message
stringlengths
2
39.6k
message_type
stringclasses
2 values
message_id
int64
0
1
conversation_id
int64
219
108k
cluster
float64
11
11
__index_level_0__
int64
438
217k
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. A: Information Search problem The posting list is a list in which there is a correspondence between the search term and the appearing document ID. For example * Hokkaido: 1, 2, 4, 9 * Sightseeing: 1, 3, 4, 7 And so on. From the above posting list, if you search for and, the document with ID 1, 4 will be hit, and if you search for or, ID 1, 2, 3, 4, 7, 9 will be hit. Here, and search means "listing elements contained in either list", or search means "listing elements contained in at least one of the lists". Since the posting list is given, output the results of and search and or search respectively. Input format n m a_1 a_2 $ \ ldots $ a_n b_1 b_2 $ \ ldots $ b_m All inputs consist of integers. The first line gives the lengths n and m of the two posting lists to search, separated by spaces. The second and third lines are given the IDs contained in their respective posting lists, separated by blanks. Constraint * 1 \ leq n, m \ leq 2 \ times 10 ^ 5 * a_i <a_j (i <j) * b_i <b_j (i <j) * 1 \ leq a_i, b_i \ leq 10 ^ 9 Output format Let A be the number of hits in the and search, and B be the number of hits in the or search. Print on the first line in the order A B, separated by blanks. Output the IDs hit by and search on the following line A in ascending order. Output the IDs hit by or search on the following B line in ascending order. Input example 1 4 4 1 2 4 9 1 3 4 7 Output example 1 2 6 1 Four 1 2 3 Four 7 9 Input example 2 4 4 1 3 5 7 2 4 6 8 Output example 2 0 8 1 2 3 Four Five 6 7 8 Input example 3 3 5 one two Three 1 2 3 4 5 Output example 3 3 5 1 2 3 1 2 3 Four Five Example Input 4 4 1 2 4 9 1 3 4 7 Output 2 6 1 4 1 2 3 4 7 9 Submitted Solution: ``` n,m = map(int,input().split()) a = set(map(int,input().split())) b = set(map(int,input().split())) i = sorted(a&b) u = sorted(a|b) print(len(i),len(u)) for x in i: print(x) for x in u: print(x) ```
instruction
0
93,511
11
187,022
Yes
output
1
93,511
11
187,023
Provide tags and a correct Python 3 solution for this coding contest problem. You are given a special jigsaw puzzle consisting of n⋅ m identical pieces. Every piece has three tabs and one blank, as pictured below. <image> The jigsaw puzzle is considered solved if the following conditions hold: 1. The pieces are arranged into a grid with n rows and m columns. 2. For any two pieces that share an edge in the grid, a tab of one piece fits perfectly into a blank of the other piece. Through rotation and translation of the pieces, determine if it is possible to solve the jigsaw puzzle. Input The test consists of multiple test cases. The first line contains a single integer t (1≤ t≤ 1000) — the number of test cases. Next t lines contain descriptions of test cases. Each test case contains two integers n and m (1 ≤ n,m ≤ 10^5). Output For each test case output a single line containing "YES" if it is possible to solve the jigsaw puzzle, or "NO" otherwise. You can print each letter in any case (upper or lower). Example Input 3 1 3 100000 100000 2 2 Output YES NO YES Note For the first test case, this is an example solution: <image> For the second test case, we can show that no solution exists. For the third test case, this is an example solution: <image>
instruction
0
93,660
11
187,320
Tags: math Correct Solution: ``` from math import * from sys import stdin,stdout # input = stdin.readline for __ in range(int(input())): n,m=map(int,input().split()) if(min(n,m)<=1 or (n==2 and m==2)): print("YES") else: print("NO") ```
output
1
93,660
11
187,321
Provide tags and a correct Python 3 solution for this coding contest problem. You are given a special jigsaw puzzle consisting of n⋅ m identical pieces. Every piece has three tabs and one blank, as pictured below. <image> The jigsaw puzzle is considered solved if the following conditions hold: 1. The pieces are arranged into a grid with n rows and m columns. 2. For any two pieces that share an edge in the grid, a tab of one piece fits perfectly into a blank of the other piece. Through rotation and translation of the pieces, determine if it is possible to solve the jigsaw puzzle. Input The test consists of multiple test cases. The first line contains a single integer t (1≤ t≤ 1000) — the number of test cases. Next t lines contain descriptions of test cases. Each test case contains two integers n and m (1 ≤ n,m ≤ 10^5). Output For each test case output a single line containing "YES" if it is possible to solve the jigsaw puzzle, or "NO" otherwise. You can print each letter in any case (upper or lower). Example Input 3 1 3 100000 100000 2 2 Output YES NO YES Note For the first test case, this is an example solution: <image> For the second test case, we can show that no solution exists. For the third test case, this is an example solution: <image>
instruction
0
93,661
11
187,322
Tags: math Correct Solution: ``` for t in range(int(input())): a,b = map(int,input().split()) if a==b==2: print('Yes') elif a == 1 or b == 1: print('Yes') else: print('No') ```
output
1
93,661
11
187,323
Provide tags and a correct Python 3 solution for this coding contest problem. You are given a special jigsaw puzzle consisting of n⋅ m identical pieces. Every piece has three tabs and one blank, as pictured below. <image> The jigsaw puzzle is considered solved if the following conditions hold: 1. The pieces are arranged into a grid with n rows and m columns. 2. For any two pieces that share an edge in the grid, a tab of one piece fits perfectly into a blank of the other piece. Through rotation and translation of the pieces, determine if it is possible to solve the jigsaw puzzle. Input The test consists of multiple test cases. The first line contains a single integer t (1≤ t≤ 1000) — the number of test cases. Next t lines contain descriptions of test cases. Each test case contains two integers n and m (1 ≤ n,m ≤ 10^5). Output For each test case output a single line containing "YES" if it is possible to solve the jigsaw puzzle, or "NO" otherwise. You can print each letter in any case (upper or lower). Example Input 3 1 3 100000 100000 2 2 Output YES NO YES Note For the first test case, this is an example solution: <image> For the second test case, we can show that no solution exists. For the third test case, this is an example solution: <image>
instruction
0
93,662
11
187,324
Tags: math Correct Solution: ``` z=input from math import * for _ in range(int(z())): a,b=map(int,z().split()) if a==b<=2 or a==1 or b==1: print('YES') else: print('NO') ```
output
1
93,662
11
187,325
Provide tags and a correct Python 3 solution for this coding contest problem. You are given a special jigsaw puzzle consisting of n⋅ m identical pieces. Every piece has three tabs and one blank, as pictured below. <image> The jigsaw puzzle is considered solved if the following conditions hold: 1. The pieces are arranged into a grid with n rows and m columns. 2. For any two pieces that share an edge in the grid, a tab of one piece fits perfectly into a blank of the other piece. Through rotation and translation of the pieces, determine if it is possible to solve the jigsaw puzzle. Input The test consists of multiple test cases. The first line contains a single integer t (1≤ t≤ 1000) — the number of test cases. Next t lines contain descriptions of test cases. Each test case contains two integers n and m (1 ≤ n,m ≤ 10^5). Output For each test case output a single line containing "YES" if it is possible to solve the jigsaw puzzle, or "NO" otherwise. You can print each letter in any case (upper or lower). Example Input 3 1 3 100000 100000 2 2 Output YES NO YES Note For the first test case, this is an example solution: <image> For the second test case, we can show that no solution exists. For the third test case, this is an example solution: <image>
instruction
0
93,663
11
187,326
Tags: math Correct Solution: ``` t = int(input()) for x in range(t): wejscie = str(input()) a, b = wejscie.split() a = int(a) b = int(b) if a == 1 or b == 1: print("YES") else: if a <= 2 and b <= 2: print("YES") else: print("NO") ```
output
1
93,663
11
187,327
Provide tags and a correct Python 3 solution for this coding contest problem. You are given a special jigsaw puzzle consisting of n⋅ m identical pieces. Every piece has three tabs and one blank, as pictured below. <image> The jigsaw puzzle is considered solved if the following conditions hold: 1. The pieces are arranged into a grid with n rows and m columns. 2. For any two pieces that share an edge in the grid, a tab of one piece fits perfectly into a blank of the other piece. Through rotation and translation of the pieces, determine if it is possible to solve the jigsaw puzzle. Input The test consists of multiple test cases. The first line contains a single integer t (1≤ t≤ 1000) — the number of test cases. Next t lines contain descriptions of test cases. Each test case contains two integers n and m (1 ≤ n,m ≤ 10^5). Output For each test case output a single line containing "YES" if it is possible to solve the jigsaw puzzle, or "NO" otherwise. You can print each letter in any case (upper or lower). Example Input 3 1 3 100000 100000 2 2 Output YES NO YES Note For the first test case, this is an example solution: <image> For the second test case, we can show that no solution exists. For the third test case, this is an example solution: <image>
instruction
0
93,664
11
187,328
Tags: math Correct Solution: ``` for _ in range(int(input())): # n = int(input()) n, m = list(map(int, input().split())) # arr = list(map(str, input().split())) # arr = list(input()) # temp1 = temp2 = stars = stars1 = flag = 0 if n == 1 or m == 1 : print('YES') elif n + m <= 4: print('YES') else: print('NO') ```
output
1
93,664
11
187,329
Provide tags and a correct Python 3 solution for this coding contest problem. You are given a special jigsaw puzzle consisting of n⋅ m identical pieces. Every piece has three tabs and one blank, as pictured below. <image> The jigsaw puzzle is considered solved if the following conditions hold: 1. The pieces are arranged into a grid with n rows and m columns. 2. For any two pieces that share an edge in the grid, a tab of one piece fits perfectly into a blank of the other piece. Through rotation and translation of the pieces, determine if it is possible to solve the jigsaw puzzle. Input The test consists of multiple test cases. The first line contains a single integer t (1≤ t≤ 1000) — the number of test cases. Next t lines contain descriptions of test cases. Each test case contains two integers n and m (1 ≤ n,m ≤ 10^5). Output For each test case output a single line containing "YES" if it is possible to solve the jigsaw puzzle, or "NO" otherwise. You can print each letter in any case (upper or lower). Example Input 3 1 3 100000 100000 2 2 Output YES NO YES Note For the first test case, this is an example solution: <image> For the second test case, we can show that no solution exists. For the third test case, this is an example solution: <image>
instruction
0
93,665
11
187,330
Tags: math Correct Solution: ``` import sys input = sys.stdin.readline t = int(input()) nm = [list(map(int, input().split())) for _ in range(t)] for n, m in nm: if n == 1 or m == 1: print('YES') elif n == 2 and m == 2: print('YES') else: print('NO') ```
output
1
93,665
11
187,331
Provide tags and a correct Python 3 solution for this coding contest problem. You are given a special jigsaw puzzle consisting of n⋅ m identical pieces. Every piece has three tabs and one blank, as pictured below. <image> The jigsaw puzzle is considered solved if the following conditions hold: 1. The pieces are arranged into a grid with n rows and m columns. 2. For any two pieces that share an edge in the grid, a tab of one piece fits perfectly into a blank of the other piece. Through rotation and translation of the pieces, determine if it is possible to solve the jigsaw puzzle. Input The test consists of multiple test cases. The first line contains a single integer t (1≤ t≤ 1000) — the number of test cases. Next t lines contain descriptions of test cases. Each test case contains two integers n and m (1 ≤ n,m ≤ 10^5). Output For each test case output a single line containing "YES" if it is possible to solve the jigsaw puzzle, or "NO" otherwise. You can print each letter in any case (upper or lower). Example Input 3 1 3 100000 100000 2 2 Output YES NO YES Note For the first test case, this is an example solution: <image> For the second test case, we can show that no solution exists. For the third test case, this is an example solution: <image>
instruction
0
93,666
11
187,332
Tags: math Correct Solution: ``` test=int(input()) for i in range(test): n,m=input().split() if n=="1" or m=="1" or (n=="2" and m=="2"): print("YES") else: print("NO") ```
output
1
93,666
11
187,333
Provide tags and a correct Python 3 solution for this coding contest problem. You are given a special jigsaw puzzle consisting of n⋅ m identical pieces. Every piece has three tabs and one blank, as pictured below. <image> The jigsaw puzzle is considered solved if the following conditions hold: 1. The pieces are arranged into a grid with n rows and m columns. 2. For any two pieces that share an edge in the grid, a tab of one piece fits perfectly into a blank of the other piece. Through rotation and translation of the pieces, determine if it is possible to solve the jigsaw puzzle. Input The test consists of multiple test cases. The first line contains a single integer t (1≤ t≤ 1000) — the number of test cases. Next t lines contain descriptions of test cases. Each test case contains two integers n and m (1 ≤ n,m ≤ 10^5). Output For each test case output a single line containing "YES" if it is possible to solve the jigsaw puzzle, or "NO" otherwise. You can print each letter in any case (upper or lower). Example Input 3 1 3 100000 100000 2 2 Output YES NO YES Note For the first test case, this is an example solution: <image> For the second test case, we can show that no solution exists. For the third test case, this is an example solution: <image>
instruction
0
93,667
11
187,334
Tags: math Correct Solution: ``` Times=int(input()) j=0 while j<Times: s=input().split() m=int(s[0]) n=int(s[1]) if m>n: m,n=n,m if m*n<=m+n: print("YES") else: print("NO") j+=1 ```
output
1
93,667
11
187,335
Provide tags and a correct Python 2 solution for this coding contest problem. You are given a special jigsaw puzzle consisting of n⋅ m identical pieces. Every piece has three tabs and one blank, as pictured below. <image> The jigsaw puzzle is considered solved if the following conditions hold: 1. The pieces are arranged into a grid with n rows and m columns. 2. For any two pieces that share an edge in the grid, a tab of one piece fits perfectly into a blank of the other piece. Through rotation and translation of the pieces, determine if it is possible to solve the jigsaw puzzle. Input The test consists of multiple test cases. The first line contains a single integer t (1≤ t≤ 1000) — the number of test cases. Next t lines contain descriptions of test cases. Each test case contains two integers n and m (1 ≤ n,m ≤ 10^5). Output For each test case output a single line containing "YES" if it is possible to solve the jigsaw puzzle, or "NO" otherwise. You can print each letter in any case (upper or lower). Example Input 3 1 3 100000 100000 2 2 Output YES NO YES Note For the first test case, this is an example solution: <image> For the second test case, we can show that no solution exists. For the third test case, this is an example solution: <image>
instruction
0
93,668
11
187,336
Tags: math Correct Solution: ``` from sys import stdin, stdout from collections import Counter, defaultdict from itertools import permutations, combinations raw_input = stdin.readline pr = stdout.write def in_num(): return int(raw_input()) def in_arr(): return map(int,raw_input().split()) def pr_num(n): stdout.write(str(n)+'\n') def pr_arr(arr): pr(' '.join(map(str,arr))+'\n') # fast read function for total integer input def inp(): # this function returns whole input of # space/line seperated integers # Use Ctrl+D to flush stdin. return map(int,stdin.read().split()) range = xrange # not for python 3.0+ for t in range(input()): n,m=in_arr() if min(n,m)==1 or (n==2 and m==2): pr('YES\n') else: pr('NO\n') ```
output
1
93,668
11
187,337
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a special jigsaw puzzle consisting of n⋅ m identical pieces. Every piece has three tabs and one blank, as pictured below. <image> The jigsaw puzzle is considered solved if the following conditions hold: 1. The pieces are arranged into a grid with n rows and m columns. 2. For any two pieces that share an edge in the grid, a tab of one piece fits perfectly into a blank of the other piece. Through rotation and translation of the pieces, determine if it is possible to solve the jigsaw puzzle. Input The test consists of multiple test cases. The first line contains a single integer t (1≤ t≤ 1000) — the number of test cases. Next t lines contain descriptions of test cases. Each test case contains two integers n and m (1 ≤ n,m ≤ 10^5). Output For each test case output a single line containing "YES" if it is possible to solve the jigsaw puzzle, or "NO" otherwise. You can print each letter in any case (upper or lower). Example Input 3 1 3 100000 100000 2 2 Output YES NO YES Note For the first test case, this is an example solution: <image> For the second test case, we can show that no solution exists. For the third test case, this is an example solution: <image> Submitted Solution: ``` t = int(input()) for i in range(t): n,m = map(int,input().split()) if n==1 or m==1 or n==m==2: print("YES") else: print("NO") ```
instruction
0
93,669
11
187,338
Yes
output
1
93,669
11
187,339
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a special jigsaw puzzle consisting of n⋅ m identical pieces. Every piece has three tabs and one blank, as pictured below. <image> The jigsaw puzzle is considered solved if the following conditions hold: 1. The pieces are arranged into a grid with n rows and m columns. 2. For any two pieces that share an edge in the grid, a tab of one piece fits perfectly into a blank of the other piece. Through rotation and translation of the pieces, determine if it is possible to solve the jigsaw puzzle. Input The test consists of multiple test cases. The first line contains a single integer t (1≤ t≤ 1000) — the number of test cases. Next t lines contain descriptions of test cases. Each test case contains two integers n and m (1 ≤ n,m ≤ 10^5). Output For each test case output a single line containing "YES" if it is possible to solve the jigsaw puzzle, or "NO" otherwise. You can print each letter in any case (upper or lower). Example Input 3 1 3 100000 100000 2 2 Output YES NO YES Note For the first test case, this is an example solution: <image> For the second test case, we can show that no solution exists. For the third test case, this is an example solution: <image> Submitted Solution: ``` def answer(n,m): if n==1 or m==1: return "YES" elif n<=2 and m<=2: return "YES" else: return "NO" t=int(input()) for i in range(t): n,m=map(int,input().split()) print(answer(n,m)) ```
