Source code for transformers.generation_logits_process

# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import math
from abc import ABC
from typing import Callable, Iterable, List

import numpy as np
import torch
from torch.nn import functional as F

from .file_utils import add_start_docstrings


LOGITS_PROCESSOR_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using :class:`~transformers.BertTokenizer`. See
            :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
            details.

            `What are input IDs? <../glossary.html#input-ids>`__
        scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.vocab_size)`):
            Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax
            or scores for each vocabulary token after SoftMax.
        kwargs:
            Additional logits processor specific kwargs.

    Return:
        :obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.vocab_size)`: The processed prediction scores.

"""


[docs]class LogitsProcessor(ABC): """Abstract base class for all logit processors that can be applied during generation."""
[docs] @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: """Torch method for processing logits.""" raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." )
[docs]class LogitsWarper(ABC): """Abstract base class for all logit warpers that can be applied during generation with multinomial sampling."""
[docs] @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: """Torch method for warping logits.""" raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." )
[docs]class LogitsProcessorList(list): """ This class can be used to create a list of :class:`~transformers.LogitsProcessor` or :class:`~transformers.LogitsWarper` to subsequently process a :obj:`scores` input tensor. This class inherits from list and adds a specific `__call__` method to apply each :class:`~transformers.LogitsProcessor` or :class:`~transformers.LogitsProcessor` to the inputs. """
[docs] @add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.FloatTensor: for processor in self: function_args = inspect.signature(processor.__call__).parameters if len(function_args) > 2: assert all( arg in kwargs for arg in list(function_args.keys())[2:] ), f"Make sure that all the required parameters: {list(function_args.keys())} for {processor.__class__} are passed to the logits processor." scores = processor(input_ids, scores, **kwargs) else: scores = processor(input_ids, scores) return scores
[docs]class MinLengthLogitsProcessor(LogitsProcessor): r""" :class:`transformers.LogitsProcessor` enforcing a min-length by setting EOS probability to 0. Args: min_length (:obj:`int`): The minimum length below which the score of :obj:`eos_token_id` is set to :obj:`-float("Inf")`. eos_token_id (:obj:`int`): The id of the `end-of-sequence` token. """ def __init__(self, min_length: int, eos_token_id: int): if not isinstance(min_length, int) or min_length < 0: raise ValueError(f"`min_length` has to be a positive integer, but is {min_length}") if not isinstance(eos_token_id, int) or eos_token_id < 0: raise ValueError(f"`eos_token_id` has to be a positive integer, but is {eos_token_id}") self.min_length = min_length self.eos_token_id = eos_token_id
[docs] def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: cur_len = input_ids.shape[-1] if cur_len < self.min_length: scores[:, self.eos_token_id] = -float("inf") return scores
[docs]class TemperatureLogitsWarper(LogitsWarper): r""" :class:`transformers.LogitsWarper` for temperature (exponential scaling output probability distribution). Args: temperature (:obj:`float`): The value used to module the logits distribution. """ def __init__(self, temperature: float): if not isinstance(temperature, float) or not (temperature > 0): raise ValueError(f"`temperature` has to be a strictly positive float, but is {temperature}") self.temperature = temperature
[docs] def __call__(self, input_ids: torch.Tensor, scores: torch.Tensor) -> torch.Tensor: scores = scores / self.temperature return scores
[docs]class RepetitionPenaltyLogitsProcessor(LogitsProcessor): r""" :class:`transformers.LogitsProcessor` enforcing an exponential penalty on repeated sequences. Args: repetition_penalty (:obj:`float`): The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details. """ def __init__(self, penalty: float): if not isinstance(penalty, float) or not (penalty > 0): raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}") self.penalty = penalty
