Custom Layers and UtilitiesΒΆ
This page lists all the custom layers used by the library, as well as the utility functions it provides for modeling.
Most of those are only useful if you are studying the code of the models in the library.
Pytorch custom modulesΒΆ
-
class
transformers.modeling_utils.
Conv1D
(nf, nx)[source]ΒΆ 1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).
Basically works like a linear layer but the weights are transposed.
- Parameters
nf (
int
) β The number of output features.nx (
int
) β The number of input features.
-
class
transformers.modeling_utils.
PoolerStartLogits
(config: transformers.configuration_utils.PretrainedConfig)[source]ΒΆ Compute SQuAD start logits from sequence hidden states.
- Parameters
config (
PretrainedConfig
) β The config used by the model, will be used to grab thehidden_size
of the model.
-
forward
(hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None) → torch.FloatTensor[source]ΒΆ - Parameters
hidden_states (
torch.FloatTensor
of shape(batch_size, seq_len, hidden_size)
) β The final hidden states of the model.p_mask (
torch.FloatTensor
of shape(batch_size, seq_len)
, optional) β Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token should be masked.
- Returns
The start logits for SQuAD.
- Return type
torch.FloatTensor
-
class
transformers.modeling_utils.
PoolerEndLogits
(config: transformers.configuration_utils.PretrainedConfig)[source]ΒΆ Compute SQuAD end logits from sequence hidden states.
- Parameters
config (
PretrainedConfig
) β The config used by the model, will be used to grab thehidden_size
of the model and thelayer_norm_eps
to use.
-
forward
(hidden_states: torch.FloatTensor, start_states: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, p_mask: Optional[torch.FloatTensor] = None) → torch.FloatTensor[source]ΒΆ - Parameters
hidden_states (
torch.FloatTensor
of shape(batch_size, seq_len, hidden_size)
) β The final hidden states of the model.start_states (
torch.FloatTensor
of shape(batch_size, seq_len, hidden_size)
, optional) β The hidden states of the first tokens for the labeled span.start_positions (
torch.LongTensor
of shape(batch_size,)
, optional) β The position of the first token for the labeled span.p_mask (
torch.FloatTensor
of shape(batch_size, seq_len)
, optional) β Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token should be masked.
Note
One of
start_states
orstart_positions
should be not obj:None. If both are set,start_positions
overridesstart_states
.- Returns
The end logits for SQuAD.
- Return type
torch.FloatTensor
-
class
transformers.modeling_utils.
PoolerAnswerClass
(config)[source]ΒΆ Compute SQuAD 2.0 answer class from classification and start tokens hidden states.
- Parameters
config (
PretrainedConfig
) β The config used by the model, will be used to grab thehidden_size
of the model.
-
forward
(hidden_states: torch.FloatTensor, start_states: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, cls_index: Optional[torch.LongTensor] = None) → torch.FloatTensor[source]ΒΆ - Parameters
hidden_states (
torch.FloatTensor
of shape(batch_size, seq_len, hidden_size)
) β The final hidden states of the model.start_states (
torch.FloatTensor
of shape(batch_size, seq_len, hidden_size)
, optional) β The hidden states of the first tokens for the labeled span.start_positions (
torch.LongTensor
of shape(batch_size,)
, optional) β The position of the first token for the labeled span.cls_index (
torch.LongTensor
of shape(batch_size,)
, optional) β Position of the CLS token for each sentence in the batch. IfNone
, takes the last token.
Note
One of
start_states
orstart_positions
should be not obj:None. If both are set,start_positions
overridesstart_states
.- Returns
The SQuAD 2.0 answer class.
- Return type
torch.FloatTensor
-
class
transformers.modeling_utils.
SquadHeadOutput
(loss: Optional[torch.FloatTensor] = None, start_top_log_probs: Optional[torch.FloatTensor] = None, start_top_index: Optional[torch.LongTensor] = None, end_top_log_probs: Optional[torch.FloatTensor] = None, end_top_index: Optional[torch.LongTensor] = None, cls_logits: Optional[torch.FloatTensor] = None)[source]ΒΆ Base class for outputs of question answering models using a
SQuADHead
.- Parameters
loss (
torch.FloatTensor
of shape(1,)
, optional, returned if bothstart_positions
andend_positions
are provided) β Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses.start_top_log_probs (
torch.FloatTensor
of shape(batch_size, config.start_n_top)
, optional, returned ifstart_positions
orend_positions
is not provided) β Log probabilities for the top config.start_n_top start token possibilities (beam-search).start_top_index (
torch.LongTensor
of shape(batch_size, config.start_n_top)
, optional, returned ifstart_positions
orend_positions
is not provided) β Indices for the top config.start_n_top start token possibilities (beam-search).end_top_log_probs (
torch.FloatTensor
of shape(batch_size, config.start_n_top * config.end_n_top)
, optional, returned ifstart_positions
orend_positions
is not provided) β Log probabilities for the topconfig.start_n_top * config.end_n_top
end token possibilities (beam-search).end_top_index (
torch.LongTensor
of shape(batch_size, config.start_n_top * config.end_n_top)
, optional, returned ifstart_positions
orend_positions
is not provided) β Indices for the topconfig.start_n_top * config.end_n_top
end token possibilities (beam-search).cls_logits (
torch.FloatTensor
of shape(batch_size,)
, optional, returned ifstart_positions
orend_positions
is not provided) β Log probabilities for theis_impossible
label of the answers.
