# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tensorflow trainer class."""
import datetime
import math
import os
from typing import Callable, Dict, Optional, Tuple
from .file_utils import ENV_VARS_TRUE_VALUES
# Integrations must be imported before ML frameworks:
from .integrations import ( # isort: split
is_comet_available,
is_wandb_available,
)
import numpy as np
import tensorflow as tf
from tensorflow.python.distribute.values import PerReplica
from .modeling_tf_utils import TFPreTrainedModel
from .optimization_tf import GradientAccumulator, create_optimizer
from .trainer_utils import PREFIX_CHECKPOINT_DIR, EvalPrediction, IntervalStrategy, PredictionOutput, set_seed
from .training_args_tf import TFTrainingArguments
from .utils import logging
if is_wandb_available():
import wandb
if is_comet_available():
import comet_ml
logger = logging.get_logger(__name__)
[docs]class TFTrainer:
"""
TFTrainer is a simple but feature-complete training and eval loop for TensorFlow, optimized for 🤗 Transformers.
Args:
model (:class:`~transformers.TFPreTrainedModel`):
The model to train, evaluate or use for predictions.
args (:class:`~transformers.TFTrainingArguments`):
The arguments to tweak training.
train_dataset (:class:`~tf.data.Dataset`, `optional`):
The dataset to use for training. The dataset should yield tuples of ``(features, labels)`` where
``features`` is a dict of input features and ``labels`` is the labels. If ``labels`` is a tensor, the loss
is calculated by the model by calling ``model(features, labels=labels)``. If ``labels`` is a dict, such as
when using a QuestionAnswering head model with multiple targets, the loss is instead calculated by calling
``model(features, **labels)``.
eval_dataset (:class:`~tf.data.Dataset`, `optional`):
The dataset to use for evaluation. The dataset should yield tuples of ``(features, labels)`` where
``features`` is a dict of input features and ``labels`` is the labels. If ``labels`` is a tensor, the loss
is calculated by the model by calling ``model(features, labels=labels)``. If ``labels`` is a dict, such as
when using a QuestionAnswering head model with multiple targets, the loss is instead calculated by calling
``model(features, **labels)``.
compute_metrics (:obj:`Callable[[EvalPrediction], Dict]`, `optional`):
The function that will be used to compute metrics at evaluation. Must take a
:class:`~transformers.EvalPrediction` and return a dictionary string to metric values.
tb_writer (:obj:`tf.summary.SummaryWriter`, `optional`):
Object to write to TensorBoard.
optimizers (:obj:`Tuple[tf.keras.optimizers.Optimizer, tf.keras.optimizers.schedules.LearningRateSchedule]`, `optional`):
A tuple containing the optimizer and the scheduler to use. The optimizer default to an instance of
:class:`tf.keras.optimizers.Adam` if :obj:`args.weight_decay_rate` is 0 else an instance of
:class:`~transformers.AdamWeightDecay`. The scheduler will default to an instance of
:class:`tf.keras.optimizers.schedules.PolynomialDecay` if :obj:`args.num_warmup_steps` is 0 else an
instance of :class:`~transformers.WarmUp`.
"""
def __init__(
self,
model: TFPreTrainedModel,
args: TFTrainingArguments,
train_dataset: Optional[tf.data.Dataset] = None,
eval_dataset: Optional[tf.data.Dataset] = None,
compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
tb_writer: Optional[tf.summary.SummaryWriter] = None,
optimizers: Tuple[tf.keras.optimizers.Optimizer, tf.keras.optimizers.schedules.LearningRateSchedule] = (
None,
None,
),
):
self.model = model
self.args = args
self.train_dataset = train_dataset
self.eval_dataset = eval_dataset
self.compute_metrics = compute_metrics
self.optimizer, self.lr_scheduler = optimizers
self.gradient_accumulator = GradientAccumulator()
self.global_step = 0
self.epoch_logging = 0
self.eval_loss = tf.keras.metrics.Sum()
if tb_writer is not None:
self.tb_writer = tb_writer
else:
self.tb_writer = tf.summary.create_file_writer(self.args.logging_dir)
if is_wandb_available():
self.setup_wandb()
elif os.getenv("WANDB_DISABLED", "").upper() not in ENV_VARS_TRUE_VALUES:
logger.info(
"You are instantiating a Trainer but W&B is not installed. To use wandb logging, "
"run `pip install wandb; wandb login` see https://docs.wandb.com/huggingface."
