""" The gradio demo server for chatting with a single model. """ import argparse from collections import defaultdict import datetime import json import os import random import time import uuid import gradio as gr import requests from fastchat.conversation import SeparatorStyle from fastchat.constants import ( LOGDIR, WORKER_API_TIMEOUT, ErrorCode, MODERATION_MSG, CONVERSATION_LIMIT_MSG, SERVER_ERROR_MSG, INPUT_CHAR_LEN_LIMIT, CONVERSATION_TURN_LIMIT, SESSION_EXPIRATION_TIME, ) from fastchat.model.model_adapter import get_conversation_template from fastchat.conversation import get_conv_template from fastchat.model.model_registry import get_model_info, model_info from fastchat.serve.api_provider import ( anthropic_api_stream_iter, openai_api_stream_iter, palm_api_stream_iter, init_palm_chat, ) from fastchat.utils import ( build_logger, moderation_filter, get_window_url_params_js, get_window_url_params_with_tos_js, parse_gradio_auth_creds, ) CONV_TEMPLATE = '' logger = build_logger("gradio_web_server", "gradio_web_server.log") headers = {"User-Agent": "FastChat Client"} no_change_btn = gr.Button.update() enable_btn = gr.Button.update(interactive=True, visible=True) disable_btn = gr.Button.update(interactive=False) invisible_btn = gr.Button.update(interactive=False, visible=False) controller_url = None enable_moderation = False acknowledgment_md = """ ### Acknowledgment

We thank Kaggle, MBZUAI, AnyScale, and HuggingFace for their sponsorship.

Image 1 Image 2 Image 3 Image 4
""" ip_expiration_dict = defaultdict(lambda: 0) # Information about custom OpenAI compatible API models. # JSON file format: # { # "vicuna-7b": { # "model_name": "vicuna-7b-v1.5", # "api_base": "http://8.8.8.55:5555/v1", # "api_key": "password" # }, # } openai_compatible_models_info = {} class State: def __init__(self, model_name): # if model_name=='checkpoint-800': # self.conv = get_conv_template(CONV_TEMPLATE) # elif model_name=='MiniCPM-2B-sft-bf16': ret = requests.post( controller_url + "/get_worker_address", json={"model": model_name} ) worker_addr = ret.json()["address"] conv_name = requests.post( worker_addr + "/worker_get_conv_template", ).json()['conv']['name'] self.conv = get_conv_template(conv_name) # self.conv = get_conv_template('minicpm') # print(self.conv) # self.conv = get_conversation_template(model_name) self.conv_id = uuid.uuid4().hex self.skip_next = False self.model_name = model_name if model_name == "palm-2": # According to release note, "chat-bison@001" is PaLM 2 for chat. # https://cloud.google.com/vertex-ai/docs/release-notes#May_10_2023 self.palm_chat = init_palm_chat("chat-bison@001") def to_gradio_chatbot(self): return self.conv.to_gradio_chatbot() def dict(self): base = self.conv.dict() base.update( { "conv_id": self.conv_id, "model_name": self.model_name, } ) return base def set_global_vars(controller_url_, enable_moderation_): global controller_url, enable_moderation controller_url = controller_url_ enable_moderation = enable_moderation_ def get_conv_log_filename(): t = datetime.datetime.now() name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json") return name def get_model_list( controller_url, register_openai_compatible_models, add_chatgpt, add_claude, add_palm ): if controller_url: ret = requests.post(controller_url + "/refresh_all_workers") assert ret.status_code == 200 ret = requests.post(controller_url + "/list_models") # ret = requests.post(controller_url + "/get_worker_address") # ret = requests.post(controller_url + "/worker_get_status") models = ret.json()["models"] else: models = [] # Add API providers if register_openai_compatible_models: global openai_compatible_models_info openai_compatible_models_info = json.load( open(register_openai_compatible_models) ) models += list(openai_compatible_models_info.keys()) if add_chatgpt: models += ["gpt-3.5-turbo", "gpt-4", "gpt-4-turbo", "gpt-3.5-turbo-1106"] if add_claude: models += ["claude-2", "claude-instant-1"] if add_palm: models += ["palm-2"] models = list(set(models)) if "deluxe-chat-v1" in models: del models[models.index("deluxe-chat-v1")] if "deluxe-chat-v1.1" in models: del models[models.index("deluxe-chat-v1.1")] priority = {k: f"___{i:02d}" for i, k in enumerate(model_info)} models.sort(key=lambda x: priority.get(x, x)) logger.info(f"Models: {models}") return models def load_demo_single(models, url_params): selected_model = models[0] if