# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Auto Model class. """
import logging
from collections import OrderedDict
from .configuration_auto import (
AlbertConfig,
AutoConfig,
BartConfig,
BertConfig,
CamembertConfig,
CTRLConfig,
DistilBertConfig,
ElectraConfig,
EncoderDecoderConfig,
FlaubertConfig,
GPT2Config,
LongformerConfig,
OpenAIGPTConfig,
ReformerConfig,
RobertaConfig,
T5Config,
TransfoXLConfig,
XLMConfig,
XLMRobertaConfig,
XLNetConfig,
)
from .configuration_marian import MarianConfig
from .configuration_utils import PretrainedConfig
from .modeling_albert import (
ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
AlbertForMaskedLM,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from .modeling_bart import (
BART_PRETRAINED_MODEL_ARCHIVE_MAP,
BartForConditionalGeneration,
BartForSequenceClassification,
BartModel,
)
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
BertForMaskedLM,
BertForMultipleChoice,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertModel,
)
from .modeling_camembert import (
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
CamembertForMaskedLM,
CamembertForMultipleChoice,
CamembertForSequenceClassification,
CamembertForTokenClassification,
CamembertModel,
)
from .modeling_ctrl import CTRL_PRETRAINED_MODEL_ARCHIVE_MAP, CTRLLMHeadModel, CTRLModel
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
)
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_MAP,
ElectraForMaskedLM,
ElectraForPreTraining,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
)
from .modeling_encoder_decoder import EncoderDecoderModel
from .modeling_flaubert import (
FLAUBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from .modeling_gpt2 import GPT2_PRETRAINED_MODEL_ARCHIVE_MAP, GPT2LMHeadModel, GPT2Model
from .modeling_longformer import LONGFORMER_PRETRAINED_MODEL_ARCHIVE_MAP, LongformerForMaskedLM, LongformerModel
from .modeling_marian import MarianMTModel
from .modeling_openai import OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP, OpenAIGPTLMHeadModel, OpenAIGPTModel
from .modeling_reformer import ReformerModel, ReformerModelWithLMHead
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
)
from .modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_MAP, T5ForConditionalGeneration, T5Model
from .modeling_transfo_xl import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP, TransfoXLLMHeadModel, TransfoXLModel
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_MAP,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from .modeling_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
XLMRobertaForMaskedLM,
XLMRobertaForMultipleChoice,
XLMRobertaForSequenceClassification,
XLMRobertaForTokenClassification,
XLMRobertaModel,
)
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP,
XLNetForMultipleChoice,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
)
logger = logging.getLogger(__name__)
ALL_PRETRAINED_MODEL_ARCHIVE_MAP = dict(
(key, value)
for pretrained_map in [
BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
BART_PRETRAINED_MODEL_ARCHIVE_MAP,
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP,
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP,
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP,
CTRL_PRETRAINED_MODEL_ARCHIVE_MAP,
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP,
XLM_PRETRAINED_MODEL_ARCHIVE_MAP,
ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
T5_PRETRAINED_MODEL_ARCHIVE_MAP,
FLAUBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
ELECTRA_PRETRAINED_MODEL_ARCHIVE_MAP,
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_MAP,
]
for key, value, in pretrained_map.items()
)
MODEL_MAPPING = OrderedDict(
[
(T5Config, T5Model),
(DistilBertConfig, DistilBertModel),
(AlbertConfig, AlbertModel),
(CamembertConfig, CamembertModel),
(XLMRobertaConfig, XLMRobertaModel),
(BartConfig, BartModel),
(LongformerConfig, LongformerModel),
(RobertaConfig, RobertaModel),
(BertConfig, BertModel),
(OpenAIGPTConfig, OpenAIGPTModel),
(GPT2Config, GPT2Model),
(TransfoXLConfig, TransfoXLModel),
