ≥50% reduction in monthly migraine days, change in acute migraine-specific medication treatment days, and ≥5-point reduction in Physical Impairment and Impact on Everyday Activities domain scores measured by the Migraine Physical Function Impact Diary. All endpoints assessed change from baseline at month 3. Results Patients receiving erenumab experienced -2.9 days change in monthly migraine days, compared with -1.8 days for placebo, least-squares mean (95% CI) treatment difference of -1.0 (-1.6, -0.5) ( p < 0.001). A ≥ 50% reduction in monthly migraine days was achieved by 39.7% (erenumab) and 29.5% (placebo) of patients (OR:1.59 (95% CI: 1.12, 2.27) ( p = 0.010). Migraine-specific medication treatment days were reduced by -1.2 (erenumab) and -0.6 (placebo) days, a treatment difference of -0.6 (-1.0, -0.2) ( p = 0.002). The ≥5-point reduction rates in Migraine Physical Function Impact Diary - Physical Impairment were 33.0% and 27.1% (OR:1.33 (0.92, 1.90) ( p = 0.13) and in Migraine Physical Function Impact Diary - Everyday Activities were 40.4% and 35.8% (OR:1.22 (0.87, 1.71) ( p = 0.26). Safety and adverse event profiles of erenumab were similar to placebo. Most frequent adverse events were upper respiratory tract infection, injection site pain, and nasopharyngitis. Conclusions As a preventive treatment of episodic migraine, erenumab at a dosage of 70 mg monthly significantly reduced migraine frequency and acute migraine-specific medication use. (Funded by Amgen). Trial registration ClinicalTrials.gov, NCT02483585.
What is the use of erenumab?
Erenumab, a human monoclonal antibody that inhibits the calcitonin gene-related peptide receptor, is being evaluated for migraine prevention.
Annexins are a family of proteins that bind phospholipids in a calcium-dependent manner. Analysis of the sequences of the different members of the annexin family revealed the presence of a pentapeptide biochemically related to KFERQ in some annexins but not in others. Such sequences have been proposed to be a targeting sequence for chaperone-mediated autophagy, a lysosomal pathway of protein degradation that is activated in confluent cells in response to removal of serum growth factors. We demonstrate that annexins II and VI, which contain KFERQ-like sequences, are degraded more rapidly in response to serum withdrawal, while annexins V and XI, without such sequences, are degraded at the same rate in the presence and absence of serum. Using isolated lysosomes, only the annexins containing KFERQ-like sequences are degraded by chaperone mediated-autophagy. Annexins V and XI could associate with lysosomes but did not enter the lysosomes and were not proteolytic substrates. Furthermore, four annexins containing KFERQ-like sequences, annexins I, II, IV, and VI, are enriched in lysosomes with high chaperone-mediated autophagy activity as expected for substrate proteins. These results provide striking evidence for the importance of KFERQ motifs in substrates of chaperone-mediated autophagy.
Which autophagy pathway is trigered by the KFERQ motif of cytosolic proteins?
Using isolated lysosomes, only the annexins containing KFERQ-like sequences are degraded by chaperone mediated-autophagy.
Chronic and juvenile myelomonocytic leukemias (CMML and JMML) are myelodysplastic/myeloproliferative neoplasia (MDS/MPN) overlap syndromes that respond poorly to conventional treatments. Aberrant Ras activation because of NRAS, KRAS, PTPN11, CBL and NF1 mutations is common in CMML and JMML. However, no mechanism-based treatments currently exist for cancers with any of these mutations. An alternative therapeutic strategy involves targeting Ras-regulated effector pathways that are aberrantly activated in CMML and JMML, which include the Raf/MEK/ERK and phosphoinositide-3'-OH kinase (PI3K)/Akt cascades. Mx1-Cre, Kras(D12) and Mx1-Cre, Nf1(flox/)(-) mice accurately model many aspects of CMML and JMML. Treating Mx1-Cre, Kras(D12) mice with GDC-0941 (also referred to as pictilisib), an orally bioavailable inhibitor of class I PI3K isoforms, reduced leukocytosis, anemia and splenomegaly while extending survival. However, GDC-0941 treatment attenuated activation of both PI3K/Akt and Raf/MEK/ERK pathways in primary hematopoietic cells, suggesting it could be acting through suppression of Raf/MEK/ERK signals. To interrogate the importance of the PI3K/Akt pathway specifically, we treated mice with the allosteric Akt inhibitor MK-2206. This compound had no effect on Raf/MEK/ERK signaling, yet it also induced robust hematologic responses in Kras and Nf1 mice with MPN. These data support investigating PI3K/Akt pathway inhibitors as a therapeutic strategy in JMML and CMML patients.
What is the mechanism of action of Pictilisib?
Treating Mx1-Cre, Kras(D12) mice with GDC-0941 (also referred to as pictilisib), an orally bioavailable inhibitor of class I PI3K isoforms, reduced leukocytosis, anemia and splenomegaly while extending survival.
Cancer is the third cause of death worldwide, with complex etiology, and is defined as an uncontrolled growth of cells. A high proportion of cancer incidence and deaths are due to different environmental and genetic factors such as high body mass index, low fruit and vegetable intake, lack of physical activity, tobacco use, alcohol consumption, exposure to radiation, chronic infections, and heredity also. In addition, oxidative stress plays a crucial role in the pathophysiology of different types of cancer. Hence, screening and testing of more effective compounds with minimum side effects for the prevention and treatment of cancers started a few decades ago. Regarding this, much attention has been paid to natural antioxidants as a novel prevention and treatment strategy for cancer. Flavonoids are one of the most important ingredients in vegetables and fruits, especially in the genus Citrus. Hesperidin is a flavonone glycoside, belonging to the flavonoid family, which is widely found in Citrus species and acts as a potent antioxidant and anticancer agent. In the present review, we attempt to provide an overview and summarize the scientific literature about the cancer chemoprotective effects of hesperidin with an emphasis on its relation to the protection roles against oxidative stress.
Has Hesperidin any role as a Neuroprotective Agent?
Hesperidin is a flavonone glycoside, belonging to the flavonoid family, which is widely found in Citrus species and acts as a potent antioxidant and anticancer agent.
