Utilities for GenerationΒΆ
This page lists all the utility functions used by generate()
,
greedy_search()
, sample()
,
beam_search()
, beam_sample()
, and
group_beam_search()
.
Most of those are only useful if you are studying the code of the generate methods in the library.
LogitsProcessorΒΆ
A LogitsProcessor
can be used to modify the prediction scores of a language model head for
generation.
-
class
transformers.
LogitsProcessor
[source]ΒΆ Abstract base class for all logit processors that can be applied during generation.
-
__call__
(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]ΒΆ - Args:
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
): Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.- scores (
torch.FloatTensor
of shape(batch_size, config.vocab_size)
): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.
- kwargs:
Additional logits processor specific kwargs.
- input_ids (
- Return:
torch.FloatTensor
of shape(batch_size, config.vocab_size)
: The processed prediction scores.
Torch method for processing logits.
-
-
class
transformers.
LogitsProcessorList
[source]ΒΆ This class can be used to create a list of
LogitsProcessor
orLogitsWarper
to subsequently process ascores
input tensor. This class inherits from list and adds a specific __call__ method to apply eachLogitsProcessor
orLogitsProcessor
to the inputs.-
__call__
(input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) → torch.FloatTensor[source]ΒΆ - Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.scores (
torch.FloatTensor
of shape(batch_size, config.vocab_size)
) β Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.kwargs β Additional logits processor specific kwargs.
- Returns
The processed prediction scores.
- Return type
torch.FloatTensor
of shape(batch_size, config.vocab_size)
-
-
class
transformers.
LogitsWarper
[source]ΒΆ Abstract base class for all logit warpers that can be applied during generation with multinomial sampling.
-
__call__
(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]ΒΆ - Args:
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
): Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.- scores (
torch.FloatTensor
of shape(batch_size, config.vocab_size)
): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.
- kwargs:
Additional logits processor specific kwargs.
- input_ids (
- Return:
torch.FloatTensor
of shape(batch_size, config.vocab_size)
: The processed prediction scores.
Torch method for warping logits.
-
-
class
transformers.
MinLengthLogitsProcessor
(min_length: int, eos_token_id: int)[source]ΒΆ transformers.LogitsProcessor
enforcing a min-length by setting EOS probability to 0.- Parameters
min_length (
int
) β The minimum length below which the score ofeos_token_id
is set to-float("Inf")
.eos_token_id (
int
) β The id of the end-of-sequence token.
-
__call__
(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]ΒΆ - Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.scores (
torch.FloatTensor
of shape(batch_size, config.vocab_size)
) β Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.kwargs β
Additional logits processor specific kwargs.
- Return:
torch.FloatTensor
of shape(batch_size, config.vocab_size)
: The processed prediction scores.
Torch method for processing logits.
-
class
transformers.
TemperatureLogitsWarper
(temperature: float)[source]ΒΆ transformers.LogitsWarper
for temperature (exponential scaling output probability distribution).- Parameters
temperature (
float
) β The value used to module the logits distribution.
-
__call__
(input_ids: torch.Tensor, scores: torch.Tensor) → torch.Tensor[source]ΒΆ - Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.scores (
torch.FloatTensor
of shape(batch_size, config.vocab_size)
) β Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.kwargs β
Additional logits processor specific kwargs.
- Return:
torch.FloatTensor
of shape(batch_size, config.vocab_size)
: The processed prediction scores.
Torch method for warping logits.
-
class
transformers.
RepetitionPenaltyLogitsProcessor
(penalty: float)[source]ΒΆ transformers.LogitsProcessor
enforcing an exponential penalty on repeated sequences.- Parameters
repetition_penalty (
float
) β The parameter for repetition penalty. 1.0 means no penalty. See this paper for more details.
-
__call__
(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]ΒΆ - Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.scores (
torch.FloatTensor
of shape(batch_size, config.vocab_size)
) β Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.kwargs β
Additional logits processor specific kwargs.
- Return:
torch.FloatTensor
of shape(batch_size, config.vocab_size)
: The processed prediction scores.
Torch method for processing logits.
-
class
transformers.
TopPLogitsWarper
(top_p: float, filter_value: float = - inf, min_tokens_to_keep: int = 1)[source]ΒΆ transformers.LogitsWarper
that performs top-p, i.e. restricting to top tokens summing to prob_cut_off <= prob_cut_off.- Parameters
top_p (
float
) β If set to < 1, only the most probable tokens with probabilities that add up totop_p
or higher are kept for generation.filter_value (
float
, optional, defaults to-float("Inf")
) β All filtered values will be set to this float value.min_tokens_to_keep (
int
, optional, defaults to 1) β Minimum number of tokens that cannot be filtered.