-
class
transformers.modeling_utils.
SQuADHead
(config)[source]ΒΆ A SQuAD head inspired by XLNet.
- Parameters
config (
PretrainedConfig
) β The config used by the model, will be used to grab thehidden_size
of the model and thelayer_norm_eps
to use.
-
forward
(hidden_states: torch.FloatTensor, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, cls_index: Optional[torch.LongTensor] = None, is_impossible: Optional[torch.LongTensor] = None, p_mask: Optional[torch.FloatTensor] = None, return_dict: bool = False) → Union[transformers.modeling_utils.SquadHeadOutput, Tuple[torch.FloatTensor]][source]ΒΆ - Args:
- hidden_states (
torch.FloatTensor
of shape(batch_size, seq_len, hidden_size)
): Final hidden states of the model on the sequence tokens.
- start_positions (
torch.LongTensor
of shape(batch_size,)
, optional): Positions of the first token for the labeled span.
- end_positions (
torch.LongTensor
of shape(batch_size,)
, optional): Positions of the last token for the labeled span.
- cls_index (
torch.LongTensor
of shape(batch_size,)
, optional): Position of the CLS token for each sentence in the batch. If
None
, takes the last token.- is_impossible (
torch.LongTensor
of shape(batch_size,)
, optional): Whether the question has a possible answer in the paragraph or not.
- p_mask (
torch.FloatTensor
of shape(batch_size, seq_len)
, optional): Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token should be masked.
- return_dict (
bool
, optional, defaults toFalse
): Whether or not to return a
ModelOutput
instead of a plain tuple.
- hidden_states (
- Returns
A
SquadHeadOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (~transformers.
) and inputs.loss (
torch.FloatTensor
of shape(1,)
, optional, returned if bothstart_positions
andend_positions
are provided) β Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses.start_top_log_probs (
torch.FloatTensor
of shape(batch_size, config.start_n_top)
, optional, returned ifstart_positions
orend_positions
is not provided) β Log probabilities for the top config.start_n_top start token possibilities (beam-search).start_top_index (
torch.LongTensor
of shape(batch_size, config.start_n_top)
, optional, returned ifstart_positions
orend_positions
is not provided) β Indices for the top config.start_n_top start token possibilities (beam-search).end_top_log_probs (
torch.FloatTensor
of shape(batch_size, config.start_n_top * config.end_n_top)
, optional, returned ifstart_positions
orend_positions
is not provided) β Log probabilities for the topconfig.start_n_top * config.end_n_top
end token possibilities (beam-search).end_top_index (
torch.LongTensor
of shape(batch_size, config.start_n_top * config.end_n_top)
, optional, returned ifstart_positions
orend_positions
is not provided) β Indices for the topconfig.start_n_top * config.end_n_top
end token possibilities (beam-search).cls_logits (
torch.FloatTensor
of shape(batch_size,)
, optional, returned ifstart_positions
orend_positions
is not provided) β Log probabilities for theis_impossible
label of the answers.
- Return type
SquadHeadOutput
ortuple(torch.FloatTensor)
-
class
transformers.modeling_utils.
SequenceSummary
(config: transformers.configuration_utils.PretrainedConfig)[source]ΒΆ Compute a single vector summary of a sequence hidden states.
- Parameters
config (
PretrainedConfig
) βThe config used by the model. Relevant arguments in the config class of the model are (refer to the actual config class of your model for the default values it uses):
summary_type (
str
) β The method to use to make this summary. Accepted values are:"last"
β Take the last token hidden state (like XLNet)"first"
β Take the first token hidden state (like Bert)"mean"
β Take the mean of all tokens hidden states"cls_index"
β Supply a Tensor of classification token position (GPT/GPT-2)"attn"
β Not implemented now, use multi-head attention
summary_use_proj (
bool
) β Add a projection after the vector extraction.summary_proj_to_labels (
bool
) β IfTrue
, the projection outputs toconfig.num_labels
classes (otherwise toconfig.hidden_size
).summary_activation (
Optional[str]
) β Set to"tanh"
to add a tanh activation to the output, another string orNone
will add no activation.summary_first_dropout (
float
) β Optional dropout probability before the projection and activation.summary_last_dropout (
float
)β Optional dropout probability after the projection and activation.
