OpenAI GPT2ΒΆ

OverviewΒΆ

OpenAI GPT-2 model was proposed in Language Models are Unsupervised Multitask Learners by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever. It’s a causal (unidirectional) transformer pretrained using language modeling on a very large corpus of ~40 GB of text data.

The abstract from the paper is the following:

GPT-2 is a large transformer-based language model with 1.5 billion parameters, trained on a dataset[1] of 8 million web pages. GPT-2 is trained with a simple objective: predict the next word, given all of the previous words within some text. The diversity of the dataset causes this simple goal to contain naturally occurring demonstrations of many tasks across diverse domains. GPT-2 is a direct scale-up of GPT, with more than 10X the parameters and trained on more than 10X the amount of data.

Tips:

  • GPT-2 is a model with absolute position embeddings so it’s usually advised to pad the inputs on the right rather than the left.

  • GPT-2 was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the next token in a sequence. Leveraging this feature allows GPT-2 to generate syntactically coherent text as it can be observed in the run_generation.py example script.

  • The PyTorch models can take the past as input, which is the previously computed key/value attention pairs. Using this past value prevents the model from re-computing pre-computed values in the context of text generation. See reusing the past in generative models for more information on the usage of this argument.

Write With Transformer is a webapp created and hosted by Hugging Face showcasing the generative capabilities of several models. GPT-2 is one of them and is available in five different sizes: small, medium, large, xl and a distilled version of the small checkpoint: distilgpt-2.

The original code can be found here.

GPT2ConfigΒΆ

class transformers.GPT2Config(vocab_size=50257, n_positions=1024, n_ctx=1024, n_embd=768, n_layer=12, n_head=12, n_inner=None, activation_function='gelu_new', resid_pdrop=0.1, embd_pdrop=0.1, attn_pdrop=0.1, layer_norm_epsilon=1e-05, initializer_range=0.02, summary_type='cls_index', summary_use_proj=True, summary_activation=None, summary_proj_to_labels=True, summary_first_dropout=0.1, bos_token_id=50256, eos_token_id=50256, **kwargs)[source]ΒΆ

This is the configuration class to store the configuration of a GPT2Model or a TFGPT2Model. It is used to instantiate a GPT-2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GPT-2 small architecture.

Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.

Parameters
  • vocab_size (int, optional, defaults to 50257) – Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the inputs_ids passed when calling GPT2Model or TFGPT2Model.

  • n_positions (int, optional, defaults to 1024) – The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).

  • n_ctx (int, optional, defaults to 1024) – Dimensionality of the causal mask (usually same as n_positions).

  • n_embd (int, optional, defaults to 768) – Dimensionality of the embeddings and hidden states.

  • n_layer (int, optional, defaults to 12) – Number of hidden layers in the Transformer encoder.

  • n_head (int, optional, defaults to 12) – Number of attention heads for each attention layer in the Transformer encoder.

  • n_inner (int, optional, defaults to None) – Dimensionality of the inner feed-forward layers. None will set it to 4 times n_embd

  • activation_function (str, optional, defaults to "gelu") – Activation function, to be selected in the list ["relu", "swish", "gelu", "tanh", "gelu_new"].

  • resid_pdrop (float, optional, defaults to 0.1) – The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

  • embd_pdrop (int, optional, defaults to 0.1) – The dropout ratio for the embeddings.

  • attn_pdrop (float, optional, defaults to 0.1) – The dropout ratio for the attention.

  • layer_norm_epsilon (float, optional, defaults to 1e-5) – The epsilon to use in the layer normalization layers

  • initializer_range (float, optional, defaults to 0.02) – The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

  • summary_type (string, optional, defaults to "cls_index") –

    Argument used when doing sequence summary, used in the models GPT2DoubleHeadsModel and TFGPT2DoubleHeadsModel.

    Has to be one of the following options:

    • "last": Take the last token hidden state (like XLNet).

    • "first": Take the first token hidden state (like BERT).

    • "mean": Take the mean of all tokens hidden states.

    • "cls_index": Supply a Tensor of classification token position (like GPT/GPT-2).

    • "attn": Not implemented now, use multi-head attention.