)
if is_comet_available():
self.setup_comet()
elif os.environ.get("COMET_MODE") != "DISABLED":
logger.info(
"To use comet_ml logging, run `pip/conda install comet_ml` "
"see https://www.comet.ml/docs/python-sdk/huggingface/"
)
set_seed(self.args.seed)
[docs] def get_train_tfdataset(self) -> tf.data.Dataset:
"""
Returns the training :class:`~tf.data.Dataset`.
Subclass and override this method if you want to inject some custom behavior.
"""
if self.train_dataset is None:
raise ValueError("Trainer: training requires a train_dataset.")
self.total_train_batch_size = self.args.train_batch_size * self.args.gradient_accumulation_steps
self.num_train_examples = self.train_dataset.cardinality().numpy()
if self.num_train_examples < 0:
raise ValueError("The training dataset must have an asserted cardinality")
ds = (
self.train_dataset.repeat()
.shuffle(self.num_train_examples, seed=self.args.seed)
.batch(self.total_train_batch_size, drop_remainder=self.args.dataloader_drop_last)
.prefetch(tf.data.experimental.AUTOTUNE)
)
return self.args.strategy.experimental_distribute_dataset(ds)
[docs] def get_eval_tfdataset(self, eval_dataset: Optional[tf.data.Dataset] = None) -> tf.data.Dataset:
"""
Returns the evaluation :class:`~tf.data.Dataset`.
Args:
eval_dataset (:class:`~tf.data.Dataset`, `optional`):
If provided, will override `self.eval_dataset`. The dataset should yield tuples of ``(features,
labels)`` where ``features`` is a dict of input features and ``labels`` is the labels. If ``labels`` is
a tensor, the loss is calculated by the model by calling ``model(features, labels=labels)``. If
``labels`` is a dict, such as when using a QuestionAnswering head model with multiple targets, the loss
is instead calculated by calling ``model(features, **labels)``.
Subclass and override this method if you want to inject some custom behavior.
"""
if eval_dataset is None and self.eval_dataset is None:
raise ValueError("Trainer: evaluation requires an eval_dataset.")
eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
num_examples = eval_dataset.cardinality().numpy()
if num_examples < 0:
raise ValueError("The training dataset must have an asserted cardinality")
approx = math.floor if self.args.dataloader_drop_last else math.ceil
steps = approx(num_examples / self.args.eval_batch_size)
ds = (
eval_dataset.repeat()
.batch(self.args.eval_batch_size, drop_remainder=self.args.dataloader_drop_last)
.prefetch(tf.data.experimental.AUTOTUNE)
)
return self.args.strategy.experimental_distribute_dataset(ds), steps, num_examples
[docs] def get_test_tfdataset(self, test_dataset: tf.data.Dataset) -> tf.data.Dataset:
"""
Returns a test :class:`~tf.data.Dataset`.
Args:
test_dataset (:class:`~tf.data.Dataset`):
The dataset to use. The dataset should yield tuples of ``(features, labels)`` where ``features`` is a
dict of input features and ``labels`` is the labels. If ``labels`` is a tensor, the loss is calculated
by the model by calling ``model(features, labels=labels)``. If ``labels`` is a dict, such as when using
a QuestionAnswering head model with multiple targets, the loss is instead calculated by calling
``model(features, **labels)``.
Subclass and override this method if you want to inject some custom behavior.