-
forward
(hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None) → torch.FloatTensor[source]ΒΆ Compute a single vector summary of a sequence hidden states.
- Parameters
hidden_states (
torch.FloatTensor
of shape[batch_size, seq_len, hidden_size]
) β The hidden states of the last layer.cls_index (
torch.LongTensor
of shape[batch_size]
or[batch_size, ...]
where β¦ are optional leading dimensions ofhidden_states
, optional) β Used ifsummary_type == "cls_index"
and takes the last token of the sequence as classification token.
- Returns
The summary of the sequence hidden states.
- Return type
torch.FloatTensor
PyTorch Helper FunctionsΒΆ
-
transformers.
apply_chunking_to_forward
(forward_fn: Callable[β¦, torch.Tensor], chunk_size: int, chunk_dim: int, *input_tensors) → torch.Tensor[source]ΒΆ This function chunks the
input_tensors
into smaller input tensor parts of sizechunk_size
over the dimensionchunk_dim
. It then applies a layerforward_fn
to each chunk independently to save memory.If the
forward_fn
is independent across thechunk_dim
this function will yield the same result as directly applyingforward_fn
toinput_tensors
.- Parameters
forward_fn (
Callable[..., torch.Tensor]
) β The forward function of the model.chunk_size (
int
) β The chunk size of a chunked tensor:num_chunks = len(input_tensors[0]) / chunk_size
.chunk_dim (
int
) β The dimension over which theinput_tensors
should be chunked.input_tensors (
Tuple[torch.Tensor]
) β The input tensors offorward_fn
which will be chunked
- Returns
A tensor with the same shape as the
forward_fn
would have given if applied`.- Return type
torch.Tensor
Examples:
# rename the usual forward() fn to forward_chunk() def forward_chunk(self, hidden_states): hidden_states = self.decoder(hidden_states) return hidden_states # implement a chunked forward function def forward(self, hidden_states): return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states)
-
transformers.modeling_utils.
find_pruneable_heads_and_indices
(heads: List[int], n_heads: int, head_size: int, already_pruned_heads: Set[int]) → Tuple[Set[int], torch.LongTensor][source]ΒΆ Finds the heads and their indices taking
already_pruned_heads
into account.- Parameters
heads (
List[int]
) β List of the indices of heads to prune.n_heads (
int
) β The number of heads in the model.head_size (
int
) β The size of each head.already_pruned_heads (
Set[int]
) β A set of already pruned heads.
- Returns
A tuple with the remaining heads and their corresponding indices.
- Return type
Tuple[Set[int], torch.LongTensor]
-
transformers.modeling_utils.
prune_layer
(layer: Union[torch.nn.modules.linear.Linear, transformers.modeling_utils.Conv1D], index: torch.LongTensor, dim: Optional[int] = None) → Union[torch.nn.modules.linear.Linear, transformers.modeling_utils.Conv1D][source]ΒΆ Prune a Conv1D or linear layer to keep only entries in index.
Used to remove heads.
- Parameters
layer (
Union[torch.nn.Linear, Conv1D]
) β The layer to prune.index (
torch.LongTensor
) β The indices to keep in the layer.dim (
int
, optional) β The dimension on which to keep the indices.
- Returns
The pruned layer as a new layer with
requires_grad=True
.- Return type
torch.nn.Linear
orConv1D
-
transformers.modeling_utils.
prune_conv1d_layer
(layer: transformers.modeling_utils.Conv1D, index: torch.LongTensor, dim: int = 1) → transformers.modeling_utils.Conv1D[source]ΒΆ Prune a Conv1D layer to keep only entries in index. A Conv1D work as a Linear layer (see e.g. BERT) but the weights are transposed.
Used to remove heads.
-
transformers.modeling_utils.
prune_linear_layer
(layer: torch.nn.modules.linear.Linear, index: torch.LongTensor, dim: int = 0) → torch.nn.modules.linear.Linear[source]ΒΆ Prune a linear layer to keep only entries in index.
Used to remove heads.
- Parameters
layer (
torch.nn.Linear
) β The layer to prune.index (
torch.LongTensor
) β The indices to keep in the layer.dim (
int
, optional, defaults to 0) β The dimension on which to keep the indices.
- Returns
The pruned layer as a new layer with
requires_grad=True
.- Return type
torch.nn.Linear
TensorFlow custom layersΒΆ
-
class
transformers.modeling_tf_utils.
TFConv1D
(*args, **kwargs)[source]ΒΆ 1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).
Basically works like a linear layer but the weights are transposed.
- Parameters
nf (
int
) β The number of output features.nx (
int
) β The number of input features.initializer_range (
float
, optional, defaults to 0.02) β The standard deviation to use to initialize the weights.kwargs β Additional keyword arguments passed along to the
__init__
oftf.keras.layers.Layer
.
