Source code for transformers.tokenization_bart

# coding=utf-8
# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List, Optional

from .tokenization_roberta import RobertaTokenizer, RobertaTokenizerFast
from .tokenization_utils_base import BatchEncoding
from .utils import logging


logger = logging.get_logger(__name__)


# vocab and merges same as roberta
vocab_url = "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-vocab.json"
merges_url = "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-merges.txt"
_all_bart_models = [
    "facebook/bart-base",
    "facebook/bart-large",
    "facebook/bart-large-mnli",
    "facebook/bart-large-cnn",
    "facebook/bart-large-xsum",
    "yjernite/bart_eli5",
    # This is not exhaustive: see https://huggingface.co/models?filter=bart
]


[docs]class BartTokenizer(RobertaTokenizer): # merges and vocab same as Roberta max_model_input_sizes = {m: 1024 for m in _all_bart_models} pretrained_vocab_files_map = { "vocab_file": {m: vocab_url for m in _all_bart_models}, "merges_file": {m: merges_url for m in _all_bart_models}, }
[docs] def prepare_seq2seq_batch( self, src_texts: List[str], tgt_texts: Optional[List[str]] = None, max_length: Optional[int] = None, max_target_length: Optional[int] = None, padding: str = "longest", return_tensors: str = "None", truncation=True, **kwargs, ) -> BatchEncoding: r""" Prepare a batch that can be passed directly to an instance of :class:`~transformers.BartModel`. Args: src_texts: (:obj:`List[str]`): List of documents to summarize or source language texts. tgt_texts: (:obj:`List[str]`, `optional`): List of summaries or target language texts. max_length (:obj:`int`, `optional`): Controls the maximum length for encoder inputs (documents to summarize or source language texts). If left unset or set to :obj:`None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. max_target_length (:obj:`int`, `optional`): Controls the maximum length of decoder inputs (target language texts or summaries). If left unset or set to :obj:`None`, this will use the max_length value. padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`False`): Activates and controls padding. Accepts the following values: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). return_tensors (:obj:`str` or :class:`~transformers.tokenization_utils_base.TensorType`, `optional`, defaults to "pt"): If set, will return tensors instead of list of python integers. Acceptable values are: * :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects. * :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects. * :obj:`'np'`: Return Numpy :obj:`np.ndarray` objects. truncation (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.TruncationStrategy`, `optional`, defaults to :obj:`True`): Activates and controls truncation. Accepts the following values: * :obj:`True` or :obj:`'longest_first'`: Truncate to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. * :obj:`'only_first'`: Truncate to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. * :obj:`'only_second'`: Truncate to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. * :obj:`False` or :obj:`'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). **kwargs: Additional keyword arguments passed along to :obj:`self.__call__`. Returns: :class:`~transformers.BatchEncoding`: A :class:`~transformers.BatchEncoding` with the following fields: - **input_ids** -- List of token ids to be fed to the encoder. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model. - **labels** -- List of token ids for tgt_texts The full set of keys ``[input_ids, attention_mask, decoder_input_ids, decoder_attention_mask]``, will only be returned if tgt_texts is passed. Otherwise, input_ids, attention_mask will be the only keys. """ kwargs.pop("src_lang", None) kwargs.pop("tgt_lang", None) if max_length is None: max_length = self.model_max_length model_inputs: BatchEncoding = self( src_texts, add_special_tokens=True, return_tensors=return_tensors, max_length=max_length, padding=padding, truncation=truncation, **kwargs, ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: max_target_length = max_length labels = self( tgt_texts, add_special_tokens=True, return_tensors=return_tensors, padding=padding, max_length=max_target_length, truncation=truncation, **kwargs, )["input_ids"] model_inputs["labels"] = labels return model_inputs
class BartTokenizerFast(RobertaTokenizerFast): # merges and vocab same as Roberta max_model_input_sizes = {m: 1024 for m in _all_bart_models} pretrained_vocab_files_map = { "vocab_file": {m: vocab_url for m in _all_bart_models}, "merges_file": {m: merges_url for m in _all_bart_models}, } def prepare_seq2seq_batch( self, src_texts: List[str], tgt_texts: Optional[List[str]] = None, max_length: Optional[int] = None, max_target_length: Optional[int] = None, padding: str = "longest", return_tensors: str = "None", truncation=True, **kwargs, ) -> BatchEncoding: r""" Prepare a batch that can be passed directly to an instance of :class:`~transformers.BartModel`. Args: src_texts: (:obj:`List[str]`): List of documents to summarize or source language texts. tgt_texts: (:obj:`List[str]`, `optional`): List of summaries or target language texts. max_length (:obj:`int`, `optional`): Controls the maximum length for encoder inputs (documents to summarize or source language texts). If left unset or set to :obj:`None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. max_target_length (:obj:`int`, `optional`): Controls the maximum length of decoder inputs (target language texts or summaries). If left unset or set to :obj:`None`, this will use the max_length value. padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`False`): Activates and controls padding. Accepts the following values: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). return_tensors (:obj:`str` or :class:`~transformers.tokenization_utils_base.TensorType`, `optional`, defaults to "pt"): If set, will return tensors instead of list of python integers. Acceptable values are: * :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects. * :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects. * :obj:`'np'`: Return Numpy :obj:`np.ndarray` objects. truncation (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.TruncationStrategy`, `optional`, defaults to :obj:`True`): Activates and controls truncation. Accepts the following values: * :obj:`True` or :obj:`'longest_first'`: Truncate to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. * :obj:`'only_first'`: Truncate to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. * :obj:`'only_second'`: Truncate to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. * :obj:`False` or :obj:`'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). **kwargs: Additional keyword arguments passed along to :obj:`self.__call__`. Returns: :class:`~transformers.BatchEncoding`: A :class:`~transformers.BatchEncoding` with the following fields: - **input_ids** -- List of token ids to be fed to the encoder. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model. - **decoder_input_ids** -- List of token ids to be fed to the decoder. - **decoder_attention_mask** -- List of indices specifying which tokens should be attended to by the decoder. This does not include causal mask, which is built by the model. The full set of keys ``[input_ids, attention_mask, decoder_input_ids, decoder_attention_mask]``, will only be returned if tgt_texts is passed. Otherwise, input_ids, attention_mask will be the only keys. """ if max_length is None: max_length = self.model_max_length model_inputs: BatchEncoding = self( src_texts, add_special_tokens=True, return_tensors=return_tensors, max_length=max_length, padding=padding, truncation=truncation, **kwargs, ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: max_target_length = max_length labels = self( tgt_texts, add_special_tokens=True, return_tensors=return_tensors, padding=padding, max_length=max_target_length, truncation=truncation, **kwargs, )["input_ids"] model_inputs["labels"] = labels return model_inputs