Contexts
stringlengths 0
32.3k
| Questions
stringlengths 14
191
| Answers
stringlengths 0
29.1k
|
---|---|---|
There are many types of childhood brain and spinal cord tumors. The tumors are
formed by the abnormal growth of cells and may begin in different areas
of the brain or spinal cord. The tumors may be benign (not cancer) or malignant (cancer). Benign brain tumors may grow and press on nearby areas of the brain. They rarely spread into other brain tissue. Malignant brain tumors may be low grade or high grade. High-grade tumors are likely to grow quickly and spread into other brain tissue. Low-grade tumors tend to grow and spread more slowly than high-grade tumors. When a tumor grows into or presses on an area of the brain, it may stop that part of the brain from working the way it should. Both benign and malignant brain tumors can cause signs or symptoms, need treatment, and can recur (come back). Together, the brain and spinal cord make up the central nervous system (CNS). This summary is about primary benign and malignant brain and spinal cord tumors. The brain has three major parts: The spinal cord is a column of nerve tissue that runs from the brain stem down the center of the back. It is covered by three thin layers of tissue called membranes. The spinal cord and membranes are surrounded by the vertebrae (back bones). Spinal cord nerves carry messages between the brain and the rest of the body, such as a message from the brain to cause muscles to move or a message from the skin to the brain to feel touch. Although cancer is rare in children, brain and spinal cord tumors are the second most
common type of childhood cancer, after leukemia. Brain tumors can occur in both children and adults. Treatment for children is usually different than treatment for adults. (See
the PDQ summary on Adult Central Nervous System Tumors Treatment for more information about the treatment of adults.) Metastatic tumors are formed by cancer cells that begin in other parts of the body and spread to the brain or spinal cord. Treatment of metastatic
brain and spinal cord tumors is not covered in
this summary. Signs and symptoms depend on the following: Signs and symptoms may be caused by childhood brain and spinal cord tumors or by other conditions. Check with your child's doctor if your child has any of the following: Brain Tumor Signs and Symptoms Spinal Cord Tumor Signs and Symptoms In addition to these signs and symptoms of brain and spinal cord tumors, some children are unable to reach certain growth and development milestones such as sitting up, walking, and talking in sentences. The following tests and procedures may be used: If doctors think there might be a brain tumor, a biopsy may be done to remove a sample of tissue. For tumors in the brain, a part of the skull is removed and a needle is used to remove a sample of tissue. Sometimes, the needle is guided by a computer. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, the doctor may remove as much tumor as safely possible during the same surgery. The pathologist checks the cancer cells to find out the type and grade of brain tumor. The grade of the tumor is based on how abnormal the cancer cells look under a microscope and how quickly the tumor is likely to grow and spread. The following test may be done on the sample of tissue that is removed: Sometimes a biopsy or surgery cannot be done safely because of where the tumor formed in the brain or spinal cord. These tumors are diagnosed based on the results of imaging tests and other procedures. The prognosis depends on the following: The brain and spinal cord are made of different kinds of cells. Childhood brain tumors and spinal cord tumors can be benign or malignant and are grouped and treated based on the type of cell the tumor formed in and where the tumor began growing in the central nervous system (CNS). Some types of tumors are divided into subtypes based on how the tumor looks under a microscope and whether it has certain gene changes. See the list below for more information about staging and treatment of newly diagnosed and recurrent childhood brain and spinal cord tumors. See the PDQ summary on Childhood Astrocytomas Treatment for more information on astrocytomas, gliomas, xanthroastrocytomas, and neurofibromatosis type 1 (NF1). See the PDQ summary on Childhood Brain Stem Glioma Treatment for more information on diffuse intrinsic pontine gliomas and focal gliomas. See the PDQ summary on Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment for more information. See the PDQ summary on Childhood Central Nervous System Germ Cell Tumors Treatment for more information on germinomas, embryonal carcinomas, yolk sac tumors, choriocarcinoma, mature teratomas, immature teratomas, teratoma with malignant transformation, and mixed germ cell tumors. See the PDQ summary on Childhood Craniopharyngioma Treatment for more information. See the PDQ summary on Childhood Ependymoma Treatment for more information. See the PDQ summary on Childhood Medulloblastoma and Other Central Nervous System Embryonal Tumors Treatment for more information on medulloblastomas, embryonal tumors, and pineoblastomas. For more information about childhood brain and spinal cord tumors, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of childhood brain and spinal cord tumors. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Childhood Brain and Spinal Cord Tumors Treatment Overview. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/brain/patient/child-brain-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389351] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Childhood Brain and Spinal Cord Tumors Treatment Overview (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | what research (or clinical trials) is being done for Childhood Brain and Spinal Cord Tumors ? | New types of treatment are being tested in clinical trials.
This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. High-dose chemotherapy with stem cell transplant High-dose chemotherapy with stem cell transplant is a way of giving high doses of chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the bodys blood cells.
Patients may want to think about taking part in a clinical trial.
For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.
Patients can enter clinical trials before, during, or after starting their cancer treatment.
Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials is available from the NCI website. |
There are many types of childhood brain and spinal cord tumors. The tumors are
formed by the abnormal growth of cells and may begin in different areas
of the brain or spinal cord. The tumors may be benign (not cancer) or malignant (cancer). Benign brain tumors may grow and press on nearby areas of the brain. They rarely spread into other brain tissue. Malignant brain tumors may be low grade or high grade. High-grade tumors are likely to grow quickly and spread into other brain tissue. Low-grade tumors tend to grow and spread more slowly than high-grade tumors. When a tumor grows into or presses on an area of the brain, it may stop that part of the brain from working the way it should. Both benign and malignant brain tumors can cause signs or symptoms, need treatment, and can recur (come back). Together, the brain and spinal cord make up the central nervous system (CNS). This summary is about primary benign and malignant brain and spinal cord tumors. The brain has three major parts: The spinal cord is a column of nerve tissue that runs from the brain stem down the center of the back. It is covered by three thin layers of tissue called membranes. The spinal cord and membranes are surrounded by the vertebrae (back bones). Spinal cord nerves carry messages between the brain and the rest of the body, such as a message from the brain to cause muscles to move or a message from the skin to the brain to feel touch. Although cancer is rare in children, brain and spinal cord tumors are the second most
common type of childhood cancer, after leukemia. Brain tumors can occur in both children and adults. Treatment for children is usually different than treatment for adults. (See
the PDQ summary on Adult Central Nervous System Tumors Treatment for more information about the treatment of adults.) Metastatic tumors are formed by cancer cells that begin in other parts of the body and spread to the brain or spinal cord. Treatment of metastatic
brain and spinal cord tumors is not covered in
this summary. Signs and symptoms depend on the following: Signs and symptoms may be caused by childhood brain and spinal cord tumors or by other conditions. Check with your child's doctor if your child has any of the following: Brain Tumor Signs and Symptoms Spinal Cord Tumor Signs and Symptoms In addition to these signs and symptoms of brain and spinal cord tumors, some children are unable to reach certain growth and development milestones such as sitting up, walking, and talking in sentences. The following tests and procedures may be used: If doctors think there might be a brain tumor, a biopsy may be done to remove a sample of tissue. For tumors in the brain, a part of the skull is removed and a needle is used to remove a sample of tissue. Sometimes, the needle is guided by a computer. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, the doctor may remove as much tumor as safely possible during the same surgery. The pathologist checks the cancer cells to find out the type and grade of brain tumor. The grade of the tumor is based on how abnormal the cancer cells look under a microscope and how quickly the tumor is likely to grow and spread. The following test may be done on the sample of tissue that is removed: Sometimes a biopsy or surgery cannot be done safely because of where the tumor formed in the brain or spinal cord. These tumors are diagnosed based on the results of imaging tests and other procedures. The prognosis depends on the following: The brain and spinal cord are made of different kinds of cells. Childhood brain tumors and spinal cord tumors can be benign or malignant and are grouped and treated based on the type of cell the tumor formed in and where the tumor began growing in the central nervous system (CNS). Some types of tumors are divided into subtypes based on how the tumor looks under a microscope and whether it has certain gene changes. See the list below for more information about staging and treatment of newly diagnosed and recurrent childhood brain and spinal cord tumors. See the PDQ summary on Childhood Astrocytomas Treatment for more information on astrocytomas, gliomas, xanthroastrocytomas, and neurofibromatosis type 1 (NF1). See the PDQ summary on Childhood Brain Stem Glioma Treatment for more information on diffuse intrinsic pontine gliomas and focal gliomas. See the PDQ summary on Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment for more information. See the PDQ summary on Childhood Central Nervous System Germ Cell Tumors Treatment for more information on germinomas, embryonal carcinomas, yolk sac tumors, choriocarcinoma, mature teratomas, immature teratomas, teratoma with malignant transformation, and mixed germ cell tumors. See the PDQ summary on Childhood Craniopharyngioma Treatment for more information. See the PDQ summary on Childhood Ependymoma Treatment for more information. See the PDQ summary on Childhood Medulloblastoma and Other Central Nervous System Embryonal Tumors Treatment for more information on medulloblastomas, embryonal tumors, and pineoblastomas. For more information about childhood brain and spinal cord tumors, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of childhood brain and spinal cord tumors. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Childhood Brain and Spinal Cord Tumors Treatment Overview. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/brain/patient/child-brain-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389351] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Childhood Brain and Spinal Cord Tumors Treatment Overview (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the treatments for Childhood Brain and Spinal Cord Tumors ? | Key Points
- There are different types of treatment for children with brain and spinal cord tumors. - Children with brain or spinal cord tumors should have their treatment planned by a team of health care providers who are experts in treating childhood brain and spinal cord tumors. - Childhood brain and spinal cord tumors may cause signs or symptoms that begin before the cancer is diagnosed and continue for months or years. - Some cancer treatments cause side effects months or years after treatment has ended. - Three types of standard treatment are used: - Surgery - Radiation therapy - Chemotherapy - New types of treatment are being tested in clinical trials. - High-dose chemotherapy with stem cell transplant - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed.
There are different types of treatment for children with brain and spinal cord tumors.
Different types of treatment are available for children with brain and spinal cord tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Clinical trials are taking place in many parts of the country. Some clinical trials are open only to patients who have not started treatment.
Children with brain or spinal cord tumors should have their treatment planned by a team of health care providers who are experts in treating childhood brain and spinal cord tumors.
Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other health care providers who are experts in treating children with brain tumors and who specialize in certain areas of medicine. These may include the following specialists: - Pediatrician. - Neurosurgeon. - Neurologist. - Neuro-oncologist. - Neuropathologist. - Neuroradiologist. - Radiation oncologist. - Endocrinologist. - Psychologist. - Ophthalmologist. - Rehabilitation specialist. - Social worker. - Nurse specialist.
Childhood brain and spinal cord tumors may cause signs or symptoms that begin before the cancer is diagnosed and continue for months or years.
Childhood brain and spinal cord tumors may cause signs or symptoms that continue for months or years. Signs or symptoms caused by the tumor may begin before diagnosis. Signs or symptoms caused by treatment may begin during or right after treatment.
Some cancer treatments cause side effects months or years after treatment has ended.
These are called late effects. Late effects of cancer treatment may include the following: - Physical problems. - Changes in mood, feelings, thinking, learning, or memory. - Second cancers (new types of cancer). Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. (See the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information).
Three types of standard treatment are used:
Surgery Surgery may be used to diagnose and treat childhood brain and spinal cord tumors. See the General Information section of this summary. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type of cancer being treated. External radiation therapy is used to treat childhood brain and spinal cord tumors. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly in the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. Anticancer drugs given by mouth or vein to treat brain and spinal cord tumors cannot cross the blood-brain barrier and enter the fluid that surrounds the brain and spinal cord. Instead, an anticancer drug is injected into the fluid-filled space to kill cancer cells there. This is called intrathecal chemotherapy.
New types of treatment are being tested in clinical trials.
This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. High-dose chemotherapy with stem cell transplant High-dose chemotherapy with stem cell transplant is a way of giving high doses of chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the bodys blood cells.
Patients may want to think about taking part in a clinical trial.
For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.
Patients can enter clinical trials before, during, or after starting their cancer treatment.
Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials is available from the NCI website.
Follow-up tests may be needed.
Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. |
The testicles are 2 egg-shaped glands located inside the scrotum (a sac of loose skin that lies
directly below the penis). The testicles are held within the scrotum by the spermatic cord, which also contains the vas deferens and vessels and nerves of the testicles. EnlargeAnatomy of the male reproductive and urinary systems, showing the testicles, prostate, bladder, and other organs. The testicles are the male sex glands and produce testosterone and sperm. Germ cells within the testicles produce immature sperm that travel through a network of tubules (tiny tubes) and larger tubes into the epididymis (a long coiled tube next to the testicles) where the sperm mature and are stored. Almost all testicular cancers start in the germ cells. The two main types of testicular germ cell tumors are seminomas and nonseminomas. These 2 types grow and spread differently and are treated differently. Nonseminomas tend to grow and spread more quickly than seminomas. Seminomas are more sensitive to radiation. A testicular tumor that contains both seminoma and nonseminoma cells is treated as a nonseminoma. Testicular cancer is the most common cancer in men 20 to 35 years old. Anything that increases the chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for testicular cancer include: These and other signs and symptoms may be caused by testicular cancer or by other conditions. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis and treatment options depend on the following: Testicular cancer can usually be cured in patients who receive adjuvant chemotherapy or radiation therapy after their primary treatment. Certain treatments for testicular cancer can cause infertility that may be permanent. Patients who may wish to have children should consider sperm banking before having treatment. Sperm banking is the process of freezing sperm and storing it for later use. The process used to find out if cancer has spread within the testicles or to other
parts of the body is called staging. The information gathered from the
staging process determines the stage of the disease. It is important to know
the stage in order to plan treatment. The following tests and
procedures may be used in the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if testicular cancer spreads to the lung, the cancer cells in the lung are actually testicular cancer cells. The disease is metastatic testicular cancer, not lung cancer. In stage 0, abnormal cells are found in the tiny tubules where the sperm cells begin to develop. These abnormal cells may become cancer and spread into nearby normal tissue. All tumor marker levels are normal. Stage 0 is also called germ cell neoplasia in situ. In stage I, cancer has formed. Stage I is divided into stages IA, IB, and IS. All tumor marker levels are normal. All tumor marker levels are normal. Tumor marker levels range from slightly above normal to high. Stage II is divided into stages IIA, IIB, and IIC. All tumor marker levels are normal or slightly above normal. All tumor marker levels are normal or slightly above normal. All tumor marker levels are normal or slightly above normal. Stage III is divided into stages IIIA, IIIB, and IIIC. All tumor marker levels are normal or slightly above normal. The level of one or more tumor markers is moderately above normal. The level of one or more tumor markers is high. or Cancer is found anywhere in the testicle and may have spread into the spermatic cord or scrotum. Cancer has not spread to distant lymph nodes or the lung, but has spread to other parts of the body, such as the liver or bone. Tumor marker levels may range from normal to high. The cancer may come back many years after the initial cancer, in the other testicle or in other parts of the body. Different types of treatments are available for patients with testicular cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. For nonseminoma, all of the following must be true: For seminoma, all of the following must be true: For nonseminoma, all of the following must be true: For seminoma, all of the following must be true: For nonseminoma, at least one of the following must be true: There is no poor prognosis grouping for seminoma testicular tumors.
Surgery to remove the testicle (inguinal orchiectomy) and some of the lymph nodes may be done at diagnosis and staging. (See the General Information and Stages sections of this summary.) Tumors that have spread to other places in the body may be partly or entirely removed by surgery. After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). See Drugs Approved for Testicular Cancer for more information. Surveillance is closely following a patient's condition without giving any treatment unless there are changes in test results. It is used to find early signs that the cancer has recurred (come back). In surveillance, patients are given certain exams and tests on a regular schedule. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. See Drugs Approved for Testicular Cancer for more information. Information about clinical trials is available from the NCI website. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Men who have had testicular cancer have an increased risk of developing cancer in the other testicle. A patient is advised to regularly check the other testicle and report any unusual symptoms to a doctor right away. Long-term clinical exams are very important. The patient will probably have
check-ups frequently during the first year after surgery and less often after that. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage 0 may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I testicular cancer depends on whether the cancer is a seminoma or a nonseminoma. Treatment of seminoma may include the following: Treatment of nonseminoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage II testicular cancer depends on whether the cancer is a seminoma or a nonseminoma. Treatment of seminoma may include the following: Treatment of nonseminoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III testicular cancer depends on whether the cancer is a seminoma or a nonseminoma. Treatment of seminoma may include the following: Treatment of nonseminoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of recurrent testicular cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about testicular cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of testicular cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Testicular Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/testicular/patient/testicular-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389286] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Testicular Cancer Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | Who is at risk for Testicular Cancer? ? | Health history can affect the risk of testicular cancer.
Anything that increases the chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for testicular cancer include: - Having had an undescended testicle. - Having had abnormal development of the testicles. - Having a personal history of testicular cancer. - Having a family history of testicular cancer (especially in a father or brother). - Being white.
Treatment for testicular cancer can cause infertility.
Certain treatments for testicular cancer can cause infertility that may be permanent. Patients who may wish to have children should consider sperm banking before having treatment. Sperm banking is the process of freezing sperm and storing it for later use. |
The testicles are 2 egg-shaped glands located inside the scrotum (a sac of loose skin that lies
directly below the penis). The testicles are held within the scrotum by the spermatic cord, which also contains the vas deferens and vessels and nerves of the testicles. EnlargeAnatomy of the male reproductive and urinary systems, showing the testicles, prostate, bladder, and other organs. The testicles are the male sex glands and produce testosterone and sperm. Germ cells within the testicles produce immature sperm that travel through a network of tubules (tiny tubes) and larger tubes into the epididymis (a long coiled tube next to the testicles) where the sperm mature and are stored. Almost all testicular cancers start in the germ cells. The two main types of testicular germ cell tumors are seminomas and nonseminomas. These 2 types grow and spread differently and are treated differently. Nonseminomas tend to grow and spread more quickly than seminomas. Seminomas are more sensitive to radiation. A testicular tumor that contains both seminoma and nonseminoma cells is treated as a nonseminoma. Testicular cancer is the most common cancer in men 20 to 35 years old. Anything that increases the chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for testicular cancer include: These and other signs and symptoms may be caused by testicular cancer or by other conditions. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis and treatment options depend on the following: Testicular cancer can usually be cured in patients who receive adjuvant chemotherapy or radiation therapy after their primary treatment. Certain treatments for testicular cancer can cause infertility that may be permanent. Patients who may wish to have children should consider sperm banking before having treatment. Sperm banking is the process of freezing sperm and storing it for later use. The process used to find out if cancer has spread within the testicles or to other
parts of the body is called staging. The information gathered from the
staging process determines the stage of the disease. It is important to know
the stage in order to plan treatment. The following tests and
procedures may be used in the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if testicular cancer spreads to the lung, the cancer cells in the lung are actually testicular cancer cells. The disease is metastatic testicular cancer, not lung cancer. In stage 0, abnormal cells are found in the tiny tubules where the sperm cells begin to develop. These abnormal cells may become cancer and spread into nearby normal tissue. All tumor marker levels are normal. Stage 0 is also called germ cell neoplasia in situ. In stage I, cancer has formed. Stage I is divided into stages IA, IB, and IS. All tumor marker levels are normal. All tumor marker levels are normal. Tumor marker levels range from slightly above normal to high. Stage II is divided into stages IIA, IIB, and IIC. All tumor marker levels are normal or slightly above normal. All tumor marker levels are normal or slightly above normal. All tumor marker levels are normal or slightly above normal. Stage III is divided into stages IIIA, IIIB, and IIIC. All tumor marker levels are normal or slightly above normal. The level of one or more tumor markers is moderately above normal. The level of one or more tumor markers is high. or Cancer is found anywhere in the testicle and may have spread into the spermatic cord or scrotum. Cancer has not spread to distant lymph nodes or the lung, but has spread to other parts of the body, such as the liver or bone. Tumor marker levels may range from normal to high. The cancer may come back many years after the initial cancer, in the other testicle or in other parts of the body. Different types of treatments are available for patients with testicular cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. For nonseminoma, all of the following must be true: For seminoma, all of the following must be true: For nonseminoma, all of the following must be true: For seminoma, all of the following must be true: For nonseminoma, at least one of the following must be true: There is no poor prognosis grouping for seminoma testicular tumors.
Surgery to remove the testicle (inguinal orchiectomy) and some of the lymph nodes may be done at diagnosis and staging. (See the General Information and Stages sections of this summary.) Tumors that have spread to other places in the body may be partly or entirely removed by surgery. After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). See Drugs Approved for Testicular Cancer for more information. Surveillance is closely following a patient's condition without giving any treatment unless there are changes in test results. It is used to find early signs that the cancer has recurred (come back). In surveillance, patients are given certain exams and tests on a regular schedule. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. See Drugs Approved for Testicular Cancer for more information. Information about clinical trials is available from the NCI website. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Men who have had testicular cancer have an increased risk of developing cancer in the other testicle. A patient is advised to regularly check the other testicle and report any unusual symptoms to a doctor right away. Long-term clinical exams are very important. The patient will probably have
check-ups frequently during the first year after surgery and less often after that. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage 0 may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I testicular cancer depends on whether the cancer is a seminoma or a nonseminoma. Treatment of seminoma may include the following: Treatment of nonseminoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage II testicular cancer depends on whether the cancer is a seminoma or a nonseminoma. Treatment of seminoma may include the following: Treatment of nonseminoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III testicular cancer depends on whether the cancer is a seminoma or a nonseminoma. Treatment of seminoma may include the following: Treatment of nonseminoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of recurrent testicular cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about testicular cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of testicular cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Testicular Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/testicular/patient/testicular-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389286] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Testicular Cancer Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the stages of Testicular Cancer ? | Key Points
- After testicular cancer has been diagnosed, tests are done to find out if cancer cells have spread within the testicles or to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The following stages are used for testicular cancer: - Stage 0 (Testicular Intraepithelial Neoplasia) - Stage I - Stage II - Stage III
After testicular cancer has been diagnosed, tests are done to find out if cancer cells have spread within the testicles or to other parts of the body.
The process used to find out if cancer has spread within the testicles or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The following tests and procedures may be used in the staging process: - Chest x-ray : An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Abdominal lymph node dissection : A surgical procedure in which lymph nodes in the abdomen are removed and a sample of tissue is checked under a microscope for signs of cancer. This procedure is also called lymphadenectomy. For patients with nonseminoma, removing the lymph nodes may help stop the spread of disease. Cancer cells in the lymph nodes of seminoma patients can be treated with radiation therapy. - Serum tumor marker test : A procedure in which a sample of blood is examined to measure the amounts of certain substances released into the blood by organs, tissues, or tumor cells in the body. Certain substances are linked to specific types of cancer when found in increased levels in the blood. These are called tumor markers. The following 3 tumor markers are used in staging testicular cancer: - Alpha-fetoprotein (AFP) - Beta-human chorionic gonadotropin (-hCG). - Lactate dehydrogenase (LDH). Tumor marker levels are measured again, after inguinal orchiectomy and biopsy, in order to determine the stage of the cancer. This helps to show if all of the cancer has been removed or if more treatment is needed. Tumor marker levels are also measured during follow-up as a way of checking if the cancer has come back.
There are three ways that cancer spreads in the body.
Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body.
Cancer may spread from where it began to other parts of the body.
When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if testicular cancer spreads to the lung, the cancer cells in the lung are actually testicular cancer cells. The disease is metastatic testicular cancer, not lung cancer.
The following stages are used for testicular cancer:
Stage 0 (Testicular Intraepithelial Neoplasia) In stage 0, abnormal cells are found in the tiny tubules where the sperm cells begin to develop. These abnormal cells may become cancer and spread into nearby normal tissue. All tumor marker levels are normal. Stage 0 is also called testicular intraepithelial neoplasia and testicular intratubular germ cell neoplasia. Stage I In stage I, cancer has formed. Stage I is divided into stage IA, stage IB, and stage IS and is determined after an inguinal orchiectomy is done. - In stage IA, cancer is in the testicle and epididymis and may have spread to the inner layer of the membrane surrounding the testicle. All tumor marker levels are normal. - In stage IB, cancer: - is in the testicle and the epididymis and has spread to the blood vessels or lymph vessels in the testicle; or - has spread to the outer layer of the membrane surrounding the testicle; or - is in the spermatic cord or the scrotum and may be in the blood vessels or lymph vessels of the testicle. All tumor marker levels are normal. - In stage IS, cancer is found anywhere within the testicle, spermatic cord, or the scrotum and either: - all tumor marker levels are slightly above normal; or - one or more tumor marker levels are moderately above normal or high. Stage II Stage II is divided into stage IIA, stage IIB, and stage IIC and is determined after an inguinal orchiectomy is done. - In stage IIA, cancer: - is anywhere within the testicle, spermatic cord, or scrotum; and - has spread to up to 5 lymph nodes in the abdomen, none larger than 2 centimeters. All tumor marker levels are normal or slightly above normal. - In stage IIB, cancer is anywhere within the testicle, spermatic cord, or scrotum; and either: - has spread to up to 5 lymph nodes in the abdomen; at least one of the lymph nodes is larger than 2 centimeters, but none are larger than 5 centimeters; or - has spread to more than 5 lymph nodes; the lymph nodes are not larger than 5 centimeters. All tumor marker levels are normal or slightly above normal. - In stage IIC, cancer: - is anywhere within the testicle, spermatic cord, or scrotum; and - has spread to a lymph node in the abdomen that is larger than 5 centimeters. All tumor marker levels are normal or slightly above normal. Stage III Stage III is divided into stage IIIA, stage IIIB, and stage IIIC and is determined after an inguinal orchiectomy is done. - In stage IIIA, cancer: - is anywhere within the testicle, spermatic cord, or scrotum; and - may have spread to one or more lymph nodes in the abdomen; and - has spread to distant lymph nodes or to the lungs. Tumor marker levels may range from normal to slightly above normal. - In stage IIIB, cancer: - is anywhere within the testicle, spermatic cord, or scrotum; and - may have spread to one or more lymph nodes in the abdomen, to distant lymph nodes, or to the lungs. The level of one or more tumor markers is moderately above normal. - In stage IIIC, cancer: - is anywhere within the testicle, spermatic cord, or scrotum; and - may have spread to one or more lymph nodes in the abdomen, to distant lymph nodes, or to the lungs. The level of one or more tumor markers is high. or Cancer: - is anywhere within the testicle, spermatic cord, or scrotum; and - may have spread to one or more lymph nodes in the abdomen; and - has not spread to distant lymph nodes or the lung but has spread to other parts of the body. Tumor marker levels may range from normal to high. |
The testicles are 2 egg-shaped glands located inside the scrotum (a sac of loose skin that lies
directly below the penis). The testicles are held within the scrotum by the spermatic cord, which also contains the vas deferens and vessels and nerves of the testicles. EnlargeAnatomy of the male reproductive and urinary systems, showing the testicles, prostate, bladder, and other organs. The testicles are the male sex glands and produce testosterone and sperm. Germ cells within the testicles produce immature sperm that travel through a network of tubules (tiny tubes) and larger tubes into the epididymis (a long coiled tube next to the testicles) where the sperm mature and are stored. Almost all testicular cancers start in the germ cells. The two main types of testicular germ cell tumors are seminomas and nonseminomas. These 2 types grow and spread differently and are treated differently. Nonseminomas tend to grow and spread more quickly than seminomas. Seminomas are more sensitive to radiation. A testicular tumor that contains both seminoma and nonseminoma cells is treated as a nonseminoma. Testicular cancer is the most common cancer in men 20 to 35 years old. Anything that increases the chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for testicular cancer include: These and other signs and symptoms may be caused by testicular cancer or by other conditions. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis and treatment options depend on the following: Testicular cancer can usually be cured in patients who receive adjuvant chemotherapy or radiation therapy after their primary treatment. Certain treatments for testicular cancer can cause infertility that may be permanent. Patients who may wish to have children should consider sperm banking before having treatment. Sperm banking is the process of freezing sperm and storing it for later use. The process used to find out if cancer has spread within the testicles or to other
parts of the body is called staging. The information gathered from the
staging process determines the stage of the disease. It is important to know
the stage in order to plan treatment. The following tests and
procedures may be used in the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if testicular cancer spreads to the lung, the cancer cells in the lung are actually testicular cancer cells. The disease is metastatic testicular cancer, not lung cancer. In stage 0, abnormal cells are found in the tiny tubules where the sperm cells begin to develop. These abnormal cells may become cancer and spread into nearby normal tissue. All tumor marker levels are normal. Stage 0 is also called germ cell neoplasia in situ. In stage I, cancer has formed. Stage I is divided into stages IA, IB, and IS. All tumor marker levels are normal. All tumor marker levels are normal. Tumor marker levels range from slightly above normal to high. Stage II is divided into stages IIA, IIB, and IIC. All tumor marker levels are normal or slightly above normal. All tumor marker levels are normal or slightly above normal. All tumor marker levels are normal or slightly above normal. Stage III is divided into stages IIIA, IIIB, and IIIC. All tumor marker levels are normal or slightly above normal. The level of one or more tumor markers is moderately above normal. The level of one or more tumor markers is high. or Cancer is found anywhere in the testicle and may have spread into the spermatic cord or scrotum. Cancer has not spread to distant lymph nodes or the lung, but has spread to other parts of the body, such as the liver or bone. Tumor marker levels may range from normal to high. The cancer may come back many years after the initial cancer, in the other testicle or in other parts of the body. Different types of treatments are available for patients with testicular cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. For nonseminoma, all of the following must be true: For seminoma, all of the following must be true: For nonseminoma, all of the following must be true: For seminoma, all of the following must be true: For nonseminoma, at least one of the following must be true: There is no poor prognosis grouping for seminoma testicular tumors.
Surgery to remove the testicle (inguinal orchiectomy) and some of the lymph nodes may be done at diagnosis and staging. (See the General Information and Stages sections of this summary.) Tumors that have spread to other places in the body may be partly or entirely removed by surgery. After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). See Drugs Approved for Testicular Cancer for more information. Surveillance is closely following a patient's condition without giving any treatment unless there are changes in test results. It is used to find early signs that the cancer has recurred (come back). In surveillance, patients are given certain exams and tests on a regular schedule. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. See Drugs Approved for Testicular Cancer for more information. Information about clinical trials is available from the NCI website. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Men who have had testicular cancer have an increased risk of developing cancer in the other testicle. A patient is advised to regularly check the other testicle and report any unusual symptoms to a doctor right away. Long-term clinical exams are very important. The patient will probably have
check-ups frequently during the first year after surgery and less often after that. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage 0 may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I testicular cancer depends on whether the cancer is a seminoma or a nonseminoma. Treatment of seminoma may include the following: Treatment of nonseminoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage II testicular cancer depends on whether the cancer is a seminoma or a nonseminoma. Treatment of seminoma may include the following: Treatment of nonseminoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III testicular cancer depends on whether the cancer is a seminoma or a nonseminoma. Treatment of seminoma may include the following: Treatment of nonseminoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of recurrent testicular cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about testicular cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of testicular cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Testicular Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/testicular/patient/testicular-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389286] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Testicular Cancer Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the treatments for Testicular Cancer ? | Key Points
- There are different types of treatment for patients with testicular cancer. - Testicular tumors are divided into 3 groups, based on how well the tumors are expected to respond to treatment. - Good Prognosis - Intermediate Prognosis - Poor Prognosis - Five types of standard treatment are used: - Surgery - Radiation therapy - Chemotherapy - Surveillance - High-dose chemotherapy with stem cell transplant - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed.
There are different types of treatment for patients with testicular cancer.
Different types of treatments are available for patients with testicular cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Testicular tumors are divided into 3 groups, based on how well the tumors are expected to respond to treatment.
Good Prognosis For nonseminoma, all of the following must be true: - The tumor is found only in the testicle or in the retroperitoneum (area outside or behind the abdominal wall); and - The tumor has not spread to organs other than the lungs; and - The levels of all the tumor markers are slightly above normal. For seminoma, all of the following must be true: - The tumor has not spread to organs other than the lungs; and - The level of alpha-fetoprotein (AFP) is normal. Beta-human chorionic gonadotropin (-hCG) and lactate dehydrogenase (LDH) may be at any level. Intermediate Prognosis For nonseminoma, all of the following must be true: - The tumor is found in one testicle only or in the retroperitoneum (area outside or behind the abdominal wall); and - The tumor has not spread to organs other than the lungs; and - The level of any one of the tumor markers is more than slightly above normal. For seminoma, all of the following must be true: - The tumor has spread to organs other than the lungs; and - The level of AFP is normal. -hCG and LDH may be at any level. Poor Prognosis For nonseminoma, at least one of the following must be true: - The tumor is in the center of the chest between the lungs; or - The tumor has spread to organs other than the lungs; or - The level of any one of the tumor markers is high. There is no poor prognosis grouping for seminoma testicular tumors.
Five types of standard treatment are used:
Surgery Surgery to remove the testicle (inguinal orchiectomy) and some of the lymph nodes may be done at diagnosis and staging. (See the General Information and Stages sections of this summary.) Tumors that have spread to other places in the body may be partly or entirely removed by surgery. Even if the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat testicular cancer. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved for Testicular Cancer for more information. Surveillance Surveillance is closely following a patient's condition without giving any treatment unless there are changes in test results. It is used to find early signs that the cancer has recurred (come back). In surveillance, patients are given certain exams and tests on a regular schedule. High-dose chemotherapy with stem cell transplant High-dose chemotherapy with stem cell transplant is a method of giving high doses of chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the bodys blood cells. See Drugs Approved for Testicular Cancer for more information.
New types of treatment are being tested in clinical trials.
Information about clinical trials is available from the NCI website.
Patients may want to think about taking part in a clinical trial.
For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.
Patients can enter clinical trials before, during, or after starting their cancer treatment.
Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Follow-up tests may be needed.
Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Men who have had testicular cancer have an increased risk of developing cancer in the other testicle. A patient is advised to regularly check the other testicle and report any unusual symptoms to a doctor right away. Long-term clinical exams are very important. The patient will probably have check-ups frequently during the first year after surgery and less often after that.
Treatment Options by Stage
Stage 0 (Testicular Intraepithelial Neoplasia)
Treatment of stage 0 may include the following: - Radiation therapy. - Surveillance. - Surgery to remove the testicle. Check the list of NCI-supported cancer clinical trials that are now accepting patients with testicular cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Stage I Testicular Cancer
Treatment of stage I testicular cancer depends on whether the cancer is a seminoma or a nonseminoma. Treatment of seminoma may include the following: - Surgery to remove the testicle, followed by surveillance. - For patients who want active treatment rather than surveillance, treatment may include: - - Surgery to remove the testicle, followed by chemotherapy. Treatment of nonseminoma may include the following: - Surgery to remove the testicle, with long-term follow-up. - Surgery to remove the testicle and lymph nodes in the abdomen, with long-term follow-up. - Surgery followed by chemotherapy for patients at high risk of recurrence, with long-term follow-up. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I testicular cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Stage II Testicular Cancer
Treatment of stage II testicular cancer depends on whether the cancer is a seminoma or a nonseminoma. Treatment of seminoma may include the following: - When the tumor is 5 centimeters or smaller: - Surgery to remove the testicle, followed by radiation therapy to lymph nodes in the abdomen and pelvis. - Combination chemotherapy. - Surgery to remove the testicle and lymph nodes in the abdomen. - When the tumor is larger than 5 centimeters: - Surgery to remove the testicle, followed by combination chemotherapy or radiation therapy to lymph nodes in the abdomen and pelvis, with long-term follow-up. Treatment of nonseminoma may include the following: - Surgery to remove the testicle and lymph nodes, with long-term follow-up. - Surgery to remove the testicle and lymph nodes, followed by combination chemotherapy and long-term follow-up. - Surgery to remove the testicle, followed by combination chemotherapy and a second surgery if cancer remains, with long-term follow-up. - Combination chemotherapy before surgery to remove the testicle, for cancer that has spread and is thought to be life-threatening. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage II testicular cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Stage III Testicular Cancer
Treatment of stage III testicular cancer depends on whether the cancer is a seminoma or a nonseminoma. Treatment of seminoma may include the following: - Surgery to remove the testicle, followed by combination chemotherapy. If there are tumors remaining after chemotherapy, treatment may be one of the following: - Surveillance with no treatment unless tumors grow. - Surveillance for tumors smaller than 3 centimeters and surgery to remove tumors larger than 3 centimeters. - A PET scan two months after chemotherapy and surgery to remove tumors that show up with cancer on the scan. - A clinical trial of chemotherapy. Treatment of nonseminoma may include the following: - Surgery to remove the testicle, followed by combination chemotherapy. - Combination chemotherapy followed by surgery to remove the testicle and all remaining tumors. Additional chemotherapy may be given if the tumor tissue removed contains cancer cells that are growing or if follow-up tests show that cancer is progressing. - Combination chemotherapy before surgery to remove the testicle, for cancer that has spread and is thought to be life-threatening. - A clinical trial of chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage III testicular cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. |
The testicles are 2 egg-shaped glands located inside the scrotum (a sac of loose skin that lies
directly below the penis). The testicles are held within the scrotum by the spermatic cord, which also contains the vas deferens and vessels and nerves of the testicles. EnlargeAnatomy of the male reproductive and urinary systems, showing the testicles, prostate, bladder, and other organs. The testicles are the male sex glands and produce testosterone and sperm. Germ cells within the testicles produce immature sperm that travel through a network of tubules (tiny tubes) and larger tubes into the epididymis (a long coiled tube next to the testicles) where the sperm mature and are stored. Almost all testicular cancers start in the germ cells. The two main types of testicular germ cell tumors are seminomas and nonseminomas. These 2 types grow and spread differently and are treated differently. Nonseminomas tend to grow and spread more quickly than seminomas. Seminomas are more sensitive to radiation. A testicular tumor that contains both seminoma and nonseminoma cells is treated as a nonseminoma. Testicular cancer is the most common cancer in men 20 to 35 years old. Anything that increases the chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for testicular cancer include: These and other signs and symptoms may be caused by testicular cancer or by other conditions. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis and treatment options depend on the following: Testicular cancer can usually be cured in patients who receive adjuvant chemotherapy or radiation therapy after their primary treatment. Certain treatments for testicular cancer can cause infertility that may be permanent. Patients who may wish to have children should consider sperm banking before having treatment. Sperm banking is the process of freezing sperm and storing it for later use. The process used to find out if cancer has spread within the testicles or to other
parts of the body is called staging. The information gathered from the
staging process determines the stage of the disease. It is important to know
the stage in order to plan treatment. The following tests and
procedures may be used in the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if testicular cancer spreads to the lung, the cancer cells in the lung are actually testicular cancer cells. The disease is metastatic testicular cancer, not lung cancer. In stage 0, abnormal cells are found in the tiny tubules where the sperm cells begin to develop. These abnormal cells may become cancer and spread into nearby normal tissue. All tumor marker levels are normal. Stage 0 is also called germ cell neoplasia in situ. In stage I, cancer has formed. Stage I is divided into stages IA, IB, and IS. All tumor marker levels are normal. All tumor marker levels are normal. Tumor marker levels range from slightly above normal to high. Stage II is divided into stages IIA, IIB, and IIC. All tumor marker levels are normal or slightly above normal. All tumor marker levels are normal or slightly above normal. All tumor marker levels are normal or slightly above normal. Stage III is divided into stages IIIA, IIIB, and IIIC. All tumor marker levels are normal or slightly above normal. The level of one or more tumor markers is moderately above normal. The level of one or more tumor markers is high. or Cancer is found anywhere in the testicle and may have spread into the spermatic cord or scrotum. Cancer has not spread to distant lymph nodes or the lung, but has spread to other parts of the body, such as the liver or bone. Tumor marker levels may range from normal to high. The cancer may come back many years after the initial cancer, in the other testicle or in other parts of the body. Different types of treatments are available for patients with testicular cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. For nonseminoma, all of the following must be true: For seminoma, all of the following must be true: For nonseminoma, all of the following must be true: For seminoma, all of the following must be true: For nonseminoma, at least one of the following must be true: There is no poor prognosis grouping for seminoma testicular tumors.
Surgery to remove the testicle (inguinal orchiectomy) and some of the lymph nodes may be done at diagnosis and staging. (See the General Information and Stages sections of this summary.) Tumors that have spread to other places in the body may be partly or entirely removed by surgery. After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). See Drugs Approved for Testicular Cancer for more information. Surveillance is closely following a patient's condition without giving any treatment unless there are changes in test results. It is used to find early signs that the cancer has recurred (come back). In surveillance, patients are given certain exams and tests on a regular schedule. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. See Drugs Approved for Testicular Cancer for more information. Information about clinical trials is available from the NCI website. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. Men who have had testicular cancer have an increased risk of developing cancer in the other testicle. A patient is advised to regularly check the other testicle and report any unusual symptoms to a doctor right away. Long-term clinical exams are very important. The patient will probably have
check-ups frequently during the first year after surgery and less often after that. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage 0 may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I testicular cancer depends on whether the cancer is a seminoma or a nonseminoma. Treatment of seminoma may include the following: Treatment of nonseminoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage II testicular cancer depends on whether the cancer is a seminoma or a nonseminoma. Treatment of seminoma may include the following: Treatment of nonseminoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III testicular cancer depends on whether the cancer is a seminoma or a nonseminoma. Treatment of seminoma may include the following: Treatment of nonseminoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of recurrent testicular cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about testicular cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of testicular cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Testicular Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/testicular/patient/testicular-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389286] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Testicular Cancer Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | what research (or clinical trials) is being done for Testicular Cancer ? | New types of treatment are being tested in clinical trials.
Information about clinical trials is available from the NCI website.
Patients may want to think about taking part in a clinical trial.
For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.
Patients can enter clinical trials before, during, or after starting their cancer treatment.
Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. |
Breast cancer may occur in
men. Breast cancer may occur in men at any age, but it usually occurs in men between 60 and 70 years of age. Male breast cancer makes up less
than 1% of all cases of breast cancer. The following types of breast cancer are found in men: Lobular carcinoma in
situ (abnormal cells found in one of the
lobes or sections of the breast),
which sometimes occurs in women, has not been seen in men. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for breast
cancer in men may include the following: The genes in cells carry the hereditary information that is received from a person’s parents. Hereditary breast cancer makes up about 5% to 10% of all breast cancer. Some mutated genes related to breast cancer, such as BRCA2, are more common in certain ethnic groups.
Men who have a mutated gene related to breast cancer have an increased risk of this disease. There are tests that can detect (find) mutated genes. These genetic tests are sometimes done for members of families with a high risk of cancer. See the following PDQ summaries for more information: Lumps and other signs may be caused by male breast cancer or by other conditions. Check with your doctor if you have any of the following: The following tests and procedures may be used: Decisions about the best treatment are based on the results of these tests. The tests give information about: Tests include the following: Survival for men with breast cancer is similar to that for women
with breast cancer when their stage
at diagnosis is the same. Breast
cancer in men, however, is often diagnosed at a later stage. Cancer found at a
later stage may be less likely to be cured. The prognosis and treatment options depend on
the following: After breast cancer has been diagnosed, tests are done
to find out if cancer cells have spread within the breast or to other parts of
the body. This process is called staging.
The information gathered from the
staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. Breast cancer in men is staged
the same as it is in women. The spread of cancer from the breast to
lymph nodes and other parts of the
body appears to be similar in men and women. The following tests and procedures may be used in
the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if breast cancer spreads to the bone, the cancer cells in the bone are actually breast cancer cells. The disease is metastatic breast cancer, not bone cancer. To plan the best treatment and understand your prognosis, it is important to know the breast cancer stage. There are 3 types of breast cancer stage groups: For breast cancer, the TNM system describes the tumor as follows: When the lymph nodes are removed by surgery and studied under a microscope by a pathologist, pathologic staging is used to describe the lymph nodes. The pathologic staging of lymph nodes is described below. or cancer has spread to 4 to 9 axillary lymph nodes and cancer in at least one of the lymph nodes is larger than 2 millimeters. Cancer has also spread to lymph nodes near the breastbone on the same side of the body as the primary tumor, and the cancer is larger than 0.2 millimeters and is found by sentinel lymph node biopsy. When the lymph nodes are checked using mammography or ultrasound, it is called clinical staging. The clinical staging of lymph nodes is not described here. The grading system describes a tumor based on how abnormal the cancer cells and tissue look under a microscope and how quickly the cancer cells are likely to grow and spread. Low-grade cancer cells look more like normal cells and tend to grow and spread more slowly than high-grade cancer cells. To describe how abnormal the cancer cells and tissue are, the pathologist will assess the following three features: For each feature, the pathologist assigns a score of 1 to 3; a score of “1” means the cells and tumor tissue look the most like normal cells and tissue, and a score of “3” means the cells and tissue look the most abnormal. The scores for each feature are added together to get a total score between 3 and 9. Three grades are possible: Healthy breast cells, and some breast cancer cells, have receptors (biomarkers) that attach to the hormones estrogen and progesterone. These hormones are needed for healthy cells, and some breast cancer cells, to grow and divide. To check for these biomarkers, samples of tissue containing breast cancer cells are removed during a biopsy or surgery. The samples are tested in a laboratory to see whether the breast cancer cells have estrogen or progesterone receptors. Another type of receptor (biomarker) that is found on the surface of all breast cancer cells is called HER2. HER2 receptors are needed for the breast cancer cells to grow and divide. For breast cancer, biomarker testing includes the following: Sometimes the breast cancer cells will be described as triple negative or triple positive. It is important to know the estrogen receptor, progesterone receptor, and HER2 receptor status to choose the best treatment. There are drugs that can stop the receptors from attaching to the hormones estrogen and progesterone and stop the cancer from growing. Other drugs may be used to block the HER2 receptors on the surface of the breast cancer cells and stop the cancer from growing. Here are 3 examples that combine the TNM system, the grading system, and the biomarker status to find out the Pathological Prognostic breast cancer stage for a woman whose first treatment was surgery: If the tumor size is 30 millimeters (T2), has not spread to nearby lymph nodes (N0), has not spread to distant parts of the body (M0), and is: The cancer is stage IIA. If the tumor size is 53 millimeters (T3), has spread to 4 to 9 axillary lymph nodes (N2), has not spread to other parts of the body (M0), and is: The tumor is stage IIIA.
If the tumor size is 65 millimeters (T3), has spread to 3 axillary lymph nodes (N1a), has spread to the lungs (M1), and is: The cancer is stage IV (metastatic breast cancer). After surgery, your doctor will receive a pathology report that describes the size and location of the primary tumor, the spread of cancer to nearby lymph nodes, tumor grade, and whether certain biomarkers are present. The pathology report and other test results are used to determine your breast cancer stage. You are likely to have many questions. Ask your doctor to explain how staging is used to decide the best options to treat your cancer and whether there are clinical trials that might be right for you. For treatment options for stage I, stage II, stage IIIA, and operable stage IIIC breast cancer, see Treatment of Early/Localized/Operable Male Breast Cancer.
For treatment options for cancer that has recurred (come back) near the area where it first formed, see Treatment of Locoregional Recurrent Male Breast Cancer.
For treatment options for stage IV (metastatic) breast cancer or breast cancer that has recurred in other parts of the body, see Treatment of Metastatic Male Breast Cancer. In inflammatory breast
cancer, cancer has spread to the skin of the breast and the breast looks red and swollen and feels warm. The
redness and warmth occur because the cancer cells block the lymph vessels in the skin. The skin of the breast
may also show the dimpled appearance called peau
d’orange (like the skin of an orange). There may not be any lumps in the breast that can be felt. Inflammatory breast cancer may be stage IIIB, stage IIIC, or stage IV. Different types of treatment are available for men with breast
cancer. Some treatments are standard (the currently used treatment), and some
are being tested in clinical trials.
A treatment clinical trial is a research study meant to help
improve current treatments or obtain information on new treatments for patients
with cancer. When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. For some patients, taking part in a clinical trial may be the best treatment choice. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country.
Information about clinical trials is available from the
NCI website. Choosing the most appropriate cancer treatment is a
decision that ideally involves the patient, family, and health care team.
Surgery for men with breast
cancer is usually a modified radical
mastectomy, surgery to remove the whole breast that has cancer. This may include removal of the nipple, areola (the dark-colored skin around the nipple), and skin over the breast. Most of the lymph nodes under the arm are also removed. Breast-conserving
surgery, an operation to remove the cancer but not the breast
itself, is also used for some men with breast cancer. A lumpectomy is done to remove the tumor (lump) and a small amount of normal tissue around it. Radiation therapy is given after surgery to kill any cancer cells that are left.EnlargeBreast-conserving surgery. The tumor and some normal tissue around it are removed, but not the breast itself. Some lymph nodes under the arm may be removed. Part of the chest wall lining may also be removed if the cancer is near it. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). See Drugs Approved for Breast Cancer for more information. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. Hormone therapy with tamoxifen is often given to patients with estrogen-receptor and progesterone-receptor positive breast cancer and to patients with metastatic breast cancer (cancer
that has spread to other parts of the body). Hormone therapy with an aromatase inhibitor is given to some men who have metastatic breast cancer. Aromatase inhibitors decrease the body's estrogen by blocking an enzyme called aromatase from turning androgen into estrogen. Anastrozole, letrozole, and exemestane are types of aromatase inhibitors. Hormone therapy with a luteinizing hormone-releasing hormone (LHRH) agonist is given to some men who have metastatic breast cancer. LHRH agonists affect the pituitary gland, which controls how much testosterone is made by the testicles. In men who are taking LHRH agonists, the pituitary gland tells the testicles to make less testosterone. Leuprolide and goserelin are types of LHRH agonists. Other types of hormone therapy include megestrol acetate or anti-estrogen therapy, such as fulvestrant. See Drugs Approved for Breast Cancer for more information. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Monoclonal antibody therapy, tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, and mammalian target of rapamycin (mTOR) inhibitors are types of targeted therapies used to treat men with breast cancer. Monoclonal antibodies are immune system proteins made in the laboratory to treat many diseases, including cancer. As a cancer treatment, these antibodies can attach to a specific target on cancer cells or other cells that may help cancer cells grow. The antibodies are able to then kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Types of monoclonal antibody therapy include the following: Tyrosine kinase inhibitors are targeted therapy drugs that block signals needed for tumors to grow. Lapatinib is a tyrosine kinase inhibitor that may be used to treat men with metastatic breast cancer. Cyclin-dependent kinase inhibitors are targeted therapy drugs that block proteins called cyclin-dependent kinases, which cause the growth of cancer cells. Palbociclib is a cyclin-dependent kinase inhibitor used to treat men with metastatic breast cancer. Mammalian target of rapamycin (mTOR) inhibitors block a protein called mTOR, which may keep cancer cells from growing and prevent the growth of new blood vessels that tumors need to grow. See Drugs Approved for Breast Cancer for more information. For information about side effects caused by treatment for cancer, see our Side Effects page. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of early, localized, or operable breast cancer may include the following: Treatment for men diagnosed with breast cancer is usually modified radical
mastectomy. Breast-conserving surgery with lumpectomy followed by radiation therapy may be used for some men. Therapy given after an operation when cancer
cells can no longer be seen is
called adjuvant
therapy. Even if the doctor removes all the
cancer that can be seen at the time of the operation, the patient may be given
radiation therapy,
chemotherapy, hormone therapy, and/or targeted therapy after surgery, to try
to kill any cancer cells that may be left. These treatments appear to increase survival in men as they do in
women. The patient’s response to hormone therapy depends on whether there are
hormone receptors (proteins) in the tumor. Most breast cancers in men have these
receptors. Hormone therapy is usually recommended for male breast cancer
patients, but it can have many side effects, including hot flashes and
impotence (the inability to have an erection adequate for sexual
intercourse). For information about the treatments listed below, see the Treatment Option Overview section. For men with locally recurrent disease (cancer that has come back in a
limited area after treatment), treatment options include: For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for metastatic breast cancer (cancer that has spread to distant parts of the body) may include the following: In men who have just been diagnosed with metastatic breast cancer that is hormone receptor positive or if the hormone receptor status is not known, treatment
may include: In men whose tumors are hormone receptor positive or hormone receptor unknown, with spread to the bone or soft tissue only, and who have been treated with tamoxifen, treatment may include: In men with metastatic breast cancer that is hormone receptor positive and has not responded to other treatments, options may include targeted therapy such as: In men with metastatic breast cancer that is HER2/neu positive, treatment may include: In men with metastatic breast cancer that is hormone receptor negative, has not responded to hormone therapy, has spread to other organs or has caused symptoms, treatment may include: Other treatment options for metastatic breast cancer include: For more information from the National Cancer Institute about male breast cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of male breast cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Male Breast Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/breast/patient/male-breast-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389417] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Male Breast Cancer Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is (are) Male Breast Cancer ? | Key Points
- Male breast cancer is a disease in which malignant (cancer) cells form in the tissues of the breast. - Radiation exposure, high levels of estrogen, and a family history of breast cancer can increase a mans risk of breast cancer. - Male breast cancer is sometimes caused by inherited gene mutations (changes). - Men with breast cancer usually have lumps that can be felt. - Tests that examine the breasts are used to detect (find) and diagnose breast cancer in men. - If cancer is found, tests are done to study the cancer cells. - Survival for men with breast cancer is similar to survival for women with breast cancer. - Certain factors affect prognosis (chance of recovery) and treatment options.
Male breast cancer is a disease in which malignant (cancer) cells form in the tissues of the breast.
Breast cancer may occur in men. Men at any age may develop breast cancer, but it is usually detected (found) in men between 60 and 70 years of age. Male breast cancer makes up less than 1% of all cases of breast cancer. The following types of breast cancer are found in men: - Infiltrating ductal carcinoma: Cancer that has spread beyond the cells lining ducts in the breast. Most men with breast cancer have this type of cancer. - Ductal carcinoma in situ: Abnormal cells that are found in the lining of a duct; also called intraductal carcinoma. - Inflammatory breast cancer: A type of cancer in which the breast looks red and swollen and feels warm. - Paget disease of the nipple: A tumor that has grown from ducts beneath the nipple onto the surface of the nipple. Lobular carcinoma in situ (abnormal cells found in one of the lobes or sections of the breast), which sometimes occurs in women, has not been seen in men.
Men with breast cancer usually have lumps that can be felt.
Lumps and other signs may be caused by male breast cancer or by other conditions. Check with your doctor if you notice a change in your breasts. |
Breast cancer may occur in
men. Breast cancer may occur in men at any age, but it usually occurs in men between 60 and 70 years of age. Male breast cancer makes up less
than 1% of all cases of breast cancer. The following types of breast cancer are found in men: Lobular carcinoma in
situ (abnormal cells found in one of the
lobes or sections of the breast),
which sometimes occurs in women, has not been seen in men. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for breast
cancer in men may include the following: The genes in cells carry the hereditary information that is received from a person’s parents. Hereditary breast cancer makes up about 5% to 10% of all breast cancer. Some mutated genes related to breast cancer, such as BRCA2, are more common in certain ethnic groups.
Men who have a mutated gene related to breast cancer have an increased risk of this disease. There are tests that can detect (find) mutated genes. These genetic tests are sometimes done for members of families with a high risk of cancer. See the following PDQ summaries for more information: Lumps and other signs may be caused by male breast cancer or by other conditions. Check with your doctor if you have any of the following: The following tests and procedures may be used: Decisions about the best treatment are based on the results of these tests. The tests give information about: Tests include the following: Survival for men with breast cancer is similar to that for women
with breast cancer when their stage
at diagnosis is the same. Breast
cancer in men, however, is often diagnosed at a later stage. Cancer found at a
later stage may be less likely to be cured. The prognosis and treatment options depend on
the following: After breast cancer has been diagnosed, tests are done
to find out if cancer cells have spread within the breast or to other parts of
the body. This process is called staging.
The information gathered from the
staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. Breast cancer in men is staged
the same as it is in women. The spread of cancer from the breast to
lymph nodes and other parts of the
body appears to be similar in men and women. The following tests and procedures may be used in
the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if breast cancer spreads to the bone, the cancer cells in the bone are actually breast cancer cells. The disease is metastatic breast cancer, not bone cancer. To plan the best treatment and understand your prognosis, it is important to know the breast cancer stage. There are 3 types of breast cancer stage groups: For breast cancer, the TNM system describes the tumor as follows: When the lymph nodes are removed by surgery and studied under a microscope by a pathologist, pathologic staging is used to describe the lymph nodes. The pathologic staging of lymph nodes is described below. or cancer has spread to 4 to 9 axillary lymph nodes and cancer in at least one of the lymph nodes is larger than 2 millimeters. Cancer has also spread to lymph nodes near the breastbone on the same side of the body as the primary tumor, and the cancer is larger than 0.2 millimeters and is found by sentinel lymph node biopsy. When the lymph nodes are checked using mammography or ultrasound, it is called clinical staging. The clinical staging of lymph nodes is not described here. The grading system describes a tumor based on how abnormal the cancer cells and tissue look under a microscope and how quickly the cancer cells are likely to grow and spread. Low-grade cancer cells look more like normal cells and tend to grow and spread more slowly than high-grade cancer cells. To describe how abnormal the cancer cells and tissue are, the pathologist will assess the following three features: For each feature, the pathologist assigns a score of 1 to 3; a score of “1” means the cells and tumor tissue look the most like normal cells and tissue, and a score of “3” means the cells and tissue look the most abnormal. The scores for each feature are added together to get a total score between 3 and 9. Three grades are possible: Healthy breast cells, and some breast cancer cells, have receptors (biomarkers) that attach to the hormones estrogen and progesterone. These hormones are needed for healthy cells, and some breast cancer cells, to grow and divide. To check for these biomarkers, samples of tissue containing breast cancer cells are removed during a biopsy or surgery. The samples are tested in a laboratory to see whether the breast cancer cells have estrogen or progesterone receptors. Another type of receptor (biomarker) that is found on the surface of all breast cancer cells is called HER2. HER2 receptors are needed for the breast cancer cells to grow and divide. For breast cancer, biomarker testing includes the following: Sometimes the breast cancer cells will be described as triple negative or triple positive. It is important to know the estrogen receptor, progesterone receptor, and HER2 receptor status to choose the best treatment. There are drugs that can stop the receptors from attaching to the hormones estrogen and progesterone and stop the cancer from growing. Other drugs may be used to block the HER2 receptors on the surface of the breast cancer cells and stop the cancer from growing. Here are 3 examples that combine the TNM system, the grading system, and the biomarker status to find out the Pathological Prognostic breast cancer stage for a woman whose first treatment was surgery: If the tumor size is 30 millimeters (T2), has not spread to nearby lymph nodes (N0), has not spread to distant parts of the body (M0), and is: The cancer is stage IIA. If the tumor size is 53 millimeters (T3), has spread to 4 to 9 axillary lymph nodes (N2), has not spread to other parts of the body (M0), and is: The tumor is stage IIIA.
If the tumor size is 65 millimeters (T3), has spread to 3 axillary lymph nodes (N1a), has spread to the lungs (M1), and is: The cancer is stage IV (metastatic breast cancer). After surgery, your doctor will receive a pathology report that describes the size and location of the primary tumor, the spread of cancer to nearby lymph nodes, tumor grade, and whether certain biomarkers are present. The pathology report and other test results are used to determine your breast cancer stage. You are likely to have many questions. Ask your doctor to explain how staging is used to decide the best options to treat your cancer and whether there are clinical trials that might be right for you. For treatment options for stage I, stage II, stage IIIA, and operable stage IIIC breast cancer, see Treatment of Early/Localized/Operable Male Breast Cancer.
For treatment options for cancer that has recurred (come back) near the area where it first formed, see Treatment of Locoregional Recurrent Male Breast Cancer.
For treatment options for stage IV (metastatic) breast cancer or breast cancer that has recurred in other parts of the body, see Treatment of Metastatic Male Breast Cancer. In inflammatory breast
cancer, cancer has spread to the skin of the breast and the breast looks red and swollen and feels warm. The
redness and warmth occur because the cancer cells block the lymph vessels in the skin. The skin of the breast
may also show the dimpled appearance called peau
d’orange (like the skin of an orange). There may not be any lumps in the breast that can be felt. Inflammatory breast cancer may be stage IIIB, stage IIIC, or stage IV. Different types of treatment are available for men with breast
cancer. Some treatments are standard (the currently used treatment), and some
are being tested in clinical trials.
A treatment clinical trial is a research study meant to help
improve current treatments or obtain information on new treatments for patients
with cancer. When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. For some patients, taking part in a clinical trial may be the best treatment choice. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country.
Information about clinical trials is available from the
NCI website. Choosing the most appropriate cancer treatment is a
decision that ideally involves the patient, family, and health care team.
Surgery for men with breast
cancer is usually a modified radical
mastectomy, surgery to remove the whole breast that has cancer. This may include removal of the nipple, areola (the dark-colored skin around the nipple), and skin over the breast. Most of the lymph nodes under the arm are also removed. Breast-conserving
surgery, an operation to remove the cancer but not the breast
itself, is also used for some men with breast cancer. A lumpectomy is done to remove the tumor (lump) and a small amount of normal tissue around it. Radiation therapy is given after surgery to kill any cancer cells that are left.EnlargeBreast-conserving surgery. The tumor and some normal tissue around it are removed, but not the breast itself. Some lymph nodes under the arm may be removed. Part of the chest wall lining may also be removed if the cancer is near it. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). See Drugs Approved for Breast Cancer for more information. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. Hormone therapy with tamoxifen is often given to patients with estrogen-receptor and progesterone-receptor positive breast cancer and to patients with metastatic breast cancer (cancer
that has spread to other parts of the body). Hormone therapy with an aromatase inhibitor is given to some men who have metastatic breast cancer. Aromatase inhibitors decrease the body's estrogen by blocking an enzyme called aromatase from turning androgen into estrogen. Anastrozole, letrozole, and exemestane are types of aromatase inhibitors. Hormone therapy with a luteinizing hormone-releasing hormone (LHRH) agonist is given to some men who have metastatic breast cancer. LHRH agonists affect the pituitary gland, which controls how much testosterone is made by the testicles. In men who are taking LHRH agonists, the pituitary gland tells the testicles to make less testosterone. Leuprolide and goserelin are types of LHRH agonists. Other types of hormone therapy include megestrol acetate or anti-estrogen therapy, such as fulvestrant. See Drugs Approved for Breast Cancer for more information. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Monoclonal antibody therapy, tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, and mammalian target of rapamycin (mTOR) inhibitors are types of targeted therapies used to treat men with breast cancer. Monoclonal antibodies are immune system proteins made in the laboratory to treat many diseases, including cancer. As a cancer treatment, these antibodies can attach to a specific target on cancer cells or other cells that may help cancer cells grow. The antibodies are able to then kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Types of monoclonal antibody therapy include the following: Tyrosine kinase inhibitors are targeted therapy drugs that block signals needed for tumors to grow. Lapatinib is a tyrosine kinase inhibitor that may be used to treat men with metastatic breast cancer. Cyclin-dependent kinase inhibitors are targeted therapy drugs that block proteins called cyclin-dependent kinases, which cause the growth of cancer cells. Palbociclib is a cyclin-dependent kinase inhibitor used to treat men with metastatic breast cancer. Mammalian target of rapamycin (mTOR) inhibitors block a protein called mTOR, which may keep cancer cells from growing and prevent the growth of new blood vessels that tumors need to grow. See Drugs Approved for Breast Cancer for more information. For information about side effects caused by treatment for cancer, see our Side Effects page. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of early, localized, or operable breast cancer may include the following: Treatment for men diagnosed with breast cancer is usually modified radical
mastectomy. Breast-conserving surgery with lumpectomy followed by radiation therapy may be used for some men. Therapy given after an operation when cancer
cells can no longer be seen is
called adjuvant
therapy. Even if the doctor removes all the
cancer that can be seen at the time of the operation, the patient may be given
radiation therapy,
chemotherapy, hormone therapy, and/or targeted therapy after surgery, to try
to kill any cancer cells that may be left. These treatments appear to increase survival in men as they do in
women. The patient’s response to hormone therapy depends on whether there are
hormone receptors (proteins) in the tumor. Most breast cancers in men have these
receptors. Hormone therapy is usually recommended for male breast cancer
patients, but it can have many side effects, including hot flashes and
impotence (the inability to have an erection adequate for sexual
intercourse). For information about the treatments listed below, see the Treatment Option Overview section. For men with locally recurrent disease (cancer that has come back in a
limited area after treatment), treatment options include: For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for metastatic breast cancer (cancer that has spread to distant parts of the body) may include the following: In men who have just been diagnosed with metastatic breast cancer that is hormone receptor positive or if the hormone receptor status is not known, treatment
may include: In men whose tumors are hormone receptor positive or hormone receptor unknown, with spread to the bone or soft tissue only, and who have been treated with tamoxifen, treatment may include: In men with metastatic breast cancer that is hormone receptor positive and has not responded to other treatments, options may include targeted therapy such as: In men with metastatic breast cancer that is HER2/neu positive, treatment may include: In men with metastatic breast cancer that is hormone receptor negative, has not responded to hormone therapy, has spread to other organs or has caused symptoms, treatment may include: Other treatment options for metastatic breast cancer include: For more information from the National Cancer Institute about male breast cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of male breast cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Male Breast Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/breast/patient/male-breast-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389417] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Male Breast Cancer Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | Who is at risk for Male Breast Cancer? ? | Radiation exposure, high levels of estrogen, and a family history of breast cancer can increase a mans risk of breast cancer. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for breast cancer in men may include the following: - Being exposed to radiation. - Having a disease linked to high levels of estrogen in the body, such as cirrhosis (liver disease) or Klinefelter syndrome (a genetic disorder.) - Having several female relatives who have had breast cancer, especially relatives who have an alteration of the BRCA2 gene. |
Breast cancer may occur in
men. Breast cancer may occur in men at any age, but it usually occurs in men between 60 and 70 years of age. Male breast cancer makes up less
than 1% of all cases of breast cancer. The following types of breast cancer are found in men: Lobular carcinoma in
situ (abnormal cells found in one of the
lobes or sections of the breast),
which sometimes occurs in women, has not been seen in men. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for breast
cancer in men may include the following: The genes in cells carry the hereditary information that is received from a person’s parents. Hereditary breast cancer makes up about 5% to 10% of all breast cancer. Some mutated genes related to breast cancer, such as BRCA2, are more common in certain ethnic groups.
Men who have a mutated gene related to breast cancer have an increased risk of this disease. There are tests that can detect (find) mutated genes. These genetic tests are sometimes done for members of families with a high risk of cancer. See the following PDQ summaries for more information: Lumps and other signs may be caused by male breast cancer or by other conditions. Check with your doctor if you have any of the following: The following tests and procedures may be used: Decisions about the best treatment are based on the results of these tests. The tests give information about: Tests include the following: Survival for men with breast cancer is similar to that for women
with breast cancer when their stage
at diagnosis is the same. Breast
cancer in men, however, is often diagnosed at a later stage. Cancer found at a
later stage may be less likely to be cured. The prognosis and treatment options depend on
the following: After breast cancer has been diagnosed, tests are done
to find out if cancer cells have spread within the breast or to other parts of
the body. This process is called staging.
The information gathered from the
staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. Breast cancer in men is staged
the same as it is in women. The spread of cancer from the breast to
lymph nodes and other parts of the
body appears to be similar in men and women. The following tests and procedures may be used in
the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if breast cancer spreads to the bone, the cancer cells in the bone are actually breast cancer cells. The disease is metastatic breast cancer, not bone cancer. To plan the best treatment and understand your prognosis, it is important to know the breast cancer stage. There are 3 types of breast cancer stage groups: For breast cancer, the TNM system describes the tumor as follows: When the lymph nodes are removed by surgery and studied under a microscope by a pathologist, pathologic staging is used to describe the lymph nodes. The pathologic staging of lymph nodes is described below. or cancer has spread to 4 to 9 axillary lymph nodes and cancer in at least one of the lymph nodes is larger than 2 millimeters. Cancer has also spread to lymph nodes near the breastbone on the same side of the body as the primary tumor, and the cancer is larger than 0.2 millimeters and is found by sentinel lymph node biopsy. When the lymph nodes are checked using mammography or ultrasound, it is called clinical staging. The clinical staging of lymph nodes is not described here. The grading system describes a tumor based on how abnormal the cancer cells and tissue look under a microscope and how quickly the cancer cells are likely to grow and spread. Low-grade cancer cells look more like normal cells and tend to grow and spread more slowly than high-grade cancer cells. To describe how abnormal the cancer cells and tissue are, the pathologist will assess the following three features: For each feature, the pathologist assigns a score of 1 to 3; a score of “1” means the cells and tumor tissue look the most like normal cells and tissue, and a score of “3” means the cells and tissue look the most abnormal. The scores for each feature are added together to get a total score between 3 and 9. Three grades are possible: Healthy breast cells, and some breast cancer cells, have receptors (biomarkers) that attach to the hormones estrogen and progesterone. These hormones are needed for healthy cells, and some breast cancer cells, to grow and divide. To check for these biomarkers, samples of tissue containing breast cancer cells are removed during a biopsy or surgery. The samples are tested in a laboratory to see whether the breast cancer cells have estrogen or progesterone receptors. Another type of receptor (biomarker) that is found on the surface of all breast cancer cells is called HER2. HER2 receptors are needed for the breast cancer cells to grow and divide. For breast cancer, biomarker testing includes the following: Sometimes the breast cancer cells will be described as triple negative or triple positive. It is important to know the estrogen receptor, progesterone receptor, and HER2 receptor status to choose the best treatment. There are drugs that can stop the receptors from attaching to the hormones estrogen and progesterone and stop the cancer from growing. Other drugs may be used to block the HER2 receptors on the surface of the breast cancer cells and stop the cancer from growing. Here are 3 examples that combine the TNM system, the grading system, and the biomarker status to find out the Pathological Prognostic breast cancer stage for a woman whose first treatment was surgery: If the tumor size is 30 millimeters (T2), has not spread to nearby lymph nodes (N0), has not spread to distant parts of the body (M0), and is: The cancer is stage IIA. If the tumor size is 53 millimeters (T3), has spread to 4 to 9 axillary lymph nodes (N2), has not spread to other parts of the body (M0), and is: The tumor is stage IIIA.
If the tumor size is 65 millimeters (T3), has spread to 3 axillary lymph nodes (N1a), has spread to the lungs (M1), and is: The cancer is stage IV (metastatic breast cancer). After surgery, your doctor will receive a pathology report that describes the size and location of the primary tumor, the spread of cancer to nearby lymph nodes, tumor grade, and whether certain biomarkers are present. The pathology report and other test results are used to determine your breast cancer stage. You are likely to have many questions. Ask your doctor to explain how staging is used to decide the best options to treat your cancer and whether there are clinical trials that might be right for you. For treatment options for stage I, stage II, stage IIIA, and operable stage IIIC breast cancer, see Treatment of Early/Localized/Operable Male Breast Cancer.
For treatment options for cancer that has recurred (come back) near the area where it first formed, see Treatment of Locoregional Recurrent Male Breast Cancer.
For treatment options for stage IV (metastatic) breast cancer or breast cancer that has recurred in other parts of the body, see Treatment of Metastatic Male Breast Cancer. In inflammatory breast
cancer, cancer has spread to the skin of the breast and the breast looks red and swollen and feels warm. The
redness and warmth occur because the cancer cells block the lymph vessels in the skin. The skin of the breast
may also show the dimpled appearance called peau
d’orange (like the skin of an orange). There may not be any lumps in the breast that can be felt. Inflammatory breast cancer may be stage IIIB, stage IIIC, or stage IV. Different types of treatment are available for men with breast
cancer. Some treatments are standard (the currently used treatment), and some
are being tested in clinical trials.
A treatment clinical trial is a research study meant to help
improve current treatments or obtain information on new treatments for patients
with cancer. When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. For some patients, taking part in a clinical trial may be the best treatment choice. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country.
Information about clinical trials is available from the
NCI website. Choosing the most appropriate cancer treatment is a
decision that ideally involves the patient, family, and health care team.
Surgery for men with breast
cancer is usually a modified radical
mastectomy, surgery to remove the whole breast that has cancer. This may include removal of the nipple, areola (the dark-colored skin around the nipple), and skin over the breast. Most of the lymph nodes under the arm are also removed. Breast-conserving
surgery, an operation to remove the cancer but not the breast
itself, is also used for some men with breast cancer. A lumpectomy is done to remove the tumor (lump) and a small amount of normal tissue around it. Radiation therapy is given after surgery to kill any cancer cells that are left.EnlargeBreast-conserving surgery. The tumor and some normal tissue around it are removed, but not the breast itself. Some lymph nodes under the arm may be removed. Part of the chest wall lining may also be removed if the cancer is near it. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). See Drugs Approved for Breast Cancer for more information. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. Hormone therapy with tamoxifen is often given to patients with estrogen-receptor and progesterone-receptor positive breast cancer and to patients with metastatic breast cancer (cancer
that has spread to other parts of the body). Hormone therapy with an aromatase inhibitor is given to some men who have metastatic breast cancer. Aromatase inhibitors decrease the body's estrogen by blocking an enzyme called aromatase from turning androgen into estrogen. Anastrozole, letrozole, and exemestane are types of aromatase inhibitors. Hormone therapy with a luteinizing hormone-releasing hormone (LHRH) agonist is given to some men who have metastatic breast cancer. LHRH agonists affect the pituitary gland, which controls how much testosterone is made by the testicles. In men who are taking LHRH agonists, the pituitary gland tells the testicles to make less testosterone. Leuprolide and goserelin are types of LHRH agonists. Other types of hormone therapy include megestrol acetate or anti-estrogen therapy, such as fulvestrant. See Drugs Approved for Breast Cancer for more information. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Monoclonal antibody therapy, tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, and mammalian target of rapamycin (mTOR) inhibitors are types of targeted therapies used to treat men with breast cancer. Monoclonal antibodies are immune system proteins made in the laboratory to treat many diseases, including cancer. As a cancer treatment, these antibodies can attach to a specific target on cancer cells or other cells that may help cancer cells grow. The antibodies are able to then kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Types of monoclonal antibody therapy include the following: Tyrosine kinase inhibitors are targeted therapy drugs that block signals needed for tumors to grow. Lapatinib is a tyrosine kinase inhibitor that may be used to treat men with metastatic breast cancer. Cyclin-dependent kinase inhibitors are targeted therapy drugs that block proteins called cyclin-dependent kinases, which cause the growth of cancer cells. Palbociclib is a cyclin-dependent kinase inhibitor used to treat men with metastatic breast cancer. Mammalian target of rapamycin (mTOR) inhibitors block a protein called mTOR, which may keep cancer cells from growing and prevent the growth of new blood vessels that tumors need to grow. See Drugs Approved for Breast Cancer for more information. For information about side effects caused by treatment for cancer, see our Side Effects page. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of early, localized, or operable breast cancer may include the following: Treatment for men diagnosed with breast cancer is usually modified radical
mastectomy. Breast-conserving surgery with lumpectomy followed by radiation therapy may be used for some men. Therapy given after an operation when cancer
cells can no longer be seen is
called adjuvant
therapy. Even if the doctor removes all the
cancer that can be seen at the time of the operation, the patient may be given
radiation therapy,
chemotherapy, hormone therapy, and/or targeted therapy after surgery, to try
to kill any cancer cells that may be left. These treatments appear to increase survival in men as they do in
women. The patient’s response to hormone therapy depends on whether there are
hormone receptors (proteins) in the tumor. Most breast cancers in men have these
receptors. Hormone therapy is usually recommended for male breast cancer
patients, but it can have many side effects, including hot flashes and
impotence (the inability to have an erection adequate for sexual
intercourse). For information about the treatments listed below, see the Treatment Option Overview section. For men with locally recurrent disease (cancer that has come back in a
limited area after treatment), treatment options include: For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for metastatic breast cancer (cancer that has spread to distant parts of the body) may include the following: In men who have just been diagnosed with metastatic breast cancer that is hormone receptor positive or if the hormone receptor status is not known, treatment
may include: In men whose tumors are hormone receptor positive or hormone receptor unknown, with spread to the bone or soft tissue only, and who have been treated with tamoxifen, treatment may include: In men with metastatic breast cancer that is hormone receptor positive and has not responded to other treatments, options may include targeted therapy such as: In men with metastatic breast cancer that is HER2/neu positive, treatment may include: In men with metastatic breast cancer that is hormone receptor negative, has not responded to hormone therapy, has spread to other organs or has caused symptoms, treatment may include: Other treatment options for metastatic breast cancer include: For more information from the National Cancer Institute about male breast cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of male breast cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Male Breast Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/breast/patient/male-breast-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389417] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Male Breast Cancer Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | Is Male Breast Cancer inherited ? | Male breast cancer is sometimes caused by inherited gene mutations (changes).The genes in cells carry the hereditary information that is received from a persons parents. Hereditary breast cancer makes up about 5% to 10% of all breast cancer. Some mutated genes related to breast cancer are more common in certain ethnic groups. Men who have a mutated gene related to breast cancer have an increased risk of this disease. There are tests that can detect (find) mutated genes. These genetic tests are sometimes done for members of families with a high risk of cancer. See the following PDQ summaries for more information: - Genetics of Breast and Gynecologic Cancers - Breast Cancer Prevention - Breast Cancer Screening |
Breast cancer may occur in
men. Breast cancer may occur in men at any age, but it usually occurs in men between 60 and 70 years of age. Male breast cancer makes up less
than 1% of all cases of breast cancer. The following types of breast cancer are found in men: Lobular carcinoma in
situ (abnormal cells found in one of the
lobes or sections of the breast),
which sometimes occurs in women, has not been seen in men. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for breast
cancer in men may include the following: The genes in cells carry the hereditary information that is received from a person’s parents. Hereditary breast cancer makes up about 5% to 10% of all breast cancer. Some mutated genes related to breast cancer, such as BRCA2, are more common in certain ethnic groups.
Men who have a mutated gene related to breast cancer have an increased risk of this disease. There are tests that can detect (find) mutated genes. These genetic tests are sometimes done for members of families with a high risk of cancer. See the following PDQ summaries for more information: Lumps and other signs may be caused by male breast cancer or by other conditions. Check with your doctor if you have any of the following: The following tests and procedures may be used: Decisions about the best treatment are based on the results of these tests. The tests give information about: Tests include the following: Survival for men with breast cancer is similar to that for women
with breast cancer when their stage
at diagnosis is the same. Breast
cancer in men, however, is often diagnosed at a later stage. Cancer found at a
later stage may be less likely to be cured. The prognosis and treatment options depend on
the following: After breast cancer has been diagnosed, tests are done
to find out if cancer cells have spread within the breast or to other parts of
the body. This process is called staging.
The information gathered from the
staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. Breast cancer in men is staged
the same as it is in women. The spread of cancer from the breast to
lymph nodes and other parts of the
body appears to be similar in men and women. The following tests and procedures may be used in
the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if breast cancer spreads to the bone, the cancer cells in the bone are actually breast cancer cells. The disease is metastatic breast cancer, not bone cancer. To plan the best treatment and understand your prognosis, it is important to know the breast cancer stage. There are 3 types of breast cancer stage groups: For breast cancer, the TNM system describes the tumor as follows: When the lymph nodes are removed by surgery and studied under a microscope by a pathologist, pathologic staging is used to describe the lymph nodes. The pathologic staging of lymph nodes is described below. or cancer has spread to 4 to 9 axillary lymph nodes and cancer in at least one of the lymph nodes is larger than 2 millimeters. Cancer has also spread to lymph nodes near the breastbone on the same side of the body as the primary tumor, and the cancer is larger than 0.2 millimeters and is found by sentinel lymph node biopsy. When the lymph nodes are checked using mammography or ultrasound, it is called clinical staging. The clinical staging of lymph nodes is not described here. The grading system describes a tumor based on how abnormal the cancer cells and tissue look under a microscope and how quickly the cancer cells are likely to grow and spread. Low-grade cancer cells look more like normal cells and tend to grow and spread more slowly than high-grade cancer cells. To describe how abnormal the cancer cells and tissue are, the pathologist will assess the following three features: For each feature, the pathologist assigns a score of 1 to 3; a score of “1” means the cells and tumor tissue look the most like normal cells and tissue, and a score of “3” means the cells and tissue look the most abnormal. The scores for each feature are added together to get a total score between 3 and 9. Three grades are possible: Healthy breast cells, and some breast cancer cells, have receptors (biomarkers) that attach to the hormones estrogen and progesterone. These hormones are needed for healthy cells, and some breast cancer cells, to grow and divide. To check for these biomarkers, samples of tissue containing breast cancer cells are removed during a biopsy or surgery. The samples are tested in a laboratory to see whether the breast cancer cells have estrogen or progesterone receptors. Another type of receptor (biomarker) that is found on the surface of all breast cancer cells is called HER2. HER2 receptors are needed for the breast cancer cells to grow and divide. For breast cancer, biomarker testing includes the following: Sometimes the breast cancer cells will be described as triple negative or triple positive. It is important to know the estrogen receptor, progesterone receptor, and HER2 receptor status to choose the best treatment. There are drugs that can stop the receptors from attaching to the hormones estrogen and progesterone and stop the cancer from growing. Other drugs may be used to block the HER2 receptors on the surface of the breast cancer cells and stop the cancer from growing. Here are 3 examples that combine the TNM system, the grading system, and the biomarker status to find out the Pathological Prognostic breast cancer stage for a woman whose first treatment was surgery: If the tumor size is 30 millimeters (T2), has not spread to nearby lymph nodes (N0), has not spread to distant parts of the body (M0), and is: The cancer is stage IIA. If the tumor size is 53 millimeters (T3), has spread to 4 to 9 axillary lymph nodes (N2), has not spread to other parts of the body (M0), and is: The tumor is stage IIIA.
If the tumor size is 65 millimeters (T3), has spread to 3 axillary lymph nodes (N1a), has spread to the lungs (M1), and is: The cancer is stage IV (metastatic breast cancer). After surgery, your doctor will receive a pathology report that describes the size and location of the primary tumor, the spread of cancer to nearby lymph nodes, tumor grade, and whether certain biomarkers are present. The pathology report and other test results are used to determine your breast cancer stage. You are likely to have many questions. Ask your doctor to explain how staging is used to decide the best options to treat your cancer and whether there are clinical trials that might be right for you. For treatment options for stage I, stage II, stage IIIA, and operable stage IIIC breast cancer, see Treatment of Early/Localized/Operable Male Breast Cancer.
For treatment options for cancer that has recurred (come back) near the area where it first formed, see Treatment of Locoregional Recurrent Male Breast Cancer.
For treatment options for stage IV (metastatic) breast cancer or breast cancer that has recurred in other parts of the body, see Treatment of Metastatic Male Breast Cancer. In inflammatory breast
cancer, cancer has spread to the skin of the breast and the breast looks red and swollen and feels warm. The
redness and warmth occur because the cancer cells block the lymph vessels in the skin. The skin of the breast
may also show the dimpled appearance called peau
d’orange (like the skin of an orange). There may not be any lumps in the breast that can be felt. Inflammatory breast cancer may be stage IIIB, stage IIIC, or stage IV. Different types of treatment are available for men with breast
cancer. Some treatments are standard (the currently used treatment), and some
are being tested in clinical trials.
A treatment clinical trial is a research study meant to help
improve current treatments or obtain information on new treatments for patients
with cancer. When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. For some patients, taking part in a clinical trial may be the best treatment choice. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country.
Information about clinical trials is available from the
NCI website. Choosing the most appropriate cancer treatment is a
decision that ideally involves the patient, family, and health care team.
Surgery for men with breast
cancer is usually a modified radical
mastectomy, surgery to remove the whole breast that has cancer. This may include removal of the nipple, areola (the dark-colored skin around the nipple), and skin over the breast. Most of the lymph nodes under the arm are also removed. Breast-conserving
surgery, an operation to remove the cancer but not the breast
itself, is also used for some men with breast cancer. A lumpectomy is done to remove the tumor (lump) and a small amount of normal tissue around it. Radiation therapy is given after surgery to kill any cancer cells that are left.EnlargeBreast-conserving surgery. The tumor and some normal tissue around it are removed, but not the breast itself. Some lymph nodes under the arm may be removed. Part of the chest wall lining may also be removed if the cancer is near it. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). See Drugs Approved for Breast Cancer for more information. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. Hormone therapy with tamoxifen is often given to patients with estrogen-receptor and progesterone-receptor positive breast cancer and to patients with metastatic breast cancer (cancer
that has spread to other parts of the body). Hormone therapy with an aromatase inhibitor is given to some men who have metastatic breast cancer. Aromatase inhibitors decrease the body's estrogen by blocking an enzyme called aromatase from turning androgen into estrogen. Anastrozole, letrozole, and exemestane are types of aromatase inhibitors. Hormone therapy with a luteinizing hormone-releasing hormone (LHRH) agonist is given to some men who have metastatic breast cancer. LHRH agonists affect the pituitary gland, which controls how much testosterone is made by the testicles. In men who are taking LHRH agonists, the pituitary gland tells the testicles to make less testosterone. Leuprolide and goserelin are types of LHRH agonists. Other types of hormone therapy include megestrol acetate or anti-estrogen therapy, such as fulvestrant. See Drugs Approved for Breast Cancer for more information. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Monoclonal antibody therapy, tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, and mammalian target of rapamycin (mTOR) inhibitors are types of targeted therapies used to treat men with breast cancer. Monoclonal antibodies are immune system proteins made in the laboratory to treat many diseases, including cancer. As a cancer treatment, these antibodies can attach to a specific target on cancer cells or other cells that may help cancer cells grow. The antibodies are able to then kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Types of monoclonal antibody therapy include the following: Tyrosine kinase inhibitors are targeted therapy drugs that block signals needed for tumors to grow. Lapatinib is a tyrosine kinase inhibitor that may be used to treat men with metastatic breast cancer. Cyclin-dependent kinase inhibitors are targeted therapy drugs that block proteins called cyclin-dependent kinases, which cause the growth of cancer cells. Palbociclib is a cyclin-dependent kinase inhibitor used to treat men with metastatic breast cancer. Mammalian target of rapamycin (mTOR) inhibitors block a protein called mTOR, which may keep cancer cells from growing and prevent the growth of new blood vessels that tumors need to grow. See Drugs Approved for Breast Cancer for more information. For information about side effects caused by treatment for cancer, see our Side Effects page. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of early, localized, or operable breast cancer may include the following: Treatment for men diagnosed with breast cancer is usually modified radical
mastectomy. Breast-conserving surgery with lumpectomy followed by radiation therapy may be used for some men. Therapy given after an operation when cancer
cells can no longer be seen is
called adjuvant
therapy. Even if the doctor removes all the
cancer that can be seen at the time of the operation, the patient may be given
radiation therapy,
chemotherapy, hormone therapy, and/or targeted therapy after surgery, to try
to kill any cancer cells that may be left. These treatments appear to increase survival in men as they do in
women. The patient’s response to hormone therapy depends on whether there are
hormone receptors (proteins) in the tumor. Most breast cancers in men have these
receptors. Hormone therapy is usually recommended for male breast cancer
patients, but it can have many side effects, including hot flashes and
impotence (the inability to have an erection adequate for sexual
intercourse). For information about the treatments listed below, see the Treatment Option Overview section. For men with locally recurrent disease (cancer that has come back in a
limited area after treatment), treatment options include: For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for metastatic breast cancer (cancer that has spread to distant parts of the body) may include the following: In men who have just been diagnosed with metastatic breast cancer that is hormone receptor positive or if the hormone receptor status is not known, treatment
may include: In men whose tumors are hormone receptor positive or hormone receptor unknown, with spread to the bone or soft tissue only, and who have been treated with tamoxifen, treatment may include: In men with metastatic breast cancer that is hormone receptor positive and has not responded to other treatments, options may include targeted therapy such as: In men with metastatic breast cancer that is HER2/neu positive, treatment may include: In men with metastatic breast cancer that is hormone receptor negative, has not responded to hormone therapy, has spread to other organs or has caused symptoms, treatment may include: Other treatment options for metastatic breast cancer include: For more information from the National Cancer Institute about male breast cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of male breast cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Male Breast Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/breast/patient/male-breast-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389417] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Male Breast Cancer Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the symptoms of Male Breast Cancer ? | Men with breast cancer usually have lumps that can be felt.Lumps and other signs may be caused by male breast cancer or by other conditions. Check with your doctor if you notice a change in your breasts. |
Breast cancer may occur in
men. Breast cancer may occur in men at any age, but it usually occurs in men between 60 and 70 years of age. Male breast cancer makes up less
than 1% of all cases of breast cancer. The following types of breast cancer are found in men: Lobular carcinoma in
situ (abnormal cells found in one of the
lobes or sections of the breast),
which sometimes occurs in women, has not been seen in men. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for breast
cancer in men may include the following: The genes in cells carry the hereditary information that is received from a person’s parents. Hereditary breast cancer makes up about 5% to 10% of all breast cancer. Some mutated genes related to breast cancer, such as BRCA2, are more common in certain ethnic groups.
Men who have a mutated gene related to breast cancer have an increased risk of this disease. There are tests that can detect (find) mutated genes. These genetic tests are sometimes done for members of families with a high risk of cancer. See the following PDQ summaries for more information: Lumps and other signs may be caused by male breast cancer or by other conditions. Check with your doctor if you have any of the following: The following tests and procedures may be used: Decisions about the best treatment are based on the results of these tests. The tests give information about: Tests include the following: Survival for men with breast cancer is similar to that for women
with breast cancer when their stage
at diagnosis is the same. Breast
cancer in men, however, is often diagnosed at a later stage. Cancer found at a
later stage may be less likely to be cured. The prognosis and treatment options depend on
the following: After breast cancer has been diagnosed, tests are done
to find out if cancer cells have spread within the breast or to other parts of
the body. This process is called staging.
The information gathered from the
staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. Breast cancer in men is staged
the same as it is in women. The spread of cancer from the breast to
lymph nodes and other parts of the
body appears to be similar in men and women. The following tests and procedures may be used in
the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if breast cancer spreads to the bone, the cancer cells in the bone are actually breast cancer cells. The disease is metastatic breast cancer, not bone cancer. To plan the best treatment and understand your prognosis, it is important to know the breast cancer stage. There are 3 types of breast cancer stage groups: For breast cancer, the TNM system describes the tumor as follows: When the lymph nodes are removed by surgery and studied under a microscope by a pathologist, pathologic staging is used to describe the lymph nodes. The pathologic staging of lymph nodes is described below. or cancer has spread to 4 to 9 axillary lymph nodes and cancer in at least one of the lymph nodes is larger than 2 millimeters. Cancer has also spread to lymph nodes near the breastbone on the same side of the body as the primary tumor, and the cancer is larger than 0.2 millimeters and is found by sentinel lymph node biopsy. When the lymph nodes are checked using mammography or ultrasound, it is called clinical staging. The clinical staging of lymph nodes is not described here. The grading system describes a tumor based on how abnormal the cancer cells and tissue look under a microscope and how quickly the cancer cells are likely to grow and spread. Low-grade cancer cells look more like normal cells and tend to grow and spread more slowly than high-grade cancer cells. To describe how abnormal the cancer cells and tissue are, the pathologist will assess the following three features: For each feature, the pathologist assigns a score of 1 to 3; a score of “1” means the cells and tumor tissue look the most like normal cells and tissue, and a score of “3” means the cells and tissue look the most abnormal. The scores for each feature are added together to get a total score between 3 and 9. Three grades are possible: Healthy breast cells, and some breast cancer cells, have receptors (biomarkers) that attach to the hormones estrogen and progesterone. These hormones are needed for healthy cells, and some breast cancer cells, to grow and divide. To check for these biomarkers, samples of tissue containing breast cancer cells are removed during a biopsy or surgery. The samples are tested in a laboratory to see whether the breast cancer cells have estrogen or progesterone receptors. Another type of receptor (biomarker) that is found on the surface of all breast cancer cells is called HER2. HER2 receptors are needed for the breast cancer cells to grow and divide. For breast cancer, biomarker testing includes the following: Sometimes the breast cancer cells will be described as triple negative or triple positive. It is important to know the estrogen receptor, progesterone receptor, and HER2 receptor status to choose the best treatment. There are drugs that can stop the receptors from attaching to the hormones estrogen and progesterone and stop the cancer from growing. Other drugs may be used to block the HER2 receptors on the surface of the breast cancer cells and stop the cancer from growing. Here are 3 examples that combine the TNM system, the grading system, and the biomarker status to find out the Pathological Prognostic breast cancer stage for a woman whose first treatment was surgery: If the tumor size is 30 millimeters (T2), has not spread to nearby lymph nodes (N0), has not spread to distant parts of the body (M0), and is: The cancer is stage IIA. If the tumor size is 53 millimeters (T3), has spread to 4 to 9 axillary lymph nodes (N2), has not spread to other parts of the body (M0), and is: The tumor is stage IIIA.
If the tumor size is 65 millimeters (T3), has spread to 3 axillary lymph nodes (N1a), has spread to the lungs (M1), and is: The cancer is stage IV (metastatic breast cancer). After surgery, your doctor will receive a pathology report that describes the size and location of the primary tumor, the spread of cancer to nearby lymph nodes, tumor grade, and whether certain biomarkers are present. The pathology report and other test results are used to determine your breast cancer stage. You are likely to have many questions. Ask your doctor to explain how staging is used to decide the best options to treat your cancer and whether there are clinical trials that might be right for you. For treatment options for stage I, stage II, stage IIIA, and operable stage IIIC breast cancer, see Treatment of Early/Localized/Operable Male Breast Cancer.
For treatment options for cancer that has recurred (come back) near the area where it first formed, see Treatment of Locoregional Recurrent Male Breast Cancer.
For treatment options for stage IV (metastatic) breast cancer or breast cancer that has recurred in other parts of the body, see Treatment of Metastatic Male Breast Cancer. In inflammatory breast
cancer, cancer has spread to the skin of the breast and the breast looks red and swollen and feels warm. The
redness and warmth occur because the cancer cells block the lymph vessels in the skin. The skin of the breast
may also show the dimpled appearance called peau
d’orange (like the skin of an orange). There may not be any lumps in the breast that can be felt. Inflammatory breast cancer may be stage IIIB, stage IIIC, or stage IV. Different types of treatment are available for men with breast
cancer. Some treatments are standard (the currently used treatment), and some
are being tested in clinical trials.
A treatment clinical trial is a research study meant to help
improve current treatments or obtain information on new treatments for patients
with cancer. When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. For some patients, taking part in a clinical trial may be the best treatment choice. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country.
Information about clinical trials is available from the
NCI website. Choosing the most appropriate cancer treatment is a
decision that ideally involves the patient, family, and health care team.
Surgery for men with breast
cancer is usually a modified radical
mastectomy, surgery to remove the whole breast that has cancer. This may include removal of the nipple, areola (the dark-colored skin around the nipple), and skin over the breast. Most of the lymph nodes under the arm are also removed. Breast-conserving
surgery, an operation to remove the cancer but not the breast
itself, is also used for some men with breast cancer. A lumpectomy is done to remove the tumor (lump) and a small amount of normal tissue around it. Radiation therapy is given after surgery to kill any cancer cells that are left.EnlargeBreast-conserving surgery. The tumor and some normal tissue around it are removed, but not the breast itself. Some lymph nodes under the arm may be removed. Part of the chest wall lining may also be removed if the cancer is near it. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). See Drugs Approved for Breast Cancer for more information. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. Hormone therapy with tamoxifen is often given to patients with estrogen-receptor and progesterone-receptor positive breast cancer and to patients with metastatic breast cancer (cancer
that has spread to other parts of the body). Hormone therapy with an aromatase inhibitor is given to some men who have metastatic breast cancer. Aromatase inhibitors decrease the body's estrogen by blocking an enzyme called aromatase from turning androgen into estrogen. Anastrozole, letrozole, and exemestane are types of aromatase inhibitors. Hormone therapy with a luteinizing hormone-releasing hormone (LHRH) agonist is given to some men who have metastatic breast cancer. LHRH agonists affect the pituitary gland, which controls how much testosterone is made by the testicles. In men who are taking LHRH agonists, the pituitary gland tells the testicles to make less testosterone. Leuprolide and goserelin are types of LHRH agonists. Other types of hormone therapy include megestrol acetate or anti-estrogen therapy, such as fulvestrant. See Drugs Approved for Breast Cancer for more information. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Monoclonal antibody therapy, tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, and mammalian target of rapamycin (mTOR) inhibitors are types of targeted therapies used to treat men with breast cancer. Monoclonal antibodies are immune system proteins made in the laboratory to treat many diseases, including cancer. As a cancer treatment, these antibodies can attach to a specific target on cancer cells or other cells that may help cancer cells grow. The antibodies are able to then kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Types of monoclonal antibody therapy include the following: Tyrosine kinase inhibitors are targeted therapy drugs that block signals needed for tumors to grow. Lapatinib is a tyrosine kinase inhibitor that may be used to treat men with metastatic breast cancer. Cyclin-dependent kinase inhibitors are targeted therapy drugs that block proteins called cyclin-dependent kinases, which cause the growth of cancer cells. Palbociclib is a cyclin-dependent kinase inhibitor used to treat men with metastatic breast cancer. Mammalian target of rapamycin (mTOR) inhibitors block a protein called mTOR, which may keep cancer cells from growing and prevent the growth of new blood vessels that tumors need to grow. See Drugs Approved for Breast Cancer for more information. For information about side effects caused by treatment for cancer, see our Side Effects page. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of early, localized, or operable breast cancer may include the following: Treatment for men diagnosed with breast cancer is usually modified radical
mastectomy. Breast-conserving surgery with lumpectomy followed by radiation therapy may be used for some men. Therapy given after an operation when cancer
cells can no longer be seen is
called adjuvant
therapy. Even if the doctor removes all the
cancer that can be seen at the time of the operation, the patient may be given
radiation therapy,
chemotherapy, hormone therapy, and/or targeted therapy after surgery, to try
to kill any cancer cells that may be left. These treatments appear to increase survival in men as they do in
women. The patient’s response to hormone therapy depends on whether there are
hormone receptors (proteins) in the tumor. Most breast cancers in men have these
receptors. Hormone therapy is usually recommended for male breast cancer
patients, but it can have many side effects, including hot flashes and
impotence (the inability to have an erection adequate for sexual
intercourse). For information about the treatments listed below, see the Treatment Option Overview section. For men with locally recurrent disease (cancer that has come back in a
limited area after treatment), treatment options include: For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for metastatic breast cancer (cancer that has spread to distant parts of the body) may include the following: In men who have just been diagnosed with metastatic breast cancer that is hormone receptor positive or if the hormone receptor status is not known, treatment
may include: In men whose tumors are hormone receptor positive or hormone receptor unknown, with spread to the bone or soft tissue only, and who have been treated with tamoxifen, treatment may include: In men with metastatic breast cancer that is hormone receptor positive and has not responded to other treatments, options may include targeted therapy such as: In men with metastatic breast cancer that is HER2/neu positive, treatment may include: In men with metastatic breast cancer that is hormone receptor negative, has not responded to hormone therapy, has spread to other organs or has caused symptoms, treatment may include: Other treatment options for metastatic breast cancer include: For more information from the National Cancer Institute about male breast cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of male breast cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Male Breast Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/breast/patient/male-breast-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389417] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Male Breast Cancer Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | How to diagnose Male Breast Cancer ? | Tests that examine the breasts are used to detect (find) and diagnose breast cancer in men.
The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Clinical breast exam (CBE): An exam of the breast by a doctor or other health professional. The doctor will carefully feel the breasts and under the arms for lumps or anything else that seems unusual. - Ultrasound exam: A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. The picture can be printed to be looked at later. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. - Biopsy : The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. The following are different types of biopsies: - Fine-needle aspiration (FNA) biopsy : The removal of tissue or fluid using a thin needle. - Core biopsy : The removal of tissue using a wide needle. - Excisional biopsy : The removal of an entire lump of tissue.
If cancer is found, tests are done to study the cancer cells.
Decisions about the best treatment are based on the results of these tests. The tests give information about: - How quickly the cancer may grow. - How likely it is that the cancer will spread through the body. - How well certain treatments might work. - How likely the cancer is to recur (come back). Tests include the following: - Estrogen and progesterone receptor test : A test to measure the amount of estrogen and progesterone (hormones) receptors in cancer tissue. If cancer is found in the breast, tissue from the tumor is checked in the laboratory to find out whether estrogen and progesterone could affect the way cancer grows. The test results show whether hormone therapy may stop the cancer from growing. - HER2 test: A test to measure the amount of HER2 in cancer tissue. HER2 is a growth factor protein that sends growth signals to cells. When cancer forms, the cells may make too much of the protein, causing more cancer cells to grow. If cancer is found in the breast, tissue from the tumor is checked in the laboratory to find out if there is too much HER2 in the cells. The test results show whether monoclonal antibody therapy may stop the cancer from growing. |
Breast cancer may occur in
men. Breast cancer may occur in men at any age, but it usually occurs in men between 60 and 70 years of age. Male breast cancer makes up less
than 1% of all cases of breast cancer. The following types of breast cancer are found in men: Lobular carcinoma in
situ (abnormal cells found in one of the
lobes or sections of the breast),
which sometimes occurs in women, has not been seen in men. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for breast
cancer in men may include the following: The genes in cells carry the hereditary information that is received from a person’s parents. Hereditary breast cancer makes up about 5% to 10% of all breast cancer. Some mutated genes related to breast cancer, such as BRCA2, are more common in certain ethnic groups.
Men who have a mutated gene related to breast cancer have an increased risk of this disease. There are tests that can detect (find) mutated genes. These genetic tests are sometimes done for members of families with a high risk of cancer. See the following PDQ summaries for more information: Lumps and other signs may be caused by male breast cancer or by other conditions. Check with your doctor if you have any of the following: The following tests and procedures may be used: Decisions about the best treatment are based on the results of these tests. The tests give information about: Tests include the following: Survival for men with breast cancer is similar to that for women
with breast cancer when their stage
at diagnosis is the same. Breast
cancer in men, however, is often diagnosed at a later stage. Cancer found at a
later stage may be less likely to be cured. The prognosis and treatment options depend on
the following: After breast cancer has been diagnosed, tests are done
to find out if cancer cells have spread within the breast or to other parts of
the body. This process is called staging.
The information gathered from the
staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. Breast cancer in men is staged
the same as it is in women. The spread of cancer from the breast to
lymph nodes and other parts of the
body appears to be similar in men and women. The following tests and procedures may be used in
the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if breast cancer spreads to the bone, the cancer cells in the bone are actually breast cancer cells. The disease is metastatic breast cancer, not bone cancer. To plan the best treatment and understand your prognosis, it is important to know the breast cancer stage. There are 3 types of breast cancer stage groups: For breast cancer, the TNM system describes the tumor as follows: When the lymph nodes are removed by surgery and studied under a microscope by a pathologist, pathologic staging is used to describe the lymph nodes. The pathologic staging of lymph nodes is described below. or cancer has spread to 4 to 9 axillary lymph nodes and cancer in at least one of the lymph nodes is larger than 2 millimeters. Cancer has also spread to lymph nodes near the breastbone on the same side of the body as the primary tumor, and the cancer is larger than 0.2 millimeters and is found by sentinel lymph node biopsy. When the lymph nodes are checked using mammography or ultrasound, it is called clinical staging. The clinical staging of lymph nodes is not described here. The grading system describes a tumor based on how abnormal the cancer cells and tissue look under a microscope and how quickly the cancer cells are likely to grow and spread. Low-grade cancer cells look more like normal cells and tend to grow and spread more slowly than high-grade cancer cells. To describe how abnormal the cancer cells and tissue are, the pathologist will assess the following three features: For each feature, the pathologist assigns a score of 1 to 3; a score of “1” means the cells and tumor tissue look the most like normal cells and tissue, and a score of “3” means the cells and tissue look the most abnormal. The scores for each feature are added together to get a total score between 3 and 9. Three grades are possible: Healthy breast cells, and some breast cancer cells, have receptors (biomarkers) that attach to the hormones estrogen and progesterone. These hormones are needed for healthy cells, and some breast cancer cells, to grow and divide. To check for these biomarkers, samples of tissue containing breast cancer cells are removed during a biopsy or surgery. The samples are tested in a laboratory to see whether the breast cancer cells have estrogen or progesterone receptors. Another type of receptor (biomarker) that is found on the surface of all breast cancer cells is called HER2. HER2 receptors are needed for the breast cancer cells to grow and divide. For breast cancer, biomarker testing includes the following: Sometimes the breast cancer cells will be described as triple negative or triple positive. It is important to know the estrogen receptor, progesterone receptor, and HER2 receptor status to choose the best treatment. There are drugs that can stop the receptors from attaching to the hormones estrogen and progesterone and stop the cancer from growing. Other drugs may be used to block the HER2 receptors on the surface of the breast cancer cells and stop the cancer from growing. Here are 3 examples that combine the TNM system, the grading system, and the biomarker status to find out the Pathological Prognostic breast cancer stage for a woman whose first treatment was surgery: If the tumor size is 30 millimeters (T2), has not spread to nearby lymph nodes (N0), has not spread to distant parts of the body (M0), and is: The cancer is stage IIA. If the tumor size is 53 millimeters (T3), has spread to 4 to 9 axillary lymph nodes (N2), has not spread to other parts of the body (M0), and is: The tumor is stage IIIA.
If the tumor size is 65 millimeters (T3), has spread to 3 axillary lymph nodes (N1a), has spread to the lungs (M1), and is: The cancer is stage IV (metastatic breast cancer). After surgery, your doctor will receive a pathology report that describes the size and location of the primary tumor, the spread of cancer to nearby lymph nodes, tumor grade, and whether certain biomarkers are present. The pathology report and other test results are used to determine your breast cancer stage. You are likely to have many questions. Ask your doctor to explain how staging is used to decide the best options to treat your cancer and whether there are clinical trials that might be right for you. For treatment options for stage I, stage II, stage IIIA, and operable stage IIIC breast cancer, see Treatment of Early/Localized/Operable Male Breast Cancer.
For treatment options for cancer that has recurred (come back) near the area where it first formed, see Treatment of Locoregional Recurrent Male Breast Cancer.
For treatment options for stage IV (metastatic) breast cancer or breast cancer that has recurred in other parts of the body, see Treatment of Metastatic Male Breast Cancer. In inflammatory breast
cancer, cancer has spread to the skin of the breast and the breast looks red and swollen and feels warm. The
redness and warmth occur because the cancer cells block the lymph vessels in the skin. The skin of the breast
may also show the dimpled appearance called peau
d’orange (like the skin of an orange). There may not be any lumps in the breast that can be felt. Inflammatory breast cancer may be stage IIIB, stage IIIC, or stage IV. Different types of treatment are available for men with breast
cancer. Some treatments are standard (the currently used treatment), and some
are being tested in clinical trials.
A treatment clinical trial is a research study meant to help
improve current treatments or obtain information on new treatments for patients
with cancer. When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. For some patients, taking part in a clinical trial may be the best treatment choice. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country.
Information about clinical trials is available from the
NCI website. Choosing the most appropriate cancer treatment is a
decision that ideally involves the patient, family, and health care team.
Surgery for men with breast
cancer is usually a modified radical
mastectomy, surgery to remove the whole breast that has cancer. This may include removal of the nipple, areola (the dark-colored skin around the nipple), and skin over the breast. Most of the lymph nodes under the arm are also removed. Breast-conserving
surgery, an operation to remove the cancer but not the breast
itself, is also used for some men with breast cancer. A lumpectomy is done to remove the tumor (lump) and a small amount of normal tissue around it. Radiation therapy is given after surgery to kill any cancer cells that are left.EnlargeBreast-conserving surgery. The tumor and some normal tissue around it are removed, but not the breast itself. Some lymph nodes under the arm may be removed. Part of the chest wall lining may also be removed if the cancer is near it. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). See Drugs Approved for Breast Cancer for more information. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. Hormone therapy with tamoxifen is often given to patients with estrogen-receptor and progesterone-receptor positive breast cancer and to patients with metastatic breast cancer (cancer
that has spread to other parts of the body). Hormone therapy with an aromatase inhibitor is given to some men who have metastatic breast cancer. Aromatase inhibitors decrease the body's estrogen by blocking an enzyme called aromatase from turning androgen into estrogen. Anastrozole, letrozole, and exemestane are types of aromatase inhibitors. Hormone therapy with a luteinizing hormone-releasing hormone (LHRH) agonist is given to some men who have metastatic breast cancer. LHRH agonists affect the pituitary gland, which controls how much testosterone is made by the testicles. In men who are taking LHRH agonists, the pituitary gland tells the testicles to make less testosterone. Leuprolide and goserelin are types of LHRH agonists. Other types of hormone therapy include megestrol acetate or anti-estrogen therapy, such as fulvestrant. See Drugs Approved for Breast Cancer for more information. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Monoclonal antibody therapy, tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, and mammalian target of rapamycin (mTOR) inhibitors are types of targeted therapies used to treat men with breast cancer. Monoclonal antibodies are immune system proteins made in the laboratory to treat many diseases, including cancer. As a cancer treatment, these antibodies can attach to a specific target on cancer cells or other cells that may help cancer cells grow. The antibodies are able to then kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Types of monoclonal antibody therapy include the following: Tyrosine kinase inhibitors are targeted therapy drugs that block signals needed for tumors to grow. Lapatinib is a tyrosine kinase inhibitor that may be used to treat men with metastatic breast cancer. Cyclin-dependent kinase inhibitors are targeted therapy drugs that block proteins called cyclin-dependent kinases, which cause the growth of cancer cells. Palbociclib is a cyclin-dependent kinase inhibitor used to treat men with metastatic breast cancer. Mammalian target of rapamycin (mTOR) inhibitors block a protein called mTOR, which may keep cancer cells from growing and prevent the growth of new blood vessels that tumors need to grow. See Drugs Approved for Breast Cancer for more information. For information about side effects caused by treatment for cancer, see our Side Effects page. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of early, localized, or operable breast cancer may include the following: Treatment for men diagnosed with breast cancer is usually modified radical
mastectomy. Breast-conserving surgery with lumpectomy followed by radiation therapy may be used for some men. Therapy given after an operation when cancer
cells can no longer be seen is
called adjuvant
therapy. Even if the doctor removes all the
cancer that can be seen at the time of the operation, the patient may be given
radiation therapy,
chemotherapy, hormone therapy, and/or targeted therapy after surgery, to try
to kill any cancer cells that may be left. These treatments appear to increase survival in men as they do in
women. The patient’s response to hormone therapy depends on whether there are
hormone receptors (proteins) in the tumor. Most breast cancers in men have these
receptors. Hormone therapy is usually recommended for male breast cancer
patients, but it can have many side effects, including hot flashes and
impotence (the inability to have an erection adequate for sexual
intercourse). For information about the treatments listed below, see the Treatment Option Overview section. For men with locally recurrent disease (cancer that has come back in a
limited area after treatment), treatment options include: For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for metastatic breast cancer (cancer that has spread to distant parts of the body) may include the following: In men who have just been diagnosed with metastatic breast cancer that is hormone receptor positive or if the hormone receptor status is not known, treatment
may include: In men whose tumors are hormone receptor positive or hormone receptor unknown, with spread to the bone or soft tissue only, and who have been treated with tamoxifen, treatment may include: In men with metastatic breast cancer that is hormone receptor positive and has not responded to other treatments, options may include targeted therapy such as: In men with metastatic breast cancer that is HER2/neu positive, treatment may include: In men with metastatic breast cancer that is hormone receptor negative, has not responded to hormone therapy, has spread to other organs or has caused symptoms, treatment may include: Other treatment options for metastatic breast cancer include: For more information from the National Cancer Institute about male breast cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of male breast cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Male Breast Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/breast/patient/male-breast-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389417] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Male Breast Cancer Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is the outlook for Male Breast Cancer ? | Survival for men with breast cancer is similar to survival for women with breast cancer.
Survival for men with breast cancer is similar to that for women with breast cancer when their stage at diagnosis is the same. Breast cancer in men, however, is often diagnosed at a later stage. Cancer found at a later stage may be less likely to be cured.
Certain factors affect prognosis (chance of recovery) and treatment options.
The prognosis (chance of recovery) and treatment options depend on the following: - The stage of the cancer (whether it is in the breast only or has spread to other places in the body). - The type of breast cancer. - Estrogen-receptor and progesterone-receptor levels in the tumor tissue. - Whether the cancer is also found in the other breast. - The patients age and general health. |
Breast cancer may occur in
men. Breast cancer may occur in men at any age, but it usually occurs in men between 60 and 70 years of age. Male breast cancer makes up less
than 1% of all cases of breast cancer. The following types of breast cancer are found in men: Lobular carcinoma in
situ (abnormal cells found in one of the
lobes or sections of the breast),
which sometimes occurs in women, has not been seen in men. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for breast
cancer in men may include the following: The genes in cells carry the hereditary information that is received from a person’s parents. Hereditary breast cancer makes up about 5% to 10% of all breast cancer. Some mutated genes related to breast cancer, such as BRCA2, are more common in certain ethnic groups.
Men who have a mutated gene related to breast cancer have an increased risk of this disease. There are tests that can detect (find) mutated genes. These genetic tests are sometimes done for members of families with a high risk of cancer. See the following PDQ summaries for more information: Lumps and other signs may be caused by male breast cancer or by other conditions. Check with your doctor if you have any of the following: The following tests and procedures may be used: Decisions about the best treatment are based on the results of these tests. The tests give information about: Tests include the following: Survival for men with breast cancer is similar to that for women
with breast cancer when their stage
at diagnosis is the same. Breast
cancer in men, however, is often diagnosed at a later stage. Cancer found at a
later stage may be less likely to be cured. The prognosis and treatment options depend on
the following: After breast cancer has been diagnosed, tests are done
to find out if cancer cells have spread within the breast or to other parts of
the body. This process is called staging.
The information gathered from the
staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. Breast cancer in men is staged
the same as it is in women. The spread of cancer from the breast to
lymph nodes and other parts of the
body appears to be similar in men and women. The following tests and procedures may be used in
the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if breast cancer spreads to the bone, the cancer cells in the bone are actually breast cancer cells. The disease is metastatic breast cancer, not bone cancer. To plan the best treatment and understand your prognosis, it is important to know the breast cancer stage. There are 3 types of breast cancer stage groups: For breast cancer, the TNM system describes the tumor as follows: When the lymph nodes are removed by surgery and studied under a microscope by a pathologist, pathologic staging is used to describe the lymph nodes. The pathologic staging of lymph nodes is described below. or cancer has spread to 4 to 9 axillary lymph nodes and cancer in at least one of the lymph nodes is larger than 2 millimeters. Cancer has also spread to lymph nodes near the breastbone on the same side of the body as the primary tumor, and the cancer is larger than 0.2 millimeters and is found by sentinel lymph node biopsy. When the lymph nodes are checked using mammography or ultrasound, it is called clinical staging. The clinical staging of lymph nodes is not described here. The grading system describes a tumor based on how abnormal the cancer cells and tissue look under a microscope and how quickly the cancer cells are likely to grow and spread. Low-grade cancer cells look more like normal cells and tend to grow and spread more slowly than high-grade cancer cells. To describe how abnormal the cancer cells and tissue are, the pathologist will assess the following three features: For each feature, the pathologist assigns a score of 1 to 3; a score of “1” means the cells and tumor tissue look the most like normal cells and tissue, and a score of “3” means the cells and tissue look the most abnormal. The scores for each feature are added together to get a total score between 3 and 9. Three grades are possible: Healthy breast cells, and some breast cancer cells, have receptors (biomarkers) that attach to the hormones estrogen and progesterone. These hormones are needed for healthy cells, and some breast cancer cells, to grow and divide. To check for these biomarkers, samples of tissue containing breast cancer cells are removed during a biopsy or surgery. The samples are tested in a laboratory to see whether the breast cancer cells have estrogen or progesterone receptors. Another type of receptor (biomarker) that is found on the surface of all breast cancer cells is called HER2. HER2 receptors are needed for the breast cancer cells to grow and divide. For breast cancer, biomarker testing includes the following: Sometimes the breast cancer cells will be described as triple negative or triple positive. It is important to know the estrogen receptor, progesterone receptor, and HER2 receptor status to choose the best treatment. There are drugs that can stop the receptors from attaching to the hormones estrogen and progesterone and stop the cancer from growing. Other drugs may be used to block the HER2 receptors on the surface of the breast cancer cells and stop the cancer from growing. Here are 3 examples that combine the TNM system, the grading system, and the biomarker status to find out the Pathological Prognostic breast cancer stage for a woman whose first treatment was surgery: If the tumor size is 30 millimeters (T2), has not spread to nearby lymph nodes (N0), has not spread to distant parts of the body (M0), and is: The cancer is stage IIA. If the tumor size is 53 millimeters (T3), has spread to 4 to 9 axillary lymph nodes (N2), has not spread to other parts of the body (M0), and is: The tumor is stage IIIA.
If the tumor size is 65 millimeters (T3), has spread to 3 axillary lymph nodes (N1a), has spread to the lungs (M1), and is: The cancer is stage IV (metastatic breast cancer). After surgery, your doctor will receive a pathology report that describes the size and location of the primary tumor, the spread of cancer to nearby lymph nodes, tumor grade, and whether certain biomarkers are present. The pathology report and other test results are used to determine your breast cancer stage. You are likely to have many questions. Ask your doctor to explain how staging is used to decide the best options to treat your cancer and whether there are clinical trials that might be right for you. For treatment options for stage I, stage II, stage IIIA, and operable stage IIIC breast cancer, see Treatment of Early/Localized/Operable Male Breast Cancer.
For treatment options for cancer that has recurred (come back) near the area where it first formed, see Treatment of Locoregional Recurrent Male Breast Cancer.
For treatment options for stage IV (metastatic) breast cancer or breast cancer that has recurred in other parts of the body, see Treatment of Metastatic Male Breast Cancer. In inflammatory breast
cancer, cancer has spread to the skin of the breast and the breast looks red and swollen and feels warm. The
redness and warmth occur because the cancer cells block the lymph vessels in the skin. The skin of the breast
may also show the dimpled appearance called peau
d’orange (like the skin of an orange). There may not be any lumps in the breast that can be felt. Inflammatory breast cancer may be stage IIIB, stage IIIC, or stage IV. Different types of treatment are available for men with breast
cancer. Some treatments are standard (the currently used treatment), and some
are being tested in clinical trials.
A treatment clinical trial is a research study meant to help
improve current treatments or obtain information on new treatments for patients
with cancer. When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. For some patients, taking part in a clinical trial may be the best treatment choice. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country.
Information about clinical trials is available from the
NCI website. Choosing the most appropriate cancer treatment is a
decision that ideally involves the patient, family, and health care team.
