Model upload and sharing¶
Starting with v2.2.2
, you can now upload and share your fine-tuned models with the community, using the CLI that’s built-in to the library.
First, create an account on https://huggingface.co/join. Optionally, join an existing organization or create a new one. Then:
transformers-cli login
# log in using the same credentials as on huggingface.co
Upload your model:
transformers-cli upload ./path/to/pretrained_model/
# ^^ Upload folder containing weights/tokenizer/config
# saved via `.save_pretrained()`
transformers-cli upload ./config.json [--filename folder/foobar.json]
# ^^ Upload a single file
# (you can optionally override its filename, which can be nested inside a folder)
If you want your model to be namespaced by your organization name rather than your username, add the following flag to any command:
--organization organization_name
Your model will then be accessible through its identifier, a concatenation of your username (or organization name) and the folder name above:
"username/pretrained_model"
# or if an org:
"organization_name/pretrained_model"
Please add a README.md model card to the repo under model_cards/
with: model description, training params (dataset, preprocessing, hardware used, hyperparameters), evaluation results, intended uses & limitations, etc.
Your model now has a page on huggingface.co/models 🔥
Anyone can load it from code:
tokenizer = AutoTokenizer.from_pretrained("namespace/pretrained_model")
model = AutoModel.from_pretrained("namespace/pretrained_model")
List all your files on S3:
transformers-cli s3 ls
You can also delete unneeded files:
transformers-cli s3 rm …