# coding=utf-8
# Copyright 2021 Google Research The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch BigBirdPegasus model. """
import copy
import math
import random
from typing import Optional, Tuple
import numpy as np
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...file_utils import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
Seq2SeqQuestionAnsweringModelOutput,
Seq2SeqSequenceClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_bigbird_pegasus import BigBirdPegasusConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/bigbird-pegasus-large-arxiv"
_CONFIG_FOR_DOC = "BigBirdPegasusConfig"
_TOKENIZER_FOR_DOC = "PegasusTokenizer"
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST = [
"google/bigbird-pegasus-large-arxiv",
"google/bigbird-pegasus-large-pubmed",
"google/bigbird-pegasus-large-bigpatent",
# See all BigBirdPegasus models at https://huggingface.co/models?filter=bigbird_pegasus
]
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined."
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
def _make_causal_mask(input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), float("-inf"))
mask_cond = torch.arange(mask.size(-1))
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.bool(), torch.finfo(dtype).min)
class BigBirdPegasusLearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int):
super().__init__(num_embeddings, embedding_dim)
def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
bsz, seq_len = input_ids_shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
)
return super().forward(positions)
# Copied from transformers.models.big_bird.modeling_big_bird.BigBirdSelfAttention with BigBird->BigBirdPegasus
class BigBirdPegasusSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias)
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BigBirdPegasusModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.big_bird.modeling_big_bird.BigBirdBlockSparseAttention with BigBird->BigBirdPegasus
class BigBirdPegasusBlockSparseAttention(nn.Module):
def __init__(self, config, seed=None):
super().__init__()
self.max_seqlen = config.max_position_embeddings
self.seed = seed
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size {config.hidden_size} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.num_attention_heads = config.num_attention_heads
self.num_random_blocks = config.num_random_blocks
self.block_size = config.block_size
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias)
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
band_mask=None,
from_mask=None,
to_mask=None,
from_blocked_mask=None,
to_blocked_mask=None,
output_attentions=None,
):
# Currently this `class` can't be used in decoder.
batch_size, seqlen, _ = hidden_states.size()
to_seq_length = from_seq_length = seqlen
from_block_size = to_block_size = self.block_size
assert from_seq_length % from_block_size == 0, "Query sided sequence length must be multiple of block size"
assert to_seq_length % to_block_size == 0, "Key/Value sided sequence length must be multiple of block size"
query_layer = self.transpose_for_scores(self.query(hidden_states))
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
context_layer, attention_probs = self.bigbird_block_sparse_attention(
query_layer,
key_layer,
value_layer,
band_mask,
from_mask,
to_mask,
from_blocked_mask,
to_blocked_mask,
self.num_attention_heads,
self.num_random_blocks,
self.attention_head_size,
from_block_size,
to_block_size,
batch_size,
from_seq_length,
to_seq_length,
seed=self.seed,
plan_from_length=None,
plan_num_rand_blocks=None,
output_attentions=output_attentions,
)
context_layer = context_layer.contiguous().view(batch_size, from_seq_length, -1)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
@staticmethod
def torch_bmm_nd(inp_1, inp_2, ndim=None):
"""Fast nd matrix multiplication"""
# faster replacement of torch.einsum ("bhqk,bhkd->bhqd")
return torch.bmm(inp_1.reshape((-1,) + inp_1.shape[-2:]), inp_2.reshape((-1,) + inp_2.shape[-2:])).view(
inp_1.shape[: ndim - 2] + (inp_1.shape[ndim - 2], inp_2.shape[ndim - 1])
)
@staticmethod
def torch_bmm_nd_transpose(inp_1, inp_2, ndim=None):
"""Fast nd matrix multiplication with transpose"""
# faster replacement of torch.einsum (bhqd,bhkd->bhqk)
return torch.bmm(
inp_1.reshape((-1,) + inp_1.shape[-2:]), inp_2.reshape((-1,) + inp_2.shape[-2:]).transpose(1, 2)
).view(inp_1.shape[: ndim - 2] + (inp_1.shape[ndim - 2], inp_2.shape[ndim - 2]))
def bigbird_block_sparse_attention(
self,
query_layer,
key_layer,
value_layer,
band_mask,
from_mask,
to_mask,
from_blocked_mask,
to_blocked_mask,
n_heads,
n_rand_blocks,
attention_head_size,
from_block_size,
to_block_size,
batch_size,
from_seq_len,
to_seq_len,
seed,
plan_from_length,
plan_num_rand_blocks,
output_attentions,
):
# BigBirdPegasus block-sparse attention as suggested in paper
# ITC:
# global tokens: 2 x block_size
# window tokens: 3 x block_size
# random tokens: num_rand_tokens x block_size
# ETC:
# global tokens: extra_globals_tokens + 2 x block_size
# window tokens: 3 x block_size
# random tokens: num_rand_tokens x block_size
# Note:
# 1) Currently, ETC is not supported.
# 2) Window size is fixed to 3 blocks & it can be changed only by
# changing `block_size`.
# 3) Number of global blocks are fixed (2 blocks here) & global tokens can be
# controlled only by `block_size`.
# attention is calculated separately for q[0], q[1], q[2:-2], q[-2], q[-1] in order to use special trick of shifting tokens (for calculating sliding attention)
# hence following code can be divided into 5 parts.
if from_seq_len // from_block_size != to_seq_len // to_block_size:
raise ValueError("Error the number of blocks needs to be same!")
