message
stringlengths
2
23.8k
message_type
stringclasses
2 values
message_id
int64
0
1
conversation_id
int64
97
109k
cluster
float64
0
0
__index_level_0__
int64
194
217k
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. For some binary string s (i.e. each character s_i is either '0' or '1'), all pairs of consecutive (adjacent) characters were written. In other words, all substrings of length 2 were written. For each pair (substring of length 2), the number of '1' (ones) in it was calculated. You are given three numbers: * n_0 β€” the number of such pairs of consecutive characters (substrings) where the number of ones equals 0; * n_1 β€” the number of such pairs of consecutive characters (substrings) where the number of ones equals 1; * n_2 β€” the number of such pairs of consecutive characters (substrings) where the number of ones equals 2. For example, for the string s="1110011110", the following substrings would be written: "11", "11", "10", "00", "01", "11", "11", "11", "10". Thus, n_0=1, n_1=3, n_2=5. Your task is to restore any suitable binary string s from the given values n_0, n_1, n_2. It is guaranteed that at least one of the numbers n_0, n_1, n_2 is greater than 0. Also, it is guaranteed that a solution exists. Input The first line contains an integer t (1 ≀ t ≀ 1000) β€” the number of test cases in the input. Then test cases follow. Each test case consists of one line which contains three integers n_0, n_1, n_2 (0 ≀ n_0, n_1, n_2 ≀ 100; n_0 + n_1 + n_2 > 0). It is guaranteed that the answer for given n_0, n_1, n_2 exists. Output Print t lines. Each of the lines should contain a binary string corresponding to a test case. If there are several possible solutions, print any of them. Example Input 7 1 3 5 1 1 1 3 9 3 0 1 0 3 1 2 0 0 3 2 0 0 Output 1110011110 0011 0110001100101011 10 0000111 1111 000 Submitted Solution: ``` for _ in range(int(input())): n0,n1,n2=map(int,input().split()) if n1%2==1: print('0'*n0+'01'*(n1//2+1)+'1'*n2) else: if n1==0 and n2==0: print('0'*(n0+1)) else: print('10'*(n1//2)+'0'*n0+'1'*(n2+1)) ```
instruction
0
5,934
0
11,868
Yes
output
1
5,934
0
11,869
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. For some binary string s (i.e. each character s_i is either '0' or '1'), all pairs of consecutive (adjacent) characters were written. In other words, all substrings of length 2 were written. For each pair (substring of length 2), the number of '1' (ones) in it was calculated. You are given three numbers: * n_0 β€” the number of such pairs of consecutive characters (substrings) where the number of ones equals 0; * n_1 β€” the number of such pairs of consecutive characters (substrings) where the number of ones equals 1; * n_2 β€” the number of such pairs of consecutive characters (substrings) where the number of ones equals 2. For example, for the string s="1110011110", the following substrings would be written: "11", "11", "10", "00", "01", "11", "11", "11", "10". Thus, n_0=1, n_1=3, n_2=5. Your task is to restore any suitable binary string s from the given values n_0, n_1, n_2. It is guaranteed that at least one of the numbers n_0, n_1, n_2 is greater than 0. Also, it is guaranteed that a solution exists. Input The first line contains an integer t (1 ≀ t ≀ 1000) β€” the number of test cases in the input. Then test cases follow. Each test case consists of one line which contains three integers n_0, n_1, n_2 (0 ≀ n_0, n_1, n_2 ≀ 100; n_0 + n_1 + n_2 > 0). It is guaranteed that the answer for given n_0, n_1, n_2 exists. Output Print t lines. Each of the lines should contain a binary string corresponding to a test case. If there are several possible solutions, print any of them. Example Input 7 1 3 5 1 1 1 3 9 3 0 1 0 3 1 2 0 0 3 2 0 0 Output 1110011110 0011 0110001100101011 10 0000111 1111 000 Submitted Solution: ``` def solve(): n0, n1, n2 = [int(x) for x in input().split()] res = [] if not n1: if n0: res = ['0' for _ in range(n0 + 1)] else: res = ['1' for _ in range(n2 + 1)] else: res = ['0' if i & 1 else '1' for i in range(n1 + 1)] res[1:1] = ['0' for _ in range(n0)] res[0:0] = ['1' for _ in range(n2)] print(''.join(res)) for _ in range(int(input())): solve() ```
instruction
0
5,935
0
11,870
Yes
output
1
5,935
0
11,871
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. For some binary string s (i.e. each character s_i is either '0' or '1'), all pairs of consecutive (adjacent) characters were written. In other words, all substrings of length 2 were written. For each pair (substring of length 2), the number of '1' (ones) in it was calculated. You are given three numbers: * n_0 β€” the number of such pairs of consecutive characters (substrings) where the number of ones equals 0; * n_1 β€” the number of such pairs of consecutive characters (substrings) where the number of ones equals 1; * n_2 β€” the number of such pairs of consecutive characters (substrings) where the number of ones equals 2. For example, for the string s="1110011110", the following substrings would be written: "11", "11", "10", "00", "01", "11", "11", "11", "10". Thus, n_0=1, n_1=3, n_2=5. Your task is to restore any suitable binary string s from the given values n_0, n_1, n_2. It is guaranteed that at least one of the numbers n_0, n_1, n_2 is greater than 0. Also, it is guaranteed that a solution exists. Input The first line contains an integer t (1 ≀ t ≀ 1000) β€” the number of test cases in the input. Then test cases follow. Each test case consists of one line which contains three integers n_0, n_1, n_2 (0 ≀ n_0, n_1, n_2 ≀ 100; n_0 + n_1 + n_2 > 0). It is guaranteed that the answer for given n_0, n_1, n_2 exists. Output Print t lines. Each of the lines should contain a binary string corresponding to a test case. If there are several possible solutions, print any of them. Example Input 7 1 3 5 1 1 1 3 9 3 0 1 0 3 1 2 0 0 3 2 0 0 Output 1110011110 0011 0110001100101011 10 0000111 1111 000 Submitted Solution: ``` t = int(input()) for _ in range(t): a, b, c = [int(x) for x in input().split()] ans = "" for i in range(b): if i % 2 == 0: ans += "1" else: ans += "0" if b % 2 != 0: ans = "1" * c + ans ans += "0" * (a + 1) if b % 2 == 0: if b == 0: if a > 0: ans += "0" * (a + 1) if c > 0: ans += "1" * (c + 1) else: ans= "1" * c + ans ans += "0" * a ans += "1" print(ans) ```
instruction
0
5,936
0
11,872
Yes
output
1
5,936
0
11,873
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. For some binary string s (i.e. each character s_i is either '0' or '1'), all pairs of consecutive (adjacent) characters were written. In other words, all substrings of length 2 were written. For each pair (substring of length 2), the number of '1' (ones) in it was calculated. You are given three numbers: * n_0 β€” the number of such pairs of consecutive characters (substrings) where the number of ones equals 0; * n_1 β€” the number of such pairs of consecutive characters (substrings) where the number of ones equals 1; * n_2 β€” the number of such pairs of consecutive characters (substrings) where the number of ones equals 2. For example, for the string s="1110011110", the following substrings would be written: "11", "11", "10", "00", "01", "11", "11", "11", "10". Thus, n_0=1, n_1=3, n_2=5. Your task is to restore any suitable binary string s from the given values n_0, n_1, n_2. It is guaranteed that at least one of the numbers n_0, n_1, n_2 is greater than 0. Also, it is guaranteed that a solution exists. Input The first line contains an integer t (1 ≀ t ≀ 1000) β€” the number of test cases in the input. Then test cases follow. Each test case consists of one line which contains three integers n_0, n_1, n_2 (0 ≀ n_0, n_1, n_2 ≀ 100; n_0 + n_1 + n_2 > 0). It is guaranteed that the answer for given n_0, n_1, n_2 exists. Output Print t lines. Each of the lines should contain a binary string corresponding to a test case. If there are several possible solutions, print any of them. Example Input 7 1 3 5 1 1 1 3 9 3 0 1 0 3 1 2 0 0 3 2 0 0 Output 1110011110 0011 0110001100101011 10 0000111 1111 000 Submitted Solution: ``` # t = int(input()) # n, k = map(int, input().split()) # a = list(map(int, input().split())) # from collections import deque #import copy #import collections #import sys t = int(input()) for T in range(t): n0, n1, n2 = map(int, input().split()) ans = '' if n1==0: if n0>0: ans = '0'*(n0+1) else: ans = '1'*(n2+1) else: ans = '0'*(n0+1) + '1'*(n2+1) flag = 0 for i in range(n1-1): ans += str(flag) flag ^= 1 print(ans) ```
instruction
0
5,937
0
11,874
Yes
output
1
5,937
0
11,875
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. For some binary string s (i.e. each character s_i is either '0' or '1'), all pairs of consecutive (adjacent) characters were written. In other words, all substrings of length 2 were written. For each pair (substring of length 2), the number of '1' (ones) in it was calculated. You are given three numbers: * n_0 β€” the number of such pairs of consecutive characters (substrings) where the number of ones equals 0; * n_1 β€” the number of such pairs of consecutive characters (substrings) where the number of ones equals 1; * n_2 β€” the number of such pairs of consecutive characters (substrings) where the number of ones equals 2. For example, for the string s="1110011110", the following substrings would be written: "11", "11", "10", "00", "01", "11", "11", "11", "10". Thus, n_0=1, n_1=3, n_2=5. Your task is to restore any suitable binary string s from the given values n_0, n_1, n_2. It is guaranteed that at least one of the numbers n_0, n_1, n_2 is greater than 0. Also, it is guaranteed that a solution exists. Input The first line contains an integer t (1 ≀ t ≀ 1000) β€” the number of test cases in the input. Then test cases follow. Each test case consists of one line which contains three integers n_0, n_1, n_2 (0 ≀ n_0, n_1, n_2 ≀ 100; n_0 + n_1 + n_2 > 0). It is guaranteed that the answer for given n_0, n_1, n_2 exists. Output Print t lines. Each of the lines should contain a binary string corresponding to a test case. If there are several possible solutions, print any of them. Example Input 7 1 3 5 1 1 1 3 9 3 0 1 0 3 1 2 0 0 3 2 0 0 Output 1110011110 0011 0110001100101011 10 0000111 1111 000 Submitted Solution: ``` n0 = '0' n2 = '1' t = int(input()) for _ in range(t): output = '' a, b, c = map(int, input().split()) if c: output += n2*(c+1) if output: for i in range(b): output += str(i%2) else: if b: for i in range(b+1): output += str(i%2) if b and output[-1] == '0': output += n0*a else: if a: output += n0*(a+1) print(output) ```
instruction
0
5,938
0
11,876
No
output
1
5,938
0
11,877
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. For some binary string s (i.e. each character s_i is either '0' or '1'), all pairs of consecutive (adjacent) characters were written. In other words, all substrings of length 2 were written. For each pair (substring of length 2), the number of '1' (ones) in it was calculated. You are given three numbers: * n_0 β€” the number of such pairs of consecutive characters (substrings) where the number of ones equals 0; * n_1 β€” the number of such pairs of consecutive characters (substrings) where the number of ones equals 1; * n_2 β€” the number of such pairs of consecutive characters (substrings) where the number of ones equals 2. For example, for the string s="1110011110", the following substrings would be written: "11", "11", "10", "00", "01", "11", "11", "11", "10". Thus, n_0=1, n_1=3, n_2=5. Your task is to restore any suitable binary string s from the given values n_0, n_1, n_2. It is guaranteed that at least one of the numbers n_0, n_1, n_2 is greater than 0. Also, it is guaranteed that a solution exists. Input The first line contains an integer t (1 ≀ t ≀ 1000) β€” the number of test cases in the input. Then test cases follow. Each test case consists of one line which contains three integers n_0, n_1, n_2 (0 ≀ n_0, n_1, n_2 ≀ 100; n_0 + n_1 + n_2 > 0). It is guaranteed that the answer for given n_0, n_1, n_2 exists. Output Print t lines. Each of the lines should contain a binary string corresponding to a test case. If there are several possible solutions, print any of them. Example Input 7 1 3 5 1 1 1 3 9 3 0 1 0 3 1 2 0 0 3 2 0 0 Output 1110011110 0011 0110001100101011 10 0000111 1111 000 Submitted Solution: ``` for _ in range((int)(input())): zero,one,two=list(map(int,input().split())) res=[] if one%2==0: if zero!=0: res.append('0'*(zero+1)) one-=1 if two!=0: res.append('1'*(two+1)) res.append('01'*(one)) else: res.append('1'*(two)) if one!=0: res.append('10'*(one//2+1)) res.append('0'*(zero)) print(''.join([i for i in res])) ```
instruction
0
5,939
0
11,878
No
output
1
5,939
0
11,879
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. For some binary string s (i.e. each character s_i is either '0' or '1'), all pairs of consecutive (adjacent) characters were written. In other words, all substrings of length 2 were written. For each pair (substring of length 2), the number of '1' (ones) in it was calculated. You are given three numbers: * n_0 β€” the number of such pairs of consecutive characters (substrings) where the number of ones equals 0; * n_1 β€” the number of such pairs of consecutive characters (substrings) where the number of ones equals 1; * n_2 β€” the number of such pairs of consecutive characters (substrings) where the number of ones equals 2. For example, for the string s="1110011110", the following substrings would be written: "11", "11", "10", "00", "01", "11", "11", "11", "10". Thus, n_0=1, n_1=3, n_2=5. Your task is to restore any suitable binary string s from the given values n_0, n_1, n_2. It is guaranteed that at least one of the numbers n_0, n_1, n_2 is greater than 0. Also, it is guaranteed that a solution exists. Input The first line contains an integer t (1 ≀ t ≀ 1000) β€” the number of test cases in the input. Then test cases follow. Each test case consists of one line which contains three integers n_0, n_1, n_2 (0 ≀ n_0, n_1, n_2 ≀ 100; n_0 + n_1 + n_2 > 0). It is guaranteed that the answer for given n_0, n_1, n_2 exists. Output Print t lines. Each of the lines should contain a binary string corresponding to a test case. If there are several possible solutions, print any of them. Example Input 7 1 3 5 1 1 1 3 9 3 0 1 0 3 1 2 0 0 3 2 0 0 Output 1110011110 0011 0110001100101011 10 0000111 1111 000 Submitted Solution: ``` for _ in range(int(input())): n0, n1, n2 = map(int, input().split(' ')) if n0 != 0: print(0, end='') for i in range(n0): print(0, end='') if n2 != 0: print(1, end='') for i in range(n2): print(1, end='') start = 1 if n2 != 0: start = 0 if n0 == 0 and n2 == 0: print(0, end='') for i in range(n1): print(start, end='') start = (start + 1) % 2 print() ```
instruction
0
5,940
0
11,880
No
output
1
5,940
0
11,881
