Source code for transformers.models.electra.modeling_tf_electra

# coding=utf-8
# Copyright 2019 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF Electra model. """

import math
import warnings
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union

import tensorflow as tf

from ...activations_tf import get_tf_activation
from ...file_utils import (
    MULTIPLE_CHOICE_DUMMY_INPUTS,
    ModelOutput,
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    replace_return_docstrings,
)
from ...modeling_tf_outputs import (
    TFBaseModelOutput,
    TFMaskedLMOutput,
    TFMultipleChoiceModelOutput,
    TFQuestionAnsweringModelOutput,
    TFSequenceClassifierOutput,
    TFTokenClassifierOutput,
)
from ...modeling_tf_utils import (
    TFMaskedLanguageModelingLoss,
    TFMultipleChoiceLoss,
    TFPreTrainedModel,
    TFQuestionAnsweringLoss,
    TFSequenceClassificationLoss,
    TFSequenceSummary,
    TFTokenClassificationLoss,
    get_initializer,
    input_processing,
    keras_serializable,
    shape_list,
)
from ...utils import logging
from .configuration_electra import ElectraConfig


logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "google/electra-small-discriminator"
_CONFIG_FOR_DOC = "ElectraConfig"
_TOKENIZER_FOR_DOC = "ElectraTokenizer"

TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "google/electra-small-generator",
    "google/electra-base-generator",
    "google/electra-large-generator",
    "google/electra-small-discriminator",
    "google/electra-base-discriminator",
    "google/electra-large-discriminator",
    # See all ELECTRA models at https://huggingface.co/models?filter=electra
]


# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->Electra
class TFElectraSelfAttention(tf.keras.layers.Layer):
    def __init__(self, config: ElectraConfig, **kwargs):
        super().__init__(**kwargs)

        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number "
                f"of attention heads ({config.num_attention_heads})"
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size
        self.sqrt_att_head_size = math.sqrt(self.attention_head_size)

        self.query = tf.keras.layers.Dense(
            units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
        )
        self.key = tf.keras.layers.Dense(
            units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
        )
        self.value = tf.keras.layers.Dense(
            units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
        )
        self.dropout = tf.keras.layers.Dropout(rate=config.attention_probs_dropout_prob)

    def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
        # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
        tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))

        # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
        return tf.transpose(tensor, perm=[0, 2, 1, 3])

    def call(
        self,
        hidden_states: tf.Tensor,
        attention_mask: tf.Tensor,
        head_mask: tf.Tensor,
        output_attentions: bool,
        training: bool = False,
    ) -> Tuple[tf.Tensor]:
        batch_size = shape_list(hidden_states)[0]
        mixed_query_layer = self.query(inputs=hidden_states)
        mixed_key_layer = self.key(inputs=hidden_states)
        mixed_value_layer = self.value(inputs=hidden_states)
        query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
        key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
        value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        # (batch size, num_heads, seq_len_q, seq_len_k)
        attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
        dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
        attention_scores = tf.divide(attention_scores, dk)

        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in TFElectraModel call() function)
            attention_scores = tf.add(attention_scores, attention_mask)

        # Normalize the attention scores to probabilities.
        attention_probs = tf.nn.softmax(logits=attention_scores, axis=-1)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(inputs=attention_probs, training=training)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = tf.multiply(attention_probs, head_mask)

        attention_output = tf.matmul(attention_probs, value_layer)
        attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])

        # (batch_size, seq_len_q, all_head_size)
        attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
        outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)

        return outputs


# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Electra
class TFElectraSelfOutput(tf.keras.layers.Layer):
    def __init__(self, config: ElectraConfig, **kwargs):
        super().__init__(**kwargs)

        self.dense = tf.keras.layers.Dense(
            units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
        )
        self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
        self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)

    def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
        hidden_states = self.dense(inputs=hidden_states)
        hidden_states = self.dropout(inputs=hidden_states, training=training)
        hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)

        return hidden_states


# Copied from from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->Electra
class TFElectraAttention(tf.keras.layers.Layer):
    def __init__(self, config: ElectraConfig, **kwargs):
        super().__init__(**kwargs)

        self.self_attention = TFElectraSelfAttention(config, name="self")
        self.dense_output = TFElectraSelfOutput(config, name="output")

