Blenderbot¶
DISCLAIMER: If you see something strange, file a Github Issue .
Overview¶
The Blender chatbot model was proposed in Recipes for building an open-domain chatbot Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston on 30 Apr 2020.
The abstract of the paper is the following:
Building open-domain chatbots is a challenging area for machine learning research. While prior work has shown that scaling neural models in the number of parameters and the size of the data they are trained on gives improved results, we show that other ingredients are important for a high-performing chatbot. Good conversation requires a number of skills that an expert conversationalist blends in a seamless way: providing engaging talking points and listening to their partners, and displaying knowledge, empathy and personality appropriately, while maintaining a consistent persona. We show that large scale models can learn these skills when given appropriate training data and choice of generation strategy. We build variants of these recipes with 90M, 2.7B and 9.4B parameter models, and make our models and code publicly available. Human evaluations show our best models are superior to existing approaches in multi-turn dialogue in terms of engagingness and humanness measurements. We then discuss the limitations of this work by analyzing failure cases of our models.
This model was contributed by sshleifer. The authors’ code can be found here .
Implementation Notes¶
Blenderbot uses a standard seq2seq model transformer based architecture.
Available checkpoints can be found in the model hub.
This is the default Blenderbot model class. However, some smaller checkpoints, such as
facebook/blenderbot_small_90M, have a different architecture and consequently should be used with BlenderbotSmall.
Usage¶
Here is an example of model usage:
>>> from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
>>> mname = 'facebook/blenderbot-400M-distill'
>>> model = BlenderbotForConditionalGeneration.from_pretrained(mname)
>>> tokenizer = BlenderbotTokenizer.from_pretrained(mname)
>>> UTTERANCE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([UTTERANCE], return_tensors='pt')
>>> reply_ids = model.generate(**inputs)
>>> print(tokenizer.batch_decode(reply_ids))
["<s> That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?</s>"]
BlenderbotConfig¶
-
class
transformers.BlenderbotConfig(vocab_size=8008, max_position_embeddings=128, encoder_layers=2, encoder_ffn_dim=10240, encoder_attention_heads=32, decoder_layers=24, decoder_ffn_dim=10240, decoder_attention_heads=32, encoder_layerdrop=0.0, decoder_layerdrop=0.0, use_cache=True, is_encoder_decoder=True, activation_function='gelu', d_model=2560, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, decoder_start_token_id=1, classifier_dropout=0.0, scale_embedding=False, gradient_checkpointing=False, pad_token_id=0, bos_token_id=1, eos_token_id=2, encoder_no_repeat_ngram_size=3, forced_eos_token_id=2, **kwargs)[source]¶ This is the configuration class to store the configuration of a
BlenderbotModel. It is used to instantiate an Blenderbot model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Blenderbot facebook/blenderbot-3B architecture.Configuration objects inherit from
PretrainedConfigand can be used to control the model outputs. Read the documentation fromPretrainedConfigfor more information.- Parameters
vocab_size (
int, optional, defaults to 50265) – Vocabulary size of the Blenderbot model. Defines the number of different tokens that can be represented by theinputs_idspassed when callingBlenderbotModelorTFBlenderbotModel.d_model (
int, optional, defaults to 1024) – Dimensionality of the layers and the pooler layer.encoder_layers (
int, optional, defaults to 12) – Number of encoder layers.decoder_layers (
int, optional, defaults to 12) – Number of decoder layers.encoder_attention_heads (
int, optional, defaults to 16) – Number of attention heads for each attention layer in the Transformer encoder.decoder_attention_heads (
int, optional, defaults to 16) – Number of attention heads for each attention layer in the Transformer decoder.decoder_ffn_dim (
int, optional, defaults to 4096) – Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.encoder_ffn_dim (
int, optional, defaults to 4096) – Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.activation_function (
strorfunction, optional, defaults to"gelu") – The non-linear activation function (function or string) in the encoder and pooler. If string,"gelu","relu","silu"and"gelu_new"are supported.dropout (
float, optional, defaults to 0.1) – The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.attention_dropout (
float, optional, defaults to 0.0) – The dropout ratio for the attention probabilities.activation_dropout (
float, optional, defaults to 0.0) – The dropout ratio for activations inside the fully connected layer.classifier_dropout (
float, optional, defaults to 0.0) – The dropout ratio for classifier.max_position_embeddings (
int, optional, defaults to 128) – The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).init_std (
float, optional, defaults to 0.02) – The standard deviation of the truncated_normal_initializer for initializing all weight matrices.encoder_layerdrop – (
float, optional, defaults to 0.0): The LayerDrop probability for the encoder. See the LayerDrop paper for more details.decoder_layerdrop – (
float, optional, defaults to 0.0): The LayerDrop probability for the decoder. See the LayerDrop paper for more details.gradient_checkpointing (
bool, optional, defaults toFalse) – If True, use gradient checkpointing to save memory at the expense of slower backward pass.scale_embedding (
bool, optional, defaults toFalse) – Scale embeddings by diving by sqrt(d_model).use_cache (
bool, optional, defaults toTrue) – Whether or not the model should return the last key/values attentions (not used by all models)forced_eos_token_id (
int, optional, defaults to 2) – The id of the token to force as the last generated token whenmax_lengthis reached. Usually set toeos_token_id.
