Number
int64
1
7.61k
Text
stringlengths
2
3.11k
101
From the technology perspective, speech recognition has a long history with several waves of major innovations. Most recently, the field has benefited from advances in deep learning and big data. The advances are evidenced not only by the surge of academic papers published in the field, but more importantly by the worldwide industry adoption of a variety of deep learning methods in designing and deploying speech recognition systems.
102
The key areas of growth were: vocabulary size, speaker independence, and processing speed.
103
Raj Reddy was the first person to take on continuous speech recognition as a graduate student at Stanford University in the late 1960s. Previous systems required users to pause after each word. Reddy's system issued spoken commands for playing chess.
104
Around this time Soviet researchers invented the dynamic time warping algorithm and used it to create a recognizer capable of operating on a 200-word vocabulary. DTW processed speech by dividing it into short frames, e.g. 10ms segments, and processing each frame as a single unit. Although DTW would be superseded by later algorithms, the technique carried on. Achieving speaker independence remained unsolved at this time period.
105
During the late 1960s Leonard Baum developed the mathematics of Markov chains at the Institute for Defense Analysis. A decade later, at CMU, Raj Reddy's students James Baker and Janet M. Baker began using the hidden Markov model for speech recognition. James Baker had learned about HMMs from a summer job at the Institute of Defense Analysis during his undergraduate education. The use of HMMs allowed researchers to combine different sources of knowledge, such as acoustics, language, and syntax, in a unified probabilistic model.
106
The 1980s also saw the introduction of the n-gram language model.
107
Much of the progress in the field is owed to the rapidly increasing capabilities of computers. At the end of the DARPA program in 1976, the best computer available to researchers was the PDP-10 with 4 MB ram. It could take up to 100 minutes to decode just 30 seconds of speech.
108
Two practical products were:
109
By this point, the vocabulary of the typical commercial speech recognition system was larger than the average human vocabulary. Raj Reddy's former student, Xuedong Huang, developed the Sphinx-II system at CMU. The Sphinx-II system was the first to do speaker-independent, large vocabulary, continuous speech recognition and it had the best performance in DARPA's 1992 evaluation. Handling continuous speech with a large vocabulary was a major milestone in the history of speech recognition. Huang went on to found the speech recognition group at Microsoft in 1993. Raj Reddy's student Kai-Fu Lee joined Apple where, in 1992, he helped develop a speech interface prototype for the Apple computer known as Casper.
110
Lernout & Hauspie, a Belgium-based speech recognition company, acquired several other companies, including Kurzweil Applied Intelligence in 1997 and Dragon Systems in 2000. The L&H speech technology was used in the Windows XP operating system. L&H was an industry leader until an accounting scandal brought an end to the company in 2001. The speech technology from L&H was bought by ScanSoft which became Nuance in 2005. Apple originally licensed software from Nuance to provide speech recognition capability to its digital assistant Siri.
111
In the 2000s DARPA sponsored two speech recognition programs: Effective Affordable Reusable Speech-to-Text in 2002 and Global Autonomous Language Exploitation . Four teams participated in the EARS program: IBM, a team led by BBN with LIMSI and Univ. of Pittsburgh, Cambridge University, and a team composed of ICSI, SRI and University of Washington. EARS funded the collection of the Switchboard telephone speech corpus containing 260 hours of recorded conversations from over 500 speakers. The GALE program focused on Arabic and Mandarin broadcast news speech. Google's first effort at speech recognition came in 2007 after hiring some researchers from Nuance. The first product was GOOG-411, a telephone based directory service. The recordings from GOOG-411 produced valuable data that helped Google improve their recognition systems. Google Voice Search is now supported in over 30 languages.
112
In the United States, the National Security Agency has made use of a type of speech recognition for keyword spotting since at least 2006. This technology allows analysts to search through large volumes of recorded conversations and isolate mentions of keywords. Recordings can be indexed and analysts can run queries over the database to find conversations of interest. Some government research programs focused on intelligence applications of speech recognition, e.g. DARPA's EARS's program and IARPA's Babel program.
113
By early 2010s speech recognition, also called voice recognition was clearly differentiated from speaker recognition, and speaker independence was considered a major breakthrough. Until then, systems required a "training" period. A 1987 ad for a doll had carried the tagline "Finally, the doll that understands you." – despite the fact that it was described as "which children could train to respond to their voice".
114
In 2017, Microsoft researchers reached a historical human parity milestone of transcribing conversational telephony speech on the widely benchmarked Switchboard task. Multiple deep learning models were used to optimize speech recognition accuracy. The speech recognition word error rate was reported to be as low as 4 professional human transcribers working together on the same benchmark, which was funded by IBM Watson speech team on the same task.
