from fastapi import FastAPI, Request, Form from fastapi.responses import HTMLResponse import nest_asyncio import uvicorn from transformers import pipeline app = FastAPI() @app.on_event("startup") async def startup_event(): model_path="cardiffnlp/twitter-roberta-base-sentiment-latest" global sentiment_task sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path) @app.get("/", response_class=HTMLResponse) async def home(): html_content = """ Text Classification

Text Classification

""" return HTMLResponse(content=html_content, status_code=200) @app.get('/{name}') async def get_name(name: str): return {'Welcome To Here': f'{name}'} @app.post("/analyze/", response_class=HTMLResponse) async def analyze_text(text: str = Form(...)): # Assuming your model is a function that takes input and returns predictions prediction = sentiment_task(text) html_content = """ Analysis Result

Analysis Result:

Input Text: {input_text}

Prediction: {prediction}