message
stringlengths
2
23.8k
message_type
stringclasses
2 values
message_id
int64
0
1
conversation_id
int64
97
109k
cluster
float64
0
0
__index_level_0__
int64
194
217k
Provide tags and a correct Python 3 solution for this coding contest problem. You are given a string s of length n consisting only of lowercase Latin letters. A substring of a string is a contiguous subsequence of that string. So, string "forces" is substring of string "codeforces", but string "coder" is not. Your task is to calculate the number of ways to remove exactly one substring from this string in such a way that all remaining characters are equal (the number of distinct characters either zero or one). It is guaranteed that there is at least two different characters in s. Note that you can remove the whole string and it is correct. Also note that you should remove at least one character. Since the answer can be rather large (not very large though) print it modulo 998244353. If you are Python programmer, consider using PyPy instead of Python when you submit your code. Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the length of the string s. The second line of the input contains the string s of length n consisting only of lowercase Latin letters. It is guaranteed that there is at least two different characters in s. Output Print one integer — the number of ways modulo 998244353 to remove exactly one substring from s in such way that all remaining characters are equal. Examples Input 4 abaa Output 6 Input 7 aacdeee Output 6 Input 2 az Output 3 Note Let s[l; r] be the substring of s from the position l to the position r inclusive. Then in the first example you can remove the following substrings: * s[1; 2]; * s[1; 3]; * s[1; 4]; * s[2; 2]; * s[2; 3]; * s[2; 4]. In the second example you can remove the following substrings: * s[1; 4]; * s[1; 5]; * s[1; 6]; * s[1; 7]; * s[2; 7]; * s[3; 7]. In the third example you can remove the following substrings: * s[1; 1]; * s[1; 2]; * s[2; 2].
instruction
0
10,832
0
21,664
Tags: combinatorics, math, strings Correct Solution: ``` MOD = 998244353 n = int(input()) s = input() pref = s[0] suff = s[-1] lpref = 0 lsuff = 0 for i in range(len(s)): if s[i] == pref: lpref = lpref + 1 else: break for i in range(len(s)): if s[len(s)-1-i] == suff: lsuff = lsuff + 1 else: break if pref == suff: res = (((lpref+1) % MOD) * ((lsuff+1) % MOD)) % MOD else: res = (lpref + lsuff + 1) % MOD print(res) ```
output
1
10,832
0
21,665
Provide tags and a correct Python 3 solution for this coding contest problem. You are given a string s of length n consisting only of lowercase Latin letters. A substring of a string is a contiguous subsequence of that string. So, string "forces" is substring of string "codeforces", but string "coder" is not. Your task is to calculate the number of ways to remove exactly one substring from this string in such a way that all remaining characters are equal (the number of distinct characters either zero or one). It is guaranteed that there is at least two different characters in s. Note that you can remove the whole string and it is correct. Also note that you should remove at least one character. Since the answer can be rather large (not very large though) print it modulo 998244353. If you are Python programmer, consider using PyPy instead of Python when you submit your code. Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the length of the string s. The second line of the input contains the string s of length n consisting only of lowercase Latin letters. It is guaranteed that there is at least two different characters in s. Output Print one integer — the number of ways modulo 998244353 to remove exactly one substring from s in such way that all remaining characters are equal. Examples Input 4 abaa Output 6 Input 7 aacdeee Output 6 Input 2 az Output 3 Note Let s[l; r] be the substring of s from the position l to the position r inclusive. Then in the first example you can remove the following substrings: * s[1; 2]; * s[1; 3]; * s[1; 4]; * s[2; 2]; * s[2; 3]; * s[2; 4]. In the second example you can remove the following substrings: * s[1; 4]; * s[1; 5]; * s[1; 6]; * s[1; 7]; * s[2; 7]; * s[3; 7]. In the third example you can remove the following substrings: * s[1; 1]; * s[1; 2]; * s[2; 2].
instruction
0
10,833
0
21,666
Tags: combinatorics, math, strings Correct Solution: ``` modu = 998244353 n = int(input()) s = input() # first = s[0] fans = 0 for i in range(n): if s[i] == s[0]: fans = fans+1 else: break s2 = s[::-1] lans = 0 for i in range(n): if s2[i] == s2[0]: lans = lans+1 else: break if s[0]==s2[0] and len(set(s))>1: print((fans*lans+lans+fans+1)%modu) elif len(set(s))>1: print((fans+lans+1)%modu) else: print((2**(fans))%modu) ```
output
1
10,833
0
21,667
Provide tags and a correct Python 3 solution for this coding contest problem. You are given a string s of length n consisting only of lowercase Latin letters. A substring of a string is a contiguous subsequence of that string. So, string "forces" is substring of string "codeforces", but string "coder" is not. Your task is to calculate the number of ways to remove exactly one substring from this string in such a way that all remaining characters are equal (the number of distinct characters either zero or one). It is guaranteed that there is at least two different characters in s. Note that you can remove the whole string and it is correct. Also note that you should remove at least one character. Since the answer can be rather large (not very large though) print it modulo 998244353. If you are Python programmer, consider using PyPy instead of Python when you submit your code. Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the length of the string s. The second line of the input contains the string s of length n consisting only of lowercase Latin letters. It is guaranteed that there is at least two different characters in s. Output Print one integer — the number of ways modulo 998244353 to remove exactly one substring from s in such way that all remaining characters are equal. Examples Input 4 abaa Output 6 Input 7 aacdeee Output 6 Input 2 az Output 3 Note Let s[l; r] be the substring of s from the position l to the position r inclusive. Then in the first example you can remove the following substrings: * s[1; 2]; * s[1; 3]; * s[1; 4]; * s[2; 2]; * s[2; 3]; * s[2; 4]. In the second example you can remove the following substrings: * s[1; 4]; * s[1; 5]; * s[1; 6]; * s[1; 7]; * s[2; 7]; * s[3; 7]. In the third example you can remove the following substrings: * s[1; 1]; * s[1; 2]; * s[2; 2].
instruction
0
10,834
0
21,668
Tags: combinatorics, math, strings Correct Solution: ``` import sys #import math data = sys.stdin.readlines() n = data[0] s = data[1] s = list(s[:len(s) - 1]) diferente1 = -1 diferente2 = -1 for i in range(len(s)): if s[i] != s[0] and diferente1 == -1: diferente1 = i if s[-(i+1)] != s[-1] and diferente2 == -1: diferente2 = i if diferente1 != -1 and diferente2 != -1: break if s[0] == s[-1]: print((diferente1+1)*(diferente2+1)%998244353) else: print(diferente1+diferente2+1) ```
output
1
10,834
0
21,669
Provide tags and a correct Python 3 solution for this coding contest problem. You are given a string s of length n consisting only of lowercase Latin letters. A substring of a string is a contiguous subsequence of that string. So, string "forces" is substring of string "codeforces", but string "coder" is not. Your task is to calculate the number of ways to remove exactly one substring from this string in such a way that all remaining characters are equal (the number of distinct characters either zero or one). It is guaranteed that there is at least two different characters in s. Note that you can remove the whole string and it is correct. Also note that you should remove at least one character. Since the answer can be rather large (not very large though) print it modulo 998244353. If you are Python programmer, consider using PyPy instead of Python when you submit your code. Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the length of the string s. The second line of the input contains the string s of length n consisting only of lowercase Latin letters. It is guaranteed that there is at least two different characters in s. Output Print one integer — the number of ways modulo 998244353 to remove exactly one substring from s in such way that all remaining characters are equal. Examples Input 4 abaa Output 6 Input 7 aacdeee Output 6 Input 2 az Output 3 Note Let s[l; r] be the substring of s from the position l to the position r inclusive. Then in the first example you can remove the following substrings: * s[1; 2]; * s[1; 3]; * s[1; 4]; * s[2; 2]; * s[2; 3]; * s[2; 4]. In the second example you can remove the following substrings: * s[1; 4]; * s[1; 5]; * s[1; 6]; * s[1; 7]; * s[2; 7]; * s[3; 7]. In the third example you can remove the following substrings: * s[1; 1]; * s[1; 2]; * s[2; 2].
instruction
0
10,835
0
21,670
Tags: combinatorics, math, strings Correct Solution: ``` from sys import stdin,stdout n=int(stdin.readline()) st=stdin.readline() cntl=0 cntr=0 for i in st: if(st[0] == i): cntl+=1 else: break for j in range(n-1,-1,-1): if(st[j] == st[n-1]): cntr+=1 else: break if(st[0] == st[n-1]): print(((cntl+1)*(cntr+1))%998244353) else: print(((cntl+cntr+1))%998244353 ) ```
output
1
10,835
0
21,671
Provide tags and a correct Python 3 solution for this coding contest problem. You are given a string s of length n consisting only of lowercase Latin letters. A substring of a string is a contiguous subsequence of that string. So, string "forces" is substring of string "codeforces", but string "coder" is not. Your task is to calculate the number of ways to remove exactly one substring from this string in such a way that all remaining characters are equal (the number of distinct characters either zero or one). It is guaranteed that there is at least two different characters in s. Note that you can remove the whole string and it is correct. Also note that you should remove at least one character. Since the answer can be rather large (not very large though) print it modulo 998244353. If you are Python programmer, consider using PyPy instead of Python when you submit your code. Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the length of the string s. The second line of the input contains the string s of length n consisting only of lowercase Latin letters. It is guaranteed that there is at least two different characters in s. Output Print one integer — the number of ways modulo 998244353 to remove exactly one substring from s in such way that all remaining characters are equal. Examples Input 4 abaa Output 6 Input 7 aacdeee Output 6 Input 2 az Output 3 Note Let s[l; r] be the substring of s from the position l to the position r inclusive. Then in the first example you can remove the following substrings: * s[1; 2]; * s[1; 3]; * s[1; 4]; * s[2; 2]; * s[2; 3]; * s[2; 4]. In the second example you can remove the following substrings: * s[1; 4]; * s[1; 5]; * s[1; 6]; * s[1; 7]; * s[2; 7]; * s[3; 7]. In the third example you can remove the following substrings: * s[1; 1]; * s[1; 2]; * s[2; 2].
instruction
0
10,836
0
21,672
Tags: combinatorics, math, strings Correct Solution: ``` import sys,math,bisect from random import randint inf = float('inf') mod = 998244353 "========================================" def lcm(a,b): return int((a/math.gcd(a,b))*b) def gcd(a,b): return int(math.gcd(a,b)) def tobinary(n): return bin(n)[2:] def binarySearch(a,x): i = bisect.bisect_left(a,x) if i!=len(a) and a[i]==x: return i else: return -1 def lowerBound(a, x): i = bisect.bisect_left(a, x) if i: return (i-1) else: return -1 def upperBound(a,x): i = bisect.bisect_right(a,x) if i!= len(a)+1 and a[i-1]==x: return (i-1) else: return -1 def primesInRange(n): ans = [] prime = [True for i in range(n+1)] p = 2 while (p * p <= n): if (prime[p] == True): for i in range(p * p, n+1, p): prime[i] = False p += 1 for p in range(2, n+1): if prime[p]: ans.append(p) return ans def primeFactors(n): factors = [] while n % 2 == 0: factors.append(2) n = n // 2 for i in range(3,int(math.sqrt(n))+1,2): while n % i== 0: factors.append(i) n = n // i if n > 2: factors.append(n) return factors def isPrime(n,k=5): if (n <2): return True for i in range(0,k): a = randint(1,n-1) if(pow(a,n-1,n)!=1): return False return True "=========================================" """ n = int(input()) n,k = map(int,input().split()) arr = list(map(int,input().split())) """ from collections import deque,defaultdict,Counter import heapq,string n=int(input()) s=input() cnt=0 if n==2: print(3) else: pref = 1 for i in range(1,n): if s[i]==s[i-1]: pref+=1 else: break suff=1 for i in range(n-2,-1,-1): if s[i]==s[i+1]: suff+=1 else: break if s[0]==s[-1]: print((suff+1+pref+(suff*pref))%mod) else: print((suff+pref+1)%mod) ```
output
1
10,836
0
21,673
Provide tags and a correct Python 3 solution for this coding contest problem. You are given a string s of length n consisting only of lowercase Latin letters. A substring of a string is a contiguous subsequence of that string. So, string "forces" is substring of string "codeforces", but string "coder" is not. Your task is to calculate the number of ways to remove exactly one substring from this string in such a way that all remaining characters are equal (the number of distinct characters either zero or one). It is guaranteed that there is at least two different characters in s. Note that you can remove the whole string and it is correct. Also note that you should remove at least one character. Since the answer can be rather large (not very large though) print it modulo 998244353. If you are Python programmer, consider using PyPy instead of Python when you submit your code. Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the length of the string s. The second line of the input contains the string s of length n consisting only of lowercase Latin letters. It is guaranteed that there is at least two different characters in s. Output Print one integer — the number of ways modulo 998244353 to remove exactly one substring from s in such way that all remaining characters are equal. Examples Input 4 abaa Output 6 Input 7 aacdeee Output 6 Input 2 az Output 3 Note Let s[l; r] be the substring of s from the position l to the position r inclusive. Then in the first example you can remove the following substrings: * s[1; 2]; * s[1; 3]; * s[1; 4]; * s[2; 2]; * s[2; 3]; * s[2; 4]. In the second example you can remove the following substrings: * s[1; 4]; * s[1; 5]; * s[1; 6]; * s[1; 7]; * s[2; 7]; * s[3; 7]. In the third example you can remove the following substrings: * s[1; 1]; * s[1; 2]; * s[2; 2].
instruction
0
10,837
0
21,674
Tags: combinatorics, math, strings Correct Solution: ``` import sys n = int((sys.stdin.readline()).strip()) s = (sys.stdin.readline()).strip() counter = {} lower = 0 for i in range(n): counter[s[i]]=1 if len(counter)>1: lower = i break counter = {} upper = n-1 for i in reversed(range(n)): counter[s[i]]=1 if len(counter)>1: upper = i break mod = 998244353 if s[0]==s[-1]: ans = (((lower +1)%mod)*((n-upper)%mod))%mod else: ans = (((lower +1)%mod)+((n-upper)%mod)-1)%mod print(ans) ```
output
1
10,837
0
21,675
Provide tags and a correct Python 3 solution for this coding contest problem. You are given a string s of length n consisting only of lowercase Latin letters. A substring of a string is a contiguous subsequence of that string. So, string "forces" is substring of string "codeforces", but string "coder" is not. Your task is to calculate the number of ways to remove exactly one substring from this string in such a way that all remaining characters are equal (the number of distinct characters either zero or one). It is guaranteed that there is at least two different characters in s. Note that you can remove the whole string and it is correct. Also note that you should remove at least one character. Since the answer can be rather large (not very large though) print it modulo 998244353. If you are Python programmer, consider using PyPy instead of Python when you submit your code. Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the length of the string s. The second line of the input contains the string s of length n consisting only of lowercase Latin letters. It is guaranteed that there is at least two different characters in s. Output Print one integer — the number of ways modulo 998244353 to remove exactly one substring from s in such way that all remaining characters are equal. Examples Input 4 abaa Output 6 Input 7 aacdeee Output 6 Input 2 az Output 3 Note Let s[l; r] be the substring of s from the position l to the position r inclusive. Then in the first example you can remove the following substrings: * s[1; 2]; * s[1; 3]; * s[1; 4]; * s[2; 2]; * s[2; 3]; * s[2; 4]. In the second example you can remove the following substrings: * s[1; 4]; * s[1; 5]; * s[1; 6]; * s[1; 7]; * s[2; 7]; * s[3; 7]. In the third example you can remove the following substrings: * s[1; 1]; * s[1; 2]; * s[2; 2].
