# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
TF 2.0 DistilBERT model
"""
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...file_utils import (
MULTIPLE_CHOICE_DUMMY_INPUTS,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
)
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFMaskedLMOutput,
TFMultipleChoiceModelOutput,
TFQuestionAnsweringModelOutput,
TFSequenceClassifierOutput,
TFTokenClassifierOutput,
)
from ...modeling_tf_utils import (
TFMaskedLanguageModelingLoss,
TFMultipleChoiceLoss,
TFPreTrainedModel,
TFQuestionAnsweringLoss,
TFSequenceClassificationLoss,
TFSharedEmbeddings,
TFTokenClassificationLoss,
get_initializer,
input_processing,
keras_serializable,
shape_list,
)
from ...utils import logging
from .configuration_distilbert import DistilBertConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "DistilBertConfig"
_TOKENIZER_FOR_DOC = "DistilBertTokenizer"
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"distilbert-base-uncased",
"distilbert-base-uncased-distilled-squad",
"distilbert-base-cased",
"distilbert-base-cased-distilled-squad",
"distilbert-base-multilingual-cased",
"distilbert-base-uncased-finetuned-sst-2-english",
# See all DistilBERT models at https://huggingface.co/models?filter=distilbert
]
class TFEmbeddings(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.vocab_size = config.vocab_size
self.dim = config.dim
self.initializer_range = config.initializer_range
self.word_embeddings = TFSharedEmbeddings(
config.vocab_size, config.dim, initializer_range=config.initializer_range, name="word_embeddings"
) # padding_idx=0)
self.position_embeddings = tf.keras.layers.Embedding(
config.max_position_embeddings,
config.dim,
embeddings_initializer=get_initializer(config.initializer_range),
name="position_embeddings",
)
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=1e-12, name="LayerNorm")
self.dropout = tf.keras.layers.Dropout(config.dropout)
def build(self, input_shape):
"""Build shared word embedding layer """
with tf.name_scope("word_embeddings"):
# Create and initialize weights. The random normal initializer was chosen
# arbitrarily, and works well.
self.word_embeddings = self.add_weight(
"weight", shape=[self.vocab_size, self.dim], initializer=get_initializer(self.initializer_range)
)
super().build(input_shape)
def call(self, input_ids=None, position_ids=None, inputs_embeds=None, mode="embedding", training=False):
"""
Get token embeddings of inputs.
Args:
inputs: list of two int64 tensors with shape [batch_size, length]: (input_ids, position_ids)
mode: string, a valid value is one of "embedding" and "linear".
Returns:
outputs: If mode == "embedding", output embedding tensor, float32 with shape [batch_size, length,
embedding_size]; if mode == "linear", output linear tensor, float32 with shape [batch_size, length,
vocab_size].
Raises:
ValueError: if mode is not valid.
Shared weights logic adapted from
https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
"""
if mode == "embedding":
return self._embedding(input_ids, position_ids, inputs_embeds, training=training)
elif mode == "linear":
return self._linear(input_ids)
else:
raise ValueError("mode {} is not valid.".format(mode))
def _embedding(self, input_ids, position_ids, inputs_embeds, training=False):
"""
Parameters:
input_ids: tf.Tensor(bs, max_seq_length) The token ids to embed.
Returns:
tf.Tensor(bs, max_seq_length, dim) The embedded tokens (plus position embeddings, no token_type embeddings)
"""
assert not (input_ids is None and inputs_embeds is None)
if input_ids is not None:
seq_length = shape_list(input_ids)[1]
else:
seq_length = shape_list(inputs_embeds)[1]
if position_ids is None:
position_ids = tf.range(seq_length, dtype=tf.int32)[tf.newaxis, :]
if inputs_embeds is None:
inputs_embeds = tf.gather(self.word_embeddings, input_ids)
position_embeddings = tf.cast(
self.position_embeddings(position_ids), inputs_embeds.dtype
) # (bs, max_seq_length, dim)
embeddings = inputs_embeds + position_embeddings # (bs, max_seq_length, dim)
embeddings = self.LayerNorm(embeddings) # (bs, max_seq_length, dim)
embeddings = self.dropout(embeddings, training=training) # (bs, max_seq_length, dim)
return embeddings
def _linear(self, inputs):
"""
Computes logits by running inputs through a linear layer
Args:
inputs: A float32 tensor with shape [batch_size, length, hidden_size]
Returns:
float32 tensor with shape [batch_size, length, vocab_size].
