DistilBERT

The DistilBERT model was proposed in the blog post Smaller, faster, cheaper, lighter: Introducing DistilBERT, a distilled version of BERT, and the paper DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. DistilBERT is a small, fast, cheap and light Transformer model trained by distilling Bert base. It has 40% less parameters than bert-base-uncased, runs 60% faster while preserving over 95% of Bert’s performances as measured on the GLUE language understanding benchmark.

The abstract from the paper is the following:

As Transfer Learning from large-scale pre-trained models becomes more prevalent in Natural Language Processing (NLP), operating these large models in on-the-edge and/or under constrained computational training or inference budgets remains challenging. In this work, we propose a method to pre-train a smaller general-purpose language representation model, called DistilBERT, which can then be fine-tuned with good performances on a wide range of tasks like its larger counterparts. While most prior work investigated the use of distillation for building task-specific models, we leverage knowledge distillation during the pre-training phase and show that it is possible to reduce the size of a BERT model by 40%, while retaining 97% of its language understanding capabilities and being 60% faster. To leverage the inductive biases learned by larger models during pre-training, we introduce a triple loss combining language modeling, distillation and cosine-distance losses. Our smaller, faster and lighter model is cheaper to pre-train and we demonstrate its capabilities for on-device computations in a proof-of-concept experiment and a comparative on-device study.

Tips:

  • DistilBert doesn’t have token_type_ids, you don’t need to indicate which token belongs to which segment. Just separate your segments with the separation token tokenizer.sep_token (or [SEP])

  • DistilBert doesn’t have options to select the input positions (position_ids input). This could be added if necessary though, just let’s us know if you need this option.

DistilBertConfig

DistilBertTokenizer

DistilBertModel

DistilBertForMaskedLM

DistilBertForSequenceClassification

DistilBertForQuestionAnswering

TFDistilBertModel

TFDistilBertForMaskedLM

TFDistilBertForSequenceClassification

TFDistilBertForQuestionAnswering