Frequency of INherited Disorders database (FINDbase) (http://www.findbase.org) is a relational database, derived from the ETHNOS software, recording frequencies of causative mutations leading to inherited disorders worldwide. Database records include the population and ethnic group, the disorder name and the related gene, accompanied by links to any corresponding locus-specific mutation database, to the respective Online Mendelian Inheritance in Man entries and the mutation together with its frequency in that population. The initial information is derived from the published literature, locus-specific databases and genetic disease consortia. FINDbase offers a user-friendly query interface, providing instant access to the list and frequencies of the different mutations. Query outputs can be either in a table or graphical format, accompanied by reference(s) on the data source. Registered users from three different groups, namely administrator, national coordinator and curator, are responsible for database curation and/or data entry/correction online via a password-protected interface. Databaseaccess is free of charge and there are no registration requirements for data querying. FINDbase provides a simple, web-based system for population-based mutation data collection and retrieval and can serve not only as a valuable online tool for molecular genetic testing of inherited disorders but also as a non-profit model for sustainable database funding, in the form of a 'database-journal'.
What is FINDbase?
Frequency of INherited Disorders database (FINDbase) (http://www.findbase.org) is a relational database, derived from the ETHNOS software, recording frequencies of causative mutations leading to inherited disorders worldwide. Database records include the population and ethnic group, the disorder name and the related gene, accompanied by links to any corresponding locus-specific mutation database, to the respective Online Mendelian Inheritance in Man entries and the mutation together with its frequency in that population. The initial information is derived from the published literature, locus-specific databases and genetic disease consortia. FINDbase offers a user-friendly query interface, providing instant access to the list and frequencies of the different mutations. Query outputs can be either in a table or graphical format, accompanied by reference(s) on the data source. Registered users from three different groups, namely administrator, national coordinator and curator, are responsible for database curation and/or data entry/correction online via a password-protected interface. Databaseaccess is free of charge and there are no registration requirements for data querying. FINDbase provides a simple, web-based system for population-based mutation data collection and retrieval and can serve not only as a valuable online tool for molecular genetic testing of inherited disorders but also as a non-profit model for sustainable database funding, in the form of a 'database-journal'.
Positron emission tomography (PET) allows the quantitative measurement of regional cerebral flow (rCBF) in humans in quantitative terms. Gross changes in rCBF are due to variation in vessel diameter. Changes of rCBF also reflect synaptic activity (inhibition and excitation). Therefore, PET was used to monitor changes in blood flow during the aura and headache phase of a migraine attack and to investigate focal areas of increased or decreased blood flow, e.g., in the brain stem and midbrain. Hemispheric rCBF was unchanged in spontaneous migraine attacks without aura. This was true for the headache side as well as for the nonheadache side. Sumatriptan had no effects on cerebral blood flow. Regional cerebral blood flow was increased in midline brain stem structures during the headache phase, but also when the headache had been treated with sumatriptan. This persisting increased activity might reflect activity of a presumed migraine center in the brain stem. These changes are specific for migraine attacks and are not seen during attacks of cluster headache. Positron emission tomography measurements in the early phase of a migraine attack in a single subject showed flow reductions in the occipital cortex spreading forwards; an observation which would be compatible with the existence of spreading depression in humans. Our attempts to study the aura phase with PET have, to date, been unsuccessful.
What does a PET (Positron Excitation Tomography) measure?
Positron emission tomography (PET) allows the quantitative measurement of regional cerebral flow (rCBF) in humans in quantitative terms.
Duchenne muscular dystrophy (DMD) is a common inherited disease with a worldwide incidence of 1 in 3,500 male births. Recent molecular study on the DMD gene identified a 14-kb mRNA encoded by 79 exons distributed over 2.5 million bp of the X-chromosome. The protein named dystrophin contains 3,685 amino acids. Most of the genetic events (mutations) that inactivate the dystrophin gene have been shown to be deletions, with over 65% of patients exhibiting the loss of one or more of the exons at the genomic DNA level. The mechanism of the inactivation of the dystrophin gene in one third of patients with DMD/BMD is unknown.
What is the incidence of Duchenne Muscular Dystrophy?
Duchenne muscular dystrophy (DMD) is a common inherited disease with a worldwide incidence of 1 in 3,500 male births.
The evidence in favour of bismuth compounds for treating infected children is still not clear. Well-designed, randomised, multi-centre studies of H. pylori eradication trials in children comparing bismuth-based triple therapy with the best available recommended first-line therapies are needed. The evidence obtained from audited case series that produce an eradication rate of >95% on PP analysis should also be considered.
Which are the best treatment options to treat Helicobacter pylori?
The evidence in favour of bismuth compounds for treating infected children is still not clear.
Calcium/calmodulin-dependent kinase II (CaMKII) is a multifunctional serine/threonine kinase expressed abundantly in the heart. CaMKII targets numerous proteins involved in excitation-contraction coupling and excitability, and its activation may simultaneously contribute to heart failure and cardiac arrhythmias. In this review, we summarize the modulatory effects of CaMKII on cardiac ion channel function and expression and illustrate potential implications in the onset of arrhythmias via a computer model.
Is Calcium/Calmodulin dependent protein kinase II (CaMKII) involved in cardiac arrhythmias and heart failure?
CaMKII targets numerous proteins involved in excitation-contraction coupling and excitability, and its activation may simultaneously contribute to heart failure and cardiac arrhythmias
LHCII, the largest plant photosynthetic pigment-protein complex of photosystem II, is a most abundant membrane protein in living organisms and comprises approximately half of the pool of chlorophyll molecules in the biosphere. The principal role of this pigment-protein complex is to collect sunlight quanta and transfer electronic excitations toward the reaction centers, where the primary photosynthetic electric charge separation reactions take place. The LHCII protein, as a major protein component of the photosynthetic membranes, modulates also the structural and dynamic properties of the lipid phase of the membranes. According to the recent concepts, one of the physiological roles of LHCII is also a protection of the photosynthetic apparatus against oxidative damage caused by illumination with high intensity light. Detailed examination of all those physiological functions of LHCII, in relation to the complex structure, was possible owing to the application of several molecular spectroscopy techniques. Some examples of such studies are presented in this chapter. The examples of application of steady-state and time-resolved fluorescence spectroscopy, Fourier-transform infrared absorption spectroscopy, and resonance Raman scattering spectroscopy are presented and discussed.
Which is the most abundant membrane protein on Earth?
LHCII, the largest plant photosynthetic pigment-protein complex of photosystem II, is a most abundant membrane protein in living organisms and comprises approximately half of the pool of chlorophyll molecules in the biosphere.