Surgery for men with breast
cancer is usually a modified radical
mastectomy, surgery to remove the whole breast that has cancer. This may include removal of the nipple, areola (the dark-colored skin around the nipple), and skin over the breast. Most of the lymph nodes under the arm are also removed. Breast-conserving
surgery, an operation to remove the cancer but not the breast
itself, is also used for some men with breast cancer. A lumpectomy is done to remove the tumor (lump) and a small amount of normal tissue around it. Radiation therapy is given after surgery to kill any cancer cells that are left.EnlargeBreast-conserving surgery. The tumor and some normal tissue around it are removed, but not the breast itself. Some lymph nodes under the arm may be removed. Part of the chest wall lining may also be removed if the cancer is near it. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). See Drugs Approved for Breast Cancer for more information. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. Hormone therapy with tamoxifen is often given to patients with estrogen-receptor and progesterone-receptor positive breast cancer and to patients with metastatic breast cancer (cancer
that has spread to other parts of the body). Hormone therapy with an aromatase inhibitor is given to some men who have metastatic breast cancer. Aromatase inhibitors decrease the body's estrogen by blocking an enzyme called aromatase from turning androgen into estrogen. Anastrozole, letrozole, and exemestane are types of aromatase inhibitors. Hormone therapy with a luteinizing hormone-releasing hormone (LHRH) agonist is given to some men who have metastatic breast cancer. LHRH agonists affect the pituitary gland, which controls how much testosterone is made by the testicles. In men who are taking LHRH agonists, the pituitary gland tells the testicles to make less testosterone. Leuprolide and goserelin are types of LHRH agonists. Other types of hormone therapy include megestrol acetate or anti-estrogen therapy, such as fulvestrant. See Drugs Approved for Breast Cancer for more information. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Monoclonal antibody therapy, tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, and mammalian target of rapamycin (mTOR) inhibitors are types of targeted therapies used to treat men with breast cancer. Monoclonal antibodies are immune system proteins made in the laboratory to treat many diseases, including cancer. As a cancer treatment, these antibodies can attach to a specific target on cancer cells or other cells that may help cancer cells grow. The antibodies are able to then kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Types of monoclonal antibody therapy include the following: Tyrosine kinase inhibitors are targeted therapy drugs that block signals needed for tumors to grow. Lapatinib is a tyrosine kinase inhibitor that may be used to treat men with metastatic breast cancer. Cyclin-dependent kinase inhibitors are targeted therapy drugs that block proteins called cyclin-dependent kinases, which cause the growth of cancer cells. Palbociclib is a cyclin-dependent kinase inhibitor used to treat men with metastatic breast cancer. Mammalian target of rapamycin (mTOR) inhibitors block a protein called mTOR, which may keep cancer cells from growing and prevent the growth of new blood vessels that tumors need to grow. See Drugs Approved for Breast Cancer for more information. For information about side effects caused by treatment for cancer, see our Side Effects page. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of early, localized, or operable breast cancer may include the following: Treatment for men diagnosed with breast cancer is usually modified radical
mastectomy. Breast-conserving surgery with lumpectomy followed by radiation therapy may be used for some men. Therapy given after an operation when cancer
cells can no longer be seen is
called adjuvant
therapy. Even if the doctor removes all the
cancer that can be seen at the time of the operation, the patient may be given
radiation therapy,
chemotherapy, hormone therapy, and/or targeted therapy after surgery, to try
to kill any cancer cells that may be left. These treatments appear to increase survival in men as they do in
women. The patient’s response to hormone therapy depends on whether there are
hormone receptors (proteins) in the tumor. Most breast cancers in men have these
receptors. Hormone therapy is usually recommended for male breast cancer
patients, but it can have many side effects, including hot flashes and
impotence (the inability to have an erection adequate for sexual
intercourse). For information about the treatments listed below, see the Treatment Option Overview section. For men with locally recurrent disease (cancer that has come back in a
limited area after treatment), treatment options include: For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for metastatic breast cancer (cancer that has spread to distant parts of the body) may include the following: In men who have just been diagnosed with metastatic breast cancer that is hormone receptor positive or if the hormone receptor status is not known, treatment
may include: In men whose tumors are hormone receptor positive or hormone receptor unknown, with spread to the bone or soft tissue only, and who have been treated with tamoxifen, treatment may include: In men with metastatic breast cancer that is hormone receptor positive and has not responded to other treatments, options may include targeted therapy such as: In men with metastatic breast cancer that is HER2/neu positive, treatment may include: In men with metastatic breast cancer that is hormone receptor negative, has not responded to hormone therapy, has spread to other organs or has caused symptoms, treatment may include: Other treatment options for metastatic breast cancer include: For more information from the National Cancer Institute about male breast cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of male breast cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Male Breast Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/breast/patient/male-breast-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389417] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Male Breast Cancer Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the stages of Male Breast Cancer ? | Key Points
- After breast cancer has been diagnosed, tests are done to find out if cancer cells have spread within the breast or to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The following stages are used for male breast cancer: - Stage 0 (carcinoma in situ) - Stage I - Stage II - Stage IIIA - Stage IIIB - Stage IIIC - Stage IV
After breast cancer has been diagnosed, tests are done to find out if cancer cells have spread within the breast or to other parts of the body.
After breast cancer has been diagnosed, tests are done to find out if cancer cells have spread within the breast or to other parts of the body. This process is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. Breast cancer in men is staged the same as it is in women. The spread of cancer from the breast to lymph nodes and other parts of the body appears to be similar in men and women. The following tests and procedures may be used in the staging process: - Sentinel lymph node biopsy : The removal of the sentinel lymph node during surgery. The sentinel lymph node is the first lymph node to receive lymphatic drainage from a tumor. It is the first lymph node the cancer is likely to spread to from the tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are not found, it may not be necessary to remove more lymph nodes. - Chest x-ray : An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - Bone scan : A procedure to check if there are rapidly dividing cells, such as cancer cells, in the bone. A very small amount of radioactive material is injected into a vein and travels through the bloodstream. The radioactive material collects in the bones and is detected by a scanner. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do.
There are three ways that cancer spreads in the body.
Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body.
Cancer may spread from where it began to other parts of the body.
When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if breast cancer spreads to the bone, the cancer cells in the bone are actually breast cancer cells. The disease is metastatic breast cancer, not bone cancer.
The following stages are used for male breast cancer:
This section describes the stages of breast cancer. The breast cancer stage is based on the results of testing that is done on the tumor and lymph nodes removed during surgery and other tests. Stage 0 (carcinoma in situ) There are 3 types of breast carcinoma in situ: - Ductal carcinoma in situ (DCIS) is a noninvasive condition in which abnormal cells are found in the lining of a breast duct. The abnormal cells have not spread outside the duct to other tissues in the breast. In some cases, DCIS may become invasive cancer and spread to other tissues. At this time, there is no way to know which lesions could become invasive. - Paget disease of the nipple is a condition in which abnormal cells are found in the nipple only. - Lobular carcinoma in situ (LCIS) is a condition in which abnormal cells are found in the lobules of the breast. This condition has not been seen in men. Stage I In stage I, cancer has formed. Stage I is divided into stages IA and IB. - In stage IA, the tumor is 2 centimeters or smaller. Cancer has not spread outside the breast. - In stage IB, small clusters of breast cancer cells (larger than 0.2 millimeter but not larger than 2 millimeters) are found in the lymph nodes and either: - no tumor is found in the breast; or - the tumor is 2 centimeters or smaller. Stage II Stage II is divided into stages IIA and IIB. - In stage IIA - no tumor is found in the breast or the tumor is 2 centimeters or smaller. Cancer (larger than 2 millimeters) is found in 1 to 3 axillary lymph nodes or in the lymph nodes near the breastbone (found during a sentinel lymph node biopsy); or - the tumor is larger than 2 centimeters but not larger than 5 centimeters. Cancer has not spread to the lymph nodes. - In stage IIB, the tumor is: - larger than 2 centimeters but not larger than 5 centimeters. Small clusters of breast cancer cells (larger than 0.2 millimeter but not larger than 2 millimeters) are found in the lymph nodes; or - larger than 2 centimeters but not larger than 5 centimeters. Cancer has spread to 1 to 3 axillary lymph nodes or to the lymph nodes near the breastbone (found during a sentinel lymph node biopsy); or - larger than 5 centimeters. Cancer has not spread to the lymph nodes. Stage IIIA In stage IIIA: - no tumor is found in the breast or the tumor may be any size. Cancer is found in 4 to 9 axillary lymph nodes or in the lymph nodes near the breastbone (found during imaging tests or a physical exam); or - the tumor is larger than 5 centimeters. Small clusters of breast cancer cells (larger than 0.2 millimeter but not larger than 2 millimeters) are found in the lymph nodes; or - the tumor is larger than 5 centimeters. Cancer has spread to 1 to 3 axillary lymph nodes or to the lymph nodes near the breastbone (found during a sentinel lymph node biopsy). Stage IIIB In stage IIIB, the tumor may be any size and cancer has spread to the chest wall and/or to the skin of the breast and caused swelling or an ulcer. Also, cancer may have spread to : - up to 9 axillary lymph nodes; or - the lymph nodes near the breastbone. Cancer that has spread to the skin of the breast may also be inflammatory breast cancer. See the section on Inflammatory Male Breast Cancer for more information. Stage IIIC In stage IIIC, no tumor is found in the breast or the tumor may be any size. Cancer may have spread to the skin of the breast and caused swelling or an ulcer and/or has spread to the chest wall. Also, cancer has spread to: - 10 or more axillary lymph nodes; or - lymph nodes above or below the collarbone; or - axillary lymph nodes and lymph nodes near the breastbone. Cancer that has spread to the skin of the breast may also be inflammatory breast cancer. See the section on Inflammatory Male Breast Cancer for more information. For treatment, stage IIIC breast cancer is divided into operable and inoperable stage IIIC. Stage IV In stage IV, cancer has spread to other organs of the body, most often the bones, lungs, liver, or brain. |
Breast cancer may occur in
men. Breast cancer may occur in men at any age, but it usually occurs in men between 60 and 70 years of age. Male breast cancer makes up less
than 1% of all cases of breast cancer. The following types of breast cancer are found in men: Lobular carcinoma in
situ (abnormal cells found in one of the
lobes or sections of the breast),
which sometimes occurs in women, has not been seen in men. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for breast
cancer in men may include the following: The genes in cells carry the hereditary information that is received from a person’s parents. Hereditary breast cancer makes up about 5% to 10% of all breast cancer. Some mutated genes related to breast cancer, such as BRCA2, are more common in certain ethnic groups.
Men who have a mutated gene related to breast cancer have an increased risk of this disease. There are tests that can detect (find) mutated genes. These genetic tests are sometimes done for members of families with a high risk of cancer. See the following PDQ summaries for more information: Lumps and other signs may be caused by male breast cancer or by other conditions. Check with your doctor if you have any of the following: The following tests and procedures may be used: Decisions about the best treatment are based on the results of these tests. The tests give information about: Tests include the following: Survival for men with breast cancer is similar to that for women
with breast cancer when their stage
at diagnosis is the same. Breast
cancer in men, however, is often diagnosed at a later stage. Cancer found at a
later stage may be less likely to be cured. The prognosis and treatment options depend on
the following: After breast cancer has been diagnosed, tests are done
to find out if cancer cells have spread within the breast or to other parts of
the body. This process is called staging.
The information gathered from the
staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. Breast cancer in men is staged
the same as it is in women. The spread of cancer from the breast to
lymph nodes and other parts of the
body appears to be similar in men and women. The following tests and procedures may be used in
the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if breast cancer spreads to the bone, the cancer cells in the bone are actually breast cancer cells. The disease is metastatic breast cancer, not bone cancer. To plan the best treatment and understand your prognosis, it is important to know the breast cancer stage. There are 3 types of breast cancer stage groups: For breast cancer, the TNM system describes the tumor as follows: When the lymph nodes are removed by surgery and studied under a microscope by a pathologist, pathologic staging is used to describe the lymph nodes. The pathologic staging of lymph nodes is described below. or cancer has spread to 4 to 9 axillary lymph nodes and cancer in at least one of the lymph nodes is larger than 2 millimeters. Cancer has also spread to lymph nodes near the breastbone on the same side of the body as the primary tumor, and the cancer is larger than 0.2 millimeters and is found by sentinel lymph node biopsy. When the lymph nodes are checked using mammography or ultrasound, it is called clinical staging. The clinical staging of lymph nodes is not described here. The grading system describes a tumor based on how abnormal the cancer cells and tissue look under a microscope and how quickly the cancer cells are likely to grow and spread. Low-grade cancer cells look more like normal cells and tend to grow and spread more slowly than high-grade cancer cells. To describe how abnormal the cancer cells and tissue are, the pathologist will assess the following three features: For each feature, the pathologist assigns a score of 1 to 3; a score of “1” means the cells and tumor tissue look the most like normal cells and tissue, and a score of “3” means the cells and tissue look the most abnormal. The scores for each feature are added together to get a total score between 3 and 9. Three grades are possible: Healthy breast cells, and some breast cancer cells, have receptors (biomarkers) that attach to the hormones estrogen and progesterone. These hormones are needed for healthy cells, and some breast cancer cells, to grow and divide. To check for these biomarkers, samples of tissue containing breast cancer cells are removed during a biopsy or surgery. The samples are tested in a laboratory to see whether the breast cancer cells have estrogen or progesterone receptors. Another type of receptor (biomarker) that is found on the surface of all breast cancer cells is called HER2. HER2 receptors are needed for the breast cancer cells to grow and divide. For breast cancer, biomarker testing includes the following: Sometimes the breast cancer cells will be described as triple negative or triple positive. It is important to know the estrogen receptor, progesterone receptor, and HER2 receptor status to choose the best treatment. There are drugs that can stop the receptors from attaching to the hormones estrogen and progesterone and stop the cancer from growing. Other drugs may be used to block the HER2 receptors on the surface of the breast cancer cells and stop the cancer from growing. Here are 3 examples that combine the TNM system, the grading system, and the biomarker status to find out the Pathological Prognostic breast cancer stage for a woman whose first treatment was surgery: If the tumor size is 30 millimeters (T2), has not spread to nearby lymph nodes (N0), has not spread to distant parts of the body (M0), and is: The cancer is stage IIA. If the tumor size is 53 millimeters (T3), has spread to 4 to 9 axillary lymph nodes (N2), has not spread to other parts of the body (M0), and is: The tumor is stage IIIA.
If the tumor size is 65 millimeters (T3), has spread to 3 axillary lymph nodes (N1a), has spread to the lungs (M1), and is: The cancer is stage IV (metastatic breast cancer). After surgery, your doctor will receive a pathology report that describes the size and location of the primary tumor, the spread of cancer to nearby lymph nodes, tumor grade, and whether certain biomarkers are present. The pathology report and other test results are used to determine your breast cancer stage. You are likely to have many questions. Ask your doctor to explain how staging is used to decide the best options to treat your cancer and whether there are clinical trials that might be right for you. For treatment options for stage I, stage II, stage IIIA, and operable stage IIIC breast cancer, see Treatment of Early/Localized/Operable Male Breast Cancer.
For treatment options for cancer that has recurred (come back) near the area where it first formed, see Treatment of Locoregional Recurrent Male Breast Cancer.
For treatment options for stage IV (metastatic) breast cancer or breast cancer that has recurred in other parts of the body, see Treatment of Metastatic Male Breast Cancer. In inflammatory breast
cancer, cancer has spread to the skin of the breast and the breast looks red and swollen and feels warm. The
redness and warmth occur because the cancer cells block the lymph vessels in the skin. The skin of the breast
may also show the dimpled appearance called peau
d’orange (like the skin of an orange). There may not be any lumps in the breast that can be felt. Inflammatory breast cancer may be stage IIIB, stage IIIC, or stage IV. Different types of treatment are available for men with breast
cancer. Some treatments are standard (the currently used treatment), and some
are being tested in clinical trials.
A treatment clinical trial is a research study meant to help
improve current treatments or obtain information on new treatments for patients
with cancer. When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. For some patients, taking part in a clinical trial may be the best treatment choice. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country.
Information about clinical trials is available from the
NCI website. Choosing the most appropriate cancer treatment is a
decision that ideally involves the patient, family, and health care team.
Surgery for men with breast
cancer is usually a modified radical
mastectomy, surgery to remove the whole breast that has cancer. This may include removal of the nipple, areola (the dark-colored skin around the nipple), and skin over the breast. Most of the lymph nodes under the arm are also removed. Breast-conserving
surgery, an operation to remove the cancer but not the breast
itself, is also used for some men with breast cancer. A lumpectomy is done to remove the tumor (lump) and a small amount of normal tissue around it. Radiation therapy is given after surgery to kill any cancer cells that are left.EnlargeBreast-conserving surgery. The tumor and some normal tissue around it are removed, but not the breast itself. Some lymph nodes under the arm may be removed. Part of the chest wall lining may also be removed if the cancer is near it. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). See Drugs Approved for Breast Cancer for more information. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. Hormone therapy with tamoxifen is often given to patients with estrogen-receptor and progesterone-receptor positive breast cancer and to patients with metastatic breast cancer (cancer
that has spread to other parts of the body). Hormone therapy with an aromatase inhibitor is given to some men who have metastatic breast cancer. Aromatase inhibitors decrease the body's estrogen by blocking an enzyme called aromatase from turning androgen into estrogen. Anastrozole, letrozole, and exemestane are types of aromatase inhibitors. Hormone therapy with a luteinizing hormone-releasing hormone (LHRH) agonist is given to some men who have metastatic breast cancer. LHRH agonists affect the pituitary gland, which controls how much testosterone is made by the testicles. In men who are taking LHRH agonists, the pituitary gland tells the testicles to make less testosterone. Leuprolide and goserelin are types of LHRH agonists. Other types of hormone therapy include megestrol acetate or anti-estrogen therapy, such as fulvestrant. See Drugs Approved for Breast Cancer for more information. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Monoclonal antibody therapy, tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, and mammalian target of rapamycin (mTOR) inhibitors are types of targeted therapies used to treat men with breast cancer. Monoclonal antibodies are immune system proteins made in the laboratory to treat many diseases, including cancer. As a cancer treatment, these antibodies can attach to a specific target on cancer cells or other cells that may help cancer cells grow. The antibodies are able to then kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Types of monoclonal antibody therapy include the following: Tyrosine kinase inhibitors are targeted therapy drugs that block signals needed for tumors to grow. Lapatinib is a tyrosine kinase inhibitor that may be used to treat men with metastatic breast cancer. Cyclin-dependent kinase inhibitors are targeted therapy drugs that block proteins called cyclin-dependent kinases, which cause the growth of cancer cells. Palbociclib is a cyclin-dependent kinase inhibitor used to treat men with metastatic breast cancer. Mammalian target of rapamycin (mTOR) inhibitors block a protein called mTOR, which may keep cancer cells from growing and prevent the growth of new blood vessels that tumors need to grow. See Drugs Approved for Breast Cancer for more information. For information about side effects caused by treatment for cancer, see our Side Effects page. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of early, localized, or operable breast cancer may include the following: Treatment for men diagnosed with breast cancer is usually modified radical
mastectomy. Breast-conserving surgery with lumpectomy followed by radiation therapy may be used for some men. Therapy given after an operation when cancer
cells can no longer be seen is
called adjuvant
therapy. Even if the doctor removes all the
cancer that can be seen at the time of the operation, the patient may be given
radiation therapy,
chemotherapy, hormone therapy, and/or targeted therapy after surgery, to try
to kill any cancer cells that may be left. These treatments appear to increase survival in men as they do in
women. The patient’s response to hormone therapy depends on whether there are
hormone receptors (proteins) in the tumor. Most breast cancers in men have these
receptors. Hormone therapy is usually recommended for male breast cancer
patients, but it can have many side effects, including hot flashes and
impotence (the inability to have an erection adequate for sexual
intercourse). For information about the treatments listed below, see the Treatment Option Overview section. For men with locally recurrent disease (cancer that has come back in a
limited area after treatment), treatment options include: For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for metastatic breast cancer (cancer that has spread to distant parts of the body) may include the following: In men who have just been diagnosed with metastatic breast cancer that is hormone receptor positive or if the hormone receptor status is not known, treatment
may include: In men whose tumors are hormone receptor positive or hormone receptor unknown, with spread to the bone or soft tissue only, and who have been treated with tamoxifen, treatment may include: In men with metastatic breast cancer that is hormone receptor positive and has not responded to other treatments, options may include targeted therapy such as: In men with metastatic breast cancer that is HER2/neu positive, treatment may include: In men with metastatic breast cancer that is hormone receptor negative, has not responded to hormone therapy, has spread to other organs or has caused symptoms, treatment may include: Other treatment options for metastatic breast cancer include: For more information from the National Cancer Institute about male breast cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of male breast cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Male Breast Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/breast/patient/male-breast-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389417] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Male Breast Cancer Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the treatments for Male Breast Cancer ? | Key Points
- There are different types of treatment for men with breast cancer. - Five types of standard treatment are used to treat men with breast cancer: - Surgery - Chemotherapy - Hormone therapy - Radiation therapy - Targeted therapy - Treatment for male breast cancer may cause side effects.
There are different types of treatment for men with breast cancer.
Different types of treatment are available for men with breast cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. For some patients, taking part in a clinical trial may be the best treatment choice. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials is available from the NCI website. Choosing the most appropriate cancer treatment is a decision that ideally involves the patient, family, and health care team.
Five types of standard treatment are used to treat men with breast cancer:
Surgery Surgery for men with breast cancer is usually a modified radical mastectomy (removal of the breast, many of the lymph nodes under the arm, the lining over the chest muscles, and sometimes part of the chest wall muscles). Breast-conserving surgery, an operation to remove the cancer but not the breast itself, is also used for some men with breast cancer. A lumpectomy is done to remove the tumor (lump) and a small amount of normal tissue around it. Radiation therapy is given after surgery to kill any cancer cells that are left. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved for Breast Cancer for more information. Hormone therapy Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. See Drugs Approved for Breast Cancer for more information. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat male breast cancer. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Monoclonal antibody therapy is a type of targeted therapy used to treat men with breast cancer. Monoclonal antibody therapy uses antibodies made in the laboratory from a single type of immune system cell. These antibodies can identify substances on cancer cells or normal substances that may help cancer cells grow. The antibodies attach to the substances and kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Monoclonal antibodies are also used with chemotherapy as adjuvant therapy (treatment given after surgery to lower the risk that the cancer will come back). Trastuzumab is a monoclonal antibody that blocks the effects of the growth factor protein HER2. See Drugs Approved for Breast Cancer for more information.
Treatment for male breast cancer may cause side effects.
For information about side effects caused by treatment for cancer, see our Side Effects page.
Treatment Options for Male Breast Cancer
Initial Surgery
Treatment for men diagnosed with breast cancer is usually modified radical mastectomy. Breast-conserving surgery with lumpectomy may be used for some men.
Adjuvant Therapy
Therapy given after an operation when cancer cells can no longer be seen is called adjuvant therapy. Even if the doctor removes all the cancer that can be seen at the time of the operation, the patient may be given radiation therapy, chemotherapy, hormone therapy, and/or targeted therapy after surgery, to try to kill any cancer cells that may be left. - Node-negative: For men whose cancer is node-negative (cancer has not spread to the lymph nodes), adjuvant therapy should be considered on the same basis as for a woman with breast cancer because there is no evidence that response to therapy is different for men and women. - Node-positive: For men whose cancer is node-positive (cancer has spread to the lymph nodes), adjuvant therapy may include the following: - Chemotherapy plus tamoxifen (to block the effect of estrogen). - Other hormone therapy. - Targeted therapy with a monoclonal antibody (trastuzumab). These treatments appear to increase survival in men as they do in women. The patients response to hormone therapy depends on whether there are hormone receptors (proteins) in the tumor. Most breast cancers in men have these receptors. Hormone therapy is usually recommended for male breast cancer patients, but it can have many side effects, including hot flashes and impotence (the inability to have an erection adequate for sexual intercourse).
Distant Metastases
Treatment for men with distant metastases (cancer that has spread to other parts of the body) may be hormone therapy, chemotherapy, or both. Hormone therapy may include the following: - Orchiectomy (the removal of the testicles to decrease the amount of hormone made). - Luteinizing hormone-releasing hormone agonist with or without total androgen blockade (to decrease the the amount of sex hormones made). - Tamoxifen for cancer that is estrogen-receptor positive. - Progestin (a female hormone made in a laboratory). - Aromatase inhibitors (to decrease the amount of estrogen made). Hormone therapies may be used in sequence (one after the other). Standard chemotherapy regimens may be used if hormone therapy does not work. Men usually respond to therapy in the same way as women who have breast cancer. |
Central nervous system (CNS) atypical teratoid/rhabdoid tumor (AT/RT) is a very rare, fast-growing tumor that begins in the brain and spinal cord. It usually occurs in children aged 3 years and younger, although it can occur in older children and adults. About half of these tumors form in the cerebellum or brain stem. The cerebellum is the part of the brain that controls movement, balance, and posture. The brain stem controls breathing, heart rate, and the nerves and muscles used in seeing, hearing, walking, talking, and eating. AT/RT can also begin in other parts of the brain and spinal cord. This summary describes the treatment of CNS atypical teratoid/rhabdoid tumors. Treatment of metastatic
brain tumors, which are tumors formed by cancer cells that
begin in other parts of the body and spread to the brain, is not covered in
this summary. For information about other types of primary brain and spinal cord tumors, see Childhood Brain and Spinal Cord Tumors Treatment Overview. Brain tumors can occur in both children and adults; however,
treatment for children may be different than treatment for adults. For information about treatment for adults, see
Adult Central Nervous System Tumors Treatment. Anything that increases a person's risk of getting a disease is called a risk factor. Not every child with one or more of these risk factors will develop atypical teratoid/rhabdoid tumor, and it will develop in some children who don't have any risk factors. Talk with your child's doctor if you think your child may be at risk. Atypical teratoid/rhabdoid tumor may be linked to changes in the tumor suppressor genes SMARCB1 or SMARCA4. Genes of this type make a protein that helps control cell growth. Changes in the DNA of tumor suppressor genes like SMARCB1 or SMARCA4 may lead to cancer. The changes in the SMARCB1 or SMARCA4 genes may be inherited (passed on from parents to offspring). When this gene change is inherited, tumors may form in two parts of the body at the same time (for example, in the brain and the kidney). For patients with AT/RT, genetic counseling (a discussion with a trained professional about inherited diseases and a possible need for gene testing) may be recommended. Signs and symptoms depend on the following: Because atypical teratoid/rhabdoid tumor is fast growing, signs and symptoms may develop quickly and get worse over a period of days or weeks. Signs and symptoms may be caused by AT/RT or by other conditions. Check with your child's doctor if your child has any of the following: In addition to asking about your child's personal and family health history and doing a physical exam, your child's doctor may perform the following tests and procedures: If doctors think there might be a brain tumor, a biopsy may be done to remove a sample of tissue. For brain tumors, the biopsy can be done by removing part of the skull or making a small hole in the skull and using a needle or surgical device to remove a sample of tissue. Sometimes, when a needle is used, it is guided by a computer to remove the tissue sample. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, the doctor may remove as much tumor as safely possible during the same surgery. The pathologist checks the cancer cells to find out the type of brain tumor. It is often difficult to completely remove AT/RT because of where the tumor is in the brain and because it may already have spread at the time of diagnosis. The piece of skull is usually put back in place after the procedure.EnlargeCraniotomy: An opening is made in the skull and a piece of the skull is removed to show part of the brain. The following test may be done on the sample of tissue that is removed: The prognosis and treatment options depend on the following: The process used to find out if cancer has spread to other parts of the body is called staging. There is no standard staging system for central nervous system atypical teratoid/rhabdoid tumor. For treatment, this tumor is grouped as newly diagnosed or recurrent. Treatment depends on the following: Results from the following procedure are also used to plan treatment: Different types of treatment are available for patients with central nervous system atypical teratoid/rhabdoid tumor (AT/RT). Treatment for AT/RT is often within a clinical trial. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. Clinical trials are taking place in many parts of the country. Information about ongoing clinical trials is available from the NCI website. Choosing the most appropriate cancer treatment is a decision that ideally involves the patient, family, and health care team. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with central nervous system cancer and who specialize in certain areas of medicine. These may include the following specialists: Signs or symptoms caused by the tumor may begin before diagnosis. These signs or symptoms may continue for months or years. It is important to talk with your child's doctors about signs or symptoms caused by the tumor that may continue after treatment. Surgery is used to diagnose and treat CNS atypical teratoid/rhabdoid tumor. See the General Information section of this summary for more information about how this tumor is diagnosed. After the doctor removes all the cancer that can be seen at the time of the surgery, most patients will be given chemotherapy and possibly radiation therapy to try to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach tumor cells throughout the body (systemic chemotherapy). Some oral chemotherapy drugs can cross the blood-brain barrier and reach the tumor. High doses of some chemotherapy drugs given into a vein can cross the blood-brain barrier and reach the tumor. When chemotherapy is placed directly into the cerebrospinal fluid, it is called intrathecal chemotherapy. Combination chemotherapy uses more than one anticancer drug. Childhood central nervous system atypical teratoid rhabdoid tumor is treated with systemic and intrathecal chemotherapy.
Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer.
External radiation therapy may be given to the brain and spinal cord. Because radiation therapy can affect growth and brain development in young children, especially children who are 3 years old or younger, the dose of radiation therapy may be lower than in older children. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. This summary section describes treatments that are being
studied in
clinical trials.
It may not mention every new treatment being studied.
Information about clinical trials is available from the
NCI website. Targeted therapy uses drugs or other substances to block the action of specific enzymes, proteins, or molecules involved in the growth and spread of cancer cells. Targeted therapy is being studied in the treatment of recurrent childhood central nervous system atypical teratoid/rhabdoid tumor. Immunotherapy helps a person's immune system fight cancer. Biomarker tests can be used to help predict your response to certain immunotherapy drugs. For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment may include the following: Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. For more information, see Late Effects of Treatment for Childhood Cancer. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer may be repeated. Some tests will be repeated to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups.
For information about the treatments listed below, see the Treatment Option Overview section. There is no standard treatment for children with newly diagnosed central nervous system atypical teratoid/rhabdoid tumor (AT/RT). Because AT/RT is fast-growing, a combination of treatments is usually given. After surgery to remove the tumor, treatments for AT/RT may include combinations of the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. There is no standard treatment for children with recurrent childhood central nervous system atypical teratoid/rhabdoid tumor. Treatment may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information about childhood central nervous system atypical teratoid/rhabdoid tumor and other childhood brain tumors, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of childhood central nervous system atypical teratoid and rhabdoid tumor. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/brain/patient/child-cns-atrt-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389341] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is (are) Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor ? | Key Points
- Central nervous system atypical teratoid/rhabdoid tumor is a disease in which malignant (cancer) cells form in the tissues of the brain. - Certain genetic changes may increase the risk of atypical teratoid/rhabdoid tumor. - The signs and symptoms of atypical teratoid/rhabdoid tumor are not the same in every patient. - Tests that examine the brain and spinal cord are used to detect (find) CNS atypical teratoid/rhabdoid tumor. - Childhood atypical teratoid/rhabdoid tumor is diagnosed and may be removed in surgery. - Certain factors affect prognosis (chance of recovery) and treatment options.
Central nervous system atypical teratoid/rhabdoid tumor is a disease in which malignant (cancer) cells form in the tissues of the brain.
Central nervous system (CNS) atypical teratoid/rhabdoid tumor (AT/RT) is a very rare, fast-growing tumor of the brain and spinal cord. It usually occurs in children aged three years and younger, although it can occur in older children and adults. About half of these tumors form in the cerebellum or brain stem. The cerebellum is the part of the brain that controls movement, balance, and posture. The brain stem controls breathing, heart rate, and the nerves and muscles used in seeing, hearing, walking, talking, and eating. AT/RT may also be found in other parts of the central nervous system (brain and spinal cord). This summary describes the treatment of primary brain tumors (tumors that begin in the brain). Treatment for metastatic brain tumors, which are tumors formed by cancer cells that begin in other parts of the body and spread to the brain, is not covered in this summary. For more information, see the PDQ summary on Childhood Brain and Spinal Cord Tumors Treatment Overview about the different types of childhood brain and spinal cord tumors. Brain tumors can occur in both children and adults; however, treatment for children may be different than treatment for adults. See the PDQ treatment summary on Adult Central Nervous System Tumors Treatment for more information. |
Central nervous system (CNS) atypical teratoid/rhabdoid tumor (AT/RT) is a very rare, fast-growing tumor that begins in the brain and spinal cord. It usually occurs in children aged 3 years and younger, although it can occur in older children and adults. About half of these tumors form in the cerebellum or brain stem. The cerebellum is the part of the brain that controls movement, balance, and posture. The brain stem controls breathing, heart rate, and the nerves and muscles used in seeing, hearing, walking, talking, and eating. AT/RT can also begin in other parts of the brain and spinal cord. This summary describes the treatment of CNS atypical teratoid/rhabdoid tumors. Treatment of metastatic
brain tumors, which are tumors formed by cancer cells that
begin in other parts of the body and spread to the brain, is not covered in
this summary. For information about other types of primary brain and spinal cord tumors, see Childhood Brain and Spinal Cord Tumors Treatment Overview. Brain tumors can occur in both children and adults; however,
treatment for children may be different than treatment for adults. For information about treatment for adults, see
Adult Central Nervous System Tumors Treatment. Anything that increases a person's risk of getting a disease is called a risk factor. Not every child with one or more of these risk factors will develop atypical teratoid/rhabdoid tumor, and it will develop in some children who don't have any risk factors. Talk with your child's doctor if you think your child may be at risk. Atypical teratoid/rhabdoid tumor may be linked to changes in the tumor suppressor genes SMARCB1 or SMARCA4. Genes of this type make a protein that helps control cell growth. Changes in the DNA of tumor suppressor genes like SMARCB1 or SMARCA4 may lead to cancer. The changes in the SMARCB1 or SMARCA4 genes may be inherited (passed on from parents to offspring). When this gene change is inherited, tumors may form in two parts of the body at the same time (for example, in the brain and the kidney). For patients with AT/RT, genetic counseling (a discussion with a trained professional about inherited diseases and a possible need for gene testing) may be recommended. Signs and symptoms depend on the following: Because atypical teratoid/rhabdoid tumor is fast growing, signs and symptoms may develop quickly and get worse over a period of days or weeks. Signs and symptoms may be caused by AT/RT or by other conditions. Check with your child's doctor if your child has any of the following: In addition to asking about your child's personal and family health history and doing a physical exam, your child's doctor may perform the following tests and procedures: If doctors think there might be a brain tumor, a biopsy may be done to remove a sample of tissue. For brain tumors, the biopsy can be done by removing part of the skull or making a small hole in the skull and using a needle or surgical device to remove a sample of tissue. Sometimes, when a needle is used, it is guided by a computer to remove the tissue sample. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, the doctor may remove as much tumor as safely possible during the same surgery. The pathologist checks the cancer cells to find out the type of brain tumor. It is often difficult to completely remove AT/RT because of where the tumor is in the brain and because it may already have spread at the time of diagnosis. The piece of skull is usually put back in place after the procedure.EnlargeCraniotomy: An opening is made in the skull and a piece of the skull is removed to show part of the brain. The following test may be done on the sample of tissue that is removed: The prognosis and treatment options depend on the following: The process used to find out if cancer has spread to other parts of the body is called staging. There is no standard staging system for central nervous system atypical teratoid/rhabdoid tumor. For treatment, this tumor is grouped as newly diagnosed or recurrent. Treatment depends on the following: Results from the following procedure are also used to plan treatment: Different types of treatment are available for patients with central nervous system atypical teratoid/rhabdoid tumor (AT/RT). Treatment for AT/RT is often within a clinical trial. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. Clinical trials are taking place in many parts of the country. Information about ongoing clinical trials is available from the NCI website. Choosing the most appropriate cancer treatment is a decision that ideally involves the patient, family, and health care team. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with central nervous system cancer and who specialize in certain areas of medicine. These may include the following specialists: Signs or symptoms caused by the tumor may begin before diagnosis. These signs or symptoms may continue for months or years. It is important to talk with your child's doctors about signs or symptoms caused by the tumor that may continue after treatment. Surgery is used to diagnose and treat CNS atypical teratoid/rhabdoid tumor. See the General Information section of this summary for more information about how this tumor is diagnosed. After the doctor removes all the cancer that can be seen at the time of the surgery, most patients will be given chemotherapy and possibly radiation therapy to try to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach tumor cells throughout the body (systemic chemotherapy). Some oral chemotherapy drugs can cross the blood-brain barrier and reach the tumor. High doses of some chemotherapy drugs given into a vein can cross the blood-brain barrier and reach the tumor. When chemotherapy is placed directly into the cerebrospinal fluid, it is called intrathecal chemotherapy. Combination chemotherapy uses more than one anticancer drug. Childhood central nervous system atypical teratoid rhabdoid tumor is treated with systemic and intrathecal chemotherapy.
Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer.
External radiation therapy may be given to the brain and spinal cord. Because radiation therapy can affect growth and brain development in young children, especially children who are 3 years old or younger, the dose of radiation therapy may be lower than in older children. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. This summary section describes treatments that are being
studied in
clinical trials.
It may not mention every new treatment being studied.
Information about clinical trials is available from the
NCI website. Targeted therapy uses drugs or other substances to block the action of specific enzymes, proteins, or molecules involved in the growth and spread of cancer cells. Targeted therapy is being studied in the treatment of recurrent childhood central nervous system atypical teratoid/rhabdoid tumor. Immunotherapy helps a person's immune system fight cancer. Biomarker tests can be used to help predict your response to certain immunotherapy drugs. For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment may include the following: Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. For more information, see Late Effects of Treatment for Childhood Cancer. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer may be repeated. Some tests will be repeated to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups.
For information about the treatments listed below, see the Treatment Option Overview section. There is no standard treatment for children with newly diagnosed central nervous system atypical teratoid/rhabdoid tumor (AT/RT). Because AT/RT is fast-growing, a combination of treatments is usually given. After surgery to remove the tumor, treatments for AT/RT may include combinations of the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. There is no standard treatment for children with recurrent childhood central nervous system atypical teratoid/rhabdoid tumor. Treatment may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information about childhood central nervous system atypical teratoid/rhabdoid tumor and other childhood brain tumors, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of childhood central nervous system atypical teratoid and rhabdoid tumor. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/brain/patient/child-cns-atrt-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389341] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | Who is at risk for Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor? ? | Certain genetic changes may increase the risk of atypical teratoid/rhabdoid tumor. Anything that increases the risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your child's doctor if you think your child may be at risk. Atypical teratoid/rhabdoid tumor may be linked to changes in the tumor suppressor genes SMARCB1 or SMARCA4. Genes of this type make a protein that helps control cell growth. Changes in the DNA of tumor suppressor genes like SMARCB1 or SMARCA4 may lead to cancer. Changes in the SMARCB1 or SMARCA4 genes may be inherited (passed on from parents to offspring). When this gene change is inherited, tumors may form in two parts of the body at the same time (for example, in the brain and the kidney). For patients with AT/RT, genetic counseling (a discussion with a trained professional about inherited diseases and a possible need for gene testing) may be recommended. |
Central nervous system (CNS) atypical teratoid/rhabdoid tumor (AT/RT) is a very rare, fast-growing tumor that begins in the brain and spinal cord. It usually occurs in children aged 3 years and younger, although it can occur in older children and adults. About half of these tumors form in the cerebellum or brain stem. The cerebellum is the part of the brain that controls movement, balance, and posture. The brain stem controls breathing, heart rate, and the nerves and muscles used in seeing, hearing, walking, talking, and eating. AT/RT can also begin in other parts of the brain and spinal cord. This summary describes the treatment of CNS atypical teratoid/rhabdoid tumors. Treatment of metastatic
brain tumors, which are tumors formed by cancer cells that
begin in other parts of the body and spread to the brain, is not covered in
this summary. For information about other types of primary brain and spinal cord tumors, see Childhood Brain and Spinal Cord Tumors Treatment Overview. Brain tumors can occur in both children and adults; however,
treatment for children may be different than treatment for adults. For information about treatment for adults, see
Adult Central Nervous System Tumors Treatment. Anything that increases a person's risk of getting a disease is called a risk factor. Not every child with one or more of these risk factors will develop atypical teratoid/rhabdoid tumor, and it will develop in some children who don't have any risk factors. Talk with your child's doctor if you think your child may be at risk. Atypical teratoid/rhabdoid tumor may be linked to changes in the tumor suppressor genes SMARCB1 or SMARCA4. Genes of this type make a protein that helps control cell growth. Changes in the DNA of tumor suppressor genes like SMARCB1 or SMARCA4 may lead to cancer. The changes in the SMARCB1 or SMARCA4 genes may be inherited (passed on from parents to offspring). When this gene change is inherited, tumors may form in two parts of the body at the same time (for example, in the brain and the kidney). For patients with AT/RT, genetic counseling (a discussion with a trained professional about inherited diseases and a possible need for gene testing) may be recommended. Signs and symptoms depend on the following: Because atypical teratoid/rhabdoid tumor is fast growing, signs and symptoms may develop quickly and get worse over a period of days or weeks. Signs and symptoms may be caused by AT/RT or by other conditions. Check with your child's doctor if your child has any of the following: In addition to asking about your child's personal and family health history and doing a physical exam, your child's doctor may perform the following tests and procedures: If doctors think there might be a brain tumor, a biopsy may be done to remove a sample of tissue. For brain tumors, the biopsy can be done by removing part of the skull or making a small hole in the skull and using a needle or surgical device to remove a sample of tissue. Sometimes, when a needle is used, it is guided by a computer to remove the tissue sample. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, the doctor may remove as much tumor as safely possible during the same surgery. The pathologist checks the cancer cells to find out the type of brain tumor. It is often difficult to completely remove AT/RT because of where the tumor is in the brain and because it may already have spread at the time of diagnosis. The piece of skull is usually put back in place after the procedure.EnlargeCraniotomy: An opening is made in the skull and a piece of the skull is removed to show part of the brain. The following test may be done on the sample of tissue that is removed: The prognosis and treatment options depend on the following: The process used to find out if cancer has spread to other parts of the body is called staging. There is no standard staging system for central nervous system atypical teratoid/rhabdoid tumor. For treatment, this tumor is grouped as newly diagnosed or recurrent. Treatment depends on the following: Results from the following procedure are also used to plan treatment: Different types of treatment are available for patients with central nervous system atypical teratoid/rhabdoid tumor (AT/RT). Treatment for AT/RT is often within a clinical trial. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. Clinical trials are taking place in many parts of the country. Information about ongoing clinical trials is available from the NCI website. Choosing the most appropriate cancer treatment is a decision that ideally involves the patient, family, and health care team. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with central nervous system cancer and who specialize in certain areas of medicine. These may include the following specialists: Signs or symptoms caused by the tumor may begin before diagnosis. These signs or symptoms may continue for months or years. It is important to talk with your child's doctors about signs or symptoms caused by the tumor that may continue after treatment. Surgery is used to diagnose and treat CNS atypical teratoid/rhabdoid tumor. See the General Information section of this summary for more information about how this tumor is diagnosed. After the doctor removes all the cancer that can be seen at the time of the surgery, most patients will be given chemotherapy and possibly radiation therapy to try to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach tumor cells throughout the body (systemic chemotherapy). Some oral chemotherapy drugs can cross the blood-brain barrier and reach the tumor. High doses of some chemotherapy drugs given into a vein can cross the blood-brain barrier and reach the tumor. When chemotherapy is placed directly into the cerebrospinal fluid, it is called intrathecal chemotherapy. Combination chemotherapy uses more than one anticancer drug. Childhood central nervous system atypical teratoid rhabdoid tumor is treated with systemic and intrathecal chemotherapy.
Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer.
External radiation therapy may be given to the brain and spinal cord. Because radiation therapy can affect growth and brain development in young children, especially children who are 3 years old or younger, the dose of radiation therapy may be lower than in older children. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. This summary section describes treatments that are being
studied in
clinical trials.
It may not mention every new treatment being studied.
Information about clinical trials is available from the
NCI website. Targeted therapy uses drugs or other substances to block the action of specific enzymes, proteins, or molecules involved in the growth and spread of cancer cells. Targeted therapy is being studied in the treatment of recurrent childhood central nervous system atypical teratoid/rhabdoid tumor. Immunotherapy helps a person's immune system fight cancer. Biomarker tests can be used to help predict your response to certain immunotherapy drugs. For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment may include the following: Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. For more information, see Late Effects of Treatment for Childhood Cancer. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer may be repeated. Some tests will be repeated to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups.
For information about the treatments listed below, see the Treatment Option Overview section. There is no standard treatment for children with newly diagnosed central nervous system atypical teratoid/rhabdoid tumor (AT/RT). Because AT/RT is fast-growing, a combination of treatments is usually given. After surgery to remove the tumor, treatments for AT/RT may include combinations of the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. There is no standard treatment for children with recurrent childhood central nervous system atypical teratoid/rhabdoid tumor. Treatment may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information about childhood central nervous system atypical teratoid/rhabdoid tumor and other childhood brain tumors, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of childhood central nervous system atypical teratoid and rhabdoid tumor. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/brain/patient/child-cns-atrt-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389341] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the symptoms of Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor ? | The signs and symptoms of atypical teratoid/rhabdoid tumor are not the same in every patient. Signs and symptoms depend on the following: - The child's age. - Where the tumor has formed. Because atypical teratoid/rhabdoid tumor is fast growing, signs and symptoms may develop quickly and get worse over a period of days or weeks. Signs and symptoms may be caused by AT/RT or by other conditions. Check with your child's doctor if your child has any of the following: - Morning headache or headache that goes away after vomiting. - Nausea and vomiting. - Unusual sleepiness or change in activity level. - Loss of balance, lack of coordination, or trouble walking. - Increase in head size (in infants). |
Central nervous system (CNS) atypical teratoid/rhabdoid tumor (AT/RT) is a very rare, fast-growing tumor that begins in the brain and spinal cord. It usually occurs in children aged 3 years and younger, although it can occur in older children and adults. About half of these tumors form in the cerebellum or brain stem. The cerebellum is the part of the brain that controls movement, balance, and posture. The brain stem controls breathing, heart rate, and the nerves and muscles used in seeing, hearing, walking, talking, and eating. AT/RT can also begin in other parts of the brain and spinal cord. This summary describes the treatment of CNS atypical teratoid/rhabdoid tumors. Treatment of metastatic
brain tumors, which are tumors formed by cancer cells that
begin in other parts of the body and spread to the brain, is not covered in
this summary. For information about other types of primary brain and spinal cord tumors, see Childhood Brain and Spinal Cord Tumors Treatment Overview. Brain tumors can occur in both children and adults; however,
treatment for children may be different than treatment for adults. For information about treatment for adults, see
Adult Central Nervous System Tumors Treatment. Anything that increases a person's risk of getting a disease is called a risk factor. Not every child with one or more of these risk factors will develop atypical teratoid/rhabdoid tumor, and it will develop in some children who don't have any risk factors. Talk with your child's doctor if you think your child may be at risk. Atypical teratoid/rhabdoid tumor may be linked to changes in the tumor suppressor genes SMARCB1 or SMARCA4. Genes of this type make a protein that helps control cell growth. Changes in the DNA of tumor suppressor genes like SMARCB1 or SMARCA4 may lead to cancer. The changes in the SMARCB1 or SMARCA4 genes may be inherited (passed on from parents to offspring). When this gene change is inherited, tumors may form in two parts of the body at the same time (for example, in the brain and the kidney). For patients with AT/RT, genetic counseling (a discussion with a trained professional about inherited diseases and a possible need for gene testing) may be recommended. Signs and symptoms depend on the following: Because atypical teratoid/rhabdoid tumor is fast growing, signs and symptoms may develop quickly and get worse over a period of days or weeks. Signs and symptoms may be caused by AT/RT or by other conditions. Check with your child's doctor if your child has any of the following: In addition to asking about your child's personal and family health history and doing a physical exam, your child's doctor may perform the following tests and procedures: If doctors think there might be a brain tumor, a biopsy may be done to remove a sample of tissue. For brain tumors, the biopsy can be done by removing part of the skull or making a small hole in the skull and using a needle or surgical device to remove a sample of tissue. Sometimes, when a needle is used, it is guided by a computer to remove the tissue sample. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, the doctor may remove as much tumor as safely possible during the same surgery. The pathologist checks the cancer cells to find out the type of brain tumor. It is often difficult to completely remove AT/RT because of where the tumor is in the brain and because it may already have spread at the time of diagnosis. The piece of skull is usually put back in place after the procedure.EnlargeCraniotomy: An opening is made in the skull and a piece of the skull is removed to show part of the brain. The following test may be done on the sample of tissue that is removed: The prognosis and treatment options depend on the following: The process used to find out if cancer has spread to other parts of the body is called staging. There is no standard staging system for central nervous system atypical teratoid/rhabdoid tumor. For treatment, this tumor is grouped as newly diagnosed or recurrent. Treatment depends on the following: Results from the following procedure are also used to plan treatment: Different types of treatment are available for patients with central nervous system atypical teratoid/rhabdoid tumor (AT/RT). Treatment for AT/RT is often within a clinical trial. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. Clinical trials are taking place in many parts of the country. Information about ongoing clinical trials is available from the NCI website. Choosing the most appropriate cancer treatment is a decision that ideally involves the patient, family, and health care team. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with central nervous system cancer and who specialize in certain areas of medicine. These may include the following specialists: Signs or symptoms caused by the tumor may begin before diagnosis. These signs or symptoms may continue for months or years. It is important to talk with your child's doctors about signs or symptoms caused by the tumor that may continue after treatment. Surgery is used to diagnose and treat CNS atypical teratoid/rhabdoid tumor. See the General Information section of this summary for more information about how this tumor is diagnosed. After the doctor removes all the cancer that can be seen at the time of the surgery, most patients will be given chemotherapy and possibly radiation therapy to try to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach tumor cells throughout the body (systemic chemotherapy). Some oral chemotherapy drugs can cross the blood-brain barrier and reach the tumor. High doses of some chemotherapy drugs given into a vein can cross the blood-brain barrier and reach the tumor. When chemotherapy is placed directly into the cerebrospinal fluid, it is called intrathecal chemotherapy. Combination chemotherapy uses more than one anticancer drug. Childhood central nervous system atypical teratoid rhabdoid tumor is treated with systemic and intrathecal chemotherapy.
Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer.
External radiation therapy may be given to the brain and spinal cord. Because radiation therapy can affect growth and brain development in young children, especially children who are 3 years old or younger, the dose of radiation therapy may be lower than in older children. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. This summary section describes treatments that are being
studied in
clinical trials.
It may not mention every new treatment being studied.
Information about clinical trials is available from the
NCI website. Targeted therapy uses drugs or other substances to block the action of specific enzymes, proteins, or molecules involved in the growth and spread of cancer cells. Targeted therapy is being studied in the treatment of recurrent childhood central nervous system atypical teratoid/rhabdoid tumor. Immunotherapy helps a person's immune system fight cancer. Biomarker tests can be used to help predict your response to certain immunotherapy drugs. For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment may include the following: Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. For more information, see Late Effects of Treatment for Childhood Cancer. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer may be repeated. Some tests will be repeated to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups.
For information about the treatments listed below, see the Treatment Option Overview section. There is no standard treatment for children with newly diagnosed central nervous system atypical teratoid/rhabdoid tumor (AT/RT). Because AT/RT is fast-growing, a combination of treatments is usually given. After surgery to remove the tumor, treatments for AT/RT may include combinations of the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. There is no standard treatment for children with recurrent childhood central nervous system atypical teratoid/rhabdoid tumor. Treatment may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information about childhood central nervous system atypical teratoid/rhabdoid tumor and other childhood brain tumors, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of childhood central nervous system atypical teratoid and rhabdoid tumor. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/brain/patient/child-cns-atrt-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389341] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | How to diagnose Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor ? | Tests that examine the brain and spinal cord are used to detect (find) CNS atypical teratoid/rhabdoid tumor. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patient's health habits and past illnesses and treatments will also be taken. - Neurological exam : A series of questions and tests to check the brain, spinal cord, and nerve function. The exam checks a persons mental status, coordination, and ability to walk normally, and how well the muscles, senses, and reflexes work. This may also be called a neuro exam or a neurologic exam. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the brain and spinal cord. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Lumbar puncture : A procedure used to collect cerebrospinal fluid (CSF) from the spinal column. This is done by placing a needle between two bones in the spine and into the CSF around the spinal cord and removing a sample of fluid. The sample of CSF is checked under a microscope for signs of tumor cells. The sample may also be checked for the amounts of protein and glucose. A higher than normal amount of protein or lower than normal amount of glucose may be a sign of a tumor. This procedure is also called an LP or spinal tap. - SMARCB1 and SMARCA4 gene testing: A laboratory test in which a sample of blood or tissue is tested for the SMARCB1 and SMARCA4 genes.
Childhood atypical teratoid/rhabdoid tumor is diagnosed and may be removed in surgery. If doctors think there might be a brain tumor, a biopsy may be done to remove a sample of tissue. For tumors in the brain, the biopsy is done by removing part of the skull and using a needle to remove a sample of tissue. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, the doctor may remove as much tumor as safely possible during the same surgery. The pathologist checks the cancer cells to find out the type of brain tumor. It is often difficult to completely remove AT/RT because of where the tumor is in the brain and because it may already have spread at the time of diagnosis. The following test may be done on the sample of tissue that is removed: - Immunohistochemistry : A test that uses antibodies to check for certain antigens in a sample of tissue. The antibody is usually linked to a radioactive substance or a dye that causes the tissue to light up under a microscope. This test is used to tell the difference between AT/RT and other brain tumors. |
Central nervous system (CNS) atypical teratoid/rhabdoid tumor (AT/RT) is a very rare, fast-growing tumor that begins in the brain and spinal cord. It usually occurs in children aged 3 years and younger, although it can occur in older children and adults. About half of these tumors form in the cerebellum or brain stem. The cerebellum is the part of the brain that controls movement, balance, and posture. The brain stem controls breathing, heart rate, and the nerves and muscles used in seeing, hearing, walking, talking, and eating. AT/RT can also begin in other parts of the brain and spinal cord. This summary describes the treatment of CNS atypical teratoid/rhabdoid tumors. Treatment of metastatic
brain tumors, which are tumors formed by cancer cells that
begin in other parts of the body and spread to the brain, is not covered in
this summary. For information about other types of primary brain and spinal cord tumors, see Childhood Brain and Spinal Cord Tumors Treatment Overview. Brain tumors can occur in both children and adults; however,
treatment for children may be different than treatment for adults. For information about treatment for adults, see
Adult Central Nervous System Tumors Treatment. Anything that increases a person's risk of getting a disease is called a risk factor. Not every child with one or more of these risk factors will develop atypical teratoid/rhabdoid tumor, and it will develop in some children who don't have any risk factors. Talk with your child's doctor if you think your child may be at risk. Atypical teratoid/rhabdoid tumor may be linked to changes in the tumor suppressor genes SMARCB1 or SMARCA4. Genes of this type make a protein that helps control cell growth. Changes in the DNA of tumor suppressor genes like SMARCB1 or SMARCA4 may lead to cancer. The changes in the SMARCB1 or SMARCA4 genes may be inherited (passed on from parents to offspring). When this gene change is inherited, tumors may form in two parts of the body at the same time (for example, in the brain and the kidney). For patients with AT/RT, genetic counseling (a discussion with a trained professional about inherited diseases and a possible need for gene testing) may be recommended. Signs and symptoms depend on the following: Because atypical teratoid/rhabdoid tumor is fast growing, signs and symptoms may develop quickly and get worse over a period of days or weeks. Signs and symptoms may be caused by AT/RT or by other conditions. Check with your child's doctor if your child has any of the following: In addition to asking about your child's personal and family health history and doing a physical exam, your child's doctor may perform the following tests and procedures: If doctors think there might be a brain tumor, a biopsy may be done to remove a sample of tissue. For brain tumors, the biopsy can be done by removing part of the skull or making a small hole in the skull and using a needle or surgical device to remove a sample of tissue. Sometimes, when a needle is used, it is guided by a computer to remove the tissue sample. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, the doctor may remove as much tumor as safely possible during the same surgery. The pathologist checks the cancer cells to find out the type of brain tumor. It is often difficult to completely remove AT/RT because of where the tumor is in the brain and because it may already have spread at the time of diagnosis. The piece of skull is usually put back in place after the procedure.EnlargeCraniotomy: An opening is made in the skull and a piece of the skull is removed to show part of the brain. The following test may be done on the sample of tissue that is removed: The prognosis and treatment options depend on the following: The process used to find out if cancer has spread to other parts of the body is called staging. There is no standard staging system for central nervous system atypical teratoid/rhabdoid tumor. For treatment, this tumor is grouped as newly diagnosed or recurrent. Treatment depends on the following: Results from the following procedure are also used to plan treatment: Different types of treatment are available for patients with central nervous system atypical teratoid/rhabdoid tumor (AT/RT). Treatment for AT/RT is often within a clinical trial. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. Clinical trials are taking place in many parts of the country. Information about ongoing clinical trials is available from the NCI website. Choosing the most appropriate cancer treatment is a decision that ideally involves the patient, family, and health care team. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with central nervous system cancer and who specialize in certain areas of medicine. These may include the following specialists: Signs or symptoms caused by the tumor may begin before diagnosis. These signs or symptoms may continue for months or years. It is important to talk with your child's doctors about signs or symptoms caused by the tumor that may continue after treatment. Surgery is used to diagnose and treat CNS atypical teratoid/rhabdoid tumor. See the General Information section of this summary for more information about how this tumor is diagnosed. After the doctor removes all the cancer that can be seen at the time of the surgery, most patients will be given chemotherapy and possibly radiation therapy to try to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach tumor cells throughout the body (systemic chemotherapy). Some oral chemotherapy drugs can cross the blood-brain barrier and reach the tumor. High doses of some chemotherapy drugs given into a vein can cross the blood-brain barrier and reach the tumor. When chemotherapy is placed directly into the cerebrospinal fluid, it is called intrathecal chemotherapy. Combination chemotherapy uses more than one anticancer drug. Childhood central nervous system atypical teratoid rhabdoid tumor is treated with systemic and intrathecal chemotherapy.
Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer.
External radiation therapy may be given to the brain and spinal cord. Because radiation therapy can affect growth and brain development in young children, especially children who are 3 years old or younger, the dose of radiation therapy may be lower than in older children. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. This summary section describes treatments that are being
studied in
clinical trials.
It may not mention every new treatment being studied.
Information about clinical trials is available from the
NCI website. Targeted therapy uses drugs or other substances to block the action of specific enzymes, proteins, or molecules involved in the growth and spread of cancer cells. Targeted therapy is being studied in the treatment of recurrent childhood central nervous system atypical teratoid/rhabdoid tumor. Immunotherapy helps a person's immune system fight cancer. Biomarker tests can be used to help predict your response to certain immunotherapy drugs. For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment may include the following: Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. For more information, see Late Effects of Treatment for Childhood Cancer. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer may be repeated. Some tests will be repeated to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups.
For information about the treatments listed below, see the Treatment Option Overview section. There is no standard treatment for children with newly diagnosed central nervous system atypical teratoid/rhabdoid tumor (AT/RT). Because AT/RT is fast-growing, a combination of treatments is usually given. After surgery to remove the tumor, treatments for AT/RT may include combinations of the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. There is no standard treatment for children with recurrent childhood central nervous system atypical teratoid/rhabdoid tumor. Treatment may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information about childhood central nervous system atypical teratoid/rhabdoid tumor and other childhood brain tumors, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of childhood central nervous system atypical teratoid and rhabdoid tumor. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/brain/patient/child-cns-atrt-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389341] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is the outlook for Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor ? | Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - Whether there are certain inherited gene changes. - The age of the child. - The amount of tumor remaining after surgery. - Whether the cancer has spread to other parts of the central nervous system (brain and spinal cord) or to the kidney at the time of diagnosis. |
Central nervous system (CNS) atypical teratoid/rhabdoid tumor (AT/RT) is a very rare, fast-growing tumor that begins in the brain and spinal cord. It usually occurs in children aged 3 years and younger, although it can occur in older children and adults. About half of these tumors form in the cerebellum or brain stem. The cerebellum is the part of the brain that controls movement, balance, and posture. The brain stem controls breathing, heart rate, and the nerves and muscles used in seeing, hearing, walking, talking, and eating. AT/RT can also begin in other parts of the brain and spinal cord. This summary describes the treatment of CNS atypical teratoid/rhabdoid tumors. Treatment of metastatic
brain tumors, which are tumors formed by cancer cells that
begin in other parts of the body and spread to the brain, is not covered in
this summary. For information about other types of primary brain and spinal cord tumors, see Childhood Brain and Spinal Cord Tumors Treatment Overview. Brain tumors can occur in both children and adults; however,
treatment for children may be different than treatment for adults. For information about treatment for adults, see
Adult Central Nervous System Tumors Treatment. Anything that increases a person's risk of getting a disease is called a risk factor. Not every child with one or more of these risk factors will develop atypical teratoid/rhabdoid tumor, and it will develop in some children who don't have any risk factors. Talk with your child's doctor if you think your child may be at risk. Atypical teratoid/rhabdoid tumor may be linked to changes in the tumor suppressor genes SMARCB1 or SMARCA4. Genes of this type make a protein that helps control cell growth. Changes in the DNA of tumor suppressor genes like SMARCB1 or SMARCA4 may lead to cancer. The changes in the SMARCB1 or SMARCA4 genes may be inherited (passed on from parents to offspring). When this gene change is inherited, tumors may form in two parts of the body at the same time (for example, in the brain and the kidney). For patients with AT/RT, genetic counseling (a discussion with a trained professional about inherited diseases and a possible need for gene testing) may be recommended. Signs and symptoms depend on the following: Because atypical teratoid/rhabdoid tumor is fast growing, signs and symptoms may develop quickly and get worse over a period of days or weeks. Signs and symptoms may be caused by AT/RT or by other conditions. Check with your child's doctor if your child has any of the following: In addition to asking about your child's personal and family health history and doing a physical exam, your child's doctor may perform the following tests and procedures: If doctors think there might be a brain tumor, a biopsy may be done to remove a sample of tissue. For brain tumors, the biopsy can be done by removing part of the skull or making a small hole in the skull and using a needle or surgical device to remove a sample of tissue. Sometimes, when a needle is used, it is guided by a computer to remove the tissue sample. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, the doctor may remove as much tumor as safely possible during the same surgery. The pathologist checks the cancer cells to find out the type of brain tumor. It is often difficult to completely remove AT/RT because of where the tumor is in the brain and because it may already have spread at the time of diagnosis. The piece of skull is usually put back in place after the procedure.EnlargeCraniotomy: An opening is made in the skull and a piece of the skull is removed to show part of the brain. The following test may be done on the sample of tissue that is removed: The prognosis and treatment options depend on the following: The process used to find out if cancer has spread to other parts of the body is called staging. There is no standard staging system for central nervous system atypical teratoid/rhabdoid tumor. For treatment, this tumor is grouped as newly diagnosed or recurrent. Treatment depends on the following: Results from the following procedure are also used to plan treatment: Different types of treatment are available for patients with central nervous system atypical teratoid/rhabdoid tumor (AT/RT). Treatment for AT/RT is often within a clinical trial. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. Clinical trials are taking place in many parts of the country. Information about ongoing clinical trials is available from the NCI website. Choosing the most appropriate cancer treatment is a decision that ideally involves the patient, family, and health care team. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with central nervous system cancer and who specialize in certain areas of medicine. These may include the following specialists: Signs or symptoms caused by the tumor may begin before diagnosis. These signs or symptoms may continue for months or years. It is important to talk with your child's doctors about signs or symptoms caused by the tumor that may continue after treatment. Surgery is used to diagnose and treat CNS atypical teratoid/rhabdoid tumor. See the General Information section of this summary for more information about how this tumor is diagnosed. After the doctor removes all the cancer that can be seen at the time of the surgery, most patients will be given chemotherapy and possibly radiation therapy to try to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach tumor cells throughout the body (systemic chemotherapy). Some oral chemotherapy drugs can cross the blood-brain barrier and reach the tumor. High doses of some chemotherapy drugs given into a vein can cross the blood-brain barrier and reach the tumor. When chemotherapy is placed directly into the cerebrospinal fluid, it is called intrathecal chemotherapy. Combination chemotherapy uses more than one anticancer drug. Childhood central nervous system atypical teratoid rhabdoid tumor is treated with systemic and intrathecal chemotherapy.
Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer.
External radiation therapy may be given to the brain and spinal cord. Because radiation therapy can affect growth and brain development in young children, especially children who are 3 years old or younger, the dose of radiation therapy may be lower than in older children. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. This summary section describes treatments that are being
studied in
clinical trials.
It may not mention every new treatment being studied.
Information about clinical trials is available from the
NCI website. Targeted therapy uses drugs or other substances to block the action of specific enzymes, proteins, or molecules involved in the growth and spread of cancer cells. Targeted therapy is being studied in the treatment of recurrent childhood central nervous system atypical teratoid/rhabdoid tumor. Immunotherapy helps a person's immune system fight cancer. Biomarker tests can be used to help predict your response to certain immunotherapy drugs. For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment may include the following: Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. For more information, see Late Effects of Treatment for Childhood Cancer. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer may be repeated. Some tests will be repeated to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups.
For information about the treatments listed below, see the Treatment Option Overview section. There is no standard treatment for children with newly diagnosed central nervous system atypical teratoid/rhabdoid tumor (AT/RT). Because AT/RT is fast-growing, a combination of treatments is usually given. After surgery to remove the tumor, treatments for AT/RT may include combinations of the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. There is no standard treatment for children with recurrent childhood central nervous system atypical teratoid/rhabdoid tumor. Treatment may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information about childhood central nervous system atypical teratoid/rhabdoid tumor and other childhood brain tumors, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of childhood central nervous system atypical teratoid and rhabdoid tumor. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/brain/patient/child-cns-atrt-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389341] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the stages of Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor ? | Key Points
- There is no standard staging system for central nervous system atypical teratoid/rhabdoid tumor.
There is no standard staging system for central nervous system atypical teratoid/rhabdoid tumor.
The extent or spread of cancer is usually described as stages. There is no standard staging system for central nervous system atypical teratoid/rhabdoid tumor. For treatment, this tumor is grouped as newly diagnosed or recurrent. Treatment depends on the following: - The age of the child. - How much cancer remains after surgery to remove the tumor. Results from the following procedure are also used to plan treatment: - Ultrasound exam: A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs, such as the kidney, and make echoes. The echoes form a picture of body tissues called a sonogram. The picture can be printed to be looked at later. This procedure is done to check for tumors that may also have formed in the kidney. |
Central nervous system (CNS) atypical teratoid/rhabdoid tumor (AT/RT) is a very rare, fast-growing tumor that begins in the brain and spinal cord. It usually occurs in children aged 3 years and younger, although it can occur in older children and adults. About half of these tumors form in the cerebellum or brain stem. The cerebellum is the part of the brain that controls movement, balance, and posture. The brain stem controls breathing, heart rate, and the nerves and muscles used in seeing, hearing, walking, talking, and eating. AT/RT can also begin in other parts of the brain and spinal cord. This summary describes the treatment of CNS atypical teratoid/rhabdoid tumors. Treatment of metastatic
brain tumors, which are tumors formed by cancer cells that
begin in other parts of the body and spread to the brain, is not covered in
this summary. For information about other types of primary brain and spinal cord tumors, see Childhood Brain and Spinal Cord Tumors Treatment Overview. Brain tumors can occur in both children and adults; however,
treatment for children may be different than treatment for adults. For information about treatment for adults, see
Adult Central Nervous System Tumors Treatment. Anything that increases a person's risk of getting a disease is called a risk factor. Not every child with one or more of these risk factors will develop atypical teratoid/rhabdoid tumor, and it will develop in some children who don't have any risk factors. Talk with your child's doctor if you think your child may be at risk. Atypical teratoid/rhabdoid tumor may be linked to changes in the tumor suppressor genes SMARCB1 or SMARCA4. Genes of this type make a protein that helps control cell growth. Changes in the DNA of tumor suppressor genes like SMARCB1 or SMARCA4 may lead to cancer. The changes in the SMARCB1 or SMARCA4 genes may be inherited (passed on from parents to offspring). When this gene change is inherited, tumors may form in two parts of the body at the same time (for example, in the brain and the kidney). For patients with AT/RT, genetic counseling (a discussion with a trained professional about inherited diseases and a possible need for gene testing) may be recommended. Signs and symptoms depend on the following: Because atypical teratoid/rhabdoid tumor is fast growing, signs and symptoms may develop quickly and get worse over a period of days or weeks. Signs and symptoms may be caused by AT/RT or by other conditions. Check with your child's doctor if your child has any of the following: In addition to asking about your child's personal and family health history and doing a physical exam, your child's doctor may perform the following tests and procedures: If doctors think there might be a brain tumor, a biopsy may be done to remove a sample of tissue. For brain tumors, the biopsy can be done by removing part of the skull or making a small hole in the skull and using a needle or surgical device to remove a sample of tissue. Sometimes, when a needle is used, it is guided by a computer to remove the tissue sample. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, the doctor may remove as much tumor as safely possible during the same surgery. The pathologist checks the cancer cells to find out the type of brain tumor. It is often difficult to completely remove AT/RT because of where the tumor is in the brain and because it may already have spread at the time of diagnosis. The piece of skull is usually put back in place after the procedure.EnlargeCraniotomy: An opening is made in the skull and a piece of the skull is removed to show part of the brain. The following test may be done on the sample of tissue that is removed: The prognosis and treatment options depend on the following: The process used to find out if cancer has spread to other parts of the body is called staging. There is no standard staging system for central nervous system atypical teratoid/rhabdoid tumor. For treatment, this tumor is grouped as newly diagnosed or recurrent. Treatment depends on the following: Results from the following procedure are also used to plan treatment: Different types of treatment are available for patients with central nervous system atypical teratoid/rhabdoid tumor (AT/RT). Treatment for AT/RT is often within a clinical trial. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. Clinical trials are taking place in many parts of the country. Information about ongoing clinical trials is available from the NCI website. Choosing the most appropriate cancer treatment is a decision that ideally involves the patient, family, and health care team. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with central nervous system cancer and who specialize in certain areas of medicine. These may include the following specialists: Signs or symptoms caused by the tumor may begin before diagnosis. These signs or symptoms may continue for months or years. It is important to talk with your child's doctors about signs or symptoms caused by the tumor that may continue after treatment. Surgery is used to diagnose and treat CNS atypical teratoid/rhabdoid tumor. See the General Information section of this summary for more information about how this tumor is diagnosed. After the doctor removes all the cancer that can be seen at the time of the surgery, most patients will be given chemotherapy and possibly radiation therapy to try to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach tumor cells throughout the body (systemic chemotherapy). Some oral chemotherapy drugs can cross the blood-brain barrier and reach the tumor. High doses of some chemotherapy drugs given into a vein can cross the blood-brain barrier and reach the tumor. When chemotherapy is placed directly into the cerebrospinal fluid, it is called intrathecal chemotherapy. Combination chemotherapy uses more than one anticancer drug. Childhood central nervous system atypical teratoid rhabdoid tumor is treated with systemic and intrathecal chemotherapy.
Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer.
External radiation therapy may be given to the brain and spinal cord. Because radiation therapy can affect growth and brain development in young children, especially children who are 3 years old or younger, the dose of radiation therapy may be lower than in older children. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. This summary section describes treatments that are being
studied in
clinical trials.
It may not mention every new treatment being studied.
Information about clinical trials is available from the
NCI website. Targeted therapy uses drugs or other substances to block the action of specific enzymes, proteins, or molecules involved in the growth and spread of cancer cells. Targeted therapy is being studied in the treatment of recurrent childhood central nervous system atypical teratoid/rhabdoid tumor. Immunotherapy helps a person's immune system fight cancer. Biomarker tests can be used to help predict your response to certain immunotherapy drugs. For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment may include the following: Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. For more information, see Late Effects of Treatment for Childhood Cancer. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer may be repeated. Some tests will be repeated to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups.
For information about the treatments listed below, see the Treatment Option Overview section. There is no standard treatment for children with newly diagnosed central nervous system atypical teratoid/rhabdoid tumor (AT/RT). Because AT/RT is fast-growing, a combination of treatments is usually given. After surgery to remove the tumor, treatments for AT/RT may include combinations of the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. There is no standard treatment for children with recurrent childhood central nervous system atypical teratoid/rhabdoid tumor. Treatment may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information about childhood central nervous system atypical teratoid/rhabdoid tumor and other childhood brain tumors, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of childhood central nervous system atypical teratoid and rhabdoid tumor. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/brain/patient/child-cns-atrt-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389341] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | what research (or clinical trials) is being done for Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor ? | New types of treatment are being tested in clinical trials.
This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Targeted therapy is being studied in the treatment of recurrent childhood central nervous system atypical teratoid/rhabdoid tumor.
Patients may want to think about taking part in a clinical trial.
For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.
Patients can enter clinical trials before, during, or after starting their cancer treatment.
Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. |
Central nervous system (CNS) atypical teratoid/rhabdoid tumor (AT/RT) is a very rare, fast-growing tumor that begins in the brain and spinal cord. It usually occurs in children aged 3 years and younger, although it can occur in older children and adults. About half of these tumors form in the cerebellum or brain stem. The cerebellum is the part of the brain that controls movement, balance, and posture. The brain stem controls breathing, heart rate, and the nerves and muscles used in seeing, hearing, walking, talking, and eating. AT/RT can also begin in other parts of the brain and spinal cord. This summary describes the treatment of CNS atypical teratoid/rhabdoid tumors. Treatment of metastatic
brain tumors, which are tumors formed by cancer cells that
begin in other parts of the body and spread to the brain, is not covered in
this summary. For information about other types of primary brain and spinal cord tumors, see Childhood Brain and Spinal Cord Tumors Treatment Overview. Brain tumors can occur in both children and adults; however,
treatment for children may be different than treatment for adults. For information about treatment for adults, see
Adult Central Nervous System Tumors Treatment. Anything that increases a person's risk of getting a disease is called a risk factor. Not every child with one or more of these risk factors will develop atypical teratoid/rhabdoid tumor, and it will develop in some children who don't have any risk factors. Talk with your child's doctor if you think your child may be at risk. Atypical teratoid/rhabdoid tumor may be linked to changes in the tumor suppressor genes SMARCB1 or SMARCA4. Genes of this type make a protein that helps control cell growth. Changes in the DNA of tumor suppressor genes like SMARCB1 or SMARCA4 may lead to cancer. The changes in the SMARCB1 or SMARCA4 genes may be inherited (passed on from parents to offspring). When this gene change is inherited, tumors may form in two parts of the body at the same time (for example, in the brain and the kidney). For patients with AT/RT, genetic counseling (a discussion with a trained professional about inherited diseases and a possible need for gene testing) may be recommended. Signs and symptoms depend on the following: Because atypical teratoid/rhabdoid tumor is fast growing, signs and symptoms may develop quickly and get worse over a period of days or weeks. Signs and symptoms may be caused by AT/RT or by other conditions. Check with your child's doctor if your child has any of the following: In addition to asking about your child's personal and family health history and doing a physical exam, your child's doctor may perform the following tests and procedures: If doctors think there might be a brain tumor, a biopsy may be done to remove a sample of tissue. For brain tumors, the biopsy can be done by removing part of the skull or making a small hole in the skull and using a needle or surgical device to remove a sample of tissue. Sometimes, when a needle is used, it is guided by a computer to remove the tissue sample. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, the doctor may remove as much tumor as safely possible during the same surgery. The pathologist checks the cancer cells to find out the type of brain tumor. It is often difficult to completely remove AT/RT because of where the tumor is in the brain and because it may already have spread at the time of diagnosis. The piece of skull is usually put back in place after the procedure.EnlargeCraniotomy: An opening is made in the skull and a piece of the skull is removed to show part of the brain. The following test may be done on the sample of tissue that is removed: The prognosis and treatment options depend on the following: The process used to find out if cancer has spread to other parts of the body is called staging. There is no standard staging system for central nervous system atypical teratoid/rhabdoid tumor. For treatment, this tumor is grouped as newly diagnosed or recurrent. Treatment depends on the following: Results from the following procedure are also used to plan treatment: Different types of treatment are available for patients with central nervous system atypical teratoid/rhabdoid tumor (AT/RT). Treatment for AT/RT is often within a clinical trial. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. Clinical trials are taking place in many parts of the country. Information about ongoing clinical trials is available from the NCI website. Choosing the most appropriate cancer treatment is a decision that ideally involves the patient, family, and health care team. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with central nervous system cancer and who specialize in certain areas of medicine. These may include the following specialists: Signs or symptoms caused by the tumor may begin before diagnosis. These signs or symptoms may continue for months or years. It is important to talk with your child's doctors about signs or symptoms caused by the tumor that may continue after treatment. Surgery is used to diagnose and treat CNS atypical teratoid/rhabdoid tumor. See the General Information section of this summary for more information about how this tumor is diagnosed. After the doctor removes all the cancer that can be seen at the time of the surgery, most patients will be given chemotherapy and possibly radiation therapy to try to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach tumor cells throughout the body (systemic chemotherapy). Some oral chemotherapy drugs can cross the blood-brain barrier and reach the tumor. High doses of some chemotherapy drugs given into a vein can cross the blood-brain barrier and reach the tumor. When chemotherapy is placed directly into the cerebrospinal fluid, it is called intrathecal chemotherapy. Combination chemotherapy uses more than one anticancer drug. Childhood central nervous system atypical teratoid rhabdoid tumor is treated with systemic and intrathecal chemotherapy.
Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer.
External radiation therapy may be given to the brain and spinal cord. Because radiation therapy can affect growth and brain development in young children, especially children who are 3 years old or younger, the dose of radiation therapy may be lower than in older children. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. This summary section describes treatments that are being
studied in
clinical trials.
It may not mention every new treatment being studied.
Information about clinical trials is available from the
NCI website. Targeted therapy uses drugs or other substances to block the action of specific enzymes, proteins, or molecules involved in the growth and spread of cancer cells. Targeted therapy is being studied in the treatment of recurrent childhood central nervous system atypical teratoid/rhabdoid tumor. Immunotherapy helps a person's immune system fight cancer. Biomarker tests can be used to help predict your response to certain immunotherapy drugs. For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment may include the following: Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. For more information, see Late Effects of Treatment for Childhood Cancer. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer may be repeated. Some tests will be repeated to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups.
For information about the treatments listed below, see the Treatment Option Overview section. There is no standard treatment for children with newly diagnosed central nervous system atypical teratoid/rhabdoid tumor (AT/RT). Because AT/RT is fast-growing, a combination of treatments is usually given. After surgery to remove the tumor, treatments for AT/RT may include combinations of the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. There is no standard treatment for children with recurrent childhood central nervous system atypical teratoid/rhabdoid tumor. Treatment may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information about childhood central nervous system atypical teratoid/rhabdoid tumor and other childhood brain tumors, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of childhood central nervous system atypical teratoid and rhabdoid tumor. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/brain/patient/child-cns-atrt-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389341] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the treatments for Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor ? | Key Points
- There are different types of treatment for patients with central nervous system atypical teratoid/rhabdoid tumor. - Children with atypical teratoid/rhabdoid tumor should have their treatment planned by a team of health care providers who are experts in treating cancer in children. - Childhood brain tumors may cause signs or symptoms that begin before the cancer is diagnosed and continue for months or years. - Some cancer treatments cause side effects months or years after treatment has ended. - Four types of treatment are used: - Surgery - Chemotherapy - Radiation therapy - High-dose chemotherapy with stem cell transplant - New types of treatment are being tested in clinical trials. - Targeted therapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed.
There are different types of treatment for patients with central nervous system atypical teratoid/rhabdoid tumor.
Different types of treatment are available for patients with central nervous system atypical teratoid/rhabdoid tumor (AT/RT). Treatment for AT/RT is usually within a clinical trial. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. Clinical trials are taking place in many parts of the country. Information about ongoing clinical trials is available from the NCI website. Choosing the most appropriate cancer treatment is a decision that ideally involves the patient, family, and health care team.
Children with atypical teratoid/rhabdoid tumor should have their treatment planned by a team of health care providers who are experts in treating cancer in children.
Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with central nervous system cancer and who specialize in certain areas of medicine. These may include the following specialists: - Pediatrician. - Pediatric neurosurgeon. - Radiation oncologist. - Neurologist. - Pediatric nurse specialist. - Rehabilitation specialist. - Psychologist. - Social worker. - Geneticist or genetic counselor.
Childhood brain tumors may cause signs or symptoms that begin before the cancer is diagnosed and continue for months or years.
Signs or symptoms caused by the tumor may begin before diagnosis. These signs or symptoms may continue for months or years. It is important to talk with your child's doctors about signs or symptoms caused by the tumor that may continue after treatment.
Some cancer treatments cause side effects months or years after treatment has ended.
Side effects from cancer treatment that begin during or after treatment and continue for months or years are called late effects. Late effects of cancer treatment may include the following: - Physical problems. - Changes in mood, feelings, thinking, learning, or memory. - Second cancers (new types of cancer). Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. (See the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information).
Four types of treatment are used:
Surgery Surgery is used to diagnose and treat CNS atypical teratoid/rhabdoid tumor. See the General Information section of this summary. Even if the doctor removes all the cancer that can be seen at the time of the surgery, most patients will be given chemotherapy and possibly radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. - When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect tumor cells in those areas (regional chemotherapy). Regular doses of anticancer drugs given by mouth or vein to treat brain and spinal cord tumors cannot cross the blood-brain barrier and reach the tumor. Anticancer drugs injected into the cerebrospinal fluid are able to reach the tumor. This is called intrathecal chemotherapy. - When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach tumor cells throughout the body (systemic chemotherapy). High doses of some anticancer drugs given into a vein can cross the blood-brain barrier and reach the tumor. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type of tumor being treated and whether it has spread. External radiation therapy may be given to the brain and spinal cord. Because radiation therapy can affect growth and brain development in young children, especially children who are three years old or younger, the dose of radiation therapy may be lower than in older children. High-dose chemotherapy with stem cell transplant High-dose chemotherapy with stem cell transplant is a method of giving high doses of chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the bodys blood cells.
New types of treatment are being tested in clinical trials.
This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Targeted therapy is being studied in the treatment of recurrent childhood central nervous system atypical teratoid/rhabdoid tumor.
Patients may want to think about taking part in a clinical trial.
For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.
Patients can enter clinical trials before, during, or after starting their cancer treatment.
Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Follow-up tests may be needed.
Some of the tests that were done to diagnose the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups.
Treatment Options for Newly Diagnosed Childhood CNS Atypical Teratoid/Rhabdoid Tumor
Key Points
- There is no standard treatment for patients with central nervous system atypical teratoid/rhabdoid tumor. - Combinations of treatments are used for patients with atypical teratoid/rhabdoid tumor.
There is no standard treatment for patients with central nervous system atypical teratoid/rhabdoid tumor.
Combinations of treatments are used for patients with atypical teratoid/rhabdoid tumor.
Because atypical teratoid/rhabdoid tumor (AT/RT) is fast-growing, a combination of treatments is usually given. After surgery to remove the tumor, treatments for AT/RT may include combinations of the following: - Chemotherapy. - Radiation therapy. - High-dose chemotherapy with stem cell transplant. Clinical trials of new treatments should be considered for patients with newly diagnosed atypical teratoid/rhabdoid tumor. |
The skin is the body’s largest organ. It protects against heat, sunlight, injury, and infection. Skin also helps control body temperature and stores water, fat, and vitamin D. The skin has several layers, but the two main layers are the epidermis (upper or outer layer) and the dermis (lower or inner layer). Skin cancer begins in the epidermis, which is made up of three kinds of cells: From 2005 to 2018, the number of new cases of melanoma has decreased in people younger than 50 years and stayed about the same in people aged 50 years and older. Melanoma is most common in adults, but it is sometimes found in children and
adolescents. For more information, see Childhood Melanoma Treatment. There are two main forms of skin cancer: melanoma and nonmelanoma. Melanoma is a rare form of skin cancer. It is more likely to invade nearby tissues and spread to other parts of the body than other types of skin cancer. When melanoma starts in the skin, it is called cutaneous melanoma. Melanoma may also occur in mucous membranes (thin, moist layers of tissue that cover surfaces such as the lips). This PDQ summary is about cutaneous (skin) melanoma and melanoma that affects the mucous membranes. The most common types of skin cancer are basal cell carcinoma and squamous cell carcinoma. They are nonmelanoma skin cancers. Nonmelanoma skin cancers rarely spread to other parts of the body. For more information, see Skin Cancer Treatment. In men,
melanoma is often found on the trunk (the area from the shoulders to the hips)
or the head and neck. In women, melanoma forms most often on the arms and legs.
When melanoma occurs in the eye, it is called intraocular or ocular melanoma. For more information, see Intraocular (Uveal) Melanoma Treatment. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for melanoma include the
following: Being White or having a fair complexion increases the risk of melanoma, but anyone can have melanoma, including people with dark skin. See the following PDQ summaries for more information on risk factors for melanoma: These and other signs and symptoms may be caused by melanoma or by other conditions.
Check with your doctor if you have any of the following: For pictures and descriptions of common moles and melanoma, see Common Moles, Dysplastic Nevi, and Risk of Melanoma. If a mole or pigmented area of the skin changes or looks abnormal,
the following tests and procedures can help find and diagnose
melanoma: There are four main types of skin biopsies. The type of biopsy done depends on where the abnormal area formed and the size of the area. The prognosis and treatment options depend on
the following: The process used to find out whether cancer has spread within the skin or to other parts
of the body is called staging. The
information gathered from the staging process determines the stage of the
disease. It is important to know the stage in order to plan treatment.
For melanoma that is not likely to spread to other parts of the body or recur, more tests may not be needed. For melanoma that is likely to spread to other parts of the body or recur, the following tests and procedures may be done after surgery to remove the melanoma: The results of these tests are viewed together with the results of
the tumor biopsy to find out the stage of the melanoma. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if melanoma spreads to the lung, the cancer cells in the lung are actually melanoma cells. The disease is metastatic melanoma, not lung cancer. To find out the stage of melanoma, the tumor is completely removed and nearby lymph nodes are checked for signs of cancer. The stage of the cancer is used to determine which treatment is best. Check with your doctor to find out which stage of cancer you have. The stage of melanoma depends on the following: In stage 0, abnormal melanocytes are found in the
epidermis.
These abnormal melanocytes may become cancer and spread into nearby normal tissue. Stage 0 is also called melanoma in situ.EnlargeStage 0 melanoma. Abnormal melanocytes are found in the epidermis (outer layer of the skin). These abnormal melanocytes may become cancer and spread into nearby normal tissue. In stage I, cancer has formed. Stage I is divided into stages IA and IB. Stage II is divided
into stages IIA, IIB, and IIC. Stage III is divided into stages IIIA, IIIB, IIIC, and IIID. or or or or or In stage IV, the cancer has spread to other parts of the body, such as the lung, liver, brain, spinal cord, bone, soft tissue (including muscle), gastrointestinal (GI) tract, and/or distant lymph nodes. Cancer may have spread to places in the skin far away from where it first started.EnlargeStage IV melanoma. Cancer has spread to other parts of the body, such as the brain, spinal cord, lung, liver, gastrointestinal (GI) tract, bone, muscle, and/or distant lymph nodes. Cancer may have spread to places in the skin far away from where it first started. The cancer may come back in the area where it first started or in other parts of the body, such as the lungs or liver. Different types of treatment are available for patients with
melanoma. Some treatments are
standard (the currently used treatment), and some are being tested in
clinical trials. A
treatment clinical trial is a research study meant to help improve current
treatments or obtain information on new treatments for patients with cancer.
When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Surgery to remove the
tumor is the primary treatment of
all stages of melanoma. A wide local excision is used to remove the melanoma and some of the normal tissue around it. Skin grafting (taking skin from another part of the body to replace the skin that is removed) may be done to cover the wound caused by surgery. Sometimes, it is important to know whether cancer has spread to the lymph nodes. Lymph node mapping and sentinel lymph node biopsy are done to check for cancer in the sentinel lymph node (the first lymph node in a group of lymph nodes to receive lymphatic drainage from the primary tumor). It is the first lymph node the cancer is likely to spread to from the primary tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, more lymph nodes will be removed and tissue samples will be checked for signs of cancer. This is called a lymphadenectomy. Sometimes, a sentinel lymph node is found in more than one group of nodes. After the doctor removes all the melanoma that can be seen at
the time of the surgery, some patients may be given chemotherapy after surgery to kill
any cancer cells that are left. Chemotherapy given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Surgery to remove cancer that has spread to the lymph nodes, lung, gastrointestinal (GI) tract, bone, or brain may be done to improve the patient’s quality of life by controlling symptoms. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). One type of regional chemotherapy is hyperthermic isolated limb perfusion. With this method, anticancer drugs go directly to the arm or leg the cancer is in. The flow of blood to and from the limb is temporarily stopped with a tourniquet. A warm solution with the anticancer drug is put directly into the blood of the limb. This gives a high dose of drugs to the area where the cancer is. The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved for Melanoma for more information. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. External radiation therapy is used to treat melanoma and may also be used as palliative therapy to relieve symptoms and improve quality of life. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. The following types of immunotherapy are being used in the treatment of melanoma: There are two types of immune checkpoint inhibitor therapy: See Drugs Approved for Melanoma for more information. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. The following types of targeted therapy are used or being studied in the treatment of melanoma: Combinations of BRAF inhibitors and MEK inhibitors used to treat melanoma include:
For patients with melanoma who are at high risk of the cancer coming back after it has been treated, there is a growing number of adjuvant therapy options which may be given to lower the
risk. Adjuvant therapy may
include immune checkpoint inhibitors and combinations of signal transduction inhibitors. New targeted therapies and combinations of therapies are being studied in the treatment of melanoma. See Drugs Approved for Melanoma for more information. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Vaccine therapy is a cancer treatment that uses a substance or group of substances to stimulate the immune system to find the tumor and kill it. Vaccine therapy is being studied in the treatment of stage III melanoma that can be removed by surgery. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage 0 is usually surgery to remove the area of abnormal cells and a small amount of normal tissue around it. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I
melanoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage II melanoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III melanoma that can be removed by surgery may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III melanoma that cannot be removed by surgery, stage IV melanoma, and recurrent melanoma may include the following: Treatments that are being studied in clinical trials for stage III melanoma that cannot be removed by surgery, stage IV melanoma, and recurrent melanoma include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about melanoma, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of melanoma. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Melanoma Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/skin/patient/melanoma-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389388] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Melanoma Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is (are) Melanoma ? | Key Points
- Melanoma is a disease in which malignant (cancer) cells form in melanocytes (cells that color the skin). - There are different types of cancer that start in the skin. - Melanoma can occur anywhere on the skin. - Unusual moles, exposure to sunlight, and health history can affect the risk of melanoma. - Signs of melanoma include a change in the way a mole or pigmented area looks. - Tests that examine the skin are used to detect (find) and diagnose melanoma. - Certain factors affect prognosis (chance of recovery) and treatment options.
Melanoma is a disease in which malignant (cancer) cells form in melanocytes (cells that color the skin).
The skin is the bodys largest organ. It protects against heat, sunlight, injury, and infection. Skin also helps control body temperature and stores water, fat, and vitamin D. The skin has several layers, but the two main layers are the epidermis (upper or outer layer) and the dermis (lower or inner layer). Skin cancer begins in the epidermis, which is made up of three kinds of cells: - Squamous cells: Thin, flat cells that form the top layer of the epidermis. - Basal cells: Round cells under the squamous cells. - Melanocytes: Cells that make melanin and are found in the lower part of the epidermis. Melanin is the pigment that gives skin its natural color. When skin is exposed to the sun or artificial light, melanocytes make more pigment and cause the skin to darken. The number of new cases of melanoma has been increasing over the last 40 years. Melanoma is most common in adults, but it is sometimes found in children and adolescents. (See the PDQ summary on Unusual Cancers of Childhood Treatment for more information on melanoma in children and adolescents.)
There are different types of cancer that start in the skin.
There are two forms of skin cancer: melanoma and nonmelanoma. Melanoma is a rare form of skin cancer. It is more likely to invade nearby tissues and spread to other parts of the body than other types of skin cancer. When melanoma starts in the skin, it is called cutaneous melanoma. Melanoma may also occur in mucous membranes (thin, moist layers of tissue that cover surfaces such as the lips). This PDQ summary is about cutaneous (skin) melanoma and melanoma that affects the mucous membranes. The most common types of skin cancer are basal cell carcinoma and squamous cell carcinoma. They are nonmelanoma skin cancers. Nonmelanoma skin cancers rarely spread to other parts of the body. (See the PDQ summary on Skin Cancer Treatment for more information on basal cell and squamous cell skin cancer.)
Melanoma can occur anywhere on the skin.
In men, melanoma is often found on the trunk (the area from the shoulders to the hips) or the head and neck. In women, melanoma forms most often on the arms and legs. When melanoma occurs in the eye, it is called intraocular or ocular melanoma. (See the PDQ summary on Intraocular (Uveal) Melanoma Treatment for more information.) |
The skin is the body’s largest organ. It protects against heat, sunlight, injury, and infection. Skin also helps control body temperature and stores water, fat, and vitamin D. The skin has several layers, but the two main layers are the epidermis (upper or outer layer) and the dermis (lower or inner layer). Skin cancer begins in the epidermis, which is made up of three kinds of cells: From 2005 to 2018, the number of new cases of melanoma has decreased in people younger than 50 years and stayed about the same in people aged 50 years and older. Melanoma is most common in adults, but it is sometimes found in children and
adolescents. For more information, see Childhood Melanoma Treatment. There are two main forms of skin cancer: melanoma and nonmelanoma. Melanoma is a rare form of skin cancer. It is more likely to invade nearby tissues and spread to other parts of the body than other types of skin cancer. When melanoma starts in the skin, it is called cutaneous melanoma. Melanoma may also occur in mucous membranes (thin, moist layers of tissue that cover surfaces such as the lips). This PDQ summary is about cutaneous (skin) melanoma and melanoma that affects the mucous membranes. The most common types of skin cancer are basal cell carcinoma and squamous cell carcinoma. They are nonmelanoma skin cancers. Nonmelanoma skin cancers rarely spread to other parts of the body. For more information, see Skin Cancer Treatment. In men,
melanoma is often found on the trunk (the area from the shoulders to the hips)
or the head and neck. In women, melanoma forms most often on the arms and legs.
When melanoma occurs in the eye, it is called intraocular or ocular melanoma. For more information, see Intraocular (Uveal) Melanoma Treatment. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for melanoma include the
following: Being White or having a fair complexion increases the risk of melanoma, but anyone can have melanoma, including people with dark skin. See the following PDQ summaries for more information on risk factors for melanoma: These and other signs and symptoms may be caused by melanoma or by other conditions.
Check with your doctor if you have any of the following: For pictures and descriptions of common moles and melanoma, see Common Moles, Dysplastic Nevi, and Risk of Melanoma. If a mole or pigmented area of the skin changes or looks abnormal,
the following tests and procedures can help find and diagnose
melanoma: There are four main types of skin biopsies. The type of biopsy done depends on where the abnormal area formed and the size of the area. The prognosis and treatment options depend on
the following: The process used to find out whether cancer has spread within the skin or to other parts
of the body is called staging. The
information gathered from the staging process determines the stage of the
disease. It is important to know the stage in order to plan treatment.
For melanoma that is not likely to spread to other parts of the body or recur, more tests may not be needed. For melanoma that is likely to spread to other parts of the body or recur, the following tests and procedures may be done after surgery to remove the melanoma: The results of these tests are viewed together with the results of
the tumor biopsy to find out the stage of the melanoma. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if melanoma spreads to the lung, the cancer cells in the lung are actually melanoma cells. The disease is metastatic melanoma, not lung cancer. To find out the stage of melanoma, the tumor is completely removed and nearby lymph nodes are checked for signs of cancer. The stage of the cancer is used to determine which treatment is best. Check with your doctor to find out which stage of cancer you have. The stage of melanoma depends on the following: In stage 0, abnormal melanocytes are found in the
epidermis.
These abnormal melanocytes may become cancer and spread into nearby normal tissue. Stage 0 is also called melanoma in situ.EnlargeStage 0 melanoma. Abnormal melanocytes are found in the epidermis (outer layer of the skin). These abnormal melanocytes may become cancer and spread into nearby normal tissue. In stage I, cancer has formed. Stage I is divided into stages IA and IB. Stage II is divided
into stages IIA, IIB, and IIC. Stage III is divided into stages IIIA, IIIB, IIIC, and IIID. or or or or or In stage IV, the cancer has spread to other parts of the body, such as the lung, liver, brain, spinal cord, bone, soft tissue (including muscle), gastrointestinal (GI) tract, and/or distant lymph nodes. Cancer may have spread to places in the skin far away from where it first started.EnlargeStage IV melanoma. Cancer has spread to other parts of the body, such as the brain, spinal cord, lung, liver, gastrointestinal (GI) tract, bone, muscle, and/or distant lymph nodes. Cancer may have spread to places in the skin far away from where it first started. The cancer may come back in the area where it first started or in other parts of the body, such as the lungs or liver. Different types of treatment are available for patients with
melanoma. Some treatments are
standard (the currently used treatment), and some are being tested in
clinical trials. A
treatment clinical trial is a research study meant to help improve current
treatments or obtain information on new treatments for patients with cancer.
When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Surgery to remove the
tumor is the primary treatment of
all stages of melanoma. A wide local excision is used to remove the melanoma and some of the normal tissue around it. Skin grafting (taking skin from another part of the body to replace the skin that is removed) may be done to cover the wound caused by surgery. Sometimes, it is important to know whether cancer has spread to the lymph nodes. Lymph node mapping and sentinel lymph node biopsy are done to check for cancer in the sentinel lymph node (the first lymph node in a group of lymph nodes to receive lymphatic drainage from the primary tumor). It is the first lymph node the cancer is likely to spread to from the primary tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, more lymph nodes will be removed and tissue samples will be checked for signs of cancer. This is called a lymphadenectomy. Sometimes, a sentinel lymph node is found in more than one group of nodes. After the doctor removes all the melanoma that can be seen at
the time of the surgery, some patients may be given chemotherapy after surgery to kill
any cancer cells that are left. Chemotherapy given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Surgery to remove cancer that has spread to the lymph nodes, lung, gastrointestinal (GI) tract, bone, or brain may be done to improve the patient’s quality of life by controlling symptoms. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). One type of regional chemotherapy is hyperthermic isolated limb perfusion. With this method, anticancer drugs go directly to the arm or leg the cancer is in. The flow of blood to and from the limb is temporarily stopped with a tourniquet. A warm solution with the anticancer drug is put directly into the blood of the limb. This gives a high dose of drugs to the area where the cancer is. The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved for Melanoma for more information. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. External radiation therapy is used to treat melanoma and may also be used as palliative therapy to relieve symptoms and improve quality of life. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. The following types of immunotherapy are being used in the treatment of melanoma: There are two types of immune checkpoint inhibitor therapy: See Drugs Approved for Melanoma for more information. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. The following types of targeted therapy are used or being studied in the treatment of melanoma: Combinations of BRAF inhibitors and MEK inhibitors used to treat melanoma include:
For patients with melanoma who are at high risk of the cancer coming back after it has been treated, there is a growing number of adjuvant therapy options which may be given to lower the
risk. Adjuvant therapy may
include immune checkpoint inhibitors and combinations of signal transduction inhibitors. New targeted therapies and combinations of therapies are being studied in the treatment of melanoma. See Drugs Approved for Melanoma for more information. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Vaccine therapy is a cancer treatment that uses a substance or group of substances to stimulate the immune system to find the tumor and kill it. Vaccine therapy is being studied in the treatment of stage III melanoma that can be removed by surgery. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage 0 is usually surgery to remove the area of abnormal cells and a small amount of normal tissue around it. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I
melanoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage II melanoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III melanoma that can be removed by surgery may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III melanoma that cannot be removed by surgery, stage IV melanoma, and recurrent melanoma may include the following: Treatments that are being studied in clinical trials for stage III melanoma that cannot be removed by surgery, stage IV melanoma, and recurrent melanoma include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about melanoma, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of melanoma. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Melanoma Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/skin/patient/melanoma-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389388] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Melanoma Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | Who is at risk for Melanoma? ? | Unusual moles, exposure to sunlight, and health history can affect the risk of melanoma. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for melanoma include the following: - Having a fair complexion, which includes the following: - Fair skin that freckles and burns easily, does not tan, or tans poorly. - Blue or green or other light-colored eyes. - Red or blond hair. - Being exposed to natural sunlight or artificial sunlight (such as from tanning beds) over long periods of time. - Being exposed to certain factors in the environment (in the air, your home or workplace, and your food and water). Some of the environmental risk factors for melanoma are radiation, solvents, vinyl chloride, and PCBs. - Having a history of many blistering sunburns, especially as a child or teenager. - Having several large or many small moles. - Having a family history of unusual moles (atypical nevus syndrome). - Having a family or personal history of melanoma. - Being white. - Having a weakened immune system. - Having certain changes in the genes that are linked to melanoma. Being white or having a fair complexion increases the risk of melanoma, but anyone can have melanoma, including people with dark skin. See the following PDQ summaries for more information on risk factors for melanoma: - Genetics of Skin Cancer - Skin Cancer Prevention |
The skin is the body’s largest organ. It protects against heat, sunlight, injury, and infection. Skin also helps control body temperature and stores water, fat, and vitamin D. The skin has several layers, but the two main layers are the epidermis (upper or outer layer) and the dermis (lower or inner layer). Skin cancer begins in the epidermis, which is made up of three kinds of cells: From 2005 to 2018, the number of new cases of melanoma has decreased in people younger than 50 years and stayed about the same in people aged 50 years and older. Melanoma is most common in adults, but it is sometimes found in children and
adolescents. For more information, see Childhood Melanoma Treatment. There are two main forms of skin cancer: melanoma and nonmelanoma. Melanoma is a rare form of skin cancer. It is more likely to invade nearby tissues and spread to other parts of the body than other types of skin cancer. When melanoma starts in the skin, it is called cutaneous melanoma. Melanoma may also occur in mucous membranes (thin, moist layers of tissue that cover surfaces such as the lips). This PDQ summary is about cutaneous (skin) melanoma and melanoma that affects the mucous membranes. The most common types of skin cancer are basal cell carcinoma and squamous cell carcinoma. They are nonmelanoma skin cancers. Nonmelanoma skin cancers rarely spread to other parts of the body. For more information, see Skin Cancer Treatment. In men,
melanoma is often found on the trunk (the area from the shoulders to the hips)
or the head and neck. In women, melanoma forms most often on the arms and legs.
When melanoma occurs in the eye, it is called intraocular or ocular melanoma. For more information, see Intraocular (Uveal) Melanoma Treatment. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for melanoma include the
following: Being White or having a fair complexion increases the risk of melanoma, but anyone can have melanoma, including people with dark skin. See the following PDQ summaries for more information on risk factors for melanoma: These and other signs and symptoms may be caused by melanoma or by other conditions.
Check with your doctor if you have any of the following: For pictures and descriptions of common moles and melanoma, see Common Moles, Dysplastic Nevi, and Risk of Melanoma. If a mole or pigmented area of the skin changes or looks abnormal,
the following tests and procedures can help find and diagnose
melanoma: There are four main types of skin biopsies. The type of biopsy done depends on where the abnormal area formed and the size of the area. The prognosis and treatment options depend on
the following: The process used to find out whether cancer has spread within the skin or to other parts
of the body is called staging. The
information gathered from the staging process determines the stage of the
disease. It is important to know the stage in order to plan treatment.
For melanoma that is not likely to spread to other parts of the body or recur, more tests may not be needed. For melanoma that is likely to spread to other parts of the body or recur, the following tests and procedures may be done after surgery to remove the melanoma: The results of these tests are viewed together with the results of
the tumor biopsy to find out the stage of the melanoma. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if melanoma spreads to the lung, the cancer cells in the lung are actually melanoma cells. The disease is metastatic melanoma, not lung cancer. To find out the stage of melanoma, the tumor is completely removed and nearby lymph nodes are checked for signs of cancer. The stage of the cancer is used to determine which treatment is best. Check with your doctor to find out which stage of cancer you have. The stage of melanoma depends on the following: In stage 0, abnormal melanocytes are found in the
epidermis.
These abnormal melanocytes may become cancer and spread into nearby normal tissue. Stage 0 is also called melanoma in situ.EnlargeStage 0 melanoma. Abnormal melanocytes are found in the epidermis (outer layer of the skin). These abnormal melanocytes may become cancer and spread into nearby normal tissue. In stage I, cancer has formed. Stage I is divided into stages IA and IB. Stage II is divided
into stages IIA, IIB, and IIC. Stage III is divided into stages IIIA, IIIB, IIIC, and IIID. or or or or or In stage IV, the cancer has spread to other parts of the body, such as the lung, liver, brain, spinal cord, bone, soft tissue (including muscle), gastrointestinal (GI) tract, and/or distant lymph nodes. Cancer may have spread to places in the skin far away from where it first started.EnlargeStage IV melanoma. Cancer has spread to other parts of the body, such as the brain, spinal cord, lung, liver, gastrointestinal (GI) tract, bone, muscle, and/or distant lymph nodes. Cancer may have spread to places in the skin far away from where it first started. The cancer may come back in the area where it first started or in other parts of the body, such as the lungs or liver. Different types of treatment are available for patients with
melanoma. Some treatments are
standard (the currently used treatment), and some are being tested in
clinical trials. A
treatment clinical trial is a research study meant to help improve current
treatments or obtain information on new treatments for patients with cancer.
When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Surgery to remove the
tumor is the primary treatment of
all stages of melanoma. A wide local excision is used to remove the melanoma and some of the normal tissue around it. Skin grafting (taking skin from another part of the body to replace the skin that is removed) may be done to cover the wound caused by surgery. Sometimes, it is important to know whether cancer has spread to the lymph nodes. Lymph node mapping and sentinel lymph node biopsy are done to check for cancer in the sentinel lymph node (the first lymph node in a group of lymph nodes to receive lymphatic drainage from the primary tumor). It is the first lymph node the cancer is likely to spread to from the primary tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, more lymph nodes will be removed and tissue samples will be checked for signs of cancer. This is called a lymphadenectomy. Sometimes, a sentinel lymph node is found in more than one group of nodes. After the doctor removes all the melanoma that can be seen at
the time of the surgery, some patients may be given chemotherapy after surgery to kill
any cancer cells that are left. Chemotherapy given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Surgery to remove cancer that has spread to the lymph nodes, lung, gastrointestinal (GI) tract, bone, or brain may be done to improve the patient’s quality of life by controlling symptoms. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). One type of regional chemotherapy is hyperthermic isolated limb perfusion. With this method, anticancer drugs go directly to the arm or leg the cancer is in. The flow of blood to and from the limb is temporarily stopped with a tourniquet. A warm solution with the anticancer drug is put directly into the blood of the limb. This gives a high dose of drugs to the area where the cancer is. The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved for Melanoma for more information. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. External radiation therapy is used to treat melanoma and may also be used as palliative therapy to relieve symptoms and improve quality of life. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. The following types of immunotherapy are being used in the treatment of melanoma: There are two types of immune checkpoint inhibitor therapy: See Drugs Approved for Melanoma for more information. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. The following types of targeted therapy are used or being studied in the treatment of melanoma: Combinations of BRAF inhibitors and MEK inhibitors used to treat melanoma include:
For patients with melanoma who are at high risk of the cancer coming back after it has been treated, there is a growing number of adjuvant therapy options which may be given to lower the
risk. Adjuvant therapy may
include immune checkpoint inhibitors and combinations of signal transduction inhibitors. New targeted therapies and combinations of therapies are being studied in the treatment of melanoma. See Drugs Approved for Melanoma for more information. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Vaccine therapy is a cancer treatment that uses a substance or group of substances to stimulate the immune system to find the tumor and kill it. Vaccine therapy is being studied in the treatment of stage III melanoma that can be removed by surgery. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage 0 is usually surgery to remove the area of abnormal cells and a small amount of normal tissue around it. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I
melanoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage II melanoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III melanoma that can be removed by surgery may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III melanoma that cannot be removed by surgery, stage IV melanoma, and recurrent melanoma may include the following: Treatments that are being studied in clinical trials for stage III melanoma that cannot be removed by surgery, stage IV melanoma, and recurrent melanoma include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about melanoma, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of melanoma. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Melanoma Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/skin/patient/melanoma-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389388] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Melanoma Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the symptoms of Melanoma ? | Signs of melanoma include a change in the way a mole or pigmented area looks. These and other signs and symptoms may be caused by melanoma or by other conditions. Check with your doctor if you have any of the following: - A mole that: - changes in size, shape, or color. - has irregular edges or borders. - is more than one color. - is asymmetrical (if the mole is divided in half, the 2 halves are different in size or shape). - itches. - oozes, bleeds, or is ulcerated (a hole forms in the skin when the top layer of cells breaks down and the tissue below shows through). - A change in pigmented (colored) skin. - Satellite moles (new moles that grow near an existing mole). For pictures and descriptions of common moles and melanoma, see Common Moles, Dysplastic Nevi, and Risk of Melanoma. |
The skin is the body’s largest organ. It protects against heat, sunlight, injury, and infection. Skin also helps control body temperature and stores water, fat, and vitamin D. The skin has several layers, but the two main layers are the epidermis (upper or outer layer) and the dermis (lower or inner layer). Skin cancer begins in the epidermis, which is made up of three kinds of cells: From 2005 to 2018, the number of new cases of melanoma has decreased in people younger than 50 years and stayed about the same in people aged 50 years and older. Melanoma is most common in adults, but it is sometimes found in children and
adolescents. For more information, see Childhood Melanoma Treatment. There are two main forms of skin cancer: melanoma and nonmelanoma. Melanoma is a rare form of skin cancer. It is more likely to invade nearby tissues and spread to other parts of the body than other types of skin cancer. When melanoma starts in the skin, it is called cutaneous melanoma. Melanoma may also occur in mucous membranes (thin, moist layers of tissue that cover surfaces such as the lips). This PDQ summary is about cutaneous (skin) melanoma and melanoma that affects the mucous membranes. The most common types of skin cancer are basal cell carcinoma and squamous cell carcinoma. They are nonmelanoma skin cancers. Nonmelanoma skin cancers rarely spread to other parts of the body. For more information, see Skin Cancer Treatment. In men,
melanoma is often found on the trunk (the area from the shoulders to the hips)
or the head and neck. In women, melanoma forms most often on the arms and legs.
When melanoma occurs in the eye, it is called intraocular or ocular melanoma. For more information, see Intraocular (Uveal) Melanoma Treatment. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for melanoma include the
following: Being White or having a fair complexion increases the risk of melanoma, but anyone can have melanoma, including people with dark skin. See the following PDQ summaries for more information on risk factors for melanoma: These and other signs and symptoms may be caused by melanoma or by other conditions.
Check with your doctor if you have any of the following: For pictures and descriptions of common moles and melanoma, see Common Moles, Dysplastic Nevi, and Risk of Melanoma. If a mole or pigmented area of the skin changes or looks abnormal,
the following tests and procedures can help find and diagnose
melanoma: There are four main types of skin biopsies. The type of biopsy done depends on where the abnormal area formed and the size of the area. The prognosis and treatment options depend on
the following: The process used to find out whether cancer has spread within the skin or to other parts
of the body is called staging. The
information gathered from the staging process determines the stage of the
disease. It is important to know the stage in order to plan treatment.
For melanoma that is not likely to spread to other parts of the body or recur, more tests may not be needed. For melanoma that is likely to spread to other parts of the body or recur, the following tests and procedures may be done after surgery to remove the melanoma: The results of these tests are viewed together with the results of
the tumor biopsy to find out the stage of the melanoma. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if melanoma spreads to the lung, the cancer cells in the lung are actually melanoma cells. The disease is metastatic melanoma, not lung cancer. To find out the stage of melanoma, the tumor is completely removed and nearby lymph nodes are checked for signs of cancer. The stage of the cancer is used to determine which treatment is best. Check with your doctor to find out which stage of cancer you have. The stage of melanoma depends on the following: In stage 0, abnormal melanocytes are found in the
epidermis.
These abnormal melanocytes may become cancer and spread into nearby normal tissue. Stage 0 is also called melanoma in situ.EnlargeStage 0 melanoma. Abnormal melanocytes are found in the epidermis (outer layer of the skin). These abnormal melanocytes may become cancer and spread into nearby normal tissue. In stage I, cancer has formed. Stage I is divided into stages IA and IB. Stage II is divided
into stages IIA, IIB, and IIC. Stage III is divided into stages IIIA, IIIB, IIIC, and IIID. or or or or or In stage IV, the cancer has spread to other parts of the body, such as the lung, liver, brain, spinal cord, bone, soft tissue (including muscle), gastrointestinal (GI) tract, and/or distant lymph nodes. Cancer may have spread to places in the skin far away from where it first started.EnlargeStage IV melanoma. Cancer has spread to other parts of the body, such as the brain, spinal cord, lung, liver, gastrointestinal (GI) tract, bone, muscle, and/or distant lymph nodes. Cancer may have spread to places in the skin far away from where it first started. The cancer may come back in the area where it first started or in other parts of the body, such as the lungs or liver. Different types of treatment are available for patients with
melanoma. Some treatments are
standard (the currently used treatment), and some are being tested in
clinical trials. A
treatment clinical trial is a research study meant to help improve current
treatments or obtain information on new treatments for patients with cancer.
When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Surgery to remove the
tumor is the primary treatment of
all stages of melanoma. A wide local excision is used to remove the melanoma and some of the normal tissue around it. Skin grafting (taking skin from another part of the body to replace the skin that is removed) may be done to cover the wound caused by surgery. Sometimes, it is important to know whether cancer has spread to the lymph nodes. Lymph node mapping and sentinel lymph node biopsy are done to check for cancer in the sentinel lymph node (the first lymph node in a group of lymph nodes to receive lymphatic drainage from the primary tumor). It is the first lymph node the cancer is likely to spread to from the primary tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, more lymph nodes will be removed and tissue samples will be checked for signs of cancer. This is called a lymphadenectomy. Sometimes, a sentinel lymph node is found in more than one group of nodes. After the doctor removes all the melanoma that can be seen at
the time of the surgery, some patients may be given chemotherapy after surgery to kill
any cancer cells that are left. Chemotherapy given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Surgery to remove cancer that has spread to the lymph nodes, lung, gastrointestinal (GI) tract, bone, or brain may be done to improve the patient’s quality of life by controlling symptoms. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). One type of regional chemotherapy is hyperthermic isolated limb perfusion. With this method, anticancer drugs go directly to the arm or leg the cancer is in. The flow of blood to and from the limb is temporarily stopped with a tourniquet. A warm solution with the anticancer drug is put directly into the blood of the limb. This gives a high dose of drugs to the area where the cancer is. The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved for Melanoma for more information. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. External radiation therapy is used to treat melanoma and may also be used as palliative therapy to relieve symptoms and improve quality of life. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. The following types of immunotherapy are being used in the treatment of melanoma: There are two types of immune checkpoint inhibitor therapy: See Drugs Approved for Melanoma for more information. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. The following types of targeted therapy are used or being studied in the treatment of melanoma: Combinations of BRAF inhibitors and MEK inhibitors used to treat melanoma include:
For patients with melanoma who are at high risk of the cancer coming back after it has been treated, there is a growing number of adjuvant therapy options which may be given to lower the
risk. Adjuvant therapy may
include immune checkpoint inhibitors and combinations of signal transduction inhibitors. New targeted therapies and combinations of therapies are being studied in the treatment of melanoma. See Drugs Approved for Melanoma for more information. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Vaccine therapy is a cancer treatment that uses a substance or group of substances to stimulate the immune system to find the tumor and kill it. Vaccine therapy is being studied in the treatment of stage III melanoma that can be removed by surgery. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage 0 is usually surgery to remove the area of abnormal cells and a small amount of normal tissue around it. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I
melanoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage II melanoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III melanoma that can be removed by surgery may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III melanoma that cannot be removed by surgery, stage IV melanoma, and recurrent melanoma may include the following: Treatments that are being studied in clinical trials for stage III melanoma that cannot be removed by surgery, stage IV melanoma, and recurrent melanoma include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about melanoma, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of melanoma. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Melanoma Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/skin/patient/melanoma-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389388] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Melanoma Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | How to diagnose Melanoma ? | Tests that examine the skin are used to detect (find) and diagnose melanoma. If a mole or pigmented area of the skin changes or looks abnormal, the following tests and procedures can help find and diagnose melanoma: - Skin exam: A doctor or nurse checks the skin for moles, birthmarks, or other pigmented areas that look abnormal in color, size, shape, or texture. - Biopsy : A procedure to remove the abnormal tissue and a small amount of normal tissue around it. A pathologist looks at the tissue under a microscope to check for cancer cells. It can be hard to tell the difference between a colored mole and an early melanoma lesion. Patients may want to have the sample of tissue checked by a second pathologist. If the abnormal mole or lesion is cancer, the sample of tissue may also be tested for certain gene changes. It is important that abnormal areas of the skin not be shaved off or cauterized (destroyed with a hot instrument, an electric current, or a caustic substance) because cancer cells that remain may grow and spread. See the PDQ summary on Skin Cancer Screening for more information. |
The skin is the body’s largest organ. It protects against heat, sunlight, injury, and infection. Skin also helps control body temperature and stores water, fat, and vitamin D. The skin has several layers, but the two main layers are the epidermis (upper or outer layer) and the dermis (lower or inner layer). Skin cancer begins in the epidermis, which is made up of three kinds of cells: From 2005 to 2018, the number of new cases of melanoma has decreased in people younger than 50 years and stayed about the same in people aged 50 years and older. Melanoma is most common in adults, but it is sometimes found in children and
adolescents. For more information, see Childhood Melanoma Treatment. There are two main forms of skin cancer: melanoma and nonmelanoma. Melanoma is a rare form of skin cancer. It is more likely to invade nearby tissues and spread to other parts of the body than other types of skin cancer. When melanoma starts in the skin, it is called cutaneous melanoma. Melanoma may also occur in mucous membranes (thin, moist layers of tissue that cover surfaces such as the lips). This PDQ summary is about cutaneous (skin) melanoma and melanoma that affects the mucous membranes. The most common types of skin cancer are basal cell carcinoma and squamous cell carcinoma. They are nonmelanoma skin cancers. Nonmelanoma skin cancers rarely spread to other parts of the body. For more information, see Skin Cancer Treatment. In men,
melanoma is often found on the trunk (the area from the shoulders to the hips)
or the head and neck. In women, melanoma forms most often on the arms and legs.
When melanoma occurs in the eye, it is called intraocular or ocular melanoma. For more information, see Intraocular (Uveal) Melanoma Treatment. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for melanoma include the
following: Being White or having a fair complexion increases the risk of melanoma, but anyone can have melanoma, including people with dark skin. See the following PDQ summaries for more information on risk factors for melanoma: These and other signs and symptoms may be caused by melanoma or by other conditions.
Check with your doctor if you have any of the following: For pictures and descriptions of common moles and melanoma, see Common Moles, Dysplastic Nevi, and Risk of Melanoma. If a mole or pigmented area of the skin changes or looks abnormal,
the following tests and procedures can help find and diagnose
melanoma: There are four main types of skin biopsies. The type of biopsy done depends on where the abnormal area formed and the size of the area. The prognosis and treatment options depend on
the following: The process used to find out whether cancer has spread within the skin or to other parts
of the body is called staging. The
information gathered from the staging process determines the stage of the
disease. It is important to know the stage in order to plan treatment.
For melanoma that is not likely to spread to other parts of the body or recur, more tests may not be needed. For melanoma that is likely to spread to other parts of the body or recur, the following tests and procedures may be done after surgery to remove the melanoma: The results of these tests are viewed together with the results of
the tumor biopsy to find out the stage of the melanoma. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if melanoma spreads to the lung, the cancer cells in the lung are actually melanoma cells. The disease is metastatic melanoma, not lung cancer. To find out the stage of melanoma, the tumor is completely removed and nearby lymph nodes are checked for signs of cancer. The stage of the cancer is used to determine which treatment is best. Check with your doctor to find out which stage of cancer you have. The stage of melanoma depends on the following: In stage 0, abnormal melanocytes are found in the
epidermis.
These abnormal melanocytes may become cancer and spread into nearby normal tissue. Stage 0 is also called melanoma in situ.EnlargeStage 0 melanoma. Abnormal melanocytes are found in the epidermis (outer layer of the skin). These abnormal melanocytes may become cancer and spread into nearby normal tissue. In stage I, cancer has formed. Stage I is divided into stages IA and IB. Stage II is divided
into stages IIA, IIB, and IIC. Stage III is divided into stages IIIA, IIIB, IIIC, and IIID. or or or or or In stage IV, the cancer has spread to other parts of the body, such as the lung, liver, brain, spinal cord, bone, soft tissue (including muscle), gastrointestinal (GI) tract, and/or distant lymph nodes. Cancer may have spread to places in the skin far away from where it first started.EnlargeStage IV melanoma. Cancer has spread to other parts of the body, such as the brain, spinal cord, lung, liver, gastrointestinal (GI) tract, bone, muscle, and/or distant lymph nodes. Cancer may have spread to places in the skin far away from where it first started. The cancer may come back in the area where it first started or in other parts of the body, such as the lungs or liver. Different types of treatment are available for patients with
melanoma. Some treatments are
standard (the currently used treatment), and some are being tested in
clinical trials. A
treatment clinical trial is a research study meant to help improve current
treatments or obtain information on new treatments for patients with cancer.