"""
batch_size = shape_list(inputs)[0]
length = shape_list(inputs)[1]
x = tf.reshape(inputs, [-1, self.dim])
logits = tf.matmul(x, self.word_embeddings, transpose_b=True)
return tf.reshape(logits, [batch_size, length, self.vocab_size])
class TFMultiHeadSelfAttention(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.n_heads = config.n_heads
self.dim = config.dim
self.dropout = tf.keras.layers.Dropout(config.attention_dropout)
self.output_attentions = config.output_attentions
assert self.dim % self.n_heads == 0, f"Hidden size {self.dim} not dividable by number of heads {self.n_heads}"
self.q_lin = tf.keras.layers.Dense(
config.dim, kernel_initializer=get_initializer(config.initializer_range), name="q_lin"
)
self.k_lin = tf.keras.layers.Dense(
config.dim, kernel_initializer=get_initializer(config.initializer_range), name="k_lin"
)
self.v_lin = tf.keras.layers.Dense(
config.dim, kernel_initializer=get_initializer(config.initializer_range), name="v_lin"
)
self.out_lin = tf.keras.layers.Dense(
config.dim, kernel_initializer=get_initializer(config.initializer_range), name="out_lin"
)
self.pruned_heads = set()
def prune_heads(self, heads):
raise NotImplementedError
def call(self, query, key, value, mask, head_mask, output_attentions, training=False):
"""
Parameters:
query: tf.Tensor(bs, seq_length, dim)
key: tf.Tensor(bs, seq_length, dim)
value: tf.Tensor(bs, seq_length, dim)
mask: tf.Tensor(bs, seq_length)
Returns:
weights: tf.Tensor(bs, n_heads, seq_length, seq_length) Attention weights context: tf.Tensor(bs,
seq_length, dim) Contextualized layer. Optional: only if `output_attentions=True`
"""
bs, q_length, dim = shape_list(query)
k_length = shape_list(key)[1]
# assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim)
# assert key.size() == value.size()
dim_per_head = tf.math.divide(self.dim, self.n_heads)
dim_per_head = tf.cast(dim_per_head, dtype=tf.int32)
mask_reshape = [bs, 1, 1, k_length]
def shape(x):
""" separate heads """
return tf.transpose(tf.reshape(x, (bs, -1, self.n_heads, dim_per_head)), perm=(0, 2, 1, 3))
def unshape(x):
""" group heads """
return tf.reshape(tf.transpose(x, perm=(0, 2, 1, 3)), (bs, -1, self.n_heads * dim_per_head))
q = shape(self.q_lin(query)) # (bs, n_heads, q_length, dim_per_head)
k = shape(self.k_lin(key)) # (bs, n_heads, k_length, dim_per_head)
v = shape(self.v_lin(value)) # (bs, n_heads, k_length, dim_per_head)
q = tf.cast(q, dtype=tf.float32)
q = tf.multiply(q, tf.math.rsqrt(tf.cast(dim_per_head, dtype=tf.float32)))
k = tf.cast(k, dtype=q.dtype)
scores = tf.matmul(q, k, transpose_b=True) # (bs, n_heads, q_length, k_length)
mask = tf.reshape(mask, mask_reshape) # (bs, n_heads, qlen, klen)
# scores.masked_fill_(mask, -float('inf')) # (bs, n_heads, q_length, k_length)
mask = tf.cast(mask, dtype=scores.dtype)
scores = scores - 1e30 * (1.0 - mask)
weights = tf.nn.softmax(scores, axis=-1) # (bs, n_heads, qlen, klen)
weights = self.dropout(weights, training=training) # (bs, n_heads, qlen, klen)
# Mask heads if we want to
if head_mask is not None:
weights = weights * head_mask
context = tf.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head)
context = unshape(context) # (bs, q_length, dim)
context = self.out_lin(context) # (bs, q_length, dim)
if output_attentions:
return (context, weights)