instruction
0
93,670
11
187,340
Yes
output
1
93,670
11
187,341
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a special jigsaw puzzle consisting of n⋅ m identical pieces. Every piece has three tabs and one blank, as pictured below. <image> The jigsaw puzzle is considered solved if the following conditions hold: 1. The pieces are arranged into a grid with n rows and m columns. 2. For any two pieces that share an edge in the grid, a tab of one piece fits perfectly into a blank of the other piece. Through rotation and translation of the pieces, determine if it is possible to solve the jigsaw puzzle. Input The test consists of multiple test cases. The first line contains a single integer t (1≤ t≤ 1000) — the number of test cases. Next t lines contain descriptions of test cases. Each test case contains two integers n and m (1 ≤ n,m ≤ 10^5). Output For each test case output a single line containing "YES" if it is possible to solve the jigsaw puzzle, or "NO" otherwise. You can print each letter in any case (upper or lower). Example Input 3 1 3 100000 100000 2 2 Output YES NO YES Note For the first test case, this is an example solution: <image> For the second test case, we can show that no solution exists. For the third test case, this is an example solution: <image> Submitted Solution: ``` for _ in range(int(input())): n,m=map(int,input().split()) if n==1 or m==1: print("YES") elif n*m==4: print("YES") else: print("NO") ```
instruction
0
93,671
11
187,342
Yes
output
1
93,671
11
187,343
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a special jigsaw puzzle consisting of n⋅ m identical pieces. Every piece has three tabs and one blank, as pictured below. <image> The jigsaw puzzle is considered solved if the following conditions hold: 1. The pieces are arranged into a grid with n rows and m columns. 2. For any two pieces that share an edge in the grid, a tab of one piece fits perfectly into a blank of the other piece. Through rotation and translation of the pieces, determine if it is possible to solve the jigsaw puzzle. Input The test consists of multiple test cases. The first line contains a single integer t (1≤ t≤ 1000) — the number of test cases. Next t lines contain descriptions of test cases. Each test case contains two integers n and m (1 ≤ n,m ≤ 10^5). Output For each test case output a single line containing "YES" if it is possible to solve the jigsaw puzzle, or "NO" otherwise. You can print each letter in any case (upper or lower). Example Input 3 1 3 100000 100000 2 2 Output YES NO YES Note For the first test case, this is an example solution: <image> For the second test case, we can show that no solution exists. For the third test case, this is an example solution: <image> Submitted Solution: ``` t = int(input()) for i in range(t): n,m = map(int,input().split()) if(m*n>=2*m*n-m-n): print("YES") else: print("NO") ```
instruction
0
93,672
11
187,344
Yes
output
1
93,672
11
187,345
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a special jigsaw puzzle consisting of n⋅ m identical pieces. Every piece has three tabs and one blank, as pictured below. <image> The jigsaw puzzle is considered solved if the following conditions hold: 1. The pieces are arranged into a grid with n rows and m columns. 2. For any two pieces that share an edge in the grid, a tab of one piece fits perfectly into a blank of the other piece. Through rotation and translation of the pieces, determine if it is possible to solve the jigsaw puzzle. Input The test consists of multiple test cases. The first line contains a single integer t (1≤ t≤ 1000) — the number of test cases. Next t lines contain descriptions of test cases. Each test case contains two integers n and m (1 ≤ n,m ≤ 10^5). Output For each test case output a single line containing "YES" if it is possible to solve the jigsaw puzzle, or "NO" otherwise. You can print each letter in any case (upper or lower). Example Input 3 1 3 100000 100000 2 2 Output YES NO YES Note For the first test case, this is an example solution: <image> For the second test case, we can show that no solution exists. For the third test case, this is an example solution: <image> Submitted Solution: ``` for _ in range(int(input())): n,m=map(int,input().split()) if n>2 and m==1 or m>2 and n==1: print('YES') elif n==2 and m==2: print('YES') else: print('NO') ```
instruction
0
93,673
11
187,346
No
output
1
93,673
11
187,347
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a special jigsaw puzzle consisting of n⋅ m identical pieces. Every piece has three tabs and one blank, as pictured below. <image> The jigsaw puzzle is considered solved if the following conditions hold: 1. The pieces are arranged into a grid with n rows and m columns. 2. For any two pieces that share an edge in the grid, a tab of one piece fits perfectly into a blank of the other piece. Through rotation and translation of the pieces, determine if it is possible to solve the jigsaw puzzle. Input The test consists of multiple test cases. The first line contains a single integer t (1≤ t≤ 1000) — the number of test cases. Next t lines contain descriptions of test cases. Each test case contains two integers n and m (1 ≤ n,m ≤ 10^5). Output For each test case output a single line containing "YES" if it is possible to solve the jigsaw puzzle, or "NO" otherwise. You can print each letter in any case (upper or lower). Example Input 3 1 3 100000 100000 2 2 Output YES NO YES Note For the first test case, this is an example solution: <image> For the second test case, we can show that no solution exists. For the third test case, this is an example solution: <image> Submitted Solution: ``` # import sys # sys.stdin = open('input.txt', 'r') # sys.stdout = open('output.txt', 'w') for _ in range(int(input())): n,m = map(int,input().split()) if (min(n,m)<=2): print('YES') else: print('NO') ```
instruction
0
93,674
11
187,348
No
output
1
93,674
11
187,349
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a special jigsaw puzzle consisting of n⋅ m identical pieces. Every piece has three tabs and one blank, as pictured below. <image> The jigsaw puzzle is considered solved if the following conditions hold: 1. The pieces are arranged into a grid with n rows and m columns. 2. For any two pieces that share an edge in the grid, a tab of one piece fits perfectly into a blank of the other piece. Through rotation and translation of the pieces, determine if it is possible to solve the jigsaw puzzle. Input The test consists of multiple test cases. The first line contains a single integer t (1≤ t≤ 1000) — the number of test cases. Next t lines contain descriptions of test cases. Each test case contains two integers n and m (1 ≤ n,m ≤ 10^5). Output For each test case output a single line containing "YES" if it is possible to solve the jigsaw puzzle, or "NO" otherwise. You can print each letter in any case (upper or lower). Example Input 3 1 3 100000 100000 2 2 Output YES NO YES Note For the first test case, this is an example solution: <image> For the second test case, we can show that no solution exists. For the third test case, this is an example solution: <image> Submitted Solution: ``` for _ in range(int(input())): n,m = map(int,input().split()) if(n>2 and m>2): print("NO") else: print("YES") ```
instruction
0
93,675
11
187,350
No
output
1
93,675
11
187,351
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a special jigsaw puzzle consisting of n⋅ m identical pieces. Every piece has three tabs and one blank, as pictured below. <image> The jigsaw puzzle is considered solved if the following conditions hold: 1. The pieces are arranged into a grid with n rows and m columns. 2. For any two pieces that share an edge in the grid, a tab of one piece fits perfectly into a blank of the other piece. Through rotation and translation of the pieces, determine if it is possible to solve the jigsaw puzzle. Input The test consists of multiple test cases. The first line contains a single integer t (1≤ t≤ 1000) — the number of test cases. Next t lines contain descriptions of test cases. Each test case contains two integers n and m (1 ≤ n,m ≤ 10^5). Output For each test case output a single line containing "YES" if it is possible to solve the jigsaw puzzle, or "NO" otherwise. You can print each letter in any case (upper or lower). Example Input 3 1 3 100000 100000 2 2 Output YES NO YES Note For the first test case, this is an example solution: <image> For the second test case, we can show that no solution exists. For the third test case, this is an example solution: <image> Submitted Solution: ``` t = int(input()) for _ in range(t): n, m = (int(i) for i in input().split()) if(n == 1 or n == 2 or m == 1 or m == 2): print("YES") else: print("NO") ```
instruction
0
93,676
11
187,352
No
output
1
93,676
11
187,353
Evaluate the correctness of the submitted Python 2 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a special jigsaw puzzle consisting of n⋅ m identical pieces. Every piece has three tabs and one blank, as pictured below. <image> The jigsaw puzzle is considered solved if the following conditions hold: 1. The pieces are arranged into a grid with n rows and m columns. 2. For any two pieces that share an edge in the grid, a tab of one piece fits perfectly into a blank of the other piece. Through rotation and translation of the pieces, determine if it is possible to solve the jigsaw puzzle. Input The test consists of multiple test cases. The first line contains a single integer t (1≤ t≤ 1000) — the number of test cases. Next t lines contain descriptions of test cases. Each test case contains two integers n and m (1 ≤ n,m ≤ 10^5). Output For each test case output a single line containing "YES" if it is possible to solve the jigsaw puzzle, or "NO" otherwise. You can print each letter in any case (upper or lower). Example Input 3 1 3 100000 100000 2 2 Output YES NO YES Note For the first test case, this is an example solution: <image> For the second test case, we can show that no solution exists. For the third test case, this is an example solution: <image> Submitted Solution: ``` from sys import stdin, stdout from collections import Counter, defaultdict from itertools import permutations, combinations raw_input = stdin.readline pr = stdout.write def in_num(): return int(raw_input()) def in_arr(): return map(int,raw_input().split()) def pr_num(n): stdout.write(str(n)+'\n') def pr_arr(arr): pr(' '.join(map(str,arr))+'\n') # fast read function for total integer input def inp(): # this function returns whole input of # space/line seperated integers # Use Ctrl+D to flush stdin. return map(int,stdin.read().split()) range = xrange # not for python 3.0+ for t in range(input()): if min(in_arr())>2: pr('NO\n') else: pr('YES\n') ```
instruction
0
93,677
11
187,354
No
output
1
93,677
11
187,355
Provide tags and a correct Python 3 solution for this coding contest problem. Berland regional ICPC contest has just ended. There were m participants numbered from 1 to m, who competed on a problemset of n problems numbered from 1 to n. Now the editorial is about to take place. There are two problem authors, each of them is going to tell the tutorial to exactly k consecutive tasks of the problemset. The authors choose the segment of k consecutive tasks for themselves independently of each other. The segments can coincide, intersect or not intersect at all. The i-th participant is interested in listening to the tutorial of all consecutive tasks from l_i to r_i. Each participant always chooses to listen to only the problem author that tells the tutorials to the maximum number of tasks he is interested in. Let this maximum number be a_i. No participant can listen to both of the authors, even if their segments don't intersect. The authors want to choose the segments of k consecutive tasks for themselves in such a way that the sum of a_i over all participants is maximized. Input The first line contains three integers n, m and k (1 ≤ n, m ≤ 2000, 1 ≤ k ≤ n) — the number of problems, the number of participants and the length of the segment of tasks each of the problem authors plans to tell the tutorial to. The i-th of the next m lines contains two integers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the segment of tasks the i-th participant is interested in listening to the tutorial to. Output Print a single integer — the maximum sum of a_i over all participants. Examples Input 10 5 3 1 3 2 4 6 9 6 9 1 8 Output 14 Input 10 3 3 2 4 4 6 3 5 Output 8 Input 4 4 1 3 3 1 1 2 2 4 4 Output 2 Input 5 4 5 1 2 2 3 3 4 4 5 Output 8 Note In the first example the first author can tell the tutorial to problems from 1 to 3 and the second one — from 6 to 8. That way the sequence of a_i will be [3, 2, 3, 3, 3]. Notice that the last participant can't listen to both author, he only chooses the one that tells the maximum number of problems he's interested in. In the second example the first one can tell problems 2 to 4, the second one — 4 to 6. In the third example the first one can tell problems 1 to 1, the second one — 2 to 2. Or 4 to 4 and 3 to 3. Every pair of different problems will get the same sum of 2. In the fourth example the first one can tell problems 1 to 5, the second one — 1 to 5 as well.
instruction
0
93,699
11
187,398
Tags: brute force, dp, greedy, sortings, two pointers Correct Solution: ``` # Enter your code here. Read input from STDIN. Print output to STDOUT# =============================================================================================== # importing some useful libraries. from __future__ import division, print_function from fractions import Fraction import sys import os from io import BytesIO, IOBase from itertools import * import bisect from heapq import * from math import ceil, floor from copy import * from collections import deque, defaultdict from collections import Counter as counter # Counter(list) return a dict with {key: count} from itertools import combinations # if a = [1,2,3] then print(list(comb(a,2))) -----> [(1, 2), (1, 3), (2, 3)] from itertools import permutations as permutate from bisect import bisect_left as bl from operator import * # If the element is already present in the list, # the left most position where element has to be inserted is returned. from bisect import bisect_right as br from bisect import bisect # If the element is already present in the list, # the right most position where element has to be inserted is returned # ============================================================================================== # fast I/O region BUFSIZE = 8192 from sys import stderr class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") def print(*args, **kwargs): """Prints the values to a stream, or to sys.stdout by default.""" sep, file = kwargs.pop("sep", " "), kwargs.pop("file", sys.stdout) at_start = True for x in args: if not at_start: file.write(sep) file.write(str(x)) at_start = False file.write(kwargs.pop("end", "\n")) if kwargs.pop("flush", False): file.flush() if sys.version_info[0] < 3: sys.stdin, sys.stdout = FastIO(sys.stdin), FastIO(sys.stdout) else: sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) # inp = lambda: sys.stdin.readline().rstrip("\r\n") # =============================================================================================== ### START ITERATE RECURSION ### from types import GeneratorType def iterative(f, stack=[]): def wrapped_func(*args, **kwargs): if stack: return f(*args, **kwargs) to = f(*args, **kwargs) while True: if type(to) is GeneratorType: stack.append(to) to = next(to) continue stack.pop() if not stack: break to = stack[-1].send(to) return to return wrapped_func #### END ITERATE RECURSION #### ########################### # Sorted list class SortedList: def __init__(self, iterable=[], _load=200): """Initialize sorted list instance.""" values = sorted(iterable) self._len = _len = len(values) self._load = _load self._lists = _lists = [values[i:i + _load] for i in range(0, _len, _load)] self._list_lens = [len(_list) for _list in _lists] self._mins = [_list[0] for _list in _lists] self._fen_tree = [] self._rebuild = True def _fen_build(self): """Build a fenwick tree instance.""" self._fen_tree[:] = self._list_lens _fen_tree = self._fen_tree for i in range(len(_fen_tree)): if i | i + 1 < len(_fen_tree): _fen_tree[i | i + 1] += _fen_tree[i] self._rebuild = False def _fen_update(self, index, value): """Update `fen_tree[index] += value`.""" if not self._rebuild: _fen_tree = self._fen_tree while index < len(_fen_tree): _fen_tree[index] += value index |= index + 1 def _fen_query(self, end): """Return `sum(_fen_tree[:end])`.""" if self._rebuild: self._fen_build() _fen_tree = self._fen_tree x = 0 while end: x += _fen_tree[end - 1] end &= end - 1 return x def _fen_findkth(self, k): """Return a pair of (the largest `idx` such that `sum(_fen_tree[:idx]) <= k`, `k - sum(_fen_tree[:idx])`).""" _list_lens = self._list_lens if k < _list_lens[0]: return 0, k if k >= self._len - _list_lens[-1]: return len(_list_lens) - 1, k + _list_lens[-1] - self._len if self._rebuild: self._fen_build() _fen_tree = self._fen_tree idx = -1 for d in reversed(range(len(_fen_tree).bit_length())): right_idx = idx + (1 << d) if right_idx < len(_fen_tree) and k >= _fen_tree[right_idx]: idx = right_idx k -= _fen_tree[idx] return idx + 1, k def _delete(self, pos, idx): """Delete value at the given `(pos, idx)`.""" _lists = self._lists _mins = self._mins _list_lens = self._list_lens self._len -= 1 self._fen_update(pos, -1) del _lists[pos][idx] _list_lens[pos] -= 1 if _list_lens[pos]: _mins[pos] = _lists[pos][0] else: del _lists[pos] del _list_lens[pos] del _mins[pos] self._rebuild = True def _loc_left(self, value): """Return an index pair that corresponds to the first position of `value` in the sorted list.""" if not self._len: return 0, 0 _lists = self._lists _mins = self._mins lo, pos = -1, len(_lists) - 1 while lo + 1 < pos: mi = (lo + pos) >> 1 if value <= _mins[mi]: pos = mi else: lo = mi if pos and value <= _lists[pos - 1][-1]: pos -= 1 _list = _lists[pos] lo, idx = -1, len(_list) while lo + 1 < idx: mi = (lo + idx) >> 1 if value <= _list[mi]: idx = mi else: lo = mi