An essential part of the cellular response to environmental stress is a reversible translational suppression, taking place in dynamic cytoplasmic structures called stress granules (SGs). We discovered that HDAC6, a cytoplasmic deacetylase that acts on tubulin and HSP90 and also binds ubiquitinated proteins with high affinity, is a novel critical SG component. We found that HDAC6 interacts with another SG protein, G3BP (Ras-GTPase-activating protein SH3 domain-binding protein 1), and localizes to SGs under all stress conditions tested. We show that pharmacological inhibition or genetic ablation of HDAC6 abolishes SG formation. Intriguingly, we found that the ubiquitin-binding domain of HDAC6 is essential and that SGs are strongly positive for ubiquitin. Moreover, disruption of microtubule arrays or impairment of motor proteins also prevents formation of SGs. These findings identify HDAC6 as a central component of the stress response, and suggest that it coordinates the formation of SGs by mediating the motor-protein-driven movement of individual SG components along microtubules.
Which are the main functions of G3BP1 and G3BP2 proteins?
We found that HDAC6 interacts with another SG protein, G3BP (Ras-GTPase-activating protein SH3 domain-binding protein 1), and localizes to SGs under all stress conditions tested.
A growing number of patients are recognised to have chronic kidney disease (CKD). However, only a minority will progress to end-stage renal disease requiring dialysis or transplantation. Currently available diagnostic and staging tools frequently fail to identify those at higher risk of progression or death. Furthermore within specific disease entities there are shortcomings in the prediction of the need for therapeutic interventions or the response to different forms of therapy. Kidney and urine proteomic biomarkers are considered as promising diagnostic tools to predict CKD progression early in diabetic nephropathy, facilitating timely and selective intervention that may reduce the related health-care expenditures. However, independent groups have not validated these findings and the technique is not currently available for routine clinical care. Furthermore, there are gaps in our understanding of predictors of progression or need for therapy in non-diabetic CKD. Presumably, a combination of tissue and urine biomarkers will be more informative than individual markers. This review identifies clinical questions in need of an answer, summarises current information on proteomic biomarkers and CKD, and describes the European Kidney and Urine Proteomics initiative that has been launched to carry out a clinical study aimed at identifying urinary proteomic biomarkers distinguishing between fast and slow progressors among patients with biopsy-proven primary glomerulopathies.
Are there any urine biomarkers for chronic kidney disease?
Kidney and urine proteomic biomarkers are considered as promising diagnostic tools to predict CKD progression early in diabetic nephropathy, facilitating timely and selective intervention that may reduce the related health-care expenditures.
Enhancers are cis-acting DNA regulatory regions that play a key role in distal control of transcriptional activities. Identification of enhancers, coupled with a comprehensive functional analysis of their properties, could improve our understanding of complex gene transcription mechanisms and gene regulation processes in general. We developed DENdb, a centralized on-line repository of predicted enhancers derived from multiple human cell-lines. DENdb integrates enhancers predicted by five different methods generating an enriched catalogue of putative enhancers for each of the analysed cell-lines. DENdb provides information about the overlap of enhancers with DNase I hypersensitive regions, ChIP-seq regions of a number of transcription factors and transcription factor binding motifs, means to explore enhancer interactions with DNA using several chromatin interaction assays and enhancer neighbouring genes. DENdb is designed as a relational database that facilitates fast and efficient searching, browsing and visualization of information. Database URL: http://www.cbrc.kaust.edu.sa/dendb/.
What is DENdb?
DENdb provides information about the overlap of enhancers with DNase I hypersensitive regions, ChIP-seq regions of a number of transcription factors and transcription factor binding motifs, means to explore enhancer interactions with DNA using several chromatin interaction assays and enhancer neighbouring genes.
Objective We aimed to investigate the clinical features of acute acalculous cholecystitis (AAC) in patients with systemic lupus erythematosus (SLE). Methods SLE patients with AAC hospitalized in the Peking Union Medical College Hospital (PUMCH) from January 2001 to September 2015 were retrospectively analyzed. Their medical records were systematically reviewed. The diagnosis of AAC was based on clinical manifestations and confirmed by radiologic findings including a distended gallbladder with thickened wall, pericholecystic fluid and absence of gallstones. Results Among the 8411 hospitalized SLE patients in PUMCH, 13 (0.15%) were identified to have SLE-AAC. Eleven (84.6%) of them were female, with a mean age of 30.1 ± 8.6 years. AAC was the initial manifestation of SLE in four (30.8%) cases. Eleven (84.6%) patients complained of fever and abdominal pain, four (30.8%) had positive Murphy's sign and six (46.2%) had elevated liver enzymes. The median SLE Disease Activity Index was 8.0 (range 0-20.0) at the time of AAC. Other affected organs in SLE-AAC included kidney (11, 84.6%) and hematologic system (11, 84.6%), followed by mucocutaneous (seven, 53.8%), musculoskeletal (seven, 53.8%) and neuropsychiatric (two, 15.4%) systems. All patients received treatment of glucocorticoids and immunosuppressants but none underwent surgical intervention. During a median follow-up of 28 months (range, 2-320 months), 12 cases (92.4%) responded to treatment with no relapse and one patient (7.6%) died of septic shock. Conclusion Our study suggests that AAC is a relatively uncommon and underestimated gastrointestinal involvement of SLE that is often associated with active disease. For patients with AAC in SLE, treatment with aggressive glucocorticoids could result in a good prognosis.
Which organs are mostly affected in Systemic Lupus Erythematosus (SLE)?
Other affected organs in SLE-AAC included kidney (11, 84.6%) and hematologic system (11, 84.6%), followed by mucocutaneous (seven, 53.8%), musculoskeletal (seven, 53.8%) and neuropsychiatric (two, 15.4%) systems.
In a subset of systemic lupus erythematosus (SLE) patients, antiphospholipid syndrome, characterized by occurrence of anti-cardiolipin (CL) antibodies, thrombocytopenia, thrombosis and recurrent intrauterine fetal death occurs. Male (NZW x BXSB)F1 mice, carrying the BXSB Yaa gene, serve as a model for SLE-associated antiphospholipid syndrome. Using microsatellite markers in the NZW x (NZW x BXSB)F1 backcross male progeny, we mapped BXSB alleles contributing to the generation of anti-CL antibodies, platelet-binding antibodies, thrombocytopenia and myocardial infarction. Generation of each disease character was controlled by two major independently segregating dominant alleles, i.e. those on chromosomes (Chr.) 4 and 17 for anti-CL antibodies, Chr. 8 and 17 for both anti-platelet antibodies and thrombocytopenia and, to our surprise, Chr. 7 and 14 for myocardial infarction, and that a combination of the two alleles appeared to produce full expression of each character, as a complementary gene action. The alleles on Chr. 17 linked to the above three characters were all mapped in close proximity to the H-2 complex. Therefore, no single factor such as anti-CL antibodies can explain the pathogenesis of SLE-associated antiphospholipid syndrome. Rather, a combination of susceptibility alleles such as described here, along with additional modifying loci, i.e. BXSB Yaa and some from NZW, characterizes unique SLE features in male (NZW x BXSB) F1 mice. There are potentially important candidate genes which may be linked to the syndrome.
