file_path
stringlengths
19
75
code
stringlengths
279
1.37M
./openssl/crypto/x509/v3_ind_iss.c
/* * Copyright 2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/asn1.h> #include <openssl/asn1t.h> #include <openssl/x509v3.h> #include "ext_dat.h" static int i2r_INDIRECT_ISSUER(X509V3_EXT_METHOD *method, void *su, BIO *out, int indent) { return 1; } static void *r2i_INDIRECT_ISSUER(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, const char *value) { return ASN1_NULL_new(); } static char *i2s_INDIRECT_ISSUER(const X509V3_EXT_METHOD *method, void *val) { return OPENSSL_strdup("NULL"); } static void *s2i_INDIRECT_ISSUER(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, const char *str) { return ASN1_NULL_new(); } /* * The indirectIssuer X.509v3 extension is defined in ITU Recommendation X.509 * (2019), Section 17.5.2.5. See: https://www.itu.int/rec/T-REC-X.509-201910-I/en. */ const X509V3_EXT_METHOD ossl_v3_indirect_issuer = { NID_indirect_issuer, 0, ASN1_ITEM_ref(ASN1_NULL), 0, 0, 0, 0, (X509V3_EXT_I2S)i2s_INDIRECT_ISSUER, (X509V3_EXT_S2I)s2i_INDIRECT_ISSUER, 0, 0, (X509V3_EXT_I2R)i2r_INDIRECT_ISSUER, (X509V3_EXT_R2I)r2i_INDIRECT_ISSUER, NULL };
./openssl/crypto/x509/x509_local.h
/* * Copyright 2014-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/refcount.h" #define X509V3_conf_add_error_name_value(val) \ ERR_add_error_data(4, "name=", (val)->name, ", value=", (val)->value) /* * This structure holds all parameters associated with a verify operation by * including an X509_VERIFY_PARAM structure in related structures the * parameters used can be customized */ struct X509_VERIFY_PARAM_st { char *name; time_t check_time; /* Time to use */ uint32_t inh_flags; /* Inheritance flags */ unsigned long flags; /* Various verify flags */ int purpose; /* purpose to check untrusted certificates */ int trust; /* trust setting to check */ int depth; /* Verify depth */ int auth_level; /* Security level for chain verification */ STACK_OF(ASN1_OBJECT) *policies; /* Permissible policies */ /* Peer identity details */ STACK_OF(OPENSSL_STRING) *hosts; /* Set of acceptable names */ unsigned int hostflags; /* Flags to control matching features */ char *peername; /* Matching hostname in peer certificate */ char *email; /* If not NULL email address to match */ size_t emaillen; unsigned char *ip; /* If not NULL IP address to match */ size_t iplen; /* Length of IP address */ }; /* No error callback if depth < 0 */ int ossl_x509_check_cert_time(X509_STORE_CTX *ctx, X509 *x, int depth); /* a sequence of these are used */ struct x509_attributes_st { ASN1_OBJECT *object; STACK_OF(ASN1_TYPE) *set; }; struct X509_extension_st { ASN1_OBJECT *object; ASN1_BOOLEAN critical; ASN1_OCTET_STRING value; }; /* * Method to handle CRL access. In general a CRL could be very large (several * Mb) and can consume large amounts of resources if stored in memory by * multiple processes. This method allows general CRL operations to be * redirected to more efficient callbacks: for example a CRL entry database. */ #define X509_CRL_METHOD_DYNAMIC 1 struct x509_crl_method_st { int flags; int (*crl_init) (X509_CRL *crl); int (*crl_free) (X509_CRL *crl); int (*crl_lookup) (X509_CRL *crl, X509_REVOKED **ret, const ASN1_INTEGER *ser, const X509_NAME *issuer); int (*crl_verify) (X509_CRL *crl, EVP_PKEY *pk); }; struct x509_lookup_method_st { char *name; int (*new_item) (X509_LOOKUP *ctx); void (*free) (X509_LOOKUP *ctx); int (*init) (X509_LOOKUP *ctx); int (*shutdown) (X509_LOOKUP *ctx); int (*ctrl) (X509_LOOKUP *ctx, int cmd, const char *argc, long argl, char **ret); int (*get_by_subject) (X509_LOOKUP *ctx, X509_LOOKUP_TYPE type, const X509_NAME *name, X509_OBJECT *ret); int (*get_by_issuer_serial) (X509_LOOKUP *ctx, X509_LOOKUP_TYPE type, const X509_NAME *name, const ASN1_INTEGER *serial, X509_OBJECT *ret); int (*get_by_fingerprint) (X509_LOOKUP *ctx, X509_LOOKUP_TYPE type, const unsigned char *bytes, int len, X509_OBJECT *ret); int (*get_by_alias) (X509_LOOKUP *ctx, X509_LOOKUP_TYPE type, const char *str, int len, X509_OBJECT *ret); int (*get_by_subject_ex) (X509_LOOKUP *ctx, X509_LOOKUP_TYPE type, const X509_NAME *name, X509_OBJECT *ret, OSSL_LIB_CTX *libctx, const char *propq); int (*ctrl_ex) (X509_LOOKUP *ctx, int cmd, const char *argc, long argl, char **ret, OSSL_LIB_CTX *libctx, const char *propq); }; /* This is the functions plus an instance of the local variables. */ struct x509_lookup_st { int init; /* have we been started */ int skip; /* don't use us. */ X509_LOOKUP_METHOD *method; /* the functions */ void *method_data; /* method data */ X509_STORE *store_ctx; /* who owns us */ }; /* * This is used to hold everything. It is used for all certificate * validation. Once we have a certificate chain, the 'verify' function is * then called to actually check the cert chain. */ struct x509_store_st { /* The following is a cache of trusted certs */ int cache; /* if true, stash any hits */ STACK_OF(X509_OBJECT) *objs; /* Cache of all objects */ /* These are external lookup methods */ STACK_OF(X509_LOOKUP) *get_cert_methods; X509_VERIFY_PARAM *param; /* Callbacks for various operations */ /* called to verify a certificate */ int (*verify) (X509_STORE_CTX *ctx); /* error callback */ int (*verify_cb) (int ok, X509_STORE_CTX *ctx); /* get issuers cert from ctx */ int (*get_issuer) (X509 **issuer, X509_STORE_CTX *ctx, X509 *x); /* check issued */ int (*check_issued) (X509_STORE_CTX *ctx, X509 *x, X509 *issuer); /* Check revocation status of chain */ int (*check_revocation) (X509_STORE_CTX *ctx); /* retrieve CRL */ int (*get_crl) (X509_STORE_CTX *ctx, X509_CRL **crl, X509 *x); /* Check CRL validity */ int (*check_crl) (X509_STORE_CTX *ctx, X509_CRL *crl); /* Check certificate against CRL */ int (*cert_crl) (X509_STORE_CTX *ctx, X509_CRL *crl, X509 *x); /* Check policy status of the chain */ int (*check_policy) (X509_STORE_CTX *ctx); STACK_OF(X509) *(*lookup_certs) (X509_STORE_CTX *ctx, const X509_NAME *nm); /* cannot constify 'ctx' param due to lookup_certs_sk() in x509_vfy.c */ STACK_OF(X509_CRL) *(*lookup_crls) (const X509_STORE_CTX *ctx, const X509_NAME *nm); int (*cleanup) (X509_STORE_CTX *ctx); CRYPTO_EX_DATA ex_data; CRYPTO_REF_COUNT references; CRYPTO_RWLOCK *lock; }; typedef struct lookup_dir_hashes_st BY_DIR_HASH; typedef struct lookup_dir_entry_st BY_DIR_ENTRY; DEFINE_STACK_OF(BY_DIR_HASH) DEFINE_STACK_OF(BY_DIR_ENTRY) typedef STACK_OF(X509_NAME_ENTRY) STACK_OF_X509_NAME_ENTRY; DEFINE_STACK_OF(STACK_OF_X509_NAME_ENTRY) int ossl_x509_likely_issued(X509 *issuer, X509 *subject); int ossl_x509_signing_allowed(const X509 *issuer, const X509 *subject);
./openssl/crypto/x509/x509_v3.c
/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/safestack.h> #include <openssl/asn1.h> #include <openssl/objects.h> #include <openssl/evp.h> #include <openssl/x509.h> #include <openssl/x509v3.h> #include "x509_local.h" int X509v3_get_ext_count(const STACK_OF(X509_EXTENSION) *x) { int ret; if (x == NULL) return 0; ret = sk_X509_EXTENSION_num(x); return ret > 0 ? ret : 0; } int X509v3_get_ext_by_NID(const STACK_OF(X509_EXTENSION) *x, int nid, int lastpos) { ASN1_OBJECT *obj; obj = OBJ_nid2obj(nid); if (obj == NULL) return -2; return X509v3_get_ext_by_OBJ(x, obj, lastpos); } int X509v3_get_ext_by_OBJ(const STACK_OF(X509_EXTENSION) *sk, const ASN1_OBJECT *obj, int lastpos) { int n; X509_EXTENSION *ex; if (sk == NULL) return -1; lastpos++; if (lastpos < 0) lastpos = 0; n = sk_X509_EXTENSION_num(sk); for (; lastpos < n; lastpos++) { ex = sk_X509_EXTENSION_value(sk, lastpos); if (OBJ_cmp(ex->object, obj) == 0) return lastpos; } return -1; } int X509v3_get_ext_by_critical(const STACK_OF(X509_EXTENSION) *sk, int crit, int lastpos) { int n; X509_EXTENSION *ex; if (sk == NULL) return -1; lastpos++; if (lastpos < 0) lastpos = 0; n = sk_X509_EXTENSION_num(sk); for (; lastpos < n; lastpos++) { ex = sk_X509_EXTENSION_value(sk, lastpos); if (((ex->critical > 0) && crit) || ((ex->critical <= 0) && !crit)) return lastpos; } return -1; } X509_EXTENSION *X509v3_get_ext(const STACK_OF(X509_EXTENSION) *x, int loc) { if (x == NULL || sk_X509_EXTENSION_num(x) <= loc || loc < 0) return NULL; else return sk_X509_EXTENSION_value(x, loc); } X509_EXTENSION *X509v3_delete_ext(STACK_OF(X509_EXTENSION) *x, int loc) { X509_EXTENSION *ret; if (x == NULL || sk_X509_EXTENSION_num(x) <= loc || loc < 0) return NULL; ret = sk_X509_EXTENSION_delete(x, loc); return ret; } STACK_OF(X509_EXTENSION) *X509v3_add_ext(STACK_OF(X509_EXTENSION) **x, X509_EXTENSION *ex, int loc) { X509_EXTENSION *new_ex = NULL; int n; STACK_OF(X509_EXTENSION) *sk = NULL; if (x == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); goto err; } if (*x == NULL) { if ((sk = sk_X509_EXTENSION_new_null()) == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_CRYPTO_LIB); goto err; } } else sk = *x; n = sk_X509_EXTENSION_num(sk); if (loc > n) loc = n; else if (loc < 0) loc = n; if ((new_ex = X509_EXTENSION_dup(ex)) == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_ASN1_LIB); goto err; } if (!sk_X509_EXTENSION_insert(sk, new_ex, loc)) { ERR_raise(ERR_LIB_X509, ERR_R_CRYPTO_LIB); goto err; } if (*x == NULL) *x = sk; return sk; err: X509_EXTENSION_free(new_ex); if (x != NULL && *x == NULL) sk_X509_EXTENSION_free(sk); return NULL; } X509_EXTENSION *X509_EXTENSION_create_by_NID(X509_EXTENSION **ex, int nid, int crit, ASN1_OCTET_STRING *data) { ASN1_OBJECT *obj; X509_EXTENSION *ret; obj = OBJ_nid2obj(nid); if (obj == NULL) { ERR_raise(ERR_LIB_X509, X509_R_UNKNOWN_NID); return NULL; } ret = X509_EXTENSION_create_by_OBJ(ex, obj, crit, data); if (ret == NULL) ASN1_OBJECT_free(obj); return ret; } X509_EXTENSION *X509_EXTENSION_create_by_OBJ(X509_EXTENSION **ex, const ASN1_OBJECT *obj, int crit, ASN1_OCTET_STRING *data) { X509_EXTENSION *ret; if ((ex == NULL) || (*ex == NULL)) { if ((ret = X509_EXTENSION_new()) == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_ASN1_LIB); return NULL; } } else ret = *ex; if (!X509_EXTENSION_set_object(ret, obj)) goto err; if (!X509_EXTENSION_set_critical(ret, crit)) goto err; if (!X509_EXTENSION_set_data(ret, data)) goto err; if ((ex != NULL) && (*ex == NULL)) *ex = ret; return ret; err: if ((ex == NULL) || (ret != *ex)) X509_EXTENSION_free(ret); return NULL; } int X509_EXTENSION_set_object(X509_EXTENSION *ex, const ASN1_OBJECT *obj) { if ((ex == NULL) || (obj == NULL)) return 0; ASN1_OBJECT_free(ex->object); ex->object = OBJ_dup(obj); return ex->object != NULL; } int X509_EXTENSION_set_critical(X509_EXTENSION *ex, int crit) { if (ex == NULL) return 0; ex->critical = (crit) ? 0xFF : -1; return 1; } int X509_EXTENSION_set_data(X509_EXTENSION *ex, ASN1_OCTET_STRING *data) { int i; if (ex == NULL) return 0; i = ASN1_OCTET_STRING_set(&ex->value, data->data, data->length); if (!i) return 0; return 1; } ASN1_OBJECT *X509_EXTENSION_get_object(X509_EXTENSION *ex) { if (ex == NULL) return NULL; return ex->object; } ASN1_OCTET_STRING *X509_EXTENSION_get_data(X509_EXTENSION *ex) { if (ex == NULL) return NULL; return &ex->value; } int X509_EXTENSION_get_critical(const X509_EXTENSION *ex) { if (ex == NULL) return 0; if (ex->critical > 0) return 1; return 0; }
./openssl/crypto/x509/v3_ia5.c
/* * Copyright 1999-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/asn1.h> #include <openssl/conf.h> #include <openssl/x509v3.h> #include "ext_dat.h" const X509V3_EXT_METHOD ossl_v3_ns_ia5_list[8] = { EXT_IA5STRING(NID_netscape_base_url), EXT_IA5STRING(NID_netscape_revocation_url), EXT_IA5STRING(NID_netscape_ca_revocation_url), EXT_IA5STRING(NID_netscape_renewal_url), EXT_IA5STRING(NID_netscape_ca_policy_url), EXT_IA5STRING(NID_netscape_ssl_server_name), EXT_IA5STRING(NID_netscape_comment), EXT_END }; char *i2s_ASN1_IA5STRING(X509V3_EXT_METHOD *method, ASN1_IA5STRING *ia5) { char *tmp; if (ia5 == NULL || ia5->length <= 0) return NULL; if ((tmp = OPENSSL_malloc(ia5->length + 1)) == NULL) return NULL; memcpy(tmp, ia5->data, ia5->length); tmp[ia5->length] = 0; return tmp; } ASN1_IA5STRING *s2i_ASN1_IA5STRING(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, const char *str) { ASN1_IA5STRING *ia5; if (str == NULL) { ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_NULL_ARGUMENT); return NULL; } if ((ia5 = ASN1_IA5STRING_new()) == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB); return NULL; } if (!ASN1_STRING_set((ASN1_STRING *)ia5, str, strlen(str))) { ASN1_IA5STRING_free(ia5); return NULL; } #ifdef CHARSET_EBCDIC ebcdic2ascii(ia5->data, ia5->data, ia5->length); #endif /* CHARSET_EBCDIC */ return ia5; }
./openssl/crypto/x509/x509_txt.c
/* * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include <time.h> #include <errno.h> #include "internal/cryptlib.h" #include <openssl/buffer.h> #include <openssl/evp.h> #include <openssl/asn1.h> #include <openssl/x509.h> #include <openssl/objects.h> const char *X509_verify_cert_error_string(long n) { switch ((int)n) { case X509_V_OK: return "ok"; case X509_V_ERR_UNSPECIFIED: return "unspecified certificate verification error"; case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT: return "unable to get issuer certificate"; case X509_V_ERR_UNABLE_TO_GET_CRL: return "unable to get certificate CRL"; case X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE: return "unable to decrypt certificate's signature"; case X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE: return "unable to decrypt CRL's signature"; case X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY: return "unable to decode issuer public key"; case X509_V_ERR_CERT_SIGNATURE_FAILURE: return "certificate signature failure"; case X509_V_ERR_CRL_SIGNATURE_FAILURE: return "CRL signature failure"; case X509_V_ERR_CERT_NOT_YET_VALID: return "certificate is not yet valid"; case X509_V_ERR_CERT_HAS_EXPIRED: return "certificate has expired"; case X509_V_ERR_CRL_NOT_YET_VALID: return "CRL is not yet valid"; case X509_V_ERR_CRL_HAS_EXPIRED: return "CRL has expired"; case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD: return "format error in certificate's notBefore field"; case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD: return "format error in certificate's notAfter field"; case X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD: return "format error in CRL's lastUpdate field"; case X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD: return "format error in CRL's nextUpdate field"; case X509_V_ERR_OUT_OF_MEM: return "out of memory"; case X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT: return "self-signed certificate"; case X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN: return "self-signed certificate in certificate chain"; case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY: return "unable to get local issuer certificate"; case X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE: return "unable to verify the first certificate"; case X509_V_ERR_CERT_CHAIN_TOO_LONG: return "certificate chain too long"; case X509_V_ERR_CERT_REVOKED: return "certificate revoked"; case X509_V_ERR_NO_ISSUER_PUBLIC_KEY: return "issuer certificate doesn't have a public key"; case X509_V_ERR_PATH_LENGTH_EXCEEDED: return "path length constraint exceeded"; case X509_V_ERR_INVALID_PURPOSE: return "unsuitable certificate purpose"; case X509_V_ERR_CERT_UNTRUSTED: return "certificate not trusted"; case X509_V_ERR_CERT_REJECTED: return "certificate rejected"; case X509_V_ERR_SUBJECT_ISSUER_MISMATCH: return "subject issuer mismatch"; case X509_V_ERR_AKID_SKID_MISMATCH: return "authority and subject key identifier mismatch"; case X509_V_ERR_AKID_ISSUER_SERIAL_MISMATCH: return "authority and issuer serial number mismatch"; case X509_V_ERR_KEYUSAGE_NO_CERTSIGN: return "key usage does not include certificate signing"; case X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER: return "unable to get CRL issuer certificate"; case X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION: return "unhandled critical extension"; case X509_V_ERR_KEYUSAGE_NO_CRL_SIGN: return "key usage does not include CRL signing"; case X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION: return "unhandled critical CRL extension"; case X509_V_ERR_INVALID_NON_CA: return "invalid non-CA certificate (has CA markings)"; case X509_V_ERR_PROXY_PATH_LENGTH_EXCEEDED: return "proxy path length constraint exceeded"; case X509_V_ERR_KEYUSAGE_NO_DIGITAL_SIGNATURE: return "key usage does not include digital signature"; case X509_V_ERR_PROXY_CERTIFICATES_NOT_ALLOWED: return "proxy certificates not allowed, please set the appropriate flag"; case X509_V_ERR_INVALID_EXTENSION: return "invalid or inconsistent certificate extension"; case X509_V_ERR_INVALID_POLICY_EXTENSION: return "invalid or inconsistent certificate policy extension"; case X509_V_ERR_NO_EXPLICIT_POLICY: return "no explicit policy"; case X509_V_ERR_DIFFERENT_CRL_SCOPE: return "different CRL scope"; case X509_V_ERR_UNSUPPORTED_EXTENSION_FEATURE: return "unsupported extension feature"; case X509_V_ERR_UNNESTED_RESOURCE: return "RFC 3779 resource not subset of parent's resources"; case X509_V_ERR_PERMITTED_VIOLATION: return "permitted subtree violation"; case X509_V_ERR_EXCLUDED_VIOLATION: return "excluded subtree violation"; case X509_V_ERR_SUBTREE_MINMAX: return "name constraints minimum and maximum not supported"; case X509_V_ERR_APPLICATION_VERIFICATION: return "application verification failure"; case X509_V_ERR_UNSUPPORTED_CONSTRAINT_TYPE: return "unsupported name constraint type"; case X509_V_ERR_UNSUPPORTED_CONSTRAINT_SYNTAX: return "unsupported or invalid name constraint syntax"; case X509_V_ERR_UNSUPPORTED_NAME_SYNTAX: return "unsupported or invalid name syntax"; case X509_V_ERR_CRL_PATH_VALIDATION_ERROR: return "CRL path validation error"; case X509_V_ERR_PATH_LOOP: return "path loop"; case X509_V_ERR_SUITE_B_INVALID_VERSION: return "Suite B: certificate version invalid"; case X509_V_ERR_SUITE_B_INVALID_ALGORITHM: return "Suite B: invalid public key algorithm"; case X509_V_ERR_SUITE_B_INVALID_CURVE: return "Suite B: invalid ECC curve"; case X509_V_ERR_SUITE_B_INVALID_SIGNATURE_ALGORITHM: return "Suite B: invalid signature algorithm"; case X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED: return "Suite B: curve not allowed for this LOS"; case X509_V_ERR_SUITE_B_CANNOT_SIGN_P_384_WITH_P_256: return "Suite B: cannot sign P-384 with P-256"; case X509_V_ERR_HOSTNAME_MISMATCH: return "hostname mismatch"; case X509_V_ERR_EMAIL_MISMATCH: return "email address mismatch"; case X509_V_ERR_IP_ADDRESS_MISMATCH: return "IP address mismatch"; case X509_V_ERR_DANE_NO_MATCH: return "no matching DANE TLSA records"; case X509_V_ERR_EE_KEY_TOO_SMALL: return "EE certificate key too weak"; case X509_V_ERR_CA_KEY_TOO_SMALL: return "CA certificate key too weak"; case X509_V_ERR_CA_MD_TOO_WEAK: return "CA signature digest algorithm too weak"; case X509_V_ERR_INVALID_CALL: return "invalid certificate verification context"; case X509_V_ERR_STORE_LOOKUP: return "issuer certificate lookup error"; case X509_V_ERR_NO_VALID_SCTS: return "Certificate Transparency required, but no valid SCTs found"; case X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION: return "proxy subject name violation"; case X509_V_ERR_OCSP_VERIFY_NEEDED: return "OCSP verification needed"; case X509_V_ERR_OCSP_VERIFY_FAILED: return "OCSP verification failed"; case X509_V_ERR_OCSP_CERT_UNKNOWN: return "OCSP unknown cert"; case X509_V_ERR_UNSUPPORTED_SIGNATURE_ALGORITHM: return "Cannot find certificate signature algorithm"; case X509_V_ERR_SIGNATURE_ALGORITHM_MISMATCH: return "subject signature algorithm and issuer public key algorithm mismatch"; case X509_V_ERR_SIGNATURE_ALGORITHM_INCONSISTENCY: return "cert info signature and signature algorithm mismatch"; case X509_V_ERR_INVALID_CA: return "invalid CA certificate"; case X509_V_ERR_PATHLEN_INVALID_FOR_NON_CA: return "Path length invalid for non-CA cert"; case X509_V_ERR_PATHLEN_WITHOUT_KU_KEY_CERT_SIGN: return "Path length given without key usage keyCertSign"; case X509_V_ERR_KU_KEY_CERT_SIGN_INVALID_FOR_NON_CA: return "Key usage keyCertSign invalid for non-CA cert"; case X509_V_ERR_ISSUER_NAME_EMPTY: return "Issuer name empty"; case X509_V_ERR_SUBJECT_NAME_EMPTY: return "Subject name empty"; case X509_V_ERR_MISSING_AUTHORITY_KEY_IDENTIFIER: return "Missing Authority Key Identifier"; case X509_V_ERR_MISSING_SUBJECT_KEY_IDENTIFIER: return "Missing Subject Key Identifier"; case X509_V_ERR_EMPTY_SUBJECT_ALT_NAME: return "Empty Subject Alternative Name extension"; case X509_V_ERR_CA_BCONS_NOT_CRITICAL: return "Basic Constraints of CA cert not marked critical"; case X509_V_ERR_EMPTY_SUBJECT_SAN_NOT_CRITICAL: return "Subject empty and Subject Alt Name extension not critical"; case X509_V_ERR_AUTHORITY_KEY_IDENTIFIER_CRITICAL: return "Authority Key Identifier marked critical"; case X509_V_ERR_SUBJECT_KEY_IDENTIFIER_CRITICAL: return "Subject Key Identifier marked critical"; case X509_V_ERR_CA_CERT_MISSING_KEY_USAGE: return "CA cert does not include key usage extension"; case X509_V_ERR_EXTENSIONS_REQUIRE_VERSION_3: return "Using cert extension requires at least X509v3"; case X509_V_ERR_EC_KEY_EXPLICIT_PARAMS: return "Certificate public key has explicit ECC parameters"; case X509_V_ERR_RPK_UNTRUSTED: return "Raw public key untrusted, no trusted keys configured"; /* * Entries must be kept consistent with include/openssl/x509_vfy.h.in * and with doc/man3/X509_STORE_CTX_get_error.pod */ default: /* Printing an error number into a static buffer is not thread-safe */ return "unknown certificate verification error"; } }
./openssl/crypto/x509/x509_r2x.c
/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/bn.h> #include <openssl/evp.h> #include <openssl/asn1.h> #include <openssl/x509.h> #include "crypto/x509.h" #include <openssl/objects.h> #include <openssl/buffer.h> X509 *X509_REQ_to_X509(X509_REQ *r, int days, EVP_PKEY *pkey) { X509 *ret = NULL; X509_CINF *xi = NULL; const X509_NAME *xn; EVP_PKEY *pubkey = NULL; if ((ret = X509_new()) == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_ASN1_LIB); return NULL; } /* duplicate the request */ xi = &ret->cert_info; if (sk_X509_ATTRIBUTE_num(r->req_info.attributes) != 0) { if ((xi->version = ASN1_INTEGER_new()) == NULL) goto err; if (!ASN1_INTEGER_set(xi->version, 2)) goto err; /*- xi->extensions=ri->attributes; <- bad, should not ever be done ri->attributes=NULL; */ } xn = X509_REQ_get_subject_name(r); if (X509_set_subject_name(ret, xn) == 0) goto err; if (X509_set_issuer_name(ret, xn) == 0) goto err; if (X509_gmtime_adj(xi->validity.notBefore, 0) == NULL) goto err; if (X509_gmtime_adj(xi->validity.notAfter, (long)60 * 60 * 24 * days) == NULL) goto err; pubkey = X509_REQ_get0_pubkey(r); if (pubkey == NULL || !X509_set_pubkey(ret, pubkey)) goto err; if (!X509_sign(ret, pkey, EVP_md5())) goto err; return ret; err: X509_free(ret); return NULL; }
./openssl/crypto/x509/pcy_tree.c
/* * Copyright 2004-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include <openssl/trace.h> #include <openssl/x509.h> #include <openssl/x509v3.h> #include "pcy_local.h" /* * If the maximum number of nodes in the policy tree isn't defined, set it to * a generous default of 1000 nodes. * * Defining this to be zero means unlimited policy tree growth which opens the * door on CVE-2023-0464. */ #ifndef OPENSSL_POLICY_TREE_NODES_MAX # define OPENSSL_POLICY_TREE_NODES_MAX 1000 #endif static void exnode_free(X509_POLICY_NODE *node); static void expected_print(BIO *channel, X509_POLICY_LEVEL *lev, X509_POLICY_NODE *node, int indent) { if ((lev->flags & X509_V_FLAG_INHIBIT_MAP) || !(node->data->flags & POLICY_DATA_FLAG_MAP_MASK)) BIO_puts(channel, " Not Mapped\n"); else { int i; STACK_OF(ASN1_OBJECT) *pset = node->data->expected_policy_set; ASN1_OBJECT *oid; BIO_puts(channel, " Expected: "); for (i = 0; i < sk_ASN1_OBJECT_num(pset); i++) { oid = sk_ASN1_OBJECT_value(pset, i); if (i) BIO_puts(channel, ", "); i2a_ASN1_OBJECT(channel, oid); } BIO_puts(channel, "\n"); } } static void tree_print(BIO *channel, char *str, X509_POLICY_TREE *tree, X509_POLICY_LEVEL *curr) { X509_POLICY_LEVEL *plev; if (!curr) curr = tree->levels + tree->nlevel; else curr++; BIO_printf(channel, "Level print after %s\n", str); BIO_printf(channel, "Printing Up to Level %ld\n", (long)(curr - tree->levels)); for (plev = tree->levels; plev != curr; plev++) { int i; BIO_printf(channel, "Level %ld, flags = %x\n", (long)(plev - tree->levels), plev->flags); for (i = 0; i < sk_X509_POLICY_NODE_num(plev->nodes); i++) { X509_POLICY_NODE *node = sk_X509_POLICY_NODE_value(plev->nodes, i); X509_POLICY_NODE_print(channel, node, 2); expected_print(channel, plev, node, 2); BIO_printf(channel, " Flags: %x\n", node->data->flags); } if (plev->anyPolicy) X509_POLICY_NODE_print(channel, plev->anyPolicy, 2); } } #define TREE_PRINT(str, tree, curr) \ OSSL_TRACE_BEGIN(X509V3_POLICY) { \ tree_print(trc_out, "before tree_prune()", tree, curr); \ } OSSL_TRACE_END(X509V3_POLICY) /*- * Return value: <= 0 on error, or positive bit mask: * * X509_PCY_TREE_VALID: valid tree * X509_PCY_TREE_EMPTY: empty tree (including bare TA case) * X509_PCY_TREE_EXPLICIT: explicit policy required */ static int tree_init(X509_POLICY_TREE **ptree, STACK_OF(X509) *certs, unsigned int flags) { X509_POLICY_TREE *tree; X509_POLICY_LEVEL *level; const X509_POLICY_CACHE *cache; X509_POLICY_DATA *data = NULL; int ret = X509_PCY_TREE_VALID; int n = sk_X509_num(certs) - 1; /* RFC5280 paths omit the TA */ int explicit_policy = (flags & X509_V_FLAG_EXPLICIT_POLICY) ? 0 : n+1; int any_skip = (flags & X509_V_FLAG_INHIBIT_ANY) ? 0 : n+1; int map_skip = (flags & X509_V_FLAG_INHIBIT_MAP) ? 0 : n+1; int i; *ptree = NULL; /* Can't do anything with just a trust anchor */ if (n == 0) return X509_PCY_TREE_EMPTY; /* * First setup the policy cache in all n non-TA certificates, this will be * used in X509_verify_cert() which will invoke the verify callback for all * certificates with invalid policy extensions. */ for (i = n - 1; i >= 0; i--) { X509 *x = sk_X509_value(certs, i); /* Call for side-effect of computing hash and caching extensions */ X509_check_purpose(x, -1, 0); /* If cache is NULL, likely ENOMEM: return immediately */ if (ossl_policy_cache_set(x) == NULL) return X509_PCY_TREE_INTERNAL; } /* * At this point check for invalid policies and required explicit policy. * Note that the explicit_policy counter is a count-down to zero, with the * requirement kicking in if and once it does that. The counter is * decremented for every non-self-issued certificate in the path, but may * be further reduced by policy constraints in a non-leaf certificate. * * The ultimate policy set is the intersection of all the policies along * the path, if we hit a certificate with an empty policy set, and explicit * policy is required we're done. */ for (i = n - 1; i >= 0 && (explicit_policy > 0 || (ret & X509_PCY_TREE_EMPTY) == 0); i--) { X509 *x = sk_X509_value(certs, i); uint32_t ex_flags = X509_get_extension_flags(x); /* All the policies are already cached, we can return early */ if (ex_flags & EXFLAG_INVALID_POLICY) return X509_PCY_TREE_INVALID; /* Access the cache which we now know exists */ cache = ossl_policy_cache_set(x); if ((ret & X509_PCY_TREE_VALID) && cache->data == NULL) ret = X509_PCY_TREE_EMPTY; if (explicit_policy > 0) { if (!(ex_flags & EXFLAG_SI)) explicit_policy--; if ((cache->explicit_skip >= 0) && (cache->explicit_skip < explicit_policy)) explicit_policy = cache->explicit_skip; } } if (explicit_policy == 0) ret |= X509_PCY_TREE_EXPLICIT; if ((ret & X509_PCY_TREE_VALID) == 0) return ret; /* If we get this far initialize the tree */ if ((tree = OPENSSL_zalloc(sizeof(*tree))) == NULL) return X509_PCY_TREE_INTERNAL; /* Limit the growth of the tree to mitigate CVE-2023-0464 */ tree->node_maximum = OPENSSL_POLICY_TREE_NODES_MAX; /* * http://tools.ietf.org/html/rfc5280#section-6.1.2, figure 3. * * The top level is implicitly for the trust anchor with valid expected * policies of anyPolicy. (RFC 5280 has the TA at depth 0 and the leaf at * depth n, we have the leaf at depth 0 and the TA at depth n). */ if ((tree->levels = OPENSSL_zalloc(sizeof(*tree->levels)*(n+1))) == NULL) { OPENSSL_free(tree); return X509_PCY_TREE_INTERNAL; } tree->nlevel = n+1; level = tree->levels; if ((data = ossl_policy_data_new(NULL, OBJ_nid2obj(NID_any_policy), 0)) == NULL) goto bad_tree; if (ossl_policy_level_add_node(level, data, NULL, tree, 1) == NULL) { ossl_policy_data_free(data); goto bad_tree; } /* * In this pass initialize all the tree levels and whether anyPolicy and * policy mapping are inhibited at each level. */ for (i = n - 1; i >= 0; i--) { X509 *x = sk_X509_value(certs, i); uint32_t ex_flags = X509_get_extension_flags(x); /* Access the cache which we now know exists */ cache = ossl_policy_cache_set(x); X509_up_ref(x); (++level)->cert = x; if (!cache->anyPolicy) level->flags |= X509_V_FLAG_INHIBIT_ANY; /* Determine inhibit any and inhibit map flags */ if (any_skip == 0) { /* * Any matching allowed only if certificate is self issued and not * the last in the chain. */ if (!(ex_flags & EXFLAG_SI) || (i == 0)) level->flags |= X509_V_FLAG_INHIBIT_ANY; } else { if (!(ex_flags & EXFLAG_SI)) any_skip--; if ((cache->any_skip >= 0) && (cache->any_skip < any_skip)) any_skip = cache->any_skip; } if (map_skip == 0) level->flags |= X509_V_FLAG_INHIBIT_MAP; else { if (!(ex_flags & EXFLAG_SI)) map_skip--; if ((cache->map_skip >= 0) && (cache->map_skip < map_skip)) map_skip = cache->map_skip; } } *ptree = tree; return ret; bad_tree: X509_policy_tree_free(tree); return X509_PCY_TREE_INTERNAL; } /* * Return value: 1 on success, 0 otherwise */ static int tree_link_matching_nodes(X509_POLICY_LEVEL *curr, X509_POLICY_DATA *data, X509_POLICY_TREE *tree) { X509_POLICY_LEVEL *last = curr - 1; int i, matched = 0; /* Iterate through all in nodes linking matches */ for (i = 0; i < sk_X509_POLICY_NODE_num(last->nodes); i++) { X509_POLICY_NODE *node = sk_X509_POLICY_NODE_value(last->nodes, i); if (ossl_policy_node_match(last, node, data->valid_policy)) { if (ossl_policy_level_add_node(curr, data, node, tree, 0) == NULL) return 0; matched = 1; } } if (!matched && last->anyPolicy) { if (ossl_policy_level_add_node(curr, data, last->anyPolicy, tree, 0) == NULL) return 0; } return 1; } /* * This corresponds to RFC3280 6.1.3(d)(1): link any data from * CertificatePolicies onto matching parent or anyPolicy if no match. * * Return value: 1 on success, 0 otherwise. */ static int tree_link_nodes(X509_POLICY_LEVEL *curr, const X509_POLICY_CACHE *cache, X509_POLICY_TREE *tree) { int i; for (i = 0; i < sk_X509_POLICY_DATA_num(cache->data); i++) { X509_POLICY_DATA *data = sk_X509_POLICY_DATA_value(cache->data, i); /* Look for matching nodes in previous level */ if (!tree_link_matching_nodes(curr, data, tree)) return 0; } return 1; } /* * This corresponds to RFC3280 6.1.3(d)(2): Create new data for any unmatched * policies in the parent and link to anyPolicy. * * Return value: 1 on success, 0 otherwise. */ static int tree_add_unmatched(X509_POLICY_LEVEL *curr, const X509_POLICY_CACHE *cache, const ASN1_OBJECT *id, X509_POLICY_NODE *node, X509_POLICY_TREE *tree) { X509_POLICY_DATA *data; if (id == NULL) id = node->data->valid_policy; /* * Create a new node with qualifiers from anyPolicy and id from unmatched * node. */ if ((data = ossl_policy_data_new(NULL, id, node_critical(node))) == NULL) return 0; /* Curr may not have anyPolicy */ data->qualifier_set = cache->anyPolicy->qualifier_set; data->flags |= POLICY_DATA_FLAG_SHARED_QUALIFIERS; if (ossl_policy_level_add_node(curr, data, node, tree, 1) == NULL) { ossl_policy_data_free(data); return 0; } return 1; } /* * Return value: 1 on success, 0 otherwise. */ static int tree_link_unmatched(X509_POLICY_LEVEL *curr, const X509_POLICY_CACHE *cache, X509_POLICY_NODE *node, X509_POLICY_TREE *tree) { const X509_POLICY_LEVEL *last = curr - 1; int i; if ((last->flags & X509_V_FLAG_INHIBIT_MAP) || !(node->data->flags & POLICY_DATA_FLAG_MAPPED)) { /* If no policy mapping: matched if one child present */ if (node->nchild) return 1; if (!tree_add_unmatched(curr, cache, NULL, node, tree)) return 0; /* Add it */ } else { /* If mapping: matched if one child per expected policy set */ STACK_OF(ASN1_OBJECT) *expset = node->data->expected_policy_set; if (node->nchild == sk_ASN1_OBJECT_num(expset)) return 1; /* Locate unmatched nodes */ for (i = 0; i < sk_ASN1_OBJECT_num(expset); i++) { ASN1_OBJECT *oid = sk_ASN1_OBJECT_value(expset, i); if (ossl_policy_level_find_node(curr, node, oid)) continue; if (!tree_add_unmatched(curr, cache, oid, node, tree)) return 0; } } return 1; } /* * Return value: 1 on success, 0 otherwise */ static int tree_link_any(X509_POLICY_LEVEL *curr, const X509_POLICY_CACHE *cache, X509_POLICY_TREE *tree) { int i; X509_POLICY_NODE *node; X509_POLICY_LEVEL *last = curr - 1; for (i = 0; i < sk_X509_POLICY_NODE_num(last->nodes); i++) { node = sk_X509_POLICY_NODE_value(last->nodes, i); if (!tree_link_unmatched(curr, cache, node, tree)) return 0; } /* Finally add link to anyPolicy */ if (last->anyPolicy && ossl_policy_level_add_node(curr, cache->anyPolicy, last->anyPolicy, tree, 0) == NULL) return 0; return 1; } /*- * Prune the tree: delete any child mapped child data on the current level then * proceed up the tree deleting any data with no children. If we ever have no * data on a level we can halt because the tree will be empty. * * Return value: <= 0 error, otherwise one of: * * X509_PCY_TREE_VALID: valid tree * X509_PCY_TREE_EMPTY: empty tree */ static int tree_prune(X509_POLICY_TREE *tree, X509_POLICY_LEVEL *curr) { STACK_OF(X509_POLICY_NODE) *nodes; X509_POLICY_NODE *node; int i; nodes = curr->nodes; if (curr->flags & X509_V_FLAG_INHIBIT_MAP) { for (i = sk_X509_POLICY_NODE_num(nodes) - 1; i >= 0; i--) { node = sk_X509_POLICY_NODE_value(nodes, i); /* Delete any mapped data: see RFC3280 XXXX */ if (node->data->flags & POLICY_DATA_FLAG_MAP_MASK) { node->parent->nchild--; OPENSSL_free(node); (void)sk_X509_POLICY_NODE_delete(nodes, i); } } } for (;;) { --curr; nodes = curr->nodes; for (i = sk_X509_POLICY_NODE_num(nodes) - 1; i >= 0; i--) { node = sk_X509_POLICY_NODE_value(nodes, i); if (node->nchild == 0) { node->parent->nchild--; OPENSSL_free(node); (void)sk_X509_POLICY_NODE_delete(nodes, i); } } if (curr->anyPolicy && !curr->anyPolicy->nchild) { if (curr->anyPolicy->parent) curr->anyPolicy->parent->nchild--; OPENSSL_free(curr->anyPolicy); curr->anyPolicy = NULL; } if (curr == tree->levels) { /* If we zapped anyPolicy at top then tree is empty */ if (!curr->anyPolicy) return X509_PCY_TREE_EMPTY; break; } } return X509_PCY_TREE_VALID; } /* * Return value: 1 on success, 0 otherwise. */ static int tree_add_auth_node(STACK_OF(X509_POLICY_NODE) **pnodes, X509_POLICY_NODE *pcy) { if (*pnodes == NULL && (*pnodes = ossl_policy_node_cmp_new()) == NULL) return 0; if (sk_X509_POLICY_NODE_find(*pnodes, pcy) >= 0) return 1; return sk_X509_POLICY_NODE_push(*pnodes, pcy) != 0; } #define TREE_CALC_FAILURE 0 #define TREE_CALC_OK_NOFREE 1 #define TREE_CALC_OK_DOFREE 2 /*- * Calculate the authority set based on policy tree. The 'pnodes' parameter is * used as a store for the set of policy nodes used to calculate the user set. * If the authority set is not anyPolicy then pnodes will just point to the * authority set. If however the authority set is anyPolicy then the set of * valid policies (other than anyPolicy) is store in pnodes. * * Return value: * TREE_CALC_FAILURE on failure, * TREE_CALC_OK_NOFREE on success and pnodes need not be freed, * TREE_CALC_OK_DOFREE on success and pnodes needs to be freed */ static int tree_calculate_authority_set(X509_POLICY_TREE *tree, STACK_OF(X509_POLICY_NODE) **pnodes) { X509_POLICY_LEVEL *curr; X509_POLICY_NODE *node, *anyptr; STACK_OF(X509_POLICY_NODE) **addnodes; int i, j; curr = tree->levels + tree->nlevel - 1; /* If last level contains anyPolicy set is anyPolicy */ if (curr->anyPolicy) { if (!tree_add_auth_node(&tree->auth_policies, curr->anyPolicy)) return TREE_CALC_FAILURE; addnodes = pnodes; } else /* Add policies to authority set */ addnodes = &tree->auth_policies; curr = tree->levels; for (i = 1; i < tree->nlevel; i++) { /* * If no anyPolicy node on this level it can't appear on lower * levels so end search. */ if ((anyptr = curr->anyPolicy) == NULL) break; curr++; for (j = 0; j < sk_X509_POLICY_NODE_num(curr->nodes); j++) { node = sk_X509_POLICY_NODE_value(curr->nodes, j); if ((node->parent == anyptr) && !tree_add_auth_node(addnodes, node)) { if (addnodes == pnodes) { sk_X509_POLICY_NODE_free(*pnodes); *pnodes = NULL; } return TREE_CALC_FAILURE; } } } if (addnodes == pnodes) return TREE_CALC_OK_DOFREE; *pnodes = tree->auth_policies; return TREE_CALC_OK_NOFREE; } /* * Return value: 1 on success, 0 otherwise. */ static int tree_calculate_user_set(X509_POLICY_TREE *tree, STACK_OF(ASN1_OBJECT) *policy_oids, STACK_OF(X509_POLICY_NODE) *auth_nodes) { int i; X509_POLICY_NODE *node; ASN1_OBJECT *oid; X509_POLICY_NODE *anyPolicy; X509_POLICY_DATA *extra; /* * Check if anyPolicy present in authority constrained policy set: this * will happen if it is a leaf node. */ if (sk_ASN1_OBJECT_num(policy_oids) <= 0) return 1; anyPolicy = tree->levels[tree->nlevel - 1].anyPolicy; for (i = 0; i < sk_ASN1_OBJECT_num(policy_oids); i++) { oid = sk_ASN1_OBJECT_value(policy_oids, i); if (OBJ_obj2nid(oid) == NID_any_policy) { tree->flags |= POLICY_FLAG_ANY_POLICY; return 1; } } for (i = 0; i < sk_ASN1_OBJECT_num(policy_oids); i++) { oid = sk_ASN1_OBJECT_value(policy_oids, i); node = ossl_policy_tree_find_sk(auth_nodes, oid); if (!node) { if (!anyPolicy) continue; /* * Create a new node with policy ID from user set and qualifiers * from anyPolicy. */ extra = ossl_policy_data_new(NULL, oid, node_critical(anyPolicy)); if (extra == NULL) return 0; extra->qualifier_set = anyPolicy->data->qualifier_set; extra->flags = POLICY_DATA_FLAG_SHARED_QUALIFIERS | POLICY_DATA_FLAG_EXTRA_NODE; node = ossl_policy_level_add_node(NULL, extra, anyPolicy->parent, tree, 1); if (node == NULL) { ossl_policy_data_free(extra); return 0; } } if (!tree->user_policies) { tree->user_policies = sk_X509_POLICY_NODE_new_null(); if (!tree->user_policies) { exnode_free(node); return 0; } } if (!sk_X509_POLICY_NODE_push(tree->user_policies, node)) { exnode_free(node); return 0; } } return 1; } /*- * Return value: <= 0 error, otherwise one of: * X509_PCY_TREE_VALID: valid tree * X509_PCY_TREE_EMPTY: empty tree * (see tree_prune()). */ static int tree_evaluate(X509_POLICY_TREE *tree) { int ret, i; X509_POLICY_LEVEL *curr = tree->levels + 1; const X509_POLICY_CACHE *cache; for (i = 1; i < tree->nlevel; i++, curr++) { cache = ossl_policy_cache_set(curr->cert); if (!tree_link_nodes(curr, cache, tree)) return X509_PCY_TREE_INTERNAL; if (!(curr->flags & X509_V_FLAG_INHIBIT_ANY) && !tree_link_any(curr, cache, tree)) return X509_PCY_TREE_INTERNAL; TREE_PRINT("before tree_prune()", tree, curr); ret = tree_prune(tree, curr); if (ret != X509_PCY_TREE_VALID) return ret; } return X509_PCY_TREE_VALID; } static void exnode_free(X509_POLICY_NODE *node) { if (node->data && (node->data->flags & POLICY_DATA_FLAG_EXTRA_NODE)) OPENSSL_free(node); } void X509_policy_tree_free(X509_POLICY_TREE *tree) { X509_POLICY_LEVEL *curr; int i; if (!tree) return; sk_X509_POLICY_NODE_free(tree->auth_policies); sk_X509_POLICY_NODE_pop_free(tree->user_policies, exnode_free); for (i = 0, curr = tree->levels; i < tree->nlevel; i++, curr++) { X509_free(curr->cert); sk_X509_POLICY_NODE_pop_free(curr->nodes, ossl_policy_node_free); ossl_policy_node_free(curr->anyPolicy); } sk_X509_POLICY_DATA_pop_free(tree->extra_data, ossl_policy_data_free); OPENSSL_free(tree->levels); OPENSSL_free(tree); } /*- * Application policy checking function. * Return codes: * X509_PCY_TREE_FAILURE: Failure to satisfy explicit policy * X509_PCY_TREE_INVALID: Inconsistent or invalid extensions * X509_PCY_TREE_INTERNAL: Internal error, most likely malloc * X509_PCY_TREE_VALID: Success (null tree if empty or bare TA) */ int X509_policy_check(X509_POLICY_TREE **ptree, int *pexplicit_policy, STACK_OF(X509) *certs, STACK_OF(ASN1_OBJECT) *policy_oids, unsigned int flags) { int init_ret; int ret; int calc_ret; X509_POLICY_TREE *tree = NULL; STACK_OF(X509_POLICY_NODE) *nodes, *auth_nodes = NULL; *ptree = NULL; *pexplicit_policy = 0; init_ret = tree_init(&tree, certs, flags); if (init_ret <= 0) return init_ret; if ((init_ret & X509_PCY_TREE_EXPLICIT) == 0) { if (init_ret & X509_PCY_TREE_EMPTY) { X509_policy_tree_free(tree); return X509_PCY_TREE_VALID; } } else { *pexplicit_policy = 1; /* Tree empty and requireExplicit True: Error */ if (init_ret & X509_PCY_TREE_EMPTY) return X509_PCY_TREE_FAILURE; } ret = tree_evaluate(tree); TREE_PRINT("tree_evaluate()", tree, NULL); if (ret <= 0) goto error; if (ret == X509_PCY_TREE_EMPTY) { X509_policy_tree_free(tree); if (init_ret & X509_PCY_TREE_EXPLICIT) return X509_PCY_TREE_FAILURE; return X509_PCY_TREE_VALID; } /* Tree is not empty: continue */ if ((calc_ret = tree_calculate_authority_set(tree, &auth_nodes)) == 0) goto error; sk_X509_POLICY_NODE_sort(auth_nodes); ret = tree_calculate_user_set(tree, policy_oids, auth_nodes); if (calc_ret == TREE_CALC_OK_DOFREE) sk_X509_POLICY_NODE_free(auth_nodes); if (!ret) goto error; *ptree = tree; if (init_ret & X509_PCY_TREE_EXPLICIT) { nodes = X509_policy_tree_get0_user_policies(tree); if (sk_X509_POLICY_NODE_num(nodes) <= 0) return X509_PCY_TREE_FAILURE; } return X509_PCY_TREE_VALID; error: X509_policy_tree_free(tree); return X509_PCY_TREE_INTERNAL; }
./openssl/crypto/x509/x_all.c
/* * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Low level APIs are deprecated for public use, but still ok for * internal use. */ #include "internal/deprecated.h" #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/buffer.h> #include <openssl/asn1.h> #include <openssl/evp.h> #include <openssl/x509.h> #include <openssl/http.h> #include <openssl/rsa.h> #include <openssl/dsa.h> #include <openssl/x509v3.h> #include "internal/asn1.h" #include "crypto/pkcs7.h" #include "crypto/x509.h" #include "crypto/rsa.h" int X509_verify(X509 *a, EVP_PKEY *r) { if (X509_ALGOR_cmp(&a->sig_alg, &a->cert_info.signature) != 0) return 0; return ASN1_item_verify_ex(ASN1_ITEM_rptr(X509_CINF), &a->sig_alg, &a->signature, &a->cert_info, a->distinguishing_id, r, a->libctx, a->propq); } int X509_REQ_verify_ex(X509_REQ *a, EVP_PKEY *r, OSSL_LIB_CTX *libctx, const char *propq) { return ASN1_item_verify_ex(ASN1_ITEM_rptr(X509_REQ_INFO), &a->sig_alg, a->signature, &a->req_info, a->distinguishing_id, r, libctx, propq); } int X509_REQ_verify(X509_REQ *a, EVP_PKEY *r) { return X509_REQ_verify_ex(a, r, NULL, NULL); } int NETSCAPE_SPKI_verify(NETSCAPE_SPKI *a, EVP_PKEY *r) { return ASN1_item_verify(ASN1_ITEM_rptr(NETSCAPE_SPKAC), &a->sig_algor, a->signature, a->spkac, r); } int X509_sign(X509 *x, EVP_PKEY *pkey, const EVP_MD *md) { if (x == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (sk_X509_EXTENSION_num(X509_get0_extensions(x)) > 0 && !X509_set_version(x, X509_VERSION_3)) return 0; /* * Setting the modified flag before signing it. This makes the cached * encoding to be ignored, so even if the certificate fields have changed, * they are signed correctly. * The X509_sign_ctx, X509_REQ_sign{,_ctx}, X509_CRL_sign{,_ctx} functions * which exist below are the same. */ x->cert_info.enc.modified = 1; return ASN1_item_sign_ex(ASN1_ITEM_rptr(X509_CINF), &x->cert_info.signature, &x->sig_alg, &x->signature, &x->cert_info, NULL, pkey, md, x->libctx, x->propq); } int X509_sign_ctx(X509 *x, EVP_MD_CTX *ctx) { if (x == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (sk_X509_EXTENSION_num(X509_get0_extensions(x)) > 0 && !X509_set_version(x, X509_VERSION_3)) return 0; x->cert_info.enc.modified = 1; return ASN1_item_sign_ctx(ASN1_ITEM_rptr(X509_CINF), &x->cert_info.signature, &x->sig_alg, &x->signature, &x->cert_info, ctx); } static ASN1_VALUE *simple_get_asn1(const char *url, BIO *bio, BIO *rbio, int timeout, const ASN1_ITEM *it) { #ifndef OPENSSL_NO_HTTP BIO *mem = OSSL_HTTP_get(url, NULL /* proxy */, NULL /* no_proxy */, bio, rbio, NULL /* cb */, NULL /* arg */, 1024 /* buf_size */, NULL /* headers */, NULL /* expected_ct */, 1 /* expect_asn1 */, OSSL_HTTP_DEFAULT_MAX_RESP_LEN, timeout); ASN1_VALUE *res = ASN1_item_d2i_bio(it, mem, NULL); BIO_free(mem); return res; #else return 0; #endif } X509 *X509_load_http(const char *url, BIO *bio, BIO *rbio, int timeout) { return (X509 *)simple_get_asn1(url, bio, rbio, timeout, ASN1_ITEM_rptr(X509)); } int X509_REQ_sign(X509_REQ *x, EVP_PKEY *pkey, const EVP_MD *md) { if (x == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return 0; } x->req_info.enc.modified = 1; return ASN1_item_sign_ex(ASN1_ITEM_rptr(X509_REQ_INFO), &x->sig_alg, NULL, x->signature, &x->req_info, NULL, pkey, md, x->libctx, x->propq); } int X509_REQ_sign_ctx(X509_REQ *x, EVP_MD_CTX *ctx) { if (x == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return 0; } x->req_info.enc.modified = 1; return ASN1_item_sign_ctx(ASN1_ITEM_rptr(X509_REQ_INFO), &x->sig_alg, NULL, x->signature, &x->req_info, ctx); } int X509_CRL_sign(X509_CRL *x, EVP_PKEY *pkey, const EVP_MD *md) { if (x == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return 0; } x->crl.enc.modified = 1; return ASN1_item_sign_ex(ASN1_ITEM_rptr(X509_CRL_INFO), &x->crl.sig_alg, &x->sig_alg, &x->signature, &x->crl, NULL, pkey, md, x->libctx, x->propq); } int X509_CRL_sign_ctx(X509_CRL *x, EVP_MD_CTX *ctx) { if (x == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return 0; } x->crl.enc.modified = 1; return ASN1_item_sign_ctx(ASN1_ITEM_rptr(X509_CRL_INFO), &x->crl.sig_alg, &x->sig_alg, &x->signature, &x->crl, ctx); } X509_CRL *X509_CRL_load_http(const char *url, BIO *bio, BIO *rbio, int timeout) { return (X509_CRL *)simple_get_asn1(url, bio, rbio, timeout, ASN1_ITEM_rptr(X509_CRL)); } int NETSCAPE_SPKI_sign(NETSCAPE_SPKI *x, EVP_PKEY *pkey, const EVP_MD *md) { return ASN1_item_sign_ex(ASN1_ITEM_rptr(NETSCAPE_SPKAC), &x->sig_algor, NULL, x->signature, x->spkac, NULL, pkey, md, NULL, NULL); } #ifndef OPENSSL_NO_STDIO X509 *d2i_X509_fp(FILE *fp, X509 **x509) { return ASN1_item_d2i_fp(ASN1_ITEM_rptr(X509), fp, x509); } int i2d_X509_fp(FILE *fp, const X509 *x509) { return ASN1_item_i2d_fp(ASN1_ITEM_rptr(X509), fp, x509); } #endif X509 *d2i_X509_bio(BIO *bp, X509 **x509) { return ASN1_item_d2i_bio(ASN1_ITEM_rptr(X509), bp, x509); } int i2d_X509_bio(BIO *bp, const X509 *x509) { return ASN1_item_i2d_bio(ASN1_ITEM_rptr(X509), bp, x509); } #ifndef OPENSSL_NO_STDIO X509_CRL *d2i_X509_CRL_fp(FILE *fp, X509_CRL **crl) { return ASN1_item_d2i_fp(ASN1_ITEM_rptr(X509_CRL), fp, crl); } int i2d_X509_CRL_fp(FILE *fp, const X509_CRL *crl) { return ASN1_item_i2d_fp(ASN1_ITEM_rptr(X509_CRL), fp, crl); } #endif X509_CRL *d2i_X509_CRL_bio(BIO *bp, X509_CRL **crl) { return ASN1_item_d2i_bio(ASN1_ITEM_rptr(X509_CRL), bp, crl); } int i2d_X509_CRL_bio(BIO *bp, const X509_CRL *crl) { return ASN1_item_i2d_bio(ASN1_ITEM_rptr(X509_CRL), bp, crl); } #ifndef OPENSSL_NO_STDIO PKCS7 *d2i_PKCS7_fp(FILE *fp, PKCS7 **p7) { PKCS7 *ret; OSSL_LIB_CTX *libctx = NULL; const char *propq = NULL; if (p7 != NULL && *p7 != NULL) { libctx = (*p7)->ctx.libctx; propq = (*p7)->ctx.propq; } ret = ASN1_item_d2i_fp_ex(ASN1_ITEM_rptr(PKCS7), fp, p7, libctx, propq); if (ret != NULL) ossl_pkcs7_resolve_libctx(ret); return ret; } int i2d_PKCS7_fp(FILE *fp, const PKCS7 *p7) { return ASN1_item_i2d_fp(ASN1_ITEM_rptr(PKCS7), fp, p7); } #endif PKCS7 *d2i_PKCS7_bio(BIO *bp, PKCS7 **p7) { PKCS7 *ret; OSSL_LIB_CTX *libctx = NULL; const char *propq = NULL; if (p7 != NULL && *p7 != NULL) { libctx = (*p7)->ctx.libctx; propq = (*p7)->ctx.propq; } ret = ASN1_item_d2i_bio_ex(ASN1_ITEM_rptr(PKCS7), bp, p7, libctx, propq); if (ret != NULL) ossl_pkcs7_resolve_libctx(ret); return ret; } int i2d_PKCS7_bio(BIO *bp, const PKCS7 *p7) { return ASN1_item_i2d_bio(ASN1_ITEM_rptr(PKCS7), bp, p7); } #ifndef OPENSSL_NO_STDIO X509_REQ *d2i_X509_REQ_fp(FILE *fp, X509_REQ **req) { return ASN1_item_d2i_fp(ASN1_ITEM_rptr(X509_REQ), fp, req); } int i2d_X509_REQ_fp(FILE *fp, const X509_REQ *req) { return ASN1_item_i2d_fp(ASN1_ITEM_rptr(X509_REQ), fp, req); } #endif X509_REQ *d2i_X509_REQ_bio(BIO *bp, X509_REQ **req) { OSSL_LIB_CTX *libctx = NULL; const char *propq = NULL; if (req != NULL && *req != NULL) { libctx = (*req)->libctx; propq = (*req)->propq; } return ASN1_item_d2i_bio_ex(ASN1_ITEM_rptr(X509_REQ), bp, req, libctx, propq); } int i2d_X509_REQ_bio(BIO *bp, const X509_REQ *req) { return ASN1_item_i2d_bio(ASN1_ITEM_rptr(X509_REQ), bp, req); } #ifndef OPENSSL_NO_STDIO RSA *d2i_RSAPrivateKey_fp(FILE *fp, RSA **rsa) { return ASN1_item_d2i_fp(ASN1_ITEM_rptr(RSAPrivateKey), fp, rsa); } int i2d_RSAPrivateKey_fp(FILE *fp, const RSA *rsa) { return ASN1_item_i2d_fp(ASN1_ITEM_rptr(RSAPrivateKey), fp, rsa); } RSA *d2i_RSAPublicKey_fp(FILE *fp, RSA **rsa) { return ASN1_item_d2i_fp(ASN1_ITEM_rptr(RSAPublicKey), fp, rsa); } RSA *d2i_RSA_PUBKEY_fp(FILE *fp, RSA **rsa) { return ASN1_d2i_fp((void *(*)(void)) RSA_new, (D2I_OF(void)) d2i_RSA_PUBKEY, fp, (void **)rsa); } int i2d_RSAPublicKey_fp(FILE *fp, const RSA *rsa) { return ASN1_item_i2d_fp(ASN1_ITEM_rptr(RSAPublicKey), fp, rsa); } int i2d_RSA_PUBKEY_fp(FILE *fp, const RSA *rsa) { return ASN1_i2d_fp((I2D_OF(void))i2d_RSA_PUBKEY, fp, rsa); } #endif RSA *d2i_RSAPrivateKey_bio(BIO *bp, RSA **rsa) { return ASN1_item_d2i_bio(ASN1_ITEM_rptr(RSAPrivateKey), bp, rsa); } int i2d_RSAPrivateKey_bio(BIO *bp, const RSA *rsa) { return ASN1_item_i2d_bio(ASN1_ITEM_rptr(RSAPrivateKey), bp, rsa); } RSA *d2i_RSAPublicKey_bio(BIO *bp, RSA **rsa) { return ASN1_item_d2i_bio(ASN1_ITEM_rptr(RSAPublicKey), bp, rsa); } RSA *d2i_RSA_PUBKEY_bio(BIO *bp, RSA **rsa) { return ASN1_d2i_bio_of(RSA, RSA_new, d2i_RSA_PUBKEY, bp, rsa); } int i2d_RSAPublicKey_bio(BIO *bp, const RSA *rsa) { return ASN1_item_i2d_bio(ASN1_ITEM_rptr(RSAPublicKey), bp, rsa); } int i2d_RSA_PUBKEY_bio(BIO *bp, const RSA *rsa) { return ASN1_i2d_bio_of(RSA, i2d_RSA_PUBKEY, bp, rsa); } #ifndef OPENSSL_NO_DSA # ifndef OPENSSL_NO_STDIO DSA *d2i_DSAPrivateKey_fp(FILE *fp, DSA **dsa) { return ASN1_d2i_fp_of(DSA, DSA_new, d2i_DSAPrivateKey, fp, dsa); } int i2d_DSAPrivateKey_fp(FILE *fp, const DSA *dsa) { return ASN1_i2d_fp_of(DSA, i2d_DSAPrivateKey, fp, dsa); } DSA *d2i_DSA_PUBKEY_fp(FILE *fp, DSA **dsa) { return ASN1_d2i_fp_of(DSA, DSA_new, d2i_DSA_PUBKEY, fp, dsa); } int i2d_DSA_PUBKEY_fp(FILE *fp, const DSA *dsa) { return ASN1_i2d_fp_of(DSA, i2d_DSA_PUBKEY, fp, dsa); } # endif DSA *d2i_DSAPrivateKey_bio(BIO *bp, DSA **dsa) { return ASN1_d2i_bio_of(DSA, DSA_new, d2i_DSAPrivateKey, bp, dsa); } int i2d_DSAPrivateKey_bio(BIO *bp, const DSA *dsa) { return ASN1_i2d_bio_of(DSA, i2d_DSAPrivateKey, bp, dsa); } DSA *d2i_DSA_PUBKEY_bio(BIO *bp, DSA **dsa) { return ASN1_d2i_bio_of(DSA, DSA_new, d2i_DSA_PUBKEY, bp, dsa); } int i2d_DSA_PUBKEY_bio(BIO *bp, const DSA *dsa) { return ASN1_i2d_bio_of(DSA, i2d_DSA_PUBKEY, bp, dsa); } #endif #ifndef OPENSSL_NO_EC # ifndef OPENSSL_NO_STDIO EC_KEY *d2i_EC_PUBKEY_fp(FILE *fp, EC_KEY **eckey) { return ASN1_d2i_fp_of(EC_KEY, EC_KEY_new, d2i_EC_PUBKEY, fp, eckey); } int i2d_EC_PUBKEY_fp(FILE *fp, const EC_KEY *eckey) { return ASN1_i2d_fp_of(EC_KEY, i2d_EC_PUBKEY, fp, eckey); } EC_KEY *d2i_ECPrivateKey_fp(FILE *fp, EC_KEY **eckey) { return ASN1_d2i_fp_of(EC_KEY, EC_KEY_new, d2i_ECPrivateKey, fp, eckey); } int i2d_ECPrivateKey_fp(FILE *fp, const EC_KEY *eckey) { return ASN1_i2d_fp_of(EC_KEY, i2d_ECPrivateKey, fp, eckey); } # endif EC_KEY *d2i_EC_PUBKEY_bio(BIO *bp, EC_KEY **eckey) { return ASN1_d2i_bio_of(EC_KEY, EC_KEY_new, d2i_EC_PUBKEY, bp, eckey); } int i2d_EC_PUBKEY_bio(BIO *bp, const EC_KEY *ecdsa) { return ASN1_i2d_bio_of(EC_KEY, i2d_EC_PUBKEY, bp, ecdsa); } EC_KEY *d2i_ECPrivateKey_bio(BIO *bp, EC_KEY **eckey) { return ASN1_d2i_bio_of(EC_KEY, EC_KEY_new, d2i_ECPrivateKey, bp, eckey); } int i2d_ECPrivateKey_bio(BIO *bp, const EC_KEY *eckey) { return ASN1_i2d_bio_of(EC_KEY, i2d_ECPrivateKey, bp, eckey); } #endif int X509_pubkey_digest(const X509 *data, const EVP_MD *type, unsigned char *md, unsigned int *len) { ASN1_BIT_STRING *key = X509_get0_pubkey_bitstr(data); if (key == NULL) return 0; return EVP_Digest(key->data, key->length, md, len, type, NULL); } int X509_digest(const X509 *cert, const EVP_MD *md, unsigned char *data, unsigned int *len) { if (EVP_MD_is_a(md, SN_sha1) && (cert->ex_flags & EXFLAG_SET) != 0 && (cert->ex_flags & EXFLAG_NO_FINGERPRINT) == 0) { /* Asking for SHA1 and we already computed it. */ if (len != NULL) *len = sizeof(cert->sha1_hash); memcpy(data, cert->sha1_hash, sizeof(cert->sha1_hash)); return 1; } return ossl_asn1_item_digest_ex(ASN1_ITEM_rptr(X509), md, (char *)cert, data, len, cert->libctx, cert->propq); } /* calculate cert digest using the same hash algorithm as in its signature */ ASN1_OCTET_STRING *X509_digest_sig(const X509 *cert, EVP_MD **md_used, int *md_is_fallback) { unsigned int len; unsigned char hash[EVP_MAX_MD_SIZE]; int mdnid, pknid; EVP_MD *md = NULL; const char *md_name; ASN1_OCTET_STRING *new; if (md_used != NULL) *md_used = NULL; if (md_is_fallback != NULL) *md_is_fallback = 0; if (cert == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (!OBJ_find_sigid_algs(X509_get_signature_nid(cert), &mdnid, &pknid)) { ERR_raise(ERR_LIB_X509, X509_R_UNKNOWN_SIGID_ALGS); return NULL; } if (mdnid == NID_undef) { if (pknid == EVP_PKEY_RSA_PSS) { RSA_PSS_PARAMS *pss = ossl_rsa_pss_decode(&cert->sig_alg); const EVP_MD *mgf1md, *mmd = NULL; int saltlen, trailerfield; if (pss == NULL || !ossl_rsa_pss_get_param_unverified(pss, &mmd, &mgf1md, &saltlen, &trailerfield) || mmd == NULL) { RSA_PSS_PARAMS_free(pss); ERR_raise(ERR_LIB_X509, X509_R_UNSUPPORTED_ALGORITHM); return NULL; } RSA_PSS_PARAMS_free(pss); /* Fetch explicitly and do not fallback */ if ((md = EVP_MD_fetch(cert->libctx, EVP_MD_get0_name(mmd), cert->propq)) == NULL) /* Error code from fetch is sufficient */ return NULL; } else if (pknid != NID_undef) { /* A known algorithm, but without a digest */ switch (pknid) { case NID_ED25519: /* Follow CMS default given in RFC8419 */ md_name = "SHA512"; break; case NID_ED448: /* Follow CMS default given in RFC8419 */ md_name = "SHAKE256"; break; default: /* Fall back to SHA-256 */ md_name = "SHA256"; break; } if ((md = EVP_MD_fetch(cert->libctx, md_name, cert->propq)) == NULL) return NULL; if (md_is_fallback != NULL) *md_is_fallback = 1; } else { /* A completely unknown algorithm */ ERR_raise(ERR_LIB_X509, X509_R_UNSUPPORTED_ALGORITHM); return NULL; } } else if ((md = EVP_MD_fetch(cert->libctx, OBJ_nid2sn(mdnid), cert->propq)) == NULL && (md = (EVP_MD *)EVP_get_digestbynid(mdnid)) == NULL) { ERR_raise(ERR_LIB_X509, X509_R_UNSUPPORTED_ALGORITHM); return NULL; } if (!X509_digest(cert, md, hash, &len) || (new = ASN1_OCTET_STRING_new()) == NULL) goto err; if (ASN1_OCTET_STRING_set(new, hash, len)) { if (md_used != NULL) *md_used = md; else EVP_MD_free(md); return new; } ASN1_OCTET_STRING_free(new); err: EVP_MD_free(md); return NULL; } int X509_CRL_digest(const X509_CRL *data, const EVP_MD *type, unsigned char *md, unsigned int *len) { if (type == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (EVP_MD_is_a(type, SN_sha1) && (data->flags & EXFLAG_SET) != 0 && (data->flags & EXFLAG_NO_FINGERPRINT) == 0) { /* Asking for SHA1; always computed in CRL d2i. */ if (len != NULL) *len = sizeof(data->sha1_hash); memcpy(md, data->sha1_hash, sizeof(data->sha1_hash)); return 1; } return ossl_asn1_item_digest_ex(ASN1_ITEM_rptr(X509_CRL), type, (char *)data, md, len, data->libctx, data->propq); } int X509_REQ_digest(const X509_REQ *data, const EVP_MD *type, unsigned char *md, unsigned int *len) { return ossl_asn1_item_digest_ex(ASN1_ITEM_rptr(X509_REQ), type, (char *)data, md, len, data->libctx, data->propq); } int X509_NAME_digest(const X509_NAME *data, const EVP_MD *type, unsigned char *md, unsigned int *len) { return ASN1_item_digest(ASN1_ITEM_rptr(X509_NAME), type, (char *)data, md, len); } int PKCS7_ISSUER_AND_SERIAL_digest(PKCS7_ISSUER_AND_SERIAL *data, const EVP_MD *type, unsigned char *md, unsigned int *len) { return ASN1_item_digest(ASN1_ITEM_rptr(PKCS7_ISSUER_AND_SERIAL), type, (char *)data, md, len); } #ifndef OPENSSL_NO_STDIO X509_SIG *d2i_PKCS8_fp(FILE *fp, X509_SIG **p8) { return ASN1_d2i_fp_of(X509_SIG, X509_SIG_new, d2i_X509_SIG, fp, p8); } int i2d_PKCS8_fp(FILE *fp, const X509_SIG *p8) { return ASN1_i2d_fp_of(X509_SIG, i2d_X509_SIG, fp, p8); } #endif X509_SIG *d2i_PKCS8_bio(BIO *bp, X509_SIG **p8) { return ASN1_d2i_bio_of(X509_SIG, X509_SIG_new, d2i_X509_SIG, bp, p8); } int i2d_PKCS8_bio(BIO *bp, const X509_SIG *p8) { return ASN1_i2d_bio_of(X509_SIG, i2d_X509_SIG, bp, p8); } #ifndef OPENSSL_NO_STDIO X509_PUBKEY *d2i_X509_PUBKEY_fp(FILE *fp, X509_PUBKEY **xpk) { return ASN1_d2i_fp_of(X509_PUBKEY, X509_PUBKEY_new, d2i_X509_PUBKEY, fp, xpk); } int i2d_X509_PUBKEY_fp(FILE *fp, const X509_PUBKEY *xpk) { return ASN1_i2d_fp_of(X509_PUBKEY, i2d_X509_PUBKEY, fp, xpk); } #endif X509_PUBKEY *d2i_X509_PUBKEY_bio(BIO *bp, X509_PUBKEY **xpk) { return ASN1_d2i_bio_of(X509_PUBKEY, X509_PUBKEY_new, d2i_X509_PUBKEY, bp, xpk); } int i2d_X509_PUBKEY_bio(BIO *bp, const X509_PUBKEY *xpk) { return ASN1_i2d_bio_of(X509_PUBKEY, i2d_X509_PUBKEY, bp, xpk); } #ifndef OPENSSL_NO_STDIO PKCS8_PRIV_KEY_INFO *d2i_PKCS8_PRIV_KEY_INFO_fp(FILE *fp, PKCS8_PRIV_KEY_INFO **p8inf) { return ASN1_d2i_fp_of(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_new, d2i_PKCS8_PRIV_KEY_INFO, fp, p8inf); } int i2d_PKCS8_PRIV_KEY_INFO_fp(FILE *fp, const PKCS8_PRIV_KEY_INFO *p8inf) { return ASN1_i2d_fp_of(PKCS8_PRIV_KEY_INFO, i2d_PKCS8_PRIV_KEY_INFO, fp, p8inf); } int i2d_PKCS8PrivateKeyInfo_fp(FILE *fp, const EVP_PKEY *key) { PKCS8_PRIV_KEY_INFO *p8inf; int ret; p8inf = EVP_PKEY2PKCS8(key); if (p8inf == NULL) return 0; ret = i2d_PKCS8_PRIV_KEY_INFO_fp(fp, p8inf); PKCS8_PRIV_KEY_INFO_free(p8inf); return ret; } int i2d_PrivateKey_fp(FILE *fp, const EVP_PKEY *pkey) { return ASN1_i2d_fp_of(EVP_PKEY, i2d_PrivateKey, fp, pkey); } EVP_PKEY *d2i_PrivateKey_fp(FILE *fp, EVP_PKEY **a) { return ASN1_d2i_fp_of(EVP_PKEY, EVP_PKEY_new, d2i_AutoPrivateKey, fp, a); } EVP_PKEY *d2i_PrivateKey_ex_fp(FILE *fp, EVP_PKEY **a, OSSL_LIB_CTX *libctx, const char *propq) { BIO *b; void *ret; if ((b = BIO_new(BIO_s_file())) == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_BUF_LIB); return NULL; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = d2i_PrivateKey_ex_bio(b, a, libctx, propq); BIO_free(b); return ret; } int i2d_PUBKEY_fp(FILE *fp, const EVP_PKEY *pkey) { return ASN1_i2d_fp_of(EVP_PKEY, i2d_PUBKEY, fp, pkey); } EVP_PKEY *d2i_PUBKEY_ex_fp(FILE *fp, EVP_PKEY **a, OSSL_LIB_CTX *libctx, const char *propq) { BIO *b; void *ret; if ((b = BIO_new(BIO_s_file())) == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_BUF_LIB); return NULL; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = d2i_PUBKEY_ex_bio(b, a, libctx, propq); BIO_free(b); return ret; } EVP_PKEY *d2i_PUBKEY_fp(FILE *fp, EVP_PKEY **a) { return ASN1_d2i_fp_of(EVP_PKEY, EVP_PKEY_new, d2i_PUBKEY, fp, a); } #endif PKCS8_PRIV_KEY_INFO *d2i_PKCS8_PRIV_KEY_INFO_bio(BIO *bp, PKCS8_PRIV_KEY_INFO **p8inf) { return ASN1_d2i_bio_of(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_new, d2i_PKCS8_PRIV_KEY_INFO, bp, p8inf); } int i2d_PKCS8_PRIV_KEY_INFO_bio(BIO *bp, const PKCS8_PRIV_KEY_INFO *p8inf) { return ASN1_i2d_bio_of(PKCS8_PRIV_KEY_INFO, i2d_PKCS8_PRIV_KEY_INFO, bp, p8inf); } int i2d_PKCS8PrivateKeyInfo_bio(BIO *bp, const EVP_PKEY *key) { PKCS8_PRIV_KEY_INFO *p8inf; int ret; p8inf = EVP_PKEY2PKCS8(key); if (p8inf == NULL) return 0; ret = i2d_PKCS8_PRIV_KEY_INFO_bio(bp, p8inf); PKCS8_PRIV_KEY_INFO_free(p8inf); return ret; } int i2d_PrivateKey_bio(BIO *bp, const EVP_PKEY *pkey) { return ASN1_i2d_bio_of(EVP_PKEY, i2d_PrivateKey, bp, pkey); } EVP_PKEY *d2i_PrivateKey_bio(BIO *bp, EVP_PKEY **a) { return ASN1_d2i_bio_of(EVP_PKEY, EVP_PKEY_new, d2i_AutoPrivateKey, bp, a); } EVP_PKEY *d2i_PrivateKey_ex_bio(BIO *bp, EVP_PKEY **a, OSSL_LIB_CTX *libctx, const char *propq) { BUF_MEM *b = NULL; const unsigned char *p; void *ret = NULL; int len; len = asn1_d2i_read_bio(bp, &b); if (len < 0) goto err; p = (unsigned char *)b->data; ret = d2i_AutoPrivateKey_ex(a, &p, len, libctx, propq); err: BUF_MEM_free(b); return ret; } int i2d_PUBKEY_bio(BIO *bp, const EVP_PKEY *pkey) { return ASN1_i2d_bio_of(EVP_PKEY, i2d_PUBKEY, bp, pkey); } EVP_PKEY *d2i_PUBKEY_ex_bio(BIO *bp, EVP_PKEY **a, OSSL_LIB_CTX *libctx, const char *propq) { BUF_MEM *b = NULL; const unsigned char *p; void *ret = NULL; int len; len = asn1_d2i_read_bio(bp, &b); if (len < 0) goto err; p = (unsigned char *)b->data; ret = d2i_PUBKEY_ex(a, &p, len, libctx, propq); err: BUF_MEM_free(b); return ret; } EVP_PKEY *d2i_PUBKEY_bio(BIO *bp, EVP_PKEY **a) { return ASN1_d2i_bio_of(EVP_PKEY, EVP_PKEY_new, d2i_PUBKEY, bp, a); }
./openssl/crypto/x509/x509_def.c
/* * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/crypto.h> #include <openssl/x509.h> const char *X509_get_default_private_dir(void) { return X509_PRIVATE_DIR; } const char *X509_get_default_cert_area(void) { return X509_CERT_AREA; } const char *X509_get_default_cert_dir(void) { return X509_CERT_DIR; } const char *X509_get_default_cert_file(void) { return X509_CERT_FILE; } const char *X509_get_default_cert_dir_env(void) { return X509_CERT_DIR_EVP; } const char *X509_get_default_cert_file_env(void) { return X509_CERT_FILE_EVP; }
./openssl/crypto/x509/v3_sxnet.c
/* * Copyright 1999-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/conf.h> #include <openssl/asn1.h> #include <openssl/asn1t.h> #include <openssl/x509v3.h> #include "ext_dat.h" /* Support for Thawte strong extranet extension */ #define SXNET_TEST static int sxnet_i2r(X509V3_EXT_METHOD *method, SXNET *sx, BIO *out, int indent); #ifdef SXNET_TEST static SXNET *sxnet_v2i(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval); #endif const X509V3_EXT_METHOD ossl_v3_sxnet = { NID_sxnet, X509V3_EXT_MULTILINE, ASN1_ITEM_ref(SXNET), 0, 0, 0, 0, 0, 0, 0, #ifdef SXNET_TEST (X509V3_EXT_V2I)sxnet_v2i, #else 0, #endif (X509V3_EXT_I2R)sxnet_i2r, 0, NULL }; ASN1_SEQUENCE(SXNETID) = { ASN1_SIMPLE(SXNETID, zone, ASN1_INTEGER), ASN1_SIMPLE(SXNETID, user, ASN1_OCTET_STRING) } ASN1_SEQUENCE_END(SXNETID) IMPLEMENT_ASN1_FUNCTIONS(SXNETID) ASN1_SEQUENCE(SXNET) = { ASN1_SIMPLE(SXNET, version, ASN1_INTEGER), ASN1_SEQUENCE_OF(SXNET, ids, SXNETID) } ASN1_SEQUENCE_END(SXNET) IMPLEMENT_ASN1_FUNCTIONS(SXNET) static int sxnet_i2r(X509V3_EXT_METHOD *method, SXNET *sx, BIO *out, int indent) { int64_t v; char *tmp; SXNETID *id; int i; /* * Since we add 1 to the version number to display it, we don't support * LONG_MAX since that would cause on overflow. */ if (!ASN1_INTEGER_get_int64(&v, sx->version) || v >= LONG_MAX || v < LONG_MIN) { BIO_printf(out, "%*sVersion: <unsupported>", indent, ""); } else { long vl = (long)v; BIO_printf(out, "%*sVersion: %ld (0x%lX)", indent, "", vl + 1, vl); } for (i = 0; i < sk_SXNETID_num(sx->ids); i++) { id = sk_SXNETID_value(sx->ids, i); tmp = i2s_ASN1_INTEGER(NULL, id->zone); if (tmp == NULL) return 0; BIO_printf(out, "\n%*sZone: %s, User: ", indent, "", tmp); OPENSSL_free(tmp); ASN1_STRING_print(out, id->user); } return 1; } #ifdef SXNET_TEST /* * NBB: this is used for testing only. It should *not* be used for anything * else because it will just take static IDs from the configuration file and * they should really be separate values for each user. */ static SXNET *sxnet_v2i(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval) { CONF_VALUE *cnf; SXNET *sx = NULL; int i; for (i = 0; i < sk_CONF_VALUE_num(nval); i++) { cnf = sk_CONF_VALUE_value(nval, i); if (!SXNET_add_id_asc(&sx, cnf->name, cnf->value, -1)) { SXNET_free(sx); return NULL; } } return sx; } #endif /* Strong Extranet utility functions */ /* Add an id given the zone as an ASCII number */ int SXNET_add_id_asc(SXNET **psx, const char *zone, const char *user, int userlen) { ASN1_INTEGER *izone; if ((izone = s2i_ASN1_INTEGER(NULL, zone)) == NULL) { ERR_raise(ERR_LIB_X509V3, X509V3_R_ERROR_CONVERTING_ZONE); return 0; } if (!SXNET_add_id_INTEGER(psx, izone, user, userlen)) { ASN1_INTEGER_free(izone); return 0; } return 1; } /* Add an id given the zone as an unsigned long */ int SXNET_add_id_ulong(SXNET **psx, unsigned long lzone, const char *user, int userlen) { ASN1_INTEGER *izone; if ((izone = ASN1_INTEGER_new()) == NULL || !ASN1_INTEGER_set(izone, lzone)) { ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB); ASN1_INTEGER_free(izone); return 0; } if (!SXNET_add_id_INTEGER(psx, izone, user, userlen)) { ASN1_INTEGER_free(izone); return 0; } return 1; } /* * Add an id given the zone as an ASN1_INTEGER. Note this version uses the * passed integer and doesn't make a copy so don't free it up afterwards. */ int SXNET_add_id_INTEGER(SXNET **psx, ASN1_INTEGER *zone, const char *user, int userlen) { SXNET *sx = NULL; SXNETID *id = NULL; if (psx == NULL || zone == NULL || user == NULL) { ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_NULL_ARGUMENT); return 0; } if (userlen == -1) userlen = strlen(user); if (userlen > 64) { ERR_raise(ERR_LIB_X509V3, X509V3_R_USER_TOO_LONG); return 0; } if (*psx == NULL) { if ((sx = SXNET_new()) == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB); goto err; } if (!ASN1_INTEGER_set(sx->version, 0)) { ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB); goto err; } } else sx = *psx; if (SXNET_get_id_INTEGER(sx, zone)) { ERR_raise(ERR_LIB_X509V3, X509V3_R_DUPLICATE_ZONE_ID); if (*psx == NULL) SXNET_free(sx); return 0; } if ((id = SXNETID_new()) == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB); goto err; } if (!ASN1_OCTET_STRING_set(id->user, (const unsigned char *)user, userlen)){ ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB); goto err; } if (!sk_SXNETID_push(sx->ids, id)) { ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB); goto err; } ASN1_INTEGER_free(id->zone); id->zone = zone; *psx = sx; return 1; err: SXNETID_free(id); if (*psx == NULL) SXNET_free(sx); return 0; } ASN1_OCTET_STRING *SXNET_get_id_asc(SXNET *sx, const char *zone) { ASN1_INTEGER *izone; ASN1_OCTET_STRING *oct; if ((izone = s2i_ASN1_INTEGER(NULL, zone)) == NULL) { ERR_raise(ERR_LIB_X509V3, X509V3_R_ERROR_CONVERTING_ZONE); return NULL; } oct = SXNET_get_id_INTEGER(sx, izone); ASN1_INTEGER_free(izone); return oct; } ASN1_OCTET_STRING *SXNET_get_id_ulong(SXNET *sx, unsigned long lzone) { ASN1_INTEGER *izone; ASN1_OCTET_STRING *oct; if ((izone = ASN1_INTEGER_new()) == NULL || !ASN1_INTEGER_set(izone, lzone)) { ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB); ASN1_INTEGER_free(izone); return NULL; } oct = SXNET_get_id_INTEGER(sx, izone); ASN1_INTEGER_free(izone); return oct; } ASN1_OCTET_STRING *SXNET_get_id_INTEGER(SXNET *sx, ASN1_INTEGER *zone) { SXNETID *id; int i; for (i = 0; i < sk_SXNETID_num(sx->ids); i++) { id = sk_SXNETID_value(sx->ids, i); if (!ASN1_INTEGER_cmp(id->zone, zone)) return id->user; } return NULL; }
./openssl/crypto/x509/x_req.c
/* * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/asn1t.h> #include <openssl/x509.h> #include "crypto/x509.h" /*- * X509_REQ_INFO is handled in an unusual way to get round * invalid encodings. Some broken certificate requests don't * encode the attributes field if it is empty. This is in * violation of PKCS#10 but we need to tolerate it. We do * this by making the attributes field OPTIONAL then using * the callback to initialise it to an empty STACK. * * This means that the field will be correctly encoded unless * we NULL out the field. * * As a result we no longer need the req_kludge field because * the information is now contained in the attributes field: * 1. If it is NULL then it's the invalid omission. * 2. If it is empty it is the correct encoding. * 3. If it is not empty then some attributes are present. * */ static int rinf_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { X509_REQ_INFO *rinf = (X509_REQ_INFO *)*pval; if (operation == ASN1_OP_NEW_POST) { rinf->attributes = sk_X509_ATTRIBUTE_new_null(); if (!rinf->attributes) return 0; } return 1; } static int req_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { X509_REQ *ret = (X509_REQ *)*pval; switch (operation) { case ASN1_OP_D2I_PRE: ASN1_OCTET_STRING_free(ret->distinguishing_id); /* fall through */ case ASN1_OP_NEW_POST: ret->distinguishing_id = NULL; break; case ASN1_OP_FREE_POST: ASN1_OCTET_STRING_free(ret->distinguishing_id); OPENSSL_free(ret->propq); break; case ASN1_OP_DUP_POST: { X509_REQ *old = exarg; if (!ossl_x509_req_set0_libctx(ret, old->libctx, old->propq)) return 0; if (old->req_info.pubkey != NULL) { EVP_PKEY *pkey = X509_PUBKEY_get0(old->req_info.pubkey); if (pkey != NULL) { pkey = EVP_PKEY_dup(pkey); if (pkey == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_EVP_LIB); return 0; } if (!X509_PUBKEY_set(&ret->req_info.pubkey, pkey)) { EVP_PKEY_free(pkey); ERR_raise(ERR_LIB_X509, ERR_R_INTERNAL_ERROR); return 0; } EVP_PKEY_free(pkey); } } } break; case ASN1_OP_GET0_LIBCTX: { OSSL_LIB_CTX **libctx = exarg; *libctx = ret->libctx; } break; case ASN1_OP_GET0_PROPQ: { const char **propq = exarg; *propq = ret->propq; } break; } return 1; } ASN1_SEQUENCE_enc(X509_REQ_INFO, enc, rinf_cb) = { ASN1_SIMPLE(X509_REQ_INFO, version, ASN1_INTEGER), ASN1_SIMPLE(X509_REQ_INFO, subject, X509_NAME), ASN1_SIMPLE(X509_REQ_INFO, pubkey, X509_PUBKEY), /* This isn't really OPTIONAL but it gets round invalid * encodings */ ASN1_IMP_SET_OF_OPT(X509_REQ_INFO, attributes, X509_ATTRIBUTE, 0) } ASN1_SEQUENCE_END_enc(X509_REQ_INFO, X509_REQ_INFO) IMPLEMENT_ASN1_FUNCTIONS(X509_REQ_INFO) ASN1_SEQUENCE_ref(X509_REQ, req_cb) = { ASN1_EMBED(X509_REQ, req_info, X509_REQ_INFO), ASN1_EMBED(X509_REQ, sig_alg, X509_ALGOR), ASN1_SIMPLE(X509_REQ, signature, ASN1_BIT_STRING) } ASN1_SEQUENCE_END_ref(X509_REQ, X509_REQ) IMPLEMENT_ASN1_FUNCTIONS(X509_REQ) IMPLEMENT_ASN1_DUP_FUNCTION(X509_REQ) void X509_REQ_set0_distinguishing_id(X509_REQ *x, ASN1_OCTET_STRING *d_id) { ASN1_OCTET_STRING_free(x->distinguishing_id); x->distinguishing_id = d_id; } ASN1_OCTET_STRING *X509_REQ_get0_distinguishing_id(X509_REQ *x) { return x->distinguishing_id; } /* * This should only be used if the X509_REQ object was embedded inside another * asn1 object and it needs a libctx to operate. * Use X509_REQ_new_ex() instead if possible. */ int ossl_x509_req_set0_libctx(X509_REQ *x, OSSL_LIB_CTX *libctx, const char *propq) { if (x != NULL) { x->libctx = libctx; OPENSSL_free(x->propq); x->propq = NULL; if (propq != NULL) { x->propq = OPENSSL_strdup(propq); if (x->propq == NULL) return 0; } } return 1; } X509_REQ *X509_REQ_new_ex(OSSL_LIB_CTX *libctx, const char *propq) { X509_REQ *req = NULL; req = (X509_REQ *)ASN1_item_new((X509_REQ_it())); if (!ossl_x509_req_set0_libctx(req, libctx, propq)) { X509_REQ_free(req); req = NULL; } return req; }
./openssl/crypto/x509/v3_genn.c
/* * Copyright 1999-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/asn1t.h> #include <openssl/conf.h> #include <openssl/x509v3.h> ASN1_SEQUENCE(OTHERNAME) = { ASN1_SIMPLE(OTHERNAME, type_id, ASN1_OBJECT), /* Maybe have a true ANY DEFINED BY later */ ASN1_EXP(OTHERNAME, value, ASN1_ANY, 0) } ASN1_SEQUENCE_END(OTHERNAME) IMPLEMENT_ASN1_FUNCTIONS(OTHERNAME) ASN1_SEQUENCE(EDIPARTYNAME) = { /* DirectoryString is a CHOICE type so use explicit tagging */ ASN1_EXP_OPT(EDIPARTYNAME, nameAssigner, DIRECTORYSTRING, 0), ASN1_EXP(EDIPARTYNAME, partyName, DIRECTORYSTRING, 1) } ASN1_SEQUENCE_END(EDIPARTYNAME) IMPLEMENT_ASN1_FUNCTIONS(EDIPARTYNAME) ASN1_CHOICE(GENERAL_NAME) = { ASN1_IMP(GENERAL_NAME, d.otherName, OTHERNAME, GEN_OTHERNAME), ASN1_IMP(GENERAL_NAME, d.rfc822Name, ASN1_IA5STRING, GEN_EMAIL), ASN1_IMP(GENERAL_NAME, d.dNSName, ASN1_IA5STRING, GEN_DNS), /* Don't decode this */ ASN1_IMP(GENERAL_NAME, d.x400Address, ASN1_SEQUENCE, GEN_X400), /* X509_NAME is a CHOICE type so use EXPLICIT */ ASN1_EXP(GENERAL_NAME, d.directoryName, X509_NAME, GEN_DIRNAME), ASN1_IMP(GENERAL_NAME, d.ediPartyName, EDIPARTYNAME, GEN_EDIPARTY), ASN1_IMP(GENERAL_NAME, d.uniformResourceIdentifier, ASN1_IA5STRING, GEN_URI), ASN1_IMP(GENERAL_NAME, d.iPAddress, ASN1_OCTET_STRING, GEN_IPADD), ASN1_IMP(GENERAL_NAME, d.registeredID, ASN1_OBJECT, GEN_RID) } ASN1_CHOICE_END(GENERAL_NAME) IMPLEMENT_ASN1_FUNCTIONS(GENERAL_NAME) ASN1_ITEM_TEMPLATE(GENERAL_NAMES) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, GeneralNames, GENERAL_NAME) ASN1_ITEM_TEMPLATE_END(GENERAL_NAMES) IMPLEMENT_ASN1_FUNCTIONS(GENERAL_NAMES) GENERAL_NAME *GENERAL_NAME_dup(const GENERAL_NAME *a) { return (GENERAL_NAME *)ASN1_dup((i2d_of_void *)i2d_GENERAL_NAME, (d2i_of_void *)d2i_GENERAL_NAME, (char *)a); } static int edipartyname_cmp(const EDIPARTYNAME *a, const EDIPARTYNAME *b) { int res; if (a == NULL || b == NULL) { /* * Shouldn't be possible in a valid GENERAL_NAME, but we handle it * anyway. OTHERNAME_cmp treats NULL != NULL so we do the same here */ return -1; } if (a->nameAssigner == NULL && b->nameAssigner != NULL) return -1; if (a->nameAssigner != NULL && b->nameAssigner == NULL) return 1; /* If we get here then both have nameAssigner set, or both unset */ if (a->nameAssigner != NULL) { res = ASN1_STRING_cmp(a->nameAssigner, b->nameAssigner); if (res != 0) return res; } /* * partyName is required, so these should never be NULL. We treat it in * the same way as the a == NULL || b == NULL case above */ if (a->partyName == NULL || b->partyName == NULL) return -1; return ASN1_STRING_cmp(a->partyName, b->partyName); } /* Returns 0 if they are equal, != 0 otherwise. */ int GENERAL_NAME_cmp(GENERAL_NAME *a, GENERAL_NAME *b) { int result = -1; if (!a || !b || a->type != b->type) return -1; switch (a->type) { case GEN_X400: result = ASN1_STRING_cmp(a->d.x400Address, b->d.x400Address); break; case GEN_EDIPARTY: result = edipartyname_cmp(a->d.ediPartyName, b->d.ediPartyName); break; case GEN_OTHERNAME: result = OTHERNAME_cmp(a->d.otherName, b->d.otherName); break; case GEN_EMAIL: case GEN_DNS: case GEN_URI: result = ASN1_STRING_cmp(a->d.ia5, b->d.ia5); break; case GEN_DIRNAME: result = X509_NAME_cmp(a->d.dirn, b->d.dirn); break; case GEN_IPADD: result = ASN1_OCTET_STRING_cmp(a->d.ip, b->d.ip); break; case GEN_RID: result = OBJ_cmp(a->d.rid, b->d.rid); break; } return result; } /* Returns 0 if they are equal, != 0 otherwise. */ int OTHERNAME_cmp(OTHERNAME *a, OTHERNAME *b) { int result = -1; if (!a || !b) return -1; /* Check their type first. */ if ((result = OBJ_cmp(a->type_id, b->type_id)) != 0) return result; /* Check the value. */ result = ASN1_TYPE_cmp(a->value, b->value); return result; } void GENERAL_NAME_set0_value(GENERAL_NAME *a, int type, void *value) { switch (type) { case GEN_X400: a->d.x400Address = value; break; case GEN_EDIPARTY: a->d.ediPartyName = value; break; case GEN_OTHERNAME: a->d.otherName = value; break; case GEN_EMAIL: case GEN_DNS: case GEN_URI: a->d.ia5 = value; break; case GEN_DIRNAME: a->d.dirn = value; break; case GEN_IPADD: a->d.ip = value; break; case GEN_RID: a->d.rid = value; break; } a->type = type; } void *GENERAL_NAME_get0_value(const GENERAL_NAME *a, int *ptype) { if (ptype) *ptype = a->type; switch (a->type) { case GEN_X400: return a->d.x400Address; case GEN_EDIPARTY: return a->d.ediPartyName; case GEN_OTHERNAME: return a->d.otherName; case GEN_EMAIL: case GEN_DNS: case GEN_URI: return a->d.ia5; case GEN_DIRNAME: return a->d.dirn; case GEN_IPADD: return a->d.ip; case GEN_RID: return a->d.rid; default: return NULL; } } int GENERAL_NAME_set0_othername(GENERAL_NAME *gen, ASN1_OBJECT *oid, ASN1_TYPE *value) { OTHERNAME *oth; oth = OTHERNAME_new(); if (oth == NULL) return 0; ASN1_TYPE_free(oth->value); oth->type_id = oid; oth->value = value; GENERAL_NAME_set0_value(gen, GEN_OTHERNAME, oth); return 1; } int GENERAL_NAME_get0_otherName(const GENERAL_NAME *gen, ASN1_OBJECT **poid, ASN1_TYPE **pvalue) { if (gen->type != GEN_OTHERNAME) return 0; if (poid) *poid = gen->d.otherName->type_id; if (pvalue) *pvalue = gen->d.otherName->value; return 1; }
./openssl/crypto/x509/v3_conf.c