"""
num_examples = test_dataset.cardinality().numpy()
if num_examples < 0:
raise ValueError("The training dataset must have an asserted cardinality")
steps = math.ceil(num_examples / self.args.eval_batch_size)
ds = test_dataset.batch(self.args.eval_batch_size).prefetch(tf.data.experimental.AUTOTUNE)
return self.args.strategy.experimental_distribute_dataset(ds), steps, num_examples
[docs] def create_optimizer_and_scheduler(self, num_training_steps: int):
"""
Setup the optimizer and the learning rate scheduler.
We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
TFTrainer's init through :obj:`optimizers`, or subclass and override this method.
"""
if not self.optimizer and not self.lr_scheduler:
warmup_steps = (
self.args.warmup_steps
if self.args.warmup_steps > 0
else math.ceil(num_training_steps * self.args.warmup_ratio)
)
self.optimizer, self.lr_scheduler = create_optimizer(
self.args.learning_rate,
num_training_steps,
warmup_steps,
adam_beta1=self.args.adam_beta1,
adam_beta2=self.args.adam_beta2,
adam_epsilon=self.args.adam_epsilon,
weight_decay_rate=self.args.weight_decay,
power=self.args.poly_power,
)
[docs] def setup_wandb(self):
"""
Setup the optional Weights & Biases (`wandb`) integration.
One can subclass and override this method to customize the setup if needed. Find more information `here
<https://docs.wandb.com/huggingface>`__. You can also override the following environment variables:
Environment:
WANDB_PROJECT:
(Optional): str - "huggingface" by default, set this to a custom string to store results in a different
project.
WANDB_DISABLED:
(Optional): boolean - defaults to false, set to "true" to disable wandb entirely.
"""
logger.info('Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"')
combined_dict = {**self.model.config.to_dict(), **self.args.to_sanitized_dict()}
wandb.init(project=os.getenv("WANDB_PROJECT", "huggingface"), config=combined_dict, name=self.args.run_name)
[docs] def setup_comet(self):
"""
Setup the optional Comet.ml integration.
Environment:
COMET_MODE:
(Optional): str - "OFFLINE", "ONLINE", or "DISABLED"
COMET_PROJECT_NAME:
(Optional): str - Comet.ml project name for experiments
COMET_OFFLINE_DIRECTORY:
(Optional): str - folder to use for saving offline experiments when `COMET_MODE` is "OFFLINE"
For a number of configurable items in the environment, see `here
<https://www.comet.ml/docs/python-sdk/advanced/#comet-configuration-variables>`__
"""
comet_mode = os.getenv("COMET_MODE", "ONLINE").upper()
args = {"project_name": os.getenv("COMET_PROJECT_NAME", "huggingface")}
experiment = None
if comet_mode == "ONLINE":
experiment = comet_ml.Experiment(**args)
logger.info("Automatic Comet.ml online logging enabled")
elif comet_mode == "OFFLINE":
args["offline_directory"] = os.getenv("COMET_OFFLINE_DIRECTORY", "./")
experiment = comet_ml.OfflineExperiment(**args)
logger.info("Automatic Comet.ml offline logging enabled; use `comet upload` when finished")
if experiment is not None:
experiment._set_model_graph(self.model, framework="transformers")
experiment._log_parameters(self.args, prefix="args/", framework="transformers")
experiment._log_parameters(self.model.config, prefix="config/", framework="transformers")
[docs] def prediction_loop(
self,
dataset: tf.data.Dataset,
steps: int,
num_examples: int,
description: str,
prediction_loss_only: Optional[bool] = None,
) -> PredictionOutput:
"""
Prediction/evaluation loop, shared by :func:`~transformers.TFTrainer.evaluate` and
:func:`~transformers.TFTrainer.predict`.
Works both with or without labels.
