Source code for transformers.modeling_encoder_decoder

# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Classes to support Encoder-Decoder architectures """


from typing import Optional

from .configuration_encoder_decoder import EncoderDecoderConfig
from .configuration_utils import PretrainedConfig
from .file_utils import add_start_docstrings, add_start_docstrings_to_callable, replace_return_docstrings
from .modeling_outputs import Seq2SeqLMOutput
from .modeling_utils import PreTrainedModel
from .utils import logging


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "EncoderDecoderConfig"

ENCODER_DECODER_START_DOCSTRING = r"""
    This class can be used to inialize a sequence-to-sequnece model with any pretrained autoencoding model as the
    encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via
    :meth:`~transformers.AutoModel.from_pretrained` function and the decoder is loaded via
    :meth:`~transformers.AutoModelForCausalLM.from_pretrained` function.
    Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream generative
    task, like summarization.

    The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation
    tasks was shown in `Leveraging Pre-trained Checkpoints for Sequence Generation Tasks
    <https://arxiv.org/abs/1907.12461>`__ by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi
    Zhou, Wei Li, Peter J. Liu.

    After such an Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models
    (see the examples for more information).

    This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
    methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
    pruning heads etc.)

    This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
    usage and behavior.

    Parameters:
        config (:class:`~transformers.T5Config`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

ENCODER_DECODER_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using :class:`~transformers.PreTrainedTokenizer`.
            See :meth:`transformers.PreTrainedTokenizer.encode` and
            :meth:`transformers.PreTrainedTokenizer.__call__` for details.

            `What are input IDs? <../glossary.html#input-ids>`__
        inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
            vectors than the model's internal embedding lookup matrix.
        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **maked**.

            `What are attention masks? <../glossary.html#attention-mask>`__
        encoder_outputs (:obj:`tuple(torch.FloatTensor)`, `optional`):
            This tuple must consist of (:obj:`last_hidden_state`, `optional`: :obj:`hidden_states`, `optional`: :obj:`attentions`)
            :obj:`last_hidden_state` (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`)
            is a tensor of hidden-states at the output of the last layer of the encoder.
            Used in the cross-attention of the decoder.
        decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
            Provide for sequence to sequence training to the decoder.
            Indices can be obtained using :class:`~transformers.PretrainedTokenizer`.
            See :meth:`transformers.PreTrainedTokenizer.encode` and
            :meth:`transformers.PreTrainedTokenizer.__call__` for details.
        decoder_attention_mask (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, tgt_seq_len)`, `optional`):
            Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
            also be used by default.
        decoder_inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, target_sequence_length, hidden_size)`, `optional`):
            Optionally, instead of passing :obj:`decoder_input_ids` you can choose to directly pass an embedded
            representation. This is useful if you want more control over how to convert :obj:`decoder_input_ids`
            indices into associated vectors than the model's internal embedding lookup matrix.
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Labels for computing the masked language modeling loss for the decoder.
            Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with
            labels in ``[0, ..., config.vocab_size]``
        return_dict (:obj:`bool`, `optional`):
            If set to ``True``, the model will return a :class:`~transformers.file_utils.Seq2SeqLMOutput` instead of a
            plain tuple.
        kwargs: (`optional`) Remaining dictionary of keyword arguments. Keyword arguments come in two flavors:
            - Without a prefix which will be input as ``**encoder_kwargs`` for the encoder forward function.
            - With a `decoder_` prefix which will be input as ``**decoder_kwargs`` for the decoder forward function.
"""