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. For some binary string s (i.e. each character s_i is either '0' or '1'), all pairs of consecutive (adjacent) characters were written. In other words, all substrings of length 2 were written. For each pair (substring of length 2), the number of '1' (ones) in it was calculated. You are given three numbers: * n_0 β€” the number of such pairs of consecutive characters (substrings) where the number of ones equals 0; * n_1 β€” the number of such pairs of consecutive characters (substrings) where the number of ones equals 1; * n_2 β€” the number of such pairs of consecutive characters (substrings) where the number of ones equals 2. For example, for the string s="1110011110", the following substrings would be written: "11", "11", "10", "00", "01", "11", "11", "11", "10". Thus, n_0=1, n_1=3, n_2=5. Your task is to restore any suitable binary string s from the given values n_0, n_1, n_2. It is guaranteed that at least one of the numbers n_0, n_1, n_2 is greater than 0. Also, it is guaranteed that a solution exists. Input The first line contains an integer t (1 ≀ t ≀ 1000) β€” the number of test cases in the input. Then test cases follow. Each test case consists of one line which contains three integers n_0, n_1, n_2 (0 ≀ n_0, n_1, n_2 ≀ 100; n_0 + n_1 + n_2 > 0). It is guaranteed that the answer for given n_0, n_1, n_2 exists. Output Print t lines. Each of the lines should contain a binary string corresponding to a test case. If there are several possible solutions, print any of them. Example Input 7 1 3 5 1 1 1 3 9 3 0 1 0 3 1 2 0 0 3 2 0 0 Output 1110011110 0011 0110001100101011 10 0000111 1111 000 Submitted Solution: ``` n = int(input()) def check(x,y,z): s='' for _ in range(z): s += ''.join('1') for i in range(y): if i%2!=0: s+=''.join('1') else: s+=''.join('0') for _ in range(x): s+=''.join('0') print(s) for _ in range(n): n0,n1,n2 = map(int,input().split()) check(n0,n1,n2) ```
instruction
0
5,941
0
11,882
No
output
1
5,941
0
11,883
Provide tags and a correct Python 3 solution for this coding contest problem. You're given a list of n strings a1, a2, ..., an. You'd like to concatenate them together in some order such that the resulting string would be lexicographically smallest. Given the list of strings, output the lexicographically smallest concatenation. Input The first line contains integer n β€” the number of strings (1 ≀ n ≀ 5Β·104). Each of the next n lines contains one string ai (1 ≀ |ai| ≀ 50) consisting of only lowercase English letters. The sum of string lengths will not exceed 5Β·104. Output Print the only string a β€” the lexicographically smallest string concatenation. Examples Input 4 abba abacaba bcd er Output abacabaabbabcder Input 5 x xx xxa xxaa xxaaa Output xxaaaxxaaxxaxxx Input 3 c cb cba Output cbacbc
instruction
0
6,240
0
12,480
Tags: sortings, strings Correct Solution: ``` from functools import cmp_to_key as ctk def comp(a, b): if a + b < b + a: return -1 elif a + b > b + a: return 1 else: return 0 n = int(input()) string = list() for i in range(n): strtem = input() string.append(strtem) string.sort(key = ctk(comp)) print(''.join(string)) ```
output
1
6,240
0
12,481
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You're given a list of n strings a1, a2, ..., an. You'd like to concatenate them together in some order such that the resulting string would be lexicographically smallest. Given the list of strings, output the lexicographically smallest concatenation. Input The first line contains integer n β€” the number of strings (1 ≀ n ≀ 5Β·104). Each of the next n lines contains one string ai (1 ≀ |ai| ≀ 50) consisting of only lowercase English letters. The sum of string lengths will not exceed 5Β·104. Output Print the only string a β€” the lexicographically smallest string concatenation. Examples Input 4 abba abacaba bcd er Output abacabaabbabcder Input 5 x xx xxa xxaa xxaaa Output xxaaaxxaaxxaxxx Input 3 c cb cba Output cbacbc Submitted Solution: ``` n = int(input()) a = [] for i in range(n): a.append(input()) from functools import cmp_to_key # a = ['abc', 'abcabb', 'abcabcabb', 'abcabcabbabc'] a_p = sorted(a, key=cmp_to_key(lambda x, y: -1 if x + y < y + x else 1)) print(''.join(a_p)) ```
instruction
0
6,245
0
12,490
Yes
output
1
6,245
0
12,491
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You're given a list of n strings a1, a2, ..., an. You'd like to concatenate them together in some order such that the resulting string would be lexicographically smallest. Given the list of strings, output the lexicographically smallest concatenation. Input The first line contains integer n β€” the number of strings (1 ≀ n ≀ 5Β·104). Each of the next n lines contains one string ai (1 ≀ |ai| ≀ 50) consisting of only lowercase English letters. The sum of string lengths will not exceed 5Β·104. Output Print the only string a β€” the lexicographically smallest string concatenation. Examples Input 4 abba abacaba bcd er Output abacabaabbabcder Input 5 x xx xxa xxaa xxaaa Output xxaaaxxaaxxaxxx Input 3 c cb cba Output cbacbc Submitted Solution: ``` from functools import cmp_to_key n = int(input()) a=[] for i in range(n): a.append(input()) def cmp(x,y): if x+y < y+x : return -1 elif x+y > y+x: return 1 else: return 0 print(''.join(sorted(a,key=cmp_to_key(cmp)))) #print(a.sort(key = lambda x,y: cmp(x,y))) ```
instruction
0
6,246
0
12,492
Yes
output
1
6,246
0
12,493
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You're given a list of n strings a1, a2, ..., an. You'd like to concatenate them together in some order such that the resulting string would be lexicographically smallest. Given the list of strings, output the lexicographically smallest concatenation. Input The first line contains integer n β€” the number of strings (1 ≀ n ≀ 5Β·104). Each of the next n lines contains one string ai (1 ≀ |ai| ≀ 50) consisting of only lowercase English letters. The sum of string lengths will not exceed 5Β·104. Output Print the only string a β€” the lexicographically smallest string concatenation. Examples Input 4 abba abacaba bcd er Output abacabaabbabcder Input 5 x xx xxa xxaa xxaaa Output xxaaaxxaaxxaxxx Input 3 c cb cba Output cbacbc Submitted Solution: ``` # -*- coding: utf-8 -*- """ Created on Thu Apr 14 15:41:54 2016 @author: kebl4230 Too slow. Possibly lots of unnecessary list manipulation. """ from functools import cmp_to_key n = int(input()) strings = list() for i in range(n): strings.append(input()) def cmpfunc(x, y): a = x + y b = y + x if a < b: return -1 elif a == b: return 0 else: return 1 bb = sorted(strings, key=cmp_to_key(cmpfunc)) print("".join(bb)) """ n = int(input()) strings = list() for i in range(n): strings.append(input()) aa = "abcdefghijklmnopqrstuvwxyz" positions = [strings.copy()] def myfunc(mylist, index, pos): scores = [aa.find(bb[index]) if index < len(bb) else 27 for bb in mylist] r = 0 mins = min(scores) while mins <= 27: if r == 0: for i in range(len(scores)): if scores[i] == mins: scores[i] = 100 else: group = [mylist[n] for n in range(len(scores)) if scores[n] == mins] positions.insert(pos + r, group) for string in group: mylist.remove(string) while any(s == mins for s in scores): scores.remove(mins) r += 1 mins = min(scores) index = 0 maxlen = len(positions) pos = 0 while any(len(pos) > 1 for pos in positions): myfunc(positions[pos], index, pos) pos += 1 if pos == maxlen: pos = 0 maxlen = len(positions) index += 1 result = '' for aa in positions: result += aa[0] print(result) """ ```
instruction
0
6,247
0
12,494
Yes
output
1
6,247
0
12,495
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You're given a list of n strings a1, a2, ..., an. You'd like to concatenate them together in some order such that the resulting string would be lexicographically smallest. Given the list of strings, output the lexicographically smallest concatenation. Input The first line contains integer n β€” the number of strings (1 ≀ n ≀ 5Β·104). Each of the next n lines contains one string ai (1 ≀ |ai| ≀ 50) consisting of only lowercase English letters. The sum of string lengths will not exceed 5Β·104. Output Print the only string a β€” the lexicographically smallest string concatenation. Examples Input 4 abba abacaba bcd er Output abacabaabbabcder Input 5 x xx xxa xxaa xxaaa Output xxaaaxxaaxxaxxx Input 3 c cb cba Output cbacbc Submitted Solution: ``` import os import sys from io import BytesIO, IOBase BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") def list2d(a, b, c): return [[c] * b for i in range(a)] def list3d(a, b, c, d): return [[[d] * c for j in range(b)] for i in range(a)] def list4d(a, b, c, d, e): return [[[[e] * d for j in range(c)] for j in range(b)] for i in range(a)] def ceil(x, y=1): return int(-(-x // y)) def Yes(): print('Yes') def No(): print('No') def YES(): print('YES') def NO(): print('NO') INF = 10 ** 18 MOD = 10**9+7 from functools import cmp_to_key Ri = lambda : [int(x) for x in sys.stdin.readline().split()] ri = lambda : sys.stdin.readline().strip() n = int(ri()) s = [] for i in range(n): s.append(ri()) s.sort(key = cmp_to_key(lambda x,y : -1 if x+y < y+x else 1 )) print("".join(s)) ```
instruction
0
6,248
0
12,496
Yes
output
1
6,248
0
12,497
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You're given a list of n strings a1, a2, ..., an. You'd like to concatenate them together in some order such that the resulting string would be lexicographically smallest. Given the list of strings, output the lexicographically smallest concatenation. Input The first line contains integer n β€” the number of strings (1 ≀ n ≀ 5Β·104). Each of the next n lines contains one string ai (1 ≀ |ai| ≀ 50) consisting of only lowercase English letters. The sum of string lengths will not exceed 5Β·104. Output Print the only string a β€” the lexicographically smallest string concatenation. Examples Input 4 abba abacaba bcd er Output abacabaabbabcder Input 5 x xx xxa xxaa xxaaa Output xxaaaxxaaxxaxxx Input 3 c cb cba Output cbacbc Submitted Solution: ``` n = int(input()) ans = [] for i in range(n): a = input() ans.append(a) ans.sort(reverse = True) ans = ''.join(ans) print(ans) ```
instruction
0
6,249
0
12,498
No
output
1
6,249
0
12,499
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You're given a list of n strings a1, a2, ..., an. You'd like to concatenate them together in some order such that the resulting string would be lexicographically smallest. Given the list of strings, output the lexicographically smallest concatenation. Input The first line contains integer n β€” the number of strings (1 ≀ n ≀ 5Β·104). Each of the next n lines contains one string ai (1 ≀ |ai| ≀ 50) consisting of only lowercase English letters. The sum of string lengths will not exceed 5Β·104. Output Print the only string a β€” the lexicographically smallest string concatenation. Examples Input 4 abba abacaba bcd er Output abacabaabbabcder Input 5 x xx xxa xxaa xxaaa Output xxaaaxxaaxxaxxx Input 3 c cb cba Output cbacbc Submitted Solution: ``` n=int(input()) m=list() for i in range(n): m.append(str(input())) for i in range(n-1): if m[i]+m[i+1]>m[i+1]+m[i]: m[i+1]=m[i+1]+m[i] else: m[i+1]=m[i]+m[i+1] print(m[i+1]) ```
instruction
0
6,250
0
12,500
No
output
1
6,250
0
12,501
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You're given a list of n strings a1, a2, ..., an. You'd like to concatenate them together in some order such that the resulting string would be lexicographically smallest. Given the list of strings, output the lexicographically smallest concatenation. Input The first line contains integer n β€” the number of strings (1 ≀ n ≀ 5Β·104). Each of the next n lines contains one string ai (1 ≀ |ai| ≀ 50) consisting of only lowercase English letters. The sum of string lengths will not exceed 5Β·104. Output Print the only string a β€” the lexicographically smallest string concatenation. Examples Input 4 abba abacaba bcd er Output abacabaabbabcder Input 5 x xx xxa xxaa xxaaa Output xxaaaxxaaxxaxxx Input 3 c cb cba Output cbacbc Submitted Solution: ``` from functools import cmp_to_key def c(x,y): if x+y < y+x: return 1 else: return -1 n = int(input()) l = [] for _ in range(n): l.append(input()) l.sort(key = cmp_to_key(c)) print(''.join(l)) ```
instruction
0
6,251
0
12,502
No
output
1
6,251
0
12,503
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You're given a list of n strings a1, a2, ..., an. You'd like to concatenate them together in some order such that the resulting string would be lexicographically smallest. Given the list of strings, output the lexicographically smallest concatenation. Input The first line contains integer n β€” the number of strings (1 ≀ n ≀ 5Β·104). Each of the next n lines contains one string ai (1 ≀ |ai| ≀ 50) consisting of only lowercase English letters. The sum of string lengths will not exceed 5Β·104. Output Print the only string a β€” the lexicographically smallest string concatenation. Examples Input 4 abba abacaba bcd er Output abacabaabbabcder Input 5 x xx xxa xxaa xxaaa Output xxaaaxxaaxxaxxx Input 3 c cb cba Output cbacbc Submitted Solution: ``` from functools import cmp_to_key def f(x, y): return -1 if x + y <= y + x else 1 n = int(input()) A = [] for i in range(n): s = input() A.append(s) print(A) print(''.join(sorted(A, key = cmp_to_key(f)))) ```
instruction
0
6,252
0
12,504
No
output
1
6,252
0
12,505
Provide a correct Python 3 solution for this coding contest problem. A string S of an odd length is said to be a strong palindrome if and only if all of the following conditions are satisfied: * S is a palindrome. * Let N be the length of S. The string formed by the 1-st through ((N-1)/2)-th characters of S is a palindrome. * The string consisting of the (N+3)/2-st through N-th characters of S is a palindrome. Determine whether S is a strong palindrome. Constraints * S consists of lowercase English letters. * The length of S is an odd number between 3 and 99 (inclusive). Input Input is given from Standard Input in the following format: S Output If S is a strong palindrome, print `Yes`; otherwise, print `No`. Examples Input akasaka Output Yes Input level Output No Input atcoder Output No
instruction
0
6,381
0
12,762
"Correct Solution: ``` S = input() N = len(S) A = (len(S) - 1) // 2 B = (len(S) + 3) // 2 if S[0:A] == S[B - 1:N]: print('Yes') else: print('No') ```
output
1
6,381
0
12,763
Provide a correct Python 3 solution for this coding contest problem. A string S of an odd length is said to be a strong palindrome if and only if all of the following conditions are satisfied: * S is a palindrome. * Let N be the length of S. The string formed by the 1-st through ((N-1)/2)-th characters of S is a palindrome. * The string consisting of the (N+3)/2-st through N-th characters of S is a palindrome. Determine whether S is a strong palindrome. Constraints * S consists of lowercase English letters. * The length of S is an odd number between 3 and 99 (inclusive). Input Input is given from Standard Input in the following format: S Output If S is a strong palindrome, print `Yes`; otherwise, print `No`. Examples Input akasaka Output Yes Input level Output No Input atcoder Output No
instruction
0
6,382
0
12,764