/* * Copyright 1999-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* extension creation utilities */ #include <stdio.h> #include "crypto/ctype.h" #include "internal/cryptlib.h" #include <openssl/conf.h> #include <openssl/x509.h> #include "crypto/x509.h" #include <openssl/x509v3.h> static int v3_check_critical(const char **value); static int v3_check_generic(const char **value); static X509_EXTENSION *do_ext_nconf(CONF *conf, X509V3_CTX *ctx, int ext_nid, int crit, const char *value); static X509_EXTENSION *v3_generic_extension(const char *ext, const char *value, int crit, int type, X509V3_CTX *ctx); static char *conf_lhash_get_string(void *db, const char *section, const char *value); static STACK_OF(CONF_VALUE) *conf_lhash_get_section(void *db, const char *section); static X509_EXTENSION *do_ext_i2d(const X509V3_EXT_METHOD *method, int ext_nid, int crit, void *ext_struc); static unsigned char *generic_asn1(const char *value, X509V3_CTX *ctx, long *ext_len); static X509_EXTENSION *X509V3_EXT_nconf_int(CONF *conf, X509V3_CTX *ctx, const char *section, const char *name, const char *value) { int crit; int ext_type; X509_EXTENSION *ret; crit = v3_check_critical(&value); if ((ext_type = v3_check_generic(&value))) return v3_generic_extension(name, value, crit, ext_type, ctx); ret = do_ext_nconf(conf, ctx, OBJ_sn2nid(name), crit, value); if (!ret) { if (section != NULL) ERR_raise_data(ERR_LIB_X509V3, X509V3_R_ERROR_IN_EXTENSION, "section=%s, name=%s, value=%s", section, name, value); else ERR_raise_data(ERR_LIB_X509V3, X509V3_R_ERROR_IN_EXTENSION, "name=%s, value=%s", name, value); } return ret; } X509_EXTENSION *X509V3_EXT_nconf(CONF *conf, X509V3_CTX *ctx, const char *name, const char *value) { return X509V3_EXT_nconf_int(conf, ctx, NULL, name, value); } X509_EXTENSION *X509V3_EXT_nconf_nid(CONF *conf, X509V3_CTX *ctx, int ext_nid, const char *value) { int crit; int ext_type; crit = v3_check_critical(&value); if ((ext_type = v3_check_generic(&value))) return v3_generic_extension(OBJ_nid2sn(ext_nid), value, crit, ext_type, ctx); return do_ext_nconf(conf, ctx, ext_nid, crit, value); } /* CONF *conf: Config file */ /* char *value: Value */ static X509_EXTENSION *do_ext_nconf(CONF *conf, X509V3_CTX *ctx, int ext_nid, int crit, const char *value) { const X509V3_EXT_METHOD *method; X509_EXTENSION *ext; STACK_OF(CONF_VALUE) *nval; void *ext_struc; if (ext_nid == NID_undef) { ERR_raise(ERR_LIB_X509V3, X509V3_R_UNKNOWN_EXTENSION_NAME); return NULL; } if ((method = X509V3_EXT_get_nid(ext_nid)) == NULL) { ERR_raise(ERR_LIB_X509V3, X509V3_R_UNKNOWN_EXTENSION); return NULL; } /* Now get internal extension representation based on type */ if (method->v2i) { if (*value == '@') nval = NCONF_get_section(conf, value + 1); else nval = X509V3_parse_list(value); if (nval == NULL || sk_CONF_VALUE_num(nval) <= 0) { ERR_raise_data(ERR_LIB_X509V3, X509V3_R_INVALID_EXTENSION_STRING, "name=%s,section=%s", OBJ_nid2sn(ext_nid), value); if (*value != '@') sk_CONF_VALUE_pop_free(nval, X509V3_conf_free); return NULL; } ext_struc = method->v2i(method, ctx, nval); if (*value != '@') sk_CONF_VALUE_pop_free(nval, X509V3_conf_free); if (!ext_struc) return NULL; } else if (method->s2i) { if ((ext_struc = method->s2i(method, ctx, value)) == NULL) return NULL; } else if (method->r2i) { if (!ctx->db || !ctx->db_meth) { ERR_raise(ERR_LIB_X509V3, X509V3_R_NO_CONFIG_DATABASE); return NULL; } if ((ext_struc = method->r2i(method, ctx, value)) == NULL) return NULL; } else { ERR_raise_data(ERR_LIB_X509V3, X509V3_R_EXTENSION_SETTING_NOT_SUPPORTED, "name=%s", OBJ_nid2sn(ext_nid)); return NULL; } ext = do_ext_i2d(method, ext_nid, crit, ext_struc); if (method->it) ASN1_item_free(ext_struc, ASN1_ITEM_ptr(method->it)); else method->ext_free(ext_struc); return ext; } static X509_EXTENSION *do_ext_i2d(const X509V3_EXT_METHOD *method, int ext_nid, int crit, void *ext_struc) { unsigned char *ext_der = NULL; int ext_len; ASN1_OCTET_STRING *ext_oct = NULL; X509_EXTENSION *ext; /* Convert internal representation to DER */ if (method->it) { ext_der = NULL; ext_len = ASN1_item_i2d(ext_struc, &ext_der, ASN1_ITEM_ptr(method->it)); if (ext_len < 0) { ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB); goto err; } } else { unsigned char *p; ext_len = method->i2d(ext_struc, NULL); if (ext_len <= 0) { ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB); goto err; } if ((ext_der = OPENSSL_malloc(ext_len)) == NULL) goto err; p = ext_der; method->i2d(ext_struc, &p); } if ((ext_oct = ASN1_OCTET_STRING_new()) == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB); goto err; } ext_oct->data = ext_der; ext_der = NULL; ext_oct->length = ext_len; ext = X509_EXTENSION_create_by_NID(NULL, ext_nid, crit, ext_oct); if (!ext) { ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB); goto err; } ASN1_OCTET_STRING_free(ext_oct); return ext; err: OPENSSL_free(ext_der); ASN1_OCTET_STRING_free(ext_oct); return NULL; } /* Given an internal structure, nid and critical flag create an extension */ X509_EXTENSION *X509V3_EXT_i2d(int ext_nid, int crit, void *ext_struc) { const X509V3_EXT_METHOD *method; if ((method = X509V3_EXT_get_nid(ext_nid)) == NULL) { ERR_raise(ERR_LIB_X509V3, X509V3_R_UNKNOWN_EXTENSION); return NULL; } return do_ext_i2d(method, ext_nid, crit, ext_struc); } /* Check the extension string for critical flag */ static int v3_check_critical(const char **value) { const char *p = *value; if (!CHECK_AND_SKIP_PREFIX(p, "critical,")) return 0; while (ossl_isspace(*p)) p++; *value = p; return 1; } /* Check extension string for generic extension and return the type */ static int v3_check_generic(const char **value) { int gen_type = 0; const char *p = *value; if (CHECK_AND_SKIP_PREFIX(p, "DER:")) { gen_type = 1; } else if (CHECK_AND_SKIP_PREFIX(p, "ASN1:")) { gen_type = 2; } else return 0; while (ossl_isspace(*p)) p++; *value = p; return gen_type; } /* Create a generic extension: for now just handle DER type */ static X509_EXTENSION *v3_generic_extension(const char *ext, const char *value, int crit, int gen_type, X509V3_CTX *ctx) { unsigned char *ext_der = NULL; long ext_len = 0; ASN1_OBJECT *obj = NULL; ASN1_OCTET_STRING *oct = NULL; X509_EXTENSION *extension = NULL; if ((obj = OBJ_txt2obj(ext, 0)) == NULL) { ERR_raise_data(ERR_LIB_X509V3, X509V3_R_EXTENSION_NAME_ERROR, "name=%s", ext); goto err; } if (gen_type == 1) ext_der = OPENSSL_hexstr2buf(value, &ext_len); else if (gen_type == 2) ext_der = generic_asn1(value, ctx, &ext_len); if (ext_der == NULL) { ERR_raise_data(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR, "value=%s", value); goto err; } if ((oct = ASN1_OCTET_STRING_new()) == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB); goto err; } oct->data = ext_der; oct->length = ext_len; ext_der = NULL; extension = X509_EXTENSION_create_by_OBJ(NULL, obj, crit, oct); err: ASN1_OBJECT_free(obj); ASN1_OCTET_STRING_free(oct); OPENSSL_free(ext_der); return extension; } static unsigned char *generic_asn1(const char *value, X509V3_CTX *ctx, long *ext_len) { ASN1_TYPE *typ; unsigned char *ext_der = NULL; typ = ASN1_generate_v3(value, ctx); if (typ == NULL) return NULL; *ext_len = i2d_ASN1_TYPE(typ, &ext_der); ASN1_TYPE_free(typ); return ext_der; } static void delete_ext(STACK_OF(X509_EXTENSION) *sk, X509_EXTENSION *dext) { int idx; ASN1_OBJECT *obj; obj = X509_EXTENSION_get_object(dext); while ((idx = X509v3_get_ext_by_OBJ(sk, obj, -1)) >= 0) X509_EXTENSION_free(X509v3_delete_ext(sk, idx)); } /* * This is the main function: add a bunch of extensions based on a config * file section to an extension STACK. Just check in case sk == NULL. * Note that on error new elements may have been added to *sk if sk != NULL. */ int X509V3_EXT_add_nconf_sk(CONF *conf, X509V3_CTX *ctx, const char *section, STACK_OF(X509_EXTENSION) **sk) { X509_EXTENSION *ext; STACK_OF(CONF_VALUE) *nval; const CONF_VALUE *val; int i, akid = -1, skid = -1; if ((nval = NCONF_get_section(conf, section)) == NULL) return 0; for (i = 0; i < sk_CONF_VALUE_num(nval); i++) { val = sk_CONF_VALUE_value(nval, i); if (strcmp(val->name, "authorityKeyIdentifier") == 0) akid = i; else if (strcmp(val->name, "subjectKeyIdentifier") == 0) skid = i; } for (i = 0; i < sk_CONF_VALUE_num(nval); i++) { val = sk_CONF_VALUE_value(nval, i); if (skid > akid && akid >= 0) { /* make sure SKID is handled before AKID */ if (i == akid) val = sk_CONF_VALUE_value(nval, skid); else if (i == skid) val = sk_CONF_VALUE_value(nval, akid); } if ((ext = X509V3_EXT_nconf_int(conf, ctx, val->section, val->name, val->value)) == NULL) return 0; if (sk != NULL) { if (ctx->flags == X509V3_CTX_REPLACE) delete_ext(*sk, ext); if (X509v3_add_ext(sk, ext, -1) == NULL) { X509_EXTENSION_free(ext); return 0; } } X509_EXTENSION_free(ext); } return 1; } /* * Add extensions to a certificate. Just check in case cert == NULL. * Note that on error new elements may remain added to cert if cert != NULL. */ int X509V3_EXT_add_nconf(CONF *conf, X509V3_CTX *ctx, const char *section, X509 *cert) { STACK_OF(X509_EXTENSION) **sk = NULL; if (cert != NULL) sk = &cert->cert_info.extensions; return X509V3_EXT_add_nconf_sk(conf, ctx, section, sk); } /* * Add extensions to a CRL. Just check in case crl == NULL. * Note that on error new elements may remain added to crl if crl != NULL. */ int X509V3_EXT_CRL_add_nconf(CONF *conf, X509V3_CTX *ctx, const char *section, X509_CRL *crl) { STACK_OF(X509_EXTENSION) **sk = NULL; if (crl != NULL) sk = &crl->crl.extensions; return X509V3_EXT_add_nconf_sk(conf, ctx, section, sk); } /* * Add extensions to certificate request. Just check in case req is NULL. * Note that on error new elements may remain added to req if req != NULL. */ int X509V3_EXT_REQ_add_nconf(CONF *conf, X509V3_CTX *ctx, const char *section, X509_REQ *req) { STACK_OF(X509_EXTENSION) *exts = NULL; int ret = X509V3_EXT_add_nconf_sk(conf, ctx, section, &exts); if (ret && req != NULL && exts != NULL) ret = X509_REQ_add_extensions(req, exts); sk_X509_EXTENSION_pop_free(exts, X509_EXTENSION_free); return ret; } /* Config database functions */ char *X509V3_get_string(X509V3_CTX *ctx, const char *name, const char *section) { if (!ctx->db || !ctx->db_meth || !ctx->db_meth->get_string) { ERR_raise(ERR_LIB_X509V3, X509V3_R_OPERATION_NOT_DEFINED); return NULL; } if (ctx->db_meth->get_string) return ctx->db_meth->get_string(ctx->db, name, section); return NULL; } STACK_OF(CONF_VALUE) *X509V3_get_section(X509V3_CTX *ctx, const char *section) { if (!ctx->db || !ctx->db_meth || !ctx->db_meth->get_section) { ERR_raise(ERR_LIB_X509V3, X509V3_R_OPERATION_NOT_DEFINED); return NULL; } if (ctx->db_meth->get_section) return ctx->db_meth->get_section(ctx->db, section); return NULL; } void X509V3_string_free(X509V3_CTX *ctx, char *str) { if (!str) return; if (ctx->db_meth->free_string) ctx->db_meth->free_string(ctx->db, str); } void X509V3_section_free(X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *section) { if (!section) return; if (ctx->db_meth->free_section) ctx->db_meth->free_section(ctx->db, section); } static char *nconf_get_string(void *db, const char *section, const char *value) { return NCONF_get_string(db, section, value); } static STACK_OF(CONF_VALUE) *nconf_get_section(void *db, const char *section) { return NCONF_get_section(db, section); } static X509V3_CONF_METHOD nconf_method = { nconf_get_string, nconf_get_section, NULL, NULL }; void X509V3_set_nconf(X509V3_CTX *ctx, CONF *conf) { if (ctx == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_PASSED_NULL_PARAMETER); return; } ctx->db_meth = &nconf_method; ctx->db = conf; } void X509V3_set_ctx(X509V3_CTX *ctx, X509 *issuer, X509 *subj, X509_REQ *req, X509_CRL *crl, int flags) { if (ctx == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_PASSED_NULL_PARAMETER); return; } ctx->flags = flags; ctx->issuer_cert = issuer; ctx->subject_cert = subj; ctx->subject_req = req; ctx->crl = crl; ctx->db_meth = NULL; ctx->db = NULL; ctx->issuer_pkey = NULL; } /* For API backward compatibility, this is separate from X509V3_set_ctx() */ int X509V3_set_issuer_pkey(X509V3_CTX *ctx, EVP_PKEY *pkey) { if (ctx == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (ctx->subject_cert == NULL && pkey != NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_PASSED_INVALID_ARGUMENT); return 0; } ctx->issuer_pkey = pkey; return 1; } /* Old conf compatibility functions */ X509_EXTENSION *X509V3_EXT_conf(LHASH_OF(CONF_VALUE) *conf, X509V3_CTX *ctx, const char *name, const char *value) { CONF *ctmp; X509_EXTENSION *ret; if ((ctmp = NCONF_new(NULL)) == NULL) return NULL; CONF_set_nconf(ctmp, conf); ret = X509V3_EXT_nconf(ctmp, ctx, name, value); CONF_set_nconf(ctmp, NULL); NCONF_free(ctmp); return ret; } X509_EXTENSION *X509V3_EXT_conf_nid(LHASH_OF(CONF_VALUE) *conf, X509V3_CTX *ctx, int ext_nid, const char *value) { CONF *ctmp; X509_EXTENSION *ret; if ((ctmp = NCONF_new(NULL)) == NULL) return NULL; CONF_set_nconf(ctmp, conf); ret = X509V3_EXT_nconf_nid(ctmp, ctx, ext_nid, value); CONF_set_nconf(ctmp, NULL); NCONF_free(ctmp); return ret; } static char *conf_lhash_get_string(void *db, const char *section, const char *value) { return CONF_get_string(db, section, value); } static STACK_OF(CONF_VALUE) *conf_lhash_get_section(void *db, const char *section) { return CONF_get_section(db, section); } static X509V3_CONF_METHOD conf_lhash_method = { conf_lhash_get_string, conf_lhash_get_section, NULL, NULL }; void X509V3_set_conf_lhash(X509V3_CTX *ctx, LHASH_OF(CONF_VALUE) *lhash) { if (ctx == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_PASSED_NULL_PARAMETER); return; } ctx->db_meth = &conf_lhash_method; ctx->db = lhash; } int X509V3_EXT_add_conf(LHASH_OF(CONF_VALUE) *conf, X509V3_CTX *ctx, const char *section, X509 *cert) { CONF *ctmp; int ret; if ((ctmp = NCONF_new(NULL)) == NULL) return 0; CONF_set_nconf(ctmp, conf); ret = X509V3_EXT_add_nconf(ctmp, ctx, section, cert); CONF_set_nconf(ctmp, NULL); NCONF_free(ctmp); return ret; } /* Same as above but for a CRL */ int X509V3_EXT_CRL_add_conf(LHASH_OF(CONF_VALUE) *conf, X509V3_CTX *ctx, const char *section, X509_CRL *crl) { CONF *ctmp; int ret; if ((ctmp = NCONF_new(NULL)) == NULL) return 0; CONF_set_nconf(ctmp, conf); ret = X509V3_EXT_CRL_add_nconf(ctmp, ctx, section, crl); CONF_set_nconf(ctmp, NULL); NCONF_free(ctmp); return ret; } /* Add extensions to certificate request */ int X509V3_EXT_REQ_add_conf(LHASH_OF(CONF_VALUE) *conf, X509V3_CTX *ctx, const char *section, X509_REQ *req) { CONF *ctmp; int ret; if ((ctmp = NCONF_new(NULL)) == NULL) return 0; CONF_set_nconf(ctmp, conf); ret = X509V3_EXT_REQ_add_nconf(ctmp, ctx, section, req); CONF_set_nconf(ctmp, NULL); NCONF_free(ctmp); return ret; }
./openssl/crypto/x509/v3_int.c
/* * Copyright 1999-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/x509v3.h> #include "ext_dat.h" const X509V3_EXT_METHOD ossl_v3_crl_num = { NID_crl_number, 0, ASN1_ITEM_ref(ASN1_INTEGER), 0, 0, 0, 0, (X509V3_EXT_I2S)i2s_ASN1_INTEGER, 0, 0, 0, 0, 0, NULL }; const X509V3_EXT_METHOD ossl_v3_delta_crl = { NID_delta_crl, 0, ASN1_ITEM_ref(ASN1_INTEGER), 0, 0, 0, 0, (X509V3_EXT_I2S)i2s_ASN1_INTEGER, 0, 0, 0, 0, 0, NULL }; static void *s2i_asn1_int(X509V3_EXT_METHOD *meth, X509V3_CTX *ctx, const char *value) { return s2i_ASN1_INTEGER(meth, value); } const X509V3_EXT_METHOD ossl_v3_inhibit_anyp = { NID_inhibit_any_policy, 0, ASN1_ITEM_ref(ASN1_INTEGER), 0, 0, 0, 0, (X509V3_EXT_I2S)i2s_ASN1_INTEGER, (X509V3_EXT_S2I)s2i_asn1_int, 0, 0, 0, 0, NULL };
./openssl/crypto/x509/v3err.c
/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <openssl/err.h> #include <openssl/x509v3err.h> #include "crypto/x509v3err.h" #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA X509V3_str_reasons[] = { {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_BAD_IP_ADDRESS), "bad ip address"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_BAD_OBJECT), "bad object"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_BAD_OPTION), "bad option"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_BAD_VALUE), "bad value"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_BN_DEC2BN_ERROR), "bn dec2bn error"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_BN_TO_ASN1_INTEGER_ERROR), "bn to asn1 integer error"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_DIRNAME_ERROR), "dirname error"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_DISTPOINT_ALREADY_SET), "distpoint already set"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_DUPLICATE_ZONE_ID), "duplicate zone id"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_EMPTY_KEY_USAGE), "empty key usage"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_ERROR_CONVERTING_ZONE), "error converting zone"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_ERROR_CREATING_EXTENSION), "error creating extension"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_ERROR_IN_EXTENSION), "error in extension"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_EXPECTED_A_SECTION_NAME), "expected a section name"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_EXTENSION_EXISTS), "extension exists"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_EXTENSION_NAME_ERROR), "extension name error"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_EXTENSION_NOT_FOUND), "extension not found"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_EXTENSION_SETTING_NOT_SUPPORTED), "extension setting not supported"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_EXTENSION_VALUE_ERROR), "extension value error"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_ILLEGAL_EMPTY_EXTENSION), "illegal empty extension"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INCORRECT_POLICY_SYNTAX_TAG), "incorrect policy syntax tag"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_ASNUMBER), "invalid asnumber"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_ASRANGE), "invalid asrange"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_BOOLEAN_STRING), "invalid boolean string"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_CERTIFICATE), "invalid certificate"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_EMPTY_NAME), "invalid empty name"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_EXTENSION_STRING), "invalid extension string"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_INHERITANCE), "invalid inheritance"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_IPADDRESS), "invalid ipaddress"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_MULTIPLE_RDNS), "invalid multiple rdns"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_NAME), "invalid name"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_NULL_ARGUMENT), "invalid null argument"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_NULL_VALUE), "invalid null value"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_NUMBER), "invalid number"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_NUMBERS), "invalid numbers"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_OBJECT_IDENTIFIER), "invalid object identifier"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_OPTION), "invalid option"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_POLICY_IDENTIFIER), "invalid policy identifier"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_PROXY_POLICY_SETTING), "invalid proxy policy setting"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_PURPOSE), "invalid purpose"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_SAFI), "invalid safi"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_SECTION), "invalid section"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_INVALID_SYNTAX), "invalid syntax"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_ISSUER_DECODE_ERROR), "issuer decode error"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_MISSING_VALUE), "missing value"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_NEED_ORGANIZATION_AND_NUMBERS), "need organization and numbers"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_NEGATIVE_PATHLEN), "negative pathlen"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_NO_CONFIG_DATABASE), "no config database"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_NO_ISSUER_CERTIFICATE), "no issuer certificate"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_NO_ISSUER_DETAILS), "no issuer details"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_NO_POLICY_IDENTIFIER), "no policy identifier"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_NO_PROXY_CERT_POLICY_LANGUAGE_DEFINED), "no proxy cert policy language defined"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_NO_PUBLIC_KEY), "no public key"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_NO_SUBJECT_DETAILS), "no subject details"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_OPERATION_NOT_DEFINED), "operation not defined"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_OTHERNAME_ERROR), "othername error"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_POLICY_LANGUAGE_ALREADY_DEFINED), "policy language already defined"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_POLICY_PATH_LENGTH), "policy path length"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_POLICY_PATH_LENGTH_ALREADY_DEFINED), "policy path length already defined"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_POLICY_WHEN_PROXY_LANGUAGE_REQUIRES_NO_POLICY), "policy when proxy language requires no policy"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_SECTION_NOT_FOUND), "section not found"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_UNABLE_TO_GET_ISSUER_DETAILS), "unable to get issuer details"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_UNABLE_TO_GET_ISSUER_KEYID), "unable to get issuer keyid"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_UNKNOWN_BIT_STRING_ARGUMENT), "unknown bit string argument"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_UNKNOWN_EXTENSION), "unknown extension"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_UNKNOWN_EXTENSION_NAME), "unknown extension name"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_UNKNOWN_OPTION), "unknown option"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_UNKNOWN_VALUE), "unknown value"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_UNSUPPORTED_OPTION), "unsupported option"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_UNSUPPORTED_TYPE), "unsupported type"}, {ERR_PACK(ERR_LIB_X509V3, 0, X509V3_R_USER_TOO_LONG), "user too long"}, {0, NULL} }; #endif int ossl_err_load_X509V3_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_reason_error_string(X509V3_str_reasons[0].error) == NULL) ERR_load_strings_const(X509V3_str_reasons); #endif return 1; }
./openssl/crypto/x509/x509_meth.c
/* * Copyright 2018-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include <time.h> #include <errno.h> #include "internal/cryptlib.h" #include <openssl/asn1.h> #include <openssl/x509.h> #include <openssl/types.h> #include "x509_local.h" X509_LOOKUP_METHOD *X509_LOOKUP_meth_new(const char *name) { X509_LOOKUP_METHOD *method = OPENSSL_zalloc(sizeof(X509_LOOKUP_METHOD)); if (method != NULL) { method->name = OPENSSL_strdup(name); if (method->name == NULL) goto err; } return method; err: OPENSSL_free(method); return NULL; } void X509_LOOKUP_meth_free(X509_LOOKUP_METHOD *method) { if (method != NULL) OPENSSL_free(method->name); OPENSSL_free(method); } int X509_LOOKUP_meth_set_new_item(X509_LOOKUP_METHOD *method, int (*new_item) (X509_LOOKUP *ctx)) { method->new_item = new_item; return 1; } int (*X509_LOOKUP_meth_get_new_item(const X509_LOOKUP_METHOD* method)) (X509_LOOKUP *ctx) { return method->new_item; } int X509_LOOKUP_meth_set_free( X509_LOOKUP_METHOD *method, void (*free_fn) (X509_LOOKUP *ctx)) { method->free = free_fn; return 1; } void (*X509_LOOKUP_meth_get_free(const X509_LOOKUP_METHOD* method)) (X509_LOOKUP *ctx) { return method->free; } int X509_LOOKUP_meth_set_init(X509_LOOKUP_METHOD *method, int (*init) (X509_LOOKUP *ctx)) { method->init = init; return 1; } int (*X509_LOOKUP_meth_get_init(const X509_LOOKUP_METHOD* method)) (X509_LOOKUP *ctx) { return method->init; } int X509_LOOKUP_meth_set_shutdown( X509_LOOKUP_METHOD *method, int (*shutdown) (X509_LOOKUP *ctx)) { method->shutdown = shutdown; return 1; } int (*X509_LOOKUP_meth_get_shutdown(const X509_LOOKUP_METHOD* method)) (X509_LOOKUP *ctx) { return method->shutdown; } int X509_LOOKUP_meth_set_ctrl( X509_LOOKUP_METHOD *method, X509_LOOKUP_ctrl_fn ctrl) { method->ctrl = ctrl; return 1; } X509_LOOKUP_ctrl_fn X509_LOOKUP_meth_get_ctrl(const X509_LOOKUP_METHOD *method) { return method->ctrl; } int X509_LOOKUP_meth_set_get_by_subject(X509_LOOKUP_METHOD *method, X509_LOOKUP_get_by_subject_fn get_by_subject) { method->get_by_subject = get_by_subject; return 1; } X509_LOOKUP_get_by_subject_fn X509_LOOKUP_meth_get_get_by_subject( const X509_LOOKUP_METHOD *method) { return method->get_by_subject; } int X509_LOOKUP_meth_set_get_by_issuer_serial(X509_LOOKUP_METHOD *method, X509_LOOKUP_get_by_issuer_serial_fn get_by_issuer_serial) { method->get_by_issuer_serial = get_by_issuer_serial; return 1; } X509_LOOKUP_get_by_issuer_serial_fn X509_LOOKUP_meth_get_get_by_issuer_serial(const X509_LOOKUP_METHOD *method) { return method->get_by_issuer_serial; } int X509_LOOKUP_meth_set_get_by_fingerprint(X509_LOOKUP_METHOD *method, X509_LOOKUP_get_by_fingerprint_fn get_by_fingerprint) { method->get_by_fingerprint = get_by_fingerprint; return 1; } X509_LOOKUP_get_by_fingerprint_fn X509_LOOKUP_meth_get_get_by_fingerprint( const X509_LOOKUP_METHOD *method) { return method->get_by_fingerprint; } int X509_LOOKUP_meth_set_get_by_alias(X509_LOOKUP_METHOD *method, X509_LOOKUP_get_by_alias_fn get_by_alias) { method->get_by_alias = get_by_alias; return 1; } X509_LOOKUP_get_by_alias_fn X509_LOOKUP_meth_get_get_by_alias( const X509_LOOKUP_METHOD *method) { return method->get_by_alias; }
./openssl/crypto/x509/v3_purp.c
/* * Copyright 1999-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include "internal/numbers.h" #include <openssl/x509v3.h> #include <openssl/x509_vfy.h> #include "crypto/x509.h" #include "internal/tsan_assist.h" #include "x509_local.h" static int check_ssl_ca(const X509 *x); static int check_purpose_ssl_client(const X509_PURPOSE *xp, const X509 *x, int non_leaf); static int check_purpose_ssl_server(const X509_PURPOSE *xp, const X509 *x, int non_leaf); static int check_purpose_ns_ssl_server(const X509_PURPOSE *xp, const X509 *x, int non_leaf); static int purpose_smime(const X509 *x, int non_leaf); static int check_purpose_smime_sign(const X509_PURPOSE *xp, const X509 *x, int non_leaf); static int check_purpose_smime_encrypt(const X509_PURPOSE *xp, const X509 *x, int non_leaf); static int check_purpose_crl_sign(const X509_PURPOSE *xp, const X509 *x, int non_leaf); static int check_purpose_timestamp_sign(const X509_PURPOSE *xp, const X509 *x, int non_leaf); static int check_purpose_code_sign(const X509_PURPOSE *xp, const X509 *x, int non_leaf); static int no_check_purpose(const X509_PURPOSE *xp, const X509 *x, int non_leaf); static int check_purpose_ocsp_helper(const X509_PURPOSE *xp, const X509 *x, int non_leaf); static int xp_cmp(const X509_PURPOSE *const *a, const X509_PURPOSE *const *b); static void xptable_free(X509_PURPOSE *p); static X509_PURPOSE xstandard[] = { {X509_PURPOSE_SSL_CLIENT, X509_TRUST_SSL_CLIENT, 0, check_purpose_ssl_client, "SSL client", "sslclient", NULL}, {X509_PURPOSE_SSL_SERVER, X509_TRUST_SSL_SERVER, 0, check_purpose_ssl_server, "SSL server", "sslserver", NULL}, {X509_PURPOSE_NS_SSL_SERVER, X509_TRUST_SSL_SERVER, 0, check_purpose_ns_ssl_server, "Netscape SSL server", "nssslserver", NULL}, {X509_PURPOSE_SMIME_SIGN, X509_TRUST_EMAIL, 0, check_purpose_smime_sign, "S/MIME signing", "smimesign", NULL}, {X509_PURPOSE_SMIME_ENCRYPT, X509_TRUST_EMAIL, 0, check_purpose_smime_encrypt, "S/MIME encryption", "smimeencrypt", NULL}, {X509_PURPOSE_CRL_SIGN, X509_TRUST_COMPAT, 0, check_purpose_crl_sign, "CRL signing", "crlsign", NULL}, {X509_PURPOSE_ANY, X509_TRUST_DEFAULT, 0, no_check_purpose, "Any Purpose", "any", NULL}, {X509_PURPOSE_OCSP_HELPER, X509_TRUST_COMPAT, 0, check_purpose_ocsp_helper, "OCSP helper", "ocsphelper", NULL}, {X509_PURPOSE_TIMESTAMP_SIGN, X509_TRUST_TSA, 0, check_purpose_timestamp_sign, "Time Stamp signing", "timestampsign", NULL}, {X509_PURPOSE_CODE_SIGN, X509_TRUST_OBJECT_SIGN, 0, check_purpose_code_sign, "Code signing", "codesign", NULL}, }; #define X509_PURPOSE_COUNT OSSL_NELEM(xstandard) static STACK_OF(X509_PURPOSE) *xptable = NULL; static int xp_cmp(const X509_PURPOSE *const *a, const X509_PURPOSE *const *b) { return (*a)->purpose - (*b)->purpose; } /* * As much as I'd like to make X509_check_purpose use a "const" X509* I really * can't because it does recalculate hashes and do other non-const things. * If id == -1 it just calls x509v3_cache_extensions() for its side-effect. * Returns 1 on success, 0 if x does not allow purpose, -1 on (internal) error. */ int X509_check_purpose(X509 *x, int id, int non_leaf) { int idx; const X509_PURPOSE *pt; if (!ossl_x509v3_cache_extensions(x)) return -1; if (id == -1) return 1; idx = X509_PURPOSE_get_by_id(id); if (idx == -1) return -1; pt = X509_PURPOSE_get0(idx); return pt->check_purpose(pt, x, non_leaf); } int X509_PURPOSE_set(int *p, int purpose) { if (X509_PURPOSE_get_by_id(purpose) == -1) { ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_PURPOSE); return 0; } *p = purpose; return 1; } int X509_PURPOSE_get_count(void) { if (!xptable) return X509_PURPOSE_COUNT; return sk_X509_PURPOSE_num(xptable) + X509_PURPOSE_COUNT; } X509_PURPOSE *X509_PURPOSE_get0(int idx) { if (idx < 0) return NULL; if (idx < (int)X509_PURPOSE_COUNT) return xstandard + idx; return sk_X509_PURPOSE_value(xptable, idx - X509_PURPOSE_COUNT); } int X509_PURPOSE_get_by_sname(const char *sname) { int i; X509_PURPOSE *xptmp; for (i = 0; i < X509_PURPOSE_get_count(); i++) { xptmp = X509_PURPOSE_get0(i); if (strcmp(xptmp->sname, sname) == 0) return i; } return -1; } /* Returns -1 on error, else an index => 0 in standard/extended purpose table */ int X509_PURPOSE_get_by_id(int purpose) { X509_PURPOSE tmp; int idx; if (purpose >= X509_PURPOSE_MIN && purpose <= X509_PURPOSE_MAX) return purpose - X509_PURPOSE_MIN; if (xptable == NULL) return -1; tmp.purpose = purpose; idx = sk_X509_PURPOSE_find(xptable, &tmp); if (idx < 0) return -1; return idx + X509_PURPOSE_COUNT; } int X509_PURPOSE_add(int id, int trust, int flags, int (*ck) (const X509_PURPOSE *, const X509 *, int), const char *name, const char *sname, void *arg) { int idx; X509_PURPOSE *ptmp; /* This is set according to what we change: application can't set it */ flags &= ~X509_PURPOSE_DYNAMIC; /* This will always be set for application modified trust entries */ flags |= X509_PURPOSE_DYNAMIC_NAME; /* Get existing entry if any */ idx = X509_PURPOSE_get_by_id(id); /* Need a new entry */ if (idx == -1) { if ((ptmp = OPENSSL_malloc(sizeof(*ptmp))) == NULL) return 0; ptmp->flags = X509_PURPOSE_DYNAMIC; } else { ptmp = X509_PURPOSE_get0(idx); } /* OPENSSL_free existing name if dynamic */ if ((ptmp->flags & X509_PURPOSE_DYNAMIC_NAME) != 0) { OPENSSL_free(ptmp->name); OPENSSL_free(ptmp->sname); } /* Dup supplied name */ ptmp->name = OPENSSL_strdup(name); ptmp->sname = OPENSSL_strdup(sname); if (ptmp->name == NULL || ptmp->sname == NULL) goto err; /* Keep the dynamic flag of existing entry */ ptmp->flags &= X509_PURPOSE_DYNAMIC; /* Set all other flags */ ptmp->flags |= flags; ptmp->purpose = id; ptmp->trust = trust; ptmp->check_purpose = ck; ptmp->usr_data = arg; /* If its a new entry manage the dynamic table */ if (idx == -1) { if (xptable == NULL && (xptable = sk_X509_PURPOSE_new(xp_cmp)) == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB); goto err; } if (!sk_X509_PURPOSE_push(xptable, ptmp)) { ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB); goto err; } } return 1; err: if (idx == -1) { OPENSSL_free(ptmp->name); OPENSSL_free(ptmp->sname); OPENSSL_free(ptmp); } return 0; } static void xptable_free(X509_PURPOSE *p) { if (p == NULL) return; if ((p->flags & X509_PURPOSE_DYNAMIC) != 0) { if ((p->flags & X509_PURPOSE_DYNAMIC_NAME) != 0) { OPENSSL_free(p->name); OPENSSL_free(p->sname); } OPENSSL_free(p); } } void X509_PURPOSE_cleanup(void) { sk_X509_PURPOSE_pop_free(xptable, xptable_free); xptable = NULL; } int X509_PURPOSE_get_id(const X509_PURPOSE *xp) { return xp->purpose; } char *X509_PURPOSE_get0_name(const X509_PURPOSE *xp) { return xp->name; } char *X509_PURPOSE_get0_sname(const X509_PURPOSE *xp) { return xp->sname; } int X509_PURPOSE_get_trust(const X509_PURPOSE *xp) { return xp->trust; } static int nid_cmp(const int *a, const int *b) { return *a - *b; } DECLARE_OBJ_BSEARCH_CMP_FN(int, int, nid); IMPLEMENT_OBJ_BSEARCH_CMP_FN(int, int, nid); int X509_supported_extension(X509_EXTENSION *ex) { /* * This table is a list of the NIDs of supported extensions: that is * those which are used by the verify process. If an extension is * critical and doesn't appear in this list then the verify process will * normally reject the certificate. The list must be kept in numerical * order because it will be searched using bsearch. */ static const int supported_nids[] = { NID_netscape_cert_type, /* 71 */ NID_key_usage, /* 83 */ NID_subject_alt_name, /* 85 */ NID_basic_constraints, /* 87 */ NID_certificate_policies, /* 89 */ NID_crl_distribution_points, /* 103 */ NID_ext_key_usage, /* 126 */ #ifndef OPENSSL_NO_RFC3779 NID_sbgp_ipAddrBlock, /* 290 */ NID_sbgp_autonomousSysNum, /* 291 */ #endif NID_id_pkix_OCSP_noCheck, /* 369 */ NID_policy_constraints, /* 401 */ NID_proxyCertInfo, /* 663 */ NID_name_constraints, /* 666 */ NID_policy_mappings, /* 747 */ NID_inhibit_any_policy /* 748 */ }; int ex_nid = OBJ_obj2nid(X509_EXTENSION_get_object(ex)); if (ex_nid == NID_undef) return 0; if (OBJ_bsearch_nid(&ex_nid, supported_nids, OSSL_NELEM(supported_nids))) return 1; return 0; } /* Returns 1 on success, 0 if x is invalid, -1 on (internal) error. */ static int setup_dp(const X509 *x, DIST_POINT *dp) { const X509_NAME *iname = NULL; int i; if (dp->distpoint == NULL && sk_GENERAL_NAME_num(dp->CRLissuer) <= 0) { ERR_raise(ERR_LIB_X509, X509_R_INVALID_DISTPOINT); return 0; } if (dp->reasons != NULL) { if (dp->reasons->length > 0) dp->dp_reasons = dp->reasons->data[0]; if (dp->reasons->length > 1) dp->dp_reasons |= (dp->reasons->data[1] << 8); dp->dp_reasons &= CRLDP_ALL_REASONS; } else { dp->dp_reasons = CRLDP_ALL_REASONS; } if (dp->distpoint == NULL || dp->distpoint->type != 1) return 1; /* Handle name fragment given by nameRelativeToCRLIssuer */ /* * Note that the below way of determining iname is not really compliant * with https://tools.ietf.org/html/rfc5280#section-4.2.1.13 * According to it, sk_GENERAL_NAME_num(dp->CRLissuer) MUST be <= 1 * and any CRLissuer could be of type different to GEN_DIRNAME. */ for (i = 0; i < sk_GENERAL_NAME_num(dp->CRLissuer); i++) { GENERAL_NAME *gen = sk_GENERAL_NAME_value(dp->CRLissuer, i); if (gen->type == GEN_DIRNAME) { iname = gen->d.directoryName; break; } } if (iname == NULL) iname = X509_get_issuer_name(x); return DIST_POINT_set_dpname(dp->distpoint, iname) ? 1 : -1; } /* Return 1 on success, 0 if x is invalid, -1 on (internal) error. */ static int setup_crldp(X509 *x) { int i; x->crldp = X509_get_ext_d2i(x, NID_crl_distribution_points, &i, NULL); if (x->crldp == NULL && i != -1) return 0; for (i = 0; i < sk_DIST_POINT_num(x->crldp); i++) { int res = setup_dp(x, sk_DIST_POINT_value(x->crldp, i)); if (res < 1) return res; } return 1; } /* Check that issuer public key algorithm matches subject signature algorithm */ static int check_sig_alg_match(const EVP_PKEY *issuer_key, const X509 *subject) { int subj_sig_nid; if (issuer_key == NULL) return X509_V_ERR_NO_ISSUER_PUBLIC_KEY; if (OBJ_find_sigid_algs(OBJ_obj2nid(subject->cert_info.signature.algorithm), NULL, &subj_sig_nid) == 0) return X509_V_ERR_UNSUPPORTED_SIGNATURE_ALGORITHM; if (EVP_PKEY_is_a(issuer_key, OBJ_nid2sn(subj_sig_nid)) || (EVP_PKEY_is_a(issuer_key, "RSA") && subj_sig_nid == NID_rsassaPss)) return X509_V_OK; return X509_V_ERR_SIGNATURE_ALGORITHM_MISMATCH; } #define V1_ROOT (EXFLAG_V1 | EXFLAG_SS) #define ku_reject(x, usage) \ (((x)->ex_flags & EXFLAG_KUSAGE) != 0 && ((x)->ex_kusage & (usage)) == 0) #define xku_reject(x, usage) \ (((x)->ex_flags & EXFLAG_XKUSAGE) != 0 && ((x)->ex_xkusage & (usage)) == 0) #define ns_reject(x, usage) \ (((x)->ex_flags & EXFLAG_NSCERT) != 0 && ((x)->ex_nscert & (usage)) == 0) /* * Cache info on various X.509v3 extensions and further derived information, * e.g., if cert 'x' is self-issued, in x->ex_flags and other internal fields. * x->sha1_hash is filled in, or else EXFLAG_NO_FINGERPRINT is set in x->flags. * X509_SIG_INFO_VALID is set in x->flags if x->siginf was filled successfully. * Set EXFLAG_INVALID and return 0 in case the certificate is invalid. */ int ossl_x509v3_cache_extensions(X509 *x) { BASIC_CONSTRAINTS *bs; PROXY_CERT_INFO_EXTENSION *pci; ASN1_BIT_STRING *usage; ASN1_BIT_STRING *ns; EXTENDED_KEY_USAGE *extusage; int i; int res; #ifdef tsan_ld_acq /* Fast lock-free check, see end of the function for details. */ if (tsan_ld_acq((TSAN_QUALIFIER int *)&x->ex_cached)) return (x->ex_flags & EXFLAG_INVALID) == 0; #endif if (!CRYPTO_THREAD_write_lock(x->lock)) return 0; if ((x->ex_flags & EXFLAG_SET) != 0) { /* Cert has already been processed */ CRYPTO_THREAD_unlock(x->lock); return (x->ex_flags & EXFLAG_INVALID) == 0; } ERR_set_mark(); /* Cache the SHA1 digest of the cert */ if (!X509_digest(x, EVP_sha1(), x->sha1_hash, NULL)) x->ex_flags |= EXFLAG_NO_FINGERPRINT; /* V1 should mean no extensions ... */ if (X509_get_version(x) == X509_VERSION_1) x->ex_flags |= EXFLAG_V1; /* Handle basic constraints */ x->ex_pathlen = -1; if ((bs = X509_get_ext_d2i(x, NID_basic_constraints, &i, NULL)) != NULL) { if (bs->ca) x->ex_flags |= EXFLAG_CA; if (bs->pathlen != NULL) { /* * The error case !bs->ca is checked by check_chain() * in case ctx->param->flags & X509_V_FLAG_X509_STRICT */ if (bs->pathlen->type == V_ASN1_NEG_INTEGER) { ERR_raise(ERR_LIB_X509V3, X509V3_R_NEGATIVE_PATHLEN); x->ex_flags |= EXFLAG_INVALID; } else { x->ex_pathlen = ASN1_INTEGER_get(bs->pathlen); } } BASIC_CONSTRAINTS_free(bs); x->ex_flags |= EXFLAG_BCONS; } else if (i != -1) { x->ex_flags |= EXFLAG_INVALID; } /* Handle proxy certificates */ if ((pci = X509_get_ext_d2i(x, NID_proxyCertInfo, &i, NULL)) != NULL) { if ((x->ex_flags & EXFLAG_CA) != 0 || X509_get_ext_by_NID(x, NID_subject_alt_name, -1) >= 0 || X509_get_ext_by_NID(x, NID_issuer_alt_name, -1) >= 0) { x->ex_flags |= EXFLAG_INVALID; } if (pci->pcPathLengthConstraint != NULL) x->ex_pcpathlen = ASN1_INTEGER_get(pci->pcPathLengthConstraint); else x->ex_pcpathlen = -1; PROXY_CERT_INFO_EXTENSION_free(pci); x->ex_flags |= EXFLAG_PROXY; } else if (i != -1) { x->ex_flags |= EXFLAG_INVALID; } /* Handle (basic) key usage */ if ((usage = X509_get_ext_d2i(x, NID_key_usage, &i, NULL)) != NULL) { x->ex_kusage = 0; if (usage->length > 0) { x->ex_kusage = usage->data[0]; if (usage->length > 1) x->ex_kusage |= usage->data[1] << 8; } x->ex_flags |= EXFLAG_KUSAGE; ASN1_BIT_STRING_free(usage); /* Check for empty key usage according to RFC 5280 section 4.2.1.3 */ if (x->ex_kusage == 0) { ERR_raise(ERR_LIB_X509V3, X509V3_R_EMPTY_KEY_USAGE); x->ex_flags |= EXFLAG_INVALID; } } else if (i != -1) { x->ex_flags |= EXFLAG_INVALID; } /* Handle extended key usage */ x->ex_xkusage = 0; if ((extusage = X509_get_ext_d2i(x, NID_ext_key_usage, &i, NULL)) != NULL) { x->ex_flags |= EXFLAG_XKUSAGE; for (i = 0; i < sk_ASN1_OBJECT_num(extusage); i++) { switch (OBJ_obj2nid(sk_ASN1_OBJECT_value(extusage, i))) { case NID_server_auth: x->ex_xkusage |= XKU_SSL_SERVER; break; case NID_client_auth: x->ex_xkusage |= XKU_SSL_CLIENT; break; case NID_email_protect: x->ex_xkusage |= XKU_SMIME; break; case NID_code_sign: x->ex_xkusage |= XKU_CODE_SIGN; break; case NID_ms_sgc: case NID_ns_sgc: x->ex_xkusage |= XKU_SGC; break; case NID_OCSP_sign: x->ex_xkusage |= XKU_OCSP_SIGN; break; case NID_time_stamp: x->ex_xkusage |= XKU_TIMESTAMP; break; case NID_dvcs: x->ex_xkusage |= XKU_DVCS; break; case NID_anyExtendedKeyUsage: x->ex_xkusage |= XKU_ANYEKU; break; default: /* Ignore unknown extended key usage */ break; } } sk_ASN1_OBJECT_pop_free(extusage, ASN1_OBJECT_free); } else if (i != -1) { x->ex_flags |= EXFLAG_INVALID; } /* Handle legacy Netscape extension */ if ((ns = X509_get_ext_d2i(x, NID_netscape_cert_type, &i, NULL)) != NULL) { if (ns->length > 0) x->ex_nscert = ns->data[0]; else x->ex_nscert = 0; x->ex_flags |= EXFLAG_NSCERT; ASN1_BIT_STRING_free(ns); } else if (i != -1) { x->ex_flags |= EXFLAG_INVALID; } /* Handle subject key identifier and issuer/authority key identifier */ x->skid = X509_get_ext_d2i(x, NID_subject_key_identifier, &i, NULL); if (x->skid == NULL && i != -1) x->ex_flags |= EXFLAG_INVALID; x->akid = X509_get_ext_d2i(x, NID_authority_key_identifier, &i, NULL); if (x->akid == NULL && i != -1) x->ex_flags |= EXFLAG_INVALID; /* Check if subject name matches issuer */ if (X509_NAME_cmp(X509_get_subject_name(x), X509_get_issuer_name(x)) == 0) { x->ex_flags |= EXFLAG_SI; /* Cert is self-issued */ if (X509_check_akid(x, x->akid) == X509_V_OK /* SKID matches AKID */ /* .. and the signature alg matches the PUBKEY alg: */ && check_sig_alg_match(X509_get0_pubkey(x), x) == X509_V_OK) x->ex_flags |= EXFLAG_SS; /* indicate self-signed */ /* This is very related to ossl_x509_likely_issued(x, x) == X509_V_OK */ } /* Handle subject alternative names and various other extensions */ x->altname = X509_get_ext_d2i(x, NID_subject_alt_name, &i, NULL); if (x->altname == NULL && i != -1) x->ex_flags |= EXFLAG_INVALID; x->nc = X509_get_ext_d2i(x, NID_name_constraints, &i, NULL); if (x->nc == NULL && i != -1) x->ex_flags |= EXFLAG_INVALID; /* Handle CRL distribution point entries */ res = setup_crldp(x); if (res == 0) x->ex_flags |= EXFLAG_INVALID; #ifndef OPENSSL_NO_RFC3779 x->rfc3779_addr = X509_get_ext_d2i(x, NID_sbgp_ipAddrBlock, &i, NULL); if (x->rfc3779_addr == NULL && i != -1) x->ex_flags |= EXFLAG_INVALID; x->rfc3779_asid = X509_get_ext_d2i(x, NID_sbgp_autonomousSysNum, &i, NULL); if (x->rfc3779_asid == NULL && i != -1) x->ex_flags |= EXFLAG_INVALID; #endif for (i = 0; i < X509_get_ext_count(x); i++) { X509_EXTENSION *ex = X509_get_ext(x, i); int nid = OBJ_obj2nid(X509_EXTENSION_get_object(ex)); if (nid == NID_freshest_crl) x->ex_flags |= EXFLAG_FRESHEST; if (!X509_EXTENSION_get_critical(ex)) continue; if (!X509_supported_extension(ex)) { x->ex_flags |= EXFLAG_CRITICAL; break; } switch (nid) { case NID_basic_constraints: x->ex_flags |= EXFLAG_BCONS_CRITICAL; break; case NID_authority_key_identifier: x->ex_flags |= EXFLAG_AKID_CRITICAL; break; case NID_subject_key_identifier: x->ex_flags |= EXFLAG_SKID_CRITICAL; break; case NID_subject_alt_name: x->ex_flags |= EXFLAG_SAN_CRITICAL; break; default: break; } } /* Set x->siginf, ignoring errors due to unsupported algos */ (void)ossl_x509_init_sig_info(x); x->ex_flags |= EXFLAG_SET; /* Indicate that cert has been processed */ #ifdef tsan_st_rel tsan_st_rel((TSAN_QUALIFIER int *)&x->ex_cached, 1); /* * Above store triggers fast lock-free check in the beginning of the * function. But one has to ensure that the structure is "stable", i.e. * all stores are visible on all processors. Hence the release fence. */ #endif ERR_pop_to_mark(); if ((x->ex_flags & EXFLAG_INVALID) == 0) { CRYPTO_THREAD_unlock(x->lock); return 1; } CRYPTO_THREAD_unlock(x->lock); ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_CERTIFICATE); return 0; } /*- * CA checks common to all purposes * return codes: * 0 not a CA * 1 is a CA * 2 Only possible in older versions of openSSL when basicConstraints are absent * new versions will not return this value. May be a CA * 3 basicConstraints absent but self-signed V1. * 4 basicConstraints absent but keyUsage present and keyCertSign asserted. * 5 Netscape specific CA Flags present */ static int check_ca(const X509 *x) { /* keyUsage if present should allow cert signing */ if (ku_reject(x, KU_KEY_CERT_SIGN)) return 0; if ((x->ex_flags & EXFLAG_BCONS) != 0) { /* If basicConstraints says not a CA then say so */ return (x->ex_flags & EXFLAG_CA) != 0; } else { /* We support V1 roots for... uh, I don't really know why. */ if ((x->ex_flags & V1_ROOT) == V1_ROOT) return 3; /* * If key usage present it must have certSign so tolerate it */ else if ((x->ex_flags & EXFLAG_KUSAGE) != 0) return 4; /* Older certificates could have Netscape-specific CA types */ else if ((x->ex_flags & EXFLAG_NSCERT) != 0 && (x->ex_nscert & NS_ANY_CA) != 0) return 5; /* Can this still be regarded a CA certificate? I doubt it. */ return 0; } } void X509_set_proxy_flag(X509 *x) { if (CRYPTO_THREAD_write_lock(x->lock)) { x->ex_flags |= EXFLAG_PROXY; CRYPTO_THREAD_unlock(x->lock); } } void X509_set_proxy_pathlen(X509 *x, long l) { x->ex_pcpathlen = l; } int X509_check_ca(X509 *x) { /* Note 0 normally means "not a CA" - but in this case means error. */ if (!ossl_x509v3_cache_extensions(x)) return 0; return check_ca(x); } /* Check SSL CA: common checks for SSL client and server. */ static int check_ssl_ca(const X509 *x) { int ca_ret = check_ca(x); if (ca_ret == 0) return 0; /* Check nsCertType if present */ return ca_ret != 5 || (x->ex_nscert & NS_SSL_CA) != 0; } static int check_purpose_ssl_client(const X509_PURPOSE *xp, const X509 *x, int non_leaf) { if (xku_reject(x, XKU_SSL_CLIENT)) return 0; if (non_leaf) return check_ssl_ca(x); /* We need to do digital signatures or key agreement */ if (ku_reject(x, KU_DIGITAL_SIGNATURE | KU_KEY_AGREEMENT)) return 0; /* nsCertType if present should allow SSL client use */ if (ns_reject(x, NS_SSL_CLIENT)) return 0; return 1; } /* * Key usage needed for TLS/SSL server: digital signature, encipherment or * key agreement. The ssl code can check this more thoroughly for individual * key types. */ #define KU_TLS \ KU_DIGITAL_SIGNATURE | KU_KEY_ENCIPHERMENT | KU_KEY_AGREEMENT static int check_purpose_ssl_server(const X509_PURPOSE *xp, const X509 *x, int non_leaf) { if (xku_reject(x, XKU_SSL_SERVER | XKU_SGC)) return 0; if (non_leaf) return check_ssl_ca(x); if (ns_reject(x, NS_SSL_SERVER)) return 0; if (ku_reject(x, KU_TLS)) return 0; return 1; } static int check_purpose_ns_ssl_server(const X509_PURPOSE *xp, const X509 *x, int non_leaf) { int ret = check_purpose_ssl_server(xp, x, non_leaf); if (!ret || non_leaf) return ret; /* We need to encipher or Netscape complains */ return ku_reject(x, KU_KEY_ENCIPHERMENT) ? 0 : ret; } /* common S/MIME checks */ static int purpose_smime(const X509 *x, int non_leaf) { if (xku_reject(x, XKU_SMIME)) return 0; if (non_leaf) { int ca_ret = check_ca(x); if (ca_ret == 0) return 0; /* Check nsCertType if present */ if (ca_ret != 5 || (x->ex_nscert & NS_SMIME_CA) != 0) return ca_ret; else return 0; } if ((x->ex_flags & EXFLAG_NSCERT) != 0) { if ((x->ex_nscert & NS_SMIME) != 0) return 1; /* Workaround for some buggy certificates */ return (x->ex_nscert & NS_SSL_CLIENT) != 0 ? 2 : 0; } return 1; } static int check_purpose_smime_sign(const X509_PURPOSE *xp, const X509 *x, int non_leaf) { int ret = purpose_smime(x, non_leaf); if (!ret || non_leaf) return ret; return ku_reject(x, KU_DIGITAL_SIGNATURE | KU_NON_REPUDIATION) ? 0 : ret; } static int check_purpose_smime_encrypt(const X509_PURPOSE *xp, const X509 *x, int non_leaf) { int ret = purpose_smime(x, non_leaf); if (!ret || non_leaf) return ret; return ku_reject(x, KU_KEY_ENCIPHERMENT) ? 0 : ret; } static int check_purpose_crl_sign(const X509_PURPOSE *xp, const X509 *x, int non_leaf) { if (non_leaf) { int ca_ret = check_ca(x); return ca_ret == 2 ? 0 : ca_ret; } return !ku_reject(x, KU_CRL_SIGN); } /* * OCSP helper: this is *not* a full OCSP check. It just checks that each CA * is valid. Additional checks must be made on the chain. */ static int check_purpose_ocsp_helper(const X509_PURPOSE *xp, const X509 *x, int non_leaf) { /* * Must be a valid CA. Should we really support the "I don't know" value * (2)? */ if (non_leaf) return check_ca(x); /* Leaf certificate is checked in OCSP_verify() */ return 1; } static int check_purpose_timestamp_sign(const X509_PURPOSE *xp, const X509 *x, int non_leaf) { int i_ext; /* * If non_leaf is true we must check if this is a valid CA certificate. * The extra requirements by the CA/Browser Forum are not checked. */ if (non_leaf) return check_ca(x); /* * Key Usage is checked according to RFC 5280 and * Extended Key Usage attributes is checked according to RFC 3161. * The extra (and somewhat conflicting) CA/Browser Forum * Baseline Requirements for the Issuance and Management of * Publicly‐Trusted Code Signing Certificates, Version 3.0.0, * Section 7.1.2.3: Code signing and Timestamp Certificate are not checked. */ /* * Check the optional key usage field: * if Key Usage is present, it must be one of digitalSignature * and/or nonRepudiation (other values are not consistent and shall * be rejected). */ if ((x->ex_flags & EXFLAG_KUSAGE) != 0 && ((x->ex_kusage & ~(KU_NON_REPUDIATION | KU_DIGITAL_SIGNATURE)) || !(x->ex_kusage & (KU_NON_REPUDIATION | KU_DIGITAL_SIGNATURE)))) return 0; /* Only timestamp key usage is permitted and it's required. */ if ((x->ex_flags & EXFLAG_XKUSAGE) == 0 || x->ex_xkusage != XKU_TIMESTAMP) return 0; /* Extended Key Usage MUST be critical */ i_ext = X509_get_ext_by_NID(x, NID_ext_key_usage, -1); if (i_ext >= 0 && !X509_EXTENSION_get_critical(X509_get_ext((X509 *)x, i_ext))) return 0; return 1; } static int check_purpose_code_sign(const X509_PURPOSE *xp, const X509 *x, int non_leaf) { int i_ext; /* * If non_leaf is true we must check if this is a valid CA certificate. * The extra requirements by the CA/Browser Forum are not checked. */ if (non_leaf) return check_ca(x); /* * Check the key usage and extended key usage fields: * * Reference: CA/Browser Forum, * Baseline Requirements for the Issuance and Management of * Publicly‐Trusted Code Signing Certificates, Version 3.0.0, * Section 7.1.2.3: Code signing and Timestamp Certificate * * Checking covers Key Usage and Extended Key Usage attributes. * The certificatePolicies, cRLDistributionPoints (CDP), and * authorityInformationAccess (AIA) extensions are so far not checked. */ /* Key Usage */ if ((x->ex_flags & EXFLAG_KUSAGE) == 0) return 0; if ((x->ex_kusage & KU_DIGITAL_SIGNATURE) == 0) return 0; if ((x->ex_kusage & (KU_KEY_CERT_SIGN | KU_CRL_SIGN)) != 0) return 0; /* Key Usage MUST be critical */ i_ext = X509_get_ext_by_NID(x, NID_key_usage, -1); if (i_ext < 0) return 0; if (i_ext >= 0) { X509_EXTENSION *ext = X509_get_ext((X509 *)x, i_ext); if (!X509_EXTENSION_get_critical(ext)) return 0; } /* Extended Key Usage */ if ((x->ex_flags & EXFLAG_XKUSAGE) == 0) return 0; if ((x->ex_xkusage & XKU_CODE_SIGN) == 0) return 0; if ((x->ex_xkusage & (XKU_ANYEKU | XKU_SSL_SERVER)) != 0) return 0; return 1; } static int no_check_purpose(const X509_PURPOSE *xp, const X509 *x, int non_leaf) { return 1; } /*- * Various checks to see if one certificate potentially issued the second. * This can be used to prune a set of possible issuer certificates which * have been looked up using some simple method such as by subject name. * These are: * 1. issuer_name(subject) == subject_name(issuer) * 2. If akid(subject) exists, it matches the respective issuer fields. * 3. subject signature algorithm == issuer public key algorithm * 4. If key_usage(issuer) exists, it allows for signing subject. * Note that this does not include actually checking the signature. * Returns 0 for OK, or positive for reason for mismatch * where reason codes match those for X509_verify_cert(). */ int X509_check_issued(X509 *issuer, X509 *subject) { int ret; if ((ret = ossl_x509_likely_issued(issuer, subject)) != X509_V_OK) return ret; return ossl_x509_signing_allowed(issuer, subject); } /* do the checks 1., 2., and 3. as described above for X509_check_issued() */ int ossl_x509_likely_issued(X509 *issuer, X509 *subject) { int ret; if (X509_NAME_cmp(X509_get_subject_name(issuer), X509_get_issuer_name(subject)) != 0) return X509_V_ERR_SUBJECT_ISSUER_MISMATCH; /* set issuer->skid and subject->akid */ if (!ossl_x509v3_cache_extensions(issuer) || !ossl_x509v3_cache_extensions(subject)) return X509_V_ERR_UNSPECIFIED; ret = X509_check_akid(issuer, subject->akid); if (ret != X509_V_OK) return ret; /* Check if the subject signature alg matches the issuer's PUBKEY alg */ return check_sig_alg_match(X509_get0_pubkey(issuer), subject); } /*- * Check if certificate I<issuer> is allowed to issue certificate I<subject> * according to the B<keyUsage> field of I<issuer> if present * depending on any proxyCertInfo extension of I<subject>. * Returns 0 for OK, or positive for reason for rejection * where reason codes match those for X509_verify_cert(). */ int ossl_x509_signing_allowed(const X509 *issuer, const X509 *subject) { if ((subject->ex_flags & EXFLAG_PROXY) != 0) { if (ku_reject(issuer, KU_DIGITAL_SIGNATURE)) return X509_V_ERR_KEYUSAGE_NO_DIGITAL_SIGNATURE; } else if (ku_reject(issuer, KU_KEY_CERT_SIGN)) { return X509_V_ERR_KEYUSAGE_NO_CERTSIGN; } return X509_V_OK; } int X509_check_akid(const X509 *issuer, const AUTHORITY_KEYID *akid) { if (akid == NULL) return X509_V_OK; /* Check key ids (if present) */ if (akid->keyid && issuer->skid && ASN1_OCTET_STRING_cmp(akid->keyid, issuer->skid)) return X509_V_ERR_AKID_SKID_MISMATCH; /* Check serial number */ if (akid->serial && ASN1_INTEGER_cmp(X509_get0_serialNumber(issuer), akid->serial)) return X509_V_ERR_AKID_ISSUER_SERIAL_MISMATCH; /* Check issuer name */ if (akid->issuer) { /* * Ugh, for some peculiar reason AKID includes SEQUENCE OF * GeneralName. So look for a DirName. There may be more than one but * we only take any notice of the first. */ GENERAL_NAMES *gens = akid->issuer; GENERAL_NAME *gen; X509_NAME *nm = NULL; int i; for (i = 0; i < sk_GENERAL_NAME_num(gens); i++) { gen = sk_GENERAL_NAME_value(gens, i); if (gen->type == GEN_DIRNAME) { nm = gen->d.dirn; break; } } if (nm != NULL && X509_NAME_cmp(nm, X509_get_issuer_name(issuer)) != 0) return X509_V_ERR_AKID_ISSUER_SERIAL_MISMATCH; } return X509_V_OK; } uint32_t X509_get_extension_flags(X509 *x) { /* Call for side-effect of computing hash and caching extensions */ X509_check_purpose(x, -1, 0); return x->ex_flags; } uint32_t X509_get_key_usage(X509 *x) { /* Call for side-effect of computing hash and caching extensions */ if (X509_check_purpose(x, -1, 0) != 1) return 0; return (x->ex_flags & EXFLAG_KUSAGE) != 0 ? x->ex_kusage : UINT32_MAX; } uint32_t X509_get_extended_key_usage(X509 *x) { /* Call for side-effect of computing hash and caching extensions */ if (X509_check_purpose(x, -1, 0) != 1) return 0; return (x->ex_flags & EXFLAG_XKUSAGE) != 0 ? x->ex_xkusage : UINT32_MAX; } const ASN1_OCTET_STRING *X509_get0_subject_key_id(X509 *x) { /* Call for side-effect of computing hash and caching extensions */ if (X509_check_purpose(x, -1, 0) != 1) return NULL; return x->skid; } const ASN1_OCTET_STRING *X509_get0_authority_key_id(X509 *x) { /* Call for side-effect of computing hash and caching extensions */ if (X509_check_purpose(x, -1, 0) != 1) return NULL; return (x->akid != NULL ? x->akid->keyid : NULL); } const GENERAL_NAMES *X509_get0_authority_issuer(X509 *x) { /* Call for side-effect of computing hash and caching extensions */ if (X509_check_purpose(x, -1, 0) != 1) return NULL; return (x->akid != NULL ? x->akid->issuer : NULL); } const ASN1_INTEGER *X509_get0_authority_serial(X509 *x) { /* Call for side-effect of computing hash and caching extensions */ if (X509_check_purpose(x, -1, 0) != 1) return NULL; return (x->akid != NULL ? x->akid->serial : NULL); } long X509_get_pathlen(X509 *x) { /* Called for side effect of caching extensions */ if (X509_check_purpose(x, -1, 0) != 1 || (x->ex_flags & EXFLAG_BCONS) == 0) return -1; return x->ex_pathlen; } long X509_get_proxy_pathlen(X509 *x) { /* Called for side effect of caching extensions */ if (X509_check_purpose(x, -1, 0) != 1 || (x->ex_flags & EXFLAG_PROXY) == 0) return -1; return x->ex_pcpathlen; }
./openssl/crypto/x509/by_file.c
/* * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include <time.h> #include <errno.h> #include "internal/cryptlib.h" #include <openssl/buffer.h> #include <openssl/x509.h> #include <openssl/pem.h> #include "x509_local.h" static int by_file_ctrl(X509_LOOKUP *ctx, int cmd, const char *argc, long argl, char **ret); static int by_file_ctrl_ex(X509_LOOKUP *ctx, int cmd, const char *argc, long argl, char **ret, OSSL_LIB_CTX *libctx, const char *propq); static X509_LOOKUP_METHOD x509_file_lookup = { "Load file into cache", NULL, /* new_item */ NULL, /* free */ NULL, /* init */ NULL, /* shutdown */ by_file_ctrl, /* ctrl */ NULL, /* get_by_subject */ NULL, /* get_by_issuer_serial */ NULL, /* get_by_fingerprint */ NULL, /* get_by_alias */ NULL, /* get_by_subject_ex */ by_file_ctrl_ex, /* ctrl_ex */ }; X509_LOOKUP_METHOD *X509_LOOKUP_file(void) { return &x509_file_lookup; } static int by_file_ctrl_ex(X509_LOOKUP *ctx, int cmd, const char *argp, long argl, char **ret, OSSL_LIB_CTX *libctx, const char *propq) { int ok = 0; const char *file; switch (cmd) { case X509_L_FILE_LOAD: if (argl == X509_FILETYPE_DEFAULT) { file = ossl_safe_getenv(X509_get_default_cert_file_env()); if (file) ok = (X509_load_cert_crl_file_ex(ctx, file, X509_FILETYPE_PEM, libctx, propq) != 0); else ok = (X509_load_cert_crl_file_ex( ctx, X509_get_default_cert_file(), X509_FILETYPE_PEM, libctx, propq) != 0); if (!ok) ERR_raise(ERR_LIB_X509, X509_R_LOADING_DEFAULTS); } else { if (argl == X509_FILETYPE_PEM) ok = (X509_load_cert_crl_file_ex(ctx, argp, X509_FILETYPE_PEM, libctx, propq) != 0); else ok = (X509_load_cert_file_ex(ctx, argp, (int)argl, libctx, propq) != 0); } break; } return ok; } static int by_file_ctrl(X509_LOOKUP *ctx, int cmd, const char *argp, long argl, char **ret) { return by_file_ctrl_ex(ctx, cmd, argp, argl, ret, NULL, NULL); } int X509_load_cert_file_ex(X509_LOOKUP *ctx, const char *file, int type, OSSL_LIB_CTX *libctx, const char *propq) { BIO *in = NULL; int count = 0; X509 *x = NULL; in = BIO_new(BIO_s_file()); if ((in == NULL) || (BIO_read_filename(in, file) <= 0)) { ERR_raise(ERR_LIB_X509, ERR_R_BIO_LIB); goto err; } x = X509_new_ex(libctx, propq); if (x == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_ASN1_LIB); goto err; } if (type == X509_FILETYPE_PEM) { for (;;) { ERR_set_mark(); if (PEM_read_bio_X509_AUX(in, &x, NULL, "") == NULL) { if ((ERR_GET_REASON(ERR_peek_last_error()) == PEM_R_NO_START_LINE) && (count > 0)) { ERR_pop_to_mark(); break; } else { ERR_clear_last_mark(); if (count == 0) { ERR_raise(ERR_LIB_X509, X509_R_NO_CERTIFICATE_FOUND); } else { ERR_raise(ERR_LIB_X509, ERR_R_PEM_LIB); count = 0; } goto err; } } ERR_clear_last_mark(); if (!X509_STORE_add_cert(ctx->store_ctx, x)) { count = 0; goto err; } /* * X509_STORE_add_cert() added a reference rather than a copy, * so we need a fresh X509 object. */ X509_free(x); x = X509_new_ex(libctx, propq); if (x == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_ASN1_LIB); count = 0; goto err; } count++; } } else if (type == X509_FILETYPE_ASN1) { if (d2i_X509_bio(in, &x) == NULL) { ERR_raise(ERR_LIB_X509, X509_R_NO_CERTIFICATE_FOUND); goto err; } count = X509_STORE_add_cert(ctx->store_ctx, x); } else { ERR_raise(ERR_LIB_X509, X509_R_BAD_X509_FILETYPE); goto err; } err: X509_free(x); BIO_free(in); return count; } int X509_load_cert_file(X509_LOOKUP *ctx, const char *file, int type) { return X509_load_cert_file_ex(ctx, file, type, NULL, NULL); } int X509_load_crl_file(X509_LOOKUP *ctx, const char *file, int type) { BIO *in = NULL; int count = 0; X509_CRL *x = NULL; in = BIO_new(BIO_s_file()); if ((in == NULL) || (BIO_read_filename(in, file) <= 0)) { ERR_raise(ERR_LIB_X509, ERR_R_BIO_LIB); goto err; } if (type == X509_FILETYPE_PEM) { for (;;) { x = PEM_read_bio_X509_CRL(in, NULL, NULL, ""); if (x == NULL) { if ((ERR_GET_REASON(ERR_peek_last_error()) == PEM_R_NO_START_LINE) && (count > 0)) { ERR_clear_error(); break; } else { if (count == 0) { ERR_raise(ERR_LIB_X509, X509_R_NO_CRL_FOUND); } else { ERR_raise(ERR_LIB_X509, ERR_R_PEM_LIB); count = 0; } goto err; } } if (!X509_STORE_add_crl(ctx->store_ctx, x)) { count = 0; goto err; } count++; } } else if (type == X509_FILETYPE_ASN1) { x = d2i_X509_CRL_bio(in, NULL); if (x == NULL) { ERR_raise(ERR_LIB_X509, X509_R_NO_CRL_FOUND); goto err; } count = X509_STORE_add_crl(ctx->store_ctx, x); } else { ERR_raise(ERR_LIB_X509, X509_R_BAD_X509_FILETYPE); goto err; } err: X509_CRL_free(x); BIO_free(in); return count; } int X509_load_cert_crl_file_ex(X509_LOOKUP *ctx, const char *file, int type, OSSL_LIB_CTX *libctx, const char *propq) { STACK_OF(X509_INFO) *inf = NULL; X509_INFO *itmp = NULL; BIO *in = NULL; int i, count = 0; if (type != X509_FILETYPE_PEM) return X509_load_cert_file_ex(ctx, file, type, libctx, propq); in = BIO_new_file(file, "r"); if (in == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_BIO_LIB); return 0; } inf = PEM_X509_INFO_read_bio_ex(in, NULL, NULL, "", libctx, propq); BIO_free(in); if (inf == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PEM_LIB); return 0; } for (i = 0; i < sk_X509_INFO_num(inf); i++) { itmp = sk_X509_INFO_value(inf, i); if (itmp->x509) { if (!X509_STORE_add_cert(ctx->store_ctx, itmp->x509)) { count = 0; goto err; } count++; } if (itmp->crl) { if (!X509_STORE_add_crl(ctx->store_ctx, itmp->crl)) { count = 0; goto err; } count++; } } if (count == 0) ERR_raise(ERR_LIB_X509, X509_R_NO_CERTIFICATE_OR_CRL_FOUND); err: sk_X509_INFO_pop_free(inf, X509_INFO_free); return count; } int X509_load_cert_crl_file(X509_LOOKUP *ctx, const char *file, int type) { return X509_load_cert_crl_file_ex(ctx, file, type, NULL, NULL); }
./openssl/crypto/x509/v3_admis.h
/* * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_CRYPTO_X509_V3_ADMIS_H # define OSSL_CRYPTO_X509_V3_ADMIS_H struct NamingAuthority_st { ASN1_OBJECT* namingAuthorityId; ASN1_IA5STRING* namingAuthorityUrl; ASN1_STRING* namingAuthorityText; /* i.e. DIRECTORYSTRING */ }; struct ProfessionInfo_st { NAMING_AUTHORITY* namingAuthority; STACK_OF(ASN1_STRING)* professionItems; /* i.e. DIRECTORYSTRING */ STACK_OF(ASN1_OBJECT)* professionOIDs; ASN1_PRINTABLESTRING* registrationNumber; ASN1_OCTET_STRING* addProfessionInfo; }; struct Admissions_st { GENERAL_NAME* admissionAuthority; NAMING_AUTHORITY* namingAuthority; STACK_OF(PROFESSION_INFO)* professionInfos; }; struct AdmissionSyntax_st { GENERAL_NAME* admissionAuthority; STACK_OF(ADMISSIONS)* contentsOfAdmissions; }; #endif
./openssl/crypto/x509/v3_group_ac.c
/* * Copyright 2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/asn1.h> #include <openssl/asn1t.h> #include <openssl/x509v3.h> #include "ext_dat.h" static int i2r_GROUP_AC(X509V3_EXT_METHOD *method, void *su, BIO *out, int indent) { return 1; } static void *r2i_GROUP_AC(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, const char *value) { return ASN1_NULL_new(); } static char *i2s_GROUP_AC(const X509V3_EXT_METHOD *method, void *val) { return OPENSSL_strdup("NULL"); } static void *s2i_GROUP_AC(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, const char *str) { return ASN1_NULL_new(); } /* * The groupAC X.509v3 extension is defined in ITU Recommendation X.509 * (2019), Section 17.1.2.6. See: https://www.itu.int/rec/T-REC-X.509-201910-I/en. */ const X509V3_EXT_METHOD ossl_v3_group_ac = { NID_group_ac, 0, ASN1_ITEM_ref(ASN1_NULL), 0, 0, 0, 0, (X509V3_EXT_I2S)i2s_GROUP_AC, (X509V3_EXT_S2I)s2i_GROUP_AC, 0, 0, (X509V3_EXT_I2R)i2r_GROUP_AC, (X509V3_EXT_R2I)r2i_GROUP_AC, NULL };
./openssl/crypto/x509/v3_utl.c
/* * Copyright 1999-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* X509 v3 extension utilities */ #include "internal/e_os.h" #include "internal/cryptlib.h" #include <stdio.h> #include <string.h> #include "crypto/ctype.h" #include <openssl/conf.h> #include <openssl/crypto.h> #include <openssl/x509v3.h> #include "crypto/x509.h" #include <openssl/bn.h> #include "ext_dat.h" #include "x509_local.h" static char *strip_spaces(char *name); static int sk_strcmp(const char *const *a, const char *const *b); static STACK_OF(OPENSSL_STRING) *get_email(const X509_NAME *name, GENERAL_NAMES *gens); static void str_free(OPENSSL_STRING str); static int append_ia5(STACK_OF(OPENSSL_STRING) **sk, const ASN1_IA5STRING *email); static int ipv4_from_asc(unsigned char *v4, const char *in); static int ipv6_from_asc(unsigned char *v6, const char *in); static int ipv6_cb(const char *elem, int len, void *usr); static int ipv6_hex(unsigned char *out, const char *in, int inlen); /* Add a CONF_VALUE name value pair to stack */ static int x509v3_add_len_value(const char *name, const char *value, size_t vallen, STACK_OF(CONF_VALUE) **extlist) { CONF_VALUE *vtmp = NULL; char *tname = NULL, *tvalue = NULL; int sk_allocated = (*extlist == NULL); if (name != NULL && (tname = OPENSSL_strdup(name)) == NULL) goto err; if (value != NULL) { /* We don't allow embedded NUL characters */ if (memchr(value, 0, vallen) != NULL) goto err; tvalue = OPENSSL_strndup(value, vallen); if (tvalue == NULL) goto err; } if ((vtmp = OPENSSL_malloc(sizeof(*vtmp))) == NULL) goto err; if (sk_allocated && (*extlist = sk_CONF_VALUE_new_null()) == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB); goto err; } vtmp->section = NULL; vtmp->name = tname; vtmp->value = tvalue; if (!sk_CONF_VALUE_push(*extlist, vtmp)) goto err; return 1; err: if (sk_allocated) { sk_CONF_VALUE_free(*extlist); *extlist = NULL; } OPENSSL_free(vtmp); OPENSSL_free(tname); OPENSSL_free(tvalue); return 0; } int X509V3_add_value(const char *name, const char *value, STACK_OF(CONF_VALUE) **extlist) { return x509v3_add_len_value(name, value, value != NULL ? strlen((const char *)value) : 0, extlist); } int X509V3_add_value_uchar(const char *name, const unsigned char *value, STACK_OF(CONF_VALUE) **extlist) { return x509v3_add_len_value(name, (const char *)value, value != NULL ? strlen((const char *)value) : 0, extlist); } int x509v3_add_len_value_uchar(const char *name, const unsigned char *value, size_t vallen, STACK_OF(CONF_VALUE) **extlist) { return x509v3_add_len_value(name, (const char *)value, vallen, extlist); } /* Free function for STACK_OF(CONF_VALUE) */ void X509V3_conf_free(CONF_VALUE *conf) { if (!conf) return; OPENSSL_free(conf->name); OPENSSL_free(conf->value); OPENSSL_free(conf->section); OPENSSL_free(conf); } int X509V3_add_value_bool(const char *name, int asn1_bool, STACK_OF(CONF_VALUE) **extlist) { if (asn1_bool) return X509V3_add_value(name, "TRUE", extlist); return X509V3_add_value(name, "FALSE", extlist); } int X509V3_add_value_bool_nf(const char *name, int asn1_bool, STACK_OF(CONF_VALUE) **extlist) { if (asn1_bool) return X509V3_add_value(name, "TRUE", extlist); return 1; } static char *bignum_to_string(const BIGNUM *bn) { char *tmp, *ret; size_t len; /* * Display large numbers in hex and small numbers in decimal. Converting to * decimal takes quadratic time and is no more useful than hex for large * numbers. */ if (BN_num_bits(bn) < 128) return BN_bn2dec(bn); tmp = BN_bn2hex(bn); if (tmp == NULL) return NULL; len = strlen(tmp) + 3; ret = OPENSSL_malloc(len); if (ret == NULL) { OPENSSL_free(tmp); return NULL; } /* Prepend "0x", but place it after the "-" if negative. */ if (tmp[0] == '-') { OPENSSL_strlcpy(ret, "-0x", len); OPENSSL_strlcat(ret, tmp + 1, len); } else { OPENSSL_strlcpy(ret, "0x", len); OPENSSL_strlcat(ret, tmp, len); } OPENSSL_free(tmp); return ret; } char *i2s_ASN1_ENUMERATED(X509V3_EXT_METHOD *method, const ASN1_ENUMERATED *a) { BIGNUM *bntmp = NULL; char *strtmp = NULL; if (!a) return NULL; if ((bntmp = ASN1_ENUMERATED_to_BN(a, NULL)) == NULL) ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB); else if ((strtmp = bignum_to_string(bntmp)) == NULL) ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB); BN_free(bntmp); return strtmp; } char *i2s_ASN1_INTEGER(X509V3_EXT_METHOD *method, const ASN1_INTEGER *a) { BIGNUM *bntmp = NULL; char *strtmp = NULL; if (!a) return NULL; if ((bntmp = ASN1_INTEGER_to_BN(a, NULL)) == NULL) ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB); else if ((strtmp = bignum_to_string(bntmp)) == NULL) ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB); BN_free(bntmp); return strtmp; } ASN1_INTEGER *s2i_ASN1_INTEGER(X509V3_EXT_METHOD *method, const char *value) { BIGNUM *bn = NULL; ASN1_INTEGER *aint; int isneg, ishex; int ret; if (value == NULL) { ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_NULL_VALUE); return NULL; } bn = BN_new(); if (bn == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_BN_LIB); return NULL; } if (value[0] == '-') { value++; isneg = 1; } else { isneg = 0; } if (value[0] == '0' && ((value[1] == 'x') || (value[1] == 'X'))) { value += 2; ishex = 1; } else { ishex = 0; } if (ishex) ret = BN_hex2bn(&bn, value); else ret = BN_dec2bn(&bn, value); if (!ret || value[ret]) { BN_free(bn); ERR_raise(ERR_LIB_X509V3, X509V3_R_BN_DEC2BN_ERROR); return NULL; } if (isneg && BN_is_zero(bn)) isneg = 0; aint = BN_to_ASN1_INTEGER(bn, NULL); BN_free(bn); if (!aint) { ERR_raise(ERR_LIB_X509V3, X509V3_R_BN_TO_ASN1_INTEGER_ERROR); return NULL; } if (isneg) aint->type |= V_ASN1_NEG; return aint; } int X509V3_add_value_int(const char *name, const ASN1_INTEGER *aint, STACK_OF(CONF_VALUE) **extlist) { char *strtmp; int ret; if (!aint) return 1; if ((strtmp = i2s_ASN1_INTEGER(NULL, aint)) == NULL) return 0; ret = X509V3_add_value(name, strtmp, extlist); OPENSSL_free(strtmp); return ret; } int X509V3_get_value_bool(const CONF_VALUE *value, int *asn1_bool) { const char *btmp; if ((btmp = value->value) == NULL) goto err; if (strcmp(btmp, "TRUE") == 0 || strcmp(btmp, "true") == 0 || strcmp(btmp, "Y") == 0 || strcmp(btmp, "y") == 0 || strcmp(btmp, "YES") == 0 || strcmp(btmp, "yes") == 0) { *asn1_bool = 0xff; return 1; } if (strcmp(btmp, "FALSE") == 0 || strcmp(btmp, "false") == 0 || strcmp(btmp, "N") == 0 || strcmp(btmp, "n") == 0 || strcmp(btmp, "NO") == 0 || strcmp(btmp, "no") == 0) { *asn1_bool = 0; return 1; } err: ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_BOOLEAN_STRING); X509V3_conf_add_error_name_value(value); return 0; } int X509V3_get_value_int(const CONF_VALUE *value, ASN1_INTEGER **aint) { ASN1_INTEGER *itmp; if ((itmp = s2i_ASN1_INTEGER(NULL, value->value)) == NULL) { X509V3_conf_add_error_name_value(value); return 0; } *aint = itmp; return 1; } #define HDR_NAME 1 #define HDR_VALUE 2 /* * #define DEBUG */ STACK_OF(CONF_VALUE) *X509V3_parse_list(const char *line) { char *p, *q, c; char *ntmp, *vtmp; STACK_OF(CONF_VALUE) *values = NULL; char *linebuf; int state; /* We are going to modify the line so copy it first */ linebuf = OPENSSL_strdup(line); if (linebuf == NULL) goto err; state = HDR_NAME; ntmp = NULL; /* Go through all characters */ for (p = linebuf, q = linebuf; (c = *p) && (c != '\r') && (c != '\n'); p++) { switch (state) { case HDR_NAME: if (c == ':') { state = HDR_VALUE; *p = 0; ntmp = strip_spaces(q); if (!ntmp) { ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_EMPTY_NAME); goto err; } q = p + 1; } else if (c == ',') { *p = 0; ntmp = strip_spaces(q); q = p + 1; if (!ntmp) { ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_EMPTY_NAME); goto err; } if (!X509V3_add_value(ntmp, NULL, &values)) { goto err; } } break; case HDR_VALUE: if (c == ',') { state = HDR_NAME; *p = 0; vtmp = strip_spaces(q); if (!vtmp) { ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_NULL_VALUE); goto err; } if (!X509V3_add_value(ntmp, vtmp, &values)) { goto err; } ntmp = NULL; q = p + 1; } } } if (state == HDR_VALUE) { vtmp = strip_spaces(q); if (!vtmp) { ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_NULL_VALUE); goto err; } if (!X509V3_add_value(ntmp, vtmp, &values)) { goto err; } } else { ntmp = strip_spaces(q); if (!ntmp) { ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_EMPTY_NAME); goto err; } if (!X509V3_add_value(ntmp, NULL, &values)) { goto err; } } OPENSSL_free(linebuf); return values; err: OPENSSL_free(linebuf); sk_CONF_VALUE_pop_free(values, X509V3_conf_free); return NULL; } /* Delete leading and trailing spaces from a string */ static char *strip_spaces(char *name) { char *p, *q; /* Skip over leading spaces */ p = name; while (*p && ossl_isspace(*p)) p++; if (*p == '\0') return NULL; q = p + strlen(p) - 1; while ((q != p) && ossl_isspace(*q)) q--; if (p != q) q[1] = 0; if (*p == '\0') return NULL; return p; } /* * V2I name comparison function: returns zero if 'name' matches cmp or cmp.* */ int ossl_v3_name_cmp(const char *name, const char *cmp) { int len, ret; char c; len = strlen(cmp); if ((ret = strncmp(name, cmp, len))) return ret; c = name[len]; if (!c || (c == '.')) return 0; return 1; } static int sk_strcmp(const char *const *a, const char *const *b) { return strcmp(*a, *b); } STACK_OF(OPENSSL_STRING) *X509_get1_email(X509 *x) { GENERAL_NAMES *gens; STACK_OF(OPENSSL_STRING) *ret; gens = X509_get_ext_d2i(x, NID_subject_alt_name, NULL, NULL); ret = get_email(X509_get_subject_name(x), gens); sk_GENERAL_NAME_pop_free(gens, GENERAL_NAME_free); return ret; } STACK_OF(OPENSSL_STRING) *X509_get1_ocsp(X509 *x) { AUTHORITY_INFO_ACCESS *info; STACK_OF(OPENSSL_STRING) *ret = NULL; int i; info = X509_get_ext_d2i(x, NID_info_access, NULL, NULL); if (!info) return NULL; for (i = 0; i < sk_ACCESS_DESCRIPTION_num(info); i++) { ACCESS_DESCRIPTION *ad = sk_ACCESS_DESCRIPTION_value(info, i); if (OBJ_obj2nid(ad->method) == NID_ad_OCSP) { if (ad->location->type == GEN_URI) { if (!append_ia5 (&ret, ad->location->d.uniformResourceIdentifier)) break; } } } AUTHORITY_INFO_ACCESS_free(info); return ret; } STACK_OF(OPENSSL_STRING) *X509_REQ_get1_email(X509_REQ *x) { GENERAL_NAMES *gens; STACK_OF(X509_EXTENSION) *exts; STACK_OF(OPENSSL_STRING) *ret; exts = X509_REQ_get_extensions(x); gens = X509V3_get_d2i(exts, NID_subject_alt_name, NULL, NULL); ret = get_email(X509_REQ_get_subject_name(x), gens); sk_GENERAL_NAME_pop_free(gens, GENERAL_NAME_free); sk_X509_EXTENSION_pop_free(exts, X509_EXTENSION_free); return ret; } static STACK_OF(OPENSSL_STRING) *get_email(const X509_NAME *name, GENERAL_NAMES *gens) { STACK_OF(OPENSSL_STRING) *ret = NULL; X509_NAME_ENTRY *ne; const ASN1_IA5STRING *email; GENERAL_NAME *gen; int i = -1; /* Now add any email address(es) to STACK */ /* First supplied X509_NAME */ while ((i = X509_NAME_get_index_by_NID(name, NID_pkcs9_emailAddress, i)) >= 0) { ne = X509_NAME_get_entry(name, i); email = X509_NAME_ENTRY_get_data(ne); if (!append_ia5(&ret, email)) return NULL; } for (i = 0; i < sk_GENERAL_NAME_num(gens); i++) { gen = sk_GENERAL_NAME_value(gens, i); if (gen->type != GEN_EMAIL) continue; if (!append_ia5(&ret, gen->d.ia5)) return NULL; } return ret; } static void str_free(OPENSSL_STRING str) { OPENSSL_free(str); } static int append_ia5(STACK_OF(OPENSSL_STRING) **sk, const ASN1_IA5STRING *email) { char *emtmp; /* First some sanity checks */ if (email->type != V_ASN1_IA5STRING) return 1; if (email->data == NULL || email->length == 0) return 1; if (memchr(email->data, 0, email->length) != NULL) return 1; if (*sk == NULL) *sk = sk_OPENSSL_STRING_new(sk_strcmp); if (*sk == NULL) return 0; emtmp = OPENSSL_strndup((char *)email->data, email->length); if (emtmp == NULL) { X509_email_free(*sk); *sk = NULL; return 0; } /* Don't add duplicates */ if (sk_OPENSSL_STRING_find(*sk, emtmp) != -1) { OPENSSL_free(emtmp); return 1; } if (!sk_OPENSSL_STRING_push(*sk, emtmp)) { OPENSSL_free(emtmp); /* free on push failure */ X509_email_free(*sk); *sk = NULL; return 0; } return 1; } void X509_email_free(STACK_OF(OPENSSL_STRING) *sk) { sk_OPENSSL_STRING_pop_free(sk, str_free); } typedef int (*equal_fn) (const unsigned char *pattern, size_t pattern_len, const unsigned char *subject, size_t subject_len, unsigned int flags); /* Skip pattern prefix to match "wildcard" subject */ static void skip_prefix(const unsigned char **p, size_t *plen, size_t subject_len, unsigned int flags) { const unsigned char *pattern = *p; size_t pattern_len = *plen; /* * If subject starts with a leading '.' followed by more octets, and * pattern is longer, compare just an equal-length suffix with the * full subject (starting at the '.'), provided the prefix contains * no NULs. */ if ((flags & _X509_CHECK_FLAG_DOT_SUBDOMAINS) == 0) return; while (pattern_len > subject_len && *pattern) { if ((flags & X509_CHECK_FLAG_SINGLE_LABEL_SUBDOMAINS) && *pattern == '.') break; ++pattern; --pattern_len; } /* Skip if entire prefix acceptable */ if (pattern_len == subject_len) { *p = pattern; *plen = pattern_len; } } /* Compare while ASCII ignoring case. */ static int equal_nocase(const unsigned char *pattern, size_t pattern_len, const unsigned char *subject, size_t subject_len, unsigned int flags) { skip_prefix(&pattern, &pattern_len, subject_len, flags); if (pattern_len != subject_len) return 0; while (pattern_len != 0) { unsigned char l = *pattern; unsigned char r = *subject; /* The pattern must not contain NUL characters. */ if (l == 0) return 0; if (l != r) { if ('A' <= l && l <= 'Z') l = (l - 'A') + 'a'; if ('A' <= r && r <= 'Z') r = (r - 'A') + 'a'; if (l != r) return 0; } ++pattern; ++subject; --pattern_len; } return 1; } /* Compare using memcmp. */ static int equal_case(const unsigned char *pattern, size_t pattern_len, const unsigned char *subject, size_t subject_len, unsigned int flags) { skip_prefix(&pattern, &pattern_len, subject_len, flags); if (pattern_len != subject_len) return 0; return !memcmp(pattern, subject, pattern_len); } /* * RFC 5280, section 7.5, requires that only the domain is compared in a * case-insensitive manner. */ static int equal_email(const unsigned char *a, size_t a_len, const unsigned char *b, size_t b_len, unsigned int unused_flags) { size_t i = a_len; if (a_len != b_len) return 0; /* * We search backwards for the '@' character, so that we do not have to * deal with quoted local-parts. The domain part is compared in a * case-insensitive manner. */ while (i > 0) { --i; if (a[i] == '@' || b[i] == '@') { if (!equal_nocase(a + i, a_len - i, b + i, a_len - i, 0)) return 0; break; } } if (i == 0) i = a_len; return equal_case(a, i, b, i, 0); } /* * Compare the prefix and suffix with the subject, and check that the * characters in-between are valid. */ static int wildcard_match(const unsigned char *prefix, size_t prefix_len, const unsigned char *suffix, size_t suffix_len, const unsigned char *subject, size_t subject_len, unsigned int flags) { const unsigned char *wildcard_start; const unsigned char *wildcard_end; const unsigned char *p; int allow_multi = 0; int allow_idna = 0; if (subject_len < prefix_len + suffix_len) return 0; if (!equal_nocase(prefix, prefix_len, subject, prefix_len, flags)) return 0; wildcard_start = subject + prefix_len; wildcard_end = subject + (subject_len - suffix_len); if (!equal_nocase(wildcard_end, suffix_len, suffix, suffix_len, flags)) return 0; /* * If the wildcard makes up the entire first label, it must match at * least one character. */ if (prefix_len == 0 && *suffix == '.') { if (wildcard_start == wildcard_end) return 0; allow_idna = 1; if (flags & X509_CHECK_FLAG_MULTI_LABEL_WILDCARDS) allow_multi = 1; } /* IDNA labels cannot match partial wildcards */ if (!allow_idna && subject_len >= 4 && HAS_CASE_PREFIX((const char *)subject, "xn--")) return 0; /* The wildcard may match a literal '*' */ if (wildcard_end == wildcard_start + 1 && *wildcard_start == '*') return 1; /* * Check that the part matched by the wildcard contains only * permitted characters and only matches a single label unless * allow_multi is set. */ for (p = wildcard_start; p != wildcard_end; ++p) if (!(('0' <= *p && *p <= '9') || ('A' <= *p && *p <= 'Z') || ('a' <= *p && *p <= 'z') || *p == '-' || (allow_multi && *p == '.'))) return 0; return 1; } #define LABEL_START (1 << 0) #define LABEL_END (1 << 1) #define LABEL_HYPHEN (1 << 2) #define LABEL_IDNA (1 << 3) static const unsigned char *valid_star(const unsigned char *p, size_t len, unsigned int flags) { const unsigned char *star = 0; size_t i; int state = LABEL_START; int dots = 0; for (i = 0; i < len; ++i) { /* * Locate first and only legal wildcard, either at the start * or end of a non-IDNA first and not final label. */ if (p[i] == '*') { int atstart = (state & LABEL_START); int atend = (i == len - 1 || p[i + 1] == '.'); /*- * At most one wildcard per pattern. * No wildcards in IDNA labels. * No wildcards after the first label. */ if (star != NULL || (state & LABEL_IDNA) != 0 || dots) return NULL; /* Only full-label '*.example.com' wildcards? */ if ((flags & X509_CHECK_FLAG_NO_PARTIAL_WILDCARDS) && (!atstart || !atend)) return NULL; /* No 'foo*bar' wildcards */ if (!atstart && !atend) return NULL; star = &p[i]; state &= ~LABEL_START; } else if (('a' <= p[i] && p[i] <= 'z') || ('A' <= p[i] && p[i] <= 'Z') || ('0' <= p[i] && p[i] <= '9')) { if ((state & LABEL_START) != 0 && len - i >= 4 && HAS_CASE_PREFIX((const char *)&p[i], "xn--")) state |= LABEL_IDNA; state &= ~(LABEL_HYPHEN | LABEL_START); } else if (p[i] == '.') { if ((state & (LABEL_HYPHEN | LABEL_START)) != 0) return NULL; state = LABEL_START; ++dots; } else if (p[i] == '-') { /* no domain/subdomain starts with '-' */ if ((state & LABEL_START) != 0) return NULL; state |= LABEL_HYPHEN; } else { return NULL; } } /* * The final label must not end in a hyphen or ".", and * there must be at least two dots after the star. */ if ((state & (LABEL_START | LABEL_HYPHEN)) != 0 || dots < 2) return NULL; return star; } /* Compare using wildcards. */ static int equal_wildcard(const unsigned char *pattern, size_t pattern_len, const unsigned char *subject, size_t subject_len, unsigned int flags) { const unsigned char *star = NULL; /* * Subject names starting with '.' can only match a wildcard pattern * via a subject sub-domain pattern suffix match. */ if (!(subject_len > 1 && subject[0] == '.')) star = valid_star(pattern, pattern_len, flags); if (star == NULL) return equal_nocase(pattern, pattern_len, subject, subject_len, flags); return wildcard_match(pattern, star - pattern, star + 1, (pattern + pattern_len) - star - 1, subject, subject_len, flags); } /* * Compare an ASN1_STRING to a supplied string. If they match return 1. If * cmp_type > 0 only compare if string matches the type, otherwise convert it * to UTF8. */ static int do_check_string(const ASN1_STRING *a, int cmp_type, equal_fn equal, unsigned int flags, const char *b, size_t blen, char **peername) { int rv = 0; if (!a->data || !a->length) return 0; if (cmp_type > 0) { if (cmp_type != a->type) return 0; if (cmp_type == V_ASN1_IA5STRING) rv = equal(a->data, a->length, (unsigned char *)b, blen, flags); else if (a->length == (int)blen && !memcmp(a->data, b, blen)) rv = 1; if (rv > 0 && peername != NULL) { *peername = OPENSSL_strndup((char *)a->data, a->length); if (*peername == NULL) return -1; } } else { int astrlen; unsigned char *astr; astrlen = ASN1_STRING_to_UTF8(&astr, a); if (astrlen < 0) { /* * -1 could be an internal malloc failure or a decoding error from * malformed input; we can't distinguish. */ return -1; } rv = equal(astr, astrlen, (unsigned char *)b, blen, flags); if (rv > 0 && peername != NULL) { *peername = OPENSSL_strndup((char *)astr, astrlen); if (*peername == NULL) { OPENSSL_free(astr); return -1; } } OPENSSL_free(astr); } return rv; } static int do_x509_check(X509 *x, const char *chk, size_t chklen, unsigned int flags, int check_type, char **peername) { GENERAL_NAMES *gens = NULL; const X509_NAME *name = NULL; int i; int cnid = NID_undef; int alt_type; int san_present = 0; int rv = 0; equal_fn equal; /* See below, this flag is internal-only */ flags &= ~_X509_CHECK_FLAG_DOT_SUBDOMAINS; if (check_type == GEN_EMAIL) { cnid = NID_pkcs9_emailAddress; alt_type = V_ASN1_IA5STRING; equal = equal_email; } else if (check_type == GEN_DNS) { cnid = NID_commonName; /* Implicit client-side DNS sub-domain pattern */ if (chklen > 1 && chk[0] == '.') flags |= _X509_CHECK_FLAG_DOT_SUBDOMAINS; alt_type = V_ASN1_IA5STRING; if (flags & X509_CHECK_FLAG_NO_WILDCARDS) equal = equal_nocase; else equal = equal_wildcard; } else { alt_type = V_ASN1_OCTET_STRING; equal = equal_case; } if (chklen == 0) chklen = strlen(chk); gens = X509_get_ext_d2i(x, NID_subject_alt_name, NULL, NULL); if (gens) { for (i = 0; i < sk_GENERAL_NAME_num(gens); i++) { GENERAL_NAME *gen; ASN1_STRING *cstr; gen = sk_GENERAL_NAME_value(gens, i); if ((gen->type == GEN_OTHERNAME) && (check_type == GEN_EMAIL)) { if (OBJ_obj2nid(gen->d.otherName->type_id) == NID_id_on_SmtpUTF8Mailbox) { san_present = 1; /* * If it is not a UTF8String then that is unexpected and we * treat it as no match */ if (gen->d.otherName->value->type == V_ASN1_UTF8STRING) { cstr = gen->d.otherName->value->value.utf8string; /* Positive on success, negative on error! */ if ((rv = do_check_string(cstr, 0, equal, flags, chk, chklen, peername)) != 0) break; } } else continue; } else { if ((gen->type != check_type) && (gen->type != GEN_OTHERNAME)) continue; } san_present = 1; if (check_type == GEN_EMAIL) cstr = gen->d.rfc822Name; else if (check_type == GEN_DNS) cstr = gen->d.dNSName; else cstr = gen->d.iPAddress; /* Positive on success, negative on error! */ if ((rv = do_check_string(cstr, alt_type, equal, flags, chk, chklen, peername)) != 0) break; } GENERAL_NAMES_free(gens); if (rv != 0) return rv; if (san_present && !(flags & X509_CHECK_FLAG_ALWAYS_CHECK_SUBJECT)) return 0; } /* We're done if CN-ID is not pertinent */ if (cnid == NID_undef || (flags & X509_CHECK_FLAG_NEVER_CHECK_SUBJECT)) return 0; i = -1; name = X509_get_subject_name(x); while ((i = X509_NAME_get_index_by_NID(name, cnid, i)) >= 0) { const X509_NAME_ENTRY *ne = X509_NAME_get_entry(name, i); const ASN1_STRING *str = X509_NAME_ENTRY_get_data(ne); /* Positive on success, negative on error! */ if ((rv = do_check_string(str, -1, equal, flags, chk, chklen, peername)) != 0) return rv; } return 0; } int X509_check_host(X509 *x, const char *chk, size_t chklen, unsigned int flags, char **peername) { if (chk == NULL) return -2; /* * Embedded NULs are disallowed, except as the last character of a * string of length 2 or more (tolerate caller including terminating * NUL in string length). */ if (chklen == 0) chklen = strlen(chk); else if (memchr(chk, '\0', chklen > 1 ? chklen - 1 : chklen)) return -2; if (chklen > 1 && chk[chklen - 1] == '\0') --chklen; return do_x509_check(x, chk, chklen, flags, GEN_DNS, peername); } int X509_check_email(X509 *x, const char *chk, size_t chklen, unsigned int flags) { if (chk == NULL) return -2; /* * Embedded NULs are disallowed, except as the last character of a * string of length 2 or more (tolerate caller including terminating * NUL in string length). */ if (chklen == 0) chklen = strlen((char *)chk); else if (memchr(chk, '\0', chklen > 1 ? chklen - 1 : chklen)) return -2; if (chklen > 1 && chk[chklen - 1] == '\0') --chklen; return do_x509_check(x, chk, chklen, flags, GEN_EMAIL, NULL); } int X509_check_ip(X509 *x, const unsigned char *chk, size_t chklen, unsigned int flags) { if (chk == NULL) return -2; return do_x509_check(x, (char *)chk, chklen, flags, GEN_IPADD, NULL); } int X509_check_ip_asc(X509 *x, const char *ipasc, unsigned int flags) { unsigned char ipout[16]; size_t iplen; if (ipasc == NULL) return -2; iplen = (size_t)ossl_a2i_ipadd(ipout, ipasc); if (iplen == 0) return -2; return do_x509_check(x, (char *)ipout, iplen, flags, GEN_IPADD, NULL); } char *ossl_ipaddr_to_asc(unsigned char *p, int len) { /* * 40 is enough space for the longest IPv6 address + nul terminator byte * XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX\0 */ char buf[40], *out; int i = 0, remain = 0, bytes = 0; switch (len) { case 4: /* IPv4 */ BIO_snprintf(buf, sizeof(buf), "%d.%d.%d.%d", p[0], p[1], p[2], p[3]); break; case 16: /* IPv6 */ for (out = buf, i = 8, remain = sizeof(buf); i-- > 0 && bytes >= 0; remain -= bytes, out += bytes) { const char *template = (i > 0 ? "%X:" : "%X"); bytes = BIO_snprintf(out, remain, template, p[0] << 8 | p[1]); p += 2; } break; default: BIO_snprintf(buf, sizeof(buf), "<invalid length=%d>", len); break; } return OPENSSL_strdup(buf); } /* * Convert IP addresses both IPv4 and IPv6 into an OCTET STRING compatible * with RFC3280. */ ASN1_OCTET_STRING *a2i_IPADDRESS(const char *ipasc) { unsigned char ipout[16]; ASN1_OCTET_STRING *ret; int iplen; /* If string contains a ':' assume IPv6 */ iplen = ossl_a2i_ipadd(ipout, ipasc); if (!iplen) return NULL; ret = ASN1_OCTET_STRING_new(); if (ret == NULL) return NULL; if (!ASN1_OCTET_STRING_set(ret, ipout, iplen)) { ASN1_OCTET_STRING_free(ret); return NULL; } return ret; } ASN1_OCTET_STRING *a2i_IPADDRESS_NC(const char *ipasc) { ASN1_OCTET_STRING *ret = NULL; unsigned char ipout[32]; char *iptmp = NULL, *p; int iplen1, iplen2; p = strchr(ipasc, '/'); if (p == NULL) return NULL; iptmp = OPENSSL_strdup(ipasc); if (iptmp == NULL) return NULL; p = iptmp + (p - ipasc); *p++ = 0; iplen1 = ossl_a2i_ipadd(ipout, iptmp); if (!iplen1) goto err; iplen2 = ossl_a2i_ipadd(ipout + iplen1, p); OPENSSL_free(iptmp); iptmp = NULL; if (!iplen2 || (iplen1 != iplen2)) goto err; ret = ASN1_OCTET_STRING_new(); if (ret == NULL) goto err; if (!ASN1_OCTET_STRING_set(ret, ipout, iplen1 + iplen2)) goto err; return ret; err: OPENSSL_free(iptmp); ASN1_OCTET_STRING_free(ret); return NULL; } int ossl_a2i_ipadd(unsigned char *ipout, const char *ipasc) { /* If string contains a ':' assume IPv6 */ if (strchr(ipasc, ':')) { if (!ipv6_from_asc(ipout, ipasc)) return 0; return 16; } else { if (!ipv4_from_asc(ipout, ipasc)) return 0; return 4; } } static int ipv4_from_asc(unsigned char *v4, const char *in) { const char *p; int a0, a1, a2, a3, n; if (sscanf(in, "%d.%d.%d.%d%n", &a0, &a1, &a2, &a3, &n) != 4) return 0; if ((a0 < 0) || (a0 > 255) || (a1 < 0) || (a1 > 255) || (a2 < 0) || (a2 > 255) || (a3 < 0) || (a3 > 255)) return 0; p = in + n; if (!(*p == '\0' || ossl_isspace(*p))) return 0; v4[0] = a0; v4[1] = a1; v4[2] = a2; v4[3] = a3; return 1; } typedef struct { /* Temporary store for IPV6 output */ unsigned char tmp[16]; /* Total number of bytes in tmp */ int total; /* The position of a zero (corresponding to '::') */ int zero_pos; /* Number of zeroes */ int zero_cnt; } IPV6_STAT; static int ipv6_from_asc(unsigned char *v6, const char *in) { IPV6_STAT v6stat; v6stat.total = 0; v6stat.zero_pos = -1; v6stat.zero_cnt = 0; /* * Treat the IPv6 representation as a list of values separated by ':'. * The presence of a '::' will parse as one, two or three zero length * elements. */ if (!CONF_parse_list(in, ':', 0, ipv6_cb, &v6stat)) return 0; /* Now for some sanity checks */ if (v6stat.zero_pos == -1) { /* If no '::' must have exactly 16 bytes */ if (v6stat.total != 16) return 0; } else { /* If '::' must have less than 16 bytes */ if (v6stat.total == 16) return 0; /* More than three zeroes is an error */ if (v6stat.zero_cnt > 3) { return 0; /* Can only have three zeroes if nothing else present */ } else if (v6stat.zero_cnt == 3) { if (v6stat.total > 0) return 0; } else if (v6stat.zero_cnt == 2) { /* Can only have two zeroes if at start or end */ if ((v6stat.zero_pos != 0) && (v6stat.zero_pos != v6stat.total)) return 0; } else { /* Can only have one zero if *not* start or end */ if ((v6stat.zero_pos == 0) || (v6stat.zero_pos == v6stat.total)) return 0; } } /* Format result */ if (v6stat.zero_pos >= 0) { /* Copy initial part */ memcpy(v6, v6stat.tmp, v6stat.zero_pos); /* Zero middle */ memset(v6 + v6stat.zero_pos, 0, 16 - v6stat.total); /* Copy final part */ if (v6stat.total != v6stat.zero_pos) memcpy(v6 + v6stat.zero_pos + 16 - v6stat.total, v6stat.tmp + v6stat.zero_pos, v6stat.total - v6stat.zero_pos); } else { memcpy(v6, v6stat.tmp, 16); } return 1; } static int ipv6_cb(const char *elem, int len, void *usr) { IPV6_STAT *s = usr; /* Error if 16 bytes written */ if (s->total == 16) return 0; if (len == 0) { /* Zero length element, corresponds to '::' */ if (s->zero_pos == -1) s->zero_pos = s->total; /* If we've already got a :: its an error */ else if (s->zero_pos != s->total) return 0; s->zero_cnt++; } else { /* If more than 4 characters could be final a.b.c.d form */ if (len > 4) { /* Need at least 4 bytes left */ if (s->total > 12) return 0; /* Must be end of string */ if (elem[len]) return 0; if (!ipv4_from_asc(s->tmp + s->total, elem)) return 0; s->total += 4; } else { if (!ipv6_hex(s->tmp + s->total, elem, len)) return 0; s->total += 2; } } return 1; } /* * Convert a string of up to 4 hex digits into the corresponding IPv6 form. */ static int ipv6_hex(unsigned char *out, const char *in, int inlen) { unsigned char c; unsigned int num = 0; int x; if (inlen > 4) return 0; while (inlen--) { c = *in++; num <<= 4; x = OPENSSL_hexchar2int(c); if (x < 0) return 0; num |= (char)x; } out[0] = num >> 8; out[1] = num & 0xff; return 1; } int X509V3_NAME_from_section(X509_NAME *nm, STACK_OF(CONF_VALUE) *dn_sk, unsigned long chtype) { CONF_VALUE *v; int i, mval, spec_char, plus_char; char *p, *type; if (!nm) return 0; for (i = 0; i < sk_CONF_VALUE_num(dn_sk); i++) { v = sk_CONF_VALUE_value(dn_sk, i); type = v->name; /* * Skip past any leading X. X: X, etc to allow for multiple instances */ for (p = type; *p; p++) { #ifndef CHARSET_EBCDIC spec_char = ((*p == ':') || (*p == ',') || (*p == '.')); #else spec_char = ((*p == os_toascii[':']) || (*p == os_toascii[',']) || (*p == os_toascii['.'])); #endif if (spec_char) { p++; if (*p) type = p; break; } } #ifndef CHARSET_EBCDIC plus_char = (*type == '+'); #else plus_char = (*type == os_toascii['+']); #endif if (plus_char) { mval = -1; type++; } else { mval = 0; } if (!X509_NAME_add_entry_by_txt(nm, type, chtype, (unsigned char *)v->value, -1, -1, mval)) return 0; } return 1; }