    def prune_heads(self, heads):
        raise NotImplementedError

    def call(
        self,
        input_tensor: tf.Tensor,
        attention_mask: tf.Tensor,
        head_mask: tf.Tensor,
        output_attentions: bool,
        training: bool = False,
    ) -> Tuple[tf.Tensor]:
        self_outputs = self.self_attention(
            hidden_states=input_tensor,
            attention_mask=attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            training=training,
        )
        attention_output = self.dense_output(
            hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
        )
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them

        return outputs


# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Electra
class TFElectraIntermediate(tf.keras.layers.Layer):
    def __init__(self, config: ElectraConfig, **kwargs):
        super().__init__(**kwargs)

        self.dense = tf.keras.layers.Dense(
            units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
        )

        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = get_tf_activation(config.hidden_act)
        else:
            self.intermediate_act_fn = config.hidden_act

    def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
        hidden_states = self.dense(inputs=hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)

        return hidden_states


# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Electra
class TFElectraOutput(tf.keras.layers.Layer):
    def __init__(self, config: ElectraConfig, **kwargs):
        super().__init__(**kwargs)

        self.dense = tf.keras.layers.Dense(
            units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
        )
        self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
        self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)

    def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
        hidden_states = self.dense(inputs=hidden_states)
        hidden_states = self.dropout(inputs=hidden_states, training=training)
        hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)

        return hidden_states


# Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->Electra
class TFElectraLayer(tf.keras.layers.Layer):
    def __init__(self, config: ElectraConfig, **kwargs):
        super().__init__(**kwargs)

        self.attention = TFElectraAttention(config, name="attention")
        self.intermediate = TFElectraIntermediate(config, name="intermediate")
        self.bert_output = TFElectraOutput(config, name="output")

    def call(
        self,
        hidden_states: tf.Tensor,
        attention_mask: tf.Tensor,
        head_mask: tf.Tensor,
        output_attentions: bool,
        training: bool = False,
    ) -> Tuple[tf.Tensor]:
        attention_outputs = self.attention(
            input_tensor=hidden_states,
            attention_mask=attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            training=training,
        )
        attention_output = attention_outputs[0]
        intermediate_output = self.intermediate(hidden_states=attention_output)
        layer_output = self.bert_output(
            hidden_states=intermediate_output, input_tensor=attention_output, training=training
        )
        outputs = (layer_output,) + attention_outputs[1:]  # add attentions if we output them

        return outputs


# Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->Electra
class TFElectraEncoder(tf.keras.layers.Layer):
    def __init__(self, config: ElectraConfig, **kwargs):
        super().__init__(**kwargs)

        self.layer = [TFElectraLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]

    def call(
        self,
        hidden_states: tf.Tensor,
        attention_mask: tf.Tensor,
        head_mask: tf.Tensor,
        output_attentions: bool,
        output_hidden_states: bool,
        return_dict: bool,
        training: bool = False,
    ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_outputs = layer_module(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                head_mask=head_mask[i],
                output_attentions=output_attentions,
                training=training,
            )
            hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        # Add last layer
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)

        return TFBaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
        )


# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Electra
class TFElectraPooler(tf.keras.layers.Layer):
    def __init__(self, config: ElectraConfig, **kwargs):
        super().__init__(**kwargs)

        self.dense = tf.keras.layers.Dense(
            units=config.hidden_size,
            kernel_initializer=get_initializer(config.initializer_range),
            activation="tanh",
            name="dense",
        )

    def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(inputs=first_token_tensor)

        return pooled_output


# Copied from transformers.models.albert.modeling_tf_albert.TFAlbertEmbeddings with Albert->Electra
class TFElectraEmbeddings(tf.keras.layers.Layer):
    """Construct the embeddings from word, position and token_type embeddings."""