When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Surgery to remove the
tumor is the primary treatment of
all stages of melanoma. A wide local excision is used to remove the melanoma and some of the normal tissue around it. Skin grafting (taking skin from another part of the body to replace the skin that is removed) may be done to cover the wound caused by surgery. Sometimes, it is important to know whether cancer has spread to the lymph nodes. Lymph node mapping and sentinel lymph node biopsy are done to check for cancer in the sentinel lymph node (the first lymph node in a group of lymph nodes to receive lymphatic drainage from the primary tumor). It is the first lymph node the cancer is likely to spread to from the primary tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, more lymph nodes will be removed and tissue samples will be checked for signs of cancer. This is called a lymphadenectomy. Sometimes, a sentinel lymph node is found in more than one group of nodes. After the doctor removes all the melanoma that can be seen at
the time of the surgery, some patients may be given chemotherapy after surgery to kill
any cancer cells that are left. Chemotherapy given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Surgery to remove cancer that has spread to the lymph nodes, lung, gastrointestinal (GI) tract, bone, or brain may be done to improve the patient’s quality of life by controlling symptoms. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). One type of regional chemotherapy is hyperthermic isolated limb perfusion. With this method, anticancer drugs go directly to the arm or leg the cancer is in. The flow of blood to and from the limb is temporarily stopped with a tourniquet. A warm solution with the anticancer drug is put directly into the blood of the limb. This gives a high dose of drugs to the area where the cancer is. The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved for Melanoma for more information. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. External radiation therapy is used to treat melanoma and may also be used as palliative therapy to relieve symptoms and improve quality of life. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. The following types of immunotherapy are being used in the treatment of melanoma: There are two types of immune checkpoint inhibitor therapy: See Drugs Approved for Melanoma for more information. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. The following types of targeted therapy are used or being studied in the treatment of melanoma: Combinations of BRAF inhibitors and MEK inhibitors used to treat melanoma include:
For patients with melanoma who are at high risk of the cancer coming back after it has been treated, there is a growing number of adjuvant therapy options which may be given to lower the
risk. Adjuvant therapy may
include immune checkpoint inhibitors and combinations of signal transduction inhibitors. New targeted therapies and combinations of therapies are being studied in the treatment of melanoma. See Drugs Approved for Melanoma for more information. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Vaccine therapy is a cancer treatment that uses a substance or group of substances to stimulate the immune system to find the tumor and kill it. Vaccine therapy is being studied in the treatment of stage III melanoma that can be removed by surgery. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage 0 is usually surgery to remove the area of abnormal cells and a small amount of normal tissue around it. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I
melanoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage II melanoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III melanoma that can be removed by surgery may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III melanoma that cannot be removed by surgery, stage IV melanoma, and recurrent melanoma may include the following: Treatments that are being studied in clinical trials for stage III melanoma that cannot be removed by surgery, stage IV melanoma, and recurrent melanoma include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about melanoma, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of melanoma. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Melanoma Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/skin/patient/melanoma-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389388] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Melanoma Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is the outlook for Melanoma ? | Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - The thickness of the tumor and where it is in the body. - How quickly the cancer cells are dividing. - Whether there was bleeding or ulceration of the tumor. - How much cancer is in the lymph nodes. - The number of places cancer has spread to in the body. - The level of lactate dehydrogenase (LDH) in the blood. - Whether the cancer has certain mutations (changes) in a gene called BRAF. - The patients age and general health. |
The skin is the body’s largest organ. It protects against heat, sunlight, injury, and infection. Skin also helps control body temperature and stores water, fat, and vitamin D. The skin has several layers, but the two main layers are the epidermis (upper or outer layer) and the dermis (lower or inner layer). Skin cancer begins in the epidermis, which is made up of three kinds of cells: From 2005 to 2018, the number of new cases of melanoma has decreased in people younger than 50 years and stayed about the same in people aged 50 years and older. Melanoma is most common in adults, but it is sometimes found in children and
adolescents. For more information, see Childhood Melanoma Treatment. There are two main forms of skin cancer: melanoma and nonmelanoma. Melanoma is a rare form of skin cancer. It is more likely to invade nearby tissues and spread to other parts of the body than other types of skin cancer. When melanoma starts in the skin, it is called cutaneous melanoma. Melanoma may also occur in mucous membranes (thin, moist layers of tissue that cover surfaces such as the lips). This PDQ summary is about cutaneous (skin) melanoma and melanoma that affects the mucous membranes. The most common types of skin cancer are basal cell carcinoma and squamous cell carcinoma. They are nonmelanoma skin cancers. Nonmelanoma skin cancers rarely spread to other parts of the body. For more information, see Skin Cancer Treatment. In men,
melanoma is often found on the trunk (the area from the shoulders to the hips)
or the head and neck. In women, melanoma forms most often on the arms and legs.
When melanoma occurs in the eye, it is called intraocular or ocular melanoma. For more information, see Intraocular (Uveal) Melanoma Treatment. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for melanoma include the
following: Being White or having a fair complexion increases the risk of melanoma, but anyone can have melanoma, including people with dark skin. See the following PDQ summaries for more information on risk factors for melanoma: These and other signs and symptoms may be caused by melanoma or by other conditions.
Check with your doctor if you have any of the following: For pictures and descriptions of common moles and melanoma, see Common Moles, Dysplastic Nevi, and Risk of Melanoma. If a mole or pigmented area of the skin changes or looks abnormal,
the following tests and procedures can help find and diagnose
melanoma: There are four main types of skin biopsies. The type of biopsy done depends on where the abnormal area formed and the size of the area. The prognosis and treatment options depend on
the following: The process used to find out whether cancer has spread within the skin or to other parts
of the body is called staging. The
information gathered from the staging process determines the stage of the
disease. It is important to know the stage in order to plan treatment.
For melanoma that is not likely to spread to other parts of the body or recur, more tests may not be needed. For melanoma that is likely to spread to other parts of the body or recur, the following tests and procedures may be done after surgery to remove the melanoma: The results of these tests are viewed together with the results of
the tumor biopsy to find out the stage of the melanoma. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if melanoma spreads to the lung, the cancer cells in the lung are actually melanoma cells. The disease is metastatic melanoma, not lung cancer. To find out the stage of melanoma, the tumor is completely removed and nearby lymph nodes are checked for signs of cancer. The stage of the cancer is used to determine which treatment is best. Check with your doctor to find out which stage of cancer you have. The stage of melanoma depends on the following: In stage 0, abnormal melanocytes are found in the
epidermis.
These abnormal melanocytes may become cancer and spread into nearby normal tissue. Stage 0 is also called melanoma in situ.EnlargeStage 0 melanoma. Abnormal melanocytes are found in the epidermis (outer layer of the skin). These abnormal melanocytes may become cancer and spread into nearby normal tissue. In stage I, cancer has formed. Stage I is divided into stages IA and IB. Stage II is divided
into stages IIA, IIB, and IIC. Stage III is divided into stages IIIA, IIIB, IIIC, and IIID. or or or or or In stage IV, the cancer has spread to other parts of the body, such as the lung, liver, brain, spinal cord, bone, soft tissue (including muscle), gastrointestinal (GI) tract, and/or distant lymph nodes. Cancer may have spread to places in the skin far away from where it first started.EnlargeStage IV melanoma. Cancer has spread to other parts of the body, such as the brain, spinal cord, lung, liver, gastrointestinal (GI) tract, bone, muscle, and/or distant lymph nodes. Cancer may have spread to places in the skin far away from where it first started. The cancer may come back in the area where it first started or in other parts of the body, such as the lungs or liver. Different types of treatment are available for patients with
melanoma. Some treatments are
standard (the currently used treatment), and some are being tested in
clinical trials. A
treatment clinical trial is a research study meant to help improve current
treatments or obtain information on new treatments for patients with cancer.
When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Surgery to remove the
tumor is the primary treatment of
all stages of melanoma. A wide local excision is used to remove the melanoma and some of the normal tissue around it. Skin grafting (taking skin from another part of the body to replace the skin that is removed) may be done to cover the wound caused by surgery. Sometimes, it is important to know whether cancer has spread to the lymph nodes. Lymph node mapping and sentinel lymph node biopsy are done to check for cancer in the sentinel lymph node (the first lymph node in a group of lymph nodes to receive lymphatic drainage from the primary tumor). It is the first lymph node the cancer is likely to spread to from the primary tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, more lymph nodes will be removed and tissue samples will be checked for signs of cancer. This is called a lymphadenectomy. Sometimes, a sentinel lymph node is found in more than one group of nodes. After the doctor removes all the melanoma that can be seen at
the time of the surgery, some patients may be given chemotherapy after surgery to kill
any cancer cells that are left. Chemotherapy given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Surgery to remove cancer that has spread to the lymph nodes, lung, gastrointestinal (GI) tract, bone, or brain may be done to improve the patient’s quality of life by controlling symptoms. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). One type of regional chemotherapy is hyperthermic isolated limb perfusion. With this method, anticancer drugs go directly to the arm or leg the cancer is in. The flow of blood to and from the limb is temporarily stopped with a tourniquet. A warm solution with the anticancer drug is put directly into the blood of the limb. This gives a high dose of drugs to the area where the cancer is. The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved for Melanoma for more information. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. External radiation therapy is used to treat melanoma and may also be used as palliative therapy to relieve symptoms and improve quality of life. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. The following types of immunotherapy are being used in the treatment of melanoma: There are two types of immune checkpoint inhibitor therapy: See Drugs Approved for Melanoma for more information. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. The following types of targeted therapy are used or being studied in the treatment of melanoma: Combinations of BRAF inhibitors and MEK inhibitors used to treat melanoma include:
For patients with melanoma who are at high risk of the cancer coming back after it has been treated, there is a growing number of adjuvant therapy options which may be given to lower the
risk. Adjuvant therapy may
include immune checkpoint inhibitors and combinations of signal transduction inhibitors. New targeted therapies and combinations of therapies are being studied in the treatment of melanoma. See Drugs Approved for Melanoma for more information. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Vaccine therapy is a cancer treatment that uses a substance or group of substances to stimulate the immune system to find the tumor and kill it. Vaccine therapy is being studied in the treatment of stage III melanoma that can be removed by surgery. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage 0 is usually surgery to remove the area of abnormal cells and a small amount of normal tissue around it. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I
melanoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage II melanoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III melanoma that can be removed by surgery may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III melanoma that cannot be removed by surgery, stage IV melanoma, and recurrent melanoma may include the following: Treatments that are being studied in clinical trials for stage III melanoma that cannot be removed by surgery, stage IV melanoma, and recurrent melanoma include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about melanoma, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of melanoma. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Melanoma Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/skin/patient/melanoma-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389388] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Melanoma Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the stages of Melanoma ? | Key Points
- After melanoma has been diagnosed, tests are done to find out if cancer cells have spread within the skin or to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The method used to stage melanoma is based mainly on the thickness of the tumor and whether cancer has spread to lymph nodes or other parts of the body. - The following stages are used for melanoma: - Stage 0 (Melanoma in Situ) - Stage I - Stage II - Stage III - Stage IV
After melanoma has been diagnosed, tests are done to find out if cancer cells have spread within the skin or to other parts of the body.
The process used to find out whether cancer has spread within the skin or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The following tests and procedures may be used in the staging process: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Lymph node mapping and sentinel lymph node biopsy : Procedures in which a radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through lymph ducts to the sentinel node or nodes (the first lymph node or nodes where cancer cells are likely to spread). The surgeon removes only the nodes with the radioactive substance or dye. A pathologist views a sample of tissue under a microscope to check for cancer cells. If no cancer cells are found, it may not be necessary to remove more nodes. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. For melanoma, pictures may be taken of the chest, abdomen, and pelvis. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. - MRI (magnetic resonance imaging) with gadolinium : A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body, such as the brain. A substance called gadolinium is injected into a vein. The gadolinium collects around the cancer cells so they show up brighter in the picture. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. For melanoma, the blood is checked for an enzyme called lactate dehydrogenase (LDH). LDH levels that are higher than normal may be a sign of melanoma. The results of these tests are viewed together with the results of the tumor biopsy to find out the stage of the melanoma.
There are three ways that cancer spreads in the body.
Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body.
Cancer may spread from where it began to other parts of the body.
When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if melanoma spreads to the lung, the cancer cells in the lung are actually melanoma cells. The disease is metastatic melanoma, not lung cancer.
The method used to stage melanoma is based mainly on the thickness of the tumor and whether cancer has spread to lymph nodes or other parts of the body.
The staging of melanoma depends on the following: - The thickness of the tumor. The thickness is described using the Breslow scale. - Whether the tumor is ulcerated (has broken through the skin). - Whether the tumor has spread to the lymph nodes and if the lymph nodes are joined together (matted). - Whether the tumor has spread to other parts of the body.
The following stages are used for melanoma:
Stage 0 (Melanoma in Situ) In stage 0, abnormal melanocytes are found in the epidermis. These abnormal melanocytes may become cancer and spread into nearby normal tissue. Stage 0 is also called melanoma in situ. Stage I In stage I, cancer has formed. Stage I is divided into stages IA and IB. - Stage IA: In stage IA, the tumor is not more than 1 millimeter thick, with no ulceration. - Stage IB: In stage IB, the tumor is either: - not more than 1 millimeter thick and it has ulceration; or - more than 1 but not more than 2 millimeters thick, with no ulceration. Stage II Stage II is divided into stages IIA, IIB, and IIC. - Stage IIA: In stage IIA, the tumor is either: - more than 1 but not more than 2 millimeters thick, with ulceration; or - more than 2 but not more than 4 millimeters thick, with no ulceration. - Stage IIB: In stage IIB, the tumor is either: - more than 2 but not more than 4 millimeters thick, with ulceration; or - more than 4 millimeters thick, with no ulceration. - Stage IIC: In stage IIC, the tumor is more than 4 millimeters thick, with ulceration. Stage III In stage III, the tumor may be any thickness, with or without ulceration. One or more of the following is true: - Cancer has spread to one or more lymph nodes. - Lymph nodes are joined together (matted). - Cancer is in a lymph vessel between the primary tumor and nearby lymph nodes. The cancer is more than 2 centimeters away from the primary tumor. - Very small tumors are found on or under the skin, not more than 2 centimeters away from the primary tumor. Stage IV In stage IV, the cancer has spread to other places in the body, such as the lung, liver, brain, bone, soft tissue, or gastrointestinal (GI) tract. Cancer may have spread to places in the skin far away from where it first started. |
The skin is the body’s largest organ. It protects against heat, sunlight, injury, and infection. Skin also helps control body temperature and stores water, fat, and vitamin D. The skin has several layers, but the two main layers are the epidermis (upper or outer layer) and the dermis (lower or inner layer). Skin cancer begins in the epidermis, which is made up of three kinds of cells: From 2005 to 2018, the number of new cases of melanoma has decreased in people younger than 50 years and stayed about the same in people aged 50 years and older. Melanoma is most common in adults, but it is sometimes found in children and
adolescents. For more information, see Childhood Melanoma Treatment. There are two main forms of skin cancer: melanoma and nonmelanoma. Melanoma is a rare form of skin cancer. It is more likely to invade nearby tissues and spread to other parts of the body than other types of skin cancer. When melanoma starts in the skin, it is called cutaneous melanoma. Melanoma may also occur in mucous membranes (thin, moist layers of tissue that cover surfaces such as the lips). This PDQ summary is about cutaneous (skin) melanoma and melanoma that affects the mucous membranes. The most common types of skin cancer are basal cell carcinoma and squamous cell carcinoma. They are nonmelanoma skin cancers. Nonmelanoma skin cancers rarely spread to other parts of the body. For more information, see Skin Cancer Treatment. In men,
melanoma is often found on the trunk (the area from the shoulders to the hips)
or the head and neck. In women, melanoma forms most often on the arms and legs.
When melanoma occurs in the eye, it is called intraocular or ocular melanoma. For more information, see Intraocular (Uveal) Melanoma Treatment. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for melanoma include the
following: Being White or having a fair complexion increases the risk of melanoma, but anyone can have melanoma, including people with dark skin. See the following PDQ summaries for more information on risk factors for melanoma: These and other signs and symptoms may be caused by melanoma or by other conditions.
Check with your doctor if you have any of the following: For pictures and descriptions of common moles and melanoma, see Common Moles, Dysplastic Nevi, and Risk of Melanoma. If a mole or pigmented area of the skin changes or looks abnormal,
the following tests and procedures can help find and diagnose
melanoma: There are four main types of skin biopsies. The type of biopsy done depends on where the abnormal area formed and the size of the area. The prognosis and treatment options depend on
the following: The process used to find out whether cancer has spread within the skin or to other parts
of the body is called staging. The
information gathered from the staging process determines the stage of the
disease. It is important to know the stage in order to plan treatment.
For melanoma that is not likely to spread to other parts of the body or recur, more tests may not be needed. For melanoma that is likely to spread to other parts of the body or recur, the following tests and procedures may be done after surgery to remove the melanoma: The results of these tests are viewed together with the results of
the tumor biopsy to find out the stage of the melanoma. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if melanoma spreads to the lung, the cancer cells in the lung are actually melanoma cells. The disease is metastatic melanoma, not lung cancer. To find out the stage of melanoma, the tumor is completely removed and nearby lymph nodes are checked for signs of cancer. The stage of the cancer is used to determine which treatment is best. Check with your doctor to find out which stage of cancer you have. The stage of melanoma depends on the following: In stage 0, abnormal melanocytes are found in the
epidermis.
These abnormal melanocytes may become cancer and spread into nearby normal tissue. Stage 0 is also called melanoma in situ.EnlargeStage 0 melanoma. Abnormal melanocytes are found in the epidermis (outer layer of the skin). These abnormal melanocytes may become cancer and spread into nearby normal tissue. In stage I, cancer has formed. Stage I is divided into stages IA and IB. Stage II is divided
into stages IIA, IIB, and IIC. Stage III is divided into stages IIIA, IIIB, IIIC, and IIID. or or or or or In stage IV, the cancer has spread to other parts of the body, such as the lung, liver, brain, spinal cord, bone, soft tissue (including muscle), gastrointestinal (GI) tract, and/or distant lymph nodes. Cancer may have spread to places in the skin far away from where it first started.EnlargeStage IV melanoma. Cancer has spread to other parts of the body, such as the brain, spinal cord, lung, liver, gastrointestinal (GI) tract, bone, muscle, and/or distant lymph nodes. Cancer may have spread to places in the skin far away from where it first started. The cancer may come back in the area where it first started or in other parts of the body, such as the lungs or liver. Different types of treatment are available for patients with
melanoma. Some treatments are
standard (the currently used treatment), and some are being tested in
clinical trials. A
treatment clinical trial is a research study meant to help improve current
treatments or obtain information on new treatments for patients with cancer.
When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Surgery to remove the
tumor is the primary treatment of
all stages of melanoma. A wide local excision is used to remove the melanoma and some of the normal tissue around it. Skin grafting (taking skin from another part of the body to replace the skin that is removed) may be done to cover the wound caused by surgery. Sometimes, it is important to know whether cancer has spread to the lymph nodes. Lymph node mapping and sentinel lymph node biopsy are done to check for cancer in the sentinel lymph node (the first lymph node in a group of lymph nodes to receive lymphatic drainage from the primary tumor). It is the first lymph node the cancer is likely to spread to from the primary tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, more lymph nodes will be removed and tissue samples will be checked for signs of cancer. This is called a lymphadenectomy. Sometimes, a sentinel lymph node is found in more than one group of nodes. After the doctor removes all the melanoma that can be seen at
the time of the surgery, some patients may be given chemotherapy after surgery to kill
any cancer cells that are left. Chemotherapy given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Surgery to remove cancer that has spread to the lymph nodes, lung, gastrointestinal (GI) tract, bone, or brain may be done to improve the patient’s quality of life by controlling symptoms. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). One type of regional chemotherapy is hyperthermic isolated limb perfusion. With this method, anticancer drugs go directly to the arm or leg the cancer is in. The flow of blood to and from the limb is temporarily stopped with a tourniquet. A warm solution with the anticancer drug is put directly into the blood of the limb. This gives a high dose of drugs to the area where the cancer is. The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved for Melanoma for more information. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. External radiation therapy is used to treat melanoma and may also be used as palliative therapy to relieve symptoms and improve quality of life. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. The following types of immunotherapy are being used in the treatment of melanoma: There are two types of immune checkpoint inhibitor therapy: See Drugs Approved for Melanoma for more information. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. The following types of targeted therapy are used or being studied in the treatment of melanoma: Combinations of BRAF inhibitors and MEK inhibitors used to treat melanoma include:
For patients with melanoma who are at high risk of the cancer coming back after it has been treated, there is a growing number of adjuvant therapy options which may be given to lower the
risk. Adjuvant therapy may
include immune checkpoint inhibitors and combinations of signal transduction inhibitors. New targeted therapies and combinations of therapies are being studied in the treatment of melanoma. See Drugs Approved for Melanoma for more information. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Vaccine therapy is a cancer treatment that uses a substance or group of substances to stimulate the immune system to find the tumor and kill it. Vaccine therapy is being studied in the treatment of stage III melanoma that can be removed by surgery. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage 0 is usually surgery to remove the area of abnormal cells and a small amount of normal tissue around it. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I
melanoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage II melanoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III melanoma that can be removed by surgery may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III melanoma that cannot be removed by surgery, stage IV melanoma, and recurrent melanoma may include the following: Treatments that are being studied in clinical trials for stage III melanoma that cannot be removed by surgery, stage IV melanoma, and recurrent melanoma include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about melanoma, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of melanoma. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Melanoma Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/skin/patient/melanoma-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389388] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Melanoma Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the treatments for Melanoma ? | Key Points
- There are different types of treatment for patients with melanoma. - Five types of standard treatment are used: - Surgery - Chemotherapy - Radiation therapy - Immunotherapy - Targeted therapy - New types of treatment are being tested in clinical trials. - Treatment for melanoma may cause side effects. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed.
There are different types of treatment for patients with melanoma.
Different types of treatment are available for patients with melanoma. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Five types of standard treatment are used:
Surgery Surgery to remove the tumor is the primary treatment of all stages of melanoma. A wide local excision is used to remove the melanoma and some of the normal tissue around it. Skin grafting (taking skin from another part of the body to replace the skin that is removed) may be done to cover the wound caused by surgery. It is important to know whether cancer has spread to the lymph nodes. Lymph node mapping and sentinel lymph node biopsy are done to check for cancer in the sentinel lymph node (the first lymph node the cancer is likely to spread to from the tumor) during surgery. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, more lymph nodes will be removed and tissue samples will be checked for signs of cancer. This is called a lymphadenectomy. Even if the doctor removes all the melanoma that can be seen at the time of surgery, some patients may be given chemotherapy after surgery to kill any cancer cells that are left. Chemotherapy given after surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Surgery to remove cancer that has spread to the lymph nodes, lung, gastrointestinal (GI) tract, bone, or brain may be done to improve the patients quality of life by controlling symptoms. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). One type of regional chemotherapy is hyperthermic isolated limb perfusion. With this method, anticancer drugs go directly to the arm or leg the cancer is in. The flow of blood to and from the limb is temporarily stopped with a tourniquet. A warm solution with the anticancer drug is put directly into the blood of the limb. This gives a high dose of drugs to the area where the cancer is. The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved for Melanoma for more information. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat melanoma, and may also be used as palliative therapy to relieve symptoms and improve quality of life. Immunotherapy Immunotherapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biotherapy or biologic therapy. The following types of immunotherapy are being used in the treatment of melanoma: - Immune checkpoint inhibitor therapy: Some types of immune cells, such as T cells, and some cancer cells have certain proteins, called checkpoint proteins, on their surface that keep immune responses in check. When cancer cells have large amounts of these proteins, they will not be attacked and killed by T cells. Immune checkpoint inhibitors block these proteins and the ability of T cells to kill cancer cells is increased. They are used to treat some patients with advanced melanoma or tumors that cannot be removed by surgery. There are two types of immune checkpoint inhibitor therapy: - CTLA-4 inhibitor: CTL4-A is a protein on the surface of T cells that helps keep the bodys immune responses in check. When CTLA-4 attaches to another protein called B7 on a cancer cell, it stops the T cell from killing the cancer cell. CTLA-4 inhibitors attach to CTLA-4 and allow the T cells to kill cancer cells. Ipilimumab is a type of CTLA-4 inhibitor. - PD-1 inhibitor: PD-1 is a protein on the surface of T cells that helps keep the bodys immune responses in check. When PD-1 attaches to another protein called PDL-1 on a cancer cell, it stops the T cell from killing the cancer cell. PD-1 inhibitors attach to PDL-1 and allow the T cells to kill cancer cells. Pembrolizumab and nivolumab are types of PD-1 inhibitors. - Interferon: Interferon affects the division of cancer cells and can slow tumor growth. - Interleukin-2 (IL-2): IL-2 boosts the growth and activity of many immune cells, especially lymphocytes (a type of white blood cell). Lymphocytes can attack and kill cancer cells. - Tumor necrosis factor (TNF) therapy: TNF is a protein made by white blood cells in response to an antigen or infection. TNF is made in the laboratory and used as a treatment to kill cancer cells. It is being studied in the treatment of melanoma. See Drugs Approved for Melanoma for more information. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to attack cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. The following types of targeted therapy are used or being studied in the treatment of melanoma: - Signal transduction inhibitor therapy: Signal transduction inhibitors block signals that are passed from one molecule to another inside a cell. Blocking these signals may kill cancer cells. - Vemurafenib, dabrafenib, trametinib, and cobimetinib are signal transduction inhibitors used to treat some patients with advanced melanoma or tumors that cannot be removed by surgery. Vemurafenib and dabrafenib block the activity of proteins made by mutant BRAF genes. Trametinib and cobimetinib affect the growth and survival of cancer cells. - Oncolytic virus therapy: A type of targeted therapy that is used in the treatment of melanoma. Oncolytic virus therapy uses a virus that infects and breaks down cancer cells but not normal cells. Radiation therapy or chemotherapy may be given after oncolytic virus therapy to kill more cancer cells. - Angiogenesis inhibitors: A type of targeted therapy that is being studied in the treatment of melanoma. Angiogenesis inhibitors block the growth of new blood vessels. In cancer treatment, they may be given to prevent the growth of new blood vessels that tumors need to grow. New targeted therapies and combinations of therapies are being studied in the treatment of melanoma. See Drugs Approved for Melanoma for more information.
New types of treatment are being tested in clinical trials.
Information about clinical trials is available from the NCI website
Treatment for melanoma may cause side effects.
For information about side effects caused by treatment for cancer, see our Side Effects page.
Patients may want to think about taking part in a clinical trial.
For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.
Patients can enter clinical trials before, during, or after starting their cancer treatment.
Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Follow-up tests may be needed.
Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups.
Treatment Options by Stage
Stage 0 (Melanoma in Situ)
Treatment of stage 0 is usually surgery to remove the area of abnormal cells and a small amount of normal tissue around it. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage 0 melanoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Stage I Melanoma
Treatment of stage I melanoma may include the following: - Surgery to remove the tumor and some of the normal tissue around it. Sometimes lymph node mapping and removal of lymph nodes is also done. - A clinical trial of new ways to find cancer cells in the lymph nodes. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I melanoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Stage II Melanoma
Treatment of stage II melanoma may include the following: - Surgery to remove the tumor and some of the normal tissue around it. Sometimes lymph node mapping and sentinel lymph node biopsy are done to check for cancer in the lymph nodes at the same time as the surgery to remove the tumor. If cancer is found in the sentinel lymph node, more lymph nodes may be removed. - Surgery followed by immunotherapy with interferon if there is a high risk that the cancer will come back. - A clinical trial of new types of treatment to be used after surgery. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage II melanoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Stage III Melanoma That Can Be Removed By Surgery
Treatment of stage III melanoma that can be removed by surgery may include the following: - Surgery to remove the tumor and some of the normal tissue around it. Skin grafting may be done to cover the wound caused by surgery. Sometimes lymph node mapping and sentinel lymph node biopsy are done to check for cancer in the lymph nodes at the same time as the surgery to remove the tumor. If cancer is found in the sentinel lymph node, more lymph nodes may be removed. - Surgery followed by immunotherapy with ipilimumab or interferon if there is a high risk that the cancer will come back. - A clinical trial of immunotherapy or targeted therapy to be used after surgery. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage III melanoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Stage III Melanoma That Cannot Be Removed By Surgery, Stage IV Melanoma, and Recurrent Melanoma
Treatment of stage III melanoma that cannot be removed by surgery, stage IV melanoma, and recurrent melanoma may include the following: - Immunotherapy with ipilimumab, pembrolizumab, nivolumab, or interleukin-2 (IL-2). Sometimes ipilimumab and nivolumab are given together. - Targeted therapy with vemurafenib, dabrafenib, trametinib, or cobimetinib. Sometimes vemurafenib and cobimetinib or dabrafenib and trametinib are given together. - Injections into the tumor, such as oncolytic virus therapy. - Chemotherapy. - Palliative therapy to relieve symptoms and improve the quality of life. This may include: - Surgery to remove lymph nodes or tumors in the lung, gastrointestinal (GI) tract, bone, or brain. - Radiation therapy to the brain, spinal cord, or bone. Treatments that are being studied in clinical trials for stage III melanoma that cannot be removed by surgery, stage IV melanoma, and recurrent melanoma include the following: - Immunotherapy alone or in combination with other therapies such as targeted therapy. - Targeted therapy, such as signal transduction inhibitors, angiogenesis inhibitors, oncolytic virus therapy, or drugs that target certain gene mutations. These may be given alone or in combination. - Surgery to remove all known cancer. - Regional chemotherapy (hyperthermic isolated limb perfusion). Some patients may also have immunotherapy with tumor necrosis factor. - Systemic chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage IV melanoma and recurrent melanoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. |
The skin is the body’s largest organ. It protects against heat, sunlight, injury, and infection. Skin also helps control body temperature and stores water, fat, and vitamin D. The skin has several layers, but the two main layers are the epidermis (upper or outer layer) and the dermis (lower or inner layer). Skin cancer begins in the epidermis, which is made up of three kinds of cells: From 2005 to 2018, the number of new cases of melanoma has decreased in people younger than 50 years and stayed about the same in people aged 50 years and older. Melanoma is most common in adults, but it is sometimes found in children and
adolescents. For more information, see Childhood Melanoma Treatment. There are two main forms of skin cancer: melanoma and nonmelanoma. Melanoma is a rare form of skin cancer. It is more likely to invade nearby tissues and spread to other parts of the body than other types of skin cancer. When melanoma starts in the skin, it is called cutaneous melanoma. Melanoma may also occur in mucous membranes (thin, moist layers of tissue that cover surfaces such as the lips). This PDQ summary is about cutaneous (skin) melanoma and melanoma that affects the mucous membranes. The most common types of skin cancer are basal cell carcinoma and squamous cell carcinoma. They are nonmelanoma skin cancers. Nonmelanoma skin cancers rarely spread to other parts of the body. For more information, see Skin Cancer Treatment. In men,
melanoma is often found on the trunk (the area from the shoulders to the hips)
or the head and neck. In women, melanoma forms most often on the arms and legs.
When melanoma occurs in the eye, it is called intraocular or ocular melanoma. For more information, see Intraocular (Uveal) Melanoma Treatment. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for melanoma include the
following: Being White or having a fair complexion increases the risk of melanoma, but anyone can have melanoma, including people with dark skin. See the following PDQ summaries for more information on risk factors for melanoma: These and other signs and symptoms may be caused by melanoma or by other conditions.
Check with your doctor if you have any of the following: For pictures and descriptions of common moles and melanoma, see Common Moles, Dysplastic Nevi, and Risk of Melanoma. If a mole or pigmented area of the skin changes or looks abnormal,
the following tests and procedures can help find and diagnose
melanoma: There are four main types of skin biopsies. The type of biopsy done depends on where the abnormal area formed and the size of the area. The prognosis and treatment options depend on
the following: The process used to find out whether cancer has spread within the skin or to other parts
of the body is called staging. The
information gathered from the staging process determines the stage of the
disease. It is important to know the stage in order to plan treatment.
For melanoma that is not likely to spread to other parts of the body or recur, more tests may not be needed. For melanoma that is likely to spread to other parts of the body or recur, the following tests and procedures may be done after surgery to remove the melanoma: The results of these tests are viewed together with the results of
the tumor biopsy to find out the stage of the melanoma. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if melanoma spreads to the lung, the cancer cells in the lung are actually melanoma cells. The disease is metastatic melanoma, not lung cancer. To find out the stage of melanoma, the tumor is completely removed and nearby lymph nodes are checked for signs of cancer. The stage of the cancer is used to determine which treatment is best. Check with your doctor to find out which stage of cancer you have. The stage of melanoma depends on the following: In stage 0, abnormal melanocytes are found in the
epidermis.
These abnormal melanocytes may become cancer and spread into nearby normal tissue. Stage 0 is also called melanoma in situ.EnlargeStage 0 melanoma. Abnormal melanocytes are found in the epidermis (outer layer of the skin). These abnormal melanocytes may become cancer and spread into nearby normal tissue. In stage I, cancer has formed. Stage I is divided into stages IA and IB. Stage II is divided
into stages IIA, IIB, and IIC. Stage III is divided into stages IIIA, IIIB, IIIC, and IIID. or or or or or In stage IV, the cancer has spread to other parts of the body, such as the lung, liver, brain, spinal cord, bone, soft tissue (including muscle), gastrointestinal (GI) tract, and/or distant lymph nodes. Cancer may have spread to places in the skin far away from where it first started.EnlargeStage IV melanoma. Cancer has spread to other parts of the body, such as the brain, spinal cord, lung, liver, gastrointestinal (GI) tract, bone, muscle, and/or distant lymph nodes. Cancer may have spread to places in the skin far away from where it first started. The cancer may come back in the area where it first started or in other parts of the body, such as the lungs or liver. Different types of treatment are available for patients with
melanoma. Some treatments are
standard (the currently used treatment), and some are being tested in
clinical trials. A
treatment clinical trial is a research study meant to help improve current
treatments or obtain information on new treatments for patients with cancer.
When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Surgery to remove the
tumor is the primary treatment of
all stages of melanoma. A wide local excision is used to remove the melanoma and some of the normal tissue around it. Skin grafting (taking skin from another part of the body to replace the skin that is removed) may be done to cover the wound caused by surgery. Sometimes, it is important to know whether cancer has spread to the lymph nodes. Lymph node mapping and sentinel lymph node biopsy are done to check for cancer in the sentinel lymph node (the first lymph node in a group of lymph nodes to receive lymphatic drainage from the primary tumor). It is the first lymph node the cancer is likely to spread to from the primary tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are found, more lymph nodes will be removed and tissue samples will be checked for signs of cancer. This is called a lymphadenectomy. Sometimes, a sentinel lymph node is found in more than one group of nodes. After the doctor removes all the melanoma that can be seen at
the time of the surgery, some patients may be given chemotherapy after surgery to kill
any cancer cells that are left. Chemotherapy given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Surgery to remove cancer that has spread to the lymph nodes, lung, gastrointestinal (GI) tract, bone, or brain may be done to improve the patient’s quality of life by controlling symptoms. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). One type of regional chemotherapy is hyperthermic isolated limb perfusion. With this method, anticancer drugs go directly to the arm or leg the cancer is in. The flow of blood to and from the limb is temporarily stopped with a tourniquet. A warm solution with the anticancer drug is put directly into the blood of the limb. This gives a high dose of drugs to the area where the cancer is. The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved for Melanoma for more information. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. External radiation therapy is used to treat melanoma and may also be used as palliative therapy to relieve symptoms and improve quality of life. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. The following types of immunotherapy are being used in the treatment of melanoma: There are two types of immune checkpoint inhibitor therapy: See Drugs Approved for Melanoma for more information. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. The following types of targeted therapy are used or being studied in the treatment of melanoma: Combinations of BRAF inhibitors and MEK inhibitors used to treat melanoma include:
For patients with melanoma who are at high risk of the cancer coming back after it has been treated, there is a growing number of adjuvant therapy options which may be given to lower the
risk. Adjuvant therapy may
include immune checkpoint inhibitors and combinations of signal transduction inhibitors. New targeted therapies and combinations of therapies are being studied in the treatment of melanoma. See Drugs Approved for Melanoma for more information. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Vaccine therapy is a cancer treatment that uses a substance or group of substances to stimulate the immune system to find the tumor and kill it. Vaccine therapy is being studied in the treatment of stage III melanoma that can be removed by surgery. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage 0 is usually surgery to remove the area of abnormal cells and a small amount of normal tissue around it. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I
melanoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage II melanoma may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III melanoma that can be removed by surgery may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III melanoma that cannot be removed by surgery, stage IV melanoma, and recurrent melanoma may include the following: Treatments that are being studied in clinical trials for stage III melanoma that cannot be removed by surgery, stage IV melanoma, and recurrent melanoma include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about melanoma, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of melanoma. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Melanoma Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/skin/patient/melanoma-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389388] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Melanoma Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | what research (or clinical trials) is being done for Melanoma ? | New types of treatment are being tested in clinical trials.
Information about clinical trials is available from the NCI website
Treatment for melanoma may cause side effects.
For information about side effects caused by treatment for cancer, see our Side Effects page.
Patients may want to think about taking part in a clinical trial.
For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.
Patients can enter clinical trials before, during, or after starting their cancer treatment.
Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Follow-up tests may be needed.
Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. |
Thymoma and thymic carcinoma, also called thymic epithelial tumors (TETs), are two types of rare cancers that can form in the cells that cover the outside surface of the thymus. The thymus is a small organ that lies in the upper chest above the heart and under the breastbone. It is part of the lymph system and makes white blood cells, called lymphocytes, that help fight infection. These cancers usually form between the lungs in the front part of the chest and are sometimes found during a chest x-ray that is done for another reason. Even though thymoma and thymic carcinoma form in the same type of cell, they act differently: Other types of tumors, such as lymphoma or germ cell tumors, may form in the thymus, but they are not considered to be thymoma or thymic carcinoma. Autoimmune paraneoplastic diseases are often linked with thymoma. Autoimmune paraneoplastic diseases may occur in patients with cancer but are not caused directly by cancer. Autoimmune paraneoplastic diseases are marked by signs and symptoms that develop when the body's immune system attacks not only cancer cells but also normal cells. Autoimmune paraneoplastic diseases linked with thymoma include: Other autoimmune paraneoplastic diseases may be linked with TETs and can involve any organ. Most patients do not have signs or symptoms when first diagnosed with thymoma or thymic carcinoma. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis and treatment options depend on the following: The process used to find out if thymoma or thymic carcinoma has spread from the thymus to nearby areas or other parts of the body is called staging. Thymoma and thymic carcinoma may spread to the lungs, chest wall, major vessels, esophagus, or the lining around the lungs and heart. The results of tests and procedures done to diagnose thymoma or thymic carcinoma are used to help make decisions about treatment. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if thymic carcinoma spreads to the bone, the cancer cells in the bone are actually thymic carcinoma cells. The disease is metastatic thymic carcinoma, not bone cancer. In stage I, cancer is found only within the thymus. All cancer cells are inside the capsule (sac) that surrounds the thymus. In stage II, cancer has spread through the capsule and into the fat around the thymus or into the lining of the chest cavity. In stage III, cancer has spread to nearby organs in the chest, including the lung, the sac around the heart, or large blood vessels that carry blood to the heart. Stage IV is divided into stage IVA and stage IVB, depending on where the cancer has spread. The staging system used for thymomas is sometimes used for thymic carcinomas. Recurrent thymoma and thymic carcinoma are cancers that have recurred (come back) after treatment. The cancer may come back in the thymus or in other parts of the body. Thymic carcinoma is more likely to recur than thymoma. Different types of treatments are available for patients with thymoma and thymic carcinoma. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Surgery to remove the tumor is the most common treatment of thymoma. After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Chemotherapy may be used to shrink the tumor before surgery or radiation therapy. This is called neoadjuvant chemotherapy. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and flow through the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. Hormone therapy using octreotide with or without prednisone may be used to treat thymoma or thymic carcinoma. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Tyrosine kinase inhibitors (TKIs) and mammalian target of rapamycin (mTOR) inhibitors are types of targeted therapies used in the treatment of thymoma and thymic carcinoma. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I and stage II thymoma is surgery, which may be followed by radiation therapy. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III and stage IV thymoma that may be completely removed by surgery includes the following: Treatment of stage III and stage IV thymoma that cannot be completely removed by surgery includes the following: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of thymic carcinoma that may be completely removed by surgery includes the following: Treatment of thymic carcinoma that cannot be completely removed by surgery includes the following: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of recurrent thymoma and thymic carcinoma may include the following: For more information from the National Cancer Institute about thymoma and thymic carcinoma, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of adult thymoma and thymic carcinoma. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Thymoma and Thymic Carcinoma Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/thymoma/patient/thymoma-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389395] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Thymoma and Thymic Carcinoma Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is (are) Thymoma and Thymic Carcinoma ? | Key Points
- Thymoma and thymic carcinoma are diseases in which malignant (cancer) cells form on the outside surface of the thymus. - Thymoma is linked with myasthenia gravis and other autoimmune diseases. - Signs and symptoms of thymoma and thymic carcinoma include a cough and chest pain. - Tests that examine the thymus are used to detect (find) thymoma or thymic carcinoma. - Thymoma and thymic carcinoma are usually diagnosed, staged, and treated during surgery. - Certain factors affect prognosis (chance of recovery) and treatment options.
Thymoma and thymic carcinoma are diseases in which malignant (cancer) cells form on the outside surface of the thymus.
The thymus, a small organ that lies in the upper chest under the breastbone, is part of the lymph system. It makes white blood cells, called lymphocytes, that protect the body against infections. There are different types of tumors of the thymus. Thymomas and thymic carcinomas are rare tumors of the cells that are on the outside surface of the thymus. The tumor cells in a thymoma look similar to the normal cells of the thymus, grow slowly, and rarely spread beyond the thymus. On the other hand, the tumor cells in a thymic carcinoma look very different from the normal cells of the thymus, grow more quickly, and have usually spread to other parts of the body when the cancer is found. Thymic carcinoma is more difficult to treat than thymoma. For information on thymoma and thymic carcinoma in children, see the PDQ summary on Unusual Cancers of Childhood Treatment.
Thymoma is linked with myasthenia gravis and other autoimmune diseases.
People with thymoma often have autoimmune diseases as well. These diseases cause the immune system to attack healthy tissue and organs. They include: - Myasthenia gravis. - Acquired pure red cell aplasia. - Hypogammaglobulinemia. - Polymyositis. - Lupus erythematosus. - Rheumatoid arthritis. - Thyroiditis. - Sjgren syndrome. |
Thymoma and thymic carcinoma, also called thymic epithelial tumors (TETs), are two types of rare cancers that can form in the cells that cover the outside surface of the thymus. The thymus is a small organ that lies in the upper chest above the heart and under the breastbone. It is part of the lymph system and makes white blood cells, called lymphocytes, that help fight infection. These cancers usually form between the lungs in the front part of the chest and are sometimes found during a chest x-ray that is done for another reason. Even though thymoma and thymic carcinoma form in the same type of cell, they act differently: Other types of tumors, such as lymphoma or germ cell tumors, may form in the thymus, but they are not considered to be thymoma or thymic carcinoma. Autoimmune paraneoplastic diseases are often linked with thymoma. Autoimmune paraneoplastic diseases may occur in patients with cancer but are not caused directly by cancer. Autoimmune paraneoplastic diseases are marked by signs and symptoms that develop when the body's immune system attacks not only cancer cells but also normal cells. Autoimmune paraneoplastic diseases linked with thymoma include: Other autoimmune paraneoplastic diseases may be linked with TETs and can involve any organ. Most patients do not have signs or symptoms when first diagnosed with thymoma or thymic carcinoma. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis and treatment options depend on the following: The process used to find out if thymoma or thymic carcinoma has spread from the thymus to nearby areas or other parts of the body is called staging. Thymoma and thymic carcinoma may spread to the lungs, chest wall, major vessels, esophagus, or the lining around the lungs and heart. The results of tests and procedures done to diagnose thymoma or thymic carcinoma are used to help make decisions about treatment. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if thymic carcinoma spreads to the bone, the cancer cells in the bone are actually thymic carcinoma cells. The disease is metastatic thymic carcinoma, not bone cancer. In stage I, cancer is found only within the thymus. All cancer cells are inside the capsule (sac) that surrounds the thymus. In stage II, cancer has spread through the capsule and into the fat around the thymus or into the lining of the chest cavity. In stage III, cancer has spread to nearby organs in the chest, including the lung, the sac around the heart, or large blood vessels that carry blood to the heart. Stage IV is divided into stage IVA and stage IVB, depending on where the cancer has spread. The staging system used for thymomas is sometimes used for thymic carcinomas. Recurrent thymoma and thymic carcinoma are cancers that have recurred (come back) after treatment. The cancer may come back in the thymus or in other parts of the body. Thymic carcinoma is more likely to recur than thymoma. Different types of treatments are available for patients with thymoma and thymic carcinoma. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Surgery to remove the tumor is the most common treatment of thymoma. After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Chemotherapy may be used to shrink the tumor before surgery or radiation therapy. This is called neoadjuvant chemotherapy. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and flow through the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. Hormone therapy using octreotide with or without prednisone may be used to treat thymoma or thymic carcinoma. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Tyrosine kinase inhibitors (TKIs) and mammalian target of rapamycin (mTOR) inhibitors are types of targeted therapies used in the treatment of thymoma and thymic carcinoma. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I and stage II thymoma is surgery, which may be followed by radiation therapy. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III and stage IV thymoma that may be completely removed by surgery includes the following: Treatment of stage III and stage IV thymoma that cannot be completely removed by surgery includes the following: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of thymic carcinoma that may be completely removed by surgery includes the following: Treatment of thymic carcinoma that cannot be completely removed by surgery includes the following: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of recurrent thymoma and thymic carcinoma may include the following: For more information from the National Cancer Institute about thymoma and thymic carcinoma, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of adult thymoma and thymic carcinoma. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Thymoma and Thymic Carcinoma Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/thymoma/patient/thymoma-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389395] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Thymoma and Thymic Carcinoma Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the symptoms of Thymoma and Thymic Carcinoma ? | Signs and symptoms of thymoma and thymic carcinoma include a cough and chest pain. Thymoma and thymic carcinoma may not cause early signs or symptoms. The cancer may be found during a routine chest x-ray. Signs and symptoms may be caused by thymoma, thymic carcinoma, or other conditions. Check with your doctor if you have any of the following: - A cough that doesn't go away. - Chest pain. - Trouble breathing. |
Thymoma and thymic carcinoma, also called thymic epithelial tumors (TETs), are two types of rare cancers that can form in the cells that cover the outside surface of the thymus. The thymus is a small organ that lies in the upper chest above the heart and under the breastbone. It is part of the lymph system and makes white blood cells, called lymphocytes, that help fight infection. These cancers usually form between the lungs in the front part of the chest and are sometimes found during a chest x-ray that is done for another reason. Even though thymoma and thymic carcinoma form in the same type of cell, they act differently: Other types of tumors, such as lymphoma or germ cell tumors, may form in the thymus, but they are not considered to be thymoma or thymic carcinoma. Autoimmune paraneoplastic diseases are often linked with thymoma. Autoimmune paraneoplastic diseases may occur in patients with cancer but are not caused directly by cancer. Autoimmune paraneoplastic diseases are marked by signs and symptoms that develop when the body's immune system attacks not only cancer cells but also normal cells. Autoimmune paraneoplastic diseases linked with thymoma include: Other autoimmune paraneoplastic diseases may be linked with TETs and can involve any organ. Most patients do not have signs or symptoms when first diagnosed with thymoma or thymic carcinoma. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis and treatment options depend on the following: The process used to find out if thymoma or thymic carcinoma has spread from the thymus to nearby areas or other parts of the body is called staging. Thymoma and thymic carcinoma may spread to the lungs, chest wall, major vessels, esophagus, or the lining around the lungs and heart. The results of tests and procedures done to diagnose thymoma or thymic carcinoma are used to help make decisions about treatment. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if thymic carcinoma spreads to the bone, the cancer cells in the bone are actually thymic carcinoma cells. The disease is metastatic thymic carcinoma, not bone cancer. In stage I, cancer is found only within the thymus. All cancer cells are inside the capsule (sac) that surrounds the thymus. In stage II, cancer has spread through the capsule and into the fat around the thymus or into the lining of the chest cavity. In stage III, cancer has spread to nearby organs in the chest, including the lung, the sac around the heart, or large blood vessels that carry blood to the heart. Stage IV is divided into stage IVA and stage IVB, depending on where the cancer has spread. The staging system used for thymomas is sometimes used for thymic carcinomas. Recurrent thymoma and thymic carcinoma are cancers that have recurred (come back) after treatment. The cancer may come back in the thymus or in other parts of the body. Thymic carcinoma is more likely to recur than thymoma. Different types of treatments are available for patients with thymoma and thymic carcinoma. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Surgery to remove the tumor is the most common treatment of thymoma. After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Chemotherapy may be used to shrink the tumor before surgery or radiation therapy. This is called neoadjuvant chemotherapy. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and flow through the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. Hormone therapy using octreotide with or without prednisone may be used to treat thymoma or thymic carcinoma. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Tyrosine kinase inhibitors (TKIs) and mammalian target of rapamycin (mTOR) inhibitors are types of targeted therapies used in the treatment of thymoma and thymic carcinoma. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I and stage II thymoma is surgery, which may be followed by radiation therapy. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III and stage IV thymoma that may be completely removed by surgery includes the following: Treatment of stage III and stage IV thymoma that cannot be completely removed by surgery includes the following: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of thymic carcinoma that may be completely removed by surgery includes the following: Treatment of thymic carcinoma that cannot be completely removed by surgery includes the following: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of recurrent thymoma and thymic carcinoma may include the following: For more information from the National Cancer Institute about thymoma and thymic carcinoma, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of adult thymoma and thymic carcinoma. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Thymoma and Thymic Carcinoma Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/thymoma/patient/thymoma-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389395] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Thymoma and Thymic Carcinoma Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | How to diagnose Thymoma and Thymic Carcinoma ? | Tests that examine the thymus are used to detect (find) thymoma or thymic carcinoma. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Chest x-ray: An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the chest, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body, such as the chest. This procedure is also called nuclear magnetic resonance imaging (NMRI). - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do.
Thymoma and thymic carcinoma are usually diagnosed, staged, and treated during surgery. A biopsy of the tumor is done to diagnose the disease. The biopsy may be done before or during surgery (a mediastinoscopy or mediastinotomy), using a thin needle to remove a sample of cells. This is called a fine-needle aspiration (FNA) biopsy. Sometimes a wide needle is used to remove a sample of cells and this is called a core biopsy. A pathologist will view the sample under a microscope to check for cancer. If thymoma or thymic carcinoma is diagnosed, the pathologist will determine the type of cancer cell in the tumor. There may be more than one type of cancer cell in a thymoma. The surgeon will decide if all or part of the tumor can be removed by surgery. In some cases, lymph nodes and other tissues may be removed as well. |
Thymoma and thymic carcinoma, also called thymic epithelial tumors (TETs), are two types of rare cancers that can form in the cells that cover the outside surface of the thymus. The thymus is a small organ that lies in the upper chest above the heart and under the breastbone. It is part of the lymph system and makes white blood cells, called lymphocytes, that help fight infection. These cancers usually form between the lungs in the front part of the chest and are sometimes found during a chest x-ray that is done for another reason. Even though thymoma and thymic carcinoma form in the same type of cell, they act differently: Other types of tumors, such as lymphoma or germ cell tumors, may form in the thymus, but they are not considered to be thymoma or thymic carcinoma. Autoimmune paraneoplastic diseases are often linked with thymoma. Autoimmune paraneoplastic diseases may occur in patients with cancer but are not caused directly by cancer. Autoimmune paraneoplastic diseases are marked by signs and symptoms that develop when the body's immune system attacks not only cancer cells but also normal cells. Autoimmune paraneoplastic diseases linked with thymoma include: Other autoimmune paraneoplastic diseases may be linked with TETs and can involve any organ. Most patients do not have signs or symptoms when first diagnosed with thymoma or thymic carcinoma. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis and treatment options depend on the following: The process used to find out if thymoma or thymic carcinoma has spread from the thymus to nearby areas or other parts of the body is called staging. Thymoma and thymic carcinoma may spread to the lungs, chest wall, major vessels, esophagus, or the lining around the lungs and heart. The results of tests and procedures done to diagnose thymoma or thymic carcinoma are used to help make decisions about treatment. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if thymic carcinoma spreads to the bone, the cancer cells in the bone are actually thymic carcinoma cells. The disease is metastatic thymic carcinoma, not bone cancer. In stage I, cancer is found only within the thymus. All cancer cells are inside the capsule (sac) that surrounds the thymus. In stage II, cancer has spread through the capsule and into the fat around the thymus or into the lining of the chest cavity. In stage III, cancer has spread to nearby organs in the chest, including the lung, the sac around the heart, or large blood vessels that carry blood to the heart. Stage IV is divided into stage IVA and stage IVB, depending on where the cancer has spread. The staging system used for thymomas is sometimes used for thymic carcinomas. Recurrent thymoma and thymic carcinoma are cancers that have recurred (come back) after treatment. The cancer may come back in the thymus or in other parts of the body. Thymic carcinoma is more likely to recur than thymoma. Different types of treatments are available for patients with thymoma and thymic carcinoma. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Surgery to remove the tumor is the most common treatment of thymoma. After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Chemotherapy may be used to shrink the tumor before surgery or radiation therapy. This is called neoadjuvant chemotherapy. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and flow through the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. Hormone therapy using octreotide with or without prednisone may be used to treat thymoma or thymic carcinoma. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Tyrosine kinase inhibitors (TKIs) and mammalian target of rapamycin (mTOR) inhibitors are types of targeted therapies used in the treatment of thymoma and thymic carcinoma. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I and stage II thymoma is surgery, which may be followed by radiation therapy. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III and stage IV thymoma that may be completely removed by surgery includes the following: Treatment of stage III and stage IV thymoma that cannot be completely removed by surgery includes the following: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of thymic carcinoma that may be completely removed by surgery includes the following: Treatment of thymic carcinoma that cannot be completely removed by surgery includes the following: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of recurrent thymoma and thymic carcinoma may include the following: For more information from the National Cancer Institute about thymoma and thymic carcinoma, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of adult thymoma and thymic carcinoma. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Thymoma and Thymic Carcinoma Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/thymoma/patient/thymoma-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389395] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Thymoma and Thymic Carcinoma Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is the outlook for Thymoma and Thymic Carcinoma ? | Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - The stage of the cancer. - The type of cancer cell. - Whether the tumor can be removed completely by surgery. - The patient's general health. - Whether the cancer has just been diagnosed or has recurred (come back). |
Thymoma and thymic carcinoma, also called thymic epithelial tumors (TETs), are two types of rare cancers that can form in the cells that cover the outside surface of the thymus. The thymus is a small organ that lies in the upper chest above the heart and under the breastbone. It is part of the lymph system and makes white blood cells, called lymphocytes, that help fight infection. These cancers usually form between the lungs in the front part of the chest and are sometimes found during a chest x-ray that is done for another reason. Even though thymoma and thymic carcinoma form in the same type of cell, they act differently: Other types of tumors, such as lymphoma or germ cell tumors, may form in the thymus, but they are not considered to be thymoma or thymic carcinoma. Autoimmune paraneoplastic diseases are often linked with thymoma. Autoimmune paraneoplastic diseases may occur in patients with cancer but are not caused directly by cancer. Autoimmune paraneoplastic diseases are marked by signs and symptoms that develop when the body's immune system attacks not only cancer cells but also normal cells. Autoimmune paraneoplastic diseases linked with thymoma include: Other autoimmune paraneoplastic diseases may be linked with TETs and can involve any organ. Most patients do not have signs or symptoms when first diagnosed with thymoma or thymic carcinoma. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis and treatment options depend on the following: The process used to find out if thymoma or thymic carcinoma has spread from the thymus to nearby areas or other parts of the body is called staging. Thymoma and thymic carcinoma may spread to the lungs, chest wall, major vessels, esophagus, or the lining around the lungs and heart. The results of tests and procedures done to diagnose thymoma or thymic carcinoma are used to help make decisions about treatment. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if thymic carcinoma spreads to the bone, the cancer cells in the bone are actually thymic carcinoma cells. The disease is metastatic thymic carcinoma, not bone cancer. In stage I, cancer is found only within the thymus. All cancer cells are inside the capsule (sac) that surrounds the thymus. In stage II, cancer has spread through the capsule and into the fat around the thymus or into the lining of the chest cavity. In stage III, cancer has spread to nearby organs in the chest, including the lung, the sac around the heart, or large blood vessels that carry blood to the heart. Stage IV is divided into stage IVA and stage IVB, depending on where the cancer has spread. The staging system used for thymomas is sometimes used for thymic carcinomas. Recurrent thymoma and thymic carcinoma are cancers that have recurred (come back) after treatment. The cancer may come back in the thymus or in other parts of the body. Thymic carcinoma is more likely to recur than thymoma. Different types of treatments are available for patients with thymoma and thymic carcinoma. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Surgery to remove the tumor is the most common treatment of thymoma. After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Chemotherapy may be used to shrink the tumor before surgery or radiation therapy. This is called neoadjuvant chemotherapy. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and flow through the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. Hormone therapy using octreotide with or without prednisone may be used to treat thymoma or thymic carcinoma. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Tyrosine kinase inhibitors (TKIs) and mammalian target of rapamycin (mTOR) inhibitors are types of targeted therapies used in the treatment of thymoma and thymic carcinoma. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I and stage II thymoma is surgery, which may be followed by radiation therapy. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III and stage IV thymoma that may be completely removed by surgery includes the following: Treatment of stage III and stage IV thymoma that cannot be completely removed by surgery includes the following: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of thymic carcinoma that may be completely removed by surgery includes the following: Treatment of thymic carcinoma that cannot be completely removed by surgery includes the following: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of recurrent thymoma and thymic carcinoma may include the following: For more information from the National Cancer Institute about thymoma and thymic carcinoma, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of adult thymoma and thymic carcinoma. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Thymoma and Thymic Carcinoma Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/thymoma/patient/thymoma-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389395] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Thymoma and Thymic Carcinoma Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the stages of Thymoma and Thymic Carcinoma ? | Key Points
- Tests done to detect thymoma or thymic carcinoma are also used to stage the disease. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The following stages are used for thymoma: - Stage I - Stage II - Stage III - Stage IV - Thymic carcinomas have usually spread to other parts of the body when diagnosed.
Tests done to detect thymoma or thymic carcinoma are also used to stage the disease.
Staging is the process used to find out if cancer has spread from the thymus to other parts of the body. The findings made during surgery and the results of tests and procedures are used to determine the stage of the disease. It is important to know the stage in order to plan treatment.
There are three ways that cancer spreads in the body.
Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body.
Cancer may spread from where it began to other parts of the body.
When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if thymic carcinoma spreads to the bone, the cancer cells in the bone are actually thymic carcinoma cells. The disease is metastatic thymic carcinoma, not bone cancer.
The following stages are used for thymoma:
Stage I In stage I, cancer is found only within the thymus. All cancer cells are inside the capsule (sac) that surrounds the thymus. Stage II In stage II, cancer has spread through the capsule and into the fat around the thymus or into the lining of the chest cavity. Stage III In stage III, cancer has spread to nearby organs in the chest, including the lung, the sac around the heart, or large blood vessels that carry blood to the heart. Stage IV Stage IV is divided into stage IVA and stage IVB, depending on where the cancer has spread. - In stage IVA, cancer has spread widely around the lungs and heart. - In stage IVB, cancer has spread to the blood or lymph system.
Thymic carcinomas have usually spread to other parts of the body when diagnosed.
The staging system used for thymomas is sometimes used for thymic carcinomas. |
Thymoma and thymic carcinoma, also called thymic epithelial tumors (TETs), are two types of rare cancers that can form in the cells that cover the outside surface of the thymus. The thymus is a small organ that lies in the upper chest above the heart and under the breastbone. It is part of the lymph system and makes white blood cells, called lymphocytes, that help fight infection. These cancers usually form between the lungs in the front part of the chest and are sometimes found during a chest x-ray that is done for another reason. Even though thymoma and thymic carcinoma form in the same type of cell, they act differently: Other types of tumors, such as lymphoma or germ cell tumors, may form in the thymus, but they are not considered to be thymoma or thymic carcinoma. Autoimmune paraneoplastic diseases are often linked with thymoma. Autoimmune paraneoplastic diseases may occur in patients with cancer but are not caused directly by cancer. Autoimmune paraneoplastic diseases are marked by signs and symptoms that develop when the body's immune system attacks not only cancer cells but also normal cells. Autoimmune paraneoplastic diseases linked with thymoma include: Other autoimmune paraneoplastic diseases may be linked with TETs and can involve any organ. Most patients do not have signs or symptoms when first diagnosed with thymoma or thymic carcinoma. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis and treatment options depend on the following: The process used to find out if thymoma or thymic carcinoma has spread from the thymus to nearby areas or other parts of the body is called staging. Thymoma and thymic carcinoma may spread to the lungs, chest wall, major vessels, esophagus, or the lining around the lungs and heart. The results of tests and procedures done to diagnose thymoma or thymic carcinoma are used to help make decisions about treatment. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if thymic carcinoma spreads to the bone, the cancer cells in the bone are actually thymic carcinoma cells. The disease is metastatic thymic carcinoma, not bone cancer. In stage I, cancer is found only within the thymus. All cancer cells are inside the capsule (sac) that surrounds the thymus. In stage II, cancer has spread through the capsule and into the fat around the thymus or into the lining of the chest cavity. In stage III, cancer has spread to nearby organs in the chest, including the lung, the sac around the heart, or large blood vessels that carry blood to the heart. Stage IV is divided into stage IVA and stage IVB, depending on where the cancer has spread. The staging system used for thymomas is sometimes used for thymic carcinomas. Recurrent thymoma and thymic carcinoma are cancers that have recurred (come back) after treatment. The cancer may come back in the thymus or in other parts of the body. Thymic carcinoma is more likely to recur than thymoma. Different types of treatments are available for patients with thymoma and thymic carcinoma. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Surgery to remove the tumor is the most common treatment of thymoma. After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Chemotherapy may be used to shrink the tumor before surgery or radiation therapy. This is called neoadjuvant chemotherapy. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and flow through the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. Hormone therapy using octreotide with or without prednisone may be used to treat thymoma or thymic carcinoma. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Tyrosine kinase inhibitors (TKIs) and mammalian target of rapamycin (mTOR) inhibitors are types of targeted therapies used in the treatment of thymoma and thymic carcinoma. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I and stage II thymoma is surgery, which may be followed by radiation therapy. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III and stage IV thymoma that may be completely removed by surgery includes the following: Treatment of stage III and stage IV thymoma that cannot be completely removed by surgery includes the following: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of thymic carcinoma that may be completely removed by surgery includes the following: Treatment of thymic carcinoma that cannot be completely removed by surgery includes the following: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of recurrent thymoma and thymic carcinoma may include the following: For more information from the National Cancer Institute about thymoma and thymic carcinoma, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of adult thymoma and thymic carcinoma. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Thymoma and Thymic Carcinoma Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/thymoma/patient/thymoma-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389395] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Thymoma and Thymic Carcinoma Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | what research (or clinical trials) is being done for Thymoma and Thymic Carcinoma ? | New types of treatment are being tested in clinical trials.
This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website.
Patients may want to think about taking part in a clinical trial.
For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.
Patients can enter clinical trials before, during, or after starting their cancer treatment.
Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. |
Thymoma and thymic carcinoma, also called thymic epithelial tumors (TETs), are two types of rare cancers that can form in the cells that cover the outside surface of the thymus. The thymus is a small organ that lies in the upper chest above the heart and under the breastbone. It is part of the lymph system and makes white blood cells, called lymphocytes, that help fight infection. These cancers usually form between the lungs in the front part of the chest and are sometimes found during a chest x-ray that is done for another reason. Even though thymoma and thymic carcinoma form in the same type of cell, they act differently: Other types of tumors, such as lymphoma or germ cell tumors, may form in the thymus, but they are not considered to be thymoma or thymic carcinoma. Autoimmune paraneoplastic diseases are often linked with thymoma. Autoimmune paraneoplastic diseases may occur in patients with cancer but are not caused directly by cancer. Autoimmune paraneoplastic diseases are marked by signs and symptoms that develop when the body's immune system attacks not only cancer cells but also normal cells. Autoimmune paraneoplastic diseases linked with thymoma include: Other autoimmune paraneoplastic diseases may be linked with TETs and can involve any organ. Most patients do not have signs or symptoms when first diagnosed with thymoma or thymic carcinoma. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis and treatment options depend on the following: The process used to find out if thymoma or thymic carcinoma has spread from the thymus to nearby areas or other parts of the body is called staging. Thymoma and thymic carcinoma may spread to the lungs, chest wall, major vessels, esophagus, or the lining around the lungs and heart. The results of tests and procedures done to diagnose thymoma or thymic carcinoma are used to help make decisions about treatment. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if thymic carcinoma spreads to the bone, the cancer cells in the bone are actually thymic carcinoma cells. The disease is metastatic thymic carcinoma, not bone cancer. In stage I, cancer is found only within the thymus. All cancer cells are inside the capsule (sac) that surrounds the thymus. In stage II, cancer has spread through the capsule and into the fat around the thymus or into the lining of the chest cavity. In stage III, cancer has spread to nearby organs in the chest, including the lung, the sac around the heart, or large blood vessels that carry blood to the heart. Stage IV is divided into stage IVA and stage IVB, depending on where the cancer has spread. The staging system used for thymomas is sometimes used for thymic carcinomas. Recurrent thymoma and thymic carcinoma are cancers that have recurred (come back) after treatment. The cancer may come back in the thymus or in other parts of the body. Thymic carcinoma is more likely to recur than thymoma. Different types of treatments are available for patients with thymoma and thymic carcinoma. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Surgery to remove the tumor is the most common treatment of thymoma. After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Chemotherapy may be used to shrink the tumor before surgery or radiation therapy. This is called neoadjuvant chemotherapy. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and flow through the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. Hormone therapy using octreotide with or without prednisone may be used to treat thymoma or thymic carcinoma. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Tyrosine kinase inhibitors (TKIs) and mammalian target of rapamycin (mTOR) inhibitors are types of targeted therapies used in the treatment of thymoma and thymic carcinoma. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I and stage II thymoma is surgery, which may be followed by radiation therapy. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III and stage IV thymoma that may be completely removed by surgery includes the following: Treatment of stage III and stage IV thymoma that cannot be completely removed by surgery includes the following: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of thymic carcinoma that may be completely removed by surgery includes the following: Treatment of thymic carcinoma that cannot be completely removed by surgery includes the following: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of recurrent thymoma and thymic carcinoma may include the following: For more information from the National Cancer Institute about thymoma and thymic carcinoma, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of adult thymoma and thymic carcinoma. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Thymoma and Thymic Carcinoma Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/thymoma/patient/thymoma-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389395] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Thymoma and Thymic Carcinoma Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the treatments for Thymoma and Thymic Carcinoma ? | Key Points
- There are different types of treatment for patients with thymoma and thymic carcinoma. - Four types of standard treatment are used: - Surgery - Radiation therapy - Chemotherapy - Hormone therapy - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed.
There are different types of treatment for patients with thymoma and thymic carcinoma.
Different types of treatments are available for patients with thymoma and thymic carcinoma. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Four types of standard treatment are used:
Surgery Surgery to remove the tumor is the most common treatment of thymoma. Even if the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat thymoma and thymic carcinoma. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. Chemotherapy may be used to shrink the tumor before surgery or radiation therapy. This is called neoadjuvant chemotherapy. Hormone therapy Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances produced by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. Hormone therapy with drugs called corticosteroids may be used to treat thymoma or thymic carcinoma.
New types of treatment are being tested in clinical trials.
This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website.
Patients may want to think about taking part in a clinical trial.
For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.
Patients can enter clinical trials before, during, or after starting their cancer treatment.
Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Follow-up tests may be needed.
Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups.
Treatment Options for Thymoma and Thymic Carcinoma
Stage I and Stage II Thymoma
Treatment of stage I thymoma is surgery. Treatment of stage II thymoma is surgery followed by radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I thymoma and stage II thymoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Stage III and Stage IV Thymoma
Treatment of stage III and stage IV thymoma that may be completely removed by surgery includes the following: - Surgery with or without radiation therapy. - Neoadjuvant chemotherapy followed by surgery with or without radiation therapy. - A clinical trial of anticancer drugs in new combinations or doses. - A clinical trial of new ways of giving radiation therapy. Treatment of stage III and stage IV thymoma that cannot be completely removed by surgery includes the following: - Neoadjuvant chemotherapy followed by surgery and/or radiation therapy. - Radiation therapy. - Chemotherapy. - A clinical trial of anticancer drugs in new combinations or doses. - A clinical trial of new ways of giving radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage III thymoma and stage IV thymoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Thymic Carcinoma
Treatment of thymic carcinoma that may be completely removed by surgery includes the following: - Surgery with or without radiation therapy. - A clinical trial of anticancer drugs in new combinations or doses. - A clinical trial of new ways of giving radiation therapy. Treatment of thymic carcinoma that cannot be completely removed by surgery includes the following: - Radiation therapy. - Chemotherapy with or without surgery to remove part of the tumor and/or radiation therapy. - Chemotherapy with radiation therapy. - Chemotherapy. - A clinical trial of anticancer drugs in new combinations or doses. - A clinical trial of new ways of giving radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with thymic carcinoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Recurrent Thymoma and Thymic Carcinoma
Treatment of recurrent thymoma and thymic carcinoma may include the following: - Surgery with or without radiation therapy. - Radiation therapy. - Hormone therapy. - Chemotherapy. - A clinical trial of anticancer drugs in new combinations or doses. - A clinical trial of new ways of giving radiation therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent thymoma and thymic carcinoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. |
"Extragonadal" means outside of the gonads (sex organs). When cells that are meant to form sperm in the testicles or eggs in the ovaries travel to other parts of the body, they may grow into extragonadal germ cell tumors. These tumors may begin to grow anywhere in the body but usually begin in organs such as the pineal gland in the brain, in the mediastinum (area between the lungs), or in the retroperitoneum (the back wall of the abdomen).EnlargeExtragonadal germ cell tumors form in parts of the body other than the gonads (testicles or ovaries). This includes the pineal gland in the brain, the mediastinum (area between the lungs), and retroperitoneum (the back wall of the abdomen). Extragonadal germ cell tumors can be benign (noncancer) or malignant (cancer). Benign extragonadal germ cell tumors are called benign teratomas. These are more common than malignant extragonadal germ cell tumors and often are very large. Malignant extragonadal germ cell tumors are divided into two types, nonseminoma and seminoma. Nonseminomas tend to grow and spread more quickly than seminomas. They usually are large and cause signs and symptoms.
If untreated, malignant extragonadal germ cell tumors may spread to the lungs, lymph nodes, bones, liver, or other parts of the body. For information about germ cell tumors in the ovaries and testicles, see the following PDQ summaries: Anything that increases your chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for malignant extragonadal germ cell tumors include the following: Malignant extragonadal germ cell tumors may cause signs and symptoms as they grow into nearby areas. Other conditions may cause the same signs and symptoms. Check with your doctor if you have any of the following: The following tests and procedures may be used: Sometimes a CT scan and a PET scan are done at the same time. A PET scan is a procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do.
When a PET scan and CT scan are done at the same time, it is called a PET-CT. The prognosis and treatment options depend on the following: The extent or spread of cancer is usually described as stages. For extragonadal germ cell tumors, prognostic groups are used instead of stages. The tumors are grouped according to how well the cancer is expected to respond to treatment. It is important to know the prognostic group in order to plan treatment. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of tumor as the primary tumor. For example, if an extragonadal germ cell tumor spreads to the lung, the tumor cells in the lung are actually cancerous germ cells. The disease is metastatic extragonadal germ cell tumor, not lung cancer. A nonseminoma extragonadal germ cell tumor is in the good prognosis group if: A seminoma extragonadal germ cell tumor is in the good prognosis group if: A nonseminoma extragonadal germ cell tumor is in the intermediate prognosis group if: A seminoma extragonadal germ cell tumor is in the intermediate prognosis group if: A nonseminoma extragonadal germ cell tumor is in the poor prognosis group if: Seminoma extragonadal germ cell tumor does not have a poor prognosis group. Different types of treatments are available for patients with extragonadal germ cell tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat seminoma. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly in the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. Patients who have benign tumors or tumor remaining after chemotherapy or radiation therapy may need to have surgery. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. After initial treatment for extragonadal germ cell tumors, blood levels of AFP and other tumor markers continue to be checked to find out how well the treatment is working. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of benign teratomas is surgery. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of seminoma extragonadal germ cell tumors may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of nonseminoma extragonadal germ cell tumors may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of extragonadal germ cell tumors that are recurrent (come back after being treated) or refractory (do not get better during treatment) may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about extragonadal germ cell tumors, see the Extragonadal Germ Cell Tumor Home Page. For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of extragonadal germ cell tumors. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Extragonadal Germ Cell Tumors Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/extragonadal-germ-cell/patient/extragonadal-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389213] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Extragonadal Germ Cell Tumors Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is (are) Extragonadal Germ Cell Tumors ? | Key Points
- Extragonadal germ cell tumors form from developing sperm or egg cells that travel from the gonads to other parts of the body. - Age and gender can affect the risk of extragonadal germ cell tumors. - Signs and symptoms of extragonadal germ cell tumors include breathing problems and chest pain. - Imaging and blood tests are used to detect (find) and diagnose extragonadal germ cell tumors. - Certain factors affect prognosis (chance of recovery) and treatment options.
Extragonadal germ cell tumors form from developing sperm or egg cells that travel from the gonads to other parts of the body.
" Extragonadal" means outside of the gonads (sex organs). When cells that are meant to form sperm in the testicles or eggs in the ovaries travel to other parts of the body, they may grow into extragonadal germ cell tumors. These tumors may begin to grow anywhere in the body but usually begin in organs such as the pineal gland in the brain, in the mediastinum (area between the lungs), or in the retroperitoneum (the back wall of the abdomen). Extragonadal germ cell tumors can be benign (noncancer) or malignant (cancer). Benign extragonadal germ cell tumors are called benign teratomas. These are more common than malignant extragonadal germ cell tumors and often are very large. Malignant extragonadal germ cell tumors are divided into two types, nonseminoma and seminoma. Nonseminomas tend to grow and spread more quickly than seminomas. They usually are large and cause signs and symptoms. If untreated, malignant extragonadal germ cell tumors may spread to the lungs, lymph nodes, bones, liver, or other parts of the body. For information about germ cell tumors in the ovaries and testicles, see the following PDQ summaries: - Ovarian Germ Cell Tumors Treatment - Testicular Cancer Treatment |
"Extragonadal" means outside of the gonads (sex organs). When cells that are meant to form sperm in the testicles or eggs in the ovaries travel to other parts of the body, they may grow into extragonadal germ cell tumors. These tumors may begin to grow anywhere in the body but usually begin in organs such as the pineal gland in the brain, in the mediastinum (area between the lungs), or in the retroperitoneum (the back wall of the abdomen).EnlargeExtragonadal germ cell tumors form in parts of the body other than the gonads (testicles or ovaries). This includes the pineal gland in the brain, the mediastinum (area between the lungs), and retroperitoneum (the back wall of the abdomen). Extragonadal germ cell tumors can be benign (noncancer) or malignant (cancer). Benign extragonadal germ cell tumors are called benign teratomas. These are more common than malignant extragonadal germ cell tumors and often are very large. Malignant extragonadal germ cell tumors are divided into two types, nonseminoma and seminoma. Nonseminomas tend to grow and spread more quickly than seminomas. They usually are large and cause signs and symptoms.
If untreated, malignant extragonadal germ cell tumors may spread to the lungs, lymph nodes, bones, liver, or other parts of the body. For information about germ cell tumors in the ovaries and testicles, see the following PDQ summaries: Anything that increases your chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for malignant extragonadal germ cell tumors include the following: Malignant extragonadal germ cell tumors may cause signs and symptoms as they grow into nearby areas. Other conditions may cause the same signs and symptoms. Check with your doctor if you have any of the following: The following tests and procedures may be used: Sometimes a CT scan and a PET scan are done at the same time. A PET scan is a procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do.
When a PET scan and CT scan are done at the same time, it is called a PET-CT. The prognosis and treatment options depend on the following: The extent or spread of cancer is usually described as stages. For extragonadal germ cell tumors, prognostic groups are used instead of stages. The tumors are grouped according to how well the cancer is expected to respond to treatment. It is important to know the prognostic group in order to plan treatment. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of tumor as the primary tumor. For example, if an extragonadal germ cell tumor spreads to the lung, the tumor cells in the lung are actually cancerous germ cells. The disease is metastatic extragonadal germ cell tumor, not lung cancer. A nonseminoma extragonadal germ cell tumor is in the good prognosis group if: A seminoma extragonadal germ cell tumor is in the good prognosis group if: A nonseminoma extragonadal germ cell tumor is in the intermediate prognosis group if: A seminoma extragonadal germ cell tumor is in the intermediate prognosis group if: A nonseminoma extragonadal germ cell tumor is in the poor prognosis group if: Seminoma extragonadal germ cell tumor does not have a poor prognosis group. Different types of treatments are available for patients with extragonadal germ cell tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat seminoma. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly in the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. Patients who have benign tumors or tumor remaining after chemotherapy or radiation therapy may need to have surgery. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. After initial treatment for extragonadal germ cell tumors, blood levels of AFP and other tumor markers continue to be checked to find out how well the treatment is working. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of benign teratomas is surgery. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of seminoma extragonadal germ cell tumors may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of nonseminoma extragonadal germ cell tumors may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of extragonadal germ cell tumors that are recurrent (come back after being treated) or refractory (do not get better during treatment) may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about extragonadal germ cell tumors, see the Extragonadal Germ Cell Tumor Home Page. For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of extragonadal germ cell tumors. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Extragonadal Germ Cell Tumors Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/extragonadal-germ-cell/patient/extragonadal-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389213] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Extragonadal Germ Cell Tumors Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | Who is at risk for Extragonadal Germ Cell Tumors? ? | Age and gender can affect the risk of extragonadal germ cell tumors. Anything that increases your chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for malignant extragonadal germ cell tumors include the following: - Being male. - Being age 20 or older. - Having Klinefelter syndrome. |
"Extragonadal" means outside of the gonads (sex organs). When cells that are meant to form sperm in the testicles or eggs in the ovaries travel to other parts of the body, they may grow into extragonadal germ cell tumors. These tumors may begin to grow anywhere in the body but usually begin in organs such as the pineal gland in the brain, in the mediastinum (area between the lungs), or in the retroperitoneum (the back wall of the abdomen).EnlargeExtragonadal germ cell tumors form in parts of the body other than the gonads (testicles or ovaries). This includes the pineal gland in the brain, the mediastinum (area between the lungs), and retroperitoneum (the back wall of the abdomen). Extragonadal germ cell tumors can be benign (noncancer) or malignant (cancer). Benign extragonadal germ cell tumors are called benign teratomas. These are more common than malignant extragonadal germ cell tumors and often are very large. Malignant extragonadal germ cell tumors are divided into two types, nonseminoma and seminoma. Nonseminomas tend to grow and spread more quickly than seminomas. They usually are large and cause signs and symptoms.
If untreated, malignant extragonadal germ cell tumors may spread to the lungs, lymph nodes, bones, liver, or other parts of the body. For information about germ cell tumors in the ovaries and testicles, see the following PDQ summaries: Anything that increases your chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for malignant extragonadal germ cell tumors include the following: Malignant extragonadal germ cell tumors may cause signs and symptoms as they grow into nearby areas. Other conditions may cause the same signs and symptoms. Check with your doctor if you have any of the following: The following tests and procedures may be used: Sometimes a CT scan and a PET scan are done at the same time. A PET scan is a procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do.
When a PET scan and CT scan are done at the same time, it is called a PET-CT. The prognosis and treatment options depend on the following: The extent or spread of cancer is usually described as stages. For extragonadal germ cell tumors, prognostic groups are used instead of stages. The tumors are grouped according to how well the cancer is expected to respond to treatment. It is important to know the prognostic group in order to plan treatment. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of tumor as the primary tumor. For example, if an extragonadal germ cell tumor spreads to the lung, the tumor cells in the lung are actually cancerous germ cells. The disease is metastatic extragonadal germ cell tumor, not lung cancer. A nonseminoma extragonadal germ cell tumor is in the good prognosis group if: A seminoma extragonadal germ cell tumor is in the good prognosis group if: A nonseminoma extragonadal germ cell tumor is in the intermediate prognosis group if: A seminoma extragonadal germ cell tumor is in the intermediate prognosis group if: A nonseminoma extragonadal germ cell tumor is in the poor prognosis group if: Seminoma extragonadal germ cell tumor does not have a poor prognosis group. Different types of treatments are available for patients with extragonadal germ cell tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat seminoma. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly in the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. Patients who have benign tumors or tumor remaining after chemotherapy or radiation therapy may need to have surgery. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. After initial treatment for extragonadal germ cell tumors, blood levels of AFP and other tumor markers continue to be checked to find out how well the treatment is working. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of benign teratomas is surgery. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of seminoma extragonadal germ cell tumors may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of nonseminoma extragonadal germ cell tumors may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of extragonadal germ cell tumors that are recurrent (come back after being treated) or refractory (do not get better during treatment) may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about extragonadal germ cell tumors, see the Extragonadal Germ Cell Tumor Home Page. For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of extragonadal germ cell tumors. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Extragonadal Germ Cell Tumors Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/extragonadal-germ-cell/patient/extragonadal-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389213] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Extragonadal Germ Cell Tumors Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the symptoms of Extragonadal Germ Cell Tumors ? | Signs and symptoms of extragonadal germ cell tumors include breathing problems and chest pain. Malignant extragonadal germ cell tumors may cause signs and symptoms as they grow into nearby areas. Other conditions may cause the same signs and symptoms. Check with your doctor if you have any of the following: - Chest pain. - Breathing problems. - Cough. - Fever. - Headache. - Change in bowel habits. - Feeling very tired. - Trouble walking. - Trouble in seeing or moving the eyes. |
"Extragonadal" means outside of the gonads (sex organs). When cells that are meant to form sperm in the testicles or eggs in the ovaries travel to other parts of the body, they may grow into extragonadal germ cell tumors. These tumors may begin to grow anywhere in the body but usually begin in organs such as the pineal gland in the brain, in the mediastinum (area between the lungs), or in the retroperitoneum (the back wall of the abdomen).EnlargeExtragonadal germ cell tumors form in parts of the body other than the gonads (testicles or ovaries). This includes the pineal gland in the brain, the mediastinum (area between the lungs), and retroperitoneum (the back wall of the abdomen). Extragonadal germ cell tumors can be benign (noncancer) or malignant (cancer). Benign extragonadal germ cell tumors are called benign teratomas. These are more common than malignant extragonadal germ cell tumors and often are very large. Malignant extragonadal germ cell tumors are divided into two types, nonseminoma and seminoma. Nonseminomas tend to grow and spread more quickly than seminomas. They usually are large and cause signs and symptoms.
If untreated, malignant extragonadal germ cell tumors may spread to the lungs, lymph nodes, bones, liver, or other parts of the body. For information about germ cell tumors in the ovaries and testicles, see the following PDQ summaries: Anything that increases your chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for malignant extragonadal germ cell tumors include the following: Malignant extragonadal germ cell tumors may cause signs and symptoms as they grow into nearby areas. Other conditions may cause the same signs and symptoms. Check with your doctor if you have any of the following: The following tests and procedures may be used: Sometimes a CT scan and a PET scan are done at the same time. A PET scan is a procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do.
When a PET scan and CT scan are done at the same time, it is called a PET-CT. The prognosis and treatment options depend on the following: The extent or spread of cancer is usually described as stages. For extragonadal germ cell tumors, prognostic groups are used instead of stages. The tumors are grouped according to how well the cancer is expected to respond to treatment. It is important to know the prognostic group in order to plan treatment. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of tumor as the primary tumor. For example, if an extragonadal germ cell tumor spreads to the lung, the tumor cells in the lung are actually cancerous germ cells. The disease is metastatic extragonadal germ cell tumor, not lung cancer. A nonseminoma extragonadal germ cell tumor is in the good prognosis group if: A seminoma extragonadal germ cell tumor is in the good prognosis group if: A nonseminoma extragonadal germ cell tumor is in the intermediate prognosis group if: A seminoma extragonadal germ cell tumor is in the intermediate prognosis group if: A nonseminoma extragonadal germ cell tumor is in the poor prognosis group if: Seminoma extragonadal germ cell tumor does not have a poor prognosis group. Different types of treatments are available for patients with extragonadal germ cell tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat seminoma. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly in the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. Patients who have benign tumors or tumor remaining after chemotherapy or radiation therapy may need to have surgery. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. After initial treatment for extragonadal germ cell tumors, blood levels of AFP and other tumor markers continue to be checked to find out how well the treatment is working. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of benign teratomas is surgery. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of seminoma extragonadal germ cell tumors may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of nonseminoma extragonadal germ cell tumors may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of extragonadal germ cell tumors that are recurrent (come back after being treated) or refractory (do not get better during treatment) may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about extragonadal germ cell tumors, see the Extragonadal Germ Cell Tumor Home Page. For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of extragonadal germ cell tumors. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Extragonadal Germ Cell Tumors Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/extragonadal-germ-cell/patient/extragonadal-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389213] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Extragonadal Germ Cell Tumors Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | How to diagnose Extragonadal Germ Cell Tumors ? | Imaging and blood tests are used to detect (find) and diagnose extragonadal germ cell tumors. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. The testicles may be checked for lumps, swelling, or pain. A history of the patient's health habits and past illnesses and treatments will also be taken. - Chest x-ray : An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. - Serum tumor marker test : A procedure in which a sample of blood is examined to measure the amounts of certain substances released into the blood by organs, tissues, or tumor cells in the body. Certain substances are linked to specific types of cancer when found in increased levels in the blood. These are called tumor markers. The following three tumor markers are used to detect extragonadal germ cell tumor: - Alpha-fetoprotein (AFP). - Beta-human chorionic gonadotropin (-hCG). - Lactate dehydrogenase (LDH). Blood levels of the tumor markers help determine if the tumor is a seminoma or nonseminoma. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. Sometimes a CT scan and a PET scan are done at the same time. A PET scan is a procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. When a PET scan and CT scan are done at the same time, it is called a PET-CT. - Biopsy : The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. The type of biopsy used depends on where the extragonadal germ cell tumor is found. - Excisional biopsy : The removal of an entire lump of tissue. - Incisional biopsy : The removal of part of a lump or sample of tissue. - Core biopsy : The removal of tissue using a wide needle. - Fine-needle aspiration (FNA) biopsy : The removal of tissue or fluid using a thin needle. |
"Extragonadal" means outside of the gonads (sex organs). When cells that are meant to form sperm in the testicles or eggs in the ovaries travel to other parts of the body, they may grow into extragonadal germ cell tumors. These tumors may begin to grow anywhere in the body but usually begin in organs such as the pineal gland in the brain, in the mediastinum (area between the lungs), or in the retroperitoneum (the back wall of the abdomen).EnlargeExtragonadal germ cell tumors form in parts of the body other than the gonads (testicles or ovaries). This includes the pineal gland in the brain, the mediastinum (area between the lungs), and retroperitoneum (the back wall of the abdomen). Extragonadal germ cell tumors can be benign (noncancer) or malignant (cancer). Benign extragonadal germ cell tumors are called benign teratomas. These are more common than malignant extragonadal germ cell tumors and often are very large. Malignant extragonadal germ cell tumors are divided into two types, nonseminoma and seminoma. Nonseminomas tend to grow and spread more quickly than seminomas. They usually are large and cause signs and symptoms.
If untreated, malignant extragonadal germ cell tumors may spread to the lungs, lymph nodes, bones, liver, or other parts of the body. For information about germ cell tumors in the ovaries and testicles, see the following PDQ summaries: Anything that increases your chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for malignant extragonadal germ cell tumors include the following: Malignant extragonadal germ cell tumors may cause signs and symptoms as they grow into nearby areas. Other conditions may cause the same signs and symptoms. Check with your doctor if you have any of the following: The following tests and procedures may be used: Sometimes a CT scan and a PET scan are done at the same time. A PET scan is a procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do.
When a PET scan and CT scan are done at the same time, it is called a PET-CT. The prognosis and treatment options depend on the following: The extent or spread of cancer is usually described as stages. For extragonadal germ cell tumors, prognostic groups are used instead of stages. The tumors are grouped according to how well the cancer is expected to respond to treatment. It is important to know the prognostic group in order to plan treatment. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of tumor as the primary tumor. For example, if an extragonadal germ cell tumor spreads to the lung, the tumor cells in the lung are actually cancerous germ cells. The disease is metastatic extragonadal germ cell tumor, not lung cancer. A nonseminoma extragonadal germ cell tumor is in the good prognosis group if: A seminoma extragonadal germ cell tumor is in the good prognosis group if: A nonseminoma extragonadal germ cell tumor is in the intermediate prognosis group if: A seminoma extragonadal germ cell tumor is in the intermediate prognosis group if: A nonseminoma extragonadal germ cell tumor is in the poor prognosis group if: Seminoma extragonadal germ cell tumor does not have a poor prognosis group. Different types of treatments are available for patients with extragonadal germ cell tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat seminoma. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly in the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. Patients who have benign tumors or tumor remaining after chemotherapy or radiation therapy may need to have surgery. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. After initial treatment for extragonadal germ cell tumors, blood levels of AFP and other tumor markers continue to be checked to find out how well the treatment is working. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of benign teratomas is surgery. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of seminoma extragonadal germ cell tumors may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of nonseminoma extragonadal germ cell tumors may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of extragonadal germ cell tumors that are recurrent (come back after being treated) or refractory (do not get better during treatment) may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about extragonadal germ cell tumors, see the Extragonadal Germ Cell Tumor Home Page. For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of extragonadal germ cell tumors. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Extragonadal Germ Cell Tumors Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/extragonadal-germ-cell/patient/extragonadal-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389213] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Extragonadal Germ Cell Tumors Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is the outlook for Extragonadal Germ Cell Tumors ? | Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - Whether the tumor is nonseminoma or seminoma. - The size of the tumor and where it is in the body. - The blood levels of AFP, -hCG, and LDH. - Whether the tumor has spread to other parts of the body. - The way the tumor responds to initial treatment. - Whether the tumor has just been diagnosed or has recurred (come back). |
"Extragonadal" means outside of the gonads (sex organs). When cells that are meant to form sperm in the testicles or eggs in the ovaries travel to other parts of the body, they may grow into extragonadal germ cell tumors. These tumors may begin to grow anywhere in the body but usually begin in organs such as the pineal gland in the brain, in the mediastinum (area between the lungs), or in the retroperitoneum (the back wall of the abdomen).EnlargeExtragonadal germ cell tumors form in parts of the body other than the gonads (testicles or ovaries). This includes the pineal gland in the brain, the mediastinum (area between the lungs), and retroperitoneum (the back wall of the abdomen). Extragonadal germ cell tumors can be benign (noncancer) or malignant (cancer). Benign extragonadal germ cell tumors are called benign teratomas. These are more common than malignant extragonadal germ cell tumors and often are very large. Malignant extragonadal germ cell tumors are divided into two types, nonseminoma and seminoma. Nonseminomas tend to grow and spread more quickly than seminomas. They usually are large and cause signs and symptoms.
If untreated, malignant extragonadal germ cell tumors may spread to the lungs, lymph nodes, bones, liver, or other parts of the body. For information about germ cell tumors in the ovaries and testicles, see the following PDQ summaries: Anything that increases your chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for malignant extragonadal germ cell tumors include the following: Malignant extragonadal germ cell tumors may cause signs and symptoms as they grow into nearby areas. Other conditions may cause the same signs and symptoms. Check with your doctor if you have any of the following: The following tests and procedures may be used: Sometimes a CT scan and a PET scan are done at the same time. A PET scan is a procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do.
When a PET scan and CT scan are done at the same time, it is called a PET-CT. The prognosis and treatment options depend on the following: The extent or spread of cancer is usually described as stages. For extragonadal germ cell tumors, prognostic groups are used instead of stages. The tumors are grouped according to how well the cancer is expected to respond to treatment. It is important to know the prognostic group in order to plan treatment. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of tumor as the primary tumor. For example, if an extragonadal germ cell tumor spreads to the lung, the tumor cells in the lung are actually cancerous germ cells. The disease is metastatic extragonadal germ cell tumor, not lung cancer. A nonseminoma extragonadal germ cell tumor is in the good prognosis group if: A seminoma extragonadal germ cell tumor is in the good prognosis group if: A nonseminoma extragonadal germ cell tumor is in the intermediate prognosis group if: A seminoma extragonadal germ cell tumor is in the intermediate prognosis group if: A nonseminoma extragonadal germ cell tumor is in the poor prognosis group if: Seminoma extragonadal germ cell tumor does not have a poor prognosis group. Different types of treatments are available for patients with extragonadal germ cell tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat seminoma. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly in the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. Patients who have benign tumors or tumor remaining after chemotherapy or radiation therapy may need to have surgery. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. After initial treatment for extragonadal germ cell tumors, blood levels of AFP and other tumor markers continue to be checked to find out how well the treatment is working. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of benign teratomas is surgery. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of seminoma extragonadal germ cell tumors may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of nonseminoma extragonadal germ cell tumors may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of extragonadal germ cell tumors that are recurrent (come back after being treated) or refractory (do not get better during treatment) may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about extragonadal germ cell tumors, see the Extragonadal Germ Cell Tumor Home Page. For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of extragonadal germ cell tumors. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Extragonadal Germ Cell Tumors Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/extragonadal-germ-cell/patient/extragonadal-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389213] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Extragonadal Germ Cell Tumors Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the stages of Extragonadal Germ Cell Tumors ? | Key Points
- After an extragonadal germ cell tumor has been diagnosed, tests are done to find out if cancer cells have spread to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The following prognostic groups are used for extragonadal germ cell tumors: - Good prognosis - Intermediate prognosis - Poor prognosis
After an extragonadal germ cell tumor has been diagnosed, tests are done to find out if cancer cells have spread to other parts of the body.
The extent or spread of cancer is usually described as stages. For extragonadal germ cell tumors, prognostic groups are used instead of stages. The tumors are grouped according to how well the cancer is expected to respond to treatment. It is important to know the prognostic group in order to plan treatment.
There are three ways that cancer spreads in the body.
Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body.
Cancer may spread from where it began to other parts of the body.
When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of tumor as the primary tumor. For example, if an extragonadal germ cell tumor spreads to the lung, the tumor cells in the lung are actually cancerous germ cells. The disease is metastatic extragonadal germ cell tumor, not lung cancer.
The following prognostic groups are used for extragonadal germ cell tumors:
Good prognosis A nonseminoma extragonadal germ cell tumor is in the good prognosis group if: - the tumor is in the back of the abdomen; and - the tumor has not spread to organs other than the lungs; and - the levels of tumor markers AFP and -hCG are normal and LDH is slightly above normal. A seminoma extragonadal germ cell tumor is in the good prognosis group if: - the tumor has not spread to organs other than the lungs; and - the level of AFP is normal; -hCG and LDH may be at any level. Intermediate prognosis A nonseminoma extragonadal germ cell tumor is in the intermediate prognosis group if: - the tumor is in the back of the abdomen; and - the tumor has not spread to organs other than the lungs; and - the level of any one of the tumor markers (AFP, -hCG, or LDH) is more than slightly above normal. A seminoma extragonadal germ cell tumor is in the intermediate prognosis group if: - the tumor has spread to organs other than the lungs; and - the level of AFP is normal; -hCG and LDH may be at any level. Poor prognosis A nonseminoma extragonadal germ cell tumor is in the poor prognosis group if: - the tumor is in the chest; or - the tumor has spread to organs other than the lungs; or - the level of any one of the tumor markers (AFP, -hCG, or LDH) is high. Seminoma extragonadal germ cell tumor does not have a poor prognosis group. |
"Extragonadal" means outside of the gonads (sex organs). When cells that are meant to form sperm in the testicles or eggs in the ovaries travel to other parts of the body, they may grow into extragonadal germ cell tumors. These tumors may begin to grow anywhere in the body but usually begin in organs such as the pineal gland in the brain, in the mediastinum (area between the lungs), or in the retroperitoneum (the back wall of the abdomen).EnlargeExtragonadal germ cell tumors form in parts of the body other than the gonads (testicles or ovaries). This includes the pineal gland in the brain, the mediastinum (area between the lungs), and retroperitoneum (the back wall of the abdomen). Extragonadal germ cell tumors can be benign (noncancer) or malignant (cancer). Benign extragonadal germ cell tumors are called benign teratomas. These are more common than malignant extragonadal germ cell tumors and often are very large. Malignant extragonadal germ cell tumors are divided into two types, nonseminoma and seminoma. Nonseminomas tend to grow and spread more quickly than seminomas. They usually are large and cause signs and symptoms.
If untreated, malignant extragonadal germ cell tumors may spread to the lungs, lymph nodes, bones, liver, or other parts of the body. For information about germ cell tumors in the ovaries and testicles, see the following PDQ summaries: Anything that increases your chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for malignant extragonadal germ cell tumors include the following: Malignant extragonadal germ cell tumors may cause signs and symptoms as they grow into nearby areas. Other conditions may cause the same signs and symptoms. Check with your doctor if you have any of the following: The following tests and procedures may be used: Sometimes a CT scan and a PET scan are done at the same time. A PET scan is a procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do.
When a PET scan and CT scan are done at the same time, it is called a PET-CT. The prognosis and treatment options depend on the following: The extent or spread of cancer is usually described as stages. For extragonadal germ cell tumors, prognostic groups are used instead of stages. The tumors are grouped according to how well the cancer is expected to respond to treatment. It is important to know the prognostic group in order to plan treatment. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of tumor as the primary tumor. For example, if an extragonadal germ cell tumor spreads to the lung, the tumor cells in the lung are actually cancerous germ cells. The disease is metastatic extragonadal germ cell tumor, not lung cancer. A nonseminoma extragonadal germ cell tumor is in the good prognosis group if: A seminoma extragonadal germ cell tumor is in the good prognosis group if: A nonseminoma extragonadal germ cell tumor is in the intermediate prognosis group if: A seminoma extragonadal germ cell tumor is in the intermediate prognosis group if: A nonseminoma extragonadal germ cell tumor is in the poor prognosis group if: Seminoma extragonadal germ cell tumor does not have a poor prognosis group. Different types of treatments are available for patients with extragonadal germ cell tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat seminoma. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly in the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. Patients who have benign tumors or tumor remaining after chemotherapy or radiation therapy may need to have surgery. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. After initial treatment for extragonadal germ cell tumors, blood levels of AFP and other tumor markers continue to be checked to find out how well the treatment is working. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of benign teratomas is surgery. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of seminoma extragonadal germ cell tumors may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of nonseminoma extragonadal germ cell tumors may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of extragonadal germ cell tumors that are recurrent (come back after being treated) or refractory (do not get better during treatment) may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about extragonadal germ cell tumors, see the Extragonadal Germ Cell Tumor Home Page. For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of extragonadal germ cell tumors. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Extragonadal Germ Cell Tumors Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/extragonadal-germ-cell/patient/extragonadal-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389213] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Extragonadal Germ Cell Tumors Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the treatments for Extragonadal Germ Cell Tumors ? | Key Points
- There are different types of treatment for patients with extragonadal germ cell tumors. - Three types of standard treatment are used: - Radiation therapy - Chemotherapy - Surgery - New types of treatment are being tested in clinical trials. - High-dose chemotherapy with stem cell transplant - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed.
There are different types of treatment for patients with extragonadal germ cell tumors.
Different types of treatments are available for patients with extragonadal germ cell tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Three types of standard treatment are used:
Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat seminoma. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly in the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. Surgery Patients who have benign tumors or tumor remaining after chemotherapy or radiation therapy may need to have surgery.
New types of treatment are being tested in clinical trials.
This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. High-dose chemotherapy with stem cell transplant High-dose chemotherapy with stem cell transplant is a method of giving high doses of chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells.
Patients may want to think about taking part in a clinical trial.
For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.
Patients can enter clinical trials before, during, or after starting their cancer treatment.
Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Follow-up tests may be needed.
Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. After initial treatment for extragonadal germ cell tumors, blood levels of AFP and other tumor markers continue to be checked to find out how well the treatment is working.
Treatment Options for Extragonadal Germ Cell Tumors
Benign Teratoma
Treatment of benign teratomas is surgery. Check the list of NCI-supported cancer clinical trials that are now accepting patients with benign teratoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Seminoma
Treatment of seminoma extragonadal germ cell tumors may include the following: - Radiation therapy for small tumors in one area, followed by watchful waiting if there is tumor remaining after treatment. - Chemotherapy for larger tumors or tumors that have spread. If a tumor smaller than 3 centimeters remains after chemotherapy, watchful waiting follows. If a larger tumor remains after treatment, surgery or watchful waiting follow. Check the list of NCI-supported cancer clinical trials that are now accepting patients with extragonadal seminoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Nonseminoma
Treatment of nonseminoma extragonadal germ cell tumors may include the following: - Combination chemotherapy followed by surgery to remove any remaining tumor. - A clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with malignant extragonadal non-seminomatous germ cell tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Recurrent or Refractory Extragonadal Germ Cell Tumors
Treatment of extragonadal germ cell tumors that are recurrent (come back after being treated) or refractory (do not get better during treatment) may include the following: - Chemotherapy. - A clinical trial of high-dose chemotherapy with stem cell transplant. - A clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent extragonadal germ cell tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. |
"Extragonadal" means outside of the gonads (sex organs). When cells that are meant to form sperm in the testicles or eggs in the ovaries travel to other parts of the body, they may grow into extragonadal germ cell tumors. These tumors may begin to grow anywhere in the body but usually begin in organs such as the pineal gland in the brain, in the mediastinum (area between the lungs), or in the retroperitoneum (the back wall of the abdomen).EnlargeExtragonadal germ cell tumors form in parts of the body other than the gonads (testicles or ovaries). This includes the pineal gland in the brain, the mediastinum (area between the lungs), and retroperitoneum (the back wall of the abdomen). Extragonadal germ cell tumors can be benign (noncancer) or malignant (cancer). Benign extragonadal germ cell tumors are called benign teratomas. These are more common than malignant extragonadal germ cell tumors and often are very large. Malignant extragonadal germ cell tumors are divided into two types, nonseminoma and seminoma. Nonseminomas tend to grow and spread more quickly than seminomas. They usually are large and cause signs and symptoms.
If untreated, malignant extragonadal germ cell tumors may spread to the lungs, lymph nodes, bones, liver, or other parts of the body. For information about germ cell tumors in the ovaries and testicles, see the following PDQ summaries: Anything that increases your chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for malignant extragonadal germ cell tumors include the following: Malignant extragonadal germ cell tumors may cause signs and symptoms as they grow into nearby areas. Other conditions may cause the same signs and symptoms. Check with your doctor if you have any of the following: The following tests and procedures may be used: Sometimes a CT scan and a PET scan are done at the same time. A PET scan is a procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do.
When a PET scan and CT scan are done at the same time, it is called a PET-CT. The prognosis and treatment options depend on the following: The extent or spread of cancer is usually described as stages. For extragonadal germ cell tumors, prognostic groups are used instead of stages. The tumors are grouped according to how well the cancer is expected to respond to treatment. It is important to know the prognostic group in order to plan treatment. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of tumor as the primary tumor. For example, if an extragonadal germ cell tumor spreads to the lung, the tumor cells in the lung are actually cancerous germ cells. The disease is metastatic extragonadal germ cell tumor, not lung cancer. A nonseminoma extragonadal germ cell tumor is in the good prognosis group if: A seminoma extragonadal germ cell tumor is in the good prognosis group if: A nonseminoma extragonadal germ cell tumor is in the intermediate prognosis group if: A seminoma extragonadal germ cell tumor is in the intermediate prognosis group if: A nonseminoma extragonadal germ cell tumor is in the poor prognosis group if: Seminoma extragonadal germ cell tumor does not have a poor prognosis group. Different types of treatments are available for patients with extragonadal germ cell tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat seminoma. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly in the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. Patients who have benign tumors or tumor remaining after chemotherapy or radiation therapy may need to have surgery. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. After initial treatment for extragonadal germ cell tumors, blood levels of AFP and other tumor markers continue to be checked to find out how well the treatment is working. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of benign teratomas is surgery. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of seminoma extragonadal germ cell tumors may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of nonseminoma extragonadal germ cell tumors may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of extragonadal germ cell tumors that are recurrent (come back after being treated) or refractory (do not get better during treatment) may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about extragonadal germ cell tumors, see the Extragonadal Germ Cell Tumor Home Page. For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of extragonadal germ cell tumors. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Extragonadal Germ Cell Tumors Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/extragonadal-germ-cell/patient/extragonadal-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389213] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Extragonadal Germ Cell Tumors Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | what research (or clinical trials) is being done for Extragonadal Germ Cell Tumors ? | New types of treatment are being tested in clinical trials.
This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. High-dose chemotherapy with stem cell transplant High-dose chemotherapy with stem cell transplant is a method of giving high doses of chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells.
Patients may want to think about taking part in a clinical trial.
For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.
Patients can enter clinical trials before, during, or after starting their cancer treatment.
Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. |
Screening is looking for cancer before a person has any symptoms. This can help find
cancer at an early stage. When abnormal tissue or cancer is found early, it may
be easier to treat. By the time symptoms appear, cancer may have begun
to spread. Scientists are trying to better understand which
people are more likely to get certain types of cancer. They also study the things
we do and the things around us to see if they cause cancer. This
information helps doctors recommend who should be screened for cancer, which
screening tests should be used, and how often the tests should be done. It is important to remember that your doctor does not necessarily
think you have cancer if he or she suggests a screening test. Screening
tests are given when you have no cancer symptoms. Screening tests may be repeated on a regular basis. If a screening test result is abnormal, you may need to have more tests done to find out if you have cancer. These are called diagnostic tests. The colon and rectum are parts of the body's digestive system. The digestive system removes and
processes nutrients (vitamins, minerals, carbohydrates, fats, proteins, and
water) from foods and helps pass waste material out of the body. The digestive
system is made up of the mouth, throat, esophagus,
stomach, and the
small and large
intestines. The colon (large bowel) is the first part of the large intestine and is about 5 feet long. Together, the rectum and anal canal make up the last part of the large intestine and are 6-8 inches long. The anal
canal ends at the anus (the opening
of the large intestine to the outside of the body).EnlargeAnatomy of the lower gastrointestinal (digestive) system showing the colon, rectum, and anus. Other organs that make up the digestive system are also shown. Cancer that begins in the colon is called colon cancer, and cancer
that begins in the rectum is called rectal cancer. Cancer that begins in either of
these organs may also be called colorectal cancer. See the following PDQ summaries for more information about colorectal cancer: Between 2014 and 2018, the number of new colorectal cancer cases in the United States decreased slightly per year in patients aged 50 years and older, but increased slightly per year in patients younger than 50 years. From 2015 to 2019, deaths from colorectal cancer declined slightly each year. Colorectal cancer is found more often in men than
in women. Anything that increases your chance of getting a disease
is called a risk factor. Anything that decreases your chance of getting a disease is called a protective factor. For information about risk factors and protective factors for colorectal cancer, see the PDQ summary on Colorectal Cancer Prevention. Scientists study screening tests to find those with the fewest harms and most benefits. Cancer screening trials also are meant to show whether early detection (finding cancer before it causes symptoms) helps a person live longer or decreases a person's chance of dying from the disease. For some types of cancer, the chance of recovery is better if the disease is found and treated at an early stage. A fecal occult blood test (FOBT) is a test to check stool (solid waste) for blood that can only be seen with a microscope. A small sample of stool is placed on a special card or in a special container and returned to the doctor or laboratory for testing. Blood in the stool may be a sign of polyps, cancer, or other conditions. There are two types of FOBTs: Sigmoidoscopy is a procedure to look inside the rectum and sigmoid (lower) colon for polyps, abnormal areas, or cancer. A sigmoidoscope is inserted through the rectum into the sigmoid colon. A sigmoidoscope is a thin, tube-like instrument with a light and a lens for viewing. It may also have a tool to remove polyps or tissue samples, which are checked under a microscope for signs of cancer.EnlargeSigmoidoscopy. A thin, lighted tube is inserted through the anus and rectum and into the lower part of the colon to look for abnormal areas. Colonoscopy is a procedure to look inside the rectum and colon for polyps, abnormal areas, or cancer. A colonoscope is inserted through the rectum into the colon. A colonoscope is a thin, tube-like instrument with a light and a lens for viewing. It may also have a tool to remove polyps or tissue samples, which are checked under a microscope for signs of cancer.EnlargeColonoscopy. A thin, lighted tube is inserted through the anus and rectum and into the colon to look for abnormal areas. Virtual colonoscopy is a procedure that uses a series of x-rays called computed tomography to make a series of pictures of the
colon. A computer puts the pictures together to create detailed images that may
show polyps and anything else that seems unusual on the inside surface of the colon. This test is also called computed tomography colonography or CTC. Clinical trials are comparing
virtual colonoscopy with other colorectal cancer screening tests. Some clinical trials are testing whether drinking a contrast material that coats the stool, instead of using laxatives to empty the colon, shows polyps clearly. This test checks DNA in stool cells for genetic changes that may be a sign of colorectal cancer. A digital rectal exam (DRE) is an exam of the rectum that may be done as part of a routine physical exam. A doctor or nurse inserts a lubricated, gloved finger into the lower part of the rectum to feel for lumps or anything else that seems unusual. Study results have shown that DRE does not work as a screening method for colorectal cancer. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Decisions about screening tests can be difficult. Not all screening tests are helpful and most have risks. Different screening tests have different risks or harms. Screening tests may cause anxiety when you are thinking about or getting ready for the test or when there is a positive test result. Before having any screening test, you may
want to discuss the test with your doctor. It is important to know the risks of
the test and whether it has been proven to reduce the risk of dying from
cancer. Talk to your doctor about your risk for colorectal cancer and the need for screening tests. Screening test results may appear to be normal even though colorectal cancer is present. A person who receives a false-negative test result (one that
shows there is no cancer when there really is) may delay seeking medical
care even if there are symptoms. Screening test results may appear to be abnormal even though no
cancer is present. A false-positive test result (one that shows there is cancer when there really isn't) can cause anxiety and is usually followed by more tests (such as
biopsy), which also have risks. Serious problems caused by colonoscopy are rare, but can include tears in the lining of the colon and bleeding. These problems can be serious and need to be treated in a hospital. Tearing of the lining of the colon and bleeding occur more often when a biopsy or polypectomy is done. Sedation is used to decrease the discomfort from the procedure. Sedation may cause heart and lung problems, such as irregular heartbeat, heart attack, or trouble breathing. There are fewer complications with a sigmoidoscopy than with a colonoscopy. Although tears in the lining of the colon and bleeding can occur, they are less common than with a colonoscopy. There is usually no sedation with sigmoidoscopy, lowering the risk of complications. Virtual colonoscopy has fewer possible physical harms than either colonoscopy or sigmoidoscopy. The harms of being exposed to radiation from x-rays used in virtual colonoscopy are not known. Virtual colonoscopy often finds problems with organs other than the colon, including the kidneys, chest, liver, ovaries, spleen, and pancreas. Some of these findings lead to more testing, such as colonoscopy, that may not improve the patient's health. The results of an FOBT or DNA stool test may appear to be abnormal even though no cancer is found. A positive test result may lead to more testing, including colonoscopy. Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about colorectal cancer screening. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Screening and Prevention Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Screening and Prevention Editorial Board. PDQ Colorectal Cancer Screening. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/colorectal/patient/colorectal-screening-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389230] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Colorectal Cancer Screening (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is (are) Colorectal Cancer ? | Key Points
- Colorectal cancer is a disease in which malignant (cancer) cells form in the tissues of the colon or the rectum. - Colorectal cancer is the second leading cause of death from cancer in the United States. - Different factors increase or decrease the risk of getting colorectal cancer.
Colorectal cancer is a disease in which malignant (cancer) cells form in the tissues of the colon or the rectum.
The colon and rectum are parts of the body's digestive system. The digestive system removes and processes nutrients (vitamins, minerals, carbohydrates, fats, proteins, and water) from foods and helps pass waste material out of the body. The digestive system is made up of the mouth, throat, esophagus, stomach, and the small and large intestines. The colon (large bowel) is the first part of the large intestine and is about 5 feet long. Together, the rectum and anal canal make up the last part of the large intestine and are 6-8 inches long. The anal canal ends at the anus (the opening of the large intestine to the outside of the body). Cancer that begins in the colon is called colon cancer, and cancer that begins in the rectum is called rectal cancer. Cancer that begins in either of these organs may also be called colorectal cancer. See the following PDQ summaries for more information about colorectal cancer: - Colorectal Cancer Prevention - Colon Cancer Treatment - Rectal Cancer Treatment - Genetics of Colorectal Cancer
Colorectal cancer is the second leading cause of death from cancer in the United States.
The number of new colorectal cancer cases and the number of deaths from colorectal cancer are decreasing a little bit each year. But in adults younger than 50 years, there has been a small increase in the number of new cases each year since 1998. Colorectal cancer is found more often in men than in women. |
Screening is looking for cancer before a person has any symptoms. This can help find
cancer at an early stage. When abnormal tissue or cancer is found early, it may
be easier to treat. By the time symptoms appear, cancer may have begun
to spread. Scientists are trying to better understand which
people are more likely to get certain types of cancer. They also study the things
we do and the things around us to see if they cause cancer. This
information helps doctors recommend who should be screened for cancer, which
screening tests should be used, and how often the tests should be done. It is important to remember that your doctor does not necessarily
think you have cancer if he or she suggests a screening test. Screening
tests are given when you have no cancer symptoms. Screening tests may be repeated on a regular basis. If a screening test result is abnormal, you may need to have more tests done to find out if you have cancer. These are called diagnostic tests. The colon and rectum are parts of the body's digestive system. The digestive system removes and
processes nutrients (vitamins, minerals, carbohydrates, fats, proteins, and
water) from foods and helps pass waste material out of the body. The digestive
system is made up of the mouth, throat, esophagus,
stomach, and the
small and large
intestines. The colon (large bowel) is the first part of the large intestine and is about 5 feet long. Together, the rectum and anal canal make up the last part of the large intestine and are 6-8 inches long. The anal
canal ends at the anus (the opening
of the large intestine to the outside of the body).EnlargeAnatomy of the lower gastrointestinal (digestive) system showing the colon, rectum, and anus. Other organs that make up the digestive system are also shown. Cancer that begins in the colon is called colon cancer, and cancer
that begins in the rectum is called rectal cancer. Cancer that begins in either of
these organs may also be called colorectal cancer. See the following PDQ summaries for more information about colorectal cancer: Between 2014 and 2018, the number of new colorectal cancer cases in the United States decreased slightly per year in patients aged 50 years and older, but increased slightly per year in patients younger than 50 years. From 2015 to 2019, deaths from colorectal cancer declined slightly each year. Colorectal cancer is found more often in men than
in women. Anything that increases your chance of getting a disease
is called a risk factor. Anything that decreases your chance of getting a disease is called a protective factor. For information about risk factors and protective factors for colorectal cancer, see the PDQ summary on Colorectal Cancer Prevention. Scientists study screening tests to find those with the fewest harms and most benefits. Cancer screening trials also are meant to show whether early detection (finding cancer before it causes symptoms) helps a person live longer or decreases a person's chance of dying from the disease. For some types of cancer, the chance of recovery is better if the disease is found and treated at an early stage. A fecal occult blood test (FOBT) is a test to check stool (solid waste) for blood that can only be seen with a microscope. A small sample of stool is placed on a special card or in a special container and returned to the doctor or laboratory for testing. Blood in the stool may be a sign of polyps, cancer, or other conditions. There are two types of FOBTs: Sigmoidoscopy is a procedure to look inside the rectum and sigmoid (lower) colon for polyps, abnormal areas, or cancer. A sigmoidoscope is inserted through the rectum into the sigmoid colon. A sigmoidoscope is a thin, tube-like instrument with a light and a lens for viewing. It may also have a tool to remove polyps or tissue samples, which are checked under a microscope for signs of cancer.EnlargeSigmoidoscopy. A thin, lighted tube is inserted through the anus and rectum and into the lower part of the colon to look for abnormal areas. Colonoscopy is a procedure to look inside the rectum and colon for polyps, abnormal areas, or cancer. A colonoscope is inserted through the rectum into the colon. A colonoscope is a thin, tube-like instrument with a light and a lens for viewing. It may also have a tool to remove polyps or tissue samples, which are checked under a microscope for signs of cancer.EnlargeColonoscopy. A thin, lighted tube is inserted through the anus and rectum and into the colon to look for abnormal areas. Virtual colonoscopy is a procedure that uses a series of x-rays called computed tomography to make a series of pictures of the
colon. A computer puts the pictures together to create detailed images that may
show polyps and anything else that seems unusual on the inside surface of the colon. This test is also called computed tomography colonography or CTC. Clinical trials are comparing
virtual colonoscopy with other colorectal cancer screening tests. Some clinical trials are testing whether drinking a contrast material that coats the stool, instead of using laxatives to empty the colon, shows polyps clearly. This test checks DNA in stool cells for genetic changes that may be a sign of colorectal cancer. A digital rectal exam (DRE) is an exam of the rectum that may be done as part of a routine physical exam. A doctor or nurse inserts a lubricated, gloved finger into the lower part of the rectum to feel for lumps or anything else that seems unusual. Study results have shown that DRE does not work as a screening method for colorectal cancer. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Decisions about screening tests can be difficult. Not all screening tests are helpful and most have risks. Different screening tests have different risks or harms. Screening tests may cause anxiety when you are thinking about or getting ready for the test or when there is a positive test result. Before having any screening test, you may
want to discuss the test with your doctor. It is important to know the risks of
the test and whether it has been proven to reduce the risk of dying from
cancer. Talk to your doctor about your risk for colorectal cancer and the need for screening tests. Screening test results may appear to be normal even though colorectal cancer is present. A person who receives a false-negative test result (one that
shows there is no cancer when there really is) may delay seeking medical
care even if there are symptoms. Screening test results may appear to be abnormal even though no
cancer is present. A false-positive test result (one that shows there is cancer when there really isn't) can cause anxiety and is usually followed by more tests (such as
biopsy), which also have risks. Serious problems caused by colonoscopy are rare, but can include tears in the lining of the colon and bleeding. These problems can be serious and need to be treated in a hospital. Tearing of the lining of the colon and bleeding occur more often when a biopsy or polypectomy is done. Sedation is used to decrease the discomfort from the procedure. Sedation may cause heart and lung problems, such as irregular heartbeat, heart attack, or trouble breathing. There are fewer complications with a sigmoidoscopy than with a colonoscopy. Although tears in the lining of the colon and bleeding can occur, they are less common than with a colonoscopy. There is usually no sedation with sigmoidoscopy, lowering the risk of complications. Virtual colonoscopy has fewer possible physical harms than either colonoscopy or sigmoidoscopy. The harms of being exposed to radiation from x-rays used in virtual colonoscopy are not known. Virtual colonoscopy often finds problems with organs other than the colon, including the kidneys, chest, liver, ovaries, spleen, and pancreas. Some of these findings lead to more testing, such as colonoscopy, that may not improve the patient's health. The results of an FOBT or DNA stool test may appear to be abnormal even though no cancer is found. A positive test result may lead to more testing, including colonoscopy. Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about colorectal cancer screening. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Screening and Prevention Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Screening and Prevention Editorial Board. PDQ Colorectal Cancer Screening. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/colorectal/patient/colorectal-screening-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389230] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Colorectal Cancer Screening (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | Who is at risk for Colorectal Cancer? ? | Different factors increase or decrease the risk of getting colorectal cancer. Anything that increases your chance of getting a disease is called a risk factor. Anything that decreases your chance of getting a disease is called a protective factor. For information about risk factors and protective factors for colorectal cancer, see the PDQ summary on Colorectal Cancer Prevention. |
Rhabdomyosarcoma is a type of sarcoma. Sarcoma is cancer of soft tissue (such as muscle), connective tissue (such as tendon or cartilage), or bone. Rhabdomyosarcoma usually begins in muscles that are attached to bones and that help the body move, but it may begin in many places in the body. Rhabdomyosarcoma is the most common type of soft tissue sarcoma in children. There are four main types of rhabdomyosarcoma: See the following PDQ treatment summaries for information about other types of soft tissue sarcoma: Anything that increases the risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your child’s doctor if you think your child may be at risk. Risk factors for rhabdomyosarcoma include having the following inherited diseases: Children who had a high birth weight or were larger than expected at birth may have an increased risk of embryonal rhabdomyosarcoma. In most cases, the cause of rhabdomyosarcoma is not known. Signs and symptoms may be caused by childhood rhabdomyosarcoma or by other conditions. The signs and symptoms that occur depend on where the cancer forms. Check with your child's doctor if your child has any of the following: The diagnostic tests that are done depend in part on where the cancer forms. The following tests and procedures may be used: If these tests show there may be a rhabdomyosarcoma, a biopsy is done. A biopsy is the removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. Because treatment depends on the type of rhabdomyosarcoma, biopsy samples should be checked by a pathologist who has experience in diagnosing rhabdomyosarcoma. One of the following types of biopsies may be used: The following tests may be done on the sample of tissue that is removed: The prognosis and treatment options depend on the following: For patients with recurrent cancer, prognosis and treatment also depend on the following: The process used to find out if cancer has spread within the tissue or to other
parts of the body is called staging. It is important to know the stage in order to plan treatment. The doctor will use results of the diagnostic tests to help find out the stage of the disease. Treatment for childhood rhabdomyosarcoma is based in part on the stage and sometimes on the amount of cancer that remains after surgery to remove the tumor. The pathologist will use a microscope to check the tissues removed during surgery, including tissue samples from the edges of the areas where the cancer was removed and the lymph nodes. This is done to see if all the cancer cells were taken out during the surgery. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if rhabdomyosarcoma spreads to the lung, the cancer cells in the lung are actually rhabdomyosarcoma cells. The disease is metastatic rhabdomyosarcoma, not lung cancer. Childhood rhabdomyosarcoma is staged by using three different ways to describe the cancer: In stage 1, the tumor is any size, may have spread to lymph nodes, and is found in only one of the following "favorable" sites: Rhabdomyosarcoma that forms in a "favorable" site has a better prognosis. If the site where cancer occurs is not one of the favorable sites listed above, it is said to be an "unfavorable" site. In stage 2, cancer is found in an "unfavorable" site (any one area not described as "favorable" in stage 1). The tumor is no larger than 5 centimeters and has not spread to lymph nodes.