./openssl/crypto/x509/x_pubkey.c
/* * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * DSA low level APIs are deprecated for public use, but still ok for * internal use. */ #include "internal/deprecated.h" #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/asn1t.h> #include <openssl/x509.h> #include <openssl/engine.h> #include "crypto/asn1.h" #include "crypto/evp.h" #include "crypto/x509.h" #include <openssl/rsa.h> #include <openssl/dsa.h> #include <openssl/decoder.h> #include <openssl/encoder.h> #include "internal/provider.h" #include "internal/sizes.h" struct X509_pubkey_st { X509_ALGOR *algor; ASN1_BIT_STRING *public_key; EVP_PKEY *pkey; /* extra data for the callback, used by d2i_PUBKEY_ex */ OSSL_LIB_CTX *libctx; char *propq; /* Flag to force legacy keys */ unsigned int flag_force_legacy : 1; }; static int x509_pubkey_decode(EVP_PKEY **pk, const X509_PUBKEY *key); static int x509_pubkey_set0_libctx(X509_PUBKEY *x, OSSL_LIB_CTX *libctx, const char *propq) { if (x != NULL) { x->libctx = libctx; OPENSSL_free(x->propq); x->propq = NULL; if (propq != NULL) { x->propq = OPENSSL_strdup(propq); if (x->propq == NULL) return 0; } } return 1; } ASN1_SEQUENCE(X509_PUBKEY_INTERNAL) = { ASN1_SIMPLE(X509_PUBKEY, algor, X509_ALGOR), ASN1_SIMPLE(X509_PUBKEY, public_key, ASN1_BIT_STRING) } static_ASN1_SEQUENCE_END_name(X509_PUBKEY, X509_PUBKEY_INTERNAL) X509_PUBKEY *ossl_d2i_X509_PUBKEY_INTERNAL(const unsigned char **pp, long len, OSSL_LIB_CTX *libctx, const char *propq) { X509_PUBKEY *xpub = OPENSSL_zalloc(sizeof(*xpub)); if (xpub == NULL) return NULL; return (X509_PUBKEY *)ASN1_item_d2i_ex((ASN1_VALUE **)&xpub, pp, len, ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL), libctx, propq); } void ossl_X509_PUBKEY_INTERNAL_free(X509_PUBKEY *xpub) { ASN1_item_free((ASN1_VALUE *)xpub, ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL)); } static void x509_pubkey_ex_free(ASN1_VALUE **pval, const ASN1_ITEM *it) { X509_PUBKEY *pubkey; if (pval != NULL && (pubkey = (X509_PUBKEY *)*pval) != NULL) { X509_ALGOR_free(pubkey->algor); ASN1_BIT_STRING_free(pubkey->public_key); EVP_PKEY_free(pubkey->pkey); OPENSSL_free(pubkey->propq); OPENSSL_free(pubkey); *pval = NULL; } } static int x509_pubkey_ex_populate(ASN1_VALUE **pval, const ASN1_ITEM *it) { X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval; return (pubkey->algor != NULL || (pubkey->algor = X509_ALGOR_new()) != NULL) && (pubkey->public_key != NULL || (pubkey->public_key = ASN1_BIT_STRING_new()) != NULL); } static int x509_pubkey_ex_new_ex(ASN1_VALUE **pval, const ASN1_ITEM *it, OSSL_LIB_CTX *libctx, const char *propq) { X509_PUBKEY *ret; if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) return 0; if (!x509_pubkey_ex_populate((ASN1_VALUE **)&ret, NULL) || !x509_pubkey_set0_libctx(ret, libctx, propq)) { x509_pubkey_ex_free((ASN1_VALUE **)&ret, NULL); ret = NULL; ERR_raise(ERR_LIB_ASN1, ERR_R_X509_LIB); } else { *pval = (ASN1_VALUE *)ret; } return ret != NULL; } static int x509_pubkey_ex_d2i_ex(ASN1_VALUE **pval, const unsigned char **in, long len, const ASN1_ITEM *it, int tag, int aclass, char opt, ASN1_TLC *ctx, OSSL_LIB_CTX *libctx, const char *propq) { const unsigned char *in_saved = *in; size_t publen; X509_PUBKEY *pubkey; int ret; OSSL_DECODER_CTX *dctx = NULL; unsigned char *tmpbuf = NULL; if (*pval == NULL && !x509_pubkey_ex_new_ex(pval, it, libctx, propq)) return 0; if (!x509_pubkey_ex_populate(pval, NULL)) { ERR_raise(ERR_LIB_ASN1, ERR_R_X509_LIB); return 0; } /* This ensures that |*in| advances properly no matter what */ if ((ret = ASN1_item_ex_d2i(pval, in, len, ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL), tag, aclass, opt, ctx)) <= 0) return ret; publen = *in - in_saved; if (!ossl_assert(publen > 0)) { ERR_raise(ERR_LIB_ASN1, ERR_R_INTERNAL_ERROR); return 0; } pubkey = (X509_PUBKEY *)*pval; EVP_PKEY_free(pubkey->pkey); pubkey->pkey = NULL; /* * Opportunistically decode the key but remove any non fatal errors * from the queue. Subsequent explicit attempts to decode/use the key * will return an appropriate error. */ ERR_set_mark(); /* * Try to decode with legacy method first. This ensures that engines * aren't overridden by providers. */ if ((ret = x509_pubkey_decode(&pubkey->pkey, pubkey)) == -1) { /* -1 indicates a fatal error, like malloc failure */ ERR_clear_last_mark(); goto end; } /* Try to decode it into an EVP_PKEY with OSSL_DECODER */ if (ret <= 0 && !pubkey->flag_force_legacy) { const unsigned char *p; char txtoidname[OSSL_MAX_NAME_SIZE]; size_t slen = publen; /* * The decoders don't know how to handle anything other than Universal * class so we modify the data accordingly. */ if (aclass != V_ASN1_UNIVERSAL) { tmpbuf = OPENSSL_memdup(in_saved, publen); if (tmpbuf == NULL) return 0; in_saved = tmpbuf; *tmpbuf = V_ASN1_CONSTRUCTED | V_ASN1_SEQUENCE; } p = in_saved; if (OBJ_obj2txt(txtoidname, sizeof(txtoidname), pubkey->algor->algorithm, 0) <= 0) { ERR_clear_last_mark(); goto end; } if ((dctx = OSSL_DECODER_CTX_new_for_pkey(&pubkey->pkey, "DER", "SubjectPublicKeyInfo", txtoidname, EVP_PKEY_PUBLIC_KEY, pubkey->libctx, pubkey->propq)) != NULL) /* * As said higher up, we're being opportunistic. In other words, * we don't care if we fail. */ if (OSSL_DECODER_from_data(dctx, &p, &slen)) { if (slen != 0) { /* * If we successfully decoded then we *must* consume all the * bytes. */ ERR_clear_last_mark(); ERR_raise(ERR_LIB_ASN1, EVP_R_DECODE_ERROR); goto end; } } } ERR_pop_to_mark(); ret = 1; end: OSSL_DECODER_CTX_free(dctx); OPENSSL_free(tmpbuf); return ret; } static int x509_pubkey_ex_i2d(const ASN1_VALUE **pval, unsigned char **out, const ASN1_ITEM *it, int tag, int aclass) { return ASN1_item_ex_i2d(pval, out, ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL), tag, aclass); } static int x509_pubkey_ex_print(BIO *out, const ASN1_VALUE **pval, int indent, const char *fname, const ASN1_PCTX *pctx) { return ASN1_item_print(out, *pval, indent, ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL), pctx); } static const ASN1_EXTERN_FUNCS x509_pubkey_ff = { NULL, NULL, x509_pubkey_ex_free, 0, /* Default clear behaviour is OK */ NULL, x509_pubkey_ex_i2d, x509_pubkey_ex_print, x509_pubkey_ex_new_ex, x509_pubkey_ex_d2i_ex, }; IMPLEMENT_EXTERN_ASN1(X509_PUBKEY, V_ASN1_SEQUENCE, x509_pubkey_ff) IMPLEMENT_ASN1_FUNCTIONS(X509_PUBKEY) X509_PUBKEY *X509_PUBKEY_new_ex(OSSL_LIB_CTX *libctx, const char *propq) { X509_PUBKEY *pubkey = NULL; pubkey = (X509_PUBKEY *)ASN1_item_new_ex(X509_PUBKEY_it(), libctx, propq); if (!x509_pubkey_set0_libctx(pubkey, libctx, propq)) { X509_PUBKEY_free(pubkey); pubkey = NULL; } return pubkey; } /* * X509_PUBKEY_dup() must be implemented manually, because there is no * support for it in ASN1_EXTERN_FUNCS. */ X509_PUBKEY *X509_PUBKEY_dup(const X509_PUBKEY *a) { X509_PUBKEY *pubkey = OPENSSL_zalloc(sizeof(*pubkey)); if (pubkey == NULL) return NULL; if (!x509_pubkey_set0_libctx(pubkey, a->libctx, a->propq)) { ERR_raise(ERR_LIB_X509, ERR_R_X509_LIB); x509_pubkey_ex_free((ASN1_VALUE **)&pubkey, ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL)); return NULL; } if ((pubkey->algor = X509_ALGOR_dup(a->algor)) == NULL || (pubkey->public_key = ASN1_BIT_STRING_new()) == NULL || !ASN1_BIT_STRING_set(pubkey->public_key, a->public_key->data, a->public_key->length)) { x509_pubkey_ex_free((ASN1_VALUE **)&pubkey, ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL)); ERR_raise(ERR_LIB_X509, ERR_R_ASN1_LIB); return NULL; } if (a->pkey != NULL) { ERR_set_mark(); pubkey->pkey = EVP_PKEY_dup(a->pkey); if (pubkey->pkey == NULL) { pubkey->flag_force_legacy = 1; if (x509_pubkey_decode(&pubkey->pkey, pubkey) <= 0) { x509_pubkey_ex_free((ASN1_VALUE **)&pubkey, ASN1_ITEM_rptr(X509_PUBKEY_INTERNAL)); ERR_clear_last_mark(); return NULL; } } ERR_pop_to_mark(); } return pubkey; } int X509_PUBKEY_set(X509_PUBKEY **x, EVP_PKEY *pkey) { X509_PUBKEY *pk = NULL; if (x == NULL || pkey == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (pkey->ameth != NULL) { if ((pk = X509_PUBKEY_new()) == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_ASN1_LIB); goto error; } if (pkey->ameth->pub_encode != NULL) { if (!pkey->ameth->pub_encode(pk, pkey)) { ERR_raise(ERR_LIB_X509, X509_R_PUBLIC_KEY_ENCODE_ERROR); goto error; } } else { ERR_raise(ERR_LIB_X509, X509_R_METHOD_NOT_SUPPORTED); goto error; } } else if (evp_pkey_is_provided(pkey)) { unsigned char *der = NULL; size_t derlen = 0; OSSL_ENCODER_CTX *ectx = OSSL_ENCODER_CTX_new_for_pkey(pkey, EVP_PKEY_PUBLIC_KEY, "DER", "SubjectPublicKeyInfo", NULL); if (OSSL_ENCODER_to_data(ectx, &der, &derlen)) { const unsigned char *pder = der; pk = d2i_X509_PUBKEY(NULL, &pder, (long)derlen); } OSSL_ENCODER_CTX_free(ectx); OPENSSL_free(der); } if (pk == NULL) { ERR_raise(ERR_LIB_X509, X509_R_UNSUPPORTED_ALGORITHM); goto error; } X509_PUBKEY_free(*x); if (!EVP_PKEY_up_ref(pkey)) { ERR_raise(ERR_LIB_X509, ERR_R_INTERNAL_ERROR); goto error; } *x = pk; /* * pk->pkey is NULL when using the legacy routine, but is non-NULL when * going through the encoder, and for all intents and purposes, it's * a perfect copy of the public key portions of |pkey|, just not the same * instance. If that's all there was to pkey then we could simply return * early, right here. However, some application might very well depend on * the passed |pkey| being used and none other, so we spend a few more * cycles throwing away the newly created |pk->pkey| and replace it with * |pkey|. */ if (pk->pkey != NULL) EVP_PKEY_free(pk->pkey); pk->pkey = pkey; return 1; error: X509_PUBKEY_free(pk); return 0; } /* * Attempt to decode a public key. * Returns 1 on success, 0 for a decode failure and -1 for a fatal * error e.g. malloc failure. * * This function is #legacy. */ static int x509_pubkey_decode(EVP_PKEY **ppkey, const X509_PUBKEY *key) { EVP_PKEY *pkey; int nid; nid = OBJ_obj2nid(key->algor->algorithm); if (!key->flag_force_legacy) { #ifndef OPENSSL_NO_ENGINE ENGINE *e = NULL; e = ENGINE_get_pkey_meth_engine(nid); if (e == NULL) return 0; ENGINE_finish(e); #else return 0; #endif } pkey = EVP_PKEY_new(); if (pkey == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_EVP_LIB); return -1; } if (!EVP_PKEY_set_type(pkey, nid)) { ERR_raise(ERR_LIB_X509, X509_R_UNSUPPORTED_ALGORITHM); goto error; } if (pkey->ameth->pub_decode) { /* * Treat any failure of pub_decode as a decode error. In * future we could have different return codes for decode * errors and fatal errors such as malloc failure. */ if (!pkey->ameth->pub_decode(pkey, key)) goto error; } else { ERR_raise(ERR_LIB_X509, X509_R_METHOD_NOT_SUPPORTED); goto error; } *ppkey = pkey; return 1; error: EVP_PKEY_free(pkey); return 0; } EVP_PKEY *X509_PUBKEY_get0(const X509_PUBKEY *key) { if (key == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (key->pkey == NULL) { /* We failed to decode the key when we loaded it, or it was never set */ ERR_raise(ERR_LIB_EVP, EVP_R_DECODE_ERROR); return NULL; } return key->pkey; } EVP_PKEY *X509_PUBKEY_get(const X509_PUBKEY *key) { EVP_PKEY *ret = X509_PUBKEY_get0(key); if (ret != NULL && !EVP_PKEY_up_ref(ret)) { ERR_raise(ERR_LIB_X509, ERR_R_INTERNAL_ERROR); ret = NULL; } return ret; } /* * Now three pseudo ASN1 routines that take an EVP_PKEY structure and encode * or decode as X509_PUBKEY */ static EVP_PKEY *d2i_PUBKEY_int(EVP_PKEY **a, const unsigned char **pp, long length, OSSL_LIB_CTX *libctx, const char *propq, unsigned int force_legacy, X509_PUBKEY * (*d2i_x509_pubkey)(X509_PUBKEY **a, const unsigned char **in, long len)) { X509_PUBKEY *xpk, *xpk2 = NULL, **pxpk = NULL; EVP_PKEY *pktmp = NULL; const unsigned char *q; q = *pp; /* * If libctx or propq are non-NULL, we take advantage of the reuse * feature. It's not generally recommended, but is safe enough for * newly created structures. */ if (libctx != NULL || propq != NULL || force_legacy) { xpk2 = OPENSSL_zalloc(sizeof(*xpk2)); if (xpk2 == NULL) return NULL; if (!x509_pubkey_set0_libctx(xpk2, libctx, propq)) goto end; xpk2->flag_force_legacy = !!force_legacy; pxpk = &xpk2; } xpk = d2i_x509_pubkey(pxpk, &q, length); if (xpk == NULL) goto end; pktmp = X509_PUBKEY_get(xpk); X509_PUBKEY_free(xpk); xpk2 = NULL; /* We know that xpk == xpk2 */ if (pktmp == NULL) goto end; *pp = q; if (a != NULL) { EVP_PKEY_free(*a); *a = pktmp; } end: X509_PUBKEY_free(xpk2); return pktmp; } /* For the algorithm specific d2i functions further down */ EVP_PKEY *ossl_d2i_PUBKEY_legacy(EVP_PKEY **a, const unsigned char **pp, long length) { return d2i_PUBKEY_int(a, pp, length, NULL, NULL, 1, d2i_X509_PUBKEY); } EVP_PKEY *d2i_PUBKEY_ex(EVP_PKEY **a, const unsigned char **pp, long length, OSSL_LIB_CTX *libctx, const char *propq) { return d2i_PUBKEY_int(a, pp, length, libctx, propq, 0, d2i_X509_PUBKEY); } EVP_PKEY *d2i_PUBKEY(EVP_PKEY **a, const unsigned char **pp, long length) { return d2i_PUBKEY_ex(a, pp, length, NULL, NULL); } int i2d_PUBKEY(const EVP_PKEY *a, unsigned char **pp) { int ret = -1; if (a == NULL) return 0; if (a->ameth != NULL) { X509_PUBKEY *xpk = NULL; if ((xpk = X509_PUBKEY_new()) == NULL) return -1; /* pub_encode() only encode parameters, not the key itself */ if (a->ameth->pub_encode != NULL && a->ameth->pub_encode(xpk, a)) { xpk->pkey = (EVP_PKEY *)a; ret = i2d_X509_PUBKEY(xpk, pp); xpk->pkey = NULL; } X509_PUBKEY_free(xpk); } else if (a->keymgmt != NULL) { OSSL_ENCODER_CTX *ctx = OSSL_ENCODER_CTX_new_for_pkey(a, EVP_PKEY_PUBLIC_KEY, "DER", "SubjectPublicKeyInfo", NULL); BIO *out = BIO_new(BIO_s_mem()); BUF_MEM *buf = NULL; if (OSSL_ENCODER_CTX_get_num_encoders(ctx) != 0 && out != NULL && OSSL_ENCODER_to_bio(ctx, out) && BIO_get_mem_ptr(out, &buf) > 0) { ret = buf->length; if (pp != NULL) { if (*pp == NULL) { *pp = (unsigned char *)buf->data; buf->length = 0; buf->data = NULL; } else { memcpy(*pp, buf->data, ret); *pp += ret; } } } BIO_free(out); OSSL_ENCODER_CTX_free(ctx); } return ret; } /* * The following are equivalents but which return RSA and DSA keys */ RSA *d2i_RSA_PUBKEY(RSA **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; RSA *key = NULL; const unsigned char *q; q = *pp; pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); if (pkey == NULL) return NULL; key = EVP_PKEY_get1_RSA(pkey); EVP_PKEY_free(pkey); if (key == NULL) return NULL; *pp = q; if (a != NULL) { RSA_free(*a); *a = key; } return key; } int i2d_RSA_PUBKEY(const RSA *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (!a) return 0; pktmp = EVP_PKEY_new(); if (pktmp == NULL) { ERR_raise(ERR_LIB_ASN1, ERR_R_EVP_LIB); return -1; } (void)EVP_PKEY_assign_RSA(pktmp, (RSA *)a); ret = i2d_PUBKEY(pktmp, pp); pktmp->pkey.ptr = NULL; EVP_PKEY_free(pktmp); return ret; } #ifndef OPENSSL_NO_DH DH *ossl_d2i_DH_PUBKEY(DH **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; DH *key = NULL; const unsigned char *q; q = *pp; pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); if (pkey == NULL) return NULL; if (EVP_PKEY_get_id(pkey) == EVP_PKEY_DH) key = EVP_PKEY_get1_DH(pkey); EVP_PKEY_free(pkey); if (key == NULL) return NULL; *pp = q; if (a != NULL) { DH_free(*a); *a = key; } return key; } int ossl_i2d_DH_PUBKEY(const DH *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (!a) return 0; pktmp = EVP_PKEY_new(); if (pktmp == NULL) { ERR_raise(ERR_LIB_ASN1, ERR_R_EVP_LIB); return -1; } (void)EVP_PKEY_assign_DH(pktmp, (DH *)a); ret = i2d_PUBKEY(pktmp, pp); pktmp->pkey.ptr = NULL; EVP_PKEY_free(pktmp); return ret; } DH *ossl_d2i_DHx_PUBKEY(DH **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; DH *key = NULL; const unsigned char *q; q = *pp; pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); if (pkey == NULL) return NULL; if (EVP_PKEY_get_id(pkey) == EVP_PKEY_DHX) key = EVP_PKEY_get1_DH(pkey); EVP_PKEY_free(pkey); if (key == NULL) return NULL; *pp = q; if (a != NULL) { DH_free(*a); *a = key; } return key; } int ossl_i2d_DHx_PUBKEY(const DH *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (!a) return 0; pktmp = EVP_PKEY_new(); if (pktmp == NULL) { ERR_raise(ERR_LIB_ASN1, ERR_R_EVP_LIB); return -1; } (void)EVP_PKEY_assign(pktmp, EVP_PKEY_DHX, (DH *)a); ret = i2d_PUBKEY(pktmp, pp); pktmp->pkey.ptr = NULL; EVP_PKEY_free(pktmp); return ret; } #endif #ifndef OPENSSL_NO_DSA DSA *d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; DSA *key = NULL; const unsigned char *q; q = *pp; pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); if (pkey == NULL) return NULL; key = EVP_PKEY_get1_DSA(pkey); EVP_PKEY_free(pkey); if (key == NULL) return NULL; *pp = q; if (a != NULL) { DSA_free(*a); *a = key; } return key; } /* Called from decoders; disallows provided DSA keys without parameters. */ DSA *ossl_d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp, long length) { DSA *key = NULL; const unsigned char *data; const BIGNUM *p, *q, *g; data = *pp; key = d2i_DSA_PUBKEY(NULL, &data, length); if (key == NULL) return NULL; DSA_get0_pqg(key, &p, &q, &g); if (p == NULL || q == NULL || g == NULL) { DSA_free(key); return NULL; } *pp = data; if (a != NULL) { DSA_free(*a); *a = key; } return key; } int i2d_DSA_PUBKEY(const DSA *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (!a) return 0; pktmp = EVP_PKEY_new(); if (pktmp == NULL) { ERR_raise(ERR_LIB_ASN1, ERR_R_EVP_LIB); return -1; } (void)EVP_PKEY_assign_DSA(pktmp, (DSA *)a); ret = i2d_PUBKEY(pktmp, pp); pktmp->pkey.ptr = NULL; EVP_PKEY_free(pktmp); return ret; } #endif #ifndef OPENSSL_NO_EC EC_KEY *d2i_EC_PUBKEY(EC_KEY **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; EC_KEY *key = NULL; const unsigned char *q; int type; q = *pp; pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); if (pkey == NULL) return NULL; type = EVP_PKEY_get_id(pkey); if (type == EVP_PKEY_EC || type == EVP_PKEY_SM2) key = EVP_PKEY_get1_EC_KEY(pkey); EVP_PKEY_free(pkey); if (key == NULL) return NULL; *pp = q; if (a != NULL) { EC_KEY_free(*a); *a = key; } return key; } int i2d_EC_PUBKEY(const EC_KEY *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (a == NULL) return 0; if ((pktmp = EVP_PKEY_new()) == NULL) { ERR_raise(ERR_LIB_ASN1, ERR_R_EVP_LIB); return -1; } (void)EVP_PKEY_assign_EC_KEY(pktmp, (EC_KEY *)a); ret = i2d_PUBKEY(pktmp, pp); pktmp->pkey.ptr = NULL; EVP_PKEY_free(pktmp); return ret; } # ifndef OPENSSL_NO_ECX ECX_KEY *ossl_d2i_ED25519_PUBKEY(ECX_KEY **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; ECX_KEY *key = NULL; const unsigned char *q; q = *pp; pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); if (pkey == NULL) return NULL; key = ossl_evp_pkey_get1_ED25519(pkey); EVP_PKEY_free(pkey); if (key == NULL) return NULL; *pp = q; if (a != NULL) { ossl_ecx_key_free(*a); *a = key; } return key; } int ossl_i2d_ED25519_PUBKEY(const ECX_KEY *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (a == NULL) return 0; if ((pktmp = EVP_PKEY_new()) == NULL) { ERR_raise(ERR_LIB_ASN1, ERR_R_EVP_LIB); return -1; } (void)EVP_PKEY_assign(pktmp, EVP_PKEY_ED25519, (ECX_KEY *)a); ret = i2d_PUBKEY(pktmp, pp); pktmp->pkey.ptr = NULL; EVP_PKEY_free(pktmp); return ret; } ECX_KEY *ossl_d2i_ED448_PUBKEY(ECX_KEY **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; ECX_KEY *key = NULL; const unsigned char *q; q = *pp; pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); if (pkey == NULL) return NULL; if (EVP_PKEY_get_id(pkey) == EVP_PKEY_ED448) key = ossl_evp_pkey_get1_ED448(pkey); EVP_PKEY_free(pkey); if (key == NULL) return NULL; *pp = q; if (a != NULL) { ossl_ecx_key_free(*a); *a = key; } return key; } int ossl_i2d_ED448_PUBKEY(const ECX_KEY *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (a == NULL) return 0; if ((pktmp = EVP_PKEY_new()) == NULL) { ERR_raise(ERR_LIB_ASN1, ERR_R_EVP_LIB); return -1; } (void)EVP_PKEY_assign(pktmp, EVP_PKEY_ED448, (ECX_KEY *)a); ret = i2d_PUBKEY(pktmp, pp); pktmp->pkey.ptr = NULL; EVP_PKEY_free(pktmp); return ret; } ECX_KEY *ossl_d2i_X25519_PUBKEY(ECX_KEY **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; ECX_KEY *key = NULL; const unsigned char *q; q = *pp; pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); if (pkey == NULL) return NULL; if (EVP_PKEY_get_id(pkey) == EVP_PKEY_X25519) key = ossl_evp_pkey_get1_X25519(pkey); EVP_PKEY_free(pkey); if (key == NULL) return NULL; *pp = q; if (a != NULL) { ossl_ecx_key_free(*a); *a = key; } return key; } int ossl_i2d_X25519_PUBKEY(const ECX_KEY *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (a == NULL) return 0; if ((pktmp = EVP_PKEY_new()) == NULL) { ERR_raise(ERR_LIB_ASN1, ERR_R_EVP_LIB); return -1; } (void)EVP_PKEY_assign(pktmp, EVP_PKEY_X25519, (ECX_KEY *)a); ret = i2d_PUBKEY(pktmp, pp); pktmp->pkey.ptr = NULL; EVP_PKEY_free(pktmp); return ret; } ECX_KEY *ossl_d2i_X448_PUBKEY(ECX_KEY **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; ECX_KEY *key = NULL; const unsigned char *q; q = *pp; pkey = ossl_d2i_PUBKEY_legacy(NULL, &q, length); if (pkey == NULL) return NULL; if (EVP_PKEY_get_id(pkey) == EVP_PKEY_X448) key = ossl_evp_pkey_get1_X448(pkey); EVP_PKEY_free(pkey); if (key == NULL) return NULL; *pp = q; if (a != NULL) { ossl_ecx_key_free(*a); *a = key; } return key; } int ossl_i2d_X448_PUBKEY(const ECX_KEY *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (a == NULL) return 0; if ((pktmp = EVP_PKEY_new()) == NULL) { ERR_raise(ERR_LIB_ASN1, ERR_R_EVP_LIB); return -1; } (void)EVP_PKEY_assign(pktmp, EVP_PKEY_X448, (ECX_KEY *)a); ret = i2d_PUBKEY(pktmp, pp); pktmp->pkey.ptr = NULL; EVP_PKEY_free(pktmp); return ret; } # endif /* OPENSSL_NO_ECX */ #endif void X509_PUBKEY_set0_public_key(X509_PUBKEY *pub, unsigned char *penc, int penclen) { ASN1_STRING_set0(pub->public_key, penc, penclen); ossl_asn1_string_set_bits_left(pub->public_key, 0); } int X509_PUBKEY_set0_param(X509_PUBKEY *pub, ASN1_OBJECT *aobj, int ptype, void *pval, unsigned char *penc, int penclen) { if (!X509_ALGOR_set0(pub->algor, aobj, ptype, pval)) return 0; if (penc != NULL) X509_PUBKEY_set0_public_key(pub, penc, penclen); return 1; } int X509_PUBKEY_get0_param(ASN1_OBJECT **ppkalg, const unsigned char **pk, int *ppklen, X509_ALGOR **pa, const X509_PUBKEY *pub) { if (ppkalg) *ppkalg = pub->algor->algorithm; if (pk) { *pk = pub->public_key->data; *ppklen = pub->public_key->length; } if (pa) *pa = pub->algor; return 1; } ASN1_BIT_STRING *X509_get0_pubkey_bitstr(const X509 *x) { if (x == NULL) return NULL; return x->cert_info.key->public_key; } /* Returns 1 for equal, 0, for non-equal, < 0 on error */ int X509_PUBKEY_eq(const X509_PUBKEY *a, const X509_PUBKEY *b) { X509_ALGOR *algA, *algB; EVP_PKEY *pA, *pB; if (a == b) return 1; if (a == NULL || b == NULL) return 0; if (!X509_PUBKEY_get0_param(NULL, NULL, NULL, &algA, a) || algA == NULL || !X509_PUBKEY_get0_param(NULL, NULL, NULL, &algB, b) || algB == NULL) return -2; if (X509_ALGOR_cmp(algA, algB) != 0) return 0; if ((pA = X509_PUBKEY_get0(a)) == NULL || (pB = X509_PUBKEY_get0(b)) == NULL) return -2; return EVP_PKEY_eq(pA, pB); } int ossl_x509_PUBKEY_get0_libctx(OSSL_LIB_CTX **plibctx, const char **ppropq, const X509_PUBKEY *key) { if (plibctx) *plibctx = key->libctx; if (ppropq) *ppropq = key->propq; return 1; }
./openssl/crypto/x509/v3_prn.c
/* * Copyright 1999-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* X509 v3 extension utilities */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/conf.h> #include <openssl/x509v3.h> /* Extension printing routines */ static int unknown_ext_print(BIO *out, const unsigned char *ext, int extlen, unsigned long flag, int indent, int supported); /* Print out a name+value stack */ void X509V3_EXT_val_prn(BIO *out, STACK_OF(CONF_VALUE) *val, int indent, int ml) { int i; CONF_VALUE *nval; if (!val) return; if (!ml || !sk_CONF_VALUE_num(val)) { BIO_printf(out, "%*s", indent, ""); if (!sk_CONF_VALUE_num(val)) BIO_puts(out, "<EMPTY>\n"); } for (i = 0; i < sk_CONF_VALUE_num(val); i++) { if (ml) { if (i > 0) BIO_printf(out, "\n"); BIO_printf(out, "%*s", indent, ""); } else if (i > 0) BIO_printf(out, ", "); nval = sk_CONF_VALUE_value(val, i); if (!nval->name) BIO_puts(out, nval->value); else if (!nval->value) BIO_puts(out, nval->name); #ifndef CHARSET_EBCDIC else BIO_printf(out, "%s:%s", nval->name, nval->value); #else else { int len; char *tmp; len = strlen(nval->value) + 1; tmp = OPENSSL_malloc(len); if (tmp != NULL) { ascii2ebcdic(tmp, nval->value, len); BIO_printf(out, "%s:%s", nval->name, tmp); OPENSSL_free(tmp); } } #endif } } /* Main routine: print out a general extension */ int X509V3_EXT_print(BIO *out, X509_EXTENSION *ext, unsigned long flag, int indent) { void *ext_str = NULL; char *value = NULL; ASN1_OCTET_STRING *extoct; const unsigned char *p; int extlen; const X509V3_EXT_METHOD *method; STACK_OF(CONF_VALUE) *nval = NULL; int ok = 1; extoct = X509_EXTENSION_get_data(ext); p = ASN1_STRING_get0_data(extoct); extlen = ASN1_STRING_length(extoct); if ((method = X509V3_EXT_get(ext)) == NULL) return unknown_ext_print(out, p, extlen, flag, indent, 0); if (method->it) ext_str = ASN1_item_d2i(NULL, &p, extlen, ASN1_ITEM_ptr(method->it)); else ext_str = method->d2i(NULL, &p, extlen); if (!ext_str) return unknown_ext_print(out, p, extlen, flag, indent, 1); if (method->i2s) { if ((value = method->i2s(method, ext_str)) == NULL) { ok = 0; goto err; } #ifndef CHARSET_EBCDIC BIO_printf(out, "%*s%s", indent, "", value); #else { int len; char *tmp; len = strlen(value) + 1; tmp = OPENSSL_malloc(len); if (tmp != NULL) { ascii2ebcdic(tmp, value, len); BIO_printf(out, "%*s%s", indent, "", tmp); OPENSSL_free(tmp); } } #endif } else if (method->i2v) { if ((nval = method->i2v(method, ext_str, NULL)) == NULL) { ok = 0; goto err; } X509V3_EXT_val_prn(out, nval, indent, method->ext_flags & X509V3_EXT_MULTILINE); } else if (method->i2r) { if (!method->i2r(method, ext_str, out, indent)) ok = 0; } else ok = 0; err: sk_CONF_VALUE_pop_free(nval, X509V3_conf_free); OPENSSL_free(value); if (method->it) ASN1_item_free(ext_str, ASN1_ITEM_ptr(method->it)); else method->ext_free(ext_str); return ok; } int X509V3_extensions_print(BIO *bp, const char *title, const STACK_OF(X509_EXTENSION) *exts, unsigned long flag, int indent) { int i, j; if (sk_X509_EXTENSION_num(exts) <= 0) return 1; if (title) { BIO_printf(bp, "%*s%s:\n", indent, "", title); indent += 4; } for (i = 0; i < sk_X509_EXTENSION_num(exts); i++) { ASN1_OBJECT *obj; X509_EXTENSION *ex; ex = sk_X509_EXTENSION_value(exts, i); obj = X509_EXTENSION_get_object(ex); if ((flag & X509_FLAG_EXTENSIONS_ONLY_KID) != 0 && OBJ_obj2nid(obj) != NID_subject_key_identifier && OBJ_obj2nid(obj) != NID_authority_key_identifier) continue; if (indent && BIO_printf(bp, "%*s", indent, "") <= 0) return 0; i2a_ASN1_OBJECT(bp, obj); j = X509_EXTENSION_get_critical(ex); if (BIO_printf(bp, ": %s\n", j ? "critical" : "") <= 0) return 0; if (!X509V3_EXT_print(bp, ex, flag, indent + 4)) { BIO_printf(bp, "%*s", indent + 4, ""); ASN1_STRING_print(bp, X509_EXTENSION_get_data(ex)); } if (BIO_write(bp, "\n", 1) <= 0) return 0; } return 1; } static int unknown_ext_print(BIO *out, const unsigned char *ext, int extlen, unsigned long flag, int indent, int supported) { switch (flag & X509V3_EXT_UNKNOWN_MASK) { case X509V3_EXT_DEFAULT: return 0; case X509V3_EXT_ERROR_UNKNOWN: if (supported) BIO_printf(out, "%*s<Parse Error>", indent, ""); else BIO_printf(out, "%*s<Not Supported>", indent, ""); return 1; case X509V3_EXT_PARSE_UNKNOWN: return ASN1_parse_dump(out, ext, extlen, indent, -1); case X509V3_EXT_DUMP_UNKNOWN: return BIO_dump_indent(out, (const char *)ext, extlen, indent); default: return 1; } } #ifndef OPENSSL_NO_STDIO int X509V3_EXT_print_fp(FILE *fp, X509_EXTENSION *ext, int flag, int indent) { BIO *bio_tmp; int ret; if ((bio_tmp = BIO_new_fp(fp, BIO_NOCLOSE)) == NULL) return 0; ret = X509V3_EXT_print(bio_tmp, ext, flag, indent); BIO_free(bio_tmp); return ret; } #endif
./openssl/crypto/x509/x509_att.c
/* * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/safestack.h> #include <openssl/asn1.h> #include <openssl/objects.h> #include <openssl/evp.h> #include <openssl/x509.h> #include <openssl/x509v3.h> #include "crypto/x509.h" #include "x509_local.h" int X509at_get_attr_count(const STACK_OF(X509_ATTRIBUTE) *x) { return sk_X509_ATTRIBUTE_num(x); } int X509at_get_attr_by_NID(const STACK_OF(X509_ATTRIBUTE) *x, int nid, int lastpos) { const ASN1_OBJECT *obj = OBJ_nid2obj(nid); if (obj == NULL) return -2; return X509at_get_attr_by_OBJ(x, obj, lastpos); } int X509at_get_attr_by_OBJ(const STACK_OF(X509_ATTRIBUTE) *sk, const ASN1_OBJECT *obj, int lastpos) { int n; X509_ATTRIBUTE *ex; if (sk == NULL) return -1; lastpos++; if (lastpos < 0) lastpos = 0; n = sk_X509_ATTRIBUTE_num(sk); for (; lastpos < n; lastpos++) { ex = sk_X509_ATTRIBUTE_value(sk, lastpos); if (OBJ_cmp(ex->object, obj) == 0) return lastpos; } return -1; } X509_ATTRIBUTE *X509at_get_attr(const STACK_OF(X509_ATTRIBUTE) *x, int loc) { if (x == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (sk_X509_ATTRIBUTE_num(x) <= loc || loc < 0) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_INVALID_ARGUMENT); return NULL; } return sk_X509_ATTRIBUTE_value(x, loc); } X509_ATTRIBUTE *X509at_delete_attr(STACK_OF(X509_ATTRIBUTE) *x, int loc) { if (x == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (sk_X509_ATTRIBUTE_num(x) <= loc || loc < 0) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_INVALID_ARGUMENT); return NULL; } return sk_X509_ATTRIBUTE_delete(x, loc); } STACK_OF(X509_ATTRIBUTE) *ossl_x509at_add1_attr(STACK_OF(X509_ATTRIBUTE) **x, X509_ATTRIBUTE *attr) { X509_ATTRIBUTE *new_attr = NULL; STACK_OF(X509_ATTRIBUTE) *sk = NULL; if (x == NULL || attr == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (*x == NULL) { if ((sk = sk_X509_ATTRIBUTE_new_null()) == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_CRYPTO_LIB); goto err; } } else { sk = *x; } if ((new_attr = X509_ATTRIBUTE_dup(attr)) == NULL) goto err; if (!sk_X509_ATTRIBUTE_push(sk, new_attr)) { ERR_raise(ERR_LIB_X509, ERR_R_CRYPTO_LIB); goto err; } if (*x == NULL) *x = sk; return sk; err: X509_ATTRIBUTE_free(new_attr); if (*x == NULL) sk_X509_ATTRIBUTE_free(sk); return NULL; } STACK_OF(X509_ATTRIBUTE) *X509at_add1_attr(STACK_OF(X509_ATTRIBUTE) **x, X509_ATTRIBUTE *attr) { if (x == NULL || attr == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (*x != NULL && X509at_get_attr_by_OBJ(*x, attr->object, -1) != -1) { ERR_raise(ERR_LIB_X509, X509_R_DUPLICATE_ATTRIBUTE); return NULL; } return ossl_x509at_add1_attr(x, attr); } STACK_OF(X509_ATTRIBUTE) *ossl_x509at_add1_attr_by_OBJ(STACK_OF(X509_ATTRIBUTE) **x, const ASN1_OBJECT *obj, int type, const unsigned char *bytes, int len) { X509_ATTRIBUTE *attr; STACK_OF(X509_ATTRIBUTE) *ret; attr = X509_ATTRIBUTE_create_by_OBJ(NULL, obj, type, bytes, len); if (attr == NULL) return 0; ret = ossl_x509at_add1_attr(x, attr); X509_ATTRIBUTE_free(attr); return ret; } STACK_OF(X509_ATTRIBUTE) *X509at_add1_attr_by_OBJ(STACK_OF(X509_ATTRIBUTE) **x, const ASN1_OBJECT *obj, int type, const unsigned char *bytes, int len) { if (x == NULL || obj == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (*x != NULL && X509at_get_attr_by_OBJ(*x, obj, -1) != -1) { ERR_raise(ERR_LIB_X509, X509_R_DUPLICATE_ATTRIBUTE); return NULL; } return ossl_x509at_add1_attr_by_OBJ(x, obj, type, bytes, len); } STACK_OF(X509_ATTRIBUTE) *ossl_x509at_add1_attr_by_NID(STACK_OF(X509_ATTRIBUTE) **x, int nid, int type, const unsigned char *bytes, int len) { X509_ATTRIBUTE *attr; STACK_OF(X509_ATTRIBUTE) *ret; attr = X509_ATTRIBUTE_create_by_NID(NULL, nid, type, bytes, len); if (attr == NULL) return 0; ret = ossl_x509at_add1_attr(x, attr); X509_ATTRIBUTE_free(attr); return ret; } STACK_OF(X509_ATTRIBUTE) *X509at_add1_attr_by_NID(STACK_OF(X509_ATTRIBUTE) **x, int nid, int type, const unsigned char *bytes, int len) { if (x == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (*x != NULL && X509at_get_attr_by_NID(*x, nid, -1) != -1) { ERR_raise(ERR_LIB_X509, X509_R_DUPLICATE_ATTRIBUTE); return NULL; } return ossl_x509at_add1_attr_by_NID(x, nid, type, bytes, len); } STACK_OF(X509_ATTRIBUTE) *ossl_x509at_add1_attr_by_txt(STACK_OF(X509_ATTRIBUTE) **x, const char *attrname, int type, const unsigned char *bytes, int len) { X509_ATTRIBUTE *attr; STACK_OF(X509_ATTRIBUTE) *ret; attr = X509_ATTRIBUTE_create_by_txt(NULL, attrname, type, bytes, len); if (attr == NULL) return 0; ret = ossl_x509at_add1_attr(x, attr); X509_ATTRIBUTE_free(attr); return ret; } STACK_OF(X509_ATTRIBUTE) *X509at_add1_attr_by_txt(STACK_OF(X509_ATTRIBUTE) **x, const char *attrname, int type, const unsigned char *bytes, int len) { X509_ATTRIBUTE *attr; STACK_OF(X509_ATTRIBUTE) *ret; attr = X509_ATTRIBUTE_create_by_txt(NULL, attrname, type, bytes, len); if (attr == NULL) return 0; ret = X509at_add1_attr(x, attr); X509_ATTRIBUTE_free(attr); return ret; } void *X509at_get0_data_by_OBJ(const STACK_OF(X509_ATTRIBUTE) *x, const ASN1_OBJECT *obj, int lastpos, int type) { int i = X509at_get_attr_by_OBJ(x, obj, lastpos); X509_ATTRIBUTE *at; if (i == -1) return NULL; if (lastpos <= -2 && X509at_get_attr_by_OBJ(x, obj, i) != -1) return NULL; at = X509at_get_attr(x, i); if (lastpos <= -3 && X509_ATTRIBUTE_count(at) != 1) return NULL; return X509_ATTRIBUTE_get0_data(at, 0, type, NULL); } STACK_OF(X509_ATTRIBUTE) *ossl_x509at_dup(const STACK_OF(X509_ATTRIBUTE) *x) { int i, n = sk_X509_ATTRIBUTE_num(x); STACK_OF(X509_ATTRIBUTE) *sk = NULL; for (i = 0; i < n; ++i) { if (X509at_add1_attr(&sk, sk_X509_ATTRIBUTE_value(x, i)) == NULL) { sk_X509_ATTRIBUTE_pop_free(sk, X509_ATTRIBUTE_free); return NULL; } } return sk; } X509_ATTRIBUTE *X509_ATTRIBUTE_create_by_NID(X509_ATTRIBUTE **attr, int nid, int atrtype, const void *data, int len) { ASN1_OBJECT *obj = OBJ_nid2obj(nid); X509_ATTRIBUTE *ret; if (obj == NULL) { ERR_raise(ERR_LIB_X509, X509_R_UNKNOWN_NID); return NULL; } ret = X509_ATTRIBUTE_create_by_OBJ(attr, obj, atrtype, data, len); if (ret == NULL) ASN1_OBJECT_free(obj); return ret; } X509_ATTRIBUTE *X509_ATTRIBUTE_create_by_OBJ(X509_ATTRIBUTE **attr, const ASN1_OBJECT *obj, int atrtype, const void *data, int len) { X509_ATTRIBUTE *ret; if (attr == NULL || *attr == NULL) { if ((ret = X509_ATTRIBUTE_new()) == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_ASN1_LIB); return NULL; } } else { ret = *attr; } if (!X509_ATTRIBUTE_set1_object(ret, obj)) goto err; if (!X509_ATTRIBUTE_set1_data(ret, atrtype, data, len)) goto err; if (attr != NULL && *attr == NULL) *attr = ret; return ret; err: if (attr == NULL || ret != *attr) X509_ATTRIBUTE_free(ret); return NULL; } X509_ATTRIBUTE *X509_ATTRIBUTE_create_by_txt(X509_ATTRIBUTE **attr, const char *atrname, int type, const unsigned char *bytes, int len) { ASN1_OBJECT *obj = OBJ_txt2obj(atrname, 0); X509_ATTRIBUTE *nattr; if (obj == NULL) { ERR_raise_data(ERR_LIB_X509, X509_R_INVALID_FIELD_NAME, "name=%s", atrname); return NULL; } nattr = X509_ATTRIBUTE_create_by_OBJ(attr, obj, type, bytes, len); ASN1_OBJECT_free(obj); return nattr; } int X509_ATTRIBUTE_set1_object(X509_ATTRIBUTE *attr, const ASN1_OBJECT *obj) { if (attr == NULL || obj == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return 0; } ASN1_OBJECT_free(attr->object); attr->object = OBJ_dup(obj); return attr->object != NULL; } int X509_ATTRIBUTE_set1_data(X509_ATTRIBUTE *attr, int attrtype, const void *data, int len) { ASN1_TYPE *ttmp = NULL; ASN1_STRING *stmp = NULL; int atype = 0; if (attr == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return 0; } if ((attrtype & MBSTRING_FLAG) != 0) { stmp = ASN1_STRING_set_by_NID(NULL, data, len, attrtype, OBJ_obj2nid(attr->object)); if (stmp == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_ASN1_LIB); return 0; } atype = stmp->type; } else if (len != -1) { if ((stmp = ASN1_STRING_type_new(attrtype)) == NULL || !ASN1_STRING_set(stmp, data, len)) { ERR_raise(ERR_LIB_X509, ERR_R_ASN1_LIB); goto err; } atype = attrtype; } /* * This is a bit naughty because the attribute should really have at * least one value but some types use and zero length SET and require * this. */ if (attrtype == 0) { ASN1_STRING_free(stmp); return 1; } if ((ttmp = ASN1_TYPE_new()) == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_ASN1_LIB); goto err; } if (len == -1 && (attrtype & MBSTRING_FLAG) == 0) { if (!ASN1_TYPE_set1(ttmp, attrtype, data)) { ERR_raise(ERR_LIB_X509, ERR_R_ASN1_LIB); goto err; } } else { ASN1_TYPE_set(ttmp, atype, stmp); stmp = NULL; } if (!sk_ASN1_TYPE_push(attr->set, ttmp)) { ERR_raise(ERR_LIB_X509, ERR_R_CRYPTO_LIB); goto err; } return 1; err: ASN1_TYPE_free(ttmp); ASN1_STRING_free(stmp); return 0; } int X509_ATTRIBUTE_count(const X509_ATTRIBUTE *attr) { if (attr == NULL) return 0; return sk_ASN1_TYPE_num(attr->set); } ASN1_OBJECT *X509_ATTRIBUTE_get0_object(X509_ATTRIBUTE *attr) { if (attr == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return NULL; } return attr->object; } void *X509_ATTRIBUTE_get0_data(X509_ATTRIBUTE *attr, int idx, int atrtype, void *data) { ASN1_TYPE *ttmp = X509_ATTRIBUTE_get0_type(attr, idx); if (ttmp == NULL) return NULL; if (atrtype == V_ASN1_BOOLEAN || atrtype == V_ASN1_NULL || atrtype != ASN1_TYPE_get(ttmp)) { ERR_raise(ERR_LIB_X509, X509_R_WRONG_TYPE); return NULL; } return ttmp->value.ptr; } ASN1_TYPE *X509_ATTRIBUTE_get0_type(X509_ATTRIBUTE *attr, int idx) { if (attr == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return NULL; } return sk_ASN1_TYPE_value(attr->set, idx); }
./openssl/crypto/x509/standard_exts.h
/* * Copyright 1999-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * This table will be searched using OBJ_bsearch so it *must* kept in order * of the ext_nid values. */ static const X509V3_EXT_METHOD *standard_exts[] = { &ossl_v3_nscert, &ossl_v3_ns_ia5_list[0], &ossl_v3_ns_ia5_list[1], &ossl_v3_ns_ia5_list[2], &ossl_v3_ns_ia5_list[3], &ossl_v3_ns_ia5_list[4], &ossl_v3_ns_ia5_list[5], &ossl_v3_ns_ia5_list[6], &ossl_v3_skey_id, &ossl_v3_key_usage, &ossl_v3_pkey_usage_period, &ossl_v3_alt[0], &ossl_v3_alt[1], &ossl_v3_bcons, &ossl_v3_crl_num, &ossl_v3_cpols, &ossl_v3_akey_id, &ossl_v3_crld, &ossl_v3_ext_ku, &ossl_v3_delta_crl, &ossl_v3_crl_reason, #ifndef OPENSSL_NO_OCSP &ossl_v3_crl_invdate, #endif &ossl_v3_sxnet, &ossl_v3_info, #ifndef OPENSSL_NO_RFC3779 &ossl_v3_addr, &ossl_v3_asid, #endif #ifndef OPENSSL_NO_OCSP &ossl_v3_ocsp_nonce, &ossl_v3_ocsp_crlid, &ossl_v3_ocsp_accresp, &ossl_v3_ocsp_nocheck, &ossl_v3_ocsp_acutoff, &ossl_v3_ocsp_serviceloc, #endif &ossl_v3_sinfo, &ossl_v3_policy_constraints, &ossl_v3_no_rev_avail, #ifndef OPENSSL_NO_OCSP &ossl_v3_crl_hold, #endif &ossl_v3_pci, &ossl_v3_name_constraints, &ossl_v3_policy_mappings, &ossl_v3_inhibit_anyp, &ossl_v3_idp, &ossl_v3_alt[2], &ossl_v3_freshest_crl, #ifndef OPENSSL_NO_CT &ossl_v3_ct_scts[0], &ossl_v3_ct_scts[1], &ossl_v3_ct_scts[2], #endif &ossl_v3_utf8_list[0], &ossl_v3_issuer_sign_tool, &ossl_v3_tls_feature, &ossl_v3_ext_admission, &ossl_v3_soa_identifier, &ossl_v3_indirect_issuer, &ossl_v3_no_assertion, &ossl_v3_single_use, &ossl_v3_group_ac }; /* Number of standard extensions */ #define STANDARD_EXTENSION_COUNT OSSL_NELEM(standard_exts)
./openssl/crypto/x509/v3_soa_id.c
/* * Copyright 2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/asn1.h> #include <openssl/asn1t.h> #include <openssl/x509v3.h> #include "ext_dat.h" static int i2r_SOA_IDENTIFIER(X509V3_EXT_METHOD *method, void *su, BIO *out, int indent) { return 1; } static void *r2i_SOA_IDENTIFIER(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, const char *value) { return ASN1_NULL_new(); } static char *i2s_SOA_IDENTIFIER(const X509V3_EXT_METHOD *method, void *val) { return OPENSSL_strdup("NULL"); } static void *s2i_SOA_IDENTIFIER(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, const char *str) { return ASN1_NULL_new(); } /* * The sOAIdentifier X.509v3 extension is defined in ITU Recommendation X.509 * (2019), Section 17.3.2.1.1. See: https://www.itu.int/rec/T-REC-X.509-201910-I/en. */ const X509V3_EXT_METHOD ossl_v3_soa_identifier = { NID_soa_identifier, 0, ASN1_ITEM_ref(ASN1_NULL), 0, 0, 0, 0, (X509V3_EXT_I2S)i2s_SOA_IDENTIFIER, (X509V3_EXT_S2I)s2i_SOA_IDENTIFIER, 0, 0, (X509V3_EXT_I2R)i2r_SOA_IDENTIFIER, (X509V3_EXT_R2I)r2i_SOA_IDENTIFIER, NULL };
./openssl/crypto/x509/v3_utf8.c
/* * Copyright 2020-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/asn1.h> #include <openssl/conf.h> #include <openssl/x509v3.h> #include "ext_dat.h" /* * Subject Sign Tool (1.2.643.100.111) The name of the tool used to signs the subject (UTF8String) * This extension is required to obtain the status of a qualified certificate at Russian Federation. * RFC-style description is available here: https://tools.ietf.org/html/draft-deremin-rfc4491-bis-04#section-5 * Russian Federal Law 63 "Digital Sign" is available here: http://www.consultant.ru/document/cons_doc_LAW_112701/ */ const X509V3_EXT_METHOD ossl_v3_utf8_list[1] = { EXT_UTF8STRING(NID_subjectSignTool), }; char *i2s_ASN1_UTF8STRING(X509V3_EXT_METHOD *method, ASN1_UTF8STRING *utf8) { char *tmp; if (utf8 == NULL || utf8->length == 0) { ERR_raise(ERR_LIB_X509V3, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if ((tmp = OPENSSL_malloc(utf8->length + 1)) == NULL) return NULL; memcpy(tmp, utf8->data, utf8->length); tmp[utf8->length] = 0; return tmp; } ASN1_UTF8STRING *s2i_ASN1_UTF8STRING(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, const char *str) { ASN1_UTF8STRING *utf8; if (str == NULL) { ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_NULL_ARGUMENT); return NULL; } if ((utf8 = ASN1_UTF8STRING_new()) == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB); return NULL; } if (!ASN1_STRING_set((ASN1_STRING *)utf8, str, strlen(str))) { ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB); ASN1_UTF8STRING_free(utf8); return NULL; } #ifdef CHARSET_EBCDIC ebcdic2ascii(utf8->data, utf8->data, utf8->length); #endif /* CHARSET_EBCDIC */ return utf8; }
./openssl/crypto/x509/x_x509.c
/* * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/evp.h> #include <openssl/asn1t.h> #include <openssl/x509.h> #include <openssl/x509v3.h> #include "crypto/x509.h" ASN1_SEQUENCE_enc(X509_CINF, enc, 0) = { ASN1_EXP_OPT(X509_CINF, version, ASN1_INTEGER, 0), ASN1_EMBED(X509_CINF, serialNumber, ASN1_INTEGER), ASN1_EMBED(X509_CINF, signature, X509_ALGOR), ASN1_SIMPLE(X509_CINF, issuer, X509_NAME), ASN1_EMBED(X509_CINF, validity, X509_VAL), ASN1_SIMPLE(X509_CINF, subject, X509_NAME), ASN1_SIMPLE(X509_CINF, key, X509_PUBKEY), ASN1_IMP_OPT(X509_CINF, issuerUID, ASN1_BIT_STRING, 1), ASN1_IMP_OPT(X509_CINF, subjectUID, ASN1_BIT_STRING, 2), ASN1_EXP_SEQUENCE_OF_OPT(X509_CINF, extensions, X509_EXTENSION, 3) } ASN1_SEQUENCE_END_enc(X509_CINF, X509_CINF) IMPLEMENT_ASN1_FUNCTIONS(X509_CINF) /* X509 top level structure needs a bit of customisation */ extern void ossl_policy_cache_free(X509_POLICY_CACHE *cache); static int x509_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { X509 *ret = (X509 *)*pval; switch (operation) { case ASN1_OP_D2I_PRE: CRYPTO_free_ex_data(CRYPTO_EX_INDEX_X509, ret, &ret->ex_data); X509_CERT_AUX_free(ret->aux); ASN1_OCTET_STRING_free(ret->skid); AUTHORITY_KEYID_free(ret->akid); CRL_DIST_POINTS_free(ret->crldp); ossl_policy_cache_free(ret->policy_cache); GENERAL_NAMES_free(ret->altname); NAME_CONSTRAINTS_free(ret->nc); #ifndef OPENSSL_NO_RFC3779 sk_IPAddressFamily_pop_free(ret->rfc3779_addr, IPAddressFamily_free); ASIdentifiers_free(ret->rfc3779_asid); #endif ASN1_OCTET_STRING_free(ret->distinguishing_id); /* fall through */ case ASN1_OP_NEW_POST: ret->ex_cached = 0; ret->ex_kusage = 0; ret->ex_xkusage = 0; ret->ex_nscert = 0; ret->ex_flags = 0; ret->ex_pathlen = -1; ret->ex_pcpathlen = -1; ret->skid = NULL; ret->akid = NULL; ret->policy_cache = NULL; ret->altname = NULL; ret->nc = NULL; #ifndef OPENSSL_NO_RFC3779 ret->rfc3779_addr = NULL; ret->rfc3779_asid = NULL; #endif ret->distinguishing_id = NULL; ret->aux = NULL; ret->crldp = NULL; if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_X509, ret, &ret->ex_data)) return 0; break; case ASN1_OP_FREE_POST: CRYPTO_free_ex_data(CRYPTO_EX_INDEX_X509, ret, &ret->ex_data); X509_CERT_AUX_free(ret->aux); ASN1_OCTET_STRING_free(ret->skid); AUTHORITY_KEYID_free(ret->akid); CRL_DIST_POINTS_free(ret->crldp); ossl_policy_cache_free(ret->policy_cache); GENERAL_NAMES_free(ret->altname); NAME_CONSTRAINTS_free(ret->nc); #ifndef OPENSSL_NO_RFC3779 sk_IPAddressFamily_pop_free(ret->rfc3779_addr, IPAddressFamily_free); ASIdentifiers_free(ret->rfc3779_asid); #endif ASN1_OCTET_STRING_free(ret->distinguishing_id); OPENSSL_free(ret->propq); break; case ASN1_OP_DUP_POST: { X509 *old = exarg; if (!ossl_x509_set0_libctx(ret, old->libctx, old->propq)) return 0; } break; case ASN1_OP_GET0_LIBCTX: { OSSL_LIB_CTX **libctx = exarg; *libctx = ret->libctx; } break; case ASN1_OP_GET0_PROPQ: { const char **propq = exarg; *propq = ret->propq; } break; default: break; } return 1; } ASN1_SEQUENCE_ref(X509, x509_cb) = { ASN1_EMBED(X509, cert_info, X509_CINF), ASN1_EMBED(X509, sig_alg, X509_ALGOR), ASN1_EMBED(X509, signature, ASN1_BIT_STRING) } ASN1_SEQUENCE_END_ref(X509, X509) IMPLEMENT_ASN1_FUNCTIONS(X509) IMPLEMENT_ASN1_DUP_FUNCTION(X509) /* * This should only be used if the X509 object was embedded inside another * asn1 object and it needs a libctx to operate. * Use X509_new_ex() instead if possible. */ int ossl_x509_set0_libctx(X509 *x, OSSL_LIB_CTX *libctx, const char *propq) { if (x != NULL) { x->libctx = libctx; OPENSSL_free(x->propq); x->propq = NULL; if (propq != NULL) { x->propq = OPENSSL_strdup(propq); if (x->propq == NULL) return 0; } } return 1; } X509 *X509_new_ex(OSSL_LIB_CTX *libctx, const char *propq) { X509 *cert = NULL; cert = (X509 *)ASN1_item_new_ex(X509_it(), libctx, propq); if (!ossl_x509_set0_libctx(cert, libctx, propq)) { X509_free(cert); cert = NULL; } return cert; } int X509_set_ex_data(X509 *r, int idx, void *arg) { return CRYPTO_set_ex_data(&r->ex_data, idx, arg); } void *X509_get_ex_data(const X509 *r, int idx) { return CRYPTO_get_ex_data(&r->ex_data, idx); } /* * X509_AUX ASN1 routines. X509_AUX is the name given to a certificate with * extra info tagged on the end. Since these functions set how a certificate * is trusted they should only be used when the certificate comes from a * reliable source such as local storage. */ X509 *d2i_X509_AUX(X509 **a, const unsigned char **pp, long length) { const unsigned char *q; X509 *ret; int freeret = 0; /* Save start position */ q = *pp; if (a == NULL || *a == NULL) freeret = 1; ret = d2i_X509(a, &q, length); /* If certificate unreadable then forget it */ if (ret == NULL) return NULL; /* update length */ length -= q - *pp; if (length > 0 && !d2i_X509_CERT_AUX(&ret->aux, &q, length)) goto err; *pp = q; return ret; err: if (freeret) { X509_free(ret); if (a) *a = NULL; } return NULL; } /* * Serialize trusted certificate to *pp or just return the required buffer * length if pp == NULL. We ultimately want to avoid modifying *pp in the * error path, but that depends on similar hygiene in lower-level functions. * Here we avoid compounding the problem. */ static int i2d_x509_aux_internal(const X509 *a, unsigned char **pp) { int length, tmplen; unsigned char *start = pp != NULL ? *pp : NULL; /* * This might perturb *pp on error, but fixing that belongs in i2d_X509() * not here. It should be that if a == NULL length is zero, but we check * both just in case. */ length = i2d_X509(a, pp); if (length <= 0 || a == NULL) return length; tmplen = i2d_X509_CERT_AUX(a->aux, pp); if (tmplen < 0) { if (start != NULL) *pp = start; return tmplen; } length += tmplen; return length; } /* * Serialize trusted certificate to *pp, or just return the required buffer * length if pp == NULL. * * When pp is not NULL, but *pp == NULL, we allocate the buffer, but since * we're writing two ASN.1 objects back to back, we can't have i2d_X509() do * the allocation, nor can we allow i2d_X509_CERT_AUX() to increment the * allocated buffer. */ int i2d_X509_AUX(const X509 *a, unsigned char **pp) { int length; unsigned char *tmp; /* Buffer provided by caller */ if (pp == NULL || *pp != NULL) return i2d_x509_aux_internal(a, pp); /* Obtain the combined length */ if ((length = i2d_x509_aux_internal(a, NULL)) <= 0) return length; /* Allocate requisite combined storage */ *pp = tmp = OPENSSL_malloc(length); if (tmp == NULL) return -1; /* Encode, but keep *pp at the originally malloced pointer */ length = i2d_x509_aux_internal(a, &tmp); if (length <= 0) { OPENSSL_free(*pp); *pp = NULL; } return length; } int i2d_re_X509_tbs(X509 *x, unsigned char **pp) { x->cert_info.enc.modified = 1; return i2d_X509_CINF(&x->cert_info, pp); } void X509_get0_signature(const ASN1_BIT_STRING **psig, const X509_ALGOR **palg, const X509 *x) { if (psig) *psig = &x->signature; if (palg) *palg = &x->sig_alg; } int X509_get_signature_nid(const X509 *x) { return OBJ_obj2nid(x->sig_alg.algorithm); } void X509_set0_distinguishing_id(X509 *x, ASN1_OCTET_STRING *d_id) { ASN1_OCTET_STRING_free(x->distinguishing_id); x->distinguishing_id = d_id; } ASN1_OCTET_STRING *X509_get0_distinguishing_id(X509 *x) { return x->distinguishing_id; }
./openssl/crypto/x509/ext_dat.h
/* * Copyright 1999-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ int ossl_v3_name_cmp(const char *name, const char *cmp); extern const X509V3_EXT_METHOD ossl_v3_bcons, ossl_v3_nscert, ossl_v3_key_usage, ossl_v3_ext_ku; extern const X509V3_EXT_METHOD ossl_v3_pkey_usage_period, ossl_v3_sxnet, ossl_v3_info, ossl_v3_sinfo; extern const X509V3_EXT_METHOD ossl_v3_ns_ia5_list[8], ossl_v3_alt[3], ossl_v3_skey_id, ossl_v3_akey_id; extern const X509V3_EXT_METHOD ossl_v3_crl_num, ossl_v3_crl_reason, ossl_v3_crl_invdate; extern const X509V3_EXT_METHOD ossl_v3_delta_crl, ossl_v3_cpols, ossl_v3_crld, ossl_v3_freshest_crl; extern const X509V3_EXT_METHOD ossl_v3_ocsp_nonce, ossl_v3_ocsp_accresp, ossl_v3_ocsp_acutoff; extern const X509V3_EXT_METHOD ossl_v3_ocsp_crlid, ossl_v3_ocsp_nocheck, ossl_v3_ocsp_serviceloc; extern const X509V3_EXT_METHOD ossl_v3_crl_hold, ossl_v3_pci; extern const X509V3_EXT_METHOD ossl_v3_policy_mappings, ossl_v3_policy_constraints; extern const X509V3_EXT_METHOD ossl_v3_name_constraints, ossl_v3_inhibit_anyp, ossl_v3_idp; extern const X509V3_EXT_METHOD ossl_v3_addr, ossl_v3_asid; extern const X509V3_EXT_METHOD ossl_v3_ct_scts[3]; extern const X509V3_EXT_METHOD ossl_v3_tls_feature; extern const X509V3_EXT_METHOD ossl_v3_ext_admission; extern const X509V3_EXT_METHOD ossl_v3_utf8_list[1]; extern const X509V3_EXT_METHOD ossl_v3_issuer_sign_tool; extern const X509V3_EXT_METHOD ossl_v3_group_ac; extern const X509V3_EXT_METHOD ossl_v3_soa_identifier; extern const X509V3_EXT_METHOD ossl_v3_no_assertion; extern const X509V3_EXT_METHOD ossl_v3_no_rev_avail; extern const X509V3_EXT_METHOD ossl_v3_single_use; extern const X509V3_EXT_METHOD ossl_v3_indirect_issuer;
./openssl/crypto/x509/v3_pku.c
/* * Copyright 1999-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/asn1.h> #include <openssl/asn1t.h> #include <openssl/x509v3.h> #include "ext_dat.h" static int i2r_PKEY_USAGE_PERIOD(X509V3_EXT_METHOD *method, PKEY_USAGE_PERIOD *usage, BIO *out, int indent); const X509V3_EXT_METHOD ossl_v3_pkey_usage_period = { NID_private_key_usage_period, 0, ASN1_ITEM_ref(PKEY_USAGE_PERIOD), 0, 0, 0, 0, 0, 0, 0, 0, (X509V3_EXT_I2R)i2r_PKEY_USAGE_PERIOD, NULL, NULL }; ASN1_SEQUENCE(PKEY_USAGE_PERIOD) = { ASN1_IMP_OPT(PKEY_USAGE_PERIOD, notBefore, ASN1_GENERALIZEDTIME, 0), ASN1_IMP_OPT(PKEY_USAGE_PERIOD, notAfter, ASN1_GENERALIZEDTIME, 1) } ASN1_SEQUENCE_END(PKEY_USAGE_PERIOD) IMPLEMENT_ASN1_FUNCTIONS(PKEY_USAGE_PERIOD) static int i2r_PKEY_USAGE_PERIOD(X509V3_EXT_METHOD *method, PKEY_USAGE_PERIOD *usage, BIO *out, int indent) { BIO_printf(out, "%*s", indent, ""); if (usage->notBefore) { BIO_write(out, "Not Before: ", 12); ASN1_GENERALIZEDTIME_print(out, usage->notBefore); if (usage->notAfter) BIO_write(out, ", ", 2); } if (usage->notAfter) { BIO_write(out, "Not After: ", 11); ASN1_GENERALIZEDTIME_print(out, usage->notAfter); } return 1; }
./openssl/crypto/x509/v3_pmaps.c
/* * Copyright 2003-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/asn1t.h> #include <openssl/conf.h> #include <openssl/x509v3.h> #include "ext_dat.h" static void *v2i_POLICY_MAPPINGS(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval); static STACK_OF(CONF_VALUE) *i2v_POLICY_MAPPINGS(const X509V3_EXT_METHOD *method, void *pmps, STACK_OF(CONF_VALUE) *extlist); const X509V3_EXT_METHOD ossl_v3_policy_mappings = { NID_policy_mappings, 0, ASN1_ITEM_ref(POLICY_MAPPINGS), 0, 0, 0, 0, 0, 0, i2v_POLICY_MAPPINGS, v2i_POLICY_MAPPINGS, 0, 0, NULL }; ASN1_SEQUENCE(POLICY_MAPPING) = { ASN1_SIMPLE(POLICY_MAPPING, issuerDomainPolicy, ASN1_OBJECT), ASN1_SIMPLE(POLICY_MAPPING, subjectDomainPolicy, ASN1_OBJECT) } ASN1_SEQUENCE_END(POLICY_MAPPING) ASN1_ITEM_TEMPLATE(POLICY_MAPPINGS) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, POLICY_MAPPINGS, POLICY_MAPPING) ASN1_ITEM_TEMPLATE_END(POLICY_MAPPINGS) IMPLEMENT_ASN1_ALLOC_FUNCTIONS(POLICY_MAPPING) static STACK_OF(CONF_VALUE) *i2v_POLICY_MAPPINGS(const X509V3_EXT_METHOD *method, void *a, STACK_OF(CONF_VALUE) *ext_list) { POLICY_MAPPINGS *pmaps = a; POLICY_MAPPING *pmap; int i; char obj_tmp1[80]; char obj_tmp2[80]; for (i = 0; i < sk_POLICY_MAPPING_num(pmaps); i++) { pmap = sk_POLICY_MAPPING_value(pmaps, i); i2t_ASN1_OBJECT(obj_tmp1, 80, pmap->issuerDomainPolicy); i2t_ASN1_OBJECT(obj_tmp2, 80, pmap->subjectDomainPolicy); X509V3_add_value(obj_tmp1, obj_tmp2, &ext_list); } return ext_list; } static void *v2i_POLICY_MAPPINGS(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval) { POLICY_MAPPING *pmap = NULL; ASN1_OBJECT *obj1 = NULL, *obj2 = NULL; CONF_VALUE *val; POLICY_MAPPINGS *pmaps; const int num = sk_CONF_VALUE_num(nval); int i; if ((pmaps = sk_POLICY_MAPPING_new_reserve(NULL, num)) == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB); return NULL; } for (i = 0; i < num; i++) { val = sk_CONF_VALUE_value(nval, i); if (!val->value || !val->name) { ERR_raise_data(ERR_LIB_X509V3, X509V3_R_INVALID_OBJECT_IDENTIFIER, "%s", val->name); goto err; } obj1 = OBJ_txt2obj(val->name, 0); obj2 = OBJ_txt2obj(val->value, 0); if (!obj1 || !obj2) { ERR_raise_data(ERR_LIB_X509V3, X509V3_R_INVALID_OBJECT_IDENTIFIER, "%s", val->name); goto err; } pmap = POLICY_MAPPING_new(); if (pmap == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB); goto err; } pmap->issuerDomainPolicy = obj1; pmap->subjectDomainPolicy = obj2; obj1 = obj2 = NULL; sk_POLICY_MAPPING_push(pmaps, pmap); /* no failure as it was reserved */ } return pmaps; err: ASN1_OBJECT_free(obj1); ASN1_OBJECT_free(obj2); sk_POLICY_MAPPING_pop_free(pmaps, POLICY_MAPPING_free); return NULL; }
./openssl/crypto/x509/t_x509.c
/* * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/buffer.h> #include <openssl/bn.h> #include <openssl/objects.h> #include <openssl/x509.h> #include <openssl/x509v3.h> #include "crypto/asn1.h" #include "crypto/x509.h" void OSSL_STACK_OF_X509_free(STACK_OF(X509) *certs) { sk_X509_pop_free(certs, X509_free); } #ifndef OPENSSL_NO_STDIO int X509_print_fp(FILE *fp, X509 *x) { return X509_print_ex_fp(fp, x, XN_FLAG_COMPAT, X509_FLAG_COMPAT); } int X509_print_ex_fp(FILE *fp, X509 *x, unsigned long nmflag, unsigned long cflag) { BIO *b; int ret; if ((b = BIO_new(BIO_s_file())) == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_BUF_LIB); return 0; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = X509_print_ex(b, x, nmflag, cflag); BIO_free(b); return ret; } #endif int X509_print(BIO *bp, X509 *x) { return X509_print_ex(bp, x, XN_FLAG_COMPAT, X509_FLAG_COMPAT); } int X509_print_ex(BIO *bp, X509 *x, unsigned long nmflags, unsigned long cflag) { long l; int ret = 0, i; char mlch = ' '; int nmindent = 0, printok = 0; EVP_PKEY *pkey = NULL; const char *neg; if ((nmflags & XN_FLAG_SEP_MASK) == XN_FLAG_SEP_MULTILINE) { mlch = '\n'; nmindent = 12; } if (nmflags == XN_FLAG_COMPAT) printok = 1; if (!(cflag & X509_FLAG_NO_HEADER)) { if (BIO_write(bp, "Certificate:\n", 13) <= 0) goto err; if (BIO_write(bp, " Data:\n", 10) <= 0) goto err; } if (!(cflag & X509_FLAG_NO_VERSION)) { l = X509_get_version(x); if (l >= X509_VERSION_1 && l <= X509_VERSION_3) { if (BIO_printf(bp, "%8sVersion: %ld (0x%lx)\n", "", l + 1, (unsigned long)l) <= 0) goto err; } else { if (BIO_printf(bp, "%8sVersion: Unknown (%ld)\n", "", l) <= 0) goto err; } } if (!(cflag & X509_FLAG_NO_SERIAL)) { const ASN1_INTEGER *bs = X509_get0_serialNumber(x); if (BIO_write(bp, " Serial Number:", 22) <= 0) goto err; if (bs->length <= (int)sizeof(long)) { ERR_set_mark(); l = ASN1_INTEGER_get(bs); ERR_pop_to_mark(); } else { l = -1; } if (l != -1) { unsigned long ul; if (bs->type == V_ASN1_NEG_INTEGER) { ul = 0 - (unsigned long)l; neg = "-"; } else { ul = l; neg = ""; } if (BIO_printf(bp, " %s%lu (%s0x%lx)\n", neg, ul, neg, ul) <= 0) goto err; } else { neg = (bs->type == V_ASN1_NEG_INTEGER) ? " (Negative)" : ""; if (BIO_printf(bp, "\n%12s%s", "", neg) <= 0) goto err; for (i = 0; i < bs->length; i++) { if (BIO_printf(bp, "%02x%c", bs->data[i], ((i + 1 == bs->length) ? '\n' : ':')) <= 0) goto err; } } } if (!(cflag & X509_FLAG_NO_SIGNAME)) { const X509_ALGOR *tsig_alg = X509_get0_tbs_sigalg(x); if (BIO_puts(bp, " ") <= 0) goto err; if (X509_signature_print(bp, tsig_alg, NULL) <= 0) goto err; } if (!(cflag & X509_FLAG_NO_ISSUER)) { if (BIO_printf(bp, " Issuer:%c", mlch) <= 0) goto err; if (X509_NAME_print_ex(bp, X509_get_issuer_name(x), nmindent, nmflags) < printok) goto err; if (BIO_write(bp, "\n", 1) <= 0) goto err; } if (!(cflag & X509_FLAG_NO_VALIDITY)) { if (BIO_write(bp, " Validity\n", 17) <= 0) goto err; if (BIO_write(bp, " Not Before: ", 24) <= 0) goto err; if (ossl_asn1_time_print_ex(bp, X509_get0_notBefore(x), ASN1_DTFLGS_RFC822) == 0) goto err; if (BIO_write(bp, "\n Not After : ", 25) <= 0) goto err; if (ossl_asn1_time_print_ex(bp, X509_get0_notAfter(x), ASN1_DTFLGS_RFC822) == 0) goto err; if (BIO_write(bp, "\n", 1) <= 0) goto err; } if (!(cflag & X509_FLAG_NO_SUBJECT)) { if (BIO_printf(bp, " Subject:%c", mlch) <= 0) goto err; if (X509_NAME_print_ex (bp, X509_get_subject_name(x), nmindent, nmflags) < printok) goto err; if (BIO_write(bp, "\n", 1) <= 0) goto err; } if (!(cflag & X509_FLAG_NO_PUBKEY)) { X509_PUBKEY *xpkey = X509_get_X509_PUBKEY(x); ASN1_OBJECT *xpoid; X509_PUBKEY_get0_param(&xpoid, NULL, NULL, NULL, xpkey); if (BIO_write(bp, " Subject Public Key Info:\n", 33) <= 0) goto err; if (BIO_printf(bp, "%12sPublic Key Algorithm: ", "") <= 0) goto err; if (i2a_ASN1_OBJECT(bp, xpoid) <= 0) goto err; if (BIO_puts(bp, "\n") <= 0) goto err; pkey = X509_get0_pubkey(x); if (pkey == NULL) { BIO_printf(bp, "%12sUnable to load Public Key\n", ""); ERR_print_errors(bp); } else { EVP_PKEY_print_public(bp, pkey, 16, NULL); } } if (!(cflag & X509_FLAG_NO_IDS)) { const ASN1_BIT_STRING *iuid, *suid; X509_get0_uids(x, &iuid, &suid); if (iuid != NULL) { if (BIO_printf(bp, "%8sIssuer Unique ID: ", "") <= 0) goto err; if (!X509_signature_dump(bp, iuid, 12)) goto err; } if (suid != NULL) { if (BIO_printf(bp, "%8sSubject Unique ID: ", "") <= 0) goto err; if (!X509_signature_dump(bp, suid, 12)) goto err; } } if (!(cflag & X509_FLAG_NO_EXTENSIONS) && !X509V3_extensions_print(bp, "X509v3 extensions", X509_get0_extensions(x), cflag, 8)) goto err; if (!(cflag & X509_FLAG_NO_SIGDUMP)) { const X509_ALGOR *sig_alg; const ASN1_BIT_STRING *sig; X509_get0_signature(&sig, &sig_alg, x); if (X509_signature_print(bp, sig_alg, sig) <= 0) goto err; } if (!(cflag & X509_FLAG_NO_AUX)) { if (!X509_aux_print(bp, x, 0)) goto err; } ret = 1; err: return ret; } int X509_ocspid_print(BIO *bp, X509 *x) { unsigned char *der = NULL; unsigned char *dertmp; int derlen; int i; unsigned char SHA1md[SHA_DIGEST_LENGTH]; ASN1_BIT_STRING *keybstr; const X509_NAME *subj; EVP_MD *md = NULL; if (x == NULL || bp == NULL) return 0; /* * display the hash of the subject as it would appear in OCSP requests */ if (BIO_printf(bp, " Subject OCSP hash: ") <= 0) goto err; subj = X509_get_subject_name(x); derlen = i2d_X509_NAME(subj, NULL); if (derlen <= 0) goto err; if ((der = dertmp = OPENSSL_malloc(derlen)) == NULL) goto err; i2d_X509_NAME(subj, &dertmp); md = EVP_MD_fetch(x->libctx, SN_sha1, x->propq); if (md == NULL) goto err; if (!EVP_Digest(der, derlen, SHA1md, NULL, md, NULL)) goto err; for (i = 0; i < SHA_DIGEST_LENGTH; i++) { if (BIO_printf(bp, "%02X", SHA1md[i]) <= 0) goto err; } OPENSSL_free(der); der = NULL; /* * display the hash of the public key as it would appear in OCSP requests */ if (BIO_printf(bp, "\n Public key OCSP hash: ") <= 0) goto err; keybstr = X509_get0_pubkey_bitstr(x); if (keybstr == NULL) goto err; if (!EVP_Digest(ASN1_STRING_get0_data(keybstr), ASN1_STRING_length(keybstr), SHA1md, NULL, md, NULL)) goto err; for (i = 0; i < SHA_DIGEST_LENGTH; i++) { if (BIO_printf(bp, "%02X", SHA1md[i]) <= 0) goto err; } BIO_printf(bp, "\n"); EVP_MD_free(md); return 1; err: OPENSSL_free(der); EVP_MD_free(md); return 0; } int X509_signature_dump(BIO *bp, const ASN1_STRING *sig, int indent) { const unsigned char *s; int i, n; n = sig->length; s = sig->data; for (i = 0; i < n; i++) { if ((i % 18) == 0) { if (i > 0 && BIO_write(bp, "\n", 1) <= 0) return 0; if (BIO_indent(bp, indent, indent) <= 0) return 0; } if (BIO_printf(bp, "%02x%s", s[i], ((i + 1) == n) ? "" : ":") <= 0) return 0; } if (BIO_write(bp, "\n", 1) != 1) return 0; return 1; } int X509_signature_print(BIO *bp, const X509_ALGOR *sigalg, const ASN1_STRING *sig) { int sig_nid; int indent = 4; if (BIO_printf(bp, "%*sSignature Algorithm: ", indent, "") <= 0) return 0; if (i2a_ASN1_OBJECT(bp, sigalg->algorithm) <= 0) return 0; if (sig && BIO_printf(bp, "\n%*sSignature Value:", indent, "") <= 0) return 0; sig_nid = OBJ_obj2nid(sigalg->algorithm); if (sig_nid != NID_undef) { int pkey_nid, dig_nid; const EVP_PKEY_ASN1_METHOD *ameth; if (OBJ_find_sigid_algs(sig_nid, &dig_nid, &pkey_nid)) { ameth = EVP_PKEY_asn1_find(NULL, pkey_nid); if (ameth && ameth->sig_print) return ameth->sig_print(bp, sigalg, sig, indent + 4, 0); } } if (BIO_write(bp, "\n", 1) != 1) return 0; if (sig) return X509_signature_dump(bp, sig, indent + 4); return 1; } int X509_aux_print(BIO *out, X509 *x, int indent) { char oidstr[80], first; STACK_OF(ASN1_OBJECT) *trust, *reject; const unsigned char *alias, *keyid; int keyidlen; int i; if (X509_trusted(x) == 0) return 1; trust = X509_get0_trust_objects(x); reject = X509_get0_reject_objects(x); if (trust) { first = 1; BIO_printf(out, "%*sTrusted Uses:\n%*s", indent, "", indent + 2, ""); for (i = 0; i < sk_ASN1_OBJECT_num(trust); i++) { if (!first) BIO_puts(out, ", "); else first = 0; OBJ_obj2txt(oidstr, sizeof(oidstr), sk_ASN1_OBJECT_value(trust, i), 0); BIO_puts(out, oidstr); } BIO_puts(out, "\n"); } else BIO_printf(out, "%*sNo Trusted Uses.\n", indent, ""); if (reject) { first = 1; BIO_printf(out, "%*sRejected Uses:\n%*s", indent, "", indent + 2, ""); for (i = 0; i < sk_ASN1_OBJECT_num(reject); i++) { if (!first) BIO_puts(out, ", "); else first = 0; OBJ_obj2txt(oidstr, sizeof(oidstr), sk_ASN1_OBJECT_value(reject, i), 0); BIO_puts(out, oidstr); } BIO_puts(out, "\n"); } else BIO_printf(out, "%*sNo Rejected Uses.\n", indent, ""); alias = X509_alias_get0(x, &i); if (alias) BIO_printf(out, "%*sAlias: %.*s\n", indent, "", i, alias); keyid = X509_keyid_get0(x, &keyidlen); if (keyid) { BIO_printf(out, "%*sKey Id: ", indent, ""); for (i = 0; i < keyidlen; i++) BIO_printf(out, "%s%02X", i ? ":" : "", keyid[i]); BIO_write(out, "\n", 1); } return 1; } /* * Helper functions for improving certificate verification error diagnostics */ int ossl_x509_print_ex_brief(BIO *bio, X509 *cert, unsigned long neg_cflags) { unsigned long flags = ASN1_STRFLGS_RFC2253 | ASN1_STRFLGS_ESC_QUOTE | XN_FLAG_SEP_CPLUS_SPC | XN_FLAG_FN_SN; if (cert == NULL) return BIO_printf(bio, " (no certificate)\n") > 0; if (BIO_printf(bio, " certificate\n") <= 0 || !X509_print_ex(bio, cert, flags, ~X509_FLAG_NO_SUBJECT)) return 0; if (X509_check_issued((X509 *)cert, cert) == X509_V_OK) { if (BIO_printf(bio, " self-issued\n") <= 0) return 0; } else { if (BIO_printf(bio, " ") <= 0 || !X509_print_ex(bio, cert, flags, ~X509_FLAG_NO_ISSUER)) return 0; } if (!X509_print_ex(bio, cert, flags, ~(X509_FLAG_NO_SERIAL | X509_FLAG_NO_VALIDITY))) return 0; if (X509_cmp_current_time(X509_get0_notBefore(cert)) > 0) if (BIO_printf(bio, " not yet valid\n") <= 0) return 0; if (X509_cmp_current_time(X509_get0_notAfter(cert)) < 0) if (BIO_printf(bio, " no more valid\n") <= 0) return 0; return X509_print_ex(bio, cert, flags, ~neg_cflags & ~X509_FLAG_EXTENSIONS_ONLY_KID); } static int print_certs(BIO *bio, const STACK_OF(X509) *certs) { int i; if (certs == NULL || sk_X509_num(certs) <= 0) return BIO_printf(bio, " (no certificates)\n") >= 0; for (i = 0; i < sk_X509_num(certs); i++) { X509 *cert = sk_X509_value(certs, i); if (cert != NULL) { if (!ossl_x509_print_ex_brief(bio, cert, 0)) return 0; if (!X509V3_extensions_print(bio, NULL, X509_get0_extensions(cert), X509_FLAG_EXTENSIONS_ONLY_KID, 8)) return 0; } } return 1; } static int print_store_certs(BIO *bio, X509_STORE *store) { if (store != NULL) { STACK_OF(X509) *certs = X509_STORE_get1_all_certs(store); int ret = print_certs(bio, certs); OSSL_STACK_OF_X509_free(certs); return ret; } else { return BIO_printf(bio, " (no trusted store)\n") >= 0; } } /* Extend the error queue with details on a failed cert verification */ int X509_STORE_CTX_print_verify_cb(int ok, X509_STORE_CTX *ctx) { if (ok == 0 && ctx != NULL) { int cert_error = X509_STORE_CTX_get_error(ctx); BIO *bio = BIO_new(BIO_s_mem()); /* may be NULL */ if (bio == NULL) return 0; BIO_printf(bio, "%s at depth = %d error = %d (%s)\n", X509_STORE_CTX_get0_parent_ctx(ctx) != NULL ? "CRL path validation" : "Certificate verification", X509_STORE_CTX_get_error_depth(ctx), cert_error, X509_verify_cert_error_string(cert_error)); { X509_STORE *ts = X509_STORE_CTX_get0_store(ctx); X509_VERIFY_PARAM *vpm = X509_STORE_get0_param(ts); char *str; int idx = 0; switch (cert_error) { case X509_V_ERR_HOSTNAME_MISMATCH: BIO_printf(bio, "Expected hostname(s) = "); while ((str = X509_VERIFY_PARAM_get0_host(vpm, idx++)) != NULL) BIO_printf(bio, "%s%s", idx == 1 ? "" : ", ", str); BIO_printf(bio, "\n"); break; case X509_V_ERR_EMAIL_MISMATCH: str = X509_VERIFY_PARAM_get0_email(vpm); if (str != NULL) BIO_printf(bio, "Expected email address = %s\n", str); break; case X509_V_ERR_IP_ADDRESS_MISMATCH: str = X509_VERIFY_PARAM_get1_ip_asc(vpm); if (str != NULL) BIO_printf(bio, "Expected IP address = %s\n", str); OPENSSL_free(str); break; default: break; } } BIO_printf(bio, "Failure for:\n"); ossl_x509_print_ex_brief(bio, X509_STORE_CTX_get_current_cert(ctx), X509_FLAG_NO_EXTENSIONS); if (cert_error == X509_V_ERR_CERT_UNTRUSTED || cert_error == X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT || cert_error == X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN || cert_error == X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT || cert_error == X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY || cert_error == X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER || cert_error == X509_V_ERR_STORE_LOOKUP) { BIO_printf(bio, "Non-trusted certs:\n"); print_certs(bio, X509_STORE_CTX_get0_untrusted(ctx)); BIO_printf(bio, "Certs in trust store:\n"); print_store_certs(bio, X509_STORE_CTX_get0_store(ctx)); } ERR_raise(ERR_LIB_X509, X509_R_CERTIFICATE_VERIFICATION_FAILED); ERR_add_error_mem_bio("\n", bio); BIO_free(bio); } return ok; }
./openssl/crypto/x509/v3_admis.c
/* * Copyright 2017-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/conf.h> #include <openssl/types.h> #include <openssl/asn1.h> #include <openssl/asn1t.h> #include <openssl/x509v3.h> #include <openssl/safestack.h> #include "v3_admis.h" #include "ext_dat.h" ASN1_SEQUENCE(NAMING_AUTHORITY) = { ASN1_OPT(NAMING_AUTHORITY, namingAuthorityId, ASN1_OBJECT), ASN1_OPT(NAMING_AUTHORITY, namingAuthorityUrl, ASN1_IA5STRING), ASN1_OPT(NAMING_AUTHORITY, namingAuthorityText, DIRECTORYSTRING), } ASN1_SEQUENCE_END(NAMING_AUTHORITY) ASN1_SEQUENCE(PROFESSION_INFO) = { ASN1_EXP_OPT(PROFESSION_INFO, namingAuthority, NAMING_AUTHORITY, 0), ASN1_SEQUENCE_OF(PROFESSION_INFO, professionItems, DIRECTORYSTRING), ASN1_SEQUENCE_OF_OPT(PROFESSION_INFO, professionOIDs, ASN1_OBJECT), ASN1_OPT(PROFESSION_INFO, registrationNumber, ASN1_PRINTABLESTRING), ASN1_OPT(PROFESSION_INFO, addProfessionInfo, ASN1_OCTET_STRING), } ASN1_SEQUENCE_END(PROFESSION_INFO) ASN1_SEQUENCE(ADMISSIONS) = { ASN1_EXP_OPT(ADMISSIONS, admissionAuthority, GENERAL_NAME, 0), ASN1_EXP_OPT(ADMISSIONS, namingAuthority, NAMING_AUTHORITY, 1), ASN1_SEQUENCE_OF(ADMISSIONS, professionInfos, PROFESSION_INFO), } ASN1_SEQUENCE_END(ADMISSIONS) ASN1_SEQUENCE(ADMISSION_SYNTAX) = { ASN1_OPT(ADMISSION_SYNTAX, admissionAuthority, GENERAL_NAME), ASN1_SEQUENCE_OF(ADMISSION_SYNTAX, contentsOfAdmissions, ADMISSIONS), } ASN1_SEQUENCE_END(ADMISSION_SYNTAX) IMPLEMENT_ASN1_FUNCTIONS(NAMING_AUTHORITY) IMPLEMENT_ASN1_FUNCTIONS(PROFESSION_INFO) IMPLEMENT_ASN1_FUNCTIONS(ADMISSIONS) IMPLEMENT_ASN1_FUNCTIONS(ADMISSION_SYNTAX) static int i2r_ADMISSION_SYNTAX(const struct v3_ext_method *method, void *in, BIO *bp, int ind); const X509V3_EXT_METHOD ossl_v3_ext_admission = { NID_x509ExtAdmission, /* .ext_nid = */ 0, /* .ext_flags = */ ASN1_ITEM_ref(ADMISSION_SYNTAX), /* .it = */ NULL, NULL, NULL, NULL, NULL, /* .i2s = */ NULL, /* .s2i = */ NULL, /* .i2v = */ NULL, /* .v2i = */ &i2r_ADMISSION_SYNTAX, /* .i2r = */ NULL, /* .r2i = */ NULL /* extension-specific data */ }; static int i2r_NAMING_AUTHORITY(const struct v3_ext_method *method, void *in, BIO *bp, int ind) { NAMING_AUTHORITY *namingAuthority = (NAMING_AUTHORITY*) in; if (namingAuthority == NULL) return 0; if (namingAuthority->namingAuthorityId == NULL && namingAuthority->namingAuthorityText == NULL && namingAuthority->namingAuthorityUrl == NULL) return 0; if (BIO_printf(bp, "%*snamingAuthority: ", ind, "") <= 0) goto err; if (namingAuthority->namingAuthorityId != NULL) { char objbuf[128]; const char *ln = OBJ_nid2ln(OBJ_obj2nid(namingAuthority->namingAuthorityId)); if (BIO_printf(bp, "%*s admissionAuthorityId: ", ind, "") <= 0) goto err; OBJ_obj2txt(objbuf, sizeof(objbuf), namingAuthority->namingAuthorityId, 1); if (BIO_printf(bp, "%s%s%s%s\n", ln ? ln : "", ln ? " (" : "", objbuf, ln ? ")" : "") <= 0) goto err; } if (namingAuthority->namingAuthorityText != NULL) { if (BIO_printf(bp, "%*s namingAuthorityText: ", ind, "") <= 0 || ASN1_STRING_print(bp, namingAuthority->namingAuthorityText) <= 0 || BIO_printf(bp, "\n") <= 0) goto err; } if (namingAuthority->namingAuthorityUrl != NULL) { if (BIO_printf(bp, "%*s namingAuthorityUrl: ", ind, "") <= 0 || ASN1_STRING_print(bp, namingAuthority->namingAuthorityUrl) <= 0 || BIO_printf(bp, "\n") <= 0) goto err; } return 1; err: return 0; } static int i2r_ADMISSION_SYNTAX(const struct v3_ext_method *method, void *in, BIO *bp, int ind) { ADMISSION_SYNTAX *admission = (ADMISSION_SYNTAX *)in; int i, j, k; if (admission->admissionAuthority != NULL) { if (BIO_printf(bp, "%*sadmissionAuthority:\n", ind, "") <= 0 || BIO_printf(bp, "%*s ", ind, "") <= 0 || GENERAL_NAME_print(bp, admission->admissionAuthority) <= 0 || BIO_printf(bp, "\n") <= 0) goto err; } for (i = 0; i < sk_ADMISSIONS_num(admission->contentsOfAdmissions); i++) { ADMISSIONS* entry = sk_ADMISSIONS_value(admission->contentsOfAdmissions, i); if (BIO_printf(bp, "%*sEntry %0d:\n", ind, "", 1 + i) <= 0) goto err; if (entry->admissionAuthority != NULL) { if (BIO_printf(bp, "%*s admissionAuthority:\n", ind, "") <= 0 || BIO_printf(bp, "%*s ", ind, "") <= 0 || GENERAL_NAME_print(bp, entry->admissionAuthority) <= 0 || BIO_printf(bp, "\n") <= 0) goto err; } if (entry->namingAuthority != NULL) { if (i2r_NAMING_AUTHORITY(method, entry->namingAuthority, bp, ind) <= 0) goto err; } for (j = 0; j < sk_PROFESSION_INFO_num(entry->professionInfos); j++) { PROFESSION_INFO* pinfo = sk_PROFESSION_INFO_value(entry->professionInfos, j); if (BIO_printf(bp, "%*s Profession Info Entry %0d:\n", ind, "", 1 + j) <= 0) goto err; if (pinfo->registrationNumber != NULL) { if (BIO_printf(bp, "%*s registrationNumber: ", ind, "") <= 0 || ASN1_STRING_print(bp, pinfo->registrationNumber) <= 0 || BIO_printf(bp, "\n") <= 0) goto err; } if (pinfo->namingAuthority != NULL) { if (i2r_NAMING_AUTHORITY(method, pinfo->namingAuthority, bp, ind + 2) <= 0) goto err; } if (pinfo->professionItems != NULL) { if (BIO_printf(bp, "%*s Info Entries:\n", ind, "") <= 0) goto err; for (k = 0; k < sk_ASN1_STRING_num(pinfo->professionItems); k++) { ASN1_STRING* val = sk_ASN1_STRING_value(pinfo->professionItems, k); if (BIO_printf(bp, "%*s ", ind, "") <= 0 || ASN1_STRING_print(bp, val) <= 0 || BIO_printf(bp, "\n") <= 0) goto err; } } if (pinfo->professionOIDs != NULL) { if (BIO_printf(bp, "%*s Profession OIDs:\n", ind, "") <= 0) goto err; for (k = 0; k < sk_ASN1_OBJECT_num(pinfo->professionOIDs); k++) { ASN1_OBJECT* obj = sk_ASN1_OBJECT_value(pinfo->professionOIDs, k); const char *ln = OBJ_nid2ln(OBJ_obj2nid(obj)); char objbuf[128]; OBJ_obj2txt(objbuf, sizeof(objbuf), obj, 1); if (BIO_printf(bp, "%*s %s%s%s%s\n", ind, "", ln ? ln : "", ln ? " (" : "", objbuf, ln ? ")" : "") <= 0) goto err; } } } } return 1; err: return 0; } const ASN1_OBJECT *NAMING_AUTHORITY_get0_authorityId(const NAMING_AUTHORITY *n) { return n->namingAuthorityId; } void NAMING_AUTHORITY_set0_authorityId(NAMING_AUTHORITY *n, ASN1_OBJECT* id) { ASN1_OBJECT_free(n->namingAuthorityId); n->namingAuthorityId = id; } const ASN1_IA5STRING *NAMING_AUTHORITY_get0_authorityURL( const NAMING_AUTHORITY *n) { return n->namingAuthorityUrl; } void NAMING_AUTHORITY_set0_authorityURL(NAMING_AUTHORITY *n, ASN1_IA5STRING* u) { ASN1_IA5STRING_free(n->namingAuthorityUrl); n->namingAuthorityUrl = u; } const ASN1_STRING *NAMING_AUTHORITY_get0_authorityText( const NAMING_AUTHORITY *n) { return n->namingAuthorityText; } void NAMING_AUTHORITY_set0_authorityText(NAMING_AUTHORITY *n, ASN1_STRING* t) { ASN1_IA5STRING_free(n->namingAuthorityText); n->namingAuthorityText = t; } const GENERAL_NAME *ADMISSION_SYNTAX_get0_admissionAuthority(const ADMISSION_SYNTAX *as) { return as->admissionAuthority; } void ADMISSION_SYNTAX_set0_admissionAuthority(ADMISSION_SYNTAX *as, GENERAL_NAME *aa) { GENERAL_NAME_free(as->admissionAuthority); as->admissionAuthority = aa; } const STACK_OF(ADMISSIONS) *ADMISSION_SYNTAX_get0_contentsOfAdmissions(const ADMISSION_SYNTAX *as) { return as->contentsOfAdmissions; } void ADMISSION_SYNTAX_set0_contentsOfAdmissions(ADMISSION_SYNTAX *as, STACK_OF(ADMISSIONS) *a) { sk_ADMISSIONS_pop_free(as->contentsOfAdmissions, ADMISSIONS_free); as->contentsOfAdmissions = a; } const GENERAL_NAME *ADMISSIONS_get0_admissionAuthority(const ADMISSIONS *a) { return a->admissionAuthority; } void ADMISSIONS_set0_admissionAuthority(ADMISSIONS *a, GENERAL_NAME *aa) { GENERAL_NAME_free(a->admissionAuthority); a->admissionAuthority = aa; } const NAMING_AUTHORITY *ADMISSIONS_get0_namingAuthority(const ADMISSIONS *a) { return a->namingAuthority; } void ADMISSIONS_set0_namingAuthority(ADMISSIONS *a, NAMING_AUTHORITY *na) { NAMING_AUTHORITY_free(a->namingAuthority); a->namingAuthority = na; } const PROFESSION_INFOS *ADMISSIONS_get0_professionInfos(const ADMISSIONS *a) { return a->professionInfos; } void ADMISSIONS_set0_professionInfos(ADMISSIONS *a, PROFESSION_INFOS *pi) { sk_PROFESSION_INFO_pop_free(a->professionInfos, PROFESSION_INFO_free); a->professionInfos = pi; } const ASN1_OCTET_STRING *PROFESSION_INFO_get0_addProfessionInfo(const PROFESSION_INFO *pi) { return pi->addProfessionInfo; } void PROFESSION_INFO_set0_addProfessionInfo(PROFESSION_INFO *pi, ASN1_OCTET_STRING *aos) { ASN1_OCTET_STRING_free(pi->addProfessionInfo); pi->addProfessionInfo = aos; } const NAMING_AUTHORITY *PROFESSION_INFO_get0_namingAuthority(const PROFESSION_INFO *pi) { return pi->namingAuthority; } void PROFESSION_INFO_set0_namingAuthority(PROFESSION_INFO *pi, NAMING_AUTHORITY *na) { NAMING_AUTHORITY_free(pi->namingAuthority); pi->namingAuthority = na; } const STACK_OF(ASN1_STRING) *PROFESSION_INFO_get0_professionItems(const PROFESSION_INFO *pi) { return pi->professionItems; } void PROFESSION_INFO_set0_professionItems(PROFESSION_INFO *pi, STACK_OF(ASN1_STRING) *as) { sk_ASN1_STRING_pop_free(pi->professionItems, ASN1_STRING_free); pi->professionItems = as; } const STACK_OF(ASN1_OBJECT) *PROFESSION_INFO_get0_professionOIDs(const PROFESSION_INFO *pi) { return pi->professionOIDs; } void PROFESSION_INFO_set0_professionOIDs(PROFESSION_INFO *pi, STACK_OF(ASN1_OBJECT) *po) { sk_ASN1_OBJECT_pop_free(pi->professionOIDs, ASN1_OBJECT_free); pi->professionOIDs = po; } const ASN1_PRINTABLESTRING *PROFESSION_INFO_get0_registrationNumber(const PROFESSION_INFO *pi) { return pi->registrationNumber; } void PROFESSION_INFO_set0_registrationNumber(PROFESSION_INFO *pi, ASN1_PRINTABLESTRING *rn) { ASN1_PRINTABLESTRING_free(pi->registrationNumber); pi->registrationNumber = rn; }
./openssl/crypto/x509/x509_req.c
/* * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/bn.h> #include <openssl/evp.h> #include <openssl/asn1.h> #include <openssl/asn1t.h> #include <openssl/x509.h> #include "crypto/x509.h" #include <openssl/objects.h> #include <openssl/buffer.h> #include <openssl/pem.h> X509_REQ *X509_to_X509_REQ(X509 *x, EVP_PKEY *pkey, const EVP_MD *md) { X509_REQ *ret; X509_REQ_INFO *ri; int i; EVP_PKEY *pktmp; ret = X509_REQ_new_ex(x->libctx, x->propq); if (ret == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_ASN1_LIB); goto err; } ri = &ret->req_info; ri->version->length = 1; ri->version->data = OPENSSL_malloc(1); if (ri->version->data == NULL) goto err; ri->version->data[0] = 0; /* version == 0 */ if (!X509_REQ_set_subject_name(ret, X509_get_subject_name(x))) goto err; pktmp = X509_get0_pubkey(x); if (pktmp == NULL) goto err; i = X509_REQ_set_pubkey(ret, pktmp); if (!i) goto err; if (pkey != NULL) { if (!X509_REQ_sign(ret, pkey, md)) goto err; } return ret; err: X509_REQ_free(ret); return NULL; } EVP_PKEY *X509_REQ_get_pubkey(X509_REQ *req) { if (req == NULL) return NULL; return X509_PUBKEY_get(req->req_info.pubkey); } EVP_PKEY *X509_REQ_get0_pubkey(const X509_REQ *req) { if (req == NULL) return NULL; return X509_PUBKEY_get0(req->req_info.pubkey); } X509_PUBKEY *X509_REQ_get_X509_PUBKEY(X509_REQ *req) { return req->req_info.pubkey; } int X509_REQ_check_private_key(const X509_REQ *req, EVP_PKEY *pkey) { return ossl_x509_check_private_key(X509_REQ_get0_pubkey(req), pkey); } /* * It seems several organisations had the same idea of including a list of * extensions in a certificate request. There are at least two OIDs that are * used and there may be more: so the list is configurable. */ static int ext_nid_list[] = { NID_ext_req, NID_ms_ext_req, NID_undef }; static int *ext_nids = ext_nid_list; int X509_REQ_extension_nid(int req_nid) { int i, nid; for (i = 0;; i++) { nid = ext_nids[i]; if (nid == NID_undef) return 0; else if (req_nid == nid) return 1; } } int *X509_REQ_get_extension_nids(void) { return ext_nids; } void X509_REQ_set_extension_nids(int *nids) { ext_nids = nids; } STACK_OF(X509_EXTENSION) *X509_REQ_get_extensions(X509_REQ *req) { X509_ATTRIBUTE *attr; ASN1_TYPE *ext = NULL; int idx, *pnid; const unsigned char *p; if (req == NULL || !ext_nids) return NULL; for (pnid = ext_nids; *pnid != NID_undef; pnid++) { idx = X509_REQ_get_attr_by_NID(req, *pnid, -1); if (idx < 0) continue; attr = X509_REQ_get_attr(req, idx); ext = X509_ATTRIBUTE_get0_type(attr, 0); break; } if (ext == NULL) /* no extensions is not an error */ return sk_X509_EXTENSION_new_null(); if (ext->type != V_ASN1_SEQUENCE) { ERR_raise(ERR_LIB_X509, X509_R_WRONG_TYPE); return NULL; } p = ext->value.sequence->data; return (STACK_OF(X509_EXTENSION) *) ASN1_item_d2i(NULL, &p, ext->value.sequence->length, ASN1_ITEM_rptr(X509_EXTENSIONS)); } /* * Add a STACK_OF extensions to a certificate request: allow alternative OIDs * in case we want to create a non standard one. */ int X509_REQ_add_extensions_nid(X509_REQ *req, const STACK_OF(X509_EXTENSION) *exts, int nid) { int extlen; int rv = 0; unsigned char *ext = NULL; /* Generate encoding of extensions */ extlen = ASN1_item_i2d((const ASN1_VALUE *)exts, &ext, ASN1_ITEM_rptr(X509_EXTENSIONS)); if (extlen <= 0) return 0; rv = X509_REQ_add1_attr_by_NID(req, nid, V_ASN1_SEQUENCE, ext, extlen); OPENSSL_free(ext); return rv; } /* This is the normal usage: use the "official" OID */ int X509_REQ_add_extensions(X509_REQ *req, const STACK_OF(X509_EXTENSION) *exts) { return X509_REQ_add_extensions_nid(req, exts, NID_ext_req); } /* Request attribute functions */ int X509_REQ_get_attr_count(const X509_REQ *req) { return X509at_get_attr_count(req->req_info.attributes); } int X509_REQ_get_attr_by_NID(const X509_REQ *req, int nid, int lastpos) { return X509at_get_attr_by_NID(req->req_info.attributes, nid, lastpos); } int X509_REQ_get_attr_by_OBJ(const X509_REQ *req, const ASN1_OBJECT *obj, int lastpos) { return X509at_get_attr_by_OBJ(req->req_info.attributes, obj, lastpos); } X509_ATTRIBUTE *X509_REQ_get_attr(const X509_REQ *req, int loc) { return X509at_get_attr(req->req_info.attributes, loc); } X509_ATTRIBUTE *X509_REQ_delete_attr(X509_REQ *req, int loc) { X509_ATTRIBUTE *attr; if (req == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return NULL; } attr = X509at_delete_attr(req->req_info.attributes, loc); if (attr != NULL) req->req_info.enc.modified = 1; return attr; } int X509_REQ_add1_attr(X509_REQ *req, X509_ATTRIBUTE *attr) { if (req == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (!X509at_add1_attr(&req->req_info.attributes, attr)) return 0; req->req_info.enc.modified = 1; return 1; } int X509_REQ_add1_attr_by_OBJ(X509_REQ *req, const ASN1_OBJECT *obj, int type, const unsigned char *bytes, int len) { if (req == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (!X509at_add1_attr_by_OBJ(&req->req_info.attributes, obj, type, bytes, len)) return 0; req->req_info.enc.modified = 1; return 1; } int X509_REQ_add1_attr_by_NID(X509_REQ *req, int nid, int type, const unsigned char *bytes, int len) { if (req == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (!X509at_add1_attr_by_NID(&req->req_info.attributes, nid, type, bytes, len)) return 0; req->req_info.enc.modified = 1; return 1; } int X509_REQ_add1_attr_by_txt(X509_REQ *req, const char *attrname, int type, const unsigned char *bytes, int len) { if (req == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (!X509at_add1_attr_by_txt(&req->req_info.attributes, attrname, type, bytes, len)) return 0; req->req_info.enc.modified = 1; return 1; } long X509_REQ_get_version(const X509_REQ *req) { return ASN1_INTEGER_get(req->req_info.version); } X509_NAME *X509_REQ_get_subject_name(const X509_REQ *req) { return req->req_info.subject; } void X509_REQ_get0_signature(const X509_REQ *req, const ASN1_BIT_STRING **psig, const X509_ALGOR **palg) { if (psig != NULL) *psig = req->signature; if (palg != NULL) *palg = &req->sig_alg; } void X509_REQ_set0_signature(X509_REQ *req, ASN1_BIT_STRING *psig) { if (req->signature) ASN1_BIT_STRING_free(req->signature); req->signature = psig; } int X509_REQ_set1_signature_algo(X509_REQ *req, X509_ALGOR *palg) { return X509_ALGOR_copy(&req->sig_alg, palg); } int X509_REQ_get_signature_nid(const X509_REQ *req) { return OBJ_obj2nid(req->sig_alg.algorithm); } int i2d_re_X509_REQ_tbs(X509_REQ *req, unsigned char **pp) { if (req == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return 0; } req->req_info.enc.modified = 1; return i2d_X509_REQ_INFO(&req->req_info, pp); }
./openssl/crypto/x509/x509_ext.c
/* * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/asn1.h> #include <openssl/objects.h> #include <openssl/evp.h> #include <openssl/x509.h> #include "crypto/x509.h" #include <openssl/x509v3.h> int X509_CRL_get_ext_count(const X509_CRL *x) { return X509v3_get_ext_count(x->crl.extensions); } int X509_CRL_get_ext_by_NID(const X509_CRL *x, int nid, int lastpos) { return X509v3_get_ext_by_NID(x->crl.extensions, nid, lastpos); } int X509_CRL_get_ext_by_OBJ(const X509_CRL *x, const ASN1_OBJECT *obj, int lastpos) { return X509v3_get_ext_by_OBJ(x->crl.extensions, obj, lastpos); } int X509_CRL_get_ext_by_critical(const X509_CRL *x, int crit, int lastpos) { return X509v3_get_ext_by_critical(x->crl.extensions, crit, lastpos); } X509_EXTENSION *X509_CRL_get_ext(const X509_CRL *x, int loc) { return X509v3_get_ext(x->crl.extensions, loc); } X509_EXTENSION *X509_CRL_delete_ext(X509_CRL *x, int loc) { return X509v3_delete_ext(x->crl.extensions, loc); } void *X509_CRL_get_ext_d2i(const X509_CRL *x, int nid, int *crit, int *idx) { return X509V3_get_d2i(x->crl.extensions, nid, crit, idx); } int X509_CRL_add1_ext_i2d(X509_CRL *x, int nid, void *value, int crit, unsigned long flags) { return X509V3_add1_i2d(&x->crl.extensions, nid, value, crit, flags); } int X509_CRL_add_ext(X509_CRL *x, X509_EXTENSION *ex, int loc) { return (X509v3_add_ext(&(x->crl.extensions), ex, loc) != NULL); } int X509_get_ext_count(const X509 *x) { return X509v3_get_ext_count(x->cert_info.extensions); } int X509_get_ext_by_NID(const X509 *x, int nid, int lastpos) { return X509v3_get_ext_by_NID(x->cert_info.extensions, nid, lastpos); } int X509_get_ext_by_OBJ(const X509 *x, const ASN1_OBJECT *obj, int lastpos) { return X509v3_get_ext_by_OBJ(x->cert_info.extensions, obj, lastpos); } int X509_get_ext_by_critical(const X509 *x, int crit, int lastpos) { return (X509v3_get_ext_by_critical (x->cert_info.extensions, crit, lastpos)); } X509_EXTENSION *X509_get_ext(const X509 *x, int loc) { return X509v3_get_ext(x->cert_info.extensions, loc); } X509_EXTENSION *X509_delete_ext(X509 *x, int loc) { return X509v3_delete_ext(x->cert_info.extensions, loc); } int X509_add_ext(X509 *x, X509_EXTENSION *ex, int loc) { return (X509v3_add_ext(&(x->cert_info.extensions), ex, loc) != NULL); } void *X509_get_ext_d2i(const X509 *x, int nid, int *crit, int *idx) { return X509V3_get_d2i(x->cert_info.extensions, nid, crit, idx); } int X509_add1_ext_i2d(X509 *x, int nid, void *value, int crit, unsigned long flags) { return X509V3_add1_i2d(&x->cert_info.extensions, nid, value, crit, flags); } int X509_REVOKED_get_ext_count(const X509_REVOKED *x) { return X509v3_get_ext_count(x->extensions); } int X509_REVOKED_get_ext_by_NID(const X509_REVOKED *x, int nid, int lastpos) { return X509v3_get_ext_by_NID(x->extensions, nid, lastpos); } int X509_REVOKED_get_ext_by_OBJ(const X509_REVOKED *x, const ASN1_OBJECT *obj, int lastpos) { return X509v3_get_ext_by_OBJ(x->extensions, obj, lastpos); } int X509_REVOKED_get_ext_by_critical(const X509_REVOKED *x, int crit, int lastpos) { return X509v3_get_ext_by_critical(x->extensions, crit, lastpos); } X509_EXTENSION *X509_REVOKED_get_ext(const X509_REVOKED *x, int loc) { return X509v3_get_ext(x->extensions, loc); } X509_EXTENSION *X509_REVOKED_delete_ext(X509_REVOKED *x, int loc) { return X509v3_delete_ext(x->extensions, loc); } int X509_REVOKED_add_ext(X509_REVOKED *x, X509_EXTENSION *ex, int loc) { return (X509v3_add_ext(&(x->extensions), ex, loc) != NULL); } void *X509_REVOKED_get_ext_d2i(const X509_REVOKED *x, int nid, int *crit, int *idx) { return X509V3_get_d2i(x->extensions, nid, crit, idx); } int X509_REVOKED_add1_ext_i2d(X509_REVOKED *x, int nid, void *value, int crit, unsigned long flags) { return X509V3_add1_i2d(&x->extensions, nid, value, crit, flags); }
./openssl/crypto/x509/pcy_map.c
/* * Copyright 2004-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include <openssl/x509.h> #include <openssl/x509v3.h> #include "crypto/x509.h" #include "pcy_local.h" /* * Set policy mapping entries in cache. Note: this modifies the passed * POLICY_MAPPINGS structure */ int ossl_policy_cache_set_mapping(X509 *x, POLICY_MAPPINGS *maps) { POLICY_MAPPING *map; X509_POLICY_DATA *data; X509_POLICY_CACHE *cache = x->policy_cache; int i; int ret = 0; if (sk_POLICY_MAPPING_num(maps) == 0) { ret = -1; goto bad_mapping; } for (i = 0; i < sk_POLICY_MAPPING_num(maps); i++) { map = sk_POLICY_MAPPING_value(maps, i); /* Reject if map to or from anyPolicy */ if ((OBJ_obj2nid(map->subjectDomainPolicy) == NID_any_policy) || (OBJ_obj2nid(map->issuerDomainPolicy) == NID_any_policy)) { ret = -1; goto bad_mapping; } /* Attempt to find matching policy data */ data = ossl_policy_cache_find_data(cache, map->issuerDomainPolicy); /* If we don't have anyPolicy can't map */ if (data == NULL && !cache->anyPolicy) continue; /* Create a NODE from anyPolicy */ if (data == NULL) { data = ossl_policy_data_new(NULL, map->issuerDomainPolicy, cache->anyPolicy->flags & POLICY_DATA_FLAG_CRITICAL); if (data == NULL) goto bad_mapping; data->qualifier_set = cache->anyPolicy->qualifier_set; /* * map->issuerDomainPolicy = NULL; */ data->flags |= POLICY_DATA_FLAG_MAPPED_ANY; data->flags |= POLICY_DATA_FLAG_SHARED_QUALIFIERS; if (!sk_X509_POLICY_DATA_push(cache->data, data)) { ossl_policy_data_free(data); goto bad_mapping; } } else data->flags |= POLICY_DATA_FLAG_MAPPED; if (!sk_ASN1_OBJECT_push(data->expected_policy_set, map->subjectDomainPolicy)) goto bad_mapping; map->subjectDomainPolicy = NULL; } ret = 1; bad_mapping: sk_POLICY_MAPPING_pop_free(maps, POLICY_MAPPING_free); return ret; }
./openssl/crypto/x509/v3_addr.c
/* * Copyright 2006-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Implementation of RFC 3779 section 2.2. */ #include <stdio.h> #include <stdlib.h> #include <assert.h> #include <string.h> #include <openssl/conf.h> #include <openssl/asn1.h> #include <openssl/asn1t.h> #include <openssl/buffer.h> #include <openssl/x509v3.h> #include "internal/cryptlib.h" #include "crypto/asn1.h" #include "crypto/x509.h" #include "ext_dat.h" #include "x509_local.h" #ifndef OPENSSL_NO_RFC3779 /* * OpenSSL ASN.1 template translation of RFC 3779 2.2.3. */ ASN1_SEQUENCE(IPAddressRange) = { ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING), ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING) } ASN1_SEQUENCE_END(IPAddressRange) ASN1_CHOICE(IPAddressOrRange) = { ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING), ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange) } ASN1_CHOICE_END(IPAddressOrRange) ASN1_CHOICE(IPAddressChoice) = { ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL), ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange) } ASN1_CHOICE_END(IPAddressChoice) ASN1_SEQUENCE(IPAddressFamily) = { ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING), ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice) } ASN1_SEQUENCE_END(IPAddressFamily) ASN1_ITEM_TEMPLATE(IPAddrBlocks) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, IPAddrBlocks, IPAddressFamily) static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks) IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange) IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange) IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice) IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily) /* * How much buffer space do we need for a raw address? */ # define ADDR_RAW_BUF_LEN 16 /* * What's the address length associated with this AFI? */ static int length_from_afi(const unsigned afi) { switch (afi) { case IANA_AFI_IPV4: return 4; case IANA_AFI_IPV6: return 16; default: return 0; } } /* * Extract the AFI from an IPAddressFamily. */ unsigned int X509v3_addr_get_afi(const IPAddressFamily *f) { if (f == NULL || f->addressFamily == NULL || f->addressFamily->data == NULL || f->addressFamily->length < 2) return 0; return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1]; } /* * Expand the bitstring form of an address into a raw byte array. * At the moment this is coded for simplicity, not speed. */ static int addr_expand(unsigned char *addr, const ASN1_BIT_STRING *bs, const int length, const unsigned char fill) { if (bs->length < 0 || bs->length > length) return 0; if (bs->length > 0) { memcpy(addr, bs->data, bs->length); if ((bs->flags & 7) != 0) { unsigned char mask = 0xFF >> (8 - (bs->flags & 7)); if (fill == 0) addr[bs->length - 1] &= ~mask; else addr[bs->length - 1] |= mask; } } memset(addr + bs->length, fill, length - bs->length); return 1; } /* * Extract the prefix length from a bitstring. */ # define addr_prefixlen(bs) ((int)((bs)->length * 8 - ((bs)->flags & 7))) /* * i2r handler for one address bitstring. */ static int i2r_address(BIO *out, const unsigned afi, const unsigned char fill, const ASN1_BIT_STRING *bs) { unsigned char addr[ADDR_RAW_BUF_LEN]; int i, n; if (bs->length < 0) return 0; switch (afi) { case IANA_AFI_IPV4: if (!addr_expand(addr, bs, 4, fill)) return 0; BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]); break; case IANA_AFI_IPV6: if (!addr_expand(addr, bs, 16, fill)) return 0; for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00; n -= 2) ; for (i = 0; i < n; i += 2) BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1], (i < 14 ? ":" : "")); if (i < 16) BIO_puts(out, ":"); if (i == 0) BIO_puts(out, ":"); break; default: for (i = 0; i < bs->length; i++) BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]); BIO_printf(out, "[%d]", (int)(bs->flags & 7)); break; } return 1; } /* * i2r handler for a sequence of addresses and ranges. */ static int i2r_IPAddressOrRanges(BIO *out, const int indent, const IPAddressOrRanges *aors, const unsigned afi) { int i; for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) { const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i); BIO_printf(out, "%*s", indent, ""); switch (aor->type) { case IPAddressOrRange_addressPrefix: if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix)) return 0; BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix)); continue; case IPAddressOrRange_addressRange: if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min)) return 0; BIO_puts(out, "-"); if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max)) return 0; BIO_puts(out, "\n"); continue; } } return 1; } /* * i2r handler for an IPAddrBlocks extension. */ static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method, void *ext, BIO *out, int indent) { const IPAddrBlocks *addr = ext; int i; for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); const unsigned int afi = X509v3_addr_get_afi(f); switch (afi) { case IANA_AFI_IPV4: BIO_printf(out, "%*sIPv4", indent, ""); break; case IANA_AFI_IPV6: BIO_printf(out, "%*sIPv6", indent, ""); break; default: BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi); break; } if (f->addressFamily->length > 2) { switch (f->addressFamily->data[2]) { case 1: BIO_puts(out, " (Unicast)"); break; case 2: BIO_puts(out, " (Multicast)"); break; case 3: BIO_puts(out, " (Unicast/Multicast)"); break; case 4: BIO_puts(out, " (MPLS)"); break; case 64: BIO_puts(out, " (Tunnel)"); break; case 65: BIO_puts(out, " (VPLS)"); break; case 66: BIO_puts(out, " (BGP MDT)"); break; case 128: BIO_puts(out, " (MPLS-labeled VPN)"); break; default: BIO_printf(out, " (Unknown SAFI %u)", (unsigned)f->addressFamily->data[2]); break; } } switch (f->ipAddressChoice->type) { case IPAddressChoice_inherit: BIO_puts(out, ": inherit\n"); break; case IPAddressChoice_addressesOrRanges: BIO_puts(out, ":\n"); if (!i2r_IPAddressOrRanges(out, indent + 2, f->ipAddressChoice-> u.addressesOrRanges, afi)) return 0; break; } } return 1; } /* * Sort comparison function for a sequence of IPAddressOrRange * elements. * * There's no sane answer we can give if addr_expand() fails, and an * assertion failure on externally supplied data is seriously uncool, * so we just arbitrarily declare that if given invalid inputs this * function returns -1. If this messes up your preferred sort order * for garbage input, tough noogies. */ static int IPAddressOrRange_cmp(const IPAddressOrRange *a, const IPAddressOrRange *b, const int length) { unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN]; int prefixlen_a = 0, prefixlen_b = 0; int r; switch (a->type) { case IPAddressOrRange_addressPrefix: if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00)) return -1; prefixlen_a = addr_prefixlen(a->u.addressPrefix); break; case IPAddressOrRange_addressRange: if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00)) return -1; prefixlen_a = length * 8; break; default: return -1; } switch (b->type) { case IPAddressOrRange_addressPrefix: if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00)) return -1; prefixlen_b = addr_prefixlen(b->u.addressPrefix); break; case IPAddressOrRange_addressRange: if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00)) return -1; prefixlen_b = length * 8; break; default: return -1; } if ((r = memcmp(addr_a, addr_b, length)) != 0) return r; else return prefixlen_a - prefixlen_b; } /* * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort() * comparison routines are only allowed two arguments. */ static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a, const IPAddressOrRange *const *b) { return IPAddressOrRange_cmp(*a, *b, 4); } /* * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort() * comparison routines are only allowed two arguments. */ static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a, const IPAddressOrRange *const *b) { return IPAddressOrRange_cmp(*a, *b, 16); } /* * Calculate whether a range collapses to a prefix. * See last paragraph of RFC 3779 2.2.3.7. */ static int range_should_be_prefix(const unsigned char *min, const unsigned char *max, const int length) { unsigned char mask; int i, j; /* * It is the responsibility of the caller to confirm min <= max. We don't * use ossl_assert() here since we have no way of signalling an error from * this function - so we just use a plain assert instead. */ assert(memcmp(min, max, length) <= 0); for (i = 0; i < length && min[i] == max[i]; i++) ; for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ; if (i < j) return -1; if (i > j) return i * 8; mask = min[i] ^ max[i]; switch (mask) { case 0x01: j = 7; break; case 0x03: j = 6; break; case 0x07: j = 5; break; case 0x0F: j = 4; break; case 0x1F: j = 3; break; case 0x3F: j = 2; break; case 0x7F: j = 1; break; default: return -1; } if ((min[i] & mask) != 0 || (max[i] & mask) != mask) return -1; else return i * 8 + j; } /* * Construct a prefix. */ static int make_addressPrefix(IPAddressOrRange **result, unsigned char *addr, const int prefixlen, const int afilen) { int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8; IPAddressOrRange *aor = IPAddressOrRange_new(); if (prefixlen < 0 || prefixlen > (afilen * 8)) return 0; if (aor == NULL) return 0; aor->type = IPAddressOrRange_addressPrefix; if (aor->u.addressPrefix == NULL && (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL) goto err; if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen)) goto err; if (bitlen > 0) aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen); ossl_asn1_string_set_bits_left(aor->u.addressPrefix, 8 - bitlen); *result = aor; return 1; err: IPAddressOrRange_free(aor); return 0; } /* * Construct a range. If it can be expressed as a prefix, * return a prefix instead. Doing this here simplifies * the rest of the code considerably. */ static int make_addressRange(IPAddressOrRange **result, unsigned char *min, unsigned char *max, const int length) { IPAddressOrRange *aor; int i, prefixlen; if (memcmp(min, max, length) > 0) return 0; if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0) return make_addressPrefix(result, min, prefixlen, length); if ((aor = IPAddressOrRange_new()) == NULL) return 0; aor->type = IPAddressOrRange_addressRange; if ((aor->u.addressRange = IPAddressRange_new()) == NULL) goto err; if (aor->u.addressRange->min == NULL && (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL) goto err; if (aor->u.addressRange->max == NULL && (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL) goto err; for (i = length; i > 0 && min[i - 1] == 0x00; --i) ; if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i)) goto err; ossl_asn1_string_set_bits_left(aor->u.addressRange->min, 0); if (i > 0) { unsigned char b = min[i - 1]; int j = 1; while ((b & (0xFFU >> j)) != 0) ++j; aor->u.addressRange->min->flags |= 8 - j; } for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ; if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i)) goto err; ossl_asn1_string_set_bits_left(aor->u.addressRange->max, 0); if (i > 0) { unsigned char b = max[i - 1]; int j = 1; while ((b & (0xFFU >> j)) != (0xFFU >> j)) ++j; aor->u.addressRange->max->flags |= 8 - j; } *result = aor; return 1; err: IPAddressOrRange_free(aor); return 0; } /* * Construct a new address family or find an existing one. */ static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr, const unsigned afi, const unsigned *safi) { IPAddressFamily *f; unsigned char key[3]; int keylen; int i; key[0] = (afi >> 8) & 0xFF; key[1] = afi & 0xFF; if (safi != NULL) { key[2] = *safi & 0xFF; keylen = 3; } else { keylen = 2; } for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { f = sk_IPAddressFamily_value(addr, i); if (f->addressFamily->length == keylen && !memcmp(f->addressFamily->data, key, keylen)) return f; } if ((f = IPAddressFamily_new()) == NULL) goto err; if (f->ipAddressChoice == NULL && (f->ipAddressChoice = IPAddressChoice_new()) == NULL) goto err; if (f->addressFamily == NULL && (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL) goto err; if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen)) goto err; if (!sk_IPAddressFamily_push(addr, f)) goto err; return f; err: IPAddressFamily_free(f); return NULL; } /* * Add an inheritance element. */ int X509v3_addr_add_inherit(IPAddrBlocks *addr, const unsigned afi, const unsigned *safi) { IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); if (f == NULL || f->ipAddressChoice == NULL || (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && f->ipAddressChoice->u.addressesOrRanges != NULL)) return 0; if (f->ipAddressChoice->type == IPAddressChoice_inherit && f->ipAddressChoice->u.inherit != NULL) return 1; if (f->ipAddressChoice->u.inherit == NULL && (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL) return 0; f->ipAddressChoice->type = IPAddressChoice_inherit; return 1; } /* * Construct an IPAddressOrRange sequence, or return an existing one. */ static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr, const unsigned afi, const unsigned *safi) { IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); IPAddressOrRanges *aors = NULL; if (f == NULL || f->ipAddressChoice == NULL || (f->ipAddressChoice->type == IPAddressChoice_inherit && f->ipAddressChoice->u.inherit != NULL)) return NULL; if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) aors = f->ipAddressChoice->u.addressesOrRanges; if (aors != NULL) return aors; if ((aors = sk_IPAddressOrRange_new_null()) == NULL) return NULL; switch (afi) { case IANA_AFI_IPV4: (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp); break; case IANA_AFI_IPV6: (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp); break; } f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges; f->ipAddressChoice->u.addressesOrRanges = aors; return aors; } /* * Add a prefix. */ int X509v3_addr_add_prefix(IPAddrBlocks *addr, const unsigned afi, const unsigned *safi, unsigned char *a, const int prefixlen) { IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); IPAddressOrRange *aor; if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen, length_from_afi(afi))) return 0; if (sk_IPAddressOrRange_push(aors, aor)) return 1; IPAddressOrRange_free(aor); return 0; } /* * Add a range. */ int X509v3_addr_add_range(IPAddrBlocks *addr, const unsigned afi, const unsigned *safi, unsigned char *min, unsigned char *max) { IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); IPAddressOrRange *aor; int length = length_from_afi(afi); if (aors == NULL) return 0; if (!make_addressRange(&aor, min, max, length)) return 0; if (sk_IPAddressOrRange_push(aors, aor)) return 1; IPAddressOrRange_free(aor); return 0; } /* * Extract min and max values from an IPAddressOrRange. */ static int extract_min_max(IPAddressOrRange *aor, unsigned char *min, unsigned char *max, int length) { if (aor == NULL || min == NULL || max == NULL) return 0; switch (aor->type) { case IPAddressOrRange_addressPrefix: return (addr_expand(min, aor->u.addressPrefix, length, 0x00) && addr_expand(max, aor->u.addressPrefix, length, 0xFF)); case IPAddressOrRange_addressRange: return (addr_expand(min, aor->u.addressRange->min, length, 0x00) && addr_expand(max, aor->u.addressRange->max, length, 0xFF)); } return 0; } /* * Public wrapper for extract_min_max(). */ int X509v3_addr_get_range(IPAddressOrRange *aor, const unsigned afi, unsigned char *min, unsigned char *max, const int length) { int afi_length = length_from_afi(afi); if (aor == NULL || min == NULL || max == NULL || afi_length == 0 || length < afi_length || (aor->type != IPAddressOrRange_addressPrefix && aor->type != IPAddressOrRange_addressRange) || !extract_min_max(aor, min, max, afi_length)) return 0; return afi_length; } /* * Sort comparison function for a sequence of IPAddressFamily. * * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about * the ordering: I can read it as meaning that IPv6 without a SAFI * comes before IPv4 with a SAFI, which seems pretty weird. The * examples in appendix B suggest that the author intended the * null-SAFI rule to apply only within a single AFI, which is what I * would have expected and is what the following code implements. */ static int IPAddressFamily_cmp(const IPAddressFamily *const *a_, const IPAddressFamily *const *b_) { const ASN1_OCTET_STRING *a = (*a_)->addressFamily; const ASN1_OCTET_STRING *b = (*b_)->addressFamily; int len = ((a->length <= b->length) ? a->length : b->length); int cmp = memcmp(a->data, b->data, len); return cmp ? cmp : a->length - b->length; } static int IPAddressFamily_check_len(const IPAddressFamily *f) { if (f->addressFamily->length < 2 || f->addressFamily->length > 3) return 0; else return 1; } /* * Check whether an IPAddrBLocks is in canonical form. */ int X509v3_addr_is_canonical(IPAddrBlocks *addr) { unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; IPAddressOrRanges *aors; int i, j, k; /* * Empty extension is canonical. */ if (addr == NULL) return 1; /* * Check whether the top-level list is in order. */ for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) { const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i); const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1); if (!IPAddressFamily_check_len(a) || !IPAddressFamily_check_len(b)) return 0; if (IPAddressFamily_cmp(&a, &b) >= 0) return 0; } /* * Top level's ok, now check each address family. */ for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); int length = length_from_afi(X509v3_addr_get_afi(f)); /* * Inheritance is canonical. Anything other than inheritance or * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something. */ if (f == NULL || f->ipAddressChoice == NULL) return 0; switch (f->ipAddressChoice->type) { case IPAddressChoice_inherit: continue; case IPAddressChoice_addressesOrRanges: break; default: return 0; } if (!IPAddressFamily_check_len(f)) return 0; /* * It's an IPAddressOrRanges sequence, check it. */ aors = f->ipAddressChoice->u.addressesOrRanges; if (sk_IPAddressOrRange_num(aors) == 0) return 0; for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) { IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1); if (!extract_min_max(a, a_min, a_max, length) || !extract_min_max(b, b_min, b_max, length)) return 0; /* * Punt misordered list, overlapping start, or inverted range. */ if (memcmp(a_min, b_min, length) >= 0 || memcmp(a_min, a_max, length) > 0 || memcmp(b_min, b_max, length) > 0) return 0; /* * Punt if adjacent or overlapping. Check for adjacency by * subtracting one from b_min first. */ for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ; if (memcmp(a_max, b_min, length) >= 0) return 0; /* * Check for range that should be expressed as a prefix. */ if (a->type == IPAddressOrRange_addressRange && range_should_be_prefix(a_min, a_max, length) >= 0) return 0; } /* * Check range to see if it's inverted or should be a * prefix. */ j = sk_IPAddressOrRange_num(aors) - 1; { IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); if (a != NULL && a->type == IPAddressOrRange_addressRange) { if (!extract_min_max(a, a_min, a_max, length)) return 0; if (memcmp(a_min, a_max, length) > 0 || range_should_be_prefix(a_min, a_max, length) >= 0) return 0; } } } /* * If we made it through all that, we're happy. */ return 1; } /* * Whack an IPAddressOrRanges into canonical form. */ static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors, const unsigned afi) { int i, j, length = length_from_afi(afi); /* * Sort the IPAddressOrRanges sequence. */ sk_IPAddressOrRange_sort(aors); /* * Clean up representation issues, punt on duplicates or overlaps. */ for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) { IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i); IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1); unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; if (!extract_min_max(a, a_min, a_max, length) || !extract_min_max(b, b_min, b_max, length)) return 0; /* * Punt inverted ranges. */ if (memcmp(a_min, a_max, length) > 0 || memcmp(b_min, b_max, length) > 0) return 0; /* * Punt overlaps. */ if (memcmp(a_max, b_min, length) >= 0) return 0; /* * Merge if a and b are adjacent. We check for * adjacency by subtracting one from b_min first. */ for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ; if (memcmp(a_max, b_min, length) == 0) { IPAddressOrRange *merged; if (!make_addressRange(&merged, a_min, b_max, length)) return 0; (void)sk_IPAddressOrRange_set(aors, i, merged); (void)sk_IPAddressOrRange_delete(aors, i + 1); IPAddressOrRange_free(a); IPAddressOrRange_free(b); --i; continue; } } /* * Check for inverted final range. */ j = sk_IPAddressOrRange_num(aors) - 1; { IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); if (a != NULL && a->type == IPAddressOrRange_addressRange) { unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; if (!extract_min_max(a, a_min, a_max, length)) return 0; if (memcmp(a_min, a_max, length) > 0) return 0; } } return 1; } /* * Whack an IPAddrBlocks extension into canonical form. */ int X509v3_addr_canonize(IPAddrBlocks *addr) { int i; for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); if (!IPAddressFamily_check_len(f)) return 0; if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && !IPAddressOrRanges_canonize(f->ipAddressChoice-> u.addressesOrRanges, X509v3_addr_get_afi(f))) return 0; } (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp); sk_IPAddressFamily_sort(addr); if (!ossl_assert(X509v3_addr_is_canonical(addr))) return 0; return 1; } /* * v2i handler for the IPAddrBlocks extension. */ static void *v2i_IPAddrBlocks(const struct v3_ext_method *method, struct v3_ext_ctx *ctx, STACK_OF(CONF_VALUE) *values) { static const char v4addr_chars[] = "0123456789."; static const char v6addr_chars[] = "0123456789.:abcdefABCDEF"; IPAddrBlocks *addr = NULL; char *s = NULL, *t; int i; if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB); return NULL; } for (i = 0; i < sk_CONF_VALUE_num(values); i++) { CONF_VALUE *val = sk_CONF_VALUE_value(values, i); unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN]; unsigned afi, *safi = NULL, safi_; const char *addr_chars = NULL; int prefixlen, i1, i2, delim, length; if (!ossl_v3_name_cmp(val->name, "IPv4")) { afi = IANA_AFI_IPV4; } else if (!ossl_v3_name_cmp(val->name, "IPv6")) { afi = IANA_AFI_IPV6; } else if (!ossl_v3_name_cmp(val->name, "IPv4-SAFI")) { afi = IANA_AFI_IPV4; safi = &safi_; } else if (!ossl_v3_name_cmp(val->name, "IPv6-SAFI")) { afi = IANA_AFI_IPV6; safi = &safi_; } else { ERR_raise_data(ERR_LIB_X509V3, X509V3_R_EXTENSION_NAME_ERROR, "%s", val->name); goto err; } switch (afi) { case IANA_AFI_IPV4: addr_chars = v4addr_chars; break; case IANA_AFI_IPV6: addr_chars = v6addr_chars; break; } length = length_from_afi(afi); /* * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate * the other input values. */ if (safi != NULL) { if (val->value == NULL) { ERR_raise(ERR_LIB_X509V3, X509V3_R_MISSING_VALUE); goto err; } *safi = strtoul(val->value, &t, 0); t += strspn(t, " \t"); if (*safi > 0xFF || *t++ != ':') { ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_SAFI); X509V3_conf_add_error_name_value(val); goto err; } t += strspn(t, " \t"); s = OPENSSL_strdup(t); } else { s = OPENSSL_strdup(val->value); } if (s == NULL) goto err; /* * Check for inheritance. Not worth additional complexity to * optimize this (seldom-used) case. */ if (strcmp(s, "inherit") == 0) { if (!X509v3_addr_add_inherit(addr, afi, safi)) { ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_INHERITANCE); X509V3_conf_add_error_name_value(val); goto err; } OPENSSL_free(s); s = NULL; continue; } i1 = strspn(s, addr_chars); i2 = i1 + strspn(s + i1, " \t"); delim = s[i2++]; s[i1] = '\0'; if (ossl_a2i_ipadd(min, s) != length) { ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS); X509V3_conf_add_error_name_value(val); goto err; } switch (delim) { case '/': prefixlen = (int)strtoul(s + i2, &t, 10); if (t == s + i2 || *t != '\0' || prefixlen > (length * 8) || prefixlen < 0) { ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR); X509V3_conf_add_error_name_value(val); goto err; } if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) { ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB); goto err; } break; case '-': i1 = i2 + strspn(s + i2, " \t"); i2 = i1 + strspn(s + i1, addr_chars); if (i1 == i2 || s[i2] != '\0') { ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR); X509V3_conf_add_error_name_value(val); goto err; } if (ossl_a2i_ipadd(max, s + i1) != length) { ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS); X509V3_conf_add_error_name_value(val); goto err; } if (memcmp(min, max, length_from_afi(afi)) > 0) { ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR); X509V3_conf_add_error_name_value(val); goto err; } if (!X509v3_addr_add_range(addr, afi, safi, min, max)) { ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB); goto err; } break; case '\0': if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) { ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB); goto err; } break; default: ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR); X509V3_conf_add_error_name_value(val); goto err; } OPENSSL_free(s); s = NULL; } /* * Canonize the result, then we're done. */ if (!X509v3_addr_canonize(addr)) goto err; return addr; err: OPENSSL_free(s); sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free); return NULL; } /* * OpenSSL dispatch */ const X509V3_EXT_METHOD ossl_v3_addr = { NID_sbgp_ipAddrBlock, /* nid */ 0, /* flags */ ASN1_ITEM_ref(IPAddrBlocks), /* template */ 0, 0, 0, 0, /* old functions, ignored */ 0, /* i2s */ 0, /* s2i */ 0, /* i2v */ v2i_IPAddrBlocks, /* v2i */ i2r_IPAddrBlocks, /* i2r */ 0, /* r2i */ NULL /* extension-specific data */ }; /* * Figure out whether extension sues inheritance. */ int X509v3_addr_inherits(IPAddrBlocks *addr) { int i; if (addr == NULL) return 0; for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); if (f->ipAddressChoice->type == IPAddressChoice_inherit) return 1; } return 0; } /* * Figure out whether parent contains child. */ static int addr_contains(IPAddressOrRanges *parent, IPAddressOrRanges *child, int length) { unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN]; unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN]; int p, c; if (child == NULL || parent == child) return 1; if (parent == NULL) return 0; p = 0; for (c = 0; c < sk_IPAddressOrRange_num(child); c++) { if (!extract_min_max(sk_IPAddressOrRange_value(child, c), c_min, c_max, length)) return 0; for (;; p++) { if (p >= sk_IPAddressOrRange_num(parent)) return 0; if (!extract_min_max(sk_IPAddressOrRange_value(parent, p), p_min, p_max, length)) return 0; if (memcmp(p_max, c_max, length) < 0) continue; if (memcmp(p_min, c_min, length) > 0) return 0; break; } } return 1; } /* * Test whether a is a subset of b. */ int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b) { int i; if (a == NULL || a == b) return 1; if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b)) return 0; (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp); sk_IPAddressFamily_sort(b); /* Could sort a here too and get O(|a|) running time instead of O(|a| ln |b|) */ for (i = 0; i < sk_IPAddressFamily_num(a); i++) { IPAddressFamily *fa = sk_IPAddressFamily_value(a, i); int j = sk_IPAddressFamily_find(b, fa); IPAddressFamily *fb = sk_IPAddressFamily_value(b, j); if (fb == NULL) return 0; if (!IPAddressFamily_check_len(fa) || !IPAddressFamily_check_len(fb)) return 0; if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges, fa->ipAddressChoice->u.addressesOrRanges, length_from_afi(X509v3_addr_get_afi(fb)))) return 0; } return 1; } /* * Validation error handling via callback. */ # define validation_err(_err_) \ do { \ if (ctx != NULL) { \ ctx->error = _err_; \ ctx->error_depth = i; \ ctx->current_cert = x; \ rv = ctx->verify_cb(0, ctx); \ } else { \ rv = 0; \ } \ if (rv == 0) \ goto done; \ } while (0) /* * Core code for RFC 3779 2.3 path validation. * * Returns 1 for success, 0 on error. * * When returning 0, ctx->error MUST be set to an appropriate value other than * X509_V_OK. */ static int addr_validate_path_internal(X509_STORE_CTX *ctx, STACK_OF(X509) *chain, IPAddrBlocks *ext) { IPAddrBlocks *child = NULL; int i, j, ret = 0, rv; X509 *x; if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0) || !ossl_assert(ctx != NULL || ext != NULL) || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) { if (ctx != NULL) ctx->error = X509_V_ERR_UNSPECIFIED; return 0; } /* * Figure out where to start. If we don't have an extension to * check, we're done. Otherwise, check canonical form and * set up for walking up the chain. */ if (ext != NULL) { i = -1; x = NULL; } else { i = 0; x = sk_X509_value(chain, i); if ((ext = x->rfc3779_addr) == NULL) return 1; /* Return success */ } if (!X509v3_addr_is_canonical(ext)) validation_err(X509_V_ERR_INVALID_EXTENSION); (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp); if ((child = sk_IPAddressFamily_dup(ext)) == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB); if (ctx != NULL) ctx->error = X509_V_ERR_OUT_OF_MEM; goto done; } sk_IPAddressFamily_sort(child); /* * Now walk up the chain. No cert may list resources that its * parent doesn't list. */ for (i++; i < sk_X509_num(chain); i++) { x = sk_X509_value(chain, i); if (!X509v3_addr_is_canonical(x->rfc3779_addr)) validation_err(X509_V_ERR_INVALID_EXTENSION); if (x->rfc3779_addr == NULL) { for (j = 0; j < sk_IPAddressFamily_num(child); j++) { IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); if (!IPAddressFamily_check_len(fc)) goto done; if (fc->ipAddressChoice->type != IPAddressChoice_inherit) { validation_err(X509_V_ERR_UNNESTED_RESOURCE); break; } } continue; } (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp); sk_IPAddressFamily_sort(x->rfc3779_addr); for (j = 0; j < sk_IPAddressFamily_num(child); j++) { IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc); IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k); if (fp == NULL) { if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) { validation_err(X509_V_ERR_UNNESTED_RESOURCE); break; } continue; } if (!IPAddressFamily_check_len(fc) || !IPAddressFamily_check_len(fp)) goto done; if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) { if (fc->ipAddressChoice->type == IPAddressChoice_inherit || addr_contains(fp->ipAddressChoice->u.addressesOrRanges, fc->ipAddressChoice->u.addressesOrRanges, length_from_afi(X509v3_addr_get_afi(fc)))) (void)sk_IPAddressFamily_set(child, j, fp); else validation_err(X509_V_ERR_UNNESTED_RESOURCE); } } } /* * Trust anchor can't inherit. */ if (x->rfc3779_addr != NULL) { for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) { IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j); if (!IPAddressFamily_check_len(fp)) goto done; if (fp->ipAddressChoice->type == IPAddressChoice_inherit && sk_IPAddressFamily_find(child, fp) >= 0) validation_err(X509_V_ERR_UNNESTED_RESOURCE); } } ret = 1; done: sk_IPAddressFamily_free(child); return ret; } # undef validation_err /* * RFC 3779 2.3 path validation -- called from X509_verify_cert(). */ int X509v3_addr_validate_path(X509_STORE_CTX *ctx) { if (ctx->chain == NULL || sk_X509_num(ctx->chain) == 0 || ctx->verify_cb == NULL) { ctx->error = X509_V_ERR_UNSPECIFIED; return 0; } return addr_validate_path_internal(ctx, ctx->chain, NULL); } /* * RFC 3779 2.3 path validation of an extension. * Test whether chain covers extension. */ int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain, IPAddrBlocks *ext, int allow_inheritance) { if (ext == NULL) return 1; if (chain == NULL || sk_X509_num(chain) == 0) return 0; if (!allow_inheritance && X509v3_addr_inherits(ext)) return 0; return addr_validate_path_internal(NULL, chain, ext); } #endif /* OPENSSL_NO_RFC3779 */
./openssl/crypto/x509/v3_extku.c
/* * Copyright 1999-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/asn1t.h> #include <openssl/conf.h> #include <openssl/x509v3.h> #include "ext_dat.h" static void *v2i_EXTENDED_KEY_USAGE(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval); static STACK_OF(CONF_VALUE) *i2v_EXTENDED_KEY_USAGE(const X509V3_EXT_METHOD *method, void *eku, STACK_OF(CONF_VALUE) *extlist); const X509V3_EXT_METHOD ossl_v3_ext_ku = { NID_ext_key_usage, 0, ASN1_ITEM_ref(EXTENDED_KEY_USAGE), 0, 0, 0, 0, 0, 0, i2v_EXTENDED_KEY_USAGE, v2i_EXTENDED_KEY_USAGE, 0, 0, NULL }; /* NB OCSP acceptable responses also is a SEQUENCE OF OBJECT */ const X509V3_EXT_METHOD ossl_v3_ocsp_accresp = { NID_id_pkix_OCSP_acceptableResponses, 0, ASN1_ITEM_ref(EXTENDED_KEY_USAGE), 0, 0, 0, 0, 0, 0, i2v_EXTENDED_KEY_USAGE, v2i_EXTENDED_KEY_USAGE, 0, 0, NULL }; ASN1_ITEM_TEMPLATE(EXTENDED_KEY_USAGE) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, EXTENDED_KEY_USAGE, ASN1_OBJECT) ASN1_ITEM_TEMPLATE_END(EXTENDED_KEY_USAGE) IMPLEMENT_ASN1_FUNCTIONS(EXTENDED_KEY_USAGE) static STACK_OF(CONF_VALUE) *i2v_EXTENDED_KEY_USAGE(const X509V3_EXT_METHOD *method, void *a, STACK_OF(CONF_VALUE) *ext_list) { EXTENDED_KEY_USAGE *eku = a; int i; ASN1_OBJECT *obj; char obj_tmp[80]; for (i = 0; i < sk_ASN1_OBJECT_num(eku); i++) { obj = sk_ASN1_OBJECT_value(eku, i); i2t_ASN1_OBJECT(obj_tmp, 80, obj); X509V3_add_value(NULL, obj_tmp, &ext_list); } return ext_list; } static void *v2i_EXTENDED_KEY_USAGE(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval) { EXTENDED_KEY_USAGE *extku; char *extval; ASN1_OBJECT *objtmp; CONF_VALUE *val; const int num = sk_CONF_VALUE_num(nval); int i; extku = sk_ASN1_OBJECT_new_reserve(NULL, num); if (extku == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB); sk_ASN1_OBJECT_free(extku); return NULL; } for (i = 0; i < num; i++) { val = sk_CONF_VALUE_value(nval, i); if (val->value) extval = val->value; else extval = val->name; if ((objtmp = OBJ_txt2obj(extval, 0)) == NULL) { sk_ASN1_OBJECT_pop_free(extku, ASN1_OBJECT_free); ERR_raise_data(ERR_LIB_X509V3, X509V3_R_INVALID_OBJECT_IDENTIFIER, "%s", extval); return NULL; } sk_ASN1_OBJECT_push(extku, objtmp); /* no failure as it was reserved */ } return extku; }
./openssl/crypto/x509/x509spki.c
/* * Copyright 1999-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/x509.h> int NETSCAPE_SPKI_set_pubkey(NETSCAPE_SPKI *x, EVP_PKEY *pkey) { if ((x == NULL) || (x->spkac == NULL)) return 0; return X509_PUBKEY_set(&(x->spkac->pubkey), pkey); } EVP_PKEY *NETSCAPE_SPKI_get_pubkey(NETSCAPE_SPKI *x) { if ((x == NULL) || (x->spkac == NULL)) return NULL; return X509_PUBKEY_get(x->spkac->pubkey); } /* Load a Netscape SPKI from a base64 encoded string */ NETSCAPE_SPKI *NETSCAPE_SPKI_b64_decode(const char *str, int len) { unsigned char *spki_der; const unsigned char *p; int spki_len; NETSCAPE_SPKI *spki; if (len <= 0) len = strlen(str); if ((spki_der = OPENSSL_malloc(len + 1)) == NULL) return NULL; spki_len = EVP_DecodeBlock(spki_der, (const unsigned char *)str, len); if (spki_len < 0) { ERR_raise(ERR_LIB_X509, X509_R_BASE64_DECODE_ERROR); OPENSSL_free(spki_der); return NULL; } p = spki_der; spki = d2i_NETSCAPE_SPKI(NULL, &p, spki_len); OPENSSL_free(spki_der); return spki; } /* Generate a base64 encoded string from an SPKI */ char *NETSCAPE_SPKI_b64_encode(NETSCAPE_SPKI *spki) { unsigned char *der_spki, *p; char *b64_str; int der_len; der_len = i2d_NETSCAPE_SPKI(spki, NULL); if (der_len <= 0) return NULL; der_spki = OPENSSL_malloc(der_len); b64_str = OPENSSL_malloc(der_len * 2); if (der_spki == NULL || b64_str == NULL) { OPENSSL_free(der_spki); OPENSSL_free(b64_str); return NULL; } p = der_spki; i2d_NETSCAPE_SPKI(spki, &p); EVP_EncodeBlock((unsigned char *)b64_str, der_spki, der_len); OPENSSL_free(der_spki); return b64_str; }
./openssl/crypto/x509/v3_info.c
/* * Copyright 1999-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/conf.h> #include <openssl/asn1.h> #include <openssl/asn1t.h> #include <openssl/x509v3.h> #include "ext_dat.h" static STACK_OF(CONF_VALUE) *i2v_AUTHORITY_INFO_ACCESS(X509V3_EXT_METHOD *method, AUTHORITY_INFO_ACCESS *ainfo, STACK_OF(CONF_VALUE) *ret); static AUTHORITY_INFO_ACCESS *v2i_AUTHORITY_INFO_ACCESS(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval); const X509V3_EXT_METHOD ossl_v3_info = { NID_info_access, X509V3_EXT_MULTILINE, ASN1_ITEM_ref(AUTHORITY_INFO_ACCESS), 0, 0, 0, 0, 0, 0, (X509V3_EXT_I2V) i2v_AUTHORITY_INFO_ACCESS, (X509V3_EXT_V2I)v2i_AUTHORITY_INFO_ACCESS, 0, 0, NULL }; const X509V3_EXT_METHOD ossl_v3_sinfo = { NID_sinfo_access, X509V3_EXT_MULTILINE, ASN1_ITEM_ref(AUTHORITY_INFO_ACCESS), 0, 0, 0, 0, 0, 0, (X509V3_EXT_I2V) i2v_AUTHORITY_INFO_ACCESS, (X509V3_EXT_V2I)v2i_AUTHORITY_INFO_ACCESS, 0, 0, NULL }; ASN1_SEQUENCE(ACCESS_DESCRIPTION) = { ASN1_SIMPLE(ACCESS_DESCRIPTION, method, ASN1_OBJECT), ASN1_SIMPLE(ACCESS_DESCRIPTION, location, GENERAL_NAME) } ASN1_SEQUENCE_END(ACCESS_DESCRIPTION) IMPLEMENT_ASN1_FUNCTIONS(ACCESS_DESCRIPTION) ASN1_ITEM_TEMPLATE(AUTHORITY_INFO_ACCESS) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, GeneralNames, ACCESS_DESCRIPTION) ASN1_ITEM_TEMPLATE_END(AUTHORITY_INFO_ACCESS) IMPLEMENT_ASN1_FUNCTIONS(AUTHORITY_INFO_ACCESS) static STACK_OF(CONF_VALUE) *i2v_AUTHORITY_INFO_ACCESS( X509V3_EXT_METHOD *method, AUTHORITY_INFO_ACCESS *ainfo, STACK_OF(CONF_VALUE) *ret) { ACCESS_DESCRIPTION *desc; int i, nlen; char objtmp[80], *ntmp; CONF_VALUE *vtmp; STACK_OF(CONF_VALUE) *tret = ret; for (i = 0; i < sk_ACCESS_DESCRIPTION_num(ainfo); i++) { STACK_OF(CONF_VALUE) *tmp; desc = sk_ACCESS_DESCRIPTION_value(ainfo, i); tmp = i2v_GENERAL_NAME(method, desc->location, tret); if (tmp == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB); goto err; } tret = tmp; vtmp = sk_CONF_VALUE_value(tret, i); i2t_ASN1_OBJECT(objtmp, sizeof(objtmp), desc->method); nlen = strlen(objtmp) + 3 + strlen(vtmp->name) + 1; ntmp = OPENSSL_malloc(nlen); if (ntmp == NULL) goto err; BIO_snprintf(ntmp, nlen, "%s - %s", objtmp, vtmp->name); OPENSSL_free(vtmp->name); vtmp->name = ntmp; } if (ret == NULL && tret == NULL) return sk_CONF_VALUE_new_null(); return tret; err: if (ret == NULL && tret != NULL) sk_CONF_VALUE_pop_free(tret, X509V3_conf_free); return NULL; } static AUTHORITY_INFO_ACCESS *v2i_AUTHORITY_INFO_ACCESS(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval) { AUTHORITY_INFO_ACCESS *ainfo = NULL; CONF_VALUE *cnf, ctmp; ACCESS_DESCRIPTION *acc; int i; const int num = sk_CONF_VALUE_num(nval); char *objtmp, *ptmp; if ((ainfo = sk_ACCESS_DESCRIPTION_new_reserve(NULL, num)) == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB); return NULL; } for (i = 0; i < num; i++) { cnf = sk_CONF_VALUE_value(nval, i); if ((acc = ACCESS_DESCRIPTION_new()) == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB); goto err; } sk_ACCESS_DESCRIPTION_push(ainfo, acc); /* Cannot fail due to reserve */ ptmp = strchr(cnf->name, ';'); if (ptmp == NULL) { ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_SYNTAX); goto err; } ctmp.name = ptmp + 1; ctmp.value = cnf->value; if (!v2i_GENERAL_NAME_ex(acc->location, method, ctx, &ctmp, 0)) goto err; if ((objtmp = OPENSSL_strndup(cnf->name, ptmp - cnf->name)) == NULL) goto err; acc->method = OBJ_txt2obj(objtmp, 0); if (!acc->method) { ERR_raise_data(ERR_LIB_X509V3, X509V3_R_BAD_OBJECT, "value=%s", objtmp); OPENSSL_free(objtmp); goto err; } OPENSSL_free(objtmp); } return ainfo; err: sk_ACCESS_DESCRIPTION_pop_free(ainfo, ACCESS_DESCRIPTION_free); return NULL; } int i2a_ACCESS_DESCRIPTION(BIO *bp, const ACCESS_DESCRIPTION *a) { i2a_ASN1_OBJECT(bp, a->method); return 2; }
./openssl/crypto/x509/pcy_data.c
/* * Copyright 2004-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include <openssl/x509.h> #include <openssl/x509v3.h> #include "pcy_local.h" /* Policy Node routines */ void ossl_policy_data_free(X509_POLICY_DATA *data) { if (data == NULL) return; ASN1_OBJECT_free(data->valid_policy); /* Don't free qualifiers if shared */ if (!(data->flags & POLICY_DATA_FLAG_SHARED_QUALIFIERS)) sk_POLICYQUALINFO_pop_free(data->qualifier_set, POLICYQUALINFO_free); sk_ASN1_OBJECT_pop_free(data->expected_policy_set, ASN1_OBJECT_free); OPENSSL_free(data); } /* * Create a data based on an existing policy. If 'id' is NULL use the OID in * the policy, otherwise use 'id'. This behaviour covers the two types of * data in RFC3280: data with from a CertificatePolicies extension and * additional data with just the qualifiers of anyPolicy and ID from another * source. */ X509_POLICY_DATA *ossl_policy_data_new(POLICYINFO *policy, const ASN1_OBJECT *cid, int crit) { X509_POLICY_DATA *ret; ASN1_OBJECT *id; if (policy == NULL && cid == NULL) return NULL; if (cid) { id = OBJ_dup(cid); if (id == NULL) return NULL; } else id = NULL; ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) { ASN1_OBJECT_free(id); return NULL; } ret->expected_policy_set = sk_ASN1_OBJECT_new_null(); if (ret->expected_policy_set == NULL) { OPENSSL_free(ret); ASN1_OBJECT_free(id); ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB); return NULL; } if (crit) ret->flags = POLICY_DATA_FLAG_CRITICAL; if (id) ret->valid_policy = id; else { ret->valid_policy = policy->policyid; policy->policyid = NULL; } if (policy) { ret->qualifier_set = policy->qualifiers; policy->qualifiers = NULL; } return ret; }
./openssl/crypto/x509/x_crl.c
/* * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/asn1t.h> #include <openssl/x509.h> #include "crypto/x509.h" #include <openssl/x509v3.h> #include "x509_local.h" static int X509_REVOKED_cmp(const X509_REVOKED *const *a, const X509_REVOKED *const *b); static int setup_idp(X509_CRL *crl, ISSUING_DIST_POINT *idp); ASN1_SEQUENCE(X509_REVOKED) = { ASN1_EMBED(X509_REVOKED, serialNumber, ASN1_INTEGER), ASN1_SIMPLE(X509_REVOKED, revocationDate, ASN1_TIME), ASN1_SEQUENCE_OF_OPT(X509_REVOKED, extensions, X509_EXTENSION) } ASN1_SEQUENCE_END(X509_REVOKED) static int def_crl_verify(X509_CRL *crl, EVP_PKEY *r); static int def_crl_lookup(X509_CRL *crl, X509_REVOKED **ret, const ASN1_INTEGER *serial, const X509_NAME *issuer); static X509_CRL_METHOD int_crl_meth = { 0, 0, 0, def_crl_lookup, def_crl_verify }; static const X509_CRL_METHOD *default_crl_method = &int_crl_meth; /* * The X509_CRL_INFO structure needs a bit of customisation. Since we cache * the original encoding the signature won't be affected by reordering of the * revoked field. */ static int crl_inf_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { X509_CRL_INFO *a = (X509_CRL_INFO *)*pval; if (!a || !a->revoked) return 1; switch (operation) { /* * Just set cmp function here. We don't sort because that would * affect the output of X509_CRL_print(). */ case ASN1_OP_D2I_POST: (void)sk_X509_REVOKED_set_cmp_func(a->revoked, X509_REVOKED_cmp); break; } return 1; } ASN1_SEQUENCE_enc(X509_CRL_INFO, enc, crl_inf_cb) = { ASN1_OPT(X509_CRL_INFO, version, ASN1_INTEGER), ASN1_EMBED(X509_CRL_INFO, sig_alg, X509_ALGOR), ASN1_SIMPLE(X509_CRL_INFO, issuer, X509_NAME), ASN1_SIMPLE(X509_CRL_INFO, lastUpdate, ASN1_TIME), ASN1_OPT(X509_CRL_INFO, nextUpdate, ASN1_TIME), ASN1_SEQUENCE_OF_OPT(X509_CRL_INFO, revoked, X509_REVOKED), ASN1_EXP_SEQUENCE_OF_OPT(X509_CRL_INFO, extensions, X509_EXTENSION, 0) } ASN1_SEQUENCE_END_enc(X509_CRL_INFO, X509_CRL_INFO) /* * Set CRL entry issuer according to CRL certificate issuer extension. Check * for unhandled critical CRL entry extensions. */ static int crl_set_issuers(X509_CRL *crl) { int i, j; GENERAL_NAMES *gens, *gtmp; STACK_OF(X509_REVOKED) *revoked; revoked = X509_CRL_get_REVOKED(crl); gens = NULL; for (i = 0; i < sk_X509_REVOKED_num(revoked); i++) { X509_REVOKED *rev = sk_X509_REVOKED_value(revoked, i); STACK_OF(X509_EXTENSION) *exts; ASN1_ENUMERATED *reason; X509_EXTENSION *ext; gtmp = X509_REVOKED_get_ext_d2i(rev, NID_certificate_issuer, &j, NULL); if (gtmp == NULL && j != -1) { crl->flags |= EXFLAG_INVALID; return 1; } if (gtmp != NULL) { if (crl->issuers == NULL) { crl->issuers = sk_GENERAL_NAMES_new_null(); if (crl->issuers == NULL) { GENERAL_NAMES_free(gtmp); return 0; } } if (!sk_GENERAL_NAMES_push(crl->issuers, gtmp)) { GENERAL_NAMES_free(gtmp); return 0; } gens = gtmp; } rev->issuer = gens; reason = X509_REVOKED_get_ext_d2i(rev, NID_crl_reason, &j, NULL); if (reason == NULL && j != -1) { crl->flags |= EXFLAG_INVALID; return 1; } if (reason != NULL) { rev->reason = ASN1_ENUMERATED_get(reason); ASN1_ENUMERATED_free(reason); } else rev->reason = CRL_REASON_NONE; /* Check for critical CRL entry extensions */ exts = rev->extensions; for (j = 0; j < sk_X509_EXTENSION_num(exts); j++) { ext = sk_X509_EXTENSION_value(exts, j); if (X509_EXTENSION_get_critical(ext)) { if (OBJ_obj2nid(X509_EXTENSION_get_object(ext)) == NID_certificate_issuer) continue; crl->flags |= EXFLAG_CRITICAL; break; } } } return 1; } /* * The X509_CRL structure needs a bit of customisation. Cache some extensions * and hash of the whole CRL or set EXFLAG_NO_FINGERPRINT if this fails. */ static int crl_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { X509_CRL *crl = (X509_CRL *)*pval; STACK_OF(X509_EXTENSION) *exts; X509_EXTENSION *ext; int idx, i; switch (operation) { case ASN1_OP_D2I_PRE: if (crl->meth->crl_free) { if (!crl->meth->crl_free(crl)) return 0; } AUTHORITY_KEYID_free(crl->akid); ISSUING_DIST_POINT_free(crl->idp); ASN1_INTEGER_free(crl->crl_number); ASN1_INTEGER_free(crl->base_crl_number); sk_GENERAL_NAMES_pop_free(crl->issuers, GENERAL_NAMES_free); /* fall through */ case ASN1_OP_NEW_POST: crl->idp = NULL; crl->akid = NULL; crl->flags = 0; crl->idp_flags = 0; crl->idp_reasons = CRLDP_ALL_REASONS; crl->meth = default_crl_method; crl->meth_data = NULL; crl->issuers = NULL; crl->crl_number = NULL; crl->base_crl_number = NULL; break; case ASN1_OP_D2I_POST: if (!X509_CRL_digest(crl, EVP_sha1(), crl->sha1_hash, NULL)) crl->flags |= EXFLAG_NO_FINGERPRINT; crl->idp = X509_CRL_get_ext_d2i(crl, NID_issuing_distribution_point, &i, NULL); if (crl->idp != NULL) { if (!setup_idp(crl, crl->idp)) crl->flags |= EXFLAG_INVALID; } else if (i != -1) { crl->flags |= EXFLAG_INVALID; } crl->akid = X509_CRL_get_ext_d2i(crl, NID_authority_key_identifier, &i, NULL); if (crl->akid == NULL && i != -1) crl->flags |= EXFLAG_INVALID; crl->crl_number = X509_CRL_get_ext_d2i(crl, NID_crl_number, &i, NULL); if (crl->crl_number == NULL && i != -1) crl->flags |= EXFLAG_INVALID; crl->base_crl_number = X509_CRL_get_ext_d2i(crl, NID_delta_crl, &i, NULL); if (crl->base_crl_number == NULL && i != -1) crl->flags |= EXFLAG_INVALID; /* Delta CRLs must have CRL number */ if (crl->base_crl_number && !crl->crl_number) crl->flags |= EXFLAG_INVALID; /* * See if we have any unhandled critical CRL extensions and indicate * this in a flag. We only currently handle IDP so anything else * critical sets the flag. This code accesses the X509_CRL structure * directly: applications shouldn't do this. */ exts = crl->crl.extensions; for (idx = 0; idx < sk_X509_EXTENSION_num(exts); idx++) { int nid; ext = sk_X509_EXTENSION_value(exts, idx); nid = OBJ_obj2nid(X509_EXTENSION_get_object(ext)); if (nid == NID_freshest_crl) crl->flags |= EXFLAG_FRESHEST; if (X509_EXTENSION_get_critical(ext)) { /* We handle IDP and deltas */ if ((nid == NID_issuing_distribution_point) || (nid == NID_authority_key_identifier) || (nid == NID_delta_crl)) continue; crl->flags |= EXFLAG_CRITICAL; break; } } if (!crl_set_issuers(crl)) return 0; if (crl->meth->crl_init) { if (crl->meth->crl_init(crl) == 0) return 0; } crl->flags |= EXFLAG_SET; break; case ASN1_OP_FREE_POST: if (crl->meth != NULL && crl->meth->crl_free != NULL) { if (!crl->meth->crl_free(crl)) return 0; } AUTHORITY_KEYID_free(crl->akid); ISSUING_DIST_POINT_free(crl->idp); ASN1_INTEGER_free(crl->crl_number); ASN1_INTEGER_free(crl->base_crl_number); sk_GENERAL_NAMES_pop_free(crl->issuers, GENERAL_NAMES_free); OPENSSL_free(crl->propq); break; case ASN1_OP_DUP_POST: { X509_CRL *old = exarg; if (!ossl_x509_crl_set0_libctx(crl, old->libctx, old->propq)) return 0; } break; } return 1; } /* Convert IDP into a more convenient form */ static int setup_idp(X509_CRL *crl, ISSUING_DIST_POINT *idp) { int idp_only = 0; /* Set various flags according to IDP */ crl->idp_flags |= IDP_PRESENT; if (idp->onlyuser > 0) { idp_only++; crl->idp_flags |= IDP_ONLYUSER; } if (idp->onlyCA > 0) { idp_only++; crl->idp_flags |= IDP_ONLYCA; } if (idp->onlyattr > 0) { idp_only++; crl->idp_flags |= IDP_ONLYATTR; } if (idp_only > 1) crl->idp_flags |= IDP_INVALID; if (idp->indirectCRL > 0) crl->idp_flags |= IDP_INDIRECT; if (idp->onlysomereasons) { crl->idp_flags |= IDP_REASONS; if (idp->onlysomereasons->length > 0) crl->idp_reasons = idp->onlysomereasons->data[0]; if (idp->onlysomereasons->length > 1) crl->idp_reasons |= (idp->onlysomereasons->data[1] << 8); crl->idp_reasons &= CRLDP_ALL_REASONS; } return DIST_POINT_set_dpname(idp->distpoint, X509_CRL_get_issuer(crl)); } ASN1_SEQUENCE_ref(X509_CRL, crl_cb) = { ASN1_EMBED(X509_CRL, crl, X509_CRL_INFO), ASN1_EMBED(X509_CRL, sig_alg, X509_ALGOR), ASN1_EMBED(X509_CRL, signature, ASN1_BIT_STRING) } ASN1_SEQUENCE_END_ref(X509_CRL, X509_CRL) IMPLEMENT_ASN1_FUNCTIONS(X509_REVOKED) IMPLEMENT_ASN1_DUP_FUNCTION(X509_REVOKED) IMPLEMENT_ASN1_FUNCTIONS(X509_CRL_INFO) IMPLEMENT_ASN1_FUNCTIONS(X509_CRL) IMPLEMENT_ASN1_DUP_FUNCTION(X509_CRL) static int X509_REVOKED_cmp(const X509_REVOKED *const *a, const X509_REVOKED *const *b) { return (ASN1_STRING_cmp((ASN1_STRING *)&(*a)->serialNumber, (ASN1_STRING *)&(*b)->serialNumber)); } X509_CRL *X509_CRL_new_ex(OSSL_LIB_CTX *libctx, const char *propq) { X509_CRL *crl = NULL; crl = (X509_CRL *)ASN1_item_new((X509_CRL_it())); if (!ossl_x509_crl_set0_libctx(crl, libctx, propq)) { X509_CRL_free(crl); crl = NULL; } return crl; } int X509_CRL_add0_revoked(X509_CRL *crl, X509_REVOKED *rev) { X509_CRL_INFO *inf; inf = &crl->crl; if (inf->revoked == NULL) inf->revoked = sk_X509_REVOKED_new(X509_REVOKED_cmp); if (inf->revoked == NULL || !sk_X509_REVOKED_push(inf->revoked, rev)) { ERR_raise(ERR_LIB_ASN1, ERR_R_CRYPTO_LIB); return 0; } inf->enc.modified = 1; return 1; } int X509_CRL_verify(X509_CRL *crl, EVP_PKEY *r) { if (crl->meth->crl_verify) return crl->meth->crl_verify(crl, r); return 0; } int X509_CRL_get0_by_serial(X509_CRL *crl, X509_REVOKED **ret, const ASN1_INTEGER *serial) { if (crl->meth->crl_lookup) return crl->meth->crl_lookup(crl, ret, serial, NULL); return 0; } int X509_CRL_get0_by_cert(X509_CRL *crl, X509_REVOKED **ret, X509 *x) { if (crl->meth->crl_lookup) return crl->meth->crl_lookup(crl, ret, X509_get0_serialNumber(x), X509_get_issuer_name(x)); return 0; } static int def_crl_verify(X509_CRL *crl, EVP_PKEY *r) { return ASN1_item_verify_ex(ASN1_ITEM_rptr(X509_CRL_INFO), &crl->sig_alg, &crl->signature, &crl->crl, NULL, r, crl->libctx, crl->propq); } static int crl_revoked_issuer_match(X509_CRL *crl, const X509_NAME *nm, X509_REVOKED *rev) { int i; if (!rev->issuer) { if (!nm) return 1; if (!X509_NAME_cmp(nm, X509_CRL_get_issuer(crl))) return 1; return 0; } if (!nm) nm = X509_CRL_get_issuer(crl); for (i = 0; i < sk_GENERAL_NAME_num(rev->issuer); i++) { GENERAL_NAME *gen = sk_GENERAL_NAME_value(rev->issuer, i); if (gen->type != GEN_DIRNAME) continue; if (!X509_NAME_cmp(nm, gen->d.directoryName)) return 1; } return 0; } static int def_crl_lookup(X509_CRL *crl, X509_REVOKED **ret, const ASN1_INTEGER *serial, const X509_NAME *issuer) { X509_REVOKED rtmp, *rev; int idx, num; if (crl->crl.revoked == NULL) return 0; /* * Sort revoked into serial number order if not already sorted. Do this * under a lock to avoid race condition. */ if (!sk_X509_REVOKED_is_sorted(crl->crl.revoked)) { if (!CRYPTO_THREAD_write_lock(crl->lock)) return 0; sk_X509_REVOKED_sort(crl->crl.revoked); CRYPTO_THREAD_unlock(crl->lock); } rtmp.serialNumber = *serial; idx = sk_X509_REVOKED_find(crl->crl.revoked, &rtmp); if (idx < 0) return 0; /* Need to look for matching name */ for (num = sk_X509_REVOKED_num(crl->crl.revoked); idx < num; idx++) { rev = sk_X509_REVOKED_value(crl->crl.revoked, idx); if (ASN1_INTEGER_cmp(&rev->serialNumber, serial)) return 0; if (crl_revoked_issuer_match(crl, issuer, rev)) { if (ret) *ret = rev; if (rev->reason == CRL_REASON_REMOVE_FROM_CRL) return 2; return 1; } } return 0; } void X509_CRL_set_default_method(const X509_CRL_METHOD *meth) { if (meth == NULL) default_crl_method = &int_crl_meth; else default_crl_method = meth; } X509_CRL_METHOD *X509_CRL_METHOD_new(int (*crl_init) (X509_CRL *crl), int (*crl_free) (X509_CRL *crl), int (*crl_lookup) (X509_CRL *crl, X509_REVOKED **ret, const ASN1_INTEGER *ser, const X509_NAME *issuer), int (*crl_verify) (X509_CRL *crl, EVP_PKEY *pk)) { X509_CRL_METHOD *m = OPENSSL_malloc(sizeof(*m)); if (m == NULL) return NULL; m->crl_init = crl_init; m->crl_free = crl_free; m->crl_lookup = crl_lookup; m->crl_verify = crl_verify; m->flags = X509_CRL_METHOD_DYNAMIC; return m; } void X509_CRL_METHOD_free(X509_CRL_METHOD *m) { if (m == NULL || !(m->flags & X509_CRL_METHOD_DYNAMIC)) return; OPENSSL_free(m); } void X509_CRL_set_meth_data(X509_CRL *crl, void *dat) { crl->meth_data = dat; } void *X509_CRL_get_meth_data(X509_CRL *crl) { return crl->meth_data; } int ossl_x509_crl_set0_libctx(X509_CRL *x, OSSL_LIB_CTX *libctx, const char *propq) { if (x != NULL) { x->libctx = libctx; OPENSSL_free(x->propq); x->propq = NULL; if (propq != NULL) { x->propq = OPENSSL_strdup(propq); if (x->propq == NULL) return 0; } } return 1; }
./openssl/crypto/x509/v3_pcia.c
/* * Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * This file is dual-licensed and is also available under the following * terms: * * Copyright (c) 2004 Kungliga Tekniska Högskolan * (Royal Institute of Technology, Stockholm, Sweden). * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the Institute nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <openssl/asn1.h> #include <openssl/asn1t.h> #include <openssl/x509v3.h> ASN1_SEQUENCE(PROXY_POLICY) = { ASN1_SIMPLE(PROXY_POLICY, policyLanguage, ASN1_OBJECT), ASN1_OPT(PROXY_POLICY, policy, ASN1_OCTET_STRING) } ASN1_SEQUENCE_END(PROXY_POLICY) IMPLEMENT_ASN1_FUNCTIONS(PROXY_POLICY) ASN1_SEQUENCE(PROXY_CERT_INFO_EXTENSION) = { ASN1_OPT(PROXY_CERT_INFO_EXTENSION, pcPathLengthConstraint, ASN1_INTEGER), ASN1_SIMPLE(PROXY_CERT_INFO_EXTENSION, proxyPolicy, PROXY_POLICY) } ASN1_SEQUENCE_END(PROXY_CERT_INFO_EXTENSION) IMPLEMENT_ASN1_FUNCTIONS(PROXY_CERT_INFO_EXTENSION)
./openssl/crypto/x509/x509rset.c
/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/asn1.h> #include <openssl/objects.h> #include <openssl/evp.h> #include <openssl/x509.h> #include "crypto/x509.h" int X509_REQ_set_version(X509_REQ *x, long version) { if (x == NULL) return 0; x->req_info.enc.modified = 1; return ASN1_INTEGER_set(x->req_info.version, version); } int X509_REQ_set_subject_name(X509_REQ *x, const X509_NAME *name) { if (x == NULL) return 0; x->req_info.enc.modified = 1; return X509_NAME_set(&x->req_info.subject, name); } int X509_REQ_set_pubkey(X509_REQ *x, EVP_PKEY *pkey) { if (x == NULL) return 0; x->req_info.enc.modified = 1; return X509_PUBKEY_set(&x->req_info.pubkey, pkey); }
./openssl/crypto/x509/pcy_cache.c
/* * Copyright 2004-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib.h" #include <openssl/x509.h> #include <openssl/x509v3.h> #include "crypto/x509.h" #include "pcy_local.h" static int policy_data_cmp(const X509_POLICY_DATA *const *a, const X509_POLICY_DATA *const *b); static int policy_cache_set_int(long *out, ASN1_INTEGER *value); /* * Set cache entry according to CertificatePolicies extension. Note: this * destroys the passed CERTIFICATEPOLICIES structure. */ static int policy_cache_create(X509 *x, CERTIFICATEPOLICIES *policies, int crit) { int i, num, ret = 0; X509_POLICY_CACHE *cache = x->policy_cache; X509_POLICY_DATA *data = NULL; POLICYINFO *policy; if ((num = sk_POLICYINFO_num(policies)) <= 0) goto bad_policy; cache->data = sk_X509_POLICY_DATA_new(policy_data_cmp); if (cache->data == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB); goto just_cleanup; } for (i = 0; i < num; i++) { policy = sk_POLICYINFO_value(policies, i); data = ossl_policy_data_new(policy, NULL, crit); if (data == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_X509_LIB); goto just_cleanup; } /* * Duplicate policy OIDs are illegal: reject if matches found. */ if (OBJ_obj2nid(data->valid_policy) == NID_any_policy) { if (cache->anyPolicy) { ret = -1; goto bad_policy; } cache->anyPolicy = data; } else if (sk_X509_POLICY_DATA_find(cache->data, data) >=0) { ret = -1; goto bad_policy; } else if (!sk_X509_POLICY_DATA_push(cache->data, data)) { ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB); goto bad_policy; } data = NULL; } /* Sort so we can find more quickly */ sk_X509_POLICY_DATA_sort(cache->data); ret = 1; bad_policy: if (ret == -1) x->ex_flags |= EXFLAG_INVALID_POLICY; ossl_policy_data_free(data); just_cleanup: sk_POLICYINFO_pop_free(policies, POLICYINFO_free); if (ret <= 0) { sk_X509_POLICY_DATA_pop_free(cache->data, ossl_policy_data_free); cache->data = NULL; } return ret; } static int policy_cache_new(X509 *x) { X509_POLICY_CACHE *cache; ASN1_INTEGER *ext_any = NULL; POLICY_CONSTRAINTS *ext_pcons = NULL; CERTIFICATEPOLICIES *ext_cpols = NULL; POLICY_MAPPINGS *ext_pmaps = NULL; int i; if (x->policy_cache != NULL) return 1; cache = OPENSSL_malloc(sizeof(*cache)); if (cache == NULL) return 0; cache->anyPolicy = NULL; cache->data = NULL; cache->any_skip = -1; cache->explicit_skip = -1; cache->map_skip = -1; x->policy_cache = cache; /* * Handle requireExplicitPolicy *first*. Need to process this even if we * don't have any policies. */ ext_pcons = X509_get_ext_d2i(x, NID_policy_constraints, &i, NULL); if (!ext_pcons) { if (i != -1) goto bad_cache; } else { if (!ext_pcons->requireExplicitPolicy && !ext_pcons->inhibitPolicyMapping) goto bad_cache; if (!policy_cache_set_int(&cache->explicit_skip, ext_pcons->requireExplicitPolicy)) goto bad_cache; if (!policy_cache_set_int(&cache->map_skip, ext_pcons->inhibitPolicyMapping)) goto bad_cache; } /* Process CertificatePolicies */ ext_cpols = X509_get_ext_d2i(x, NID_certificate_policies, &i, NULL); /* * If no CertificatePolicies extension or problem decoding then there is * no point continuing because the valid policies will be NULL. */ if (!ext_cpols) { /* If not absent some problem with extension */ if (i != -1) goto bad_cache; return 1; } i = policy_cache_create(x, ext_cpols, i); /* NB: ext_cpols freed by policy_cache_set_policies */ if (i <= 0) return i; ext_pmaps = X509_get_ext_d2i(x, NID_policy_mappings, &i, NULL); if (!ext_pmaps) { /* If not absent some problem with extension */ if (i != -1) goto bad_cache; } else { i = ossl_policy_cache_set_mapping(x, ext_pmaps); if (i <= 0) goto bad_cache; } ext_any = X509_get_ext_d2i(x, NID_inhibit_any_policy, &i, NULL); if (!ext_any) { if (i != -1) goto bad_cache; } else if (!policy_cache_set_int(&cache->any_skip, ext_any)) goto bad_cache; goto just_cleanup; bad_cache: x->ex_flags |= EXFLAG_INVALID_POLICY; just_cleanup: POLICY_CONSTRAINTS_free(ext_pcons); ASN1_INTEGER_free(ext_any); return 1; } void ossl_policy_cache_free(X509_POLICY_CACHE *cache) { if (!cache) return; ossl_policy_data_free(cache->anyPolicy); sk_X509_POLICY_DATA_pop_free(cache->data, ossl_policy_data_free); OPENSSL_free(cache); } const X509_POLICY_CACHE *ossl_policy_cache_set(X509 *x) { if (x->policy_cache == NULL) { if (!CRYPTO_THREAD_write_lock(x->lock)) return NULL; policy_cache_new(x); CRYPTO_THREAD_unlock(x->lock); } return x->policy_cache; } X509_POLICY_DATA *ossl_policy_cache_find_data(const X509_POLICY_CACHE *cache, const ASN1_OBJECT *id) { int idx; X509_POLICY_DATA tmp; tmp.valid_policy = (ASN1_OBJECT *)id; idx = sk_X509_POLICY_DATA_find(cache->data, &tmp); return sk_X509_POLICY_DATA_value(cache->data, idx); } static int policy_data_cmp(const X509_POLICY_DATA *const *a, const X509_POLICY_DATA *const *b) { return OBJ_cmp((*a)->valid_policy, (*b)->valid_policy); } static int policy_cache_set_int(long *out, ASN1_INTEGER *value) { if (value == NULL) return 1; if (value->type == V_ASN1_NEG_INTEGER) return 0; *out = ASN1_INTEGER_get(value); return 1; }
./openssl/crypto/x509/v3_akeya.c
/* * Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/conf.h> #include <openssl/asn1.h> #include <openssl/asn1t.h> #include <openssl/x509v3.h> ASN1_SEQUENCE(AUTHORITY_KEYID) = { ASN1_IMP_OPT(AUTHORITY_KEYID, keyid, ASN1_OCTET_STRING, 0), ASN1_IMP_SEQUENCE_OF_OPT(AUTHORITY_KEYID, issuer, GENERAL_NAME, 1), ASN1_IMP_OPT(AUTHORITY_KEYID, serial, ASN1_INTEGER, 2) } ASN1_SEQUENCE_END(AUTHORITY_KEYID) IMPLEMENT_ASN1_FUNCTIONS(AUTHORITY_KEYID)
./openssl/crypto/x509/x509_vpm.c
/* * Copyright 2004-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/crypto.h> #include <openssl/buffer.h> #include <openssl/x509.h> #include <openssl/x509v3.h> #include "crypto/x509.h" #include "x509_local.h" /* X509_VERIFY_PARAM functions */ #define SET_HOST 0 #define ADD_HOST 1 static char *str_copy(const char *s) { return OPENSSL_strdup(s); } static void str_free(char *s) { OPENSSL_free(s); } static int int_x509_param_set_hosts(X509_VERIFY_PARAM *vpm, int mode, const char *name, size_t namelen) { char *copy; /* * Refuse names with embedded NUL bytes, except perhaps as final byte. * XXX: Do we need to push an error onto the error stack? */ if (namelen == 0 || name == NULL) namelen = name ? strlen(name) : 0; else if (name != NULL && memchr(name, '\0', namelen > 1 ? namelen - 1 : namelen) != NULL) return 0; if (namelen > 0 && name[namelen - 1] == '\0') --namelen; if (mode == SET_HOST) { sk_OPENSSL_STRING_pop_free(vpm->hosts, str_free); vpm->hosts = NULL; } if (name == NULL || namelen == 0) return 1; copy = OPENSSL_strndup(name, namelen); if (copy == NULL) return 0; if (vpm->hosts == NULL && (vpm->hosts = sk_OPENSSL_STRING_new_null()) == NULL) { OPENSSL_free(copy); return 0; } if (!sk_OPENSSL_STRING_push(vpm->hosts, copy)) { OPENSSL_free(copy); if (sk_OPENSSL_STRING_num(vpm->hosts) == 0) { sk_OPENSSL_STRING_free(vpm->hosts); vpm->hosts = NULL; } return 0; } return 1; } X509_VERIFY_PARAM *X509_VERIFY_PARAM_new(void) { X509_VERIFY_PARAM *param; param = OPENSSL_zalloc(sizeof(*param)); if (param == NULL) return NULL; param->trust = X509_TRUST_DEFAULT; /* param->inh_flags = X509_VP_FLAG_DEFAULT; */ param->depth = -1; param->auth_level = -1; /* -1 means unset, 0 is explicit */ return param; } void X509_VERIFY_PARAM_free(X509_VERIFY_PARAM *param) { if (param == NULL) return; sk_ASN1_OBJECT_pop_free(param->policies, ASN1_OBJECT_free); sk_OPENSSL_STRING_pop_free(param->hosts, str_free); OPENSSL_free(param->peername); OPENSSL_free(param->email); OPENSSL_free(param->ip); OPENSSL_free(param); } /*- * This function determines how parameters are "inherited" from one structure * to another. There are several different ways this can happen. * * 1. If a child structure needs to have its values initialized from a parent * they are simply copied across. For example SSL_CTX copied to SSL. * 2. If the structure should take on values only if they are currently unset. * For example the values in an SSL structure will take appropriate value * for SSL servers or clients but only if the application has not set new * ones. * * The "inh_flags" field determines how this function behaves. * * Normally any values which are set in the default are not copied from the * destination and verify flags are ORed together. * * If X509_VP_FLAG_DEFAULT is set then anything set in the source is copied * to the destination. Effectively the values in "to" become default values * which will be used only if nothing new is set in "from". * * If X509_VP_FLAG_OVERWRITE is set then all value are copied across whether * they are set or not. Flags is still Ored though. * * If X509_VP_FLAG_RESET_FLAGS is set then the flags value is copied instead * of ORed. * * If X509_VP_FLAG_LOCKED is set then no values are copied. * * If X509_VP_FLAG_ONCE is set then the current inh_flags setting is zeroed * after the next call. */ /* Macro to test if a field should be copied from src to dest */ #define test_x509_verify_param_copy(field, def) \ (to_overwrite || (src->field != def && (to_default || dest->field == def))) /* Macro to test and copy a field if necessary */ #define x509_verify_param_copy(field, def) \ if (test_x509_verify_param_copy(field, def)) \ dest->field = src->field; int X509_VERIFY_PARAM_inherit(X509_VERIFY_PARAM *dest, const X509_VERIFY_PARAM *src) { unsigned long inh_flags; int to_default, to_overwrite; if (src == NULL) return 1; inh_flags = dest->inh_flags | src->inh_flags; if ((inh_flags & X509_VP_FLAG_ONCE) != 0) dest->inh_flags = 0; if ((inh_flags & X509_VP_FLAG_LOCKED) != 0) return 1; to_default = (inh_flags & X509_VP_FLAG_DEFAULT) != 0; to_overwrite = (inh_flags & X509_VP_FLAG_OVERWRITE) != 0; x509_verify_param_copy(purpose, 0); x509_verify_param_copy(trust, X509_TRUST_DEFAULT); x509_verify_param_copy(depth, -1); x509_verify_param_copy(auth_level, -1); /* If overwrite or check time not set, copy across */ if (to_overwrite || (dest->flags & X509_V_FLAG_USE_CHECK_TIME) == 0) { dest->check_time = src->check_time; dest->flags &= ~X509_V_FLAG_USE_CHECK_TIME; /* Don't need to copy flag: that is done below */ } if ((inh_flags & X509_VP_FLAG_RESET_FLAGS) != 0) dest->flags = 0; dest->flags |= src->flags; if (test_x509_verify_param_copy(policies, NULL)) { if (!X509_VERIFY_PARAM_set1_policies(dest, src->policies)) return 0; } x509_verify_param_copy(hostflags, 0); if (test_x509_verify_param_copy(hosts, NULL)) { sk_OPENSSL_STRING_pop_free(dest->hosts, str_free); dest->hosts = NULL; if (src->hosts != NULL) { dest->hosts = sk_OPENSSL_STRING_deep_copy(src->hosts, str_copy, str_free); if (dest->hosts == NULL) return 0; } } if (test_x509_verify_param_copy(email, NULL)) { if (!X509_VERIFY_PARAM_set1_email(dest, src->email, src->emaillen)) return 0; } if (test_x509_verify_param_copy(ip, NULL)) { if (!X509_VERIFY_PARAM_set1_ip(dest, src->ip, src->iplen)) return 0; } return 1; } int X509_VERIFY_PARAM_set1(X509_VERIFY_PARAM *to, const X509_VERIFY_PARAM *from) { unsigned long save_flags; int ret; if (to == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return 0; } save_flags = to->inh_flags; to->inh_flags |= X509_VP_FLAG_DEFAULT; ret = X509_VERIFY_PARAM_inherit(to, from); to->inh_flags = save_flags; return ret; } static int int_x509_param_set1(char **pdest, size_t *pdestlen, const char *src, size_t srclen) { char *tmp; if (src != NULL) { if (srclen == 0) srclen = strlen(src); tmp = OPENSSL_malloc(srclen + 1); if (tmp == NULL) return 0; memcpy(tmp, src, srclen); tmp[srclen] = '\0'; /* enforce NUL termination */ } else { tmp = NULL; srclen = 0; } OPENSSL_free(*pdest); *pdest = tmp; if (pdestlen != NULL) *pdestlen = srclen; return 1; } int X509_VERIFY_PARAM_set1_name(X509_VERIFY_PARAM *param, const char *name) { OPENSSL_free(param->name); param->name = OPENSSL_strdup(name); return param->name != NULL; } int X509_VERIFY_PARAM_set_flags(X509_VERIFY_PARAM *param, unsigned long flags) { param->flags |= flags; if ((flags & X509_V_FLAG_POLICY_MASK) != 0) param->flags |= X509_V_FLAG_POLICY_CHECK; return 1; } int X509_VERIFY_PARAM_clear_flags(X509_VERIFY_PARAM *param, unsigned long flags) { param->flags &= ~flags; return 1; } unsigned long X509_VERIFY_PARAM_get_flags(const X509_VERIFY_PARAM *param) { return param->flags; } uint32_t X509_VERIFY_PARAM_get_inh_flags(const X509_VERIFY_PARAM *param) { return param->inh_flags; } int X509_VERIFY_PARAM_set_inh_flags(X509_VERIFY_PARAM *param, uint32_t flags) { param->inh_flags = flags; return 1; } int X509_VERIFY_PARAM_set_purpose(X509_VERIFY_PARAM *param, int purpose) { return X509_PURPOSE_set(&param->purpose, purpose); } int X509_VERIFY_PARAM_set_trust(X509_VERIFY_PARAM *param, int trust) { return X509_TRUST_set(&param->trust, trust); } void X509_VERIFY_PARAM_set_depth(X509_VERIFY_PARAM *param, int depth) { param->depth = depth; } void X509_VERIFY_PARAM_set_auth_level(X509_VERIFY_PARAM *param, int auth_level) { param->auth_level = auth_level; } time_t X509_VERIFY_PARAM_get_time(const X509_VERIFY_PARAM *param) { return param->check_time; } void X509_VERIFY_PARAM_set_time(X509_VERIFY_PARAM *param, time_t t) { param->check_time = t; param->flags |= X509_V_FLAG_USE_CHECK_TIME; } int X509_VERIFY_PARAM_add0_policy(X509_VERIFY_PARAM *param, ASN1_OBJECT *policy) { if (param->policies == NULL) { param->policies = sk_ASN1_OBJECT_new_null(); if (param->policies == NULL) return 0; } if (sk_ASN1_OBJECT_push(param->policies, policy) <= 0) return 0; return 1; } int X509_VERIFY_PARAM_set1_policies(X509_VERIFY_PARAM *param, STACK_OF(ASN1_OBJECT) *policies) { int i; ASN1_OBJECT *oid, *doid; if (param == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return 0; } sk_ASN1_OBJECT_pop_free(param->policies, ASN1_OBJECT_free); if (policies == NULL) { param->policies = NULL; return 1; } param->policies = sk_ASN1_OBJECT_new_null(); if (param->policies == NULL) return 0; for (i = 0; i < sk_ASN1_OBJECT_num(policies); i++) { oid = sk_ASN1_OBJECT_value(policies, i); doid = OBJ_dup(oid); if (doid == NULL) return 0; if (!sk_ASN1_OBJECT_push(param->policies, doid)) { ASN1_OBJECT_free(doid); return 0; } } param->flags |= X509_V_FLAG_POLICY_CHECK; return 1; } char *X509_VERIFY_PARAM_get0_host(X509_VERIFY_PARAM *param, int idx) { return sk_OPENSSL_STRING_value(param->hosts, idx); } int X509_VERIFY_PARAM_set1_host(X509_VERIFY_PARAM *param, const char *name, size_t namelen) { return int_x509_param_set_hosts(param, SET_HOST, name, namelen); } int X509_VERIFY_PARAM_add1_host(X509_VERIFY_PARAM *param, const char *name, size_t namelen) { return int_x509_param_set_hosts(param, ADD_HOST, name, namelen); } void X509_VERIFY_PARAM_set_hostflags(X509_VERIFY_PARAM *param, unsigned int flags) { param->hostflags = flags; } unsigned int X509_VERIFY_PARAM_get_hostflags(const X509_VERIFY_PARAM *param) { return param->hostflags; } char *X509_VERIFY_PARAM_get0_peername(const X509_VERIFY_PARAM *param) { return param->peername; } /* * Move peername from one param structure to another, freeing any name present * at the target. If the source is a NULL parameter structure, free and zero * the target peername. */ void X509_VERIFY_PARAM_move_peername(X509_VERIFY_PARAM *to, X509_VERIFY_PARAM *from) { char *peername = (from != NULL) ? from->peername : NULL; if (to->peername != peername) { OPENSSL_free(to->peername); to->peername = peername; } if (from != NULL) from->peername = NULL; } char *X509_VERIFY_PARAM_get0_email(X509_VERIFY_PARAM *param) { return param->email; } int X509_VERIFY_PARAM_set1_email(X509_VERIFY_PARAM *param, const char *email, size_t emaillen) { return int_x509_param_set1(&param->email, &param->emaillen, email, emaillen); } static unsigned char *int_X509_VERIFY_PARAM_get0_ip(X509_VERIFY_PARAM *param, size_t *plen) { if (param == NULL || param->ip == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return NULL; } if (plen != NULL) *plen = param->iplen; return param->ip; } char *X509_VERIFY_PARAM_get1_ip_asc(X509_VERIFY_PARAM *param) { size_t iplen; unsigned char *ip = int_X509_VERIFY_PARAM_get0_ip(param, &iplen); return ip == NULL ? NULL : ossl_ipaddr_to_asc(ip, iplen); } int X509_VERIFY_PARAM_set1_ip(X509_VERIFY_PARAM *param, const unsigned char *ip, size_t iplen) { if (iplen != 0 && iplen != 4 && iplen != 16) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_INVALID_ARGUMENT); return 0; } return int_x509_param_set1((char **)&param->ip, &param->iplen, (char *)ip, iplen); } int X509_VERIFY_PARAM_set1_ip_asc(X509_VERIFY_PARAM *param, const char *ipasc) { unsigned char ipout[16]; size_t iplen = (size_t)ossl_a2i_ipadd(ipout, ipasc); if (iplen == 0) return 0; return X509_VERIFY_PARAM_set1_ip(param, ipout, iplen); } int X509_VERIFY_PARAM_get_depth(const X509_VERIFY_PARAM *param) { return param->depth; } int X509_VERIFY_PARAM_get_auth_level(const X509_VERIFY_PARAM *param) { return param->auth_level; } const char *X509_VERIFY_PARAM_get0_name(const X509_VERIFY_PARAM *param) { return param->name; } #define vpm_empty_id NULL, 0U, NULL, NULL, 0, NULL, 0 /* * Default verify parameters: these are used for various applications and can * be overridden by the user specified table. NB: the 'name' field *must* be * in alphabetical order because it will be searched using OBJ_search. */ static const X509_VERIFY_PARAM default_table[] = { { "code_sign", /* Code sign parameters */ 0, /* check time to use */ 0, /* inheritance flags */ 0, /* flags */ X509_PURPOSE_CODE_SIGN, /* purpose */ X509_TRUST_OBJECT_SIGN, /* trust */ -1, /* depth */ -1, /* auth_level */ NULL, /* policies */ vpm_empty_id }, { "default", /* X509 default parameters */ 0, /* check time to use */ 0, /* inheritance flags */ X509_V_FLAG_TRUSTED_FIRST, /* flags */ 0, /* purpose */ 0, /* trust */ 100, /* depth */ -1, /* auth_level */ NULL, /* policies */ vpm_empty_id }, { "pkcs7", /* S/MIME sign parameters */ 0, /* check time to use */ 0, /* inheritance flags */ 0, /* flags */ X509_PURPOSE_SMIME_SIGN, /* purpose */ X509_TRUST_EMAIL, /* trust */ -1, /* depth */ -1, /* auth_level */ NULL, /* policies */ vpm_empty_id }, { "smime_sign", /* S/MIME sign parameters */ 0, /* check time to use */ 0, /* inheritance flags */ 0, /* flags */ X509_PURPOSE_SMIME_SIGN, /* purpose */ X509_TRUST_EMAIL, /* trust */ -1, /* depth */ -1, /* auth_level */ NULL, /* policies */ vpm_empty_id }, { "ssl_client", /* SSL/TLS client parameters */ 0, /* check time to use */ 0, /* inheritance flags */ 0, /* flags */ X509_PURPOSE_SSL_CLIENT, /* purpose */ X509_TRUST_SSL_CLIENT, /* trust */ -1, /* depth */ -1, /* auth_level */ NULL, /* policies */ vpm_empty_id }, { "ssl_server", /* SSL/TLS server parameters */ 0, /* check time to use */ 0, /* inheritance flags */ 0, /* flags */ X509_PURPOSE_SSL_SERVER, /* purpose */ X509_TRUST_SSL_SERVER, /* trust */ -1, /* depth */ -1, /* auth_level */ NULL, /* policies */ vpm_empty_id } }; static STACK_OF(X509_VERIFY_PARAM) *param_table = NULL; static int table_cmp(const X509_VERIFY_PARAM *a, const X509_VERIFY_PARAM *b) { return strcmp(a->name, b->name); } DECLARE_OBJ_BSEARCH_CMP_FN(X509_VERIFY_PARAM, X509_VERIFY_PARAM, table); IMPLEMENT_OBJ_BSEARCH_CMP_FN(X509_VERIFY_PARAM, X509_VERIFY_PARAM, table); static int param_cmp(const X509_VERIFY_PARAM *const *a, const X509_VERIFY_PARAM *const *b) { return strcmp((*a)->name, (*b)->name); } int X509_VERIFY_PARAM_add0_table(X509_VERIFY_PARAM *param) { int idx; X509_VERIFY_PARAM *ptmp; if (param_table == NULL) { param_table = sk_X509_VERIFY_PARAM_new(param_cmp); if (param_table == NULL) return 0; } else { idx = sk_X509_VERIFY_PARAM_find(param_table, param); if (idx >= 0) { ptmp = sk_X509_VERIFY_PARAM_delete(param_table, idx); X509_VERIFY_PARAM_free(ptmp); } } if (sk_X509_VERIFY_PARAM_push(param_table, param) <= 0) return 0; return 1; } int X509_VERIFY_PARAM_get_count(void) { int num = OSSL_NELEM(default_table); if (param_table != NULL) num += sk_X509_VERIFY_PARAM_num(param_table); return num; } const X509_VERIFY_PARAM *X509_VERIFY_PARAM_get0(int id) { int num = OSSL_NELEM(default_table); if (id < num) return default_table + id; return sk_X509_VERIFY_PARAM_value(param_table, id - num); } const X509_VERIFY_PARAM *X509_VERIFY_PARAM_lookup(const char *name) { int idx; X509_VERIFY_PARAM pm; pm.name = (char *)name; if (param_table != NULL) { /* Ideally, this would be done under a lock */ sk_X509_VERIFY_PARAM_sort(param_table); idx = sk_X509_VERIFY_PARAM_find(param_table, &pm); if (idx >= 0) return sk_X509_VERIFY_PARAM_value(param_table, idx); } return OBJ_bsearch_table(&pm, default_table, OSSL_NELEM(default_table)); } void X509_VERIFY_PARAM_table_cleanup(void) { sk_X509_VERIFY_PARAM_pop_free(param_table, X509_VERIFY_PARAM_free); param_table = NULL; }