-
__call__
(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]ΒΆ - Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.scores (
torch.FloatTensor
of shape(batch_size, config.vocab_size)
) β Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.kwargs β
Additional logits processor specific kwargs.
- Return:
torch.FloatTensor
of shape(batch_size, config.vocab_size)
: The processed prediction scores.
Torch method for warping logits.
-
class
transformers.
TopKLogitsWarper
(top_k: int, filter_value: float = - inf, min_tokens_to_keep: int = 1)[source]ΒΆ transformers.LogitsWarper
that performs top-k, i.e. restricting to the k highest probability elements.- Parameters
top_k (
int
) β The number of highest probability vocabulary tokens to keep for top-k-filtering.filter_value (
float
, optional, defaults to-float("Inf")
) β All filtered values will be set to this float value.min_tokens_to_keep (
int
, optional, defaults to 1) β Minimum number of tokens that cannot be filtered.
-
__call__
(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]ΒΆ - Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.scores (
torch.FloatTensor
of shape(batch_size, config.vocab_size)
) β Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.kwargs β
Additional logits processor specific kwargs.
- Return:
torch.FloatTensor
of shape(batch_size, config.vocab_size)
: The processed prediction scores.
Torch method for warping logits.
-
class
transformers.
NoRepeatNGramLogitsProcessor
(ngram_size: int)[source]ΒΆ transformers.LogitsProcessor
that enforces no repetition of n-grams. See Fairseq.- Parameters
ngram_size (
int
) β All ngrams of sizengram_size
can only occur once.
-
__call__
(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]ΒΆ - Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.scores (
torch.FloatTensor
of shape(batch_size, config.vocab_size)
) β Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.kwargs β
Additional logits processor specific kwargs.
- Return:
torch.FloatTensor
of shape(batch_size, config.vocab_size)
: The processed prediction scores.
Torch method for processing logits.
-
class
transformers.
NoBadWordsLogitsProcessor
(bad_words_ids: Iterable[Iterable[int]], eos_token_id: int)[source]ΒΆ transformers.LogitsProcessor
that enforces that specified sequences will never be sampled.- Parameters
bad_words_ids (
List[List[int]]
) β List of list of token ids that are not allowed to be generated. In order to get the tokens of the words that should not appear in the generated text, usetokenizer(bad_word, add_prefix_space=True).input_ids
.eos_token_id (
int
) β The id of the end-of-sequence token.
-
__call__
(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]ΒΆ - Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.scores (
torch.FloatTensor
of shape(batch_size, config.vocab_size)
) β Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.kwargs β
Additional logits processor specific kwargs.
- Return:
torch.FloatTensor
of shape(batch_size, config.vocab_size)
: The processed prediction scores.
Torch method for processing logits.
-
class
transformers.
PrefixConstrainedLogitsProcessor
(prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]], num_beams: int)[source]ΒΆ transformers.LogitsProcessor
that enforces contrained generation and is useful for prefix-conditioned constrained generation. See Autoregressive Entity Retrieval for more information.- Parameters
prefix_allowed_tokens_fn β (
Callable[[int, torch.Tensor], List[int]]
): This function constraints the beam search to allowed tokens only at each step. This function takes 2 argumentsinputs_ids
and the batch IDbatch_id
. It has to return a list with the allowed tokens for the next generation step conditioned on the previously generated tokensinputs_ids
and the batch IDbatch_id
.
-
__call__
(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]ΒΆ - Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.scores (
torch.FloatTensor
of shape(batch_size, config.vocab_size)
) β Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.kwargs β
Additional logits processor specific kwargs.
- Return:
torch.FloatTensor
of shape(batch_size, config.vocab_size)
: The processed prediction scores.
Torch method for processing logits.
-
class
transformers.
HammingDiversityLogitsProcessor
(diversity_penalty: float, num_beams: int, num_beam_groups: int)[source]ΒΆ transformers.LogitsProcessor
that enforces diverse beam search. Note that this logits processor is only effective fortransformers.PretrainedModel.group_beam_search()
. See Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence Models for more details.- Parameters
diversity_penalty (
float
) β This value is subtracted from a beamβs score if it generates a token same as any beam from other group at a particular time. Note thatdiversity_penalty
is only effective ifgroup beam search
is enabled.num_beams (
int
) β Number of beams used for group beam search. See this paper for more details.num_beam_groups (
int
) β Number of groups to dividenum_beams
into in order to ensure diversity among different groups of beams. See this paper for more details.