instruction
0
10,838
0
21,676
Tags: combinatorics, math, strings Correct Solution: ``` n = int(input()) s = list(input()) c =[s[0]] m =[s[-1]] for i in range(len(s)-1): if(s[i]==s[i+1]): c.append(s[i+1]) else: break s.reverse() for i in range(len(s)-1): if(s[i]==s[i+1]): m.append(s[i+1]) else: break if(s[0]!=s[-1]): print((len(c)+len(m)+1)%998244353) else: print((len(c)+1)*(len(m)+1)%998244353) ```
output
1
10,838
0
21,677
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a string s of length n consisting only of lowercase Latin letters. A substring of a string is a contiguous subsequence of that string. So, string "forces" is substring of string "codeforces", but string "coder" is not. Your task is to calculate the number of ways to remove exactly one substring from this string in such a way that all remaining characters are equal (the number of distinct characters either zero or one). It is guaranteed that there is at least two different characters in s. Note that you can remove the whole string and it is correct. Also note that you should remove at least one character. Since the answer can be rather large (not very large though) print it modulo 998244353. If you are Python programmer, consider using PyPy instead of Python when you submit your code. Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the length of the string s. The second line of the input contains the string s of length n consisting only of lowercase Latin letters. It is guaranteed that there is at least two different characters in s. Output Print one integer — the number of ways modulo 998244353 to remove exactly one substring from s in such way that all remaining characters are equal. Examples Input 4 abaa Output 6 Input 7 aacdeee Output 6 Input 2 az Output 3 Note Let s[l; r] be the substring of s from the position l to the position r inclusive. Then in the first example you can remove the following substrings: * s[1; 2]; * s[1; 3]; * s[1; 4]; * s[2; 2]; * s[2; 3]; * s[2; 4]. In the second example you can remove the following substrings: * s[1; 4]; * s[1; 5]; * s[1; 6]; * s[1; 7]; * s[2; 7]; * s[3; 7]. In the third example you can remove the following substrings: * s[1; 1]; * s[1; 2]; * s[2; 2]. Submitted Solution: ``` n = int(input()) s = input() for i in range(n-1): if s[i+1]==s[i]: pass else: l = i+1 break for i in range(n-1): if s[n-1-(i+1)]==s[n-1-i]: pass else: r = n-1-i-1 break ans =0 temp = 0 inf = 998244353 if s[0]==s[-1]: #ans = (n-r)*l+n-r ans = ans+ n%inf -r%inf ans = ans%inf temp = temp+n%inf - r%inf temp = temp%inf temp = temp *(l%inf) temp = temp%inf ans = ans+temp ans = ans%inf else: ans = ans+l%inf+n%inf -r%inf #ans = n-r+l ans = ans%inf print(ans) ```
instruction
0
10,839
0
21,678
Yes
output
1
10,839
0
21,679
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a string s of length n consisting only of lowercase Latin letters. A substring of a string is a contiguous subsequence of that string. So, string "forces" is substring of string "codeforces", but string "coder" is not. Your task is to calculate the number of ways to remove exactly one substring from this string in such a way that all remaining characters are equal (the number of distinct characters either zero or one). It is guaranteed that there is at least two different characters in s. Note that you can remove the whole string and it is correct. Also note that you should remove at least one character. Since the answer can be rather large (not very large though) print it modulo 998244353. If you are Python programmer, consider using PyPy instead of Python when you submit your code. Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the length of the string s. The second line of the input contains the string s of length n consisting only of lowercase Latin letters. It is guaranteed that there is at least two different characters in s. Output Print one integer — the number of ways modulo 998244353 to remove exactly one substring from s in such way that all remaining characters are equal. Examples Input 4 abaa Output 6 Input 7 aacdeee Output 6 Input 2 az Output 3 Note Let s[l; r] be the substring of s from the position l to the position r inclusive. Then in the first example you can remove the following substrings: * s[1; 2]; * s[1; 3]; * s[1; 4]; * s[2; 2]; * s[2; 3]; * s[2; 4]. In the second example you can remove the following substrings: * s[1; 4]; * s[1; 5]; * s[1; 6]; * s[1; 7]; * s[2; 7]; * s[3; 7]. In the third example you can remove the following substrings: * s[1; 1]; * s[1; 2]; * s[2; 2]. Submitted Solution: ``` n = int(input()) s = input() fs = s[0] indf = 0 for i in range(n): if s[i] != fs: break indf += 1 ls = s[-1] indl = 0 for i in range(-1, -n, -1): if s[i] != ls: break indl += 1 mas = [] for i in range(n): if s[i] not in mas: mas.append(s[i]) if s == s[0] * n: ans = (n * (n + 1) // 2) elif s[0] == s[-1]: ans = ((indf + 1) * (indl + 1)) else: ans = (indf + indl + 1) print(ans % 998244353) ```
instruction
0
10,840
0
21,680
Yes
output
1
10,840
0
21,681
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a string s of length n consisting only of lowercase Latin letters. A substring of a string is a contiguous subsequence of that string. So, string "forces" is substring of string "codeforces", but string "coder" is not. Your task is to calculate the number of ways to remove exactly one substring from this string in such a way that all remaining characters are equal (the number of distinct characters either zero or one). It is guaranteed that there is at least two different characters in s. Note that you can remove the whole string and it is correct. Also note that you should remove at least one character. Since the answer can be rather large (not very large though) print it modulo 998244353. If you are Python programmer, consider using PyPy instead of Python when you submit your code. Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the length of the string s. The second line of the input contains the string s of length n consisting only of lowercase Latin letters. It is guaranteed that there is at least two different characters in s. Output Print one integer — the number of ways modulo 998244353 to remove exactly one substring from s in such way that all remaining characters are equal. Examples Input 4 abaa Output 6 Input 7 aacdeee Output 6 Input 2 az Output 3 Note Let s[l; r] be the substring of s from the position l to the position r inclusive. Then in the first example you can remove the following substrings: * s[1; 2]; * s[1; 3]; * s[1; 4]; * s[2; 2]; * s[2; 3]; * s[2; 4]. In the second example you can remove the following substrings: * s[1; 4]; * s[1; 5]; * s[1; 6]; * s[1; 7]; * s[2; 7]; * s[3; 7]. In the third example you can remove the following substrings: * s[1; 1]; * s[1; 2]; * s[2; 2]. Submitted Solution: ``` Mod = 998244353 n = int(input()) string = input() front = 1 i= 1 while(i<n): if(string[i]==string[0]): front+=1 else: break i+=1 rear = 1 i = n-2 while(i>=0): if(string[i]==string[n-1]): rear+=1 else: break i-=1 if(front+rear>n): n = n%Mod ans = n*(n+1)%Mod elif(string[0]!=string[n-1]): ans = front%Mod +rear%Mod ans = (ans + 1)%Mod else: Mid = n -(front+rear) front = front%Mod rear = rear%Mod ans = (front+rear+1)%Mod temp = (front*rear)%Mod ans = (ans+temp)%Mod print(ans) ```
instruction
0
10,841
0
21,682
Yes
output
1
10,841
0
21,683
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a string s of length n consisting only of lowercase Latin letters. A substring of a string is a contiguous subsequence of that string. So, string "forces" is substring of string "codeforces", but string "coder" is not. Your task is to calculate the number of ways to remove exactly one substring from this string in such a way that all remaining characters are equal (the number of distinct characters either zero or one). It is guaranteed that there is at least two different characters in s. Note that you can remove the whole string and it is correct. Also note that you should remove at least one character. Since the answer can be rather large (not very large though) print it modulo 998244353. If you are Python programmer, consider using PyPy instead of Python when you submit your code. Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the length of the string s. The second line of the input contains the string s of length n consisting only of lowercase Latin letters. It is guaranteed that there is at least two different characters in s. Output Print one integer — the number of ways modulo 998244353 to remove exactly one substring from s in such way that all remaining characters are equal. Examples Input 4 abaa Output 6 Input 7 aacdeee Output 6 Input 2 az Output 3 Note Let s[l; r] be the substring of s from the position l to the position r inclusive. Then in the first example you can remove the following substrings: * s[1; 2]; * s[1; 3]; * s[1; 4]; * s[2; 2]; * s[2; 3]; * s[2; 4]. In the second example you can remove the following substrings: * s[1; 4]; * s[1; 5]; * s[1; 6]; * s[1; 7]; * s[2; 7]; * s[3; 7]. In the third example you can remove the following substrings: * s[1; 1]; * s[1; 2]; * s[2; 2]. Submitted Solution: ``` n=int(input()) s=input() ans=0 k1,k2=0,-1 for i in range(1,n): if s[i]!=s[0]: k1=i break for i in range(n-2,-1,-1): if s[i]!=s[-1]: k2=i break if s[0]==s[-1]: ans=(k1+1)*(n-k2) else: ans+=k1+n-k2-1 ans+=1 print(ans%998244353) ```
instruction
0
10,842
0
21,684
Yes
output
1
10,842
0
21,685
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a string s of length n consisting only of lowercase Latin letters. A substring of a string is a contiguous subsequence of that string. So, string "forces" is substring of string "codeforces", but string "coder" is not. Your task is to calculate the number of ways to remove exactly one substring from this string in such a way that all remaining characters are equal (the number of distinct characters either zero or one). It is guaranteed that there is at least two different characters in s. Note that you can remove the whole string and it is correct. Also note that you should remove at least one character. Since the answer can be rather large (not very large though) print it modulo 998244353. If you are Python programmer, consider using PyPy instead of Python when you submit your code. Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the length of the string s. The second line of the input contains the string s of length n consisting only of lowercase Latin letters. It is guaranteed that there is at least two different characters in s. Output Print one integer — the number of ways modulo 998244353 to remove exactly one substring from s in such way that all remaining characters are equal. Examples Input 4 abaa Output 6 Input 7 aacdeee Output 6 Input 2 az Output 3 Note Let s[l; r] be the substring of s from the position l to the position r inclusive. Then in the first example you can remove the following substrings: * s[1; 2]; * s[1; 3]; * s[1; 4]; * s[2; 2]; * s[2; 3]; * s[2; 4]. In the second example you can remove the following substrings: * s[1; 4]; * s[1; 5]; * s[1; 6]; * s[1; 7]; * s[2; 7]; * s[3; 7]. In the third example you can remove the following substrings: * s[1; 1]; * s[1; 2]; * s[2; 2]. Submitted Solution: ``` n = int(input()) s = input() list_s = list(s) count_char =0 x=-1 current_char = list_s[x] while(current_char == list_s[-1]): count_char+=1 x = x-1 current_char = list_s[x] if list_s[0] == list_s[-1]: print(count_char*3) else: print(count_char*2) ```
instruction
0
10,843
0
21,686
No
output
1
10,843
0
21,687
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a string s of length n consisting only of lowercase Latin letters. A substring of a string is a contiguous subsequence of that string. So, string "forces" is substring of string "codeforces", but string "coder" is not. Your task is to calculate the number of ways to remove exactly one substring from this string in such a way that all remaining characters are equal (the number of distinct characters either zero or one). It is guaranteed that there is at least two different characters in s. Note that you can remove the whole string and it is correct. Also note that you should remove at least one character. Since the answer can be rather large (not very large though) print it modulo 998244353. If you are Python programmer, consider using PyPy instead of Python when you submit your code. Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the length of the string s. The second line of the input contains the string s of length n consisting only of lowercase Latin letters. It is guaranteed that there is at least two different characters in s. Output Print one integer — the number of ways modulo 998244353 to remove exactly one substring from s in such way that all remaining characters are equal. Examples Input 4 abaa Output 6 Input 7 aacdeee Output 6 Input 2 az Output 3 Note Let s[l; r] be the substring of s from the position l to the position r inclusive. Then in the first example you can remove the following substrings: * s[1; 2]; * s[1; 3]; * s[1; 4]; * s[2; 2]; * s[2; 3]; * s[2; 4]. In the second example you can remove the following substrings: * s[1; 4]; * s[1; 5]; * s[1; 6]; * s[1; 7]; * s[2; 7]; * s[3; 7]. In the third example you can remove the following substrings: * s[1; 1]; * s[1; 2]; * s[2; 2]. Submitted Solution: ``` n = int(input()) s = input().strip() head = s[0] cnt1 = 1 tmp = 0 for i in range(1,n//2): if s[i] == head: cnt1 += 1 else: tmp = i-1 break tail = s[n-1] cnt2 = 1 for i in range(n-2,tmp,-1): if s[i] == tail: cnt2 += 1 else: break if head != tail: print(cnt1+cnt2+1) else: print((cnt1+1)*(cnt2+1)) ```
instruction
0
10,844
0
21,688
No
output
1
10,844
0
21,689
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a string s of length n consisting only of lowercase Latin letters. A substring of a string is a contiguous subsequence of that string. So, string "forces" is substring of string "codeforces", but string "coder" is not. Your task is to calculate the number of ways to remove exactly one substring from this string in such a way that all remaining characters are equal (the number of distinct characters either zero or one). It is guaranteed that there is at least two different characters in s. Note that you can remove the whole string and it is correct. Also note that you should remove at least one character. Since the answer can be rather large (not very large though) print it modulo 998244353. If you are Python programmer, consider using PyPy instead of Python when you submit your code. Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the length of the string s. The second line of the input contains the string s of length n consisting only of lowercase Latin letters. It is guaranteed that there is at least two different characters in s. Output Print one integer — the number of ways modulo 998244353 to remove exactly one substring from s in such way that all remaining characters are equal. Examples Input 4 abaa Output 6 Input 7 aacdeee Output 6 Input 2 az Output 3 Note Let s[l; r] be the substring of s from the position l to the position r inclusive. Then in the first example you can remove the following substrings: * s[1; 2]; * s[1; 3]; * s[1; 4]; * s[2; 2]; * s[2; 3]; * s[2; 4]. In the second example you can remove the following substrings: * s[1; 4]; * s[1; 5]; * s[1; 6]; * s[1; 7]; * s[2; 7]; * s[3; 7]. In the third example you can remove the following substrings: * s[1; 1]; * s[1; 2]; * s[2; 2]. Submitted Solution: ``` import sys import math data = sys.stdin.readlines() n = data[0] s = data[1] data = list(s[:len(s) - 1]) diferente1 = -1 diferente2 = -1 for i in range(len(s)): if s[i] != s[0] and diferente1 == -1: diferente1 = i if s[-(i+1)] != s[-1] and diferente2 == -1: diferente2 = i if diferente1 != -1 and diferente2 != -1: break if s[0] == s[-1]: #print((diferente1+1)*(diferente2+1)) print("Hola") else: #print(diferente1+diferente2+1) print(s[-3]) ```
instruction
0
10,845
0
21,690
No
output
1
10,845
0
21,691
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. You are given a string s of length n consisting only of lowercase Latin letters. A substring of a string is a contiguous subsequence of that string. So, string "forces" is substring of string "codeforces", but string "coder" is not. Your task is to calculate the number of ways to remove exactly one substring from this string in such a way that all remaining characters are equal (the number of distinct characters either zero or one). It is guaranteed that there is at least two different characters in s. Note that you can remove the whole string and it is correct. Also note that you should remove at least one character. Since the answer can be rather large (not very large though) print it modulo 998244353. If you are Python programmer, consider using PyPy instead of Python when you submit your code. Input The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^5) — the length of the string s. The second line of the input contains the string s of length n consisting only of lowercase Latin letters. It is guaranteed that there is at least two different characters in s. Output Print one integer — the number of ways modulo 998244353 to remove exactly one substring from s in such way that all remaining characters are equal. Examples Input 4 abaa Output 6 Input 7 aacdeee Output 6 Input 2 az Output 3 Note Let s[l; r] be the substring of s from the position l to the position r inclusive. Then in the first example you can remove the following substrings: * s[1; 2]; * s[1; 3]; * s[1; 4]; * s[2; 2]; * s[2; 3]; * s[2; 4]. In the second example you can remove the following substrings: * s[1; 4]; * s[1; 5]; * s[1; 6]; * s[1; 7]; * s[2; 7]; * s[3; 7]. In the third example you can remove the following substrings: * s[1; 1]; * s[1; 2]; * s[2; 2]. Submitted Solution: ``` n = int(input()) arr = input() mod = 998244353 left =0 right = 0 l = arr[0] r = arr[-1] for c in arr: if l == c: left+=1 else:break if left!=n: for c in arr[::-1]: if r == c: right+=1 else:break ans = left+right+1 if left == n: ans = n*(n+1)//2 else: if left+right == n: ans = left+right+1 else: if l == r: ans = left+(2*right)+1 else: ans = left+right+1 print(ans%mod) # print('Left:',left,'Right:',right,right+left) ```
instruction
0
10,846
0
21,692
No
output
1
10,846
0
21,693
Provide tags and a correct Python 3 solution for this coding contest problem. Returning back to problem solving, Gildong is now studying about palindromes. He learned that a palindrome is a string that is the same as its reverse. For example, strings "pop", "noon", "x", and "kkkkkk" are palindromes, while strings "moon", "tv", and "abab" are not. An empty string is also a palindrome. Gildong loves this concept so much, so he wants to play with it. He has n distinct strings of equal length m. He wants to discard some of the strings (possibly none or all) and reorder the remaining strings so that the concatenation becomes a palindrome. He also wants the palindrome to be as long as possible. Please help him find one. Input The first line contains two integers n and m (1 ≤ n ≤ 100, 1 ≤ m ≤ 50) — the number of strings and the length of each string. Next n lines contain a string of length m each, consisting of lowercase Latin letters only. All strings are distinct. Output In the first line, print the length of the longest palindrome string you made. In the second line, print that palindrome. If there are multiple answers, print any one of them. If the palindrome is empty, print an empty line or don't print this line at all. Examples Input 3 3 tab one bat Output 6 tabbat Input 4 2 oo ox xo xx Output 6 oxxxxo Input 3 5 hello codef orces Output 0 Input 9 4 abab baba abcd bcde cdef defg wxyz zyxw ijji Output 20 ababwxyzijjizyxwbaba Note In the first example, "battab" is also a valid answer. In the second example, there can be 4 different valid answers including the sample output. We are not going to provide any hints for what the others are. In the third example, the empty string is the only valid palindrome string.