./openssl/crypto/x509/x_name.c
/* * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "crypto/ctype.h" #include "internal/cryptlib.h" #include <openssl/asn1t.h> #include <openssl/x509.h> #include "crypto/x509.h" #include "crypto/asn1.h" #include "x509_local.h" /* * Maximum length of X509_NAME: much larger than anything we should * ever see in practice. */ #define X509_NAME_MAX (1024 * 1024) static int x509_name_ex_d2i(ASN1_VALUE **val, const unsigned char **in, long len, const ASN1_ITEM *it, int tag, int aclass, char opt, ASN1_TLC *ctx); static int x509_name_ex_i2d(const ASN1_VALUE **val, unsigned char **out, const ASN1_ITEM *it, int tag, int aclass); static int x509_name_ex_new(ASN1_VALUE **val, const ASN1_ITEM *it); static void x509_name_ex_free(ASN1_VALUE **val, const ASN1_ITEM *it); static int x509_name_encode(X509_NAME *a); static int x509_name_canon(X509_NAME *a); static int asn1_string_canon(ASN1_STRING *out, const ASN1_STRING *in); static int i2d_name_canon(const STACK_OF(STACK_OF_X509_NAME_ENTRY) * intname, unsigned char **in); static int x509_name_ex_print(BIO *out, const ASN1_VALUE **pval, int indent, const char *fname, const ASN1_PCTX *pctx); ASN1_SEQUENCE(X509_NAME_ENTRY) = { ASN1_SIMPLE(X509_NAME_ENTRY, object, ASN1_OBJECT), ASN1_SIMPLE(X509_NAME_ENTRY, value, ASN1_PRINTABLE) } ASN1_SEQUENCE_END(X509_NAME_ENTRY) IMPLEMENT_ASN1_FUNCTIONS(X509_NAME_ENTRY) IMPLEMENT_ASN1_DUP_FUNCTION(X509_NAME_ENTRY) /* * For the "Name" type we need a SEQUENCE OF { SET OF X509_NAME_ENTRY } so * declare two template wrappers for this */ ASN1_ITEM_TEMPLATE(X509_NAME_ENTRIES) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SET_OF, 0, RDNS, X509_NAME_ENTRY) static_ASN1_ITEM_TEMPLATE_END(X509_NAME_ENTRIES) ASN1_ITEM_TEMPLATE(X509_NAME_INTERNAL) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, Name, X509_NAME_ENTRIES) static_ASN1_ITEM_TEMPLATE_END(X509_NAME_INTERNAL) /* * Normally that's where it would end: we'd have two nested STACK structures * representing the ASN1. Unfortunately X509_NAME uses a completely different * form and caches encodings so we have to process the internal form and * convert to the external form. */ static const ASN1_EXTERN_FUNCS x509_name_ff = { NULL, x509_name_ex_new, x509_name_ex_free, 0, /* Default clear behaviour is OK */ x509_name_ex_d2i, x509_name_ex_i2d, x509_name_ex_print }; IMPLEMENT_EXTERN_ASN1(X509_NAME, V_ASN1_SEQUENCE, x509_name_ff) IMPLEMENT_ASN1_FUNCTIONS(X509_NAME) IMPLEMENT_ASN1_DUP_FUNCTION(X509_NAME) static int x509_name_ex_new(ASN1_VALUE **val, const ASN1_ITEM *it) { X509_NAME *ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) return 0; if ((ret->entries = sk_X509_NAME_ENTRY_new_null()) == NULL) { ERR_raise(ERR_LIB_ASN1, ERR_R_CRYPTO_LIB); goto err; } if ((ret->bytes = BUF_MEM_new()) == NULL) { ERR_raise(ERR_LIB_ASN1, ERR_R_BUF_LIB); goto err; } ret->modified = 1; *val = (ASN1_VALUE *)ret; return 1; err: if (ret) { sk_X509_NAME_ENTRY_free(ret->entries); OPENSSL_free(ret); } return 0; } static void x509_name_ex_free(ASN1_VALUE **pval, const ASN1_ITEM *it) { X509_NAME *a; if (pval == NULL || *pval == NULL) return; a = (X509_NAME *)*pval; BUF_MEM_free(a->bytes); sk_X509_NAME_ENTRY_pop_free(a->entries, X509_NAME_ENTRY_free); OPENSSL_free(a->canon_enc); OPENSSL_free(a); *pval = NULL; } static void local_sk_X509_NAME_ENTRY_free(STACK_OF(X509_NAME_ENTRY) *ne) { sk_X509_NAME_ENTRY_free(ne); } static void local_sk_X509_NAME_ENTRY_pop_free(STACK_OF(X509_NAME_ENTRY) *ne) { sk_X509_NAME_ENTRY_pop_free(ne, X509_NAME_ENTRY_free); } static int x509_name_ex_d2i(ASN1_VALUE **val, const unsigned char **in, long len, const ASN1_ITEM *it, int tag, int aclass, char opt, ASN1_TLC *ctx) { const unsigned char *p = *in, *q; union { STACK_OF(STACK_OF_X509_NAME_ENTRY) *s; ASN1_VALUE *a; } intname = { NULL }; union { X509_NAME *x; ASN1_VALUE *a; } nm = { NULL }; int i, j, ret; STACK_OF(X509_NAME_ENTRY) *entries; X509_NAME_ENTRY *entry; if (len > X509_NAME_MAX) len = X509_NAME_MAX; q = p; /* Get internal representation of Name */ ret = ASN1_item_ex_d2i(&intname.a, &p, len, ASN1_ITEM_rptr(X509_NAME_INTERNAL), tag, aclass, opt, ctx); if (ret <= 0) return ret; if (*val) x509_name_ex_free(val, NULL); if (!x509_name_ex_new(&nm.a, NULL)) goto err; /* We've decoded it: now cache encoding */ if (!BUF_MEM_grow(nm.x->bytes, p - q)) goto err; memcpy(nm.x->bytes->data, q, p - q); /* Convert internal representation to X509_NAME structure */ for (i = 0; i < sk_STACK_OF_X509_NAME_ENTRY_num(intname.s); i++) { entries = sk_STACK_OF_X509_NAME_ENTRY_value(intname.s, i); for (j = 0; j < sk_X509_NAME_ENTRY_num(entries); j++) { entry = sk_X509_NAME_ENTRY_value(entries, j); entry->set = i; if (!sk_X509_NAME_ENTRY_push(nm.x->entries, entry)) goto err; (void)sk_X509_NAME_ENTRY_set(entries, j, NULL); } } ret = x509_name_canon(nm.x); if (!ret) goto err; sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname.s, local_sk_X509_NAME_ENTRY_free); nm.x->modified = 0; *val = nm.a; *in = p; return ret; err: if (nm.x != NULL) X509_NAME_free(nm.x); sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname.s, local_sk_X509_NAME_ENTRY_pop_free); ERR_raise(ERR_LIB_ASN1, ERR_R_NESTED_ASN1_ERROR); return 0; } static int x509_name_ex_i2d(const ASN1_VALUE **val, unsigned char **out, const ASN1_ITEM *it, int tag, int aclass) { int ret; X509_NAME *a = (X509_NAME *)*val; if (a->modified) { ret = x509_name_encode(a); if (ret < 0) return ret; ret = x509_name_canon(a); if (!ret) return -1; } ret = a->bytes->length; if (out != NULL) { memcpy(*out, a->bytes->data, ret); *out += ret; } return ret; } static int x509_name_encode(X509_NAME *a) { union { STACK_OF(STACK_OF_X509_NAME_ENTRY) *s; const ASN1_VALUE *a; } intname = { NULL }; int len; unsigned char *p; STACK_OF(X509_NAME_ENTRY) *entries = NULL; X509_NAME_ENTRY *entry; int i, set = -1; intname.s = sk_STACK_OF_X509_NAME_ENTRY_new_null(); if (!intname.s) goto cerr; for (i = 0; i < sk_X509_NAME_ENTRY_num(a->entries); i++) { entry = sk_X509_NAME_ENTRY_value(a->entries, i); if (entry->set != set) { entries = sk_X509_NAME_ENTRY_new_null(); if (!entries) goto cerr; if (!sk_STACK_OF_X509_NAME_ENTRY_push(intname.s, entries)) { sk_X509_NAME_ENTRY_free(entries); goto cerr; } set = entry->set; } if (!sk_X509_NAME_ENTRY_push(entries, entry)) goto cerr; } len = ASN1_item_ex_i2d(&intname.a, NULL, ASN1_ITEM_rptr(X509_NAME_INTERNAL), -1, -1); if (!BUF_MEM_grow(a->bytes, len)) { ERR_raise(ERR_LIB_ASN1, ERR_R_BUF_LIB); goto err; } p = (unsigned char *)a->bytes->data; ASN1_item_ex_i2d(&intname.a, &p, ASN1_ITEM_rptr(X509_NAME_INTERNAL), -1, -1); sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname.s, local_sk_X509_NAME_ENTRY_free); a->modified = 0; return len; cerr: ERR_raise(ERR_LIB_ASN1, ERR_R_CRYPTO_LIB); err: sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname.s, local_sk_X509_NAME_ENTRY_free); return -1; } static int x509_name_ex_print(BIO *out, const ASN1_VALUE **pval, int indent, const char *fname, const ASN1_PCTX *pctx) { if (X509_NAME_print_ex(out, (const X509_NAME *)*pval, indent, pctx->nm_flags) <= 0) return 0; return 2; } /* * This function generates the canonical encoding of the Name structure. In * it all strings are converted to UTF8, leading, trailing and multiple * spaces collapsed, converted to lower case and the leading SEQUENCE header * removed. In future we could also normalize the UTF8 too. By doing this * comparison of Name structures can be rapidly performed by just using * memcmp() of the canonical encoding. By omitting the leading SEQUENCE name * constraints of type dirName can also be checked with a simple memcmp(). * NOTE: For empty X509_NAME (NULL-DN), canon_enclen == 0 && canon_enc == NULL */ static int x509_name_canon(X509_NAME *a) { unsigned char *p; STACK_OF(STACK_OF_X509_NAME_ENTRY) *intname; STACK_OF(X509_NAME_ENTRY) *entries = NULL; X509_NAME_ENTRY *entry, *tmpentry = NULL; int i, set = -1, ret = 0, len; OPENSSL_free(a->canon_enc); a->canon_enc = NULL; /* Special case: empty X509_NAME => null encoding */ if (sk_X509_NAME_ENTRY_num(a->entries) == 0) { a->canon_enclen = 0; return 1; } intname = sk_STACK_OF_X509_NAME_ENTRY_new_null(); if (intname == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_CRYPTO_LIB); goto err; } for (i = 0; i < sk_X509_NAME_ENTRY_num(a->entries); i++) { entry = sk_X509_NAME_ENTRY_value(a->entries, i); if (entry->set != set) { entries = sk_X509_NAME_ENTRY_new_null(); if (entries == NULL) goto err; if (!sk_STACK_OF_X509_NAME_ENTRY_push(intname, entries)) { sk_X509_NAME_ENTRY_free(entries); ERR_raise(ERR_LIB_X509, ERR_R_CRYPTO_LIB); goto err; } set = entry->set; } tmpentry = X509_NAME_ENTRY_new(); if (tmpentry == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_ASN1_LIB); goto err; } tmpentry->object = OBJ_dup(entry->object); if (tmpentry->object == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_OBJ_LIB); goto err; } if (!asn1_string_canon(tmpentry->value, entry->value)) goto err; if (!sk_X509_NAME_ENTRY_push(entries, tmpentry)) { ERR_raise(ERR_LIB_X509, ERR_R_CRYPTO_LIB); goto err; } tmpentry = NULL; } /* Finally generate encoding */ len = i2d_name_canon(intname, NULL); if (len < 0) goto err; a->canon_enclen = len; p = OPENSSL_malloc(a->canon_enclen); if (p == NULL) goto err; a->canon_enc = p; i2d_name_canon(intname, &p); ret = 1; err: X509_NAME_ENTRY_free(tmpentry); sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname, local_sk_X509_NAME_ENTRY_pop_free); return ret; } /* Bitmap of all the types of string that will be canonicalized. */ #define ASN1_MASK_CANON \ (B_ASN1_UTF8STRING | B_ASN1_BMPSTRING | B_ASN1_UNIVERSALSTRING \ | B_ASN1_PRINTABLESTRING | B_ASN1_T61STRING | B_ASN1_IA5STRING \ | B_ASN1_VISIBLESTRING) static int asn1_string_canon(ASN1_STRING *out, const ASN1_STRING *in) { unsigned char *to, *from; int len, i; /* If type not in bitmask just copy string across */ if (!(ASN1_tag2bit(in->type) & ASN1_MASK_CANON)) { if (!ASN1_STRING_copy(out, in)) return 0; return 1; } out->type = V_ASN1_UTF8STRING; out->length = ASN1_STRING_to_UTF8(&out->data, in); if (out->length == -1) return 0; to = out->data; from = to; len = out->length; /* * Convert string in place to canonical form. Ultimately we may need to * handle a wider range of characters but for now ignore anything with * MSB set and rely on the ossl_isspace() to fail on bad characters without * needing isascii or range checks as well. */ /* Ignore leading spaces */ while (len > 0 && ossl_isspace(*from)) { from++; len--; } to = from + len; /* Ignore trailing spaces */ while (len > 0 && ossl_isspace(to[-1])) { to--; len--; } to = out->data; i = 0; while (i < len) { /* If not ASCII set just copy across */ if (!ossl_isascii(*from)) { *to++ = *from++; i++; } /* Collapse multiple spaces */ else if (ossl_isspace(*from)) { /* Copy one space across */ *to++ = ' '; /* * Ignore subsequent spaces. Note: don't need to check len here * because we know the last character is a non-space so we can't * overflow. */ do { from++; i++; } while (ossl_isspace(*from)); } else { *to++ = ossl_tolower(*from); from++; i++; } } out->length = to - out->data; return 1; } static int i2d_name_canon(const STACK_OF(STACK_OF_X509_NAME_ENTRY) * _intname, unsigned char **in) { int i, len, ltmp; const ASN1_VALUE *v; STACK_OF(ASN1_VALUE) *intname = (STACK_OF(ASN1_VALUE) *)_intname; len = 0; for (i = 0; i < sk_ASN1_VALUE_num(intname); i++) { v = sk_ASN1_VALUE_value(intname, i); ltmp = ASN1_item_ex_i2d(&v, in, ASN1_ITEM_rptr(X509_NAME_ENTRIES), -1, -1); if (ltmp < 0) return ltmp; len += ltmp; } return len; } int X509_NAME_set(X509_NAME **xn, const X509_NAME *name) { X509_NAME *name_copy; if (*xn == name) return *xn != NULL; if ((name_copy = X509_NAME_dup(name)) == NULL) return 0; X509_NAME_free(*xn); *xn = name_copy; return 1; } int X509_NAME_print(BIO *bp, const X509_NAME *name, int obase) { char *s, *c, *b; int i; b = X509_NAME_oneline(name, NULL, 0); if (b == NULL) return 0; if (*b == '\0') { OPENSSL_free(b); return 1; } s = b + 1; /* skip the first slash */ c = s; for (;;) { if (((*s == '/') && (ossl_isupper(s[1]) && ((s[2] == '=') || (ossl_isupper(s[2]) && (s[3] == '=')) ))) || (*s == '\0')) { i = s - c; if (BIO_write(bp, c, i) != i) goto err; c = s + 1; /* skip following slash */ if (*s != '\0') { if (BIO_write(bp, ", ", 2) != 2) goto err; } } if (*s == '\0') break; s++; } OPENSSL_free(b); return 1; err: ERR_raise(ERR_LIB_X509, ERR_R_BUF_LIB); OPENSSL_free(b); return 0; } int X509_NAME_get0_der(const X509_NAME *nm, const unsigned char **pder, size_t *pderlen) { /* Make sure encoding is valid */ if (i2d_X509_NAME(nm, NULL) <= 0) return 0; if (pder != NULL) *pder = (unsigned char *)nm->bytes->data; if (pderlen != NULL) *pderlen = nm->bytes->length; return 1; }
./openssl/crypto/x509/v3_ist.c
/* * Copyright 2020-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/conf.h> #include <openssl/asn1.h> #include <openssl/asn1t.h> #include <openssl/x509v3.h> #include "ext_dat.h" /* * Issuer Sign Tool (1.2.643.100.112) The name of the tool used to signs the subject (ASN1_SEQUENCE) * This extension is required to obtain the status of a qualified certificate at Russian Federation. * RFC-style description is available here: https://tools.ietf.org/html/draft-deremin-rfc4491-bis-04#section-5 * Russian Federal Law 63 "Digital Sign" is available here: http://www.consultant.ru/document/cons_doc_LAW_112701/ */ ASN1_SEQUENCE(ISSUER_SIGN_TOOL) = { ASN1_SIMPLE(ISSUER_SIGN_TOOL, signTool, ASN1_UTF8STRING), ASN1_SIMPLE(ISSUER_SIGN_TOOL, cATool, ASN1_UTF8STRING), ASN1_SIMPLE(ISSUER_SIGN_TOOL, signToolCert, ASN1_UTF8STRING), ASN1_SIMPLE(ISSUER_SIGN_TOOL, cAToolCert, ASN1_UTF8STRING) } ASN1_SEQUENCE_END(ISSUER_SIGN_TOOL) IMPLEMENT_ASN1_FUNCTIONS(ISSUER_SIGN_TOOL) static ISSUER_SIGN_TOOL *v2i_issuer_sign_tool(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval) { ISSUER_SIGN_TOOL *ist = ISSUER_SIGN_TOOL_new(); int i; if (ist == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB); return NULL; } for (i = 0; i < sk_CONF_VALUE_num(nval); ++i) { CONF_VALUE *cnf = sk_CONF_VALUE_value(nval, i); if (cnf == NULL) { continue; } if (strcmp(cnf->name, "signTool") == 0) { ist->signTool = ASN1_UTF8STRING_new(); if (ist->signTool == NULL || cnf->value == NULL || !ASN1_STRING_set(ist->signTool, cnf->value, strlen(cnf->value))) { ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB); goto err; } } else if (strcmp(cnf->name, "cATool") == 0) { ist->cATool = ASN1_UTF8STRING_new(); if (ist->cATool == NULL || cnf->value == NULL || !ASN1_STRING_set(ist->cATool, cnf->value, strlen(cnf->value))) { ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB); goto err; } } else if (strcmp(cnf->name, "signToolCert") == 0) { ist->signToolCert = ASN1_UTF8STRING_new(); if (ist->signToolCert == NULL || cnf->value == NULL || !ASN1_STRING_set(ist->signToolCert, cnf->value, strlen(cnf->value))) { ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB); goto err; } } else if (strcmp(cnf->name, "cAToolCert") == 0) { ist->cAToolCert = ASN1_UTF8STRING_new(); if (ist->cAToolCert == NULL || cnf->value == NULL || !ASN1_STRING_set(ist->cAToolCert, cnf->value, strlen(cnf->value))) { ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB); goto err; } } else { ERR_raise(ERR_LIB_X509V3, ERR_R_PASSED_INVALID_ARGUMENT); goto err; } } return ist; err: ISSUER_SIGN_TOOL_free(ist); return NULL; } static int i2r_issuer_sign_tool(X509V3_EXT_METHOD *method, ISSUER_SIGN_TOOL *ist, BIO *out, int indent) { int new_line = 0; if (ist == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_PASSED_INVALID_ARGUMENT); return 0; } if (ist->signTool != NULL) { BIO_printf(out, "%*ssignTool : ", indent, ""); BIO_write(out, ist->signTool->data, ist->signTool->length); new_line = 1; } if (ist->cATool != NULL) { if (new_line == 1) { BIO_write(out, "\n", 1); } BIO_printf(out, "%*scATool : ", indent, ""); BIO_write(out, ist->cATool->data, ist->cATool->length); new_line = 1; } if (ist->signToolCert != NULL) { if (new_line == 1) { BIO_write(out, "\n", 1); } BIO_printf(out, "%*ssignToolCert: ", indent, ""); BIO_write(out, ist->signToolCert->data, ist->signToolCert->length); new_line = 1; } if (ist->cAToolCert != NULL) { if (new_line == 1) { BIO_write(out, "\n", 1); } BIO_printf(out, "%*scAToolCert : ", indent, ""); BIO_write(out, ist->cAToolCert->data, ist->cAToolCert->length); new_line = 1; } return 1; } const X509V3_EXT_METHOD ossl_v3_issuer_sign_tool = { NID_issuerSignTool, /* nid */ X509V3_EXT_MULTILINE, /* flags */ ASN1_ITEM_ref(ISSUER_SIGN_TOOL), /* template */ 0, 0, 0, 0, /* old functions, ignored */ 0, /* i2s */ 0, /* s2i */ 0, /* i2v */ (X509V3_EXT_V2I)v2i_issuer_sign_tool, /* v2i */ (X509V3_EXT_I2R)i2r_issuer_sign_tool, /* i2r */ 0, /* r2i */ NULL /* extension-specific data */ };
./openssl/crypto/x509/v3_skid.c
/* * Copyright 1999-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/x509v3.h> #include "crypto/x509.h" #include "ext_dat.h" static ASN1_OCTET_STRING *s2i_skey_id(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, char *str); const X509V3_EXT_METHOD ossl_v3_skey_id = { NID_subject_key_identifier, 0, ASN1_ITEM_ref(ASN1_OCTET_STRING), 0, 0, 0, 0, (X509V3_EXT_I2S)i2s_ASN1_OCTET_STRING, (X509V3_EXT_S2I)s2i_skey_id, 0, 0, 0, 0, NULL }; char *i2s_ASN1_OCTET_STRING(X509V3_EXT_METHOD *method, const ASN1_OCTET_STRING *oct) { return OPENSSL_buf2hexstr(oct->data, oct->length); } ASN1_OCTET_STRING *s2i_ASN1_OCTET_STRING(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, const char *str) { ASN1_OCTET_STRING *oct; long length; if ((oct = ASN1_OCTET_STRING_new()) == NULL) { ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB); return NULL; } if ((oct->data = OPENSSL_hexstr2buf(str, &length)) == NULL) { ASN1_OCTET_STRING_free(oct); return NULL; } oct->length = length; return oct; } ASN1_OCTET_STRING *ossl_x509_pubkey_hash(X509_PUBKEY *pubkey) { ASN1_OCTET_STRING *oct; const unsigned char *pk; int pklen; unsigned char pkey_dig[EVP_MAX_MD_SIZE]; unsigned int diglen; const char *propq; OSSL_LIB_CTX *libctx; EVP_MD *md; if (pubkey == NULL) { ERR_raise(ERR_LIB_X509V3, X509V3_R_NO_PUBLIC_KEY); return NULL; } if (!ossl_x509_PUBKEY_get0_libctx(&libctx, &propq, pubkey)) return NULL; if ((md = EVP_MD_fetch(libctx, SN_sha1, propq)) == NULL) return NULL; if ((oct = ASN1_OCTET_STRING_new()) == NULL) { EVP_MD_free(md); return NULL; } X509_PUBKEY_get0_param(NULL, &pk, &pklen, NULL, pubkey); if (EVP_Digest(pk, pklen, pkey_dig, &diglen, md, NULL) && ASN1_OCTET_STRING_set(oct, pkey_dig, diglen)) { EVP_MD_free(md); return oct; } EVP_MD_free(md); ASN1_OCTET_STRING_free(oct); return NULL; } static ASN1_OCTET_STRING *s2i_skey_id(X509V3_EXT_METHOD *method, X509V3_CTX *ctx, char *str) { if (strcmp(str, "none") == 0) return ASN1_OCTET_STRING_new(); /* dummy */ if (strcmp(str, "hash") != 0) return s2i_ASN1_OCTET_STRING(method, ctx /* not used */, str); if (ctx != NULL && (ctx->flags & X509V3_CTX_TEST) != 0) return ASN1_OCTET_STRING_new(); if (ctx == NULL || (ctx->subject_cert == NULL && ctx->subject_req == NULL)) { ERR_raise(ERR_LIB_X509V3, X509V3_R_NO_SUBJECT_DETAILS); return NULL; } return ossl_x509_pubkey_hash(ctx->subject_cert != NULL ? ctx->subject_cert->cert_info.key : ctx->subject_req->req_info.pubkey); }
./openssl/crypto/sm4/sm4.c
/* * Copyright 2017-2022 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2017 Ribose Inc. All Rights Reserved. * Ported from Ribose contributions from Botan. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <openssl/e_os2.h> #include "crypto/sm4.h" static const uint8_t SM4_S[256] = { 0xD6, 0x90, 0xE9, 0xFE, 0xCC, 0xE1, 0x3D, 0xB7, 0x16, 0xB6, 0x14, 0xC2, 0x28, 0xFB, 0x2C, 0x05, 0x2B, 0x67, 0x9A, 0x76, 0x2A, 0xBE, 0x04, 0xC3, 0xAA, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99, 0x9C, 0x42, 0x50, 0xF4, 0x91, 0xEF, 0x98, 0x7A, 0x33, 0x54, 0x0B, 0x43, 0xED, 0xCF, 0xAC, 0x62, 0xE4, 0xB3, 0x1C, 0xA9, 0xC9, 0x08, 0xE8, 0x95, 0x80, 0xDF, 0x94, 0xFA, 0x75, 0x8F, 0x3F, 0xA6, 0x47, 0x07, 0xA7, 0xFC, 0xF3, 0x73, 0x17, 0xBA, 0x83, 0x59, 0x3C, 0x19, 0xE6, 0x85, 0x4F, 0xA8, 0x68, 0x6B, 0x81, 0xB2, 0x71, 0x64, 0xDA, 0x8B, 0xF8, 0xEB, 0x0F, 0x4B, 0x70, 0x56, 0x9D, 0x35, 0x1E, 0x24, 0x0E, 0x5E, 0x63, 0x58, 0xD1, 0xA2, 0x25, 0x22, 0x7C, 0x3B, 0x01, 0x21, 0x78, 0x87, 0xD4, 0x00, 0x46, 0x57, 0x9F, 0xD3, 0x27, 0x52, 0x4C, 0x36, 0x02, 0xE7, 0xA0, 0xC4, 0xC8, 0x9E, 0xEA, 0xBF, 0x8A, 0xD2, 0x40, 0xC7, 0x38, 0xB5, 0xA3, 0xF7, 0xF2, 0xCE, 0xF9, 0x61, 0x15, 0xA1, 0xE0, 0xAE, 0x5D, 0xA4, 0x9B, 0x34, 0x1A, 0x55, 0xAD, 0x93, 0x32, 0x30, 0xF5, 0x8C, 0xB1, 0xE3, 0x1D, 0xF6, 0xE2, 0x2E, 0x82, 0x66, 0xCA, 0x60, 0xC0, 0x29, 0x23, 0xAB, 0x0D, 0x53, 0x4E, 0x6F, 0xD5, 0xDB, 0x37, 0x45, 0xDE, 0xFD, 0x8E, 0x2F, 0x03, 0xFF, 0x6A, 0x72, 0x6D, 0x6C, 0x5B, 0x51, 0x8D, 0x1B, 0xAF, 0x92, 0xBB, 0xDD, 0xBC, 0x7F, 0x11, 0xD9, 0x5C, 0x41, 0x1F, 0x10, 0x5A, 0xD8, 0x0A, 0xC1, 0x31, 0x88, 0xA5, 0xCD, 0x7B, 0xBD, 0x2D, 0x74, 0xD0, 0x12, 0xB8, 0xE5, 0xB4, 0xB0, 0x89, 0x69, 0x97, 0x4A, 0x0C, 0x96, 0x77, 0x7E, 0x65, 0xB9, 0xF1, 0x09, 0xC5, 0x6E, 0xC6, 0x84, 0x18, 0xF0, 0x7D, 0xEC, 0x3A, 0xDC, 0x4D, 0x20, 0x79, 0xEE, 0x5F, 0x3E, 0xD7, 0xCB, 0x39, 0x48 }; /* * SM4_SBOX_T[j] == L(SM4_SBOX[j]). */ static const uint32_t SM4_SBOX_T0[256] = { 0x8ED55B5B, 0xD0924242, 0x4DEAA7A7, 0x06FDFBFB, 0xFCCF3333, 0x65E28787, 0xC93DF4F4, 0x6BB5DEDE, 0x4E165858, 0x6EB4DADA, 0x44145050, 0xCAC10B0B, 0x8828A0A0, 0x17F8EFEF, 0x9C2CB0B0, 0x11051414, 0x872BACAC, 0xFB669D9D, 0xF2986A6A, 0xAE77D9D9, 0x822AA8A8, 0x46BCFAFA, 0x14041010, 0xCFC00F0F, 0x02A8AAAA, 0x54451111, 0x5F134C4C, 0xBE269898, 0x6D482525, 0x9E841A1A, 0x1E061818, 0xFD9B6666, 0xEC9E7272, 0x4A430909, 0x10514141, 0x24F7D3D3, 0xD5934646, 0x53ECBFBF, 0xF89A6262, 0x927BE9E9, 0xFF33CCCC, 0x04555151, 0x270B2C2C, 0x4F420D0D, 0x59EEB7B7, 0xF3CC3F3F, 0x1CAEB2B2, 0xEA638989, 0x74E79393, 0x7FB1CECE, 0x6C1C7070, 0x0DABA6A6, 0xEDCA2727, 0x28082020, 0x48EBA3A3, 0xC1975656, 0x80820202, 0xA3DC7F7F, 0xC4965252, 0x12F9EBEB, 0xA174D5D5, 0xB38D3E3E, 0xC33FFCFC, 0x3EA49A9A, 0x5B461D1D, 0x1B071C1C, 0x3BA59E9E, 0x0CFFF3F3, 0x3FF0CFCF, 0xBF72CDCD, 0x4B175C5C, 0x52B8EAEA, 0x8F810E0E, 0x3D586565, 0xCC3CF0F0, 0x7D196464, 0x7EE59B9B, 0x91871616, 0x734E3D3D, 0x08AAA2A2, 0xC869A1A1, 0xC76AADAD, 0x85830606, 0x7AB0CACA, 0xB570C5C5, 0xF4659191, 0xB2D96B6B, 0xA7892E2E, 0x18FBE3E3, 0x47E8AFAF, 0x330F3C3C, 0x674A2D2D, 0xB071C1C1, 0x0E575959, 0xE99F7676, 0xE135D4D4, 0x661E7878, 0xB4249090, 0x360E3838, 0x265F7979, 0xEF628D8D, 0x38596161, 0x95D24747, 0x2AA08A8A, 0xB1259494, 0xAA228888, 0x8C7DF1F1, 0xD73BECEC, 0x05010404, 0xA5218484, 0x9879E1E1, 0x9B851E1E, 0x84D75353, 0x00000000, 0x5E471919, 0x0B565D5D, 0xE39D7E7E, 0x9FD04F4F, 0xBB279C9C, 0x1A534949, 0x7C4D3131, 0xEE36D8D8, 0x0A020808, 0x7BE49F9F, 0x20A28282, 0xD4C71313, 0xE8CB2323, 0xE69C7A7A, 0x42E9ABAB, 0x43BDFEFE, 0xA2882A2A, 0x9AD14B4B, 0x40410101, 0xDBC41F1F, 0xD838E0E0, 0x61B7D6D6, 0x2FA18E8E, 0x2BF4DFDF, 0x3AF1CBCB, 0xF6CD3B3B, 0x1DFAE7E7, 0xE5608585, 0x41155454, 0x25A38686, 0x60E38383, 0x16ACBABA, 0x295C7575, 0x34A69292, 0xF7996E6E, 0xE434D0D0, 0x721A6868, 0x01545555, 0x19AFB6B6, 0xDF914E4E, 0xFA32C8C8, 0xF030C0C0, 0x21F6D7D7, 0xBC8E3232, 0x75B3C6C6, 0x6FE08F8F, 0x691D7474, 0x2EF5DBDB, 0x6AE18B8B, 0x962EB8B8, 0x8A800A0A, 0xFE679999, 0xE2C92B2B, 0xE0618181, 0xC0C30303, 0x8D29A4A4, 0xAF238C8C, 0x07A9AEAE, 0x390D3434, 0x1F524D4D, 0x764F3939, 0xD36EBDBD, 0x81D65757, 0xB7D86F6F, 0xEB37DCDC, 0x51441515, 0xA6DD7B7B, 0x09FEF7F7, 0xB68C3A3A, 0x932FBCBC, 0x0F030C0C, 0x03FCFFFF, 0xC26BA9A9, 0xBA73C9C9, 0xD96CB5B5, 0xDC6DB1B1, 0x375A6D6D, 0x15504545, 0xB98F3636, 0x771B6C6C, 0x13ADBEBE, 0xDA904A4A, 0x57B9EEEE, 0xA9DE7777, 0x4CBEF2F2, 0x837EFDFD, 0x55114444, 0xBDDA6767, 0x2C5D7171, 0x45400505, 0x631F7C7C, 0x50104040, 0x325B6969, 0xB8DB6363, 0x220A2828, 0xC5C20707, 0xF531C4C4, 0xA88A2222, 0x31A79696, 0xF9CE3737, 0x977AEDED, 0x49BFF6F6, 0x992DB4B4, 0xA475D1D1, 0x90D34343, 0x5A124848, 0x58BAE2E2, 0x71E69797, 0x64B6D2D2, 0x70B2C2C2, 0xAD8B2626, 0xCD68A5A5, 0xCB955E5E, 0x624B2929, 0x3C0C3030, 0xCE945A5A, 0xAB76DDDD, 0x867FF9F9, 0xF1649595, 0x5DBBE6E6, 0x35F2C7C7, 0x2D092424, 0xD1C61717, 0xD66FB9B9, 0xDEC51B1B, 0x94861212, 0x78186060, 0x30F3C3C3, 0x897CF5F5, 0x5CEFB3B3, 0xD23AE8E8, 0xACDF7373, 0x794C3535, 0xA0208080, 0x9D78E5E5, 0x56EDBBBB, 0x235E7D7D, 0xC63EF8F8, 0x8BD45F5F, 0xE7C82F2F, 0xDD39E4E4, 0x68492121 }; static uint32_t SM4_SBOX_T1[256] = { 0x5B8ED55B, 0x42D09242, 0xA74DEAA7, 0xFB06FDFB, 0x33FCCF33, 0x8765E287, 0xF4C93DF4, 0xDE6BB5DE, 0x584E1658, 0xDA6EB4DA, 0x50441450, 0x0BCAC10B, 0xA08828A0, 0xEF17F8EF, 0xB09C2CB0, 0x14110514, 0xAC872BAC, 0x9DFB669D, 0x6AF2986A, 0xD9AE77D9, 0xA8822AA8, 0xFA46BCFA, 0x10140410, 0x0FCFC00F, 0xAA02A8AA, 0x11544511, 0x4C5F134C, 0x98BE2698, 0x256D4825, 0x1A9E841A, 0x181E0618, 0x66FD9B66, 0x72EC9E72, 0x094A4309, 0x41105141, 0xD324F7D3, 0x46D59346, 0xBF53ECBF, 0x62F89A62, 0xE9927BE9, 0xCCFF33CC, 0x51045551, 0x2C270B2C, 0x0D4F420D, 0xB759EEB7, 0x3FF3CC3F, 0xB21CAEB2, 0x89EA6389, 0x9374E793, 0xCE7FB1CE, 0x706C1C70, 0xA60DABA6, 0x27EDCA27, 0x20280820, 0xA348EBA3, 0x56C19756, 0x02808202, 0x7FA3DC7F, 0x52C49652, 0xEB12F9EB, 0xD5A174D5, 0x3EB38D3E, 0xFCC33FFC, 0x9A3EA49A, 0x1D5B461D, 0x1C1B071C, 0x9E3BA59E, 0xF30CFFF3, 0xCF3FF0CF, 0xCDBF72CD, 0x5C4B175C, 0xEA52B8EA, 0x0E8F810E, 0x653D5865, 0xF0CC3CF0, 0x647D1964, 0x9B7EE59B, 0x16918716, 0x3D734E3D, 0xA208AAA2, 0xA1C869A1, 0xADC76AAD, 0x06858306, 0xCA7AB0CA, 0xC5B570C5, 0x91F46591, 0x6BB2D96B, 0x2EA7892E, 0xE318FBE3, 0xAF47E8AF, 0x3C330F3C, 0x2D674A2D, 0xC1B071C1, 0x590E5759, 0x76E99F76, 0xD4E135D4, 0x78661E78, 0x90B42490, 0x38360E38, 0x79265F79, 0x8DEF628D, 0x61385961, 0x4795D247, 0x8A2AA08A, 0x94B12594, 0x88AA2288, 0xF18C7DF1, 0xECD73BEC, 0x04050104, 0x84A52184, 0xE19879E1, 0x1E9B851E, 0x5384D753, 0x00000000, 0x195E4719, 0x5D0B565D, 0x7EE39D7E, 0x4F9FD04F, 0x9CBB279C, 0x491A5349, 0x317C4D31, 0xD8EE36D8, 0x080A0208, 0x9F7BE49F, 0x8220A282, 0x13D4C713, 0x23E8CB23, 0x7AE69C7A, 0xAB42E9AB, 0xFE43BDFE, 0x2AA2882A, 0x4B9AD14B, 0x01404101, 0x1FDBC41F, 0xE0D838E0, 0xD661B7D6, 0x8E2FA18E, 0xDF2BF4DF, 0xCB3AF1CB, 0x3BF6CD3B, 0xE71DFAE7, 0x85E56085, 0x54411554, 0x8625A386, 0x8360E383, 0xBA16ACBA, 0x75295C75, 0x9234A692, 0x6EF7996E, 0xD0E434D0, 0x68721A68, 0x55015455, 0xB619AFB6, 0x4EDF914E, 0xC8FA32C8, 0xC0F030C0, 0xD721F6D7, 0x32BC8E32, 0xC675B3C6, 0x8F6FE08F, 0x74691D74, 0xDB2EF5DB, 0x8B6AE18B, 0xB8962EB8, 0x0A8A800A, 0x99FE6799, 0x2BE2C92B, 0x81E06181, 0x03C0C303, 0xA48D29A4, 0x8CAF238C, 0xAE07A9AE, 0x34390D34, 0x4D1F524D, 0x39764F39, 0xBDD36EBD, 0x5781D657, 0x6FB7D86F, 0xDCEB37DC, 0x15514415, 0x7BA6DD7B, 0xF709FEF7, 0x3AB68C3A, 0xBC932FBC, 0x0C0F030C, 0xFF03FCFF, 0xA9C26BA9, 0xC9BA73C9, 0xB5D96CB5, 0xB1DC6DB1, 0x6D375A6D, 0x45155045, 0x36B98F36, 0x6C771B6C, 0xBE13ADBE, 0x4ADA904A, 0xEE57B9EE, 0x77A9DE77, 0xF24CBEF2, 0xFD837EFD, 0x44551144, 0x67BDDA67, 0x712C5D71, 0x05454005, 0x7C631F7C, 0x40501040, 0x69325B69, 0x63B8DB63, 0x28220A28, 0x07C5C207, 0xC4F531C4, 0x22A88A22, 0x9631A796, 0x37F9CE37, 0xED977AED, 0xF649BFF6, 0xB4992DB4, 0xD1A475D1, 0x4390D343, 0x485A1248, 0xE258BAE2, 0x9771E697, 0xD264B6D2, 0xC270B2C2, 0x26AD8B26, 0xA5CD68A5, 0x5ECB955E, 0x29624B29, 0x303C0C30, 0x5ACE945A, 0xDDAB76DD, 0xF9867FF9, 0x95F16495, 0xE65DBBE6, 0xC735F2C7, 0x242D0924, 0x17D1C617, 0xB9D66FB9, 0x1BDEC51B, 0x12948612, 0x60781860, 0xC330F3C3, 0xF5897CF5, 0xB35CEFB3, 0xE8D23AE8, 0x73ACDF73, 0x35794C35, 0x80A02080, 0xE59D78E5, 0xBB56EDBB, 0x7D235E7D, 0xF8C63EF8, 0x5F8BD45F, 0x2FE7C82F, 0xE4DD39E4, 0x21684921}; static uint32_t SM4_SBOX_T2[256] = { 0x5B5B8ED5, 0x4242D092, 0xA7A74DEA, 0xFBFB06FD, 0x3333FCCF, 0x878765E2, 0xF4F4C93D, 0xDEDE6BB5, 0x58584E16, 0xDADA6EB4, 0x50504414, 0x0B0BCAC1, 0xA0A08828, 0xEFEF17F8, 0xB0B09C2C, 0x14141105, 0xACAC872B, 0x9D9DFB66, 0x6A6AF298, 0xD9D9AE77, 0xA8A8822A, 0xFAFA46BC, 0x10101404, 0x0F0FCFC0, 0xAAAA02A8, 0x11115445, 0x4C4C5F13, 0x9898BE26, 0x25256D48, 0x1A1A9E84, 0x18181E06, 0x6666FD9B, 0x7272EC9E, 0x09094A43, 0x41411051, 0xD3D324F7, 0x4646D593, 0xBFBF53EC, 0x6262F89A, 0xE9E9927B, 0xCCCCFF33, 0x51510455, 0x2C2C270B, 0x0D0D4F42, 0xB7B759EE, 0x3F3FF3CC, 0xB2B21CAE, 0x8989EA63, 0x939374E7, 0xCECE7FB1, 0x70706C1C, 0xA6A60DAB, 0x2727EDCA, 0x20202808, 0xA3A348EB, 0x5656C197, 0x02028082, 0x7F7FA3DC, 0x5252C496, 0xEBEB12F9, 0xD5D5A174, 0x3E3EB38D, 0xFCFCC33F, 0x9A9A3EA4, 0x1D1D5B46, 0x1C1C1B07, 0x9E9E3BA5, 0xF3F30CFF, 0xCFCF3FF0, 0xCDCDBF72, 0x5C5C4B17, 0xEAEA52B8, 0x0E0E8F81, 0x65653D58, 0xF0F0CC3C, 0x64647D19, 0x9B9B7EE5, 0x16169187, 0x3D3D734E, 0xA2A208AA, 0xA1A1C869, 0xADADC76A, 0x06068583, 0xCACA7AB0, 0xC5C5B570, 0x9191F465, 0x6B6BB2D9, 0x2E2EA789, 0xE3E318FB, 0xAFAF47E8, 0x3C3C330F, 0x2D2D674A, 0xC1C1B071, 0x59590E57, 0x7676E99F, 0xD4D4E135, 0x7878661E, 0x9090B424, 0x3838360E, 0x7979265F, 0x8D8DEF62, 0x61613859, 0x474795D2, 0x8A8A2AA0, 0x9494B125, 0x8888AA22, 0xF1F18C7D, 0xECECD73B, 0x04040501, 0x8484A521, 0xE1E19879, 0x1E1E9B85, 0x535384D7, 0x00000000, 0x19195E47, 0x5D5D0B56, 0x7E7EE39D, 0x4F4F9FD0, 0x9C9CBB27, 0x49491A53, 0x31317C4D, 0xD8D8EE36, 0x08080A02, 0x9F9F7BE4, 0x828220A2, 0x1313D4C7, 0x2323E8CB, 0x7A7AE69C, 0xABAB42E9, 0xFEFE43BD, 0x2A2AA288, 0x4B4B9AD1, 0x01014041, 0x1F1FDBC4, 0xE0E0D838, 0xD6D661B7, 0x8E8E2FA1, 0xDFDF2BF4, 0xCBCB3AF1, 0x3B3BF6CD, 0xE7E71DFA, 0x8585E560, 0x54544115, 0x868625A3, 0x838360E3, 0xBABA16AC, 0x7575295C, 0x929234A6, 0x6E6EF799, 0xD0D0E434, 0x6868721A, 0x55550154, 0xB6B619AF, 0x4E4EDF91, 0xC8C8FA32, 0xC0C0F030, 0xD7D721F6, 0x3232BC8E, 0xC6C675B3, 0x8F8F6FE0, 0x7474691D, 0xDBDB2EF5, 0x8B8B6AE1, 0xB8B8962E, 0x0A0A8A80, 0x9999FE67, 0x2B2BE2C9, 0x8181E061, 0x0303C0C3, 0xA4A48D29, 0x8C8CAF23, 0xAEAE07A9, 0x3434390D, 0x4D4D1F52, 0x3939764F, 0xBDBDD36E, 0x575781D6, 0x6F6FB7D8, 0xDCDCEB37, 0x15155144, 0x7B7BA6DD, 0xF7F709FE, 0x3A3AB68C, 0xBCBC932F, 0x0C0C0F03, 0xFFFF03FC, 0xA9A9C26B, 0xC9C9BA73, 0xB5B5D96C, 0xB1B1DC6D, 0x6D6D375A, 0x45451550, 0x3636B98F, 0x6C6C771B, 0xBEBE13AD, 0x4A4ADA90, 0xEEEE57B9, 0x7777A9DE, 0xF2F24CBE, 0xFDFD837E, 0x44445511, 0x6767BDDA, 0x71712C5D, 0x05054540, 0x7C7C631F, 0x40405010, 0x6969325B, 0x6363B8DB, 0x2828220A, 0x0707C5C2, 0xC4C4F531, 0x2222A88A, 0x969631A7, 0x3737F9CE, 0xEDED977A, 0xF6F649BF, 0xB4B4992D, 0xD1D1A475, 0x434390D3, 0x48485A12, 0xE2E258BA, 0x979771E6, 0xD2D264B6, 0xC2C270B2, 0x2626AD8B, 0xA5A5CD68, 0x5E5ECB95, 0x2929624B, 0x30303C0C, 0x5A5ACE94, 0xDDDDAB76, 0xF9F9867F, 0x9595F164, 0xE6E65DBB, 0xC7C735F2, 0x24242D09, 0x1717D1C6, 0xB9B9D66F, 0x1B1BDEC5, 0x12129486, 0x60607818, 0xC3C330F3, 0xF5F5897C, 0xB3B35CEF, 0xE8E8D23A, 0x7373ACDF, 0x3535794C, 0x8080A020, 0xE5E59D78, 0xBBBB56ED, 0x7D7D235E, 0xF8F8C63E, 0x5F5F8BD4, 0x2F2FE7C8, 0xE4E4DD39, 0x21216849}; static uint32_t SM4_SBOX_T3[256] = { 0xD55B5B8E, 0x924242D0, 0xEAA7A74D, 0xFDFBFB06, 0xCF3333FC, 0xE2878765, 0x3DF4F4C9, 0xB5DEDE6B, 0x1658584E, 0xB4DADA6E, 0x14505044, 0xC10B0BCA, 0x28A0A088, 0xF8EFEF17, 0x2CB0B09C, 0x05141411, 0x2BACAC87, 0x669D9DFB, 0x986A6AF2, 0x77D9D9AE, 0x2AA8A882, 0xBCFAFA46, 0x04101014, 0xC00F0FCF, 0xA8AAAA02, 0x45111154, 0x134C4C5F, 0x269898BE, 0x4825256D, 0x841A1A9E, 0x0618181E, 0x9B6666FD, 0x9E7272EC, 0x4309094A, 0x51414110, 0xF7D3D324, 0x934646D5, 0xECBFBF53, 0x9A6262F8, 0x7BE9E992, 0x33CCCCFF, 0x55515104, 0x0B2C2C27, 0x420D0D4F, 0xEEB7B759, 0xCC3F3FF3, 0xAEB2B21C, 0x638989EA, 0xE7939374, 0xB1CECE7F, 0x1C70706C, 0xABA6A60D, 0xCA2727ED, 0x08202028, 0xEBA3A348, 0x975656C1, 0x82020280, 0xDC7F7FA3, 0x965252C4, 0xF9EBEB12, 0x74D5D5A1, 0x8D3E3EB3, 0x3FFCFCC3, 0xA49A9A3E, 0x461D1D5B, 0x071C1C1B, 0xA59E9E3B, 0xFFF3F30C, 0xF0CFCF3F, 0x72CDCDBF, 0x175C5C4B, 0xB8EAEA52, 0x810E0E8F, 0x5865653D, 0x3CF0F0CC, 0x1964647D, 0xE59B9B7E, 0x87161691, 0x4E3D3D73, 0xAAA2A208, 0x69A1A1C8, 0x6AADADC7, 0x83060685, 0xB0CACA7A, 0x70C5C5B5, 0x659191F4, 0xD96B6BB2, 0x892E2EA7, 0xFBE3E318, 0xE8AFAF47, 0x0F3C3C33, 0x4A2D2D67, 0x71C1C1B0, 0x5759590E, 0x9F7676E9, 0x35D4D4E1, 0x1E787866, 0x249090B4, 0x0E383836, 0x5F797926, 0x628D8DEF, 0x59616138, 0xD2474795, 0xA08A8A2A, 0x259494B1, 0x228888AA, 0x7DF1F18C, 0x3BECECD7, 0x01040405, 0x218484A5, 0x79E1E198, 0x851E1E9B, 0xD7535384, 0x00000000, 0x4719195E, 0x565D5D0B, 0x9D7E7EE3, 0xD04F4F9F, 0x279C9CBB, 0x5349491A, 0x4D31317C, 0x36D8D8EE, 0x0208080A, 0xE49F9F7B, 0xA2828220, 0xC71313D4, 0xCB2323E8, 0x9C7A7AE6, 0xE9ABAB42, 0xBDFEFE43, 0x882A2AA2, 0xD14B4B9A, 0x41010140, 0xC41F1FDB, 0x38E0E0D8, 0xB7D6D661, 0xA18E8E2F, 0xF4DFDF2B, 0xF1CBCB3A, 0xCD3B3BF6, 0xFAE7E71D, 0x608585E5, 0x15545441, 0xA3868625, 0xE3838360, 0xACBABA16, 0x5C757529, 0xA6929234, 0x996E6EF7, 0x34D0D0E4, 0x1A686872, 0x54555501, 0xAFB6B619, 0x914E4EDF, 0x32C8C8FA, 0x30C0C0F0, 0xF6D7D721, 0x8E3232BC, 0xB3C6C675, 0xE08F8F6F, 0x1D747469, 0xF5DBDB2E, 0xE18B8B6A, 0x2EB8B896, 0x800A0A8A, 0x679999FE, 0xC92B2BE2, 0x618181E0, 0xC30303C0, 0x29A4A48D, 0x238C8CAF, 0xA9AEAE07, 0x0D343439, 0x524D4D1F, 0x4F393976, 0x6EBDBDD3, 0xD6575781, 0xD86F6FB7, 0x37DCDCEB, 0x44151551, 0xDD7B7BA6, 0xFEF7F709, 0x8C3A3AB6, 0x2FBCBC93, 0x030C0C0F, 0xFCFFFF03, 0x6BA9A9C2, 0x73C9C9BA, 0x6CB5B5D9, 0x6DB1B1DC, 0x5A6D6D37, 0x50454515, 0x8F3636B9, 0x1B6C6C77, 0xADBEBE13, 0x904A4ADA, 0xB9EEEE57, 0xDE7777A9, 0xBEF2F24C, 0x7EFDFD83, 0x11444455, 0xDA6767BD, 0x5D71712C, 0x40050545, 0x1F7C7C63, 0x10404050, 0x5B696932, 0xDB6363B8, 0x0A282822, 0xC20707C5, 0x31C4C4F5, 0x8A2222A8, 0xA7969631, 0xCE3737F9, 0x7AEDED97, 0xBFF6F649, 0x2DB4B499, 0x75D1D1A4, 0xD3434390, 0x1248485A, 0xBAE2E258, 0xE6979771, 0xB6D2D264, 0xB2C2C270, 0x8B2626AD, 0x68A5A5CD, 0x955E5ECB, 0x4B292962, 0x0C30303C, 0x945A5ACE, 0x76DDDDAB, 0x7FF9F986, 0x649595F1, 0xBBE6E65D, 0xF2C7C735, 0x0924242D, 0xC61717D1, 0x6FB9B9D6, 0xC51B1BDE, 0x86121294, 0x18606078, 0xF3C3C330, 0x7CF5F589, 0xEFB3B35C, 0x3AE8E8D2, 0xDF7373AC, 0x4C353579, 0x208080A0, 0x78E5E59D, 0xEDBBBB56, 0x5E7D7D23, 0x3EF8F8C6, 0xD45F5F8B, 0xC82F2FE7, 0x39E4E4DD, 0x49212168}; static ossl_inline uint32_t rotl(uint32_t a, uint8_t n) { return (a << n) | (a >> (32 - n)); } static ossl_inline uint32_t load_u32_be(const uint8_t *b, uint32_t n) { return ((uint32_t)b[4 * n] << 24) | ((uint32_t)b[4 * n + 1] << 16) | ((uint32_t)b[4 * n + 2] << 8) | ((uint32_t)b[4 * n + 3]); } static ossl_inline void store_u32_be(uint32_t v, uint8_t *b) { b[0] = (uint8_t)(v >> 24); b[1] = (uint8_t)(v >> 16); b[2] = (uint8_t)(v >> 8); b[3] = (uint8_t)(v); } static ossl_inline uint32_t SM4_T_non_lin_sub(uint32_t X) { uint32_t t = 0; t |= ((uint32_t)SM4_S[(uint8_t)(X >> 24)]) << 24; t |= ((uint32_t)SM4_S[(uint8_t)(X >> 16)]) << 16; t |= ((uint32_t)SM4_S[(uint8_t)(X >> 8)]) << 8; t |= SM4_S[(uint8_t)X]; return t; } static ossl_inline uint32_t SM4_T_slow(uint32_t X) { uint32_t t = SM4_T_non_lin_sub(X); /* * L linear transform */ return t ^ rotl(t, 2) ^ rotl(t, 10) ^ rotl(t, 18) ^ rotl(t, 24); } static ossl_inline uint32_t SM4_T(uint32_t X) { return SM4_SBOX_T0[(uint8_t)(X >> 24)] ^ SM4_SBOX_T1[(uint8_t)(X >> 16)] ^ SM4_SBOX_T2[(uint8_t)(X >> 8)] ^ SM4_SBOX_T3[(uint8_t)X]; } static ossl_inline uint32_t SM4_key_sub(uint32_t X) { uint32_t t = SM4_T_non_lin_sub(X); return t ^ rotl(t, 13) ^ rotl(t, 23); } int ossl_sm4_set_key(const uint8_t *key, SM4_KEY *ks) { /* * Family Key */ static const uint32_t FK[4] = { 0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc }; /* * Constant Key */ static const uint32_t CK[32] = { 0x00070E15, 0x1C232A31, 0x383F464D, 0x545B6269, 0x70777E85, 0x8C939AA1, 0xA8AFB6BD, 0xC4CBD2D9, 0xE0E7EEF5, 0xFC030A11, 0x181F262D, 0x343B4249, 0x50575E65, 0x6C737A81, 0x888F969D, 0xA4ABB2B9, 0xC0C7CED5, 0xDCE3EAF1, 0xF8FF060D, 0x141B2229, 0x30373E45, 0x4C535A61, 0x686F767D, 0x848B9299, 0xA0A7AEB5, 0xBCC3CAD1, 0xD8DFE6ED, 0xF4FB0209, 0x10171E25, 0x2C333A41, 0x484F565D, 0x646B7279 }; uint32_t K[4]; int i; K[0] = load_u32_be(key, 0) ^ FK[0]; K[1] = load_u32_be(key, 1) ^ FK[1]; K[2] = load_u32_be(key, 2) ^ FK[2]; K[3] = load_u32_be(key, 3) ^ FK[3]; for (i = 0; i < SM4_KEY_SCHEDULE; i = i + 4) { K[0] ^= SM4_key_sub(K[1] ^ K[2] ^ K[3] ^ CK[i]); K[1] ^= SM4_key_sub(K[2] ^ K[3] ^ K[0] ^ CK[i + 1]); K[2] ^= SM4_key_sub(K[3] ^ K[0] ^ K[1] ^ CK[i + 2]); K[3] ^= SM4_key_sub(K[0] ^ K[1] ^ K[2] ^ CK[i + 3]); ks->rk[i ] = K[0]; ks->rk[i + 1] = K[1]; ks->rk[i + 2] = K[2]; ks->rk[i + 3] = K[3]; } return 1; } #define SM4_RNDS(k0, k1, k2, k3, F) \ do { \ B0 ^= F(B1 ^ B2 ^ B3 ^ ks->rk[k0]); \ B1 ^= F(B0 ^ B2 ^ B3 ^ ks->rk[k1]); \ B2 ^= F(B0 ^ B1 ^ B3 ^ ks->rk[k2]); \ B3 ^= F(B0 ^ B1 ^ B2 ^ ks->rk[k3]); \ } while(0) void ossl_sm4_encrypt(const uint8_t *in, uint8_t *out, const SM4_KEY *ks) { uint32_t B0 = load_u32_be(in, 0); uint32_t B1 = load_u32_be(in, 1); uint32_t B2 = load_u32_be(in, 2); uint32_t B3 = load_u32_be(in, 3); /* * Uses byte-wise sbox in the first and last rounds to provide some * protection from cache based side channels. */ SM4_RNDS( 0, 1, 2, 3, SM4_T_slow); SM4_RNDS( 4, 5, 6, 7, SM4_T); SM4_RNDS( 8, 9, 10, 11, SM4_T); SM4_RNDS(12, 13, 14, 15, SM4_T); SM4_RNDS(16, 17, 18, 19, SM4_T); SM4_RNDS(20, 21, 22, 23, SM4_T); SM4_RNDS(24, 25, 26, 27, SM4_T); SM4_RNDS(28, 29, 30, 31, SM4_T_slow); store_u32_be(B3, out); store_u32_be(B2, out + 4); store_u32_be(B1, out + 8); store_u32_be(B0, out + 12); } void ossl_sm4_decrypt(const uint8_t *in, uint8_t *out, const SM4_KEY *ks) { uint32_t B0 = load_u32_be(in, 0); uint32_t B1 = load_u32_be(in, 1); uint32_t B2 = load_u32_be(in, 2); uint32_t B3 = load_u32_be(in, 3); SM4_RNDS(31, 30, 29, 28, SM4_T_slow); SM4_RNDS(27, 26, 25, 24, SM4_T); SM4_RNDS(23, 22, 21, 20, SM4_T); SM4_RNDS(19, 18, 17, 16, SM4_T); SM4_RNDS(15, 14, 13, 12, SM4_T); SM4_RNDS(11, 10, 9, 8, SM4_T); SM4_RNDS( 7, 6, 5, 4, SM4_T); SM4_RNDS( 3, 2, 1, 0, SM4_T_slow); store_u32_be(B3, out); store_u32_be(B2, out + 4); store_u32_be(B1, out + 8); store_u32_be(B0, out + 12); }
./openssl/crypto/async/async_err.c
/* * Generated by util/mkerr.pl DO NOT EDIT * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <openssl/err.h> #include <openssl/asyncerr.h> #include "crypto/asyncerr.h" #ifndef OPENSSL_NO_ERR static const ERR_STRING_DATA ASYNC_str_reasons[] = { {ERR_PACK(ERR_LIB_ASYNC, 0, ASYNC_R_FAILED_TO_SET_POOL), "failed to set pool"}, {ERR_PACK(ERR_LIB_ASYNC, 0, ASYNC_R_FAILED_TO_SWAP_CONTEXT), "failed to swap context"}, {ERR_PACK(ERR_LIB_ASYNC, 0, ASYNC_R_INIT_FAILED), "init failed"}, {ERR_PACK(ERR_LIB_ASYNC, 0, ASYNC_R_INVALID_POOL_SIZE), "invalid pool size"}, {0, NULL} }; #endif int ossl_err_load_ASYNC_strings(void) { #ifndef OPENSSL_NO_ERR if (ERR_reason_error_string(ASYNC_str_reasons[0].error) == NULL) ERR_load_strings_const(ASYNC_str_reasons); #endif return 1; }
./openssl/crypto/async/async.c
/* * Copyright 2015-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Without this we start getting longjmp crashes because it thinks we're jumping * up the stack when in fact we are jumping to an entirely different stack. The * cost of this is not having certain buffer overrun/underrun checks etc for * this source file :-( */ #undef _FORTIFY_SOURCE /* This must be the first #include file */ #include "async_local.h" #include <openssl/err.h> #include "crypto/cryptlib.h" #include <string.h> #define ASYNC_JOB_RUNNING 0 #define ASYNC_JOB_PAUSING 1 #define ASYNC_JOB_PAUSED 2 #define ASYNC_JOB_STOPPING 3 static CRYPTO_THREAD_LOCAL ctxkey; static CRYPTO_THREAD_LOCAL poolkey; static void async_delete_thread_state(void *arg); static async_ctx *async_ctx_new(void) { async_ctx *nctx; if (!ossl_init_thread_start(NULL, NULL, async_delete_thread_state)) return NULL; nctx = OPENSSL_malloc(sizeof(*nctx)); if (nctx == NULL) goto err; async_fibre_init_dispatcher(&nctx->dispatcher); nctx->currjob = NULL; nctx->blocked = 0; if (!CRYPTO_THREAD_set_local(&ctxkey, nctx)) goto err; return nctx; err: OPENSSL_free(nctx); return NULL; } async_ctx *async_get_ctx(void) { return (async_ctx *)CRYPTO_THREAD_get_local(&ctxkey); } static int async_ctx_free(void) { async_ctx *ctx; ctx = async_get_ctx(); if (!CRYPTO_THREAD_set_local(&ctxkey, NULL)) return 0; OPENSSL_free(ctx); return 1; } static ASYNC_JOB *async_job_new(void) { ASYNC_JOB *job = NULL; job = OPENSSL_zalloc(sizeof(*job)); if (job == NULL) return NULL; job->status = ASYNC_JOB_RUNNING; return job; } static void async_job_free(ASYNC_JOB *job) { if (job != NULL) { OPENSSL_free(job->funcargs); async_fibre_free(&job->fibrectx); OPENSSL_free(job); } } static ASYNC_JOB *async_get_pool_job(void) { ASYNC_JOB *job; async_pool *pool; pool = (async_pool *)CRYPTO_THREAD_get_local(&poolkey); if (pool == NULL) { /* * Pool has not been initialised, so init with the defaults, i.e. * no max size and no pre-created jobs */ if (ASYNC_init_thread(0, 0) == 0) return NULL; pool = (async_pool *)CRYPTO_THREAD_get_local(&poolkey); } job = sk_ASYNC_JOB_pop(pool->jobs); if (job == NULL) { /* Pool is empty */ if ((pool->max_size != 0) && (pool->curr_size >= pool->max_size)) return NULL; job = async_job_new(); if (job != NULL) { if (! async_fibre_makecontext(&job->fibrectx)) { async_job_free(job); return NULL; } pool->curr_size++; } } return job; } static void async_release_job(ASYNC_JOB *job) { async_pool *pool; pool = (async_pool *)CRYPTO_THREAD_get_local(&poolkey); if (pool == NULL) { ERR_raise(ERR_LIB_ASYNC, ERR_R_INTERNAL_ERROR); return; } OPENSSL_free(job->funcargs); job->funcargs = NULL; sk_ASYNC_JOB_push(pool->jobs, job); } void async_start_func(void) { ASYNC_JOB *job; async_ctx *ctx = async_get_ctx(); if (ctx == NULL) { ERR_raise(ERR_LIB_ASYNC, ERR_R_INTERNAL_ERROR); return; } while (1) { /* Run the job */ job = ctx->currjob; job->ret = job->func(job->funcargs); /* Stop the job */ job->status = ASYNC_JOB_STOPPING; if (!async_fibre_swapcontext(&job->fibrectx, &ctx->dispatcher, 1)) { /* * Should not happen. Getting here will close the thread...can't do * much about it */ ERR_raise(ERR_LIB_ASYNC, ASYNC_R_FAILED_TO_SWAP_CONTEXT); } } } int ASYNC_start_job(ASYNC_JOB **job, ASYNC_WAIT_CTX *wctx, int *ret, int (*func)(void *), void *args, size_t size) { async_ctx *ctx; OSSL_LIB_CTX *libctx; if (!OPENSSL_init_crypto(OPENSSL_INIT_ASYNC, NULL)) return ASYNC_ERR; ctx = async_get_ctx(); if (ctx == NULL) ctx = async_ctx_new(); if (ctx == NULL) return ASYNC_ERR; if (*job != NULL) ctx->currjob = *job; for (;;) { if (ctx->currjob != NULL) { if (ctx->currjob->status == ASYNC_JOB_STOPPING) { *ret = ctx->currjob->ret; ctx->currjob->waitctx = NULL; async_release_job(ctx->currjob); ctx->currjob = NULL; *job = NULL; return ASYNC_FINISH; } if (ctx->currjob->status == ASYNC_JOB_PAUSING) { *job = ctx->currjob; ctx->currjob->status = ASYNC_JOB_PAUSED; ctx->currjob = NULL; return ASYNC_PAUSE; } if (ctx->currjob->status == ASYNC_JOB_PAUSED) { if (*job == NULL) return ASYNC_ERR; ctx->currjob = *job; /* * Restore the default libctx to what it was the last time the * fibre ran */ libctx = OSSL_LIB_CTX_set0_default(ctx->currjob->libctx); if (libctx == NULL) { /* Failed to set the default context */ ERR_raise(ERR_LIB_ASYNC, ERR_R_INTERNAL_ERROR); goto err; } /* Resume previous job */ if (!async_fibre_swapcontext(&ctx->dispatcher, &ctx->currjob->fibrectx, 1)) { ctx->currjob->libctx = OSSL_LIB_CTX_set0_default(libctx); ERR_raise(ERR_LIB_ASYNC, ASYNC_R_FAILED_TO_SWAP_CONTEXT); goto err; } /* * In case the fibre changed the default libctx we set it back * again to what it was originally, and remember what it had * been changed to. */ ctx->currjob->libctx = OSSL_LIB_CTX_set0_default(libctx); continue; } /* Should not happen */ ERR_raise(ERR_LIB_ASYNC, ERR_R_INTERNAL_ERROR); async_release_job(ctx->currjob); ctx->currjob = NULL; *job = NULL; return ASYNC_ERR; } /* Start a new job */ if ((ctx->currjob = async_get_pool_job()) == NULL) return ASYNC_NO_JOBS; if (args != NULL) { ctx->currjob->funcargs = OPENSSL_malloc(size); if (ctx->currjob->funcargs == NULL) { async_release_job(ctx->currjob); ctx->currjob = NULL; return ASYNC_ERR; } memcpy(ctx->currjob->funcargs, args, size); } else { ctx->currjob->funcargs = NULL; } ctx->currjob->func = func; ctx->currjob->waitctx = wctx; libctx = ossl_lib_ctx_get_concrete(NULL); if (!async_fibre_swapcontext(&ctx->dispatcher, &ctx->currjob->fibrectx, 1)) { ERR_raise(ERR_LIB_ASYNC, ASYNC_R_FAILED_TO_SWAP_CONTEXT); goto err; } /* * In case the fibre changed the default libctx we set it back again * to what it was, and remember what it had been changed to. */ ctx->currjob->libctx = OSSL_LIB_CTX_set0_default(libctx); } err: async_release_job(ctx->currjob); ctx->currjob = NULL; *job = NULL; return ASYNC_ERR; } int ASYNC_pause_job(void) { ASYNC_JOB *job; async_ctx *ctx = async_get_ctx(); if (ctx == NULL || ctx->currjob == NULL || ctx->blocked) { /* * Could be we've deliberately not been started within a job so this is * counted as success. */ return 1; } job = ctx->currjob; job->status = ASYNC_JOB_PAUSING; if (!async_fibre_swapcontext(&job->fibrectx, &ctx->dispatcher, 1)) { ERR_raise(ERR_LIB_ASYNC, ASYNC_R_FAILED_TO_SWAP_CONTEXT); return 0; } /* Reset counts of added and deleted fds */ async_wait_ctx_reset_counts(job->waitctx); return 1; } static void async_empty_pool(async_pool *pool) { ASYNC_JOB *job; if (pool == NULL || pool->jobs == NULL) return; do { job = sk_ASYNC_JOB_pop(pool->jobs); async_job_free(job); } while (job); } int async_init(void) { if (!CRYPTO_THREAD_init_local(&ctxkey, NULL)) return 0; if (!CRYPTO_THREAD_init_local(&poolkey, NULL)) { CRYPTO_THREAD_cleanup_local(&ctxkey); return 0; } return async_local_init(); } void async_deinit(void) { CRYPTO_THREAD_cleanup_local(&ctxkey); CRYPTO_THREAD_cleanup_local(&poolkey); async_local_deinit(); } int ASYNC_init_thread(size_t max_size, size_t init_size) { async_pool *pool; size_t curr_size = 0; if (init_size > max_size) { ERR_raise(ERR_LIB_ASYNC, ASYNC_R_INVALID_POOL_SIZE); return 0; } if (!OPENSSL_init_crypto(OPENSSL_INIT_ASYNC, NULL)) return 0; if (!ossl_init_thread_start(NULL, NULL, async_delete_thread_state)) return 0; pool = OPENSSL_zalloc(sizeof(*pool)); if (pool == NULL) return 0; pool->jobs = sk_ASYNC_JOB_new_reserve(NULL, init_size); if (pool->jobs == NULL) { ERR_raise(ERR_LIB_ASYNC, ERR_R_CRYPTO_LIB); OPENSSL_free(pool); return 0; } pool->max_size = max_size; /* Pre-create jobs as required */ while (init_size--) { ASYNC_JOB *job; job = async_job_new(); if (job == NULL || !async_fibre_makecontext(&job->fibrectx)) { /* * Not actually fatal because we already created the pool, just * skip creation of any more jobs */ async_job_free(job); break; } job->funcargs = NULL; sk_ASYNC_JOB_push(pool->jobs, job); /* Cannot fail due to reserve */ curr_size++; } pool->curr_size = curr_size; if (!CRYPTO_THREAD_set_local(&poolkey, pool)) { ERR_raise(ERR_LIB_ASYNC, ASYNC_R_FAILED_TO_SET_POOL); goto err; } return 1; err: async_empty_pool(pool); sk_ASYNC_JOB_free(pool->jobs); OPENSSL_free(pool); return 0; } static void async_delete_thread_state(void *arg) { async_pool *pool = (async_pool *)CRYPTO_THREAD_get_local(&poolkey); if (pool != NULL) { async_empty_pool(pool); sk_ASYNC_JOB_free(pool->jobs); OPENSSL_free(pool); CRYPTO_THREAD_set_local(&poolkey, NULL); } async_local_cleanup(); async_ctx_free(); } void ASYNC_cleanup_thread(void) { if (!OPENSSL_init_crypto(OPENSSL_INIT_ASYNC, NULL)) return; async_delete_thread_state(NULL); } ASYNC_JOB *ASYNC_get_current_job(void) { async_ctx *ctx; if (!OPENSSL_init_crypto(OPENSSL_INIT_ASYNC, NULL)) return NULL; ctx = async_get_ctx(); if (ctx == NULL) return NULL; return ctx->currjob; } ASYNC_WAIT_CTX *ASYNC_get_wait_ctx(ASYNC_JOB *job) { return job->waitctx; } void ASYNC_block_pause(void) { async_ctx *ctx; if (!OPENSSL_init_crypto(OPENSSL_INIT_ASYNC, NULL)) return; ctx = async_get_ctx(); if (ctx == NULL || ctx->currjob == NULL) { /* * We're not in a job anyway so ignore this */ return; } ctx->blocked++; } void ASYNC_unblock_pause(void) { async_ctx *ctx; if (!OPENSSL_init_crypto(OPENSSL_INIT_ASYNC, NULL)) return; ctx = async_get_ctx(); if (ctx == NULL || ctx->currjob == NULL) { /* * We're not in a job anyway so ignore this */ return; } if (ctx->blocked > 0) ctx->blocked--; }
./openssl/crypto/async/async_local.h
/* * Copyright 2015-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Must do this before including any header files, because on MacOS/X <stlib.h> * includes <signal.h> which includes <ucontext.h> */ #if defined(__APPLE__) && defined(__MACH__) && !defined(_XOPEN_SOURCE) # define _XOPEN_SOURCE /* Otherwise incomplete ucontext_t structure */ # pragma GCC diagnostic ignored "-Wdeprecated-declarations" #endif #if defined(_WIN32) # include <windows.h> #endif #include "crypto/async.h" #include <openssl/crypto.h> typedef struct async_ctx_st async_ctx; typedef struct async_pool_st async_pool; #include "arch/async_win.h" #include "arch/async_posix.h" #include "arch/async_null.h" struct async_ctx_st { async_fibre dispatcher; ASYNC_JOB *currjob; unsigned int blocked; }; struct async_job_st { async_fibre fibrectx; int (*func) (void *); void *funcargs; int ret; int status; ASYNC_WAIT_CTX *waitctx; OSSL_LIB_CTX *libctx; }; struct fd_lookup_st { const void *key; OSSL_ASYNC_FD fd; void *custom_data; void (*cleanup)(ASYNC_WAIT_CTX *, const void *, OSSL_ASYNC_FD, void *); int add; int del; struct fd_lookup_st *next; }; struct async_wait_ctx_st { struct fd_lookup_st *fds; size_t numadd; size_t numdel; ASYNC_callback_fn callback; void *callback_arg; int status; }; DEFINE_STACK_OF(ASYNC_JOB) struct async_pool_st { STACK_OF(ASYNC_JOB) *jobs; size_t curr_size; size_t max_size; }; void async_local_cleanup(void); void async_start_func(void); async_ctx *async_get_ctx(void); void async_wait_ctx_reset_counts(ASYNC_WAIT_CTX *ctx);
./openssl/crypto/async/async_wait.c
/* * Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* This must be the first #include file */ #include "async_local.h" #include <openssl/err.h> ASYNC_WAIT_CTX *ASYNC_WAIT_CTX_new(void) { return OPENSSL_zalloc(sizeof(ASYNC_WAIT_CTX)); } void ASYNC_WAIT_CTX_free(ASYNC_WAIT_CTX *ctx) { struct fd_lookup_st *curr; struct fd_lookup_st *next; if (ctx == NULL) return; curr = ctx->fds; while (curr != NULL) { if (!curr->del) { /* Only try and cleanup if it hasn't been marked deleted */ if (curr->cleanup != NULL) curr->cleanup(ctx, curr->key, curr->fd, curr->custom_data); } /* Always free the fd_lookup_st */ next = curr->next; OPENSSL_free(curr); curr = next; } OPENSSL_free(ctx); } int ASYNC_WAIT_CTX_set_wait_fd(ASYNC_WAIT_CTX *ctx, const void *key, OSSL_ASYNC_FD fd, void *custom_data, void (*cleanup)(ASYNC_WAIT_CTX *, const void *, OSSL_ASYNC_FD, void *)) { struct fd_lookup_st *fdlookup; if ((fdlookup = OPENSSL_zalloc(sizeof(*fdlookup))) == NULL) return 0; fdlookup->key = key; fdlookup->fd = fd; fdlookup->custom_data = custom_data; fdlookup->cleanup = cleanup; fdlookup->add = 1; fdlookup->next = ctx->fds; ctx->fds = fdlookup; ctx->numadd++; return 1; } int ASYNC_WAIT_CTX_get_fd(ASYNC_WAIT_CTX *ctx, const void *key, OSSL_ASYNC_FD *fd, void **custom_data) { struct fd_lookup_st *curr; curr = ctx->fds; while (curr != NULL) { if (curr->del) { /* This one has been marked deleted so do nothing */ curr = curr->next; continue; } if (curr->key == key) { *fd = curr->fd; *custom_data = curr->custom_data; return 1; } curr = curr->next; } return 0; } int ASYNC_WAIT_CTX_get_all_fds(ASYNC_WAIT_CTX *ctx, OSSL_ASYNC_FD *fd, size_t *numfds) { struct fd_lookup_st *curr; curr = ctx->fds; *numfds = 0; while (curr != NULL) { if (curr->del) { /* This one has been marked deleted so do nothing */ curr = curr->next; continue; } if (fd != NULL) { *fd = curr->fd; fd++; } (*numfds)++; curr = curr->next; } return 1; } int ASYNC_WAIT_CTX_get_changed_fds(ASYNC_WAIT_CTX *ctx, OSSL_ASYNC_FD *addfd, size_t *numaddfds, OSSL_ASYNC_FD *delfd, size_t *numdelfds) { struct fd_lookup_st *curr; *numaddfds = ctx->numadd; *numdelfds = ctx->numdel; if (addfd == NULL && delfd == NULL) return 1; curr = ctx->fds; while (curr != NULL) { /* We ignore fds that have been marked as both added and deleted */ if (curr->del && !curr->add && (delfd != NULL)) { *delfd = curr->fd; delfd++; } if (curr->add && !curr->del && (addfd != NULL)) { *addfd = curr->fd; addfd++; } curr = curr->next; } return 1; } int ASYNC_WAIT_CTX_clear_fd(ASYNC_WAIT_CTX *ctx, const void *key) { struct fd_lookup_st *curr, *prev; curr = ctx->fds; prev = NULL; while (curr != NULL) { if (curr->del == 1) { /* This one has been marked deleted already so do nothing */ prev = curr; curr = curr->next; continue; } if (curr->key == key) { /* If fd has just been added, remove it from the list */ if (curr->add == 1) { if (ctx->fds == curr) { ctx->fds = curr->next; } else { prev->next = curr->next; } /* It is responsibility of the caller to cleanup before calling * ASYNC_WAIT_CTX_clear_fd */ OPENSSL_free(curr); ctx->numadd--; return 1; } /* * Mark it as deleted. We don't call cleanup if explicitly asked * to clear an fd. We assume the caller is going to do that (if * appropriate). */ curr->del = 1; ctx->numdel++; return 1; } prev = curr; curr = curr->next; } return 0; } int ASYNC_WAIT_CTX_set_callback(ASYNC_WAIT_CTX *ctx, ASYNC_callback_fn callback, void *callback_arg) { if (ctx == NULL) return 0; ctx->callback = callback; ctx->callback_arg = callback_arg; return 1; } int ASYNC_WAIT_CTX_get_callback(ASYNC_WAIT_CTX *ctx, ASYNC_callback_fn *callback, void **callback_arg) { if (ctx->callback == NULL) return 0; *callback = ctx->callback; *callback_arg = ctx->callback_arg; return 1; } int ASYNC_WAIT_CTX_set_status(ASYNC_WAIT_CTX *ctx, int status) { ctx->status = status; return 1; } int ASYNC_WAIT_CTX_get_status(ASYNC_WAIT_CTX *ctx) { return ctx->status; } void async_wait_ctx_reset_counts(ASYNC_WAIT_CTX *ctx) { struct fd_lookup_st *curr, *prev = NULL; ctx->numadd = 0; ctx->numdel = 0; curr = ctx->fds; while (curr != NULL) { if (curr->del) { if (prev == NULL) ctx->fds = curr->next; else prev->next = curr->next; OPENSSL_free(curr); if (prev == NULL) curr = ctx->fds; else curr = prev->next; continue; } if (curr->add) { curr->add = 0; } prev = curr; curr = curr->next; } }
./openssl/crypto/async/arch/async_win.h
/* * Copyright 2015-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * This is the same detection used in cryptlib to set up the thread local * storage that we depend on, so just copy that */ #if defined(_WIN32) && !defined(OPENSSL_NO_ASYNC) #include <openssl/async.h> # define ASYNC_WIN # define ASYNC_ARCH # include <windows.h> # include "internal/cryptlib.h" typedef struct async_fibre_st { LPVOID fibre; int converted; } async_fibre; # define async_fibre_swapcontext(o,n,r) \ (SwitchToFiber((n)->fibre), 1) # if defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x600 # define async_fibre_makecontext(c) \ ((c)->fibre = CreateFiberEx(0, 0, FIBER_FLAG_FLOAT_SWITCH, \ async_start_func_win, 0)) # else # define async_fibre_makecontext(c) \ ((c)->fibre = CreateFiber(0, async_start_func_win, 0)) # endif # define async_fibre_free(f) (DeleteFiber((f)->fibre)) # define async_local_init() 1 # define async_local_deinit() int async_fibre_init_dispatcher(async_fibre *fibre); VOID CALLBACK async_start_func_win(PVOID unused); #endif
./openssl/crypto/async/arch/async_win.c
/* * Copyright 2015-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* This must be the first #include file */ #include "../async_local.h" #ifdef ASYNC_WIN # include <windows.h> # include "internal/cryptlib.h" int ASYNC_is_capable(void) { return 1; } int ASYNC_set_mem_functions(ASYNC_stack_alloc_fn alloc_fn, ASYNC_stack_free_fn free_fn) { return 0; } void ASYNC_get_mem_functions(ASYNC_stack_alloc_fn *alloc_fn, ASYNC_stack_free_fn *free_fn) { if (alloc_fn != NULL) *alloc_fn = NULL; if (free_fn != NULL) *free_fn = NULL; } void async_local_cleanup(void) { async_ctx *ctx = async_get_ctx(); if (ctx != NULL) { async_fibre *fibre = &ctx->dispatcher; if (fibre != NULL && fibre->fibre != NULL && fibre->converted) { ConvertFiberToThread(); fibre->fibre = NULL; } } } int async_fibre_init_dispatcher(async_fibre *fibre) { # if defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x600 fibre->fibre = ConvertThreadToFiberEx(NULL, FIBER_FLAG_FLOAT_SWITCH); # else fibre->fibre = ConvertThreadToFiber(NULL); # endif if (fibre->fibre == NULL) { fibre->converted = 0; fibre->fibre = GetCurrentFiber(); if (fibre->fibre == NULL) return 0; } else { fibre->converted = 1; } return 1; } VOID CALLBACK async_start_func_win(PVOID unused) { async_start_func(); } #endif
./openssl/crypto/async/arch/async_posix.h
/* * Copyright 2015-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_CRYPTO_ASYNC_POSIX_H #define OSSL_CRYPTO_ASYNC_POSIX_H #include <openssl/e_os2.h> #if defined(OPENSSL_SYS_UNIX) \ && defined(OPENSSL_THREADS) && !defined(OPENSSL_NO_ASYNC) \ && !defined(__ANDROID__) && !defined(__OpenBSD__) # include <unistd.h> # if _POSIX_VERSION >= 200112L \ && (_POSIX_VERSION < 200809L || defined(__GLIBC__)) # include <pthread.h> # define ASYNC_POSIX # define ASYNC_ARCH # if defined(__CET__) || defined(__ia64__) /* * When Intel CET is enabled, makecontext will create a different * shadow stack for each context. async_fibre_swapcontext cannot * use _longjmp. It must call swapcontext to swap shadow stack as * well as normal stack. * On IA64 the register stack engine is not saved across setjmp/longjmp. Here * swapcontext() performs correctly. */ # define USE_SWAPCONTEXT # endif # if defined(__aarch64__) && defined(__clang__) \ && defined(__ARM_FEATURE_BTI_DEFAULT) && __ARM_FEATURE_BTI_DEFAULT == 1 /* * setjmp/longjmp don't currently work with BTI on all libc implementations * when compiled by clang. This is because clang doesn't put a BTI after the * call to setjmp where it returns the second time. This then fails on libc * implementations - notably glibc - which use an indirect jump to there. * So use the swapcontext implementation, which does work. * See https://github.com/llvm/llvm-project/issues/48888. */ # define USE_SWAPCONTEXT # endif # include <ucontext.h> # ifndef USE_SWAPCONTEXT # include <setjmp.h> # endif typedef struct async_fibre_st { ucontext_t fibre; # ifndef USE_SWAPCONTEXT jmp_buf env; int env_init; # endif } async_fibre; int async_local_init(void); void async_local_deinit(void); static ossl_inline int async_fibre_swapcontext(async_fibre *o, async_fibre *n, int r) { # ifdef USE_SWAPCONTEXT swapcontext(&o->fibre, &n->fibre); # else o->env_init = 1; if (!r || !_setjmp(o->env)) { if (n->env_init) _longjmp(n->env, 1); else setcontext(&n->fibre); } # endif return 1; } # define async_fibre_init_dispatcher(d) int async_fibre_makecontext(async_fibre *fibre); void async_fibre_free(async_fibre *fibre); # endif #endif #endif /* OSSL_CRYPTO_ASYNC_POSIX_H */
./openssl/crypto/async/arch/async_posix.c
/* * Copyright 2015-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* This must be the first #include file */ #include "../async_local.h" #ifdef ASYNC_POSIX # include <stddef.h> # include <unistd.h> # include <openssl/err.h> # include <openssl/crypto.h> #define STACKSIZE 32768 static CRYPTO_RWLOCK *async_mem_lock; static void *async_stack_alloc(size_t *num); static void async_stack_free(void *addr); int async_local_init(void) { async_mem_lock = CRYPTO_THREAD_lock_new(); return async_mem_lock != NULL; } void async_local_deinit(void) { CRYPTO_THREAD_lock_free(async_mem_lock); } static int allow_customize = 1; static ASYNC_stack_alloc_fn stack_alloc_impl = async_stack_alloc; static ASYNC_stack_free_fn stack_free_impl = async_stack_free; int ASYNC_is_capable(void) { ucontext_t ctx; /* * Some platforms provide getcontext() but it does not work (notably * MacOSX PPC64). Check for a working getcontext(); */ return getcontext(&ctx) == 0; } int ASYNC_set_mem_functions(ASYNC_stack_alloc_fn alloc_fn, ASYNC_stack_free_fn free_fn) { OPENSSL_init_crypto(OPENSSL_INIT_ASYNC, NULL); if (!CRYPTO_THREAD_write_lock(async_mem_lock)) return 0; if (!allow_customize) { CRYPTO_THREAD_unlock(async_mem_lock); return 0; } CRYPTO_THREAD_unlock(async_mem_lock); if (alloc_fn != NULL) stack_alloc_impl = alloc_fn; if (free_fn != NULL) stack_free_impl = free_fn; return 1; } void ASYNC_get_mem_functions(ASYNC_stack_alloc_fn *alloc_fn, ASYNC_stack_free_fn *free_fn) { if (alloc_fn != NULL) *alloc_fn = stack_alloc_impl; if (free_fn != NULL) *free_fn = stack_free_impl; } static void *async_stack_alloc(size_t *num) { return OPENSSL_malloc(*num); } static void async_stack_free(void *addr) { OPENSSL_free(addr); } void async_local_cleanup(void) { } int async_fibre_makecontext(async_fibre *fibre) { #ifndef USE_SWAPCONTEXT fibre->env_init = 0; #endif if (getcontext(&fibre->fibre) == 0) { size_t num = STACKSIZE; /* * Disallow customisation after the first * stack is allocated. */ if (allow_customize) { if (!CRYPTO_THREAD_write_lock(async_mem_lock)) return 0; allow_customize = 0; CRYPTO_THREAD_unlock(async_mem_lock); } fibre->fibre.uc_stack.ss_sp = stack_alloc_impl(&num); if (fibre->fibre.uc_stack.ss_sp != NULL) { fibre->fibre.uc_stack.ss_size = num; fibre->fibre.uc_link = NULL; makecontext(&fibre->fibre, async_start_func, 0); return 1; } } else { fibre->fibre.uc_stack.ss_sp = NULL; } return 0; } void async_fibre_free(async_fibre *fibre) { stack_free_impl(fibre->fibre.uc_stack.ss_sp); fibre->fibre.uc_stack.ss_sp = NULL; } #endif
./openssl/crypto/async/arch/async_null.c
/* * Copyright 2015-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* This must be the first #include file */ #include "../async_local.h" #ifdef ASYNC_NULL int ASYNC_is_capable(void) { return 0; } int ASYNC_set_mem_functions(ASYNC_stack_alloc_fn alloc_fn, ASYNC_stack_free_fn free_fn) { return 0; } void ASYNC_get_mem_functions(ASYNC_stack_alloc_fn *alloc_fn, ASYNC_stack_free_fn *free_fn) { if (alloc_fn != NULL) *alloc_fn = NULL; if (free_fn != NULL) *free_fn = NULL; } void async_local_cleanup(void) { } #endif
./openssl/crypto/async/arch/async_null.h
/* * Copyright 2015-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <openssl/async.h> /* * If we haven't managed to detect any other async architecture then we default * to NULL. */ #ifndef ASYNC_ARCH # define ASYNC_NULL # define ASYNC_ARCH typedef struct async_fibre_st { int dummy; } async_fibre; # define async_fibre_swapcontext(o,n,r) 0 # define async_fibre_makecontext(c) 0 # define async_fibre_free(f) # define async_fibre_init_dispatcher(f) # define async_local_init() 1 # define async_local_deinit() #endif
./openssl/crypto/err/err_blocks.c
/* * Copyright 2019-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #define OSSL_FORCE_ERR_STATE #include <string.h> #include <openssl/err.h> #include "err_local.h" void ERR_new(void) { ERR_STATE *es; es = ossl_err_get_state_int(); if (es == NULL) return; /* Allocate a slot */ err_get_slot(es); err_clear(es, es->top, 0); } void ERR_set_debug(const char *file, int line, const char *func) { ERR_STATE *es; es = ossl_err_get_state_int(); if (es == NULL) return; err_set_debug(es, es->top, file, line, func); } void ERR_set_error(int lib, int reason, const char *fmt, ...) { va_list args; va_start(args, fmt); ERR_vset_error(lib, reason, fmt, args); va_end(args); } void ERR_vset_error(int lib, int reason, const char *fmt, va_list args) { ERR_STATE *es; char *buf = NULL; size_t buf_size = 0; unsigned long flags = 0; size_t i; es = ossl_err_get_state_int(); if (es == NULL) return; i = es->top; if (fmt != NULL) { int printed_len = 0; char *rbuf = NULL; buf = es->err_data[i]; buf_size = es->err_data_size[i]; /* * To protect the string we just grabbed from tampering by other * functions we may call, or to protect them from freeing a pointer * that may no longer be valid at that point, we clear away the * data pointer and the flags. We will set them again at the end * of this function. */ es->err_data[i] = NULL; es->err_data_flags[i] = 0; /* * Try to maximize the space available. If that fails, we use what * we have. */ if (buf_size < ERR_MAX_DATA_SIZE && (rbuf = OPENSSL_realloc(buf, ERR_MAX_DATA_SIZE)) != NULL) { buf = rbuf; buf_size = ERR_MAX_DATA_SIZE; } if (buf != NULL) { printed_len = BIO_vsnprintf(buf, buf_size, fmt, args); } if (printed_len < 0) printed_len = 0; if (buf != NULL) buf[printed_len] = '\0'; /* * Try to reduce the size, but only if we maximized above. If that * fails, we keep what we have. * (According to documentation, realloc leaves the old buffer untouched * if it fails) */ if ((rbuf = OPENSSL_realloc(buf, printed_len + 1)) != NULL) { buf = rbuf; buf_size = printed_len + 1; buf[printed_len] = '\0'; } if (buf != NULL) flags = ERR_TXT_MALLOCED | ERR_TXT_STRING; } err_clear_data(es, es->top, 0); err_set_error(es, es->top, lib, reason); if (fmt != NULL) err_set_data(es, es->top, buf, buf_size, flags); }
./openssl/crypto/err/err_all.c
/* * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdio.h> #include <openssl/err.h> #include "crypto/err.h" #include "crypto/cryptoerr.h" #include "crypto/asn1err.h" #include "crypto/bnerr.h" #include "crypto/ecerr.h" #include "crypto/buffererr.h" #include "crypto/bioerr.h" #include "crypto/comperr.h" #include "crypto/rsaerr.h" #include "crypto/dherr.h" #include "crypto/dsaerr.h" #include "crypto/evperr.h" #include "crypto/objectserr.h" #include "crypto/pemerr.h" #include "crypto/pkcs7err.h" #include "crypto/x509err.h" #include "crypto/x509v3err.h" #include "crypto/conferr.h" #include "crypto/pkcs12err.h" #include "crypto/randerr.h" #include "internal/dsoerr.h" #include "crypto/engineerr.h" #include "crypto/uierr.h" #include "crypto/httperr.h" #include "crypto/ocsperr.h" #include "crypto/tserr.h" #include "crypto/cmserr.h" #include "crypto/crmferr.h" #include "crypto/cmperr.h" #include "crypto/cterr.h" #include "crypto/asyncerr.h" #include "crypto/storeerr.h" #include "crypto/esserr.h" #include "internal/propertyerr.h" #include "prov/proverr.h" int ossl_err_load_crypto_strings(void) { if (0 #ifndef OPENSSL_NO_ERR || ossl_err_load_ERR_strings() == 0 /* include error strings for SYSerr */ || ossl_err_load_BN_strings() == 0 || ossl_err_load_RSA_strings() == 0 # ifndef OPENSSL_NO_DH || ossl_err_load_DH_strings() == 0 # endif || ossl_err_load_EVP_strings() == 0 || ossl_err_load_BUF_strings() == 0 || ossl_err_load_OBJ_strings() == 0 || ossl_err_load_PEM_strings() == 0 # ifndef OPENSSL_NO_DSA || ossl_err_load_DSA_strings() == 0 # endif || ossl_err_load_X509_strings() == 0 || ossl_err_load_ASN1_strings() == 0 || ossl_err_load_CONF_strings() == 0 || ossl_err_load_CRYPTO_strings() == 0 # ifndef OPENSSL_NO_COMP || ossl_err_load_COMP_strings() == 0 # endif # ifndef OPENSSL_NO_EC || ossl_err_load_EC_strings() == 0 # endif /* skip ossl_err_load_SSL_strings() because it is not in this library */ || ossl_err_load_BIO_strings() == 0 || ossl_err_load_PKCS7_strings() == 0 || ossl_err_load_X509V3_strings() == 0 || ossl_err_load_PKCS12_strings() == 0 || ossl_err_load_RAND_strings() == 0 || ossl_err_load_DSO_strings() == 0 # ifndef OPENSSL_NO_TS || ossl_err_load_TS_strings() == 0 # endif # ifndef OPENSSL_NO_ENGINE || ossl_err_load_ENGINE_strings() == 0 # endif # ifndef OPENSSL_NO_HTTP || ossl_err_load_HTTP_strings() == 0 # endif # ifndef OPENSSL_NO_OCSP || ossl_err_load_OCSP_strings() == 0 # endif || ossl_err_load_UI_strings() == 0 # ifndef OPENSSL_NO_CMS || ossl_err_load_CMS_strings() == 0 # endif # ifndef OPENSSL_NO_CRMF || ossl_err_load_CRMF_strings() == 0 || ossl_err_load_CMP_strings() == 0 # endif # ifndef OPENSSL_NO_CT || ossl_err_load_CT_strings() == 0 # endif || ossl_err_load_ESS_strings() == 0 || ossl_err_load_ASYNC_strings() == 0 || ossl_err_load_OSSL_STORE_strings() == 0 || ossl_err_load_PROP_strings() == 0 || ossl_err_load_PROV_strings() == 0 #endif ) return 0; return 1; }
./openssl/crypto/err/err_mark.c
/* * Copyright 2003-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #define OSSL_FORCE_ERR_STATE #include <openssl/err.h> #include "err_local.h" int ERR_set_mark(void) { ERR_STATE *es; es = ossl_err_get_state_int(); if (es == NULL) return 0; if (es->bottom == es->top) return 0; es->err_marks[es->top]++; return 1; } int ERR_pop(void) { ERR_STATE *es; es = ossl_err_get_state_int(); if (es == NULL || es->bottom == es->top) return 0; err_clear(es, es->top, 0); es->top = es->top > 0 ? es->top - 1 : ERR_NUM_ERRORS - 1; return 1; } int ERR_pop_to_mark(void) { ERR_STATE *es; es = ossl_err_get_state_int(); if (es == NULL) return 0; while (es->bottom != es->top && es->err_marks[es->top] == 0) { err_clear(es, es->top, 0); es->top = es->top > 0 ? es->top - 1 : ERR_NUM_ERRORS - 1; } if (es->bottom == es->top) return 0; es->err_marks[es->top]--; return 1; } int ERR_count_to_mark(void) { ERR_STATE *es; int count = 0, top; es = ossl_err_get_state_int(); if (es == NULL) return 0; top = es->top; while (es->bottom != top && es->err_marks[top] == 0) { ++count; top = top > 0 ? top - 1 : ERR_NUM_ERRORS - 1; } return count; } int ERR_clear_last_mark(void) { ERR_STATE *es; int top; es = ossl_err_get_state_int(); if (es == NULL) return 0; top = es->top; while (es->bottom != top && es->err_marks[top] == 0) { top = top > 0 ? top - 1 : ERR_NUM_ERRORS - 1; } if (es->bottom == top) return 0; es->err_marks[top]--; return 1; }
./openssl/crypto/err/err_local.h
/* * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <string.h> #include <openssl/err.h> #include <openssl/e_os2.h> static ossl_inline void err_get_slot(ERR_STATE *es) { es->top = (es->top + 1) % ERR_NUM_ERRORS; if (es->top == es->bottom) es->bottom = (es->bottom + 1) % ERR_NUM_ERRORS; } static ossl_inline void err_clear_data(ERR_STATE *es, size_t i, int deall) { if (es->err_data_flags[i] & ERR_TXT_MALLOCED) { if (deall) { OPENSSL_free(es->err_data[i]); es->err_data[i] = NULL; es->err_data_size[i] = 0; es->err_data_flags[i] = 0; } else if (es->err_data[i] != NULL) { es->err_data[i][0] = '\0'; es->err_data_flags[i] = ERR_TXT_MALLOCED; } } else { es->err_data[i] = NULL; es->err_data_size[i] = 0; es->err_data_flags[i] = 0; } } static ossl_inline void err_set_error(ERR_STATE *es, size_t i, int lib, int reason) { es->err_buffer[i] = lib == ERR_LIB_SYS ? (unsigned int)(ERR_SYSTEM_FLAG | reason) : ERR_PACK(lib, 0, reason); } static ossl_inline void err_set_debug(ERR_STATE *es, size_t i, const char *file, int line, const char *fn) { /* * We dup the file and fn strings because they may be provider owned. If the * provider gets unloaded, they may not be valid anymore. */ OPENSSL_free(es->err_file[i]); if (file == NULL || file[0] == '\0') es->err_file[i] = NULL; else if ((es->err_file[i] = CRYPTO_malloc(strlen(file) + 1, NULL, 0)) != NULL) /* We cannot use OPENSSL_strdup due to possible recursion */ strcpy(es->err_file[i], file); es->err_line[i] = line; OPENSSL_free(es->err_func[i]); if (fn == NULL || fn[0] == '\0') es->err_func[i] = NULL; else if ((es->err_func[i] = CRYPTO_malloc(strlen(fn) + 1, NULL, 0)) != NULL) strcpy(es->err_func[i], fn); } static ossl_inline void err_set_data(ERR_STATE *es, size_t i, void *data, size_t datasz, int flags) { if ((es->err_data_flags[i] & ERR_TXT_MALLOCED) != 0) OPENSSL_free(es->err_data[i]); es->err_data[i] = data; es->err_data_size[i] = datasz; es->err_data_flags[i] = flags; } static ossl_inline void err_clear(ERR_STATE *es, size_t i, int deall) { err_clear_data(es, i, (deall)); es->err_marks[i] = 0; es->err_flags[i] = 0; es->err_buffer[i] = 0; es->err_line[i] = -1; OPENSSL_free(es->err_file[i]); es->err_file[i] = NULL; OPENSSL_free(es->err_func[i]); es->err_func[i] = NULL; } ERR_STATE *ossl_err_get_state_int(void); void ossl_err_string_int(unsigned long e, const char *func, char *buf, size_t len);
./openssl/crypto/err/err_all_legacy.c
/* * Copyright 2020-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* This is the C source file where we include this header directly */ #include <openssl/cryptoerr_legacy.h> #ifndef OPENSSL_NO_DEPRECATED_3_0 # include "crypto/err.h" # include "crypto/asn1err.h" # include "crypto/asyncerr.h" # include "crypto/bnerr.h" # include "crypto/buffererr.h" # include "crypto/bioerr.h" # include "crypto/cmserr.h" # include "crypto/comperr.h" # include "crypto/conferr.h" # include "crypto/cryptoerr.h" # include "crypto/cterr.h" # include "crypto/dherr.h" # include "crypto/dsaerr.h" # include "internal/dsoerr.h" # include "crypto/ecerr.h" # include "crypto/engineerr.h" # include "crypto/evperr.h" # include "crypto/httperr.h" # include "crypto/objectserr.h" # include "crypto/ocsperr.h" # include "crypto/pemerr.h" # include "crypto/pkcs12err.h" # include "crypto/pkcs7err.h" # include "crypto/randerr.h" # include "crypto/rsaerr.h" # include "crypto/storeerr.h" # include "crypto/tserr.h" # include "crypto/uierr.h" # include "crypto/x509err.h" # include "crypto/x509v3err.h" # ifdef OPENSSL_NO_ERR # define IMPLEMENT_LEGACY_ERR_LOAD(lib) \ int ERR_load_##lib##_strings(void) \ { \ return 1; \ } # else # define IMPLEMENT_LEGACY_ERR_LOAD(lib) \ int ERR_load_##lib##_strings(void) \ { \ return ossl_err_load_##lib##_strings(); \ } # endif IMPLEMENT_LEGACY_ERR_LOAD(ASN1) IMPLEMENT_LEGACY_ERR_LOAD(ASYNC) IMPLEMENT_LEGACY_ERR_LOAD(BIO) IMPLEMENT_LEGACY_ERR_LOAD(BN) IMPLEMENT_LEGACY_ERR_LOAD(BUF) # ifndef OPENSSL_NO_CMS IMPLEMENT_LEGACY_ERR_LOAD(CMS) # endif # ifndef OPENSSL_NO_COMP IMPLEMENT_LEGACY_ERR_LOAD(COMP) # endif IMPLEMENT_LEGACY_ERR_LOAD(CONF) IMPLEMENT_LEGACY_ERR_LOAD(CRYPTO) # ifndef OPENSSL_NO_CT IMPLEMENT_LEGACY_ERR_LOAD(CT) # endif # ifndef OPENSSL_NO_DH IMPLEMENT_LEGACY_ERR_LOAD(DH) # endif # ifndef OPENSSL_NO_DSA IMPLEMENT_LEGACY_ERR_LOAD(DSA) # endif # ifndef OPENSSL_NO_EC IMPLEMENT_LEGACY_ERR_LOAD(EC) # endif # ifndef OPENSSL_NO_ENGINE IMPLEMENT_LEGACY_ERR_LOAD(ENGINE) # endif IMPLEMENT_LEGACY_ERR_LOAD(ERR) IMPLEMENT_LEGACY_ERR_LOAD(EVP) IMPLEMENT_LEGACY_ERR_LOAD(OBJ) # ifndef OPENSSL_NO_OCSP IMPLEMENT_LEGACY_ERR_LOAD(OCSP) # endif IMPLEMENT_LEGACY_ERR_LOAD(PEM) IMPLEMENT_LEGACY_ERR_LOAD(PKCS12) IMPLEMENT_LEGACY_ERR_LOAD(PKCS7) IMPLEMENT_LEGACY_ERR_LOAD(RAND) IMPLEMENT_LEGACY_ERR_LOAD(RSA) IMPLEMENT_LEGACY_ERR_LOAD(OSSL_STORE) # ifndef OPENSSL_NO_TS IMPLEMENT_LEGACY_ERR_LOAD(TS) # endif IMPLEMENT_LEGACY_ERR_LOAD(UI) IMPLEMENT_LEGACY_ERR_LOAD(X509) IMPLEMENT_LEGACY_ERR_LOAD(X509V3) #endif /* OPENSSL_NO_DEPRECATED_3_0 */
./openssl/crypto/err/err_save.c
/* * Copyright 2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #define OSSL_FORCE_ERR_STATE #include <openssl/err.h> #include "err_local.h" /* * Save and restore error state. * We are using CRYPTO_zalloc(.., NULL, 0) instead of OPENSSL_malloc() in * these functions to prevent mem alloc error loop. */ ERR_STATE *OSSL_ERR_STATE_new(void) { return CRYPTO_zalloc(sizeof(ERR_STATE), NULL, 0); } void OSSL_ERR_STATE_save(ERR_STATE *es) { size_t i; ERR_STATE *thread_es; if (es == NULL) return; for (i = 0; i < ERR_NUM_ERRORS; i++) err_clear(es, i, 1); thread_es = ossl_err_get_state_int(); if (thread_es == NULL) return; memcpy(es, thread_es, sizeof(*es)); /* Taking over the pointers, just clear the thread state. */ memset(thread_es, 0, sizeof(*thread_es)); } void OSSL_ERR_STATE_save_to_mark(ERR_STATE *es) { size_t i, j, count; int top; ERR_STATE *thread_es; if (es == NULL) return; thread_es = ossl_err_get_state_int(); if (thread_es == NULL) { for (i = 0; i < ERR_NUM_ERRORS; ++i) err_clear(es, i, 1); es->top = es->bottom = 0; return; } /* Determine number of errors we are going to move. */ for (count = 0, top = thread_es->top; thread_es->bottom != top && thread_es->err_marks[top] == 0; ++count) top = top > 0 ? top - 1 : ERR_NUM_ERRORS - 1; /* Move the errors, preserving order. */ for (i = 0, j = top; i < count; ++i) { j = (j + 1) % ERR_NUM_ERRORS; err_clear(es, i, 1); /* Move the error entry to the given ERR_STATE. */ es->err_flags[i] = thread_es->err_flags[j]; es->err_marks[i] = 0; es->err_buffer[i] = thread_es->err_buffer[j]; es->err_data[i] = thread_es->err_data[j]; es->err_data_size[i] = thread_es->err_data_size[j]; es->err_data_flags[i] = thread_es->err_data_flags[j]; es->err_file[i] = thread_es->err_file[j]; es->err_line[i] = thread_es->err_line[j]; es->err_func[i] = thread_es->err_func[j]; thread_es->err_flags[j] = 0; thread_es->err_buffer[j] = 0; thread_es->err_data[j] = NULL; thread_es->err_data_size[j] = 0; thread_es->err_data_flags[j] = 0; thread_es->err_file[j] = NULL; thread_es->err_line[j] = 0; thread_es->err_func[j] = NULL; } if (i > 0) { thread_es->top = top; /* If we moved anything, es's stack always starts at [0]. */ es->top = i - 1; es->bottom = ERR_NUM_ERRORS - 1; } else { /* Didn't move anything - empty stack */ es->top = es->bottom = 0; } /* Erase extra space as a precaution. */ for (; i < ERR_NUM_ERRORS; ++i) err_clear(es, i, 1); } void OSSL_ERR_STATE_restore(const ERR_STATE *es) { size_t i; ERR_STATE *thread_es; if (es == NULL || es->bottom == es->top) return; thread_es = ossl_err_get_state_int(); if (thread_es == NULL) return; for (i = (size_t)es->bottom; i != (size_t)es->top;) { size_t top; i = (i + 1) % ERR_NUM_ERRORS; if ((es->err_flags[i] & ERR_FLAG_CLEAR) != 0) continue; err_get_slot(thread_es); top = thread_es->top; err_clear(thread_es, top, 0); thread_es->err_flags[top] = es->err_flags[i]; thread_es->err_buffer[top] = es->err_buffer[i]; err_set_debug(thread_es, top, es->err_file[i], es->err_line[i], es->err_func[i]); if (es->err_data[i] != NULL && es->err_data_size[i] != 0) { void *data; size_t data_sz = es->err_data_size[i]; data = CRYPTO_malloc(data_sz, NULL, 0); if (data != NULL) { memcpy(data, es->err_data[i], data_sz); err_set_data(thread_es, top, data, data_sz, es->err_data_flags[i] | ERR_TXT_MALLOCED); } } else { err_clear_data(thread_es, top, 0); } } }
./openssl/crypto/err/err.c
/* * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #define OSSL_FORCE_ERR_STATE #include <stdio.h> #include <stdarg.h> #include <string.h> #include "crypto/cryptlib.h" #include "internal/err.h" #include "crypto/err.h" #include <openssl/err.h> #include <openssl/crypto.h> #include <openssl/buffer.h> #include <openssl/bio.h> #include <openssl/opensslconf.h> #include "internal/thread_once.h" #include "crypto/ctype.h" #include "internal/constant_time.h" #include "internal/e_os.h" #include "err_local.h" /* Forward declaration in case it's not published because of configuration */ ERR_STATE *ERR_get_state(void); #ifndef OPENSSL_NO_ERR static int err_load_strings(const ERR_STRING_DATA *str); #endif #ifndef OPENSSL_NO_ERR static ERR_STRING_DATA ERR_str_libraries[] = { {ERR_PACK(ERR_LIB_NONE, 0, 0), "unknown library"}, {ERR_PACK(ERR_LIB_SYS, 0, 0), "system library"}, {ERR_PACK(ERR_LIB_BN, 0, 0), "bignum routines"}, {ERR_PACK(ERR_LIB_RSA, 0, 0), "rsa routines"}, {ERR_PACK(ERR_LIB_DH, 0, 0), "Diffie-Hellman routines"}, {ERR_PACK(ERR_LIB_EVP, 0, 0), "digital envelope routines"}, {ERR_PACK(ERR_LIB_BUF, 0, 0), "memory buffer routines"}, {ERR_PACK(ERR_LIB_OBJ, 0, 0), "object identifier routines"}, {ERR_PACK(ERR_LIB_PEM, 0, 0), "PEM routines"}, {ERR_PACK(ERR_LIB_DSA, 0, 0), "dsa routines"}, {ERR_PACK(ERR_LIB_X509, 0, 0), "x509 certificate routines"}, {ERR_PACK(ERR_LIB_ASN1, 0, 0), "asn1 encoding routines"}, {ERR_PACK(ERR_LIB_CONF, 0, 0), "configuration file routines"}, {ERR_PACK(ERR_LIB_CRYPTO, 0, 0), "common libcrypto routines"}, {ERR_PACK(ERR_LIB_EC, 0, 0), "elliptic curve routines"}, {ERR_PACK(ERR_LIB_ECDSA, 0, 0), "ECDSA routines"}, {ERR_PACK(ERR_LIB_ECDH, 0, 0), "ECDH routines"}, {ERR_PACK(ERR_LIB_SSL, 0, 0), "SSL routines"}, {ERR_PACK(ERR_LIB_BIO, 0, 0), "BIO routines"}, {ERR_PACK(ERR_LIB_PKCS7, 0, 0), "PKCS7 routines"}, {ERR_PACK(ERR_LIB_X509V3, 0, 0), "X509 V3 routines"}, {ERR_PACK(ERR_LIB_PKCS12, 0, 0), "PKCS12 routines"}, {ERR_PACK(ERR_LIB_RAND, 0, 0), "random number generator"}, {ERR_PACK(ERR_LIB_DSO, 0, 0), "DSO support routines"}, {ERR_PACK(ERR_LIB_TS, 0, 0), "time stamp routines"}, {ERR_PACK(ERR_LIB_ENGINE, 0, 0), "engine routines"}, {ERR_PACK(ERR_LIB_OCSP, 0, 0), "OCSP routines"}, {ERR_PACK(ERR_LIB_UI, 0, 0), "UI routines"}, {ERR_PACK(ERR_LIB_FIPS, 0, 0), "FIPS routines"}, {ERR_PACK(ERR_LIB_CMS, 0, 0), "CMS routines"}, {ERR_PACK(ERR_LIB_CRMF, 0, 0), "CRMF routines"}, {ERR_PACK(ERR_LIB_CMP, 0, 0), "CMP routines"}, {ERR_PACK(ERR_LIB_HMAC, 0, 0), "HMAC routines"}, {ERR_PACK(ERR_LIB_CT, 0, 0), "CT routines"}, {ERR_PACK(ERR_LIB_ASYNC, 0, 0), "ASYNC routines"}, {ERR_PACK(ERR_LIB_KDF, 0, 0), "KDF routines"}, {ERR_PACK(ERR_LIB_OSSL_STORE, 0, 0), "STORE routines"}, {ERR_PACK(ERR_LIB_SM2, 0, 0), "SM2 routines"}, {ERR_PACK(ERR_LIB_ESS, 0, 0), "ESS routines"}, {ERR_PACK(ERR_LIB_PROV, 0, 0), "Provider routines"}, {ERR_PACK(ERR_LIB_OSSL_ENCODER, 0, 0), "ENCODER routines"}, {ERR_PACK(ERR_LIB_OSSL_DECODER, 0, 0), "DECODER routines"}, {ERR_PACK(ERR_LIB_HTTP, 0, 0), "HTTP routines"}, {0, NULL}, }; /* * Should make sure that all ERR_R_ reasons defined in include/openssl/err.h.in * are listed. For maintainability, please keep all reasons in the same order. */ static ERR_STRING_DATA ERR_str_reasons[] = { {ERR_R_SYS_LIB, "system lib"}, {ERR_R_BN_LIB, "BN lib"}, {ERR_R_RSA_LIB, "RSA lib"}, {ERR_R_DH_LIB, "DH lib"}, {ERR_R_EVP_LIB, "EVP lib"}, {ERR_R_BUF_LIB, "BUF lib"}, {ERR_R_OBJ_LIB, "OBJ lib"}, {ERR_R_PEM_LIB, "PEM lib"}, {ERR_R_DSA_LIB, "DSA lib"}, {ERR_R_X509_LIB, "X509 lib"}, {ERR_R_ASN1_LIB, "ASN1 lib"}, {ERR_R_CRYPTO_LIB, "CRYPTO lib"}, {ERR_R_EC_LIB, "EC lib"}, {ERR_R_BIO_LIB, "BIO lib"}, {ERR_R_PKCS7_LIB, "PKCS7 lib"}, {ERR_R_X509V3_LIB, "X509V3 lib"}, {ERR_R_ENGINE_LIB, "ENGINE lib"}, {ERR_R_UI_LIB, "UI lib"}, {ERR_R_ECDSA_LIB, "ECDSA lib"}, {ERR_R_OSSL_STORE_LIB, "OSSL_STORE lib"}, {ERR_R_OSSL_DECODER_LIB, "OSSL_DECODER lib"}, {ERR_R_FATAL, "fatal"}, {ERR_R_MALLOC_FAILURE, "malloc failure"}, {ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED, "called a function you should not call"}, {ERR_R_PASSED_NULL_PARAMETER, "passed a null parameter"}, {ERR_R_INTERNAL_ERROR, "internal error"}, {ERR_R_DISABLED, "called a function that was disabled at compile-time"}, {ERR_R_INIT_FAIL, "init fail"}, {ERR_R_PASSED_INVALID_ARGUMENT, "passed invalid argument"}, {ERR_R_OPERATION_FAIL, "operation fail"}, {ERR_R_INVALID_PROVIDER_FUNCTIONS, "invalid provider functions"}, {ERR_R_INTERRUPTED_OR_CANCELLED, "interrupted or cancelled"}, {ERR_R_NESTED_ASN1_ERROR, "nested asn1 error"}, {ERR_R_MISSING_ASN1_EOS, "missing asn1 eos"}, /* * Something is unsupported, exactly what is expressed with additional data */ {ERR_R_UNSUPPORTED, "unsupported"}, /* * A fetch failed for other reasons than the name to be fetched being * unsupported. */ {ERR_R_FETCH_FAILED, "fetch failed"}, {ERR_R_INVALID_PROPERTY_DEFINITION, "invalid property definition"}, {ERR_R_UNABLE_TO_GET_READ_LOCK, "unable to get read lock"}, {ERR_R_UNABLE_TO_GET_WRITE_LOCK, "unable to get write lock"}, {0, NULL}, }; #endif static CRYPTO_ONCE err_init = CRYPTO_ONCE_STATIC_INIT; static int set_err_thread_local; static CRYPTO_THREAD_LOCAL err_thread_local; static CRYPTO_ONCE err_string_init = CRYPTO_ONCE_STATIC_INIT; static CRYPTO_RWLOCK *err_string_lock = NULL; #ifndef OPENSSL_NO_ERR static ERR_STRING_DATA *int_err_get_item(const ERR_STRING_DATA *); #endif /* * The internal state */ #ifndef OPENSSL_NO_ERR static LHASH_OF(ERR_STRING_DATA) *int_error_hash = NULL; #endif static int int_err_library_number = ERR_LIB_USER; typedef enum ERR_GET_ACTION_e { EV_POP, EV_PEEK, EV_PEEK_LAST } ERR_GET_ACTION; static unsigned long get_error_values(ERR_GET_ACTION g, const char **file, int *line, const char **func, const char **data, int *flags); #ifndef OPENSSL_NO_ERR static unsigned long err_string_data_hash(const ERR_STRING_DATA *a) { unsigned long ret, l; l = a->error; ret = l ^ ERR_GET_LIB(l); return (ret ^ ret % 19 * 13); } static int err_string_data_cmp(const ERR_STRING_DATA *a, const ERR_STRING_DATA *b) { if (a->error == b->error) return 0; return a->error > b->error ? 1 : -1; } static ERR_STRING_DATA *int_err_get_item(const ERR_STRING_DATA *d) { ERR_STRING_DATA *p = NULL; if (!CRYPTO_THREAD_read_lock(err_string_lock)) return NULL; p = lh_ERR_STRING_DATA_retrieve(int_error_hash, d); CRYPTO_THREAD_unlock(err_string_lock); return p; } #endif void OSSL_ERR_STATE_free(ERR_STATE *state) { int i; if (state == NULL) return; for (i = 0; i < ERR_NUM_ERRORS; i++) { err_clear(state, i, 1); } CRYPTO_free(state, OPENSSL_FILE, OPENSSL_LINE); } DEFINE_RUN_ONCE_STATIC(do_err_strings_init) { if (!OPENSSL_init_crypto(OPENSSL_INIT_BASE_ONLY, NULL)) return 0; err_string_lock = CRYPTO_THREAD_lock_new(); if (err_string_lock == NULL) return 0; #ifndef OPENSSL_NO_ERR int_error_hash = lh_ERR_STRING_DATA_new(err_string_data_hash, err_string_data_cmp); if (int_error_hash == NULL) { CRYPTO_THREAD_lock_free(err_string_lock); err_string_lock = NULL; return 0; } #endif return 1; } void err_cleanup(void) { if (set_err_thread_local != 0) CRYPTO_THREAD_cleanup_local(&err_thread_local); CRYPTO_THREAD_lock_free(err_string_lock); err_string_lock = NULL; #ifndef OPENSSL_NO_ERR lh_ERR_STRING_DATA_free(int_error_hash); int_error_hash = NULL; #endif } #ifndef OPENSSL_NO_ERR /* * Legacy; pack in the library. */ static void err_patch(int lib, ERR_STRING_DATA *str) { unsigned long plib = ERR_PACK(lib, 0, 0); for (; str->error != 0; str++) str->error |= plib; } /* * Hash in |str| error strings. Assumes the RUN_ONCE was done. */ static int err_load_strings(const ERR_STRING_DATA *str) { if (!CRYPTO_THREAD_write_lock(err_string_lock)) return 0; for (; str->error; str++) (void)lh_ERR_STRING_DATA_insert(int_error_hash, (ERR_STRING_DATA *)str); CRYPTO_THREAD_unlock(err_string_lock); return 1; } #endif int ossl_err_load_ERR_strings(void) { #ifndef OPENSSL_NO_ERR if (!RUN_ONCE(&err_string_init, do_err_strings_init)) return 0; err_load_strings(ERR_str_libraries); err_load_strings(ERR_str_reasons); #endif return 1; } int ERR_load_strings(int lib, ERR_STRING_DATA *str) { #ifndef OPENSSL_NO_ERR if (ossl_err_load_ERR_strings() == 0) return 0; err_patch(lib, str); err_load_strings(str); #endif return 1; } int ERR_load_strings_const(const ERR_STRING_DATA *str) { #ifndef OPENSSL_NO_ERR if (ossl_err_load_ERR_strings() == 0) return 0; err_load_strings(str); #endif return 1; } int ERR_unload_strings(int lib, ERR_STRING_DATA *str) { #ifndef OPENSSL_NO_ERR if (!RUN_ONCE(&err_string_init, do_err_strings_init)) return 0; if (!CRYPTO_THREAD_write_lock(err_string_lock)) return 0; /* * We don't need to ERR_PACK the lib, since that was done (to * the table) when it was loaded. */ for (; str->error; str++) (void)lh_ERR_STRING_DATA_delete(int_error_hash, str); CRYPTO_THREAD_unlock(err_string_lock); #endif return 1; } void err_free_strings_int(void) { /* obsolete */ } /********************************************************/ void ERR_clear_error(void) { int i; ERR_STATE *es; es = ossl_err_get_state_int(); if (es == NULL) return; for (i = 0; i < ERR_NUM_ERRORS; i++) { err_clear(es, i, 0); } es->top = es->bottom = 0; } unsigned long ERR_get_error(void) { return get_error_values(EV_POP, NULL, NULL, NULL, NULL, NULL); } unsigned long ERR_get_error_all(const char **file, int *line, const char **func, const char **data, int *flags) { return get_error_values(EV_POP, file, line, func, data, flags); } #ifndef OPENSSL_NO_DEPRECATED_3_0 unsigned long ERR_get_error_line(const char **file, int *line) { return get_error_values(EV_POP, file, line, NULL, NULL, NULL); } unsigned long ERR_get_error_line_data(const char **file, int *line, const char **data, int *flags) { return get_error_values(EV_POP, file, line, NULL, data, flags); } #endif unsigned long ERR_peek_error(void) { return get_error_values(EV_PEEK, NULL, NULL, NULL, NULL, NULL); } unsigned long ERR_peek_error_line(const char **file, int *line) { return get_error_values(EV_PEEK, file, line, NULL, NULL, NULL); } unsigned long ERR_peek_error_func(const char **func) { return get_error_values(EV_PEEK, NULL, NULL, func, NULL, NULL); } unsigned long ERR_peek_error_data(const char **data, int *flags) { return get_error_values(EV_PEEK, NULL, NULL, NULL, data, flags); } unsigned long ERR_peek_error_all(const char **file, int *line, const char **func, const char **data, int *flags) { return get_error_values(EV_PEEK, file, line, func, data, flags); } #ifndef OPENSSL_NO_DEPRECATED_3_0 unsigned long ERR_peek_error_line_data(const char **file, int *line, const char **data, int *flags) { return get_error_values(EV_PEEK, file, line, NULL, data, flags); } #endif unsigned long ERR_peek_last_error(void) { return get_error_values(EV_PEEK_LAST, NULL, NULL, NULL, NULL, NULL); } unsigned long ERR_peek_last_error_line(const char **file, int *line) { return get_error_values(EV_PEEK_LAST, file, line, NULL, NULL, NULL); } unsigned long ERR_peek_last_error_func(const char **func) { return get_error_values(EV_PEEK_LAST, NULL, NULL, func, NULL, NULL); } unsigned long ERR_peek_last_error_data(const char **data, int *flags) { return get_error_values(EV_PEEK_LAST, NULL, NULL, NULL, data, flags); } unsigned long ERR_peek_last_error_all(const char **file, int *line, const char **func, const char **data, int *flags) { return get_error_values(EV_PEEK_LAST, file, line, func, data, flags); } #ifndef OPENSSL_NO_DEPRECATED_3_0 unsigned long ERR_peek_last_error_line_data(const char **file, int *line, const char **data, int *flags) { return get_error_values(EV_PEEK_LAST, file, line, NULL, data, flags); } #endif static unsigned long get_error_values(ERR_GET_ACTION g, const char **file, int *line, const char **func, const char **data, int *flags) { int i = 0; ERR_STATE *es; unsigned long ret; es = ossl_err_get_state_int(); if (es == NULL) return 0; /* * Clear anything that should have been cleared earlier. We do this * here because this doesn't have constant-time issues. */ while (es->bottom != es->top) { if (es->err_flags[es->top] & ERR_FLAG_CLEAR) { err_clear(es, es->top, 0); es->top = es->top > 0 ? es->top - 1 : ERR_NUM_ERRORS - 1; continue; } i = (es->bottom + 1) % ERR_NUM_ERRORS; if (es->err_flags[i] & ERR_FLAG_CLEAR) { es->bottom = i; err_clear(es, es->bottom, 0); continue; } break; } /* If everything has been cleared, the stack is empty. */ if (es->bottom == es->top) return 0; /* Which error, the top of stack (latest one) or the first one? */ if (g == EV_PEEK_LAST) i = es->top; else i = (es->bottom + 1) % ERR_NUM_ERRORS; ret = es->err_buffer[i]; if (g == EV_POP) { es->bottom = i; es->err_buffer[i] = 0; } if (file != NULL) { *file = es->err_file[i]; if (*file == NULL) *file = ""; } if (line != NULL) *line = es->err_line[i]; if (func != NULL) { *func = es->err_func[i]; if (*func == NULL) *func = ""; } if (flags != NULL) *flags = es->err_data_flags[i]; if (data == NULL) { if (g == EV_POP) { err_clear_data(es, i, 0); } } else { *data = es->err_data[i]; if (*data == NULL) { *data = ""; if (flags != NULL) *flags = 0; } } return ret; } void ossl_err_string_int(unsigned long e, const char *func, char *buf, size_t len) { char lsbuf[64], rsbuf[256]; const char *ls, *rs = NULL; unsigned long l, r; if (len == 0) return; l = ERR_GET_LIB(e); ls = ERR_lib_error_string(e); if (ls == NULL) { BIO_snprintf(lsbuf, sizeof(lsbuf), "lib(%lu)", l); ls = lsbuf; } /* * ERR_reason_error_string() can't safely return system error strings, * since it would call openssl_strerror_r(), which needs a buffer for * thread safety. So for system errors, we call openssl_strerror_r() * directly instead. */ r = ERR_GET_REASON(e); #ifndef OPENSSL_NO_ERR if (ERR_SYSTEM_ERROR(e)) { if (openssl_strerror_r(r, rsbuf, sizeof(rsbuf))) rs = rsbuf; } else { rs = ERR_reason_error_string(e); } #endif if (rs == NULL) { BIO_snprintf(rsbuf, sizeof(rsbuf), "reason(%lu)", r & ~(ERR_RFLAGS_MASK << ERR_RFLAGS_OFFSET)); rs = rsbuf; } BIO_snprintf(buf, len, "error:%08lX:%s:%s:%s", e, ls, func, rs); if (strlen(buf) == len - 1) { /* Didn't fit; use a minimal format. */ BIO_snprintf(buf, len, "err:%lx:%lx:%lx:%lx", e, l, 0L, r); } } void ERR_error_string_n(unsigned long e, char *buf, size_t len) { ossl_err_string_int(e, "", buf, len); } /* * ERR_error_string_n should be used instead for ret != NULL as * ERR_error_string cannot know how large the buffer is */ char *ERR_error_string(unsigned long e, char *ret) { static char buf[256]; if (ret == NULL) ret = buf; ERR_error_string_n(e, ret, (int)sizeof(buf)); return ret; } const char *ERR_lib_error_string(unsigned long e) { #ifndef OPENSSL_NO_ERR ERR_STRING_DATA d, *p; unsigned long l; if (!RUN_ONCE(&err_string_init, do_err_strings_init)) { return NULL; } l = ERR_GET_LIB(e); d.error = ERR_PACK(l, 0, 0); p = int_err_get_item(&d); return ((p == NULL) ? NULL : p->string); #else return NULL; #endif } #ifndef OPENSSL_NO_DEPRECATED_3_0 const char *ERR_func_error_string(unsigned long e) { return NULL; } #endif const char *ERR_reason_error_string(unsigned long e) { #ifndef OPENSSL_NO_ERR ERR_STRING_DATA d, *p = NULL; unsigned long l, r; if (!RUN_ONCE(&err_string_init, do_err_strings_init)) { return NULL; } /* * ERR_reason_error_string() can't safely return system error strings, * since openssl_strerror_r() needs a buffer for thread safety, and we * haven't got one that would serve any sensible purpose. */ if (ERR_SYSTEM_ERROR(e)) return NULL; l = ERR_GET_LIB(e); r = ERR_GET_REASON(e); d.error = ERR_PACK(l, 0, r); p = int_err_get_item(&d); if (p == NULL) { d.error = ERR_PACK(0, 0, r); p = int_err_get_item(&d); } return ((p == NULL) ? NULL : p->string); #else return NULL; #endif } static void err_delete_thread_state(void *unused) { ERR_STATE *state = CRYPTO_THREAD_get_local(&err_thread_local); if (state == NULL) return; CRYPTO_THREAD_set_local(&err_thread_local, NULL); OSSL_ERR_STATE_free(state); } #ifndef OPENSSL_NO_DEPRECATED_1_1_0 void ERR_remove_thread_state(void *dummy) { } #endif #ifndef OPENSSL_NO_DEPRECATED_1_0_0 void ERR_remove_state(unsigned long pid) { } #endif DEFINE_RUN_ONCE_STATIC(err_do_init) { set_err_thread_local = 1; return CRYPTO_THREAD_init_local(&err_thread_local, NULL); } ERR_STATE *ossl_err_get_state_int(void) { ERR_STATE *state; int saveerrno = get_last_sys_error(); if (!OPENSSL_init_crypto(OPENSSL_INIT_BASE_ONLY, NULL)) return NULL; if (!RUN_ONCE(&err_init, err_do_init)) return NULL; state = CRYPTO_THREAD_get_local(&err_thread_local); if (state == (ERR_STATE*)-1) return NULL; if (state == NULL) { if (!CRYPTO_THREAD_set_local(&err_thread_local, (ERR_STATE*)-1)) return NULL; state = OSSL_ERR_STATE_new(); if (state == NULL) { CRYPTO_THREAD_set_local(&err_thread_local, NULL); return NULL; } if (!ossl_init_thread_start(NULL, NULL, err_delete_thread_state) || !CRYPTO_THREAD_set_local(&err_thread_local, state)) { OSSL_ERR_STATE_free(state); CRYPTO_THREAD_set_local(&err_thread_local, NULL); return NULL; } /* Ignore failures from these */ OPENSSL_init_crypto(OPENSSL_INIT_LOAD_CRYPTO_STRINGS, NULL); } set_sys_error(saveerrno); return state; } #ifndef OPENSSL_NO_DEPRECATED_3_0 ERR_STATE *ERR_get_state(void) { return ossl_err_get_state_int(); } #endif /* * err_shelve_state returns the current thread local error state * and freezes the error module until err_unshelve_state is called. */ int err_shelve_state(void **state) { int saveerrno = get_last_sys_error(); /* * Note, at present our only caller is OPENSSL_init_crypto(), indirectly * via ossl_init_load_crypto_nodelete(), by which point the requested * "base" initialization has already been performed, so the below call is a * NOOP, that re-enters OPENSSL_init_crypto() only to quickly return. * * If are no other valid callers of this function, the call below can be * removed, avoiding the re-entry into OPENSSL_init_crypto(). If there are * potential uses that are not from inside OPENSSL_init_crypto(), then this * call is needed, but some care is required to make sure that the re-entry * remains a NOOP. */ if (!OPENSSL_init_crypto(OPENSSL_INIT_BASE_ONLY, NULL)) return 0; if (!RUN_ONCE(&err_init, err_do_init)) return 0; *state = CRYPTO_THREAD_get_local(&err_thread_local); if (!CRYPTO_THREAD_set_local(&err_thread_local, (ERR_STATE*)-1)) return 0; set_sys_error(saveerrno); return 1; } /* * err_unshelve_state restores the error state that was returned * by err_shelve_state previously. */ void err_unshelve_state(void* state) { if (state != (void*)-1) CRYPTO_THREAD_set_local(&err_thread_local, (ERR_STATE*)state); } int ERR_get_next_error_library(void) { int ret; if (!RUN_ONCE(&err_string_init, do_err_strings_init)) return 0; if (!CRYPTO_THREAD_write_lock(err_string_lock)) return 0; ret = int_err_library_number++; CRYPTO_THREAD_unlock(err_string_lock); return ret; } static int err_set_error_data_int(char *data, size_t size, int flags, int deallocate) { ERR_STATE *es; es = ossl_err_get_state_int(); if (es == NULL) return 0; err_clear_data(es, es->top, deallocate); err_set_data(es, es->top, data, size, flags); return 1; } void ERR_set_error_data(char *data, int flags) { /* * This function is void so we cannot propagate the error return. Since it * is also in the public API we can't change the return type. * * We estimate the size of the data. If it's not flagged as allocated, * then this is safe, and if it is flagged as allocated, then our size * may be smaller than the actual allocation, but that doesn't matter * too much, the buffer will remain untouched or will eventually be * reallocated to a new size. * * callers should be advised that this function takes over ownership of * the allocated memory, i.e. they can't count on the pointer to remain * valid. */ err_set_error_data_int(data, strlen(data) + 1, flags, 1); } void ERR_add_error_data(int num, ...) { va_list args; va_start(args, num); ERR_add_error_vdata(num, args); va_end(args); } void ERR_add_error_vdata(int num, va_list args) { int i, len, size; int flags = ERR_TXT_MALLOCED | ERR_TXT_STRING; char *str, *arg; ERR_STATE *es; /* Get the current error data; if an allocated string get it. */ es = ossl_err_get_state_int(); if (es == NULL) return; i = es->top; /* * If err_data is allocated already, reuse the space. * Otherwise, allocate a small new buffer. */ if ((es->err_data_flags[i] & flags) == flags && ossl_assert(es->err_data[i] != NULL)) { str = es->err_data[i]; size = es->err_data_size[i]; /* * To protect the string we just grabbed from tampering by other * functions we may call, or to protect them from freeing a pointer * that may no longer be valid at that point, we clear away the * data pointer and the flags. We will set them again at the end * of this function. */ es->err_data[i] = NULL; es->err_data_flags[i] = 0; } else if ((str = OPENSSL_malloc(size = 81)) == NULL) { return; } else { str[0] = '\0'; } len = strlen(str); while (--num >= 0) { arg = va_arg(args, char *); if (arg == NULL) arg = "<NULL>"; len += strlen(arg); if (len >= size) { char *p; size = len + 20; p = OPENSSL_realloc(str, size); if (p == NULL) { OPENSSL_free(str); return; } str = p; } OPENSSL_strlcat(str, arg, (size_t)size); } if (!err_set_error_data_int(str, size, flags, 0)) OPENSSL_free(str); } void err_clear_last_constant_time(int clear) { ERR_STATE *es; int top; es = ossl_err_get_state_int(); if (es == NULL) return; top = es->top; /* * Flag error as cleared but remove it elsewhere to avoid two errors * accessing the same error stack location, revealing timing information. */ clear = constant_time_select_int(constant_time_eq_int(clear, 0), 0, ERR_FLAG_CLEAR); es->err_flags[top] |= clear; }
./openssl/crypto/err/err_prn.c
/* * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #define OSSL_FORCE_ERR_STATE #include <stdio.h> #include "internal/cryptlib.h" #include <openssl/crypto.h> #include <openssl/buffer.h> #include <openssl/err.h> #include "err_local.h" #define ERR_PRINT_BUF_SIZE 4096 void ERR_print_errors_cb(int (*cb) (const char *str, size_t len, void *u), void *u) { CRYPTO_THREAD_ID tid = CRYPTO_THREAD_get_current_id(); unsigned long l; const char *file, *data, *func; int line, flags; while ((l = ERR_get_error_all(&file, &line, &func, &data, &flags)) != 0) { char buf[ERR_PRINT_BUF_SIZE] = ""; char *hex = NULL; int offset; if ((flags & ERR_TXT_STRING) == 0) data = ""; hex = ossl_buf2hexstr_sep((const unsigned char *)&tid, sizeof(tid), '\0'); BIO_snprintf(buf, sizeof(buf), "%s:", hex == NULL ? "<null>" : hex); offset = strlen(buf); ossl_err_string_int(l, func, buf + offset, sizeof(buf) - offset); offset += strlen(buf + offset); BIO_snprintf(buf + offset, sizeof(buf) - offset, ":%s:%d:%s\n", file, line, data); OPENSSL_free(hex); if (cb(buf, strlen(buf), u) <= 0) break; /* abort outputting the error report */ } } /* auxiliary function for incrementally reporting texts via the error queue */ static void put_error(int lib, const char *func, int reason, const char *file, int line) { ERR_new(); ERR_set_debug(file, line, func); ERR_set_error(lib, reason, NULL /* no data here, so fmt is NULL */); } #define TYPICAL_MAX_OUTPUT_BEFORE_DATA 100 #define MAX_DATA_LEN (ERR_PRINT_BUF_SIZE - TYPICAL_MAX_OUTPUT_BEFORE_DATA) void ERR_add_error_txt(const char *separator, const char *txt) { const char *file = NULL; int line; const char *func = NULL; const char *data = NULL; int flags; unsigned long err = ERR_peek_last_error(); if (separator == NULL) separator = ""; if (err == 0) put_error(ERR_LIB_NONE, NULL, 0, "", 0); do { size_t available_len, data_len; const char *curr = txt, *next = txt; const char *leading_separator = separator; int trailing_separator = 0; char *tmp; ERR_peek_last_error_all(&file, &line, &func, &data, &flags); if ((flags & ERR_TXT_STRING) == 0) { data = ""; leading_separator = ""; } data_len = strlen(data); /* workaround for limit of ERR_print_errors_cb() */ if (data_len >= MAX_DATA_LEN || strlen(separator) >= (size_t)(MAX_DATA_LEN - data_len)) available_len = 0; else available_len = MAX_DATA_LEN - data_len - strlen(separator) - 1; /* MAX_DATA_LEN > available_len >= 0 */ if (*separator == '\0') { const size_t len_next = strlen(next); if (len_next <= available_len) { next += len_next; curr = NULL; /* no need to split */ } else { next += available_len; curr = next; /* will split at this point */ } } else { while (*next != '\0' && (size_t)(next - txt) <= available_len) { curr = next; next = strstr(curr, separator); if (next != NULL) { next += strlen(separator); trailing_separator = *next == '\0'; } else { next = curr + strlen(curr); } } if ((size_t)(next - txt) <= available_len) curr = NULL; /* the above loop implies *next == '\0' */ } if (curr != NULL) { /* split error msg at curr since error data would get too long */ if (curr != txt) { tmp = OPENSSL_strndup(txt, curr - txt); if (tmp == NULL) return; ERR_add_error_data(2, separator, tmp); OPENSSL_free(tmp); } put_error(ERR_GET_LIB(err), func, err, file, line); txt = curr; } else { if (trailing_separator) { tmp = OPENSSL_strndup(txt, next - strlen(separator) - txt); if (tmp == NULL) return; /* output txt without the trailing separator */ ERR_add_error_data(2, leading_separator, tmp); OPENSSL_free(tmp); } else { ERR_add_error_data(2, leading_separator, txt); } txt = next; /* finished */ } } while (*txt != '\0'); } void ERR_add_error_mem_bio(const char *separator, BIO *bio) { if (bio != NULL) { char *str; long len = BIO_get_mem_data(bio, &str); if (len > 0) { if (str[len - 1] != '\0') { if (BIO_write(bio, "", 1) <= 0) return; len = BIO_get_mem_data(bio, &str); } if (len > 1) ERR_add_error_txt(separator, str); } } } static int print_bio(const char *str, size_t len, void *bp) { return BIO_write((BIO *)bp, str, len); } void ERR_print_errors(BIO *bp) { ERR_print_errors_cb(print_bio, bp); } #ifndef OPENSSL_NO_STDIO void ERR_print_errors_fp(FILE *fp) { BIO *bio = BIO_new_fp(fp, BIO_NOCLOSE); if (bio == NULL) return; ERR_print_errors_cb(print_bio, bio); BIO_free(bio); } #endif
./openssl/crypto/thread/arch.c
/* * Copyright 2019-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <openssl/configuration.h> #include <internal/thread_arch.h> CRYPTO_THREAD *ossl_crypto_thread_native_start(CRYPTO_THREAD_ROUTINE routine, void *data, int joinable) { CRYPTO_THREAD *handle; if (routine == NULL) return NULL; handle = OPENSSL_zalloc(sizeof(*handle)); if (handle == NULL) return NULL; if ((handle->lock = ossl_crypto_mutex_new()) == NULL) goto fail; if ((handle->statelock = ossl_crypto_mutex_new()) == NULL) goto fail; if ((handle->condvar = ossl_crypto_condvar_new()) == NULL) goto fail; handle->data = data; handle->routine = routine; handle->joinable = joinable; if (ossl_crypto_thread_native_spawn(handle) == 1) return handle; fail: ossl_crypto_condvar_free(&handle->condvar); ossl_crypto_mutex_free(&handle->statelock); ossl_crypto_mutex_free(&handle->lock); OPENSSL_free(handle); return NULL; } int ossl_crypto_thread_native_join(CRYPTO_THREAD *thread, CRYPTO_THREAD_RETVAL *retval) { uint64_t req_state_mask; if (thread == NULL) return 0; ossl_crypto_mutex_lock(thread->statelock); req_state_mask = CRYPTO_THREAD_FINISHED | CRYPTO_THREAD_JOINED; while (!CRYPTO_THREAD_GET_STATE(thread, req_state_mask)) ossl_crypto_condvar_wait(thread->condvar, thread->statelock); if (CRYPTO_THREAD_GET_STATE(thread, CRYPTO_THREAD_JOINED)) goto pass; /* Await concurrent join completion, if any. */ while (CRYPTO_THREAD_GET_STATE(thread, CRYPTO_THREAD_JOIN_AWAIT)) { if (!CRYPTO_THREAD_GET_STATE(thread, CRYPTO_THREAD_JOINED)) ossl_crypto_condvar_wait(thread->condvar, thread->statelock); if (CRYPTO_THREAD_GET_STATE(thread, CRYPTO_THREAD_JOINED)) goto pass; } CRYPTO_THREAD_SET_STATE(thread, CRYPTO_THREAD_JOIN_AWAIT); ossl_crypto_mutex_unlock(thread->statelock); if (ossl_crypto_thread_native_perform_join(thread, retval) == 0) goto fail; ossl_crypto_mutex_lock(thread->statelock); pass: CRYPTO_THREAD_UNSET_ERROR(thread, CRYPTO_THREAD_JOINED); CRYPTO_THREAD_SET_STATE(thread, CRYPTO_THREAD_JOINED); /* * Signal join completion. It is important to signal even if we haven't * performed an actual join. Multiple threads could be awaiting the * CRYPTO_THREAD_JOIN_AWAIT -> CRYPTO_THREAD_JOINED transition, but signal * on actual join would wake only one. Signalling here will always wake one. */ ossl_crypto_condvar_signal(thread->condvar); ossl_crypto_mutex_unlock(thread->statelock); if (retval != NULL) *retval = thread->retval; return 1; fail: ossl_crypto_mutex_lock(thread->statelock); CRYPTO_THREAD_SET_ERROR(thread, CRYPTO_THREAD_JOINED); /* Have another thread that's awaiting join retry to avoid that * thread deadlock. */ CRYPTO_THREAD_UNSET_STATE(thread, CRYPTO_THREAD_JOIN_AWAIT); ossl_crypto_condvar_signal(thread->condvar); ossl_crypto_mutex_unlock(thread->statelock); return 0; } int ossl_crypto_thread_native_clean(CRYPTO_THREAD *handle) { uint64_t req_state_mask; if (handle == NULL) return 0; req_state_mask = 0; req_state_mask |= CRYPTO_THREAD_FINISHED; req_state_mask |= CRYPTO_THREAD_JOINED; ossl_crypto_mutex_lock(handle->statelock); if (CRYPTO_THREAD_GET_STATE(handle, req_state_mask) == 0) { ossl_crypto_mutex_unlock(handle->statelock); return 0; } ossl_crypto_mutex_unlock(handle->statelock); ossl_crypto_mutex_free(&handle->lock); ossl_crypto_mutex_free(&handle->statelock); ossl_crypto_condvar_free(&handle->condvar); OPENSSL_free(handle->handle); OPENSSL_free(handle); return 1; }
./openssl/crypto/thread/internal.c
/* * Copyright 2019-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <openssl/configuration.h> #include <openssl/e_os2.h> #include <openssl/types.h> #include <openssl/crypto.h> #include <internal/thread.h> #include <internal/thread_arch.h> #if !defined(OPENSSL_NO_DEFAULT_THREAD_POOL) static ossl_inline uint64_t _ossl_get_avail_threads(OSSL_LIB_CTX_THREADS *tdata) { /* assumes that tdata->lock is taken */ return tdata->max_threads - tdata->active_threads; } uint64_t ossl_get_avail_threads(OSSL_LIB_CTX *ctx) { uint64_t retval = 0; OSSL_LIB_CTX_THREADS *tdata = OSSL_LIB_CTX_GET_THREADS(ctx); if (tdata == NULL) return retval; ossl_crypto_mutex_lock(tdata->lock); retval = _ossl_get_avail_threads(tdata); ossl_crypto_mutex_unlock(tdata->lock); return retval; } void *ossl_crypto_thread_start(OSSL_LIB_CTX *ctx, CRYPTO_THREAD_ROUTINE start, void *data) { CRYPTO_THREAD *thread; OSSL_LIB_CTX_THREADS *tdata = OSSL_LIB_CTX_GET_THREADS(ctx); if (tdata == NULL) return NULL; ossl_crypto_mutex_lock(tdata->lock); if (tdata == NULL || tdata->max_threads == 0) { ossl_crypto_mutex_unlock(tdata->lock); return NULL; } while (_ossl_get_avail_threads(tdata) == 0) ossl_crypto_condvar_wait(tdata->cond_finished, tdata->lock); tdata->active_threads++; ossl_crypto_mutex_unlock(tdata->lock); thread = ossl_crypto_thread_native_start(start, data, 1); if (thread == NULL) { ossl_crypto_mutex_lock(tdata->lock); tdata->active_threads--; ossl_crypto_mutex_unlock(tdata->lock); goto fail; } thread->ctx = ctx; fail: return (void *) thread; } int ossl_crypto_thread_join(void *vhandle, CRYPTO_THREAD_RETVAL *retval) { CRYPTO_THREAD *handle = vhandle; OSSL_LIB_CTX_THREADS *tdata; if (vhandle == NULL) return 0; tdata = OSSL_LIB_CTX_GET_THREADS(handle->ctx); if (tdata == NULL) return 0; if (ossl_crypto_thread_native_join(handle, retval) == 0) return 0; ossl_crypto_mutex_lock(tdata->lock); tdata->active_threads--; ossl_crypto_condvar_signal(tdata->cond_finished); ossl_crypto_mutex_unlock(tdata->lock); return 1; } int ossl_crypto_thread_clean(void *vhandle) { CRYPTO_THREAD *handle = vhandle; return ossl_crypto_thread_native_clean(handle); } #else ossl_inline uint64_t ossl_get_avail_threads(OSSL_LIB_CTX *ctx) { return 0; } void *ossl_crypto_thread_start(OSSL_LIB_CTX *ctx, CRYPTO_THREAD_ROUTINE start, void *data) { return NULL; } int ossl_crypto_thread_join(void *vhandle, CRYPTO_THREAD_RETVAL *retval) { return 0; } int ossl_crypto_thread_clean(void *vhandle) { return 0; } #endif void *ossl_threads_ctx_new(OSSL_LIB_CTX *ctx) { struct openssl_threads_st *t = OPENSSL_zalloc(sizeof(*t)); if (t == NULL) return NULL; t->lock = ossl_crypto_mutex_new(); t->cond_finished = ossl_crypto_condvar_new(); if (t->lock == NULL || t->cond_finished == NULL) goto fail; return t; fail: ossl_threads_ctx_free((void *)t); return NULL; } void ossl_threads_ctx_free(void *vdata) { OSSL_LIB_CTX_THREADS *t = (OSSL_LIB_CTX_THREADS *) vdata; if (t == NULL) return; ossl_crypto_mutex_free(&t->lock); ossl_crypto_condvar_free(&t->cond_finished); OPENSSL_free(t); }
./openssl/crypto/thread/api.c
/* * Copyright 2019-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <openssl/configuration.h> #include <openssl/thread.h> #include <internal/thread.h> uint32_t OSSL_get_thread_support_flags(void) { int support = 0; #if !defined(OPENSSL_NO_THREAD_POOL) support |= OSSL_THREAD_SUPPORT_FLAG_THREAD_POOL; #endif #if !defined(OPENSSL_NO_DEFAULT_THREAD_POOL) support |= OSSL_THREAD_SUPPORT_FLAG_DEFAULT_SPAWN; #endif return support; } #if defined(OPENSSL_NO_THREAD_POOL) || defined(OPENSSL_NO_DEFAULT_THREAD_POOL) int OSSL_set_max_threads(OSSL_LIB_CTX *ctx, uint64_t max_threads) { return 0; } uint64_t OSSL_get_max_threads(OSSL_LIB_CTX *ctx) { return 0; } #else uint64_t OSSL_get_max_threads(OSSL_LIB_CTX *ctx) { uint64_t ret = 0; OSSL_LIB_CTX_THREADS *tdata = OSSL_LIB_CTX_GET_THREADS(ctx); if (tdata == NULL) goto fail; ossl_crypto_mutex_lock(tdata->lock); ret = tdata->max_threads; ossl_crypto_mutex_unlock(tdata->lock); fail: return ret; } int OSSL_set_max_threads(OSSL_LIB_CTX *ctx, uint64_t max_threads) { OSSL_LIB_CTX_THREADS *tdata; tdata = OSSL_LIB_CTX_GET_THREADS(ctx); if (tdata == NULL) return 0; ossl_crypto_mutex_lock(tdata->lock); tdata->max_threads = max_threads; ossl_crypto_mutex_unlock(tdata->lock); return 1; } #endif
./openssl/crypto/thread/arch/thread_win.c
/* * Copyright 2019-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <internal/thread_arch.h> #if defined(OPENSSL_THREADS_WINNT) # include <process.h> # include <windows.h> static unsigned __stdcall thread_start_thunk(LPVOID vthread) { CRYPTO_THREAD *thread; CRYPTO_THREAD_RETVAL ret; thread = (CRYPTO_THREAD *)vthread; thread->thread_id = GetCurrentThreadId(); ret = thread->routine(thread->data); ossl_crypto_mutex_lock(thread->statelock); CRYPTO_THREAD_SET_STATE(thread, CRYPTO_THREAD_FINISHED); thread->retval = ret; ossl_crypto_condvar_signal(thread->condvar); ossl_crypto_mutex_unlock(thread->statelock); return 0; } int ossl_crypto_thread_native_spawn(CRYPTO_THREAD *thread) { HANDLE *handle; handle = OPENSSL_zalloc(sizeof(*handle)); if (handle == NULL) goto fail; *handle = (HANDLE)_beginthreadex(NULL, 0, &thread_start_thunk, thread, 0, NULL); if (*handle == NULL) goto fail; thread->handle = handle; return 1; fail: thread->handle = NULL; OPENSSL_free(handle); return 0; } int ossl_crypto_thread_native_perform_join(CRYPTO_THREAD *thread, CRYPTO_THREAD_RETVAL *retval) { DWORD thread_retval; HANDLE *handle; if (thread == NULL || thread->handle == NULL) return 0; handle = (HANDLE *) thread->handle; if (WaitForSingleObject(*handle, INFINITE) != WAIT_OBJECT_0) return 0; if (GetExitCodeThread(*handle, &thread_retval) == 0) return 0; /* * GetExitCodeThread call followed by this check is to make sure that * the thread exited properly. In particular, thread_retval may be * non-zero when exited via explicit ExitThread/TerminateThread or * if the thread is still active (returns STILL_ACTIVE (259)). */ if (thread_retval != 0) return 0; if (CloseHandle(*handle) == 0) return 0; return 1; } int ossl_crypto_thread_native_exit(void) { _endthreadex(0); return 1; } int ossl_crypto_thread_native_is_self(CRYPTO_THREAD *thread) { return thread->thread_id == GetCurrentThreadId(); } CRYPTO_MUTEX *ossl_crypto_mutex_new(void) { CRITICAL_SECTION *mutex; if ((mutex = OPENSSL_zalloc(sizeof(*mutex))) == NULL) return NULL; InitializeCriticalSection(mutex); return (CRYPTO_MUTEX *)mutex; } void ossl_crypto_mutex_lock(CRYPTO_MUTEX *mutex) { CRITICAL_SECTION *mutex_p; mutex_p = (CRITICAL_SECTION *)mutex; EnterCriticalSection(mutex_p); } int ossl_crypto_mutex_try_lock(CRYPTO_MUTEX *mutex) { CRITICAL_SECTION *mutex_p; mutex_p = (CRITICAL_SECTION *)mutex; if (TryEnterCriticalSection(mutex_p)) return 1; return 0; } void ossl_crypto_mutex_unlock(CRYPTO_MUTEX *mutex) { CRITICAL_SECTION *mutex_p; mutex_p = (CRITICAL_SECTION *)mutex; LeaveCriticalSection(mutex_p); } void ossl_crypto_mutex_free(CRYPTO_MUTEX **mutex) { CRITICAL_SECTION **mutex_p; mutex_p = (CRITICAL_SECTION **)mutex; if (*mutex_p != NULL) DeleteCriticalSection(*mutex_p); OPENSSL_free(*mutex_p); *mutex = NULL; } static int determine_timeout(OSSL_TIME deadline, DWORD *w_timeout_p) { OSSL_TIME now, delta; uint64_t ms; if (ossl_time_is_infinite(deadline)) { *w_timeout_p = INFINITE; return 1; } now = ossl_time_now(); delta = ossl_time_subtract(deadline, now); if (ossl_time_is_zero(delta)) return 0; ms = ossl_time2ms(delta); /* * Amount of time we want to wait is too long for the 32-bit argument to * the Win32 API, so just wait as long as possible. */ if (ms > (uint64_t)(INFINITE - 1)) *w_timeout_p = INFINITE - 1; else *w_timeout_p = (DWORD)ms; return 1; } # if defined(OPENSSL_THREADS_WINNT_LEGACY) # include <assert.h> /* * Win32, before Vista, did not have an OS-provided condition variable * construct. This leads to the need to construct our own condition variable * construct in order to support Windows XP. * * It is difficult to construct a condition variable construct using the * OS-provided primitives in a way that is both correct (avoiding race * conditions where broadcasts get lost) and fair. * * CORRECTNESS: * A blocked thread is a thread which is calling wait(), between the * precise instants at which the external mutex passed to wait() is * unlocked and the instant at which it is relocked. * * a) * - If broadcast() is called, ALL blocked threads MUST be unblocked. * - If signal() is called, at least one blocked thread MUST be unblocked. * * (i.e.: a signal or broadcast must never get 'lost') * * b) * - If broadcast() or signal() is called, this must not cause a thread * which is not blocked to return immediately from a subsequent * call to wait(). * * FAIRNESS: * If broadcast() is called at time T1, all blocked threads must be unblocked * before any thread which subsequently calls wait() at time T2 > T1 is * unblocked. * * An example of an implementation which lacks fairness is as follows: * * t1 enters wait() * t2 enters wait() * * tZ calls broadcast() * * t1 exits wait() * t1 enters wait() * * tZ calls broadcast() * * t1 exits wait() * * IMPLEMENTATION: * * The most suitable primitives available to us in Windows XP are semaphores, * auto-reset events and manual-reset events. A solution based on semaphores * is chosen. * * PROBLEM. Designing a solution based on semaphores is non-trivial because, * while it is easy to track the number of waiters in an interlocked data * structure and then add that number to the semaphore, this does not * guarantee fairness or correctness. Consider the following situation: * * - t1 enters wait(), adding 1 to the wait counter & blocks on the semaphore * - t2 enters wait(), adding 1 to the wait counter & blocks on the semaphore * - tZ calls broadcast(), finds the wait counter is 2, adds 2 to the semaphore * * - t1 exits wait() * - t1 immediately reenters wait() and blocks on the semaphore * - The semaphore is still positive due to also having been signalled * for t2, therefore it is decremented * - t1 exits wait() immediately; t2 is never woken * * GENERATION COUNTERS. One naive solution to this is to use a generation * counter. Each broadcast() invocation increments a generation counter. If * the generation counter has not changed during a semaphore wait operation * inside wait(), this indicates that no broadcast() call has been made in * the meantime; therefore, the successful semaphore decrement must have * 'stolen' a wakeup from another thread which was waiting to wakeup from the * prior broadcast() call but which had not yet had a chance to do so. The * semaphore can then be reincremented and the wait() operation repeated. * * However, this suffers from the obvious problem that without OS guarantees * as to how semaphore readiness events are distributed amongst threads, * there is no particular guarantee that the semaphore readiness event will * not be immediately redistributed back to the same thread t1. * * SOLUTION. A solution is chosen as follows. In its initial state, a * condition variable can accept waiters, who wait for the semaphore * normally. However, once broadcast() is called, the condition * variable becomes 'closed'. Any existing blocked threads are unblocked, * but any new calls to wait() will instead enter a blocking pre-wait stage. * Pre-wait threads are not considered to be waiting (and the external * mutex remains held). A call to wait() in pre-wait cannot progress * to waiting until all threads due to be unblocked by the prior broadcast() * call have returned and had a chance to execute. * * This pre-wait does not affect a thread if it does not call wait() * again until after all threads have had a chance to execute. * * RESOURCE USAGE. Aside from an allocation for the condition variable * structure, this solution uses two Win32 semaphores. * * FUTURE OPTIMISATIONS: * * An optimised multi-generation implementation is possible at the cost of * higher Win32 resource usage. Multiple 'buckets' could be defined, with * usage rotating between buckets internally as buckets become closed. * This would avoid the need for the prewait in more cases, depending * on intensity of usage. * */ typedef struct legacy_condvar_st { CRYPTO_MUTEX *int_m; /* internal mutex */ HANDLE sema; /* main wait semaphore */ HANDLE prewait_sema; /* prewait semaphore */ /* * All of the following fields are protected by int_m. * * num_wake only ever increases by virtue of a corresponding decrease in * num_wait. num_wait can decrease for other reasons (for example due to a * wait operation timing out). */ size_t num_wait; /* Num. threads currently blocked */ size_t num_wake; /* Num. threads due to wake up */ size_t num_prewait; /* Num. threads in prewait */ size_t gen; /* Prewait generation */ int closed; /* Is closed? */ } LEGACY_CONDVAR; CRYPTO_CONDVAR *ossl_crypto_condvar_new(void) { LEGACY_CONDVAR *cv; if ((cv = OPENSSL_malloc(sizeof(LEGACY_CONDVAR))) == NULL) return NULL; if ((cv->int_m = ossl_crypto_mutex_new()) == NULL) { OPENSSL_free(cv); return NULL; } if ((cv->sema = CreateSemaphoreA(NULL, 0, LONG_MAX, NULL)) == NULL) { ossl_crypto_mutex_free(&cv->int_m); OPENSSL_free(cv); return NULL; } if ((cv->prewait_sema = CreateSemaphoreA(NULL, 0, LONG_MAX, NULL)) == NULL) { CloseHandle(cv->sema); ossl_crypto_mutex_free(&cv->int_m); OPENSSL_free(cv); return NULL; } cv->num_wait = 0; cv->num_wake = 0; cv->num_prewait = 0; cv->closed = 0; return (CRYPTO_CONDVAR *)cv; } void ossl_crypto_condvar_free(CRYPTO_CONDVAR **cv_p) { if (*cv_p != NULL) { LEGACY_CONDVAR *cv = *(LEGACY_CONDVAR **)cv_p; CloseHandle(cv->sema); CloseHandle(cv->prewait_sema); ossl_crypto_mutex_free(&cv->int_m); OPENSSL_free(cv); } *cv_p = NULL; } static uint32_t obj_wait(HANDLE h, OSSL_TIME deadline) { DWORD timeout; if (!determine_timeout(deadline, &timeout)) timeout = 1; return WaitForSingleObject(h, timeout); } void ossl_crypto_condvar_wait_timeout(CRYPTO_CONDVAR *cv_, CRYPTO_MUTEX *ext_m, OSSL_TIME deadline) { LEGACY_CONDVAR *cv = (LEGACY_CONDVAR *)cv_; int closed, set_prewait = 0, have_orig_gen = 0; uint32_t rc; size_t orig_gen; /* Admission control - prewait until we can enter our actual wait phase. */ do { ossl_crypto_mutex_lock(cv->int_m); closed = cv->closed; /* * Once prewait is over the prewait semaphore is signalled and * num_prewait is set to 0. Use a generation counter to track if we need * to remove a value we added to num_prewait when exiting (e.g. due to * timeout or failure of WaitForSingleObject). */ if (!have_orig_gen) { orig_gen = cv->gen; have_orig_gen = 1; } else if (cv->gen != orig_gen) { set_prewait = 0; orig_gen = cv->gen; } if (!closed) { /* We can now be admitted. */ ++cv->num_wait; if (set_prewait) { --cv->num_prewait; set_prewait = 0; } } else if (!set_prewait) { ++cv->num_prewait; set_prewait = 1; } ossl_crypto_mutex_unlock(cv->int_m); if (closed) if (obj_wait(cv->prewait_sema, deadline) != WAIT_OBJECT_0) { /* * If we got WAIT_OBJECT_0 we are safe - num_prewait has been * set to 0 and the semaphore has been consumed. On the other * hand if we timed out, there may be a residual posting that * was made just after we timed out. However in the worst case * this will just cause an internal spurious wakeup here in the * future, so we do not care too much about this. We treat * failure and timeout cases as the same, and simply exit in * this case. */ ossl_crypto_mutex_lock(cv->int_m); if (set_prewait && cv->gen == orig_gen) --cv->num_prewait; ossl_crypto_mutex_unlock(cv->int_m); return; } } while (closed); /* * Unlock external mutex. Do not do this until we have been admitted, as we * must guarantee we wake if broadcast is called at any time after ext_m is * unlocked. */ ossl_crypto_mutex_unlock(ext_m); for (;;) { /* Wait. */ rc = obj_wait(cv->sema, deadline); /* Reacquire internal mutex and probe state. */ ossl_crypto_mutex_lock(cv->int_m); if (cv->num_wake > 0) { /* * A wake token is available, so we can wake up. Consume the token * and get out of here. We don't care what WaitForSingleObject * returned here (e.g. if it timed out coincidentally). In the * latter case a signal might be left in the semaphore which causes * a future WaitForSingleObject call to return immediately, but in * this case we will just loop again. */ --cv->num_wake; if (cv->num_wake == 0 && cv->closed) { /* * We consumed the last wake token, so we can now open the * condition variable for new admissions. */ cv->closed = 0; if (cv->num_prewait > 0) { ReleaseSemaphore(cv->prewait_sema, (LONG)cv->num_prewait, NULL); cv->num_prewait = 0; ++cv->gen; } } } else if (rc == WAIT_OBJECT_0) { /* * We got a wakeup from the semaphore but we did not have any wake * tokens. This ideally does not happen, but might if during a * previous wait() call the semaphore is posted just after * WaitForSingleObject returns due to a timeout (such that the * num_wake > 0 case is taken above). Just spin again. (It is worth * noting that repeated WaitForSingleObject calls is the only method * documented for decrementing a Win32 semaphore, so this is * basically the best possible strategy.) */ ossl_crypto_mutex_unlock(cv->int_m); continue; } else { /* * Assume we timed out. The WaitForSingleObject call may also have * failed for some other reason, which we treat as a timeout. */ assert(cv->num_wait > 0); --cv->num_wait; } break; } ossl_crypto_mutex_unlock(cv->int_m); ossl_crypto_mutex_lock(ext_m); } void ossl_crypto_condvar_wait(CRYPTO_CONDVAR *cv, CRYPTO_MUTEX *ext_m) { ossl_crypto_condvar_wait_timeout(cv, ext_m, ossl_time_infinite()); } void ossl_crypto_condvar_broadcast(CRYPTO_CONDVAR *cv_) { LEGACY_CONDVAR *cv = (LEGACY_CONDVAR *)cv_; size_t num_wake; ossl_crypto_mutex_lock(cv->int_m); num_wake = cv->num_wait; if (num_wake == 0) { ossl_crypto_mutex_unlock(cv->int_m); return; } cv->num_wake += num_wake; cv->num_wait -= num_wake; cv->closed = 1; ossl_crypto_mutex_unlock(cv->int_m); ReleaseSemaphore(cv->sema, num_wake, NULL); } void ossl_crypto_condvar_signal(CRYPTO_CONDVAR *cv_) { LEGACY_CONDVAR *cv = (LEGACY_CONDVAR *)cv_; ossl_crypto_mutex_lock(cv->int_m); if (cv->num_wait == 0) { ossl_crypto_mutex_unlock(cv->int_m); return; } /* * We do not close the condition variable when merely signalling, as there * are no guaranteed fairness semantics here, unlike for a broadcast. */ --cv->num_wait; ++cv->num_wake; ossl_crypto_mutex_unlock(cv->int_m); ReleaseSemaphore(cv->sema, 1, NULL); } # else CRYPTO_CONDVAR *ossl_crypto_condvar_new(void) { CONDITION_VARIABLE *cv_p; if ((cv_p = OPENSSL_zalloc(sizeof(*cv_p))) == NULL) return NULL; InitializeConditionVariable(cv_p); return (CRYPTO_CONDVAR *)cv_p; } void ossl_crypto_condvar_wait(CRYPTO_CONDVAR *cv, CRYPTO_MUTEX *mutex) { CONDITION_VARIABLE *cv_p; CRITICAL_SECTION *mutex_p; cv_p = (CONDITION_VARIABLE *)cv; mutex_p = (CRITICAL_SECTION *)mutex; SleepConditionVariableCS(cv_p, mutex_p, INFINITE); } void ossl_crypto_condvar_wait_timeout(CRYPTO_CONDVAR *cv, CRYPTO_MUTEX *mutex, OSSL_TIME deadline) { DWORD timeout; CONDITION_VARIABLE *cv_p = (CONDITION_VARIABLE *)cv; CRITICAL_SECTION *mutex_p = (CRITICAL_SECTION *)mutex; if (!determine_timeout(deadline, &timeout)) timeout = 1; SleepConditionVariableCS(cv_p, mutex_p, timeout); } void ossl_crypto_condvar_broadcast(CRYPTO_CONDVAR *cv) { CONDITION_VARIABLE *cv_p; cv_p = (CONDITION_VARIABLE *)cv; WakeAllConditionVariable(cv_p); } void ossl_crypto_condvar_signal(CRYPTO_CONDVAR *cv) { CONDITION_VARIABLE *cv_p; cv_p = (CONDITION_VARIABLE *)cv; WakeConditionVariable(cv_p); } void ossl_crypto_condvar_free(CRYPTO_CONDVAR **cv) { CONDITION_VARIABLE **cv_p; cv_p = (CONDITION_VARIABLE **)cv; OPENSSL_free(*cv_p); *cv_p = NULL; } # endif void ossl_crypto_mem_barrier(void) { MemoryBarrier(); } #endif
./openssl/crypto/thread/arch/thread_none.c
/* * Copyright 2019-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <internal/thread_arch.h> #if defined(OPENSSL_THREADS_NONE) int ossl_crypto_thread_native_spawn(CRYPTO_THREAD *thread) { return 0; } int ossl_crypto_thread_native_perform_join(CRYPTO_THREAD *thread, CRYPTO_THREAD_RETVAL *retval) { return 0; } int ossl_crypto_thread_native_exit(void) { return 0; } int ossl_crypto_thread_native_is_self(CRYPTO_THREAD *thread) { return 0; } CRYPTO_MUTEX *ossl_crypto_mutex_new(void) { return NULL; } void ossl_crypto_mutex_lock(CRYPTO_MUTEX *mutex) { } int ossl_crypto_mutex_try_lock(CRYPTO_MUTEX *mutex) { return 0; } void ossl_crypto_mutex_unlock(CRYPTO_MUTEX *mutex) { } void ossl_crypto_mutex_free(CRYPTO_MUTEX **mutex) { } CRYPTO_CONDVAR *ossl_crypto_condvar_new(void) { return NULL; } void ossl_crypto_condvar_wait(CRYPTO_CONDVAR *cv, CRYPTO_MUTEX *mutex) { } void ossl_crypto_condvar_wait_timeout(CRYPTO_CONDVAR *cv, CRYPTO_MUTEX *mutex, OSSL_TIME deadline) { } void ossl_crypto_condvar_broadcast(CRYPTO_CONDVAR *cv) { } void ossl_crypto_condvar_signal(CRYPTO_CONDVAR *cv) { } void ossl_crypto_condvar_free(CRYPTO_CONDVAR **cv) { } #endif
./openssl/crypto/thread/arch/thread_posix.c
/* * Copyright 2019-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <internal/thread_arch.h> #if defined(OPENSSL_THREADS_POSIX) # define _GNU_SOURCE # include <errno.h> # include <sys/types.h> # include <unistd.h> static void *thread_start_thunk(void *vthread) { CRYPTO_THREAD *thread; CRYPTO_THREAD_RETVAL ret; thread = (CRYPTO_THREAD *)vthread; ret = thread->routine(thread->data); ossl_crypto_mutex_lock(thread->statelock); CRYPTO_THREAD_SET_STATE(thread, CRYPTO_THREAD_FINISHED); thread->retval = ret; ossl_crypto_condvar_broadcast(thread->condvar); ossl_crypto_mutex_unlock(thread->statelock); return NULL; } int ossl_crypto_thread_native_spawn(CRYPTO_THREAD *thread) { int ret; pthread_attr_t attr; pthread_t *handle; handle = OPENSSL_zalloc(sizeof(*handle)); if (handle == NULL) goto fail; pthread_attr_init(&attr); if (!thread->joinable) pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); ret = pthread_create(handle, &attr, thread_start_thunk, thread); pthread_attr_destroy(&attr); if (ret != 0) goto fail; thread->handle = handle; return 1; fail: thread->handle = NULL; OPENSSL_free(handle); return 0; } int ossl_crypto_thread_native_perform_join(CRYPTO_THREAD *thread, CRYPTO_THREAD_RETVAL *retval) { void *thread_retval; pthread_t *handle; if (thread == NULL || thread->handle == NULL) return 0; handle = (pthread_t *) thread->handle; if (pthread_join(*handle, &thread_retval) != 0) return 0; /* * Join return value may be non-NULL when the thread has been cancelled, * as indicated by thread_retval set to PTHREAD_CANCELLED. */ if (thread_retval != NULL) return 0; return 1; } int ossl_crypto_thread_native_exit(void) { pthread_exit(NULL); return 1; } int ossl_crypto_thread_native_is_self(CRYPTO_THREAD *thread) { return pthread_equal(*(pthread_t *)thread->handle, pthread_self()); } CRYPTO_MUTEX *ossl_crypto_mutex_new(void) { pthread_mutex_t *mutex; if ((mutex = OPENSSL_zalloc(sizeof(*mutex))) == NULL) return NULL; if (pthread_mutex_init(mutex, NULL) != 0) { OPENSSL_free(mutex); return NULL; } return (CRYPTO_MUTEX *)mutex; } int ossl_crypto_mutex_try_lock(CRYPTO_MUTEX *mutex) { pthread_mutex_t *mutex_p; mutex_p = (pthread_mutex_t *)mutex; if (pthread_mutex_trylock(mutex_p) == EBUSY) return 0; return 1; } void ossl_crypto_mutex_lock(CRYPTO_MUTEX *mutex) { int rc; pthread_mutex_t *mutex_p; mutex_p = (pthread_mutex_t *)mutex; rc = pthread_mutex_lock(mutex_p); OPENSSL_assert(rc == 0); } void ossl_crypto_mutex_unlock(CRYPTO_MUTEX *mutex) { int rc; pthread_mutex_t *mutex_p; mutex_p = (pthread_mutex_t *)mutex; rc = pthread_mutex_unlock(mutex_p); OPENSSL_assert(rc == 0); } void ossl_crypto_mutex_free(CRYPTO_MUTEX **mutex) { pthread_mutex_t **mutex_p; if (mutex == NULL) return; mutex_p = (pthread_mutex_t **)mutex; if (*mutex_p != NULL) pthread_mutex_destroy(*mutex_p); OPENSSL_free(*mutex_p); *mutex = NULL; } CRYPTO_CONDVAR *ossl_crypto_condvar_new(void) { pthread_cond_t *cv_p; if ((cv_p = OPENSSL_zalloc(sizeof(*cv_p))) == NULL) return NULL; if (pthread_cond_init(cv_p, NULL) != 0) { OPENSSL_free(cv_p); return NULL; } return (CRYPTO_CONDVAR *) cv_p; } void ossl_crypto_condvar_wait(CRYPTO_CONDVAR *cv, CRYPTO_MUTEX *mutex) { pthread_cond_t *cv_p; pthread_mutex_t *mutex_p; cv_p = (pthread_cond_t *)cv; mutex_p = (pthread_mutex_t *)mutex; pthread_cond_wait(cv_p, mutex_p); } void ossl_crypto_condvar_wait_timeout(CRYPTO_CONDVAR *cv, CRYPTO_MUTEX *mutex, OSSL_TIME deadline) { pthread_cond_t *cv_p = (pthread_cond_t *)cv; pthread_mutex_t *mutex_p = (pthread_mutex_t *)mutex; if (ossl_time_is_infinite(deadline)) { /* * No deadline. Some pthread implementations allow * pthread_cond_timedwait to work the same as pthread_cond_wait when * abstime is NULL, but it is unclear whether this is POSIXly correct. */ pthread_cond_wait(cv_p, mutex_p); } else { struct timespec deadline_ts; deadline_ts.tv_sec = ossl_time2seconds(deadline); deadline_ts.tv_nsec = (ossl_time2ticks(deadline) % OSSL_TIME_SECOND) / OSSL_TIME_NS; pthread_cond_timedwait(cv_p, mutex_p, &deadline_ts); } } void ossl_crypto_condvar_broadcast(CRYPTO_CONDVAR *cv) { pthread_cond_t *cv_p; cv_p = (pthread_cond_t *)cv; pthread_cond_broadcast(cv_p); } void ossl_crypto_condvar_signal(CRYPTO_CONDVAR *cv) { pthread_cond_t *cv_p; cv_p = (pthread_cond_t *)cv; pthread_cond_signal(cv_p); } void ossl_crypto_condvar_free(CRYPTO_CONDVAR **cv) { pthread_cond_t **cv_p; if (cv == NULL) return; cv_p = (pthread_cond_t **)cv; if (*cv_p != NULL) pthread_cond_destroy(*cv_p); OPENSSL_free(*cv_p); *cv_p = NULL; } #endif
./openssl/crypto/rc5/rc5ofb64.c
/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * RC5 low level APIs are deprecated for public use, but still ok for internal * use. */ #include "internal/deprecated.h" #include <openssl/rc5.h> #include "rc5_local.h" /* * The input and output encrypted as though 64bit ofb mode is being used. * The extra state information to record how much of the 64bit block we have * used is contained in *num; */ void RC5_32_ofb64_encrypt(const unsigned char *in, unsigned char *out, long length, RC5_32_KEY *schedule, unsigned char *ivec, int *num) { register unsigned long v0, v1, t; register int n = *num; register long l = length; unsigned char d[8]; register char *dp; unsigned long ti[2]; unsigned char *iv; int save = 0; iv = (unsigned char *)ivec; c2l(iv, v0); c2l(iv, v1); ti[0] = v0; ti[1] = v1; dp = (char *)d; l2c(v0, dp); l2c(v1, dp); while (l--) { if (n == 0) { RC5_32_encrypt((unsigned long *)ti, schedule); dp = (char *)d; t = ti[0]; l2c(t, dp); t = ti[1]; l2c(t, dp); save++; } *(out++) = *(in++) ^ d[n]; n = (n + 1) & 0x07; } if (save) { v0 = ti[0]; v1 = ti[1]; iv = (unsigned char *)ivec; l2c(v0, iv); l2c(v1, iv); } t = v0 = v1 = ti[0] = ti[1] = 0; *num = n; }
./openssl/crypto/rc5/rc5_skey.c
/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * RC5 low level APIs are deprecated for public use, but still ok for internal * use. */ #include "internal/deprecated.h" #include <openssl/rc5.h> #include "rc5_local.h" int RC5_32_set_key(RC5_32_KEY *key, int len, const unsigned char *data, int rounds) { RC5_32_INT L[64], l, ll, A, B, *S, k; int i, j, m, c, t, ii, jj; if (len > 255) return 0; if ((rounds != RC5_16_ROUNDS) && (rounds != RC5_12_ROUNDS) && (rounds != RC5_8_ROUNDS)) rounds = RC5_16_ROUNDS; key->rounds = rounds; S = &(key->data[0]); j = 0; for (i = 0; i <= (len - 8); i += 8) { c2l(data, l); L[j++] = l; c2l(data, l); L[j++] = l; } ii = len - i; if (ii) { k = len & 0x07; c2ln(data, l, ll, k); L[j + 0] = l; L[j + 1] = ll; } c = (len + 3) / 4; t = (rounds + 1) * 2; S[0] = RC5_32_P; for (i = 1; i < t; i++) S[i] = (S[i - 1] + RC5_32_Q) & RC5_32_MASK; j = (t > c) ? t : c; j *= 3; ii = jj = 0; A = B = 0; for (i = 0; i < j; i++) { k = (S[ii] + A + B) & RC5_32_MASK; A = S[ii] = ROTATE_l32(k, 3); m = (int)(A + B); k = (L[jj] + A + B) & RC5_32_MASK; B = L[jj] = ROTATE_l32(k, m); if (++ii >= t) ii = 0; if (++jj >= c) jj = 0; } return 1; }
./openssl/crypto/rc5/rc5_ecb.c
/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * RC5 low level APIs are deprecated for public use, but still ok for internal * use. */ #include "internal/deprecated.h" #include <openssl/rc5.h> #include "rc5_local.h" #include <openssl/opensslv.h> void RC5_32_ecb_encrypt(const unsigned char *in, unsigned char *out, RC5_32_KEY *ks, int encrypt) { unsigned long l, d[2]; c2l(in, l); d[0] = l; c2l(in, l); d[1] = l; if (encrypt) RC5_32_encrypt(d, ks); else RC5_32_decrypt(d, ks); l = d[0]; l2c(l, out); l = d[1]; l2c(l, out); l = d[0] = d[1] = 0; }
./openssl/crypto/rc5/rc5_enc.c
/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * RC5 low level APIs are deprecated for public use, but still ok for internal * use. */ #include "internal/deprecated.h" #include <stdio.h> #include <openssl/rc5.h> #include "rc5_local.h" void RC5_32_cbc_encrypt(const unsigned char *in, unsigned char *out, long length, RC5_32_KEY *ks, unsigned char *iv, int encrypt) { register unsigned long tin0, tin1; register unsigned long tout0, tout1, xor0, xor1; register long l = length; unsigned long tin[2]; if (encrypt) { c2l(iv, tout0); c2l(iv, tout1); iv -= 8; for (l -= 8; l >= 0; l -= 8) { c2l(in, tin0); c2l(in, tin1); tin0 ^= tout0; tin1 ^= tout1; tin[0] = tin0; tin[1] = tin1; RC5_32_encrypt(tin, ks); tout0 = tin[0]; l2c(tout0, out); tout1 = tin[1]; l2c(tout1, out); } if (l != -8) { c2ln(in, tin0, tin1, l + 8); tin0 ^= tout0; tin1 ^= tout1; tin[0] = tin0; tin[1] = tin1; RC5_32_encrypt(tin, ks); tout0 = tin[0]; l2c(tout0, out); tout1 = tin[1]; l2c(tout1, out); } l2c(tout0, iv); l2c(tout1, iv); } else { c2l(iv, xor0); c2l(iv, xor1); iv -= 8; for (l -= 8; l >= 0; l -= 8) { c2l(in, tin0); tin[0] = tin0; c2l(in, tin1); tin[1] = tin1; RC5_32_decrypt(tin, ks); tout0 = tin[0] ^ xor0; tout1 = tin[1] ^ xor1; l2c(tout0, out); l2c(tout1, out); xor0 = tin0; xor1 = tin1; } if (l != -8) { c2l(in, tin0); tin[0] = tin0; c2l(in, tin1); tin[1] = tin1; RC5_32_decrypt(tin, ks); tout0 = tin[0] ^ xor0; tout1 = tin[1] ^ xor1; l2cn(tout0, tout1, out, l + 8); xor0 = tin0; xor1 = tin1; } l2c(xor0, iv); l2c(xor1, iv); } tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0; tin[0] = tin[1] = 0; } void RC5_32_encrypt(unsigned long *d, RC5_32_KEY *key) { RC5_32_INT a, b, *s; s = key->data; a = d[0] + s[0]; b = d[1] + s[1]; E_RC5_32(a, b, s, 2); E_RC5_32(a, b, s, 4); E_RC5_32(a, b, s, 6); E_RC5_32(a, b, s, 8); E_RC5_32(a, b, s, 10); E_RC5_32(a, b, s, 12); E_RC5_32(a, b, s, 14); E_RC5_32(a, b, s, 16); if (key->rounds == 12) { E_RC5_32(a, b, s, 18); E_RC5_32(a, b, s, 20); E_RC5_32(a, b, s, 22); E_RC5_32(a, b, s, 24); } else if (key->rounds == 16) { /* Do a full expansion to avoid a jump */ E_RC5_32(a, b, s, 18); E_RC5_32(a, b, s, 20); E_RC5_32(a, b, s, 22); E_RC5_32(a, b, s, 24); E_RC5_32(a, b, s, 26); E_RC5_32(a, b, s, 28); E_RC5_32(a, b, s, 30); E_RC5_32(a, b, s, 32); } d[0] = a; d[1] = b; } void RC5_32_decrypt(unsigned long *d, RC5_32_KEY *key) { RC5_32_INT a, b, *s; s = key->data; a = d[0]; b = d[1]; if (key->rounds == 16) { D_RC5_32(a, b, s, 32); D_RC5_32(a, b, s, 30); D_RC5_32(a, b, s, 28); D_RC5_32(a, b, s, 26); /* Do a full expansion to avoid a jump */ D_RC5_32(a, b, s, 24); D_RC5_32(a, b, s, 22); D_RC5_32(a, b, s, 20); D_RC5_32(a, b, s, 18); } else if (key->rounds == 12) { D_RC5_32(a, b, s, 24); D_RC5_32(a, b, s, 22); D_RC5_32(a, b, s, 20); D_RC5_32(a, b, s, 18); } D_RC5_32(a, b, s, 16); D_RC5_32(a, b, s, 14); D_RC5_32(a, b, s, 12); D_RC5_32(a, b, s, 10); D_RC5_32(a, b, s, 8); D_RC5_32(a, b, s, 6); D_RC5_32(a, b, s, 4); D_RC5_32(a, b, s, 2); d[0] = a - s[0]; d[1] = b - s[1]; }
./openssl/crypto/rc5/rc5cfb64.c
/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * RC5 low level APIs are deprecated for public use, but still ok for internal * use. */ #include "internal/deprecated.h" #include <openssl/rc5.h> #include "rc5_local.h" /* * The input and output encrypted as though 64bit cfb mode is being used. * The extra state information to record how much of the 64bit block we have * used is contained in *num; */ void RC5_32_cfb64_encrypt(const unsigned char *in, unsigned char *out, long length, RC5_32_KEY *schedule, unsigned char *ivec, int *num, int encrypt) { register unsigned long v0, v1, t; register int n = *num; register long l = length; unsigned long ti[2]; unsigned char *iv, c, cc; iv = (unsigned char *)ivec; if (encrypt) { while (l--) { if (n == 0) { c2l(iv, v0); ti[0] = v0; c2l(iv, v1); ti[1] = v1; RC5_32_encrypt((unsigned long *)ti, schedule); iv = (unsigned char *)ivec; t = ti[0]; l2c(t, iv); t = ti[1]; l2c(t, iv); iv = (unsigned char *)ivec; } c = *(in++) ^ iv[n]; *(out++) = c; iv[n] = c; n = (n + 1) & 0x07; } } else { while (l--) { if (n == 0) { c2l(iv, v0); ti[0] = v0; c2l(iv, v1); ti[1] = v1; RC5_32_encrypt((unsigned long *)ti, schedule); iv = (unsigned char *)ivec; t = ti[0]; l2c(t, iv); t = ti[1]; l2c(t, iv); iv = (unsigned char *)ivec; } cc = *(in++); c = iv[n]; iv[n] = cc; *(out++) = c ^ cc; n = (n + 1) & 0x07; } } v0 = v1 = ti[0] = ti[1] = t = c = cc = 0; *num = n; }
./openssl/crypto/rc5/rc5_local.h
/* * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <stdlib.h> #undef c2l #define c2l(c,l) (l =((unsigned long)(*((c)++))) , \ l|=((unsigned long)(*((c)++)))<< 8L, \ l|=((unsigned long)(*((c)++)))<<16L, \ l|=((unsigned long)(*((c)++)))<<24L) /* NOTE - c is not incremented as per c2l */ #undef c2ln #define c2ln(c,l1,l2,n) { \ c+=n; \ l1=l2=0; \ switch (n) { \ case 8: l2 =((unsigned long)(*(--(c))))<<24L; \ /* fall through */ \ case 7: l2|=((unsigned long)(*(--(c))))<<16L; \ /* fall through */ \ case 6: l2|=((unsigned long)(*(--(c))))<< 8L; \ /* fall through */ \ case 5: l2|=((unsigned long)(*(--(c)))); \ /* fall through */ \ case 4: l1 =((unsigned long)(*(--(c))))<<24L; \ /* fall through */ \ case 3: l1|=((unsigned long)(*(--(c))))<<16L; \ /* fall through */ \ case 2: l1|=((unsigned long)(*(--(c))))<< 8L; \ /* fall through */ \ case 1: l1|=((unsigned long)(*(--(c)))); \ } \ } #undef l2c #define l2c(l,c) (*((c)++)=(unsigned char)(((l) )&0xff), \ *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \ *((c)++)=(unsigned char)(((l)>>16L)&0xff), \ *((c)++)=(unsigned char)(((l)>>24L)&0xff)) /* NOTE - c is not incremented as per l2c */ #undef l2cn #define l2cn(l1,l2,c,n) { \ c+=n; \ switch (n) { \ case 8: *(--(c))=(unsigned char)(((l2)>>24L)&0xff); \ /* fall through */ \ case 7: *(--(c))=(unsigned char)(((l2)>>16L)&0xff); \ /* fall through */ \ case 6: *(--(c))=(unsigned char)(((l2)>> 8L)&0xff); \ /* fall through */ \ case 5: *(--(c))=(unsigned char)(((l2) )&0xff); \ /* fall through */ \ case 4: *(--(c))=(unsigned char)(((l1)>>24L)&0xff); \ /* fall through */ \ case 3: *(--(c))=(unsigned char)(((l1)>>16L)&0xff); \ /* fall through */ \ case 2: *(--(c))=(unsigned char)(((l1)>> 8L)&0xff); \ /* fall through */ \ case 1: *(--(c))=(unsigned char)(((l1) )&0xff); \ } \ } #if (defined(OPENSSL_SYS_WIN32) && defined(_MSC_VER)) # define ROTATE_l32(a,n) _lrotl(a,n) # define ROTATE_r32(a,n) _lrotr(a,n) #elif defined(__ICC) # define ROTATE_l32(a,n) _rotl(a,n) # define ROTATE_r32(a,n) _rotr(a,n) #elif defined(__GNUC__) && __GNUC__>=2 && !defined(__STRICT_ANSI__) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC) # if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__) # define ROTATE_l32(a,n) ({ register unsigned int ret; \ asm ("roll %%cl,%0" \ : "=r"(ret) \ : "c"(n),"0"((unsigned int)(a)) \ : "cc"); \ ret; \ }) # define ROTATE_r32(a,n) ({ register unsigned int ret; \ asm ("rorl %%cl,%0" \ : "=r"(ret) \ : "c"(n),"0"((unsigned int)(a)) \ : "cc"); \ ret; \ }) # endif #endif #ifndef ROTATE_l32 # define ROTATE_l32(a,n) (((a)<<(n&0x1f))|(((a)&0xffffffff)>>((32-n)&0x1f))) #endif #ifndef ROTATE_r32 # define ROTATE_r32(a,n) (((a)<<((32-n)&0x1f))|(((a)&0xffffffff)>>(n&0x1f))) #endif #define RC5_32_MASK 0xffffffffL #define RC5_32_P 0xB7E15163L #define RC5_32_Q 0x9E3779B9L #define E_RC5_32(a,b,s,n) \ a^=b; \ a=ROTATE_l32(a,b); \ a+=s[n]; \ a&=RC5_32_MASK; \ b^=a; \ b=ROTATE_l32(b,a); \ b+=s[n+1]; \ b&=RC5_32_MASK; #define D_RC5_32(a,b,s,n) \ b-=s[n+1]; \ b&=RC5_32_MASK; \ b=ROTATE_r32(b,a); \ b^=a; \ a-=s[n]; \ a&=RC5_32_MASK; \ a=ROTATE_r32(a,b); \ a^=b;
./openssl/crypto/aes/aes_local.h
/* * Copyright 2002-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #ifndef OSSL_CRYPTO_AES_LOCAL_H # define OSSL_CRYPTO_AES_LOCAL_H # include <openssl/e_os2.h> # include <stdio.h> # include <stdlib.h> # include <string.h> # if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64)) # define SWAP(x) (_lrotl(x, 8) & 0x00ff00ff | _lrotr(x, 8) & 0xff00ff00) # define GETU32(p) SWAP(*((u32 *)(p))) # define PUTU32(ct, st) { *((u32 *)(ct)) = SWAP((st)); } # else # define GETU32(pt) (((u32)(pt)[0] << 24) ^ ((u32)(pt)[1] << 16) ^ ((u32)(pt)[2] << 8) ^ ((u32)(pt)[3])) # define PUTU32(ct, st) { (ct)[0] = (u8)((st) >> 24); (ct)[1] = (u8)((st) >> 16); (ct)[2] = (u8)((st) >> 8); (ct)[3] = (u8)(st); } # endif typedef uint64_t u64; # ifdef AES_LONG typedef unsigned long u32; # else typedef unsigned int u32; # endif typedef unsigned short u16; typedef unsigned char u8; # define MAXKC (256/32) # define MAXKB (256/8) # define MAXNR 14 /* This controls loop-unrolling in aes_core.c */ # undef FULL_UNROLL #endif /* !OSSL_CRYPTO_AES_LOCAL_H */
./openssl/crypto/aes/aes_ige.c
/* * Copyright 2006-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * AES_encrypt/AES_decrypt are deprecated - but we need to use them to implement * these functions */ #include "internal/deprecated.h" #include "internal/cryptlib.h" #include <openssl/aes.h> #include "aes_local.h" /* XXX: probably some better way to do this */ #if defined(__i386__) || defined(__x86_64__) # define UNALIGNED_MEMOPS_ARE_FAST 1 #else # define UNALIGNED_MEMOPS_ARE_FAST 0 #endif #define N_WORDS (AES_BLOCK_SIZE / sizeof(unsigned long)) typedef struct { unsigned long data[N_WORDS]; #if defined(__GNUC__) && UNALIGNED_MEMOPS_ARE_FAST } aes_block_t __attribute((__aligned__(1))); #else } aes_block_t; #endif #if UNALIGNED_MEMOPS_ARE_FAST # define load_block(d, s) (d) = *(const aes_block_t *)(s) # define store_block(d, s) *(aes_block_t *)(d) = (s) #else # define load_block(d, s) memcpy((d).data, (s), AES_BLOCK_SIZE) # define store_block(d, s) memcpy((d), (s).data, AES_BLOCK_SIZE) #endif /* N.B. The IV for this mode is _twice_ the block size */ /* Use of this function is deprecated. */ void AES_ige_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, const int enc) { size_t n; size_t len = length / AES_BLOCK_SIZE; if (length == 0) return; OPENSSL_assert(in && out && key && ivec); OPENSSL_assert((AES_ENCRYPT == enc) || (AES_DECRYPT == enc)); OPENSSL_assert((length % AES_BLOCK_SIZE) == 0); if (AES_ENCRYPT == enc) { if (in != out && (UNALIGNED_MEMOPS_ARE_FAST || ((size_t)in | (size_t)out | (size_t)ivec) % sizeof(long) == 0)) { aes_block_t *ivp = (aes_block_t *) ivec; aes_block_t *iv2p = (aes_block_t *) (ivec + AES_BLOCK_SIZE); while (len) { aes_block_t *inp = (aes_block_t *) in; aes_block_t *outp = (aes_block_t *) out; for (n = 0; n < N_WORDS; ++n) outp->data[n] = inp->data[n] ^ ivp->data[n]; AES_encrypt((unsigned char *)outp->data, (unsigned char *)outp->data, key); for (n = 0; n < N_WORDS; ++n) outp->data[n] ^= iv2p->data[n]; ivp = outp; iv2p = inp; --len; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } memcpy(ivec, ivp->data, AES_BLOCK_SIZE); memcpy(ivec + AES_BLOCK_SIZE, iv2p->data, AES_BLOCK_SIZE); } else { aes_block_t tmp, tmp2; aes_block_t iv; aes_block_t iv2; load_block(iv, ivec); load_block(iv2, ivec + AES_BLOCK_SIZE); while (len) { load_block(tmp, in); for (n = 0; n < N_WORDS; ++n) tmp2.data[n] = tmp.data[n] ^ iv.data[n]; AES_encrypt((unsigned char *)tmp2.data, (unsigned char *)tmp2.data, key); for (n = 0; n < N_WORDS; ++n) tmp2.data[n] ^= iv2.data[n]; store_block(out, tmp2); iv = tmp2; iv2 = tmp; --len; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } memcpy(ivec, iv.data, AES_BLOCK_SIZE); memcpy(ivec + AES_BLOCK_SIZE, iv2.data, AES_BLOCK_SIZE); } } else { if (in != out && (UNALIGNED_MEMOPS_ARE_FAST || ((size_t)in | (size_t)out | (size_t)ivec) % sizeof(long) == 0)) { aes_block_t *ivp = (aes_block_t *) ivec; aes_block_t *iv2p = (aes_block_t *) (ivec + AES_BLOCK_SIZE); while (len) { aes_block_t tmp; aes_block_t *inp = (aes_block_t *) in; aes_block_t *outp = (aes_block_t *) out; for (n = 0; n < N_WORDS; ++n) tmp.data[n] = inp->data[n] ^ iv2p->data[n]; AES_decrypt((unsigned char *)tmp.data, (unsigned char *)outp->data, key); for (n = 0; n < N_WORDS; ++n) outp->data[n] ^= ivp->data[n]; ivp = inp; iv2p = outp; --len; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } memcpy(ivec, ivp->data, AES_BLOCK_SIZE); memcpy(ivec + AES_BLOCK_SIZE, iv2p->data, AES_BLOCK_SIZE); } else { aes_block_t tmp, tmp2; aes_block_t iv; aes_block_t iv2; load_block(iv, ivec); load_block(iv2, ivec + AES_BLOCK_SIZE); while (len) { load_block(tmp, in); tmp2 = tmp; for (n = 0; n < N_WORDS; ++n) tmp.data[n] ^= iv2.data[n]; AES_decrypt((unsigned char *)tmp.data, (unsigned char *)tmp.data, key); for (n = 0; n < N_WORDS; ++n) tmp.data[n] ^= iv.data[n]; store_block(out, tmp); iv = tmp2; iv2 = tmp; --len; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } memcpy(ivec, iv.data, AES_BLOCK_SIZE); memcpy(ivec + AES_BLOCK_SIZE, iv2.data, AES_BLOCK_SIZE); } } } /* * Note that its effectively impossible to do biIGE in anything other * than a single pass, so no provision is made for chaining. * * NB: The implementation of AES_bi_ige_encrypt has a bug. It is supposed to use * 2 AES keys, but in fact only one is ever used. This bug has been present * since this code was first implemented. It is believed to have minimal * security impact in practice and has therefore not been fixed for backwards * compatibility reasons. * * Use of this function is deprecated. */ /* N.B. The IV for this mode is _four times_ the block size */ void AES_bi_ige_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, const AES_KEY *key2, const unsigned char *ivec, const int enc) { size_t n; size_t len = length; unsigned char tmp[AES_BLOCK_SIZE]; unsigned char tmp2[AES_BLOCK_SIZE]; unsigned char tmp3[AES_BLOCK_SIZE]; unsigned char prev[AES_BLOCK_SIZE]; const unsigned char *iv; const unsigned char *iv2; OPENSSL_assert(in && out && key && ivec); OPENSSL_assert((AES_ENCRYPT == enc) || (AES_DECRYPT == enc)); OPENSSL_assert((length % AES_BLOCK_SIZE) == 0); if (AES_ENCRYPT == enc) { /* * XXX: Do a separate case for when in != out (strictly should check * for overlap, too) */ /* First the forward pass */ iv = ivec; iv2 = ivec + AES_BLOCK_SIZE; while (len >= AES_BLOCK_SIZE) { for (n = 0; n < AES_BLOCK_SIZE; ++n) out[n] = in[n] ^ iv[n]; AES_encrypt(out, out, key); for (n = 0; n < AES_BLOCK_SIZE; ++n) out[n] ^= iv2[n]; iv = out; memcpy(prev, in, AES_BLOCK_SIZE); iv2 = prev; len -= AES_BLOCK_SIZE; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } /* And now backwards */ iv = ivec + AES_BLOCK_SIZE * 2; iv2 = ivec + AES_BLOCK_SIZE * 3; len = length; while (len >= AES_BLOCK_SIZE) { out -= AES_BLOCK_SIZE; /* * XXX: reduce copies by alternating between buffers */ memcpy(tmp, out, AES_BLOCK_SIZE); for (n = 0; n < AES_BLOCK_SIZE; ++n) out[n] ^= iv[n]; /* * hexdump(stdout, "out ^ iv", out, AES_BLOCK_SIZE); */ AES_encrypt(out, out, key); /* * hexdump(stdout,"enc", out, AES_BLOCK_SIZE); */ /* * hexdump(stdout,"iv2", iv2, AES_BLOCK_SIZE); */ for (n = 0; n < AES_BLOCK_SIZE; ++n) out[n] ^= iv2[n]; /* * hexdump(stdout,"out", out, AES_BLOCK_SIZE); */ iv = out; memcpy(prev, tmp, AES_BLOCK_SIZE); iv2 = prev; len -= AES_BLOCK_SIZE; } } else { /* First backwards */ iv = ivec + AES_BLOCK_SIZE * 2; iv2 = ivec + AES_BLOCK_SIZE * 3; in += length; out += length; while (len >= AES_BLOCK_SIZE) { in -= AES_BLOCK_SIZE; out -= AES_BLOCK_SIZE; memcpy(tmp, in, AES_BLOCK_SIZE); memcpy(tmp2, in, AES_BLOCK_SIZE); for (n = 0; n < AES_BLOCK_SIZE; ++n) tmp[n] ^= iv2[n]; AES_decrypt(tmp, out, key); for (n = 0; n < AES_BLOCK_SIZE; ++n) out[n] ^= iv[n]; memcpy(tmp3, tmp2, AES_BLOCK_SIZE); iv = tmp3; iv2 = out; len -= AES_BLOCK_SIZE; } /* And now forwards */ iv = ivec; iv2 = ivec + AES_BLOCK_SIZE; len = length; while (len >= AES_BLOCK_SIZE) { memcpy(tmp, out, AES_BLOCK_SIZE); memcpy(tmp2, out, AES_BLOCK_SIZE); for (n = 0; n < AES_BLOCK_SIZE; ++n) tmp[n] ^= iv2[n]; AES_decrypt(tmp, out, key); for (n = 0; n < AES_BLOCK_SIZE; ++n) out[n] ^= iv[n]; memcpy(tmp3, tmp2, AES_BLOCK_SIZE); iv = tmp3; iv2 = out; len -= AES_BLOCK_SIZE; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } } }
./openssl/crypto/aes/aes_ecb.c
/* * Copyright 2002-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <assert.h> /* * AES_encrypt/AES_decrypt are deprecated - but we need to use them to implement * AES_ecb_encrypt */ #include "internal/deprecated.h" #include <openssl/aes.h> #include "aes_local.h" void AES_ecb_encrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key, const int enc) { assert(in && out && key); assert((AES_ENCRYPT == enc) || (AES_DECRYPT == enc)); if (AES_ENCRYPT == enc) AES_encrypt(in, out, key); else AES_decrypt(in, out, key); }
./openssl/crypto/aes/aes_cfb.c
/* * Copyright 2002-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * AES_encrypt is deprecated - but we need to use it to implement these other * deprecated APIs. */ #include "internal/deprecated.h" #include <openssl/aes.h> #include <openssl/modes.h> /* * The input and output encrypted as though 128bit cfb mode is being used. * The extra state information to record how much of the 128bit block we have * used is contained in *num; */ void AES_cfb128_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, int *num, const int enc) { CRYPTO_cfb128_encrypt(in, out, length, key, ivec, num, enc, (block128_f) AES_encrypt); } /* N.B. This expects the input to be packed, MS bit first */ void AES_cfb1_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, int *num, const int enc) { CRYPTO_cfb128_1_encrypt(in, out, length, key, ivec, num, enc, (block128_f) AES_encrypt); } void AES_cfb8_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, int *num, const int enc) { CRYPTO_cfb128_8_encrypt(in, out, length, key, ivec, num, enc, (block128_f) AES_encrypt); }
./openssl/crypto/aes/aes_misc.c
/* * Copyright 2002-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <openssl/opensslv.h> #include <openssl/aes.h> #include "aes_local.h" #ifndef OPENSSL_NO_DEPRECATED_3_0 const char *AES_options(void) { # ifdef FULL_UNROLL return "aes(full)"; # else return "aes(partial)"; # endif } #endif
./openssl/crypto/aes/aes_wrap.c
/* * Copyright 2008-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * AES_encrypt/AES_decrypt are deprecated - but we need to use them to implement * these functions */ #include "internal/deprecated.h" #include "internal/cryptlib.h" #include <openssl/aes.h> #include <openssl/modes.h> int AES_wrap_key(AES_KEY *key, const unsigned char *iv, unsigned char *out, const unsigned char *in, unsigned int inlen) { return CRYPTO_128_wrap(key, iv, out, in, inlen, (block128_f) AES_encrypt); } int AES_unwrap_key(AES_KEY *key, const unsigned char *iv, unsigned char *out, const unsigned char *in, unsigned int inlen) { return CRYPTO_128_unwrap(key, iv, out, in, inlen, (block128_f) AES_decrypt); }
./openssl/crypto/aes/aes_core.c