In stage 3, cancer is found in an "unfavorable" site (any one area not described as "favorable" in stage 1) and one of the following is true:
In stage 4, the tumor may be any size and cancer may have spread to nearby lymph nodes. Cancer has spread to distant parts of the body, such as the lung, bone marrow, or bone. Cancer was found only in the place where it started and it was completely removed by surgery. Tissue was taken from the edges of where the tumor was removed. This tissue was checked under a microscope by a pathologist and no cancer cells were found. Group II is divided into groups IIA, IIB, and IIC. Cancer was partly removed by biopsy or surgery but there is tumor remaining that can be seen with the eye. Cancer had spread to distant parts of the body when the cancer was diagnosed. The risk group describes the chance that rhabdomyosarcoma will recur (come back). Every child treated for rhabdomyosarcoma should receive chemotherapy to decrease the chance cancer will recur. The type of anticancer drug, dose, and the number of treatments given depends on whether the child has low-risk, intermediate-risk, or high-risk rhabdomyosarcoma. The following risk groups are used: Low-risk childhood rhabdomyosarcoma is one of the following: Intermediate-risk childhood rhabdomyosarcoma is one of the following: High-risk childhood rhabdomyosarcoma may be the embryonal type or the alveolar type. It may have spread to nearby lymph nodes and has spread to one or more of the following: Progressive rhabdomyosarcoma is cancer that continues to grow, spread, or get worse. Progressive disease may be a sign that the cancer has become refractory to treatment. Recurrent childhood rhabdomyosarcoma is cancer that has recurred (come back) after it has been treated. The cancer may come back in the same place or in other parts of the body, such as the lung, bone, or bone marrow. Less often, rhabdomyosarcoma may come back in the breast in adolescent females or in the liver. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment. Because rhabdomyosarcoma can form in many different parts of the body, many different kinds of treatments are used. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other health care providers who are experts in treating children with rhabdomyosarcoma and who specialize in certain areas of medicine. These may include the following specialists: Surgery (removing the cancer in an operation) is used to treat childhood rhabdomyosarcoma. A type of surgery called wide local excision is often done. A wide local excision is the removal of tumor and some of the tissue around it, including the lymph nodes. A second surgery may be needed to remove all the cancer. Whether surgery is done and the type of surgery done depends on the following: In most children with rhabdomyosarcoma, it is not possible to remove all of the tumor by surgery. Rhabdomyosarcoma can form in many different places in the body and the surgery will be different for each site. Surgery to treat rhabdomyosarcoma of the eye or genital areas is usually a biopsy. Chemotherapy, and sometimes radiation therapy, may be given before surgery to shrink large tumors. After the doctor removes all the cancer that can be seen at the time of the surgery, patients will be given chemotherapy after surgery to kill any cancer cells that are left. Radiation therapy may also be given. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or stop them from growing. There are two types of radiation therapy: The type and amount of radiation therapy and when it is given depends on the age of the child, the type of rhabdomyosarcoma, where in the body the tumor started, how much tumor remained after surgery, and whether there is tumor in the nearby lymph nodes. External radiation therapy is usually used to treat childhood rhabdomyosarcoma but in certain cases internal radiation therapy is used. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Chemotherapy may also be given to shrink the tumor before surgery in order to save as much healthy tissue as possible. This is called neoadjuvant chemotherapy. Every child treated for rhabdomyosarcoma should receive systemic chemotherapy to decrease the chance the cancer will recur. The type of anticancer drug, dose, and the number of treatments given depends on the age of the child and whether the child has low-risk, intermediate-risk, or high-risk rhabdomyosarcoma. See Drugs Approved for Rhabdomyosarcoma for more information. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. There are different types of immunotherapy: Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. There are different types of targeted therapy: For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment for rhabdomyosarcoma may include: Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child and the types of symptoms to expect after cancer treatment has ended. (See the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information.) For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. The treatment of newly diagnosed childhood rhabdomyosarcoma often includes surgery, radiation therapy, and chemotherapy. The order that these treatments are given depends on where in the body the tumor started, the size of the tumor, the type of tumor, and whether the tumor has spread to lymph nodes or other parts of the body. See the Treatment Option Overview section of this summary for more information about surgery, radiation therapy, and chemotherapy used to treat children with rhabdomyosarcoma. Rhabdomyosarcoma of the brain and head and neck Rhabdomyosarcoma of the arms or legs Rhabdomyosarcoma of the chest, abdomen, or pelvis Rhabdomyosarcoma of the kidney Rhabdomyosarcoma of the bladder or prostate Rhabdomyosarcoma of the area near the testicles Rhabdomyosarcoma of the vulva, vagina, uterus, or ovary Clinical Trials For Childhood Rhabdomyosarcoma Metastatic rhabdomyosarcoma Treatment, such as chemotherapy followed by radiation therapy or surgery to remove the tumor, is given to the site where the tumor first formed. If the cancer has spread to the brain, spinal cord, or lungs, radiation therapy may also be given to the sites where the cancer has spread. The following treatment is being studied for metastatic rhabdomyosarcoma: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for progressive or recurrent childhood rhabdomyosarcoma are based on many factors, including where in the body the cancer has come back, what type of treatment the child had before, and the needs of the child. Treatment of progressive or recurrent rhabdomyosarcoma may include one or more of the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about childhood rhabdomyosarcoma, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of childhood rhabdomyosarcoma. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Childhood Rhabdomyosarcoma Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/soft-tissue-sarcoma/patient/rhabdomyosarcoma-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389279] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Childhood Rhabdomyosarcoma Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | Who is at risk for Childhood Rhabdomyosarcoma? ? | Certain genetic conditions increase the risk of childhood rhabdomyosarcoma. Anything that increases the risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your childs doctor if you think your child may be at risk. Risk factors for rhabdomyosarcoma include having the following inherited diseases: - Li-Fraumeni syndrome. - Pleuropulmonary blastoma. - Neurofibromatosis type 1 (NF1). - Costello syndrome. - Beckwith-Wiedemann syndrome. - Noonan syndrome. Children who had a high birth weight or were larger than expected at birth may have an increased risk of embryonal rhabdomyosarcoma. In most cases, the cause of rhabdomyosarcoma is not known. |
Rhabdomyosarcoma is a type of sarcoma. Sarcoma is cancer of soft tissue (such as muscle), connective tissue (such as tendon or cartilage), or bone. Rhabdomyosarcoma usually begins in muscles that are attached to bones and that help the body move, but it may begin in many places in the body. Rhabdomyosarcoma is the most common type of soft tissue sarcoma in children. There are four main types of rhabdomyosarcoma: See the following PDQ treatment summaries for information about other types of soft tissue sarcoma: Anything that increases the risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your child’s doctor if you think your child may be at risk. Risk factors for rhabdomyosarcoma include having the following inherited diseases: Children who had a high birth weight or were larger than expected at birth may have an increased risk of embryonal rhabdomyosarcoma. In most cases, the cause of rhabdomyosarcoma is not known. Signs and symptoms may be caused by childhood rhabdomyosarcoma or by other conditions. The signs and symptoms that occur depend on where the cancer forms. Check with your child's doctor if your child has any of the following: The diagnostic tests that are done depend in part on where the cancer forms. The following tests and procedures may be used: If these tests show there may be a rhabdomyosarcoma, a biopsy is done. A biopsy is the removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. Because treatment depends on the type of rhabdomyosarcoma, biopsy samples should be checked by a pathologist who has experience in diagnosing rhabdomyosarcoma. One of the following types of biopsies may be used: The following tests may be done on the sample of tissue that is removed: The prognosis and treatment options depend on the following: For patients with recurrent cancer, prognosis and treatment also depend on the following: The process used to find out if cancer has spread within the tissue or to other
parts of the body is called staging. It is important to know the stage in order to plan treatment. The doctor will use results of the diagnostic tests to help find out the stage of the disease. Treatment for childhood rhabdomyosarcoma is based in part on the stage and sometimes on the amount of cancer that remains after surgery to remove the tumor. The pathologist will use a microscope to check the tissues removed during surgery, including tissue samples from the edges of the areas where the cancer was removed and the lymph nodes. This is done to see if all the cancer cells were taken out during the surgery. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if rhabdomyosarcoma spreads to the lung, the cancer cells in the lung are actually rhabdomyosarcoma cells. The disease is metastatic rhabdomyosarcoma, not lung cancer. Childhood rhabdomyosarcoma is staged by using three different ways to describe the cancer: In stage 1, the tumor is any size, may have spread to lymph nodes, and is found in only one of the following "favorable" sites: Rhabdomyosarcoma that forms in a "favorable" site has a better prognosis. If the site where cancer occurs is not one of the favorable sites listed above, it is said to be an "unfavorable" site. In stage 2, cancer is found in an "unfavorable" site (any one area not described as "favorable" in stage 1). The tumor is no larger than 5 centimeters and has not spread to lymph nodes.
In stage 3, cancer is found in an "unfavorable" site (any one area not described as "favorable" in stage 1) and one of the following is true:
In stage 4, the tumor may be any size and cancer may have spread to nearby lymph nodes. Cancer has spread to distant parts of the body, such as the lung, bone marrow, or bone. Cancer was found only in the place where it started and it was completely removed by surgery. Tissue was taken from the edges of where the tumor was removed. This tissue was checked under a microscope by a pathologist and no cancer cells were found. Group II is divided into groups IIA, IIB, and IIC. Cancer was partly removed by biopsy or surgery but there is tumor remaining that can be seen with the eye. Cancer had spread to distant parts of the body when the cancer was diagnosed. The risk group describes the chance that rhabdomyosarcoma will recur (come back). Every child treated for rhabdomyosarcoma should receive chemotherapy to decrease the chance cancer will recur. The type of anticancer drug, dose, and the number of treatments given depends on whether the child has low-risk, intermediate-risk, or high-risk rhabdomyosarcoma. The following risk groups are used: Low-risk childhood rhabdomyosarcoma is one of the following: Intermediate-risk childhood rhabdomyosarcoma is one of the following: High-risk childhood rhabdomyosarcoma may be the embryonal type or the alveolar type. It may have spread to nearby lymph nodes and has spread to one or more of the following: Progressive rhabdomyosarcoma is cancer that continues to grow, spread, or get worse. Progressive disease may be a sign that the cancer has become refractory to treatment. Recurrent childhood rhabdomyosarcoma is cancer that has recurred (come back) after it has been treated. The cancer may come back in the same place or in other parts of the body, such as the lung, bone, or bone marrow. Less often, rhabdomyosarcoma may come back in the breast in adolescent females or in the liver. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment. Because rhabdomyosarcoma can form in many different parts of the body, many different kinds of treatments are used. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other health care providers who are experts in treating children with rhabdomyosarcoma and who specialize in certain areas of medicine. These may include the following specialists: Surgery (removing the cancer in an operation) is used to treat childhood rhabdomyosarcoma. A type of surgery called wide local excision is often done. A wide local excision is the removal of tumor and some of the tissue around it, including the lymph nodes. A second surgery may be needed to remove all the cancer. Whether surgery is done and the type of surgery done depends on the following: In most children with rhabdomyosarcoma, it is not possible to remove all of the tumor by surgery. Rhabdomyosarcoma can form in many different places in the body and the surgery will be different for each site. Surgery to treat rhabdomyosarcoma of the eye or genital areas is usually a biopsy. Chemotherapy, and sometimes radiation therapy, may be given before surgery to shrink large tumors. After the doctor removes all the cancer that can be seen at the time of the surgery, patients will be given chemotherapy after surgery to kill any cancer cells that are left. Radiation therapy may also be given. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or stop them from growing. There are two types of radiation therapy: The type and amount of radiation therapy and when it is given depends on the age of the child, the type of rhabdomyosarcoma, where in the body the tumor started, how much tumor remained after surgery, and whether there is tumor in the nearby lymph nodes. External radiation therapy is usually used to treat childhood rhabdomyosarcoma but in certain cases internal radiation therapy is used. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Chemotherapy may also be given to shrink the tumor before surgery in order to save as much healthy tissue as possible. This is called neoadjuvant chemotherapy. Every child treated for rhabdomyosarcoma should receive systemic chemotherapy to decrease the chance the cancer will recur. The type of anticancer drug, dose, and the number of treatments given depends on the age of the child and whether the child has low-risk, intermediate-risk, or high-risk rhabdomyosarcoma. See Drugs Approved for Rhabdomyosarcoma for more information. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. There are different types of immunotherapy: Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. There are different types of targeted therapy: For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment for rhabdomyosarcoma may include: Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child and the types of symptoms to expect after cancer treatment has ended. (See the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information.) For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. The treatment of newly diagnosed childhood rhabdomyosarcoma often includes surgery, radiation therapy, and chemotherapy. The order that these treatments are given depends on where in the body the tumor started, the size of the tumor, the type of tumor, and whether the tumor has spread to lymph nodes or other parts of the body. See the Treatment Option Overview section of this summary for more information about surgery, radiation therapy, and chemotherapy used to treat children with rhabdomyosarcoma. Rhabdomyosarcoma of the brain and head and neck Rhabdomyosarcoma of the arms or legs Rhabdomyosarcoma of the chest, abdomen, or pelvis Rhabdomyosarcoma of the kidney Rhabdomyosarcoma of the bladder or prostate Rhabdomyosarcoma of the area near the testicles Rhabdomyosarcoma of the vulva, vagina, uterus, or ovary Clinical Trials For Childhood Rhabdomyosarcoma Metastatic rhabdomyosarcoma Treatment, such as chemotherapy followed by radiation therapy or surgery to remove the tumor, is given to the site where the tumor first formed. If the cancer has spread to the brain, spinal cord, or lungs, radiation therapy may also be given to the sites where the cancer has spread. The following treatment is being studied for metastatic rhabdomyosarcoma: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for progressive or recurrent childhood rhabdomyosarcoma are based on many factors, including where in the body the cancer has come back, what type of treatment the child had before, and the needs of the child. Treatment of progressive or recurrent rhabdomyosarcoma may include one or more of the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about childhood rhabdomyosarcoma, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of childhood rhabdomyosarcoma. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Childhood Rhabdomyosarcoma Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/soft-tissue-sarcoma/patient/rhabdomyosarcoma-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389279] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Childhood Rhabdomyosarcoma Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the symptoms of Childhood Rhabdomyosarcoma ? | A sign of childhood rhabdomyosarcoma is a lump or swelling that keeps getting bigger. Signs and symptoms may be caused by childhood rhabdomyosarcoma or by other conditions. The signs and symptoms that occur depend on where the cancer forms. Check with your child's doctor if your child has any of the following: - A lump or swelling that keeps getting bigger or does not go away. It may be painful. - Bulging of the eye. - Headache. - Trouble urinating or having bowel movements. - Blood in the urine. - Bleeding in the nose, throat, vagina, or rectum. |
Rhabdomyosarcoma is a type of sarcoma. Sarcoma is cancer of soft tissue (such as muscle), connective tissue (such as tendon or cartilage), or bone. Rhabdomyosarcoma usually begins in muscles that are attached to bones and that help the body move, but it may begin in many places in the body. Rhabdomyosarcoma is the most common type of soft tissue sarcoma in children. There are four main types of rhabdomyosarcoma: See the following PDQ treatment summaries for information about other types of soft tissue sarcoma: Anything that increases the risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your child’s doctor if you think your child may be at risk. Risk factors for rhabdomyosarcoma include having the following inherited diseases: Children who had a high birth weight or were larger than expected at birth may have an increased risk of embryonal rhabdomyosarcoma. In most cases, the cause of rhabdomyosarcoma is not known. Signs and symptoms may be caused by childhood rhabdomyosarcoma or by other conditions. The signs and symptoms that occur depend on where the cancer forms. Check with your child's doctor if your child has any of the following: The diagnostic tests that are done depend in part on where the cancer forms. The following tests and procedures may be used: If these tests show there may be a rhabdomyosarcoma, a biopsy is done. A biopsy is the removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. Because treatment depends on the type of rhabdomyosarcoma, biopsy samples should be checked by a pathologist who has experience in diagnosing rhabdomyosarcoma. One of the following types of biopsies may be used: The following tests may be done on the sample of tissue that is removed: The prognosis and treatment options depend on the following: For patients with recurrent cancer, prognosis and treatment also depend on the following: The process used to find out if cancer has spread within the tissue or to other
parts of the body is called staging. It is important to know the stage in order to plan treatment. The doctor will use results of the diagnostic tests to help find out the stage of the disease. Treatment for childhood rhabdomyosarcoma is based in part on the stage and sometimes on the amount of cancer that remains after surgery to remove the tumor. The pathologist will use a microscope to check the tissues removed during surgery, including tissue samples from the edges of the areas where the cancer was removed and the lymph nodes. This is done to see if all the cancer cells were taken out during the surgery. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if rhabdomyosarcoma spreads to the lung, the cancer cells in the lung are actually rhabdomyosarcoma cells. The disease is metastatic rhabdomyosarcoma, not lung cancer. Childhood rhabdomyosarcoma is staged by using three different ways to describe the cancer: In stage 1, the tumor is any size, may have spread to lymph nodes, and is found in only one of the following "favorable" sites: Rhabdomyosarcoma that forms in a "favorable" site has a better prognosis. If the site where cancer occurs is not one of the favorable sites listed above, it is said to be an "unfavorable" site. In stage 2, cancer is found in an "unfavorable" site (any one area not described as "favorable" in stage 1). The tumor is no larger than 5 centimeters and has not spread to lymph nodes.
In stage 3, cancer is found in an "unfavorable" site (any one area not described as "favorable" in stage 1) and one of the following is true:
In stage 4, the tumor may be any size and cancer may have spread to nearby lymph nodes. Cancer has spread to distant parts of the body, such as the lung, bone marrow, or bone. Cancer was found only in the place where it started and it was completely removed by surgery. Tissue was taken from the edges of where the tumor was removed. This tissue was checked under a microscope by a pathologist and no cancer cells were found. Group II is divided into groups IIA, IIB, and IIC. Cancer was partly removed by biopsy or surgery but there is tumor remaining that can be seen with the eye. Cancer had spread to distant parts of the body when the cancer was diagnosed. The risk group describes the chance that rhabdomyosarcoma will recur (come back). Every child treated for rhabdomyosarcoma should receive chemotherapy to decrease the chance cancer will recur. The type of anticancer drug, dose, and the number of treatments given depends on whether the child has low-risk, intermediate-risk, or high-risk rhabdomyosarcoma. The following risk groups are used: Low-risk childhood rhabdomyosarcoma is one of the following: Intermediate-risk childhood rhabdomyosarcoma is one of the following: High-risk childhood rhabdomyosarcoma may be the embryonal type or the alveolar type. It may have spread to nearby lymph nodes and has spread to one or more of the following: Progressive rhabdomyosarcoma is cancer that continues to grow, spread, or get worse. Progressive disease may be a sign that the cancer has become refractory to treatment. Recurrent childhood rhabdomyosarcoma is cancer that has recurred (come back) after it has been treated. The cancer may come back in the same place or in other parts of the body, such as the lung, bone, or bone marrow. Less often, rhabdomyosarcoma may come back in the breast in adolescent females or in the liver. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment. Because rhabdomyosarcoma can form in many different parts of the body, many different kinds of treatments are used. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other health care providers who are experts in treating children with rhabdomyosarcoma and who specialize in certain areas of medicine. These may include the following specialists: Surgery (removing the cancer in an operation) is used to treat childhood rhabdomyosarcoma. A type of surgery called wide local excision is often done. A wide local excision is the removal of tumor and some of the tissue around it, including the lymph nodes. A second surgery may be needed to remove all the cancer. Whether surgery is done and the type of surgery done depends on the following: In most children with rhabdomyosarcoma, it is not possible to remove all of the tumor by surgery. Rhabdomyosarcoma can form in many different places in the body and the surgery will be different for each site. Surgery to treat rhabdomyosarcoma of the eye or genital areas is usually a biopsy. Chemotherapy, and sometimes radiation therapy, may be given before surgery to shrink large tumors. After the doctor removes all the cancer that can be seen at the time of the surgery, patients will be given chemotherapy after surgery to kill any cancer cells that are left. Radiation therapy may also be given. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or stop them from growing. There are two types of radiation therapy: The type and amount of radiation therapy and when it is given depends on the age of the child, the type of rhabdomyosarcoma, where in the body the tumor started, how much tumor remained after surgery, and whether there is tumor in the nearby lymph nodes. External radiation therapy is usually used to treat childhood rhabdomyosarcoma but in certain cases internal radiation therapy is used. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Chemotherapy may also be given to shrink the tumor before surgery in order to save as much healthy tissue as possible. This is called neoadjuvant chemotherapy. Every child treated for rhabdomyosarcoma should receive systemic chemotherapy to decrease the chance the cancer will recur. The type of anticancer drug, dose, and the number of treatments given depends on the age of the child and whether the child has low-risk, intermediate-risk, or high-risk rhabdomyosarcoma. See Drugs Approved for Rhabdomyosarcoma for more information. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. There are different types of immunotherapy: Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. There are different types of targeted therapy: For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment for rhabdomyosarcoma may include: Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child and the types of symptoms to expect after cancer treatment has ended. (See the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information.) For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. The treatment of newly diagnosed childhood rhabdomyosarcoma often includes surgery, radiation therapy, and chemotherapy. The order that these treatments are given depends on where in the body the tumor started, the size of the tumor, the type of tumor, and whether the tumor has spread to lymph nodes or other parts of the body. See the Treatment Option Overview section of this summary for more information about surgery, radiation therapy, and chemotherapy used to treat children with rhabdomyosarcoma. Rhabdomyosarcoma of the brain and head and neck Rhabdomyosarcoma of the arms or legs Rhabdomyosarcoma of the chest, abdomen, or pelvis Rhabdomyosarcoma of the kidney Rhabdomyosarcoma of the bladder or prostate Rhabdomyosarcoma of the area near the testicles Rhabdomyosarcoma of the vulva, vagina, uterus, or ovary Clinical Trials For Childhood Rhabdomyosarcoma Metastatic rhabdomyosarcoma Treatment, such as chemotherapy followed by radiation therapy or surgery to remove the tumor, is given to the site where the tumor first formed. If the cancer has spread to the brain, spinal cord, or lungs, radiation therapy may also be given to the sites where the cancer has spread. The following treatment is being studied for metastatic rhabdomyosarcoma: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for progressive or recurrent childhood rhabdomyosarcoma are based on many factors, including where in the body the cancer has come back, what type of treatment the child had before, and the needs of the child. Treatment of progressive or recurrent rhabdomyosarcoma may include one or more of the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about childhood rhabdomyosarcoma, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of childhood rhabdomyosarcoma. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Childhood Rhabdomyosarcoma Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/soft-tissue-sarcoma/patient/rhabdomyosarcoma-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389279] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Childhood Rhabdomyosarcoma Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | How to diagnose Childhood Rhabdomyosarcoma ? | Diagnostic tests and a biopsy are used to detect (find) and diagnose childhood rhabdomyosarcoma. The diagnostic tests that are done depend in part on where the cancer forms. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - X-ray : An x-ray of the organs and bones inside the body, such as the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the abdomen, pelvis, or lymph nodes, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas of the body, such as the skull, brain, and lymph nodes. This procedure is also called nuclear magnetic resonance imaging (NMRI). - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. - Bone scan : A procedure to check if there are rapidly dividing cells, such as cancer cells, in the bone. A very small amount of radioactive material is injected into a vein and travels through the bloodstream. The radioactive material collects in the bones with cancer and is detected by a scanner. - Bone marrow aspiration and biopsy : The removal of bone marrow, blood, and a small piece of bone by inserting a hollow needle into the hipbone. Samples are removed from both hipbones. A pathologist views the bone marrow, blood, and bone under a microscope to look for signs of cancer. - Lumbar puncture : A procedure used to collect cerebrospinal fluid (CSF) from the spinal column. This is done by placing a needle between two bones in the spine and into the CSF around the spinal cord and removing a sample of the fluid. The sample of CSF is checked under a microscope for signs of cancer cells. This procedure is also called an LP or spinal tap. If these tests show there may be a rhabdomyosarcoma, a biopsy is done. A biopsy is the removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. Because treatment depends on the type of rhabdomyosarcoma, biopsy samples should be checked by a pathologist who has experience in diagnosing rhabdomyosarcoma. One of the following types of biopsies may be used: - Fine-needle aspiration (FNA) biopsy : The removal of tissue or fluid using a thin needle. - Core needle biopsy : The removal of tissue using a wide needle. This procedure may be guided using ultrasound, CT scan, or MRI. - Open biopsy : The removal of tissue through an incision (cut) made in the skin. - Sentinel lymph node biopsy : The removal of the sentinel lymph node during surgery. The sentinel lymph node is the first lymph node to receive lymphatic drainage from a tumor. It is the first lymph node the cancer is likely to spread to from the tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are not found, it may not be necessary to remove more lymph nodes. The following tests may be done on the sample of tissue that is removed: - Light microscopy: A laboratory test in which cells in a sample of tissue are viewed under regular and high-powered microscopes to look for certain changes in the cells. - Immunohistochemistry : A test that uses antibodies to check for certain antigens in a sample of tissue. The antibody is usually linked to a radioactive substance or a dye that causes the tissue to light up under a microscope. This type of test may be used to tell the difference between different types of cancer. - FISH (fluorescence in situ hybridization): A laboratory test used to look at genes or chromosomes in cells and tissues. Pieces of DNA that contain a fluorescent dye are made in the laboratory and added to cells or tissues on a glass slide. When these pieces of DNA attach to certain genes or areas of chromosomes on the slide, they light up when viewed under a microscope with a special light. This type of test is used to find certain gene changes. - Reverse transcriptionpolymerase chain reaction (RTPCR) test: A laboratory test in which cells in a sample of tissue are studied using chemicals to look for certain changes in the structure or function of genes. - Cytogenetic analysis : A laboratory test in which cells in a sample of tissue are viewed under a microscope to look for certain changes in the chromosomes. |
Rhabdomyosarcoma is a type of sarcoma. Sarcoma is cancer of soft tissue (such as muscle), connective tissue (such as tendon or cartilage), or bone. Rhabdomyosarcoma usually begins in muscles that are attached to bones and that help the body move, but it may begin in many places in the body. Rhabdomyosarcoma is the most common type of soft tissue sarcoma in children. There are four main types of rhabdomyosarcoma: See the following PDQ treatment summaries for information about other types of soft tissue sarcoma: Anything that increases the risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your child’s doctor if you think your child may be at risk. Risk factors for rhabdomyosarcoma include having the following inherited diseases: Children who had a high birth weight or were larger than expected at birth may have an increased risk of embryonal rhabdomyosarcoma. In most cases, the cause of rhabdomyosarcoma is not known. Signs and symptoms may be caused by childhood rhabdomyosarcoma or by other conditions. The signs and symptoms that occur depend on where the cancer forms. Check with your child's doctor if your child has any of the following: The diagnostic tests that are done depend in part on where the cancer forms. The following tests and procedures may be used: If these tests show there may be a rhabdomyosarcoma, a biopsy is done. A biopsy is the removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. Because treatment depends on the type of rhabdomyosarcoma, biopsy samples should be checked by a pathologist who has experience in diagnosing rhabdomyosarcoma. One of the following types of biopsies may be used: The following tests may be done on the sample of tissue that is removed: The prognosis and treatment options depend on the following: For patients with recurrent cancer, prognosis and treatment also depend on the following: The process used to find out if cancer has spread within the tissue or to other
parts of the body is called staging. It is important to know the stage in order to plan treatment. The doctor will use results of the diagnostic tests to help find out the stage of the disease. Treatment for childhood rhabdomyosarcoma is based in part on the stage and sometimes on the amount of cancer that remains after surgery to remove the tumor. The pathologist will use a microscope to check the tissues removed during surgery, including tissue samples from the edges of the areas where the cancer was removed and the lymph nodes. This is done to see if all the cancer cells were taken out during the surgery. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if rhabdomyosarcoma spreads to the lung, the cancer cells in the lung are actually rhabdomyosarcoma cells. The disease is metastatic rhabdomyosarcoma, not lung cancer. Childhood rhabdomyosarcoma is staged by using three different ways to describe the cancer: In stage 1, the tumor is any size, may have spread to lymph nodes, and is found in only one of the following "favorable" sites: Rhabdomyosarcoma that forms in a "favorable" site has a better prognosis. If the site where cancer occurs is not one of the favorable sites listed above, it is said to be an "unfavorable" site. In stage 2, cancer is found in an "unfavorable" site (any one area not described as "favorable" in stage 1). The tumor is no larger than 5 centimeters and has not spread to lymph nodes.
In stage 3, cancer is found in an "unfavorable" site (any one area not described as "favorable" in stage 1) and one of the following is true:
In stage 4, the tumor may be any size and cancer may have spread to nearby lymph nodes. Cancer has spread to distant parts of the body, such as the lung, bone marrow, or bone. Cancer was found only in the place where it started and it was completely removed by surgery. Tissue was taken from the edges of where the tumor was removed. This tissue was checked under a microscope by a pathologist and no cancer cells were found. Group II is divided into groups IIA, IIB, and IIC. Cancer was partly removed by biopsy or surgery but there is tumor remaining that can be seen with the eye. Cancer had spread to distant parts of the body when the cancer was diagnosed. The risk group describes the chance that rhabdomyosarcoma will recur (come back). Every child treated for rhabdomyosarcoma should receive chemotherapy to decrease the chance cancer will recur. The type of anticancer drug, dose, and the number of treatments given depends on whether the child has low-risk, intermediate-risk, or high-risk rhabdomyosarcoma. The following risk groups are used: Low-risk childhood rhabdomyosarcoma is one of the following: Intermediate-risk childhood rhabdomyosarcoma is one of the following: High-risk childhood rhabdomyosarcoma may be the embryonal type or the alveolar type. It may have spread to nearby lymph nodes and has spread to one or more of the following: Progressive rhabdomyosarcoma is cancer that continues to grow, spread, or get worse. Progressive disease may be a sign that the cancer has become refractory to treatment. Recurrent childhood rhabdomyosarcoma is cancer that has recurred (come back) after it has been treated. The cancer may come back in the same place or in other parts of the body, such as the lung, bone, or bone marrow. Less often, rhabdomyosarcoma may come back in the breast in adolescent females or in the liver. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment. Because rhabdomyosarcoma can form in many different parts of the body, many different kinds of treatments are used. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other health care providers who are experts in treating children with rhabdomyosarcoma and who specialize in certain areas of medicine. These may include the following specialists: Surgery (removing the cancer in an operation) is used to treat childhood rhabdomyosarcoma. A type of surgery called wide local excision is often done. A wide local excision is the removal of tumor and some of the tissue around it, including the lymph nodes. A second surgery may be needed to remove all the cancer. Whether surgery is done and the type of surgery done depends on the following: In most children with rhabdomyosarcoma, it is not possible to remove all of the tumor by surgery. Rhabdomyosarcoma can form in many different places in the body and the surgery will be different for each site. Surgery to treat rhabdomyosarcoma of the eye or genital areas is usually a biopsy. Chemotherapy, and sometimes radiation therapy, may be given before surgery to shrink large tumors. After the doctor removes all the cancer that can be seen at the time of the surgery, patients will be given chemotherapy after surgery to kill any cancer cells that are left. Radiation therapy may also be given. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or stop them from growing. There are two types of radiation therapy: The type and amount of radiation therapy and when it is given depends on the age of the child, the type of rhabdomyosarcoma, where in the body the tumor started, how much tumor remained after surgery, and whether there is tumor in the nearby lymph nodes. External radiation therapy is usually used to treat childhood rhabdomyosarcoma but in certain cases internal radiation therapy is used. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Chemotherapy may also be given to shrink the tumor before surgery in order to save as much healthy tissue as possible. This is called neoadjuvant chemotherapy. Every child treated for rhabdomyosarcoma should receive systemic chemotherapy to decrease the chance the cancer will recur. The type of anticancer drug, dose, and the number of treatments given depends on the age of the child and whether the child has low-risk, intermediate-risk, or high-risk rhabdomyosarcoma. See Drugs Approved for Rhabdomyosarcoma for more information. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. There are different types of immunotherapy: Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. There are different types of targeted therapy: For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment for rhabdomyosarcoma may include: Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child and the types of symptoms to expect after cancer treatment has ended. (See the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information.) For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. The treatment of newly diagnosed childhood rhabdomyosarcoma often includes surgery, radiation therapy, and chemotherapy. The order that these treatments are given depends on where in the body the tumor started, the size of the tumor, the type of tumor, and whether the tumor has spread to lymph nodes or other parts of the body. See the Treatment Option Overview section of this summary for more information about surgery, radiation therapy, and chemotherapy used to treat children with rhabdomyosarcoma. Rhabdomyosarcoma of the brain and head and neck Rhabdomyosarcoma of the arms or legs Rhabdomyosarcoma of the chest, abdomen, or pelvis Rhabdomyosarcoma of the kidney Rhabdomyosarcoma of the bladder or prostate Rhabdomyosarcoma of the area near the testicles Rhabdomyosarcoma of the vulva, vagina, uterus, or ovary Clinical Trials For Childhood Rhabdomyosarcoma Metastatic rhabdomyosarcoma Treatment, such as chemotherapy followed by radiation therapy or surgery to remove the tumor, is given to the site where the tumor first formed. If the cancer has spread to the brain, spinal cord, or lungs, radiation therapy may also be given to the sites where the cancer has spread. The following treatment is being studied for metastatic rhabdomyosarcoma: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for progressive or recurrent childhood rhabdomyosarcoma are based on many factors, including where in the body the cancer has come back, what type of treatment the child had before, and the needs of the child. Treatment of progressive or recurrent rhabdomyosarcoma may include one or more of the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about childhood rhabdomyosarcoma, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of childhood rhabdomyosarcoma. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Childhood Rhabdomyosarcoma Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/soft-tissue-sarcoma/patient/rhabdomyosarcoma-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389279] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Childhood Rhabdomyosarcoma Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is the outlook for Childhood Rhabdomyosarcoma ? | Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - The patient's age. - Where in the body the tumor started. - The size of the tumor at the time of diagnosis. - Whether the tumor has been completely removed by surgery. - The type of rhabdomyosarcoma (embryonal, alveolar, or anaplastic). - Whether there are certain changes in the genes. - Whether the tumor had spread to other parts of the body at the time of diagnosis. - Whether the tumor was in the lymph nodes at the time of diagnosis. - Whether the tumor responds to chemotherapy and/or radiation therapy. For patients with recurrent cancer, prognosis and treatment also depend on the following: - Where in the body the tumor recurred (came back). - How much time passed between the end of cancer treatment and when the cancer recurred. - Whether the tumor was treated with radiation therapy. |
Rhabdomyosarcoma is a type of sarcoma. Sarcoma is cancer of soft tissue (such as muscle), connective tissue (such as tendon or cartilage), or bone. Rhabdomyosarcoma usually begins in muscles that are attached to bones and that help the body move, but it may begin in many places in the body. Rhabdomyosarcoma is the most common type of soft tissue sarcoma in children. There are four main types of rhabdomyosarcoma: See the following PDQ treatment summaries for information about other types of soft tissue sarcoma: Anything that increases the risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your child’s doctor if you think your child may be at risk. Risk factors for rhabdomyosarcoma include having the following inherited diseases: Children who had a high birth weight or were larger than expected at birth may have an increased risk of embryonal rhabdomyosarcoma. In most cases, the cause of rhabdomyosarcoma is not known. Signs and symptoms may be caused by childhood rhabdomyosarcoma or by other conditions. The signs and symptoms that occur depend on where the cancer forms. Check with your child's doctor if your child has any of the following: The diagnostic tests that are done depend in part on where the cancer forms. The following tests and procedures may be used: If these tests show there may be a rhabdomyosarcoma, a biopsy is done. A biopsy is the removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. Because treatment depends on the type of rhabdomyosarcoma, biopsy samples should be checked by a pathologist who has experience in diagnosing rhabdomyosarcoma. One of the following types of biopsies may be used: The following tests may be done on the sample of tissue that is removed: The prognosis and treatment options depend on the following: For patients with recurrent cancer, prognosis and treatment also depend on the following: The process used to find out if cancer has spread within the tissue or to other
parts of the body is called staging. It is important to know the stage in order to plan treatment. The doctor will use results of the diagnostic tests to help find out the stage of the disease. Treatment for childhood rhabdomyosarcoma is based in part on the stage and sometimes on the amount of cancer that remains after surgery to remove the tumor. The pathologist will use a microscope to check the tissues removed during surgery, including tissue samples from the edges of the areas where the cancer was removed and the lymph nodes. This is done to see if all the cancer cells were taken out during the surgery. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if rhabdomyosarcoma spreads to the lung, the cancer cells in the lung are actually rhabdomyosarcoma cells. The disease is metastatic rhabdomyosarcoma, not lung cancer. Childhood rhabdomyosarcoma is staged by using three different ways to describe the cancer: In stage 1, the tumor is any size, may have spread to lymph nodes, and is found in only one of the following "favorable" sites: Rhabdomyosarcoma that forms in a "favorable" site has a better prognosis. If the site where cancer occurs is not one of the favorable sites listed above, it is said to be an "unfavorable" site. In stage 2, cancer is found in an "unfavorable" site (any one area not described as "favorable" in stage 1). The tumor is no larger than 5 centimeters and has not spread to lymph nodes.
In stage 3, cancer is found in an "unfavorable" site (any one area not described as "favorable" in stage 1) and one of the following is true:
In stage 4, the tumor may be any size and cancer may have spread to nearby lymph nodes. Cancer has spread to distant parts of the body, such as the lung, bone marrow, or bone. Cancer was found only in the place where it started and it was completely removed by surgery. Tissue was taken from the edges of where the tumor was removed. This tissue was checked under a microscope by a pathologist and no cancer cells were found. Group II is divided into groups IIA, IIB, and IIC. Cancer was partly removed by biopsy or surgery but there is tumor remaining that can be seen with the eye. Cancer had spread to distant parts of the body when the cancer was diagnosed. The risk group describes the chance that rhabdomyosarcoma will recur (come back). Every child treated for rhabdomyosarcoma should receive chemotherapy to decrease the chance cancer will recur. The type of anticancer drug, dose, and the number of treatments given depends on whether the child has low-risk, intermediate-risk, or high-risk rhabdomyosarcoma. The following risk groups are used: Low-risk childhood rhabdomyosarcoma is one of the following: Intermediate-risk childhood rhabdomyosarcoma is one of the following: High-risk childhood rhabdomyosarcoma may be the embryonal type or the alveolar type. It may have spread to nearby lymph nodes and has spread to one or more of the following: Progressive rhabdomyosarcoma is cancer that continues to grow, spread, or get worse. Progressive disease may be a sign that the cancer has become refractory to treatment. Recurrent childhood rhabdomyosarcoma is cancer that has recurred (come back) after it has been treated. The cancer may come back in the same place or in other parts of the body, such as the lung, bone, or bone marrow. Less often, rhabdomyosarcoma may come back in the breast in adolescent females or in the liver. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment. Because rhabdomyosarcoma can form in many different parts of the body, many different kinds of treatments are used. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other health care providers who are experts in treating children with rhabdomyosarcoma and who specialize in certain areas of medicine. These may include the following specialists: Surgery (removing the cancer in an operation) is used to treat childhood rhabdomyosarcoma. A type of surgery called wide local excision is often done. A wide local excision is the removal of tumor and some of the tissue around it, including the lymph nodes. A second surgery may be needed to remove all the cancer. Whether surgery is done and the type of surgery done depends on the following: In most children with rhabdomyosarcoma, it is not possible to remove all of the tumor by surgery. Rhabdomyosarcoma can form in many different places in the body and the surgery will be different for each site. Surgery to treat rhabdomyosarcoma of the eye or genital areas is usually a biopsy. Chemotherapy, and sometimes radiation therapy, may be given before surgery to shrink large tumors. After the doctor removes all the cancer that can be seen at the time of the surgery, patients will be given chemotherapy after surgery to kill any cancer cells that are left. Radiation therapy may also be given. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or stop them from growing. There are two types of radiation therapy: The type and amount of radiation therapy and when it is given depends on the age of the child, the type of rhabdomyosarcoma, where in the body the tumor started, how much tumor remained after surgery, and whether there is tumor in the nearby lymph nodes. External radiation therapy is usually used to treat childhood rhabdomyosarcoma but in certain cases internal radiation therapy is used. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Chemotherapy may also be given to shrink the tumor before surgery in order to save as much healthy tissue as possible. This is called neoadjuvant chemotherapy. Every child treated for rhabdomyosarcoma should receive systemic chemotherapy to decrease the chance the cancer will recur. The type of anticancer drug, dose, and the number of treatments given depends on the age of the child and whether the child has low-risk, intermediate-risk, or high-risk rhabdomyosarcoma. See Drugs Approved for Rhabdomyosarcoma for more information. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. There are different types of immunotherapy: Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. There are different types of targeted therapy: For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment for rhabdomyosarcoma may include: Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child and the types of symptoms to expect after cancer treatment has ended. (See the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information.) For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. The treatment of newly diagnosed childhood rhabdomyosarcoma often includes surgery, radiation therapy, and chemotherapy. The order that these treatments are given depends on where in the body the tumor started, the size of the tumor, the type of tumor, and whether the tumor has spread to lymph nodes or other parts of the body. See the Treatment Option Overview section of this summary for more information about surgery, radiation therapy, and chemotherapy used to treat children with rhabdomyosarcoma. Rhabdomyosarcoma of the brain and head and neck Rhabdomyosarcoma of the arms or legs Rhabdomyosarcoma of the chest, abdomen, or pelvis Rhabdomyosarcoma of the kidney Rhabdomyosarcoma of the bladder or prostate Rhabdomyosarcoma of the area near the testicles Rhabdomyosarcoma of the vulva, vagina, uterus, or ovary Clinical Trials For Childhood Rhabdomyosarcoma Metastatic rhabdomyosarcoma Treatment, such as chemotherapy followed by radiation therapy or surgery to remove the tumor, is given to the site where the tumor first formed. If the cancer has spread to the brain, spinal cord, or lungs, radiation therapy may also be given to the sites where the cancer has spread. The following treatment is being studied for metastatic rhabdomyosarcoma: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for progressive or recurrent childhood rhabdomyosarcoma are based on many factors, including where in the body the cancer has come back, what type of treatment the child had before, and the needs of the child. Treatment of progressive or recurrent rhabdomyosarcoma may include one or more of the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about childhood rhabdomyosarcoma, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of childhood rhabdomyosarcoma. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Childhood Rhabdomyosarcoma Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/soft-tissue-sarcoma/patient/rhabdomyosarcoma-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389279] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Childhood Rhabdomyosarcoma Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the stages of Childhood Rhabdomyosarcoma ? | Key Points
- After childhood rhabdomyosarcoma has been diagnosed, treatment is based in part on the stage of the cancer and sometimes it is based on whether all the cancer was removed by surgery. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - Staging of childhood rhabdomyosarcoma is done in three parts. - The staging system is based on the size of the tumor, where it is in the body, and whether it has spread to other parts of the body: - Stage 1 - Stage 2 - Stage 3 - Stage 4 - The grouping system is based on whether the cancer has spread and whether all the cancer was removed by surgery: - Group I - Group II - Group III - Group IV - The risk group is based on the staging system and the grouping system. - Low-risk childhood rhabdomyosarcoma - Intermediate-risk childhood rhabdomyosarcoma - High-risk childhood rhabdomyosarcoma
After childhood rhabdomyosarcoma has been diagnosed, treatment is based in part on the stage of the cancer and sometimes it is based on whether all the cancer was removed by surgery.
The process used to find out if cancer has spread within the tissue or to other parts of the body is called staging. It is important to know the stage in order to plan treatment. The doctor will use results of the diagnostic tests to help find out the stage of the disease. Treatment for childhood rhabdomyosarcoma is based in part on the stage and sometimes on the amount of cancer that remains after surgery to remove the tumor. The pathologist will use a microscope to check the tissues removed during surgery, including tissue samples from the edges of the areas where the cancer was removed and the lymph nodes. This is done to see if all the cancer cells were taken out during the surgery.
There are three ways that cancer spreads in the body.
Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body.
Cancer may spread from where it began to other parts of the body.
When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if rhabdomyosarcoma spreads to the lung, the cancer cells in the lung are actually rhabdomyosarcoma cells. The disease is metastatic rhabdomyosarcoma, not lung cancer.
Staging of childhood rhabdomyosarcoma is done in three parts.
Childhood rhabdomyosarcoma is staged by using three different ways to describe the cancer: - A staging system. - A grouping system. - A risk group.
The staging system is based on the size of the tumor, where it is in the body, and whether it has spread to other parts of the body:
Stage 1 In stage 1, the tumor is any size, may have spread to lymph nodes, and is found in only one of the following "favorable" sites: - Eye or area around the eye. - Head and neck (but not in the tissue next to the brain and spinal cord). - Gallbladder and bile ducts. - Ureters or urethra. - Testes, ovary, vagina, or uterus. Rhabdomyosarcoma that forms in a "favorable" site has a better prognosis. If the site where cancer occurs is not one of the favorable sites listed above, it is said to be an "unfavorable" site. Stage 2 In stage 2, cancer is found in an "unfavorable" site (any one area not described as "favorable" in stage 1). The tumor is no larger than 5 centimeters and has not spread to lymph nodes. Stage 3 In stage 3, cancer is found in an "unfavorable" site (any one area not described as "favorable" in stage 1) and one of the following is true: - The tumor is no larger than 5 centimeters and cancer has spread to nearby lymph nodes. - The tumor is larger than 5 centimeters and cancer may have spread to nearby lymph nodes. Stage 4 In stage 4, the tumor may be any size and cancer may have spread to nearby lymph nodes. Cancer has spread to distant parts of the body, such as the lung, bone marrow, or bone.
The grouping system is based on whether the cancer has spread and whether all the cancer was removed by surgery:
Group I Cancer was found only in the place where it started and it was completely removed by surgery. Tissue was taken from the edges of where the tumor was removed. The tissue was checked under a microscope by a pathologist and no cancer cells were found. Group II Group II is divided into groups IIA, IIB, and IIC. - IIA: Cancer was removed by surgery but cancer cells were seen when the tissue, taken from the edges of where the tumor was removed, was viewed under a microscope by a pathologist. - IIB: Cancer had spread to nearby lymph nodes and the cancer and lymph nodes were removed by surgery. - IIC: Cancer had spread to nearby lymph nodes, the cancer and lymph nodes were removed by surgery, and at least one of the following is true: - Tissue taken from the edges of where the tumor was removed was checked under a microscope by a pathologist and cancer cells were seen. - The furthest lymph node from the tumor that was removed was checked under a microscope by a pathologist and cancer cells were seen. Group III Cancer was partly removed by biopsy or surgery but there is tumor remaining that can be seen with the eye. Group IV Cancer had spread to distant parts of the body when the cancer was diagnosed. - Cancer cells are found by an imaging test; or - There are cancer cells in the fluid around the brain, spinal cord, or lungs, or in fluid in the abdomen; or tumors are found in those areas.
The risk group is based on the staging system and the grouping system.
The risk group describes the chance that rhabdomyosarcoma will recur (come back). Every child treated for rhabdomyosarcoma should receive chemotherapy to decrease the chance cancer will recur. The type of anticancer drug, dose, and the number of treatments given depends on whether the child has low-risk, intermediate-risk, or high-risk rhabdomyosarcoma. The following risk groups are used: Low-risk childhood rhabdomyosarcoma Low-risk childhood rhabdomyosarcoma is one of the following: - An embryonal tumor of any size that is found in a "favorable" site. There may be tumor remaining after surgery that can be seen with or without a microscope. The cancer may have spread to nearby lymph nodes. The following areas are "favorable" sites: - Eye or area around the eye. - Head or neck (but not in the tissue near the ear, nose, sinuses, or base of the skull). - Gallbladder and bile ducts. - Ureter or urethra. - Testes, ovary, vagina, or uterus. - An embryonal tumor of any size that is not found in a "favorable" site. There may be tumor remaining after surgery that can be seen only with a microscope. The cancer may have spread to nearby lymph nodes. Intermediate-risk childhood rhabdomyosarcoma Intermediate-risk childhood rhabdomyosarcoma is one of the following: - An embryonal tumor of any size that is not found in one of the "favorable" sites listed above. There is tumor remaining after surgery, that can be seen with or without a microscope. The cancer may have spread to nearby lymph nodes. - An alveolar tumor of any size in a "favorable" or "unfavorable" site. There may be tumor remaining after surgery that can be seen with or without a microscope. The cancer may have spread to nearby lymph nodes. High-risk childhood rhabdomyosarcoma High-risk childhood rhabdomyosarcoma may be the embryonal type or the alveolar type. It may have spread to nearby lymph nodes and has spread to one or more of the following: - Other parts of the body that are not near where the tumor first formed. - Fluid around the brain or spinal cord. - Fluid in the lung or abdomen. |
Rhabdomyosarcoma is a type of sarcoma. Sarcoma is cancer of soft tissue (such as muscle), connective tissue (such as tendon or cartilage), or bone. Rhabdomyosarcoma usually begins in muscles that are attached to bones and that help the body move, but it may begin in many places in the body. Rhabdomyosarcoma is the most common type of soft tissue sarcoma in children. There are four main types of rhabdomyosarcoma: See the following PDQ treatment summaries for information about other types of soft tissue sarcoma: Anything that increases the risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your child’s doctor if you think your child may be at risk. Risk factors for rhabdomyosarcoma include having the following inherited diseases: Children who had a high birth weight or were larger than expected at birth may have an increased risk of embryonal rhabdomyosarcoma. In most cases, the cause of rhabdomyosarcoma is not known. Signs and symptoms may be caused by childhood rhabdomyosarcoma or by other conditions. The signs and symptoms that occur depend on where the cancer forms. Check with your child's doctor if your child has any of the following: The diagnostic tests that are done depend in part on where the cancer forms. The following tests and procedures may be used: If these tests show there may be a rhabdomyosarcoma, a biopsy is done. A biopsy is the removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. Because treatment depends on the type of rhabdomyosarcoma, biopsy samples should be checked by a pathologist who has experience in diagnosing rhabdomyosarcoma. One of the following types of biopsies may be used: The following tests may be done on the sample of tissue that is removed: The prognosis and treatment options depend on the following: For patients with recurrent cancer, prognosis and treatment also depend on the following: The process used to find out if cancer has spread within the tissue or to other
parts of the body is called staging. It is important to know the stage in order to plan treatment. The doctor will use results of the diagnostic tests to help find out the stage of the disease. Treatment for childhood rhabdomyosarcoma is based in part on the stage and sometimes on the amount of cancer that remains after surgery to remove the tumor. The pathologist will use a microscope to check the tissues removed during surgery, including tissue samples from the edges of the areas where the cancer was removed and the lymph nodes. This is done to see if all the cancer cells were taken out during the surgery. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if rhabdomyosarcoma spreads to the lung, the cancer cells in the lung are actually rhabdomyosarcoma cells. The disease is metastatic rhabdomyosarcoma, not lung cancer. Childhood rhabdomyosarcoma is staged by using three different ways to describe the cancer: In stage 1, the tumor is any size, may have spread to lymph nodes, and is found in only one of the following "favorable" sites: Rhabdomyosarcoma that forms in a "favorable" site has a better prognosis. If the site where cancer occurs is not one of the favorable sites listed above, it is said to be an "unfavorable" site. In stage 2, cancer is found in an "unfavorable" site (any one area not described as "favorable" in stage 1). The tumor is no larger than 5 centimeters and has not spread to lymph nodes.
In stage 3, cancer is found in an "unfavorable" site (any one area not described as "favorable" in stage 1) and one of the following is true:
In stage 4, the tumor may be any size and cancer may have spread to nearby lymph nodes. Cancer has spread to distant parts of the body, such as the lung, bone marrow, or bone. Cancer was found only in the place where it started and it was completely removed by surgery. Tissue was taken from the edges of where the tumor was removed. This tissue was checked under a microscope by a pathologist and no cancer cells were found. Group II is divided into groups IIA, IIB, and IIC. Cancer was partly removed by biopsy or surgery but there is tumor remaining that can be seen with the eye. Cancer had spread to distant parts of the body when the cancer was diagnosed. The risk group describes the chance that rhabdomyosarcoma will recur (come back). Every child treated for rhabdomyosarcoma should receive chemotherapy to decrease the chance cancer will recur. The type of anticancer drug, dose, and the number of treatments given depends on whether the child has low-risk, intermediate-risk, or high-risk rhabdomyosarcoma. The following risk groups are used: Low-risk childhood rhabdomyosarcoma is one of the following: Intermediate-risk childhood rhabdomyosarcoma is one of the following: High-risk childhood rhabdomyosarcoma may be the embryonal type or the alveolar type. It may have spread to nearby lymph nodes and has spread to one or more of the following: Progressive rhabdomyosarcoma is cancer that continues to grow, spread, or get worse. Progressive disease may be a sign that the cancer has become refractory to treatment. Recurrent childhood rhabdomyosarcoma is cancer that has recurred (come back) after it has been treated. The cancer may come back in the same place or in other parts of the body, such as the lung, bone, or bone marrow. Less often, rhabdomyosarcoma may come back in the breast in adolescent females or in the liver. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment. Because rhabdomyosarcoma can form in many different parts of the body, many different kinds of treatments are used. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other health care providers who are experts in treating children with rhabdomyosarcoma and who specialize in certain areas of medicine. These may include the following specialists: Surgery (removing the cancer in an operation) is used to treat childhood rhabdomyosarcoma. A type of surgery called wide local excision is often done. A wide local excision is the removal of tumor and some of the tissue around it, including the lymph nodes. A second surgery may be needed to remove all the cancer. Whether surgery is done and the type of surgery done depends on the following: In most children with rhabdomyosarcoma, it is not possible to remove all of the tumor by surgery. Rhabdomyosarcoma can form in many different places in the body and the surgery will be different for each site. Surgery to treat rhabdomyosarcoma of the eye or genital areas is usually a biopsy. Chemotherapy, and sometimes radiation therapy, may be given before surgery to shrink large tumors. After the doctor removes all the cancer that can be seen at the time of the surgery, patients will be given chemotherapy after surgery to kill any cancer cells that are left. Radiation therapy may also be given. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or stop them from growing. There are two types of radiation therapy: The type and amount of radiation therapy and when it is given depends on the age of the child, the type of rhabdomyosarcoma, where in the body the tumor started, how much tumor remained after surgery, and whether there is tumor in the nearby lymph nodes. External radiation therapy is usually used to treat childhood rhabdomyosarcoma but in certain cases internal radiation therapy is used. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Chemotherapy may also be given to shrink the tumor before surgery in order to save as much healthy tissue as possible. This is called neoadjuvant chemotherapy. Every child treated for rhabdomyosarcoma should receive systemic chemotherapy to decrease the chance the cancer will recur. The type of anticancer drug, dose, and the number of treatments given depends on the age of the child and whether the child has low-risk, intermediate-risk, or high-risk rhabdomyosarcoma. See Drugs Approved for Rhabdomyosarcoma for more information. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. There are different types of immunotherapy: Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. There are different types of targeted therapy: For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment for rhabdomyosarcoma may include: Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child and the types of symptoms to expect after cancer treatment has ended. (See the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information.) For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. The treatment of newly diagnosed childhood rhabdomyosarcoma often includes surgery, radiation therapy, and chemotherapy. The order that these treatments are given depends on where in the body the tumor started, the size of the tumor, the type of tumor, and whether the tumor has spread to lymph nodes or other parts of the body. See the Treatment Option Overview section of this summary for more information about surgery, radiation therapy, and chemotherapy used to treat children with rhabdomyosarcoma. Rhabdomyosarcoma of the brain and head and neck Rhabdomyosarcoma of the arms or legs Rhabdomyosarcoma of the chest, abdomen, or pelvis Rhabdomyosarcoma of the kidney Rhabdomyosarcoma of the bladder or prostate Rhabdomyosarcoma of the area near the testicles Rhabdomyosarcoma of the vulva, vagina, uterus, or ovary Clinical Trials For Childhood Rhabdomyosarcoma Metastatic rhabdomyosarcoma Treatment, such as chemotherapy followed by radiation therapy or surgery to remove the tumor, is given to the site where the tumor first formed. If the cancer has spread to the brain, spinal cord, or lungs, radiation therapy may also be given to the sites where the cancer has spread. The following treatment is being studied for metastatic rhabdomyosarcoma: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for progressive or recurrent childhood rhabdomyosarcoma are based on many factors, including where in the body the cancer has come back, what type of treatment the child had before, and the needs of the child. Treatment of progressive or recurrent rhabdomyosarcoma may include one or more of the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about childhood rhabdomyosarcoma, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of childhood rhabdomyosarcoma. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Childhood Rhabdomyosarcoma Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/soft-tissue-sarcoma/patient/rhabdomyosarcoma-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389279] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Childhood Rhabdomyosarcoma Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | what research (or clinical trials) is being done for Childhood Rhabdomyosarcoma ? | New types of treatment are being tested in clinical trials.
This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. High-dose chemotherapy with stem cell transplant High-dose chemotherapy with stem cell transplant is a way of giving high doses of chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. Immunotherapy Immunotherapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biologic therapy or biotherapy. There are different types of immunotherapy: - Immune checkpoint inhibitor therapy uses the body's immune system to kill cancer cells. Two types of immune checkpoint inhibitors are being studied in the treatment of childhood rhabdomyosarcoma that has come back after treatment: - CTLA-4 is a protein on the surface of T cells that helps keep the bodys immune responses in check. When CTLA-4 attaches to another protein called B7 on a cancer cell, it stops the T cell from killing the cancer cell. CTLA-4 inhibitors attach to CTLA-4 and allow the T cells to kill cancer cells. Ipilimumab is a type of CTLA-4 inhibitor. - PD-1 is a protein on the surface of T cells that helps keep the bodys immune responses in check. When PD-1 attaches to another protein called PDL-1 on a cancer cell, it stops the T cell from killing the cancer cell. PD-1 inhibitors attach to PDL-1 and allow the T cells to kill cancer cells. Nivolumab and pembrolizumab are PD-1 inhibitors. - Vaccine therapy is a type of immunotherapy being studied to treat metastatic rhabdomyosarcoma. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to attack cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation do. There are different types of targeted therapy: - mTOR inhibitors stop the protein that helps cells divide and survive. Sirolimus is a type of mTOR inhibitor therapy being studied in the treatment of recurrent rhabdomyosarcoma. - Tyrosine kinase inhibitors are small-molecule drugs that go through the cell membrane and work inside cancer cells to block signals that cancer cells need to grow and divide. MK-1775 is a tyrosine kinase inhibitor being studied in the treatment of recurrent rhabdomyosarcoma. - Antibody-drug conjugates are made up of a monoclonal antibody attached to a drug. The monoclonal antibody binds to specific proteins or receptors found on certain cells, including cancer cells. The drug enters these cells and kills them without harming other cells. Lorvotuzumab mertansine is an antibody-drug conjugate being studied in the treatment of recurrent rhabdomyosarcoma.
Patients may want to think about taking part in a clinical trial.
For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.
Patients can enter clinical trials before, during, or after starting their cancer treatment.
Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. |
Rhabdomyosarcoma is a type of sarcoma. Sarcoma is cancer of soft tissue (such as muscle), connective tissue (such as tendon or cartilage), or bone. Rhabdomyosarcoma usually begins in muscles that are attached to bones and that help the body move, but it may begin in many places in the body. Rhabdomyosarcoma is the most common type of soft tissue sarcoma in children. There are four main types of rhabdomyosarcoma: See the following PDQ treatment summaries for information about other types of soft tissue sarcoma: Anything that increases the risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your child’s doctor if you think your child may be at risk. Risk factors for rhabdomyosarcoma include having the following inherited diseases: Children who had a high birth weight or were larger than expected at birth may have an increased risk of embryonal rhabdomyosarcoma. In most cases, the cause of rhabdomyosarcoma is not known. Signs and symptoms may be caused by childhood rhabdomyosarcoma or by other conditions. The signs and symptoms that occur depend on where the cancer forms. Check with your child's doctor if your child has any of the following: The diagnostic tests that are done depend in part on where the cancer forms. The following tests and procedures may be used: If these tests show there may be a rhabdomyosarcoma, a biopsy is done. A biopsy is the removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. Because treatment depends on the type of rhabdomyosarcoma, biopsy samples should be checked by a pathologist who has experience in diagnosing rhabdomyosarcoma. One of the following types of biopsies may be used: The following tests may be done on the sample of tissue that is removed: The prognosis and treatment options depend on the following: For patients with recurrent cancer, prognosis and treatment also depend on the following: The process used to find out if cancer has spread within the tissue or to other
parts of the body is called staging. It is important to know the stage in order to plan treatment. The doctor will use results of the diagnostic tests to help find out the stage of the disease. Treatment for childhood rhabdomyosarcoma is based in part on the stage and sometimes on the amount of cancer that remains after surgery to remove the tumor. The pathologist will use a microscope to check the tissues removed during surgery, including tissue samples from the edges of the areas where the cancer was removed and the lymph nodes. This is done to see if all the cancer cells were taken out during the surgery. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if rhabdomyosarcoma spreads to the lung, the cancer cells in the lung are actually rhabdomyosarcoma cells. The disease is metastatic rhabdomyosarcoma, not lung cancer. Childhood rhabdomyosarcoma is staged by using three different ways to describe the cancer: In stage 1, the tumor is any size, may have spread to lymph nodes, and is found in only one of the following "favorable" sites: Rhabdomyosarcoma that forms in a "favorable" site has a better prognosis. If the site where cancer occurs is not one of the favorable sites listed above, it is said to be an "unfavorable" site. In stage 2, cancer is found in an "unfavorable" site (any one area not described as "favorable" in stage 1). The tumor is no larger than 5 centimeters and has not spread to lymph nodes.
In stage 3, cancer is found in an "unfavorable" site (any one area not described as "favorable" in stage 1) and one of the following is true:
In stage 4, the tumor may be any size and cancer may have spread to nearby lymph nodes. Cancer has spread to distant parts of the body, such as the lung, bone marrow, or bone. Cancer was found only in the place where it started and it was completely removed by surgery. Tissue was taken from the edges of where the tumor was removed. This tissue was checked under a microscope by a pathologist and no cancer cells were found. Group II is divided into groups IIA, IIB, and IIC. Cancer was partly removed by biopsy or surgery but there is tumor remaining that can be seen with the eye. Cancer had spread to distant parts of the body when the cancer was diagnosed. The risk group describes the chance that rhabdomyosarcoma will recur (come back). Every child treated for rhabdomyosarcoma should receive chemotherapy to decrease the chance cancer will recur. The type of anticancer drug, dose, and the number of treatments given depends on whether the child has low-risk, intermediate-risk, or high-risk rhabdomyosarcoma. The following risk groups are used: Low-risk childhood rhabdomyosarcoma is one of the following: Intermediate-risk childhood rhabdomyosarcoma is one of the following: High-risk childhood rhabdomyosarcoma may be the embryonal type or the alveolar type. It may have spread to nearby lymph nodes and has spread to one or more of the following: Progressive rhabdomyosarcoma is cancer that continues to grow, spread, or get worse. Progressive disease may be a sign that the cancer has become refractory to treatment. Recurrent childhood rhabdomyosarcoma is cancer that has recurred (come back) after it has been treated. The cancer may come back in the same place or in other parts of the body, such as the lung, bone, or bone marrow. Less often, rhabdomyosarcoma may come back in the breast in adolescent females or in the liver. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment. Because rhabdomyosarcoma can form in many different parts of the body, many different kinds of treatments are used. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other health care providers who are experts in treating children with rhabdomyosarcoma and who specialize in certain areas of medicine. These may include the following specialists: Surgery (removing the cancer in an operation) is used to treat childhood rhabdomyosarcoma. A type of surgery called wide local excision is often done. A wide local excision is the removal of tumor and some of the tissue around it, including the lymph nodes. A second surgery may be needed to remove all the cancer. Whether surgery is done and the type of surgery done depends on the following: In most children with rhabdomyosarcoma, it is not possible to remove all of the tumor by surgery. Rhabdomyosarcoma can form in many different places in the body and the surgery will be different for each site. Surgery to treat rhabdomyosarcoma of the eye or genital areas is usually a biopsy. Chemotherapy, and sometimes radiation therapy, may be given before surgery to shrink large tumors. After the doctor removes all the cancer that can be seen at the time of the surgery, patients will be given chemotherapy after surgery to kill any cancer cells that are left. Radiation therapy may also be given. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or stop them from growing. There are two types of radiation therapy: The type and amount of radiation therapy and when it is given depends on the age of the child, the type of rhabdomyosarcoma, where in the body the tumor started, how much tumor remained after surgery, and whether there is tumor in the nearby lymph nodes. External radiation therapy is usually used to treat childhood rhabdomyosarcoma but in certain cases internal radiation therapy is used. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Chemotherapy may also be given to shrink the tumor before surgery in order to save as much healthy tissue as possible. This is called neoadjuvant chemotherapy. Every child treated for rhabdomyosarcoma should receive systemic chemotherapy to decrease the chance the cancer will recur. The type of anticancer drug, dose, and the number of treatments given depends on the age of the child and whether the child has low-risk, intermediate-risk, or high-risk rhabdomyosarcoma. See Drugs Approved for Rhabdomyosarcoma for more information. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. There are different types of immunotherapy: Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. There are different types of targeted therapy: For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment for rhabdomyosarcoma may include: Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child and the types of symptoms to expect after cancer treatment has ended. (See the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information.) For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. The treatment of newly diagnosed childhood rhabdomyosarcoma often includes surgery, radiation therapy, and chemotherapy. The order that these treatments are given depends on where in the body the tumor started, the size of the tumor, the type of tumor, and whether the tumor has spread to lymph nodes or other parts of the body. See the Treatment Option Overview section of this summary for more information about surgery, radiation therapy, and chemotherapy used to treat children with rhabdomyosarcoma. Rhabdomyosarcoma of the brain and head and neck Rhabdomyosarcoma of the arms or legs Rhabdomyosarcoma of the chest, abdomen, or pelvis Rhabdomyosarcoma of the kidney Rhabdomyosarcoma of the bladder or prostate Rhabdomyosarcoma of the area near the testicles Rhabdomyosarcoma of the vulva, vagina, uterus, or ovary Clinical Trials For Childhood Rhabdomyosarcoma Metastatic rhabdomyosarcoma Treatment, such as chemotherapy followed by radiation therapy or surgery to remove the tumor, is given to the site where the tumor first formed. If the cancer has spread to the brain, spinal cord, or lungs, radiation therapy may also be given to the sites where the cancer has spread. The following treatment is being studied for metastatic rhabdomyosarcoma: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for progressive or recurrent childhood rhabdomyosarcoma are based on many factors, including where in the body the cancer has come back, what type of treatment the child had before, and the needs of the child. Treatment of progressive or recurrent rhabdomyosarcoma may include one or more of the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about childhood rhabdomyosarcoma, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of childhood rhabdomyosarcoma. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Childhood Rhabdomyosarcoma Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/soft-tissue-sarcoma/patient/rhabdomyosarcoma-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389279] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Childhood Rhabdomyosarcoma Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the treatments for Childhood Rhabdomyosarcoma ? | Key Points
- There are different types of treatment for patients with childhood rhabdomyosarcoma. - Children with rhabdomyosarcoma should have their treatment planned by a team of health care providers who are experts in treating cancer in children. - Treatment for childhood rhabdomyosarcoma may cause side effects. - Three types of standard treatment are used: - Surgery - Radiation therapy - Chemotherapy - New types of treatment are being tested in clinical trials. - High-dose chemotherapy with stem cell transplant - Immunotherapy - Targeted therapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed.
There are different types of treatment for patients with childhood rhabdomyosarcoma.
Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment.
Children with rhabdomyosarcoma should have their treatment planned by a team of health care providers who are experts in treating cancer in children.
Because rhabdomyosarcoma can form in many different parts of the body, many different kinds of treatments are used. Treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other health care providers who are experts in treating children with rhabdomyosarcoma and who specialize in certain areas of medicine. These may include the following specialists: - Pediatrician. - Pediatric surgeon. - Radiation oncologist. - Pediatric hematologist. - Pediatric radiologist. - Pediatric nurse specialist. - Geneticist or cancer genetics risk counselor. - Social worker. - Rehabilitation specialist.
Treatment for childhood rhabdomyosarcoma may cause side effects.
For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment for rhabdomyosarcoma may include: - Physical problems. - Changes in mood, feelings, thinking, learning, or memory. - Second cancers (new types of cancer). Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. (See the PDQ summary on Late Effects of Treatment for Childhood Cancer for more information.)
Three types of standard treatment are used:
Surgery Surgery (removing the cancer in an operation) is used to treat childhood rhabdomyosarcoma. A type of surgery called wide local excision is often done. A wide local excision is the removal of tumor and some of the tissue around it, including the lymph nodes. A second surgery may be needed to remove all the cancer. Whether surgery is done and the type of surgery done depends on the following: - Where in the body the tumor started. - The effect the surgery will have on the way the child will look. - The effect the surgery will have on the child's important body functions. - How the tumor responded to chemotherapy or radiation therapy that may have been given first. In most children with rhabdomyosarcoma, it is not possible to remove all of the tumor by surgery. Rhabdomyosarcoma can form in many different places in the body and the surgery will be different for each site. Surgery to treat rhabdomyosarcoma of the eye or genital areas is usually a biopsy. Chemotherapy, and sometimes radiation therapy, may be given before surgery to shrink large tumors. Even if the doctor removes all the cancer that can be seen at the time of the surgery, patients will be given chemotherapy after surgery to kill any cancer cells that are left. Radiation therapy may also be given. Treatment given after the surgery to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or stop them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. Certain ways of giving radiation therapy can help keep radiation from damaging nearby healthy tissue. These types of external radiation therapy include the following: - Conformal radiation therapy: Conformal radiation therapy is a type of external radiation therapy that uses a computer to make a 3-dimensional (3-D) picture of the tumor and shapes the radiation beams to fit the tumor. This allows a high dose of radiation to reach the tumor and causes less damage to nearby healthy tissue. - Intensity-modulated radiation therapy (IMRT): IMRT is a type of 3-dimensional (3-D) radiation therapy that uses a computer to make pictures of the size and shape of the tumor. Thin beams of radiation of different intensities (strengths) are aimed at the tumor from many angles. - Volumetrical modulated arc therapy (VMAT): VMAT is type of 3-D radiation therapy that uses a computer to make pictures of the size and shape of the tumor. The radiation machine moves in a circle around the patient once during treatment and sends thin beams of radiation of different intensities (strengths) at the tumor. Treatment with VMAT is delivered faster than treatment with IMRT. - Stereotactic body radiation therapy: Stereotactic body radiation therapy is a type of external radiation therapy. Special equipment is used to place the patient in the same position for each radiation treatment. Once a day for several days, a radiation machine aims a larger than usual dose of radiation directly at the tumor. By having the patient in the same position for each treatment, there is less damage to nearby healthy tissue. This procedure is also called stereotactic external-beam radiation therapy and stereotaxic radiation therapy. - Proton beam radiation therapy: Proton-beam therapy is a type of high-energy, external radiation therapy. A radiation therapy machine aims streams of protons (tiny, invisible, positively-charged particles) at the cancer cells to kill them. This type of treatment causes less damage to nearby healthy tissue. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. It is used to treat cancer in areas such as the vagina, vulva, uterus, bladder, prostate, head, or neck. Internal radiation therapy is also called brachytherapy, internal radiation, implant radiation, or interstitial radiation therapy. The type and amount of radiation therapy and when it is given depends on the age of the child, the type of rhabdomyosarcoma, where in the body the tumor started, how much tumor remained after surgery, and whether there is tumor in the nearby lymph nodes. External radiation therapy is usually used to treat childhood rhabdomyosarcoma but in certain cases internal radiation therapy is used. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Chemotherapy may also be given to shrink the tumor before surgery in order to save as much healthy tissue as possible. This is called neoadjuvant chemotherapy. Every child treated for rhabdomyosarcoma should receive systemic chemotherapy to decrease the chance the cancer will recur. The type of anticancer drug, dose, and the number of treatments given depends on whether the child has low-risk, intermediate-risk, or high-risk rhabdomyosarcoma. See Drugs Approved for Rhabdomyosarcoma for more information.
Follow-up tests may be needed.
Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups.
Treatment Options for Childhood Rhabdomyosarcoma
Previously Untreated Childhood Rhabdomyosarcoma
The treatment of childhood rhabdomyosarcoma often includes surgery, radiation therapy, and chemotherapy. The order that these treatments are given depends on where in the body the tumor started, the size of the tumor, the type of tumor, and whether the tumor has spread to lymph nodes or other parts of the body. See the Treatment Option Overview section of this summary for more information about surgery, radiation therapy, and chemotherapy used to treat children with rhabdomyosarcoma. Rhabdomyosarcoma of the brain and head and neck - For tumors of the brain: Treatment may include surgery to remove the tumor, radiation therapy, and chemotherapy. - For tumors of the head and neck that are in or near the eye: Treatment may include chemotherapy and radiation therapy. If the tumor remains or comes back after treatment with chemotherapy and radiation therapy, surgery to remove the eye and some tissues around the eye may be needed. - For tumors of the head and neck that are near the ear, nose, sinuses, or base of the skull but not in or near the eye: Treatment may include radiation therapy and chemotherapy. - For tumors of the head and neck that are not in or near the eye and not near the ear, nose, sinuses, or base of the skull: Treatment may include chemotherapy, radiation therapy, and surgery to remove the tumor. - For tumors of the head and neck that cannot be removed by surgery: Treatment may include chemotherapy and radiation therapy including stereotactic body radiation therapy. - For tumors of the larynx (voice box): Treatment may include chemotherapy and radiation therapy. Surgery to remove the larynx is usually not done, so that the voice is not harmed. Rhabdomyosarcoma of the arms or legs - Chemotherapy followed by surgery to remove the tumor. If the tumor was not completely removed, a second surgery to remove the tumor may be done. Radiation therapy may also be given. - For tumors of the hand or foot, radiation therapy and chemotherapy may be given. The tumor may not be removed because it would affect the function of the hand or foot. - Lymph node dissection (one or more lymph nodes are removed and a sample of tissue is checked under a microscope for signs of cancer). - For tumors in the arms, lymph nodes near the tumor and in the armpit area are removed. - For tumors in the legs, lymph nodes near the tumor and in the groin area are removed. Rhabdomyosarcoma of the chest, abdomen, or pelvis - For tumors in the chest or abdomen (including the chest wall or abdominal wall): Surgery (wide local excision) may be done. If the tumor is large, chemotherapy and radiation therapy are given to shrink the tumor before surgery. - For tumors of the pelvis: Surgery (wide local excision) may be done. If the tumor is large, chemotherapy is given to shrink the tumor before surgery. Radiation therapy may be given after surgery. - For tumors of the diaphragm: A biopsy of the tumor is followed by chemotherapy and radiation therapy to shrink the tumor. Surgery may be done later to remove any remaining cancer cells. - For tumors of the gallbladder or bile ducts: A biopsy of the tumor is followed by chemotherapy and radiation therapy. - For tumors of the muscles or tissues around the anus or between the vulva and the anus or the scrotum and the anus: Surgery is done to remove as much of the tumor as possible and some nearby lymph nodes, followed by chemotherapy and radiation therapy. Rhabdomyosarcoma of the kidney - For tumors of the kidney: Surgery to remove as much of the tumor as possible. Chemotherapy and radiation therapy may also be given. Rhabdomyosarcoma of the bladder and prostate - For tumors that are only at the top of the bladder: Surgery (wide local excision) is done. - For tumors of the prostate or bladder (other than the top of the bladder): - Chemotherapy and radiation therapy are given first to shrink the tumor. If cancer cells remain after chemotherapy and radiation therapy, the tumor is removed by surgery. Surgery may include removal of the prostate, part of the bladder, or pelvic exenteration without removal of the rectum. (This may include removal of the lower colon and bladder. In girls, the cervix, vagina, ovaries, and nearby lymph nodes may be removed). - Chemotherapy is given first to shrink the tumor. Surgery to remove the tumor, but not the bladder or prostate, is done. Internal or external radiation therapy may be given after surgery. Rhabdomyosarcoma of the area near the testicles - Surgery to remove the testicle and spermatic cord. The lymph nodes in the back of the abdomen may be checked for cancer, especially if the lymph nodes are large or the child is 10 years or older. - Radiation therapy may be given if the tumor cannot be completely removed by surgery. Rhabdomyosarcoma of the vulva, vagina, uterus, cervix, or ovary - For tumors of the vulva and vagina: Treatment may include chemotherapy followed by surgery to remove the tumor. Internal or external radiation therapy may be given after surgery. - For tumors of the uterus: Treatment may include chemotherapy with or without radiation therapy. Sometimes surgery may be needed to remove any remaining cancer cells. - For tumors of the cervix: Treatment may include chemotherapy followed by surgery to remove any remaining tumor. - For tumors of the ovary: Treatment may include chemotherapy followed by surgery to remove any remaining tumor. Metastatic rhabdomyosarcoma Treatment, such as chemotherapy, radiation therapy, or surgery to remove the tumor, is given to the site where the tumor first formed. If the cancer has spread to the brain, spinal cord, or lungs, radiation therapy may also be given to the sites where the cancer has spread. The following treatment is being studied for metastatic rhabdomyosarcoma: - A clinical trial of immunotherapy (vaccine therapy). Check the list of NCI-supported cancer clinical trials that are now accepting patients with previously untreated childhood rhabdomyosarcoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website.
Recurrent Childhood Rhabdomyosarcoma
Treatment options for recurrent childhood rhabdomyosarcoma are based on many factors, including where in the body the cancer has come back, what type of treatment the child had before, and the needs of the child. Treatment of recurrent rhabdomyosarcoma may include one or more of the following: - Surgery. - Radiation therapy. - Chemotherapy. - A clinical trial of high-dose chemotherapy followed by stem cell transplant using the patient's own stem cells. - A clinical trial of targeted therapy or immunotherapy (sirolimus, lorvotuzumab, ipilimumab, nivolumab, or pembrolizumab). - A clinical trial of targeted therapy with a tyrosine kinase inhibitor (MK-1775) and chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent childhood rhabdomyosarcoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website.
New types of treatment are being tested in clinical trials.
This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. High-dose chemotherapy with stem cell transplant High-dose chemotherapy with stem cell transplant is a way of giving high doses of chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. Immunotherapy Immunotherapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biologic therapy or biotherapy. There are different types of immunotherapy: - Immune checkpoint inhibitor therapy uses the body's immune system to kill cancer cells. Two types of immune checkpoint inhibitors are being studied in the treatment of childhood rhabdomyosarcoma that has come back after treatment: - CTLA-4 is a protein on the surface of T cells that helps keep the bodys immune responses in check. When CTLA-4 attaches to another protein called B7 on a cancer cell, it stops the T cell from killing the cancer cell. CTLA-4 inhibitors attach to CTLA-4 and allow the T cells to kill cancer cells. Ipilimumab is a type of CTLA-4 inhibitor. - PD-1 is a protein on the surface of T cells that helps keep the bodys immune responses in check. When PD-1 attaches to another protein called PDL-1 on a cancer cell, it stops the T cell from killing the cancer cell. PD-1 inhibitors attach to PDL-1 and allow the T cells to kill cancer cells. Nivolumab and pembrolizumab are PD-1 inhibitors. - Vaccine therapy is a type of immunotherapy being studied to treat metastatic rhabdomyosarcoma. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to attack cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation do. There are different types of targeted therapy: - mTOR inhibitors stop the protein that helps cells divide and survive. Sirolimus is a type of mTOR inhibitor therapy being studied in the treatment of recurrent rhabdomyosarcoma. - Tyrosine kinase inhibitors are small-molecule drugs that go through the cell membrane and work inside cancer cells to block signals that cancer cells need to grow and divide. MK-1775 is a tyrosine kinase inhibitor being studied in the treatment of recurrent rhabdomyosarcoma. - Antibody-drug conjugates are made up of a monoclonal antibody attached to a drug. The monoclonal antibody binds to specific proteins or receptors found on certain cells, including cancer cells. The drug enters these cells and kills them without harming other cells. Lorvotuzumab mertansine is an antibody-drug conjugate being studied in the treatment of recurrent rhabdomyosarcoma.
Patients may want to think about taking part in a clinical trial.
For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.
Patients can enter clinical trials before, during, or after starting their cancer treatment.
Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. |
Cancer prevention is action taken to lower the chance of getting
cancer. By preventing cancer, the number of new cases of cancer
in a group or population is lowered. Hopefully, this will lower
the number of deaths caused by cancer. To prevent new cancers from starting, scientists look at risk
factors and protective factors. Anything that increases your
chance of developing cancer is called a cancer risk factor;
anything that decreases your chance of developing cancer is
called a cancer protective factor. Some risk factors for cancer can be avoided, but many cannot.
For example, both smoking and inheriting certain genes are
risk factors for some types of cancer, but only smoking can be
avoided. Regular exercise and a healthy diet may be protective
factors for some types of cancer. Avoiding risk factors and
increasing protective factors may lower your risk but it does
not mean that you will not get cancer. Different ways to prevent cancer are being studied. The skin is the body’s largest organ. It protects against heat, sunlight, injury, and infection. Skin also helps control body temperature and stores water, fat, and vitamin D. The skin has several layers, but the two main layers are the epidermis (upper or outer layer) and the dermis (lower or inner layer). The epidermis is made up of 3 kinds of cells: The dermis contains blood and lymph
vessels, hair follicles, and glands. See the following PDQ summaries for more information about skin cancer: The most common types of skin cancer are squamous cell carcinoma, which forms in the squamous cells and basal cell carcinoma, which forms in the basal cells. Squamous cell carcinoma and basal cell carcinoma are also called nonmelanoma skin cancers. Melanoma, which forms in the melanocytes, is a less common type of skin
cancer that grows and spreads quickly. Skin cancer can occur anywhere on the body, but it is most common in areas exposed to sunlight, such as the face, neck, hands, and arms. Basal cell carcinoma and squamous cell carcinoma are the most common types of skin cancer in the United States. The number of new cases of nonmelanoma skin cancer appears to be increasing every year. These nonmelanoma
skin cancers can usually be cured. The number of new cases of melanoma has been increasing for at least 40 years. Melanoma is more likely to spread to nearby tissues and other parts of the body and can be harder to cure. Finding and treating melanoma skin cancer early may help prevent death from melanoma. Avoiding cancer risk factors may help prevent certain cancers. Risk factors include smoking, being overweight, and not getting enough exercise. Increasing protective factors such as quitting smoking and exercising may also help prevent some cancers. Talk to your doctor or other health care professional about how you might lower your risk of cancer. Some studies suggest that being exposed to ultraviolet (UV)
radiation and the sensitivity of a person’s skin to UV radiation are risk factors for skin cancer. UV radiation is the name for the invisible rays
that are part of the energy that comes from the sun. Sunlamps and tanning
beds also give off UV radiation. Risk factors for
nonmelanoma and melanoma cancers are not the same. Although having a fair complexion is a risk factor for nonmelanoma and melanoma skin cancer, people of all skin colors can get skin cancer. It is not known if nonmelanoma skin cancer risk is decreased by staying out of the sun, using sunscreens, or wearing protective clothing when outdoors. This is because not enough studies have been done to prove this. Sunscreen may help decrease
the amount of UV radiation to the skin. One study found that wearing sunscreen can help prevent actinic keratoses, scaly patches of skin that sometimes become squamous cell carcinoma.
The harms of using sunscreen are likely to be small and include allergic reactions to skin creams and lower levels of vitamin D made in the skin because of less sun exposure. It is also possible that when a person uses sunscreen to avoid sunburn they may spend too much time in the sun and be exposed to harmful UV radiation. Although protecting the skin and eyes from the sun has not been proven to lower the chance of getting skin cancer, skin experts suggest the following: Chemoprevention is the use of drugs, vitamins, or other agents to try to reduce the risk of cancer. The following chemopreventive agents have been studied to find whether they lower the risk of nonmelanoma skin cancer: Beta carotene Studies of beta carotene (taken as a supplement in pills) have not shown that it prevents nonmelanoma skin cancer from forming or coming back. Isotretinoin High doses of isotretinoin have been shown to prevent new skin cancers in patients with xeroderma pigmentosum. However, isotretinoin has not been shown to prevent nonmelanoma skin cancers from coming back in patients previously treated for nonmelanoma skin cancers. Treatment with isotretinoin can cause serious side effects. Selenium Studies have shown that selenium (taken in brewer's yeast tablets) does not lower the risk of basal cell carcinoma, and may increase the risk of squamous cell carcinoma. Celecoxib A study of celecoxib in patients with actinic keratosis and a history of nonmelanoma skin cancer found those who took celecoxib had slightly lower rates of recurrent nonmelanoma skin cancers. Celecoxib may have serious side effects on the heart and blood vessels. Alpha-difluoromethylornithine (DFMO) A study of alpha-difluoromethylornithine (DFMO) in patients with a history of nonmelanoma skin cancer showed that those who took DFMO had lower rates of nonmelanoma skin cancers coming back than those who took a placebo. DFMO may cause hearing loss which is usually temporary. Nicotinamide (vitamin B3) Studies have shown that nicotinamide (vitamin B3) helps prevent new actinic keratoses lesions from forming in people who had four or fewer actinic lesions before taking nicotinamide. More studies are needed to find out if nicotinamide prevents nonmelanoma skin cancer from forming or coming back. It has not been proven that using sunscreen to prevent sunburn can protect against melanoma caused by UV radiation. Other risk factors such as having skin that burns easily, having a large number of benign moles, or having atypical nevi may also play a role in whether melanoma forms. It is not known if people who receive counseling or information about avoiding sun exposure make changes in their behavior to protect their skin from the sun. Cancer prevention clinical trials are used to study ways to
lower the risk of developing certain types of cancer. Some
cancer prevention trials are conducted with healthy people who
have not had cancer but who have an increased risk for cancer.
Other prevention trials are conducted with people who have had
cancer and are trying to prevent another cancer of the same type
or to lower their chance of developing a new type of cancer.
Other trials are done with healthy volunteers who are not known
to have any risk factors for cancer. The purpose of some cancer prevention clinical trials is to
find out whether actions people take can prevent cancer. These
may include eating fruits and vegetables, exercising, quitting
smoking, or taking certain medicines, vitamins, minerals, or
food supplements. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about skin cancer prevention. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Screening and Prevention Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Screening and Prevention Editorial Board. PDQ Skin Cancer Prevention. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/skin/patient/skin-prevention-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389434] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Skin Cancer Prevention (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is (are) Skin Cancer ? | Key Points
- Skin cancer is a disease in which malignant (cancer) cells form in the tissues of the skin. - There are several types of skin cancer. - Skin cancer is the most common cancer in the United States.
Skin cancer is a disease in which malignant (cancer) cells form in the tissues of the skin.
The skin is the bodys largest organ. It protects against heat, sunlight, injury, and infection. Skin also helps control body temperature and stores water, fat, and vitamin D. The skin has several layers, but the two main layers are the epidermis (upper or outer layer) and the dermis (lower or inner layer). The epidermis is made up of 3 kinds of cells: - Squamous cells are the thin, flat cells that make up most of the epidermis. - Basal cells are the round cells under the squamous cells. - Melanocytes are found throughout the lower part of the epidermis. They make melanin, the pigment that gives skin its natural color. When skin is exposed to the sun, melanocytes make more pigment, causing the skin to tan, or darken. The dermis contains blood and lymph vessels, hair follicles, and glands. See the following PDQ summaries for more information about skin cancer: - Skin Cancer Screening - Skin Cancer Treatment - Melanoma Treatment - Genetics of Skin Cancer
There are several types of skin cancer.
The most common types of skin cancer are squamous cell carcinoma, which forms in the squamous cells and basal cell carcinoma, which forms in the basal cells. Squamous cell carcinoma and basal cell carcinoma are also called nonmelanoma skin cancers. Melanoma, which forms in the melanocytes, is a less common type of skin cancer that grows and spreads quickly. Skin cancer can occur anywhere on the body, but it is most common in areas exposed to sunlight, such as the face, neck, hands, and arms.
Skin cancer is the most common cancer in the United States.
Basal cell carcinoma and squamous cell carcinoma are the most common types of skin cancer in the United States. The number of new cases of nonmelanoma skin cancer appears to be increasing every year. These nonmelanoma skin cancers can usually be cured. The number of new cases of melanoma has been increasing for at least 30 years. Melanoma is more likely to spread to nearby tissues and other parts of the body and can be harder to cure. Finding and treating melanoma skin cancer early may help prevent death from melanoma. |
Cancer prevention is action taken to lower the chance of getting
cancer. By preventing cancer, the number of new cases of cancer
in a group or population is lowered. Hopefully, this will lower
the number of deaths caused by cancer. To prevent new cancers from starting, scientists look at risk
factors and protective factors. Anything that increases your
chance of developing cancer is called a cancer risk factor;
anything that decreases your chance of developing cancer is
called a cancer protective factor. Some risk factors for cancer can be avoided, but many cannot.
For example, both smoking and inheriting certain genes are
risk factors for some types of cancer, but only smoking can be
avoided. Regular exercise and a healthy diet may be protective
factors for some types of cancer. Avoiding risk factors and
increasing protective factors may lower your risk but it does
not mean that you will not get cancer. Different ways to prevent cancer are being studied. The skin is the body’s largest organ. It protects against heat, sunlight, injury, and infection. Skin also helps control body temperature and stores water, fat, and vitamin D. The skin has several layers, but the two main layers are the epidermis (upper or outer layer) and the dermis (lower or inner layer). The epidermis is made up of 3 kinds of cells: The dermis contains blood and lymph
vessels, hair follicles, and glands. See the following PDQ summaries for more information about skin cancer: The most common types of skin cancer are squamous cell carcinoma, which forms in the squamous cells and basal cell carcinoma, which forms in the basal cells. Squamous cell carcinoma and basal cell carcinoma are also called nonmelanoma skin cancers. Melanoma, which forms in the melanocytes, is a less common type of skin
cancer that grows and spreads quickly. Skin cancer can occur anywhere on the body, but it is most common in areas exposed to sunlight, such as the face, neck, hands, and arms. Basal cell carcinoma and squamous cell carcinoma are the most common types of skin cancer in the United States. The number of new cases of nonmelanoma skin cancer appears to be increasing every year. These nonmelanoma
skin cancers can usually be cured. The number of new cases of melanoma has been increasing for at least 40 years. Melanoma is more likely to spread to nearby tissues and other parts of the body and can be harder to cure. Finding and treating melanoma skin cancer early may help prevent death from melanoma. Avoiding cancer risk factors may help prevent certain cancers. Risk factors include smoking, being overweight, and not getting enough exercise. Increasing protective factors such as quitting smoking and exercising may also help prevent some cancers. Talk to your doctor or other health care professional about how you might lower your risk of cancer. Some studies suggest that being exposed to ultraviolet (UV)
radiation and the sensitivity of a person’s skin to UV radiation are risk factors for skin cancer. UV radiation is the name for the invisible rays
that are part of the energy that comes from the sun. Sunlamps and tanning
beds also give off UV radiation. Risk factors for
nonmelanoma and melanoma cancers are not the same. Although having a fair complexion is a risk factor for nonmelanoma and melanoma skin cancer, people of all skin colors can get skin cancer. It is not known if nonmelanoma skin cancer risk is decreased by staying out of the sun, using sunscreens, or wearing protective clothing when outdoors. This is because not enough studies have been done to prove this. Sunscreen may help decrease
the amount of UV radiation to the skin. One study found that wearing sunscreen can help prevent actinic keratoses, scaly patches of skin that sometimes become squamous cell carcinoma.
The harms of using sunscreen are likely to be small and include allergic reactions to skin creams and lower levels of vitamin D made in the skin because of less sun exposure. It is also possible that when a person uses sunscreen to avoid sunburn they may spend too much time in the sun and be exposed to harmful UV radiation. Although protecting the skin and eyes from the sun has not been proven to lower the chance of getting skin cancer, skin experts suggest the following: Chemoprevention is the use of drugs, vitamins, or other agents to try to reduce the risk of cancer. The following chemopreventive agents have been studied to find whether they lower the risk of nonmelanoma skin cancer: Beta carotene Studies of beta carotene (taken as a supplement in pills) have not shown that it prevents nonmelanoma skin cancer from forming or coming back. Isotretinoin High doses of isotretinoin have been shown to prevent new skin cancers in patients with xeroderma pigmentosum. However, isotretinoin has not been shown to prevent nonmelanoma skin cancers from coming back in patients previously treated for nonmelanoma skin cancers. Treatment with isotretinoin can cause serious side effects. Selenium Studies have shown that selenium (taken in brewer's yeast tablets) does not lower the risk of basal cell carcinoma, and may increase the risk of squamous cell carcinoma. Celecoxib A study of celecoxib in patients with actinic keratosis and a history of nonmelanoma skin cancer found those who took celecoxib had slightly lower rates of recurrent nonmelanoma skin cancers. Celecoxib may have serious side effects on the heart and blood vessels. Alpha-difluoromethylornithine (DFMO) A study of alpha-difluoromethylornithine (DFMO) in patients with a history of nonmelanoma skin cancer showed that those who took DFMO had lower rates of nonmelanoma skin cancers coming back than those who took a placebo. DFMO may cause hearing loss which is usually temporary. Nicotinamide (vitamin B3) Studies have shown that nicotinamide (vitamin B3) helps prevent new actinic keratoses lesions from forming in people who had four or fewer actinic lesions before taking nicotinamide. More studies are needed to find out if nicotinamide prevents nonmelanoma skin cancer from forming or coming back. It has not been proven that using sunscreen to prevent sunburn can protect against melanoma caused by UV radiation. Other risk factors such as having skin that burns easily, having a large number of benign moles, or having atypical nevi may also play a role in whether melanoma forms. It is not known if people who receive counseling or information about avoiding sun exposure make changes in their behavior to protect their skin from the sun. Cancer prevention clinical trials are used to study ways to
lower the risk of developing certain types of cancer. Some
cancer prevention trials are conducted with healthy people who
have not had cancer but who have an increased risk for cancer.
Other prevention trials are conducted with people who have had
cancer and are trying to prevent another cancer of the same type
or to lower their chance of developing a new type of cancer.
Other trials are done with healthy volunteers who are not known
to have any risk factors for cancer. The purpose of some cancer prevention clinical trials is to
find out whether actions people take can prevent cancer. These
may include eating fruits and vegetables, exercising, quitting
smoking, or taking certain medicines, vitamins, minerals, or
food supplements. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about skin cancer prevention. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Screening and Prevention Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Screening and Prevention Editorial Board. PDQ Skin Cancer Prevention. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/skin/patient/skin-prevention-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389434] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Skin Cancer Prevention (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | How to prevent Skin Cancer ? | Key Points
- Avoiding risk factors and increasing protective factors may help prevent cancer. - Being exposed to ultraviolet radiation is a risk factor for skin cancer. - It is not known if the following lower the risk of nonmelanoma skin cancer: - Sunscreen use and avoiding sun exposure - Chemopreventive agents - It is not known if the following lower the risk of melanoma: - Sunscreen - Counseling and protecting the skin from the sun - Cancer prevention clinical trials are used to study ways to prevent cancer. - New ways to prevent skin cancer are being studied in clinical trials.
Avoiding risk factors and increasing protective factors may help prevent cancer.
Avoiding cancer risk factors may help prevent certain cancers. Risk factors include smoking, being overweight, and not getting enough exercise. Increasing protective factors such as quitting smoking and exercising may also help prevent some cancers. Talk to your doctor or other health care professional about how you might lower your risk of cancer.
Being exposed to ultraviolet radiation is a risk factor for skin cancer.
Some studies suggest that being exposed to ultraviolet (UV) radiation and the sensitivity of a persons skin to UV radiation are risk factors for skin cancer. UV radiation is the name for the invisible rays that are part of the energy that comes from the sun. Sunlamps and tanning beds also give off UV radiation. Risk factors for nonmelanoma and melanoma cancers are not the same. - Risk factors for nonmelanoma skin cancer: - Being exposed to natural sunlight or artificial sunlight (such as from tanning beds) over long periods of time. - Having a fair complexion, which includes the following: - Fair skin that freckles and burns easily, does not tan, or tans poorly. - Blue or green or other light-colored eyes. - Red or blond hair. - Having actinic keratosis. - Past treatment with radiation. - Having a weakened immune system. - Being exposed to arsenic. - Risk factors for melanoma skin cancer: - Having a fair complexion, which includes the following: - Fair skin that freckles and burns easily, does not tan, or tans poorly. - Blue or green or other light-colored eyes. - Red or blond hair. - Being exposed to natural sunlight or artificial sunlight (such as from tanning beds) over long periods of time. - Having a history of many blistering sunburns, especially as a child or teenager. - Having several large or many small moles. - Having a family history of unusual moles (atypical nevus syndrome). - Having a family or personal history of melanoma. - Being white.
It is not known if the following lower the risk of nonmelanoma skin cancer:
Sunscreen use and avoiding sun exposure It is not known if nonmelanoma skin cancer risk is decreased by staying out of the sun, using sunscreens, or wearing protective clothing when outdoors. This is because not enough studies have been done to prove this. Sunscreen may help decrease the amount of UV radiation to the skin. One study found that wearing sunscreen can help prevent actinic keratoses, scaly patches of skin that sometimes become squamous cell carcinoma. The harms of using sunscreen are likely to be small and include allergic reactions to skin creams and lower levels of vitamin D made in the skin because of less sun exposure. It is also possible that when a person uses sunscreen to avoid sunburn they may spend too much time in the sun and be exposed to harmful UV radiation. Although protecting the skin and eyes from the sun has not been proven to lower the chance of getting skin cancer, skin experts suggest the following: - Use sunscreen that protects against UV radiation. - Do not stay out in the sun for long periods of time, especially when the sun is at its strongest. - Wear long sleeve shirts, long pants, sun hats, and sunglasses, when outdoors. Chemopreventive agents Chemoprevention is the use of drugs, vitamins, or other agents to try to reduce the risk of cancer. The following chemopreventive agents have been studied to find whether they lower the risk of nonmelanoma skin cancer: Beta carotene Studies of beta carotene (taken as a supplement in pills) have not shown that it prevents nonmelanoma skin cancer from forming or coming back. Isotretinoin High doses of isotretinoin have been shown to prevent new skin cancers in patients with xeroderma pigmentosum. However, isotretinoin has not been shown to prevent nonmelanoma skin cancers from coming back in patients previously treated for nonmelanoma skin cancers. Treatment with isotretinoin can cause serious side effects. Selenium Studies have shown that selenium (taken in brewer's yeast tablets) does not lower the risk of basal cell carcinoma, and may increase the risk of squamous cell carcinoma. Celecoxib A study of celecoxib in patients with actinic keratosis and a history of nonmelanoma skin cancer found those who took celecoxib had slightly lower rates of recurrent nonmelanoma skin cancers. Celecoxib may have serious side effects on the heart and blood vessels. Alpha-difluoromethylornithine (DFMO) A study of alpha-difluoromethylornithine (DFMO) in patients with a history of nonmelanoma skin cancer showed that those who took DFMO had lower rates of nonmelanoma skin cancers coming back than those who took a placebo. DFMO may cause hearing loss which is usually temporary. Nicotinamide (vitamin B3) Studies have shown that nicotinamide (vitamin B3) helps prevent new actinic keratoses lesions from forming in people who had four or fewer actinic lesions before taking nicotinamide. More studies are needed to find out if nicotinamide prevents nonmelanoma skin cancer from forming or coming back.
It is not known if the following lower the risk of melanoma:
Sunscreen It has not been proven that using sunscreen to prevent sunburn can protect against melanoma caused by UV radiation. Other risk factors such as having skin that burns easily, having a large number of benign moles, or having atypical nevi may also play a role in whether melanoma forms. Counseling and protecting the skin from the sun It is not known if people who receive counseling or information about avoiding sun exposure make changes in their behavior to protect their skin from the sun.
Cancer prevention clinical trials are used to study ways to prevent cancer.
Cancer prevention clinical trials are used to study ways to lower the risk of developing certain types of cancer. Some cancer prevention trials are conducted with healthy people who have not had cancer but who have an increased risk for cancer. Other prevention trials are conducted with people who have had cancer and are trying to prevent another cancer of the same type or to lower their chance of developing a new type of cancer. Other trials are done with healthy volunteers who are not known to have any risk factors for cancer. The purpose of some cancer prevention clinical trials is to find out whether actions people take can prevent cancer. These may include eating fruits and vegetables, exercising, quitting smoking, or taking certain medicines, vitamins, minerals, or food supplements.
New ways to prevent skin cancer are being studied in clinical trials.
Clinical trials are taking place in many parts of the country. Information about clinical trials can be found in the Clinical Trials section of the NCI Web site. Check NCI's list of cancer clinical trials for nonmelanoma skin cancer prevention trials and melanoma prevention trials that are now accepting patients. |
Cancer prevention is action taken to lower the chance of getting
cancer. By preventing cancer, the number of new cases of cancer
in a group or population is lowered. Hopefully, this will lower
the number of deaths caused by cancer. To prevent new cancers from starting, scientists look at risk
factors and protective factors. Anything that increases your
chance of developing cancer is called a cancer risk factor;
anything that decreases your chance of developing cancer is
called a cancer protective factor. Some risk factors for cancer can be avoided, but many cannot.
For example, both smoking and inheriting certain genes are
risk factors for some types of cancer, but only smoking can be
avoided. Regular exercise and a healthy diet may be protective
factors for some types of cancer. Avoiding risk factors and
increasing protective factors may lower your risk but it does
not mean that you will not get cancer. Different ways to prevent cancer are being studied. The skin is the body’s largest organ. It protects against heat, sunlight, injury, and infection. Skin also helps control body temperature and stores water, fat, and vitamin D. The skin has several layers, but the two main layers are the epidermis (upper or outer layer) and the dermis (lower or inner layer). The epidermis is made up of 3 kinds of cells: The dermis contains blood and lymph
vessels, hair follicles, and glands. See the following PDQ summaries for more information about skin cancer: The most common types of skin cancer are squamous cell carcinoma, which forms in the squamous cells and basal cell carcinoma, which forms in the basal cells. Squamous cell carcinoma and basal cell carcinoma are also called nonmelanoma skin cancers. Melanoma, which forms in the melanocytes, is a less common type of skin
cancer that grows and spreads quickly. Skin cancer can occur anywhere on the body, but it is most common in areas exposed to sunlight, such as the face, neck, hands, and arms. Basal cell carcinoma and squamous cell carcinoma are the most common types of skin cancer in the United States. The number of new cases of nonmelanoma skin cancer appears to be increasing every year. These nonmelanoma
skin cancers can usually be cured. The number of new cases of melanoma has been increasing for at least 40 years. Melanoma is more likely to spread to nearby tissues and other parts of the body and can be harder to cure. Finding and treating melanoma skin cancer early may help prevent death from melanoma. Avoiding cancer risk factors may help prevent certain cancers. Risk factors include smoking, being overweight, and not getting enough exercise. Increasing protective factors such as quitting smoking and exercising may also help prevent some cancers. Talk to your doctor or other health care professional about how you might lower your risk of cancer. Some studies suggest that being exposed to ultraviolet (UV)
radiation and the sensitivity of a person’s skin to UV radiation are risk factors for skin cancer. UV radiation is the name for the invisible rays
that are part of the energy that comes from the sun. Sunlamps and tanning
beds also give off UV radiation. Risk factors for
nonmelanoma and melanoma cancers are not the same. Although having a fair complexion is a risk factor for nonmelanoma and melanoma skin cancer, people of all skin colors can get skin cancer. It is not known if nonmelanoma skin cancer risk is decreased by staying out of the sun, using sunscreens, or wearing protective clothing when outdoors. This is because not enough studies have been done to prove this. Sunscreen may help decrease
the amount of UV radiation to the skin. One study found that wearing sunscreen can help prevent actinic keratoses, scaly patches of skin that sometimes become squamous cell carcinoma.
The harms of using sunscreen are likely to be small and include allergic reactions to skin creams and lower levels of vitamin D made in the skin because of less sun exposure. It is also possible that when a person uses sunscreen to avoid sunburn they may spend too much time in the sun and be exposed to harmful UV radiation. Although protecting the skin and eyes from the sun has not been proven to lower the chance of getting skin cancer, skin experts suggest the following: Chemoprevention is the use of drugs, vitamins, or other agents to try to reduce the risk of cancer. The following chemopreventive agents have been studied to find whether they lower the risk of nonmelanoma skin cancer: Beta carotene Studies of beta carotene (taken as a supplement in pills) have not shown that it prevents nonmelanoma skin cancer from forming or coming back. Isotretinoin High doses of isotretinoin have been shown to prevent new skin cancers in patients with xeroderma pigmentosum. However, isotretinoin has not been shown to prevent nonmelanoma skin cancers from coming back in patients previously treated for nonmelanoma skin cancers. Treatment with isotretinoin can cause serious side effects. Selenium Studies have shown that selenium (taken in brewer's yeast tablets) does not lower the risk of basal cell carcinoma, and may increase the risk of squamous cell carcinoma. Celecoxib A study of celecoxib in patients with actinic keratosis and a history of nonmelanoma skin cancer found those who took celecoxib had slightly lower rates of recurrent nonmelanoma skin cancers. Celecoxib may have serious side effects on the heart and blood vessels. Alpha-difluoromethylornithine (DFMO) A study of alpha-difluoromethylornithine (DFMO) in patients with a history of nonmelanoma skin cancer showed that those who took DFMO had lower rates of nonmelanoma skin cancers coming back than those who took a placebo. DFMO may cause hearing loss which is usually temporary. Nicotinamide (vitamin B3) Studies have shown that nicotinamide (vitamin B3) helps prevent new actinic keratoses lesions from forming in people who had four or fewer actinic lesions before taking nicotinamide. More studies are needed to find out if nicotinamide prevents nonmelanoma skin cancer from forming or coming back. It has not been proven that using sunscreen to prevent sunburn can protect against melanoma caused by UV radiation. Other risk factors such as having skin that burns easily, having a large number of benign moles, or having atypical nevi may also play a role in whether melanoma forms. It is not known if people who receive counseling or information about avoiding sun exposure make changes in their behavior to protect their skin from the sun. Cancer prevention clinical trials are used to study ways to
lower the risk of developing certain types of cancer. Some
cancer prevention trials are conducted with healthy people who
have not had cancer but who have an increased risk for cancer.
Other prevention trials are conducted with people who have had
cancer and are trying to prevent another cancer of the same type
or to lower their chance of developing a new type of cancer.
Other trials are done with healthy volunteers who are not known
to have any risk factors for cancer. The purpose of some cancer prevention clinical trials is to
find out whether actions people take can prevent cancer. These
may include eating fruits and vegetables, exercising, quitting
smoking, or taking certain medicines, vitamins, minerals, or
food supplements. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about skin cancer prevention. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Screening and Prevention Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Screening and Prevention Editorial Board. PDQ Skin Cancer Prevention. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/skin/patient/skin-prevention-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389434] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Skin Cancer Prevention (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | Who is at risk for Skin Cancer? ? | Key Points
- Avoiding risk factors and increasing protective factors may help prevent cancer. - Being exposed to ultraviolet radiation is a risk factor for skin cancer. - It is not known if the following lower the risk of nonmelanoma skin cancer: - Sunscreen use and avoiding sun exposure - Chemopreventive agents - It is not known if the following lower the risk of melanoma: - Sunscreen - Counseling and protecting the skin from the sun - Cancer prevention clinical trials are used to study ways to prevent cancer. - New ways to prevent skin cancer are being studied in clinical trials.
Avoiding risk factors and increasing protective factors may help prevent cancer.
Avoiding cancer risk factors may help prevent certain cancers. Risk factors include smoking, being overweight, and not getting enough exercise. Increasing protective factors such as quitting smoking and exercising may also help prevent some cancers. Talk to your doctor or other health care professional about how you might lower your risk of cancer.
Being exposed to ultraviolet radiation is a risk factor for skin cancer.
Some studies suggest that being exposed to ultraviolet (UV) radiation and the sensitivity of a persons skin to UV radiation are risk factors for skin cancer. UV radiation is the name for the invisible rays that are part of the energy that comes from the sun. Sunlamps and tanning beds also give off UV radiation. Risk factors for nonmelanoma and melanoma cancers are not the same. - Risk factors for nonmelanoma skin cancer: - Being exposed to natural sunlight or artificial sunlight (such as from tanning beds) over long periods of time. - Having a fair complexion, which includes the following: - Fair skin that freckles and burns easily, does not tan, or tans poorly. - Blue or green or other light-colored eyes. - Red or blond hair. - Having actinic keratosis. - Past treatment with radiation. - Having a weakened immune system. - Being exposed to arsenic. - Risk factors for melanoma skin cancer: - Having a fair complexion, which includes the following: - Fair skin that freckles and burns easily, does not tan, or tans poorly. - Blue or green or other light-colored eyes. - Red or blond hair. - Being exposed to natural sunlight or artificial sunlight (such as from tanning beds) over long periods of time. - Having a history of many blistering sunburns, especially as a child or teenager. - Having several large or many small moles. - Having a family history of unusual moles (atypical nevus syndrome). - Having a family or personal history of melanoma. - Being white.
It is not known if the following lower the risk of nonmelanoma skin cancer:
Sunscreen use and avoiding sun exposure It is not known if nonmelanoma skin cancer risk is decreased by staying out of the sun, using sunscreens, or wearing protective clothing when outdoors. This is because not enough studies have been done to prove this. Sunscreen may help decrease the amount of UV radiation to the skin. One study found that wearing sunscreen can help prevent actinic keratoses, scaly patches of skin that sometimes become squamous cell carcinoma. The harms of using sunscreen are likely to be small and include allergic reactions to skin creams and lower levels of vitamin D made in the skin because of less sun exposure. It is also possible that when a person uses sunscreen to avoid sunburn they may spend too much time in the sun and be exposed to harmful UV radiation. Although protecting the skin and eyes from the sun has not been proven to lower the chance of getting skin cancer, skin experts suggest the following: - Use sunscreen that protects against UV radiation. - Do not stay out in the sun for long periods of time, especially when the sun is at its strongest. - Wear long sleeve shirts, long pants, sun hats, and sunglasses, when outdoors. Chemopreventive agents Chemoprevention is the use of drugs, vitamins, or other agents to try to reduce the risk of cancer. The following chemopreventive agents have been studied to find whether they lower the risk of nonmelanoma skin cancer: Beta carotene Studies of beta carotene (taken as a supplement in pills) have not shown that it prevents nonmelanoma skin cancer from forming or coming back. Isotretinoin High doses of isotretinoin have been shown to prevent new skin cancers in patients with xeroderma pigmentosum. However, isotretinoin has not been shown to prevent nonmelanoma skin cancers from coming back in patients previously treated for nonmelanoma skin cancers. Treatment with isotretinoin can cause serious side effects. Selenium Studies have shown that selenium (taken in brewer's yeast tablets) does not lower the risk of basal cell carcinoma, and may increase the risk of squamous cell carcinoma. Celecoxib A study of celecoxib in patients with actinic keratosis and a history of nonmelanoma skin cancer found those who took celecoxib had slightly lower rates of recurrent nonmelanoma skin cancers. Celecoxib may have serious side effects on the heart and blood vessels. Alpha-difluoromethylornithine (DFMO) A study of alpha-difluoromethylornithine (DFMO) in patients with a history of nonmelanoma skin cancer showed that those who took DFMO had lower rates of nonmelanoma skin cancers coming back than those who took a placebo. DFMO may cause hearing loss which is usually temporary. Nicotinamide (vitamin B3) Studies have shown that nicotinamide (vitamin B3) helps prevent new actinic keratoses lesions from forming in people who had four or fewer actinic lesions before taking nicotinamide. More studies are needed to find out if nicotinamide prevents nonmelanoma skin cancer from forming or coming back.
It is not known if the following lower the risk of melanoma:
Sunscreen It has not been proven that using sunscreen to prevent sunburn can protect against melanoma caused by UV radiation. Other risk factors such as having skin that burns easily, having a large number of benign moles, or having atypical nevi may also play a role in whether melanoma forms. Counseling and protecting the skin from the sun It is not known if people who receive counseling or information about avoiding sun exposure make changes in their behavior to protect their skin from the sun. |
Cancer prevention is action taken to lower the chance of getting
cancer. By preventing cancer, the number of new cases of cancer
in a group or population is lowered. Hopefully, this will lower
the number of deaths caused by cancer. To prevent new cancers from starting, scientists look at risk
factors and protective factors. Anything that increases your
chance of developing cancer is called a cancer risk factor;
anything that decreases your chance of developing cancer is
called a cancer protective factor. Some risk factors for cancer can be avoided, but many cannot.
For example, both smoking and inheriting certain genes are
risk factors for some types of cancer, but only smoking can be
avoided. Regular exercise and a healthy diet may be protective
factors for some types of cancer. Avoiding risk factors and
increasing protective factors may lower your risk but it does
not mean that you will not get cancer. Different ways to prevent cancer are being studied. The skin is the body’s largest organ. It protects against heat, sunlight, injury, and infection. Skin also helps control body temperature and stores water, fat, and vitamin D. The skin has several layers, but the two main layers are the epidermis (upper or outer layer) and the dermis (lower or inner layer). The epidermis is made up of 3 kinds of cells: The dermis contains blood and lymph
vessels, hair follicles, and glands. See the following PDQ summaries for more information about skin cancer: The most common types of skin cancer are squamous cell carcinoma, which forms in the squamous cells and basal cell carcinoma, which forms in the basal cells. Squamous cell carcinoma and basal cell carcinoma are also called nonmelanoma skin cancers. Melanoma, which forms in the melanocytes, is a less common type of skin
cancer that grows and spreads quickly. Skin cancer can occur anywhere on the body, but it is most common in areas exposed to sunlight, such as the face, neck, hands, and arms. Basal cell carcinoma and squamous cell carcinoma are the most common types of skin cancer in the United States. The number of new cases of nonmelanoma skin cancer appears to be increasing every year. These nonmelanoma
skin cancers can usually be cured. The number of new cases of melanoma has been increasing for at least 40 years. Melanoma is more likely to spread to nearby tissues and other parts of the body and can be harder to cure. Finding and treating melanoma skin cancer early may help prevent death from melanoma. Avoiding cancer risk factors may help prevent certain cancers. Risk factors include smoking, being overweight, and not getting enough exercise. Increasing protective factors such as quitting smoking and exercising may also help prevent some cancers. Talk to your doctor or other health care professional about how you might lower your risk of cancer. Some studies suggest that being exposed to ultraviolet (UV)
radiation and the sensitivity of a person’s skin to UV radiation are risk factors for skin cancer. UV radiation is the name for the invisible rays
that are part of the energy that comes from the sun. Sunlamps and tanning
beds also give off UV radiation. Risk factors for
nonmelanoma and melanoma cancers are not the same. Although having a fair complexion is a risk factor for nonmelanoma and melanoma skin cancer, people of all skin colors can get skin cancer. It is not known if nonmelanoma skin cancer risk is decreased by staying out of the sun, using sunscreens, or wearing protective clothing when outdoors. This is because not enough studies have been done to prove this. Sunscreen may help decrease
the amount of UV radiation to the skin. One study found that wearing sunscreen can help prevent actinic keratoses, scaly patches of skin that sometimes become squamous cell carcinoma.
The harms of using sunscreen are likely to be small and include allergic reactions to skin creams and lower levels of vitamin D made in the skin because of less sun exposure. It is also possible that when a person uses sunscreen to avoid sunburn they may spend too much time in the sun and be exposed to harmful UV radiation. Although protecting the skin and eyes from the sun has not been proven to lower the chance of getting skin cancer, skin experts suggest the following: Chemoprevention is the use of drugs, vitamins, or other agents to try to reduce the risk of cancer. The following chemopreventive agents have been studied to find whether they lower the risk of nonmelanoma skin cancer: Beta carotene Studies of beta carotene (taken as a supplement in pills) have not shown that it prevents nonmelanoma skin cancer from forming or coming back. Isotretinoin High doses of isotretinoin have been shown to prevent new skin cancers in patients with xeroderma pigmentosum. However, isotretinoin has not been shown to prevent nonmelanoma skin cancers from coming back in patients previously treated for nonmelanoma skin cancers. Treatment with isotretinoin can cause serious side effects. Selenium Studies have shown that selenium (taken in brewer's yeast tablets) does not lower the risk of basal cell carcinoma, and may increase the risk of squamous cell carcinoma. Celecoxib A study of celecoxib in patients with actinic keratosis and a history of nonmelanoma skin cancer found those who took celecoxib had slightly lower rates of recurrent nonmelanoma skin cancers. Celecoxib may have serious side effects on the heart and blood vessels. Alpha-difluoromethylornithine (DFMO) A study of alpha-difluoromethylornithine (DFMO) in patients with a history of nonmelanoma skin cancer showed that those who took DFMO had lower rates of nonmelanoma skin cancers coming back than those who took a placebo. DFMO may cause hearing loss which is usually temporary. Nicotinamide (vitamin B3) Studies have shown that nicotinamide (vitamin B3) helps prevent new actinic keratoses lesions from forming in people who had four or fewer actinic lesions before taking nicotinamide. More studies are needed to find out if nicotinamide prevents nonmelanoma skin cancer from forming or coming back. It has not been proven that using sunscreen to prevent sunburn can protect against melanoma caused by UV radiation. Other risk factors such as having skin that burns easily, having a large number of benign moles, or having atypical nevi may also play a role in whether melanoma forms. It is not known if people who receive counseling or information about avoiding sun exposure make changes in their behavior to protect their skin from the sun. Cancer prevention clinical trials are used to study ways to
lower the risk of developing certain types of cancer. Some
cancer prevention trials are conducted with healthy people who
have not had cancer but who have an increased risk for cancer.
Other prevention trials are conducted with people who have had
cancer and are trying to prevent another cancer of the same type
or to lower their chance of developing a new type of cancer.
Other trials are done with healthy volunteers who are not known
to have any risk factors for cancer. The purpose of some cancer prevention clinical trials is to
find out whether actions people take can prevent cancer. These
may include eating fruits and vegetables, exercising, quitting
smoking, or taking certain medicines, vitamins, minerals, or
food supplements. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about skin cancer prevention. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Screening and Prevention Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Screening and Prevention Editorial Board. PDQ Skin Cancer Prevention. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/skin/patient/skin-prevention-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389434] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Skin Cancer Prevention (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | what research (or clinical trials) is being done for Skin Cancer ? | Cancer prevention clinical trials are used to study ways to prevent cancer.
