ConfigurationΒΆ
The base class PretrainedConfig
implements the common methods for loading/saving a configuration
either from a local file or directory, or from a pretrained model configuration provided by the library (downloaded
from HuggingFaceβs AWS S3 repository).
PretrainedConfigΒΆ
-
class
transformers.
PretrainedConfig
(**kwargs)[source]ΒΆ Base class for all configuration classes. Handles a few parameters common to all modelsβ configurations as well as methods for loading/downloading/saving configurations.
Note
A configuration file can be loaded and saved to disk. Loading the configuration file and using this file to initialize a model does not load the model weights. It only affects the modelβs configuration.
Class attributes (overridden by derived classes)
model_type (
str
) β An identifier for the model type, serialized into the JSON file, and used to recreate the correct object inAutoConfig
.is_composition (
bool
) β Whether the config class is composed of multiple sub-configs. In this case the config has to be initialized from two or more configs of typePretrainedConfig
like:EncoderDecoderConfig
orRagConfig
.keys_to_ignore_at_inference (
List[str]
) β A list of keys to ignore by default when looking at dictionary outputs of the model during inference.
Common attributes (present in all subclasses)
vocab_size (
int
) β The number of tokens in the vocabulary, which is also the first dimension of the embeddings matrix (this attribute may be missing for models that donβt have a text modality like ViT).hidden_size (
int
) β The hidden size of the model.num_attention_heads (
int
) β The number of attention heads used in the multi-head attention layers of the model.num_hidden_layers (
int
) β The number of blocks in the model.
- Parameters
name_or_path (
str
, optional, defaults to""
) β Store the string that was passed tofrom_pretrained()
orfrom_pretrained()
aspretrained_model_name_or_path
if the configuration was created with such a method.output_hidden_states (
bool
, optional, defaults toFalse
) β Whether or not the model should return all hidden-states.output_attentions (
bool
, optional, defaults toFalse
) β Whether or not the model should returns all attentions.return_dict (
bool
, optional, defaults toTrue
) β Whether or not the model should return aModelOutput
instead of a plain tuple.is_encoder_decoder (
bool
, optional, defaults toFalse
) β Whether the model is used as an encoder/decoder or not.is_decoder (
bool
, optional, defaults toFalse
) β Whether the model is used as decoder or not (in which case itβs used as an encoder).add_cross_attention (
bool
, optional, defaults toFalse
) β Whether cross-attention layers should be added to the model. Note, this option is only relevant for models that can be used as decoder models within the :class:~transformers.EncoderDecoderModel class, which consists of all models inAUTO_MODELS_FOR_CAUSAL_LM
.tie_encoder_decoder (
bool
, optional, defaults toFalse
) β Whether all encoder weights should be tied to their equivalent decoder weights. This requires the encoder and decoder model to have the exact same parameter names.prune_heads (
Dict[int, List[int]]
, optional, defaults to{}
) βPruned heads of the model. The keys are the selected layer indices and the associated values, the list of heads to prune in said layer.
For instance
{1: [0, 2], 2: [2, 3]}
will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2.chunk_size_feed_forward (
int
, optional, defaults to0
) β The chunk size of all feed forward layers in the residual attention blocks. A chunk size of0
means that the feed forward layer is not chunked. A chunk size of n means that the feed forward layer processesn
< sequence_length embeddings at a time. For more information on feed forward chunking, see How does Feed Forward Chunking work? .