instruction
0
10,897
0
21,794
Tags: brute force, constructive algorithms, greedy, implementation, strings Correct Solution: ``` from sys import stdin, stdout from math import * from heapq import * from collections import * def is_palind(s): ln=len(s) for i in range(ln): if (s[i] != s[ln-1-i]): return False return True def main(): n,m=[int(x)for x in stdin.readline().split()] npalinds=[] palinds=[] alls=[] for i in range(n): s=stdin.readline().strip() if (is_palind(s)==True): palinds.append(s) else: npalinds.append(s) alls.append(s) res='' used=[False]*(n+1) for ind,s in enumerate(palinds): if (palinds.count(s)%2==1): if (len(s)>len(res)): res=s if (res in palinds): used[alls.index(res)]=True reslist=deque() reslist.append(res) for i in range(len(alls)): if (used[i]==False): p=alls[i] for j in range(len(alls)): if (used[j]==False) and (i!=j): q=alls[j] if is_palind(p+q): reslist.appendleft(p) reslist.append(q) used[i]=True used[j]=True res="".join(reslist) stdout.write("%d\n%s"%(len(res),res)) return 0 if __name__ == "__main__": main() ```
output
1
10,897
0
21,795
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Returning back to problem solving, Gildong is now studying about palindromes. He learned that a palindrome is a string that is the same as its reverse. For example, strings "pop", "noon", "x", and "kkkkkk" are palindromes, while strings "moon", "tv", and "abab" are not. An empty string is also a palindrome. Gildong loves this concept so much, so he wants to play with it. He has n distinct strings of equal length m. He wants to discard some of the strings (possibly none or all) and reorder the remaining strings so that the concatenation becomes a palindrome. He also wants the palindrome to be as long as possible. Please help him find one. Input The first line contains two integers n and m (1 ≤ n ≤ 100, 1 ≤ m ≤ 50) — the number of strings and the length of each string. Next n lines contain a string of length m each, consisting of lowercase Latin letters only. All strings are distinct. Output In the first line, print the length of the longest palindrome string you made. In the second line, print that palindrome. If there are multiple answers, print any one of them. If the palindrome is empty, print an empty line or don't print this line at all. Examples Input 3 3 tab one bat Output 6 tabbat Input 4 2 oo ox xo xx Output 6 oxxxxo Input 3 5 hello codef orces Output 0 Input 9 4 abab baba abcd bcde cdef defg wxyz zyxw ijji Output 20 ababwxyzijjizyxwbaba Note In the first example, "battab" is also a valid answer. In the second example, there can be 4 different valid answers including the sample output. We are not going to provide any hints for what the others are. In the third example, the empty string is the only valid palindrome string. Submitted Solution: ``` def ispal(s): if (s==s[::-1]): return 1 return 0 n,m=map(int,input().split()) A=[] vis=[0]*n for i in range(n): A.append(list(input())) if ispal(A[i]): vis[i]=1 B=[] C=[] ans=0 for i in range(n): if (vis[i]!=-1): for j in range(i+1,n): if (vis[j]!=-1 and A[i]==A[j][::-1]): vis[i]=-1 vis[j]=-1 B.extend(A[i]) C.append(A[j]) ans=ans+2 break for i in range(n): if (vis[i]==1): ans=ans+1 B.extend(A[i]) break C.reverse() for j in C: B.extend(j) print(len(B)) print(*B,sep="") ```
instruction
0
10,901
0
21,802
Yes
output
1
10,901
0
21,803
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Returning back to problem solving, Gildong is now studying about palindromes. He learned that a palindrome is a string that is the same as its reverse. For example, strings "pop", "noon", "x", and "kkkkkk" are palindromes, while strings "moon", "tv", and "abab" are not. An empty string is also a palindrome. Gildong loves this concept so much, so he wants to play with it. He has n distinct strings of equal length m. He wants to discard some of the strings (possibly none or all) and reorder the remaining strings so that the concatenation becomes a palindrome. He also wants the palindrome to be as long as possible. Please help him find one. Input The first line contains two integers n and m (1 ≤ n ≤ 100, 1 ≤ m ≤ 50) — the number of strings and the length of each string. Next n lines contain a string of length m each, consisting of lowercase Latin letters only. All strings are distinct. Output In the first line, print the length of the longest palindrome string you made. In the second line, print that palindrome. If there are multiple answers, print any one of them. If the palindrome is empty, print an empty line or don't print this line at all. Examples Input 3 3 tab one bat Output 6 tabbat Input 4 2 oo ox xo xx Output 6 oxxxxo Input 3 5 hello codef orces Output 0 Input 9 4 abab baba abcd bcde cdef defg wxyz zyxw ijji Output 20 ababwxyzijjizyxwbaba Note In the first example, "battab" is also a valid answer. In the second example, there can be 4 different valid answers including the sample output. We are not going to provide any hints for what the others are. In the third example, the empty string is the only valid palindrome string. Submitted Solution: ``` from collections import defaultdict,Counter n,m = map(int,input().strip().split()) ls = [] for _ in range(n): st = input() ls.append(st) start = "" end = "" temp = "" ans = 0 dic = defaultdict(int) f = 1 for i,val in enumerate(ls): if i not in dic: for j,value in enumerate(ls): if j not in dic: if i!=j and val==value[::-1]: dic[i] = 1 dic[j] = 1 ans += 2*m start += val end = value+end elif val==value[::-1] and f==1: ans += m temp = val f = 0 print(ans) if ans>0: print(start+temp+end) ```
instruction
0
10,902
0
21,804
Yes
output
1
10,902
0
21,805
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Returning back to problem solving, Gildong is now studying about palindromes. He learned that a palindrome is a string that is the same as its reverse. For example, strings "pop", "noon", "x", and "kkkkkk" are palindromes, while strings "moon", "tv", and "abab" are not. An empty string is also a palindrome. Gildong loves this concept so much, so he wants to play with it. He has n distinct strings of equal length m. He wants to discard some of the strings (possibly none or all) and reorder the remaining strings so that the concatenation becomes a palindrome. He also wants the palindrome to be as long as possible. Please help him find one. Input The first line contains two integers n and m (1 ≤ n ≤ 100, 1 ≤ m ≤ 50) — the number of strings and the length of each string. Next n lines contain a string of length m each, consisting of lowercase Latin letters only. All strings are distinct. Output In the first line, print the length of the longest palindrome string you made. In the second line, print that palindrome. If there are multiple answers, print any one of them. If the palindrome is empty, print an empty line or don't print this line at all. Examples Input 3 3 tab one bat Output 6 tabbat Input 4 2 oo ox xo xx Output 6 oxxxxo Input 3 5 hello codef orces Output 0 Input 9 4 abab baba abcd bcde cdef defg wxyz zyxw ijji Output 20 ababwxyzijjizyxwbaba Note In the first example, "battab" is also a valid answer. In the second example, there can be 4 different valid answers including the sample output. We are not going to provide any hints for what the others are. In the third example, the empty string is the only valid palindrome string. Submitted Solution: ``` import math t=1 while(t): x,y=map(int,input().split()) l=[] j=[] k=[] m=[] t1=[] t2=[] for i in range(x): l1=input() l.append(l1) for i in range(x): r=l[:i]+l[i+1:] if l[i][::-1] in r: j.append(l[i]) k.append(l[i][::-1]) if(l[i]==l[i][::-1]): m.append(l[i]) for i in range(len(j)): if j[i] not in t1 and j[i][::-1] not in t1: t1.append(j[i]) t2.append(j[i][::-1]) str1=str() str2=str() for i in range(len(t1)): str1=str1+t1[i] for i in range(len(t2)-1,-1,-1): str2=str2+t2[i] if(len(m)>0): print(len(str1+m[0]+str2)) print(str1+m[0]+str2) elif(len(str1+str2)>0): print(len(str1+str2)) print(str1+str2) else: print(0) t=t-1 ```
instruction
0
10,903
0
21,806
Yes
output
1
10,903
0
21,807
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Returning back to problem solving, Gildong is now studying about palindromes. He learned that a palindrome is a string that is the same as its reverse. For example, strings "pop", "noon", "x", and "kkkkkk" are palindromes, while strings "moon", "tv", and "abab" are not. An empty string is also a palindrome. Gildong loves this concept so much, so he wants to play with it. He has n distinct strings of equal length m. He wants to discard some of the strings (possibly none or all) and reorder the remaining strings so that the concatenation becomes a palindrome. He also wants the palindrome to be as long as possible. Please help him find one. Input The first line contains two integers n and m (1 ≤ n ≤ 100, 1 ≤ m ≤ 50) — the number of strings and the length of each string. Next n lines contain a string of length m each, consisting of lowercase Latin letters only. All strings are distinct. Output In the first line, print the length of the longest palindrome string you made. In the second line, print that palindrome. If there are multiple answers, print any one of them. If the palindrome is empty, print an empty line or don't print this line at all. Examples Input 3 3 tab one bat Output 6 tabbat Input 4 2 oo ox xo xx Output 6 oxxxxo Input 3 5 hello codef orces Output 0 Input 9 4 abab baba abcd bcde cdef defg wxyz zyxw ijji Output 20 ababwxyzijjizyxwbaba Note In the first example, "battab" is also a valid answer. In the second example, there can be 4 different valid answers including the sample output. We are not going to provide any hints for what the others are. In the third example, the empty string is the only valid palindrome string. Submitted Solution: ``` n,m=map(int,input().split()) dp=[0]*n for i in range(n): s=input() dp[i]=s dpp=[] dpop=[] for i in range(n): if dp[i]==dp[i][::-1]: dpp.append(dp[i]) elif dp[i][::-1] in dp: if dp[i][::-1] not in dpop: dpop.append(dp[i]) dpop.append(dp[i][::-1]) s="" if dpp: s=dpp[0] while dpop: a=dpop.pop(0) b=dpop.pop(0) s=a+s+b print(len(s)) print(s) ```
instruction
0
10,904
0
21,808
Yes
output
1
10,904
0
21,809
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Returning back to problem solving, Gildong is now studying about palindromes. He learned that a palindrome is a string that is the same as its reverse. For example, strings "pop", "noon", "x", and "kkkkkk" are palindromes, while strings "moon", "tv", and "abab" are not. An empty string is also a palindrome. Gildong loves this concept so much, so he wants to play with it. He has n distinct strings of equal length m. He wants to discard some of the strings (possibly none or all) and reorder the remaining strings so that the concatenation becomes a palindrome. He also wants the palindrome to be as long as possible. Please help him find one. Input The first line contains two integers n and m (1 ≤ n ≤ 100, 1 ≤ m ≤ 50) — the number of strings and the length of each string. Next n lines contain a string of length m each, consisting of lowercase Latin letters only. All strings are distinct. Output In the first line, print the length of the longest palindrome string you made. In the second line, print that palindrome. If there are multiple answers, print any one of them. If the palindrome is empty, print an empty line or don't print this line at all. Examples Input 3 3 tab one bat Output 6 tabbat Input 4 2 oo ox xo xx Output 6 oxxxxo Input 3 5 hello codef orces Output 0 Input 9 4 abab baba abcd bcde cdef defg wxyz zyxw ijji Output 20 ababwxyzijjizyxwbaba Note In the first example, "battab" is also a valid answer. In the second example, there can be 4 different valid answers including the sample output. We are not going to provide any hints for what the others are. In the third example, the empty string is the only valid palindrome string. Submitted Solution: ``` q, z = [int(x) for x in input().split()] str1 = [] for x in range(q): str1.append(input()) str2 = [] for each in str1: str2.append(each[::-1]) str3 = set(str1) & set(str2) ''' temp = set(str1) & set(str2) temp1 = [] for each in str3: temp.remove(each) if each[::-1] not in temp: temp1.append(each) else: temp.remove for each in temp1: str3.remove(each) str4 = [] c = 0 for each in str3: str4.insert(c, each) str4.insert(-1*c-1, each[::-1]) str3.remove(each) str3.remove(each[::-1]) num1 = len(str4) // 2 for each in temp1: str4.insert(num1, each) ''' str3 = list(str3) #print(str3) if len(str3) % 2 == 0: for x in range(len(str3)): if x == str3.index(str3[x][::-1]): str3.pop(x) break for x in range(len(str3)): temp = str3[x] num1 = str3.index(temp[::-1]) if x != num1: str3[num1], str3[-1*x-1] = str3[-1*x-1], str3[num1] print(z*len(str3)) print("".join(str3)) ```
instruction
0
10,905
0
21,810
No
output
1
10,905
0
21,811
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Returning back to problem solving, Gildong is now studying about palindromes. He learned that a palindrome is a string that is the same as its reverse. For example, strings "pop", "noon", "x", and "kkkkkk" are palindromes, while strings "moon", "tv", and "abab" are not. An empty string is also a palindrome. Gildong loves this concept so much, so he wants to play with it. He has n distinct strings of equal length m. He wants to discard some of the strings (possibly none or all) and reorder the remaining strings so that the concatenation becomes a palindrome. He also wants the palindrome to be as long as possible. Please help him find one. Input The first line contains two integers n and m (1 ≤ n ≤ 100, 1 ≤ m ≤ 50) — the number of strings and the length of each string. Next n lines contain a string of length m each, consisting of lowercase Latin letters only. All strings are distinct. Output In the first line, print the length of the longest palindrome string you made. In the second line, print that palindrome. If there are multiple answers, print any one of them. If the palindrome is empty, print an empty line or don't print this line at all. Examples Input 3 3 tab one bat Output 6 tabbat Input 4 2 oo ox xo xx Output 6 oxxxxo Input 3 5 hello codef orces Output 0 Input 9 4 abab baba abcd bcde cdef defg wxyz zyxw ijji Output 20 ababwxyzijjizyxwbaba Note In the first example, "battab" is also a valid answer. In the second example, there can be 4 different valid answers including the sample output. We are not going to provide any hints for what the others are. In the third example, the empty string is the only valid palindrome string. Submitted Solution: ``` n,m=map(int,input().split()) a=[] ans=[] res='' for i in range(n): a.append(input()) b=a.copy() for i in a: #print(a) x=i y=i[::-1] a.remove(i) #print(x,y) if y in a: ans.append(x) a.remove(y) else: if x==y: res=x for i in a: if i==i[::-1]: res=i break s='' if len(ans)==0: if res!='': print(len(res)) print(res) else: print(0) print() else: for i in ans: s+=i if res!='': s+=res+s[::-1] else: s+=s[::-1] print(len(s)) print(s) """4 2 oo ox xo xx4 """ ```
instruction
0
10,906
0
21,812
No
output
1
10,906
0
21,813