  • summary_use_proj (bool, optional, defaults to True) –

    Argument used when doing sequence summary, used in the models GPT2DoubleHeadsModel and TFGPT2DoubleHeadsModel.

    Whether or not to add a projection after the vector extraction.

  • summary_activation (str, optional) –

    Argument used when doing sequence summary. Used in for the multiple choice head in GPT2DoubleHeadsModel.

    Pass "tanh" for a tanh activation to the output, any other value will result in no activation.

  • summary_proj_to_labels (bool, optional, defaults to True) –

    Argument used when doing sequence summary, used in the models GPT2DoubleHeadsModel and TFGPT2DoubleHeadsModel.

    Whether the projection outputs should have config.num_labels or config.hidden_size classes.

  • summary_first_dropout (float, optional, defaults to 0.1) –

    Argument used when doing sequence summary, used in the models GPT2DoubleHeadsModel and TFGPT2DoubleHeadsModel.

    The dropout ratio to be used after the projection and activation.

Example:

>>> from transformers import GPT2Model, GPT2Config

>>> # Initializing a GPT2 configuration
>>> configuration = GPT2Config()

>>> # Initializing a model from the configuration
>>> model = GPT2Model(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

GPT2TokenizerΒΆ

class transformers.GPT2Tokenizer(vocab_file, merges_file, errors='replace', unk_token='<|endoftext|>', bos_token='<|endoftext|>', eos_token='<|endoftext|>', add_prefix_space=False, **kwargs)[source]ΒΆ

Construct a GPT-2 tokenizer. Based on byte-level Byte-Pair-Encoding.

This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not:

>>> from transformers import GPT2Tokenizer
>>> tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
>>> tokenizer("Hello world")['input_ids']
[15496, 995]
>>> tokenizer(" Hello world")['input_ids']
[18435, 995]

You can get around that behavior by passing add_prefix_space=True when instantiating this tokenizer or when you call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.

Note

When used with is_split_into_words=True, this tokenizer will add a space before each word (even the first one).

This tokenizer inherits from PreTrainedTokenizer which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.

Parameters
  • vocab_file (str) – Path to the vocabulary file.

  • merges_file (str) – Path to the merges file.

  • errors (str, optional, defaults to "replace") – Paradigm to follow when decoding bytes to UTF-8. See bytes.decode for more information.

  • unk_token (str, optional, defaults to <|endoftext|>) – The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.

  • bos_token (str, optional, defaults to <|endoftext|>) – The beginning of sequence token.

  • eos_token (str, optional, defaults to <|endoftext|>) – The end of sequence token.

  • add_prefix_space (bool, optional, defaults to False) – Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (GPT2 tokenizer detect beginning of words by the preceding space).

save_vocabulary(save_directory)[source]ΒΆ

Save the vocabulary and special tokens file to a directory.

Parameters

save_directory (str) – The directory in which to save the vocabulary.

Returns

Paths to the files saved.

Return type

Tuple(str)

GPT2TokenizerFastΒΆ

class transformers.GPT2TokenizerFast(vocab_file, merges_file, unk_token='<|endoftext|>', bos_token='<|endoftext|>', eos_token='<|endoftext|>', add_prefix_space=False, trim_offsets=True, **kwargs)[source]ΒΆ

Construct a β€œfast” GPT-2 tokenizer (backed by HuggingFace’s tokenizers library). Based on byte-level Byte-Pair-Encoding.

This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not:

>>> from transformers import GPT2TokenizerFast
>>> tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
>>> tokenizer("Hello world")['input_ids']
[15496, 995]
>>> tokenizer(" Hello world")['input_ids']
[18435, 995]

You can get around that behavior by passing add_prefix_space=True when instantiating this tokenizer or when you call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.

Note

When used with is_split_into_words=True, this tokenizer needs to be instantiated with add_prefix_space=True.

This tokenizer inherits from PreTrainedTokenizerFast which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.

Parameters
  • vocab_file (str) – Path to the vocabulary file.

  • merges_file (str) – Path to the merges file.

  • errors (str, optional, defaults to "replace") – Paradigm to follow when decoding bytes to UTF-8. See bytes.decode for more information.

  • unk_token (str, optional, defaults to <|endoftext|>) – The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.