(XLNetConfig, XLNetModel),
(FlaubertConfig, FlaubertModel),
(XLMConfig, XLMModel),
(CTRLConfig, CTRLModel),
(ElectraConfig, ElectraModel),
(ReformerConfig, ReformerModel),
]
)
MODEL_FOR_PRETRAINING_MAPPING = OrderedDict(
[
(T5Config, T5ForConditionalGeneration),
(DistilBertConfig, DistilBertForMaskedLM),
(AlbertConfig, AlbertForPreTraining),
(CamembertConfig, CamembertForMaskedLM),
(XLMRobertaConfig, XLMRobertaForMaskedLM),
(BartConfig, BartForConditionalGeneration),
(LongformerConfig, LongformerForMaskedLM),
(RobertaConfig, RobertaForMaskedLM),
(BertConfig, BertForPreTraining),
(OpenAIGPTConfig, OpenAIGPTLMHeadModel),
(GPT2Config, GPT2LMHeadModel),
(TransfoXLConfig, TransfoXLLMHeadModel),
(XLNetConfig, XLNetLMHeadModel),
(FlaubertConfig, FlaubertWithLMHeadModel),
(XLMConfig, XLMWithLMHeadModel),
(CTRLConfig, CTRLLMHeadModel),
(ElectraConfig, ElectraForPreTraining),
]
)
MODEL_WITH_LM_HEAD_MAPPING = OrderedDict(
[
(T5Config, T5ForConditionalGeneration),
(DistilBertConfig, DistilBertForMaskedLM),
(AlbertConfig, AlbertForMaskedLM),
(CamembertConfig, CamembertForMaskedLM),
(XLMRobertaConfig, XLMRobertaForMaskedLM),
(MarianConfig, MarianMTModel),
(BartConfig, BartForConditionalGeneration),
(LongformerConfig, LongformerForMaskedLM),
(RobertaConfig, RobertaForMaskedLM),
(BertConfig, BertForMaskedLM),
(OpenAIGPTConfig, OpenAIGPTLMHeadModel),
(GPT2Config, GPT2LMHeadModel),
(TransfoXLConfig, TransfoXLLMHeadModel),
(XLNetConfig, XLNetLMHeadModel),
(FlaubertConfig, FlaubertWithLMHeadModel),
(XLMConfig, XLMWithLMHeadModel),
(CTRLConfig, CTRLLMHeadModel),
(ElectraConfig, ElectraForMaskedLM),
(EncoderDecoderConfig, EncoderDecoderModel),
(ReformerConfig, ReformerModelWithLMHead),
]
)
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = OrderedDict(
[
(DistilBertConfig, DistilBertForSequenceClassification),
(AlbertConfig, AlbertForSequenceClassification),
(CamembertConfig, CamembertForSequenceClassification),
(XLMRobertaConfig, XLMRobertaForSequenceClassification),
(BartConfig, BartForSequenceClassification),
(RobertaConfig, RobertaForSequenceClassification),
(BertConfig, BertForSequenceClassification),
(XLNetConfig, XLNetForSequenceClassification),
(FlaubertConfig, FlaubertForSequenceClassification),
(XLMConfig, XLMForSequenceClassification),
(ElectraConfig, ElectraForSequenceClassification),
]
)
MODEL_FOR_QUESTION_ANSWERING_MAPPING = OrderedDict(
[
(DistilBertConfig, DistilBertForQuestionAnswering),
(AlbertConfig, AlbertForQuestionAnswering),
(RobertaConfig, RobertaForQuestionAnswering),
(BertConfig, BertForQuestionAnswering),
(XLNetConfig, XLNetForQuestionAnsweringSimple),
(FlaubertConfig, FlaubertForQuestionAnsweringSimple),
(XLMConfig, XLMForQuestionAnsweringSimple),
]
)
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = OrderedDict(
[
(DistilBertConfig, DistilBertForTokenClassification),
(CamembertConfig, CamembertForTokenClassification),
(XLMConfig, XLMForTokenClassification),
(XLMRobertaConfig, XLMRobertaForTokenClassification),
(RobertaConfig, RobertaForTokenClassification),
(BertConfig, BertForTokenClassification),
(XLNetConfig, XLNetForTokenClassification),
(AlbertConfig, AlbertForTokenClassification),
(ElectraConfig, ElectraForTokenClassification),
]
)
MODEL_FOR_MULTIPLE_CHOICE_MAPPING = OrderedDict(
[
(CamembertConfig, CamembertForMultipleChoice),
(XLMRobertaConfig, XLMRobertaForMultipleChoice),
(RobertaConfig, RobertaForMultipleChoice),
(BertConfig, BertForMultipleChoice),
(XLNetConfig, XLNetForMultipleChoice),
]
)
[docs]class AutoModel:
r"""
:class:`~transformers.AutoModel` is a generic model class
that will be instantiated as one of the base model classes of the library
when created with the `AutoModel.from_pretrained(pretrained_model_name_or_path)`
or the `AutoModel.from_config(config)` class methods.
This class cannot be instantiated using `__init__()` (throws an error).
"""
def __init__(self):
raise EnvironmentError(
"AutoModel is designed to be instantiated "
"using the `AutoModel.from_pretrained(pretrained_model_name_or_path)` or "
"`AutoModel.from_config(config)` methods."