115
Both acoustic modeling and language modeling are important parts of modern statistically based speech recognition algorithms. Hidden Markov models are widely used in many systems. Language modeling is also used in many other natural language processing applications such as document classification or statistical machine translation.
116
Modern general-purpose speech recognition systems are based on hidden Markov models. These are statistical models that output a sequence of symbols or quantities. HMMs are used in speech recognition because a speech signal can be viewed as a piecewise stationary signal or a short-time stationary signal. In a short time scale , speech can be approximated as a stationary process. Speech can be thought of as a Markov model for many stochastic purposes.
117
Another reason why HMMs are popular is that they can be trained automatically and are simple and computationally feasible to use. In speech recognition, the hidden Markov model would output a sequence of n-dimensional real-valued vectors , outputting one of these every 10 milliseconds. The vectors would consist of cepstral coefficients, which are obtained by taking a Fourier transform of a short time window of speech and decorrelating the spectrum using a cosine transform, then taking the first coefficients. The hidden Markov model will tend to have in each state a statistical distribution that is a mixture of diagonal covariance Gaussians, which will give a likelihood for each observed vector. Each word, or , each phoneme, will have a different output distribution; a hidden Markov model for a sequence of words or phonemes is made by concatenating the individual trained hidden Markov models for the separate words and phonemes.
118
Described above are the core elements of the most common, HMM-based approach to speech recognition. Modern speech recognition systems use various combinations of a number of standard techniques in order to improve results over the basic approach described above. A typical large-vocabulary system would need context dependency for the phonemes ; it would use cepstral normalization to normalize for a different speaker and recording conditions; for further speaker normalization, it might use vocal tract length normalization for male-female normalization and maximum likelihood linear regression for more general speaker adaptation. The features would have so-called delta and delta-delta coefficients to capture speech dynamics and in addition, might use heteroscedastic linear discriminant analysis ; or might skip the delta and delta-delta coefficients and use splicing and an LDA-based projection followed perhaps by heteroscedastic linear discriminant analysis or a global semi-tied co variance transform . Many systems use so-called discriminative training techniques that dispense with a purely statistical approach to HMM parameter estimation and instead optimize some classification-related measure of the training data. Examples are maximum mutual information , minimum classification error , and minimum phone error .
119
Decoding of the speech would probably use the Viterbi algorithm to find the best path, and here there is a choice between dynamically creating a combination hidden Markov model, which includes both the acoustic and language model information and combining it statically beforehand .
120
A possible improvement to decoding is to keep a set of good candidates instead of just keeping the best candidate, and to use a better scoring function to rate these good candidates so that we may pick the best one according to this refined score. The set of candidates can be kept either as a list or as a subset of the models . Re scoring is usually done by trying to minimize the Bayes risk : Instead of taking the source sentence with maximal probability, we try to take the sentence that minimizes the expectancy of a given loss function with regards to all possible transcriptions . The loss function is usually the Levenshtein distance, though it can be different distances for specific tasks; the set of possible transcriptions is, of course, pruned to maintain tractability. Efficient algorithms have been devised to re score lattices represented as weighted finite state transducers with edit distances represented themselves as a finite state transducer verifying certain assumptions.
121
Dynamic time warping is an approach that was historically used for speech recognition but has now largely been displaced by the more successful HMM-based approach.
122
Dynamic time warping is an algorithm for measuring similarity between two sequences that may vary in time or speed. For instance, similarities in walking patterns would be detected, even if in one video the person was walking slowly and if in another he or she were walking more quickly, or even if there were accelerations and deceleration during the course of one observation. DTW has been applied to video, audio, and graphics – indeed, any data that can be turned into a linear representation can be analyzed with DTW.
123
A well-known application has been automatic speech recognition, to cope with different speaking speeds. In general, it is a method that allows a computer to find an optimal match between two given sequences with certain restrictions. That is, the sequences are "warped" non-linearly to match each other. This sequence alignment method is often used in the context of hidden Markov models.
124
Neural networks emerged as an attractive acoustic modeling approach in ASR in the late 1980s. Since then, neural networks have been used in many aspects of speech recognition such as phoneme classification, phoneme classification through multi-objective evolutionary algorithms, isolated word recognition, audiovisual speech recognition, audiovisual speaker recognition and speaker adaptation.
125
Neural networks make fewer explicit assumptions about feature statistical properties than HMMs and have several qualities making them attractive recognition models for speech recognition. When used to estimate the probabilities of a speech feature segment, neural networks allow discriminative training in a natural and efficient manner. However, in spite of their effectiveness in classifying short-time units such as individual phonemes and isolated words, early neural networks were rarely successful for continuous recognition tasks because of their limited ability to model temporal dependencies.