Which diseases are associated with the Yaa gene?
Male (NZW x BXSB)F1 mice, carrying the BXSB Yaa gene, serve as a model for SLE-associated antiphospholipid syndrome.
Diphtheria in childhood may have consequences for hearing that do not become apparent until later in life. A possible biological mechanism for a diphtheria effect on hearing ability exists: The toxin produced by the Corynebacterium diphtheriae bacteria can cause damage to cranial nerves and therefore may affect the auditory neural pathway. These data may have important implications for areas facing a resurgence of diphtheria cases.
Which bacteria cause diphtheria?
A possible biological mechanism for a diphtheria effect on hearing ability exists: The toxin produced by the Corynebacterium diphtheriae bacteria can cause damage to cranial nerves and therefore may affect the auditory neural pathway.
Interphase FISH is more sensitive than CC for the detection of -5/5q- in MDS.
Which human syndromes have been detected with Fluorescence in situ hybridization (FISH)?
Interphase FISH is more sensitive than CC for the detection of -5/5q- in MDS.
Mutations in a conserved non-coding region in intron 5 of the Lmbr1 locus, which is 1 Mb away from the sonic hedgehog (Shh) coding sequence, are responsible for mouse and human preaxial polydactyly with mirror-image digit duplications. In the mouse mutants, ectopic Shh expression is observed in the anterior mesenchyme of limb buds. Furthermore, a transgenic reporter gene flanked with this conserved non-coding region shows normal polarized expression in mouse limb buds. This conserved sequence has therefore been proposed to act as a long-range, cis-acting regulator of limb-specific Shh expression. Previous phylogenetic studies have also shown that this sequence is highly conserved among tetrapods, and even in teleost fishes. Paired fins of teleost fishes and tetrapod limbs have evolved from common ancestral appendages, and polarized Shh expression is commonly observed in fins. In this study, we first show that this conserved sequence motif is also physically linked to the Shh coding sequence in a teleost fish, the medaka, by homology search of a newly available genomic sequence database. Next, we show that deletion of this conserved intronic sequence by targeted mutation in the mouse results in a complete loss of Shh expression in the limb bud and degeneration of skeletal elements distal to the stylopod/zygopod junction. This sequence contains a major limb-specific Shh enhancer that is necessary for distal limb development. These results suggest that the conserved intronic sequence evolved in a common ancestor of fishes and tetrapods to control fin and limb development.
How are CRM (cis-regulatory modules) defined?
This conserved sequence has therefore been proposed to act as a long-range, cis-acting regulator of limb-specific Shh expression.
Over the years, a wide clinicopathological spectrum has been identified within Ewing family of tumors (EFTs). As these tumors are chemosensitive, their correct and timely identification is necessary. The aims of this study were (1) to present the diverse clinicopathological and molecular profile of EFTs in our settings, (2) to identify a pragmatic approach for diagnosing EFTs, especially for application of ancillary techniques, namely RT-PCR for specific transcripts (EWS-FLI1, EWS-ERG) and FISH for EWSR1 gene rearrangement, in certain cases and (3) to show the utility of tissue microarray in establishing a new FISH test. Fifty-eight EFTs were identified in 38 males and 20 females within an age-range of 1-65 years (median, 16), mostly in lower extremities (14) (24.1 %). Therapeutically, most patients underwent neoadjuvant chemotherapy with subsequent surgery. Histopathologically, diagnosis of EFTs was initially offered in 41/58 (70.6 %) tumors. On review, 59 % tumors showed diffuse pattern, while 41 % displayed rosettes. Immunohistochemically, tumor cells were mostly diffusely positive for CD99 (48/52) (92.3 %); FLI-1 (17/18) (94.4 %); variably for BCL2 (16/18) (88.8 %), synaptophysin (6/20) (35 %), S100-P (2/7) (28.5 %), CD56 (2/5) (40 %), NSE (2/5) (40 %), calponin (3/4) (75 %), EMA (5/24) (20.8 %) and CK (3/24) (12.5 %), the latter two mostly focally. Fifty five tumors were EWS-FLI1 positive, while a single tumor was EWS-ERG positive. Sensitivity for PCR was 61 %. EWSR1 rearrangement was detected by FISH in 12/13 Ewing sarcomas/PNETs. Sensitivity for EWSR1 test was 92.3 % and specificity was 100 %. Thirty-eight tumors, including 14 molecular confirmed EFTs and 21 other tumors were tested for EWSR1 rearrangement. Among 21 unrelated tumors, EWSR1 rearrangement was detected in few myoepithelial tumors, occasional desmoplastic small round cell tumor and an extraskeletal myxoid chondrosarcoma. Further, a tissue microarray with a separate set of 8 EFTs, confirmed at another laboratory was analysed for validation of EWSR1 rearrangement test. 23/28 (82.1 %) tissue cores of the tissue microarray, stained by FISH were interpretable, including EWSR1 rearrangement, detected in 20/28 tissue cores; not detected in 3 liver cores and uninterpretable in 5 (17.8 %) cores. Classical EFTs can be diagnosed with diffuse, membranous CD99 positivity, intranuclear FLI1 positivity and LCA negativity in malignant round cells. In unconventional cases, it is indispensable to reveal the concomitant fusion m-RNA by RT-PCR. In case of negative molecular results, it is necessary to prove EWSR1 rearrangement by FISH. These tests should be interpreted with clinicopathological correlation. Tissue microarrays for FISH are useful during validation of a new test, especially when sarcomas like EFTs show less genetic heterogeneity within tumor cells.
Which technique is used for detection of EWS/FLI1 fusion transcripts?