)
[docs] @classmethod
def from_config(cls, config):
r""" Instantiates one of the base model classes of the library
from a configuration.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
- isInstance of `distilbert` configuration class: :class:`~transformers.DistilBertModel` (DistilBERT model)
- isInstance of `longformer` configuration class: :class:`~transformers.LongformerModel` (Longformer model)
- isInstance of `roberta` configuration class: :class:`~transformers.RobertaModel` (RoBERTa model)
- isInstance of `bert` configuration class: :class:`~transformers.BertModel` (Bert model)
- isInstance of `openai-gpt` configuration class: :class:`~transformers.OpenAIGPTModel` (OpenAI GPT model)
- isInstance of `gpt2` configuration class: :class:`~transformers.GPT2Model` (OpenAI GPT-2 model)
- isInstance of `ctrl` configuration class: :class:`~transformers.CTRLModel` (Salesforce CTRL model)
- isInstance of `transfo-xl` configuration class: :class:`~transformers.TransfoXLModel` (Transformer-XL model)
- isInstance of `xlnet` configuration class: :class:`~transformers.XLNetModel` (XLNet model)
- isInstance of `xlm` configuration class: :class:`~transformers.XLMModel` (XLM model)
- isInstance of `flaubert` configuration class: :class:`~transformers.FlaubertModel` (Flaubert model)
- isInstance of `electra` configuration class: :class:`~transformers.ElectraModel` (Electra model)
Examples::
config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache.
model = AutoModel.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')`
"""
for config_class, model_class in MODEL_MAPPING.items():
if isinstance(config, config_class):
return model_class(config)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_MAPPING.keys())
)
)
[docs] @classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r""" Instantiates one of the base model classes of the library
from a pre-trained model configuration.
The `from_pretrained()` method takes care of returning the correct model class instance
based on the `model_type` property of the config object, or when it's missing,
falling back to using pattern matching on the `pretrained_model_name_or_path` string.
The base model class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order):
- contains `t5`: :class:`~transformers.T5Model` (T5 model)
- contains `distilbert`: :class:`~transformers.DistilBertModel` (DistilBERT model)
- contains `albert`: :class:`~transformers.AlbertModel` (ALBERT model)
- contains `camembert`: :class:`~transformers.CamembertModel` (CamemBERT model)
- contains `xlm-roberta`: :class:`~transformers.XLMRobertaModel` (XLM-RoBERTa model)
- contains `longformer` :class:`~transformers.LongformerModel` (Longformer model)
- contains `roberta`: :class:`~transformers.RobertaModel` (RoBERTa model)
- contains `bert`: :class:`~transformers.BertModel` (Bert model)
- contains `openai-gpt`: :class:`~transformers.OpenAIGPTModel` (OpenAI GPT model)
- contains `gpt2`: :class:`~transformers.GPT2Model` (OpenAI GPT-2 model)
- contains `transfo-xl`: :class:`~transformers.TransfoXLModel` (Transformer-XL model)
- contains `xlnet`: :class:`~transformers.XLNetModel` (XLNet model)
- contains `xlm`: :class:`~transformers.XLMModel` (XLM model)
- contains `ctrl`: :class:`~transformers.CTRLModel` (Salesforce CTRL model)
- contains `flaubert`: :class:`~transformers.FlaubertModel` (Flaubert model)
- contains `electra`: :class:`~transformers.ElectraModel` (Electra model)
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
To train the model, you should first set it back in training mode with `model.train()`
Args:
pretrained_model_name_or_path: either:
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args: (`optional`) Sequence of positional arguments:
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
- the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
state_dict: (`optional`) dict:
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights.
In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
cache_dir: (`optional`) string:
Path to a directory in which a downloaded pre-trained model
configuration should be cached if the standard cache should not be used.
force_download: (`optional`) boolean, default False:
Force to (re-)download the model weights and configuration files and override the cached versions if they exists.
resume_download: (`optional`) boolean, default False:
Do not delete incompletely recieved file. Attempt to resume the download if such a file exists.
proxies: (`optional`) dict, default None:
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
The proxies are used on each request.
output_loading_info: (`optional`) boolean:
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
kwargs: (`optional`) Remaining dictionary of keyword arguments:
These arguments will be passed to the configuration and the model.
Examples::
model = AutoModel.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache.
model = AutoModel.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = AutoModel.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
config = kwargs.pop("config", None)
if not isinstance(config, PretrainedConfig):
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
for config_class, model_class in MODEL_MAPPING.items():
if isinstance(config, config_class):
return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_MAPPING.keys())
)
)
[docs]class AutoModelForPreTraining:
r"""
:class:`~transformers.AutoModelForPreTraining` is a generic model class
that will be instantiated as one of the model classes of the library -with the architecture used for pretraining this model– when created with the `AutoModelForPreTraining.from_pretrained(pretrained_model_name_or_path)`
class method.
This class cannot be instantiated using `__init__()` (throws an error).
"""
def __init__(self):
raise EnvironmentError(
"AutoModelForPreTraining is designed to be instantiated "
"using the `AutoModelForPreTraining.from_pretrained(pretrained_model_name_or_path)` or "
"`AutoModelForPreTraining.from_config(config)` methods."