return pos, idx def _loc_right(self, value): """Return an index pair that corresponds to the last position of `value` in the sorted list.""" if not self._len: return 0, 0 _lists = self._lists _mins = self._mins pos, hi = 0, len(_lists) while pos + 1 < hi: mi = (pos + hi) >> 1 if value < _mins[mi]: hi = mi else: pos = mi _list = _lists[pos] lo, idx = -1, len(_list) while lo + 1 < idx: mi = (lo + idx) >> 1 if value < _list[mi]: idx = mi else: lo = mi return pos, idx def add(self, value): """Add `value` to sorted list.""" _load = self._load _lists = self._lists _mins = self._mins _list_lens = self._list_lens self._len += 1 if _lists: pos, idx = self._loc_right(value) self._fen_update(pos, 1) _list = _lists[pos] _list.insert(idx, value) _list_lens[pos] += 1 _mins[pos] = _list[0] if _load + _load < len(_list): _lists.insert(pos + 1, _list[_load:]) _list_lens.insert(pos + 1, len(_list) - _load) _mins.insert(pos + 1, _list[_load]) _list_lens[pos] = _load del _list[_load:] self._rebuild = True else: _lists.append([value]) _mins.append(value) _list_lens.append(1) self._rebuild = True def discard(self, value): """Remove `value` from sorted list if it is a member.""" _lists = self._lists if _lists: pos, idx = self._loc_right(value) if idx and _lists[pos][idx - 1] == value: self._delete(pos, idx - 1) def remove(self, value): """Remove `value` from sorted list; `value` must be a member.""" _len = self._len self.discard(value) if _len == self._len: raise ValueError('{0!r} not in list'.format(value)) def pop(self, index=-1): """Remove and return value at `index` in sorted list.""" pos, idx = self._fen_findkth(self._len + index if index < 0 else index) value = self._lists[pos][idx] self._delete(pos, idx) return value def bisect_left(self, value): """Return the first index to insert `value` in the sorted list.""" pos, idx = self._loc_left(value) return self._fen_query(pos) + idx def bisect_right(self, value): """Return the last index to insert `value` in the sorted list.""" pos, idx = self._loc_right(value) return self._fen_query(pos) + idx def count(self, value): """Return number of occurrences of `value` in the sorted list.""" return self.bisect_right(value) - self.bisect_left(value) def __len__(self): """Return the size of the sorted list.""" return self._len def __getitem__(self, index): """Lookup value at `index` in sorted list.""" pos, idx = self._fen_findkth(self._len + index if index < 0 else index) return self._lists[pos][idx] def __delitem__(self, index): """Remove value at `index` from sorted list.""" pos, idx = self._fen_findkth(self._len + index if index < 0 else index) self._delete(pos, idx) def __contains__(self, value): """Return true if `value` is an element of the sorted list.""" _lists = self._lists if _lists: pos, idx = self._loc_left(value) return idx < len(_lists[pos]) and _lists[pos][idx] == value return False def __iter__(self): """Return an iterator over the sorted list.""" return (value for _list in self._lists for value in _list) def __reversed__(self): """Return a reverse iterator over the sorted list.""" return (value for _list in reversed(self._lists) for value in reversed(_list)) def __repr__(self): """Return string representation of sorted list.""" return 'SortedList({0})'.format(list(self)) # =============================================================================================== # some shortcuts mod = 1000000007 def inp(): return sys.stdin.readline().rstrip("\r\n") # for fast input def out(var): sys.stdout.write(str(var)) # for fast output, always take string def lis(): return list(map(int, inp().split())) def stringlis(): return list(map(str, inp().split())) def sep(): return map(int, inp().split()) def strsep(): return map(str, inp().split()) def fsep(): return map(float, inp().split()) def nextline(): out("\n") # as stdout.write always print sring. def testcase(t): for p in range(t): solve() def pow(x, y, p): res = 1 # Initialize result x = x % p # Update x if it is more , than or equal to p if (x == 0): return 0 while (y > 0): if ((y & 1) == 1): # If y is odd, multiply, x with result res = (res * x) % p y = y >> 1 # y = y/2 x = (x * x) % p return res from functools import reduce def factors(n): return set(reduce(list.__add__, ([i, n // i] for i in range(1, int(n ** 0.5) + 1) if n % i == 0))) def gcd(a, b): if a == b: return a while b > 0: a, b = b, a % b return a # discrete binary search # minimise: # def search(): # l = 0 # r = 10 ** 15 # # for i in range(200): # if isvalid(l): # return l # if l == r: # return l # m = (l + r) // 2 # if isvalid(m) and not isvalid(m - 1): # return m # if isvalid(m): # r = m + 1 # else: # l = m # return m # maximise: # def search(): # l = 0 # r = 10 ** 15 # # for i in range(200): # # print(l,r) # if isvalid(r): # return r # if l == r: # return l # m = (l + r) // 2 # if isvalid(m) and not isvalid(m + 1): # return m # if isvalid(m): # l = m # else: # r = m - 1 # return m ##############Find sum of product of subsets of size k in a array # ar=[0,1,2,3] # k=3 # n=len(ar)-1 # dp=[0]*(n+1) # dp[0]=1 # for pos in range(1,n+1): # dp[pos]=0 # l=max(1,k+pos-n-1) # for j in range(min(pos,k),l-1,-1): # dp[j]=dp[j]+ar[pos]*dp[j-1] # print(dp[k]) def prefix_sum(ar): # [1,2,3,4]->[1,3,6,10] return list(accumulate(ar)) def suffix_sum(ar): # [1,2,3,4]->[10,9,7,4] return list(accumulate(ar[::-1]))[::-1] def N(): return int(inp()) dx = [0, 0, 1, -1] dy = [1, -1, 0, 0] def YES(): print("YES") def NO(): print("NO") def Yes(): print("Yes") def No(): print("No") # ========================================================================================= from collections import defaultdict def numberOfSetBits(i): i = i - ((i >> 1) & 0x55555555) i = (i & 0x33333333) + ((i >> 2) & 0x33333333) return (((i + (i >> 4) & 0xF0F0F0F) * 0x1010101) & 0xffffffff) >> 24 def lcm(a, b): return abs((a // gcd(a, b)) * b) # # # to find factorial and ncr # tot = 400005 # mod = 10 ** 9 + 7 # fac = [1, 1] # finv = [1, 1] # inv = [0, 1] # # for i in range(2, tot + 1): # fac.append((fac[-1] * i) % mod) # inv.append(mod - (inv[mod % i] * (mod // i) % mod)) # finv.append(finv[-1] * inv[-1] % mod) # # # def comb(n, r): # if n < r: # return 0 # else: # return fac[n] * (finv[r] * finv[n - r] % mod) % mod def solve(): n,m,k=sep() a=[lis() for _ in range(m)] def solv(lst): res = sum(lst[:k]); s = res for i in range(n - k): s += lst[i + k] - lst[i];res = max(res, s) return res a.sort(key=lambda x: sum(x) / 2); apr = [0] * n for el in a: for i in range(el[0] - 1, el[1]): apr[i] += 1 res = solv(apr); bpr = [0] * n for r, l in a: for i in range(r - 1, l): apr[i] -= 1;bpr[i] += 1 nres = solv(apr) + solv(bpr); res = max(res, nres) print(res) solve() #testcase(int(inp())) # 5 # 3 6 # 5 10 # 4 3 # 2 1 # 1 3 ```
output
1
93,699
11
187,399
Provide tags and a correct Python 3 solution for this coding contest problem. Berland regional ICPC contest has just ended. There were m participants numbered from 1 to m, who competed on a problemset of n problems numbered from 1 to n. Now the editorial is about to take place. There are two problem authors, each of them is going to tell the tutorial to exactly k consecutive tasks of the problemset. The authors choose the segment of k consecutive tasks for themselves independently of each other. The segments can coincide, intersect or not intersect at all. The i-th participant is interested in listening to the tutorial of all consecutive tasks from l_i to r_i. Each participant always chooses to listen to only the problem author that tells the tutorials to the maximum number of tasks he is interested in. Let this maximum number be a_i. No participant can listen to both of the authors, even if their segments don't intersect. The authors want to choose the segments of k consecutive tasks for themselves in such a way that the sum of a_i over all participants is maximized. Input The first line contains three integers n, m and k (1 ≤ n, m ≤ 2000, 1 ≤ k ≤ n) — the number of problems, the number of participants and the length of the segment of tasks each of the problem authors plans to tell the tutorial to. The i-th of the next m lines contains two integers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the segment of tasks the i-th participant is interested in listening to the tutorial to. Output Print a single integer — the maximum sum of a_i over all participants. Examples Input 10 5 3 1 3 2 4 6 9 6 9 1 8 Output 14 Input 10 3 3 2 4 4 6 3 5 Output 8 Input 4 4 1 3 3 1 1 2 2 4 4 Output 2 Input 5 4 5 1 2 2 3 3 4 4 5 Output 8 Note In the first example the first author can tell the tutorial to problems from 1 to 3 and the second one — from 6 to 8. That way the sequence of a_i will be [3, 2, 3, 3, 3]. Notice that the last participant can't listen to both author, he only chooses the one that tells the maximum number of problems he's interested in. In the second example the first one can tell problems 2 to 4, the second one — 4 to 6. In the third example the first one can tell problems 1 to 1, the second one — 2 to 2. Or 4 to 4 and 3 to 3. Every pair of different problems will get the same sum of 2. In the fourth example the first one can tell problems 1 to 5, the second one — 1 to 5 as well.
instruction
0
93,700
11
187,400
Tags: brute force, dp, greedy, sortings, two pointers Correct Solution: ``` # Enter your code here. Read input from STDIN. Print output to STDOUT# =============================================================================================== # importing some useful libraries. from __future__ import division, print_function from fractions import Fraction import sys import os from io import BytesIO, IOBase from itertools import * import bisect from heapq import * from math import ceil, floor from copy import * from collections import deque, defaultdict from collections import Counter as counter # Counter(list) return a dict with {key: count} from itertools import combinations # if a = [1,2,3] then print(list(comb(a,2))) -----> [(1, 2), (1, 3), (2, 3)] from itertools import permutations as permutate from bisect import bisect_left as bl from operator import * # If the element is already present in the list, # the left most position where element has to be inserted is returned. from bisect import bisect_right as br from bisect import bisect # If the element is already present in the list, # the right most position where element has to be inserted is returned # ============================================================================================== # fast I/O region BUFSIZE = 8192 from sys import stderr class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") def print(*args, **kwargs): """Prints the values to a stream, or to sys.stdout by default.""" sep, file = kwargs.pop("sep", " "), kwargs.pop("file", sys.stdout) at_start = True for x in args: if not at_start: file.write(sep) file.write(str(x)) at_start = False file.write(kwargs.pop("end", "\n")) if kwargs.pop("flush", False): file.flush() if sys.version_info[0] < 3: sys.stdin, sys.stdout = FastIO(sys.stdin), FastIO(sys.stdout) else: sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) # inp = lambda: sys.stdin.readline().rstrip("\r\n") def solve(): n, m, k = map(int, input().split());a = [list(map(int, input().split())) for _ in range(m)] def solv(lst): res = sum(lst[:k]);s = res for i in range(n-k):s += lst[i+k] - lst[i];res = max(res, s) return res a.sort(key=lambda x: sum(x)/2);apr = [0]*n for el in a: for i in range(el[0]-1, el[1]):apr[i] += 1 res = solv(apr);bpr = [0]*n for r, l in a: for i in range(r-1, l):apr[i] -= 1;bpr[i] += 1 nres = solv(apr) + solv(bpr);res = max(res, nres) print(res) solve() #testcase(int(inp())) # 5 # 3 6 # 5 10 # 4 3 # 2 1 # 1 3 ```
output
1
93,700
11
187,401
Provide tags and a correct Python 3 solution for this coding contest problem. Berland regional ICPC contest has just ended. There were m participants numbered from 1 to m, who competed on a problemset of n problems numbered from 1 to n. Now the editorial is about to take place. There are two problem authors, each of them is going to tell the tutorial to exactly k consecutive tasks of the problemset. The authors choose the segment of k consecutive tasks for themselves independently of each other. The segments can coincide, intersect or not intersect at all. The i-th participant is interested in listening to the tutorial of all consecutive tasks from l_i to r_i. Each participant always chooses to listen to only the problem author that tells the tutorials to the maximum number of tasks he is interested in. Let this maximum number be a_i. No participant can listen to both of the authors, even if their segments don't intersect. The authors want to choose the segments of k consecutive tasks for themselves in such a way that the sum of a_i over all participants is maximized. Input The first line contains three integers n, m and k (1 ≤ n, m ≤ 2000, 1 ≤ k ≤ n) — the number of problems, the number of participants and the length of the segment of tasks each of the problem authors plans to tell the tutorial to. The i-th of the next m lines contains two integers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the segment of tasks the i-th participant is interested in listening to the tutorial to. Output Print a single integer — the maximum sum of a_i over all participants. Examples Input 10 5 3 1 3 2 4 6 9 6 9 1 8 Output 14 Input 10 3 3 2 4 4 6 3 5 Output 8 Input 4 4 1 3 3 1 1 2 2 4 4 Output 2 Input 5 4 5 1 2 2 3 3 4 4 5 Output 8 Note In the first example the first author can tell the tutorial to problems from 1 to 3 and the second one — from 6 to 8. That way the sequence of a_i will be [3, 2, 3, 3, 3]. Notice that the last participant can't listen to both author, he only chooses the one that tells the maximum number of problems he's interested in. In the second example the first one can tell problems 2 to 4, the second one — 4 to 6. In the third example the first one can tell problems 1 to 1, the second one — 2 to 2. Or 4 to 4 and 3 to 3. Every pair of different problems will get the same sum of 2. In the fourth example the first one can tell problems 1 to 5, the second one — 1 to 5 as well.
instruction
0
93,701
11
187,402
Tags: brute force, dp, greedy, sortings, two pointers Correct Solution: ``` """ #If FastIO not needed, use this and don't forget to strip #import sys, math #input = sys.stdin.readline """ import os import sys from io import BytesIO, IOBase import heapq as h from bisect import bisect_left, bisect_right import time from types import GeneratorType BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): import os self.os = os self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = self.os.read(self._fd, max(self.os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = self.os.read(self._fd, max(self.os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: self.os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") from collections import defaultdict as dd, deque as dq, Counter as dc import math, string #start_time = time.time() def getInts(): return [int(s) for s in input().split()] def getInt(): return int(input()) def getStrs(): return [s for s in input().split()] def getStr(): return input() def listStr(): return list(input()) def getMat(n): return [getInts() for _ in range(n)] MOD = 10**9+7 """ Two subsets of length K which cover as many segments as possible How many times does a problem appear? Suppose one of the segments goes from [p,p+k-1] How many problems for each participant are in that segment? We want two overlapping segments such that the sum of the max for each person is maximised Best possible answer from first i arrays? Note that overlap is pointless So the answer is to find a dividing line, and find the best array either side of that line """ def solve(): N, M, K = getInts() A = [] for m in range(M): A.append(tuple(getInts())) A.sort(key = lambda x: sum(x)) def get_poss(arr): curr = sum(arr[:K]) best = curr for i in range(K,N): curr += arr[i] - arr[i-K] best = max(best,curr) return best A_pref = [0]*N for L, R in A: for i in range(L-1,R): A_pref[i] += 1 ans = get_poss(A_pref) B_pref = [0]*N for L, R in A: for i in range(L-1,R): A_pref[i] -= 1 B_pref[i] += 1 ans = max(ans,get_poss(A_pref) + get_poss(B_pref)) return ans #for _ in range(getInt()): print(solve()) #solve() #print(time.time()-start_time) ```
output
1
93,701
11
187,403
Provide tags and a correct Python 3 solution for this coding contest problem. Berland regional ICPC contest has just ended. There were m participants numbered from 1 to m, who competed on a problemset of n problems numbered from 1 to n. Now the editorial is about to take place. There are two problem authors, each of them is going to tell the tutorial to exactly k consecutive tasks of the problemset. The authors choose the segment of k consecutive tasks for themselves independently of each other. The segments can coincide, intersect or not intersect at all. The i-th participant is interested in listening to the tutorial of all consecutive tasks from l_i to r_i. Each participant always chooses to listen to only the problem author that tells the tutorials to the maximum number of tasks he is interested in. Let this maximum number be a_i. No participant can listen to both of the authors, even if their segments don't intersect. The authors want to choose the segments of k consecutive tasks for themselves in such a way that the sum of a_i over all participants is maximized. Input The first line contains three integers n, m and k (1 ≤ n, m ≤ 2000, 1 ≤ k ≤ n) — the number of problems, the number of participants and the length of the segment of tasks each of the problem authors plans to tell the tutorial to. The i-th of the next m lines contains two integers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the segment of tasks the i-th participant is interested in listening to the tutorial to. Output Print a single integer — the maximum sum of a_i over all participants. Examples Input 10 5 3 1 3 2 4 6 9 6 9 1 8 Output 14 Input 10 3 3 2 4 4 6 3 5 Output 8 Input 4 4 1 3 3 1 1 2 2 4 4 Output 2 Input 5 4 5 1 2 2 3 3 4 4 5 Output 8 Note In the first example the first author can tell the tutorial to problems from 1 to 3 and the second one — from 6 to 8. That way the sequence of a_i will be [3, 2, 3, 3, 3]. Notice that the last participant can't listen to both author, he only chooses the one that tells the maximum number of problems he's interested in. In the second example the first one can tell problems 2 to 4, the second one — 4 to 6. In the third example the first one can tell problems 1 to 1, the second one — 2 to 2. Or 4 to 4 and 3 to 3. Every pair of different problems will get the same sum of 2. In the fourth example the first one can tell problems 1 to 5, the second one — 1 to 5 as well.