Parameters for sequence generation
max_length (
int
, optional, defaults to 20) β Maximum length that will be used by default in thegenerate
method of the model.min_length (
int
, optional, defaults to 10) β Minimum length that will be used by default in thegenerate
method of the model.do_sample (
bool
, optional, defaults toFalse
) β Flag that will be used by default in thegenerate
method of the model. Whether or not to use sampling ; use greedy decoding otherwise.early_stopping (
bool
, optional, defaults toFalse
) β Flag that will be used by default in thegenerate
method of the model. Whether to stop the beam search when at leastnum_beams
sentences are finished per batch or not.num_beams (
int
, optional, defaults to 1) β Number of beams for beam search that will be used by default in thegenerate
method of the model. 1 means no beam search.num_beam_groups (
int
, optional, defaults to 1) β Number of groups to dividenum_beams
into in order to ensure diversity among different groups of beams that will be used by default in thegenerate
method of the model. 1 means no group beam search.diversity_penalty (
float
, optional, defaults to 0.0) β Value to control diversity for group beam search. that will be used by default in thegenerate
method of the model. 0 means no diversity penalty. The higher the penalty, the more diverse are the outputs.temperature (
float
, optional, defaults to 1) β The value used to module the next token probabilities that will be used by default in thegenerate
method of the model. Must be strictly positive.top_k (
int
, optional, defaults to 50) β Number of highest probability vocabulary tokens to keep for top-k-filtering that will be used by default in thegenerate
method of the model.top_p (
float
, optional, defaults to 1) β Value that will be used by default in thegenerate
method of the model fortop_p
. If set to float < 1, only the most probable tokens with probabilities that add up totop_p
or higher are kept for generation.repetition_penalty (
float
, optional, defaults to 1) β Parameter for repetition penalty that will be used by default in thegenerate
method of the model. 1.0 means no penalty.length_penalty (
float
, optional, defaults to 1) β Exponential penalty to the length that will be used by default in thegenerate
method of the model.no_repeat_ngram_size (
int
, optional, defaults to 0) β Value that will be used by default in thegenerate
method of the model forno_repeat_ngram_size
. If set to int > 0, all ngrams of that size can only occur once.encoder_no_repeat_ngram_size (
int
, optional, defaults to 0) β Value that will be used by default in thegenerate
method of the model forencoder_no_repeat_ngram_size
. If set to int > 0, all ngrams of that size that occur in theencoder_input_ids
cannot occur in thedecoder_input_ids
.bad_words_ids (
List[int]
, optional) β List of token ids that are not allowed to be generated that will be used by default in thegenerate
method of the model. In order to get the tokens of the words that should not appear in the generated text, usetokenizer.encode(bad_word, add_prefix_space=True)
.num_return_sequences (
int
, optional, defaults to 1) β Number of independently computed returned sequences for each element in the batch that will be used by default in thegenerate
method of the model.output_scores (
bool
, optional, defaults toFalse
) β Whether the model should return the logits when used for generationreturn_dict_in_generate (
bool
, optional, defaults toFalse
) β Whether the model should return aModelOutput
instead of atorch.LongTensor
forced_bos_token_id (
int
, optional) β The id of the token to force as the first generated token after thedecoder_start_token_id
. Useful for multilingual models like mBART where the first generated token needs to be the target language token.forced_eos_token_id (
int
, optional) β The id of the token to force as the last generated token whenmax_length
is reached.remove_invalid_values (
bool
, optional) β Whether to remove possible nan and inf outputs of the model to prevent the generation method to crash. Note that usingremove_invalid_values
can slow down generation.
Parameters for fine-tuning tasks
architectures (
List[str]
, optional) β Model architectures that can be used with the model pretrained weights.finetuning_task (
str
, optional) β Name of the task used to fine-tune the model. This can be used when converting from an original (TensorFlow or PyTorch) checkpoint.id2label (
Dict[int, str]
, optional) β A map from index (for instance prediction index, or target index) to label.label2id (
Dict[str, int]
, optional) β A map from label to index for the model.num_labels (
int
, optional) β Number of labels to use in the last layer added to the model, typically for a classification task.task_specific_params (
Dict[str, Any]
, optional) β Additional keyword arguments to store for the current task.problem_type (
str
, optional) β Problem type forXxxForSequenceClassification
models. Can be one of ("regression"
,"single_label_classification"
,"multi_label_classification"
). Please note that this parameter is only available in the following models: AlbertForSequenceClassification, BertForSequenceClassification, BigBirdForSequenceClassification, ConvBertForSequenceClassification, DistilBertForSequenceClassification, ElectraForSequenceClassification, FunnelForSequenceClassification, LongformerForSequenceClassification, MobileBertForSequenceClassification, ReformerForSequenceClassification, RobertaForSequenceClassification, SqueezeBertForSequenceClassification, XLMForSequenceClassification and XLNetForSequenceClassification.
Parameters linked to the tokenizer
tokenizer_class (
str
, optional) β The name of the associated tokenizer class to use (if none is set, will use the tokenizer associated to the model by default).prefix (
str
, optional) β A specific prompt that should be added at the beginning of each text before calling the model.bos_token_id (
int
, optional)) β The id of the beginning-of-stream token.pad_token_id (
int
, optional)) β The id of the padding token.eos_token_id (
int
, optional)) β The id of the end-of-stream token.decoder_start_token_id (
int
, optional)) β If an encoder-decoder model starts decoding with a different token than bos, the id of that token.sep_token_id (
int
, optional)) β The id of the separation token.
PyTorch specific parameters
torchscript (
bool
, optional, defaults toFalse
) β Whether or not the model should be used with Torchscript.tie_word_embeddings (
bool
, optional, defaults toTrue
) β Whether the modelβs input and output word embeddings should be tied. Note that this is only relevant if the model has a output word embedding layer.torch_dtype (
str
, optional) β Thedtype
of the weights. This attribute can be used to initialize the model to a non-defaultdtype
(which is normallyfloat32
) and thus allow for optimal storage allocation. For example, if the saved model isfloat16
, ideally we want to load it back using the minimal amount of memory needed to loadfloat16
weights. Since the config object is stored in plain text, this attribute contains just the floating type string without thetorch.
prefix. For example, fortorch.float16
torch_dtype
is the"float16"
string.