)
[docs] @classmethod
def from_config(cls, config):
r""" Instantiates one of the base model classes of the library
from a configuration.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
- isInstance of `distilbert` configuration class: :class:`~transformers.DistilBertForMaskedLM` (DistilBERT model)
- isInstance of `longformer` configuration class: :class:`~transformers.LongformerForMaskedLM` (Longformer model)
- isInstance of `roberta` configuration class: :class:`~transformers.RobertaForMaskedLM` (RoBERTa model)
- isInstance of `bert` configuration class: :class:`~transformers.BertForPreTraining` (Bert model)
- isInstance of `openai-gpt` configuration class: :class:`~transformers.OpenAIGPTLMHeadModel` (OpenAI GPT model)
- isInstance of `gpt2` configuration class: :class:`~transformers.GPT2LMHeadModel` (OpenAI GPT-2 model)
- isInstance of `ctrl` configuration class: :class:`~transformers.CTRLLMHeadModel` (Salesforce CTRL model)
- isInstance of `transfo-xl` configuration class: :class:`~transformers.TransfoXLLMHeadModel` (Transformer-XL model)
- isInstance of `xlnet` configuration class: :class:`~transformers.XLNetLMHeadModel` (XLNet model)
- isInstance of `xlm` configuration class: :class:`~transformers.XLMWithLMHeadModel` (XLM model)
- isInstance of `flaubert` configuration class: :class:`~transformers.FlaubertWithLMHeadModel` (Flaubert model)
- isInstance of `electra` configuration class: :class:`~transformers.ElectraForPreTraining` (Electra model)
Examples::
config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache.
model = AutoModelForPreTraining.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')`
"""
for config_class, model_class in MODEL_FOR_PRETRAINING_MAPPING.items():
if isinstance(config, config_class):
return model_class(config)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_FOR_PRETRAINING_MAPPING.keys())
)
)
[docs] @classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r""" Instantiates one of the model classes of the library -with the architecture used for pretraining this model– from a pre-trained model configuration.
The `from_pretrained()` method takes care of returning the correct model class instance
based on the `model_type` property of the config object, or when it's missing,
falling back to using pattern matching on the `pretrained_model_name_or_path` string.
The model class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order):
- contains `t5`: :class:`~transformers.T5ModelWithLMHead` (T5 model)
- contains `distilbert`: :class:`~transformers.DistilBertForMaskedLM` (DistilBERT model)
- contains `albert`: :class:`~transformers.AlbertForMaskedLM` (ALBERT model)
- contains `camembert`: :class:`~transformers.CamembertForMaskedLM` (CamemBERT model)
- contains `xlm-roberta`: :class:`~transformers.XLMRobertaForMaskedLM` (XLM-RoBERTa model)
- contains `longformer`: :class:`~transformers.LongformerForMaskedLM` (Longformer model)
- contains `roberta`: :class:`~transformers.RobertaForMaskedLM` (RoBERTa model)
- contains `bert`: :class:`~transformers.BertForPreTraining` (Bert model)
- contains `openai-gpt`: :class:`~transformers.OpenAIGPTLMHeadModel` (OpenAI GPT model)
- contains `gpt2`: :class:`~transformers.GPT2LMHeadModel` (OpenAI GPT-2 model)
- contains `transfo-xl`: :class:`~transformers.TransfoXLLMHeadModel` (Transformer-XL model)
- contains `xlnet`: :class:`~transformers.XLNetLMHeadModel` (XLNet model)
- contains `xlm`: :class:`~transformers.XLMWithLMHeadModel` (XLM model)
- contains `ctrl`: :class:`~transformers.CTRLLMHeadModel` (Salesforce CTRL model)
- contains `flaubert`: :class:`~transformers.FlaubertWithLMHeadModel` (Flaubert model)
- contains `electra`: :class:`~transformers.ElectraForPreTraining` (Electra model)
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
To train the model, you should first set it back in training mode with `model.train()`
Args:
pretrained_model_name_or_path:
Either:
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args: (`optional`) Sequence of positional arguments:
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
- the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
state_dict: (`optional`) dict:
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights.
In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
cache_dir: (`optional`) string:
Path to a directory in which a downloaded pre-trained model
configuration should be cached if the standard cache should not be used.
force_download: (`optional`) boolean, default False:
Force to (re-)download the model weights and configuration files and override the cached versions if they exists.
resume_download: (`optional`) boolean, default False:
Do not delete incompletely received file. Attempt to resume the download if such a file exists.
proxies: (`optional`) dict, default None:
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
The proxies are used on each request.
output_loading_info: (`optional`) boolean:
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
kwargs: (`optional`) Remaining dictionary of keyword arguments:
These arguments will be passed to the configuration and the model.
Examples::
model = AutoModelForPreTraining.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache.
model = AutoModelForPreTraining.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = AutoModelForPreTraining.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
config = kwargs.pop("config", None)
if not isinstance(config, PretrainedConfig):
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
for config_class, model_class in MODEL_FOR_PRETRAINING_MAPPING.items():
if isinstance(config, config_class):
return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_FOR_PRETRAINING_MAPPING.keys())
)
)
[docs]class AutoModelWithLMHead:
r"""
:class:`~transformers.AutoModelWithLMHead` is a generic model class
that will be instantiated as one of the language modeling model classes of the library
when created with the `AutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)`
class method.