  • bos_token (str, optional, defaults to <|endoftext|>) – The beginning of sequence token.

  • eos_token (str, optional, defaults to <|endoftext|>) – The end of sequence token.

  • add_prefix_space (bool, optional, defaults to False) – Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (GPT2 tokenizer detect beginning of words by the preceding space).

  • trim_offsets (bool, optional, defaults to True) – Whether or not the post-processing step should trim offsets to avoid including whitespaces.

GPT2 specific outputsΒΆ

class transformers.modeling_gpt2.GPT2DoubleHeadsModelOutput(loss: Optional[torch.FloatTensor] = None, mc_loss: Optional[torch.FloatTensor] = None, logits: torch.FloatTensor = None, mc_logits: torch.FloatTensor = None, past_key_values: Optional[List[torch.FloatTensor]] = None, hidden_states: Optional[Tuple[torch.FloatTensor]] = None, attentions: Optional[Tuple[torch.FloatTensor]] = None)[source]ΒΆ

Base class for outputs of models predicting if two sentences are consecutive or not.

Parameters
  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Language modeling loss.

  • mc_loss (torch.FloatTensor of shape (1,), optional, returned when mc_labels is provided) – Multiple choice classification loss.

  • logits (torch.FloatTensor of shape (batch_size, num_choices, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • mc_logits (torch.FloatTensor of shape (batch_size, num_choices)) – Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).

  • past_key_values (List[torch.FloatTensor], optional, returned when use_cache=True is passed or when config.use_cache=True) –

    List of torch.FloatTensor of length config.n_layers, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)).

    Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) –

    Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) –

    Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

class transformers.modeling_tf_gpt2.TFGPT2DoubleHeadsModelOutput(logits: tensorflow.python.framework.ops.Tensor = None, mc_logits: tensorflow.python.framework.ops.Tensor = None, past_key_values: Optional[List[tensorflow.python.framework.ops.Tensor]] = None, hidden_states: Optional[Tuple[tensorflow.python.framework.ops.Tensor]] = None, attentions: Optional[Tuple[tensorflow.python.framework.ops.Tensor]] = None)[source]ΒΆ

Base class for outputs of models predicting if two sentences are consecutive or not.

Parameters
  • logits (tf.Tensor of shape (batch_size, num_choices, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • mc_logits (tf.Tensor of shape (batch_size, num_choices)) – Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).

  • past_key_values (List[tf.Tensor], optional, returned when use_cache=True is passed or when config.use_cache=True) –

    List of tf.Tensor of length config.n_layers, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)).

    Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) –

    Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) –

    Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

GPT2ModelΒΆ

class transformers.GPT2Model(config)[source]ΒΆ

The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (GPT2Config) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs)[source]ΒΆ

The GPT2Model forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, input_ids_length)) –

    input_ids_length = sequence_length if past_key_values is None else past_key_values[0].shape[-2] (sequence_length of input past key value states). Indices of input sequence tokens in the vocabulary.

    If past_key_values is used, only input_ids that do not have their past calculated should be passed as input_ids.

    Indices can be obtained using GPT2Tokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • past_key_values (List[torch.FloatTensor] of length config.n_layers) – Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see past_key_values output below). Can be used to speed up sequential decoding. The input_ids which have their past given to this model should not be passed as input_ids as they have already been computed.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are maked.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, input_ids_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) –

    Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    If past_key_values is used, optionally only the last inputs_embeds have to be input (see past_key_values).

  • use_cache (bool, optional) – If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

Returns

A BaseModelOutputWithPast (if return_dict=True is passed or when config.return_dict=True) or a tuple of torch.FloatTensor comprising various elements depending on the configuration (GPT2Config) and inputs.

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) – Sequence of hidden-states at the output of the last layer of the model.

    If past_key_values is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size) is output.

  • past_key_values (List[torch.FloatTensor], optional, returned when use_cache=True is passed or when config.use_cache=True) – List of torch.FloatTensor of length config.n_layers, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)).

    Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

BaseModelOutputWithPast or tuple(torch.FloatTensor)

Example:

>>> from transformers import GPT2Tokenizer, GPT2Model
>>> import torch

>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
>>> model = GPT2Model.from_pretrained('gpt2', return_dict=True)

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

GPT2LMHeadModelΒΆ

class transformers.GPT2LMHeadModel(config)[source]ΒΆ

The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings).