Example:
>>> from transformers import BlenderbotModel, BlenderbotConfig >>> # Initializing a Blenderbot facebook/blenderbot-3B style configuration >>> configuration = BlenderbotConfig() >>> # Initializing a model from the facebook/blenderbot-3B style configuration >>> model = BlenderbotModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config
BlenderbotTokenizer¶
-
class
transformers.BlenderbotTokenizer(vocab_file, merges_file, errors='replace', bos_token='<s>', eos_token='</s>', sep_token='</s>', cls_token='<s>', unk_token='<unk>', pad_token='<pad>', mask_token='<mask>', add_prefix_space=False, **kwargs)[source]¶ Construct a Blenderbot tokenizer.
Blenderbotis nearly identical toRobertaTokenizerand runs end-to-end tokenization: punctuation splitting and wordpiece. The only difference is that it doesn’t add BOS token to the beginning of sequences.Refer to superclass
RobertaTokenizerfor usage examples and documentation concerning parameters.-
build_inputs_with_special_tokens(token_ids_0: List[int], token_ids_1: List[int] = None)[source]¶ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A Blenderbot sequence has the following format:
single sequence: `` X </s>``
- Parameters
token_ids_0 (
List[int]) – List of IDs to which the special tokens will be addedtoken_ids_1 (
List[int], optional) – Will be ignored
- Returns
list of input IDs with the appropriate special tokens.
- Return type
List[int]
-
BlenderbotModel¶
See transformers.BartModel for arguments to forward and generate
-
class
transformers.BlenderbotModel(config: transformers.models.blenderbot.configuration_blenderbot.BlenderbotConfig)[source]¶ The bare Blenderbot Model outputting raw hidden-states without any specific head on top. This model inherits from
PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
BlenderbotConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
forward(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]¶ The
BlenderbotModelforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using
BlenderbotTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) –Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using
BlenderbotTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.Blenderbot uses the
bos_token_idas the starting token fordecoder_input_idsgeneration. Ifpast_key_valuesis used, optionally only the lastdecoder_input_idshave to be input (seepast_key_values).decoder_attention_mask (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) – Default behavior: generate a tensor that ignores pad tokens indecoder_input_ids. Causal mask will also be used by default.head_mask (
torch.Tensorof shape(encoder_layers, encoder_attention_heads), optional) –Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask (
torch.Tensorof shape(decoder_layers, decoder_attention_heads), optional) –Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (
torch.Tensorof shape(decoder_layers, decoder_attention_heads), optional) –Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (
tuple(tuple(torch.FloatTensor), optional) – Tuple consists of (last_hidden_state, optional:hidden_states, optional:attentions)last_hidden_stateof shape(batch_size, sequence_length, hidden_size), optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.past_key_values (
tuple(tuple(torch.FloatTensor)), optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) –Tuple of
tuple(torch.FloatTensor)of lengthconfig.n_layers, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head).Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding.If
past_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that don’t have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_ids`of shape(batch_size, sequence_length).inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix.decoder_inputs_embeds (
torch.FloatTensorof shape(batch_size, target_sequence_length, hidden_size), optional) –Optionally, instead of passing
decoder_input_idsyou can choose to directly pass an embedded representation. Ifpast_key_valuesis used, optionally only the lastdecoder_inputs_embedshave to be input (seepast_key_values). This is useful if you want more control over how to convertdecoder_input_idsindices into associated vectors than the model’s internal embedding lookup matrix.If
decoder_input_idsanddecoder_inputs_embedsare both unset,decoder_inputs_embedstakes the value ofinputs_embeds.use_cache (
bool, optional) – If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values).output_attentions (
bool, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) – Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) – Whether or not to return aModelOutputinstead of a plain tuple.