This class cannot be instantiated using `__init__()` (throws an error).
"""
def __init__(self):
raise EnvironmentError(
"AutoModelWithLMHead is designed to be instantiated "
"using the `AutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)` or "
"`AutoModelWithLMHead.from_config(config)` methods."
)
[docs] @classmethod
def from_config(cls, config):
r""" Instantiates one of the base model classes of the library
from a configuration.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
- isInstance of `distilbert` configuration class: :class:`~transformers.DistilBertForMaskedLM` (DistilBERT model)
- isInstance of `longformer` configuration class: :class:`~transformers.LongformerForMaskedLM` (Longformer model)
- isInstance of `roberta` configuration class: :class:`~transformers.RobertaForMaskedLM` (RoBERTa model)
- isInstance of `bert` configuration class: :class:`~transformers.BertForMaskedLM` (Bert model)
- isInstance of `openai-gpt` configuration class: :class:`~transformers.OpenAIGPTLMHeadModel` (OpenAI GPT model)
- isInstance of `gpt2` configuration class: :class:`~transformers.GPT2LMHeadModel` (OpenAI GPT-2 model)
- isInstance of `ctrl` configuration class: :class:`~transformers.CTRLLMHeadModel` (Salesforce CTRL model)
- isInstance of `transfo-xl` configuration class: :class:`~transformers.TransfoXLLMHeadModel` (Transformer-XL model)
- isInstance of `xlnet` configuration class: :class:`~transformers.XLNetLMHeadModel` (XLNet model)
- isInstance of `xlm` configuration class: :class:`~transformers.XLMWithLMHeadModel` (XLM model)
- isInstance of `flaubert` configuration class: :class:`~transformers.FlaubertWithLMHeadModel` (Flaubert model)
- isInstance of `electra` configuration class: :class:`~transformers.ElectraForMaskedLM` (Electra model)
Examples::
config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache.
model = AutoModelWithLMHead.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')`
"""
for config_class, model_class in MODEL_WITH_LM_HEAD_MAPPING.items():
if isinstance(config, config_class):
return model_class(config)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_WITH_LM_HEAD_MAPPING.keys())
)
)
[docs] @classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r""" Instantiates one of the language modeling model classes of the library
from a pre-trained model configuration.
The `from_pretrained()` method takes care of returning the correct model class instance
based on the `model_type` property of the config object, or when it's missing,
falling back to using pattern matching on the `pretrained_model_name_or_path` string.
The model class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order):
- contains `t5`: :class:`~transformers.T5ModelWithLMHead` (T5 model)
- contains `distilbert`: :class:`~transformers.DistilBertForMaskedLM` (DistilBERT model)
- contains `albert`: :class:`~transformers.AlbertForMaskedLM` (ALBERT model)
- contains `camembert`: :class:`~transformers.CamembertForMaskedLM` (CamemBERT model)
- contains `xlm-roberta`: :class:`~transformers.XLMRobertaForMaskedLM` (XLM-RoBERTa model)
- contains `longformer`: :class:`~transformers.LongformerForMaskedLM` (Longformer model)
- contains `roberta`: :class:`~transformers.RobertaForMaskedLM` (RoBERTa model)
- contains `bert`: :class:`~transformers.BertForMaskedLM` (Bert model)
- contains `openai-gpt`: :class:`~transformers.OpenAIGPTLMHeadModel` (OpenAI GPT model)
- contains `gpt2`: :class:`~transformers.GPT2LMHeadModel` (OpenAI GPT-2 model)
- contains `transfo-xl`: :class:`~transformers.TransfoXLLMHeadModel` (Transformer-XL model)
- contains `xlnet`: :class:`~transformers.XLNetLMHeadModel` (XLNet model)
- contains `xlm`: :class:`~transformers.XLMWithLMHeadModel` (XLM model)
- contains `ctrl`: :class:`~transformers.CTRLLMHeadModel` (Salesforce CTRL model)
- contains `flaubert`: :class:`~transformers.FlaubertWithLMHeadModel` (Flaubert model)
- contains `electra`: :class:`~transformers.ElectraForMaskedLM` (Electra model)
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
To train the model, you should first set it back in training mode with `model.train()`
Args:
pretrained_model_name_or_path:
Either:
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args: (`optional`) Sequence of positional arguments:
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
- the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
state_dict: (`optional`) dict:
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights.
In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
cache_dir: (`optional`) string:
Path to a directory in which a downloaded pre-trained model
configuration should be cached if the standard cache should not be used.
force_download: (`optional`) boolean, default False:
Force to (re-)download the model weights and configuration files and override the cached versions if they exists.
resume_download: (`optional`) boolean, default False:
Do not delete incompletely received file. Attempt to resume the download if such a file exists.
proxies: (`optional`) dict, default None:
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
The proxies are used on each request.
output_loading_info: (`optional`) boolean:
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
kwargs: (`optional`) Remaining dictionary of keyword arguments:
These arguments will be passed to the configuration and the model.
