Source code for transformers.models.t5.tokenization_t5

# coding=utf-8
# Copyright 2018 T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization class for model T5."""


import os
import re
import warnings
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple

import sentencepiece as spm

from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging


logger = logging.get_logger(__name__)

VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}

PRETRAINED_VOCAB_FILES_MAP = {
    "vocab_file": {
        "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model",
        "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model",
        "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model",
        "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model",
        "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model",
    }
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    "t5-small": 512,
    "t5-base": 512,
    "t5-large": 512,
    "t5-3b": 512,
    "t5-11b": 512,
}


[docs]class T5Tokenizer(PreTrainedTokenizer): """ Construct a T5 tokenizer. Based on `SentencePiece <https://github.com/google/sentencepiece>`__. This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (:obj:`str`): `SentencePiece <https://github.com/google/sentencepiece>`__ file (generally has a `.spm` extension) that contains the vocabulary necessary to instantiate a tokenizer. eos_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`): The end of sequence token. .. note:: When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the :obj:`sep_token`. unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`): The token used for padding, for example when batching sequences of different lengths. extra_ids (:obj:`int`, `optional`, defaults to 100): Add a number of extra ids added to the end of the vocabulary for use as sentinels. These tokens are accessible as "<extra_id_{%d}>" where "{%d}" is a number between 0 and extra_ids-1. Extra tokens are indexed from the end of the vocabulary up to beginning ("<extra_id_0>" is the last token in the vocabulary like in T5 preprocessing see `here <https://github.com/google-research/text-to-text-transfer-transformer/blob/9fd7b14a769417be33bc6c850f9598764913c833/t5/data/preprocessors.py#L2117>`__). additional_special_tokens (:obj:`List[str]`, `optional`): Additional special tokens used by the tokenizer. sp_model_kwargs (:obj:`dict`, `optional`): Will be passed to the ``SentencePieceProcessor.__init__()`` method. The `Python wrapper for SentencePiece <https://github.com/google/sentencepiece/tree/master/python>`__ can be used, among other things, to set: - ``enable_sampling``: Enable subword regularization. - ``nbest_size``: Sampling parameters for unigram. Invalid for BPE-Dropout. - ``nbest_size = {0,1}``: No sampling is performed. - ``nbest_size > 1``: samples from the nbest_size results. - ``nbest_size < 0``: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - ``alpha``: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Attributes: sp_model (:obj:`SentencePieceProcessor`): The `SentencePiece` processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, eos_token="</s>", unk_token="<unk>", pad_token="<pad>", extra_ids=100, additional_special_tokens=None, sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: additional_special_tokens = [f"<extra_id_{i}>" for i in range(extra_ids)] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens extra_tokens = len(set(filter(lambda x: bool("extra_id" in str(x)), additional_special_tokens))) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are provided to T5Tokenizer. " "In this case the additional_special_tokens must include the extra_ids tokens" ) self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, extra_ids=extra_ids, additional_special_tokens=additional_special_tokens, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) self.vocab_file = vocab_file self._extra_ids = extra_ids self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(vocab_file) @property def vocab_size(self): return self.sp_model.get_piece_size() + self._extra_ids def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab
[docs] def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer ``prepare_for_model`` method. Args: token_ids_0 (:obj:`List[int]`): List of IDs. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not the token list is already formatted with special tokens for the model. Returns: :obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) # normal case: some special tokens if token_ids_1 is None: return ([0] * len(token_ids_0)) + [1] return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]: """Do not add eos again if user already added it.""" if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id]
[docs] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (:obj:`List[int]`): List of IDs. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of zeros. """ eos = [self.eos_token_id] if token_ids_1 is None: return len(token_ids_0 + eos) * [0] return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
[docs] def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A sequence has the following format: - single sequence: ``X </s>`` - pair of sequences: ``A </s> B </s>`` Args: token_ids_0 (:obj:`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. """ token_ids_0 = self._add_eos_if_not_present(token_ids_0) if token_ids_1 is None: return token_ids_0 else: token_ids_1 = self._add_eos_if_not_present(token_ids_1) return token_ids_0 + token_ids_1
def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _tokenize(self, text: str) -> List[str]: """Take as input a string and return a list of strings (tokens) for words/sub-words""" return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" if token.startswith("<extra_id_"): match = re.match(r"<extra_id_(\d+)>", token) num = int(match.group(1)) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" if index < self.sp_model.get_piece_size(): token = self.sp_model.IdToPiece(index) else: token = f"<extra_id_{self.vocab_size - 1 - index}>" return token def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode_pieces(current_sub_tokens) + token + " " current_sub_tokens = [] else: current_sub_tokens.append(token) out_string += self.sp_model.decode_pieces(current_sub_tokens) return out_string.strip()
[docs] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) logger.info(f"Copy vocab file to {out_vocab_file}") return (out_vocab_file,)