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (GPT2Config) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs)[source]ΒΆ

The GPT2LMHeadModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, input_ids_length)) –

    input_ids_length = sequence_length if past_key_values is None else past_key_values[0].shape[-2] (sequence_length of input past key value states). Indices of input sequence tokens in the vocabulary.

    If past_key_values is used, only input_ids that do not have their past calculated should be passed as input_ids.

    Indices can be obtained using GPT2Tokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • past_key_values (List[torch.FloatTensor] of length config.n_layers) – Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see past_key_values output below). Can be used to speed up sequential decoding. The input_ids which have their past given to this model should not be passed as input_ids as they have already been computed.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are maked.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, input_ids_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) –

    Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    If past_key_values is used, optionally only the last inputs_embeds have to be input (see past_key_values).

  • use_cache (bool, optional) – If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) – Labels for language modeling. Note that the labels are shifted inside the model, i.e. you can set labels = input_ids Indices are selected in [-100, 0, ..., config.vocab_size] All labels set to -100 are ignored (masked), the loss is only computed for labels in [0, ..., config.vocab_size]

Returns

A CausalLMOutputWithPast (if return_dict=True is passed or when config.return_dict=True) or a tuple of torch.FloatTensor comprising various elements depending on the configuration (GPT2Config) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Language modeling loss (for next-token prediction).

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • past_key_values (List[torch.FloatTensor], optional, returned when use_cache=True is passed or when config.use_cache=True) – List of torch.FloatTensor of length config.n_layers, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)).

    Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

CausalLMOutputWithPast or tuple(torch.FloatTensor)

Example:

>>> import torch
>>> from transformers import GPT2Tokenizer, GPT2LMHeadModel

>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
>>> model = GPT2LMHeadModel.from_pretrained('gpt2', return_dict=True)

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs, labels=inputs["input_ids"])
>>> loss = outputs.loss
>>> logits = outputs.logits

GPT2DoubleHeadsModelΒΆ

class transformers.GPT2DoubleHeadsModel(config)[source]ΒΆ

The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the input embeddings, the classification head takes as input the input of a specified classification token index in the input sequence).

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (GPT2Config) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, mc_token_ids=None, labels=None, mc_labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs)[source]ΒΆ

The GPT2DoubleHeadsModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, input_ids_length)) –

    input_ids_length = sequence_length if past_key_values is None else past_key_values[0].shape[-2] (sequence_length of input past key value states). Indices of input sequence tokens in the vocabulary.

    If past_key_values is used, only input_ids that do not have their past calculated should be passed as input_ids.

    Indices can be obtained using GPT2Tokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • past_key_values (List[torch.FloatTensor] of length config.n_layers) – Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see past_key_values output below). Can be used to speed up sequential decoding. The input_ids which have their past given to this model should not be passed as input_ids as they have already been computed.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are maked.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, input_ids_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) –

    Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    If past_key_values is used, optionally only the last inputs_embeds have to be input (see past_key_values).

  • use_cache (bool, optional) – If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • mc_token_ids (torch.LongTensor of shape (batch_size, num_choices), optional, default to index of the last token of the input) – Index of the classification token in each input sequence. Selected in the range [0, input_ids.size(-1) - 1[.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) – Labels for language modeling. Note that the labels are shifted inside the model, i.e. you can set labels = input_ids Indices are selected in [-1, 0, ..., config.vocab_size] All labels set to -100 are ignored (masked), the loss is only computed for labels in [0, ..., config.vocab_size]

  • mc_labels (torch.LongTensor of shape (batch_size), optional) – Labels for computing the multiple choice classification loss. Indices should be in [0, ..., num_choices] where num_choices is the size of the second dimension of the input tensors. (see input_ids above)

  • kwargs (Dict[str, any], optional, defaults to {}) – Used to hide legacy arguments that have been deprecated.

Returns

A GPT2DoubleHeadsModelOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of torch.FloatTensor comprising various elements depending on the configuration (GPT2Config) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Language modeling loss.

  • mc_loss (torch.FloatTensor of shape (1,), optional, returned when mc_labels is provided) – Multiple choice classification loss.