TensorFlow specific parameters
use_bfloat16 (
bool
, optional, defaults toFalse
) β Whether or not the model should use BFloat16 scalars (only used by some TensorFlow models).
-
classmethod
from_dict
(config_dict: Dict[str, Any], **kwargs) → transformers.configuration_utils.PretrainedConfig[source]ΒΆ Instantiates a
PretrainedConfig
from a Python dictionary of parameters.- Parameters
config_dict (
Dict[str, Any]
) β Dictionary that will be used to instantiate the configuration object. Such a dictionary can be retrieved from a pretrained checkpoint by leveraging theget_config_dict()
method.kwargs (
Dict[str, Any]
) β Additional parameters from which to initialize the configuration object.
- Returns
The configuration object instantiated from those parameters.
- Return type
-
classmethod
from_json_file
(json_file: Union[str, os.PathLike]) → transformers.configuration_utils.PretrainedConfig[source]ΒΆ Instantiates a
PretrainedConfig
from the path to a JSON file of parameters.- Parameters
json_file (
str
oros.PathLike
) β Path to the JSON file containing the parameters.- Returns
The configuration object instantiated from that JSON file.
- Return type
-
classmethod
from_pretrained
(pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) → transformers.configuration_utils.PretrainedConfig[source]ΒΆ Instantiate a
PretrainedConfig
(or a derived class) from a pretrained model configuration.- Parameters
pretrained_model_name_or_path (
str
oros.PathLike
) βThis can be either:
a string, the model id of a pretrained model configuration hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like
bert-base-uncased
, or namespaced under a user or organization name, likedbmdz/bert-base-german-cased
.a path to a directory containing a configuration file saved using the
save_pretrained()
method, e.g.,./my_model_directory/
.a path or url to a saved configuration JSON file, e.g.,
./my_model_directory/configuration.json
.
cache_dir (
str
oros.PathLike
, optional) β Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used.force_download (
bool
, optional, defaults toFalse
) β Whether or not to force to (re-)download the configuration files and override the cached versions if they exist.resume_download (
bool
, optional, defaults toFalse
) β Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.proxies (
Dict[str, str]
, optional) β A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
The proxies are used on each request.use_auth_token (
str
or bool, optional) β The token to use as HTTP bearer authorization for remote files. IfTrue
, will use the token generated when runningtransformers-cli login
(stored inhuggingface
).revision (
str
, optional, defaults to"main"
) β The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevision
can be any identifier allowed by git.return_unused_kwargs (
bool
, optional, defaults toFalse
) βIf
False
, then this function returns just the final configuration object.If
True
, then this functions returns aTuple(config, unused_kwargs)
where unused_kwargs is a dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the part ofkwargs
which has not been used to updateconfig
and is otherwise ignored.kwargs (
Dict[str, Any]
, optional) β The values in kwargs of any keys which are configuration attributes will be used to override the loaded values. Behavior concerning key/value pairs whose keys are not configuration attributes is controlled by thereturn_unused_kwargs
keyword parameter.
Note
Passing
use_auth_token=True
is required when you want to use a private model.- Returns
The configuration object instantiated from this pretrained model.
- Return type
Examples:
# We can't instantiate directly the base class `PretrainedConfig` so let's show the examples on a # derived class: BertConfig config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from huggingface.co and cache. config = BertConfig.from_pretrained('./test/saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')` config = BertConfig.from_pretrained('./test/saved_model/my_configuration.json') config = BertConfig.from_pretrained('bert-base-uncased', output_attentions=True, foo=False) assert config.output_attentions == True config, unused_kwargs = BertConfig.from_pretrained('bert-base-uncased', output_attentions=True, foo=False, return_unused_kwargs=True) assert config.output_attentions == True assert unused_kwargs == {'foo': False}
-
classmethod
get_config_dict
(pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) → Tuple[Dict[str, Any], Dict[str, Any]][source]ΒΆ From a
pretrained_model_name_or_path
, resolve to a dictionary of parameters, to be used for instantiating aPretrainedConfig
usingfrom_dict
.- Parameters
pretrained_model_name_or_path (
str
oros.PathLike
) β The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.- Returns
The dictionary(ies) that will be used to instantiate the configuration object.
- Return type
Tuple[Dict, Dict]
-
property
num_labels
ΒΆ The number of labels for classification models.