126
One approach to this limitation was to use neural networks as a pre-processing, feature transformation or dimensionality reduction, step prior to HMM based recognition. However, more recently, LSTM and related recurrent neural networks , Time Delay Neural Networks, and transformers have demonstrated improved performance in this area.
127
Deep neural networks and denoising autoencoders are also under investigation. A deep feedforward neural network is an artificial neural network with multiple hidden layers of units between the input and output layers. Similar to shallow neural networks, DNNs can model complex non-linear relationships. DNN architectures generate compositional models, where extra layers enable composition of features from lower layers, giving a huge learning capacity and thus the potential of modeling complex patterns of speech data.
128
Since 2014, there has been much research interest in "end-to-end" ASR. Traditional phonetic-based approaches required separate components and training for the pronunciation, acoustic, and language model. End-to-end models jointly learn all the components of the speech recognizer. This is valuable since it simplifies the training process and deployment process. For example, a n-gram language model is required for all HMM-based systems, and a typical n-gram language model often takes several gigabytes in memory making them impractical to deploy on mobile devices. Consequently, modern commercial ASR systems from Google and Apple are deployed on the cloud and require a network connection as opposed to the device locally.
129
The first attempt at end-to-end ASR was with Connectionist Temporal Classification -based systems introduced by Alex Graves of Google DeepMind and Navdeep Jaitly of the University of Toronto in 2014. The model consisted of recurrent neural networks and a CTC layer. Jointly, the RNN-CTC model learns the pronunciation and acoustic model together, however it is incapable of learning the language due to conditional independence assumptions similar to a HMM. Consequently, CTC models can directly learn to map speech acoustics to English characters, but the models make many common spelling mistakes and must rely on a separate language model to clean up the transcripts. Later, Baidu expanded on the work with extremely large datasets and demonstrated some commercial success in Chinese Mandarin and English. In 2016, University of Oxford presented LipNet, the first end-to-end sentence-level lipreading model, using spatiotemporal convolutions coupled with an RNN-CTC architecture, surpassing human-level performance in a restricted grammar dataset. A large-scale CNN-RNN-CTC architecture was presented in 2018 by Google DeepMind achieving 6 times better performance than human experts.
130
An alternative approach to CTC-based models are attention-based models. Attention-based ASR models were introduced simultaneously by Chan et al. of Carnegie Mellon University and Google Brain and Bahdanau et al. of the University of Montreal in 2016. The model named "Listen, Attend and Spell" , literally "listens" to the acoustic signal, pays "attention" to different parts of the signal and "spells" out the transcript one character at a time. Unlike CTC-based models, attention-based models do not have conditional-independence assumptions and can learn all the components of a speech recognizer including the pronunciation, acoustic and language model directly. This means, during deployment, there is no need to carry around a language model making it very practical for applications with limited memory. By the end of 2016, the attention-based models have seen considerable success including outperforming the CTC models . Various extensions have been proposed since the original LAS model. Latent Sequence Decompositions was proposed by Carnegie Mellon University, MIT and Google Brain to directly emit sub-word units which are more natural than English characters; University of Oxford and Google DeepMind extended LAS to "Watch, Listen, Attend and Spell" to handle lip reading surpassing human-level performance.
131
Typically a manual control input, for example by means of a finger control on the steering-wheel, enables the speech recognition system and this is signaled to the driver by an audio prompt. Following the audio prompt, the system has a "listening window" during which it may accept a speech input for recognition.
132
Simple voice commands may be used to initiate phone calls, select radio stations or play music from a compatible smartphone, MP3 player or music-loaded flash drive. Voice recognition capabilities vary between car make and model. Some of the most recent car models offer natural-language speech recognition in place of a fixed set of commands, allowing the driver to use full sentences and common phrases. With such systems there is, therefore, no need for the user to memorize a set of fixed command words.
133
Automatic pronunciation assessment is the use of speech recognition to verify the correctness of pronounced speech, as distinguished from manual assessment by an instructor or proctor. Also called speech verification, pronunciation evaluation, and pronunciation scoring, the main application of this technology is computer-aided pronunciation teaching when combined with computer-aided instruction for computer-assisted language learning , speech remediation, or accent reduction. Pronunciation assessment does not determine unknown speech but instead, knowing the expected word in advance, it attempts to verify the correctness of the learner's pronunciation and ideally their intelligibility to listeners, sometimes along with often inconsequential prosody such as intonation, pitch, tempo, rhythm, and stress. Pronunciation assessment is also used in reading tutoring, for example in products such as Microsoft Teams and from Amira Learning. Automatic pronunciation assessment can also be used to help diagnose and treat speech disorders such as apraxia.