  • logits (torch.FloatTensor of shape (batch_size, num_choices, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • mc_logits (torch.FloatTensor of shape (batch_size, num_choices)) – Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).

  • past_key_values (List[torch.FloatTensor], optional, returned when use_cache=True is passed or when config.use_cache=True) – List of torch.FloatTensor of length config.n_layers, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)).

    Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Example:

>>> import torch
>>> from transformers import GPT2Tokenizer, GPT2DoubleHeadsModel

>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
>>> model = GPT2DoubleHeadsModel.from_pretrained('gpt2, return_dict=True)

>>> # Add a [CLS] to the vocabulary (we should train it also!)
>>> num_added_tokens = tokenizer.add_special_tokens({'cls_token': '[CLS]'})

>>> embedding_layer = model.resize_token_embeddings(len(tokenizer))  # Update the model embeddings with the new vocabulary size

>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
>>> encoded_choices = [tokenizer.encode(s) for s in choices]
>>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]

>>> input_ids = torch.tensor(encoded_choices).unsqueeze(0)  # Batch size: 1, number of choices: 2
>>> mc_token_ids = torch.tensor([cls_token_location])  # Batch size: 1

>>> outputs = model(input_ids, mc_token_ids=mc_token_ids)
>>> lm_logits = outputs.lm_logits
>>> mc_logits = outputs.mc_logits

Return type

GPT2DoubleHeadsModelOutput or tuple(torch.FloatTensor)

TFGPT2ModelΒΆ

class transformers.TFGPT2Model(*args, **kwargs)[source]ΒΆ

The bare GPT2 Model transformer outputing raw hidden-states without any specific head on top.

This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit() method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

Parameters

config (GPT2Config) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

call(inputs, **kwargs)[source]ΒΆ

The TFGPT2Model forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (Numpy array or tf.Tensor of shape (batch_size, input_ids_length)) –

    input_ids_length = sequence_length if past is None else past[0].shape[-2] (sequence_length of input past key value states). Indices of input sequence tokens in the vocabulary.

    If past is used, only input IDs that do not have their past calculated should be passed as input_ids.

    Indices can be obtained using GPT2Tokenizer. See transformers.PreTrainedTokenizer.__call__() and transformers.PreTrainedTokenizer.encode() for details.

    What are input IDs?

  • past (List[tf.Tensor] of length config.n_layers) – Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see past output below). Can be used to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed.

  • attention_mask (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are maked.

    What are attention masks?

  • token_type_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (Numpy array or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • training (bool, optional, defaults to False) – Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

Returns

A TFBaseModelOutputWithPast (if return_dict=True is passed or when config.return_dict=True) or a tuple of tf.Tensor comprising various elements depending on the configuration (GPT2Config) and inputs.

  • last_hidden_state (tf.Tensor of shape (batch_size, sequence_length, hidden_size)) – Sequence of hidden-states at the output of the last layer of the model.

    If past_key_values is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size) is output.

  • past_key_values (List[tf.Tensor], optional, returned when use_cache=True is passed or when config.use_cache=True) – List of tf.Tensor of length config.n_layers, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)).

    Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

TFBaseModelOutputWithPast or tuple(tf.Tensor)

Example:

>>> from transformers import GPT2Tokenizer, TFGPT2Model
>>> import tensorflow as tf

>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
>>> model = TFGPT2Model.from_pretrained('gpt2')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

TFGPT2LMHeadModelΒΆ

class transformers.TFGPT2LMHeadModel(*args, **kwargs)[source]ΒΆ

The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings).

This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit() method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

Parameters

config (GPT2Config) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

call(inputs, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False)[source]ΒΆ

The TFGPT2LMHeadModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (Numpy array or tf.Tensor of shape (batch_size, input_ids_length)) –

    input_ids_length = sequence_length if past is None else past[0].shape[-2] (sequence_length of input past key value states). Indices of input sequence tokens in the vocabulary.

    If past is used, only input IDs that do not have their past calculated should be passed as input_ids.

    Indices can be obtained using GPT2Tokenizer. See transformers.PreTrainedTokenizer.__call__() and transformers.PreTrainedTokenizer.encode() for details.

    What are input IDs?