- Returns
A
Seq2SeqModelOutputor a tuple oftorch.FloatTensor(ifreturn_dict=Falseis passed or whenconfig.return_dict=False) comprising various elements depending on the configuration (BlenderbotConfig) and inputs.last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size)) – Sequence of hidden-states at the output of the last layer of the decoder of the model.If
past_key_valuesis used only the last hidden-state of the sequences of shape(batch_size, 1, hidden_size)is output.past_key_values (
tuple(tuple(torch.FloatTensor)), optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) – Tuple oftuple(torch.FloatTensor)of lengthconfig.n_layers, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head).Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding.decoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
Example:
>>> from transformers import BlenderbotTokenizer, BlenderbotModel >>> model = BlenderbotModel.from_pretrained("facebook/blenderbot-400M-distill") >>> tokenizer = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-400M-distill") >>> input_ids = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt").input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state
- Return type
Seq2SeqModelOutputortuple(torch.FloatTensor)
BlenderbotForConditionalGeneration¶
See transformers.BartForConditionalGeneration for arguments to forward and generate
-
class
transformers.BlenderbotForConditionalGeneration(config: transformers.models.blenderbot.configuration_blenderbot.BlenderbotConfig)[source]¶ The Blenderbot Model with a language modeling head. Can be used for summarization. This model inherits from
PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
BlenderbotConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
forward(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]¶ The
BlenderbotForConditionalGenerationforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using
BlenderbotTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) –Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using
BlenderbotTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.Blenderbot uses the
bos_token_idas the starting token fordecoder_input_idsgeneration. Ifpast_key_valuesis used, optionally only the lastdecoder_input_idshave to be input (seepast_key_values).decoder_attention_mask (
torch.LongTensorof shape(batch_size, target_sequence_length), optional) – Default behavior: generate a tensor that ignores pad tokens indecoder_input_ids. Causal mask will also be used by default.head_mask (
torch.Tensorof shape(encoder_layers, encoder_attention_heads), optional) –Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask (
torch.Tensorof shape(decoder_layers, decoder_attention_heads), optional) –Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (
torch.Tensorof shape(decoder_layers, decoder_attention_heads), optional) –Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (
tuple(tuple(torch.FloatTensor), optional) – Tuple consists of (last_hidden_state, optional:hidden_states, optional:attentions)last_hidden_stateof shape(batch_size, sequence_length, hidden_size), optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.past_key_values (
tuple(tuple(torch.FloatTensor)), optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) –Tuple of
tuple(torch.FloatTensor)of lengthconfig.n_layers, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head).Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding.If
past_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that don’t have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_ids`of shape(batch_size, sequence_length).inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix.decoder_inputs_embeds (
torch.FloatTensorof shape(batch_size, target_sequence_length, hidden_size), optional) –Optionally, instead of passing
decoder_input_idsyou can choose to directly pass an embedded representation. Ifpast_key_valuesis used, optionally only the lastdecoder_inputs_embedshave to be input (seepast_key_values). This is useful if you want more control over how to convertdecoder_input_idsindices into associated vectors than the model’s internal embedding lookup matrix.If
decoder_input_idsanddecoder_inputs_embedsare both unset,decoder_inputs_embedstakes the value ofinputs_embeds.use_cache (
bool, optional) – If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values).output_attentions (
bool, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail.output_hidden_states (
bool, optional) – Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail.return_dict (
bool, optional) – Whether or not to return aModelOutputinstead of a plain tuple.labels (
torch.LongTensorof shape(batch_size, sequence_length), optional) – Labels for computing the masked language modeling loss. Indices should either be in[0, ..., config.vocab_size]or -100 (seeinput_idsdocstring). Tokens with indices set to-100are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size].