else:
return (context,)
class TFFFN(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.lin1 = tf.keras.layers.Dense(
config.hidden_dim, kernel_initializer=get_initializer(config.initializer_range), name="lin1"
)
self.lin2 = tf.keras.layers.Dense(
config.dim, kernel_initializer=get_initializer(config.initializer_range), name="lin2"
)
assert config.activation in ["relu", "gelu"], "activation ({}) must be in ['relu', 'gelu']".format(
config.activation
)
self.activation = get_tf_activation(config.activation)
def call(self, input, training=False):
x = self.lin1(input)
x = self.activation(x)
x = self.lin2(x)
x = self.dropout(x, training=training)
return x
class TFTransformerBlock(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.n_heads = config.n_heads
self.dim = config.dim
self.hidden_dim = config.hidden_dim
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.activation = config.activation
self.output_attentions = config.output_attentions
assert (
config.dim % config.n_heads == 0
), f"Hidden size {config.dim} not dividable by number of heads {config.n_heads}"
self.attention = TFMultiHeadSelfAttention(config, name="attention")
self.sa_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-12, name="sa_layer_norm")
self.ffn = TFFFN(config, name="ffn")
self.output_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-12, name="output_layer_norm")
def call(self, x, attn_mask, head_mask, output_attentions, training=False): # removed: src_enc=None, src_len=None
"""
Parameters:
x: tf.Tensor(bs, seq_length, dim)
attn_mask: tf.Tensor(bs, seq_length)
Outputs: sa_weights: tf.Tensor(bs, n_heads, seq_length, seq_length) The attention weights ffn_output:
tf.Tensor(bs, seq_length, dim) The output of the transformer block contextualization.
"""
# Self-Attention
sa_output = self.attention(x, x, x, attn_mask, head_mask, output_attentions, training=training)
if output_attentions:
sa_output, sa_weights = sa_output # (bs, seq_length, dim), (bs, n_heads, seq_length, seq_length)
else: # To handle these `output_attentions` or `output_hidden_states` cases returning tuples
# assert type(sa_output) == tuple
sa_output = sa_output[0]
sa_output = self.sa_layer_norm(sa_output + x) # (bs, seq_length, dim)
# Feed Forward Network
ffn_output = self.ffn(sa_output, training=training) # (bs, seq_length, dim)
ffn_output = self.output_layer_norm(ffn_output + sa_output) # (bs, seq_length, dim)
output = (ffn_output,)
if output_attentions:
output = (sa_weights,) + output
return output
class TFTransformer(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.n_layers = config.n_layers
self.output_hidden_states = config.output_hidden_states
self.output_attentions = config.output_attentions
self.layer = [TFTransformerBlock(config, name="layer_._{}".format(i)) for i in range(config.n_layers)]
def call(self, x, attn_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=False):
# docstyle-ignore
"""
Parameters:
x: tf.Tensor(bs, seq_length, dim) Input sequence embedded.
attn_mask: tf.Tensor(bs, seq_length) Attention mask on the sequence.
Returns:
hidden_state: tf.Tensor(bs, seq_length, dim)
Sequence of hidden states in the last (top) layer
all_hidden_states: Tuple[tf.Tensor(bs, seq_length, dim)]
Tuple of length n_layers with the hidden states from each layer.
