diff --git a/.gitattributes b/.gitattributes
index 83cfd8dbb643612f79f25d84b65ac7e4b3c4fb7f..57bbfac96cab1b218271c0408021d636c249e6ea 100644
--- a/.gitattributes
+++ b/.gitattributes
@@ -33,4 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
*.zip filter=lfs diff=lfs merge=lfs -text
*.zst filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text
+assets/ filter=lfs diff=lfs merge=lfs -text
+assets filter=lfs diff=lfs merge=lfs -text
*.wav filter=lfs diff=lfs merge=lfs -text
diff --git a/LICENSE b/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64
--- /dev/null
+++ b/LICENSE
@@ -0,0 +1,201 @@
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+ 1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+ END OF TERMS AND CONDITIONS
+
+ APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+ Copyright [yyyy] [name of copyright owner]
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
diff --git a/README_ZH.md b/README_ZH.md
new file mode 100644
index 0000000000000000000000000000000000000000..3c517706e647d302967dce58445fdf9faec52442
--- /dev/null
+++ b/README_ZH.md
@@ -0,0 +1,124 @@
+# MOSS-Speech: Towards True Speech-to-Speech Models Without Text Guidance
+
+
+
+

+
+
+
+Read this in [English](./README.md).
+
+---
+
+## 📖 介绍
+
+语音对话系统通常依赖于级联式流水线,将语音先转录、处理,再重新合成,这种设计限制了表达能力,并丢失了副语言信息。**MOSS-Speech** 能够直接理解和生成语音,无需依赖文本中间表示,实现端到端的语音交互,同时保留语调、韵律和情感信息。
+
+我们的方法结合了 **基于模态的层拆分架构** 与 **冻结预训练策略**,在利用预训练文本大型语言模型的推理与知识能力的同时,扩展了原生语音处理能力。实验结果显示,该模型在语音问答任务上取得了最先进的性能,并在语音到语音生成任务中,相较于文本引导系统仍保持竞争力。
+
+
+欢迎查看我们系统的[演示视频](https://moss-speech.open-moss.com/)。
+
+---
+
+## 🔑 核心特性
+
+- **真正的语音到语音建模**:无需文本引导。
+- **层拆分架构**:在预训练文本 LLM 的基础上整合模态特定层。
+- **冻结预训练策略**:保留 LLM 推理能力,同时增强语音理解和生成能力。
+- **领先性能**:在语音问答和语音到语音任务中表现出色。
+- **表达丰富且高效**:保留流水线中常丢失的副语言信息(如语调、情感、韵律)。
+
+---
+
+## 📂 仓库内容
+
+- `gradio_demo.py` – 基于 Gradio 的在线演示脚本,用于快速体验语音到语音模型的功能。
+- `generation.py` – 核心生成脚本,用于从输入语音生成输出语音,可作为推理和批量处理工具。
+
+---
+
+## 🛠️ 安装
+
+```bash
+# Clone the repository
+git clone https://github.com/OpenMOSS/MOSS-Speech
+cd MOSS-Speech
+
+# Install dependencies
+pip install -r requirements.txt
+```
+
+---
+
+## 🚀 使用
+### 启动网页demo
+
+```sh
+python3 gradio_demo.py
+```
+
+
+
+
+
+
+---
+
+## 协议
+- 本开源仓库的代码遵循 [Apache 2.0](LICENSE) 协议。
+
+---
+
+## 致谢
+- [Qwen](https://github.com/QwenLM/Qwen3): 我们以Qwen3-8B-Instruct作为基座模型。
+- 感谢一位匿名的同事给我们提供声音!
+
+---
+
+## 📜 引用
+
+如果在研究中使用本仓库或模型,请引用如下文献:
+
+```bibtex
+@article{moss_speech2025,
+ title={MOSS-Speech: Towards True Speech-to-Speech Models Without Text Guidance},
+ author={SLM Team},
+ institution={Shanghai Innovation Institute, Fudan University, MOSI},
+ year={2025},
+ note={Official implementation available at https://huggingface.co/fnlp/MOSS-Speech}
+}
+
+or
+
+@misc{moss_speech2025,
+ author = {SLM Team},
+ title = {MOSS-Speech: Towards True Speech-to-Speech Models Without Text Guidance},
+ year = {2025},
+ publisher = {GitHub},
+ journal = {GitHub repository},
+ howpublished = {\url{https://github.com/OpenMOSS/MOSS-Speech}},
+}
+```
\ No newline at end of file
diff --git a/assets/prompt-cn.wav b/assets/prompt-cn.wav
new file mode 100644
index 0000000000000000000000000000000000000000..0b970fca764b8988f320eeb7b712b86096c266af
--- /dev/null
+++ b/assets/prompt-cn.wav
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:cde3e98fdf0c90d4a578aa5858e1d4f36d99d3dd96d7ebb302b8bb976c3d12da
+size 2419370
diff --git a/assets/prompt-en.wav b/assets/prompt-en.wav
new file mode 100644
index 0000000000000000000000000000000000000000..837c279c654bafe36bb556ef5b566c68b3fa7872
--- /dev/null
+++ b/assets/prompt-en.wav
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5c1541599a64decdbb16962034e213ad89ca32be096404ee6d523b7752ee0790
+size 3193986
diff --git a/cosyvoice/__init__.py b/cosyvoice/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/cosyvoice/bin/average_model.py b/cosyvoice/bin/average_model.py
new file mode 100644
index 0000000000000000000000000000000000000000..b7140c12ef4c0868019b62f2ebe32df99687f66e
--- /dev/null
+++ b/cosyvoice/bin/average_model.py
@@ -0,0 +1,93 @@
+# Copyright (c) 2020 Mobvoi Inc (Di Wu)
+# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import os
+import argparse
+import glob
+
+import yaml
+import torch
+
+
+def get_args():
+ parser = argparse.ArgumentParser(description='average model')
+ parser.add_argument('--dst_model', required=True, help='averaged model')
+ parser.add_argument('--src_path',
+ required=True,
+ help='src model path for average')
+ parser.add_argument('--val_best',
+ action="store_true",
+ help='averaged model')
+ parser.add_argument('--num',
+ default=5,
+ type=int,
+ help='nums for averaged model')
+
+ args = parser.parse_args()
+ print(args)
+ return args
+
+
+def main():
+ args = get_args()
+ val_scores = []
+ if args.val_best:
+ yamls = glob.glob('{}/*.yaml'.format(args.src_path))
+ yamls = [
+ f for f in yamls
+ if not (os.path.basename(f).startswith('train')
+ or os.path.basename(f).startswith('init'))
+ ]
+ for y in yamls:
+ with open(y, 'r') as f:
+ dic_yaml = yaml.load(f, Loader=yaml.BaseLoader)
+ loss = float(dic_yaml['loss_dict']['loss'])
+ epoch = int(dic_yaml['epoch'])
+ step = int(dic_yaml['step'])
+ tag = dic_yaml['tag']
+ val_scores += [[epoch, step, loss, tag]]
+ sorted_val_scores = sorted(val_scores,
+ key=lambda x: x[2],
+ reverse=False)
+ print("best val (epoch, step, loss, tag) = " +
+ str(sorted_val_scores[:args.num]))
+ path_list = [
+ args.src_path + '/epoch_{}_whole.pt'.format(score[0])
+ for score in sorted_val_scores[:args.num]
+ ]
+ print(path_list)
+ avg = {}
+ num = args.num
+ assert num == len(path_list)
+ for path in path_list:
+ print('Processing {}'.format(path))
+ states = torch.load(path, map_location=torch.device('cpu'))
+ for k in states.keys():
+ if k not in ['step', 'epoch']:
+ if k not in avg.keys():
+ avg[k] = states[k].clone()
+ else:
+ avg[k] += states[k]
+ # average
+ for k in avg.keys():
+ if avg[k] is not None:
+ # pytorch 1.6 use true_divide instead of /=
+ avg[k] = torch.true_divide(avg[k], num)
+ print('Saving to {}'.format(args.dst_model))
+ torch.save(avg, args.dst_model)
+
+
+if __name__ == '__main__':
+ main()
diff --git a/cosyvoice/bin/export_jit.py b/cosyvoice/bin/export_jit.py
new file mode 100644
index 0000000000000000000000000000000000000000..7248cf7667d98f9aa6b736b45bd8efa2c68aae64
--- /dev/null
+++ b/cosyvoice/bin/export_jit.py
@@ -0,0 +1,99 @@
+# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import print_function
+
+import argparse
+import logging
+logging.getLogger('matplotlib').setLevel(logging.WARNING)
+import torch
+
+from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
+from cosyvoice.utils.file_utils import logging
+
+
+def get_args():
+ parser = argparse.ArgumentParser(description='export your model for deployment')
+ parser.add_argument('--model_dir',
+ type=str,
+ default='pretrained_models/CosyVoice-300M',
+ help='local path')
+ args = parser.parse_args()
+ print(args)
+ return args
+
+
+def get_optimized_script(model, preserved_attrs=[]):
+ script = torch.jit.script(model)
+ if preserved_attrs != []:
+ script = torch.jit.freeze(script, preserved_attrs=preserved_attrs)
+ else:
+ script = torch.jit.freeze(script)
+ script = torch.jit.optimize_for_inference(script)
+ return script
+
+
+def main():
+ args = get_args()
+ logging.basicConfig(level=logging.DEBUG,
+ format='%(asctime)s %(levelname)s %(message)s')
+
+ torch._C._jit_set_fusion_strategy([('STATIC', 1)])
+ torch._C._jit_set_profiling_mode(False)
+ torch._C._jit_set_profiling_executor(False)
+
+ try:
+ model = CosyVoice(args.model_dir)
+ except Exception:
+ try:
+ model = CosyVoice2(args.model_dir)
+ except Exception:
+ raise TypeError('no valid model_type!')
+
+ if not isinstance(model, CosyVoice2):
+ # 1. export llm text_encoder
+ llm_text_encoder = model.model.llm.text_encoder
+ script = get_optimized_script(llm_text_encoder)
+ script.save('{}/llm.text_encoder.fp32.zip'.format(args.model_dir))
+ script = get_optimized_script(llm_text_encoder.half())
+ script.save('{}/llm.text_encoder.fp16.zip'.format(args.model_dir))
+ logging.info('successfully export llm_text_encoder')
+
+ # 2. export llm llm
+ llm_llm = model.model.llm.llm
+ script = get_optimized_script(llm_llm, ['forward_chunk'])
+ script.save('{}/llm.llm.fp32.zip'.format(args.model_dir))
+ script = get_optimized_script(llm_llm.half(), ['forward_chunk'])
+ script.save('{}/llm.llm.fp16.zip'.format(args.model_dir))
+ logging.info('successfully export llm_llm')
+
+ # 3. export flow encoder
+ flow_encoder = model.model.flow.encoder
+ script = get_optimized_script(flow_encoder)
+ script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
+ script = get_optimized_script(flow_encoder.half())
+ script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
+ logging.info('successfully export flow_encoder')
+ else:
+ # 3. export flow encoder
+ flow_encoder = model.model.flow.encoder
+ script = get_optimized_script(flow_encoder)
+ script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
+ script = get_optimized_script(flow_encoder.half())
+ script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
+ logging.info('successfully export flow_encoder')
+
+
+if __name__ == '__main__':
+ main()
diff --git a/cosyvoice/bin/export_onnx.py b/cosyvoice/bin/export_onnx.py
new file mode 100644
index 0000000000000000000000000000000000000000..b0d1a17bd9210e7615f6da776fab2d5ab8423dce
--- /dev/null
+++ b/cosyvoice/bin/export_onnx.py
@@ -0,0 +1,117 @@
+# Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, hexisyztem@icloud.com)
+# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import print_function
+
+import argparse
+import logging
+logging.getLogger('matplotlib').setLevel(logging.WARNING)
+
+import onnxruntime
+import random
+import torch
+from tqdm import tqdm
+
+from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
+from cosyvoice.utils.file_utils import logging
+
+
+def get_dummy_input(batch_size, seq_len, out_channels, device):
+ x = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
+ mask = torch.ones((batch_size, 1, seq_len), dtype=torch.float32, device=device)
+ mu = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
+ t = torch.rand((batch_size), dtype=torch.float32, device=device)
+ spks = torch.rand((batch_size, out_channels), dtype=torch.float32, device=device)
+ cond = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
+ return x, mask, mu, t, spks, cond
+
+
+def get_args():
+ parser = argparse.ArgumentParser(description='export your model for deployment')
+ parser.add_argument('--model_dir',
+ type=str,
+ default='pretrained_models/CosyVoice-300M',
+ help='local path')
+ args = parser.parse_args()
+ print(args)
+ return args
+
+
+@torch.no_grad()
+def main():
+ args = get_args()
+ logging.basicConfig(level=logging.DEBUG,
+ format='%(asctime)s %(levelname)s %(message)s')
+
+ try:
+ model = CosyVoice(args.model_dir)
+ except Exception:
+ try:
+ model = CosyVoice2(args.model_dir)
+ except Exception:
+ raise TypeError('no valid model_type!')
+
+ # 1. export flow decoder estimator
+ estimator = model.model.flow.decoder.estimator
+ estimator.eval()
+
+ device = model.model.device
+ batch_size, seq_len = 2, 256
+ out_channels = model.model.flow.decoder.estimator.out_channels
+ x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
+ torch.onnx.export(
+ estimator,
+ (x, mask, mu, t, spks, cond),
+ '{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
+ export_params=True,
+ opset_version=18,
+ do_constant_folding=True,
+ input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
+ output_names=['estimator_out'],
+ dynamic_axes={
+ 'x': {2: 'seq_len'},
+ 'mask': {2: 'seq_len'},
+ 'mu': {2: 'seq_len'},
+ 'cond': {2: 'seq_len'},
+ 'estimator_out': {2: 'seq_len'},
+ }
+ )
+
+ # 2. test computation consistency
+ option = onnxruntime.SessionOptions()
+ option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
+ option.intra_op_num_threads = 1
+ providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
+ estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
+ sess_options=option, providers=providers)
+
+ for _ in tqdm(range(10)):
+ x, mask, mu, t, spks, cond = get_dummy_input(batch_size, random.randint(16, 512), out_channels, device)
+ output_pytorch = estimator(x, mask, mu, t, spks, cond)
+ ort_inputs = {
+ 'x': x.cpu().numpy(),
+ 'mask': mask.cpu().numpy(),
+ 'mu': mu.cpu().numpy(),
+ 't': t.cpu().numpy(),
+ 'spks': spks.cpu().numpy(),
+ 'cond': cond.cpu().numpy()
+ }
+ output_onnx = estimator_onnx.run(None, ort_inputs)[0]
+ torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4)
+ logging.info('successfully export estimator')
+
+
+if __name__ == "__main__":
+ main()
diff --git a/cosyvoice/bin/generate.py b/cosyvoice/bin/generate.py
new file mode 100644
index 0000000000000000000000000000000000000000..b92583f0c222dff1ca62c26de3e98968aeff5b9b
--- /dev/null
+++ b/cosyvoice/bin/generate.py
@@ -0,0 +1,223 @@
+# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import print_function
+import argparse
+import datetime
+import logging
+logging.getLogger('matplotlib').setLevel(logging.WARNING)
+from copy import deepcopy
+import os
+import torch
+import torch.distributed as dist
+import deepspeed
+
+from hyperpyyaml import load_hyperpyyaml
+
+from torch.distributed.elastic.multiprocessing.errors import record
+from cosyvoice.utils.losses import DPOLoss
+from cosyvoice.utils.executor import Executor
+from cosyvoice.utils.train_utils import (
+ init_distributed,
+ init_dataset_and_dataloader,
+ init_optimizer_and_scheduler,
+ init_summarywriter, save_model,
+ wrap_cuda_model, check_modify_and_save_config)
+
+
+def get_args():
+ parser = argparse.ArgumentParser(description='training your network')
+ parser.add_argument('--train_engine',
+ default='torch_ddp',
+ choices=['torch_ddp', 'deepspeed'],
+ help='Engine for paralleled training')
+ parser.add_argument('--model', required=True, help='model which will be trained')
+ parser.add_argument('--ref_model', required=False, help='ref model used in dpo')
+ parser.add_argument('--config', required=True, help='config file')
+ parser.add_argument('--train_data', required=True, help='train data file')
+ parser.add_argument('--cv_data', required=True, help='cv data file')
+ parser.add_argument('--generate_data', required=True, help='generate data file')
+ parser.add_argument('--qwen_pretrain_path', required=False, help='qwen pretrain path')
+ parser.add_argument('--checkpoint', help='checkpoint model')
+ parser.add_argument('--hift_checkpoint', help='checkpoint model')
+ parser.add_argument('--model_dir', required=True, help='save model dir')
+ parser.add_argument('--tensorboard_dir',
+ default='tensorboard',
+ help='tensorboard log dir')
+ parser.add_argument('--ddp.dist_backend',
+ dest='dist_backend',
+ default='nccl',
+ choices=['nccl', 'gloo'],
+ help='distributed backend')
+ parser.add_argument('--num_workers',
+ default=0,
+ type=int,
+ help='num of subprocess workers for reading')
+ parser.add_argument('--prefetch',
+ default=100,
+ type=int,
+ help='prefetch number')
+ parser.add_argument('--pin_memory',
+ action='store_true',
+ default=False,
+ help='Use pinned memory buffers used for reading')
+ parser.add_argument('--use_amp',
+ action='store_true',
+ default=False,
+ help='Use automatic mixed precision training')
+ parser.add_argument('--dpo',
+ action='store_true',
+ default=False,
+ help='Use Direct Preference Optimization')
+ parser.add_argument('--deepspeed.save_states',
+ dest='save_states',
+ default='model_only',
+ choices=['model_only', 'model+optimizer'],
+ help='save model/optimizer states')
+ parser.add_argument('--validate_interval',
+ default=20000)
+ parser.add_argument('--timeout',
+ default=600000,
+ type=int,
+ help='timeout (in seconds) of cosyvoice_join.')
+ parser = deepspeed.add_config_arguments(parser)
+ args = parser.parse_args()
+ return args
+
+
+@record
+def main():
+ args = get_args()
+ logging.basicConfig(level=logging.DEBUG,
+ format='%(asctime)s %(levelname)s %(message)s')
+ # gan train has some special initialization logic
+ gan = True if args.model == 'hifigan' else False
+
+ override_dict = {k: None for k in ['llm', 'flow'] if k != args.model}
+ if gan is True:
+ override_dict.pop('hift')
+ try:
+ with open(args.config, 'r') as f:
+ configs = load_hyperpyyaml(f, overrides={**override_dict, 'qwen_pretrain_path': args.qwen_pretrain_path})
+ except Exception:
+ with open(args.config, 'r') as f:
+ configs = load_hyperpyyaml(f, overrides=override_dict)
+ if gan is True:
+ configs['train_conf'] = configs['train_conf_gan']
+ configs['train_conf'].update(vars(args))
+
+ # Init env for ddp
+ init_distributed(args)
+ logging.info(f"Successfully init distributed")
+ # Get dataset & dataloader
+ train_dataset, cv_dataset, generate_dataset,train_data_loader, cv_data_loader,generate_data_loader = \
+ init_dataset_and_dataloader(args, configs, gan, args.dpo)
+
+ logging.info(f"Successfully init dataset and dataloader")
+ # Do some sanity checks and save config to arsg.model_dir
+ configs = check_modify_and_save_config(args, configs)
+ logging.info(f"Successfully check_modify_and_save_config")
+ # Tensorboard summary
+ writer = init_summarywriter(args)
+ logging.info(f"Successfully init_summarywriter")
+ # load checkpoint
+ if args.dpo is True:
+ configs[args.model].forward = configs[args.model].forward_dpo
+ model = configs[args.model]
+ logging.info(f"Successfully init_model")
+ start_step, start_epoch = 0, -1
+ if args.checkpoint is not None:
+ if os.path.exists(args.checkpoint):
+ checkpoint_state_dict = torch.load(args.checkpoint, map_location='cpu')
+ state_dict=checkpoint_state_dict
+ #model.load_state_dict(state_dict, strict=False)
+ model_state_dict = model.state_dict()
+ filtered_state_dict = {}
+ loaded_keys = []
+ skipped_keys = []
+
+ for k, v in checkpoint_state_dict.items():
+ if isinstance(v,int):
+ continue
+ if k in model_state_dict and v.shape == model_state_dict[k].shape:
+ filtered_state_dict[k] = v
+ loaded_keys.append(k)
+ else:
+ skipped_keys.append(k)
+ model_state_dict.update(filtered_state_dict)
+ model.load_state_dict(model_state_dict, strict=True)
+ if skipped_keys:
+ logging.warning("Weights for the following keys were SKIPPED due to name/shape mismatch:")
+ for key in skipped_keys:
+ shape_in_checkpoint = checkpoint_state_dict[key].shape if key in checkpoint_state_dict else 'N/A'
+ shape_in_model = model_state_dict[key].shape if key in model_state_dict else 'N/A'
+ logging.warning(f" - {key} (Checkpoint: {shape_in_checkpoint}, Model: {shape_in_model})")
+ logging.info(f"Successfully loaded {len(loaded_keys)} matching parameters.")
+ # if 'step' in checkpoint_state_dict:
+ # start_step = checkpoint_state_dict['step']
+ # if 'epoch' in checkpoint_state_dict:
+ # start_epoch = checkpoint_state_dict['epoch']
+ else:
+ logging.warning('checkpoint {} do not exsist!'.format(args.checkpoint))
+
+ if args.hift_checkpoint is not None:
+ hift=configs['hift']
+ if os.path.exists(args.hift_checkpoint):
+ state_dict = torch.load(args.hift_checkpoint, map_location='cpu')
+ hift.load_state_dict(state_dict, strict=True)
+ hift.eval()
+ for param in hift.parameters():
+ param.requires_grad = False
+
+ logging.info("Hift model loaded in inference mode (eval, no_grad).")
+ if 'step' in state_dict:
+ start_step = state_dict['step']
+ if 'epoch' in state_dict:
+ start_epoch = state_dict['epoch']
+ else:
+ logging.warning('checkpoint {} do not exsist!'.format(args.checkpoint))
+
+ # Dispatch model from cpu to gpu
+ model = wrap_cuda_model(args, model)
+ hift=hift.cuda()
+ # Get optimizer & scheduler
+ model, optimizer, scheduler, optimizer_d, scheduler_d = init_optimizer_and_scheduler(args, configs, model, gan)
+
+ # Save init checkpoints
+ info_dict = deepcopy(configs['train_conf'])
+ info_dict['step'] = start_step
+ info_dict['epoch'] = start_epoch
+
+ # DPO related
+ if args.dpo is True:
+ ref_model = deepcopy(configs[args.model])
+ state_dict = torch.load(args.ref_model, map_location='cpu')
+ ref_model.load_state_dict(state_dict, strict=False)
+ dpo_loss = DPOLoss(beta=0.01, label_smoothing=0.0, ipo=False)
+ # NOTE maybe it is not needed to wrap ref_model as ddp because its parameter is not updated
+ ref_model = wrap_cuda_model(args, ref_model)
+ else:
+ ref_model, dpo_loss = None, None
+
+ # Get executor
+ executor = Executor(gan=gan, ref_model=ref_model, dpo_loss=dpo_loss)
+ executor.step = start_step
+ # Start training loop
+ executor.epoch = 0
+ dist.barrier()
+ executor.generate(model,generate_data_loader, writer, info_dict,hift=hift)
+
+
+if __name__ == '__main__':
+ main()
diff --git a/cosyvoice/bin/inference_deprecated.py b/cosyvoice/bin/inference_deprecated.py
new file mode 100644
index 0000000000000000000000000000000000000000..0213e25799d0503201df6ac51d2f0f405742f1cd
--- /dev/null
+++ b/cosyvoice/bin/inference_deprecated.py
@@ -0,0 +1,127 @@
+# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import print_function
+
+import argparse
+import logging
+logging.getLogger('matplotlib').setLevel(logging.WARNING)
+import os
+import torch
+from torch.utils.data import DataLoader
+import torchaudio
+from hyperpyyaml import load_hyperpyyaml
+from tqdm import tqdm
+
+from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
+from cosyvoice.dataset.dataset import Dataset
+
+
+def get_args():
+ parser = argparse.ArgumentParser(description='inference with your model')
+ parser.add_argument('--config', required=True, help='config file')
+ parser.add_argument('--prompt_data', required=True, help='prompt data file')
+ parser.add_argument('--prompt_utt2data', required=True, help='prompt data file')
+ parser.add_argument('--tts_text', required=True, help='tts input file')
+ parser.add_argument('--qwen_pretrain_path', required=False, help='qwen pretrain path')
+ parser.add_argument('--llm_model', required=True, help='llm model file')
+ parser.add_argument('--flow_model', required=True, help='flow model file')
+ parser.add_argument('--hifigan_model', required=True, help='hifigan model file')
+ parser.add_argument('--gpu',
+ type=int,
+ default=-1,
+ help='gpu id for this rank, -1 for cpu')
+ parser.add_argument('--mode',
+ default='sft',
+ choices=['sft', 'zero_shot'],
+ help='inference mode')
+ parser.add_argument('--result_dir', required=True, help='asr result file')
+ args = parser.parse_args()
+ print(args)
+ return args
+
+
+def main():
+ args = get_args()
+ logging.basicConfig(level=logging.DEBUG,
+ format='%(asctime)s %(levelname)s %(message)s')
+ os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
+
+ # Init cosyvoice models from configs
+ use_cuda = args.gpu >= 0 and torch.cuda.is_available()
+ device = torch.device('cuda' if use_cuda else 'cpu')
+ try:
+ with open(args.config, 'r') as f:
+ configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': args.qwen_pretrain_path})
+ model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'])
+ except Exception:
+ try:
+ with open(args.config, 'r') as f:
+ configs = load_hyperpyyaml(f)
+ model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
+ except Exception:
+ raise TypeError('no valid model_type!')
+
+ model.load(args.llm_model, args.flow_model, args.hifigan_model)
+
+ test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=False, partition=False,
+ tts_file=args.tts_text, prompt_utt2data=args.prompt_utt2data)
+ test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0)
+
+ sample_rate = configs['sample_rate']
+ del configs
+ os.makedirs(args.result_dir, exist_ok=True)
+ fn = os.path.join(args.result_dir, 'wav.scp')
+ f = open(fn, 'w')
+ with torch.no_grad():
+ for _, batch in tqdm(enumerate(test_data_loader)):
+ utts = batch["utts"]
+ assert len(utts) == 1, "inference mode only support batchsize 1"
+ text_token = batch["text_token"].to(device)
+ text_token_len = batch["text_token_len"].to(device)
+ tts_index = batch["tts_index"]
+ tts_text_token = batch["tts_text_token"].to(device)
+ tts_text_token_len = batch["tts_text_token_len"].to(device)
+ speech_token = batch["speech_token"].to(device)
+ speech_token_len = batch["speech_token_len"].to(device)
+ speech_feat = batch["speech_feat"].to(device)
+ speech_feat_len = batch["speech_feat_len"].to(device)
+ utt_embedding = batch["utt_embedding"].to(device)
+ spk_embedding = batch["spk_embedding"].to(device)
+ if args.mode == 'sft':
+ model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
+ 'llm_embedding': spk_embedding, 'flow_embedding': spk_embedding}
+ else:
+ model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
+ 'prompt_text': text_token, 'prompt_text_len': text_token_len,
+ 'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
+ 'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
+ 'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
+ 'llm_embedding': utt_embedding, 'flow_embedding': utt_embedding}
+ tts_speeches = []
+ for model_output in model.tts(**model_input):
+ tts_speeches.append(model_output['tts_speech'])
+ tts_speeches = torch.concat(tts_speeches, dim=1)
+ tts_key = '{}_{}'.format(utts[0], tts_index[0])
+ tts_fn = os.path.join(args.result_dir, '{}.wav'.format(tts_key))
+ torchaudio.save(tts_fn, tts_speeches, sample_rate=sample_rate, backend='soundfile')
+ f.write('{} {}\n'.format(tts_key, tts_fn))
+ f.flush()
+ f.close()
+ logging.info('Result wav.scp saved in {}'.format(fn))
+
+
+if __name__ == '__main__':
+ logging.warning('this code has been deprecated, please refer to README for CosyVoice inference usage!')
+ main()
diff --git a/cosyvoice/bin/train.py b/cosyvoice/bin/train.py
new file mode 100644
index 0000000000000000000000000000000000000000..15e01580e972562ddce8f8b55188cb5c69c7a64e
--- /dev/null
+++ b/cosyvoice/bin/train.py
@@ -0,0 +1,239 @@
+# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import print_function
+import argparse
+import datetime
+import logging
+logging.getLogger('matplotlib').setLevel(logging.WARNING)
+from copy import deepcopy
+import os
+import torch
+import torch.distributed as dist
+import deepspeed
+
+from hyperpyyaml import load_hyperpyyaml
+
+from torch.distributed.elastic.multiprocessing.errors import record
+
+from cosyvoice.utils.losses import DPOLoss
+from cosyvoice.utils.executor import Executor
+from cosyvoice.utils.train_utils import (
+ init_distributed,
+ init_dataset_and_dataloader,
+ init_optimizer_and_scheduler,
+ init_summarywriter, save_model,
+ wrap_cuda_model, check_modify_and_save_config)
+
+
+def get_args():
+ parser = argparse.ArgumentParser(description='training your network')
+ parser.add_argument('--train_engine',
+ default='torch_ddp',
+ choices=['torch_ddp', 'deepspeed'],
+ help='Engine for paralleled training')
+ parser.add_argument('--model', required=True, help='model which will be trained')
+ parser.add_argument('--ref_model', required=False, help='ref model used in dpo')
+ parser.add_argument('--config', required=True, help='config file')
+ parser.add_argument('--train_data', required=True, help='train data file')
+ parser.add_argument('--cv_data', required=True, help='cv data file')
+ parser.add_argument('--generate_data', required=True, help='generate data file')
+ parser.add_argument('--qwen_pretrain_path', required=False, help='qwen pretrain path')
+ parser.add_argument('--checkpoint', help='checkpoint model')
+ parser.add_argument('--hift_checkpoint', help='checkpoint model')
+ parser.add_argument('--model_dir', required=True, help='save model dir')
+ parser.add_argument('--tensorboard_dir',
+ default='tensorboard',
+ help='tensorboard log dir')
+ parser.add_argument('--ddp.dist_backend',
+ dest='dist_backend',
+ default='nccl',
+ choices=['nccl', 'gloo'],
+ help='distributed backend')
+ parser.add_argument('--num_workers',
+ default=0,
+ type=int,
+ help='num of subprocess workers for reading')
+ parser.add_argument('--prefetch',
+ default=100,
+ type=int,
+ help='prefetch number')
+ parser.add_argument('--pin_memory',
+ action='store_true',
+ default=False,
+ help='Use pinned memory buffers used for reading')
+ parser.add_argument('--use_amp',
+ action='store_true',
+ default=False,
+ help='Use automatic mixed precision training')
+ parser.add_argument('--dpo',
+ action='store_true',
+ default=False,
+ help='Use Direct Preference Optimization')
+ parser.add_argument('--deepspeed.save_states',
+ dest='save_states',
+ default='model_only',
+ choices=['model_only', 'model+optimizer'],
+ help='save model/optimizer states')
+ parser.add_argument('--timeout',
+ default=600000,
+ type=int,
+ help='timeout (in seconds) of cosyvoice_join.')
+ parser = deepspeed.add_config_arguments(parser)
+ args = parser.parse_args()
+ return args
+
+
+@record
+def main():
+ args = get_args()
+ logging.basicConfig(level=logging.DEBUG,
+ format='%(asctime)s %(levelname)s %(message)s')
+ # gan train has some special initialization logic
+ gan = True if args.model == 'hifigan' else False
+
+ override_dict = {k: None for k in ['llm', 'flow'] if k != args.model}
+ if gan is True:
+ override_dict.pop('hift')
+ try:
+ with open(args.config, 'r') as f:
+ configs = load_hyperpyyaml(f, overrides={**override_dict, 'qwen_pretrain_path': args.qwen_pretrain_path})
+ except Exception:
+ with open(args.config, 'r') as f:
+ configs = load_hyperpyyaml(f, overrides=override_dict)
+ if gan is True:
+ configs['train_conf'] = configs['train_conf_gan']
+ configs['train_conf'].update(vars(args))
+
+ # Init env for ddp
+ init_distributed(args)
+ logging.info(f"Successfully init distributed")
+ # Get dataset & dataloader
+ train_dataset, cv_dataset, generate_dataset,train_data_loader, cv_data_loader,generate_data_loader = \
+ init_dataset_and_dataloader(args, configs, gan, args.dpo)
+
+ logging.info(f"Successfully init dataset and dataloader")
+ # Do some sanity checks and save config to arsg.model_dir
+ configs = check_modify_and_save_config(args, configs)
+ logging.info(f"Successfully check_modify_and_save_config")
+ # Tensorboard summary
+ writer = init_summarywriter(args)
+ logging.info(f"Successfully init_summarywriter")
+ # load checkpoint
+ if args.dpo is True:
+ configs[args.model].forward = configs[args.model].forward_dpo
+ model = configs[args.model]
+ logging.info(f"Successfully init_model")
+ start_step, start_epoch = 0, -1
+ if args.checkpoint is not None:
+ if os.path.exists(args.checkpoint):
+ checkpoint_state_dict = torch.load(args.checkpoint, map_location='cpu')
+ state_dict=checkpoint_state_dict
+ #model.load_state_dict(state_dict, strict=False)
+ model_state_dict = model.state_dict()
+ filtered_state_dict = {}
+ loaded_keys = []
+ skipped_keys = []
+
+ for k, v in checkpoint_state_dict.items():
+ if isinstance(v,int):
+ continue
+ if k in model_state_dict and v.shape == model_state_dict[k].shape:
+ filtered_state_dict[k] = v
+ loaded_keys.append(k)
+ else:
+ skipped_keys.append(k)
+ model_state_dict.update(filtered_state_dict)
+ model.load_state_dict(model_state_dict, strict=True)
+ if skipped_keys:
+ logging.warning("Weights for the following keys were SKIPPED due to name/shape mismatch:")
+ for key in skipped_keys:
+ shape_in_checkpoint = checkpoint_state_dict[key].shape if key in checkpoint_state_dict else 'N/A'
+ shape_in_model = model_state_dict[key].shape if key in model_state_dict else 'N/A'
+ logging.warning(f" - {key} (Checkpoint: {shape_in_checkpoint}, Model: {shape_in_model})")
+ logging.info(f"Successfully loaded {len(loaded_keys)} matching parameters.")
+ # if 'step' in checkpoint_state_dict:
+ # start_step = checkpoint_state_dict['step']
+ # if 'epoch' in checkpoint_state_dict:
+ # start_epoch = checkpoint_state_dict['epoch']
+ else:
+ logging.warning('checkpoint {} do not exsist!'.format(args.checkpoint))
+
+ if args.hift_checkpoint is not None:
+ hift=configs['hift']
+ if os.path.exists(args.hift_checkpoint):
+ state_dict = torch.load(args.hift_checkpoint, map_location='cpu')
+ hift.load_state_dict(state_dict, strict=True)
+ hift.eval()
+ for param in hift.parameters():
+ param.requires_grad = False
+
+ logging.info("Hift model loaded in inference mode (eval, no_grad).")
+ if 'step' in state_dict:
+ start_step = state_dict['step']
+ if 'epoch' in state_dict:
+ start_epoch = state_dict['epoch']
+ else:
+ logging.warning('checkpoint {} do not exsist!'.format(args.checkpoint))
+
+ # Dispatch model from cpu to gpu
+ model = wrap_cuda_model(args, model)
+ hift=hift.cuda()
+ # Get optimizer & scheduler
+ model, optimizer, scheduler, optimizer_d, scheduler_d = init_optimizer_and_scheduler(args, configs, model, gan)
+ scheduler.set_step(start_step)
+ if scheduler_d is not None:
+ scheduler_d.set_step(start_step)
+
+ # Save init checkpoints
+ info_dict = deepcopy(configs['train_conf'])
+ info_dict['step'] = start_step
+ info_dict['epoch'] = start_epoch
+ save_model(model, 'init', info_dict)
+
+ # DPO related
+ if args.dpo is True:
+ ref_model = deepcopy(configs[args.model])
+ state_dict = torch.load(args.ref_model, map_location='cpu')
+ ref_model.load_state_dict(state_dict, strict=False)
+ dpo_loss = DPOLoss(beta=0.01, label_smoothing=0.0, ipo=False)
+ # NOTE maybe it is not needed to wrap ref_model as ddp because its parameter is not updated
+ ref_model = wrap_cuda_model(args, ref_model)
+ else:
+ ref_model, dpo_loss = None, None
+
+ # Get executor
+ executor = Executor(gan=gan, ref_model=ref_model, dpo_loss=dpo_loss)
+ executor.step = start_step
+ # executor.evaluate_interval=args.evaluate_interval
+ # Init scaler, used for pytorch amp mixed precision training
+ scaler = torch.cuda.amp.GradScaler() if args.use_amp else None
+ print('start step {} start epoch {}'.format(start_step, start_epoch))
+
+ # Start training loop
+ for epoch in range(start_epoch + 1, info_dict['max_epoch']):
+ executor.epoch = epoch
+ train_dataset.set_epoch(epoch)
+ dist.barrier()
+ group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout))
+ if gan is True:
+ executor.train_one_epoc_gan(model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
+ writer, info_dict, scaler, group_join)
+ else:
+ executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join, ref_model=ref_model)
+ dist.destroy_process_group(group_join)
+
+
+if __name__ == '__main__':
+ main()
diff --git a/cosyvoice/cli/__init__.py b/cosyvoice/cli/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/cosyvoice/cli/cosyvoice.py b/cosyvoice/cli/cosyvoice.py
new file mode 100644
index 0000000000000000000000000000000000000000..cc443bed44c651a47492fc7e2142e3a88fb47627
--- /dev/null
+++ b/cosyvoice/cli/cosyvoice.py
@@ -0,0 +1,194 @@
+# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import os
+import time
+from typing import Generator
+from tqdm import tqdm
+from hyperpyyaml import load_hyperpyyaml
+from modelscope import snapshot_download
+import torch
+from cosyvoice.cli.frontend import CosyVoiceFrontEnd
+from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
+from cosyvoice.utils.file_utils import logging
+from cosyvoice.utils.class_utils import get_model_type
+
+
+class CosyVoice:
+
+ def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, trt_concurrent=1):
+ self.instruct = True if '-Instruct' in model_dir else False
+ self.model_dir = model_dir
+ self.fp16 = fp16
+ if not os.path.exists(model_dir):
+ model_dir = snapshot_download(model_dir)
+ hyper_yaml_path = '{}/cosyvoice.yaml'.format(model_dir)
+ if not os.path.exists(hyper_yaml_path):
+ raise ValueError('{} not found!'.format(hyper_yaml_path))
+ with open(hyper_yaml_path, 'r') as f:
+ configs = load_hyperpyyaml(f)
+ assert get_model_type(configs) != CosyVoice2Model, 'do not use {} for CosyVoice initialization!'.format(model_dir)
+ self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
+ configs['feat_extractor'],
+ '{}/campplus.onnx'.format(model_dir),
+ '{}/speech_tokenizer_v1.onnx'.format(model_dir),
+ '{}/spk2info.pt'.format(model_dir),
+ configs['allowed_special'])
+ self.sample_rate = configs['sample_rate']
+ if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
+ load_jit, load_trt, fp16 = False, False, False
+ logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
+ self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16)
+ self.model.load('{}/llm.pt'.format(model_dir),
+ '{}/flow.pt'.format(model_dir),
+ '{}/hift.pt'.format(model_dir))
+ if load_jit:
+ self.model.load_jit('{}/llm.text_encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
+ '{}/llm.llm.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
+ '{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
+ if load_trt:
+ self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
+ '{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
+ trt_concurrent,
+ self.fp16)
+ del configs
+
+ def list_available_spks(self):
+ spks = list(self.frontend.spk2info.keys())
+ return spks
+
+ def add_zero_shot_spk(self, prompt_text, prompt_speech_16k, zero_shot_spk_id):
+ assert zero_shot_spk_id != '', 'do not use empty zero_shot_spk_id'
+ model_input = self.frontend.frontend_zero_shot('', prompt_text, prompt_speech_16k, self.sample_rate, '')
+ del model_input['text']
+ del model_input['text_len']
+ self.frontend.spk2info[zero_shot_spk_id] = model_input
+ return True
+
+ def save_spkinfo(self):
+ torch.save(self.frontend.spk2info, '{}/spk2info.pt'.format(self.model_dir))
+
+ def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
+ for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
+ model_input = self.frontend.frontend_sft(i, spk_id)
+ start_time = time.time()
+ logging.info('synthesis text {}'.format(i))
+ for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
+ speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
+ logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
+ yield model_output
+ start_time = time.time()
+
+ def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
+ prompt_text = self.frontend.text_normalize(prompt_text, split=False, text_frontend=text_frontend)
+ for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
+ if (not isinstance(i, Generator)) and len(i) < 0.5 * len(prompt_text):
+ logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
+ model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate, zero_shot_spk_id)
+ start_time = time.time()
+ logging.info('synthesis text {}'.format(i))
+ for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
+ speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
+ logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
+ yield model_output
+ start_time = time.time()
+
+ def inference_cross_lingual(self, tts_text, prompt_speech_16k, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
+ for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
+ model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate, zero_shot_spk_id)
+ start_time = time.time()
+ logging.info('synthesis text {}'.format(i))
+ for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
+ speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
+ logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
+ yield model_output
+ start_time = time.time()
+
+ def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True):
+ assert isinstance(self.model, CosyVoiceModel), 'inference_instruct is only implemented for CosyVoice!'
+ if self.instruct is False:
+ raise ValueError('{} do not support instruct inference'.format(self.model_dir))
+ instruct_text = self.frontend.text_normalize(instruct_text, split=False, text_frontend=text_frontend)
+ for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
+ model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
+ start_time = time.time()
+ logging.info('synthesis text {}'.format(i))
+ for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
+ speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
+ logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
+ yield model_output
+ start_time = time.time()
+
+ def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
+ model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
+ start_time = time.time()
+ for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
+ speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
+ logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
+ yield model_output
+ start_time = time.time()
+
+
+class CosyVoice2(CosyVoice):
+
+ def __init__(self, model_dir, load_jit=False, load_trt=False, load_vllm=False, fp16=False, trt_concurrent=1):
+ self.instruct = True if '-Instruct' in model_dir else False
+ self.model_dir = model_dir
+ self.fp16 = fp16
+ if not os.path.exists(model_dir):
+ model_dir = snapshot_download(model_dir)
+ hyper_yaml_path = '{}/cosyvoice2.yaml'.format(model_dir)
+ if not os.path.exists(hyper_yaml_path):
+ raise ValueError('{} not found!'.format(hyper_yaml_path))
+ with open(hyper_yaml_path, 'r') as f:
+ configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
+ assert get_model_type(configs) == CosyVoice2Model, 'do not use {} for CosyVoice2 initialization!'.format(model_dir)
+ self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
+ configs['feat_extractor'],
+ '{}/campplus.onnx'.format(model_dir),
+ '{}/speech_tokenizer_v2.onnx'.format(model_dir),
+ '{}/spk2info.pt'.format(model_dir),
+ configs['allowed_special'])
+ self.sample_rate = configs['sample_rate']
+ if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
+ load_jit, load_trt, fp16 = False, False, False
+ logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
+ self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16)
+ self.model.load('{}/llm.pt'.format(model_dir),
+ '{}/flow.pt'.format(model_dir),
+ '{}/hift.pt'.format(model_dir))
+ if load_vllm:
+ self.model.load_vllm('{}/vllm'.format(model_dir))
+ if load_jit:
+ self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
+ if load_trt:
+ self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
+ '{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
+ trt_concurrent,
+ self.fp16)
+ del configs
+
+ def inference_instruct(self, *args, **kwargs):
+ raise NotImplementedError('inference_instruct is not implemented for CosyVoice2!')
+
+ def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
+ assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
+ for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
+ model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate, zero_shot_spk_id)
+ start_time = time.time()
+ logging.info('synthesis text {}'.format(i))
+ for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
+ speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
+ logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
+ yield model_output
+ start_time = time.time()
diff --git a/cosyvoice/cli/frontend.py b/cosyvoice/cli/frontend.py
new file mode 100644
index 0000000000000000000000000000000000000000..f98b0d612e244bbf58a3a1d9312857055c2133ac
--- /dev/null
+++ b/cosyvoice/cli/frontend.py
@@ -0,0 +1,215 @@
+# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from functools import partial
+from typing import Generator
+import json
+import onnxruntime
+import torch
+import numpy as np
+import whisper
+from typing import Callable
+import torchaudio.compliance.kaldi as kaldi
+import torchaudio
+import os
+import re
+import inflect
+try:
+ import ttsfrd
+ use_ttsfrd = True
+except ImportError:
+ print("failed to import ttsfrd, use wetext instead")
+ from wetext import Normalizer as ZhNormalizer
+ from wetext import Normalizer as EnNormalizer
+ use_ttsfrd = False
+from cosyvoice.utils.file_utils import logging
+from cosyvoice.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph, is_only_punctuation
+
+
+class CosyVoiceFrontEnd:
+
+ def __init__(self,
+ get_tokenizer: Callable,
+ feat_extractor: Callable,
+ campplus_model: str,
+ speech_tokenizer_model: str,
+ spk2info: str = '',
+ allowed_special: str = 'all'):
+ self.tokenizer = get_tokenizer()
+ self.feat_extractor = feat_extractor
+ self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+ option = onnxruntime.SessionOptions()
+ option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
+ option.intra_op_num_threads = 1
+ self.campplus_session = onnxruntime.InferenceSession(campplus_model, sess_options=option, providers=["CPUExecutionProvider"])
+ self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option,
+ providers=["CUDAExecutionProvider" if torch.cuda.is_available() else
+ "CPUExecutionProvider"])
+ if os.path.exists(spk2info):
+ self.spk2info = torch.load(spk2info, map_location=self.device)
+ else:
+ self.spk2info = {}
+ self.allowed_special = allowed_special
+ self.use_ttsfrd = use_ttsfrd
+ if self.use_ttsfrd:
+ self.frd = ttsfrd.TtsFrontendEngine()
+ ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
+ assert self.frd.initialize('{}/../../pretrained_models/CosyVoice-ttsfrd/resource'.format(ROOT_DIR)) is True, \
+ 'failed to initialize ttsfrd resource'
+ self.frd.set_lang_type('pinyinvg')
+ else:
+ self.zh_tn_model = ZhNormalizer(remove_erhua=False)
+ self.en_tn_model = EnNormalizer()
+ self.inflect_parser = inflect.engine()
+
+ def _extract_text_token(self, text):
+ if isinstance(text, Generator):
+ logging.info('get tts_text generator, will return _extract_text_token_generator!')
+ # NOTE add a dummy text_token_len for compatibility
+ return self._extract_text_token_generator(text), torch.tensor([0], dtype=torch.int32).to(self.device)
+ else:
+ text_token = self.tokenizer.encode(text, allowed_special=self.allowed_special)
+ text_token = torch.tensor([text_token], dtype=torch.int32).to(self.device)
+ text_token_len = torch.tensor([text_token.shape[1]], dtype=torch.int32).to(self.device)
+ return text_token, text_token_len
+
+ def _extract_text_token_generator(self, text_generator):
+ for text in text_generator:
+ text_token, _ = self._extract_text_token(text)
+ for i in range(text_token.shape[1]):
+ yield text_token[:, i: i + 1]
+
+ def _extract_speech_token(self, speech):
+ assert speech.shape[1] / 16000 <= 30, 'do not support extract speech token for audio longer than 30s'
+ feat = whisper.log_mel_spectrogram(speech, n_mels=128)
+ speech_token = self.speech_tokenizer_session.run(None,
+ {self.speech_tokenizer_session.get_inputs()[0].name:
+ feat.detach().cpu().numpy(),
+ self.speech_tokenizer_session.get_inputs()[1].name:
+ np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
+ speech_token = torch.tensor([speech_token], dtype=torch.int32).to(self.device)
+ speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device)
+ return speech_token, speech_token_len
+
+ def _extract_spk_embedding(self, speech):
+ feat = kaldi.fbank(speech,
+ num_mel_bins=80,
+ dither=0,
+ sample_frequency=16000)
+ feat = feat - feat.mean(dim=0, keepdim=True)
+ embedding = self.campplus_session.run(None,
+ {self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
+ embedding = torch.tensor([embedding]).to(self.device)
+ return embedding
+
+ def _extract_speech_feat(self, speech):
+ speech_feat = self.feat_extractor(speech).squeeze(dim=0).transpose(0, 1).to(self.device)
+ speech_feat = speech_feat.unsqueeze(dim=0)
+ speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device)
+ return speech_feat, speech_feat_len
+
+ def text_normalize(self, text, split=True, text_frontend=True):
+ if isinstance(text, Generator):
+ logging.info('get tts_text generator, will skip text_normalize!')
+ return [text]
+ if text_frontend is False or text == '':
+ return [text] if split is True else text
+ text = text.strip()
+ if self.use_ttsfrd:
+ texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
+ text = ''.join(texts)
+ else:
+ if contains_chinese(text):
+ text = self.zh_tn_model.normalize(text)
+ text = text.replace("\n", "")
+ text = replace_blank(text)
+ text = replace_corner_mark(text)
+ text = text.replace(".", "。")
+ text = text.replace(" - ", ",")
+ text = remove_bracket(text)
+ text = re.sub(r'[,,、]+$', '。', text)
+ texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
+ token_min_n=60, merge_len=20, comma_split=False))
+ else:
+ text = self.en_tn_model.normalize(text)
+ text = spell_out_number(text, self.inflect_parser)
+ texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
+ token_min_n=60, merge_len=20, comma_split=False))
+ texts = [i for i in texts if not is_only_punctuation(i)]
+ return texts if split is True else text
+
+ def frontend_sft(self, tts_text, spk_id):
+ tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
+ embedding = self.spk2info[spk_id]['embedding']
+ model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding}
+ return model_input
+
+ def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, resample_rate, zero_shot_spk_id):
+ tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
+ if zero_shot_spk_id == '':
+ prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text)
+ prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
+ speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
+ speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
+ if resample_rate == 24000:
+ # cosyvoice2, force speech_feat % speech_token = 2
+ token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
+ speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2 * token_len
+ speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
+ embedding = self._extract_spk_embedding(prompt_speech_16k)
+ model_input = {'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
+ 'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
+ 'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
+ 'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
+ 'llm_embedding': embedding, 'flow_embedding': embedding}
+ else:
+ model_input = self.spk2info[zero_shot_spk_id]
+ model_input['text'] = tts_text_token
+ model_input['text_len'] = tts_text_token_len
+ return model_input
+
+ def frontend_cross_lingual(self, tts_text, prompt_speech_16k, resample_rate, zero_shot_spk_id):
+ model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k, resample_rate, zero_shot_spk_id)
+ # in cross lingual mode, we remove prompt in llm
+ del model_input['prompt_text']
+ del model_input['prompt_text_len']
+ del model_input['llm_prompt_speech_token']
+ del model_input['llm_prompt_speech_token_len']
+ return model_input
+
+ def frontend_instruct(self, tts_text, spk_id, instruct_text):
+ model_input = self.frontend_sft(tts_text, spk_id)
+ # in instruct mode, we remove spk_embedding in llm due to information leakage
+ del model_input['llm_embedding']
+ instruct_text_token, instruct_text_token_len = self._extract_text_token(instruct_text + '')
+ model_input['prompt_text'] = instruct_text_token
+ model_input['prompt_text_len'] = instruct_text_token_len
+ return model_input
+
+ def frontend_instruct2(self, tts_text, instruct_text, prompt_speech_16k, resample_rate, zero_shot_spk_id):
+ model_input = self.frontend_zero_shot(tts_text, instruct_text + '<|endofprompt|>', prompt_speech_16k, resample_rate, zero_shot_spk_id)
+ del model_input['llm_prompt_speech_token']
+ del model_input['llm_prompt_speech_token_len']
+ return model_input
+
+ def frontend_vc(self, source_speech_16k, prompt_speech_16k, resample_rate):
+ prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_speech_16k)
+ prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
+ prompt_speech_feat, prompt_speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
+ embedding = self._extract_spk_embedding(prompt_speech_16k)
+ source_speech_token, source_speech_token_len = self._extract_speech_token(source_speech_16k)
+ model_input = {'source_speech_token': source_speech_token, 'source_speech_token_len': source_speech_token_len,
+ 'flow_prompt_speech_token': prompt_speech_token, 'flow_prompt_speech_token_len': prompt_speech_token_len,
+ 'prompt_speech_feat': prompt_speech_feat, 'prompt_speech_feat_len': prompt_speech_feat_len,
+ 'flow_embedding': embedding}
+ return model_input
diff --git a/cosyvoice/cli/model.py b/cosyvoice/cli/model.py
new file mode 100644
index 0000000000000000000000000000000000000000..9c8ac7e785f3ce0f74465cb887553b3d11068102
--- /dev/null
+++ b/cosyvoice/cli/model.py
@@ -0,0 +1,386 @@
+# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
+# 2025 Alibaba Inc (authors: Xiang Lyu, Bofan Zhou)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import os
+from typing import Generator
+import torch
+import numpy as np
+import threading
+import time
+from torch.nn import functional as F
+from contextlib import nullcontext
+import uuid
+from cosyvoice.utils.common import fade_in_out
+from cosyvoice.utils.file_utils import convert_onnx_to_trt, export_cosyvoice2_vllm
+from cosyvoice.utils.common import TrtContextWrapper
+
+
+class CosyVoiceModel:
+
+ def __init__(self,
+ llm: torch.nn.Module,
+ flow: torch.nn.Module,
+ hift: torch.nn.Module,
+ fp16: bool = False):
+ self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+ self.llm = llm
+ self.flow = flow
+ self.hift = hift
+ self.fp16 = fp16
+ if self.fp16 is True:
+ self.llm.half()
+ self.flow.half()
+ self.token_min_hop_len = 2 * self.flow.input_frame_rate
+ self.token_max_hop_len = 4 * self.flow.input_frame_rate
+ self.token_overlap_len = 20
+ # mel fade in out
+ self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
+ self.mel_window = np.hamming(2 * self.mel_overlap_len)
+ # hift cache
+ self.mel_cache_len = 20
+ self.source_cache_len = int(self.mel_cache_len * 256)
+ # speech fade in out
+ self.speech_window = np.hamming(2 * self.source_cache_len)
+ # rtf and decoding related
+ self.stream_scale_factor = 1
+ assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
+ self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
+ self.lock = threading.Lock()
+ # dict used to store session related variable
+ self.tts_speech_token_dict = {}
+ self.llm_end_dict = {}
+ self.mel_overlap_dict = {}
+ self.flow_cache_dict = {}
+ self.hift_cache_dict = {}
+
+ def load(self, llm_model, flow_model, hift_model):
+ self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
+ self.llm.to(self.device).eval()
+ self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
+ self.flow.to(self.device).eval()
+ # in case hift_model is a hifigan model
+ hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
+ self.hift.load_state_dict(hift_state_dict, strict=True)
+ self.hift.to(self.device).eval()
+
+ def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model):
+ llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device)
+ self.llm.text_encoder = llm_text_encoder
+ llm_llm = torch.jit.load(llm_llm_model, map_location=self.device)
+ self.llm.llm = llm_llm
+ flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
+ self.flow.encoder = flow_encoder
+
+ def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, trt_concurrent, fp16):
+ assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
+ if not os.path.exists(flow_decoder_estimator_model) or os.path.getsize(flow_decoder_estimator_model) == 0:
+ convert_onnx_to_trt(flow_decoder_estimator_model, self.get_trt_kwargs(), flow_decoder_onnx_model, fp16)
+ del self.flow.decoder.estimator
+ import tensorrt as trt
+ with open(flow_decoder_estimator_model, 'rb') as f:
+ estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
+ assert estimator_engine is not None, 'failed to load trt {}'.format(flow_decoder_estimator_model)
+ self.flow.decoder.estimator = TrtContextWrapper(estimator_engine, trt_concurrent=trt_concurrent, device=self.device)
+
+ def get_trt_kwargs(self):
+ min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4)]
+ opt_shape = [(2, 80, 500), (2, 1, 500), (2, 80, 500), (2, 80, 500)]
+ max_shape = [(2, 80, 3000), (2, 1, 3000), (2, 80, 3000), (2, 80, 3000)]
+ input_names = ["x", "mask", "mu", "cond"]
+ return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
+
+ def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
+ with self.llm_context, torch.cuda.amp.autocast(self.fp16 is True and hasattr(self.llm, 'vllm') is False):
+ if isinstance(text, Generator):
+ assert isinstance(self, CosyVoice2Model) and not hasattr(self.llm, 'vllm'), 'streaming input text is only implemented for CosyVoice2 and do not support vllm!'
+ for i in self.llm.inference_bistream(text=text,
+ prompt_text=prompt_text.to(self.device),
+ prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
+ prompt_speech_token=llm_prompt_speech_token.to(self.device),
+ prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
+ embedding=llm_embedding.to(self.device)):
+ self.tts_speech_token_dict[uuid].append(i)
+ else:
+ for i in self.llm.inference(text=text.to(self.device),
+ text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
+ prompt_text=prompt_text.to(self.device),
+ prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
+ prompt_speech_token=llm_prompt_speech_token.to(self.device),
+ prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
+ embedding=llm_embedding.to(self.device),
+ uuid=uuid):
+ self.tts_speech_token_dict[uuid].append(i)
+ self.llm_end_dict[uuid] = True
+
+ def vc_job(self, source_speech_token, uuid):
+ self.tts_speech_token_dict[uuid] = source_speech_token.flatten().tolist()
+ self.llm_end_dict[uuid] = True
+
+ def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
+ with torch.cuda.amp.autocast(self.fp16):
+ tts_mel, self.flow_cache_dict[uuid] = self.flow.inference(token=token.to(self.device),
+ token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
+ prompt_token=prompt_token.to(self.device),
+ prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
+ prompt_feat=prompt_feat.to(self.device),
+ prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
+ embedding=embedding.to(self.device),
+ flow_cache=self.flow_cache_dict[uuid])
+
+ # mel overlap fade in out
+ if self.mel_overlap_dict[uuid].shape[2] != 0:
+ tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
+ # append hift cache
+ if self.hift_cache_dict[uuid] is not None:
+ hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
+ tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
+ else:
+ hift_cache_source = torch.zeros(1, 1, 0)
+ # keep overlap mel and hift cache
+ if finalize is False:
+ self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
+ tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
+ tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
+ if self.hift_cache_dict[uuid] is not None:
+ tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
+ self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
+ 'source': tts_source[:, :, -self.source_cache_len:],
+ 'speech': tts_speech[:, -self.source_cache_len:]}
+ tts_speech = tts_speech[:, :-self.source_cache_len]
+ else:
+ if speed != 1.0:
+ assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
+ tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
+ tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
+ if self.hift_cache_dict[uuid] is not None:
+ tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
+ return tts_speech
+
+ def tts(self, text=torch.zeros(1, 0, dtype=torch.int32), flow_embedding=torch.zeros(0, 192), llm_embedding=torch.zeros(0, 192),
+ prompt_text=torch.zeros(1, 0, dtype=torch.int32),
+ llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
+ flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
+ prompt_speech_feat=torch.zeros(1, 0, 80), source_speech_token=torch.zeros(1, 0, dtype=torch.int32), stream=False, speed=1.0, **kwargs):
+ # this_uuid is used to track variables related to this inference thread
+ this_uuid = str(uuid.uuid1())
+ with self.lock:
+ self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
+ self.hift_cache_dict[this_uuid] = None
+ self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
+ self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
+ if source_speech_token.shape[1] == 0:
+ p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
+ else:
+ p = threading.Thread(target=self.vc_job, args=(source_speech_token, this_uuid))
+ p.start()
+ if stream is True:
+ token_hop_len = self.token_min_hop_len
+ while True:
+ time.sleep(0.1)
+ if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
+ this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
+ .unsqueeze(dim=0)
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
+ prompt_token=flow_prompt_speech_token,
+ prompt_feat=prompt_speech_feat,
+ embedding=flow_embedding,
+ uuid=this_uuid,
+ finalize=False)
+ yield {'tts_speech': this_tts_speech.cpu()}
+ with self.lock:
+ self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
+ # increase token_hop_len for better speech quality
+ token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
+ if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
+ break
+ p.join()
+ # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
+ this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
+ prompt_token=flow_prompt_speech_token,
+ prompt_feat=prompt_speech_feat,
+ embedding=flow_embedding,
+ uuid=this_uuid,
+ finalize=True)
+ yield {'tts_speech': this_tts_speech.cpu()}
+ else:
+ # deal with all tokens
+ p.join()
+ this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
+ prompt_token=flow_prompt_speech_token,
+ prompt_feat=prompt_speech_feat,
+ embedding=flow_embedding,
+ uuid=this_uuid,
+ finalize=True,
+ speed=speed)
+ yield {'tts_speech': this_tts_speech.cpu()}
+ with self.lock:
+ self.tts_speech_token_dict.pop(this_uuid)
+ self.llm_end_dict.pop(this_uuid)
+ self.mel_overlap_dict.pop(this_uuid)
+ self.hift_cache_dict.pop(this_uuid)
+ self.flow_cache_dict.pop(this_uuid)
+ if torch.cuda.is_available():
+ torch.cuda.empty_cache()
+ torch.cuda.current_stream().synchronize()
+
+
+class CosyVoice2Model(CosyVoiceModel):
+
+ def __init__(self,
+ llm: torch.nn.Module,
+ flow: torch.nn.Module,
+ hift: torch.nn.Module,
+ fp16: bool = False):
+ self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+ self.llm = llm
+ self.flow = flow
+ self.hift = hift
+ self.fp16 = fp16
+ if self.fp16 is True:
+ self.llm.half()
+ self.flow.half()
+ # NOTE must matching training static_chunk_size
+ self.token_hop_len = 25
+ # hift cache
+ self.mel_cache_len = 8
+ self.source_cache_len = int(self.mel_cache_len * 480)
+ # speech fade in out
+ self.speech_window = np.hamming(2 * self.source_cache_len)
+ # rtf and decoding related
+ self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
+ self.lock = threading.Lock()
+ # dict used to store session related variable
+ self.tts_speech_token_dict = {}
+ self.llm_end_dict = {}
+ self.hift_cache_dict = {}
+
+ def load_jit(self, flow_encoder_model):
+ flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
+ self.flow.encoder = flow_encoder
+
+ def load_vllm(self, model_dir):
+ export_cosyvoice2_vllm(self.llm, model_dir, self.device)
+ from vllm import EngineArgs, LLMEngine
+ engine_args = EngineArgs(model=model_dir,
+ skip_tokenizer_init=True,
+ enable_prompt_embeds=True,
+ gpu_memory_utilization=0.2)
+ self.llm.vllm = LLMEngine.from_engine_args(engine_args)
+ self.llm.lock = threading.Lock()
+ del self.llm.llm.model.model.layers
+
+ def token2wav(self, token, prompt_token, prompt_feat, embedding, token_offset, uuid, stream=False, finalize=False, speed=1.0):
+ with torch.cuda.amp.autocast(self.fp16):
+ tts_mel, _ = self.flow.inference(token=token.to(self.device),
+ token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
+ prompt_token=prompt_token.to(self.device),
+ prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
+ prompt_feat=prompt_feat.to(self.device),
+ prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
+ embedding=embedding.to(self.device),
+ streaming=stream,
+ finalize=finalize)
+ tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
+ # append hift cache
+ if self.hift_cache_dict[uuid] is not None:
+ hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
+ tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
+ else:
+ hift_cache_source = torch.zeros(1, 1, 0)
+ # keep overlap mel and hift cache
+ if finalize is False:
+ tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
+ if self.hift_cache_dict[uuid] is not None:
+ tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
+ self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
+ 'source': tts_source[:, :, -self.source_cache_len:],
+ 'speech': tts_speech[:, -self.source_cache_len:]}
+ tts_speech = tts_speech[:, :-self.source_cache_len]
+ else:
+ if speed != 1.0:
+ assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
+ tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
+ tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
+ if self.hift_cache_dict[uuid] is not None:
+ tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
+ return tts_speech
+
+ def tts(self, text=torch.zeros(1, 0, dtype=torch.int32), flow_embedding=torch.zeros(0, 192), llm_embedding=torch.zeros(0, 192),
+ prompt_text=torch.zeros(1, 0, dtype=torch.int32),
+ llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
+ flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
+ prompt_speech_feat=torch.zeros(1, 0, 80), source_speech_token=torch.zeros(1, 0, dtype=torch.int32), stream=False, speed=1.0, **kwargs):
+ # this_uuid is used to track variables related to this inference thread
+ this_uuid = str(uuid.uuid1())
+ with self.lock:
+ self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
+ self.hift_cache_dict[this_uuid] = None
+ if source_speech_token.shape[1] == 0:
+ p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
+ else:
+ p = threading.Thread(target=self.vc_job, args=(source_speech_token, this_uuid))
+ p.start()
+ if stream is True:
+ token_offset = 0
+ prompt_token_pad = int(np.ceil(flow_prompt_speech_token.shape[1] / self.token_hop_len) * self.token_hop_len - flow_prompt_speech_token.shape[1])
+ while True:
+ time.sleep(0.1)
+ this_token_hop_len = self.token_hop_len + prompt_token_pad if token_offset == 0 else self.token_hop_len
+ if len(self.tts_speech_token_dict[this_uuid]) - token_offset >= this_token_hop_len + self.flow.pre_lookahead_len:
+ this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_offset + this_token_hop_len + self.flow.pre_lookahead_len]).unsqueeze(dim=0)
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
+ prompt_token=flow_prompt_speech_token,
+ prompt_feat=prompt_speech_feat,
+ embedding=flow_embedding,
+ token_offset=token_offset,
+ uuid=this_uuid,
+ stream=stream,
+ finalize=False)
+ token_offset += this_token_hop_len
+ yield {'tts_speech': this_tts_speech.cpu()}
+ if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < this_token_hop_len + self.flow.pre_lookahead_len:
+ break
+ p.join()
+ # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
+ this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
+ prompt_token=flow_prompt_speech_token,
+ prompt_feat=prompt_speech_feat,
+ embedding=flow_embedding,
+ token_offset=token_offset,
+ uuid=this_uuid,
+ finalize=True)
+ yield {'tts_speech': this_tts_speech.cpu()}
+ else:
+ # deal with all tokens
+ p.join()
+ this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
+ prompt_token=flow_prompt_speech_token,
+ prompt_feat=prompt_speech_feat,
+ embedding=flow_embedding,
+ token_offset=0,
+ uuid=this_uuid,
+ finalize=True,
+ speed=speed)
+ yield {'tts_speech': this_tts_speech.cpu()}
+ with self.lock:
+ self.tts_speech_token_dict.pop(this_uuid)
+ self.llm_end_dict.pop(this_uuid)
+ self.hift_cache_dict.pop(this_uuid)
+ if torch.cuda.is_available():
+ torch.cuda.empty_cache()
+ torch.cuda.current_stream().synchronize()
diff --git a/cosyvoice/dataset/__init__.py b/cosyvoice/dataset/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/cosyvoice/dataset/dataset.py b/cosyvoice/dataset/dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..f1c7174c3d2f970eb50fef2a7cedd9984288539e
--- /dev/null
+++ b/cosyvoice/dataset/dataset.py
@@ -0,0 +1,160 @@
+# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
+# 2024 Alibaba Inc (authors: Xiang Lyu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import random
+import math
+from functools import partial
+
+import torch
+import torch.distributed as dist
+from torch.utils.data import IterableDataset
+from cosyvoice.utils.file_utils import read_lists
+
+
+class Processor(IterableDataset):
+
+ def __init__(self, source, f, *args, **kw):
+ assert callable(f)
+ self.source = source
+ self.f = f
+ self.args = args
+ self.kw = kw
+
+ def set_epoch(self, epoch):
+ self.source.set_epoch(epoch)
+
+ def __iter__(self):
+ """ Return an iterator over the source dataset processed by the
+ given processor.
+ """
+ assert self.source is not None
+ assert callable(self.f)
+ return self.f(iter(self.source), *self.args, **self.kw)
+
+ def apply(self, f):
+ assert callable(f)
+ return Processor(self, f, *self.args, **self.kw)
+
+
+class DistributedSampler:
+
+ def __init__(self, shuffle=True, partition=True):
+ self.epoch = -1
+ self.update()
+ self.shuffle = shuffle
+ self.partition = partition
+
+ def update(self):
+ assert dist.is_available()
+ if dist.is_initialized():
+ self.rank = dist.get_rank()
+ self.world_size = dist.get_world_size()
+ else:
+ self.rank = 0
+ self.world_size = 1
+ worker_info = torch.utils.data.get_worker_info()
+ if worker_info is None:
+ self.worker_id = 0
+ self.num_workers = 1
+ else:
+ self.worker_id = worker_info.id
+ self.num_workers = worker_info.num_workers
+ return dict(rank=self.rank,
+ world_size=self.world_size,
+ worker_id=self.worker_id,
+ num_workers=self.num_workers)
+
+ def set_epoch(self, epoch):
+ self.epoch = epoch
+
+ def sample(self, data):
+ """ Sample data according to rank/world_size/num_workers
+
+ Args:
+ data(List): input data list
+
+ Returns:
+ List: data list after sample
+ """
+ data = list(range(len(data)))
+ # force datalist even
+ if self.partition:
+ if self.shuffle:
+ random.Random(self.epoch).shuffle(data)
+ if len(data) < self.world_size:
+ data = data * math.ceil(self.world_size / len(data))
+ data = data[:self.world_size]
+ data = data[self.rank::self.world_size]
+ if len(data) < self.num_workers:
+ data = data * math.ceil(self.num_workers / len(data))
+ data = data[:self.num_workers]
+ data = data[self.worker_id::self.num_workers]
+ return data
+
+
+class DataList(IterableDataset):
+
+ def __init__(self, lists, shuffle=True, partition=True):
+ self.lists = lists
+ self.sampler = DistributedSampler(shuffle, partition)
+
+ def set_epoch(self, epoch):
+ self.sampler.set_epoch(epoch)
+
+ def __iter__(self):
+ sampler_info = self.sampler.update()
+ indexes = self.sampler.sample(self.lists)
+ for index in indexes:
+ data = dict(src=self.lists[index])
+ data.update(sampler_info)
+ yield data
+
+
+def Dataset(data_list_file,
+ data_pipeline,
+ mode='train',
+ gan=False,
+ dpo=False,
+ shuffle=True,
+ partition=True):
+ """ Construct dataset from arguments
+
+ We have two shuffle stage in the Dataset. The first is global
+ shuffle at shards tar/raw file level. The second is global shuffle
+ at training samples level.
+
+ Args:
+ data_type(str): raw/shard
+ tokenizer (BaseTokenizer): tokenizer to tokenize
+ partition(bool): whether to do data partition in terms of rank
+ """
+ lists = read_lists(data_list_file)
+ dataset = DataList(lists,
+ shuffle=shuffle,
+ partition=partition)
+ # import pyarrow.parquet as pq
+ # for sample in dataset:
+ # url = sample['src']
+ # for df in pq.ParquetFile(url).iter_batches(batch_size=64):
+ # df = df.to_pandas()
+ # import pdb
+ # pdb.set_trace()
+ # break
+ # break
+ # map partial arg to padding func
+ data_pipeline[-1] = partial(data_pipeline[-1], gan=gan, dpo=dpo)
+ for func in data_pipeline:
+ dataset = Processor(dataset, func, mode=mode)
+ return dataset
diff --git a/cosyvoice/dataset/processor.py b/cosyvoice/dataset/processor.py
new file mode 100644
index 0000000000000000000000000000000000000000..8ee6a08eb3e09e93d86c5e83cf62d87c65fccf75
--- /dev/null
+++ b/cosyvoice/dataset/processor.py
@@ -0,0 +1,436 @@
+# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import logging
+import random
+
+import pyarrow.parquet as pq
+from io import BytesIO
+import torch
+import torchaudio
+from torch.nn.utils.rnn import pad_sequence
+import torch.nn.functional as F
+import pyworld as pw
+
+
+AUDIO_FORMAT_SETS = {'flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'}
+
+
+def parquet_opener(data, mode='train', tts_data={}):
+ """ Give url or local file, return file descriptor
+ Inplace operation.
+
+ Args:
+ data(Iterable[str]): url or local file list
+
+ Returns:
+ Iterable[{src, stream}]
+ """
+ for sample in data:
+ assert 'src' in sample
+ url = sample['src']
+ try:
+ for df in pq.ParquetFile(url).iter_batches(batch_size=64):
+ df = df.to_pandas()
+ for i in range(len(df)):
+ sample.update(dict(df.loc[i]))
+ if mode == 'train':
+ # NOTE do not return sample directly, must initialize a new dict
+ yield {**sample}
+ else:
+ for index, text in enumerate(tts_data[df.loc[i, 'utt']]):
+ yield {**sample, 'tts_index': index, 'tts_text': text}
+ except Exception as ex:
+ logging.warning('Failed to open {}, ex info {}'.format(url, ex))
+
+
+def filter(data,
+ max_length=10240,
+ min_length=100,
+ token_max_length=200,
+ token_min_length=1,
+ min_output_input_ratio=0.0005,
+ max_output_input_ratio=1,
+ mode='train'):
+ """ Filter sample according to feature and label length
+ Inplace operation.