- Returns
A
Seq2SeqLMOutputor a tuple oftorch.FloatTensor(ifreturn_dict=Falseis passed or whenconfig.return_dict=False) comprising various elements depending on the configuration (BlenderbotConfig) and inputs.loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) – Language modeling loss.logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).past_key_values (
tuple(tuple(torch.FloatTensor)), optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) – Tuple oftuple(torch.FloatTensor)of lengthconfig.n_layers, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head).Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding.decoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
Seq2SeqLMOutputortuple(torch.FloatTensor)
Conversation example:
>>> from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration >>> mname = 'facebook/blenderbot-400M-distill' >>> model = BlenderbotForConditionalGeneration.from_pretrained(mname) >>> tokenizer = BlenderbotTokenizer.from_pretrained(mname) >>> UTTERANCE = "My friends are cool but they eat too many carbs." >>> print("Human: ", UTTERANCE) >>> inputs = tokenizer([UTTERANCE], return_tensors='pt') >>> reply_ids = model.generate(**inputs) >>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]) >>> REPLY = "I'm not sure" >>> print("Human: ", REPLY) >>> NEXT_UTTERANCE = ( ... "My friends are cool but they eat too many carbs.</s> <s>That's unfortunate. " ... "Are they trying to lose weight or are they just trying to be healthier?</s> " ... "<s> I'm not sure." ... ) >>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors='pt') >>> next_reply_ids = model.generate(**inputs) >>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0])
BlenderbotForCausalLM¶
-
class
transformers.BlenderbotForCausalLM(config)[source]¶ -
forward(input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]¶ - Args:
- input_ids (
torch.LongTensorof shape(batch_size, sequence_length)): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using
BlenderbotTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.- attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional): Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
- encoder_hidden_states (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.
- encoder_attention_mask (
torch.FloatTensorof shape(batch_size, sequence_length), optional): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in
[0, 1]:- head_mask (
torch.Tensorof shape(decoder_layers, decoder_attention_heads), optional): Mask to nullify selected heads of the attention modules. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
- cross_attn_head_mask (
torch.Tensorof shape(decoder_layers, decoder_attention_heads), optional): Mask to nullify selected heads of the cross-attention modules. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
- past_key_values (
tuple(tuple(torch.FloatTensor)), optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True): Tuple of
tuple(torch.FloatTensor)of lengthconfig.n_layers, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head). The two additional tensors are only required when the model is used as a decoder in a Sequence to Sequence model.Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding.If
past_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that don’t have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_idsof shape(batch_size, sequence_length).- labels (
torch.LongTensorof shape(batch_size, sequence_length), optional): Labels for computing the masked language modeling loss. Indices should either be in
[0, ..., config.vocab_size]or -100 (seeinput_idsdocstring). Tokens with indices set to-100are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size].- use_cache (
bool, optional): If set to
True,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values).1 for tokens that are not masked,
0 for tokens that are masked.
- output_attentions (
bool, optional): Whether or not to return the attentions tensors of all attention layers. See
attentionsunder returned tensors for more detail.- output_hidden_states (
bool, optional): Whether or not to return the hidden states of all layers. See
hidden_statesunder returned tensors for more detail.- return_dict (
bool, optional): Whether or not to return a
ModelOutputinstead of a plain tuple.
- input_ids (
- Returns
A
CausalLMOutputWithCrossAttentionsor a tuple oftorch.FloatTensor(ifreturn_dict=Falseis passed or whenconfig.return_dict=False) comprising various elements depending on the configuration (BlenderbotConfig) and inputs.loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) – Language modeling loss (for next-token prediction).logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftorch.FloatTensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.
past_key_values (
tuple(tuple(torch.FloatTensor)), optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) – Tuple oftorch.FloatTensortuples of lengthconfig.n_layers, with each tuple containing the cached key, value states of the self-attention and the cross-attention layers if model is used in encoder-decoder setting. Only relevant ifconfig.is_decoder = True.Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding.