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Returning back to problem solving, Gildong is now studying about palindromes. He learned that a palindrome is a string that is the same as its reverse. For example, strings "pop", "noon", "x", and "kkkkkk" are palindromes, while strings "moon", "tv", and "abab" are not. An empty string is also a palindrome. Gildong loves this concept so much, so he wants to play with it. He has n distinct strings of equal length m. He wants to discard some of the strings (possibly none or all) and reorder the remaining strings so that the concatenation becomes a palindrome. He also wants the palindrome to be as long as possible. Please help him find one. Input The first line contains two integers n and m (1 ≤ n ≤ 100, 1 ≤ m ≤ 50) — the number of strings and the length of each string. Next n lines contain a string of length m each, consisting of lowercase Latin letters only. All strings are distinct. Output In the first line, print the length of the longest palindrome string you made. In the second line, print that palindrome. If there are multiple answers, print any one of them. If the palindrome is empty, print an empty line or don't print this line at all. Examples Input 3 3 tab one bat Output 6 tabbat Input 4 2 oo ox xo xx Output 6 oxxxxo Input 3 5 hello codef orces Output 0 Input 9 4 abab baba abcd bcde cdef defg wxyz zyxw ijji Output 20 ababwxyzijjizyxwbaba Note In the first example, "battab" is also a valid answer. In the second example, there can be 4 different valid answers including the sample output. We are not going to provide any hints for what the others are. In the third example, the empty string is the only valid palindrome string. Submitted Solution: ``` n, m = map(int, input().split()) s = [] c = "" for i in range(n): s.append(input()) while s: try: ind = s.index(a[::-1]) c = a + c + s[ind] s.pop(ind) except: pass s.pop(0) print(len(c)) print(c) ```
instruction
0
10,907
0
21,814
No
output
1
10,907
0
21,815
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Returning back to problem solving, Gildong is now studying about palindromes. He learned that a palindrome is a string that is the same as its reverse. For example, strings "pop", "noon", "x", and "kkkkkk" are palindromes, while strings "moon", "tv", and "abab" are not. An empty string is also a palindrome. Gildong loves this concept so much, so he wants to play with it. He has n distinct strings of equal length m. He wants to discard some of the strings (possibly none or all) and reorder the remaining strings so that the concatenation becomes a palindrome. He also wants the palindrome to be as long as possible. Please help him find one. Input The first line contains two integers n and m (1 ≤ n ≤ 100, 1 ≤ m ≤ 50) — the number of strings and the length of each string. Next n lines contain a string of length m each, consisting of lowercase Latin letters only. All strings are distinct. Output In the first line, print the length of the longest palindrome string you made. In the second line, print that palindrome. If there are multiple answers, print any one of them. If the palindrome is empty, print an empty line or don't print this line at all. Examples Input 3 3 tab one bat Output 6 tabbat Input 4 2 oo ox xo xx Output 6 oxxxxo Input 3 5 hello codef orces Output 0 Input 9 4 abab baba abcd bcde cdef defg wxyz zyxw ijji Output 20 ababwxyzijjizyxwbaba Note In the first example, "battab" is also a valid answer. In the second example, there can be 4 different valid answers including the sample output. We are not going to provide any hints for what the others are. In the third example, the empty string is the only valid palindrome string. Submitted Solution: ``` n, m = map(int, input().split()) arr = [] pal = '' rev = '' for i in range(n): temp = input() arr.append(temp) if temp == temp[::-1]: rev = temp for j in range(i): if arr[i] == arr[j][::-1]: pal = arr[i] + pal + arr[j] if pal != '': l = int((len(pal) + 1) / 2) pal = pal[0:l] + rev + pal[l:] if pal == '': print(0) else: print(len(pal)) print(pal) ```
instruction
0
10,908
0
21,816
No
output
1
10,908
0
21,817
Provide tags and a correct Python 3 solution for this coding contest problem. Phoenix has a string s consisting of lowercase Latin letters. He wants to distribute all the letters of his string into k non-empty strings a_1, a_2, ..., a_k such that every letter of s goes to exactly one of the strings a_i. The strings a_i do not need to be substrings of s. Phoenix can distribute letters of s and rearrange the letters within each string a_i however he wants. For example, if s = baba and k=2, Phoenix may distribute the letters of his string in many ways, such as: * ba and ba * a and abb * ab and ab * aa and bb But these ways are invalid: * baa and ba * b and ba * baba and empty string (a_i should be non-empty) Phoenix wants to distribute the letters of his string s into k strings a_1, a_2, ..., a_k to minimize the lexicographically maximum string among them, i. e. minimize max(a_1, a_2, ..., a_k). Help him find the optimal distribution and print the minimal possible value of max(a_1, a_2, ..., a_k). String x is lexicographically less than string y if either x is a prefix of y and x ≠ y, or there exists an index i (1 ≤ i ≤ min(|x|, |y|)) such that x_i < y_i and for every j (1 ≤ j < i) x_j = y_j. Here |x| denotes the length of the string x. Input The input consists of multiple test cases. The first line contains an integer t (1 ≤ t ≤ 1000) — the number of test cases. Each test case consists of two lines. The first line of each test case consists of two integers n and k (1 ≤ k ≤ n ≤ 10^5) — the length of string s and the number of non-empty strings, into which Phoenix wants to distribute letters of s, respectively. The second line of each test case contains a string s of length n consisting only of lowercase Latin letters. It is guaranteed that the sum of n over all test cases is ≤ 10^5. Output Print t answers — one per test case. The i-th answer should be the minimal possible value of max(a_1, a_2, ..., a_k) in the i-th test case. Example Input 6 4 2 baba 5 2 baacb 5 3 baacb 5 3 aaaaa 6 4 aaxxzz 7 1 phoenix Output ab abbc b aa x ehinopx Note In the first test case, one optimal solution is to distribute baba into ab and ab. In the second test case, one optimal solution is to distribute baacb into abbc and a. In the third test case, one optimal solution is to distribute baacb into ac, ab, and b. In the fourth test case, one optimal solution is to distribute aaaaa into aa, aa, and a. In the fifth test case, one optimal solution is to distribute aaxxzz into az, az, x, and x. In the sixth test case, one optimal solution is to distribute phoenix into ehinopx.
instruction
0
10,925
0
21,850
Tags: constructive algorithms, greedy, sortings, strings Correct Solution: ``` import math cases = int(input()) for t in range(cases): n,k = list(map(int,input().split())) s = ''.join(sorted(input())) if k==1: print(''.join(s)) elif s[0]!=s[k-1]: print(s[k-1]) else: if s[0]==s[-1]: print(s[0]*(math.ceil(n/k))) elif s[k]==s[-1]: print(s[0]+s[k]*math.ceil((n-k)/k)) else: print(s[0]+s[k:]) ```
output
1
10,925
0
21,851
Provide tags and a correct Python 3 solution for this coding contest problem. Phoenix has a string s consisting of lowercase Latin letters. He wants to distribute all the letters of his string into k non-empty strings a_1, a_2, ..., a_k such that every letter of s goes to exactly one of the strings a_i. The strings a_i do not need to be substrings of s. Phoenix can distribute letters of s and rearrange the letters within each string a_i however he wants. For example, if s = baba and k=2, Phoenix may distribute the letters of his string in many ways, such as: * ba and ba * a and abb * ab and ab * aa and bb But these ways are invalid: * baa and ba * b and ba * baba and empty string (a_i should be non-empty) Phoenix wants to distribute the letters of his string s into k strings a_1, a_2, ..., a_k to minimize the lexicographically maximum string among them, i. e. minimize max(a_1, a_2, ..., a_k). Help him find the optimal distribution and print the minimal possible value of max(a_1, a_2, ..., a_k). String x is lexicographically less than string y if either x is a prefix of y and x ≠ y, or there exists an index i (1 ≤ i ≤ min(|x|, |y|)) such that x_i < y_i and for every j (1 ≤ j < i) x_j = y_j. Here |x| denotes the length of the string x. Input The input consists of multiple test cases. The first line contains an integer t (1 ≤ t ≤ 1000) — the number of test cases. Each test case consists of two lines. The first line of each test case consists of two integers n and k (1 ≤ k ≤ n ≤ 10^5) — the length of string s and the number of non-empty strings, into which Phoenix wants to distribute letters of s, respectively. The second line of each test case contains a string s of length n consisting only of lowercase Latin letters. It is guaranteed that the sum of n over all test cases is ≤ 10^5. Output Print t answers — one per test case. The i-th answer should be the minimal possible value of max(a_1, a_2, ..., a_k) in the i-th test case. Example Input 6 4 2 baba 5 2 baacb 5 3 baacb 5 3 aaaaa 6 4 aaxxzz 7 1 phoenix Output ab abbc b aa x ehinopx Note In the first test case, one optimal solution is to distribute baba into ab and ab. In the second test case, one optimal solution is to distribute baacb into abbc and a. In the third test case, one optimal solution is to distribute baacb into ac, ab, and b. In the fourth test case, one optimal solution is to distribute aaaaa into aa, aa, and a. In the fifth test case, one optimal solution is to distribute aaxxzz into az, az, x, and x. In the sixth test case, one optimal solution is to distribute phoenix into ehinopx.
instruction
0
10,926
0
21,852
Tags: constructive algorithms, greedy, sortings, strings Correct Solution: ``` for _ in range(int(input())): n,k = map(int,input().split()) given = sorted(input()) if len(set(given[:k]))!=1: ans = given[k-1] else: ans = '' if len(set(given[k:]))==1: for i in range(0,n,k): ans+=given[i] else: ans = ''.join(given[k-1:]) print(ans) ```
output
1
10,926
0
21,853
Provide tags and a correct Python 3 solution for this coding contest problem. Phoenix has a string s consisting of lowercase Latin letters. He wants to distribute all the letters of his string into k non-empty strings a_1, a_2, ..., a_k such that every letter of s goes to exactly one of the strings a_i. The strings a_i do not need to be substrings of s. Phoenix can distribute letters of s and rearrange the letters within each string a_i however he wants. For example, if s = baba and k=2, Phoenix may distribute the letters of his string in many ways, such as: * ba and ba * a and abb * ab and ab * aa and bb But these ways are invalid: * baa and ba * b and ba * baba and empty string (a_i should be non-empty) Phoenix wants to distribute the letters of his string s into k strings a_1, a_2, ..., a_k to minimize the lexicographically maximum string among them, i. e. minimize max(a_1, a_2, ..., a_k). Help him find the optimal distribution and print the minimal possible value of max(a_1, a_2, ..., a_k). String x is lexicographically less than string y if either x is a prefix of y and x ≠ y, or there exists an index i (1 ≤ i ≤ min(|x|, |y|)) such that x_i < y_i and for every j (1 ≤ j < i) x_j = y_j. Here |x| denotes the length of the string x. Input The input consists of multiple test cases. The first line contains an integer t (1 ≤ t ≤ 1000) — the number of test cases. Each test case consists of two lines. The first line of each test case consists of two integers n and k (1 ≤ k ≤ n ≤ 10^5) — the length of string s and the number of non-empty strings, into which Phoenix wants to distribute letters of s, respectively. The second line of each test case contains a string s of length n consisting only of lowercase Latin letters. It is guaranteed that the sum of n over all test cases is ≤ 10^5. Output Print t answers — one per test case. The i-th answer should be the minimal possible value of max(a_1, a_2, ..., a_k) in the i-th test case. Example Input 6 4 2 baba 5 2 baacb 5 3 baacb 5 3 aaaaa 6 4 aaxxzz 7 1 phoenix Output ab abbc b aa x ehinopx Note In the first test case, one optimal solution is to distribute baba into ab and ab. In the second test case, one optimal solution is to distribute baacb into abbc and a. In the third test case, one optimal solution is to distribute baacb into ac, ab, and b. In the fourth test case, one optimal solution is to distribute aaaaa into aa, aa, and a. In the fifth test case, one optimal solution is to distribute aaxxzz into az, az, x, and x. In the sixth test case, one optimal solution is to distribute phoenix into ehinopx.
instruction
0
10,927
0
21,854
Tags: constructive algorithms, greedy, sortings, strings Correct Solution: ``` # cook your dish here t=int(input()) for _ in range(t): n,k=map(int,input().split()) s=list(input()) s.sort() c=s[0] if s[k-1]!=c: print(s[k-1]) else: x=set(s[k:]) if len(x)==0 or len(x)==1: ans=['']*k j=0 for i in range(n): ans[j]=ans[j]+s[i] j=(j+1)%k ans.sort() m=ans[-1] else: m='' for i in range(k-1,n): m=m+s[i] print(m) ```
output
1
10,927
0
21,855
Provide tags and a correct Python 3 solution for this coding contest problem. Phoenix has a string s consisting of lowercase Latin letters. He wants to distribute all the letters of his string into k non-empty strings a_1, a_2, ..., a_k such that every letter of s goes to exactly one of the strings a_i. The strings a_i do not need to be substrings of s. Phoenix can distribute letters of s and rearrange the letters within each string a_i however he wants. For example, if s = baba and k=2, Phoenix may distribute the letters of his string in many ways, such as: * ba and ba * a and abb * ab and ab * aa and bb But these ways are invalid: * baa and ba * b and ba * baba and empty string (a_i should be non-empty) Phoenix wants to distribute the letters of his string s into k strings a_1, a_2, ..., a_k to minimize the lexicographically maximum string among them, i. e. minimize max(a_1, a_2, ..., a_k). Help him find the optimal distribution and print the minimal possible value of max(a_1, a_2, ..., a_k). String x is lexicographically less than string y if either x is a prefix of y and x ≠ y, or there exists an index i (1 ≤ i ≤ min(|x|, |y|)) such that x_i < y_i and for every j (1 ≤ j < i) x_j = y_j. Here |x| denotes the length of the string x. Input The input consists of multiple test cases. The first line contains an integer t (1 ≤ t ≤ 1000) — the number of test cases. Each test case consists of two lines. The first line of each test case consists of two integers n and k (1 ≤ k ≤ n ≤ 10^5) — the length of string s and the number of non-empty strings, into which Phoenix wants to distribute letters of s, respectively. The second line of each test case contains a string s of length n consisting only of lowercase Latin letters. It is guaranteed that the sum of n over all test cases is ≤ 10^5. Output Print t answers — one per test case. The i-th answer should be the minimal possible value of max(a_1, a_2, ..., a_k) in the i-th test case. Example Input 6 4 2 baba 5 2 baacb 5 3 baacb 5 3 aaaaa 6 4 aaxxzz 7 1 phoenix Output ab abbc b aa x ehinopx Note In the first test case, one optimal solution is to distribute baba into ab and ab. In the second test case, one optimal solution is to distribute baacb into abbc and a. In the third test case, one optimal solution is to distribute baacb into ac, ab, and b. In the fourth test case, one optimal solution is to distribute aaaaa into aa, aa, and a. In the fifth test case, one optimal solution is to distribute aaxxzz into az, az, x, and x. In the sixth test case, one optimal solution is to distribute phoenix into ehinopx.