rsqrt_d = 1 / math.sqrt(attention_head_size)
bsz = batch_size
attn_mask_penalty = -10000.0
# generate random attention and corresponding masks
np.random.seed(seed)
if from_seq_len in [1024, 3072, 4096]: # old plans used in paper
rand_attn = [
self._bigbird_block_rand_mask(
self.max_seqlen, self.max_seqlen, from_block_size, to_block_size, n_rand_blocks, last_idx=1024
)[: (from_seq_len // from_block_size - 2)]
for _ in range(n_heads)
]
else:
if plan_from_length is None:
plan_from_length, plan_num_rand_blocks = self._get_rand_attn_plan(
from_seq_len, from_block_size, n_rand_blocks
)
rand_attn = self._bigbird_block_rand_mask_with_head(
from_seq_length=from_seq_len,
to_seq_length=to_seq_len,
from_block_size=from_block_size,
to_block_size=to_block_size,
num_heads=n_heads,
plan_from_length=plan_from_length,
plan_num_rand_blocks=plan_num_rand_blocks,
)
rand_attn = np.stack(rand_attn, axis=0)
rand_attn = torch.tensor(rand_attn, device=query_layer.device, dtype=torch.long)
rand_attn.unsqueeze_(0)
rand_attn = torch.cat([rand_attn for _ in range(batch_size)], dim=0)
rand_mask = self._create_rand_mask_from_inputs(
from_blocked_mask, to_blocked_mask, rand_attn, n_heads, n_rand_blocks, bsz, from_seq_len, from_block_size
)
blocked_query_matrix = query_layer.view(bsz, n_heads, from_seq_len // from_block_size, from_block_size, -1)
blocked_key_matrix = key_layer.view(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1)
blocked_value_matrix = value_layer.view(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1)
# preparing block for randn attn
gathered_key = self.torch_gather_b2(blocked_key_matrix, rand_attn)
gathered_key = gathered_key.view(
bsz, n_heads, to_seq_len // to_block_size - 2, n_rand_blocks * to_block_size, -1
) # [bsz, n_heads, to_seq_len//to_block_size-2, n_rand_blocks, to_block_size, -1]
gathered_value = self.torch_gather_b2(blocked_value_matrix, rand_attn)
gathered_value = gathered_value.view(
bsz, n_heads, to_seq_len // to_block_size - 2, n_rand_blocks * to_block_size, -1
) # [bsz, n_heads, to_seq_len//to_block_size-2, n_rand_blocks, to_block_size, -1]
# 1st PART
# 1st block (global block) attention scores
# q[0] x (k[0], k[1], k[2], k[3], k[4] .... )
# [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len]
first_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, 0], key_layer, ndim=4)
first_product = first_product * rsqrt_d
first_product += (1.0 - to_mask) * attn_mask_penalty
first_attn_weights = nn.functional.softmax(
first_product, dim=-1
) # [bsz, n_heads, from_block_size, to_seq_len]
# [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1]
first_context_layer = self.torch_bmm_nd(first_attn_weights, value_layer, ndim=4)
first_context_layer.unsqueeze_(2)
# 2nd PART
# 2nd block attention scores
# q[1] x (sliding_keys, random_keys, global_keys)
# sliding key blocks -> 2nd, 3rd blocks
# global key blocks -> 1st block
second_key_mat = torch.cat(
[
blocked_key_matrix[:, :, 0],
blocked_key_matrix[:, :, 1],
blocked_key_matrix[:, :, 2],
blocked_key_matrix[:, :, -1],
gathered_key[:, :, 0],
],
dim=2,
) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1]
second_value_mat = torch.cat(
[
blocked_value_matrix[:, :, 0],
blocked_value_matrix[:, :, 1],
blocked_value_matrix[:, :, 2],
blocked_value_matrix[:, :, -1],
gathered_value[:, :, 0],
],
dim=2,
) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1]
# [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size]
second_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, 1], second_key_mat, ndim=4)
second_seq_pad = torch.cat(
[
to_mask[:, :, :, : 3 * to_block_size],
to_mask[:, :, :, -to_block_size:],
to_mask.new_ones([bsz, 1, 1, n_rand_blocks * to_block_size]),
],
dim=3,
)
second_rand_pad = torch.cat(
[
rand_mask.new_ones([bsz, n_heads, from_block_size, 4 * to_block_size]),
rand_mask[:, :, 0],
],
dim=3,
)
second_product = second_product * rsqrt_d
second_product += (1.0 - torch.minimum(second_seq_pad, second_rand_pad)) * attn_mask_penalty
second_attn_weights = nn.functional.softmax(
second_product, dim=-1
) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size]
# [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, -1]
second_context_layer = self.torch_bmm_nd(second_attn_weights, second_value_mat, ndim=4)
second_context_layer.unsqueeze_(2)
# 3rd PART
# Middle blocks attention scores
# q[-2:2] x (sliding_keys, random_keys, global_keys)
# sliding attn is calculated using special trick of shifting tokens as discussed in paper
# random keys are generated by taking random indices as per `rand_attn`
# global keys -> 1st & last block
exp_blocked_key_matrix = torch.cat(
[blocked_key_matrix[:, :, 1:-3], blocked_key_matrix[:, :, 2:-2], blocked_key_matrix[:, :, 3:-1]], dim=3
) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1]
exp_blocked_value_matrix = torch.cat(
[blocked_value_matrix[:, :, 1:-3], blocked_value_matrix[:, :, 2:-2], blocked_value_matrix[:, :, 3:-1]],
dim=3,
) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1]
middle_query_matrix = blocked_query_matrix[:, :, 2:-2]
# sliding attention scores for q[-2:2]
# [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [b, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1]
inner_band_product = self.torch_bmm_nd_transpose(middle_query_matrix, exp_blocked_key_matrix, ndim=5)
# ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, 3*to_block_size]
inner_band_product = inner_band_product * rsqrt_d
# randn attention scores for q[-2:2]
# [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1]
rand_band_product = self.torch_bmm_nd_transpose(middle_query_matrix, gathered_key[:, :, 1:-1], ndim=5)
# ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size]
rand_band_product = rand_band_product * rsqrt_d
# Including 1st block (since it's global)
first_band_product = torch.einsum(
"bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, 0]
) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size]
first_band_product = first_band_product * rsqrt_d
# Including last block (since it's global)
last_band_product = torch.einsum(
"bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, -1]
) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size]
last_band_product = last_band_product * rsqrt_d
# masking padded tokens
inner_band_product += (1.0 - band_mask) * attn_mask_penalty
first_band_product += (1.0 - to_mask[:, :, :, :to_block_size].unsqueeze(3)) * attn_mask_penalty
last_band_product += (1.0 - to_mask[:, :, :, -to_block_size:].unsqueeze(3)) * attn_mask_penalty
rand_band_product += (1.0 - rand_mask[:, :, 1:-1]) * attn_mask_penalty
# completing attention scores matrix for all q[-2:2]
band_product = torch.cat(
[first_band_product, inner_band_product, rand_band_product, last_band_product], dim=-1
) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size]
# safely doing softmax since attention matrix is completed
attn_weights = nn.functional.softmax(
band_product, dim=-1
) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size]
# contribution of sliding keys
# [bsz, n_heads, m//from_block_size-4, from_block_size, 3*to_block_size] x [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1]
context_layer = self.torch_bmm_nd(
attn_weights[:, :, :, :, to_block_size : 4 * to_block_size], exp_blocked_value_matrix, ndim=5
)
# ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
# adding contribution of random keys
# [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size] x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1]
context_layer += self.torch_bmm_nd(
attn_weights[:, :, :, :, 4 * to_block_size : -to_block_size], gathered_value[:, :, 1:-1], ndim=5
)
# ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
# adding contribution of global keys
context_layer += torch.einsum(
"bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, :to_block_size], blocked_value_matrix[:, :, 0]
) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
context_layer += torch.einsum(
"bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, -to_block_size:], blocked_value_matrix[:, :, -1]
) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1]