Example:
>>> from transformers import BlenderbotTokenizer, BlenderbotForCausalLM >>> tokenizer = BlenderbotTokenizer.from_pretrained('facebook/bart-large') >>> model = BlenderbotForCausalLM.from_pretrained('facebook/bart-large', add_cross_attention=False) >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state
- Return type
CausalLMOutputWithCrossAttentionsortuple(torch.FloatTensor)
-
TFBlenderbotModel¶
-
class
transformers.TFBlenderbotModel(*args, **kwargs)[source]¶ The bare BLENDERBOT Model outputting raw hidden-states without any specific head on top. This model inherits from
TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()method which currently requires having all the tensors in the first argument of the model call function:model(inputs).If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_idsonly and nothing else:model(input_ids)a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])ormodel([input_ids, attention_mask, token_type_ids])a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
- Parameters
config (
BlenderbotConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
call(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs: Optional[Union[Tuple, transformers.modeling_tf_outputs.TFBaseModelOutput]] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs)[source]¶ The
TFBlenderbotModelforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
tf.Tensorof shape(batch_size, sequence_length)) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
BlenderbotTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.attention_mask (
tf.Tensorof shape(batch_size, sequence_length), optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (
tf.Tensorof shape(batch_size, target_sequence_length), optional) –Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using
BlenderbotTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.Blenderbot uses the
bos_token_idas the starting token fordecoder_input_idsgeneration. Ifpast_key_valuesis used, optionally only the lastdecoder_input_idshave to be input (seepast_key_values).decoder_attention_mask (
tf.Tensorof shape(batch_size, target_sequence_length), optional) – will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.head_mask (
tf.Tensorof shape(encoder_layers, encoder_attention_heads), optional) –Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask (
tf.Tensorof shape(decoder_layers, decoder_attention_heads), optional) –Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (
tf.Tensorof shape(decoder_layers, decoder_attention_heads), optional) –Mask to nullify selected heads of the cross-attention modules. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (
tf.FloatTensor, optional) – hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape(batch_size, sequence_length, hidden_size)is a sequence ofpast_key_values (
Tuple[Tuple[tf.Tensor]]of lengthconfig.n_layers) – contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. Ifpast_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that don’t have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_idsof shape(batch_size, sequence_length).use_cache (
bool, optional, defaults toTrue) – If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values). Set toFalseduring training,Trueduring generationoutput_attentions (
bool, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.output_hidden_states (
bool, optional) – Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.return_dict (
bool, optional) – Whether or not to return aModelOutputinstead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.training (
bool, optional, defaults toFalse) – Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
- Returns
A
TFSeq2SeqModelOutputor a tuple oftf.Tensor(ifreturn_dict=Falseis passed or whenconfig.return_dict=False) comprising various elements depending on the configuration (BlenderbotConfig) and inputs.last_hidden_state (
tf.Tensorof shape(batch_size, sequence_length, hidden_size)) – Sequence of hidden-states at the output of the last layer of the decoder of the model.If
past_key_valuesis used only the last hidden-state of the sequences of shape(batch_size, 1, hidden_size)is output.past_key_values (
List[tf.Tensor], optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) – List oftf.Tensorof lengthconfig.n_layers, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)).Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see
past_key_valuesinput) to speed up sequential decoding.decoder_hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (
tf.Tensorof shape(batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TFSeq2SeqModelOutputortuple(tf.Tensor)
Example:
>>> from transformers import BlenderbotTokenizer, TFBlenderbotModel >>> import tensorflow as tf >>> tokenizer = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-400M-distill') >>> model = TFBlenderbotModel.from_pretrained('facebook/blenderbot-400M-distill') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> outputs = model(inputs) >>> last_hidden_states = outputs.last_hidden_state
TFBlenderbotForConditionalGeneration¶
-
class
transformers.TFBlenderbotForConditionalGeneration(*args, **kwargs)[source]¶ The BLENDERBOT Model with a language modeling head. Can be used for summarization. This model inherits from
TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()method which currently requires having all the tensors in the first argument of the model call function:model(inputs).If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_idsonly and nothing else:model(input_ids)a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])ormodel([input_ids, attention_mask, token_type_ids])a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
- Parameters
config (
BlenderbotConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()method to load the model weights.