134
Assessing authentic listener intelligibility is essential for avoiding inaccuracies from accent bias, especially in high-stakes assessments; from words with multiple correct pronunciations; and from phoneme coding errors in machine-readable pronunciation dictionaries. In 2022, researchers found that some newer speech to text systems, based on end-to-end reinforcement learning to map audio signals directly into words, produce word and phrase confidence scores very closely correlated with genuine listener intelligibility. In the Common European Framework of Reference for Languages assessment criteria for "overall phonological control", intelligibility outweighs formally correct pronunciation at all levels.
135
In the health care sector, speech recognition can be implemented in front-end or back-end of the medical documentation process. Front-end speech recognition is where the provider dictates into a speech-recognition engine, the recognized words are displayed as they are spoken, and the dictator is responsible for editing and signing off on the document. Back-end or deferred speech recognition is where the provider dictates into a digital dictation system, the voice is routed through a speech-recognition machine and the recognized draft document is routed along with the original voice file to the editor, where the draft is edited and report finalized. Deferred speech recognition is widely used in the industry currently.
136
One of the major issues relating to the use of speech recognition in healthcare is that the American Recovery and Reinvestment Act of 2009 provides for substantial financial benefits to physicians who utilize an EMR according to "Meaningful Use" standards. These standards require that a substantial amount of data be maintained by the EMR . The use of speech recognition is more naturally suited to the generation of narrative text, as part of a radiology/pathology interpretation, progress note or discharge summary: the ergonomic gains of using speech recognition to enter structured discrete data are relatively minimal for people who are sighted and who can operate a keyboard and mouse.
137
A more significant issue is that most EHRs have not been expressly tailored to take advantage of voice-recognition capabilities. A large part of the clinician's interaction with the EHR involves navigation through the user interface using menus, and tab/button clicks, and is heavily dependent on keyboard and mouse: voice-based navigation provides only modest ergonomic benefits. By contrast, many highly customized systems for radiology or pathology dictation implement voice "macros", where the use of certain phrases – e.g., "normal report", will automatically fill in a large number of default values and/or generate boilerplate, which will vary with the type of the exam – e.g., a chest X-ray vs. a gastrointestinal contrast series for a radiology system.
138
Prolonged use of speech recognition software in conjunction with word processors has shown benefits to short-term-memory restrengthening in brain AVM patients who have been treated with resection. Further research needs to be conducted to determine cognitive benefits for individuals whose AVMs have been treated using radiologic techniques.
139
Substantial efforts have been devoted in the last decade to the test and evaluation of speech recognition in fighter aircraft. Of particular note have been the US program in speech recognition for the Advanced Fighter Technology Integration /F-16 aircraft , the program in France for Mirage aircraft, and other programs in the UK dealing with a variety of aircraft platforms. In these programs, speech recognizers have been operated successfully in fighter aircraft, with applications including setting radio frequencies, commanding an autopilot system, setting steer-point coordinates and weapons release parameters, and controlling flight display.
140
Working with Swedish pilots flying in the JAS-39 Gripen cockpit, Englund found recognition deteriorated with increasing g-loads. The report also concluded that adaptation greatly improved the results in all cases and that the introduction of models for breathing was shown to improve recognition scores significantly. Contrary to what might have been expected, no effects of the broken English of the speakers were found. It was evident that spontaneous speech caused problems for the recognizer, as might have been expected. A restricted vocabulary, and above all, a proper syntax, could thus be expected to improve recognition accuracy substantially.
141
The Eurofighter Typhoon, currently in service with the UK RAF, employs a speaker-dependent system, requiring each pilot to create a template. The system is not used for any safety-critical or weapon-critical tasks, such as weapon release or lowering of the undercarriage, but is used for a wide range of other cockpit functions. Voice commands are confirmed by visual and/or aural feedback. The system is seen as a major design feature in the reduction of pilot workload, and even allows the pilot to assign targets to his aircraft with two simple voice commands or to any of his wingmen with only five commands.
142
Speaker-independent systems are also being developed and are under test for the F35 Lightning II and the Alenia Aermacchi M-346 Master lead-in fighter trainer. These systems have produced word accuracy scores in excess of 98%.
143
The problems of achieving high recognition accuracy under stress and noise are particularly relevant in the helicopter environment as well as in the jet fighter environment. The acoustic noise problem is actually more severe in the helicopter environment, not only because of the high noise levels but also because the helicopter pilot, in general, does not wear a facemask, which would reduce acoustic noise in the microphone. Substantial test and evaluation programs have been carried out in the past decade in speech recognition systems applications in helicopters, notably by the U.S. Army Avionics Research and Development Activity and by the Royal Aerospace Establishment in the UK. Work in France has included speech recognition in the Puma helicopter. There has also been much useful work in Canada. Results have been encouraging, and voice applications have included: control of communication radios, setting of navigation systems, and control of an automated target handover system.