+
+ Args::
+ data: Iterable[{key, wav, label, sample_rate}]
+ max_length: drop utterance which is greater than max_length(10ms)
+ min_length: drop utterance which is less than min_length(10ms)
+ token_max_length: drop utterance which is greater than
+ token_max_length, especially when use char unit for
+ english modeling
+ token_min_length: drop utterance which is
+ less than token_max_length
+ min_output_input_ratio: minimal ration of
+ token_length / feats_length(10ms)
+ max_output_input_ratio: maximum ration of
+ token_length / feats_length(10ms)
+
+ Returns:
+ Iterable[{key, wav, label, sample_rate}]
+ """
+ for sample in data:
+ sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data']))
+ sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
+ del sample['audio_data']
+ # sample['wav'] is torch.Tensor, we have 100 frames every second
+ num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100
+ if num_frames < min_length:
+ continue
+ if num_frames > max_length:
+ continue
+ if len(sample['text_token']) < token_min_length:
+ continue
+ if len(sample['text_token']) > token_max_length:
+ continue
+ if len(sample['speech_token']) == 0:
+ continue
+ if 'reject_speech_token' in sample and len(sample['reject_speech_token']) == 0:
+ continue
+ if num_frames != 0:
+ if len(sample['text_token']) / num_frames < min_output_input_ratio:
+ continue
+ if len(sample['text_token']) / num_frames > max_output_input_ratio:
+ continue
+ yield sample
+
+
+def resample(data, resample_rate=22050, min_sample_rate=16000, mode='train'):
+ """ Resample data.
+ Inplace operation.
+
+ Args:
+ data: Iterable[{key, wav, label, sample_rate}]
+ resample_rate: target resample rate
+
+ Returns:
+ Iterable[{key, wav, label, sample_rate}]
+ """
+ for sample in data:
+ assert 'sample_rate' in sample
+ assert 'speech' in sample
+ sample_rate = sample['sample_rate']
+ waveform = sample['speech']
+ if sample_rate != resample_rate:
+ if sample_rate < min_sample_rate:
+ continue
+ sample['sample_rate'] = resample_rate
+ sample['speech'] = torchaudio.transforms.Resample(
+ orig_freq=sample_rate, new_freq=resample_rate)(waveform)
+ max_val = sample['speech'].abs().max()
+ if max_val > 1:
+ sample['speech'] /= max_val
+ yield sample
+
+
+def truncate(data, truncate_length=24576, mode='train'):
+ """ Truncate data.
+
+ Args:
+ data: Iterable[{key, wav, label, sample_rate}]
+ truncate_length: truncate length
+
+ Returns:
+ Iterable[{key, wav, label, sample_rate}]
+ """
+ for sample in data:
+ waveform = sample['speech']
+ if waveform.shape[1] > truncate_length:
+ start = random.randint(0, waveform.shape[1] - truncate_length)
+ waveform = waveform[:, start: start + truncate_length]
+ else:
+ waveform = torch.concat([waveform, torch.zeros(1, truncate_length - waveform.shape[1])], dim=1)
+ sample['speech'] = waveform
+ yield sample
+
+
+def compute_fbank(data,
+ feat_extractor,
+ token_mel_ratio=0,
+ mode='train'):
+ """ Extract fbank
+
+ Args:
+ data: Iterable[{key, wav, label, sample_rate}]
+
+ Returns:
+ Iterable[{key, feat, label}]
+ """
+ for sample in data:
+ assert 'sample_rate' in sample
+ assert 'speech' in sample
+ assert 'utt' in sample
+ assert 'text_token' in sample
+ waveform = sample['speech']
+ feat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1)
+ if token_mel_ratio != 0:
+ # trim to align speech_token and speech_feat
+ token_len = int(min(feat.shape[0] / token_mel_ratio, sample["speech_token"].shape[0]))
+ feat = feat[:token_mel_ratio * token_len]
+ sample["speech_token"] = sample["speech_token"][:token_len]
+ sample['speech_feat'] = feat
+ yield sample
+
+
+def compute_f0(data, sample_rate, hop_size, mode='train'):
+ """ Extract f0
+
+ Args:
+ data: Iterable[{key, wav, label, sample_rate}]
+
+ Returns:
+ Iterable[{key, feat, label}]
+ """
+ frame_period = hop_size * 1000 / sample_rate
+ for sample in data:
+ assert 'sample_rate' in sample
+ assert 'speech' in sample
+ assert 'utt' in sample
+ assert 'text_token' in sample
+ waveform = sample['speech']
+ _f0, t = pw.harvest(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period)
+ if sum(_f0 != 0) < 5: # this happens when the algorithm fails
+ _f0, t = pw.dio(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period) # if harvest fails, try dio
+ f0 = pw.stonemask(waveform.squeeze(dim=0).numpy().astype('double'), _f0, t, sample_rate)
+ f0 = F.interpolate(torch.from_numpy(f0).view(1, 1, -1), size=sample['speech_feat'].shape[0], mode='linear').view(-1)
+ sample['pitch_feat'] = f0
+ yield sample
+
+
+def parse_embedding(data, normalize, mode='train'):
+ """ Parse utt_embedding/spk_embedding
+
+ Args:
+ data: Iterable[{key, wav, label, sample_rate}]
+
+ Returns:
+ Iterable[{key, feat, label}]
+ """
+ for sample in data:
+ sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32)
+ sample['spk_embedding'] = torch.tensor(sample['spk_embedding'], dtype=torch.float32)
+ if normalize:
+ sample['utt_embedding'] = F.normalize(sample['utt_embedding'], dim=0)
+ sample['spk_embedding'] = F.normalize(sample['spk_embedding'], dim=0)
+ yield sample
+
+
+def tokenize(data, get_tokenizer, allowed_special, mode='train'):
+ """ Decode text to chars or BPE
+ Inplace operation
+
+ Args:
+ data: Iterable[{key, wav, txt, sample_rate}]
+
+ Returns:
+ Iterable[{key, wav, txt, tokens, label, sample_rate}]
+ """
+ tokenizer = get_tokenizer()
+ for sample in data:
+ assert 'text' in sample
+ sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special)
+ yield sample
+
+
+def shuffle(data, shuffle_size=10000, mode='train'):
+ """ Local shuffle the data
+
+ Args:
+ data: Iterable[{key, feat, label}]
+ shuffle_size: buffer size for shuffle
+
+ Returns:
+ Iterable[{key, feat, label}]
+ """
+ buf = []
+ for sample in data:
+ buf.append(sample)
+ if len(buf) >= shuffle_size:
+ random.shuffle(buf)
+ for x in buf:
+ yield x
+ buf = []
+ # The sample left over
+ random.shuffle(buf)
+ for x in buf:
+ yield x
+
+
+def sort(data, sort_size=500, mode='train'):
+ """ Sort the data by feature length.
+ Sort is used after shuffle and before batch, so we can group
+ utts with similar lengths into a batch, and `sort_size` should
+ be less than `shuffle_size`
+
+ Args:
+ data: Iterable[{key, feat, label}]
+ sort_size: buffer size for sort
+
+ Returns:
+ Iterable[{key, feat, label}]
+ """
+
+ buf = []
+ for sample in data:
+ buf.append(sample)
+ if len(buf) >= sort_size:
+ buf.sort(key=lambda x: x['speech_feat'].size(0))
+ for x in buf:
+ yield x
+ buf = []
+ # The sample left over
+ buf.sort(key=lambda x: x['speech_feat'].size(0))
+ for x in buf:
+ yield x
+
+
+def static_batch(data, batch_size=16):
+ """ Static batch the data by `batch_size`
+
+ Args:
+ data: Iterable[{key, feat, label}]
+ batch_size: batch size
+
+ Returns:
+ Iterable[List[{key, feat, label}]]
+ """
+ buf = []
+ for sample in data:
+ buf.append(sample)
+ if len(buf) >= batch_size:
+ yield buf
+ buf = []
+ if len(buf) > 0:
+ yield buf
+
+
+def dynamic_batch(data, max_frames_in_batch=12000, mode='train'):
+ """ Dynamic batch the data until the total frames in batch
+ reach `max_frames_in_batch`
+
+ Args:
+ data: Iterable[{key, feat, label}]
+ max_frames_in_batch: max_frames in one batch
+
+ Returns:
+ Iterable[List[{key, feat, label}]]
+ """
+ buf = []
+ longest_frames = 0
+ for sample in data:
+ assert 'speech_feat' in sample
+ assert isinstance(sample['speech_feat'], torch.Tensor)
+ new_sample_frames = sample['speech_feat'].size(0)
+ longest_frames = max(longest_frames, new_sample_frames)
+ frames_after_padding = longest_frames * (len(buf) + 1)
+ if frames_after_padding > max_frames_in_batch:
+ yield buf
+ buf = [sample]
+ longest_frames = new_sample_frames
+ else:
+ buf.append(sample)
+ if len(buf) > 0:
+ yield buf
+
+
+def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, mode='train'):
+ """ Wrapper for static/dynamic batch
+ """
+ if batch_type == 'static':
+ return static_batch(data, batch_size)
+ elif batch_type == 'dynamic':
+ return dynamic_batch(data, max_frames_in_batch)
+ else:
+ logging.fatal('Unsupported batch type {}'.format(batch_type))
+
+
+def padding(data, use_spk_embedding, mode='train', gan=False, dpo=False):
+ """ Padding the data into training data
+
+ Args:
+ data: Iterable[List[{key, feat, label}]]
+
+ Returns:
+ Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
+ """
+ for sample in data:
+ assert isinstance(sample, list)
+ speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
+ dtype=torch.int32)
+ order = torch.argsort(speech_feat_len, descending=True)
+
+ utts = [sample[i]['utt'] for i in order]
+ speech = [sample[i]['speech'].squeeze(dim=0) for i in order]
+ speech_len = torch.tensor([i.size(0) for i in speech], dtype=torch.int32)
+ speech = pad_sequence(speech, batch_first=True, padding_value=0)
+ speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
+ speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
+ speech_token = pad_sequence(speech_token,
+ batch_first=True,
+ padding_value=0)
+ speech_feat = [sample[i]['speech_feat'] for i in order]
+ speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
+ speech_feat = pad_sequence(speech_feat,
+ batch_first=True,
+ padding_value=0)
+ text = [sample[i]['text'] for i in order]
+ text_token = [torch.tensor(sample[i]['text_token']) for i in order]
+ text_token_len = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32)
+ text_token = pad_sequence(text_token, batch_first=True, padding_value=0)
+ utt_embedding = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0)
+ spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
+ wavs=[sample[i]['wav'] for i in order]
+ batch = {
+ "wavs": wavs,
+ "utts": utts,
+ "speech": speech,
+ "speech_len": speech_len,
+ "speech_token": speech_token,
+ "speech_token_len": speech_token_len,
+ "speech_feat": speech_feat,
+ "speech_feat_len": speech_feat_len,
+ "text": text,
+ "text_token": text_token,
+ "text_token_len": text_token_len,
+ "utt_embedding": utt_embedding,
+ "spk_embedding": spk_embedding,
+ }
+ if gan is True:
+ # in gan train, we need pitch_feat
+ pitch_feat = [sample[i]['pitch_feat'] for i in order]
+ pitch_feat_len = torch.tensor([i.size(0) for i in pitch_feat], dtype=torch.int32)
+ pitch_feat = pad_sequence(pitch_feat,
+ batch_first=True,
+ padding_value=0)
+ batch["pitch_feat"] = pitch_feat
+ batch["pitch_feat_len"] = pitch_feat_len
+ else:
+ # only gan train needs speech, delete it to save memory
+ del batch["speech"]
+ del batch["speech_len"]
+ if dpo is True:
+ reject_speech_token = [torch.tensor(sample[i]['reject_speech_token']) for i in order]
+ reject_speech_token_len = torch.tensor([i.size(0) for i in reject_speech_token], dtype=torch.int32)
+ reject_speech_token = pad_sequence(reject_speech_token,
+ batch_first=True,
+ padding_value=0)
+ batch['reject_speech_token'] = reject_speech_token
+ batch['reject_speech_token_len'] = reject_speech_token_len
+ if use_spk_embedding is True:
+ batch["embedding"] = batch["spk_embedding"]
+ else:
+ batch["embedding"] = batch["utt_embedding"]
+ yield batch
diff --git a/cosyvoice/flow/decoder.py b/cosyvoice/flow/decoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..97768a459fbb89a2c99f98de302628d8ccafda67
--- /dev/null
+++ b/cosyvoice/flow/decoder.py
@@ -0,0 +1,494 @@
+# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import Tuple
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from einops import pack, rearrange, repeat
+from cosyvoice.utils.common import mask_to_bias
+from cosyvoice.utils.mask import add_optional_chunk_mask
+from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D
+from matcha.models.components.transformer import BasicTransformerBlock
+
+
+class Transpose(torch.nn.Module):
+ def __init__(self, dim0: int, dim1: int):
+ super().__init__()
+ self.dim0 = dim0
+ self.dim1 = dim1
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ x = torch.transpose(x, self.dim0, self.dim1)
+ return x
+
+
+class CausalConv1d(torch.nn.Conv1d):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ kernel_size: int,
+ stride: int = 1,
+ dilation: int = 1,
+ groups: int = 1,
+ bias: bool = True,
+ padding_mode: str = 'zeros',
+ device=None,
+ dtype=None
+ ) -> None:
+ super(CausalConv1d, self).__init__(in_channels, out_channels,
+ kernel_size, stride,
+ padding=0, dilation=dilation,
+ groups=groups, bias=bias,
+ padding_mode=padding_mode,
+ device=device, dtype=dtype)
+ assert stride == 1
+ self.causal_padding = kernel_size - 1
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ x = F.pad(x, (self.causal_padding, 0), value=0.0)
+ x = super(CausalConv1d, self).forward(x)
+ return x
+
+
+class CausalBlock1D(Block1D):
+ def __init__(self, dim: int, dim_out: int):
+ super(CausalBlock1D, self).__init__(dim, dim_out)
+ self.block = torch.nn.Sequential(
+ CausalConv1d(dim, dim_out, 3),
+ Transpose(1, 2),
+ nn.LayerNorm(dim_out),
+ Transpose(1, 2),
+ nn.Mish(),
+ )
+
+ def forward(self, x: torch.Tensor, mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
+ output = self.block(x * mask)
+ return output * mask
+
+
+class CausalResnetBlock1D(ResnetBlock1D):
+ def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8):
+ super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups)
+ self.block1 = CausalBlock1D(dim, dim_out)
+ self.block2 = CausalBlock1D(dim_out, dim_out)
+
+
+class ConditionalDecoder(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ channels=(256, 256),
+ dropout=0.05,
+ attention_head_dim=64,
+ n_blocks=1,
+ num_mid_blocks=2,
+ num_heads=4,
+ act_fn="snake",
+ ):
+ """
+ This decoder requires an input with the same shape of the target. So, if your text content
+ is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
+ """
+ super().__init__()
+ channels = tuple(channels)
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+
+ self.time_embeddings = SinusoidalPosEmb(in_channels)
+ time_embed_dim = channels[0] * 4
+ self.time_mlp = TimestepEmbedding(
+ in_channels=in_channels,
+ time_embed_dim=time_embed_dim,
+ act_fn="silu",
+ )
+ self.down_blocks = nn.ModuleList([])
+ self.mid_blocks = nn.ModuleList([])
+ self.up_blocks = nn.ModuleList([])
+
+ output_channel = in_channels
+ for i in range(len(channels)): # pylint: disable=consider-using-enumerate
+ input_channel = output_channel
+ output_channel = channels[i]
+ is_last = i == len(channels) - 1
+ resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
+ transformer_blocks = nn.ModuleList(
+ [
+ BasicTransformerBlock(
+ dim=output_channel,
+ num_attention_heads=num_heads,
+ attention_head_dim=attention_head_dim,
+ dropout=dropout,
+ activation_fn=act_fn,
+ )
+ for _ in range(n_blocks)
+ ]
+ )
+ downsample = (
+ Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
+ )
+ self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
+
+ for _ in range(num_mid_blocks):
+ input_channel = channels[-1]
+ out_channels = channels[-1]
+ resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
+
+ transformer_blocks = nn.ModuleList(
+ [
+ BasicTransformerBlock(
+ dim=output_channel,
+ num_attention_heads=num_heads,
+ attention_head_dim=attention_head_dim,
+ dropout=dropout,
+ activation_fn=act_fn,
+ )
+ for _ in range(n_blocks)
+ ]
+ )
+
+ self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
+
+ channels = channels[::-1] + (channels[0],)
+ for i in range(len(channels) - 1):
+ input_channel = channels[i] * 2
+ output_channel = channels[i + 1]
+ is_last = i == len(channels) - 2
+ resnet = ResnetBlock1D(
+ dim=input_channel,
+ dim_out=output_channel,
+ time_emb_dim=time_embed_dim,
+ )
+ transformer_blocks = nn.ModuleList(
+ [
+ BasicTransformerBlock(
+ dim=output_channel,
+ num_attention_heads=num_heads,
+ attention_head_dim=attention_head_dim,
+ dropout=dropout,
+ activation_fn=act_fn,
+ )
+ for _ in range(n_blocks)
+ ]
+ )
+ upsample = (
+ Upsample1D(output_channel, use_conv_transpose=True)
+ if not is_last
+ else nn.Conv1d(output_channel, output_channel, 3, padding=1)
+ )
+ self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
+ self.final_block = Block1D(channels[-1], channels[-1])
+ self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
+ self.initialize_weights()
+
+ def initialize_weights(self):
+ for m in self.modules():
+ if isinstance(m, nn.Conv1d):
+ nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
+ if m.bias is not None:
+ nn.init.constant_(m.bias, 0)
+ elif isinstance(m, nn.GroupNorm):
+ nn.init.constant_(m.weight, 1)
+ nn.init.constant_(m.bias, 0)
+ elif isinstance(m, nn.Linear):
+ nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
+ if m.bias is not None:
+ nn.init.constant_(m.bias, 0)
+
+ def forward(self, x, mask, mu, t, spks=None, cond=None, streaming=False):
+ """Forward pass of the UNet1DConditional model.
+
+ Args:
+ x (torch.Tensor): shape (batch_size, in_channels, time)
+ mask (_type_): shape (batch_size, 1, time)
+ t (_type_): shape (batch_size)
+ spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
+ cond (_type_, optional): placeholder for future use. Defaults to None.
+
+ Raises:
+ ValueError: _description_
+ ValueError: _description_
+
+ Returns:
+ _type_: _description_
+ """
+
+ t = self.time_embeddings(t).to(t.dtype)
+ t = self.time_mlp(t)
+
+ x = pack([x, mu], "b * t")[0]
+
+ if spks is not None:
+ spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
+ x = pack([x, spks], "b * t")[0]
+ if cond is not None:
+ x = pack([x, cond], "b * t")[0]
+
+ hiddens = []
+ masks = [mask]
+ for resnet, transformer_blocks, downsample in self.down_blocks:
+ mask_down = masks[-1]
+ x = resnet(x, mask_down, t)
+ x = rearrange(x, "b c t -> b t c").contiguous()
+ attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
+ attn_mask = mask_to_bias(attn_mask, x.dtype)
+ for transformer_block in transformer_blocks:
+ x = transformer_block(
+ hidden_states=x,
+ attention_mask=attn_mask,
+ timestep=t,
+ )
+ x = rearrange(x, "b t c -> b c t").contiguous()
+ hiddens.append(x) # Save hidden states for skip connections
+ x = downsample(x * mask_down)
+ masks.append(mask_down[:, :, ::2])
+ masks = masks[:-1]
+ mask_mid = masks[-1]
+
+ for resnet, transformer_blocks in self.mid_blocks:
+ x = resnet(x, mask_mid, t)
+ x = rearrange(x, "b c t -> b t c").contiguous()
+ attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
+ attn_mask = mask_to_bias(attn_mask, x.dtype)
+ for transformer_block in transformer_blocks:
+ x = transformer_block(
+ hidden_states=x,
+ attention_mask=attn_mask,
+ timestep=t,
+ )
+ x = rearrange(x, "b t c -> b c t").contiguous()
+
+ for resnet, transformer_blocks, upsample in self.up_blocks:
+ mask_up = masks.pop()
+ skip = hiddens.pop()
+ x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
+ x = resnet(x, mask_up, t)
+ x = rearrange(x, "b c t -> b t c").contiguous()
+ attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
+ attn_mask = mask_to_bias(attn_mask, x.dtype)
+ for transformer_block in transformer_blocks:
+ x = transformer_block(
+ hidden_states=x,
+ attention_mask=attn_mask,
+ timestep=t,
+ )
+ x = rearrange(x, "b t c -> b c t").contiguous()
+ x = upsample(x * mask_up)
+ x = self.final_block(x, mask_up)
+ output = self.final_proj(x * mask_up)
+ return output * mask
+
+
+class CausalConditionalDecoder(ConditionalDecoder):
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ channels=(256, 256),
+ dropout=0.05,
+ attention_head_dim=64,
+ n_blocks=1,
+ num_mid_blocks=2,
+ num_heads=4,
+ act_fn="snake",
+ static_chunk_size=50,
+ num_decoding_left_chunks=2,
+ ):
+ """
+ This decoder requires an input with the same shape of the target. So, if your text content
+ is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
+ """
+ torch.nn.Module.__init__(self)
+ channels = tuple(channels)
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.time_embeddings = SinusoidalPosEmb(in_channels)
+ time_embed_dim = channels[0] * 4
+ self.time_mlp = TimestepEmbedding(
+ in_channels=in_channels,
+ time_embed_dim=time_embed_dim,
+ act_fn="silu",
+ )
+ self.static_chunk_size = static_chunk_size
+ self.num_decoding_left_chunks = num_decoding_left_chunks
+ self.down_blocks = nn.ModuleList([])
+ self.mid_blocks = nn.ModuleList([])
+ self.up_blocks = nn.ModuleList([])
+
+ output_channel = in_channels
+ for i in range(len(channels)): # pylint: disable=consider-using-enumerate
+ input_channel = output_channel
+ output_channel = channels[i]
+ is_last = i == len(channels) - 1
+ resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
+ transformer_blocks = nn.ModuleList(
+ [
+ BasicTransformerBlock(
+ dim=output_channel,
+ num_attention_heads=num_heads,
+ attention_head_dim=attention_head_dim,
+ dropout=dropout,
+ activation_fn=act_fn,
+ )
+ for _ in range(n_blocks)
+ ]
+ )
+ downsample = (
+ Downsample1D(output_channel) if not is_last else CausalConv1d(output_channel, output_channel, 3)
+ )
+ self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
+
+ for _ in range(num_mid_blocks):
+ input_channel = channels[-1]
+ out_channels = channels[-1]
+ resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
+
+ transformer_blocks = nn.ModuleList(
+ [
+ BasicTransformerBlock(
+ dim=output_channel,
+ num_attention_heads=num_heads,
+ attention_head_dim=attention_head_dim,
+ dropout=dropout,
+ activation_fn=act_fn,
+ )
+ for _ in range(n_blocks)
+ ]
+ )
+
+ self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
+
+ channels = channels[::-1] + (channels[0],)
+ for i in range(len(channels) - 1):
+ input_channel = channels[i] * 2
+ output_channel = channels[i + 1]
+ is_last = i == len(channels) - 2
+ resnet = CausalResnetBlock1D(
+ dim=input_channel,
+ dim_out=output_channel,
+ time_emb_dim=time_embed_dim,
+ )
+ transformer_blocks = nn.ModuleList(
+ [
+ BasicTransformerBlock(
+ dim=output_channel,
+ num_attention_heads=num_heads,
+ attention_head_dim=attention_head_dim,
+ dropout=dropout,
+ activation_fn=act_fn,
+ )
+ for _ in range(n_blocks)
+ ]
+ )
+ upsample = (
+ Upsample1D(output_channel, use_conv_transpose=True)
+ if not is_last
+ else CausalConv1d(output_channel, output_channel, 3)
+ )
+ self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
+ self.final_block = CausalBlock1D(channels[-1], channels[-1])
+ self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
+ self.initialize_weights()
+
+ def forward(self, x, mask, mu, t, spks=None, cond=None, streaming=False):
+ """Forward pass of the UNet1DConditional model.
+
+ Args:
+ x (torch.Tensor): shape (batch_size, in_channels, time)
+ mask (_type_): shape (batch_size, 1, time)
+ t (_type_): shape (batch_size)
+ spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
+ cond (_type_, optional): placeholder for future use. Defaults to None.
+
+ Raises:
+ ValueError: _description_
+ ValueError: _description_
+
+ Returns:
+ _type_: _description_
+ """
+ t = self.time_embeddings(t).to(t.dtype)
+ t = self.time_mlp(t)
+
+ x = pack([x, mu], "b * t")[0]
+
+ if spks is not None:
+ spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
+ x = pack([x, spks], "b * t")[0]
+ if cond is not None:
+ x = pack([x, cond], "b * t")[0]
+
+ hiddens = []
+ masks = [mask]
+ for resnet, transformer_blocks, downsample in self.down_blocks:
+ mask_down = masks[-1]
+ x = resnet(x, mask_down, t)
+ x = rearrange(x, "b c t -> b t c").contiguous()
+ if streaming is True:
+ attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1)
+ else:
+ attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
+ attn_mask = mask_to_bias(attn_mask, x.dtype)
+ for transformer_block in transformer_blocks:
+ x = transformer_block(
+ hidden_states=x,
+ attention_mask=attn_mask,
+ timestep=t,
+ )
+ x = rearrange(x, "b t c -> b c t").contiguous()
+ hiddens.append(x) # Save hidden states for skip connections
+ x = downsample(x * mask_down)
+ masks.append(mask_down[:, :, ::2])
+ masks = masks[:-1]
+ mask_mid = masks[-1]
+
+ for resnet, transformer_blocks in self.mid_blocks:
+ x = resnet(x, mask_mid, t)
+ x = rearrange(x, "b c t -> b t c").contiguous()
+ if streaming is True:
+ attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1)
+ else:
+ attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
+ attn_mask = mask_to_bias(attn_mask, x.dtype)
+ for transformer_block in transformer_blocks:
+ x = transformer_block(
+ hidden_states=x,
+ attention_mask=attn_mask,
+ timestep=t,
+ )
+ x = rearrange(x, "b t c -> b c t").contiguous()
+
+ for resnet, transformer_blocks, upsample in self.up_blocks:
+ mask_up = masks.pop()
+ skip = hiddens.pop()
+ x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
+ x = resnet(x, mask_up, t)
+ x = rearrange(x, "b c t -> b t c").contiguous()
+ if streaming is True:
+ attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1)
+ else:
+ attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
+ attn_mask = mask_to_bias(attn_mask, x.dtype)
+ for transformer_block in transformer_blocks:
+ x = transformer_block(
+ hidden_states=x,
+ attention_mask=attn_mask,
+ timestep=t,
+ )
+ x = rearrange(x, "b t c -> b c t").contiguous()
+ x = upsample(x * mask_up)
+ x = self.final_block(x, mask_up)
+ output = self.final_proj(x * mask_up)
+ return output * mask
diff --git a/cosyvoice/flow/flow.py b/cosyvoice/flow/flow.py
new file mode 100644
index 0000000000000000000000000000000000000000..c51d68990cc025033c18cf7b5e86e607e3516293
--- /dev/null
+++ b/cosyvoice/flow/flow.py
@@ -0,0 +1,283 @@
+# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import logging
+import random
+from typing import Dict, Optional
+import torch
+import torch.nn as nn
+from torch.nn import functional as F
+from omegaconf import DictConfig
+from cosyvoice.utils.mask import make_pad_mask
+
+
+class MaskedDiffWithXvec(torch.nn.Module):
+ def __init__(self,
+ input_size: int = 512,
+ output_size: int = 80,
+ spk_embed_dim: int = 192,
+ output_type: str = "mel",
+ vocab_size: int = 4096,
+ input_frame_rate: int = 50,
+ only_mask_loss: bool = True,
+ encoder: torch.nn.Module = None,
+ length_regulator: torch.nn.Module = None,
+ decoder: torch.nn.Module = None,
+ decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
+ 'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
+ 'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
+ 'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
+ 'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
+ mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
+ 'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
+ super().__init__()
+ self.input_size = input_size
+ self.output_size = output_size
+ self.decoder_conf = decoder_conf
+ self.mel_feat_conf = mel_feat_conf
+ self.vocab_size = vocab_size
+ self.output_type = output_type
+ self.input_frame_rate = input_frame_rate
+ logging.info(f"input frame rate={self.input_frame_rate}")
+ self.input_embedding = nn.Embedding(vocab_size, input_size)
+ self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
+ self.encoder = encoder
+ self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
+ self.decoder = decoder
+ self.length_regulator = length_regulator
+ self.only_mask_loss = only_mask_loss
+
+ def forward(
+ self,
+ batch: dict,
+ device: torch.device,
+ ) -> Dict[str, Optional[torch.Tensor]]:
+ token = batch['speech_token'].to(device)
+ token_len = batch['speech_token_len'].to(device)
+ feat = batch['speech_feat'].to(device)
+ feat_len = batch['speech_feat_len'].to(device)
+ embedding = batch['embedding'].to(device)
+
+ # xvec projection
+ embedding = F.normalize(embedding, dim=1)
+ embedding = self.spk_embed_affine_layer(embedding)
+
+ # concat text and prompt_text
+ mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
+ token = self.input_embedding(torch.clamp(token, min=0)) * mask
+
+ # text encode
+ h, h_lengths = self.encoder(token, token_len)
+ h = self.encoder_proj(h)
+ h, h_lengths = self.length_regulator(h, feat_len)
+
+ # get conditions
+ conds = torch.zeros(feat.shape, device=token.device)
+ for i, j in enumerate(feat_len):
+ if random.random() < 0.5:
+ continue
+ index = random.randint(0, int(0.3 * j))
+ conds[i, :index] = feat[i, :index]
+ conds = conds.transpose(1, 2)
+
+ mask = (~make_pad_mask(feat_len)).to(h)
+ # NOTE this is unnecessary, feat/h already same shape
+ loss, _ = self.decoder.compute_loss(
+ feat.transpose(1, 2).contiguous(),
+ mask.unsqueeze(1),
+ h.transpose(1, 2).contiguous(),
+ embedding,
+ cond=conds
+ )
+ return {'loss': loss}
+
+ @torch.inference_mode()
+ def inference(self,
+ token,
+ token_len,
+ prompt_token,
+ prompt_token_len,
+ prompt_feat,
+ prompt_feat_len,
+ embedding,
+ flow_cache):
+ assert token.shape[0] == 1
+ # xvec projection
+ embedding = F.normalize(embedding, dim=1)
+ embedding = self.spk_embed_affine_layer(embedding)
+
+ # concat speech token and prompt speech token
+ token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
+ token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
+ mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
+ token = self.input_embedding(torch.clamp(token, min=0)) * mask
+
+ # text encode
+ h, h_lengths = self.encoder(token, token_len)
+ h = self.encoder_proj(h)
+ mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 / self.input_frame_rate * 22050 / 256)
+ h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2, self.input_frame_rate)
+
+ # get conditions
+ conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device).to(h.dtype)
+ conds[:, :mel_len1] = prompt_feat
+ conds = conds.transpose(1, 2)
+
+ mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
+ feat, flow_cache = self.decoder(
+ mu=h.transpose(1, 2).contiguous(),
+ mask=mask.unsqueeze(1),
+ spks=embedding,
+ cond=conds,
+ n_timesteps=10,
+ prompt_len=mel_len1,
+ cache=flow_cache
+ )
+ feat = feat[:, :, mel_len1:]
+ assert feat.shape[2] == mel_len2
+ return feat.float(), flow_cache
+
+
+class CausalMaskedDiffWithXvec(torch.nn.Module):
+ def __init__(self,
+ input_size: int = 512,
+ output_size: int = 80,
+ spk_embed_dim: int = 192,
+ output_type: str = "mel",
+ vocab_size: int = 4096,
+ input_frame_rate: int = 50,
+ only_mask_loss: bool = True,
+ token_mel_ratio: int = 2,
+ pre_lookahead_len: int = 3,
+ encoder: torch.nn.Module = None,
+ decoder: torch.nn.Module = None,
+ decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
+ 'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
+ 'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
+ 'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
+ 'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
+ mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
+ 'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
+ super().__init__()
+ self.input_size = input_size
+ self.output_size = output_size
+ self.decoder_conf = decoder_conf
+ self.mel_feat_conf = mel_feat_conf
+ self.vocab_size = vocab_size
+ self.output_type = output_type
+ self.input_frame_rate = input_frame_rate
+ logging.info(f"input frame rate={self.input_frame_rate}")
+ self.input_embedding = nn.Embedding(vocab_size, input_size)
+ self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
+ self.encoder = encoder
+ self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
+ self.decoder = decoder
+ self.only_mask_loss = only_mask_loss
+ self.token_mel_ratio = token_mel_ratio
+ self.pre_lookahead_len = pre_lookahead_len
+
+ def forward(
+ self,
+ batch: dict,
+ device: torch.device,
+ ) -> Dict[str, Optional[torch.Tensor]]:
+ # import pdb
+ # pdb.set_trace()
+ token = batch['speech_token'].to(device)
+ token_len = batch['speech_token_len'].to(device)
+ feat = batch['speech_feat'].to(device)
+ feat_len = batch['speech_feat_len'].to(device)
+ embedding = batch['embedding'].to(device)
+
+ # NOTE unified training, static_chunk_size > 0 or = 0
+ #streaming = True if random.random() < 0.5 else False
+ streaming = True
+ # xvec projection
+ embedding = F.normalize(embedding, dim=1)
+ embedding = self.spk_embed_affine_layer(embedding)
+
+ # concat text and prompt_text
+ mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
+ token = self.input_embedding(torch.clamp(token, min=0)) * mask
+
+ # text encode
+ h, h_lengths = self.encoder(token, token_len, streaming=streaming)
+ h = self.encoder_proj(h)
+
+ # get conditions
+ conds = torch.zeros(feat.shape, device=token.device)
+ for i, j in enumerate(feat_len):
+ if random.random() < 0.5:
+ continue
+ index = random.randint(0, int(0.3 * j))
+ conds[i, :index] = feat[i, :index]
+ conds = conds.transpose(1, 2)
+
+ mask = (~make_pad_mask(h_lengths.sum(dim=-1).squeeze(dim=1))).to(h)
+ loss, _ = self.decoder.compute_loss(
+ feat.transpose(1, 2).contiguous(),
+ mask.unsqueeze(1),
+ h.transpose(1, 2).contiguous(),
+ embedding,
+ cond=conds,
+ streaming=streaming,
+ )
+ return {'loss': loss}
+
+ @torch.inference_mode()
+ def inference(self,
+ token,
+ token_len,
+ prompt_token,
+ prompt_token_len,
+ prompt_feat,
+ prompt_feat_len,
+ embedding,
+ streaming,
+ finalize):
+ assert token.shape[0] == 1
+ # xvec projection
+ embedding = F.normalize(embedding, dim=1)
+ embedding = self.spk_embed_affine_layer(embedding)
+
+ # concat text and prompt_text
+ token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
+ mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
+ token = self.input_embedding(torch.clamp(token, min=0)) * mask
+
+ # text encode
+ if finalize is True:
+ h, h_lengths = self.encoder(token, token_len, streaming=streaming)
+ else:
+ token, context = token[:, :-self.pre_lookahead_len], token[:, -self.pre_lookahead_len:]
+ h, h_lengths = self.encoder(token, token_len, context=context, streaming=streaming)
+ mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
+ h = self.encoder_proj(h)
+
+ # get conditions
+ conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device).to(h.dtype)
+ conds[:, :mel_len1] = prompt_feat
+ conds = conds.transpose(1, 2)
+
+ mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
+ feat, _ = self.decoder(
+ mu=h.transpose(1, 2).contiguous(),
+ mask=mask.unsqueeze(1),
+ spks=embedding,
+ cond=conds,
+ n_timesteps=10,
+ streaming=streaming
+ )
+ feat_return = feat[:, :, mel_len1:]
+ assert feat_return.shape[2] == mel_len2
+ return feat_return.float(), feat.float()
diff --git a/cosyvoice/flow/flow_matching.py b/cosyvoice/flow/flow_matching.py
new file mode 100644
index 0000000000000000000000000000000000000000..ba854e5160b1097d275b4a7e404bc886ba70321b
--- /dev/null
+++ b/cosyvoice/flow/flow_matching.py
@@ -0,0 +1,228 @@
+# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
+# 2025 Alibaba Inc (authors: Xiang Lyu, Bofan Zhou)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import torch
+import torch.nn.functional as F
+import sys
+import os
+
+from matcha.models.components.flow_matching import BASECFM
+from cosyvoice.utils.common import set_all_random_seed
+
+
+class ConditionalCFM(BASECFM):
+ def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
+ super().__init__(
+ n_feats=in_channels,
+ cfm_params=cfm_params,
+ n_spks=n_spks,
+ spk_emb_dim=spk_emb_dim,
+ )
+ self.t_scheduler = cfm_params.t_scheduler
+ self.training_cfg_rate = cfm_params.training_cfg_rate
+ self.inference_cfg_rate = cfm_params.inference_cfg_rate
+ in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
+ # Just change the architecture of the estimator here
+ self.estimator = estimator
+
+ @torch.inference_mode()
+ def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, cache=torch.zeros(1, 80, 0, 2)):
+ """Forward diffusion
+
+ Args:
+ mu (torch.Tensor): output of encoder
+ shape: (batch_size, n_feats, mel_timesteps)
+ mask (torch.Tensor): output_mask
+ shape: (batch_size, 1, mel_timesteps)
+ n_timesteps (int): number of diffusion steps
+ temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
+ spks (torch.Tensor, optional): speaker ids. Defaults to None.
+ shape: (batch_size, spk_emb_dim)
+ cond: Not used but kept for future purposes
+
+ Returns:
+ sample: generated mel-spectrogram
+ shape: (batch_size, n_feats, mel_timesteps)
+ """
+
+ z = torch.randn_like(mu).to(mu.device).to(mu.dtype) * temperature
+ cache_size = cache.shape[2]
+ # fix prompt and overlap part mu and z
+ if cache_size != 0:
+ z[:, :, :cache_size] = cache[:, :, :, 0]
+ mu[:, :, :cache_size] = cache[:, :, :, 1]
+ z_cache = torch.concat([z[:, :, :prompt_len], z[:, :, -34:]], dim=2)
+ mu_cache = torch.concat([mu[:, :, :prompt_len], mu[:, :, -34:]], dim=2)
+ cache = torch.stack([z_cache, mu_cache], dim=-1)
+
+ t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
+ if self.t_scheduler == 'cosine':
+ t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
+ return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), cache
+
+ def solve_euler(self, x, t_span, mu, mask, spks, cond, streaming=False):
+ """
+ Fixed euler solver for ODEs.
+ Args:
+ x (torch.Tensor): random noise
+ t_span (torch.Tensor): n_timesteps interpolated
+ shape: (n_timesteps + 1,)
+ mu (torch.Tensor): output of encoder
+ shape: (batch_size, n_feats, mel_timesteps)
+ mask (torch.Tensor): output_mask
+ shape: (batch_size, 1, mel_timesteps)
+ spks (torch.Tensor, optional): speaker ids. Defaults to None.
+ shape: (batch_size, spk_emb_dim)
+ cond: Not used but kept for future purposes
+ """
+ t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
+ t = t.unsqueeze(dim=0)
+ # I am storing this because I can later plot it by putting a debugger here and saving it to a file
+ # Or in future might add like a return_all_steps flag
+ sol = []
+
+ # Do not use concat, it may cause memory format changed and trt infer with wrong results!
+ x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
+ mask_in = torch.zeros([2, 1, x.size(2)], device=x.device, dtype=x.dtype)
+ mu_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
+ t_in = torch.zeros([2], device=x.device, dtype=x.dtype)
+ spks_in = torch.zeros([2, 80], device=x.device, dtype=x.dtype)
+ cond_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
+ for step in range(1, len(t_span)):
+ # Classifier-Free Guidance inference introduced in VoiceBox
+ x_in[:] = x
+ mask_in[:] = mask
+ mu_in[0] = mu
+ t_in[:] = t.unsqueeze(0)
+ spks_in[0] = spks
+ cond_in[0] = cond
+ dphi_dt = self.forward_estimator(
+ x_in, mask_in,
+ mu_in, t_in,
+ spks_in,
+ cond_in,
+ streaming
+ )
+ dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0)
+ dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt)
+ x = x + dt * dphi_dt
+ t = t + dt
+ sol.append(x)
+ if step < len(t_span) - 1:
+ dt = t_span[step + 1] - t
+
+ return sol[-1].float()
+
+ def forward_estimator(self, x, mask, mu, t, spks, cond, streaming=False):
+ if isinstance(self.estimator, torch.nn.Module):
+ return self.estimator(x, mask, mu, t, spks, cond, streaming=streaming)
+ else:
+ [estimator, stream], trt_engine = self.estimator.acquire_estimator()
+ # NOTE need to synchronize when switching stream
+ torch.cuda.current_stream().synchronize()
+ with stream:
+ estimator.set_input_shape('x', (2, 80, x.size(2)))
+ estimator.set_input_shape('mask', (2, 1, x.size(2)))
+ estimator.set_input_shape('mu', (2, 80, x.size(2)))
+ estimator.set_input_shape('t', (2,))
+ estimator.set_input_shape('spks', (2, 80))
+ estimator.set_input_shape('cond', (2, 80, x.size(2)))
+ data_ptrs = [x.contiguous().data_ptr(),
+ mask.contiguous().data_ptr(),
+ mu.contiguous().data_ptr(),
+ t.contiguous().data_ptr(),
+ spks.contiguous().data_ptr(),
+ cond.contiguous().data_ptr(),
+ x.data_ptr()]
+ for i, j in enumerate(data_ptrs):
+ estimator.set_tensor_address(trt_engine.get_tensor_name(i), j)
+ # run trt engine
+ assert estimator.execute_async_v3(torch.cuda.current_stream().cuda_stream) is True
+ torch.cuda.current_stream().synchronize()
+ self.estimator.release_estimator(estimator, stream)
+ return x
+
+ def compute_loss(self, x1, mask, mu, spks=None, cond=None, streaming=False):
+ """Computes diffusion loss
+
+ Args:
+ x1 (torch.Tensor): Target
+ shape: (batch_size, n_feats, mel_timesteps)
+ mask (torch.Tensor): target mask
+ shape: (batch_size, 1, mel_timesteps)
+ mu (torch.Tensor): output of encoder
+ shape: (batch_size, n_feats, mel_timesteps)
+ spks (torch.Tensor, optional): speaker embedding. Defaults to None.
+ shape: (batch_size, spk_emb_dim)
+
+ Returns:
+ loss: conditional flow matching loss
+ y: conditional flow
+ shape: (batch_size, n_feats, mel_timesteps)
+ """
+ b, _, t = mu.shape
+ # random timestep
+ t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
+ if self.t_scheduler == 'cosine':
+ t = 1 - torch.cos(t * 0.5 * torch.pi)
+ # sample noise p(x_0)
+ z = torch.randn_like(x1)
+
+ y = (1 - (1 - self.sigma_min) * t) * z + t * x1
+ u = x1 - (1 - self.sigma_min) * z
+
+ # during training, we randomly drop condition to trade off mode coverage and sample fidelity
+ if self.training_cfg_rate > 0:
+ cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate
+ mu = mu * cfg_mask.view(-1, 1, 1)
+ spks = spks * cfg_mask.view(-1, 1)
+ cond = cond * cfg_mask.view(-1, 1, 1)
+
+ pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond, streaming=streaming)
+ loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
+ return loss, y
+
+
+class CausalConditionalCFM(ConditionalCFM):
+ def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
+ super().__init__(in_channels, cfm_params, n_spks, spk_emb_dim, estimator)
+ set_all_random_seed(0)
+ self.rand_noise = torch.randn([1, 80, 50 * 300])
+
+ @torch.inference_mode()
+ def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, streaming=False):
+ """Forward diffusion
+
+ Args:
+ mu (torch.Tensor): output of encoder
+ shape: (batch_size, n_feats, mel_timesteps)
+ mask (torch.Tensor): output_mask
+ shape: (batch_size, 1, mel_timesteps)
+ n_timesteps (int): number of diffusion steps
+ temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
+ spks (torch.Tensor, optional): speaker ids. Defaults to None.
+ shape: (batch_size, spk_emb_dim)
+ cond: Not used but kept for future purposes
+
+ Returns:
+ sample: generated mel-spectrogram
+ shape: (batch_size, n_feats, mel_timesteps)
+ """
+
+ z = self.rand_noise[:, :, :mu.size(2)].to(mu.device).to(mu.dtype) * temperature
+ # fix prompt and overlap part mu and z
+ t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
+ if self.t_scheduler == 'cosine':
+ t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
+ return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond, streaming=streaming), None
diff --git a/cosyvoice/flow/length_regulator.py b/cosyvoice/flow/length_regulator.py
new file mode 100644
index 0000000000000000000000000000000000000000..e1b6c1bd1f877d9c52100fa6074fc6cf81bd0fe0
--- /dev/null
+++ b/cosyvoice/flow/length_regulator.py
@@ -0,0 +1,70 @@
+# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import Tuple
+import torch.nn as nn
+import torch
+from torch.nn import functional as F
+from cosyvoice.utils.mask import make_pad_mask
+
+
+class InterpolateRegulator(nn.Module):
+ def __init__(
+ self,
+ channels: int,
+ sampling_ratios: Tuple,
+ out_channels: int = None,
+ groups: int = 1,
+ ):
+ super().__init__()
+ self.sampling_ratios = sampling_ratios
+ out_channels = out_channels or channels
+ model = nn.ModuleList([])
+ if len(sampling_ratios) > 0:
+ for _ in sampling_ratios:
+ module = nn.Conv1d(channels, channels, 3, 1, 1)
+ norm = nn.GroupNorm(groups, channels)
+ act = nn.Mish()
+ model.extend([module, norm, act])
+ model.append(
+ nn.Conv1d(channels, out_channels, 1, 1)
+ )
+ self.model = nn.Sequential(*model)
+
+ def forward(self, x, ylens=None):
+ # x in (B, T, D)
+ mask = (~make_pad_mask(ylens)).to(x).unsqueeze(-1)
+ x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='linear')
+ out = self.model(x).transpose(1, 2).contiguous()
+ olens = ylens
+ return out * mask, olens
+
+ def inference(self, x1, x2, mel_len1, mel_len2, input_frame_rate=50):
+ # in inference mode, interploate prompt token and token(head/mid/tail) seprately, so we can get a clear separation point of mel
+ # NOTE 20 corresponds to token_overlap_len in cosyvoice/cli/model.py
+ # x in (B, T, D)
+ if x2.shape[1] > 40:
+ x2_head = F.interpolate(x2[:, :20].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
+ x2_mid = F.interpolate(x2[:, 20:-20].transpose(1, 2).contiguous(), size=mel_len2 - int(20 / input_frame_rate * 22050 / 256) * 2,
+ mode='linear')
+ x2_tail = F.interpolate(x2[:, -20:].transpose(1, 2).contiguous(), size=int(20 / input_frame_rate * 22050 / 256), mode='linear')
+ x2 = torch.concat([x2_head, x2_mid, x2_tail], dim=2)
+ else:
+ x2 = F.interpolate(x2.transpose(1, 2).contiguous(), size=mel_len2, mode='linear')
+ if x1.shape[1] != 0:
+ x1 = F.interpolate(x1.transpose(1, 2).contiguous(), size=mel_len1, mode='linear')
+ x = torch.concat([x1, x2], dim=2)
+ else:
+ x = x2
+ out = self.model(x).transpose(1, 2).contiguous()
+ return out, mel_len1 + mel_len2
diff --git a/cosyvoice/hifigan/discriminator.py b/cosyvoice/hifigan/discriminator.py
new file mode 100644
index 0000000000000000000000000000000000000000..bb8e85f7379d3de96f6eb1f6b0ef0ba1fdbb212a
--- /dev/null
+++ b/cosyvoice/hifigan/discriminator.py
@@ -0,0 +1,230 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+try:
+ from torch.nn.utils.parametrizations import weight_norm, spectral_norm
+except ImportError:
+ from torch.nn.utils import weight_norm, spectral_norm
+from typing import List, Optional, Tuple
+from einops import rearrange
+from torchaudio.transforms import Spectrogram
+
+LRELU_SLOPE = 0.1
+
+
+class MultipleDiscriminator(nn.Module):
+ def __init__(
+ self, mpd: nn.Module, mrd: nn.Module
+ ):
+ super().__init__()
+ self.mpd = mpd
+ self.mrd = mrd
+
+ def forward(self, y: torch.Tensor, y_hat: torch.Tensor):
+ y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], []
+ this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mpd(y.unsqueeze(dim=1), y_hat.unsqueeze(dim=1))
+ y_d_rs += this_y_d_rs
+ y_d_gs += this_y_d_gs
+ fmap_rs += this_fmap_rs
+ fmap_gs += this_fmap_gs
+ this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mrd(y, y_hat)
+ y_d_rs += this_y_d_rs
+ y_d_gs += this_y_d_gs
+ fmap_rs += this_fmap_rs
+ fmap_gs += this_fmap_gs
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class MultiResolutionDiscriminator(nn.Module):
+ def __init__(
+ self,
+ fft_sizes: Tuple[int, ...] = (2048, 1024, 512),
+ num_embeddings: Optional[int] = None,
+ ):
+ """
+ Multi-Resolution Discriminator module adapted from https://github.com/descriptinc/descript-audio-codec.
+ Additionally, it allows incorporating conditional information with a learned embeddings table.
+
+ Args:
+ fft_sizes (tuple[int]): Tuple of window lengths for FFT. Defaults to (2048, 1024, 512).
+ num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator.
+ Defaults to None.
+ """
+
+ super().__init__()
+ self.discriminators = nn.ModuleList(
+ [DiscriminatorR(window_length=w, num_embeddings=num_embeddings) for w in fft_sizes]
+ )
+
+ def forward(
+ self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None
+ ) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
+ y_d_rs = []
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+
+ for d in self.discriminators:
+ y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
+ y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
+ y_d_rs.append(y_d_r)
+ fmap_rs.append(fmap_r)
+ y_d_gs.append(y_d_g)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class DiscriminatorR(nn.Module):
+ def __init__(
+ self,
+ window_length: int,
+ num_embeddings: Optional[int] = None,
+ channels: int = 32,
+ hop_factor: float = 0.25,
+ bands: Tuple[Tuple[float, float], ...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)),
+ ):
+ super().__init__()
+ self.window_length = window_length
+ self.hop_factor = hop_factor
+ self.spec_fn = Spectrogram(
+ n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None
+ )
+ n_fft = window_length // 2 + 1
+ bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
+ self.bands = bands
+ convs = lambda: nn.ModuleList(
+ [
+ weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))),
+ weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
+ weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
+ weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
+ weight_norm(nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))),
+ ]
+ )
+ self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
+
+ if num_embeddings is not None:
+ self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels)
+ torch.nn.init.zeros_(self.emb.weight)
+
+ self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1)))
+
+ def spectrogram(self, x):
+ # Remove DC offset
+ x = x - x.mean(dim=-1, keepdims=True)
+ # Peak normalize the volume of input audio
+ x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
+ x = self.spec_fn(x)
+ x = torch.view_as_real(x)
+ x = rearrange(x, "b f t c -> b c t f")
+ # Split into bands
+ x_bands = [x[..., b[0]: b[1]] for b in self.bands]
+ return x_bands
+
+ def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None):
+ x_bands = self.spectrogram(x)
+ fmap = []
+ x = []
+ for band, stack in zip(x_bands, self.band_convs):
+ for i, layer in enumerate(stack):
+ band = layer(band)
+ band = torch.nn.functional.leaky_relu(band, 0.1)
+ if i > 0:
+ fmap.append(band)
+ x.append(band)
+ x = torch.cat(x, dim=-1)
+ if cond_embedding_id is not None:
+ emb = self.emb(cond_embedding_id)
+ h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
+ else:
+ h = 0
+ x = self.conv_post(x)
+ fmap.append(x)
+ x += h
+
+ return x, fmap
+
+
+class MultiResSpecDiscriminator(torch.nn.Module):
+
+ def __init__(self,
+ fft_sizes=[1024, 2048, 512],
+ hop_sizes=[120, 240, 50],
+ win_lengths=[600, 1200, 240],
+ window="hann_window"):
+
+ super(MultiResSpecDiscriminator, self).__init__()
+ self.discriminators = nn.ModuleList([
+ SpecDiscriminator(fft_sizes[0], hop_sizes[0], win_lengths[0], window),
+ SpecDiscriminator(fft_sizes[1], hop_sizes[1], win_lengths[1], window),
+ SpecDiscriminator(fft_sizes[2], hop_sizes[2], win_lengths[2], window)])
+
+ def forward(self, y, y_hat):
+ y_d_rs = []
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for _, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ y_d_rs.append(y_d_r)
+ fmap_rs.append(fmap_r)
+ y_d_gs.append(y_d_g)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+def stft(x, fft_size, hop_size, win_length, window):
+ """Perform STFT and convert to magnitude spectrogram.
+ Args:
+ x (Tensor): Input signal tensor (B, T).
+ fft_size (int): FFT size.
+ hop_size (int): Hop size.
+ win_length (int): Window length.
+ window (str): Window function type.
+ Returns:
+ Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
+ """
+ x_stft = torch.stft(x, fft_size, hop_size, win_length, window, return_complex=True)
+
+ # NOTE(kan-bayashi): clamp is needed to avoid nan or inf
+ return torch.abs(x_stft).transpose(2, 1)
+
+
+class SpecDiscriminator(nn.Module):
+ """docstring for Discriminator."""
+
+ def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window", use_spectral_norm=False):
+ super(SpecDiscriminator, self).__init__()
+ norm_f = weight_norm if use_spectral_norm is False else spectral_norm
+ self.fft_size = fft_size
+ self.shift_size = shift_size
+ self.win_length = win_length
+ self.window = getattr(torch, window)(win_length)
+ self.discriminators = nn.ModuleList([
+ norm_f(nn.Conv2d(1, 32, kernel_size=(3, 9), padding=(1, 4))),
+ norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))),
+ norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))),
+ norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4))),
+ norm_f(nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))),
+ ])
+
+ self.out = norm_f(nn.Conv2d(32, 1, 3, 1, 1))
+
+ def forward(self, y):
+
+ fmap = []
+ y = y.squeeze(1)
+ y = stft(y, self.fft_size, self.shift_size, self.win_length, self.window.to(y.device))
+ y = y.unsqueeze(1)
+ for _, d in enumerate(self.discriminators):
+ y = d(y)
+ y = F.leaky_relu(y, LRELU_SLOPE)
+ fmap.append(y)
+
+ y = self.out(y)
+ fmap.append(y)
+
+ return torch.flatten(y, 1, -1), fmap
diff --git a/cosyvoice/hifigan/f0_predictor.py b/cosyvoice/hifigan/f0_predictor.py
new file mode 100644
index 0000000000000000000000000000000000000000..479570eb3c878524461b31d0d56c376ebcb496ee
--- /dev/null
+++ b/cosyvoice/hifigan/f0_predictor.py
@@ -0,0 +1,60 @@
+# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import torch
+import torch.nn as nn
+try:
+ from torch.nn.utils.parametrizations import weight_norm
+except ImportError:
+ from torch.nn.utils import weight_norm
+
+
+class ConvRNNF0Predictor(nn.Module):
+ def __init__(self,
+ num_class: int = 1,
+ in_channels: int = 80,
+ cond_channels: int = 512
+ ):
+ super().__init__()
+
+ self.num_class = num_class
+ self.condnet = nn.Sequential(
+ weight_norm(
+ nn.Conv1d(in_channels, cond_channels, kernel_size=3, padding=1)
+ ),
+ nn.ELU(),
+ weight_norm(
+ nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
+ ),
+ nn.ELU(),
+ weight_norm(
+ nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
+ ),
+ nn.ELU(),
+ weight_norm(
+ nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
+ ),
+ nn.ELU(),
+ weight_norm(
+ nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
+ ),
+ nn.ELU(),
+ )
+ self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class)
+
+ def forward(self, x: torch.Tensor,return_x=False) -> torch.Tensor:
+ x = self.condnet(x)
+ x = x.transpose(1, 2)
+ if return_x:
+ return torch.abs(self.classifier(x).squeeze(-1)),x
+ return torch.abs(self.classifier(x).squeeze(-1))
diff --git a/cosyvoice/hifigan/generator.py b/cosyvoice/hifigan/generator.py
new file mode 100644
index 0000000000000000000000000000000000000000..326a1a70ae7707662939c20493b3a8e4b0906216
--- /dev/null
+++ b/cosyvoice/hifigan/generator.py
@@ -0,0 +1,582 @@
+# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""HIFI-GAN"""
+
+from typing import Dict, Optional, List
+import numpy as np
+from scipy.signal import get_window
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torch.nn import Conv1d
+from torch.nn import ConvTranspose1d
+from torch.nn.utils import remove_weight_norm
+try:
+ from torch.nn.utils.parametrizations import weight_norm
+except ImportError:
+ from torch.nn.utils import weight_norm
+from torch.distributions.uniform import Uniform
+
+from cosyvoice.transformer.activation import Snake
+from cosyvoice.utils.common import get_padding
+from cosyvoice.utils.common import init_weights
+
+
+"""hifigan based generator implementation.
+
+This code is modified from https://github.com/jik876/hifi-gan
+ ,https://github.com/kan-bayashi/ParallelWaveGAN and
+ https://github.com/NVIDIA/BigVGAN
+
+"""
+
+
+class ResBlock(torch.nn.Module):
+ """Residual block module in HiFiGAN/BigVGAN."""
+ def __init__(
+ self,
+ channels: int = 512,
+ kernel_size: int = 3,
+ dilations: List[int] = [1, 3, 5],
+ ):
+ super(ResBlock, self).__init__()
+ self.convs1 = nn.ModuleList()
+ self.convs2 = nn.ModuleList()
+
+ for dilation in dilations:
+ self.convs1.append(
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation,
+ padding=get_padding(kernel_size, dilation)
+ )
+ )
+ )
+ self.convs2.append(
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=1,
+ padding=get_padding(kernel_size, 1)
+ )
+ )
+ )
+ self.convs1.apply(init_weights)
+ self.convs2.apply(init_weights)
+ self.activations1 = nn.ModuleList([
+ Snake(channels, alpha_logscale=False)
+ for _ in range(len(self.convs1))
+ ])
+ self.activations2 = nn.ModuleList([
+ Snake(channels, alpha_logscale=False)
+ for _ in range(len(self.convs2))
+ ])
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ for idx in range(len(self.convs1)):
+ xt = self.activations1[idx](x)
+ xt = self.convs1[idx](xt)
+ xt = self.activations2[idx](xt)
+ xt = self.convs2[idx](xt)
+ x = xt + x
+ return x
+
+ def remove_weight_norm(self):
+ for idx in range(len(self.convs1)):
+ remove_weight_norm(self.convs1[idx])
+ remove_weight_norm(self.convs2[idx])
+
+
+class SineGen(torch.nn.Module):
+ """ Definition of sine generator
+ SineGen(samp_rate, harmonic_num = 0,
+ sine_amp = 0.1, noise_std = 0.003,
+ voiced_threshold = 0,
+ flag_for_pulse=False)
+ samp_rate: sampling rate in Hz
+ harmonic_num: number of harmonic overtones (default 0)
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
+ noise_std: std of Gaussian noise (default 0.003)
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
+ Note: when flag_for_pulse is True, the first time step of a voiced
+ segment is always sin(np.pi) or cos(0)
+ """
+
+ def __init__(self, samp_rate, harmonic_num=0,
+ sine_amp=0.1, noise_std=0.003,
+ voiced_threshold=0):
+ super(SineGen, self).__init__()
+ self.sine_amp = sine_amp
+ self.noise_std = noise_std
+ self.harmonic_num = harmonic_num
+ self.sampling_rate = samp_rate
+ self.voiced_threshold = voiced_threshold
+
+ def _f02uv(self, f0):
+ # generate uv signal
+ uv = (f0 > self.voiced_threshold).type(torch.float32)
+ return uv
+
+ @torch.no_grad()
+ def forward(self, f0):
+ """
+ :param f0: [B, 1, sample_len], Hz
+ :return: [B, 1, sample_len]
+ """
+
+ F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
+ for i in range(self.harmonic_num + 1):
+ F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate
+
+ theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1)
+ u_dist = Uniform(low=-np.pi, high=np.pi)
+ phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device)
+ phase_vec[:, 0, :] = 0
+
+ # generate sine waveforms
+ sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec)
+
+ # generate uv signal
+ uv = self._f02uv(f0)
+
+ # noise: for unvoiced should be similar to sine_amp
+ # std = self.sine_amp/3 -> max value ~ self.sine_amp
+ # . for voiced regions is self.noise_std
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
+ noise = noise_amp * torch.randn_like(sine_waves)
+
+ # first: set the unvoiced part to 0 by uv
+ # then: additive noise
+ sine_waves = sine_waves * uv + noise
+ return sine_waves, uv, noise
+
+
+class SourceModuleHnNSF(torch.nn.Module):
+ """ SourceModule for hn-nsf
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
+ add_noise_std=0.003, voiced_threshod=0)
+ sampling_rate: sampling_rate in Hz
+ harmonic_num: number of harmonic above F0 (default: 0)
+ sine_amp: amplitude of sine source signal (default: 0.1)
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
+ note that amplitude of noise in unvoiced is decided
+ by sine_amp
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
+ F0_sampled (batchsize, length, 1)
+ Sine_source (batchsize, length, 1)
+ noise_source (batchsize, length 1)
+ uv (batchsize, length, 1)
+ """
+
+ def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
+ add_noise_std=0.003, voiced_threshod=0):
+ super(SourceModuleHnNSF, self).__init__()
+
+ self.sine_amp = sine_amp
+ self.noise_std = add_noise_std
+
+ # to produce sine waveforms
+ self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
+ sine_amp, add_noise_std, voiced_threshod)
+
+ # to merge source harmonics into a single excitation
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
+ self.l_tanh = torch.nn.Tanh()
+
+ def forward(self, x):
+ """
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
+ F0_sampled (batchsize, length, 1)
+ Sine_source (batchsize, length, 1)
+ noise_source (batchsize, length 1)
+ """
+ # source for harmonic branch
+ with torch.no_grad():
+ sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2))
+ sine_wavs = sine_wavs.transpose(1, 2)
+ uv = uv.transpose(1, 2)
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
+
+ # source for noise branch, in the same shape as uv
+ noise = torch.randn_like(uv) * self.sine_amp / 3
+ return sine_merge, noise, uv
+
+
+class SineGen2(torch.nn.Module):
+ """ Definition of sine generator
+ SineGen(samp_rate, harmonic_num = 0,
+ sine_amp = 0.1, noise_std = 0.003,
+ voiced_threshold = 0,
+ flag_for_pulse=False)
+ samp_rate: sampling rate in Hz
+ harmonic_num: number of harmonic overtones (default 0)
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
+ noise_std: std of Gaussian noise (default 0.003)
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
+ Note: when flag_for_pulse is True, the first time step of a voiced
+ segment is always sin(np.pi) or cos(0)
+ """
+
+ def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
+ sine_amp=0.1, noise_std=0.003,
+ voiced_threshold=0,
+ flag_for_pulse=False):
+ super(SineGen2, self).__init__()
+ self.sine_amp = sine_amp
+ self.noise_std = noise_std
+ self.harmonic_num = harmonic_num
+ self.dim = self.harmonic_num + 1
+ self.sampling_rate = samp_rate
+ self.voiced_threshold = voiced_threshold
+ self.flag_for_pulse = flag_for_pulse
+ self.upsample_scale = upsample_scale
+
+ def _f02uv(self, f0):
+ # generate uv signal
+ uv = (f0 > self.voiced_threshold).type(torch.float32)
+ return uv
+
+ def _f02sine(self, f0_values):
+ """ f0_values: (batchsize, length, dim)
+ where dim indicates fundamental tone and overtones
+ """
+ # convert to F0 in rad. The interger part n can be ignored
+ # because 2 * np.pi * n doesn't affect phase
+ rad_values = (f0_values / self.sampling_rate) % 1
+
+ # initial phase noise (no noise for fundamental component)
+ rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], device=f0_values.device)
+ rand_ini[:, 0] = 0
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
+
+ # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
+ if not self.flag_for_pulse:
+ rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
+ scale_factor=1 / self.upsample_scale,
+ mode="linear").transpose(1, 2)
+
+ phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
+ phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
+ scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
+ sines = torch.sin(phase)
+ else:
+ # If necessary, make sure that the first time step of every
+ # voiced segments is sin(pi) or cos(0)
+ # This is used for pulse-train generation
+
+ # identify the last time step in unvoiced segments
+ uv = self._f02uv(f0_values)
+ uv_1 = torch.roll(uv, shifts=-1, dims=1)
+ uv_1[:, -1, :] = 1
+ u_loc = (uv < 1) * (uv_1 > 0)
+
+ # get the instantanouse phase
+ tmp_cumsum = torch.cumsum(rad_values, dim=1)
+ # different batch needs to be processed differently
+ for idx in range(f0_values.shape[0]):
+ temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
+ temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
+ # stores the accumulation of i.phase within
+ # each voiced segments
+ tmp_cumsum[idx, :, :] = 0
+ tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
+
+ # rad_values - tmp_cumsum: remove the accumulation of i.phase
+ # within the previous voiced segment.
+ i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
+
+ # get the sines
+ sines = torch.cos(i_phase * 2 * np.pi)
+ return sines
+
+ def forward(self, f0):
+ """ sine_tensor, uv = forward(f0)
+ input F0: tensor(batchsize=1, length, dim=1)
+ f0 for unvoiced steps should be 0
+ output sine_tensor: tensor(batchsize=1, length, dim)
+ output uv: tensor(batchsize=1, length, 1)
+ """
+ # fundamental component
+ fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
+
+ # generate sine waveforms
+ sine_waves = self._f02sine(fn) * self.sine_amp
+
+ # generate uv signal
+ uv = self._f02uv(f0)
+
+ # noise: for unvoiced should be similar to sine_amp
+ # std = self.sine_amp/3 -> max value ~ self.sine_amp
+ # . for voiced regions is self.noise_std
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
+ noise = noise_amp * torch.randn_like(sine_waves)
+
+ # first: set the unvoiced part to 0 by uv
+ # then: additive noise
+ sine_waves = sine_waves * uv + noise
+ return sine_waves, uv, noise
+
+
+class SourceModuleHnNSF2(torch.nn.Module):
+ """ SourceModule for hn-nsf
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
+ add_noise_std=0.003, voiced_threshod=0)
+ sampling_rate: sampling_rate in Hz
+ harmonic_num: number of harmonic above F0 (default: 0)
+ sine_amp: amplitude of sine source signal (default: 0.1)
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
+ note that amplitude of noise in unvoiced is decided
+ by sine_amp
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
+ F0_sampled (batchsize, length, 1)
+ Sine_source (batchsize, length, 1)
+ noise_source (batchsize, length 1)
+ uv (batchsize, length, 1)
+ """
+
+ def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
+ add_noise_std=0.003, voiced_threshod=0):
+ super(SourceModuleHnNSF2, self).__init__()
+
+ self.sine_amp = sine_amp
+ self.noise_std = add_noise_std
+
+ # to produce sine waveforms
+ self.l_sin_gen = SineGen2(sampling_rate, upsample_scale, harmonic_num,
+ sine_amp, add_noise_std, voiced_threshod)
+
+ # to merge source harmonics into a single excitation
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
+ self.l_tanh = torch.nn.Tanh()
+
+ def forward(self, x):
+ """
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
+ F0_sampled (batchsize, length, 1)
+ Sine_source (batchsize, length, 1)
+ noise_source (batchsize, length 1)
+ """
+ # source for harmonic branch
+ with torch.no_grad():
+ sine_wavs, uv, _ = self.l_sin_gen(x)
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
+
+ # source for noise branch, in the same shape as uv
+ noise = torch.randn_like(uv) * self.sine_amp / 3
+ return sine_merge, noise, uv
+
+
+class HiFTGenerator(nn.Module):
+ """
+ HiFTNet Generator: Neural Source Filter + ISTFTNet
+ https://arxiv.org/abs/2309.09493
+ """
+ def __init__(
+ self,
+ in_channels: int = 80,
+ base_channels: int = 512,
+ nb_harmonics: int = 8,
+ sampling_rate: int = 22050,
+ nsf_alpha: float = 0.1,
+ nsf_sigma: float = 0.003,
+ nsf_voiced_threshold: float = 10,
+ upsample_rates: List[int] = [8, 8],
+ upsample_kernel_sizes: List[int] = [16, 16],
+ istft_params: Dict[str, int] = {"n_fft": 16, "hop_len": 4},
+ resblock_kernel_sizes: List[int] = [3, 7, 11],
+ resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
+ source_resblock_kernel_sizes: List[int] = [7, 11],
+ source_resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5]],
+ lrelu_slope: float = 0.1,
+ audio_limit: float = 0.99,
+ f0_predictor: torch.nn.Module = None,
+ ):
+ super(HiFTGenerator, self).__init__()
+
+ self.out_channels = 1
+ self.nb_harmonics = nb_harmonics
+ self.sampling_rate = sampling_rate
+ self.istft_params = istft_params
+ self.lrelu_slope = lrelu_slope
+ self.audio_limit = audio_limit
+
+ self.num_kernels = len(resblock_kernel_sizes)
+ self.num_upsamples = len(upsample_rates)
+ # NOTE in CosyVoice2, we use the original SourceModuleHnNSF implementation
+ this_SourceModuleHnNSF = SourceModuleHnNSF if self.sampling_rate == 22050 else SourceModuleHnNSF2
+ self.m_source = this_SourceModuleHnNSF(
+ sampling_rate=sampling_rate,
+ upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
+ harmonic_num=nb_harmonics,
+ sine_amp=nsf_alpha,
+ add_noise_std=nsf_sigma,
+ voiced_threshod=nsf_voiced_threshold)
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
+
+ self.conv_pre = weight_norm(
+ Conv1d(in_channels, base_channels, 7, 1, padding=3)
+ )
+
+ # Up
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ base_channels // (2**i),
+ base_channels // (2**(i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+
+ # Down
+ self.source_downs = nn.ModuleList()
+ self.source_resblocks = nn.ModuleList()
+ downsample_rates = [1] + upsample_rates[::-1][:-1]
+ downsample_cum_rates = np.cumprod(downsample_rates)
+ for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes)):
+ if u == 1:
+ self.source_downs.append(
+ Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
+ )
+ else:
+ self.source_downs.append(
+ Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
+ )
+
+ self.source_resblocks.append(
+ ResBlock(base_channels // (2 ** (i + 1)), k, d)
+ )
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = base_channels // (2**(i + 1))
+ for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
+ self.resblocks.append(ResBlock(ch, k, d))
+
+ self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
+ self.ups.apply(init_weights)
+ self.conv_post.apply(init_weights)
+ self.reflection_pad = nn.ReflectionPad1d((1, 0))
+ self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
+ self.f0_predictor = f0_predictor
+
+ def remove_weight_norm(self):
+ print('Removing weight norm...')