"Correct Solution: ``` s = input() n = len(s) if s[:int(n//2)] == s[int(n//2)+1:]: print("Yes") else: print("No") ```
output
1
6,382
0
12,765
Provide a correct Python 3 solution for this coding contest problem. A string S of an odd length is said to be a strong palindrome if and only if all of the following conditions are satisfied: * S is a palindrome. * Let N be the length of S. The string formed by the 1-st through ((N-1)/2)-th characters of S is a palindrome. * The string consisting of the (N+3)/2-st through N-th characters of S is a palindrome. Determine whether S is a strong palindrome. Constraints * S consists of lowercase English letters. * The length of S is an odd number between 3 and 99 (inclusive). Input Input is given from Standard Input in the following format: S Output If S is a strong palindrome, print `Yes`; otherwise, print `No`. Examples Input akasaka Output Yes Input level Output No Input atcoder Output No
instruction
0
6,383
0
12,766
"Correct Solution: ``` S=list(input()) N=len(S) if S==S[::-1] and S[:(N-1)//2]==S[(N+3)//2-1:]: print("Yes") else:print("No") ```
output
1
6,383
0
12,767
Provide a correct Python 3 solution for this coding contest problem. A string S of an odd length is said to be a strong palindrome if and only if all of the following conditions are satisfied: * S is a palindrome. * Let N be the length of S. The string formed by the 1-st through ((N-1)/2)-th characters of S is a palindrome. * The string consisting of the (N+3)/2-st through N-th characters of S is a palindrome. Determine whether S is a strong palindrome. Constraints * S consists of lowercase English letters. * The length of S is an odd number between 3 and 99 (inclusive). Input Input is given from Standard Input in the following format: S Output If S is a strong palindrome, print `Yes`; otherwise, print `No`. Examples Input akasaka Output Yes Input level Output No Input atcoder Output No
instruction
0
6,384
0
12,768
"Correct Solution: ``` s = input() if s[len(s) // 2 + 1:] == s[:len(s) // 2]: print('Yes') else: print('No') ```
output
1
6,384
0
12,769
Provide a correct Python 3 solution for this coding contest problem. A string S of an odd length is said to be a strong palindrome if and only if all of the following conditions are satisfied: * S is a palindrome. * Let N be the length of S. The string formed by the 1-st through ((N-1)/2)-th characters of S is a palindrome. * The string consisting of the (N+3)/2-st through N-th characters of S is a palindrome. Determine whether S is a strong palindrome. Constraints * S consists of lowercase English letters. * The length of S is an odd number between 3 and 99 (inclusive). Input Input is given from Standard Input in the following format: S Output If S is a strong palindrome, print `Yes`; otherwise, print `No`. Examples Input akasaka Output Yes Input level Output No Input atcoder Output No
instruction
0
6,385
0
12,770
"Correct Solution: ``` s = input() print("Yes" if s == s[::-1] and s[:len(s)//2] == s[len(s)//2-1::-1] else "No") ```
output
1
6,385
0
12,771
Provide a correct Python 3 solution for this coding contest problem. A string S of an odd length is said to be a strong palindrome if and only if all of the following conditions are satisfied: * S is a palindrome. * Let N be the length of S. The string formed by the 1-st through ((N-1)/2)-th characters of S is a palindrome. * The string consisting of the (N+3)/2-st through N-th characters of S is a palindrome. Determine whether S is a strong palindrome. Constraints * S consists of lowercase English letters. * The length of S is an odd number between 3 and 99 (inclusive). Input Input is given from Standard Input in the following format: S Output If S is a strong palindrome, print `Yes`; otherwise, print `No`. Examples Input akasaka Output Yes Input level Output No Input atcoder Output No
instruction
0
6,386
0
12,772
"Correct Solution: ``` S = str(input()) N = len(S) if S[:(N-1)//2] == S[(N+3)//2 - 1:] : print('Yes') else: print('No') ```
output
1
6,386
0
12,773
Provide a correct Python 3 solution for this coding contest problem. A string S of an odd length is said to be a strong palindrome if and only if all of the following conditions are satisfied: * S is a palindrome. * Let N be the length of S. The string formed by the 1-st through ((N-1)/2)-th characters of S is a palindrome. * The string consisting of the (N+3)/2-st through N-th characters of S is a palindrome. Determine whether S is a strong palindrome. Constraints * S consists of lowercase English letters. * The length of S is an odd number between 3 and 99 (inclusive). Input Input is given from Standard Input in the following format: S Output If S is a strong palindrome, print `Yes`; otherwise, print `No`. Examples Input akasaka Output Yes Input level Output No Input atcoder Output No
instruction
0
6,387
0
12,774
"Correct Solution: ``` S = input() N = len(S) N1s = (N-1)//2 N2s = (N+3)//2-1 if S[:N1s] == S[N2s:]: print("Yes") else: print("No") ```
output
1
6,387
0
12,775
Provide a correct Python 3 solution for this coding contest problem. A string S of an odd length is said to be a strong palindrome if and only if all of the following conditions are satisfied: * S is a palindrome. * Let N be the length of S. The string formed by the 1-st through ((N-1)/2)-th characters of S is a palindrome. * The string consisting of the (N+3)/2-st through N-th characters of S is a palindrome. Determine whether S is a strong palindrome. Constraints * S consists of lowercase English letters. * The length of S is an odd number between 3 and 99 (inclusive). Input Input is given from Standard Input in the following format: S Output If S is a strong palindrome, print `Yes`; otherwise, print `No`. Examples Input akasaka Output Yes Input level Output No Input atcoder Output No
instruction
0
6,388
0
12,776
"Correct Solution: ``` s=input();h=len(s)//2;print(' YNeos'[s[:h]==s[h-1::-1]==s[-h:]::2]) ```
output
1
6,388
0
12,777
Provide a correct Python 3 solution for this coding contest problem. For a given sequence A = {a0, a1, ... , an-1}, find the length of the longest increasing subsequnece (LIS) in A. An increasing subsequence of A is defined by a subsequence {ai0, ai1, ... , aik} where 0 ≀ i0 < i1 < ... < ik < n and ai0 < ai1 < ... < aik. Constraints * 1 ≀ n ≀ 100000 * 0 ≀ ai ≀ 109 Input n a0 a1 : an-1 In the first line, an integer n is given. In the next n lines, elements of A are given. Output The length of the longest increasing subsequence of A. Examples Input 5 5 1 3 2 4 Output 3 Input 3 1 1 1 Output 1
instruction
0
7,508
0
15,016
"Correct Solution: ``` #!/usr/bin/env python3 # n,m = map(int,sys.stdin.readline().split()) # a = list(map(int,sys.stdin.readline().split())) # a = [sys.stdin.readline() for _ in range(n)] # s = sys.stdin.readline().rstrip() # n = int(sys.stdin.readline()) INF = float("inf") import sys,bisect sys.setrecursionlimit(15000) n = int(sys.stdin.readline()) a = [int(sys.stdin.readline()) for _ in range(n)] # naive O(n**2) # dp = [0]*n # for i in range(n): # m = 0 # for j in range(0,i): # if a[j] < a[i] and m <= dp[j]: # m = dp[j] # dp[i] = m+1 # print(max(dp)) import bisect dp = [float("inf")]*n dp[0] = a[0] l = 0 for i in range(1,n): if dp[l] < a[i]: l += 1 dp[l] = a[i] else: j = bisect.bisect_left(dp,a[i]) dp[j] = a[i] print(bisect.bisect_left(dp,float("inf"))) ```
output
1
7,508
0
15,017
Provide tags and a correct Python 3 solution for this coding contest problem. Nezzar has a binary string s of length n that he wants to share with his best friend, Nanako. Nanako will spend q days inspecting the binary string. At the same time, Nezzar wants to change the string s into string f during these q days, because it looks better. It is known that Nanako loves consistency so much. On the i-th day, Nanako will inspect a segment of string s from position l_i to position r_i inclusive. If the segment contains both characters '0' and '1', Nanako becomes unhappy and throws away the string. After this inspection, at the i-th night, Nezzar can secretly change strictly less than half of the characters in the segment from l_i to r_i inclusive, otherwise the change will be too obvious. Now Nezzar wonders, if it is possible to avoid Nanako being unhappy and at the same time have the string become equal to the string f at the end of these q days and nights. Input The first line contains a single integer t (1 ≀ t ≀ 2 β‹… 10^5) β€” the number of test cases. The first line of each test case contains two integers n,q (1 ≀ n ≀ 2 β‹… 10^5, 0 ≀ q ≀ 2 β‹… 10^5). The second line of each test case contains a binary string s of length n. The third line of each test case contains a binary string f of length n. Then q lines follow, i-th of them contains two integers l_i,r_i (1 ≀ l_i ≀ r_i ≀ n) β€” bounds of the segment, that Nanako will inspect on the i-th day. It is guaranteed that the sum of n for all test cases doesn't exceed 2 β‹… 10^5, and the sum of q for all test cases doesn't exceed 2 β‹… 10^5. Output For each test case, print "YES" on the single line if it is possible to avoid Nanako being unhappy and have the string f at the end of q days and nights. Otherwise, print "NO". You can print each letter in any case (upper or lower). Example Input 4 5 2 00000 00111 1 5 1 3 2 1 00 01 1 2 10 6 1111111111 0110001110 1 10 5 9 7 10 1 7 3 5 6 10 5 2 10000 11000 2 5 1 3 Output YES NO YES NO Note In the first test case, \underline{00000} β†’ \underline{000}11 β†’ 00111 is one of the possible sequences of string changes. In the second test case, it can be shown that it is impossible to have the string f at the end.
instruction
0
7,783
0
15,566
Tags: data structures, greedy Correct Solution: ``` import sys readline = sys.stdin.readline """ import io,os readline = io.BytesIO(os.read(0,os.fstat(0).st_size)).readline """ from operator import add class Lazysegtree: def __init__(self, A, fx, ex, fm, em, fa, initialize = True): self.N = len(A) self.N0 = 2**(self.N-1).bit_length() self.dep = (self.N-1).bit_length() self.fx = fx self.ex = ex self.em = em self.lazy = [em]*(2*self.N0) if initialize: self.data = [self.ex]*self.N0 + A + [self.ex]*(self.N0 - self.N) for i in range(self.N0-1, -1, -1): self.data[i] = self.fx(self.data[2*i], self.data[2*i+1]) else: self.data = [self.ex]*(2*self.N0) def fa(self, ope, idx): if ope is not None: return ope*(1<<(self.dep - idx.bit_length() + 1)) return self.data[idx] def fm(self, ope1, ope2): return ope1 def __repr__(self): s = 'data' l = 'lazy' cnt = 1 for i in range(self.N0.bit_length()): s = '\n'.join((s, ' '.join(map(str, self.data[cnt:cnt+(1<<i)])))) l = '\n'.join((l, ' '.join(map(str, self.lazy[cnt:cnt+(1<<i)])))) cnt += 1<<i return '\n'.join((s, l)) def _ascend(self, k): k = k >> 1 c = k.bit_length() for j in range(c): idx = k >> j self.data[idx] = self.fx(self.data[2*idx], self.data[2*idx+1]) def _descend(self, k): k = k >> 1 idx = 1 c = k.bit_length() for j in range(1, c+1): idx = k >> (c - j) if self.lazy[idx] == self.em: continue self.data[2*idx] = self.fa(self.lazy[idx], 2*idx) self.data[2*idx+1] = self.fa(self.lazy[idx], 2*idx+1) self.lazy[2*idx] = self.fm(self.lazy[idx], self.lazy[2*idx]) self.lazy[2*idx+1] = self.fm(self.lazy[idx], self.lazy[2*idx+1]) self.lazy[idx] = self.em def query(self, l, r): L = l+self.N0 R = r+self.N0 self._descend(L//(L & -L)) self._descend(R//(R & -R)-1) sl = self.ex sr = self.ex while L < R: if R & 1: R -= 1 sr = self.fx(self.data[R], sr) if L & 1: sl = self.fx(sl, self.data[L]) L += 1 L >>= 1 R >>= 1 return self.fx(sl, sr) def operate(self, l, r, x): L = l+self.N0 R = r+self.N0 Li = L//(L & -L) Ri = R//(R & -R) self._descend(Li) self._descend(Ri-1) while L < R : if R & 1: R -= 1 self.data[R] = self.fa(x, R) self.lazy[R] = self.fm(x, self.lazy[R]) if L & 1: self.data[L] = self.fa(x, L) self.lazy[L] = self.fm(x, self.lazy[L]) L += 1 L >>= 1 R >>= 1 self._ascend(Li) self._ascend(Ri-1) def propall(self): for idx in range(1, self.N0): self.data[2*idx] = self.fa(self.lazy[idx], 2*idx) self.data[2*idx+1] = self.fa(self.lazy[idx], 2*idx+1) self.lazy[2*idx] = self.fm(self.lazy[idx], self.lazy[2*idx]) self.lazy[2*idx+1] = self.fm(self.lazy[idx], self.lazy[2*idx+1]) T = int(readline()) Ans = ['NO']*T for qu in range(T): N, Q = map(int, readline().split()) S = list(map(int, readline().strip())) T = list(map(int, readline().strip())) """ S = list(map(lambda x: int(x)-48, readline().strip())) T = list(map(lambda x: int(x)-48, readline().strip())) """ Qs = [tuple(map(int, readline().split())) for _ in range(Q)] K = Lazysegtree(T, add, 0, None, None, None) for l, r in Qs[::-1]: l -= 1 leng = r-l x = K.query(l, r) if 2*x > leng: K.operate(l, r, 1) elif 2*x == leng: break else: K.operate(l, r, 0) else: if [K.query(i, i+1) for i in range(N)] == S: Ans[qu] = 'YES' print('\n'.join(Ans)) ```
output
1
7,783
0
15,567
Provide tags and a correct Python 3 solution for this coding contest problem. Nezzar has a binary string s of length n that he wants to share with his best friend, Nanako. Nanako will spend q days inspecting the binary string. At the same time, Nezzar wants to change the string s into string f during these q days, because it looks better. It is known that Nanako loves consistency so much. On the i-th day, Nanako will inspect a segment of string s from position l_i to position r_i inclusive. If the segment contains both characters '0' and '1', Nanako becomes unhappy and throws away the string. After this inspection, at the i-th night, Nezzar can secretly change strictly less than half of the characters in the segment from l_i to r_i inclusive, otherwise the change will be too obvious. Now Nezzar wonders, if it is possible to avoid Nanako being unhappy and at the same time have the string become equal to the string f at the end of these q days and nights. Input The first line contains a single integer t (1 ≀ t ≀ 2 β‹… 10^5) β€” the number of test cases. The first line of each test case contains two integers n,q (1 ≀ n ≀ 2 β‹… 10^5, 0 ≀ q ≀ 2 β‹… 10^5). The second line of each test case contains a binary string s of length n. The third line of each test case contains a binary string f of length n. Then q lines follow, i-th of them contains two integers l_i,r_i (1 ≀ l_i ≀ r_i ≀ n) β€” bounds of the segment, that Nanako will inspect on the i-th day. It is guaranteed that the sum of n for all test cases doesn't exceed 2 β‹… 10^5, and the sum of q for all test cases doesn't exceed 2 β‹… 10^5. Output For each test case, print "YES" on the single line if it is possible to avoid Nanako being unhappy and have the string f at the end of q days and nights. Otherwise, print "NO". You can print each letter in any case (upper or lower). Example Input 4 5 2 00000 00111 1 5 1 3 2 1 00 01 1 2 10 6 1111111111 0110001110 1 10 5 9 7 10 1 7 3 5 6 10 5 2 10000 11000 2 5 1 3 Output YES NO YES NO Note In the first test case, \underline{00000} β†’ \underline{000}11 β†’ 00111 is one of the possible sequences of string changes. In the second test case, it can be shown that it is impossible to have the string f at the end.