    def __init__(self, config: ElectraConfig, **kwargs):
        super().__init__(**kwargs)

        self.vocab_size = config.vocab_size
        self.type_vocab_size = config.type_vocab_size
        self.embedding_size = config.embedding_size
        self.max_position_embeddings = config.max_position_embeddings
        self.initializer_range = config.initializer_range
        self.embeddings_sum = tf.keras.layers.Add()
        self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
        self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)

    def build(self, input_shape: tf.TensorShape):
        with tf.name_scope("word_embeddings"):
            self.weight = self.add_weight(
                name="weight",
                shape=[self.vocab_size, self.embedding_size],
                initializer=get_initializer(self.initializer_range),
            )

        with tf.name_scope("token_type_embeddings"):
            self.token_type_embeddings = self.add_weight(
                name="embeddings",
                shape=[self.type_vocab_size, self.embedding_size],
                initializer=get_initializer(self.initializer_range),
            )

        with tf.name_scope("position_embeddings"):
            self.position_embeddings = self.add_weight(
                name="embeddings",
                shape=[self.max_position_embeddings, self.embedding_size],
                initializer=get_initializer(self.initializer_range),
            )

        super().build(input_shape)

    # Copied from transformers.models.bert.modeling_tf_bert.TFBertEmbeddings.call
    def call(
        self,
        input_ids: tf.Tensor = None,
        position_ids: tf.Tensor = None,
        token_type_ids: tf.Tensor = None,
        inputs_embeds: tf.Tensor = None,
        training: bool = False,
    ) -> tf.Tensor:
        """
        Applies embedding based on inputs tensor.

        Returns:
            final_embeddings (:obj:`tf.Tensor`): output embedding tensor.
        """
        assert not (input_ids is None and inputs_embeds is None)

        if input_ids is not None:
            inputs_embeds = tf.gather(params=self.weight, indices=input_ids)

        input_shape = shape_list(inputs_embeds)[:-1]

        if token_type_ids is None:
            token_type_ids = tf.fill(dims=input_shape, value=0)

        if position_ids is None:
            position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)

        position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
        position_embeds = tf.tile(input=position_embeds, multiples=(input_shape[0], 1, 1))
        token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
        final_embeddings = self.embeddings_sum(inputs=[inputs_embeds, position_embeds, token_type_embeds])
        final_embeddings = self.LayerNorm(inputs=final_embeddings)
        final_embeddings = self.dropout(inputs=final_embeddings, training=training)

        return final_embeddings


class TFElectraDiscriminatorPredictions(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)

        self.dense = tf.keras.layers.Dense(config.hidden_size, name="dense")
        self.dense_prediction = tf.keras.layers.Dense(1, name="dense_prediction")
        self.config = config

    def call(self, discriminator_hidden_states, training=False):
        hidden_states = self.dense(discriminator_hidden_states)
        hidden_states = get_tf_activation(self.config.hidden_act)(hidden_states)
        logits = tf.squeeze(self.dense_prediction(hidden_states), -1)

        return logits


class TFElectraGeneratorPredictions(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)

        self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
        self.dense = tf.keras.layers.Dense(config.embedding_size, name="dense")

    def call(self, generator_hidden_states, training=False):
        hidden_states = self.dense(generator_hidden_states)
        hidden_states = get_tf_activation("gelu")(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)

        return hidden_states


class TFElectraPreTrainedModel(TFPreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = ElectraConfig
    base_model_prefix = "electra"
    # When the model is loaded from a PT model
    _keys_to_ignore_on_load_unexpected = [r"generator_lm_head.weight"]
    _keys_to_ignore_on_load_missing = [r"dropout"]


@keras_serializable
class TFElectraMainLayer(tf.keras.layers.Layer):
    config_class = ElectraConfig

    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)

        self.config = config
        self.embeddings = TFElectraEmbeddings(config, name="embeddings")

        if config.embedding_size != config.hidden_size:
            self.embeddings_project = tf.keras.layers.Dense(config.hidden_size, name="embeddings_project")

        self.encoder = TFElectraEncoder(config, name="encoder")
        self.config = config

    def get_input_embeddings(self):
        return self.embeddings

    def set_input_embeddings(self, value):
        self.embeddings.weight = value
        self.embeddings.vocab_size = shape_list(value)[0]

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        raise NotImplementedError

    def get_extended_attention_mask(self, attention_mask, input_shape, dtype):
        if attention_mask is None:
            attention_mask = tf.fill(input_shape, 1)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1]))