The aims of this study were (1) to present the diverse clinicopathological and molecular profile of EFTs in our settings, (2) to identify a pragmatic approach for diagnosing EFTs, especially for application of ancillary techniques, namely RT-PCR for specific transcripts (EWS-FLI1, EWS-ERG) and FISH for EWSR1 gene rearrangement, in certain cases and (3) to show the utility of tissue microarray in establishing a new FISH test
Women develop stronger immune responses than men, with positive effects on the resistance to viral or bacterial infections but magnifying also the susceptibility to autoimmune diseases like systemic lupus erythematosus (SLE). In SLE, the dosage of the endosomal Toll-like receptor 7 (TLR7) is crucial. Murine models have shown that TLR7 overexpression suffices to induce spontaneous lupus-like disease. Conversely, suppressing TLR7 in lupus-prone mice abolishes SLE development. TLR7 is encoded by a gene on the X chromosome gene, denoted TLR7 in humans and Tlr7 in the mouse, and expressed in plasmacytoid dendritic cells (pDC), monocytes/macrophages, and B cells. The receptor recognizes single-stranded RNA, and its engagement promotes B cell maturation and the production of pro-inflammatory cytokines and antibodies. In female mammals, each cell randomly inactivates one of its two X chromosomes to equalize gene dosage with XY males. However, 15 to 23% of X-linked human genes escape X chromosome inactivation so that both alleles can be expressed simultaneously. It has been hypothesized that biallelic expression of X-linked genes could occur in female immune cells, hence fostering harmful autoreactive and inflammatory responses. We review here the current knowledge of the role of TLR7 in SLE, and recent evidence demonstrating that TLR7 escapes from X chromosome inactivation in pDCs, monocytes, and B lymphocytes from women and Klinefelter syndrome men. Female B cells where TLR7 is thus biallelically expressed display higher TLR7-driven functional responses, connecting the presence of two X chromosomes with the enhanced immunity of women and their increased susceptibility to TLR7-dependent autoimmune syndromes.
Which chromosome contains the TLR7 locus in the human genome?
TLR7 is encoded by a gene on the X chromosome gene, denoted TLR7 in humans and Tlr7 in the mouse, and expressed in plasmacytoid dendritic cells (pDC)
Werner syndrome, also called adult progeria, is a heritable autosomal recessive human disorder characterized by the premature onset of numerous age-related diseases including juvenile cataracts, dyslipidemia, diabetes mellitus (DM), osteoporosis, atherosclerosis, and cancer. Werner syndrome is a segmental progeroid syndrome whose presentation resembles accelerated aging. The most common causes of death for WS patients are atherosclerosis and cancer. A 40-year-old female presented with short stature, bird-like facies, canities with alopecia, scleroderma-like skin changes, and non-healing foot ulcers. The patient reported a history of delayed puberty, abortion, hypertriglyceridemia, and juvenile cataracts. A clinical diagnosis of WS was made and subsequently confirmed. We discovered two WRN gene mutations in the patient, Variant 1 was the most common WRN mutation, nonsense mutation (c.1105C>T:p.R369Ter) in exon 9, which caused a premature termination codon (PTC) at position 369. Variant 2 was a frameshift mutation (c.1134delA:p.E379KfsTer5) in exon 9, which caused a PTC at position 383 and has no published reports describing. Patients with WS can show a wide variety of clinical and biological manifestations in endocrine-metabolic systems (DM, thyroid dysfunction, and hyperlipidemia). Doctors must be cognizant of early manifestations of WS and treatment options.
Is progeria caused by an autosomal recessive gene?
Werner syndrome, also called adult progeria, is a heritable autosomal recessive human disorder characterized by the premature onset of numerous age-related diseases including juvenile cataracts, dyslipidemia, diabetes mellitus (DM), osteoporosis, atherosclerosis, and cancer. Werner sy
Amyotrophic lateral sclerosis is the most common adult-onset motor neuron disease and evidence from mice expressing amyotrophic lateral sclerosis-causing SOD1 mutations suggest that neurodegeneration is a non-cell autonomous process where microglial cells influence disease progression. However, microglial-derived neurotoxic factors still remain largely unidentified in amyotrophic lateral sclerosis. With excitotoxicity being a major mechanism proposed to cause motor neuron death in amyotrophic lateral sclerosis, our hypothesis was that excessive glutamate release by activated microglia through their system [Formula: see text] (a cystine/glutamate antiporter with the specific subunit xCT/Slc7a11) could contribute to neurodegeneration. Here we show that xCT expression is enriched in microglia compared to total mouse spinal cord and absent from motor neurons. Activated microglia induced xCT expression and during disease, xCT levels were increased in both spinal cord and isolated microglia from mutant SOD1 amyotrophic lateral sclerosis mice. Expression of xCT was also detectable in spinal cord post-mortem tissues of patients with amyotrophic lateral sclerosis and correlated with increased inflammation. Genetic deletion of xCT in mice demonstrated that activated microglia released glutamate mainly through system [Formula: see text]. Interestingly, xCT deletion also led to decreased production of specific microglial pro-inflammatory/neurotoxic factors including nitric oxide, TNFa and IL6, whereas expression of anti-inflammatory/neuroprotective markers such as Ym1/Chil3 were increased, indicating that xCT regulates microglial functions. In amyotrophic lateral sclerosis mice, xCT deletion surprisingly led to earlier symptom onset but, importantly, this was followed by a significantly slowed progressive disease phase, which resulted in more surviving motor neurons. These results are consistent with a deleterious contribution of microglial-derived glutamate during symptomatic disease. Therefore, we show that system [Formula: see text] participates in microglial reactivity and modulates amyotrophic lateral sclerosis motor neuron degeneration, revealing system [Formula: see text] inactivation, as a potential approach to slow amyotrophic lateral sclerosis disease progression after onset of clinical symptoms.
What is the main characteristic of Amyotrophic Lateral Sclerosis?