Examples::
model = AutoModelWithLMHead.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache.
model = AutoModelWithLMHead.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = AutoModelWithLMHead.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
config = kwargs.pop("config", None)
if not isinstance(config, PretrainedConfig):
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
for config_class, model_class in MODEL_WITH_LM_HEAD_MAPPING.items():
if isinstance(config, config_class):
return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__, cls.__name__, ", ".join(c.__name__ for c in MODEL_WITH_LM_HEAD_MAPPING.keys())
)
)
[docs]class AutoModelForSequenceClassification:
r"""
:class:`~transformers.AutoModelForSequenceClassification` is a generic model class
that will be instantiated as one of the sequence classification model classes of the library
when created with the `AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path)`
class method.
This class cannot be instantiated using `__init__()` (throws an error).
"""
def __init__(self):
raise EnvironmentError(
"AutoModelForSequenceClassification is designed to be instantiated "
"using the `AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path)` or "
"`AutoModelForSequenceClassification.from_config(config)` methods."
)
[docs] @classmethod
def from_config(cls, config):
r""" Instantiates one of the base model classes of the library
from a configuration.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
- isInstance of `distilbert` configuration class: :class:`~transformers.DistilBertForSequenceClassification` (DistilBERT model)
- isInstance of `albert` configuration class: :class:`~transformers.AlbertForSequenceClassification` (ALBERT model)
- isInstance of `camembert` configuration class: :class:`~transformers.CamembertForSequenceClassification` (CamemBERT model)
- isInstance of `xlm roberta` configuration class: :class:`~transformers.XLMRobertaForSequenceClassification` (XLM-RoBERTa model)
- isInstance of `roberta` configuration class: :class:`~transformers.RobertaForSequenceClassification` (RoBERTa model)
- isInstance of `bert` configuration class: :class:`~transformers.BertForSequenceClassification` (Bert model)
- isInstance of `xlnet` configuration class: :class:`~transformers.XLNetForSequenceClassification` (XLNet model)
- isInstance of `xlm` configuration class: :class:`~transformers.XLMForSequenceClassification` (XLM model)
- isInstance of `flaubert` configuration class: :class:`~transformers.FlaubertForSequenceClassification` (Flaubert model)
Examples::
config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache.
model = AutoModelForSequenceClassification.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')`
"""
for config_class, model_class in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.items():
if isinstance(config, config_class):
return model_class(config)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__,
cls.__name__,
", ".join(c.__name__ for c in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.keys()),
)
)
[docs] @classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r""" Instantiates one of the sequence classification model classes of the library
from a pre-trained model configuration.
The `from_pretrained()` method takes care of returning the correct model class instance
based on the `model_type` property of the config object, or when it's missing,
falling back to using pattern matching on the `pretrained_model_name_or_path` string.
The model class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order):
- contains `distilbert`: :class:`~transformers.DistilBertForSequenceClassification` (DistilBERT model)
- contains `albert`: :class:`~transformers.AlbertForSequenceClassification` (ALBERT model)
- contains `camembert`: :class:`~transformers.CamembertForSequenceClassification` (CamemBERT model)
- contains `xlm-roberta`: :class:`~transformers.XLMRobertaForSequenceClassification` (XLM-RoBERTa model)
- contains `roberta`: :class:`~transformers.RobertaForSequenceClassification` (RoBERTa model)
- contains `bert`: :class:`~transformers.BertForSequenceClassification` (Bert model)
- contains `xlnet`: :class:`~transformers.XLNetForSequenceClassification` (XLNet model)
- contains `flaubert`: :class:`~transformers.FlaubertForSequenceClassification` (Flaubert model)
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
To train the model, you should first set it back in training mode with `model.train()`
Args:
pretrained_model_name_or_path: either:
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args: (`optional`) Sequence of positional arguments:
All remaining positional arguments will be passed to the underlying model's ``__init__`` method
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
- the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
state_dict: (`optional`) dict:
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights.
In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
cache_dir: (`optional`) string:
Path to a directory in which a downloaded pre-trained model
configuration should be cached if the standard cache should not be used.
force_download: (`optional`) boolean, default False:
Force to (re-)download the model weights and configuration files and override the cached versions if they exists.
resume_download: (`optional`) boolean, default False:
Do not delete incompletely recieved file. Attempt to resume the download if such a file exists.
proxies: (`optional`) dict, default None:
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
The proxies are used on each request.
output_loading_info: (`optional`) boolean:
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
kwargs: (`optional`) Remaining dictionary of keyword arguments:
These arguments will be passed to the configuration and the model.