144
As in fighter applications, the overriding issue for voice in helicopters is the impact on pilot effectiveness. Encouraging results are reported for the AVRADA tests, although these represent only a feasibility demonstration in a test environment. Much remains to be done both in speech recognition and in overall speech technology in order to consistently achieve performance improvements in operational settings.
145
Training for air traffic controllers represents an excellent application for speech recognition systems. Many ATC training systems currently require a person to act as a "pseudo-pilot", engaging in a voice dialog with the trainee controller, which simulates the dialog that the controller would have to conduct with pilots in a real ATC situation. Speech recognition and synthesis techniques offer the potential to eliminate the need for a person to act as a pseudo-pilot, thus reducing training and support personnel. In theory, Air controller tasks are also characterized by highly structured speech as the primary output of the controller, hence reducing the difficulty of the speech recognition task should be possible. In practice, this is rarely the case. The FAA document 7110.65 details the phrases that should be used by air traffic controllers. While this document gives less than 150 examples of such phrases, the number of phrases supported by one of the simulation vendors speech recognition systems is in excess of 500,000.
146
The USAF, USMC, US Army, US Navy, and FAA as well as a number of international ATC training organizations such as the Royal Australian Air Force and Civil Aviation Authorities in Italy, Brazil, and Canada are currently using ATC simulators with speech recognition from a number of different vendors.
147
ASR is now commonplace in the field of telephony and is becoming more widespread in the field of computer gaming and simulation. In telephony systems, ASR is now being predominantly used in contact centers by integrating it with IVR systems. Despite the high level of integration with word processing in general personal computing, in the field of document production, ASR has not seen the expected increases in use.
148
The improvement of mobile processor speeds has made speech recognition practical in smartphones. Speech is used mostly as a part of a user interface, for creating predefined or custom speech commands.
149
People with disabilities can benefit from speech recognition programs. For individuals that are Deaf or Hard of Hearing, speech recognition software is used to automatically generate a closed-captioning of conversations such as discussions in conference rooms, classroom lectures, and/or religious services.
150
Students who are blind or have very low vision can benefit from using the technology to convey words and then hear the computer recite them, as well as use a computer by commanding with their voice, instead of having to look at the screen and keyboard.
151
Students who are physically disabled have a Repetitive strain injury/other injuries to the upper extremities can be relieved from having to worry about handwriting, typing, or working with scribe on school assignments by using speech-to-text programs. They can also utilize speech recognition technology to enjoy searching the Internet or using a computer at home without having to physically operate a mouse and keyboard.
152
Speech recognition can allow students with learning disabilities to become better writers. By saying the words aloud, they can increase the fluidity of their writing, and be alleviated of concerns regarding spelling, punctuation, and other mechanics of writing. Also, see Learning disability.
153
The use of voice recognition software, in conjunction with a digital audio recorder and a personal computer running word-processing software has proven to be positive for restoring damaged short-term memory capacity, in stroke and craniotomy individuals.
154
Speech recognition is also very useful for people who have difficulty using their hands, ranging from mild repetitive stress injuries to involve disabilities that preclude using conventional computer input devices. In fact, people who used the keyboard a lot and developed RSI became an urgent early market for speech recognition. Speech recognition is used in deaf telephony, such as voicemail to text, relay services, and captioned telephone. Individuals with learning disabilities who have problems with thought-to-paper communication can possibly benefit from the software but the technology is not bug proof. Also the whole idea of speak to text can be hard for intellectually disabled person's due to the fact that it is rare that anyone tries to learn the technology to teach the person with the disability.
155
This type of technology can help those with dyslexia but other disabilities are still in question. The effectiveness of the product is the problem that is hindering it from being effective. Although a kid may be able to say a word depending on how clear they say it the technology may think they are saying another word and input the wrong one. Giving them more work to fix, causing them to have to take more time with fixing the wrong word.
156
The performance of speech recognition systems is usually evaluated in terms of accuracy and speed. Accuracy is usually rated with word error rate , whereas speed is measured with the real time factor. Other measures of accuracy include Single Word Error Rate and Command Success Rate .
157
Speech recognition by machine is a very complex problem, however. Vocalizations vary in terms of accent, pronunciation, articulation, roughness, nasality, pitch, volume, and speed. Speech is distorted by a background noise and echoes, electrical characteristics. Accuracy of speech recognition may vary with the following:
158
As mentioned earlier in this article, the accuracy of speech recognition may vary depending on the following factors:
159
With discontinuous speech full sentences separated by silence are used, therefore it becomes easier to recognize the speech as well as with isolated speech. With continuous speech naturally spoken sentences are used, therefore it becomes harder to recognize the speech, different from both isolated and discontinuous speech.