/* * Copyright 2002-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /** * rijndael-alg-fst.c * * @version 3.0 (December 2000) * * Optimised ANSI C code for the Rijndael cipher (now AES) * * @author Vincent Rijmen * @author Antoon Bosselaers * @author Paulo Barreto * * This code is hereby placed in the public domain. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* Note: rewritten a little bit to provide error control and an OpenSSL- compatible API */ /* * AES low level APIs are deprecated for public use, but still ok for internal * use where we're using them to implement the higher level EVP interface, as is * the case here. */ #include "internal/deprecated.h" #include <assert.h> #include <stdlib.h> #include <openssl/crypto.h> #include <openssl/aes.h> #include "aes_local.h" #if defined(OPENSSL_AES_CONST_TIME) && !defined(AES_ASM) # if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32__) # define U64(C) C##UI64 # elif defined(__arch64__) # define U64(C) C##UL # else # define U64(C) C##ULL # endif typedef union { unsigned char b[8]; u32 w[2]; u64 d; } uni; /* * Compute w := (w * x) mod (x^8 + x^4 + x^3 + x^1 + 1) * Therefore the name "xtime". */ static void XtimeWord(u32 *w) { u32 a, b; a = *w; b = a & 0x80808080u; a ^= b; b -= b >> 7; b &= 0x1B1B1B1Bu; b ^= a << 1; *w = b; } static void XtimeLong(u64 *w) { u64 a, b; a = *w; b = a & U64(0x8080808080808080); a ^= b; b -= b >> 7; b &= U64(0x1B1B1B1B1B1B1B1B); b ^= a << 1; *w = b; } /* * This computes w := S * w ^ -1 + c, where c = {01100011}. * Instead of using GF(2^8) mod (x^8+x^4+x^3+x+1} we do the inversion * in GF(GF(GF(2^2)^2)^2) mod (X^2+X+8) * and GF(GF(2^2)^2) mod (X^2+X+2) * and GF(2^2) mod (X^2+X+1) * The first part of the algorithm below transfers the coordinates * {0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80} => * {1,Y,Y^2,Y^3,Y^4,Y^5,Y^6,Y^7} with Y=0x41: * {0x01,0x41,0x66,0x6c,0x56,0x9a,0x58,0xc4} * The last part undoes the coordinate transfer and the final affine * transformation S: * b[i] = b[i] + b[(i+4)%8] + b[(i+5)%8] + b[(i+6)%8] + b[(i+7)%8] + c[i] * in one step. * The multiplication in GF(2^2^2^2) is done in ordinary coords: * A = (a0*1 + a1*x^4) * B = (b0*1 + b1*x^4) * AB = ((a0*b0 + 8*a1*b1)*1 + (a1*b0 + (a0+a1)*b1)*x^4) * When A = (a0,a1) is given we want to solve AB = 1: * (a) 1 = a0*b0 + 8*a1*b1 * (b) 0 = a1*b0 + (a0+a1)*b1 * => multiply (a) by a1 and (b) by a0 * (c) a1 = a1*a0*b0 + (8*a1*a1)*b1 * (d) 0 = a1*a0*b0 + (a0*a0+a1*a0)*b1 * => add (c) + (d) * (e) a1 = (a0*a0 + a1*a0 + 8*a1*a1)*b1 * => therefore * b1 = (a0*a0 + a1*a0 + 8*a1*a1)^-1 * a1 * => and adding (a1*b0) to (b) we get * (f) a1*b0 = (a0+a1)*b1 * => therefore * b0 = (a0*a0 + a1*a0 + 8*a1*a1)^-1 * (a0+a1) * Note this formula also works for the case * (a0+a1)*a0 + 8*a1*a1 = 0 * if the inverse element for 0^-1 is mapped to 0. * Repeat the same for GF(2^2^2) and GF(2^2). * We get the following algorithm: * inv8(a0,a1): * x0 = a0^a1 * [y0,y1] = mul4([x0,a1],[a0,a1]); (*) * y1 = mul4(8,y1); * t = inv4(y0^y1); * [b0,b1] = mul4([x0,a1],[t,t]); (*) * return [b0,b1]; * The non-linear multiplies (*) can be done in parallel at no extra cost. */ static void SubWord(u32 *w) { u32 x, y, a1, a2, a3, a4, a5, a6; x = *w; y = ((x & 0xFEFEFEFEu) >> 1) | ((x & 0x01010101u) << 7); x &= 0xDDDDDDDDu; x ^= y & 0x57575757u; y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7); x ^= y & 0x1C1C1C1Cu; y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7); x ^= y & 0x4A4A4A4Au; y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7); x ^= y & 0x42424242u; y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7); x ^= y & 0x64646464u; y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7); x ^= y & 0xE0E0E0E0u; a1 = x; a1 ^= (x & 0xF0F0F0F0u) >> 4; a2 = ((x & 0xCCCCCCCCu) >> 2) | ((x & 0x33333333u) << 2); a3 = x & a1; a3 ^= (a3 & 0xAAAAAAAAu) >> 1; a3 ^= (((x << 1) & a1) ^ ((a1 << 1) & x)) & 0xAAAAAAAAu; a4 = a2 & a1; a4 ^= (a4 & 0xAAAAAAAAu) >> 1; a4 ^= (((a2 << 1) & a1) ^ ((a1 << 1) & a2)) & 0xAAAAAAAAu; a5 = (a3 & 0xCCCCCCCCu) >> 2; a3 ^= ((a4 << 2) ^ a4) & 0xCCCCCCCCu; a4 = a5 & 0x22222222u; a4 |= a4 >> 1; a4 ^= (a5 << 1) & 0x22222222u; a3 ^= a4; a5 = a3 & 0xA0A0A0A0u; a5 |= a5 >> 1; a5 ^= (a3 << 1) & 0xA0A0A0A0u; a4 = a5 & 0xC0C0C0C0u; a6 = a4 >> 2; a4 ^= (a5 << 2) & 0xC0C0C0C0u; a5 = a6 & 0x20202020u; a5 |= a5 >> 1; a5 ^= (a6 << 1) & 0x20202020u; a4 |= a5; a3 ^= a4 >> 4; a3 &= 0x0F0F0F0Fu; a2 = a3; a2 ^= (a3 & 0x0C0C0C0Cu) >> 2; a4 = a3 & a2; a4 ^= (a4 & 0x0A0A0A0A0Au) >> 1; a4 ^= (((a3 << 1) & a2) ^ ((a2 << 1) & a3)) & 0x0A0A0A0Au; a5 = a4 & 0x08080808u; a5 |= a5 >> 1; a5 ^= (a4 << 1) & 0x08080808u; a4 ^= a5 >> 2; a4 &= 0x03030303u; a4 ^= (a4 & 0x02020202u) >> 1; a4 |= a4 << 2; a3 = a2 & a4; a3 ^= (a3 & 0x0A0A0A0Au) >> 1; a3 ^= (((a2 << 1) & a4) ^ ((a4 << 1) & a2)) & 0x0A0A0A0Au; a3 |= a3 << 4; a2 = ((a1 & 0xCCCCCCCCu) >> 2) | ((a1 & 0x33333333u) << 2); x = a1 & a3; x ^= (x & 0xAAAAAAAAu) >> 1; x ^= (((a1 << 1) & a3) ^ ((a3 << 1) & a1)) & 0xAAAAAAAAu; a4 = a2 & a3; a4 ^= (a4 & 0xAAAAAAAAu) >> 1; a4 ^= (((a2 << 1) & a3) ^ ((a3 << 1) & a2)) & 0xAAAAAAAAu; a5 = (x & 0xCCCCCCCCu) >> 2; x ^= ((a4 << 2) ^ a4) & 0xCCCCCCCCu; a4 = a5 & 0x22222222u; a4 |= a4 >> 1; a4 ^= (a5 << 1) & 0x22222222u; x ^= a4; y = ((x & 0xFEFEFEFEu) >> 1) | ((x & 0x01010101u) << 7); x &= 0x39393939u; x ^= y & 0x3F3F3F3Fu; y = ((y & 0xFCFCFCFCu) >> 2) | ((y & 0x03030303u) << 6); x ^= y & 0x97979797u; y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7); x ^= y & 0x9B9B9B9Bu; y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7); x ^= y & 0x3C3C3C3Cu; y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7); x ^= y & 0xDDDDDDDDu; y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7); x ^= y & 0x72727272u; x ^= 0x63636363u; *w = x; } static void SubLong(u64 *w) { u64 x, y, a1, a2, a3, a4, a5, a6; x = *w; y = ((x & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((x & U64(0x0101010101010101)) << 7); x &= U64(0xDDDDDDDDDDDDDDDD); x ^= y & U64(0x5757575757575757); y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7); x ^= y & U64(0x1C1C1C1C1C1C1C1C); y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7); x ^= y & U64(0x4A4A4A4A4A4A4A4A); y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7); x ^= y & U64(0x4242424242424242); y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7); x ^= y & U64(0x6464646464646464); y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7); x ^= y & U64(0xE0E0E0E0E0E0E0E0); a1 = x; a1 ^= (x & U64(0xF0F0F0F0F0F0F0F0)) >> 4; a2 = ((x & U64(0xCCCCCCCCCCCCCCCC)) >> 2) | ((x & U64(0x3333333333333333)) << 2); a3 = x & a1; a3 ^= (a3 & U64(0xAAAAAAAAAAAAAAAA)) >> 1; a3 ^= (((x << 1) & a1) ^ ((a1 << 1) & x)) & U64(0xAAAAAAAAAAAAAAAA); a4 = a2 & a1; a4 ^= (a4 & U64(0xAAAAAAAAAAAAAAAA)) >> 1; a4 ^= (((a2 << 1) & a1) ^ ((a1 << 1) & a2)) & U64(0xAAAAAAAAAAAAAAAA); a5 = (a3 & U64(0xCCCCCCCCCCCCCCCC)) >> 2; a3 ^= ((a4 << 2) ^ a4) & U64(0xCCCCCCCCCCCCCCCC); a4 = a5 & U64(0x2222222222222222); a4 |= a4 >> 1; a4 ^= (a5 << 1) & U64(0x2222222222222222); a3 ^= a4; a5 = a3 & U64(0xA0A0A0A0A0A0A0A0); a5 |= a5 >> 1; a5 ^= (a3 << 1) & U64(0xA0A0A0A0A0A0A0A0); a4 = a5 & U64(0xC0C0C0C0C0C0C0C0); a6 = a4 >> 2; a4 ^= (a5 << 2) & U64(0xC0C0C0C0C0C0C0C0); a5 = a6 & U64(0x2020202020202020); a5 |= a5 >> 1; a5 ^= (a6 << 1) & U64(0x2020202020202020); a4 |= a5; a3 ^= a4 >> 4; a3 &= U64(0x0F0F0F0F0F0F0F0F); a2 = a3; a2 ^= (a3 & U64(0x0C0C0C0C0C0C0C0C)) >> 2; a4 = a3 & a2; a4 ^= (a4 & U64(0x0A0A0A0A0A0A0A0A)) >> 1; a4 ^= (((a3 << 1) & a2) ^ ((a2 << 1) & a3)) & U64(0x0A0A0A0A0A0A0A0A); a5 = a4 & U64(0x0808080808080808); a5 |= a5 >> 1; a5 ^= (a4 << 1) & U64(0x0808080808080808); a4 ^= a5 >> 2; a4 &= U64(0x0303030303030303); a4 ^= (a4 & U64(0x0202020202020202)) >> 1; a4 |= a4 << 2; a3 = a2 & a4; a3 ^= (a3 & U64(0x0A0A0A0A0A0A0A0A)) >> 1; a3 ^= (((a2 << 1) & a4) ^ ((a4 << 1) & a2)) & U64(0x0A0A0A0A0A0A0A0A); a3 |= a3 << 4; a2 = ((a1 & U64(0xCCCCCCCCCCCCCCCC)) >> 2) | ((a1 & U64(0x3333333333333333)) << 2); x = a1 & a3; x ^= (x & U64(0xAAAAAAAAAAAAAAAA)) >> 1; x ^= (((a1 << 1) & a3) ^ ((a3 << 1) & a1)) & U64(0xAAAAAAAAAAAAAAAA); a4 = a2 & a3; a4 ^= (a4 & U64(0xAAAAAAAAAAAAAAAA)) >> 1; a4 ^= (((a2 << 1) & a3) ^ ((a3 << 1) & a2)) & U64(0xAAAAAAAAAAAAAAAA); a5 = (x & U64(0xCCCCCCCCCCCCCCCC)) >> 2; x ^= ((a4 << 2) ^ a4) & U64(0xCCCCCCCCCCCCCCCC); a4 = a5 & U64(0x2222222222222222); a4 |= a4 >> 1; a4 ^= (a5 << 1) & U64(0x2222222222222222); x ^= a4; y = ((x & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((x & U64(0x0101010101010101)) << 7); x &= U64(0x3939393939393939); x ^= y & U64(0x3F3F3F3F3F3F3F3F); y = ((y & U64(0xFCFCFCFCFCFCFCFC)) >> 2) | ((y & U64(0x0303030303030303)) << 6); x ^= y & U64(0x9797979797979797); y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7); x ^= y & U64(0x9B9B9B9B9B9B9B9B); y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7); x ^= y & U64(0x3C3C3C3C3C3C3C3C); y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7); x ^= y & U64(0xDDDDDDDDDDDDDDDD); y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7); x ^= y & U64(0x7272727272727272); x ^= U64(0x6363636363636363); *w = x; } /* * This computes w := (S^-1 * (w + c))^-1 */ static void InvSubLong(u64 *w) { u64 x, y, a1, a2, a3, a4, a5, a6; x = *w; x ^= U64(0x6363636363636363); y = ((x & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((x & U64(0x0101010101010101)) << 7); x &= U64(0xFDFDFDFDFDFDFDFD); x ^= y & U64(0x5E5E5E5E5E5E5E5E); y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7); x ^= y & U64(0xF3F3F3F3F3F3F3F3); y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7); x ^= y & U64(0xF5F5F5F5F5F5F5F5); y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7); x ^= y & U64(0x7878787878787878); y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7); x ^= y & U64(0x7777777777777777); y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7); x ^= y & U64(0x1515151515151515); y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7); x ^= y & U64(0xA5A5A5A5A5A5A5A5); a1 = x; a1 ^= (x & U64(0xF0F0F0F0F0F0F0F0)) >> 4; a2 = ((x & U64(0xCCCCCCCCCCCCCCCC)) >> 2) | ((x & U64(0x3333333333333333)) << 2); a3 = x & a1; a3 ^= (a3 & U64(0xAAAAAAAAAAAAAAAA)) >> 1; a3 ^= (((x << 1) & a1) ^ ((a1 << 1) & x)) & U64(0xAAAAAAAAAAAAAAAA); a4 = a2 & a1; a4 ^= (a4 & U64(0xAAAAAAAAAAAAAAAA)) >> 1; a4 ^= (((a2 << 1) & a1) ^ ((a1 << 1) & a2)) & U64(0xAAAAAAAAAAAAAAAA); a5 = (a3 & U64(0xCCCCCCCCCCCCCCCC)) >> 2; a3 ^= ((a4 << 2) ^ a4) & U64(0xCCCCCCCCCCCCCCCC); a4 = a5 & U64(0x2222222222222222); a4 |= a4 >> 1; a4 ^= (a5 << 1) & U64(0x2222222222222222); a3 ^= a4; a5 = a3 & U64(0xA0A0A0A0A0A0A0A0); a5 |= a5 >> 1; a5 ^= (a3 << 1) & U64(0xA0A0A0A0A0A0A0A0); a4 = a5 & U64(0xC0C0C0C0C0C0C0C0); a6 = a4 >> 2; a4 ^= (a5 << 2) & U64(0xC0C0C0C0C0C0C0C0); a5 = a6 & U64(0x2020202020202020); a5 |= a5 >> 1; a5 ^= (a6 << 1) & U64(0x2020202020202020); a4 |= a5; a3 ^= a4 >> 4; a3 &= U64(0x0F0F0F0F0F0F0F0F); a2 = a3; a2 ^= (a3 & U64(0x0C0C0C0C0C0C0C0C)) >> 2; a4 = a3 & a2; a4 ^= (a4 & U64(0x0A0A0A0A0A0A0A0A)) >> 1; a4 ^= (((a3 << 1) & a2) ^ ((a2 << 1) & a3)) & U64(0x0A0A0A0A0A0A0A0A); a5 = a4 & U64(0x0808080808080808); a5 |= a5 >> 1; a5 ^= (a4 << 1) & U64(0x0808080808080808); a4 ^= a5 >> 2; a4 &= U64(0x0303030303030303); a4 ^= (a4 & U64(0x0202020202020202)) >> 1; a4 |= a4 << 2; a3 = a2 & a4; a3 ^= (a3 & U64(0x0A0A0A0A0A0A0A0A)) >> 1; a3 ^= (((a2 << 1) & a4) ^ ((a4 << 1) & a2)) & U64(0x0A0A0A0A0A0A0A0A); a3 |= a3 << 4; a2 = ((a1 & U64(0xCCCCCCCCCCCCCCCC)) >> 2) | ((a1 & U64(0x3333333333333333)) << 2); x = a1 & a3; x ^= (x & U64(0xAAAAAAAAAAAAAAAA)) >> 1; x ^= (((a1 << 1) & a3) ^ ((a3 << 1) & a1)) & U64(0xAAAAAAAAAAAAAAAA); a4 = a2 & a3; a4 ^= (a4 & U64(0xAAAAAAAAAAAAAAAA)) >> 1; a4 ^= (((a2 << 1) & a3) ^ ((a3 << 1) & a2)) & U64(0xAAAAAAAAAAAAAAAA); a5 = (x & U64(0xCCCCCCCCCCCCCCCC)) >> 2; x ^= ((a4 << 2) ^ a4) & U64(0xCCCCCCCCCCCCCCCC); a4 = a5 & U64(0x2222222222222222); a4 |= a4 >> 1; a4 ^= (a5 << 1) & U64(0x2222222222222222); x ^= a4; y = ((x & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((x & U64(0x0101010101010101)) << 7); x &= U64(0xB5B5B5B5B5B5B5B5); x ^= y & U64(0x4040404040404040); y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7); x ^= y & U64(0x8080808080808080); y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7); x ^= y & U64(0x1616161616161616); y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7); x ^= y & U64(0xEBEBEBEBEBEBEBEB); y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7); x ^= y & U64(0x9797979797979797); y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7); x ^= y & U64(0xFBFBFBFBFBFBFBFB); y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7); x ^= y & U64(0x7D7D7D7D7D7D7D7D); *w = x; } static void ShiftRows(u64 *state) { unsigned char s[4]; unsigned char *s0; int r; s0 = (unsigned char *)state; for (r = 0; r < 4; r++) { s[0] = s0[0*4 + r]; s[1] = s0[1*4 + r]; s[2] = s0[2*4 + r]; s[3] = s0[3*4 + r]; s0[0*4 + r] = s[(r+0) % 4]; s0[1*4 + r] = s[(r+1) % 4]; s0[2*4 + r] = s[(r+2) % 4]; s0[3*4 + r] = s[(r+3) % 4]; } } static void InvShiftRows(u64 *state) { unsigned char s[4]; unsigned char *s0; int r; s0 = (unsigned char *)state; for (r = 0; r < 4; r++) { s[0] = s0[0*4 + r]; s[1] = s0[1*4 + r]; s[2] = s0[2*4 + r]; s[3] = s0[3*4 + r]; s0[0*4 + r] = s[(4-r) % 4]; s0[1*4 + r] = s[(5-r) % 4]; s0[2*4 + r] = s[(6-r) % 4]; s0[3*4 + r] = s[(7-r) % 4]; } } static void MixColumns(u64 *state) { uni s1; uni s; int c; for (c = 0; c < 2; c++) { s1.d = state[c]; s.d = s1.d; s.d ^= ((s.d & U64(0xFFFF0000FFFF0000)) >> 16) | ((s.d & U64(0x0000FFFF0000FFFF)) << 16); s.d ^= ((s.d & U64(0xFF00FF00FF00FF00)) >> 8) | ((s.d & U64(0x00FF00FF00FF00FF)) << 8); s.d ^= s1.d; XtimeLong(&s1.d); s.d ^= s1.d; s.b[0] ^= s1.b[1]; s.b[1] ^= s1.b[2]; s.b[2] ^= s1.b[3]; s.b[3] ^= s1.b[0]; s.b[4] ^= s1.b[5]; s.b[5] ^= s1.b[6]; s.b[6] ^= s1.b[7]; s.b[7] ^= s1.b[4]; state[c] = s.d; } } static void InvMixColumns(u64 *state) { uni s1; uni s; int c; for (c = 0; c < 2; c++) { s1.d = state[c]; s.d = s1.d; s.d ^= ((s.d & U64(0xFFFF0000FFFF0000)) >> 16) | ((s.d & U64(0x0000FFFF0000FFFF)) << 16); s.d ^= ((s.d & U64(0xFF00FF00FF00FF00)) >> 8) | ((s.d & U64(0x00FF00FF00FF00FF)) << 8); s.d ^= s1.d; XtimeLong(&s1.d); s.d ^= s1.d; s.b[0] ^= s1.b[1]; s.b[1] ^= s1.b[2]; s.b[2] ^= s1.b[3]; s.b[3] ^= s1.b[0]; s.b[4] ^= s1.b[5]; s.b[5] ^= s1.b[6]; s.b[6] ^= s1.b[7]; s.b[7] ^= s1.b[4]; XtimeLong(&s1.d); s1.d ^= ((s1.d & U64(0xFFFF0000FFFF0000)) >> 16) | ((s1.d & U64(0x0000FFFF0000FFFF)) << 16); s.d ^= s1.d; XtimeLong(&s1.d); s1.d ^= ((s1.d & U64(0xFF00FF00FF00FF00)) >> 8) | ((s1.d & U64(0x00FF00FF00FF00FF)) << 8); s.d ^= s1.d; state[c] = s.d; } } static void AddRoundKey(u64 *state, const u64 *w) { state[0] ^= w[0]; state[1] ^= w[1]; } static void Cipher(const unsigned char *in, unsigned char *out, const u64 *w, int nr) { u64 state[2]; int i; memcpy(state, in, 16); AddRoundKey(state, w); for (i = 1; i < nr; i++) { SubLong(&state[0]); SubLong(&state[1]); ShiftRows(state); MixColumns(state); AddRoundKey(state, w + i*2); } SubLong(&state[0]); SubLong(&state[1]); ShiftRows(state); AddRoundKey(state, w + nr*2); memcpy(out, state, 16); } static void InvCipher(const unsigned char *in, unsigned char *out, const u64 *w, int nr) { u64 state[2]; int i; memcpy(state, in, 16); AddRoundKey(state, w + nr*2); for (i = nr - 1; i > 0; i--) { InvShiftRows(state); InvSubLong(&state[0]); InvSubLong(&state[1]); AddRoundKey(state, w + i*2); InvMixColumns(state); } InvShiftRows(state); InvSubLong(&state[0]); InvSubLong(&state[1]); AddRoundKey(state, w); memcpy(out, state, 16); } static void RotWord(u32 *x) { unsigned char *w0; unsigned char tmp; w0 = (unsigned char *)x; tmp = w0[0]; w0[0] = w0[1]; w0[1] = w0[2]; w0[2] = w0[3]; w0[3] = tmp; } static void KeyExpansion(const unsigned char *key, u64 *w, int nr, int nk) { u32 rcon; uni prev; u32 temp; int i, n; memcpy(w, key, nk*4); memcpy(&rcon, "\1\0\0\0", 4); n = nk/2; prev.d = w[n-1]; for (i = n; i < (nr+1)*2; i++) { temp = prev.w[1]; if (i % n == 0) { RotWord(&temp); SubWord(&temp); temp ^= rcon; XtimeWord(&rcon); } else if (nk > 6 && i % n == 2) { SubWord(&temp); } prev.d = w[i-n]; prev.w[0] ^= temp; prev.w[1] ^= prev.w[0]; w[i] = prev.d; } } /** * Expand the cipher key into the encryption key schedule. */ int AES_set_encrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key) { u64 *rk; if (!userKey || !key) return -1; if (bits != 128 && bits != 192 && bits != 256) return -2; rk = (u64*)key->rd_key; if (bits == 128) key->rounds = 10; else if (bits == 192) key->rounds = 12; else key->rounds = 14; KeyExpansion(userKey, rk, key->rounds, bits/32); return 0; } /** * Expand the cipher key into the decryption key schedule. */ int AES_set_decrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key) { return AES_set_encrypt_key(userKey, bits, key); } /* * Encrypt a single block * in and out can overlap */ void AES_encrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key) { const u64 *rk; assert(in && out && key); rk = (u64*)key->rd_key; Cipher(in, out, rk, key->rounds); } /* * Decrypt a single block * in and out can overlap */ void AES_decrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key) { const u64 *rk; assert(in && out && key); rk = (u64*)key->rd_key; InvCipher(in, out, rk, key->rounds); } #elif !defined(AES_ASM) /*- Te0[x] = S [x].[02, 01, 01, 03]; Te1[x] = S [x].[03, 02, 01, 01]; Te2[x] = S [x].[01, 03, 02, 01]; Te3[x] = S [x].[01, 01, 03, 02]; Td0[x] = Si[x].[0e, 09, 0d, 0b]; Td1[x] = Si[x].[0b, 0e, 09, 0d]; Td2[x] = Si[x].[0d, 0b, 0e, 09]; Td3[x] = Si[x].[09, 0d, 0b, 0e]; Td4[x] = Si[x].[01]; */ static const u32 Te0[256] = { 0xc66363a5U, 0xf87c7c84U, 0xee777799U, 0xf67b7b8dU, 0xfff2f20dU, 0xd66b6bbdU, 0xde6f6fb1U, 0x91c5c554U, 0x60303050U, 0x02010103U, 0xce6767a9U, 0x562b2b7dU, 0xe7fefe19U, 0xb5d7d762U, 0x4dababe6U, 0xec76769aU, 0x8fcaca45U, 0x1f82829dU, 0x89c9c940U, 0xfa7d7d87U, 0xeffafa15U, 0xb25959ebU, 0x8e4747c9U, 0xfbf0f00bU, 0x41adadecU, 0xb3d4d467U, 0x5fa2a2fdU, 0x45afafeaU, 0x239c9cbfU, 0x53a4a4f7U, 0xe4727296U, 0x9bc0c05bU, 0x75b7b7c2U, 0xe1fdfd1cU, 0x3d9393aeU, 0x4c26266aU, 0x6c36365aU, 0x7e3f3f41U, 0xf5f7f702U, 0x83cccc4fU, 0x6834345cU, 0x51a5a5f4U, 0xd1e5e534U, 0xf9f1f108U, 0xe2717193U, 0xabd8d873U, 0x62313153U, 0x2a15153fU, 0x0804040cU, 0x95c7c752U, 0x46232365U, 0x9dc3c35eU, 0x30181828U, 0x379696a1U, 0x0a05050fU, 0x2f9a9ab5U, 0x0e070709U, 0x24121236U, 0x1b80809bU, 0xdfe2e23dU, 0xcdebeb26U, 0x4e272769U, 0x7fb2b2cdU, 0xea75759fU, 0x1209091bU, 0x1d83839eU, 0x582c2c74U, 0x341a1a2eU, 0x361b1b2dU, 0xdc6e6eb2U, 0xb45a5aeeU, 0x5ba0a0fbU, 0xa45252f6U, 0x763b3b4dU, 0xb7d6d661U, 0x7db3b3ceU, 0x5229297bU, 0xdde3e33eU, 0x5e2f2f71U, 0x13848497U, 0xa65353f5U, 0xb9d1d168U, 0x00000000U, 0xc1eded2cU, 0x40202060U, 0xe3fcfc1fU, 0x79b1b1c8U, 0xb65b5bedU, 0xd46a6abeU, 0x8dcbcb46U, 0x67bebed9U, 0x7239394bU, 0x944a4adeU, 0x984c4cd4U, 0xb05858e8U, 0x85cfcf4aU, 0xbbd0d06bU, 0xc5efef2aU, 0x4faaaae5U, 0xedfbfb16U, 0x864343c5U, 0x9a4d4dd7U, 0x66333355U, 0x11858594U, 0x8a4545cfU, 0xe9f9f910U, 0x04020206U, 0xfe7f7f81U, 0xa05050f0U, 0x783c3c44U, 0x259f9fbaU, 0x4ba8a8e3U, 0xa25151f3U, 0x5da3a3feU, 0x804040c0U, 0x058f8f8aU, 0x3f9292adU, 0x219d9dbcU, 0x70383848U, 0xf1f5f504U, 0x63bcbcdfU, 0x77b6b6c1U, 0xafdada75U, 0x42212163U, 0x20101030U, 0xe5ffff1aU, 0xfdf3f30eU, 0xbfd2d26dU, 0x81cdcd4cU, 0x180c0c14U, 0x26131335U, 0xc3ecec2fU, 0xbe5f5fe1U, 0x359797a2U, 0x884444ccU, 0x2e171739U, 0x93c4c457U, 0x55a7a7f2U, 0xfc7e7e82U, 0x7a3d3d47U, 0xc86464acU, 0xba5d5de7U, 0x3219192bU, 0xe6737395U, 0xc06060a0U, 0x19818198U, 0x9e4f4fd1U, 0xa3dcdc7fU, 0x44222266U, 0x542a2a7eU, 0x3b9090abU, 0x0b888883U, 0x8c4646caU, 0xc7eeee29U, 0x6bb8b8d3U, 0x2814143cU, 0xa7dede79U, 0xbc5e5ee2U, 0x160b0b1dU, 0xaddbdb76U, 0xdbe0e03bU, 0x64323256U, 0x743a3a4eU, 0x140a0a1eU, 0x924949dbU, 0x0c06060aU, 0x4824246cU, 0xb85c5ce4U, 0x9fc2c25dU, 0xbdd3d36eU, 0x43acacefU, 0xc46262a6U, 0x399191a8U, 0x319595a4U, 0xd3e4e437U, 0xf279798bU, 0xd5e7e732U, 0x8bc8c843U, 0x6e373759U, 0xda6d6db7U, 0x018d8d8cU, 0xb1d5d564U, 0x9c4e4ed2U, 0x49a9a9e0U, 0xd86c6cb4U, 0xac5656faU, 0xf3f4f407U, 0xcfeaea25U, 0xca6565afU, 0xf47a7a8eU, 0x47aeaee9U, 0x10080818U, 0x6fbabad5U, 0xf0787888U, 0x4a25256fU, 0x5c2e2e72U, 0x381c1c24U, 0x57a6a6f1U, 0x73b4b4c7U, 0x97c6c651U, 0xcbe8e823U, 0xa1dddd7cU, 0xe874749cU, 0x3e1f1f21U, 0x964b4bddU, 0x61bdbddcU, 0x0d8b8b86U, 0x0f8a8a85U, 0xe0707090U, 0x7c3e3e42U, 0x71b5b5c4U, 0xcc6666aaU, 0x904848d8U, 0x06030305U, 0xf7f6f601U, 0x1c0e0e12U, 0xc26161a3U, 0x6a35355fU, 0xae5757f9U, 0x69b9b9d0U, 0x17868691U, 0x99c1c158U, 0x3a1d1d27U, 0x279e9eb9U, 0xd9e1e138U, 0xebf8f813U, 0x2b9898b3U, 0x22111133U, 0xd26969bbU, 0xa9d9d970U, 0x078e8e89U, 0x339494a7U, 0x2d9b9bb6U, 0x3c1e1e22U, 0x15878792U, 0xc9e9e920U, 0x87cece49U, 0xaa5555ffU, 0x50282878U, 0xa5dfdf7aU, 0x038c8c8fU, 0x59a1a1f8U, 0x09898980U, 0x1a0d0d17U, 0x65bfbfdaU, 0xd7e6e631U, 0x844242c6U, 0xd06868b8U, 0x824141c3U, 0x299999b0U, 0x5a2d2d77U, 0x1e0f0f11U, 0x7bb0b0cbU, 0xa85454fcU, 0x6dbbbbd6U, 0x2c16163aU, }; static const u32 Te1[256] = { 0xa5c66363U, 0x84f87c7cU, 0x99ee7777U, 0x8df67b7bU, 0x0dfff2f2U, 0xbdd66b6bU, 0xb1de6f6fU, 0x5491c5c5U, 0x50603030U, 0x03020101U, 0xa9ce6767U, 0x7d562b2bU, 0x19e7fefeU, 0x62b5d7d7U, 0xe64dababU, 0x9aec7676U, 0x458fcacaU, 0x9d1f8282U, 0x4089c9c9U, 0x87fa7d7dU, 0x15effafaU, 0xebb25959U, 0xc98e4747U, 0x0bfbf0f0U, 0xec41adadU, 0x67b3d4d4U, 0xfd5fa2a2U, 0xea45afafU, 0xbf239c9cU, 0xf753a4a4U, 0x96e47272U, 0x5b9bc0c0U, 0xc275b7b7U, 0x1ce1fdfdU, 0xae3d9393U, 0x6a4c2626U, 0x5a6c3636U, 0x417e3f3fU, 0x02f5f7f7U, 0x4f83ccccU, 0x5c683434U, 0xf451a5a5U, 0x34d1e5e5U, 0x08f9f1f1U, 0x93e27171U, 0x73abd8d8U, 0x53623131U, 0x3f2a1515U, 0x0c080404U, 0x5295c7c7U, 0x65462323U, 0x5e9dc3c3U, 0x28301818U, 0xa1379696U, 0x0f0a0505U, 0xb52f9a9aU, 0x090e0707U, 0x36241212U, 0x9b1b8080U, 0x3ddfe2e2U, 0x26cdebebU, 0x694e2727U, 0xcd7fb2b2U, 0x9fea7575U, 0x1b120909U, 0x9e1d8383U, 0x74582c2cU, 0x2e341a1aU, 0x2d361b1bU, 0xb2dc6e6eU, 0xeeb45a5aU, 0xfb5ba0a0U, 0xf6a45252U, 0x4d763b3bU, 0x61b7d6d6U, 0xce7db3b3U, 0x7b522929U, 0x3edde3e3U, 0x715e2f2fU, 0x97138484U, 0xf5a65353U, 0x68b9d1d1U, 0x00000000U, 0x2cc1ededU, 0x60402020U, 0x1fe3fcfcU, 0xc879b1b1U, 0xedb65b5bU, 0xbed46a6aU, 0x468dcbcbU, 0xd967bebeU, 0x4b723939U, 0xde944a4aU, 0xd4984c4cU, 0xe8b05858U, 0x4a85cfcfU, 0x6bbbd0d0U, 0x2ac5efefU, 0xe54faaaaU, 0x16edfbfbU, 0xc5864343U, 0xd79a4d4dU, 0x55663333U, 0x94118585U, 0xcf8a4545U, 0x10e9f9f9U, 0x06040202U, 0x81fe7f7fU, 0xf0a05050U, 0x44783c3cU, 0xba259f9fU, 0xe34ba8a8U, 0xf3a25151U, 0xfe5da3a3U, 0xc0804040U, 0x8a058f8fU, 0xad3f9292U, 0xbc219d9dU, 0x48703838U, 0x04f1f5f5U, 0xdf63bcbcU, 0xc177b6b6U, 0x75afdadaU, 0x63422121U, 0x30201010U, 0x1ae5ffffU, 0x0efdf3f3U, 0x6dbfd2d2U, 0x4c81cdcdU, 0x14180c0cU, 0x35261313U, 0x2fc3ececU, 0xe1be5f5fU, 0xa2359797U, 0xcc884444U, 0x392e1717U, 0x5793c4c4U, 0xf255a7a7U, 0x82fc7e7eU, 0x477a3d3dU, 0xacc86464U, 0xe7ba5d5dU, 0x2b321919U, 0x95e67373U, 0xa0c06060U, 0x98198181U, 0xd19e4f4fU, 0x7fa3dcdcU, 0x66442222U, 0x7e542a2aU, 0xab3b9090U, 0x830b8888U, 0xca8c4646U, 0x29c7eeeeU, 0xd36bb8b8U, 0x3c281414U, 0x79a7dedeU, 0xe2bc5e5eU, 0x1d160b0bU, 0x76addbdbU, 0x3bdbe0e0U, 0x56643232U, 0x4e743a3aU, 0x1e140a0aU, 0xdb924949U, 0x0a0c0606U, 0x6c482424U, 0xe4b85c5cU, 0x5d9fc2c2U, 0x6ebdd3d3U, 0xef43acacU, 0xa6c46262U, 0xa8399191U, 0xa4319595U, 0x37d3e4e4U, 0x8bf27979U, 0x32d5e7e7U, 0x438bc8c8U, 0x596e3737U, 0xb7da6d6dU, 0x8c018d8dU, 0x64b1d5d5U, 0xd29c4e4eU, 0xe049a9a9U, 0xb4d86c6cU, 0xfaac5656U, 0x07f3f4f4U, 0x25cfeaeaU, 0xafca6565U, 0x8ef47a7aU, 0xe947aeaeU, 0x18100808U, 0xd56fbabaU, 0x88f07878U, 0x6f4a2525U, 0x725c2e2eU, 0x24381c1cU, 0xf157a6a6U, 0xc773b4b4U, 0x5197c6c6U, 0x23cbe8e8U, 0x7ca1ddddU, 0x9ce87474U, 0x213e1f1fU, 0xdd964b4bU, 0xdc61bdbdU, 0x860d8b8bU, 0x850f8a8aU, 0x90e07070U, 0x427c3e3eU, 0xc471b5b5U, 0xaacc6666U, 0xd8904848U, 0x05060303U, 0x01f7f6f6U, 0x121c0e0eU, 0xa3c26161U, 0x5f6a3535U, 0xf9ae5757U, 0xd069b9b9U, 0x91178686U, 0x5899c1c1U, 0x273a1d1dU, 0xb9279e9eU, 0x38d9e1e1U, 0x13ebf8f8U, 0xb32b9898U, 0x33221111U, 0xbbd26969U, 0x70a9d9d9U, 0x89078e8eU, 0xa7339494U, 0xb62d9b9bU, 0x223c1e1eU, 0x92158787U, 0x20c9e9e9U, 0x4987ceceU, 0xffaa5555U, 0x78502828U, 0x7aa5dfdfU, 0x8f038c8cU, 0xf859a1a1U, 0x80098989U, 0x171a0d0dU, 0xda65bfbfU, 0x31d7e6e6U, 0xc6844242U, 0xb8d06868U, 0xc3824141U, 0xb0299999U, 0x775a2d2dU, 0x111e0f0fU, 0xcb7bb0b0U, 0xfca85454U, 0xd66dbbbbU, 0x3a2c1616U, }; static const u32 Te2[256] = { 0x63a5c663U, 0x7c84f87cU, 0x7799ee77U, 0x7b8df67bU, 0xf20dfff2U, 0x6bbdd66bU, 0x6fb1de6fU, 0xc55491c5U, 0x30506030U, 0x01030201U, 0x67a9ce67U, 0x2b7d562bU, 0xfe19e7feU, 0xd762b5d7U, 0xabe64dabU, 0x769aec76U, 0xca458fcaU, 0x829d1f82U, 0xc94089c9U, 0x7d87fa7dU, 0xfa15effaU, 0x59ebb259U, 0x47c98e47U, 0xf00bfbf0U, 0xadec41adU, 0xd467b3d4U, 0xa2fd5fa2U, 0xafea45afU, 0x9cbf239cU, 0xa4f753a4U, 0x7296e472U, 0xc05b9bc0U, 0xb7c275b7U, 0xfd1ce1fdU, 0x93ae3d93U, 0x266a4c26U, 0x365a6c36U, 0x3f417e3fU, 0xf702f5f7U, 0xcc4f83ccU, 0x345c6834U, 0xa5f451a5U, 0xe534d1e5U, 0xf108f9f1U, 0x7193e271U, 0xd873abd8U, 0x31536231U, 0x153f2a15U, 0x040c0804U, 0xc75295c7U, 0x23654623U, 0xc35e9dc3U, 0x18283018U, 0x96a13796U, 0x050f0a05U, 0x9ab52f9aU, 0x07090e07U, 0x12362412U, 0x809b1b80U, 0xe23ddfe2U, 0xeb26cdebU, 0x27694e27U, 0xb2cd7fb2U, 0x759fea75U, 0x091b1209U, 0x839e1d83U, 0x2c74582cU, 0x1a2e341aU, 0x1b2d361bU, 0x6eb2dc6eU, 0x5aeeb45aU, 0xa0fb5ba0U, 0x52f6a452U, 0x3b4d763bU, 0xd661b7d6U, 0xb3ce7db3U, 0x297b5229U, 0xe33edde3U, 0x2f715e2fU, 0x84971384U, 0x53f5a653U, 0xd168b9d1U, 0x00000000U, 0xed2cc1edU, 0x20604020U, 0xfc1fe3fcU, 0xb1c879b1U, 0x5bedb65bU, 0x6abed46aU, 0xcb468dcbU, 0xbed967beU, 0x394b7239U, 0x4ade944aU, 0x4cd4984cU, 0x58e8b058U, 0xcf4a85cfU, 0xd06bbbd0U, 0xef2ac5efU, 0xaae54faaU, 0xfb16edfbU, 0x43c58643U, 0x4dd79a4dU, 0x33556633U, 0x85941185U, 0x45cf8a45U, 0xf910e9f9U, 0x02060402U, 0x7f81fe7fU, 0x50f0a050U, 0x3c44783cU, 0x9fba259fU, 0xa8e34ba8U, 0x51f3a251U, 0xa3fe5da3U, 0x40c08040U, 0x8f8a058fU, 0x92ad3f92U, 0x9dbc219dU, 0x38487038U, 0xf504f1f5U, 0xbcdf63bcU, 0xb6c177b6U, 0xda75afdaU, 0x21634221U, 0x10302010U, 0xff1ae5ffU, 0xf30efdf3U, 0xd26dbfd2U, 0xcd4c81cdU, 0x0c14180cU, 0x13352613U, 0xec2fc3ecU, 0x5fe1be5fU, 0x97a23597U, 0x44cc8844U, 0x17392e17U, 0xc45793c4U, 0xa7f255a7U, 0x7e82fc7eU, 0x3d477a3dU, 0x64acc864U, 0x5de7ba5dU, 0x192b3219U, 0x7395e673U, 0x60a0c060U, 0x81981981U, 0x4fd19e4fU, 0xdc7fa3dcU, 0x22664422U, 0x2a7e542aU, 0x90ab3b90U, 0x88830b88U, 0x46ca8c46U, 0xee29c7eeU, 0xb8d36bb8U, 0x143c2814U, 0xde79a7deU, 0x5ee2bc5eU, 0x0b1d160bU, 0xdb76addbU, 0xe03bdbe0U, 0x32566432U, 0x3a4e743aU, 0x0a1e140aU, 0x49db9249U, 0x060a0c06U, 0x246c4824U, 0x5ce4b85cU, 0xc25d9fc2U, 0xd36ebdd3U, 0xacef43acU, 0x62a6c462U, 0x91a83991U, 0x95a43195U, 0xe437d3e4U, 0x798bf279U, 0xe732d5e7U, 0xc8438bc8U, 0x37596e37U, 0x6db7da6dU, 0x8d8c018dU, 0xd564b1d5U, 0x4ed29c4eU, 0xa9e049a9U, 0x6cb4d86cU, 0x56faac56U, 0xf407f3f4U, 0xea25cfeaU, 0x65afca65U, 0x7a8ef47aU, 0xaee947aeU, 0x08181008U, 0xbad56fbaU, 0x7888f078U, 0x256f4a25U, 0x2e725c2eU, 0x1c24381cU, 0xa6f157a6U, 0xb4c773b4U, 0xc65197c6U, 0xe823cbe8U, 0xdd7ca1ddU, 0x749ce874U, 0x1f213e1fU, 0x4bdd964bU, 0xbddc61bdU, 0x8b860d8bU, 0x8a850f8aU, 0x7090e070U, 0x3e427c3eU, 0xb5c471b5U, 0x66aacc66U, 0x48d89048U, 0x03050603U, 0xf601f7f6U, 0x0e121c0eU, 0x61a3c261U, 0x355f6a35U, 0x57f9ae57U, 0xb9d069b9U, 0x86911786U, 0xc15899c1U, 0x1d273a1dU, 0x9eb9279eU, 0xe138d9e1U, 0xf813ebf8U, 0x98b32b98U, 0x11332211U, 0x69bbd269U, 0xd970a9d9U, 0x8e89078eU, 0x94a73394U, 0x9bb62d9bU, 0x1e223c1eU, 0x87921587U, 0xe920c9e9U, 0xce4987ceU, 0x55ffaa55U, 0x28785028U, 0xdf7aa5dfU, 0x8c8f038cU, 0xa1f859a1U, 0x89800989U, 0x0d171a0dU, 0xbfda65bfU, 0xe631d7e6U, 0x42c68442U, 0x68b8d068U, 0x41c38241U, 0x99b02999U, 0x2d775a2dU, 0x0f111e0fU, 0xb0cb7bb0U, 0x54fca854U, 0xbbd66dbbU, 0x163a2c16U, }; static const u32 Te3[256] = { 0x6363a5c6U, 0x7c7c84f8U, 0x777799eeU, 0x7b7b8df6U, 0xf2f20dffU, 0x6b6bbdd6U, 0x6f6fb1deU, 0xc5c55491U, 0x30305060U, 0x01010302U, 0x6767a9ceU, 0x2b2b7d56U, 0xfefe19e7U, 0xd7d762b5U, 0xababe64dU, 0x76769aecU, 0xcaca458fU, 0x82829d1fU, 0xc9c94089U, 0x7d7d87faU, 0xfafa15efU, 0x5959ebb2U, 0x4747c98eU, 0xf0f00bfbU, 0xadadec41U, 0xd4d467b3U, 0xa2a2fd5fU, 0xafafea45U, 0x9c9cbf23U, 0xa4a4f753U, 0x727296e4U, 0xc0c05b9bU, 0xb7b7c275U, 0xfdfd1ce1U, 0x9393ae3dU, 0x26266a4cU, 0x36365a6cU, 0x3f3f417eU, 0xf7f702f5U, 0xcccc4f83U, 0x34345c68U, 0xa5a5f451U, 0xe5e534d1U, 0xf1f108f9U, 0x717193e2U, 0xd8d873abU, 0x31315362U, 0x15153f2aU, 0x04040c08U, 0xc7c75295U, 0x23236546U, 0xc3c35e9dU, 0x18182830U, 0x9696a137U, 0x05050f0aU, 0x9a9ab52fU, 0x0707090eU, 0x12123624U, 0x80809b1bU, 0xe2e23ddfU, 0xebeb26cdU, 0x2727694eU, 0xb2b2cd7fU, 0x75759feaU, 0x09091b12U, 0x83839e1dU, 0x2c2c7458U, 0x1a1a2e34U, 0x1b1b2d36U, 0x6e6eb2dcU, 0x5a5aeeb4U, 0xa0a0fb5bU, 0x5252f6a4U, 0x3b3b4d76U, 0xd6d661b7U, 0xb3b3ce7dU, 0x29297b52U, 0xe3e33eddU, 0x2f2f715eU, 0x84849713U, 0x5353f5a6U, 0xd1d168b9U, 0x00000000U, 0xeded2cc1U, 0x20206040U, 0xfcfc1fe3U, 0xb1b1c879U, 0x5b5bedb6U, 0x6a6abed4U, 0xcbcb468dU, 0xbebed967U, 0x39394b72U, 0x4a4ade94U, 0x4c4cd498U, 0x5858e8b0U, 0xcfcf4a85U, 0xd0d06bbbU, 0xefef2ac5U, 0xaaaae54fU, 0xfbfb16edU, 0x4343c586U, 0x4d4dd79aU, 0x33335566U, 0x85859411U, 0x4545cf8aU, 0xf9f910e9U, 0x02020604U, 0x7f7f81feU, 0x5050f0a0U, 0x3c3c4478U, 0x9f9fba25U, 0xa8a8e34bU, 0x5151f3a2U, 0xa3a3fe5dU, 0x4040c080U, 0x8f8f8a05U, 0x9292ad3fU, 0x9d9dbc21U, 0x38384870U, 0xf5f504f1U, 0xbcbcdf63U, 0xb6b6c177U, 0xdada75afU, 0x21216342U, 0x10103020U, 0xffff1ae5U, 0xf3f30efdU, 0xd2d26dbfU, 0xcdcd4c81U, 0x0c0c1418U, 0x13133526U, 0xecec2fc3U, 0x5f5fe1beU, 0x9797a235U, 0x4444cc88U, 0x1717392eU, 0xc4c45793U, 0xa7a7f255U, 0x7e7e82fcU, 0x3d3d477aU, 0x6464acc8U, 0x5d5de7baU, 0x19192b32U, 0x737395e6U, 0x6060a0c0U, 0x81819819U, 0x4f4fd19eU, 0xdcdc7fa3U, 0x22226644U, 0x2a2a7e54U, 0x9090ab3bU, 0x8888830bU, 0x4646ca8cU, 0xeeee29c7U, 0xb8b8d36bU, 0x14143c28U, 0xdede79a7U, 0x5e5ee2bcU, 0x0b0b1d16U, 0xdbdb76adU, 0xe0e03bdbU, 0x32325664U, 0x3a3a4e74U, 0x0a0a1e14U, 0x4949db92U, 0x06060a0cU, 0x24246c48U, 0x5c5ce4b8U, 0xc2c25d9fU, 0xd3d36ebdU, 0xacacef43U, 0x6262a6c4U, 0x9191a839U, 0x9595a431U, 0xe4e437d3U, 0x79798bf2U, 0xe7e732d5U, 0xc8c8438bU, 0x3737596eU, 0x6d6db7daU, 0x8d8d8c01U, 0xd5d564b1U, 0x4e4ed29cU, 0xa9a9e049U, 0x6c6cb4d8U, 0x5656faacU, 0xf4f407f3U, 0xeaea25cfU, 0x6565afcaU, 0x7a7a8ef4U, 0xaeaee947U, 0x08081810U, 0xbabad56fU, 0x787888f0U, 0x25256f4aU, 0x2e2e725cU, 0x1c1c2438U, 0xa6a6f157U, 0xb4b4c773U, 0xc6c65197U, 0xe8e823cbU, 0xdddd7ca1U, 0x74749ce8U, 0x1f1f213eU, 0x4b4bdd96U, 0xbdbddc61U, 0x8b8b860dU, 0x8a8a850fU, 0x707090e0U, 0x3e3e427cU, 0xb5b5c471U, 0x6666aaccU, 0x4848d890U, 0x03030506U, 0xf6f601f7U, 0x0e0e121cU, 0x6161a3c2U, 0x35355f6aU, 0x5757f9aeU, 0xb9b9d069U, 0x86869117U, 0xc1c15899U, 0x1d1d273aU, 0x9e9eb927U, 0xe1e138d9U, 0xf8f813ebU, 0x9898b32bU, 0x11113322U, 0x6969bbd2U, 0xd9d970a9U, 0x8e8e8907U, 0x9494a733U, 0x9b9bb62dU, 0x1e1e223cU, 0x87879215U, 0xe9e920c9U, 0xcece4987U, 0x5555ffaaU, 0x28287850U, 0xdfdf7aa5U, 0x8c8c8f03U, 0xa1a1f859U, 0x89898009U, 0x0d0d171aU, 0xbfbfda65U, 0xe6e631d7U, 0x4242c684U, 0x6868b8d0U, 0x4141c382U, 0x9999b029U, 0x2d2d775aU, 0x0f0f111eU, 0xb0b0cb7bU, 0x5454fca8U, 0xbbbbd66dU, 0x16163a2cU, }; static const u32 Td0[256] = { 0x51f4a750U, 0x7e416553U, 0x1a17a4c3U, 0x3a275e96U, 0x3bab6bcbU, 0x1f9d45f1U, 0xacfa58abU, 0x4be30393U, 0x2030fa55U, 0xad766df6U, 0x88cc7691U, 0xf5024c25U, 0x4fe5d7fcU, 0xc52acbd7U, 0x26354480U, 0xb562a38fU, 0xdeb15a49U, 0x25ba1b67U, 0x45ea0e98U, 0x5dfec0e1U, 0xc32f7502U, 0x814cf012U, 0x8d4697a3U, 0x6bd3f9c6U, 0x038f5fe7U, 0x15929c95U, 0xbf6d7aebU, 0x955259daU, 0xd4be832dU, 0x587421d3U, 0x49e06929U, 0x8ec9c844U, 0x75c2896aU, 0xf48e7978U, 0x99583e6bU, 0x27b971ddU, 0xbee14fb6U, 0xf088ad17U, 0xc920ac66U, 0x7dce3ab4U, 0x63df4a18U, 0xe51a3182U, 0x97513360U, 0x62537f45U, 0xb16477e0U, 0xbb6bae84U, 0xfe81a01cU, 0xf9082b94U, 0x70486858U, 0x8f45fd19U, 0x94de6c87U, 0x527bf8b7U, 0xab73d323U, 0x724b02e2U, 0xe31f8f57U, 0x6655ab2aU, 0xb2eb2807U, 0x2fb5c203U, 0x86c57b9aU, 0xd33708a5U, 0x302887f2U, 0x23bfa5b2U, 0x02036abaU, 0xed16825cU, 0x8acf1c2bU, 0xa779b492U, 0xf307f2f0U, 0x4e69e2a1U, 0x65daf4cdU, 0x0605bed5U, 0xd134621fU, 0xc4a6fe8aU, 0x342e539dU, 0xa2f355a0U, 0x058ae132U, 0xa4f6eb75U, 0x0b83ec39U, 0x4060efaaU, 0x5e719f06U, 0xbd6e1051U, 0x3e218af9U, 0x96dd063dU, 0xdd3e05aeU, 0x4de6bd46U, 0x91548db5U, 0x71c45d05U, 0x0406d46fU, 0x605015ffU, 0x1998fb24U, 0xd6bde997U, 0x894043ccU, 0x67d99e77U, 0xb0e842bdU, 0x07898b88U, 0xe7195b38U, 0x79c8eedbU, 0xa17c0a47U, 0x7c420fe9U, 0xf8841ec9U, 0x00000000U, 0x09808683U, 0x322bed48U, 0x1e1170acU, 0x6c5a724eU, 0xfd0efffbU, 0x0f853856U, 0x3daed51eU, 0x362d3927U, 0x0a0fd964U, 0x685ca621U, 0x9b5b54d1U, 0x24362e3aU, 0x0c0a67b1U, 0x9357e70fU, 0xb4ee96d2U, 0x1b9b919eU, 0x80c0c54fU, 0x61dc20a2U, 0x5a774b69U, 0x1c121a16U, 0xe293ba0aU, 0xc0a02ae5U, 0x3c22e043U, 0x121b171dU, 0x0e090d0bU, 0xf28bc7adU, 0x2db6a8b9U, 0x141ea9c8U, 0x57f11985U, 0xaf75074cU, 0xee99ddbbU, 0xa37f60fdU, 0xf701269fU, 0x5c72f5bcU, 0x44663bc5U, 0x5bfb7e34U, 0x8b432976U, 0xcb23c6dcU, 0xb6edfc68U, 0xb8e4f163U, 0xd731dccaU, 0x42638510U, 0x13972240U, 0x84c61120U, 0x854a247dU, 0xd2bb3df8U, 0xaef93211U, 0xc729a16dU, 0x1d9e2f4bU, 0xdcb230f3U, 0x0d8652ecU, 0x77c1e3d0U, 0x2bb3166cU, 0xa970b999U, 0x119448faU, 0x47e96422U, 0xa8fc8cc4U, 0xa0f03f1aU, 0x567d2cd8U, 0x223390efU, 0x87494ec7U, 0xd938d1c1U, 0x8ccaa2feU, 0x98d40b36U, 0xa6f581cfU, 0xa57ade28U, 0xdab78e26U, 0x3fadbfa4U, 0x2c3a9de4U, 0x5078920dU, 0x6a5fcc9bU, 0x547e4662U, 0xf68d13c2U, 0x90d8b8e8U, 0x2e39f75eU, 0x82c3aff5U, 0x9f5d80beU, 0x69d0937cU, 0x6fd52da9U, 0xcf2512b3U, 0xc8ac993bU, 0x10187da7U, 0xe89c636eU, 0xdb3bbb7bU, 0xcd267809U, 0x6e5918f4U, 0xec9ab701U, 0x834f9aa8U, 0xe6956e65U, 0xaaffe67eU, 0x21bccf08U, 0xef15e8e6U, 0xbae79bd9U, 0x4a6f36ceU, 0xea9f09d4U, 0x29b07cd6U, 0x31a4b2afU, 0x2a3f2331U, 0xc6a59430U, 0x35a266c0U, 0x744ebc37U, 0xfc82caa6U, 0xe090d0b0U, 0x33a7d815U, 0xf104984aU, 0x41ecdaf7U, 0x7fcd500eU, 0x1791f62fU, 0x764dd68dU, 0x43efb04dU, 0xccaa4d54U, 0xe49604dfU, 0x9ed1b5e3U, 0x4c6a881bU, 0xc12c1fb8U, 0x4665517fU, 0x9d5eea04U, 0x018c355dU, 0xfa877473U, 0xfb0b412eU, 0xb3671d5aU, 0x92dbd252U, 0xe9105633U, 0x6dd64713U, 0x9ad7618cU, 0x37a10c7aU, 0x59f8148eU, 0xeb133c89U, 0xcea927eeU, 0xb761c935U, 0xe11ce5edU, 0x7a47b13cU, 0x9cd2df59U, 0x55f2733fU, 0x1814ce79U, 0x73c737bfU, 0x53f7cdeaU, 0x5ffdaa5bU, 0xdf3d6f14U, 0x7844db86U, 0xcaaff381U, 0xb968c43eU, 0x3824342cU, 0xc2a3405fU, 0x161dc372U, 0xbce2250cU, 0x283c498bU, 0xff0d9541U, 0x39a80171U, 0x080cb3deU, 0xd8b4e49cU, 0x6456c190U, 0x7bcb8461U, 0xd532b670U, 0x486c5c74U, 0xd0b85742U, }; static const u32 Td1[256] = { 0x5051f4a7U, 0x537e4165U, 0xc31a17a4U, 0x963a275eU, 0xcb3bab6bU, 0xf11f9d45U, 0xabacfa58U, 0x934be303U, 0x552030faU, 0xf6ad766dU, 0x9188cc76U, 0x25f5024cU, 0xfc4fe5d7U, 0xd7c52acbU, 0x80263544U, 0x8fb562a3U, 0x49deb15aU, 0x6725ba1bU, 0x9845ea0eU, 0xe15dfec0U, 0x02c32f75U, 0x12814cf0U, 0xa38d4697U, 0xc66bd3f9U, 0xe7038f5fU, 0x9515929cU, 0xebbf6d7aU, 0xda955259U, 0x2dd4be83U, 0xd3587421U, 0x2949e069U, 0x448ec9c8U, 0x6a75c289U, 0x78f48e79U, 0x6b99583eU, 0xdd27b971U, 0xb6bee14fU, 0x17f088adU, 0x66c920acU, 0xb47dce3aU, 0x1863df4aU, 0x82e51a31U, 0x60975133U, 0x4562537fU, 0xe0b16477U, 0x84bb6baeU, 0x1cfe81a0U, 0x94f9082bU, 0x58704868U, 0x198f45fdU, 0x8794de6cU, 0xb7527bf8U, 0x23ab73d3U, 0xe2724b02U, 0x57e31f8fU, 0x2a6655abU, 0x07b2eb28U, 0x032fb5c2U, 0x9a86c57bU, 0xa5d33708U, 0xf2302887U, 0xb223bfa5U, 0xba02036aU, 0x5ced1682U, 0x2b8acf1cU, 0x92a779b4U, 0xf0f307f2U, 0xa14e69e2U, 0xcd65daf4U, 0xd50605beU, 0x1fd13462U, 0x8ac4a6feU, 0x9d342e53U, 0xa0a2f355U, 0x32058ae1U, 0x75a4f6ebU, 0x390b83ecU, 0xaa4060efU, 0x065e719fU, 0x51bd6e10U, 0xf93e218aU, 0x3d96dd06U, 0xaedd3e05U, 0x464de6bdU, 0xb591548dU, 0x0571c45dU, 0x6f0406d4U, 0xff605015U, 0x241998fbU, 0x97d6bde9U, 0xcc894043U, 0x7767d99eU, 0xbdb0e842U, 0x8807898bU, 0x38e7195bU, 0xdb79c8eeU, 0x47a17c0aU, 0xe97c420fU, 0xc9f8841eU, 0x00000000U, 0x83098086U, 0x48322bedU, 0xac1e1170U, 0x4e6c5a72U, 0xfbfd0effU, 0x560f8538U, 0x1e3daed5U, 0x27362d39U, 0x640a0fd9U, 0x21685ca6U, 0xd19b5b54U, 0x3a24362eU, 0xb10c0a67U, 0x0f9357e7U, 0xd2b4ee96U, 0x9e1b9b91U, 0x4f80c0c5U, 0xa261dc20U, 0x695a774bU, 0x161c121aU, 0x0ae293baU, 0xe5c0a02aU, 0x433c22e0U, 0x1d121b17U, 0x0b0e090dU, 0xadf28bc7U, 0xb92db6a8U, 0xc8141ea9U, 0x8557f119U, 0x4caf7507U, 0xbbee99ddU, 0xfda37f60U, 0x9ff70126U, 0xbc5c72f5U, 0xc544663bU, 0x345bfb7eU, 0x768b4329U, 0xdccb23c6U, 0x68b6edfcU, 0x63b8e4f1U, 0xcad731dcU, 0x10426385U, 0x40139722U, 0x2084c611U, 0x7d854a24U, 0xf8d2bb3dU, 0x11aef932U, 0x6dc729a1U, 0x4b1d9e2fU, 0xf3dcb230U, 0xec0d8652U, 0xd077c1e3U, 0x6c2bb316U, 0x99a970b9U, 0xfa119448U, 0x2247e964U, 0xc4a8fc8cU, 0x1aa0f03fU, 0xd8567d2cU, 0xef223390U, 0xc787494eU, 0xc1d938d1U, 0xfe8ccaa2U, 0x3698d40bU, 0xcfa6f581U, 0x28a57adeU, 0x26dab78eU, 0xa43fadbfU, 0xe42c3a9dU, 0x0d507892U, 0x9b6a5fccU, 0x62547e46U, 0xc2f68d13U, 0xe890d8b8U, 0x5e2e39f7U, 0xf582c3afU, 0xbe9f5d80U, 0x7c69d093U, 0xa96fd52dU, 0xb3cf2512U, 0x3bc8ac99U, 0xa710187dU, 0x6ee89c63U, 0x7bdb3bbbU, 0x09cd2678U, 0xf46e5918U, 0x01ec9ab7U, 0xa8834f9aU, 0x65e6956eU, 0x7eaaffe6U, 0x0821bccfU, 0xe6ef15e8U, 0xd9bae79bU, 0xce4a6f36U, 0xd4ea9f09U, 0xd629b07cU, 0xaf31a4b2U, 0x312a3f23U, 0x30c6a594U, 0xc035a266U, 0x37744ebcU, 0xa6fc82caU, 0xb0e090d0U, 0x1533a7d8U, 0x4af10498U, 0xf741ecdaU, 0x0e7fcd50U, 0x2f1791f6U, 0x8d764dd6U, 0x4d43efb0U, 0x54ccaa4dU, 0xdfe49604U, 0xe39ed1b5U, 0x1b4c6a88U, 0xb8c12c1fU, 0x7f466551U, 0x049d5eeaU, 0x5d018c35U, 0x73fa8774U, 0x2efb0b41U, 0x5ab3671dU, 0x5292dbd2U, 0x33e91056U, 0x136dd647U, 0x8c9ad761U, 0x7a37a10cU, 0x8e59f814U, 0x89eb133cU, 0xeecea927U, 0x35b761c9U, 0xede11ce5U, 0x3c7a47b1U, 0x599cd2dfU, 0x3f55f273U, 0x791814ceU, 0xbf73c737U, 0xea53f7cdU, 0x5b5ffdaaU, 0x14df3d6fU, 0x867844dbU, 0x81caaff3U, 0x3eb968c4U, 0x2c382434U, 0x5fc2a340U, 0x72161dc3U, 0x0cbce225U, 0x8b283c49U, 0x41ff0d95U, 0x7139a801U, 0xde080cb3U, 0x9cd8b4e4U, 0x906456c1U, 0x617bcb84U, 0x70d532b6U, 0x74486c5cU, 0x42d0b857U, }; static const u32 Td2[256] = { 0xa75051f4U, 0x65537e41U, 0xa4c31a17U, 0x5e963a27U, 0x6bcb3babU, 0x45f11f9dU, 0x58abacfaU, 0x03934be3U, 0xfa552030U, 0x6df6ad76U, 0x769188ccU, 0x4c25f502U, 0xd7fc4fe5U, 0xcbd7c52aU, 0x44802635U, 0xa38fb562U, 0x5a49deb1U, 0x1b6725baU, 0x0e9845eaU, 0xc0e15dfeU, 0x7502c32fU, 0xf012814cU, 0x97a38d46U, 0xf9c66bd3U, 0x5fe7038fU, 0x9c951592U, 0x7aebbf6dU, 0x59da9552U, 0x832dd4beU, 0x21d35874U, 0x692949e0U, 0xc8448ec9U, 0x896a75c2U, 0x7978f48eU, 0x3e6b9958U, 0x71dd27b9U, 0x4fb6bee1U, 0xad17f088U, 0xac66c920U, 0x3ab47dceU, 0x4a1863dfU, 0x3182e51aU, 0x33609751U, 0x7f456253U, 0x77e0b164U, 0xae84bb6bU, 0xa01cfe81U, 0x2b94f908U, 0x68587048U, 0xfd198f45U, 0x6c8794deU, 0xf8b7527bU, 0xd323ab73U, 0x02e2724bU, 0x8f57e31fU, 0xab2a6655U, 0x2807b2ebU, 0xc2032fb5U, 0x7b9a86c5U, 0x08a5d337U, 0x87f23028U, 0xa5b223bfU, 0x6aba0203U, 0x825ced16U, 0x1c2b8acfU, 0xb492a779U, 0xf2f0f307U, 0xe2a14e69U, 0xf4cd65daU, 0xbed50605U, 0x621fd134U, 0xfe8ac4a6U, 0x539d342eU, 0x55a0a2f3U, 0xe132058aU, 0xeb75a4f6U, 0xec390b83U, 0xefaa4060U, 0x9f065e71U, 0x1051bd6eU, 0x8af93e21U, 0x063d96ddU, 0x05aedd3eU, 0xbd464de6U, 0x8db59154U, 0x5d0571c4U, 0xd46f0406U, 0x15ff6050U, 0xfb241998U, 0xe997d6bdU, 0x43cc8940U, 0x9e7767d9U, 0x42bdb0e8U, 0x8b880789U, 0x5b38e719U, 0xeedb79c8U, 0x0a47a17cU, 0x0fe97c42U, 0x1ec9f884U, 0x00000000U, 0x86830980U, 0xed48322bU, 0x70ac1e11U, 0x724e6c5aU, 0xfffbfd0eU, 0x38560f85U, 0xd51e3daeU, 0x3927362dU, 0xd9640a0fU, 0xa621685cU, 0x54d19b5bU, 0x2e3a2436U, 0x67b10c0aU, 0xe70f9357U, 0x96d2b4eeU, 0x919e1b9bU, 0xc54f80c0U, 0x20a261dcU, 0x4b695a77U, 0x1a161c12U, 0xba0ae293U, 0x2ae5c0a0U, 0xe0433c22U, 0x171d121bU, 0x0d0b0e09U, 0xc7adf28bU, 0xa8b92db6U, 0xa9c8141eU, 0x198557f1U, 0x074caf75U, 0xddbbee99U, 0x60fda37fU, 0x269ff701U, 0xf5bc5c72U, 0x3bc54466U, 0x7e345bfbU, 0x29768b43U, 0xc6dccb23U, 0xfc68b6edU, 0xf163b8e4U, 0xdccad731U, 0x85104263U, 0x22401397U, 0x112084c6U, 0x247d854aU, 0x3df8d2bbU, 0x3211aef9U, 0xa16dc729U, 0x2f4b1d9eU, 0x30f3dcb2U, 0x52ec0d86U, 0xe3d077c1U, 0x166c2bb3U, 0xb999a970U, 0x48fa1194U, 0x642247e9U, 0x8cc4a8fcU, 0x3f1aa0f0U, 0x2cd8567dU, 0x90ef2233U, 0x4ec78749U, 0xd1c1d938U, 0xa2fe8ccaU, 0x0b3698d4U, 0x81cfa6f5U, 0xde28a57aU, 0x8e26dab7U, 0xbfa43fadU, 0x9de42c3aU, 0x920d5078U, 0xcc9b6a5fU, 0x4662547eU, 0x13c2f68dU, 0xb8e890d8U, 0xf75e2e39U, 0xaff582c3U, 0x80be9f5dU, 0x937c69d0U, 0x2da96fd5U, 0x12b3cf25U, 0x993bc8acU, 0x7da71018U, 0x636ee89cU, 0xbb7bdb3bU, 0x7809cd26U, 0x18f46e59U, 0xb701ec9aU, 0x9aa8834fU, 0x6e65e695U, 0xe67eaaffU, 0xcf0821bcU, 0xe8e6ef15U, 0x9bd9bae7U, 0x36ce4a6fU, 0x09d4ea9fU, 0x7cd629b0U, 0xb2af31a4U, 0x23312a3fU, 0x9430c6a5U, 0x66c035a2U, 0xbc37744eU, 0xcaa6fc82U, 0xd0b0e090U, 0xd81533a7U, 0x984af104U, 0xdaf741ecU, 0x500e7fcdU, 0xf62f1791U, 0xd68d764dU, 0xb04d43efU, 0x4d54ccaaU, 0x04dfe496U, 0xb5e39ed1U, 0x881b4c6aU, 0x1fb8c12cU, 0x517f4665U, 0xea049d5eU, 0x355d018cU, 0x7473fa87U, 0x412efb0bU, 0x1d5ab367U, 0xd25292dbU, 0x5633e910U, 0x47136dd6U, 0x618c9ad7U, 0x0c7a37a1U, 0x148e59f8U, 0x3c89eb13U, 0x27eecea9U, 0xc935b761U, 0xe5ede11cU, 0xb13c7a47U, 0xdf599cd2U, 0x733f55f2U, 0xce791814U, 0x37bf73c7U, 0xcdea53f7U, 0xaa5b5ffdU, 0x6f14df3dU, 0xdb867844U, 0xf381caafU, 0xc43eb968U, 0x342c3824U, 0x405fc2a3U, 0xc372161dU, 0x250cbce2U, 0x498b283cU, 0x9541ff0dU, 0x017139a8U, 0xb3de080cU, 0xe49cd8b4U, 0xc1906456U, 0x84617bcbU, 0xb670d532U, 0x5c74486cU, 0x5742d0b8U, }; static const u32 Td3[256] = { 0xf4a75051U, 0x4165537eU, 0x17a4c31aU, 0x275e963aU, 0xab6bcb3bU, 0x9d45f11fU, 0xfa58abacU, 0xe303934bU, 0x30fa5520U, 0x766df6adU, 0xcc769188U, 0x024c25f5U, 0xe5d7fc4fU, 0x2acbd7c5U, 0x35448026U, 0x62a38fb5U, 0xb15a49deU, 0xba1b6725U, 0xea0e9845U, 0xfec0e15dU, 0x2f7502c3U, 0x4cf01281U, 0x4697a38dU, 0xd3f9c66bU, 0x8f5fe703U, 0x929c9515U, 0x6d7aebbfU, 0x5259da95U, 0xbe832dd4U, 0x7421d358U, 0xe0692949U, 0xc9c8448eU, 0xc2896a75U, 0x8e7978f4U, 0x583e6b99U, 0xb971dd27U, 0xe14fb6beU, 0x88ad17f0U, 0x20ac66c9U, 0xce3ab47dU, 0xdf4a1863U, 0x1a3182e5U, 0x51336097U, 0x537f4562U, 0x6477e0b1U, 0x6bae84bbU, 0x81a01cfeU, 0x082b94f9U, 0x48685870U, 0x45fd198fU, 0xde6c8794U, 0x7bf8b752U, 0x73d323abU, 0x4b02e272U, 0x1f8f57e3U, 0x55ab2a66U, 0xeb2807b2U, 0xb5c2032fU, 0xc57b9a86U, 0x3708a5d3U, 0x2887f230U, 0xbfa5b223U, 0x036aba02U, 0x16825cedU, 0xcf1c2b8aU, 0x79b492a7U, 0x07f2f0f3U, 0x69e2a14eU, 0xdaf4cd65U, 0x05bed506U, 0x34621fd1U, 0xa6fe8ac4U, 0x2e539d34U, 0xf355a0a2U, 0x8ae13205U, 0xf6eb75a4U, 0x83ec390bU, 0x60efaa40U, 0x719f065eU, 0x6e1051bdU, 0x218af93eU, 0xdd063d96U, 0x3e05aeddU, 0xe6bd464dU, 0x548db591U, 0xc45d0571U, 0x06d46f04U, 0x5015ff60U, 0x98fb2419U, 0xbde997d6U, 0x4043cc89U, 0xd99e7767U, 0xe842bdb0U, 0x898b8807U, 0x195b38e7U, 0xc8eedb79U, 0x7c0a47a1U, 0x420fe97cU, 0x841ec9f8U, 0x00000000U, 0x80868309U, 0x2bed4832U, 0x1170ac1eU, 0x5a724e6cU, 0x0efffbfdU, 0x8538560fU, 0xaed51e3dU, 0x2d392736U, 0x0fd9640aU, 0x5ca62168U, 0x5b54d19bU, 0x362e3a24U, 0x0a67b10cU, 0x57e70f93U, 0xee96d2b4U, 0x9b919e1bU, 0xc0c54f80U, 0xdc20a261U, 0x774b695aU, 0x121a161cU, 0x93ba0ae2U, 0xa02ae5c0U, 0x22e0433cU, 0x1b171d12U, 0x090d0b0eU, 0x8bc7adf2U, 0xb6a8b92dU, 0x1ea9c814U, 0xf1198557U, 0x75074cafU, 0x99ddbbeeU, 0x7f60fda3U, 0x01269ff7U, 0x72f5bc5cU, 0x663bc544U, 0xfb7e345bU, 0x4329768bU, 0x23c6dccbU, 0xedfc68b6U, 0xe4f163b8U, 0x31dccad7U, 0x63851042U, 0x97224013U, 0xc6112084U, 0x4a247d85U, 0xbb3df8d2U, 0xf93211aeU, 0x29a16dc7U, 0x9e2f4b1dU, 0xb230f3dcU, 0x8652ec0dU, 0xc1e3d077U, 0xb3166c2bU, 0x70b999a9U, 0x9448fa11U, 0xe9642247U, 0xfc8cc4a8U, 0xf03f1aa0U, 0x7d2cd856U, 0x3390ef22U, 0x494ec787U, 0x38d1c1d9U, 0xcaa2fe8cU, 0xd40b3698U, 0xf581cfa6U, 0x7ade28a5U, 0xb78e26daU, 0xadbfa43fU, 0x3a9de42cU, 0x78920d50U, 0x5fcc9b6aU, 0x7e466254U, 0x8d13c2f6U, 0xd8b8e890U, 0x39f75e2eU, 0xc3aff582U, 0x5d80be9fU, 0xd0937c69U, 0xd52da96fU, 0x2512b3cfU, 0xac993bc8U, 0x187da710U, 0x9c636ee8U, 0x3bbb7bdbU, 0x267809cdU, 0x5918f46eU, 0x9ab701ecU, 0x4f9aa883U, 0x956e65e6U, 0xffe67eaaU, 0xbccf0821U, 0x15e8e6efU, 0xe79bd9baU, 0x6f36ce4aU, 0x9f09d4eaU, 0xb07cd629U, 0xa4b2af31U, 0x3f23312aU, 0xa59430c6U, 0xa266c035U, 0x4ebc3774U, 0x82caa6fcU, 0x90d0b0e0U, 0xa7d81533U, 0x04984af1U, 0xecdaf741U, 0xcd500e7fU, 0x91f62f17U, 0x4dd68d76U, 0xefb04d43U, 0xaa4d54ccU, 0x9604dfe4U, 0xd1b5e39eU, 0x6a881b4cU, 0x2c1fb8c1U, 0x65517f46U, 0x5eea049dU, 0x8c355d01U, 0x877473faU, 0x0b412efbU, 0x671d5ab3U, 0xdbd25292U, 0x105633e9U, 0xd647136dU, 0xd7618c9aU, 0xa10c7a37U, 0xf8148e59U, 0x133c89ebU, 0xa927eeceU, 0x61c935b7U, 0x1ce5ede1U, 0x47b13c7aU, 0xd2df599cU, 0xf2733f55U, 0x14ce7918U, 0xc737bf73U, 0xf7cdea53U, 0xfdaa5b5fU, 0x3d6f14dfU, 0x44db8678U, 0xaff381caU, 0x68c43eb9U, 0x24342c38U, 0xa3405fc2U, 0x1dc37216U, 0xe2250cbcU, 0x3c498b28U, 0x0d9541ffU, 0xa8017139U, 0x0cb3de08U, 0xb4e49cd8U, 0x56c19064U, 0xcb84617bU, 0x32b670d5U, 0x6c5c7448U, 0xb85742d0U, }; static const u8 Td4[256] = { 0x52U, 0x09U, 0x6aU, 0xd5U, 0x30U, 0x36U, 0xa5U, 0x38U, 0xbfU, 0x40U, 0xa3U, 0x9eU, 0x81U, 0xf3U, 0xd7U, 0xfbU, 0x7cU, 0xe3U, 0x39U, 0x82U, 0x9bU, 0x2fU, 0xffU, 0x87U, 0x34U, 0x8eU, 0x43U, 0x44U, 0xc4U, 0xdeU, 0xe9U, 0xcbU, 0x54U, 0x7bU, 0x94U, 0x32U, 0xa6U, 0xc2U, 0x23U, 0x3dU, 0xeeU, 0x4cU, 0x95U, 0x0bU, 0x42U, 0xfaU, 0xc3U, 0x4eU, 0x08U, 0x2eU, 0xa1U, 0x66U, 0x28U, 0xd9U, 0x24U, 0xb2U, 0x76U, 0x5bU, 0xa2U, 0x49U, 0x6dU, 0x8bU, 0xd1U, 0x25U, 0x72U, 0xf8U, 0xf6U, 0x64U, 0x86U, 0x68U, 0x98U, 0x16U, 0xd4U, 0xa4U, 0x5cU, 0xccU, 0x5dU, 0x65U, 0xb6U, 0x92U, 0x6cU, 0x70U, 0x48U, 0x50U, 0xfdU, 0xedU, 0xb9U, 0xdaU, 0x5eU, 0x15U, 0x46U, 0x57U, 0xa7U, 0x8dU, 0x9dU, 0x84U, 0x90U, 0xd8U, 0xabU, 0x00U, 0x8cU, 0xbcU, 0xd3U, 0x0aU, 0xf7U, 0xe4U, 0x58U, 0x05U, 0xb8U, 0xb3U, 0x45U, 0x06U, 0xd0U, 0x2cU, 0x1eU, 0x8fU, 0xcaU, 0x3fU, 0x0fU, 0x02U, 0xc1U, 0xafU, 0xbdU, 0x03U, 0x01U, 0x13U, 0x8aU, 0x6bU, 0x3aU, 0x91U, 0x11U, 0x41U, 0x4fU, 0x67U, 0xdcU, 0xeaU, 0x97U, 0xf2U, 0xcfU, 0xceU, 0xf0U, 0xb4U, 0xe6U, 0x73U, 0x96U, 0xacU, 0x74U, 0x22U, 0xe7U, 0xadU, 0x35U, 0x85U, 0xe2U, 0xf9U, 0x37U, 0xe8U, 0x1cU, 0x75U, 0xdfU, 0x6eU, 0x47U, 0xf1U, 0x1aU, 0x71U, 0x1dU, 0x29U, 0xc5U, 0x89U, 0x6fU, 0xb7U, 0x62U, 0x0eU, 0xaaU, 0x18U, 0xbeU, 0x1bU, 0xfcU, 0x56U, 0x3eU, 0x4bU, 0xc6U, 0xd2U, 0x79U, 0x20U, 0x9aU, 0xdbU, 0xc0U, 0xfeU, 0x78U, 0xcdU, 0x5aU, 0xf4U, 0x1fU, 0xddU, 0xa8U, 0x33U, 0x88U, 0x07U, 0xc7U, 0x31U, 0xb1U, 0x12U, 0x10U, 0x59U, 0x27U, 0x80U, 0xecU, 0x5fU, 0x60U, 0x51U, 0x7fU, 0xa9U, 0x19U, 0xb5U, 0x4aU, 0x0dU, 0x2dU, 0xe5U, 0x7aU, 0x9fU, 0x93U, 0xc9U, 0x9cU, 0xefU, 0xa0U, 0xe0U, 0x3bU, 0x4dU, 0xaeU, 0x2aU, 0xf5U, 0xb0U, 0xc8U, 0xebU, 0xbbU, 0x3cU, 0x83U, 0x53U, 0x99U, 0x61U, 0x17U, 0x2bU, 0x04U, 0x7eU, 0xbaU, 0x77U, 0xd6U, 0x26U, 0xe1U, 0x69U, 0x14U, 0x63U, 0x55U, 0x21U, 0x0cU, 0x7dU, }; static const u32 rcon[] = { 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000, /* for 128-bit blocks, Rijndael never uses more than 10 rcon values */ }; /** * Expand the cipher key into the encryption key schedule. */ int AES_set_encrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key) { u32 *rk; int i = 0; u32 temp; if (!userKey || !key) return -1; if (bits != 128 && bits != 192 && bits != 256) return -2; rk = key->rd_key; if (bits == 128) key->rounds = 10; else if (bits == 192) key->rounds = 12; else key->rounds = 14; rk[0] = GETU32(userKey ); rk[1] = GETU32(userKey + 4); rk[2] = GETU32(userKey + 8); rk[3] = GETU32(userKey + 12); if (bits == 128) { while (1) { temp = rk[3]; rk[4] = rk[0] ^ (Te2[(temp >> 16) & 0xff] & 0xff000000) ^ (Te3[(temp >> 8) & 0xff] & 0x00ff0000) ^ (Te0[(temp ) & 0xff] & 0x0000ff00) ^ (Te1[(temp >> 24) ] & 0x000000ff) ^ rcon[i]; rk[5] = rk[1] ^ rk[4]; rk[6] = rk[2] ^ rk[5]; rk[7] = rk[3] ^ rk[6]; if (++i == 10) { return 0; } rk += 4; } } rk[4] = GETU32(userKey + 16); rk[5] = GETU32(userKey + 20); if (bits == 192) { while (1) { temp = rk[ 5]; rk[ 6] = rk[ 0] ^ (Te2[(temp >> 16) & 0xff] & 0xff000000) ^ (Te3[(temp >> 8) & 0xff] & 0x00ff0000) ^ (Te0[(temp ) & 0xff] & 0x0000ff00) ^ (Te1[(temp >> 24) ] & 0x000000ff) ^ rcon[i]; rk[ 7] = rk[ 1] ^ rk[ 6]; rk[ 8] = rk[ 2] ^ rk[ 7]; rk[ 9] = rk[ 3] ^ rk[ 8]; if (++i == 8) { return 0; } rk[10] = rk[ 4] ^ rk[ 9]; rk[11] = rk[ 5] ^ rk[10]; rk += 6; } } rk[6] = GETU32(userKey + 24); rk[7] = GETU32(userKey + 28); if (bits == 256) { while (1) { temp = rk[ 7]; rk[ 8] = rk[ 0] ^ (Te2[(temp >> 16) & 0xff] & 0xff000000) ^ (Te3[(temp >> 8) & 0xff] & 0x00ff0000) ^ (Te0[(temp ) & 0xff] & 0x0000ff00) ^ (Te1[(temp >> 24) ] & 0x000000ff) ^ rcon[i]; rk[ 9] = rk[ 1] ^ rk[ 8]; rk[10] = rk[ 2] ^ rk[ 9]; rk[11] = rk[ 3] ^ rk[10]; if (++i == 7) { return 0; } temp = rk[11]; rk[12] = rk[ 4] ^ (Te2[(temp >> 24) ] & 0xff000000) ^ (Te3[(temp >> 16) & 0xff] & 0x00ff0000) ^ (Te0[(temp >> 8) & 0xff] & 0x0000ff00) ^ (Te1[(temp ) & 0xff] & 0x000000ff); rk[13] = rk[ 5] ^ rk[12]; rk[14] = rk[ 6] ^ rk[13]; rk[15] = rk[ 7] ^ rk[14]; rk += 8; } } return 0; } /** * Expand the cipher key into the decryption key schedule. */ int AES_set_decrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key) { u32 *rk; int i, j, status; u32 temp; /* first, start with an encryption schedule */ status = AES_set_encrypt_key(userKey, bits, key); if (status < 0) return status; rk = key->rd_key; /* invert the order of the round keys: */ for (i = 0, j = 4*(key->rounds); i < j; i += 4, j -= 4) { temp = rk[i ]; rk[i ] = rk[j ]; rk[j ] = temp; temp = rk[i + 1]; rk[i + 1] = rk[j + 1]; rk[j + 1] = temp; temp = rk[i + 2]; rk[i + 2] = rk[j + 2]; rk[j + 2] = temp; temp = rk[i + 3]; rk[i + 3] = rk[j + 3]; rk[j + 3] = temp; } /* apply the inverse MixColumn transform to all round keys but the first and the last: */ for (i = 1; i < (key->rounds); i++) { rk += 4; rk[0] = Td0[Te1[(rk[0] >> 24) ] & 0xff] ^ Td1[Te1[(rk[0] >> 16) & 0xff] & 0xff] ^ Td2[Te1[(rk[0] >> 8) & 0xff] & 0xff] ^ Td3[Te1[(rk[0] ) & 0xff] & 0xff]; rk[1] = Td0[Te1[(rk[1] >> 24) ] & 0xff] ^ Td1[Te1[(rk[1] >> 16) & 0xff] & 0xff] ^ Td2[Te1[(rk[1] >> 8) & 0xff] & 0xff] ^ Td3[Te1[(rk[1] ) & 0xff] & 0xff]; rk[2] = Td0[Te1[(rk[2] >> 24) ] & 0xff] ^ Td1[Te1[(rk[2] >> 16) & 0xff] & 0xff] ^ Td2[Te1[(rk[2] >> 8) & 0xff] & 0xff] ^ Td3[Te1[(rk[2] ) & 0xff] & 0xff]; rk[3] = Td0[Te1[(rk[3] >> 24) ] & 0xff] ^ Td1[Te1[(rk[3] >> 16) & 0xff] & 0xff] ^ Td2[Te1[(rk[3] >> 8) & 0xff] & 0xff] ^ Td3[Te1[(rk[3] ) & 0xff] & 0xff]; } return 0; } /* * Encrypt a single block * in and out can overlap */ void AES_encrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key) { const u32 *rk; u32 s0, s1, s2, s3, t0, t1, t2, t3; #ifndef FULL_UNROLL int r; #endif /* ?FULL_UNROLL */ assert(in && out && key); rk = key->rd_key; /* * map byte array block to cipher state * and add initial round key: */ s0 = GETU32(in ) ^ rk[0]; s1 = GETU32(in + 4) ^ rk[1]; s2 = GETU32(in + 8) ^ rk[2]; s3 = GETU32(in + 12) ^ rk[3]; #ifdef FULL_UNROLL /* round 1: */ t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[ 4]; t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[ 5]; t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[ 6]; t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[ 7]; /* round 2: */ s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[ 8]; s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[ 9]; s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[10]; s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[11]; /* round 3: */ t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[12]; t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[13]; t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[14]; t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[15]; /* round 4: */ s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[16]; s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[17]; s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[18]; s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[19]; /* round 5: */ t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[20]; t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[21]; t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[22]; t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[23]; /* round 6: */ s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[24]; s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[25]; s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[26]; s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[27]; /* round 7: */ t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[28]; t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[29]; t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[30]; t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[31]; /* round 8: */ s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[32]; s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[33]; s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[34]; s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[35]; /* round 9: */ t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[36]; t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[37]; t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[38]; t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[39]; if (key->rounds > 10) { /* round 10: */ s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[40]; s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[41]; s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[42]; s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[43]; /* round 11: */ t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[44]; t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[45]; t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[46]; t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[47]; if (key->rounds > 12) { /* round 12: */ s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[48]; s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[49]; s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[50]; s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[51]; /* round 13: */ t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[52]; t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[53]; t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[54]; t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[55]; } } rk += key->rounds << 2; #else /* !FULL_UNROLL */ /* * Nr - 1 full rounds: */ r = key->rounds >> 1; for (;;) { t0 = Te0[(s0 >> 24) ] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[(s3 ) & 0xff] ^ rk[4]; t1 = Te0[(s1 >> 24) ] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[(s0 ) & 0xff] ^ rk[5]; t2 = Te0[(s2 >> 24) ] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[(s1 ) & 0xff] ^ rk[6]; t3 = Te0[(s3 >> 24) ] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[(s2 ) & 0xff] ^ rk[7]; rk += 8; if (--r == 0) { break; } s0 = Te0[(t0 >> 24) ] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[(t3 ) & 0xff] ^ rk[0]; s1 = Te0[(t1 >> 24) ] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[(t0 ) & 0xff] ^ rk[1]; s2 = Te0[(t2 >> 24) ] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[(t1 ) & 0xff] ^ rk[2]; s3 = Te0[(t3 >> 24) ] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[(t2 ) & 0xff] ^ rk[3]; } #endif /* ?FULL_UNROLL */ /* * apply last round and * map cipher state to byte array block: */ s0 = (Te2[(t0 >> 24) ] & 0xff000000) ^ (Te3[(t1 >> 16) & 0xff] & 0x00ff0000) ^ (Te0[(t2 >> 8) & 0xff] & 0x0000ff00) ^ (Te1[(t3 ) & 0xff] & 0x000000ff) ^ rk[0]; PUTU32(out , s0); s1 = (Te2[(t1 >> 24) ] & 0xff000000) ^ (Te3[(t2 >> 16) & 0xff] & 0x00ff0000) ^ (Te0[(t3 >> 8) & 0xff] & 0x0000ff00) ^ (Te1[(t0 ) & 0xff] & 0x000000ff) ^ rk[1]; PUTU32(out + 4, s1); s2 = (Te2[(t2 >> 24) ] & 0xff000000) ^ (Te3[(t3 >> 16) & 0xff] & 0x00ff0000) ^ (Te0[(t0 >> 8) & 0xff] & 0x0000ff00) ^ (Te1[(t1 ) & 0xff] & 0x000000ff) ^ rk[2]; PUTU32(out + 8, s2); s3 = (Te2[(t3 >> 24) ] & 0xff000000) ^ (Te3[(t0 >> 16) & 0xff] & 0x00ff0000) ^ (Te0[(t1 >> 8) & 0xff] & 0x0000ff00) ^ (Te1[(t2 ) & 0xff] & 0x000000ff) ^ rk[3]; PUTU32(out + 12, s3); } /* * Decrypt a single block * in and out can overlap */ void AES_decrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key) { const u32 *rk; u32 s0, s1, s2, s3, t0, t1, t2, t3; #ifndef FULL_UNROLL int r; #endif /* ?FULL_UNROLL */ assert(in && out && key); rk = key->rd_key; /* * map byte array block to cipher state * and add initial round key: */ s0 = GETU32(in ) ^ rk[0]; s1 = GETU32(in + 4) ^ rk[1]; s2 = GETU32(in + 8) ^ rk[2]; s3 = GETU32(in + 12) ^ rk[3]; #ifdef FULL_UNROLL /* round 1: */ t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[ 4]; t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[ 5]; t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[ 6]; t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[ 7]; /* round 2: */ s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[ 8]; s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[t2 & 0xff] ^ rk[ 9]; s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[t3 & 0xff] ^ rk[10]; s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[t0 & 0xff] ^ rk[11]; /* round 3: */ t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[12]; t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[13]; t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[14]; t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[15]; /* round 4: */ s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[16]; s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[t2 & 0xff] ^ rk[17]; s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[t3 & 0xff] ^ rk[18]; s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[t0 & 0xff] ^ rk[19]; /* round 5: */ t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[20]; t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[21]; t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[22]; t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[23]; /* round 6: */ s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[24]; s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[t2 & 0xff] ^ rk[25]; s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[t3 & 0xff] ^ rk[26]; s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[t0 & 0xff] ^ rk[27]; /* round 7: */ t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[28]; t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[29]; t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[30]; t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[31]; /* round 8: */ s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[32]; s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[t2 & 0xff] ^ rk[33]; s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[t3 & 0xff] ^ rk[34]; s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[t0 & 0xff] ^ rk[35]; /* round 9: */ t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[36]; t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[37]; t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[38]; t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[39]; if (key->rounds > 10) { /* round 10: */ s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[40]; s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[t2 & 0xff] ^ rk[41]; s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[t3 & 0xff] ^ rk[42]; s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[t0 & 0xff] ^ rk[43]; /* round 11: */ t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[44]; t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[45]; t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[46]; t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[47]; if (key->rounds > 12) { /* round 12: */ s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[48]; s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[t2 & 0xff] ^ rk[49]; s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[t3 & 0xff] ^ rk[50]; s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[t0 & 0xff] ^ rk[51]; /* round 13: */ t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[52]; t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[53]; t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[54]; t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[55]; } } rk += key->rounds << 2; #else /* !FULL_UNROLL */ /* * Nr - 1 full rounds: */ r = key->rounds >> 1; for (;;) { t0 = Td0[(s0 >> 24) ] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[(s1 ) & 0xff] ^ rk[4]; t1 = Td0[(s1 >> 24) ] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[(s2 ) & 0xff] ^ rk[5]; t2 = Td0[(s2 >> 24) ] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[(s3 ) & 0xff] ^ rk[6]; t3 = Td0[(s3 >> 24) ] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[(s0 ) & 0xff] ^ rk[7]; rk += 8; if (--r == 0) { break; } s0 = Td0[(t0 >> 24) ] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[(t1 ) & 0xff] ^ rk[0]; s1 = Td0[(t1 >> 24) ] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[(t2 ) & 0xff] ^ rk[1]; s2 = Td0[(t2 >> 24) ] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[(t3 ) & 0xff] ^ rk[2]; s3 = Td0[(t3 >> 24) ] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[(t0 ) & 0xff] ^ rk[3]; } #endif /* ?FULL_UNROLL */ /* * apply last round and * map cipher state to byte array block: */ s0 = ((u32)Td4[(t0 >> 24) ] << 24) ^ ((u32)Td4[(t3 >> 16) & 0xff] << 16) ^ ((u32)Td4[(t2 >> 8) & 0xff] << 8) ^ ((u32)Td4[(t1 ) & 0xff]) ^ rk[0]; PUTU32(out , s0); s1 = ((u32)Td4[(t1 >> 24) ] << 24) ^ ((u32)Td4[(t0 >> 16) & 0xff] << 16) ^ ((u32)Td4[(t3 >> 8) & 0xff] << 8) ^ ((u32)Td4[(t2 ) & 0xff]) ^ rk[1]; PUTU32(out + 4, s1); s2 = ((u32)Td4[(t2 >> 24) ] << 24) ^ ((u32)Td4[(t1 >> 16) & 0xff] << 16) ^ ((u32)Td4[(t0 >> 8) & 0xff] << 8) ^ ((u32)Td4[(t3 ) & 0xff]) ^ rk[2]; PUTU32(out + 8, s2); s3 = ((u32)Td4[(t3 >> 24) ] << 24) ^ ((u32)Td4[(t2 >> 16) & 0xff] << 16) ^ ((u32)Td4[(t1 >> 8) & 0xff] << 8) ^ ((u32)Td4[(t0 ) & 0xff]) ^ rk[3]; PUTU32(out + 12, s3); } #else /* AES_ASM */ static const u8 Te4[256] = { 0x63U, 0x7cU, 0x77U, 0x7bU, 0xf2U, 0x6bU, 0x6fU, 0xc5U, 0x30U, 0x01U, 0x67U, 0x2bU, 0xfeU, 0xd7U, 0xabU, 0x76U, 0xcaU, 0x82U, 0xc9U, 0x7dU, 0xfaU, 0x59U, 0x47U, 0xf0U, 0xadU, 0xd4U, 0xa2U, 0xafU, 0x9cU, 0xa4U, 0x72U, 0xc0U, 0xb7U, 0xfdU, 0x93U, 0x26U, 0x36U, 0x3fU, 0xf7U, 0xccU, 0x34U, 0xa5U, 0xe5U, 0xf1U, 0x71U, 0xd8U, 0x31U, 0x15U, 0x04U, 0xc7U, 0x23U, 0xc3U, 0x18U, 0x96U, 0x05U, 0x9aU, 0x07U, 0x12U, 0x80U, 0xe2U, 0xebU, 0x27U, 0xb2U, 0x75U, 0x09U, 0x83U, 0x2cU, 0x1aU, 0x1bU, 0x6eU, 0x5aU, 0xa0U, 0x52U, 0x3bU, 0xd6U, 0xb3U, 0x29U, 0xe3U, 0x2fU, 0x84U, 0x53U, 0xd1U, 0x00U, 0xedU, 0x20U, 0xfcU, 0xb1U, 0x5bU, 0x6aU, 0xcbU, 0xbeU, 0x39U, 0x4aU, 0x4cU, 0x58U, 0xcfU, 0xd0U, 0xefU, 0xaaU, 0xfbU, 0x43U, 0x4dU, 0x33U, 0x85U, 0x45U, 0xf9U, 0x02U, 0x7fU, 0x50U, 0x3cU, 0x9fU, 0xa8U, 0x51U, 0xa3U, 0x40U, 0x8fU, 0x92U, 0x9dU, 0x38U, 0xf5U, 0xbcU, 0xb6U, 0xdaU, 0x21U, 0x10U, 0xffU, 0xf3U, 0xd2U, 0xcdU, 0x0cU, 0x13U, 0xecU, 0x5fU, 0x97U, 0x44U, 0x17U, 0xc4U, 0xa7U, 0x7eU, 0x3dU, 0x64U, 0x5dU, 0x19U, 0x73U, 0x60U, 0x81U, 0x4fU, 0xdcU, 0x22U, 0x2aU, 0x90U, 0x88U, 0x46U, 0xeeU, 0xb8U, 0x14U, 0xdeU, 0x5eU, 0x0bU, 0xdbU, 0xe0U, 0x32U, 0x3aU, 0x0aU, 0x49U, 0x06U, 0x24U, 0x5cU, 0xc2U, 0xd3U, 0xacU, 0x62U, 0x91U, 0x95U, 0xe4U, 0x79U, 0xe7U, 0xc8U, 0x37U, 0x6dU, 0x8dU, 0xd5U, 0x4eU, 0xa9U, 0x6cU, 0x56U, 0xf4U, 0xeaU, 0x65U, 0x7aU, 0xaeU, 0x08U, 0xbaU, 0x78U, 0x25U, 0x2eU, 0x1cU, 0xa6U, 0xb4U, 0xc6U, 0xe8U, 0xddU, 0x74U, 0x1fU, 0x4bU, 0xbdU, 0x8bU, 0x8aU, 0x70U, 0x3eU, 0xb5U, 0x66U, 0x48U, 0x03U, 0xf6U, 0x0eU, 0x61U, 0x35U, 0x57U, 0xb9U, 0x86U, 0xc1U, 0x1dU, 0x9eU, 0xe1U, 0xf8U, 0x98U, 0x11U, 0x69U, 0xd9U, 0x8eU, 0x94U, 0x9bU, 0x1eU, 0x87U, 0xe9U, 0xceU, 0x55U, 0x28U, 0xdfU, 0x8cU, 0xa1U, 0x89U, 0x0dU, 0xbfU, 0xe6U, 0x42U, 0x68U, 0x41U, 0x99U, 0x2dU, 0x0fU, 0xb0U, 0x54U, 0xbbU, 0x16U }; static const u32 rcon[] = { 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000, /* for 128-bit blocks, Rijndael never uses more than 10 rcon values */ }; /** * Expand the cipher key into the encryption key schedule. */ int AES_set_encrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key) { u32 *rk; int i = 0; u32 temp; if (!userKey || !key) return -1; if (bits != 128 && bits != 192 && bits != 256) return -2; rk = key->rd_key; if (bits == 128) key->rounds = 10; else if (bits == 192) key->rounds = 12; else key->rounds = 14; rk[0] = GETU32(userKey ); rk[1] = GETU32(userKey + 4); rk[2] = GETU32(userKey + 8); rk[3] = GETU32(userKey + 12); if (bits == 128) { while (1) { temp = rk[3]; rk[4] = rk[0] ^ ((u32)Te4[(temp >> 16) & 0xff] << 24) ^ ((u32)Te4[(temp >> 8) & 0xff] << 16) ^ ((u32)Te4[(temp ) & 0xff] << 8) ^ ((u32)Te4[(temp >> 24) ]) ^ rcon[i]; rk[5] = rk[1] ^ rk[4]; rk[6] = rk[2] ^ rk[5]; rk[7] = rk[3] ^ rk[6]; if (++i == 10) { return 0; } rk += 4; } } rk[4] = GETU32(userKey + 16); rk[5] = GETU32(userKey + 20); if (bits == 192) { while (1) { temp = rk[ 5]; rk[ 6] = rk[ 0] ^ ((u32)Te4[(temp >> 16) & 0xff] << 24) ^ ((u32)Te4[(temp >> 8) & 0xff] << 16) ^ ((u32)Te4[(temp ) & 0xff] << 8) ^ ((u32)Te4[(temp >> 24) ]) ^ rcon[i]; rk[ 7] = rk[ 1] ^ rk[ 6]; rk[ 8] = rk[ 2] ^ rk[ 7]; rk[ 9] = rk[ 3] ^ rk[ 8]; if (++i == 8) { return 0; } rk[10] = rk[ 4] ^ rk[ 9]; rk[11] = rk[ 5] ^ rk[10]; rk += 6; } } rk[6] = GETU32(userKey + 24); rk[7] = GETU32(userKey + 28); if (bits == 256) { while (1) { temp = rk[ 7]; rk[ 8] = rk[ 0] ^ ((u32)Te4[(temp >> 16) & 0xff] << 24) ^ ((u32)Te4[(temp >> 8) & 0xff] << 16) ^ ((u32)Te4[(temp ) & 0xff] << 8) ^ ((u32)Te4[(temp >> 24) ]) ^ rcon[i]; rk[ 9] = rk[ 1] ^ rk[ 8]; rk[10] = rk[ 2] ^ rk[ 9]; rk[11] = rk[ 3] ^ rk[10]; if (++i == 7) { return 0; } temp = rk[11]; rk[12] = rk[ 4] ^ ((u32)Te4[(temp >> 24) ] << 24) ^ ((u32)Te4[(temp >> 16) & 0xff] << 16) ^ ((u32)Te4[(temp >> 8) & 0xff] << 8) ^ ((u32)Te4[(temp ) & 0xff]); rk[13] = rk[ 5] ^ rk[12]; rk[14] = rk[ 6] ^ rk[13]; rk[15] = rk[ 7] ^ rk[14]; rk += 8; } } return 0; } /** * Expand the cipher key into the decryption key schedule. */ int AES_set_decrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key) { u32 *rk; int i, j, status; u32 temp; /* first, start with an encryption schedule */ status = AES_set_encrypt_key(userKey, bits, key); if (status < 0) return status; rk = key->rd_key; /* invert the order of the round keys: */ for (i = 0, j = 4*(key->rounds); i < j; i += 4, j -= 4) { temp = rk[i ]; rk[i ] = rk[j ]; rk[j ] = temp; temp = rk[i + 1]; rk[i + 1] = rk[j + 1]; rk[j + 1] = temp; temp = rk[i + 2]; rk[i + 2] = rk[j + 2]; rk[j + 2] = temp; temp = rk[i + 3]; rk[i + 3] = rk[j + 3]; rk[j + 3] = temp; } /* apply the inverse MixColumn transform to all round keys but the first and the last: */ for (i = 1; i < (key->rounds); i++) { rk += 4; for (j = 0; j < 4; j++) { u32 tp1, tp2, tp4, tp8, tp9, tpb, tpd, tpe, m; tp1 = rk[j]; m = tp1 & 0x80808080; tp2 = ((tp1 & 0x7f7f7f7f) << 1) ^ ((m - (m >> 7)) & 0x1b1b1b1b); m = tp2 & 0x80808080; tp4 = ((tp2 & 0x7f7f7f7f) << 1) ^ ((m - (m >> 7)) & 0x1b1b1b1b); m = tp4 & 0x80808080; tp8 = ((tp4 & 0x7f7f7f7f) << 1) ^ ((m - (m >> 7)) & 0x1b1b1b1b); tp9 = tp8 ^ tp1; tpb = tp9 ^ tp2; tpd = tp9 ^ tp4; tpe = tp8 ^ tp4 ^ tp2; #if defined(ROTATE) rk[j] = tpe ^ ROTATE(tpd,16) ^ ROTATE(tp9,24) ^ ROTATE(tpb,8); #else rk[j] = tpe ^ (tpd >> 16) ^ (tpd << 16) ^ (tp9 >> 8) ^ (tp9 << 24) ^ (tpb >> 24) ^ (tpb << 8); #endif } } return 0; } #endif /* AES_ASM */
./openssl/crypto/aes/aes_ofb.c
/* * Copyright 2002-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * AES_encrypt is deprecated - but we need to use it to implement * AES_ofb128_encrypt */ #include "internal/deprecated.h" #include <openssl/aes.h> #include <openssl/modes.h> void AES_ofb128_encrypt(const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key, unsigned char *ivec, int *num) { CRYPTO_ofb128_encrypt(in, out, length, key, ivec, num, (block128_f) AES_encrypt); }
./openssl/crypto/aes/aes_x86core.c
/* * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * This is experimental x86[_64] derivative. It assumes little-endian * byte order and expects CPU to sustain unaligned memory references. * It is used as playground for cache-time attack mitigations and * serves as reference C implementation for x86[_64] as well as some * other assembly modules. */ /** * rijndael-alg-fst.c * * @version 3.0 (December 2000) * * Optimised ANSI C code for the Rijndael cipher (now AES) * * @author Vincent Rijmen * @author Antoon Bosselaers * @author Paulo Barreto * * This code is hereby placed in the public domain. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <assert.h> #include <stdlib.h> #include <openssl/aes.h> #include "aes_local.h" /* * These two parameters control which table, 256-byte or 2KB, is * referenced in outer and respectively inner rounds. */ #define AES_COMPACT_IN_OUTER_ROUNDS #ifdef AES_COMPACT_IN_OUTER_ROUNDS /* AES_COMPACT_IN_OUTER_ROUNDS costs ~30% in performance, while * adding AES_COMPACT_IN_INNER_ROUNDS reduces benchmark *further* * by factor of ~2. */ # undef AES_COMPACT_IN_INNER_ROUNDS #endif #if 1 static void prefetch256(const void *table) { volatile unsigned long *t = (void *)table, ret; unsigned long sum; int i; /* 32 is common least cache-line size */ for (sum = 0, i = 0; i < 256/sizeof(t[0]); i += 32/sizeof(t[0])) sum ^= t[i]; ret = sum; } #else # define prefetch256(t) #endif #undef GETU32 #define GETU32(p) (*((u32*)(p))) #if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32__) #define U64(C) C##UI64 #elif defined(__arch64__) #define U64(C) C##UL #else #define U64(C) C##ULL #endif #undef ROTATE #if defined(_MSC_VER) # define ROTATE(a,n) _lrotl(a,n) #elif defined(__ICC) # define ROTATE(a,n) _rotl(a,n) #elif defined(__GNUC__) && __GNUC__>=2 # if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__) # define ROTATE(a,n) ({ register unsigned int ret; \ asm ( \ "roll %1,%0" \ : "=r"(ret) \ : "I"(n), "0"(a) \ : "cc"); \ ret; \ }) # endif #endif /*- Te [x] = S [x].[02, 01, 01, 03, 02, 01, 01, 03]; Te0[x] = S [x].[02, 01, 01, 03]; Te1[x] = S [x].[03, 02, 01, 01]; Te2[x] = S [x].[01, 03, 02, 01]; Te3[x] = S [x].[01, 01, 03, 02]; */ #define Te0 (u32)((u64*)((u8*)Te+0)) #define Te1 (u32)((u64*)((u8*)Te+3)) #define Te2 (u32)((u64*)((u8*)Te+2)) #define Te3 (u32)((u64*)((u8*)Te+1)) /*- Td [x] = Si[x].[0e, 09, 0d, 0b, 0e, 09, 0d, 0b]; Td0[x] = Si[x].[0e, 09, 0d, 0b]; Td1[x] = Si[x].[0b, 0e, 09, 0d]; Td2[x] = Si[x].[0d, 0b, 0e, 09]; Td3[x] = Si[x].[09, 0d, 0b, 0e]; Td4[x] = Si[x].[01]; */ #define Td0 (u32)((u64*)((u8*)Td+0)) #define Td1 (u32)((u64*)((u8*)Td+3)) #define Td2 (u32)((u64*)((u8*)Td+2)) #define Td3 (u32)((u64*)((u8*)Td+1)) static const u64 Te[256] = { U64(0xa56363c6a56363c6), U64(0x847c7cf8847c7cf8), U64(0x997777ee997777ee), U64(0x8d7b7bf68d7b7bf6), U64(0x0df2f2ff0df2f2ff), U64(0xbd6b6bd6bd6b6bd6), U64(0xb16f6fdeb16f6fde), U64(0x54c5c59154c5c591), U64(0x5030306050303060), U64(0x0301010203010102), U64(0xa96767cea96767ce), U64(0x7d2b2b567d2b2b56), U64(0x19fefee719fefee7), U64(0x62d7d7b562d7d7b5), U64(0xe6abab4de6abab4d), U64(0x9a7676ec9a7676ec), U64(0x45caca8f45caca8f), U64(0x9d82821f9d82821f), U64(0x40c9c98940c9c989), U64(0x877d7dfa877d7dfa), U64(0x15fafaef15fafaef), U64(0xeb5959b2eb5959b2), U64(0xc947478ec947478e), U64(0x0bf0f0fb0bf0f0fb), U64(0xecadad41ecadad41), U64(0x67d4d4b367d4d4b3), U64(0xfda2a25ffda2a25f), U64(0xeaafaf45eaafaf45), U64(0xbf9c9c23bf9c9c23), U64(0xf7a4a453f7a4a453), U64(0x967272e4967272e4), U64(0x5bc0c09b5bc0c09b), U64(0xc2b7b775c2b7b775), U64(0x1cfdfde11cfdfde1), U64(0xae93933dae93933d), U64(0x6a26264c6a26264c), U64(0x5a36366c5a36366c), U64(0x413f3f7e413f3f7e), U64(0x02f7f7f502f7f7f5), U64(0x4fcccc834fcccc83), U64(0x5c3434685c343468), U64(0xf4a5a551f4a5a551), U64(0x34e5e5d134e5e5d1), U64(0x08f1f1f908f1f1f9), U64(0x937171e2937171e2), U64(0x73d8d8ab73d8d8ab), U64(0x5331316253313162), U64(0x3f15152a3f15152a), U64(0x0c0404080c040408), U64(0x52c7c79552c7c795), U64(0x6523234665232346), U64(0x5ec3c39d5ec3c39d), U64(0x2818183028181830), U64(0xa1969637a1969637), U64(0x0f05050a0f05050a), U64(0xb59a9a2fb59a9a2f), U64(0x0907070e0907070e), U64(0x3612122436121224), U64(0x9b80801b9b80801b), U64(0x3de2e2df3de2e2df), U64(0x26ebebcd26ebebcd), U64(0x6927274e6927274e), U64(0xcdb2b27fcdb2b27f), U64(0x9f7575ea9f7575ea), U64(0x1b0909121b090912), U64(0x9e83831d9e83831d), U64(0x742c2c58742c2c58), U64(0x2e1a1a342e1a1a34), U64(0x2d1b1b362d1b1b36), U64(0xb26e6edcb26e6edc), U64(0xee5a5ab4ee5a5ab4), U64(0xfba0a05bfba0a05b), U64(0xf65252a4f65252a4), U64(0x4d3b3b764d3b3b76), U64(0x61d6d6b761d6d6b7), U64(0xceb3b37dceb3b37d), U64(0x7b2929527b292952), U64(0x3ee3e3dd3ee3e3dd), U64(0x712f2f5e712f2f5e), U64(0x9784841397848413), U64(0xf55353a6f55353a6), U64(0x68d1d1b968d1d1b9), U64(0x0000000000000000), U64(0x2cededc12cededc1), U64(0x6020204060202040), U64(0x1ffcfce31ffcfce3), U64(0xc8b1b179c8b1b179), U64(0xed5b5bb6ed5b5bb6), U64(0xbe6a6ad4be6a6ad4), U64(0x46cbcb8d46cbcb8d), U64(0xd9bebe67d9bebe67), U64(0x4b3939724b393972), U64(0xde4a4a94de4a4a94), U64(0xd44c4c98d44c4c98), U64(0xe85858b0e85858b0), U64(0x4acfcf854acfcf85), U64(0x6bd0d0bb6bd0d0bb), U64(0x2aefefc52aefefc5), U64(0xe5aaaa4fe5aaaa4f), U64(0x16fbfbed16fbfbed), U64(0xc5434386c5434386), U64(0xd74d4d9ad74d4d9a), U64(0x5533336655333366), U64(0x9485851194858511), U64(0xcf45458acf45458a), U64(0x10f9f9e910f9f9e9), U64(0x0602020406020204), U64(0x817f7ffe817f7ffe), U64(0xf05050a0f05050a0), U64(0x443c3c78443c3c78), U64(0xba9f9f25ba9f9f25), U64(0xe3a8a84be3a8a84b), U64(0xf35151a2f35151a2), U64(0xfea3a35dfea3a35d), U64(0xc0404080c0404080), U64(0x8a8f8f058a8f8f05), U64(0xad92923fad92923f), U64(0xbc9d9d21bc9d9d21), U64(0x4838387048383870), U64(0x04f5f5f104f5f5f1), U64(0xdfbcbc63dfbcbc63), U64(0xc1b6b677c1b6b677), U64(0x75dadaaf75dadaaf), U64(0x6321214263212142), U64(0x3010102030101020), U64(0x1affffe51affffe5), U64(0x0ef3f3fd0ef3f3fd), U64(0x6dd2d2bf6dd2d2bf), U64(0x4ccdcd814ccdcd81), U64(0x140c0c18140c0c18), U64(0x3513132635131326), U64(0x2fececc32fececc3), U64(0xe15f5fbee15f5fbe), U64(0xa2979735a2979735), U64(0xcc444488cc444488), U64(0x3917172e3917172e), U64(0x57c4c49357c4c493), U64(0xf2a7a755f2a7a755), U64(0x827e7efc827e7efc), U64(0x473d3d7a473d3d7a), U64(0xac6464c8ac6464c8), U64(0xe75d5dbae75d5dba), U64(0x2b1919322b191932), U64(0x957373e6957373e6), U64(0xa06060c0a06060c0), U64(0x9881811998818119), U64(0xd14f4f9ed14f4f9e), U64(0x7fdcdca37fdcdca3), U64(0x6622224466222244), U64(0x7e2a2a547e2a2a54), U64(0xab90903bab90903b), U64(0x8388880b8388880b), U64(0xca46468cca46468c), U64(0x29eeeec729eeeec7), U64(0xd3b8b86bd3b8b86b), U64(0x3c1414283c141428), U64(0x79dedea779dedea7), U64(0xe25e5ebce25e5ebc), U64(0x1d0b0b161d0b0b16), U64(0x76dbdbad76dbdbad), U64(0x3be0e0db3be0e0db), U64(0x5632326456323264), U64(0x4e3a3a744e3a3a74), U64(0x1e0a0a141e0a0a14), U64(0xdb494992db494992), U64(0x0a06060c0a06060c), U64(0x6c2424486c242448), U64(0xe45c5cb8e45c5cb8), U64(0x5dc2c29f5dc2c29f), U64(0x6ed3d3bd6ed3d3bd), U64(0xefacac43efacac43), U64(0xa66262c4a66262c4), U64(0xa8919139a8919139), U64(0xa4959531a4959531), U64(0x37e4e4d337e4e4d3), U64(0x8b7979f28b7979f2), U64(0x32e7e7d532e7e7d5), U64(0x43c8c88b43c8c88b), U64(0x5937376e5937376e), U64(0xb76d6ddab76d6dda), U64(0x8c8d8d018c8d8d01), U64(0x64d5d5b164d5d5b1), U64(0xd24e4e9cd24e4e9c), U64(0xe0a9a949e0a9a949), U64(0xb46c6cd8b46c6cd8), U64(0xfa5656acfa5656ac), U64(0x07f4f4f307f4f4f3), U64(0x25eaeacf25eaeacf), U64(0xaf6565caaf6565ca), U64(0x8e7a7af48e7a7af4), U64(0xe9aeae47e9aeae47), U64(0x1808081018080810), U64(0xd5baba6fd5baba6f), U64(0x887878f0887878f0), U64(0x6f25254a6f25254a), U64(0x722e2e5c722e2e5c), U64(0x241c1c38241c1c38), U64(0xf1a6a657f1a6a657), U64(0xc7b4b473c7b4b473), U64(0x51c6c69751c6c697), U64(0x23e8e8cb23e8e8cb), U64(0x7cdddda17cdddda1), U64(0x9c7474e89c7474e8), U64(0x211f1f3e211f1f3e), U64(0xdd4b4b96dd4b4b96), U64(0xdcbdbd61dcbdbd61), U64(0x868b8b0d868b8b0d), U64(0x858a8a0f858a8a0f), U64(0x907070e0907070e0), U64(0x423e3e7c423e3e7c), U64(0xc4b5b571c4b5b571), U64(0xaa6666ccaa6666cc), U64(0xd8484890d8484890), U64(0x0503030605030306), U64(0x01f6f6f701f6f6f7), U64(0x120e0e1c120e0e1c), U64(0xa36161c2a36161c2), U64(0x5f35356a5f35356a), U64(0xf95757aef95757ae), U64(0xd0b9b969d0b9b969), U64(0x9186861791868617), U64(0x58c1c19958c1c199), U64(0x271d1d3a271d1d3a), U64(0xb99e9e27b99e9e27), U64(0x38e1e1d938e1e1d9), U64(0x13f8f8eb13f8f8eb), U64(0xb398982bb398982b), U64(0x3311112233111122), U64(0xbb6969d2bb6969d2), U64(0x70d9d9a970d9d9a9), U64(0x898e8e07898e8e07), U64(0xa7949433a7949433), U64(0xb69b9b2db69b9b2d), U64(0x221e1e3c221e1e3c), U64(0x9287871592878715), U64(0x20e9e9c920e9e9c9), U64(0x49cece8749cece87), U64(0xff5555aaff5555aa), U64(0x7828285078282850), U64(0x7adfdfa57adfdfa5), U64(0x8f8c8c038f8c8c03), U64(0xf8a1a159f8a1a159), U64(0x8089890980898909), U64(0x170d0d1a170d0d1a), U64(0xdabfbf65dabfbf65), U64(0x31e6e6d731e6e6d7), U64(0xc6424284c6424284), U64(0xb86868d0b86868d0), U64(0xc3414182c3414182), U64(0xb0999929b0999929), U64(0x772d2d5a772d2d5a), U64(0x110f0f1e110f0f1e), U64(0xcbb0b07bcbb0b07b), U64(0xfc5454a8fc5454a8), U64(0xd6bbbb6dd6bbbb6d), U64(0x3a16162c3a16162c) }; static const u8 Te4[256] = { 0x63U, 0x7cU, 0x77U, 0x7bU, 0xf2U, 0x6bU, 0x6fU, 0xc5U, 0x30U, 0x01U, 0x67U, 0x2bU, 0xfeU, 0xd7U, 0xabU, 0x76U, 0xcaU, 0x82U, 0xc9U, 0x7dU, 0xfaU, 0x59U, 0x47U, 0xf0U, 0xadU, 0xd4U, 0xa2U, 0xafU, 0x9cU, 0xa4U, 0x72U, 0xc0U, 0xb7U, 0xfdU, 0x93U, 0x26U, 0x36U, 0x3fU, 0xf7U, 0xccU, 0x34U, 0xa5U, 0xe5U, 0xf1U, 0x71U, 0xd8U, 0x31U, 0x15U, 0x04U, 0xc7U, 0x23U, 0xc3U, 0x18U, 0x96U, 0x05U, 0x9aU, 0x07U, 0x12U, 0x80U, 0xe2U, 0xebU, 0x27U, 0xb2U, 0x75U, 0x09U, 0x83U, 0x2cU, 0x1aU, 0x1bU, 0x6eU, 0x5aU, 0xa0U, 0x52U, 0x3bU, 0xd6U, 0xb3U, 0x29U, 0xe3U, 0x2fU, 0x84U, 0x53U, 0xd1U, 0x00U, 0xedU, 0x20U, 0xfcU, 0xb1U, 0x5bU, 0x6aU, 0xcbU, 0xbeU, 0x39U, 0x4aU, 0x4cU, 0x58U, 0xcfU, 0xd0U, 0xefU, 0xaaU, 0xfbU, 0x43U, 0x4dU, 0x33U, 0x85U, 0x45U, 0xf9U, 0x02U, 0x7fU, 0x50U, 0x3cU, 0x9fU, 0xa8U, 0x51U, 0xa3U, 0x40U, 0x8fU, 0x92U, 0x9dU, 0x38U, 0xf5U, 0xbcU, 0xb6U, 0xdaU, 0x21U, 0x10U, 0xffU, 0xf3U, 0xd2U, 0xcdU, 0x0cU, 0x13U, 0xecU, 0x5fU, 0x97U, 0x44U, 0x17U, 0xc4U, 0xa7U, 0x7eU, 0x3dU, 0x64U, 0x5dU, 0x19U, 0x73U, 0x60U, 0x81U, 0x4fU, 0xdcU, 0x22U, 0x2aU, 0x90U, 0x88U, 0x46U, 0xeeU, 0xb8U, 0x14U, 0xdeU, 0x5eU, 0x0bU, 0xdbU, 0xe0U, 0x32U, 0x3aU, 0x0aU, 0x49U, 0x06U, 0x24U, 0x5cU, 0xc2U, 0xd3U, 0xacU, 0x62U, 0x91U, 0x95U, 0xe4U, 0x79U, 0xe7U, 0xc8U, 0x37U, 0x6dU, 0x8dU, 0xd5U, 0x4eU, 0xa9U, 0x6cU, 0x56U, 0xf4U, 0xeaU, 0x65U, 0x7aU, 0xaeU, 0x08U, 0xbaU, 0x78U, 0x25U, 0x2eU, 0x1cU, 0xa6U, 0xb4U, 0xc6U, 0xe8U, 0xddU, 0x74U, 0x1fU, 0x4bU, 0xbdU, 0x8bU, 0x8aU, 0x70U, 0x3eU, 0xb5U, 0x66U, 0x48U, 0x03U, 0xf6U, 0x0eU, 0x61U, 0x35U, 0x57U, 0xb9U, 0x86U, 0xc1U, 0x1dU, 0x9eU, 0xe1U, 0xf8U, 0x98U, 0x11U, 0x69U, 0xd9U, 0x8eU, 0x94U, 0x9bU, 0x1eU, 0x87U, 0xe9U, 0xceU, 0x55U, 0x28U, 0xdfU, 0x8cU, 0xa1U, 0x89U, 0x0dU, 0xbfU, 0xe6U, 0x42U, 0x68U, 0x41U, 0x99U, 0x2dU, 0x0fU, 0xb0U, 0x54U, 0xbbU, 0x16U }; static const u64 Td[256] = { U64(0x50a7f45150a7f451), U64(0x5365417e5365417e), U64(0xc3a4171ac3a4171a), U64(0x965e273a965e273a), U64(0xcb6bab3bcb6bab3b), U64(0xf1459d1ff1459d1f), U64(0xab58faacab58faac), U64(0x9303e34b9303e34b), U64(0x55fa302055fa3020), U64(0xf66d76adf66d76ad), U64(0x9176cc889176cc88), U64(0x254c02f5254c02f5), U64(0xfcd7e54ffcd7e54f), U64(0xd7cb2ac5d7cb2ac5), U64(0x8044352680443526), U64(0x8fa362b58fa362b5), U64(0x495ab1de495ab1de), U64(0x671bba25671bba25), U64(0x980eea45980eea45), U64(0xe1c0fe5de1c0fe5d), U64(0x02752fc302752fc3), U64(0x12f04c8112f04c81), U64(0xa397468da397468d), U64(0xc6f9d36bc6f9d36b), U64(0xe75f8f03e75f8f03), U64(0x959c9215959c9215), U64(0xeb7a6dbfeb7a6dbf), U64(0xda595295da595295), U64(0x2d83bed42d83bed4), U64(0xd3217458d3217458), U64(0x2969e0492969e049), U64(0x44c8c98e44c8c98e), U64(0x6a89c2756a89c275), U64(0x78798ef478798ef4), U64(0x6b3e58996b3e5899), U64(0xdd71b927dd71b927), U64(0xb64fe1beb64fe1be), U64(0x17ad88f017ad88f0), U64(0x66ac20c966ac20c9), U64(0xb43ace7db43ace7d), U64(0x184adf63184adf63), U64(0x82311ae582311ae5), U64(0x6033519760335197), U64(0x457f5362457f5362), U64(0xe07764b1e07764b1), U64(0x84ae6bbb84ae6bbb), U64(0x1ca081fe1ca081fe), U64(0x942b08f9942b08f9), U64(0x5868487058684870), U64(0x19fd458f19fd458f), U64(0x876cde94876cde94), U64(0xb7f87b52b7f87b52), U64(0x23d373ab23d373ab), U64(0xe2024b72e2024b72), U64(0x578f1fe3578f1fe3), U64(0x2aab55662aab5566), U64(0x0728ebb20728ebb2), U64(0x03c2b52f03c2b52f), U64(0x9a7bc5869a7bc586), U64(0xa50837d3a50837d3), U64(0xf2872830f2872830), U64(0xb2a5bf23b2a5bf23), U64(0xba6a0302ba6a0302), U64(0x5c8216ed5c8216ed), U64(0x2b1ccf8a2b1ccf8a), U64(0x92b479a792b479a7), U64(0xf0f207f3f0f207f3), U64(0xa1e2694ea1e2694e), U64(0xcdf4da65cdf4da65), U64(0xd5be0506d5be0506), U64(0x1f6234d11f6234d1), U64(0x8afea6c48afea6c4), U64(0x9d532e349d532e34), U64(0xa055f3a2a055f3a2), U64(0x32e18a0532e18a05), U64(0x75ebf6a475ebf6a4), U64(0x39ec830b39ec830b), U64(0xaaef6040aaef6040), U64(0x069f715e069f715e), U64(0x51106ebd51106ebd), U64(0xf98a213ef98a213e), U64(0x3d06dd963d06dd96), U64(0xae053eddae053edd), U64(0x46bde64d46bde64d), U64(0xb58d5491b58d5491), U64(0x055dc471055dc471), U64(0x6fd406046fd40604), U64(0xff155060ff155060), U64(0x24fb981924fb9819), U64(0x97e9bdd697e9bdd6), U64(0xcc434089cc434089), U64(0x779ed967779ed967), U64(0xbd42e8b0bd42e8b0), U64(0x888b8907888b8907), U64(0x385b19e7385b19e7), U64(0xdbeec879dbeec879), U64(0x470a7ca1470a7ca1), U64(0xe90f427ce90f427c), U64(0xc91e84f8c91e84f8), U64(0x0000000000000000), U64(0x8386800983868009), U64(0x48ed2b3248ed2b32), U64(0xac70111eac70111e), U64(0x4e725a6c4e725a6c), U64(0xfbff0efdfbff0efd), U64(0x5638850f5638850f), U64(0x1ed5ae3d1ed5ae3d), U64(0x27392d3627392d36), U64(0x64d90f0a64d90f0a), U64(0x21a65c6821a65c68), U64(0xd1545b9bd1545b9b), U64(0x3a2e36243a2e3624), U64(0xb1670a0cb1670a0c), U64(0x0fe757930fe75793), U64(0xd296eeb4d296eeb4), U64(0x9e919b1b9e919b1b), U64(0x4fc5c0804fc5c080), U64(0xa220dc61a220dc61), U64(0x694b775a694b775a), U64(0x161a121c161a121c), U64(0x0aba93e20aba93e2), U64(0xe52aa0c0e52aa0c0), U64(0x43e0223c43e0223c), U64(0x1d171b121d171b12), U64(0x0b0d090e0b0d090e), U64(0xadc78bf2adc78bf2), U64(0xb9a8b62db9a8b62d), U64(0xc8a91e14c8a91e14), U64(0x8519f1578519f157), U64(0x4c0775af4c0775af), U64(0xbbdd99eebbdd99ee), U64(0xfd607fa3fd607fa3), U64(0x9f2601f79f2601f7), U64(0xbcf5725cbcf5725c), U64(0xc53b6644c53b6644), U64(0x347efb5b347efb5b), U64(0x7629438b7629438b), U64(0xdcc623cbdcc623cb), U64(0x68fcedb668fcedb6), U64(0x63f1e4b863f1e4b8), U64(0xcadc31d7cadc31d7), U64(0x1085634210856342), U64(0x4022971340229713), U64(0x2011c6842011c684), U64(0x7d244a857d244a85), U64(0xf83dbbd2f83dbbd2), U64(0x1132f9ae1132f9ae), U64(0x6da129c76da129c7), U64(0x4b2f9e1d4b2f9e1d), U64(0xf330b2dcf330b2dc), U64(0xec52860dec52860d), U64(0xd0e3c177d0e3c177), U64(0x6c16b32b6c16b32b), U64(0x99b970a999b970a9), U64(0xfa489411fa489411), U64(0x2264e9472264e947), U64(0xc48cfca8c48cfca8), U64(0x1a3ff0a01a3ff0a0), U64(0xd82c7d56d82c7d56), U64(0xef903322ef903322), U64(0xc74e4987c74e4987), U64(0xc1d138d9c1d138d9), U64(0xfea2ca8cfea2ca8c), U64(0x360bd498360bd498), U64(0xcf81f5a6cf81f5a6), U64(0x28de7aa528de7aa5), U64(0x268eb7da268eb7da), U64(0xa4bfad3fa4bfad3f), U64(0xe49d3a2ce49d3a2c), U64(0x0d9278500d927850), U64(0x9bcc5f6a9bcc5f6a), U64(0x62467e5462467e54), U64(0xc2138df6c2138df6), U64(0xe8b8d890e8b8d890), U64(0x5ef7392e5ef7392e), U64(0xf5afc382f5afc382), U64(0xbe805d9fbe805d9f), U64(0x7c93d0697c93d069), U64(0xa92dd56fa92dd56f), U64(0xb31225cfb31225cf), U64(0x3b99acc83b99acc8), U64(0xa77d1810a77d1810), U64(0x6e639ce86e639ce8), U64(0x7bbb3bdb7bbb3bdb), U64(0x097826cd097826cd), U64(0xf418596ef418596e), U64(0x01b79aec01b79aec), U64(0xa89a4f83a89a4f83), U64(0x656e95e6656e95e6), U64(0x7ee6ffaa7ee6ffaa), U64(0x08cfbc2108cfbc21), U64(0xe6e815efe6e815ef), U64(0xd99be7bad99be7ba), U64(0xce366f4ace366f4a), U64(0xd4099fead4099fea), U64(0xd67cb029d67cb029), U64(0xafb2a431afb2a431), U64(0x31233f2a31233f2a), U64(0x3094a5c63094a5c6), U64(0xc066a235c066a235), U64(0x37bc4e7437bc4e74), U64(0xa6ca82fca6ca82fc), U64(0xb0d090e0b0d090e0), U64(0x15d8a73315d8a733), U64(0x4a9804f14a9804f1), U64(0xf7daec41f7daec41), U64(0x0e50cd7f0e50cd7f), U64(0x2ff691172ff69117), U64(0x8dd64d768dd64d76), U64(0x4db0ef434db0ef43), U64(0x544daacc544daacc), U64(0xdf0496e4df0496e4), U64(0xe3b5d19ee3b5d19e), U64(0x1b886a4c1b886a4c), U64(0xb81f2cc1b81f2cc1), U64(0x7f5165467f516546), U64(0x04ea5e9d04ea5e9d), U64(0x5d358c015d358c01), U64(0x737487fa737487fa), U64(0x2e410bfb2e410bfb), U64(0x5a1d67b35a1d67b3), U64(0x52d2db9252d2db92), U64(0x335610e9335610e9), U64(0x1347d66d1347d66d), U64(0x8c61d79a8c61d79a), U64(0x7a0ca1377a0ca137), U64(0x8e14f8598e14f859), U64(0x893c13eb893c13eb), U64(0xee27a9ceee27a9ce), U64(0x35c961b735c961b7), U64(0xede51ce1ede51ce1), U64(0x3cb1477a3cb1477a), U64(0x59dfd29c59dfd29c), U64(0x3f73f2553f73f255), U64(0x79ce141879ce1418), U64(0xbf37c773bf37c773), U64(0xeacdf753eacdf753), U64(0x5baafd5f5baafd5f), U64(0x146f3ddf146f3ddf), U64(0x86db447886db4478), U64(0x81f3afca81f3afca), U64(0x3ec468b93ec468b9), U64(0x2c3424382c342438), U64(0x5f40a3c25f40a3c2), U64(0x72c31d1672c31d16), U64(0x0c25e2bc0c25e2bc), U64(0x8b493c288b493c28), U64(0x41950dff41950dff), U64(0x7101a8397101a839), U64(0xdeb30c08deb30c08), U64(0x9ce4b4d89ce4b4d8), U64(0x90c1566490c15664), U64(0x6184cb7b6184cb7b), U64(0x70b632d570b632d5), U64(0x745c6c48745c6c48), U64(0x4257b8d04257b8d0) }; static const u8 Td4[256] = { 0x52U, 0x09U, 0x6aU, 0xd5U, 0x30U, 0x36U, 0xa5U, 0x38U, 0xbfU, 0x40U, 0xa3U, 0x9eU, 0x81U, 0xf3U, 0xd7U, 0xfbU, 0x7cU, 0xe3U, 0x39U, 0x82U, 0x9bU, 0x2fU, 0xffU, 0x87U, 0x34U, 0x8eU, 0x43U, 0x44U, 0xc4U, 0xdeU, 0xe9U, 0xcbU, 0x54U, 0x7bU, 0x94U, 0x32U, 0xa6U, 0xc2U, 0x23U, 0x3dU, 0xeeU, 0x4cU, 0x95U, 0x0bU, 0x42U, 0xfaU, 0xc3U, 0x4eU, 0x08U, 0x2eU, 0xa1U, 0x66U, 0x28U, 0xd9U, 0x24U, 0xb2U, 0x76U, 0x5bU, 0xa2U, 0x49U, 0x6dU, 0x8bU, 0xd1U, 0x25U, 0x72U, 0xf8U, 0xf6U, 0x64U, 0x86U, 0x68U, 0x98U, 0x16U, 0xd4U, 0xa4U, 0x5cU, 0xccU, 0x5dU, 0x65U, 0xb6U, 0x92U, 0x6cU, 0x70U, 0x48U, 0x50U, 0xfdU, 0xedU, 0xb9U, 0xdaU, 0x5eU, 0x15U, 0x46U, 0x57U, 0xa7U, 0x8dU, 0x9dU, 0x84U, 0x90U, 0xd8U, 0xabU, 0x00U, 0x8cU, 0xbcU, 0xd3U, 0x0aU, 0xf7U, 0xe4U, 0x58U, 0x05U, 0xb8U, 0xb3U, 0x45U, 0x06U, 0xd0U, 0x2cU, 0x1eU, 0x8fU, 0xcaU, 0x3fU, 0x0fU, 0x02U, 0xc1U, 0xafU, 0xbdU, 0x03U, 0x01U, 0x13U, 0x8aU, 0x6bU, 0x3aU, 0x91U, 0x11U, 0x41U, 0x4fU, 0x67U, 0xdcU, 0xeaU, 0x97U, 0xf2U, 0xcfU, 0xceU, 0xf0U, 0xb4U, 0xe6U, 0x73U, 0x96U, 0xacU, 0x74U, 0x22U, 0xe7U, 0xadU, 0x35U, 0x85U, 0xe2U, 0xf9U, 0x37U, 0xe8U, 0x1cU, 0x75U, 0xdfU, 0x6eU, 0x47U, 0xf1U, 0x1aU, 0x71U, 0x1dU, 0x29U, 0xc5U, 0x89U, 0x6fU, 0xb7U, 0x62U, 0x0eU, 0xaaU, 0x18U, 0xbeU, 0x1bU, 0xfcU, 0x56U, 0x3eU, 0x4bU, 0xc6U, 0xd2U, 0x79U, 0x20U, 0x9aU, 0xdbU, 0xc0U, 0xfeU, 0x78U, 0xcdU, 0x5aU, 0xf4U, 0x1fU, 0xddU, 0xa8U, 0x33U, 0x88U, 0x07U, 0xc7U, 0x31U, 0xb1U, 0x12U, 0x10U, 0x59U, 0x27U, 0x80U, 0xecU, 0x5fU, 0x60U, 0x51U, 0x7fU, 0xa9U, 0x19U, 0xb5U, 0x4aU, 0x0dU, 0x2dU, 0xe5U, 0x7aU, 0x9fU, 0x93U, 0xc9U, 0x9cU, 0xefU, 0xa0U, 0xe0U, 0x3bU, 0x4dU, 0xaeU, 0x2aU, 0xf5U, 0xb0U, 0xc8U, 0xebU, 0xbbU, 0x3cU, 0x83U, 0x53U, 0x99U, 0x61U, 0x17U, 0x2bU, 0x04U, 0x7eU, 0xbaU, 0x77U, 0xd6U, 0x26U, 0xe1U, 0x69U, 0x14U, 0x63U, 0x55U, 0x21U, 0x0cU, 0x7dU }; static const u32 rcon[] = { 0x00000001U, 0x00000002U, 0x00000004U, 0x00000008U, 0x00000010U, 0x00000020U, 0x00000040U, 0x00000080U, 0x0000001bU, 0x00000036U, /* for 128-bit blocks, Rijndael never uses more than 10 rcon values */ }; /** * Expand the cipher key into the encryption key schedule. */ int AES_set_encrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key) { u32 *rk; int i = 0; u32 temp; if (!userKey || !key) return -1; if (bits != 128 && bits != 192 && bits != 256) return -2; rk = key->rd_key; if (bits==128) key->rounds = 10; else if (bits==192) key->rounds = 12; else key->rounds = 14; rk[0] = GETU32(userKey ); rk[1] = GETU32(userKey + 4); rk[2] = GETU32(userKey + 8); rk[3] = GETU32(userKey + 12); if (bits == 128) { while (1) { temp = rk[3]; rk[4] = rk[0] ^ ((u32)Te4[(temp >> 8) & 0xff] ) ^ ((u32)Te4[(temp >> 16) & 0xff] << 8) ^ ((u32)Te4[(temp >> 24) ] << 16) ^ ((u32)Te4[(temp ) & 0xff] << 24) ^ rcon[i]; rk[5] = rk[1] ^ rk[4]; rk[6] = rk[2] ^ rk[5]; rk[7] = rk[3] ^ rk[6]; if (++i == 10) { return 0; } rk += 4; } } rk[4] = GETU32(userKey + 16); rk[5] = GETU32(userKey + 20); if (bits == 192) { while (1) { temp = rk[ 5]; rk[ 6] = rk[ 0] ^ ((u32)Te4[(temp >> 8) & 0xff] ) ^ ((u32)Te4[(temp >> 16) & 0xff] << 8) ^ ((u32)Te4[(temp >> 24) ] << 16) ^ ((u32)Te4[(temp ) & 0xff] << 24) ^ rcon[i]; rk[ 7] = rk[ 1] ^ rk[ 6]; rk[ 8] = rk[ 2] ^ rk[ 7]; rk[ 9] = rk[ 3] ^ rk[ 8]; if (++i == 8) { return 0; } rk[10] = rk[ 4] ^ rk[ 9]; rk[11] = rk[ 5] ^ rk[10]; rk += 6; } } rk[6] = GETU32(userKey + 24); rk[7] = GETU32(userKey + 28); if (bits == 256) { while (1) { temp = rk[ 7]; rk[ 8] = rk[ 0] ^ ((u32)Te4[(temp >> 8) & 0xff] ) ^ ((u32)Te4[(temp >> 16) & 0xff] << 8) ^ ((u32)Te4[(temp >> 24) ] << 16) ^ ((u32)Te4[(temp ) & 0xff] << 24) ^ rcon[i]; rk[ 9] = rk[ 1] ^ rk[ 8]; rk[10] = rk[ 2] ^ rk[ 9]; rk[11] = rk[ 3] ^ rk[10]; if (++i == 7) { return 0; } temp = rk[11]; rk[12] = rk[ 4] ^ ((u32)Te4[(temp ) & 0xff] ) ^ ((u32)Te4[(temp >> 8) & 0xff] << 8) ^ ((u32)Te4[(temp >> 16) & 0xff] << 16) ^ ((u32)Te4[(temp >> 24) ] << 24); rk[13] = rk[ 5] ^ rk[12]; rk[14] = rk[ 6] ^ rk[13]; rk[15] = rk[ 7] ^ rk[14]; rk += 8; } } return 0; } /** * Expand the cipher key into the decryption key schedule. */ int AES_set_decrypt_key(const unsigned char *userKey, const int bits, AES_KEY *key) { u32 *rk; int i, j, status; u32 temp; /* first, start with an encryption schedule */ status = AES_set_encrypt_key(userKey, bits, key); if (status < 0) return status; rk = key->rd_key; /* invert the order of the round keys: */ for (i = 0, j = 4*(key->rounds); i < j; i += 4, j -= 4) { temp = rk[i ]; rk[i ] = rk[j ]; rk[j ] = temp; temp = rk[i + 1]; rk[i + 1] = rk[j + 1]; rk[j + 1] = temp; temp = rk[i + 2]; rk[i + 2] = rk[j + 2]; rk[j + 2] = temp; temp = rk[i + 3]; rk[i + 3] = rk[j + 3]; rk[j + 3] = temp; } /* apply the inverse MixColumn transform to all round keys but the first and the last: */ for (i = 1; i < (key->rounds); i++) { rk += 4; #if 1 for (j = 0; j < 4; j++) { u32 tp1, tp2, tp4, tp8, tp9, tpb, tpd, tpe, m; tp1 = rk[j]; m = tp1 & 0x80808080; tp2 = ((tp1 & 0x7f7f7f7f) << 1) ^ ((m - (m >> 7)) & 0x1b1b1b1b); m = tp2 & 0x80808080; tp4 = ((tp2 & 0x7f7f7f7f) << 1) ^ ((m - (m >> 7)) & 0x1b1b1b1b); m = tp4 & 0x80808080; tp8 = ((tp4 & 0x7f7f7f7f) << 1) ^ ((m - (m >> 7)) & 0x1b1b1b1b); tp9 = tp8 ^ tp1; tpb = tp9 ^ tp2; tpd = tp9 ^ tp4; tpe = tp8 ^ tp4 ^ tp2; #if defined(ROTATE) rk[j] = tpe ^ ROTATE(tpd,16) ^ ROTATE(tp9,8) ^ ROTATE(tpb,24); #else rk[j] = tpe ^ (tpd >> 16) ^ (tpd << 16) ^ (tp9 >> 24) ^ (tp9 << 8) ^ (tpb >> 8) ^ (tpb << 24); #endif } #else rk[0] = Td0[Te2[(rk[0] ) & 0xff] & 0xff] ^ Td1[Te2[(rk[0] >> 8) & 0xff] & 0xff] ^ Td2[Te2[(rk[0] >> 16) & 0xff] & 0xff] ^ Td3[Te2[(rk[0] >> 24) ] & 0xff]; rk[1] = Td0[Te2[(rk[1] ) & 0xff] & 0xff] ^ Td1[Te2[(rk[1] >> 8) & 0xff] & 0xff] ^ Td2[Te2[(rk[1] >> 16) & 0xff] & 0xff] ^ Td3[Te2[(rk[1] >> 24) ] & 0xff]; rk[2] = Td0[Te2[(rk[2] ) & 0xff] & 0xff] ^ Td1[Te2[(rk[2] >> 8) & 0xff] & 0xff] ^ Td2[Te2[(rk[2] >> 16) & 0xff] & 0xff] ^ Td3[Te2[(rk[2] >> 24) ] & 0xff]; rk[3] = Td0[Te2[(rk[3] ) & 0xff] & 0xff] ^ Td1[Te2[(rk[3] >> 8) & 0xff] & 0xff] ^ Td2[Te2[(rk[3] >> 16) & 0xff] & 0xff] ^ Td3[Te2[(rk[3] >> 24) ] & 0xff]; #endif } return 0; } /* * Encrypt a single block * in and out can overlap */ void AES_encrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key) { const u32 *rk; u32 s0, s1, s2, s3, t[4]; int r; assert(in && out && key); rk = key->rd_key; /* * map byte array block to cipher state * and add initial round key: */ s0 = GETU32(in ) ^ rk[0]; s1 = GETU32(in + 4) ^ rk[1]; s2 = GETU32(in + 8) ^ rk[2]; s3 = GETU32(in + 12) ^ rk[3]; #if defined(AES_COMPACT_IN_OUTER_ROUNDS) prefetch256(Te4); t[0] = (u32)Te4[(s0 ) & 0xff] ^ (u32)Te4[(s1 >> 8) & 0xff] << 8 ^ (u32)Te4[(s2 >> 16) & 0xff] << 16 ^ (u32)Te4[(s3 >> 24) ] << 24; t[1] = (u32)Te4[(s1 ) & 0xff] ^ (u32)Te4[(s2 >> 8) & 0xff] << 8 ^ (u32)Te4[(s3 >> 16) & 0xff] << 16 ^ (u32)Te4[(s0 >> 24) ] << 24; t[2] = (u32)Te4[(s2 ) & 0xff] ^ (u32)Te4[(s3 >> 8) & 0xff] << 8 ^ (u32)Te4[(s0 >> 16) & 0xff] << 16 ^ (u32)Te4[(s1 >> 24) ] << 24; t[3] = (u32)Te4[(s3 ) & 0xff] ^ (u32)Te4[(s0 >> 8) & 0xff] << 8 ^ (u32)Te4[(s1 >> 16) & 0xff] << 16 ^ (u32)Te4[(s2 >> 24) ] << 24; /* now do the linear transform using words */ { int i; u32 r0, r1, r2; for (i = 0; i < 4; i++) { r0 = t[i]; r1 = r0 & 0x80808080; r2 = ((r0 & 0x7f7f7f7f) << 1) ^ ((r1 - (r1 >> 7)) & 0x1b1b1b1b); #if defined(ROTATE) t[i] = r2 ^ ROTATE(r2,24) ^ ROTATE(r0,24) ^ ROTATE(r0,16) ^ ROTATE(r0,8); #else t[i] = r2 ^ ((r2 ^ r0) << 24) ^ ((r2 ^ r0) >> 8) ^ (r0 << 16) ^ (r0 >> 16) ^ (r0 << 8) ^ (r0 >> 24); #endif t[i] ^= rk[4+i]; } } #else t[0] = Te0[(s0 ) & 0xff] ^ Te1[(s1 >> 8) & 0xff] ^ Te2[(s2 >> 16) & 0xff] ^ Te3[(s3 >> 24) ] ^ rk[4]; t[1] = Te0[(s1 ) & 0xff] ^ Te1[(s2 >> 8) & 0xff] ^ Te2[(s3 >> 16) & 0xff] ^ Te3[(s0 >> 24) ] ^ rk[5]; t[2] = Te0[(s2 ) & 0xff] ^ Te1[(s3 >> 8) & 0xff] ^ Te2[(s0 >> 16) & 0xff] ^ Te3[(s1 >> 24) ] ^ rk[6]; t[3] = Te0[(s3 ) & 0xff] ^ Te1[(s0 >> 8) & 0xff] ^ Te2[(s1 >> 16) & 0xff] ^ Te3[(s2 >> 24) ] ^ rk[7]; #endif s0 = t[0]; s1 = t[1]; s2 = t[2]; s3 = t[3]; /* * Nr - 2 full rounds: */ for (rk+=8,r=key->rounds-2; r>0; rk+=4,r--) { #if defined(AES_COMPACT_IN_INNER_ROUNDS) t[0] = (u32)Te4[(s0 ) & 0xff] ^ (u32)Te4[(s1 >> 8) & 0xff] << 8 ^ (u32)Te4[(s2 >> 16) & 0xff] << 16 ^ (u32)Te4[(s3 >> 24) ] << 24; t[1] = (u32)Te4[(s1 ) & 0xff] ^ (u32)Te4[(s2 >> 8) & 0xff] << 8 ^ (u32)Te4[(s3 >> 16) & 0xff] << 16 ^ (u32)Te4[(s0 >> 24) ] << 24; t[2] = (u32)Te4[(s2 ) & 0xff] ^ (u32)Te4[(s3 >> 8) & 0xff] << 8 ^ (u32)Te4[(s0 >> 16) & 0xff] << 16 ^ (u32)Te4[(s1 >> 24) ] << 24; t[3] = (u32)Te4[(s3 ) & 0xff] ^ (u32)Te4[(s0 >> 8) & 0xff] << 8 ^ (u32)Te4[(s1 >> 16) & 0xff] << 16 ^ (u32)Te4[(s2 >> 24) ] << 24; /* now do the linear transform using words */ { int i; u32 r0, r1, r2; for (i = 0; i < 4; i++) { r0 = t[i]; r1 = r0 & 0x80808080; r2 = ((r0 & 0x7f7f7f7f) << 1) ^ ((r1 - (r1 >> 7)) & 0x1b1b1b1b); #if defined(ROTATE) t[i] = r2 ^ ROTATE(r2,24) ^ ROTATE(r0,24) ^ ROTATE(r0,16) ^ ROTATE(r0,8); #else t[i] = r2 ^ ((r2 ^ r0) << 24) ^ ((r2 ^ r0) >> 8) ^ (r0 << 16) ^ (r0 >> 16) ^ (r0 << 8) ^ (r0 >> 24); #endif t[i] ^= rk[i]; } } #else t[0] = Te0[(s0 ) & 0xff] ^ Te1[(s1 >> 8) & 0xff] ^ Te2[(s2 >> 16) & 0xff] ^ Te3[(s3 >> 24) ] ^ rk[0]; t[1] = Te0[(s1 ) & 0xff] ^ Te1[(s2 >> 8) & 0xff] ^ Te2[(s3 >> 16) & 0xff] ^ Te3[(s0 >> 24) ] ^ rk[1]; t[2] = Te0[(s2 ) & 0xff] ^ Te1[(s3 >> 8) & 0xff] ^ Te2[(s0 >> 16) & 0xff] ^ Te3[(s1 >> 24) ] ^ rk[2]; t[3] = Te0[(s3 ) & 0xff] ^ Te1[(s0 >> 8) & 0xff] ^ Te2[(s1 >> 16) & 0xff] ^ Te3[(s2 >> 24) ] ^ rk[3]; #endif s0 = t[0]; s1 = t[1]; s2 = t[2]; s3 = t[3]; } /* * apply last round and * map cipher state to byte array block: */ #if defined(AES_COMPACT_IN_OUTER_ROUNDS) prefetch256(Te4); *(u32*)(out+0) = (u32)Te4[(s0 ) & 0xff] ^ (u32)Te4[(s1 >> 8) & 0xff] << 8 ^ (u32)Te4[(s2 >> 16) & 0xff] << 16 ^ (u32)Te4[(s3 >> 24) ] << 24 ^ rk[0]; *(u32*)(out+4) = (u32)Te4[(s1 ) & 0xff] ^ (u32)Te4[(s2 >> 8) & 0xff] << 8 ^ (u32)Te4[(s3 >> 16) & 0xff] << 16 ^ (u32)Te4[(s0 >> 24) ] << 24 ^ rk[1]; *(u32*)(out+8) = (u32)Te4[(s2 ) & 0xff] ^ (u32)Te4[(s3 >> 8) & 0xff] << 8 ^ (u32)Te4[(s0 >> 16) & 0xff] << 16 ^ (u32)Te4[(s1 >> 24) ] << 24 ^ rk[2]; *(u32*)(out+12) = (u32)Te4[(s3 ) & 0xff] ^ (u32)Te4[(s0 >> 8) & 0xff] << 8 ^ (u32)Te4[(s1 >> 16) & 0xff] << 16 ^ (u32)Te4[(s2 >> 24) ] << 24 ^ rk[3]; #else *(u32*)(out+0) = (Te2[(s0 ) & 0xff] & 0x000000ffU) ^ (Te3[(s1 >> 8) & 0xff] & 0x0000ff00U) ^ (Te0[(s2 >> 16) & 0xff] & 0x00ff0000U) ^ (Te1[(s3 >> 24) ] & 0xff000000U) ^ rk[0]; *(u32*)(out+4) = (Te2[(s1 ) & 0xff] & 0x000000ffU) ^ (Te3[(s2 >> 8) & 0xff] & 0x0000ff00U) ^ (Te0[(s3 >> 16) & 0xff] & 0x00ff0000U) ^ (Te1[(s0 >> 24) ] & 0xff000000U) ^ rk[1]; *(u32*)(out+8) = (Te2[(s2 ) & 0xff] & 0x000000ffU) ^ (Te3[(s3 >> 8) & 0xff] & 0x0000ff00U) ^ (Te0[(s0 >> 16) & 0xff] & 0x00ff0000U) ^ (Te1[(s1 >> 24) ] & 0xff000000U) ^ rk[2]; *(u32*)(out+12) = (Te2[(s3 ) & 0xff] & 0x000000ffU) ^ (Te3[(s0 >> 8) & 0xff] & 0x0000ff00U) ^ (Te0[(s1 >> 16) & 0xff] & 0x00ff0000U) ^ (Te1[(s2 >> 24) ] & 0xff000000U) ^ rk[3]; #endif } /* * Decrypt a single block * in and out can overlap */ void AES_decrypt(const unsigned char *in, unsigned char *out, const AES_KEY *key) { const u32 *rk; u32 s0, s1, s2, s3, t[4]; int r; assert(in && out && key); rk = key->rd_key; /* * map byte array block to cipher state * and add initial round key: */ s0 = GETU32(in ) ^ rk[0]; s1 = GETU32(in + 4) ^ rk[1]; s2 = GETU32(in + 8) ^ rk[2]; s3 = GETU32(in + 12) ^ rk[3]; #if defined(AES_COMPACT_IN_OUTER_ROUNDS) prefetch256(Td4); t[0] = (u32)Td4[(s0 ) & 0xff] ^ (u32)Td4[(s3 >> 8) & 0xff] << 8 ^ (u32)Td4[(s2 >> 16) & 0xff] << 16 ^ (u32)Td4[(s1 >> 24) ] << 24; t[1] = (u32)Td4[(s1 ) & 0xff] ^ (u32)Td4[(s0 >> 8) & 0xff] << 8 ^ (u32)Td4[(s3 >> 16) & 0xff] << 16 ^ (u32)Td4[(s2 >> 24) ] << 24; t[2] = (u32)Td4[(s2 ) & 0xff] ^ (u32)Td4[(s1 >> 8) & 0xff] << 8 ^ (u32)Td4[(s0 >> 16) & 0xff] << 16 ^ (u32)Td4[(s3 >> 24) ] << 24; t[3] = (u32)Td4[(s3 ) & 0xff] ^ (u32)Td4[(s2 >> 8) & 0xff] << 8 ^ (u32)Td4[(s1 >> 16) & 0xff] << 16 ^ (u32)Td4[(s0 >> 24) ] << 24; /* now do the linear transform using words */ { int i; u32 tp1, tp2, tp4, tp8, tp9, tpb, tpd, tpe, m; for (i = 0; i < 4; i++) { tp1 = t[i]; m = tp1 & 0x80808080; tp2 = ((tp1 & 0x7f7f7f7f) << 1) ^ ((m - (m >> 7)) & 0x1b1b1b1b); m = tp2 & 0x80808080; tp4 = ((tp2 & 0x7f7f7f7f) << 1) ^ ((m - (m >> 7)) & 0x1b1b1b1b); m = tp4 & 0x80808080; tp8 = ((tp4 & 0x7f7f7f7f) << 1) ^ ((m - (m >> 7)) & 0x1b1b1b1b); tp9 = tp8 ^ tp1; tpb = tp9 ^ tp2; tpd = tp9 ^ tp4; tpe = tp8 ^ tp4 ^ tp2; #if defined(ROTATE) t[i] = tpe ^ ROTATE(tpd,16) ^ ROTATE(tp9,8) ^ ROTATE(tpb,24); #else t[i] = tpe ^ (tpd >> 16) ^ (tpd << 16) ^ (tp9 >> 24) ^ (tp9 << 8) ^ (tpb >> 8) ^ (tpb << 24); #endif t[i] ^= rk[4+i]; } } #else t[0] = Td0[(s0 ) & 0xff] ^ Td1[(s3 >> 8) & 0xff] ^ Td2[(s2 >> 16) & 0xff] ^ Td3[(s1 >> 24) ] ^ rk[4]; t[1] = Td0[(s1 ) & 0xff] ^ Td1[(s0 >> 8) & 0xff] ^ Td2[(s3 >> 16) & 0xff] ^ Td3[(s2 >> 24) ] ^ rk[5]; t[2] = Td0[(s2 ) & 0xff] ^ Td1[(s1 >> 8) & 0xff] ^ Td2[(s0 >> 16) & 0xff] ^ Td3[(s3 >> 24) ] ^ rk[6]; t[3] = Td0[(s3 ) & 0xff] ^ Td1[(s2 >> 8) & 0xff] ^ Td2[(s1 >> 16) & 0xff] ^ Td3[(s0 >> 24) ] ^ rk[7]; #endif s0 = t[0]; s1 = t[1]; s2 = t[2]; s3 = t[3]; /* * Nr - 2 full rounds: */ for (rk+=8,r=key->rounds-2; r>0; rk+=4,r--) { #if defined(AES_COMPACT_IN_INNER_ROUNDS) t[0] = (u32)Td4[(s0 ) & 0xff] ^ (u32)Td4[(s3 >> 8) & 0xff] << 8 ^ (u32)Td4[(s2 >> 16) & 0xff] << 16 ^ (u32)Td4[(s1 >> 24) ] << 24; t[1] = (u32)Td4[(s1 ) & 0xff] ^ (u32)Td4[(s0 >> 8) & 0xff] << 8 ^ (u32)Td4[(s3 >> 16) & 0xff] << 16 ^ (u32)Td4[(s2 >> 24) ] << 24; t[2] = (u32)Td4[(s2 ) & 0xff] ^ (u32)Td4[(s1 >> 8) & 0xff] << 8 ^ (u32)Td4[(s0 >> 16) & 0xff] << 16 ^ (u32)Td4[(s3 >> 24) ] << 24; t[3] = (u32)Td4[(s3 ) & 0xff] ^ (u32)Td4[(s2 >> 8) & 0xff] << 8 ^ (u32)Td4[(s1 >> 16) & 0xff] << 16 ^ (u32)Td4[(s0 >> 24) ] << 24; /* now do the linear transform using words */ { int i; u32 tp1, tp2, tp4, tp8, tp9, tpb, tpd, tpe, m; for (i = 0; i < 4; i++) { tp1 = t[i]; m = tp1 & 0x80808080; tp2 = ((tp1 & 0x7f7f7f7f) << 1) ^ ((m - (m >> 7)) & 0x1b1b1b1b); m = tp2 & 0x80808080; tp4 = ((tp2 & 0x7f7f7f7f) << 1) ^ ((m - (m >> 7)) & 0x1b1b1b1b); m = tp4 & 0x80808080; tp8 = ((tp4 & 0x7f7f7f7f) << 1) ^ ((m - (m >> 7)) & 0x1b1b1b1b); tp9 = tp8 ^ tp1; tpb = tp9 ^ tp2; tpd = tp9 ^ tp4; tpe = tp8 ^ tp4 ^ tp2; #if defined(ROTATE) t[i] = tpe ^ ROTATE(tpd,16) ^ ROTATE(tp9,8) ^ ROTATE(tpb,24); #else t[i] = tpe ^ (tpd >> 16) ^ (tpd << 16) ^ (tp9 >> 24) ^ (tp9 << 8) ^ (tpb >> 8) ^ (tpb << 24); #endif t[i] ^= rk[i]; } } #else t[0] = Td0[(s0 ) & 0xff] ^ Td1[(s3 >> 8) & 0xff] ^ Td2[(s2 >> 16) & 0xff] ^ Td3[(s1 >> 24) ] ^ rk[0]; t[1] = Td0[(s1 ) & 0xff] ^ Td1[(s0 >> 8) & 0xff] ^ Td2[(s3 >> 16) & 0xff] ^ Td3[(s2 >> 24) ] ^ rk[1]; t[2] = Td0[(s2 ) & 0xff] ^ Td1[(s1 >> 8) & 0xff] ^ Td2[(s0 >> 16) & 0xff] ^ Td3[(s3 >> 24) ] ^ rk[2]; t[3] = Td0[(s3 ) & 0xff] ^ Td1[(s2 >> 8) & 0xff] ^ Td2[(s1 >> 16) & 0xff] ^ Td3[(s0 >> 24) ] ^ rk[3]; #endif s0 = t[0]; s1 = t[1]; s2 = t[2]; s3 = t[3]; } /* * apply last round and * map cipher state to byte array block: */ prefetch256(Td4); *(u32*)(out+0) = ((u32)Td4[(s0 ) & 0xff]) ^ ((u32)Td4[(s3 >> 8) & 0xff] << 8) ^ ((u32)Td4[(s2 >> 16) & 0xff] << 16) ^ ((u32)Td4[(s1 >> 24) ] << 24) ^ rk[0]; *(u32*)(out+4) = ((u32)Td4[(s1 ) & 0xff]) ^ ((u32)Td4[(s0 >> 8) & 0xff] << 8) ^ ((u32)Td4[(s3 >> 16) & 0xff] << 16) ^ ((u32)Td4[(s2 >> 24) ] << 24) ^ rk[1]; *(u32*)(out+8) = ((u32)Td4[(s2 ) & 0xff]) ^ ((u32)Td4[(s1 >> 8) & 0xff] << 8) ^ ((u32)Td4[(s0 >> 16) & 0xff] << 16) ^ ((u32)Td4[(s3 >> 24) ] << 24) ^ rk[2]; *(u32*)(out+12) = ((u32)Td4[(s3 ) & 0xff]) ^ ((u32)Td4[(s2 >> 8) & 0xff] << 8) ^ ((u32)Td4[(s1 >> 16) & 0xff] << 16) ^ ((u32)Td4[(s0 >> 24) ] << 24) ^ rk[3]; }