instruction
0
93,702
11
187,404
Tags: brute force, dp, greedy, sortings, two pointers Correct Solution: ``` def solve(lst, n, k): sum_current = sum(lst[0:k]) ans = sum_current for i in range(n - k): sum_current = sum_current - lst[i] + lst[i + k] ans = max(ans, sum_current) return ans def two_editorials(): n, m, k = [int(x) for x in input().split(' ')] arr = [0] * n brr = [0] * n inp = [] for _ in range(m): inp += [[int(x) for x in input().split(' ')]] inp.sort(key=lambda x: sum(x) / 2) for a, b in inp: for i in range(a - 1, b): arr[i] += 1 ans = solve(arr, n, k) for a, b in inp: for i in range(a - 1, b): arr[i] -= 1 brr[i] += 1 ans = max(ans, solve(arr, n, k) + solve(brr, n, k)) print(ans) if __name__ == "__main__": two_editorials() ```
output
1
93,702
11
187,405
Provide tags and a correct Python 3 solution for this coding contest problem. Berland regional ICPC contest has just ended. There were m participants numbered from 1 to m, who competed on a problemset of n problems numbered from 1 to n. Now the editorial is about to take place. There are two problem authors, each of them is going to tell the tutorial to exactly k consecutive tasks of the problemset. The authors choose the segment of k consecutive tasks for themselves independently of each other. The segments can coincide, intersect or not intersect at all. The i-th participant is interested in listening to the tutorial of all consecutive tasks from l_i to r_i. Each participant always chooses to listen to only the problem author that tells the tutorials to the maximum number of tasks he is interested in. Let this maximum number be a_i. No participant can listen to both of the authors, even if their segments don't intersect. The authors want to choose the segments of k consecutive tasks for themselves in such a way that the sum of a_i over all participants is maximized. Input The first line contains three integers n, m and k (1 ≤ n, m ≤ 2000, 1 ≤ k ≤ n) — the number of problems, the number of participants and the length of the segment of tasks each of the problem authors plans to tell the tutorial to. The i-th of the next m lines contains two integers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the segment of tasks the i-th participant is interested in listening to the tutorial to. Output Print a single integer — the maximum sum of a_i over all participants. Examples Input 10 5 3 1 3 2 4 6 9 6 9 1 8 Output 14 Input 10 3 3 2 4 4 6 3 5 Output 8 Input 4 4 1 3 3 1 1 2 2 4 4 Output 2 Input 5 4 5 1 2 2 3 3 4 4 5 Output 8 Note In the first example the first author can tell the tutorial to problems from 1 to 3 and the second one — from 6 to 8. That way the sequence of a_i will be [3, 2, 3, 3, 3]. Notice that the last participant can't listen to both author, he only chooses the one that tells the maximum number of problems he's interested in. In the second example the first one can tell problems 2 to 4, the second one — 4 to 6. In the third example the first one can tell problems 1 to 1, the second one — 2 to 2. Or 4 to 4 and 3 to 3. Every pair of different problems will get the same sum of 2. In the fourth example the first one can tell problems 1 to 5, the second one — 1 to 5 as well.
instruction
0
93,703
11
187,406
Tags: brute force, dp, greedy, sortings, two pointers Correct Solution: ``` n, m, k = map(int, input().split()) a = [list(map(int, input().split())) for _ in range(m)] def solv(lst): res = sum(lst[:k]) s = res for i in range(n-k): s += lst[i+k] - lst[i] res = max(res, s) return res a.sort(key=lambda x: sum(x)/2) apr = [0]*n for el in a: for i in range(el[0]-1, el[1]): apr[i] += 1 res = solv(apr) bpr = [0]*n for r, l in a: for i in range(r-1, l): apr[i] -= 1 bpr[i] += 1 nres = solv(apr) + solv(bpr) res = max(res, nres) print(res) ```
output
1
93,703
11
187,407
Provide tags and a correct Python 3 solution for this coding contest problem. Berland regional ICPC contest has just ended. There were m participants numbered from 1 to m, who competed on a problemset of n problems numbered from 1 to n. Now the editorial is about to take place. There are two problem authors, each of them is going to tell the tutorial to exactly k consecutive tasks of the problemset. The authors choose the segment of k consecutive tasks for themselves independently of each other. The segments can coincide, intersect or not intersect at all. The i-th participant is interested in listening to the tutorial of all consecutive tasks from l_i to r_i. Each participant always chooses to listen to only the problem author that tells the tutorials to the maximum number of tasks he is interested in. Let this maximum number be a_i. No participant can listen to both of the authors, even if their segments don't intersect. The authors want to choose the segments of k consecutive tasks for themselves in such a way that the sum of a_i over all participants is maximized. Input The first line contains three integers n, m and k (1 ≤ n, m ≤ 2000, 1 ≤ k ≤ n) — the number of problems, the number of participants and the length of the segment of tasks each of the problem authors plans to tell the tutorial to. The i-th of the next m lines contains two integers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the segment of tasks the i-th participant is interested in listening to the tutorial to. Output Print a single integer — the maximum sum of a_i over all participants. Examples Input 10 5 3 1 3 2 4 6 9 6 9 1 8 Output 14 Input 10 3 3 2 4 4 6 3 5 Output 8 Input 4 4 1 3 3 1 1 2 2 4 4 Output 2 Input 5 4 5 1 2 2 3 3 4 4 5 Output 8 Note In the first example the first author can tell the tutorial to problems from 1 to 3 and the second one — from 6 to 8. That way the sequence of a_i will be [3, 2, 3, 3, 3]. Notice that the last participant can't listen to both author, he only chooses the one that tells the maximum number of problems he's interested in. In the second example the first one can tell problems 2 to 4, the second one — 4 to 6. In the third example the first one can tell problems 1 to 1, the second one — 2 to 2. Or 4 to 4 and 3 to 3. Every pair of different problems will get the same sum of 2. In the fourth example the first one can tell problems 1 to 5, the second one — 1 to 5 as well.
instruction
0
93,704
11
187,408
Tags: brute force, dp, greedy, sortings, two pointers Correct Solution: ``` import sys BUFSIZE = 8192 from sys import stderr from io import BytesIO, IOBase import os class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") def print(*args, **kwargs): """Prints the values to a stream, or to sys.stdout by default.""" sep, file = kwargs.pop("sep", " "), kwargs.pop("file", sys.stdout) at_start = True for x in args: if not at_start: file.write(sep) file.write(str(x)) at_start = False file.write(kwargs.pop("end", "\n")) if kwargs.pop("flush", False): file.flush() if sys.version_info[0] < 3: sys.stdin, sys.stdout = FastIO(sys.stdin), FastIO(sys.stdout) else: sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) # inp = lambda: sys.stdin.readline().rstrip("\r\n") def solve(): n, m, k = map(int, input().split());a = [list(map(int, input().split())) for _ in range(m)] def solv(lst): res = sum(lst[:k]);s = res for i in range(n-k):s += lst[i+k] - lst[i];res = max(res, s) return res a.sort(key=lambda x: sum(x)/2);apr = [0]*n for el in a: for i in range(el[0]-1, el[1]):apr[i] += 1 res = solv(apr);bpr = [0]*n for r, l in a: for i in range(r-1, l):apr[i] -= 1;bpr[i] += 1 nres = solv(apr) + solv(bpr);res = max(res, nres) print(res) solve() #testcase(int(inp())) # 5 # 3 6 # 5 10 # 4 3 # 2 1 # 1 3 ```
output
1
93,704
11
187,409
Provide tags and a correct Python 3 solution for this coding contest problem. Berland regional ICPC contest has just ended. There were m participants numbered from 1 to m, who competed on a problemset of n problems numbered from 1 to n. Now the editorial is about to take place. There are two problem authors, each of them is going to tell the tutorial to exactly k consecutive tasks of the problemset. The authors choose the segment of k consecutive tasks for themselves independently of each other. The segments can coincide, intersect or not intersect at all. The i-th participant is interested in listening to the tutorial of all consecutive tasks from l_i to r_i. Each participant always chooses to listen to only the problem author that tells the tutorials to the maximum number of tasks he is interested in. Let this maximum number be a_i. No participant can listen to both of the authors, even if their segments don't intersect. The authors want to choose the segments of k consecutive tasks for themselves in such a way that the sum of a_i over all participants is maximized. Input The first line contains three integers n, m and k (1 ≤ n, m ≤ 2000, 1 ≤ k ≤ n) — the number of problems, the number of participants and the length of the segment of tasks each of the problem authors plans to tell the tutorial to. The i-th of the next m lines contains two integers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the segment of tasks the i-th participant is interested in listening to the tutorial to. Output Print a single integer — the maximum sum of a_i over all participants. Examples Input 10 5 3 1 3 2 4 6 9 6 9 1 8 Output 14 Input 10 3 3 2 4 4 6 3 5 Output 8 Input 4 4 1 3 3 1 1 2 2 4 4 Output 2 Input 5 4 5 1 2 2 3 3 4 4 5 Output 8 Note In the first example the first author can tell the tutorial to problems from 1 to 3 and the second one — from 6 to 8. That way the sequence of a_i will be [3, 2, 3, 3, 3]. Notice that the last participant can't listen to both author, he only chooses the one that tells the maximum number of problems he's interested in. In the second example the first one can tell problems 2 to 4, the second one — 4 to 6. In the third example the first one can tell problems 1 to 1, the second one — 2 to 2. Or 4 to 4 and 3 to 3. Every pair of different problems will get the same sum of 2. In the fourth example the first one can tell problems 1 to 5, the second one — 1 to 5 as well.
instruction
0
93,705
11
187,410
Tags: brute force, dp, greedy, sortings, two pointers Correct Solution: ``` # Enter your code here. Read input from STDIN. Print output to STDOUT# =============================================================================================== # importing some useful libraries. from __future__ import division, print_function from fractions import Fraction import sys import os from io import BytesIO, IOBase from itertools import * import bisect from heapq import * from math import ceil, floor from copy import * from collections import deque, defaultdict from collections import Counter as counter # Counter(list) return a dict with {key: count} from itertools import combinations # if a = [1,2,3] then print(list(comb(a,2))) -----> [(1, 2), (1, 3), (2, 3)] from itertools import permutations as permutate from bisect import bisect_left as bl from operator import * # If the element is already present in the list, # the left most position where element has to be inserted is returned. from bisect import bisect_right as br from bisect import bisect # If the element is already present in the list, # the right most position where element has to be inserted is returned # ============================================================================================== # fast I/O region BUFSIZE = 8192 from sys import stderr class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") def print(*args, **kwargs): """Prints the values to a stream, or to sys.stdout by default.""" sep, file = kwargs.pop("sep", " "), kwargs.pop("file", sys.stdout) at_start = True for x in args: if not at_start: file.write(sep) file.write(str(x)) at_start = False file.write(kwargs.pop("end", "\n")) if kwargs.pop("flush", False): file.flush() if sys.version_info[0] < 3: sys.stdin, sys.stdout = FastIO(sys.stdin), FastIO(sys.stdout) else: sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) # inp = lambda: sys.stdin.readline().rstrip("\r\n") # =============================================================================================== ### START ITERATE RECURSION ### from types import GeneratorType def iterative(f, stack=[]): def wrapped_func(*args, **kwargs): if stack: return f(*args, **kwargs) to = f(*args, **kwargs) while True: if type(to) is GeneratorType: stack.append(to) to = next(to) continue stack.pop() if not stack: break to = stack[-1].send(to) return to return wrapped_func #### END ITERATE RECURSION #### ########################### # Sorted list class SortedList: def __init__(self, iterable=[], _load=200): """Initialize sorted list instance.""" values = sorted(iterable) self._len = _len = len(values) self._load = _load self._lists = _lists = [values[i:i + _load] for i in range(0, _len, _load)] self._list_lens = [len(_list) for _list in _lists] self._mins = [_list[0] for _list in _lists] self._fen_tree = [] self._rebuild = True def _fen_build(self): """Build a fenwick tree instance.""" self._fen_tree[:] = self._list_lens _fen_tree = self._fen_tree for i in range(len(_fen_tree)): if i | i + 1 < len(_fen_tree): _fen_tree[i | i + 1] += _fen_tree[i] self._rebuild = False def _fen_update(self, index, value): """Update `fen_tree[index] += value`.""" if not self._rebuild: _fen_tree = self._fen_tree while index < len(_fen_tree): _fen_tree[index] += value index |= index + 1 def _fen_query(self, end): """Return `sum(_fen_tree[:end])`.""" if self._rebuild: self._fen_build() _fen_tree = self._fen_tree x = 0 while end: x += _fen_tree[end - 1] end &= end - 1 return x def _fen_findkth(self, k): """Return a pair of (the largest `idx` such that `sum(_fen_tree[:idx]) <= k`, `k - sum(_fen_tree[:idx])`).""" _list_lens = self._list_lens if k < _list_lens[0]: return 0, k if k >= self._len - _list_lens[-1]: return len(_list_lens) - 1, k + _list_lens[-1] - self._len if self._rebuild: self._fen_build() _fen_tree = self._fen_tree idx = -1 for d in reversed(range(len(_fen_tree).bit_length())): right_idx = idx + (1 << d) if right_idx < len(_fen_tree) and k >= _fen_tree[right_idx]: idx = right_idx k -= _fen_tree[idx] return idx + 1, k def _delete(self, pos, idx): """Delete value at the given `(pos, idx)`.""" _lists = self._lists _mins = self._mins _list_lens = self._list_lens self._len -= 1 self._fen_update(pos, -1) del _lists[pos][idx] _list_lens[pos] -= 1 if _list_lens[pos]: _mins[pos] = _lists[pos][0] else: del _lists[pos] del _list_lens[pos] del _mins[pos] self._rebuild = True def _loc_left(self, value): """Return an index pair that corresponds to the first position of `value` in the sorted list.""" if not self._len: return 0, 0 _lists = self._lists _mins = self._mins lo, pos = -1, len(_lists) - 1 while lo + 1 < pos: mi = (lo + pos) >> 1 if value <= _mins[mi]: pos = mi else: lo = mi if pos and value <= _lists[pos - 1][-1]: pos -= 1 _list = _lists[pos] lo, idx = -1, len(_list) while lo + 1 < idx: mi = (lo + idx) >> 1 if value <= _list[mi]: idx = mi else: lo = mi return pos, idx def _loc_right(self, value): """Return an index pair that corresponds to the last position of `value` in the sorted list.""" if not self._len: return 0, 0 _lists = self._lists _mins = self._mins pos, hi = 0, len(_lists) while pos + 1 < hi: mi = (pos + hi) >> 1 if value < _mins[mi]: hi = mi else: pos = mi _list = _lists[pos] lo, idx = -1, len(_list) while lo + 1 < idx: mi = (lo + idx) >> 1 if value < _list[mi]: idx = mi else: lo = mi return pos, idx def add(self, value): """Add `value` to sorted list.""" _load = self._load _lists = self._lists _mins = self._mins _list_lens = self._list_lens self._len += 1 if _lists: pos, idx = self._loc_right(value) self._fen_update(pos, 1) _list = _lists[pos] _list.insert(idx, value) _list_lens[pos] += 1 _mins[pos] = _list[0] if _load + _load < len(_list): _lists.insert(pos + 1, _list[_load:]) _list_lens.insert(pos + 1, len(_list) - _load) _mins.insert(pos + 1, _list[_load]) _list_lens[pos] = _load del _list[_load:] self._rebuild = True else: _lists.append([value]) _mins.append(value) _list_lens.append(1) self._rebuild = True def discard(self, value): """Remove `value` from sorted list if it is a member.""" _lists = self._lists if _lists: pos, idx = self._loc_right(value) if idx and _lists[pos][idx - 1] == value: self._delete(pos, idx - 1) def remove(self, value): """Remove `value` from sorted list; `value` must be a member.""" _len = self._len self.discard(value) if _len == self._len: raise ValueError('{0!r} not in list'.format(value)) def pop(self, index=-1): """Remove and return value at `index` in sorted list.""" pos, idx = self._fen_findkth(self._len + index if index < 0 else index) value = self._lists[pos][idx] self._delete(pos, idx) return value def bisect_left(self, value): """Return the first index to insert `value` in the sorted list.""" pos, idx = self._loc_left(value) return self._fen_query(pos) + idx def bisect_right(self, value): """Return the last index to insert `value` in the sorted list.""" pos, idx = self._loc_right(value) return self._fen_query(pos) + idx def count(self, value): """Return number of occurrences of `value` in the sorted list.""" return self.bisect_right(value) - self.bisect_left(value) def __len__(self): """Return the size of the sorted list.""" return self._len def __getitem__(self, index): """Lookup value at `index` in sorted list.""" pos, idx = self._fen_findkth(self._len + index if index < 0 else index) return self._lists[pos][idx] def __delitem__(self, index): """Remove value at `index` from sorted list.""" pos, idx = self._fen_findkth(self._len + index if index < 0 else index) self._delete(pos, idx) def __contains__(self, value): """Return true if `value` is an element of the sorted list.""" _lists = self._lists if _lists: pos, idx = self._loc_left(value) return idx < len(_lists[pos]) and _lists[pos][idx] == value return False def __iter__(self): """Return an iterator over the sorted list.""" return (value for _list in self._lists for value in _list) def __reversed__(self): """Return a reverse iterator over the sorted list.""" return (value for _list in reversed(self._lists) for value in reversed(_list)) def __repr__(self): """Return string representation of sorted list.""" return 'SortedList({0})'.format(list(self)) # =============================================================================================== # some shortcuts mod = 1000000007 def inp(): return sys.stdin.readline().rstrip("\r\n") # for fast input def out(var): sys.stdout.write(str(var)) # for fast output, always take string def lis(): return list(map(int, inp().split())) def stringlis(): return list(map(str, inp().split())) def sep(): return map(int, inp().split()) def strsep(): return map(str, inp().split()) def fsep(): return map(float, inp().split()) def nextline(): out("\n") # as stdout.write always print sring. def testcase(t): for p in range(t): solve() def pow(x, y, p): res = 1 # Initialize result x = x % p # Update x if it is more , than or equal to p if (x == 0): return 0 while (y > 0): if ((y & 1) == 1): # If y is odd, multiply, x with result res = (res * x) % p y = y >> 1 # y = y/2 x = (x * x) % p return res from functools import reduce def factors(n): return set(reduce(list.