[docs] def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: ranges = torch.arange(scores.shape[0]) score = scores[ranges[:, None], input_ids] # if score < 0 then repetition penalty has to be multiplied to reduce the previous token probability score = torch.where(score < 0, score * self.penalty, score / self.penalty) scores[ranges[:, None], input_ids] = score return scores
[docs]class TopPLogitsWarper(LogitsWarper): """ :class:`transformers.LogitsWarper` that performs top-p, i.e. restricting to top tokens summing to prob_cut_off <= prob_cut_off. Args: top_p (:obj:`float`): If set to < 1, only the most probable tokens with probabilities that add up to :obj:`top_p` or higher are kept for generation. filter_value (:obj:`float`, `optional`, defaults to :obj:`-float("Inf")`): All filtered values will be set to this float value. min_tokens_to_keep (:obj:`int`, `optional`, defaults to 1): Minimum number of tokens that cannot be filtered. """ def __init__(self, top_p: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): if not isinstance(top_p, float) or (top_p < 0 or top_p > 1.0): raise ValueError(f"`top_p` has to be a float > 0 and < 1, but is {top_p}") self.top_p = top_p self.filter_value = filter_value self.min_tokens_to_keep = min_tokens_to_keep
[docs] def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: sorted_logits, sorted_indices = torch.sort(scores, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative top_p above the threshold (token with 0 are kept) sorted_indices_to_remove = cumulative_probs > self.top_p if self.min_tokens_to_keep > 1: # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below) sorted_indices_to_remove[..., : self.min_tokens_to_keep - 1] = 0 # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 # scatter sorted tensors to original indexing indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) scores[indices_to_remove] = self.filter_value return scores
[docs]class TopKLogitsWarper(LogitsWarper): r""" :class:`transformers.LogitsWarper` that performs top-k, i.e. restricting to the k highest probability elements. Args: top_k (:obj:`int`): The number of highest probability vocabulary tokens to keep for top-k-filtering. filter_value (:obj:`float`, `optional`, defaults to :obj:`-float("Inf")`): All filtered values will be set to this float value. min_tokens_to_keep (:obj:`int`, `optional`, defaults to 1): Minimum number of tokens that cannot be filtered. """ def __init__(self, top_k: int, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): if not isinstance(top_k, int) or top_k <= 0: raise ValueError(f"`top_k` has to be a strictly positive integer, but is {top_k}") self.top_k = top_k self.filter_value = filter_value self.min_tokens_to_keep = min_tokens_to_keep
[docs] def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: top_k = min(max(self.top_k, self.min_tokens_to_keep), scores.size(-1)) # Safety check # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = scores < torch.topk(scores, top_k)[0][..., -1, None] scores[indices_to_remove] = self.filter_value return scores
[docs]class NoRepeatNGramLogitsProcessor(LogitsProcessor): r""" :class:`transformers.LogitsProcessor` that enforces no repetition of n-grams. See `Fairseq <https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345>`__. Args: ngram_size (:obj:`int`): All ngrams of size :obj:`ngram_size` can only occur once. """ def __init__(self, ngram_size: int): if not isinstance(ngram_size, int) or ngram_size <= 0: raise ValueError(f"`ngram_size` has to be a strictly positive integer, but is {ngram_size}") self.ngram_size = ngram_size
[docs] def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: num_batch_hypotheses = scores.shape[0] cur_len = input_ids.shape[-1] banned_batch_tokens = self._calc_banned_ngram_tokens(input_ids, num_batch_hypotheses, cur_len) for i, banned_tokens in enumerate(banned_batch_tokens): scores[i, banned_tokens] = -float("inf") return scores