# 4th PART
# last 2nd token attention scores
# q[-2] x (sliding_keys, random_keys, global_keys)
# sliding key blocks -> last 3 blocks
# global key block -> 1st block
# random key block -> based on indices stored in `randn_attn`
second_last_key_mat = torch.cat(
[
blocked_key_matrix[:, :, 0],
blocked_key_matrix[:, :, -3],
blocked_key_matrix[:, :, -2],
blocked_key_matrix[:, :, -1],
gathered_key[:, :, -1],
],
dim=2,
) # [bsz, n_heads, (4+n_random_blocks)*to_block_size, -1]
second_last_value_mat = torch.cat(
[
blocked_value_matrix[:, :, 0],
blocked_value_matrix[:, :, -3],
blocked_value_matrix[:, :, -2],
blocked_value_matrix[:, :, -1],
gathered_value[:, :, -1],
],
dim=2,
) # [bsz, n_heads, (4+r)*to_block_size, -1]
# [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size]
second_last_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, -2], second_last_key_mat, ndim=4)
second_last_seq_pad = torch.cat(
[
to_mask[:, :, :, :to_block_size],
to_mask[:, :, :, -3 * to_block_size :],
to_mask.new_ones([bsz, 1, 1, n_rand_blocks * to_block_size]),
],
dim=3,
)
second_last_rand_pad = torch.cat(
[
rand_mask.new_ones([bsz, n_heads, from_block_size, 4 * to_block_size]),
rand_mask[:, :, -1],
],
dim=3,
)
second_last_product = second_last_product * rsqrt_d
second_last_product += (1.0 - torch.minimum(second_last_seq_pad, second_last_rand_pad)) * attn_mask_penalty
second_last_attn_weights = nn.functional.softmax(
second_last_product, dim=-1
) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size]
# [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, -1]
second_last_context_layer = self.torch_bmm_nd(second_last_attn_weights, second_last_value_mat, ndim=4)
second_last_context_layer.unsqueeze_(2)
# 5th PART
# last block (global) attention scores
# q[-1] x (k[0], k[1], k[2], k[3], .... )
# [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len]
last_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, -1], key_layer, ndim=4)
last_product = last_product * rsqrt_d
last_product += (1.0 - to_mask) * attn_mask_penalty
last_attn_weights = nn.functional.softmax(last_product, dim=-1) # [bsz, n_heads, from_block_size, n]
# [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1]
last_context_layer = self.torch_bmm_nd(last_attn_weights, value_layer, ndim=4)
last_context_layer.unsqueeze_(2)
# combining representations of all tokens
context_layer = torch.cat(
[first_context_layer, second_context_layer, context_layer, second_last_context_layer, last_context_layer],
dim=2,
)
context_layer = context_layer.view((bsz, n_heads, from_seq_len, -1)) * from_mask
context_layer = torch.transpose(context_layer, 1, 2)
# this is just for visualizing; forward pass doesn't depend on following code
if output_attentions:
# TODO(PVP): need to verify if below code is correct
attention_probs = torch.zeros(
bsz, n_heads, from_seq_len, to_seq_len, dtype=torch.float, device=context_layer.device
)
# 1st query block
# corresponding to `first_context_layer`
attention_probs[:, :, :from_block_size, :] = first_attn_weights # all keys global
# 2nd query block
# corresponding to `second_context_layer`
attention_probs[:, :, from_block_size : 2 * from_block_size, : 3 * to_block_size] = second_attn_weights[
:, :, :, : 3 * to_block_size
] # 1st three key blocks (global + sliding)
attention_probs[:, :, from_block_size : 2 * from_block_size, -to_block_size:] = second_attn_weights[
:, :, :, 3 * to_block_size : 4 * to_block_size
] # last key block (global)
# random keys
for p1, i1, w1 in zip(range(bsz), rand_attn, second_attn_weights):
# p1, i1, w1 corresponds to batch_dim i.e. following operation is done for each sequence in batch
for p2, i2, w2 in zip(range(n_heads), i1, w1):
# p2, i2, w2 corresponds to head_dim i.e. following operation is done for each heads
attn_probs_view = attention_probs.view(
bsz,
n_heads,
from_seq_len // from_block_size,
from_block_size,
to_seq_len // to_block_size,
to_block_size,
)
right_slice = w2[:, 4 * to_block_size :]
attn_probs_view[p1, p2, 1, :, i2[0]] = right_slice.view(
from_block_size, n_rand_blocks, to_block_size
)
# Middle query blocks
# corresponding to `context_layer`
# sliding keys
for q_idx in range(from_seq_len // from_block_size - 4):
attn_probs_view = attention_probs.view(
bsz,
n_heads,
from_seq_len // from_block_size,
from_block_size,
to_seq_len // to_block_size,
to_block_size,
)[:, :, 2:-2, :, 1:-1, :]
right_slice = attn_weights[:, :, q_idx, :, to_block_size : 4 * to_block_size]
attn_probs_view[:, :, q_idx, :, q_idx : q_idx + 3, :] = right_slice.view(
bsz, n_heads, from_block_size, 3, to_block_size
) # inner_band_product
# global keys (corresponding to 1st key block)
attention_probs[:, :, 2 * from_block_size : -2 * from_block_size, :to_block_size] = attn_weights[
:, :, :, :, :to_block_size
].view(
bsz, n_heads, -1, to_block_size
) # first_band_product
# global keys (corresponding to last key block)
attention_probs[:, :, 2 * from_block_size : -2 * from_block_size, -to_block_size:] = attn_weights[
:, :, :, :, -to_block_size:
].view(
bsz, n_heads, -1, to_block_size
) # last_band_product
# random keys
for p1, i1, w1 in zip(range(bsz), rand_attn, attn_weights):
# p1, i1, w1 corresponds to batch_dim i.e. following operation is done for each sequence in batch
for p2, i2, w2 in zip(range(n_heads), i1, w1):
# p2, i2, w2 corresponds to head_dim i.e. following operation is done for each heads
for q_idx in range(1, len(i2) - 1):
attn_probs_view = attention_probs.view(
bsz,
n_heads,
from_seq_len // from_block_size,
from_block_size,
to_seq_len // to_block_size,
to_block_size,
)
right_slice = w2[q_idx - 1, :, 4 * to_block_size : -to_block_size]
attn_probs_view[p1, p2, q_idx + 1, :, i2[q_idx]] = right_slice.view(
from_block_size, n_rand_blocks, to_block_size
)
# Second-last query block
# corresponding to `second_last_context_layer`
attention_probs[:, :, -2 * from_block_size : -from_block_size, :to_block_size] = second_last_attn_weights[
:, :, :, :to_block_size
] # 1st key block (global)
attention_probs[
:, :, -2 * from_block_size : -from_block_size, -3 * to_block_size :
] = second_last_attn_weights[
:, :, :, to_block_size : 4 * to_block_size
] # last three blocks (global + sliding)
# random keys
for p1, i1, w1 in zip(range(bsz), rand_attn, second_last_attn_weights):
# p1, i1, w1 corresponds to batch_dim i.e. following operation is done for each sequence in batch
for p2, i2, w2 in zip(range(n_heads), i1, w1):
# p2, i2, w2 corresponds to head_dim i.e. following operation is done for each heads
attn_probs_view = attention_probs.view(
bsz,
n_heads,
from_seq_len // from_block_size,
from_block_size,
to_seq_len // to_block_size,
to_block_size,
)
right_slice = w2[:, 4 * to_block_size :]
attn_probs_view[p1, p2, -2, :, i2[-1]] = right_slice.view(
from_block_size, n_rand_blocks, to_block_size
)
# last query block
# corresponding to `last_context_layer`
attention_probs[:, :, -from_block_size:, :] = last_attn_weights # all keys global
else:
attention_probs = None
return context_layer, attention_probs
@staticmethod
def torch_gather_b2(params, indices):
# this operation is equivalent to tf.gather when batch_dims=2
if params.shape[:2] != indices.shape[:2]:
raise ValueError(
f"Make sure that the first two dimensions of params and indices are identical, \
but they are params: {params.shape[:2]} vs. indices: {params.shape[:2]}"
)
num_indices_to_gather = indices.shape[-2] * indices.shape[-1]
num_indices_to_pick_from = params.shape[2]
indices_shift = (
torch.arange(indices.shape[0] * indices.shape[1] * num_indices_to_gather, device=indices.device)
// num_indices_to_gather
* num_indices_to_pick_from
)
flattened_indices = indices.view(-1) + indices_shift
flattened_params = params.reshape(-1, params.shape[-2], params.shape[-1])
out_flattened = flattened_params.index_select(0, flattened_indices)
out = out_flattened.reshape(params.shape[:2] + (num_indices_to_gather,) + params.shape[3:])
return out
@staticmethod
def _create_rand_mask_from_inputs(
from_blocked_mask,
to_blocked_mask,
rand_attn,
num_attention_heads,
num_rand_blocks,
batch_size,
from_seq_length,
from_block_size,
):
"""
Create 3D attention mask from a 2D tensor mask.