"""
prediction_loss_only = (
prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only
)
logger.info(f"***** Running {description} *****")
logger.info(f" Num examples in dataset = {num_examples}")
if description == "Evaluation":
logger.info(f" Num examples in used in evaluation = {self.args.eval_batch_size * steps}")
logger.info(f" Batch size = {self.args.eval_batch_size}")
label_ids: np.ndarray = None
preds: np.ndarray = None
self.eval_loss.reset_states()
# Reset the past mems state at the beginning of the evaluation if necessary.
if self.args.past_index >= 0:
self._past = None
for step, batch in enumerate(dataset):
logits = self.distributed_prediction_steps(batch)
_, labels = batch
if not prediction_loss_only:
if isinstance(logits, tuple):
logits = logits[0]
if isinstance(labels, tuple):
labels = labels[0]
if self.args.n_replicas > 1:
for val in logits.values:
if preds is None:
preds = val.numpy()
else:
preds = np.append(preds, val.numpy(), axis=0)
for val in labels.values:
if label_ids is None:
label_ids = val.numpy()
else:
label_ids = np.append(label_ids, val.numpy(), axis=0)
else:
if preds is None:
preds = logits.numpy()
else:
preds = np.append(preds, logits.numpy(), axis=0)
if label_ids is None:
label_ids = labels.numpy()
else:
label_ids = np.append(label_ids, labels.numpy(), axis=0)
if step == steps - 1:
break
if self.compute_metrics is not None and preds is not None and label_ids is not None:
metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids))
else:
metrics = {}
metrics["eval_loss"] = self.eval_loss.result().numpy() / steps
for key in list(metrics.keys()):
if not key.startswith("eval_"):
metrics[f"eval_{key}"] = metrics.pop(key)
if self.args.past_index and hasattr(self, "_past"):
# Clean the state at the end of training
delattr(self, "_past")
return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics)
[docs] def log(self, logs: Dict[str, float]) -> None:
"""
Log :obj:`logs` on the various objects watching training.
Subclass and override this method to inject custom behavior.
Args:
logs (:obj:`Dict[str, float]`):
The values to log.
"""
logs["epoch"] = self.epoch_logging
if self.tb_writer:
with self.tb_writer.as_default():
for k, v in logs.items():
tf.summary.scalar(k, v, step=self.global_step)
self.tb_writer.flush()
if is_wandb_available():
wandb.log(logs, step=self.global_step)
if is_comet_available():
experiment = comet_ml.config.get_global_experiment()
if experiment is not None:
experiment._log_metrics(
logs, step=self.global_step, epoch=self.epoch_logging, framework="transformers"
)
output = {**logs, **{"step": self.global_step}}
logger.info(output)
[docs] def evaluate(self, eval_dataset: Optional[tf.data.Dataset] = None) -> Dict[str, float]:
"""
Run evaluation and returns metrics.
The calling script will be responsible for providing a method to compute metrics, as they are task-dependent
(pass it to the init :obj:`compute_metrics` argument).
Args:
eval_dataset (:class:`~tf.data.Dataset`, `optional`):
Pass a dataset if you wish to override :obj:`self.eval_dataset`. The dataset should yield tuples of
``(features, labels)`` where ``features`` is a dict of input features and ``labels`` is the labels. If
``labels`` is a tensor, the loss is calculated by the model by calling ``model(features,
labels=labels)``. If ``labels`` is a dict, such as when using a QuestionAnswering head model with
multiple targets, the loss is instead calculated by calling ``model(features, **labels)``.
Returns:
A dictionary containing the evaluation loss and the potential metrics computed from the predictions.
"""
eval_ds, steps, num_examples = self.get_eval_tfdataset(eval_dataset)
output = self.prediction_loop(eval_ds, steps, num_examples, description="Evaluation")
logs = {**output.metrics}
logs["epoch"] = self.epoch_logging
self.log(logs)
return output.metrics
[docs] def prediction_step(
self, features: tf.Tensor, labels: tf.Tensor, nb_instances_in_global_batch: tf.Tensor
) -> tf.Tensor:
"""
Compute the prediction on features and update the loss with labels.
Subclass and override to inject some custom behavior.