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+ remove_weight_norm(self.conv_pre)
+ remove_weight_norm(self.conv_post)
+ self.m_source.remove_weight_norm()
+ for l in self.source_downs:
+ remove_weight_norm(l)
+ for l in self.source_resblocks:
+ l.remove_weight_norm()
+
+ def _stft(self, x):
+ spec = torch.stft(
+ x,
+ self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
+ return_complex=True)
+ spec = torch.view_as_real(spec) # [B, F, TT, 2]
+ return spec[..., 0], spec[..., 1]
+
+ def _istft(self, magnitude, phase):
+ magnitude = torch.clip(magnitude, max=1e2)
+ real = magnitude * torch.cos(phase)
+ img = magnitude * torch.sin(phase)
+ inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"],
+ self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
+ return inverse_transform
+
+ def decode(self, x: torch.Tensor, s: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
+ s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
+ s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
+
+ x = self.conv_pre(x)
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, self.lrelu_slope)
+ x = self.ups[i](x)
+
+ if i == self.num_upsamples - 1:
+ x = self.reflection_pad(x)
+
+ # fusion
+ si = self.source_downs[i](s_stft)
+ si = self.source_resblocks[i](si)
+ x = x + si
+
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
+ phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy
+
+ x = self._istft(magnitude, phase)
+ x = torch.clamp(x, -self.audio_limit, self.audio_limit)
+ return x
+
+ def forward(
+ self,
+ batch: dict,
+ device: torch.device,
+ ) -> Dict[str, Optional[torch.Tensor]]:
+ speech_feat = batch['speech_feat'].transpose(1, 2).to(device)
+ # mel->f0
+ f0 = self.f0_predictor(speech_feat)
+ # f0->source
+ s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
+ s, _, _ = self.m_source(s)
+ s = s.transpose(1, 2)
+ # mel+source->speech
+ generated_speech = self.decode(x=speech_feat, s=s)
+ return generated_speech, f0
+
+ @torch.inference_mode()
+ def inference(self, speech_feat: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
+ # mel->f0
+ f0 = self.f0_predictor(speech_feat)
+ # f0->source
+ s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
+ s, _, _ = self.m_source(s)
+ s = s.transpose(1, 2)
+ # use cache_source to avoid glitch
+ if cache_source.shape[2] != 0:
+ s[:, :, :cache_source.shape[2]] = cache_source
+ generated_speech = self.decode(x=speech_feat, s=s)
+ return generated_speech, s
diff --git a/cosyvoice/hifigan/hifigan.py b/cosyvoice/hifigan/hifigan.py
new file mode 100644
index 0000000000000000000000000000000000000000..6afd2e5a2569b5dbb3b6f67ea95903ade3c073e0
--- /dev/null
+++ b/cosyvoice/hifigan/hifigan.py
@@ -0,0 +1,88 @@
+from typing import Dict, Optional
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from matcha.hifigan.models import feature_loss, generator_loss, discriminator_loss
+from cosyvoice.utils.losses import tpr_loss, mel_loss
+
+
+class HiFiGan(nn.Module):
+ def __init__(self, generator, discriminator, mel_spec_transform,
+ multi_mel_spectral_recon_loss_weight=45, feat_match_loss_weight=2.0,
+ tpr_loss_weight=1.0, tpr_loss_tau=0.04):
+ super(HiFiGan, self).__init__()
+ self.generator = generator
+ self.discriminator = discriminator
+ self.mel_spec_transform = mel_spec_transform
+ self.multi_mel_spectral_recon_loss_weight = multi_mel_spectral_recon_loss_weight
+ self.feat_match_loss_weight = feat_match_loss_weight
+ self.tpr_loss_weight = tpr_loss_weight
+ self.tpr_loss_tau = tpr_loss_tau
+
+ def forward(
+ self,
+ batch: dict,
+ device: torch.device,
+ ) -> Dict[str, Optional[torch.Tensor]]:
+ if batch['turn'] == 'generator':
+ return self.forward_generator(batch, device)
+ else:
+ return self.forward_discriminator(batch, device)
+
+ def forward_generator(self, batch, device):
+ real_speech = batch['speech'].to(device)
+ pitch_feat = batch['pitch_feat'].to(device)
+ # 1. calculate generator outputs
+ generated_speech, generated_f0 = self.generator(batch, device)
+ # 2. calculate discriminator outputs
+ y_d_rs, y_d_gs, fmap_rs, fmap_gs = self.discriminator(real_speech, generated_speech)
+ # 3. calculate generator losses, feature loss, mel loss, tpr losses [Optional]
+ loss_gen, _ = generator_loss(y_d_gs)
+ loss_fm = feature_loss(fmap_rs, fmap_gs)
+ loss_mel = mel_loss(real_speech, generated_speech, self.mel_spec_transform)
+ if self.tpr_loss_weight != 0:
+ loss_tpr = tpr_loss(y_d_gs, y_d_rs, self.tpr_loss_tau)
+ else:
+ loss_tpr = torch.zeros(1).to(device)
+ loss_f0 = F.l1_loss(generated_f0, pitch_feat)
+ loss = loss_gen + self.feat_match_loss_weight * loss_fm + \
+ self.multi_mel_spectral_recon_loss_weight * loss_mel + \
+ self.tpr_loss_weight * loss_tpr + loss_f0
+ return {'loss': loss, 'loss_gen': loss_gen, 'loss_fm': loss_fm, 'loss_mel': loss_mel, 'loss_tpr': loss_tpr, 'loss_f0': loss_f0}
+
+ def decode_from_mel(self, pitch_feat , device):
+ pitch_feat = batch['pitch_feat'].to(device)
+ # 1. calculate generator outputs
+ generated_speech, generated_f0 = self.generator(batch, device)
+ # 2. calculate discriminator outputs
+ y_d_rs, y_d_gs, fmap_rs, fmap_gs = self.discriminator(real_speech, generated_speech)
+ # 3. calculate generator losses, feature loss, mel loss, tpr losses [Optional]
+ loss_gen, _ = generator_loss(y_d_gs)
+ loss_fm = feature_loss(fmap_rs, fmap_gs)
+ loss_mel = mel_loss(real_speech, generated_speech, self.mel_spec_transform)
+ if self.tpr_loss_weight != 0:
+ loss_tpr = tpr_loss(y_d_gs, y_d_rs, self.tpr_loss_tau)
+ else:
+ loss_tpr = torch.zeros(1).to(device)
+ loss_f0 = F.l1_loss(generated_f0, pitch_feat)
+ loss = loss_gen + self.feat_match_loss_weight * loss_fm + \
+ self.multi_mel_spectral_recon_loss_weight * loss_mel + \
+ self.tpr_loss_weight * loss_tpr + loss_f0
+ return {'loss': loss, 'loss_gen': loss_gen, 'loss_fm': loss_fm, 'loss_mel': loss_mel, 'loss_tpr': loss_tpr, 'loss_f0': loss_f0}
+
+
+ def forward_discriminator(self, batch, device):
+ real_speech = batch['speech'].to(device)
+ # 1. calculate generator outputs
+ with torch.no_grad():
+ generated_speech, generated_f0 = self.generator(batch, device)
+ # 2. calculate discriminator outputs
+ y_d_rs, y_d_gs, fmap_rs, fmap_gs = self.discriminator(real_speech, generated_speech.detach())
+ # 3. calculate discriminator losses, tpr losses [Optional]
+ loss_disc, _, _ = discriminator_loss(y_d_rs, y_d_gs)
+ if self.tpr_loss_weight != 0:
+ loss_tpr = tpr_loss(y_d_rs, y_d_gs, self.tpr_loss_tau)
+ else:
+ loss_tpr = torch.zeros(1).to(device)
+ loss = loss_disc + self.tpr_loss_weight * loss_tpr
+ return {'loss': loss, 'loss_disc': loss_disc, 'loss_tpr': loss_tpr}
diff --git a/cosyvoice/llm/llm.py b/cosyvoice/llm/llm.py
new file mode 100644
index 0000000000000000000000000000000000000000..6891b33571b0ab3c0487424870d722ce0b277f42
--- /dev/null
+++ b/cosyvoice/llm/llm.py
@@ -0,0 +1,611 @@
+# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
+# 2025 Alibaba Inc (authors: Xiang Lyu, Yabin Li, Qihua, Shengqiang Li)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import queue
+import random
+import time
+import threading
+from typing import Dict, Optional, Callable, List, Generator
+import torch
+from torch import nn
+import torch.nn.functional as F
+from transformers import Qwen2ForCausalLM
+from torch.nn.utils.rnn import pad_sequence, unpad_sequence
+from cosyvoice.utils.common import IGNORE_ID
+from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
+from cosyvoice.utils.common import th_accuracy
+from cosyvoice.utils.file_utils import logging
+from cosyvoice.utils.mask import make_pad_mask
+
+
+class TransformerLM(torch.nn.Module):
+ def __init__(
+ self,
+ text_encoder_input_size: int,
+ llm_input_size: int,
+ llm_output_size: int,
+ text_token_size: int,
+ speech_token_size: int,
+ text_encoder: torch.nn.Module,
+ llm: torch.nn.Module,
+ sampling: Callable,
+ length_normalized_loss: bool = True,
+ lsm_weight: float = 0.0,
+ spk_embed_dim: int = 192,
+ ):
+ super().__init__()
+ self.llm_input_size = llm_input_size
+ self.speech_token_size = speech_token_size
+ # 1. build text token inputs related modules
+ self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size)
+ self.text_encoder = text_encoder
+ self.text_encoder_affine_layer = nn.Linear(
+ self.text_encoder.output_size(),
+ llm_input_size
+ )
+
+ # 2. build speech token language model related modules
+ self.sos_eos = 0
+ self.task_id = 1
+ self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
+ self.llm = llm
+ self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1)
+ self.criterion_ce = LabelSmoothingLoss(
+ size=speech_token_size + 1,
+ padding_idx=IGNORE_ID,
+ smoothing=lsm_weight,
+ normalize_length=length_normalized_loss,
+ )
+
+ # 3. [Optional] build speech token related modules
+ self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size)
+ self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size)
+
+ # 4. sampling method
+ self.sampling = sampling
+
+ def encode(
+ self,
+ text: torch.Tensor,
+ text_lengths: torch.Tensor,
+ ):
+ encoder_out, encoder_mask = self.text_encoder(text, text_lengths, decoding_chunk_size=1, num_decoding_left_chunks=-1)
+ encoder_out_lens = encoder_mask.squeeze(1).sum(1)
+ encoder_out = self.text_encoder_affine_layer(encoder_out)
+ return encoder_out, encoder_out_lens
+
+ def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
+ text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
+ speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
+ lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0)
+ for i in range(len(text_token))]
+ lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
+ lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
+ return lm_input, lm_input_len
+
+ def forward(
+ self,
+ batch: dict,
+ device: torch.device,
+ ) -> Dict[str, Optional[torch.Tensor]]:
+ """
+ Args:
+ text: (B, L, D)
+ text_lengths: (B,)
+ audio: (B, T, N) or (B, T)
+ audio_lengths: (B,)
+ """
+ text_token = batch['text_token'].to(device)
+ text_token_len = batch['text_token_len'].to(device)
+ speech_token = batch['speech_token'].to(device)
+ speech_token_len = batch['speech_token_len'].to(device)
+ embedding = batch['embedding'].to(device)
+
+ # 1. prepare llm_target
+ lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() +
+ [self.speech_token_size]) for i in range(text_token.size(0))]
+ lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
+
+ # 1. encode text_token
+ text_token = self.text_embedding(text_token)
+ text_token, text_token_len = self.encode(text_token, text_token_len)
+
+ # 2. embedding projection
+ embedding = F.normalize(embedding, dim=1)
+ embedding = self.spk_embed_affine_layer(embedding)
+ embedding = embedding.unsqueeze(1)
+
+ # 3. eos and task_id
+ sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
+ task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
+
+ # 4. encode speech_token
+ speech_token = self.speech_embedding(speech_token)
+
+ # 5. unpad and pad
+ lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len,
+ task_id_emb, speech_token, speech_token_len)
+
+ # 6. run lm forward
+ lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
+ logits = self.llm_decoder(lm_output)
+ loss = self.criterion_ce(logits, lm_target)
+ acc = th_accuracy(logits.view(-1, self.speech_token_size + 1), lm_target, ignore_label=IGNORE_ID)
+ return {'loss': loss, 'acc': acc}
+
+ def sampling_ids(
+ self,
+ weighted_scores: torch.Tensor,
+ decoded_tokens: List,
+ sampling: int,
+ ignore_eos: bool = True,
+ ):
+ num_trials, max_trials = 0, 100
+ while True:
+ top_ids = self.sampling(weighted_scores, decoded_tokens, sampling)
+ if (not ignore_eos) or (self.speech_token_size not in top_ids):
+ break
+ num_trials += 1
+ if num_trials > max_trials:
+ raise RuntimeError('sampling reaches max_trials {} and still get eos when ignore_eos is True, check your input!'.format(max_trials))
+ return top_ids
+
+ @torch.inference_mode()
+ def inference(
+ self,
+ text: torch.Tensor,
+ text_len: torch.Tensor,
+ prompt_text: torch.Tensor,
+ prompt_text_len: torch.Tensor,
+ prompt_speech_token: torch.Tensor,
+ prompt_speech_token_len: torch.Tensor,
+ embedding: torch.Tensor,
+ sampling: int = 25,
+ max_token_text_ratio: float = 20,
+ min_token_text_ratio: float = 2,
+ uuid: str = '',
+ ) -> Generator[torch.Tensor, None, None]:
+ device = text.device
+ text = torch.concat([prompt_text, text], dim=1)
+ text_len += prompt_text_len
+ text = self.text_embedding(text)
+
+ # 1. encode text
+ text, text_len = self.encode(text, text_len)
+
+ # 2. encode embedding
+ if embedding.shape[0] != 0:
+ embedding = F.normalize(embedding, dim=1)
+ embedding = self.spk_embed_affine_layer(embedding)
+ embedding = embedding.unsqueeze(dim=1)
+ else:
+ embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device).to(text.dtype)
+
+ # 3. concat llm_input
+ sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
+ task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
+ if prompt_speech_token_len != 0:
+ prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
+ else:
+ prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
+ lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
+
+ # 4. cal min/max_length
+ min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
+ max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
+
+ # 5. step by step decode
+ out_tokens = []
+ offset = 0
+ att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device)
+ for i in range(max_len):
+ y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=offset, required_cache_size=-1,
+ att_cache=att_cache, cnn_cache=cnn_cache,
+ att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]),
+ device=lm_input.device)).to(torch.bool))
+ logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
+ # force continue decode first token
+ if i == 0:
+ logp[:, self.speech_token_size] = -float('inf')
+ top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
+ if top_ids == self.speech_token_size:
+ break
+ # in stream mode, yield token one by one
+ yield top_ids
+ out_tokens.append(top_ids)
+ offset += lm_input.size(1)
+ lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
+
+
+class Qwen2Encoder(torch.nn.Module):
+ def __init__(self, pretrain_path):
+ super().__init__()
+ self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path)
+
+ def forward(self, xs: torch.Tensor, xs_lens: torch.Tensor):
+ T = xs.size(1)
+ masks = ~make_pad_mask(xs_lens, T)
+ outs = self.model(
+ inputs_embeds=xs,
+ attention_mask=masks,
+ output_hidden_states=True,
+ return_dict=True,
+ )
+ return outs.hidden_states[-1], masks.unsqueeze(1)
+
+ def forward_one_step(self, xs, masks, cache=None):
+ input_masks = masks[:, -1, :]
+ outs = self.model(
+ inputs_embeds=xs,
+ attention_mask=input_masks,
+ output_hidden_states=True,
+ return_dict=True,
+ use_cache=True,
+ past_key_values=cache,
+ )
+ xs = outs.hidden_states[-1]
+ new_cache = outs.past_key_values
+ return xs, new_cache
+
+
+class Qwen2LM(TransformerLM):
+ def __init__(
+ self,
+ llm_input_size: int,
+ llm_output_size: int,
+ speech_token_size: int,
+ llm: torch.nn.Module,
+ sampling: Callable,
+ length_normalized_loss: bool = True,
+ lsm_weight: float = 0.0,
+ mix_ratio: List[int] = [5, 15],
+ ):
+ torch.nn.Module.__init__(self)
+ self.llm_input_size = llm_input_size
+ self.llm_output_size = llm_output_size
+ self.speech_token_size = speech_token_size
+ # 2. build speech token language model related modules
+ self.sos_eos = 0
+ self.task_id = 1
+ self.fill_token = 2
+
+ self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
+ self.llm = llm
+ self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 3)
+ self.criterion_ce = LabelSmoothingLoss(
+ size=speech_token_size + 3,
+ padding_idx=IGNORE_ID,
+ smoothing=lsm_weight,
+ normalize_length=length_normalized_loss,
+ )
+
+ # 3. [Optional] build speech token related modules
+ self.speech_embedding = torch.nn.Embedding(speech_token_size + 3, llm_input_size)
+
+ # 4. sampling method
+ self.sampling = sampling
+ self.mix_ratio = mix_ratio
+
+ # 5. vllm related
+ self.stop_token_ids = [speech_token_size + i for i in range(3)]
+ self.vllm_output_queue = {}
+
+ def prepare_lm_input_target(self, text_token, text_token_emb, text_token_len, speech_token, speech_token_emb, speech_token_len):
+ lm_target, lm_input = [], []
+ text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
+ speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
+ text_token_emb = unpad_sequence(text_token_emb, text_token_len.cpu(), batch_first=True)
+ speech_token_emb = unpad_sequence(speech_token_emb, speech_token_len.cpu(), batch_first=True)
+ for i in range(len(text_token)):
+ # bistream sequence
+ if random.random() < 0.5 and speech_token_len[i] / text_token_len[i] > self.mix_ratio[1] / self.mix_ratio[0]:
+ this_lm_target, this_lm_input = [], []
+ this_lm_target.append(IGNORE_ID)
+ this_lm_input.append(self.llm_embedding.weight[self.sos_eos].reshape(1, -1))
+ for j in range(((text_token_len[i] + 1) / self.mix_ratio[0]).ceil().int().item()):
+ this_text_token = text_token[i][j * self.mix_ratio[0]: (j + 1) * self.mix_ratio[0]].tolist()
+ this_speech_token = speech_token[i][j * self.mix_ratio[1]: (j + 1) * self.mix_ratio[1]].tolist()
+ if len(this_text_token) == self.mix_ratio[0]:
+ assert len(this_speech_token) == self.mix_ratio[1]
+ this_lm_target += [IGNORE_ID] * (self.mix_ratio[0] - 1)
+ this_lm_target += this_speech_token
+ this_lm_target.append(self.speech_token_size + 2)
+ this_lm_input.append(text_token_emb[i][j * self.mix_ratio[0]: (j + 1) * self.mix_ratio[0]])
+ this_lm_input.append(speech_token_emb[i][j * self.mix_ratio[1]: (j + 1) * self.mix_ratio[1]])
+ else:
+ this_lm_target += [-1] * len(this_text_token)
+ this_lm_target += speech_token[i][j * self.mix_ratio[1]:].tolist()
+ this_lm_target.append(self.speech_token_size)
+ this_lm_input.append(text_token_emb[i][j * self.mix_ratio[0]:])
+ this_lm_input.append(self.llm_embedding.weight[self.task_id].reshape(1, -1))
+ this_lm_input.append(speech_token_emb[i][j * self.mix_ratio[1]:])
+ this_lm_target, this_lm_input = torch.tensor(this_lm_target), torch.concat(this_lm_input, dim=0)
+ # unistream sequence
+ else:
+ this_lm_target = torch.tensor([IGNORE_ID] * (1 + text_token_len[i]) + speech_token[i].tolist() + [self.speech_token_size])
+ this_lm_input = torch.concat([self.llm_embedding.weight[self.sos_eos].reshape(1, -1), text_token_emb[i],
+ self.llm_embedding.weight[self.task_id].reshape(1, -1), speech_token_emb[i]], dim=0)
+ lm_target.append(this_lm_target)
+ lm_input.append(this_lm_input)
+ lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
+ lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
+ lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID)
+ return lm_target, lm_input, lm_input_len
+
+ def forward(
+ self,
+ batch: dict,
+ device: torch.device,
+ ) -> Dict[str, Optional[torch.Tensor]]:
+ """
+ Args:
+ text: (B, L, D)
+ text_lengths: (B,)
+ audio: (B, T, N) or (B, T)
+ audio_lengths: (B,)
+ """
+ text_token = batch['text_token'].to(device)
+ text_token_len = batch['text_token_len'].to(device)
+ speech_token = batch['speech_token'].to(device)
+ speech_token_len = batch['speech_token_len'].to(device)
+
+ # 1. encode text_token
+ text_token_emb = self.llm.model.model.embed_tokens(text_token)
+
+ # 2. encode speech_token
+ speech_token_emb = self.speech_embedding(speech_token)
+
+ # 3. prepare llm_input/target
+ lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(text_token, text_token_emb, text_token_len, speech_token, speech_token_emb, speech_token_len)
+ lm_target = lm_target.to(device)
+
+ # 4. run lm forward
+ lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
+ logits = self.llm_decoder(lm_output)
+ loss = self.criterion_ce(logits, lm_target.to(device))
+ acc = th_accuracy(logits.view(-1, self.speech_token_size + 3), lm_target, ignore_label=IGNORE_ID)
+ return {'loss': loss, 'acc': acc}
+
+ def forward_dpo(
+ self,
+ batch: dict,
+ device: torch.device,
+ ) -> Dict[str, Optional[torch.Tensor]]:
+ text_token = batch['text_token'].to(device)
+ text_token_len = batch['text_token_len'].to(device)
+ speech_token = batch['speech_token'].to(device)
+ speech_token_len = batch['speech_token_len'].to(device)
+ reject_speech_token = batch['reject_speech_token'].to(device)
+ reject_speech_token_len = batch['reject_speech_token_len'].to(device)
+
+ # 1. encode text_token
+ text_token_emb = self.llm.model.model.embed_tokens(text_token)
+
+ # 2. encode speech_token
+ speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
+ reject_speech_token = unpad_sequence(reject_speech_token, reject_speech_token_len.cpu(), batch_first=True)
+ speech_token_combined = speech_token + reject_speech_token
+ speech_token_combined = pad_sequence(speech_token_combined, batch_first=True, padding_value=0)
+ speech_token_combined_len = torch.concat([speech_token_len, reject_speech_token_len], dim=0)
+ speech_token_combined_emb = self.speech_embedding(speech_token_combined)
+
+ # 3. prepare llm_input/target
+ lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(text_token.repeat(2, 1), text_token_emb.repeat(2, 1, 1), text_token_len.repeat(2),
+ speech_token_combined, speech_token_combined_emb, speech_token_combined_len)
+ lm_target = lm_target.to(device)
+
+ # 4. run lm forward
+ lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
+ logits = self.llm_decoder(lm_output)
+ chosen_logits = logits[:text_token.shape[0]]
+ rejected_logits = logits[text_token.shape[0]:]
+ chosen_lm_target = lm_target[:text_token.shape[0]]
+ rejected_lm_target = lm_target[text_token.shape[0]:]
+ loss = self.criterion_ce(chosen_logits, chosen_lm_target.to(device))
+ acc = th_accuracy(chosen_logits.view(-1, self.speech_token_size + 3), chosen_lm_target, ignore_label=IGNORE_ID)
+
+ # 5. calculate dpo logits
+ chosen_lm_mask = chosen_lm_target == IGNORE_ID
+ rejected_lm_mask = rejected_lm_target == IGNORE_ID
+ chosen_logps = torch.gather(chosen_logits.log_softmax(dim=-1), dim=2, index=chosen_lm_target.masked_fill(chosen_lm_mask, 0).unsqueeze(dim=-1)).squeeze(dim=-1)
+ rejected_logps = torch.gather(rejected_logits.log_softmax(dim=-1), dim=2, index=rejected_lm_target.masked_fill(rejected_lm_mask, 0).unsqueeze(dim=-1)).squeeze(dim=-1)
+ chosen_logps = (chosen_logps * chosen_lm_mask).sum(dim=-1) / chosen_lm_mask.sum(dim=-1)
+ rejected_logps = (rejected_logps * rejected_lm_mask).sum(dim=-1) / rejected_lm_mask.sum(dim=-1)
+ return {'loss': loss, 'acc': acc, 'chosen_logps': chosen_logps, 'rejected_logps': rejected_logps}
+
+ @torch.inference_mode()
+ def inference(
+ self,
+ text: torch.Tensor,
+ text_len: torch.Tensor,
+ prompt_text: torch.Tensor,
+ prompt_text_len: torch.Tensor,
+ prompt_speech_token: torch.Tensor,
+ prompt_speech_token_len: torch.Tensor,
+ embedding: torch.Tensor,
+ sampling: int = 25,
+ max_token_text_ratio: float = 20,
+ min_token_text_ratio: float = 2,
+ uuid: str = '',
+ ) -> Generator[torch.Tensor, None, None]:
+ device = text.device
+ text = torch.concat([prompt_text, text], dim=1)
+ text_len += prompt_text_len
+ text = self.llm.model.model.embed_tokens(text)
+
+ # 3. concat llm_input
+ sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
+ task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
+ if prompt_speech_token_len != 0:
+ prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
+ else:
+ prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
+ lm_input = torch.concat([sos_eos_emb, text, task_id_emb, prompt_speech_token_emb], dim=1)
+
+ # 4. cal min/max_length
+ min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
+ max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
+
+ # 5. step by step decode
+ for token in self.inference_wrapper(lm_input, sampling, min_len, max_len, uuid):
+ yield token
+
+ @torch.inference_mode()
+ def inference_wrapper(self, lm_input, sampling, min_len, max_len, uuid):
+ if hasattr(self, 'vllm'):
+ from vllm import SamplingParams, RequestOutput
+ sampling_params = SamplingParams(top_k=sampling,
+ stop_token_ids=self.stop_token_ids,
+ min_tokens=min_len,
+ max_tokens=max_len)
+ with self.lock:
+ self.vllm.add_request(uuid, {"prompt_embeds": lm_input.squeeze(0).to(torch.bfloat16).to(lm_input.device)}, sampling_params)
+ self.vllm_output_queue[uuid] = queue.Queue()
+ out_tokens = []
+ while True:
+ with self.lock:
+ if self.vllm_output_queue[uuid].empty() is True:
+ request_outputs: List[RequestOutput] = self.vllm.step()
+ for request_output in request_outputs:
+ top_ids = list(request_output.outputs[0].token_ids)[-1]
+ self.vllm_output_queue[request_output.request_id].put(top_ids)
+ if self.vllm_output_queue[uuid].empty() is False:
+ top_ids = self.vllm_output_queue[uuid].get()
+ if top_ids in self.stop_token_ids:
+ break
+ # in stream mode, yield token one by one
+ yield top_ids
+ out_tokens.append(top_ids)
+ if len(out_tokens) == max_len:
+ break
+ time.sleep(0.001)
+ with self.lock:
+ self.vllm_output_queue.pop(uuid)
+ else:
+ out_tokens = []
+ cache = None
+ for i in range(max_len):
+ y_pred, cache = self.llm.forward_one_step(lm_input,
+ masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool),
+ cache=cache)
+ logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
+ top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
+ if top_ids == self.speech_token_size:
+ break
+ if top_ids > self.speech_token_size:
+ continue
+ # in stream mode, yield token one by one
+ yield top_ids
+ out_tokens.append(top_ids)
+ lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
+
+ @torch.inference_mode()
+ def inference_bistream(
+ self,
+ text: Generator,
+ prompt_text: torch.Tensor,
+ prompt_text_len: torch.Tensor,
+ prompt_speech_token: torch.Tensor,
+ prompt_speech_token_len: torch.Tensor,
+ embedding: torch.Tensor,
+ sampling: int = 25,
+ max_token_text_ratio: float = 20,
+ min_token_text_ratio: float = 2,
+ ) -> Generator[torch.Tensor, None, None]:
+
+ device = prompt_text.device
+ # 1. prepare input
+ sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
+ task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
+ if prompt_speech_token_len != 0:
+ prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
+ else:
+ prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=prompt_text.dtype).to(device)
+ lm_input = torch.concat([sos_eos_emb], dim=1)
+
+ # 2. iterate text
+ out_tokens = []
+ cache = None
+ # NOTE init prompt_text as text_cache as it is basically impossible prompt_speech_token/prompt_text < 15/5
+ text_cache = self.llm.model.model.embed_tokens(prompt_text)
+ next_fill_index = -1
+ for this_text in text:
+ text_cache = torch.concat([text_cache, self.llm.model.model.embed_tokens(this_text)], dim=1)
+ # prompt_speech_token_emb not empty, try append to lm_input
+ while prompt_speech_token_emb.size(1) != 0:
+ if text_cache.size(1) >= self.mix_ratio[0]:
+ lm_input_text, lm_input_speech = text_cache[:, :self.mix_ratio[0]], prompt_speech_token_emb[:, :self.mix_ratio[1]]
+ logging.info('append {} text token {} speech token'.format(lm_input_text.size(1), lm_input_speech.size(1)))
+ lm_input = torch.concat([lm_input, lm_input_text, lm_input_speech], dim=1)
+ text_cache, prompt_speech_token_emb = text_cache[:, self.mix_ratio[0]:], prompt_speech_token_emb[:, self.mix_ratio[1]:]
+ else:
+ logging.info('not enough text token to decode, wait for more')
+ break
+ # no prompt_speech_token_emb remain, can decode some speech token
+ if prompt_speech_token_emb.size(1) == 0:
+ if (len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2) or (len(out_tokens) == 0 and lm_input.size(1) == 1):
+ logging.info('get fill token, need to append more text token')
+ if text_cache.size(1) >= self.mix_ratio[0]:
+ lm_input_text = text_cache[:, :self.mix_ratio[0]]
+ logging.info('append {} text token'.format(lm_input_text.size(1)))
+ if len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2:
+ lm_input = lm_input_text
+ else:
+ lm_input = torch.concat([lm_input, lm_input_text], dim=1)
+ text_cache = text_cache[:, self.mix_ratio[0]:]
+ else:
+ logging.info('not enough text token to decode, wait for more')
+ continue
+ while True:
+ seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
+ y_pred, cache = self.llm.forward_one_step(lm_input,
+ masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
+ cache=cache)
+ logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
+ if next_fill_index != -1 and len(out_tokens) == next_fill_index:
+ top_ids = self.speech_token_size + 2
+ next_fill_index += (self.mix_ratio[1] + 1)
+ else:
+ top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True).item()
+ if top_ids == self.speech_token_size + 2:
+ next_fill_index = len(out_tokens) + self.mix_ratio[1] + 1
+ logging.info('fill_token index {} next fill_token index {}'.format(len(out_tokens), next_fill_index))
+ out_tokens.append(top_ids)
+ if top_ids >= self.speech_token_size:
+ if top_ids == self.speech_token_size + 2:
+ break
+ else:
+ raise ValueError('should not get token {}'.format(top_ids))
+ yield top_ids
+ lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
+
+ # 3. final decode
+ lm_input = torch.concat([lm_input, text_cache, task_id_emb], dim=1)
+ logging.info('no more text token, decode until met eos')
+ while True:
+ seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
+ y_pred, cache = self.llm.forward_one_step(lm_input,
+ masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
+ cache=cache)
+ logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
+ top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=False).item()
+ out_tokens.append(top_ids)
+ if top_ids >= self.speech_token_size:
+ if top_ids == self.speech_token_size:
+ break
+ else:
+ raise ValueError('should not get token {}'.format(top_ids))
+ # in stream mode, yield token one by one
+ yield top_ids
+ lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
diff --git a/cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken b/cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken
new file mode 100644
index 0000000000000000000000000000000000000000..ac47fe685d24565030965a94c0d98e00e0331eaa
--- /dev/null
+++ b/cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken
@@ -0,0 +1,58836 @@
+IQ== 0
+Ig== 1
+Iw== 2
+JA== 3
+JQ== 4
+Jg== 5
+Jw== 6
+KA== 7
+KQ== 8
+Kg== 9
+Kw== 10
+LA== 11
+LQ== 12
+Lg== 13
+Lw== 14
+MA== 15
+MQ== 16
+Mg== 17
+Mw== 18
+NA== 19
+NQ== 20
+Ng== 21
+Nw== 22
+OA== 23
+OQ== 24
+Og== 25
+Ow== 26
+PA== 27
+PQ== 28
+Pg== 29
+Pw== 30
+QA== 31
+QQ== 32
+Qg== 33
+Qw== 34
+RA== 35
+RQ== 36
+Rg== 37
+Rw== 38
+SA== 39
+SQ== 40
+Sg== 41
+Sw== 42
+TA== 43
+TQ== 44
+Tg== 45
+Tw== 46
+UA== 47
+UQ== 48
+Ug== 49
+Uw== 50
+VA== 51
+VQ== 52
+Vg== 53
+Vw== 54
+WA== 55
+WQ== 56
+Wg== 57
+Ww== 58
+XA== 59
+XQ== 60
+Xg== 61
+Xw== 62
+YA== 63
+YQ== 64
+Yg== 65
+Yw== 66
+ZA== 67
+ZQ== 68
+Zg== 69
+Zw== 70
+aA== 71
+aQ== 72
+ag== 73
+aw== 74
+bA== 75
+bQ== 76
+bg== 77
+bw== 78
+cA== 79
+cQ== 80
+cg== 81
+cw== 82
+dA== 83
+dQ== 84
+dg== 85
+dw== 86
+eA== 87
+eQ== 88
+eg== 89
+ew== 90
+fA== 91
+fQ== 92
+fg== 93
+oQ== 94
+og== 95
+ow== 96
+pA== 97
+pQ== 98
+pg== 99
+pw== 100
+qA== 101
+qQ== 102
+qg== 103
+qw== 104
+rA== 105
+rg== 106
+rw== 107
+sA== 108
+sQ== 109
+sg== 110
+sw== 111
+tA== 112
+tQ== 113
+tg== 114
+tw== 115
+uA== 116
+uQ== 117
+ug== 118
+uw== 119
+vA== 120
+vQ== 121
+vg== 122
+vw== 123
+wA== 124
+wQ== 125
+wg== 126
+ww== 127
+xA== 128
+xQ== 129
+xg== 130
+xw== 131
+yA== 132
+yQ== 133
+yg== 134
+yw== 135
+zA== 136
+zQ== 137
+zg== 138
+zw== 139
+0A== 140
+0Q== 141
+0g== 142
+0w== 143
+1A== 144
+1Q== 145
+1g== 146
+1w== 147
+2A== 148
+2Q== 149
+2g== 150
+2w== 151
+3A== 152
+3Q== 153
+3g== 154
+3w== 155
+4A== 156
+4Q== 157
+4g== 158
+4w== 159
+5A== 160
+5Q== 161
+5g== 162
+5w== 163
+6A== 164
+6Q== 165
+6g== 166
+6w== 167
+7A== 168
+7Q== 169
+7g== 170
+7w== 171
+8A== 172
+8Q== 173
+8g== 174
+8w== 175
+9A== 176
+9Q== 177
+9g== 178
+9w== 179
++A== 180
++Q== 181
++g== 182
++w== 183
+/A== 184
+/Q== 185
+/g== 186
+/w== 187
+AA== 188
+AQ== 189
+Ag== 190
+Aw== 191
+BA== 192
+BQ== 193
+Bg== 194
+Bw== 195
+CA== 196
+CQ== 197
+Cg== 198
+Cw== 199
+DA== 200
+DQ== 201
+Dg== 202
+Dw== 203
+EA== 204
+EQ== 205
+Eg== 206
+Ew== 207
+FA== 208
+FQ== 209
+Fg== 210
+Fw== 211
+GA== 212
+GQ== 213
+Gg== 214
+Gw== 215
+HA== 216
+HQ== 217
+Hg== 218
+Hw== 219
+IA== 220
+fw== 221
+gA== 222
+gQ== 223
+gg== 224
+gw== 225
+hA== 226
+hQ== 227
+hg== 228
+hw== 229
+iA== 230
+iQ== 231
+ig== 232
+iw== 233
+jA== 234
+jQ== 235
+jg== 236
+jw== 237
+kA== 238
+kQ== 239
+kg== 240
+kw== 241
+lA== 242
+lQ== 243
+lg== 244
+lw== 245
+mA== 246
+mQ== 247
+mg== 248
+mw== 249
+nA== 250
+nQ== 251
+ng== 252
+nw== 253
+oA== 254
+rQ== 255
+IHQ= 256
+IGE= 257
+IHRo 258
+aW4= 259
+ZXI= 260
+IHc= 261
+IHM= 262
+b3U= 263
+IHRoZQ== 264
+cmU= 265
+b24= 266
+YXQ= 267
+ZW4= 268
+IGM= 269
+aXQ= 270
+aXM= 271
+IGI= 272
+bmQ= 273
+IGQ= 274
+IG0= 275
+IGg= 276
+IG8= 277
+aW5n 278
+ZXM= 279
+IHA= 280
+IHRv 281
+YW4= 282
+IGY= 283
+b3I= 284
+bGw= 285
+IEk= 286
+IGw= 287
+IHk= 288
+YXI= 289
+IGc= 290
+IHlvdQ== 291
+ZWQ= 292
+IGFuZA== 293
+IGlu 294
+IG9m 295
+YXM= 296
+IG4= 297
+b20= 298
+aWM= 299
+IHRoYXQ= 300
+dXM= 301
+ZXQ= 302
+dmU= 303
+YWw= 304
+b3c= 305
+bGU= 306
+IGlz 307
+IGU= 308
+IGl0 309
+b3Q= 310
+J3M= 311
+IGJl 312
+aW9u 313
+IFQ= 314
+IHdo 315
+IEE= 316
+ZW50 317
+IFM= 318
+IHJl 319
+YXk= 320
+IHdl 321
+IG9u 322
+ZXJl 323
+IGhh 324
+dXQ= 325
+YWM= 326
+aWQ= 327
+aWc= 328
+b3M= 329
+a2U= 330
+dmVy 331
+aW0= 332
+INA= 333
+IFRo 334
+YW0= 335
+YWxs 336
+IGZvcg== 337
+ZWw= 338
+Y2g= 339
+cm8= 340
+IHRoaXM= 341
+IHN0 342
+IFc= 343
+IHU= 344
+YWQ= 345
+b3V0 346
+aXI= 347
+bGQ= 348
+Y3Q= 349
+IGs= 350
+aWY= 351
+IGdv 352
+Li4= 353
+0L4= 354
+aXRo 355
+bHk= 356
+aHQ= 357
+cXU= 358
+IC0= 359
+IGRv 360
+IGo= 361
+IGhhdmU= 362
+IEI= 363
+IGFu 364
+IHdpdGg= 365
+IGFyZQ== 366
+IHI= 367
+IGRl 368
+IHNl 369
+IHNv 370
+IHY= 371
+c3Q= 372
+aWxs 373
+dXI= 374
+IGxp 375
+IE0= 376
+ZXN0 377
+b2Q= 378
+YWxseQ== 379
+J3Q= 380
+dXN0 381
+IGFz 382
+IEM= 383
+Y2U= 384
+IG1l 385
+0LA= 386
+0LU= 387
+aWw= 388
+IEg= 389
+IHdhcw== 390
+dGVy 391
+dGg= 392
+IGNhbg== 393
+YW50 394
+IGNvbQ== 395
+b3Vy 396
+aWdodA== 397
+IFk= 398
+YXRpb24= 399
+IEFuZA== 400
+b2w= 401
+IHNo 402
+0YI= 403
+b3A= 404
+c2U= 405
+IG5vdA== 406
+IFNv 407
+IG5l 408
+dW4= 409
+IGFi 410
+IGxpa2U= 411
+IGF0 412
+IEQ= 413
+aWU= 414
+IGhl 415
+IGNvbg== 416
+IGNo 417
+b3Jl 418
+IGFs 419
+IG9y 420
+IHF1 421
+IE8= 422
+b21l 423
+cmE= 424
+dWw= 425
+IE4= 426
+cHA= 427
+IHlvdXI= 428
+b3VsZA== 429
+IFA= 430
+IGZy 431
+Z2U= 432
+ZXJz 433
+J3Jl 434
+0Lg= 435
+IHRoZXk= 436
+IHdoYXQ= 437
+dXNl 438
+IGFsbA== 439
+IFRoZQ== 440
+IEw= 441
+ZXNz 442
+ZW0= 443
+IGtu 444
+IGp1c3Q= 445
+YXJ0 446
+IHBybw== 447
+dmVyeQ== 448
+dW0= 449
+IGxv 450
+IOw= 451
+IG15 452
+b2s= 453
+IGV4 454
+YWI= 455
+IHRoZXJl 456
+IGJ1dA== 457
+IGtub3c= 458
+IHN1 459
+IEc= 460
+0YE= 461
+IEU= 462
+IG1h 463
+0L7Q 464
+IGVu 465
+IGFib3V0 466
+IEl0 467
+aXN0 468
+IHdvcg== 469
+cmk= 470
+aW5k 471
+IG9uZQ== 472
+YXRl 473
+YW5k 474
+aW5r 475
+IGxl 476
+b3J0 477
+J20= 478
+IEY= 479
+aWNo 480
+0YA= 481
+aWRl 482
+IGdldA== 483
+IG91dA== 484
+Li4u 485
+IHdpbGw= 486
+44E= 487
+aXZl 488
+0L0= 489
+IGZyb20= 490
+YWlu 491
+IFdl 492
+IHVw 493
+cGU= 494
+cmVz 495
+Y2E= 496
+IFI= 497
+IGlm 498
+IHBs 499
+IGRvbg== 500
+YWNr 501
+IDE= 502
+ICI= 503
+IHRy 504
+IHVz 505
+IFdo 506
+aXR5 507
+IEo= 508
+IFlvdQ== 509
+IGhlcmU= 510
+aGVy 511
+IHNvbWU= 512
+b3Vn 513
+YWs= 514
+YXJk 515
+IGdvaW5n 516
+IHVu 517
+bWVudA== 518
+IHRoaW5r 519
+IHBl 520
+ZW5k 521
+ICg= 522
+Y2F1c2U= 523
+IHRpbQ== 524
+YXN0 525
+w6k= 526
+IG91cg== 527
+IHdhbnQ= 528
+YW1l 529
+aWVz 530
+IOs= 531
+dWQ= 532
+aW5l 533
+IHJlYWxseQ== 534
+IHRl 535
+IHNlZQ== 536
+Y2k= 537
+IGJ5 538
+c28= 539
+dXJl 540
+b3Nl 541
+IFs= 542
+YXJl 543
+IG1vcmU= 544
+YWg= 545
+b25l 546
+Y2s= 547
+b3BsZQ== 548
+0LDQ 549
+IHRoZW4= 550
+IHRoaW5n 551
+IHRoZW0= 552
+dmVu 553
+b3VuZA== 554
+b3N0 555
+b25n 556
+ZWN0 557
+IHJpZ2h0 558
+YWc= 559
+IGludA== 560
+IHBlb3BsZQ== 561
+IHdoZW4= 562
+b3Vz 563
+cGw= 564
+IHRpbWU= 565
+IGlt 566
+IHdobw== 567
+IDI= 568
+YXA= 569
+IGJlY2F1c2U= 570
+aGluZw== 571
+IG5v 572
+aWNl 573
+IGxvb2s= 574
+IGhhcw== 575
+IHdvdWxk 576
+IGhvdw== 577
+YWN0 578
+IGZl 579
+bnQ= 580
+b3VnaA== 581
+IHBy 582
+IEJ1dA== 583
+IHNheQ== 584
+0YM= 585
+IG5vdw== 586
+IG1hbg== 587
+IHZlcnk= 588
+IHdvcms= 589
+aXo= 590
+IEs= 591
+aXY= 592
+aXR0 593
+IGFy 594
+ZXA= 595
+IGNs 596
+IHdoaWNo 597
+IGNv 598
+YW5z 599
+J3Zl 600
+IHNh 601
+ZmY= 602
+J2xs 603
+IGFueQ== 604
+IGFjdA== 605
+IHll 606
+YmVy 607
+YWNo 608
+YWdl 609
+cGVy 610
+IGFsc28= 611
+ZmVy 612
+IHRoZXNl 613
+IGFk 614
+0LXQ 615
+dGhlcg== 616
+YWNl 617
+aWNr 618
+YWtl 619
+cmVhdA== 620
+aXJl 621
+dWU= 622
+IGFn 623
+IFU= 624
+dWNo 625
+aW9ucw== 626
+cnk= 627
+MDA= 628
+bmE= 629
+IGRpZA== 630
+IHF1ZQ== 631
+IGhhZA== 632
+IGV2ZXJ5 633
+IEhl 634
+IGxh 635
+IHdheQ== 636
+IHNw 637
+Ymxl 638
+IFRoaXM= 639
+YXNz 640
+IHRoZWly 641
+aXRl 642
+IG5lZWQ= 643
+IHBhcnQ= 644
+IHdlcmU= 645
+IGJhY2s= 646
+aXA= 647
+b3du 648
+b21ldA== 649
+YmU= 650
+YXNl 651
+IG1ha2U= 652
+aXJzdA== 653
+aWE= 654
+ZW5jZQ== 655
+YW5n 656
+YW5r 657
+IGdvdA== 658
+IHByZQ== 659
+IGNvbnQ= 660
+IG90aGVy 661
+cHQ= 662
+IFRoYXQ= 663
+b2c= 664
+IGdvb2Q= 665
+IGludG8= 666
+YWxr 667
+IGJlZW4= 668
+IGFt 669
+IG92ZXI= 670
+dWFsbHk= 671
+IOI= 672
+7J0= 673
+IHVuZA== 674
+aGU= 675
+d2F5 676
+IGdy 677
+0Yw= 678
+IGRpZg== 679
+IHBlcg== 680
+0Y8= 681
+IElu 682
+IHR3 683
+b25k 684
+YXJz 685
+aW50 686
+b3Jt 687
+IGxvdA== 688
+IHdoZXJl 689
+IMM= 690
+IFY= 691
+IHNvbWV0 692
+0Ls= 693
+ZW5z 694
+IGd1 695
+IGFj 696
+dWc= 697
+0Ys= 698
+xLE= 699
+IGZpcnN0 700
+cmVl 701
+IGhpcw== 702
+aXR0bGU= 703
+IGltcA== 704
+IG1v 705
+YXY= 706
+IGxpdHRsZQ== 707
+IFdoYXQ= 708
+IG11Y2g= 709
+IHo= 710
+IOo= 711
+YWJsZQ== 712
+INC/ 713
+IHBv 714
+IGNvbXA= 715
+bmU= 716
+IGRpcw== 717
+IGxldA== 718
+YW5jZQ== 719
+IGhlcg== 720
+IHRoaW5ncw== 721
+IHN0YXJ0 722
+dWx0 723
+IGFwcA== 724
+IHJlcw== 725
+IGZv 726
+IGNvdWxk 727
+IGludGVy 728
+IHRob3Nl 729
+IGRlcw== 730
+IHdlbGw= 731
+IHR3bw== 732
+IGtpbmQ= 733
+eHQ= 734
+cmVzcw== 735
+ZWx5 736
+w6Q= 737
+IGJy 738
+IHRocg== 739
+INCy 740
+IGk= 741
+aXNo 742
+IGRpZmZlcg== 743
+IHJv 744
+IFN0 745
+IHNvbWV0aGluZw== 746
+IHRha2U= 747
+IGJv 748
+eXM= 749
+IHNoZQ== 750
+IHRhbGs= 751
+bG8= 752
+0Yc= 753
+IGV2ZW4= 754
+0Lo= 755
+44A= 756
+INC9 757
+IGJ1 758
+IElm 759
+IGRvd24= 760
+IENo 761
+YWRl 762
+YXRpb25z 763
+IHVzZQ== 764
+b3Jk 765
+IG9mZg== 766
+IGFjdHVhbGx5 767
+IHNwZQ== 768
+ZHU= 769
+YXRlZA== 770
+YXRlcg== 771
+b3Nz 772
+bmluZw== 773
+w7w= 774
+IGRvZXM= 775
+INGB 776
+IG5ldw== 777
+IGJldA== 778
+dmVs 779
+Y2Vzcw== 780
+cGxl 781
+IGhhcHA= 782
+dGluZw== 783
+b25uYQ== 784
+IGVz 785
+IGRheQ== 786
+IG9ubHk= 787
+aWdu 788
+a2F5 789
+c2Vs 790
+ZW50cw== 791
+b3VudA== 792
+aWxk 793
+aWxl 794
+IHNj 795
+IGhpbQ== 796
+IGFnYWlu 797
+dmluZw== 798
+IGdvbm5h 799
+IGNvbW0= 800
+IGhlbA== 801
+b3RoZXI= 802
+IGtl 803
+aWNhbA== 804
+IDM= 805
+IGVs 806
+IHRocm91Z2g= 807
+IGNvbWU= 808
+YXJr 809
+ZGF5 810
+aWVy 811
+w7M= 812
+IHRoYW4= 813
+IFRoZXk= 814
+IG1heQ== 815
+IHNlcg== 816
+7ZU= 817
+IGNhbGw= 818
+IGRpZmZlcmVudA== 819
+IHNob3VsZA== 820
+IFRoZXJl 821
+YXJ5 822
+IE5vdw== 823
+44I= 824
+dGhpbmc= 825
+d2U= 826