Args:
from_blocked_mask: 2D Tensor of shape [batch_size,
from_seq_length//from_block_size, from_block_size].
to_blocked_mask: int32 Tensor of shape [batch_size,
to_seq_length//to_block_size, to_block_size].
rand_attn: [batch_size, num_attention_heads,
from_seq_length//from_block_size-2, num_rand_blocks]
num_attention_heads: int. Number of attention heads.
num_rand_blocks: int. Number of random chunks per row.
batch_size: int. Batch size for computation.
from_seq_length: int. length of from sequence.
from_block_size: int. size of block in from sequence.
Returns:
float Tensor of shape [batch_size, num_attention_heads, from_seq_length//from_block_size-2,
from_block_size, num_rand_blocks*to_block_size].
"""
num_windows = from_seq_length // from_block_size - 2
rand_mask = torch.stack([p1[i1.flatten()] for p1, i1 in zip(to_blocked_mask, rand_attn)])
rand_mask = rand_mask.view(batch_size, num_attention_heads, num_windows, num_rand_blocks * from_block_size)
rand_mask = torch.einsum("blq,bhlk->bhlqk", from_blocked_mask[:, 1:-1], rand_mask)
return rand_mask
@staticmethod
def _get_rand_attn_plan(from_seq_length, from_block_size, num_rand_blocks):
"""
Gives the plan of where to put random attention.
Args:
from_seq_length: int. length of from sequence.
from_block_size: int. size of block in from sequence.
num_rand_blocks: int. Number of random chunks per row.
Returns:
plan_from_length: ending location of from block plan_num_rand_blocks: number of random ending location for
each block
"""
plan_from_length = []
plan_num_rand_blocks = []
if (2 * num_rand_blocks + 5) < (from_seq_length // from_block_size):
plan_from_length.append(int((2 * num_rand_blocks + 5) * from_block_size))
plan_num_rand_blocks.append(num_rand_blocks)
plan_from_length.append(from_seq_length)
plan_num_rand_blocks.append(0)
elif (num_rand_blocks + 5) < (from_seq_length // from_block_size):
plan_from_length.append(int((num_rand_blocks + 5) * from_block_size))
plan_num_rand_blocks.append(num_rand_blocks // 2)
plan_from_length.append(from_seq_length)
plan_num_rand_blocks.append(num_rand_blocks - (num_rand_blocks // 2))
else:
plan_from_length.append(from_seq_length)
plan_num_rand_blocks.append(num_rand_blocks)
return plan_from_length, plan_num_rand_blocks
@staticmethod
def _bigbird_block_rand_mask(
from_seq_length, to_seq_length, from_block_size, to_block_size, num_rand_blocks, last_idx=-1
):
"""
Create adjacency list of random attention.
Args:
from_seq_length: int. length of from sequence.
to_seq_length: int. length of to sequence.
from_block_size: int. size of block in from sequence.
to_block_size: int. size of block in to sequence.
num_rand_blocks: int. Number of random chunks per row.
last_idx: if -1 then num_rand_blocks blocks chosen anywhere in to sequence,
if positive then num_rand_blocks blocks chosen only up to last_idx.
Returns:
adjacency list of size from_seq_length//from_block_size-2 by num_rand_blocks
"""
# using this method when from_seq_length in [1024, 3072, 4096]
assert (
from_seq_length // from_block_size == to_seq_length // to_block_size
), "Error the number of blocks needs to be same!"
rand_attn = np.zeros((from_seq_length // from_block_size - 2, num_rand_blocks), dtype=np.int32)
middle_seq = np.arange(1, to_seq_length // to_block_size - 1, dtype=np.int32)
last = to_seq_length // to_block_size - 1
if last_idx > (2 * to_block_size):
last = (last_idx // to_block_size) - 1
r = num_rand_blocks # shorthand
for i in range(1, from_seq_length // from_block_size - 1):
start = i - 2
end = i
if i == 1:
rand_attn[i - 1, :] = np.random.permutation(middle_seq[2:last])[:r]
elif i == 2:
rand_attn[i - 1, :] = np.random.permutation(middle_seq[3:last])[:r]
elif i == from_seq_length // from_block_size - 3:
rand_attn[i - 1, :] = np.random.permutation(middle_seq[:last])[:r]
# Missing -3: should have been sliced till last-3
elif i == from_seq_length // from_block_size - 2:
rand_attn[i - 1, :] = np.random.permutation(middle_seq[:last])[:r]
# Missing -4: should have been sliced till last-4
else:
if start > last:
start = last
rand_attn[i - 1, :] = np.random.permutation(middle_seq[:start])[:r]
elif (end + 1) == last:
rand_attn[i - 1, :] = np.random.permutation(middle_seq[:start])[:r]
else:
rand_attn[i - 1, :] = np.random.permutation(
np.concatenate((middle_seq[:start], middle_seq[end + 1 : last]))
)[:r]
return rand_attn
def _bigbird_block_rand_mask_with_head(
self,
from_seq_length,
to_seq_length,
from_block_size,
to_block_size,
num_heads,
plan_from_length,
plan_num_rand_blocks,
window_block_left=1,
window_block_right=1,
global_block_top=1,
global_block_bottom=1,
global_block_left=1,
global_block_right=1,
):
"""
Create adjacency list of random attention.
Args:
from_seq_length: int. length of from sequence.
to_seq_length: int. length of to sequence.
from_block_size: int. size of block in from sequence.
to_block_size: int. size of block in to sequence.
num_heads: int. total number of heads.
plan_from_length: list. plan from length where num_random_blocks are chosen from.
plan_num_rand_blocks: list. number of rand blocks within the plan.
window_block_left: int. number of blocks of window to left of a block.
window_block_right: int. number of blocks of window to right of a block.
global_block_top: int. number of blocks at the top.
global_block_bottom: int. number of blocks at the bottom.
global_block_left: int. Number of blocks globally used to the left.
global_block_right: int. Number of blocks globally used to the right.
Returns:
adjacency list of size num_head where each element is of size from_seq_length//from_block_size-2 by
num_rand_blocks
"""
# using this method when from_seq_length not in [1024, 3072, 4096]
assert (
from_seq_length // from_block_size == to_seq_length // to_block_size
), "Error the number of blocks needs to be same!"
assert from_seq_length in plan_from_length, "Error from sequence length not in plan!"