instruction
0
10,928
0
21,856
Tags: constructive algorithms, greedy, sortings, strings Correct Solution: ``` for lo in range(int(input())): #n = int(input()) n,k = map(int,input().split()) st = input() ls = [0 for i in range(26)] c = 0 mn = 30 for i in st: x = ord(i)-97 if ls[x]==0: c+=1 ls[x]+=1 mn = min(x,mn) if c==1: z = 0 if ls[mn]%k!=0: z+=1 z+=(ls[mn]//k) ans = "" for i in range(z): ans+=chr(97+mn) print(ans) continue if ls[mn]<k: z = 0 for i in range(26): z+=ls[i] if mn!=i and z>=k: ans = chr(97+i) break print(ans) continue if ls[mn]==k and c==2: x = 0 mn2 = 0 for i in range(26): if mn!=i and ls[i]>0: mn2 = i x = ls[i] break z = 0 if ls[mn2]%k!=0: z+=1 z+=(ls[mn2]//k) ans = chr(97+mn) for i in range(z): ans+=chr(97+mn2) print(ans) continue z = 0 ans = "" for i in range(26): if mn==i: for j in range(ls[mn]-k+1): ans+=chr(mn+97) else: for j in range(ls[i]): ans+=chr(i+97) print(ans) ```
output
1
10,928
0
21,857
Provide tags and a correct Python 3 solution for this coding contest problem. Phoenix has a string s consisting of lowercase Latin letters. He wants to distribute all the letters of his string into k non-empty strings a_1, a_2, ..., a_k such that every letter of s goes to exactly one of the strings a_i. The strings a_i do not need to be substrings of s. Phoenix can distribute letters of s and rearrange the letters within each string a_i however he wants. For example, if s = baba and k=2, Phoenix may distribute the letters of his string in many ways, such as: * ba and ba * a and abb * ab and ab * aa and bb But these ways are invalid: * baa and ba * b and ba * baba and empty string (a_i should be non-empty) Phoenix wants to distribute the letters of his string s into k strings a_1, a_2, ..., a_k to minimize the lexicographically maximum string among them, i. e. minimize max(a_1, a_2, ..., a_k). Help him find the optimal distribution and print the minimal possible value of max(a_1, a_2, ..., a_k). String x is lexicographically less than string y if either x is a prefix of y and x ≠ y, or there exists an index i (1 ≤ i ≤ min(|x|, |y|)) such that x_i < y_i and for every j (1 ≤ j < i) x_j = y_j. Here |x| denotes the length of the string x. Input The input consists of multiple test cases. The first line contains an integer t (1 ≤ t ≤ 1000) — the number of test cases. Each test case consists of two lines. The first line of each test case consists of two integers n and k (1 ≤ k ≤ n ≤ 10^5) — the length of string s and the number of non-empty strings, into which Phoenix wants to distribute letters of s, respectively. The second line of each test case contains a string s of length n consisting only of lowercase Latin letters. It is guaranteed that the sum of n over all test cases is ≤ 10^5. Output Print t answers — one per test case. The i-th answer should be the minimal possible value of max(a_1, a_2, ..., a_k) in the i-th test case. Example Input 6 4 2 baba 5 2 baacb 5 3 baacb 5 3 aaaaa 6 4 aaxxzz 7 1 phoenix Output ab abbc b aa x ehinopx Note In the first test case, one optimal solution is to distribute baba into ab and ab. In the second test case, one optimal solution is to distribute baacb into abbc and a. In the third test case, one optimal solution is to distribute baacb into ac, ab, and b. In the fourth test case, one optimal solution is to distribute aaaaa into aa, aa, and a. In the fifth test case, one optimal solution is to distribute aaxxzz into az, az, x, and x. In the sixth test case, one optimal solution is to distribute phoenix into ehinopx.
instruction
0
10,929
0
21,858
Tags: constructive algorithms, greedy, sortings, strings Correct Solution: ``` for _ in range(int(input())): n,k = map(int, input().split()) s = ''.join(sorted(input())) if(s[0] != s[k-1] or k == n): print(s[k-1]) continue if(s[k] != s[n-1]): print(s[0]+s[k:]) else: print(s[0]+s[n-1]*((n-1)//k)) ```
output
1
10,929
0
21,859
Provide tags and a correct Python 3 solution for this coding contest problem. Phoenix has a string s consisting of lowercase Latin letters. He wants to distribute all the letters of his string into k non-empty strings a_1, a_2, ..., a_k such that every letter of s goes to exactly one of the strings a_i. The strings a_i do not need to be substrings of s. Phoenix can distribute letters of s and rearrange the letters within each string a_i however he wants. For example, if s = baba and k=2, Phoenix may distribute the letters of his string in many ways, such as: * ba and ba * a and abb * ab and ab * aa and bb But these ways are invalid: * baa and ba * b and ba * baba and empty string (a_i should be non-empty) Phoenix wants to distribute the letters of his string s into k strings a_1, a_2, ..., a_k to minimize the lexicographically maximum string among them, i. e. minimize max(a_1, a_2, ..., a_k). Help him find the optimal distribution and print the minimal possible value of max(a_1, a_2, ..., a_k). String x is lexicographically less than string y if either x is a prefix of y and x ≠ y, or there exists an index i (1 ≤ i ≤ min(|x|, |y|)) such that x_i < y_i and for every j (1 ≤ j < i) x_j = y_j. Here |x| denotes the length of the string x. Input The input consists of multiple test cases. The first line contains an integer t (1 ≤ t ≤ 1000) — the number of test cases. Each test case consists of two lines. The first line of each test case consists of two integers n and k (1 ≤ k ≤ n ≤ 10^5) — the length of string s and the number of non-empty strings, into which Phoenix wants to distribute letters of s, respectively. The second line of each test case contains a string s of length n consisting only of lowercase Latin letters. It is guaranteed that the sum of n over all test cases is ≤ 10^5. Output Print t answers — one per test case. The i-th answer should be the minimal possible value of max(a_1, a_2, ..., a_k) in the i-th test case. Example Input 6 4 2 baba 5 2 baacb 5 3 baacb 5 3 aaaaa 6 4 aaxxzz 7 1 phoenix Output ab abbc b aa x ehinopx Note In the first test case, one optimal solution is to distribute baba into ab and ab. In the second test case, one optimal solution is to distribute baacb into abbc and a. In the third test case, one optimal solution is to distribute baacb into ac, ab, and b. In the fourth test case, one optimal solution is to distribute aaaaa into aa, aa, and a. In the fifth test case, one optimal solution is to distribute aaxxzz into az, az, x, and x. In the sixth test case, one optimal solution is to distribute phoenix into ehinopx.
instruction
0
10,930
0
21,860
Tags: constructive algorithms, greedy, sortings, strings Correct Solution: ``` import math t = int(input()) for _ in range(t): n,m = map(int,input().split()) s = input() s1 = [i for i in s] s1.sort() s = ''.join(s1) #print(s) if m==n: print(s[n-1]) continue if m==1: print(s) continue lis = [[s[i]] for i in range(m)] pos = -1 for i in range(m-1): if lis[i]==lis[m-1]: pos = i break if pos==-1: print(*lis[m-1]) continue pp = pow(2,10) for i in range(20): pp+=i if pos==0: if s[m]==s[n-1]: print(s[0]+s[m]*(math.ceil((n-m)/m))) else: print(s[0]+s[m:]) else: print(*lis[m-1]) ```
output
1
10,930
0
21,861
Provide tags and a correct Python 3 solution for this coding contest problem. Phoenix has a string s consisting of lowercase Latin letters. He wants to distribute all the letters of his string into k non-empty strings a_1, a_2, ..., a_k such that every letter of s goes to exactly one of the strings a_i. The strings a_i do not need to be substrings of s. Phoenix can distribute letters of s and rearrange the letters within each string a_i however he wants. For example, if s = baba and k=2, Phoenix may distribute the letters of his string in many ways, such as: * ba and ba * a and abb * ab and ab * aa and bb But these ways are invalid: * baa and ba * b and ba * baba and empty string (a_i should be non-empty) Phoenix wants to distribute the letters of his string s into k strings a_1, a_2, ..., a_k to minimize the lexicographically maximum string among them, i. e. minimize max(a_1, a_2, ..., a_k). Help him find the optimal distribution and print the minimal possible value of max(a_1, a_2, ..., a_k). String x is lexicographically less than string y if either x is a prefix of y and x ≠ y, or there exists an index i (1 ≤ i ≤ min(|x|, |y|)) such that x_i < y_i and for every j (1 ≤ j < i) x_j = y_j. Here |x| denotes the length of the string x. Input The input consists of multiple test cases. The first line contains an integer t (1 ≤ t ≤ 1000) — the number of test cases. Each test case consists of two lines. The first line of each test case consists of two integers n and k (1 ≤ k ≤ n ≤ 10^5) — the length of string s and the number of non-empty strings, into which Phoenix wants to distribute letters of s, respectively. The second line of each test case contains a string s of length n consisting only of lowercase Latin letters. It is guaranteed that the sum of n over all test cases is ≤ 10^5. Output Print t answers — one per test case. The i-th answer should be the minimal possible value of max(a_1, a_2, ..., a_k) in the i-th test case. Example Input 6 4 2 baba 5 2 baacb 5 3 baacb 5 3 aaaaa 6 4 aaxxzz 7 1 phoenix Output ab abbc b aa x ehinopx Note In the first test case, one optimal solution is to distribute baba into ab and ab. In the second test case, one optimal solution is to distribute baacb into abbc and a. In the third test case, one optimal solution is to distribute baacb into ac, ab, and b. In the fourth test case, one optimal solution is to distribute aaaaa into aa, aa, and a. In the fifth test case, one optimal solution is to distribute aaxxzz into az, az, x, and x. In the sixth test case, one optimal solution is to distribute phoenix into ehinopx.
instruction
0
10,931
0
21,862
Tags: constructive algorithms, greedy, sortings, strings Correct Solution: ``` I=input exec(int(I())*"n,k=map(int,I().split());s=''.join(sorted(I()));c=s[k-1];print(c+(c==s[0])*s[k::k**(s[k%n]==s[-1])]);") ```
output
1
10,931
0
21,863
Provide tags and a correct Python 3 solution for this coding contest problem. Phoenix has a string s consisting of lowercase Latin letters. He wants to distribute all the letters of his string into k non-empty strings a_1, a_2, ..., a_k such that every letter of s goes to exactly one of the strings a_i. The strings a_i do not need to be substrings of s. Phoenix can distribute letters of s and rearrange the letters within each string a_i however he wants. For example, if s = baba and k=2, Phoenix may distribute the letters of his string in many ways, such as: * ba and ba * a and abb * ab and ab * aa and bb But these ways are invalid: * baa and ba * b and ba * baba and empty string (a_i should be non-empty) Phoenix wants to distribute the letters of his string s into k strings a_1, a_2, ..., a_k to minimize the lexicographically maximum string among them, i. e. minimize max(a_1, a_2, ..., a_k). Help him find the optimal distribution and print the minimal possible value of max(a_1, a_2, ..., a_k). String x is lexicographically less than string y if either x is a prefix of y and x ≠ y, or there exists an index i (1 ≤ i ≤ min(|x|, |y|)) such that x_i < y_i and for every j (1 ≤ j < i) x_j = y_j. Here |x| denotes the length of the string x. Input The input consists of multiple test cases. The first line contains an integer t (1 ≤ t ≤ 1000) — the number of test cases. Each test case consists of two lines. The first line of each test case consists of two integers n and k (1 ≤ k ≤ n ≤ 10^5) — the length of string s and the number of non-empty strings, into which Phoenix wants to distribute letters of s, respectively. The second line of each test case contains a string s of length n consisting only of lowercase Latin letters. It is guaranteed that the sum of n over all test cases is ≤ 10^5. Output Print t answers — one per test case. The i-th answer should be the minimal possible value of max(a_1, a_2, ..., a_k) in the i-th test case. Example Input 6 4 2 baba 5 2 baacb 5 3 baacb 5 3 aaaaa 6 4 aaxxzz 7 1 phoenix Output ab abbc b aa x ehinopx Note In the first test case, one optimal solution is to distribute baba into ab and ab. In the second test case, one optimal solution is to distribute baacb into abbc and a. In the third test case, one optimal solution is to distribute baacb into ac, ab, and b. In the fourth test case, one optimal solution is to distribute aaaaa into aa, aa, and a. In the fifth test case, one optimal solution is to distribute aaxxzz into az, az, x, and x. In the sixth test case, one optimal solution is to distribute phoenix into ehinopx.