__add__, ([i, n // i] for i in range(1, int(n ** 0.5) + 1) if n % i == 0))) def gcd(a, b): if a == b: return a while b > 0: a, b = b, a % b return a # discrete binary search # minimise: # def search(): # l = 0 # r = 10 ** 15 # # for i in range(200): # if isvalid(l): # return l # if l == r: # return l # m = (l + r) // 2 # if isvalid(m) and not isvalid(m - 1): # return m # if isvalid(m): # r = m + 1 # else: # l = m # return m # maximise: # def search(): # l = 0 # r = 10 ** 15 # # for i in range(200): # # print(l,r) # if isvalid(r): # return r # if l == r: # return l # m = (l + r) // 2 # if isvalid(m) and not isvalid(m + 1): # return m # if isvalid(m): # l = m # else: # r = m - 1 # return m ##############Find sum of product of subsets of size k in a array # ar=[0,1,2,3] # k=3 # n=len(ar)-1 # dp=[0]*(n+1) # dp[0]=1 # for pos in range(1,n+1): # dp[pos]=0 # l=max(1,k+pos-n-1) # for j in range(min(pos,k),l-1,-1): # dp[j]=dp[j]+ar[pos]*dp[j-1] # print(dp[k]) def prefix_sum(ar): # [1,2,3,4]->[1,3,6,10] return list(accumulate(ar)) def suffix_sum(ar): # [1,2,3,4]->[10,9,7,4] return list(accumulate(ar[::-1]))[::-1] def N(): return int(inp()) dx = [0, 0, 1, -1] dy = [1, -1, 0, 0] def YES(): print("YES") def NO(): print("NO") def Yes(): print("Yes") def No(): print("No") # ========================================================================================= from collections import defaultdict def numberOfSetBits(i): i = i - ((i >> 1) & 0x55555555) i = (i & 0x33333333) + ((i >> 2) & 0x33333333) return (((i + (i >> 4) & 0xF0F0F0F) * 0x1010101) & 0xffffffff) >> 24 def lcm(a, b): return abs((a // gcd(a, b)) * b) # # # to find factorial and ncr # tot = 400005 # mod = 10 ** 9 + 7 # fac = [1, 1] # finv = [1, 1] # inv = [0, 1] # # for i in range(2, tot + 1): # fac.append((fac[-1] * i) % mod) # inv.append(mod - (inv[mod % i] * (mod // i) % mod)) # finv.append(finv[-1] * inv[-1] % mod) # # # def comb(n, r): # if n < r: # return 0 # else: # return fac[n] * (finv[r] * finv[n - r] % mod) % mod def solve(): n, m, k = map(int, input().split());a = [list(map(int, input().split())) for _ in range(m)] def solv(lst): res = sum(lst[:k]);s = res for i in range(n-k):s += lst[i+k] - lst[i];res = max(res, s) return res a.sort(key=lambda x: sum(x)/2);apr = [0]*n for el in a: for i in range(el[0]-1, el[1]):apr[i] += 1 res = solv(apr);bpr = [0]*n for r, l in a: for i in range(r-1, l):apr[i] -= 1;bpr[i] += 1 nres = solv(apr) + solv(bpr);res = max(res, nres) print(res) solve() #testcase(int(inp())) # 5 # 3 6 # 5 10 # 4 3 # 2 1 # 1 3 ```
output
1
93,705
11
187,411
Provide tags and a correct Python 3 solution for this coding contest problem. Berland regional ICPC contest has just ended. There were m participants numbered from 1 to m, who competed on a problemset of n problems numbered from 1 to n. Now the editorial is about to take place. There are two problem authors, each of them is going to tell the tutorial to exactly k consecutive tasks of the problemset. The authors choose the segment of k consecutive tasks for themselves independently of each other. The segments can coincide, intersect or not intersect at all. The i-th participant is interested in listening to the tutorial of all consecutive tasks from l_i to r_i. Each participant always chooses to listen to only the problem author that tells the tutorials to the maximum number of tasks he is interested in. Let this maximum number be a_i. No participant can listen to both of the authors, even if their segments don't intersect. The authors want to choose the segments of k consecutive tasks for themselves in such a way that the sum of a_i over all participants is maximized. Input The first line contains three integers n, m and k (1 ≤ n, m ≤ 2000, 1 ≤ k ≤ n) — the number of problems, the number of participants and the length of the segment of tasks each of the problem authors plans to tell the tutorial to. The i-th of the next m lines contains two integers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the segment of tasks the i-th participant is interested in listening to the tutorial to. Output Print a single integer — the maximum sum of a_i over all participants. Examples Input 10 5 3 1 3 2 4 6 9 6 9 1 8 Output 14 Input 10 3 3 2 4 4 6 3 5 Output 8 Input 4 4 1 3 3 1 1 2 2 4 4 Output 2 Input 5 4 5 1 2 2 3 3 4 4 5 Output 8 Note In the first example the first author can tell the tutorial to problems from 1 to 3 and the second one — from 6 to 8. That way the sequence of a_i will be [3, 2, 3, 3, 3]. Notice that the last participant can't listen to both author, he only chooses the one that tells the maximum number of problems he's interested in. In the second example the first one can tell problems 2 to 4, the second one — 4 to 6. In the third example the first one can tell problems 1 to 1, the second one — 2 to 2. Or 4 to 4 and 3 to 3. Every pair of different problems will get the same sum of 2. In the fourth example the first one can tell problems 1 to 5, the second one — 1 to 5 as well.
instruction
0
93,706
11
187,412
Tags: brute force, dp, greedy, sortings, two pointers Correct Solution: ``` import sys input = sys.stdin.buffer.readline def prog(): n,m,k = map(int,input().split()) intervals = [list(map(int,input().split())) for i in range(m)] for i in range(m): intervals[i][0] -= 1 intervals[i][1] -= 1 mx = 0 for i in range(n-k+1): curr = 0 change = 0 events = [0]*(2*n+1) for interval in intervals: length = interval[1] - interval[0] + 1 if i <= interval[0] <= interval[1] <= i+k-1: curr += length elif interval[0] <= i <= i+k-1 <= interval[1]: curr += k elif i <= interval[0] <= i+k-1 or i <= interval[1] <= i+k-1: if i <= interval[0] <= i+k-1: intersect = i+k-1 - interval[0] + 1 else: intersect = interval[1] - i + 1 curr += intersect events[interval[0] + intersect] += 1 events[interval[0] + k] -= 1 events[interval[1] + 1] -= 1 events[interval[1] + k + 1] += 1 else: events[interval[0]] += 1 events[interval[0] + k] -= 1 events[interval[1] + 1] -= 1 events[interval[1] + k + 1] += 1 for j in range(n): change += events[j] curr += change mx = max(mx,curr) print(mx) prog() ```
output
1
93,706
11
187,413
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Berland regional ICPC contest has just ended. There were m participants numbered from 1 to m, who competed on a problemset of n problems numbered from 1 to n. Now the editorial is about to take place. There are two problem authors, each of them is going to tell the tutorial to exactly k consecutive tasks of the problemset. The authors choose the segment of k consecutive tasks for themselves independently of each other. The segments can coincide, intersect or not intersect at all. The i-th participant is interested in listening to the tutorial of all consecutive tasks from l_i to r_i. Each participant always chooses to listen to only the problem author that tells the tutorials to the maximum number of tasks he is interested in. Let this maximum number be a_i. No participant can listen to both of the authors, even if their segments don't intersect. The authors want to choose the segments of k consecutive tasks for themselves in such a way that the sum of a_i over all participants is maximized. Input The first line contains three integers n, m and k (1 ≤ n, m ≤ 2000, 1 ≤ k ≤ n) — the number of problems, the number of participants and the length of the segment of tasks each of the problem authors plans to tell the tutorial to. The i-th of the next m lines contains two integers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the segment of tasks the i-th participant is interested in listening to the tutorial to. Output Print a single integer — the maximum sum of a_i over all participants. Examples Input 10 5 3 1 3 2 4 6 9 6 9 1 8 Output 14 Input 10 3 3 2 4 4 6 3 5 Output 8 Input 4 4 1 3 3 1 1 2 2 4 4 Output 2 Input 5 4 5 1 2 2 3 3 4 4 5 Output 8 Note In the first example the first author can tell the tutorial to problems from 1 to 3 and the second one — from 6 to 8. That way the sequence of a_i will be [3, 2, 3, 3, 3]. Notice that the last participant can't listen to both author, he only chooses the one that tells the maximum number of problems he's interested in. In the second example the first one can tell problems 2 to 4, the second one — 4 to 6. In the third example the first one can tell problems 1 to 1, the second one — 2 to 2. Or 4 to 4 and 3 to 3. Every pair of different problems will get the same sum of 2. In the fourth example the first one can tell problems 1 to 5, the second one — 1 to 5 as well. Submitted Solution: ``` import sys,os,io input = sys.stdin.readline #input = io.BytesIO(os.read(0,os.fstat(0).st_size)).readline n, m, k = map(int, input().split()) A = [list(map(int, input().split())) for _ in range(m)] A.sort(key = lambda x:x[0]+x[1]) table = [[0]*m for _ in range(n-k+1)] for i in range(n-k+1): #i+1~i+k for j in range(m): lower = max(i+1, A[j][0]) upper = min(i+k, A[j][1]) table[i][j] = max(0,upper-lower+1) from copy import deepcopy cum1 = deepcopy(table) cum2 = deepcopy(table) ans = 0 for i in range(n-k+1): for j in range(1,m): cum1[i][j] += cum1[i][j-1] for i in range(n-k+1): for j in range(m-2,-1,-1): cum2[i][j] += cum2[i][j+1] # ans = max([cum1[i][-1] for i in range(n-k+1)]) ans = max([cum2[i][0] for i in range(n-k+1)]) for j in range(m-1): left = max([cum1[i][j] for i in range(n-k+1)]) right = max([cum2[i][j+1] for i in range(n-k+1)]) ans = max(ans, left+right) print(ans) ```
instruction
0
93,707
11
187,414
Yes
output
1
93,707
11
187,415
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Berland regional ICPC contest has just ended. There were m participants numbered from 1 to m, who competed on a problemset of n problems numbered from 1 to n. Now the editorial is about to take place. There are two problem authors, each of them is going to tell the tutorial to exactly k consecutive tasks of the problemset. The authors choose the segment of k consecutive tasks for themselves independently of each other. The segments can coincide, intersect or not intersect at all. The i-th participant is interested in listening to the tutorial of all consecutive tasks from l_i to r_i. Each participant always chooses to listen to only the problem author that tells the tutorials to the maximum number of tasks he is interested in. Let this maximum number be a_i. No participant can listen to both of the authors, even if their segments don't intersect. The authors want to choose the segments of k consecutive tasks for themselves in such a way that the sum of a_i over all participants is maximized. Input The first line contains three integers n, m and k (1 ≤ n, m ≤ 2000, 1 ≤ k ≤ n) — the number of problems, the number of participants and the length of the segment of tasks each of the problem authors plans to tell the tutorial to. The i-th of the next m lines contains two integers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the segment of tasks the i-th participant is interested in listening to the tutorial to. Output Print a single integer — the maximum sum of a_i over all participants. Examples Input 10 5 3 1 3 2 4 6 9 6 9 1 8 Output 14 Input 10 3 3 2 4 4 6 3 5 Output 8 Input 4 4 1 3 3 1 1 2 2 4 4 Output 2 Input 5 4 5 1 2 2 3 3 4 4 5 Output 8 Note In the first example the first author can tell the tutorial to problems from 1 to 3 and the second one — from 6 to 8. That way the sequence of a_i will be [3, 2, 3, 3, 3]. Notice that the last participant can't listen to both author, he only chooses the one that tells the maximum number of problems he's interested in. In the second example the first one can tell problems 2 to 4, the second one — 4 to 6. In the third example the first one can tell problems 1 to 1, the second one — 2 to 2. Or 4 to 4 and 3 to 3. Every pair of different problems will get the same sum of 2. In the fourth example the first one can tell problems 1 to 5, the second one — 1 to 5 as well. Submitted Solution: ``` n, m, k = map(int, input().split()) A = [list(map(int, input().split())) for _ in range(m)] A.sort(key = lambda x:x[0]+x[1]) table = [[0]*m for _ in range(n-k+1)] for i in range(n-k+1): #i+1~i+k for j in range(m): lower = max(i+1, A[j][0]) upper = min(i+k, A[j][1]) table[i][j] = max(0,upper-lower+1) from copy import deepcopy cum1 = deepcopy(table) cum2 = deepcopy(table) ans = 0 for i in range(n-k+1): for j in range(1,m): cum1[i][j] += cum1[i][j-1] for i in range(n-k+1): for j in range(m-2,-1,-1): cum2[i][j] += cum2[i][j+1] ans = max([cum1[i][-1] for i in range(n-k+1)]) ans = max(ans,max([cum2[i][0] for i in range(n-k+1)])) for j in range(m-1): left = max([cum1[i][j] for i in range(n-k+1)]) right = max([cum2[i][j+1] for i in range(n-k+1)]) ans = max(ans, left+right) print(ans) ```
instruction
0
93,708
11
187,416
Yes
output
1
93,708
11
187,417
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Berland regional ICPC contest has just ended. There were m participants numbered from 1 to m, who competed on a problemset of n problems numbered from 1 to n. Now the editorial is about to take place. There are two problem authors, each of them is going to tell the tutorial to exactly k consecutive tasks of the problemset. The authors choose the segment of k consecutive tasks for themselves independently of each other. The segments can coincide, intersect or not intersect at all. The i-th participant is interested in listening to the tutorial of all consecutive tasks from l_i to r_i. Each participant always chooses to listen to only the problem author that tells the tutorials to the maximum number of tasks he is interested in. Let this maximum number be a_i. No participant can listen to both of the authors, even if their segments don't intersect. The authors want to choose the segments of k consecutive tasks for themselves in such a way that the sum of a_i over all participants is maximized. Input The first line contains three integers n, m and k (1 ≤ n, m ≤ 2000, 1 ≤ k ≤ n) — the number of problems, the number of participants and the length of the segment of tasks each of the problem authors plans to tell the tutorial to. The i-th of the next m lines contains two integers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the segment of tasks the i-th participant is interested in listening to the tutorial to. Output Print a single integer — the maximum sum of a_i over all participants. Examples Input 10 5 3 1 3 2 4 6 9 6 9 1 8 Output 14 Input 10 3 3 2 4 4 6 3 5 Output 8 Input 4 4 1 3 3 1 1 2 2 4 4 Output 2 Input 5 4 5 1 2 2 3 3 4 4 5 Output 8 Note In the first example the first author can tell the tutorial to problems from 1 to 3 and the second one — from 6 to 8. That way the sequence of a_i will be [3, 2, 3, 3, 3]. Notice that the last participant can't listen to both author, he only chooses the one that tells the maximum number of problems he's interested in. In the second example the first one can tell problems 2 to 4, the second one — 4 to 6. In the third example the first one can tell problems 1 to 1, the second one — 2 to 2. Or 4 to 4 and 3 to 3. Every pair of different problems will get the same sum of 2. In the fourth example the first one can tell problems 1 to 5, the second one — 1 to 5 as well. Submitted Solution: ``` import sys,os,io input = sys.stdin.readline #input = io.BytesIO(os.read(0,os.fstat(0).st_size)).readline n, m, k = map(int, input().split()) A = [list(map(int, input().split())) for _ in range(m)] A.sort(key = lambda x:x[0]+x[1]) table = [[0]*m for _ in range(n-k+1)] for i in range(n-k+1): #i+1~i+k for j in range(m): lower = max(i+1, A[j][0]) upper = min(i+k, A[j][1]) table[i][j] = max(0,upper-lower+1) from copy import deepcopy cum1 = deepcopy(table) cum2 = deepcopy(table) for i in range(n-k+1): for j in range(1,m): cum1[i][j] += cum1[i][j-1] for i in range(n-k+1): for j in range(m-2,-1,-1): cum2[i][j] += cum2[i][j+1] # mが1の場合を考慮 ans = max([cum1[i][-1] for i in range(n-k+1)]) for j in range(m-1): left = max([cum1[i][j] for i in range(n-k+1)]) right = max([cum2[i][j+1] for i in range(n-k+1)]) ans = max(ans, left+right) print(ans) ```