160
Constraints are often represented by grammar.
161
Speech recognition is a multi-leveled pattern recognition task.
162
e.g. Known word pronunciations or legal word sequences, which can compensate for errors or uncertainties at a lower level;
163
For telephone speech the sampling rate is 8000 samples per second;
164
computed every 10 ms, with one 10 ms section called a frame;
165
Analysis of four-step neural network approaches can be explained by further information. Sound is produced by air vibration, which we register by ears, but machines by receivers. Basic sound creates a wave which has two descriptions: amplitude , and frequency . Accuracy can be computed with the help of word error rate . Word error rate can be calculated by aligning the recognized word and referenced word using dynamic string alignment. The problem may occur while computing the word error rate due to the difference between the sequence lengths of the recognized word and referenced word.
166
The formula to compute the word error rate is:
167
W E R = n {\displaystyle WER={ \over n}}
168
where s is the number of substitutions, d is the number of deletions, i is the number of insertions, and n is the number of word references.
169
While computing, the word recognition rate is used. The formula is:
170
where h is the number of correctly recognized words:
171
Speech recognition can become a means of attack, theft, or accidental operation. For example, activation words like "Alexa" spoken in an audio or video broadcast can cause devices in homes and offices to start listening for input inappropriately, or possibly take an unwanted action. Voice-controlled devices are also accessible to visitors to the building, or even those outside the building if they can be heard inside. Attackers may be able to gain access to personal information, like calendar, address book contents, private messages, and documents. They may also be able to impersonate the user to send messages or make online purchases.
172
Two attacks have been demonstrated that use artificial sounds. One transmits ultrasound and attempt to send commands without nearby people noticing. The other adds small, inaudible distortions to other speech or music that are specially crafted to confuse the specific speech recognition system into recognizing music as speech, or to make what sounds like one command to a human sound like a different command to the system.
173
Popular speech recognition conferences held each year or two include SpeechTEK and SpeechTEK Europe, ICASSP, Interspeech/Eurospeech, and the IEEE ASRU. Conferences in the field of natural language processing, such as ACL, NAACL, EMNLP, and HLT, are beginning to include papers on speech processing. Important journals include the IEEE Transactions on Speech and Audio Processing , Computer Speech and Language, and Speech Communication.
174
Books like "Fundamentals of Speech Recognition" by Lawrence Rabiner can be useful to acquire basic knowledge but may not be fully up to date . Another good source can be "Statistical Methods for Speech Recognition" by Frederick Jelinek and "Spoken Language Processing " by Xuedong Huang etc., "Computer Speech", by Manfred R. Schroeder, second edition published in 2004, and "Speech Processing: A Dynamic and Optimization-Oriented Approach" published in 2003 by Li Deng and Doug O'Shaughnessey. The updated textbook Speech and Language Processing by Jurafsky and Martin presents the basics and the state of the art for ASR. Speaker recognition also uses the same features, most of the same front-end processing, and classification techniques as is done in speech recognition. A comprehensive textbook, "Fundamentals of Speaker Recognition" is an in depth source for up to date details on the theory and practice. A good insight into the techniques used in the best modern systems can be gained by paying attention to government sponsored evaluations such as those organised by DARPA .
175
A good and accessible introduction to speech recognition technology and its history is provided by the general audience book "The Voice in the Machine. Building Computers That Understand Speech" by Roberto Pieraccini .
176
The most recent book on speech recognition is Automatic Speech Recognition: A Deep Learning Approach written by Microsoft researchers D. Yu and L. Deng and published near the end of 2014, with highly mathematically oriented technical detail on how deep learning methods are derived and implemented in modern speech recognition systems based on DNNs and related deep learning methods. A related book, published earlier in 2014, "Deep Learning: Methods and Applications" by L. Deng and D. Yu provides a less technical but more methodology-focused overview of DNN-based speech recognition during 2009–2014, placed within the more general context of deep learning applications including not only speech recognition but also image recognition, natural language processing, information retrieval, multimodal processing, and multitask learning.
177
In terms of freely available resources, Carnegie Mellon University's Sphinx toolkit is one place to start to both learn about speech recognition and to start experimenting. Another resource is the HTK book . For more recent and state-of-the-art techniques, Kaldi toolkit can be used. In 2017 Mozilla launched the open source project called Common Voice to gather big database of voices that would help build free speech recognition project DeepSpeech , using Google's open source platform TensorFlow. When Mozilla redirected funding away from the project in 2020, it was forked by its original developers as Coqui STT using the same open-source license.
178
Google Gboard supports speech recognition on all Android applications. It can be activated through the microphone icon.