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = tf.cast(extended_attention_mask, dtype)
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        return extended_attention_mask

    def get_head_mask(self, head_mask):
        if head_mask is not None:
            raise NotImplementedError
        else:
            head_mask = [None] * self.config.num_hidden_layers

        return head_mask

    def call(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        training=False,
        **kwargs,
    ):
        inputs = input_processing(
            func=self.call,
            config=self.config,
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
            kwargs_call=kwargs,
        )

        if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif inputs["input_ids"] is not None:
            input_shape = shape_list(inputs["input_ids"])
        elif inputs["inputs_embeds"] is not None:
            input_shape = shape_list(inputs["inputs_embeds"])[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if inputs["attention_mask"] is None:
            inputs["attention_mask"] = tf.fill(input_shape, 1)

        if inputs["token_type_ids"] is None:
            inputs["token_type_ids"] = tf.fill(input_shape, 0)

        hidden_states = self.embeddings(
            inputs["input_ids"],
            inputs["position_ids"],
            inputs["token_type_ids"],
            inputs["inputs_embeds"],
            training=inputs["training"],
        )
        extended_attention_mask = self.get_extended_attention_mask(
            inputs["attention_mask"], input_shape, hidden_states.dtype
        )
        inputs["head_mask"] = self.get_head_mask(inputs["head_mask"])

        if hasattr(self, "embeddings_project"):
            hidden_states = self.embeddings_project(hidden_states, training=inputs["training"])

        hidden_states = self.encoder(
            hidden_states,
            extended_attention_mask,
            inputs["head_mask"],
            inputs["output_attentions"],
            inputs["output_hidden_states"],
            inputs["return_dict"],
            training=inputs["training"],
        )

