# coding=utf-8
# Copyright 2020 The SqueezeBert authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" SqueezeBERT model configuration """
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"squeezebert/squeezebert-uncased": "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/config.json",
"squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/config.json",
"squeezebert/squeezebert-mnli-headless": "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/config.json",
}
[docs]class SqueezeBertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a :class:`~transformers.SqueezeBertModel`. It is used
to instantiate a SqueezeBERT model according to the specified arguments, defining the model architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
vocab_size (:obj:`int`, `optional`, defaults to 30522):
Vocabulary size of the SqueezeBERT model. Defines the number of different tokens that can be represented by
the :obj:`inputs_ids` passed when calling :class:`~transformers.SqueezeBertModel`.
hidden_size (:obj:`int`, `optional`, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (:obj:`int`, `optional`, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (:obj:`int`, `optional`, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (:obj:`int`, `optional`, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string,
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (:obj:`int`, `optional`, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (:obj:`int`, `optional`, defaults to 2):
The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.BertModel` or
:class:`~transformers.TFBertModel`.
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12):
pad_token_id (:obj:`int`, `optional`, defaults to 0):
The ID of the token in the word embedding to use as padding.
embedding_size (:obj:`int`, `optional`, defaults to 768):
The dimension of the word embedding vectors.
q_groups (:obj:`int`, `optional`, defaults to 4):
The number of groups in Q layer.
k_groups (:obj:`int`, `optional`, defaults to 4):
The number of groups in K layer.
v_groups (:obj:`int`, `optional`, defaults to 4):
The number of groups in V layer.
post_attention_groups (:obj:`int`, `optional`, defaults to 1):
The number of groups in the first feed forward network layer.
intermediate_groups (:obj:`int`, `optional`, defaults to 4):
The number of groups in the second feed forward network layer.
output_groups (:obj:`int`, `optional`, defaults to 4):
The number of groups in the third feed forward network layer.
Examples::
>>> from transformers import SqueezeBertModel, SqueezeBertConfig
>>> # Initializing a SqueezeBERT configuration
>>> configuration = SqueezeBertConfig()
>>> # Initializing a model from the configuration above
>>> model = SqueezeBertModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
Attributes: pretrained_config_archive_map (Dict[str, str]): A dictionary containing all the available pre-trained
checkpoints.
"""
pretrained_config_archive_map = SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP
model_type = "squeezebert"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
embedding_size=768,
q_groups=4,
k_groups=4,
v_groups=4,
post_attention_groups=1,
intermediate_groups=4,
output_groups=4,
**kwargs
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.embedding_size = embedding_size
self.q_groups = q_groups
self.k_groups = k_groups
self.v_groups = v_groups
self.post_attention_groups = post_attention_groups
self.intermediate_groups = intermediate_groups
self.output_groups = output_groups