Source code for transformers.models.convbert.configuration_convbert

# coding=utf-8
# Copyright The HuggingFace team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" ConvBERT model configuration """

from ...configuration_utils import PretrainedConfig
from ...utils import logging


logger = logging.get_logger(__name__)

CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json",
    "YituTech/conv-bert-medium-small": "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json",
    "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json",
    # See all ConvBERT models at https://huggingface.co/models?filter=convbert
}


[docs]class ConvBertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a :class:`~transformers.ConvBertModel`. It is used to instantiate an ConvBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ConvBERT `conv-bert-base <https://huggingface.co/YituTech/conv-bert-base>`__ architecture. Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. Args: vocab_size (:obj:`int`, `optional`, defaults to 30522): Vocabulary size of the ConvBERT model. Defines the number of different tokens that can be represented by the :obj:`inputs_ids` passed when calling :class:`~transformers.ConvBertModel` or :class:`~transformers.TFConvBertModel`. hidden_size (:obj:`int`, `optional`, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (:obj:`int`, `optional`, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (:obj:`int`, `optional`, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (:obj:`int`, `optional`, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, :obj:`"gelu"`, :obj:`"relu"`, :obj:`"selu"` and :obj:`"gelu_new"` are supported. hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (:obj:`int`, `optional`, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (:obj:`int`, `optional`, defaults to 2): The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.ConvBertModel` or :class:`~transformers.TFConvBertModel`. initializer_range (:obj:`float`, `optional`, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12): The epsilon used by the layer normalization layers. head_ratio (:obj:`int`, `optional`, defaults to 2): Ratio gamma to reduce the number of attention heads. num_groups (:obj:`int`, `optional`, defaults to 1): The number of groups for grouped linear layers for ConvBert model conv_kernel_size (:obj:`int`, `optional`, defaults to 9): The size of the convolutional kernel. Example:: >>> from transformers import ConvBertModel, ConvBertConfig >>> # Initializing a ConvBERT convbert-base-uncased style configuration >>> configuration = ConvBertConfig() >>> # Initializing a model from the convbert-base-uncased style configuration >>> model = ConvBertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config """ model_type = "convbert" def __init__( self, vocab_size=30522, hidden_size=768, is_encoder_decoder=False, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=1, bos_token_id=0, eos_token_id=2, embedding_size=768, head_ratio=2, conv_kernel_size=9, num_groups=1, **kwargs, ): super().__init__( pad_token_id=pad_token_id, is_encoder_decoder=is_encoder_decoder, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs, ) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.embedding_size = embedding_size self.head_ratio = head_ratio self.conv_kernel_size = conv_kernel_size self.num_groups = num_groups