Source code for transformers.models.megatron_bert.configuration_megatron_bert

# coding=utf-8
# Copyright 2021- NVIDIA Corporation and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" MEGATRON_BERT model configuration """

from ...configuration_utils import PretrainedConfig
from ...utils import logging


logger = logging.get_logger(__name__)

MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}


[docs]class MegatronBertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a :class:`~transformers.MegatronBertModel`. It is used to instantiate a MEGATRON_BERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MEGATRON_BERT `megatron-bert-uncased-345m <https://huggingface.co/nvidia/megatron-bert-uncased-345m>`__ architecture. Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. Args: vocab_size (:obj:`int`, `optional`, defaults to 29056): Vocabulary size of the MEGATRON_BERT model. Defines the number of different tokens that can be represented by the :obj:`inputs_ids` passed when calling :class:`~transformers.MegatronBertModel`. hidden_size (:obj:`int`, `optional`, defaults to 1024): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (:obj:`int`, `optional`, defaults to 24): Number of hidden layers in the Transformer encoder. num_attention_heads (:obj:`int`, `optional`, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (:obj:`int`, `optional`, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, :obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported. hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (:obj:`int`, `optional`, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (:obj:`int`, `optional`, defaults to 2): The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.MegatronBertModel`. initializer_range (:obj:`float`, `optional`, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12): The epsilon used by the layer normalization layers. gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`): If True, use gradient checkpointing to save memory at the expense of slower backward pass. position_embedding_type (:obj:`str`, `optional`, defaults to :obj:`"absolute"`): Type of position embedding. Choose one of :obj:`"absolute"`, :obj:`"relative_key"`, :obj:`"relative_key_query"`. For positional embeddings use :obj:`"absolute"`. For more information on :obj:`"relative_key"`, please refer to `Self-Attention with Relative Position Representations (Shaw et al.) <https://arxiv.org/abs/1803.02155>`__. For more information on :obj:`"relative_key_query"`, please refer to `Method 4` in `Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) <https://arxiv.org/abs/2009.13658>`__. use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if ``config.is_decoder=True``. Examples:: >>> from transformers import MegatronBertModel, MegatronBertConfig >>> # Initializing a MEGATRON_BERT bert-base-uncased style configuration >>> configuration = MegatronBertConfig() >>> # Initializing a model from the bert-base-uncased style configuration >>> model = MegatronBertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config """ model_type = "megatron-bert" def __init__( self, vocab_size=29056, hidden_size=1024, num_hidden_layers=24, num_attention_heads=16, intermediate_size=4096, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, gradient_checkpointing=False, position_embedding_type="absolute", use_cache=True, **kwargs ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.gradient_checkpointing = gradient_checkpointing self.position_embedding_type = position_embedding_type self.use_cache = use_cache