instruction
0
10,932
0
21,864
Tags: constructive algorithms, greedy, sortings, strings Correct Solution: ``` #ライブラリインポート from collections import defaultdict con = 10 ** 9 + 7 #入力受け取り def getlist(): return list(map(int, input().split())) #処理内容 def main(): T = int(input()) for i in range(T): N, K = getlist() s = sorted(list(input())) #面倒 if N == K: print(s[-1]) elif s[0] != s[K - 1]: print(s[K - 1]) elif s[0] == s[-1]: var = 0 if N % K == 0: var = int(N // K) else: var = int(N // K) + 1 ans = s[0] * var print(ans) elif s[K] == s[-1]: ans = s[0] var = 0 if (N - K) % K == 0: var = int(N // K) - 1 else: var = int(N // K) ans += var * s[-1] print(ans) else: ans = s[0] for j in range(K, N): ans += s[j] print(ans) if __name__ == '__main__': main() ```
output
1
10,932
0
21,865
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Phoenix has a string s consisting of lowercase Latin letters. He wants to distribute all the letters of his string into k non-empty strings a_1, a_2, ..., a_k such that every letter of s goes to exactly one of the strings a_i. The strings a_i do not need to be substrings of s. Phoenix can distribute letters of s and rearrange the letters within each string a_i however he wants. For example, if s = baba and k=2, Phoenix may distribute the letters of his string in many ways, such as: * ba and ba * a and abb * ab and ab * aa and bb But these ways are invalid: * baa and ba * b and ba * baba and empty string (a_i should be non-empty) Phoenix wants to distribute the letters of his string s into k strings a_1, a_2, ..., a_k to minimize the lexicographically maximum string among them, i. e. minimize max(a_1, a_2, ..., a_k). Help him find the optimal distribution and print the minimal possible value of max(a_1, a_2, ..., a_k). String x is lexicographically less than string y if either x is a prefix of y and x ≠ y, or there exists an index i (1 ≤ i ≤ min(|x|, |y|)) such that x_i < y_i and for every j (1 ≤ j < i) x_j = y_j. Here |x| denotes the length of the string x. Input The input consists of multiple test cases. The first line contains an integer t (1 ≤ t ≤ 1000) — the number of test cases. Each test case consists of two lines. The first line of each test case consists of two integers n and k (1 ≤ k ≤ n ≤ 10^5) — the length of string s and the number of non-empty strings, into which Phoenix wants to distribute letters of s, respectively. The second line of each test case contains a string s of length n consisting only of lowercase Latin letters. It is guaranteed that the sum of n over all test cases is ≤ 10^5. Output Print t answers — one per test case. The i-th answer should be the minimal possible value of max(a_1, a_2, ..., a_k) in the i-th test case. Example Input 6 4 2 baba 5 2 baacb 5 3 baacb 5 3 aaaaa 6 4 aaxxzz 7 1 phoenix Output ab abbc b aa x ehinopx Note In the first test case, one optimal solution is to distribute baba into ab and ab. In the second test case, one optimal solution is to distribute baacb into abbc and a. In the third test case, one optimal solution is to distribute baacb into ac, ab, and b. In the fourth test case, one optimal solution is to distribute aaaaa into aa, aa, and a. In the fifth test case, one optimal solution is to distribute aaxxzz into az, az, x, and x. In the sixth test case, one optimal solution is to distribute phoenix into ehinopx. Submitted Solution: ``` import math t=int(input()) def als(A): if len(list(set(list(A))))==1: return True return False for _ in range(t): n,k=list(map(int,input().split())) s=input() ss=s ss=list(ss) ss.sort() ss=''.join(ss) bb=list(set(list(ss))) bb=''.join(bb) a=[0]*26 for x in s: a[ord(x)-97]+=1 tt=[] idx=[] for i in range(26): if a[i]!=0: tt.append(a[i]) idx.append(i) if tt[0]<k: print(ss[k-1]) elif als(ss[k:]): res=ss[0] val=math.ceil(len(ss[k:])/k)*ss[k] print(res+val) else: print(ss[0]+ss[k:]) ```
instruction
0
10,933
0
21,866
Yes
output
1
10,933
0
21,867
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Phoenix has a string s consisting of lowercase Latin letters. He wants to distribute all the letters of his string into k non-empty strings a_1, a_2, ..., a_k such that every letter of s goes to exactly one of the strings a_i. The strings a_i do not need to be substrings of s. Phoenix can distribute letters of s and rearrange the letters within each string a_i however he wants. For example, if s = baba and k=2, Phoenix may distribute the letters of his string in many ways, such as: * ba and ba * a and abb * ab and ab * aa and bb But these ways are invalid: * baa and ba * b and ba * baba and empty string (a_i should be non-empty) Phoenix wants to distribute the letters of his string s into k strings a_1, a_2, ..., a_k to minimize the lexicographically maximum string among them, i. e. minimize max(a_1, a_2, ..., a_k). Help him find the optimal distribution and print the minimal possible value of max(a_1, a_2, ..., a_k). String x is lexicographically less than string y if either x is a prefix of y and x ≠ y, or there exists an index i (1 ≤ i ≤ min(|x|, |y|)) such that x_i < y_i and for every j (1 ≤ j < i) x_j = y_j. Here |x| denotes the length of the string x. Input The input consists of multiple test cases. The first line contains an integer t (1 ≤ t ≤ 1000) — the number of test cases. Each test case consists of two lines. The first line of each test case consists of two integers n and k (1 ≤ k ≤ n ≤ 10^5) — the length of string s and the number of non-empty strings, into which Phoenix wants to distribute letters of s, respectively. The second line of each test case contains a string s of length n consisting only of lowercase Latin letters. It is guaranteed that the sum of n over all test cases is ≤ 10^5. Output Print t answers — one per test case. The i-th answer should be the minimal possible value of max(a_1, a_2, ..., a_k) in the i-th test case. Example Input 6 4 2 baba 5 2 baacb 5 3 baacb 5 3 aaaaa 6 4 aaxxzz 7 1 phoenix Output ab abbc b aa x ehinopx Note In the first test case, one optimal solution is to distribute baba into ab and ab. In the second test case, one optimal solution is to distribute baacb into abbc and a. In the third test case, one optimal solution is to distribute baacb into ac, ab, and b. In the fourth test case, one optimal solution is to distribute aaaaa into aa, aa, and a. In the fifth test case, one optimal solution is to distribute aaxxzz into az, az, x, and x. In the sixth test case, one optimal solution is to distribute phoenix into ehinopx. Submitted Solution: ``` for u in range(int(input())): n,k=map(int,input().split()) s=''.join(sorted(input())) if(k==n or s[0]!=s[k-1]): print(s[k-1]) elif(s[k]==s[-1]): print(s[0]+s[k]*((n-1)//k)) else: print(s[k-1:]) ```
instruction
0
10,934
0
21,868
Yes
output
1
10,934
0
21,869
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Phoenix has a string s consisting of lowercase Latin letters. He wants to distribute all the letters of his string into k non-empty strings a_1, a_2, ..., a_k such that every letter of s goes to exactly one of the strings a_i. The strings a_i do not need to be substrings of s. Phoenix can distribute letters of s and rearrange the letters within each string a_i however he wants. For example, if s = baba and k=2, Phoenix may distribute the letters of his string in many ways, such as: * ba and ba * a and abb * ab and ab * aa and bb But these ways are invalid: * baa and ba * b and ba * baba and empty string (a_i should be non-empty) Phoenix wants to distribute the letters of his string s into k strings a_1, a_2, ..., a_k to minimize the lexicographically maximum string among them, i. e. minimize max(a_1, a_2, ..., a_k). Help him find the optimal distribution and print the minimal possible value of max(a_1, a_2, ..., a_k). String x is lexicographically less than string y if either x is a prefix of y and x ≠ y, or there exists an index i (1 ≤ i ≤ min(|x|, |y|)) such that x_i < y_i and for every j (1 ≤ j < i) x_j = y_j. Here |x| denotes the length of the string x. Input The input consists of multiple test cases. The first line contains an integer t (1 ≤ t ≤ 1000) — the number of test cases. Each test case consists of two lines. The first line of each test case consists of two integers n and k (1 ≤ k ≤ n ≤ 10^5) — the length of string s and the number of non-empty strings, into which Phoenix wants to distribute letters of s, respectively. The second line of each test case contains a string s of length n consisting only of lowercase Latin letters. It is guaranteed that the sum of n over all test cases is ≤ 10^5. Output Print t answers — one per test case. The i-th answer should be the minimal possible value of max(a_1, a_2, ..., a_k) in the i-th test case. Example Input 6 4 2 baba 5 2 baacb 5 3 baacb 5 3 aaaaa 6 4 aaxxzz 7 1 phoenix Output ab abbc b aa x ehinopx Note In the first test case, one optimal solution is to distribute baba into ab and ab. In the second test case, one optimal solution is to distribute baacb into abbc and a. In the third test case, one optimal solution is to distribute baacb into ac, ab, and b. In the fourth test case, one optimal solution is to distribute aaaaa into aa, aa, and a. In the fifth test case, one optimal solution is to distribute aaxxzz into az, az, x, and x. In the sixth test case, one optimal solution is to distribute phoenix into ehinopx. Submitted Solution: ``` import sys #from math import * def eprint(*args): print(*args, file=sys.stderr) zz=1 if zz: input=sys.stdin.readline else: sys.stdin=open('input.txt', 'r') sys.stdout=open('output2.txt','w') t=int(input()) while t>0: t-=1 n,k=map(int,input().split()) s=list(input().rstrip()) s.sort() d={} a=["" for i in range(k)] for i in range(k): a[i%k]+=s[i] j=0 i=k if len(set(s[k:]))==1: for i in range(k,len(s)): a[j%k]+=s[i] j+=1 if j==k or a[j][0]>a[0][0]: j=0 else: for i in range(k,len(s)): a[j%k]+=s[i] #print(a) print(max(a)) ```
instruction
0
10,935
0
21,870
Yes
output
1
10,935
0
21,871
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Phoenix has a string s consisting of lowercase Latin letters. He wants to distribute all the letters of his string into k non-empty strings a_1, a_2, ..., a_k such that every letter of s goes to exactly one of the strings a_i. The strings a_i do not need to be substrings of s. Phoenix can distribute letters of s and rearrange the letters within each string a_i however he wants. For example, if s = baba and k=2, Phoenix may distribute the letters of his string in many ways, such as: * ba and ba * a and abb * ab and ab * aa and bb But these ways are invalid: * baa and ba * b and ba * baba and empty string (a_i should be non-empty) Phoenix wants to distribute the letters of his string s into k strings a_1, a_2, ..., a_k to minimize the lexicographically maximum string among them, i. e. minimize max(a_1, a_2, ..., a_k). Help him find the optimal distribution and print the minimal possible value of max(a_1, a_2, ..., a_k). String x is lexicographically less than string y if either x is a prefix of y and x ≠ y, or there exists an index i (1 ≤ i ≤ min(|x|, |y|)) such that x_i < y_i and for every j (1 ≤ j < i) x_j = y_j. Here |x| denotes the length of the string x. Input The input consists of multiple test cases. The first line contains an integer t (1 ≤ t ≤ 1000) — the number of test cases. Each test case consists of two lines. The first line of each test case consists of two integers n and k (1 ≤ k ≤ n ≤ 10^5) — the length of string s and the number of non-empty strings, into which Phoenix wants to distribute letters of s, respectively. The second line of each test case contains a string s of length n consisting only of lowercase Latin letters. It is guaranteed that the sum of n over all test cases is ≤ 10^5. Output Print t answers — one per test case. The i-th answer should be the minimal possible value of max(a_1, a_2, ..., a_k) in the i-th test case. Example Input 6 4 2 baba 5 2 baacb 5 3 baacb 5 3 aaaaa 6 4 aaxxzz 7 1 phoenix Output ab abbc b aa x ehinopx Note In the first test case, one optimal solution is to distribute baba into ab and ab. In the second test case, one optimal solution is to distribute baacb into abbc and a. In the third test case, one optimal solution is to distribute baacb into ac, ab, and b. In the fourth test case, one optimal solution is to distribute aaaaa into aa, aa, and a. In the fifth test case, one optimal solution is to distribute aaxxzz into az, az, x, and x. In the sixth test case, one optimal solution is to distribute phoenix into ehinopx. Submitted Solution: ``` t = int(input()) for _ in range(t): n, k = map(int, input().split()) s = sorted([c for c in input()]) if s[k-1] != s[0]: print(s[k-1]) else: fi = s[0] se = None three = False for i in range(n): if s[i] != fi: if se == None: se = s[i] elif s[i] != se: three = True break if three: print("".join(s[k-1:])) else: i = 0 while i < n and s[0] == s[i]: i += 1 if i == n: string = [s[0]] * (n//k) if n % k != 0: string += [s[0]] print("".join(string)) elif i == k: if (n - i) % k == 0: print(s[0] + s[i]*((n-i)//k)) else: print(s[0] + s[i]*((n-i)//k + 1)) else: print("".join(s[k-1:])) ```
instruction
0
10,936
0
21,872
Yes
output
1
10,936
0
21,873
Evaluate the correctness of the submitted Python 2 solution to the coding contest problem. Provide a "Yes" or "No" response. Phoenix has a string s consisting of lowercase Latin letters. He wants to distribute all the letters of his string into k non-empty strings a_1, a_2, ..., a_k such that every letter of s goes to exactly one of the strings a_i. The strings a_i do not need to be substrings of s. Phoenix can distribute letters of s and rearrange the letters within each string a_i however he wants. For example, if s = baba and k=2, Phoenix may distribute the letters of his string in many ways, such as: * ba and ba * a and abb * ab and ab * aa and bb But these ways are invalid: * baa and ba * b and ba * baba and empty string (a_i should be non-empty) Phoenix wants to distribute the letters of his string s into k strings a_1, a_2, ..., a_k to minimize the lexicographically maximum string among them, i. e. minimize max(a_1, a_2, ..., a_k). Help him find the optimal distribution and print the minimal possible value of max(a_1, a_2, ..., a_k). String x is lexicographically less than string y if either x is a prefix of y and x ≠ y, or there exists an index i (1 ≤ i ≤ min(|x|, |y|)) such that x_i < y_i and for every j (1 ≤ j < i) x_j = y_j. Here |x| denotes the length of the string x. Input The input consists of multiple test cases. The first line contains an integer t (1 ≤ t ≤ 1000) — the number of test cases. Each test case consists of two lines. The first line of each test case consists of two integers n and k (1 ≤ k ≤ n ≤ 10^5) — the length of string s and the number of non-empty strings, into which Phoenix wants to distribute letters of s, respectively. The second line of each test case contains a string s of length n consisting only of lowercase Latin letters. It is guaranteed that the sum of n over all test cases is ≤ 10^5. Output Print t answers — one per test case. The i-th answer should be the minimal possible value of max(a_1, a_2, ..., a_k) in the i-th test case. Example Input 6 4 2 baba 5 2 baacb 5 3 baacb 5 3 aaaaa 6 4 aaxxzz 7 1 phoenix Output ab abbc b aa x ehinopx Note In the first test case, one optimal solution is to distribute baba into ab and ab. In the second test case, one optimal solution is to distribute baacb into abbc and a. In the third test case, one optimal solution is to distribute baacb into ac, ab, and b. In the fourth test case, one optimal solution is to distribute aaaaa into aa, aa, and a. In the fifth test case, one optimal solution is to distribute aaxxzz into az, az, x, and x. In the sixth test case, one optimal solution is to distribute phoenix into ehinopx. Submitted Solution: ``` from sys import stdin, stdout from collections import Counter, defaultdict from itertools import permutations, combinations raw_input = stdin.readline pr = stdout.write def in_num(): return int(raw_input()) def in_arr(): return map(int,raw_input().split()) def pr_num(n): stdout.write(str(n)+'\n') def pr_arr(arr): pr(' '.join(map(str,arr))+'\n') # fast read function for total integer input def inp(): # this function returns whole input of # space/line seperated integers # Use Ctrl+D to flush stdin. return stdin.read().split() range = xrange # not for python 3.0+ inp=inp() pos=1 for t in range(int(inp[0])): n,k=int(inp[pos]),int(inp[pos+1]) pos+=2 s=list(inp[pos]) pos+=1 s.sort() ans=[s[i] for i in range(k)] if n==k or ans[0]!=ans[-1]: pr(ans[-1]+'\n') continue if s[k]==s[-1]: ln=n-k pr(ans[0]+''.join(s[k]*((ln/k)+int(ln%k!=0)))+'\n') else: pr(ans[0]+''.join(s[k:])+'\n') ```
instruction
0
10,937
0
21,874
Yes
output
1
10,937
0
21,875