# Total number of blocks in the mmask
num_blocks = from_seq_length // from_block_size
# Number of blocks per plan
plan_block_length = np.array(plan_from_length) // from_block_size
# till when to follow plan
max_plan_idx = plan_from_length.index(from_seq_length)
# Random Attention adjacency list
rand_attn = [
np.zeros((num_blocks, np.sum(plan_num_rand_blocks[: max_plan_idx + 1])), dtype=np.int32)
for i in range(num_heads)
]
# We will go iteratively over the plan blocks and pick random number of
# Attention blocks from the legally allowed blocks
for plan_idx in range(max_plan_idx + 1):
rnd_r_cnt = 0
if plan_idx > 0:
# set the row for all from_blocks starting from 0 to
# plan_block_length[plan_idx-1]
# column indx start fromm plan_block_length[plan_idx-1] and ends at
# plan_block_length[plan_idx]
if plan_num_rand_blocks[plan_idx] > 0:
rnd_r_cnt = int(np.sum(plan_num_rand_blocks[:plan_idx]))
curr_r_cnt = int(np.sum(plan_num_rand_blocks[: plan_idx + 1]))
for blk_rw_idx in range(global_block_top, plan_block_length[plan_idx - 1]):
for h in range(num_heads):
rand_attn[h][blk_rw_idx, rnd_r_cnt:curr_r_cnt] = self._get_single_block_row_attention(
block_id=blk_rw_idx,
to_start_block_id=plan_block_length[plan_idx - 1],
to_end_block_id=plan_block_length[plan_idx],
num_rand_blocks=plan_num_rand_blocks[plan_idx],
window_block_left=window_block_left,
window_block_right=window_block_right,
global_block_left=global_block_left,
global_block_right=global_block_right,
)
for pl_id in range(plan_idx):
if plan_num_rand_blocks[pl_id] == 0:
continue
for blk_rw_idx in range(plan_block_length[plan_idx - 1], plan_block_length[plan_idx]):
rnd_r_cnt = 0
to_start_block_id = 0
if pl_id > 0:
rnd_r_cnt = int(np.sum(plan_num_rand_blocks[:pl_id]))
to_start_block_id = plan_block_length[pl_id - 1]
curr_r_cnt = int(np.sum(plan_num_rand_blocks[: pl_id + 1]))
for h in range(num_heads):
rand_attn[h][blk_rw_idx, rnd_r_cnt:curr_r_cnt] = self._get_single_block_row_attention(
block_id=blk_rw_idx,
to_start_block_id=to_start_block_id,
to_end_block_id=plan_block_length[pl_id],
num_rand_blocks=plan_num_rand_blocks[pl_id],
window_block_left=window_block_left,
window_block_right=window_block_right,
global_block_left=global_block_left,
global_block_right=global_block_right,
)
if plan_num_rand_blocks[plan_idx] == 0:
continue
curr_r_cnt = int(np.sum(plan_num_rand_blocks[: plan_idx + 1]))
from_start_block_id = global_block_top
to_start_block_id = 0
if plan_idx > 0:
rnd_r_cnt = int(np.sum(plan_num_rand_blocks[:plan_idx]))
from_start_block_id = plan_block_length[plan_idx - 1]
to_start_block_id = plan_block_length[plan_idx - 1]
for blk_rw_idx in range(from_start_block_id, plan_block_length[plan_idx]):
for h in range(num_heads):
rand_attn[h][blk_rw_idx, rnd_r_cnt:curr_r_cnt] = self._get_single_block_row_attention(
block_id=blk_rw_idx,
to_start_block_id=to_start_block_id,
to_end_block_id=plan_block_length[plan_idx],
num_rand_blocks=plan_num_rand_blocks[plan_idx],
window_block_left=window_block_left,
window_block_right=window_block_right,
global_block_left=global_block_left,
global_block_right=global_block_right,
)
for nh in range(num_heads):
rand_attn[nh] = rand_attn[nh][global_block_top : num_blocks - global_block_bottom, :]
return rand_attn
@staticmethod
def _get_single_block_row_attention(
block_id,
to_start_block_id,
to_end_block_id,
num_rand_blocks,
window_block_left=1,
window_block_right=1,
global_block_left=1,
global_block_right=1,
):
"""
For a single row block get random row attention.
Args:
block_id: int. block id of row.
to_start_block_id: int. random attention column start id.
to_end_block_id: int. random attention column end id.
num_rand_blocks: int. number of random blocks to be selected.
window_block_left: int. number of blocks of window to left of a block.
window_block_right: int. number of blocks of window to right of a block.
global_block_left: int. Number of blocks globally used to the left.
global_block_right: int. Number of blocks globally used to the right.
Returns:
row containing the random attention vector of size num_rand_blocks.
"""
# list of to_blocks from which to choose random attention
to_block_list = np.arange(to_start_block_id, to_end_block_id, dtype=np.int32)
# permute the blocks
perm_block = np.random.permutation(to_block_list)
# illegal blocks for the current block id, using window
illegal_blocks = list(range(block_id - window_block_left, block_id + window_block_right + 1))
# Add blocks at the start and at the end
illegal_blocks.extend(list(range(global_block_left)))
illegal_blocks.extend(list(range(to_end_block_id - global_block_right, to_end_block_id)))
# The second from_block cannot choose random attention on second last to_block
if block_id == 1:
illegal_blocks.append(to_end_block_id - 2)
# The second last from_block cannot choose random attention on second to_block
if block_id == to_end_block_id - 2:
illegal_blocks.append(1)
selected_random_blokcs = []
for i in range(to_end_block_id - to_start_block_id):
if perm_block[i] not in illegal_blocks:
selected_random_blokcs.append(perm_block[i])
if len(selected_random_blokcs) == num_rand_blocks:
break
return np.array(selected_random_blokcs, dtype=np.int32)
class BigBirdPegasusEncoderAttention(nn.Module):
def __init__(self, config, seed=None):
super().__init__()
self.config = config
self.seed = seed
self.attention_type = config.attention_type
if self.attention_type == "original_full":
self.self = BigBirdPegasusSelfAttention(config)
elif self.attention_type == "block_sparse":
self.self = BigBirdPegasusBlockSparseAttention(config, seed)
else:
raise ValueError(
f"attention_type can either be original_full or block_sparse, but is {self.config.attention_type}"
)
self.output = nn.Linear(config.hidden_size, config.hidden_size, bias=config.use_bias)
def set_attention_type(self, value: str):
if value not in ["original_full", "block_sparse"]:
raise ValueError(
f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}"
)
# attention type is already correctly set
if value == self.attention_type:
return
self.attention_type = value
if value == "original_full":
# copy all weights to new full attention class
attn_weights = BigBirdPegasusSelfAttention(self.config)
else:
# copy all weights to new sparse attention class
attn_weights = BigBirdPegasusBlockSparseAttention(self.config, self.seed)
attn_weights.query = self.self.query
attn_weights.value = self.self.value
attn_weights.key = self.self.key
self.self = attn_weights
self.attention_type = value
if not self.training:
self.self.eval()
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
past_key_value=None,
output_attentions=False,
band_mask=None,
from_mask=None,
to_mask=None,
from_blocked_mask=None,
to_blocked_mask=None,
):
# Expand dims to enable multiplication in the self-attention module
head_mask = head_mask.reshape(1, -1, 1, 1) if head_mask is not None else None
if self.config.attention_type == "original_full":
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
)
else:
self_outputs = self.self(
hidden_states, band_mask, from_mask, to_mask, from_blocked_mask, to_blocked_mask, output_attentions
)
attention_output = self.output(self_outputs[0])
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->BigBirdPegasusDecoder
class BigBirdPegasusDecoderAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert (
self.head_dim * num_heads == self.embed_dim
), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {num_heads})."