instruction
0
93,709
11
187,418
Yes
output
1
93,709
11
187,419
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Berland regional ICPC contest has just ended. There were m participants numbered from 1 to m, who competed on a problemset of n problems numbered from 1 to n. Now the editorial is about to take place. There are two problem authors, each of them is going to tell the tutorial to exactly k consecutive tasks of the problemset. The authors choose the segment of k consecutive tasks for themselves independently of each other. The segments can coincide, intersect or not intersect at all. The i-th participant is interested in listening to the tutorial of all consecutive tasks from l_i to r_i. Each participant always chooses to listen to only the problem author that tells the tutorials to the maximum number of tasks he is interested in. Let this maximum number be a_i. No participant can listen to both of the authors, even if their segments don't intersect. The authors want to choose the segments of k consecutive tasks for themselves in such a way that the sum of a_i over all participants is maximized. Input The first line contains three integers n, m and k (1 ≤ n, m ≤ 2000, 1 ≤ k ≤ n) — the number of problems, the number of participants and the length of the segment of tasks each of the problem authors plans to tell the tutorial to. The i-th of the next m lines contains two integers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the segment of tasks the i-th participant is interested in listening to the tutorial to. Output Print a single integer — the maximum sum of a_i over all participants. Examples Input 10 5 3 1 3 2 4 6 9 6 9 1 8 Output 14 Input 10 3 3 2 4 4 6 3 5 Output 8 Input 4 4 1 3 3 1 1 2 2 4 4 Output 2 Input 5 4 5 1 2 2 3 3 4 4 5 Output 8 Note In the first example the first author can tell the tutorial to problems from 1 to 3 and the second one — from 6 to 8. That way the sequence of a_i will be [3, 2, 3, 3, 3]. Notice that the last participant can't listen to both author, he only chooses the one that tells the maximum number of problems he's interested in. In the second example the first one can tell problems 2 to 4, the second one — 4 to 6. In the third example the first one can tell problems 1 to 1, the second one — 2 to 2. Or 4 to 4 and 3 to 3. Every pair of different problems will get the same sum of 2. In the fourth example the first one can tell problems 1 to 5, the second one — 1 to 5 as well. Submitted Solution: ``` import sys,os,io input = sys.stdin.readline #input = io.BytesIO(os.read(0,os.fstat(0).st_size)).readline n, m, k = map(int, input().split()) A = [list(map(int, input().split())) for _ in range(m)] A.sort(key = lambda x:x[0]+x[1]) table = [[0]*m for _ in range(n-k+1)] for i in range(n-k+1): #i+1~i+k for j in range(m): lower = max(i+1, A[j][0]) upper = min(i+k, A[j][1]) table[i][j] = max(0,upper-lower+1) from copy import deepcopy cum1 = deepcopy(table) cum2 = deepcopy(table) ans = 0 for i in range(n-k+1): for j in range(1,m): cum1[i][j] += cum1[i][j-1] for i in range(n-k+1): for j in range(m-2,-1,-1): cum2[i][j] += cum2[i][j+1] ans = max([cum1[i][-1] for i in range(n-k+1)]) # ans = max(ans,max([cum2[i][0] for i in range(n-k+1)])) for j in range(m-1): left = max([cum1[i][j] for i in range(n-k+1)]) right = max([cum2[i][j+1] for i in range(n-k+1)]) ans = max(ans, left+right) print(ans) ```
instruction
0
93,710
11
187,420
Yes
output
1
93,710
11
187,421
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Berland regional ICPC contest has just ended. There were m participants numbered from 1 to m, who competed on a problemset of n problems numbered from 1 to n. Now the editorial is about to take place. There are two problem authors, each of them is going to tell the tutorial to exactly k consecutive tasks of the problemset. The authors choose the segment of k consecutive tasks for themselves independently of each other. The segments can coincide, intersect or not intersect at all. The i-th participant is interested in listening to the tutorial of all consecutive tasks from l_i to r_i. Each participant always chooses to listen to only the problem author that tells the tutorials to the maximum number of tasks he is interested in. Let this maximum number be a_i. No participant can listen to both of the authors, even if their segments don't intersect. The authors want to choose the segments of k consecutive tasks for themselves in such a way that the sum of a_i over all participants is maximized. Input The first line contains three integers n, m and k (1 ≤ n, m ≤ 2000, 1 ≤ k ≤ n) — the number of problems, the number of participants and the length of the segment of tasks each of the problem authors plans to tell the tutorial to. The i-th of the next m lines contains two integers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the segment of tasks the i-th participant is interested in listening to the tutorial to. Output Print a single integer — the maximum sum of a_i over all participants. Examples Input 10 5 3 1 3 2 4 6 9 6 9 1 8 Output 14 Input 10 3 3 2 4 4 6 3 5 Output 8 Input 4 4 1 3 3 1 1 2 2 4 4 Output 2 Input 5 4 5 1 2 2 3 3 4 4 5 Output 8 Note In the first example the first author can tell the tutorial to problems from 1 to 3 and the second one — from 6 to 8. That way the sequence of a_i will be [3, 2, 3, 3, 3]. Notice that the last participant can't listen to both author, he only chooses the one that tells the maximum number of problems he's interested in. In the second example the first one can tell problems 2 to 4, the second one — 4 to 6. In the third example the first one can tell problems 1 to 1, the second one — 2 to 2. Or 4 to 4 and 3 to 3. Every pair of different problems will get the same sum of 2. In the fourth example the first one can tell problems 1 to 5, the second one — 1 to 5 as well. Submitted Solution: ``` n, m, k = map(int, input().split()) A = [list(map(int, input().split())) for _ in range(m)] A.sort(key = lambda x:x[0]+x[1]) table = [[0]*m for _ in range(n-k+1)] for i in range(n-k+1): #i+1~i+k for j in range(m): lower = max(i+1, A[j][0]) upper = min(i+k, A[j][1]) table[i][j] = max(0,upper-lower+1) from copy import deepcopy cum1 = deepcopy(table) cum2 = deepcopy(table) ans = 0 for i in range(n-k+1): for j in range(1,m): cum1[i][j] += cum1[i][j-1] for i in range(n-k+1): for j in range(m-2,-1,-1): cum2[i][j] += cum2[i][j+1] for j in range(m-1): left = max([cum1[i][j] for i in range(n-k+1)]) right = max([cum2[i][j+1] for i in range(n-k+1)]) ans = max(ans, left+right) print(ans) ```
instruction
0
93,711
11
187,422
No
output
1
93,711
11
187,423
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Berland regional ICPC contest has just ended. There were m participants numbered from 1 to m, who competed on a problemset of n problems numbered from 1 to n. Now the editorial is about to take place. There are two problem authors, each of them is going to tell the tutorial to exactly k consecutive tasks of the problemset. The authors choose the segment of k consecutive tasks for themselves independently of each other. The segments can coincide, intersect or not intersect at all. The i-th participant is interested in listening to the tutorial of all consecutive tasks from l_i to r_i. Each participant always chooses to listen to only the problem author that tells the tutorials to the maximum number of tasks he is interested in. Let this maximum number be a_i. No participant can listen to both of the authors, even if their segments don't intersect. The authors want to choose the segments of k consecutive tasks for themselves in such a way that the sum of a_i over all participants is maximized. Input The first line contains three integers n, m and k (1 ≤ n, m ≤ 2000, 1 ≤ k ≤ n) — the number of problems, the number of participants and the length of the segment of tasks each of the problem authors plans to tell the tutorial to. The i-th of the next m lines contains two integers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the segment of tasks the i-th participant is interested in listening to the tutorial to. Output Print a single integer — the maximum sum of a_i over all participants. Examples Input 10 5 3 1 3 2 4 6 9 6 9 1 8 Output 14 Input 10 3 3 2 4 4 6 3 5 Output 8 Input 4 4 1 3 3 1 1 2 2 4 4 Output 2 Input 5 4 5 1 2 2 3 3 4 4 5 Output 8 Note In the first example the first author can tell the tutorial to problems from 1 to 3 and the second one — from 6 to 8. That way the sequence of a_i will be [3, 2, 3, 3, 3]. Notice that the last participant can't listen to both author, he only chooses the one that tells the maximum number of problems he's interested in. In the second example the first one can tell problems 2 to 4, the second one — 4 to 6. In the third example the first one can tell problems 1 to 1, the second one — 2 to 2. Or 4 to 4 and 3 to 3. Every pair of different problems will get the same sum of 2. In the fourth example the first one can tell problems 1 to 5, the second one — 1 to 5 as well. Submitted Solution: ``` from sys import stdin def inverse(a,mod): return pow(a,mod-2,mod) n,m,k = map(int,stdin.readline().split()) ans = 0 lr = [] for i in range(m): l,r = map(int,stdin.readline().split()) lr.append((l-1,r-1)) for D1 in range(0,n-k+1): now = 0 nch = 0 ch = [0] * (n-k+1) for l,r in lr: L,R = l,r+1 if D1 >= R or L >= D1+k: X = 0 elif D1 <= L <= D1+k <= R: X = D1+k-L elif L <= D1 <= R <= D1+k: X = R-D1 else: X = min(R-L,k) now += X tmp = [(l-k+X,1),(l,-1),(r+1-k,-1),(r+1-X,1)] for i,j in tmp: if i < 0: now += j elif i < n-k+1: ch[i] += j for i in range(n-k+1): ans = max(ans,now) now += nch nch += ch[i] print (ans) ```
instruction
0
93,712
11
187,424
No
output
1
93,712
11
187,425
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Berland regional ICPC contest has just ended. There were m participants numbered from 1 to m, who competed on a problemset of n problems numbered from 1 to n. Now the editorial is about to take place. There are two problem authors, each of them is going to tell the tutorial to exactly k consecutive tasks of the problemset. The authors choose the segment of k consecutive tasks for themselves independently of each other. The segments can coincide, intersect or not intersect at all. The i-th participant is interested in listening to the tutorial of all consecutive tasks from l_i to r_i. Each participant always chooses to listen to only the problem author that tells the tutorials to the maximum number of tasks he is interested in. Let this maximum number be a_i. No participant can listen to both of the authors, even if their segments don't intersect. The authors want to choose the segments of k consecutive tasks for themselves in such a way that the sum of a_i over all participants is maximized. Input The first line contains three integers n, m and k (1 ≤ n, m ≤ 2000, 1 ≤ k ≤ n) — the number of problems, the number of participants and the length of the segment of tasks each of the problem authors plans to tell the tutorial to. The i-th of the next m lines contains two integers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the segment of tasks the i-th participant is interested in listening to the tutorial to. Output Print a single integer — the maximum sum of a_i over all participants. Examples Input 10 5 3 1 3 2 4 6 9 6 9 1 8 Output 14 Input 10 3 3 2 4 4 6 3 5 Output 8 Input 4 4 1 3 3 1 1 2 2 4 4 Output 2 Input 5 4 5 1 2 2 3 3 4 4 5 Output 8 Note In the first example the first author can tell the tutorial to problems from 1 to 3 and the second one — from 6 to 8. That way the sequence of a_i will be [3, 2, 3, 3, 3]. Notice that the last participant can't listen to both author, he only chooses the one that tells the maximum number of problems he's interested in. In the second example the first one can tell problems 2 to 4, the second one — 4 to 6. In the third example the first one can tell problems 1 to 1, the second one — 2 to 2. Or 4 to 4 and 3 to 3. Every pair of different problems will get the same sum of 2. In the fourth example the first one can tell problems 1 to 5, the second one — 1 to 5 as well. Submitted Solution: ``` import sys,os,io input = sys.stdin.readline #input = io.BytesIO(os.read(0,os.fstat(0).st_size)).readline n, m, k = map(int, input().split()) A = [list(map(int, input().split())) for _ in range(m)] A.sort(key = lambda x:x[0]+x[1]) table = [[0]*m for _ in range(n-k+1)] for i in range(n-k+1): #i+1~i+k for j in range(m): lower = max(i+1, A[j][0]) upper = min(i+k, A[j][1]) table[i][j] = max(0,upper-lower+1) from copy import deepcopy cum1 = deepcopy(table) cum2 = deepcopy(table) ans = 0 for i in range(n-k+1): for j in range(1,m): cum1[i][j] += cum1[i][j-1] for i in range(n-k+1): for j in range(m-2,-1,-1): cum2[i][j] += cum2[i][j+1] # ans = max([cum1[i][-1] for i in range(n-k+1)]) # ans = max([cum2[i][0] for i in range(n-k+1)]) for j in range(m-1): left = max([cum1[i][j] for i in range(n-k+1)]) right = max([cum2[i][j+1] for i in range(n-k+1)]) ans = max(ans, left+right) print(ans) ```
instruction
0
93,713
11
187,426
No
output
1
93,713
11
187,427
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Berland regional ICPC contest has just ended. There were m participants numbered from 1 to m, who competed on a problemset of n problems numbered from 1 to n. Now the editorial is about to take place. There are two problem authors, each of them is going to tell the tutorial to exactly k consecutive tasks of the problemset. The authors choose the segment of k consecutive tasks for themselves independently of each other. The segments can coincide, intersect or not intersect at all. The i-th participant is interested in listening to the tutorial of all consecutive tasks from l_i to r_i. Each participant always chooses to listen to only the problem author that tells the tutorials to the maximum number of tasks he is interested in. Let this maximum number be a_i. No participant can listen to both of the authors, even if their segments don't intersect. The authors want to choose the segments of k consecutive tasks for themselves in such a way that the sum of a_i over all participants is maximized. Input The first line contains three integers n, m and k (1 ≤ n, m ≤ 2000, 1 ≤ k ≤ n) — the number of problems, the number of participants and the length of the segment of tasks each of the problem authors plans to tell the tutorial to. The i-th of the next m lines contains two integers l_i and r_i (1 ≤ l_i ≤ r_i ≤ n) — the segment of tasks the i-th participant is interested in listening to the tutorial to. Output Print a single integer — the maximum sum of a_i over all participants. Examples Input 10 5 3 1 3 2 4 6 9 6 9 1 8 Output 14 Input 10 3 3 2 4 4 6 3 5 Output 8 Input 4 4 1 3 3 1 1 2 2 4 4 Output 2 Input 5 4 5 1 2 2 3 3 4 4 5 Output 8 Note In the first example the first author can tell the tutorial to problems from 1 to 3 and the second one — from 6 to 8. That way the sequence of a_i will be [3, 2, 3, 3, 3]. Notice that the last participant can't listen to both author, he only chooses the one that tells the maximum number of problems he's interested in. In the second example the first one can tell problems 2 to 4, the second one — 4 to 6. In the third example the first one can tell problems 1 to 1, the second one — 2 to 2. Or 4 to 4 and 3 to 3. Every pair of different problems will get the same sum of 2. In the fourth example the first one can tell problems 1 to 5, the second one — 1 to 5 as well. Submitted Solution: ``` n, m, k = map(int, input().split()) A = [list(map(int, input().split())) for _ in range(m)] A.sort(key = lambda x:x[0]) table = [[0]*m for _ in range(n-k+1)] for i in range(n-k+1): #i+1~i+k for j in range(m): lower = max(i+1, A[j][0]) upper = min(i+k, A[j][1]) table[i][j] = max(0,upper-lower+1) from copy import deepcopy cum1 = deepcopy(table) cum2 = deepcopy(table) for i in range(n-k+1): for j in range(1,m): cum1[i][j] += cum1[i][j-1] for i in range(n-k): for j in range(m-2,-1,-1): cum2[i][j] += cum2[i][j+1] ans = 0 for j in range(m-1): left = right = 0 for i in range(n-k+1): left = max(left, cum1[i][j]) for i in range(n-k+1): right = max(right, cum2[i][j+1]) ans = max(ans, left+right) print(ans) ```
instruction
0
93,714
11
187,428
No
output
1
93,714
11
187,429
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Problem statement Here are $ N $ sheets of paper. You want to scan all paper by using $ 3 $ scanners in parallel. Each piece of paper has a fixed scanning time, and the time it takes to scan the $ i $ th paper is $ T_i $. You can scan the paper in any order, but you cannot scan multiple papers at the same time with a $ 1 $ scanner. Minimize the time it takes to finish scanning all paper and run out of scanners. Constraint $ 1 \ leq N \ leq 50 $ $ 1 \ leq T_i \ leq 50 $ All inputs are integers sample Sample input 1 Four 1 1 1 1 Sample output 1 2 <image> Sample input 2 9 15 20 27 Four Ten 7 34 30 36 Sample output 2 61 <image> Sample input 3 6 20 18 46 16 9 48 Sample output 3 55 <image> input $ N $ $ T_1 $ $ T_2 $ $ T_3 $ $ \ vdots $ $ T_N $ output Print the answer on the $ 1 $ line. Example Input 4 1 1 1 1 Output 2 Submitted Solution: ``` N = int(input()) ts = [int(input()) for i in range(N)] ma = sum(ts) // 3 + 50 s = [[[0 for i in range(ma)] for j in range(ma)] for k in range(N + 1)] for i in range(N): for j in range(ma): for k in range(j, ma): p = [s[i][j][k] + ts[i]] if(j >= ts[i]): p.append(s[i][j - ts[i]][k]) if(k >= ts[i]): p.append(s[i][j][k - ts[i]]) s[i + 1][j][k] = s[i + 1][k][j] = min(p) i = 0 while True: if(s[N][i][i] <= i): break i += 1 print(i) ```