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Phoenix has a string s consisting of lowercase Latin letters. He wants to distribute all the letters of his string into k non-empty strings a_1, a_2, ..., a_k such that every letter of s goes to exactly one of the strings a_i. The strings a_i do not need to be substrings of s. Phoenix can distribute letters of s and rearrange the letters within each string a_i however he wants. For example, if s = baba and k=2, Phoenix may distribute the letters of his string in many ways, such as: * ba and ba * a and abb * ab and ab * aa and bb But these ways are invalid: * baa and ba * b and ba * baba and empty string (a_i should be non-empty) Phoenix wants to distribute the letters of his string s into k strings a_1, a_2, ..., a_k to minimize the lexicographically maximum string among them, i. e. minimize max(a_1, a_2, ..., a_k). Help him find the optimal distribution and print the minimal possible value of max(a_1, a_2, ..., a_k). String x is lexicographically less than string y if either x is a prefix of y and x ≠ y, or there exists an index i (1 ≤ i ≤ min(|x|, |y|)) such that x_i < y_i and for every j (1 ≤ j < i) x_j = y_j. Here |x| denotes the length of the string x. Input The input consists of multiple test cases. The first line contains an integer t (1 ≤ t ≤ 1000) — the number of test cases. Each test case consists of two lines. The first line of each test case consists of two integers n and k (1 ≤ k ≤ n ≤ 10^5) — the length of string s and the number of non-empty strings, into which Phoenix wants to distribute letters of s, respectively. The second line of each test case contains a string s of length n consisting only of lowercase Latin letters. It is guaranteed that the sum of n over all test cases is ≤ 10^5. Output Print t answers — one per test case. The i-th answer should be the minimal possible value of max(a_1, a_2, ..., a_k) in the i-th test case. Example Input 6 4 2 baba 5 2 baacb 5 3 baacb 5 3 aaaaa 6 4 aaxxzz 7 1 phoenix Output ab abbc b aa x ehinopx Note In the first test case, one optimal solution is to distribute baba into ab and ab. In the second test case, one optimal solution is to distribute baacb into abbc and a. In the third test case, one optimal solution is to distribute baacb into ac, ab, and b. In the fourth test case, one optimal solution is to distribute aaaaa into aa, aa, and a. In the fifth test case, one optimal solution is to distribute aaxxzz into az, az, x, and x. In the sixth test case, one optimal solution is to distribute phoenix into ehinopx. Submitted Solution: ``` import sys,os.path import math if __name__ == '__main__': if(os.path.exists('input.txt')): sys.stdin = open("input.txt","r") sys.stdout = open("output.txt","w") for _ in range(int(input())): n,k = map(int,input().split()) s = input() l = [0 for i in range(26)] flag = True for i in range(n): l[ord(s[i])-ord('a')]+=1 for i in range(n-1): if s[i]!=s[i+1]: flag = False break if flag: ans = s[0]*(math.ceil(n/k)) print(ans) else: f = False first = 26 for i in range(26): if l[i]!=0: first = min(first,i) if l[i]!=0 and l[i]!=k: f = True break if l[first]<k: su = 0 for i in range(26): su+=l[i] if su>=k: print(chr(97+i)) break else: if not f: ans = "" val = math.ceil(l[first]/k) a = chr(97+first)*val ans+=a for i in range(first+1,26): if l[i]!=0: val = math.ceil(l[i]/k) ans+=chr(97+i)*val else: ans = "" ans += chr(97+first)*(l[first]-k+1) for i in range(first+1,26): if l[i]!=0: a = chr(97+i)*l[i] ans+=a print(ans) ```
instruction
0
10,938
0
21,876
No
output
1
10,938
0
21,877
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Phoenix has a string s consisting of lowercase Latin letters. He wants to distribute all the letters of his string into k non-empty strings a_1, a_2, ..., a_k such that every letter of s goes to exactly one of the strings a_i. The strings a_i do not need to be substrings of s. Phoenix can distribute letters of s and rearrange the letters within each string a_i however he wants. For example, if s = baba and k=2, Phoenix may distribute the letters of his string in many ways, such as: * ba and ba * a and abb * ab and ab * aa and bb But these ways are invalid: * baa and ba * b and ba * baba and empty string (a_i should be non-empty) Phoenix wants to distribute the letters of his string s into k strings a_1, a_2, ..., a_k to minimize the lexicographically maximum string among them, i. e. minimize max(a_1, a_2, ..., a_k). Help him find the optimal distribution and print the minimal possible value of max(a_1, a_2, ..., a_k). String x is lexicographically less than string y if either x is a prefix of y and x ≠ y, or there exists an index i (1 ≤ i ≤ min(|x|, |y|)) such that x_i < y_i and for every j (1 ≤ j < i) x_j = y_j. Here |x| denotes the length of the string x. Input The input consists of multiple test cases. The first line contains an integer t (1 ≤ t ≤ 1000) — the number of test cases. Each test case consists of two lines. The first line of each test case consists of two integers n and k (1 ≤ k ≤ n ≤ 10^5) — the length of string s and the number of non-empty strings, into which Phoenix wants to distribute letters of s, respectively. The second line of each test case contains a string s of length n consisting only of lowercase Latin letters. It is guaranteed that the sum of n over all test cases is ≤ 10^5. Output Print t answers — one per test case. The i-th answer should be the minimal possible value of max(a_1, a_2, ..., a_k) in the i-th test case. Example Input 6 4 2 baba 5 2 baacb 5 3 baacb 5 3 aaaaa 6 4 aaxxzz 7 1 phoenix Output ab abbc b aa x ehinopx Note In the first test case, one optimal solution is to distribute baba into ab and ab. In the second test case, one optimal solution is to distribute baacb into abbc and a. In the third test case, one optimal solution is to distribute baacb into ac, ab, and b. In the fourth test case, one optimal solution is to distribute aaaaa into aa, aa, and a. In the fifth test case, one optimal solution is to distribute aaxxzz into az, az, x, and x. In the sixth test case, one optimal solution is to distribute phoenix into ehinopx. Submitted Solution: ``` t = int(input()) for _ in range(t): n, k = map(int, input().split()) a = sorted(input()) ans = a[k-1] if(len(set(a[0:k]))>1): print(ans) else: for i in range(k, n): if(len(set(a[i:]))>1): ans = ans + a[i] else : ans = ans + a[i] break print(ans) ```
instruction
0
10,939
0
21,878
No
output
1
10,939
0
21,879
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Phoenix has a string s consisting of lowercase Latin letters. He wants to distribute all the letters of his string into k non-empty strings a_1, a_2, ..., a_k such that every letter of s goes to exactly one of the strings a_i. The strings a_i do not need to be substrings of s. Phoenix can distribute letters of s and rearrange the letters within each string a_i however he wants. For example, if s = baba and k=2, Phoenix may distribute the letters of his string in many ways, such as: * ba and ba * a and abb * ab and ab * aa and bb But these ways are invalid: * baa and ba * b and ba * baba and empty string (a_i should be non-empty) Phoenix wants to distribute the letters of his string s into k strings a_1, a_2, ..., a_k to minimize the lexicographically maximum string among them, i. e. minimize max(a_1, a_2, ..., a_k). Help him find the optimal distribution and print the minimal possible value of max(a_1, a_2, ..., a_k). String x is lexicographically less than string y if either x is a prefix of y and x ≠ y, or there exists an index i (1 ≤ i ≤ min(|x|, |y|)) such that x_i < y_i and for every j (1 ≤ j < i) x_j = y_j. Here |x| denotes the length of the string x. Input The input consists of multiple test cases. The first line contains an integer t (1 ≤ t ≤ 1000) — the number of test cases. Each test case consists of two lines. The first line of each test case consists of two integers n and k (1 ≤ k ≤ n ≤ 10^5) — the length of string s and the number of non-empty strings, into which Phoenix wants to distribute letters of s, respectively. The second line of each test case contains a string s of length n consisting only of lowercase Latin letters. It is guaranteed that the sum of n over all test cases is ≤ 10^5. Output Print t answers — one per test case. The i-th answer should be the minimal possible value of max(a_1, a_2, ..., a_k) in the i-th test case. Example Input 6 4 2 baba 5 2 baacb 5 3 baacb 5 3 aaaaa 6 4 aaxxzz 7 1 phoenix Output ab abbc b aa x ehinopx Note In the first test case, one optimal solution is to distribute baba into ab and ab. In the second test case, one optimal solution is to distribute baacb into abbc and a. In the third test case, one optimal solution is to distribute baacb into ac, ab, and b. In the fourth test case, one optimal solution is to distribute aaaaa into aa, aa, and a. In the fifth test case, one optimal solution is to distribute aaxxzz into az, az, x, and x. In the sixth test case, one optimal solution is to distribute phoenix into ehinopx. Submitted Solution: ``` import sys try: sys.stdin = open('input.txt', 'r') sys.stdout = open('output.txt', 'w') except: pass for _ in range(int(input())): n,k = [int(x) for x in input().split()] s = str(input()) s = "".join(sorted(s)) if k==n: print(s[n-1]); continue if s[0]!=s[k-1]: print(s[k-1]); continue print(s[0],end="") if s[k]==s[n-1]: print(k,n-1) for _ in range(int((n-k)/k)): print(s[k],end="") if (n-k)%k: print(s[k],end="") print() else: print(s[k:]) ```
instruction
0
10,940
0
21,880
No
output
1
10,940
0
21,881
Evaluate the correctness of the submitted Python 3 solution to the coding contest problem. Provide a "Yes" or "No" response. Phoenix has a string s consisting of lowercase Latin letters. He wants to distribute all the letters of his string into k non-empty strings a_1, a_2, ..., a_k such that every letter of s goes to exactly one of the strings a_i. The strings a_i do not need to be substrings of s. Phoenix can distribute letters of s and rearrange the letters within each string a_i however he wants. For example, if s = baba and k=2, Phoenix may distribute the letters of his string in many ways, such as: * ba and ba * a and abb * ab and ab * aa and bb But these ways are invalid: * baa and ba * b and ba * baba and empty string (a_i should be non-empty) Phoenix wants to distribute the letters of his string s into k strings a_1, a_2, ..., a_k to minimize the lexicographically maximum string among them, i. e. minimize max(a_1, a_2, ..., a_k). Help him find the optimal distribution and print the minimal possible value of max(a_1, a_2, ..., a_k). String x is lexicographically less than string y if either x is a prefix of y and x ≠ y, or there exists an index i (1 ≤ i ≤ min(|x|, |y|)) such that x_i < y_i and for every j (1 ≤ j < i) x_j = y_j. Here |x| denotes the length of the string x. Input The input consists of multiple test cases. The first line contains an integer t (1 ≤ t ≤ 1000) — the number of test cases. Each test case consists of two lines. The first line of each test case consists of two integers n and k (1 ≤ k ≤ n ≤ 10^5) — the length of string s and the number of non-empty strings, into which Phoenix wants to distribute letters of s, respectively. The second line of each test case contains a string s of length n consisting only of lowercase Latin letters. It is guaranteed that the sum of n over all test cases is ≤ 10^5. Output Print t answers — one per test case. The i-th answer should be the minimal possible value of max(a_1, a_2, ..., a_k) in the i-th test case. Example Input 6 4 2 baba 5 2 baacb 5 3 baacb 5 3 aaaaa 6 4 aaxxzz 7 1 phoenix Output ab abbc b aa x ehinopx Note In the first test case, one optimal solution is to distribute baba into ab and ab. In the second test case, one optimal solution is to distribute baacb into abbc and a. In the third test case, one optimal solution is to distribute baacb into ac, ab, and b. In the fourth test case, one optimal solution is to distribute aaaaa into aa, aa, and a. In the fifth test case, one optimal solution is to distribute aaxxzz into az, az, x, and x. In the sixth test case, one optimal solution is to distribute phoenix into ehinopx. Submitted Solution: ``` def solve(): N, K = [int(el) for el in input().split()] s = input() arr = ['' for _ in range(K)] ind = -1 for ch in sorted(s): ind = (ind + 1) % K arr[ind] += ch arr.sort() return arr[-1] for t in range(1, int(input()) + 1): print(solve()) ```
instruction
0
10,941
0
21,882
No
output
1
10,941
0
21,883
Provide tags and a correct Python 3 solution for this coding contest problem. You are given the strings a and b, consisting of lowercase Latin letters. You can do any number of the following operations in any order: * if |a| > 0 (the length of the string a is greater than zero), delete the first character of the string a, that is, replace a with a_2 a_3 … a_n; * if |a| > 0, delete the last character of the string a, that is, replace a with a_1 a_2 … a_{n-1}; * if |b| > 0 (the length of the string b is greater than zero), delete the first character of the string b, that is, replace b with b_2 b_3 … b_n; * if |b| > 0, delete the last character of the string b, that is, replace b with b_1 b_2 … b_{n-1}. Note that after each of the operations, the string a or b may become empty. For example, if a="hello" and b="icpc", then you can apply the following sequence of operations: * delete the first character of the string a ⇒ a="ello" and b="icpc"; * delete the first character of the string b ⇒ a="ello" and b="cpc"; * delete the first character of the string b ⇒ a="ello" and b="pc"; * delete the last character of the string a ⇒ a="ell" and b="pc"; * delete the last character of the string b ⇒ a="ell" and b="p". For the given strings a and b, find the minimum number of operations for which you can make the strings a and b equal. Note that empty strings are also equal. Input The first line contains a single integer t (1 ≤ t ≤ 100). Then t test cases follow. The first line of each test case contains the string a (1 ≤ |a| ≤ 20), consisting of lowercase Latin letters. The second line of each test case contains the string b (1 ≤ |b| ≤ 20), consisting of lowercase Latin letters. Output For each test case, output the minimum number of operations that can make the strings a and b equal. Example Input 5 a a abcd bc hello codeforces hello helo dhjakjsnasjhfksafasd adjsnasjhfksvdafdser Output 0 2 13 3 20
instruction
0
10,990
0
21,980
Tags: brute force, implementation, strings Correct Solution: ``` t=int(input()) for _ in range(t): a=str(input()) b=str(input()) x=len(a) y=len(b) if x>y: mini=0 for i in range(y): for j in range(i+1,y+1): s=b[i:j] l=j-i p=0 for k in range(l,x+1): if a[p:k]==s: mini=max(mini,k-p) p+=1 print(x+y-(2*mini)) else: mini=0 for i in range(x): for j in range(i+1,x+1): s=a[i:j] l=j-i p=0 for k in range(l,y+1): if b[p:k]==s: mini=max(mini,k-p) p+=1 print(x+y-(2*mini)) ```
output
1
10,990
0
21,981
Provide tags and a correct Python 3 solution for this coding contest problem. You are given the strings a and b, consisting of lowercase Latin letters. You can do any number of the following operations in any order: * if |a| > 0 (the length of the string a is greater than zero), delete the first character of the string a, that is, replace a with a_2 a_3 … a_n; * if |a| > 0, delete the last character of the string a, that is, replace a with a_1 a_2 … a_{n-1}; * if |b| > 0 (the length of the string b is greater than zero), delete the first character of the string b, that is, replace b with b_2 b_3 … b_n; * if |b| > 0, delete the last character of the string b, that is, replace b with b_1 b_2 … b_{n-1}. Note that after each of the operations, the string a or b may become empty. For example, if a="hello" and b="icpc", then you can apply the following sequence of operations: * delete the first character of the string a ⇒ a="ello" and b="icpc"; * delete the first character of the string b ⇒ a="ello" and b="cpc"; * delete the first character of the string b ⇒ a="ello" and b="pc"; * delete the last character of the string a ⇒ a="ell" and b="pc"; * delete the last character of the string b ⇒ a="ell" and b="p". For the given strings a and b, find the minimum number of operations for which you can make the strings a and b equal. Note that empty strings are also equal. Input The first line contains a single integer t (1 ≤ t ≤ 100). Then t test cases follow. The first line of each test case contains the string a (1 ≤ |a| ≤ 20), consisting of lowercase Latin letters. The second line of each test case contains the string b (1 ≤ |b| ≤ 20), consisting of lowercase Latin letters. Output For each test case, output the minimum number of operations that can make the strings a and b equal. Example Input 5 a a abcd bc hello codeforces hello helo dhjakjsnasjhfksafasd adjsnasjhfksvdafdser Output 0 2 13 3 20
instruction
0
10,991
0
21,982
Tags: brute force, implementation, strings Correct Solution: ``` for i in range(int(input())): a=list(input()) b=list(input()) a1=len(a) b1=len(b) if a1>b1: a1,b1=b1,a1 a,b=b,a s=[] for i in range(a1): for j in range(i+1,a1+1): s.append(a[i:j]) s1=0 for i in range(b1): for j in range(i+1,i+1+a1): t=b[i:j] if t in s: s1=max(s1,len(t)) s1=a1+b1-s1-s1 print(s1) ```
output
1
10,991
0
21,983
