Dataset Display :

{% for index, row in df.iterrows() %} {% endfor %}
Car Company Accident Area Owner Gender Owner Age Fault Car Category Car Price Is Fraud Police Report Filed Witness Present Agent Type Number of Suppliments Base Policy Is Address Changed Past Number of Claims
{{ row['CarCompany'] }} {{ row['AccidentArea'] }} {{ row['OwnerGender'] }} {{ row['OwnerAge'] }} {{ row['Fault'] }} {{ row['CarCategory'] }} {{ row['CarPrice'] }} {{ row['IsFraud'] }} {{ row['PoliceReportFiled'] }} {{ row['WitnessPresent'] }} {{ row['AgentType'] }} {{ row['NumberOfSuppliments'] }} {{ row['BasePolicy'] }} {{ row['IsAddressChanged'] }} {{ row['PastNumberOfClaims'] }}
Plot 1
Plot 2
Plot 3
Plot 4
Plot 5
Plot 6
Plot 7
Plot 8
Plot 9
Plot 10

Unique Values in Dataset Columns:

{% for column in df.columns %} {% if df[column].dtype == 'object' %} {% endif %} {% endfor %}
Column Name Unique Values
{{ column }}
    {% for value in df[column].unique() %}
  • {{ value }}
  • {% endfor %}

Additional Information:

Total Rows Total Features Output Feature Most Important Input Total Fraud Total Non-Fraud Least Important Input
16184 15 IsFraud Base Policy 8613 7571 Witness present