./openssl/crypto/aes/aes_cbc.c
/* * Copyright 2002-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * AES low level APIs are deprecated for public use, but still ok for internal * use where we're using them to implement the higher level EVP interface, as is * the case here. */ #include "internal/deprecated.h" #include <openssl/aes.h> #include <openssl/modes.h> void AES_cbc_encrypt(const unsigned char *in, unsigned char *out, size_t len, const AES_KEY *key, unsigned char *ivec, const int enc) { if (enc) CRYPTO_cbc128_encrypt(in, out, len, key, ivec, (block128_f) AES_encrypt); else CRYPTO_cbc128_decrypt(in, out, len, key, ivec, (block128_f) AES_decrypt); }
./openssl/crypto/modes/cfb128.c
/* * Copyright 2008-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <string.h> #include <openssl/crypto.h> #include "crypto/modes.h" #if defined(__GNUC__) && !defined(STRICT_ALIGNMENT) typedef size_t size_t_aX __attribute((__aligned__(1))); #else typedef size_t size_t_aX; #endif /* * The input and output encrypted as though 128bit cfb mode is being used. * The extra state information to record how much of the 128bit block we have * used is contained in *num; */ void CRYPTO_cfb128_encrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], int *num, int enc, block128_f block) { unsigned int n; size_t l = 0; if (*num < 0) { /* There is no good way to signal an error return from here */ *num = -1; return; } n = *num; if (enc) { #if !defined(OPENSSL_SMALL_FOOTPRINT) if (16 % sizeof(size_t) == 0) { /* always true actually */ do { while (n && len) { *(out++) = ivec[n] ^= *(in++); --len; n = (n + 1) % 16; } # if defined(STRICT_ALIGNMENT) if (((size_t)in | (size_t)out | (size_t)ivec) % sizeof(size_t) != 0) break; # endif while (len >= 16) { (*block) (ivec, ivec, key); for (; n < 16; n += sizeof(size_t)) { *(size_t_aX *)(out + n) = *(size_t_aX *)(ivec + n) ^= *(size_t_aX *)(in + n); } len -= 16; out += 16; in += 16; n = 0; } if (len) { (*block) (ivec, ivec, key); while (len--) { out[n] = ivec[n] ^= in[n]; ++n; } } *num = n; return; } while (0); } /* the rest would be commonly eliminated by x86* compiler */ #endif while (l < len) { if (n == 0) { (*block) (ivec, ivec, key); } out[l] = ivec[n] ^= in[l]; ++l; n = (n + 1) % 16; } *num = n; } else { #if !defined(OPENSSL_SMALL_FOOTPRINT) if (16 % sizeof(size_t) == 0) { /* always true actually */ do { while (n && len) { unsigned char c; *(out++) = ivec[n] ^ (c = *(in++)); ivec[n] = c; --len; n = (n + 1) % 16; } # if defined(STRICT_ALIGNMENT) if (((size_t)in | (size_t)out | (size_t)ivec) % sizeof(size_t) != 0) break; # endif while (len >= 16) { (*block) (ivec, ivec, key); for (; n < 16; n += sizeof(size_t)) { size_t t = *(size_t_aX *)(in + n); *(size_t_aX *)(out + n) = *(size_t_aX *)(ivec + n) ^ t; *(size_t_aX *)(ivec + n) = t; } len -= 16; out += 16; in += 16; n = 0; } if (len) { (*block) (ivec, ivec, key); while (len--) { unsigned char c; out[n] = ivec[n] ^ (c = in[n]); ivec[n] = c; ++n; } } *num = n; return; } while (0); } /* the rest would be commonly eliminated by x86* compiler */ #endif while (l < len) { unsigned char c; if (n == 0) { (*block) (ivec, ivec, key); } out[l] = ivec[n] ^ (c = in[l]); ivec[n] = c; ++l; n = (n + 1) % 16; } *num = n; } } /* * This expects a single block of size nbits for both in and out. Note that * it corrupts any extra bits in the last byte of out */ static void cfbr_encrypt_block(const unsigned char *in, unsigned char *out, int nbits, const void *key, unsigned char ivec[16], int enc, block128_f block) { int n, rem, num; unsigned char ovec[16 * 2 + 1]; /* +1 because we dereference (but don't * use) one byte off the end */ if (nbits <= 0 || nbits > 128) return; /* fill in the first half of the new IV with the current IV */ memcpy(ovec, ivec, 16); /* construct the new IV */ (*block) (ivec, ivec, key); num = (nbits + 7) / 8; if (enc) /* encrypt the input */ for (n = 0; n < num; ++n) out[n] = (ovec[16 + n] = in[n] ^ ivec[n]); else /* decrypt the input */ for (n = 0; n < num; ++n) out[n] = (ovec[16 + n] = in[n]) ^ ivec[n]; /* shift ovec left... */ rem = nbits % 8; num = nbits / 8; if (rem == 0) memcpy(ivec, ovec + num, 16); else for (n = 0; n < 16; ++n) ivec[n] = ovec[n + num] << rem | ovec[n + num + 1] >> (8 - rem); /* it is not necessary to cleanse ovec, since the IV is not secret */ } /* N.B. This expects the input to be packed, MS bit first */ void CRYPTO_cfb128_1_encrypt(const unsigned char *in, unsigned char *out, size_t bits, const void *key, unsigned char ivec[16], int *num, int enc, block128_f block) { size_t n; unsigned char c[1], d[1]; for (n = 0; n < bits; ++n) { c[0] = (in[n / 8] & (1 << (7 - n % 8))) ? 0x80 : 0; cfbr_encrypt_block(c, d, 1, key, ivec, enc, block); out[n / 8] = (out[n / 8] & ~(1 << (unsigned int)(7 - n % 8))) | ((d[0] & 0x80) >> (unsigned int)(n % 8)); } } void CRYPTO_cfb128_8_encrypt(const unsigned char *in, unsigned char *out, size_t length, const void *key, unsigned char ivec[16], int *num, int enc, block128_f block) { size_t n; for (n = 0; n < length; ++n) cfbr_encrypt_block(&in[n], &out[n], 8, key, ivec, enc, block); }
./openssl/crypto/modes/xts128.c
/* * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <string.h> #include <openssl/crypto.h> #include "internal/endian.h" #include "crypto/modes.h" #ifndef STRICT_ALIGNMENT # ifdef __GNUC__ typedef u64 u64_a1 __attribute((__aligned__(1))); # else typedef u64 u64_a1; # endif #endif int CRYPTO_xts128_encrypt(const XTS128_CONTEXT *ctx, const unsigned char iv[16], const unsigned char *inp, unsigned char *out, size_t len, int enc) { DECLARE_IS_ENDIAN; union { u64 u[2]; u32 d[4]; u8 c[16]; } tweak, scratch; unsigned int i; if (len < 16) return -1; memcpy(tweak.c, iv, 16); (*ctx->block2) (tweak.c, tweak.c, ctx->key2); if (!enc && (len % 16)) len -= 16; while (len >= 16) { #if defined(STRICT_ALIGNMENT) memcpy(scratch.c, inp, 16); scratch.u[0] ^= tweak.u[0]; scratch.u[1] ^= tweak.u[1]; #else scratch.u[0] = ((u64_a1 *)inp)[0] ^ tweak.u[0]; scratch.u[1] = ((u64_a1 *)inp)[1] ^ tweak.u[1]; #endif (*ctx->block1) (scratch.c, scratch.c, ctx->key1); #if defined(STRICT_ALIGNMENT) scratch.u[0] ^= tweak.u[0]; scratch.u[1] ^= tweak.u[1]; memcpy(out, scratch.c, 16); #else ((u64_a1 *)out)[0] = scratch.u[0] ^= tweak.u[0]; ((u64_a1 *)out)[1] = scratch.u[1] ^= tweak.u[1]; #endif inp += 16; out += 16; len -= 16; if (len == 0) return 0; if (IS_LITTLE_ENDIAN) { unsigned int carry, res; res = 0x87 & (((int)tweak.d[3]) >> 31); carry = (unsigned int)(tweak.u[0] >> 63); tweak.u[0] = (tweak.u[0] << 1) ^ res; tweak.u[1] = (tweak.u[1] << 1) | carry; } else { size_t c; for (c = 0, i = 0; i < 16; ++i) { /* * + substitutes for |, because c is 1 bit */ c += ((size_t)tweak.c[i]) << 1; tweak.c[i] = (u8)c; c = c >> 8; } tweak.c[0] ^= (u8)(0x87 & (0 - c)); } } if (enc) { for (i = 0; i < len; ++i) { u8 c = inp[i]; out[i] = scratch.c[i]; scratch.c[i] = c; } scratch.u[0] ^= tweak.u[0]; scratch.u[1] ^= tweak.u[1]; (*ctx->block1) (scratch.c, scratch.c, ctx->key1); scratch.u[0] ^= tweak.u[0]; scratch.u[1] ^= tweak.u[1]; memcpy(out - 16, scratch.c, 16); } else { union { u64 u[2]; u8 c[16]; } tweak1; if (IS_LITTLE_ENDIAN) { unsigned int carry, res; res = 0x87 & (((int)tweak.d[3]) >> 31); carry = (unsigned int)(tweak.u[0] >> 63); tweak1.u[0] = (tweak.u[0] << 1) ^ res; tweak1.u[1] = (tweak.u[1] << 1) | carry; } else { size_t c; for (c = 0, i = 0; i < 16; ++i) { /* * + substitutes for |, because c is 1 bit */ c += ((size_t)tweak.c[i]) << 1; tweak1.c[i] = (u8)c; c = c >> 8; } tweak1.c[0] ^= (u8)(0x87 & (0 - c)); } #if defined(STRICT_ALIGNMENT) memcpy(scratch.c, inp, 16); scratch.u[0] ^= tweak1.u[0]; scratch.u[1] ^= tweak1.u[1]; #else scratch.u[0] = ((u64_a1 *)inp)[0] ^ tweak1.u[0]; scratch.u[1] = ((u64_a1 *)inp)[1] ^ tweak1.u[1]; #endif (*ctx->block1) (scratch.c, scratch.c, ctx->key1); scratch.u[0] ^= tweak1.u[0]; scratch.u[1] ^= tweak1.u[1]; for (i = 0; i < len; ++i) { u8 c = inp[16 + i]; out[16 + i] = scratch.c[i]; scratch.c[i] = c; } scratch.u[0] ^= tweak.u[0]; scratch.u[1] ^= tweak.u[1]; (*ctx->block1) (scratch.c, scratch.c, ctx->key1); #if defined(STRICT_ALIGNMENT) scratch.u[0] ^= tweak.u[0]; scratch.u[1] ^= tweak.u[1]; memcpy(out, scratch.c, 16); #else ((u64_a1 *)out)[0] = scratch.u[0] ^ tweak.u[0]; ((u64_a1 *)out)[1] = scratch.u[1] ^ tweak.u[1]; #endif } return 0; }
./openssl/crypto/modes/ofb128.c
/* * Copyright 2008-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <string.h> #include <openssl/crypto.h> #include "crypto/modes.h" #if defined(__GNUC__) && !defined(STRICT_ALIGNMENT) typedef size_t size_t_aX __attribute((__aligned__(1))); #else typedef size_t size_t_aX; #endif /* * The input and output encrypted as though 128bit ofb mode is being used. * The extra state information to record how much of the 128bit block we have * used is contained in *num; */ void CRYPTO_ofb128_encrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], int *num, block128_f block) { unsigned int n; size_t l = 0; if (*num < 0) { /* There is no good way to signal an error return from here */ *num = -1; return; } n = *num; #if !defined(OPENSSL_SMALL_FOOTPRINT) if (16 % sizeof(size_t) == 0) { /* always true actually */ do { while (n && len) { *(out++) = *(in++) ^ ivec[n]; --len; n = (n + 1) % 16; } # if defined(STRICT_ALIGNMENT) if (((size_t)in | (size_t)out | (size_t)ivec) % sizeof(size_t) != 0) break; # endif while (len >= 16) { (*block) (ivec, ivec, key); for (; n < 16; n += sizeof(size_t)) *(size_t_aX *)(out + n) = *(size_t_aX *)(in + n) ^ *(size_t_aX *)(ivec + n); len -= 16; out += 16; in += 16; n = 0; } if (len) { (*block) (ivec, ivec, key); while (len--) { out[n] = in[n] ^ ivec[n]; ++n; } } *num = n; return; } while (0); } /* the rest would be commonly eliminated by x86* compiler */ #endif while (l < len) { if (n == 0) { (*block) (ivec, ivec, key); } out[l] = in[l] ^ ivec[n]; ++l; n = (n + 1) % 16; } *num = n; }
./openssl/crypto/modes/cbc128.c
/* * Copyright 2008-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <string.h> #include <openssl/crypto.h> #include "crypto/modes.h" #if !defined(STRICT_ALIGNMENT) && !defined(PEDANTIC) # define STRICT_ALIGNMENT 0 #endif #if defined(__GNUC__) && !STRICT_ALIGNMENT typedef size_t size_t_aX __attribute((__aligned__(1))); #else typedef size_t size_t_aX; #endif void CRYPTO_cbc128_encrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], block128_f block) { size_t n; const unsigned char *iv = ivec; if (len == 0) return; #if !defined(OPENSSL_SMALL_FOOTPRINT) if (STRICT_ALIGNMENT && ((size_t)in | (size_t)out | (size_t)ivec) % sizeof(size_t) != 0) { while (len >= 16) { for (n = 0; n < 16; ++n) out[n] = in[n] ^ iv[n]; (*block) (out, out, key); iv = out; len -= 16; in += 16; out += 16; } } else { while (len >= 16) { for (n = 0; n < 16; n += sizeof(size_t)) *(size_t_aX *)(out + n) = *(size_t_aX *)(in + n) ^ *(size_t_aX *)(iv + n); (*block) (out, out, key); iv = out; len -= 16; in += 16; out += 16; } } #endif while (len) { for (n = 0; n < 16 && n < len; ++n) out[n] = in[n] ^ iv[n]; for (; n < 16; ++n) out[n] = iv[n]; (*block) (out, out, key); iv = out; if (len <= 16) break; len -= 16; in += 16; out += 16; } if (ivec != iv) memcpy(ivec, iv, 16); } void CRYPTO_cbc128_decrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], block128_f block) { size_t n; union { size_t t[16 / sizeof(size_t)]; unsigned char c[16]; } tmp; if (len == 0) return; #if !defined(OPENSSL_SMALL_FOOTPRINT) if (in != out) { const unsigned char *iv = ivec; if (STRICT_ALIGNMENT && ((size_t)in | (size_t)out | (size_t)ivec) % sizeof(size_t) != 0) { while (len >= 16) { (*block) (in, out, key); for (n = 0; n < 16; ++n) out[n] ^= iv[n]; iv = in; len -= 16; in += 16; out += 16; } } else if (16 % sizeof(size_t) == 0) { /* always true */ while (len >= 16) { size_t_aX *out_t = (size_t_aX *)out; size_t_aX *iv_t = (size_t_aX *)iv; (*block) (in, out, key); for (n = 0; n < 16 / sizeof(size_t); n++) out_t[n] ^= iv_t[n]; iv = in; len -= 16; in += 16; out += 16; } } if (ivec != iv) memcpy(ivec, iv, 16); } else { if (STRICT_ALIGNMENT && ((size_t)in | (size_t)out | (size_t)ivec) % sizeof(size_t) != 0) { unsigned char c; while (len >= 16) { (*block) (in, tmp.c, key); for (n = 0; n < 16; ++n) { c = in[n]; out[n] = tmp.c[n] ^ ivec[n]; ivec[n] = c; } len -= 16; in += 16; out += 16; } } else if (16 % sizeof(size_t) == 0) { /* always true */ while (len >= 16) { size_t c; size_t_aX *out_t = (size_t_aX *)out; size_t_aX *ivec_t = (size_t_aX *)ivec; const size_t_aX *in_t = (const size_t_aX *)in; (*block) (in, tmp.c, key); for (n = 0; n < 16 / sizeof(size_t); n++) { c = in_t[n]; out_t[n] = tmp.t[n] ^ ivec_t[n]; ivec_t[n] = c; } len -= 16; in += 16; out += 16; } } } #endif while (len) { unsigned char c; (*block) (in, tmp.c, key); for (n = 0; n < 16 && n < len; ++n) { c = in[n]; out[n] = tmp.c[n] ^ ivec[n]; ivec[n] = c; } if (len <= 16) { for (; n < 16; ++n) ivec[n] = in[n]; break; } len -= 16; in += 16; out += 16; } }
./openssl/crypto/modes/ccm128.c
/* * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <string.h> #include <openssl/crypto.h> #include "crypto/modes.h" #ifndef STRICT_ALIGNMENT # ifdef __GNUC__ typedef u64 u64_a1 __attribute((__aligned__(1))); # else typedef u64 u64_a1; # endif #endif /* * First you setup M and L parameters and pass the key schedule. This is * called once per session setup... */ void CRYPTO_ccm128_init(CCM128_CONTEXT *ctx, unsigned int M, unsigned int L, void *key, block128_f block) { memset(ctx->nonce.c, 0, sizeof(ctx->nonce.c)); ctx->nonce.c[0] = ((u8)(L - 1) & 7) | (u8)(((M - 2) / 2) & 7) << 3; ctx->blocks = 0; ctx->block = block; ctx->key = key; } /* !!! Following interfaces are to be called *once* per packet !!! */ /* Then you setup per-message nonce and pass the length of the message */ int CRYPTO_ccm128_setiv(CCM128_CONTEXT *ctx, const unsigned char *nonce, size_t nlen, size_t mlen) { unsigned int L = ctx->nonce.c[0] & 7; /* the L parameter */ if (nlen < (14 - L)) return -1; /* nonce is too short */ if (sizeof(mlen) == 8 && L >= 3) { ctx->nonce.c[8] = (u8)(mlen >> (56 % (sizeof(mlen) * 8))); ctx->nonce.c[9] = (u8)(mlen >> (48 % (sizeof(mlen) * 8))); ctx->nonce.c[10] = (u8)(mlen >> (40 % (sizeof(mlen) * 8))); ctx->nonce.c[11] = (u8)(mlen >> (32 % (sizeof(mlen) * 8))); } else ctx->nonce.u[1] = 0; ctx->nonce.c[12] = (u8)(mlen >> 24); ctx->nonce.c[13] = (u8)(mlen >> 16); ctx->nonce.c[14] = (u8)(mlen >> 8); ctx->nonce.c[15] = (u8)mlen; ctx->nonce.c[0] &= ~0x40; /* clear Adata flag */ memcpy(&ctx->nonce.c[1], nonce, 14 - L); return 0; } /* Then you pass additional authentication data, this is optional */ void CRYPTO_ccm128_aad(CCM128_CONTEXT *ctx, const unsigned char *aad, size_t alen) { unsigned int i; block128_f block = ctx->block; if (alen == 0) return; ctx->nonce.c[0] |= 0x40; /* set Adata flag */ (*block) (ctx->nonce.c, ctx->cmac.c, ctx->key), ctx->blocks++; if (alen < (0x10000 - 0x100)) { ctx->cmac.c[0] ^= (u8)(alen >> 8); ctx->cmac.c[1] ^= (u8)alen; i = 2; } else if (sizeof(alen) == 8 && alen >= (size_t)1 << (32 % (sizeof(alen) * 8))) { ctx->cmac.c[0] ^= 0xFF; ctx->cmac.c[1] ^= 0xFF; ctx->cmac.c[2] ^= (u8)(alen >> (56 % (sizeof(alen) * 8))); ctx->cmac.c[3] ^= (u8)(alen >> (48 % (sizeof(alen) * 8))); ctx->cmac.c[4] ^= (u8)(alen >> (40 % (sizeof(alen) * 8))); ctx->cmac.c[5] ^= (u8)(alen >> (32 % (sizeof(alen) * 8))); ctx->cmac.c[6] ^= (u8)(alen >> 24); ctx->cmac.c[7] ^= (u8)(alen >> 16); ctx->cmac.c[8] ^= (u8)(alen >> 8); ctx->cmac.c[9] ^= (u8)alen; i = 10; } else { ctx->cmac.c[0] ^= 0xFF; ctx->cmac.c[1] ^= 0xFE; ctx->cmac.c[2] ^= (u8)(alen >> 24); ctx->cmac.c[3] ^= (u8)(alen >> 16); ctx->cmac.c[4] ^= (u8)(alen >> 8); ctx->cmac.c[5] ^= (u8)alen; i = 6; } do { for (; i < 16 && alen; ++i, ++aad, --alen) ctx->cmac.c[i] ^= *aad; (*block) (ctx->cmac.c, ctx->cmac.c, ctx->key), ctx->blocks++; i = 0; } while (alen); } /* Finally you encrypt or decrypt the message */ /* * counter part of nonce may not be larger than L*8 bits, L is not larger * than 8, therefore 64-bit counter... */ static void ctr64_inc(unsigned char *counter) { unsigned int n = 8; u8 c; counter += 8; do { --n; c = counter[n]; ++c; counter[n] = c; if (c) return; } while (n); } int CRYPTO_ccm128_encrypt(CCM128_CONTEXT *ctx, const unsigned char *inp, unsigned char *out, size_t len) { size_t n; unsigned int i, L; unsigned char flags0 = ctx->nonce.c[0]; block128_f block = ctx->block; void *key = ctx->key; union { u64 u[2]; u8 c[16]; } scratch; if (!(flags0 & 0x40)) (*block) (ctx->nonce.c, ctx->cmac.c, key), ctx->blocks++; ctx->nonce.c[0] = L = flags0 & 7; for (n = 0, i = 15 - L; i < 15; ++i) { n |= ctx->nonce.c[i]; ctx->nonce.c[i] = 0; n <<= 8; } n |= ctx->nonce.c[15]; /* reconstructed length */ ctx->nonce.c[15] = 1; if (n != len) return -1; /* length mismatch */ ctx->blocks += ((len + 15) >> 3) | 1; if (ctx->blocks > (U64(1) << 61)) return -2; /* too much data */ while (len >= 16) { #if defined(STRICT_ALIGNMENT) union { u64 u[2]; u8 c[16]; } temp; memcpy(temp.c, inp, 16); ctx->cmac.u[0] ^= temp.u[0]; ctx->cmac.u[1] ^= temp.u[1]; #else ctx->cmac.u[0] ^= ((u64_a1 *)inp)[0]; ctx->cmac.u[1] ^= ((u64_a1 *)inp)[1]; #endif (*block) (ctx->cmac.c, ctx->cmac.c, key); (*block) (ctx->nonce.c, scratch.c, key); ctr64_inc(ctx->nonce.c); #if defined(STRICT_ALIGNMENT) temp.u[0] ^= scratch.u[0]; temp.u[1] ^= scratch.u[1]; memcpy(out, temp.c, 16); #else ((u64_a1 *)out)[0] = scratch.u[0] ^ ((u64_a1 *)inp)[0]; ((u64_a1 *)out)[1] = scratch.u[1] ^ ((u64_a1 *)inp)[1]; #endif inp += 16; out += 16; len -= 16; } if (len) { for (i = 0; i < len; ++i) ctx->cmac.c[i] ^= inp[i]; (*block) (ctx->cmac.c, ctx->cmac.c, key); (*block) (ctx->nonce.c, scratch.c, key); for (i = 0; i < len; ++i) out[i] = scratch.c[i] ^ inp[i]; } for (i = 15 - L; i < 16; ++i) ctx->nonce.c[i] = 0; (*block) (ctx->nonce.c, scratch.c, key); ctx->cmac.u[0] ^= scratch.u[0]; ctx->cmac.u[1] ^= scratch.u[1]; ctx->nonce.c[0] = flags0; return 0; } int CRYPTO_ccm128_decrypt(CCM128_CONTEXT *ctx, const unsigned char *inp, unsigned char *out, size_t len) { size_t n; unsigned int i, L; unsigned char flags0 = ctx->nonce.c[0]; block128_f block = ctx->block; void *key = ctx->key; union { u64 u[2]; u8 c[16]; } scratch; if (!(flags0 & 0x40)) (*block) (ctx->nonce.c, ctx->cmac.c, key); ctx->nonce.c[0] = L = flags0 & 7; for (n = 0, i = 15 - L; i < 15; ++i) { n |= ctx->nonce.c[i]; ctx->nonce.c[i] = 0; n <<= 8; } n |= ctx->nonce.c[15]; /* reconstructed length */ ctx->nonce.c[15] = 1; if (n != len) return -1; while (len >= 16) { #if defined(STRICT_ALIGNMENT) union { u64 u[2]; u8 c[16]; } temp; #endif (*block) (ctx->nonce.c, scratch.c, key); ctr64_inc(ctx->nonce.c); #if defined(STRICT_ALIGNMENT) memcpy(temp.c, inp, 16); ctx->cmac.u[0] ^= (scratch.u[0] ^= temp.u[0]); ctx->cmac.u[1] ^= (scratch.u[1] ^= temp.u[1]); memcpy(out, scratch.c, 16); #else ctx->cmac.u[0] ^= (((u64_a1 *)out)[0] = scratch.u[0] ^ ((u64_a1 *)inp)[0]); ctx->cmac.u[1] ^= (((u64_a1 *)out)[1] = scratch.u[1] ^ ((u64_a1 *)inp)[1]); #endif (*block) (ctx->cmac.c, ctx->cmac.c, key); inp += 16; out += 16; len -= 16; } if (len) { (*block) (ctx->nonce.c, scratch.c, key); for (i = 0; i < len; ++i) ctx->cmac.c[i] ^= (out[i] = scratch.c[i] ^ inp[i]); (*block) (ctx->cmac.c, ctx->cmac.c, key); } for (i = 15 - L; i < 16; ++i) ctx->nonce.c[i] = 0; (*block) (ctx->nonce.c, scratch.c, key); ctx->cmac.u[0] ^= scratch.u[0]; ctx->cmac.u[1] ^= scratch.u[1]; ctx->nonce.c[0] = flags0; return 0; } static void ctr64_add(unsigned char *counter, size_t inc) { size_t n = 8, val = 0; counter += 8; do { --n; val += counter[n] + (inc & 0xff); counter[n] = (unsigned char)val; val >>= 8; /* carry bit */ inc >>= 8; } while (n && (inc || val)); } int CRYPTO_ccm128_encrypt_ccm64(CCM128_CONTEXT *ctx, const unsigned char *inp, unsigned char *out, size_t len, ccm128_f stream) { size_t n; unsigned int i, L; unsigned char flags0 = ctx->nonce.c[0]; block128_f block = ctx->block; void *key = ctx->key; union { u64 u[2]; u8 c[16]; } scratch; if (!(flags0 & 0x40)) (*block) (ctx->nonce.c, ctx->cmac.c, key), ctx->blocks++; ctx->nonce.c[0] = L = flags0 & 7; for (n = 0, i = 15 - L; i < 15; ++i) { n |= ctx->nonce.c[i]; ctx->nonce.c[i] = 0; n <<= 8; } n |= ctx->nonce.c[15]; /* reconstructed length */ ctx->nonce.c[15] = 1; if (n != len) return -1; /* length mismatch */ ctx->blocks += ((len + 15) >> 3) | 1; if (ctx->blocks > (U64(1) << 61)) return -2; /* too much data */ if ((n = len / 16)) { (*stream) (inp, out, n, key, ctx->nonce.c, ctx->cmac.c); n *= 16; inp += n; out += n; len -= n; if (len) ctr64_add(ctx->nonce.c, n / 16); } if (len) { for (i = 0; i < len; ++i) ctx->cmac.c[i] ^= inp[i]; (*block) (ctx->cmac.c, ctx->cmac.c, key); (*block) (ctx->nonce.c, scratch.c, key); for (i = 0; i < len; ++i) out[i] = scratch.c[i] ^ inp[i]; } for (i = 15 - L; i < 16; ++i) ctx->nonce.c[i] = 0; (*block) (ctx->nonce.c, scratch.c, key); ctx->cmac.u[0] ^= scratch.u[0]; ctx->cmac.u[1] ^= scratch.u[1]; ctx->nonce.c[0] = flags0; return 0; } int CRYPTO_ccm128_decrypt_ccm64(CCM128_CONTEXT *ctx, const unsigned char *inp, unsigned char *out, size_t len, ccm128_f stream) { size_t n; unsigned int i, L; unsigned char flags0 = ctx->nonce.c[0]; block128_f block = ctx->block; void *key = ctx->key; union { u64 u[2]; u8 c[16]; } scratch; if (!(flags0 & 0x40)) (*block) (ctx->nonce.c, ctx->cmac.c, key); ctx->nonce.c[0] = L = flags0 & 7; for (n = 0, i = 15 - L; i < 15; ++i) { n |= ctx->nonce.c[i]; ctx->nonce.c[i] = 0; n <<= 8; } n |= ctx->nonce.c[15]; /* reconstructed length */ ctx->nonce.c[15] = 1; if (n != len) return -1; if ((n = len / 16)) { (*stream) (inp, out, n, key, ctx->nonce.c, ctx->cmac.c); n *= 16; inp += n; out += n; len -= n; if (len) ctr64_add(ctx->nonce.c, n / 16); } if (len) { (*block) (ctx->nonce.c, scratch.c, key); for (i = 0; i < len; ++i) ctx->cmac.c[i] ^= (out[i] = scratch.c[i] ^ inp[i]); (*block) (ctx->cmac.c, ctx->cmac.c, key); } for (i = 15 - L; i < 16; ++i) ctx->nonce.c[i] = 0; (*block) (ctx->nonce.c, scratch.c, key); ctx->cmac.u[0] ^= scratch.u[0]; ctx->cmac.u[1] ^= scratch.u[1]; ctx->nonce.c[0] = flags0; return 0; } size_t CRYPTO_ccm128_tag(CCM128_CONTEXT *ctx, unsigned char *tag, size_t len) { unsigned int M = (ctx->nonce.c[0] >> 3) & 7; /* the M parameter */ M *= 2; M += 2; if (len != M) return 0; memcpy(tag, ctx->cmac.c, M); return M; }
./openssl/crypto/modes/cts128.c
/* * Copyright 2008-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <string.h> #include <openssl/crypto.h> #include "crypto/modes.h" /* * Trouble with Ciphertext Stealing, CTS, mode is that there is no * common official specification, but couple of cipher/application * specific ones: RFC2040 and RFC3962. Then there is 'Proposal to * Extend CBC Mode By "Ciphertext Stealing"' at NIST site, which * deviates from mentioned RFCs. Most notably it allows input to be * of block length and it doesn't flip the order of the last two * blocks. CTS is being discussed even in ECB context, but it's not * adopted for any known application. This implementation provides * two interfaces: one compliant with above mentioned RFCs and one * compliant with the NIST proposal, both extending CBC mode. */ size_t CRYPTO_cts128_encrypt_block(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], block128_f block) { size_t residue, n; if (len <= 16) return 0; if ((residue = len % 16) == 0) residue = 16; len -= residue; CRYPTO_cbc128_encrypt(in, out, len, key, ivec, block); in += len; out += len; for (n = 0; n < residue; ++n) ivec[n] ^= in[n]; (*block) (ivec, ivec, key); memcpy(out, out - 16, residue); memcpy(out - 16, ivec, 16); return len + residue; } size_t CRYPTO_nistcts128_encrypt_block(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], block128_f block) { size_t residue, n; if (len < 16) return 0; residue = len % 16; len -= residue; CRYPTO_cbc128_encrypt(in, out, len, key, ivec, block); if (residue == 0) return len; in += len; out += len; for (n = 0; n < residue; ++n) ivec[n] ^= in[n]; (*block) (ivec, ivec, key); memcpy(out - 16 + residue, ivec, 16); return len + residue; } size_t CRYPTO_cts128_encrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], cbc128_f cbc) { size_t residue; union { size_t align; unsigned char c[16]; } tmp; if (len <= 16) return 0; if ((residue = len % 16) == 0) residue = 16; len -= residue; (*cbc) (in, out, len, key, ivec, 1); in += len; out += len; #if defined(CBC_HANDLES_TRUNCATED_IO) memcpy(tmp.c, out - 16, 16); (*cbc) (in, out - 16, residue, key, ivec, 1); memcpy(out, tmp.c, residue); #else memset(tmp.c, 0, sizeof(tmp)); memcpy(tmp.c, in, residue); memcpy(out, out - 16, residue); (*cbc) (tmp.c, out - 16, 16, key, ivec, 1); #endif return len + residue; } size_t CRYPTO_nistcts128_encrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], cbc128_f cbc) { size_t residue; union { size_t align; unsigned char c[16]; } tmp; if (len < 16) return 0; residue = len % 16; len -= residue; (*cbc) (in, out, len, key, ivec, 1); if (residue == 0) return len; in += len; out += len; #if defined(CBC_HANDLES_TRUNCATED_IO) (*cbc) (in, out - 16 + residue, residue, key, ivec, 1); #else memset(tmp.c, 0, sizeof(tmp)); memcpy(tmp.c, in, residue); (*cbc) (tmp.c, out - 16 + residue, 16, key, ivec, 1); #endif return len + residue; } size_t CRYPTO_cts128_decrypt_block(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], block128_f block) { size_t residue, n; union { size_t align; unsigned char c[32]; } tmp; if (len <= 16) return 0; if ((residue = len % 16) == 0) residue = 16; len -= 16 + residue; if (len) { CRYPTO_cbc128_decrypt(in, out, len, key, ivec, block); in += len; out += len; } (*block) (in, tmp.c + 16, key); memcpy(tmp.c, tmp.c + 16, 16); memcpy(tmp.c, in + 16, residue); (*block) (tmp.c, tmp.c, key); for (n = 0; n < 16; ++n) { unsigned char c = in[n]; out[n] = tmp.c[n] ^ ivec[n]; ivec[n] = c; } for (residue += 16; n < residue; ++n) out[n] = tmp.c[n] ^ in[n]; return 16 + len + residue; } size_t CRYPTO_nistcts128_decrypt_block(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], block128_f block) { size_t residue, n; union { size_t align; unsigned char c[32]; } tmp; if (len < 16) return 0; residue = len % 16; if (residue == 0) { CRYPTO_cbc128_decrypt(in, out, len, key, ivec, block); return len; } len -= 16 + residue; if (len) { CRYPTO_cbc128_decrypt(in, out, len, key, ivec, block); in += len; out += len; } (*block) (in + residue, tmp.c + 16, key); memcpy(tmp.c, tmp.c + 16, 16); memcpy(tmp.c, in, residue); (*block) (tmp.c, tmp.c, key); for (n = 0; n < 16; ++n) { unsigned char c = in[n]; out[n] = tmp.c[n] ^ ivec[n]; ivec[n] = in[n + residue]; tmp.c[n] = c; } for (residue += 16; n < residue; ++n) out[n] = tmp.c[n] ^ tmp.c[n - 16]; return 16 + len + residue; } size_t CRYPTO_cts128_decrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], cbc128_f cbc) { size_t residue; union { size_t align; unsigned char c[32]; } tmp; if (len <= 16) return 0; if ((residue = len % 16) == 0) residue = 16; len -= 16 + residue; if (len) { (*cbc) (in, out, len, key, ivec, 0); in += len; out += len; } memset(tmp.c, 0, sizeof(tmp)); /* * this places in[16] at &tmp.c[16] and decrypted block at &tmp.c[0] */ (*cbc) (in, tmp.c, 16, key, tmp.c + 16, 0); memcpy(tmp.c, in + 16, residue); #if defined(CBC_HANDLES_TRUNCATED_IO) (*cbc) (tmp.c, out, 16 + residue, key, ivec, 0); #else (*cbc) (tmp.c, tmp.c, 32, key, ivec, 0); memcpy(out, tmp.c, 16 + residue); #endif return 16 + len + residue; } size_t CRYPTO_nistcts128_decrypt(const unsigned char *in, unsigned char *out, size_t len, const void *key, unsigned char ivec[16], cbc128_f cbc) { size_t residue; union { size_t align; unsigned char c[32]; } tmp; if (len < 16) return 0; residue = len % 16; if (residue == 0) { (*cbc) (in, out, len, key, ivec, 0); return len; } len -= 16 + residue; if (len) { (*cbc) (in, out, len, key, ivec, 0); in += len; out += len; } memset(tmp.c, 0, sizeof(tmp)); /* * this places in[16] at &tmp.c[16] and decrypted block at &tmp.c[0] */ (*cbc) (in + residue, tmp.c, 16, key, tmp.c + 16, 0); memcpy(tmp.c, in, residue); #if defined(CBC_HANDLES_TRUNCATED_IO) (*cbc) (tmp.c, out, 16 + residue, key, ivec, 0); #else (*cbc) (tmp.c, tmp.c, 32, key, ivec, 0); memcpy(out, tmp.c, 16 + residue); #endif return 16 + len + residue; }
./openssl/crypto/modes/siv128.c
/* * Copyright 2018-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <string.h> #include <stdlib.h> #include <openssl/crypto.h> #include <openssl/evp.h> #include <openssl/core_names.h> #include <openssl/params.h> #include "internal/endian.h" #include "crypto/modes.h" #include "crypto/siv.h" #ifndef OPENSSL_NO_SIV __owur static ossl_inline uint32_t rotl8(uint32_t x) { return (x << 8) | (x >> 24); } __owur static ossl_inline uint32_t rotr8(uint32_t x) { return (x >> 8) | (x << 24); } __owur static ossl_inline uint64_t byteswap8(uint64_t x) { uint32_t high = (uint32_t)(x >> 32); uint32_t low = (uint32_t)x; high = (rotl8(high) & 0x00ff00ff) | (rotr8(high) & 0xff00ff00); low = (rotl8(low) & 0x00ff00ff) | (rotr8(low) & 0xff00ff00); return ((uint64_t)low) << 32 | (uint64_t)high; } __owur static ossl_inline uint64_t siv128_getword(SIV_BLOCK const *b, size_t i) { DECLARE_IS_ENDIAN; if (IS_LITTLE_ENDIAN) return byteswap8(b->word[i]); return b->word[i]; } static ossl_inline void siv128_putword(SIV_BLOCK *b, size_t i, uint64_t x) { DECLARE_IS_ENDIAN; if (IS_LITTLE_ENDIAN) b->word[i] = byteswap8(x); else b->word[i] = x; } static ossl_inline void siv128_xorblock(SIV_BLOCK *x, SIV_BLOCK const *y) { x->word[0] ^= y->word[0]; x->word[1] ^= y->word[1]; } /* * Doubles |b|, which is 16 bytes representing an element * of GF(2**128) modulo the irreducible polynomial * x**128 + x**7 + x**2 + x + 1. * Assumes two's-complement arithmetic */ static ossl_inline void siv128_dbl(SIV_BLOCK *b) { uint64_t high = siv128_getword(b, 0); uint64_t low = siv128_getword(b, 1); uint64_t high_carry = high & (((uint64_t)1) << 63); uint64_t low_carry = low & (((uint64_t)1) << 63); int64_t low_mask = -((int64_t)(high_carry >> 63)) & 0x87; uint64_t high_mask = low_carry >> 63; high = (high << 1) | high_mask; low = (low << 1) ^ (uint64_t)low_mask; siv128_putword(b, 0, high); siv128_putword(b, 1, low); } __owur static ossl_inline int siv128_do_s2v_p(SIV128_CONTEXT *ctx, SIV_BLOCK *out, unsigned char const* in, size_t len) { SIV_BLOCK t; size_t out_len = sizeof(out->byte); EVP_MAC_CTX *mac_ctx; int ret = 0; mac_ctx = EVP_MAC_CTX_dup(ctx->mac_ctx_init); if (mac_ctx == NULL) return 0; if (len >= SIV_LEN) { if (!EVP_MAC_update(mac_ctx, in, len - SIV_LEN)) goto err; memcpy(&t, in + (len-SIV_LEN), SIV_LEN); siv128_xorblock(&t, &ctx->d); if (!EVP_MAC_update(mac_ctx, t.byte, SIV_LEN)) goto err; } else { memset(&t, 0, sizeof(t)); memcpy(&t, in, len); t.byte[len] = 0x80; siv128_dbl(&ctx->d); siv128_xorblock(&t, &ctx->d); if (!EVP_MAC_update(mac_ctx, t.byte, SIV_LEN)) goto err; } if (!EVP_MAC_final(mac_ctx, out->byte, &out_len, sizeof(out->byte)) || out_len != SIV_LEN) goto err; ret = 1; err: EVP_MAC_CTX_free(mac_ctx); return ret; } __owur static ossl_inline int siv128_do_encrypt(EVP_CIPHER_CTX *ctx, unsigned char *out, unsigned char const *in, size_t len, SIV_BLOCK *icv) { int out_len = (int)len; if (!EVP_CipherInit_ex(ctx, NULL, NULL, NULL, icv->byte, 1)) return 0; return EVP_EncryptUpdate(ctx, out, &out_len, in, out_len); } /* * Create a new SIV128_CONTEXT */ SIV128_CONTEXT *ossl_siv128_new(const unsigned char *key, int klen, EVP_CIPHER *cbc, EVP_CIPHER *ctr, OSSL_LIB_CTX *libctx, const char *propq) { SIV128_CONTEXT *ctx; int ret; if ((ctx = OPENSSL_malloc(sizeof(*ctx))) != NULL) { ret = ossl_siv128_init(ctx, key, klen, cbc, ctr, libctx, propq); if (ret) return ctx; OPENSSL_free(ctx); } return NULL; } /* * Initialise an existing SIV128_CONTEXT */ int ossl_siv128_init(SIV128_CONTEXT *ctx, const unsigned char *key, int klen, const EVP_CIPHER *cbc, const EVP_CIPHER *ctr, OSSL_LIB_CTX *libctx, const char *propq) { static const unsigned char zero[SIV_LEN] = { 0 }; size_t out_len = SIV_LEN; EVP_MAC_CTX *mac_ctx = NULL; OSSL_PARAM params[3]; const char *cbc_name; if (ctx == NULL) return 0; memset(&ctx->d, 0, sizeof(ctx->d)); EVP_CIPHER_CTX_free(ctx->cipher_ctx); EVP_MAC_CTX_free(ctx->mac_ctx_init); EVP_MAC_free(ctx->mac); ctx->mac = NULL; ctx->cipher_ctx = NULL; ctx->mac_ctx_init = NULL; if (key == NULL || cbc == NULL || ctr == NULL) return 0; cbc_name = EVP_CIPHER_get0_name(cbc); params[0] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_CIPHER, (char *)cbc_name, 0); params[1] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, (void *)key, klen); params[2] = OSSL_PARAM_construct_end(); if ((ctx->cipher_ctx = EVP_CIPHER_CTX_new()) == NULL || (ctx->mac = EVP_MAC_fetch(libctx, OSSL_MAC_NAME_CMAC, propq)) == NULL || (ctx->mac_ctx_init = EVP_MAC_CTX_new(ctx->mac)) == NULL || !EVP_MAC_CTX_set_params(ctx->mac_ctx_init, params) || !EVP_EncryptInit_ex(ctx->cipher_ctx, ctr, NULL, key + klen, NULL) || (mac_ctx = EVP_MAC_CTX_dup(ctx->mac_ctx_init)) == NULL || !EVP_MAC_update(mac_ctx, zero, sizeof(zero)) || !EVP_MAC_final(mac_ctx, ctx->d.byte, &out_len, sizeof(ctx->d.byte))) { EVP_CIPHER_CTX_free(ctx->cipher_ctx); EVP_MAC_CTX_free(ctx->mac_ctx_init); EVP_MAC_CTX_free(mac_ctx); EVP_MAC_free(ctx->mac); return 0; } EVP_MAC_CTX_free(mac_ctx); ctx->final_ret = -1; ctx->crypto_ok = 1; return 1; } /* * Copy an SIV128_CONTEXT object */ int ossl_siv128_copy_ctx(SIV128_CONTEXT *dest, SIV128_CONTEXT *src) { memcpy(&dest->d, &src->d, sizeof(src->d)); if (dest->cipher_ctx == NULL) { dest->cipher_ctx = EVP_CIPHER_CTX_new(); if (dest->cipher_ctx == NULL) return 0; } if (!EVP_CIPHER_CTX_copy(dest->cipher_ctx, src->cipher_ctx)) return 0; EVP_MAC_CTX_free(dest->mac_ctx_init); dest->mac_ctx_init = EVP_MAC_CTX_dup(src->mac_ctx_init); if (dest->mac_ctx_init == NULL) return 0; dest->mac = src->mac; if (dest->mac != NULL) EVP_MAC_up_ref(dest->mac); return 1; } /* * Provide any AAD. This can be called multiple times. * Per RFC5297, the last piece of associated data * is the nonce, but it's not treated special */ int ossl_siv128_aad(SIV128_CONTEXT *ctx, const unsigned char *aad, size_t len) { SIV_BLOCK mac_out; size_t out_len = SIV_LEN; EVP_MAC_CTX *mac_ctx; siv128_dbl(&ctx->d); if ((mac_ctx = EVP_MAC_CTX_dup(ctx->mac_ctx_init)) == NULL || !EVP_MAC_update(mac_ctx, aad, len) || !EVP_MAC_final(mac_ctx, mac_out.byte, &out_len, sizeof(mac_out.byte)) || out_len != SIV_LEN) { EVP_MAC_CTX_free(mac_ctx); return 0; } EVP_MAC_CTX_free(mac_ctx); siv128_xorblock(&ctx->d, &mac_out); return 1; } /* * Provide any data to be encrypted. This can be called once. */ int ossl_siv128_encrypt(SIV128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len) { SIV_BLOCK q; /* can only do one crypto operation */ if (ctx->crypto_ok == 0) return 0; ctx->crypto_ok--; if (!siv128_do_s2v_p(ctx, &q, in, len)) return 0; memcpy(ctx->tag.byte, &q, SIV_LEN); q.byte[8] &= 0x7f; q.byte[12] &= 0x7f; if (!siv128_do_encrypt(ctx->cipher_ctx, out, in, len, &q)) return 0; ctx->final_ret = 0; return len; } /* * Provide any data to be decrypted. This can be called once. */ int ossl_siv128_decrypt(SIV128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len) { unsigned char* p; SIV_BLOCK t, q; int i; /* can only do one crypto operation */ if (ctx->crypto_ok == 0) return 0; ctx->crypto_ok--; memcpy(&q, ctx->tag.byte, SIV_LEN); q.byte[8] &= 0x7f; q.byte[12] &= 0x7f; if (!siv128_do_encrypt(ctx->cipher_ctx, out, in, len, &q) || !siv128_do_s2v_p(ctx, &t, out, len)) return 0; p = ctx->tag.byte; for (i = 0; i < SIV_LEN; i++) t.byte[i] ^= p[i]; if ((t.word[0] | t.word[1]) != 0) { OPENSSL_cleanse(out, len); return 0; } ctx->final_ret = 0; return len; } /* * Return the already calculated final result. */ int ossl_siv128_finish(SIV128_CONTEXT *ctx) { return ctx->final_ret; } /* * Set the tag */ int ossl_siv128_set_tag(SIV128_CONTEXT *ctx, const unsigned char *tag, size_t len) { if (len != SIV_LEN) return 0; /* Copy the tag from the supplied buffer */ memcpy(ctx->tag.byte, tag, len); return 1; } /* * Retrieve the calculated tag */ int ossl_siv128_get_tag(SIV128_CONTEXT *ctx, unsigned char *tag, size_t len) { if (len != SIV_LEN) return 0; /* Copy the tag into the supplied buffer */ memcpy(tag, ctx->tag.byte, len); return 1; } /* * Release all resources */ int ossl_siv128_cleanup(SIV128_CONTEXT *ctx) { if (ctx != NULL) { EVP_CIPHER_CTX_free(ctx->cipher_ctx); ctx->cipher_ctx = NULL; EVP_MAC_CTX_free(ctx->mac_ctx_init); ctx->mac_ctx_init = NULL; EVP_MAC_free(ctx->mac); ctx->mac = NULL; OPENSSL_cleanse(&ctx->d, sizeof(ctx->d)); OPENSSL_cleanse(&ctx->tag, sizeof(ctx->tag)); ctx->final_ret = -1; ctx->crypto_ok = 1; } return 1; } int ossl_siv128_speed(SIV128_CONTEXT *ctx, int arg) { ctx->crypto_ok = (arg == 1) ? -1 : 1; return 1; } #endif /* OPENSSL_NO_SIV */
./openssl/crypto/modes/gcm128.c
/* * Copyright 2010-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <string.h> #include <openssl/crypto.h> #include "internal/cryptlib.h" #include "internal/endian.h" #include "crypto/modes.h" #if defined(__GNUC__) && !defined(STRICT_ALIGNMENT) typedef size_t size_t_aX __attribute((__aligned__(1))); #else typedef size_t size_t_aX; #endif #if defined(BSWAP4) && defined(STRICT_ALIGNMENT) /* redefine, because alignment is ensured */ # undef GETU32 # define GETU32(p) BSWAP4(*(const u32 *)(p)) # undef PUTU32 # define PUTU32(p,v) *(u32 *)(p) = BSWAP4(v) #endif /* RISC-V uses C implementation as a fallback. */ #if defined(__riscv) # define INCLUDE_C_GMULT_4BIT # define INCLUDE_C_GHASH_4BIT #endif #define PACK(s) ((size_t)(s)<<(sizeof(size_t)*8-16)) #define REDUCE1BIT(V) do { \ if (sizeof(size_t)==8) { \ u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \ V.lo = (V.hi<<63)|(V.lo>>1); \ V.hi = (V.hi>>1 )^T; \ } \ else { \ u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \ V.lo = (V.hi<<63)|(V.lo>>1); \ V.hi = (V.hi>>1 )^((u64)T<<32); \ } \ } while(0) /*- * * NOTE: TABLE_BITS and all non-4bit implementations have been removed in 3.1. * * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should * never be set to 8. 8 is effectively reserved for testing purposes. * TABLE_BITS>1 are lookup-table-driven implementations referred to as * "Shoup's" in GCM specification. In other words OpenSSL does not cover * whole spectrum of possible table driven implementations. Why? In * non-"Shoup's" case memory access pattern is segmented in such manner, * that it's trivial to see that cache timing information can reveal * fair portion of intermediate hash value. Given that ciphertext is * always available to attacker, it's possible for him to attempt to * deduce secret parameter H and if successful, tamper with messages * [which is nothing but trivial in CTR mode]. In "Shoup's" case it's * not as trivial, but there is no reason to believe that it's resistant * to cache-timing attack. And the thing about "8-bit" implementation is * that it consumes 16 (sixteen) times more memory, 4KB per individual * key + 1KB shared. Well, on pros side it should be twice as fast as * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version * was observed to run ~75% faster, closer to 100% for commercial * compilers... Yet "4-bit" procedure is preferred, because it's * believed to provide better security-performance balance and adequate * all-round performance. "All-round" refers to things like: * * - shorter setup time effectively improves overall timing for * handling short messages; * - larger table allocation can become unbearable because of VM * subsystem penalties (for example on Windows large enough free * results in VM working set trimming, meaning that consequent * malloc would immediately incur working set expansion); * - larger table has larger cache footprint, which can affect * performance of other code paths (not necessarily even from same * thread in Hyper-Threading world); * * Value of 1 is not appropriate for performance reasons. */ static void gcm_init_4bit(u128 Htable[16], const u64 H[2]) { u128 V; # if defined(OPENSSL_SMALL_FOOTPRINT) int i; # endif Htable[0].hi = 0; Htable[0].lo = 0; V.hi = H[0]; V.lo = H[1]; # if defined(OPENSSL_SMALL_FOOTPRINT) for (Htable[8] = V, i = 4; i > 0; i >>= 1) { REDUCE1BIT(V); Htable[i] = V; } for (i = 2; i < 16; i <<= 1) { u128 *Hi = Htable + i; int j; for (V = *Hi, j = 1; j < i; ++j) { Hi[j].hi = V.hi ^ Htable[j].hi; Hi[j].lo = V.lo ^ Htable[j].lo; } } # else Htable[8] = V; REDUCE1BIT(V); Htable[4] = V; REDUCE1BIT(V); Htable[2] = V; REDUCE1BIT(V); Htable[1] = V; Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo; V = Htable[4]; Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo; Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo; Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo; V = Htable[8]; Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo; Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo; Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo; Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo; Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo; Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo; Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo; # endif # if defined(GHASH_ASM) && (defined(__arm__) || defined(__arm)) /* * ARM assembler expects specific dword order in Htable. */ { int j; DECLARE_IS_ENDIAN; if (IS_LITTLE_ENDIAN) for (j = 0; j < 16; ++j) { V = Htable[j]; Htable[j].hi = V.lo; Htable[j].lo = V.hi; } else for (j = 0; j < 16; ++j) { V = Htable[j]; Htable[j].hi = V.lo << 32 | V.lo >> 32; Htable[j].lo = V.hi << 32 | V.hi >> 32; } } # endif } # if !defined(GHASH_ASM) || defined(INCLUDE_C_GMULT_4BIT) static const size_t rem_4bit[16] = { PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460), PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0), PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560), PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0) }; static void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]) { u128 Z; int cnt = 15; size_t rem, nlo, nhi; DECLARE_IS_ENDIAN; nlo = ((const u8 *)Xi)[15]; nhi = nlo >> 4; nlo &= 0xf; Z.hi = Htable[nlo].hi; Z.lo = Htable[nlo].lo; while (1) { rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60) | (Z.lo >> 4); Z.hi = (Z.hi >> 4); if (sizeof(size_t) == 8) Z.hi ^= rem_4bit[rem]; else Z.hi ^= (u64)rem_4bit[rem] << 32; Z.hi ^= Htable[nhi].hi; Z.lo ^= Htable[nhi].lo; if (--cnt < 0) break; nlo = ((const u8 *)Xi)[cnt]; nhi = nlo >> 4; nlo &= 0xf; rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60) | (Z.lo >> 4); Z.hi = (Z.hi >> 4); if (sizeof(size_t) == 8) Z.hi ^= rem_4bit[rem]; else Z.hi ^= (u64)rem_4bit[rem] << 32; Z.hi ^= Htable[nlo].hi; Z.lo ^= Htable[nlo].lo; } if (IS_LITTLE_ENDIAN) { # ifdef BSWAP8 Xi[0] = BSWAP8(Z.hi); Xi[1] = BSWAP8(Z.lo); # else u8 *p = (u8 *)Xi; u32 v; v = (u32)(Z.hi >> 32); PUTU32(p, v); v = (u32)(Z.hi); PUTU32(p + 4, v); v = (u32)(Z.lo >> 32); PUTU32(p + 8, v); v = (u32)(Z.lo); PUTU32(p + 12, v); # endif } else { Xi[0] = Z.hi; Xi[1] = Z.lo; } } # endif # if !defined(GHASH_ASM) || defined(INCLUDE_C_GHASH_4BIT) # if !defined(OPENSSL_SMALL_FOOTPRINT) /* * Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for * details... Compiler-generated code doesn't seem to give any * performance improvement, at least not on x86[_64]. It's here * mostly as reference and a placeholder for possible future * non-trivial optimization[s]... */ static void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len) { u128 Z; int cnt; size_t rem, nlo, nhi; DECLARE_IS_ENDIAN; do { cnt = 15; nlo = ((const u8 *)Xi)[15]; nlo ^= inp[15]; nhi = nlo >> 4; nlo &= 0xf; Z.hi = Htable[nlo].hi; Z.lo = Htable[nlo].lo; while (1) { rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60) | (Z.lo >> 4); Z.hi = (Z.hi >> 4); if (sizeof(size_t) == 8) Z.hi ^= rem_4bit[rem]; else Z.hi ^= (u64)rem_4bit[rem] << 32; Z.hi ^= Htable[nhi].hi; Z.lo ^= Htable[nhi].lo; if (--cnt < 0) break; nlo = ((const u8 *)Xi)[cnt]; nlo ^= inp[cnt]; nhi = nlo >> 4; nlo &= 0xf; rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60) | (Z.lo >> 4); Z.hi = (Z.hi >> 4); if (sizeof(size_t) == 8) Z.hi ^= rem_4bit[rem]; else Z.hi ^= (u64)rem_4bit[rem] << 32; Z.hi ^= Htable[nlo].hi; Z.lo ^= Htable[nlo].lo; } if (IS_LITTLE_ENDIAN) { # ifdef BSWAP8 Xi[0] = BSWAP8(Z.hi); Xi[1] = BSWAP8(Z.lo); # else u8 *p = (u8 *)Xi; u32 v; v = (u32)(Z.hi >> 32); PUTU32(p, v); v = (u32)(Z.hi); PUTU32(p + 4, v); v = (u32)(Z.lo >> 32); PUTU32(p + 8, v); v = (u32)(Z.lo); PUTU32(p + 12, v); # endif } else { Xi[0] = Z.hi; Xi[1] = Z.lo; } inp += 16; /* Block size is 128 bits so len is a multiple of 16 */ len -= 16; } while (len > 0); } # endif # else void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # endif # define GCM_MUL(ctx) ctx->funcs.gmult(ctx->Xi.u,ctx->Htable) # if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT) # define GHASH(ctx,in,len) ctx->funcs.ghash((ctx)->Xi.u,(ctx)->Htable,in,len) /* * GHASH_CHUNK is "stride parameter" missioned to mitigate cache trashing * effect. In other words idea is to hash data while it's still in L1 cache * after encryption pass... */ # define GHASH_CHUNK (3*1024) # endif #if (defined(GHASH_ASM) || defined(OPENSSL_CPUID_OBJ)) # if !defined(I386_ONLY) && \ (defined(__i386) || defined(__i386__) || \ defined(__x86_64) || defined(__x86_64__) || \ defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64)) # define GHASH_ASM_X86_OR_64 void gcm_init_clmul(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_clmul(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_clmul(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # if defined(__i386) || defined(__i386__) || defined(_M_IX86) # define gcm_init_avx gcm_init_clmul # define gcm_gmult_avx gcm_gmult_clmul # define gcm_ghash_avx gcm_ghash_clmul # else void gcm_init_avx(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_avx(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # endif # if defined(__i386) || defined(__i386__) || defined(_M_IX86) # define GHASH_ASM_X86 void gcm_gmult_4bit_mmx(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_4bit_mmx(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); void gcm_gmult_4bit_x86(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_4bit_x86(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # endif # elif defined(__arm__) || defined(__arm) || defined(__aarch64__) || defined(_M_ARM64) # include "arm_arch.h" # if __ARM_MAX_ARCH__>=7 # define GHASH_ASM_ARM # define PMULL_CAPABLE (OPENSSL_armcap_P & ARMV8_PMULL) # if defined(__arm__) || defined(__arm) # define NEON_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON) # endif void gcm_init_neon(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_neon(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_neon(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); void gcm_init_v8(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_v8(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_v8(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # endif # elif defined(__sparc__) || defined(__sparc) # include "crypto/sparc_arch.h" # define GHASH_ASM_SPARC void gcm_init_vis3(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_vis3(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_vis3(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # elif defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__POWERPC__) || defined(_ARCH_PPC)) # include "crypto/ppc_arch.h" # define GHASH_ASM_PPC void gcm_init_p8(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_p8(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_p8(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # elif defined(OPENSSL_CPUID_OBJ) && defined(__riscv) && __riscv_xlen == 64 # include "crypto/riscv_arch.h" # define GHASH_ASM_RV64I /* Zbc/Zbkc (scalar crypto with clmul) based routines. */ void gcm_init_rv64i_zbc(u128 Htable[16], const u64 Xi[2]); void gcm_init_rv64i_zbc__zbb(u128 Htable[16], const u64 Xi[2]); void gcm_init_rv64i_zbc__zbkb(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_rv64i_zbc(u64 Xi[2], const u128 Htable[16]); void gcm_gmult_rv64i_zbc__zbkb(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_rv64i_zbc(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); void gcm_ghash_rv64i_zbc__zbkb(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); /* zvkb/Zvbc (vector crypto with vclmul) based routines. */ void gcm_init_rv64i_zvkb_zvbc(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_rv64i_zvkb_zvbc(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_rv64i_zvkb_zvbc(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); /* Zvkg (vector crypto with vgmul.vv and vghsh.vv). */ void gcm_init_rv64i_zvkg(u128 Htable[16], const u64 Xi[2]); void gcm_init_rv64i_zvkg_zvkb(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_rv64i_zvkg(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_rv64i_zvkg(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # endif #endif static void gcm_get_funcs(struct gcm_funcs_st *ctx) { /* set defaults -- overridden below as needed */ ctx->ginit = gcm_init_4bit; #if !defined(GHASH_ASM) ctx->gmult = gcm_gmult_4bit; #else ctx->gmult = NULL; #endif #if !defined(GHASH_ASM) && !defined(OPENSSL_SMALL_FOOTPRINT) ctx->ghash = gcm_ghash_4bit; #else ctx->ghash = NULL; #endif #if defined(GHASH_ASM_X86_OR_64) # if !defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2) /* x86_64 */ if (OPENSSL_ia32cap_P[1] & (1 << 1)) { /* check PCLMULQDQ bit */ if (((OPENSSL_ia32cap_P[1] >> 22) & 0x41) == 0x41) { /* AVX+MOVBE */ ctx->ginit = gcm_init_avx; ctx->gmult = gcm_gmult_avx; ctx->ghash = gcm_ghash_avx; } else { ctx->ginit = gcm_init_clmul; ctx->gmult = gcm_gmult_clmul; ctx->ghash = gcm_ghash_clmul; } return; } # endif # if defined(GHASH_ASM_X86) /* x86 only */ # if defined(OPENSSL_IA32_SSE2) if (OPENSSL_ia32cap_P[0] & (1 << 25)) { /* check SSE bit */ ctx->gmult = gcm_gmult_4bit_mmx; ctx->ghash = gcm_ghash_4bit_mmx; return; } # else if (OPENSSL_ia32cap_P[0] & (1 << 23)) { /* check MMX bit */ ctx->gmult = gcm_gmult_4bit_mmx; ctx->ghash = gcm_ghash_4bit_mmx; return; } # endif ctx->gmult = gcm_gmult_4bit_x86; ctx->ghash = gcm_ghash_4bit_x86; return; # else /* x86_64 fallback defaults */ ctx->gmult = gcm_gmult_4bit; ctx->ghash = gcm_ghash_4bit; return; # endif #elif defined(GHASH_ASM_ARM) /* ARM defaults */ ctx->gmult = gcm_gmult_4bit; ctx->ghash = gcm_ghash_4bit; # ifdef PMULL_CAPABLE if (PMULL_CAPABLE) { ctx->ginit = (gcm_init_fn)gcm_init_v8; ctx->gmult = gcm_gmult_v8; ctx->ghash = gcm_ghash_v8; } # elif defined(NEON_CAPABLE) if (NEON_CAPABLE) { ctx->ginit = gcm_init_neon; ctx->gmult = gcm_gmult_neon; ctx->ghash = gcm_ghash_neon; } # endif return; #elif defined(GHASH_ASM_SPARC) /* SPARC defaults */ ctx->gmult = gcm_gmult_4bit; ctx->ghash = gcm_ghash_4bit; if (OPENSSL_sparcv9cap_P[0] & SPARCV9_VIS3) { ctx->ginit = gcm_init_vis3; ctx->gmult = gcm_gmult_vis3; ctx->ghash = gcm_ghash_vis3; } return; #elif defined(GHASH_ASM_PPC) /* PowerPC does not define GHASH_ASM; defaults set above */ if (OPENSSL_ppccap_P & PPC_CRYPTO207) { ctx->ginit = gcm_init_p8; ctx->gmult = gcm_gmult_p8; ctx->ghash = gcm_ghash_p8; } return; #elif defined(GHASH_ASM_RV64I) /* RISCV defaults */ ctx->gmult = gcm_gmult_4bit; ctx->ghash = gcm_ghash_4bit; if (RISCV_HAS_ZVKG() && riscv_vlen() >= 128) { if (RISCV_HAS_ZVKB()) ctx->ginit = gcm_init_rv64i_zvkg_zvkb; else ctx->ginit = gcm_init_rv64i_zvkg; ctx->gmult = gcm_gmult_rv64i_zvkg; ctx->ghash = gcm_ghash_rv64i_zvkg; } else if (RISCV_HAS_ZVKB() && RISCV_HAS_ZVBC() && riscv_vlen() >= 128) { ctx->ginit = gcm_init_rv64i_zvkb_zvbc; ctx->gmult = gcm_gmult_rv64i_zvkb_zvbc; ctx->ghash = gcm_ghash_rv64i_zvkb_zvbc; } else if (RISCV_HAS_ZBC()) { if (RISCV_HAS_ZBKB()) { ctx->ginit = gcm_init_rv64i_zbc__zbkb; ctx->gmult = gcm_gmult_rv64i_zbc__zbkb; ctx->ghash = gcm_ghash_rv64i_zbc__zbkb; } else if (RISCV_HAS_ZBB()) { ctx->ginit = gcm_init_rv64i_zbc__zbb; ctx->gmult = gcm_gmult_rv64i_zbc; ctx->ghash = gcm_ghash_rv64i_zbc; } else { ctx->ginit = gcm_init_rv64i_zbc; ctx->gmult = gcm_gmult_rv64i_zbc; ctx->ghash = gcm_ghash_rv64i_zbc; } } return; #elif defined(GHASH_ASM) /* all other architectures use the generic names */ ctx->gmult = gcm_gmult_4bit; ctx->ghash = gcm_ghash_4bit; return; #endif } void ossl_gcm_init_4bit(u128 Htable[16], const u64 H[2]) { struct gcm_funcs_st funcs; gcm_get_funcs(&funcs); funcs.ginit(Htable, H); } void ossl_gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]) { struct gcm_funcs_st funcs; gcm_get_funcs(&funcs); funcs.gmult(Xi, Htable); } void ossl_gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len) { struct gcm_funcs_st funcs; u64 tmp[2]; size_t i; gcm_get_funcs(&funcs); if (funcs.ghash != NULL) { funcs.ghash(Xi, Htable, inp, len); } else { /* Emulate ghash if needed */ for (i = 0; i < len; i += 16) { memcpy(tmp, &inp[i], sizeof(tmp)); Xi[0] ^= tmp[0]; Xi[1] ^= tmp[1]; funcs.gmult(Xi, Htable); } } } void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, void *key, block128_f block) { DECLARE_IS_ENDIAN; memset(ctx, 0, sizeof(*ctx)); ctx->block = block; ctx->key = key; (*block) (ctx->H.c, ctx->H.c, key); if (IS_LITTLE_ENDIAN) { /* H is stored in host byte order */ #ifdef BSWAP8 ctx->H.u[0] = BSWAP8(ctx->H.u[0]); ctx->H.u[1] = BSWAP8(ctx->H.u[1]); #else u8 *p = ctx->H.c; u64 hi, lo; hi = (u64)GETU32(p) << 32 | GETU32(p + 4); lo = (u64)GETU32(p + 8) << 32 | GETU32(p + 12); ctx->H.u[0] = hi; ctx->H.u[1] = lo; #endif } gcm_get_funcs(&ctx->funcs); ctx->funcs.ginit(ctx->Htable, ctx->H.u); } void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const unsigned char *iv, size_t len) { DECLARE_IS_ENDIAN; unsigned int ctr; ctx->len.u[0] = 0; /* AAD length */ ctx->len.u[1] = 0; /* message length */ ctx->ares = 0; ctx->mres = 0; if (len == 12) { memcpy(ctx->Yi.c, iv, 12); ctx->Yi.c[12] = 0; ctx->Yi.c[13] = 0; ctx->Yi.c[14] = 0; ctx->Yi.c[15] = 1; ctr = 1; } else { size_t i; u64 len0 = len; /* Borrow ctx->Xi to calculate initial Yi */ ctx->Xi.u[0] = 0; ctx->Xi.u[1] = 0; while (len >= 16) { for (i = 0; i < 16; ++i) ctx->Xi.c[i] ^= iv[i]; GCM_MUL(ctx); iv += 16; len -= 16; } if (len) { for (i = 0; i < len; ++i) ctx->Xi.c[i] ^= iv[i]; GCM_MUL(ctx); } len0 <<= 3; if (IS_LITTLE_ENDIAN) { #ifdef BSWAP8 ctx->Xi.u[1] ^= BSWAP8(len0); #else ctx->Xi.c[8] ^= (u8)(len0 >> 56); ctx->Xi.c[9] ^= (u8)(len0 >> 48); ctx->Xi.c[10] ^= (u8)(len0 >> 40); ctx->Xi.c[11] ^= (u8)(len0 >> 32); ctx->Xi.c[12] ^= (u8)(len0 >> 24); ctx->Xi.c[13] ^= (u8)(len0 >> 16); ctx->Xi.c[14] ^= (u8)(len0 >> 8); ctx->Xi.c[15] ^= (u8)(len0); #endif } else { ctx->Xi.u[1] ^= len0; } GCM_MUL(ctx); if (IS_LITTLE_ENDIAN) #ifdef BSWAP4 ctr = BSWAP4(ctx->Xi.d[3]); #else ctr = GETU32(ctx->Xi.c + 12); #endif else ctr = ctx->Xi.d[3]; /* Copy borrowed Xi to Yi */ ctx->Yi.u[0] = ctx->Xi.u[0]; ctx->Yi.u[1] = ctx->Xi.u[1]; } ctx->Xi.u[0] = 0; ctx->Xi.u[1] = 0; (*ctx->block) (ctx->Yi.c, ctx->EK0.c, ctx->key); ++ctr; if (IS_LITTLE_ENDIAN) #ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); #else PUTU32(ctx->Yi.c + 12, ctr); #endif else ctx->Yi.d[3] = ctr; } int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const unsigned char *aad, size_t len) { size_t i; unsigned int n; u64 alen = ctx->len.u[0]; if (ctx->len.u[1]) return -2; alen += len; if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len)) return -1; ctx->len.u[0] = alen; n = ctx->ares; if (n) { while (n && len) { ctx->Xi.c[n] ^= *(aad++); --len; n = (n + 1) % 16; } if (n == 0) GCM_MUL(ctx); else { ctx->ares = n; return 0; } } #ifdef GHASH if ((i = (len & (size_t)-16))) { GHASH(ctx, aad, i); aad += i; len -= i; } #else while (len >= 16) { for (i = 0; i < 16; ++i) ctx->Xi.c[i] ^= aad[i]; GCM_MUL(ctx); aad += 16; len -= 16; } #endif if (len) { n = (unsigned int)len; for (i = 0; i < len; ++i) ctx->Xi.c[i] ^= aad[i]; } ctx->ares = n; return 0; } int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len) { DECLARE_IS_ENDIAN; unsigned int n, ctr, mres; size_t i; u64 mlen = ctx->len.u[1]; block128_f block = ctx->block; void *key = ctx->key; mlen += len; if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) return -1; ctx->len.u[1] = mlen; mres = ctx->mres; if (ctx->ares) { /* First call to encrypt finalizes GHASH(AAD) */ #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) if (len == 0) { GCM_MUL(ctx); ctx->ares = 0; return 0; } memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); ctx->Xi.u[0] = 0; ctx->Xi.u[1] = 0; mres = sizeof(ctx->Xi); #else GCM_MUL(ctx); #endif ctx->ares = 0; } if (IS_LITTLE_ENDIAN) #ifdef BSWAP4 ctr = BSWAP4(ctx->Yi.d[3]); #else ctr = GETU32(ctx->Yi.c + 12); #endif else ctr = ctx->Yi.d[3]; n = mres % 16; #if !defined(OPENSSL_SMALL_FOOTPRINT) if (16 % sizeof(size_t) == 0) { /* always true actually */ do { if (n) { # if defined(GHASH) while (n && len) { ctx->Xn[mres++] = *(out++) = *(in++) ^ ctx->EKi.c[n]; --len; n = (n + 1) % 16; } if (n == 0) { GHASH(ctx, ctx->Xn, mres); mres = 0; } else { ctx->mres = mres; return 0; } # else while (n && len) { ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; --len; n = (n + 1) % 16; } if (n == 0) { GCM_MUL(ctx); mres = 0; } else { ctx->mres = n; return 0; } # endif } # if defined(STRICT_ALIGNMENT) if (((size_t)in | (size_t)out) % sizeof(size_t) != 0) break; # endif # if defined(GHASH) if (len >= 16 && mres) { GHASH(ctx, ctx->Xn, mres); mres = 0; } # if defined(GHASH_CHUNK) while (len >= GHASH_CHUNK) { size_t j = GHASH_CHUNK; while (j) { size_t_aX *out_t = (size_t_aX *)out; const size_t_aX *in_t = (const size_t_aX *)in; (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; for (i = 0; i < 16 / sizeof(size_t); ++i) out_t[i] = in_t[i] ^ ctx->EKi.t[i]; out += 16; in += 16; j -= 16; } GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK); len -= GHASH_CHUNK; } # endif if ((i = (len & (size_t)-16))) { size_t j = i; while (len >= 16) { size_t_aX *out_t = (size_t_aX *)out; const size_t_aX *in_t = (const size_t_aX *)in; (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; for (i = 0; i < 16 / sizeof(size_t); ++i) out_t[i] = in_t[i] ^ ctx->EKi.t[i]; out += 16; in += 16; len -= 16; } GHASH(ctx, out - j, j); } # else while (len >= 16) { size_t *out_t = (size_t *)out; const size_t *in_t = (const size_t *)in; (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; for (i = 0; i < 16 / sizeof(size_t); ++i) ctx->Xi.t[i] ^= out_t[i] = in_t[i] ^ ctx->EKi.t[i]; GCM_MUL(ctx); out += 16; in += 16; len -= 16; } # endif if (len) { (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; # if defined(GHASH) while (len--) { ctx->Xn[mres++] = out[n] = in[n] ^ ctx->EKi.c[n]; ++n; } # else while (len--) { ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; ++n; } mres = n; # endif } ctx->mres = mres; return 0; } while (0); } #endif for (i = 0; i < len; ++i) { if (n == 0) { (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (IS_LITTLE_ENDIAN) #ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); #else PUTU32(ctx->Yi.c + 12, ctr); #endif else ctx->Yi.d[3] = ctr; } #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) ctx->Xn[mres++] = out[i] = in[i] ^ ctx->EKi.c[n]; n = (n + 1) % 16; if (mres == sizeof(ctx->Xn)) { GHASH(ctx,ctx->Xn,sizeof(ctx->Xn)); mres = 0; } #else ctx->Xi.c[n] ^= out[i] = in[i] ^ ctx->EKi.c[n]; mres = n = (n + 1) % 16; if (n == 0) GCM_MUL(ctx); #endif } ctx->mres = mres; return 0; } int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len) { DECLARE_IS_ENDIAN; unsigned int n, ctr, mres; size_t i; u64 mlen = ctx->len.u[1]; block128_f block = ctx->block; void *key = ctx->key; mlen += len; if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) return -1; ctx->len.u[1] = mlen; mres = ctx->mres; if (ctx->ares) { /* First call to decrypt finalizes GHASH(AAD) */ #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) if (len == 0) { GCM_MUL(ctx); ctx->ares = 0; return 0; } memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); ctx->Xi.u[0] = 0; ctx->Xi.u[1] = 0; mres = sizeof(ctx->Xi); #else GCM_MUL(ctx); #endif ctx->ares = 0; } if (IS_LITTLE_ENDIAN) #ifdef BSWAP4 ctr = BSWAP4(ctx->Yi.d[3]); #else ctr = GETU32(ctx->Yi.c + 12); #endif else ctr = ctx->Yi.d[3]; n = mres % 16; #if !defined(OPENSSL_SMALL_FOOTPRINT) if (16 % sizeof(size_t) == 0) { /* always true actually */ do { if (n) { # if defined(GHASH) while (n && len) { *(out++) = (ctx->Xn[mres++] = *(in++)) ^ ctx->EKi.c[n]; --len; n = (n + 1) % 16; } if (n == 0) { GHASH(ctx, ctx->Xn, mres); mres = 0; } else { ctx->mres = mres; return 0; } # else while (n && len) { u8 c = *(in++); *(out++) = c ^ ctx->EKi.c[n]; ctx->Xi.c[n] ^= c; --len; n = (n + 1) % 16; } if (n == 0) { GCM_MUL(ctx); mres = 0; } else { ctx->mres = n; return 0; } # endif } # if defined(STRICT_ALIGNMENT) if (((size_t)in | (size_t)out) % sizeof(size_t) != 0) break; # endif # if defined(GHASH) if (len >= 16 && mres) { GHASH(ctx, ctx->Xn, mres); mres = 0; } # if defined(GHASH_CHUNK) while (len >= GHASH_CHUNK) { size_t j = GHASH_CHUNK; GHASH(ctx, in, GHASH_CHUNK); while (j) { size_t_aX *out_t = (size_t_aX *)out; const size_t_aX *in_t = (const size_t_aX *)in; (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; for (i = 0; i < 16 / sizeof(size_t); ++i) out_t[i] = in_t[i] ^ ctx->EKi.t[i]; out += 16; in += 16; j -= 16; } len -= GHASH_CHUNK; } # endif if ((i = (len & (size_t)-16))) { GHASH(ctx, in, i); while (len >= 16) { size_t_aX *out_t = (size_t_aX *)out; const size_t_aX *in_t = (const size_t_aX *)in; (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; for (i = 0; i < 16 / sizeof(size_t); ++i) out_t[i] = in_t[i] ^ ctx->EKi.t[i]; out += 16; in += 16; len -= 16; } } # else while (len >= 16) { size_t *out_t = (size_t *)out; const size_t *in_t = (const size_t *)in; (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; for (i = 0; i < 16 / sizeof(size_t); ++i) { size_t c = in_t[i]; out_t[i] = c ^ ctx->EKi.t[i]; ctx->Xi.t[i] ^= c; } GCM_MUL(ctx); out += 16; in += 16; len -= 16; } # endif if (len) { (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; # if defined(GHASH) while (len--) { out[n] = (ctx->Xn[mres++] = in[n]) ^ ctx->EKi.c[n]; ++n; } # else while (len--) { u8 c = in[n]; ctx->Xi.c[n] ^= c; out[n] = c ^ ctx->EKi.c[n]; ++n; } mres = n; # endif } ctx->mres = mres; return 0; } while (0); } #endif for (i = 0; i < len; ++i) { u8 c; if (n == 0) { (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (IS_LITTLE_ENDIAN) #ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); #else PUTU32(ctx->Yi.c + 12, ctr); #endif else ctx->Yi.d[3] = ctr; } #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) out[i] = (ctx->Xn[mres++] = c = in[i]) ^ ctx->EKi.c[n]; n = (n + 1) % 16; if (mres == sizeof(ctx->Xn)) { GHASH(ctx,ctx->Xn,sizeof(ctx->Xn)); mres = 0; } #else c = in[i]; out[i] = c ^ ctx->EKi.c[n]; ctx->Xi.c[n] ^= c; mres = n = (n + 1) % 16; if (n == 0) GCM_MUL(ctx); #endif } ctx->mres = mres; return 0; } int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len, ctr128_f stream) { #if defined(OPENSSL_SMALL_FOOTPRINT) return CRYPTO_gcm128_encrypt(ctx, in, out, len); #else DECLARE_IS_ENDIAN; unsigned int n, ctr, mres; size_t i; u64 mlen = ctx->len.u[1]; void *key = ctx->key; mlen += len; if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) return -1; ctx->len.u[1] = mlen; mres = ctx->mres; if (ctx->ares) { /* First call to encrypt finalizes GHASH(AAD) */ #if defined(GHASH) if (len == 0) { GCM_MUL(ctx); ctx->ares = 0; return 0; } memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); ctx->Xi.u[0] = 0; ctx->Xi.u[1] = 0; mres = sizeof(ctx->Xi); #else GCM_MUL(ctx); #endif ctx->ares = 0; } if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctr = BSWAP4(ctx->Yi.d[3]); # else ctr = GETU32(ctx->Yi.c + 12); # endif else ctr = ctx->Yi.d[3]; n = mres % 16; if (n) { # if defined(GHASH) while (n && len) { ctx->Xn[mres++] = *(out++) = *(in++) ^ ctx->EKi.c[n]; --len; n = (n + 1) % 16; } if (n == 0) { GHASH(ctx, ctx->Xn, mres); mres = 0; } else { ctx->mres = mres; return 0; } # else while (n && len) { ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; --len; n = (n + 1) % 16; } if (n == 0) { GCM_MUL(ctx); mres = 0; } else { ctx->mres = n; return 0; } # endif } # if defined(GHASH) if (len >= 16 && mres) { GHASH(ctx, ctx->Xn, mres); mres = 0; } # if defined(GHASH_CHUNK) while (len >= GHASH_CHUNK) { (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); ctr += GHASH_CHUNK / 16; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; GHASH(ctx, out, GHASH_CHUNK); out += GHASH_CHUNK; in += GHASH_CHUNK; len -= GHASH_CHUNK; } # endif # endif if ((i = (len & (size_t)-16))) { size_t j = i / 16; (*stream) (in, out, j, key, ctx->Yi.c); ctr += (unsigned int)j; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; in += i; len -= i; # if defined(GHASH) GHASH(ctx, out, i); out += i; # else while (j--) { for (i = 0; i < 16; ++i) ctx->Xi.c[i] ^= out[i]; GCM_MUL(ctx); out += 16; } # endif } if (len) { (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; while (len--) { # if defined(GHASH) ctx->Xn[mres++] = out[n] = in[n] ^ ctx->EKi.c[n]; # else ctx->Xi.c[mres++] ^= out[n] = in[n] ^ ctx->EKi.c[n]; # endif ++n; } } ctx->mres = mres; return 0; #endif } int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len, ctr128_f stream) { #if defined(OPENSSL_SMALL_FOOTPRINT) return CRYPTO_gcm128_decrypt(ctx, in, out, len); #else DECLARE_IS_ENDIAN; unsigned int n, ctr, mres; size_t i; u64 mlen = ctx->len.u[1]; void *key = ctx->key; mlen += len; if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) return -1; ctx->len.u[1] = mlen; mres = ctx->mres; if (ctx->ares) { /* First call to decrypt finalizes GHASH(AAD) */ # if defined(GHASH) if (len == 0) { GCM_MUL(ctx); ctx->ares = 0; return 0; } memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); ctx->Xi.u[0] = 0; ctx->Xi.u[1] = 0; mres = sizeof(ctx->Xi); # else GCM_MUL(ctx); # endif ctx->ares = 0; } if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctr = BSWAP4(ctx->Yi.d[3]); # else ctr = GETU32(ctx->Yi.c + 12); # endif else ctr = ctx->Yi.d[3]; n = mres % 16; if (n) { # if defined(GHASH) while (n && len) { *(out++) = (ctx->Xn[mres++] = *(in++)) ^ ctx->EKi.c[n]; --len; n = (n + 1) % 16; } if (n == 0) { GHASH(ctx, ctx->Xn, mres); mres = 0; } else { ctx->mres = mres; return 0; } # else while (n && len) { u8 c = *(in++); *(out++) = c ^ ctx->EKi.c[n]; ctx->Xi.c[n] ^= c; --len; n = (n + 1) % 16; } if (n == 0) { GCM_MUL(ctx); mres = 0; } else { ctx->mres = n; return 0; } # endif } # if defined(GHASH) if (len >= 16 && mres) { GHASH(ctx, ctx->Xn, mres); mres = 0; } # if defined(GHASH_CHUNK) while (len >= GHASH_CHUNK) { GHASH(ctx, in, GHASH_CHUNK); (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); ctr += GHASH_CHUNK / 16; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; out += GHASH_CHUNK; in += GHASH_CHUNK; len -= GHASH_CHUNK; } # endif # endif if ((i = (len & (size_t)-16))) { size_t j = i / 16; # if defined(GHASH) GHASH(ctx, in, i); # else while (j--) { size_t k; for (k = 0; k < 16; ++k) ctx->Xi.c[k] ^= in[k]; GCM_MUL(ctx); in += 16; } j = i / 16; in -= i; # endif (*stream) (in, out, j, key, ctx->Yi.c); ctr += (unsigned int)j; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; out += i; in += i; len -= i; } if (len) { (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; while (len--) { # if defined(GHASH) out[n] = (ctx->Xn[mres++] = in[n]) ^ ctx->EKi.c[n]; # else u8 c = in[n]; ctx->Xi.c[mres++] ^= c; out[n] = c ^ ctx->EKi.c[n]; # endif ++n; } } ctx->mres = mres; return 0; #endif } int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const unsigned char *tag, size_t len) { DECLARE_IS_ENDIAN; u64 alen = ctx->len.u[0] << 3; u64 clen = ctx->len.u[1] << 3; #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) u128 bitlen; unsigned int mres = ctx->mres; if (mres) { unsigned blocks = (mres + 15) & -16; memset(ctx->Xn + mres, 0, blocks - mres); mres = blocks; if (mres == sizeof(ctx->Xn)) { GHASH(ctx, ctx->Xn, mres); mres = 0; } } else if (ctx->ares) { GCM_MUL(ctx); } #else if (ctx->mres || ctx->ares) GCM_MUL(ctx); #endif if (IS_LITTLE_ENDIAN) { #ifdef BSWAP8 alen = BSWAP8(alen); clen = BSWAP8(clen); #else u8 *p = ctx->len.c; ctx->len.u[0] = alen; ctx->len.u[1] = clen; alen = (u64)GETU32(p) << 32 | GETU32(p + 4); clen = (u64)GETU32(p + 8) << 32 | GETU32(p + 12); #endif } #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) bitlen.hi = alen; bitlen.lo = clen; memcpy(ctx->Xn + mres, &bitlen, sizeof(bitlen)); mres += sizeof(bitlen); GHASH(ctx, ctx->Xn, mres); #else ctx->Xi.u[0] ^= alen; ctx->Xi.u[1] ^= clen; GCM_MUL(ctx); #endif ctx->Xi.u[0] ^= ctx->EK0.u[0]; ctx->Xi.u[1] ^= ctx->EK0.u[1]; if (tag && len <= sizeof(ctx->Xi)) return CRYPTO_memcmp(ctx->Xi.c, tag, len); else return -1; } void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) { CRYPTO_gcm128_finish(ctx, NULL, 0); memcpy(tag, ctx->Xi.c, len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c)); } GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block) { GCM128_CONTEXT *ret; if ((ret = OPENSSL_malloc(sizeof(*ret))) != NULL) CRYPTO_gcm128_init(ret, key, block); return ret; } void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx) { OPENSSL_clear_free(ctx, sizeof(*ctx)); }
./openssl/crypto/modes/xts128gb.c
/* * Copyright 2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include <string.h> #include <openssl/crypto.h> #include "internal/endian.h" #include "crypto/modes.h" #ifndef STRICT_ALIGNMENT # ifdef __GNUC__ typedef u64 u64_a1 __attribute((__aligned__(1))); # else typedef u64 u64_a1; # endif #endif int ossl_crypto_xts128gb_encrypt(const XTS128_CONTEXT *ctx, const unsigned char iv[16], const unsigned char *inp, unsigned char *out, size_t len, int enc) { DECLARE_IS_ENDIAN; union { u64 u[2]; u32 d[4]; u8 c[16]; } tweak, scratch; unsigned int i; if (len < 16) return -1; memcpy(tweak.c, iv, 16); (*ctx->block2) (tweak.c, tweak.c, ctx->key2); if (!enc && (len % 16)) len -= 16; while (len >= 16) { #if defined(STRICT_ALIGNMENT) memcpy(scratch.c, inp, 16); scratch.u[0] ^= tweak.u[0]; scratch.u[1] ^= tweak.u[1]; #else scratch.u[0] = ((u64_a1 *)inp)[0] ^ tweak.u[0]; scratch.u[1] = ((u64_a1 *)inp)[1] ^ tweak.u[1]; #endif (*ctx->block1) (scratch.c, scratch.c, ctx->key1); #if defined(STRICT_ALIGNMENT) scratch.u[0] ^= tweak.u[0]; scratch.u[1] ^= tweak.u[1]; memcpy(out, scratch.c, 16); #else ((u64_a1 *)out)[0] = scratch.u[0] ^= tweak.u[0]; ((u64_a1 *)out)[1] = scratch.u[1] ^= tweak.u[1]; #endif inp += 16; out += 16; len -= 16; if (len == 0) return 0; if (IS_LITTLE_ENDIAN) { u8 res; u64 hi, lo; #ifdef BSWAP8 hi = BSWAP8(tweak.u[0]); lo = BSWAP8(tweak.u[1]); #else u8 *p = tweak.c; hi = (u64)GETU32(p) << 32 | GETU32(p + 4); lo = (u64)GETU32(p + 8) << 32 | GETU32(p + 12); #endif res = (u8)lo & 1; tweak.u[0] = (lo >> 1) | (hi << 63); tweak.u[1] = hi >> 1; if (res) tweak.c[15] ^= 0xe1; #ifdef BSWAP8 hi = BSWAP8(tweak.u[0]); lo = BSWAP8(tweak.u[1]); #else p = tweak.c; hi = (u64)GETU32(p) << 32 | GETU32(p + 4); lo = (u64)GETU32(p + 8) << 32 | GETU32(p + 12); #endif tweak.u[0] = lo; tweak.u[1] = hi; } else { u8 carry, res; carry = 0; for (i = 0; i < 16; ++i) { res = (tweak.c[i] << 7) & 0x80; tweak.c[i] = ((tweak.c[i] >> 1) + carry) & 0xff; carry = res; } if (res) tweak.c[0] ^= 0xe1; } } if (enc) { for (i = 0; i < len; ++i) { u8 c = inp[i]; out[i] = scratch.c[i]; scratch.c[i] = c; } scratch.u[0] ^= tweak.u[0]; scratch.u[1] ^= tweak.u[1]; (*ctx->block1) (scratch.c, scratch.c, ctx->key1); scratch.u[0] ^= tweak.u[0]; scratch.u[1] ^= tweak.u[1]; memcpy(out - 16, scratch.c, 16); } else { union { u64 u[2]; u8 c[16]; } tweak1; if (IS_LITTLE_ENDIAN) { u8 res; u64 hi, lo; #ifdef BSWAP8 hi = BSWAP8(tweak.u[0]); lo = BSWAP8(tweak.u[1]); #else u8 *p = tweak.c; hi = (u64)GETU32(p) << 32 | GETU32(p + 4); lo = (u64)GETU32(p + 8) << 32 | GETU32(p + 12); #endif res = (u8)lo & 1; tweak1.u[0] = (lo >> 1) | (hi << 63); tweak1.u[1] = hi >> 1; if (res) tweak1.c[15] ^= 0xe1; #ifdef BSWAP8 hi = BSWAP8(tweak1.u[0]); lo = BSWAP8(tweak1.u[1]); #else p = tweak1.c; hi = (u64)GETU32(p) << 32 | GETU32(p + 4); lo = (u64)GETU32(p + 8) << 32 | GETU32(p + 12); #endif tweak1.u[0] = lo; tweak1.u[1] = hi; } else { u8 carry, res; carry = 0; for (i = 0; i < 16; ++i) { res = (tweak.c[i] << 7) & 0x80; tweak1.c[i] = ((tweak.c[i] >> 1) + carry) & 0xff; carry = res; } if (res) tweak1.c[0] ^= 0xe1; } #if defined(STRICT_ALIGNMENT) memcpy(scratch.c, inp, 16); scratch.u[0] ^= tweak1.u[0]; scratch.u[1] ^= tweak1.u[1]; #else scratch.u[0] = ((u64_a1 *)inp)[0] ^ tweak1.u[0]; scratch.u[1] = ((u64_a1 *)inp)[1] ^ tweak1.u[1]; #endif (*ctx->block1) (scratch.c, scratch.c, ctx->key1); scratch.u[0] ^= tweak1.u[0]; scratch.u[1] ^= tweak1.u[1]; for (i = 0; i < len; ++i) { u8 c = inp[16 + i]; out[16 + i] = scratch.c[i]; scratch.c[i] = c; } scratch.u[0] ^= tweak.u[0]; scratch.u[1] ^= tweak.u[1]; (*ctx->block1) (scratch.c, scratch.c, ctx->key1); #if defined(STRICT_ALIGNMENT) scratch.u[0] ^= tweak.u[0]; scratch.u[1] ^= tweak.u[1]; memcpy(out, scratch.c, 16); #else ((u64_a1 *)out)[0] = scratch.u[0] ^ tweak.u[0]; ((u64_a1 *)out)[1] = scratch.u[1] ^ tweak.u[1]; #endif } return 0; }