def _calc_banned_ngram_tokens( self, prev_input_ids: torch.Tensor, num_hypos: int, cur_len: int ) -> List[Iterable[int]]: """Copied from fairseq for no_repeat_ngram in beam_search""" if cur_len + 1 < self.ngram_size: # return no banned tokens if we haven't generated no_repeat_ngram_size tokens yet return [[] for _ in range(num_hypos)] generated_ngrams = [{} for _ in range(num_hypos)] for idx in range(num_hypos): gen_tokens = prev_input_ids[idx].tolist() generated_ngram = generated_ngrams[idx] for ngram in zip(*[gen_tokens[i:] for i in range(self.ngram_size)]): prev_ngram_tuple = tuple(ngram[:-1]) generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]] def _get_generated_ngrams(hypo_idx): # Before decoding the next token, prevent decoding of ngrams that have already appeared start_idx = cur_len + 1 - self.ngram_size ngram_idx = tuple(prev_input_ids[hypo_idx, start_idx:cur_len].tolist()) return generated_ngrams[hypo_idx].get(ngram_idx, []) banned_tokens = [_get_generated_ngrams(hypo_idx) for hypo_idx in range(num_hypos)] return banned_tokens
[docs]class NoBadWordsLogitsProcessor(LogitsProcessor): """ :class:`transformers.LogitsProcessor` that enforces that specified sequences will never be sampled. Args: bad_words_ids (:obj:`List[List[int]]`): List of list of token ids that are not allowed to be generated. In order to get the tokens of the words that should not appear in the generated text, use :obj:`tokenizer(bad_word, add_prefix_space=True).input_ids`. eos_token_id (:obj:`int`): The id of the `end-of-sequence` token. """ def __init__(self, bad_words_ids: Iterable[Iterable[int]], eos_token_id: int): if not isinstance(bad_words_ids, List) or len(bad_words_ids) == 0: raise ValueError(f"`bad_words_ids` has to be a non-emtpy list, but is {bad_words_ids}.") if any(not isinstance(bad_word_ids, list) for bad_word_ids in bad_words_ids): raise ValueError(f"`bad_words_ids` has to be a list of lists, but is {bad_words_ids}.") if any( any((not isinstance(token_id, (int, np.integer)) or token_id < 0) for token_id in bad_word_ids) for bad_word_ids in bad_words_ids ): raise ValueError( f"Each list in `bad_words_ids` has to be a list of positive integers, but is {bad_words_ids}." ) self.bad_words_ids = list(filter(lambda bad_token_seq: bad_token_seq != [eos_token_id], bad_words_ids)) for banned_token_seq in self.bad_words_ids: assert len(banned_token_seq) > 0, "Banned words token sequences {} cannot have an empty list".format( bad_words_ids )
[docs] def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: banned_tokens = self._calc_banned_bad_words_ids(input_ids) scores = self._set_scores_to_inf_for_banned_tokens(scores, banned_tokens) return scores
def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool: if len(tokens) == 0: # if bad word tokens is just one token always ban it return True elif len(tokens) > len(prev_tokens): # if bad word tokens are longer then prev input_ids they can't be equal return False elif prev_tokens[-len(tokens) :].tolist() == tokens: # if tokens match return True else: return False def _calc_banned_bad_words_ids(self, prev_input_ids: Iterable[int]) -> Iterable[int]: banned_tokens = [] for prev_input_ids_slice in prev_input_ids: banned_tokens_slice = [] for banned_token_seq in self.bad_words_ids: if self._tokens_match(prev_input_ids_slice, banned_token_seq[:-1]) is False: # if tokens do not match continue continue banned_tokens_slice.append(banned_token_seq[-1]) banned_tokens.append(banned_tokens_slice) return banned_tokens def _set_scores_to_inf_for_banned_tokens(self, scores: torch.Tensor, banned_tokens: List[List[int]]) -> None: """ Modifies the scores in place by setting the banned token positions to `-inf`. Banned token is expected to be a list of list of banned tokens to ban in the format [[batch index, vocabulary position],... Args: scores: logits distribution of shape (batch size, vocabulary size) banned_tokens: list of list of tokens to ban of length (batch_size) """ banned_mask_list = [] for idx, batch_banned_tokens in enumerate(banned_tokens): for token in batch_banned_tokens: banned_mask_list.append([idx, token]) if not banned_mask_list: return scores banned_mask = torch.LongTensor(banned_mask_list) indices = torch.ones(len(banned_mask)) # A sparse tensor is generated from a list of coordinates: [[0, 1], [0, 2], [2, 0]]. A conversion to dense tensor generates: # [ 0 1 1 ] # [ 0 0 0 ] # [ 1 0 0 ] banned_mask = ( torch.sparse.LongTensor(banned_mask.t(), indices, scores.size()).to(scores.device).to_dense().bool() ) scores = scores.masked_fill(banned_mask, -float("inf")) return scores