+b3J5 827
+ZnRlcg== 828
+IHB1dA== 829
+b3Jz 830
+aWFs 831
+64s= 832
+IHVuZGVy 833
+IGluYw== 834
+IFll 835
+dWI= 836
+Zm9ybQ== 837
+IHZpZGU= 838
+4Lg= 839
+dmVycw== 840
+IGZlZWw= 841
+w6E= 842
+b2R5 843
+ZnQ= 844
+Zm9yZQ== 845
+IGVt 846
+Z2V0 847
+IHNhaWQ= 848
+aXRpb24= 849
+IHJlYw== 850
+aW91cw== 851
+YXRjaA== 852
+IHRyeQ== 853
+IGhlbHA= 854
+IHNob3c= 855
+0LQ= 856
+IGJpdA== 857
+dWxs 858
+0LI= 859
+0YLQvg== 860
+Z3I= 861
+IHBsYXk= 862
+aWZl 863
+YWls 864
+IFllYWg= 865
+IHF1ZXN0 866
+IG1hbnk= 867
+IHBlcnM= 868
+IGdyZWF0 869
+w60= 870
+IGVzdA== 871
+bmc= 872
+IOKZ 873
+dHk= 874
+bGE= 875
+IE9o 876
+INc= 877
+4K4= 878
+IEJl 879
+YWR5 880
+IG1vc3Q= 881
+Y3Rpb24= 882
+IE5v 883
+IGRvaW5n 884
+IGJlaW5n 885
+IHRvbw== 886
+Y2Vz 887
+IGJs 888
+LiI= 889
+IHJlbQ== 890
+aXNz 891
+b25z 892
+Pj4= 893
+cnU= 894
+d24= 895
+b250 896
+aWI= 897
+ZWxs 898
+IHNt 899
+b3Ro 900
+dWFs 901
+ID4+ 902
+IHBo 903
+bGVz 904
+b2M= 905
+ZnVs 906
+IHNlYw== 907
+aXNl 908
+IGFkZA== 909
+aWdo 910
+ZXJ0 911
+IHNhbWU= 912
+4oA= 913
+IG1lYW4= 914
+IGZpbmQ= 915
+ZWs= 916
+IGVuZA== 917
+LS0= 918
+0Lw= 919
+IHN0aWxs 920
+YXo= 921
+ICc= 922
+IG1pbg== 923
+IHllYXJz 924
+dXJu 925
+IGFyb3VuZA== 926
+c2VsZg== 927
+IHdy 928
+YnM= 929
+b3VnaHQ= 930
+IOKZqg== 931
+IGZs 932
+YW5nZQ== 933
+IGFmdGVy 934
+IHBvaW50 935
+bWVy 936
+dmVk 937
+IGxvbmc= 938
+b3k= 939
+5Lg= 940
+IGNy 941
+d2F5cw== 942
+IHN5 943
+IHRyYQ== 944
+IDIw 945
+YXZl 946
+IGNoZQ== 947
+IGVudA== 948
+IGJlZm9yZQ== 949
+cGg= 950
+IGF0dA== 951
+aWFu 952
+aWx5 953
+IHBlcnNvbg== 954
+IGJpZw== 955
+IHNjaA== 956
+IHJlYWw= 957
+IG5leHQ= 958
+IGxvdmU= 959
+IHZpZGVv 960
+IExldA== 961
+IGZpbg== 962
+IG1haw== 963
+aWJsZQ== 964
+IHRvZGF5 965
+ZXJt 966
+IEFs 967
+b3dlcg== 968
+YW5u 969
+aXg= 970
+IHBhcg== 971
+IHN0dWQ= 972
+w7Y= 973
+IGltcG9ydA== 974
+dGU= 975
+IGdpdmU= 976
+dmVz 977
+IGRpZQ== 978
+IGRlYw== 979
+IHRlbGw= 980
+INC6 981
+0YHRgg== 982
+IHdoeQ== 983
+aWNhbGx5 984
+aWN0 985
+cmVk 986
+IGJhcw== 987
+IHN1cmU= 988
+IGJlbA== 989
+YXRpbmc= 990
+IHRhaw== 991
+IHNldA== 992
+IGxpZmU= 993
+IGRpZG4= 994
+2Kc= 995
+b2I= 996
+dW5k 997
+YXRo 998
+IG9w 999
+INC+ 1000
+YWl0 1001
+IHdvcmxk 1002
+IHN1cHA= 1003
+aW8= 1004
+IGNvdXI= 1005
+INC4 1006
+d2FyZA== 1007
+0LXQvQ== 1008
+IGFsd2F5cw== 1009
+dXA= 1010
+IGhhbmQ= 1011
+IEhvdw== 1012
+Y2lhbA== 1013
+IGNvbnM= 1014
+INE= 1015
+IGluZA== 1016
+IDQ= 1017
+IEFz 1018
+IGZ1bg== 1019
+amVjdA== 1020
+IGltcG9ydGFudA== 1021
+IHN1cg== 1022
+ZXc= 1023
+YXRlcw== 1024
+IDU= 1025
+IGRp 1026
+IG1hZGU= 1027
+IGlucw== 1028
+IGFzaw== 1029
+IGV0 1030
+IG51bQ== 1031
+IGNhcg== 1032
+IE9rYXk= 1033
+IHNpbQ== 1034
+aWs= 1035
+IGxhc3Q= 1036
+IEdv 1037
+IG11cw== 1038
+IHJlbA== 1039
+dWxhcg== 1040
+tOw= 1041
+IFdlbGw= 1042
+cGVjdA== 1043
+IFRoYW5r 1044
+IHRocmVl 1045
+w6M= 1046
+44M= 1047
+IGludg== 1048
+IGdlbg== 1049
+bGlj 1050
+IGhhcHBlbg== 1051
+64o= 1052
+aWVu 1053
+ZXZlcg== 1054
+0L7Qsg== 1055
+IHN0cg== 1056
+IEFsbA== 1057
+IGluc3Q= 1058
+IOKA 1059
+IGRlZg== 1060
+IHNs 1061
+IG1pZ2h0 1062
+dW5n 1063
+IHllYXI= 1064
+IG93bg== 1065
+IGtlZXA= 1066
+Ym9keQ== 1067
+ZGVy 1068
+INGC 1069
+INC0 1070
+IGFub3RoZXI= 1071
+IG1vZA== 1072
+IGV2 1073
+IGd1eXM= 1074
+IGFibGU= 1075
+w6Nv 1076
+cXVl 1077
+aWRlbnQ= 1078
+IFllcw== 1079
+IGl0cw== 1080
+IHBsYWNl 1081
+IHByb2R1 1082
+YXJu 1083
+INC8 1084
+IHJlcA== 1085
+IGV4cGVy 1086
+IGZhbQ== 1087
+aXRpZXM= 1088
+aWZpYw== 1089
+IGhpZ2g= 1090
+aWVk 1091
+b29s 1092
+aWV3 1093
+0LXRgg== 1094
+cmVu 1095
+IGRvbmU= 1096
+IC4uLg== 1097
+64qU 1098
+c3RlbQ== 1099
+IFNl 1100
+IGJldHRlcg== 1101
+Y29tZQ== 1102
+IGRlbA== 1103
+IHR5 1104
+IHVt 1105
+IGhv 1106
+IEFu 1107
+IG1vbg== 1108
+aW5ncw== 1109
+IHNr 1110
+IG9i 1111
+Y29t 1112
+YmxlbQ== 1113
+b3Bl 1114
+c3RhbmQ= 1115
+J2Q= 1116
+bWVudHM= 1117
+IGVsZQ== 1118
+IElz 1119
+IGRh 1120
+IHJlZw== 1121
+bGVhc2U= 1122
+aWtl 1123
+YWxz 1124
+aXpl 1125
+6rA= 1126
+IGNhcmU= 1127
+IG5ldmVy 1128
+7J20 1129
+ZXNl 1130
+IG1ldA== 1131
+b2xvZw== 1132
+IFdoZW4= 1133
+dWNr 1134
+0LXRgA== 1135
+IMOp 1136
+IGRhdA== 1137
+w6c= 1138
+IGV4YW0= 1139
+aWxpdHk= 1140
+IGRldA== 1141
+Y3Jp 1142
+IHVzZWQ= 1143
+IERv 1144
+IHRyYW5z 1145
+ZWc= 1146
+dGVu 1147
+0Y4= 1148
+Y3Vz 1149
+IHNlY29uZA== 1150
+IGJlc3Q= 1151
+IGhhcmQ= 1152
+IGlkZQ== 1153
+IHByb2JsZW0= 1154
+6rM= 1155
+IFVu 1156
+0YU= 1157
+IM4= 1158
+IHdhdGNo 1159
+IFNo 1160
+YXR0ZXI= 1161
+IHByZXQ= 1162
+IGRlcg== 1163
+IGNvdXJzZQ== 1164
+xZ8= 1165
+YXRpdmU= 1166
+aWNz 1167
+IHF1ZXN0aW9u 1168
+dXRl 1169
+7Jc= 1170
+IEZvcg== 1171
+YXRoZXI= 1172
+IGNvbA== 1173
+aWVuZA== 1174
+IO0= 1175
+IFo= 1176
+IGRvZXNu 1177
+YXJjaA== 1178
+IGludGVyZXN0 1179
+IHBvbA== 1180
+IGNvcg== 1181
+aWVuY2U= 1182
+IHByZXM= 1183
+IGVhY2g= 1184
+IHN5c3RlbQ== 1185
+IGZhY3Q= 1186
+aWVs 1187
+YWJseQ== 1188
+IGVy 1189
+IHJ1bg== 1190
+IOyd 1191
+IHRvcA== 1192
+bmVy 1193
+IHRob3VnaHQ= 1194
+IGVhcw== 1195
+aWVudA== 1196
+IGNyZQ== 1197
+0Yg= 1198
+IGNvbW11bg== 1199
+eWU= 1200
+cmVhZHk= 1201
+bGxvdw== 1202
+IGV2ZXJ5dGhpbmc= 1203
+b21t 1204
+IG1lZA== 1205
+mpQ= 1206
+IGNvdW50 1207
+aXRz 1208
+IGNvbXBs 1209
+aGlw 1210
+2YQ= 1211
+b29r 1212
+IHRvZ2V0 1213
+IHRvZ2V0aGVy 1214
+YW1w 1215
+IGdhbWU= 1216
+IGFscmVhZHk= 1217
+0LDQuw== 1218
+IGNhbGxlZA== 1219
+YWxl 1220
+xYI= 1221
+IE15 1222
+IHVuZGVyc3RhbmQ= 1223
+IGRy 1224
+IG1vbQ== 1225
+aXRlZA== 1226
+0L7Quw== 1227
+IHVzaW5n 1228
+enk= 1229
+IG51bWJlcg== 1230
+44CB 1231
+Y2Vk 1232
+IGNsZQ== 1233
+0L3Qvg== 1234
+64uk 1235
+aW5jZQ== 1236
+IGxvb2tpbmc= 1237
+IHByZXR0eQ== 1238
+IHByb2I= 1239
+IFNoZQ== 1240
+IHZl 1241
+IGdldHRpbmc= 1242
+IHdlZWs= 1243
+IGVmZg== 1244
+dWZm 1245
+YWly 1246
+dWVz 1247
+ZXJu 1248
+IFE= 1249
+b3Vw 1250
+ZW50aW9u 1251
+IHNpZGU= 1252
+0L7QvA== 1253
+IGZvcm0= 1254
+IGJ1cw== 1255
+IGFzcw== 1256
+IGVk 1257
+YXNvbg== 1258
+d2Vlbg== 1259
+4oCm 1260
+IHR1cm4= 1261
+IGN1cg== 1262
+IGNvbGw= 1263
+IGRpcmU= 1264
+IEdvZA== 1265
+IDEw 1266
+IGVxdQ== 1267
+INCx 1268
+IG9wZW4= 1269
+IHN1Y2g= 1270
+aXJk 1271
+0LDQug== 1272
+IGVhcg== 1273
+xJk= 1274
+Z2Fu 1275
+IHBhcnRpYw== 1276
+IGZyaWVuZA== 1277
+IGV4cA== 1278
+IGV4dA== 1279
+IGhvbWU= 1280
+IHdhdGVy 1281
+IE9u 1282
+0YLRjA== 1283
+b3Jr 1284
+INC/0YA= 1285
+IG1vdmU= 1286
+bmVzcw== 1287
+ZW5zZQ== 1288
+aG8= 1289
+IGNoYXI= 1290
+Y28= 1291
+aW5z 1292
+IGJvdGg= 1293
+IDE5 1294
+IGdyYQ== 1295
+IGJldHdlZW4= 1296
+4bs= 1297
+IOyV 1298
+YXNo 1299
+IFJl 1300
+YWk= 1301
+YWx0aA== 1302
+dXJlcw== 1303
+ZW1iZXI= 1304
+IGF2 1305
+IHZlcg== 1306
+w6o= 1307
+b25leQ== 1308
+IHRoYW5r 1309
+IG1heWJl 1310
+dWM= 1311
+aW1l 1312
+6rOg 1313
+IGF3YXk= 1314
+IG5hbWU= 1315
+b3VzZQ== 1316
+IGFjYw== 1317
+IG11c2lj 1318
+IGNoYW5nZQ== 1319
+IHBhc3M= 1320
+Z2Vy 1321
+IGJ1aWxk 1322
+IHZhbA== 1323
+aW5lc3M= 1324
+YW55 1325
+IGZldw== 1326
+tOs= 1327
+dGE= 1328
+IGxpc3Q= 1329
+w6U= 1330
+IG9sZA== 1331
+IOye 1332
+IHNvcnQ= 1333
+IG1lbQ== 1334
+IGNh 1335
+Y2VwdA== 1336
+IGdlbmVy 1337
+IHllYWg= 1338
+IHdoaWxl 1339
+IGFueXRoaW5n 1340
+cmlj 1341
+Z3JhbQ== 1342
+IGVpbg== 1343
+Y3k= 1344
+dXJpbmc= 1345
+IERl 1346
+IHBvd2Vy 1347
+IGNvbWluZw== 1348
+IHdvcmQ= 1349
+IC0t 1350
+IGJlbGll 1351
+IGZvdW5k 1352
+dG8= 1353
+0L8= 1354
+IG1lYW5z 1355
+IGluZm9ybQ== 1356
+INg= 1357
+INGH 1358
+IHNtYWxs 1359
+MDAw 1360
+IGNhbWU= 1361
+IO2V 1362
+d2g= 1363
+IHdvcmtpbmc= 1364
+IGV4YW1wbGU= 1365
+IHBvcw== 1366
+IGRlcA== 1367
+6rI= 1368
+5Lo= 1369
+b3Rl 1370
+IGRlbQ== 1371
+7Kc= 1372
+dHM= 1373
+IHZhcg== 1374
+YXV0 1375
+IHRyaQ== 1376
+Y2hu 1377
+IGhlYWQ= 1378
+IHdob2xl 1379
+15k= 1380
+emU= 1381
+IHRyeWluZw== 1382
+IHRlbQ== 1383
+IGNvdQ== 1384
+ZXRz 1385
+IDY= 1386
+IGZpbA== 1387
+dmVsb3A= 1388
+IGNhc2U= 1389
+4K8= 1390
+IHByb2JhYmx5 1391
+IG9rYXk= 1392
+IHBsYW4= 1393
+IHNpdA== 1394
+IHNjaG9vbA== 1395
+IFRoZW4= 1396
+uOs= 1397
+bWU= 1398
+IHByb2Nlc3M= 1399
+IGZhcg== 1400
+IHJlYWQ= 1401
+IHBvc3M= 1402
+IGJyZQ== 1403
+IHNvbA== 1404
+aWNodA== 1405
+IHN1cHBvcnQ= 1406
+IFRv 1407
+ZXJ0YWlu 1408
+IHN0YXJ0ZWQ= 1409
+IGNhcA== 1410
+IGxlZnQ= 1411
+IGRhdGE= 1412
+IHRpbWVz 1413
+0LXQuw== 1414
+IHdhbnRlZA== 1415
+0LDQvQ== 1416
+IHRhbGtpbmc= 1417
+IGlzdA== 1418
+IGhhdmluZw== 1419
+dW1w 1420
+IGNvbnRpbg== 1421
+IHN1Yg== 1422
+INC3 1423
+cHI= 1424
+64uI 1425
+aW5h 1426
+xbw= 1427
+IGNyZWF0 1428
+b2Rl 1429
+15U= 1430
+5pg= 1431
+ISE= 1432
+IHRlcm0= 1433
+aXNt 1434
+0L7QtA== 1435
+IEJlY2F1c2U= 1436
+IHdlbnQ= 1437
+aWRlcg== 1438
+IHByb3Y= 1439
+IGNoaWxk 1440
+IGRlbg== 1441
+IGxpZ2h0 1442
+YnI= 1443
+s9C+ 1444
+b2g= 1445
+IGJvb2s= 1446
+INk= 1447
+dXRpb24= 1448
+IEp1c3Q= 1449
+ZW5l 1450
+IGZvdXI= 1451
+IHZpcw== 1452
+6rCA 1453
+IGhvcGU= 1454
+IG1ha2luZw== 1455
+IExl 1456
+7JU= 1457
+IG9wcA== 1458
+YXU= 1459
+IG1vbmV5 1460
+IHByb2dyYW0= 1461
+w6g= 1462
+IHN0YW5k 1463
+SU4= 1464
+IHNpZ24= 1465
+IGxlYXJu 1466
+w6A= 1467
+IERvbg== 1468
+IHRlYW0= 1469
+INC90LA= 1470
+bHVk 1471
+IHJlc3Q= 1472
+aWNlcw== 1473
+5pw= 1474
+INGA 1475
+IGF1dA== 1476
+IGxlYWQ= 1477
+YXRpb25hbA== 1478
+ZGU= 1479
+Z3k= 1480
+IG5pY2U= 1481
+IGRhcw== 1482
+IGRpc3Q= 1483
+IGh1bQ== 1484
+IE9uZQ== 1485
+5og= 1486
+IGNvbWVz 1487
+IGpv 1488
+IGNlbnQ= 1489
+IGV4cGw= 1490
+IG1hcms= 1491
+cmVlbg== 1492
+bGVk 1493
+Z2lu 1494
+7JqU 1495
+IGxldmVs 1496
+IGNvbmY= 1497
+dXNo 1498
+IGRldmVsb3A= 1499
+IHRlc3Q= 1500
+ZW5n 1501
+dmlvdXM= 1502
+YXR1cmU= 1503
+0LXQvA== 1504
+cmV0 1505
+IGpl 1506
+IHN0dWZm 1507
+IGNsYXNz 1508
+b3dz 1509
+IOq3 1510
+IHNp 1511
+IGxlcw== 1512
+cm9w 1513
+55o= 1514
+IHBvcg== 1515
+IHdhcg== 1516
+7JeQ 1517
+IGV2ZXJ5b25l 1518
+IGdl 1519
+IGNoZWNr 1520
+b3R0 1521
+IHNpbmc= 1522
+IGFydA== 1523
+IGZvbGxvdw== 1524
+IDIwMQ== 1525
+IEZy 1526
+YWlz 1527
+7JY= 1528
+zrE= 1529
+5bA= 1530
+IMOg 1531
+aW1lcw== 1532
+IHJldA== 1533
+IGNoYW5n 1534
+IHB1Yg== 1535
+IGluZg== 1536
+IHRlY2hu 1537
+YWRh 1538
+aXZlcw== 1539
+IGJlaA== 1540
+IGxvb2tz 1541
+44CC 1542
+0Lc= 1543
+IFdoeQ== 1544
+IGVub3VnaA== 1545
+IGJyYQ== 1546
+aXRjaA== 1547
+5Ls= 1548
+IGFkdg== 1549
+0LE= 1550
+IHdpdGhvdXQ= 1551
+d2Vy 1552
+bWVyaWM= 1553
+ZGVu 1554
+IGNvbXBsZXQ= 1555
+IGlkZWE= 1556
+dGVycw== 1557
+b2Nr 1558
+IGRlZmlu 1559
+IGV2ZXI= 1560
+IGds 1561
+IG9uY2U= 1562
+IGJyaW5n 1563
+IHNheWluZw== 1564
+IGFucw== 1565
+IGhlYXI= 1566
+bmVjdA== 1567
+IGxlc3M= 1568
+Z28= 1569
+cmVhbQ== 1570
+YWRv 1571
+7J4= 1572
+IG1pbmQ= 1573
+ZW50ZQ== 1574
+IGZ1bGw= 1575
+IGJhZA== 1576
+IHdvbQ== 1577
+IHNvbWVvbmU= 1578
+IGR1 1579
+IHdvbg== 1580
+IGNvbnRybw== 1581
+b3J0dW4= 1582
+IGhlYWx0aA== 1583
+IGNobw== 1584
+IEFy 1585
+IGNvbmM= 1586
+IGluZm9ybWF0aW9u 1587
+IHN0b3A= 1588
+YXR0 1589
+YXRlbHk= 1590
+5L0= 1591
+IGdyb3Vw 1592
+INGD 1593
+IHF1aXRl 1594
+IHJlc3A= 1595
+RVI= 1596
+dWdodA== 1597
+6rg= 1598
+bWFu 1599
+aXplZA== 1600
+IEJy 1601
+IHJlbWVtYmVy 1602
+IGZhbWlseQ== 1603
+IGJ1c2luZXNz 1604
+YXc= 1605
+IHNwZWM= 1606
+IGF1 1607
+IE9y 1608
+xIU= 1609
+IHNlZW4= 1610
+IGxhcg== 1611
+IDc= 1612
+Z2c= 1613
+YmVycw== 1614
+IGRyYQ== 1615
+IG1vbnRo 1616
+IHNheXM= 1617
+IGlzcw== 1618
+IGxpdmU= 1619
+IGxpbmU= 1620
+IG1vbWVudA== 1621
+IGV4Yw== 1622
+ZWxz 1623
+IHNvdW5k 1624
+IGNvb2w= 1625
+IGxvYw== 1626
+IGNlcnRhaW4= 1627
+IGRyaQ== 1628
+0L7Rgg== 1629
+YW1lcw== 1630
+IG11c3Q= 1631
+bnk= 1632
+0LjRgg== 1633
+IGtpZA== 1634
+IGluY2x1ZA== 1635
+7J2E 1636
+YXRvcg== 1637
+xJ8= 1638
+aGE= 1639
+YXJlZA== 1640
+IHNlZW0= 1641
+0Lk= 1642
+7IQ= 1643
+IGVsc2U= 1644
+IOyg 1645
+aXJs 1646
+IDg= 1647
+IHZv 1648
+IHF1ZXN0aW9ucw== 1649
+aW5lcw== 1650
+ZWU= 1651
+w7xy 1652
+IEFtZXJpYw== 1653
+IHN0b3J5 1654
+IHNlcnY= 1655
+dmVybg== 1656
+YWdlcw== 1657
+bGFuZA== 1658
+IOKAkw== 1659
+ZXJh 1660
+IENhbg== 1661
+IHBvcA== 1662
+ZXRoZXI= 1663
+IG5h 1664
+IG9yZGVy 1665
+IG1ha2Vz 1666
+IHNpbmNl 1667
+Y29u 1668
+Y3Rvcg== 1669
+IHRob3VnaA== 1670
+IHByb2R1Y3Q= 1671
+0LvQuA== 1672
+IGxlZw== 1673
+IG1lZXQ= 1674
+YWxm 1675
+0YHRjw== 1676
+dW5jaA== 1677
+aXRlcg== 1678
+b3Zl 1679
+15XX 1680
+aWV0 1681
+0LDQvA== 1682
+aXRhbA== 1683
+IHN1cGVy 1684
+bGluZw== 1685
+IHBheQ== 1686
+IHBhcmE= 1687
+IGpvYg== 1688
+IEhlcmU= 1689
+IHN3 1690
+a3M= 1691
+cHRpb24= 1692
+bWE= 1693
+IGJlbGlldmU= 1694
+rOs= 1695
+IHdhaXQ= 1696
+0L7QuQ== 1697
+IHVudA== 1698
+IHF1aWNr 1699
+aHI= 1700
+INGN 1701
+IFBybw== 1702
+IG1lbg== 1703
+4Lk= 1704
+IGRheXM= 1705
+IGdvZXM= 1706
+IHNwZWFr 1707
+IEF0 1708
+ZW1lbnQ= 1709
+IG1pc3M= 1710
+IGF3 1711
+IGRlc2lnbg== 1712
+IHByb2plY3Q= 1713
+0L7RgA== 1714
+aWo= 1715
+YW50cw== 1716
+YXRz 1717
+IENocg== 1718
+IDk= 1719
+IGN1dA== 1720
+IHJlcXU= 1721
+INC90LU= 1722
+IE5vdA== 1723
+YXN0ZXI= 1724
+IG1pbGw= 1725
+IHBhcnRpY3VsYXI= 1726
+IHBpZQ== 1727
+IHN0dWRlbnRz 1728
+IGZpdmU= 1729
+b3Vu 1730
+IE5l 1731
+IGdp 1732
+IHBhcw== 1733
+IGZyZWU= 1734
+IFNw 1735
+bGljaA== 1736
+IHByb2Y= 1737
+IGVuZw== 1738
+IHByb3Q= 1739
+IExpa2U= 1740
+b3NlZA== 1741
+IGNvbm5lY3Q= 1742
+YXBw 1743
+IOun 1744
+aXRpbmc= 1745
+IGJsbw== 1746
+IGxvcw== 1747
+aXN0cw== 1748
+IGV4cGVyaWVuY2U= 1749
+cmVudA== 1750
+IHN0YXk= 1751
+IGZvb2Q= 1752
+dG9u 1753
+cnVjdA== 1754
+IGhpc3Q= 1755
+dmlldw== 1756
+aW5pbmc= 1757
+bW9zdA== 1758
+aXZlcnM= 1759
+Ym8= 1760
+IFRy 1761
+Z2Vu 1762
+IHBsZWFzZQ== 1763
+IGNvbW11bml0eQ== 1764
+IGNl 1765
+QU4= 1766
+bm8= 1767
+IGJvZHk= 1768
+IGhvdXI= 1769
+IHZlcnM= 1770
+4bo= 1771
+Y2Vy 1772
+IOqw 1773
+IHJlYXNvbg== 1774
+IFJpZ2h0 1775
+IGxhdGVy 1776
+z4Q= 1777
+IGhvdXNl 1778
+IFg= 1779
+0L7QvQ== 1780
+IHN0YXRl 1781
+Zmlj 1782
+5aQ= 1783
+xZs= 1784
+aWVsZA== 1785
+IHByaQ== 1786
+IHBhc3Q= 1787
+IHdhbGs= 1788
+b2xvZ3k= 1789
+ZXJpbmc= 1790
+YW5uYQ== 1791
+IHRlcg== 1792
+IGhvbGQ= 1793
+IG9yZ2Fu 1794
+YmVu 1795
+zr8= 1796
+w7Nu 1797
+IGVmZmVjdA== 1798
+IHlvdXJzZWxm 1799
+IHBsdXM= 1800
+YWo= 1801
+YW5kbw== 1802
+dXJhbA== 1803
+IHJvb20= 1804
+bGVjdA== 1805
+6rKM 1806
+PyI= 1807
+c2lkZQ== 1808
+IGJlY29tZQ== 1809
+0YY= 1810
+IMI= 1811
+b29k 1812
+IGNvbnN0 1813
+IG5pZ2h0 1814
+dXRlcw== 1815
+0LY= 1816
+IGJyZWFr 1817
+IHBhaW4= 1818
+IHN0ZXA= 1819
+aXJlZA== 1820
+IG5vdGhpbmc= 1821
+IHVudGls 1822
+0ZY= 1823
+0LDQsg== 1824
+2Yo= 1825
+IGR1cmluZw== 1826
+7KeA 1827
+bGVzcw== 1828
+b2xs 1829
+0L3Riw== 1830
+zrk= 1831
+ZmVjdA== 1832
+aXZlcg== 1833
+j4Q= 1834
+aXRoZXI= 1835
+eWluZw== 1836
+IGJlZ2lu 1837
+15nX 1838
+aXZpZA== 1839
+IMOn 1840
+IHNhbA== 1841
+IHRh 1842
+IHBvdA== 1843
+ICQ= 1844
+IG1hcg== 1845
+IGNsZWFy 1846
+IGZhY2U= 1847
+IGdyb3c= 1848
+ICo= 1849
+IGluc2lkZQ== 1850
+IGZyaWVuZHM= 1851
+IGxlYXZl 1852
+ZW5u 1853
+IGVhc3k= 1854
+IGFyZWE= 1855
+YWxpdHk= 1856
+b3Vk 1857
+IGVhdA== 1858
+2YY= 1859
+IHB1cg== 1860
+b3Ju 1861
+IHNhdw== 1862
+IGFuc3dlcg== 1863
+IGZyb250 1864
+IGJlYXV0 1865
+vOs= 1866
+IG1hdHRlcg== 1867
+IHNvbg== 1868
+IE5ldw== 1869
+IHJlc3VsdA== 1870
+aWRlcw== 1871
+Y2hl 1872
+IGZ1dA== 1873
+cHM= 1874
+IGZvY3Vz 1875
+IGludGVyZXN0aW5n 1876
+5aU= 1877
+IGFw 1878
+Ii4= 1879
+IGNyZWF0ZQ== 1880
+0L7RgQ== 1881
+IHByZXNz 1882
+cm9zcw== 1883
+IHBpY2s= 1884
+bGluZQ== 1885
+IHRvb2s= 1886
+IE1heQ== 1887
+cm93 1888
+IGljaA== 1889
+mOs= 1890
+IHJlZg== 1891
+IG1vcg== 1892
+cmFjdA== 1893
+YXJlbnQ= 1894
+QVI= 1895
+IGV4YWN0 1896
+IHNwYWNl 1897
+d29yaw== 1898
+0L3QuA== 1899
+IGJpcg== 1900
+IGRldg== 1901
+0LM= 1902
+IHRvbGQ= 1903
+IHB1YmxpYw== 1904
+Y2lhbGx5 1905
+IHZpZXc= 1906
+IEhleQ== 1907
+bWVk 1908
+bGxv 1909
+Y2M= 1910
+IGZhYw== 1911
+IGNvdXBsZQ== 1912
+IGhlYXJ0 1913
+bGVy 1914
+IHJlYWR5 1915
+IGFsbW9zdA== 1916
+YXJpbmc= 1917
+IGhhbGY= 1918
+IE1l 1919
+YXZvcg== 1920
+aXF1ZQ== 1921
+IGNoYXJhYw== 1922
+IHByYWN0 1923
+T04= 1924
+YW5l 1925
+IGls 1926
+0L3QsA== 1927
+IHZp 1928
+bGlzaA== 1929
+aGVhZA== 1930
+IGxlYXN0 1931
+IGJhc2ljYWxseQ== 1932
+YXNlZA== 1933
+cmlnaHQ= 1934
+IHlldA== 1935
+IHRha2luZw== 1936
+IGNvdW50cnk= 1937
+IHdpbg== 1938
+IGlzbg== 1939
+IHBvc3NpYmxl 1940
+IGNhbQ== 1941
+IGluY3Jl 1942
+IHBhdA== 1943
+IHdhbm5h 1944
+IGNvbnNpZGVy 1945
+IGFicw== 1946
+IHdpdGhpbg== 1947
+IGh1bWFu 1948
+IHRoaW5raW5n 1949
+IG9o 1950
+oZw= 1951
+IHF1aQ== 1952
+YXNlcw== 1953
+IDA= 1954
+aXRlbHk= 1955
+IGtpbGw= 1956
+IG1pbA== 1957
+IGludmVzdA== 1958
+aXN0ZXI= 1959
+IHN1Yw== 1960
+aW9uYWw= 1961
+ZWxm 1962
+IHdoZXRoZXI= 1963
+IGNvbnRyb2w= 1964
+IGFnYWluc3Q= 1965
+b3Rz 1966
+64uI64uk 1967
+aW9y 1968
+IHByZXNlbnQ= 1969
+INin 1970
+IHdhdGNoaW5n 1971
+dWJl 1972
+ZXJ2 1973
+IG5pY2h0 1974
+IGdvdmVybg== 1975
+IFRoZXNl 1976
+IDo= 1977
+dWl0 1978
+dWdo 1979
+IHdvcmtz 1980
+b28= 1981
+IHdpcg== 1982
+IGFpcg== 1983
+IFRl 1984
+0LDQtw== 1985
+aXNpb24= 1986
+d2hlcmU= 1987
+IHRvdA== 1988
+am95 1989
+7Is= 1990
+IHZvbA== 1991
+INC1 1992
+IGNsb3Nl 1993
+IEFk 1994
+0Yk= 1995
+aW5lZA== 1996
+IHVuYQ== 1997
+IOq3uOs= 1998
+sOs= 1999
+b3JyeQ== 2000
+IGJybw== 2001
+IGZpbG0= 2002
+aWZ0 2003
+MjA= 2004
+IHR5cGU= 2005
+IGhhcHBlbmVk 2006
+IEFt 2007
+IGdpcmw= 2008
+IEFyZQ== 2009
+d2FyZHM= 2010
+IHBvdXI= 2011
+IGNvbG9y 2012
+ZWx0 2013
+0LDRgQ== 2014
+IHNlbnNl 2015
+bGV4 2016
+IFdpdGg= 2017
+dXNz 2018
+cmli 2019
+IHJlc2U= 2020
+IG5vcm0= 2021
+IGZ1dHVyZQ== 2022
+IGRlYWw= 2023
+ZW5kaW5n 2024
+ZXk= 2025
+IHg= 2026
+ZXJv 2027
+IENs 2028
+dWs= 2029
+IHdoYXRldmVy 2030
+c2VsdmVz 2031
+IHlvdW5n 2032
+7Io= 2033
+IE1hcg== 2034
+IENocmlzdA== 2035
+IGd1ZXNz 2036
+IHBlcmZvcm0= 2037
+IGVuZXI= 2038
+cm9u 2039
+IGhpdA== 2040
+IHdvbmQ= 2041
+IGRpcmVjdA== 2042
+IEV2ZXJ5 2043
+IG9mdGVu 2044
+IGZh 2045
+IGFsb25n 2046
+IGNsaWNr 2047
+IExvb2s= 2048
+IHNpdHU= 2049
+IGhhcHB5 2050
+ZWFk 2051
+IGFnbw== 2052
+IGVuYw== 2053
+IG15c2VsZg== 2054
+IGNvdmVy 2055
+0L7QsQ== 2056
+IG1pZA== 2057
+IGNvc3Q= 2058
+IHRlbg== 2059
+IFNjaA== 2060
+IGV4cGVjdA== 2061
+IHdhc24= 2062
+IHN0cm9uZw== 2063
+aWZ1bA== 2064
+IG9wcG9ydHVu 2065
+aW5hbA== 2066
+eWxl 2067
+IHNoYXJl 2068
+IHRydWU= 2069
+IGFwcHJv 2070
+IGNoYWxs 2071
+IG1pbnV0ZXM= 2072
+IGNoYW5u 2073
+IOuC 2074
+zrU= 2075
+bGk= 2076
+IG1lc3M= 2077
+b3JpZXM= 2078
+cGVjaWFsbHk= 2079
+IHdyb25n 2080
+IHllcw== 2081
+IOyX 2082
+aXJvbg== 2083
+IGFsbG93 2084
+IHN1YnM= 2085
+IGZvcmU= 2086
+IGZpZ2h0 2087
+IHNvY2lhbA== 2088
+IGNyYQ== 2089
+YW5h 2090
+IGFmZg== 2091
+IGVzcw== 2092
+IHdheXM= 2093
+IHNob3J0 2094
+IGZhbGw= 2095
+IGxhdw== 2096
+IFdobw== 2097
+IGVuam95 2098
+IGNhbA== 2099
+IGFjY2Vzcw== 2100
+ZmU= 2101
+IG5vbg== 2102
+IGFjcm9zcw== 2103
+ZXJ5 2104
+dmlvdXNseQ== 2105
+IEV4 2106
+aWRlZA== 2107
+IGxpbms= 2108
+IFBy 2109
+IHRlcm1z 2110
+YWNlcw== 2111
+IGxhbmQ= 2112
+YXppbmc= 2113
+IDE1 2114
+IG11bHQ= 2115
+IHNwZWNpYWw= 2116
+5YA= 2117
+aXZpbmc= 2118
+7J2A 2119
+IHR5cA== 2120
+IHN0ZQ== 2121
+IMQ= 2122
+IGZvcndhcmQ= 2123
+5Y8= 2124
+IGZyZQ== 2125
+IHJlc2VhcmNo 2126
+4K+N 2127
+0LDRgg== 2128
+IG1haW4= 2129
+IHJlY29yZA== 2130
+IGh1 2131
+IGRlZmluaXRlbHk= 2132
+IGVpdGhlcg== 2133
+IGxpc3Rlbg== 2134
+IGtleQ== 2135
+IG1hcmtldA== 2136
+INGH0YLQvg== 2137
+aXphdGlvbg== 2138
+IHZpZGVvcw== 2139
+IGd1eQ== 2140
+IGZpZw== 2141
+IHN0cmE= 2142
+IFBs 2143
+dWxseQ== 2144
+YW1vcw== 2145
+IG1lbnRpb24= 2146
+IHNvbmc= 2147
+IGludGVybg== 2148
+cmFs 2149
+dXJz 2150
+IGhvbg== 2151
+IHZhbHVl 2152
+IGJhcg== 2153
+Y2xl 2154
+0L7Qtg== 2155
+xIc= 2156
+nOs= 2157
+IHp1 2158
+0LjQvA== 2159
+IHNpbmdsZQ== 2160
+IGF1Y2g= 2161
+Y3Vzcw== 2162
+IGdldHM= 2163
+IHNvbWV0aW1lcw== 2164
+5b4= 2165
+YW1i 2166
+bW0= 2167
+Y2luZw== 2168
+IHBlcmZlY3Q= 2169
+IEJs 2170
+b3V0aA== 2171
+7KA= 2172
+IHNjaQ== 2173
+cGFy 2174
+IHJlZA== 2175
+IHBvc3Q= 2176
+IG1vdA== 2177
+IGVsZWN0 2178
+IEV1 2179
+aXRpdmU= 2180
+IFNvbWU= 2181
+IGRlc2NyaQ== 2182
+IGN1cnJlbnQ= 2183
+w6lz 2184
+IHRyZQ== 2185
+IEVu 2186
+IG1pdA== 2187
+RU4= 2188
+iOs= 2189
+aXVt 2190
+IGhlYXJk 2191
+IHNpbXBsZQ== 2192
+bGFy 2193
+IGV2ZXJ5Ym9keQ== 2194
+aWxhcg== 2195
+IG5lZWRz 2196
+IGRpZmZpYw== 2197
+IEdvb2Q= 2198
+dW1lbnQ= 2199
+Y2VudA== 2200
+IG9wZXI= 2201
+0LDRgtGM 2202
+ZXR5 2203
+IGJsYWNr 2204
+IGdpdmVu 2205
+b25lcw== 2206
+IHdlbA== 2207
+6YA= 2208
+IOyVhA== 2209
+IDMw 2210
+QVQ= 2211
+IHN0YXQ= 2212
+b3VjaA== 2213
+IE1y 2214
+0LDRgA== 2215
+IHNobw== 2216
+IGNvbmQ= 2217
+15Q= 2218
+bXk= 2219
+IGNoaWxkcmVu 2220
+IGV1 2221
+0LXQtA== 2222
+7JWE 2223
+dGVybg== 2224
+IHVo 2225
+IGhhcg== 2226
+IHByb20= 2227
+IHB1bGw= 2228
+cmV3 2229
+IGNvbXBhbnk= 2230
+IGJlYXV0aWZ1bA== 2231
+dXN0b20= 2232
+7ZWY 2233
+0LrQuA== 2234
+IHN0cmU= 2235
+IGFtYXppbmc= 2236
+cmllcw== 2237
+IHN1Y2Nlc3M= 2238
+IG1hY2g= 2239
+bm90 2240
+IGRpc2N1c3M= 2241
+IG5hdA== 2242
+pqw= 2243
+IHVuZQ== 2244
+IGRpZmZpY3VsdA== 2245
+IHJpcw== 2246
+zr0= 2247
+IGNhbXA= 2248
+IGJ1eQ== 2249
+IG1hZw== 2250
+cG8= 2251
+IFlvdXI= 2252
+IGJlaGluZA== 2253
+aWNh 2254
+xLFu 2255
+IE9L 2256
+IGxhbmc= 2257
+IHdvbWVu 2258
+IGVudg== 2259
+IHJlY2U= 2260
+IGNoYW5uZWw= 2261
+aWFsbHk= 2262
+dWxl 2263
+IDEy 2264
+dGhlcnM= 2265
+IGJvdHQ= 2266
+IHJlcG9ydA== 2267
+ZW50bHk= 2268
+ZnVsbHk= 2269
+VGhl 2270
+IHNlbnQ= 2271
+IGV2ZW50 2272
+IGVuZXJneQ== 2273
+bHQ= 2274
+IHdvcmRz 2275
+YXJy 2276
+ZGxl 2277
+IGFoZWFk 2278
+YXJkcw== 2279
+2LE= 2280
+IHRvb2w= 2281
+Y29ub20= 2282
+0LXRgQ== 2283
+IGV4YWN0bHk= 2284
+IGZhdm9y 2285
+IGxvdw== 2286
+IHByb3Blcg== 2287
+IOyeiA== 2288
+ICE= 2289
+IHJlbGF0aW9ucw== 2290
+IG1hcw== 2291
+IGtpZHM= 2292
+IGVudGlyZQ== 2293
+dWRl 2294
+2YU= 2295
+IFdoZXJl 2296
+IG9uZXM= 2297
+IGNpdHk= 2298
+b2x1dA== 2299
+IHNpeA== 2300
+YWJpbGl0eQ== 2301
+w7Zy 2302
+aWxp 2303
+IEVz 2304
+IGhhcHBlbnM= 2305
+YWlucw== 2306
+IG1vZGVs 2307
+IHBpY3Q= 2308
+IGVzcGVjaWFsbHk= 2309
+IDEwMA== 2310
+a3Q= 2311
+IHNvb24= 2312
+Ynk= 2313
+cm9kdQ== 2314
+IGFubg== 2315
+IHN1YnNjcmk= 2316
+IFF1 2317
+IGF2YWls 2318
+aW1lbnQ= 2319
+IHZvYw== 2320
+a2E= 2321
+IDIwMA== 2322
+YXBlcg== 2323
+IEluZA== 2324
+IOyn 2325
+aG9y 2326
+jbA= 2327
+am9y 2328
+0LjQuw== 2329
+IHNxdQ== 2330
+QVU= 2331
+YXJuaW5n 2332
+INCz 2333
+SVM= 2334
+INC7 2335
+0LXQuQ== 2336
+eWVz 2337
+5YU= 2338
+INCS 2339
+IG9yaWc= 2340
+0L7Qs9C+ 2341
+IGFza2Vk 2342
+aWx0 2343
+0L7Qsw== 2344
+IGNvbnRpbnVl 2345
+IOyY 2346
+cmFt 2347
+IG90aGVycw== 2348
+RVM= 2349
+b2hu 2350
+IGxheQ== 2351
+IGJhc2Vk 2352
+IHB1 2353
+IGFwcGU= 2354
+IGxpbQ== 2355
+IHByb3A= 2356
+gOs= 2357
+bWlu 2358
+IGhvdA== 2359
+IExh 2360
+IGZhc3Q= 2361
+IHByb3RlY3Q= 2362
+IGFtb3VudA== 2363
+IGFxdQ== 2364
+IGZ1bmQ= 2365
+IGN1c3RvbQ== 2366
+IGN1bHQ= 2367
+IGhhbmRz 2368
+IGhhdmVu 2369
+IGF1ZA== 2370
+IG91dHNpZGU= 2371
+IEFmdGVy 2372
+YXBz 2373
+IGFuaW0= 2374
+cGxveQ== 2375
+IGhhdA== 2376
+IEZpcnN0 2377
+IHRyZWF0 2378
+IGVw 2379
+IG1hdGVy 2380
+IGJ1aWxkaW5n 2381
+IOuw 2382
+5ZA= 2383
+7ISc 2384
+emE= 2385
+dWdodGVy 2386
+IFBl 2387
+bmV5 2388
+ZXRlcg== 2389
+YXRpYw== 2390
+IGVkdWM= 2391
+6riw 2392
+IG1vdg== 2393
+k6Q= 2394
+YW1h 2395
+cmF0aW9u 2396
+IHNu 2397
+2Yg= 2398
+IHN1bQ== 2399
+IHBob3Q= 2400
+INCd 2401
+IC4= 2402
+IGZpbmlzaA== 2403
+aXR0aW5n 2404
+5a4= 2405
+IGxhcmdl 2406
+IOyW 2407
+IHdoaXRl 2408
+YXJh 2409
+IG1haXM= 2410
+IEhp 2411
+IGRhbQ== 2412
+INin2YQ= 2413
+IGJveA== 2414
+IEhlbGxv 2415
+IHNsZQ== 2416
+IG9wdA== 2417
+cmllZA== 2418
+pbw= 2419
+IGFjdGl2 2420
+IG7Do28= 2421
+IENvbQ== 2422
+IHBsYXlpbmc= 2423
+VGg= 2424
+IGF2YWlsYWJsZQ== 2425
+IHBvcnQ= 2426
+5Yg= 2427
+IEFo 2428
+IGxhcw== 2429
+IGVhcmx5 2430
+IHdvbmRlcg== 2431
+sbA= 2432
+IDE4 2433
+Y3Vs 2434
+IGZ1bmN0aW9u 2435
+IG1vcm5pbmc= 2436
+bGxl 2437
+aWVudHM= 2438
+dXg= 2439
+IGNpcg== 2440
+aXRpb25z 2441
+IGRlZXA= 2442
+IHBvbGl0 2443
+eW9y 2444
+bXA= 2445
+YWtpbmc= 2446
+jOs= 2447
+IE1hbg== 2448
+IG1pbGxpb24= 2449
+IC8= 2450
+IGluZGl2aWQ= 2451
+IHBhbg== 2452
+IGdvdmVybm1lbnQ= 2453
+IHdyaXRl 2454
+IFRvZA== 2455
+YW1lbnQ= 2456
+IM8= 2457
+IHdpbmQ= 2458
+IEVuZw== 2459
+Y2hlbg== 2460
+V2g= 2461
+7Jw= 2462
+IGlkZW50 2463
+dmVudA== 2464
+dXJjaA== 2465
+IGh5 2466
+IHlh 2467
+IHRyYWQ= 2468
+IHJlbGF0aW9uc2hpcA== 2469
+w7o= 2470
+IGRvdQ== 2471
+T1I= 2472
+IHN3ZQ== 2473
+IG5lZw== 2474
+aW5hdGlvbg== 2475
+IHRleHQ= 2476
+aXBw 2477
+IGZpbmU= 2478
+w6Fz 2479
+IERy 2480
+IENvbWU= 2481
+IG1vbnRocw== 2482
+LCI= 2483
+0LXQvdC4 2484
+IGhvdXJz 2485
+IHBvZA== 2486
+aXJ0 2487
+IGludm9s 2488
+IGNvbGxlY3Q= 2489
+IGF1Zg== 2490
+IHBh 2491
+IGhpc3Rvcnk= 2492
+bWI= 2493
+aWZ5 2494
+ID8= 2495
+IGJlbG93 2496
+YXN1cmU= 2497
+YWJ5 2498
+IGxhbmd1 2499
+IGFudA== 2500
+IGNvbWI= 2501
+YXRv 2502
+IGV4aXN0 2503
+IOuL 2504
+IHRha2Vz 2505
+IGNoYXJhY3Rlcg== 2506
+YWZm 2507
+IGZpZWxk 2508
+IGVjb25vbQ== 2509
+aWVm 2510
+IHBpZWNl 2511
+5Zw= 2512
+IHJlYWNo 2513
+IOqy 2514
+b255 2515
+IG1hdGVyaWFs 2516
+IGRpZw== 2517
+IHBoeXM= 2518
+IGltcHJv 2519
+IHNpbWlsYXI= 2520
+SUM= 2521
+IG5ldA== 2522
+eW4= 2523
+IHBvc2l0aW9u 2524
+w58= 2525
+IGJlbmU= 2526
+cmVhZA== 2527
+IGxlYXJuaW5n 2528
+dW1l 2529
+IGNsZWFu 2530
+0YLQvtGA 2531
+IGNvb2s= 2532
+IHNlZW1z 2533
+IG9s 2534
+IFVT 2535
+IEplcw== 2536
+IOCu 2537
+ZW50aWFs 2538
+aXZlcnNpdHk= 2539
+YWN5 2540
+INGP 2541
+b2x1dGVseQ== 2542
+cmVjdA== 2543
+IFBsZWFzZQ== 2544
+IHJlcHJlcw== 2545
+IHRvdWNo 2546
+bWVu 2547
+INCw 2548
+acOzbg== 2549
+IFRoYW5rcw== 2550
+IGFuZw== 2551
+IG1ham9y 2552
+IGl0c2VsZg== 2553
+aWxscw== 2554
+Iiw= 2555
+aWFucw== 2556
+IHNjcmVlbg== 2557
+IGhvcg== 2558
+IGtub3du 2559
+IGVudmlyb24= 2560
+IGZpbmFs 2561
+IGZpZ3VyZQ== 2562
+IFR3 2563
+IGV5ZXM= 2564
+IGltYWc= 2565
+IHNlZWluZw== 2566
+IGhhaXI= 2567
+cmVt 2568
+IGFwcGxpYw== 2569
+ZW5kcw== 2570
+cHV0 2571
+IG5ld3M= 2572
+IGNvbXBsZXRlbHk= 2573
+dWdocw== 2574
+IGtuZXc= 2575
+aWZpZWQ= 2576
+IEpl 2577
+IERpZA== 2578
+IHNpdHVhdGlvbg== 2579
+IGZsbw== 2580
+bXM= 2581
+IHBob25l 2582
+IGJhbGw= 2583
+ZG8= 2584
+IHBhcmVudA== 2585
+IHNvcnJ5 2586
+dXJ5 2587
+0LjQvQ== 2588
+aXBz 2589
+0LDQtA== 2590
+IGluc3RlYWQ= 2591
+IGh1Z2U= 2592
+IHR1 2593
+IOOB 2594
+IEdy 2595
+IGRldGFpbA== 2596
+INCf 2597
+IGluZGl2aWR1YWw= 2598
+IGZpcmU= 2599
+IGNsb3M= 2600
+IHdlcg== 2601
+dW5l 2602
+IHJ1bm5pbmc= 2603
+IGNvbnZlcnM= 2604
+IHJlY29tbQ== 2605
+IGNvbW8= 2606
+IHNvbWVib2R5 2607
+IEpvaG4= 2608
+IOydtA== 2609
+IE91cg== 2610
+cGxlcw== 2611
+IFBo 2612
+IGFuYWw= 2613
+IDUw 2614
+IG9mZmVy 2615
+IDw= 2616
+aXRpb25hbA== 2617
+Z2VzdA== 2618
+IHZvdXM= 2619
+bGV0 2620
+aWN5 2621
+IGZlZWxpbmc= 2622
+TEU= 2623
+cm9z 2624
+IHRoaXJk 2625
+0L7Qug== 2626
+IHNlcmllcw== 2627
+IEFueQ== 2628
+aXNlZA== 2629
+b2xk 2630
+IGRyYXc= 2631
+IHNlcnZpY2U= 2632
+IGNhbm5vdA== 2633
+YmFs 2634
+IGxpdmluZw== 2635
+xLFt 2636
+IGRpZmZlcmVuY2U= 2637
+IG9wcG9ydHVuaXR5 2638
+IG5lYXI= 2639
+b3J0aA== 2640
+a2Vu 2641
+IGxvY2Fs 2642
+2Ko= 2643
+IENvbg== 2644
+IG9iamVjdA== 2645
+IGRhc3M= 2646
+kNc= 2647
+IHF1aWNrbHk= 2648
+cmFwaA== 2649
+IGlzc3Vlcw== 2650
+IEFtZXJpY2Fu 2651
+IHByZXA= 2652
+ZW5jZXM= 2653
+IHByb2Zlc3M= 2654
+bGxpbmc= 2655
+b2Y= 2656
+IGZvb3Q= 2657
+YnJl 2658
+IHVzdWFsbHk= 2659
+IGdlbmVyYWw= 2660
+ZGE= 2661
+YW5jZXM= 2662
+IGRlc3Q= 2663
+IG9jYw== 2664
+IG1lbWJlcnM= 2665
+IGRhbnM= 2666
+IGVxdWFs 2667
+enQ= 2668
+IGJlY29t 2669
+IG1vdmluZw== 2670
+IHNwZWNpZmlj 2671
+w61h 2672
+IGZ1cg== 2673
+IG5lY2Vzcw== 2674
+IGNvbW1vbg== 2675
+IGF0dGFjaw== 2676
+INGN0YLQvg== 2677
+IFRvZGF5 2678
+IHVucw== 2679
+IEd1 2680
+aW9k 2681
+IGFjY291bnQ= 2682
+IGdyYW5k 2683
+IHNlbGY= 2684
+IEVs 2685
+IHRhc3Q= 2686
+IGNvbnRlbnQ= 2687
+IGN1 2688
+hOs= 2689
+IE1heWJl 2690
+IEplc3Vz 2691
+b3Jlcw== 2692
+cG9ydA== 2693
+qbQ= 2694
+IGdpdmVz 2695
+IG5vcm1hbA== 2696
+0YDRgw== 2697
+IGltcGFjdA== 2698
+w6Ry 2699
+IGRpZXM= 2700
+IGxhYg== 2701
+c2g= 2702
+aW9z 2703
+IFByZXM= 2704
+IFVuZA== 2705
+IE9m 2706
+IGZpbmFsbHk= 2707
+IGRvbGw= 2708
+IHZvY8Oq 2709
+cGx5 2710
+IEFn 2711
+IHRha2Vu 2712
+IGdyb3VuZA== 2713
+Zm9ydA== 2714
+IGdhdmU= 2715
+IEluc3Q= 2716
+IGxvc3Q= 2717
+IHdvcmtlZA== 2718
+IGxpdGVy 2719
+IGlzc3Vl 2720
+IGluZHVzdA== 2721
+IHJldHVybg== 2722
+IGhhcHBlbmluZw== 2723
+IHdhbnRz 2724
+0LjQsg== 2725
+IHByb2JsZW1z 2726
+IENhcg== 2727
+nbw= 2728
+IEFsc28= 2729
+IHNpemU= 2730
+IG9idmlvdXNseQ== 2731
+IFN1 2732
+IFNj 2733
+IHJlY29tbWVuZA== 2734
+b3VyY2Vz 2735
+YXN0aWM= 2736
+Li4uLg== 2737
+IG1p 2738
+bGllcg== 2739
+IEV2ZW4= 2740
+Y2lh 2741
+IGh1cg== 2742
+dmE= 2743
+IG1hc3M= 2744
+IHdvdWxkbg== 2745
+dW50 2746
+Y2tz 2747
+IGZlbHQ= 2748
+b3Nw 2749
+bGlnaHQ= 2750
+0L7Qu9GM 2751
+bmll 2752
+IGJvdHRvbQ== 2753
+INCx0Ys= 2754
+b3JlZA== 2755
+aXNvbg== 2756
+IGdyYWQ= 2757
+IHVtYQ== 2758
+IHZh 2759
+IOyC 2760
+cmVzc2lvbg== 2761
+dWxhdGlvbg== 2762
+SUQ= 2763
+aWRlbmNl 2764
+IGJ1cg== 2765
+IGdvbmU= 2766
+bHU= 2767
+7Ja07A== 2768
+IHJlZHU= 2769
+IGph 2770
+7J2Y 2771
+aXRh 2772
+IHNvZnQ= 2773
+IMOnYQ== 2774
+aWNv 2775
+ZXJhbA== 2776
+w7E= 2777
+YWY= 2778
+IHBvaW50cw== 2779
+Z3U= 2780
+IGTDqQ== 2781
+YXB0 2782
+YXg= 2783
+IEFscmlnaHQ= 2784
+IGNhbWVyYQ== 2785
+IGFjaA== 2786
+INC/0L4= 2787
+IHNldmVy 2788
+NTA= 2789
+IHNpZQ== 2790
+z4E= 2791
+IG1hbA== 2792
+IGNvbXB1dA== 2793
+IG1pZGRsZQ== 2794
+IGNvdWxkbg== 2795
+bWluZw== 2796
+IOyL 2797
+IEhpcw== 2798
+IGdhbWVz 2799
+IGludHJvZHU= 2800
+IGNlbGw= 2801
+cG9y 2802
+IHNsZWVw 2803
+IOuz 2804
+aWRpbmc= 2805
+IG91 2806
+IGRlZw== 2807
+IGRyaW5r 2808
+IGVudmlyb25tZW50 2809
+IFVuaXRlZA== 2810
+IHRhbGtlZA== 2811
+IGNob29zZQ== 2812
+IGpvdXI= 2813
+ZWdl 2814
+IE1pbg== 2815
+IGludGU= 2816
+IHJhdGhlcg== 2817
+IG9mZmlj 2818
+0LrQsA== 2819
+YWNoaW5n 2820
+IG1lbnRpb25lZA== 2821
+IGZpbGw= 2822
+IHRyYWNr 2823
+IG5pZQ== 2824
+IHV0 2825
+INCy0Ys= 2826
+aWJpbGl0eQ== 2827
+IHZhYw== 2828
+IHJhZA== 2829
+IHBhY2s= 2830
+IHNlbmQ= 2831
+IERhcw== 2832
+IEFi 2833
+IGVuZ2luZQ== 2834
+IGNvbXBldA== 2835
+w7Q= 2836
+INCy0YE= 2837
+IGRvb3I= 2838
+IGxvbmdlcg== 2839
+IGxhbmd1YWdl 2840
+IGV4dHJh 2841
+cGxheQ== 2842
+IHdlYnM= 2843
+dW1i 2844
+cm9vbQ== 2845
+55w= 2846
+IGJlZ2lubmluZw== 2847
+IHJlZmVy 2848
+QU0= 2849
+bmVu 2850
+aWdoZXI= 2851
+ZmFjZQ== 2852
+ZXJj 2853
+IGZvcmdldA== 2854
+IGNvbW1lbnQ= 2855
+0LXQug== 2856
+0LvRjw== 2857
+cm9y 2858
+xbxl 2859
+IEdl 2860
+IGRhcms= 2861
+IGFueW9uZQ== 2862
+YW50ZQ== 2863
+Z2Vz 2864
+7Iq1 2865
+0ZE= 2866
+YmVk 2867
+amU= 2868
+cnVjdHVyZQ== 2869
+IHByaW0= 2870
+aWRh 2871
+6KY= 2872
+IG1peA== 2873
+IHN0YXJ0aW5n 2874
+IOydtOs= 2875
+IHByb3ZpZGU= 2876
+YWN0aW9u 2877
+IG1vdGhlcg== 2878
+IHBlcmlvZA== 2879
+IHN0aWNr 2880
+IFlvdVQ= 2881
+IHRlY2hub2xvZ3k= 2882
+6rk= 2883
+IGJlZA== 2884
+IGdpdmluZw== 2885
+IGV4cGxhaW4= 2886
+emVu 2887
+aW1hdGU= 2888
+IHJlcHJlc2VudA== 2889
+bG9hZA== 2890
+IEhvd2V2ZXI= 2891
+IGxpdmVz 2892
+dXRo 2893
+aXJpdA== 2894
+b2du 2895
+IGxpaw== 2896
+IHJlc3BvbnM= 2897
+IHByaXY= 2898
+IHRvbQ== 2899
+w6fDo28= 2900
+aWFt 2901
+IGV4Y2l0ZWQ= 2902
+IGNhcmQ= 2903
+Z3JvdW5k 2904
+INeU 2905
+IHNlbnM= 2906
+IHRlYWNo 2907
+aWRv 2908
+aG9k 2909
+IGVwaXM= 2910
+IHdlbGNvbWU= 2911
+IHdhbGw= 2912
+5Lk= 2913
+IGNoYW5jZQ== 2914
+aGVu 2915
+INCh 2916
+IMSR 2917
+IHNpbXBseQ== 2918
+INGC0LDQug== 2919
+cmluZw== 2920
+amE= 2921
+Ym9vaw== 2922
+IHNldmVyYWw= 2923
+c3Rl 2924
+IGNyZWF0ZWQ= 2925
+INC+0YI= 2926
+IHB1c2g= 2927
+PT0= 2928
+IGhpZ2hlcg== 2929
+dWY= 2930
+b3VyY2U= 2931
+b2tl 2932
+IG9ubGluZQ== 2933
+IHJlbGU= 2934
+IHRvbg== 2935
+ZW5zaXZl 2936
+IGZhdm9yaXRl 2937
+0YPQtA== 2938
+IGxvb2tlZA== 2939
+IHZvbg== 2940
+4oCU 2941
+IGbDvHI= 2942
+IGJ1dHRvbg== 2943
+IGJpbGw= 2944
+IGNoYW5nZXM= 2945
+ISI= 2946
+IHNsb3c= 2947
+YWJsZXM= 2948
+IGRlYXRo 2949
+YW5kcw== 2950
+YXRlZw== 2951
+IHRoZW1zZWx2ZXM= 2952
+IGNvcA== 2953
+IHBlcnNvbmFs 2954
+dWdoaW5n 2955
+IDEx 2956
+Z2Fy 2957
+YWRlcw== 2958
+IG5lZWRlZA== 2959
+IHN0dWR5 2960
+YWdlZA== 2961
+0YHRgtCy 2962
+aW5v 2963
+IGRpc2M= 2964
+a2k= 2965
+IGFkZHJlc3M= 2966
+16g= 2967
+aXR0ZW4= 2968
+ZXNvbWU= 2969
+INC2 2970
+pOs= 2971
+dXJh 2972
+IG11 2973
+IGNvbnRpbnU= 2974
+Zm9y 2975
+IG1hdGNo 2976
+IHN0cmFpZ2h0 2977
+kOs= 2978
+bmVycw== 2979
+IGRvZw== 2980
+IGRlYg== 2981
+IENP 2982
+IG9z 2983
+Z2Vk 2984
+Y2FtZQ== 2985
+IGNvcnJlY3Q= 2986
+ZXR0ZQ== 2987
+IFNlZQ== 2988
+IGluY2x1ZGluZw== 2989
+IEV1cm8= 2990
+ZXN0ZXI= 2991
+IGp1bXA= 2992
+IFdoaWNo 2993
+INC60LDQug== 2994
+c29u 2995
+eWE= 2996
+SU5H 2997
+IGVpbmU= 2998
+b3No 2999
+ZW5jeQ== 3000
+IG1lZGlh 3001
+IHN1YnNjcmliZQ== 3002
+6YI= 3003
+IHByaW4= 3004
+IGhhYg== 3005
+IFBlcg== 3006
+IFdhcw== 3007
+IHBhZ2U= 3008
+aXRvcg== 3009
+IHRvd2FyZHM= 3010
+IHRyaWVk 3011
+ZW5nZQ== 3012
+YXJ0bWVudA== 3013
+IHZhcmk= 3014
+IHBhcGVy 3015
+IHBpY3R1cmU= 3016
+IHZlcnNpb24= 3017
+IGJyb3VnaHQ= 3018
+d2FyZQ== 3019
+IFN0YXRlcw== 3020
+IHNpY2g= 3021
+bGVkZ2U= 3022
+IHBlcmNlbnQ= 3023
+IGdvZA== 3024
+ZWM= 3025
+IENvbW0= 3026
+IGRlY2lkZWQ= 3027
+IHNlbGVjdA== 3028
+7ZWc 3029
+KS4= 3030
+dXJpdHk= 3031
+IGZ1cnRoZXI= 3032
+IGNvbW1lbnRz 3033
+bGVtZW50 3034
+IGRyZWFt 3035
+IGNlbnRlcg== 3036
+bWk= 3037
+IGNhcw== 3038
+IHdvbWFu 3039
+IHJvYWQ= 3040
+IGZhaWw= 3041
+IGJlY2FtZQ== 3042
+bHVz 3043
+aWxpdGllcw== 3044
+IENv 3045
+IG1hbmFnZQ== 3046
+IHJlY29nbg== 3047
+IGFjdGlvbg== 3048
+IGJlbmVm 3049
+IGVhcmxpZXI= 3050
+15w= 3051
+IHNwZWVk 3052
+IG1lbnQ= 3053
+IHNvY2k= 3054
+IHNob290 3055
+dWk= 3056
+IMOk 3057
+IGFwcGx5 3058
+dm8= 3059
+eGlt 3060
+IGNhdXNl 3061
+IHN1cnBy 3062
+IGhhYmVu 3063
+REk= 3064
+IGZhdGhlcg== 3065
+IE5leHQ= 3066
+IFlvdVR1YmU= 3067
+IGNvZGU= 3068
+IHJvbGU= 3069
+Z3Jlc3M= 3070
+IGdyZWVu 3071
+ZXR0 3072
+IGJ1aWx0 3073
+IGZsb3c= 3074
+IGJhc2U= 3075
+IHRyYWluaW5n 3076
+IHJvdW5k 3077
+IFdpbGw= 3078
+IHBhdGg= 3079
+IFJv 3080
+IGludGVyZXN0ZWQ= 3081
+7Ja0 3082
+IHJlc3BlY3Q= 3083
+IGNoYW5nZWQ= 3084
+aXNzaW9u 3085
+IHN0dWRlbnQ= 3086
+b2dyYXBo 3087
+IGFwcHJvYWNo 3088
+IHNob3dz 3089
+IHRhcg== 3090
+IGNyaXQ= 3091
+IGdsbw== 3092
+7Iq164uI64uk 3093
+IGRlYWQ= 3094
+IFByZXNpZGVudA== 3095
+IHRob3Vz 3096
+IGJhbA== 3097
+c3Rlcg== 3098
+ZXg= 3099
+IGFic29sdXRlbHk= 3100
+IG1pYw== 3101
+IHByYWN0aWNl 3102
+IHF1YWxpdHk= 3103
+IGxvd2Vy 3104
+b2dsZQ== 3105
+IHNlcGFy 3106
+YmFsbA== 3107
+bWVkaQ== 3108
+IHJldmlldw== 3109
+IEFwcA== 3110
+IG9r 3111
+4oCL 3112
+IGV4cGVyaWVu 3113
+IGNvbmNlcm4= 3114
+ZW50aWFsbHk= 3115
+bW9yZQ== 3116
+IEpv 3117
+YXBhbg== 3118
+IEljaA== 3119
+aXN0aWM= 3120
+IGZhaXI= 3121
+IHdlYnNpdGU= 3122
+aXJlcw== 3123
+IEJ5 3124
+IHRyYXZlbA== 3125
+IHJpc2s= 3126
+IG1pcg== 3127
+IGJvYXJk 3128
+IHNlbg== 3129
+IHBhcmVudHM= 3130
+IFdvdw== 3131
+IGZlZWQ= 3132
+IHNhdmU= 3133
+IHNlcmlvdXM= 3134
+IGluaXQ= 3135
+RUw= 3136
+dW5kcmVk 3137
+QVM= 3138
+IHZhbg== 3139
+b3Jyb3c= 3140
+IHdvcnRo 3141
+IHNlYXJjaA== 3142
+IDE2 3143
+IHBhcnRz 3144
+0YHRgtGM 3145
+IGNvbXBhbg== 3146
+IG1vdmll 3147
+IG1ldGhvZA== 3148
+IGlsbA== 3149
+IHdpc2g= 3150
+ZHk= 3151
+IGl0ZW0= 3152
+IG1pbnVz 3153
+YW5nZXI= 3154
+IHZvaWNl 3155
+IHNraW4= 3156
+IGFyZWFz 3157
+IGVpZ2h0 3158
+IG9icw== 3159
+ICw= 3160
+0LDQuQ== 3161
+IG9pbA== 3162
+IGN5 3163
+IGJhYnk= 3164
+c3k= 3165
+IGVtcGxveQ== 3166
+IEtl 3167
+IHBsYWNlcw== 3168
+IGZpeA== 3169
+IGVzdMOh 3170
+aXZlZA== 3171
+IGxvdHM= 3172
+IHNlYXNvbg== 3173
+dW5r 3174
+YWx0 3175
+IHRhYmxl 3176
+INCi 3177
+w6I= 3178
+IGF0dGVudGlvbg== 3179
+IEhlcg== 3180
+IGFnZQ== 3181
+IHByYQ== 3182
+YmFjaw== 3183
+Y2ls 3184
+IG5ldHdvcms= 3185
+cml0 3186
+IGRvYw== 3187
+IGFyZW4= 3188
+aWdlbg== 3189
+IOuE 3190
+2K8= 3191
+ZW5kZXI= 3192
+IHRvdGFs 3193
+IHByaWNl 3194
+IGNyYXp5 3195
+7Jo= 3196
+aXF1 3197
+dGhvdWdo 3198
+WW91 3199
+2Yc= 3200
+z4U= 3201
+IHNhdA== 3202
+IGJp 3203
+IERpZQ== 3204
+IHNoYQ== 3205
+IHRoYW5rcw== 3206
+dWg= 3207
+IHN0YWdl 3208
+0LDQtg== 3209
+IEZs 3210
+IGxlYXY= 3211
+IGJveQ== 3212
+IGFm 3213
+w7Zu 3214
+IEdldA== 3215
+IGFjY2VwdA== 3216
+IGVudGVy 3217
+IHR1cg== 3218
+IHNpxJk= 3219
+IGhvbmVzdA== 3220
+44CM 3221
+IHNhbQ== 3222
+IHJlcGw= 3223
+Z2luZw== 3224
+IGRldmVsb3BtZW50 3225
+IEFjdA== 3226
+b3Jh 3227
+44CN 3228
+5L4= 3229
+IGtub3dz 3230
+IGltYWdl 3231
+IExvcmQ= 3232
+0LjRgtGM 3233
+IHdlZWtz 3234
+IHNleA== 3235
+lOs= 3236
+IGh1bmRyZWQ= 3237
+IHNvdW5kcw== 3238
+IGxlYXJuZWQ= 3239
+IGJ1ZA== 3240
+INGB0YI= 3241
+IGluY3JlZA== 3242
+4pk= 3243
+IG5vcw== 3244
+IGRyb3A= 3245
+IGJlbg== 3246
+INCY 3247
+IHNhZmU= 3248
+YXRh 3249
+IGZ1Y2s= 3250
+c29jaQ== 3251
+IGRhbg== 3252
+IGNyb3Nz 3253
+MTA= 3254
+bW8= 3255
+dmVydA== 3256
+IDE3 3257
+emll 3258
+5ZU= 3259
+IGRvbQ== 3260
+IEJv 3261
+IHNldHRpbmc= 3262
+IGludm9sdmVk 3263
+YXJpbHk= 3264
+IHNpbmQ= 3265
+IHN1cw== 3266
+IHdvcnJ5 3267
+ZXRo 3268
+6rmM 3269
+IHN1bg== 3270
+IGhpZXI= 3271
+IGNlcnRhaW5seQ== 3272
+b3Vs 3273
+b3J0cw== 3274
+IEVy 3275
+IFVt 3276
+IGNhdXM= 3277
+IG5hdHVyYWw= 3278
+IMO8 3279
+IGNyeQ== 3280
+IFNlYw== 3281
+IHNvbQ== 3282
+5rI= 3283
+IGVkdWNhdGlvbg== 3284
+0LDQtdGC 3285
+IG11bHRpcA== 3286
+IGFsb25l 3287
+IGV5ZQ== 3288
+IHJhdGU= 3289
+IEV1cm9wZQ== 3290
+6L8= 3291
+bW9u 3292
+IGZpdA== 3293
+aXppbmc= 3294
+cHBlZA== 3295
+IHByZXNzdXJl 3296
+dGhl 3297
+0LjRgQ== 3298
+aXRlcw== 3299
+IEFm 3300
+cmVjaQ== 3301
+YXR0bGU= 3302
+IHNlcnZpY2Vz 3303
+IEdvb2dsZQ== 3304
+6YE= 3305
+IGNhc2Vz 3306
+IGRyaXZl 3307
+IGNoYWxsZW5n 3308
+dXo= 3309
+IE1v 3310
+7Jy86w== 3311
+dmFs 3312
+IGZvbA== 3313
+IOyi 3314
+ZmZpYw== 3315
+IHJh 3316
+IHNpbg== 3317
+IGJsdWU= 3318
+IGFmZmVjdA== 3319
+IG1pcw== 3320
+IHNob3Q= 3321
+INC+0LE= 3322
+YXNpbmc= 3323
+IHNpZ25pZmlj 3324
+IENoZQ== 3325
+IOqz 3326
+IHBvc2l0aXZl 3327
+7KM= 3328
+IHdpZQ== 3329
+IDQw 3330
+b3JkaW5n 3331
+IEZyb20= 3332
+6rU= 3333
+IGJyYW5k 3334
+IHRydXN0 3335
+IHBsZQ== 3336
+IGNvbW11bmlj 3337
+IHdlaWdodA== 3338
+IGFza2luZw== 3339
+IHRheA== 3340
+IEphcGFu 3341
+IO2VmA== 3342
+b3Bz 3343
+z4I= 3344
+IHB1dHRpbmc= 3345
+IHJvbGw= 3346
+IEFtZXJpY2E= 3347
+cmVn 3348
+ntc= 3349
+YXR1cmVz 3350
+ZW5zaW9u 3351
+IFNvbWV0 3352
+IG9yaWdpbmFs 3353
+cGluZw== 3354
+IMWf 3355
+IHByb2R1Y3Rz 3356
+IGNvbnRhY3Q= 3357
+b2x1dGlvbg== 3358
+IGdvYWw= 3359
+IHBvdw== 3360
+IHBlcmZvcm1hbmNl 3361
+IGJsb29k 3362
+YXRvcnM= 3363
+IE1pY2g= 3364
+IHRlbXBlcg== 3365
+IERhbg== 3366
+IHN1Z2c= 3367
+0YLQuA== 3368
+IGltbQ== 3369
+IG9mZmljZQ== 3370
+IGFycmk= 3371
+IGNvbWZvcnQ= 3372
+INCU 3373
+IHN1Z2dlc3Q= 3374
+IHBsYXQ= 3375
+gpg= 3376
+MTk= 3377
+IG9t 3378
+IHNldmVu 3379
+IENlbnQ= 3380
+aWxsZQ== 3381
+IGNvbmNlcHQ= 3382
+IGJhZw== 3383
+w7xu 3384
+aXZlbHk= 3385
+IGRpdg== 3386
+bW9z 3387
+5ok= 3388
+IGZlZWxz 3389
+IGly 3390
+YWtlcw== 3391
+bGV5 3392
+IHBhcnRpY2lw 3393
+INCa 3394
+Zmw= 3395
+anVzdA== 3396
+IHNpbA== 3397
+IFBh 3398
+QUw= 3399
+IGdvdHRh 3400
+IGZhbg== 3401
+IGNoYWxsZW5nZQ== 3402
+IGNvbXBhbmllcw== 3403
+IFBlb3BsZQ== 3404
+PC8= 3405
+0L7Qtw== 3406
+IHBlbg== 3407
+aXNpbmc= 3408
+IGF1cw== 3409
+ZW1pYw== 3410
+YW1lbnRl 3411
+IG1lZXRpbmc= 3412
+IHZpc2l0 3413
+IHN1cHBvc2Vk 3414
+IE9uY2U= 3415
+0LTQsA== 3416
+b3JsZA== 3417
+MzA= 3418
+VVM= 3419
+IHZpb2w= 3420
+IG5vdGljZQ== 3421
+INCQ 3422
+aGFu 3423
+cGVk 3424
+7Jg= 3425
+aGg= 3426
+IHRyb3U= 3427
+IG1pbnV0ZQ== 3428
+IFBhcg== 3429
+cmF5 3430
+IHRpdA== 3431
+IHVwZA== 3432
+IGJsb2Nr 3433
+IGR1ZQ== 3434
+YXVy 3435
+IGZvcmNl 3436
+IGNvdW4= 3437
+IOKAlA== 3438
+IHR5cGVz 3439
+66c= 3440
+IGxhdGU= 3441
+IGltcHJvdmU= 3442
+IOyI 3443
+IGF2ZQ== 3444
+dWxlcw== 3445
+Y2w= 3446
+YW1lZA== 3447
+IGF3ZXNvbWU= 3448
+IE9r 3449
+IHZvdA== 3450
+IG1hY2hpbmU= 3451
+IGZvbGxvd2luZw== 3452
+IG1lYXN1cmU= 3453
+YWNpw7Nu 3454
+dWVs 3455
+Y2hhbg== 3456
+IGFiaWxpdHk= 3457
+IHRvdXQ= 3458
+IGlkZWFz 3459
+IGluY3JlYXNl 3460
+IGVucw== 3461
+INGF 3462
+IOuq 3463
+IGplc3Q= 3464
+INCc 3465
+IHRydXRo 3466
+aHk= 3467
+IHNwZW5k 3468
+IHNjaWVuY2U= 3469
+ZXRl 3470
+IDE0 3471
+IGVwaXNvZGU= 3472
+IGFsZw== 3473
+ZW5kZWQ= 3474
+YXJp 3475
+bGxh 3476
+IGZpc2g= 3477
+IHRocm93 3478
+bWl0 3479
+5bk= 3480
+IGNpcmM= 3481
+IENhbA== 3482
+IHRvdXI= 3483
+IGRpcmVjdGlvbg== 3484
+IG5vY2g= 3485
+0LXQsg== 3486
+w6lu 3487
+IGNvdW50cmllcw== 3488
+IGluZHVzdHJ5 3489
+aW55 3490
+aWNsZQ== 3491
+IGZlZXQ= 3492
+SXQ= 3493
+IGxlYWRlcnM= 3494
+ZXR6dA== 3495
+IHN0YWZm 3496
+55Q= 3497
+IHB1cnA= 3498
+aXRv 3499
+PyE= 3500
+IEph 3501
+IHN0b3Jl 3502
+ZXRpYw== 3503
+IENoaW5h 3504
+IOuQ 3505
+IFVuaXZlcnNpdHk= 3506
+ICM= 3507
+IGRlY2lzaW9u 3508
+IGFjaGll 3509
+IGFjdHVhbA== 3510
+dWx5 3511
+IHNlY3Rpb24= 3512
+IHJlc3VsdHM= 3513
+IHN0YXI= 3514
+IG1pc3Q= 3515
+aWJseQ== 3516
+IGRhZA== 3517
+IG51bWJlcnM= 3518
+b21i 3519
+6Ko= 3520
+IFNwZQ== 3521
+IG1lcg== 3522
+IDI1 3523
+IGF1dG9t 3524
+IGNvbGQ= 3525
+2Kg= 3526
+hJw= 3527
+YWdlcg== 3528
+IFRW 3529
+IFNpZQ== 3530
+IEhhdmU= 3531
+IMW8ZQ== 3532
+dWdn 3533
+YWluZWQ= 3534
+IHVwb24= 3535
+IGxvZw== 3536
+IGNvbXBsZXRl 3537
+IGJyYWlu 3538
+YWdpbmc= 3539
+IE11cw== 3540
+b3Zlcg== 3541
+IGVhc2llcg== 3542
+IGludGVncg== 3543
+IG3DoXM= 3544
+IHR1cm5lZA== 3545
+IHN0cmk= 3546
+aXZhbA== 3547
+IGhlYXY= 3548
+IFRI 3549
+IHdyaXRpbmc= 3550
+0YDQsA== 3551
+IGNsYQ== 3552
+ZGluZw== 3553
+IHRlbGxpbmc= 3554