        return hidden_states


[docs]@dataclass class TFElectraForPreTrainingOutput(ModelOutput): """ Output type of :class:`~transformers.TFElectraForPreTraining`. Args: loss (`optional`, returned when ``labels`` is provided, ``tf.Tensor`` of shape :obj:`(1,)`): Total loss of the ELECTRA objective. logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`): Prediction scores of the head (scores for each token before SoftMax). hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: tf.Tensor = None hidden_states: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[tf.Tensor]] = None
ELECTRA_START_DOCSTRING = r""" This model inherits from :class:`~transformers.TFPreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. .. note:: TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using :meth:`tf.keras.Model.fit` method which currently requires having all the tensors in the first argument of the model call function: :obj:`model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument : - a single Tensor with :obj:`input_ids` only and nothing else: :obj:`model(inputs_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: :obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: :obj:`model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Parameters: config (:class:`~transformers.ElectraConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ ELECTRA_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.ElectraTokenizer`. See :func:`transformers.PreTrainedTokenizer.__call__` and :func:`transformers.PreTrainedTokenizer.encode` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ position_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`__ head_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`tf.Tensor` of shape :obj:`({0}, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """
[docs]@add_start_docstrings( "The bare Electra Model transformer outputting raw hidden-states without any specific head on top. Identical to " "the BERT model except that it uses an additional linear layer between the embedding layer and the encoder if the " "hidden size and embedding size are different." "" "Both the generator and discriminator checkpoints may be loaded into this model.", ELECTRA_START_DOCSTRING, ) class TFElectraModel(TFElectraPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.electra = TFElectraMainLayer(config, name="electra")
[docs] @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) outputs = self.electra( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) return outputs
# Copied from transformers.models.distilbert.modeling_tf_distilbert.TFDistilBertModel.serving_output def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFBaseModelOutput(last_hidden_state=output.last_hidden_state, hidden_states=hs, attentions=attns)
[docs]@add_start_docstrings( """ Electra model with a binary classification head on top as used during pretraining for identifying generated tokens. Even though both the discriminator and generator may be loaded into this model, the discriminator is the only model of the two to have the correct classification head to be used for this model. """, ELECTRA_START_DOCSTRING, ) class TFElectraForPreTraining(TFElectraPreTrainedModel): def __init__(self, config, **kwargs): super().__init__(config, **kwargs) self.electra = TFElectraMainLayer(config, name="electra") self.discriminator_predictions = TFElectraDiscriminatorPredictions(config, name="discriminator_predictions")
[docs] @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): r""" Returns: Examples:: >>> import tensorflow as tf >>> from transformers import ElectraTokenizer, TFElectraForPreTraining >>> tokenizer = ElectraTokenizer.from_pretrained('google/electra-small-discriminator') >>> model = TFElectraForPreTraining.from_pretrained('google/electra-small-discriminator') >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 >>> outputs = model(input_ids) >>> scores = outputs[0] """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) discriminator_hidden_states = self.electra( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) discriminator_sequence_output = discriminator_hidden_states[0] logits = self.discriminator_predictions(discriminator_sequence_output) if not inputs["return_dict"]: return (logits,) + discriminator_hidden_states[1:] return TFElectraForPreTrainingOutput( logits=logits, hidden_states=discriminator_hidden_states.hidden_states, attentions=discriminator_hidden_states.attentions, )
def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFElectraForPreTrainingOutput(logits=output.logits, hidden_states=hs, attentions=attns)
class TFElectraMaskedLMHead(tf.keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.vocab_size = config.vocab_size self.embedding_size = config.embedding_size self.input_embeddings = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self): return self.input_embeddings def set_output_embeddings(self, value): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): seq_length = shape_list(tensor=hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size]) hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states
[docs]@add_start_docstrings( """ Electra model with a language modeling head on top. Even though both the discriminator and generator may be loaded into this model, the generator is the only model of the two to have been trained for the masked language modeling task. """, ELECTRA_START_DOCSTRING, ) class TFElectraForMaskedLM(TFElectraPreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config, **kwargs): super().__init__(config, **kwargs) self.vocab_size = config.vocab_size self.electra = TFElectraMainLayer(config, name="electra") self.generator_predictions = TFElectraGeneratorPredictions(config, name="generator_predictions") if isinstance(config.hidden_act, str): self.activation = get_tf_activation(config.hidden_act) else: self.activation = config.hidden_act self.generator_lm_head = TFElectraMaskedLMHead(config, self.electra.embeddings, name="generator_lm_head") def get_lm_head(self): return self.generator_lm_head def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.generator_lm_head.name
[docs] @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) generator_hidden_states = self.electra( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) generator_sequence_output = generator_hidden_states[0] prediction_scores = self.generator_predictions(generator_sequence_output, training=inputs["training"]) prediction_scores = self.generator_lm_head(prediction_scores, training=inputs["training"]) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], prediction_scores) if not inputs["return_dict"]: output = (prediction_scores,) + generator_hidden_states[1:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=generator_hidden_states.hidden_states, attentions=generator_hidden_states.attentions, )
# Copied from transformers.models.bert.modeling_tf_bert.TFBertForMaskedLM.serving_output def serving_output(self, output: TFMaskedLMOutput) -> TFMaskedLMOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFMaskedLMOutput(logits=output.logits, hidden_states=hs, attentions=attns)
class TFElectraClassificationHead(tf.keras.layers.Layer): """Head for sentence-level classification tasks.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.out_proj = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj" ) def call(self, inputs, **kwargs): x = inputs[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = get_tf_activation("gelu")(x) # although BERT uses tanh here, it seems Electra authors used gelu here x = self.dropout(x) x = self.out_proj(x) return x