"""
per_example_loss, logits = self.run_model(features, labels, False)
scaled_loss = per_example_loss / tf.cast(nb_instances_in_global_batch, dtype=per_example_loss.dtype)
self.eval_loss.update_state(scaled_loss)
return logits
@tf.function
def distributed_prediction_steps(self, batch):
nb_instances_in_batch = self._compute_nb_instances(batch)
inputs = self._get_step_inputs(batch, nb_instances_in_batch)
logits = self.args.strategy.run(self.prediction_step, inputs)
return logits
[docs] def train(self) -> None:
"""
Train method to train the model.
"""
train_ds = self.get_train_tfdataset()
if self.args.debug:
tf.summary.trace_on(graph=True, profiler=True)
self.gradient_accumulator.reset()
num_update_steps_per_epoch = self.num_train_examples / self.total_train_batch_size
# In fact, ``self.args.dataloader_drop_last`` has no effect in `trainer_tf.py`, because
# the dataset is repeated before being batched.
# It has the effect only when TPU is used which requires explicit tensor shape in order to make
# the gradient accumulation implementation work.
approx = math.floor if self.args.dataloader_drop_last else math.ceil
num_update_steps_per_epoch = approx(num_update_steps_per_epoch)
# At least one update for each epoch.
num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
self.steps_per_epoch = num_update_steps_per_epoch
if self.args.max_steps > 0:
t_total = self.args.max_steps
epochs = (self.args.max_steps // self.steps_per_epoch) + int(
self.args.max_steps % self.steps_per_epoch > 0
)
else:
t_total = self.steps_per_epoch * self.args.num_train_epochs
epochs = self.args.num_train_epochs
# Since ``self.args.num_train_epochs`` can be `float`, we make ``epochs`` be a `float` always.
epochs = float(epochs)
with self.args.strategy.scope():
self.create_optimizer_and_scheduler(num_training_steps=t_total)
folder = os.path.join(self.args.output_dir, PREFIX_CHECKPOINT_DIR)
ckpt = tf.train.Checkpoint(optimizer=self.optimizer, model=self.model)
self.model.ckpt_manager = tf.train.CheckpointManager(ckpt, folder, max_to_keep=self.args.save_total_limit)
iterations = self.optimizer.iterations
epochs_trained = 0
steps_trained_in_current_epoch = 0
if self.model.ckpt_manager.latest_checkpoint:
logger.info(
f"Checkpoint file {self.model.ckpt_manager.latest_checkpoint} found and restoring from checkpoint"
)
ckpt.restore(self.model.ckpt_manager.latest_checkpoint).expect_partial()
self.global_step = iterations.numpy()
epochs_trained = self.global_step // self.steps_per_epoch
steps_trained_in_current_epoch = self.global_step % self.steps_per_epoch
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(f" Continuing training from epoch {epochs_trained}")
logger.info(f" Continuing training from global step {self.global_step}")
logger.info(f" Will skip the first {steps_trained_in_current_epoch} steps in the first epoch")
tf.summary.experimental.set_step(self.global_step)
with self.tb_writer.as_default():
tf.summary.text("args", self.args.to_json_string())
self.tb_writer.flush()
logger.info("***** Running training *****")
logger.info(f" Num examples = {self.num_train_examples}")
# TODO: We might want to print a more precise ``epochs`` if self.args.max_steps > 0 ?
logger.info(f" Num Epochs = {epochs}")
logger.info(f" Instantaneous batch size per device = {self.args.per_device_train_batch_size}")
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {self.total_train_batch_size}"
)
logger.info(f" Gradient Accumulation steps = {self.args.gradient_accumulation_steps}")
logger.info(f" Steps per epoch = {self.steps_per_epoch}")
logger.info(f" Total optimization steps = {t_total}")
self.train_loss = tf.keras.metrics.Sum()
start_time = datetime.datetime.now()
for epoch_iter in range(epochs_trained, int(epochs)):