+0LjQtA== 3555
+aWNhdGVk 3556
+YWNodA== 3557
+aGFwcw== 3558
+IFN0ZQ== 3559
+IHJlc291cmNlcw== 3560
+IGRhbm4= 3561
+IHBhcnR5 3562
+IM+E 3563
+IHNhZg== 3564
+aXNlcw== 3565
+dHJl 3566
+b2ludA== 3567
+IGtub3dsZWRnZQ== 3568
+IGFueW1vcmU= 3569
+IGZseQ== 3570
+IG1haW50 3571
+0LjQug== 3572
+5ZE= 3573
+IHNlbGw= 3574
+bGF1Z2hz 3575
+IFlvcms= 3576
+IGJpZW4= 3577
+IG9k 3578
+IGVhc2lseQ== 3579
+IHJhbmdl 3580
+IG9wdGlvbg== 3581
+2Lk= 3582
+IGFwcHJlY2k= 3583
+b2Ny 3584
+IGRldGVybQ== 3585
+0YQ= 3586
+IG1lYW5pbmc= 3587
+IHNpdGU= 3588
+IGRpc2Nv 3589
+dmVyYWdl 3590
+IGxvc2U= 3591
+IGluc3RhbGw= 3592
+IGVtb3Q= 3593
+YW50bHk= 3594
+w6R0 3595
+IHRhbWI= 3596
+IFdhcg== 3597
+IEhv 3598
+IEdlbg== 3599
+ZW15 3600
+0LXQtw== 3601
+IFBvbA== 3602
+IG1lc3NhZ2U= 3603
+IG5vdGU= 3604
+jIA= 3605
+IGhldA== 3606
+IGltbWVkaQ== 3607
+IGF2bw== 3608
+IGJvb2tz 3609
+IGJlY29tZXM= 3610
+cmVzaA== 3611
+w6hz 3612
+YXNvbnM= 3613
+IGhpbXNlbGY= 3614
+dXRz 3615
+IGp1 3616
+IGF3YXJl 3617
+IHJlcXVpcmU= 3618
+IHN5c3RlbXM= 3619
+IEhhcg== 3620
+IGFtb25n 3621
+IGhvbQ== 3622
+IGJyZWF0 3623
+IHdlaXJk 3624
+IOu2 3625
+zrs= 3626
+2Kk= 3627
+aWZm 3628
+b3Jpbmc= 3629
+IHBsYXRmb3Jt 3630
+IFRha2U= 3631
+IGhlbHBz 3632
+dXRpb25z 3633
+IGZvcmc= 3634
+IGx1Y2s= 3635
+IEVuZ2xpc2g= 3636
+IHdlYg== 3637
+IG5lZ2F0aXZl 3638
+IHR1dA== 3639
+IGFib3Zl 3640
+bmd0aA== 3641
+IOqxsA== 3642
+IHN0b3JpZXM= 3643
+IGxvYWQ= 3644
+IGJhY2tncm91bmQ= 3645
+IHN3aXRjaA== 3646
+Z2E= 3647
+IHByaW5jaQ== 3648
+IGZpbmFu 3649
+IHZhcmlvdXM= 3650
+IGzDoA== 3651
+IGtpbmRz 3652
+YWluaW5n 3653
+IG5hdHVyZQ== 3654
+INCe 3655
+Y3o= 3656
+IHByYXk= 3657
+IGdhcg== 3658
+aXJt 3659
+ICY= 3660
+IOyD 3661
+bnM= 3662
+IFJlcA== 3663
+IEZl 3664
+IHJldg== 3665
+cmFuZA== 3666
+IGxpa2VseQ== 3667
+IHVuZGVyc3RhbmRpbmc= 3668
+xLFy 3669
+IGZhbA== 3670
+IDEz 3671
+0YbQuA== 3672
+IHN1ZA== 3673
+IGJyb3RoZXI= 3674
+IHBsYW50 3675
+IHRocm91Z2hvdXQ= 3676
+d2lzZQ== 3677
+cHJl 3678
+IGN1bHR1cmU= 3679
+INmF 3680
+IHdvbmRlcmZ1bA== 3681
+IGFo 3682
+cHBlcg== 3683
+IHNvbGQ= 3684
+IHN0YXJ0cw== 3685
+IHdyaXR0ZW4= 3686
+zq8= 3687
+bmk= 3688
+INeU1w== 3689
+IERhdg== 3690
+IHVsdA== 3691
+IGFybQ== 3692
+IHJvY2s= 3693
+IHdlYXI= 3694
+642w 3695
+YW5v 3696
+cmFn 3697
+IHNxdWFyZQ== 3698
+0LDQvdC4 3699
+Y2FzdA== 3700
+bGVicg== 3701
+IGxpdGVyYWxseQ== 3702
+IHBsYXllZA== 3703
+IGhlYXQ= 3704
+b25zZQ== 3705
+cmljdA== 3706
+IGluc3A= 3707
+aWRz 3708
+IHBvcHVsYXI= 3709
+64+E 3710
+IGNhdGNo 3711
+IG1vdW50 3712
+IGp1ZA== 3713
+V2hhdA== 3714
+0LXQsQ== 3715
+UkE= 3716
+YXVk 3717
+0LrQvg== 3718
+IHN1cmZhY2U= 3719
+IGNvbnY= 3720
+IHBpZWNlcw== 3721
+T2g= 3722
+5oA= 3723
+IHN0eWxl 3724
+cHBpbmc= 3725
+IHJlYWRpbmc= 3726
+IGNvbnZlcnNhdGlvbg== 3727
+0L7Qvw== 3728
+IEFnYWlu 3729
+IGJhbms= 3730
+dGltZQ== 3731
+0YPRgg== 3732
+ZXJ2ZQ== 3733
+IEdyZWF0 3734
+IGNhcHQ= 3735
+0LDQsQ== 3736
+YXlz 3737
+IEZpbg== 3738
+aWZpY2F0aW9u 3739
+IMOkcg== 3740
+0LDRjg== 3741
+IGVnZw== 3742
+IFdlbA== 3743
+IHRhcmdldA== 3744
+dWxh 3745
+Y2hlcw== 3746
+YW5p 3747
+T08= 3748
+aWNpb3Vz 3749
+bm93 3750
+z4M= 3751
+Ym9hcmQ= 3752
+IGdlbnRl 3753
+IGRybw== 3754
+IEV0 3755
+IGRpbg== 3756
+IGNvcw== 3757
+IGF1dGhvcg== 3758
+2LM= 3759
+IG9jaA== 3760
+IGVtYWls 3761
+IHNwaXJpdA== 3762
+IHNpdHRpbmc= 3763
+bWFz 3764
+IHN0cmVuZ3Ro 3765
+IGJpZ2dlcg== 3766
+IFdhaXQ= 3767
+IG1hdA== 3768
+IHBvbGljZQ== 3769
+cmVzc2Vk 3770
+IHdhaXRpbmc= 3771
+aXNoaW5n 3772
+IGRvbGxhcnM= 3773
+aG9vZA== 3774
+c3M= 3775
+IGltYWdpbmU= 3776
+aW5p 3777
+IG1lcw== 3778
+IGRpc2U= 3779
+aWRnZQ== 3780
+YWJvcg== 3781
+IHBldA== 3782
+IGhvcA== 3783
+IEtpbmc= 3784
+IGNvbXB1dGVy 3785
+IGdvbGQ= 3786
+IG51 3787
+IGZpbmc= 3788
+KSw= 3789
+IHNlY3VyaXR5 3790
+cnVjdGlvbg== 3791
+IHNvbHV0aW9u 3792
+ZXh0 3793
+IHBhdHRlcg== 3794
+aWNrZW4= 3795
+dXJlZA== 3796
+IHN0YW5kYXJk 3797
+7Iuc 3798
+IGRvdWJsZQ== 3799
+zrc= 3800
+IHdpZmU= 3801
+aXNh 3802
+IGRpcmVjdGx5 3803
+YWNlZA== 3804
+IGJ1bmNo 3805
+IMK/ 3806
+0LDQu9GM 3807
+IHJlZ2FyZA== 3808
+IHN3ZWV0 3809
+IHVuaXF1ZQ== 3810
+IOKZqw== 3811
+IHRyYWlu 3812
+IEdlcm0= 3813
+zqw= 3814
+UkU= 3815
+IGJlaGF2 3816
+IHByZWQ= 3817
+7IM= 3818
+c2V0 3819
+IGRlc2NyaXB0aW9u 3820
+w6ll 3821
+IGNhdA== 3822
+5ZM= 3823
+IGNvbGxlZ2U= 3824
+7Js= 3825
+IGFwcGxpY2F0aW9u 3826
+IFNlbg== 3827
+YXNr 3828
+IGNyZWQ= 3829
+dWJsaWM= 3830
+IG11bHRpcGxl 3831
+IG5p 3832
+IHByZXNpZGVudA== 3833
+IGFkZGVk 3834
+IHJvYg== 3835
+IGFxdWk= 3836
+IGhvc3A= 3837
+IHRvb2xz 3838
+IGd1bg== 3839
+IGJhc2lj 3840
+IGxpbmVz 3841
+IHN0cnVjdHVyZQ== 3842
+IFJ1c3M= 3843
+IHRvdGFsbHk= 3844
+IGJpZ2dlc3Q= 3845
+IGVlbg== 3846
+IGFyZw== 3847
+INec 3848
+IHBhcms= 3849
+IERlcw== 3850
+IGNlbGVicg== 3851
+IGZhaXQ= 3852
+0LXQvdGM 3853
+IHN1ZmY= 3854
+IHJlZ3VsYXI= 3855
+qOs= 3856
+IG1pbmU= 3857
+IEtvcmU= 3858
+IHByZXZpb3Vz 3859
+IHBp 3860
+IHNlZw== 3861
+IHBvbGljeQ== 3862
+INC60L4= 3863
+IFRydW1w 3864
+IHZhY2M= 3865
+w7N3 3866
+IFN5 3867
+0LjRhw== 3868
+aXR0ZXI= 3869
+IHBvbGl0aWNhbA== 3870
+cmFz 3871
+IGFscw== 3872
+0LXQu9GM 3873
+IHNoYXBl 3874
+YW56 3875
+IG9udG8= 3876
+IGFyY2g= 3877
+IGFtYg== 3878
+YWdyYW0= 3879
+IFNt 3880
+Y3Rpb25z 3881
+IGpvaW4= 3882
+Ym9y 3883
+5Zs= 3884
+IGZyYW1l 3885
+oIc= 3886
+IGNob2ljZQ== 3887
+4K+B 3888
+0YPRjg== 3889
+IENvcg== 3890
+IFN3 3891
+SVQ= 3892
+IHRlbmQ= 3893
+IEVhcg== 3894
+IHRvcg== 3895
+IGV2ZW50cw== 3896
+IGNsYWlt 3897
+IERh 3898
+IE1hcms= 3899
+IGdyb3Vwcw== 3900
+IGVhdGluZw== 3901
+IFdvcmxk 3902
+IHJlY2VudGx5 3903
+IHRhc3Rl 3904
+IHN1cnY= 3905
+4KQ= 3906
+IHNraWxscw== 3907
+INC40Lc= 3908
+aXR0ZWQ= 3909
+IHNob3A= 3910
+7J207A== 3911
+IGVzdGFi 3912
+IOuCmA== 3913
+IHNlY29uZHM= 3914
+IFRob3Nl 3915
+IEVudA== 3916
+IOyE 3917
+ZXJzb24= 3918
+IHRvd24= 3919
+IGNhbmQ= 3920
+IG9wdGlvbnM= 3921
+IGluZw== 3922
+VklE 3923
+IGVuY291cg== 3924
+IHLDqQ== 3925
+4pmq 3926
+IGVudHJl 3927
+IG1vdmVtZW50 3928
+IEJlbg== 3929
+IGJpcnRo 3930
+IHdoZQ== 3931
+IGhhbmc= 3932
+IEVt 3933
+aWdl 3934
+cm9sbA== 3935
+IHVuZg== 3936
+7II= 3937
+IHJpZA== 3938
+IHNwcmVhZA== 3939
+IGhvc3Q= 3940
+YWxk 3941
+IEVk 3942
+IGNvbnN1bQ== 3943
+VU4= 3944
+IG9waW4= 3945
+aXRhcg== 3946
+IE1lZA== 3947
+IHN1YmplY3Q= 3948
+IHBhbA== 3949
+IGNhcnJ5 3950
+IGFncmVl 3951
+IFdoaWxl 3952
+IGNhcmVlcg== 3953
+IHNjaWVudA== 3954
+IHN1ZGRlbg== 3955
+IGZpbGU= 3956
+emk= 3957
+IGV4Y2VwdA== 3958
+6bo= 3959
+IHBvdGVudGlhbA== 3960
+IEFub3RoZXI= 3961
+IGNvbXBsZXg= 3962
+IFNpbQ== 3963
+ZW5kbw== 3964
+IHJhaXM= 3965
+IHBoeXNpY2Fs 3966
+IGRhdGU= 3967
+YWtlcg== 3968
+IENvbA== 3969
+IHBvd2VyZnVs 3970
+IG1lbWJlcg== 3971
+cmFw 3972
+IHNwb3Q= 3973
+IHNvdXJjZQ== 3974
+IGZlbQ== 3975
+w6lt 3976
+IGVtcA== 3977
+amk= 3978
+aWV0eQ== 3979
+IGluZmx1 3980
+IGRyeQ== 3981
+IGxvY2s= 3982
+IHplcm8= 3983
+IFVo 3984
+IHJvdXQ= 3985
+IHBvcnF1ZQ== 3986
+IDI0 3987
+IHRhbA== 3988
+IGZvbGtz 3989
+IGxhdW5jaA== 3990
+IGNvbXBvbg== 3991
+IFdlbGNvbWU= 3992
+IGthbm4= 3993
+w6Ru 3994
+INGN0YI= 3995
+ZWVz 3996
+INmI 3997
+IGFueXdheQ== 3998
+IGF1ZGllbmNl 3999
+IHNsaWdodA== 4000
+b25h 4001
+IHVy 4002
+IHJlbGln 4003
+IGV4dHJlbQ== 4004
+xLF6 4005
+IE1h 4006
+zrw= 4007
+IMO2 4008
+IGFsbG93cw== 4009
+IGZhdA== 4010
+IEZhY2U= 4011
+IG5hdGlvbmFs 4012
+IGludGVydmlldw== 4013
+IE1j 4014
+w6l0 4015
+IGN1dGU= 4016
+ZWxh 4017
+IHNlY3JldA== 4018
+IFdlc3Q= 4019
+IERlcA== 4020
+IGV4ZXJj 4021
+IGhpc3Rvcg== 4022
+IHByaW9y 4023
+IDYw 4024
+YXZh 4025
+YWNoZXI= 4026
+eW9uZA== 4027
+IEhh 4028
+IGVzdGU= 4029
+aW5hcnk= 4030
+IE5vcnRo 4031
+b25zdA== 4032
+IHNtYXJ0 4033
+YW1z 4034
+0LDQu9C4 4035
+IGRhcg== 4036
+ZXJlZA== 4037
+IGZ1bm55 4038
+IE9i 4039
+IEJsYWNr 4040
+IHJlbGF0ZWQ= 4041
+IEJ1 4042
+IHNvbWV3aGVyZQ== 4043
+IFJlbQ== 4044
+bmVz 4045
+bWVudGU= 4046
+IFJlYWxseQ== 4047
+IGNyZWF0aW5n 4048
+IGZhbWls 4049
+IHNvY2lldHk= 4050
+IGdlbA== 4051
+IHRyYW5zZm9ybQ== 4052
+xIM= 4053
+IGluY2x1ZGU= 4054
+IGhvbA== 4055
+bGlrZQ== 4056
+a28= 4057
+YWlycw== 4058
+INC/0L7QtA== 4059
+IHBlcnNwZWN0 4060
+IGJlcw== 4061
+IHBhcnRpY3VsYXJseQ== 4062
+IHNob3dpbmc= 4063
+IFBhcnQ= 4064
+IHF1YWw= 4065
+bG9jaw== 4066
+IHJlYWxpdHk= 4067
+aG9sZA== 4068
+aWN0aW9u 4069
+b29u 4070
+IHZpcg== 4071
+aXRhcnk= 4072
+IGRydWc= 4073
+IGZlYXR1cmU= 4074
+IHJlYXNvbnM= 4075
+INep 4076
+IHdyb3Rl 4077
+IGZhbnQ= 4078
+IGJhbmQ= 4079
+2YM= 4080
+ZW5h 4081
+a2V5 4082
+IGVhcnRo 4083
+ZG9t 4084
+IGZlYXR1cmVz 4085
+IGZsb29y 4086
+IHNwZWFraW5n 4087
+IHRpcA== 4088
+IEF1c3Q= 4089
+IHN0b2Nr 4090
+IGNodXJjaA== 4091
+IHJhYw== 4092
+7Jy866Gc 4093
+4LiZ 4094
+a3k= 4095
+IHJlc3BvbnNl 4096
+24w= 4097
+dWxhdGlvbnM= 4098
+IHNsaWRl 4099
+IGdyYWR1 4100
+Y2lvdXM= 4101
+IG1lYW50 4102
+ID09 4103
+INeQ1w== 4104
+44U= 4105
+IGtpbmRh 4106
+IHNjZW5l 4107
+IG11aXQ= 4108
+IOqwgA== 4109
+cmFzdA== 4110
+cmVzdA== 4111
+IHBsYXllcnM= 4112
+d2E= 4113
+IGJyb2Fk 4114
+IHRvbW9ycm93 4115
+b2NvbA== 4116
+INGB0LI= 4117
+IEJhcg== 4118
+xLFr 4119
+IHNlYQ== 4120
+IHJlbW92ZQ== 4121
+IHJlbWluZA== 4122
+0L7QvNGD 4123
+IFNpbmNl 4124
+IGF2ZWM= 4125
+Y2VsbA== 4126
+0LjRhQ== 4127
+IGRvY3VtZW50 4128
+IOq3uOuf 4129
+IG5laWdo 4130
+YmVhdA== 4131
+IHDDpQ== 4132
+IGFzcGVjdA== 4133
+IGRlZA== 4134
+bGlzaGVk 4135
+aWxz 4136
+IG91cnNlbHZlcw== 4137
+dWNl 4138
+IGhleQ== 4139
+INC/0YDQvg== 4140
+ZW50eQ== 4141
+IGFzc29jaQ== 4142
+YWRvcw== 4143
+dW1iZXI= 4144
+IF0= 4145
+bm92 4146
+IOyZ 4147
+0YPRhw== 4148
+IGNvbmRpdGlvbg== 4149
+64qU642w 4150
+IHZhbHVlcw== 4151
+IHNjZW4= 4152
+bWluaXN0 4153
+IGNhc3Q= 4154
+IGdyb3dpbmc= 4155
+IHVzZXI= 4156
+IHJlc3BvbmQ= 4157
+bGlt 4158
+w6ly 4159
+eW0= 4160
+b3Nlcw== 4161
+c3ljaA== 4162
+INGA0LDQtw== 4163
+IGFwcGVhcg== 4164
+IHByb2dyZXNz 4165
+ZW5ndGg= 4166
+IGphaw== 4167
+IERpcw== 4168
+IHBhdGllbnRz 4169
+IFNlcg== 4170
+IGdhcw== 4171
+w6hyZQ== 4172
+7Ja07JqU 4173
+IHJlY2k= 4174
+7J24 4175
+IHNjYQ== 4176
+ZXBlbmQ= 4177
+0YHQug== 4178
+0LDQvw== 4179
+IGJhdHRlcg== 4180
+IHZlaA== 4181
+8J8= 4182
+IGFjY29t 4183
+IGJlYXQ= 4184
+IHBhaW50 4185
+IGNvbnRyaWI= 4186
+IHNhZA== 4187
+xrA= 4188
+YWxlcw== 4189
+IHRyZWU= 4190
+YmE= 4191
+IGJvcm4= 4192
+aWNlZA== 4193
+4K6V 4194
+YmFuZA== 4195
+IG1lY2hhbg== 4196
+IERldA== 4197
+IGNhcGl0YWw= 4198
+IGRlbGl2ZXI= 4199
+IGZlYXI= 4200
+npg= 4201
+IFNvdXRo 4202
+IGJvdWdodA== 4203
+IHN0cmVzcw== 4204
+IHZvcg== 4205
+Pz8= 4206
+aWg= 4207
+7JW8 4208
+IGVyYQ== 4209
+7J206w== 4210
+0LDRjw== 4211
+aXNpb25z 4212
+aXZpdHk= 4213
+IGhlbHBlZA== 4214
+IGFzc2lzdA== 4215
+IHBsYXllcg== 4216
+cmFu 4217
+IGltbWVkaWF0ZWx5 4218
+IG1vdmVk 4219
+Y2ll 4220
+6rE= 4221
+IGFubm91bg== 4222
+5b8= 4223
+7J6Q 4224
+IHByb2R1Y3Rpb24= 4225
+IHN1bW1lcg== 4226
+IHR1bg== 4227
+IHByb2dyYW1z 4228
+R0g= 4229
+YWxpbmc= 4230
+aXJh 4231
+ZWxlc3M= 4232
+Lik= 4233
+IGF2ZXJhZ2U= 4234
+IGdsYXNz 4235
+b21hbg== 4236
+aWZpY2FsbHk= 4237
+IOuLpA== 4238
+IENvbmc= 4239
+IFZlcg== 4240
+IHRyaWNr 4241
+IGJlZ2Fu 4242
+IHZpbGw= 4243
+6rGw 4244
+aG93 4245
+5q0= 4246
+IHRpbGw= 4247
+IDkw 4248
+YmVydA== 4249
+IOq4 4250
+IHRlbXBlcmF0dXJl 4251
+w7I= 4252
+4LmI 4253
+IGdyYXBo 4254
+IOq3uA== 4255
+IHJvdA== 4256
+IG1vYg== 4257
+QVk= 4258
+YWVs 4259
+IHJlcGU= 4260
+IGRldmljZQ== 4261
+IDE5OQ== 4262
+IHRlbGU= 4263
+IGtlcHQ= 4264
+cGE= 4265
+5pY= 4266
+dmVyc2U= 4267
+IHN0cmVhbQ== 4268
+0LXRhw== 4269
+ZXNzaW9u 4270
+IHN0cnVnZw== 4271
+eno= 4272
+IGRlZ3JlZQ== 4273
+IGhlbHBpbmc= 4274
+IHNtZWxs 4275
+IHBlcmhhcHM= 4276
+cHJv 4277
+IGNvbnRleHQ= 4278
+IGlr 4279
+INC/0LXRgA== 4280
+IGNhbGN1bA== 4281
+YmluZw== 4282
+IHJlYWxpemU= 4283
+bGFt 4284
+IENoYXI= 4285
+eXQ= 4286
+IOydtOw= 4287
+IGRhbmdlcg== 4288
+IElt 4289
+YWE= 4290
+IGxvdmVk 4291
+IHB1cnBvc2U= 4292
+IGZpbmlzaGVk 4293
+IHBlYWNl 4294
+IG90 4295
+IGdsb2JhbA== 4296
+z4A= 4297
+IGFiZXI= 4298
+log= 4299
+IGNoYXJhY3RlcnM= 4300
+IG51cg== 4301
+IGRhbWFnZQ== 4302
+IGVtZXI= 4303
+IHByZWM= 4304
+IFdpcg== 4305
+IGluc3RpdA== 4306
+kdc= 4307
+IGFsbG93ZWQ= 4308
+Ym9u 4309
+IHRvZA== 4310
+0LXQs9C+ 4311
+IGpldHp0 4312
+IG1lZGlj 4313
+IHNtYWxsZXI= 4314
+Y2VlZA== 4315
+IGxldmVscw== 4316
+IGludGVsbA== 4317
+V2U= 4318
+IHNlbQ== 4319
+IGN1cnJlbnRseQ== 4320
+IG1vZGVybg== 4321
+IGNvbnRyYWN0 4322
+IGRldGFpbHM= 4323
+b3J0dW5hdGVseQ== 4324
+T1M= 4325
+IHN0YXRlcw== 4326
+IGFkanVzdA== 4327
+YW50YWdl 4328
+ZXo= 4329
+IFZlcnk= 4330
+IHNjYWxl 4331
+IHJlbGVhc2U= 4332
+IGZheg== 4333
+IGlj 4334
+aXR1ZGU= 4335
+QUM= 4336
+IFBhdA== 4337
+aWRlbg== 4338
+rZA= 4339
+IHByZWZlcg== 4340
+b2xvZ2ljYWw= 4341
+IEZhY2Vib29r 4342
+IOqwmQ== 4343
+IC4u 4344
+IE1ha2U= 4345
+INC60L7RgtC+0YA= 4346
+IERhdmlk 4347
+IEFmcmlj 4348
+IG1vZGU= 4349
+IENpdHk= 4350
+IHNoYWxs 4351
+INGE 4352
+aW1pbg== 4353
+INC30LA= 4354
+cm9t 4355
+dWE= 4356
+IGJleW9uZA== 4357
+IGRpc3RyaWI= 4358
+0LrRgw== 4359
+IERvZXM= 4360
+IHZpY3Q= 4361
+cmF0ZQ== 4362
+IHZhaQ== 4363
+IHN1Y2Nlc3NmdWw= 4364
+IGhvdXM= 4365
+YWhh 4366
+ZXN0cw== 4367
+IEVzdA== 4368
+IGRpc2NvdmVy 4369
+IHRoZXJlZm9yZQ== 4370
+Y2hh 4371
+IGN1cA== 4372
+IHBvcHVsYXRpb24= 4373
+IEls 4374
+c2M= 4375
+IHNwZW50 4376
+cmVs 4377
+IHVzZWZ1bA== 4378
+IHRhYg== 4379
+5p0= 4380
+IMU= 4381
+IOygnA== 4382
+IGNvbnNl 4383
+IHF1YW50 4384
+YXlh 4385
+IGJvbg== 4386
+IENoaW4= 4387
+IOqygw== 4388
+b3VuZHM= 4389
+0LXRiA== 4390
+ZWxsZQ== 4391
+IGljZQ== 4392
+MjE= 4393
+IGtpY2s= 4394
+IHN0ZXBz 4395
+IHRvbmlnaHQ= 4396
+0L3Ri9C5 4397
+cmVuY2g= 4398
+Lic= 4399
+IGdyYWI= 4400
+IGltcGxlbWVudA== 4401
+IOyImA== 4402
+IG1pc3Npb24= 4403
+IGNsZWFybHk= 4404
+IGFwcHJlY2lhdGU= 4405
+6IA= 4406
+IGZyZXNo 4407
+YXJt 4408
+IFR3bw== 4409
+IGV4ZWM= 4410
+IHByb2plY3Rz 4411
+IGNvbW11bml0aWVz 4412
+cmlibGU= 4413
+IHJlZ2lvbg== 4414
+IGZyZXF1 4415
+cm95 4416
+IGhvd2V2ZXI= 4417
+IHBhcnRuZXJz 4418
+YW5j 4419
+IG1pbmlt 4420
+IGxhdA== 4421
+IGZhbWlsaWVz 4422
+IGV2aWRlbmNl 4423
+IHB1bg== 4424
+cmFmdA== 4425
+IGxvc3M= 4426
+IG1hcA== 4427
+IGFueWJvZHk= 4428
+IGNoYW5naW5n 4429
+IHJ1bGVz 4430
+IG9yZ2FuaXphdGlvbg== 4431
+IGVzc2VudGlhbGx5 4432
+IFJlZA== 4433
+IGVsZW1lbnQ= 4434
+5pc= 4435
+IHZpcnQ= 4436
+cmF0 4437
+IHByaW50 4438
+YW5kZXI= 4439
+YXJlbg== 4440
+ZW1vcw== 4441
+zr/PhQ== 4442
+IGNvbmRpdGlvbnM= 4443
+YWJl 4444
+IGRhbmNl 4445
+0LjRgA== 4446
+IGRvcw== 4447
+0L7Rhw== 4448
+IFF1ZQ== 4449
+IHdhbGtpbmc= 4450
+IHRybw== 4451
+IGlk 4452
+IGFkZGl0aW9uYWw= 4453
+IGZ1bGx5 4454
+IGZhbnM= 4455
+IGFkZGl0aW9u 4456
+IGxpa2Vk 4457
+IMO8YmVy 4458
+IGJvdw== 4459
+ZGk= 4460
+IG1hc3Rlcg== 4461
+b2Zm 4462
+KTo= 4463
+bWJlcg== 4464
+IOus 4465
+5a8= 4466
+bGF1c2U= 4467
+IG9kZXI= 4468
+IHNhZmV0eQ== 4469
+IHJlYWN0 4470
+4K6/ 4471
+YnQ= 4472
+IGRpc2FwcA== 4473
+IGdpcmxz 4474
+U3Q= 4475
+IEFuZw== 4476
+IGZhaXRo 4477
+IHR1cm5z 4478
+IHRpZ2h0 4479
+IG1vdXRo 4480
+YW1p 4481
+emVy 4482
+IHdlYXA= 4483
+INCx0YPQtA== 4484
+IGhvc3BpdGFs 4485
+cmFpZA== 4486
+IG1pY3Jv 4487
+IFN0YXRl 4488
+IE1vc3Q= 4489
+YWdu 4490
+IGRlY2lkZQ== 4491
+IHBhdGllbnQ= 4492
+IGNvcm5lcg== 4493
+IGRpZWQ= 4494
+Tm8= 4495
+IFN0dWQ= 4496
+cmVuZA== 4497
+ZW1wdA== 4498
+IGxpZQ== 4499
+IGxpZg== 4500
+IEJlZm9yZQ== 4501
+dMOz 4502
+IFN1cGVy 4503
+IGJlbGw= 4504
+NjA= 4505
+IHByaXZhdGU= 4506
+IFBhdWw= 4507
+IGdpYg== 4508
+IGFncmU= 4509
+tOyEnA== 4510
+IHNpZw== 4511
+IGludmVzdGln 4512
+0Y/Rgg== 4513
+ZW5pbmc= 4514
+IGRpc3RhbmNl 4515
+IHdhcm0= 4516
+IGRpZ2l0YWw= 4517
+aW5lcg== 4518
+IHBhbmQ= 4519
+IENPVklE 4520
+0LPQvg== 4521
+Z24= 4522
+IHJhY2U= 4523
+IHByb3Vk 4524
+IHRlYWNoaW5n 4525
+INGC0L4= 4526
+7J6l 4527
+IEFsbGFo 4528
+SW4= 4529
+IHdvb2Q= 4530
+IGNvbG9ycw== 4531
+IHdpcmQ= 4532
+dWo= 4533
+aWRhZA== 4534
+IGN1c3RvbWVycw== 4535
+IGNvbm5lY3RlZA== 4536
+IGxheWVy 4537
+IGFjaGlldmU= 4538
+IHBlcnNwZWN0aXZl 4539
+IENvbGw= 4540
+2YI= 4541
+IGNsb3Vk 4542
+ISEh 4543
+IGVuZGVk 4544
+oIfqsow= 4545
+IG1hbmFnZW1lbnQ= 4546
+IHJpY2g= 4547
+IHN1YnN0 4548
+IHJlbW8= 4549
+IHNlcnZl 4550
+IHJlc2lzdA== 4551
+IHRob3VnaHRz 4552
+IGdyb3d0aA== 4553
+aWxpYXI= 4554
+IHJpZ2h0cw== 4555
+IGNoYXJnZQ== 4556
+IGNvbnNpc3Q= 4557
+IHdlcmRlbg== 4558
+IGVtYg== 4559
+YW5kb20= 4560
+IGh1cnQ= 4561
+IGthbg== 4562
+aWFz 4563
+0LvQvg== 4564
+IHNoaXQ= 4565
+IGJlZw== 4566
+IHJlY2VpdmVk 4567
+aXRhdGlvbg== 4568
+IG1lYXQ= 4569
+IGlzc28= 4570
+ZmZlZQ== 4571
+IGZhbW91cw== 4572
+IGNvbWZvcnRhYmxl 4573
+SUw= 4574
+IEJ5ZQ== 4575
+b3RoZXM= 4576
+IG1lZGljYWw= 4577
+IGVuam95ZWQ= 4578
+IGhlYWx0aHk= 4579
+IHd5 4580
+Y2llcw== 4581
+IGVmZm9ydA== 4582
+IGRvY3Rvcg== 4583
+IG1pbGl0YXJ5 4584
+TEFV 4585
+IGdybw== 4586
+IGJhdHRsZQ== 4587
+IGZlZA== 4588
+IGNhcGFj 4589
+IGFmcmFpZA== 4590
+aXZpbA== 4591
+INCy0YHQtQ== 4592
+IGxlbmd0aA== 4593
+eXNpcw== 4594
+IGJlaQ== 4595
+pO0= 4596
+IG9yZ2FuaXo= 4597
+b3Jn 4598
+aW5j 4599
+IGludGVyYWN0 4600
+IENoaW5lc2U= 4601
+IGFjY29yZGluZw== 4602
+IGluY3JlZGlibGU= 4603
+IGtpbGxlZA== 4604
+IGRhdWdodGVy 4605
+IM+A 4606
+0YvQsg== 4607
+IHNjaG9vbHM= 4608
+IMKr 4609
+bGxlcg== 4610
+IHNob3VsZG4= 4611
+bmFs 4612
+IGNyaXM= 4613
+IGNoaWNrZW4= 4614
+IGZhc3Rlcg== 4615
+IGV4dHJlbWVseQ== 4616
+IG9wcG9z 4617
+IG5vdXM= 4618
+ICs= 4619
+cmlh 4620
+IGZpbmFuY2lhbA== 4621
+IGV4Y2l0aW5n 4622
+IGpvdXJuZXk= 4623
+15nXnQ== 4624
+oOs= 4625
+IGRpc3BsYXk= 4626
+IG1lbW9yeQ== 4627
+IGhlYXZ5 4628
+0L3QtQ== 4629
+IHBhc3NlZA== 4630
+0YDQuA== 4631
+aWxlcw== 4632
+IHBzeWNo 4633
+IHNwZWNpZmljYWxseQ== 4634
+IGVuZ2FnZQ== 4635
+IGxlZA== 4636
+b3JnZQ== 4637
+IERlbQ== 4638
+b3JkZXI= 4639
+IDgw 4640
+IGNyZWFt 4641
+ZXN0ZXJkYXk= 4642
+IGVkZ2U= 4643
+INC/0L7Quw== 4644
+IGJ1bGw= 4645
+IGluZGlj 4646
+IGt0w7M= 4647
+IGhvcGVmdWxseQ== 4648
+dW1lbnRz 4649
+YWdlbg== 4650
+0L3QvtCz0L4= 4651
+IGhhdGU= 4652
+Y2h0 4653
+ODA= 4654
+IGVmZmlj 4655
+IOyngA== 4656
+IGludGVybmV0 4657
+IGJ1ZGdldA== 4658
+IHByb3BlcnR5 4659
+aWRheQ== 4660
+IOya 4661
+INC80L7Qtg== 4662
+b2xh 4663
+IHNob3dlZA== 4664
+IE1vbg== 4665
+IHRob3VzYW5k 4666
+QVA= 4667
+IHBvb3I= 4668
+dXNlZA== 4669
+IEphY2s= 4670
+IHPDpQ== 4671
+g70= 4672
+IGVzYw== 4673
+IHNvZnR3YXJl 4674
+IHF1YXI= 4675
+INio 4676
+IG5lY2Vzc2FyaWx5 4677
+b21lbg== 4678
+aXk= 4679
+IGV2ZW50dWFsbHk= 4680
+aXNoZWQ= 4681
+IGJyaWdodA== 4682
+RUQ= 4683
+IHNwbA== 4684
+IGRlbWFuZA== 4685
+IHRocmVhdA== 4686
+IHNpcg== 4687
+IHJlbGVhc2Vk 4688
+Y2tldA== 4689
+IOKAqw== 4690
+IHJlcXVpcmVk 4691
+IHZvdGU= 4692
+7Lk= 4693
+4K6k 4694
+IGRldmVsb3BlZA== 4695
+IOyCrA== 4696
+YXRvcnk= 4697
+IGRpcg== 4698
+Y2FwZQ== 4699
+IHNsaWdodGx5 4700
+w6w= 4701
+4LmJ 4702
+cmVldA== 4703
+IGRpc2Vhc2U= 4704
+IGNvdXJ0 4705
+IGl0ZW1z 4706
+IEVhcnRo 4707
+0YHRgtC4 4708
+0LbQtQ== 4709
+7LI= 4710
+IGNoYWxsZW5nZXM= 4711
+IEJyaXQ= 4712
+IGRlc2lnbmVk 4713
+MTI= 4714
+IGhlYXJpbmc= 4715
+IGxpc3RlbmluZw== 4716
+em8= 4717
+INGB0Ls= 4718
+IHBlcm8= 4719
+IHdlYXJpbmc= 4720
+cGxpYw== 4721
+IGNoZW0= 4722
+IGJhbGFuY2U= 4723
+IGJh 4724
+IHJlY2VpdmU= 4725
+aW1h 4726
+IHNpZ25pZmljYW50 4727
+INC80Ys= 4728
+YW5jaA== 4729
+IENy 4730
+IENvdW4= 4731
+6riI 4732
+IGpvYnM= 4733
+IG9mZmljaWFs 4734
+IHBlcm0= 4735
+b21z 4736
+IG9wcG9ydHVuaXRpZXM= 4737
+IG92ZXJhbGw= 4738
+IGh1cw== 4739
+b2Rlcw== 4740
+IG5hdGlvbg== 4741
+IFJlZw== 4742
+IG9yZA== 4743
+IHJlc3RhdXI= 4744
+IOyG 4745
+IG1lbA== 4746
+dmlu 4747
+IHdlbm4= 4748
+IGvDtm4= 4749
+5oM= 4750
+IG9waW5pb24= 4751
+6Kw= 4752
+IFNvbWV0aW1lcw== 4753
+54I= 4754
+0YnQtQ== 4755
+YXNj 4756
+T1U= 4757
+IDIwMjA= 4758
+IGRlbGljaW91cw== 4759
+aWdlcg== 4760
+IOyViA== 4761
+b2xl 4762
+IGhhbmRsZQ== 4763
+IGNpdA== 4764
+IO2VnA== 4765
+IGbDtnI= 4766
+b290aA== 4767
+IG5lY2Vzc2FyeQ== 4768
+IGluZGVwZW5k 4769
+5oQ= 4770
+aXN0ZW4= 4771
+aGFt 4772
+IMOpdA== 4773
+IG11bHRp 4774
+z4w= 4775
+Pyk= 4776
+IGNhbXB1cw== 4777
+IHRvcGlj 4778
+IHJhaW4= 4779
+IHBhbmVs 4780
+IFNhbQ== 4781
+IGxhcmdlcg== 4782
+YXVkaWVuY2U= 4783
+IHBhaWQ= 4784
+IGVjb25vbWlj 4785
+b2x0 4786
+IHN0cmVldA== 4787
+IENvbnQ= 4788
+IGRyaXZpbmc= 4789
+IOyggA== 4790
+IGhheQ== 4791
+IHByb2Zlc3Npb25hbA== 4792
+IEludGVybg== 4793
+5bg= 4794
+IGlucHV0 4795
+IGNhdGVn 4796
+IGNybw== 4797
+IGxs 4798
+RVQ= 4799
+0YvQuQ== 4800
+Kio= 4801
+IFpl 4802
+QkxF 4803
+IOyk 4804
+cmVlcw== 4805
+INCv 4806
+ZWRl 4807
+aWVydA== 4808
+IGZvbGQ= 4809
+IGR1cg== 4810
+IE5hdGlvbmFs 4811
+IOyWtOs= 4812
+YW5jZWQ= 4813
+IGZhaXJl 4814
+dXRlZA== 4815
+IGtpbmc= 4816
+IHdpbGQ= 4817
+b2k= 4818
+dXBiZWF0 4819
+IHByZXZlbnQ= 4820
+aXVz 4821
+IMOo 4822
+IHdpZGU= 4823
+IHJpbmc= 4824
+IHRpdGxl 4825
+IHN0YW5kaW5n 4826
+IGFsdGhvdWdo 4827
+IGhp 4828
+IHNhdWNl 4829
+IHNpZGVz 4830
+IGFuaW1hbHM= 4831
+aWxpbmc= 4832
+YXRpdmVz 4833
+7JeQ7ISc 4834
+IE92ZXI= 4835
+IGRlc3A= 4836
+IGNvbnNpZGVyZWQ= 4837
+YXJpZXM= 4838
+aWVycw== 4839
+IGVpbmVu 4840
+IHNpc3Rlcg== 4841
+IOuV 4842
+IFN1cmU= 4843
+cmllbmQ= 4844
+YWlnbg== 4845
+IHNob3du 4846
+IHNhYw== 4847
+IHNvbnQ= 4848
+IGNlbnR1cnk= 4849
+IHRpZW4= 4850
+IM66 4851
+IFNU 4852
+IG9sZGVy 4853
+aWVt 4854
+IHRydWx5 4855
+IFNp 4856
+IHdpbmRvdw== 4857
+aXF1ZXM= 4858
+YXJpbw== 4859
+IGxvY2F0aW9u 4860
+zro= 4861
+IOyc 4862
+dmk= 4863
+YWd1ZQ== 4864
+IFNvcnJ5 4865
+IGRpc3A= 4866
+IGhlbGw= 4867
+IMOJ 4868
+IHRyYWRl 4869
+IGNyaXRpY2Fs 4870
+IOqx 4871
+IG5hbWVk 4872
+IHByZXBhcmVk 4873
+IEhvdXNl 4874
+YWx1 4875
+IHRvdWdo 4876
+IHRyaXA= 4877
+IHNhbmQ= 4878
+Y2Vs 4879
+w7x6 4880
+IFB1dA== 4881
+IGFwYXJ0 4882
+aXNm 4883
+dmlz 4884
+IGxpYnI= 4885
+YXZlbg== 4886
+IHZpZQ== 4887
+IGVmZmVjdGl2ZQ== 4888
+4Liy 4889
+IG1hZ24= 4890
+IG11aXRv 4891
+IOq1 4892
+aGFs 4893
+IGxpbWl0 4894
+IG5pbmU= 4895
+IHdpbGxpbmc= 4896
+xLHFnw== 4897
+c3A= 4898
+0LXQsw== 4899
+aGk= 4900
+IGFsdA== 4901
+IEphbg== 4902
+IG9yaWdpbg== 4903
+IFVz 4904
+IGVsZW1lbnRz 4905
+IHVzZXM= 4906
+IGhlbHBmdWw= 4907
+IGZsYXQ= 4908
+IGZhbWlsaWFy 4909
+IFBhcms= 4910
+IGNvcmU= 4911
+IGNsb3Nlcg== 4912
+IGFjdGl2ZQ== 4913
+IGFkbWluaXN0 4914
+Q0U= 4915
+0L3Ri9C1 4916
+54Q= 4917
+IHJlbGF0aXZl 4918
+IG1lbnRhbA== 4919
+IHJhbmRvbQ== 4920
+IHBhcnRuZXI= 4921
+IHV0aWw= 4922
+cGhvbmU= 4923
+IHJ1bGU= 4924
+d3c= 4925
+IOyglQ== 4926
+IHNjaG9u 4927
+IGNvZmZlZQ== 4928
+SEE= 4929
+IGNvbm5lY3Rpb24= 4930
+IHVuaXQ= 4931
+bGF1Z2hpbmc= 4932
+bG9n 4933
+IGFwcGw= 4934
+0LvQsA== 4935
+dXNpYw== 4936
+IEJyYQ== 4937
+IGFueXdoZXJl 4938
+QVVESQ== 4939
+IHNlcGFyYXRl 4940
+Ym94 4941
+IGRpdmlk 4942
+IHRlc3Rpbmc= 4943
+IHNpY2s= 4944
+IHdlcmVu 4945
+INec1w== 4946
+IGFkdmFudGFnZQ== 4947
+IHRyYW5zZmVy 4948
+Jy4= 4949
+IOu5 4950
+IGZpbmRpbmc= 4951
+0L3QvtC5 4952
+IOyiiw== 4953
+IGZvcnQ= 4954
+IGVjb25vbXk= 4955
+IGxhY2s= 4956
+IGxlYXZpbmc= 4957
+IGRpbQ== 4958
+5Y4= 4959
+IFJlcw== 4960
+2K0= 4961
+IGRpc2N1c3Npb24= 4962
+0LXQvw== 4963
+IGdlcw== 4964
+ZHVjdA== 4965
+IGNoYWlu 4966
+IHVzZXJz 4967
+ZWNo 4968
+xYJh 4969
+IGRpc2g= 4970
+IGNhcmVmdWw= 4971
+IHRlYWNoZXI= 4972
+IG9wdGlt 4973
+IGZsdQ== 4974
+YXRpY2FsbHk= 4975
+IHJlZmxlY3Q= 4976
+IHRyZWF0bWVudA== 4977
+ZWVk 4978
+acSZ 4979
+w7k= 4980
+4K6+ 4981
+IGVxdWlw 4982
+IHBsYW5uaW5n 4983
+IHNvbHZl 4984
+IFRvbQ== 4985
+IGF2b2lk 4986
+IHBvdQ== 4987
+IGdyZWF0ZXI= 4988
+bGlu 4989
+T0w= 4990
+IEx1 4991
+IE1vcmU= 4992
+IGF0dHJhY3Q= 4993
+w6pu 4994
+dW5h 4995
+IHBob3Rv 4996
+ZXJhdGlvbg== 4997
+IHBsYW5ldA== 4998
+IGNvcHk= 4999
+IHZpc3VhbA== 5000
+aXJpbmc= 5001
+IGludGVybmF0aW9uYWw= 5002
+IGxhdWdoaW5n 5003
+IHRoaWNr 5004
+IGhvbGRpbmc= 5005
+IGJyaW5naW5n 5006
+IGxldHRlcg== 5007
+IGJ1cm4= 5008
+IGVmZmVjdHM= 5009
+aXTDqQ== 5010
+b3Vycw== 5011
+T1Q= 5012
+w6ptZQ== 5013
+IFNjaG9vbA== 5014
+15XXqg== 5015
+cm9wcmk= 5016
+bGln 5017
+zrHOuQ== 5018
+IGFkdWx0 5019
+IHN1Z2Fy 5020
+IHJpZGU= 5021
+IGhpZ2hsaWdodA== 5022
+IG5vYm9keQ== 5023
+IDIx 5024
+IGNoYXQ= 5025
+INC/0YDQuA== 5026
+IGlubm92 5027
+dW5nZW4= 5028
+IGF0dGFjaA== 5029
+ZWRvbQ== 5030
+5Yo= 5031
+eWw= 5032
+IGxlZ2Fs 5033
+IHJpY2U= 5034
+IGNvbGxhYm9y 5035
+a2luZw== 5036
+ZG93bg== 5037
+5pk= 5038
+IGlo 5039
+IEFj 5040
+b3VzbHk= 5041
+IHJhcA== 5042
+IHNvbGlk 5043
+IGdlbmVyYWxseQ== 5044
+IHBhdHRlcm4= 5045
+YWxp 5046
+4Lit 5047
+IHRyYW5zbA== 5048
+aW50ZXI= 5049
+YXVsdA== 5050
+IOuo 5051
+IGV4cHJlc3M= 5052
+IGV4YW1wbGVz 5053
+IGNob3Nl 5054
+IHRlbGxz 5055
+w61z 5056
+YWludA== 5057
+IFRlbGw= 5058
+IE1pY2hhZWw= 5059
+5qg= 5060
+IE51bWJlcg== 5061
+IHRhcA== 5062
+IGV4cGVyaW1lbnQ= 5063
+IGJlbmVmaXQ= 5064
+IOyw 5065
+IHNlcXU= 5066
+IGV4cGVuc2l2ZQ== 5067
+IGdlbmVyYXRpb24= 5068
+IE1hbnk= 5069
+IGFkZGluZw== 5070
+IGtpbA== 5071
+IGNhbXBhaWdu 5072
+IEFudA== 5073
+cmF3 5074
+b21tZW4= 5075
+IHNvdWw= 5076
+am8= 5077
+IEFjdHVhbGx5 5078
+YW1t 5079
+6rKg 5080
+IG1heGlt 5081
+IHNhbHQ= 5082
+IGNydQ== 5083
+IGNhbGxpbmc= 5084
+IGJhc2lz 5085
+YmFu 5086
+IGtlZXBpbmc= 5087
+IE1vcg== 5088
+ZWRz 5089
+7IY= 5090
+IHRvZG8= 5091
+0LDQvNC4 5092
+0L3Rjw== 5093
+IGxpdmVk 5094
+IER1 5095
+Zm9yY2U= 5096
+ZmVyZW5jZQ== 5097
+YWxh 5098
+IG9jY3Vy 5099
+c2s= 5100
+IHJlY2VudA== 5101
+IGNhcnM= 5102
+IHRyYWRpdGlvbmFs 5103
+ZW50bGU= 5104
+sog= 5105
+IGhlbGQ= 5106
+IG5hY2g= 5107
+IENlbnRlcg== 5108
+ZXJlbg== 5109
+IGJpbg== 5110
+2YE= 5111
+IGNvbW1l 5112
+IHJldmU= 5113
+IOyYpA== 5114
+IGV4cGVjdGVk 5115
+YWJpbA== 5116
+IGZvY3VzZWQ= 5117
+b3Y= 5118
+IGlQ 5119
+b3JpYWw= 5120
+aXJv 5121
+IGV0Yw== 5122
+YW1pbmc= 5123
+IFNvbg== 5124
+IHllc3RlcmRheQ== 5125
+IHN0cmF0ZQ== 5126
+INGG 5127
+IOuP 5128
+cGVz 5129
+IGFjdGl2aXR5 5130
+IGFkdmljZQ== 5131
+IG9wZW5pbmc= 5132
+Zmlu 5133
+IHJlbGE= 5134
+6ZY= 5135
+IGluc3RhbmNl 5136
+IEV2ZXJ5b25l 5137
+Ymw= 5138
+cGVu 5139
+IHZpc2lvbg== 5140
+IEFsZXg= 5141
+aWZvcm4= 5142
+IHRpY2s= 5143
+SGU= 5144
+IHN0cmF0ZWd5 5145
+IGtvbQ== 5146
+UEU= 5147
+IEds 5148
+IGVsZWN0cmlj 5149
+MTU= 5150
+IGRhaWx5 5151
+IGh1c2JhbmQ= 5152
+IHN0YXRpb24= 5153
+IGFuYWx5c2lz 5154
+eW5hbQ== 5155
+IGF0dGVtcHQ= 5156
+IGJpbGxpb24= 5157
+dmFudA== 5158
+IGZvcnRo 5159
+IG1hdGg= 5160
+YWx5 5161
+IGJlaGF2aW9y 5162
+IE1hcw== 5163
+a2Fu 5164
+IERheQ== 5165
+IGJsZXNz 5166
+IGd1dA== 5167
+IEhpZ2g= 5168
+b3g= 5169
+IGRyZXNz 5170
+IGplZA== 5171
+6K8= 5172
+5ZY= 5173
+IGV4cGVyaWVuY2Vz 5174
+aXN0YQ== 5175
+IGZpZ2h0aW5n 5176
+5bc= 5177
+INGB0Lo= 5178
+IG1vc3RseQ== 5179
+YXVzZQ== 5180
+IHBpY3R1cmVz 5181
+0LXQvdGC 5182
+IG1hZA== 5183
+IG1vZGVscw== 5184
+0YjQtQ== 5185
+IENvdW50 5186
+xYQ= 5187
+xYJv 5188
+ZXB0 5189
+T00= 5190
+IEFO 5191
+IHRyb3VibGU= 5192
+NDA= 5193
+IGJpcmQ= 5194
+dWxhdGU= 5195
+IG11cg== 5196
+IHByb2R1Y2U= 5197
+IG1hcnJpZWQ= 5198
+Yml0 5199
+IHRoZW9yeQ== 5200
+7Zg= 5201
+IGxlYWRlcg== 5202
+IExhc3Q= 5203
+QUE= 5204
+6LU= 5205
+IGltYWdlcw== 5206
+IGV4cGFuZA== 5207
+IFBvcg== 5208
+IHB1cmNo 5209
+IFNhbg== 5210
+IENocmlzdG1hcw== 5211
+IEF1c3RyYWw= 5212
+IHdpZA== 5213
+IE1pc3M= 5214
+IGtub3dpbmc= 5215
+IHpl 5216
+c2hpcA== 5217
+a3U= 5218
+0YXQvtC0 5219
+IEluc3RhZ3JhbQ== 5220
+IEluZGlh 5221
+IGVzdGE= 5222
+IENhbGlmb3Ju 5223
+IDcw 5224
+IGRyYWc= 5225
+IGJydXNo 5226
+IG5hbWVz 5227
+QW5k 5228
+IHlv 5229
+aWxsYQ== 5230
+IHNjaGVk 5231
+IGRlc3Ryb3k= 5232
+eWVhcg== 5233
+IHZhbW9z 5234
+INmE 5235
+w6dh 5236
+IGZvcmdvdA== 5237
+0LjQtQ== 5238
+IHJhaXNl 5239
+cmVtZQ== 5240
+7ZW0 5241
+IEdpdmU= 5242
+IGNvbnRhaW4= 5243
+cmFi 5244
+IGdpZnQ= 5245
+INGB0L8= 5246
+IHJlcXVlc3Q= 5247
+IHNodXQ= 5248
+IGRlZ3JlZXM= 5249
+IGJlbmVmaXRz 5250
+0YvQtQ== 5251
+IHN0dWRpZXM= 5252
+IGVuZHM= 5253
+IGV2ZXJ5d2hlcmU= 5254
+IGhlcm8= 5255
+b3Bo 5256
+ZXJyeQ== 5257
+IG1hdGVyaWFscw== 5258
+ZW5lZA== 5259
+TkE= 5260
+5Y0= 5261
+IG11eQ== 5262
+IHdvcnNl 5263
+IE1hZA== 5264
+IGRlY2lzaW9ucw== 5265
+aW9uZQ== 5266
+IGZvcmVpZ24= 5267
+bGF1Z2h0ZXI= 5268
+aWJlcg== 5269
+0LXQvdC40Y8= 5270
+44WL 5271
+IHJlYWxpemVk 5272
+IGlnbg== 5273
+IHdlYWs= 5274
+IM68 5275
+IHNjYXJlZA== 5276
+IGFzc3Vt 5277
+QUs= 5278
+778= 5279
+77+9 5280
+IGNvdmVyZWQ= 5281
+IFNhdA== 5282
+INC+0L0= 5283
+IGluZGl2aWR1YWxz 5284
+IGNvbXBhcmVk 5285
+MTE= 5286
+IEFkZA== 5287
+aWNsZXM= 5288
+IGNlcnQ= 5289
+cmFy 5290
+IGJyaWVm 5291
+IGFjdGl2aXRpZXM= 5292
+IGZhYg== 5293
+YmFy 5294
+IGFzdA== 5295
+IE90aGVy 5296
+IGNsYXNzZXM= 5297
+IG9n 5298
+IG1pc3Npbmc= 5299
+6Z0= 5300
+d2Vycw== 5301
+16k= 5302
+IGludHJvZHVjZQ== 5303
+IGVxdWF0aW9u 5304
+IG5vbQ== 5305
+IHBhaW50aW5n 5306
+dXNoaW5n 5307
+IEFQ 5308
+IGVuY291cmFnZQ== 5309
+IHNoaXA= 5310
+aXR0ZWU= 5311
+aXZlcnNl 5312
+b3Rh 5313
+bmFt 5314
+IGV4ZXJjaXNl 5315
+INCt 5316
+IG5hcw== 5317
+IHRob3VzYW5kcw== 5318
+IENhbGlmb3JuaWE= 5319
+IHNlcw== 5320
+IHJvdw== 5321
+nog= 5322
+IHBhbmRlbWlj 5323
+IHNraWxs 5324
+YmVs 5325
+IGRpcmVjdG9y 5326
+IG1pbGs= 5327
+IG51dA== 5328
+IG1vdGlvbg== 5329
+IGNsb3NlZA== 5330
+6Kg= 5331
+IGNyZWRpdA== 5332
+YWhy 5333
+IGNoZWVzZQ== 5334
+IGFsdGVybg== 5335
+aW1hdGVseQ== 5336
+IHN1c3Q= 5337
+IFRyYQ== 5338
+IGdsYWQ= 5339
+IGhpZ2hseQ== 5340
+IHdh 5341
+IHJlZHVjZQ== 5342
+IGJsZQ== 5343
+YWRvcg== 5344
+aW5hdGVk 5345
+aW9uZXM= 5346
+Y2llbnQ= 5347
+IGRlcGVuZGluZw== 5348
+IHNoYXJpbmc= 5349
+IGNhdWdodA== 5350
+cmFlbA== 5351
+IG1laHI= 5352
+IHBhc3Npb24= 5353
+55s= 5354
+IHJ1 5355
+IGZhcm0= 5356
+VEk= 5357
+YXZlcw== 5358
+IFJvYg== 5359
+IEJybw== 5360
+IG1vdGl2 5361
+cmV0Y2g= 5362
+cnVwdA== 5363
+IEJpZw== 5364
+IGFsbGU= 5365
+IGV0dA== 5366
+dWJz 5367
+IEphcGFuZXNl 5368
+IEhhbGw= 5369
+0LjQu9C4 5370
+QVVESUJMRQ== 5371
+56w= 5372
+IGNlbGxz 5373
+aWth 5374
+ZWxpbmU= 5375
+aWxlcg== 5376
+IOyj 5377
+IHNreQ== 5378
+SU5BVURJQkxF 5379
+ZW5kZQ== 5380
+YXB0ZXI= 5381
+IHBpbg== 5382
+IGdhdGhlcg== 5383
+aG9s 5384
+bGVjdGlvbg== 5385
+IHN5bg== 5386
+IHBsdWc= 5387
+cm91bmQ= 5388
+IHVuaXZlcnNpdHk= 5389
+aGli 5390
+IGZhbnRhc3RpYw== 5391
+a24= 5392
+IGhvbGU= 5393
+IFJlbWVtYmVy 5394
+aW5jdA== 5395
+YWtz 5396
+Q0g= 5397
+IGJyb2tlbg== 5398
+IHN0cmF0ZWc= 5399
+IGFsaXZl 5400
+IHRhbms= 5401
+IGNhcnQ= 5402
+cmF0ZWQ= 5403
+cmll 5404
+IFN0ZXA= 5405
+IEV2ZXJ5dGhpbmc= 5406
+IGJvdW5k 5407
+IHNvYnJl 5408
+IGN1c3RvbWVy 5409
+oYw= 5410
+dXJn 5411
+IEJpbGw= 5412
+TGE= 5413
+d2hhdA== 5414
+IHJlYWN0aW9u 5415
+IHNlc3Npb24= 5416
+IHBsYW5z 5417
+IOydtOugh+qyjA== 5418
+IGRvd25sb2Fk 5419
+7Jk= 5420
+dWVy 5421
+IGNhYg== 5422
+IGluc3Ry 5423
+aWZ5aW5n 5424
+IE5pY2U= 5425
+IHRlYW1z 5426
+xLFs 5427
+IGdvYWxz 5428
+aXNjaA== 5429
+IHRyYW5zcG9ydA== 5430
+IGFuaW1hbA== 5431
+IGNvc3Rz 5432
+IGNhbGxz 5433
+IHNlaHI= 5434
+7Ig= 5435
+cmlhbg== 5436
+IGRpYWw= 5437
+IHdlYXRoZXI= 5438
+4LmA 5439
+INCy0L7Rgg== 5440
+IFBsYXk= 5441
+IHNoYXJlZA== 5442
+IHNtb290aA== 5443
+YWJh 5444
+IGxlYXZlcw== 5445
+4K6p 5446
+IGNvbmNlbnQ= 5447
+IHNoaWZ0 5448
+IOuQmA== 5449
+IEdvdmVybg== 5450
+IGRlbW9uc3Q= 5451
+IGJ1dHRlcg== 5452
+IOyXrA== 5453
+IHNhdGlzZg== 5454
+iOus 5455
+IHJlY29nbml6ZQ== 5456
+IEZyZW5jaA== 5457
+IHZvbHVtZQ== 5458
+w6RuZA== 5459
+0YPQvA== 5460
+IOynhA== 5461
+IEtlZXA= 5462
+b3dh 5463
+aXBwZWQ= 5464
+0YHRgtGA 5465
+IGRldGVjdA== 5466
+IM+D 5467
+IGxpZnQ= 5468
+IGNsb3RoZXM= 5469
+IFN0b3A= 5470
+w7U= 5471
+bWV0 5472
+IGNsaW4= 5473
+IGFycg== 5474
+ZnJpZW5k 5475
+IHN0dWNr 5476
+WWU= 5477
+aGFuZA== 5478
+dW1h 5479
+IHNjcmk= 5480
+IGZ1Y2tpbmc= 5481
+Y3RvcnM= 5482
+16o= 5483
+IGpvaW5pbmc= 5484
+IGNldHRl 5485
+INij 5486
+IFdoaXRl 5487
+IGlocg== 5488
+zq0= 5489
+IGluY2x1ZGVk 5490
+ZXNzbw== 5491
+IGFjYWQ= 5492
+YnVt 5493
+IHNhYg== 5494
+INC00LvRjw== 5495
+dWZhY3Q= 5496
+IFJlcHVibGlj 5497
+cmlt 5498
+IHllbGxvdw== 5499
+IGxpbWl0ZWQ= 5500
+VEVS 5501
+IFR5 5502
+IG5vdGVz 5503
+dmVzdA== 5504
+0LjQtw== 5505
+YWxlZA== 5506
+IHBoYXNl 5507
+YW5kYQ== 5508
+IE1vbQ== 5509
+Ukk= 5510
+IGltbWVy 5511
+bWFs 5512
+IGluag== 5513
+IHlhbmc= 5514
+dWRpYmxl 5515
+0LDQsw== 5516
+IHNldHQ= 5517
+IG1hZ2lj 5518
+IGVuc3VyZQ== 5519
+IHNwcmluZw== 5520
+IHNob2Nr 5521
+IHdoZWVs 5522
+0L7Qs9C00LA= 5523
+IGNhbmNlcg== 5524
+IHJvb3Q= 5525
+0JA= 5526
+Z2VuY3k= 5527
+IOuN 5528
+aWk= 5529
+IG91dHB1dA== 5530
+IGNvbW1pdA== 5531
+IHdvcmtlcnM= 5532
+7JWE7JqU 5533
+INGB0LDQvA== 5534
+dmV5 5535
+IHBldQ== 5536
+IGNpdmls 5537
+aXNj 5538
+IGJyaW5ncw== 5539
+0YDQsNCy 5540
+YW5pYQ== 5541
+xIE= 5542
+Y3JhZnQ= 5543
+bWJvbA== 5544
+IGludGVsbGln 5545
+Ymk= 5546
+YWNpbmc= 5547
+eW91 5548
+IGJlY29taW5n 5549
+IERlcg== 5550
+ZW1h 5551
+IGluZ3JlZA== 5552
+IGNvbW1hbmQ= 5553
+IHVwZGF0ZQ== 5554
+IHByZW0= 5555
+IG9wZW5lZA== 5556
+hKQ= 5557
+0LXQvdC40LU= 5558
+IGdhcmQ= 5559
+IHN0YXRlbWVudA== 5560
+IHNjcmV3 5561
+IHByb3Rl 5562
+IGNhcmRz 5563
+IHRhc2s= 5564
+IGV2ZW5pbmc= 5565
+IHN0aXRjaA== 5566
+aW5lbg== 5567
+IEJlcg== 5568
+bWFyaw== 5569
+IERhZA== 5570
+INC10YHRgtGM 5571
+INee1w== 5572
+7JeI 5573
+IGJhbg== 5574
+IGNsaW0= 5575
+IGZyZWVkb20= 5576
+IG5vcm1hbGx5 5577
+0LXRgdGM 5578
+5aY= 5579
+IHByb3ZpZGVk 5580
+IOyekA== 5581
+IOyVhOuLiA== 5582
+IEtpbQ== 5583
+aWVkZXI= 5584
+7J2M 5585
+IGNpdGl6 5586
+IGJpa2U= 5587
+IGJhaw== 5588
+IG5vaXNl 5589
+IGNsaW1hdGU= 5590
+aXplcw== 5591
+IGluY3JlYXNpbmc= 5592
+IFRIRQ== 5593
+IGxpcXU= 5594
+IHBlcnNvbmFsbHk= 5595
+ZWY= 5596
+cmVzcA== 5597
+IGxlZ3M= 5598
+aW5kZXI= 5599
+IHBlZA== 5600
+IOunjg== 5601
+IGRlcGVuZA== 5602
+IHZhcmlldHk= 5603
+IElzcmFlbA== 5604
+IHdhc2g= 5605
+5YY= 5606
+IHF1aWV0 5607
+IEphbWVz 5608
+IEpldw== 5609
+IGZvcmV2ZXI= 5610
+IEludA== 5611
+IGNvdW50ZXI= 5612
+dXJhbmNl 5613
+IEFueXdheQ== 5614
+Y2FyZQ== 5615
+IE9ubHk= 5616
+Y2nDs24= 5617
+YWRp 5618
+IEV2 5619
+64uI6rmM 5620
+IM6x 5621
+IHNsb3dseQ== 5622
+INC+0LQ= 5623
+IG5vdGljZWQ= 5624
+aWVyZW4= 5625
+IGZlbGw= 5626
+INCR 5627
+IG3Dqm1l 5628
+IHdoZW5ldmVy 5629
+ISk= 5630
+IEh5 5631
+5bw= 5632
+b3Jkcw== 5633
+dXNpb24= 5634
+IFN0YXI= 5635
+IO2Y 5636
+IE1hYw== 5637
+aXZlbg== 5638
+IOyLnA== 5639
+IOyXhg== 5640
+IFR1cg== 5641
+IGdlcg== 5642
+cmlz 5643
+IHZleg== 5644
+INC70Y4= 5645
+IHZlcnN1cw== 5646
+2KfY 5647
+b2NvbGF0ZQ== 5648
+IHBsYW5l 5649
+IHpv 5650
+IHN1aXQ= 5651
+VGhpcw== 5652
+IG5lcnY= 5653
+IEFjYw== 5654
+0YPQtg== 5655
+7IKs 5656
+bmg= 5657
+ZW1l 5658
+IGF1c3M= 5659
+IG1lYXM= 5660
+IHRyw6hz 5661
+z4k= 5662
+0YHQu9C4 5663
+IEFydA== 5664
+IFNlY29uZA== 5665
+0L7Qu9GM0LrQvg== 5666
+Y2hv 5667
+aXRlY3Q= 5668
+0LXRgdGC 5669
+IGJvc3M= 5670
+IGluY29tZQ== 5671
+oKQ= 5672
+IHNoYWQ= 5673
+IGFwcHJvcHJp 5674
+IE1hbA== 5675
+b3B0 5676
+IGFydGlzdA== 5677
+IHBsYXlz 5678
+b3RoZXJz 5679
+IEludGVy 5680
+IHZpcnVz 5681
+IGh1bmc= 5682
+IGNvbnN0YW50 5683
+IHNjcmlwdA== 5684
+IHNub3c= 5685
+dWxm 5686
+a2V0 5687
+IGRldmljZXM= 5688
+IG1ldGFs 5689
+aWdodHM= 5690
+7IS4 5691
+IHNhbGVz 5692
+IHZlZ2V0 5693
+IGNvbGxlY3Rpb24= 5694
+IHZpYQ== 5695
+a2Vy 5696
+IGdvdHRlbg== 5697
+T1c= 5698
+acOpbg== 5699
+IGFjY3Vy 5700
+IHdhdmU= 5701
+dWx0eQ== 5702
+IEFpcg== 5703
+IGxlYWRpbmc= 5704
+aWNpbmc= 5705
+IGNlbnRyYWw= 5706
+IENocmlzdGlhbg== 5707
+ZnI= 5708
+IEFsdGhvdWdo 5709
+IHNvbmdz 5710
+IGZpZg== 5711
+0L3Ri9GF 5712
+IGJlbG9uZw== 5713
+b3NzaWJsZQ== 5714
+7LA= 5715
+IHBob3Rvcw== 5716
+aXNs 5717
+IHJlbGF4 5718
+c2E= 5719
+VVNJQw== 5720
+6rc= 5721
+IG1hbnVmYWN0 5722
+IFR3aXR0ZXI= 5723
+IGRhbmdlcm91cw== 5724
+IGh5ZA== 5725
+bGVhcg== 5726
+aWFudA== 5727
+IOKApg== 5728
+IHN1ZGRlbmx5 5729
+IGxhdWdo 5730
+IGFuZ2xl 5731
+IEdvdA== 5732
+IHdvcnJpZWQ= 5733
+0L7QtQ== 5734
+IHBhcA== 5735
+IE1hcnQ= 5736
+ZW5v 5737
+IGJhdHRlcnk= 5738
+INC/0L7RgQ== 5739
+IGxpZ2h0cw== 5740
+IGFybXM= 5741
+IEFicw== 5742
+bWVz 5743
+4oCT 5744
+dXNldW0= 5745
+IHRlYQ== 5746
+IE1pYw== 5747
+IGZvcm1lcg== 5748
+b2dyYXBoeQ== 5749
+IGFwcGxpY2F0aW9ucw== 5750
+IERpcmU= 5751
+IGZlZWRiYWNr 5752
+aXRjaGVu 5753
+eW9ydW0= 5754
+dWVk 5755
+aWd0 5756
+xrDhuw== 5757
+b3NpdGlvbg== 5758
+IERlbA== 5759
+IO2VmOs= 5760
+IEJhY2s= 5761
+YWRz 5762
+IHByaW1l 5763
+7KO8 5764
+7KOg 5765
+15E= 5766
+IG11dA== 5767
+XS4= 5768
+INCX 5769
+bG9j 5770
+a2lu 5771
+IGV4cGVydA== 5772
+IGFscmlnaHQ= 5773
+dW5ncw== 5774
+IHN1cHBseQ== 5775
+IGxlYWRlcnNoaXA= 5776
+IEZyYQ== 5777
+IHR5cGljYWxseQ== 5778
+IHNlbA== 5779
+IHRyZWVz 5780
+IDIy 5781
+aGFy 5782
+IHdvcnN0 5783
+IGJ1c3k= 5784
+YW50bw== 5785
+IFVw 5786
+IEJhcw== 5787
+IHByZXNlbnRhdGlvbg== 5788
+IHN0cmFuZ2U= 5789
+IHRoaW4= 5790
+0YLQtQ== 5791
+IHZlaGljbGU= 5792
+INC00L4= 5793
+Y2VsbGVudA== 5794
+NzA= 5795
+IHRpcmVk 5796
+IGNyaXNpcw== 5797
+IHRpbnk= 5798
+YXN5 5799
+IHJhbg== 5800
+6Yc= 5801
+IGZvcmNlcw== 5802
+INC+0Yc= 5803
+IGlkZW50aWZ5 5804
+IGFzc2Vzcw== 5805
+0LjRgtC1 5806
+U0U= 5807
+IGNyZWF0aXZl 5808
+558= 5809
+IGRlcGFydG1lbnQ= 5810
+IGluaXRpYWw= 5811
+IERhbQ== 5812
+YWt0 5813
+dmVyZQ== 5814
+IGluZmVjdA== 5815
+IHB1bXA= 5816
+4bqh 5817
+IHZpZWw= 5818
+IHJhcmU= 5819
+IGRvdA== 5820
+YXNoaW9u 5821
+ZW1wbA== 5822
+IGZsZXg= 5823
+IGtvbg== 5824
+IHRydWNr 5825
+IGxlY3Q= 5826
+IHBsYXN0aWM= 5827
+bGF3 5828
+IGxpa2Vz 5829
+IHJvdWdo 5830
+IE1BVA== 5831
+7Z6I 5832
+IGNvbW1lcg== 5833
+IGFzc2U= 5834
+IGNha2U= 5835
+IGFjdGlvbnM= 5836
+IGFkbQ== 5837
+IG90aGVyd2lzZQ== 5838
+IEhlYWx0aA== 5839
+IGNvbGxl 5840
+4LmA4Lg= 5841
+IHJ1Yg== 5842
+5pQ= 5843
+IHNjcg== 5844
+IHp1bQ== 5845
+IEhpbQ== 5846
+IGNoYW1w 5847
+IGNvbmNlcm5lZA== 5848
+IDUwMA== 5849
+IHBsYXRl 5850
+IE91dA== 5851
+IGRvbmM= 5852
+IGVxdWlwbWVudA== 5853
+IHRhdWdodA== 5854
+bGxlZA== 5855
+IO2Z 5856
+aXZh 5857
+IG1vdG9y 5858
+wrs= 5859
+IGd1aWRl 5860
+5Yk= 5861
+IHN0b3BwZWQ= 5862
+IHJhdA== 5863
+IGxhYm9y 5864
+IGFpbQ== 5865
+IHByZXBhcmU= 5866
+INGI 5867
+IHNob290aW5n 5868
+YW5uZWQ= 5869
+Y3JpcHQ= 5870
+IGVuZW15 5871
+IGRlcGVuZHM= 5872
+IG5hdg== 5873
+IGJlcg== 5874
+IGxhbmRz 5875
+IHVuaXZlcnM= 5876
+aXU= 5877
+IGZhY3Rvcg== 5878
+b2tpbmc= 5879
+IGNhcmJvbg== 5880
+YnV0 5881
+IExvdmU= 5882
+ZWxk 5883
+IM61 5884
+IGdh 5885
+IMOpcw== 5886
+IGJyZWFk 5887
+IHZvbHQ= 5888
+7Yo= 5889
+IHdhc3Rl 5890
+IGtlZXBz 5891
+IHN0b3I= 5892
+IGhvbm9y 5893
+IHVubGVzcw== 5894
+IGNvbHVt 5895
+IOuMgA== 5896
+IHBsYW50cw== 5897
+WWVhaA== 5898
+IGluY2x1ZGVz 5899
+IG94 5900
+IHBldXQ= 5901
+66eM 5902
+7IOB 5903
+aXN0cnk= 5904
+4Lix 5905
+IERlcGFydG1lbnQ= 5906
+YW50YQ== 5907
+IGZpbmdlcg== 5908
+IHN0cmV0Y2g= 5909
+IHN5bWJvbA== 5910
+IG5laWdoYm9y 5911
+5qw= 5912
+6rCE 5913
+fn4= 5914
+INGC0Ys= 5915
+IEFiZXI= 5916
+a2Vz 5917
+IG1hc3NpdmU= 5918
+IENI 5919
+IFNhbA== 5920
+16A= 5921
+IGR5bmFt 5922
+YWNoZQ== 5923
+IFByZQ== 5924
+IG1vbml0b3I= 5925
+ZW50ZWQ= 5926
+RU8= 5927
+IHJhaXNlZA== 5928
+aXN0aWNz 5929
+2qk= 5930
+IHZvdQ== 5931
+aXRlbg== 5932
+obA= 5933
+IGJ1c2luZXNzZXM= 5934
+IGVhcm4= 5935
+IG1vYmlsZQ== 5936
+aWRhZGU= 5937
+IGhhYmU= 5938
+eXI= 5939
+bGljdA== 5940
+IGNvbmR1Y3Q= 5941
+IGZlZGVyYWw= 5942
+IHdv 5943
+YnU= 5944
+IG5vbmU= 5945
+IHRlYWNoZXJz 5946
+INin2YTY 5947
+aWRlbnRz 5948
+2KfZhA== 5949
+IHRyZW5k 5950
+0LXQtg== 5951
+IGFsYnVt 5952
+IG1pY2g= 5953
+YmFzZWQ= 5954
+4Li1 5955
+IHRyYW5zaXRpb24= 5956
+INC90L4= 5957
+w7Vlcw== 5958
+aG9zdA== 5959
+ZWR5 5960
+IFByb2Y= 5961
+cGFu 5962
+aWpu 5963
+IGNhcGFjaXR5 5964
+dW5kbw== 5965
+INeR1w== 5966
+IGJyZWF0aA== 5967
+INC80LXQvQ== 5968
+IG3DvA== 5969
+7Zk= 5970
+IEF1dA== 5971
+aGluZ3Rvbg== 5972
+IG5vcg== 5973
+IGdhaW4= 5974
+cG9pbnQ= 5975
+WWVz 5976
+INiq 5977
+IE5h 5978
+w6Vy 5979
+IGnDpw== 5980
+IE1hcnk= 5981
+IHNwaW4= 5982
+IGFudGk= 5983
+IHNvbWVob3c= 5984
+IGxhd3M= 5985
+IG1vbWVudHM= 5986
+IGdyZQ== 5987
+IG1vdmVz 5988
+IFdvdWxk 5989
+IHByZWRpY3Q= 5990
+IHZyYQ== 5991
+IDIwMTk= 5992
+toQ= 5993
+IGZ1bmRhbWVudA== 5994
+MjU= 5995
+IHB1cmU= 5996
+IHdvdw== 5997
+IGlzbGFuZA== 5998
+IGludmVzdG1lbnQ= 5999
+IGJhdGg= 6000
+IFlh 6001
+IGhhcmRlcg== 6002
+IHRpcHM= 6003
+5Zc= 6004
+IGVsZWN0cm9u 6005
+IEJvYg== 6006
+IGJvbmQ= 6007
+b2RpZXM= 6008
+IEF1Zw== 6009
+IGdpYnQ= 6010
+IGNoYWly 6011
+IHR3aWNl 6012
+d29vZA== 6013
+IGNsYXI= 6014
+IG1hc2s= 6015
+IGhvbmVzdGx5 6016
+IDIwMTg= 6017
+dGllcw== 6018
+Jyw= 6019
+IHBlbnM= 6020
+IHN1cnByaXNlZA== 6021
+IGNvbW11bmljYXRpb24= 6022
+IHNwcg== 6023
+IHdob3Nl 6024
+IHN0YXJz 6025
+15DX 6026
+IOKAiw== 6027
+IHByb3Blcmx5 6028
+IGdyZXc= 6029
+b3Npbmc= 6030
+IGRpdmVycw== 6031
+QUQ= 6032
+IGVtcHQ= 6033
+IGV4cHJlc3Npb24= 6034
+4bq/ 6035
+IFBhbA== 6036
+IGp1c3RpY2U= 6037
+IHBhaXI= 6038
+d28= 6039
+IHNlYXQ= 6040
+b3J0ZXI= 6041
+IGxpbmtz 6042
+IE1lcg== 6043
+IHJlbmQ= 6044
+0L3QvtC1 6045
+dXBpZA== 6046
+IEhlbA== 6047
+IE1hcmNo 6048
+IExv 6049
+0YHRjA== 6050
+IGhhc24= 6051
+IGV2YWx1 6052
+aWxvcw== 6053
+IGZ1bmRpbmc= 6054
+IHZlbg== 6055
+dWFu 6056
+IE1hc3Rlcg== 6057
+IE9s 6058
+IEZyZQ== 6059
+IHlhcA== 6060
+IFNpcg== 6061
+c2No 6062
+IG1pc3Rha2U= 6063
+YW1hbg== 6064
+IGRpbm5lcg== 6065
+IFdhc2hpbmd0b24= 6066
+IG9yZ2FuaXphdGlvbnM= 6067
+INC20LU= 6068
+YXZpbmc= 6069
+IHbDrQ== 6070
+IGJpcnRoZGF5 6071
+IGJlYXI= 6072
+INmB 6073
+IGFmZm9yZA== 6074
+IHJldmVu 6075
+IHJlbGF0aW9uc2hpcHM= 6076
+cm91Z2g= 6077
+IFRpbWU= 6078
+IHRhZw== 6079
+IFN1bg== 6080
+dWFyeQ== 6081
+IFBv 6082
+Y2Fy 6083
+YWJpbGl0aWVz 6084
+IHByaXNvbg== 6085
+IGxpYw== 6086
+7KCV 6087
+aWRkZW4= 6088
+IHNwZWNpZXM= 6089
+6bs= 6090
+IGZpcm0= 6091
+IHNjb3Jl 6092
+IGRpdA== 6093
+IHNwZWN0 6094
+IHBlbA== 6095
+IGNvbXBsaWNhdGVk 6096
+IHJhbms= 6097
+IG9wcG9zaXRl 6098
+IHBpY2tlZA== 6099
+INC60L7QvQ== 6100