Optional: only if output_hidden_states=True
all_attentions: Tuple[tf.Tensor(bs, n_heads, seq_length, seq_length)]
Tuple of length n_layers with the attention weights from each layer
Optional: only if output_attentions=True
"""
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_state = x
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_state,)
layer_outputs = layer_module(hidden_state, attn_mask, head_mask[i], output_attentions, training=training)
hidden_state = layer_outputs[-1]
if output_attentions:
assert len(layer_outputs) == 2
attentions = layer_outputs[0]
all_attentions = all_attentions + (attentions,)
else:
assert len(layer_outputs) == 1, f"Incorrect number of outputs {len(layer_outputs)} instead of 1"
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, all_hidden_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_state, hidden_states=all_hidden_states, attentions=all_attentions
)
@keras_serializable
class TFDistilBertMainLayer(tf.keras.layers.Layer):
config_class = DistilBertConfig
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.num_hidden_layers = config.num_hidden_layers
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.return_dict = config.use_return_dict
self.embeddings = TFEmbeddings(config, name="embeddings") # Embeddings
self.transformer = TFTransformer(config, name="transformer") # Encoder
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
self.embeddings.vocab_size = value.shape[0]
def _prune_heads(self, heads_to_prune):
raise NotImplementedError
def call(
self,
input_ids=None,
attention_mask=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
kwargs_call=kwargs,
)
if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif inputs["input_ids"] is not None:
input_shape = shape_list(inputs["input_ids"])
elif inputs["inputs_embeds"] is not None:
input_shape = shape_list(inputs["inputs_embeds"])[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs["attention_mask"] is None:
inputs["attention_mask"] = tf.ones(input_shape) # (bs, seq_length)
inputs["attention_mask"] = tf.cast(inputs["attention_mask"], dtype=tf.float32)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if inputs["head_mask"] is not None:
raise NotImplementedError
else:
inputs["head_mask"] = [None] * self.num_hidden_layers
embedding_output = self.embeddings(
inputs["input_ids"], inputs_embeds=inputs["inputs_embeds"]
) # (bs, seq_length, dim)
tfmr_output = self.transformer(
embedding_output,
inputs["attention_mask"],
inputs["head_mask"],
inputs["output_attentions"],
inputs["output_hidden_states"],
inputs["return_dict"],
training=inputs["training"],
)
return tfmr_output # last-layer hidden-state, (all hidden_states), (all attentions)
# INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL #
class TFDistilBertPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DistilBertConfig
base_model_prefix = "distilbert"
DISTILBERT_START_DOCSTRING = r"""
This model inherits from :class:`~transformers.TFPreTrainedModel`. Check the superclass documentation for the
generic methods the library implements for all its model (such as downloading or saving, resizing the input
embeddings, pruning heads etc.)
This model is also a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ subclass. Use
it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage
and behavior.
.. note::
TF 2.0 models accepts two formats as inputs:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using :meth:`tf.keras.Model.fit` method which currently requires having all
the tensors in the first argument of the model call function: :obj:`model(inputs)`.
If you choose this second option, there are three possibilities you can use to gather all the input Tensors in
the first positional argument :
- a single Tensor with :obj:`input_ids` only and nothing else: :obj:`model(inputs_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
:obj:`model([input_ids, attention_mask])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
:obj:`model({"input_ids": input_ids})`
Parameters:
config (:class:`~transformers.DistilBertConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
weights.
"""
DISTILBERT_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using :class:`~transformers.DistilBertTokenizer`. See
:func:`transformers.PreTrainedTokenizer.__call__` and :func:`transformers.PreTrainedTokenizer.encode` for
details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
head_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (:obj:`tf.Tensor` of shape :obj:`({0}, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
vectors than the model's internal embedding lookup matrix.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
training (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
[docs]@add_start_docstrings(
"The bare DistilBERT encoder/transformer outputting raw hidden-states without any specific head on top.",
DISTILBERT_START_DOCSTRING,
)
class TFDistilBertModel(TFDistilBertPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.distilbert = TFDistilBertMainLayer(config, name="distilbert") # Embeddings
[docs] @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="distilbert-base-uncased",
output_type=TFBaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids=None,
attention_mask=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
kwargs_call=kwargs,
)
outputs = self.distilbert(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
return outputs
class TFDistilBertLMHead(tf.keras.layers.Layer):
def __init__(self, config, input_embeddings, **kwargs):
super().__init__(**kwargs)
self.vocab_size = config.vocab_size
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.input_embeddings = input_embeddings
def build(self, input_shape):
self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias")
super().build(input_shape)
def call(self, hidden_states):
hidden_states = self.input_embeddings(hidden_states, mode="linear")
hidden_states = hidden_states + self.bias
return hidden_states
[docs]@add_start_docstrings(
"""
DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
DISTILBERT_START_DOCSTRING,
)
class TFDistilBertForSequenceClassification(TFDistilBertPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.distilbert = TFDistilBertMainLayer(config, name="distilbert")
self.pre_classifier = tf.keras.layers.Dense(
config.dim,
kernel_initializer=get_initializer(config.initializer_range),
activation="relu",
name="pre_classifier",
)
self.classifier = tf.keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.dropout = tf.keras.layers.Dropout(config.seq_classif_dropout)
[docs] @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="distilbert-base-uncased",
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids=None,
attention_mask=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
labels=None,
training=False,
**kwargs,
):
r"""
labels (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the sequence classification/regression loss. Indices should be in ``[0, ...,
config.num_labels - 1]``. If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).