Amyotrophic lateral sclerosis is the most common adult-onset motor neuron disease and evidence from mice expressing amyotrophic lateral sclerosis-causing SOD1 mutations suggest that neurodegeneration is a non-cell autonomous process where microglial cells influence disease progression
Increasing number of papers demonstrate that Kupffer cells (KCs) play a role in the development of drug induced liver injury (DILI). Furthermore, elevated intracellular Ca level of hepatocytes is considered as a common marker of DILI. Here we applied an in vitro model based on hepatocyte mono- and hepatocyte/KC co-cultures (H/KC) isolated from transgenic rats stably expressing the GCaMP2 fluorescent Ca sensor protein to investigate the effects of polycationic (G5), polyanionic (G4.5) and polyethylene-glycol coated neutral (G5 Peg) dendrimers known to accumulate in the liver, primarily in KCs. Following dendrimer exposure, hepatocyte homeostasis was measured by MTT cytotoxicity assay and by Ca imaging, while hepatocyte functions were studied by CYP2B1/2 inducibility, and bilirubin and taurocholate transport. G5 was significantly more cytotoxic than G4.5 for hepatocytes and induced Ca oscillation and sustained Ca signals at 1μM and10 μM, respectively both in hepatocytes and KCs. Dendrimer-induced Ca signals in hepatocytes were attenuated by macrophages. Activation of KCs by lipopolysaccharide and G5 decreased the inducibility of CYP2B1/2, which was restored by depleting the KCs with gadolinium-chloride and pentoxyphylline, suggesting a role of macrophages in the hindrance of CYP2B1/2 induction by G5 and lipopolysaccharide. In the H/KC, but not in the hepatocyte mono-culture, G5 reduced the canalicular efflux of bilirubin and stimulated the uptake and canalicular efflux of taurocholate. In conclusion, H/KC provides a good model for the prediction of hepatotoxic potential of drugs, especially of nanomaterials known to be trapped by macrophages, activation of which presumably contributes to DILI.
What are Kupffer cells and what is their role?
Kupffer cells (KCs) play a role in the development of drug induced liver injury (DILI).
Aberrant expression and activation of EGFR and ERBB2 (HER2) have been successfully targeted for cancer therapeutics. Recent evidence from both basic and clinical studies suggests that ERBB3 (HER3) serves as a key activator of downstream signaling through dimerization with other ERBB proteins and plays a critical role in the widespread clinical resistance to EGFR and HER2 targeting cancer therapies. As a result, HER3 is actively pursued as an antibody therapeutic target for cancer. Ligand binding is thought to be a prerequisite for dimerization of HER3 with other ERBB proteins, which results in phosphorylation of its c-terminal tyrosine residues and activation of downstream AKT and MAPK signaling pathways. In this study, we report that an anti-HER2 monoclonal antibody (HER2Mab), which blocks HER2 dimerization with HER3, induces HER3 dimerization with EGFR in both low and high HER2 expressing cancer cells. Treatment of the low HER2 expressing MCF7 cancer cells with HER2Mab promoted cell proliferation and migration in the absence of HER3 ligand stimulation. Follow-up studies revealed that HER2Mab-induced HER3 signaling via EGFR/HER3 dimerization and activation of downstream AKT signaling pathways. These results suggest that equilibrium of dimerization among the ERBB proteins can be perturbed by HER2Mab and HER3 plays a key role in sensing the perturbation.
Is HER2 active only when it dimerizes?
ays. In this study, we report that an anti-HER2 monoclonal antibody (HER2Mab), which blocks HER2 dimerization with HER3, induces HER3 dimerization with EGFR in both low and high HER2 expressing cancer cells.
Lesch-Nyhan disease and its attenuated variants are caused by mutations in the HPRT1 gene, which encodes the purine recycling enzyme hypoxanthine-guanine phosphoribosyltransferase. The mutations are heterogeneous, with more than 400 different mutations already documented. Prior efforts to correlate variations in the clinical phenotype with different mutations have suggested that milder phenotypes typically are associated with mutants that permit some residual enzyme function, whereas the most severe phenotype is associated with null mutants. However, multiple exceptions to this concept have been reported. In the current studies 44 HPRT1 mutations associated with a wide spectrum of clinical phenotypes were reconstructed by site-directed mutagenesis, the mutant enzymes were expressed in vitro and purified, and their kinetic properties were examined toward their substrates hypoxanthine, guanine, and phosphoribosylpyrophosphate. The results provide strong evidence for a correlation between disease severity and residual catalytic activity of the enzyme (k(cat)) toward each of its substrates as well as several mechanisms that result in exceptions to this correlation. There was no correlation between disease severity and the affinity of the enzyme for its substrates (K(m)). These studies provide a valuable model for understanding general principles of genotype-phenotype correlations in human disease, as the mechanisms involved are applicable to many other disorders.
Which gene has been found to be mutant in Lesch-Nyhan Disease patients?
Lesch-Nyhan disease and its attenuated variants are caused by mutations in the HPRT1 gene, which encodes the purine recycling enzyme hypoxanthine-guanine phosphoribosyltransferase
Duchenne muscular dystrophy (DMD) is an X-linked genetic disease, caused by the absence of the dystrophin protein. Although many novel therapies are under development for DMD, there is currently no cure and affected individuals are often confined to a wheelchair by their teens and die in their twenties/thirties. DMD is a rare disease (prevalence <5/10,000). Even the largest countries do not have enough affected patients to rigorously assess novel therapies, unravel genetic complexities, and determine patient outcomes. TREAT-NMD is a worldwide network for neuromuscular diseases that provides an infrastructure to support the delivery of promising new therapies for patients. The harmonized implementation of national and ultimately global patient registries has been central to the success of TREAT-NMD. For the DMD registries within TREAT-NMD, individual countries have chosen to collect patient information in the form of standardized patient registries to increase the overall patient population on which clinical outcomes and new technologies can be assessed. The registries comprise more than 13,500 patients from 31 different countries. Here, we describe how the TREAT-NMD national patient registries for DMD were established. We look at their continued growth and assess how successful they have been at fostering collaboration between academia, patient organizations, and industry.
Elaborate on the TREAT-NMD initiative for DMD patients
TREAT-NMD is a worldwide network for neuromuscular diseases that provides an infrastructure to support the delivery of promising new therapies for patients
Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS) have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress.
Which gene is involved in the development of Barth syndrome?
Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome
The classic phenotype of the facioscapulohumeral muscular dystrophy (FSHD) includes an initially restricted pattern of asymmetric weakness of facial and shoulder girdle muscles. Disease progression is usually slow and typically accompanied by foot extensor muscle weakness and pelvic girdle weakness. Atypical patterns of FSHD that include isolated camptocormia and facial muscle sparing exceed current diagnostic criteria. No causal genetic lesion in FSHD has been identified yet. In the vast majority of cases, FSHD results from a heterozygous partial deletion of a critical number of repetitive elements (D4Z4) on chromosome 4q35 (4qA allele). Molecular diagnostic testing is appropriate to confirm the diagnosis of FSHD without need for muscle biopsy. Penetrance of this dominantly inherited disorder is high, exhibiting a great phenotypic variability in clinical pattern and disease progression even among affected members of the same family.