179
The commercial cloud based speech recognition APIs are broadly available.
180
For more software resources, see List of speech recognition software.
181
Pattern recognition systems are commonly trained from labeled "training" data. When no labeled data are available, other algorithms can be used to discover previously unknown patterns. KDD and data mining have a larger focus on unsupervised methods and stronger connection to business use. Pattern recognition focuses more on the signal and also takes acquisition and signal processing into consideration. It originated in engineering, and the term is popular in the context of computer vision: a leading computer vision conference is named Conference on Computer Vision and Pattern Recognition.
182
In machine learning, pattern recognition is the assignment of a label to a given input value. In statistics, discriminant analysis was introduced for this same purpose in 1936. An example of pattern recognition is classification, which attempts to assign each input value to one of a given set of classes . Pattern recognition is a more general problem that encompasses other types of output as well. Other examples are regression, which assigns a real-valued output to each input; sequence labeling, which assigns a class to each member of a sequence of values ; and parsing, which assigns a parse tree to an input sentence, describing the syntactic structure of the sentence.
183
Pattern recognition algorithms generally aim to provide a reasonable answer for all possible inputs and to perform "most likely" matching of the inputs, taking into account their statistical variation. This is opposed to pattern matching algorithms, which look for exact matches in the input with pre-existing patterns. A common example of a pattern-matching algorithm is regular expression matching, which looks for patterns of a given sort in textual data and is included in the search capabilities of many text editors and word processors.
184
A modern definition of pattern recognition is:
185
Pattern recognition is generally categorized according to the type of learning procedure used to generate the output value. Supervised learning assumes that a set of training data has been provided, consisting of a set of instances that have been properly labeled by hand with the correct output. A learning procedure then generates a model that attempts to meet two sometimes conflicting objectives: Perform as well as possible on the training data, and generalize as well as possible to new data . Unsupervised learning, on the other hand, assumes training data that has not been hand-labeled, and attempts to find inherent patterns in the data that can then be used to determine the correct output value for new data instances. A combination of the two that has been explored is semi-supervised learning, which uses a combination of labeled and unlabeled data . In cases of unsupervised learning, there may be no training data at all.
186
Sometimes different terms are used to describe the corresponding supervised and unsupervised learning procedures for the same type of output. The unsupervised equivalent of classification is normally known as clustering, based on the common perception of the task as involving no training data to speak of, and of grouping the input data into clusters based on some inherent similarity measure , rather than assigning each input instance into one of a set of pre-defined classes. In some fields, the terminology is different. In community ecology, the term classification is used to refer to what is commonly known as "clustering".
187
The piece of input data for which an output value is generated is formally termed an instance. The instance is formally described by a vector of features, which together constitute a description of all known characteristics of the instance. These feature vectors can be seen as defining points in an appropriate multidimensional space, and methods for manipulating vectors in vector spaces can be correspondingly applied to them, such as computing the dot product or the angle between two vectors. Features typically are either categorical , ordinal , integer-valued or real-valued . Often, categorical and ordinal data are grouped together, and this is also the case for integer-valued and real-valued data. Many algorithms work only in terms of categorical data and require that real-valued or integer-valued data be discretized into groups .
188
Many common pattern recognition algorithms are probabilistic in nature, in that they use statistical inference to find the best label for a given instance. Unlike other algorithms, which simply output a "best" label, often probabilistic algorithms also output a probability of the instance being described by the given label. In addition, many probabilistic algorithms output a list of the N-best labels with associated probabilities, for some value of N, instead of simply a single best label. When the number of possible labels is fairly small , N may be set so that the probability of all possible labels is output. Probabilistic algorithms have many advantages over non-probabilistic algorithms:
189
Feature selection algorithms attempt to directly prune out redundant or irrelevant features. A general introduction to feature selection which summarizes approaches and challenges, has been given. The complexity of feature-selection is, because of its non-monotonous character, an optimization problem where given a total of n {\displaystyle n} features the powerset consisting of all 2 n − 1 {\displaystyle 2^{n}-1} subsets of features need to be explored. The Branch-and-Bound algorithm does reduce this complexity but is intractable for medium to large values of the number of available features n {\displaystyle n}
190
Techniques to transform the raw feature vectors are sometimes used prior to application of the pattern-matching algorithm. Feature extraction algorithms attempt to reduce a large-dimensionality feature vector into a smaller-dimensionality vector that is easier to work with and encodes less redundancy, using mathematical techniques such as principal components analysis . The distinction between feature selection and feature extraction is that the resulting features after feature extraction has taken place are of a different sort than the original features and may not easily be interpretable, while the features left after feature selection are simply a subset of the original features.