-
__call__
(input_ids: torch.LongTensor, scores: torch.FloatTensor, current_tokens: torch.LongTensor, beam_group_idx: int) → torch.FloatTensor[source]ΒΆ - Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.scores (
torch.FloatTensor
of shape(batch_size, config.vocab_size)
) β Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.kwargs β
Additional logits processor specific kwargs.
- Return:
torch.FloatTensor
of shape(batch_size, config.vocab_size)
: The processed prediction scores.
Torch method for processing logits.
BeamSearchΒΆ
-
class
transformers.
BeamScorer
[source]ΒΆ Abstract base class for all beam scorers that are used for
beam_search()
andbeam_sample()
.-
abstract
finalize
(input_ids: torch.LongTensor, next_scores: torch.FloatTensor, next_tokens: torch.LongTensor, next_indices: torch.LongTensor, **kwargs) → torch.LongTensor[source]ΒΆ - Parameters
input_ids (
torch.LongTensor
of shape(batch_size * num_beams, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using any class inheriting from
PretrainedTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.final_beam_scores (
torch.FloatTensor
of shape(batch_size * num_beams)
) β The final scores of all non-finished beams.final_beam_tokens (
torch.FloatTensor
of shape(batch_size * num_beams)
) β The last tokens to be added to the non-finished beam_hypotheses.final_beam_indices (
torch.FloatTensor
of shape(batch_size * num_beams)
) β The beam indices indicating to which beam thefinal_beam_tokens
shall be added.pad_token_id (
int
, optional) β The id of the padding token.eos_token_id (
int
, optional) β The id of the end-of-sequence token.
- Returns
The generated sequences. The second dimension (sequence_length) is either equal to
max_length
or shorter if all batches finished early due to theeos_token_id
.- Return type
torch.LongTensor
of shape(batch_size * num_return_sequences, sequence_length)
-
abstract
process
(input_ids: torch.LongTensor, next_scores: torch.FloatTensor, next_tokens: torch.LongTensor, next_indices: torch.LongTensor, **kwargs) → Tuple[torch.Tensor][source]ΒΆ - Parameters
input_ids (
torch.LongTensor
of shape(batch_size * num_beams, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using any class inheriting from
PretrainedTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.next_scores (
torch.FloatTensor
of shape(batch_size, 2 * num_beams)
) β Current scores of the top2 * num_beams
non-finished beam hypotheses.next_tokens (
torch.LongTensor
of shape(batch_size, 2 * num_beams)
) βinput_ids
of the tokens corresponding to the top2 * num_beams
non-finished beam hypotheses.next_indices (
torch.LongTensor
of shape(batch_size, 2 * num_beams)
) β Beam indices indicating to which beam hypothesis thenext_tokens
correspond.pad_token_id (
int
, optional) β The id of the padding token.eos_token_id (
int
, optional) β The id of the end-of-sequence token.
- Returns
A dictionary composed of the fields as defined above:
next_beam_scores (
torch.FloatTensor
of shape(batch_size * num_beams)
) β Updated scores of all non-finished beams.next_beam_tokens (
torch.FloatTensor
of shape(batch_size * num_beams)
) β Next tokens to be added to the non-finished beam_hypotheses.next_beam_indices (
torch.FloatTensor
of shape(batch_size * num_beams)
) β Beam indices indicating to which beam the next tokens shall be added.
- Return type
UserDict
-
abstract
-
class
transformers.
BeamSearchScorer
(batch_size: int, max_length: int, num_beams: int, device: torch.device, length_penalty: Optional[float] = 1.0, do_early_stopping: Optional[bool] = False, num_beam_hyps_to_keep: Optional[int] = 1, num_beam_groups: Optional[int] = 1)[source]ΒΆ transformers.BeamScorer
implementing standard beam search decoding.Adapted in part from Facebookβs XLM beam search code.