[docs]@add_start_docstrings(ENCODER_DECODER_START_DOCSTRING) class EncoderDecoderModel(PreTrainedModel): r""" :class:`~transformers.EncoderDecoder` is a generic model class that will be instantiated as a transformer architecture with one of the base model classes of the library as encoder and another one as decoder when created with the :meth`~transformers.AutoModel.from_pretrained` class method for the encoder and :meth`~transformers.AutoModelForCausalLM.from_pretrained` class method for the decoder. """ config_class = EncoderDecoderConfig base_model_prefix = "encoder_decoder" def __init__( self, config: Optional[PretrainedConfig] = None, encoder: Optional[PreTrainedModel] = None, decoder: Optional[PreTrainedModel] = None, ): assert config is not None or ( encoder is not None and decoder is not None ), "Either a configuration or an Encoder and a decoder has to be provided" if config is None: config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config) else: assert isinstance(config, self.config_class), "config: {} has to be of type {}".format( config, self.config_class ) # initialize with config super().__init__(config) if encoder is None: from .modeling_auto import AutoModel encoder = AutoModel.from_config(config.encoder) if decoder is None: from .modeling_auto import AutoModelForCausalLM decoder = AutoModelForCausalLM.from_config(config.decoder) self.encoder = encoder self.decoder = decoder assert ( self.encoder.get_output_embeddings() is None ), "The encoder {} should not have a LM Head. Please use a model without LM Head" # tie encoder, decoder weights if config set accordingly self.tie_weights() def tie_weights(self): # tie encoder & decoder if needed if self.config.tie_encoder_decoder: # tie encoder and decoder base model decoder_base_model_prefix = self.decoder.base_model_prefix self._tie_encoder_decoder_weights( self.encoder, self.decoder._modules[decoder_base_model_prefix], self.decoder.base_model_prefix ) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def get_input_embeddings(self): return self.encoder.get_input_embeddings() def get_output_embeddings(self): return self.decoder.get_output_embeddings() @classmethod def from_encoder_decoder_pretrained( cls, encoder_pretrained_model_name_or_path: str = None, decoder_pretrained_model_name_or_path: str = None, *model_args, **kwargs ) -> PreTrainedModel: r""" Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model checkpoints. The model is set in evaluation mode by default using :obj:`model.eval()` (Dropout modules are deactivated). To train the model, you need to first set it back in training mode with :obj:`model.train()`. Params: encoder_pretrained_model_name_or_path (:obj: `str`, `optional`): Information necessary to initiate the encoder. Can be either: - A string with the `shortcut name` of a pretrained model to load from cache or download, e.g., ``bert-base-uncased``. - A string with the `identifier name` of a pretrained model that was user-uploaded to our S3, e.g., ``dbmdz/bert-base-german-cased``. - A path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``. - A path or url to a `tensorflow index checkpoint file` (e.g, ``./tf_model/model.ckpt.index``). In this case, ``from_tf`` should be set to :obj:`True` and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. decoder_pretrained_model_name_or_path (:obj: `str`, `optional`, defaults to `None`): Information necessary to initiate the decoder. Can be either: - A string with the `shortcut name` of a pretrained model to load from cache or download, e.g., ``bert-base-uncased``. - A string with the `identifier name` of a pretrained model that was user-uploaded to our S3, e.g., ``dbmdz/bert-base-german-cased``. - A path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``. - A path or url to a `tensorflow index checkpoint file` (e.g, ``./tf_model/model.ckpt.index``). In this case, ``from_tf`` should be set to :obj:`True` and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. model_args (remaining positional arguments, `optional`): All remaning positional arguments will be passed to the underlying model's ``__init__`` method. kwargs (remaining dictionary of keyword arguments, `optional`): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., :obj:`output_attentions=True`). - To update the encoder configuration, use the prefix `encoder_` for each configuration parameter. - To update the decoder configuration, use the prefix `decoder_` for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a :obj:`config` is provided or automatically loaded. Example:: >>> from transformers import EncoderDecoderModel >>> # initialize a bert2bert from two pretrained BERT models. Note that the cross-attention layers will be randomly initialized >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained('bert-base-uncased', 'bert-base-uncased') >>> # saving model after fine-tuning >>> model.save_pretrained("./bert2bert") >>> # load fine-tuned model >>> model = EncoderDecoderModel.from_pretrained("./bert2bert") """ kwargs_encoder = { argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove encoder, decoder kwargs from kwargs for key in kwargs_encoder.keys(): del kwargs["encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. encoder = kwargs_encoder.pop("model", None) if encoder is None: assert ( encoder_pretrained_model_name_or_path is not None ), "If `model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has to be defined" from .modeling_auto import AutoModel if "config" not in kwargs_encoder: from .configuration_auto import AutoConfig encoder_config = AutoConfig.from_pretrained(encoder_pretrained_model_name_or_path) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_encoder["config"] = encoder_config encoder = AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder) decoder = kwargs_decoder.pop("model", None) if decoder is None: assert ( decoder_pretrained_model_name_or_path is not None ), "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has to be defined" from .modeling_auto import AutoModelForCausalLM if "config" not in kwargs_decoder: from .configuration_auto import AutoConfig decoder_config = AutoConfig.from_pretrained(decoder_pretrained_model_name_or_path) if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or decoder_config.add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a `decoder_config` to `.from_encoder_decoder_pretrained(...)`" ) decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) # instantiate config with corresponding kwargs config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) return cls(encoder=encoder, decoder=decoder, config=config)
[docs] @add_start_docstrings_to_callable(ENCODER_DECODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, inputs_embeds=None, attention_mask=None, encoder_outputs=None, decoder_input_ids=None, decoder_attention_mask=None, decoder_inputs_embeds=None, labels=None, return_dict=None, **kwargs, ): r""" Returns: Examples:: >>> from transformers import EncoderDecoderModel, BertTokenizer >>> import torch >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained('bert-base-uncased', 'bert-base-uncased') # initialize Bert2Bert from pre-trained checkpoints >>> # forward >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids=input_ids, decoder_input_ids=input_ids) >>> # training >>> outputs = model(input_ids=input_ids, decoder_input_ids=input_ids, labels=input_ids, return_dict=True) >>> loss, logits = outputs.loss, outputs.logits >>> # save and load from pretrained >>> model.save_pretrained("bert2bert") >>> model = EncoderDecoderModel.from_pretrained("bert2bert") >>> # generation >>> generated = model.generate(input_ids, decoder_start_token_id=model.config.decoder.pad_token_id) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, return_dict=return_dict, **kwargs_encoder, ) hidden_states = encoder_outputs[0] # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, inputs_embeds=decoder_inputs_embeds, attention_mask=decoder_attention_mask, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, labels=labels, return_dict=return_dict, **kwargs_decoder, ) # TODO(PVP): currently it is not possible to use `past` if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqLMOutput( loss=decoder_outputs.loss, logits=decoder_outputs.logits, past_key_values=None, # TODO(PVP) - need to implement cache for BERT, etc... before this works decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) return decoder_outputs + encoder_outputs
def prepare_inputs_for_generation(self, input_ids, past, attention_mask, encoder_outputs, **kwargs): decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids) decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None input_dict = { "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "decoder_input_ids": decoder_inputs["input_ids"], "encoder_outputs": encoder_outputs, } # Ideally all models should have a `use_cache` # leave following to ifs until all have it implemented if "use_cache" in decoder_inputs: input_dict["decoder_use_cache"] = decoder_inputs["use_cache"] if "past_key_values" in decoder_inputs: input_dict["past_key_values"] = decoder_inputs["past_key_values"] return input_dict def _reorder_cache(self, past, beam_idx): # apply decoder cache reordering here return self.decoder._reorder_cache(past, beam_idx)