+ZWxlcg== 6101
+IG1pZw== 6102
+IFNs 6103
+IE5ldA== 6104
+IG5lY2s= 6105
+IEZyYW5jZQ== 6106
+IHRlY2huaWNhbA== 6107
+4Lih 6108
+IG1pbGVz 6109
+IHByaW1hcnk= 6110
+IHNlaW4= 6111
+c2Vz 6112
+IGxhdWdocw== 6113
+YnJh 6114
+xZtjaQ== 6115
+cmlhZ2U= 6116
+IG5pYw== 6117
+ZXRlcnM= 6118
+IMOq 6119
+b2xvZ2llcw== 6120
+IElT 6121
+cmFk 6122
+dWRv 6123
+xLFuZA== 6124
+bWFy 6125
+IGV4Y2g= 6126
+IGNvbXBldGl0aW9u 6127
+IGF1c3Np 6128
+IFNlcnY= 6129
+IHJlbnQ= 6130
+IGNob2NvbGF0ZQ== 6131
+IHdpZWRlcg== 6132
+IG5lYXJseQ== 6133
+IHNwZWVjaA== 6134
+IHVuYw== 6135
+IHBhcmFt 6136
+IEJyaXRpc2g= 6137
+IHJlbWFpbg== 6138
+4LiB 6139
+dXJ0 6140
+INi5 6141
+IGNyYWNr 6142
+YWlscw== 6143
+IHByb21pc2U= 6144
+IHBheWluZw== 6145
+acOf 6146
+IGFkYXB0 6147
+0LDQu9Cw 6148
+IG1vdmllcw== 6149
+IHdpcmU= 6150
+n6w= 6151
+IHRlcnJpYmxl 6152
+IHPDsw== 6153
+IHBlcmZlY3RseQ== 6154
+b3JkaW4= 6155
+IGrDoQ== 6156
+IGltcG9zc2libGU= 6157
+IFRocmVl 6158
+IG5o 6159
+IHR1cm5pbmc= 6160
+cnVt 6161
+IEJlbA== 6162
+aWdn 6163
+IHJlc3BvbnNpYmxl 6164
+0LjQuQ== 6165
+IGluY3JlZGlibHk= 6166
+d2k= 6167
+aWFubw== 6168
+IGh1bWFucw== 6169
+IMOH 6170
+IHNldHRpbmdz 6171
+IGpveQ== 6172
+b290 6173
+IGRlYWxpbmc= 6174
+aWxsZWQ= 6175
+IHN1cnJvdW5k 6176
+IGZvbGxvd2Vk 6177
+IHBvc3NpYmx5 6178
+IGluaXRp 6179
+c3Rlbg== 6180
+IHByb3M= 6181
+IGNhbmRpZA== 6182
+IGFzc2lnbg== 6183
+IHZpb2xlbmNl 6184
+V2VsbA== 6185
+IHJpc2U= 6186
+UFM= 6187
+IHRhbWLDqW0= 6188
+IOuTpA== 6189
+aWFuY2U= 6190
+eWFu 6191
+IGF1ZGlv 6192
+IEJldA== 6193
+IEFtZXJpY2Fucw== 6194
+IEFzcw== 6195
+aXNjaGVu 6196
+7J6F 6197
+IHVsdGltYXRlbHk= 6198
+IHBvbGlj 6199
+IG1ham9yaXR5 6200
+IEZpbmFsbHk= 6201
+ZXJhcA== 6202
+IGd1YXJk 6203
+IE1BVFQ= 6204
+IGJyb3du 6205
+0LzQuA== 6206
+IGNoYQ== 6207
+IEhvbHk= 6208
+IG5lcnZvdXM= 6209
+aXBwaW5n 6210
+xJlk 6211
+IFNh 6212
+k5zr 6213
+toA= 6214
+bGll 6215
+IG51Yw== 6216
+IEFwcg== 6217
+6Zs= 6218
+IEtvcmVh 6219
+ZWdv 6220
+IENhbmFkYQ== 6221
+IGvDtm5uZW4= 6222
+IGNvbXBhcg== 6223
+IGdhbno= 6224
+IE1haXM= 6225
+IHRoZW1l 6226
+IGtp 6227
+IGRyYXdpbmc= 6228
+YXpvbg== 6229
+IE9mZg== 6230
+dHQ= 6231
+IFdpbmQ= 6232
+IHRvZG9z 6233
+IG9idmlvdXM= 6234
+0L3QsNGP 6235
+SU0= 6236
+INCg 6237
+d2VsbA== 6238
+IGJsb3c= 6239
+IGhvb2s= 6240
+IGNpcmNsZQ== 6241
+IOuztA== 6242
+IGFyY2hpdGVjdA== 6243
+IEty 6244
+IGPDsw== 6245
+IHByb3RlY3Rpb24= 6246
+ZWdh 6247
+5Yc= 6248
+IHdhdGNoZWQ= 6249
+IGFuc3dlcnM= 6250
+IGRpZXQ= 6251
+aXZv 6252
+IHBvd2Rlcg== 6253
+IHlvdXJz 6254
+IGhpZ2hlc3Q= 6255
+RkY= 6256
+5bo= 6257
+IGJveXM= 6258
+w7Z5bGU= 6259
+IGx1bmNo 6260
+IElJ 6261
+IHNldHM= 6262
+IG1vbGU= 6263
+24E= 6264
+IHdpbnRlcg== 6265
+IGx1Y2t5 6266
+IHJlc3BvbnNpYmlsaXR5 6267
+IHNpZ25hbA== 6268
+IHdvbmRlcmluZw== 6269
+IGF4 6270
+IGNvb2tpbmc= 6271
+0L7QstC+0YA= 6272
+bGVn 6273
+INC/0L7Rgg== 6274
+IHN1cnByaXNl 6275
+IGRlbW9jcg== 6276
+IGxvb3A= 6277
+IGphZw== 6278
+IGN1cmlvdXM= 6279
+IG1hcmtldGluZw== 6280
+0J0= 6281
+YXJvbg== 6282
+IEFwcGxl 6283
+IHZpcnR1YWw= 6284
+IDE5OA== 6285
+bm9vbg== 6286
+IE1ldA== 6287
+0L7RgdGC0L4= 6288
+0L7QsdGL 6289
+aXR1 6290
+IEF3 6291
+IGJ1eWluZw== 6292
+IHJlc3RhdXJhbnQ= 6293
+IEJ1ZA== 6294
+IGRvdWJ0 6295
+IGdyYW50 6296
+IHZlcmQ= 6297
+IGNhc2g= 6298
+IGZhY3VsdHk= 6299
+VGhhdA== 6300
+IEVpbg== 6301
+IHdlZA== 6302
+aXRuZXNz 6303
+IE1hZw== 6304
+bmVs 6305
+IG5hcnI= 6306
+IGFjY2lkZW50 6307
+IG1lZGl1bQ== 6308
+ZW1lbnRz 6309
+IGNyb3c= 6310
+bmlnaHQ= 6311
+7J28 6312
+IGxpYnJhcnk= 6313
+0LDRjtGC 6314
+IHRhbWJpw6lu 6315
+IHJlZmVyZW5jZQ== 6316
+IGZvdXJ0aA== 6317
+aG91c2U= 6318
+dmVudGlvbg== 6319
+IGZpbGxlZA== 6320
+IENvdXI= 6321
+aWJy 6322
+IG5n 6323
+IGRldmVsb3Bpbmc= 6324
+IHByb3ZpZGVz 6325
+IHBvbGw= 6326
+IHRyYWZmaWM= 6327
+YXJlbnRseQ== 6328
+4K6f 6329
+IGZvcm1z 6330
+IGNsaWVudA== 6331
+IGdlbnRsZQ== 6332
+IG11c3M= 6333
+IENvbmdyZXNz 6334
+IEluZGlhbg== 6335
+Y2Vhbg== 6336
+IHBpbA== 6337
+IGN6eQ== 6338
+c3Rvb2Q= 6339
+dXR5 6340
+IG7DpA== 6341
+IHNwZW5kaW5n 6342
+IGNvbnN0cnVjdGlvbg== 6343
+aW5hdWRpYmxl 6344
+IOuniA== 6345
+iOustA== 6346
+IOyDnQ== 6347
+b21h 6348
+b3Nlbg== 6349
+YWdv 6350
+IGxhcmdlc3Q= 6351
+44WL44WL 6352
+IHVuaXZlcnNl 6353
+YmVz 6354
+b3Nh 6355
+INC10LPQvg== 6356
+IGR1ZGU= 6357
+IE1BUg== 6358
+IGluZGVlZA== 6359
+zrXOuQ== 6360
+IG1hbmFnZWQ= 6361
+IFNob3VsZA== 6362
+U28= 6363
+IGFwcGxpZWQ= 6364
+IGZhaXJseQ== 6365
+IERlbg== 6366
+IGFuYWx5 6367
+IGNvbnN0YW50bHk= 6368
+0YHQvw== 6369
+SG93 6370
+IFNheQ== 6371
+ZW5jaWVz 6372
+IFBD 6373
+IGVnZ3M= 6374
+4K6w 6375
+IGV0aA== 6376
+IEVudMOjbw== 6377
+aW5hcg== 6378
+aW90 6379
+IGN6 6380
+IEV1cm9wZWFu 6381
+IEFN 6382
+IGPDoQ== 6383
+IHJhZGlv 6384
+p4w= 6385
+IGhpZGU= 6386
+IFN0YXJ0 6387
+IGNsdWI= 6388
+IEhvcGU= 6389
+IGVmZm9ydHM= 6390
+bHVzaW9u 6391
+IGNpdGllcw== 6392
+aG9uZQ== 6393
+IHJlYWNoZWQ= 6394
+IGd1aWQ= 6395
+cm9pZA== 6396
+IGhhcm0= 6397
+IGN1dHRpbmc= 6398
+IGJ1bA== 6399
+MTg= 6400
+aWVzdA== 6401
+IE1leA== 6402
+IGlyb24= 6403
+IGFmdGVybm9vbg== 6404
+IGhhbGw= 6405
+IHByenk= 6406
+IGdvc2g= 6407
+IGluZmx1ZW5jZQ== 6408
+INCy0LjQtA== 6409
+IGluY3JlYXNlZA== 6410
+IE1pbmlzdGVy 6411
+IGRpc2Np 6412
+IFBldGVy 6413
+IHZlcnQ= 6414
+IG1lbnU= 6415
+IHNlbGxpbmc= 6416
+dXJhbGx5 6417
+IHF1b3Rl 6418
+IMKh 6419
+IGNvbnRpbnVlcw== 6420
+bXByZQ== 6421
+IMWfZXk= 6422
+aXR1dGlvbg== 6423
+INC90LDRgQ== 6424
+Y2xlcw== 6425
+IEdlcm1hbg== 6426
+Y3p5 6427
+INCj 6428
+QmU= 6429
+IGtpdGNoZW4= 6430
+IFRyeQ== 6431
+aXBl 6432
+IGljb24= 6433
+YXJw 6434
+IHByb3ZpZGluZw== 6435
+IFRyYW5z 6436
+IHRlY2huaXF1ZQ== 6437
+IGjDpHI= 6438
+IGluZnJhc3Q= 6439
+IHN1c3A= 6440
+w7xjaw== 6441
+aWNpcA== 6442
+INCV 6443
+IGNpbg== 6444
+7Ja06w== 6445
+IHByeg== 6446
+IGNvbXBvbmVudA== 6447
+IGJ5ZQ== 6448
+IEJpYmxl 6449
+aXplcg== 6450
+Q2g= 6451
+IHNvbHV0aW9ucw== 6452
+IGFjY29tcGw= 6453
+IDIwMTY= 6454
+SUU= 6455
+IFRh 6456
+IGFzc3VtZQ== 6457
+IGxpcXVpZA== 6458
+IOuouQ== 6459
+IHF1YXJ0ZXI= 6460
+IGZlbWFsZQ== 6461
+IFRoaW5r 6462
+IHN0YXR1cw== 6463
+aXR1dGU= 6464
+IGNvYWNo 6465
+IHJlaW4= 6466
+IGNvbWJpbmF0aW9u 6467
+6Lc= 6468
+IFRlcg== 6469
+IG9iamVjdHM= 6470
+IGRpc3RyaWN0 6471
+IG1ha2V1cA== 6472
+IG11cmRlcg== 6473
+d2Fz 6474
+ZmVu 6475
+IGJvd2w= 6476
+IHB1Ymxpc2hlZA== 6477
+IHNwb3J0cw== 6478
+IGlkZW50aXR5 6479
+IHNlZW1lZA== 6480
+IGFjdGluZw== 6481
+0LvRjg== 6482
+cml4 6483
+IHVwbG9hZA== 6484
+IGhhc3Q= 6485
+IGJvYXQ= 6486
+IE1vZA== 6487
+cmlv 6488
+ID0= 6489
+IGN5Y2xl 6490
+r7g= 6491
+IGxvdWQ= 6492
+dXN0ZWQ= 6493
+Y29taW5n 6494
+IDIwMTc= 6495
+IG9udA== 6496
+IGxlZ2lzbA== 6497
+IHN0cnVjdA== 6498
+IFNvbWV0aGluZw== 6499
+IGNvbmZsaWN0 6500
+IHVwcGVy 6501
+IG1hbmFnZXI= 6502
+IG1vcnQ= 6503
+IGZyYQ== 6504
+IMSw 6505
+IE1pa2U= 6506
+IFdvcms= 6507
+IG7Dsw== 6508
+cGhlcmU= 6509
+IOyCrOs= 6510
+IExhbmQ= 6511
+IGZpbHRlcg== 6512
+IHByb21vdA== 6513
+5rA= 6514
+lbw= 6515
+IHJlY29yZGluZw== 6516
+150= 6517
+IGFzc29jaWF0ZWQ= 6518
+IGZ1ZWw= 6519
+dW5kZXI= 6520
+IGVsZWN0aW9u 6521
+IGVtcGxveWVlcw== 6522
+IENvbXA= 6523
+0YDRg9Cz 6524
+IFdv 6525
+cm9s 6526
+IHNhdmVk 6527
+IEhvbg== 6528
+IFZp 6529
+YWNh 6530
+cHJldA== 6531
+IHdldA== 6532
+IHN0dXBpZA== 6533
+IGxhZA== 6534
+IGZlc3Q= 6535
+IHdha2U= 6536
+INC40L0= 6537
+IGdyZWF0ZXN0 6538
+IEppbQ== 6539
+IHNlcmlvdXNseQ== 6540
+IOy5 6541
+IGZlZWxpbmdz 6542
+IDMwMA== 6543
+aWF0aW9u 6544
+IGJlYXV0eQ== 6545
+IOyemA== 6546
+IHNhbg== 6547
+k6A= 6548
+IC0o 6549
+IGNvbnNjaW91cw== 6550
+INC00LXQuw== 6551
+Ynll 6552
+55k= 6553
+TWFu 6554
+IGxldHM= 6555
+IHNob2Vz 6556
+eWQ= 6557
+IGRpc2FwcGU= 6558
+IENvdW50eQ== 6559
+IFNjb3R0 6560
+IGJ1dHQ= 6561
+IGFxdcOt 6562
+IGNvbmZpZw== 6563
+cmVzcG9uZA== 6564
+TEFVR0g= 6565
+qeuLiOuLpA== 6566
+IGRpdmlkZWQ= 6567
+IGFjcXU= 6568
+IHpvbmU= 6569
+IGtvbW0= 6570
+YcOnw6Nv 6571
+7Kec 6572
+Y3V0 6573
+IDIz 6574
+IG1heGltdW0= 6575
+cm9n 6576
+IHJ1bnM= 6577
+IGNvbXBvbmVudHM= 6578
+IGFycml2ZWQ= 6579
+IGNvbmZpZGVudA== 6580
+0YDQvtCy 6581
+IGhlaWdodA== 6582
+IHByb2NlZA== 6583
+RU0= 6584
+INCt0YLQvg== 6585
+IE1lbg== 6586
+IHRhbGtz 6587
+IGNvbmZpZGVuY2U= 6588
+IENocmlz 6589
+IGxlYWRz 6590
+IG5vc2U= 6591
+ZmFsbA== 6592
+YmI= 6593
+IE5vdGhpbmc= 6594
+aXNlcg== 6595
+IGluZGVwZW5kZW50 6596
+IG1pbm9y 6597
+IHN5bQ== 6598
+bGVu 6599
+Y2llbmNl 6600
+IGZhc2hpb24= 6601
+IHNleHVhbA== 6602
+IGJ1bg== 6603
+aGVyZQ== 6604
+IHNvaWw= 6605
+IGRpZXNl 6606
+IHNoYXA= 6607
+IGVtcHR5 6608
+IGpvdXJuYWw= 6609
+YWdvbg== 6610
+IFRoZWly 6611
+IHdlZWtlbmQ= 6612
+w610 6613
+IGVycm9y 6614
+IG5hcg== 6615
+w7g= 6616
+6Kk= 6617
+YW5jeQ== 6618
+IOyVig== 6619
+IGZvcmVzdA== 6620
+IGhhY2Vy 6621
+IG1pc3NlZA== 6622
+IGV2aWw= 6623
+IHN0b3JhZ2U= 6624
+IHNpbmdpbmc= 6625
+aW5oYQ== 6626
+IGtub2Nr 6627
+IGltcHJlc3M= 6628
+INC+0YfQtdC90Yw= 6629
+IEdvbGQ= 6630
+IFN1cg== 6631
+IFBvcnQ= 6632
+IExvbmQ= 6633
+IGZhemVy 6634
+b3R5 6635
+b3Rv 6636
+IGFueA== 6637
+IFdpbGxpYW0= 6638
+IGV4aXN0aW5n 6639
+cGxhY2U= 6640
+IENE 6641
+zrM= 6642
+IENvbGxlZ2U= 6643
+bG9y 6644
+IEVhc3Q= 6645
+c2Vu 6646
+ZmFjaA== 6647
+b2Z0 6648
+IGV4cGVyaWVuY2Vk 6649
+IGxvdmVz 6650
+aW1t 6651
+IHBvbHk= 6652
+IGVzc2U= 6653
+7KQ= 6654
+IEdyYW5k 6655
+6Kc= 6656
+Y2hlcg== 6657
+IHZpY3RpbQ== 6658
+IEdlcw== 6659
+0LvRjA== 6660
+dmlzaW9u 6661
+IHRhbGw= 6662
+IGxlbnM= 6663
+INC30L3QsA== 6664
+IEJvdGg= 6665
+IOyy 6666
+IHN1c3RhaW4= 6667
+IGFyZ3VtZW50 6668
+IGZhY3RvcnM= 6669
+IGF1dG9tYXRpY2FsbHk= 6670
+IGZydWl0 6671
+IGxpYmVy 6672
+IGFsZQ== 6673
+IFByZXNz 6674
+IEJh 6675
+INCz0L4= 6676
+IGh1bmRyZWRz 6677
+dGhhdA== 6678
+IFJpY2g= 6679
+IHJlY2lwZQ== 6680
+IElU 6681
+6Ic= 6682
+4bql 6683
+IGRlc2NyaWJl 6684
+IGRyaXZlcg== 6685
+IE9jdA== 6686
+IE1hdA== 6687
+0LTQtQ== 6688
+IG1lYWw= 6689
+IGxhdGVzdA== 6690
+IHRoZXJhcA== 6691
+IGNvbXBhcmU= 6692
+IEFtYXpvbg== 6693
+IOyigA== 6694
+IFJ1c3NpYQ== 6695
+IHN0cmluZw== 6696
+IGth 6697
+IENvbW11bg== 6698
+IGRpYQ== 6699
+SXM= 6700
+IG1pbGxpb25z 6701
+IGNvcnBvcg== 6702
+IGNvcnJlc3BvbmQ= 6703
+IGZpeGVk 6704
+IEpvZQ== 6705
+2Y4= 6706
+IHZpZXdz 6707
+IHJpdmVy 6708
+IHN0dWRpbw== 6709
+aWdnZXI= 6710
+IGZsYXZvcg== 6711
+IHByZXNlbmNl 6712
+IHVuaXRz 6713
+IHNhdmluZw== 6714
+YXZvdXI= 6715
+IHBlc3Nv 6716
+b3JpdGg= 6717
+IGhlcnM= 6718
+IE5hdA== 6719
+YXNpb24= 6720
+IEZyYW5r 6721
+0L7RiA== 6722
+xYJ5 6723
+7YQ= 6724
+IGVpbmVt 6725
+IGZ1bmN0aW9ucw== 6726
+dW1hbg== 6727
+IG5vcnRo 6728
+IOyghA== 6729
+IGhvcnNl 6730
+dmlk 6731
+IHBsZWFzdXJl 6732
+0LDRiA== 6733
+w6llcw== 6734
+aW5kYQ== 6735
+IHRhaWw= 6736
+IGV4cGxvcmU= 6737
+U1Q= 6738
+IGNvbW1lcmNpYWw= 6739
+IER1cmluZw== 6740
+YXJs 6741
+XTo= 6742
+Zml0 6743
+IHJhdGVz 6744
+5rM= 6745
+TVVTSUM= 6746
+IGhvdXNpbmc= 6747
+IGVpbmVy 6748
+IHNpdHVhdGlvbnM= 6749
+5os= 6750
+IGRlY3Jl 6751
+IGFwcHJvcHJpYXRl 6752
+0LXQvdC90L4= 6753
+JS4= 6754
+IGJhYw== 6755
+IHdhdA== 6756
+ZW5zaXR5 6757
+w6Ro 6758
+a25vd24= 6759
+aXR6 6760
+IGVtb3Rpb25hbA== 6761
+ZXJ2YXRpb24= 6762
+IGJsaW5k 6763
+MTY= 6764
+7YM= 6765
+IGpvaW5lZA== 6766
+IGxvY2F0ZWQ= 6767
+INGB0Lw= 6768
+YWRhcw== 6769
+YmVyZw== 6770
+IGRlc3M= 6771
+IGRlYXI= 6772
+ZWRlbg== 6773
+Y29z 6774
+IGFkb3B0 6775
+MTAw 6776
+b3dl 6777
+IENoZWNr 6778
+aXNtbw== 6779
+IHNpbXBs 6780
+IGFuZ3J5 6781
+INC80LXQvdGP 6782
+IENhbQ== 6783
+IHBhZA== 6784
+IGF0dGVuZA== 6785
+IHNhbXBsZQ== 6786
+IOyb 6787
+IElO 6788
+dWxvdXM= 6789
+IFNhcg== 6790
+IFNob3c= 6791
+IGluZnJhc3RydWN0dXJl 6792
+IEF1Z3VzdA== 6793
+IGxlc3Nvbg== 6794
+IG5pZXQ= 6795
+5o4= 6796
+IGZvaQ== 6797
+IGJyb2tl 6798
+dHI= 6799
+55U= 6800
+IDQ1 6801
+IGdldw== 6802
+0YPQvw== 6803
+YXRp 6804
+IG1haW50YWlu 6805
+IGFydGlzdHM= 6806
+aW5nZXI= 6807
+ZXJ2ZWQ= 6808
+SUE= 6809
+IGVxdWFscw== 6810
+IG9wZXJhdGlvbg== 6811
+aWxseQ== 6812
+IOuCtA== 6813
+IGNyb3dk 6814
+IGludGVybmFs 6815
+IHRlc3Rz 6816
+IFJvY2s= 6817
+IENvbnM= 6818
+IOuEiOustA== 6819
+d2Fy 6820
+IHNvdQ== 6821
+IGNoYXJ0 6822
+IEp1bmU= 6823
+IEFwcmls 6824
+Z2VudA== 6825
+IHZlbnQ= 6826
+IHF1YW5k 6827
+IEtvcmVhbg== 6828
+aW1v 6829
+54k= 6830
+aWRlcnM= 6831
+IG1vdW50YWlu 6832
+0YHRgtCw0LI= 6833
+aWpr 6834
+IGRpc2NvdmVyZWQ= 6835
+IFN1bmQ= 6836
+IFNpbA== 6837
+IHNvbG8= 6838
+wrQ= 6839
+IHNjaG9s 6840
+IEVhY2g= 6841
+57U= 6842
+IGJhcmU= 6843
+IO2M 6844
+IHbDrWRl 6845
+IGluZ3JlZGllbnRz 6846
+IEl0cw== 6847
+nbzqs6A= 6848
+IOyK 6849
+z40= 6850
+IExlZQ== 6851
+IHNjYXJ5 6852
+IHByaW5jaXA= 6853
+IHNwaXJpdHVhbA== 6854
+7IU= 6855
+IEhvbGQ= 6856
+IGRlZmluZQ== 6857
+IExlcw== 6858
+IE5vcg== 6859
+IEVuZA== 6860
+IGJsb2c= 6861
+IEdyZWVu 6862
+0LDQtdGC0YHRjw== 6863
+cGFydA== 6864
+ZWxlcw== 6865
+IFVuZGVy 6866
+IHBhcnRl 6867
+IDM1 6868
+IHNlY3Rvcg== 6869
+IFNlcHQ= 6870
+IGF1dGg= 6871
+4K6u 6872
+b21pbg== 6873
+IGNsaWVudHM= 6874
+IGNp 6875
+IEZyaWRheQ== 6876
+ZXJhcw== 6877
+IHR3ZQ== 6878
+dWxhdGVk 6879
+IGN1bHR1cmFs 6880
+INGB0LLQvg== 6881
+IOuNlA== 6882
+IMO6 6883
+IHBhcmNl 6884
+4K6y 6885
+IHRyYWRpdGlvbg== 6886
+IGp1ZGdl 6887
+IEdlbmVyYWw= 6888
+IGRldGVybWluZQ== 6889
+IElzbg== 6890
+IFBM 6891
+bmVhdGg= 6892
+IG1hdHRlcnM= 6893
+7ZW07A== 6894
+IV0= 6895
+0LDRhQ== 6896
+IHBvb2w= 6897
+IHZhcmlhYmxl 6898
+IHZhY2NpbmU= 6899
+IGNhdXNlZA== 6900
+IHdlc3Q= 6901
+IFllcA== 6902
+ZmFzdA== 6903
+IHBoaWxvcw== 6904
+aG9yYQ== 6905
+IGNvbnRpbnVlZA== 6906
+IHVuZm9ydHVuYXRlbHk= 6907
+5pU= 6908
+IGZsaWdodA== 6909
+IHdyYXA= 6910
+IGh1aA== 6911
+IEFic29sdXRlbHk= 6912
+IHBpbms= 6913
+IHJlbWFpbnM= 6914
+IG7DqQ== 6915
+IGZsZQ== 6916
+IFNvbA== 6917
+IGxvc2luZw== 6918
+IGFsZ29yaXRo 6919
+IHJlcXVpcmVz 6920
+IGZvdW5kYXRpb24= 6921
+IEJ1cg== 6922
+IHByb2Zlc3Npb24= 6923
+IE1pZA== 6924
+IOutkA== 6925
+Y2Fu 6926
+IE1pbA== 6927
+IHlvdW5nZXI= 6928
+IGFwcGVhcnM= 6929
+dGVybQ== 6930
+7ZWY6rOg 6931
+YWNsZQ== 6932
+IExvbmRvbg== 6933
+IGVuZ2luZWVyaW5n 6934
+4Lii 6935
+IGFkdmVudA== 6936
+7IS47JqU 6937
+IOq4sA== 6938
+IE1hag== 6939
+0YDQtdC8 6940
+aW5ndQ== 6941
+IFVL 6942
+dXJv 6943
+c3Bl 6944
+IHRlbnQ= 6945
+IHJlcG9ydGVk 6946
+IEFM 6947
+SGV5 6948
+IOunkA== 6949
+IGRlbnQ= 6950
+IEF1c3RyYWxpYQ== 6951
+IEphbnVhcnk= 6952
+s7Q= 6953
+YWd1ZXM= 6954
+YXJzaA== 6955
+cmln 6956
+IHRpZW5l 6957
+4Lij 6958
+zq4= 6959
+IG1hY2hlbg== 6960
+dW50ZQ== 6961
+0YPRgQ== 6962
+IGVsZWN0cg== 6963
+IHR1dG9yaWFs 6964
+IHBsYWNlZA== 6965
+IOydtOqxsA== 6966
+IENvdW5jaWw= 6967
+7ZaI 6968
+sOumrA== 6969
+YWhyZW4= 6970
+IOq3uOuemA== 6971
+IHByb3Zl 6972
+Zm9s 6973
+IHF1ZXI= 6974
+IGNoZWFw 6975
+IEZhdGhlcg== 6976
+IFBvd2Vy 6977
+k5w= 6978
+IHB1cnM= 6979
+IGVzcA== 6980
+IEJyZQ== 6981
+6riw6w== 6982
+b21hcw== 6983
+0LjQu9GM 6984
+IGdlaHQ= 6985
+b3N0ZXI= 6986
+6rO8 6987
+IGZpbGVz 6988
+INCn 6989
+YmVsbA== 6990
+IHdob20= 6991
+IOuY 6992
+IGV4Y2VsbGVudA== 6993
+IGRhdGFi 6994
+IGfDtg== 6995
+IOynhOynnA== 6996
+IGJlbGllZg== 6997
+amV0 6998
+IGphY2s= 6999
+IHN3aW0= 7000
+cmlhbA== 7001
+dW1pbg== 7002
+YXVj 7003
+IHNvbGw= 7004
+IGVzc2VudGlhbA== 7005
+7ZWY64qU 7006
+IGV2b2w= 7007
+Y2hhZnQ= 7008
+YWluZQ== 7009
+dGhsZXQ= 7010
+IGluY29y 7011
+IHJlcG9ydHM= 7012
+IGRlZmluaXRpb24= 7013
+a2Vs 7014
+IGNpcmN1bQ== 7015
+IHByb2R1Y2Vk 7016
+INeb 7017
+YW50aWM= 7018
+bmV0 7019
+IGF3YXJk 7020
+IGR1cmNo 7021
+IHRyYW5zcA== 7022
+IG1hbGU= 7023
+pqzr 7024
+IG1vb24= 7025
+IEdlb3JnZQ== 7026
+IGZseWluZw== 7027
+acOz 7028
+IHNvdXJjZXM= 7029
+IHBsZW50eQ== 7030
+IERlbW9jcg== 7031
+Uk8= 7032
+IDAw 7033
+IHNlY3VyZQ== 7034
+IEJpcg== 7035
+cmFpbg== 7036
+IHp1cg== 7037
+IGVmZmljaWVudA== 7038
+IHJlcGVhdA== 7039
+IG1ldGhvZHM= 7040
+IGNhbG0= 7041
+IGRpc2N1c3NlZA== 7042
+IOyeiOuKlA== 7043
+IHNlcnZlcg== 7044
+YW5pZQ== 7045
+IEluc3RlYWQ= 7046
+IGlkZWFs 7047
+IGNvbnZlbg== 7048
+IGhvcGluZw== 7049
+IFRvcg== 7050
+IGRlcHRo 7051
+IGhlYXZlbg== 7052
+RU5DRQ== 7053
+IGhhYml0 7054
+Z3JhZA== 7055
+IGZsYWc= 7056
+IGluZQ== 7057
+IGto 7058
+IExJ 7059
+IGZhY2luZw== 7060
+IEFV 7061
+IFRpbQ== 7062
+IGdlbQ== 7063
+IEp1bA== 7064
+IGVsYQ== 7065
+aXp6YQ== 7066
+IGZlbGxvdw== 7067
+IHF1ZWw= 7068
+IHNwb2tl 7069
+IGNpdGl6ZW5z 7070
+dWdl 7071
+IHBhZ2Vz 7072
+IGZhc2M= 7073
+IHJlbGlnaW91cw== 7074
+YXRlbg== 7075
+IGNoYXB0ZXI= 7076
+IFZhbA== 7077
+IGNvbnN1bHQ= 7078
+IE1pbGw= 7079
+Z2w= 7080
+b3Blcg== 7081
+IGluZmlu 7082
+IG1hcnJpYWdl 7083
+IG1lZGljaW5l 7084
+INC00LI= 7085
+IGRvZ3M= 7086
+IGluc3RydW1lbnQ= 7087
+IEV4YWN0 7088
+w6Fu 7089
+IDIwMjE= 7090
+IGZlcg== 7091
+IHdlYWx0aA== 7092
+IGdyYWRl 7093
+0YvRhQ== 7094
+IGNyaW1l 7095
+IHRocmVhZA== 7096
+IGVzc2E= 7097
+IHdpbmU= 7098
+Y29ob2w= 7099
+cGhh 7100
+4LiH 7101
+b2d1ZQ== 7102
+IGluc3VyYW5jZQ== 7103
+YXJyYXRvcg== 7104
+IFNlcHRlbWJlcg== 7105
+IHZpZA== 7106
+IFNwaXJpdA== 7107
+IGdlc3Q= 7108
+IFJ1c3NpYW4= 7109
+IHByb3BlcnRpZXM= 7110
+IGFydGljbGU= 7111
+IHVuZGVybmVhdGg= 7112
+eWVy 7113
+IGpvaW50 7114
+IHJlbGF0aXZlbHk= 7115
+IGluY2g= 7116
+IGRlc3BpdGU= 7117
+IEdyZWU= 7118
+IGNsYXNzaWM= 7119
+IHN1cHBvcnRpbmc= 7120
+IGluc3RydWN0 7121
+bHVzaXZl 7122
+IGRpYWdu 7123
+5oo= 7124
+IGFkbWluaXN0cmF0aW9u 7125
+0LDQsdC+0YI= 7126
+IE9wZW4= 7127
+INC/0L7Qug== 7128
+IGRvbGxhcg== 7129
+IGNvbnNlcXU= 7130
+b2Jlcg== 7131
+IEdlcm1hbnk= 7132
+IHRlcnI= 7133
+IFFV 7134
+INCT 7135
+574= 7136
+IHN0cm9uZ2Vy 7137
+yZk= 7138
+INmK 7139
+IGlQaG9uZQ== 7140
+IGZhYnJpYw== 7141
+w7xo 7142
+IGVuZW0= 7143
+5q8= 7144
+IHN1YnQ= 7145
+RUU= 7146
+b25kZQ== 7147
+IGNyZXc= 7148
+IHJlbW92ZWQ= 7149
+IGxhZHk= 7150
+IHBvdGVudGlhbGx5 7151
+INCd0L4= 7152
+eWFs 7153
+IHN5bXB0 7154
+IGFybXk= 7155
+IGludHJvZHVjZWQ= 7156
+dGVz 7157
+IGFzcGVjdHM= 7158
+MTQ= 7159
+IExvdQ== 7160
+ICk= 7161
+IGRlcGxveQ== 7162
+cGV0 7163
+IGhhbg== 7164
+IFdhdGNo 7165
+IHdlYXBvbnM= 7166
+IHBoZW4= 7167
+IHJlZ2lzdGVy 7168
+IGVpbmZhY2g= 7169
+IHNwb3J0 7170
+IGJyaWRnZQ== 7171
+IGlubmVy 7172
+IG1pbmltdW0= 7173
+IHdpdG5lc3M= 7174
+IGVzbw== 7175
+IHZpbGxhZ2U= 7176
+IG93bmVy 7177
+pqzqs6A= 7178
+IHNjcmVhbQ== 7179
+aWxlZA== 7180
+IHBpdGNo 7181
+YnJ1 7182
+IGFkdmFuY2U= 7183
+IHN1cHBvc2U= 7184
+IEF0dA== 7185
+0LXRgtGB0Y8= 7186
+IGRpZmZlcmVuY2Vz 7187
+YWtlZA== 7188
+IGludGVycHJldA== 7189
+w6Y= 7190
+aWVuZG8= 7191
+IGFic29s 7192
+INCx0YPQtNC10YI= 7193
+IOuy 7194
+IHRyaWFs 7195
+IHRoaW5rcw== 7196
+bHlpbmc= 7197
+Y2VwdGlvbg== 7198
+IEFmcmljYW4= 7199
+IGNoZW1pY2Fs 7200
+IHRhcGU= 7201
+IGNvbnZlcnNhdGlvbnM= 7202
+IGRpc3RyaWJ1dGlvbg== 7203
+dGk= 7204
+IEFJ 7205
+IGZsYXNo 7206
+IHVuZGVyc3Rvb2Q= 7207
+IEdvdmVybm1lbnQ= 7208
+IT8= 7209
+IFNr 7210
+6rGw6w== 7211
+cmllcg== 7212
+VFM= 7213
+IEFjY29yZGluZw== 7214
+0Y7Rgg== 7215
+IHNwb25z 7216
+0YLQvtCx0Ys= 7217
+IHZhbHU= 7218
+ZXJlbQ== 7219
+aWNodGln 7220
+IHJlc2lzdGFuY2U= 7221
+IEdhbA== 7222
+Z2VyeQ== 7223
+IGJlZ2lucw== 7224
+IGFkdmFuY2Vk 7225
+IHJlbGV2YW50 7226
+IHBvbGl0aWNz 7227
+IEZhbQ== 7228
+IMOnb2s= 7229
+IE5ldmVy 7230
+aWxsaW5n 7231
+IGZvb3RiYWxs 7232
+0LjQuA== 7233
+IElE 7234
+IEFmcmljYQ== 7235
+IGZpbmdlcnM= 7236
+INCx0L7Qu9GM 7237
+IMOh 7238
+IGNsaXA= 7239
+IExhdA== 7240
+IOyngOq4iA== 7241
+ZXNzZQ== 7242
+IHZvb3I= 7243
+IGFzaWRl 7244
+5p4= 7245
+IHRvd2FyZA== 7246
+IGJhdA== 7247
+IHZhbGlk 7248
+IE1lbnM= 7249
+IGNvbXBsZXRlZA== 7250
+xLHEnw== 7251
+IHBvZGNhc3Q= 7252
+IEJvbg== 7253
+25I= 7254
+IEp1bHk= 7255
+aWxh 7256
+IHBhY2thZ2U= 7257
+IHB1bGxlZA== 7258
+Y2hhcg== 7259
+IE1lbA== 7260
+b2lz 7261
+IHNvdXRo 7262
+IOuU 7263
+IGltcG9ydGFuY2U= 7264
+IHB1c2hpbmc= 7265
+IGlzb2w= 7266
+IHN0YW5kcw== 7267
+Y2lsbA== 7268
+5Lw= 7269
+IPCf 7270
+b3Jp 7271
+6rCB 7272
+IGhvbWVz 7273
+IGNvbmNlcm5z 7274
+IGJpeg== 7275
+5b0= 7276
+Ymll 7277
+IGJpcw== 7278
+IGdlYXI= 7279
+IE1T 7280
+IGh1bg== 7281
+IE1hdHQ= 7282
+4bqj 7283
+c2V5 7284
+IFNlY3JldA== 7285
+IG9kZA== 7286
+IE1heA== 7287
+b2xseQ== 7288
+Zm9yZA== 7289
+IFNI 7290
+IHJlcGxhY2U= 7291
+IG5hdmln 7292
+IGluaQ== 7293
+0LjRjw== 7294
+IGdpYW50 7295
+IG1hbmQ= 7296
+IEhhcHA= 7297
+VElPTg== 7298
+Z3Vu 7299
+aWFtbw== 7300
+7J6F64uI64uk 7301
+IGdhcA== 7302
+IMOqdHJl 7303
+IGNsYXNzcm9vbQ== 7304
+IGh5cA== 7305
+YWtp 7306
+6K4= 7307
+aXN0ZXJz 7308
+YWNrcw== 7309
+INGB0L4= 7310
+IGJ1Zw== 7311
+IGdyYXY= 7312
+YW1pbg== 7313
+IGV2ZXJ5ZGF5 7314
+IOyhsA== 7315
+IGdhcmRlbg== 7316
+Y2VtYmVy 7317
+IGVzdG8= 7318
+2Kw= 7319
+n7A= 7320
+5YE= 7321
+IHJvbQ== 7322
+IOygnOqwgA== 7323
+IGZhbGxpbmc= 7324
+IGZhdWx0 7325
+ZWxseQ== 7326
+IGNoZXN0 7327
+INC70Lg= 7328
+IHBvdGF0bw== 7329
+IGJ1aWxkaW5ncw== 7330
+IG9wZXJhdGluZw== 7331
+IHBhcmU= 7332
+d3I= 7333
+RG9u 7334
+IEZvdXI= 7335
+IHZ1bA== 7336
+IGzDoQ== 7337
+IGZydXN0 7338
+IERhbm4= 7339
+b2xlcw== 7340
+bnlh 7341
+IOy2 7342
+INGA0LDRgQ== 7343
+15s= 7344
+IGHDrQ== 7345
+d29yZA== 7346
+IHdlYXBvbg== 7347
+IG9idA== 7348
+IEZhbGw= 7349
+IFN0ZXZl 7350
+IG1peGVk 7351
+IHBvZGU= 7352
+IEFT 7353
+IExlZw== 7354
+IGRlc2M= 7355
+IHNwbGl0 7356
+IGVtZXJnZW5jeQ== 7357
+IFNpbmc= 7358
+IHByb2ZpdA== 7359
+IHR5cGljYWw= 7360
+IERvbmM= 7361
+IGFubm91bmNl 7362
+IFRleA== 7363
+IHNhY3I= 7364
+dGVybmFs 7365
+IGNvbW1pdHRlZQ== 7366
+aWdv 7367
+IGRpYW0= 7368
+cGhhcw== 7369
+IGRlZmU= 7370
+IFByb2Zlc3M= 7371
+IGRlY2w= 7372
+0YPRgA== 7373
+MjI= 7374
+b2xm 7375
+IE1vbmQ= 7376
+dXk= 7377
+IGF5 7378
+IGxlbQ== 7379
+IGxvdmVseQ== 7380
+IENvdWxk 7381
+IGd1YXI= 7382
+SEg= 7383
+IGNhcmVmdWxseQ== 7384
+IExpc3Rlbg== 7385
+INC60YA= 7386
+IHlvdXRo 7387
+IFRoZXJlZm9yZQ== 7388
+IGRyZWFtcw== 7389
+IEplZmY= 7390
+P10= 7391
+IOuI 7392
+REE= 7393
+IGJvZGllcw== 7394
+YXV4 7395
+IHRlY2huaXF1ZXM= 7396
+IG1lY2hhbmlzbQ== 7397
+15M= 7398
+INC+0L3QuA== 7399
+IGRlc2lyZQ== 7400
+w64= 7401
+IFZv 7402
+cXVlcw== 7403
+INGD0LbQtQ== 7404
+IFdob2E= 7405
+IEdhbWU= 7406
+IGhhbA== 7407
+YW5pc2g= 7408
+IHByYWN0aWNlcw== 7409
+NTAw 7410
+IHNvcnRz 7411
+dXBz 7412
+YXRlZnVs 7413
+IGhlcnNlbGY= 7414
+IGd1aXRhcg== 7415
+IHByb3Bvcw== 7416
+IHNpdGVz 7417
+IGJlYWNo 7418
+INei 7419
+0L3Rgw== 7420
+IGRyYW0= 7421
+IE5vdmU= 7422
+VkU= 7423
+cmFudA== 7424
+IHBsb3Q= 7425
+IOyXrOq4sA== 7426
+IENh 7427
+IGVzdGFibGlzaGVk 7428
+IDIwMTU= 7429
+IGluc3BpcmVk 7430
+IGFubm91bmNlZA== 7431
+INGC0YA= 7432
+IDI2 7433
+IHZveQ== 7434
+IHRlY2g= 7435
+7KCB 7436
+IHByb2Nlc3Nlcw== 7437
+b250bw== 7438
+IFBhbg== 7439
+IHJhcGlk 7440
+aXN0YW4= 7441
+IDE5Nw== 7442
+IHJlbGlnaW9u 7443
+IDI4 7444
+IHNtaWxl 7445
+IGJhYg== 7446
+INqp 7447
+IFZpcg== 7448
+IHNjaGVkdWxl 7449
+IGV4ZWN1dA== 7450
+IHByb24= 7451
+0Y0= 7452
+INCd0YM= 7453
+bXVzaWM= 7454
+7JuQ 7455
+IGdhbg== 7456
+7Iug 7457
+IGRlZmF1bHQ= 7458
+IGJlbQ== 7459
+2Yk= 7460
+IGZvcmNlZA== 7461
+IE9idmlvdXNseQ== 7462
+IHN0b25l 7463
+IHRpZQ== 7464
+IGRyaW5raW5n 7465
+IHNlcnZlZA== 7466
+Q2F1c2U= 7467
+IGNvbmZlcmVuY2U= 7468
+IEV4YWN0bHk= 7469
+oJw= 7470
+7JmA 7471
+IFJh 7472
+IGZha2U= 7473
+IGRpZmY= 7474
+IGNoYWxsZW5naW5n 7475
+IOykkQ== 7476
+z4c= 7477
+IGludGVsbGlnZW5jZQ== 7478
+cmV0ZQ== 7479
+IHN0dWR5aW5n 7480
+IGFwcG9pbnQ= 7481
+IHRhbg== 7482
+INC40Lw= 7483
+IGN1cnZl 7484
+IFRlYW0= 7485
+IEF6 7486
+INC30LQ= 7487
+IE11c2lj 7488
+ZmllbGQ= 7489
+aXJhdGlvbg== 7490
+IGZhaWxlZA== 7491
+IG5vdmVs 7492
+IGRpZmZlcmVudGx5 7493
+IGVzY2FwZQ== 7494
+IFlv 7495
+IE9jdG9iZXI= 7496
+xLF5b3I= 7497
+IGRlc2NyaWJlZA== 7498
+IGNvbnZlcnQ= 7499
+YWNlbWVudA== 7500
+IGhvdGVs 7501
+aXNhdGlvbg== 7502
+IHN1aXM= 7503
+IHdhbGtlZA== 7504
+MjAw 7505
+IG5laWdoYm9yaG9vZA== 7506
+aXNw 7507
+IExvcw== 7508
+IGhpZGRlbg== 7509
+IDI3 7510
+0LvQtQ== 7511
+IHBocg== 7512
+IElzbGFuZA== 7513
+IFN0cmVldA== 7514
+ZW5kYQ== 7515
+aGlwcw== 7516
+b3N1cmU= 7517
+IGRlZmluZWQ= 7518
+4Lin 7519
+IHZpZGE= 7520
+IGxhYmVs 7521
+IEV2ZXJ5Ym9keQ== 7522
+IGpva2U= 7523
+aWFv 7524
+2KfZhg== 7525
+IGF0aGxldA== 7526
+Li4uIg== 7527
+IEZpcmU= 7528
+RG8= 7529
+IGRlZmVuc2U= 7530
+IGVudGVydGFpbg== 7531
+w6F0 7532
+IHBvbGljaWVz 7533
+IGFsY29ob2w= 7534
+IEVuZ2luZQ== 7535
+IGdhbA== 7536
+IEp1ZA== 7537
+IHZvbHVudGU= 7538
+aWNrcw== 7539
+ZXRh 7540
+YWd0 7541
+INeV 7542
+IG3Dtg== 7543
+MTM= 7544
+IGVuY291bg== 7545
+IGVo 7546
+IG9yYW5nZQ== 7547
+IGFic29y 7548
+IHNwYWNlcw== 7549
+IE5vdmVtYmVy 7550
+6rWs 7551
+aWF0 7552
+IHRhbQ== 7553
+Y2tub3c= 7554
+IHN0b3Jt 7555
+IERpcmVjdG9y 7556
+IHByZWdu 7557
+IOydvA== 7558
+INC+0L8= 7559
+IHJlc291cmNl 7560
+IGJhcmQ= 7561
+bmV3 7562
+IERlY2VtYmVy 7563
+dWl0cw== 7564
+IHdlaWw= 7565
+IGNvbnN0cnVjdA== 7566
+c2k= 7567
+bmlj 7568
+IGZsb3Vy 7569
+IHJlc3RyaWN0 7570
+w7x0 7571
+IGVudGlyZWx5 7572
+IGJyZWFraW5n 7573
+ZW50bGljaA== 7574
+IHR3ZW50eQ== 7575
+IGNhdXNlcw== 7576
+IGVsZXY= 7577
+IFNwcg== 7578
+IEludGVybmV0 7579
+IGtpc3M= 7580
+IG9wZXJhdGlvbnM= 7581
+c3p5 7582
+IOuK 7583
+IHNjaWVudGlzdHM= 7584
+IGdyb3du 7585
+IG93bmVycw== 7586
+b3V0cw== 7587
+IGNvdXJzZXM= 7588
+IHVzdWFs 7589
+IGlubg== 7590
+IHRyYW5zbQ== 7591
+w7Fv 7592
+IG51ZXN0 7593
+0LrQvtCy 7594
+IGNhdGVnb3J5 7595
+IExpZmU= 7596
+IFBsdXM= 7597
+IGF0bW9z 7598
+d2hpbGU= 7599
+IHJlY29yZHM= 7600
+IGRlxJ8= 7601
+64uk6rOg 7602
+IOyCrOue 7603
+IHJlcXVpcmVtZW50cw== 7604
+aW5u 7605
+IGltbWln 7606
+IGRlZXBlcg== 7607
+57Q= 7608
+IGFwcHM= 7609
+IGNvbGxlYWd1ZXM= 7610
+xbx5 7611
+IG9mZmVycw== 7612
+IHTDoQ== 7613
+IGNvbHVtbg== 7614
+bGF1ZA== 7615
+SVI= 7616
+IE1z 7617
+IGV4Y2hhbmdl 7618
+bGFz 7619
+IExhdw== 7620
+IEpvbg== 7621
+aXNzZQ== 7622
+cm9nZW4= 7623
+IG1vaQ== 7624
+15c= 7625
+IHNlbmRpbmc= 7626
+IGhlbGxv 7627
+0LXQtQ== 7628
+xZvEhw== 7629
+IHN1Y2NlZWQ= 7630
+IHN1ZmZlcmluZw== 7631
+IGFkdmVydA== 7632
+IOyjvA== 7633
+IHJlY28= 7634
+xLFuxLE= 7635
+INC60L7QvA== 7636
+YWxsZXk= 7637
+IGZhaWx1cmU= 7638
+aWVq 7639
+IOuVjA== 7640
+IGRydWdz 7641
+IGN1YW5kbw== 7642
+IOyWtOuW 7643
+IEFib3V0 7644
+IHF1YW5kbw== 7645
+OTA= 7646
+IEZlZA== 7647
+MTc= 7648
+U2g= 7649
+aW5obw== 7650
+IFN1bmRheQ== 7651
+IFBoaWw= 7652
+IGFjYWRlbWlj 7653
+IEluYw== 7654
+IG1haW50ZW4= 7655
+IHJld2FyZA== 7656
+ZXJk 7657
+IGNvbW1pdHRlZA== 7658
+7Iqk 7659
+0LPRgA== 7660
+IHN0YW5kYXJkcw== 7661
+IGthbA== 7662
+IGludGVudGlvbg== 7663
+IFpo 7664
+IGFja25vdw== 7665
+5L8= 7666
+ID09PQ== 7667
+b2d5 7668
+5ac= 7669
+IGZpbG1z 7670
+aXNr 7671
+IHRlZXRo 7672
+IHN0cnVnZ2xl 7673
+cmQ= 7674
+dWVu 7675
+IGRpc3M= 7676
+IERhcg== 7677
+YW15 7678
+IGVuZW1pZXM= 7679
+IHZlbG9j 7680
+IENhbGw= 7681
+dW1icw== 7682
+0LjRgtC10LvRjA== 7683
+IG9jZWFu 7684
+w6lk 7685
+7Jqw 7686
+IHRyZW0= 7687
+aWVudG8= 7688
+0LXRiNGM 7689
+ZmZpY2llbnQ= 7690
+IGJvdHRsZQ== 7691
+IGluc3RpdHV0aW9u 7692
+ZXN0eQ== 7693
+IEhhbg== 7694
+aGFi 7695
+64qY 7696
+IGFycmVzdA== 7697
+IGxldHRlcnM= 7698
+b3VuY2U= 7699
+7Yw= 7700
+QW4= 7701
+IGNyZWF0ZXM= 7702
+IGNsb2Nr 7703
+IGRlYnQ= 7704
+IGFuY2llbnQ= 7705
+aWZpY2F0aW9ucw== 7706
+Z2k= 7707
+QnV0 7708
+IFR1 7709
+a2w= 7710
+IGJvcmRlcg== 7711
+IG9vaw== 7712
+IEJheQ== 7713
+ZXN0YQ== 7714
+IOuztOw= 7715
+IHdyYQ== 7716
+cHJlbmU= 7717
+IOqyjA== 7718
+YW5nbGU= 7719
+IGJlbGlldmVk 7720
+aWVuY3k= 7721
+YWth 7722
+IGNyaXRpYw== 7723
+IGJvbWI= 7724
+IGhhbQ== 7725
+INCb 7726
+6rWt 7727
+IEd1eXM= 7728
+cm9zb2Z0 7729
+IGNyaW0= 7730
+ZXRjaA== 7731
+QVJS 7732
+IHNpZ2h0 7733
+0LjQvdCw 7734
+IGFpbg== 7735
+4buR 7736
+aXNjaGU= 7737
+IGF1eA== 7738
+IG51bWVy 7739
+IHN1cnZpdmU= 7740
+QWxs 7741
+QkM= 7742
+IHN6 7743
+n6zr 7744
+IGphbQ== 7745
+IENvdXJ0 7746
+IGFsbGVz 7747
+IHRyaWdnZXI= 7748
+0J4= 7749
+IGZvcm1hdA== 7750
+IGRlY2FkZXM= 7751
+IGNlcw== 7752
+IHNpZ25z 7753
+IHJvYm90 7754
+IENodXJjaA== 7755
+IGF6 7756
+IHNvdXA= 7757
+IFRleGFz 7758
+dXRlbg== 7759
+INGH0YLQvtCx0Ys= 7760
+IG5laWdoYg== 7761
+lteU 7762
+IGNvbW11bmljYXRl 7763
+xaE= 7764
+IGVsaW1pbg== 7765
+IGZyZXF1ZW5jeQ== 7766
+aGVybg== 7767
+aWRvcw== 7768
+IGVtcGhhcw== 7769
+IG1lc3NhZ2Vz 7770
+IGdlbmRlcg== 7771
+IFdlbm4= 7772
+INCy0L4= 7773
+IHByaWNlcw== 7774
+b2xv 7775
+INC/0L7QvQ== 7776
+d2luZw== 7777
+IEZpbA== 7778
+0LDQtdC8 7779
+IEN1cg== 7780
+IGZhbHNl 7781
+IGZpZWxkcw== 7782
+IHPDqQ== 7783
+MjQ= 7784
+IG1hYw== 7785
+dcWf 7786
+IGxheWVycw== 7787
+IGFkdm9j 7788
+d2Fu 7789
+IGthcg== 7790
+IMWe 7791
+IGRlY29y 7792
+IHdhbGxz 7793
+b2U= 7794
+aXNzaW9ucw== 7795
+IHJlc29s 7796
+16I= 7797
+IENhcm9s 7798
+IFZpZGU= 7799
+bGVlcA== 7800
+IFlPVQ== 7801
+IGZsaXA= 7802
+IHN1cmdlcnk= 7803
+IGNob3A= 7804
+VVI= 7805
+Liw= 7806
+IGFnZW5jeQ== 7807
+IHdhbnRpbmc= 7808
+IHNvbGFy 7809
+IGhvcml6 7810
+IEFkYW0= 7811
+IHN0YXlpbmc= 7812
+b2xpYw== 7813
+IGdyYXRlZnVs 7814
+IHJlbWFyaw== 7815
+IHRlY2hub2xvZ2llcw== 7816
+IHByb3RlaW4= 7817
+0LTQtdC7 7818
+IE1vbnQ= 7819
+IHNob3VsZGVy 7820
+IHph 7821
+cmV5 7822
+IE9vaA== 7823
+IHN0eQ== 7824
+aWNhcg== 7825
+0L7RgtGA 7826
+IHJvdXRl 7827
+IFR1cm4= 7828
+IGJvbQ== 7829
+IGRlYmF0ZQ== 7830
+IHBvc3NpYmlsaXR5 7831
+IO2VtOw= 7832
+YXBh 7833
+IGludmVudA== 7834
+w7xybGljaA== 7835
+IHByb2ZpbGU= 7836
+IHNlbmlvcg== 7837
+cHB5 7838
+dmFz 7839
+IG11bmRv 7840
+YXRldmVy 7841
+IGFwcGFyZW50bHk= 7842
+ZW5lcg== 7843
+15A= 7844
+560= 7845
+IHByZWNpcw== 7846
+IGFsaWdu 7847
+IGtuaWZl 7848
+IFJvYmVydA== 7849
+5Ys= 7850
+IGZvb2w= 7851
+IGludml0ZQ== 7852
+dXNpbmc= 7853
+IGNpcmN1bXN0 7854
+IGNhcHR1cmU= 7855
+IGRvdWdo 7856
+IFNhbmQ= 7857
+IHNldQ== 7858
+IE5ld3M= 7859
+IGJpdGU= 7860
+IG5ldXQ= 7861
+d2lkZQ== 7862
+IGxlY3R1cmU= 7863
+IOuYkA== 7864
+IG9yaWdpbmFsbHk= 7865
+IGNob2ljZXM= 7866
+IEdhcg== 7867
+IHZlcnNl 7868
+IGxpdA== 7869
+IDE5Ng== 7870
+7ZWg 7871
+IG1lYXN1cmVz 7872
+w6fDtWVz 7873
+d2F0ZXI= 7874
+cml2ZQ== 7875
+IHppam4= 7876
+7YE= 7877
+IEJ1cw== 7878
+IGhlYg== 7879
+0LXRhQ== 7880
+IEthcg== 7881
+IE7Do28= 7882
+IGtpbGxpbmc= 7883
+4K6q 7884
+IG1pcnJvcg== 7885
+bW9k 7886
+IG1vbA== 7887
+IGNyZWF0aW9u 7888
+IGVzdGlt 7889
+IGF0bW9zcGhlcmU= 7890
+IGdhbQ== 7891
+IHRhYmxlcw== 7892
+aXNp 7893
+IExpdHRsZQ== 7894
+IHRhcw== 7895
+IEVsZQ== 7896
+w6ls 7897
+IHNjZW5lcw== 7898
+IHRvbmU= 7899
+IGFmZmVjdGVk 7900
+IEFVREk= 7901
+IEJyb3du 7902
+SWY= 7903
+INmH 7904
+IERhbmllbA== 7905
+cXVlcg== 7906
+Y2hp 7907
+7ZWY6w== 7908
+IG1pc3Rha2Vz 7909
+IHNsYQ== 7910
+IGVudHI= 7911
+INC10YHQu9C4 7912
+IHNob3V0 7913
+IHBvcnRpb24= 7914
+0Zc= 7915
+IHByZXZpb3VzbHk= 7916
+4buZ 7917
+INC/0YDQtdC0 7918
+0L7RgdGM 7919
+IGhlYWRz 7920
+544= 7921
+5a0= 7922
+IGdyYXNz 7923
+4Liw 7924
+Y3JpYmU= 7925
+IHF1w6k= 7926
+IFNwYW5pc2g= 7927
+IG9mZmVyZWQ= 7928
+INCx0YvQu9C+ 7929
+IENsb3Vk 7930
+IHZlY3Rvcg== 7931
+IEh1aA== 7932
+IGthZA== 7933
+aWZ0cw== 7934
+IM69 7935
+IGh1bmdyeQ== 7936
+0KE= 7937
+IHBhcmFsbA== 7938
+QU5E 7939
+IHbDrWRlbw== 7940
+aXp6 7941
+IG9jY3Vw 7942
+IO2U 7943
+IHNlZWs= 7944
+aGVz 7945
+IGRvb3Jz 7946
+IGhvdXNlcw== 7947
+IGNvbnNpZGVyaW5n 7948
+IGdyYWR1YXRl 7949
+IGZ1bGY= 7950
+6KM= 7951
+IGV4dHJlbWU= 7952
+IGZsb3dlcnM= 7953
+aXRhdGU= 7954
+IFByaQ== 7955
+IGZ1bmRhbWVudGFs 7956
+0YfQsNGB 7957
+IHRleHR1cmU= 7958
+jZg= 7959
+IEFORA== 7960
+4K6x 7961
+IFRlbQ== 7962
+IG5hZGE= 7963
+7KeE 7964
+IGNlbGVicmF0ZQ== 7965
+dW1z 7966
+IHBpbGw= 7967
+INC40LvQuA== 7968
+Z29pbmc= 7969
+IGhpcA== 7970
+IHN1cHBvcnRlZA== 7971
+IHBlcm1hbg== 7972
+IGFncmVlbWVudA== 7973
+IHR5bQ== 7974
+IOuR 7975
+k6TsnbQ= 7976
+IHB1cmNoYXNl 7977
+7ZQ= 7978
+IFBsYW4= 7979
+ZWdlbg== 7980
+IHJlY292ZXI= 7981
+UFU= 7982
+IE1pY3Jvc29mdA== 7983
+ZHVj 7984
+IGhvbGVz 7985
+IGRyb3BwZWQ= 7986
+IHBpZw== 7987
+IGVuZGluZw== 7988
+IGF0dGFja3M= 7989
+YmVj 7990
+IHJlbg== 7991
+IHJhcHA= 7992
+IOyasOumrA== 7993
+IHRlcnJvcg== 7994
+INeZ 7995
+IGVkaXQ= 7996
+IGFv 7997
+Ljwv 7998
+IDIwMDA= 7999
+IFVuaW9u 8000
+IHNjaWVudGlmaWM= 8001
+IHB1bmNo 8002
+b3J0aW9u 8003
+IHB1dHM= 8004
+IE1vbmRheQ== 8005
+IEplcg== 8006
+RUM= 8007
+IG1hdHJpeA== 8008
+IGluc3RpdHV0aW9ucw== 8009
+IG1vbnQ= 8010
+IGV4aGli 8011
+IHNwZWFrZXI= 8012
+IG1ldGVycw== 8013
+Ll0= 8014
+IHNlcnZpbmc= 8015
+IGRhdGFiYXNl 8016
+IExBVQ== 8017
+IGRhbW4= 8018
+IHBvZGVy 8019
+ISEhIQ== 8020
+IO2WiA== 8021
+IEFVRElFTkNF 8022
+IGp1bg== 8023
+IEFD 8024
+IEl0YWw= 8025
+c2Vj 8026
+IFlvdW5n 8027
+cnVjaw== 8028
+b3V2ZQ== 8029
+4LiE 8030
+54g= 8031
+IOunjOs= 8032
+YWRpbmc= 8033
+dXJhdGlvbg== 8034
+IFBT 8035
+0Jo= 8036
+IFVuZg== 8037
+6IE= 8038
+b3JpYQ== 8039
+IG1hbmlm 8040
+IHNlbnRlbmNl 8041
+IHNpZ25lZA== 8042
+QlM= 8043
+IHByb29m 8044
+IE11c2xpbQ== 8045
+IG51Y2xlYXI= 8046
+INCz0L7QstC+0YA= 8047
+IHdvbGw= 8048
+IGZhdm91cg== 8049
+IFdI 8050
+IHZ1bG5lcg== 8051
+IGNsb3NlbHk= 8052
+IGluZGV4 8053
+0YLQtdGA 8054
+YWNoZWw= 8055
+IGNhcGFibGU= 8056
+IEJlcw== 8057
+IGNyb2No 8058
+ZWt0 8059
+IHNoZWV0 8060
+IHNlZXM= 8061
+IG5hdHVyYWxseQ== 8062
+IEVuZ2xhbmQ= 8063
+IHBhcnRpY2lwYXRl 8064
+IGV4aXN0cw== 8065
+IHNoYXJw 8066
+cHk= 8067
+IGJyZWFrZmFzdA== 8068
+Ym93 8069
+IHR3aXN0 8070
+56c= 8071
+aW5hdGluZw== 8072
+b3Rp 8073
+IEZvdW5k 8074
+IGRldXg= 8075
+IHNlbGVjdGVk 8076
+7KCE 8077
+b3Npcw== 8078
+IHByZXNlbnRlZA== 8079
+IGxpbmVhcg== 8080
+IOq0 8081
+IGt1bg== 8082
+w7RuZw== 8083
+IGLEmWQ= 8084
+IHRlbXBvcg== 8085
+IGNhYmxl 8086
+INC/0YDQvtGB0YLQvg== 8087
+0LrQtQ== 8088
+INGC0LDQvA== 8089
+IHdpbm5pbmc= 8090
+mOuPhA== 8091
+IDIwMTQ= 8092
+IOyXrOs= 8093
+IFVO 8094
+IENsaWNr 8095
+IHByZXBhcg== 8096
+IFRP 8097
+IHN1YQ== 8098
+IEhhbQ== 8099
+IGzDpA== 8100
+IGFic29sdXRl 8101
+IGVuZ2FnZWQ= 8102
+IEhtbQ== 8103
+IGRhc2g= 8104
+VEE= 8105
+w7Fvcw== 8106
+IHNwbw== 8107
+KV0= 8108
+IHRlc3RlZA== 8109
+IGJsYW5r 8110
+IHJlamVjdA== 8111
+IGFzc2lt 8112
+IHJlYXI= 8113
+IFN0cg== 8114
+IGNyYXNo 8115
+INC90LDRiA== 8116
+0LjRgtGB0Y8= 8117
+IGNvbG9u 8118
+IFVudA== 8119
+IENl 8120
+IGFjaWQ= 8121
+6Zc= 8122
+IGtpdA== 8123
+aWJpbGl0aWVz 8124
+dXRv 8125
+IHZhbHVhYmxl 8126
+bGlzdA== 8127
+IHBhcnRpZXM= 8128
+IE1t 8129
+IGNvbG91cg== 8130
+IGNoYW0= 8131
+IHN0ZWVs 8132
+IEltcA== 8133
+IGZ1bmRz 8134
+IEROQQ== 8135
+IEtlbg== 8136
+aW5kZQ== 8137
+7ZW07ISc 8138
+IEhhcHB5 8139
+IFVzZQ== 8140
+IExpZ2h0 8141
+IGxpcA== 8142
+IGF1dGhvcml0eQ== 8143
+IExvbmc= 8144
+IElyYW4= 8145
+IGVsbA== 8146
+IGNvb3JkaW4= 8147
+IHN1Ym0= 8148
+IHJlY29yZGVk 8149
+0YPRiA== 8150
+IGRlbHRh 8151
+IHJlZm9ybQ== 8152
+IFN0aWxs 8153
+IG9wcG9u 8154
+IGFsbG93aW5n 8155
+IHBhdHRlcm5z 8156
+IGxldHRpbmc= 8157
+IHNsZWVwaW5n 8158
+T2theQ== 8159
+IHBpenph 8160
+IMWb 8161
+INC00L7Quw== 8162
+IHRhbGVudA== 8163
+ZW5zaW9ucw== 8164
+IGVudmlyb25tZW50YWw= 8165
+IHByb2Zlc3Nvcg== 8166
+IHNob3Rz 8167
+IGNvbnRhaW5z 8168
+dWdhcg== 8169
+eW8= 8170
+j5k= 8171
+IHNlcXVlbmNl 8172
+zrnOsQ== 8173
+YWRlcg== 8174
+6aA= 8175
+0LDRhw== 8176
+2YbYpw== 8177
+IElr 8178
+IHRvdXM= 8179
+dXJpZXM= 8180
+IHBvdW5kcw== 8181
+IGV4dGVybmFs 8182
+aW1lbnRz 8183
+IHZyYWltZW50 8184
+7Iuk 8185
+IGhhcHBpbmVzcw== 8186
+IHByemU= 8187
+ZXN0aWM= 8188
+IGVzdGFibGlzaA== 8189
+IEZsb3I= 8190
+IHJpZw== 8191
+IGhvbmV5 8192
+IHB1bA== 8193
+IHN5bXB0b21z 8194
+IGJyb3dz 8195
+0LXQu9C4 8196
+IM+Ezr8= 8197
+IHNoaXJ0 8198
+IFRlY2hu 8199
+IFByb2dyYW0= 8200
+0LXQvNGD 8201
+IHVwc2V0 8202
+IGd1ZXN0 8203
+YnVyZw== 8204
+IHVubGlrZQ== 8205
+IHNvbWV3aGF0 8206
+IGhhbmdpbmc= 8207
+YWU= 8208
+IHJ1bQ== 8209
+IHBob3RvZ3JhcGg= 8210
+IExp 8211
+IHN0YWJsZQ== 8212
+IHZvbHRhZ2U= 8213
+IEVsbA== 8214
+IGVudHJlcHJlbmU= 8215
+dXNlcw== 8216
+YXNzZW4= 8217
+rLg= 8218
+IOunjuydtA== 8219
+IGdob3N0 8220
+IHNhZ2Vu 8221
+IGNvbWJhdA== 8222
+IGfDtnI= 8223
+IENhcA== 8224
+IHPDo28= 8225
+IEthdA== 8226
+IGZvcm1h 8227
+IHN1bW0= 8228
+IG1hcmNo 8229
+IHZhc3Q= 8230
+w7xr 8231
+IGNvbW1pdG1lbnQ= 8232
+aW1vcw== 8233
+TGV0 8234
+IGRlZGljYXRlZA== 8235
+aXN0ZQ== 8236
+bGF5 8237
+IHRvcGljcw== 8238
+IG1hY2hpbmVz 8239
+IFBhcmlz 8240
+IOydtOufsA== 8241
+IG1pbmk= 8242
+IG1hcmtldHM= 8243
+IGtv 8244
+zrQ= 8245
+dmlsbGU= 8246
+IGdvb2RuZXNz 8247
+IGZyYW1ld29yaw== 8248
+dWx0dXJl 8249
+IGJhc2tldA== 8250
+ZXNzYQ== 8251
+0LDRhtC4 8252
+dXN0ZXI= 8253
+IOq5 8254
+IGV4dGVudA== 8255
+IE1lbnNjaGVu 8256
+IGNvbnNpc3RlbnQ= 8257
+IGF1dG8= 8258
+cmlw 8259
+IG1lcmU= 8260
+4K+I 8261
+0ZQ= 8262
+IGVsbGU= 8263
+jIDr 8264
+b2tlbg== 8265
+IHB1bGxpbmc= 8266
+IGNvdw== 8267
+b3V0aGVybg== 8268
+IG1lZXRpbmdz 8269
+IGNhZGE= 8270
+0L3Ri9C8 8271
+aWVudGU= 8272
+IGJhc3Q= 8273
+YW5pbmc= 8274
+IGZvY3VzaW5n 8275
+cm9hZA== 8276
+IHJvb2Y= 8277
+IFByb2Zlc3Nvcg== 8278
+IFNQ 8279
+0YDQsNC3 8280
+IG5vb2Q= 8281
+IDQwMA== 8282
+IOydtOygnA== 8283
+7J6I 8284
+IE1vdW50 8285
+0LXQudGH0LDRgQ== 8286
+INeQ 8287
+V2h5 8288
+154= 8289
+xLFuZGE= 8290
+IHBvc2l0aW9ucw== 8291
+w6htZQ== 8292
+548= 8293
+INC00YDRg9Cz 8294
+aXlvcg== 8295
+IHBhc3Npbmc= 8296
+IGFzc2VtYg== 8297
+IHNtb2tl 8298
+IHRpbA== 8299
+IG11c2V1bQ== 8300
+0JQ= 8301
+IFBlcnNvbg== 8302
+0L3QuNC8 8303
+bGVpY2g= 8304
+IGludGVudA== 8305
+IHNxdWU= 8306
+IGNyYWZ0 8307
+7IiY 8308
+b3JzdW4= 8309
+IDE1MA== 8310
+IGJyb3RoZXJz 8311
+dm9y 8312
+IFNwZWFrZXI= 8313
+aWNpYW5z 8314
+IG9mZmljZXI= 8315
+IGnDp2lu 8316
+INGC0LXQsQ== 8317
+IHNjcmF0Y2g= 8318
+IGdlbmVyYXRl 8319
+eWk= 8320
+IGVtb3Rpb25z 8321
+YXVz 8322
+7LmY 8323
+NDU= 8324
+IExpbms= 8325
+IFJlYWw= 8326
+IGF0ZQ== 8327
+INC90LDQtA== 8328
+IG5hdGl2ZQ== 8329
+4buH 8330
+xLF5 8331
+IGVub3Jt 8332
+IGJsb2Nrcw== 8333
+IGZhY2Vz 8334
+YWNj 8335
+aXZlbmVzcw== 8336
+IGluY2hlcw== 8337
+dWlz 8338
+aGVpdA== 8339
+IHN0cmVldHM= 8340
+IHByb2JhYmlsaXR5 8341
+YXNp 8342
+IGltcGw= 8343
+IOCk 8344
+dXJkYXk= 8345
+IGZhdXQ= 8346
+b215 8347
+IHBpcA== 8348
+IGlsbHVzdA== 8349
+4K6v 8350
+IEp1bg== 8351
+IGx5aW5n 8352
+OTk= 8353
+IG1lbW9yaWVz 8354
+IHByYWN0aWNhbA== 8355
+aWFuYQ== 8356
+b25jZXM= 8357
+IHZpZXdlcnM= 8358
+IFRob21hcw== 8359
+5ow= 8360
+IEdpcmw= 8361
+IFdoZXRoZXI= 8362
+IGlubm92YXRpb24= 8363
+IGRpc2FwcG9pbnQ= 8364
+TXk= 8365
+IHdpbm5lcg== 8366
+IGln 8367
+IHJhdGlv 8368
+IEJsdWU= 8369
+IFN1Yg== 8370
+IGRvY3VtZW50cw== 8371
+IGZvcm11bGE= 8372
+IOup 8373
+0Yo= 8374
+IGFwcGVhcmVk 8375
+dmFy 8376
+YW5kb24= 8377
+IHNwcmF5 8378
+bWFr 8379
+IFFVRVM= 8380
+S0U= 8381
+IHdlZGRpbmc= 8382
+UmU= 8383
+0LDRgtGM0YHRjw== 8384
+IHVubw== 8385
+IGdhbGw= 8386
+7YSw 8387
+Y2lv 8388
+Y2Vycw== 8389
+INC80L3QtQ== 8390
+IHBlcHBlcg== 8391
+IEZlYnJ1 8392
+IGFsdGVybmF0aXZl 8393
+IGZ1 8394
+IEJhc2ljYWxseQ== 8395
+IFNtaXRo 8396
+IGdhdGU= 8397
+IFRhbQ== 8398
+IFdoYXRldmVy 8399
+IGFwcHJveGlt 8400
+IGNvbmNlcnQ= 8401
+IGp1aWNl 8402
+IEVzcGVjaWFsbHk= 8403
+IGR5bmFtaWM= 8404
+UXU= 8405
+b25kZXI= 8406
+aXZlcnk= 8407
+IGJhbmc= 8408
+IHJ1bA== 8409
+IFBhcnR5 8410
+IHNjaG9sYXJz 8411
+IGNyeWluZw== 8412
+asSF 8413
+0KI= 8414
+IFFVRVNUSU9O 8415
+cmlk 8416
+IGFjY3VyYXRl 8417
+w6dv 8418
+IENvb2w= 8419
+Y29pbg== 8420
+IOyDgQ== 8421
+IEZv 8422
+IHByw7M= 8423
+IFJvbWFu 8424
+INCf0YA= 8425
+IGNoZWNraW5n 8426
+Pyc= 8427
+IGF0dGFjaGVk 8428
+IElzbGFt 8429
+IGV4cGVydHM= 8430
+16c= 8431
+IENvbnN0 8432
+0YDQsNC9 8433
+IHNoYWRvdw== 8434
+IGRlbGF5 8435
+0JI= 8436
+IG9yaWVudA== 8437
+64I= 8438
+ZWxsZW4= 8439
+IGFzw60= 8440
+0LrQuNC5 8441
+IGhpc3RvcmljYWw= 8442
+IHVuY29t 8443
+b21w 8444
+aG0= 8445
+IGJpbA== 8446
+IHBsYW5uZWQ= 8447
+IFVuZm9ydHVuYXRlbHk= 8448
+IFdpbmRvd3M= 8449
+2LQ= 8450
+IGVuY291bnRlcg== 8451
+IOyDneqwgQ== 8452
+IHJlZ2FyZGluZw== 8453
+YXJyYXNz 8454
+IHJlY292ZXJ5 8455
+IEh1cg== 8456
+IEVtcA== 8457
+IHPDrQ== 8458
+7ZWY6rKM 8459
+IGRlZmVuZA== 8460
+IGNldA== 8461
+YXNzZQ== 8462
+64uo 8463
+b2tlcw== 8464
+IHJlbW90ZQ== 8465
+INiz 8466
+IGFydHM= 8467
+aXNjbw== 8468
+YXVjb3Vw 8469
+IE1leGljbw== 8470
+INC/0L7QvA== 8471
+IGNob3Nlbg== 8472
+ZW1hdA== 8473
+b2Rpbmc= 8474
+IGZsb3dlcg== 8475
+c3RhbmRpbmc= 8476
+IEFzc29jaQ== 8477
+dW1teQ== 8478
+SUxM 8479
+IGNhbWVyYXM= 8480
+IEFyYWI= 8481
+IFN1bQ== 8482
+IHRlZ28= 8483
+IGNyaW1pbmFs 8484
+aWZvcm0= 8485
+IHN0YWNr 8486
+7ISx 8487
+IERvbmFsZA== 8488
+IE9sZA== 8489
+IGR1c3Q= 8490
+IEpvc2U= 8491
+IGhlbQ== 8492
+IGluY3JlYXNlcw== 8493
+b3N0YQ== 8494
+IGR5aW5n 8495
+IFJpdmVy 8496
+IG1vaXN0 8497
+0YLQvtCy 8498
+YXJlcw== 8499
+IGRpc2NpcGw= 8500
+cmFpdA== 8501
+IEhhcw== 8502
+eWdlbg== 8503
+IFRyZQ== 8504
+IOu0 8505
+IGxhbmd1YWdlcw== 8506
+IEhlbg== 8507
+IDM2 8508
+IERpc25leQ== 8509
+aW50cw== 8510
+IGFsZ28= 8511
+IGZvb2Rz 8512
+IHNldHVw 8513
+bGFu 8514
+IGVmZmVjdGl2ZWx5 8515
+IHdoZXJldmVy 8516
+IHVudGVy 8517
+Zm9ybWF0aW9u 8518
+IGhpdHM= 8519
+IHByaW5jaXBsZQ== 8520
+IHRhc3Rlcw== 8521
+p4g= 8522
+IHRyZWF0ZWQ= 8523
+IHJlc29sdXRpb24= 8524
+IHByaXZpbGU= 8525
+IElQ 8526
+67A= 8527
+IHRlcnJpdA== 8528
+IHBvd2Vycw== 8529
+IO2D 8530
+IFZpY3Q= 8531
+IGJvdGhlcg== 8532
+IENoYWly 8533
+IG11c2NsZQ== 8534
+IHNhbGU= 8535
+IGRlY2VudA== 8536
+IGNvdXA= 8537
+IFNxdQ== 8538
+IGNvYXN0 8539
+IHJvZA== 8540
+IEZyYW5j 8541
+IGJhdGhyb29t 8542
+IHNob3BwaW5n 8543
+INC80L7QttC10YI= 8544
+IGnFnw== 8545
+IFN0YXk= 8546
+Z3JhZGU= 8547
+IGZvcm1lZA== 8548
+IGJhxZ8= 8549
+IGJyaWxs 8550
+am91cg== 8551
+7ZY= 8552
+d2ll 8553
+aWNhdGU= 8554
+IOKAi+KAiw== 8555
+IE5vcm0= 8556
+4KU= 8557
+IG1haW5seQ== 8558
+IFNwYWNl 8559
+IHRyZW1lbmQ= 8560
+aXRp 8561
+4K61 8562
+VVQ= 8563
+TXVzaWM= 8564
+IEZlYnJ1YXJ5 8565
+IGNvbnRyYXN0 8566
+ZXN0aW5n 8567
+IM60 8568
+aW5naW5n 8569
+INmG 8570
+c3Nlbg== 8571
+IEhvbWU= 8572
+IHNoZWxs 8573
+IEhheQ== 8574
+IGFsbGVy 8575
+IEFw 8576
+IFdlc3Rlcm4= 8577
+IFdvcmQ= 8578
+IFBMQVk= 8579
+IOuF 8580
+IEFxdQ== 8581