Cancer prevention clinical trials are used to study ways to lower the risk of developing certain types of cancer. Some cancer prevention trials are conducted with healthy people who have not had cancer but who have an increased risk for cancer. Other prevention trials are conducted with people who have had cancer and are trying to prevent another cancer of the same type or to lower their chance of developing a new type of cancer. Other trials are done with healthy volunteers who are not known to have any risk factors for cancer. The purpose of some cancer prevention clinical trials is to find out whether actions people take can prevent cancer. These may include eating fruits and vegetables, exercising, quitting smoking, or taking certain medicines, vitamins, minerals, or food supplements.
New ways to prevent skin cancer are being studied in clinical trials.
Clinical trials are taking place in many parts of the country. Information about clinical trials can be found in the Clinical Trials section of the NCI Web site. Check NCI's list of cancer clinical trials for nonmelanoma skin cancer prevention trials and melanoma prevention trials that are now accepting patients. |
The breast is made up of lobes and ducts. Each breast has 15 to 20 sections called
lobes. Each lobe has many smaller sections called lobules. Lobules end in dozens of tiny bulbs that
can make milk. The lobes, lobules, and bulbs are linked by thin tubes called
ducts. EnlargeAnatomy of the female breast. The nipple and areola are shown on the outside of the breast. The lymph nodes, lobes, lobules, ducts, and other parts of the inside of the breast are also shown. Each breast also has blood
vessels and lymph
vessels. The lymph vessels carry an almost colorless, watery fluid called lymph. Lymph
vessels carry lymph between lymph
nodes. Lymph nodes are small, bean-shaped structures found throughout the body. They filter lymph and store white blood cells that help fight
infection and disease. Groups of lymph nodes are found near the breast in the
axilla (under the arm), above the
collarbone, and in the chest. The most common type of breast cancer is ductal
carcinoma, which begins in the cells of the ducts. Cancer that begins in the
lobes or lobules is called lobular carcinoma and is more often found in both
breasts than are other types of breast cancer. Inflammatory breast cancer is an uncommon type of
breast cancer in which the breast is warm, red, and swollen. For more information about breast cancer, see: Anything that increases your chance of getting a disease
is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your doctor if you think you may be at risk for breast cancer. Risk factors for breast cancer include the following: Older age is the main risk factor for most cancers. The chance of getting cancer increases as you get older. NCI's Breast Cancer Risk Assessment Tool uses a woman's risk factors to estimate her risk for breast cancer during the next five years and up to age 90. This online tool is meant to be used by a health care provider. For more information on breast cancer risk, call 1-800-4-CANCER. The genes in cells carry
the hereditary information that is
received from a person’s parents. Hereditary breast cancer makes up
about 5% to 10% of all breast cancer. Some mutated genes related to
breast cancer are more common in certain ethnic groups. Women who have certain gene mutations, such as a BRCA1 or BRCA2 mutation, have an increased risk of breast cancer. These women also have an increased risk of ovarian cancer, and may
have an increased risk of other cancers. Men who have a mutated
gene related to breast cancer also have an increased risk of breast cancer. For more information, see
Male Breast Cancer Treatment. There are tests that can detect (find) mutated genes. These
genetic tests are sometimes done for
members of families with a high risk of cancer. For more information, see Genetics of Breast and Gynecologic Cancers. Anything that decreases your chance of getting a disease is called a protective factor. Protective factors for breast cancer include the following: These and other signs may be caused by breast cancer or by other conditions. Check with your doctor if you have any of the following: Check with your doctor if you notice any changes in your breasts. The
following tests and procedures may be used: There are four types of biopsy used to check for breast cancer: Decisions about the best treatment are based on the results of these tests. The tests give information about: Tests include the following: There are many types of multigene tests. The following multigene tests have been studied in clinical trials: Based on these tests, breast cancer is described as one of the following types: This information helps the doctor decide which treatments will work best for your cancer. The prognosis and treatment options depend on the following: The process used to find out whether the cancer has spread within the breast or to other
parts of the body is called staging.
The information gathered from the staging process determines the
stage of the disease. It is
important to know the stage in order to plan treatment. The results of some of the tests used to diagnose breast cancer are also used to stage the disease. (See the General Information section.) The following tests and procedures also may be used in
the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if breast cancer spreads to the bone, the cancer cells in the bone are actually breast cancer cells. The disease is metastatic breast cancer, not bone cancer. To plan the best treatment and understand your prognosis, it is important to know the breast cancer stage. There are 3 types of breast cancer stage groups: For breast cancer, the TNM system describes the tumor as follows: When the lymph nodes are removed by surgery and studied under a microscope by a pathologist, pathologic staging is used to describe the lymph nodes. The pathologic staging of lymph nodes is described below. or cancer has spread to 4 to 9 axillary lymph nodes and cancer in at least one of the lymph nodes is larger than 2 millimeters. Cancer has also spread to lymph nodes near the breastbone on the same side of the body as the primary tumor, and the cancer is larger than 0.2 millimeters and is found by sentinel lymph node biopsy. When the lymph nodes are checked using mammography or ultrasound, it is called clinical staging. The clinical staging of lymph nodes is not described here. The grading system describes a tumor based on how abnormal the cancer cells and tissue look under a microscope and how quickly the cancer cells are likely to grow and spread. Low-grade cancer cells look more like normal cells and tend to grow and spread more slowly than high-grade cancer cells. To describe how abnormal the cancer cells and tissue are, the pathologist will assess the following three features: For each feature, the pathologist assigns a score of 1 to 3; a score of “1” means the cells and tumor tissue look the most like normal cells and tissue, and a score of “3” means the cells and tissue look the most abnormal. The scores for each feature are added together to get a total score between 3 and 9. Three grades are possible: Healthy breast cells, and some breast cancer cells, have receptors (biomarkers) that attach to the hormones estrogen and progesterone. These hormones are needed for healthy cells, and some breast cancer cells, to grow and divide. To check for these biomarkers, samples of tissue containing breast cancer cells are removed during a biopsy or surgery. The samples are tested in a laboratory to see whether the breast cancer cells have estrogen or progesterone receptors. Another type of receptor (biomarker) that is found on the surface of all breast cancer cells is called HER2. HER2 receptors are needed for the breast cancer cells to grow and divide. For breast cancer, biomarker testing includes the following: Sometimes the breast cancer cells will be described as triple negative or triple positive. It is important to know the estrogen receptor, progesterone receptor, and HER2 receptor status to choose the best treatment. There are drugs that can stop the receptors from attaching to the hormones estrogen and progesterone and stop the cancer from growing. Other drugs may be used to block the HER2 receptors on the surface of the breast cancer cells and stop the cancer from growing. Here are 3 examples that combine the TNM system, the grading system, and the biomarker status to find out the Pathological Prognostic breast cancer stage for a woman whose first treatment was surgery: If the tumor size is 30 millimeters (T2), has not spread to nearby lymph nodes (N0), has not spread to distant parts of the body (M0), and is: The cancer is stage IIA. If the tumor size is 53 millimeters (T3), has spread to 4 to 9 axillary lymph nodes (N2), has not spread to other parts of the body (M0), and is: The tumor is stage IIIA.
If the tumor size is 65 millimeters (T3), has spread to 3 axillary lymph nodes (N1a), has spread to the lungs (M1), and is: The cancer is stage IV (metastatic breast cancer). After surgery, your doctor will receive a pathology report that describes the size and location of the primary tumor, the spread of cancer to nearby lymph nodes, tumor grade, and whether certain biomarkers are present. The pathology report and other test results are used to determine your breast cancer stage. You are likely to have many questions. Ask your doctor to explain how staging is used to decide the best options to treat your cancer and whether there are clinical trials that might be right for you. For ductal carcinoma in situ (DCIS) treatment options, see Treatment of Ductal Carcinoma in Situ. For treatment options for stage I, stage II, stage IIIA, and operable stage IIIC breast cancer, see Treatment of Early, Localized or Operable Breast Cancer. For treatment options for stage IIIB, inoperable stage IIIC, and inflammatory breast cancer, see Treatment of Locally Advanced Inflammatory Breast Cancer. For treatment options for cancer that has recurred near the area where it first formed (such as in the breast, in the skin of the breast, in the chest wall, or in nearby lymph nodes), see Treatment of Locoregional Recurrent Breast Cancer. For treatment options for stage IV (metastatic) breast cancer or breast cancer that has recurred in distant parts of the body, see Treatment of Metastatic Breast Cancer. In inflammatory breast
cancer, cancer has spread to the skin of the breast and the breast looks red and swollen and feels warm. The
redness and warmth occur because the cancer cells block the lymph vessels in the skin. The skin of the breast
may also show the dimpled appearance called peau
d’orange (like the skin of an orange). There may not be any lumps in the breast that can be felt. Inflammatory breast cancer may be stage IIIB, stage IIIC, or stage IV. EnlargeInflammatory breast cancer is a type of breast cancer in which the cancer cells block the lymph vessels in the skin of the breast. This causes the breast to look red and swollen. The skin may also appear dimpled or pitted, like the skin of an orange (peau d'orange), and the nipple may be inverted (facing inward). Different types of treatment are available for patients with breast
cancer. Some treatments are standard
(the currently used treatment), and some are being tested in
clinical trials. A
treatment clinical trial is a research study meant to help improve current
treatments or obtain information on new treatments for patients with cancer.
When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Most patients with breast cancer have surgery to remove the cancer. Sentinel lymph node biopsy is the removal of the sentinel lymph node during surgery. The sentinel lymph node is the first lymph node in a group of lymph nodes to receive lymphatic drainage from the primary tumor. It is the first lymph node the cancer is likely to spread to from the primary tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are not found, it may not be necessary to remove more lymph nodes. Sometimes, a sentinel lymph node is found in more than one group of nodes. After the sentinel lymph node biopsy, the
surgeon removes the tumor using breast-conserving surgery or mastectomy. If cancer cells were found, more lymph nodes will be removed through a separate incision. This is called a lymph node dissection. Types of surgery include the following: Chemotherapy may be given before surgery to remove the tumor. When given before surgery, chemotherapy will shrink the tumor and reduce the amount of tissue that needs to be removed during surgery. Treatment given before surgery is called preoperative therapy or neoadjuvant therapy. After the doctor removes all the cancer that can be seen at
the time of the surgery, some patients may be given radiation therapy,
chemotherapy, targeted therapy, or
hormone therapy after surgery, to kill any cancer cells that are left. Treatment given after the surgery, to
lower the risk that the cancer will come back, is called postoperative therapy or adjuvant
therapy. If a patient is going to have a mastectomy,
breast reconstruction (surgery to
rebuild a breast’s shape after a mastectomy) may be considered. Breast
reconstruction may be done at the time of the mastectomy or at some time after.
The reconstructed breast may be made with the patient’s own (nonbreast) tissue
or by using implants filled with saline or silicone gel. Before the decision to get an implant is
made, patients can call the Food and Drug Administration's (FDA) Center for Devices and Radiologic Health at
1-888-INFO-FDA (1-888-463-6332) or visit the FDA website for more information on breast implants. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat breast cancer. Internal radiation therapy with strontium-89 (a radionuclide) is used to relieve bone pain caused by breast cancer that has spread to the bones. Strontium-89 is injected into a vein and travels to the surface of the bones. Radiation is released and kills cancer cells in the bones. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). For more information, see Drugs Approved for Breast Cancer. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. The hormone estrogen, which makes some breast cancers grow, is made mainly by the ovaries. Treatment to stop the ovaries from making estrogen is called ovarian ablation. Hormone therapy with tamoxifen is often given to patients with early localized breast cancer that can be removed by surgery and those
with metastatic breast cancer (cancer
that has spread to other parts of the body). Hormone therapy with tamoxifen or
estrogens can act on cells all over the body and may increase the chance of
developing endometrial cancer.
Women taking tamoxifen should have a pelvic exam every year to look for any
signs of cancer. Any vaginal
bleeding, other than menstrual
bleeding, should be reported to a doctor as soon as possible. Hormone therapy with a luteinizing hormone-releasing hormone (LHRH) agonist is given to some premenopausal women who have just been diagnosed with hormone receptor positive breast cancer. LHRH agonists decrease the body's estrogen and progesterone. Hormone therapy with an aromatase inhibitor is given to some postmenopausal women who have hormone receptor positive breast cancer. Aromatase inhibitors decrease the body's estrogen by blocking an enzyme called aromatase from turning androgen into estrogen. Anastrozole, letrozole, and exemestane are types of aromatase inhibitors. For the treatment of early localized breast cancer that can be removed by surgery, certain aromatase inhibitors may be used as adjuvant therapy instead of tamoxifen or after 2 to 3 years of tamoxifen use. For the treatment of metastatic breast cancer, aromatase inhibitors are being tested in clinical trials to compare them to hormone therapy with tamoxifen. In women with hormone receptor positive breast cancer, at least 5 years of adjuvant hormone therapy reduces the risk that the cancer will recur (come back). Other types of hormone therapy include megestrol acetate or anti-estrogen therapy such as fulvestrant. For more information, see Drugs Approved for Breast Cancer. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Monoclonal antibodies, tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and PARP inhibitors are types of targeted therapies used in the treatment of breast cancer. Types of monoclonal antibody therapy include the following: For more information, see Drugs Approved for Breast Cancer. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. There are different types of immunotherapy: Information about clinical trials is available from the NCI website. For information about side effects that begin during treatment for cancer, see our Side Effects page. Some treatments for breast cancer may cause side effects that continue or appear months or years after treatment has ended. These are called late effects. Late effects of radiation therapy are not common, but may include: Late effects of chemotherapy depend on the drugs used, but may include: Late effects of targeted therapy with trastuzumab, lapatinib, or pertuzumab may include: For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of early, localized, or operable breast cancer may include the following: Surgery Postoperative radiation therapy For women who had breast-conserving surgery, radiation therapy is given to the whole breast to lessen the chance the cancer will come back. Radiation therapy may also be given to lymph nodes in the area. For women who had a modified radical mastectomy, radiation therapy may be given to lessen the chance the cancer will come back if any of the following are true: Postoperative systemic therapy Systemic therapy is the use of drugs that can enter the bloodstream and reach cancer cells throughout the body. Postoperative systemic therapy is given to lessen the chance the cancer will come back after surgery to remove the tumor. Postoperative systemic therapy is given depending on whether: In premenopausal women with hormone receptor positive tumors, no more treatment may be needed or postoperative therapy may include: In postmenopausal women with hormone receptor positive tumors, no more treatment may be needed or postoperative therapy may include: In women with hormone receptor negative tumors, no more treatment may be needed or postoperative therapy may include: In women with HER2/neu negative tumors, postoperative therapy may include: In women with small, HER2/neu positive tumors, and no cancer in the lymph nodes, no more treatment may be needed. If there is cancer in the lymph nodes, or the tumor is large, postoperative therapy may include: In women with small, hormone receptor negative and HER2/neu negative tumors (triple negative) and no cancer in the lymph nodes, no more treatment may be needed. If there is cancer in the lymph nodes or the tumor is large, postoperative therapy may include: Preoperative systemic therapy Systemic therapy is the use of drugs that can enter the bloodstream and reach cancer cells throughout the body. Preoperative systemic therapy is given to shrink the tumor before surgery. Preoperative chemotherapy may make breast-sparing surgery possible in patients who are not eligible otherwise. Preoperative chemotherapy may also lessen the need for lymph node dissection in patients with disease that has spread to the lymph nodes. In postmenopausal women with hormone receptor positive tumors, preoperative therapy may include: In premenopausal women with hormone receptor positive tumors, preoperative therapy may include: In women with HER2/neu positive tumors, preoperative therapy may include: In women with HER2/neu negative tumors or triple negative tumors, preoperative therapy may include: For patients with triple-negative or HER2-positive disease, the response to preoperative therapy may be used as a guide in choosing the best treatment after surgery. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locally advanced or inflammatory breast
cancer is a combination of therapies that may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locoregional recurrent
breast cancer (cancer that has come
back after treatment in the breast, in the chest
wall, or in nearby lymph nodes), may include the following: For information about treatment options for breast cancer that has spread to parts of the body outside the breast, chest wall, or nearby lymph nodes, see the Treatment of Metastatic Breast Cancer section. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for metastatic breast cancer (cancer that has spread to distant parts of the body) may include the following: Hormone therapy In postmenopausal women who have just been diagnosed with metastatic breast cancer that is hormone receptor positive or if the hormone receptor status is not known, treatment
may include: In premenopausal women who have just been diagnosed with metastatic breast cancer that is hormone receptor positive, treatment may include: In women whose tumors are hormone receptor positive or hormone receptor unknown, with spread to the bone or soft tissue only, and who have been treated with tamoxifen, treatment may include: Targeted therapy In women with metastatic breast cancer that is hormone receptor positive and has not responded to other treatments, options may include targeted therapy such as: In women with metastatic breast cancer that is HER2/neu positive, treatment may include: In women with metastatic breast cancer that is HER2 negative, with mutations in the BRCA1 or BRCA2 genes, and who have been treated with chemotherapy, treatment may include: Chemotherapy In women with metastatic breast cancer that is hormone receptor negative, has not responded to hormone therapy, has spread to other organs or has caused symptoms, treatment may include: Chemotherapy and immunotherapy In women with metastatic breast cancer that is hormone receptor negative and HER2 negative, treatment may include: Surgery Radiation therapy Other treatment options Other treatment options for metastatic breast cancer include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of ductal carcinoma in situ may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about breast cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of adult breast cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Breast Cancer Treatment (Adult). Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/breast/patient/breast-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389406] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Breast Cancer Treatment (Adult) (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is (are) Breast Cancer ? | Key Points
- Breast cancer is a disease in which malignant (cancer) cells form in the tissues of the breast. - A family history of breast cancer and other factors increase the risk of breast cancer. - Breast cancer is sometimes caused by inherited gene mutations (changes). - The use of certain medicines and other factors decrease the risk of breast cancer. - Signs of breast cancer include a lump or change in the breast. - Tests that examine the breasts are used to detect (find) and diagnose breast cancer. - If cancer is found, tests are done to study the cancer cells. - Certain factors affect prognosis (chance of recovery) and treatment options.
Breast cancer is a disease in which malignant (cancer) cells form in the tissues of the breast.
The breast is made up of lobes and ducts. Each breast has 15 to 20 sections called lobes. Each lobe has many smaller sections called lobules. Lobules end in dozens of tiny bulbs that can make milk. The lobes, lobules, and bulbs are linked by thin tubes called ducts. Each breast also has blood vessels and lymph vessels. The lymph vessels carry an almost colorless fluid called lymph. Lymph vessels carry lymph between lymph nodes. Lymph nodes are small bean-shaped structures that are found throughout the body. They filter substances in lymph and help fight infection and disease. Clusters of lymph nodes are found near the breast in the axilla (under the arm), above the collarbone, and in the chest. The most common type of breast cancer is ductal carcinoma, which begins in the cells of the ducts. Cancer that begins in the lobes or lobules is called lobular carcinoma and is more often found in both breasts than are other types of breast cancer. Inflammatory breast cancer is an uncommon type of breast cancer in which the breast is warm, red, and swollen. See the following PDQ summaries for more information about breast cancer: - Breast Cancer Prevention - Breast Cancer Screening - Breast Cancer Treatment and Pregnancy - Male Breast Cancer Treatment - Unusual Cancers of Childhood Treatment (for information about breast cancer in childhood) |
The breast is made up of lobes and ducts. Each breast has 15 to 20 sections called
lobes. Each lobe has many smaller sections called lobules. Lobules end in dozens of tiny bulbs that
can make milk. The lobes, lobules, and bulbs are linked by thin tubes called
ducts. EnlargeAnatomy of the female breast. The nipple and areola are shown on the outside of the breast. The lymph nodes, lobes, lobules, ducts, and other parts of the inside of the breast are also shown. Each breast also has blood
vessels and lymph
vessels. The lymph vessels carry an almost colorless, watery fluid called lymph. Lymph
vessels carry lymph between lymph
nodes. Lymph nodes are small, bean-shaped structures found throughout the body. They filter lymph and store white blood cells that help fight
infection and disease. Groups of lymph nodes are found near the breast in the
axilla (under the arm), above the
collarbone, and in the chest. The most common type of breast cancer is ductal
carcinoma, which begins in the cells of the ducts. Cancer that begins in the
lobes or lobules is called lobular carcinoma and is more often found in both
breasts than are other types of breast cancer. Inflammatory breast cancer is an uncommon type of
breast cancer in which the breast is warm, red, and swollen. For more information about breast cancer, see: Anything that increases your chance of getting a disease
is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your doctor if you think you may be at risk for breast cancer. Risk factors for breast cancer include the following: Older age is the main risk factor for most cancers. The chance of getting cancer increases as you get older. NCI's Breast Cancer Risk Assessment Tool uses a woman's risk factors to estimate her risk for breast cancer during the next five years and up to age 90. This online tool is meant to be used by a health care provider. For more information on breast cancer risk, call 1-800-4-CANCER. The genes in cells carry
the hereditary information that is
received from a person’s parents. Hereditary breast cancer makes up
about 5% to 10% of all breast cancer. Some mutated genes related to
breast cancer are more common in certain ethnic groups. Women who have certain gene mutations, such as a BRCA1 or BRCA2 mutation, have an increased risk of breast cancer. These women also have an increased risk of ovarian cancer, and may
have an increased risk of other cancers. Men who have a mutated
gene related to breast cancer also have an increased risk of breast cancer. For more information, see
Male Breast Cancer Treatment. There are tests that can detect (find) mutated genes. These
genetic tests are sometimes done for
members of families with a high risk of cancer. For more information, see Genetics of Breast and Gynecologic Cancers. Anything that decreases your chance of getting a disease is called a protective factor. Protective factors for breast cancer include the following: These and other signs may be caused by breast cancer or by other conditions. Check with your doctor if you have any of the following: Check with your doctor if you notice any changes in your breasts. The
following tests and procedures may be used: There are four types of biopsy used to check for breast cancer: Decisions about the best treatment are based on the results of these tests. The tests give information about: Tests include the following: There are many types of multigene tests. The following multigene tests have been studied in clinical trials: Based on these tests, breast cancer is described as one of the following types: This information helps the doctor decide which treatments will work best for your cancer. The prognosis and treatment options depend on the following: The process used to find out whether the cancer has spread within the breast or to other
parts of the body is called staging.
The information gathered from the staging process determines the
stage of the disease. It is
important to know the stage in order to plan treatment. The results of some of the tests used to diagnose breast cancer are also used to stage the disease. (See the General Information section.) The following tests and procedures also may be used in
the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if breast cancer spreads to the bone, the cancer cells in the bone are actually breast cancer cells. The disease is metastatic breast cancer, not bone cancer. To plan the best treatment and understand your prognosis, it is important to know the breast cancer stage. There are 3 types of breast cancer stage groups: For breast cancer, the TNM system describes the tumor as follows: When the lymph nodes are removed by surgery and studied under a microscope by a pathologist, pathologic staging is used to describe the lymph nodes. The pathologic staging of lymph nodes is described below. or cancer has spread to 4 to 9 axillary lymph nodes and cancer in at least one of the lymph nodes is larger than 2 millimeters. Cancer has also spread to lymph nodes near the breastbone on the same side of the body as the primary tumor, and the cancer is larger than 0.2 millimeters and is found by sentinel lymph node biopsy. When the lymph nodes are checked using mammography or ultrasound, it is called clinical staging. The clinical staging of lymph nodes is not described here. The grading system describes a tumor based on how abnormal the cancer cells and tissue look under a microscope and how quickly the cancer cells are likely to grow and spread. Low-grade cancer cells look more like normal cells and tend to grow and spread more slowly than high-grade cancer cells. To describe how abnormal the cancer cells and tissue are, the pathologist will assess the following three features: For each feature, the pathologist assigns a score of 1 to 3; a score of “1” means the cells and tumor tissue look the most like normal cells and tissue, and a score of “3” means the cells and tissue look the most abnormal. The scores for each feature are added together to get a total score between 3 and 9. Three grades are possible: Healthy breast cells, and some breast cancer cells, have receptors (biomarkers) that attach to the hormones estrogen and progesterone. These hormones are needed for healthy cells, and some breast cancer cells, to grow and divide. To check for these biomarkers, samples of tissue containing breast cancer cells are removed during a biopsy or surgery. The samples are tested in a laboratory to see whether the breast cancer cells have estrogen or progesterone receptors. Another type of receptor (biomarker) that is found on the surface of all breast cancer cells is called HER2. HER2 receptors are needed for the breast cancer cells to grow and divide. For breast cancer, biomarker testing includes the following: Sometimes the breast cancer cells will be described as triple negative or triple positive. It is important to know the estrogen receptor, progesterone receptor, and HER2 receptor status to choose the best treatment. There are drugs that can stop the receptors from attaching to the hormones estrogen and progesterone and stop the cancer from growing. Other drugs may be used to block the HER2 receptors on the surface of the breast cancer cells and stop the cancer from growing. Here are 3 examples that combine the TNM system, the grading system, and the biomarker status to find out the Pathological Prognostic breast cancer stage for a woman whose first treatment was surgery: If the tumor size is 30 millimeters (T2), has not spread to nearby lymph nodes (N0), has not spread to distant parts of the body (M0), and is: The cancer is stage IIA. If the tumor size is 53 millimeters (T3), has spread to 4 to 9 axillary lymph nodes (N2), has not spread to other parts of the body (M0), and is: The tumor is stage IIIA.
If the tumor size is 65 millimeters (T3), has spread to 3 axillary lymph nodes (N1a), has spread to the lungs (M1), and is: The cancer is stage IV (metastatic breast cancer). After surgery, your doctor will receive a pathology report that describes the size and location of the primary tumor, the spread of cancer to nearby lymph nodes, tumor grade, and whether certain biomarkers are present. The pathology report and other test results are used to determine your breast cancer stage. You are likely to have many questions. Ask your doctor to explain how staging is used to decide the best options to treat your cancer and whether there are clinical trials that might be right for you. For ductal carcinoma in situ (DCIS) treatment options, see Treatment of Ductal Carcinoma in Situ. For treatment options for stage I, stage II, stage IIIA, and operable stage IIIC breast cancer, see Treatment of Early, Localized or Operable Breast Cancer. For treatment options for stage IIIB, inoperable stage IIIC, and inflammatory breast cancer, see Treatment of Locally Advanced Inflammatory Breast Cancer. For treatment options for cancer that has recurred near the area where it first formed (such as in the breast, in the skin of the breast, in the chest wall, or in nearby lymph nodes), see Treatment of Locoregional Recurrent Breast Cancer. For treatment options for stage IV (metastatic) breast cancer or breast cancer that has recurred in distant parts of the body, see Treatment of Metastatic Breast Cancer. In inflammatory breast
cancer, cancer has spread to the skin of the breast and the breast looks red and swollen and feels warm. The
redness and warmth occur because the cancer cells block the lymph vessels in the skin. The skin of the breast
may also show the dimpled appearance called peau
d’orange (like the skin of an orange). There may not be any lumps in the breast that can be felt. Inflammatory breast cancer may be stage IIIB, stage IIIC, or stage IV. EnlargeInflammatory breast cancer is a type of breast cancer in which the cancer cells block the lymph vessels in the skin of the breast. This causes the breast to look red and swollen. The skin may also appear dimpled or pitted, like the skin of an orange (peau d'orange), and the nipple may be inverted (facing inward). Different types of treatment are available for patients with breast
cancer. Some treatments are standard
(the currently used treatment), and some are being tested in
clinical trials. A
treatment clinical trial is a research study meant to help improve current
treatments or obtain information on new treatments for patients with cancer.
When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Most patients with breast cancer have surgery to remove the cancer. Sentinel lymph node biopsy is the removal of the sentinel lymph node during surgery. The sentinel lymph node is the first lymph node in a group of lymph nodes to receive lymphatic drainage from the primary tumor. It is the first lymph node the cancer is likely to spread to from the primary tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are not found, it may not be necessary to remove more lymph nodes. Sometimes, a sentinel lymph node is found in more than one group of nodes. After the sentinel lymph node biopsy, the
surgeon removes the tumor using breast-conserving surgery or mastectomy. If cancer cells were found, more lymph nodes will be removed through a separate incision. This is called a lymph node dissection. Types of surgery include the following: Chemotherapy may be given before surgery to remove the tumor. When given before surgery, chemotherapy will shrink the tumor and reduce the amount of tissue that needs to be removed during surgery. Treatment given before surgery is called preoperative therapy or neoadjuvant therapy. After the doctor removes all the cancer that can be seen at
the time of the surgery, some patients may be given radiation therapy,
chemotherapy, targeted therapy, or
hormone therapy after surgery, to kill any cancer cells that are left. Treatment given after the surgery, to
lower the risk that the cancer will come back, is called postoperative therapy or adjuvant
therapy. If a patient is going to have a mastectomy,
breast reconstruction (surgery to
rebuild a breast’s shape after a mastectomy) may be considered. Breast
reconstruction may be done at the time of the mastectomy or at some time after.
The reconstructed breast may be made with the patient’s own (nonbreast) tissue
or by using implants filled with saline or silicone gel. Before the decision to get an implant is
made, patients can call the Food and Drug Administration's (FDA) Center for Devices and Radiologic Health at
1-888-INFO-FDA (1-888-463-6332) or visit the FDA website for more information on breast implants. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat breast cancer. Internal radiation therapy with strontium-89 (a radionuclide) is used to relieve bone pain caused by breast cancer that has spread to the bones. Strontium-89 is injected into a vein and travels to the surface of the bones. Radiation is released and kills cancer cells in the bones. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). For more information, see Drugs Approved for Breast Cancer. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. The hormone estrogen, which makes some breast cancers grow, is made mainly by the ovaries. Treatment to stop the ovaries from making estrogen is called ovarian ablation. Hormone therapy with tamoxifen is often given to patients with early localized breast cancer that can be removed by surgery and those
with metastatic breast cancer (cancer
that has spread to other parts of the body). Hormone therapy with tamoxifen or
estrogens can act on cells all over the body and may increase the chance of
developing endometrial cancer.
Women taking tamoxifen should have a pelvic exam every year to look for any
signs of cancer. Any vaginal
bleeding, other than menstrual
bleeding, should be reported to a doctor as soon as possible. Hormone therapy with a luteinizing hormone-releasing hormone (LHRH) agonist is given to some premenopausal women who have just been diagnosed with hormone receptor positive breast cancer. LHRH agonists decrease the body's estrogen and progesterone. Hormone therapy with an aromatase inhibitor is given to some postmenopausal women who have hormone receptor positive breast cancer. Aromatase inhibitors decrease the body's estrogen by blocking an enzyme called aromatase from turning androgen into estrogen. Anastrozole, letrozole, and exemestane are types of aromatase inhibitors. For the treatment of early localized breast cancer that can be removed by surgery, certain aromatase inhibitors may be used as adjuvant therapy instead of tamoxifen or after 2 to 3 years of tamoxifen use. For the treatment of metastatic breast cancer, aromatase inhibitors are being tested in clinical trials to compare them to hormone therapy with tamoxifen. In women with hormone receptor positive breast cancer, at least 5 years of adjuvant hormone therapy reduces the risk that the cancer will recur (come back). Other types of hormone therapy include megestrol acetate or anti-estrogen therapy such as fulvestrant. For more information, see Drugs Approved for Breast Cancer. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Monoclonal antibodies, tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and PARP inhibitors are types of targeted therapies used in the treatment of breast cancer. Types of monoclonal antibody therapy include the following: For more information, see Drugs Approved for Breast Cancer. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. There are different types of immunotherapy: Information about clinical trials is available from the NCI website. For information about side effects that begin during treatment for cancer, see our Side Effects page. Some treatments for breast cancer may cause side effects that continue or appear months or years after treatment has ended. These are called late effects. Late effects of radiation therapy are not common, but may include: Late effects of chemotherapy depend on the drugs used, but may include: Late effects of targeted therapy with trastuzumab, lapatinib, or pertuzumab may include: For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of early, localized, or operable breast cancer may include the following: Surgery Postoperative radiation therapy For women who had breast-conserving surgery, radiation therapy is given to the whole breast to lessen the chance the cancer will come back. Radiation therapy may also be given to lymph nodes in the area. For women who had a modified radical mastectomy, radiation therapy may be given to lessen the chance the cancer will come back if any of the following are true: Postoperative systemic therapy Systemic therapy is the use of drugs that can enter the bloodstream and reach cancer cells throughout the body. Postoperative systemic therapy is given to lessen the chance the cancer will come back after surgery to remove the tumor. Postoperative systemic therapy is given depending on whether: In premenopausal women with hormone receptor positive tumors, no more treatment may be needed or postoperative therapy may include: In postmenopausal women with hormone receptor positive tumors, no more treatment may be needed or postoperative therapy may include: In women with hormone receptor negative tumors, no more treatment may be needed or postoperative therapy may include: In women with HER2/neu negative tumors, postoperative therapy may include: In women with small, HER2/neu positive tumors, and no cancer in the lymph nodes, no more treatment may be needed. If there is cancer in the lymph nodes, or the tumor is large, postoperative therapy may include: In women with small, hormone receptor negative and HER2/neu negative tumors (triple negative) and no cancer in the lymph nodes, no more treatment may be needed. If there is cancer in the lymph nodes or the tumor is large, postoperative therapy may include: Preoperative systemic therapy Systemic therapy is the use of drugs that can enter the bloodstream and reach cancer cells throughout the body. Preoperative systemic therapy is given to shrink the tumor before surgery. Preoperative chemotherapy may make breast-sparing surgery possible in patients who are not eligible otherwise. Preoperative chemotherapy may also lessen the need for lymph node dissection in patients with disease that has spread to the lymph nodes. In postmenopausal women with hormone receptor positive tumors, preoperative therapy may include: In premenopausal women with hormone receptor positive tumors, preoperative therapy may include: In women with HER2/neu positive tumors, preoperative therapy may include: In women with HER2/neu negative tumors or triple negative tumors, preoperative therapy may include: For patients with triple-negative or HER2-positive disease, the response to preoperative therapy may be used as a guide in choosing the best treatment after surgery. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locally advanced or inflammatory breast
cancer is a combination of therapies that may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locoregional recurrent
breast cancer (cancer that has come
back after treatment in the breast, in the chest
wall, or in nearby lymph nodes), may include the following: For information about treatment options for breast cancer that has spread to parts of the body outside the breast, chest wall, or nearby lymph nodes, see the Treatment of Metastatic Breast Cancer section. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for metastatic breast cancer (cancer that has spread to distant parts of the body) may include the following: Hormone therapy In postmenopausal women who have just been diagnosed with metastatic breast cancer that is hormone receptor positive or if the hormone receptor status is not known, treatment
may include: In premenopausal women who have just been diagnosed with metastatic breast cancer that is hormone receptor positive, treatment may include: In women whose tumors are hormone receptor positive or hormone receptor unknown, with spread to the bone or soft tissue only, and who have been treated with tamoxifen, treatment may include: Targeted therapy In women with metastatic breast cancer that is hormone receptor positive and has not responded to other treatments, options may include targeted therapy such as: In women with metastatic breast cancer that is HER2/neu positive, treatment may include: In women with metastatic breast cancer that is HER2 negative, with mutations in the BRCA1 or BRCA2 genes, and who have been treated with chemotherapy, treatment may include: Chemotherapy In women with metastatic breast cancer that is hormone receptor negative, has not responded to hormone therapy, has spread to other organs or has caused symptoms, treatment may include: Chemotherapy and immunotherapy In women with metastatic breast cancer that is hormone receptor negative and HER2 negative, treatment may include: Surgery Radiation therapy Other treatment options Other treatment options for metastatic breast cancer include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of ductal carcinoma in situ may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about breast cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of adult breast cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Breast Cancer Treatment (Adult). Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/breast/patient/breast-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389406] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Breast Cancer Treatment (Adult) (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | Who is at risk for Breast Cancer? ? | A family history of breast cancer and other factors increase the risk of breast cancer.
Anything that increases your chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your doctor if you think you may be at risk for breast cancer. Risk factors for breast cancer include the following: - A personal history of invasive breast cancer, ductal carcinoma in situ (DCIS), or lobular carcinoma in situ (LCIS). - A personal history of benign (noncancer) breast disease. - A family history of breast cancer in a first-degree relative (mother, daughter, or sister). - Inherited changes in the BRCA1 or BRCA2 genes or in other genes that increase the risk of breast cancer. - Breast tissue that is dense on a mammogram. - Exposure of breast tissue to estrogen made by the body. This may be caused by: - Menstruating at an early age. - Older age at first birth or never having given birth. - Starting menopause at a later age. - Taking hormones such as estrogen combined with progestin for symptoms of menopause. - Treatment with radiation therapy to the breast/chest. - Drinking alcohol. - Obesity. Older age is the main risk factor for most cancers. The chance of getting cancer increases as you get older. NCI's Breast Cancer Risk Assessment Tool uses a woman's risk factors to estimate her risk for breast cancer during the next five years and up to age 90. This online tool is meant to be used by a health care provider. For more information on breast cancer risk, call 1-800-4-CANCER. |
The breast is made up of lobes and ducts. Each breast has 15 to 20 sections called
lobes. Each lobe has many smaller sections called lobules. Lobules end in dozens of tiny bulbs that
can make milk. The lobes, lobules, and bulbs are linked by thin tubes called
ducts. EnlargeAnatomy of the female breast. The nipple and areola are shown on the outside of the breast. The lymph nodes, lobes, lobules, ducts, and other parts of the inside of the breast are also shown. Each breast also has blood
vessels and lymph
vessels. The lymph vessels carry an almost colorless, watery fluid called lymph. Lymph
vessels carry lymph between lymph
nodes. Lymph nodes are small, bean-shaped structures found throughout the body. They filter lymph and store white blood cells that help fight
infection and disease. Groups of lymph nodes are found near the breast in the
axilla (under the arm), above the
collarbone, and in the chest. The most common type of breast cancer is ductal
carcinoma, which begins in the cells of the ducts. Cancer that begins in the
lobes or lobules is called lobular carcinoma and is more often found in both
breasts than are other types of breast cancer. Inflammatory breast cancer is an uncommon type of
breast cancer in which the breast is warm, red, and swollen. For more information about breast cancer, see: Anything that increases your chance of getting a disease
is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your doctor if you think you may be at risk for breast cancer. Risk factors for breast cancer include the following: Older age is the main risk factor for most cancers. The chance of getting cancer increases as you get older. NCI's Breast Cancer Risk Assessment Tool uses a woman's risk factors to estimate her risk for breast cancer during the next five years and up to age 90. This online tool is meant to be used by a health care provider. For more information on breast cancer risk, call 1-800-4-CANCER. The genes in cells carry
the hereditary information that is
received from a person’s parents. Hereditary breast cancer makes up
about 5% to 10% of all breast cancer. Some mutated genes related to
breast cancer are more common in certain ethnic groups. Women who have certain gene mutations, such as a BRCA1 or BRCA2 mutation, have an increased risk of breast cancer. These women also have an increased risk of ovarian cancer, and may
have an increased risk of other cancers. Men who have a mutated
gene related to breast cancer also have an increased risk of breast cancer. For more information, see
Male Breast Cancer Treatment. There are tests that can detect (find) mutated genes. These
genetic tests are sometimes done for
members of families with a high risk of cancer. For more information, see Genetics of Breast and Gynecologic Cancers. Anything that decreases your chance of getting a disease is called a protective factor. Protective factors for breast cancer include the following: These and other signs may be caused by breast cancer or by other conditions. Check with your doctor if you have any of the following: Check with your doctor if you notice any changes in your breasts. The
following tests and procedures may be used: There are four types of biopsy used to check for breast cancer: Decisions about the best treatment are based on the results of these tests. The tests give information about: Tests include the following: There are many types of multigene tests. The following multigene tests have been studied in clinical trials: Based on these tests, breast cancer is described as one of the following types: This information helps the doctor decide which treatments will work best for your cancer. The prognosis and treatment options depend on the following: The process used to find out whether the cancer has spread within the breast or to other
parts of the body is called staging.
The information gathered from the staging process determines the
stage of the disease. It is
important to know the stage in order to plan treatment. The results of some of the tests used to diagnose breast cancer are also used to stage the disease. (See the General Information section.) The following tests and procedures also may be used in
the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if breast cancer spreads to the bone, the cancer cells in the bone are actually breast cancer cells. The disease is metastatic breast cancer, not bone cancer. To plan the best treatment and understand your prognosis, it is important to know the breast cancer stage. There are 3 types of breast cancer stage groups: For breast cancer, the TNM system describes the tumor as follows: When the lymph nodes are removed by surgery and studied under a microscope by a pathologist, pathologic staging is used to describe the lymph nodes. The pathologic staging of lymph nodes is described below. or cancer has spread to 4 to 9 axillary lymph nodes and cancer in at least one of the lymph nodes is larger than 2 millimeters. Cancer has also spread to lymph nodes near the breastbone on the same side of the body as the primary tumor, and the cancer is larger than 0.2 millimeters and is found by sentinel lymph node biopsy. When the lymph nodes are checked using mammography or ultrasound, it is called clinical staging. The clinical staging of lymph nodes is not described here. The grading system describes a tumor based on how abnormal the cancer cells and tissue look under a microscope and how quickly the cancer cells are likely to grow and spread. Low-grade cancer cells look more like normal cells and tend to grow and spread more slowly than high-grade cancer cells. To describe how abnormal the cancer cells and tissue are, the pathologist will assess the following three features: For each feature, the pathologist assigns a score of 1 to 3; a score of “1” means the cells and tumor tissue look the most like normal cells and tissue, and a score of “3” means the cells and tissue look the most abnormal. The scores for each feature are added together to get a total score between 3 and 9. Three grades are possible: Healthy breast cells, and some breast cancer cells, have receptors (biomarkers) that attach to the hormones estrogen and progesterone. These hormones are needed for healthy cells, and some breast cancer cells, to grow and divide. To check for these biomarkers, samples of tissue containing breast cancer cells are removed during a biopsy or surgery. The samples are tested in a laboratory to see whether the breast cancer cells have estrogen or progesterone receptors. Another type of receptor (biomarker) that is found on the surface of all breast cancer cells is called HER2. HER2 receptors are needed for the breast cancer cells to grow and divide. For breast cancer, biomarker testing includes the following: Sometimes the breast cancer cells will be described as triple negative or triple positive. It is important to know the estrogen receptor, progesterone receptor, and HER2 receptor status to choose the best treatment. There are drugs that can stop the receptors from attaching to the hormones estrogen and progesterone and stop the cancer from growing. Other drugs may be used to block the HER2 receptors on the surface of the breast cancer cells and stop the cancer from growing. Here are 3 examples that combine the TNM system, the grading system, and the biomarker status to find out the Pathological Prognostic breast cancer stage for a woman whose first treatment was surgery: If the tumor size is 30 millimeters (T2), has not spread to nearby lymph nodes (N0), has not spread to distant parts of the body (M0), and is: The cancer is stage IIA. If the tumor size is 53 millimeters (T3), has spread to 4 to 9 axillary lymph nodes (N2), has not spread to other parts of the body (M0), and is: The tumor is stage IIIA.
If the tumor size is 65 millimeters (T3), has spread to 3 axillary lymph nodes (N1a), has spread to the lungs (M1), and is: The cancer is stage IV (metastatic breast cancer). After surgery, your doctor will receive a pathology report that describes the size and location of the primary tumor, the spread of cancer to nearby lymph nodes, tumor grade, and whether certain biomarkers are present. The pathology report and other test results are used to determine your breast cancer stage. You are likely to have many questions. Ask your doctor to explain how staging is used to decide the best options to treat your cancer and whether there are clinical trials that might be right for you. For ductal carcinoma in situ (DCIS) treatment options, see Treatment of Ductal Carcinoma in Situ. For treatment options for stage I, stage II, stage IIIA, and operable stage IIIC breast cancer, see Treatment of Early, Localized or Operable Breast Cancer. For treatment options for stage IIIB, inoperable stage IIIC, and inflammatory breast cancer, see Treatment of Locally Advanced Inflammatory Breast Cancer. For treatment options for cancer that has recurred near the area where it first formed (such as in the breast, in the skin of the breast, in the chest wall, or in nearby lymph nodes), see Treatment of Locoregional Recurrent Breast Cancer. For treatment options for stage IV (metastatic) breast cancer or breast cancer that has recurred in distant parts of the body, see Treatment of Metastatic Breast Cancer. In inflammatory breast
cancer, cancer has spread to the skin of the breast and the breast looks red and swollen and feels warm. The
redness and warmth occur because the cancer cells block the lymph vessels in the skin. The skin of the breast
may also show the dimpled appearance called peau
d’orange (like the skin of an orange). There may not be any lumps in the breast that can be felt. Inflammatory breast cancer may be stage IIIB, stage IIIC, or stage IV. EnlargeInflammatory breast cancer is a type of breast cancer in which the cancer cells block the lymph vessels in the skin of the breast. This causes the breast to look red and swollen. The skin may also appear dimpled or pitted, like the skin of an orange (peau d'orange), and the nipple may be inverted (facing inward). Different types of treatment are available for patients with breast
cancer. Some treatments are standard
(the currently used treatment), and some are being tested in
clinical trials. A
treatment clinical trial is a research study meant to help improve current
treatments or obtain information on new treatments for patients with cancer.
When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Most patients with breast cancer have surgery to remove the cancer. Sentinel lymph node biopsy is the removal of the sentinel lymph node during surgery. The sentinel lymph node is the first lymph node in a group of lymph nodes to receive lymphatic drainage from the primary tumor. It is the first lymph node the cancer is likely to spread to from the primary tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are not found, it may not be necessary to remove more lymph nodes. Sometimes, a sentinel lymph node is found in more than one group of nodes. After the sentinel lymph node biopsy, the
surgeon removes the tumor using breast-conserving surgery or mastectomy. If cancer cells were found, more lymph nodes will be removed through a separate incision. This is called a lymph node dissection. Types of surgery include the following: Chemotherapy may be given before surgery to remove the tumor. When given before surgery, chemotherapy will shrink the tumor and reduce the amount of tissue that needs to be removed during surgery. Treatment given before surgery is called preoperative therapy or neoadjuvant therapy. After the doctor removes all the cancer that can be seen at
the time of the surgery, some patients may be given radiation therapy,
chemotherapy, targeted therapy, or
hormone therapy after surgery, to kill any cancer cells that are left. Treatment given after the surgery, to
lower the risk that the cancer will come back, is called postoperative therapy or adjuvant
therapy. If a patient is going to have a mastectomy,
breast reconstruction (surgery to
rebuild a breast’s shape after a mastectomy) may be considered. Breast
reconstruction may be done at the time of the mastectomy or at some time after.
The reconstructed breast may be made with the patient’s own (nonbreast) tissue
or by using implants filled with saline or silicone gel. Before the decision to get an implant is
made, patients can call the Food and Drug Administration's (FDA) Center for Devices and Radiologic Health at
1-888-INFO-FDA (1-888-463-6332) or visit the FDA website for more information on breast implants. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat breast cancer. Internal radiation therapy with strontium-89 (a radionuclide) is used to relieve bone pain caused by breast cancer that has spread to the bones. Strontium-89 is injected into a vein and travels to the surface of the bones. Radiation is released and kills cancer cells in the bones. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). For more information, see Drugs Approved for Breast Cancer. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. The hormone estrogen, which makes some breast cancers grow, is made mainly by the ovaries. Treatment to stop the ovaries from making estrogen is called ovarian ablation. Hormone therapy with tamoxifen is often given to patients with early localized breast cancer that can be removed by surgery and those
with metastatic breast cancer (cancer
that has spread to other parts of the body). Hormone therapy with tamoxifen or
estrogens can act on cells all over the body and may increase the chance of
developing endometrial cancer.
Women taking tamoxifen should have a pelvic exam every year to look for any
signs of cancer. Any vaginal
bleeding, other than menstrual
bleeding, should be reported to a doctor as soon as possible. Hormone therapy with a luteinizing hormone-releasing hormone (LHRH) agonist is given to some premenopausal women who have just been diagnosed with hormone receptor positive breast cancer. LHRH agonists decrease the body's estrogen and progesterone. Hormone therapy with an aromatase inhibitor is given to some postmenopausal women who have hormone receptor positive breast cancer. Aromatase inhibitors decrease the body's estrogen by blocking an enzyme called aromatase from turning androgen into estrogen. Anastrozole, letrozole, and exemestane are types of aromatase inhibitors. For the treatment of early localized breast cancer that can be removed by surgery, certain aromatase inhibitors may be used as adjuvant therapy instead of tamoxifen or after 2 to 3 years of tamoxifen use. For the treatment of metastatic breast cancer, aromatase inhibitors are being tested in clinical trials to compare them to hormone therapy with tamoxifen. In women with hormone receptor positive breast cancer, at least 5 years of adjuvant hormone therapy reduces the risk that the cancer will recur (come back). Other types of hormone therapy include megestrol acetate or anti-estrogen therapy such as fulvestrant. For more information, see Drugs Approved for Breast Cancer. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Monoclonal antibodies, tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and PARP inhibitors are types of targeted therapies used in the treatment of breast cancer. Types of monoclonal antibody therapy include the following: For more information, see Drugs Approved for Breast Cancer. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. There are different types of immunotherapy: Information about clinical trials is available from the NCI website. For information about side effects that begin during treatment for cancer, see our Side Effects page. Some treatments for breast cancer may cause side effects that continue or appear months or years after treatment has ended. These are called late effects. Late effects of radiation therapy are not common, but may include: Late effects of chemotherapy depend on the drugs used, but may include: Late effects of targeted therapy with trastuzumab, lapatinib, or pertuzumab may include: For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of early, localized, or operable breast cancer may include the following: Surgery Postoperative radiation therapy For women who had breast-conserving surgery, radiation therapy is given to the whole breast to lessen the chance the cancer will come back. Radiation therapy may also be given to lymph nodes in the area. For women who had a modified radical mastectomy, radiation therapy may be given to lessen the chance the cancer will come back if any of the following are true: Postoperative systemic therapy Systemic therapy is the use of drugs that can enter the bloodstream and reach cancer cells throughout the body. Postoperative systemic therapy is given to lessen the chance the cancer will come back after surgery to remove the tumor. Postoperative systemic therapy is given depending on whether: In premenopausal women with hormone receptor positive tumors, no more treatment may be needed or postoperative therapy may include: In postmenopausal women with hormone receptor positive tumors, no more treatment may be needed or postoperative therapy may include: In women with hormone receptor negative tumors, no more treatment may be needed or postoperative therapy may include: In women with HER2/neu negative tumors, postoperative therapy may include: In women with small, HER2/neu positive tumors, and no cancer in the lymph nodes, no more treatment may be needed. If there is cancer in the lymph nodes, or the tumor is large, postoperative therapy may include: In women with small, hormone receptor negative and HER2/neu negative tumors (triple negative) and no cancer in the lymph nodes, no more treatment may be needed. If there is cancer in the lymph nodes or the tumor is large, postoperative therapy may include: Preoperative systemic therapy Systemic therapy is the use of drugs that can enter the bloodstream and reach cancer cells throughout the body. Preoperative systemic therapy is given to shrink the tumor before surgery. Preoperative chemotherapy may make breast-sparing surgery possible in patients who are not eligible otherwise. Preoperative chemotherapy may also lessen the need for lymph node dissection in patients with disease that has spread to the lymph nodes. In postmenopausal women with hormone receptor positive tumors, preoperative therapy may include: In premenopausal women with hormone receptor positive tumors, preoperative therapy may include: In women with HER2/neu positive tumors, preoperative therapy may include: In women with HER2/neu negative tumors or triple negative tumors, preoperative therapy may include: For patients with triple-negative or HER2-positive disease, the response to preoperative therapy may be used as a guide in choosing the best treatment after surgery. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locally advanced or inflammatory breast
cancer is a combination of therapies that may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locoregional recurrent
breast cancer (cancer that has come
back after treatment in the breast, in the chest
wall, or in nearby lymph nodes), may include the following: For information about treatment options for breast cancer that has spread to parts of the body outside the breast, chest wall, or nearby lymph nodes, see the Treatment of Metastatic Breast Cancer section. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for metastatic breast cancer (cancer that has spread to distant parts of the body) may include the following: Hormone therapy In postmenopausal women who have just been diagnosed with metastatic breast cancer that is hormone receptor positive or if the hormone receptor status is not known, treatment
may include: In premenopausal women who have just been diagnosed with metastatic breast cancer that is hormone receptor positive, treatment may include: In women whose tumors are hormone receptor positive or hormone receptor unknown, with spread to the bone or soft tissue only, and who have been treated with tamoxifen, treatment may include: Targeted therapy In women with metastatic breast cancer that is hormone receptor positive and has not responded to other treatments, options may include targeted therapy such as: In women with metastatic breast cancer that is HER2/neu positive, treatment may include: In women with metastatic breast cancer that is HER2 negative, with mutations in the BRCA1 or BRCA2 genes, and who have been treated with chemotherapy, treatment may include: Chemotherapy In women with metastatic breast cancer that is hormone receptor negative, has not responded to hormone therapy, has spread to other organs or has caused symptoms, treatment may include: Chemotherapy and immunotherapy In women with metastatic breast cancer that is hormone receptor negative and HER2 negative, treatment may include: Surgery Radiation therapy Other treatment options Other treatment options for metastatic breast cancer include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of ductal carcinoma in situ may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about breast cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of adult breast cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Breast Cancer Treatment (Adult). Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/breast/patient/breast-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389406] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Breast Cancer Treatment (Adult) (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | How to prevent Breast Cancer ? | The use of certain medicines and other factors decrease the risk of breast cancer. Anything that decreases your chance of getting a disease is called a protective factor. Protective factors for breast cancer include the following: - Taking any of the following: - Estrogen-only hormone therapy after a hysterectomy. - Selective estrogen receptor modulators (SERMs). - Aromatase inhibitors. - Less exposure of breast tissue to estrogen made by the body. This can be a result of: - Early pregnancy. - Breastfeeding. - Getting enough exercise. - Having any of the following procedures: - Mastectomy to reduce the risk of cancer. - Oophorectomy to reduce the risk of cancer. - Ovarian ablation. |
The breast is made up of lobes and ducts. Each breast has 15 to 20 sections called
lobes. Each lobe has many smaller sections called lobules. Lobules end in dozens of tiny bulbs that
can make milk. The lobes, lobules, and bulbs are linked by thin tubes called
ducts. EnlargeAnatomy of the female breast. The nipple and areola are shown on the outside of the breast. The lymph nodes, lobes, lobules, ducts, and other parts of the inside of the breast are also shown. Each breast also has blood
vessels and lymph
vessels. The lymph vessels carry an almost colorless, watery fluid called lymph. Lymph
vessels carry lymph between lymph
nodes. Lymph nodes are small, bean-shaped structures found throughout the body. They filter lymph and store white blood cells that help fight
infection and disease. Groups of lymph nodes are found near the breast in the
axilla (under the arm), above the
collarbone, and in the chest. The most common type of breast cancer is ductal
carcinoma, which begins in the cells of the ducts. Cancer that begins in the
lobes or lobules is called lobular carcinoma and is more often found in both
breasts than are other types of breast cancer. Inflammatory breast cancer is an uncommon type of
breast cancer in which the breast is warm, red, and swollen. For more information about breast cancer, see: Anything that increases your chance of getting a disease
is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your doctor if you think you may be at risk for breast cancer. Risk factors for breast cancer include the following: Older age is the main risk factor for most cancers. The chance of getting cancer increases as you get older. NCI's Breast Cancer Risk Assessment Tool uses a woman's risk factors to estimate her risk for breast cancer during the next five years and up to age 90. This online tool is meant to be used by a health care provider. For more information on breast cancer risk, call 1-800-4-CANCER. The genes in cells carry
the hereditary information that is
received from a person’s parents. Hereditary breast cancer makes up
about 5% to 10% of all breast cancer. Some mutated genes related to
breast cancer are more common in certain ethnic groups. Women who have certain gene mutations, such as a BRCA1 or BRCA2 mutation, have an increased risk of breast cancer. These women also have an increased risk of ovarian cancer, and may
have an increased risk of other cancers. Men who have a mutated
gene related to breast cancer also have an increased risk of breast cancer. For more information, see
Male Breast Cancer Treatment. There are tests that can detect (find) mutated genes. These
genetic tests are sometimes done for
members of families with a high risk of cancer. For more information, see Genetics of Breast and Gynecologic Cancers. Anything that decreases your chance of getting a disease is called a protective factor. Protective factors for breast cancer include the following: These and other signs may be caused by breast cancer or by other conditions. Check with your doctor if you have any of the following: Check with your doctor if you notice any changes in your breasts. The
following tests and procedures may be used: There are four types of biopsy used to check for breast cancer: Decisions about the best treatment are based on the results of these tests. The tests give information about: Tests include the following: There are many types of multigene tests. The following multigene tests have been studied in clinical trials: Based on these tests, breast cancer is described as one of the following types: This information helps the doctor decide which treatments will work best for your cancer. The prognosis and treatment options depend on the following: The process used to find out whether the cancer has spread within the breast or to other
parts of the body is called staging.
The information gathered from the staging process determines the
stage of the disease. It is
important to know the stage in order to plan treatment. The results of some of the tests used to diagnose breast cancer are also used to stage the disease. (See the General Information section.) The following tests and procedures also may be used in
the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if breast cancer spreads to the bone, the cancer cells in the bone are actually breast cancer cells. The disease is metastatic breast cancer, not bone cancer. To plan the best treatment and understand your prognosis, it is important to know the breast cancer stage. There are 3 types of breast cancer stage groups: For breast cancer, the TNM system describes the tumor as follows: When the lymph nodes are removed by surgery and studied under a microscope by a pathologist, pathologic staging is used to describe the lymph nodes. The pathologic staging of lymph nodes is described below. or cancer has spread to 4 to 9 axillary lymph nodes and cancer in at least one of the lymph nodes is larger than 2 millimeters. Cancer has also spread to lymph nodes near the breastbone on the same side of the body as the primary tumor, and the cancer is larger than 0.2 millimeters and is found by sentinel lymph node biopsy. When the lymph nodes are checked using mammography or ultrasound, it is called clinical staging. The clinical staging of lymph nodes is not described here. The grading system describes a tumor based on how abnormal the cancer cells and tissue look under a microscope and how quickly the cancer cells are likely to grow and spread. Low-grade cancer cells look more like normal cells and tend to grow and spread more slowly than high-grade cancer cells. To describe how abnormal the cancer cells and tissue are, the pathologist will assess the following three features: For each feature, the pathologist assigns a score of 1 to 3; a score of “1” means the cells and tumor tissue look the most like normal cells and tissue, and a score of “3” means the cells and tissue look the most abnormal. The scores for each feature are added together to get a total score between 3 and 9. Three grades are possible: Healthy breast cells, and some breast cancer cells, have receptors (biomarkers) that attach to the hormones estrogen and progesterone. These hormones are needed for healthy cells, and some breast cancer cells, to grow and divide. To check for these biomarkers, samples of tissue containing breast cancer cells are removed during a biopsy or surgery. The samples are tested in a laboratory to see whether the breast cancer cells have estrogen or progesterone receptors. Another type of receptor (biomarker) that is found on the surface of all breast cancer cells is called HER2. HER2 receptors are needed for the breast cancer cells to grow and divide. For breast cancer, biomarker testing includes the following: Sometimes the breast cancer cells will be described as triple negative or triple positive. It is important to know the estrogen receptor, progesterone receptor, and HER2 receptor status to choose the best treatment. There are drugs that can stop the receptors from attaching to the hormones estrogen and progesterone and stop the cancer from growing. Other drugs may be used to block the HER2 receptors on the surface of the breast cancer cells and stop the cancer from growing. Here are 3 examples that combine the TNM system, the grading system, and the biomarker status to find out the Pathological Prognostic breast cancer stage for a woman whose first treatment was surgery: If the tumor size is 30 millimeters (T2), has not spread to nearby lymph nodes (N0), has not spread to distant parts of the body (M0), and is: The cancer is stage IIA. If the tumor size is 53 millimeters (T3), has spread to 4 to 9 axillary lymph nodes (N2), has not spread to other parts of the body (M0), and is: The tumor is stage IIIA.
If the tumor size is 65 millimeters (T3), has spread to 3 axillary lymph nodes (N1a), has spread to the lungs (M1), and is: The cancer is stage IV (metastatic breast cancer). After surgery, your doctor will receive a pathology report that describes the size and location of the primary tumor, the spread of cancer to nearby lymph nodes, tumor grade, and whether certain biomarkers are present. The pathology report and other test results are used to determine your breast cancer stage. You are likely to have many questions. Ask your doctor to explain how staging is used to decide the best options to treat your cancer and whether there are clinical trials that might be right for you. For ductal carcinoma in situ (DCIS) treatment options, see Treatment of Ductal Carcinoma in Situ. For treatment options for stage I, stage II, stage IIIA, and operable stage IIIC breast cancer, see Treatment of Early, Localized or Operable Breast Cancer. For treatment options for stage IIIB, inoperable stage IIIC, and inflammatory breast cancer, see Treatment of Locally Advanced Inflammatory Breast Cancer. For treatment options for cancer that has recurred near the area where it first formed (such as in the breast, in the skin of the breast, in the chest wall, or in nearby lymph nodes), see Treatment of Locoregional Recurrent Breast Cancer. For treatment options for stage IV (metastatic) breast cancer or breast cancer that has recurred in distant parts of the body, see Treatment of Metastatic Breast Cancer. In inflammatory breast
cancer, cancer has spread to the skin of the breast and the breast looks red and swollen and feels warm. The
redness and warmth occur because the cancer cells block the lymph vessels in the skin. The skin of the breast
may also show the dimpled appearance called peau
d’orange (like the skin of an orange). There may not be any lumps in the breast that can be felt. Inflammatory breast cancer may be stage IIIB, stage IIIC, or stage IV. EnlargeInflammatory breast cancer is a type of breast cancer in which the cancer cells block the lymph vessels in the skin of the breast. This causes the breast to look red and swollen. The skin may also appear dimpled or pitted, like the skin of an orange (peau d'orange), and the nipple may be inverted (facing inward). Different types of treatment are available for patients with breast
cancer. Some treatments are standard
(the currently used treatment), and some are being tested in
clinical trials. A
treatment clinical trial is a research study meant to help improve current
treatments or obtain information on new treatments for patients with cancer.
When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Most patients with breast cancer have surgery to remove the cancer. Sentinel lymph node biopsy is the removal of the sentinel lymph node during surgery. The sentinel lymph node is the first lymph node in a group of lymph nodes to receive lymphatic drainage from the primary tumor. It is the first lymph node the cancer is likely to spread to from the primary tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are not found, it may not be necessary to remove more lymph nodes. Sometimes, a sentinel lymph node is found in more than one group of nodes. After the sentinel lymph node biopsy, the
surgeon removes the tumor using breast-conserving surgery or mastectomy. If cancer cells were found, more lymph nodes will be removed through a separate incision. This is called a lymph node dissection. Types of surgery include the following: Chemotherapy may be given before surgery to remove the tumor. When given before surgery, chemotherapy will shrink the tumor and reduce the amount of tissue that needs to be removed during surgery. Treatment given before surgery is called preoperative therapy or neoadjuvant therapy. After the doctor removes all the cancer that can be seen at
the time of the surgery, some patients may be given radiation therapy,
chemotherapy, targeted therapy, or
hormone therapy after surgery, to kill any cancer cells that are left. Treatment given after the surgery, to
lower the risk that the cancer will come back, is called postoperative therapy or adjuvant
therapy. If a patient is going to have a mastectomy,
breast reconstruction (surgery to
rebuild a breast’s shape after a mastectomy) may be considered. Breast
reconstruction may be done at the time of the mastectomy or at some time after.
The reconstructed breast may be made with the patient’s own (nonbreast) tissue
or by using implants filled with saline or silicone gel. Before the decision to get an implant is
made, patients can call the Food and Drug Administration's (FDA) Center for Devices and Radiologic Health at
1-888-INFO-FDA (1-888-463-6332) or visit the FDA website for more information on breast implants. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat breast cancer. Internal radiation therapy with strontium-89 (a radionuclide) is used to relieve bone pain caused by breast cancer that has spread to the bones. Strontium-89 is injected into a vein and travels to the surface of the bones. Radiation is released and kills cancer cells in the bones. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). For more information, see Drugs Approved for Breast Cancer. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. The hormone estrogen, which makes some breast cancers grow, is made mainly by the ovaries. Treatment to stop the ovaries from making estrogen is called ovarian ablation. Hormone therapy with tamoxifen is often given to patients with early localized breast cancer that can be removed by surgery and those
with metastatic breast cancer (cancer
that has spread to other parts of the body). Hormone therapy with tamoxifen or
estrogens can act on cells all over the body and may increase the chance of
developing endometrial cancer.
Women taking tamoxifen should have a pelvic exam every year to look for any
signs of cancer. Any vaginal
bleeding, other than menstrual
bleeding, should be reported to a doctor as soon as possible. Hormone therapy with a luteinizing hormone-releasing hormone (LHRH) agonist is given to some premenopausal women who have just been diagnosed with hormone receptor positive breast cancer. LHRH agonists decrease the body's estrogen and progesterone. Hormone therapy with an aromatase inhibitor is given to some postmenopausal women who have hormone receptor positive breast cancer. Aromatase inhibitors decrease the body's estrogen by blocking an enzyme called aromatase from turning androgen into estrogen. Anastrozole, letrozole, and exemestane are types of aromatase inhibitors. For the treatment of early localized breast cancer that can be removed by surgery, certain aromatase inhibitors may be used as adjuvant therapy instead of tamoxifen or after 2 to 3 years of tamoxifen use. For the treatment of metastatic breast cancer, aromatase inhibitors are being tested in clinical trials to compare them to hormone therapy with tamoxifen. In women with hormone receptor positive breast cancer, at least 5 years of adjuvant hormone therapy reduces the risk that the cancer will recur (come back). Other types of hormone therapy include megestrol acetate or anti-estrogen therapy such as fulvestrant. For more information, see Drugs Approved for Breast Cancer. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Monoclonal antibodies, tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and PARP inhibitors are types of targeted therapies used in the treatment of breast cancer. Types of monoclonal antibody therapy include the following: For more information, see Drugs Approved for Breast Cancer. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. There are different types of immunotherapy: Information about clinical trials is available from the NCI website. For information about side effects that begin during treatment for cancer, see our Side Effects page. Some treatments for breast cancer may cause side effects that continue or appear months or years after treatment has ended. These are called late effects. Late effects of radiation therapy are not common, but may include: Late effects of chemotherapy depend on the drugs used, but may include: Late effects of targeted therapy with trastuzumab, lapatinib, or pertuzumab may include: For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of early, localized, or operable breast cancer may include the following: Surgery Postoperative radiation therapy For women who had breast-conserving surgery, radiation therapy is given to the whole breast to lessen the chance the cancer will come back. Radiation therapy may also be given to lymph nodes in the area. For women who had a modified radical mastectomy, radiation therapy may be given to lessen the chance the cancer will come back if any of the following are true: Postoperative systemic therapy Systemic therapy is the use of drugs that can enter the bloodstream and reach cancer cells throughout the body. Postoperative systemic therapy is given to lessen the chance the cancer will come back after surgery to remove the tumor. Postoperative systemic therapy is given depending on whether: In premenopausal women with hormone receptor positive tumors, no more treatment may be needed or postoperative therapy may include: In postmenopausal women with hormone receptor positive tumors, no more treatment may be needed or postoperative therapy may include: In women with hormone receptor negative tumors, no more treatment may be needed or postoperative therapy may include: In women with HER2/neu negative tumors, postoperative therapy may include: In women with small, HER2/neu positive tumors, and no cancer in the lymph nodes, no more treatment may be needed. If there is cancer in the lymph nodes, or the tumor is large, postoperative therapy may include: In women with small, hormone receptor negative and HER2/neu negative tumors (triple negative) and no cancer in the lymph nodes, no more treatment may be needed. If there is cancer in the lymph nodes or the tumor is large, postoperative therapy may include: Preoperative systemic therapy Systemic therapy is the use of drugs that can enter the bloodstream and reach cancer cells throughout the body. Preoperative systemic therapy is given to shrink the tumor before surgery. Preoperative chemotherapy may make breast-sparing surgery possible in patients who are not eligible otherwise. Preoperative chemotherapy may also lessen the need for lymph node dissection in patients with disease that has spread to the lymph nodes. In postmenopausal women with hormone receptor positive tumors, preoperative therapy may include: In premenopausal women with hormone receptor positive tumors, preoperative therapy may include: In women with HER2/neu positive tumors, preoperative therapy may include: In women with HER2/neu negative tumors or triple negative tumors, preoperative therapy may include: For patients with triple-negative or HER2-positive disease, the response to preoperative therapy may be used as a guide in choosing the best treatment after surgery. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locally advanced or inflammatory breast
cancer is a combination of therapies that may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locoregional recurrent
breast cancer (cancer that has come
back after treatment in the breast, in the chest
wall, or in nearby lymph nodes), may include the following: For information about treatment options for breast cancer that has spread to parts of the body outside the breast, chest wall, or nearby lymph nodes, see the Treatment of Metastatic Breast Cancer section. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for metastatic breast cancer (cancer that has spread to distant parts of the body) may include the following: Hormone therapy In postmenopausal women who have just been diagnosed with metastatic breast cancer that is hormone receptor positive or if the hormone receptor status is not known, treatment
may include: In premenopausal women who have just been diagnosed with metastatic breast cancer that is hormone receptor positive, treatment may include: In women whose tumors are hormone receptor positive or hormone receptor unknown, with spread to the bone or soft tissue only, and who have been treated with tamoxifen, treatment may include: Targeted therapy In women with metastatic breast cancer that is hormone receptor positive and has not responded to other treatments, options may include targeted therapy such as: In women with metastatic breast cancer that is HER2/neu positive, treatment may include: In women with metastatic breast cancer that is HER2 negative, with mutations in the BRCA1 or BRCA2 genes, and who have been treated with chemotherapy, treatment may include: Chemotherapy In women with metastatic breast cancer that is hormone receptor negative, has not responded to hormone therapy, has spread to other organs or has caused symptoms, treatment may include: Chemotherapy and immunotherapy In women with metastatic breast cancer that is hormone receptor negative and HER2 negative, treatment may include: Surgery Radiation therapy Other treatment options Other treatment options for metastatic breast cancer include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of ductal carcinoma in situ may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about breast cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of adult breast cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Breast Cancer Treatment (Adult). Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/breast/patient/breast-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389406] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Breast Cancer Treatment (Adult) (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | Is Breast Cancer inherited ? | Breast cancer is sometimes caused by inherited gene mutations (changes). The genes in cells carry the hereditary information that is received from a persons parents. Hereditary breast cancer makes up about 5% to 10% of all breast cancer. Some mutated genes related to breast cancer are more common in certain ethnic groups. Women who have certain gene mutations, such as a BRCA1 or BRCA2 mutation, have an increased risk of breast cancer. These women also have an increased risk of ovarian cancer, and may have an increased risk of other cancers. Men who have a mutated gene related to breast cancer also have an increased risk of breast cancer. For more information, see the PDQ summary on Male Breast Cancer Treatment. There are tests that can detect (find) mutated genes. These genetic tests are sometimes done for members of families with a high risk of cancer. See the PDQ summary on Genetics of Breast and Gynecologic Cancers for more information. |
The breast is made up of lobes and ducts. Each breast has 15 to 20 sections called
lobes. Each lobe has many smaller sections called lobules. Lobules end in dozens of tiny bulbs that
can make milk. The lobes, lobules, and bulbs are linked by thin tubes called
ducts. EnlargeAnatomy of the female breast. The nipple and areola are shown on the outside of the breast. The lymph nodes, lobes, lobules, ducts, and other parts of the inside of the breast are also shown. Each breast also has blood
vessels and lymph
vessels. The lymph vessels carry an almost colorless, watery fluid called lymph. Lymph
vessels carry lymph between lymph
nodes. Lymph nodes are small, bean-shaped structures found throughout the body. They filter lymph and store white blood cells that help fight
infection and disease. Groups of lymph nodes are found near the breast in the
axilla (under the arm), above the
collarbone, and in the chest. The most common type of breast cancer is ductal
carcinoma, which begins in the cells of the ducts. Cancer that begins in the
lobes or lobules is called lobular carcinoma and is more often found in both
breasts than are other types of breast cancer. Inflammatory breast cancer is an uncommon type of
breast cancer in which the breast is warm, red, and swollen. For more information about breast cancer, see: Anything that increases your chance of getting a disease
is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your doctor if you think you may be at risk for breast cancer. Risk factors for breast cancer include the following: Older age is the main risk factor for most cancers. The chance of getting cancer increases as you get older. NCI's Breast Cancer Risk Assessment Tool uses a woman's risk factors to estimate her risk for breast cancer during the next five years and up to age 90. This online tool is meant to be used by a health care provider. For more information on breast cancer risk, call 1-800-4-CANCER. The genes in cells carry
the hereditary information that is
received from a person’s parents. Hereditary breast cancer makes up
about 5% to 10% of all breast cancer. Some mutated genes related to
breast cancer are more common in certain ethnic groups. Women who have certain gene mutations, such as a BRCA1 or BRCA2 mutation, have an increased risk of breast cancer. These women also have an increased risk of ovarian cancer, and may
have an increased risk of other cancers. Men who have a mutated
gene related to breast cancer also have an increased risk of breast cancer. For more information, see
Male Breast Cancer Treatment. There are tests that can detect (find) mutated genes. These
genetic tests are sometimes done for
members of families with a high risk of cancer. For more information, see Genetics of Breast and Gynecologic Cancers. Anything that decreases your chance of getting a disease is called a protective factor. Protective factors for breast cancer include the following: These and other signs may be caused by breast cancer or by other conditions. Check with your doctor if you have any of the following: Check with your doctor if you notice any changes in your breasts. The
following tests and procedures may be used: There are four types of biopsy used to check for breast cancer: Decisions about the best treatment are based on the results of these tests. The tests give information about: Tests include the following: There are many types of multigene tests. The following multigene tests have been studied in clinical trials: Based on these tests, breast cancer is described as one of the following types: This information helps the doctor decide which treatments will work best for your cancer. The prognosis and treatment options depend on the following: The process used to find out whether the cancer has spread within the breast or to other
parts of the body is called staging.
The information gathered from the staging process determines the
stage of the disease. It is
important to know the stage in order to plan treatment. The results of some of the tests used to diagnose breast cancer are also used to stage the disease. (See the General Information section.) The following tests and procedures also may be used in
the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if breast cancer spreads to the bone, the cancer cells in the bone are actually breast cancer cells. The disease is metastatic breast cancer, not bone cancer. To plan the best treatment and understand your prognosis, it is important to know the breast cancer stage. There are 3 types of breast cancer stage groups: For breast cancer, the TNM system describes the tumor as follows: When the lymph nodes are removed by surgery and studied under a microscope by a pathologist, pathologic staging is used to describe the lymph nodes. The pathologic staging of lymph nodes is described below. or cancer has spread to 4 to 9 axillary lymph nodes and cancer in at least one of the lymph nodes is larger than 2 millimeters. Cancer has also spread to lymph nodes near the breastbone on the same side of the body as the primary tumor, and the cancer is larger than 0.2 millimeters and is found by sentinel lymph node biopsy. When the lymph nodes are checked using mammography or ultrasound, it is called clinical staging. The clinical staging of lymph nodes is not described here. The grading system describes a tumor based on how abnormal the cancer cells and tissue look under a microscope and how quickly the cancer cells are likely to grow and spread. Low-grade cancer cells look more like normal cells and tend to grow and spread more slowly than high-grade cancer cells. To describe how abnormal the cancer cells and tissue are, the pathologist will assess the following three features: For each feature, the pathologist assigns a score of 1 to 3; a score of “1” means the cells and tumor tissue look the most like normal cells and tissue, and a score of “3” means the cells and tissue look the most abnormal. The scores for each feature are added together to get a total score between 3 and 9. Three grades are possible: Healthy breast cells, and some breast cancer cells, have receptors (biomarkers) that attach to the hormones estrogen and progesterone. These hormones are needed for healthy cells, and some breast cancer cells, to grow and divide. To check for these biomarkers, samples of tissue containing breast cancer cells are removed during a biopsy or surgery. The samples are tested in a laboratory to see whether the breast cancer cells have estrogen or progesterone receptors. Another type of receptor (biomarker) that is found on the surface of all breast cancer cells is called HER2. HER2 receptors are needed for the breast cancer cells to grow and divide. For breast cancer, biomarker testing includes the following: Sometimes the breast cancer cells will be described as triple negative or triple positive. It is important to know the estrogen receptor, progesterone receptor, and HER2 receptor status to choose the best treatment. There are drugs that can stop the receptors from attaching to the hormones estrogen and progesterone and stop the cancer from growing. Other drugs may be used to block the HER2 receptors on the surface of the breast cancer cells and stop the cancer from growing. Here are 3 examples that combine the TNM system, the grading system, and the biomarker status to find out the Pathological Prognostic breast cancer stage for a woman whose first treatment was surgery: If the tumor size is 30 millimeters (T2), has not spread to nearby lymph nodes (N0), has not spread to distant parts of the body (M0), and is: The cancer is stage IIA. If the tumor size is 53 millimeters (T3), has spread to 4 to 9 axillary lymph nodes (N2), has not spread to other parts of the body (M0), and is: The tumor is stage IIIA.
If the tumor size is 65 millimeters (T3), has spread to 3 axillary lymph nodes (N1a), has spread to the lungs (M1), and is: The cancer is stage IV (metastatic breast cancer). After surgery, your doctor will receive a pathology report that describes the size and location of the primary tumor, the spread of cancer to nearby lymph nodes, tumor grade, and whether certain biomarkers are present. The pathology report and other test results are used to determine your breast cancer stage. You are likely to have many questions. Ask your doctor to explain how staging is used to decide the best options to treat your cancer and whether there are clinical trials that might be right for you. For ductal carcinoma in situ (DCIS) treatment options, see Treatment of Ductal Carcinoma in Situ. For treatment options for stage I, stage II, stage IIIA, and operable stage IIIC breast cancer, see Treatment of Early, Localized or Operable Breast Cancer. For treatment options for stage IIIB, inoperable stage IIIC, and inflammatory breast cancer, see Treatment of Locally Advanced Inflammatory Breast Cancer. For treatment options for cancer that has recurred near the area where it first formed (such as in the breast, in the skin of the breast, in the chest wall, or in nearby lymph nodes), see Treatment of Locoregional Recurrent Breast Cancer. For treatment options for stage IV (metastatic) breast cancer or breast cancer that has recurred in distant parts of the body, see Treatment of Metastatic Breast Cancer. In inflammatory breast
cancer, cancer has spread to the skin of the breast and the breast looks red and swollen and feels warm. The
redness and warmth occur because the cancer cells block the lymph vessels in the skin. The skin of the breast
may also show the dimpled appearance called peau
d’orange (like the skin of an orange). There may not be any lumps in the breast that can be felt. Inflammatory breast cancer may be stage IIIB, stage IIIC, or stage IV. EnlargeInflammatory breast cancer is a type of breast cancer in which the cancer cells block the lymph vessels in the skin of the breast. This causes the breast to look red and swollen. The skin may also appear dimpled or pitted, like the skin of an orange (peau d'orange), and the nipple may be inverted (facing inward). Different types of treatment are available for patients with breast
cancer. Some treatments are standard
(the currently used treatment), and some are being tested in
clinical trials. A
treatment clinical trial is a research study meant to help improve current
treatments or obtain information on new treatments for patients with cancer.
When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Most patients with breast cancer have surgery to remove the cancer. Sentinel lymph node biopsy is the removal of the sentinel lymph node during surgery. The sentinel lymph node is the first lymph node in a group of lymph nodes to receive lymphatic drainage from the primary tumor. It is the first lymph node the cancer is likely to spread to from the primary tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are not found, it may not be necessary to remove more lymph nodes. Sometimes, a sentinel lymph node is found in more than one group of nodes. After the sentinel lymph node biopsy, the
surgeon removes the tumor using breast-conserving surgery or mastectomy. If cancer cells were found, more lymph nodes will be removed through a separate incision. This is called a lymph node dissection. Types of surgery include the following: Chemotherapy may be given before surgery to remove the tumor. When given before surgery, chemotherapy will shrink the tumor and reduce the amount of tissue that needs to be removed during surgery. Treatment given before surgery is called preoperative therapy or neoadjuvant therapy. After the doctor removes all the cancer that can be seen at
the time of the surgery, some patients may be given radiation therapy,
chemotherapy, targeted therapy, or
hormone therapy after surgery, to kill any cancer cells that are left. Treatment given after the surgery, to
lower the risk that the cancer will come back, is called postoperative therapy or adjuvant
therapy. If a patient is going to have a mastectomy,
breast reconstruction (surgery to
rebuild a breast’s shape after a mastectomy) may be considered. Breast
reconstruction may be done at the time of the mastectomy or at some time after.
The reconstructed breast may be made with the patient’s own (nonbreast) tissue
or by using implants filled with saline or silicone gel. Before the decision to get an implant is
made, patients can call the Food and Drug Administration's (FDA) Center for Devices and Radiologic Health at
1-888-INFO-FDA (1-888-463-6332) or visit the FDA website for more information on breast implants. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat breast cancer. Internal radiation therapy with strontium-89 (a radionuclide) is used to relieve bone pain caused by breast cancer that has spread to the bones. Strontium-89 is injected into a vein and travels to the surface of the bones. Radiation is released and kills cancer cells in the bones. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). For more information, see Drugs Approved for Breast Cancer. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. The hormone estrogen, which makes some breast cancers grow, is made mainly by the ovaries. Treatment to stop the ovaries from making estrogen is called ovarian ablation. Hormone therapy with tamoxifen is often given to patients with early localized breast cancer that can be removed by surgery and those
with metastatic breast cancer (cancer
that has spread to other parts of the body). Hormone therapy with tamoxifen or
estrogens can act on cells all over the body and may increase the chance of
developing endometrial cancer.
Women taking tamoxifen should have a pelvic exam every year to look for any
signs of cancer. Any vaginal
bleeding, other than menstrual
bleeding, should be reported to a doctor as soon as possible. Hormone therapy with a luteinizing hormone-releasing hormone (LHRH) agonist is given to some premenopausal women who have just been diagnosed with hormone receptor positive breast cancer. LHRH agonists decrease the body's estrogen and progesterone. Hormone therapy with an aromatase inhibitor is given to some postmenopausal women who have hormone receptor positive breast cancer. Aromatase inhibitors decrease the body's estrogen by blocking an enzyme called aromatase from turning androgen into estrogen. Anastrozole, letrozole, and exemestane are types of aromatase inhibitors. For the treatment of early localized breast cancer that can be removed by surgery, certain aromatase inhibitors may be used as adjuvant therapy instead of tamoxifen or after 2 to 3 years of tamoxifen use. For the treatment of metastatic breast cancer, aromatase inhibitors are being tested in clinical trials to compare them to hormone therapy with tamoxifen. In women with hormone receptor positive breast cancer, at least 5 years of adjuvant hormone therapy reduces the risk that the cancer will recur (come back). Other types of hormone therapy include megestrol acetate or anti-estrogen therapy such as fulvestrant. For more information, see Drugs Approved for Breast Cancer. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Monoclonal antibodies, tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and PARP inhibitors are types of targeted therapies used in the treatment of breast cancer. Types of monoclonal antibody therapy include the following: For more information, see Drugs Approved for Breast Cancer. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. There are different types of immunotherapy: Information about clinical trials is available from the NCI website. For information about side effects that begin during treatment for cancer, see our Side Effects page. Some treatments for breast cancer may cause side effects that continue or appear months or years after treatment has ended. These are called late effects. Late effects of radiation therapy are not common, but may include: Late effects of chemotherapy depend on the drugs used, but may include: Late effects of targeted therapy with trastuzumab, lapatinib, or pertuzumab may include: For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of early, localized, or operable breast cancer may include the following: Surgery Postoperative radiation therapy For women who had breast-conserving surgery, radiation therapy is given to the whole breast to lessen the chance the cancer will come back. Radiation therapy may also be given to lymph nodes in the area. For women who had a modified radical mastectomy, radiation therapy may be given to lessen the chance the cancer will come back if any of the following are true: Postoperative systemic therapy Systemic therapy is the use of drugs that can enter the bloodstream and reach cancer cells throughout the body. Postoperative systemic therapy is given to lessen the chance the cancer will come back after surgery to remove the tumor. Postoperative systemic therapy is given depending on whether: In premenopausal women with hormone receptor positive tumors, no more treatment may be needed or postoperative therapy may include: In postmenopausal women with hormone receptor positive tumors, no more treatment may be needed or postoperative therapy may include: In women with hormone receptor negative tumors, no more treatment may be needed or postoperative therapy may include: In women with HER2/neu negative tumors, postoperative therapy may include: In women with small, HER2/neu positive tumors, and no cancer in the lymph nodes, no more treatment may be needed. If there is cancer in the lymph nodes, or the tumor is large, postoperative therapy may include: In women with small, hormone receptor negative and HER2/neu negative tumors (triple negative) and no cancer in the lymph nodes, no more treatment may be needed. If there is cancer in the lymph nodes or the tumor is large, postoperative therapy may include: Preoperative systemic therapy Systemic therapy is the use of drugs that can enter the bloodstream and reach cancer cells throughout the body. Preoperative systemic therapy is given to shrink the tumor before surgery. Preoperative chemotherapy may make breast-sparing surgery possible in patients who are not eligible otherwise. Preoperative chemotherapy may also lessen the need for lymph node dissection in patients with disease that has spread to the lymph nodes. In postmenopausal women with hormone receptor positive tumors, preoperative therapy may include: In premenopausal women with hormone receptor positive tumors, preoperative therapy may include: In women with HER2/neu positive tumors, preoperative therapy may include: In women with HER2/neu negative tumors or triple negative tumors, preoperative therapy may include: For patients with triple-negative or HER2-positive disease, the response to preoperative therapy may be used as a guide in choosing the best treatment after surgery. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locally advanced or inflammatory breast
cancer is a combination of therapies that may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locoregional recurrent
breast cancer (cancer that has come
back after treatment in the breast, in the chest
wall, or in nearby lymph nodes), may include the following: For information about treatment options for breast cancer that has spread to parts of the body outside the breast, chest wall, or nearby lymph nodes, see the Treatment of Metastatic Breast Cancer section. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for metastatic breast cancer (cancer that has spread to distant parts of the body) may include the following: Hormone therapy In postmenopausal women who have just been diagnosed with metastatic breast cancer that is hormone receptor positive or if the hormone receptor status is not known, treatment
may include: In premenopausal women who have just been diagnosed with metastatic breast cancer that is hormone receptor positive, treatment may include: In women whose tumors are hormone receptor positive or hormone receptor unknown, with spread to the bone or soft tissue only, and who have been treated with tamoxifen, treatment may include: Targeted therapy In women with metastatic breast cancer that is hormone receptor positive and has not responded to other treatments, options may include targeted therapy such as: In women with metastatic breast cancer that is HER2/neu positive, treatment may include: In women with metastatic breast cancer that is HER2 negative, with mutations in the BRCA1 or BRCA2 genes, and who have been treated with chemotherapy, treatment may include: Chemotherapy In women with metastatic breast cancer that is hormone receptor negative, has not responded to hormone therapy, has spread to other organs or has caused symptoms, treatment may include: Chemotherapy and immunotherapy In women with metastatic breast cancer that is hormone receptor negative and HER2 negative, treatment may include: Surgery Radiation therapy Other treatment options Other treatment options for metastatic breast cancer include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of ductal carcinoma in situ may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about breast cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of adult breast cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Breast Cancer Treatment (Adult). Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/breast/patient/breast-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389406] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Breast Cancer Treatment (Adult) (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the symptoms of Breast Cancer ? | Signs of breast cancer include a lump or change in the breast. These and other signs may be caused by breast cancer or by other conditions. Check with your doctor if you have any of the following: - A lump or thickening in or near the breast or in the underarm area. - A change in the size or shape of the breast. - A dimple or puckering in the skin of the breast. - A nipple turned inward into the breast. - Fluid, other than breast milk, from the nipple, especially if it's bloody. - Scaly, red, or swollen skin on the breast, nipple, or areola (the dark area of skin around the nipple). - Dimples in the breast that look like the skin of an orange, called peau dorange. |
The breast is made up of lobes and ducts. Each breast has 15 to 20 sections called
lobes. Each lobe has many smaller sections called lobules. Lobules end in dozens of tiny bulbs that
can make milk. The lobes, lobules, and bulbs are linked by thin tubes called
ducts. EnlargeAnatomy of the female breast. The nipple and areola are shown on the outside of the breast. The lymph nodes, lobes, lobules, ducts, and other parts of the inside of the breast are also shown. Each breast also has blood
vessels and lymph
vessels. The lymph vessels carry an almost colorless, watery fluid called lymph. Lymph
vessels carry lymph between lymph
nodes. Lymph nodes are small, bean-shaped structures found throughout the body. They filter lymph and store white blood cells that help fight
infection and disease. Groups of lymph nodes are found near the breast in the
axilla (under the arm), above the
collarbone, and in the chest. The most common type of breast cancer is ductal
carcinoma, which begins in the cells of the ducts. Cancer that begins in the
lobes or lobules is called lobular carcinoma and is more often found in both
breasts than are other types of breast cancer. Inflammatory breast cancer is an uncommon type of
breast cancer in which the breast is warm, red, and swollen. For more information about breast cancer, see: Anything that increases your chance of getting a disease
is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your doctor if you think you may be at risk for breast cancer. Risk factors for breast cancer include the following: Older age is the main risk factor for most cancers. The chance of getting cancer increases as you get older. NCI's Breast Cancer Risk Assessment Tool uses a woman's risk factors to estimate her risk for breast cancer during the next five years and up to age 90. This online tool is meant to be used by a health care provider. For more information on breast cancer risk, call 1-800-4-CANCER. The genes in cells carry
the hereditary information that is
received from a person’s parents. Hereditary breast cancer makes up
about 5% to 10% of all breast cancer. Some mutated genes related to
breast cancer are more common in certain ethnic groups. Women who have certain gene mutations, such as a BRCA1 or BRCA2 mutation, have an increased risk of breast cancer. These women also have an increased risk of ovarian cancer, and may
have an increased risk of other cancers. Men who have a mutated
gene related to breast cancer also have an increased risk of breast cancer. For more information, see
Male Breast Cancer Treatment. There are tests that can detect (find) mutated genes. These
genetic tests are sometimes done for
members of families with a high risk of cancer. For more information, see Genetics of Breast and Gynecologic Cancers. Anything that decreases your chance of getting a disease is called a protective factor. Protective factors for breast cancer include the following: These and other signs may be caused by breast cancer or by other conditions. Check with your doctor if you have any of the following: Check with your doctor if you notice any changes in your breasts. The
following tests and procedures may be used: There are four types of biopsy used to check for breast cancer: Decisions about the best treatment are based on the results of these tests. The tests give information about: Tests include the following: There are many types of multigene tests. The following multigene tests have been studied in clinical trials: Based on these tests, breast cancer is described as one of the following types: This information helps the doctor decide which treatments will work best for your cancer. The prognosis and treatment options depend on the following: The process used to find out whether the cancer has spread within the breast or to other
parts of the body is called staging.
The information gathered from the staging process determines the
stage of the disease. It is
important to know the stage in order to plan treatment. The results of some of the tests used to diagnose breast cancer are also used to stage the disease. (See the General Information section.) The following tests and procedures also may be used in
the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if breast cancer spreads to the bone, the cancer cells in the bone are actually breast cancer cells. The disease is metastatic breast cancer, not bone cancer. To plan the best treatment and understand your prognosis, it is important to know the breast cancer stage. There are 3 types of breast cancer stage groups: For breast cancer, the TNM system describes the tumor as follows: When the lymph nodes are removed by surgery and studied under a microscope by a pathologist, pathologic staging is used to describe the lymph nodes. The pathologic staging of lymph nodes is described below. or cancer has spread to 4 to 9 axillary lymph nodes and cancer in at least one of the lymph nodes is larger than 2 millimeters. Cancer has also spread to lymph nodes near the breastbone on the same side of the body as the primary tumor, and the cancer is larger than 0.2 millimeters and is found by sentinel lymph node biopsy. When the lymph nodes are checked using mammography or ultrasound, it is called clinical staging. The clinical staging of lymph nodes is not described here. The grading system describes a tumor based on how abnormal the cancer cells and tissue look under a microscope and how quickly the cancer cells are likely to grow and spread. Low-grade cancer cells look more like normal cells and tend to grow and spread more slowly than high-grade cancer cells. To describe how abnormal the cancer cells and tissue are, the pathologist will assess the following three features: For each feature, the pathologist assigns a score of 1 to 3; a score of “1” means the cells and tumor tissue look the most like normal cells and tissue, and a score of “3” means the cells and tissue look the most abnormal. The scores for each feature are added together to get a total score between 3 and 9. Three grades are possible: Healthy breast cells, and some breast cancer cells, have receptors (biomarkers) that attach to the hormones estrogen and progesterone. These hormones are needed for healthy cells, and some breast cancer cells, to grow and divide. To check for these biomarkers, samples of tissue containing breast cancer cells are removed during a biopsy or surgery. The samples are tested in a laboratory to see whether the breast cancer cells have estrogen or progesterone receptors. Another type of receptor (biomarker) that is found on the surface of all breast cancer cells is called HER2. HER2 receptors are needed for the breast cancer cells to grow and divide. For breast cancer, biomarker testing includes the following: Sometimes the breast cancer cells will be described as triple negative or triple positive. It is important to know the estrogen receptor, progesterone receptor, and HER2 receptor status to choose the best treatment. There are drugs that can stop the receptors from attaching to the hormones estrogen and progesterone and stop the cancer from growing. Other drugs may be used to block the HER2 receptors on the surface of the breast cancer cells and stop the cancer from growing. Here are 3 examples that combine the TNM system, the grading system, and the biomarker status to find out the Pathological Prognostic breast cancer stage for a woman whose first treatment was surgery: If the tumor size is 30 millimeters (T2), has not spread to nearby lymph nodes (N0), has not spread to distant parts of the body (M0), and is: The cancer is stage IIA. If the tumor size is 53 millimeters (T3), has spread to 4 to 9 axillary lymph nodes (N2), has not spread to other parts of the body (M0), and is: The tumor is stage IIIA.
If the tumor size is 65 millimeters (T3), has spread to 3 axillary lymph nodes (N1a), has spread to the lungs (M1), and is: The cancer is stage IV (metastatic breast cancer). After surgery, your doctor will receive a pathology report that describes the size and location of the primary tumor, the spread of cancer to nearby lymph nodes, tumor grade, and whether certain biomarkers are present. The pathology report and other test results are used to determine your breast cancer stage. You are likely to have many questions. Ask your doctor to explain how staging is used to decide the best options to treat your cancer and whether there are clinical trials that might be right for you. For ductal carcinoma in situ (DCIS) treatment options, see Treatment of Ductal Carcinoma in Situ. For treatment options for stage I, stage II, stage IIIA, and operable stage IIIC breast cancer, see Treatment of Early, Localized or Operable Breast Cancer. For treatment options for stage IIIB, inoperable stage IIIC, and inflammatory breast cancer, see Treatment of Locally Advanced Inflammatory Breast Cancer. For treatment options for cancer that has recurred near the area where it first formed (such as in the breast, in the skin of the breast, in the chest wall, or in nearby lymph nodes), see Treatment of Locoregional Recurrent Breast Cancer. For treatment options for stage IV (metastatic) breast cancer or breast cancer that has recurred in distant parts of the body, see Treatment of Metastatic Breast Cancer. In inflammatory breast
cancer, cancer has spread to the skin of the breast and the breast looks red and swollen and feels warm. The
redness and warmth occur because the cancer cells block the lymph vessels in the skin. The skin of the breast
may also show the dimpled appearance called peau
d’orange (like the skin of an orange). There may not be any lumps in the breast that can be felt. Inflammatory breast cancer may be stage IIIB, stage IIIC, or stage IV. EnlargeInflammatory breast cancer is a type of breast cancer in which the cancer cells block the lymph vessels in the skin of the breast. This causes the breast to look red and swollen. The skin may also appear dimpled or pitted, like the skin of an orange (peau d'orange), and the nipple may be inverted (facing inward). Different types of treatment are available for patients with breast
cancer. Some treatments are standard
(the currently used treatment), and some are being tested in
clinical trials. A
treatment clinical trial is a research study meant to help improve current
treatments or obtain information on new treatments for patients with cancer.
When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Most patients with breast cancer have surgery to remove the cancer. Sentinel lymph node biopsy is the removal of the sentinel lymph node during surgery. The sentinel lymph node is the first lymph node in a group of lymph nodes to receive lymphatic drainage from the primary tumor. It is the first lymph node the cancer is likely to spread to from the primary tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are not found, it may not be necessary to remove more lymph nodes. Sometimes, a sentinel lymph node is found in more than one group of nodes. After the sentinel lymph node biopsy, the
surgeon removes the tumor using breast-conserving surgery or mastectomy. If cancer cells were found, more lymph nodes will be removed through a separate incision. This is called a lymph node dissection. Types of surgery include the following: Chemotherapy may be given before surgery to remove the tumor. When given before surgery, chemotherapy will shrink the tumor and reduce the amount of tissue that needs to be removed during surgery. Treatment given before surgery is called preoperative therapy or neoadjuvant therapy. After the doctor removes all the cancer that can be seen at
the time of the surgery, some patients may be given radiation therapy,
chemotherapy, targeted therapy, or
hormone therapy after surgery, to kill any cancer cells that are left. Treatment given after the surgery, to
lower the risk that the cancer will come back, is called postoperative therapy or adjuvant
therapy. If a patient is going to have a mastectomy,
breast reconstruction (surgery to
rebuild a breast’s shape after a mastectomy) may be considered. Breast
reconstruction may be done at the time of the mastectomy or at some time after.
The reconstructed breast may be made with the patient’s own (nonbreast) tissue
or by using implants filled with saline or silicone gel. Before the decision to get an implant is
made, patients can call the Food and Drug Administration's (FDA) Center for Devices and Radiologic Health at
1-888-INFO-FDA (1-888-463-6332) or visit the FDA website for more information on breast implants. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat breast cancer. Internal radiation therapy with strontium-89 (a radionuclide) is used to relieve bone pain caused by breast cancer that has spread to the bones. Strontium-89 is injected into a vein and travels to the surface of the bones. Radiation is released and kills cancer cells in the bones. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). For more information, see Drugs Approved for Breast Cancer. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. The hormone estrogen, which makes some breast cancers grow, is made mainly by the ovaries. Treatment to stop the ovaries from making estrogen is called ovarian ablation. Hormone therapy with tamoxifen is often given to patients with early localized breast cancer that can be removed by surgery and those
with metastatic breast cancer (cancer
that has spread to other parts of the body). Hormone therapy with tamoxifen or
estrogens can act on cells all over the body and may increase the chance of
developing endometrial cancer.
Women taking tamoxifen should have a pelvic exam every year to look for any
signs of cancer. Any vaginal
bleeding, other than menstrual
bleeding, should be reported to a doctor as soon as possible. Hormone therapy with a luteinizing hormone-releasing hormone (LHRH) agonist is given to some premenopausal women who have just been diagnosed with hormone receptor positive breast cancer. LHRH agonists decrease the body's estrogen and progesterone. Hormone therapy with an aromatase inhibitor is given to some postmenopausal women who have hormone receptor positive breast cancer. Aromatase inhibitors decrease the body's estrogen by blocking an enzyme called aromatase from turning androgen into estrogen. Anastrozole, letrozole, and exemestane are types of aromatase inhibitors. For the treatment of early localized breast cancer that can be removed by surgery, certain aromatase inhibitors may be used as adjuvant therapy instead of tamoxifen or after 2 to 3 years of tamoxifen use. For the treatment of metastatic breast cancer, aromatase inhibitors are being tested in clinical trials to compare them to hormone therapy with tamoxifen. In women with hormone receptor positive breast cancer, at least 5 years of adjuvant hormone therapy reduces the risk that the cancer will recur (come back). Other types of hormone therapy include megestrol acetate or anti-estrogen therapy such as fulvestrant. For more information, see Drugs Approved for Breast Cancer. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Monoclonal antibodies, tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and PARP inhibitors are types of targeted therapies used in the treatment of breast cancer. Types of monoclonal antibody therapy include the following: For more information, see Drugs Approved for Breast Cancer. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. There are different types of immunotherapy: Information about clinical trials is available from the NCI website. For information about side effects that begin during treatment for cancer, see our Side Effects page. Some treatments for breast cancer may cause side effects that continue or appear months or years after treatment has ended. These are called late effects. Late effects of radiation therapy are not common, but may include: Late effects of chemotherapy depend on the drugs used, but may include: Late effects of targeted therapy with trastuzumab, lapatinib, or pertuzumab may include: For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of early, localized, or operable breast cancer may include the following: Surgery Postoperative radiation therapy For women who had breast-conserving surgery, radiation therapy is given to the whole breast to lessen the chance the cancer will come back. Radiation therapy may also be given to lymph nodes in the area. For women who had a modified radical mastectomy, radiation therapy may be given to lessen the chance the cancer will come back if any of the following are true: Postoperative systemic therapy Systemic therapy is the use of drugs that can enter the bloodstream and reach cancer cells throughout the body. Postoperative systemic therapy is given to lessen the chance the cancer will come back after surgery to remove the tumor. Postoperative systemic therapy is given depending on whether: In premenopausal women with hormone receptor positive tumors, no more treatment may be needed or postoperative therapy may include: In postmenopausal women with hormone receptor positive tumors, no more treatment may be needed or postoperative therapy may include: In women with hormone receptor negative tumors, no more treatment may be needed or postoperative therapy may include: In women with HER2/neu negative tumors, postoperative therapy may include: In women with small, HER2/neu positive tumors, and no cancer in the lymph nodes, no more treatment may be needed. If there is cancer in the lymph nodes, or the tumor is large, postoperative therapy may include: In women with small, hormone receptor negative and HER2/neu negative tumors (triple negative) and no cancer in the lymph nodes, no more treatment may be needed. If there is cancer in the lymph nodes or the tumor is large, postoperative therapy may include: Preoperative systemic therapy Systemic therapy is the use of drugs that can enter the bloodstream and reach cancer cells throughout the body. Preoperative systemic therapy is given to shrink the tumor before surgery. Preoperative chemotherapy may make breast-sparing surgery possible in patients who are not eligible otherwise. Preoperative chemotherapy may also lessen the need for lymph node dissection in patients with disease that has spread to the lymph nodes. In postmenopausal women with hormone receptor positive tumors, preoperative therapy may include: In premenopausal women with hormone receptor positive tumors, preoperative therapy may include: In women with HER2/neu positive tumors, preoperative therapy may include: In women with HER2/neu negative tumors or triple negative tumors, preoperative therapy may include: For patients with triple-negative or HER2-positive disease, the response to preoperative therapy may be used as a guide in choosing the best treatment after surgery. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locally advanced or inflammatory breast
cancer is a combination of therapies that may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locoregional recurrent
breast cancer (cancer that has come
back after treatment in the breast, in the chest
wall, or in nearby lymph nodes), may include the following: For information about treatment options for breast cancer that has spread to parts of the body outside the breast, chest wall, or nearby lymph nodes, see the Treatment of Metastatic Breast Cancer section. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for metastatic breast cancer (cancer that has spread to distant parts of the body) may include the following: Hormone therapy In postmenopausal women who have just been diagnosed with metastatic breast cancer that is hormone receptor positive or if the hormone receptor status is not known, treatment
may include: In premenopausal women who have just been diagnosed with metastatic breast cancer that is hormone receptor positive, treatment may include: In women whose tumors are hormone receptor positive or hormone receptor unknown, with spread to the bone or soft tissue only, and who have been treated with tamoxifen, treatment may include: Targeted therapy In women with metastatic breast cancer that is hormone receptor positive and has not responded to other treatments, options may include targeted therapy such as: In women with metastatic breast cancer that is HER2/neu positive, treatment may include: In women with metastatic breast cancer that is HER2 negative, with mutations in the BRCA1 or BRCA2 genes, and who have been treated with chemotherapy, treatment may include: Chemotherapy In women with metastatic breast cancer that is hormone receptor negative, has not responded to hormone therapy, has spread to other organs or has caused symptoms, treatment may include: Chemotherapy and immunotherapy In women with metastatic breast cancer that is hormone receptor negative and HER2 negative, treatment may include: Surgery Radiation therapy Other treatment options Other treatment options for metastatic breast cancer include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of ductal carcinoma in situ may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about breast cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of adult breast cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Breast Cancer Treatment (Adult). Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/breast/patient/breast-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389406] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Breast Cancer Treatment (Adult) (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | How to diagnose Breast Cancer ? | Tests that examine the breasts are used to detect (find) and diagnose breast cancer.
Check with your doctor if you notice any changes in your breasts. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Clinical breast exam (CBE): An exam of the breast by a doctor or other health professional. The doctor will carefully feel the breasts and under the arms for lumps or anything else that seems unusual. - Mammogram: An x-ray of the breast. - Ultrasound exam: A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. The picture can be printed to be looked at later. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of both breasts. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. - Biopsy : The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. If a lump in the breast is found, a biopsy may be done. There are four types of biopsy used to check for breast cancer: - Excisional biopsy : The removal of an entire lump of tissue. - Incisional biopsy : The removal of part of a lump or a sample of tissue. - Core biopsy : The removal of tissue using a wide needle. - Fine-needle aspiration (FNA) biopsy : The removal of tissue or fluid, using a thin needle.
If cancer is found, tests are done to study the cancer cells.
Decisions about the best treatment are based on the results of these tests. The tests give information about: - how quickly the cancer may grow. - how likely it is that the cancer will spread through the body. - how well certain treatments might work. - how likely the cancer is to recur (come back). Tests include the following: - Estrogen and progesterone receptor test : A test to measure the amount of estrogen and progesterone (hormones) receptors in cancer tissue. If there are more estrogen and progesterone receptors than normal, the cancer is called estrogen and/or progesterone receptor positive. This type of breast cancer may grow more quickly. The test results show whether treatment to block estrogen and progesterone may stop the cancer from growing. - Human epidermal growth factor type 2 receptor (HER2/neu) test : A laboratory test to measure how many HER2/neu genes there are and how much HER2/neu protein is made in a sample of tissue. If there are more HER2/neu genes or higher levels of HER2/neu protein than normal, the cancer is called HER2/neu positive. This type of breast cancer may grow more quickly and is more likely to spread to other parts of the body. The cancer may be treated with drugs that target the HER2/neu protein, such as trastuzumab and pertuzumab. - Multigene tests: Tests in which samples of tissue are studied to look at the activity of many genes at the same time. These tests may help predict whether cancer will spread to other parts of the body or recur (come back). There are many types of multigene tests. The following multigene tests have been studied in clinical trials: - Oncotype DX : This test helps predict whether stage I or stage II breast cancer that is estrogen receptor positive and node negative will spread to other parts of the body. If the risk that the cancer will spread is high, chemotherapy may be given to lower the risk. - MammaPrint : This test helps predict whether stage I or stage II breast cancer that is node negative will spread to other parts of the body. If the risk that the cancer will spread is high, chemotherapy may be given to lower the risk. Based on these tests, breast cancer is described as one of the following types: - Hormone receptor positive (estrogen and/or progesterone receptor positive) or hormone receptor negative (estrogen and/or progesterone receptor negative). - HER2/neu positive or HER2/neu negative. - Triple negative (estrogen receptor, progesterone receptor, and HER2/neu negative). This information helps the doctor decide which treatments will work best for your cancer. |
The breast is made up of lobes and ducts. Each breast has 15 to 20 sections called
lobes. Each lobe has many smaller sections called lobules. Lobules end in dozens of tiny bulbs that
can make milk. The lobes, lobules, and bulbs are linked by thin tubes called
ducts. EnlargeAnatomy of the female breast. The nipple and areola are shown on the outside of the breast. The lymph nodes, lobes, lobules, ducts, and other parts of the inside of the breast are also shown. Each breast also has blood
vessels and lymph
vessels. The lymph vessels carry an almost colorless, watery fluid called lymph. Lymph
vessels carry lymph between lymph
nodes. Lymph nodes are small, bean-shaped structures found throughout the body. They filter lymph and store white blood cells that help fight
infection and disease. Groups of lymph nodes are found near the breast in the
axilla (under the arm), above the
collarbone, and in the chest. The most common type of breast cancer is ductal
carcinoma, which begins in the cells of the ducts. Cancer that begins in the
lobes or lobules is called lobular carcinoma and is more often found in both
breasts than are other types of breast cancer. Inflammatory breast cancer is an uncommon type of
breast cancer in which the breast is warm, red, and swollen. For more information about breast cancer, see: Anything that increases your chance of getting a disease
is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your doctor if you think you may be at risk for breast cancer. Risk factors for breast cancer include the following: Older age is the main risk factor for most cancers. The chance of getting cancer increases as you get older. NCI's Breast Cancer Risk Assessment Tool uses a woman's risk factors to estimate her risk for breast cancer during the next five years and up to age 90. This online tool is meant to be used by a health care provider. For more information on breast cancer risk, call 1-800-4-CANCER. The genes in cells carry
the hereditary information that is
received from a person’s parents. Hereditary breast cancer makes up
about 5% to 10% of all breast cancer. Some mutated genes related to
breast cancer are more common in certain ethnic groups. Women who have certain gene mutations, such as a BRCA1 or BRCA2 mutation, have an increased risk of breast cancer. These women also have an increased risk of ovarian cancer, and may
have an increased risk of other cancers. Men who have a mutated
gene related to breast cancer also have an increased risk of breast cancer. For more information, see
Male Breast Cancer Treatment. There are tests that can detect (find) mutated genes. These
genetic tests are sometimes done for
members of families with a high risk of cancer. For more information, see Genetics of Breast and Gynecologic Cancers. Anything that decreases your chance of getting a disease is called a protective factor. Protective factors for breast cancer include the following: These and other signs may be caused by breast cancer or by other conditions. Check with your doctor if you have any of the following: Check with your doctor if you notice any changes in your breasts. The
following tests and procedures may be used: There are four types of biopsy used to check for breast cancer: Decisions about the best treatment are based on the results of these tests. The tests give information about: Tests include the following: There are many types of multigene tests. The following multigene tests have been studied in clinical trials: Based on these tests, breast cancer is described as one of the following types: This information helps the doctor decide which treatments will work best for your cancer. The prognosis and treatment options depend on the following: The process used to find out whether the cancer has spread within the breast or to other
parts of the body is called staging.
The information gathered from the staging process determines the
stage of the disease. It is
important to know the stage in order to plan treatment. The results of some of the tests used to diagnose breast cancer are also used to stage the disease. (See the General Information section.) The following tests and procedures also may be used in
the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if breast cancer spreads to the bone, the cancer cells in the bone are actually breast cancer cells. The disease is metastatic breast cancer, not bone cancer. To plan the best treatment and understand your prognosis, it is important to know the breast cancer stage. There are 3 types of breast cancer stage groups: For breast cancer, the TNM system describes the tumor as follows: When the lymph nodes are removed by surgery and studied under a microscope by a pathologist, pathologic staging is used to describe the lymph nodes. The pathologic staging of lymph nodes is described below. or cancer has spread to 4 to 9 axillary lymph nodes and cancer in at least one of the lymph nodes is larger than 2 millimeters. Cancer has also spread to lymph nodes near the breastbone on the same side of the body as the primary tumor, and the cancer is larger than 0.2 millimeters and is found by sentinel lymph node biopsy. When the lymph nodes are checked using mammography or ultrasound, it is called clinical staging. The clinical staging of lymph nodes is not described here. The grading system describes a tumor based on how abnormal the cancer cells and tissue look under a microscope and how quickly the cancer cells are likely to grow and spread. Low-grade cancer cells look more like normal cells and tend to grow and spread more slowly than high-grade cancer cells. To describe how abnormal the cancer cells and tissue are, the pathologist will assess the following three features: For each feature, the pathologist assigns a score of 1 to 3; a score of “1” means the cells and tumor tissue look the most like normal cells and tissue, and a score of “3” means the cells and tissue look the most abnormal. The scores for each feature are added together to get a total score between 3 and 9. Three grades are possible: Healthy breast cells, and some breast cancer cells, have receptors (biomarkers) that attach to the hormones estrogen and progesterone. These hormones are needed for healthy cells, and some breast cancer cells, to grow and divide. To check for these biomarkers, samples of tissue containing breast cancer cells are removed during a biopsy or surgery. The samples are tested in a laboratory to see whether the breast cancer cells have estrogen or progesterone receptors. Another type of receptor (biomarker) that is found on the surface of all breast cancer cells is called HER2. HER2 receptors are needed for the breast cancer cells to grow and divide. For breast cancer, biomarker testing includes the following: Sometimes the breast cancer cells will be described as triple negative or triple positive. It is important to know the estrogen receptor, progesterone receptor, and HER2 receptor status to choose the best treatment. There are drugs that can stop the receptors from attaching to the hormones estrogen and progesterone and stop the cancer from growing. Other drugs may be used to block the HER2 receptors on the surface of the breast cancer cells and stop the cancer from growing. Here are 3 examples that combine the TNM system, the grading system, and the biomarker status to find out the Pathological Prognostic breast cancer stage for a woman whose first treatment was surgery: If the tumor size is 30 millimeters (T2), has not spread to nearby lymph nodes (N0), has not spread to distant parts of the body (M0), and is: The cancer is stage IIA. If the tumor size is 53 millimeters (T3), has spread to 4 to 9 axillary lymph nodes (N2), has not spread to other parts of the body (M0), and is: The tumor is stage IIIA.
If the tumor size is 65 millimeters (T3), has spread to 3 axillary lymph nodes (N1a), has spread to the lungs (M1), and is: The cancer is stage IV (metastatic breast cancer). After surgery, your doctor will receive a pathology report that describes the size and location of the primary tumor, the spread of cancer to nearby lymph nodes, tumor grade, and whether certain biomarkers are present. The pathology report and other test results are used to determine your breast cancer stage. You are likely to have many questions. Ask your doctor to explain how staging is used to decide the best options to treat your cancer and whether there are clinical trials that might be right for you. For ductal carcinoma in situ (DCIS) treatment options, see Treatment of Ductal Carcinoma in Situ. For treatment options for stage I, stage II, stage IIIA, and operable stage IIIC breast cancer, see Treatment of Early, Localized or Operable Breast Cancer. For treatment options for stage IIIB, inoperable stage IIIC, and inflammatory breast cancer, see Treatment of Locally Advanced Inflammatory Breast Cancer. For treatment options for cancer that has recurred near the area where it first formed (such as in the breast, in the skin of the breast, in the chest wall, or in nearby lymph nodes), see Treatment of Locoregional Recurrent Breast Cancer. For treatment options for stage IV (metastatic) breast cancer or breast cancer that has recurred in distant parts of the body, see Treatment of Metastatic Breast Cancer. In inflammatory breast
cancer, cancer has spread to the skin of the breast and the breast looks red and swollen and feels warm. The
redness and warmth occur because the cancer cells block the lymph vessels in the skin. The skin of the breast
may also show the dimpled appearance called peau
d’orange (like the skin of an orange). There may not be any lumps in the breast that can be felt. Inflammatory breast cancer may be stage IIIB, stage IIIC, or stage IV. EnlargeInflammatory breast cancer is a type of breast cancer in which the cancer cells block the lymph vessels in the skin of the breast. This causes the breast to look red and swollen. The skin may also appear dimpled or pitted, like the skin of an orange (peau d'orange), and the nipple may be inverted (facing inward). Different types of treatment are available for patients with breast
cancer. Some treatments are standard
(the currently used treatment), and some are being tested in
clinical trials. A
treatment clinical trial is a research study meant to help improve current
treatments or obtain information on new treatments for patients with cancer.
When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Most patients with breast cancer have surgery to remove the cancer. Sentinel lymph node biopsy is the removal of the sentinel lymph node during surgery. The sentinel lymph node is the first lymph node in a group of lymph nodes to receive lymphatic drainage from the primary tumor. It is the first lymph node the cancer is likely to spread to from the primary tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are not found, it may not be necessary to remove more lymph nodes. Sometimes, a sentinel lymph node is found in more than one group of nodes. After the sentinel lymph node biopsy, the
surgeon removes the tumor using breast-conserving surgery or mastectomy. If cancer cells were found, more lymph nodes will be removed through a separate incision. This is called a lymph node dissection. Types of surgery include the following: Chemotherapy may be given before surgery to remove the tumor. When given before surgery, chemotherapy will shrink the tumor and reduce the amount of tissue that needs to be removed during surgery. Treatment given before surgery is called preoperative therapy or neoadjuvant therapy. After the doctor removes all the cancer that can be seen at
the time of the surgery, some patients may be given radiation therapy,
chemotherapy, targeted therapy, or
hormone therapy after surgery, to kill any cancer cells that are left. Treatment given after the surgery, to
lower the risk that the cancer will come back, is called postoperative therapy or adjuvant
therapy. If a patient is going to have a mastectomy,
breast reconstruction (surgery to
rebuild a breast’s shape after a mastectomy) may be considered. Breast
reconstruction may be done at the time of the mastectomy or at some time after.
The reconstructed breast may be made with the patient’s own (nonbreast) tissue
or by using implants filled with saline or silicone gel. Before the decision to get an implant is
made, patients can call the Food and Drug Administration's (FDA) Center for Devices and Radiologic Health at
1-888-INFO-FDA (1-888-463-6332) or visit the FDA website for more information on breast implants. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat breast cancer. Internal radiation therapy with strontium-89 (a radionuclide) is used to relieve bone pain caused by breast cancer that has spread to the bones. Strontium-89 is injected into a vein and travels to the surface of the bones. Radiation is released and kills cancer cells in the bones. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). For more information, see Drugs Approved for Breast Cancer. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. The hormone estrogen, which makes some breast cancers grow, is made mainly by the ovaries. Treatment to stop the ovaries from making estrogen is called ovarian ablation. Hormone therapy with tamoxifen is often given to patients with early localized breast cancer that can be removed by surgery and those
with metastatic breast cancer (cancer
that has spread to other parts of the body). Hormone therapy with tamoxifen or
estrogens can act on cells all over the body and may increase the chance of
developing endometrial cancer.