instruction
0
95,237
11
190,474
No
output
1
95,237
11
190,475
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Problem statement Here are $ N $ sheets of paper. You want to scan all paper by using $ 3 $ scanners in parallel. Each piece of paper has a fixed scanning time, and the time it takes to scan the $ i $ th paper is $ T_i $. You can scan the paper in any order, but you cannot scan multiple papers at the same time with a $ 1 $ scanner. Minimize the time it takes to finish scanning all paper and run out of scanners. Constraint $ 1 \ leq N \ leq 50 $ $ 1 \ leq T_i \ leq 50 $ All inputs are integers sample Sample input 1 Four 1 1 1 1 Sample output 1 2 <image> Sample input 2 9 15 20 27 Four Ten 7 34 30 36 Sample output 2 61 <image> Sample input 3 6 20 18 46 16 9 48 Sample output 3 55 <image> input $ N $ $ T_1 $ $ T_2 $ $ T_3 $ $ \ vdots $ $ T_N $ output Print the answer on the $ 1 $ line. Example Input 4 1 1 1 1 Output 2 Submitted Solution: ``` import itertools n=int(input()) dp=[[1<<30]*850 for _ in [0]*850] dp[0][0]=0 t=[int(input()) for _ in[0]*n] s=sum(t) for i,j,k in itertools.product(range(n),range(s//3+1),range(s//2+1)): dp[j][k]+=t[i] if t[i]<=j and dp[j][k]>dp[j-t[i]][k]:dp[j][k]=dp[j-t[i]][k] if t[i]<=k and dp[j][k]>dp[j][k-t[i]]:dp[j][k]=dp[j][k-t[i]] a=1<<30 for i,j in itertools.product(range(s//3+1),range(s//2+1)): a=min(a,max(i,j,s-i-j)) print(a) ```
instruction
0
95,238
11
190,476
No
output
1
95,238
11
190,477
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Problem statement Here are $ N $ sheets of paper. You want to scan all paper by using $ 3 $ scanners in parallel. Each piece of paper has a fixed scanning time, and the time it takes to scan the $ i $ th paper is $ T_i $. You can scan the paper in any order, but you cannot scan multiple papers at the same time with a $ 1 $ scanner. Minimize the time it takes to finish scanning all paper and run out of scanners. Constraint $ 1 \ leq N \ leq 50 $ $ 1 \ leq T_i \ leq 50 $ All inputs are integers sample Sample input 1 Four 1 1 1 1 Sample output 1 2 <image> Sample input 2 9 15 20 27 Four Ten 7 34 30 36 Sample output 2 61 <image> Sample input 3 6 20 18 46 16 9 48 Sample output 3 55 <image> input $ N $ $ T_1 $ $ T_2 $ $ T_3 $ $ \ vdots $ $ T_N $ output Print the answer on the $ 1 $ line. Example Input 4 1 1 1 1 Output 2 Submitted Solution: ``` # -*- coding: utf-8 -*- N = int(input()) T = [int(input()) for i in range(N)] T.sort(reverse = True) machine = [0, 0, 0] for t in T: no = machine.index(min(machine)) machine[no] += t print(max(machine)) ```
instruction
0
95,239
11
190,478
No
output
1
95,239
11
190,479
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Problem statement Here are $ N $ sheets of paper. You want to scan all paper by using $ 3 $ scanners in parallel. Each piece of paper has a fixed scanning time, and the time it takes to scan the $ i $ th paper is $ T_i $. You can scan the paper in any order, but you cannot scan multiple papers at the same time with a $ 1 $ scanner. Minimize the time it takes to finish scanning all paper and run out of scanners. Constraint $ 1 \ leq N \ leq 50 $ $ 1 \ leq T_i \ leq 50 $ All inputs are integers sample Sample input 1 Four 1 1 1 1 Sample output 1 2 <image> Sample input 2 9 15 20 27 Four Ten 7 34 30 36 Sample output 2 61 <image> Sample input 3 6 20 18 46 16 9 48 Sample output 3 55 <image> input $ N $ $ T_1 $ $ T_2 $ $ T_3 $ $ \ vdots $ $ T_N $ output Print the answer on the $ 1 $ line. Example Input 4 1 1 1 1 Output 2 Submitted Solution: ``` N = int(input()) ts = [int(input()) for i in range(N)] ts.sort() ts.reverse() ma = sum(ts) // 3 + 50 s = [[[0 for i in range(ma)] for j in range(ma)] for k in range(N + 1)] for i in range(N): for j in range(ma): for k in range(ma): p = [s[i][j][k] + ts[i]] if(j >= ts[i]): p.append(s[i][j - ts[i]][k]) if(k >= ts[i]): p.append(s[i][j][k - ts[i]]) s[i + 1][j][k] = min(p) i = 0 while True: if(s[N][i][i] <= i): break i += 1 print(i) ```
instruction
0
95,240
11
190,480
No
output
1
95,240
11
190,481
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given an array a consisting of n positive integers. Find a non-empty subset of its elements such that their sum is even (i.e. divisible by 2) or determine that there is no such subset. Both the given array and required subset may contain equal values. Input The first line contains a single integer t (1 ≤ t ≤ 100), number of test cases to solve. Descriptions of t test cases follow. A description of each test case consists of two lines. The first line contains a single integer n (1 ≤ n ≤ 100), length of array a. The second line contains n integers a_1, a_2, …, a_n (1 ≤ a_i ≤ 100), elements of a. The given array a can contain equal values (duplicates). Output For each test case output -1 if there is no such subset of elements. Otherwise output positive integer k, number of elements in the required subset. Then output k distinct integers (1 ≤ p_i ≤ n), indexes of the chosen elements. If there are multiple solutions output any of them. Example Input 3 3 1 4 3 1 15 2 3 5 Output 1 2 -1 2 1 2 Note There are three test cases in the example. In the first test case, you can choose the subset consisting of only the second element. Its sum is 4 and it is even. In the second test case, there is only one non-empty subset of elements consisting of the first element, however sum in it is odd, so there is no solution. In the third test case, the subset consisting of all array's elements has even sum. Submitted Solution: ``` t = int(input()) def solve(a): n = len(a) odds=[] for j in range(n): if a[j]%2==0: print(1) print(j+1) return else: odds.append(j) if len(odds)==2: print(2) print(odds[0]+1, odds[1]+1) return print(-1) return for i in range(t): n = int(input()) a = list(map(int, input().split())) solve(a) ```
instruction
0
95,401
11
190,802
Yes
output
1
95,401
11
190,803
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a program that consists of n instructions. Initially a single variable x is assigned to 0. Afterwards, the instructions are of two types: * increase x by 1; * decrease x by 1. You are given m queries of the following format: * query l r — how many distinct values is x assigned to if all the instructions between the l-th one and the r-th one inclusive are ignored and the rest are executed without changing the order? Input The first line contains a single integer t (1 ≤ t ≤ 1000) — the number of testcases. Then the description of t testcases follows. The first line of each testcase contains two integers n and m (1 ≤ n, m ≤ 2 ⋅ 10^5) — the number of instructions in the program and the number of queries. The second line of each testcase contains a program — a string of n characters: each character is either '+' or '-' — increment and decrement instruction, respectively. Each of the next m lines contains two integers l and r (1 ≤ l ≤ r ≤ n) — the description of the query. The sum of n over all testcases doesn't exceed 2 ⋅ 10^5. The sum of m over all testcases doesn't exceed 2 ⋅ 10^5. Output For each testcase print m integers — for each query l, r print the number of distinct values variable x is assigned to if all the instructions between the l-th one and the r-th one inclusive are ignored and the rest are executed without changing the order. Example Input 2 8 4 -+--+--+ 1 8 2 8 2 5 1 1 4 10 +-++ 1 1 1 2 2 2 1 3 2 3 3 3 1 4 2 4 3 4 4 4 Output 1 2 4 4 3 3 4 2 3 2 1 2 2 2 Note The instructions that remain for each query of the first testcase are: 1. empty program — x was only equal to 0; 2. "-" — x had values 0 and -1; 3. "---+" — x had values 0, -1, -2, -3, -2 — there are 4 distinct values among them; 4. "+--+--+" — the distinct values are 1, 0, -1, -2. Submitted Solution: ``` import sys t = int(sys.stdin.readline().strip()) for _ in range(t): n, m = map(int, sys.stdin.readline().split()) s = sys.stdin.readline().strip() psa = [0 for k in range(n+1)] for j in range(1, n+1): if s[j-1] == "+": psa[j] = psa[j-1]+1 else: psa[j] = psa[j-1]-1 sufMax = [0 for k in range(n+1)] sufMin = [0 for k in range(n+1)] preMax = [0 for k in range(n+1)] preMin = [0 for k in range(n+1)] sufMax[-1] = psa[-1] sufMin[-1] = psa[-1] preMax[1] = psa[1] preMin[1] = psa[1] for i in range(1, n+1): preMax[i] = max(psa[i], preMax[i-1]) preMin[i] = min([psa[i], preMin[i-1]]) for i in range(n-1, 0, -1): sufMax[i] = max(psa[i], sufMax[i+1]) sufMin[i] = min(psa[i], sufMin[i+1]) for j in range(m): l, r = map(int, sys.stdin.readline().split()) bestMax = preMax[l-1] bestMin = preMin[l-1] if r == n: print(bestMax - bestMin + 1) else: temp = psa[l-1]-psa[r] bestMax = max(bestMax, sufMax[r+1]+temp) bestMin = min(bestMin, sufMin[r+1]+temp) print(bestMax-bestMin+1) ```
instruction
0
95,494
11
190,988
Yes
output
1
95,494
11
190,989
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a program that consists of n instructions. Initially a single variable x is assigned to 0. Afterwards, the instructions are of two types: * increase x by 1; * decrease x by 1. You are given m queries of the following format: * query l r — how many distinct values is x assigned to if all the instructions between the l-th one and the r-th one inclusive are ignored and the rest are executed without changing the order? Input The first line contains a single integer t (1 ≤ t ≤ 1000) — the number of testcases. Then the description of t testcases follows. The first line of each testcase contains two integers n and m (1 ≤ n, m ≤ 2 ⋅ 10^5) — the number of instructions in the program and the number of queries. The second line of each testcase contains a program — a string of n characters: each character is either '+' or '-' — increment and decrement instruction, respectively. Each of the next m lines contains two integers l and r (1 ≤ l ≤ r ≤ n) — the description of the query. The sum of n over all testcases doesn't exceed 2 ⋅ 10^5. The sum of m over all testcases doesn't exceed 2 ⋅ 10^5. Output For each testcase print m integers — for each query l, r print the number of distinct values variable x is assigned to if all the instructions between the l-th one and the r-th one inclusive are ignored and the rest are executed without changing the order. Example Input 2 8 4 -+--+--+ 1 8 2 8 2 5 1 1 4 10 +-++ 1 1 1 2 2 2 1 3 2 3 3 3 1 4 2 4 3 4 4 4 Output 1 2 4 4 3 3 4 2 3 2 1 2 2 2 Note The instructions that remain for each query of the first testcase are: 1. empty program — x was only equal to 0; 2. "-" — x had values 0 and -1; 3. "---+" — x had values 0, -1, -2, -3, -2 — there are 4 distinct values among them; 4. "+--+--+" — the distinct values are 1, 0, -1, -2. Submitted Solution: ``` ''' #python-io ''' import sys # need this input = sys.stdin.readline MAXN = 2 * 100_000 + 5 cnt, top, bot = [0]*MAXN, [[0]*MAXN for i in range(2)], [[0]*MAXN for i in range(2)] def program(n, m, s): for i in range(n): if s[i] == '+': cnt[i+1] = cnt[i] + 1 else: cnt[i+1] = cnt[i] - 1 for i in range(1, n+1): top[0][i] = bot[0][i] = top[1][i] = bot[1][i] = cnt[i] for i in range(1, n+1): top[0][i] = max(top[0][i], top[0][i-1]) bot[0][i] = min(bot[0][i], bot[0][i-1]) for i in range(n-1, -1, -1): top[1][i] = max(top[1][i], top[1][i+1]) bot[1][i] = min(bot[1][i], bot[1][i+1]) for _ in range(m): l, r = map(int, input().strip().split(' ')) diff = cnt[l-1] - cnt[r] if r < n: t = max(top[0][l-1], top[1][r+1] + diff) b = min(bot[0][l-1], bot[1][r+1] + diff) else: t, b = top[0][l-1], bot[0][l-1] # may not be necessary sys.stdout.write(str(t-b+1) + '\n') def main(): for t in range(int(input().strip())): n, m = map(int, input().strip().split(' ')) s = input().strip() program(n, m, s) if __name__ == "__main__": main() ```
instruction
0
95,495
11
190,990
Yes
output
1
95,495
11
190,991
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a program that consists of n instructions. Initially a single variable x is assigned to 0. Afterwards, the instructions are of two types: * increase x by 1; * decrease x by 1. You are given m queries of the following format: * query l r — how many distinct values is x assigned to if all the instructions between the l-th one and the r-th one inclusive are ignored and the rest are executed without changing the order? Input The first line contains a single integer t (1 ≤ t ≤ 1000) — the number of testcases. Then the description of t testcases follows. The first line of each testcase contains two integers n and m (1 ≤ n, m ≤ 2 ⋅ 10^5) — the number of instructions in the program and the number of queries. The second line of each testcase contains a program — a string of n characters: each character is either '+' or '-' — increment and decrement instruction, respectively. Each of the next m lines contains two integers l and r (1 ≤ l ≤ r ≤ n) — the description of the query. The sum of n over all testcases doesn't exceed 2 ⋅ 10^5. The sum of m over all testcases doesn't exceed 2 ⋅ 10^5. Output For each testcase print m integers — for each query l, r print the number of distinct values variable x is assigned to if all the instructions between the l-th one and the r-th one inclusive are ignored and the rest are executed without changing the order. Example Input 2 8 4 -+--+--+ 1 8 2 8 2 5 1 1 4 10 +-++ 1 1 1 2 2 2 1 3 2 3 3 3 1 4 2 4 3 4 4 4 Output 1 2 4 4 3 3 4 2 3 2 1 2 2 2 Note The instructions that remain for each query of the first testcase are: 1. empty program — x was only equal to 0; 2. "-" — x had values 0 and -1; 3. "---+" — x had values 0, -1, -2, -3, -2 — there are 4 distinct values among them; 4. "+--+--+" — the distinct values are 1, 0, -1, -2. Submitted Solution: ``` # Legends Always Come Up with Solution # Author: Manvir Singh import os from io import BytesIO, IOBase import sys from collections import defaultdict, deque, Counter from math import sqrt, pi, ceil, log, inf, gcd, floor from itertools import combinations, permutations from bisect import * from fractions import Fraction from heapq import * from random import randint def main(): for _ in range(int(input())): n, m = map(int,input().split()) a, x = [0], 0 for i in input().rstrip(): x += (i == "+") - (i == "-") a.append(x) maxl, minl = [a[0]], [a[0]] for i in range(1, n + 1, 1): maxl.append(max(maxl[-1], a[i])) minl.append(min(minl[-1], a[i])) maxr, minr = [a[n]], [a[n]] for i in range(n - 1, -1, -1): minr.append(min(minr[-1], a[i])) maxr.append(max(maxr[-1], a[i])) maxr.reverse() minr.reverse() b=[] for i in range(m): l, r = map(int, input().split()) if r == n: b.append(maxl[l - 1] - minl[l - 1] + 1) else: z = a[r] - a[l - 1] mi_l, ma_l, mi_r, ma_r = minl[l - 1], maxl[l - 1], minr[r + 1] - z, maxr[r + 1] - z if min(ma_l, ma_r) < max(mi_l, mi_r): b.append(ma_r - mi_r + ma_l - mi_l + 2) else: b.append(max(ma_l, ma_r) - min(mi_r, mi_l) + 1) print(*b,sep="\n") # region fastio BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") if __name__ == "__main__": main() ```
instruction
0
95,496
11
190,992
Yes
output
1
95,496
11
190,993