+IGVudHJ5 8582
+IGxhdW5jaGVk 8583
+IE1lbQ== 8584
+IFBvdXI= 8585
+IHp3ZQ== 8586
+IFNvbWVvbmU= 8587
+aW5nZQ== 8588
+IFByb2I= 8589
+bWJsZQ== 8590
+IFJlbA== 8591
+dXJ1 8592
+IHJoeQ== 8593
+IGdpZw== 8594
+IGVuZ2FnZW1lbnQ= 8595
+w7zFnw== 8596
+IG9mZmVyaW5n 8597
+d2hlbA== 8598
+IGFjdG9y 8599
+QVBQ 8600
+d2VzdA== 8601
+IFJveQ== 8602
+IHJldHVybmVk 8603
+IHNpbHZlcg== 8604
+cmF0aW5n 8605
+IGVzdGFy 8606
+IHNrZQ== 8607
+IHRp 8608
+aWNhdGlvbg== 8609
+IGFubm95 8610
+IGRlZXBseQ== 8611
+7Jqp 8612
+IG5hdMO8cmxpY2g= 8613
+RUxM 8614
+IENhdGg= 8615
+IHJhaWw= 8616
+0L3QvtCy 8617
+IHByYXllcg== 8618
+Y29s 8619
+R0I= 8620
+INCi0LDQug== 8621
+IGdsYQ== 8622
+IFdhdGVy 8623
+0Y/RgtGM 8624
+IE5vbg== 8625
+w7R0 8626
+YWdlcnM= 8627
+IGh1Zw== 8628
+IGRvY3RvcnM= 8629
+YW5jaW5n 8630
+IFRhbGs= 8631
+emluZw== 8632
+IGhhZG4= 8633
+IGx1aQ== 8634
+IGF0w6k= 8635
+IOq3uOumrOqzoA== 8636
+6rmM7KeA 8637
+aWNp 8638
+IGluY29ycG9y 8639
+IERp 8640
+emls 8641
+YW55YQ== 8642
+qoU= 8643
+IMK7 8644
+MzU= 8645
+IGJlZXI= 8646
+IGJlYXVjb3Vw 8647
+IE1D 8648
+IGVhcnM= 8649
+b2dlbg== 8650
+IFF1ZXN0 8651
+ZWRh 8652
+IFNhdHVyZGF5 8653
+IGZhbGxz 8654
+c3Rvbg== 8655
+Ymxlcw== 8656
+IHRodXM= 8657
+IOuEpA== 8658
+4LmE 8659
+IHRoZXJt 8660
+IGRpdmVyc2l0eQ== 8661
+IHNveQ== 8662
+YXp1 8663
+aW1w 8664
+IHRlbGV2aXNpb24= 8665
+INep15w= 8666
+IHd1cg== 8667
+IGVkZ2Vz 8668
+IGxlc3NvbnM= 8669
+IEF1ZA== 8670
+dm9pcg== 8671
+YW1lbnRv 8672
+IGV4cGxhaW5lZA== 8673
+INC+0L3QsA== 8674
+IHRlbXBz 8675
+z44= 8676
+VGhleQ== 8677
+IHN1cnByaXNpbmc= 8678
+0LDQvdC40Y8= 8679
+IERyYWc= 8680
+IENsZQ== 8681
+IG5hbQ== 8682
+INC70Y7QtA== 8683
+IGhhcmR3YXJl 8684
+IHRodW1icw== 8685
+IM66zrHOuQ== 8686
+IFRvcA== 8687
+IMOl 8688
+6Zk= 8689
+15XXqA== 8690
+IOq3uOuemOyEnA== 8691
+IEJ1ZGQ= 8692
+dGhlcm4= 8693
+IGludGVyZXN0cw== 8694
+2LA= 8695
+IGRldmVsb3BlcnM= 8696
+IGhpdHRpbmc= 8697
+IG9wcG9zZWQ= 8698
+IGhlYXJ0cw== 8699
+IEFuZHJvaWQ= 8700
+IEhhbmQ= 8701
+IHJlcHJlc2VudHM= 8702
+Z2xpY2g= 8703
+7Yq4 8704
+IDMy 8705
+IGRvbWlu 8706
+IEFubg== 8707
+IMOpdMOp 8708
+IHpvb20= 8709
+IGt0w7NyZQ== 8710
+IGFkdWx0cw== 8711
+IG9yZGVyZWQ= 8712
+IHBpY2tpbmc= 8713
+IEhvbmc= 8714
+IGZpbG1pbmc= 8715
+IHNlZWQ= 8716
+IEFU 8717
+IGNhbGN1bGF0ZQ== 8718
+INC60L7Qs9C00LA= 8719
+IE9z 8720
+aWNpdA== 8721
+IHJlbWFpbmluZw== 8722
+IHNlZ3U= 8723
+w7s= 8724
+IOyYpOuKmA== 8725
+IGFycml2ZQ== 8726
+IGNvbmdy 8727
+IGdyYW5kZQ== 8728
+IGhlYWx0aGNhcmU= 8729
+INC80L7QttC90L4= 8730
+U0E= 8731
+ZXN0ZQ== 8732
+IGF3YXJlbmVzcw== 8733
+IHNxdWFyZWQ= 8734
+eHR1cmU= 8735
+IEJlaW5n 8736
+IHNvbGRpZXJz 8737
+0YPQsQ== 8738
+IHJldm9sdXRpb24= 8739
+IHRyYWluZWQ= 8740
+ZW5kZW4= 8741
+6LA= 8742
+IGRhbmNpbmc= 8743
+IGluc3RhbGxlZA== 8744
+cHJpc2U= 8745
+IHZldGVy 8746
+IG1lbm9z 8747
+bmVsbA== 8748
+IEJyb3RoZXI= 8749
+IG51bg== 8750
+IGltcG9ydGFudGx5 8751
+YWxsZWQ= 8752
+aWHFgg== 8753
+YWJsZWQ= 8754
+IFN5c3RlbQ== 8755
+IFZvbA== 8756
+IGVsZA== 8757
+IGVtb3Rpb24= 8758
+aWNhbg== 8759
+IEJhbms= 8760
+aWtlcw== 8761
+IHZsb2c= 8762
+INCy0L7Qtw== 8763
+IHB1ZWRl 8764
+7Jik 8765
+IHRlZW4= 8766
+IHNldmVyZQ== 8767
+JSw= 8768
+IGNsZWFuaW5n 8769
+esSF 8770
+l5A= 8771
+IFRocm91Z2g= 8772
+IFNldA== 8773
+RVA= 8774
+Ij8= 8775
+IE1vdGhlcg== 8776
+IGZpZ3VyZWQ= 8777
+IG11ZA== 8778
+INGW 8779
+IE9mZmljZQ== 8780
+IHJhdw== 8781
+IGRlc3Ryb3llZA== 8782
+ZW50YQ== 8783
+IGFnZ3Jlc3M= 8784
+INC+0YE= 8785
+IOuqqOs= 8786
+w6TDpA== 8787
+IEFS 8788
+IGNvcnJlY3RseQ== 8789
+IHN0aXI= 8790
+IGV4dHJhY3Q= 8791
+IHZlaGljbGVz 8792
+IFJ1bg== 8793
+INCy0YDQtdC8 8794
+IHBhcmFsbGVs 8795
+IGxhZw== 8796
+anU= 8797
+IGRhcmU= 8798
+IE1vdA== 8799
+b25v 8800
+IGJlaW5ncw== 8801
+IHN0cm8= 8802
+IGV4Y3VzZQ== 8803
+IGFscGhh 8804
+IGFza3M= 8805
+IHBvY2tldA== 8806
+Li4uPw== 8807
+IGtpdGE= 8808
+w7xt 8809
+IGFwcGVhcmFuY2U= 8810
+b3JkYW4= 8811
+IGluc2VydA== 8812
+INC90LDRhw== 8813
+m2k= 8814
+IHRlbXBv 8815
+IGZhY2lsaXR5 8816
+IHZpc2libGU= 8817
+5ZI= 8818
+IFNjaWVuY2U= 8819
+dXJvcw== 8820
+INmB2Yo= 8821
+IFZhbg== 8822
+IHRlbnNpb24= 8823
+IO2VoA== 8824
+IGRlbGl2ZXJ5 8825
+IHN0aW0= 8826
+IHN1cnZleQ== 8827
+IEdyYQ== 8828
+IGJvbA== 8829
+5qA= 8830
+IHdlaXRlcg== 8831
+w59lbg== 8832
+IHByb2NlZWQ= 8833
+IGltcHJlc3NpdmU= 8834
+IFZvYw== 8835
+aW91c2x5 8836
+INC00LA= 8837
+aGFsZQ== 8838
+b2No 8839
+IGdsdWU= 8840
+cGhldA== 8841
+Y29udA== 8842
+IGZpdHM= 8843
+IGJveGVz 8844
+IGNvbnRyb2xz 8845
+IENoaWxk 8846
+IHNjZW5hcmlv 8847
+IHRyb3A= 8848
+IHByb2Nlc3Npbmc= 8849
+INGC0L7Qu9GM0LrQvg== 8850
+IGJpcmRz 8851
+IENoaWM= 8852
+INC90LDQvw== 8853
+IDIwMTM= 8854
+IG3DvHNzZW4= 8855
+IEphZw== 8856
+IHPEhQ== 8857
+IHBlcmNl 8858
+cmVo 8859
+IEZvcmU= 8860
+IGNvbmZ1c2Vk 8861
+YWlyZQ== 8862
+IGFjY29tcGxpc2g= 8863
+IGNhc2E= 8864
+Y2xvY2s= 8865
+IGluZmx1ZW4= 8866
+IFJP 8867
+IGJvbmU= 8868
+aWNpYW4= 8869
+IFND 8870
+IHN0cmF0ZWdpZXM= 8871
+Z2g= 8872
+0LTRgw== 8873
+IGl0dQ== 8874
+IHBlcnNvbmFsaXR5 8875
+IGJhcmR6bw== 8876
+IGFjY2VwdGVk 8877
+IHN0b20= 8878
+aWV2 8879
+IEhpc3Q= 8880
+IEF1cw== 8881
+IOuwlOs= 8882
+QVRPUg== 8883
+b2ly 8884
+IG1hZ2F6 8885
+IGV4cGxhbg== 8886
+IGNvcm4= 8887
+IGlscw== 8888
+IGNpcmN1aXQ= 8889
+IGdheQ== 8890
+aG9w 8891
+IGVxdWl2YWw= 8892
+IGRpZXNlcg== 8893
+ZXJ2ZXM= 8894
+Y29tZXM= 8895
+a2xpY2g= 8896
+IOuVjOs= 8897
+YWJldA== 8898
+IGV4aGE= 8899
+IG1hbm5lcg== 8900
+IOKZquKZqg== 8901
+w6lj 8902
+w6Rs 8903
+IGNvbmZpcm0= 8904
+IGVudGVyZWQ= 8905
+ZW1wbG8= 8906
+IEZhcg== 8907
+IG/DuQ== 8908
+ZXNzaW9ucw== 8909
+IG51cnM= 8910
+IGVudMOjbw== 8911
+IGFiYW5kb24= 8912
+bGlmZQ== 8913
+IHdpcw== 8914
+TmFycmF0b3I= 8915
+IOyWtA== 8916
+VGhlcmU= 8917
+IFJhbQ== 8918
+YXN0ZQ== 8919
+IGF0dHJpYg== 8920
+IEF5 8921
+IG1lc21v 8922
+IM69zrE= 8923
+6as= 8924
+ZW5zZXM= 8925
+IGNyb3A= 8926
+INC30LTQtdGB0Yw= 8927
+IFVudGls 8928
+c3RlaW4= 8929
+IG92ZW4= 8930
+IHN1c3BlY3Q= 8931
+aGV0 8932
+IHB1aXM= 8933
+IGNhcnJpZWQ= 8934
+w6ln 8935
+IERldg== 8936
+ZW1z 8937
+cmVlbnM= 8938
+YmVycnk= 8939
+IHRlbXBs 8940
+IEJpdA== 8941
+IHZhcmlhYmxlcw== 8942
+IG92ZXJ3aGVs 8943
+zrzOtQ== 8944
+IGluaXRpYWxseQ== 8945
+7JWY 8946
+b3RoaW5n 8947
+0LXRgtGM 8948
+IEhpbGw= 8949
+IGRlcGFydA== 8950
+IG15c3Q= 8951
+YXp6 8952
+IGZsdWlk 8953
+IERD 8954
+IGNsaW5pY2Fs 8955
+IFJ5YW4= 8956
+IEZsb3JpZGE= 8957
+IFRhaw== 8958
+IGFueGlldHk= 8959
+YnJv 8960
+IGNpcmN1bXN0YW5jZXM= 8961
+INmD 8962
+IGV4aXN0ZW5jZQ== 8963
+IHRvbmc= 8964
+IDIwMTI= 8965
+IFNlY3JldGFyeQ== 8966
+IHNwaWN5 8967
+IFso 8968
+IFdpdGhvdXQ= 8969
+IGZhY3Rz 8970
+IHRvbnM= 8971
+QXBw 8972
+IFN0YW5k 8973
+IGxpZXM= 8974
+IEFE 8975
+d2lu 8976
+z4TOtQ== 8977
+YXBwbGF1c2U= 8978
+SVA= 8979
+c3Rh 8980
+IFN1cA== 8981
+cGhvbmVz 8982
+npE= 8983
+cGll 8984
+IFBvdA== 8985
+IE5P 8986
+INee 8987
+INCU0LA= 8988
+aWNhcw== 8989
+IEly 8990
+IHB1c2hlZA== 8991
+IHVuY2xl 8992
+INmF2YY= 8993
+IGxvbg== 8994
+IHByaW5jaXBsZXM= 8995
+IEludGVybmF0aW9uYWw= 8996
+IMOW 8997
+xb4= 8998
+IHNheWE= 8999
+IOqzoA== 9000
+IHJpYg== 9001
+IHBhc3Rl 9002
+IHdhcm5pbmc= 9003
+IG11c2ljYWw= 9004
+IGFncmVlZA== 9005
+0L7RgNC8 9006
+IGdhcmxpYw== 9007
+IG94eWdlbg== 9008
+7JiI 9009
+QWw= 9010
+IOunng== 9011
+ZWxpbmVz 9012
+TEFVU0U= 9013
+Z3lwdA== 9014
+R0U= 9015
+Y2tlcg== 9016
+dHU= 9017
+IHNoZWw= 9018
+IHN0YXllZA== 9019
+INCz0L7QtA== 9020
+IGxhcHQ= 9021
+IE1hcnRpbg== 9022
+IGludml0ZWQ= 9023
+IGNvbmZpcg== 9024
+IGVtYmFycmFzcw== 9025
+YWNpb25lcw== 9026
+IENhbXA= 9027
+IGhvbGRz 9028
+YXh5 9029
+IGRpdmU= 9030
+dWNrbGVz 9031
+IGJvb3N0 9032
+IHfDvHI= 9033
+c3RhbA== 9034
+INGA0LDQsdC+0YI= 9035
+IGTDqWM= 9036
+IG9mZmljZXJz 9037
+IOyVhOs= 9038
+b2xvZ2lzdA== 9039
+157X 9040
+IHNlZWRz 9041
+IGJ1ZmY= 9042
+IHVwZGF0ZXM= 9043
+ZGVk 9044
+IGZyaWVuZGx5 9045
+IGNvdW5jaWw= 9046
+IFByb2JhYmx5 9047
+IHBpYW5v 9048
+IHJlZHVjZWQ= 9049
+z4TOsQ== 9050
+IGF1dGhlbnQ= 9051
+IGV4cGxvcw== 9052
+cGFzcw== 9053
+IEhpdA== 9054
+anVk 9055
+IE5hdg== 9056
+b21p 9057
+IGNvbW1pc3Npb24= 9058
+IGd5bQ== 9059
+0J8= 9060
+IHBvbg== 9061
+0YDQvtGB 9062
+IGludGVyZmFjZQ== 9063
+IHN0cnVjdHVyZXM= 9064
+IEplbg== 9065
+IHlvaw== 9066
+IG1ldQ== 9067
+7KeA66eM 9068
+bmVk 9069
+IFdpZQ== 9070
+IGlkZW50aWZpZWQ= 9071
+IGNoYW5uZWxz 9072
+xLFuYQ== 9073
+IHBoaWxvc29w 9074
+a2VpdA== 9075
+IGJpdHM= 9076
+ZW50ZXM= 9077
+IGZyYWc= 9078
+IEtpbmQ= 9079
+IGRvY2g= 9080
+IHNuZQ== 9081
+aW5kaW5n 9082
+IEpld2lzaA== 9083
+0L7RgNC+0Yg= 9084
+IGZ1ZQ== 9085
+IO2P 9086
+IG3EsQ== 9087
+IGtlaW5l 9088
+IGxvY2F0aW9ucw== 9089
+IG1ldGVy 9090
+IGJlZWY= 9091
+IG1hbmlw 9092
+IHNvbm8= 9093
+enpsZQ== 9094
+57Y= 9095
+IHBlcw== 9096
+IGhvcnJpYmxl 9097
+IFNu 9098
+IGZhY3Rvcnk= 9099
+IGZpZnRo 9100
+IGNvb2tlZA== 9101
+IG1vb2Q= 9102
+IHZlbG9jaXR5 9103
+IG9ibGln 9104
+IGNvbm5lY3Rpb25z 9105
+xJ9pbQ== 9106
+IOqztQ== 9107
+IGRvbWFpbg== 9108
+IGFwcGx5aW5n 9109
+IHJpZGlj 9110
+IGNlbA== 9111
+IGNoaWxkaG9vZA== 9112
+IFRlc3Q= 9113
+cmF0dWxhdGlvbnM= 9114
+IFZpcmdpbg== 9115
+IENFTw== 9116
+INC/0Ls= 9117
+IGFsZ29yaXRobQ== 9118
+IGludGVyYWN0aW9u 9119
+YWdh 9120
+IGtpZGRpbmc= 9121
+IHRvbWF0bw== 9122
+IGNvbnRpbnVpbmc= 9123
+bGFk 9124
+c3RyZWFt 9125
+0L7QttC1 9126
+IOyYgQ== 9127
+0LXQu9C+0LI= 9128
+QkE= 9129
+IG5hcA== 9130
+IE5vYm9keQ== 9131
+IHRodW1i 9132
+IE9O 9133
+IHJ1c2g= 9134
+RFI= 9135
+IHN0cmlrZQ== 9136
+IGV2b2x1dGlvbg== 9137
+aWNoZQ== 9138
+IOy7 9139
+IOq3uOufsA== 9140
+2KfYqg== 9141
+IGFr 9142
+IHdpbmRvd3M= 9143
+IGV4Y2Vzcw== 9144
+IGNvbmNsdWQ= 9145
+IGVwaXNvZGVz 9146
+IHN0cnVnZ2xpbmc= 9147
+IERhdA== 9148
+nbzr 9149
+IGtleXM= 9150
+IGtsZQ== 9151
+IHZlZ2V0YWJsZXM= 9152
+eXN0ZW0= 9153
+w6puY2lh 9154
+cmljaw== 9155
+IHJldmVudWU= 9156
+IEhhdw== 9157
+IGxhbg== 9158
+YW50ZXM= 9159
+aW5peg== 9160
+0LjRgdGC 9161
+IHN1cA== 9162
+qbTshJw= 9163
+IG1vbWVudG8= 9164
+aXN0bw== 9165
+IEVyaWM= 9166
+aW9ycw== 9167
+YmFq 9168
+IGludHJvZHVjdGlvbg== 9169
+aXJ0eQ== 9170
+IGRlY2s= 9171
+cmVhbA== 9172
+IE1hcmlv 9173
+IGxvdmluZw== 9174
+4LiU 9175
+IHN1cHBvcnRz 9176
+0LjRh9C10YE= 9177
+IGluY2lkZW50 9178
+dXRjaA== 9179
+dXY= 9180
+IGJvb20= 9181
+0LXRgNGM 9182
+INC90YPQtg== 9183
+IGNvbWJpbmVk 9184
+IExpbg== 9185
+MjM= 9186
+b3JhdGlvbg== 9187
+bnRl 9188
+IHNvcg== 9189
+IGRpcnR5 9190
+aWZlcg== 9191
+IEFQSQ== 9192
+IGNvbGxhYm9yYXRpb24= 9193
+aWFibGU= 9194
+IHByaW9yaXR5 9195
+IEFsZQ== 9196
+IFByaW4= 9197
+IEV4Yw== 9198
+IHZhaXM= 9199
+IGdyYW4= 9200
+IHN0b29k 9201
+IHJlY3J1 9202
+IE11cg== 9203
+ZXNpcw== 9204
+YXNw 9205
+IGxvY2tlZA== 9206
+IFBlcm8= 9207
+IEhhcnJ5 9208
+IHR1ZG8= 9209
+IFRlbg== 9210
+2LU= 9211
+Zm9yY2VtZW50 9212
+KSk= 9213
+b2xp 9214
+IOyduA== 9215
+IHN1cHBs 9216
+IGNyb2NoZXQ= 9217
+IHBoZW5vbWVu 9218
+bG9z 9219
+YXRoYW4= 9220
+IFN1cHA= 9221
+IGVtYnI= 9222
+IGJlaw== 9223
+IFplaXQ= 9224
+Z2VuZA== 9225
+IHJvb21z 9226
+qr0= 9227
+VkVS 9228
+bnljaA== 9229
+IGRvbnQ= 9230
+IGNhYmlu 9231
+IGFjY291bnRz 9232
+IEVhc3Rlcg== 9233
+15XXnA== 9234
+IGZhY2lsaXRpZXM= 9235
+YmVpdA== 9236
+IGxpbmtlZA== 9237
+IEdlcg== 9238
+IHByb2dyYW1taW5n 9239
+b3RpYw== 9240
+IGRyYW1h 9241
+IDI5 9242
+IO2B 9243
+IGluc3RydWN0aW9ucw== 9244
+IGltcG9ydGFudGU= 9245
+IHdhdmVz 9246
+IGFpZA== 9247
+Q0s= 9248
+6rKg7Iq164uI64uk 9249
+IE1pcg== 9250
+IHRpZA== 9251
+IEhvdA== 9252
+IGFycmFuZ2U= 9253
+IEJhYnk= 9254
+IHRhY2s= 9255
+INGJ 9256
+7Z0= 9257
+IHZlcnRpY2Fs 9258
+IGhlZWw= 9259
+IEN1dA== 9260
+IG5hcnJvdw== 9261
+IEFyaQ== 9262
+IGtuZWU= 9263
+IEJyYXppbA== 9264
+IEZpdmU= 9265
+IHBvc3RlZA== 9266
+VUQ= 9267
+IHJvbGxpbmc= 9268
+zrg= 9269
+IGNsYWltcw== 9270
+IElucw== 9271
+T0s= 9272
+dWlu 9273
+IEluc3RpdHV0ZQ== 9274
+IGludGVuc2U= 9275
+aWFy 9276
+IE5pY2s= 9277
+IHNlbGVjdGlvbg== 9278
+IGxlZ2VuZA== 9279
+IHVuaWZvcm0= 9280
+w7pu 9281
+IHN0dWRpZWQ= 9282
+INCl 9283
+IOyVjA== 9284
+Z2Vycw== 9285
+IGRvdw== 9286
+IENT 9287
+IGFnZW50 9288
+IEF1Zg== 9289
+IGpvZw== 9290
+IGFpcmNyYWZ0 9291
+64uY 9292
+IHZpdA== 9293
+dWxz 9294
+IHNlZ21lbnQ= 9295
+IG9yZGVycw== 9296
+IENsYXNz 9297
+IGFwb2xvZw== 9298
+IHBsYXRmb3Jtcw== 9299
+IG15dGg= 9300
+0LDQttC1 9301
+IEJvb2s= 9302
+IHNlbnNpdGl2ZQ== 9303
+INC/0L7Qu9GD0Yc= 9304
+IGRhbWl0 9305
+IENhcHQ= 9306
+c29sZQ== 9307
+IGFyY2hpdGVjdHVyZQ== 9308
+IFdpbA== 9309
+IGluaGVy 9310
+Y2Fw 9311
+IEJveQ== 9312
+IGJ1cm5pbmc= 9313
+IFB1YmxpYw== 9314
+IGJlaGFsZg== 9315
+IOychA== 9316
+IHRoZXJhcHk= 9317
+dWJzY3JpYmU= 9318
+IGludm9sdmU= 9319
+IGV4cG9zZWQ= 9320
+acWf 9321
+w6p0cmU= 9322
+IHRvaWw= 9323
+IHNpbms= 9324
+cGly 9325
+5YM= 9326
+SUk= 9327
+IGFnZW5jaWVz 9328
+IHE= 9329
+IERvd24= 9330
+YXVm 9331
+IOunmw== 9332
+IHByb2M= 9333
+b2tlZA== 9334
+IHN0b3Jlcw== 9335
+cG93ZXI= 9336
+IFRoaW5ncw== 9337
+IGFjY2Vzc2libGU= 9338
+IHRlxbw= 9339
+IEVkdWM= 9340
+IHNwZWFrZXJz 9341
+IFNhcmFo 9342
+lJQ= 9343
+IGRpdmVyc2U= 9344
+7J6W 9345
+IFVsdA== 9346
+w6B5 9347
+IENoaWNhZ28= 9348
+U2hl 9349
+YXRoeQ== 9350
+IGVuYWJsZQ== 9351
+IHRyYWRpbmc= 9352
+IG11c2NsZXM= 9353
+5ps= 9354
+IENhcmU= 9355
+IFVy 9356
+IFNjb3Q= 9357
+IHBocmFzZQ== 9358
+RU5U 9359
+IOqyvQ== 9360
+IEphYw== 9361
+cGFjaw== 9362
+IGRldGVybWluZWQ= 9363
+w7xuZA== 9364
+IG5lZ290aQ== 9365
+IHZpZMOp 9366
+IHJveg== 9367
+IFN1cw== 9368
+IHJpZGluZw== 9369
+aG1lbg== 9370
+IERlZg== 9371
+IENyZQ== 9372
+IFdhbGw= 9373
+aWdhbg== 9374
+IHNlbXByZQ== 9375
+0ZbQtA== 9376
+IGRyaXZlbg== 9377
+IGZvb3RhZ2U= 9378
+IGZvbmQ= 9379
+IFdheQ== 9380
+w6Rt 9381
+IE9iYW1h 9382
+IFNlcnZpY2U= 9383
+IDc1 9384
+IERhcms= 9385
+IOq3vOs= 9386
+IENhdA== 9387
+2Lc= 9388
+6Yw= 9389
+IGp1Zw== 9390
+IGV0d2Fz 9391
+IGJyZWF0aGluZw== 9392
+4buD 9393
+IFdlYg== 9394
+IGZvaXM= 9395
+IGxpZ2h0aW5n 9396
+IERB 9397
+IG9ic3Q= 9398
+IGxldXI= 9399
+IEVneXB0 9400
+IEFybXk= 9401
+aWNpZGU= 9402
+0LDRgtC4 9403
+IOuLpOs= 9404
+IGFwYXJ0bWVudA== 9405
+IGNoaWVm 9406
+IFdlZA== 9407
+IG5ldHdvcmtz 9408
+IGJhdHQ= 9409
+5rg= 9410
+IEx1Yw== 9411
+IG5pY2VseQ== 9412
+IHZlcmI= 9413
+4Li0 9414
+7LY= 9415
+b3NpdA== 9416
+IHJldmVhbGVk 9417
+IHRhdA== 9418
+IHRpZWQ= 9419
+4buB 9420
+IGFuaW1hdGlvbg== 9421
+IHJvbGVz 9422
+7Iqk7Q== 9423
+IHZlcnNpb25z 9424
+0YfQuNGC 9425
+IHRhc2tz 9426
+r7w= 9427
+IHJlc2M= 9428
+c2hl 9429
+IGxvb3Nl 9430
+IGPhuw== 9431
+IGNvaXNh 9432
+IGFsZXJ0 9433
+IG5pbg== 9434
+IFNBTQ== 9435
+IHRyYWJhag== 9436
+aXJ1cw== 9437
+VEg= 9438
+xqE= 9439
+b2dldGhlcg== 9440
+IFRhaQ== 9441
+IGZpZ3VyZXM= 9442
+INeQ16o= 9443
+IGNyZWVw 9444
+IGludmVzdGlnYXRpb24= 9445
+IHJlY29tbWVuZGVk 9446
+IEFr 9447
+IHJlc2lkZW50cw== 9448
+0YHRgtCy0L4= 9449
+c2VjdA== 9450
+0LDQvdC40LU= 9451
+IG1pbmRz 9452
+dWluZw== 9453
+5bE= 9454
+b3dpbmc= 9455
+IG5vZw== 9456
+IHJheg== 9457
+2KfYsQ== 9458
+IHF1b3Q= 9459
+INC40YU= 9460
+IHNlZA== 9461
+IGFwcGxhdWQ= 9462
+IGNvdmVyYWdl 9463
+dm9s 9464
+IFJlYw== 9465
+xJs= 9466
+INCy0YHRkQ== 9467
+IGV4cGVjdGluZw== 9468
+IG9wZXJhdGU= 9469
+IGNvbnZlcg== 9470
+IFN1Y2g= 9471
+IFJhZA== 9472
+IFByaW1l 9473
+IHB1cnBsZQ== 9474
+IDIwMTA= 9475
+IOyViOs= 9476
+IGV4ZW0= 9477
+IGNvbXBhcmlzb24= 9478
+IGxhbmRzY2FwZQ== 9479
+IG5laXRoZXI= 9480
+IEVo 9481
+64U= 9482
+IHN0b21hY2g= 9483
+IGNhc28= 9484
+w6Ju 9485
+IHBlcmNlbnRhZ2U= 9486
+d2ljaA== 9487
+aXRhbg== 9488
+IGts 9489
+IGV4cGFucw== 9490
+INin2YTZhQ== 9491
+IG9jY2FzaW9u 9492
+cmV0cw== 9493
+aWduaW5n 9494
+IGtpbG9tZXQ= 9495
+IGd1c3Q= 9496
+Y3pl 9497
+IHVyYmFu 9498
+IGFncmlj 9499
+IGFzc2lzdGFuY2U= 9500
+IHN1cmY= 9501
+aW1ldGVy 9502
+IHBldGl0 9503
+IGFzc2Vzc21lbnQ= 9504
+IG1hbnVhbA== 9505
+IGltcHJvdmVk 9506
+YnN0 9507
+IHBpbG90 9508
+IE1hcnM= 9509
+IHZpZWxl 9510
+IENvbmdyYXR1bGF0aW9ucw== 9511
+IGFyZ3Vl 9512
+IHdpcmtsaWNo 9513
+IGNsaWNraW5n 9514
+UklT 9515
+IGxvZ28= 9516
+IG91dGNvbWU= 9517
+IENlbnRyYWw= 9518
+IEpp 9519
+IGdhbWluZw== 9520
+IGNvbnNlcnY= 9521
+IHVsdGltYXRl 9522
+IFZl 9523
+IFdhbA== 9524
+YXJv 9525
+c3Rhcg== 9526
+IGNvbnN1bWVy 9527
+IHRyYXZlbGluZw== 9528
+aW1lcg== 9529
+IDEwMDA= 9530
+0L3QuNC6 9531
+IHByaW5jaXBhbA== 9532
+IHNha2U= 9533
+0ZbQsg== 9534
+IG1vdXNl 9535
+YXJpb3M= 9536
+IHJlbGF0aW9u 9537
+IG1vcmFs 9538
+IHRoZXRh 9539
+d3k= 9540
+IGthbQ== 9541
+IGVpZw== 9542
+IGdvbGRlbg== 9543
+16Q= 9544
+IGFtcGw= 9545
+IHZ1 9546
+c3Ry 9547
+cm9ycw== 9548
+IHdoZXJlYXM= 9549
+aXphcg== 9550
+IGFkbWluaXN0cg== 9551
+IG7Ds3M= 9552
+IFByZXQ= 9553
+IEFjYWQ= 9554
+YW5naW5n 9555
+YmFnZQ== 9556
+w6l0YWl0 9557
+dXJp 9558
+IGhlYWxpbmc= 9559
+IHRpcG8= 9560
+IG1hcnJ5 9561
+0YPQsg== 9562
+IGVzdGF0ZQ== 9563
+dXU= 9564
+7JQ= 9565
+IEJlc3Q= 9566
+IHN1ZmZlcg== 9567
+IDE5NA== 9568
+IGJhY3Rlcg== 9569
+INCS0L7Rgg== 9570
+IE9t 9571
+IGR6 9572
+6LY= 9573
+7KY= 9574
+IG9sZHU= 9575
+IHBoeXNpY2FsbHk= 9576
+IExvdWlz 9577
+ZXRpbWU= 9578
+Y2FzZQ== 9579
+IHBpZXI= 9580
+7KCc 9581
+dmFu 9582
+IGFzc2V0cw== 9583
+IOuB 9584
+dmV0 9585
+0LjQsQ== 9586
+IHByb21vdGU= 9587
+IGNvbmdyYXQ= 9588
+dWVzZGF5 9589
+IGR1dHk= 9590
+IFZpZGVv 9591
+2K4= 9592
+IEpvaG5zb24= 9593
+a3Rpb24= 9594
+IFZvY8Oq 9595
+44CL 9596
+IGFp 9597
+IGFubnVhbA== 9598
+IEpvc2g= 9599
+aXR0ZQ== 9600
+IEpP 9601
+IHNsaWRlcw== 9602
+IGFuYw== 9603
+uYQ= 9604
+dGVlbg== 9605
+IGNhcnJ5aW5n 9606
+bHltcA== 9607
+ZWRpbmc= 9608
+IGZybw== 9609
+IGFkbWl0 9610
+cmVy 9611
+IG9mZmljaWFscw== 9612
+cHRpb25z 9613
+Z2Fs 9614
+IGhldXRl 9615
+IHZvaWNlcw== 9616
+IGJhbGxz 9617
+IGd1ZXN0cw== 9618
+YW5uZXI= 9619
+44CK 9620
+aXNoZXI= 9621
+IE1S 9622
+IFJpY2hhcmQ= 9623
+IHJvdWdobHk= 9624
+bMSx 9625
+IHZpY3Rvcnk= 9626
+IGFsZ3Vu 9627
+IE1ycw== 9628
+xZtjaWU= 9629
+IFVr 9630
+IGV5 9631
+IFdhcnM= 9632
+IGJyYW5jaA== 9633
+YXN0eQ== 9634
+IFByaW5jZQ== 9635
+0LXQutGC 9636
+IHJlY29nbml6ZWQ= 9637
+IG11Y2hv 9638
+IExlYXZl 9639
+Y29ubmVjdA== 9640
+IHNwZWxs 9641
+IHRvdWNoZWQ= 9642
+IGFnZW5kYQ== 9643
+6L4= 9644
+YXJpYQ== 9645
+IEtvbmc= 9646
+b2dh 9647
+IHBhcmFtZXRlcnM= 9648
+64uk6w== 9649
+IGluc3RhbnQ= 9650
+IHJlZ3Vs 9651
+Q29u 9652
+IGVkaXRvcg== 9653
+IERpc3Q= 9654
+IHVua25vd24= 9655
+IHB1bmlzaA== 9656
+IGV4cGVjdGF0aW9ucw== 9657
+IGNyeXB0 9658
+IGRpdmlkZQ== 9659
+YWtlbg== 9660
+IE1lc3M= 9661
+IGh5cGVy 9662
+IFByb2plY3Q= 9663
+aWtp 9664
+IGFnb3Jh 9665
+IGFidXNl 9666
+IGNhdXNpbmc= 9667
+IGNvbnZpbg== 9668
+IExB 9669
+IGNvbmNlbnRyYXRpb24= 9670
+IGJyZWFrcw== 9671
+dXJlcg== 9672
+IGNvbmNyZXRl 9673
+IGZvcm1hbA== 9674
+IGJldGE= 9675
+aXRvcnM= 9676
+IENoYW1w 9677
+IGhlYWRpbmc= 9678
+IEJsbw== 9679
+IHByZW5k 9680
+IFNlbmF0ZQ== 9681
+IGFkdmVudHVyZQ== 9682
+b3Nv 9683
+IG9wZW5z 9684
+IFBMQVlJTkc= 9685
+IFNV 9686
+dXJlbg== 9687
+aWt0 9688
+INC70Y7QsQ== 9689
+IEZvbGxvdw== 9690
+IEJpZGVu 9691
+ZWxu 9692
+IFNreQ== 9693
+ZXRpbmc= 9694
+IEV4dA== 9695
+0L3Rg9GO 9696
+IOyZnA== 9697
+IHNocg== 9698
+ZWxsYQ== 9699
+IERpdg== 9700
+IHRyYW5zZm9ybWF0aW9u 9701
+IGhvdXNlaG9sZA== 9702
+ZXRyeQ== 9703
+6KE= 9704
+IERlc3A= 9705
+IGNvdXJhZ2U= 9706
+IHBhcmtpbmc= 9707
+IGV0dMOk 9708
+Y2Fs 9709
+bHlu 9710
+IGxhaWQ= 9711
+IHRyaWVz 9712
+aXJ0cw== 9713
+aWdh 9714
+IHJlY2FsbA== 9715
+aWZpZXI= 9716
+z4HOsQ== 9717
+IGFhbg== 9718
+IGJ1dHRvbnM= 9719
+IHJlYWNoaW5n 9720
+IOq3vOuNsA== 9721
+IHNwYXJr 9722
+IFNvY2lhbA== 9723
+INC10YnQtQ== 9724
+IGNhbmFs 9725
+IGNyaXRlcg== 9726
+IGt0w7NyeQ== 9727
+IHRlbmVtb3M= 9728
+gqw= 9729
+INC90LXRgg== 9730
+IHR1YmU= 9731
+YWNsZXM= 9732
+0LjRiA== 9733
+IGRlxJ9pbA== 9734
+IHN0YW1w 9735
+IGluZmw= 9736
+IGFob3Jh 9737
+IHRyYWls 9738
+IG1peHR1cmU= 9739
+IFJvbGw= 9740
+IHJvdXRpbmU= 9741
+IGNvdW50eQ== 9742
+IGVuam95aW5n 9743
+0L3QvtGB0YLRjA== 9744
+ZXJlcw== 9745
+IHB1cnBvc2Vz 9746
+IFNhbnRh 9747
+IGJyZWFzdA== 9748
+w6RuZw== 9749
+IHdyaXRlcg== 9750
+5Yw= 9751
+0YDQvg== 9752
+IG5lbQ== 9753
+aWNvcw== 9754
+0LDRgdGC 9755
+IGRldGFpbGVk 9756
+IHJldmVyc2U= 9757
+IFJlYWR5 9758
+IGRpc3RyYWN0 9759
+IEFsb3Jz 9760
+dXR0ZXI= 9761
+IGRlc2VydmU= 9762
+IFJvbg== 9763
+0L3QvtC8 9764
+IG9ic2Vydg== 9765
+IGxvZ2lj 9766
+IFB5 9767
+IEtldmlu 9768
+pbQ= 9769
+2YrZhg== 9770
+IHNrYQ== 9771
+IHRhY3Q= 9772
+IGhvbGlkYXk= 9773
+IGJ1bXA= 9774
+INC80L7Qsw== 9775
+IGRlaXg= 9776
+7YU= 9777
+IHdvcnNoaXA= 9778
+Q2w= 9779
+IHN1Y2s= 9780
+INGB0LXQsQ== 9781
+IGFwcGxhdXNl 9782
+IEVw 9783
+INC80L4= 9784
+IHBhdGNo 9785
+4bqt 9786
+IGxhZGllcw== 9787
+IGJyb2FkY2FzdA== 9788
+IGlsbGVn 9789
+IG5hcnJhdGl2ZQ== 9790
+b3NzYQ== 9791
+QVJSQVRPUg== 9792
+IHNhbmc= 9793
+IG1vdmVtZW50cw== 9794
+IHBhcnRuZXJzaGlw 9795
+IG9yZ2FuaXplZA== 9796
+IG5vZGU= 9797
+ZXN0eWxl 9798
+IE1lZw== 9799
+IGluZHVzdHJpYWw= 9800
+IGdvbA== 9801
+IGJvcmluZw== 9802
+IGN1dHM= 9803
+IHJlY29u 9804
+YXNh 9805
+IGltcHJlc3Npb24= 9806
+7Jq0 9807
+Z2ll 9808
+TUE= 9809
+hrU= 9810
+IGVkaXRpbmc= 9811
+cm9udA== 9812
+IGZvbGxvd3M= 9813
+IEl0YWxpYW4= 9814
+0YDQvtC0 9815
+IOqwmeydgA== 9816
+IOuwqQ== 9817
+IHBhcnRpY2xlcw== 9818
+IEJvYXJk 9819
+15nXqg== 9820
+anVu 9821
+cm9uaWM= 9822
+IGVq 9823
+IM+Ezrc= 9824
+15XXkw== 9825
+Y2lvbg== 9826
+aXR0eQ== 9827
+IFR1ZXNkYXk= 9828
+dW1lcw== 9829
+IFByb3Q= 9830
+ZWRlcg== 9831
+IHBlc3NvYXM= 9832
+INC90L7Qsg== 9833
+IHNraXA= 9834
+IG9iamVjdGl2ZQ== 9835
+w61hcw== 9836
+IGRlc2s= 9837
+IExvb2tz 9838
+dW5kZW4= 9839
+IHByaW1hcmlseQ== 9840
+aW1lbnRv 9841
+IHJlcG9ydGluZw== 9842
+IGhhY2U= 9843
+IGNoZWNrZWQ= 9844
+6Zg= 9845
+IOuztOs= 9846
+IHNtZWxscw== 9847
+IGFjdG9ycw== 9848
+IEFzaWE= 9849
+aWzDoA== 9850
+IHJlY2VpdmluZw== 9851
+IHRheGVz 9852
+IGdyYWNl 9853
+IGNvbXBldGl0aXZl 9854
+IGRpdmlzaW9u 9855
+IGVzcGVy 9856
+IHdoZWVscw== 9857
+IGtvbW10 9858
+IHRyZW1lbmRvdXM= 9859
+IGVzcGU= 9860
+Li4uKQ== 9861
+IOyehQ== 9862
+IGxpc3RlZA== 9863
+w6RsbA== 9864
+IHVudXM= 9865
+IEhvbGx5 9866
+IGd1aWRhbmNl 9867
+IGN1Yg== 9868
+IGludGVsbGVjdA== 9869
+INCx0YvQuw== 9870
+IHJlZ2FyZGxlc3M= 9871
+IFN0YW4= 9872
+IGNvbmNsdXNpb24= 9873
+YWNhxJ8= 9874
+IGxvbA== 9875
+IEJhdA== 9876
+IG1hbmlmZXN0 9877
+IENoaWVm 9878
+IHNoYW1l 9879
+IG91dGNvbWVz 9880
+IG1haWw= 9881
+IGt1cg== 9882
+zrnOug== 9883
+ZXR6 9884
+IHByZXBhcmluZw== 9885
+Mjc= 9886
+IFF1ZWVu 9887
+4K6z 9888
+IOu5hA== 9889
+IHRpc3M= 9890
+IGNvbnNjaW91c25lc3M= 9891
+IHBhbnRz 9892
+IG1lbHQ= 9893
+dWNodA== 9894
+aW5o 9895
+7JuM 9896
+IHZvdHJl 9897
+IG1vZHVsZQ== 9898
+b3d5 9899
+IG1vbnN0ZXI= 9900
+IOuG 9901
+IGVsZWN0cm9uaWM= 9902
+IGNlbnRyZQ== 9903
+IHN0b3Bz 9904
+IHRvdQ== 9905
+IOut 9906
+IGxhbWI= 9907
+IGNvbnNlcXVlbmNlcw== 9908
+IHN0cmF3 9909
+IGltcGVy 9910
+IGV4dGVuZA== 9911
+IGFuc3dlcmVk 9912
+IE1haA== 9913
+IExBVVJB 9914
+aWZ0aW5n 9915
+dWF0ZQ== 9916
+IFVTQg== 9917
+IEFuZHJldw== 9918
+IEZyZWQ= 9919
+IERF 9920
+IEdlb3Jn 9921
+57s= 9922
+w6xuaA== 9923
+IGRyYXdu 9924
+IGxpcHM= 9925
+Ymly 9926
+IG1heW9y 9927
+aW1p 9928
+IGVuY29yZQ== 9929
+Zm9ydGFibGU= 9930
+dXJzZGF5 9931
+IEZvcm0= 9932
+IGJsYW1l 9933
+IHNob3dlcg== 9934
+IGNvbnRhaW5lcg== 9935
+c3RlcnM= 9936
+dWRlcw== 9937
+IFRheQ== 9938
+4Lil 9939
+IOyYiA== 9940
+IHZvbQ== 9941
+IGJhc3M= 9942
+IExhYg== 9943
+aXNzYQ== 9944
+IGRpbWVuc2lvbg== 9945
+IGV4ZWN1dGl2ZQ== 9946
+IFJvbQ== 9947
+6rKM7JqU 9948
+IERvY3Rvcg== 9949
+IGRlbGl2ZXJlZA== 9950
+IGdhbmc= 9951
+IGNlcg== 9952
+IHBpdA== 9953
+ZWxp 9954
+IGV4dHJhb3Jk 9955
+amFy 9956
+IGRlcml2 9957
+IGlsbG5lc3M= 9958
+IGd1bnM= 9959
+IDIwMTE= 9960
+IGFpcnBvcnQ= 9961
+0JU= 9962
+IGF0dGl0dWRl 9963
+IGdyYXQ= 9964
+IFdy 9965
+IE5BUlJBVE9S 9966
+IOyalA== 9967
+IHJlbmV3 9968
+IGNvc2E= 9969
+IGNvbnRyb2xsZWQ= 9970
+b21teQ== 9971
+b25kcw== 9972
+IGVzZQ== 9973
+w6RjaA== 9974
+IHZlbmQ= 9975
+ZGFt 9976
+IGFyZ3U= 9977
+IGFjY2VsZXI= 9978
+IG5haWw= 9979
+aWVuZQ== 9980
+7IOd 9981
+IGVuY29udA== 9982
+ZXNlYXJjaA== 9983
+6aE= 9984
+IGdvb2Rz 9985
+IGZpc2hpbmc= 9986
+QVBQTEFVU0U= 9987
+IE5BUw== 9988
+ZWN0aW9u 9989
+IHRlbXBsZQ== 9990
+bGljaGU= 9991
+IGtleWJvYXJk 9992
+IGRlc2Rl 9993
+IGVkdWNhdGlvbmFs 9994
+IE5pZ2h0 9995
+MzM= 9996
+IGJyZWF0aGU= 9997
+bGljaGVu 9998
+dGht 9999
+acOocmU= 10000
+4Lia 10001
+bGFyxLE= 10002
+IGFsaQ== 10003
+IGNvbXBvcw== 10004
+IHNlbnNvcg== 10005
+IOu2gOs= 10006
+IG5ld3Nw 10007
+IEJ1bmQ= 10008
+IE1p 10009
+IHBlcmZvcm1pbmc= 10010
+IGRydW0= 10011
+QkU= 10012
+IHBvcms= 10013
+IGNvYWw= 10014
+ZW5nZXI= 10015
+IHJhbQ== 10016
+IOuyiA== 10017
+0LjRgNC+0LI= 10018
+IFBvcA== 10019
+IHBob25lcw== 10020
+IGZhY2ls 10021
+IHRyYWNrcw== 10022
+b250ZQ== 10023
+IG9yZ2FuaWM= 10024
+IGRpYWxvZ3Vl 10025
+IEhhdmluZw== 10026
+IFBvc3Q= 10027
+IHBheW1lbnQ= 10028
+IGFycmF5 10029
+IGludGVuZGVk 10030
+w7pz 10031
+IGJhcnM= 10032
+IHJldmlld3M= 10033
+bGFuZHM= 10034
+IGtpbmdkb20= 10035
+IHN0YWdlcw== 10036
+IG1vdW50YWlucw== 10037
+IGR1bg== 10038
+IGRlY2ly 10039
+xI0= 10040
+IGJhbmtz 10041
+IHRocm93aW5n 10042
+IOuquw== 10043
+IGFuZ2Vy 10044
+INGB0LXQudGH0LDRgQ== 10045
+IGRpc3R1cg== 10046
+IGh1bWFuaXR5 10047
+IGVsZXM= 10048
+IHNob3VsZGVycw== 10049
+IFBlcmZlY3Q= 10050
+IGZhbmN5 10051
+IGJyaWxsaWFudA== 10052
+IGluc3BpcmF0aW9u 10053
+aG1t 10054
+IGxpZA== 10055
+VUw= 10056
+IG3DpQ== 10057
+aW5kaQ== 10058
+6Ig= 10059
+IHNoaWVsZA== 10060
+IOyYpOs= 10061
+Q1Q= 10062
+YWdpbmU= 10063
+dWJlcg== 10064
+IEJS 10065
+IHF1ZXN0bw== 10066
+INC30LDQug== 10067
+IEtub3c= 10068
+IHRhbmc= 10069
+7ZWp64uI64uk 10070
+IGJhcmVseQ== 10071
+IFNF 10072
+IG1hcmdpbg== 10073
+cmVp 10074
+0LDRgtC10LvRjA== 10075
+IGNvbnRy 10076
+IHbDoA== 10077
+IGxlZ2l0 10078
+0Jg= 10079
+a2lucw== 10080
+0YDQtdC0 10081
+IEFzaA== 10082
+IGFkdmlz 10083
+IEdyZWVr 10084
+0YPQug== 10085
+IHNoYWtl 10086
+aWRhZGVz 10087
+0LDRgdGM 10088
+IGNvbnZlbnRpb24= 10089
+IGNvbnRlc3Q= 10090
+TVM= 10091
+IFllYXI= 10092
+IHJlcHJlc2VudGF0aW9u 10093
+aW5kZW4= 10094
+ZW5kYXI= 10095
+IHByb3N0 10096
+IEh1bWFu 10097
+IEN5 10098
+YW5nZWQ= 10099
+UEE= 10100
+IGF4aXM= 10101
+IHRoZW9yZQ== 10102
+YXR6 10103
+IO2VmOqzoA== 10104
+IGVscw== 10105
+IFJlc2VhcmNo 10106
+IGJlbmVmaWM= 10107
+IGRlbnNpdHk= 10108
+aW5kbw== 10109
+7Jy8 10110
+aW1kaQ== 10111
+IHJlc2VhcmNoZXJz 10112
+6rGw65Og 10113
+aWdocw== 10114
+ZGFu 10115
+IGRpY2U= 10116
+IG1hYXI= 10117
+IHN1Ym1pdA== 10118
+IGR1bWI= 10119
+IGJpag== 10120
+YXdheQ== 10121
+IFBhc3M= 10122
+IGV4dGVuc2lvbg== 10123
+IGNydXNo 10124
+IGNvdmVyaW5n 10125
+ZWRp 10126
+Ym9ybg== 10127
+aW5hdGlvbnM= 10128
+INGB0LTQtdC7 10129
+0LLQtdGA 10130
+IE90aGVyd2lzZQ== 10131
+aXN0YW50 10132
+0LDQudGC0LU= 10133
+IHRhbnRv 10134
+IHBlcmZvcm1lZA== 10135
+INC30LDQvw== 10136
+YWxv 10137
+IEZvdW5kYXRpb24= 10138
+IHByb3RvY29s 10139
+IFpv 10140
+bWF5 10141
+IGhhY2s= 10142
+IGJ1ZGR5 10143
+bWFkZQ== 10144
+IGFkcw== 10145
+IGZhc2NpbmF0aW5n 10146
+IGVxdWl2YWxlbnQ= 10147
+Z2Vs 10148
+IGFyYw== 10149
+INGH0LXQu9C+0LI= 10150
+IHByb3Bvc2Vk 10151
+IG5vdHJl 10152
+YW5nZXM= 10153
+IGNvdW5zZWw= 10154
+YWxsYQ== 10155
+IDMx 10156
+d2VldA== 10157
+yJk= 10158
+IGVsZWN0cmljaXR5 10159
+IHRveA== 10160
+xYJhZA== 10161
+IOy0 10162
+IGRpZmZpY3VsdHk= 10163
+oNeZ 10164
+bmVzZGF5 10165
+0LjRgdGM 10166
+IGFsbGVn 10167
+IEdP 10168
+IHF1aXQ= 10169
+IEhlcnI= 10170
+IGVzdMOhbg== 10171
+IGdpcmxmcmllbmQ= 10172
+IHRlbmc= 10173
+aWZpY2lhbA== 10174
+IEphbQ== 10175
+IGNhbmNlbA== 10176
+IGZyZXF1ZW50bHk= 10177
+SVY= 10178
+IGNsb3Npbmc= 10179
+IGRlY2FkZQ== 10180
+IHJlcHJlc2VudGVk 10181
+IENhbmFk 10182
+INC60L7RgtC+0YDRi9C1 10183
+IGVzdGFtb3M= 10184
+IFRodXJzZGF5 10185
+IEdh 10186
+IExpdmU= 10187
+bGVt 10188
+YmJsZQ== 10189
+U09O 10190
+IDIwMDg= 10191
+IGRpY2g= 10192
+IEF3ZXNvbWU= 10193
+IGNvbmNlcHRz 10194
+UEVBSw== 10195
+IGxpdGVyYXR1cmU= 10196
+IE9seW1w 10197
+0LvQsNC0 10198
+IG5vc3Q= 10199
+dml0 10200
+IEVudGVy 10201
+b3JkZXJz 10202
+aWNraW5n 10203
+bmllag== 10204
+IGV1Y2g= 10205
+IFRob3VnaA== 10206
+IGJhZ3M= 10207
+IGxpbWl0cw== 10208
+IHN0YWtl 10209
+g6U= 10210
+IG9j 10211
+IFZpcw== 10212
+IDEyMA== 10213
+IG51ZQ== 10214
+IGNvbmNl 10215
+IGRpc2Fn 10216
+56g= 10217
+IGFudGljaXA= 10218
+oIg= 10219
+c2w= 10220
+IHZvdGluZw== 10221
+IGV4cG9zdXJl 10222
+IENvbW11bml0eQ== 10223
+IEp1c3RpY2U= 10224
+b3JuZXk= 10225
+c3p5c3Q= 10226
+IGZyaWVk 10227
+7Iuc6w== 10228
+IFdpbg== 10229
+IEA= 10230
+IEhvcGVmdWxseQ== 10231
+ZXN6 10232
+IG1vbmRl 10233
+IGNvbWJpbmU= 10234
+Z21lbnQ= 10235
+IHJlY29tbWVuZGF0aW9ucw== 10236
+IHByZWduYW50 10237
+7Iud 10238
+cmFm 10239
+IGx1 10240
+ZG9vcg== 10241
+0LDQt9GL0LI= 10242
+dWVnbw== 10243
+IGltcHJvdmVtZW50 10244
+IHRyaW0= 10245
+IGVpZ2Vu 10246
+IGFwcHJveGltYXRlbHk= 10247
+INCy0LDQvA== 10248
+YXdh 10249
+INGB0L7QsQ== 10250
+IGNvcm9u 10251
+IG9uZ29pbmc= 10252
+IGhlcw== 10253
+IGluanVyeQ== 10254
+IGZyYW5r 10255
+IGthZGFy 10256
+cmVuY3k= 10257
+IENvbG9y 10258
+IEdydQ== 10259
+IGRpcA== 10260
+0YDRiw== 10261
+IHRlYXJz 10262
+Z3Q= 10263
+IFBE 10264
+IHBhdXNl 10265
+b3Nj 10266
+IHVzdGVk 10267
+IFdvbw== 10268
+IHdpxJk= 10269
+IGRlbm4= 10270
+IFBldA== 10271
+IG92ZXJjb21l 10272
+IOuCtOqwgA== 10273
+IE1vdmU= 10274
+IGxpY2Vuc2U= 10275
+IHJlcGVhdGVk 10276
+4K+H 10277
+IGNhdGVnb3JpZXM= 10278
+IG5vb2RsZXM= 10279
+IGZsb29k 10280
+IE1hc3M= 10281
+IG51dHM= 10282
+IEplc3M= 10283
+IElo 10284
+IGNoYW5jZXM= 10285
+kJg= 10286
+IGRvbmRl 10287
+SUc= 10288
+IGFuZGVyZQ== 10289
+IGJvbmVz 10290
+7J6R 10291
+IGVmZmljaWVuY3k= 10292
+IG1vZGVy 10293
+cm9hdA== 10294
+IOydtOqyjA== 10295
+aWxsZXI= 10296
+IG9tZWdh 10297
+INC/0L7Qsg== 10298
+IEdyb3Vw 10299
+IHByb2R1Y2luZw== 10300
+YW1v 10301
+IHBhcnRpY2lwYW50cw== 10302
+dXBw 10303
+aWZpY2U= 10304
+IGZvcnR1bg== 10305
+aWV0bmFt 10306
+YWNhaw== 10307
+IEtv 10308
+bWnFnw== 10309
+IGphaWw= 10310
+IEpvbmVz 10311
+xZtteQ== 10312
+IERldXRz 10313
+IGJyaWVmbHk= 10314
+IFRhbA== 10315
+IFBlcmhhcHM= 10316
+IFJ1Yg== 10317
+IEtu 10318
+64uk64qU 10319
+csOp 10320
+IHZvY8Oqcw== 10321
+IENoYXJsZXM= 10322
+0LXRgtC1 10323
+cmllcnM= 10324
+IGhlYWw= 10325
+YW50ZWU= 10326
+IGRlbW9jcmFjeQ== 10327
+IGxvYW4= 10328
+IGNoZWY= 10329
+0Y/QvA== 10330
+IHVuY29tZm9ydGFibGU= 10331
+IGV0ZXJu 10332
+YXBwaW5n 10333
+IHJlcGFpcg== 10334
+cm90 10335
+IFRhcg== 10336
+IGNvdmVycw== 10337
+b21pbmc= 10338
+IEV0aA== 10339
+IM6t 10340
+0YfQvdC+ 10341
+IGFmdGVyd2FyZHM= 10342
+INCy0LXRgA== 10343
+IGRhaGE= 10344
+IGtuZWVz 10345
+IG9yZGluYXJ5 10346
+w7xs 10347
+Z2Fz 10348
+IHRpY2tldA== 10349
+IOyggOuKlA== 10350
+IOyeiOyKteuLiOuLpA== 10351
+Y2h0ZQ== 10352
+TXI= 10353
+IHNpc3Q= 10354
+aHVp 10355
+6re46w== 10356
+7Jes 10357
+IHZhcnk= 10358
+IG1lbW9y 10359
+IGNvbnRyb2xsZXI= 10360
+IGLEmWR6aWU= 10361
+IG1pbmlzdGVy 10362
+15I= 10363
+Zmxvdw== 10364
+QUg= 10365
+IHRvd2Vy 10366
+55A= 10367
+IHNjYXI= 10368
+IFBlbg== 10369
+IHBhw61z 10370
+15g= 10371
+7J246w== 10372
+IGVuZXJn 10373
+IHN3b3Jk 10374
+IHBhcGVycw== 10375
+0LjQu9Cw 10376
+IFdlZG5lc2RheQ== 10377
+IEZvcmNl 10378
+IGV4dHJhb3JkaW5hcnk= 10379
+IExha2U= 10380
+IOqwgOs= 10381
+IEJlYXV0 10382
+IHJlYXNvbmFibGU= 10383
+IGNvbnRyaWJ1dGU= 10384
+IHBsZWFzZWQ= 10385
+IHVwZGF0ZWQ= 10386
+IHBpw7k= 10387
+ZWxv 10388
+IHNpZ25pZmljYW50bHk= 10389
+IGJvdA== 10390
+IGdlbmVyYXRpb25z 10391
+IHByb3RlY3RlZA== 10392
+IGhpZGluZw== 10393
+IElsbA== 10394
+IG5ldXRyYWw= 10395
+XSw= 10396
+z4TOvw== 10397
+IHRvbmd1ZQ== 10398
+VGhhbms= 10399
+IOqzhA== 10400
+IHBheXM= 10401
+zq/OvQ== 10402
+IGFwcGxl 10403
+MDE= 10404
+ZXJr 10405
+aWVyYQ== 10406
+IGplZw== 10407
+IFN1YnNjcmliZQ== 10408
+IHRoZWF0ZXI= 10409
+IHN0cm9uZ2x5 10410
+IOyGjA== 10411
+INC/0YDQsNCy 10412
+dWNreQ== 10413
+IEppbg== 10414
+a3dhcmQ= 10415
+6rG0 10416
+IG9wcG9uZW50 10417
+IFNP 10418
+IGhvbHk= 10419
+IGZpbGxpbmc= 10420
+Ol0= 10421
+IGhpag== 10422
+0Jw= 10423
+IGJpc3M= 10424
+IGJsZW5k 10425
+IGltcGxpYw== 10426
+IOy9 10427
+bGxlaWNodA== 10428
+2YrYqQ== 10429
+YXNhbnQ= 10430
+ZXJ0ZQ== 10431
+IFNhbWU= 10432
+IGludGVyaW9y 10433
+U2U= 10434
+IGJlbmNo 10435
+IHBvY28= 10436
+IG1hcmtz 10437
+IHdpbnM= 10438
+IM6z 10439
+IGRpc3RpbmN0 10440
+IEFzaWFu 10441
+IG1vbGVj 10442
+IEphY2tzb24= 10443
+IGVhc3Q= 10444
+IHBoeXNpY3M= 10445
+aW1hbA== 10446
+IHBlYWs= 10447
+YXJpYW4= 10448
+ZXBz 10449
+IG5lYXQ= 10450
+INCy0LDRgQ== 10451
+dXJuaW5n 10452
+IHN5bnRo 10453
+IHJldmVhbA== 10454
+xbo= 10455
+Z29u 10456
+bmlz 10457
+YXRpdg== 10458
+IExhcw== 10459
+IHB5 10460
+IE1hamVzdHk= 10461
+IFZhbGxleQ== 10462
+IGVuZg== 10463
+IGdlbnM= 10464
+IHJvb3Rz 10465
+ZXpl 10466
+YmV0 10467
+IGFjdHM= 10468
+6Zo= 10469
+6JA= 10470
+IHBoaWxvc29waHk= 10471
+IG1hdGNoZXM= 10472
+nWk= 10473
+IGp1xbw= 10474
+IGRlc3Blcg== 10475
+IEVkdWNhdGlvbg== 10476
+IHNwb3Rz 10477
+IHJlZ2lvbnM= 10478
+QXI= 10479
+IE5hbQ== 10480
+ZWVu 10481
+IGRpYWdyYW0= 10482
+IHJlbHk= 10483
+IHRlbnM= 10484
+IGRhdGluZw== 10485
+IGNvYXQ= 10486
+IEhvcg== 10487
+IGFja25vd2xlZGdl 10488
+IFByZXR0eQ== 10489
+INC/0L7Qvw== 10490
+IHZvaXI= 10491
+IGZhdm91cml0ZQ== 10492
+IG1vxbw= 10493
+IGtt 10494
+IERP 10495
+IGZlcnQ= 10496
+IOuPhA== 10497
+IFBhYw== 10498
+IGZvbnQ= 10499
+IGZpbmRz 10500
+IEl0YWx5 10501
+INC60L7Quw== 10502
+IGNvbXBhc3M= 10503
+67M= 10504
+bGlhbWVudA== 10505
+IG5vdGlvbg== 10506
+IGluamVjdA== 10507
+IHdpc2RvbQ== 10508
+IMOc 10509
+IE1vb24= 10510
+IEJ1c2luZXNz 10511
+cmljcw== 10512
+IFlvdXQ= 10513
+IGZvcmdpdmU= 10514
+IGZpbmFuY2U= 10515
+aWxv 10516
+2KM= 10517
+YWhs 10518
+IGRlbW8= 10519
+IGNsaW1i 10520
+IGV4cG9ydA== 10521
+5aA= 10522
+IHN1Y2Nlc3NmdWxseQ== 10523
+IEZlcg== 10524
+cGVjdGVk 10525
+ZGVt 10526
+IHJldGlyZQ== 10527
+IGxhcHRvcA== 10528
+IHNwaXI= 10529
+IEFzc29jaWF0aW9u 10530
+INCz0Ls= 10531
+IFNlbA== 10532
+IO2VnOs= 10533
+IGVtcGxveWVl 10534
+IG1vbHQ= 10535
+Ukw= 10536
+0K8= 10537
+IGNvbnRyYQ== 10538
+IHVn 10539
+IEJhbGw= 10540
+IEphdmE= 10541
+w6lyaWU= 10542
+IHByb2NlZHVyZQ== 10543
+IGdyaWQ= 10544
+IOuKkOs= 10545
+IGJlbHQ= 10546
+INGN0YLQvtCz0L4= 10547
+dXJk 10548
+IGNvbXByZWg= 10549
+IGRldmVsb3Blcg== 10550
+INGN0YLQvtC8 10551
+5Zg= 10552
+Y3I= 10553
+IOuT 10554
+IHNwb2tlbg== 10555
+cmVuY2U= 10556
+IHRlcm1pbg== 10557
+IGFnZ3Jlc3NpdmU= 10558
+IGJpc3NjaGVu 10559
+IGhhc3Rh 10560
+IEJyaWFu 10561
+IENvbW1pc3Npb24= 10562
+IFl1 10563
+IHByb21pc2Vk 10564
+IGVxdWl0eQ== 10565
+aWtv 10566
+dmVydHk= 10567
+IHJlcGxhY2Vk 10568
+IEhlbHA= 10569
+IHBvc2U= 10570
+IE1pZGRsZQ== 10571
+IGtpbQ== 10572
+IG1laW4= 10573
+IENvdW5jaWxs 10574
+INCS0YE= 10575
+b3Jv 10576
+IEJlcm4= 10577
+IGJleg== 10578
+IGFuYWx5dA== 10579
+YW5nZW4= 10580
+IOyLtg== 10581
+IEdsbw== 10582
+IHF1YWQ= 10583
+0YLQsA== 10584
+IHNwZWFrcw== 10585
+7JiI7JqU 10586
+IOyXrOufrOs= 10587
+ZnJlZQ== 10588
+0L3Rlg== 10589
+cmljaA== 10590
+IOuvuA== 10591
+IERpZXM= 10592
+YWJi 10593
+pbg= 10594
+IGRlcHJlc3Npb24= 10595
+IHJldGFpbA== 10596
+hOuTpA== 10597
+IFZvdXM= 10598
+IExhdGlu 10599
+4bk= 10600
+IOyii+yVhA== 10601
+IHRvcnQ= 10602
+IGNvbXB1dGVycw== 10603
+IHNlYXJjaGluZw== 10604
+IHR1Yg== 10605
+YXRlbGw= 10606
+IG1lcmM= 10607
+IGdsYXNzZXM= 10608
+cGVyc29u 10609
+IGRpc2hlcw== 10610
+IGd1YXJhbnRlZQ== 10611
+IG1lZw== 10612
+c20= 10613
+IFdhbGs= 10614
+7Jy866m0 10615
+IGZvbGRlcg== 10616
+IE1pdA== 10617
+IHRpbWluZw== 10618
+IGFic3Q= 10619
+IExvZw== 10620
+IGFwcHJvdmVk 10621
+IFVTQQ== 10622
+0LLQtdGC 10623
+IHdpc2U= 10624
+ZXNzZWQ= 10625
+IGRvdWI= 10626
+IHJlc2lkZW50 10627
+IGdlbmVyYXRlZA== 10628
+IHN0YXlz 10629
+IGV4cGxhbmF0aW9u 10630
+IHBvaXNvbg== 10631
+YXRyZQ== 10632
+IGluc2FuZQ== 10633
+IHJlZmVycmVk 10634
+YWlyZXM= 10635
+IFRSQQ== 10636
+IHNlaQ== 10637
+IGlubm9j 10638
+QWg= 10639
+IG1hbnQ= 10640
+aHVz 10641
+IG91dGVy 10642
+Z2Vi 10643
+b2ljZQ== 10644
+IGRpc2N1c3Npbmc= 10645
+IGNvbnZlbmllbnQ= 10646
+X18= 10647
+IGF2b2ly 10648
+IHNoYXBlcw== 10649
+IGdyYXk= 10650
+IGRlbnRybw== 10651
+IG1hY2h0 10652
+IDE5NQ== 10653
+2Y8= 10654
+IGFkZHM= 10655
+dXRpbmc= 10656
+IGNhcGFiaWxpdGllcw== 10657
+IHNlY3Rpb25z 10658
+IHR1bmU= 10659
+IENhdXNl 10660
+YXJkZQ== 10661
+INGB0LrQsNC3 10662
+YXZpcnVz 10663
+IFJF 10664
+IHR1bmVk 10665
+IGxlYWY= 10666
+dGVyaW9y 10667
+IENhcHRhaW4= 10668
+INis 10669
+IGNob29zaW5n 10670
+aGlu 10671
+Z2dpbmc= 10672
+dmlldA== 10673
+IHJlZ3JldA== 10674
+MjY= 10675
+b25kZXJu 10676
+IGJvbnVz 10677
+IFJheQ== 10678
+QXM= 10679
+IHRvcm4= 10680
+IEhpZXI= 10681
+IEVV 10682
+IHJpc2tz 10683
+IGFtYQ== 10684
+IFlldA== 10685
+IGNoYXJhY3RlcmlzdGljcw== 10686
+IOqwkA== 10687
+IFNlbmF0b3I= 10688
+IFZhbW9z 10689
+IHJvc2U= 10690
+IGNvcnBvcmF0ZQ== 10691
+Z2hhbg== 10692
+IGNlbnRlcnM= 10693
+c3RhaXJz 10694
+IG5pdA== 10695
+IHVudXN1YWw= 10696
+IFRvbnk= 10697
+IEdS 10698
+IFdpbGQ= 10699
+IFNpbWlsYXI= 10700
+IHRvZGFz 10701
+IGhvcml6b250 10702
+bWVs 10703
+IHN0cmljdA== 10704
+IGN1YWw= 10705
+IHdyaXQ= 10706
+IGV4dGVuZGVk 10707
+IO2VmOuKlA== 10708
+IHJlbGllZg== 10709
+IG9uaW9u 10710
+IGJhYmllcw== 10711
+IGRpZmVy 10712
+IGludGVncmF0ZWQ= 10713
+w7x6aWs= 10714
+ZXBpbmc= 10715
+LS0tLQ== 10716
+IG1lbnM= 10717
+IHN0cmF0ZWdpYw== 10718
+ZmluaXRlbHk= 10719
+IGVpZ2VudGxpY2g= 10720
+V2hv 10721
+IHs= 10722
+IFRyaQ== 10723
+IHBvaW50ZWQ= 10724
+8J0= 10725
+bmFtZW50 10726
+0LXRhg== 10727
+IHByaWRl 10728
+IFJlcHVibGljYW4= 10729
+IHNhbXBsZXM= 10730
+IGRvbWVzdGlj 10731
+TFk= 10732
+dmV6 10733
+IHdlYmluYXI= 10734
+2KfZhQ== 10735
+IGVuaA== 10736
+IHN1Z2dlc3RlZA== 10737
+IG1laW5l 10738
+IHB1ZWQ= 10739
+b3Jlbg== 10740
+cmly 10741
+IGhlYXZpbHk= 10742
+IGluc3RydWN0aW9u 10743
+IG1pY3JvcGhvbmU= 10744
+IGlndWFs 10745
+IElyYQ== 10746
+IHZ1bG5lcmFibGU= 10747
+IFZpcmdpbmlh 10748
+IGNvbnRpbnVvdXM= 10749
+IHBvdmVydHk= 10750
+IGJsYWRl 10751
+IHJlbGF0ZQ== 10752
+IGNhcmE= 10753
+IEdvaW5n 10754
+IHJlZ2lvbmFs 10755
+IEZ1Y2s= 10756
+IHRvdw== 10757
+IE11c2V1bQ== 10758
+cmFudHM= 10759
+INCx0LXQtw== 10760
+bGFpbQ== 10761
+IGNoYW1waW9u 10762
+dGxl 10763
+w61u 10764
+ZW5jaWE= 10765
+IGRpZXNlbQ== 10766
+IERpZw== 10767
+bWF0ZXM= 10768
+IGludmVzdGluZw== 10769
+IEpvcmRhbg== 10770
+IGludGVncmF0aW9u 10771
+IO2O 10772
+4Lir 10773
+ZW5zdXM= 10774
+IEFyY2g= 10775
+IHBlbmNpbA== 10776
+0LDQu9GM0L3Qvg== 10777
+aXNzZW4= 10778
+IEth 10779
+IHJvY2tz 10780
+IHJhdGluZw== 10781
+IHJlZnVnZQ== 10782
+IGFwcg== 10783
+ZXRlZA== 10784
+IGFzc2lzdGFudA== 10785
+IG1lYW5pbmdmdWw= 10786
+IHBlcm1hbmVudA== 10787
+IGhpbGw= 10788
+IHdzenlzdA== 10789
+IHdvdW5k 10790
+IEF0bA== 10791
+IGxha2U= 10792
+IEZvcnQ= 10793
+IHJlZHVjdGlvbg== 10794
+IHZpdg== 10795
+IHNvdXI= 10796
+IGVjb3M= 10797
+IGhheg== 10798
+IHN0ZWFs 10799
+IG15c3Rlcg== 10800
+INCa0LDQug== 10801
+INGN0YLQuA== 10802
+IFZpZXRuYW0= 10803
+IGFudGVz 10804
+IGNvbm5lY3Rpbmc= 10805
+IERhdmU= 10806
+IGLDtnlsZQ== 10807
+IENhc3Q= 10808
+TGU= 10809
+IGN1bA== 10810
+IGdlbnJl 10811
+66eQ 10812
+IGNvbXBsYWlu 10813
+IGh1cnJ5 10814
+YXJ0ZQ== 10815
+Z3JlZw== 10816
+IG1vbml0b3Jpbmc= 10817
+IGRlc2VydA== 10818
+INGB0L7Qsg== 10819
+ZWxpbmc= 10820
+IFN1cHJlbWU= 10821
+IGdpYmk= 10822
+IGxhcmc= 10823
+IG5hdGlvbnM= 10824
+IFRvaw== 10825
+IG5lZWRsZQ== 10826
+5rU= 10827
+IGFzbGVlcA== 10828
+IGNvbXVu 10829
+IEpld3M= 10830
+IGFjaGlldmVk 10831
+IGV4aXQ= 10832
+IGRpc2Vhc2Vz 10833
+bGluZXM= 10834
+cmllbmRz 10835
+IHJlY3Q= 10836
+IHNjYW4= 10837
+IGh1cnRz 10838
+esSZ 10839
+IExvb2tpbmc= 10840
+7ZI= 10841
+dWx0dXJhbA== 10842
+4buT 10843
+aW5lbnQ= 10844
+IHB1ZXM= 10845
+IGNoZWVyaW5n 10846
+p4A= 10847
+YWdnZXI= 10848
+IGFkYQ== 10849
+TGF1Z2h0ZXI= 10850
+IFdvbWVu 10851
+6Ks= 10852
+IG9jY3VycmVk 10853
+IHNlYXRz 10854
+IGVtcG93ZXI= 10855
+dW51 10856
+ZWxsaW5n 10857
+QkVS 10858
+ZW5zaW9uYWw= 10859
+IGNvbnNvbGU= 10860
+YXNoaW5n 10861
+IGVpbm1hbA== 10862
+ZmFyZQ== 10863
+IOuPvA== 10864
+IHNlc3Npb25z 10865
+2ZA= 10866
+IHJpZGljdWxvdXM= 10867
+w61hbg== 10868
+IEhlbnJ5 10869
+IEhvbA== 10870
+IGNvbGxlY3RlZA== 10871
+IGRpc2N1c3Npb25z 10872
+RGU= 10873
+IGRpc2FiaWxpdHk= 10874
+IO2b 10875
+IHN1YnNjcmliZXJz 10876
+IGlyZ2VuZA== 10877
+IGZlbA== 10878
+IGRpcmVjdGlvbnM= 10879
+IG1hbnVmYWN0dXJpbmc= 10880
+IFJvZA== 10881
+IOyWmA== 10882
+4LiX 10883
+IGNyaXRlcmlh 10884
+IG1vbGQ= 10885
+IGVudGVyaW5n 10886
+cmlq 10887
+aXNlbg== 10888
+IFBhcmE= 10889
+aWV2ZQ== 10890
+IGNoYXJnZWQ= 10891
+IGpvdQ== 10892
+IGNhdHM= 10893
+0LvQtdC0 10894
+YWRheXM= 10895
+0LDQvdC+0LI= 10896
+asSZ 10897
+dmF0aW9u 10898
+IGFzdHJvbg== 10899
+aXRhbHM= 10900
+IEJyYW5k 10901
+IEthbg== 10902
+IHBsYWlu 10903
+IGFuZGVyZW4= 10904
+YW5kZQ== 10905
+0Y/Qtw== 10906
+IHRvbGVy 10907
+xYJlbQ== 10908
+IHByw6k= 10909
+0LzQvtGC0YA= 10910
+YWdlbWVudA== 10911
+dWN0 10912
+Y2jDqQ== 10913
+IEVuZXI= 10914
+YWrEhQ== 10915
+IO2VtOs= 10916
+IHN0YQ== 10917
+IHJpbmdz 10918
+IHRvaWxldA== 10919
+IENyYQ== 10920
+IGV4cGVyaWVuY2luZw== 10921
+IHNsaXA= 10922
+IHNhbmR3aWNo 10923
+IFVzaW5n 10924
+IHNwZWN0cnVt 10925
+IFJvcw== 10926
+YXBzZQ== 10927
+IEpheQ== 10928
+0LzRgw== 10929
+RXg= 10930
+IHJlY29nbml0aW9u 10931
+IERpZG4= 10932
+dWRh 10933
+YWpl 10934
+ZXN0bHk= 10935
+IGZlbWlu 10936
+aXR1cmU= 10937
+0YDQsNGC 10938
+IGhpcmU= 10939
+IG5vd2hlcmU= 10940
+4bqn 10941
+IHdpbmc= 10942
+IHNhdg== 10943
+IFNlY3VyaXR5 10944
+IHJ1cmFs 10945
+IEZ1bg== 10946
+YXllcg== 10947
+IGFjY3Vz 10948
+IG1t 10949
+IEpvc2VwaA== 10950
+IHNjcmVlbnM= 10951
+IGJvcnJvdw== 10952
+IHN3aW5n 10953
+IDQ4 10954
+IHRvdWNoaW5n 10955
+dGhpcw== 10956
+aW50ZW5kbw== 10957
+6YM= 10958
+0KA= 10959