instruction
0
7,784
0
15,568
Tags: data structures, greedy Correct Solution: ``` import io import os from math import floor # https://github.com/atcoder/ac-library/blob/master/atcoder/lazysegtree.hpp class LazySegTree: def __init__(self, _op, _e, _mapping, _composition, _id, v): def set(p, x): assert 0 <= p < _n p += _size for i in range(_log, 0, -1): _push(p >> i) _d[p] = x for i in range(1, _log + 1): _update(p >> i) def get(p): assert 0 <= p < _n p += _size for i in range(_log, 0, -1): _push(p >> i) return _d[p] def prod(l, r): assert 0 <= l <= r <= _n if l == r: return _e l += _size r += _size for i in range(_log, 0, -1): if ((l >> i) << i) != l: _push(l >> i) if ((r >> i) << i) != r: _push(r >> i) sml = _e smr = _e while l < r: if l & 1: sml = _op(sml, _d[l]) l += 1 if r & 1: r -= 1 smr = _op(_d[r], smr) l >>= 1 r >>= 1 return _op(sml, smr) def apply(l, r, f): assert 0 <= l <= r <= _n if l == r: return l += _size r += _size for i in range(_log, 0, -1): if ((l >> i) << i) != l: _push(l >> i) if ((r >> i) << i) != r: _push((r - 1) >> i) l2 = l r2 = r while l < r: if l & 1: _all_apply(l, f) l += 1 if r & 1: r -= 1 _all_apply(r, f) l >>= 1 r >>= 1 l = l2 r = r2 for i in range(1, _log + 1): if ((l >> i) << i) != l: _update(l >> i) if ((r >> i) << i) != r: _update((r - 1) >> i) def _update(k): _d[k] = _op(_d[2 * k], _d[2 * k + 1]) def _all_apply(k, f): _d[k] = _mapping(f, _d[k]) if k < _size: _lz[k] = _composition(f, _lz[k]) def _push(k): _all_apply(2 * k, _lz[k]) _all_apply(2 * k + 1, _lz[k]) _lz[k] = _id _n = len(v) _log = _n.bit_length() _size = 1 << _log _d = [_e] * (2 * _size) _lz = [_id] * _size for i in range(_n): _d[_size + i] = v[i] for i in range(_size - 1, 0, -1): _update(i) self.set = set self.get = get self.prod = prod self.apply = apply MIL = 1 << 20 def makeNode(total, count): # Pack a pair into a float return (total * MIL) + count def getTotal(node): return floor(node / MIL) def getCount(node): return node - getTotal(node) * MIL nodeIdentity = makeNode(0.0, 0.0) def nodeOp(node1, node2): return node1 + node2 # Equivalent to the following: return makeNode( getTotal(node1) + getTotal(node2), getCount(node1) + getCount(node2) ) identityMapping = -1 def mapping(tag, node): if tag == identityMapping: return node # If assigned, new total is the number assigned times count count = getCount(node) return makeNode(tag * count, count) def composition(mapping1, mapping2): # If assigned multiple times, take first non-identity assignment return mapping1 if mapping1 != identityMapping else mapping2 def solve(N, Q, S, F, LR): segTree = LazySegTree( nodeOp, nodeIdentity, mapping, composition, identityMapping, [makeNode(float(d), 1.0) for d in F], ) for l, r in LR[::-1]: l -= 1 countOnes = getTotal(segTree.prod(l, r)) countZeroes = r - l - countOnes if countZeroes > countOnes: # Majority were zeroes segTree.apply(l, r, 0) elif countZeroes < countOnes: # Majority were ones segTree.apply(l, r, 1) else: # No majority return "NO" for i in range(N): if getTotal(segTree.get(i)) != S[i]: return "NO" return "YES" if __name__ == "__main__": input = io.BytesIO(os.read(0, os.fstat(0).st_size)).readline TC = int(input()) for tc in range(1, TC + 1): N, Q = [int(x) for x in input().split()] S = [int(d) for d in input().decode().rstrip()] F = [int(d) for d in input().decode().rstrip()] LR = [[int(x) for x in input().split()] for i in range(Q)] ans = solve(N, Q, S, F, LR) print(ans) ```
output
1
7,784
0
15,569
Provide tags and a correct Python 3 solution for this coding contest problem. Nezzar has a binary string s of length n that he wants to share with his best friend, Nanako. Nanako will spend q days inspecting the binary string. At the same time, Nezzar wants to change the string s into string f during these q days, because it looks better. It is known that Nanako loves consistency so much. On the i-th day, Nanako will inspect a segment of string s from position l_i to position r_i inclusive. If the segment contains both characters '0' and '1', Nanako becomes unhappy and throws away the string. After this inspection, at the i-th night, Nezzar can secretly change strictly less than half of the characters in the segment from l_i to r_i inclusive, otherwise the change will be too obvious. Now Nezzar wonders, if it is possible to avoid Nanako being unhappy and at the same time have the string become equal to the string f at the end of these q days and nights. Input The first line contains a single integer t (1 ≀ t ≀ 2 β‹… 10^5) β€” the number of test cases. The first line of each test case contains two integers n,q (1 ≀ n ≀ 2 β‹… 10^5, 0 ≀ q ≀ 2 β‹… 10^5). The second line of each test case contains a binary string s of length n. The third line of each test case contains a binary string f of length n. Then q lines follow, i-th of them contains two integers l_i,r_i (1 ≀ l_i ≀ r_i ≀ n) β€” bounds of the segment, that Nanako will inspect on the i-th day. It is guaranteed that the sum of n for all test cases doesn't exceed 2 β‹… 10^5, and the sum of q for all test cases doesn't exceed 2 β‹… 10^5. Output For each test case, print "YES" on the single line if it is possible to avoid Nanako being unhappy and have the string f at the end of q days and nights. Otherwise, print "NO". You can print each letter in any case (upper or lower). Example Input 4 5 2 00000 00111 1 5 1 3 2 1 00 01 1 2 10 6 1111111111 0110001110 1 10 5 9 7 10 1 7 3 5 6 10 5 2 10000 11000 2 5 1 3 Output YES NO YES NO Note In the first test case, \underline{00000} β†’ \underline{000}11 β†’ 00111 is one of the possible sequences of string changes. In the second test case, it can be shown that it is impossible to have the string f at the end.
instruction
0
7,785
0
15,570
Tags: data structures, greedy Correct Solution: ``` import sys input = sys.stdin.readline def indexes(L,R): INDLIST=[] R-=1 L>>=1 R>>=1 while L!=R: if L>R: INDLIST.append(L) L>>=1 else: INDLIST.append(R) R>>=1 while L!=0: INDLIST.append(L) L>>=1 return INDLIST def updates(l,r,x): L=l+seg_el R=r+seg_el L//=(L & (-L)) R//=(R & (-R)) UPIND=indexes(L,R) for ind in UPIND[::-1]: if LAZY[ind]!=None: update_lazy = LAZY[ind] *(1<<(seg_height - 1 - (ind.bit_length()))) LAZY[ind<<1]=LAZY[1+(ind<<1)]=LAZY[ind] SEG[ind<<1]=SEG[1+(ind<<1)]=update_lazy LAZY[ind]=None while L!=R: if L > R: SEG[L]=x * (1<<(seg_height - (L.bit_length()))) LAZY[L]=x L+=1 L//=(L & (-L)) else: R-=1 SEG[R]=x * (1<<(seg_height - (R.bit_length()))) LAZY[R]=x R//=(R & (-R)) for ind in UPIND: SEG[ind]=SEG[ind<<1]+SEG[1+(ind<<1)] def getvalues(l,r): L=l+seg_el R=r+seg_el L//=(L & (-L)) R//=(R & (-R)) UPIND=indexes(L,R) for ind in UPIND[::-1]: if LAZY[ind]!=None: update_lazy = LAZY[ind] *(1<<(seg_height - 1 - (ind.bit_length()))) LAZY[ind<<1]=LAZY[1+(ind<<1)]=LAZY[ind] SEG[ind<<1]=SEG[1+(ind<<1)]=update_lazy LAZY[ind]=None ANS=0 while L!=R: if L > R: ANS+=SEG[L] L+=1 L//=(L & (-L)) else: R-=1 ANS+=SEG[R] R//=(R & (-R)) return ANS t=int(input()) for tests in range(t): n,q=map(int,input().split()) S=input().strip() F=input().strip() Q=[tuple(map(int,input().split())) for i in range(q)] seg_el=1<<(n.bit_length()) seg_height=1+n.bit_length() SEG=[0]*(2*seg_el) LAZY=[None]*(2*seg_el) for i in range(n): SEG[i+seg_el]=int(F[i]) for i in range(seg_el-1,0,-1): SEG[i]=SEG[i*2]+SEG[i*2+1] for l,r in Q[::-1]: SUM=r-l+1 xx=getvalues(l-1,r) if xx*2==SUM: print("NO") break else: if xx*2>SUM: updates(l-1,r,1) else: updates(l-1,r,0) else: for i in range(n): if getvalues(i,i+1)==int(S[i]): True else: print("NO") break else: print("YES") ```
output
1
7,785
0
15,571
Provide tags and a correct Python 3 solution for this coding contest problem. Nezzar has a binary string s of length n that he wants to share with his best friend, Nanako. Nanako will spend q days inspecting the binary string. At the same time, Nezzar wants to change the string s into string f during these q days, because it looks better. It is known that Nanako loves consistency so much. On the i-th day, Nanako will inspect a segment of string s from position l_i to position r_i inclusive. If the segment contains both characters '0' and '1', Nanako becomes unhappy and throws away the string. After this inspection, at the i-th night, Nezzar can secretly change strictly less than half of the characters in the segment from l_i to r_i inclusive, otherwise the change will be too obvious. Now Nezzar wonders, if it is possible to avoid Nanako being unhappy and at the same time have the string become equal to the string f at the end of these q days and nights. Input The first line contains a single integer t (1 ≀ t ≀ 2 β‹… 10^5) β€” the number of test cases. The first line of each test case contains two integers n,q (1 ≀ n ≀ 2 β‹… 10^5, 0 ≀ q ≀ 2 β‹… 10^5). The second line of each test case contains a binary string s of length n. The third line of each test case contains a binary string f of length n. Then q lines follow, i-th of them contains two integers l_i,r_i (1 ≀ l_i ≀ r_i ≀ n) β€” bounds of the segment, that Nanako will inspect on the i-th day. It is guaranteed that the sum of n for all test cases doesn't exceed 2 β‹… 10^5, and the sum of q for all test cases doesn't exceed 2 β‹… 10^5. Output For each test case, print "YES" on the single line if it is possible to avoid Nanako being unhappy and have the string f at the end of q days and nights. Otherwise, print "NO". You can print each letter in any case (upper or lower). Example Input 4 5 2 00000 00111 1 5 1 3 2 1 00 01 1 2 10 6 1111111111 0110001110 1 10 5 9 7 10 1 7 3 5 6 10 5 2 10000 11000 2 5 1 3 Output YES NO YES NO Note In the first test case, \underline{00000} β†’ \underline{000}11 β†’ 00111 is one of the possible sequences of string changes. In the second test case, it can be shown that it is impossible to have the string f at the end.
instruction
0
7,786
0
15,572
Tags: data structures, greedy Correct Solution: ``` import os import sys from io import BytesIO, IOBase # region fastio BUFSIZE = 8192 class FastIO(IOBase): def __init__(self, file): self.newlines = 0 self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline() # -------------------------------------------------------------------- def RL(): return map(int, sys.stdin.readline().split()) def RLL(): return list(map(int, sys.stdin.readline().split())) def N(): return int(input()) def S(): return input().strip() def print_list(l): print(' '.join(map(str, l))) # sys.setrecursionlimit(200000) # import random # from functools import reduce # from functools import lru_cache # from heapq import * # from collections import deque as dq # import math # import bisect as bs # from collections import Counter # from collections import defaultdict as dc def set_range(lx, rx, v, now): if l <= lx and r >= rx: label[now] = v node[now] = rx - lx if v else 0 return mx = (lx + rx) >> 1 nl = now << 1 nr = nl + 1 if label[now] != -1: # ιžε―Ήη§°ζ“δ½œε―η”¨θ―₯ηŽ―θŠ‚ node[nl] = node[nr] = node[now] >> 1 label[nl] = label[nr] = label[now] label[now] = -1 if l < mx: set_range(lx, mx, v, nl) if r > mx: set_range(mx, rx, v, nr) node[now] = node[nl] + node[nr] def get_range(lx, rx, now): if l <= lx and r >= rx: return node[now] mx = (lx + rx) >> 1 nl = now << 1 nr = nl + 1 if label[now] != -1: return min(rx, r) - max(lx, l) if label[now] else 0 m1 = get_range(lx, mx, nl) if l < mx else 0 m2 = get_range(mx, rx, nr) if r > mx else 0 return m1 + m2 def match(lx, rx, now): if lx >= n: return False if now >= sn: return node[now] != s[lx] if label[now] != -1: return any(v != label[now] for v in s[lx:rx]) mx = (rx + lx) >> 1 return match(lx, mx, now << 1) or match(mx, rx, now << 1 | 1) ans = [] for _ in range(N()): n, q = RL() s, t = [int(c) for c in S()], [int(c) for c in S()] p = [tuple(RL()) for _ in range(q)] sn = 1 << n.bit_length() node = [0] * sn + t + [0] * (sn - n) label = [-1] * (2 * sn) for i in range(sn - 1, 0, -1): node[i] = node[i << 1] + node[i << 1 | 1] f = True for l, r in p[::-1]: l -= 1 count = get_range(0, sn, 1) * 2 if count == r - l: f = False break set_range(0, sn, 1 if count > r - l else 0, 1) ans.append('YES' if f and not match(0, sn, 1) else 'NO') print('\n'.join(ans)) ```
output
1
7,786
0
15,573
Provide tags and a correct Python 3 solution for this coding contest problem. Nezzar has a binary string s of length n that he wants to share with his best friend, Nanako. Nanako will spend q days inspecting the binary string. At the same time, Nezzar wants to change the string s into string f during these q days, because it looks better. It is known that Nanako loves consistency so much. On the i-th day, Nanako will inspect a segment of string s from position l_i to position r_i inclusive. If the segment contains both characters '0' and '1', Nanako becomes unhappy and throws away the string. After this inspection, at the i-th night, Nezzar can secretly change strictly less than half of the characters in the segment from l_i to r_i inclusive, otherwise the change will be too obvious. Now Nezzar wonders, if it is possible to avoid Nanako being unhappy and at the same time have the string become equal to the string f at the end of these q days and nights. Input The first line contains a single integer t (1 ≀ t ≀ 2 β‹… 10^5) β€” the number of test cases. The first line of each test case contains two integers n,q (1 ≀ n ≀ 2 β‹… 10^5, 0 ≀ q ≀ 2 β‹… 10^5). The second line of each test case contains a binary string s of length n. The third line of each test case contains a binary string f of length n. Then q lines follow, i-th of them contains two integers l_i,r_i (1 ≀ l_i ≀ r_i ≀ n) β€” bounds of the segment, that Nanako will inspect on the i-th day. It is guaranteed that the sum of n for all test cases doesn't exceed 2 β‹… 10^5, and the sum of q for all test cases doesn't exceed 2 β‹… 10^5. Output For each test case, print "YES" on the single line if it is possible to avoid Nanako being unhappy and have the string f at the end of q days and nights. Otherwise, print "NO". You can print each letter in any case (upper or lower). Example Input 4 5 2 00000 00111 1 5 1 3 2 1 00 01 1 2 10 6 1111111111 0110001110 1 10 5 9 7 10 1 7 3 5 6 10 5 2 10000 11000 2 5 1 3 Output YES NO YES NO Note In the first test case, \underline{00000} β†’ \underline{000}11 β†’ 00111 is one of the possible sequences of string changes. In the second test case, it can be shown that it is impossible to have the string f at the end.
instruction
0
7,787
0
15,574
Tags: data structures, greedy Correct Solution: ``` import sys, io, os if os.environ['USERNAME']=='kissz': inp1=inp2=open('in.txt','r').readline def debug(*args): print(*args,file=sys.stderr) else: #inp1=input inp1=inp2=sys.stdin.readline #inp2=io.BytesIO(os.read(0,os.fstat(0).st_size)).readline def debug(*args): pass # SCRIPT STARTS HERE class lazytree: def __init__(self,array): n=len(array)-1 i=1 while n: n>>=1 i+=1 self.tree=[0]*(2**(i-1)-1)+array+[0]*(2**(i-1)-len(array)) self.l=0 self.r=2**(i-1)-1 self.lazy=[0]*(2**i-1) self.lazyval=[0]*(2**i-1) for i in range(2**(i-1)-2,-1,-1): self.tree[i]=self.tree[2*i+1]+self.tree[2*i+2] def query(self,l,r): if l==self.l and r==self.r: parents=[] children=[(0,l,r)] else: parents=[(0,self.l,self.r)] children=[] i=0 while i<len(parents): loc,L,R=parents[i] left=(loc*2+1,L,L+(R-L+1)//2-1) right=(loc*2+2,L+(R-L+1)//2,R) if self.lazy[loc]: self.lazy[loc]=0 self.tree[left[0]]=self.tree[right[0]]=(left[2]-left[1]+1)*self.lazyval[loc] self.lazy[left[0]]=self.lazy[right[0]]=1 self.lazyval[left[0]]=self.lazyval[right[0]]=self.lazyval[loc] if l<=left[1] and left[2]<=r: children.append(left) elif left[1]<=l<=left[2] or left[1]<=r<=left[2]: parents.append(left) if l<=right[1] and right[2]<=r: children.append(right) elif right[1]<=l<=right[2] or right[1]<=r<=right[2]: parents.append(right) i+=1 ones=sum(self.tree[child[0]] for child in children) zeros=r-l+1-ones if ones==zeros: return -1 elif ones>zeros: for child in children: self.tree[child[0]]=child[2]-child[1]+1 self.lazy[child[0]]=1 self.lazyval[child[0]]=1 else: for child in children: self.tree[child[0]]=0 self.lazy[child[0]]=1 self.lazyval[child[0]]=0 for i,_,_ in reversed(parents): self.tree[i]=self.tree[2*i+1]+self.tree[2*i+2] return self.tree[child[0]] def get_all(self): n=self.r-self.l for i in range(n): if self.lazy[i]: self.lazy[i]=0 self.tree[2*i+1]=self.tree[2*i+2]=self.lazyval[i] # destroying tree self.lazy[2*i+1]=self.lazy[2*i+2]=1 self.lazyval[2*i+1]=self.lazyval[2*i+2]=self.lazyval[i] return self.tree[n:] for _ in range(int(inp2())): n,q=map(int,inp2().split()) s=[int(c) for c in inp1().strip()] f=[int(c) for c in inp1().strip()] moves=[] ans=True for _ in range(q): l,r=map(int,inp2().split()) moves.append((l-1,r-1)) tr=lazytree(f) for l,r in reversed(moves): success=tr.query(l,r) if success==-1: break else: f=tr.get_all()[:n] if f!=s: success=-1 if success>=0: print('YES') else: print('NO') ```
output
1
7,787
0
15,575
Provide tags and a correct Python 3 solution for this coding contest problem. Nezzar has a binary string s of length n that he wants to share with his best friend, Nanako. Nanako will spend q days inspecting the binary string. At the same time, Nezzar wants to change the string s into string f during these q days, because it looks better. It is known that Nanako loves consistency so much. On the i-th day, Nanako will inspect a segment of string s from position l_i to position r_i inclusive. If the segment contains both characters '0' and '1', Nanako becomes unhappy and throws away the string. After this inspection, at the i-th night, Nezzar can secretly change strictly less than half of the characters in the segment from l_i to r_i inclusive, otherwise the change will be too obvious. Now Nezzar wonders, if it is possible to avoid Nanako being unhappy and at the same time have the string become equal to the string f at the end of these q days and nights. Input The first line contains a single integer t (1 ≀ t ≀ 2 β‹… 10^5) β€” the number of test cases. The first line of each test case contains two integers n,q (1 ≀ n ≀ 2 β‹… 10^5, 0 ≀ q ≀ 2 β‹… 10^5). The second line of each test case contains a binary string s of length n. The third line of each test case contains a binary string f of length n. Then q lines follow, i-th of them contains two integers l_i,r_i (1 ≀ l_i ≀ r_i ≀ n) β€” bounds of the segment, that Nanako will inspect on the i-th day. It is guaranteed that the sum of n for all test cases doesn't exceed 2 β‹… 10^5, and the sum of q for all test cases doesn't exceed 2 β‹… 10^5. Output For each test case, print "YES" on the single line if it is possible to avoid Nanako being unhappy and have the string f at the end of q days and nights. Otherwise, print "NO". You can print each letter in any case (upper or lower). Example Input 4 5 2 00000 00111 1 5 1 3 2 1 00 01 1 2 10 6 1111111111 0110001110 1 10 5 9 7 10 1 7 3 5 6 10 5 2 10000 11000 2 5 1 3 Output YES NO YES NO Note In the first test case, \underline{00000} β†’ \underline{000}11 β†’ 00111 is one of the possible sequences of string changes. In the second test case, it can be shown that it is impossible to have the string f at the end.