Women taking tamoxifen should have a pelvic exam every year to look for any
signs of cancer. Any vaginal
bleeding, other than menstrual
bleeding, should be reported to a doctor as soon as possible. Hormone therapy with a luteinizing hormone-releasing hormone (LHRH) agonist is given to some premenopausal women who have just been diagnosed with hormone receptor positive breast cancer. LHRH agonists decrease the body's estrogen and progesterone. Hormone therapy with an aromatase inhibitor is given to some postmenopausal women who have hormone receptor positive breast cancer. Aromatase inhibitors decrease the body's estrogen by blocking an enzyme called aromatase from turning androgen into estrogen. Anastrozole, letrozole, and exemestane are types of aromatase inhibitors. For the treatment of early localized breast cancer that can be removed by surgery, certain aromatase inhibitors may be used as adjuvant therapy instead of tamoxifen or after 2 to 3 years of tamoxifen use. For the treatment of metastatic breast cancer, aromatase inhibitors are being tested in clinical trials to compare them to hormone therapy with tamoxifen. In women with hormone receptor positive breast cancer, at least 5 years of adjuvant hormone therapy reduces the risk that the cancer will recur (come back). Other types of hormone therapy include megestrol acetate or anti-estrogen therapy such as fulvestrant. For more information, see Drugs Approved for Breast Cancer. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Monoclonal antibodies, tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and PARP inhibitors are types of targeted therapies used in the treatment of breast cancer. Types of monoclonal antibody therapy include the following: For more information, see Drugs Approved for Breast Cancer. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. There are different types of immunotherapy: Information about clinical trials is available from the NCI website. For information about side effects that begin during treatment for cancer, see our Side Effects page. Some treatments for breast cancer may cause side effects that continue or appear months or years after treatment has ended. These are called late effects. Late effects of radiation therapy are not common, but may include: Late effects of chemotherapy depend on the drugs used, but may include: Late effects of targeted therapy with trastuzumab, lapatinib, or pertuzumab may include: For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of early, localized, or operable breast cancer may include the following: Surgery Postoperative radiation therapy For women who had breast-conserving surgery, radiation therapy is given to the whole breast to lessen the chance the cancer will come back. Radiation therapy may also be given to lymph nodes in the area. For women who had a modified radical mastectomy, radiation therapy may be given to lessen the chance the cancer will come back if any of the following are true: Postoperative systemic therapy Systemic therapy is the use of drugs that can enter the bloodstream and reach cancer cells throughout the body. Postoperative systemic therapy is given to lessen the chance the cancer will come back after surgery to remove the tumor. Postoperative systemic therapy is given depending on whether: In premenopausal women with hormone receptor positive tumors, no more treatment may be needed or postoperative therapy may include: In postmenopausal women with hormone receptor positive tumors, no more treatment may be needed or postoperative therapy may include: In women with hormone receptor negative tumors, no more treatment may be needed or postoperative therapy may include: In women with HER2/neu negative tumors, postoperative therapy may include: In women with small, HER2/neu positive tumors, and no cancer in the lymph nodes, no more treatment may be needed. If there is cancer in the lymph nodes, or the tumor is large, postoperative therapy may include: In women with small, hormone receptor negative and HER2/neu negative tumors (triple negative) and no cancer in the lymph nodes, no more treatment may be needed. If there is cancer in the lymph nodes or the tumor is large, postoperative therapy may include: Preoperative systemic therapy Systemic therapy is the use of drugs that can enter the bloodstream and reach cancer cells throughout the body. Preoperative systemic therapy is given to shrink the tumor before surgery. Preoperative chemotherapy may make breast-sparing surgery possible in patients who are not eligible otherwise. Preoperative chemotherapy may also lessen the need for lymph node dissection in patients with disease that has spread to the lymph nodes. In postmenopausal women with hormone receptor positive tumors, preoperative therapy may include: In premenopausal women with hormone receptor positive tumors, preoperative therapy may include: In women with HER2/neu positive tumors, preoperative therapy may include: In women with HER2/neu negative tumors or triple negative tumors, preoperative therapy may include: For patients with triple-negative or HER2-positive disease, the response to preoperative therapy may be used as a guide in choosing the best treatment after surgery. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locally advanced or inflammatory breast
cancer is a combination of therapies that may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locoregional recurrent
breast cancer (cancer that has come
back after treatment in the breast, in the chest
wall, or in nearby lymph nodes), may include the following: For information about treatment options for breast cancer that has spread to parts of the body outside the breast, chest wall, or nearby lymph nodes, see the Treatment of Metastatic Breast Cancer section. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for metastatic breast cancer (cancer that has spread to distant parts of the body) may include the following: Hormone therapy In postmenopausal women who have just been diagnosed with metastatic breast cancer that is hormone receptor positive or if the hormone receptor status is not known, treatment
may include: In premenopausal women who have just been diagnosed with metastatic breast cancer that is hormone receptor positive, treatment may include: In women whose tumors are hormone receptor positive or hormone receptor unknown, with spread to the bone or soft tissue only, and who have been treated with tamoxifen, treatment may include: Targeted therapy In women with metastatic breast cancer that is hormone receptor positive and has not responded to other treatments, options may include targeted therapy such as: In women with metastatic breast cancer that is HER2/neu positive, treatment may include: In women with metastatic breast cancer that is HER2 negative, with mutations in the BRCA1 or BRCA2 genes, and who have been treated with chemotherapy, treatment may include: Chemotherapy In women with metastatic breast cancer that is hormone receptor negative, has not responded to hormone therapy, has spread to other organs or has caused symptoms, treatment may include: Chemotherapy and immunotherapy In women with metastatic breast cancer that is hormone receptor negative and HER2 negative, treatment may include: Surgery Radiation therapy Other treatment options Other treatment options for metastatic breast cancer include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of ductal carcinoma in situ may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about breast cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of adult breast cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Breast Cancer Treatment (Adult). Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/breast/patient/breast-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389406] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Breast Cancer Treatment (Adult) (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is the outlook for Breast Cancer ? | Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - The stage of the cancer (the size of the tumor and whether it is in the breast only or has spread to lymph nodes or other places in the body). - The type of breast cancer. - Estrogen receptor and progesterone receptor levels in the tumor tissue. - Human epidermal growth factor type 2 receptor (HER2/neu) levels in the tumor tissue. - Whether the tumor tissue is triple negative (cells that do not have estrogen receptors, progesterone receptors, or high levels of HER2/neu). - How fast the tumor is growing. - How likely the tumor is to recur (come back). - A womans age, general health, and menopausal status (whether a woman is still having menstrual periods). - Whether the cancer has just been diagnosed or has recurred (come back). |
The breast is made up of lobes and ducts. Each breast has 15 to 20 sections called
lobes. Each lobe has many smaller sections called lobules. Lobules end in dozens of tiny bulbs that
can make milk. The lobes, lobules, and bulbs are linked by thin tubes called
ducts. EnlargeAnatomy of the female breast. The nipple and areola are shown on the outside of the breast. The lymph nodes, lobes, lobules, ducts, and other parts of the inside of the breast are also shown. Each breast also has blood
vessels and lymph
vessels. The lymph vessels carry an almost colorless, watery fluid called lymph. Lymph
vessels carry lymph between lymph
nodes. Lymph nodes are small, bean-shaped structures found throughout the body. They filter lymph and store white blood cells that help fight
infection and disease. Groups of lymph nodes are found near the breast in the
axilla (under the arm), above the
collarbone, and in the chest. The most common type of breast cancer is ductal
carcinoma, which begins in the cells of the ducts. Cancer that begins in the
lobes or lobules is called lobular carcinoma and is more often found in both
breasts than are other types of breast cancer. Inflammatory breast cancer is an uncommon type of
breast cancer in which the breast is warm, red, and swollen. For more information about breast cancer, see: Anything that increases your chance of getting a disease
is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your doctor if you think you may be at risk for breast cancer. Risk factors for breast cancer include the following: Older age is the main risk factor for most cancers. The chance of getting cancer increases as you get older. NCI's Breast Cancer Risk Assessment Tool uses a woman's risk factors to estimate her risk for breast cancer during the next five years and up to age 90. This online tool is meant to be used by a health care provider. For more information on breast cancer risk, call 1-800-4-CANCER. The genes in cells carry
the hereditary information that is
received from a person’s parents. Hereditary breast cancer makes up
about 5% to 10% of all breast cancer. Some mutated genes related to
breast cancer are more common in certain ethnic groups. Women who have certain gene mutations, such as a BRCA1 or BRCA2 mutation, have an increased risk of breast cancer. These women also have an increased risk of ovarian cancer, and may
have an increased risk of other cancers. Men who have a mutated
gene related to breast cancer also have an increased risk of breast cancer. For more information, see
Male Breast Cancer Treatment. There are tests that can detect (find) mutated genes. These
genetic tests are sometimes done for
members of families with a high risk of cancer. For more information, see Genetics of Breast and Gynecologic Cancers. Anything that decreases your chance of getting a disease is called a protective factor. Protective factors for breast cancer include the following: These and other signs may be caused by breast cancer or by other conditions. Check with your doctor if you have any of the following: Check with your doctor if you notice any changes in your breasts. The
following tests and procedures may be used: There are four types of biopsy used to check for breast cancer: Decisions about the best treatment are based on the results of these tests. The tests give information about: Tests include the following: There are many types of multigene tests. The following multigene tests have been studied in clinical trials: Based on these tests, breast cancer is described as one of the following types: This information helps the doctor decide which treatments will work best for your cancer. The prognosis and treatment options depend on the following: The process used to find out whether the cancer has spread within the breast or to other
parts of the body is called staging.
The information gathered from the staging process determines the
stage of the disease. It is
important to know the stage in order to plan treatment. The results of some of the tests used to diagnose breast cancer are also used to stage the disease. (See the General Information section.) The following tests and procedures also may be used in
the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if breast cancer spreads to the bone, the cancer cells in the bone are actually breast cancer cells. The disease is metastatic breast cancer, not bone cancer. To plan the best treatment and understand your prognosis, it is important to know the breast cancer stage. There are 3 types of breast cancer stage groups: For breast cancer, the TNM system describes the tumor as follows: When the lymph nodes are removed by surgery and studied under a microscope by a pathologist, pathologic staging is used to describe the lymph nodes. The pathologic staging of lymph nodes is described below. or cancer has spread to 4 to 9 axillary lymph nodes and cancer in at least one of the lymph nodes is larger than 2 millimeters. Cancer has also spread to lymph nodes near the breastbone on the same side of the body as the primary tumor, and the cancer is larger than 0.2 millimeters and is found by sentinel lymph node biopsy. When the lymph nodes are checked using mammography or ultrasound, it is called clinical staging. The clinical staging of lymph nodes is not described here. The grading system describes a tumor based on how abnormal the cancer cells and tissue look under a microscope and how quickly the cancer cells are likely to grow and spread. Low-grade cancer cells look more like normal cells and tend to grow and spread more slowly than high-grade cancer cells. To describe how abnormal the cancer cells and tissue are, the pathologist will assess the following three features: For each feature, the pathologist assigns a score of 1 to 3; a score of “1” means the cells and tumor tissue look the most like normal cells and tissue, and a score of “3” means the cells and tissue look the most abnormal. The scores for each feature are added together to get a total score between 3 and 9. Three grades are possible: Healthy breast cells, and some breast cancer cells, have receptors (biomarkers) that attach to the hormones estrogen and progesterone. These hormones are needed for healthy cells, and some breast cancer cells, to grow and divide. To check for these biomarkers, samples of tissue containing breast cancer cells are removed during a biopsy or surgery. The samples are tested in a laboratory to see whether the breast cancer cells have estrogen or progesterone receptors. Another type of receptor (biomarker) that is found on the surface of all breast cancer cells is called HER2. HER2 receptors are needed for the breast cancer cells to grow and divide. For breast cancer, biomarker testing includes the following: Sometimes the breast cancer cells will be described as triple negative or triple positive. It is important to know the estrogen receptor, progesterone receptor, and HER2 receptor status to choose the best treatment. There are drugs that can stop the receptors from attaching to the hormones estrogen and progesterone and stop the cancer from growing. Other drugs may be used to block the HER2 receptors on the surface of the breast cancer cells and stop the cancer from growing. Here are 3 examples that combine the TNM system, the grading system, and the biomarker status to find out the Pathological Prognostic breast cancer stage for a woman whose first treatment was surgery: If the tumor size is 30 millimeters (T2), has not spread to nearby lymph nodes (N0), has not spread to distant parts of the body (M0), and is: The cancer is stage IIA. If the tumor size is 53 millimeters (T3), has spread to 4 to 9 axillary lymph nodes (N2), has not spread to other parts of the body (M0), and is: The tumor is stage IIIA.
If the tumor size is 65 millimeters (T3), has spread to 3 axillary lymph nodes (N1a), has spread to the lungs (M1), and is: The cancer is stage IV (metastatic breast cancer). After surgery, your doctor will receive a pathology report that describes the size and location of the primary tumor, the spread of cancer to nearby lymph nodes, tumor grade, and whether certain biomarkers are present. The pathology report and other test results are used to determine your breast cancer stage. You are likely to have many questions. Ask your doctor to explain how staging is used to decide the best options to treat your cancer and whether there are clinical trials that might be right for you. For ductal carcinoma in situ (DCIS) treatment options, see Treatment of Ductal Carcinoma in Situ. For treatment options for stage I, stage II, stage IIIA, and operable stage IIIC breast cancer, see Treatment of Early, Localized or Operable Breast Cancer. For treatment options for stage IIIB, inoperable stage IIIC, and inflammatory breast cancer, see Treatment of Locally Advanced Inflammatory Breast Cancer. For treatment options for cancer that has recurred near the area where it first formed (such as in the breast, in the skin of the breast, in the chest wall, or in nearby lymph nodes), see Treatment of Locoregional Recurrent Breast Cancer. For treatment options for stage IV (metastatic) breast cancer or breast cancer that has recurred in distant parts of the body, see Treatment of Metastatic Breast Cancer. In inflammatory breast
cancer, cancer has spread to the skin of the breast and the breast looks red and swollen and feels warm. The
redness and warmth occur because the cancer cells block the lymph vessels in the skin. The skin of the breast
may also show the dimpled appearance called peau
d’orange (like the skin of an orange). There may not be any lumps in the breast that can be felt. Inflammatory breast cancer may be stage IIIB, stage IIIC, or stage IV. EnlargeInflammatory breast cancer is a type of breast cancer in which the cancer cells block the lymph vessels in the skin of the breast. This causes the breast to look red and swollen. The skin may also appear dimpled or pitted, like the skin of an orange (peau d'orange), and the nipple may be inverted (facing inward). Different types of treatment are available for patients with breast
cancer. Some treatments are standard
(the currently used treatment), and some are being tested in
clinical trials. A
treatment clinical trial is a research study meant to help improve current
treatments or obtain information on new treatments for patients with cancer.
When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Most patients with breast cancer have surgery to remove the cancer. Sentinel lymph node biopsy is the removal of the sentinel lymph node during surgery. The sentinel lymph node is the first lymph node in a group of lymph nodes to receive lymphatic drainage from the primary tumor. It is the first lymph node the cancer is likely to spread to from the primary tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are not found, it may not be necessary to remove more lymph nodes. Sometimes, a sentinel lymph node is found in more than one group of nodes. After the sentinel lymph node biopsy, the
surgeon removes the tumor using breast-conserving surgery or mastectomy. If cancer cells were found, more lymph nodes will be removed through a separate incision. This is called a lymph node dissection. Types of surgery include the following: Chemotherapy may be given before surgery to remove the tumor. When given before surgery, chemotherapy will shrink the tumor and reduce the amount of tissue that needs to be removed during surgery. Treatment given before surgery is called preoperative therapy or neoadjuvant therapy. After the doctor removes all the cancer that can be seen at
the time of the surgery, some patients may be given radiation therapy,
chemotherapy, targeted therapy, or
hormone therapy after surgery, to kill any cancer cells that are left. Treatment given after the surgery, to
lower the risk that the cancer will come back, is called postoperative therapy or adjuvant
therapy. If a patient is going to have a mastectomy,
breast reconstruction (surgery to
rebuild a breast’s shape after a mastectomy) may be considered. Breast
reconstruction may be done at the time of the mastectomy or at some time after.
The reconstructed breast may be made with the patient’s own (nonbreast) tissue
or by using implants filled with saline or silicone gel. Before the decision to get an implant is
made, patients can call the Food and Drug Administration's (FDA) Center for Devices and Radiologic Health at
1-888-INFO-FDA (1-888-463-6332) or visit the FDA website for more information on breast implants. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat breast cancer. Internal radiation therapy with strontium-89 (a radionuclide) is used to relieve bone pain caused by breast cancer that has spread to the bones. Strontium-89 is injected into a vein and travels to the surface of the bones. Radiation is released and kills cancer cells in the bones. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). For more information, see Drugs Approved for Breast Cancer. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. The hormone estrogen, which makes some breast cancers grow, is made mainly by the ovaries. Treatment to stop the ovaries from making estrogen is called ovarian ablation. Hormone therapy with tamoxifen is often given to patients with early localized breast cancer that can be removed by surgery and those
with metastatic breast cancer (cancer
that has spread to other parts of the body). Hormone therapy with tamoxifen or
estrogens can act on cells all over the body and may increase the chance of
developing endometrial cancer.
Women taking tamoxifen should have a pelvic exam every year to look for any
signs of cancer. Any vaginal
bleeding, other than menstrual
bleeding, should be reported to a doctor as soon as possible. Hormone therapy with a luteinizing hormone-releasing hormone (LHRH) agonist is given to some premenopausal women who have just been diagnosed with hormone receptor positive breast cancer. LHRH agonists decrease the body's estrogen and progesterone. Hormone therapy with an aromatase inhibitor is given to some postmenopausal women who have hormone receptor positive breast cancer. Aromatase inhibitors decrease the body's estrogen by blocking an enzyme called aromatase from turning androgen into estrogen. Anastrozole, letrozole, and exemestane are types of aromatase inhibitors. For the treatment of early localized breast cancer that can be removed by surgery, certain aromatase inhibitors may be used as adjuvant therapy instead of tamoxifen or after 2 to 3 years of tamoxifen use. For the treatment of metastatic breast cancer, aromatase inhibitors are being tested in clinical trials to compare them to hormone therapy with tamoxifen. In women with hormone receptor positive breast cancer, at least 5 years of adjuvant hormone therapy reduces the risk that the cancer will recur (come back). Other types of hormone therapy include megestrol acetate or anti-estrogen therapy such as fulvestrant. For more information, see Drugs Approved for Breast Cancer. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Monoclonal antibodies, tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and PARP inhibitors are types of targeted therapies used in the treatment of breast cancer. Types of monoclonal antibody therapy include the following: For more information, see Drugs Approved for Breast Cancer. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. There are different types of immunotherapy: Information about clinical trials is available from the NCI website. For information about side effects that begin during treatment for cancer, see our Side Effects page. Some treatments for breast cancer may cause side effects that continue or appear months or years after treatment has ended. These are called late effects. Late effects of radiation therapy are not common, but may include: Late effects of chemotherapy depend on the drugs used, but may include: Late effects of targeted therapy with trastuzumab, lapatinib, or pertuzumab may include: For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of early, localized, or operable breast cancer may include the following: Surgery Postoperative radiation therapy For women who had breast-conserving surgery, radiation therapy is given to the whole breast to lessen the chance the cancer will come back. Radiation therapy may also be given to lymph nodes in the area. For women who had a modified radical mastectomy, radiation therapy may be given to lessen the chance the cancer will come back if any of the following are true: Postoperative systemic therapy Systemic therapy is the use of drugs that can enter the bloodstream and reach cancer cells throughout the body. Postoperative systemic therapy is given to lessen the chance the cancer will come back after surgery to remove the tumor. Postoperative systemic therapy is given depending on whether: In premenopausal women with hormone receptor positive tumors, no more treatment may be needed or postoperative therapy may include: In postmenopausal women with hormone receptor positive tumors, no more treatment may be needed or postoperative therapy may include: In women with hormone receptor negative tumors, no more treatment may be needed or postoperative therapy may include: In women with HER2/neu negative tumors, postoperative therapy may include: In women with small, HER2/neu positive tumors, and no cancer in the lymph nodes, no more treatment may be needed. If there is cancer in the lymph nodes, or the tumor is large, postoperative therapy may include: In women with small, hormone receptor negative and HER2/neu negative tumors (triple negative) and no cancer in the lymph nodes, no more treatment may be needed. If there is cancer in the lymph nodes or the tumor is large, postoperative therapy may include: Preoperative systemic therapy Systemic therapy is the use of drugs that can enter the bloodstream and reach cancer cells throughout the body. Preoperative systemic therapy is given to shrink the tumor before surgery. Preoperative chemotherapy may make breast-sparing surgery possible in patients who are not eligible otherwise. Preoperative chemotherapy may also lessen the need for lymph node dissection in patients with disease that has spread to the lymph nodes. In postmenopausal women with hormone receptor positive tumors, preoperative therapy may include: In premenopausal women with hormone receptor positive tumors, preoperative therapy may include: In women with HER2/neu positive tumors, preoperative therapy may include: In women with HER2/neu negative tumors or triple negative tumors, preoperative therapy may include: For patients with triple-negative or HER2-positive disease, the response to preoperative therapy may be used as a guide in choosing the best treatment after surgery. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locally advanced or inflammatory breast
cancer is a combination of therapies that may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locoregional recurrent
breast cancer (cancer that has come
back after treatment in the breast, in the chest
wall, or in nearby lymph nodes), may include the following: For information about treatment options for breast cancer that has spread to parts of the body outside the breast, chest wall, or nearby lymph nodes, see the Treatment of Metastatic Breast Cancer section. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for metastatic breast cancer (cancer that has spread to distant parts of the body) may include the following: Hormone therapy In postmenopausal women who have just been diagnosed with metastatic breast cancer that is hormone receptor positive or if the hormone receptor status is not known, treatment
may include: In premenopausal women who have just been diagnosed with metastatic breast cancer that is hormone receptor positive, treatment may include: In women whose tumors are hormone receptor positive or hormone receptor unknown, with spread to the bone or soft tissue only, and who have been treated with tamoxifen, treatment may include: Targeted therapy In women with metastatic breast cancer that is hormone receptor positive and has not responded to other treatments, options may include targeted therapy such as: In women with metastatic breast cancer that is HER2/neu positive, treatment may include: In women with metastatic breast cancer that is HER2 negative, with mutations in the BRCA1 or BRCA2 genes, and who have been treated with chemotherapy, treatment may include: Chemotherapy In women with metastatic breast cancer that is hormone receptor negative, has not responded to hormone therapy, has spread to other organs or has caused symptoms, treatment may include: Chemotherapy and immunotherapy In women with metastatic breast cancer that is hormone receptor negative and HER2 negative, treatment may include: Surgery Radiation therapy Other treatment options Other treatment options for metastatic breast cancer include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of ductal carcinoma in situ may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about breast cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of adult breast cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Breast Cancer Treatment (Adult). Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/breast/patient/breast-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389406] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Breast Cancer Treatment (Adult) (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the stages of Breast Cancer ? | Key Points
- After breast cancer has been diagnosed, tests are done to find out if cancer cells have spread within the breast or to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The following stages are used for breast cancer: - Stage 0 (carcinoma in situ) - Stage I - Stage II - Stage IIIA - Stage IIIB - Stage IIIC - Stage IV - The treatment of breast cancer depends partly on the stage of the disease.
After breast cancer has been diagnosed, tests are done to find out if cancer cells have spread within the breast or to other parts of the body.
The process used to find out whether the cancer has spread within the breast or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The results of some of the tests used to diagnose breast cancer are also used to stage the disease. (See the General Information section.) The following tests and procedures also may be used in the staging process: - Sentinel lymph node biopsy : The removal of the sentinel lymph node during surgery. The sentinel lymph node is the first lymph node to receive lymphatic drainage from a tumor. It is the first lymph node the cancer is likely to spread to from the tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are not found, it may not be necessary to remove more lymph nodes. - Chest x-ray : An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - Bone scan : A procedure to check if there are rapidly dividing cells, such as cancer cells, in the bone. A very small amount of radioactive material is injected into a vein and travels through the bloodstream. The radioactive material collects in the bones and is detected by a scanner. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do.
There are three ways that cancer spreads in the body.
Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body.
Cancer may spread from where it began to other parts of the body.
When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if breast cancer spreads to the bone, the cancer cells in the bone are actually breast cancer cells. The disease is metastatic breast cancer, not bone cancer.
The following stages are used for breast cancer:
This section describes the stages of breast cancer. The breast cancer stage is based on the results of tests that are done on the tumor and lymph nodes removed during surgery and on other tests. Stage 0 (carcinoma in situ) There are 3 types of breast carcinoma in situ: - Ductal carcinoma in situ (DCIS) is a noninvasive condition in which abnormal cells are found in the lining of a breast duct. The abnormal cells have not spread outside the duct to other tissues in the breast. In some cases, DCIS may become invasive cancer and spread to other tissues. At this time, there is no way to know which lesions could become invasive. - Lobular carcinoma in situ (LCIS) is a condition in which abnormal cells are found in the lobules of the breast. This condition seldom becomes invasive cancer. Information about LCIS is not included in this summary. - Paget disease of the nipple is a condition in which abnormal cells are found in the nipple only. Stage I In stage I, cancer has formed. Stage I is divided into stages IA and IB. - In stage IA, the tumor is 2 centimeters or smaller. Cancer has not spread outside the breast. - In stage IB, small clusters of breast cancer cells (larger than 0.2 millimeter but not larger than 2 millimeters) are found in the lymph nodes and either: - no tumor is found in the breast; or - the tumor is 2 centimeters or smaller. Stage II Stage II is divided into stages IIA and IIB. - In stage IIA: - no tumor is found in the breast or the tumor is 2 centimeters or smaller. Cancer (larger than 2 millimeters) is found in 1 to 3 axillary lymph nodes or in the lymph nodes near the breastbone (found during a sentinel lymph node biopsy); or - the tumor is larger than 2 centimeters but not larger than 5 centimeters. Cancer has not spread to the lymph nodes. - In stage IIB, the tumor is: - larger than 2 centimeters but not larger than 5 centimeters. Small clusters of breast cancer cells (larger than 0.2 millimeter but not larger than 2 millimeters) are found in the lymph nodes; or - larger than 2 centimeters but not larger than 5 centimeters. Cancer has spread to 1 to 3 axillary lymph nodes or to the lymph nodes near the breastbone (found during a sentinel lymph node biopsy); or - larger than 5 centimeters. Cancer has not spread to the lymph nodes. Stage IIIA In stage IIIA: - no tumor is found in the breast or the tumor may be any size. Cancer is found in 4 to 9 axillary lymph nodes or in the lymph nodes near the breastbone (found during imaging tests or a physical exam); or - the tumor is larger than 5 centimeters. Small clusters of breast cancer cells (larger than 0.2 millimeter but not larger than 2 millimeters) are found in the lymph nodes; or - the tumor is larger than 5 centimeters. Cancer has spread to 1 to 3 axillary lymph nodes or to the lymph nodes near the breastbone (found during a sentinel lymph node biopsy). Stage IIIB In stage IIIB, the tumor may be any size and cancer has spread to the chest wall and/or to the skin of the breast and caused swelling or an ulcer. Also, cancer may have spread to: - up to 9 axillary lymph nodes; or - the lymph nodes near the breastbone. Cancer that has spread to the skin of the breast may also be inflammatory breast cancer. See the section on Inflammatory Breast Cancer for more information. Stage IIIC In stage IIIC, no tumor is found in the breast or the tumor may be any size. Cancer may have spread to the skin of the breast and caused swelling or an ulcer and/or has spread to the chest wall. Also, cancer has spread to: - 10 or more axillary lymph nodes; or - lymph nodes above or below the collarbone; or - axillary lymph nodes and lymph nodes near the breastbone. Cancer that has spread to the skin of the breast may also be inflammatory breast cancer. See the section on Inflammatory Breast Cancer for more information. Stage IV In stage IV, cancer has spread to other organs of the body, most often the bones, lungs, liver, or brain.
The treatment of breast cancer depends partly on the stage of the disease.
For ductal carcinoma in situ (DCIS) treatment options, see Ductal Carcinoma in Situ. For treatment options for stage I, stage II, stage IIIA, and operable stage IIIC breast cancer, see Early, Localized, or Operable Breast Cancer. For treatment options for stage IIIB, inoperable stage IIIC, and inflammatory breast cancer, see Locally Advanced or Inflammatory Breast Cancer. For treatment options for cancer that has recurred near the area where it first formed, see Locoregional Recurrent Breast Cancer. For treatment options for stage IV breast cancer or breast cancer that has recurred in other parts of the body, see Metastatic Breast Cancer. |
The breast is made up of lobes and ducts. Each breast has 15 to 20 sections called
lobes. Each lobe has many smaller sections called lobules. Lobules end in dozens of tiny bulbs that
can make milk. The lobes, lobules, and bulbs are linked by thin tubes called
ducts. EnlargeAnatomy of the female breast. The nipple and areola are shown on the outside of the breast. The lymph nodes, lobes, lobules, ducts, and other parts of the inside of the breast are also shown. Each breast also has blood
vessels and lymph
vessels. The lymph vessels carry an almost colorless, watery fluid called lymph. Lymph
vessels carry lymph between lymph
nodes. Lymph nodes are small, bean-shaped structures found throughout the body. They filter lymph and store white blood cells that help fight
infection and disease. Groups of lymph nodes are found near the breast in the
axilla (under the arm), above the
collarbone, and in the chest. The most common type of breast cancer is ductal
carcinoma, which begins in the cells of the ducts. Cancer that begins in the
lobes or lobules is called lobular carcinoma and is more often found in both
breasts than are other types of breast cancer. Inflammatory breast cancer is an uncommon type of
breast cancer in which the breast is warm, red, and swollen. For more information about breast cancer, see: Anything that increases your chance of getting a disease
is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your doctor if you think you may be at risk for breast cancer. Risk factors for breast cancer include the following: Older age is the main risk factor for most cancers. The chance of getting cancer increases as you get older. NCI's Breast Cancer Risk Assessment Tool uses a woman's risk factors to estimate her risk for breast cancer during the next five years and up to age 90. This online tool is meant to be used by a health care provider. For more information on breast cancer risk, call 1-800-4-CANCER. The genes in cells carry
the hereditary information that is
received from a person’s parents. Hereditary breast cancer makes up
about 5% to 10% of all breast cancer. Some mutated genes related to
breast cancer are more common in certain ethnic groups. Women who have certain gene mutations, such as a BRCA1 or BRCA2 mutation, have an increased risk of breast cancer. These women also have an increased risk of ovarian cancer, and may
have an increased risk of other cancers. Men who have a mutated
gene related to breast cancer also have an increased risk of breast cancer. For more information, see
Male Breast Cancer Treatment. There are tests that can detect (find) mutated genes. These
genetic tests are sometimes done for
members of families with a high risk of cancer. For more information, see Genetics of Breast and Gynecologic Cancers. Anything that decreases your chance of getting a disease is called a protective factor. Protective factors for breast cancer include the following: These and other signs may be caused by breast cancer or by other conditions. Check with your doctor if you have any of the following: Check with your doctor if you notice any changes in your breasts. The
following tests and procedures may be used: There are four types of biopsy used to check for breast cancer: Decisions about the best treatment are based on the results of these tests. The tests give information about: Tests include the following: There are many types of multigene tests. The following multigene tests have been studied in clinical trials: Based on these tests, breast cancer is described as one of the following types: This information helps the doctor decide which treatments will work best for your cancer. The prognosis and treatment options depend on the following: The process used to find out whether the cancer has spread within the breast or to other
parts of the body is called staging.
The information gathered from the staging process determines the
stage of the disease. It is
important to know the stage in order to plan treatment. The results of some of the tests used to diagnose breast cancer are also used to stage the disease. (See the General Information section.) The following tests and procedures also may be used in
the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if breast cancer spreads to the bone, the cancer cells in the bone are actually breast cancer cells. The disease is metastatic breast cancer, not bone cancer. To plan the best treatment and understand your prognosis, it is important to know the breast cancer stage. There are 3 types of breast cancer stage groups: For breast cancer, the TNM system describes the tumor as follows: When the lymph nodes are removed by surgery and studied under a microscope by a pathologist, pathologic staging is used to describe the lymph nodes. The pathologic staging of lymph nodes is described below. or cancer has spread to 4 to 9 axillary lymph nodes and cancer in at least one of the lymph nodes is larger than 2 millimeters. Cancer has also spread to lymph nodes near the breastbone on the same side of the body as the primary tumor, and the cancer is larger than 0.2 millimeters and is found by sentinel lymph node biopsy. When the lymph nodes are checked using mammography or ultrasound, it is called clinical staging. The clinical staging of lymph nodes is not described here. The grading system describes a tumor based on how abnormal the cancer cells and tissue look under a microscope and how quickly the cancer cells are likely to grow and spread. Low-grade cancer cells look more like normal cells and tend to grow and spread more slowly than high-grade cancer cells. To describe how abnormal the cancer cells and tissue are, the pathologist will assess the following three features: For each feature, the pathologist assigns a score of 1 to 3; a score of “1” means the cells and tumor tissue look the most like normal cells and tissue, and a score of “3” means the cells and tissue look the most abnormal. The scores for each feature are added together to get a total score between 3 and 9. Three grades are possible: Healthy breast cells, and some breast cancer cells, have receptors (biomarkers) that attach to the hormones estrogen and progesterone. These hormones are needed for healthy cells, and some breast cancer cells, to grow and divide. To check for these biomarkers, samples of tissue containing breast cancer cells are removed during a biopsy or surgery. The samples are tested in a laboratory to see whether the breast cancer cells have estrogen or progesterone receptors. Another type of receptor (biomarker) that is found on the surface of all breast cancer cells is called HER2. HER2 receptors are needed for the breast cancer cells to grow and divide. For breast cancer, biomarker testing includes the following: Sometimes the breast cancer cells will be described as triple negative or triple positive. It is important to know the estrogen receptor, progesterone receptor, and HER2 receptor status to choose the best treatment. There are drugs that can stop the receptors from attaching to the hormones estrogen and progesterone and stop the cancer from growing. Other drugs may be used to block the HER2 receptors on the surface of the breast cancer cells and stop the cancer from growing. Here are 3 examples that combine the TNM system, the grading system, and the biomarker status to find out the Pathological Prognostic breast cancer stage for a woman whose first treatment was surgery: If the tumor size is 30 millimeters (T2), has not spread to nearby lymph nodes (N0), has not spread to distant parts of the body (M0), and is: The cancer is stage IIA. If the tumor size is 53 millimeters (T3), has spread to 4 to 9 axillary lymph nodes (N2), has not spread to other parts of the body (M0), and is: The tumor is stage IIIA.
If the tumor size is 65 millimeters (T3), has spread to 3 axillary lymph nodes (N1a), has spread to the lungs (M1), and is: The cancer is stage IV (metastatic breast cancer). After surgery, your doctor will receive a pathology report that describes the size and location of the primary tumor, the spread of cancer to nearby lymph nodes, tumor grade, and whether certain biomarkers are present. The pathology report and other test results are used to determine your breast cancer stage. You are likely to have many questions. Ask your doctor to explain how staging is used to decide the best options to treat your cancer and whether there are clinical trials that might be right for you. For ductal carcinoma in situ (DCIS) treatment options, see Treatment of Ductal Carcinoma in Situ. For treatment options for stage I, stage II, stage IIIA, and operable stage IIIC breast cancer, see Treatment of Early, Localized or Operable Breast Cancer. For treatment options for stage IIIB, inoperable stage IIIC, and inflammatory breast cancer, see Treatment of Locally Advanced Inflammatory Breast Cancer. For treatment options for cancer that has recurred near the area where it first formed (such as in the breast, in the skin of the breast, in the chest wall, or in nearby lymph nodes), see Treatment of Locoregional Recurrent Breast Cancer. For treatment options for stage IV (metastatic) breast cancer or breast cancer that has recurred in distant parts of the body, see Treatment of Metastatic Breast Cancer. In inflammatory breast
cancer, cancer has spread to the skin of the breast and the breast looks red and swollen and feels warm. The
redness and warmth occur because the cancer cells block the lymph vessels in the skin. The skin of the breast
may also show the dimpled appearance called peau
d’orange (like the skin of an orange). There may not be any lumps in the breast that can be felt. Inflammatory breast cancer may be stage IIIB, stage IIIC, or stage IV. EnlargeInflammatory breast cancer is a type of breast cancer in which the cancer cells block the lymph vessels in the skin of the breast. This causes the breast to look red and swollen. The skin may also appear dimpled or pitted, like the skin of an orange (peau d'orange), and the nipple may be inverted (facing inward). Different types of treatment are available for patients with breast
cancer. Some treatments are standard
(the currently used treatment), and some are being tested in
clinical trials. A
treatment clinical trial is a research study meant to help improve current
treatments or obtain information on new treatments for patients with cancer.
When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Most patients with breast cancer have surgery to remove the cancer. Sentinel lymph node biopsy is the removal of the sentinel lymph node during surgery. The sentinel lymph node is the first lymph node in a group of lymph nodes to receive lymphatic drainage from the primary tumor. It is the first lymph node the cancer is likely to spread to from the primary tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are not found, it may not be necessary to remove more lymph nodes. Sometimes, a sentinel lymph node is found in more than one group of nodes. After the sentinel lymph node biopsy, the
surgeon removes the tumor using breast-conserving surgery or mastectomy. If cancer cells were found, more lymph nodes will be removed through a separate incision. This is called a lymph node dissection. Types of surgery include the following: Chemotherapy may be given before surgery to remove the tumor. When given before surgery, chemotherapy will shrink the tumor and reduce the amount of tissue that needs to be removed during surgery. Treatment given before surgery is called preoperative therapy or neoadjuvant therapy. After the doctor removes all the cancer that can be seen at
the time of the surgery, some patients may be given radiation therapy,
chemotherapy, targeted therapy, or
hormone therapy after surgery, to kill any cancer cells that are left. Treatment given after the surgery, to
lower the risk that the cancer will come back, is called postoperative therapy or adjuvant
therapy. If a patient is going to have a mastectomy,
breast reconstruction (surgery to
rebuild a breast’s shape after a mastectomy) may be considered. Breast
reconstruction may be done at the time of the mastectomy or at some time after.
The reconstructed breast may be made with the patient’s own (nonbreast) tissue
or by using implants filled with saline or silicone gel. Before the decision to get an implant is
made, patients can call the Food and Drug Administration's (FDA) Center for Devices and Radiologic Health at
1-888-INFO-FDA (1-888-463-6332) or visit the FDA website for more information on breast implants. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat breast cancer. Internal radiation therapy with strontium-89 (a radionuclide) is used to relieve bone pain caused by breast cancer that has spread to the bones. Strontium-89 is injected into a vein and travels to the surface of the bones. Radiation is released and kills cancer cells in the bones. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). For more information, see Drugs Approved for Breast Cancer. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. The hormone estrogen, which makes some breast cancers grow, is made mainly by the ovaries. Treatment to stop the ovaries from making estrogen is called ovarian ablation. Hormone therapy with tamoxifen is often given to patients with early localized breast cancer that can be removed by surgery and those
with metastatic breast cancer (cancer
that has spread to other parts of the body). Hormone therapy with tamoxifen or
estrogens can act on cells all over the body and may increase the chance of
developing endometrial cancer.
Women taking tamoxifen should have a pelvic exam every year to look for any
signs of cancer. Any vaginal
bleeding, other than menstrual
bleeding, should be reported to a doctor as soon as possible. Hormone therapy with a luteinizing hormone-releasing hormone (LHRH) agonist is given to some premenopausal women who have just been diagnosed with hormone receptor positive breast cancer. LHRH agonists decrease the body's estrogen and progesterone. Hormone therapy with an aromatase inhibitor is given to some postmenopausal women who have hormone receptor positive breast cancer. Aromatase inhibitors decrease the body's estrogen by blocking an enzyme called aromatase from turning androgen into estrogen. Anastrozole, letrozole, and exemestane are types of aromatase inhibitors. For the treatment of early localized breast cancer that can be removed by surgery, certain aromatase inhibitors may be used as adjuvant therapy instead of tamoxifen or after 2 to 3 years of tamoxifen use. For the treatment of metastatic breast cancer, aromatase inhibitors are being tested in clinical trials to compare them to hormone therapy with tamoxifen. In women with hormone receptor positive breast cancer, at least 5 years of adjuvant hormone therapy reduces the risk that the cancer will recur (come back). Other types of hormone therapy include megestrol acetate or anti-estrogen therapy such as fulvestrant. For more information, see Drugs Approved for Breast Cancer. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Monoclonal antibodies, tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and PARP inhibitors are types of targeted therapies used in the treatment of breast cancer. Types of monoclonal antibody therapy include the following: For more information, see Drugs Approved for Breast Cancer. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. There are different types of immunotherapy: Information about clinical trials is available from the NCI website. For information about side effects that begin during treatment for cancer, see our Side Effects page. Some treatments for breast cancer may cause side effects that continue or appear months or years after treatment has ended. These are called late effects. Late effects of radiation therapy are not common, but may include: Late effects of chemotherapy depend on the drugs used, but may include: Late effects of targeted therapy with trastuzumab, lapatinib, or pertuzumab may include: For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of early, localized, or operable breast cancer may include the following: Surgery Postoperative radiation therapy For women who had breast-conserving surgery, radiation therapy is given to the whole breast to lessen the chance the cancer will come back. Radiation therapy may also be given to lymph nodes in the area. For women who had a modified radical mastectomy, radiation therapy may be given to lessen the chance the cancer will come back if any of the following are true: Postoperative systemic therapy Systemic therapy is the use of drugs that can enter the bloodstream and reach cancer cells throughout the body. Postoperative systemic therapy is given to lessen the chance the cancer will come back after surgery to remove the tumor. Postoperative systemic therapy is given depending on whether: In premenopausal women with hormone receptor positive tumors, no more treatment may be needed or postoperative therapy may include: In postmenopausal women with hormone receptor positive tumors, no more treatment may be needed or postoperative therapy may include: In women with hormone receptor negative tumors, no more treatment may be needed or postoperative therapy may include: In women with HER2/neu negative tumors, postoperative therapy may include: In women with small, HER2/neu positive tumors, and no cancer in the lymph nodes, no more treatment may be needed. If there is cancer in the lymph nodes, or the tumor is large, postoperative therapy may include: In women with small, hormone receptor negative and HER2/neu negative tumors (triple negative) and no cancer in the lymph nodes, no more treatment may be needed. If there is cancer in the lymph nodes or the tumor is large, postoperative therapy may include: Preoperative systemic therapy Systemic therapy is the use of drugs that can enter the bloodstream and reach cancer cells throughout the body. Preoperative systemic therapy is given to shrink the tumor before surgery. Preoperative chemotherapy may make breast-sparing surgery possible in patients who are not eligible otherwise. Preoperative chemotherapy may also lessen the need for lymph node dissection in patients with disease that has spread to the lymph nodes. In postmenopausal women with hormone receptor positive tumors, preoperative therapy may include: In premenopausal women with hormone receptor positive tumors, preoperative therapy may include: In women with HER2/neu positive tumors, preoperative therapy may include: In women with HER2/neu negative tumors or triple negative tumors, preoperative therapy may include: For patients with triple-negative or HER2-positive disease, the response to preoperative therapy may be used as a guide in choosing the best treatment after surgery. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locally advanced or inflammatory breast
cancer is a combination of therapies that may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locoregional recurrent
breast cancer (cancer that has come
back after treatment in the breast, in the chest
wall, or in nearby lymph nodes), may include the following: For information about treatment options for breast cancer that has spread to parts of the body outside the breast, chest wall, or nearby lymph nodes, see the Treatment of Metastatic Breast Cancer section. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for metastatic breast cancer (cancer that has spread to distant parts of the body) may include the following: Hormone therapy In postmenopausal women who have just been diagnosed with metastatic breast cancer that is hormone receptor positive or if the hormone receptor status is not known, treatment
may include: In premenopausal women who have just been diagnosed with metastatic breast cancer that is hormone receptor positive, treatment may include: In women whose tumors are hormone receptor positive or hormone receptor unknown, with spread to the bone or soft tissue only, and who have been treated with tamoxifen, treatment may include: Targeted therapy In women with metastatic breast cancer that is hormone receptor positive and has not responded to other treatments, options may include targeted therapy such as: In women with metastatic breast cancer that is HER2/neu positive, treatment may include: In women with metastatic breast cancer that is HER2 negative, with mutations in the BRCA1 or BRCA2 genes, and who have been treated with chemotherapy, treatment may include: Chemotherapy In women with metastatic breast cancer that is hormone receptor negative, has not responded to hormone therapy, has spread to other organs or has caused symptoms, treatment may include: Chemotherapy and immunotherapy In women with metastatic breast cancer that is hormone receptor negative and HER2 negative, treatment may include: Surgery Radiation therapy Other treatment options Other treatment options for metastatic breast cancer include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of ductal carcinoma in situ may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about breast cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of adult breast cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Breast Cancer Treatment (Adult). Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/breast/patient/breast-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389406] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Breast Cancer Treatment (Adult) (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the treatments for Breast Cancer ? | Key Points
- There are different types of treatment for patients with breast cancer. - Five types of standard treatment are used: - Surgery - Radiation therapy - Chemotherapy - Hormone therapy - Targeted therapy - New types of treatment are being tested in clinical trials. - High-dose chemotherapy with stem cell transplant - Treatment for breast cancer may cause side effects. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed.
There are different types of treatment for patients with breast cancer.
Different types of treatment are available for patients with breast cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Five types of standard treatment are used:
Surgery Most patients with breast cancer have surgery to remove the cancer. Sentinel lymph node biopsy is the removal of the sentinel lymph node during surgery. The sentinel lymph node is the first lymph node to receive lymphatic drainage from a tumor. It is the first lymph node where the cancer is likely to spread. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. After the sentinel lymph node biopsy, the surgeon removes the tumor using breast-conserving surgery or mastectomy. If cancer cells were not found in the sentinel lymph node, it may not be necessary to remove more lymph nodes. If cancer cells were found, more lymph nodes will be removed through a separate incision. This is called a lymph node dissection. Types of surgery include the following: - Breast-conserving surgery is an operation to remove the cancer and some normal tissue around it, but not the breast itself. Part of the chest wall lining may also be removed if the cancer is near it. This type of surgery may also be called lumpectomy, partial mastectomy, segmental mastectomy, quadrantectomy, or breast-sparing surgery. - Total mastectomy: Surgery to remove the whole breast that has cancer. This procedure is also called a simple mastectomy. Some of the lymph nodes under the arm may be removed and checked for cancer. This may be done at the same time as the breast surgery or after. This is done through a separate incision. - Modified radical mastectomy: Surgery to remove the whole breast that has cancer, many of the lymph nodes under the arm, the lining over the chest muscles, and sometimes, part of the chest wall muscles. Chemotherapy may be given before surgery to remove the tumor. When given before surgery, chemotherapy will shrink the tumor and reduce the amount of tissue that needs to be removed during surgery. Treatment given before surgery is called preoperative therapy or neoadjuvant therapy. Even if the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given radiation therapy, chemotherapy, or hormone therapy after surgery, to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called postoperative therapy or adjuvant therapy. If a patient is going to have a mastectomy, breast reconstruction (surgery to rebuild a breasts shape after a mastectomy) may be considered. Breast reconstruction may be done at the time of the mastectomy or at some time after. The reconstructed breast may be made with the patients own (nonbreast) tissue or by using implants filled with saline or silicone gel. Before the decision to get an implant is made, patients can call the Food and Drug Administration's (FDA) Center for Devices and Radiologic Health at 1-888-INFO-FDA (1-888-463-6332) or visit the FDA website for more information on breast implants. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat breast cancer. Internal radiation therapy with strontium-89 (a radionuclide) is used to relieve bone pain caused by breast cancer that has spread to the bones. Strontium-89 is injected into a vein and travels to the surface of the bones. Radiation is released and kills cancer cells in the bones. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. Systemic chemotherapy is used in the treatment of breast cancer. See Drugs Approved for Breast Cancer for more information. Hormone therapy Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. The hormone estrogen, which makes some breast cancers grow, is made mainly by the ovaries. Treatment to stop the ovaries from making estrogen is called ovarian ablation. Hormone therapy with tamoxifen is often given to patients with early localized breast cancer that can be removed by surgery and those with metastatic breast cancer (cancer that has spread to other parts of the body). Hormone therapy with tamoxifen or estrogens can act on cells all over the body and may increase the chance of developing endometrial cancer. Women taking tamoxifen should have a pelvic exam every year to look for any signs of cancer. Any vaginal bleeding, other than menstrual bleeding, should be reported to a doctor as soon as possible. Hormone therapy with a luteinizing hormone-releasing hormone (LHRH) agonist is given to some premenopausal women who have just been diagnosed with hormone receptor positive breast cancer. LHRH agonists decrease the body's estrogen and progesterone. Hormone therapy with an aromatase inhibitor is given to some postmenopausal women who have hormone receptor positive breast cancer. Aromatase inhibitors decrease the body's estrogen by blocking an enzyme called aromatase from turning androgen into estrogen. Anastrozole, letrozole, and exemestane are types of aromatase inhibitors. For the treatment of early localized breast cancer that can be removed by surgery, certain aromatase inhibitors may be used as adjuvant therapy instead of tamoxifen or after 2 to 3 years of tamoxifen use. For the treatment of metastatic breast cancer, aromatase inhibitors are being tested in clinical trials to compare them to hormone therapy with tamoxifen. Other types of hormone therapy include megestrol acetate or anti-estrogen therapy such as fulvestrant. See Drugs Approved for Breast Cancer for more information. Targeted therapy Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Monoclonal antibodies, tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and PARP inhibitors are types of targeted therapies used in the treatment of breast cancer. Monoclonal antibody therapy is a cancer treatment that uses antibodies made in the laboratory, from a single type of immune system cell. These antibodies can identify substances on cancer cells or normal substances that may help cancer cells grow. The antibodies attach to the substances and kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Monoclonal antibodies may be used in combination with chemotherapy as adjuvant therapy. Types of monoclonal antibody therapy include the following: - Trastuzumab is a monoclonal antibody that blocks the effects of the growth factor protein HER2, which sends growth signals to breast cancer cells. It may be used with other therapies to treat HER2 positive breast cancer. - Pertuzumab is a monoclonal antibody that may be combined with trastuzumab and chemotherapy to treat breast cancer. It may be used to treat certain patients with HER2 positive breast cancer that has metastasized (spread to other parts of the body). It may also be used as neoadjuvant therapy in certain patients with early stage HER2 positive breast cancer. - Ado-trastuzumab emtansine is a monoclonal antibody linked to an anticancer drug. This is called an antibody-drug conjugate. It is used to treat HER2 positive breast cancer that has spread to other parts of the body or recurred (come back). Tyrosine kinase inhibitors are targeted therapy drugs that block signals needed for tumors to grow. Tyrosine kinase inhibitors may be used with other anticancer drugs as adjuvant therapy. Tyrosine kinase inhibitors include the following: - Lapatinib is a tyrosine kinase inhibitor that blocks the effects of the HER2 protein and other proteins inside tumor cells. It may be used with other drugs to treat patients with HER2 positive breast cancer that has progressed after treatment with trastuzumab. Cyclin-dependent kinase inhibitors are targeted therapy drugs that block proteins called cyclin-dependent kinases, which cause the growth of cancer cells. Cyclin-dependent kinase inhibitors include the following: - Palbociclib is a cyclin-dependent kinase inhibitor used with the drug letrozole to treat breast cancer that is estrogen receptor positive and HER2 negative and has spread to other parts of the body. It is used in postmenopausal women whose cancer has not been treated with hormone therapy. Palbociclib may also be used with fulvestrant in women whose disease has gotten worse after treatment with hormone therapy. - Ribociclib is a cyclin-dependent kinase inhibitor used with letrozole to treat breast cancer that is hormone receptor positive and HER2 negative and has come back or spread to other parts of the body. It is used in postmenopausal women whose cancer has not been treated with hormone therapy. Mammalian target of rapamycin (mTOR) inhibitors block a protein called mTOR, which may keep cancer cells from growing and prevent the growth of new blood vessels that tumors need to grow. mTOR inhibitors include the following: - Everolimus is an mTOR inhibitor used in postmenopausal women with advanced hormone receptor positive breast cancer that is also HER2 negative and has not gotten better with other treatment. PARP inhibitors are a type of targeted therapy that block DNA repair and may cause cancer cells to die. PARP inhibitor therapy is being studied for the treatment of patients with triple negative breast cancer or tumors with BRCA1 or BRCA2 mutations. See Drugs Approved for Breast Cancer for more information.
New types of treatment are being tested in clinical trials.
This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. High-dose chemotherapy with stem cell transplant High-dose chemotherapy with stem cell transplant is a way of giving high doses of chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the bodys blood cells. Studies have shown that high-dose chemotherapy followed by stem cell transplant does not work better than standard chemotherapy in the treatment of breast cancer. Doctors have decided that, for now, high-dose chemotherapy should be tested only in clinical trials. Before taking part in such a trial, women should talk with their doctors about the serious side effects, including death, that may be caused by high-dose chemotherapy.
Treatment for breast cancer may cause side effects.
For information about side effects that begin during treatment for cancer, see our Side Effects page. Some treatments for breast cancer may cause side effects that continue or appear months or years after treatment has ended. These are called late effects. Late effects of radiation therapy are not common, but may include: - Inflammation of the lung after radiation therapy to the breast, especially when chemotherapy is given at the same time. - Arm lymphedema, especially when radiation therapy is given after lymph node dissection. - In women younger than 45 years who receive radiation therapy to the chest wall after mastectomy, there may be a higher risk of developing breast cancer in the other breast. Late effects of chemotherapy depend on the drugs used, but may include: - Heart failure. - Blood clots. - Premature menopause. - Second cancer, such as leukemia. Late effects of targeted therapy with trastuzumab, lapatinib, or pertuzumab may include: - Heart problems such as heart failure.
Patients may want to think about taking part in a clinical trial.
For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.
Patients can enter clinical trials before, during, or after starting their cancer treatment.
Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Follow-up tests may be needed.
Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups.
Treatment Options for Breast Cancer
Early, Localized, or Operable Breast Cancer
Treatment of early, localized, or operable breast cancer may include the following: Surgery - Breast-conserving surgery and sentinel lymph node biopsy. If cancer is found in the lymph nodes, a lymph node dissection may be done. - Modified radical mastectomy. Breast reconstruction surgery may also be done. Postoperative radiation therapy For women who had breast-conserving surgery, radiation therapy is given to the whole breast to lessen the chance the cancer will come back. Radiation therapy may also be given to lymph nodes in the area. For women who had a modified radical mastectomy, radiation therapy may be given to lessen the chance the cancer will come back if any of the following are true: - Cancer was found in 4 or more lymph nodes. - Cancer had spread to tissue around the lymph nodes. - The tumor was large. - There is tumor close to or remaining in the tissue near the edges of where the tumor was removed. Postoperative systemic therapy Systemic therapy is the use of drugs that can enter the bloodstream and reach cancer cells throughout the body. Postoperative systemic therapy is given to lessen the chance the cancer will come back after surgery to remove the tumor. Postoperative systemic therapy is given depending on whether: - The tumor is hormone receptor negative or positive. - The tumor is HER2/neu negative or positive. - The tumor is hormone receptor negative and HER2/neu negative (triple negative). - The size of the tumor. In premenopausal women with hormone receptor positive tumors, no more treatment may be needed or postoperative therapy may include: - Tamoxifen therapy with or without chemotherapy. - Tamoxifen therapy and treatment to stop or lessen how much estrogen is made by the ovaries. Drug therapy, surgery to remove the ovaries, or radiation therapy to the ovaries may be used. - Aromatase inhibitor therapy and treatment to stop or lessen how much estrogen is made by the ovaries. Drug therapy, surgery to remove the ovaries, or radiation therapy to the ovaries may be used. In postmenopausal women with hormone receptor positive tumors, no more treatment may be needed or postoperative therapy may include: - Aromatase inhibitor therapy with or without chemotherapy. - Tamoxifen followed by aromatase inhibitor therapy, with or without chemotherapy. In women with hormone receptor negative tumors, no more treatment may be needed or postoperative therapy may include: - Chemotherapy. In women with HER2/neu negative tumors, postoperative therapy may include: - Chemotherapy. In women with small, HER2/neu positive tumors, and no cancer in the lymph nodes, no more treatment may be needed. If there is cancer in the lymph nodes, or the tumor is large, postoperative therapy may include: - Chemotherapy and targeted therapy (trastuzumab). - Hormone therapy, such as tamoxifen or aromatase inhibitor therapy, for tumors that are also hormone receptor positive. In women with small, hormone receptor negative and HER2/neu negative tumors (triple negative) and no cancer in the lymph nodes, no more treatment may be needed. If there is cancer in the lymph nodes or the tumor is large, postoperative therapy may include: - Chemotherapy. - Radiation therapy. - A clinical trial of a new chemotherapy regimen. - A clinical trial of PARP inhibitor therapy. Preoperative systemic therapy Systemic therapy is the use of drugs that can enter the bloodstream and reach cancer cells throughout the body. Preoperative systemic therapy is given to shrink the tumor before surgery. In postmenopausal women with hormone receptor positive tumors, preoperative therapy may include: - Chemotherapy. - Hormone therapy, such as tamoxifen or aromatase inhibitor therapy, for women who cannot have chemotherapy. In premenopausal women with hormone receptor positive tumors, preoperative therapy may include: - A clinical trial of hormone therapy, such as tamoxifen or aromatase inhibitor therapy. In women with HER2/neu positive tumors, preoperative therapy may include: - Chemotherapy and targeted therapy (trastuzumab). - Targeted therapy (pertuzumab). In women with HER2/neu negative tumors or triple negative tumors, preoperative therapy may include: - Chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I breast cancer, stage II breast cancer, stage IIIA breast cancer and stage IIIC breast cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Locally Advanced or Inflammatory Breast Cancer
Treatment of locally advanced or inflammatory breast cancer is a combination of therapies that may include the following: - Surgery (breast-conserving surgery or total mastectomy) with lymph node dissection. - Chemotherapy before and/or after surgery. - Radiation therapy after surgery. - Hormone therapy after surgery for tumors that are estrogen receptor positive or estrogen receptor unknown. - Clinical trials testing new anticancer drugs, new drug combinations, and new ways of giving treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage IIIB breast cancer, stage IIIC breast cancer, stage IV breast cancer and inflammatory breast cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Locoregional Recurrent Breast Cancer
Treatment of locoregional recurrent breast cancer (cancer that has come back after treatment in the breast, in the chest wall, or in nearby lymph nodes), may include the following: - Chemotherapy. - Hormone therapy for tumors that are hormone receptor positive. - Radiation therapy. - Surgery. - Targeted therapy (trastuzumab). - A clinical trial of a new treatment. See the Metastatic Breast Cancer section for information about treatment options for breast cancer that has spread to parts of the body outside the breast, chest wall, or nearby lymph nodes. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent breast cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Metastatic Breast Cancer
Treatment options for metastatic breast cancer (cancer that has spread to distant parts of the body) may include the following: Hormone therapy In postmenopausal women who have just been diagnosed with metastatic breast cancer that is hormone receptor positive or if the hormone receptor status is not known, treatment may include: - Tamoxifen therapy. - Aromatase inhibitor therapy (anastrozole, letrozole, or exemestane). Sometimes cyclin-dependent kinase inhibitor therapy (palbociclib) is also given. In premenopausal women who have just been diagnosed with metastatic breast cancer that is hormone receptor positive, treatment may include: - Tamoxifen, an LHRH agonist, or both. In women whose tumors are hormone receptor positive or hormone receptor unknown, with spread to the bone or soft tissue only, and who have been treated with tamoxifen, treatment may include: - Aromatase inhibitor therapy. - Other hormone therapy such as megestrol acetate, estrogen or androgen therapy, or anti-estrogen therapy such as fulvestrant. Targeted therapy In women with metastatic breast cancer that is hormone receptor positive and has not responded to other treatments, options may include targeted therapy such as: - Trastuzumab, lapatinib, pertuzumab, or mTOR inhibitors. - Antibody-drug conjugate therapy with ado-trastuzumab emtansine. - Cyclin-dependent kinase inhibitor therapy (palbociclib) combined with letrozole. In women with metastatic breast cancer that is HER2/neu positive, treatment may include: - Targeted therapy such as trastuzumab, pertuzumab, ado-trastuzumab emtansine, or lapatinib. Chemotherapy In women with metastatic breast cancer that is hormone receptor negative, has not responded to hormone therapy, has spread to other organs or has caused symptoms, treatment may include: - Chemotherapy with one or more drugs. Surgery - Total mastectomy for women with open or painful breast lesions. Radiation therapy may be given after surgery. - Surgery to remove cancer that has spread to the brain or spine. Radiation therapy may be given after surgery. - Surgery to remove cancer that has spread to the lung. - Surgery to repair or help support weak or broken bones. Radiation therapy may be given after surgery. - Surgery to remove fluid that has collected around the lungs or heart. Radiation therapy - Radiation therapy to the bones, brain, spinal cord, breast, or chest wall to relieve symptoms and improve quality of life. - Strontium-89 (a radionuclide) to relieve pain from cancer that has spread to bones throughout the body. Other treatment options Other treatment options for metastatic breast cancer include: - Drug therapy with bisphosphonates or denosumab to reduce bone disease and pain when cancer has spread to the bone. (See the PDQ summary on Cancer Pain for more information about bisphosphonates.) - A clinical trial of high-dose chemotherapy with stem cell transplant. - Clinical trials testing new anticancer drugs, new drug combinations, and new ways of giving treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with metastatic cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. |
The breast is made up of lobes and ducts. Each breast has 15 to 20 sections called
lobes. Each lobe has many smaller sections called lobules. Lobules end in dozens of tiny bulbs that
can make milk. The lobes, lobules, and bulbs are linked by thin tubes called
ducts. EnlargeAnatomy of the female breast. The nipple and areola are shown on the outside of the breast. The lymph nodes, lobes, lobules, ducts, and other parts of the inside of the breast are also shown. Each breast also has blood
vessels and lymph
vessels. The lymph vessels carry an almost colorless, watery fluid called lymph. Lymph
vessels carry lymph between lymph
nodes. Lymph nodes are small, bean-shaped structures found throughout the body. They filter lymph and store white blood cells that help fight
infection and disease. Groups of lymph nodes are found near the breast in the
axilla (under the arm), above the
collarbone, and in the chest. The most common type of breast cancer is ductal
carcinoma, which begins in the cells of the ducts. Cancer that begins in the
lobes or lobules is called lobular carcinoma and is more often found in both
breasts than are other types of breast cancer. Inflammatory breast cancer is an uncommon type of
breast cancer in which the breast is warm, red, and swollen. For more information about breast cancer, see: Anything that increases your chance of getting a disease
is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your doctor if you think you may be at risk for breast cancer. Risk factors for breast cancer include the following: Older age is the main risk factor for most cancers. The chance of getting cancer increases as you get older. NCI's Breast Cancer Risk Assessment Tool uses a woman's risk factors to estimate her risk for breast cancer during the next five years and up to age 90. This online tool is meant to be used by a health care provider. For more information on breast cancer risk, call 1-800-4-CANCER. The genes in cells carry
the hereditary information that is
received from a person’s parents. Hereditary breast cancer makes up
about 5% to 10% of all breast cancer. Some mutated genes related to
breast cancer are more common in certain ethnic groups. Women who have certain gene mutations, such as a BRCA1 or BRCA2 mutation, have an increased risk of breast cancer. These women also have an increased risk of ovarian cancer, and may
have an increased risk of other cancers. Men who have a mutated
gene related to breast cancer also have an increased risk of breast cancer. For more information, see
Male Breast Cancer Treatment. There are tests that can detect (find) mutated genes. These
genetic tests are sometimes done for
members of families with a high risk of cancer. For more information, see Genetics of Breast and Gynecologic Cancers. Anything that decreases your chance of getting a disease is called a protective factor. Protective factors for breast cancer include the following: These and other signs may be caused by breast cancer or by other conditions. Check with your doctor if you have any of the following: Check with your doctor if you notice any changes in your breasts. The
following tests and procedures may be used: There are four types of biopsy used to check for breast cancer: Decisions about the best treatment are based on the results of these tests. The tests give information about: Tests include the following: There are many types of multigene tests. The following multigene tests have been studied in clinical trials: Based on these tests, breast cancer is described as one of the following types: This information helps the doctor decide which treatments will work best for your cancer. The prognosis and treatment options depend on the following: The process used to find out whether the cancer has spread within the breast or to other
parts of the body is called staging.
The information gathered from the staging process determines the
stage of the disease. It is
important to know the stage in order to plan treatment. The results of some of the tests used to diagnose breast cancer are also used to stage the disease. (See the General Information section.) The following tests and procedures also may be used in
the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if breast cancer spreads to the bone, the cancer cells in the bone are actually breast cancer cells. The disease is metastatic breast cancer, not bone cancer. To plan the best treatment and understand your prognosis, it is important to know the breast cancer stage. There are 3 types of breast cancer stage groups: For breast cancer, the TNM system describes the tumor as follows: When the lymph nodes are removed by surgery and studied under a microscope by a pathologist, pathologic staging is used to describe the lymph nodes. The pathologic staging of lymph nodes is described below. or cancer has spread to 4 to 9 axillary lymph nodes and cancer in at least one of the lymph nodes is larger than 2 millimeters. Cancer has also spread to lymph nodes near the breastbone on the same side of the body as the primary tumor, and the cancer is larger than 0.2 millimeters and is found by sentinel lymph node biopsy. When the lymph nodes are checked using mammography or ultrasound, it is called clinical staging. The clinical staging of lymph nodes is not described here. The grading system describes a tumor based on how abnormal the cancer cells and tissue look under a microscope and how quickly the cancer cells are likely to grow and spread. Low-grade cancer cells look more like normal cells and tend to grow and spread more slowly than high-grade cancer cells. To describe how abnormal the cancer cells and tissue are, the pathologist will assess the following three features: For each feature, the pathologist assigns a score of 1 to 3; a score of “1” means the cells and tumor tissue look the most like normal cells and tissue, and a score of “3” means the cells and tissue look the most abnormal. The scores for each feature are added together to get a total score between 3 and 9. Three grades are possible: Healthy breast cells, and some breast cancer cells, have receptors (biomarkers) that attach to the hormones estrogen and progesterone. These hormones are needed for healthy cells, and some breast cancer cells, to grow and divide. To check for these biomarkers, samples of tissue containing breast cancer cells are removed during a biopsy or surgery. The samples are tested in a laboratory to see whether the breast cancer cells have estrogen or progesterone receptors. Another type of receptor (biomarker) that is found on the surface of all breast cancer cells is called HER2. HER2 receptors are needed for the breast cancer cells to grow and divide. For breast cancer, biomarker testing includes the following: Sometimes the breast cancer cells will be described as triple negative or triple positive. It is important to know the estrogen receptor, progesterone receptor, and HER2 receptor status to choose the best treatment. There are drugs that can stop the receptors from attaching to the hormones estrogen and progesterone and stop the cancer from growing. Other drugs may be used to block the HER2 receptors on the surface of the breast cancer cells and stop the cancer from growing. Here are 3 examples that combine the TNM system, the grading system, and the biomarker status to find out the Pathological Prognostic breast cancer stage for a woman whose first treatment was surgery: If the tumor size is 30 millimeters (T2), has not spread to nearby lymph nodes (N0), has not spread to distant parts of the body (M0), and is: The cancer is stage IIA. If the tumor size is 53 millimeters (T3), has spread to 4 to 9 axillary lymph nodes (N2), has not spread to other parts of the body (M0), and is: The tumor is stage IIIA.
If the tumor size is 65 millimeters (T3), has spread to 3 axillary lymph nodes (N1a), has spread to the lungs (M1), and is: The cancer is stage IV (metastatic breast cancer). After surgery, your doctor will receive a pathology report that describes the size and location of the primary tumor, the spread of cancer to nearby lymph nodes, tumor grade, and whether certain biomarkers are present. The pathology report and other test results are used to determine your breast cancer stage. You are likely to have many questions. Ask your doctor to explain how staging is used to decide the best options to treat your cancer and whether there are clinical trials that might be right for you. For ductal carcinoma in situ (DCIS) treatment options, see Treatment of Ductal Carcinoma in Situ. For treatment options for stage I, stage II, stage IIIA, and operable stage IIIC breast cancer, see Treatment of Early, Localized or Operable Breast Cancer. For treatment options for stage IIIB, inoperable stage IIIC, and inflammatory breast cancer, see Treatment of Locally Advanced Inflammatory Breast Cancer. For treatment options for cancer that has recurred near the area where it first formed (such as in the breast, in the skin of the breast, in the chest wall, or in nearby lymph nodes), see Treatment of Locoregional Recurrent Breast Cancer. For treatment options for stage IV (metastatic) breast cancer or breast cancer that has recurred in distant parts of the body, see Treatment of Metastatic Breast Cancer. In inflammatory breast
cancer, cancer has spread to the skin of the breast and the breast looks red and swollen and feels warm. The
redness and warmth occur because the cancer cells block the lymph vessels in the skin. The skin of the breast
may also show the dimpled appearance called peau
d’orange (like the skin of an orange). There may not be any lumps in the breast that can be felt. Inflammatory breast cancer may be stage IIIB, stage IIIC, or stage IV. EnlargeInflammatory breast cancer is a type of breast cancer in which the cancer cells block the lymph vessels in the skin of the breast. This causes the breast to look red and swollen. The skin may also appear dimpled or pitted, like the skin of an orange (peau d'orange), and the nipple may be inverted (facing inward). Different types of treatment are available for patients with breast
cancer. Some treatments are standard
(the currently used treatment), and some are being tested in
clinical trials. A
treatment clinical trial is a research study meant to help improve current
treatments or obtain information on new treatments for patients with cancer.
When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Most patients with breast cancer have surgery to remove the cancer. Sentinel lymph node biopsy is the removal of the sentinel lymph node during surgery. The sentinel lymph node is the first lymph node in a group of lymph nodes to receive lymphatic drainage from the primary tumor. It is the first lymph node the cancer is likely to spread to from the primary tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are not found, it may not be necessary to remove more lymph nodes. Sometimes, a sentinel lymph node is found in more than one group of nodes. After the sentinel lymph node biopsy, the
surgeon removes the tumor using breast-conserving surgery or mastectomy. If cancer cells were found, more lymph nodes will be removed through a separate incision. This is called a lymph node dissection. Types of surgery include the following: Chemotherapy may be given before surgery to remove the tumor. When given before surgery, chemotherapy will shrink the tumor and reduce the amount of tissue that needs to be removed during surgery. Treatment given before surgery is called preoperative therapy or neoadjuvant therapy. After the doctor removes all the cancer that can be seen at
the time of the surgery, some patients may be given radiation therapy,
chemotherapy, targeted therapy, or
hormone therapy after surgery, to kill any cancer cells that are left. Treatment given after the surgery, to
lower the risk that the cancer will come back, is called postoperative therapy or adjuvant
therapy. If a patient is going to have a mastectomy,
breast reconstruction (surgery to
rebuild a breast’s shape after a mastectomy) may be considered. Breast
reconstruction may be done at the time of the mastectomy or at some time after.
The reconstructed breast may be made with the patient’s own (nonbreast) tissue
or by using implants filled with saline or silicone gel. Before the decision to get an implant is
made, patients can call the Food and Drug Administration's (FDA) Center for Devices and Radiologic Health at
1-888-INFO-FDA (1-888-463-6332) or visit the FDA website for more information on breast implants. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat breast cancer. Internal radiation therapy with strontium-89 (a radionuclide) is used to relieve bone pain caused by breast cancer that has spread to the bones. Strontium-89 is injected into a vein and travels to the surface of the bones. Radiation is released and kills cancer cells in the bones. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). For more information, see Drugs Approved for Breast Cancer. Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. The hormone estrogen, which makes some breast cancers grow, is made mainly by the ovaries. Treatment to stop the ovaries from making estrogen is called ovarian ablation. Hormone therapy with tamoxifen is often given to patients with early localized breast cancer that can be removed by surgery and those
with metastatic breast cancer (cancer
that has spread to other parts of the body). Hormone therapy with tamoxifen or
estrogens can act on cells all over the body and may increase the chance of
developing endometrial cancer.
Women taking tamoxifen should have a pelvic exam every year to look for any
signs of cancer. Any vaginal
bleeding, other than menstrual
bleeding, should be reported to a doctor as soon as possible. Hormone therapy with a luteinizing hormone-releasing hormone (LHRH) agonist is given to some premenopausal women who have just been diagnosed with hormone receptor positive breast cancer. LHRH agonists decrease the body's estrogen and progesterone. Hormone therapy with an aromatase inhibitor is given to some postmenopausal women who have hormone receptor positive breast cancer. Aromatase inhibitors decrease the body's estrogen by blocking an enzyme called aromatase from turning androgen into estrogen. Anastrozole, letrozole, and exemestane are types of aromatase inhibitors. For the treatment of early localized breast cancer that can be removed by surgery, certain aromatase inhibitors may be used as adjuvant therapy instead of tamoxifen or after 2 to 3 years of tamoxifen use. For the treatment of metastatic breast cancer, aromatase inhibitors are being tested in clinical trials to compare them to hormone therapy with tamoxifen. In women with hormone receptor positive breast cancer, at least 5 years of adjuvant hormone therapy reduces the risk that the cancer will recur (come back). Other types of hormone therapy include megestrol acetate or anti-estrogen therapy such as fulvestrant. For more information, see Drugs Approved for Breast Cancer. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Monoclonal antibodies, tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and PARP inhibitors are types of targeted therapies used in the treatment of breast cancer. Types of monoclonal antibody therapy include the following: For more information, see Drugs Approved for Breast Cancer. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy. There are different types of immunotherapy: Information about clinical trials is available from the NCI website. For information about side effects that begin during treatment for cancer, see our Side Effects page. Some treatments for breast cancer may cause side effects that continue or appear months or years after treatment has ended. These are called late effects. Late effects of radiation therapy are not common, but may include: Late effects of chemotherapy depend on the drugs used, but may include: Late effects of targeted therapy with trastuzumab, lapatinib, or pertuzumab may include: For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of early, localized, or operable breast cancer may include the following: Surgery Postoperative radiation therapy For women who had breast-conserving surgery, radiation therapy is given to the whole breast to lessen the chance the cancer will come back. Radiation therapy may also be given to lymph nodes in the area. For women who had a modified radical mastectomy, radiation therapy may be given to lessen the chance the cancer will come back if any of the following are true: Postoperative systemic therapy Systemic therapy is the use of drugs that can enter the bloodstream and reach cancer cells throughout the body. Postoperative systemic therapy is given to lessen the chance the cancer will come back after surgery to remove the tumor. Postoperative systemic therapy is given depending on whether: In premenopausal women with hormone receptor positive tumors, no more treatment may be needed or postoperative therapy may include: In postmenopausal women with hormone receptor positive tumors, no more treatment may be needed or postoperative therapy may include: In women with hormone receptor negative tumors, no more treatment may be needed or postoperative therapy may include: In women with HER2/neu negative tumors, postoperative therapy may include: In women with small, HER2/neu positive tumors, and no cancer in the lymph nodes, no more treatment may be needed. If there is cancer in the lymph nodes, or the tumor is large, postoperative therapy may include: In women with small, hormone receptor negative and HER2/neu negative tumors (triple negative) and no cancer in the lymph nodes, no more treatment may be needed. If there is cancer in the lymph nodes or the tumor is large, postoperative therapy may include: Preoperative systemic therapy Systemic therapy is the use of drugs that can enter the bloodstream and reach cancer cells throughout the body. Preoperative systemic therapy is given to shrink the tumor before surgery. Preoperative chemotherapy may make breast-sparing surgery possible in patients who are not eligible otherwise. Preoperative chemotherapy may also lessen the need for lymph node dissection in patients with disease that has spread to the lymph nodes. In postmenopausal women with hormone receptor positive tumors, preoperative therapy may include: In premenopausal women with hormone receptor positive tumors, preoperative therapy may include: In women with HER2/neu positive tumors, preoperative therapy may include: In women with HER2/neu negative tumors or triple negative tumors, preoperative therapy may include: For patients with triple-negative or HER2-positive disease, the response to preoperative therapy may be used as a guide in choosing the best treatment after surgery. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locally advanced or inflammatory breast
cancer is a combination of therapies that may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locoregional recurrent
breast cancer (cancer that has come
back after treatment in the breast, in the chest
wall, or in nearby lymph nodes), may include the following: For information about treatment options for breast cancer that has spread to parts of the body outside the breast, chest wall, or nearby lymph nodes, see the Treatment of Metastatic Breast Cancer section. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment options for metastatic breast cancer (cancer that has spread to distant parts of the body) may include the following: Hormone therapy In postmenopausal women who have just been diagnosed with metastatic breast cancer that is hormone receptor positive or if the hormone receptor status is not known, treatment
may include: In premenopausal women who have just been diagnosed with metastatic breast cancer that is hormone receptor positive, treatment may include: In women whose tumors are hormone receptor positive or hormone receptor unknown, with spread to the bone or soft tissue only, and who have been treated with tamoxifen, treatment may include: Targeted therapy In women with metastatic breast cancer that is hormone receptor positive and has not responded to other treatments, options may include targeted therapy such as: In women with metastatic breast cancer that is HER2/neu positive, treatment may include: In women with metastatic breast cancer that is HER2 negative, with mutations in the BRCA1 or BRCA2 genes, and who have been treated with chemotherapy, treatment may include: Chemotherapy In women with metastatic breast cancer that is hormone receptor negative, has not responded to hormone therapy, has spread to other organs or has caused symptoms, treatment may include: Chemotherapy and immunotherapy In women with metastatic breast cancer that is hormone receptor negative and HER2 negative, treatment may include: Surgery Radiation therapy Other treatment options Other treatment options for metastatic breast cancer include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of ductal carcinoma in situ may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about breast cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of adult breast cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Breast Cancer Treatment (Adult). Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/breast/patient/breast-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389406] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Breast Cancer Treatment (Adult) (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | what research (or clinical trials) is being done for Breast Cancer ? | New types of treatment are being tested in clinical trials.
This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. High-dose chemotherapy with stem cell transplant High-dose chemotherapy with stem cell transplant is a way of giving high doses of chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the bodys blood cells. Studies have shown that high-dose chemotherapy followed by stem cell transplant does not work better than standard chemotherapy in the treatment of breast cancer. Doctors have decided that, for now, high-dose chemotherapy should be tested only in clinical trials. Before taking part in such a trial, women should talk with their doctors about the serious side effects, including death, that may be caused by high-dose chemotherapy.
Treatment for breast cancer may cause side effects.
For information about side effects that begin during treatment for cancer, see our Side Effects page. Some treatments for breast cancer may cause side effects that continue or appear months or years after treatment has ended. These are called late effects. Late effects of radiation therapy are not common, but may include: - Inflammation of the lung after radiation therapy to the breast, especially when chemotherapy is given at the same time. - Arm lymphedema, especially when radiation therapy is given after lymph node dissection. - In women younger than 45 years who receive radiation therapy to the chest wall after mastectomy, there may be a higher risk of developing breast cancer in the other breast. Late effects of chemotherapy depend on the drugs used, but may include: - Heart failure. - Blood clots. - Premature menopause. - Second cancer, such as leukemia. Late effects of targeted therapy with trastuzumab, lapatinib, or pertuzumab may include: - Heart problems such as heart failure.
Patients may want to think about taking part in a clinical trial.
For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.
Patients can enter clinical trials before, during, or after starting their cancer treatment.
Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. |
There are two kidneys, one on each side of the spine, above the waist. Tiny tubules in the kidneys filter and clean the blood. They take out waste products and make urine. The urine passes from each kidney through a long tube called a ureter into the bladder. The bladder holds the urine until it passes through the urethra and leaves the body. EnlargeAnatomy of the urinary system showing the kidneys, ureters, bladder, and urethra. The inside of the left kidney shows the renal pelvis. An inset shows the renal tubules and urine. Also shown is the spine and adrenal glands. Urine is made in the renal tubules and collects in the renal pelvis of each kidney. The urine flows from the kidneys through the ureters to the bladder. The urine is stored in the bladder until it leaves the body through the urethra. In Wilms tumor, one or more tumors may be found in one or both kidneys. Wilms tumor may spread to the lungs, liver, bone, brain, or nearby lymph nodes. In children and adolescents younger than 15 years old, most kidney cancers are Wilms tumors. Renal cell cancer is rare in children and adolescents younger than 15 years old. It is much more common in adolescents between 15 and 19 years old. Children and adolescents are more likely to be diagnosed with a large renal cell tumor or cancer that has spread. Renal cell cancers may spread to the lungs, liver, bone, or lymph nodes. Renal cell cancer may also be called renal cell carcinoma. Rhabdoid tumor of the kidney is a type of kidney cancer that occurs mostly in infants and young children. It is often advanced at the time of diagnosis. Rhabdoid tumor of the kidney grows and spreads quickly, often to the lungs or brain. Children with a certain change in the SMARCB1 gene can also have tumors grow in the kidney, brain, or soft tissues. These children are checked regularly to see if a rhabdoid tumor has formed in the kidney or the brain: Clear cell sarcoma of the kidney is an uncommon kidney cancer that may spread to the bone, lungs, brain, liver, or soft tissue. It occurs most often before age 3 years. It may recur (come back) up to 14 years after treatment, often in the brain or lung. Congenital mesoblastic nephroma is a tumor of the kidney that is often diagnosed during the first year of life or before birth. It is the most common kidney tumor found in infants younger than 6 months old and is found more often in males than in females. It can usually be cured. Ewing sarcoma (previously called neuroepithelial tumor) of the kidney is rare and usually occurs in young adults. This cancer grows and spreads to other parts of the body quickly. Primary renal myoepithelial carcinoma is a rare type of cancer that usually affects soft tissues, but sometimes forms in the internal organs (such as the kidney). This type of cancer grows and spreads quickly. Cystic partially differentiated nephroblastoma is a very rare type of Wilms tumor made up of cysts. Multilocular cystic nephromas are benign tumors made up of cysts and are most common in infants, young children, and adult women. These tumors can occur in one or both kidneys. Children with this type of tumor also may have pleuropulmonary blastoma, so imaging tests that check the lungs for cysts or solid tumors are done. Since multilocular cystic nephroma may be an inherited condition, genetic counseling and genetic testing may be considered. See the PDQ summary about Childhood Pleuropulmonary Blastoma Treatment for more information. Primary renal synovial sarcoma is a cyst-like tumor of the kidney and is most common in young adults. These tumors grow and spread quickly. Anaplastic sarcoma of the kidney is a rare tumor that is most common in children or adolescents younger than 15 years of age. Anaplastic sarcoma of the kidney often spreads to the lungs, liver, or bones. Imaging tests that check the lungs for cysts or solid tumors may be done. Since anaplastic sarcoma may be an inherited condition, genetic counseling and genetic testing may be considered. Sometimes, after the kidneys form in the fetus, abnormal groups of kidney cells remain in one or both kidneys. In nephroblastomatosis (diffuse hyperplastic perilobar nephroblastomatosis), these abnormal groups of cells may grow in many places inside the kidney or make a thick layer around the kidney. When these groups of abnormal cells are found in a kidney after it was removed for Wilms tumor, the child has an increased risk of Wilms tumor in the other kidney. Frequent follow-up testing is important at least every 3 months, for at least 7 years after the child is diagnosed or treated. Anything that increases the risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your child's doctor if you think your child may be at risk. Wilms tumor may be part of a genetic syndrome that affects growth or development. A genetic syndrome is a set of signs and symptoms or conditions that occur together and is caused by certain changes in the genes. Certain conditions or environmental exposures can also increase a child's risk of developing Wilms tumor. The following have been linked to Wilms tumor: Screening tests are done in children with an increased risk of Wilms tumor. These tests may help find cancer early and decrease the chance of dying from cancer. In general, children with an increased risk of Wilms tumor should be screened for Wilms tumor every 3 months until they are at least 8 years old. An ultrasound test of the abdomen is usually used for screening. Small Wilms tumors may be found and removed before symptoms occur. Children with Beckwith-Wiedemann syndrome or hemihyperplasia are also screened for liver and adrenal tumors that are linked to these genetic syndromes. A test to check the alpha-fetoprotein (AFP) level in the blood and an ultrasound of the abdomen are done until the child is 4 years old. An ultrasound of the kidneys is done between the ages of 4 and 7 years old. A physical exam by a specialist (geneticist or pediatric oncologist) is done two times each year. In children with certain gene changes, a different schedule for ultrasound of the abdomen may be used. Children with aniridia and a certain gene change are screened for Wilms tumor every 3 months until they are 8 years old. An ultrasound test of the abdomen is used for screening. Some children develop Wilms tumor in both kidneys. These often appear when Wilms tumor is first diagnosed, but Wilms tumor may also occur in the second kidney after the child is successfully treated for Wilms tumor in one kidney. Children with an increased risk of a second Wilms tumor in the other kidney should be screened for Wilms tumor every 3 months for up to 8 years. An ultrasound test of the abdomen may be used for screening. Renal cell cancer may be related to the following conditions: Prior chemotherapy or radiation therapy for a childhood cancer, such as neuroblastoma, soft tissue sarcoma, leukemia, or Wilms tumor may also increase the risk of renal cell cancer. See the Second Cancers section in the PDQ summary about Late Effects of Treatment for Childhood Cancer for more information. Genetic counseling (a discussion with a trained professional about genetic diseases and whether genetic testing is needed) may be done if the child has one of the following syndromes or conditions: Sometimes childhood kidney tumors do not cause signs and symptoms and the parent finds a mass in the abdomen by chance or the mass is found during a well-child health check-up. These and other signs and symptoms may be caused by kidney tumors or by other conditions. Check with your child's doctor if your child has any of the following: Wilms tumor that has spread to the lungs or liver may cause the following signs and symptoms: The following tests and procedures may be used: The prognosis and treatment options for Wilms tumor depend on the following: The prognosis for renal cell cancer depends on the following: The prognosis for rhabdoid tumor of the kidney depends on the following: The prognosis for clear cell sarcoma of the kidney depends on the following: The process used to find out if cancer has spread outside of the kidney to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. The results of the tests and procedures done to diagnose and stage Wilms tumor are used to help make decisions about treatment. There is no staging for the other types of childhood kidney tumors. The treatment of these tumors depends on the tumor type. The following tests may be done to see if cancer has spread to other places in the body: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if Wilms tumor spreads to the lung, the cancer cells in the lung are actually Wilms tumor cells. The disease is metastatic Wilms tumor, not lung cancer. The histology (how the cells look under a microscope) of the tumor affects the prognosis and the treatment of Wilms tumor. The histology may be favorable or anaplastic (unfavorable). Tumors with a favorable histology have a better prognosis and respond better to chemotherapy than anaplastic tumors. Tumor cells that are anaplastic divide quickly and under a microscope do not look like the type of cells they came from. Anaplastic tumors are harder to treat with chemotherapy than other Wilms tumors at the same stage. In stage I, the tumor was completely removed by surgery and all of the following are true: In stage II, the tumor was completely removed by surgery and no cancer cells were found at the edges of the area where the cancer was removed. Cancer has not spread to lymph nodes. Before the tumor was removed, one of the following was true: In stage III, cancer remains in the abdomen after surgery and at least one of the following is true: In stage IV, cancer has spread through the blood to organs such as the lungs, liver, bone, or brain, or to lymph nodes outside the abdomen and pelvis. In stage V (bilateral) Wilms tumor, cancer cells are found in both kidneys when the cancer is first diagnosed. The cancer in each kidney is staged separately as stage I, II, III, or IV. Childhood Wilms tumor may recur (come back) in the lungs, abdomen, liver, or other places in the body. Childhood clear cell sarcoma of the kidney may recur in the brain, lungs, or other places in the body. Childhood congenital mesoblastic nephroma may recur in the kidneys or in other places in the body. Different types of treatment are available for children with Wilms and other childhood kidney tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment.
Your child's treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with Wilms tumor or other childhood kidney tumors and who specialize in certain areas of medicine. These may include the following specialists: Two types of surgery are used to treat kidney tumors: After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Sometimes, a second-look surgery is done to see if cancer remains after chemotherapy or radiation therapy. Sometimes the tumor cannot be removed by surgery for one of the following reasons: In this case, a biopsy is done first. Then chemotherapy is given to reduce the size of the tumor before surgery, in order to save as much healthy tissue as possible and lessen problems after surgery. This is called neoadjuvant chemotherapy. Radiation therapy is given after surgery. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. External radiation therapy is used to treat Wilms tumor and other childhood kidney tumors. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Combination chemotherapy is treatment using two or more anticancer drugs. Systemic chemotherapy is used to treat Wilms tumor and other childhood kidney tumors. Sometimes chemotherapy is given to reduce the size of the tumor before surgery, in order to save as much healthy tissue as possible and lessen problems after surgery. This is called neoadjuvant chemotherapy. See Drugs Approved for Wilms Tumor and Other Childhood Kidney Cancers for more information. Immunotherapy is a treatment that uses the patient's immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. This cancer treatment is a type of biologic therapy. Interferon and interleukin-2 (IL-2) are types of immunotherapy used to treat childhood renal cell cancer. Interferon may slow tumor growth and may help kill the cancer cells. IL-2 boosts the growth and activity of many immune cells, especially lymphocytes (a type of white blood cell). Lymphocytes can attack and kill cancer cells. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell rescue is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These stem cells grow into (and restore) the body's blood cells. High-dose chemotherapy with stem cell rescue may be used to treat rhabdoid tumor of the kidney or recurrent Wilms tumor. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Targeted therapy used to treat childhood kidney tumors may include the following: Other targeted therapies are being studied for the treatment of childhood kidney tumors that have recurred (come back). Information about clinical trials is available from the NCI website. For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment may include the following:
Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. (See the PDQ summary about Late Effects of Treatment for Childhood Cancer for more information).
Clinical trials are being done to find out if lower doses of chemotherapy and radiation can be used to lessen the late effects of treatment without changing how well the treatment works. Monitoring for late effects involving the kidneys in patients with Wilms tumor and related conditions includes the following: For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I Wilms tumor with favorable histology may include: Treatment of stage I anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage II Wilms tumor with favorable histology may include: Treatment of stage II anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage III Wilms tumor with favorable histology may include: Treatment of stage III anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage IV Wilms tumor with favorable histology may include: Treatment of stage IV anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage V Wilms tumor (bilateral) may be different for each patient and may include: If a kidney transplant is needed because of kidney problems, it is usually delayed until 1 to 2 years after treatment is completed and there are no signs of cancer. (See the Treatment of Recurrent Childhood Kidney Tumors section of this summary for information about recurrent disease.) Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of renal cell cancer may include: See the PDQ summary about Renal Cell Cancer Treatment for more information. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for rhabdoid tumor of the kidney. Treatment may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of clear cell sarcoma of the kidney may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stages I, II, and certain patients with stage III congenital mesoblastic nephroma may include: Treatment for certain patients with stage III congenital mesoblastic nephroma may include: A clinical trial of targeted therapy with a tyrosine kinase inhibitor (larotrectinib) for cancer that has a certain gene change and has not been treated. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for Ewing sarcoma of the kidney. Treatment may include: It may also be treated in the same way that Ewing sarcoma is treated. See the PDQ summary about Ewing Sarcoma Treatment for more information. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for primary renal myoepithelial carcinoma. Treatment may include: Treatment of cystic partially differentiated nephroblastoma may include: Treatment of multilocular cystic nephroma usually includes: Treatment of primary renal synovial sarcoma usually includes: There is no standard treatment for anaplastic sarcoma of the kidney. Treatment is usually the same treatment given for anaplastic Wilms tumor. The treatment of nephroblastomatosis depends on the following: Treatment of nephroblastomatosis may include: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of recurrent Wilms tumor may include: Treatment of recurrent rhabdoid tumor of the kidney may include: Treatment of recurrent clear cell sarcoma of the kidney may include: Treatment of recurrent congenital mesoblastic nephroma may include: Treatment of other recurrent childhood kidney tumors is usually within a clinical trial. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about Wilms tumor and other childhood kidney tumors, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of Wilms tumor and other childhood kidney tumors. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Wilms Tumor and Other Childhood Kidney Tumors Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/kidney/patient/wilms-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389390] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Wilms Tumor and Other Childhood Kidney Tumors Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is (are) Wilms Tumor and Other Childhood Kidney Tumors ? | Key Points
- Childhood kidney tumors are diseases in which malignant (cancer) cells form in the tissues of the kidney. - There are many types of childhood kidney tumors. - Wilms Tumor - Renal Cell Cancer (RCC) - Rhabdoid Tumor of the Kidney - Clear Cell Sarcoma of the Kidney - Congenital Mesoblastic Nephroma - Ewing Sarcoma of the Kidney - Primary Renal Myoepithelial Carcinoma - Cystic Partially Differentiated Nephroblastoma - Multilocular Cystic Nephroma - Primary Renal Synovial Sarcoma - Anaplastic Sarcoma of the Kidney - Nephroblastomatosis is not cancer but may become Wilms tumor. - Having certain genetic syndromes or other conditions can increase the risk of Wilms tumor. - Tests are used to screen for Wilms tumor. - Having certain conditions may increase the risk of renal cell cancer. - Treatment for Wilms tumor and other childhood kidney tumors may include genetic counseling. - Signs of Wilms tumor and other childhood kidney tumors include a lump in the abdomen and blood in the urine. - Tests that examine the kidney and the blood are used to detect (find) and diagnose Wilms tumor and other childhood kidney tumors. - Certain factors affect prognosis (chance of recovery) and treatment options.
Childhood kidney tumors are diseases in which malignant (cancer) cells form in the tissues of the kidney.
There are two kidneys, one on each side of the backbone, above the waist. Tiny tubules in the kidneys filter and clean the blood. They take out waste products and make urine. The urine passes from each kidney through a long tube called a ureter into the bladder. The bladder holds the urine until it passes through the urethra and leaves the body.
There are many types of childhood kidney tumors.
Wilms Tumor In Wilms tumor, one or more tumors may be found in one or both kidneys. Wilms tumor may spread to the lungs, liver, bone, brain, or nearby lymph nodes. In children and adolescents younger than 15 years old, most kidney cancers are Wilms tumors. Renal Cell Cancer (RCC) Renal cell cancer is rare in children and adolescents younger than 15 years old. It is much more common in adolescents between 15 and 19 years old. Children and adolescents are more likely to be diagnosed with a large renal cell tumor or cancer that has spread. Renal cell cancers may spread to the lungs, liver, or lymph nodes. Renal cell cancer may also be called renal cell carcinoma. Rhabdoid Tumor of the Kidney Rhabdoid tumor of the kidney is a type of kidney cancer that occurs mostly in infants and young children. It is often advanced at the time of diagnosis. Rhabdoid tumor of the kidney grows and spreads quickly, often to the lungs or brain. Children with a certain change in the SMARCB1 gene are checked regularly to see if a rhabdoid tumor has formed in the kidney or has spread to the brain: - Children younger than one year old have an ultrasound of the abdomen every two to three months and an ultrasound of the head every month. - Children one to four years old have an ultrasound of the abdomen and an MRI of the brain and spine every three months. Clear Cell Sarcoma of the Kidney Clear cell sarcoma of the kidney is a type of kidney tumor that may spread to the lung, bone, brain, or soft tissue. When it recurs (comes back) after treatment, it often recurs in the brain or lung. Congenital Mesoblastic Nephroma Congenital mesoblastic nephroma is a tumor of the kidney that is often diagnosed during the first year of life. It can usually be cured. Ewing Sarcoma of the Kidney Ewing sarcoma (previously called neuroepithelial tumor) of the kidney is rare and usually occurs in young adults. These tumors grow and spread to other parts of the body quickly. Primary Renal Myoepithelial Carcinoma Primary renal myoepithelial carcinoma is a rare type of cancer that usually affects soft tissues, but sometimes forms in the internal organs (such as the kidney). This type of cancer grows and spreads quickly. Cystic Partially Differentiated Nephroblastoma Cystic partially differentiated nephroblastoma is a very rare type of Wilms tumor made up of cysts. Multilocular Cystic Nephroma Multilocular cystic nephromas are benign tumors made up of cysts and are most common in infants, young children, and adult women. These tumors can occur in one or both kidneys. Children with this type of tumor also may have pleuropulmonary blastoma, so imaging tests that check the lungs for cysts or solid tumors are done. Since multilocular cystic nephroma may be an inherited condition, genetic counseling and genetic testing may be considered. See the PDQ summary about Unusual Cancers of Childhood Treatment for more information about pleuropulmonary blastoma. Primary Renal Synovial Sarcoma Primary renal synovial sarcoma is a cyst-like tumor of the kidney and is most common in young adults. These tumors grow and spread quickly. Anaplastic Sarcoma of the Kidney Anaplastic sarcoma of the kidney is a rare tumor that is most common in children or adolescents younger than 15 years of age. Anaplastic sarcoma of the kidney often spreads to the lungs, liver, or bones. Imaging tests that check the lungs for cysts or solid tumors may be done. Since anaplastic sarcoma may be an inherited condition, genetic counseling and genetic testing may be considered.
Nephroblastomatosis is not cancer but may become Wilms tumor.
Sometimes, after the kidneys form in the fetus, abnormal groups of kidney cells remain in one or both kidneys. In nephroblastomatosis (diffuse hyperplastic perilobar nephroblastomatosis), these abnormal groups of cells may grow in many places inside the kidney or make a thick layer around the kidney. When these groups of abnormal cells are found in a kidney after it was removed for Wilms tumor, the child has an increased risk of Wilms tumor in the other kidney. Frequent follow-up testing is important at least every 3 months, for at least 7 years after the child is treated.
Treatment for Wilms tumor and other childhood kidney tumors may include genetic counseling.
Genetic counseling (a discussion with a trained professional about genetic diseases and whether genetic testing is needed) may be needed if the child has one of the following syndromes or conditions: - A genetic syndrome or condition that increases the risk of Wilms tumor. - An inherited condition that increases the risk of renal cell cancer. - Rhabdoid tumor of the kidney. - Multilocular cystic nephroma. |
There are two kidneys, one on each side of the spine, above the waist. Tiny tubules in the kidneys filter and clean the blood. They take out waste products and make urine. The urine passes from each kidney through a long tube called a ureter into the bladder. The bladder holds the urine until it passes through the urethra and leaves the body. EnlargeAnatomy of the urinary system showing the kidneys, ureters, bladder, and urethra. The inside of the left kidney shows the renal pelvis. An inset shows the renal tubules and urine. Also shown is the spine and adrenal glands. Urine is made in the renal tubules and collects in the renal pelvis of each kidney. The urine flows from the kidneys through the ureters to the bladder. The urine is stored in the bladder until it leaves the body through the urethra. In Wilms tumor, one or more tumors may be found in one or both kidneys. Wilms tumor may spread to the lungs, liver, bone, brain, or nearby lymph nodes. In children and adolescents younger than 15 years old, most kidney cancers are Wilms tumors. Renal cell cancer is rare in children and adolescents younger than 15 years old. It is much more common in adolescents between 15 and 19 years old. Children and adolescents are more likely to be diagnosed with a large renal cell tumor or cancer that has spread. Renal cell cancers may spread to the lungs, liver, bone, or lymph nodes. Renal cell cancer may also be called renal cell carcinoma. Rhabdoid tumor of the kidney is a type of kidney cancer that occurs mostly in infants and young children. It is often advanced at the time of diagnosis. Rhabdoid tumor of the kidney grows and spreads quickly, often to the lungs or brain. Children with a certain change in the SMARCB1 gene can also have tumors grow in the kidney, brain, or soft tissues. These children are checked regularly to see if a rhabdoid tumor has formed in the kidney or the brain: Clear cell sarcoma of the kidney is an uncommon kidney cancer that may spread to the bone, lungs, brain, liver, or soft tissue. It occurs most often before age 3 years. It may recur (come back) up to 14 years after treatment, often in the brain or lung. Congenital mesoblastic nephroma is a tumor of the kidney that is often diagnosed during the first year of life or before birth. It is the most common kidney tumor found in infants younger than 6 months old and is found more often in males than in females. It can usually be cured. Ewing sarcoma (previously called neuroepithelial tumor) of the kidney is rare and usually occurs in young adults. This cancer grows and spreads to other parts of the body quickly. Primary renal myoepithelial carcinoma is a rare type of cancer that usually affects soft tissues, but sometimes forms in the internal organs (such as the kidney). This type of cancer grows and spreads quickly. Cystic partially differentiated nephroblastoma is a very rare type of Wilms tumor made up of cysts. Multilocular cystic nephromas are benign tumors made up of cysts and are most common in infants, young children, and adult women. These tumors can occur in one or both kidneys. Children with this type of tumor also may have pleuropulmonary blastoma, so imaging tests that check the lungs for cysts or solid tumors are done. Since multilocular cystic nephroma may be an inherited condition, genetic counseling and genetic testing may be considered. See the PDQ summary about Childhood Pleuropulmonary Blastoma Treatment for more information. Primary renal synovial sarcoma is a cyst-like tumor of the kidney and is most common in young adults. These tumors grow and spread quickly. Anaplastic sarcoma of the kidney is a rare tumor that is most common in children or adolescents younger than 15 years of age. Anaplastic sarcoma of the kidney often spreads to the lungs, liver, or bones. Imaging tests that check the lungs for cysts or solid tumors may be done. Since anaplastic sarcoma may be an inherited condition, genetic counseling and genetic testing may be considered. Sometimes, after the kidneys form in the fetus, abnormal groups of kidney cells remain in one or both kidneys. In nephroblastomatosis (diffuse hyperplastic perilobar nephroblastomatosis), these abnormal groups of cells may grow in many places inside the kidney or make a thick layer around the kidney. When these groups of abnormal cells are found in a kidney after it was removed for Wilms tumor, the child has an increased risk of Wilms tumor in the other kidney. Frequent follow-up testing is important at least every 3 months, for at least 7 years after the child is diagnosed or treated. Anything that increases the risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your child's doctor if you think your child may be at risk. Wilms tumor may be part of a genetic syndrome that affects growth or development. A genetic syndrome is a set of signs and symptoms or conditions that occur together and is caused by certain changes in the genes. Certain conditions or environmental exposures can also increase a child's risk of developing Wilms tumor. The following have been linked to Wilms tumor: Screening tests are done in children with an increased risk of Wilms tumor. These tests may help find cancer early and decrease the chance of dying from cancer. In general, children with an increased risk of Wilms tumor should be screened for Wilms tumor every 3 months until they are at least 8 years old. An ultrasound test of the abdomen is usually used for screening. Small Wilms tumors may be found and removed before symptoms occur. Children with Beckwith-Wiedemann syndrome or hemihyperplasia are also screened for liver and adrenal tumors that are linked to these genetic syndromes. A test to check the alpha-fetoprotein (AFP) level in the blood and an ultrasound of the abdomen are done until the child is 4 years old. An ultrasound of the kidneys is done between the ages of 4 and 7 years old. A physical exam by a specialist (geneticist or pediatric oncologist) is done two times each year. In children with certain gene changes, a different schedule for ultrasound of the abdomen may be used. Children with aniridia and a certain gene change are screened for Wilms tumor every 3 months until they are 8 years old. An ultrasound test of the abdomen is used for screening. Some children develop Wilms tumor in both kidneys. These often appear when Wilms tumor is first diagnosed, but Wilms tumor may also occur in the second kidney after the child is successfully treated for Wilms tumor in one kidney. Children with an increased risk of a second Wilms tumor in the other kidney should be screened for Wilms tumor every 3 months for up to 8 years. An ultrasound test of the abdomen may be used for screening. Renal cell cancer may be related to the following conditions: Prior chemotherapy or radiation therapy for a childhood cancer, such as neuroblastoma, soft tissue sarcoma, leukemia, or Wilms tumor may also increase the risk of renal cell cancer. See the Second Cancers section in the PDQ summary about Late Effects of Treatment for Childhood Cancer for more information. Genetic counseling (a discussion with a trained professional about genetic diseases and whether genetic testing is needed) may be done if the child has one of the following syndromes or conditions: Sometimes childhood kidney tumors do not cause signs and symptoms and the parent finds a mass in the abdomen by chance or the mass is found during a well-child health check-up. These and other signs and symptoms may be caused by kidney tumors or by other conditions. Check with your child's doctor if your child has any of the following: Wilms tumor that has spread to the lungs or liver may cause the following signs and symptoms: The following tests and procedures may be used: The prognosis and treatment options for Wilms tumor depend on the following: The prognosis for renal cell cancer depends on the following: The prognosis for rhabdoid tumor of the kidney depends on the following: The prognosis for clear cell sarcoma of the kidney depends on the following: The process used to find out if cancer has spread outside of the kidney to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. The results of the tests and procedures done to diagnose and stage Wilms tumor are used to help make decisions about treatment. There is no staging for the other types of childhood kidney tumors. The treatment of these tumors depends on the tumor type. The following tests may be done to see if cancer has spread to other places in the body: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if Wilms tumor spreads to the lung, the cancer cells in the lung are actually Wilms tumor cells. The disease is metastatic Wilms tumor, not lung cancer. The histology (how the cells look under a microscope) of the tumor affects the prognosis and the treatment of Wilms tumor. The histology may be favorable or anaplastic (unfavorable). Tumors with a favorable histology have a better prognosis and respond better to chemotherapy than anaplastic tumors. Tumor cells that are anaplastic divide quickly and under a microscope do not look like the type of cells they came from. Anaplastic tumors are harder to treat with chemotherapy than other Wilms tumors at the same stage. In stage I, the tumor was completely removed by surgery and all of the following are true: In stage II, the tumor was completely removed by surgery and no cancer cells were found at the edges of the area where the cancer was removed. Cancer has not spread to lymph nodes. Before the tumor was removed, one of the following was true: In stage III, cancer remains in the abdomen after surgery and at least one of the following is true: In stage IV, cancer has spread through the blood to organs such as the lungs, liver, bone, or brain, or to lymph nodes outside the abdomen and pelvis. In stage V (bilateral) Wilms tumor, cancer cells are found in both kidneys when the cancer is first diagnosed. The cancer in each kidney is staged separately as stage I, II, III, or IV. Childhood Wilms tumor may recur (come back) in the lungs, abdomen, liver, or other places in the body. Childhood clear cell sarcoma of the kidney may recur in the brain, lungs, or other places in the body. Childhood congenital mesoblastic nephroma may recur in the kidneys or in other places in the body. Different types of treatment are available for children with Wilms and other childhood kidney tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment.
Your child's treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with Wilms tumor or other childhood kidney tumors and who specialize in certain areas of medicine. These may include the following specialists: Two types of surgery are used to treat kidney tumors: After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Sometimes, a second-look surgery is done to see if cancer remains after chemotherapy or radiation therapy. Sometimes the tumor cannot be removed by surgery for one of the following reasons: In this case, a biopsy is done first. Then chemotherapy is given to reduce the size of the tumor before surgery, in order to save as much healthy tissue as possible and lessen problems after surgery. This is called neoadjuvant chemotherapy. Radiation therapy is given after surgery. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. External radiation therapy is used to treat Wilms tumor and other childhood kidney tumors. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Combination chemotherapy is treatment using two or more anticancer drugs. Systemic chemotherapy is used to treat Wilms tumor and other childhood kidney tumors. Sometimes chemotherapy is given to reduce the size of the tumor before surgery, in order to save as much healthy tissue as possible and lessen problems after surgery. This is called neoadjuvant chemotherapy. See Drugs Approved for Wilms Tumor and Other Childhood Kidney Cancers for more information. Immunotherapy is a treatment that uses the patient's immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. This cancer treatment is a type of biologic therapy. Interferon and interleukin-2 (IL-2) are types of immunotherapy used to treat childhood renal cell cancer. Interferon may slow tumor growth and may help kill the cancer cells. IL-2 boosts the growth and activity of many immune cells, especially lymphocytes (a type of white blood cell). Lymphocytes can attack and kill cancer cells. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell rescue is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These stem cells grow into (and restore) the body's blood cells. High-dose chemotherapy with stem cell rescue may be used to treat rhabdoid tumor of the kidney or recurrent Wilms tumor. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Targeted therapy used to treat childhood kidney tumors may include the following: Other targeted therapies are being studied for the treatment of childhood kidney tumors that have recurred (come back). Information about clinical trials is available from the NCI website. For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment may include the following:
Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. (See the PDQ summary about Late Effects of Treatment for Childhood Cancer for more information).
Clinical trials are being done to find out if lower doses of chemotherapy and radiation can be used to lessen the late effects of treatment without changing how well the treatment works. Monitoring for late effects involving the kidneys in patients with Wilms tumor and related conditions includes the following: For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I Wilms tumor with favorable histology may include: Treatment of stage I anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage II Wilms tumor with favorable histology may include: Treatment of stage II anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage III Wilms tumor with favorable histology may include: Treatment of stage III anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage IV Wilms tumor with favorable histology may include: Treatment of stage IV anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage V Wilms tumor (bilateral) may be different for each patient and may include: If a kidney transplant is needed because of kidney problems, it is usually delayed until 1 to 2 years after treatment is completed and there are no signs of cancer. (See the Treatment of Recurrent Childhood Kidney Tumors section of this summary for information about recurrent disease.) Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of renal cell cancer may include: See the PDQ summary about Renal Cell Cancer Treatment for more information. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for rhabdoid tumor of the kidney. Treatment may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of clear cell sarcoma of the kidney may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stages I, II, and certain patients with stage III congenital mesoblastic nephroma may include: Treatment for certain patients with stage III congenital mesoblastic nephroma may include: A clinical trial of targeted therapy with a tyrosine kinase inhibitor (larotrectinib) for cancer that has a certain gene change and has not been treated. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for Ewing sarcoma of the kidney. Treatment may include: It may also be treated in the same way that Ewing sarcoma is treated. See the PDQ summary about Ewing Sarcoma Treatment for more information. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for primary renal myoepithelial carcinoma. Treatment may include: Treatment of cystic partially differentiated nephroblastoma may include: Treatment of multilocular cystic nephroma usually includes: Treatment of primary renal synovial sarcoma usually includes: There is no standard treatment for anaplastic sarcoma of the kidney. Treatment is usually the same treatment given for anaplastic Wilms tumor. The treatment of nephroblastomatosis depends on the following: Treatment of nephroblastomatosis may include: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of recurrent Wilms tumor may include: Treatment of recurrent rhabdoid tumor of the kidney may include: Treatment of recurrent clear cell sarcoma of the kidney may include: Treatment of recurrent congenital mesoblastic nephroma may include: Treatment of other recurrent childhood kidney tumors is usually within a clinical trial. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about Wilms tumor and other childhood kidney tumors, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of Wilms tumor and other childhood kidney tumors. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Wilms Tumor and Other Childhood Kidney Tumors Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/kidney/patient/wilms-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389390] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Wilms Tumor and Other Childhood Kidney Tumors Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | Who is at risk for Wilms Tumor and Other Childhood Kidney Tumors? ? | Having certain genetic syndromes or other conditions can increase the risk of Wilms tumor.
Anything that increases the risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your child's doctor if you think your child may be at risk. Wilms tumor may be part of a genetic syndrome that affects growth or development. A genetic syndrome is a set of signs and symptoms or conditions that occur together and is caused by certain changes in the genes. Certain conditions can also increase a child's risk of developing Wilms tumor. These and other genetic syndromes and conditions have been linked to Wilms tumor: - WAGR syndrome (Wilms tumor, aniridia, abnormal genitourinary system, and mental retardation). - Denys-Drash syndrome (abnormal genitourinary system). - Frasier syndrome (abnormal genitourinary system). - Beckwith-Wiedemann syndrome (abnormally large growth of one side of the body or a body part, large tongue, umbilical hernia at birth, and abnormal genitourinary system). - A family history of Wilms tumor. - Aniridia (the iris, the colored part of the eye, is missing). - Isolated hemihyperplasia (abnormally large growth of one side of the body or a body part). - Urinary tract problems such as cryptorchidism or hypospadias.
Having certain conditions may increase the risk of renal cell cancer.
Renal cell cancer may be related to the following conditions: - Von Hippel-Lindau disease (an inherited condition that causes abnormal growth of blood vessels). Children with Von Hippel-Lindau disease should be checked yearly for renal cell cancer with an ultrasound of the abdomen or an MRI (magnetic resonance imaging) beginning at age 8 to 11 years. - Tuberous sclerosis (an inherited disease marked by noncancerous fatty cysts in the kidney). - Familial renal cell cancer (an inherited condition that occurs when certain changes in the genes that cause kidney cancer are passed down from the parent to the child). - Renal medullary cancer (a rare kidney cancer that grows and spreads quickly). - Hereditary leiomyomatosis (an inherited disorder that increases the risk of having cancer of the kidney, skin, and uterus). Prior chemotherapy or radiation therapy for a childhood cancer, such as neuroblastoma, soft tissue sarcoma, leukemia, or Wilms tumor may also increase the risk of renal cell cancer. See the Second Cancers section in the PDQ summary about Late Effects of Treatment for Childhood Cancer for more information. |
There are two kidneys, one on each side of the spine, above the waist. Tiny tubules in the kidneys filter and clean the blood. They take out waste products and make urine. The urine passes from each kidney through a long tube called a ureter into the bladder. The bladder holds the urine until it passes through the urethra and leaves the body. EnlargeAnatomy of the urinary system showing the kidneys, ureters, bladder, and urethra. The inside of the left kidney shows the renal pelvis. An inset shows the renal tubules and urine. Also shown is the spine and adrenal glands. Urine is made in the renal tubules and collects in the renal pelvis of each kidney. The urine flows from the kidneys through the ureters to the bladder. The urine is stored in the bladder until it leaves the body through the urethra. In Wilms tumor, one or more tumors may be found in one or both kidneys. Wilms tumor may spread to the lungs, liver, bone, brain, or nearby lymph nodes. In children and adolescents younger than 15 years old, most kidney cancers are Wilms tumors. Renal cell cancer is rare in children and adolescents younger than 15 years old. It is much more common in adolescents between 15 and 19 years old. Children and adolescents are more likely to be diagnosed with a large renal cell tumor or cancer that has spread. Renal cell cancers may spread to the lungs, liver, bone, or lymph nodes. Renal cell cancer may also be called renal cell carcinoma. Rhabdoid tumor of the kidney is a type of kidney cancer that occurs mostly in infants and young children. It is often advanced at the time of diagnosis. Rhabdoid tumor of the kidney grows and spreads quickly, often to the lungs or brain. Children with a certain change in the SMARCB1 gene can also have tumors grow in the kidney, brain, or soft tissues. These children are checked regularly to see if a rhabdoid tumor has formed in the kidney or the brain: Clear cell sarcoma of the kidney is an uncommon kidney cancer that may spread to the bone, lungs, brain, liver, or soft tissue. It occurs most often before age 3 years. It may recur (come back) up to 14 years after treatment, often in the brain or lung. Congenital mesoblastic nephroma is a tumor of the kidney that is often diagnosed during the first year of life or before birth. It is the most common kidney tumor found in infants younger than 6 months old and is found more often in males than in females. It can usually be cured. Ewing sarcoma (previously called neuroepithelial tumor) of the kidney is rare and usually occurs in young adults. This cancer grows and spreads to other parts of the body quickly. Primary renal myoepithelial carcinoma is a rare type of cancer that usually affects soft tissues, but sometimes forms in the internal organs (such as the kidney). This type of cancer grows and spreads quickly. Cystic partially differentiated nephroblastoma is a very rare type of Wilms tumor made up of cysts. Multilocular cystic nephromas are benign tumors made up of cysts and are most common in infants, young children, and adult women. These tumors can occur in one or both kidneys. Children with this type of tumor also may have pleuropulmonary blastoma, so imaging tests that check the lungs for cysts or solid tumors are done. Since multilocular cystic nephroma may be an inherited condition, genetic counseling and genetic testing may be considered. See the PDQ summary about Childhood Pleuropulmonary Blastoma Treatment for more information. Primary renal synovial sarcoma is a cyst-like tumor of the kidney and is most common in young adults. These tumors grow and spread quickly. Anaplastic sarcoma of the kidney is a rare tumor that is most common in children or adolescents younger than 15 years of age. Anaplastic sarcoma of the kidney often spreads to the lungs, liver, or bones. Imaging tests that check the lungs for cysts or solid tumors may be done. Since anaplastic sarcoma may be an inherited condition, genetic counseling and genetic testing may be considered. Sometimes, after the kidneys form in the fetus, abnormal groups of kidney cells remain in one or both kidneys. In nephroblastomatosis (diffuse hyperplastic perilobar nephroblastomatosis), these abnormal groups of cells may grow in many places inside the kidney or make a thick layer around the kidney. When these groups of abnormal cells are found in a kidney after it was removed for Wilms tumor, the child has an increased risk of Wilms tumor in the other kidney. Frequent follow-up testing is important at least every 3 months, for at least 7 years after the child is diagnosed or treated. Anything that increases the risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your child's doctor if you think your child may be at risk. Wilms tumor may be part of a genetic syndrome that affects growth or development. A genetic syndrome is a set of signs and symptoms or conditions that occur together and is caused by certain changes in the genes. Certain conditions or environmental exposures can also increase a child's risk of developing Wilms tumor. The following have been linked to Wilms tumor: Screening tests are done in children with an increased risk of Wilms tumor. These tests may help find cancer early and decrease the chance of dying from cancer. In general, children with an increased risk of Wilms tumor should be screened for Wilms tumor every 3 months until they are at least 8 years old. An ultrasound test of the abdomen is usually used for screening. Small Wilms tumors may be found and removed before symptoms occur. Children with Beckwith-Wiedemann syndrome or hemihyperplasia are also screened for liver and adrenal tumors that are linked to these genetic syndromes. A test to check the alpha-fetoprotein (AFP) level in the blood and an ultrasound of the abdomen are done until the child is 4 years old. An ultrasound of the kidneys is done between the ages of 4 and 7 years old. A physical exam by a specialist (geneticist or pediatric oncologist) is done two times each year. In children with certain gene changes, a different schedule for ultrasound of the abdomen may be used. Children with aniridia and a certain gene change are screened for Wilms tumor every 3 months until they are 8 years old. An ultrasound test of the abdomen is used for screening. Some children develop Wilms tumor in both kidneys. These often appear when Wilms tumor is first diagnosed, but Wilms tumor may also occur in the second kidney after the child is successfully treated for Wilms tumor in one kidney. Children with an increased risk of a second Wilms tumor in the other kidney should be screened for Wilms tumor every 3 months for up to 8 years. An ultrasound test of the abdomen may be used for screening. Renal cell cancer may be related to the following conditions: Prior chemotherapy or radiation therapy for a childhood cancer, such as neuroblastoma, soft tissue sarcoma, leukemia, or Wilms tumor may also increase the risk of renal cell cancer. See the Second Cancers section in the PDQ summary about Late Effects of Treatment for Childhood Cancer for more information. Genetic counseling (a discussion with a trained professional about genetic diseases and whether genetic testing is needed) may be done if the child has one of the following syndromes or conditions: Sometimes childhood kidney tumors do not cause signs and symptoms and the parent finds a mass in the abdomen by chance or the mass is found during a well-child health check-up. These and other signs and symptoms may be caused by kidney tumors or by other conditions. Check with your child's doctor if your child has any of the following: Wilms tumor that has spread to the lungs or liver may cause the following signs and symptoms: The following tests and procedures may be used: The prognosis and treatment options for Wilms tumor depend on the following: The prognosis for renal cell cancer depends on the following: The prognosis for rhabdoid tumor of the kidney depends on the following: The prognosis for clear cell sarcoma of the kidney depends on the following: The process used to find out if cancer has spread outside of the kidney to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. The results of the tests and procedures done to diagnose and stage Wilms tumor are used to help make decisions about treatment. There is no staging for the other types of childhood kidney tumors. The treatment of these tumors depends on the tumor type. The following tests may be done to see if cancer has spread to other places in the body: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if Wilms tumor spreads to the lung, the cancer cells in the lung are actually Wilms tumor cells. The disease is metastatic Wilms tumor, not lung cancer. The histology (how the cells look under a microscope) of the tumor affects the prognosis and the treatment of Wilms tumor. The histology may be favorable or anaplastic (unfavorable). Tumors with a favorable histology have a better prognosis and respond better to chemotherapy than anaplastic tumors. Tumor cells that are anaplastic divide quickly and under a microscope do not look like the type of cells they came from. Anaplastic tumors are harder to treat with chemotherapy than other Wilms tumors at the same stage. In stage I, the tumor was completely removed by surgery and all of the following are true: In stage II, the tumor was completely removed by surgery and no cancer cells were found at the edges of the area where the cancer was removed. Cancer has not spread to lymph nodes. Before the tumor was removed, one of the following was true: In stage III, cancer remains in the abdomen after surgery and at least one of the following is true: In stage IV, cancer has spread through the blood to organs such as the lungs, liver, bone, or brain, or to lymph nodes outside the abdomen and pelvis. In stage V (bilateral) Wilms tumor, cancer cells are found in both kidneys when the cancer is first diagnosed. The cancer in each kidney is staged separately as stage I, II, III, or IV. Childhood Wilms tumor may recur (come back) in the lungs, abdomen, liver, or other places in the body. Childhood clear cell sarcoma of the kidney may recur in the brain, lungs, or other places in the body. Childhood congenital mesoblastic nephroma may recur in the kidneys or in other places in the body. Different types of treatment are available for children with Wilms and other childhood kidney tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment.