"""
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels,
training=training,
kwargs_call=kwargs,
)
distilbert_output = self.distilbert(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
hidden_state = distilbert_output[0] # (bs, seq_len, dim)
pooled_output = hidden_state[:, 0] # (bs, dim)
pooled_output = self.pre_classifier(pooled_output) # (bs, dim)
pooled_output = self.dropout(pooled_output, training=inputs["training"]) # (bs, dim)
logits = self.classifier(pooled_output) # (bs, dim)
loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], logits)
if not inputs["return_dict"]:
output = (logits,) + distilbert_output[1:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=distilbert_output.hidden_states,
attentions=distilbert_output.attentions,
)
[docs]@add_start_docstrings(
"""
DistilBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
for Named-Entity-Recognition (NER) tasks.
""",
DISTILBERT_START_DOCSTRING,
)
class TFDistilBertForTokenClassification(TFDistilBertPreTrainedModel, TFTokenClassificationLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.distilbert = TFDistilBertMainLayer(config, name="distilbert")
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.classifier = tf.keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
[docs] @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="distilbert-base-uncased",
output_type=TFTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids=None,
attention_mask=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
labels=None,
training=False,
**kwargs,
):
r"""
labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels -
1]``.
"""
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels,
training=training,
kwargs_call=kwargs,
)
outputs = self.distilbert(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output, training=inputs["training"])
logits = self.classifier(sequence_output)
loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], logits)
if not inputs["return_dict"]:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
[docs]@add_start_docstrings(
"""
DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
DISTILBERT_START_DOCSTRING,
)
class TFDistilBertForQuestionAnswering(TFDistilBertPreTrainedModel, TFQuestionAnsweringLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.distilbert = TFDistilBertMainLayer(config, name="distilbert")
self.qa_outputs = tf.keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
)
assert config.num_labels == 2, f"Incorrect number of labels {config.num_labels} instead of 2"
self.dropout = tf.keras.layers.Dropout(config.qa_dropout)
[docs] @add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="distilbert-base-uncased",
output_type=TFQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids=None,
attention_mask=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
start_positions=None,
end_positions=None,
training=False,
**kwargs,
):
r"""
start_positions (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
sequence are not taken into account for computing the loss.
end_positions (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
sequence are not taken into account for computing the loss.
"""
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
start_positions=start_positions,
end_positions=end_positions,
training=training,
kwargs_call=kwargs,
)
distilbert_output = self.distilbert(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
hidden_states = distilbert_output[0] # (bs, max_query_len, dim)
hidden_states = self.dropout(hidden_states, training=inputs["training"]) # (bs, max_query_len, dim)
logits = self.qa_outputs(hidden_states) # (bs, max_query_len, 2)
start_logits, end_logits = tf.split(logits, 2, axis=-1)
start_logits = tf.squeeze(start_logits, axis=-1)
end_logits = tf.squeeze(end_logits, axis=-1)
loss = None
if inputs["start_positions"] is not None and inputs["end_positions"] is not None:
labels = {"start_position": inputs["start_positions"]}
labels["end_position"] = inputs["end_positions"]
loss = self.compute_loss(labels, (start_logits, end_logits))
if not inputs["return_dict"]:
output = (start_logits, end_logits) + distilbert_output[1:]
return ((loss,) + output) if loss is not None else output
return TFQuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=distilbert_output.hidden_states,
attentions=distilbert_output.attentions,
)