# Reset the past mems state at the beginning of each epoch if necessary.
if self.args.past_index >= 0:
self._past = None
for step, batch in enumerate(train_ds):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
self.distributed_training_steps(batch)
self.global_step = iterations.numpy()
self.epoch_logging = epoch_iter + (step + 1) / self.steps_per_epoch
training_loss = self.train_loss.result() / (step + 1)
if self.args.debug:
logs = {}
logs["loss"] = training_loss.numpy()
logs["epoch"] = self.epoch_logging
self.log(logs)
if self.global_step == 1 and self.args.debug:
with self.tb_writer.as_default():
tf.summary.trace_export(
name="training", step=self.global_step, profiler_outdir=self.args.logging_dir
)
if (
self.args.eval_steps > 0
and self.args.evaluation_strategy == IntervalStrategy.STEPS
and self.global_step % self.args.eval_steps == 0
):
self.evaluate()
if (self.args.logging_steps > 0 and self.global_step % self.args.logging_steps == 0) or (
self.global_step == 1 and self.args.logging_first_step
):
logs = {}
logs["loss"] = training_loss.numpy()
logs["learning_rate"] = self.lr_scheduler(self.global_step).numpy()
logs["epoch"] = self.epoch_logging
self.log(logs)
if self.args.save_steps > 0 and self.global_step % self.args.save_steps == 0:
ckpt_save_path = self.model.ckpt_manager.save()
logger.info(f"Saving checkpoint for step {self.global_step} at {ckpt_save_path}")
if self.args.max_steps > 0 and self.global_step >= t_total:
break
if self.global_step % self.steps_per_epoch == 0:
break
self.train_loss.reset_states()
if self.args.max_steps > 0 and self.global_step >= self.args.max_steps:
break
end_time = datetime.datetime.now()
logger.info(f"Training took: {str(end_time - start_time)}")
if self.args.past_index and hasattr(self, "_past"):
# Clean the state at the end of training
delattr(self, "_past")
[docs] def training_step(self, features, labels, nb_instances_in_global_batch):
"""
Perform a training step on features and labels.
Subclass and override to inject some custom behavior.
"""
per_example_loss, _ = self.run_model(features, labels, True)
scaled_loss = per_example_loss / tf.cast(nb_instances_in_global_batch, dtype=per_example_loss.dtype)
gradients = tf.gradients(scaled_loss, self.model.trainable_variables)
gradients = [
g if g is not None else tf.zeros_like(v) for g, v in zip(gradients, self.model.trainable_variables)
]
if self.args.gradient_accumulation_steps > 1:
self.gradient_accumulator(gradients)
self.train_loss.update_state(scaled_loss)
if self.args.gradient_accumulation_steps == 1:
return gradients
def apply_gradients(self, features, labels, nb_instances_in_global_batch):
if self.args.gradient_accumulation_steps == 1:
gradients = self.training_step(features, labels, nb_instances_in_global_batch)
self.optimizer.apply_gradients(list(zip(gradients, self.model.trainable_variables)))
else:
for _ in tf.range(self.args.gradient_accumulation_steps):
reduced_features = {
k: ft[: self.args.train_batch_size // self.args.n_replicas] for k, ft in features.items()
}
if tf.is_tensor(labels):
reduced_labels = labels[: self.args.train_batch_size // self.args.n_replicas]
elif isinstance(labels, dict):
reduced_labels = {
k: lbl[: self.args.train_batch_size // self.args.n_replicas] for k, lbl in labels.items()
}
else:
raise ValueError("The labels must be either a tf.Tensor or a dict.")
self.training_step(reduced_features, reduced_labels, nb_instances_in_global_batch)
features = {
k: tf.concat(
[ft[self.args.train_batch_size // self.args.n_replicas :], reduced_features[k]],
axis=0,
)
for k, ft in features.items()
}
if tf.is_tensor(labels):
labels = tf.concat(
[labels[self.args.train_batch_size // self.args.n_replicas :], reduced_labels], axis=0
)
elif isinstance(labels, dict):
labels = {
k: tf.concat(
[lbl[self.args.train_batch_size // self.args.n_replicas :], reduced_labels[k]],
axis=0,
)
for k, lbl in labels.items()
}
else:
raise ValueError("The labels must be either a tf.Tensor or a dict.")