Which diagnostic tests are used for the diagnosis of FSHD?
Molecular diagnostic testing is appropriate to confirm the diagnosis of FSHD without need for muscle biopsy.
The quest to determine how precise neural activity patterns mediate computation, behavior, and pathology would be greatly aided by a set of tools for reliably activating and inactivating genetically targeted neurons, in a temporally precise and rapidly reversible fashion. Having earlier adapted a light-activated cation channel, channelrhodopsin-2 (ChR2), for allowing neurons to be stimulated by blue light, we searched for a complementary tool that would enable optical neuronal inhibition, driven by light of a second color. Here we report that targeting the codon-optimized form of the light-driven chloride pump halorhodopsin from the archaebacterium Natronomas pharaonis (hereafter abbreviated Halo) to genetically-specified neurons enables them to be silenced reliably, and reversibly, by millisecond-timescale pulses of yellow light. We show that trains of yellow and blue light pulses can drive high-fidelity sequences of hyperpolarizations and depolarizations in neurons simultaneously expressing yellow light-driven Halo and blue light-driven ChR2, allowing for the first time manipulations of neural synchrony without perturbation of other parameters such as spiking rates. The Halo/ChR2 system thus constitutes a powerful toolbox for multichannel photoinhibition and photostimulation of virally or transgenically targeted neural circuits without need for exogenous chemicals, enabling systematic analysis and engineering of the brain, and quantitative bioengineering of excitable cells.
What color light does the the inhibitory receptor halorhodopsin (eNpHR) respond to?
Here we report that targeting the codon-optimized form of the light-driven chloride pump halorhodopsin from the archaebacterium Natronomas pharaonis (hereafter abbreviated Halo) to genetically-specified neurons enables them to be silenced reliably, and reversibly, by millisecond-timescale pulses of yellow light.
Genetic studies have shown that Aubergine (Aub), one of the Piwi subfamily of Argonautes in Drosophila, is essential for germ cell formation and maintaining fertility. aub mutations lead to the accumulation of retrotransposons in ovaries and testes, and Stellate transcripts in testes. Aub in ovaries associates with a variety of Piwi-interacting RNAs (piRNAs) derived from repetitive intergenic elements including retrotransposons. Here we found that Aub in testes also associates with various kinds of piRNAs. Although in ovaries Aub-associated piRNA populations are quite diverse, piRNAs with Aub in testes show a strong bias. The most abundant piRNAs were those corresponding to antisense transcripts of Suppressor of Stellate [Su(Ste)] genes known to be involved in Stellate gene silencing. The second most abundant class was made up of those from chromosome X and showed strong complementarity to vasa transcripts. Immunopurified Aub-piRNA complexes from testes displayed activity in cleaving target RNA containing sequences complementary to Stellate and vasa transcripts. These results provide the first biochemical insights into gene silencing mechanisms mediated by Aub and piRNAs in fly testes.
Are piRNAs involved in gene silencing?
The most abundant piRNAs were those corresponding to antisense transcripts of Suppressor of Stellate [Su(Ste)] genes known to be involved in Stellate gene silencing
A central mechanism in cellular defence against oxidative or electrophilic stress is mediated by transcriptional induction of genes via the ARE (antioxidant-response element), a cis-acting sequence present in the regulatory regions of genes involved in the detoxification and elimination of reactive oxidants and electrophiles. The ARE binds different bZIP (basic-region leucine zipper) transcription factors, most notably Nrf2 (nuclear factor-erythroid 2-related factor 2) that functions as a transcriptional activator via heterodimerization with small Maf proteins. Although ARE activation by Nrf2 is relatively well understood, the mechanisms by which ARE-mediated signalling is down-regulated are poorly known. Transcription factor BACH1 [BTB (broad-complex, tramtrack and bric-a-brac) and CNC (cap'n'collar protein) homology 1] binds to ARE-like sequences, functioning as a transcriptional repressor in a subset of ARE-regulated genes, thus antagonizing the activator function of Nrf2. In the present study, we have demonstrated that BACH1 itself is regulated by Nrf2 as it is induced by Nrf2 overexpression and by Nrf2-activating agents in an Nrf2-dependent manner. Furthermore, a functional ARE site was identified at +1411 from the transcription start site of transcript variant 2 of BACH1. We conclude that BACH1 is a bona fide Nrf2 target gene and that induction of BACH1 by Nrf2 may serve as a feedback-inhibitory mechanism for ARE-mediated gene regulation.
Is the transcriptional regulator BACH1 an activator or a repressor?
Transcription factor BACH1 [BTB (broad-complex, tramtrack and bric-a-brac) and CNC (cap'n'collar protein) homology 1] binds to ARE-like sequences, functioning as a transcriptional repressor
The malaria parasite Plasmodium falciparum exports several hundred proteins into the infected erythrocyte that are involved in cellular remodeling and severe virulence. The export mechanism involves the Plasmodium export element (PEXEL), which is a cleavage site for the parasite protease, Plasmepsin V (PMV). The PMV gene is refractory to deletion, suggesting it is essential, but definitive proof is lacking. Here, we generated a PEXEL-mimetic inhibitor that potently blocks the activity of PMV isolated from P. falciparum and Plasmodium vivax. Assessment of PMV activity in P. falciparum revealed PEXEL cleavage occurs cotranslationaly, similar to signal peptidase. Treatment of P. falciparum-infected erythrocytes with the inhibitor caused dose-dependent inhibition of PEXEL processing as well as protein export, including impaired display of the major virulence adhesin, PfEMP1, on the erythrocyte surface, and cytoadherence. The inhibitor killed parasites at the trophozoite stage and knockdown of PMV enhanced sensitivity to the inhibitor, while overexpression of PMV increased resistance. This provides the first direct evidence that PMV activity is essential for protein export in Plasmodium spp. and for parasite survival in human erythrocytes and validates PMV as an antimalarial drug target.
Could plasmepsins be used as targets for developing anti-malaria drugs?
This provides the first direct evidence that PMV activity is essential for protein export in Plasmodium spp. and for parasite survival in human erythrocytes and validates PMV as an antimalarial drug target.
Once formerly thought to be a rare disorder, thrombotic thrombocytopenic purpura (TTP) is becoming increasingly recognized. It is characterized by a pentad of clinical findings, including microangiopathic hemolytic anemia, thrombocytopenic purpura, neurologic and renal abnormalities, and fever. Following a case report, the major clinical findings, pathophysiologic findings, diagnoses, and use of various therapeutic modalities are discussed.