instruction
0
7,788
0
15,576
Tags: data structures, greedy Correct Solution: ``` import os import sys from io import BytesIO, IOBase # region fastio BUFSIZE = 8192 class FastIO(IOBase): def __init__(self, file): self.newlines = 0 self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = sys.stdin.readline # -------------------------------------------------------------------- def RL(): return map(int, sys.stdin.readline().split()) def RLL(): return list(map(int, sys.stdin.readline().split())) def N(): return int(input()) def S(): return input().strip() def print_list(l): print(' '.join(map(str, l))) # sys.setrecursionlimit(200000) # import random # from functools import reduce # from functools import lru_cache # from heapq import * # from collections import deque as dq # import math # import bisect as bs # from collections import Counter # from collections import defaultdict as dc def set_range(lx, rx, v, now): if l <= lx and r >= rx: label[now] = v node[now] = rx - lx if v else 0 return mx = (lx + rx) >> 1 nl = now << 1 nr = nl + 1 if label[now] != -1: # ιžε―Ήη§°ζ“δ½œε―η”¨θ―₯ηŽ―θŠ‚ node[nl] = node[nr] = node[now] >> 1 label[nl] = label[nr] = label[now] label[now] = -1 if l < mx: set_range(lx, mx, v, nl) if r > mx: set_range(mx, rx, v, nr) node[now] = node[nl] + node[nr] def get_range(lx, rx, now): if l <= lx and r >= rx: return node[now] mx = (lx + rx) >> 1 nl = now << 1 nr = nl + 1 if label[now] != -1: return min(rx, r) - max(lx, l) if label[now] else 0 m1 = get_range(lx, mx, nl) if l < mx else 0 m2 = get_range(mx, rx, nr) if r > mx else 0 return m1 + m2 def match(lx, rx, now): if lx >= n: return False if now >= sn: return node[now] != s[lx] if label[now] != -1: return any(v != label[now] for v in s[lx:rx]) mx = (rx + lx) >> 1 return match(lx, mx, now << 1) or match(mx, rx, now << 1 | 1) for _ in range(N()): n, q = RL() s, t = [int(c) for c in S()], [int(c) for c in S()] p = [tuple(RL()) for _ in range(q)] sn = 1 << n.bit_length() node = [0] * sn + t + [0] * (sn - n) label = [-1] * (2 * sn) for i in range(sn - 1, 0, -1): node[i] = node[i << 1] + node[i << 1 | 1] f = True for l, r in p[::-1]: l -= 1 count = get_range(0, sn, 1) * 2 if count == r - l: f = False break set_range(0, sn, 1 if count > r - l else 0, 1) print('YES' if f and not match(0, sn, 1) else 'NO') ```
output
1
7,788
0
15,577
Provide tags and a correct Python 3 solution for this coding contest problem. Nezzar has a binary string s of length n that he wants to share with his best friend, Nanako. Nanako will spend q days inspecting the binary string. At the same time, Nezzar wants to change the string s into string f during these q days, because it looks better. It is known that Nanako loves consistency so much. On the i-th day, Nanako will inspect a segment of string s from position l_i to position r_i inclusive. If the segment contains both characters '0' and '1', Nanako becomes unhappy and throws away the string. After this inspection, at the i-th night, Nezzar can secretly change strictly less than half of the characters in the segment from l_i to r_i inclusive, otherwise the change will be too obvious. Now Nezzar wonders, if it is possible to avoid Nanako being unhappy and at the same time have the string become equal to the string f at the end of these q days and nights. Input The first line contains a single integer t (1 ≀ t ≀ 2 β‹… 10^5) β€” the number of test cases. The first line of each test case contains two integers n,q (1 ≀ n ≀ 2 β‹… 10^5, 0 ≀ q ≀ 2 β‹… 10^5). The second line of each test case contains a binary string s of length n. The third line of each test case contains a binary string f of length n. Then q lines follow, i-th of them contains two integers l_i,r_i (1 ≀ l_i ≀ r_i ≀ n) β€” bounds of the segment, that Nanako will inspect on the i-th day. It is guaranteed that the sum of n for all test cases doesn't exceed 2 β‹… 10^5, and the sum of q for all test cases doesn't exceed 2 β‹… 10^5. Output For each test case, print "YES" on the single line if it is possible to avoid Nanako being unhappy and have the string f at the end of q days and nights. Otherwise, print "NO". You can print each letter in any case (upper or lower). Example Input 4 5 2 00000 00111 1 5 1 3 2 1 00 01 1 2 10 6 1111111111 0110001110 1 10 5 9 7 10 1 7 3 5 6 10 5 2 10000 11000 2 5 1 3 Output YES NO YES NO Note In the first test case, \underline{00000} β†’ \underline{000}11 β†’ 00111 is one of the possible sequences of string changes. In the second test case, it can be shown that it is impossible to have the string f at the end.
instruction
0
7,789
0
15,578
Tags: data structures, greedy Correct Solution: ``` # lazy segment tree t=[0]*(4*200000) lazy=[-1]*(4*200000) def build(a,v,tl,tr): if (tl==tr): t[v]=a[tl] else: tm=(tl+tr)//2 build(a,v*2,tl,tm) build(a,v*2+1,tm+1,tr) t[v]=t[v*2]+t[v*2+1] return def push(v,tl,tr): if lazy[v]==-1: return tm=(tl+tr)//2 t[v*2]=lazy[v]*(tm-tl+1) lazy[v*2]=lazy[v]; t[v*2+1]=lazy[v]*(tr-tm) lazy[v*2+1]=lazy[v] lazy[v]=-1 return def update(v,tl,tr,l,r,setval): # print('v:{} tl:{} tr:{} l:{} r:{}'.format(v,tl,tr,l,r)) if (r<tl or l>tr): return if (l<=tl and tr<=r): t[v]=(tr-tl+1)*setval lazy[v]=setval else: push(v,tl,tr) tm=(tl+tr)//2 update(v*2,tl,tm,l,r,setval) update(v*2+1,tm+1,tr,l,r,setval) t[v]=t[v*2]+t[v*2+1] return def query(v,tl,tr,l,r): if (r<tl or l>tr): return 0 if l<=tl and tr<=r: return t[v] push(v,tl,tr) tm=(tl+tr)//2 returnVal=query(v*2,tl,tm,l,r)+query(v*2+1,tm+1,tr,l,r) return returnVal def reconstruct(v,tl,tr,f2): if tl==tr: f2.append(t[v]) else: push(v,tl,tr) tm=(tl+tr)//2 reconstruct(v*2,tl,tm,f2) reconstruct(v*2+1,tm+1,tr,f2) return def main(): z=int(input()) allans=[] for _ in range(z): n,q=readIntArr() sf=input() ss=input() lr=[None for __ in range(q)] for i in range(q-1,-1,-1): l,r=readIntArr() l-=1 r-=1 lr[i]=[l,r] s=[c-ord('0') for c in ss] f=[c-ord('0') for c in sf] for i in range(4*n): t[i]=0 lazy[i]=-1 build(s,1,0,n-1) ok=True for i in range(q): l,r=lr[i] nElems=r-l+1 total=query(1,0,n-1,l,r) if total*2<nElems: updateVal=0 elif total*2>nElems: updateVal=1 else: ok=False break update(1,0,n-1,l,r,updateVal) if not ok: allans.append('NO') continue f2=[] reconstruct(1,0,n-1,f2) ok=True for i in range(n): if f[i]!=f2[i]: ok=False break if ok: allans.append('YES') else: allans.append('NO') multiLineArrayPrint(allans) return import sys input=sys.stdin.buffer.readline #FOR READING PURE INTEGER INPUTS (space separation ok) # input=lambda: sys.stdin.readline().rstrip("\r\n") #FOR READING STRING/TEXT INPUTS. def oneLineArrayPrint(arr): print(' '.join([str(x) for x in arr])) def multiLineArrayPrint(arr): print('\n'.join([str(x) for x in arr])) def multiLineArrayOfArraysPrint(arr): print('\n'.join([' '.join([str(x) for x in y]) for y in arr])) def readIntArr(): return [int(x) for x in input().split()] # def readFloatArr(): # return [float(x) for x in input().split()] def makeArr(defaultValFactory,dimensionArr): # eg. makeArr(lambda:0,[n,m]) dv=defaultValFactory;da=dimensionArr if len(da)==1:return [dv() for _ in range(da[0])] else:return [makeArr(dv,da[1:]) for _ in range(da[0])] def queryInteractive(x,y): print('? {} {}'.format(x,y)) sys.stdout.flush() return int(input()) def answerInteractive(ans): print('! {}'.format(ans)) sys.stdout.flush() inf=float('inf') MOD=10**9+7 # MOD=998244353 for _abc in range(1): main() ```
output
1
7,789
0
15,579
Provide tags and a correct Python 3 solution for this coding contest problem. Nezzar has a binary string s of length n that he wants to share with his best friend, Nanako. Nanako will spend q days inspecting the binary string. At the same time, Nezzar wants to change the string s into string f during these q days, because it looks better. It is known that Nanako loves consistency so much. On the i-th day, Nanako will inspect a segment of string s from position l_i to position r_i inclusive. If the segment contains both characters '0' and '1', Nanako becomes unhappy and throws away the string. After this inspection, at the i-th night, Nezzar can secretly change strictly less than half of the characters in the segment from l_i to r_i inclusive, otherwise the change will be too obvious. Now Nezzar wonders, if it is possible to avoid Nanako being unhappy and at the same time have the string become equal to the string f at the end of these q days and nights. Input The first line contains a single integer t (1 ≀ t ≀ 2 β‹… 10^5) β€” the number of test cases. The first line of each test case contains two integers n,q (1 ≀ n ≀ 2 β‹… 10^5, 0 ≀ q ≀ 2 β‹… 10^5). The second line of each test case contains a binary string s of length n. The third line of each test case contains a binary string f of length n. Then q lines follow, i-th of them contains two integers l_i,r_i (1 ≀ l_i ≀ r_i ≀ n) β€” bounds of the segment, that Nanako will inspect on the i-th day. It is guaranteed that the sum of n for all test cases doesn't exceed 2 β‹… 10^5, and the sum of q for all test cases doesn't exceed 2 β‹… 10^5. Output For each test case, print "YES" on the single line if it is possible to avoid Nanako being unhappy and have the string f at the end of q days and nights. Otherwise, print "NO". You can print each letter in any case (upper or lower). Example Input 4 5 2 00000 00111 1 5 1 3 2 1 00 01 1 2 10 6 1111111111 0110001110 1 10 5 9 7 10 1 7 3 5 6 10 5 2 10000 11000 2 5 1 3 Output YES NO YES NO Note In the first test case, \underline{00000} β†’ \underline{000}11 β†’ 00111 is one of the possible sequences of string changes. In the second test case, it can be shown that it is impossible to have the string f at the end.