gradients = self.gradient_accumulator.gradients
gradients = [
(tf.clip_by_value(grad, -self.args.max_grad_norm, self.args.max_grad_norm)) for grad in gradients
]
self.optimizer.apply_gradients(list(zip(gradients, self.model.trainable_variables)))
self.gradient_accumulator.reset()
@tf.function
def distributed_training_steps(self, batch):
with self.args.strategy.scope():
nb_instances_in_batch = self._compute_nb_instances(batch)
inputs = self._get_step_inputs(batch, nb_instances_in_batch)
self.args.strategy.run(self.apply_gradients, inputs)
@staticmethod
def _compute_nb_instances(batch):
labels = batch[-1]
if isinstance(labels, PerReplica):
labels = tf.concat(labels.values, axis=0)
nb_instances = tf.reduce_sum(tf.cast(labels != -100, dtype=tf.int32))
return nb_instances
@staticmethod
def _get_step_inputs(batch, nb_instances):
features, labels = batch
if isinstance(labels, PerReplica):
# need to make a `PerReplica` objects for ``nb_instances``
nb_instances = PerReplica([nb_instances] * len(labels.values))
step_inputs = (features, labels, nb_instances)
return step_inputs
[docs] def run_model(self, features, labels, training):
"""
Computes the loss of the given features and labels pair.
Subclass and override this method if you want to inject some custom behavior.
Args:
features (:obj:`tf.Tensor`): A batch of input features.
labels (:obj:`tf.Tensor`): A batch of labels.
training (:obj:`bool`): Whether or not to run the model in training mode.
Returns:
A tuple of two :obj:`tf.Tensor`: The loss and logits.
"""
if self.args.past_index >= 0 and getattr(self, "_past", None) is not None:
features["mems"] = self._past
if isinstance(labels, (dict)):
outputs = self.model(features, training=training, **labels)[:2]
else:
outputs = self.model(features, labels=labels, training=training)[:2]
loss, logits = outputs[:2]
if self.args.past_index >= 0:
self._past = outputs[self.args.past_index]
return loss, logits
[docs] def predict(self, test_dataset: tf.data.Dataset) -> PredictionOutput:
"""
Run prediction and returns predictions and potential metrics.
Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method
will also return metrics, like in :obj:`evaluate()`.
Args:
test_dataset (:class:`~tf.data.Dataset`):
Dataset to run the predictions on. The dataset should yield tuples of ``(features, labels)`` where
``features`` is a dict of input features and ``labels`` is the labels. If ``labels`` is a tensor, the
loss is calculated by the model by calling ``model(features, labels=labels)``. If ``labels`` is a dict,
such as when using a QuestionAnswering head model with multiple targets, the loss is instead calculated
by calling ``model(features, **labels)``
Returns: `NamedTuple` A namedtuple with the following keys:
- predictions (:obj:`np.ndarray`): The predictions on :obj:`test_dataset`.
- label_ids (:obj:`np.ndarray`, `optional`): The labels (if the dataset contained some).
- metrics (:obj:`Dict[str, float]`, `optional`): The potential dictionary of metrics (if the dataset
contained labels).
"""
test_ds, steps, num_examples = self.get_test_tfdataset(test_dataset)
return self.prediction_loop(test_ds, steps, num_examples, description="Prediction")
[docs] def save_model(self, output_dir: Optional[str] = None):
"""
Will save the model, so you can reload it using :obj:`from_pretrained()`.
"""
output_dir = output_dir if output_dir is not None else self.args.output_dir
logger.info(f"Saving model in {output_dir}")
if not isinstance(self.model, TFPreTrainedModel):
raise ValueError("Trainer.model appears to not be a PreTrainedModel")
self.model.save_pretrained(output_dir)