List features of the Thrombotic Thrombocytopenic Purpura pentad.
It is characterized by a pentad of clinical findings, including microangiopathic hemolytic anemia, thrombocytopenic purpura, neurologic and renal abnormalities, and fever.
Clear cell renal cell carcinoma (ccRCC) is a subtype of renal cell cancer with the highest mortality, infiltration, and metastasis rate, threatening human health. Despite oncogenic role of TROAP in various cancers, its function in ccRCC remains to be unraveled. The differentially expressed mRNAs (DEmRNAs) and miRNAs (DEmiRNAs) were obtained by analyzing the related data sets of ccRCC in TCGA. The expression levels of mRNAs and miRNAs in the cell were detected by qRT-PCR, while the protein levels were characterized by western blot. The viability, migratory and invasive abilities of ccRCC cells were determined by MTT, wound healing and cell invasion assays. The combination of miRNA target site prediction and dual-luciferase reporter gene assay verified the binding relationship between miR-532-3p and TROAP. Research on ccRCC displayed that TROAP expression was upregulated, while miR-532-3p was down-regulated. Besides, upregulation of TROAP could accelerate viability, migratory and invasive potentials of ccRCC cells. On the contrary, miR-532-3p could downregulate TROAP level, but TROAP upregulation reversed the viability, migration, and invasion of ccRCC cells. MiR-532-3p could attenuate the viability, migration and invasion of ccRCC cells by targeting TROAP. This may generate novel insights into molecular therapeutic targets for ccRCC.
Please summarize the function of Trophinin-associated protein (TROAP)
Clear cell renal cell carcinoma (ccRCC) is a subtype of renal cell cancer with the highest mortality, infiltration, and metastasis rate, threatening human health. Despite oncogenic role of TROAP in various cancers, its function in ccRCC remains to be unraveled.
Acute necrotizing encephalopathy of childhood represents a novel entity of acute encephalophathy, predominantly affecting infants and young children living in Taiwan and Japan. It manifests with symptoms of coma, convulsions, and hyperpyrexia after 2 to 4 days of respiratory tract infections in previously healthy children. The hallmark of acute necrotizing encephalopathy of childhood consists of multifocal and symmetric brain lesions affecting the bilateral thalami, brainstem tegmentum, cerebral periventricular white matter, or cerebellar medulla. The etiology and pathogenesis of this kind of acute encephalopathy remain unknown, and there is no specific therapy or prevention. The prognosis is usually poor, and less than 10% of patients recover completely. We report a 3-year-old previously healthy girl presenting with acute necrotizing encephalopathy of childhood associated with influenza type B virus infection, which resulted in severe neurologic sequelae. We also review the current knowledge of the clinical, neuroimaging, and pathologic aspects of acute necrotizing encephalopathy of childhood.
Is Acute Necrotizing Encephalopathy (ANE) which typically affects young, healthy children usually triggered by exposure to air pollution?
We report a 3-year-old previously healthy girl presenting with acute necrotizing encephalopathy of childhood associated with influenza type B virus infection, which resulted in severe neurologic sequelae.
In bacteria, most genes are on the leading strand of replication, a phenomenon attributed to collisions between the DNA and RNA polymerases. In Escherichia coli, these collisions slow the movement of the replication fork through actively transcribed genes only if they are coded on the lagging strand. For genes on both strands, however, these collisions sever nascent transcripts and interrupt gene expression. Based on these observations, we propose a new theory to explain strand bias: genes whose expression is important for fitness are selected to the leading strand because this reduces the duration of these interruptions. Our theory predicts that multi-gene operons, which are subject to longer interruptions, should be more strongly selected to the leading strand than singleton transcripts. We show that this is true even after controlling for the tendency for essential genes, which are strongly biased to the leading strand, to occur in operons. Our theory also predicts that other factors that are associated with strand bias should have stronger effects for genes that are in operons. We find that expression level and phylogenetic ubiquity are correlated with strand bias for both essential and non-essential genes, but only for genes in operons.
Are genes symmetrically distributed between leading and lagging DNA strand in bacteria?
genes whose expression is important for fitness are selected to the leading strand because this reduces the duration of these interruptions
Glucocorticoids, widely used as immune suppressors, cause osteoporosis by inhibiting bone formation. In MC3T3-E1 osteoblast-like cultures, dexamethasone (DEX) activates glycogen synthase kinase-3beta (GSK3beta) and inhibits a differentiation-related cell cycle that occurs at a commitment stage immediately after confluence. Here we show that DEX inhibition of the differentiation-related cell cycle is associated with a decrease in beta-catenin levels and inhibition of LEF/TCF-mediated transcription. These inhibitory activities are no longer observed in the presence of lithium, a GSK3beta inhibitor. DEX decreased the serum-responsive phosphorylation of protein kinase B/Akt-Ser(473) within minutes, and this inhibition was also observed after 12 h. When the phosphatidylinositol 3-kinase (PI3K)/Akt pathway was inhibited by wortmannin, DEX no longer inhibited beta-catenin levels. Furthermore, DEX-mediated inhibition of LEF/TCF transcriptional activity was attenuated in the presence of dominant negative forms of either PI3K or protein kinase B/Akt. These results suggest cross-talk between the PI3K/Akt and Wnt signaling pathways. Consistent with a role for Wnt signaling in the osteoblast differentiation-related cell cycle, wortmannin partially negated the DEX inhibition of this cell cycle. DEX also induced histone deacetylase (HDAC) 1, which is known to inhibit LEF/TCF transcriptional activity. Overexpression of HDAC1 negated the inhibitory effect of DEX on LEF/TCF transcriptional activity. In the presence of trichostatin A, a deacetylase inhibitor, DEX-mediated inhibition of the differentiation-related cell cycle was partially negated. When administered together, wortmannin and trichostatin A completely negated the inhibitory effect of DEX on the differentiation-related cell cycle. These results suggest that inhibition of a PI3K/Akt/GSK3beta/beta-catenin/LEF axis and stimulation of HDAC1 cooperate to mediate the inhibitory effect of DEX on Wnt signaling and the osteoblast differentiation-related cell cycle.
Is there any cross-talk between the Wnt and the Akt pathways?
Here we show that DEX inhibition of the differentiation-related cell cycle is associated with a decrease in beta-catenin levels and inhibition of LEF/TCF-mediated transcription.