len(models) > 0 else "" if "model" in url_params: model = url_params["model"] if model in models: selected_model = model dropdown_update = gr.Dropdown.update( choices=models, value=selected_model, visible=True ) state = None return state, dropdown_update def load_demo(url_params, request: gr.Request): global models ip = get_ip(request) logger.info(f"load_demo. ip: {ip}. params: {url_params}") ip_expiration_dict[ip] = time.time() + SESSION_EXPIRATION_TIME if args.model_list_mode == "reload": models = get_model_list( controller_url, args.register_openai_compatible_models, args.add_chatgpt, args.add_claude, args.add_palm, ) return load_demo_single(models, url_params) def vote_last_response(state, vote_type, model_selector, request: gr.Request): with open('./web_chat_downvote.jsonl', "a+") as fout: # data = { # "tstamp": round(time.time(), 4), # "type": vote_type, # "model": model_selector, # "state": state.dict(), # "ip": get_ip(request), # } conversations = [] for i, turn in enumerate(state.dict()['messages']): role = 'user' if i % 2 == 0 else 'assistant' conversations.append({'role': role, 'content': turn[1]}) data = { 'conversations': conversations, 'idx': state.dict()['conv_id'], 'tinder': 'badcase', 'model': state.dict()['model_name'], 'tokens_in': -1, 'tokens_out': -1, } fout.write(json.dumps(data, ensure_ascii=False) + "\n") def upvote_last_response(state, model_selector, request: gr.Request): ip = get_ip(request) logger.info(f"upvote. ip: {ip}") vote_last_response(state, "upvote", model_selector, request) return ("",) + (disable_btn,) * 3 def downvote_last_response(state, model_selector, request: gr.Request): ip = get_ip(request) logger.info(f"downvote. ip: {ip}") vote_last_response(state, "downvote", model_selector, request) return ("",) + (disable_btn,) * 3 def flag_last_response(state, model_selector, request: gr.Request): ip = get_ip(request) logger.info(f"flag. ip: {ip}") vote_last_response(state, "flag", model_selector, request) return ("",) + (disable_btn,) * 3 def regenerate(state, request: gr.Request): ip = get_ip(request) logger.info(f"regenerate. ip: {ip}") state.conv.update_last_message(None) return (state, state.to_gradio_chatbot(), "") + (disable_btn,) * 5 def clear_history(request: gr.Request): ip = get_ip(request) logger.info(f"clear_history. ip: {ip}") state = None return (state, [], "") + (disable_btn,) * 5 def get_ip(request: gr.Request): if "cf-connecting-ip" in request.headers: ip = request.headers["cf-connecting-ip"] else: ip = request.client.host return ip def add_text(state, model_selector, text, request: gr.Request): ip = get_ip(request) logger.info(f"add_text. ip: {ip}. len: {len(text)}") if state is None: state = State(model_selector) if len(text) <= 0: state.skip_next = True return (state, state.to_gradio_chatbot(), "") + (no_change_btn,) * 5 flagged = moderation_filter(text, [state.model_name]) if flagged: logger.info(f"violate moderation. ip: {ip}. text: {text}") # overwrite the original text text = MODERATION_MSG conv = state.conv if (len(conv.messages) - conv.offset) // 2 >= CONVERSATION_TURN_LIMIT: logger.info(f"conversation turn limit. ip: {ip}. text: {text}") state.skip_next = True return (state, state.to_gradio_chatbot(), CONVERSATION_LIMIT_MSG) + ( no_change_btn, ) * 5 text = text[:INPUT_CHAR_LEN_LIMIT] # Hard cut-off conv.append_message(conv.roles[0], text) conv.append_message(conv.roles[1], None) return (state, state.to_gradio_chatbot(), "") + (disable_btn,) * 5 def post_process_code(code): sep = "\n```" if sep in code: blocks = code.split(sep) if len(blocks) % 2 == 1: for i in range(1, len(blocks), 2): blocks[i] = blocks[i].replace("\\_", "_") code = sep.join(blocks) return code def model_worker_stream_iter( conv, model_name, worker_addr, prompt, temperature, repetition_penalty, top_p, max_new_tokens, ): # Make requests gen_params = { "model": model_name, "prompt": prompt, "temperature": temperature, "repetition_penalty": repetition_penalty, "top_p": top_p, "max_new_tokens": max_new_tokens, "stop": conv.stop_str, "stop_token_ids": conv.stop_token_ids, "echo": False, } logger.info(f"==== request ====\n{gen_params}") # Stream output response = requests.post( worker_addr + "/worker_generate_stream", headers=headers, json=gen_params, stream=True, timeout=WORKER_API_TIMEOUT, ) for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"): if chunk: data = json.loads(chunk.decode()) yield data def bot_response(state, temperature, top_p, max_new_tokens, request: gr.Request): ip = get_ip(request) logger.info(f"bot_response. ip: {ip}") start_tstamp = time.time() temperature = float(temperature) top_p = float(top_p) max_new_tokens = int(max_new_tokens) if state.skip_next: # This generate call is skipped due to invalid inputs state.skip_next = False yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5 return conv, model_name = state.conv, state.model_name if model_name in ["gpt-3.5-turbo", "gpt-4", "gpt-4-turbo", "gpt-3.5-turbo-1106"]: prompt = conv.to_openai_api_messages() stream_iter = openai_api_stream_iter( model_name, prompt, temperature, top_p, max_new_tokens ) elif model_name in ["claude-2", "claude-1", "claude-instant-1"]: prompt = conv.get_prompt() stream_iter = anthropic_api_stream_iter( model_name, prompt, temperature, top_p, max_new_tokens ) elif model_name == "palm-2": stream_iter = palm_api_stream_iter( state.palm_chat, conv.messages[-2][1], temperature, top_p, max_new_tokens ) elif model_name in openai_compatible_models_info: model_info = openai_compatible_models_info[model_name] prompt = conv.to_openai_api_messages() stream_iter = openai_api_stream_iter( model_info["model_name"], prompt, temperature, top_p, max_new_tokens, api_base=model_info["api_base"], api_key=model_info["api_key"], ) else: # Query worker address ret = requests.post( controller_url + "/get_worker_address", json={"model": model_name} ) worker_addr = ret.json()["address"] logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}") # No available worker if worker_addr == "": conv.update_last_message(SERVER_ERROR_MSG) yield ( state, state.to_gradio_chatbot(), disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, ) return # Construct prompt. # We need to call it here, so it will not be affected by "▌". prompt = conv.get_prompt() # Set repetition_penalty if "t5" in model_name: repetition_penalty = 1.2 else: repetition_penalty = 1.0 stream_iter = model_worker_stream_iter( conv, model_name, worker_addr, prompt, temperature, repetition_penalty, top_p, max_new_tokens, ) conv.update_last_message("▌") yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5 try: for i, data in enumerate(stream_iter): if data["error_code"] == 0: output = data["text"].strip() conv.update_last_message(output + "▌") yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5 else: output = data["text"] + f"\n\n(error_code: {data['error_code']})" conv.update_last_message(output) yield (state, state.to_gradio_chatbot()) + ( disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, ) return output = data["text"].strip() if "vicuna" in model_name: output = post_process_code(output) conv.update_last_message(output) yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5 except requests.exceptions.RequestException as e: conv.update_last_message( f"{SERVER_ERROR_MSG}\n\n" f"(error_code: {ErrorCode.GRADIO_REQUEST_ERROR}, {e})" ) yield (state, state.to_gradio_chatbot()) + ( disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, ) return except Exception as e: conv.update_last_message( f"{SERVER_ERROR_MSG}\n\n" f"(error_code: {ErrorCode.GRADIO_STREAM_UNKNOWN_ERROR}, {e})" ) yield (state, state.to_gradio_chatbot()) + ( disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, ) return finish_tstamp = time.time() logger.info(f"{output}") with open(get_conv_log_filename(), "a") as fout: data = { "tstamp": round(finish_tstamp, 4), "type": "chat", "model": model_name, "gen_params": { "temperature": temperature, "top_p": top_p, "max_new_tokens": max_new_tokens, }, "start": round(start_tstamp, 4), "finish": round(finish_tstamp, 4), "state": state.dict(), "ip": get_ip(request), } fout.write(json.dumps(data) + "\n") block_css = """ #notice_markdown { font-size: 110% } #notice_markdown th { display: none; } #notice_markdown td { padding-top: 6px; padding-bottom: 6px; } #leaderboard_markdown { font-size: 110% } #leaderboard_markdown td { padding-top: 6px; padding-bottom: 6px; } #leaderboard_dataframe td { line-height: 0.1em; } #about_markdown { font-size: 110% } #input_box textarea { } footer { display:none !important } .image-container { display: flex; align-items: center; padding: 1px; } .image-container img { margin: 0 30px; height: 20px; max-height: 100%; width: auto; max-width: 20%; } .image-about img { margin: 0 