self.scaling = self.head_dim ** -0.5
self.is_decoder = is_decoder
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, embed_dim = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class BigBirdPegasusEncoderLayer(nn.Module):
def __init__(self, config: BigBirdPegasusConfig, seed=None):
super().__init__()
self.attention_type = config.attention_type
self.embed_dim = config.d_model
self.self_attn = BigBirdPegasusEncoderAttention(config, seed=seed)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
layer_head_mask: torch.Tensor,
band_mask=None,
from_mask=None,
to_mask=None,
from_blocked_mask=None,
to_blocked_mask=None,
output_attentions: bool = False,
):
"""
Args:
hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape :obj:`(seq_len, batch, embed_dim)`
attention_mask (:obj:`torch.FloatTensor`): attention mask of size
:obj:`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
self_attention_outputs = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
head_mask=layer_head_mask,
output_attentions=output_attentions,
band_mask=band_mask,
from_mask=from_mask,
to_mask=to_mask,
from_blocked_mask=from_blocked_mask,
to_blocked_mask=to_blocked_mask,
)
hidden_states = self_attention_outputs[0]
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attention_outputs[1],)
return outputs
def set_attention_type(self, value: str):
if value not in ["original_full", "block_sparse"]:
raise ValueError(
f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}"
)
# attention type is already correctly set
if value == self.attention_type:
return
self.attention_type = value
self.self_attn.set_attention_type(value)
class BigBirdPegasusDecoderLayer(nn.Module):
def __init__(self, config: BigBirdPegasusConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = BigBirdPegasusDecoderAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
bias=config.use_bias,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = BigBirdPegasusDecoderAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
bias=config.use_bias,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
# Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
):
"""
Args:
hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (:obj:`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (:obj:`torch.FloatTensor`): cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_attention_mask (:obj:`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (:obj:`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (:obj:`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size `(decoder_attention_heads,)`.
past_key_value (:obj:`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
# Copied from transformers.models.bart.modeling_bart.BartClassificationHead with Bart->BigBirdPegasus
class BigBirdPegasusClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(
self,
input_dim: int,
inner_dim: int,
num_classes: int,
pooler_dropout: float,
):
super().__init__()
self.dense = nn.Linear(input_dim, inner_dim)
self.dropout = nn.Dropout(p=pooler_dropout)
self.out_proj = nn.Linear(inner_dim, num_classes)
def forward(self, hidden_states: torch.Tensor):
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = torch.tanh(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
class BigBirdPegasusPreTrainedModel(PreTrainedModel):
config_class = BigBirdPegasusConfig
base_model_prefix = "model"
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def dummy_inputs(self):
pad_token = self.config.pad_token_id
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
dummy_inputs = {
"attention_mask": input_ids.ne(pad_token),
"input_ids": input_ids,
}
return dummy_inputs
BIGBIRD_PEGASUS_START_DOCSTRING = r"""
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings
etc.)
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
general usage and behavior.
Parameters:
config (:class:`~transformers.BigBirdPegasusConfig`):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
:meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""
BIGBIRD_PEGASUS_GENERATION_EXAMPLE = r"""
Summarization example::
>>> from transformers import PegasusTokenizer, BigBirdPegasusForConditionalGeneration, BigBirdPegasusConfig
>>> model = BigBirdPegasusForConditionalGeneration.from_pretrained('bigbird-pegasus-large-arxiv')
>>> tokenizer = PegasusTokenizer.from_pretrained('bigbird-pegasus-large-arxiv')
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=4096, return_tensors='pt', truncation=True)
>>> # Generate Summary
>>> summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=5, early_stopping=True)
>>> print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids])
"""
BIGBIRD_PEGASUS_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using :class:`~transformers.PegasusTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Provide for translation and summarization training. By default, the model will create this tensor by
shifting the :obj:`input_ids` to the right, following the paper.
decoder_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
also be used by default.
If you want to change padding behavior, you should read
:func:`modeling_bigbird_pegasus._prepare_decoder_inputs` and modify to your needs. See diagram 1 in `the
paper <https://arxiv.org/abs/1910.13461>`__ for more information on the default strategy.
decoder_head_mask (:obj:`torch.Tensor` of shape :obj:`(num_layers, num_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (:obj:`tuple(tuple(torch.FloatTensor)`, `optional`):
Tuple consists of (:obj:`last_hidden_state`, `optional`: :obj:`hidden_states`, `optional`:
:obj:`attentions`) :obj:`last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)`,
`optional`) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
cross-attention of the decoder.
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
Tuple of :obj:`tuple(torch.FloatTensor)` of length :obj:`config.n_layers`, with each tuple having 2 tensors
of shape :obj:`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape :obj:`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see :obj:`past_key_values` input) to speed up sequential decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
instead of all :obj:`decoder_input_ids`` of shape :obj:`(batch_size, sequence_length)`.
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
vectors than the model's internal embedding lookup matrix.
decoder_inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, target_sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`decoder_input_ids` you can choose to directly pass an embedded
representation. If :obj:`past_key_values` is used, optionally only the last :obj:`decoder_inputs_embeds`
have to be input (see :obj:`past_key_values`). This is useful if you want more control over how to convert
:obj:`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If :obj:`decoder_input_ids` and :obj:`decoder_inputs_embeds` are both unset, :obj:`decoder_inputs_embeds`
takes the value of :obj:`inputs_embeds`.
use_cache (:obj:`bool`, `optional`):
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
decoding (see :obj:`past_key_values`).
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""
BIGBIRD_PEGASUS_STANDALONE_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using :class:`~transformers.ProphetNetTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""
class BigBirdPegasusEncoder(BigBirdPegasusPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
:class:`BigBirdPegasusEncoderLayer`.
Args:
config: BigBirdPegasusConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: BigBirdPegasusConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.attention_type = config.attention_type
self.block_size = config.block_size
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
self.embed_positions = BigBirdPegasusLearnedPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
)
self.layers = nn.ModuleList([BigBirdPegasusEncoderLayer(config, seed=i) for i in range(config.encoder_layers)])
self.layernorm_embedding = nn.LayerNorm(embed_dim)
self.init_weights()
def forward(
self,
input_ids=None,
attention_mask=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using :class:`~transformers.PegasusTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__`
for details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert :obj:`input_ids` indices
into associated vectors than the model's internal embedding lookup matrix.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors
for more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input_shape)
hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=hidden_states.device)
attention_mask = attention_mask.long()
# in order to use block_sparse attention, sequence_length has to be at least
# bigger than all global attentions: 2 * block_size
# + sliding tokens: 3 * block_size
# + random tokens: 2 * num_random_blocks * block_size
max_tokens_to_attend = (5 + 2 * self.config.num_random_blocks) * self.config.block_size
if self.attention_type == "block_sparse" and input_shape[1] <= max_tokens_to_attend:
# change attention_type from block_sparse to original_full
sequence_length = input_shape[1]
logger.warning(
"Attention type 'block_sparse' is not possible if sequence_length: "
f"{sequence_length} <= num global tokens: 2 * config.block_size "
"+ min. num sliding tokens: 3 * config.block_size "
"+ config.num_random_blocks * config.block_size "
"+ additional buffer: config.num_random_blocks * config.block_size "
f"= {max_tokens_to_attend} with config.block_size "
f"= {self.config.block_size}, config.num_random_blocks "
f"= {self.config.num_random_blocks}."