instruction
0
7,790
0
15,580
Tags: data structures, greedy Correct Solution: ``` import os import sys from io import BytesIO, IOBase # region fastio BUFSIZE = 8192 class FastIO(IOBase): def __init__(self, file): self.newlines = 0 self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline() # -------------------------------------------------------------------- def RL(): return map(int, sys.stdin.readline().split()) def RLL(): return list(map(int, sys.stdin.readline().split())) def N(): return int(input()) def S(): return input().strip() def print_list(l): print(' '.join(map(str, l))) # sys.setrecursionlimit(200000) # import random # from functools import reduce # from functools import lru_cache # from heapq import * # from collections import deque as dq # import math # import bisect as bs # from collections import Counter # from collections import defaultdict as dc def set_range(lx, rx, v, now): if l <= lx and r >= rx: label[now] = v node[now] = rx - lx if v else 0 return mx = (lx + rx) >> 1 nl = now << 1 nr = nl + 1 if label[now] != -1: # ιžε―Ήη§°ζ“δ½œε―η”¨θ―₯ηŽ―θŠ‚ node[nl] = node[nr] = node[now] >> 1 label[nl] = label[nr] = label[now] label[now] = -1 if l < mx: set_range(lx, mx, v, nl) if r > mx: set_range(mx, rx, v, nr) node[now] = node[nl] + node[nr] def get_range(lx, rx, now): if l <= lx and r >= rx: return node[now] mx = (lx + rx) >> 1 nl = now << 1 nr = nl + 1 if label[now] != -1: # ιžε―Ήη§°ζ“δ½œε―η”¨θ―₯ηŽ―θŠ‚ return min(rx, r) - max(lx, l) if label[now] else 0 m1 = get_range(lx, mx, nl) if l < mx else 0 m2 = get_range(mx, rx, nr) if r > mx else 0 return m1 + m2 def match(lx, rx, now): if lx >= n: return False if now >= sn: return node[now] != s[lx] if label[now] != -1: return any(v != label[now] for v in s[lx:rx]) mx = (rx + lx) >> 1 return match(lx, mx, now << 1) or match(mx, rx, now << 1 | 1) ans = [] for _ in range(N()): n, q = RL() s = [int(c) for c in S()] t = [int(c) for c in S()] p = [tuple(RL()) for _ in range(q)] sn = 1 << n.bit_length() node = [0] * sn + t + [0] * (sn - n) label = [-1] * (2 * sn) for i in range(sn - 1, 0, -1): node[i] = node[i << 1] + node[i << 1 | 1] f = True for l, r in p[::-1]: l -= 1 count = get_range(0, sn, 1) * 2 if count == r - l: f = False break if count > r - l: set_range(0, sn, 1, 1) else: set_range(0, sn, 0, 1) ans.append('YES' if f and not match(0, sn, 1) else 'NO') print('\n'.join(ans)) ```
output
1
7,790
0
15,581
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Nezzar has a binary string s of length n that he wants to share with his best friend, Nanako. Nanako will spend q days inspecting the binary string. At the same time, Nezzar wants to change the string s into string f during these q days, because it looks better. It is known that Nanako loves consistency so much. On the i-th day, Nanako will inspect a segment of string s from position l_i to position r_i inclusive. If the segment contains both characters '0' and '1', Nanako becomes unhappy and throws away the string. After this inspection, at the i-th night, Nezzar can secretly change strictly less than half of the characters in the segment from l_i to r_i inclusive, otherwise the change will be too obvious. Now Nezzar wonders, if it is possible to avoid Nanako being unhappy and at the same time have the string become equal to the string f at the end of these q days and nights. Input The first line contains a single integer t (1 ≀ t ≀ 2 β‹… 10^5) β€” the number of test cases. The first line of each test case contains two integers n,q (1 ≀ n ≀ 2 β‹… 10^5, 0 ≀ q ≀ 2 β‹… 10^5). The second line of each test case contains a binary string s of length n. The third line of each test case contains a binary string f of length n. Then q lines follow, i-th of them contains two integers l_i,r_i (1 ≀ l_i ≀ r_i ≀ n) β€” bounds of the segment, that Nanako will inspect on the i-th day. It is guaranteed that the sum of n for all test cases doesn't exceed 2 β‹… 10^5, and the sum of q for all test cases doesn't exceed 2 β‹… 10^5. Output For each test case, print "YES" on the single line if it is possible to avoid Nanako being unhappy and have the string f at the end of q days and nights. Otherwise, print "NO". You can print each letter in any case (upper or lower). Example Input 4 5 2 00000 00111 1 5 1 3 2 1 00 01 1 2 10 6 1111111111 0110001110 1 10 5 9 7 10 1 7 3 5 6 10 5 2 10000 11000 2 5 1 3 Output YES NO YES NO Note In the first test case, \underline{00000} β†’ \underline{000}11 β†’ 00111 is one of the possible sequences of string changes. In the second test case, it can be shown that it is impossible to have the string f at the end. Submitted Solution: ``` import os import sys from io import BytesIO, IOBase # region fastio BUFSIZE = 8192 class FastIO(IOBase): def __init__(self, file): self.newlines = 0 self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline() # -------------------------------------------------------------------- def RL(): return map(int, sys.stdin.readline().split()) def RLL(): return list(map(int, sys.stdin.readline().split())) def N(): return int(input()) def S(): return input().strip() def print_list(l): print(' '.join(map(str, l))) # sys.setrecursionlimit(200000) # import random # from functools import reduce # from functools import lru_cache # from heapq import * # from collections import deque as dq # import math # import bisect as bs # from collections import Counter # from collections import defaultdict as dc def set_range(lx, rx, v, now): if l <= lx and r >= rx: label[now] = v node[now] = rx - lx if v else 0 return mx = (lx + rx) >> 1 nl = now << 1 nr = nl + 1 if label[now] != -1: # ιžε―Ήη§°ζ“δ½œε―η”¨θ―₯ηŽ―θŠ‚ node[nl] = node[nr] = node[now] >> 1 label[nl] = label[nr] = label[now] label[now] = -1 if l < mx: set_range(lx, mx, v, nl) if r > mx: set_range(mx, rx, v, nr) node[now] = node[nl] + node[nr] def get_range(lx, rx, now): if l <= lx and r >= rx: return node[now] mx = (lx + rx) >> 1 nl = now << 1 nr = nl + 1 if label[now] != -1: return min(rx, r) - max(lx, l) if label[now] else 0 m1 = get_range(lx, mx, nl) if l < mx else 0 m2 = get_range(mx, rx, nr) if r > mx else 0 return m1 + m2 def match(lx, rx, now): if lx >= n: return False if now >= sn: return node[now] != s[lx] if label[now] != -1: return any(v != label[now] for v in s[lx:rx]) mx = (rx + lx) >> 1 return match(lx, mx, now << 1) or match(mx, rx, now << 1 | 1) for _ in range(N()): n, q = RL() s, t = [int(c) for c in S()], [int(c) for c in S()] p = [tuple(RL()) for _ in range(q)] sn = 1 << n.bit_length() node = [0] * sn + t + [0] * (sn - n) label = [-1] * (2 * sn) for i in range(sn - 1, 0, -1): node[i] = node[i << 1] + node[i << 1 | 1] f = True for l, r in p[::-1]: l -= 1 count = get_range(0, sn, 1) * 2 if count == r - l: f = False break set_range(0, sn, 1 if count > r - l else 0, 1) print('YES' if f and not match(0, sn, 1) else 'NO') ```
instruction
0
7,791
0
15,582
Yes
output
1
7,791
0
15,583
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Nezzar has a binary string s of length n that he wants to share with his best friend, Nanako. Nanako will spend q days inspecting the binary string. At the same time, Nezzar wants to change the string s into string f during these q days, because it looks better. It is known that Nanako loves consistency so much. On the i-th day, Nanako will inspect a segment of string s from position l_i to position r_i inclusive. If the segment contains both characters '0' and '1', Nanako becomes unhappy and throws away the string. After this inspection, at the i-th night, Nezzar can secretly change strictly less than half of the characters in the segment from l_i to r_i inclusive, otherwise the change will be too obvious. Now Nezzar wonders, if it is possible to avoid Nanako being unhappy and at the same time have the string become equal to the string f at the end of these q days and nights. Input The first line contains a single integer t (1 ≀ t ≀ 2 β‹… 10^5) β€” the number of test cases. The first line of each test case contains two integers n,q (1 ≀ n ≀ 2 β‹… 10^5, 0 ≀ q ≀ 2 β‹… 10^5). The second line of each test case contains a binary string s of length n. The third line of each test case contains a binary string f of length n. Then q lines follow, i-th of them contains two integers l_i,r_i (1 ≀ l_i ≀ r_i ≀ n) β€” bounds of the segment, that Nanako will inspect on the i-th day. It is guaranteed that the sum of n for all test cases doesn't exceed 2 β‹… 10^5, and the sum of q for all test cases doesn't exceed 2 β‹… 10^5. Output For each test case, print "YES" on the single line if it is possible to avoid Nanako being unhappy and have the string f at the end of q days and nights. Otherwise, print "NO". You can print each letter in any case (upper or lower). Example Input 4 5 2 00000 00111 1 5 1 3 2 1 00 01 1 2 10 6 1111111111 0110001110 1 10 5 9 7 10 1 7 3 5 6 10 5 2 10000 11000 2 5 1 3 Output YES NO YES NO Note In the first test case, \underline{00000} β†’ \underline{000}11 β†’ 00111 is one of the possible sequences of string changes. In the second test case, it can be shown that it is impossible to have the string f at the end. Submitted Solution: ``` """ import sys readline = sys.stdin.readline """ import io,os readline = io.BytesIO(os.read(0,os.fstat(0).st_size)).readline from operator import add class Lazysegtree: def __init__(self, A, fx, ex, fm, em, fa, initialize = True): self.N = len(A) self.N0 = 2**(self.N-1).bit_length() self.fx = fx self.ex = ex self.em = em self.lazy = [em]*(2*self.N0) if initialize: self.data = [self.ex]*self.N0 + A + [self.ex]*(self.N0 - self.N) for i in range(self.N0-1, -1, -1): self.data[i] = self.fx(self.data[2*i], self.data[2*i+1]) else: self.data = [self.ex]*(2*self.N0) def fa(self, ope, idx): if ope is not None: return ope return self.data[idx] def fm(self, ope1, ope2): return ope1 def __repr__(self): s = 'data' l = 'lazy' cnt = 1 for i in range(self.N0.bit_length()): s = '\n'.join((s, ' '.join(map(str, self.data[cnt:cnt+(1<<i)])))) l = '\n'.join((l, ' '.join(map(str, self.lazy[cnt:cnt+(1<<i)])))) cnt += 1<<i return '\n'.join((s, l)) def _ascend(self, k): k = k >> 1 c = k.bit_length() for j in range(c): idx = k >> j self.data[idx] = self.fx(self.data[2*idx], self.data[2*idx+1]) def _descend(self, k): k = k >> 1 idx = 1 c = k.bit_length() for j in range(1, c+1): idx = k >> (c - j) if self.lazy[idx] == self.em: continue self.data[2*idx] = self.fa(self.lazy[idx], 2*idx) self.data[2*idx+1] = self.fa(self.lazy[idx], 2*idx+1) self.lazy[2*idx] = self.fm(self.lazy[idx], self.lazy[2*idx]) self.lazy[2*idx+1] = self.fm(self.lazy[idx], self.lazy[2*idx+1]) self.lazy[idx] = self.em def query(self, l, r): L = l+self.N0 R = r+self.N0 self._descend(L//(L & -L)) self._descend(R//(R & -R)-1) sl = self.ex sr = self.ex while L < R: if R & 1: R -= 1 sr = self.fx(self.data[R], sr) if L & 1: sl = self.fx(sl, self.data[L]) L += 1 L >>= 1 R >>= 1 return self.fx(sl, sr) def operate(self, l, r, x): L = l+self.N0 R = r+self.N0 Li = L//(L & -L) Ri = R//(R & -R) self._descend(Li) self._descend(Ri-1) while L < R : if R & 1: R -= 1 self.data[R] = self.fa(x, R) self.lazy[R] = self.fm(x, self.lazy[R]) if L & 1: self.data[L] = self.fa(x, L) self.lazy[L] = self.fm(x, self.lazy[L]) L += 1 L >>= 1 R >>= 1 self._ascend(Li) self._ascend(Ri-1) def propall(self): for idx in range(1, self.N0): self.data[2*idx] = self.fa(self.lazy[idx], 2*idx) self.data[2*idx+1] = self.fa(self.lazy[idx], 2*idx+1) self.lazy[2*idx] = self.fm(self.lazy[idx], self.lazy[2*idx]) self.lazy[2*idx+1] = self.fm(self.lazy[idx], self.lazy[2*idx+1]) T = int(readline()) Ans = ['NO']*T for qu in range(T): N, Q = map(int, readline().split()) """ S = list(map(int, readline().strip())) T = list(map(int, readline().strip())) """ S = list(map(lambda x: int(x)-48, readline().strip())) T = list(map(lambda x: int(x)-48, readline().strip())) Qs = [tuple(map(int, readline().split())) for _ in range(Q)] K = Lazysegtree(T, add, 0, None, None, None) for l, r in Qs[::-1]: l -= 1 leng = r-l x = K.query(l, r) if 2*x > leng: K.operate(l, r, 0) elif 2*x == leng: break else: K.operate(l, r, 1) else: if [K.query(i, i+1) for i in range(N)] == S: Ans[qu] = 'YES' print('\n'.join(Ans)) ```
instruction
0
7,792
0
15,584
No
output
1
7,792
0
15,585
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Nezzar has a binary string s of length n that he wants to share with his best friend, Nanako. Nanako will spend q days inspecting the binary string. At the same time, Nezzar wants to change the string s into string f during these q days, because it looks better. It is known that Nanako loves consistency so much. On the i-th day, Nanako will inspect a segment of string s from position l_i to position r_i inclusive. If the segment contains both characters '0' and '1', Nanako becomes unhappy and throws away the string. After this inspection, at the i-th night, Nezzar can secretly change strictly less than half of the characters in the segment from l_i to r_i inclusive, otherwise the change will be too obvious. Now Nezzar wonders, if it is possible to avoid Nanako being unhappy and at the same time have the string become equal to the string f at the end of these q days and nights. Input The first line contains a single integer t (1 ≀ t ≀ 2 β‹… 10^5) β€” the number of test cases. The first line of each test case contains two integers n,q (1 ≀ n ≀ 2 β‹… 10^5, 0 ≀ q ≀ 2 β‹… 10^5). The second line of each test case contains a binary string s of length n. The third line of each test case contains a binary string f of length n. Then q lines follow, i-th of them contains two integers l_i,r_i (1 ≀ l_i ≀ r_i ≀ n) β€” bounds of the segment, that Nanako will inspect on the i-th day. It is guaranteed that the sum of n for all test cases doesn't exceed 2 β‹… 10^5, and the sum of q for all test cases doesn't exceed 2 β‹… 10^5. Output For each test case, print "YES" on the single line if it is possible to avoid Nanako being unhappy and have the string f at the end of q days and nights. Otherwise, print "NO". You can print each letter in any case (upper or lower). Example Input 4 5 2 00000 00111 1 5 1 3 2 1 00 01 1 2 10 6 1111111111 0110001110 1 10 5 9 7 10 1 7 3 5 6 10 5 2 10000 11000 2 5 1 3 Output YES NO YES NO Note In the first test case, \underline{00000} β†’ \underline{000}11 β†’ 00111 is one of the possible sequences of string changes. In the second test case, it can be shown that it is impossible to have the string f at the end. Submitted Solution: ``` from sys import stdin def log2(x): if x == 1: return 1 if x > 1 and x <= 2: return 2 return log2(x / 2) * 2 def findsum(qs, qe, seg, lz): summ = 0 stack = [[0, 1, length]] while stack: pos, ss, se = stack.pop() if lz[pos] != -1: seg[pos] = lz[pos] * (se - ss + 1) if ss != se: lz[pos * 2 + 1] = lz[pos] lz[pos * 2 + 2] = lz[pos] lz[pos] = -1 if (qs > se) or (qe < ss): continue if (qs <= ss) and (qe >= se): summ += seg[pos] continue if ss != se: mid = (ss + se) // 2 stack.append([pos * 2 + 1, ss, mid]) stack.append([pos * 2 + 2, mid + 1, se]) return summ def update(pos, ss, se, direc): if lz[pos] != -1: seg[pos] = (se - ss + 1) * lz[pos] if (ss != se): lz[pos * 2 + 1] = lz[pos] lz[pos * 2 + 2] - lz[pos] lz[pos] = -1 if (qs > se) or (qe < ss): return elif (qs <= ss) and (qe >= se): seg[pos] = (se - ss + 1) * direc if ss != se: lz[pos * 2 + 1] = direc lz[pos * 2 + 2] = direc return mid = (se + ss) // 2 update(pos * 2 + 1, ss, mid, direc) update(pos * 2 + 2, mid + 1, se, direc) seg[pos] = seg[pos * 2 + 1] + seg[pos * 2 + 2] def clean(seg, lz): stack = [[0, 1, length]] while stack: pos, ss, se = stack.pop() if lz[pos] != -1: if ss != se: lz[pos * 2 + 1] = lz[pos] lz[pos * 2 + 2] = lz[pos] else: seg[pos] = (se - ss + 1) * lz[pos] if ss != se: mid = (se + ss) // 2 stack.append([pos * 2 + 1, ss, mid]) stack.append([pos * 2 + 2, mid + 1, se]) t = int(stdin.readline()) for _ in range(t): n, q = map(int,stdin.readline().split()) s = stdin.readline().strip() f = stdin.readline().strip() length = log2(n) queries = [map(int, stdin.readline().split()) for quer in range(q)] seg = [0] * (length - 1) + list(map(int, list(f))) + [0] * (length - n) for pos in range(length - 2, -1, -1): seg[pos] = seg[pos * 2 + 1] + seg[pos * 2 + 2] lz = [-1] * (2 * length - 1) flag = True for qs, qe in queries[::-1]: dis = qe - qs + 1 tong = findsum(qs, qe, seg, lz) if tong * 2 == dis: flag = False break else: if tong * 2 > dis: update(0, 1, length, 1) else: update(0, 1, length, 0) #print(seg, lz) if flag == False: print('no') else: clean(seg, lz) #print(seg, lz) if seg[-length: -length + n] == [int(s[i]) for i in range(n)]: print('yes') else: print('no') ```