Construct shared token embeddings.
The weights of the embedding layer is usually shared with the weights of the linear decoder when doing language modeling.
- Parameters
vocab_size (
int
) β The size of the vocabulary, e.g., the number of unique tokens.hidden_size (
int
) β The size of the embedding vectors.initializer_range (
float
, optional) β The standard deviation to use when initializing the weights. If no value is provided, it will default to \(1/\sqrt{hidden\_size}\).kwargs β Additional keyword arguments passed along to the
__init__
oftf.keras.layers.Layer
.
Get token embeddings of inputs or decode final hidden state.
- Parameters
inputs (
tf.Tensor
) βIn embedding mode, should be an int64 tensor with shape
[batch_size, length]
.In linear mode, should be a float tensor with shape
[batch_size, length, hidden_size]
.mode (
str
, defaults to"embedding"
) β A valid value is either"embedding"
or"linear"
, the first one indicates that the layer should be used as an embedding layer, the second one that the layer should be used as a linear decoder.
- Returns
In embedding mode, the output is a float32 embedding tensor, with shape
[batch_size, length, embedding_size]
.In linear mode, the output is a float32 with shape
[batch_size, length, vocab_size]
.- Return type
tf.Tensor
- Raises
ValueError β if
mode
is not valid.
Shared weights logic is adapted from here.
-
class
transformers.modeling_tf_utils.
TFSequenceSummary
(*args, **kwargs)[source]ΒΆ Compute a single vector summary of a sequence hidden states.
- Parameters
config (
PretrainedConfig
) βThe config used by the model. Relevant arguments in the config class of the model are (refer to the actual config class of your model for the default values it uses):
summary_type (
str
) β The method to use to make this summary. Accepted values are:"last"
β Take the last token hidden state (like XLNet)"first"
β Take the first token hidden state (like Bert)"mean"
β Take the mean of all tokens hidden states"cls_index"
β Supply a Tensor of classification token position (GPT/GPT-2)"attn"
β Not implemented now, use multi-head attention
summary_use_proj (
bool
) β Add a projection after the vector extraction.summary_proj_to_labels (
bool
) β IfTrue
, the projection outputs toconfig.num_labels
classes (otherwise toconfig.hidden_size
).summary_activation (
Optional[str]
) β Set to"tanh"
to add a tanh activation to the output, another string orNone
will add no activation.summary_first_dropout (
float
) β Optional dropout probability before the projection and activation.summary_last_dropout (
float
)β Optional dropout probability after the projection and activation.
initializer_range (
float
, defaults to 0.02) β The standard deviation to use to initialize the weights.kwargs β Additional keyword arguments passed along to the
__init__
oftf.keras.layers.Layer
.
TensorFlow loss functionsΒΆ
-
class
transformers.modeling_tf_utils.
TFCausalLanguageModelingLoss
[source]ΒΆ Loss function suitable for causal language modeling (CLM), that is, the task of guessing the next token.
Note
Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
-
class
transformers.modeling_tf_utils.
TFMaskedLanguageModelingLoss
[source]ΒΆ Loss function suitable for masked language modeling (MLM), that is, the task of guessing the masked tokens.
Note
Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
-
class
transformers.modeling_tf_utils.
TFMultipleChoiceLoss
[source]ΒΆ Loss function suitable for multiple choice tasks.
-
class
transformers.modeling_tf_utils.
TFQuestionAnsweringLoss
[source]ΒΆ Loss function suitable for question answering.
TensorFlow Helper FunctionsΒΆ
-
transformers.modeling_tf_utils.
get_initializer
(initializer_range: float = 0.02) → keras.initializers.initializers_v2.TruncatedNormal[source]ΒΆ Creates a
tf.initializers.TruncatedNormal
with the given range.- Parameters
initializer_range (float, defaults to 0.02) β Standard deviation of the initializer range.
- Returns
The truncated normal initializer.
- Return type
tf.initializers.TruncatedNormal
-
transformers.modeling_tf_utils.
keras_serializable
(cls)[source]ΒΆ Decorate a Keras Layer class to support Keras serialization.
This is done by:
Adding a
transformers_config
dict to the Keras config dictionary inget_config
(called by Keras at serialization time.Wrapping
__init__
to accept thattransformers_config
dict (passed by Keras at deserialization time) and convert it to a config object for the actual layer initializer.Registering the class as a custom object in Keras (if the Tensorflow version supports this), so that it does not need to be supplied in
custom_objects
in the call totf.keras.models.load_model
.
- Parameters
cls (a
tf.keras.layers.Layers subclass
) β Typically aTF.MainLayer
class in this project, in general must accept aconfig
argument to its initializer.- Returns
The same class object, with modifications for Keras deserialization.