"Changing attention type to 'original_full'..."
)
self.set_attention_type("original_full")
if self.attention_type == "block_sparse":
padding_len, hidden_states, attention_mask = self._pad_to_block_size(hidden_states, attention_mask)
else:
padding_len = 0
# expand attention_mask
if self.attention_type == "original_full":
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)
blocked_encoder_mask = band_mask = from_mask = to_mask = None
elif self.attention_type == "block_sparse":
blocked_encoder_mask, band_mask, from_mask, to_mask = self.create_masks_for_block_sparse_attn(
attention_mask, self.block_size
)
attention_mask = None
else:
raise ValueError(
f"attention_type can either be original_full or block_sparse, but is {self.attention_type}"
)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
assert head_mask.size()[0] == (
len(self.layers)
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
if getattr(self.config, "gradient_checkpointing", False) and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(encoder_layer),
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
band_mask,
from_mask,
to_mask,
blocked_encoder_mask,
blocked_encoder_mask,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
band_mask=band_mask,
from_mask=from_mask,
to_mask=to_mask,
from_blocked_mask=blocked_encoder_mask,
to_blocked_mask=blocked_encoder_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = self.layernorm_embedding(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if padding_len > 0:
# unpad `sequence_output` because the calling function is expecting a length == input_ids.size(1)
hidden_states = hidden_states[:, :-padding_len]
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
self.encoder_o = hidden_states
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
def set_attention_type(self, value: str):
if value not in ["original_full", "block_sparse"]:
raise ValueError(
f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}"
)
# attention type is already correctly set
if value == self.attention_type:
return
self.attention_type = value
for layer in self.layers:
layer.set_attention_type(value)
@staticmethod # Copied from transformers.models.big_bird.modeling_big_bird.BigBirdModel.create_masks_for_block_sparse_attn
def create_masks_for_block_sparse_attn(attention_mask: torch.Tensor, block_size: int):
batch_size, seq_length = attention_mask.size()
assert (
seq_length % block_size == 0
), f"Sequence length must be multiple of block size, but sequence length is {seq_length}, while block size is {block_size}."
def create_band_mask_from_inputs(from_blocked_mask, to_blocked_mask):
"""
Create 3D attention mask from a 2D tensor mask.
Args:
from_blocked_mask: 2D Tensor of shape [batch_size,
from_seq_length//from_block_size, from_block_size].
to_blocked_mask: int32 Tensor of shape [batch_size,
to_seq_length//to_block_size, to_block_size].
Returns:
float Tensor of shape [batch_size, 1, from_seq_length//from_block_size-4, from_block_size,
3*to_block_size].
"""
exp_blocked_to_pad = torch.cat(
[to_blocked_mask[:, 1:-3], to_blocked_mask[:, 2:-2], to_blocked_mask[:, 3:-1]], dim=2
)
band_mask = torch.einsum("blq,blk->blqk", from_blocked_mask[:, 2:-2], exp_blocked_to_pad)
band_mask.unsqueeze_(1)
return band_mask
blocked_encoder_mask = attention_mask.view(batch_size, seq_length // block_size, block_size)
band_mask = create_band_mask_from_inputs(blocked_encoder_mask, blocked_encoder_mask)
from_mask = attention_mask.view(batch_size, 1, seq_length, 1)
to_mask = attention_mask.view(batch_size, 1, 1, seq_length)
return blocked_encoder_mask, band_mask, from_mask, to_mask
def _pad_to_block_size(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor):
"""A helper function to pad tokens and mask to work with implementation of BigBird block-sparse attention."""
# padding
block_size = self.config.block_size
batch_size, seq_len = hidden_states.shape[:2]
padding_len = (block_size - seq_len % block_size) % block_size
if padding_len > 0:
logger.info(
f"Input ids are automatically padded from {seq_len} to {seq_len + padding_len} to be a multiple of "
f"`config.block_size`: {block_size}"
)
pad_id = self.config.pad_token_id
device = hidden_states.device
input_ids_padding = torch.ones((batch_size, padding_len), dtype=torch.long, device=device) * pad_id
inputs_embeds_padding = self.embed_tokens(input_ids_padding)
hidden_states = torch.cat([hidden_states, inputs_embeds_padding], dim=-2)
attention_mask = nn.functional.pad(
attention_mask, (0, padding_len), value=0
) # no attention on the padding tokens
return padding_len, hidden_states, attention_mask
class BigBirdPegasusDecoder(BigBirdPegasusPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a
:class:`BigBirdPegasusDecoderLayer`
Args:
config: BigBirdPegasusConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: BigBirdPegasusConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_positions = BigBirdPegasusLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
)
self.layers = nn.ModuleList([BigBirdPegasusDecoderLayer(config) for _ in range(config.decoder_layers)])
self.layernorm_embedding = nn.LayerNorm(config.d_model)
self.init_weights()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length
).to(self.device)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using :class:`~transformers.BigBirdPegasusTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__`
for details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, encoder_sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, encoder_sequence_length)`, `optional`):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
head_mask (:obj:`torch.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (:obj:`torch.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the cross-attention modules in decoder to avoid performing
cross-attention on hidden heads. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
Tuple of :obj:`tuple(torch.FloatTensor)` of length :obj:`config.n_layers`, with each tuple having 2
tensors of shape :obj:`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional
tensors of shape :obj:`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see :obj:`past_key_values` input) to speed up sequential
decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last
:obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of
shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids`` of shape :obj:`(batch_size,
sequence_length)`.