instruction
0
7,793
0
15,586
No
output
1
7,793
0
15,587
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Nezzar has a binary string s of length n that he wants to share with his best friend, Nanako. Nanako will spend q days inspecting the binary string. At the same time, Nezzar wants to change the string s into string f during these q days, because it looks better. It is known that Nanako loves consistency so much. On the i-th day, Nanako will inspect a segment of string s from position l_i to position r_i inclusive. If the segment contains both characters '0' and '1', Nanako becomes unhappy and throws away the string. After this inspection, at the i-th night, Nezzar can secretly change strictly less than half of the characters in the segment from l_i to r_i inclusive, otherwise the change will be too obvious. Now Nezzar wonders, if it is possible to avoid Nanako being unhappy and at the same time have the string become equal to the string f at the end of these q days and nights. Input The first line contains a single integer t (1 ≀ t ≀ 2 β‹… 10^5) β€” the number of test cases. The first line of each test case contains two integers n,q (1 ≀ n ≀ 2 β‹… 10^5, 0 ≀ q ≀ 2 β‹… 10^5). The second line of each test case contains a binary string s of length n. The third line of each test case contains a binary string f of length n. Then q lines follow, i-th of them contains two integers l_i,r_i (1 ≀ l_i ≀ r_i ≀ n) β€” bounds of the segment, that Nanako will inspect on the i-th day. It is guaranteed that the sum of n for all test cases doesn't exceed 2 β‹… 10^5, and the sum of q for all test cases doesn't exceed 2 β‹… 10^5. Output For each test case, print "YES" on the single line if it is possible to avoid Nanako being unhappy and have the string f at the end of q days and nights. Otherwise, print "NO". You can print each letter in any case (upper or lower). Example Input 4 5 2 00000 00111 1 5 1 3 2 1 00 01 1 2 10 6 1111111111 0110001110 1 10 5 9 7 10 1 7 3 5 6 10 5 2 10000 11000 2 5 1 3 Output YES NO YES NO Note In the first test case, \underline{00000} β†’ \underline{000}11 β†’ 00111 is one of the possible sequences of string changes. In the second test case, it can be shown that it is impossible to have the string f at the end. Submitted Solution: ``` import sys from functools import lru_cache, cmp_to_key from heapq import merge, heapify, heappop, heappush from math import * from collections import defaultdict as dd, deque, Counter as C from itertools import combinations as comb, permutations as perm from bisect import bisect_left as bl, bisect_right as br, bisect from time import perf_counter from fractions import Fraction import copy import time starttime = time.time() mod = int(pow(10, 9) + 7) mod2 = 998244353 def data(): return sys.stdin.readline().strip() def out(*var, end="\n"): sys.stdout.write(' '.join(map(str, var))+end) def L(): return list(sp()) def sl(): return list(ssp()) def sp(): return map(int, data().split()) def ssp(): return map(str, data().split()) def l1d(n, val=0): return [val for i in range(n)] def l2d(n, m, val=0): return [l1d(n, val) for j in range(m)] try: # sys.setrecursionlimit(int(pow(10,4))) sys.stdin = open("input.txt", "r") # sys.stdout = open("../output.txt", "w") except: pass def pmat(A): for ele in A: print(*ele,end="\n") # def seive(): # prime=[1 for i in range(10**6+1)] # prime[0]=0 # prime[1]=0 # for i in range(10**6+1): # if(prime[i]): # for j in range(2*i,10**6+1,i): # prime[j]=0 # return prime import sys import io, os input = io.BytesIO(os.read(0,os.fstat(0).st_size)).readline def indexes(L,R): INDLIST=[] R-=1 L>>=1 R>>=1 while L!=R: if L>R: INDLIST.append(L) L>>=1 else: INDLIST.append(R) R>>=1 while L!=0: INDLIST.append(L) L>>=1 return INDLIST def updates(l,r,x): L=l+seg_el R=r+seg_el L//=(L & (-L)) R//=(R & (-R)) UPIND=indexes(L,R) for ind in UPIND[::-1]: if LAZY[ind]!=None: update_lazy = LAZY[ind] *(1<<(seg_height - 1 - (ind.bit_length()))) LAZY[ind<<1]=LAZY[1+(ind<<1)]=LAZY[ind] SEG[ind<<1]=SEG[1+(ind<<1)]=update_lazy LAZY[ind]=None while L!=R: if L > R: SEG[L]=x * (1<<(seg_height - (L.bit_length()))) LAZY[L]=x L+=1 L//=(L & (-L)) else: R-=1 SEG[R]=x * (1<<(seg_height - (R.bit_length()))) LAZY[R]=x R//=(R & (-R)) for ind in UPIND: SEG[ind]=SEG[ind<<1]+SEG[1+(ind<<1)] def getvalues(l,r): L=l+seg_el R=r+seg_el L//=(L & (-L)) R//=(R & (-R)) UPIND=indexes(L,R) for ind in UPIND[::-1]: if LAZY[ind]!=None: update_lazy = LAZY[ind] *(1<<(seg_height - 1 - (ind.bit_length()))) LAZY[ind<<1]=LAZY[1+(ind<<1)]=LAZY[ind] SEG[ind<<1]=SEG[1+(ind<<1)]=update_lazy LAZY[ind]=None ANS=0 while L!=R: if L > R: ANS+=SEG[L] L+=1 L//=(L & (-L)) else: R-=1 ANS+=SEG[R] R//=(R & (-R)) return ANS t=int(input()) for tests in range(t): n,q=map(int,input().split()) S=input().strip() F=input().strip() Q=[tuple(map(int,input().split())) for i in range(q)] seg_el=1<<(n.bit_length()) seg_height=1+n.bit_length() SEG=[0]*(2*seg_el) LAZY=[None]*(2*seg_el) for i in range(n): SEG[i+seg_el]=int(F[i]) for i in range(seg_el-1,0,-1): SEG[i]=SEG[i*2]+SEG[i*2+1] for l,r in Q[::-1]: SUM=r-l+1 xx=getvalues(l-1,r) if xx*2==SUM: print("NO") break else: if xx*2>SUM: updates(l-1,r,1) else: updates(l-1,r,0) else: for i in range(n): if getvalues(i,i+1)==int(S[i]): True else: print("NO") break else: print("YES") endtime = time.time() # print(f"Runtime of the program is {endtime - starttime}") ```
instruction
0
7,794
0
15,588
No
output
1
7,794
0
15,589
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Nezzar has a binary string s of length n that he wants to share with his best friend, Nanako. Nanako will spend q days inspecting the binary string. At the same time, Nezzar wants to change the string s into string f during these q days, because it looks better. It is known that Nanako loves consistency so much. On the i-th day, Nanako will inspect a segment of string s from position l_i to position r_i inclusive. If the segment contains both characters '0' and '1', Nanako becomes unhappy and throws away the string. After this inspection, at the i-th night, Nezzar can secretly change strictly less than half of the characters in the segment from l_i to r_i inclusive, otherwise the change will be too obvious. Now Nezzar wonders, if it is possible to avoid Nanako being unhappy and at the same time have the string become equal to the string f at the end of these q days and nights. Input The first line contains a single integer t (1 ≀ t ≀ 2 β‹… 10^5) β€” the number of test cases. The first line of each test case contains two integers n,q (1 ≀ n ≀ 2 β‹… 10^5, 0 ≀ q ≀ 2 β‹… 10^5). The second line of each test case contains a binary string s of length n. The third line of each test case contains a binary string f of length n. Then q lines follow, i-th of them contains two integers l_i,r_i (1 ≀ l_i ≀ r_i ≀ n) β€” bounds of the segment, that Nanako will inspect on the i-th day. It is guaranteed that the sum of n for all test cases doesn't exceed 2 β‹… 10^5, and the sum of q for all test cases doesn't exceed 2 β‹… 10^5. Output For each test case, print "YES" on the single line if it is possible to avoid Nanako being unhappy and have the string f at the end of q days and nights. Otherwise, print "NO". You can print each letter in any case (upper or lower). Example Input 4 5 2 00000 00111 1 5 1 3 2 1 00 01 1 2 10 6 1111111111 0110001110 1 10 5 9 7 10 1 7 3 5 6 10 5 2 10000 11000 2 5 1 3 Output YES NO YES NO Note In the first test case, \underline{00000} β†’ \underline{000}11 β†’ 00111 is one of the possible sequences of string changes. In the second test case, it can be shown that it is impossible to have the string f at the end. Submitted Solution: ``` import sys input = sys.stdin.readline def segfunc(x,y): return x + y class LazySegTree_RUQ: def __init__(self, init_val, segfunc, ide_ele): n = len(init_val) self.segfunc = segfunc self.ide_ele = ide_ele self.num = 1 << (n - 1).bit_length() self.tree = [ide_ele] * 2 * self.num self.lazy = [None] * 2 * self.num for i in range(n): self.tree[self.num + i] = init_val[i] for i in range(self.num - 1, 0, -1): self.tree[i] = self.segfunc(self.tree[2 * i], self.tree[2 * i + 1]) def gindex(self, l, r): l += self.num r += self.num lm = l >> (l & -l).bit_length() rm = r >> (r & -r).bit_length() while r > l: if l <= lm: yield l if r <= rm: yield r r >>= 1 l >>= 1 while l: yield l l >>= 1 def propagates(self, *ids): for i in reversed(ids): v = self.lazy[i] if v is None: continue self.lazy[i] = None self.lazy[2 * i] = v self.lazy[2 * i + 1] = v self.tree[2 * i] = v self.tree[2 * i + 1] = v def update(self, l, r, x): *ids, = self.gindex(l, r) self.propagates(*ids) l += self.num r += self.num while l < r: if l & 1: self.lazy[l] = x self.tree[l] = x l += 1 if r & 1: self.lazy[r - 1] = x self.tree[r - 1] = x r >>= 1 l >>= 1 for i in ids: self.tree[i] = self.segfunc(self.tree[2 * i], self.tree[2 * i + 1]) def query(self, l, r): *ids, = self.gindex(l, r) self.propagates(*ids) res = self.ide_ele l += self.num r += self.num while l < r: if l & 1: res = self.segfunc(res, self.tree[l]) l += 1 if r & 1: res = self.segfunc(res, self.tree[r - 1]) l >>= 1 r >>= 1 return res def main(): n, q = map(int, input().split()) S = list(map(int, input().strip())) T = list(map(int, input().strip())) lr = [list(map(int, input().split())) for _ in range(q)] seg = LazySegTree_RUQ(T,segfunc,0) for l, r in lr[::-1]: c = seg.query(l - 1, r) z = r - l + 1 if z == c * 2: print("NO") return if c == z or c == 0: continue elif c * 2 < z: seg.update(l - 1, r, 1) else: seg.update(l - 1, r, 0) for i in range(n): if seg.query(i, i + 1) != S[i]: print("NO") return print("YES") for _ in range(int(input())): main() ```
instruction
0
7,795
0
15,590
No
output
1
7,795
0
15,591
Provide tags and a correct Python 3 solution for this coding contest problem. You will receive 5 points for solving this problem. Manao has invented a new operation on strings that is called folding. Each fold happens between a pair of consecutive letters and places the second part of the string above first part, running in the opposite direction and aligned to the position of the fold. Using this operation, Manao converts the string into a structure that has one more level than there were fold operations performed. See the following examples for clarity. We will denote the positions of folds with '|' characters. For example, the word "ABRACADABRA" written as "AB|RACA|DAB|RA" indicates that it has been folded three times: first, between the leftmost pair of 'B' and 'R' letters; second, between 'A' and 'D'; and third, between the rightmost pair of 'B' and 'R' letters. Here are several examples of folded strings: "ABCDEF|GHIJK" | "A|BCDEFGHIJK" | "AB|RACA|DAB|RA" | "X|XXXXX|X|X|XXXXXX" | | | XXXXXX KJIHG | KJIHGFEDCB | AR | X ABCDEF | A | DAB | X | | ACAR | XXXXX | | AB | X One last example for "ABCD|EFGH|IJ|K": K IJ HGFE ABCD Manao noticed that each folded string can be viewed as several piles of letters. For instance, in the previous example, there are four piles, which can be read as "AHI", "BGJK", "CF", and "DE" from bottom to top. Manao wonders what is the highest pile of identical letters he can build using fold operations on a given word. Note that the pile should not contain gaps and should start at the bottom level. For example, in the rightmost of the four examples above, none of the piles would be considered valid since each of them has gaps, starts above the bottom level, or both. Input The input will consist of one line containing a single string of n characters with 1 ≀ n ≀ 1000 and no spaces. All characters of the string will be uppercase letters. This problem doesn't have subproblems. You will get 5 points for the correct submission. Output Print a single integer β€” the size of the largest pile composed of identical characters that can be seen in a valid result of folding operations on the given string. Examples Input ABRACADABRA Output 3 Input ABBBCBDB Output 3 Input AB Output 1 Note Consider the first example. Manao can create a pile of three 'A's using the folding "AB|RACAD|ABRA", which results in the following structure: ABRA DACAR AB In the second example, Manao can create a pile of three 'B's using the following folding: "AB|BB|CBDB". CBDB BB AB Another way for Manao to create a pile of three 'B's with "ABBBCBDB" is the following folding: "AB|B|BCBDB". BCBDB B AB In the third example, there are no folds performed and the string is just written in one line.
instruction
0
7,900
0
15,800
Tags: brute force Correct Solution: ``` t = {} for i, c in enumerate(input()): if c not in t: t[c] = (i, 1) elif (t[c][0] - i) & 1: t[c] = (i, t[c][1] + 1) print(max(b for a, b in t.values())) ```
output
1
7,900
0
15,801
Provide tags and a correct Python 3 solution for this coding contest problem. You will receive 5 points for solving this problem. Manao has invented a new operation on strings that is called folding. Each fold happens between a pair of consecutive letters and places the second part of the string above first part, running in the opposite direction and aligned to the position of the fold. Using this operation, Manao converts the string into a structure that has one more level than there were fold operations performed. See the following examples for clarity. We will denote the positions of folds with '|' characters. For example, the word "ABRACADABRA" written as "AB|RACA|DAB|RA" indicates that it has been folded three times: first, between the leftmost pair of 'B' and 'R' letters; second, between 'A' and 'D'; and third, between the rightmost pair of 'B' and 'R' letters. Here are several examples of folded strings: "ABCDEF|GHIJK" | "A|BCDEFGHIJK" | "AB|RACA|DAB|RA" | "X|XXXXX|X|X|XXXXXX" | | | XXXXXX KJIHG | KJIHGFEDCB | AR | X ABCDEF | A | DAB | X | | ACAR | XXXXX | | AB | X One last example for "ABCD|EFGH|IJ|K": K IJ HGFE ABCD Manao noticed that each folded string can be viewed as several piles of letters. For instance, in the previous example, there are four piles, which can be read as "AHI", "BGJK", "CF", and "DE" from bottom to top. Manao wonders what is the highest pile of identical letters he can build using fold operations on a given word. Note that the pile should not contain gaps and should start at the bottom level. For example, in the rightmost of the four examples above, none of the piles would be considered valid since each of them has gaps, starts above the bottom level, or both. Input The input will consist of one line containing a single string of n characters with 1 ≀ n ≀ 1000 and no spaces. All characters of the string will be uppercase letters. This problem doesn't have subproblems. You will get 5 points for the correct submission. Output Print a single integer β€” the size of the largest pile composed of identical characters that can be seen in a valid result of folding operations on the given string. Examples Input ABRACADABRA Output 3 Input ABBBCBDB Output 3 Input AB Output 1 Note Consider the first example. Manao can create a pile of three 'A's using the folding "AB|RACAD|ABRA", which results in the following structure: ABRA DACAR AB In the second example, Manao can create a pile of three 'B's using the following folding: "AB|BB|CBDB". CBDB BB AB Another way for Manao to create a pile of three 'B's with "ABBBCBDB" is the following folding: "AB|B|BCBDB". BCBDB B AB In the third example, there are no folds performed and the string is just written in one line.