[docs]class PrefixConstrainedLogitsProcessor(LogitsProcessor): r""" :class:`transformers.LogitsProcessor` that enforces contrained generation and is useful for prefix-conditioned constrained generation. See `Autoregressive Entity Retrieval <https://arxiv.org/abs/2010.00904>`__ for more information. Args: prefix_allowed_tokens_fn: (:obj:`Callable[[int, torch.Tensor], List[int]]`): This function constraints the beam search to allowed tokens only at each step. This function takes 2 arguments :obj:`inputs_ids` and the batch ID :obj:`batch_id`. It has to return a list with the allowed tokens for the next generation step conditioned on the previously generated tokens :obj:`inputs_ids` and the batch ID :obj:`batch_id`. """ def __init__(self, prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]], num_beams: int): self._prefix_allowed_tokens_fn = prefix_allowed_tokens_fn self._num_beams = num_beams
[docs] def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: mask = torch.full_like(scores, -math.inf) for batch_id, beam_sent in enumerate(input_ids.view(-1, self._num_beams, input_ids.shape[-1])): for beam_id, sent in enumerate(beam_sent): mask[batch_id * self._num_beams + beam_id, self._prefix_allowed_tokens_fn(batch_id, sent)] = 0 return scores + mask
[docs]class HammingDiversityLogitsProcessor(LogitsProcessor): r""" :class:`transformers.LogitsProcessor` that enforces diverse beam search. Note that this logits processor is only effective for :meth:`transformers.PretrainedModel.group_beam_search`. See `Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence Models <https://arxiv.org/pdf/1610.02424.pdf>`__ for more details. Args: diversity_penalty (:obj:`float`): This value is subtracted from a beam's score if it generates a token same as any beam from other group at a particular time. Note that :obj:`diversity_penalty` is only effective if ``group beam search`` is enabled. num_beams (:obj:`int`): Number of beams used for group beam search. See `this paper <https://arxiv.org/pdf/1610.02424.pdf>`__ for more details. num_beam_groups (:obj:`int`): Number of groups to divide :obj:`num_beams` into in order to ensure diversity among different groups of beams. See `this paper <https://arxiv.org/pdf/1610.02424.pdf>`__ for more details. """ def __init__(self, diversity_penalty: float, num_beams: int, num_beam_groups: int): if not isinstance(diversity_penalty, float) or (not diversity_penalty > 0.0): raise ValueError("`diversity_penalty` should be a float strictly larger than 0.") self._diversity_penalty = diversity_penalty if not isinstance(num_beams, int) or num_beams < 2: raise ValueError("`num_beams` should be an integer strictly larger than 1.") self._num_beams = num_beams if not isinstance(num_beam_groups, int) or num_beam_groups < 2: raise ValueError("`num_beam_groups` should be an integer strictly larger than 1.") if num_beam_groups > num_beams: raise ValueError("`beam_groups` has to be smaller or equal to `num_beams`.") if num_beam_groups > num_beams: raise ValueError("`beam_groups` has to be smaller or equal to `num_beams`") self._num_sub_beams = num_beams // num_beam_groups
[docs] def __call__( self, input_ids: torch.LongTensor, scores: torch.FloatTensor, current_tokens: torch.LongTensor, beam_group_idx: int, ) -> torch.FloatTensor: # hamming diversity: penalise using same token in current group which was used in previous groups at # the same time step batch_size = current_tokens.shape[0] // self._num_beams group_start_idx = beam_group_idx * self._num_sub_beams group_end_idx = min(group_start_idx + self._num_sub_beams, self._num_beams) group_size = group_end_idx - group_start_idx vocab_size = scores.shape[-1] if group_start_idx == 0: return scores for batch_idx in range(batch_size): # predicted tokens of last time step of previous groups previous_group_tokens = current_tokens[ batch_idx * self._num_beams : batch_idx * self._num_beams + group_start_idx ] token_frequency = torch.bincount(previous_group_tokens, minlength=vocab_size).to(scores.device) scores[batch_idx * group_size : (batch_idx + 1) * group_size] -= self._diversity_penalty * token_frequency return scores