  • past (List[tf.Tensor] of length config.n_layers) – Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see past output below). Can be used to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed.

  • attention_mask (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are maked.

    What are attention masks?

  • token_type_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (Numpy array or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • training (bool, optional, defaults to False) – Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • labels (tf.Tensor of shape (batch_size, sequence_length), optional) – Labels for computing the cross entropy classification loss. Indices should be in [0, ..., config.vocab_size - 1].

Returns

A TFCausalLMOutputWithPast (if return_dict=True is passed or when config.return_dict=True) or a tuple of tf.Tensor comprising various elements depending on the configuration (GPT2Config) and inputs.

  • loss (tf.Tensor of shape (1,), optional, returned when labels is provided) – Language modeling loss (for next-token prediction).

  • logits (tf.Tensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • past_key_values (List[tf.Tensor], optional, returned when use_cache=True is passed or when config.use_cache=True) – List of tf.Tensor of length config.n_layers, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)).

    Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

TFCausalLMOutputWithPast or tuple(tf.Tensor)

Example:

>>> from transformers import GPT2Tokenizer, TFGPT2LMHeadModel
>>> import tensorflow as tf

>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
>>> model = TFGPT2LMHeadModel.from_pretrained('gpt2')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs[0]

TFGPT2DoubleHeadsModelΒΆ

class transformers.TFGPT2DoubleHeadsModel(*args, **kwargs)[source]ΒΆ

The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the input embeddings, the classification head takes as input the input of a specified classification token index in the input sequence).

This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit() method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

Parameters

config (GPT2Config) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

call(inputs, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, mc_token_ids=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False)[source]ΒΆ

The TFGPT2DoubleHeadsModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (Numpy array or tf.Tensor of shape (batch_size, input_ids_length)) –

    input_ids_length = sequence_length if past is None else past[0].shape[-2] (sequence_length of input past key value states). Indices of input sequence tokens in the vocabulary.

    If past is used, only input IDs that do not have their past calculated should be passed as input_ids.

    Indices can be obtained using GPT2Tokenizer. See transformers.PreTrainedTokenizer.__call__() and transformers.PreTrainedTokenizer.encode() for details.

    What are input IDs?

  • past (List[tf.Tensor] of length config.n_layers) – Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see past output below). Can be used to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed.

  • attention_mask (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are maked.

    What are attention masks?

  • token_type_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

    What are token type IDs?

  • position_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (Numpy array or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • training (bool, optional, defaults to False) – Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • mc_token_ids (tf.Tensor or Numpy array of shape (batch_size, num_choices), optional, default to index of the last token of the input) – Index of the classification token in each input sequence. Selected in the range [0, input_ids.size(-1) - 1[.

Returns

A TFGPT2DoubleHeadsModelOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of tf.Tensor comprising various elements depending on the configuration (GPT2Config) and inputs.

  • logits (tf.Tensor of shape (batch_size, num_choices, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • mc_logits (tf.Tensor of shape (batch_size, num_choices)) – Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).

  • past_key_values (List[tf.Tensor], optional, returned when use_cache=True is passed or when config.use_cache=True) – List of tf.Tensor of length config.n_layers, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)).

    Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Examples:

>>> import tensorflow as tf
>>> from transformers import GPT2Tokenizer, TFGPT2DoubleHeadsModel

>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
>>> model = TFGPT2DoubleHeadsModel.from_pretrained('gpt2')

>>> # Add a [CLS] to the vocabulary (we should train it also!)
>>> num_added_tokens = tokenizer.add_special_tokens({'cls_token': '[CLS]'})

>>> embedding_layer = model.resize_token_embeddings(len(tokenizer))  # Update the model embeddings with the new vocabulary size

>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
>>> encoded_choices = [tokenizer.encode(s) for s in choices]
>>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]

>>> input_ids = tf.constant(encoded_choices)[None, :]  # Batch size: 1, number of choices: 2
>>> mc_token_ids = tf.constant([cls_token_location])  # Batch size: 1

>>> outputs = model(input_ids, mc_token_ids=mc_token_ids)
>>> lm_prediction_scores, mc_prediction_scores = outputs[:2]

Return type

TFGPT2DoubleHeadsModelOutput or tuple(tf.Tensor)