Reference for the diverse beam search algorithm and implementation Ashwin Kalyanβs DBS implementation
- Parameters
batch_size (
int
) β Batch Size ofinput_ids
for which standard beam search decoding is run in parallel.max_length (
int
) β The maximum length of the sequence to be generated.num_beams (
int
) β Number of beams for beam search.device (
torch.device
) β Defines the device type (e.g.,"cpu"
or"cuda"
) on which this instance ofBeamSearchScorer
will be allocated.length_penalty (
float
, optional, defaults to 1.0) β Exponential penalty to the length. 1.0 means no penalty. Set to values < 1.0 in order to encourage the model to generate shorter sequences, to a value > 1.0 in order to encourage the model to produce longer sequences.do_early_stopping (
bool
, optional, defaults toFalse
) β Whether to stop the beam search when at leastnum_beams
sentences are finished per batch or not.num_beam_hyps_to_keep (
int
, optional, defaults to 1) β The number of beam hypotheses that shall be returned upon callingfinalize()
.num_beam_groups (
int
) β Number of groups to dividenum_beams
into in order to ensure diversity among different groups of beams. See this paper for more details.
-
finalize
(input_ids: torch.LongTensor, final_beam_scores: torch.FloatTensor, final_beam_tokens: torch.LongTensor, final_beam_indices: torch.LongTensor, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None) → torch.LongTensor[source]ΒΆ - Parameters
input_ids (
torch.LongTensor
of shape(batch_size * num_beams, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using any class inheriting from
PretrainedTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.final_beam_scores (
torch.FloatTensor
of shape(batch_size * num_beams)
) β The final scores of all non-finished beams.final_beam_tokens (
torch.FloatTensor
of shape(batch_size * num_beams)
) β The last tokens to be added to the non-finished beam_hypotheses.final_beam_indices (
torch.FloatTensor
of shape(batch_size * num_beams)
) β The beam indices indicating to which beam thefinal_beam_tokens
shall be added.pad_token_id (
int
, optional) β The id of the padding token.eos_token_id (
int
, optional) β The id of the end-of-sequence token.
- Returns
The generated sequences. The second dimension (sequence_length) is either equal to
max_length
or shorter if all batches finished early due to theeos_token_id
.- Return type
torch.LongTensor
of shape(batch_size * num_return_sequences, sequence_length)
-
process
(input_ids: torch.LongTensor, next_scores: torch.FloatTensor, next_tokens: torch.LongTensor, next_indices: torch.LongTensor, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None) → Tuple[torch.Tensor][source]ΒΆ - Parameters
input_ids (
torch.LongTensor
of shape(batch_size * num_beams, sequence_length)
) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using any class inheriting from
PretrainedTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.next_scores (
torch.FloatTensor
of shape(batch_size, 2 * num_beams)
) β Current scores of the top2 * num_beams
non-finished beam hypotheses.next_tokens (
torch.LongTensor
of shape(batch_size, 2 * num_beams)
) βinput_ids
of the tokens corresponding to the top2 * num_beams
non-finished beam hypotheses.next_indices (
torch.LongTensor
of shape(batch_size, 2 * num_beams)
) β Beam indices indicating to which beam hypothesis thenext_tokens
correspond.pad_token_id (
int
, optional) β The id of the padding token.eos_token_id (
int
, optional) β The id of the end-of-sequence token.
- Returns
A dictionary composed of the fields as defined above:
next_beam_scores (
torch.FloatTensor
of shape(batch_size * num_beams)
) β Updated scores of all non-finished beams.next_beam_tokens (
torch.FloatTensor
of shape(batch_size * num_beams)
) β Next tokens to be added to the non-finished beam_hypotheses.next_beam_indices (
torch.FloatTensor
of shape(batch_size * num_beams)
) β Beam indices indicating to which beam the next tokens shall be added.
- Return type
UserDict
UtilitiesΒΆ
-
transformers.
top_k_top_p_filtering
(logits: torch.FloatTensor, top_k: int = 0, top_p: float = 1.0, filter_value: float = - inf, min_tokens_to_keep: int = 1) → torch.FloatTensor[source]ΒΆ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
- Parameters
logits β logits distribution shape (batch size, vocabulary size)
top_k > 0 (if) β keep only top k tokens with highest probability (top-k filtering).
top_p < 1.0 (if) β keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
sure we keep at least min_tokens_to_keep per batch example in the output (Make) β
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
-
transformers.
tf_top_k_top_p_filtering
(logits, top_k=0, top_p=1.0, filter_value=- inf, min_tokens_to_keep=1)[source]ΒΆ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
- Parameters
logits β logits distribution shape (batch size, vocabulary size)
top_k > 0 (if) β keep only top k tokens with highest probability (top-k filtering).
top_p < 1.0 (if) β keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
sure we keep at least min_tokens_to_keep per batch example in the output (Make) β
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317