Examples::
model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache.
model = AutoModelForSequenceClassification.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = AutoModelForSequenceClassification.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
config = kwargs.pop("config", None)
if not isinstance(config, PretrainedConfig):
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
for config_class, model_class in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.items():
if isinstance(config, config_class):
return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__,
cls.__name__,
", ".join(c.__name__ for c in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.keys()),
)
)
[docs]class AutoModelForQuestionAnswering:
r"""
:class:`~transformers.AutoModelForQuestionAnswering` is a generic model class
that will be instantiated as one of the question answering model classes of the library
when created with the `AutoModelForQuestionAnswering.from_pretrained(pretrained_model_name_or_path)`
class method.
This class cannot be instantiated using `__init__()` (throws an error).
"""
def __init__(self):
raise EnvironmentError(
"AutoModelForQuestionAnswering is designed to be instantiated "
"using the `AutoModelForQuestionAnswering.from_pretrained(pretrained_model_name_or_path)` or "
"`AutoModelForQuestionAnswering.from_config(config)` methods."
)
[docs] @classmethod
def from_config(cls, config):
r""" Instantiates one of the base model classes of the library
from a configuration.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
- isInstance of `distilbert` configuration class: :class:`~transformers.DistilBertForQuestionAnswering` (DistilBERT model)
- isInstance of `albert` configuration class: :class:`~transformers.AlbertForQuestionAnswering` (ALBERT model)
- isInstance of `bert` configuration class: :class:`~transformers.BertModelForQuestionAnswering` (Bert model)
- isInstance of `xlnet` configuration class: :class:`~transformers.XLNetForQuestionAnswering` (XLNet model)
- isInstance of `xlm` configuration class: :class:`~transformers.XLMForQuestionAnswering` (XLM model)
- isInstance of `flaubert` configuration class: :class:`~transformers.FlaubertForQuestionAnswering` (XLM model)
Examples::
config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache.
model = AutoModelForQuestionAnswering.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')`
"""
for config_class, model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.items():
if isinstance(config, config_class):
return model_class(config)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__,
cls.__name__,
", ".join(c.__name__ for c in MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()),
)
)
[docs] @classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r""" Instantiates one of the question answering model classes of the library
from a pre-trained model configuration.
The `from_pretrained()` method takes care of returning the correct model class instance
based on the `model_type` property of the config object, or when it's missing,
falling back to using pattern matching on the `pretrained_model_name_or_path` string.
The model class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order):
- contains `distilbert`: :class:`~transformers.DistilBertForQuestionAnswering` (DistilBERT model)
- contains `albert`: :class:`~transformers.AlbertForQuestionAnswering` (ALBERT model)
- contains `bert`: :class:`~transformers.BertForQuestionAnswering` (Bert model)
- contains `xlnet`: :class:`~transformers.XLNetForQuestionAnswering` (XLNet model)
- contains `xlm`: :class:`~transformers.XLMForQuestionAnswering` (XLM model)
- contains `flaubert`: :class:`~transformers.FlaubertForQuestionAnswering` (XLM model)
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
To train the model, you should first set it back in training mode with `model.train()`
Args:
pretrained_model_name_or_path: either:
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args: (`optional`) Sequence of positional arguments:
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
- the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
state_dict: (`optional`) dict:
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights.
In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
cache_dir: (`optional`) string:
Path to a directory in which a downloaded pre-trained model
configuration should be cached if the standard cache should not be used.
force_download: (`optional`) boolean, default False:
Force to (re-)download the model weights and configuration files and override the cached versions if they exists.
proxies: (`optional`) dict, default None:
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
The proxies are used on each request.
output_loading_info: (`optional`) boolean:
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
kwargs: (`optional`) Remaining dictionary of keyword arguments:
These arguments will be passed to the configuration and the model.
Examples::
model = AutoModelForQuestionAnswering.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache.
model = AutoModelForQuestionAnswering.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = AutoModelForQuestionAnswering.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
config = kwargs.pop("config", None)
if not isinstance(config, PretrainedConfig):
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
for config_class, model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.items():
if isinstance(config, config_class):
return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__,
cls.__name__,
", ".join(c.__name__ for c in MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()),
)
)
[docs]class AutoModelForTokenClassification:
r"""
:class:`~transformers.AutoModelForTokenClassification` is a generic model class
that will be instantiated as one of the token classification model classes of the library
when created with the `AutoModelForTokenClassification.from_pretrained(pretrained_model_name_or_path)`
class method.
This class cannot be instantiated using `__init__()` (throws an error).
"""
def __init__(self):
raise EnvironmentError(
"AutoModelForTokenClassification is designed to be instantiated "
"using the `AutoModelForTokenClassification.from_pretrained(pretrained_model_name_or_path)` or "
"`AutoModelForTokenClassification.from_config(config)` methods."
)
[docs] @classmethod
def from_config(cls, config):
r""" Instantiates one of the base model classes of the library
from a configuration.