Your child's treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with Wilms tumor or other childhood kidney tumors and who specialize in certain areas of medicine. These may include the following specialists: Two types of surgery are used to treat kidney tumors: After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Sometimes, a second-look surgery is done to see if cancer remains after chemotherapy or radiation therapy. Sometimes the tumor cannot be removed by surgery for one of the following reasons: In this case, a biopsy is done first. Then chemotherapy is given to reduce the size of the tumor before surgery, in order to save as much healthy tissue as possible and lessen problems after surgery. This is called neoadjuvant chemotherapy. Radiation therapy is given after surgery. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. External radiation therapy is used to treat Wilms tumor and other childhood kidney tumors. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Combination chemotherapy is treatment using two or more anticancer drugs. Systemic chemotherapy is used to treat Wilms tumor and other childhood kidney tumors. Sometimes chemotherapy is given to reduce the size of the tumor before surgery, in order to save as much healthy tissue as possible and lessen problems after surgery. This is called neoadjuvant chemotherapy. See Drugs Approved for Wilms Tumor and Other Childhood Kidney Cancers for more information. Immunotherapy is a treatment that uses the patient's immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. This cancer treatment is a type of biologic therapy. Interferon and interleukin-2 (IL-2) are types of immunotherapy used to treat childhood renal cell cancer. Interferon may slow tumor growth and may help kill the cancer cells. IL-2 boosts the growth and activity of many immune cells, especially lymphocytes (a type of white blood cell). Lymphocytes can attack and kill cancer cells. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell rescue is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These stem cells grow into (and restore) the body's blood cells. High-dose chemotherapy with stem cell rescue may be used to treat rhabdoid tumor of the kidney or recurrent Wilms tumor. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Targeted therapy used to treat childhood kidney tumors may include the following: Other targeted therapies are being studied for the treatment of childhood kidney tumors that have recurred (come back). Information about clinical trials is available from the NCI website. For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment may include the following:
Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. (See the PDQ summary about Late Effects of Treatment for Childhood Cancer for more information).
Clinical trials are being done to find out if lower doses of chemotherapy and radiation can be used to lessen the late effects of treatment without changing how well the treatment works. Monitoring for late effects involving the kidneys in patients with Wilms tumor and related conditions includes the following: For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I Wilms tumor with favorable histology may include: Treatment of stage I anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage II Wilms tumor with favorable histology may include: Treatment of stage II anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage III Wilms tumor with favorable histology may include: Treatment of stage III anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage IV Wilms tumor with favorable histology may include: Treatment of stage IV anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage V Wilms tumor (bilateral) may be different for each patient and may include: If a kidney transplant is needed because of kidney problems, it is usually delayed until 1 to 2 years after treatment is completed and there are no signs of cancer. (See the Treatment of Recurrent Childhood Kidney Tumors section of this summary for information about recurrent disease.) Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of renal cell cancer may include: See the PDQ summary about Renal Cell Cancer Treatment for more information. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for rhabdoid tumor of the kidney. Treatment may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of clear cell sarcoma of the kidney may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stages I, II, and certain patients with stage III congenital mesoblastic nephroma may include: Treatment for certain patients with stage III congenital mesoblastic nephroma may include: A clinical trial of targeted therapy with a tyrosine kinase inhibitor (larotrectinib) for cancer that has a certain gene change and has not been treated. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for Ewing sarcoma of the kidney. Treatment may include: It may also be treated in the same way that Ewing sarcoma is treated. See the PDQ summary about Ewing Sarcoma Treatment for more information. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for primary renal myoepithelial carcinoma. Treatment may include: Treatment of cystic partially differentiated nephroblastoma may include: Treatment of multilocular cystic nephroma usually includes: Treatment of primary renal synovial sarcoma usually includes: There is no standard treatment for anaplastic sarcoma of the kidney. Treatment is usually the same treatment given for anaplastic Wilms tumor. The treatment of nephroblastomatosis depends on the following: Treatment of nephroblastomatosis may include: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of recurrent Wilms tumor may include: Treatment of recurrent rhabdoid tumor of the kidney may include: Treatment of recurrent clear cell sarcoma of the kidney may include: Treatment of recurrent congenital mesoblastic nephroma may include: Treatment of other recurrent childhood kidney tumors is usually within a clinical trial. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about Wilms tumor and other childhood kidney tumors, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of Wilms tumor and other childhood kidney tumors. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Wilms Tumor and Other Childhood Kidney Tumors Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/kidney/patient/wilms-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389390] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Wilms Tumor and Other Childhood Kidney Tumors Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the symptoms of Wilms Tumor and Other Childhood Kidney Tumors ? | Signs of Wilms tumor and other childhood kidney tumors include a lump in the abdomen and blood in the urine. Sometimes childhood kidney tumors do not cause signs and symptoms and the parent finds a mass in the abdomen by chance or the mass is found during a well-child health check up. These and other signs and symptoms may be caused by kidney tumors or by other conditions. Check with your child's doctor if your child has any of the following: - A lump, swelling, or pain in the abdomen. - Blood in the urine. - High blood pressure (headache, feeling very tired, chest pain, or trouble seeing or breathing). - Hypercalcemia (loss of appetite, nausea and vomiting, weakness, or feeling very tired). - Fever for no known reason. - Loss of appetite. - Weight loss for no known reason. Wilms tumor that has spread to the lungs or liver may cause the following signs and symptoms: - Cough. - Blood in the sputum. - Trouble breathing. - Pain in the abdomen. |
There are two kidneys, one on each side of the spine, above the waist. Tiny tubules in the kidneys filter and clean the blood. They take out waste products and make urine. The urine passes from each kidney through a long tube called a ureter into the bladder. The bladder holds the urine until it passes through the urethra and leaves the body. EnlargeAnatomy of the urinary system showing the kidneys, ureters, bladder, and urethra. The inside of the left kidney shows the renal pelvis. An inset shows the renal tubules and urine. Also shown is the spine and adrenal glands. Urine is made in the renal tubules and collects in the renal pelvis of each kidney. The urine flows from the kidneys through the ureters to the bladder. The urine is stored in the bladder until it leaves the body through the urethra. In Wilms tumor, one or more tumors may be found in one or both kidneys. Wilms tumor may spread to the lungs, liver, bone, brain, or nearby lymph nodes. In children and adolescents younger than 15 years old, most kidney cancers are Wilms tumors. Renal cell cancer is rare in children and adolescents younger than 15 years old. It is much more common in adolescents between 15 and 19 years old. Children and adolescents are more likely to be diagnosed with a large renal cell tumor or cancer that has spread. Renal cell cancers may spread to the lungs, liver, bone, or lymph nodes. Renal cell cancer may also be called renal cell carcinoma. Rhabdoid tumor of the kidney is a type of kidney cancer that occurs mostly in infants and young children. It is often advanced at the time of diagnosis. Rhabdoid tumor of the kidney grows and spreads quickly, often to the lungs or brain. Children with a certain change in the SMARCB1 gene can also have tumors grow in the kidney, brain, or soft tissues. These children are checked regularly to see if a rhabdoid tumor has formed in the kidney or the brain: Clear cell sarcoma of the kidney is an uncommon kidney cancer that may spread to the bone, lungs, brain, liver, or soft tissue. It occurs most often before age 3 years. It may recur (come back) up to 14 years after treatment, often in the brain or lung. Congenital mesoblastic nephroma is a tumor of the kidney that is often diagnosed during the first year of life or before birth. It is the most common kidney tumor found in infants younger than 6 months old and is found more often in males than in females. It can usually be cured. Ewing sarcoma (previously called neuroepithelial tumor) of the kidney is rare and usually occurs in young adults. This cancer grows and spreads to other parts of the body quickly. Primary renal myoepithelial carcinoma is a rare type of cancer that usually affects soft tissues, but sometimes forms in the internal organs (such as the kidney). This type of cancer grows and spreads quickly. Cystic partially differentiated nephroblastoma is a very rare type of Wilms tumor made up of cysts. Multilocular cystic nephromas are benign tumors made up of cysts and are most common in infants, young children, and adult women. These tumors can occur in one or both kidneys. Children with this type of tumor also may have pleuropulmonary blastoma, so imaging tests that check the lungs for cysts or solid tumors are done. Since multilocular cystic nephroma may be an inherited condition, genetic counseling and genetic testing may be considered. See the PDQ summary about Childhood Pleuropulmonary Blastoma Treatment for more information. Primary renal synovial sarcoma is a cyst-like tumor of the kidney and is most common in young adults. These tumors grow and spread quickly. Anaplastic sarcoma of the kidney is a rare tumor that is most common in children or adolescents younger than 15 years of age. Anaplastic sarcoma of the kidney often spreads to the lungs, liver, or bones. Imaging tests that check the lungs for cysts or solid tumors may be done. Since anaplastic sarcoma may be an inherited condition, genetic counseling and genetic testing may be considered. Sometimes, after the kidneys form in the fetus, abnormal groups of kidney cells remain in one or both kidneys. In nephroblastomatosis (diffuse hyperplastic perilobar nephroblastomatosis), these abnormal groups of cells may grow in many places inside the kidney or make a thick layer around the kidney. When these groups of abnormal cells are found in a kidney after it was removed for Wilms tumor, the child has an increased risk of Wilms tumor in the other kidney. Frequent follow-up testing is important at least every 3 months, for at least 7 years after the child is diagnosed or treated. Anything that increases the risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your child's doctor if you think your child may be at risk. Wilms tumor may be part of a genetic syndrome that affects growth or development. A genetic syndrome is a set of signs and symptoms or conditions that occur together and is caused by certain changes in the genes. Certain conditions or environmental exposures can also increase a child's risk of developing Wilms tumor. The following have been linked to Wilms tumor: Screening tests are done in children with an increased risk of Wilms tumor. These tests may help find cancer early and decrease the chance of dying from cancer. In general, children with an increased risk of Wilms tumor should be screened for Wilms tumor every 3 months until they are at least 8 years old. An ultrasound test of the abdomen is usually used for screening. Small Wilms tumors may be found and removed before symptoms occur. Children with Beckwith-Wiedemann syndrome or hemihyperplasia are also screened for liver and adrenal tumors that are linked to these genetic syndromes. A test to check the alpha-fetoprotein (AFP) level in the blood and an ultrasound of the abdomen are done until the child is 4 years old. An ultrasound of the kidneys is done between the ages of 4 and 7 years old. A physical exam by a specialist (geneticist or pediatric oncologist) is done two times each year. In children with certain gene changes, a different schedule for ultrasound of the abdomen may be used. Children with aniridia and a certain gene change are screened for Wilms tumor every 3 months until they are 8 years old. An ultrasound test of the abdomen is used for screening. Some children develop Wilms tumor in both kidneys. These often appear when Wilms tumor is first diagnosed, but Wilms tumor may also occur in the second kidney after the child is successfully treated for Wilms tumor in one kidney. Children with an increased risk of a second Wilms tumor in the other kidney should be screened for Wilms tumor every 3 months for up to 8 years. An ultrasound test of the abdomen may be used for screening. Renal cell cancer may be related to the following conditions: Prior chemotherapy or radiation therapy for a childhood cancer, such as neuroblastoma, soft tissue sarcoma, leukemia, or Wilms tumor may also increase the risk of renal cell cancer. See the Second Cancers section in the PDQ summary about Late Effects of Treatment for Childhood Cancer for more information. Genetic counseling (a discussion with a trained professional about genetic diseases and whether genetic testing is needed) may be done if the child has one of the following syndromes or conditions: Sometimes childhood kidney tumors do not cause signs and symptoms and the parent finds a mass in the abdomen by chance or the mass is found during a well-child health check-up. These and other signs and symptoms may be caused by kidney tumors or by other conditions. Check with your child's doctor if your child has any of the following: Wilms tumor that has spread to the lungs or liver may cause the following signs and symptoms: The following tests and procedures may be used: The prognosis and treatment options for Wilms tumor depend on the following: The prognosis for renal cell cancer depends on the following: The prognosis for rhabdoid tumor of the kidney depends on the following: The prognosis for clear cell sarcoma of the kidney depends on the following: The process used to find out if cancer has spread outside of the kidney to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. The results of the tests and procedures done to diagnose and stage Wilms tumor are used to help make decisions about treatment. There is no staging for the other types of childhood kidney tumors. The treatment of these tumors depends on the tumor type. The following tests may be done to see if cancer has spread to other places in the body: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if Wilms tumor spreads to the lung, the cancer cells in the lung are actually Wilms tumor cells. The disease is metastatic Wilms tumor, not lung cancer. The histology (how the cells look under a microscope) of the tumor affects the prognosis and the treatment of Wilms tumor. The histology may be favorable or anaplastic (unfavorable). Tumors with a favorable histology have a better prognosis and respond better to chemotherapy than anaplastic tumors. Tumor cells that are anaplastic divide quickly and under a microscope do not look like the type of cells they came from. Anaplastic tumors are harder to treat with chemotherapy than other Wilms tumors at the same stage. In stage I, the tumor was completely removed by surgery and all of the following are true: In stage II, the tumor was completely removed by surgery and no cancer cells were found at the edges of the area where the cancer was removed. Cancer has not spread to lymph nodes. Before the tumor was removed, one of the following was true: In stage III, cancer remains in the abdomen after surgery and at least one of the following is true: In stage IV, cancer has spread through the blood to organs such as the lungs, liver, bone, or brain, or to lymph nodes outside the abdomen and pelvis. In stage V (bilateral) Wilms tumor, cancer cells are found in both kidneys when the cancer is first diagnosed. The cancer in each kidney is staged separately as stage I, II, III, or IV. Childhood Wilms tumor may recur (come back) in the lungs, abdomen, liver, or other places in the body. Childhood clear cell sarcoma of the kidney may recur in the brain, lungs, or other places in the body. Childhood congenital mesoblastic nephroma may recur in the kidneys or in other places in the body. Different types of treatment are available for children with Wilms and other childhood kidney tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment.
Your child's treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with Wilms tumor or other childhood kidney tumors and who specialize in certain areas of medicine. These may include the following specialists: Two types of surgery are used to treat kidney tumors: After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Sometimes, a second-look surgery is done to see if cancer remains after chemotherapy or radiation therapy. Sometimes the tumor cannot be removed by surgery for one of the following reasons: In this case, a biopsy is done first. Then chemotherapy is given to reduce the size of the tumor before surgery, in order to save as much healthy tissue as possible and lessen problems after surgery. This is called neoadjuvant chemotherapy. Radiation therapy is given after surgery. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. External radiation therapy is used to treat Wilms tumor and other childhood kidney tumors. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Combination chemotherapy is treatment using two or more anticancer drugs. Systemic chemotherapy is used to treat Wilms tumor and other childhood kidney tumors. Sometimes chemotherapy is given to reduce the size of the tumor before surgery, in order to save as much healthy tissue as possible and lessen problems after surgery. This is called neoadjuvant chemotherapy. See Drugs Approved for Wilms Tumor and Other Childhood Kidney Cancers for more information. Immunotherapy is a treatment that uses the patient's immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. This cancer treatment is a type of biologic therapy. Interferon and interleukin-2 (IL-2) are types of immunotherapy used to treat childhood renal cell cancer. Interferon may slow tumor growth and may help kill the cancer cells. IL-2 boosts the growth and activity of many immune cells, especially lymphocytes (a type of white blood cell). Lymphocytes can attack and kill cancer cells. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell rescue is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These stem cells grow into (and restore) the body's blood cells. High-dose chemotherapy with stem cell rescue may be used to treat rhabdoid tumor of the kidney or recurrent Wilms tumor. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Targeted therapy used to treat childhood kidney tumors may include the following: Other targeted therapies are being studied for the treatment of childhood kidney tumors that have recurred (come back). Information about clinical trials is available from the NCI website. For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment may include the following:
Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. (See the PDQ summary about Late Effects of Treatment for Childhood Cancer for more information).
Clinical trials are being done to find out if lower doses of chemotherapy and radiation can be used to lessen the late effects of treatment without changing how well the treatment works. Monitoring for late effects involving the kidneys in patients with Wilms tumor and related conditions includes the following: For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I Wilms tumor with favorable histology may include: Treatment of stage I anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage II Wilms tumor with favorable histology may include: Treatment of stage II anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage III Wilms tumor with favorable histology may include: Treatment of stage III anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage IV Wilms tumor with favorable histology may include: Treatment of stage IV anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage V Wilms tumor (bilateral) may be different for each patient and may include: If a kidney transplant is needed because of kidney problems, it is usually delayed until 1 to 2 years after treatment is completed and there are no signs of cancer. (See the Treatment of Recurrent Childhood Kidney Tumors section of this summary for information about recurrent disease.) Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of renal cell cancer may include: See the PDQ summary about Renal Cell Cancer Treatment for more information. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for rhabdoid tumor of the kidney. Treatment may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of clear cell sarcoma of the kidney may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stages I, II, and certain patients with stage III congenital mesoblastic nephroma may include: Treatment for certain patients with stage III congenital mesoblastic nephroma may include: A clinical trial of targeted therapy with a tyrosine kinase inhibitor (larotrectinib) for cancer that has a certain gene change and has not been treated. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for Ewing sarcoma of the kidney. Treatment may include: It may also be treated in the same way that Ewing sarcoma is treated. See the PDQ summary about Ewing Sarcoma Treatment for more information. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for primary renal myoepithelial carcinoma. Treatment may include: Treatment of cystic partially differentiated nephroblastoma may include: Treatment of multilocular cystic nephroma usually includes: Treatment of primary renal synovial sarcoma usually includes: There is no standard treatment for anaplastic sarcoma of the kidney. Treatment is usually the same treatment given for anaplastic Wilms tumor. The treatment of nephroblastomatosis depends on the following: Treatment of nephroblastomatosis may include: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of recurrent Wilms tumor may include: Treatment of recurrent rhabdoid tumor of the kidney may include: Treatment of recurrent clear cell sarcoma of the kidney may include: Treatment of recurrent congenital mesoblastic nephroma may include: Treatment of other recurrent childhood kidney tumors is usually within a clinical trial. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about Wilms tumor and other childhood kidney tumors, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of Wilms tumor and other childhood kidney tumors. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Wilms Tumor and Other Childhood Kidney Tumors Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/kidney/patient/wilms-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389390] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Wilms Tumor and Other Childhood Kidney Tumors Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | How to diagnose Wilms Tumor and Other Childhood Kidney Tumors ? | Tests are used to screen for Wilms tumor.
Screening tests are done in children with an increased risk of Wilms tumor. These tests may help find cancer early and decrease the chance of dying from cancer. In general, children with an increased risk of Wilms tumor should be screened for Wilms tumor every three months until they are at least 8 years old. An ultrasound test of the abdomen is usually used for screening. Small Wilms tumors may be found and removed before symptoms occur. Children with Beckwith-Wiedemann syndrome or hemihyperplasia are also screened for liver and adrenal tumors that are linked to these genetic syndromes. A test to check the alpha-fetoprotein (AFP) level in the blood and an ultrasound of the abdomen are done until the child is 4 years old. An ultrasound of the kidneys is done after the child is 4 years old. In children with certain gene changes, a different schedule for ultrasound of the abdomen may be used. Children with aniridia and a certain gene change are screened for Wilms tumor every three months until they are 8 years old. An ultrasound test of the abdomen is used for screening. Some children develop Wilms tumor in both kidneys. These often appear when Wilms tumor is first diagnosed, but Wilms tumor may also occur in the second kidney after the child is successfully treated for Wilms tumor in one kidney. Children with an increased risk of a second Wilms tumor in the other kidney should be screened for Wilms tumor every three months for up to eight years. An ultrasound test of the abdomen may be used for screening.
Tests that examine the kidney and the blood are used to detect (find) and diagnose Wilms tumor and other childhood kidney tumors.
The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Complete blood count (CBC): A procedure in which a sample of blood is drawn and checked for the following: - The number of red blood cells, white blood cells, and platelets. - The amount of hemoglobin (the protein that carries oxygen) in the red blood cells. - The portion of the blood sample made up of red blood cells. - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. This test is done to check how well the liver and kidneys are working. - Renal function test : A procedure in which blood or urine samples are checked to measure the amounts of certain substances released into the blood or urine by the kidneys. A higher or lower than normal amount of a substance can be a sign that the kidneys are not working as they should. - Urinalysis : A test to check the color of urine and its contents, such as sugar, protein, blood, and bacteria. - Ultrasound exam: A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. An ultrasound of the abdomen is done to diagnose a kidney tumor. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the chest, abdomen, and pelvis, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye is injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging) with gadolinium: A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body, such as the abdomen. A substance called gadolinium is injected into a vein. The gadolinium collects around the cancer cells so they show up brighter in the picture. This procedure is also called nuclear magnetic resonance imaging (NMRI). - X-ray: An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body, such as the chest and abdomen. - PET-CT scan : A procedure that combines the pictures from a positron emission tomography (PET) scan and a computed tomography (CT) scan. The PET and CT scans are done at the same time on the same machine. The pictures from both scans are combined to make a more detailed picture than either test would make by itself. A PET scan is a procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. - Biopsy : The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. The decision of whether to do a biopsy is based on the following: - The size of the tumor. - The stage of the cancer. - Whether cancer is in one or both kidneys. - Whether imaging tests clearly show the cancer. - Whether the tumor can be removed by surgery. - Whether the patient is in a clinical trial. A biopsy may be done before any treatment is given, after chemotherapy to shrink the tumor, or after surgery to remove the tumor. |
There are two kidneys, one on each side of the spine, above the waist. Tiny tubules in the kidneys filter and clean the blood. They take out waste products and make urine. The urine passes from each kidney through a long tube called a ureter into the bladder. The bladder holds the urine until it passes through the urethra and leaves the body. EnlargeAnatomy of the urinary system showing the kidneys, ureters, bladder, and urethra. The inside of the left kidney shows the renal pelvis. An inset shows the renal tubules and urine. Also shown is the spine and adrenal glands. Urine is made in the renal tubules and collects in the renal pelvis of each kidney. The urine flows from the kidneys through the ureters to the bladder. The urine is stored in the bladder until it leaves the body through the urethra. In Wilms tumor, one or more tumors may be found in one or both kidneys. Wilms tumor may spread to the lungs, liver, bone, brain, or nearby lymph nodes. In children and adolescents younger than 15 years old, most kidney cancers are Wilms tumors. Renal cell cancer is rare in children and adolescents younger than 15 years old. It is much more common in adolescents between 15 and 19 years old. Children and adolescents are more likely to be diagnosed with a large renal cell tumor or cancer that has spread. Renal cell cancers may spread to the lungs, liver, bone, or lymph nodes. Renal cell cancer may also be called renal cell carcinoma. Rhabdoid tumor of the kidney is a type of kidney cancer that occurs mostly in infants and young children. It is often advanced at the time of diagnosis. Rhabdoid tumor of the kidney grows and spreads quickly, often to the lungs or brain. Children with a certain change in the SMARCB1 gene can also have tumors grow in the kidney, brain, or soft tissues. These children are checked regularly to see if a rhabdoid tumor has formed in the kidney or the brain: Clear cell sarcoma of the kidney is an uncommon kidney cancer that may spread to the bone, lungs, brain, liver, or soft tissue. It occurs most often before age 3 years. It may recur (come back) up to 14 years after treatment, often in the brain or lung. Congenital mesoblastic nephroma is a tumor of the kidney that is often diagnosed during the first year of life or before birth. It is the most common kidney tumor found in infants younger than 6 months old and is found more often in males than in females. It can usually be cured. Ewing sarcoma (previously called neuroepithelial tumor) of the kidney is rare and usually occurs in young adults. This cancer grows and spreads to other parts of the body quickly. Primary renal myoepithelial carcinoma is a rare type of cancer that usually affects soft tissues, but sometimes forms in the internal organs (such as the kidney). This type of cancer grows and spreads quickly. Cystic partially differentiated nephroblastoma is a very rare type of Wilms tumor made up of cysts. Multilocular cystic nephromas are benign tumors made up of cysts and are most common in infants, young children, and adult women. These tumors can occur in one or both kidneys. Children with this type of tumor also may have pleuropulmonary blastoma, so imaging tests that check the lungs for cysts or solid tumors are done. Since multilocular cystic nephroma may be an inherited condition, genetic counseling and genetic testing may be considered. See the PDQ summary about Childhood Pleuropulmonary Blastoma Treatment for more information. Primary renal synovial sarcoma is a cyst-like tumor of the kidney and is most common in young adults. These tumors grow and spread quickly. Anaplastic sarcoma of the kidney is a rare tumor that is most common in children or adolescents younger than 15 years of age. Anaplastic sarcoma of the kidney often spreads to the lungs, liver, or bones. Imaging tests that check the lungs for cysts or solid tumors may be done. Since anaplastic sarcoma may be an inherited condition, genetic counseling and genetic testing may be considered. Sometimes, after the kidneys form in the fetus, abnormal groups of kidney cells remain in one or both kidneys. In nephroblastomatosis (diffuse hyperplastic perilobar nephroblastomatosis), these abnormal groups of cells may grow in many places inside the kidney or make a thick layer around the kidney. When these groups of abnormal cells are found in a kidney after it was removed for Wilms tumor, the child has an increased risk of Wilms tumor in the other kidney. Frequent follow-up testing is important at least every 3 months, for at least 7 years after the child is diagnosed or treated. Anything that increases the risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your child's doctor if you think your child may be at risk. Wilms tumor may be part of a genetic syndrome that affects growth or development. A genetic syndrome is a set of signs and symptoms or conditions that occur together and is caused by certain changes in the genes. Certain conditions or environmental exposures can also increase a child's risk of developing Wilms tumor. The following have been linked to Wilms tumor: Screening tests are done in children with an increased risk of Wilms tumor. These tests may help find cancer early and decrease the chance of dying from cancer. In general, children with an increased risk of Wilms tumor should be screened for Wilms tumor every 3 months until they are at least 8 years old. An ultrasound test of the abdomen is usually used for screening. Small Wilms tumors may be found and removed before symptoms occur. Children with Beckwith-Wiedemann syndrome or hemihyperplasia are also screened for liver and adrenal tumors that are linked to these genetic syndromes. A test to check the alpha-fetoprotein (AFP) level in the blood and an ultrasound of the abdomen are done until the child is 4 years old. An ultrasound of the kidneys is done between the ages of 4 and 7 years old. A physical exam by a specialist (geneticist or pediatric oncologist) is done two times each year. In children with certain gene changes, a different schedule for ultrasound of the abdomen may be used. Children with aniridia and a certain gene change are screened for Wilms tumor every 3 months until they are 8 years old. An ultrasound test of the abdomen is used for screening. Some children develop Wilms tumor in both kidneys. These often appear when Wilms tumor is first diagnosed, but Wilms tumor may also occur in the second kidney after the child is successfully treated for Wilms tumor in one kidney. Children with an increased risk of a second Wilms tumor in the other kidney should be screened for Wilms tumor every 3 months for up to 8 years. An ultrasound test of the abdomen may be used for screening. Renal cell cancer may be related to the following conditions: Prior chemotherapy or radiation therapy for a childhood cancer, such as neuroblastoma, soft tissue sarcoma, leukemia, or Wilms tumor may also increase the risk of renal cell cancer. See the Second Cancers section in the PDQ summary about Late Effects of Treatment for Childhood Cancer for more information. Genetic counseling (a discussion with a trained professional about genetic diseases and whether genetic testing is needed) may be done if the child has one of the following syndromes or conditions: Sometimes childhood kidney tumors do not cause signs and symptoms and the parent finds a mass in the abdomen by chance or the mass is found during a well-child health check-up. These and other signs and symptoms may be caused by kidney tumors or by other conditions. Check with your child's doctor if your child has any of the following: Wilms tumor that has spread to the lungs or liver may cause the following signs and symptoms: The following tests and procedures may be used: The prognosis and treatment options for Wilms tumor depend on the following: The prognosis for renal cell cancer depends on the following: The prognosis for rhabdoid tumor of the kidney depends on the following: The prognosis for clear cell sarcoma of the kidney depends on the following: The process used to find out if cancer has spread outside of the kidney to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. The results of the tests and procedures done to diagnose and stage Wilms tumor are used to help make decisions about treatment. There is no staging for the other types of childhood kidney tumors. The treatment of these tumors depends on the tumor type. The following tests may be done to see if cancer has spread to other places in the body: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if Wilms tumor spreads to the lung, the cancer cells in the lung are actually Wilms tumor cells. The disease is metastatic Wilms tumor, not lung cancer. The histology (how the cells look under a microscope) of the tumor affects the prognosis and the treatment of Wilms tumor. The histology may be favorable or anaplastic (unfavorable). Tumors with a favorable histology have a better prognosis and respond better to chemotherapy than anaplastic tumors. Tumor cells that are anaplastic divide quickly and under a microscope do not look like the type of cells they came from. Anaplastic tumors are harder to treat with chemotherapy than other Wilms tumors at the same stage. In stage I, the tumor was completely removed by surgery and all of the following are true: In stage II, the tumor was completely removed by surgery and no cancer cells were found at the edges of the area where the cancer was removed. Cancer has not spread to lymph nodes. Before the tumor was removed, one of the following was true: In stage III, cancer remains in the abdomen after surgery and at least one of the following is true: In stage IV, cancer has spread through the blood to organs such as the lungs, liver, bone, or brain, or to lymph nodes outside the abdomen and pelvis. In stage V (bilateral) Wilms tumor, cancer cells are found in both kidneys when the cancer is first diagnosed. The cancer in each kidney is staged separately as stage I, II, III, or IV. Childhood Wilms tumor may recur (come back) in the lungs, abdomen, liver, or other places in the body. Childhood clear cell sarcoma of the kidney may recur in the brain, lungs, or other places in the body. Childhood congenital mesoblastic nephroma may recur in the kidneys or in other places in the body. Different types of treatment are available for children with Wilms and other childhood kidney tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment.
Your child's treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with Wilms tumor or other childhood kidney tumors and who specialize in certain areas of medicine. These may include the following specialists: Two types of surgery are used to treat kidney tumors: After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Sometimes, a second-look surgery is done to see if cancer remains after chemotherapy or radiation therapy. Sometimes the tumor cannot be removed by surgery for one of the following reasons: In this case, a biopsy is done first. Then chemotherapy is given to reduce the size of the tumor before surgery, in order to save as much healthy tissue as possible and lessen problems after surgery. This is called neoadjuvant chemotherapy. Radiation therapy is given after surgery. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. External radiation therapy is used to treat Wilms tumor and other childhood kidney tumors. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Combination chemotherapy is treatment using two or more anticancer drugs. Systemic chemotherapy is used to treat Wilms tumor and other childhood kidney tumors. Sometimes chemotherapy is given to reduce the size of the tumor before surgery, in order to save as much healthy tissue as possible and lessen problems after surgery. This is called neoadjuvant chemotherapy. See Drugs Approved for Wilms Tumor and Other Childhood Kidney Cancers for more information. Immunotherapy is a treatment that uses the patient's immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. This cancer treatment is a type of biologic therapy. Interferon and interleukin-2 (IL-2) are types of immunotherapy used to treat childhood renal cell cancer. Interferon may slow tumor growth and may help kill the cancer cells. IL-2 boosts the growth and activity of many immune cells, especially lymphocytes (a type of white blood cell). Lymphocytes can attack and kill cancer cells. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell rescue is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These stem cells grow into (and restore) the body's blood cells. High-dose chemotherapy with stem cell rescue may be used to treat rhabdoid tumor of the kidney or recurrent Wilms tumor. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Targeted therapy used to treat childhood kidney tumors may include the following: Other targeted therapies are being studied for the treatment of childhood kidney tumors that have recurred (come back). Information about clinical trials is available from the NCI website. For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment may include the following:
Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. (See the PDQ summary about Late Effects of Treatment for Childhood Cancer for more information).
Clinical trials are being done to find out if lower doses of chemotherapy and radiation can be used to lessen the late effects of treatment without changing how well the treatment works. Monitoring for late effects involving the kidneys in patients with Wilms tumor and related conditions includes the following: For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I Wilms tumor with favorable histology may include: Treatment of stage I anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage II Wilms tumor with favorable histology may include: Treatment of stage II anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage III Wilms tumor with favorable histology may include: Treatment of stage III anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage IV Wilms tumor with favorable histology may include: Treatment of stage IV anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage V Wilms tumor (bilateral) may be different for each patient and may include: If a kidney transplant is needed because of kidney problems, it is usually delayed until 1 to 2 years after treatment is completed and there are no signs of cancer. (See the Treatment of Recurrent Childhood Kidney Tumors section of this summary for information about recurrent disease.) Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of renal cell cancer may include: See the PDQ summary about Renal Cell Cancer Treatment for more information. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for rhabdoid tumor of the kidney. Treatment may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of clear cell sarcoma of the kidney may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stages I, II, and certain patients with stage III congenital mesoblastic nephroma may include: Treatment for certain patients with stage III congenital mesoblastic nephroma may include: A clinical trial of targeted therapy with a tyrosine kinase inhibitor (larotrectinib) for cancer that has a certain gene change and has not been treated. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for Ewing sarcoma of the kidney. Treatment may include: It may also be treated in the same way that Ewing sarcoma is treated. See the PDQ summary about Ewing Sarcoma Treatment for more information. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for primary renal myoepithelial carcinoma. Treatment may include: Treatment of cystic partially differentiated nephroblastoma may include: Treatment of multilocular cystic nephroma usually includes: Treatment of primary renal synovial sarcoma usually includes: There is no standard treatment for anaplastic sarcoma of the kidney. Treatment is usually the same treatment given for anaplastic Wilms tumor. The treatment of nephroblastomatosis depends on the following: Treatment of nephroblastomatosis may include: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of recurrent Wilms tumor may include: Treatment of recurrent rhabdoid tumor of the kidney may include: Treatment of recurrent clear cell sarcoma of the kidney may include: Treatment of recurrent congenital mesoblastic nephroma may include: Treatment of other recurrent childhood kidney tumors is usually within a clinical trial. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about Wilms tumor and other childhood kidney tumors, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of Wilms tumor and other childhood kidney tumors. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Wilms Tumor and Other Childhood Kidney Tumors Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/kidney/patient/wilms-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389390] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Wilms Tumor and Other Childhood Kidney Tumors Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is the outlook for Wilms Tumor and Other Childhood Kidney Tumors ? | Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options for Wilms tumor depend on the following: - How different the tumor cells are from normal kidney cells when looked at under a microscope. - The stage of the cancer. - The type of tumor. - The age of the child. - Whether the tumor can be completely removed by surgery. - Whether there are certain changes in chromosomes or genes. - Whether the cancer has just been diagnosed or has recurred (come back). The prognosis for renal cell cancer depends on the following: - The stage of the cancer. - Whether the cancer has spread to the lymph nodes. The prognosis for rhabdoid tumor of the kidney depends on the following: - The age of the child at the time of diagnosis. - The stage of the cancer. - Whether the cancer has spread to the brain or spinal cord. The prognosis for clear cell sarcoma of the kidney depends on the following: - The age of the child at the time of diagnosis. - The stage of the cancer. |
There are two kidneys, one on each side of the spine, above the waist. Tiny tubules in the kidneys filter and clean the blood. They take out waste products and make urine. The urine passes from each kidney through a long tube called a ureter into the bladder. The bladder holds the urine until it passes through the urethra and leaves the body. EnlargeAnatomy of the urinary system showing the kidneys, ureters, bladder, and urethra. The inside of the left kidney shows the renal pelvis. An inset shows the renal tubules and urine. Also shown is the spine and adrenal glands. Urine is made in the renal tubules and collects in the renal pelvis of each kidney. The urine flows from the kidneys through the ureters to the bladder. The urine is stored in the bladder until it leaves the body through the urethra. In Wilms tumor, one or more tumors may be found in one or both kidneys. Wilms tumor may spread to the lungs, liver, bone, brain, or nearby lymph nodes. In children and adolescents younger than 15 years old, most kidney cancers are Wilms tumors. Renal cell cancer is rare in children and adolescents younger than 15 years old. It is much more common in adolescents between 15 and 19 years old. Children and adolescents are more likely to be diagnosed with a large renal cell tumor or cancer that has spread. Renal cell cancers may spread to the lungs, liver, bone, or lymph nodes. Renal cell cancer may also be called renal cell carcinoma. Rhabdoid tumor of the kidney is a type of kidney cancer that occurs mostly in infants and young children. It is often advanced at the time of diagnosis. Rhabdoid tumor of the kidney grows and spreads quickly, often to the lungs or brain. Children with a certain change in the SMARCB1 gene can also have tumors grow in the kidney, brain, or soft tissues. These children are checked regularly to see if a rhabdoid tumor has formed in the kidney or the brain: Clear cell sarcoma of the kidney is an uncommon kidney cancer that may spread to the bone, lungs, brain, liver, or soft tissue. It occurs most often before age 3 years. It may recur (come back) up to 14 years after treatment, often in the brain or lung. Congenital mesoblastic nephroma is a tumor of the kidney that is often diagnosed during the first year of life or before birth. It is the most common kidney tumor found in infants younger than 6 months old and is found more often in males than in females. It can usually be cured. Ewing sarcoma (previously called neuroepithelial tumor) of the kidney is rare and usually occurs in young adults. This cancer grows and spreads to other parts of the body quickly. Primary renal myoepithelial carcinoma is a rare type of cancer that usually affects soft tissues, but sometimes forms in the internal organs (such as the kidney). This type of cancer grows and spreads quickly. Cystic partially differentiated nephroblastoma is a very rare type of Wilms tumor made up of cysts. Multilocular cystic nephromas are benign tumors made up of cysts and are most common in infants, young children, and adult women. These tumors can occur in one or both kidneys. Children with this type of tumor also may have pleuropulmonary blastoma, so imaging tests that check the lungs for cysts or solid tumors are done. Since multilocular cystic nephroma may be an inherited condition, genetic counseling and genetic testing may be considered. See the PDQ summary about Childhood Pleuropulmonary Blastoma Treatment for more information. Primary renal synovial sarcoma is a cyst-like tumor of the kidney and is most common in young adults. These tumors grow and spread quickly. Anaplastic sarcoma of the kidney is a rare tumor that is most common in children or adolescents younger than 15 years of age. Anaplastic sarcoma of the kidney often spreads to the lungs, liver, or bones. Imaging tests that check the lungs for cysts or solid tumors may be done. Since anaplastic sarcoma may be an inherited condition, genetic counseling and genetic testing may be considered. Sometimes, after the kidneys form in the fetus, abnormal groups of kidney cells remain in one or both kidneys. In nephroblastomatosis (diffuse hyperplastic perilobar nephroblastomatosis), these abnormal groups of cells may grow in many places inside the kidney or make a thick layer around the kidney. When these groups of abnormal cells are found in a kidney after it was removed for Wilms tumor, the child has an increased risk of Wilms tumor in the other kidney. Frequent follow-up testing is important at least every 3 months, for at least 7 years after the child is diagnosed or treated. Anything that increases the risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your child's doctor if you think your child may be at risk. Wilms tumor may be part of a genetic syndrome that affects growth or development. A genetic syndrome is a set of signs and symptoms or conditions that occur together and is caused by certain changes in the genes. Certain conditions or environmental exposures can also increase a child's risk of developing Wilms tumor. The following have been linked to Wilms tumor: Screening tests are done in children with an increased risk of Wilms tumor. These tests may help find cancer early and decrease the chance of dying from cancer. In general, children with an increased risk of Wilms tumor should be screened for Wilms tumor every 3 months until they are at least 8 years old. An ultrasound test of the abdomen is usually used for screening. Small Wilms tumors may be found and removed before symptoms occur. Children with Beckwith-Wiedemann syndrome or hemihyperplasia are also screened for liver and adrenal tumors that are linked to these genetic syndromes. A test to check the alpha-fetoprotein (AFP) level in the blood and an ultrasound of the abdomen are done until the child is 4 years old. An ultrasound of the kidneys is done between the ages of 4 and 7 years old. A physical exam by a specialist (geneticist or pediatric oncologist) is done two times each year. In children with certain gene changes, a different schedule for ultrasound of the abdomen may be used. Children with aniridia and a certain gene change are screened for Wilms tumor every 3 months until they are 8 years old. An ultrasound test of the abdomen is used for screening. Some children develop Wilms tumor in both kidneys. These often appear when Wilms tumor is first diagnosed, but Wilms tumor may also occur in the second kidney after the child is successfully treated for Wilms tumor in one kidney. Children with an increased risk of a second Wilms tumor in the other kidney should be screened for Wilms tumor every 3 months for up to 8 years. An ultrasound test of the abdomen may be used for screening. Renal cell cancer may be related to the following conditions: Prior chemotherapy or radiation therapy for a childhood cancer, such as neuroblastoma, soft tissue sarcoma, leukemia, or Wilms tumor may also increase the risk of renal cell cancer. See the Second Cancers section in the PDQ summary about Late Effects of Treatment for Childhood Cancer for more information. Genetic counseling (a discussion with a trained professional about genetic diseases and whether genetic testing is needed) may be done if the child has one of the following syndromes or conditions: Sometimes childhood kidney tumors do not cause signs and symptoms and the parent finds a mass in the abdomen by chance or the mass is found during a well-child health check-up. These and other signs and symptoms may be caused by kidney tumors or by other conditions. Check with your child's doctor if your child has any of the following: Wilms tumor that has spread to the lungs or liver may cause the following signs and symptoms: The following tests and procedures may be used: The prognosis and treatment options for Wilms tumor depend on the following: The prognosis for renal cell cancer depends on the following: The prognosis for rhabdoid tumor of the kidney depends on the following: The prognosis for clear cell sarcoma of the kidney depends on the following: The process used to find out if cancer has spread outside of the kidney to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. The results of the tests and procedures done to diagnose and stage Wilms tumor are used to help make decisions about treatment. There is no staging for the other types of childhood kidney tumors. The treatment of these tumors depends on the tumor type. The following tests may be done to see if cancer has spread to other places in the body: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if Wilms tumor spreads to the lung, the cancer cells in the lung are actually Wilms tumor cells. The disease is metastatic Wilms tumor, not lung cancer. The histology (how the cells look under a microscope) of the tumor affects the prognosis and the treatment of Wilms tumor. The histology may be favorable or anaplastic (unfavorable). Tumors with a favorable histology have a better prognosis and respond better to chemotherapy than anaplastic tumors. Tumor cells that are anaplastic divide quickly and under a microscope do not look like the type of cells they came from. Anaplastic tumors are harder to treat with chemotherapy than other Wilms tumors at the same stage. In stage I, the tumor was completely removed by surgery and all of the following are true: In stage II, the tumor was completely removed by surgery and no cancer cells were found at the edges of the area where the cancer was removed. Cancer has not spread to lymph nodes. Before the tumor was removed, one of the following was true: In stage III, cancer remains in the abdomen after surgery and at least one of the following is true: In stage IV, cancer has spread through the blood to organs such as the lungs, liver, bone, or brain, or to lymph nodes outside the abdomen and pelvis. In stage V (bilateral) Wilms tumor, cancer cells are found in both kidneys when the cancer is first diagnosed. The cancer in each kidney is staged separately as stage I, II, III, or IV. Childhood Wilms tumor may recur (come back) in the lungs, abdomen, liver, or other places in the body. Childhood clear cell sarcoma of the kidney may recur in the brain, lungs, or other places in the body. Childhood congenital mesoblastic nephroma may recur in the kidneys or in other places in the body. Different types of treatment are available for children with Wilms and other childhood kidney tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment.
Your child's treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with Wilms tumor or other childhood kidney tumors and who specialize in certain areas of medicine. These may include the following specialists: Two types of surgery are used to treat kidney tumors: After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Sometimes, a second-look surgery is done to see if cancer remains after chemotherapy or radiation therapy. Sometimes the tumor cannot be removed by surgery for one of the following reasons: In this case, a biopsy is done first. Then chemotherapy is given to reduce the size of the tumor before surgery, in order to save as much healthy tissue as possible and lessen problems after surgery. This is called neoadjuvant chemotherapy. Radiation therapy is given after surgery. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. External radiation therapy is used to treat Wilms tumor and other childhood kidney tumors. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Combination chemotherapy is treatment using two or more anticancer drugs. Systemic chemotherapy is used to treat Wilms tumor and other childhood kidney tumors. Sometimes chemotherapy is given to reduce the size of the tumor before surgery, in order to save as much healthy tissue as possible and lessen problems after surgery. This is called neoadjuvant chemotherapy. See Drugs Approved for Wilms Tumor and Other Childhood Kidney Cancers for more information. Immunotherapy is a treatment that uses the patient's immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. This cancer treatment is a type of biologic therapy. Interferon and interleukin-2 (IL-2) are types of immunotherapy used to treat childhood renal cell cancer. Interferon may slow tumor growth and may help kill the cancer cells. IL-2 boosts the growth and activity of many immune cells, especially lymphocytes (a type of white blood cell). Lymphocytes can attack and kill cancer cells. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell rescue is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These stem cells grow into (and restore) the body's blood cells. High-dose chemotherapy with stem cell rescue may be used to treat rhabdoid tumor of the kidney or recurrent Wilms tumor. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Targeted therapy used to treat childhood kidney tumors may include the following: Other targeted therapies are being studied for the treatment of childhood kidney tumors that have recurred (come back). Information about clinical trials is available from the NCI website. For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment may include the following:
Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. (See the PDQ summary about Late Effects of Treatment for Childhood Cancer for more information).
Clinical trials are being done to find out if lower doses of chemotherapy and radiation can be used to lessen the late effects of treatment without changing how well the treatment works. Monitoring for late effects involving the kidneys in patients with Wilms tumor and related conditions includes the following: For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I Wilms tumor with favorable histology may include: Treatment of stage I anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage II Wilms tumor with favorable histology may include: Treatment of stage II anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage III Wilms tumor with favorable histology may include: Treatment of stage III anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage IV Wilms tumor with favorable histology may include: Treatment of stage IV anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage V Wilms tumor (bilateral) may be different for each patient and may include: If a kidney transplant is needed because of kidney problems, it is usually delayed until 1 to 2 years after treatment is completed and there are no signs of cancer. (See the Treatment of Recurrent Childhood Kidney Tumors section of this summary for information about recurrent disease.) Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of renal cell cancer may include: See the PDQ summary about Renal Cell Cancer Treatment for more information. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for rhabdoid tumor of the kidney. Treatment may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of clear cell sarcoma of the kidney may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stages I, II, and certain patients with stage III congenital mesoblastic nephroma may include: Treatment for certain patients with stage III congenital mesoblastic nephroma may include: A clinical trial of targeted therapy with a tyrosine kinase inhibitor (larotrectinib) for cancer that has a certain gene change and has not been treated. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for Ewing sarcoma of the kidney. Treatment may include: It may also be treated in the same way that Ewing sarcoma is treated. See the PDQ summary about Ewing Sarcoma Treatment for more information. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for primary renal myoepithelial carcinoma. Treatment may include: Treatment of cystic partially differentiated nephroblastoma may include: Treatment of multilocular cystic nephroma usually includes: Treatment of primary renal synovial sarcoma usually includes: There is no standard treatment for anaplastic sarcoma of the kidney. Treatment is usually the same treatment given for anaplastic Wilms tumor. The treatment of nephroblastomatosis depends on the following: Treatment of nephroblastomatosis may include: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of recurrent Wilms tumor may include: Treatment of recurrent rhabdoid tumor of the kidney may include: Treatment of recurrent clear cell sarcoma of the kidney may include: Treatment of recurrent congenital mesoblastic nephroma may include: Treatment of other recurrent childhood kidney tumors is usually within a clinical trial. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about Wilms tumor and other childhood kidney tumors, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of Wilms tumor and other childhood kidney tumors. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Wilms Tumor and Other Childhood Kidney Tumors Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/kidney/patient/wilms-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389390] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Wilms Tumor and Other Childhood Kidney Tumors Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the stages of Wilms Tumor and Other Childhood Kidney Tumors ? | Key Points
- Wilms tumors are staged during surgery and with imaging tests. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - In addition to the stages, Wilms tumors are described by their histology. - The following stages are used for both favorable histology and anaplastic Wilms tumors: - Stage I - Stage II - Stage III - Stage IV - Stage V - The treatment of other childhood kidney tumors depends on the tumor type.
Wilms tumors are staged during surgery and with imaging tests.
The process used to find out if cancer has spread outside of the kidney to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The doctor will use results of the diagnostic and staging tests to help find out the stage of the disease. The following tests may be done to see if cancer has spread to other places in the body: - Lymph node biopsy : A surgical procedure in which lymph nodes in the abdomen are removed and a sample of tissue is checked under a microscope for signs of cancer. This procedure is also called lymphadenectomy or lymph node dissection. - Liver function test : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by the liver. A higher than normal amount of a substance can be a sign that the liver is not working as it should. - X-ray of the chest and bones: An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body, such as the chest. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the abdomen, pelvis, chest, and brain, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye is injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - PET-CT scan : A procedure that combines the pictures from a positron emission tomography (PET) scan and a computed tomography (CT) scan. The PET and CT scans are done at the same time on the same machine. The pictures from both scans are combined to make a more detailed picture than either test would make by itself. A PET scan is a procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body, such as the abdomen, pelvis, and brain. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Bone scan : A procedure to check if there are rapidly dividing cells, such as cancer cells, in the bone. A very small amount of radioactive material is injected into a vein and travels through the bloodstream. The radioactive material collects in the bones with cancer and is detected by a scanner. - Ultrasound exam: A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. An ultrasound of the major heart vessels is done to stage Wilms tumor. - Cystoscopy : A procedure to look inside the bladder and urethra to check for abnormal areas. A cystoscope is inserted through the urethra into the bladder. A cystoscope is a thin, tube-like instrument with a light and a lens for viewing. It may also have a tool to remove tissue samples, which are checked under a microscope for signs of cancer.
There are three ways that cancer spreads in the body.
Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body.
Cancer may spread from where it began to other parts of the body.
When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if Wilms tumor spreads to the lung, the cancer cells in the lung are actually Wilms tumor cells. The disease is metastatic Wilms tumor, not lung cancer.
In addition to the stages, Wilms tumors are described by their histology.
The histology (how the cells look under a microscope) of the tumor affects the prognosis and the treatment of Wilms tumor. The histology may be favorable or anaplastic (unfavorable). Tumors with a favorable histology have a better prognosis and respond better to chemotherapy than anaplastic tumors. Tumor cells that are anaplastic divide quickly and under a microscope do not look like the type of cells they came from. Anaplastic tumors are harder to treat with chemotherapy than other Wilms tumors at the same stage.
The following stages are used for both favorable histology and anaplastic Wilms tumors:
Stage I In stage I, the tumor was completely removed by surgery and all of the following are true: - Cancer was found only in the kidney and had not spread to blood vessels in the renal sinus (the part of the kidney where it joins the ureter) or to the lymph nodes. - The outer layer of the kidney did not break open. - The tumor did not break open. - A biopsy was not done before the tumor was removed. - No cancer cells were found at the edges of the area where the tumor was removed. Stage II In stage II, the tumor was completely removed by surgery and no cancer cells were found at the edges of the area where the cancer was removed. Cancer has not spread to lymph nodes. Before the tumor was removed, one of the following was true: - Cancer had spread to the renal sinus (the part of the kidney where it joins the ureter). - Cancer had spread to blood vessels outside the area of the kidney where urine is made, such as the renal sinus. Stage III In stage III, cancer remains in the abdomen after surgery and one of the following may be true: - Cancer has spread to lymph nodes in the abdomen or pelvis (the part of the body between the hips). - Cancer has spread to or through the surface of the peritoneum (the layer of tissue that lines the abdominal cavity and covers most organs in the abdomen). - A biopsy of the tumor was done before it was removed. - The tumor broke open before or during surgery to remove it. - The tumor was removed in more than one piece. - Cancer cells are found at the edges of the area where the tumor was removed. - The entire tumor could not be removed because important organs or tissues in the body would be damaged. Stage IV In stage IV, cancer has spread through the blood to organs such as the lungs, liver, bone, or brain, or to lymph nodes outside of the abdomen and pelvis. Stage V In stage V, cancer cells are found in both kidneys when the cancer is first diagnosed.
The treatment of other childhood kidney tumors depends on the tumor type. |
There are two kidneys, one on each side of the spine, above the waist. Tiny tubules in the kidneys filter and clean the blood. They take out waste products and make urine. The urine passes from each kidney through a long tube called a ureter into the bladder. The bladder holds the urine until it passes through the urethra and leaves the body. EnlargeAnatomy of the urinary system showing the kidneys, ureters, bladder, and urethra. The inside of the left kidney shows the renal pelvis. An inset shows the renal tubules and urine. Also shown is the spine and adrenal glands. Urine is made in the renal tubules and collects in the renal pelvis of each kidney. The urine flows from the kidneys through the ureters to the bladder. The urine is stored in the bladder until it leaves the body through the urethra. In Wilms tumor, one or more tumors may be found in one or both kidneys. Wilms tumor may spread to the lungs, liver, bone, brain, or nearby lymph nodes. In children and adolescents younger than 15 years old, most kidney cancers are Wilms tumors. Renal cell cancer is rare in children and adolescents younger than 15 years old. It is much more common in adolescents between 15 and 19 years old. Children and adolescents are more likely to be diagnosed with a large renal cell tumor or cancer that has spread. Renal cell cancers may spread to the lungs, liver, bone, or lymph nodes. Renal cell cancer may also be called renal cell carcinoma. Rhabdoid tumor of the kidney is a type of kidney cancer that occurs mostly in infants and young children. It is often advanced at the time of diagnosis. Rhabdoid tumor of the kidney grows and spreads quickly, often to the lungs or brain. Children with a certain change in the SMARCB1 gene can also have tumors grow in the kidney, brain, or soft tissues. These children are checked regularly to see if a rhabdoid tumor has formed in the kidney or the brain: Clear cell sarcoma of the kidney is an uncommon kidney cancer that may spread to the bone, lungs, brain, liver, or soft tissue. It occurs most often before age 3 years. It may recur (come back) up to 14 years after treatment, often in the brain or lung. Congenital mesoblastic nephroma is a tumor of the kidney that is often diagnosed during the first year of life or before birth. It is the most common kidney tumor found in infants younger than 6 months old and is found more often in males than in females. It can usually be cured. Ewing sarcoma (previously called neuroepithelial tumor) of the kidney is rare and usually occurs in young adults. This cancer grows and spreads to other parts of the body quickly. Primary renal myoepithelial carcinoma is a rare type of cancer that usually affects soft tissues, but sometimes forms in the internal organs (such as the kidney). This type of cancer grows and spreads quickly. Cystic partially differentiated nephroblastoma is a very rare type of Wilms tumor made up of cysts. Multilocular cystic nephromas are benign tumors made up of cysts and are most common in infants, young children, and adult women. These tumors can occur in one or both kidneys. Children with this type of tumor also may have pleuropulmonary blastoma, so imaging tests that check the lungs for cysts or solid tumors are done. Since multilocular cystic nephroma may be an inherited condition, genetic counseling and genetic testing may be considered. See the PDQ summary about Childhood Pleuropulmonary Blastoma Treatment for more information. Primary renal synovial sarcoma is a cyst-like tumor of the kidney and is most common in young adults. These tumors grow and spread quickly. Anaplastic sarcoma of the kidney is a rare tumor that is most common in children or adolescents younger than 15 years of age. Anaplastic sarcoma of the kidney often spreads to the lungs, liver, or bones. Imaging tests that check the lungs for cysts or solid tumors may be done. Since anaplastic sarcoma may be an inherited condition, genetic counseling and genetic testing may be considered. Sometimes, after the kidneys form in the fetus, abnormal groups of kidney cells remain in one or both kidneys. In nephroblastomatosis (diffuse hyperplastic perilobar nephroblastomatosis), these abnormal groups of cells may grow in many places inside the kidney or make a thick layer around the kidney. When these groups of abnormal cells are found in a kidney after it was removed for Wilms tumor, the child has an increased risk of Wilms tumor in the other kidney. Frequent follow-up testing is important at least every 3 months, for at least 7 years after the child is diagnosed or treated. Anything that increases the risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your child's doctor if you think your child may be at risk. Wilms tumor may be part of a genetic syndrome that affects growth or development. A genetic syndrome is a set of signs and symptoms or conditions that occur together and is caused by certain changes in the genes. Certain conditions or environmental exposures can also increase a child's risk of developing Wilms tumor. The following have been linked to Wilms tumor: Screening tests are done in children with an increased risk of Wilms tumor. These tests may help find cancer early and decrease the chance of dying from cancer. In general, children with an increased risk of Wilms tumor should be screened for Wilms tumor every 3 months until they are at least 8 years old. An ultrasound test of the abdomen is usually used for screening. Small Wilms tumors may be found and removed before symptoms occur. Children with Beckwith-Wiedemann syndrome or hemihyperplasia are also screened for liver and adrenal tumors that are linked to these genetic syndromes. A test to check the alpha-fetoprotein (AFP) level in the blood and an ultrasound of the abdomen are done until the child is 4 years old. An ultrasound of the kidneys is done between the ages of 4 and 7 years old. A physical exam by a specialist (geneticist or pediatric oncologist) is done two times each year. In children with certain gene changes, a different schedule for ultrasound of the abdomen may be used. Children with aniridia and a certain gene change are screened for Wilms tumor every 3 months until they are 8 years old. An ultrasound test of the abdomen is used for screening. Some children develop Wilms tumor in both kidneys. These often appear when Wilms tumor is first diagnosed, but Wilms tumor may also occur in the second kidney after the child is successfully treated for Wilms tumor in one kidney. Children with an increased risk of a second Wilms tumor in the other kidney should be screened for Wilms tumor every 3 months for up to 8 years. An ultrasound test of the abdomen may be used for screening. Renal cell cancer may be related to the following conditions: Prior chemotherapy or radiation therapy for a childhood cancer, such as neuroblastoma, soft tissue sarcoma, leukemia, or Wilms tumor may also increase the risk of renal cell cancer. See the Second Cancers section in the PDQ summary about Late Effects of Treatment for Childhood Cancer for more information. Genetic counseling (a discussion with a trained professional about genetic diseases and whether genetic testing is needed) may be done if the child has one of the following syndromes or conditions: Sometimes childhood kidney tumors do not cause signs and symptoms and the parent finds a mass in the abdomen by chance or the mass is found during a well-child health check-up. These and other signs and symptoms may be caused by kidney tumors or by other conditions. Check with your child's doctor if your child has any of the following: Wilms tumor that has spread to the lungs or liver may cause the following signs and symptoms: The following tests and procedures may be used: The prognosis and treatment options for Wilms tumor depend on the following: The prognosis for renal cell cancer depends on the following: The prognosis for rhabdoid tumor of the kidney depends on the following: The prognosis for clear cell sarcoma of the kidney depends on the following: The process used to find out if cancer has spread outside of the kidney to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. The results of the tests and procedures done to diagnose and stage Wilms tumor are used to help make decisions about treatment. There is no staging for the other types of childhood kidney tumors. The treatment of these tumors depends on the tumor type. The following tests may be done to see if cancer has spread to other places in the body: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if Wilms tumor spreads to the lung, the cancer cells in the lung are actually Wilms tumor cells. The disease is metastatic Wilms tumor, not lung cancer. The histology (how the cells look under a microscope) of the tumor affects the prognosis and the treatment of Wilms tumor. The histology may be favorable or anaplastic (unfavorable). Tumors with a favorable histology have a better prognosis and respond better to chemotherapy than anaplastic tumors. Tumor cells that are anaplastic divide quickly and under a microscope do not look like the type of cells they came from. Anaplastic tumors are harder to treat with chemotherapy than other Wilms tumors at the same stage. In stage I, the tumor was completely removed by surgery and all of the following are true: In stage II, the tumor was completely removed by surgery and no cancer cells were found at the edges of the area where the cancer was removed. Cancer has not spread to lymph nodes. Before the tumor was removed, one of the following was true: In stage III, cancer remains in the abdomen after surgery and at least one of the following is true: In stage IV, cancer has spread through the blood to organs such as the lungs, liver, bone, or brain, or to lymph nodes outside the abdomen and pelvis. In stage V (bilateral) Wilms tumor, cancer cells are found in both kidneys when the cancer is first diagnosed. The cancer in each kidney is staged separately as stage I, II, III, or IV. Childhood Wilms tumor may recur (come back) in the lungs, abdomen, liver, or other places in the body. Childhood clear cell sarcoma of the kidney may recur in the brain, lungs, or other places in the body. Childhood congenital mesoblastic nephroma may recur in the kidneys or in other places in the body. Different types of treatment are available for children with Wilms and other childhood kidney tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment.
Your child's treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with Wilms tumor or other childhood kidney tumors and who specialize in certain areas of medicine. These may include the following specialists: Two types of surgery are used to treat kidney tumors: After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Sometimes, a second-look surgery is done to see if cancer remains after chemotherapy or radiation therapy. Sometimes the tumor cannot be removed by surgery for one of the following reasons: In this case, a biopsy is done first. Then chemotherapy is given to reduce the size of the tumor before surgery, in order to save as much healthy tissue as possible and lessen problems after surgery. This is called neoadjuvant chemotherapy. Radiation therapy is given after surgery. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. External radiation therapy is used to treat Wilms tumor and other childhood kidney tumors. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Combination chemotherapy is treatment using two or more anticancer drugs. Systemic chemotherapy is used to treat Wilms tumor and other childhood kidney tumors. Sometimes chemotherapy is given to reduce the size of the tumor before surgery, in order to save as much healthy tissue as possible and lessen problems after surgery. This is called neoadjuvant chemotherapy. See Drugs Approved for Wilms Tumor and Other Childhood Kidney Cancers for more information. Immunotherapy is a treatment that uses the patient's immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. This cancer treatment is a type of biologic therapy. Interferon and interleukin-2 (IL-2) are types of immunotherapy used to treat childhood renal cell cancer. Interferon may slow tumor growth and may help kill the cancer cells. IL-2 boosts the growth and activity of many immune cells, especially lymphocytes (a type of white blood cell). Lymphocytes can attack and kill cancer cells. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell rescue is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These stem cells grow into (and restore) the body's blood cells. High-dose chemotherapy with stem cell rescue may be used to treat rhabdoid tumor of the kidney or recurrent Wilms tumor. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Targeted therapy used to treat childhood kidney tumors may include the following: Other targeted therapies are being studied for the treatment of childhood kidney tumors that have recurred (come back). Information about clinical trials is available from the NCI website. For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment may include the following:
Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. (See the PDQ summary about Late Effects of Treatment for Childhood Cancer for more information).
Clinical trials are being done to find out if lower doses of chemotherapy and radiation can be used to lessen the late effects of treatment without changing how well the treatment works. Monitoring for late effects involving the kidneys in patients with Wilms tumor and related conditions includes the following: For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I Wilms tumor with favorable histology may include: Treatment of stage I anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage II Wilms tumor with favorable histology may include: Treatment of stage II anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage III Wilms tumor with favorable histology may include: Treatment of stage III anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage IV Wilms tumor with favorable histology may include: Treatment of stage IV anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage V Wilms tumor (bilateral) may be different for each patient and may include: If a kidney transplant is needed because of kidney problems, it is usually delayed until 1 to 2 years after treatment is completed and there are no signs of cancer. (See the Treatment of Recurrent Childhood Kidney Tumors section of this summary for information about recurrent disease.) Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of renal cell cancer may include: See the PDQ summary about Renal Cell Cancer Treatment for more information. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for rhabdoid tumor of the kidney. Treatment may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of clear cell sarcoma of the kidney may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stages I, II, and certain patients with stage III congenital mesoblastic nephroma may include: Treatment for certain patients with stage III congenital mesoblastic nephroma may include: A clinical trial of targeted therapy with a tyrosine kinase inhibitor (larotrectinib) for cancer that has a certain gene change and has not been treated. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for Ewing sarcoma of the kidney. Treatment may include: It may also be treated in the same way that Ewing sarcoma is treated. See the PDQ summary about Ewing Sarcoma Treatment for more information. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for primary renal myoepithelial carcinoma. Treatment may include: Treatment of cystic partially differentiated nephroblastoma may include: Treatment of multilocular cystic nephroma usually includes: Treatment of primary renal synovial sarcoma usually includes: There is no standard treatment for anaplastic sarcoma of the kidney. Treatment is usually the same treatment given for anaplastic Wilms tumor. The treatment of nephroblastomatosis depends on the following: Treatment of nephroblastomatosis may include: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of recurrent Wilms tumor may include: Treatment of recurrent rhabdoid tumor of the kidney may include: Treatment of recurrent clear cell sarcoma of the kidney may include: Treatment of recurrent congenital mesoblastic nephroma may include: Treatment of other recurrent childhood kidney tumors is usually within a clinical trial. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about Wilms tumor and other childhood kidney tumors, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of Wilms tumor and other childhood kidney tumors. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Wilms Tumor and Other Childhood Kidney Tumors Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/kidney/patient/wilms-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389390] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Wilms Tumor and Other Childhood Kidney Tumors Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the treatments for Wilms Tumor and Other Childhood Kidney Tumors ? | Key Points
- There are different types of treatment for patients with Wilms tumor and other childhood kidney tumors. - Children with Wilms tumor or other childhood kidney tumors should have their treatment planned by a team of health care providers who are experts in treating cancer in children. - Some cancer treatments cause side effects months or years after treatment has ended. - Five types of standard treatment are used: - Surgery - Radiation therapy - Chemotherapy - Biologic therapy - High-dose chemotherapy with stem cell rescue - New types of treatment are being tested in clinical trials. - Targeted therapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed.
There are different types of treatment for patients with Wilms tumor and other childhood kidney tumors.
Different types of treatment are available for children with Wilms and other childhood kidney tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment.
Children with Wilms tumor or other childhood kidney tumors should have their treatment planned by a team of health care providers who are experts in treating cancer in children.
Your child's treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with Wilms tumor or other childhood kidney tumors and who specialize in certain areas of medicine. These may include the following specialists: - Pediatrician. - Pediatric surgeon or urologist. - Radiation oncologist. - Rehabilitation specialist. - Pediatric nurse specialist. - Social worker.
Some cancer treatments cause side effects months or years after treatment has ended.
Side effects from cancer treatment that begin during or after treatment and continue for months or years are called late effects. Late effects of cancer treatment may include the following: - Physical problems, such as heart problems, kidney problems, or problems during pregnancy. - Changes in mood, feelings, thinking, learning, or memory. - Second cancers (new types of cancer), such as cancer of the gastrointestinal tract or breast cancer. Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. (See the PDQ summary about Late Effects of Treatment for Childhood Cancer for more information). Clinical trials are being done to find out if lower doses of chemotherapy and radiation can be used to lessen the late effects of treatment without changing how well the treatment works.
Five types of standard treatment are used:
Surgery Two types of surgery are used to treat kidney tumors: - Nephrectomy: Wilms tumor and other childhood kidney tumors are usually treated with nephrectomy (surgery to remove the whole kidney). Nearby lymph nodes may also be removed and checked for signs of cancer. Sometimes a kidney transplant (surgery to remove the kidney and replace it with a kidney from a donor) is done when the cancer is in both kidneys and the kidneys are not working well. - Partial nephrectomy: If cancer is found in both kidneys or is likely to spread to both kidneys, surgery may include a partial nephrectomy (removal of the cancer in the kidney and a small amount of normal tissue around it). Partial nephrectomy is done to keep as much of the kidney working as possible. A partial nephrectomy is also called renal-sparing surgery. Even if the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk of the cancer coming back, is called adjuvant therapy. Sometimes, a second-look surgery is done to see if cancer remains after chemotherapy or radiation therapy. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and stage of the cancer being treated and whether a biopsy was done before surgery to remove the tumor. External radiation therapy is used to treat Wilms tumor and other childhood kidney tumors. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Combination chemotherapy is treatment using two or more anticancer drugs. The way the chemotherapy is given depends on the type and stage of the cancer being treated. Systemic chemotherapy is used to treat Wilms tumor and other childhood kidney tumors. Sometimes the tumor cannot be removed by surgery for one of the following reasons: - The tumor is too close to important organs or blood vessels. - The tumor is too large to remove. - The cancer is in both kidneys. - There is a blood clot in the vessels near the liver. - The patient has trouble breathing because cancer has spread to the lungs. In this case, a biopsy is done first. Then chemotherapy is given to reduce the size of the tumor before surgery, in order to save as much healthy tissue as possible and lessen problems after surgery. This is called neoadjuvant chemotherapy. Radiation therapy is given after surgery. See Drugs Approved for Wilms Tumor and Other Childhood Kidney Cancers for more information. Biologic therapy Biologic therapy is a treatment that uses the patient's immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Interferon and interleukin-2 (IL-2) are types of biologic therapy used to treat childhood renal cell cancer. Interferon affects the division of cancer cells and can slow tumor growth. IL-2 boosts the growth and activity of many immune cells, especially lymphocytes (a type of white blood cell). Lymphocytes can attack and kill cancer cells. High-dose chemotherapy with stem cell rescue High-dose chemotherapy with stem cell rescue is a method of giving high doses of chemotherapy and replacing blood -forming cells destroyed by the cancer treatment. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the chemotherapy is completed, the stored stem cells are thawed and given back to the patient through an infusion. These re-infused stem cells grow into (and restore) the body's blood cells. High-dose chemotherapy with stem cell rescue may be used to treat recurrent Wilms tumor.
Follow-up tests may be needed.
Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups.
Treatment Options for Wilms Tumor
Stage I Wilms Tumor
Treatment of stage I Wilms tumor with favorable histology may include: - Nephrectomy with removal of lymph nodes, followed by combination chemotherapy. - A clinical trial of nephrectomy only. Treatment of stage I anaplastic Wilms tumor may include: - Nephrectomy with removal of lymph nodes followed by combination chemotherapy and radiation therapy to the flank area (either side of the body between the ribs and hipbone). Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I Wilms tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website.
Stage II Wilms Tumor
Treatment of stage II Wilms tumor with favorable histology may include: - Nephrectomy with removal of lymph nodes, followed by combination chemotherapy. Treatment of stage II anaplastic Wilms tumor may include: - Nephrectomy with removal of lymph nodes, followed by radiation therapy to the abdomen and combination chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage II Wilms tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website.
Stage III Wilms Tumor
Treatment of stage III Wilms tumor with favorable histology may include: - Nephrectomy with removal of lymph nodes, followed by radiation therapy to the abdomen and combination chemotherapy. Treatment of stage III anaplastic Wilms tumor may include: - Nephrectomy with removal of lymph nodes, followed by radiation therapy to the abdomen and combination chemotherapy. - Combination chemotherapy followed by nephrectomy with removal of lymph nodes, followed by radiation therapy to the abdomen. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage III Wilms tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website.
Stage IV Wilms Tumor
Treatment of stage IV Wilms tumor with favorable histology may include: - Nephrectomy with removal of lymph nodes, followed by radiation therapy to the abdomen and combination chemotherapy. If cancer has spread to other parts of the body, patients will also receive radiation therapy to those areas. Treatment of stage IV anaplastic Wilms tumor may include: - Nephrectomy with removal of lymph nodes, followed by radiation therapy to the abdomen and combination chemotherapy. If cancer has spread to other parts of the body, patients will also receive radiation therapy to those areas. - Combination chemotherapy given before nephrectomy with removal of lymph nodes, followed by radiation therapy to the abdomen. If cancer has spread to other parts of the body, patients will also receive radiation therapy to those areas. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage IV Wilms tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website.
Stage V Wilms Tumor and patients at high risk of developing bilateral Wilms tumor
Treatment of stage V Wilms tumor may be different for each patient and may include: - Combination chemotherapy to shrink the tumor, followed by repeat imaging at 4 to 8 weeks to decide on further therapy (partial nephrectomy, biopsy, continued chemotherapy, and/or radiation therapy). - A biopsy of the kidneys is followed by combination chemotherapy to shrink the tumor. A second surgery is done to remove as much of the cancer as possible. This may be followed by more chemotherapy and/or radiation therapy if cancer remains after surgery. If a kidney transplant is needed because of kidney problems, it is delayed until 1 to 2 years after treatment is completed and there are no signs of cancer. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage V Wilms tumor. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website.
Treatment Options for Other Childhood Kidney Tumors
Renal Cell Cancer (RCC)
Treatment of renal cell cancer usually includes: - Surgery, which may be: - nephrectomy with removal of lymph nodes; or - partial nephrectomy with removal of lymph nodes. - Biologic therapy (interferon and interleukin-2) for cancer that has spread to other parts of the body. See the PDQ summary about Renal Cell Cancer Treatment for more information. Check the list of NCI-supported cancer clinical trials that are now accepting patients with renal cell carcinoma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website.
Rhabdoid Tumor of the Kidney
There is no standard treatment for rhabdoid tumor of the kidney. Treatment may include: - A combination of surgery, chemotherapy, and/or radiation therapy. - A clinical trial of targeted therapy (tazemetostat). Check the list of NCI-supported cancer clinical trials that are now accepting patients with rhabdoid tumor of the kidney. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website.
Clear Cell Sarcoma of the Kidney
Treatment of clear cell sarcoma of the kidney may include: - Nephrectomy with removal of lymph nodes followed by combination chemotherapy and radiation therapy to the abdomen. - A clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with clear cell sarcoma of the kidney. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website.
Congenital Mesoblastic Nephroma
Treatment for congenital mesoblastic nephroma usually includes: - Surgery that may be followed by chemotherapy. - A clinical trial of targeted therapy (LOXO-101 or entrectinib). Check the list of NCI-supported cancer clinical trials that are now accepting patients with congenital mesoblastic nephroma. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website.
Ewing Sarcoma of the Kidney
There is no standard treatment for Ewing sarcoma of the kidney. Treatment may include: - A combination of surgery, chemotherapy, and radiation therapy. It may also be treated in the same way that Ewing sarcoma is treated. See the PDQ summary about Ewing Sarcoma Treatment for more information. Check the list of NCI-supported cancer clinical trials that are now accepting patients with Ewing sarcoma/peripheral primitive neuroectodermal tumor (PNET). For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your child's doctor about clinical trials that may be right for your child. General information about clinical trials is available from the NCI website.
Primary Renal Myoepithelial Carcinoma
There is no standard treatment for primary renal myoepithelial carcinoma. Treatment may include: - A combination of surgery, chemotherapy, and radiation therapy.
Cystic Partially Differentiated Nephroblastoma
Treatment of cystic partially differentiated nephroblastoma may include: - Surgery that may be followed by chemotherapy.
Multilocular Cystic Nephroma
Treatment of multilocular cystic nephroma usually includes: - Surgery.
Primary Renal Synovial Sarcoma
Treatment of primary renal synovial sarcoma usually includes: - Chemotherapy.
Anaplastic Sarcoma of the Kidney
There is no standard treatment for anaplastic sarcoma of the kidney. Treatment is usually the same treatment given for anaplastic Wilms tumor.
Nephroblastomatosis (Diffuse Hyperplastic Perilobar Nephroblastomatosis)
The treatment of nephroblastomatosis depends on the following: - Whether the child has abnormal groups of cells in one or both kidneys. - Whether the child has Wilms tumor in one kidney and groups of abnormal cells in the other kidney. Treatment of nephroblastomatosis may include: - Chemotherapy followed by nephrectomy. Sometimes a partial nephrectomy may be done to keep as much kidney function as possible. |
There are two kidneys, one on each side of the spine, above the waist. Tiny tubules in the kidneys filter and clean the blood. They take out waste products and make urine. The urine passes from each kidney through a long tube called a ureter into the bladder. The bladder holds the urine until it passes through the urethra and leaves the body. EnlargeAnatomy of the urinary system showing the kidneys, ureters, bladder, and urethra. The inside of the left kidney shows the renal pelvis. An inset shows the renal tubules and urine. Also shown is the spine and adrenal glands. Urine is made in the renal tubules and collects in the renal pelvis of each kidney. The urine flows from the kidneys through the ureters to the bladder. The urine is stored in the bladder until it leaves the body through the urethra. In Wilms tumor, one or more tumors may be found in one or both kidneys. Wilms tumor may spread to the lungs, liver, bone, brain, or nearby lymph nodes. In children and adolescents younger than 15 years old, most kidney cancers are Wilms tumors. Renal cell cancer is rare in children and adolescents younger than 15 years old. It is much more common in adolescents between 15 and 19 years old. Children and adolescents are more likely to be diagnosed with a large renal cell tumor or cancer that has spread. Renal cell cancers may spread to the lungs, liver, bone, or lymph nodes. Renal cell cancer may also be called renal cell carcinoma. Rhabdoid tumor of the kidney is a type of kidney cancer that occurs mostly in infants and young children. It is often advanced at the time of diagnosis. Rhabdoid tumor of the kidney grows and spreads quickly, often to the lungs or brain. Children with a certain change in the SMARCB1 gene can also have tumors grow in the kidney, brain, or soft tissues. These children are checked regularly to see if a rhabdoid tumor has formed in the kidney or the brain: Clear cell sarcoma of the kidney is an uncommon kidney cancer that may spread to the bone, lungs, brain, liver, or soft tissue. It occurs most often before age 3 years. It may recur (come back) up to 14 years after treatment, often in the brain or lung. Congenital mesoblastic nephroma is a tumor of the kidney that is often diagnosed during the first year of life or before birth. It is the most common kidney tumor found in infants younger than 6 months old and is found more often in males than in females. It can usually be cured. Ewing sarcoma (previously called neuroepithelial tumor) of the kidney is rare and usually occurs in young adults. This cancer grows and spreads to other parts of the body quickly. Primary renal myoepithelial carcinoma is a rare type of cancer that usually affects soft tissues, but sometimes forms in the internal organs (such as the kidney). This type of cancer grows and spreads quickly. Cystic partially differentiated nephroblastoma is a very rare type of Wilms tumor made up of cysts. Multilocular cystic nephromas are benign tumors made up of cysts and are most common in infants, young children, and adult women. These tumors can occur in one or both kidneys. Children with this type of tumor also may have pleuropulmonary blastoma, so imaging tests that check the lungs for cysts or solid tumors are done. Since multilocular cystic nephroma may be an inherited condition, genetic counseling and genetic testing may be considered. See the PDQ summary about Childhood Pleuropulmonary Blastoma Treatment for more information. Primary renal synovial sarcoma is a cyst-like tumor of the kidney and is most common in young adults. These tumors grow and spread quickly. Anaplastic sarcoma of the kidney is a rare tumor that is most common in children or adolescents younger than 15 years of age. Anaplastic sarcoma of the kidney often spreads to the lungs, liver, or bones. Imaging tests that check the lungs for cysts or solid tumors may be done. Since anaplastic sarcoma may be an inherited condition, genetic counseling and genetic testing may be considered. Sometimes, after the kidneys form in the fetus, abnormal groups of kidney cells remain in one or both kidneys. In nephroblastomatosis (diffuse hyperplastic perilobar nephroblastomatosis), these abnormal groups of cells may grow in many places inside the kidney or make a thick layer around the kidney. When these groups of abnormal cells are found in a kidney after it was removed for Wilms tumor, the child has an increased risk of Wilms tumor in the other kidney. Frequent follow-up testing is important at least every 3 months, for at least 7 years after the child is diagnosed or treated. Anything that increases the risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk to your child's doctor if you think your child may be at risk. Wilms tumor may be part of a genetic syndrome that affects growth or development. A genetic syndrome is a set of signs and symptoms or conditions that occur together and is caused by certain changes in the genes. Certain conditions or environmental exposures can also increase a child's risk of developing Wilms tumor. The following have been linked to Wilms tumor: Screening tests are done in children with an increased risk of Wilms tumor. These tests may help find cancer early and decrease the chance of dying from cancer. In general, children with an increased risk of Wilms tumor should be screened for Wilms tumor every 3 months until they are at least 8 years old. An ultrasound test of the abdomen is usually used for screening. Small Wilms tumors may be found and removed before symptoms occur. Children with Beckwith-Wiedemann syndrome or hemihyperplasia are also screened for liver and adrenal tumors that are linked to these genetic syndromes. A test to check the alpha-fetoprotein (AFP) level in the blood and an ultrasound of the abdomen are done until the child is 4 years old. An ultrasound of the kidneys is done between the ages of 4 and 7 years old. A physical exam by a specialist (geneticist or pediatric oncologist) is done two times each year. In children with certain gene changes, a different schedule for ultrasound of the abdomen may be used. Children with aniridia and a certain gene change are screened for Wilms tumor every 3 months until they are 8 years old. An ultrasound test of the abdomen is used for screening. Some children develop Wilms tumor in both kidneys. These often appear when Wilms tumor is first diagnosed, but Wilms tumor may also occur in the second kidney after the child is successfully treated for Wilms tumor in one kidney. Children with an increased risk of a second Wilms tumor in the other kidney should be screened for Wilms tumor every 3 months for up to 8 years. An ultrasound test of the abdomen may be used for screening. Renal cell cancer may be related to the following conditions: Prior chemotherapy or radiation therapy for a childhood cancer, such as neuroblastoma, soft tissue sarcoma, leukemia, or Wilms tumor may also increase the risk of renal cell cancer. See the Second Cancers section in the PDQ summary about Late Effects of Treatment for Childhood Cancer for more information. Genetic counseling (a discussion with a trained professional about genetic diseases and whether genetic testing is needed) may be done if the child has one of the following syndromes or conditions: Sometimes childhood kidney tumors do not cause signs and symptoms and the parent finds a mass in the abdomen by chance or the mass is found during a well-child health check-up. These and other signs and symptoms may be caused by kidney tumors or by other conditions. Check with your child's doctor if your child has any of the following: Wilms tumor that has spread to the lungs or liver may cause the following signs and symptoms: The following tests and procedures may be used: The prognosis and treatment options for Wilms tumor depend on the following: The prognosis for renal cell cancer depends on the following: The prognosis for rhabdoid tumor of the kidney depends on the following: The prognosis for clear cell sarcoma of the kidney depends on the following: The process used to find out if cancer has spread outside of the kidney to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. The results of the tests and procedures done to diagnose and stage Wilms tumor are used to help make decisions about treatment. There is no staging for the other types of childhood kidney tumors. The treatment of these tumors depends on the tumor type. The following tests may be done to see if cancer has spread to other places in the body: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if Wilms tumor spreads to the lung, the cancer cells in the lung are actually Wilms tumor cells. The disease is metastatic Wilms tumor, not lung cancer. The histology (how the cells look under a microscope) of the tumor affects the prognosis and the treatment of Wilms tumor. The histology may be favorable or anaplastic (unfavorable). Tumors with a favorable histology have a better prognosis and respond better to chemotherapy than anaplastic tumors. Tumor cells that are anaplastic divide quickly and under a microscope do not look like the type of cells they came from. Anaplastic tumors are harder to treat with chemotherapy than other Wilms tumors at the same stage. In stage I, the tumor was completely removed by surgery and all of the following are true: In stage II, the tumor was completely removed by surgery and no cancer cells were found at the edges of the area where the cancer was removed. Cancer has not spread to lymph nodes. Before the tumor was removed, one of the following was true: In stage III, cancer remains in the abdomen after surgery and at least one of the following is true: In stage IV, cancer has spread through the blood to organs such as the lungs, liver, bone, or brain, or to lymph nodes outside the abdomen and pelvis. In stage V (bilateral) Wilms tumor, cancer cells are found in both kidneys when the cancer is first diagnosed. The cancer in each kidney is staged separately as stage I, II, III, or IV. Childhood Wilms tumor may recur (come back) in the lungs, abdomen, liver, or other places in the body. Childhood clear cell sarcoma of the kidney may recur in the brain, lungs, or other places in the body. Childhood congenital mesoblastic nephroma may recur in the kidneys or in other places in the body. Different types of treatment are available for children with Wilms and other childhood kidney tumors. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Because cancer in children is rare, taking part in a clinical trial should be considered. Some clinical trials are open only to patients who have not started treatment.
Your child's treatment will be overseen by a pediatric oncologist, a doctor who specializes in treating children with cancer. The pediatric oncologist works with other pediatric health care providers who are experts in treating children with Wilms tumor or other childhood kidney tumors and who specialize in certain areas of medicine. These may include the following specialists: Two types of surgery are used to treat kidney tumors: After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Sometimes, a second-look surgery is done to see if cancer remains after chemotherapy or radiation therapy. Sometimes the tumor cannot be removed by surgery for one of the following reasons: In this case, a biopsy is done first. Then chemotherapy is given to reduce the size of the tumor before surgery, in order to save as much healthy tissue as possible and lessen problems after surgery. This is called neoadjuvant chemotherapy. Radiation therapy is given after surgery. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. External radiation therapy is used to treat Wilms tumor and other childhood kidney tumors. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Combination chemotherapy is treatment using two or more anticancer drugs. Systemic chemotherapy is used to treat Wilms tumor and other childhood kidney tumors. Sometimes chemotherapy is given to reduce the size of the tumor before surgery, in order to save as much healthy tissue as possible and lessen problems after surgery. This is called neoadjuvant chemotherapy. See Drugs Approved for Wilms Tumor and Other Childhood Kidney Cancers for more information. Immunotherapy is a treatment that uses the patient's immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. This cancer treatment is a type of biologic therapy. Interferon and interleukin-2 (IL-2) are types of immunotherapy used to treat childhood renal cell cancer. Interferon may slow tumor growth and may help kill the cancer cells. IL-2 boosts the growth and activity of many immune cells, especially lymphocytes (a type of white blood cell). Lymphocytes can attack and kill cancer cells. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell rescue is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These stem cells grow into (and restore) the body's blood cells. High-dose chemotherapy with stem cell rescue may be used to treat rhabdoid tumor of the kidney or recurrent Wilms tumor. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Targeted therapy used to treat childhood kidney tumors may include the following: Other targeted therapies are being studied for the treatment of childhood kidney tumors that have recurred (come back). Information about clinical trials is available from the NCI website. For information about side effects that begin during treatment for cancer, see our Side Effects page. Side effects from cancer treatment that begin after treatment and continue for months or years are called late effects. Late effects of cancer treatment may include the following:
Some late effects may be treated or controlled. It is important to talk with your child's doctors about the effects cancer treatment can have on your child. (See the PDQ summary about Late Effects of Treatment for Childhood Cancer for more information).
Clinical trials are being done to find out if lower doses of chemotherapy and radiation can be used to lessen the late effects of treatment without changing how well the treatment works. Monitoring for late effects involving the kidneys in patients with Wilms tumor and related conditions includes the following: For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your child's condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I Wilms tumor with favorable histology may include: Treatment of stage I anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage II Wilms tumor with favorable histology may include: Treatment of stage II anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage III Wilms tumor with favorable histology may include: Treatment of stage III anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage IV Wilms tumor with favorable histology may include: Treatment of stage IV anaplastic Wilms tumor may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stage V Wilms tumor (bilateral) may be different for each patient and may include: If a kidney transplant is needed because of kidney problems, it is usually delayed until 1 to 2 years after treatment is completed and there are no signs of cancer. (See the Treatment of Recurrent Childhood Kidney Tumors section of this summary for information about recurrent disease.) Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of renal cell cancer may include: See the PDQ summary about Renal Cell Cancer Treatment for more information. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for rhabdoid tumor of the kidney. Treatment may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of clear cell sarcoma of the kidney may include: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. Treatment of stages I, II, and certain patients with stage III congenital mesoblastic nephroma may include: Treatment for certain patients with stage III congenital mesoblastic nephroma may include: A clinical trial of targeted therapy with a tyrosine kinase inhibitor (larotrectinib) for cancer that has a certain gene change and has not been treated. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for Ewing sarcoma of the kidney. Treatment may include: It may also be treated in the same way that Ewing sarcoma is treated. See the PDQ summary about Ewing Sarcoma Treatment for more information. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for primary renal myoepithelial carcinoma. Treatment may include: Treatment of cystic partially differentiated nephroblastoma may include: Treatment of multilocular cystic nephroma usually includes: Treatment of primary renal synovial sarcoma usually includes: There is no standard treatment for anaplastic sarcoma of the kidney. Treatment is usually the same treatment given for anaplastic Wilms tumor. The treatment of nephroblastomatosis depends on the following: Treatment of nephroblastomatosis may include: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of recurrent Wilms tumor may include: Treatment of recurrent rhabdoid tumor of the kidney may include: Treatment of recurrent clear cell sarcoma of the kidney may include: Treatment of recurrent congenital mesoblastic nephroma may include: Treatment of other recurrent childhood kidney tumors is usually within a clinical trial. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about Wilms tumor and other childhood kidney tumors, see the following: For more childhood cancer information and other general cancer resources, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of Wilms tumor and other childhood kidney tumors. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Pediatric Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Pediatric Treatment Editorial Board. PDQ Wilms Tumor and Other Childhood Kidney Tumors Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/kidney/patient/wilms-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389390] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Wilms Tumor and Other Childhood Kidney Tumors Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | what research (or clinical trials) is being done for Wilms Tumor and Other Childhood Kidney Tumors ? | New types of treatment are being tested in clinical trials.
Information about clinical trials is available from the NCI website. Targeted therapy Targeted therapy is a treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Targeted therapy used to treat childhood kidney tumors may include the following: - Monoclonal antibodies: This targeted therapy uses antibodies made in the laboratory, from a single type of immune system cell. These antibodies can identify substances on cancer cells or normal substances that may help cancer cells grow. The antibodies attach to the substances and kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Lorvotuzumab is being studied in the treatment of recurrent Wilms tumor. - Kinase inhibitors: This targeted therapy blocks signals that cancer cells need to grow and divide. LOXO-101 and entrectinib are kinase inhibitors being studied to treat congenital mesoblastic nephroma. - Histone methyltransferase inhibitors: This targeted therapy slows down the cancer cell's ability to grow and divide. Tazemetostat is being studied in the treatment of rhabdoid tumor of the kidney.
Patients may want to think about taking part in a clinical trial.
For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.
Patients can enter clinical trials before, during, or after starting their cancer treatment.
Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. |
Screening is looking for cancer before a person has any symptoms. This can help find
cancer at an early stage. When abnormal tissue or cancer is found early, it may
be easier to treat. By the time symptoms appear, cancer may have begun
to spread. Scientists are trying to better understand which
people are more likely to get certain types of cancer. They also study the things
we do and the things around us to see if they cause cancer. This
information helps doctors recommend who should be screened for cancer, which
screening tests should be used, and how often the tests should be done. It is important to remember that your doctor does not necessarily
think you have cancer if he or she suggests a screening test. Screening
tests are given when you have no cancer symptoms. If a screening test result is abnormal, you may need to have more tests done to find out if you have cancer. These are called diagnostic tests.
The endometrium is the
innermost lining of the uterus. The uterus is
a hollow, muscular organ in a
woman's pelvis. The uterus is where a fetus grows. In most nonpregnant
women, the uterus is about 3 inches long. Cancer of the endometrium
is different from cancer of the muscle of the uterus, which is called
uterine sarcoma. See the
PDQ summary on Uterine Sarcoma
Treatment for more information. See the following PDQ summaries for more information about endometrial cancer: Endometrial cancer is diagnosed most often in postmenopausal women at an average age of 60 years. Since the mid-2000s, the number of new cases of endometrial cancer has increased slightly each year. From 2009 to 2018, the number of deaths from endometrial cancer increased by about 2% per year. Anything that increases your chance of getting a disease
is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. People who think they may be at risk should discuss this with their doctor. Risk factors for endometrial cancer include the
following: Scientists study screening tests to find those with the fewest harms and most benefits. Cancer screening trials also are meant to show whether early detection (finding cancer before it causes symptoms) helps a person live longer or decreases a person's chance of dying from the disease. For some types of cancer, the chance of recovery is better if the disease is found and treated at an early stage. Endometrial cancer usually causes symptoms (such as vaginal bleeding) and is found at an early stage, when there is a good chance of recovery. Screening for endometrial cancer is under study and there are screening clinical trials taking place in many parts of the country.
Information about ongoing clinical trials is available from the NCI website. A Pap test is a procedure to collect cells from the surface of the cervix and vagina. A piece of cotton, a brush, or a small wooden stick is used to gently scrape cells from the cervix and vagina. The cells are viewed under a microscope to find out if they are abnormal. This procedure is also called a Pap smear. Pap tests are not used to screen for endometrial cancer; however, Pap test results sometimes show signs of an abnormal endometrium (lining of the uterus). Follow-up tests may
detect endometrial cancer. No studies have shown that screening by transvaginal ultrasound (TVU) lowers the number of deaths caused by endometrial cancer. Transvaginal ultrasound (TVU) is a procedure used to examine the vagina, uterus, fallopian tubes, and bladder. It is also called endovaginal ultrasound. An ultrasound transducer (probe) is inserted into the vagina and used to bounce high-energy sound waves (ultrasound) off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. The
doctor can identify tumors by looking at the sonogram. TVU is commonly
used to examine women who have abnormal vaginal bleeding. For women who have or are at risk for hereditary non-polyposis colon cancer, experts suggest yearly screening with transvaginal ultrasound, beginning as early as age 25. The use of tamoxifen to treat or prevent breast cancer increases the risk of endometrial cancer. TVU is not useful in screening for endometrial cancer in women who take tamoxifen but do not have any symptoms of endometrial cancer. In women taking tamoxifen, TVU should be used in those who have vaginal bleeding. It has not been proven that screening by endometrial sampling (biopsy) lowers the number of deaths caused by endometrial cancer. Endometrial sampling is the removal of tissue from the endometrium
by inserting a brush, curette, or thin, flexible tube through the cervix and into the uterus. The tool is used to gently scrape a small amount of tissue from the endometrium and then remove the tissue samples. A pathologist views the tissue under a microscope to look for cancer cells. Endometrial sampling is commonly
used to examine women who have abnormal vaginal bleeding. If you have abnormal vaginal bleeding, check with your doctor. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Decisions about screening tests can be difficult. Not all screening tests are helpful and most have risks. Before having any screening test, you may
want to discuss the test with your doctor. It is important to know the risks of
the test and whether it has been proven to reduce the risk of dying from
cancer. Screening
may not improve your health or help you live longer if you have advanced endometrial cancer or if it has already spread to
other places in your body. Some cancers never cause symptoms
or become life-threatening, but if found by a screening
test, the cancer may be treated. It is not known if treatment of these cancers would help you live longer than if no treatment were given, and treatments for cancer may have serious side effects. Screening test results may appear to be normal even though endometrial cancer is
present. A woman who receives a false-negative test result (one that
shows there is no cancer when there really is) may delay seeking medical care even if she has symptoms. Screening test results may appear to be abnormal even though no
cancer is present. A false-positive test result (one that shows there is cancer when there really isn't) can cause anxiety and is usually followed by more tests (such as
biopsy), which also have risks. Side effects that may be caused by screening tests for endometrial cancer include: If you have any questions about your risk for endometrial cancer or the need for screening tests, check with your doctor. Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about endometrial cancer screening. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Screening and Prevention Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Screening and Prevention Editorial Board. PDQ Endometrial Cancer Screening. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/uterine/patient/endometrial-screening-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389486] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Endometrial Cancer Screening (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is (are) Endometrial Cancer ? | Key Points
- Endometrial cancer is a disease in which malignant (cancer) cells form in the tissues of the endometrium. - In the United States, endometrial cancer is the most common invasive cancer of the female reproductive system. - Health history and certain medicines can affect the risk of developing endometrial cancer.
Endometrial cancer is a disease in which malignant (cancer) cells form in the tissues of the endometrium.
The endometrium is the innermost lining of the uterus. The uterus is a hollow, muscular organ in a woman's pelvis. The uterus is where a fetus grows. In most nonpregnant women, the uterus is about 3 inches long. Cancer of the endometrium is different from cancer of the muscle of the uterus, which is called uterine sarcoma. See the PDQ summary on Uterine Sarcoma Treatment for more information. See the following PDQ summaries for more information about endometrial cancer: - Endometrial Cancer Treatment - Endometrial Cancer Prevention
In the United States, endometrial cancer is the most common invasive cancer of the female reproductive system.
Endometrial cancer is diagnosed most often in postmenopausal women at an average age of 60 years. From 2004 to 2013, the number of new cases of endometrial cancer increased slightly in white and black women. From 2005 to 2014, the number of deaths from endometrial cancer increased slightly in white and black women. When endometrial cancer is diagnosed in black women, it is usually more advanced and less likely to be cured. |
Screening is looking for cancer before a person has any symptoms. This can help find
cancer at an early stage. When abnormal tissue or cancer is found early, it may
be easier to treat. By the time symptoms appear, cancer may have begun
to spread. Scientists are trying to better understand which
people are more likely to get certain types of cancer. They also study the things
we do and the things around us to see if they cause cancer. This
information helps doctors recommend who should be screened for cancer, which
screening tests should be used, and how often the tests should be done. It is important to remember that your doctor does not necessarily
think you have cancer if he or she suggests a screening test. Screening
tests are given when you have no cancer symptoms. If a screening test result is abnormal, you may need to have more tests done to find out if you have cancer. These are called diagnostic tests.
The endometrium is the
innermost lining of the uterus. The uterus is
a hollow, muscular organ in a
woman's pelvis. The uterus is where a fetus grows. In most nonpregnant
women, the uterus is about 3 inches long. Cancer of the endometrium
is different from cancer of the muscle of the uterus, which is called
uterine sarcoma. See the
PDQ summary on Uterine Sarcoma
Treatment for more information. See the following PDQ summaries for more information about endometrial cancer: Endometrial cancer is diagnosed most often in postmenopausal women at an average age of 60 years. Since the mid-2000s, the number of new cases of endometrial cancer has increased slightly each year. From 2009 to 2018, the number of deaths from endometrial cancer increased by about 2% per year. Anything that increases your chance of getting a disease
is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. People who think they may be at risk should discuss this with their doctor. Risk factors for endometrial cancer include the
following: Scientists study screening tests to find those with the fewest harms and most benefits. Cancer screening trials also are meant to show whether early detection (finding cancer before it causes symptoms) helps a person live longer or decreases a person's chance of dying from the disease. For some types of cancer, the chance of recovery is better if the disease is found and treated at an early stage. Endometrial cancer usually causes symptoms (such as vaginal bleeding) and is found at an early stage, when there is a good chance of recovery. Screening for endometrial cancer is under study and there are screening clinical trials taking place in many parts of the country.
Information about ongoing clinical trials is available from the NCI website. A Pap test is a procedure to collect cells from the surface of the cervix and vagina. A piece of cotton, a brush, or a small wooden stick is used to gently scrape cells from the cervix and vagina. The cells are viewed under a microscope to find out if they are abnormal. This procedure is also called a Pap smear. Pap tests are not used to screen for endometrial cancer; however, Pap test results sometimes show signs of an abnormal endometrium (lining of the uterus). Follow-up tests may
detect endometrial cancer. No studies have shown that screening by transvaginal ultrasound (TVU) lowers the number of deaths caused by endometrial cancer. Transvaginal ultrasound (TVU) is a procedure used to examine the vagina, uterus, fallopian tubes, and bladder. It is also called endovaginal ultrasound. An ultrasound transducer (probe) is inserted into the vagina and used to bounce high-energy sound waves (ultrasound) off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. The
doctor can identify tumors by looking at the sonogram. TVU is commonly
used to examine women who have abnormal vaginal bleeding. For women who have or are at risk for hereditary non-polyposis colon cancer, experts suggest yearly screening with transvaginal ultrasound, beginning as early as age 25. The use of tamoxifen to treat or prevent breast cancer increases the risk of endometrial cancer. TVU is not useful in screening for endometrial cancer in women who take tamoxifen but do not have any symptoms of endometrial cancer. In women taking tamoxifen, TVU should be used in those who have vaginal bleeding. It has not been proven that screening by endometrial sampling (biopsy) lowers the number of deaths caused by endometrial cancer. Endometrial sampling is the removal of tissue from the endometrium
by inserting a brush, curette, or thin, flexible tube through the cervix and into the uterus. The tool is used to gently scrape a small amount of tissue from the endometrium and then remove the tissue samples. A pathologist views the tissue under a microscope to look for cancer cells. Endometrial sampling is commonly
used to examine women who have abnormal vaginal bleeding. If you have abnormal vaginal bleeding, check with your doctor. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Decisions about screening tests can be difficult. Not all screening tests are helpful and most have risks. Before having any screening test, you may
want to discuss the test with your doctor. It is important to know the risks of
the test and whether it has been proven to reduce the risk of dying from
cancer. Screening
may not improve your health or help you live longer if you have advanced endometrial cancer or if it has already spread to
other places in your body. Some cancers never cause symptoms
or become life-threatening, but if found by a screening
test, the cancer may be treated. It is not known if treatment of these cancers would help you live longer than if no treatment were given, and treatments for cancer may have serious side effects. Screening test results may appear to be normal even though endometrial cancer is
present. A woman who receives a false-negative test result (one that
shows there is no cancer when there really is) may delay seeking medical care even if she has symptoms. Screening test results may appear to be abnormal even though no
cancer is present. A false-positive test result (one that shows there is cancer when there really isn't) can cause anxiety and is usually followed by more tests (such as
biopsy), which also have risks. Side effects that may be caused by screening tests for endometrial cancer include: If you have any questions about your risk for endometrial cancer or the need for screening tests, check with your doctor. Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about endometrial cancer screening. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Screening and Prevention Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Screening and Prevention Editorial Board. PDQ Endometrial Cancer Screening. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/uterine/patient/endometrial-screening-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389486] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Endometrial Cancer Screening (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | Who is at risk for Endometrial Cancer? ? | Health history and certain medicines can affect the risk of developing endometrial cancer. Anything that increases your chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. People who think they may be at risk should discuss this with their doctor. Risk factors for endometrial cancer include the following: - Taking tamoxifen for treatment or prevention of breast cancer. - Taking estrogen alone. (Taking estrogen in combination with progestin does not appear to increase the risk of endometrial cancer.) - Being overweight. - Eating a high-fat diet. - Never giving birth. - Beginning menstruation at an early age. - Reaching menopause at an older age. - Having the gene for hereditary non-polyposis colon cancer (HNPCC). - Being white. |
The renal pelvis is the top part of the ureter. The ureter is a long tube that connects the kidney to the bladder. There are two kidneys, one on each side of the backbone, above the waist. The kidneys of an adult are about 5 inches long and 3 inches wide and are shaped like a kidney bean. Tiny tubules in the kidneys filter and clean the blood. They take out waste products and make urine. The urine collects in the middle of each kidney in the renal pelvis. Urine passes from the renal pelvis through the ureter into the bladder. The bladder holds the urine until it passes through the urethra and leaves the body. The renal pelvis and ureters are lined with transitional cells. These cells can change shape and stretch without breaking apart. Transitional cell cancer starts in these cells. Transitional cell cancer can form in the renal pelvis, the ureter, or both. Renal cell cancer is a more common type of kidney cancer. See the PDQ summary about Renal Cell Cancer Treatment for more information.
Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for transitional cell cancer of the renal pelvis and ureter include the following: These and other signs and symptoms may be caused by transitional cell cancer of the renal pelvis and ureter or by other conditions. There may be no signs or symptoms in the early stages. Signs and symptoms may appear as the tumor grows. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis depends on the stage and grade of the tumor. The treatment options depend on the following: Most transitional cell cancer of the renal pelvis and ureter can be cured if found early. The process used to find out if cancer has spread within the renal pelvis and ureter or to other
parts of the body is called staging. The information gathered from the
staging process determines the stage of the disease. It is important to know
the stage in order to plan treatment. The doctor will use results of the diagnostic tests to help find out the stage of the disease. The following tests and
procedures may also be used in the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if transitional cell cancer of the ureter spreads to the lung, the cancer cells in the lung are actually ureter cancer cells. The disease is metastatic cancer of the ureter, not lung cancer. In stage 0, abnormal cells are found in tissue lining the inside of the renal pelvis or ureter. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is divided into stages 0a and 0is, depending on the type of tumor:
In stage I, cancer has formed and has spread from the tissue lining the inside of the renal pelvis or ureter to the connective tissue layer. In stage II, cancer has spread to the muscle layer of the renal pelvis or ureter. In stage III, cancer has spread: In stage IV, cancer has spread to at least one of the following: The cancer is found only in the kidney. The cancer has spread to tissues around the kidney and to nearby lymph nodes and blood vessels in the pelvis. The cancer has spread to other parts of the body. The cancer has recurred (come back) after it has been treated. The cancer may come back in the renal pelvis, ureter, or other parts of the body, such as the lung, liver, or bone. Different types of treatments are available for patients with transitional cell cancer of the renal pelvis and ureter. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. One of the following surgical procedures may be used to treat transitional cell cancer of the renal pelvis and ureter: This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI Web site. Fulguration is a surgical procedure that destroys tissue using an electric current. A tool with a small wire loop on the end is used to remove the cancer or to burn away the tumor with electricity. This is a surgical procedure to remove localized cancer from the renal pelvis without removing the entire kidney. Segmental resection may be done to save kidney function when the other kidney is damaged or has already been removed.
A laser beam (narrow beam of intense light) is used as a knife to remove the cancer. A laser beam can also be used to kill the cancer cells. This procedure may also be called or laser fulguration. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. Biologic therapy is a treatment that uses the patient's immune system to fight cancer; substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. Regional treatment means the anticancer drugs or biologic substances are placed directly into an organ or a body cavity such as the abdomen, so the drugs will affect cancer cells in that area. Clinical trials are studying chemotherapy or biologic therapy using drugs placed directly into the renal pelvis or the ureter. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of localized transitional cell cancer of the renal pelvis and ureter may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of regional transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of metastatic or recurrent transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial, which may include chemotherapy. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about transitional cell cancer of the renal pelvis and ureter, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of transitional cell cancer of the renal pelvis and ureter. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/kidney/patient/transitional-cell-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389285] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is (are) Transitional Cell Cancer of the Renal Pelvis and Ureter ? | Key Points
- Transitional cell cancer of the renal pelvis and ureter is a disease in which malignant (cancer) cells form in the renal pelvis and ureter. - Misuse of certain pain medicines can affect the risk of transitional cell cancer of the renal pelvis and ureter. - Signs and symptoms of transitional cell cancer of the renal pelvis and ureter include blood in the urine and back pain. - Tests that examine the abdomen and kidneys are used to detect (find) and diagnose transitional cell cancer of the renal pelvis and ureter. - Certain factors affect prognosis (chance of recovery) and treatment options.
Transitional cell cancer of the renal pelvis and ureter is a disease in which malignant (cancer) cells form in the renal pelvis and ureter.
The renal pelvis is the top part of the ureter. The ureter is a long tube that connects the kidney to the bladder. There are two kidneys, one on each side of the backbone, above the waist. The kidneys of an adult are about 5 inches long and 3 inches wide and are shaped like a kidney bean. Tiny tubules in the kidneys filter and clean the blood. They take out waste products and make urine. The urine collects in the middle of each kidney in the renal pelvis. Urine passes from the renal pelvis through the ureter into the bladder. The bladder holds the urine until it passes through the urethra and leaves the body. The renal pelvis and ureters are lined with transitional cells. These cells can change shape and stretch without breaking apart. Transitional cell cancer starts in these cells. Transitional cell cancer can form in the renal pelvis or the ureter or both. Renal cell cancer is a more common type of kidney cancer. See the PDQ summary about Renal Cell Cancer Treatment for more information. |
The renal pelvis is the top part of the ureter. The ureter is a long tube that connects the kidney to the bladder. There are two kidneys, one on each side of the backbone, above the waist. The kidneys of an adult are about 5 inches long and 3 inches wide and are shaped like a kidney bean. Tiny tubules in the kidneys filter and clean the blood. They take out waste products and make urine. The urine collects in the middle of each kidney in the renal pelvis. Urine passes from the renal pelvis through the ureter into the bladder. The bladder holds the urine until it passes through the urethra and leaves the body. The renal pelvis and ureters are lined with transitional cells. These cells can change shape and stretch without breaking apart. Transitional cell cancer starts in these cells. Transitional cell cancer can form in the renal pelvis, the ureter, or both. Renal cell cancer is a more common type of kidney cancer. See the PDQ summary about Renal Cell Cancer Treatment for more information.
Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for transitional cell cancer of the renal pelvis and ureter include the following: These and other signs and symptoms may be caused by transitional cell cancer of the renal pelvis and ureter or by other conditions. There may be no signs or symptoms in the early stages. Signs and symptoms may appear as the tumor grows. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis depends on the stage and grade of the tumor. The treatment options depend on the following: Most transitional cell cancer of the renal pelvis and ureter can be cured if found early. The process used to find out if cancer has spread within the renal pelvis and ureter or to other
parts of the body is called staging. The information gathered from the
staging process determines the stage of the disease. It is important to know
the stage in order to plan treatment. The doctor will use results of the diagnostic tests to help find out the stage of the disease. The following tests and
procedures may also be used in the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if transitional cell cancer of the ureter spreads to the lung, the cancer cells in the lung are actually ureter cancer cells. The disease is metastatic cancer of the ureter, not lung cancer. In stage 0, abnormal cells are found in tissue lining the inside of the renal pelvis or ureter. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is divided into stages 0a and 0is, depending on the type of tumor:
In stage I, cancer has formed and has spread from the tissue lining the inside of the renal pelvis or ureter to the connective tissue layer. In stage II, cancer has spread to the muscle layer of the renal pelvis or ureter. In stage III, cancer has spread: In stage IV, cancer has spread to at least one of the following: The cancer is found only in the kidney. The cancer has spread to tissues around the kidney and to nearby lymph nodes and blood vessels in the pelvis. The cancer has spread to other parts of the body. The cancer has recurred (come back) after it has been treated. The cancer may come back in the renal pelvis, ureter, or other parts of the body, such as the lung, liver, or bone. Different types of treatments are available for patients with transitional cell cancer of the renal pelvis and ureter. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. One of the following surgical procedures may be used to treat transitional cell cancer of the renal pelvis and ureter: This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI Web site. Fulguration is a surgical procedure that destroys tissue using an electric current. A tool with a small wire loop on the end is used to remove the cancer or to burn away the tumor with electricity. This is a surgical procedure to remove localized cancer from the renal pelvis without removing the entire kidney. Segmental resection may be done to save kidney function when the other kidney is damaged or has already been removed.
A laser beam (narrow beam of intense light) is used as a knife to remove the cancer. A laser beam can also be used to kill the cancer cells. This procedure may also be called or laser fulguration. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. Biologic therapy is a treatment that uses the patient's immune system to fight cancer; substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. Regional treatment means the anticancer drugs or biologic substances are placed directly into an organ or a body cavity such as the abdomen, so the drugs will affect cancer cells in that area. Clinical trials are studying chemotherapy or biologic therapy using drugs placed directly into the renal pelvis or the ureter. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of localized transitional cell cancer of the renal pelvis and ureter may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of regional transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of metastatic or recurrent transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial, which may include chemotherapy. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about transitional cell cancer of the renal pelvis and ureter, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of transitional cell cancer of the renal pelvis and ureter. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/kidney/patient/transitional-cell-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389285] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the symptoms of Transitional Cell Cancer of the Renal Pelvis and Ureter ? | Signs and symptoms of transitional cell cancer of the renal pelvis and ureter include blood in the urine and back pain. These and other signs and symptoms may be caused by transitional cell cancer of the renal pelvis and ureter or by other conditions. There may be no signs or symptoms in the early stages. Signs and symptoms may appear as the tumor grows. Check with your doctor if you have any of the following: - Blood in the urine. - A pain in the back that doesn't go away. - Extreme tiredness. - Weight loss with no known reason. - Painful or frequent urination. |
The renal pelvis is the top part of the ureter. The ureter is a long tube that connects the kidney to the bladder. There are two kidneys, one on each side of the backbone, above the waist. The kidneys of an adult are about 5 inches long and 3 inches wide and are shaped like a kidney bean. Tiny tubules in the kidneys filter and clean the blood. They take out waste products and make urine. The urine collects in the middle of each kidney in the renal pelvis. Urine passes from the renal pelvis through the ureter into the bladder. The bladder holds the urine until it passes through the urethra and leaves the body. The renal pelvis and ureters are lined with transitional cells. These cells can change shape and stretch without breaking apart. Transitional cell cancer starts in these cells. Transitional cell cancer can form in the renal pelvis, the ureter, or both. Renal cell cancer is a more common type of kidney cancer. See the PDQ summary about Renal Cell Cancer Treatment for more information.
Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for transitional cell cancer of the renal pelvis and ureter include the following: These and other signs and symptoms may be caused by transitional cell cancer of the renal pelvis and ureter or by other conditions. There may be no signs or symptoms in the early stages. Signs and symptoms may appear as the tumor grows. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis depends on the stage and grade of the tumor. The treatment options depend on the following: Most transitional cell cancer of the renal pelvis and ureter can be cured if found early. The process used to find out if cancer has spread within the renal pelvis and ureter or to other
parts of the body is called staging. The information gathered from the
staging process determines the stage of the disease. It is important to know
the stage in order to plan treatment. The doctor will use results of the diagnostic tests to help find out the stage of the disease. The following tests and
procedures may also be used in the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if transitional cell cancer of the ureter spreads to the lung, the cancer cells in the lung are actually ureter cancer cells. The disease is metastatic cancer of the ureter, not lung cancer. In stage 0, abnormal cells are found in tissue lining the inside of the renal pelvis or ureter. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is divided into stages 0a and 0is, depending on the type of tumor:
In stage I, cancer has formed and has spread from the tissue lining the inside of the renal pelvis or ureter to the connective tissue layer. In stage II, cancer has spread to the muscle layer of the renal pelvis or ureter. In stage III, cancer has spread: In stage IV, cancer has spread to at least one of the following: The cancer is found only in the kidney. The cancer has spread to tissues around the kidney and to nearby lymph nodes and blood vessels in the pelvis. The cancer has spread to other parts of the body. The cancer has recurred (come back) after it has been treated. The cancer may come back in the renal pelvis, ureter, or other parts of the body, such as the lung, liver, or bone. Different types of treatments are available for patients with transitional cell cancer of the renal pelvis and ureter. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. One of the following surgical procedures may be used to treat transitional cell cancer of the renal pelvis and ureter: This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI Web site. Fulguration is a surgical procedure that destroys tissue using an electric current. A tool with a small wire loop on the end is used to remove the cancer or to burn away the tumor with electricity. This is a surgical procedure to remove localized cancer from the renal pelvis without removing the entire kidney. Segmental resection may be done to save kidney function when the other kidney is damaged or has already been removed.
A laser beam (narrow beam of intense light) is used as a knife to remove the cancer. A laser beam can also be used to kill the cancer cells. This procedure may also be called or laser fulguration. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. Biologic therapy is a treatment that uses the patient's immune system to fight cancer; substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. Regional treatment means the anticancer drugs or biologic substances are placed directly into an organ or a body cavity such as the abdomen, so the drugs will affect cancer cells in that area. Clinical trials are studying chemotherapy or biologic therapy using drugs placed directly into the renal pelvis or the ureter. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of localized transitional cell cancer of the renal pelvis and ureter may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of regional transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of metastatic or recurrent transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial, which may include chemotherapy. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about transitional cell cancer of the renal pelvis and ureter, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of transitional cell cancer of the renal pelvis and ureter. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/kidney/patient/transitional-cell-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389285] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | How to diagnose Transitional Cell Cancer of the Renal Pelvis and Ureter ? | Tests that examine the abdomen and kidneys are used to detect (find) and diagnose transitional cell cancer of the renal pelvis and ureter. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Urinalysis : A test to check the color of urine and its contents, such as sugar, protein, blood, and bacteria. - Ureteroscopy : A procedure to look inside the ureter and renal pelvis to check for abnormal areas. A ureteroscope is a thin, tube-like instrument with a light and a lens for viewing. The ureteroscope is inserted through the urethra into the bladder, ureter, and renal pelvis. A tool may be inserted through the ureteroscope to take tissue samples to be checked under a microscope for signs of disease. - Urine cytology : A laboratory test in which a sample of urine is checked under a microscope for abnormal cells. Cancer in the kidney, bladder, or ureter may shed cancer cells into the urine. - Intravenous pyelogram (IVP): A series of x-rays of the kidneys, ureters, and bladder to check for cancer. A contrast dye is injected into a vein. As the contrast dye moves through the kidneys, ureters, and bladder, x-rays are taken to see if there are any blockages. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - Ultrasound : A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. An ultrasound of the abdomen may be done to help diagnose cancer of the renal pelvis and ureter. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body, such as the pelvis. This procedure is also called nuclear magnetic resonance imaging (NMRI). - Biopsy : The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. This may be done during a ureteroscopy or surgery. |
The renal pelvis is the top part of the ureter. The ureter is a long tube that connects the kidney to the bladder. There are two kidneys, one on each side of the backbone, above the waist. The kidneys of an adult are about 5 inches long and 3 inches wide and are shaped like a kidney bean. Tiny tubules in the kidneys filter and clean the blood. They take out waste products and make urine. The urine collects in the middle of each kidney in the renal pelvis. Urine passes from the renal pelvis through the ureter into the bladder. The bladder holds the urine until it passes through the urethra and leaves the body. The renal pelvis and ureters are lined with transitional cells. These cells can change shape and stretch without breaking apart. Transitional cell cancer starts in these cells. Transitional cell cancer can form in the renal pelvis, the ureter, or both. Renal cell cancer is a more common type of kidney cancer. See the PDQ summary about Renal Cell Cancer Treatment for more information.
Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for transitional cell cancer of the renal pelvis and ureter include the following: These and other signs and symptoms may be caused by transitional cell cancer of the renal pelvis and ureter or by other conditions. There may be no signs or symptoms in the early stages. Signs and symptoms may appear as the tumor grows. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis depends on the stage and grade of the tumor. The treatment options depend on the following: Most transitional cell cancer of the renal pelvis and ureter can be cured if found early. The process used to find out if cancer has spread within the renal pelvis and ureter or to other
parts of the body is called staging. The information gathered from the
staging process determines the stage of the disease. It is important to know
the stage in order to plan treatment. The doctor will use results of the diagnostic tests to help find out the stage of the disease. The following tests and
procedures may also be used in the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if transitional cell cancer of the ureter spreads to the lung, the cancer cells in the lung are actually ureter cancer cells. The disease is metastatic cancer of the ureter, not lung cancer. In stage 0, abnormal cells are found in tissue lining the inside of the renal pelvis or ureter. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is divided into stages 0a and 0is, depending on the type of tumor:
In stage I, cancer has formed and has spread from the tissue lining the inside of the renal pelvis or ureter to the connective tissue layer. In stage II, cancer has spread to the muscle layer of the renal pelvis or ureter. In stage III, cancer has spread: In stage IV, cancer has spread to at least one of the following: The cancer is found only in the kidney. The cancer has spread to tissues around the kidney and to nearby lymph nodes and blood vessels in the pelvis. The cancer has spread to other parts of the body. The cancer has recurred (come back) after it has been treated. The cancer may come back in the renal pelvis, ureter, or other parts of the body, such as the lung, liver, or bone. Different types of treatments are available for patients with transitional cell cancer of the renal pelvis and ureter. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. One of the following surgical procedures may be used to treat transitional cell cancer of the renal pelvis and ureter: This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI Web site. Fulguration is a surgical procedure that destroys tissue using an electric current. A tool with a small wire loop on the end is used to remove the cancer or to burn away the tumor with electricity. This is a surgical procedure to remove localized cancer from the renal pelvis without removing the entire kidney. Segmental resection may be done to save kidney function when the other kidney is damaged or has already been removed.
A laser beam (narrow beam of intense light) is used as a knife to remove the cancer. A laser beam can also be used to kill the cancer cells. This procedure may also be called or laser fulguration. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. Biologic therapy is a treatment that uses the patient's immune system to fight cancer; substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. Regional treatment means the anticancer drugs or biologic substances are placed directly into an organ or a body cavity such as the abdomen, so the drugs will affect cancer cells in that area. Clinical trials are studying chemotherapy or biologic therapy using drugs placed directly into the renal pelvis or the ureter. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of localized transitional cell cancer of the renal pelvis and ureter may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of regional transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of metastatic or recurrent transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial, which may include chemotherapy. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about transitional cell cancer of the renal pelvis and ureter, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of transitional cell cancer of the renal pelvis and ureter. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/kidney/patient/transitional-cell-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389285] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is the outlook for Transitional Cell Cancer of the Renal Pelvis and Ureter ? | Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) depends on the stage and grade of the tumor. The treatment options depend on the following: - The stage and grade of the tumor. - Where the tumor is. - Whether the patient's other kidney is healthy. - Whether the cancer has recurred. Most transitional cell cancer of the renal pelvis and ureter can be cured if found early. |
The renal pelvis is the top part of the ureter. The ureter is a long tube that connects the kidney to the bladder. There are two kidneys, one on each side of the backbone, above the waist. The kidneys of an adult are about 5 inches long and 3 inches wide and are shaped like a kidney bean. Tiny tubules in the kidneys filter and clean the blood. They take out waste products and make urine. The urine collects in the middle of each kidney in the renal pelvis. Urine passes from the renal pelvis through the ureter into the bladder. The bladder holds the urine until it passes through the urethra and leaves the body. The renal pelvis and ureters are lined with transitional cells. These cells can change shape and stretch without breaking apart. Transitional cell cancer starts in these cells. Transitional cell cancer can form in the renal pelvis, the ureter, or both. Renal cell cancer is a more common type of kidney cancer. See the PDQ summary about Renal Cell Cancer Treatment for more information.
Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for transitional cell cancer of the renal pelvis and ureter include the following: These and other signs and symptoms may be caused by transitional cell cancer of the renal pelvis and ureter or by other conditions. There may be no signs or symptoms in the early stages. Signs and symptoms may appear as the tumor grows. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis depends on the stage and grade of the tumor. The treatment options depend on the following: Most transitional cell cancer of the renal pelvis and ureter can be cured if found early. The process used to find out if cancer has spread within the renal pelvis and ureter or to other
parts of the body is called staging. The information gathered from the
staging process determines the stage of the disease. It is important to know
the stage in order to plan treatment. The doctor will use results of the diagnostic tests to help find out the stage of the disease. The following tests and
procedures may also be used in the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if transitional cell cancer of the ureter spreads to the lung, the cancer cells in the lung are actually ureter cancer cells. The disease is metastatic cancer of the ureter, not lung cancer. In stage 0, abnormal cells are found in tissue lining the inside of the renal pelvis or ureter. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is divided into stages 0a and 0is, depending on the type of tumor:
In stage I, cancer has formed and has spread from the tissue lining the inside of the renal pelvis or ureter to the connective tissue layer. In stage II, cancer has spread to the muscle layer of the renal pelvis or ureter. In stage III, cancer has spread: In stage IV, cancer has spread to at least one of the following: The cancer is found only in the kidney. The cancer has spread to tissues around the kidney and to nearby lymph nodes and blood vessels in the pelvis. The cancer has spread to other parts of the body. The cancer has recurred (come back) after it has been treated. The cancer may come back in the renal pelvis, ureter, or other parts of the body, such as the lung, liver, or bone. Different types of treatments are available for patients with transitional cell cancer of the renal pelvis and ureter. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. One of the following surgical procedures may be used to treat transitional cell cancer of the renal pelvis and ureter: This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI Web site. Fulguration is a surgical procedure that destroys tissue using an electric current. A tool with a small wire loop on the end is used to remove the cancer or to burn away the tumor with electricity. This is a surgical procedure to remove localized cancer from the renal pelvis without removing the entire kidney. Segmental resection may be done to save kidney function when the other kidney is damaged or has already been removed.
A laser beam (narrow beam of intense light) is used as a knife to remove the cancer. A laser beam can also be used to kill the cancer cells. This procedure may also be called or laser fulguration. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. Biologic therapy is a treatment that uses the patient's immune system to fight cancer; substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. Regional treatment means the anticancer drugs or biologic substances are placed directly into an organ or a body cavity such as the abdomen, so the drugs will affect cancer cells in that area. Clinical trials are studying chemotherapy or biologic therapy using drugs placed directly into the renal pelvis or the ureter. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of localized transitional cell cancer of the renal pelvis and ureter may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of regional transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of metastatic or recurrent transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial, which may include chemotherapy. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about transitional cell cancer of the renal pelvis and ureter, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of transitional cell cancer of the renal pelvis and ureter. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/kidney/patient/transitional-cell-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389285] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the stages of Transitional Cell Cancer of the Renal Pelvis and Ureter ? | Key Points
- After transitional cell cancer of the renal pelvis and ureter has been diagnosed, tests are done to find out if cancer cells have spread within the renal pelvis and ureter or to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - The following stages are used for transitional cell cancer of the renal pelvis and/or ureter: - Stage 0 (Papillary Carcinoma and Carcinoma in Situ) - Stage I - Stage II - Stage III - Stage IV - Transitional cell cancer of the renal pelvis and ureter is also described as localized, regional, or metastatic: - Localized - Regional - Metastatic
After transitional cell cancer of the renal pelvis and ureter has been diagnosed, tests are done to find out if cancer cells have spread within the renal pelvis and ureter or to other parts of the body.
The process used to find out if cancer has spread within the renal pelvis and ureter or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The following tests and procedures may be used in the staging process: - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - Ureteroscopy : A procedure to look inside the ureter and renal pelvis to check for abnormal areas. A ureteroscope is a thin, tube-like instrument with a light and a lens for viewing. The ureteroscope is inserted through the urethra into the bladder, ureter, and renal pelvis. A tool may be inserted through the ureteroscope to take tissue samples to be checked under a microscope for signs of disease.
There are three ways that cancer spreads in the body.
Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body.
Cancer may spread from where it began to other parts of the body.
When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if transitional cell cancer of the ureter spreads to the lung, the cancer cells in the lung are actually ureter cancer cells. The disease is metastatic cancer of the ureter, not lung cancer.
The following stages are used for transitional cell cancer of the renal pelvis and/or ureter:
Stage 0 (Papillary Carcinoma and Carcinoma in Situ) In stage 0, abnormal cells are found in tissue lining the inside of the renal pelvis or ureter. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is divided into stage 0a and stage 0is, depending on the type of tumor: - Stage 0a may look like tiny mushrooms growing from the tissue lining the inside of the renal pelvis or ureter. Stage 0a is also called noninvasive papillary carcinoma. - Stage 0is is a flat tumor on the tissue lining the inside of the renal pelvis or ureter. Stage 0is is also called carcinoma in situ. Stage I In stage I, cancer has formed and spread through the lining of the renal pelvis and/or ureter, into the layer of connective tissue. Stage II In stage II, cancer has spread through the layer of connective tissue to the muscle layer of the renal pelvis and/or ureter. Stage III In stage III, cancer has spread: - From the renal pelvis to tissue or fat in the kidney; or - From the ureter to fat that surrounds the ureter. Stage IV In stage IV, cancer has spread to at least one of the following: - A nearby organ. - The layer of fat surrounding the kidney. - One or more lymph nodes. - Distant parts of the body, such as the lung, liver, or bone.
Transitional cell cancer of the renal pelvis and ureter is also described as localized, regional, or metastatic:
Localized The cancer is found only in the kidney. Regional The cancer has spread to tissues around the kidney and to nearby lymph nodes and blood vessels in the pelvis. Metastatic The cancer has spread to other parts of the body. |
The renal pelvis is the top part of the ureter. The ureter is a long tube that connects the kidney to the bladder. There are two kidneys, one on each side of the backbone, above the waist. The kidneys of an adult are about 5 inches long and 3 inches wide and are shaped like a kidney bean. Tiny tubules in the kidneys filter and clean the blood. They take out waste products and make urine. The urine collects in the middle of each kidney in the renal pelvis. Urine passes from the renal pelvis through the ureter into the bladder. The bladder holds the urine until it passes through the urethra and leaves the body. The renal pelvis and ureters are lined with transitional cells. These cells can change shape and stretch without breaking apart. Transitional cell cancer starts in these cells. Transitional cell cancer can form in the renal pelvis, the ureter, or both. Renal cell cancer is a more common type of kidney cancer. See the PDQ summary about Renal Cell Cancer Treatment for more information.
Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for transitional cell cancer of the renal pelvis and ureter include the following: These and other signs and symptoms may be caused by transitional cell cancer of the renal pelvis and ureter or by other conditions. There may be no signs or symptoms in the early stages. Signs and symptoms may appear as the tumor grows. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis depends on the stage and grade of the tumor. The treatment options depend on the following: Most transitional cell cancer of the renal pelvis and ureter can be cured if found early. The process used to find out if cancer has spread within the renal pelvis and ureter or to other
parts of the body is called staging. The information gathered from the
staging process determines the stage of the disease. It is important to know
the stage in order to plan treatment. The doctor will use results of the diagnostic tests to help find out the stage of the disease. The following tests and
procedures may also be used in the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if transitional cell cancer of the ureter spreads to the lung, the cancer cells in the lung are actually ureter cancer cells. The disease is metastatic cancer of the ureter, not lung cancer. In stage 0, abnormal cells are found in tissue lining the inside of the renal pelvis or ureter. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is divided into stages 0a and 0is, depending on the type of tumor:
In stage I, cancer has formed and has spread from the tissue lining the inside of the renal pelvis or ureter to the connective tissue layer. In stage II, cancer has spread to the muscle layer of the renal pelvis or ureter. In stage III, cancer has spread: In stage IV, cancer has spread to at least one of the following: The cancer is found only in the kidney. The cancer has spread to tissues around the kidney and to nearby lymph nodes and blood vessels in the pelvis. The cancer has spread to other parts of the body. The cancer has recurred (come back) after it has been treated. The cancer may come back in the renal pelvis, ureter, or other parts of the body, such as the lung, liver, or bone. Different types of treatments are available for patients with transitional cell cancer of the renal pelvis and ureter. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. One of the following surgical procedures may be used to treat transitional cell cancer of the renal pelvis and ureter: This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI Web site. Fulguration is a surgical procedure that destroys tissue using an electric current. A tool with a small wire loop on the end is used to remove the cancer or to burn away the tumor with electricity. This is a surgical procedure to remove localized cancer from the renal pelvis without removing the entire kidney. Segmental resection may be done to save kidney function when the other kidney is damaged or has already been removed.
A laser beam (narrow beam of intense light) is used as a knife to remove the cancer. A laser beam can also be used to kill the cancer cells. This procedure may also be called or laser fulguration. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. Biologic therapy is a treatment that uses the patient's immune system to fight cancer; substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. Regional treatment means the anticancer drugs or biologic substances are placed directly into an organ or a body cavity such as the abdomen, so the drugs will affect cancer cells in that area. Clinical trials are studying chemotherapy or biologic therapy using drugs placed directly into the renal pelvis or the ureter. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of localized transitional cell cancer of the renal pelvis and ureter may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of regional transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of metastatic or recurrent transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial, which may include chemotherapy. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about transitional cell cancer of the renal pelvis and ureter, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of transitional cell cancer of the renal pelvis and ureter. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/kidney/patient/transitional-cell-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389285] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the treatments for Transitional Cell Cancer of the Renal Pelvis and Ureter ? | Key Points
- There are different types of treatment for patients with transitional cell cancer of the renal pelvis and ureter. - One type of standard treatment is used: - Surgery - New types of treatment are being tested in clinical trials. - Fulguration - Segmental resection of the renal pelvis - Laser surgery - Regional chemotherapy and regional biologic therapy - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed.
There are different types of treatment for patients with transitional cell cancer of the renal pelvis and ureter.
Different types of treatments are available for patients with transitional cell cancer of the renal pelvis and ureter. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
One type of standard treatment is used:
Surgery One of the following surgical procedures may be used to treat transitional cell cancer of the renal pelvis and ureter: - Nephroureterectomy: Surgery to remove the entire kidney, the ureter, and the bladder cuff (tissue that connects the ureter to the bladder). - Segmental resection of the ureter: A surgical procedure to remove the part of the ureter that contains cancer and some of the healthy tissue around it. The ends of the ureter are then reattached. This treatment is used when the cancer is superficial and in the lower third of the ureter only, near the bladder.
New types of treatment are being tested in clinical trials.
This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI Web site. Fulguration Fulguration is a surgical procedure that destroys tissue using an electric current. A tool with a small wire loop on the end is used to remove the cancer or to burn away the tumor with electricity. Segmental resection of the renal pelvis This is a surgical procedure to remove localized cancer from the renal pelvis without removing the entire kidney. Segmental resection may be done to save kidney function when the other kidney is damaged or has already been removed. Laser surgery A laser beam (narrow beam of intense light) is used as a knife to remove the cancer. A laser beam can also be used to kill the cancer cells. This procedure may also be called or laser fulguration. Regional chemotherapy and regional biologic therapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. Biologic therapy is a treatment that uses the patient's immune system to fight cancer; substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. Regional treatment means the anticancer drugs or biologic substances are placed directly into an organ or a body cavity such as the abdomen, so the drugs will affect cancer cells in that area. Clinical trials are studying chemotherapy or biologic therapy using drugs placed directly into the renal pelvis or the ureter.
Patients may want to think about taking part in a clinical trial.
For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.
Patients can enter clinical trials before, during, or after starting their cancer treatment.
Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Follow-up tests may be needed.
Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups.
Treatment Options for Transitional Cell Cancer of the Renal Pelvis and Ureter
Localized Transitional Cell Cancer of the Renal Pelvis and Ureter
Treatment of localized transitional cell cancer of the renal pelvis and ureter may include the following: - Surgery (nephroureterectomy or segmental resection of ureter). - A clinical trial of fulguration. - A clinical trial of laser surgery. - A clinical trial of segmental resection of the renal pelvis. - A clinical trial of regional chemotherapy. - A clinical trial of regional biologic therapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with localized transitional cell cancer of the renal pelvis and ureter. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Regional Transitional Cell Cancer of the Renal Pelvis and Ureter
Treatment of regional transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial. Check the list of NCI-supported cancer clinical trials that are now accepting patients with regional transitional cell cancer of the renal pelvis and ureter. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter
Treatment of metastatic transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial, which may include chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with metastatic transitional cell cancer of the renal pelvis and ureter. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Recurrent Transitional Cell Cancer of the Renal Pelvis and Ureter
Treatment of recurrent transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial, which may include chemotherapy. Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent transitional cell cancer of the renal pelvis and ureter. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. |
The renal pelvis is the top part of the ureter. The ureter is a long tube that connects the kidney to the bladder. There are two kidneys, one on each side of the backbone, above the waist. The kidneys of an adult are about 5 inches long and 3 inches wide and are shaped like a kidney bean. Tiny tubules in the kidneys filter and clean the blood. They take out waste products and make urine. The urine collects in the middle of each kidney in the renal pelvis. Urine passes from the renal pelvis through the ureter into the bladder. The bladder holds the urine until it passes through the urethra and leaves the body. The renal pelvis and ureters are lined with transitional cells. These cells can change shape and stretch without breaking apart. Transitional cell cancer starts in these cells. Transitional cell cancer can form in the renal pelvis, the ureter, or both. Renal cell cancer is a more common type of kidney cancer. See the PDQ summary about Renal Cell Cancer Treatment for more information.
Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for transitional cell cancer of the renal pelvis and ureter include the following: These and other signs and symptoms may be caused by transitional cell cancer of the renal pelvis and ureter or by other conditions. There may be no signs or symptoms in the early stages. Signs and symptoms may appear as the tumor grows. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis depends on the stage and grade of the tumor. The treatment options depend on the following: Most transitional cell cancer of the renal pelvis and ureter can be cured if found early. The process used to find out if cancer has spread within the renal pelvis and ureter or to other
parts of the body is called staging. The information gathered from the
staging process determines the stage of the disease. It is important to know
the stage in order to plan treatment. The doctor will use results of the diagnostic tests to help find out the stage of the disease. The following tests and
procedures may also be used in the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if transitional cell cancer of the ureter spreads to the lung, the cancer cells in the lung are actually ureter cancer cells. The disease is metastatic cancer of the ureter, not lung cancer. In stage 0, abnormal cells are found in tissue lining the inside of the renal pelvis or ureter. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is divided into stages 0a and 0is, depending on the type of tumor:
In stage I, cancer has formed and has spread from the tissue lining the inside of the renal pelvis or ureter to the connective tissue layer. In stage II, cancer has spread to the muscle layer of the renal pelvis or ureter. In stage III, cancer has spread: In stage IV, cancer has spread to at least one of the following: The cancer is found only in the kidney. The cancer has spread to tissues around the kidney and to nearby lymph nodes and blood vessels in the pelvis. The cancer has spread to other parts of the body. The cancer has recurred (come back) after it has been treated. The cancer may come back in the renal pelvis, ureter, or other parts of the body, such as the lung, liver, or bone. Different types of treatments are available for patients with transitional cell cancer of the renal pelvis and ureter. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. One of the following surgical procedures may be used to treat transitional cell cancer of the renal pelvis and ureter: This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI Web site. Fulguration is a surgical procedure that destroys tissue using an electric current. A tool with a small wire loop on the end is used to remove the cancer or to burn away the tumor with electricity. This is a surgical procedure to remove localized cancer from the renal pelvis without removing the entire kidney. Segmental resection may be done to save kidney function when the other kidney is damaged or has already been removed.
A laser beam (narrow beam of intense light) is used as a knife to remove the cancer. A laser beam can also be used to kill the cancer cells. This procedure may also be called or laser fulguration. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. Biologic therapy is a treatment that uses the patient's immune system to fight cancer; substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. Regional treatment means the anticancer drugs or biologic substances are placed directly into an organ or a body cavity such as the abdomen, so the drugs will affect cancer cells in that area. Clinical trials are studying chemotherapy or biologic therapy using drugs placed directly into the renal pelvis or the ureter. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of localized transitional cell cancer of the renal pelvis and ureter may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of regional transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of metastatic or recurrent transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial, which may include chemotherapy. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about transitional cell cancer of the renal pelvis and ureter, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of transitional cell cancer of the renal pelvis and ureter. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/kidney/patient/transitional-cell-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389285] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | what research (or clinical trials) is being done for Transitional Cell Cancer of the Renal Pelvis and Ureter ? | New types of treatment are being tested in clinical trials.
This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI Web site. Fulguration Fulguration is a surgical procedure that destroys tissue using an electric current. A tool with a small wire loop on the end is used to remove the cancer or to burn away the tumor with electricity. Segmental resection of the renal pelvis This is a surgical procedure to remove localized cancer from the renal pelvis without removing the entire kidney. Segmental resection may be done to save kidney function when the other kidney is damaged or has already been removed. Laser surgery A laser beam (narrow beam of intense light) is used as a knife to remove the cancer. A laser beam can also be used to kill the cancer cells. This procedure may also be called or laser fulguration. Regional chemotherapy and regional biologic therapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. Biologic therapy is a treatment that uses the patient's immune system to fight cancer; substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. Regional treatment means the anticancer drugs or biologic substances are placed directly into an organ or a body cavity such as the abdomen, so the drugs will affect cancer cells in that area. Clinical trials are studying chemotherapy or biologic therapy using drugs placed directly into the renal pelvis or the ureter.
Patients may want to think about taking part in a clinical trial.
For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.
Patients can enter clinical trials before, during, or after starting their cancer treatment.
Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. |
Normally, the bone marrow makes blood stem cells (immature cells) that become mature blood cells over time. A blood stem cell may become a myeloid stem cell or a lymphoid stem cell. A lymphoid stem cell becomes a white blood cell. A myeloid stem cell becomes one of three types of mature blood cells: In myeloproliferative neoplasms, too many blood stem cells become one or more types of blood cells. The neoplasms usually get worse slowly as the number of extra blood cells increases. The type of myeloproliferative neoplasm is based on whether too many red blood cells, white blood cells, or platelets are being made. Sometimes the body will make too many of more than one type of blood cell, but usually one type of blood cell is affected more than the others are. Chronic myeloproliferative neoplasms include the following 6 types: These types are described below. Chronic myeloproliferative neoplasms sometimes become acute leukemia, in which too many
abnormal white blood cells are made.
The following tests and procedures may be used: Chronic myelogenous leukemia is a disease in which too many white blood cells are made in the bone marrow. See the PDQ summary on Chronic Myelogenous Leukemia Treatment for information on diagnosis, staging, and treatment. In polycythemia vera, the blood becomes thickened with too many red blood cells. The number of white blood cells and platelets may also increase. These extra blood cells may collect in the spleen and cause it to swell. The increased number of red blood cells, white blood cells, or platelets in the blood can cause bleeding problems and make clots form in blood vessels. This can increase the risk of stroke or heart attack. In patients who are older than 65 years or who have a history of blood clots, the risk of stroke or heart attack is higher. Patients also have an increased risk of acute myeloid leukemia or primary myelofibrosis. Polycythemia vera often does not cause early signs or symptoms. It may be found during a routine blood test. Signs and symptoms may occur as the number of blood cells increases. Other conditions may cause the same signs and symptoms. Check with your doctor if you have any of the following: In addition to a complete blood count, bone marrow aspiration and biopsy, and cytogenetic analysis, a serum erythropoietin test is used to diagnose polycythemia vera. In this test, a sample of blood is checked for the level of erythropoietin (a hormone that stimulates new red blood cells to be made). In polycythemia vera, the erythropoietin level would be lower than normal because the body does not need to make more red blood cells. The bone marrow is made of tissues that make blood cells (red blood cells, white blood cells, and platelets) and a web of fibers that support the blood-forming tissues. In primary myelofibrosis (also called chronic idiopathic myelofibrosis), large numbers of blood stem cells become blood cells that do not mature properly (blasts). The web of fibers inside the bone marrow also becomes very thick (like scar tissue) and slows the blood-forming tissue’s ability to make blood cells. This causes the blood-forming tissues to make fewer and fewer blood cells. In order to make up for the low number of blood cells made in the bone marrow, the liver and spleen begin to make the blood cells. Primary myelofibrosis often does not cause early signs or symptoms. It may be found during a routine blood test. Signs and symptoms may be caused by primary myelofibrosis or by other conditions. Check with your doctor if you have any of the following: Prognosis depends on the following: Essential thrombocythemia causes an abnormal increase in the number of platelets made in the blood and bone marrow. Essential thrombocythemia often does not cause early signs or symptoms. It may be found during a routine blood test. Signs and symptoms may be caused by essential thrombocythemia or by other conditions. Check with your doctor if you have any of the following: Platelets are sticky. When there are too many platelets, they may clump together and make it hard for the blood to flow. Clots may form in blood vessels and there may also be increased bleeding. These can cause serious health problems such as stroke or heart attack. Prognosis and treatment options depend on the following: Chronic neutrophilic leukemia is a disease in which too many blood stem cells become a type of white blood cell called neutrophils. Neutrophils are infection-fighting blood cells that surround and destroy dead cells and foreign substances (such as bacteria). The spleen and liver may swell because of the extra neutrophils. Chronic neutrophilic leukemia may stay the same or it may progress quickly to acute leukemia. Eosinophils are white blood cells that react to allergens (substances that cause an allergic response) and help fight infections caused by certain parasites. In chronic eosinophilic leukemia, there are too many eosinophils in the blood, bone marrow, and other tissues. Chronic eosinophilic leukemia may stay the same for many years or it may progress quickly to acute leukemia. Chronic eosinophilic leukemia may not cause early signs or symptoms. It may be found during a routine blood test. Signs and symptoms may be caused by chronic eosinophilic leukemia or by other conditions. Check with your doctor if you have any of the following: The process used to find out if cancer has spread to other parts of the body is called staging. There is no standard staging system for chronic myeloproliferative neoplasms. It
is important to know the type of myeloproliferative neoplasm in order to plan treatment. Different types of treatments are available for patients with chronic myeloproliferative neoplasms. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Watchful waiting is closely monitoring a patient’s condition without giving any treatment until signs or symptoms appear or change. Phlebotomy is a procedure in which blood is taken from a vein. A sample of blood may be taken for tests such as a CBC or blood chemistry. Sometimes phlebotomy is used as a treatment and blood is taken from the body to remove extra red blood cells. Phlebotomy is used in this way to treat some chronic myeloproliferative neoplasms.
Platelet apheresis is a treatment that uses a special machine to remove platelets from the blood. Blood is taken from the patient and put through a blood cell separator where the platelets are removed. The rest of the blood is then returned to the patient’s bloodstream. Transfusion therapy (blood transfusion) is a method of giving red blood cells, white blood cells, or platelets to replace blood cells destroyed by disease or cancer treatment. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). See Drugs Approved for Myeloproliferative Neoplasms for more information. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body, such as the spleen, with cancer. Prednisone and danazol are drugs that may be used to treat anemia in patients with primary myelofibrosis. Anagrelide therapy is used to reduce the risk of blood clots in patients who have too many platelets in
their blood. Low-dose aspirin may also be used to reduce the risk of blood clots. Thalidomide, lenalidomide, and pomalidomide are drugs that prevent blood vessels from growing into areas of tumor cells. Erythropoietic growth factors are used to stimulate the bone marrow to make red blood cells. See Drugs Approved for Myeloproliferative Neoplasms for more information. Splenectomy (surgery to remove the spleen) may be done if the spleen is enlarged. Immunotherapy is a treatment that uses the patient's immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. This cancer treatment is a type of biologic therapy. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. See Drugs Approved for Myeloproliferative Neoplasms for more information. Other types of targeted therapies are being studied in clinical trials. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. EnlargeStem cell transplant. (Step 1): Blood is taken from a vein in the arm of the donor. The patient or another person may be the donor. The blood flows through a machine that removes the stem cells. Then the blood is returned to the donor through a vein in the other arm. (Step 2): The patient receives chemotherapy to kill blood-forming cells. The patient may receive radiation therapy (not shown). (Step 3): The patient receives stem cells through a catheter placed into a blood vessel in the chest. Information about clinical trials is available from the
NCI website. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. See the PDQ summary about Chronic Myelogenous Leukemia Treatment for information. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. The purpose of treatment for polycythemia vera is to reduce the number of extra blood cells. Treatment of polycythemia vera may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of primary myelofibrosis in patients without signs or symptoms is usually watchful waiting. Patients with primary myelofibrosis may have signs or symptoms of anemia. Anemia is usually treated with transfusion of red blood cells to relieve symptoms and improve quality of life. In addition, anemia may be treated with: Treatment of primary myelofibrosis in patients with other signs or symptoms may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of essential thrombocythemia in patients younger than 60 years who have no signs or symptoms and an acceptable platelet count is usually watchful waiting. Treatment of other patients may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of chronic neutrophilic leukemia may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of chronic eosinophilic leukemia may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about chronic myeloproliferative neoplasms, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of chronic myeloproliferative neoplasms. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Chronic Myeloproliferative Neoplasms Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/myeloproliferative/patient/chronic-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389435] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Chronic Myeloproliferative Neoplasms Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is (are) Essential Thrombocythemia ? | Key Points
- Essential thrombocythemia is a disease in which too many platelets are made in the bone marrow. - Patients with essential thrombocythemia may have no signs or symptoms. - Certain factors affect prognosis (chance of recovery) and treatment options for essential thrombocythemia.
Essential thrombocythemia is a disease in which too many platelets are made in the bone marrow.
Essential thrombocythemia causes an abnormal increase in the number of platelets made in the blood and bone marrow. |
Normally, the bone marrow makes blood stem cells (immature cells) that become mature blood cells over time. A blood stem cell may become a myeloid stem cell or a lymphoid stem cell. A lymphoid stem cell becomes a white blood cell. A myeloid stem cell becomes one of three types of mature blood cells: In myeloproliferative neoplasms, too many blood stem cells become one or more types of blood cells. The neoplasms usually get worse slowly as the number of extra blood cells increases. The type of myeloproliferative neoplasm is based on whether too many red blood cells, white blood cells, or platelets are being made. Sometimes the body will make too many of more than one type of blood cell, but usually one type of blood cell is affected more than the others are. Chronic myeloproliferative neoplasms include the following 6 types: These types are described below. Chronic myeloproliferative neoplasms sometimes become acute leukemia, in which too many
abnormal white blood cells are made.
The following tests and procedures may be used: Chronic myelogenous leukemia is a disease in which too many white blood cells are made in the bone marrow. See the PDQ summary on Chronic Myelogenous Leukemia Treatment for information on diagnosis, staging, and treatment. In polycythemia vera, the blood becomes thickened with too many red blood cells. The number of white blood cells and platelets may also increase. These extra blood cells may collect in the spleen and cause it to swell. The increased number of red blood cells, white blood cells, or platelets in the blood can cause bleeding problems and make clots form in blood vessels. This can increase the risk of stroke or heart attack. In patients who are older than 65 years or who have a history of blood clots, the risk of stroke or heart attack is higher. Patients also have an increased risk of acute myeloid leukemia or primary myelofibrosis. Polycythemia vera often does not cause early signs or symptoms. It may be found during a routine blood test. Signs and symptoms may occur as the number of blood cells increases. Other conditions may cause the same signs and symptoms. Check with your doctor if you have any of the following: In addition to a complete blood count, bone marrow aspiration and biopsy, and cytogenetic analysis, a serum erythropoietin test is used to diagnose polycythemia vera. In this test, a sample of blood is checked for the level of erythropoietin (a hormone that stimulates new red blood cells to be made). In polycythemia vera, the erythropoietin level would be lower than normal because the body does not need to make more red blood cells. The bone marrow is made of tissues that make blood cells (red blood cells, white blood cells, and platelets) and a web of fibers that support the blood-forming tissues. In primary myelofibrosis (also called chronic idiopathic myelofibrosis), large numbers of blood stem cells become blood cells that do not mature properly (blasts). The web of fibers inside the bone marrow also becomes very thick (like scar tissue) and slows the blood-forming tissue’s ability to make blood cells. This causes the blood-forming tissues to make fewer and fewer blood cells. In order to make up for the low number of blood cells made in the bone marrow, the liver and spleen begin to make the blood cells. Primary myelofibrosis often does not cause early signs or symptoms. It may be found during a routine blood test. Signs and symptoms may be caused by primary myelofibrosis or by other conditions. Check with your doctor if you have any of the following: Prognosis depends on the following: Essential thrombocythemia causes an abnormal increase in the number of platelets made in the blood and bone marrow. Essential thrombocythemia often does not cause early signs or symptoms. It may be found during a routine blood test. Signs and symptoms may be caused by essential thrombocythemia or by other conditions. Check with your doctor if you have any of the following: Platelets are sticky. When there are too many platelets, they may clump together and make it hard for the blood to flow. Clots may form in blood vessels and there may also be increased bleeding. These can cause serious health problems such as stroke or heart attack. Prognosis and treatment options depend on the following: Chronic neutrophilic leukemia is a disease in which too many blood stem cells become a type of white blood cell called neutrophils. Neutrophils are infection-fighting blood cells that surround and destroy dead cells and foreign substances (such as bacteria). The spleen and liver may swell because of the extra neutrophils. Chronic neutrophilic leukemia may stay the same or it may progress quickly to acute leukemia. Eosinophils are white blood cells that react to allergens (substances that cause an allergic response) and help fight infections caused by certain parasites. In chronic eosinophilic leukemia, there are too many eosinophils in the blood, bone marrow, and other tissues. Chronic eosinophilic leukemia may stay the same for many years or it may progress quickly to acute leukemia. Chronic eosinophilic leukemia may not cause early signs or symptoms. It may be found during a routine blood test. Signs and symptoms may be caused by chronic eosinophilic leukemia or by other conditions. Check with your doctor if you have any of the following: The process used to find out if cancer has spread to other parts of the body is called staging. There is no standard staging system for chronic myeloproliferative neoplasms. It
is important to know the type of myeloproliferative neoplasm in order to plan treatment. Different types of treatments are available for patients with chronic myeloproliferative neoplasms. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Watchful waiting is closely monitoring a patient’s condition without giving any treatment until signs or symptoms appear or change. Phlebotomy is a procedure in which blood is taken from a vein. A sample of blood may be taken for tests such as a CBC or blood chemistry. Sometimes phlebotomy is used as a treatment and blood is taken from the body to remove extra red blood cells. Phlebotomy is used in this way to treat some chronic myeloproliferative neoplasms.
Platelet apheresis is a treatment that uses a special machine to remove platelets from the blood. Blood is taken from the patient and put through a blood cell separator where the platelets are removed. The rest of the blood is then returned to the patient’s bloodstream. Transfusion therapy (blood transfusion) is a method of giving red blood cells, white blood cells, or platelets to replace blood cells destroyed by disease or cancer treatment. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). See Drugs Approved for Myeloproliferative Neoplasms for more information. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body, such as the spleen, with cancer. Prednisone and danazol are drugs that may be used to treat anemia in patients with primary myelofibrosis. Anagrelide therapy is used to reduce the risk of blood clots in patients who have too many platelets in
their blood. Low-dose aspirin may also be used to reduce the risk of blood clots. Thalidomide, lenalidomide, and pomalidomide are drugs that prevent blood vessels from growing into areas of tumor cells. Erythropoietic growth factors are used to stimulate the bone marrow to make red blood cells. See Drugs Approved for Myeloproliferative Neoplasms for more information. Splenectomy (surgery to remove the spleen) may be done if the spleen is enlarged. Immunotherapy is a treatment that uses the patient's immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. This cancer treatment is a type of biologic therapy. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. See Drugs Approved for Myeloproliferative Neoplasms for more information. Other types of targeted therapies are being studied in clinical trials. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. EnlargeStem cell transplant. (Step 1): Blood is taken from a vein in the arm of the donor. The patient or another person may be the donor. The blood flows through a machine that removes the stem cells. Then the blood is returned to the donor through a vein in the other arm. (Step 2): The patient receives chemotherapy to kill blood-forming cells. The patient may receive radiation therapy (not shown). (Step 3): The patient receives stem cells through a catheter placed into a blood vessel in the chest. Information about clinical trials is available from the
NCI website. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. See the PDQ summary about Chronic Myelogenous Leukemia Treatment for information. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. The purpose of treatment for polycythemia vera is to reduce the number of extra blood cells. Treatment of polycythemia vera may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of primary myelofibrosis in patients without signs or symptoms is usually watchful waiting. Patients with primary myelofibrosis may have signs or symptoms of anemia. Anemia is usually treated with transfusion of red blood cells to relieve symptoms and improve quality of life. In addition, anemia may be treated with: Treatment of primary myelofibrosis in patients with other signs or symptoms may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of essential thrombocythemia in patients younger than 60 years who have no signs or symptoms and an acceptable platelet count is usually watchful waiting. Treatment of other patients may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of chronic neutrophilic leukemia may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of chronic eosinophilic leukemia may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about chronic myeloproliferative neoplasms, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of chronic myeloproliferative neoplasms. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Chronic Myeloproliferative Neoplasms Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/myeloproliferative/patient/chronic-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389435] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Chronic Myeloproliferative Neoplasms Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the symptoms of Essential Thrombocythemia ? | Patients with essential thrombocythemia may have no signs or symptoms. Essential thrombocythemia often does not cause early signs or symptoms. It may be found during a routine blood test. Signs and symptoms may be caused by essential thrombocytopenia or by other conditions. Check with your doctor if you have any of the following: - Headache. - Burning or tingling in the hands or feet. - Redness and warmth of the hands or feet. - Vision or hearing problems. Platelets are sticky. When there are too many platelets, they may clump together and make it hard for the blood to flow. Clots may form in blood vessels and there may also be increased bleeding. These can cause serious health problems such as stroke or heart attack. |
Normally, the bone marrow makes blood stem cells (immature cells) that become mature blood cells over time. A blood stem cell may become a myeloid stem cell or a lymphoid stem cell. A lymphoid stem cell becomes a white blood cell. A myeloid stem cell becomes one of three types of mature blood cells: In myeloproliferative neoplasms, too many blood stem cells become one or more types of blood cells. The neoplasms usually get worse slowly as the number of extra blood cells increases. The type of myeloproliferative neoplasm is based on whether too many red blood cells, white blood cells, or platelets are being made. Sometimes the body will make too many of more than one type of blood cell, but usually one type of blood cell is affected more than the others are. Chronic myeloproliferative neoplasms include the following 6 types: These types are described below. Chronic myeloproliferative neoplasms sometimes become acute leukemia, in which too many
abnormal white blood cells are made.
The following tests and procedures may be used: Chronic myelogenous leukemia is a disease in which too many white blood cells are made in the bone marrow. See the PDQ summary on Chronic Myelogenous Leukemia Treatment for information on diagnosis, staging, and treatment. In polycythemia vera, the blood becomes thickened with too many red blood cells. The number of white blood cells and platelets may also increase. These extra blood cells may collect in the spleen and cause it to swell. The increased number of red blood cells, white blood cells, or platelets in the blood can cause bleeding problems and make clots form in blood vessels. This can increase the risk of stroke or heart attack. In patients who are older than 65 years or who have a history of blood clots, the risk of stroke or heart attack is higher. Patients also have an increased risk of acute myeloid leukemia or primary myelofibrosis. Polycythemia vera often does not cause early signs or symptoms. It may be found during a routine blood test. Signs and symptoms may occur as the number of blood cells increases. Other conditions may cause the same signs and symptoms. Check with your doctor if you have any of the following: In addition to a complete blood count, bone marrow aspiration and biopsy, and cytogenetic analysis, a serum erythropoietin test is used to diagnose polycythemia vera. In this test, a sample of blood is checked for the level of erythropoietin (a hormone that stimulates new red blood cells to be made). In polycythemia vera, the erythropoietin level would be lower than normal because the body does not need to make more red blood cells. The bone marrow is made of tissues that make blood cells (red blood cells, white blood cells, and platelets) and a web of fibers that support the blood-forming tissues. In primary myelofibrosis (also called chronic idiopathic myelofibrosis), large numbers of blood stem cells become blood cells that do not mature properly (blasts). The web of fibers inside the bone marrow also becomes very thick (like scar tissue) and slows the blood-forming tissue’s ability to make blood cells. This causes the blood-forming tissues to make fewer and fewer blood cells. In order to make up for the low number of blood cells made in the bone marrow, the liver and spleen begin to make the blood cells. Primary myelofibrosis often does not cause early signs or symptoms. It may be found during a routine blood test. Signs and symptoms may be caused by primary myelofibrosis or by other conditions. Check with your doctor if you have any of the following: Prognosis depends on the following: Essential thrombocythemia causes an abnormal increase in the number of platelets made in the blood and bone marrow. Essential thrombocythemia often does not cause early signs or symptoms. It may be found during a routine blood test. Signs and symptoms may be caused by essential thrombocythemia or by other conditions. Check with your doctor if you have any of the following: Platelets are sticky. When there are too many platelets, they may clump together and make it hard for the blood to flow. Clots may form in blood vessels and there may also be increased bleeding. These can cause serious health problems such as stroke or heart attack. Prognosis and treatment options depend on the following: Chronic neutrophilic leukemia is a disease in which too many blood stem cells become a type of white blood cell called neutrophils. Neutrophils are infection-fighting blood cells that surround and destroy dead cells and foreign substances (such as bacteria). The spleen and liver may swell because of the extra neutrophils. Chronic neutrophilic leukemia may stay the same or it may progress quickly to acute leukemia. Eosinophils are white blood cells that react to allergens (substances that cause an allergic response) and help fight infections caused by certain parasites. In chronic eosinophilic leukemia, there are too many eosinophils in the blood, bone marrow, and other tissues. Chronic eosinophilic leukemia may stay the same for many years or it may progress quickly to acute leukemia. Chronic eosinophilic leukemia may not cause early signs or symptoms. It may be found during a routine blood test. Signs and symptoms may be caused by chronic eosinophilic leukemia or by other conditions. Check with your doctor if you have any of the following: The process used to find out if cancer has spread to other parts of the body is called staging. There is no standard staging system for chronic myeloproliferative neoplasms. It
is important to know the type of myeloproliferative neoplasm in order to plan treatment. Different types of treatments are available for patients with chronic myeloproliferative neoplasms. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Watchful waiting is closely monitoring a patient’s condition without giving any treatment until signs or symptoms appear or change. Phlebotomy is a procedure in which blood is taken from a vein. A sample of blood may be taken for tests such as a CBC or blood chemistry. Sometimes phlebotomy is used as a treatment and blood is taken from the body to remove extra red blood cells. Phlebotomy is used in this way to treat some chronic myeloproliferative neoplasms.
Platelet apheresis is a treatment that uses a special machine to remove platelets from the blood. Blood is taken from the patient and put through a blood cell separator where the platelets are removed. The rest of the blood is then returned to the patient’s bloodstream. Transfusion therapy (blood transfusion) is a method of giving red blood cells, white blood cells, or platelets to replace blood cells destroyed by disease or cancer treatment. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). See Drugs Approved for Myeloproliferative Neoplasms for more information. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body, such as the spleen, with cancer. Prednisone and danazol are drugs that may be used to treat anemia in patients with primary myelofibrosis. Anagrelide therapy is used to reduce the risk of blood clots in patients who have too many platelets in
their blood. Low-dose aspirin may also be used to reduce the risk of blood clots. Thalidomide, lenalidomide, and pomalidomide are drugs that prevent blood vessels from growing into areas of tumor cells. Erythropoietic growth factors are used to stimulate the bone marrow to make red blood cells. See Drugs Approved for Myeloproliferative Neoplasms for more information. Splenectomy (surgery to remove the spleen) may be done if the spleen is enlarged. Immunotherapy is a treatment that uses the patient's immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. This cancer treatment is a type of biologic therapy. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. See Drugs Approved for Myeloproliferative Neoplasms for more information. Other types of targeted therapies are being studied in clinical trials. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. EnlargeStem cell transplant. (Step 1): Blood is taken from a vein in the arm of the donor. The patient or another person may be the donor. The blood flows through a machine that removes the stem cells. Then the blood is returned to the donor through a vein in the other arm. (Step 2): The patient receives chemotherapy to kill blood-forming cells. The patient may receive radiation therapy (not shown). (Step 3): The patient receives stem cells through a catheter placed into a blood vessel in the chest. Information about clinical trials is available from the
NCI website. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. See the PDQ summary about Chronic Myelogenous Leukemia Treatment for information. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. The purpose of treatment for polycythemia vera is to reduce the number of extra blood cells. Treatment of polycythemia vera may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of primary myelofibrosis in patients without signs or symptoms is usually watchful waiting. Patients with primary myelofibrosis may have signs or symptoms of anemia. Anemia is usually treated with transfusion of red blood cells to relieve symptoms and improve quality of life. In addition, anemia may be treated with: Treatment of primary myelofibrosis in patients with other signs or symptoms may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of essential thrombocythemia in patients younger than 60 years who have no signs or symptoms and an acceptable platelet count is usually watchful waiting. Treatment of other patients may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of chronic neutrophilic leukemia may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of chronic eosinophilic leukemia may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about chronic myeloproliferative neoplasms, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of chronic myeloproliferative neoplasms. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Chronic Myeloproliferative Neoplasms Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/myeloproliferative/patient/chronic-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389435] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Chronic Myeloproliferative Neoplasms Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is the outlook for Essential Thrombocythemia ? | Certain factors affect prognosis (chance of recovery) and treatment options for essential thrombocythemia. Prognosis (chance of recovery) and treatment options depend on the following: - The age of the patient. - Whether the patient has signs or symptoms or other problems related to essential thrombocythemia. |
Normally, the bone marrow makes blood stem cells (immature cells) that become mature blood cells over time. A blood stem cell may become a myeloid stem cell or a lymphoid stem cell. A lymphoid stem cell becomes a white blood cell. A myeloid stem cell becomes one of three types of mature blood cells: In myeloproliferative neoplasms, too many blood stem cells become one or more types of blood cells. The neoplasms usually get worse slowly as the number of extra blood cells increases. The type of myeloproliferative neoplasm is based on whether too many red blood cells, white blood cells, or platelets are being made. Sometimes the body will make too many of more than one type of blood cell, but usually one type of blood cell is affected more than the others are. Chronic myeloproliferative neoplasms include the following 6 types: These types are described below. Chronic myeloproliferative neoplasms sometimes become acute leukemia, in which too many
abnormal white blood cells are made.
The following tests and procedures may be used: Chronic myelogenous leukemia is a disease in which too many white blood cells are made in the bone marrow. See the PDQ summary on Chronic Myelogenous Leukemia Treatment for information on diagnosis, staging, and treatment. In polycythemia vera, the blood becomes thickened with too many red blood cells. The number of white blood cells and platelets may also increase. These extra blood cells may collect in the spleen and cause it to swell. The increased number of red blood cells, white blood cells, or platelets in the blood can cause bleeding problems and make clots form in blood vessels. This can increase the risk of stroke or heart attack. In patients who are older than 65 years or who have a history of blood clots, the risk of stroke or heart attack is higher. Patients also have an increased risk of acute myeloid leukemia or primary myelofibrosis. Polycythemia vera often does not cause early signs or symptoms. It may be found during a routine blood test. Signs and symptoms may occur as the number of blood cells increases. Other conditions may cause the same signs and symptoms. Check with your doctor if you have any of the following: In addition to a complete blood count, bone marrow aspiration and biopsy, and cytogenetic analysis, a serum erythropoietin test is used to diagnose polycythemia vera. In this test, a sample of blood is checked for the level of erythropoietin (a hormone that stimulates new red blood cells to be made). In polycythemia vera, the erythropoietin level would be lower than normal because the body does not need to make more red blood cells. The bone marrow is made of tissues that make blood cells (red blood cells, white blood cells, and platelets) and a web of fibers that support the blood-forming tissues. In primary myelofibrosis (also called chronic idiopathic myelofibrosis), large numbers of blood stem cells become blood cells that do not mature properly (blasts). The web of fibers inside the bone marrow also becomes very thick (like scar tissue) and slows the blood-forming tissue’s ability to make blood cells. This causes the blood-forming tissues to make fewer and fewer blood cells. In order to make up for the low number of blood cells made in the bone marrow, the liver and spleen begin to make the blood cells. Primary myelofibrosis often does not cause early signs or symptoms. It may be found during a routine blood test. Signs and symptoms may be caused by primary myelofibrosis or by other conditions. Check with your doctor if you have any of the following: Prognosis depends on the following: Essential thrombocythemia causes an abnormal increase in the number of platelets made in the blood and bone marrow. Essential thrombocythemia often does not cause early signs or symptoms. It may be found during a routine blood test. Signs and symptoms may be caused by essential thrombocythemia or by other conditions. Check with your doctor if you have any of the following: Platelets are sticky. When there are too many platelets, they may clump together and make it hard for the blood to flow. Clots may form in blood vessels and there may also be increased bleeding. These can cause serious health problems such as stroke or heart attack. Prognosis and treatment options depend on the following: Chronic neutrophilic leukemia is a disease in which too many blood stem cells become a type of white blood cell called neutrophils. Neutrophils are infection-fighting blood cells that surround and destroy dead cells and foreign substances (such as bacteria). The spleen and liver may swell because of the extra neutrophils. Chronic neutrophilic leukemia may stay the same or it may progress quickly to acute leukemia. Eosinophils are white blood cells that react to allergens (substances that cause an allergic response) and help fight infections caused by certain parasites. In chronic eosinophilic leukemia, there are too many eosinophils in the blood, bone marrow, and other tissues. Chronic eosinophilic leukemia may stay the same for many years or it may progress quickly to acute leukemia. Chronic eosinophilic leukemia may not cause early signs or symptoms. It may be found during a routine blood test. Signs and symptoms may be caused by chronic eosinophilic leukemia or by other conditions. Check with your doctor if you have any of the following: The process used to find out if cancer has spread to other parts of the body is called staging. There is no standard staging system for chronic myeloproliferative neoplasms. It
is important to know the type of myeloproliferative neoplasm in order to plan treatment. Different types of treatments are available for patients with chronic myeloproliferative neoplasms. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment. Watchful waiting is closely monitoring a patient’s condition without giving any treatment until signs or symptoms appear or change. Phlebotomy is a procedure in which blood is taken from a vein. A sample of blood may be taken for tests such as a CBC or blood chemistry. Sometimes phlebotomy is used as a treatment and blood is taken from the body to remove extra red blood cells. Phlebotomy is used in this way to treat some chronic myeloproliferative neoplasms.
Platelet apheresis is a treatment that uses a special machine to remove platelets from the blood. Blood is taken from the patient and put through a blood cell separator where the platelets are removed. The rest of the blood is then returned to the patient’s bloodstream. Transfusion therapy (blood transfusion) is a method of giving red blood cells, white blood cells, or platelets to replace blood cells destroyed by disease or cancer treatment. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). See Drugs Approved for Myeloproliferative Neoplasms for more information. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body, such as the spleen, with cancer. Prednisone and danazol are drugs that may be used to treat anemia in patients with primary myelofibrosis. Anagrelide therapy is used to reduce the risk of blood clots in patients who have too many platelets in
their blood. Low-dose aspirin may also be used to reduce the risk of blood clots. Thalidomide, lenalidomide, and pomalidomide are drugs that prevent blood vessels from growing into areas of tumor cells. Erythropoietic growth factors are used to stimulate the bone marrow to make red blood cells. See Drugs Approved for Myeloproliferative Neoplasms for more information. Splenectomy (surgery to remove the spleen) may be done if the spleen is enlarged. Immunotherapy is a treatment that uses the patient's immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body's natural defenses against cancer. This cancer treatment is a type of biologic therapy. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. See Drugs Approved for Myeloproliferative Neoplasms for more information. Other types of targeted therapies are being studied in clinical trials. High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body's blood cells. EnlargeStem cell transplant. (Step 1): Blood is taken from a vein in the arm of the donor. The patient or another person may be the donor. The blood flows through a machine that removes the stem cells. Then the blood is returned to the donor through a vein in the other arm. (Step 2): The patient receives chemotherapy to kill blood-forming cells. The patient may receive radiation therapy (not shown). (Step 3): The patient receives stem cells through a catheter placed into a blood vessel in the chest. Information about clinical trials is available from the
NCI website. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. See the PDQ summary about Chronic Myelogenous Leukemia Treatment for information. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. The purpose of treatment for polycythemia vera is to reduce the number of extra blood cells. Treatment of polycythemia vera may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of primary myelofibrosis in patients without signs or symptoms is usually watchful waiting. Patients with primary myelofibrosis may have signs or symptoms of anemia. Anemia is usually treated with transfusion of red blood cells to relieve symptoms and improve quality of life. In addition, anemia may be treated with: Treatment of primary myelofibrosis in patients with other signs or symptoms may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of essential thrombocythemia in patients younger than 60 years who have no signs or symptoms and an acceptable platelet count is usually watchful waiting. Treatment of other patients may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of chronic neutrophilic leukemia may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of chronic eosinophilic leukemia may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about chronic myeloproliferative neoplasms, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of chronic myeloproliferative neoplasms. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Chronic Myeloproliferative Neoplasms Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/myeloproliferative/patient/chronic-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389435] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Chronic Myeloproliferative Neoplasms Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the treatments for Essential Thrombocythemia ? | Treatment of essential thrombocythemia in patients younger than 60 years who have no signs or symptoms and an acceptable platelet count is usually watchful waiting. Treatment of other patients may include the following: - Chemotherapy. - Anagrelide therapy. - Biologic therapy using interferon alfa or pegylated interferon alpha. - Platelet apheresis. - A clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with essential thrombocythemia. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. |
Vulvar cancer forms in a woman's external genitalia. The vulva includes: Vulvar cancer most often affects the outer vaginal lips. Less often, cancer affects the inner vaginal lips, clitoris, or vaginal glands. Vulvar cancer usually forms slowly over many years. Abnormal cells can grow on the surface of the vulvar skin for a long time. This condition is called vulvar intraepithelial neoplasia (VIN). Because it is possible for VIN to become vulvar cancer, it is important to get treatment. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will
get cancer; not having risk factors doesn't mean that you will
not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for vulvar cancer include the following: Other possible risk factors include the following: Vulvar cancer often does not cause early signs or symptoms. Signs and symptoms may be caused by vulvar cancer or by other conditions. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis and treatment options depend on the following: The process used to find out if cancer has spread within the vulva or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The following tests and procedures may be used in the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if vulvar cancer spreads to the lung, the cancer cells in the lung are actually vulvar cancer cells. The disease is metastatic vulvar cancer, not lung cancer. These abnormal cells are not cancer. Vulvar intraepithelial neoplasia (VIN) may become cancer and spread into nearby tissue. VIN is sometimes called stage 0 or carcinoma in situ. The staging system below does not apply to malignant melanoma of the vulva, which is staged like melanoma of the skin. For more information, see the Stage Information for Melanoma section in Melanoma Treatment. In stage I, cancer has formed. The tumor is found only in the vulva. Stage I is divided into stages IA and IB.EnlargeTumor sizes are often measured in centimeters (cm) or inches. Common food items that can be used to show tumor size in cm include: a pea (1 cm), a peanut (2 cm), a grape (3 cm), a walnut (4 cm), a lime (5 cm or 2 inches), an egg (6 cm), a peach (7 cm), and a grapefruit (10 cm or 4 inches). In stage II, the tumor is any size and has spread to the lower one-third of the urethra, the lower one-third of the vagina, or the lower one-third of the anus. Cancer has not spread to the lymph nodes. In stage III, the tumor is any size and has spread to the upper two-thirds of the urethra, the upper two-thirds of the vagina, the inner lining of the bladder or rectum, or to any number of lymph nodes. Stage III is divided into stages IIIA, IIIB, and IIIC. In stage IV, the tumor is any size and has become attached to the bone, or cancer has spread to lymph nodes that are not movable or have become ulcerated, or there is distant spread. Stage IV is divided into stages IVA and IVB. The cancer may come back in the vulva or in other parts of the body. Different types of treatments are available for patients with vulvar cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Surgery is the most common treatment for vulvar intraepithelial neoplasia (VIN) and vulvar cancer. One of the following types of surgery may be done to treat VIN: The goal of surgery for vulvar cancer is to remove all the cancer without any loss of the woman's sexual function. One of the following types of surgery may be done to treat vulvar cancer: After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy and/or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward area of the body with cancer. External radiation therapy may also be used as
palliative therapy to relieve
symptoms and improve quality of life. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Topical chemotherapy for vulvar cancer may be applied to the skin in a cream or lotion. The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved to Treat Vulvar Cancer for more information. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy.
Imiquimod is an immune response modifier used to treat vulvar lesions and is applied to the skin in a cream. Information about clinical trials is available from the NCI website. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. It is important to have regular follow-up exams to check for recurrent vulvar cancer. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of vulvar intraepithelial neoplasia (VIN) may include the following: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I vulvar cancer and stage II vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage IVA vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for stage IVB vulvar cancer. Chemotherapy has been studied and may be used if the patient can tolerate it. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locally recurrent vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about vulvar cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of vulvar cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Vulvar Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/vulvar/patient/vulvar-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389324] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Vulvar Cancer Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is (are) Vulvar Cancer ? | Key Points
- Vulvar cancer is a rare disease in which malignant (cancer) cells form in the tissues of the vulva. - Having vulvar intraepithelial neoplasia or HPV infection can affect the risk of vulvar cancer. - Signs of vulvar cancer include bleeding or itching. - Tests that examine the vulva are used to detect (find) and diagnose vulvar cancer. - Certain factors affect prognosis (chance of recovery) and treatment options.
Vulvar cancer is a rare disease in which malignant (cancer) cells form in the tissues of the vulva.
Vulvar cancer forms in a woman's external genitalia. The vulva includes: - Inner and outer lips of the vagina. - Clitoris (sensitive tissue between the lips). - Opening of the vagina and its glands. - Mons pubis (the rounded area in front of the pubic bones that becomes covered with hair at puberty). - Perineum (the area between the vulva and the anus). Vulvar cancer most often affects the outer vaginal lips. Less often, cancer affects the inner vaginal lips, clitoris, or vaginal glands. Vulvar cancer usually forms slowly over a number of years. Abnormal cells can grow on the surface of the vulvar skin for a long time. This condition is called vulvar intraepithelial neoplasia (VIN). Because it is possible for VIN to become vulvar cancer, it is very important to get treatment.
Having vulvar intraepithelial neoplasia or HPV infection can affect the risk of vulvar cancer.
Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn't mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for vulvar cancer include the following: - Having vulvar intraepithelial neoplasia (VIN). - Having human papillomavirus (HPV) infection. - Having a history of genital warts. Other possible risk factors include the following: - Having many sexual partners. - Having first sexual intercourse at a young age. - Having a history of abnormal Pap tests (Pap smears).
Recurrent Vulvar Cancer
Recurrent vulvar cancer is cancer that has recurred (come back) after it has been treated. The cancer may come back in the vulva or in other parts of the body. |
Vulvar cancer forms in a woman's external genitalia. The vulva includes: Vulvar cancer most often affects the outer vaginal lips. Less often, cancer affects the inner vaginal lips, clitoris, or vaginal glands. Vulvar cancer usually forms slowly over many years. Abnormal cells can grow on the surface of the vulvar skin for a long time. This condition is called vulvar intraepithelial neoplasia (VIN). Because it is possible for VIN to become vulvar cancer, it is important to get treatment. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will
get cancer; not having risk factors doesn't mean that you will
not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for vulvar cancer include the following: Other possible risk factors include the following: Vulvar cancer often does not cause early signs or symptoms. Signs and symptoms may be caused by vulvar cancer or by other conditions. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis and treatment options depend on the following: The process used to find out if cancer has spread within the vulva or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The following tests and procedures may be used in the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if vulvar cancer spreads to the lung, the cancer cells in the lung are actually vulvar cancer cells. The disease is metastatic vulvar cancer, not lung cancer. These abnormal cells are not cancer. Vulvar intraepithelial neoplasia (VIN) may become cancer and spread into nearby tissue. VIN is sometimes called stage 0 or carcinoma in situ. The staging system below does not apply to malignant melanoma of the vulva, which is staged like melanoma of the skin. For more information, see the Stage Information for Melanoma section in Melanoma Treatment. In stage I, cancer has formed. The tumor is found only in the vulva. Stage I is divided into stages IA and IB.EnlargeTumor sizes are often measured in centimeters (cm) or inches. Common food items that can be used to show tumor size in cm include: a pea (1 cm), a peanut (2 cm), a grape (3 cm), a walnut (4 cm), a lime (5 cm or 2 inches), an egg (6 cm), a peach (7 cm), and a grapefruit (10 cm or 4 inches). In stage II, the tumor is any size and has spread to the lower one-third of the urethra, the lower one-third of the vagina, or the lower one-third of the anus. Cancer has not spread to the lymph nodes. In stage III, the tumor is any size and has spread to the upper two-thirds of the urethra, the upper two-thirds of the vagina, the inner lining of the bladder or rectum, or to any number of lymph nodes. Stage III is divided into stages IIIA, IIIB, and IIIC. In stage IV, the tumor is any size and has become attached to the bone, or cancer has spread to lymph nodes that are not movable or have become ulcerated, or there is distant spread. Stage IV is divided into stages IVA and IVB. The cancer may come back in the vulva or in other parts of the body. Different types of treatments are available for patients with vulvar cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Surgery is the most common treatment for vulvar intraepithelial neoplasia (VIN) and vulvar cancer. One of the following types of surgery may be done to treat VIN: The goal of surgery for vulvar cancer is to remove all the cancer without any loss of the woman's sexual function. One of the following types of surgery may be done to treat vulvar cancer: After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy and/or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward area of the body with cancer. External radiation therapy may also be used as
palliative therapy to relieve
symptoms and improve quality of life. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Topical chemotherapy for vulvar cancer may be applied to the skin in a cream or lotion. The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved to Treat Vulvar Cancer for more information. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy.
Imiquimod is an immune response modifier used to treat vulvar lesions and is applied to the skin in a cream. Information about clinical trials is available from the NCI website. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. It is important to have regular follow-up exams to check for recurrent vulvar cancer. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of vulvar intraepithelial neoplasia (VIN) may include the following: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I vulvar cancer and stage II vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage IVA vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for stage IVB vulvar cancer. Chemotherapy has been studied and may be used if the patient can tolerate it. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locally recurrent vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about vulvar cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of vulvar cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Vulvar Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/vulvar/patient/vulvar-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389324] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Vulvar Cancer Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the symptoms of Vulvar Cancer ? | Signs of vulvar cancer include bleeding or itching. Vulvar cancer often does not cause early signs or symptoms. Signs and symptoms may be caused by vulvar cancer or by other conditions. Check with your doctor if you have any of the following: - A lump or growth on the vulva. - Changes in the vulvar skin, such as color changes or growths that look like a wart or ulcer. - Itching in the vulvar area, that does not go away. - Bleeding not related to menstruation (periods). - Tenderness in the vulvar area. |
Vulvar cancer forms in a woman's external genitalia. The vulva includes: Vulvar cancer most often affects the outer vaginal lips. Less often, cancer affects the inner vaginal lips, clitoris, or vaginal glands. Vulvar cancer usually forms slowly over many years. Abnormal cells can grow on the surface of the vulvar skin for a long time. This condition is called vulvar intraepithelial neoplasia (VIN). Because it is possible for VIN to become vulvar cancer, it is important to get treatment. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will
get cancer; not having risk factors doesn't mean that you will
not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for vulvar cancer include the following: Other possible risk factors include the following: Vulvar cancer often does not cause early signs or symptoms. Signs and symptoms may be caused by vulvar cancer or by other conditions. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis and treatment options depend on the following: The process used to find out if cancer has spread within the vulva or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The following tests and procedures may be used in the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if vulvar cancer spreads to the lung, the cancer cells in the lung are actually vulvar cancer cells. The disease is metastatic vulvar cancer, not lung cancer. These abnormal cells are not cancer. Vulvar intraepithelial neoplasia (VIN) may become cancer and spread into nearby tissue. VIN is sometimes called stage 0 or carcinoma in situ. The staging system below does not apply to malignant melanoma of the vulva, which is staged like melanoma of the skin. For more information, see the Stage Information for Melanoma section in Melanoma Treatment. In stage I, cancer has formed. The tumor is found only in the vulva. Stage I is divided into stages IA and IB.EnlargeTumor sizes are often measured in centimeters (cm) or inches. Common food items that can be used to show tumor size in cm include: a pea (1 cm), a peanut (2 cm), a grape (3 cm), a walnut (4 cm), a lime (5 cm or 2 inches), an egg (6 cm), a peach (7 cm), and a grapefruit (10 cm or 4 inches). In stage II, the tumor is any size and has spread to the lower one-third of the urethra, the lower one-third of the vagina, or the lower one-third of the anus. Cancer has not spread to the lymph nodes. In stage III, the tumor is any size and has spread to the upper two-thirds of the urethra, the upper two-thirds of the vagina, the inner lining of the bladder or rectum, or to any number of lymph nodes. Stage III is divided into stages IIIA, IIIB, and IIIC. In stage IV, the tumor is any size and has become attached to the bone, or cancer has spread to lymph nodes that are not movable or have become ulcerated, or there is distant spread. Stage IV is divided into stages IVA and IVB. The cancer may come back in the vulva or in other parts of the body. Different types of treatments are available for patients with vulvar cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Surgery is the most common treatment for vulvar intraepithelial neoplasia (VIN) and vulvar cancer. One of the following types of surgery may be done to treat VIN: The goal of surgery for vulvar cancer is to remove all the cancer without any loss of the woman's sexual function. One of the following types of surgery may be done to treat vulvar cancer: After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy and/or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward area of the body with cancer. External radiation therapy may also be used as
palliative therapy to relieve
symptoms and improve quality of life. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Topical chemotherapy for vulvar cancer may be applied to the skin in a cream or lotion. The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved to Treat Vulvar Cancer for more information. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy.
Imiquimod is an immune response modifier used to treat vulvar lesions and is applied to the skin in a cream. Information about clinical trials is available from the NCI website. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. It is important to have regular follow-up exams to check for recurrent vulvar cancer. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of vulvar intraepithelial neoplasia (VIN) may include the following: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I vulvar cancer and stage II vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage IVA vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for stage IVB vulvar cancer. Chemotherapy has been studied and may be used if the patient can tolerate it. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locally recurrent vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about vulvar cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of vulvar cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Vulvar Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/vulvar/patient/vulvar-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389324] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Vulvar Cancer Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | How to diagnose Vulvar Cancer ? | Tests that examine the vulva are used to detect (find) and diagnose vulvar cancer. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking the vulva for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Biopsy : The removal of samples of cells or tissues from the vulva so they can be viewed under a microscope by a pathologist to check for signs of cancer. |
Vulvar cancer forms in a woman's external genitalia. The vulva includes: Vulvar cancer most often affects the outer vaginal lips. Less often, cancer affects the inner vaginal lips, clitoris, or vaginal glands. Vulvar cancer usually forms slowly over many years. Abnormal cells can grow on the surface of the vulvar skin for a long time. This condition is called vulvar intraepithelial neoplasia (VIN). Because it is possible for VIN to become vulvar cancer, it is important to get treatment. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will
get cancer; not having risk factors doesn't mean that you will
not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for vulvar cancer include the following: Other possible risk factors include the following: Vulvar cancer often does not cause early signs or symptoms. Signs and symptoms may be caused by vulvar cancer or by other conditions. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis and treatment options depend on the following: The process used to find out if cancer has spread within the vulva or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The following tests and procedures may be used in the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if vulvar cancer spreads to the lung, the cancer cells in the lung are actually vulvar cancer cells. The disease is metastatic vulvar cancer, not lung cancer. These abnormal cells are not cancer. Vulvar intraepithelial neoplasia (VIN) may become cancer and spread into nearby tissue. VIN is sometimes called stage 0 or carcinoma in situ. The staging system below does not apply to malignant melanoma of the vulva, which is staged like melanoma of the skin. For more information, see the Stage Information for Melanoma section in Melanoma Treatment. In stage I, cancer has formed. The tumor is found only in the vulva. Stage I is divided into stages IA and IB.EnlargeTumor sizes are often measured in centimeters (cm) or inches. Common food items that can be used to show tumor size in cm include: a pea (1 cm), a peanut (2 cm), a grape (3 cm), a walnut (4 cm), a lime (5 cm or 2 inches), an egg (6 cm), a peach (7 cm), and a grapefruit (10 cm or 4 inches). In stage II, the tumor is any size and has spread to the lower one-third of the urethra, the lower one-third of the vagina, or the lower one-third of the anus. Cancer has not spread to the lymph nodes. In stage III, the tumor is any size and has spread to the upper two-thirds of the urethra, the upper two-thirds of the vagina, the inner lining of the bladder or rectum, or to any number of lymph nodes. Stage III is divided into stages IIIA, IIIB, and IIIC. In stage IV, the tumor is any size and has become attached to the bone, or cancer has spread to lymph nodes that are not movable or have become ulcerated, or there is distant spread. Stage IV is divided into stages IVA and IVB. The cancer may come back in the vulva or in other parts of the body. Different types of treatments are available for patients with vulvar cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Surgery is the most common treatment for vulvar intraepithelial neoplasia (VIN) and vulvar cancer. One of the following types of surgery may be done to treat VIN: The goal of surgery for vulvar cancer is to remove all the cancer without any loss of the woman's sexual function. One of the following types of surgery may be done to treat vulvar cancer: After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy and/or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward area of the body with cancer. External radiation therapy may also be used as
palliative therapy to relieve
symptoms and improve quality of life. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Topical chemotherapy for vulvar cancer may be applied to the skin in a cream or lotion. The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved to Treat Vulvar Cancer for more information. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy.
Imiquimod is an immune response modifier used to treat vulvar lesions and is applied to the skin in a cream. Information about clinical trials is available from the NCI website. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. It is important to have regular follow-up exams to check for recurrent vulvar cancer. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of vulvar intraepithelial neoplasia (VIN) may include the following: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I vulvar cancer and stage II vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage IVA vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for stage IVB vulvar cancer. Chemotherapy has been studied and may be used if the patient can tolerate it. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locally recurrent vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about vulvar cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of vulvar cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Vulvar Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/vulvar/patient/vulvar-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389324] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Vulvar Cancer Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is the outlook for Vulvar Cancer ? | Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery) and treatment options depend on the following: - The stage of the cancer. - The patient's age and general health. - Whether the cancer has just been diagnosed or has recurred (come back). |
Vulvar cancer forms in a woman's external genitalia. The vulva includes: Vulvar cancer most often affects the outer vaginal lips. Less often, cancer affects the inner vaginal lips, clitoris, or vaginal glands. Vulvar cancer usually forms slowly over many years. Abnormal cells can grow on the surface of the vulvar skin for a long time. This condition is called vulvar intraepithelial neoplasia (VIN). Because it is possible for VIN to become vulvar cancer, it is important to get treatment. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will
get cancer; not having risk factors doesn't mean that you will
not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for vulvar cancer include the following: Other possible risk factors include the following: Vulvar cancer often does not cause early signs or symptoms. Signs and symptoms may be caused by vulvar cancer or by other conditions. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis and treatment options depend on the following: The process used to find out if cancer has spread within the vulva or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The following tests and procedures may be used in the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if vulvar cancer spreads to the lung, the cancer cells in the lung are actually vulvar cancer cells. The disease is metastatic vulvar cancer, not lung cancer. These abnormal cells are not cancer. Vulvar intraepithelial neoplasia (VIN) may become cancer and spread into nearby tissue. VIN is sometimes called stage 0 or carcinoma in situ. The staging system below does not apply to malignant melanoma of the vulva, which is staged like melanoma of the skin. For more information, see the Stage Information for Melanoma section in Melanoma Treatment. In stage I, cancer has formed. The tumor is found only in the vulva. Stage I is divided into stages IA and IB.EnlargeTumor sizes are often measured in centimeters (cm) or inches. Common food items that can be used to show tumor size in cm include: a pea (1 cm), a peanut (2 cm), a grape (3 cm), a walnut (4 cm), a lime (5 cm or 2 inches), an egg (6 cm), a peach (7 cm), and a grapefruit (10 cm or 4 inches). In stage II, the tumor is any size and has spread to the lower one-third of the urethra, the lower one-third of the vagina, or the lower one-third of the anus. Cancer has not spread to the lymph nodes. In stage III, the tumor is any size and has spread to the upper two-thirds of the urethra, the upper two-thirds of the vagina, the inner lining of the bladder or rectum, or to any number of lymph nodes. Stage III is divided into stages IIIA, IIIB, and IIIC. In stage IV, the tumor is any size and has become attached to the bone, or cancer has spread to lymph nodes that are not movable or have become ulcerated, or there is distant spread. Stage IV is divided into stages IVA and IVB. The cancer may come back in the vulva or in other parts of the body. Different types of treatments are available for patients with vulvar cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Surgery is the most common treatment for vulvar intraepithelial neoplasia (VIN) and vulvar cancer. One of the following types of surgery may be done to treat VIN: The goal of surgery for vulvar cancer is to remove all the cancer without any loss of the woman's sexual function. One of the following types of surgery may be done to treat vulvar cancer: After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy and/or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward area of the body with cancer. External radiation therapy may also be used as
palliative therapy to relieve
symptoms and improve quality of life. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Topical chemotherapy for vulvar cancer may be applied to the skin in a cream or lotion. The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved to Treat Vulvar Cancer for more information. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy.
Imiquimod is an immune response modifier used to treat vulvar lesions and is applied to the skin in a cream. Information about clinical trials is available from the NCI website. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. It is important to have regular follow-up exams to check for recurrent vulvar cancer. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of vulvar intraepithelial neoplasia (VIN) may include the following: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I vulvar cancer and stage II vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage IVA vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for stage IVB vulvar cancer. Chemotherapy has been studied and may be used if the patient can tolerate it. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locally recurrent vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about vulvar cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of vulvar cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Vulvar Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/vulvar/patient/vulvar-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389324] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Vulvar Cancer Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the stages of Vulvar Cancer ? | Key Points
- After vulvar cancer has been diagnosed, tests are done to find out if cancer cells have spread within the vulva or to other parts of the body. - There are three ways that cancer spreads in the body. - Cancer may spread from where it began to other parts of the body. - In vulvar intraepithelial neoplasia (VIN), abnormal cells are found on the surface of the vulvar skin. - The following stages are used for vulvar cancer: - Stage I - Stage II - Stage III - Stage IV
After vulvar cancer has been diagnosed, tests are done to find out if cancer cells have spread within the vulva or to other parts of the body.
The process used to find out if cancer has spread within the vulva or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The following tests and procedures may be used in the staging process: - Pelvic exam : An exam of the vagina, cervix, uterus, fallopian tubes, ovaries, and rectum. A speculum is inserted into the vagina and the doctor or nurse looks at the vagina and cervix for signs of disease. A Pap test of the cervix is usually done. The doctor or nurse also inserts one or two lubricated, gloved fingers of one hand into the vagina and places the other hand over the lower abdomen to feel the size, shape, and position of the uterus and ovaries. The doctor or nurse also inserts a lubricated, gloved finger into the rectum to feel for lumps or abnormal areas. - Colposcopy : A procedure in which a colposcope (a lighted, magnifying instrument) is used to check the vagina and cervix for abnormal areas. Tissue samples may be taken using a curette (spoon-shaped instrument) or a brush and checked under a microscope for signs of disease. - Cystoscopy : A procedure to look inside the bladder and urethra to check for abnormal areas. A cystoscope is inserted through the urethra into the bladder. A cystoscope is a thin, tube-like instrument with a light and a lens for viewing. It may also have a tool to remove tissue samples, which are checked under a microscope for signs of cancer. - Proctoscopy : A procedure to look inside the rectum and anus to check for abnormal areas. A proctoscope is inserted into the anus and rectum. A proctoscope is a thin, tube-like instrument with a light and a lens for viewing. It may also have a tool to remove tissue samples, which are checked under a microscope for signs of cancer. - X-rays : An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body. To stage vulvar cancer, x-rays may be taken of the organs and bones inside the chest, and the pelvic bones. - Intravenous pyelogram (IVP): A series of x-rays of the kidneys, ureters, and bladder to find out if cancer has spread to these organs. A contrast dye is injected into a vein. As the contrast dye moves through the kidneys, ureters and bladder, x-rays are taken to see if there are any blockages. This procedure is also called intravenous urography. - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. - Sentinel lymph node biopsy : The removal of the sentinel lymph node during surgery. The sentinel lymph node is the first lymph node to receive lymphatic drainage from a tumor. It is the first lymph node the cancer is likely to spread to from the tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are not found, it may not be necessary to remove more lymph nodes. Sentinel lymph node biopsy may be done during surgery to remove the tumor for early-stage vulvar cancer.
There are three ways that cancer spreads in the body.
Cancer can spread through tissue, the lymph system, and the blood: - Tissue. The cancer spreads from where it began by growing into nearby areas. - Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body. - Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body.
Cancer may spread from where it began to other parts of the body.
When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. - Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body. - Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if vulvar cancer spreads to the lung, the cancer cells in the lung are actually vulvar cancer cells. The disease is metastatic vulvar cancer, not lung cancer.
In vulvar intraepithelial neoplasia (VIN), abnormal cells are found on the surface of the vulvar skin.
These abnormal cells are not cancer. Vulvar intraepithelial neoplasia (VIN) may become cancer and spread into nearby tissue. VIN is sometimes called stage 0 or carcinoma in situ.
The following stages are used for vulvar cancer:
Stage I In stage I, cancer has formed. The tumor is found only in the vulva or perineum (area between the rectum and the vagina). Stage I is divided into stages IA and IB. - In stage IA, the tumor is 2 centimeters or smaller and has spread 1 millimeter or less into the tissue of the vulva. Cancer has not spread to the lymph nodes. - In stage IB, the tumor is larger than 2 centimeters or has spread more than 1 millimeter into the tissue of the vulva. Cancer has not spread to the lymph nodes. Stage II In stage II, the tumor is any size and has spread into the lower part of the urethra, the lower part of the vagina, or the anus. Cancer has not spread to the lymph nodes. Stage III In stage III, the tumor is any size and may have spread into the lower part of the urethra, the lower part of the vagina, or the anus. Cancer has spread to one or more nearby lymph nodes. Stage III is divided into stages IIIA, IIIB, and IIIC. - In stage IIIA, cancer is found in 1 or 2 lymph nodes that are smaller than 5 millimeters or in one lymph node that is 5 millimeters or larger. - In stage IIIB, cancer is found in 2 or more lymph nodes that are 5 millimeters or larger, or in 3 or more lymph nodes that are smaller than 5 millimeters. - In stage IIIC, cancer is found in lymph nodes and has spread to the outside surface of the lymph nodes. Stage IV In stage IV, the tumor has spread into the upper part of the urethra, the upper part of the vagina, or to other parts of the body. Stage IV is divided into stages IVA and IVB. - In stage IVA: - cancer has spread into the lining of the upper urethra, the upper vagina, the bladder, or the rectum, or has attached to the pelvic bone; or - cancer has spread to nearby lymph nodes and the lymph nodes are not moveable or have formed an ulcer. - In stage IVB, cancer has spread to lymph nodes in the pelvis or to other parts of the body. |
Vulvar cancer forms in a woman's external genitalia. The vulva includes: Vulvar cancer most often affects the outer vaginal lips. Less often, cancer affects the inner vaginal lips, clitoris, or vaginal glands. Vulvar cancer usually forms slowly over many years. Abnormal cells can grow on the surface of the vulvar skin for a long time. This condition is called vulvar intraepithelial neoplasia (VIN). Because it is possible for VIN to become vulvar cancer, it is important to get treatment. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will
get cancer; not having risk factors doesn't mean that you will
not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for vulvar cancer include the following: Other possible risk factors include the following: Vulvar cancer often does not cause early signs or symptoms. Signs and symptoms may be caused by vulvar cancer or by other conditions. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis and treatment options depend on the following: The process used to find out if cancer has spread within the vulva or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The following tests and procedures may be used in the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if vulvar cancer spreads to the lung, the cancer cells in the lung are actually vulvar cancer cells. The disease is metastatic vulvar cancer, not lung cancer. These abnormal cells are not cancer. Vulvar intraepithelial neoplasia (VIN) may become cancer and spread into nearby tissue. VIN is sometimes called stage 0 or carcinoma in situ. The staging system below does not apply to malignant melanoma of the vulva, which is staged like melanoma of the skin. For more information, see the Stage Information for Melanoma section in Melanoma Treatment. In stage I, cancer has formed. The tumor is found only in the vulva. Stage I is divided into stages IA and IB.EnlargeTumor sizes are often measured in centimeters (cm) or inches. Common food items that can be used to show tumor size in cm include: a pea (1 cm), a peanut (2 cm), a grape (3 cm), a walnut (4 cm), a lime (5 cm or 2 inches), an egg (6 cm), a peach (7 cm), and a grapefruit (10 cm or 4 inches). In stage II, the tumor is any size and has spread to the lower one-third of the urethra, the lower one-third of the vagina, or the lower one-third of the anus. Cancer has not spread to the lymph nodes. In stage III, the tumor is any size and has spread to the upper two-thirds of the urethra, the upper two-thirds of the vagina, the inner lining of the bladder or rectum, or to any number of lymph nodes. Stage III is divided into stages IIIA, IIIB, and IIIC. In stage IV, the tumor is any size and has become attached to the bone, or cancer has spread to lymph nodes that are not movable or have become ulcerated, or there is distant spread. Stage IV is divided into stages IVA and IVB. The cancer may come back in the vulva or in other parts of the body. Different types of treatments are available for patients with vulvar cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Surgery is the most common treatment for vulvar intraepithelial neoplasia (VIN) and vulvar cancer. One of the following types of surgery may be done to treat VIN: The goal of surgery for vulvar cancer is to remove all the cancer without any loss of the woman's sexual function. One of the following types of surgery may be done to treat vulvar cancer: After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy and/or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward area of the body with cancer. External radiation therapy may also be used as
palliative therapy to relieve
symptoms and improve quality of life. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Topical chemotherapy for vulvar cancer may be applied to the skin in a cream or lotion. The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved to Treat Vulvar Cancer for more information. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy.
Imiquimod is an immune response modifier used to treat vulvar lesions and is applied to the skin in a cream. Information about clinical trials is available from the NCI website. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. It is important to have regular follow-up exams to check for recurrent vulvar cancer. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of vulvar intraepithelial neoplasia (VIN) may include the following: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I vulvar cancer and stage II vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage IVA vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for stage IVB vulvar cancer. Chemotherapy has been studied and may be used if the patient can tolerate it. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locally recurrent vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about vulvar cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of vulvar cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Vulvar Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/vulvar/patient/vulvar-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389324] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Vulvar Cancer Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | what research (or clinical trials) is being done for Vulvar Cancer ? | New types of treatment are being tested in clinical trials.
Information about clinical trials is available from the NCI website.
Patients may want to think about taking part in a clinical trial.
For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.
Patients can enter clinical trials before, during, or after starting their cancer treatment.
Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials. |
Vulvar cancer forms in a woman's external genitalia. The vulva includes: Vulvar cancer most often affects the outer vaginal lips. Less often, cancer affects the inner vaginal lips, clitoris, or vaginal glands. Vulvar cancer usually forms slowly over many years. Abnormal cells can grow on the surface of the vulvar skin for a long time. This condition is called vulvar intraepithelial neoplasia (VIN). Because it is possible for VIN to become vulvar cancer, it is important to get treatment. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will
get cancer; not having risk factors doesn't mean that you will
not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for vulvar cancer include the following: Other possible risk factors include the following: Vulvar cancer often does not cause early signs or symptoms. Signs and symptoms may be caused by vulvar cancer or by other conditions. Check with your doctor if you have any of the following: The following tests and procedures may be used: The prognosis and treatment options depend on the following: The process used to find out if cancer has spread within the vulva or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The following tests and procedures may be used in the staging process: Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if vulvar cancer spreads to the lung, the cancer cells in the lung are actually vulvar cancer cells. The disease is metastatic vulvar cancer, not lung cancer. These abnormal cells are not cancer. Vulvar intraepithelial neoplasia (VIN) may become cancer and spread into nearby tissue. VIN is sometimes called stage 0 or carcinoma in situ. The staging system below does not apply to malignant melanoma of the vulva, which is staged like melanoma of the skin. For more information, see the Stage Information for Melanoma section in Melanoma Treatment. In stage I, cancer has formed. The tumor is found only in the vulva. Stage I is divided into stages IA and IB.EnlargeTumor sizes are often measured in centimeters (cm) or inches. Common food items that can be used to show tumor size in cm include: a pea (1 cm), a peanut (2 cm), a grape (3 cm), a walnut (4 cm), a lime (5 cm or 2 inches), an egg (6 cm), a peach (7 cm), and a grapefruit (10 cm or 4 inches). In stage II, the tumor is any size and has spread to the lower one-third of the urethra, the lower one-third of the vagina, or the lower one-third of the anus. Cancer has not spread to the lymph nodes. In stage III, the tumor is any size and has spread to the upper two-thirds of the urethra, the upper two-thirds of the vagina, the inner lining of the bladder or rectum, or to any number of lymph nodes. Stage III is divided into stages IIIA, IIIB, and IIIC. In stage IV, the tumor is any size and has become attached to the bone, or cancer has spread to lymph nodes that are not movable or have become ulcerated, or there is distant spread. Stage IV is divided into stages IVA and IVB. The cancer may come back in the vulva or in other parts of the body. Different types of treatments are available for patients with vulvar cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Surgery is the most common treatment for vulvar intraepithelial neoplasia (VIN) and vulvar cancer. One of the following types of surgery may be done to treat VIN: The goal of surgery for vulvar cancer is to remove all the cancer without any loss of the woman's sexual function. One of the following types of surgery may be done to treat vulvar cancer: After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy and/or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward area of the body with cancer. External radiation therapy may also be used as
palliative therapy to relieve
symptoms and improve quality of life. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Topical chemotherapy for vulvar cancer may be applied to the skin in a cream or lotion. The way the chemotherapy is given depends on the type and stage of the cancer being treated. See Drugs Approved to Treat Vulvar Cancer for more information. Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This cancer treatment is a type of biologic therapy.
Imiquimod is an immune response modifier used to treat vulvar lesions and is applied to the skin in a cream. Information about clinical trials is available from the NCI website. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. It is important to have regular follow-up exams to check for recurrent vulvar cancer. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of vulvar intraepithelial neoplasia (VIN) may include the following: For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage I vulvar cancer and stage II vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage III vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of stage IVA vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. There is no standard treatment for stage IVB vulvar cancer. Chemotherapy has been studied and may be used if the patient can tolerate it. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of locally recurrent vulvar cancer may include the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about vulvar cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of vulvar cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Vulvar Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/vulvar/patient/vulvar-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389324] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Vulvar Cancer Treatment (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the treatments for Vulvar Cancer ? | Key Points
- There are different types of treatment for patients with vulvar cancer. - Four types of standard treatment are used: - Surgery - Radiation therapy - Chemotherapy - Biologic therapy - New types of treatment are being tested in clinical trials. - Patients may want to think about taking part in a clinical trial. - Patients can enter clinical trials before, during, or after starting their cancer treatment. - Follow-up tests may be needed.
There are different types of treatment for patients with vulvar cancer.
Different types of treatments are available for patients with vulvar cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Four types of standard treatment are used:
Surgery Surgery is the most common treatment for vulvar cancer. The goal of surgery is to remove all the cancer without any loss of the woman's sexual function. One of the following types of surgery may be done: - Laser surgery: A surgical procedure that uses a laser beam (a narrow beam of intense light) as a knife to make bloodless cuts in tissue or to remove a surface lesion such as a tumor. - Wide local excision: A surgical procedure to remove the cancer and some of the normal tissue around the cancer. - Radical local excision: A surgical procedure to remove the cancer and a large amount of normal tissue around it. Nearby lymph nodes in the groin may also be removed. - Ultrasound surgical aspiration (USA): A surgical procedure to break the tumor up into small pieces using very fine vibrations. The small pieces of tumor are washed away and removed by suction. This procedure causes less damage to nearby tissue. - Vulvectomy: A surgical procedure to remove part or all of the vulva: - Skinning vulvectomy: The top layer of vulvar skin where the cancer is found is removed. Skin grafts from other parts of the body may be needed to cover the area where the skin was removed. - Modified radical vulvectomy: Surgery to remove part of the vulva. Nearby lymph nodes may also be removed. - Radical vulvectomy: Surgery to remove the entire vulva. Nearby lymph nodes are also removed. - Pelvic exenteration: A surgical procedure to remove the lower colon, rectum, and bladder. The cervix, vagina, ovaries, and nearby lymph nodes are also removed. Artificial openings (stoma) are made for urine and stool to flow from the body into a collection bag. Even if the doctor removes all the cancer that can be seen at the time of the surgery, some patients may have chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy. Radiation therapy Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy: - External radiation therapy uses a machine outside the body to send radiation toward the cancer. - Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. The way the radiation therapy is given depends on the type and stage of the cancer being treated. External and internal radiation therapy are used to treat vulvar cancer, and external radiation therapy may also be used as palliative therapy to relieve symptoms and improve quality of life. Chemotherapy Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, a body cavity such as the abdomen, or onto the skin, the drugs mainly affect cancer cells in those areas (regional chemotherapy). The way the chemotherapy is given depends on the type and stage of the cancer being treated. Topical chemotherapy for vulvar cancer may be applied to the skin in a cream or lotion. See Drugs Approved to Treat Vulvar Cancer for more information. Biologic therapy Biologic therapy is a treatment that uses the patients immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the bodys natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy. Imiquimod is a biologic therapy that may be used to treat vulvar lesions and is applied to the skin in a cream.
New types of treatment are being tested in clinical trials.
Information about clinical trials is available from the NCI website.
Patients may want to think about taking part in a clinical trial.
For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.
Patients can enter clinical trials before, during, or after starting their cancer treatment.
Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. See the Treatment Options section that follows for links to current treatment clinical trials. These have been retrieved from NCI's listing of clinical trials.
Follow-up tests may be needed.
Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. It is important to have regular follow-up exams to check for recurrent vulvar cancer.
Treatment Options by Stage
Vulvar Intraepithelial Neoplasia (VIN): Treatment of vulvar intraepithelial neoplasia (VIN) may include the following: - Removal of single lesions or wide local excision. - Laser surgery. - Ultrasound surgical aspiration. - Skinning vulvectomy with or without a skin graft. - Biologic therapy with topical imiquimod.
- Stage I Vulvar Cancer: Treatment of stage I vulvar cancer may include the following: - Wide local excision for lesions that are less than 1 millimeter deep.. - Radical local excision and removal of nearby lymph nodes. - Radical local excision and sentinel lymph node biopsy. If cancer is found in the sentinel lymph node, nearby lymph nodes are also removed. - Radiation therapy for patients who cannot have surgery. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage I vulvar cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
- Stage II Vulvar Cancer: Treatment of stage II vulvar cancer may include the following: - Radical local excision and removal of nearby lymph nodes. - Modified radical vulvectomy or radical vulvectomy for large tumors. Nearby lymph nodes may be removed. Radiation therapy may be given after surgery. - Radical local excision and sentinel lymph node biopsy. If cancer is found in the sentinel lymph node, nearby lymph nodes are also removed. - Radiation therapy for patients who cannot have surgery. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage II vulvar cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
- Stage III Vulvar Cancer: Treatment of stage III vulvar cancer may include the following: - Modified radical vulvectomy or radical vulvectomy. Nearby lymph nodes may be removed. Radiation therapy may be given after surgery. - Radiation therapy or chemotherapy and radiation therapy followed by surgery. - Radiation therapy with or without chemotherapy for patients who cannot have surgery. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage III vulvar cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
- Stage IV Vulvar Cancer: Treatment of stage IVA vulvar cancer may include the following: - Radical vulvectomy and pelvic exenteration. - Radical vulvectomy followed by radiation therapy. - Radiation therapy or chemotherapy and radiation therapy followed by surgery. - Radiation therapy with or without chemotherapy for patients who cannot have surgery. There is no standard treatment for stage IVB vulvar cancer. Treatment may include a clinical trial of a new treatment. Check the list of NCI-supported cancer clinical trials that are now accepting patients with stage IVB vulvar cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website.
Treatment Options for Recurrent Vulvar Cancer
Treatment of recurrent vulvar cancer may include the following: - Wide local excision with or without radiation therapy to treat cancer that has come back in the same area.
- Radical vulvectomy and pelvic exenteration to treat cancer that has come back in the same area.
- Chemotherapy and radiation therapy with or without surgery.
- Radiation therapy followed by surgery or chemotherapy.
- Radiation therapy as palliative treatment to relieve symptoms and improve quality of life.
- A clinical trial of a new treatment.
Check the list of NCI-supported cancer clinical trials that are now accepting patients with recurrent vulvar cancer. For more specific results, refine the search by using other search features, such as the location of the trial, the type of treatment, or the name of the drug. Talk with your doctor about clinical trials that may be right for you. General information about clinical trials is available from the NCI website. |
The pancreas is a
gland about 6 inches long that is
shaped like a thin pear lying on its side. The wider end of the pancreas is
called the head, the middle section is called the body, and the narrow end is
called the tail. The pancreas lies between the stomach and the spine.EnlargeAnatomy of the pancreas. The pancreas has three areas: head, body, and tail. It is found in the abdomen near the stomach, intestines, and other organs. The pancreas has two main jobs in the body: The digestive juices are made by exocrine pancreas cells and
the hormones are made by endocrine pancreas cells. About 95% of pancreatic
cancers begin in exocrine
cells. This summary is about exocrine pancreatic cancer.
For information on endocrine pancreatic cancer, see the PDQ summary on Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) Treatment. For information on pancreatic cancer in children, see the PDQ summary on Childhood Pancreatic Cancer Treatment. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk
factors for pancreatic cancer include the following: Pancreatic cancer may not cause early signs or symptoms. Signs and symptoms may be caused by pancreatic cancer or by other conditions. Check with your doctor if you have any of the following: Pancreatic cancer is difficult to detect and diagnose for the
following reasons: Pancreatic cancer is usually diagnosed with tests and procedures
that make pictures of the pancreas and the area around it. The process used
to find out if cancer cells have spread within and around the pancreas is
called staging. Tests and procedures
to detect, diagnose, and stage pancreatic cancer are usually done at the same
time. In order to plan treatment, it is important to know the stage of
the disease and whether or not the pancreatic cancer can be removed by
surgery. The following tests and
procedures may be used: The prognosis and treatment options depend on the following: Pancreatic cancer can be controlled only if it is found before it
has spread, when it can be completely removed by surgery. If the cancer has spread,
palliative treatment can improve the patient's
quality of life by controlling the
symptoms and complications of this disease. The process used to find out if cancer has spread within the pancreas or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage of the disease in order to plan treatment. The results of some of the tests used to diagnose pancreatic cancer are often also used to stage the disease. See the General Information section for more information. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if pancreatic cancer spreads to the liver, the cancer cells in the liver are actually pancreatic cancer cells. The disease is metastatic pancreatic cancer, not liver cancer. In stage 0, abnormal cells are found in the lining of the pancreas. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is also called carcinoma in situ. In stage I, cancer has formed and is
found in the pancreas only. Stage I is divided into
stages IA and IB, depending on the size of the tumor. Stage II is divided into
stages IIA and IIB, depending on the size of the tumor and where the
cancer has spread. In stage III, the tumor is any size and cancer has spread to: In stage IV, the tumor is any size and cancer has spread to other parts of the body, such as the liver, lung, or peritoneal cavity (the body cavity that contains most of the organs in the abdomen). Resectable pancreatic cancer can be removed by surgery because it has not grown into important blood vessels near the tumor. Borderline resectable pancreatic cancer has grown into a major blood vessel or nearby tissue or organs. It may be possible to remove the tumor, but there is a high risk that all of the cancer cells will not be removed with surgery. Locally advanced pancreatic cancer has grown into or close to nearby lymph nodes or blood vessels, so surgery cannot completely remove the cancer. Metastatic pancreatic cancer has spread to other organs, so surgery cannot completely remove the cancer. Recurrent pancreatic
cancer has recurred
(come back) after it has been treated. The cancer may come
back in the pancreas or in other
parts of the body. Different types of treatment are available for patients with
pancreatic cancer. Some treatments are
standard (the currently used treatment), and some are being tested in
clinical trials. A
treatment clinical trial is a research study meant to help improve current
treatments or obtain information on new treatments for patients with cancer.
When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
One of the following types of surgery may be used to take out the
tumor: If the cancer has spread and cannot be removed, the following
types of palliative surgery may be
done to relieve symptoms and improve quality of life: Radiation
therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Combination chemotherapy is treatment using more than one anticancer drug. See Drugs Approved for Pancreatic Cancer for more information. Chemoradiation therapy combines chemotherapy and radiation therapy to increase the effects of both. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Tyrosine kinase inhibitors (TKIs) are targeted therapy drugs that block signals needed for tumors to grow.
Erlotinib is a type of TKI used to treat pancreatic cancer. See Drugs Approved for Pancreatic Cancer for more information. Pain can occur when the tumor presses on nerves or other organs
near the pancreas. When pain medicine is not enough, there are treatments that
act on nerves in the abdomen to
relieve the pain. The doctor may inject medicine into the area around affected
nerves or may cut the nerves to block the feeling of pain. Radiation therapy
with or without chemotherapy can also help relieve pain by shrinking the tumor.
See the PDQ summary on Cancer Pain for more information. Surgery to remove the pancreas may affect its ability to make pancreatic enzymes that help to
digest food. As a result, patients may have problems digesting food and
absorbing nutrients into the body. To prevent malnutrition, the doctor may prescribe medicines
that replace these enzymes. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of resectable or borderline resectable pancreatic cancer may include the
following: Surgery to remove the tumor may include Whipple procedure, total pancreatectomy, or distal pancreatectomy. Palliative therapy can be started at any stage of disease. See the Palliative Therapy section for information about treatments that may improve quality of life or relieve symptoms in patients with pancreatic cancer. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of pancreatic cancer that is locally advanced may include the following: Palliative therapy can be started at any stage of disease. See the Palliative Therapy section for information about treatments that may improve quality of life or relieve symptoms in patients with pancreatic cancer. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of pancreatic cancer that has metastasized or recurred may include the following: Palliative therapy can be started at any stage of disease. See the Palliative Therapy section for information about treatments that may improve quality of life or relieve symptoms in patients with pancreatic cancer. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Palliative therapy can improve the patient's quality of life by controlling the symptoms and complications of pancreatic cancer. Palliative therapy for pancreatic cancer includes the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about pancreatic cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of adult pancreatic cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Pancreatic Cancer Treatment (Adult). Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/pancreatic/patient/pancreatic-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389396] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Pancreatic Cancer Treatment (Adult) (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What is (are) Pancreatic Cancer ? | Key Points
- Pancreatic cancer is a disease in which malignant (cancer) cells form in the tissues of the pancreas. - Smoking and health history can affect the risk of pancreatic cancer. - Signs and symptoms of pancreatic cancer include jaundice, pain, and weight loss. - Pancreatic cancer is difficult to detect (find) and diagnose early. - Tests that examine the pancreas are used to detect (find), diagnose, and stage pancreatic cancer. - Certain factors affect prognosis (chance of recovery) and treatment options.
Pancreatic cancer is a disease in which malignant (cancer) cells form in the tissues of the pancreas.
The pancreas is a gland about 6 inches long that is shaped like a thin pear lying on its side. The wider end of the pancreas is called the head, the middle section is called the body, and the narrow end is called the tail. The pancreas lies between the stomach and the spine. The pancreas has two main jobs in the body: - To make juices that help digest (break down) food. - To make hormones, such as insulin and glucagon, that help control blood sugar levels. Both of these hormones help the body use and store the energy it gets from food. The digestive juices are made by exocrine pancreas cells and the hormones are made by endocrine pancreas cells. About 95% of pancreatic cancers begin in exocrine cells. This summary is about exocrine pancreatic cancer. For information on endocrine pancreatic cancer, see the PDQ summary on Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) Treatment. For information on pancreatic cancer in children, see the PDQ summary on Unusual Cancers of Childhood Treatment. |
The pancreas is a
gland about 6 inches long that is
shaped like a thin pear lying on its side. The wider end of the pancreas is
called the head, the middle section is called the body, and the narrow end is
called the tail. The pancreas lies between the stomach and the spine.EnlargeAnatomy of the pancreas. The pancreas has three areas: head, body, and tail. It is found in the abdomen near the stomach, intestines, and other organs. The pancreas has two main jobs in the body: The digestive juices are made by exocrine pancreas cells and
the hormones are made by endocrine pancreas cells. About 95% of pancreatic
cancers begin in exocrine
cells. This summary is about exocrine pancreatic cancer.
For information on endocrine pancreatic cancer, see the PDQ summary on Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) Treatment. For information on pancreatic cancer in children, see the PDQ summary on Childhood Pancreatic Cancer Treatment. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk
factors for pancreatic cancer include the following: Pancreatic cancer may not cause early signs or symptoms. Signs and symptoms may be caused by pancreatic cancer or by other conditions. Check with your doctor if you have any of the following: Pancreatic cancer is difficult to detect and diagnose for the
following reasons: Pancreatic cancer is usually diagnosed with tests and procedures
that make pictures of the pancreas and the area around it. The process used
to find out if cancer cells have spread within and around the pancreas is
called staging. Tests and procedures
to detect, diagnose, and stage pancreatic cancer are usually done at the same
time. In order to plan treatment, it is important to know the stage of
the disease and whether or not the pancreatic cancer can be removed by
surgery. The following tests and
procedures may be used: The prognosis and treatment options depend on the following: Pancreatic cancer can be controlled only if it is found before it
has spread, when it can be completely removed by surgery. If the cancer has spread,
palliative treatment can improve the patient's
quality of life by controlling the
symptoms and complications of this disease. The process used to find out if cancer has spread within the pancreas or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage of the disease in order to plan treatment. The results of some of the tests used to diagnose pancreatic cancer are often also used to stage the disease. See the General Information section for more information. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if pancreatic cancer spreads to the liver, the cancer cells in the liver are actually pancreatic cancer cells. The disease is metastatic pancreatic cancer, not liver cancer. In stage 0, abnormal cells are found in the lining of the pancreas. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is also called carcinoma in situ. In stage I, cancer has formed and is
found in the pancreas only. Stage I is divided into
stages IA and IB, depending on the size of the tumor. Stage II is divided into
stages IIA and IIB, depending on the size of the tumor and where the
cancer has spread. In stage III, the tumor is any size and cancer has spread to: In stage IV, the tumor is any size and cancer has spread to other parts of the body, such as the liver, lung, or peritoneal cavity (the body cavity that contains most of the organs in the abdomen). Resectable pancreatic cancer can be removed by surgery because it has not grown into important blood vessels near the tumor. Borderline resectable pancreatic cancer has grown into a major blood vessel or nearby tissue or organs. It may be possible to remove the tumor, but there is a high risk that all of the cancer cells will not be removed with surgery. Locally advanced pancreatic cancer has grown into or close to nearby lymph nodes or blood vessels, so surgery cannot completely remove the cancer. Metastatic pancreatic cancer has spread to other organs, so surgery cannot completely remove the cancer. Recurrent pancreatic
cancer has recurred
(come back) after it has been treated. The cancer may come
back in the pancreas or in other
parts of the body. Different types of treatment are available for patients with
pancreatic cancer. Some treatments are
standard (the currently used treatment), and some are being tested in
clinical trials. A
treatment clinical trial is a research study meant to help improve current
treatments or obtain information on new treatments for patients with cancer.
When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
One of the following types of surgery may be used to take out the
tumor: If the cancer has spread and cannot be removed, the following
types of palliative surgery may be
done to relieve symptoms and improve quality of life: Radiation
therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Combination chemotherapy is treatment using more than one anticancer drug. See Drugs Approved for Pancreatic Cancer for more information. Chemoradiation therapy combines chemotherapy and radiation therapy to increase the effects of both. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Tyrosine kinase inhibitors (TKIs) are targeted therapy drugs that block signals needed for tumors to grow.
Erlotinib is a type of TKI used to treat pancreatic cancer. See Drugs Approved for Pancreatic Cancer for more information. Pain can occur when the tumor presses on nerves or other organs
near the pancreas. When pain medicine is not enough, there are treatments that
act on nerves in the abdomen to
relieve the pain. The doctor may inject medicine into the area around affected
nerves or may cut the nerves to block the feeling of pain. Radiation therapy
with or without chemotherapy can also help relieve pain by shrinking the tumor.
See the PDQ summary on Cancer Pain for more information. Surgery to remove the pancreas may affect its ability to make pancreatic enzymes that help to
digest food. As a result, patients may have problems digesting food and
absorbing nutrients into the body. To prevent malnutrition, the doctor may prescribe medicines
that replace these enzymes. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of resectable or borderline resectable pancreatic cancer may include the
following: Surgery to remove the tumor may include Whipple procedure, total pancreatectomy, or distal pancreatectomy. Palliative therapy can be started at any stage of disease. See the Palliative Therapy section for information about treatments that may improve quality of life or relieve symptoms in patients with pancreatic cancer. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of pancreatic cancer that is locally advanced may include the following: Palliative therapy can be started at any stage of disease. See the Palliative Therapy section for information about treatments that may improve quality of life or relieve symptoms in patients with pancreatic cancer. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of pancreatic cancer that has metastasized or recurred may include the following: Palliative therapy can be started at any stage of disease. See the Palliative Therapy section for information about treatments that may improve quality of life or relieve symptoms in patients with pancreatic cancer. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Palliative therapy can improve the patient's quality of life by controlling the symptoms and complications of pancreatic cancer. Palliative therapy for pancreatic cancer includes the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about pancreatic cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of adult pancreatic cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Pancreatic Cancer Treatment (Adult). Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/pancreatic/patient/pancreatic-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389396] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Pancreatic Cancer Treatment (Adult) (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | Who is at risk for Pancreatic Cancer? ? | Smoking and health history can affect the risk of pancreatic cancer. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesnt mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk factors for pancreatic cancer include the following: - Smoking. - Being very overweight. - Having a personal history of diabetes or chronic pancreatitis. - Having a family history of pancreatic cancer or pancreatitis. - Having certain hereditary conditions, such as: - Multiple endocrine neoplasia type 1 (MEN1) syndrome. - Hereditary nonpolyposis colon cancer (HNPCC; Lynch syndrome). - von Hippel-Lindau syndrome. - Peutz-Jeghers syndrome. - Hereditary breast and ovarian cancer syndrome. - Familial atypical multiple mole melanoma (FAMMM) syndrome. |
The pancreas is a
gland about 6 inches long that is
shaped like a thin pear lying on its side. The wider end of the pancreas is
called the head, the middle section is called the body, and the narrow end is
called the tail. The pancreas lies between the stomach and the spine.EnlargeAnatomy of the pancreas. The pancreas has three areas: head, body, and tail. It is found in the abdomen near the stomach, intestines, and other organs. The pancreas has two main jobs in the body: The digestive juices are made by exocrine pancreas cells and
the hormones are made by endocrine pancreas cells. About 95% of pancreatic
cancers begin in exocrine
cells. This summary is about exocrine pancreatic cancer.
For information on endocrine pancreatic cancer, see the PDQ summary on Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) Treatment. For information on pancreatic cancer in children, see the PDQ summary on Childhood Pancreatic Cancer Treatment. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk
factors for pancreatic cancer include the following: Pancreatic cancer may not cause early signs or symptoms. Signs and symptoms may be caused by pancreatic cancer or by other conditions. Check with your doctor if you have any of the following: Pancreatic cancer is difficult to detect and diagnose for the
following reasons: Pancreatic cancer is usually diagnosed with tests and procedures
that make pictures of the pancreas and the area around it. The process used
to find out if cancer cells have spread within and around the pancreas is
called staging. Tests and procedures
to detect, diagnose, and stage pancreatic cancer are usually done at the same
time. In order to plan treatment, it is important to know the stage of
the disease and whether or not the pancreatic cancer can be removed by
surgery. The following tests and
procedures may be used: The prognosis and treatment options depend on the following: Pancreatic cancer can be controlled only if it is found before it
has spread, when it can be completely removed by surgery. If the cancer has spread,
palliative treatment can improve the patient's
quality of life by controlling the
symptoms and complications of this disease. The process used to find out if cancer has spread within the pancreas or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage of the disease in order to plan treatment. The results of some of the tests used to diagnose pancreatic cancer are often also used to stage the disease. See the General Information section for more information. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if pancreatic cancer spreads to the liver, the cancer cells in the liver are actually pancreatic cancer cells. The disease is metastatic pancreatic cancer, not liver cancer. In stage 0, abnormal cells are found in the lining of the pancreas. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is also called carcinoma in situ. In stage I, cancer has formed and is
found in the pancreas only. Stage I is divided into
stages IA and IB, depending on the size of the tumor. Stage II is divided into
stages IIA and IIB, depending on the size of the tumor and where the
cancer has spread. In stage III, the tumor is any size and cancer has spread to: In stage IV, the tumor is any size and cancer has spread to other parts of the body, such as the liver, lung, or peritoneal cavity (the body cavity that contains most of the organs in the abdomen). Resectable pancreatic cancer can be removed by surgery because it has not grown into important blood vessels near the tumor. Borderline resectable pancreatic cancer has grown into a major blood vessel or nearby tissue or organs. It may be possible to remove the tumor, but there is a high risk that all of the cancer cells will not be removed with surgery. Locally advanced pancreatic cancer has grown into or close to nearby lymph nodes or blood vessels, so surgery cannot completely remove the cancer. Metastatic pancreatic cancer has spread to other organs, so surgery cannot completely remove the cancer. Recurrent pancreatic
cancer has recurred
(come back) after it has been treated. The cancer may come
back in the pancreas or in other
parts of the body. Different types of treatment are available for patients with
pancreatic cancer. Some treatments are
standard (the currently used treatment), and some are being tested in
clinical trials. A
treatment clinical trial is a research study meant to help improve current
treatments or obtain information on new treatments for patients with cancer.
When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
One of the following types of surgery may be used to take out the
tumor: If the cancer has spread and cannot be removed, the following
types of palliative surgery may be
done to relieve symptoms and improve quality of life: Radiation
therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Combination chemotherapy is treatment using more than one anticancer drug. See Drugs Approved for Pancreatic Cancer for more information. Chemoradiation therapy combines chemotherapy and radiation therapy to increase the effects of both. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Tyrosine kinase inhibitors (TKIs) are targeted therapy drugs that block signals needed for tumors to grow.
Erlotinib is a type of TKI used to treat pancreatic cancer. See Drugs Approved for Pancreatic Cancer for more information. Pain can occur when the tumor presses on nerves or other organs
near the pancreas. When pain medicine is not enough, there are treatments that
act on nerves in the abdomen to
relieve the pain. The doctor may inject medicine into the area around affected
nerves or may cut the nerves to block the feeling of pain. Radiation therapy
with or without chemotherapy can also help relieve pain by shrinking the tumor.
See the PDQ summary on Cancer Pain for more information. Surgery to remove the pancreas may affect its ability to make pancreatic enzymes that help to
digest food. As a result, patients may have problems digesting food and
absorbing nutrients into the body. To prevent malnutrition, the doctor may prescribe medicines
that replace these enzymes. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of resectable or borderline resectable pancreatic cancer may include the
following: Surgery to remove the tumor may include Whipple procedure, total pancreatectomy, or distal pancreatectomy. Palliative therapy can be started at any stage of disease. See the Palliative Therapy section for information about treatments that may improve quality of life or relieve symptoms in patients with pancreatic cancer. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of pancreatic cancer that is locally advanced may include the following: Palliative therapy can be started at any stage of disease. See the Palliative Therapy section for information about treatments that may improve quality of life or relieve symptoms in patients with pancreatic cancer. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of pancreatic cancer that has metastasized or recurred may include the following: Palliative therapy can be started at any stage of disease. See the Palliative Therapy section for information about treatments that may improve quality of life or relieve symptoms in patients with pancreatic cancer. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Palliative therapy can improve the patient's quality of life by controlling the symptoms and complications of pancreatic cancer. Palliative therapy for pancreatic cancer includes the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about pancreatic cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of adult pancreatic cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Pancreatic Cancer Treatment (Adult). Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/pancreatic/patient/pancreatic-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389396] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Pancreatic Cancer Treatment (Adult) (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | What are the symptoms of Pancreatic Cancer ? | Signs and symptoms of pancreatic cancer include jaundice, pain, and weight loss.
Pancreatic cancer may not cause early signs or symptoms. Signs and symptoms may be caused by pancreatic cancer or by other conditions. Check with your doctor if you have any of the following: - Jaundice (yellowing of the skin and whites of the eyes). - Light-colored stools. - Dark urine. - Pain in the upper or middle abdomen and back. - Weight loss for no known reason. - Loss of appetite. - Feeling very tired.
Pancreatic cancer is difficult to detect (find) and diagnose early.
Pancreatic cancer is difficult to detect and diagnose for the following reasons: - There arent any noticeable signs or symptoms in the early stages of pancreatic cancer. - The signs and symptoms of pancreatic cancer, when present, are like the signs and symptoms of many other illnesses. - The pancreas is hidden behind other organs such as the stomach, small intestine, liver, gallbladder, spleen, and bile ducts. |
The pancreas is a
gland about 6 inches long that is
shaped like a thin pear lying on its side. The wider end of the pancreas is
called the head, the middle section is called the body, and the narrow end is
called the tail. The pancreas lies between the stomach and the spine.EnlargeAnatomy of the pancreas. The pancreas has three areas: head, body, and tail. It is found in the abdomen near the stomach, intestines, and other organs. The pancreas has two main jobs in the body: The digestive juices are made by exocrine pancreas cells and
the hormones are made by endocrine pancreas cells. About 95% of pancreatic
cancers begin in exocrine
cells. This summary is about exocrine pancreatic cancer.
For information on endocrine pancreatic cancer, see the PDQ summary on Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) Treatment. For information on pancreatic cancer in children, see the PDQ summary on Childhood Pancreatic Cancer Treatment. Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Risk
factors for pancreatic cancer include the following: Pancreatic cancer may not cause early signs or symptoms. Signs and symptoms may be caused by pancreatic cancer or by other conditions. Check with your doctor if you have any of the following: Pancreatic cancer is difficult to detect and diagnose for the
following reasons: Pancreatic cancer is usually diagnosed with tests and procedures
that make pictures of the pancreas and the area around it. The process used
to find out if cancer cells have spread within and around the pancreas is
called staging. Tests and procedures
to detect, diagnose, and stage pancreatic cancer are usually done at the same
time. In order to plan treatment, it is important to know the stage of
the disease and whether or not the pancreatic cancer can be removed by
surgery. The following tests and
procedures may be used: The prognosis and treatment options depend on the following: Pancreatic cancer can be controlled only if it is found before it
has spread, when it can be completely removed by surgery. If the cancer has spread,
palliative treatment can improve the patient's
quality of life by controlling the
symptoms and complications of this disease. The process used to find out if cancer has spread within the pancreas or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage of the disease in order to plan treatment. The results of some of the tests used to diagnose pancreatic cancer are often also used to stage the disease. See the General Information section for more information. Cancer can spread through tissue, the lymph system, and the blood: When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood. The metastatic tumor is the same type of cancer as the primary tumor. For example, if pancreatic cancer spreads to the liver, the cancer cells in the liver are actually pancreatic cancer cells. The disease is metastatic pancreatic cancer, not liver cancer. In stage 0, abnormal cells are found in the lining of the pancreas. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is also called carcinoma in situ. In stage I, cancer has formed and is
found in the pancreas only. Stage I is divided into
stages IA and IB, depending on the size of the tumor. Stage II is divided into
stages IIA and IIB, depending on the size of the tumor and where the
cancer has spread. In stage III, the tumor is any size and cancer has spread to: In stage IV, the tumor is any size and cancer has spread to other parts of the body, such as the liver, lung, or peritoneal cavity (the body cavity that contains most of the organs in the abdomen). Resectable pancreatic cancer can be removed by surgery because it has not grown into important blood vessels near the tumor. Borderline resectable pancreatic cancer has grown into a major blood vessel or nearby tissue or organs. It may be possible to remove the tumor, but there is a high risk that all of the cancer cells will not be removed with surgery. Locally advanced pancreatic cancer has grown into or close to nearby lymph nodes or blood vessels, so surgery cannot completely remove the cancer. Metastatic pancreatic cancer has spread to other organs, so surgery cannot completely remove the cancer. Recurrent pancreatic
cancer has recurred
(come back) after it has been treated. The cancer may come
back in the pancreas or in other
parts of the body. Different types of treatment are available for patients with
pancreatic cancer. Some treatments are
standard (the currently used treatment), and some are being tested in
clinical trials. A
treatment clinical trial is a research study meant to help improve current
treatments or obtain information on new treatments for patients with cancer.
When clinical trials show that a new treatment is better than the
standard treatment, the new
treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
One of the following types of surgery may be used to take out the
tumor: If the cancer has spread and cannot be removed, the following
types of palliative surgery may be
done to relieve symptoms and improve quality of life: Radiation
therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). Combination chemotherapy is treatment using more than one anticancer drug. See Drugs Approved for Pancreatic Cancer for more information. Chemoradiation therapy combines chemotherapy and radiation therapy to increase the effects of both. Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells. Targeted therapies usually cause less harm to normal cells than chemotherapy or radiation therapy do. Tyrosine kinase inhibitors (TKIs) are targeted therapy drugs that block signals needed for tumors to grow.
Erlotinib is a type of TKI used to treat pancreatic cancer. See Drugs Approved for Pancreatic Cancer for more information. Pain can occur when the tumor presses on nerves or other organs
near the pancreas. When pain medicine is not enough, there are treatments that
act on nerves in the abdomen to
relieve the pain. The doctor may inject medicine into the area around affected
nerves or may cut the nerves to block the feeling of pain. Radiation therapy
with or without chemotherapy can also help relieve pain by shrinking the tumor.
See the PDQ summary on Cancer Pain for more information. Surgery to remove the pancreas may affect its ability to make pancreatic enzymes that help to
digest food. As a result, patients may have problems digesting food and
absorbing nutrients into the body. To prevent malnutrition, the doctor may prescribe medicines
that replace these enzymes. This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website. For information about side effects caused by treatment for cancer, see our Side Effects page. For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Many of today's standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment. Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward. Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment. Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website. Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of resectable or borderline resectable pancreatic cancer may include the
following: Surgery to remove the tumor may include Whipple procedure, total pancreatectomy, or distal pancreatectomy. Palliative therapy can be started at any stage of disease. See the Palliative Therapy section for information about treatments that may improve quality of life or relieve symptoms in patients with pancreatic cancer. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of pancreatic cancer that is locally advanced may include the following: Palliative therapy can be started at any stage of disease. See the Palliative Therapy section for information about treatments that may improve quality of life or relieve symptoms in patients with pancreatic cancer. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Treatment of pancreatic cancer that has metastasized or recurred may include the following: Palliative therapy can be started at any stage of disease. See the Palliative Therapy section for information about treatments that may improve quality of life or relieve symptoms in patients with pancreatic cancer. Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For information about the treatments listed below, see the Treatment Option Overview section. Palliative therapy can improve the patient's quality of life by controlling the symptoms and complications of pancreatic cancer. Palliative therapy for pancreatic cancer includes the following: Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available. For more information from the National Cancer Institute about pancreatic cancer, see the following: For general cancer information and other resources from the National Cancer Institute, see the following: Physician Data Query (PDQ) is the National Cancer Institute's (NCI's) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish. PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH. This PDQ cancer information summary has current information about the treatment of adult pancreatic cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary ("Updated") is the date of the most recent change.
The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.
A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become "standard." Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.
Clinical trials can be found online at NCI's website. For more information, call the Cancer Information Service (CIS), NCI's contact center, at 1-800-4-CANCER (1-800-422-6237).
PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”
The best way to cite this PDQ summary is: PDQ® Adult Treatment Editorial Board. PDQ Pancreatic Cancer Treatment (Adult). Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/pancreatic/patient/pancreatic-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389396] Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.
The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page. More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us. If you would like to reproduce some or all of this content, see Reuse of NCI Information for guidance about copyright and permissions. In the case of permitted digital reproduction, please credit the National Cancer Institute as the source and link to the original NCI product using the original product's title; e.g., “Pancreatic Cancer Treatment (Adult) (PDQ®)–Patient Version was originally published by the National Cancer Institute.” Want to use this content on your website or other digital platform? Our syndication services page shows you how. | How to diagnose Pancreatic Cancer ? | Tests that examine the pancreas are used to detect (find), diagnose, and stage pancreatic cancer. Pancreatic cancer is usually diagnosed with tests and procedures that make pictures of the pancreas and the area around it. The process used to find out if cancer cells have spread within and around the pancreas is called staging. Tests and procedures to detect, diagnose, and stage pancreatic cancer are usually done at the same time. In order to plan treatment, it is important to know the stage of the disease and whether or not the pancreatic cancer can be removed by surgery. The following tests and procedures may be used: - Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patients health habits and past illnesses and treatments will also be taken. - Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances, such as bilirubin, released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease. - Tumor marker test : A procedure in which a sample of blood, urine, or tissue is checked to measure the amounts of certain substances, such as CA 19-9, and carcinoembryonic antigen (CEA), made by organs, tissues, or tumor cells in the body. Certain substances are linked to specific types of cancer when found in increased levels in the body. These are called tumor markers. - MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI). - CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. A spiral or helical CT scan makes a series of very detailed pictures of areas inside the body using an x-ray machine that scans the body in a spiral path. - PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. A PET scan and CT scan may be done at the same time. This is called a PET-CT. - Abdominal ultrasound : An ultrasound exam used to make pictures of the inside of the abdomen. The ultrasound transducer is pressed against the skin of the abdomen and directs high-energy sound waves (ultrasound) into the abdomen. The sound waves bounce off the internal tissues and organs and make echoes. The transducer receives the echoes and sends them to a computer, which uses the echoes to make pictures called sonograms. The picture can be printed to be looked at later. - Endoscopic ultrasound (EUS): A procedure in which an endoscope is inserted into the body, usually through the mouth or rectum. An endoscope is a thin, tube-like instrument with a light and a lens for viewing. A probe at the end of the endoscope is used to bounce high-energy sound waves (ultrasound) off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. This procedure is also called endosonography. - Endoscopic retrograde cholangiopancreatography (ERCP): A procedure used to x-ray the ducts (tubes) that carry bile from the liver to the gallbladder and from the gallbladder to the small intestine. Sometimes pancreatic cancer causes these ducts to narrow and block or slow the flow of bile, causing jaundice. An endoscope (a thin, lighted tube) is passed through the mouth, esophagus, and stomach into the first part of the small intestine. A catheter (a smaller tube) is then inserted through the endoscope into the pancreatic ducts. A dye is injected through the catheter into the ducts and an x-ray is taken. If the ducts are blocked by a tumor, a fine tube may be inserted into the duct to unblock it. This tube (or stent) may be left in place to keep the duct open. Tissue samples may also be taken. - Percutaneous transhepatic cholangiography (PTC): A procedure used to x-ray the liver and bile ducts. A thin needle is inserted through the skin below the ribs and into the liver. Dye is injected into the liver or bile ducts and an x-ray is taken. If a blockage is found, a thin, flexible tube called a stent is sometimes left in the liver to drain bile into the small intestine or a collection bag outside the body. This test is done only if ERCP cannot be done. - Laparoscopy : A surgical procedure to look at the organs inside the abdomen to check for signs of disease. Small incisions (cuts) are made in the wall of the abdomen and a laparoscope (a thin, lighted tube) is inserted into one of the incisions. The laparoscope may have an ultrasound probe at the end in order to bounce high-energy sound waves off internal organs, such as the pancreas. This is called laparoscopic ultrasound. Other instruments may be inserted through the same or other incisions to perform procedures such as taking tissue samples from the pancreas or a sample of fluid from the abdomen to check for cancer. - Biopsy: The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. There are several ways to do a biopsy for pancreatic cancer. A fine needle or a core needle may be inserted into the pancreas during an x-ray or ultrasound to remove cells. Tissue may also be removed during a laparoscopy. |