# coding=utf-8
# Copyright 2021 Google Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BigBird model configuration """
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json",
"google/bigbird-roberta-large": "https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json",
"google/bigbird-base-trivia-itc": "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json",
# See all BigBird models at https://huggingface.co/models?filter=big_bird
}
[docs]class BigBirdConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a :class:`~transformers.BigBirdModel`. It is used to
instantiate an BigBird model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the BigBird
`google/bigbird-roberta-base <https://huggingface.co/google/bigbird-roberta-base>`__ architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
vocab_size (:obj:`int`, `optional`, defaults to 50358):
Vocabulary size of the BigBird model. Defines the number of different tokens that can be represented by the
:obj:`inputs_ids` passed when calling :class:`~transformers.BigBirdModel`.
hidden_size (:obj:`int`, `optional`, defaults to 768):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (:obj:`int`, `optional`, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (:obj:`int`, `optional`, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (:obj:`int`, `optional`, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"gelu_new"`):
The non-linear activation function (function or string) in the encoder and pooler. If string,
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"selu"` and :obj:`"gelu_new"` are supported.
hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (:obj:`int`, `optional`, defaults to 4096):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 1024 or 2048 or 4096).
type_vocab_size (:obj:`int`, `optional`, defaults to 2):
The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.BigBirdModel`.
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12):
The epsilon used by the layer normalization layers.
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if ``config.is_decoder=True``.
attention_type (:obj:`str`, `optional`, defaults to :obj:`"block_sparse"`)
Whether to use block sparse attention (with n complexity) as introduced in paper or original attention
layer (with n^2 complexity). Possible values are :obj:`"original_full"` and :obj:`"block_sparse"`.
use_bias (:obj:`bool`, `optional`, defaults to :obj:`True`)
Whether to use bias in query, key, value.
rescale_embeddings (:obj:`bool`, `optional`, defaults to :obj:`False`)
Whether to rescale embeddings with (hidden_size ** 0.5).
block_size (:obj:`int`, `optional`, defaults to 64)
Size of each block. Useful only when :obj:`attention_type == "block_sparse"`.
num_random_blocks (:obj:`int`, `optional`, defaults to 3)
Each query is going to attend these many number of random blocks. Useful only when :obj:`attention_type ==
"block_sparse"`.
gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`):
If True, use gradient checkpointing to save memory at the expense of slower backward pass.
Example::
>>> from transformers import BigBirdModel, BigBirdConfig
>>> # Initializing a BigBird google/bigbird-roberta-base style configuration
>>> configuration = BigBirdConfig()
>>> # Initializing a model from the google/bigbird-roberta-base style configuration
>>> model = BigBirdModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
"""
model_type = "big_bird"
def __init__(
self,
vocab_size=50358,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu_new",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=4096,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
use_cache=True,
is_encoder_decoder=False,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
sep_token_id=66,
attention_type="block_sparse",
use_bias=True,
rescale_embeddings=False,
block_size=64,
num_random_blocks=3,
gradient_checkpointing=False,
**kwargs
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
sep_token_id=sep_token_id,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache
self.is_encoder_decoder = is_encoder_decoder
self.gradient_checkpointing = gradient_checkpointing
self.rescale_embeddings = rescale_embeddings
self.attention_type = attention_type
self.use_bias = use_bias
self.block_size = block_size
self.num_random_blocks = num_random_blocks