Args:
config (:class:`~transformers.PretrainedConfig`):
The model class to instantiate is selected based on the configuration class:
- isInstance of `distilbert` configuration class: :class:`~transformers.DistilBertModelForTokenClassification` (DistilBERT model)
- isInstance of `xlm` configuration class: :class:`~transformers.XLMForTokenClassification` (XLM model)
- isInstance of `xlm roberta` configuration class: :class:`~transformers.XLMRobertaModelForTokenClassification` (XLMRoberta model)
- isInstance of `bert` configuration class: :class:`~transformers.BertModelForTokenClassification` (Bert model)
- isInstance of `albert` configuration class: :class:`~transformers.AlbertForTokenClassification` (AlBert model)
- isInstance of `xlnet` configuration class: :class:`~transformers.XLNetModelForTokenClassification` (XLNet model)
- isInstance of `camembert` configuration class: :class:`~transformers.CamembertModelForTokenClassification` (Camembert model)
- isInstance of `roberta` configuration class: :class:`~transformers.RobertaModelForTokenClassification` (Roberta model)
- isInstance of `electra` configuration class: :class:`~transformers.ElectraForTokenClassification` (Electra model)
Examples::
config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache.
model = AutoModelForTokenClassification.from_config(config) # E.g. model was saved using `save_pretrained('./test/saved_model/')`
"""
for config_class, model_class in MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items():
if isinstance(config, config_class):
return model_class(config)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__,
cls.__name__,
", ".join(c.__name__ for c in MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.keys()),
)
)
[docs] @classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r""" Instantiates one of the question answering model classes of the library
from a pre-trained model configuration.
The `from_pretrained()` method takes care of returning the correct model class instance
based on the `model_type` property of the config object, or when it's missing,
falling back to using pattern matching on the `pretrained_model_name_or_path` string.
The model class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order):
- contains `distilbert`: :class:`~transformers.DistilBertForTokenClassification` (DistilBERT model)
- contains `xlm`: :class:`~transformers.XLMForTokenClassification` (XLM model)
- contains `xlm-roberta`: :class:`~transformers.XLMRobertaForTokenClassification` (XLM-RoBERTa?Para model)
- contains `camembert`: :class:`~transformers.CamembertForTokenClassification` (Camembert model)
- contains `bert`: :class:`~transformers.BertForTokenClassification` (Bert model)
- contains `xlnet`: :class:`~transformers.XLNetForTokenClassification` (XLNet model)
- contains `roberta`: :class:`~transformers.RobertaForTokenClassification` (Roberta model)
- contains `electra`: :class:`~transformers.ElectraForTokenClassification` (Electra model)
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
To train the model, you should first set it back in training mode with `model.train()`
Args:
pretrained_model_name_or_path:
Either:
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args: (`optional`) Sequence of positional arguments:
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
- the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
state_dict: (`optional`) dict:
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights.
In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
cache_dir: (`optional`) string:
Path to a directory in which a downloaded pre-trained model
configuration should be cached if the standard cache should not be used.
force_download: (`optional`) boolean, default False:
Force to (re-)download the model weights and configuration files and override the cached versions if they exists.
proxies: (`optional`) dict, default None:
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
The proxies are used on each request.
output_loading_info: (`optional`) boolean:
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
kwargs: (`optional`) Remaining dictionary of keyword arguments:
These arguments will be passed to the configuration and the model.
Examples::
model = AutoModelForTokenClassification.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache.
model = AutoModelForTokenClassification.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = AutoModelForTokenClassification.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
config = kwargs.pop("config", None)
if not isinstance(config, PretrainedConfig):
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
for config_class, model_class in MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items():
if isinstance(config, config_class):
return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__,
cls.__name__,
", ".join(c.__name__ for c in MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.keys()),
)
)
class AutoModelForMultipleChoice:
r"""
:class:`~transformers.AutoModelForMultipleChoice` is a generic model class
that will be instantiated as one of the multiple choice model classes of the library
when created with the `AutoModelForMultipleChoice.from_pretrained(pretrained_model_name_or_path)`
class method.
This class cannot be instantiated using `__init__()` (throws an error).
"""
def __init__(self):
raise EnvironmentError(
"AutoModelForMultipleChoice is designed to be instantiated "
"using the `AutoModelForMultipleChoice.from_pretrained(pretrained_model_name_or_path)` or "
"`AutoModelForMultipleChoice.from_config(config)` methods."
)
@classmethod
def from_config(cls, config):
for config_class, model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.items():
if isinstance(config, config_class):
return model_class(config)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__,
cls.__name__,
", ".join(c.__name__ for c in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.keys()),
)
)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
config = kwargs.pop("config", None)
if not isinstance(config, PretrainedConfig):
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
for config_class, model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.items():
if isinstance(config, config_class):
return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)
raise ValueError(
"Unrecognized configuration class {} for this kind of AutoModel: {}.\n"
"Model type should be one of {}.".format(
config.__class__,
cls.__name__,
", ".join(c.__name__ for c in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.keys()),
)
)