30px; margin-top: 30px; height: 60px; max-height: 100%; width: auto; float: left; } """ def get_model_description_md(models): model_description_md = """ | | | | | ---- | ---- | ---- | """ ct = 0 visited = set() for i, name in enumerate(models): minfo = get_model_info(name) if minfo.simple_name in visited: continue visited.add(minfo.simple_name) one_model_md = f"[{minfo.simple_name}]({minfo.link}): {minfo.description}" if ct % 3 == 0: model_description_md += "|" model_description_md += f" {one_model_md} |" if ct % 3 == 2: model_description_md += "\n" ct += 1 return model_description_md def build_about(): about_markdown = f""" # About Us Chatbot Arena is an open-source research project developed by members from [LMSYS](https://lmsys.org/about/) and UC Berkeley [SkyLab](https://sky.cs.berkeley.edu/). Our mission is to build an open crowdsourced platform to collect human feedback and evaluate LLMs under real-world scenarios. We open-source our code at [GitHub](https://github.com/lm-sys/FastChat) and release chat and human feedback datasets [here](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md). We invite everyone to join us in this journey! ## Read More - Chatbot Arena [launch post](https://lmsys.org/blog/2023-05-03-arena/), [data release](https://lmsys.org/blog/2023-07-20-dataset/) - LMSYS-Chat-1M [report](https://arxiv.org/abs/2309.11998) ## Core Members [Lianmin Zheng](https://lmzheng.net/), [Wei-Lin Chiang](https://infwinston.github.io/), [Ying Sheng](https://sites.google.com/view/yingsheng/home), [Siyuan Zhuang](https://scholar.google.com/citations?user=KSZmI5EAAAAJ) ## Advisors [Ion Stoica](http://people.eecs.berkeley.edu/~istoica/), [Joseph E. Gonzalez](https://people.eecs.berkeley.edu/~jegonzal/), [Hao Zhang](https://cseweb.ucsd.edu/~haozhang/) ## Contact Us - Follow our [Twitter](https://twitter.com/lmsysorg), [Discord](https://discord.gg/HSWAKCrnFx) or email us at lmsys.org@gmail.com - File issues on [GitHub](https://github.com/lm-sys/FastChat) - Download our datasets and models on [HuggingFace](https://huggingface.co/lmsys) ## Sponsors We thank [Kaggle](https://www.kaggle.com/), [MBZUAI](https://mbzuai.ac.ae/), [Anyscale](https://www.anyscale.com/), [HuggingFace](https://huggingface.co/) for their generous sponsorship. Learn more about partnership [here](https://lmsys.org/donations/).
Image 1 Image 2 Image 3 Image 4
""" # state = gr.State() gr.Markdown(about_markdown, elem_id="about_markdown") # return [state] def build_single_model_ui(models, add_promotion_links=False): promotion = ( """ - | [GitHub](https://github.com/lm-sys/FastChat) | [Dataset](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md) | [Twitter](https://twitter.com/lmsysorg) | [Discord](https://discord.gg/HSWAKCrnFx) | - Introducing Llama 2: The Next Generation Open Source Large Language Model. [[Website]](https://ai.meta.com/llama/) - Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90% ChatGPT Quality. [[Blog]](https://lmsys.org/blog/2023-03-30-vicuna/) """ if add_promotion_links else "" ) notice_markdown = f""" # 🏔️ Chat with Open Large Language Models {promotion} ## 👉 Choose any model to chat """ state = gr.State() model_description_md = get_model_description_md(models) gr.Markdown(notice_markdown + model_description_md, elem_id="notice_markdown") with gr.Row(elem_id="model_selector_row"): model_selector = gr.Dropdown( choices=models, value=models[0] if len(models) > 0 else "", interactive=True, show_label=False, container=False, ) chatbot = gr.Chatbot( elem_id="chatbot", label="Scroll down and start chatting", height=550, ) with gr.Row(): with gr.Column(scale=20): textbox = gr.Textbox( show_label=False, placeholder="Enter your prompt here and press ENTER", container=False, elem_id="input_box", ) with gr.Column(scale=1, min_width=50): send_btn = gr.Button(value="Send", variant="primary") with gr.Row() as button_row: upvote_btn = gr.Button(value="👍 Upvote", interactive=False) downvote_btn = gr.Button(value="👎 Downvote", interactive=False) flag_btn = gr.Button(value="⚠️ Flag", interactive=False) regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False) clear_btn = gr.Button(value="🗑️ Clear history", interactive=False) with gr.Accordion("Parameters", open=False) as parameter_row: temperature = gr.Slider( minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Temperature", ) top_p = gr.Slider( minimum=0.0, maximum=1.0, value=1.0, step=0.1, interactive=True, label="Top P", ) max_output_tokens = gr.Slider( minimum=16, maximum=3072, value=2048, step=1, interactive=True, label="Max output tokens", ) if add_promotion_links: gr.Markdown(acknowledgment_md) # Register listeners btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn] upvote_btn.click( upvote_last_response, [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn], ) downvote_btn.click( downvote_last_response, [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn], ) flag_btn.click( flag_last_response, [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn], ) regenerate_btn.click(regenerate, state, [state, chatbot, textbox] + btn_list).then( bot_response, [state, temperature, top_p, max_output_tokens], [state, chatbot] + btn_list, ) clear_btn.click(clear_history, None, [state, chatbot, textbox] + btn_list) model_selector.change(clear_history, None, [state, chatbot, textbox] + btn_list) textbox.submit( add_text, [state, model_selector, textbox], [state, chatbot, textbox] + btn_list ).then( bot_response, [state, temperature, top_p, max_output_tokens], [state, chatbot] + btn_list, ) send_btn.click( add_text, [state, model_selector, textbox], [state, chatbot, textbox] + btn_list, ).then( bot_response, [state, temperature, top_p, max_output_tokens], [state, chatbot] + btn_list, ) return [state, model_selector] def build_demo(models): with gr.Blocks( title="Chat with Open Large Language Models", theme=gr.themes.Default(), css=block_css, ) as demo: url_params = gr.JSON(visible=False) state, model_selector = build_single_model_ui(models) if args.model_list_mode not in ["once", "reload"]: raise ValueError(f"Unknown model list mode: {args.model_list_mode}") if args.show_terms_of_use: load_js = get_window_url_params_with_tos_js else: load_js = get_window_url_params_js demo.load( load_demo, [url_params], [ state, model_selector, ], _js=load_js, ) return demo if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--host", type=str, default="0.0.0.0") parser.add_argument("--port", type=int) parser.add_argument( "--conv-template", type=str, default="megrez", help="The address of the controller", ) parser.add_argument( "--share", action="store_true", help="Whether to generate a public, shareable link", ) parser.add_argument( "--controller-url", type=str, default="http://localhost:21001", help="The address of the controller", ) parser.add_argument( "--concurrency-count", type=int, default=10, help="The concurrency count of the gradio queue", ) parser.add_argument( "--model-list-mode", type=str, default="once", choices=["once", "reload"], help="Whether to load the model list once or reload the model list every time", ) parser.add_argument( "--moderate", action="store_true", help="Enable content moderation to block unsafe inputs", ) parser.add_argument( "--show-terms-of-use", action="store_true", help="Shows term of use before loading the demo", ) parser.add_argument( "--add-chatgpt", action="store_true", help="Add OpenAI's ChatGPT models (gpt-3.5-turbo, gpt-4)", ) parser.add_argument( "--add-claude", action="store_true", help="Add Anthropic's Claude models (claude-2, claude-instant-1)", ) parser.add_argument( "--add-palm", action="store_true", help="Add Google's PaLM model (PaLM 2 for Chat: chat-bison@001)", ) parser.add_argument( "--register-openai-compatible-models", type=str, help="Register custom OpenAI API compatible models by loading them from a JSON file", ) parser.add_argument( "--gradio-auth-path", type=str, help='Set the gradio authentication file path. The file should contain one or more user:password pairs in this format: "u1:p1,u2:p2,u3:p3"', ) args = parser.parse_args() logger.info(f"args: {args}") CONV_TEMPLATE = args.conv_template # Set global variables set_global_vars(args.controller_url, args.moderate) models = get_model_list( args.controller_url, args.register_openai_compatible_models, args.add_chatgpt, args.add_claude, args.add_palm, ) # Set authorization credentials auth = None if args.gradio_auth_path is not None: auth = parse_gradio_auth_creds(args.gradio_auth_path) # Launch the demo demo = build_demo(models) ret = demo.queue( concurrency_count=args.concurrency_count, status_update_rate=10, api_open=False ).launch( server_name=args.host, server_port=args.port, share=args.share, max_threads=200, auth=auth, ) from IPython import embed;embed()