- Type
int
-
push_to_hub
(repo_path_or_name: Optional[str] = None, repo_url: Optional[str] = None, use_temp_dir: bool = False, commit_message: Optional[str] = None, organization: Optional[str] = None, private: Optional[bool] = None, use_auth_token: Optional[Union[bool, str]] = None) → strΒΆ Upload the configuration file to the π€ Model Hub while synchronizing a local clone of the repo in
repo_path_or_name
.- Parameters
repo_path_or_name (
str
, optional) β Can either be a repository name for your config in the Hub or a path to a local folder (in which case the repository will have the name of that local folder). If not specified, will default to the name given byrepo_url
and a local directory with that name will be created.repo_url (
str
, optional) β Specify this in case you want to push to an existing repository in the hub. If unspecified, a new repository will be created in your namespace (unless you specify anorganization
) withrepo_name
.use_temp_dir (
bool
, optional, defaults toFalse
) β Whether or not to clone the distant repo in a temporary directory or inrepo_path_or_name
inside the current working directory. This will slow things down if you are making changes in an existing repo since you will need to clone the repo before every push.commit_message (
str
, optional) β Message to commit while pushing. Will default to"add config"
.organization (
str
, optional) β Organization in which you want to push your config (you must be a member of this organization).private (
bool
, optional) β Whether or not the repository created should be private (requires a paying subscription).use_auth_token (
bool
orstr
, optional) β The token to use as HTTP bearer authorization for remote files. IfTrue
, will use the token generated when runningtransformers-cli login
(stored inhuggingface
). Will default toTrue
ifrepo_url
is not specified.
- Returns
The url of the commit of your config in the given repository.
- Return type
str
Examples:
from transformers import AutoConfig config = AutoConfig.from_pretrained("bert-base-cased") # Push the config to your namespace with the name "my-finetuned-bert" and have a local clone in the # `my-finetuned-bert` folder. config.push_to_hub("my-finetuned-bert") # Push the config to your namespace with the name "my-finetuned-bert" with no local clone. config.push_to_hub("my-finetuned-bert", use_temp_dir=True) # Push the config to an organization with the name "my-finetuned-bert" and have a local clone in the # `my-finetuned-bert` folder. config.push_to_hub("my-finetuned-bert", organization="huggingface") # Make a change to an existing repo that has been cloned locally in `my-finetuned-bert`. config.push_to_hub("my-finetuned-bert", repo_url="https://huggingface.co/sgugger/my-finetuned-bert")
-
save_pretrained
(save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs)[source]ΒΆ Save a configuration object to the directory
save_directory
, so that it can be re-loaded using thefrom_pretrained()
class method.- Parameters
save_directory (
str
oros.PathLike
) β Directory where the configuration JSON file will be saved (will be created if it does not exist).push_to_hub (
bool
, optional, defaults toFalse
) βWhether or not to push your model to the Hugging Face model hub after saving it.
Warning
Using
push_to_hub=True
will synchronize the repository you are pushing to withsave_directory
, which requiressave_directory
to be a local clone of the repo you are pushing to if itβs an existing folder. Pass alongtemp_dir=True
to use a temporary directory instead.kwargs β Additional key word arguments passed along to the
push_to_hub()
method.
-
to_dict
() → Dict[str, Any][source]ΒΆ Serializes this instance to a Python dictionary.
- Returns
Dictionary of all the attributes that make up this configuration instance.
- Return type
Dict[str, Any]
-
to_diff_dict
() → Dict[str, Any][source]ΒΆ Removes all attributes from config which correspond to the default config attributes for better readability and serializes to a Python dictionary.
- Returns
Dictionary of all the attributes that make up this configuration instance,
- Return type
Dict[str, Any]
-
to_json_file
(json_file_path: Union[str, os.PathLike], use_diff: bool = True)[source]ΒΆ Save this instance to a JSON file.
- Parameters
json_file_path (
str
oros.PathLike
) β Path to the JSON file in which this configuration instanceβs parameters will be saved.use_diff (
bool
, optional, defaults toTrue
) β If set toTrue
, only the difference between the config instance and the defaultPretrainedConfig()
is serialized to JSON file.
-
to_json_string
(use_diff: bool = True) → str[source]ΒΆ Serializes this instance to a JSON string.
- Parameters
use_diff (
bool
, optional, defaults toTrue
) β If set toTrue
, only the difference between the config instance and the defaultPretrainedConfig()
is serialized to JSON string.- Returns
String containing all the attributes that make up this configuration instance in JSON format.
- Return type
str
-
update
(config_dict: Dict[str, Any])[source]ΒΆ Updates attributes of this class with attributes from
config_dict
.- Parameters
config_dict (
Dict[str, Any]
) β Dictionary of attributes that should be updated for this class.
-
update_from_string
(update_str: str)[source]ΒΆ Updates attributes of this class with attributes from
update_str
.The expected format is ints, floats and strings as is, and for booleans use
true
orfalse
. For example: βn_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_indexβThe keys to change have to already exist in the config object.
- Parameters
update_str (
str
) β String with attributes that should be updated for this class.
-
property
use_return_dict
ΒΆ Whether or not return
ModelOutput
instead of tuples.- Type
bool