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a program that consists of n instructions. Initially a single variable x is assigned to 0. Afterwards, the instructions are of two types: * increase x by 1; * decrease x by 1. You are given m queries of the following format: * query l r — how many distinct values is x assigned to if all the instructions between the l-th one and the r-th one inclusive are ignored and the rest are executed without changing the order? Input The first line contains a single integer t (1 ≤ t ≤ 1000) — the number of testcases. Then the description of t testcases follows. The first line of each testcase contains two integers n and m (1 ≤ n, m ≤ 2 ⋅ 10^5) — the number of instructions in the program and the number of queries. The second line of each testcase contains a program — a string of n characters: each character is either '+' or '-' — increment and decrement instruction, respectively. Each of the next m lines contains two integers l and r (1 ≤ l ≤ r ≤ n) — the description of the query. The sum of n over all testcases doesn't exceed 2 ⋅ 10^5. The sum of m over all testcases doesn't exceed 2 ⋅ 10^5. Output For each testcase print m integers — for each query l, r print the number of distinct values variable x is assigned to if all the instructions between the l-th one and the r-th one inclusive are ignored and the rest are executed without changing the order. Example Input 2 8 4 -+--+--+ 1 8 2 8 2 5 1 1 4 10 +-++ 1 1 1 2 2 2 1 3 2 3 3 3 1 4 2 4 3 4 4 4 Output 1 2 4 4 3 3 4 2 3 2 1 2 2 2 Note The instructions that remain for each query of the first testcase are: 1. empty program — x was only equal to 0; 2. "-" — x had values 0 and -1; 3. "---+" — x had values 0, -1, -2, -3, -2 — there are 4 distinct values among them; 4. "+--+--+" — the distinct values are 1, 0, -1, -2. Submitted Solution: ``` #region Header #!/usr/bin/env python3 # from typing import * import sys import io import math import collections import decimal import itertools import bisect import heapq def input(): return sys.stdin.readline()[:-1] # sys.setrecursionlimit(1000000) #endregion # _INPUT = """2 # 8 4 # -+--+--+ # 1 8 # 2 8 # 2 5 # 1 1 # 4 10 # +-++ # 1 1 # 1 2 # 2 2 # 1 3 # 2 3 # 3 3 # 1 4 # 2 4 # 3 4 # 4 4 # """ # sys.stdin = io.StringIO(_INPUT) class BIT: """ Binary Indexed Tree (Fenwick Tree), 1-indexed """ def __init__(self, n): """ Parameters ---------- n : int 要素数。index は 0..n になる。 """ self.size = n self.data = [0] * (n+1) # self.depth = n.bit_length() def add(self, i, x): while i <= self.size: self.data[i] += x i += i & -i def get_sum(self, i): s = 0 while i > 0: s += self.data[i] i -= i & -i return s def get_rsum(self, l, r): """ [l, r) の sum """ return self.get_sum(r) - self.get_sum(l-1) class BIT_Max: """ Binary Indexed Tree (Fenwick Tree), 1-indexed """ def __init__(self, n): """ Parameters ---------- n : int 要素数。index は 0..n になる。 """ self.size = n self.data = [0] * (n+1) # self.depth = n.bit_length() def update(self, i, x): while i <= self.size: self.data[i] = max(x, self.data[i]) i += i & -i def get_max(self, i): # 1からiまで s = 0 while i > 0: s = max(s, self.data[i]) i -= i & -i return s class BIT_Min: """ Binary Indexed Tree (Fenwick Tree), 1-indexed """ def __init__(self, n): """ Parameters ---------- n : int 要素数。index は 0..n になる。 """ self.size = n self.data = [0] * (n+1) # self.depth = n.bit_length() def update(self, i, x): while i <= self.size: self.data[i] = min(x, self.data[i]) i += i & -i def get_min(self, i): # 1からiまで s = 0 while i > 0: s = min(s, self.data[i]) i -= i & -i return s def solve(N, M, S, Q): bit_sum = BIT(N) bit_max = BIT_Max(N) bit_min = BIT_Min(N) v = 0 for i in range(N): if S[i] == '+': v += 1 bit_sum.add(i+1, 1) else: v -= 1 bit_sum.add(i+1, -1) bit_max.update(i+1, v) bit_min.update(i+1, v) last = v bit_sum_r = BIT(N) bit_max_r = BIT_Max(N) bit_min_r = BIT_Min(N) v = 0 for i in range(N): if S[N-1-i] == '-': v += 1 bit_sum_r.add(i+1, 1) else: v -= 1 bit_sum_r.add(i+1, -1) bit_max_r.update(i+1, v) bit_min_r.update(i+1, v) for (l, r) in Q: if r == N-1: if l == 0: print(1) else: max1 = bit_max.get_max(l) min1 = bit_min.get_min(l) print(max1 - min1 + 1) else: # [0, l) and [r, N+1) max1 = bit_max.get_max(l) min1 = bit_min.get_min(l) a = bit_sum.get_sum(r+1) - bit_sum.get_sum(l) max2 = bit_max_r.get_max(N-r-1) + last - a min2 = bit_min_r.get_min(N-r-1) + last - a print(max(max1, max2) - min(min1, min2) + 1) def main(): T0 = int(input()) for _ in range(T0): N, M = map(int, input().split()) S = input() Q = [] for _ in range(M): l, r = map(int, input().split()) Q.append((l-1, r-1)) solve(N, M, S, Q) if __name__ == '__main__': main() ```
instruction
0
95,497
11
190,994
Yes
output
1
95,497
11
190,995
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a program that consists of n instructions. Initially a single variable x is assigned to 0. Afterwards, the instructions are of two types: * increase x by 1; * decrease x by 1. You are given m queries of the following format: * query l r — how many distinct values is x assigned to if all the instructions between the l-th one and the r-th one inclusive are ignored and the rest are executed without changing the order? Input The first line contains a single integer t (1 ≤ t ≤ 1000) — the number of testcases. Then the description of t testcases follows. The first line of each testcase contains two integers n and m (1 ≤ n, m ≤ 2 ⋅ 10^5) — the number of instructions in the program and the number of queries. The second line of each testcase contains a program — a string of n characters: each character is either '+' or '-' — increment and decrement instruction, respectively. Each of the next m lines contains two integers l and r (1 ≤ l ≤ r ≤ n) — the description of the query. The sum of n over all testcases doesn't exceed 2 ⋅ 10^5. The sum of m over all testcases doesn't exceed 2 ⋅ 10^5. Output For each testcase print m integers — for each query l, r print the number of distinct values variable x is assigned to if all the instructions between the l-th one and the r-th one inclusive are ignored and the rest are executed without changing the order. Example Input 2 8 4 -+--+--+ 1 8 2 8 2 5 1 1 4 10 +-++ 1 1 1 2 2 2 1 3 2 3 3 3 1 4 2 4 3 4 4 4 Output 1 2 4 4 3 3 4 2 3 2 1 2 2 2 Note The instructions that remain for each query of the first testcase are: 1. empty program — x was only equal to 0; 2. "-" — x had values 0 and -1; 3. "---+" — x had values 0, -1, -2, -3, -2 — there are 4 distinct values among them; 4. "+--+--+" — the distinct values are 1, 0, -1, -2. Submitted Solution: ``` import sys input=sys.stdin.readline t = int(input()) while t: ans = [] t -= 1 n, q = map(int, input().split()) s = input() left = [[0, 0, 0]] right = [[0, 0]] now = plus = minus = 0 for i in s: if i == "-": now -= 1 if now < minus: minus -= 1 elif i == "+": now += 1 if now > plus: plus += 1 left.append([plus, minus, now]) now = plus = minus = 0 a = b = 0 for i in s[::-1]: if i == "-": a -= 1 b -= 1 a = max(0, a) elif i == "+": a += 1 b += 1 b = min(b, 0) right.append([a, b]) right = right[::-1] print(left) print(right) for i in range(q): l, r = map(int, input().split()) a, b, now = left[l - 1] c, d = right[r] print(a, b, now, c, d) a = max(a, now + c) b = min(b, now + d) ans.append(a-b+1) print(ans) ```
instruction
0
95,498
11
190,996
No
output
1
95,498
11
190,997
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a program that consists of n instructions. Initially a single variable x is assigned to 0. Afterwards, the instructions are of two types: * increase x by 1; * decrease x by 1. You are given m queries of the following format: * query l r — how many distinct values is x assigned to if all the instructions between the l-th one and the r-th one inclusive are ignored and the rest are executed without changing the order? Input The first line contains a single integer t (1 ≤ t ≤ 1000) — the number of testcases. Then the description of t testcases follows. The first line of each testcase contains two integers n and m (1 ≤ n, m ≤ 2 ⋅ 10^5) — the number of instructions in the program and the number of queries. The second line of each testcase contains a program — a string of n characters: each character is either '+' or '-' — increment and decrement instruction, respectively. Each of the next m lines contains two integers l and r (1 ≤ l ≤ r ≤ n) — the description of the query. The sum of n over all testcases doesn't exceed 2 ⋅ 10^5. The sum of m over all testcases doesn't exceed 2 ⋅ 10^5. Output For each testcase print m integers — for each query l, r print the number of distinct values variable x is assigned to if all the instructions between the l-th one and the r-th one inclusive are ignored and the rest are executed without changing the order. Example Input 2 8 4 -+--+--+ 1 8 2 8 2 5 1 1 4 10 +-++ 1 1 1 2 2 2 1 3 2 3 3 3 1 4 2 4 3 4 4 4 Output 1 2 4 4 3 3 4 2 3 2 1 2 2 2 Note The instructions that remain for each query of the first testcase are: 1. empty program — x was only equal to 0; 2. "-" — x had values 0 and -1; 3. "---+" — x had values 0, -1, -2, -3, -2 — there are 4 distinct values among them; 4. "+--+--+" — the distinct values are 1, 0, -1, -2. Submitted Solution: ``` import sys #py import math input = sys.stdin.readline # x,y,z=map(int,input().split()) # a = list(map(int,input().split())) # string = input().rstrip() tests = int(input()) for test in range(tests): n,m =map(int,input().split()) program = input().rstrip() value = [0] currentValue = 0 for step in program: if step == "-": currentValue += -1 else: currentValue += 1 value.append(currentValue) print(value) for query in range(m): l,r =map(int,input().split()) maxLeft = max(value[0:l]) minLeft = min(value[0:l]) if r == n: print(maxLeft-minLeft+1) else: shift = value[l-1]-value[r] maxValue = max(maxLeft , shift+max(value[r:])) minValue = min(minLeft , shift+min(value[r:])) print(maxValue-minValue+1) ```
instruction
0
95,499
11
190,998
No
output
1
95,499
11
190,999
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a program that consists of n instructions. Initially a single variable x is assigned to 0. Afterwards, the instructions are of two types: * increase x by 1; * decrease x by 1. You are given m queries of the following format: * query l r — how many distinct values is x assigned to if all the instructions between the l-th one and the r-th one inclusive are ignored and the rest are executed without changing the order? Input The first line contains a single integer t (1 ≤ t ≤ 1000) — the number of testcases. Then the description of t testcases follows. The first line of each testcase contains two integers n and m (1 ≤ n, m ≤ 2 ⋅ 10^5) — the number of instructions in the program and the number of queries. The second line of each testcase contains a program — a string of n characters: each character is either '+' or '-' — increment and decrement instruction, respectively. Each of the next m lines contains two integers l and r (1 ≤ l ≤ r ≤ n) — the description of the query. The sum of n over all testcases doesn't exceed 2 ⋅ 10^5. The sum of m over all testcases doesn't exceed 2 ⋅ 10^5. Output For each testcase print m integers — for each query l, r print the number of distinct values variable x is assigned to if all the instructions between the l-th one and the r-th one inclusive are ignored and the rest are executed without changing the order. Example Input 2 8 4 -+--+--+ 1 8 2 8 2 5 1 1 4 10 +-++ 1 1 1 2 2 2 1 3 2 3 3 3 1 4 2 4 3 4 4 4 Output 1 2 4 4 3 3 4 2 3 2 1 2 2 2 Note The instructions that remain for each query of the first testcase are: 1. empty program — x was only equal to 0; 2. "-" — x had values 0 and -1; 3. "---+" — x had values 0, -1, -2, -3, -2 — there are 4 distinct values among them; 4. "+--+--+" — the distinct values are 1, 0, -1, -2. Submitted Solution: ``` import math import sys input = sys.stdin.readline T = int(input()) for t in range(T): n,m=map(int,input().split()) script = input() left=[(0,0,0)] right=[[0,0]] count=0 for i in range(len(script)): if(script[i]=="+"): count+=1 else: count-=1 left.append((min(left[-1][0],count),count,max(left[-1][2],count))) count=0 for i in range(len(script)-1,-1,-1): k=[right[0][0],right[0][1]] if(script[i]=="+"): k[1]+=1 if(k[0]!=0): k[0]+=1 else: k[0]-=1 if(k[1]!=0): k[1]-=1 right.insert(0,k) for i in range(m): a,b=map(int,input().split()) Min=min(left[a-1][0],left[a-1][1]+right[b][0]) Max=max(left[a-1][2],left[a-1][1]+right[b][1]) sys.stdout.write(str(Max-Min+1)+'\n') ```
instruction
0
95,500
11
191,000
No
output
1
95,500
11
191,001
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a program that consists of n instructions. Initially a single variable x is assigned to 0. Afterwards, the instructions are of two types: * increase x by 1; * decrease x by 1. You are given m queries of the following format: * query l r — how many distinct values is x assigned to if all the instructions between the l-th one and the r-th one inclusive are ignored and the rest are executed without changing the order? Input The first line contains a single integer t (1 ≤ t ≤ 1000) — the number of testcases. Then the description of t testcases follows. The first line of each testcase contains two integers n and m (1 ≤ n, m ≤ 2 ⋅ 10^5) — the number of instructions in the program and the number of queries. The second line of each testcase contains a program — a string of n characters: each character is either '+' or '-' — increment and decrement instruction, respectively. Each of the next m lines contains two integers l and r (1 ≤ l ≤ r ≤ n) — the description of the query. The sum of n over all testcases doesn't exceed 2 ⋅ 10^5. The sum of m over all testcases doesn't exceed 2 ⋅ 10^5. Output For each testcase print m integers — for each query l, r print the number of distinct values variable x is assigned to if all the instructions between the l-th one and the r-th one inclusive are ignored and the rest are executed without changing the order. Example Input 2 8 4 -+--+--+ 1 8 2 8 2 5 1 1 4 10 +-++ 1 1 1 2 2 2 1 3 2 3 3 3 1 4 2 4 3 4 4 4 Output 1 2 4 4 3 3 4 2 3 2 1 2 2 2 Note The instructions that remain for each query of the first testcase are: 1. empty program — x was only equal to 0; 2. "-" — x had values 0 and -1; 3. "---+" — x had values 0, -1, -2, -3, -2 — there are 4 distinct values among them; 4. "+--+--+" — the distinct values are 1, 0, -1, -2. Submitted Solution: ``` def solve(): n, q = map(int, input().split()) instructions = input() a = [0]*n x = 0 for i in range(n): if instructions[i] == '-': x -= 1 else: x += 1 a[i] = x lmis = [0]*n lmas = [0]*n rmis = [0]*n rmas = [0]*n for i in range(n): if i == 0: lmis[i] = min(a[i], 0) lmas[i] = max(a[i], 0) continue if a[i] < lmis[i-1]: lmis[i] = a[i] else: lmis[i] = lmis[i-1] if a[i] > lmas[i-1]: lmas[i] = a[i] else: lmas[i] = lmas[i-1] for i in reversed(range(n)): if i == n-1: rmis[i] = a[i] rmas[i] = a[i] continue if a[i] < rmis[i+1]: rmis[i] = a[i] else: rmis[i] = rmis[i+1] if a[i] > rmas[i+1]: rmas[i] = a[i] else: rmas[i] = rmas[i+1] for _ in range(q): l, r = map(int, input().split()) r -= 1 l -= 1 delta = a[r] - a[l] if instructions[l] == '+': delta += 1 else: delta -= 1 lmi = 0 lma = 0 if(l > 0): lmi = lmis[l-1] lma = lmas[l-1] rmi = rmis[r] rma = rmas[r] rmi -= delta rma -= delta mi = min(lmi, rmi) ma = max(lma, rma) print('ans', ma-mi+1) t = int(input()) for _ in range(t): solve() ```
instruction
0
95,501
11
191,002
No
output
1
95,501
11
191,003
Provide tags and a correct Python 3 solution for this coding contest problem. Vasya tries to break in a safe. He knows that a code consists of n numbers, and every number is a 0 or a 1. Vasya has made m attempts to enter the code. After each attempt the system told him in how many position stand the right numbers. It is not said in which positions the wrong numbers stand. Vasya has been so unlucky that he hasn’t entered the code where would be more than 5 correct numbers. Now Vasya is completely bewildered: he thinks there’s a mistake in the system and it is self-contradictory. Help Vasya — calculate how many possible code variants are left that do not contradict the previous system responses. Input The first input line contains two integers n and m (6 ≤ n ≤ 35, 1 ≤ m ≤ 10) which represent the number of numbers in the code and the number of attempts made by Vasya. Then follow m lines, each containing space-separated si and ci which correspondingly indicate Vasya’s attempt (a line containing n numbers which are 0 or 1) and the system’s response (an integer from 0 to 5 inclusively). Output Print the single number which indicates how many possible code variants that do not contradict the m system responses are left. Examples Input 6 2 000000 2 010100 4 Output 6 Input 6 3 000000 2 010100 4 111100 0 Output 0 Input 6 3 000000 2 010100 4 111100 2 Output 1
instruction
0
95,653
11
191,306
Tags: brute force Correct Solution: ``` import itertools n,m=map(int,input().split()) def gen(s,d): ans=[] a=int(str(s),2) A=int(a) for i in itertools.combinations(list(range(n)), d): c=A for e in i:c=c ^ 1<<e ans.append(c) return ans a,b=map(int,input().split()) cur=gen(a,b) #print(cur) for i in range(m-1): a,b=map(int,input().split()) cur=[x for x in cur if(bin(x^int(str(a),2)).count("1")==b)] #print(*cur) print(len(cur)) ```
output
1
95,653
11
191,307
Provide tags and a correct Python 3 solution for this coding contest problem. Vasya tries to break in a safe. He knows that a code consists of n numbers, and every number is a 0 or a 1. Vasya has made m attempts to enter the code. After each attempt the system told him in how many position stand the right numbers. It is not said in which positions the wrong numbers stand. Vasya has been so unlucky that he hasn’t entered the code where would be more than 5 correct numbers. Now Vasya is completely bewildered: he thinks there’s a mistake in the system and it is self-contradictory. Help Vasya — calculate how many possible code variants are left that do not contradict the previous system responses. Input The first input line contains two integers n and m (6 ≤ n ≤ 35, 1 ≤ m ≤ 10) which represent the number of numbers in the code and the number of attempts made by Vasya. Then follow m lines, each containing space-separated si and ci which correspondingly indicate Vasya’s attempt (a line containing n numbers which are 0 or 1) and the system’s response (an integer from 0 to 5 inclusively). Output Print the single number which indicates how many possible code variants that do not contradict the m system responses are left. Examples Input 6 2 000000 2 010100 4 Output 6 Input 6 3 000000 2 010100 4 111100 0 Output 0 Input 6 3 000000 2 010100 4 111100 2 Output 1
instruction
0
95,654
11
191,308
Tags: brute force Correct Solution: ``` import sys from array import array # noqa: F401 from itertools import combinations def input(): return sys.stdin.buffer.readline().decode('utf-8') n, m = map(int, input().split()) s = set() x = set() for i in range(m): a, k = input().split() k = int(k) a = int(a, 2) x.add(str(a)) cur_s = set() for c in combinations(range(n), r=k): mask = 0 for j in c: mask |= (1 << j) cur_s.add(str(a ^ mask)) if i == 0: s = cur_s else: s.intersection_update(cur_s) print(len(s - x)) ```
output
1
95,654
11
191,309