191
The problem of pattern recognition can be stated as follows: Given an unknown function g : X → Y {\displaystyle g:{\mathcal {X}}\rightarrow {\mathcal {Y}}} that maps input instances x ∈ X {\displaystyle {\boldsymbol {x}}\in {\mathcal {X}}} to output labels y ∈ Y {\displaystyle y\in {\mathcal {Y}}} , along with training data D = { , … , } {\displaystyle \mathbf {D} =\{,\dots ,\}} assumed to represent accurate examples of the mapping, produce a function h : X → Y {\displaystyle h:{\mathcal {X}}\rightarrow {\mathcal {Y}}} that approximates as closely as possible the correct mapping g {\displaystyle g} . . In order for this to be a well-defined problem, "approximates as closely as possible" needs to be defined rigorously. In decision theory, this is defined by specifying a loss function or cost function that assigns a specific value to "loss" resulting from producing an incorrect label. The goal then is to minimize the expected loss, with the expectation taken over the probability distribution of X {\displaystyle {\mathcal {X}}} . In practice, neither the distribution of X {\displaystyle {\mathcal {X}}} nor the ground truth function g : X → Y {\displaystyle g:{\mathcal {X}}\rightarrow {\mathcal {Y}}} are known exactly, but can be computed only empirically by collecting a large number of samples of X {\displaystyle {\mathcal {X}}} and hand-labeling them using the correct value of Y {\displaystyle {\mathcal {Y}}} . The particular loss function depends on the type of label being predicted. For example, in the case of classification, the simple zero-one loss function is often sufficient. This corresponds simply to assigning a loss of 1 to any incorrect labeling and implies that the optimal classifier minimizes the error rate on independent test data . The goal of the learning procedure is then to minimize the error rate on a "typical" test set.
192
For a probabilistic pattern recognizer, the problem is instead to estimate the probability of each possible output label given a particular input instance, i.e., to estimate a function of the form
193
where the feature vector input is x {\displaystyle {\boldsymbol {x}}} , and the function f is typically parameterized by some parameters θ {\displaystyle {\boldsymbol {\theta }}} . In a discriminative approach to the problem, f is estimated directly. In a generative approach, however, the inverse probability p {\displaystyle p} is instead estimated and combined with the prior probability p {\displaystyle p} using Bayes' rule, as follows:
194
When the labels are continuously distributed , the denominator involves integration rather than summation:
195
The value of θ {\displaystyle {\boldsymbol {\theta }}} is typically learned using maximum a posteriori estimation. This finds the best value that simultaneously meets two conflicting objects: To perform as well as possible on the training data and to find the simplest possible model. Essentially, this combines maximum likelihood estimation with a regularization procedure that favors simpler models over more complex models. In a Bayesian context, the regularization procedure can be viewed as placing a prior probability p {\displaystyle p} on different values of θ {\displaystyle {\boldsymbol {\theta }}} . Mathematically:
196
where θ ∗ {\displaystyle {\boldsymbol {\theta }}^{*}} is the value used for θ {\displaystyle {\boldsymbol {\theta }}} in the subsequent evaluation procedure, and p {\displaystyle p} , the posterior probability of θ {\displaystyle {\boldsymbol {\theta }}} , is given by
197
In the Bayesian approach to this problem, instead of choosing a single parameter vector θ ∗ {\displaystyle {\boldsymbol {\theta }}^{*}} , the probability of a given label for a new instance x {\displaystyle {\boldsymbol {x}}} is computed by integrating over all possible values of θ {\displaystyle {\boldsymbol {\theta }}} , weighted according to the posterior probability:
198
The first pattern classifier – the linear discriminant presented by Fisher – was developed in the frequentist tradition. The frequentist approach entails that the model parameters are considered unknown, but objective. The parameters are then computed from the collected data. For the linear discriminant, these parameters are precisely the mean vectors and the covariance matrix. Also the probability of each class p {\displaystyle p} is estimated from the collected dataset. Note that the usage of 'Bayes rule' in a pattern classifier does not make the classification approach Bayesian.
199
Bayesian statistics has its origin in Greek philosophy where a distinction was already made between the 'a priori' and the 'a posteriori' knowledge. Later Kant defined his distinction between what is a priori known – before observation – and the empirical knowledge gained from observations. In a Bayesian pattern classifier, the class probabilities p {\displaystyle p} can be chosen by the user, which are then a priori. Moreover, experience quantified as a priori parameter values can be weighted with empirical observations – using e.g., the Beta- and Dirichlet-distributions. The Bayesian approach facilitates a seamless intermixing between expert knowledge in the form of subjective probabilities, and objective observations.
200
Probabilistic pattern classifiers can be used according to a frequentist or a Bayesian approach.