-
call(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs: Optional[transformers.modeling_tf_outputs.TFBaseModelOutput] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs)[source]¶ The
TFBlenderbotForConditionalGenerationforward method, overrides the__call__()special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
tf.Tensorof shape({0})) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
BlenderbotTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.attention_mask (
tf.Tensorof shape({0}), optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]:1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (
tf.Tensorof shape(batch_size, target_sequence_length), optional) –Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using
BlenderbotTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.Blenderbot uses the
bos_token_idas the starting token fordecoder_input_idsgeneration. Ifpast_key_valuesis used, optionally only the lastdecoder_input_idshave to be input (seepast_key_values).decoder_attention_mask (
tf.Tensorof shape(batch_size, target_sequence_length), optional) – will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.head_mask (
tf.Tensorof shape(encoder_layers, encoder_attention_heads), optional) –Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask (
tf.Tensorof shape(decoder_layers, decoder_attention_heads), optional) –Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (
tf.Tensorof shape(decoder_layers, decoder_attention_heads), optional) –Mask to nullify selected heads of the cross-attention modules. Mask values selected in
[0, 1]:1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (
tf.FloatTensor, optional) – hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape(batch_size, sequence_length, hidden_size)is a sequence ofpast_key_values (
Tuple[Tuple[tf.Tensor]]of lengthconfig.n_layers) – contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. Ifpast_key_valuesare used, the user can optionally input only the lastdecoder_input_ids(those that don’t have their past key value states given to this model) of shape(batch_size, 1)instead of alldecoder_input_idsof shape(batch_size, sequence_length).use_cache (
bool, optional, defaults toTrue) – If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values). Set toFalseduring training,Trueduring generationoutput_attentions (
bool, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentionsunder returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.output_hidden_states (
bool, optional) – Whether or not to return the hidden states of all layers. Seehidden_statesunder returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.return_dict (
bool, optional) – Whether or not to return aModelOutputinstead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.training (
bool, optional, defaults toFalse) – Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).labels (
tf.tensorof shape(batch_size, sequence_length), optional) – Labels for computing the masked language modeling loss. Indices should either be in[0, ..., config.vocab_size]or -100 (seeinput_idsdocstring). Tokens with indices set to-100are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size].
- Returns
A
TFSeq2SeqLMOutputor a tuple oftf.Tensor(ifreturn_dict=Falseis passed or whenconfig.return_dict=False) comprising various elements depending on the configuration (BlenderbotConfig) and inputs.loss (
tf.Tensorof shape(n,), optional, where n is the number of non-masked labels, returned whenlabelsis provided) – Language modeling loss.logits (
tf.Tensorof shape(batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).past_key_values (
List[tf.Tensor], optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) – List oftf.Tensorof lengthconfig.n_layers, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)).Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see
past_key_valuesinput) to speed up sequential decoding.decoder_hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (
tf.Tensorof shape(batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(tf.Tensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) – Tuple oftf.Tensor(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(tf.Tensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) – Tuple oftf.Tensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TFSeq2SeqLMOutputortuple(tf.Tensor)
Conversation example:
>>> from transformers import BlenderbotTokenizer, TFBlenderbotForConditionalGeneration >>> mname = 'facebook/blenderbot-400M-distill' >>> model = TFBlenderbotForConditionalGeneration.from_pretrained(mname) >>> tokenizer = BlenderbotTokenizer.from_pretrained(mname) >>> UTTERANCE = "My friends are cool but they eat too many carbs." >>> print("Human: ", UTTERANCE) >>> inputs = tokenizer([UTTERANCE], return_tensors='tf') >>> reply_ids = model.generate(**inputs) >>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]) >>> REPLY = "I'm not sure" >>> print("Human: ", REPLY) >>> NEXT_UTTERANCE = ( ... "My friends are cool but they eat too many carbs.</s> <s>That's unfortunate. " ... "Are they trying to lose weight or are they just trying to be healthier?</s> " ... "<s> I'm not sure." ... ) >>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors='tf') >>> next_reply_ids = model.generate(**inputs) >>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0])