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert :obj:`input_ids` indices
into associated vectors than the model's internal embedding lookup matrix.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors
for more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
# embed positions
positions = self.embed_positions(input_shape, past_key_values_length)
hidden_states = inputs_embeds + positions
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
assert attn_mask.size()[0] == (
len(self.layers)
), f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop):
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if getattr(self.config, "gradient_checkpointing", False) and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
"`use_cache=False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, use_cache)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.layernorm_embedding(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
[docs]@add_start_docstrings(
"The bare BigBirdPegasus Model outputting raw hidden-states without any specific head on top.",
BIGBIRD_PEGASUS_START_DOCSTRING,
)
# Copied from transformers.models.bart.modeling_bart.BartModel with Bart->BigBirdPegasus, BART->BIGBIRD_PEGASUS
class BigBirdPegasusModel(BigBirdPegasusPreTrainedModel):
def __init__(self, config: BigBirdPegasusConfig):
super().__init__(config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
self.encoder = BigBirdPegasusEncoder(config, self.shared)
self.decoder = BigBirdPegasusDecoder(config, self.shared)
self.init_weights()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
[docs] @add_start_docstrings_to_model_forward(BIGBIRD_PEGASUS_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs=None,
past_key_values=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
# different to other models, BigBirdPegasus automatically creates decoder_input_ids from
# input_ids if no decoder_input_ids are provided
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
input_ids, self.config.pad_token_id, self.config.decoder_start_token_id
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
[docs]@add_start_docstrings(
"The BigBirdPegasus Model with a language modeling head. Can be used for summarization.",
BIGBIRD_PEGASUS_START_DOCSTRING,
)
# Copied from transformers.models.bart.modeling_bart.BartForConditionalGeneration with Bart->BigBirdPegasus, BART->BIGBIRD_PEGASUS
class BigBirdPegasusForConditionalGeneration(BigBirdPegasusPreTrainedModel):
base_model_prefix = "model"
_keys_to_ignore_on_load_missing = [r"final_logits_bias", r"lm_head\.weight"]
def __init__(self, config: BigBirdPegasusConfig):
super().__init__(config)
self.model = BigBirdPegasusModel(config)
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
self.init_weights()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding:
new_embeddings = super().resize_token_embeddings(new_num_tokens)
self._resize_final_logits_bias(new_num_tokens)
return new_embeddings
def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
old_num_tokens = self.final_logits_bias.shape[-1]
if new_num_tokens <= old_num_tokens:
new_bias = self.final_logits_bias[:, :new_num_tokens]
else:
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
self.register_buffer("final_logits_bias", new_bias)
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
[docs] @add_start_docstrings_to_model_forward(BIGBIRD_PEGASUS_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(BIGBIRD_PEGASUS_GENERATION_EXAMPLE)
def forward(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs=None,
past_key_values=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Labels for computing the masked language modeling loss. Indices should either be in ``[0, ...,
config.vocab_size]`` or -100 (see ``input_ids`` docstring). Tokens with indices set to ``-100`` are ignored
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if decoder_input_ids is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past=None,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs
):
# cut decoder_input_ids if past is used
if past is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
}
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
@staticmethod
def _reorder_cache(past, beam_idx):
reordered_past = ()
for layer_past in past:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
)
return reordered_past
[docs]@add_start_docstrings(
"""
BigBirdPegasus model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g.
for GLUE tasks.
""",
BIGBIRD_PEGASUS_START_DOCSTRING,
)
# Copied from transformers.models.bart.modeling_bart.BartForSequenceClassification with Bart->BigBirdPegasus, BART->BIGBIRD_PEGASUS
class BigBirdPegasusForSequenceClassification(BigBirdPegasusPreTrainedModel):
def __init__(self, config: BigBirdPegasusConfig, **kwargs):
super().__init__(config, **kwargs)
self.model = BigBirdPegasusModel(config)
self.classification_head = BigBirdPegasusClassificationHead(
config.d_model,
config.d_model,
config.num_labels,
config.classifier_dropout,
)
self.model._init_weights(self.classification_head.dense)
self.model._init_weights(self.classification_head.out_proj)
[docs] @add_start_docstrings_to_model_forward(BIGBIRD_PEGASUS_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
config.num_labels - 1]`. If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
if input_ids is None and inputs_embeds is not None:
raise NotImplementedError(
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0] # last hidden state
eos_mask = input_ids.eq(self.config.eos_token_id)
if len(torch.unique(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.")
sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[
:, -1, :
]
logits = self.classification_head(sentence_representation)
loss = None
if labels is not None:
if self.config.num_labels == 1:
# regression
loss_fct = MSELoss()
loss = loss_fct(logits.view(-1), labels.view(-1))
else:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqSequenceClassifierOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
[docs]@add_start_docstrings(
"""
BigBirdPegasus Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
BIGBIRD_PEGASUS_START_DOCSTRING,
)
# Copied from transformers.models.bart.modeling_bart.BartForQuestionAnswering with Bart->BigBirdPegasus, BART->BIGBIRD_PEGASUS
class BigBirdPegasusForQuestionAnswering(BigBirdPegasusPreTrainedModel):
def __init__(self, config):
super().__init__(config)
config.num_labels = 2
self.num_labels = config.num_labels
self.model = BigBirdPegasusModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
self.model._init_weights(self.qa_outputs)
[docs] @add_start_docstrings_to_model_forward(BIGBIRD_PEGASUS_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs=None,
start_positions=None,
end_positions=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if start_positions is not None and end_positions is not None:
use_cache = False
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (
start_logits,
end_logits,
) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return Seq2SeqQuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
# Copied from transformers.models.pegasus.modeling_pegasus.PegasusDecoderWrapper with Pegasus->BigBirdPegasus
class BigBirdPegasusDecoderWrapper(BigBirdPegasusPreTrainedModel):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
used in combination with the :class:`~transformers.EncoderDecoderModel` framework.
"""
def __init__(self, config):
super().__init__(config)
self.decoder = BigBirdPegasusDecoder(config)
def forward(self, *args, **kwargs):
return self.decoder(*args, **kwargs)
# Copied from transformers.models.pegasus.modeling_pegasus.PegasusForCausalLM with Pegasus->BigBirdPegasus, 'facebook/bart-large'->"google/bigbird-pegasus-large-arxiv"
[docs]class BigBirdPegasusForCausalLM(BigBirdPegasusPreTrainedModel):
def __init__(self, config):
super().__init__(config)
config = copy.deepcopy(config)
config.is_decoder = True
config.is_encoder_decoder = False
self.model = BigBirdPegasusDecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.init_weights()
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model.decoder = decoder
def get_decoder(self):
return self.model.decoder
[docs] @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using :class:`~transformers.BigBirdPegasusTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__`
for details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder.
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
head_mask (:obj:`torch.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (:obj:`torch.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
Tuple of :obj:`tuple(torch.FloatTensor)` of length :obj:`config.n_layers`, with each tuple having 2
tensors of shape :obj:`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional
tensors of shape :obj:`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two
additional tensors are only required when the model is used as a decoder in a Sequence to Sequence
model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see :obj:`past_key_values` input) to speed up sequential
decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last ``decoder_input_ids``
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
instead of all ``decoder_input_ids`` of shape :obj:`(batch_size, sequence_length)`.
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Labels for computing the masked language modeling loss. Indices should either be in ``[0, ...,
config.vocab_size]`` or -100 (see ``input_ids`` docstring). Tokens with indices set to ``-100`` are
ignored (masked), the loss is only computed for the tokens with labels in ``[0, ...,
config.vocab_size]``.
use_cache (:obj:`bool`, `optional`):
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
decoding (see :obj:`past_key_values`).
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors
for more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
Returns:
Example::
>>> from transformers import BigBirdPegasusTokenizer, BigBirdPegasusForCausalLM
>>> tokenizer = BigBirdPegasusTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv")
>>> model = BigBirdPegasusForCausalLM.from_pretrained("google/bigbird-pegasus-large-arxiv", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(outputs[0])
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, use_cache=None, **kwargs):
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_ids.shape)
if past:
input_ids = input_ids[:, -1:]
# first step, decoder_cached_states are empty
return {
"input_ids": input_ids, # encoder_outputs is defined. input_ids not needed
"attention_mask": attention_mask,
"past_key_values": past,
"use_cache": use_cache,
}
@staticmethod
def _reorder_cache(past, beam_idx):
reordered_past = ()
for layer_past in past:
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
return reordered_past