[docs]@add_start_docstrings( """ ELECTRA Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ELECTRA_START_DOCSTRING, ) class TFElectraForSequenceClassification(TFElectraPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.electra = TFElectraMainLayer(config, name="electra") self.classifier = TFElectraClassificationHead(config, name="classifier")
[docs] @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) outputs = self.electra( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) logits = self.classifier(outputs[0]) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], logits) if not inputs["return_dict"]: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
# Copied from transformers.models.bert.modeling_tf_bert.TFBertForSequenceClassification.serving_output def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFSequenceClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns)
[docs]@add_start_docstrings( """ ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, ELECTRA_START_DOCSTRING, ) class TFElectraForMultipleChoice(TFElectraPreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.electra = TFElectraMainLayer(config, name="electra") self.sequence_summary = TFSequenceSummary( config, initializer_range=config.initializer_range, name="sequence_summary" ) self.classifier = tf.keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @property def dummy_inputs(self): """ Dummy inputs to build the network. Returns: tf.Tensor with dummy inputs """ return {"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS)}
[docs] @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See :obj:`input_ids` above) """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) if inputs["input_ids"] is not None: num_choices = shape_list(inputs["input_ids"])[1] seq_length = shape_list(inputs["input_ids"])[2] else: num_choices = shape_list(inputs["inputs_embeds"])[1] seq_length = shape_list(inputs["inputs_embeds"])[2] flat_input_ids = tf.reshape(inputs["input_ids"], (-1, seq_length)) if inputs["input_ids"] is not None else None flat_attention_mask = ( tf.reshape(inputs["attention_mask"], (-1, seq_length)) if inputs["attention_mask"] is not None else None ) flat_token_type_ids = ( tf.reshape(inputs["token_type_ids"], (-1, seq_length)) if inputs["token_type_ids"] is not None else None ) flat_position_ids = ( tf.reshape(inputs["position_ids"], (-1, seq_length)) if inputs["position_ids"] is not None else None ) flat_inputs_embeds = ( tf.reshape(inputs["inputs_embeds"], (-1, seq_length, shape_list(inputs["inputs_embeds"])[3])) if inputs["inputs_embeds"] is not None else None ) outputs = self.electra( flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, inputs["head_mask"], flat_inputs_embeds, inputs["output_attentions"], inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) logits = self.sequence_summary(outputs[0]) logits = self.classifier(logits) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], reshaped_logits) if not inputs["return_dict"]: output = (reshaped_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
@tf.function( input_signature=[ { "input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"), "attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"), "token_type_ids": tf.TensorSpec((None, None, None), tf.int32, name="token_type_ids"), } ] ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForMultipleChoice.serving def serving(self, inputs: Dict[str, tf.Tensor]): output = self.call(input_ids=inputs) return self.serving_output(output) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForMultipleChoice.serving_output def serving_output(self, output: TFMultipleChoiceModelOutput) -> TFMultipleChoiceModelOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFMultipleChoiceModelOutput(logits=output.logits, hidden_states=hs, attentions=attns)
[docs]@add_start_docstrings( """ Electra model with a token classification head on top. Both the discriminator and generator may be loaded into this model. """, ELECTRA_START_DOCSTRING, ) class TFElectraForTokenClassification(TFElectraPreTrainedModel, TFTokenClassificationLoss): def __init__(self, config, **kwargs): super().__init__(config, **kwargs) self.electra = TFElectraMainLayer(config, name="electra") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" )
[docs] @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) discriminator_hidden_states = self.electra( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) discriminator_sequence_output = discriminator_hidden_states[0] discriminator_sequence_output = self.dropout(discriminator_sequence_output) logits = self.classifier(discriminator_sequence_output) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], logits) if not inputs["return_dict"]: output = (logits,) + discriminator_hidden_states[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=discriminator_hidden_states.hidden_states, attentions=discriminator_hidden_states.attentions, )
# Copied from transformers.models.bert.modeling_tf_bert.TFBertForTokenClassification.serving_output def serving_output(self, output: TFTokenClassifierOutput) -> TFTokenClassifierOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFTokenClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns)
[docs]@add_start_docstrings( """ Electra Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, ELECTRA_START_DOCSTRING, ) class TFElectraForQuestionAnswering(TFElectraPreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.electra = TFElectraMainLayer(config, name="electra") self.qa_outputs = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" )
[docs] @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, start_positions=None, end_positions=None, training=False, **kwargs, ): r""" start_positions (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, start_positions=start_positions, end_positions=end_positions, training=training, kwargs_call=kwargs, ) discriminator_hidden_states = self.electra( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) discriminator_sequence_output = discriminator_hidden_states[0] logits = self.qa_outputs(discriminator_sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if inputs["start_positions"] is not None and inputs["end_positions"] is not None: labels = {"start_position": inputs["start_positions"]} labels["end_position"] = inputs["end_positions"] loss = self.compute_loss(labels, (start_logits, end_logits)) if not inputs["return_dict"]: output = ( start_logits, end_logits, ) + discriminator_hidden_states[1:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=discriminator_hidden_states.hidden_states, attentions=discriminator_hidden_states.attentions, )
# Copied from transformers.models.bert.modeling_tf_bert.TFBertForQuestionAnswering.serving_output def serving_output(self, output: TFQuestionAnsweringModelOutput) -> TFQuestionAnsweringModelOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFQuestionAnsweringModelOutput( start_logits=output.start_logits, end_logits=output.end_logits, hidden_states=hs, attentions=attns )