Provide tags and a correct Python 3 solution for this coding contest problem. You are given the strings a and b, consisting of lowercase Latin letters. You can do any number of the following operations in any order: * if |a| > 0 (the length of the string a is greater than zero), delete the first character of the string a, that is, replace a with a_2 a_3 … a_n; * if |a| > 0, delete the last character of the string a, that is, replace a with a_1 a_2 … a_{n-1}; * if |b| > 0 (the length of the string b is greater than zero), delete the first character of the string b, that is, replace b with b_2 b_3 … b_n; * if |b| > 0, delete the last character of the string b, that is, replace b with b_1 b_2 … b_{n-1}. Note that after each of the operations, the string a or b may become empty. For example, if a="hello" and b="icpc", then you can apply the following sequence of operations: * delete the first character of the string a ⇒ a="ello" and b="icpc"; * delete the first character of the string b ⇒ a="ello" and b="cpc"; * delete the first character of the string b ⇒ a="ello" and b="pc"; * delete the last character of the string a ⇒ a="ell" and b="pc"; * delete the last character of the string b ⇒ a="ell" and b="p". For the given strings a and b, find the minimum number of operations for which you can make the strings a and b equal. Note that empty strings are also equal. Input The first line contains a single integer t (1 ≤ t ≤ 100). Then t test cases follow. The first line of each test case contains the string a (1 ≤ |a| ≤ 20), consisting of lowercase Latin letters. The second line of each test case contains the string b (1 ≤ |b| ≤ 20), consisting of lowercase Latin letters. Output For each test case, output the minimum number of operations that can make the strings a and b equal. Example Input 5 a a abcd bc hello codeforces hello helo dhjakjsnasjhfksafasd adjsnasjhfksvdafdser Output 0 2 13 3 20
instruction
0
10,992
0
21,984
Tags: brute force, implementation, strings Correct Solution: ``` def getCharNGram(n,s): charGram = [''.join(s[i:i+n]) for i in range(len(s)-n+1)] return charGram t = int(input()) for _ in range(t): A = input() B = input() if len(A) < len(B): ans = len(B)+len(A) for i in range(1,len(A)+1): check = getCharNGram(i, A) for c in check: if c in B: ans = min(ans, len(B)-i+len(A)-i) else: ans = len(A)+len(B) for i in range(1,len(B)+1): check = getCharNGram(i, B) #print(check) for c in check: if c in A: ans = min(ans, len(A)-len(c)+len(B)-i) print(ans) ```
output
1
10,992
0
21,985
Provide tags and a correct Python 3 solution for this coding contest problem. You are given the strings a and b, consisting of lowercase Latin letters. You can do any number of the following operations in any order: * if |a| > 0 (the length of the string a is greater than zero), delete the first character of the string a, that is, replace a with a_2 a_3 … a_n; * if |a| > 0, delete the last character of the string a, that is, replace a with a_1 a_2 … a_{n-1}; * if |b| > 0 (the length of the string b is greater than zero), delete the first character of the string b, that is, replace b with b_2 b_3 … b_n; * if |b| > 0, delete the last character of the string b, that is, replace b with b_1 b_2 … b_{n-1}. Note that after each of the operations, the string a or b may become empty. For example, if a="hello" and b="icpc", then you can apply the following sequence of operations: * delete the first character of the string a ⇒ a="ello" and b="icpc"; * delete the first character of the string b ⇒ a="ello" and b="cpc"; * delete the first character of the string b ⇒ a="ello" and b="pc"; * delete the last character of the string a ⇒ a="ell" and b="pc"; * delete the last character of the string b ⇒ a="ell" and b="p". For the given strings a and b, find the minimum number of operations for which you can make the strings a and b equal. Note that empty strings are also equal. Input The first line contains a single integer t (1 ≤ t ≤ 100). Then t test cases follow. The first line of each test case contains the string a (1 ≤ |a| ≤ 20), consisting of lowercase Latin letters. The second line of each test case contains the string b (1 ≤ |b| ≤ 20), consisting of lowercase Latin letters. Output For each test case, output the minimum number of operations that can make the strings a and b equal. Example Input 5 a a abcd bc hello codeforces hello helo dhjakjsnasjhfksafasd adjsnasjhfksvdafdser Output 0 2 13 3 20
instruction
0
10,993
0
21,986
Tags: brute force, implementation, strings Correct Solution: ``` T = int(input()) for _ in range(T): a = input() b = input() out = len(a) + len(b) for i in range(len(a)): for j in range(len(a), i, -1): if a[i:j] in b: out = min(out, len(a)+len(b)-2*(j-i)) print(out) ```
output
1
10,993
0
21,987
Provide tags and a correct Python 3 solution for this coding contest problem. You are given the strings a and b, consisting of lowercase Latin letters. You can do any number of the following operations in any order: * if |a| > 0 (the length of the string a is greater than zero), delete the first character of the string a, that is, replace a with a_2 a_3 … a_n; * if |a| > 0, delete the last character of the string a, that is, replace a with a_1 a_2 … a_{n-1}; * if |b| > 0 (the length of the string b is greater than zero), delete the first character of the string b, that is, replace b with b_2 b_3 … b_n; * if |b| > 0, delete the last character of the string b, that is, replace b with b_1 b_2 … b_{n-1}. Note that after each of the operations, the string a or b may become empty. For example, if a="hello" and b="icpc", then you can apply the following sequence of operations: * delete the first character of the string a ⇒ a="ello" and b="icpc"; * delete the first character of the string b ⇒ a="ello" and b="cpc"; * delete the first character of the string b ⇒ a="ello" and b="pc"; * delete the last character of the string a ⇒ a="ell" and b="pc"; * delete the last character of the string b ⇒ a="ell" and b="p". For the given strings a and b, find the minimum number of operations for which you can make the strings a and b equal. Note that empty strings are also equal. Input The first line contains a single integer t (1 ≤ t ≤ 100). Then t test cases follow. The first line of each test case contains the string a (1 ≤ |a| ≤ 20), consisting of lowercase Latin letters. The second line of each test case contains the string b (1 ≤ |b| ≤ 20), consisting of lowercase Latin letters. Output For each test case, output the minimum number of operations that can make the strings a and b equal. Example Input 5 a a abcd bc hello codeforces hello helo dhjakjsnasjhfksafasd adjsnasjhfksvdafdser Output 0 2 13 3 20
instruction
0
10,994
0
21,988
Tags: brute force, implementation, strings Correct Solution: ``` from sys import stdin input = stdin.readline t = int(input()) for _ in range(t): a = input().rstrip() b = input().rstrip() aa = set() bb = set() for i in range(len(a)): c = [] for j in range(i, len(a)): c.append(a[j]) aa.add(tuple(c)) for i in range(len(b)): c = [] for j in range(i, len(b)): c.append(b[j]) bb.add(tuple(c)) z = aa.intersection(bb) max_len = 0 for i in z: max_len = max(max_len, len(i)) ans = (len(a) + len(b)) - (max_len + max_len) print(ans) ```
output
1
10,994
0
21,989
Provide tags and a correct Python 3 solution for this coding contest problem. You are given the strings a and b, consisting of lowercase Latin letters. You can do any number of the following operations in any order: * if |a| > 0 (the length of the string a is greater than zero), delete the first character of the string a, that is, replace a with a_2 a_3 … a_n; * if |a| > 0, delete the last character of the string a, that is, replace a with a_1 a_2 … a_{n-1}; * if |b| > 0 (the length of the string b is greater than zero), delete the first character of the string b, that is, replace b with b_2 b_3 … b_n; * if |b| > 0, delete the last character of the string b, that is, replace b with b_1 b_2 … b_{n-1}. Note that after each of the operations, the string a or b may become empty. For example, if a="hello" and b="icpc", then you can apply the following sequence of operations: * delete the first character of the string a ⇒ a="ello" and b="icpc"; * delete the first character of the string b ⇒ a="ello" and b="cpc"; * delete the first character of the string b ⇒ a="ello" and b="pc"; * delete the last character of the string a ⇒ a="ell" and b="pc"; * delete the last character of the string b ⇒ a="ell" and b="p". For the given strings a and b, find the minimum number of operations for which you can make the strings a and b equal. Note that empty strings are also equal. Input The first line contains a single integer t (1 ≤ t ≤ 100). Then t test cases follow. The first line of each test case contains the string a (1 ≤ |a| ≤ 20), consisting of lowercase Latin letters. The second line of each test case contains the string b (1 ≤ |b| ≤ 20), consisting of lowercase Latin letters. Output For each test case, output the minimum number of operations that can make the strings a and b equal. Example Input 5 a a abcd bc hello codeforces hello helo dhjakjsnasjhfksafasd adjsnasjhfksvdafdser Output 0 2 13 3 20
instruction
0
10,995
0
21,990
Tags: brute force, implementation, strings Correct Solution: ``` import sys,functools,collections,bisect,math,heapq input = sys.stdin.readline #print = sys.stdout.write def fun(A ,B): n = len(A) m = len(B) #Edge cases. if m == 0 or n == 0: return 0 if n == 1 and m == 1: if A[0] == B[0]: return 1 else: return 0 #Initializing first row and column with 0 (for ease i intialized everthing 0 :p) dp = [[0 for x in range(m + 1)] for y in range(n + 1)] final = 0 #this code is a lot like longest common subsequence(only else condition is different). for i in range(1, n + 1): for j in range(1, m + 1): if A[i - 1] == B[j - 1]: dp[i][j] = 1 + dp[i - 1][j - 1] else: dp[i][j] = 0 final = max(final, dp[i][j]) return final t = int(input()) for _ in range(t): s = input().strip() s1 = input().strip() x = fun(s,s1) print(len(s)+len(s1)-(2*x)) ```
output
1
10,995
0
21,991
Provide tags and a correct Python 3 solution for this coding contest problem. You are given the strings a and b, consisting of lowercase Latin letters. You can do any number of the following operations in any order: * if |a| > 0 (the length of the string a is greater than zero), delete the first character of the string a, that is, replace a with a_2 a_3 … a_n; * if |a| > 0, delete the last character of the string a, that is, replace a with a_1 a_2 … a_{n-1}; * if |b| > 0 (the length of the string b is greater than zero), delete the first character of the string b, that is, replace b with b_2 b_3 … b_n; * if |b| > 0, delete the last character of the string b, that is, replace b with b_1 b_2 … b_{n-1}. Note that after each of the operations, the string a or b may become empty. For example, if a="hello" and b="icpc", then you can apply the following sequence of operations: * delete the first character of the string a ⇒ a="ello" and b="icpc"; * delete the first character of the string b ⇒ a="ello" and b="cpc"; * delete the first character of the string b ⇒ a="ello" and b="pc"; * delete the last character of the string a ⇒ a="ell" and b="pc"; * delete the last character of the string b ⇒ a="ell" and b="p". For the given strings a and b, find the minimum number of operations for which you can make the strings a and b equal. Note that empty strings are also equal. Input The first line contains a single integer t (1 ≤ t ≤ 100). Then t test cases follow. The first line of each test case contains the string a (1 ≤ |a| ≤ 20), consisting of lowercase Latin letters. The second line of each test case contains the string b (1 ≤ |b| ≤ 20), consisting of lowercase Latin letters. Output For each test case, output the minimum number of operations that can make the strings a and b equal. Example Input 5 a a abcd bc hello codeforces hello helo dhjakjsnasjhfksafasd adjsnasjhfksvdafdser Output 0 2 13 3 20
instruction
0
10,996
0
21,992
Tags: brute force, implementation, strings Correct Solution: ``` import sys def I(): return int(sys.stdin.readline().rstrip()) def MI(): return map(int,sys.stdin.readline().rstrip().split()) def LI(): return list(map(int,sys.stdin.readline().rstrip().split())) def LI2(): return list(map(int,sys.stdin.readline().rstrip())) def S(): return sys.stdin.readline().rstrip() def LS(): return list(sys.stdin.readline().rstrip().split()) def LS2(): return list(sys.stdin.readline().rstrip()) t = I() for _ in range(t): a = S() b = S() len_a = len(a) len_b = len(b) ans = len_a+len_b for i in range(1,min(len_a,len_b)+1): for j in range(len_a-i+1): for k in range(len_b-i+1): if a[j:j+i] == b[k:k+i]: ans = min(ans,len_a+len_b-2*i) print(ans) ```
output
1
10,996
0
21,993
Provide tags and a correct Python 3 solution for this coding contest problem. You are given the strings a and b, consisting of lowercase Latin letters. You can do any number of the following operations in any order: * if |a| > 0 (the length of the string a is greater than zero), delete the first character of the string a, that is, replace a with a_2 a_3 … a_n; * if |a| > 0, delete the last character of the string a, that is, replace a with a_1 a_2 … a_{n-1}; * if |b| > 0 (the length of the string b is greater than zero), delete the first character of the string b, that is, replace b with b_2 b_3 … b_n; * if |b| > 0, delete the last character of the string b, that is, replace b with b_1 b_2 … b_{n-1}. Note that after each of the operations, the string a or b may become empty. For example, if a="hello" and b="icpc", then you can apply the following sequence of operations: * delete the first character of the string a ⇒ a="ello" and b="icpc"; * delete the first character of the string b ⇒ a="ello" and b="cpc"; * delete the first character of the string b ⇒ a="ello" and b="pc"; * delete the last character of the string a ⇒ a="ell" and b="pc"; * delete the last character of the string b ⇒ a="ell" and b="p". For the given strings a and b, find the minimum number of operations for which you can make the strings a and b equal. Note that empty strings are also equal. Input The first line contains a single integer t (1 ≤ t ≤ 100). Then t test cases follow. The first line of each test case contains the string a (1 ≤ |a| ≤ 20), consisting of lowercase Latin letters. The second line of each test case contains the string b (1 ≤ |b| ≤ 20), consisting of lowercase Latin letters. Output For each test case, output the minimum number of operations that can make the strings a and b equal. Example Input 5 a a abcd bc hello codeforces hello helo dhjakjsnasjhfksafasd adjsnasjhfksvdafdser Output 0 2 13 3 20
instruction
0
10,997
0
21,994
Tags: brute force, implementation, strings Correct Solution: ``` n = int(input()) for i in range(n): s1 = input() s2 = input() if (len(s1) > len(s2)): s1, s2 = s2, s1 max = 0 for j in range(len(s1)): for k in range(j, len(s1)): found = s2.find(s1[j:k+1]) if (found != -1): if (k - j + 1 > max): max = k - j + 1 else: break print(len(s1) + len(s2) - 2*max) ```
output
1
10,997
0
21,995
Provide tags and a correct Python 3 solution for this coding contest problem. Paul hates palindromes. He assumes that string s is tolerable if each its character is one of the first p letters of the English alphabet and s doesn't contain any palindrome contiguous substring of length 2 or more. Paul has found a tolerable string s of length n. Help him find the lexicographically next tolerable string of the same length or else state that such string does not exist. Input The first line contains two space-separated integers: n and p (1 ≤ n ≤ 1000; 1 ≤ p ≤ 26). The second line contains string s, consisting of n small English letters. It is guaranteed that the string is tolerable (according to the above definition). Output If the lexicographically next tolerable string of the same length exists, print it. Otherwise, print "NO" (without the quotes). Examples Input 3 3 cba Output NO Input 3 4 cba Output cbd Input 4 4 abcd Output abda Note String s is lexicographically larger (or simply larger) than string t with the same length, if there is number i, such that s1 = t1, ..., si = ti, si + 1 > ti + 1. The lexicographically next tolerable string is the lexicographically minimum tolerable string which is larger than the given one. A palindrome is a string that reads the same forward or reversed.
instruction
0
11,141
0
22,282
Tags: greedy, strings Correct Solution: ``` import sys from math import log2,floor,ceil,sqrt,gcd import bisect # from collections import deque # sys.setrecursionlimit(10**5) Ri = lambda : [int(x) for x in sys.stdin.readline().split()] ri = lambda : sys.stdin.readline().strip() def input(): return sys.stdin.readline().strip() def list2d(a, b, c): return [[c] * b for i in range(a)] def list3d(a, b, c, d): return [[[d] * c for j in range(b)] for i in range(a)] def list4d(a, b, c, d, e): return [[[[e] * d for j in range(c)] for j in range(b)] for i in range(a)] def ceil(x, y=1): return int(-(-x // y)) def INT(): return int(input()) def MAP(): return map(int, input().split()) def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)] def Yes(): print('Yes') def No(): print('No') def YES(): print('YES') def NO(): print('NO') INF = 10 ** 18 MOD = 1000000007 n,k = Ri() st = ri() st = [i for i in st] arr = [chr(ord('a')+i) for i in range(k)] flag = -1 ch = -1 if n == 1: # YES() if st[0] == arr[-1]: NO() else: print(chr(ord(st[0])+1)) else: for i in range(n-1,-1,-1): for j in range(ord(st[i])-ord('a')+1, k): tch = arr[j] if i-2 >=0 : if tch == st[i-1] or tch == st[i-2]: continue else: flag = i ch = tch break elif i-1>= 0: if tch == st[i-1]: continue else: flag = i ch = tch break else: flag = i ch = tch break if flag != -1: break # print(flag) if flag == -1: NO() else: st[flag] = ch # print(st) # print(flag,n) for i in range(flag+1,n): # print("fs") for j in range(0, k): tch = arr[j] if i-2 >=0 : if tch == st[i-1] or tch == st[i-2]: continue else: flag = i ch = tch st[i] = ch break elif i-1>= 0: if tch == st[i-1]: continue else: flag = i ch = tch st[i] = ch break else: flag = i ch = tch st[i] = ch break # YES() print("".join(st)) ```
output
1
11,141
0
22,283