instruction
0
7,901
0
15,802
Tags: brute force Correct Solution: ``` t = {} for i, c in enumerate(input()): if c not in t: t[c] = (i, 1) elif (t[c][0] - i) & 1: t[c] = (i, t[c][1] + 1) print(max(b for a, b in t.values())) # Made By Mostafa_Khaled ```
output
1
7,901
0
15,803
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Polycarp invented a new way to encode strings. Let's assume that we have string T, consisting of lowercase English letters. Let's choose several pairs of letters of the English alphabet in such a way that each letter occurs in at most one pair. Then let's replace each letter in T with its pair letter if there is a pair letter for it. For example, if you chose pairs (l, r), (p, q) and (a, o), then word "parallelogram" according to the given encoding principle transforms to word "qolorreraglom". Polycarpus already has two strings, S and T. He suspects that string T was obtained after applying the given encoding method from some substring of string S. Find all positions mi in S (1 ≀ mi ≀ |S| - |T| + 1), such that T can be obtained fro substring SmiSmi + 1... Smi + |T| - 1 by applying the described encoding operation by using some set of pairs of English alphabet letters Input The first line of the input contains two integers, |S| and |T| (1 ≀ |T| ≀ |S| ≀ 2Β·105) β€” the lengths of string S and string T, respectively. The second and third line of the input contain strings S and T, respectively. Both strings consist only of lowercase English letters. Output Print number k β€” the number of suitable positions in string S. In the next line print k integers m1, m2, ..., mk β€” the numbers of the suitable positions in the increasing order. Examples Input 11 5 abacabadaba acaba Output 3 1 3 7 Input 21 13 paraparallelogramgram qolorreraglom Output 1 5 Submitted Solution: ``` def kmp(s): k = [0] * len(s) j = 0 for i in range(1, len(s)): j = k[i - 1] while True: if s[i] == s[j]: k[i] = j + 1 break if j == 0: k[i] = 0 break j = k[j - 1] return k def mns(s, c): a = [] for i in range(len(s)): if s[i] == c: a.append(1) else: a.append(0) return a def check(pairs, alf): for c in alf: ind = 0 for p in pairs: a, b = p if a == c or b == c: ind+=1 if ind!=1: return False return True if __name__ == '__main__': n, m = [int(e) for e in input().split()] s = input() s1 = input() sets = [] for i in range(n): sets.append(set()) alf = list(set(s+s1)) alf.sort() for a in alf: for b in alf: q = mns(s, a) q1 = mns(s1, b) kmp_res = kmp(q1 + [-1] + q) pos = [] for i in range(len(kmp_res)): if kmp_res[i] == m: sets[i - 2 * m].add((min(a,b), max(a,b))) res = [] for i in range(n): if check(sets[i], alf): res.append(i) print(len(res)) print(' '.join([str(e+1) for e in res])) ```
instruction
0
7,940
0
15,880
No
output
1
7,940
0
15,881
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. This task is very simple. Given a string S of length n and q queries each query is on the format i j k which means sort the substring consisting of the characters from i to j in non-decreasing order if k = 1 or in non-increasing order if k = 0. Output the final string after applying the queries. Input The first line will contain two integers n, q (1 ≀ n ≀ 105, 0 ≀ q ≀ 50 000), the length of the string and the number of queries respectively. Next line contains a string S itself. It contains only lowercase English letters. Next q lines will contain three integers each i, j, k (1 ≀ i ≀ j ≀ n, <image>). Output Output one line, the string S after applying the queries. Examples Input 10 5 abacdabcda 7 10 0 5 8 1 1 4 0 3 6 0 7 10 1 Output cbcaaaabdd Input 10 1 agjucbvdfk 1 10 1 Output abcdfgjkuv Note First sample test explanation: <image> <image> <image> <image> <image> Submitted Solution: ``` n,t=map(int,input().split()) s=input() while(t): t=t-1 st,end,k=map(int,input().split()) sub=s[st:end+1] #print(sub) l=list(sub) #print(l) if(k==0): l.sort() else: l.sort(reverse=True) r="".join(l) #print(r) res=s[0:st]+r+s[end+1:n] print(res) ```
instruction
0
7,941
0
15,882
No
output
1
7,941
0
15,883
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. This task is very simple. Given a string S of length n and q queries each query is on the format i j k which means sort the substring consisting of the characters from i to j in non-decreasing order if k = 1 or in non-increasing order if k = 0. Output the final string after applying the queries. Input The first line will contain two integers n, q (1 ≀ n ≀ 105, 0 ≀ q ≀ 50 000), the length of the string and the number of queries respectively. Next line contains a string S itself. It contains only lowercase English letters. Next q lines will contain three integers each i, j, k (1 ≀ i ≀ j ≀ n, <image>). Output Output one line, the string S after applying the queries. Examples Input 10 5 abacdabcda 7 10 0 5 8 1 1 4 0 3 6 0 7 10 1 Output cbcaaaabdd Input 10 1 agjucbvdfk 1 10 1 Output abcdfgjkuv Note First sample test explanation: <image> <image> <image> <image> <image> Submitted Solution: ``` import textwrap n,q=list(map(int,input().split())) print(n,q) stroka=textwrap.wrap(input(),1) for x in range(q): i,j,k=list(map(int,input().split())) stroka[i-1:j]=sorted(stroka[i-1:j],reverse=abs(k-1)) print(''.join(stroka)) ```
instruction
0
7,942
0
15,884
No
output
1
7,942
0
15,885
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. This task is very simple. Given a string S of length n and q queries each query is on the format i j k which means sort the substring consisting of the characters from i to j in non-decreasing order if k = 1 or in non-increasing order if k = 0. Output the final string after applying the queries. Input The first line will contain two integers n, q (1 ≀ n ≀ 105, 0 ≀ q ≀ 50 000), the length of the string and the number of queries respectively. Next line contains a string S itself. It contains only lowercase English letters. Next q lines will contain three integers each i, j, k (1 ≀ i ≀ j ≀ n, <image>). Output Output one line, the string S after applying the queries. Examples Input 10 5 abacdabcda 7 10 0 5 8 1 1 4 0 3 6 0 7 10 1 Output cbcaaaabdd Input 10 1 agjucbvdfk 1 10 1 Output abcdfgjkuv Note First sample test explanation: <image> <image> <image> <image> <image> Submitted Solution: ``` n, q = map(int, input().split(" ")) s = list(input()) for a in range(0, q): i, j, k = map(int, input().split(" ")) s[i-1:j] = sorted(s[i-1:j], reverse=1-k) print(s) ```
instruction
0
7,943
0
15,886
No
output
1
7,943
0
15,887
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. This task is very simple. Given a string S of length n and q queries each query is on the format i j k which means sort the substring consisting of the characters from i to j in non-decreasing order if k = 1 or in non-increasing order if k = 0. Output the final string after applying the queries. Input The first line will contain two integers n, q (1 ≀ n ≀ 105, 0 ≀ q ≀ 50 000), the length of the string and the number of queries respectively. Next line contains a string S itself. It contains only lowercase English letters. Next q lines will contain three integers each i, j, k (1 ≀ i ≀ j ≀ n, <image>). Output Output one line, the string S after applying the queries. Examples Input 10 5 abacdabcda 7 10 0 5 8 1 1 4 0 3 6 0 7 10 1 Output cbcaaaabdd Input 10 1 agjucbvdfk 1 10 1 Output abcdfgjkuv Note First sample test explanation: <image> <image> <image> <image> <image> Submitted Solution: ``` n,q=[int(x) for x in input().split()] s=input() L=[] M=[] for i in range(q): i,j,k=[int(x) for x in input().split()] if k==0: try: if i< min(L) and j in L: s=s[:i-1]+"".join(sorted(s[i-1:min(L)-1],reverse=True))+s[min(L)-1:] if i in M and min(L)-1 in M: del M[i-1:min(L)-1] L.extend(range(i,min(L))) elif i in L and j>max(L): s=s[:max(L)]+"".join(sorted(s[max(L):j],reverse=True))+s[j:] if max(L)+1 in M and j in M: del M[max(L):j] L.extend(range(max(L)+1,j+1)) elif j not in L and i not in L: s=s[:i-1]+"".join(sorted(s[i-1:j],reverse=True))+s[j:] if i in M and j in M: del M[i-1:j] L.extend(range(i,j+1)) else: pass except ValueError: s=s[:i-1]+"".join(sorted(s[i-1:j],reverse=True))+s[j:] if i in M and j in M: del M[i-1:j] L.extend(range(i,j+1)) L.sort() else: try: if i< min(M) and j in M: s=s[:i-1]+"".join(sorted(s[i-1:min(M)-1]))+s[min(M)-1:] if i in L and min(M)-1 in L: del L[i-1:min(M)-1] M.extend(range(i,min(M))) elif i in L and j>max(L): s=s[:max(L)]+"".join(sorted(s[max(M):j]))+s[j:] if max(M)+1 in L and j in L: del L[max(M):j] M.extend(range(max(M)+1,j+1)) elif j not in M and i not in M: s=s[:i-1]+"".join(sorted(s[i-1:j]))+s[j:] if i in L and j in L: del L[i-1:j] M.extend(range(i,j+1)) else: pass except ValueError: s=s[:i-1]+"".join(sorted(s[i-1:j]))+s[j:] if i in L and j in L: del L[i-1:j] M.extend(range(i,j+1)) M.sort() print(s) ```
instruction
0
7,944
0
15,888
No
output
1
7,944
0
15,889
Provide tags and a correct Python 3 solution for this coding contest problem. Marina loves strings of the same length and Vasya loves when there is a third string, different from them in exactly t characters. Help Vasya find at least one such string. More formally, you are given two strings s1, s2 of length n and number t. Let's denote as f(a, b) the number of characters in which strings a and b are different. Then your task will be to find any string s3 of length n, such that f(s1, s3) = f(s2, s3) = t. If there is no such string, print - 1. Input The first line contains two integers n and t (1 ≀ n ≀ 105, 0 ≀ t ≀ n). The second line contains string s1 of length n, consisting of lowercase English letters. The third line contain string s2 of length n, consisting of lowercase English letters. Output Print a string of length n, differing from string s1 and from s2 in exactly t characters. Your string should consist only from lowercase English letters. If such string doesn't exist, print -1. Examples Input 3 2 abc xyc Output ayd Input 1 0 c b Output -1
instruction
0
7,945
0
15,890
Tags: constructive algorithms, greedy, strings Correct Solution: ``` n, k = map(int, input().split()) a = input() b = input() cnt = 0 for i in range(n): if (a[i] == b[i]): cnt += 1 dif = n - cnt ok = n - (cnt + dif // 2) if (k < ok): print(-1) else: res, cur, req, i, nxt = {}, 0, n - k, 0, True while (cur < req): if (a[i] == b[i]): res[i], cur = a[i], cur + 1 elif (nxt): pos, nxt = i, not nxt else: res[pos], res[i], nxt, cur = a[pos], b[i], not nxt, cur + 1 i += 1 if (nxt == False): if (('a' != a[pos]) and ('a' != b[pos])): res[pos] = 'a' elif (('b' != a[pos]) and ('b' != b[pos])): res[pos] = 'b' elif (('c' != a[pos]) and ('c' != b[pos])): res[pos] = 'c' else: res[pos] = 'd' while (i < n): if (('a' != a[i]) and ('a' != b[i])): res[i] = 'a' elif (('b' != a[i]) and ('b' != b[i])): res[i] = 'b' elif (('c' != a[i]) and ('c' != b[i])): res[i] = 'c' else: res[i] = 'd' i += 1 for i in range(n): print(res[i], end = '') ```
output
1
7,945
0
15,891
Provide tags and a correct Python 3 solution for this coding contest problem. Marina loves strings of the same length and Vasya loves when there is a third string, different from them in exactly t characters. Help Vasya find at least one such string. More formally, you are given two strings s1, s2 of length n and number t. Let's denote as f(a, b) the number of characters in which strings a and b are different. Then your task will be to find any string s3 of length n, such that f(s1, s3) = f(s2, s3) = t. If there is no such string, print - 1. Input The first line contains two integers n and t (1 ≀ n ≀ 105, 0 ≀ t ≀ n). The second line contains string s1 of length n, consisting of lowercase English letters. The third line contain string s2 of length n, consisting of lowercase English letters. Output Print a string of length n, differing from string s1 and from s2 in exactly t characters. Your string should consist only from lowercase English letters. If such string doesn't exist, print -1. Examples Input 3 2 abc xyc Output ayd Input 1 0 c b Output -1
instruction
0
7,946
0
15,892
Tags: constructive algorithms, greedy, strings Correct Solution: ``` n, t = map(int, input().split()) s1 = input() s2 = input() same = n - t ans = ["" for i in range(n)] for i in range(n): if(same==0): break if s1[i] == s2[i]: same -= 1 ans[i] = s1[i] same1 = same2 = same for i in range(n): if(ans[i]!=""): continue if same1 != 0 and same1>=same2: ans[i] = s1[i] same1 -= 1 elif same2 != 0 and same2>=same1: ans[i] = s2[i] same2 -= 1 elif same1 == 0 and same2 == 0: if s1[i] != 'a' and s2[i] != 'a': ans[i] = 'a' elif s1[i] != 'b' and s2[i] != 'b': ans[i] = 'b' elif s1[i] != 'c' and s2[i] != 'c': ans[i] = 'c' if same1 > 0 or same2 > 0: print(-1) else: print("".join(ans)) ```
output
1
7,946
0
15,893
Provide tags and a correct Python 3 solution for this coding contest problem. Marina loves strings of the same length and Vasya loves when there is a third string, different from them in exactly t characters. Help Vasya find at least one such string. More formally, you are given two strings s1, s2 of length n and number t. Let's denote as f(a, b) the number of characters in which strings a and b are different. Then your task will be to find any string s3 of length n, such that f(s1, s3) = f(s2, s3) = t. If there is no such string, print - 1. Input The first line contains two integers n and t (1 ≀ n ≀ 105, 0 ≀ t ≀ n). The second line contains string s1 of length n, consisting of lowercase English letters. The third line contain string s2 of length n, consisting of lowercase English letters. Output Print a string of length n, differing from string s1 and from s2 in exactly t characters. Your string should consist only from lowercase English letters. If such string doesn't exist, print -1. Examples Input 3 2 abc xyc Output ayd Input 1 0 c b Output -1
instruction
0
7,947
0
15,894
Tags: constructive algorithms, greedy, strings Correct Solution: ``` n,k=map(int,input().split()) a=input() b=input() c=[] ans=0 for i in range(n): if a[i]==b[i]: ans+=1 si=n-k d=['a','b','c'] if ans>=si: for i in range(n): if a[i]==b[i] and si>0: c.append(a[i]) si-=1 else: ee=[a[i],b[i]] if 'a' not in ee: c.append('a') elif 'c' not in ee: c.append('c') else: c.append('b') print(''.join(c)) else: re1=si-ans re2=si-ans for i in range(n): if a[i]==b[i] : c.append(a[i]) else: if re1>0: c.append(a[i]) re1-=1 elif re2>0: c.append(b[i]) re2-=1 else: ee=[a[i],b[i]] if 'a' not in ee: c.append('a') elif 'c' not in ee: c.append('c') else: c.append('b') #print(re1,re2) if re1+re2==0: print(''.join(c)) else: print(-1) ```
output
1
7,947
0
15,895
Provide tags and a correct Python 3 solution for this coding contest problem. Marina loves strings of the same length and Vasya loves when there is a third string, different from them in exactly t characters. Help Vasya find at least one such string. More formally, you are given two strings s1, s2 of length n and number t. Let's denote as f(a, b) the number of characters in which strings a and b are different. Then your task will be to find any string s3 of length n, such that f(s1, s3) = f(s2, s3) = t. If there is no such string, print - 1. Input The first line contains two integers n and t (1 ≀ n ≀ 105, 0 ≀ t ≀ n). The second line contains string s1 of length n, consisting of lowercase English letters. The third line contain string s2 of length n, consisting of lowercase English letters. Output Print a string of length n, differing from string s1 and from s2 in exactly t characters. Your string should consist only from lowercase English letters. If such string doesn't exist, print -1. Examples Input 3 2 abc xyc Output ayd Input 1 0 c b Output -1
instruction
0
7,948
0
15,896
Tags: constructive algorithms, greedy, strings Correct Solution: ``` from sys import exit def cdiff(c1, c2): ch = 'a' while ch in (c1, c2): ch = chr(ord(ch) + 1) return ch n, t = map(int, input().split()) a = input() b = input() ra = 0 rb = 0 c = [-1] * n for i in range(n): c[i] = (a[i], b[i])[(ra + rb) % 2] ra += c[i] != a[i] rb += c[i] != b[i] if rb < ra: ra, rb = rb, ra a, b = b, a if ra < rb: for i in range(n): if c[i] != b[i] and c[i] == a[i]: c[i] = cdiff(a[i], b[i]) ra += 1 break if ra < rb: print(-1) exit(0) if t < ra: print(-1) exit(0) i = 0 lst = -1 while ra < t and i < n: if a[i] == b[i]: c[i] = cdiff(a[i], b[i]) ra += 1 rb += 1 elif c[i] not in (a[i], b[i]): pass elif lst == -1: lst = i else: c[lst] = cdiff(a[lst], b[lst]) c[i] = cdiff(a[i], b[i]) lst = -1 ra += 1 rb += 1 i += 1 if ra != t: print(-1) exit(0) print(*c, sep='') ```
output
1
7,948
0
15,897