+IFNjb3RsYW5k 10960
+IEphc29u 10961
+IFZlbg== 10962
+IGV4Y2VwdGlvbg== 10963
+IG5lYXJieQ== 10964
+IGJyb3dzZXI= 10965
+YW5nZXJz 10966
+IFNpbg== 10967
+z4DOvw== 10968
+b3NwZWw= 10969
+IHd1cmRl 10970
+IGRydW5r 10971
+7Zo= 10972
+7IaN 10973
+IOyKpO0= 10974
+IExpZQ== 10975
+b2Nv 10976
+IExlYWd1ZQ== 10977
+IGlnbm9yZQ== 10978
+IDop 10979
+IGxhbmRpbmc= 10980
+INi52YQ= 10981
+IFRhZw== 10982
+Mjg= 10983
+IGRyYWZ0 10984
+IGFlcg== 10985
+IOq3uOuDpQ== 10986
+IHBlbnNl 10987
+INC00LDQttC1 10988
+IGJlZHJvb20= 10989
+IG5hag== 10990
+7KeA6rOg 10991
+aWdlbm91cw== 10992
+IGRlYWxz 10993
+ZWxsbw== 10994
+IHBvc2l0 10995
+6rs= 10996
+IHZpc2l0ZWQ= 10997
+aWZpZXM= 10998
+IHByZW1p 10999
+IGNhbnQ= 11000
+IFJpY2s= 11001
+IHJhaXNpbmc= 11002
+IHBlcm1pc3Npb24= 11003
+IHB1Ymw= 11004
+dW5jaQ== 11005
+IGJlbmQ= 11006
+IGNoYW1waW9ucw== 11007
+ZGll 11008
+IGF3ZnVs 11009
+IGp1bXBpbmc= 11010
+IGxsZWc= 11011
+IHN1c3RhaW5hYmxl 11012
+IFRvdA== 11013
+IGNhbmR5 11014
+IHNhdGlzZmllZA== 11015
+IHBpcGU= 11016
+IGNvY2s= 11017
+2LY= 11018
+c3RvbmU= 11019
+IG1vbWVudHVt 11020
+INCd0LA= 11021
+IGFsb3Jz 11022
+IHJldHVybnM= 11023
+YW1tZW4= 11024
+564= 11025
+0YvQvA== 11026
+YXdu 11027
+b3R0ZWQ= 11028
+IHdvbGxlbg== 11029
+aWN0ZWQ= 11030
+IGNhbmRpZGF0ZXM= 11031
+IExhZHk= 11032
+IHlpZWxk 11033
+IG1haW50ZW5hbmNl 11034
+ZmZlY3Q= 11035
+IGV4cGFuc2lvbg== 11036
+IExFRA== 11037
+IGRhcmtuZXNz 11038
+IG91dGZpdA== 11039
+7JWI 11040
+INC40YHQvw== 11041
+cnVwdGlvbg== 11042
+IGVuZ2FnaW5n 11043
+IGluc2lnaHQ= 11044
+IEFsd2F5cw== 11045
+IGdlZg== 11046
+cmFr 11047
+IHBpeA== 11048
+IHF1YW50aXR5 11049
+IGluaw== 11050
+IEtpbmdkb20= 11051
+IGNvcnQ= 11052
+IGdvdmVybm1lbnRz 11053
+IHByb3Rlc3Q= 11054
+cG9vbg== 11055
+INGC0L7Qs9C+ 11056
+dWNoZW4= 11057
+cXVhbGl0eQ== 11058
+IFBvcnF1ZQ== 11059
+IENsdWI= 11060
+IHJpdA== 11061
+IGFydGljbGVz 11062
+Qkk= 11063
+aWdpYmxl 11064
+IGRpc2FzdGVy 11065
+0LjQsw== 11066
+INC90LjQug== 11067
+2YfYpw== 11068
+66W8 11069
+YXJldA== 11070
+IHVuYWJsZQ== 11071
+IMOu 11072
+IGVyc3Q= 11073
+INeg 11074
+dmFyZA== 11075
+IGFubm95aW5n 11076
+IEtpcg== 11077
+0LXRgNC2 11078
+ZW5uaXM= 11079
+IHVuY2VydGFpbg== 11080
+MzY= 11081
+w7Zz 11082
+IGVjb3N5c3RlbQ== 11083
+emVk 11084
+asOg 11085
+c3Vu 11086
+7Ja07ISc 11087
+IMW8ZWJ5 11088
+IG1hcHM= 11089
+64KY 11090
+IEp1c3Rpbg== 11091
+IHRyYXNo 11092
+IGVub3Jtb3Vz 11093
+IHN0YXRlZA== 11094
+IGJyYW5kcw== 11095
+IHlvdXQ= 11096
+INGH0LXQu9C+0LLQtdC6 11097
+IE1hdHRo 11098
+IHRyYW5zcG9ydGF0aW9u 11099
+IGxlZ2lzbGF0aW9u 11100
+IHByb3ZpZGVycw== 11101
+INit 11102
+IG1hZ2F6aW5l 11103
+IHNlaGVu 11104
+IERlc3BpdGU= 11105
+IHBhc3Nlcw== 11106
+IGFsdGVy 11107
+YWRhbg== 11108
+IGZhcm1lcnM= 11109
+IGNvbmZpcm1lZA== 11110
+IGVzYQ== 11111
+aXRvcw== 11112
+IHJvYWRz 11113
+VklT 11114
+IHdvcmtlcg== 11115
+IGRlc2lnbnM= 11116
+IFNvdmlldA== 11117
+YnJpZA== 11118
+IHByYWN0aWNpbmc= 11119
+IOu2gA== 11120
+IFNlYQ== 11121
+INC/0YDQvtC0 11122
+IGNoaWxs 11123
+IGxlbW9u 11124
+7JeQ64qU 11125
+IGZsZXhpYmxl 11126
+IEV4Y3VzZQ== 11127
+IHRlcnJpdG9yeQ== 11128
+IGx1eA== 11129
+IGxpZmV0aW1l 11130
+IGRpc3Rpbmd1 11131
+IFRpbWVz 11132
+IGdyb3Nz 11133
+ZW56 11134
+IHNjcm9sbA== 11135
+bcSxxZ8= 11136
+Y2lw 11137
+o7w= 11138
+RFA= 11139
+IHB1Ymxpc2g= 11140
+IGViZW4= 11141
+IHJlZ2lzdA== 11142
+IGVkaXRpb24= 11143
+IExF 11144
+IGNoYXJnaW5n 11145
+dXRhdGlvbg== 11146
+eXJpY3M= 11147
+aWRhcw== 11148
+IM6/ 11149
+INC60L7RgA== 11150
+IFRvbg== 11151
+IHdob2V2ZXI= 11152
+IEZveA== 11153
+6rGw65Og7JqU 11154
+IGZvdWdodA== 11155
+IGRyaWxs 11156
+IEFmZ2hhbg== 11157
+fiE= 11158
+IFRvbw== 11159
+IHNlY29uZGFyeQ== 11160
+csOk 11161
+IEhlYWQ= 11162
+aW5uZW4= 11163
+IHlhcm4= 11164
+INC90LDQvA== 11165
+IHdpZHRo 11166
+IGVuZ2luZWVy 11167
+acSF 11168
+IHdpbmdz 11169
+IOuVjOusuA== 11170
+IHRyYXVtYQ== 11171
+IHJlcHJvZHU= 11172
+IGNoaXA= 11173
+IHBhc3Npb25hdGU= 11174
+IGF3a3dhcmQ= 11175
+IO2K 11176
+0LDQttC0 11177
+IEJpdGNvaW4= 11178
+IGtow7RuZw== 11179
+IHLDsw== 11180
+cmVjdGlvbg== 11181
+INCz0LTQtQ== 11182
+IFVzdWFsbHk= 11183
+IGltcGxlbWVudGF0aW9u 11184
+IGdhbWVwbGF5 11185
+IG15c3Rlcnk= 11186
+INC+0Lo= 11187
+IGHDsW9z 11188
+YW5keQ== 11189
+0LjQvNC4 11190
+IHByaXZhY3k= 11191
+YWNv 11192
+IGR1bXA= 11193
+IFBheQ== 11194
+IGRpcGw= 11195
+IGZ1cm4= 11196
+IHNoaXBz 11197
+TEE= 11198
+INGF0L7RgNC+0Yg= 11199
+IGVj 11200
+IGRyb3Bz 11201
+Y2hs 11202
+MzI= 11203
+IG9ic2VydmU= 11204
+IERldmVsb3A= 11205
+TcO8emlr 11206
+YW5uZWw= 11207
+b3dhxIc= 11208
+IGZhY2Vk 11209
+w6Fs 11210
+IHZpY3RpbXM= 11211
+IGdpZnRz 11212
+IGJvb3Q= 11213
+w59l 11214
+cm9k 11215
+IDIwMDk= 11216
+w7ZydA== 11217
+IHVuaXZlcnNhbA== 11218
+IG5vdXZl 11219
+IGJveWZyaWVuZA== 11220
+IGNldGVyYQ== 11221
+0YHRgtCw 11222
+J1M= 11223
+IG5pdmU= 11224
+IGNydWNpYWw= 11225
+IHN1cnZl 11226
+IGNvaW4= 11227
+IHNvbmRlcm4= 11228
+IHNoYWRl 11229
+IGx1Z2Fy 11230
+IHN1cmVseQ== 11231
+IG1heA== 11232
+IGltcHJvdmluZw== 11233
+IHdlbg== 11234
+INeR 11235
+IOyWtOw= 11236
+IGVuZm9yY2VtZW50 11237
+aWJs 11238
+IGxpdg== 11239
+bGVyaQ== 11240
+IG1lam9y 11241
+IENhcm9saW5h 11242
+IHZhcw== 11243
+IGNvbXByb20= 11244
+IGRpcnQ= 11245
+IHVwZ3JhZGU= 11246
+IEJlbGw= 11247
+IHJlc3RhdXJhbnRz 11248
+IHRyYXA= 11249
+IHRlYXM= 11250
+YmxpYw== 11251
+IEdyZWc= 11252
+c2Fu 11253
+IG93 11254
+dWVzdA== 11255
+IHByb3Bvc2Fs 11256
+IFJldA== 11257
+ZnJvbnQ= 11258
+IHBhc3NhZ2U= 11259
+IHN1cnJvdW5kaW5n 11260
+IMO6bHQ= 11261
+IHVwY29taW5n 11262
+IGhvcnJvcg== 11263
+IGNsb3RoaW5n 11264
+IOyVvQ== 11265
+IGRpbA== 11266
+cm9tZQ== 11267
+IElk 11268
+IFJvYWQ= 11269
+INGN0YLQvtGC 11270
+Y2hhaW4= 11271
+INCx0YvRgtGM 11272
+IE9mZmlj 11273
+INCd0LU= 11274
+IGluc2Fu 11275
+IGRlY3JlYXNl 11276
+INGF0L7Rgg== 11277
+YnVpbGQ= 11278
+IERyYWdvbg== 11279
+5YI= 11280
+IGludmVzdG9ycw== 11281
+YW50aQ== 11282
+IHNhY3JpZmljZQ== 11283
+IHRyb29wcw== 11284
+IEJhZA== 11285
+IHBhc3N3b3Jk 11286
+IGNvbnN0cmE= 11287
+4LiV 11288
+IMOHYQ== 11289
+YWRvdw== 11290
+dGhyb3VnaA== 11291
+0YbQsA== 11292
+Q2Fu 11293
+IGNhbmRpZGF0ZQ== 11294
+IGFudGli 11295
+7JeF 11296
+IHRhc3R5 11297
+2YjZhg== 11298
+IEluZg== 11299
+IEJhbmc= 11300
+acOfdA== 11301
+aW5pdHk= 11302
+ZmF0aGVy 11303
+IGNvbnRyb3ZlcnM= 11304
+IFBhaw== 11305
+aWx0eQ== 11306
+6rWs6w== 11307
+IGxpZ2h0ZXI= 11308
+IGZhbGxlbg== 11309
+IHp1cw== 11310
+IEd1YXJk 11311
+IGNvdHQ= 11312
+IEZyZWU= 11313
+IGluaXRpYXRpdmU= 11314
+YWxvdXM= 11315
+IG5vdGlmaWNhdGlvbg== 11316
+IE1lZGlj 11317
+IENvbW1pdHRlZQ== 11318
+7Jew 11319
+IFdvb2Q= 11320
+IG11c2g= 11321
+dWx1bQ== 11322
+6LI= 11323
+YWhhaA== 11324
+IHN1ZmZpY2llbnQ= 11325
+IHNpbmdlcg== 11326
+0LrQvtC5 11327
+QUxJ 11328
+w6R0dA== 11329
+IFBS 11330
+IExhcg== 11331
+Y3VsZXM= 11332
+aWVtcG8= 11333
+IHVuZXg= 11334
+IGludGVncmFs 11335
+IHRyYW5zbWlzc2lvbg== 11336
+IGljaQ== 11337
+0YPRhQ== 11338
+Z2lj 11339
+IE5pbnRlbmRv 11340
+IENvcA== 11341
+IFRydXN0 11342
+ZW5hcw== 11343
+IGFiaWxpdGllcw== 11344
+IGNoaXBz 11345
+cGF0 11346
+IGFuY2hl 11347
+0LvQtdC9 11348
+IGFwcHJvYWNoZXM= 11349
+IHRob3I= 11350
+IHNpc3RlcnM= 11351
+IGRyaXZlcnM= 11352
+IGFsbGE= 11353
+MDM= 11354
+IHJ1YmJlcg== 11355
+IG7DpQ== 11356
+QUNL 11357
+IGRpc2FwcGVhcg== 11358
+6rCc 11359
+IGNvbXBlbnM= 11360
+IHZpYnI= 11361
+R08= 11362
+IHNpemVz 11363
+IHRyYWNraW5n 11364
+7ZmU 11365
+IOyEuA== 11366
+IGltcGFjdHM= 11367
+aWJpbA== 11368
+ZmlzaA== 11369
+QlI= 11370
+IGFycm93 11371
+IGxhcmdlbHk= 11372
+YW5ueQ== 11373
+IGxhd3llcg== 11374
+am91cnM= 11375
+2ro= 11376
+dmlh 11377
+IGRlbGxh 11378
+IG1hdGhlbWF0 11379
+IE1pbmU= 11380
+IEtvbGw= 11381
+2LI= 11382
+IENyb3Nz 11383
+IDY1 11384
+IGdyYWM= 11385
+IGludm9sdmVz 11386
+IGRlbGlnaHQ= 11387
+IEhvbGx5d29vZA== 11388
+IGltbWVkaWF0ZQ== 11389
+b25pYw== 11390
+IGxhZG8= 11391
+IGJ1bGxldA== 11392
+IE5vdGU= 11393
+IHVubG9jaw== 11394
+IGRpc2NvdW50 11395
+IHJpc2luZw== 11396
+cHJlc3M= 11397
+IHBhY2U= 11398
+IHNob3J0ZXI= 11399
+IHRlbmVy 11400
+Z2Vvbg== 11401
+IG1hbmFnaW5n 11402
+IGNlcmU= 11403
+Q2hy 11404
+V2hlbg== 11405
+YWNoZW4= 11406
+IOyT 11407
+IEh1bg== 11408
+IG9mdA== 11409
+IDI1MA== 11410
+aWVydW5n 11411
+IHN0YWJpbA== 11412
+IENvbm5lY3Q= 11413
+IHlhbmk= 11414
+IGRvd250 11415
+zrzOsQ== 11416
+IHZvY2Fs 11417
+zr3OsQ== 11418
+IGxlYW4= 11419
+IHZpZMOpbw== 11420
+IEZhbWlseQ== 11421
+cmVzZW50 11422
+IGFtb3VudHM= 11423
+7KeB 11424
+Y2xhc3M= 11425
+IHZpYg== 11426
+IEF2 11427
+YXJzZQ== 11428
+IGdlbnRsZW1lbg== 11429
+IHNlZWtpbmc= 11430
+IHVuaW9u 11431
+IHJlZ3VsYXJseQ== 11432
+5o8= 11433
+IEphaHI= 11434
+IEZvb2Q= 11435
+IFByb2JsZW0= 11436
+IGFydGlmaWNpYWw= 11437
+IFNpeA== 11438
+IGltcHJlc3NlZA== 11439
+IHRvb3Ro 11440
+IEto 11441
+IHlhcmQ= 11442
+IO2VtA== 11443
+IG93bmVk 11444
+IOuPmQ== 11445
+7LKt 11446
+IHRvZGE= 11447
+IHBvcnRmb2w= 11448
+IOuCqA== 11449
+b3JnZW91cw== 11450
+IGRhdGVz 11451
+0L7Qu9GM0Lc= 11452
+0LXRh9C90L4= 11453
+IGNvbmZpZ3VyYXRpb24= 11454
+IHJlcXVpcmVtZW50 11455
+IGJlbGx5 11456
+IHBhaW5mdWw= 11457
+IGRlbW9uc3RyYXRl 11458
+IGdsZWljaA== 11459
+IHZpc2l0aW5n 11460
+IENvbmY= 11461
+IGRhbA== 11462
+2ZE= 11463
+IGFtZW5k 11464
+IEZ1cg== 11465
+IHZpdGFs 11466
+4buL 11467
+IG1hdGU= 11468
+IE91 11469
+IGxlZ2FjeQ== 11470
+dXN0aW5n 11471
+IGFjY29tbW9k 11472
+IHF1b2k= 11473
+YXVlbg== 11474
+IGxpZmVzdHlsZQ== 11475
+Q0M= 11476
+w6TDpG4= 11477
+YXJ0ZW4= 11478
+IG1pbmhh 11479
+csOz 11480
+IOuqqA== 11481
+IGZvcm1hdGlvbg== 11482
+IHRyYWlsZXI= 11483
+cGVyb3I= 11484
+INCz0YA= 11485
+IHVk 11486
+enU= 11487
+IGtvbW1lbg== 11488
+IGNhdmU= 11489
+IENvdW5jaWxsb3I= 11490
+IHRocm93bg== 11491
+IHRyaWNrcw== 11492
+TEFVR0hURVI= 11493
+IEFjYWRlbXk= 11494
+cm93ZA== 11495
+oZ0= 11496
+7KCA 11497
+IEltYWdpbmU= 11498
+IGluZm9ybWVk 11499
+cm9waA== 11500
+IGxpZw== 11501
+IHNrdWxs 11502
+YWJldGg= 11503
+IGZ1bmN0aW9uYWw= 11504
+ZXJlaw== 11505
+T24= 11506
+6aY= 11507
+IGFuY2VzdA== 11508
+IHNhZmVseQ== 11509
+IEhU 11510
+64u5 11511
+IGRhdg== 11512
+IGRyaXZlcw== 11513
+QW1lcmlj 11514
+IHRpcmU= 11515
+IHNhaXM= 11516
+w6FyaQ== 11517
+YXZvcnM= 11518
+IGNvcnJlc3BvbmRpbmc= 11519
+IHByw6lz 11520
+Y2hlc3Q= 11521
+IGJhY3Rlcmlh 11522
+IGluZmVjdGlvbg== 11523
+dXNhbA== 11524
+IGF2ZXo= 11525
+IGJhc2tldGJhbGw= 11526
+IHN1cHBsaWVz 11527
+IGV4cGVydGlzZQ== 11528
+oKU= 11529
+ZmE= 11530
+IHRpZW1wbw== 11531
+IFdhbnQ= 11532
+IHNpbGx5 11533
+IHVwcA== 11534
+IGVsZWN0ZWQ= 11535
+IGZpcmVk 11536
+INiv 11537
+IHVuaXZlcnNpdGllcw== 11538
+YWxsZQ== 11539
+IGphY2tldA== 11540
+wrA= 11541
+IHRyYXY= 11542
+bHM= 11543
+IGRlZmVhdA== 11544
+IGNvZ24= 11545
+IGVxdWF0aW9ucw== 11546
+dWtp 11547
+IFNoZXI= 11548
+IHRoaXJ0eQ== 11549
+IHN0cmVhbWluZw== 11550
+b3Ryb3M= 11551
+IFByb2R1 11552
+bmVq 11553
+IGRlc2lnbmVy 11554
+IOuKkOuC 11555
+IHBhaW50ZWQ= 11556
+cmFpbmU= 11557
+bWFpbA== 11558
+IHZlc3M= 11559
+IHJoeXRobQ== 11560
+bGVzaA== 11561
+IDk5 11562
+IGFpbmRh 11563
+Y2hpZWQ= 11564
+IMOpdGFpdA== 11565
+IGFmZmVjdHM= 11566
+6aM= 11567
+IEZpbmQ= 11568
+IMOpbA== 11569
+IHBvdGF0b2Vz 11570
+IHBhZw== 11571
+INC/0LDRgA== 11572
+YXJ0cw== 11573
+IE5hY2g= 11574
+IDMz 11575
+IEhhcmQ= 11576
+IElyYXE= 11577
+IG9waW5pb25z 11578
+d2l0aA== 11579
+ZXJtYW4= 11580
+w70= 11581
+6K0= 11582
+IFNQRUFL 11583
+rLw= 11584
+IHN0YWJpbGl0eQ== 11585
+IEhF 11586
+IGNhcHR1cmVk 11587
+IGJ1Y2tz 11588
+IG1hc2tz 11589
+IGNvbXBldGU= 11590
+IGZvcmdvdHRlbg== 11591
+0LvRjtGH 11592
+c2VxdQ== 11593
+IOyEoA== 11594
+aWxsaW9u 11595
+IGdyYXBoaWNz 11596
+IGh1Yg== 11597
+IOyXsA== 11598
+ZW1wb3I= 11599
+IGNyb3du 11600
+IHdpZGVy 11601
+IG9jY3Vycw== 11602
+RFM= 11603
+5oE= 11604
+IEJhdHRsZQ== 11605
+IGR1YWw= 11606
+IDYwMA== 11607
+YXRoZXJz 11608
+4LmB 11609
+IHNldHRsZQ== 11610
+IGF2YWl0 11611
+IGRvaXM= 11612
+0LrQuNGF 11613
+YWRvcmVz 11614
+IMOz 11615
+bmVnbw== 11616
+IEdlb3JnaWE= 11617
+IFJvZw== 11618
+IGRpdm9y 11619
+IFNvbmc= 11620
+IFNwZWNpYWw= 11621
+IG11bg== 11622
+IHByZXRlbmQ= 11623
+TUFO 11624
+IHZpb2xlbnQ= 11625
+IGJlc2lkZXM= 11626
+dnk= 11627
+IE5heg== 11628
+Mjk= 11629
+IHN3ZWF0 11630
+IHp3 11631
+IEh1 11632
+IEJ1aWxk 11633
+IGhvcm0= 11634
+IENhcmQ= 11635
+IOycoA== 11636
+IHJlY29tbWVuZGF0aW9u 11637
+Y2FsbGVk 11638
+c3RpY2s= 11639
+IFBvbGljZQ== 11640
+IGNvbnN1bWVycw== 11641
+IGdyb2Nlcg== 11642
+IHN0dW4= 11643
+INCS0Ys= 11644
+0KM= 11645
+IERhdGE= 11646
+IHN1YnN0YW50 11647
+aXJlY3Q= 11648
+4LI= 11649
+INCy0Lc= 11650
+IEFybQ== 11651
+IHNlbWVzdGVy 11652
+IEJyYWQ= 11653
+IG91cnM= 11654
+INC60L7RgtC+0YDRi9C5 11655
+p2E= 11656
+IGdyYW1z 11657
+IGV4ZXJjaXNlcw== 11658
+NzU= 11659
+IHN3ZWFy 11660
+IGluY2VudA== 11661
+z4HOvw== 11662
+IGlsbGVnYWw= 11663
+IERhbW4= 11664
+IG7Dug== 11665
+IG5lY2Vz 11666
+IGN1eg== 11667
+aWNvbg== 11668
+IGhvcnM= 11669
+IENvbW8= 11670
+IOuRkA== 11671
+IG92ZXJzZQ== 11672
+IGhhcnZlc3Q= 11673
+IHRocmV3 11674
+INC/0L7RgtC+0LzRgw== 11675
+15nXlA== 11676
+IG90cm8= 11677
+INC/0LXRgNCy 11678
+IHNjb3Bl 11679
+IGdsb3J5 11680
+IE1pY2hpZ2Fu 11681
+IGFzc3VtaW5n 11682
+INGD0LQ= 11683
+IGJvbGQ= 11684
+Z3Vl 11685
+bW90aGVy 11686
+IHdhcmVu 11687
+INil 11688
+IEthbQ== 11689
+aXNwaWVs 11690
+IHRvdWpvdXJz 11691
+IGNvbnN0aXR1dGlvbg== 11692
+IH4= 11693
+IGZyYW5rbHk= 11694
+b2xlbg== 11695
+b25zY2lvdXM= 11696
+IHfDvHJkZQ== 11697
+dGhvbg== 11698
+IE9G 11699
+7J6Q6w== 11700
+dW5kYQ== 11701
+INC/0L7RgA== 11702
+IGVtcGxveW1lbnQ= 11703
+0ZHRgg== 11704
+IHN0ZWFt 11705
+IERJ 11706
+IHByb2Zlc3Npb25hbHM= 11707
+IGVuZ2luZWVycw== 11708
+IFhpYQ== 11709
+56s= 11710
+7JiB 11711
+IER1bg== 11712
+IGJpdGNo 11713
+IEZvcmQ= 11714
+c2VjdGlvbg== 11715
+IHZpY2U= 11716
+IExhdGVy 11717
+b3N0b24= 11718
+0Y3Rgg== 11719
+16Y= 11720
+IEF6dXJl 11721
+cGxpbmc= 11722
+IDE4MA== 11723
+IENyZWF0 11724
+SVNIQQ== 11725
+IGJ1ZW5v 11726
+7Z2s 11727
+cnVw 11728
+bGVycw== 11729
+IFlhbmc= 11730
+IEhB 11731
+YmF0 11732
+IENhdGhvbGlj 11733
+IGFjY2VudA== 11734
+IG1peGluZw== 11735
+Y2tldHM= 11736
+IGVuaGFuY2U= 11737
+w7xocg== 11738
+w6pz 11739
+IO2W 11740
+IHN3aW1taW5n 11741
+IGPhu6dh 11742
+IEVsaXo= 11743
+IGltbXVuZQ== 11744
+INCx0L7Quw== 11745
+IGZhcmU= 11746
+IEdhYg== 11747
+16E= 11748
+IHNhdGVsbA== 11749
+IEFueXRoaW5n 11750
+IGFzc2V0 11751
+IHNjaGVkdWw= 11752
+IHJhZGljYWw= 11753
+IHp3ZWk= 11754
+IE1F 11755
+cmVsYXRlZA== 11756
+IHNlcGFyYXRlZA== 11757
+IExpYnI= 11758
+IGdyaXA= 11759
+IOCuqg== 11760
+IGJlYW5z 11761
+IE9w 11762
+7IaM 11763
+IHBvdW5k 11764
+IGVudHJhbmNl 11765
+z4Y= 11766
+IE5pZQ== 11767
+IFJlcHVibGljYW5z 11768
+IGF0b20= 11769
+IHBlcnNvbmFz 11770
+IEFsaQ== 11771
+w6Rocg== 11772
+IGRyYW1hdGlj 11773
+IEZpbmU= 11774
+IHJlbWluZHM= 11775
+6Jk= 11776
+IGTDqWrDoA== 11777
+IGFmZm9yZGFibGU= 11778
+IGJyYW4= 11779
+aWVybw== 11780
+YWxhcg== 11781
+Y3U= 11782
+IFw= 11783
+IG1vxbxl 11784
+IGJsYXN0 11785
+IHJlY3k= 11786
+ZmlyZQ== 11787
+IGxsZQ== 11788
+INCy0YDQtdC80Y8= 11789
+IFdX 11790
+IHZz 11791
+IER1ZGU= 11792
+IFJvbWU= 11793
+IGdyZWV0 11794
+IEhldA== 11795
+Y2lhcw== 11796
+IOuLuQ== 11797
+bGVzc2x5 11798
+IHByZW1pdW0= 11799
+IGV4cGVyaW1lbnRz 11800
+YXRhcg== 11801
+w6lyaQ== 11802
+IG9mZmljaWFsbHk= 11803
+IGZlZQ== 11804
+4LmH 11805
+INGH0LXQvA== 11806
+cmVh 11807
+IHRveQ== 11808
+T1A= 11809
+IFRheWxvcg== 11810
+IE1jQw== 11811
+aWxleQ== 11812
+IEJhaw== 11813
+IGFsdW0= 11814
+IFVudGVy 11815
+IG1hZ2ljYWw= 11816
+IHRyYWJhbA== 11817
+IHZvdGVz 11818
+aXRhZ2U= 11819
+IG1lY2hhbmljYWw= 11820
+aG4= 11821
+INC40L3RgtC10YA= 11822
+IGhpbnQ= 11823
+IGF1dGhvcml0aWVz 11824
+IE5BU0E= 11825
+aXZlcnNhcnk= 11826
+INC/0L7Rhw== 11827
+cmFj 11828
+IFNQRUFLRVI= 11829
+w7Z0 11830
+IGZyYW1lcw== 11831
+IGdvb2RieWU= 11832
+IGNoZXI= 11833
+aHU= 11834
+IG5ldXI= 11835
+IE1hY2g= 11836
+IEhlbGw= 11837
+IGZlc3RpdmFs 11838
+64WE 11839
+dXRh 11840
+IG11c2hyb29t 11841
+IHRhbnQ= 11842
+IHRhdHRv 11843
+IGRlbGV0ZQ== 11844
+IGRpeg== 11845
+IHbDpA== 11846
+IHNldmVudA== 11847
+IFF1aWNr 11848
+IGJha2luZw== 11849
+IGFzc2VtYmx5 11850
+R28= 11851
+IERyZWFt 11852
+IExhZA== 11853
+w6J5 11854
+YWdz 11855
+IGdyYXZpdHk= 11856
+IOynkQ== 11857
+ZW1wbG95 11858
+IGRpZXNlcw== 11859
+IGRpc2NvdmVyeQ== 11860
+0YHRgtCy0LA= 11861
+IGhlYmJlbg== 11862
+IGdlcmFkZQ== 11863
+IERS 11864
+ICcn 11865
+IHRlY2huaWNhbGx5 11866
+INCf0L4= 11867
+IHByaXZpbGVnZQ== 11868
+IEV2ZXI= 11869
+IFNlcnZpY2Vz 11870
+dXJhbg== 11871
+IGNvbnN1bXB0aW9u 11872
+IFJldg== 11873
+IFNoYWxs 11874
+YXNzZXI= 11875
+toDthLA= 11876
+IHJhY2lhbA== 11877
+IFlvdXR1YmU= 11878
+IFByYQ== 11879
+0YHRgtCy0LXQvQ== 11880
+Y2Vr 11881
+5rQ= 11882
+YXNoYQ== 11883
+INuB 11884
+kZw= 11885
+YWhu 11886
+SUNL 11887
+IGRyaW5rcw== 11888
+IGNhcmI= 11889
+IDY0 11890
+IE1tbQ== 11891
+IGVsZWN0cmljYWw= 11892
+IGZydWl0cw== 11893
+IEhE 11894
+w7Fh 11895
+IERlZmluaXRlbHk= 11896
+IOuwmw== 11897
+IGZhaXM= 11898
+cmF0aW9ucw== 11899
+IGNvZQ== 11900
+YWh1 11901
+IEZhaXI= 11902
+IGVhdGVu 11903
+IGZpcg== 11904
+IEF1 11905
+0YPQvQ== 11906
+dWxhdGluZw== 11907
+aW5nbHk= 11908
+IHZhY2NpbmVz 11909
+IGRyYWdvbg== 11910
+IHBvaW50aW5n 11911
+IHBlbG8= 11912
+b3J0ZXJz 11913
+IHdvcmtvdXQ= 11914
+0LjQvNC10YA= 11915
+bW9uZA== 11916
+IE5vcGU= 11917
+INeW15Q= 11918
+INmC 11919
+IGFkb3B0ZWQ= 11920
+YnVs 11921
+IHNhbnM= 11922
+IHBvc3NpYmlsaXRpZXM= 11923
+IHBlbmQ= 11924
+IHphbWFu 11925
+aG91 11926
+IHNoYXJlcw== 11927
+IGNhbGVuZGFy 11928
+IHBlcnNvbmE= 11929
+IHNlYWw= 11930
+IGdlbmU= 11931
+IHN0b3JlZA== 11932
+INC/0L7Qtw== 11933
+IGx5cmljcw== 11934
+IGluc3RydW1lbnRz 11935
+IE1B 11936
+gOydtA== 11937
+IGNsb3Vkcw== 11938
+aG90 11939
+4bqv 11940
+IOqwmeyVhOyalA== 11941
+IEVtcGlyZQ== 11942
+IGJpbw== 11943
+d2luZA== 11944
+aWVnbw== 11945
+IEV1cm9w 11946
+ZWRnZQ== 11947
+IGJhY2t3YXJkcw== 11948
+IOyngOs= 11949
+IHF1ZWVu 11950
+IHNoaW5l 11951
+IMOnxLFr 11952
+IGNhZA== 11953
+IE9k 11954
+IOyCrOuejA== 11955
+IGJ1YmJsZQ== 11956
+w7Rp 11957
+emVz 11958
+IHJlYWN0aW9ucw== 11959
+IGp1ZGdtZW50 11960
+IERlbW9jcmF0cw== 11961
+IGNvc2Fz 11962
+YXNoZWQ= 11963
+INC00L7Qu9C2 11964
+xZtuaWU= 11965
+6rQ= 11966
+IGV4ZW1wbGU= 11967
+TVA= 11968
+4buv 11969
+IFZlcnM= 11970
+IHJlc2ls 11971
+IG3DoQ== 11972
+xYRzdA== 11973
+YmVsaWV2 11974
+IFZvcg== 11975
+IHNjaGVtZQ== 11976
+b25kYQ== 11977
+IHBvZGVtb3M= 11978
+IGNoYXJnZXM= 11979
+IGRlc3RpbmF0aW9u 11980
+IEt5 11981
+IFNT 11982
+IHNpbGVuY2U= 11983
+IGVtYmVk 11984
+bmF0 11985
+4bubaQ== 11986
+QU5U 11987
+Z2dlZA== 11988
+IHJlZHVjaW5n 11989
+IHVnbHk= 11990
+IG1pbQ== 11991
+0YPQtNCw 11992
+MzQ= 11993
+IGNvcmQ= 11994
+INGC0L7QttC1 11995
+IExpc2E= 11996
+IMO2bg== 11997
+IENocmlzdGlhbnM= 11998
+dW1ibGVz 11999
+b2xvZ2lzdHM= 12000
+YXph 12001
+IHRlbmRz 12002
+IENvb2s= 12003
+IGdlc2FndA== 12004
+IO2VmOuCmA== 12005
+IFRlcw== 12006
+ZXJlbW9ueQ== 12007
+INC90YPQttC90L4= 12008
+IE1BUklTSEE= 12009
+IGVucm9sbA== 12010
+IENyeQ== 12011
+RVNT 12012
+IFNhZA== 12013
+IGltcGxlbWVudGVk 12014
+IGTDrWE= 12015
+w5w= 12016
+IHBpc3Q= 12017
+RHI= 12018
+IHNhYmU= 12019
+IFNvY2k= 12020
+w6RyZQ== 12021
+INC60YLQvg== 12022
+IEZyYW5jaXNjbw== 12023
+IOyepQ== 12024
+IGNyZWF0dXJlcw== 12025
+YXdz 12026
+IGVhcm5lZA== 12027
+IGNoZWFwZXI= 12028
+IGRsYQ== 12029
+IHdhcm4= 12030
+c2NoZQ== 12031
+IGJsYWg= 12032
+IG51dHI= 12033
+6Lw= 12034
+IGdvcmdlb3Vz 12035
+IEFuZ2VsZXM= 12036
+IGdlbWFjaHQ= 12037
+IGhvbWVsZXNz 12038
+b2dyYXBoaWM= 12039
+IFRhaXdhbg== 12040
+IFNvbQ== 12041
+IEhhZA== 12042
+YWN0aW9ucw== 12043
+IHBvc3Rz 12044
+IG91dHJh 12045
+IE1lYW4= 12046
+a2Fy 12047
+IGNvdXM= 12048
+IGJyYWNr 12049
+0LjRgtGM0YHRjw== 12050
+IGJlbGlldmVz 12051
+IHN1aWNpZGU= 12052
+IGVxdWFsbHk= 12053
+IGNhcmVz 12054
+0L7QttC90L4= 12055
+IHN0ZW0= 12056
+IE11Y2g= 12057
+IHByb2R1Y2Vy 12058
+15XXkA== 12059
+IHByb3RlY3Rpbmc= 12060
+IFRSQVZJUw== 12061
+IGludGVydmlld3M= 12062
+IGFsaWVu 12063
+IEFzaw== 12064
+IHNvbGU= 12065
+Q08= 12066
+IFN1ZA== 12067
+IHN1cnZpdg== 12068
+IHNrZXRjaA== 12069
+IHfFgmE= 12070
+IGNvbG9j 12071
+IGFwb2xvZ2l6ZQ== 12072
+d2VpZ2h0 12073
+IDU1 12074
+ID4= 12075
+IGhlcm9lcw== 12076
+IEJvc3Rvbg== 12077
+IGRlcGVuZGVudA== 12078
+IG1vdGl2YXRpb24= 12079
+ZmxpeA== 12080
+IHNlYW0= 12081
+0LrQuNC1 12082
+IGRyYWlu 12083
+b2RlZA== 12084
+IGd1aWx0eQ== 12085
+IEplbm4= 12086
+aW5nZW4= 12087
+IGdyYW50ZWQ= 12088
+IEtlbGx5 12089
+IFNhdg== 12090
+IFVuY2xl 12091
+IEhvbmVzdGx5 12092
+RUxJ 12093
+IG5hdmlnYXRl 12094
+IGJsZXNzZWQ= 12095
+Y29yZQ== 12096
+IGVhcm5pbmc= 12097
+IHNpZ25hbHM= 12098
+IGRpc2s= 12099
+aWFscw== 12100
+IGFnZXM= 12101
+5oU= 12102
+IHBhcnRpY2xl 12103
+INGH0LXRgA== 12104
+IGNhbm4= 12105
+IHRpZXI= 12106
+IHN0YXRlbWVudHM= 12107
+6rOg7JqU 12108
+IOuVjOusuOyXkA== 12109
+IENobw== 12110
+IHBvbGFy 12111
+YW7Dpw== 12112
+IEtlbm4= 12113
+IE5p 12114
+IEZpZ2h0 12115
+b3JnYW4= 12116
+6ZU= 12117
+IENoYQ== 12118
+IFPDrQ== 12119
+IHNsaWM= 12120
+IGNlcnRpZmlj 12121
+IHRlbXBsYXRl 12122
+IEZlZGVyYWw= 12123
+IGNvbnNpZGVyYXRpb24= 12124
+IGV4cGxv 12125
+IE1haW4= 12126
+IE5F 12127
+IGFsb25nc2lkZQ== 12128
+IGRyZXNzZWQ= 12129
+IFBvaW50 12130
+IGVudmlyb25tZW50cw== 12131
+IHByw7N4aW0= 12132
+IGRhYXI= 12133
+IHByb21wdA== 12134
+IHB1cnN1ZQ== 12135
+IGVudGVydGFpbm1lbnQ= 12136
+IHRocm9hdA== 12137
+IHByb2JsZW1h 12138
+IG1hcnQ= 12139
+7Lw= 12140
+IHByb3ZpZGVy 12141
+2Iw= 12142
+INeX 12143
+aW50ZQ== 12144
+bWFraW5n 12145
+IHN0cm9rZQ== 12146
+IHRpc3N1ZQ== 12147
+VW4= 12148
+IHByZWNpb3Vz 12149
+IEFydHM= 12150
+aW5raW5n 12151
+INCe0L0= 12152
+INC40YE= 12153
+bmFo 12154
+INCV0YHQu9C4 12155
+IGNvcm5lcnM= 12156
+IHRyaWNreQ== 12157
+aW5jaA== 12158
+bGlqaw== 12159
+IHByZXNzaW5n 12160
+bGV2ZWw= 12161
+QU5H 12162
+IHJhZGlhdGlvbg== 12163
+7ISg 12164
+IGNvbmZyb250 12165
+IHZldA== 12166
+IHJlcHJlc2VudGF0aXZl 12167
+IHByb3BhZw== 12168
+IGNyYXA= 12169
+IERlYw== 12170
+IHJhbXA= 12171
+0LXQv9C10YDRjA== 12172
+dcOpcw== 12173
+ZXNzZW4= 12174
+Y3JpcHRpb24= 12175
+IGJpbGxz 12176
+IE1hdHRoZXc= 12177
+IGFuaW1l 12178
+4bqldA== 12179
+IGxvd2VzdA== 12180
+aGFz 12181
+c2NyZWVu 12182
+b2dyYXA= 12183
+0LDQu9C+ 12184
+aW50b24= 12185
+IEphaA== 12186
+aXTDoA== 12187
+IGtheQ== 12188
+IHJvdGF0aW9u 12189
+IFdlcmU= 12190
+YWJlaQ== 12191
+IHRyaWFscw== 12192
+IGxldmVy 12193
+aWdodHk= 12194
+IHNwb29u 12195
+IGh1bnQ= 12196
+Y2xpbmc= 12197
+IGRpc20= 12198
+INCx0L7Qu9GM0Yg= 12199
+IGFzc2F1bHQ= 12200
+IO2YlQ== 12201
+IHdlZWtseQ== 12202
+IG1pc21v 12203
+IGdlbmV0aWM= 12204
+dWxwdA== 12205
+IFN0dWRlbnQ= 12206
+IHJlYWxpc3RpYw== 12207
+IGF1dGhlbnRpYw== 12208
+YXN0YQ== 12209
+IGFycmVzdGVk 12210
+IGd1aWRlbGluZXM= 12211
+INec15A= 12212
+INC00LDQsg== 12213
+IENvbWluZw== 12214
+ZsO8cg== 12215
+IHJlcXVlc3Rz 12216
+g5A= 12217
+IGFuYWx5emU= 12218
+IGludGVyZXNz 12219
+IGhhbHQ= 12220
+IE9wZXI= 12221
+b25vbQ== 12222
+IGR1Y2s= 12223
+IHdpdGhk 12224
+c2Vy 12225
+IM+M 12226
+IEhpc3Rvcnk= 12227
+IHlvdXR1YmU= 12228
+IHNhYmVy 12229
+d2Fsaw== 12230
+Zm9udA== 12231
+IG92ZXJ2aWV3 12232
+Mzk= 12233
+w7x5 12234
+ZXR0aQ== 12235
+IGZyb3plbg== 12236
+IGZsZXNo 12237
+xJ9p 12238
+IFBN 12239
+IOyZgA== 12240
+6aI= 12241
+0YbQuNC4 12242
+IOq4sOs= 12243
+7YGs 12244
+IHByb3Nl 12245
+b29vbw== 12246
+cmF0ZXM= 12247
+V1M= 12248
+IGF1dG9tYXRpYw== 12249
+IGNvbGxlY3Rpbmc= 12250
+xZE= 12251
+IG5laWdoYm9ycw== 12252
+wrsu 12253
+IEV4cGw= 12254
+IGNpcmN1bA== 12255
+Y292ZXI= 12256
+d2Vn 12257
+IHN0aWNrcw== 12258
+IGVsbGVy 12259
+IHd3dw== 12260
+IGRvcm0= 12261
+IEV4cGVy 12262
+IHN0YXRpc3RpY3M= 12263
+IGVtYWlscw== 12264
+IGdyYXZl 12265
+aW1peg== 12266
+SFM= 12267
+IHVpdA== 12268
+LCc= 12269
+IGxhc2Vy 12270
+6Ik= 12271
+INGC0LXQvA== 12272
+0YvRiA== 12273
+0YnRkQ== 12274
+IGdlbmF1 12275
+IHRpZW5lbg== 12276
+IG1lZGl0YXRpb24= 12277
+IE9yZ2Fu 12278
+IGVzdGltYXRl 12279
+IOustOw= 12280
+bGV0cw== 12281
+IG7DoHk= 12282
+IG1pbmRzZXQ= 12283
+IHJlc29u 12284
+IG3DqXM= 12285
+IG51bWVyb3Vz 12286
+IHZpZWxsZWljaHQ= 12287
+IFRoaXJk 12288
+dW91cw== 12289
+IERlYWQ= 12290
+0LDQvdC0 12291
+SE4= 12292
+IHJhY2luZw== 12293
+IGFnZW50cw== 12294
+IFV0 12295
+IHRlYXI= 12296
+IEhQ 12297
+IGNoZW1pc3RyeQ== 12298
+IHN1cnZpdmFs 12299
+IGNvbnZpbmNlZA== 12300
+IDs= 12301
+IHJlZ3VsYXRpb25z 12302
+IEVT 12303
+MzAw 12304
+IGVuc2U= 12305
+IOy1 12306
+IGRpY3Q= 12307
+R0E= 12308
+IGFow60= 12309
+IHRlag== 12310
+INC+0YHRgg== 12311
+IEVsZWN0 12312
+IGludGVsbGVjdHVhbA== 12313
+IGJpYXM= 12314
+IGJ1cmRlbg== 12315
+IOyWtOuWuw== 12316
+IGNoZWVy 12317
+IHNvcGg= 12318
+IHBvcnRmb2xpbw== 12319
+dWJh 12320
+IGVzdG9z 12321
+VFY= 12322
+Rm9y 12323
+IGFzaA== 12324
+IGtvbW1lcg== 12325
+IGNvbGxlY3RpdmU= 12326
+IHdyZXN0 12327
+IEpldHp0 12328
+IFdhdA== 12329
+cmVpY2g= 12330
+IHByaW1lcg== 12331
+YWN0aXZl 12332
+IG1pZQ== 12333
+aWNrZWQ= 12334
+IGh1bnRpbmc= 12335
+IHRlc3RpbQ== 12336
+IGNvbXBhc3Npb24= 12337
+INix 12338
+IGJydXQ= 12339
+IHNhbGFk 12340
+0L7QsdGJ0LU= 12341
+IHNvbHZpbmc= 12342
+IGZsb2F0aW5n 12343
+57c= 12344
+IGF0dHJhY3RpdmU= 12345
+2YjZhA== 12346
+IHBlcmQ= 12347
+aWZmZXI= 12348
+IHNjdWxwdA== 12349
+aGho 12350
+IFdlZWs= 12351
+IGVudGh1cw== 12352
+IG5hZA== 12353
+IG1lcmNo 12354
+IO2ZlQ== 12355
+IG1pbGU= 12356
+IM64 12357
+IOuCmOs= 12358
+Mzg= 12359
+IGNoYWlucw== 12360
+IEFsbW9zdA== 12361
+IHRpY2tldHM= 12362
+cmlu 12363
+IEND 12364
+IGRpc3RyaWJ1dGVk 12365
+YWJldGVz 12366
+IHRlbXBlcmF0dXJlcw== 12367
+IGdhaW5lZA== 12368
+IGZsZXhpYmlsaXR5 12369
+IHNjcmVhbWluZw== 12370
+IGFicm9hZA== 12371
+dW5v 12372
+IGVudHJlcHJlbmV1cnM= 12373
+IE5ldHdvcms= 12374
+IENhbmFkaWFu 12375
+IHByZXY= 12376
+IHPDtg== 12377
+INGC0LXQsdGP 12378
+IFBva2U= 12379
+IFBvZA== 12380
+IFR1cmtleQ== 12381
+IGFic3RyYWN0 12382
+IHNuYWtl 12383
+IEFteQ== 12384
+IOuKkOuCjA== 12385
+IGJyYXZl 12386
+IOyeiOyWtOyalA== 12387
+IEthbA== 12388
+IDIwMDc= 12389
+w6FyaW8= 12390
+IG1hcmtlZA== 12391
+Z2luZXM= 12392
+IGFsbG9j 12393
+T05H 12394
+IHNjaWVudGlzdA== 12395
+IGVzY2E= 12396
+IHJhY2lzbQ== 12397
+15HX 12398
+IFNhbXM= 12399
+IFBlbm4= 12400
+IGxvYWRz 12401
+IOCuqA== 12402
+w7xiZXI= 12403
+TWU= 12404
+aXjDsg== 12405
+IHBlcsOy 12406
+YW5uZQ== 12407
+IGV4cHJlc3NlZA== 12408
+0LzQtdGA 12409
+IG1vZXQ= 12410
+IHJldHVybmluZw== 12411
+bmlh 12412
+IGV4cG9u 12413
+UHJv 12414
+IGxveWFs 12415
+TUw= 12416
+IGxhbXA= 12417
+IHNoeQ== 12418
+IGNvbXBvc2l0aW9u 12419
+IEx5 12420
+IG1hZ25ldGlj 12421
+IHByZW1pZXI= 12422
+IG1lYXN1cmVk 12423
+IHN1bW1hcnk= 12424
+IGF0dGFja2Vk 12425
+IGZpbmlzaGluZw== 12426
+0Jc= 12427
+56U= 12428
+IHNpdHM= 12429
+IGh5ZHJvZ2Vu 12430
+IG1haQ== 12431
+IERldXRzY2g= 12432
+YXPEsQ== 12433
+IG9idGFpbg== 12434
+dmll 12435
+IHNvaXQ= 12436
+IOuwlA== 12437
+IGxhbmU= 12438
+IGNvbnNlZ3U= 12439
+0LLQvg== 12440
+IGVhc2U= 12441
+YWtpbg== 12442
+IEZh 12443
+IHVudHVr 12444
+IGJ1cnN0 12445
+IGN1bQ== 12446
+YWzEsW0= 12447
+w7pibGlj 12448
+aWRp 12449
+IFJveWFs 12450
+IEtvbg== 12451
+IGNvbW1vbmx5 12452
+IHJlbW92aW5n 12453
+IGp1cg== 12454
+aWxpYg== 12455
+IGFuY2g= 12456
+7ZaJ 12457
+xrDhu6M= 12458
+INCc0Ys= 12459
+IEFudGg= 12460
+IFPDpQ== 12461
+IGludGVycnVwdA== 12462
+IHN0ZXJl 12463
+IE9T 12464
+b255bQ== 12465
+dGVyeQ== 12466
+IE1hcmlh 12467
+6rKD 12468
+IGV4cGxvcmluZw== 12469
+IHRyYW5zcGFyZW50 12470
+IGZhdGU= 12471
+IEp1bmc= 12472
+IGdydXA= 12473
+IGRhcmtlcg== 12474
+IERvdWc= 12475
+IG1hbmU= 12476
+4bqhaQ== 12477
+ZHJp 12478
+bG9vaw== 12479
+IERlc2lnbg== 12480
+IHR1dGFq 12481
+IGhvcml6b250YWw= 12482
+cmVvbg== 12483
+b3J0ZQ== 12484
+IENvcnJlY3Q= 12485
+IFN0ZXZlbg== 12486
+IHZpbmU= 12487
+MDI= 12488
+acSH 12489
+IHNpZW1wcmU= 12490
+IEtleQ== 12491
+IEdhbWVz 12492
+IG5hYXI= 12493
+IHNob2NrZWQ= 12494
+ZWx2ZQ== 12495
+IFJvc2U= 12496
+7Ius 12497
+IHN0b3BwaW5n 12498
+b2hs 12499
+IE1peA== 12500
+IHN1ZmZlcmVk 12501
+IHNpZ21h 12502
+IHdlYWtuZXNz 12503
+IE93 12504
+4Li14LmI 12505
+SUY= 12506
+IOCuhQ== 12507
+YWRlZA== 12508
+IE5ldGZsaXg= 12509
+YW5lcw== 12510
+IHJlbWFpbmVk 12511
+aXJ5 12512
+IHJpcA== 12513
+ZWxsdA== 12514
+IHNpbGVudA== 12515
+IHByb3Zlbg== 12516
+IHRveGlj 12517
+IGFsdW1pbg== 12518
+IG11bHRpcGw= 12519
+YWxhbmQ= 12520
+IDM0 12521
+MDY= 12522
+IEJydQ== 12523
+IOygleunkA== 12524
+SnVzdA== 12525
+Ym95 12526
+IHNob2U= 12527
+IGNyZWF0dXJl 12528
+IGhlYWRlZA== 12529
+INC+0YLQug== 12530
+5rE= 12531
+IGVzc2VuY2U= 12532
+IHJlbWFya2FibGU= 12533
+IG7Dum1lcg== 12534
+IGRyZXc= 12535
+IHB1enpsZQ== 12536
+IExpYnJhcnk= 12537
+IEZ1 12538
+YXNoZXM= 12539
+a2s= 12540
+IElzdA== 12541
+prA= 12542
+IEJyeQ== 12543
+IGNlcmVtb255 12544
+IOCujg== 12545
+IGNyaQ== 12546
+ZXF1 12547
+IHByaXpl 12548
+IGRpbWVuc2lvbnM= 12549
+b2dyYW0= 12550
+IGxlYXRoZXI= 12551
+IHBvcHVsYXRpb25z 12552
+dXVt 12553
+IHZlZ2Fu 12554
+0Y/QtA== 12555
+IGPDs21v 12556
+5YQ= 12557
+IHN0cmlw 12558
+5aM= 12559
+IHZhY2F0aW9u 12560
+hZU= 12561
+IG1lYWxz 12562
+aWxpcHA= 12563
+IGVudHM= 12564
+YXJhbQ== 12565
+cmljaHQ= 12566
+IGdyYWlu 12567
+IFNwYWlu 12568
+IGNoZWVr 12569
+IEFmZg== 12570
+SU9O 12571
+IEJyaW5n 12572
+IDM4 12573
+aWVsZW4= 12574
+dWx1 12575
+INCx0L7Qu9GM0YjQtQ== 12576
+IGFubm91bmNlbWVudA== 12577
+INGC0YPRgg== 12578
+IFByb3BoZXQ= 12579
+YXJkbw== 12580
+Mzc= 12581
+IHdva2U= 12582
+IHRyYW5zbGF0aW9u 12583
+IE5PVA== 12584
+IENM 12585
+IGTDvMWf 12586
+0YbRlg== 12587
+YWNlcg== 12588
+IExvYw== 12589
+IHBlcmNlcHRpb24= 12590
+Tk8= 12591
+IGRpZXNlbg== 12592
+TG9vaw== 12593
+aGVhcnQ= 12594
+YXZlZA== 12595
+IGJvdW5kYXJ5 12596
+IGZsb3dz 12597
+0ZHQvA== 12598
+IGFyZ3VtZW50cw== 12599
+IGVsZWN0aW9ucw== 12600
+xLFz 12601
+IGhlY2s= 12602
+IHN1aXRhYmxl 12603
+IGZpYmVy 12604
+IFN0cmE= 12605
+eHk= 12606
+IEh1bQ== 12607
+IG1vbnRobHk= 12608
+dXBlcg== 12609
+IGdvbGY= 12610
+IGxhdGVseQ== 12611
+IEdhcmQ= 12612
+IFJlbg== 12613
+IEFzdA== 12614
+IEZhbnQ= 12615
+0LDRgdGB 12616
+IG9ic2Vy 12617
+66Gc 12618
+IGVhc2llc3Q= 12619
+jZTr 12620
+IHdlYnNpdGVz 12621
+cG9s 12622
+IGNvY29u 12623
+IOCuhw== 12624
+IFZlZw== 12625
+IHdhbGtz 12626
+IGludHJv 12627
+IGRpcmVjdGVk 12628
+IEFubmE= 12629
+IOuTpOyWtA== 12630
+IEVhc3Rlcm4= 12631
+IFNhaW50 12632
+IEJvdw== 12633
+IHJvYXN0 12634
+IFVSTA== 12635
+IGplZGVu 12636
+dXJhcw== 12637
+YWph 12638
+IHNlbWk= 12639
+IHJhcGlkbHk= 12640
+IHRhcmdldHM= 12641
+IENvbnRyb2w= 12642
+IGJhaA== 12643
+IHJlZmxlY3Rpb24= 12644
+IGNyZWF0aXZpdHk= 12645
+aG9sZGVycw== 12646
+IOyYrOs= 12647
+IGFtb25nc3Q= 12648
+IGZlZWRpbmc= 12649
+0Y3RgtC+0LzRgw== 12650
+INCy0LjQtNC1 12651
+IOunjOuTpA== 12652
+IFNtYXJ0 12653
+IHJlbGlhYmxl 12654
+IHZlemVz 12655
+INeo 12656
+Y2h1Y2tsZXM= 12657
+YXppb25l 12658
+IFdpbGxpYW1z 12659
+IGHDpw== 12660
+IHNsZWU= 12661
+0LXRiQ== 12662
+IHRpbWVsaW5l 12663
+IHRob3JvdWdo 12664
+4buN 12665
+IE90 12666
+4bqhbg== 12667
+IGltYWdpbmF0aW9u 12668
+IG1lY2hhbmljcw== 12669
+cmlzdA== 12670
+IGNsYWltZWQ= 12671
+z4TOtw== 12672
+w6p0ZQ== 12673
+IEh1cnJ5 12674
+IGlQYWQ= 12675
+IGNvbnN0cnU= 12676
+IENsYQ== 12677
+IEFscw== 12678
+dXR6 12679
+IGN1bHR1cmVz 12680
+IOyWtOuWu+qyjA== 12681
+IGJlbG9uZ3M= 12682
+IHllcg== 12683
+IERvZXNu 12684
+IGdlb21ldA== 12685
+IGJpZA== 12686
+IGZvYW0= 12687
+IGhvYg== 12688
+IEJyaXRhaW4= 12689
+IHN1YnN0YW5jZQ== 12690
+IGFubml2ZXJzYXJ5 12691
+IOuEiA== 12692
+IG5vdGVk 12693
+IGdvdmVybm9y 12694
+IHN0b2Nrcw== 12695
+MzE= 12696
+IGRpeWU= 12697
+7Iqk6w== 12698
+IHJlYg== 12699
+emVs 12700
+IG11bHRpcGx5 12701
+IG9wZXJhdG9y 12702
+hKTsmpQ= 12703
+IHdhdGVycw== 12704
+IGTDpHI= 12705
+IHVuc2Vy 12706
+IEVsaXphYmV0aA== 12707
+IGluY3JlYXNpbmdseQ== 12708
+IEdybw== 12709
+IGVuZ2luZXM= 12710
+aXJz 12711
+2Ks= 12712
+IHRyZWFzdXJl 12713
+UEM= 12714
+aW5jdGlvbg== 12715
+aXJp 12716
+IGFjY3Vt 12717
+IHZhcmlhdGlvbg== 12718
+IHBvbQ== 12719
+IHRpdGxlcw== 12720
+IEZlc3Q= 12721
+w7Nz 12722
+IGVsZGVy 12723
+bnlt 12724
+cnVu 12725
+0Y/Qsg== 12726
+IGlubm92YXRpdmU= 12727
+IG5vbWJyZQ== 12728
+IGNvaW5j 12729
+IGZyYW5jaA== 12730
+IGVudG9uY2Vz 12731
+IG5pY2h0cw== 12732
+IGV4Y2x1c2l2ZQ== 12733
+IENoZWVycw== 12734
+IEJp 12735
+dWpl 12736
+IHBvaw== 12737
+IFByZW0= 12738
+IHJvY2tldA== 12739
+RUxJUEU= 12740
+IGhvc3BpdGFscw== 12741
+cml1bQ== 12742
+IGp1c3Rl 12743
+IGhhbW1lcg== 12744
+IHF1YW50dW0= 12745
+IHJlc3BvbnNlcw== 12746
+bGx5 12747
+ZW5kaQ== 12748
+IGFjdGl2ZWx5 12749
+IGZyaWRnZQ== 12750
+aWF0ZQ== 12751
+bG9uZw== 12752
+IHF1ZW0= 12753
+IGRlYXRocw== 12754
+IHN1cGVyaW9y 12755
+Y2tlbg== 12756
+7J207JeQ 12757
+a3RvcA== 12758
+IGdhdGhlcmVk 12759
+o6g= 12760
+IGRhenU= 12761
+IHJlY2lwZXM= 12762
+IGJ1eno= 12763
+Y2Vu 12764
+IGFueXRpbWU= 12765
+b25zZW5zZQ== 12766
+IGNpcmNsZXM= 12767
+IHNvbHZlZA== 12768
+IOyLoA== 12769
+IGNvcm9uYXZpcnVz 12770
+IEx1a2U= 12771
+IGJ1YmI= 12772
+IGNvbnRlbXBvcg== 12773
+cnp5 12774
+IEphbmU= 12775
+INC00L7QvA== 12776
+IHNjcmV3cw== 12777
+IGh5YnJpZA== 12778
+IGNhc3VhbA== 12779
+IHNlbGJzdA== 12780
+YmVpbmc= 12781
+IMSQ 12782
+IENvbHVtYg== 12783
+INGF0L7Rhw== 12784
+IGJ1Y2tldA== 12785
+IGV2YWx1YXRl 12786
+IGlkb2w= 12787
+IHJlcHV0YXRpb24= 12788
+IOyGjOs= 12789
+2YjYsQ== 12790
+IGhlY2hv 12791
+IHBvZW0= 12792
+IHN1YmplY3Rz 12793
+cGxhbnQ= 12794
+IEJlaA== 12795
+IFNwZWFraW5n 12796
+IGJhdHRlcmllcw== 12797
+IGZvbGxvd2Vycw== 12798
+w7Zs 12799
+IGdlbnRseQ== 12800
+IHNpeHQ= 12801
+IHBhcmFtZXRlcg== 12802
+IGlra2U= 12803
+IFRvdXI= 12804
+IERK 12805
+b3R0ZQ== 12806
+IEphaHJlbg== 12807
+IHByZXBhcmF0aW9u 12808
+INC00YPQvA== 12809
+IDgwMA== 12810
+Y29w 12811
+aWtpbmc= 12812
+IOusuA== 12813
+INC90YM= 12814
+INC70LXRgg== 12815
+IElkZQ== 12816
+IOyhsOq4iA== 12817
+IGxhdWdodGVy 12818
+IG1vbGVjdWxlcw== 12819
+IFJlc3Q= 12820
+IG9ic2VydmVk 12821
+ZHppZQ== 12822
+IGFkdmVydGlzaW5n 12823
+ZXJ0bw== 12824
+IG1vaW5z 12825
+IE1JVA== 12826
+IGV4Y2l0 12827
+IHR1bQ== 12828
+IHR5bA== 12829
+IGludmVzdGVk 12830
+IHBoYXJt 12831
+IHVuZXhwZWN0ZWQ= 12832
+IHBoaQ== 12833
+b3R5cGU= 12834
+d2Vpc2U= 12835
+IGdlw6c= 12836
+am91cmQ= 12837
+IGhvcnNlcw== 12838
+bsSF 12839
+PSI= 12840
+IFNN 12841
+IGZpYg== 12842
+IGNsaXBz 12843
+IHJlZ2ltZQ== 12844
+IHJvdGF0ZQ== 12845
+cm91 12846
+bmlr 12847
+IGFybW9y 12848
+8J+Y 12849
+0LXRgNCw 12850
+IE9jaA== 12851
+IHJpY2h0aWc= 12852
+w7x6ZWw= 12853
+YW5lb3VzbHk= 12854
+bWVr 12855
+IFhpYW8= 12856
+IGV4aXN0ZWQ= 12857
+d29ydGg= 12858
+IG5hdWdodA== 12859
+IGhlacOfdA== 12860
+IEJhbA== 12861
+IHJlc2lk 12862
+aXZvdA== 12863
+b21hdGlj 12864
+IGhpcmVk 12865
+IGdyYWR1YWxseQ== 12866
+IG9uaW9ucw== 12867
+IGNvbXBhdA== 12868
+IGludGlt 12869
+IGpldw== 12870
+IGNvbnRyaWJ1dGlvbg== 12871
+IElyZQ== 12872
+YWNqaQ== 12873
+IHNsaWNl 12874
+IGltbXVu 12875
+IFJ1cw== 12876
+IGdyb3dz 12877
+IFNpbWlsYXJseQ== 12878
+IGhhcmRlc3Q= 12879
+IHN0cnVjaw== 12880
+IG1lYXN1cmVtZW50 12881
+Li4uXQ== 12882
+dGhleQ== 12883
+IOyggOs= 12884
+IHNuZWFr 12885
+IGFwcGxpZXM= 12886
+INC90LXQvA== 12887
+5pM= 12888
+15HXqA== 12889
+INCn0YLQvg== 12890
+IG91dHJv 12891
+IGlubm9jZW50 12892
+IG1vZw== 12893
+IFNhbXN1bmc= 12894
+IG1lcmN5 12895
+IGhhbmRsaW5n 12896
+IGludGVydmVudGlvbg== 12897
+aWRheXM= 12898
+Z290 12899
+IGN1cnJpYw== 12900
+IGJvdW5kYXJpZXM= 12901
+IGNvbmZ1c2luZw== 12902
+nbzripQ= 12903
+5oc= 12904
+IHN0aXRjaGVz 12905
+w612ZWw= 12906
+IHR1bm5lbA== 12907
+aXTDpA== 12908
+IGdvc3Q= 12909
+aW15 12910
+IGN6YXM= 12911
+IG3DqQ== 12912
+IGNhdGFs 12913
+IFNpbW9u 12914
+IExJQU0= 12915
+bWlj 12916
+INCk 12917
+IGV5ZWw= 12918
+aXNhcw== 12919
+IENQVQ== 12920
+IERvdQ== 12921
+IG7DpGNo 12922
+IGluZmluaXR5 12923
+IHJpZg== 12924
+IFBlYWNl 12925
+IEN1 12926
+IG1pbmltYWw= 12927
+IGxpc3RlbmVk 12928
+IHBvbGU= 12929
+aGFsYg== 12930
+IGxvYWRlZA== 12931
+IHN0ZWFkeQ== 12932
+IEJlc2lkZXM= 12933
+w6pt 12934
+IGxhcA== 12935
+IGNvb3A= 12936
+IGZyaWVuZHNoaXA= 12937
+d29ybGQ= 12938
+IGdlaA== 12939
+IHR5bGtv 12940
+IExhdXJh 12941
+IHN1cnJvdW5kZWQ= 12942
+IEV2ZW50 12943
+IGNoYXA= 12944
+IFdvbmRlcg== 12945
+YnJlYWs= 12946
+IGRyb3Zl 12947
+IGJyb2FkZXI= 12948
+IGNoaQ== 12949
+Rmk= 12950
+IGdlaGVu 12951
+IHdlc3Rlcm4= 12952
+IGludGVsbGlnZW50 12953
+IHBlcnNpc3Q= 12954
+IGZvdW5kZWQ= 12955
+IGhpc3Rvcmlj 12956
+IGZyw6U= 12957
+Y2tzw6U= 12958
+IGhhbmR5 12959
+IHN5bXA= 12960
+IHJvd3M= 12961
+IG51dHJp 12962
+YnVy 12963
+IExlb24= 12964
+IHNpc3RlbWE= 12965
+IGV4dGVuc2l2ZQ== 12966
+INGD0LI= 12967
+7Y8= 12968
+IG5pZ2h0cw== 12969
+IGPDoWM= 12970
+IGNvdW50aW5n 12971
+IE11c3Q= 12972
+YWxsb3c= 12973
+0LXRgdGB 12974
+TW9t 12975
+INC90LDQtNC+ 12976
+IGJhcnJlbA== 12977
+QVJE 12978
+IGluc3RhbGxhdGlvbg== 12979
+IGluc2VjdA== 12980
+IOuFuOs= 12981
+dWrEhQ== 12982
+IMSRaQ== 12983
+IHBhY2tlZA== 12984
+IGZpY3Rpb24= 12985
+Tm93 12986
+IFlheQ== 12987
+IHBlcnQ= 12988
+cm9ucw== 12989
+dW5kZQ== 12990
+YWNoZXM= 12991
+IHN0eWxlcw== 12992
+IGFwcsOocw== 12993
+b2t1 12994
+IFZpY2U= 12995
+xLFuxLF6 12996
+Y29tbQ== 12997
+IGFzc2lnbmVk 12998
+IGludGVyYWN0aW9ucw== 12999
+IGFjYWI= 13000
+RkVMSVBF 13001
+IHJlc2N1ZQ== 13002
+IGluZHVzdHJpZXM= 13003
+IEFuZHk= 13004
+IHByYWlzZQ== 13005
+IGZsYW1l 13006
+IHNuYWNr 13007
+7YI= 13008
+54E= 13009
+IHN3bw== 13010
+cmVuZGVy 13011
+IGJvYXJkcw== 13012
+INGC0L7QvA== 13013
+ZW5uZQ== 13014
+IHBhc3Rh 13015
+IGRldmls 13016
+IEZlbA== 13017
+IGhhdHRl 13018
+IGNvbGxlZw== 13019
+ZWg= 13020
+7Ls= 13021
+IHByb2R1Y3RpdmU= 13022
+Zm9yd2FyZA== 13023
+0LjQvw== 13024
+IHNtYXJ0cGhvbmU= 13025
+IGludmlz 13026
+IGJ1bQ== 13027
+IHdob2E= 13028
+7J6E 13029
+IG9ja3PDpQ== 13030
+IExhbmc= 13031
+IFN5cmlh 13032
+IHNlc2k= 13033
+zq/OsQ== 13034
+IGFwcHJvdmFs 13035
+NDg= 13036
+INC+0LTQuNC9 13037
+IOuW 13038
+IEhhcnI= 13039
+IEFkbWluaXN0 13040
+INek 13041
+IERlYW4= 13042
+Zmk= 13043
+IGNpdGl6ZW4= 13044
+IHNoYXJr 13045
+MDU= 13046
+IGJvaWw= 13047
+IGluZGljYXRl 13048
+5aE= 13049
+QXJl 13050
+IGxheW91dA== 13051
+IHJlZnI= 13052
+IFBhY2lmaWM= 13053
+QUFBQQ== 13054
+IEF1c3RyYWxpYW4= 13055
+Z3Jlc3Npb24= 13056
+Vm9pY2U= 13057
+0LDQu9GB0Y8= 13058
+IHNoZWx0ZXI= 13059
+VG8= 13060
+YXVwdA== 13061
+IGV2YWx1YXRpb24= 13062
+YXBvcg== 13063
+IGN1cnJlbmN5 13064
+INC80L3QvtCz0L4= 13065
+aWdvcw== 13066
+IG9jdA== 13067
+IHJveWFs 13068
+6LM= 13069
+YXNpbA== 13070
+IENoaWxkcmVu 13071
+IHJpZW4= 13072
+IOuTnOs= 13073
+IGJhcnJpZXI= 13074
+IGVqZW1wbG8= 13075
+IGVr 13076
+TkQ= 13077
+ZXNw 13078
+0LXQvdCw 13079
+IHBpYw== 13080
+IGtpbGxlcg== 13081
+IGludGVncmF0ZQ== 13082
+IGZld2Vy 13083
+IGRpc2FiaWxpdGllcw== 13084
+IC4uLi4= 13085
+IHRyaWFuZ2xl 13086
+IGZlZXM= 13087
+IHdpZGVseQ== 13088
+ZW1p 13089
+IG92ZXJ3aGVsbWluZw== 13090
+IHpvbWI= 13091
+IGJlcmU= 13092
+IGhvb2Q= 13093
+IEF5ZQ== 13094
+IEhhcnZhcmQ= 13095
+ZXY= 13096
+IM+Ezr/PhQ== 13097
+IGN1cHM= 13098
+IEF1Y2g= 13099
+em9uYQ== 13100
+IDE5OTA= 13101
+IHdlacOf 13102
+IGNydW5jaA== 13103
+5qU= 13104
+INC30LDQsg== 13105
+IG1lYXN1cmluZw== 13106
+IHN0YXRpb25z 13107
+IFN0ZXBoZW4= 13108
+IHNob3J0bHk= 13109
+IHNpZ25pbmc= 13110
+IGNvbWVkeQ== 13111
+b21v 13112
+IHN1Z2dlc3Rpb25z 13113
+IHNpZ25hdHVyZQ== 13114
+INC/0YDQuNCy 13115
+IGRpc29yZGVy 13116
+YXNrYQ== 13117
+IHdvcmxkcw== 13118
+IHByZWNpc2VseQ== 13119
+bm9ybQ== 13120
+cmF2 13121
+IENpdmls 13122
+SW50ZXI= 13123
+IENlcnRhaW4= 13124
+IGluanVyZWQ= 13125
+IHN1Z2dlc3Rz 13126
+IEdvbGRlbg== 13127
+IGN5YmVy 13128
+INi0 13129
+IHRlbXBvcmFyeQ== 13130
+IGNvb3Blcg== 13131
+IHZvdGVk 13132
+IG91Z2h0 13133
+4bqleQ== 13134
+eHVhbA== 13135
+IHBhbmVscw== 13136
+IDk1 13137
+IGhhbmRzb21l 13138
+INC/0YDQvtCy 13139
+IHBlcm1pdA== 13140
+IGtlaW4= 13141
+IGJhZGx5 13142
+IG5vdGlmaWNhdGlvbnM= 13143
+aXph 13144
+IE5vdGljZQ== 13145
+IGluY2x1c2l2ZQ== 13146
+IGFuc3dlcmluZw== 13147
+IO2X 13148
+dWxk 13149
+7YWM 13150
+IG5vd2FkYXlz 13151
+IDM3 13152
+IGJvbHQ= 13153
+IHN0YXRpYw== 13154
+IEhvcA== 13155
+IGF2YW50 13156
+YWpv 13157
+IOunm+yeiA== 13158
+IGZpZnR5 13159
+IEZpbmFs 13160
+IHNjb3Jlcw== 13161
+IFRhcA== 13162
+IGN5bA== 13163
+IGNvbnZpbmNl 13164
+IGFueXdheXM= 13165
+b2Rh 13166
+IOyVvA== 13167
+IHNlcnZlcw== 13168
+INGC0LDQutC+0Lk= 13169
+IFpvb20= 13170
+IHNhdmluZ3M= 13171
+dWxv 13172
+IHNvdXRoZXJu 13173
+dmlld2Vy 13174
+IGhvamU= 13175
+IHNlamE= 13176
+IHJlcHJlc2VudGluZw== 13177
+iOuNmA== 13178
+bGlr 13179
+IFNvbWVib2R5 13180
+IGJlYXN0 13181
+IHN0aWNraW5n 13182
+IGluc2lzdA== 13183
+IHRhbGVudGVk 13184
+IGV4cGxhaW5pbmc= 13185
+IGF0dG9ybmV5 13186
+IHN0YWlycw== 13187
+IERvZw== 13188
+7Ys= 13189
+IGNpZw== 13190
+IHNoYXBlZA== 13191
+IHNvbnM= 13192
+z4HOuQ== 13193
+dXR0 13194
+IOyU 13195
+IHBhcmFk 13196
+7J24642w 13197
+IGhvcm4= 13198
+IEpvdXI= 13199
+YW5ubw== 13200
+IHdvcmxkd2lkZQ== 13201
+IHBhcnRpY2lwYXRpb24= 13202
+poQ= 13203
+IG3Ds3c= 13204
+IGJ1cm5lZA== 13205
+IHdyaXRlcnM= 13206
+YWxsYWg= 13207
+IEZ1bmQ= 13208
+IGNsZXZlcg== 13209
+IExldXRl 13210
+Ymlu 13211
+IGJlYXRpbmc= 13212
+Zm9vdA== 13213
+IOybkA== 13214
+IFN0dWRpbw== 13215
+IHZhZw== 13216
+YmV5 13217
+cnpl 13218
+IG9wcG9zaXRpb24= 13219
+INC20LjQtw== 13220
+d2hv 13221
+IOqxtA== 13222
+IHRyYWNl 13223
+INC00LXQvdGM 13224
+IGVwaWQ= 13225
+IGdlc2No 13226
+IE5hcg== 13227
+IEJF 13228
+0YPQuQ== 13229
+IFNpZ24= 13230
+ZWRseQ== 13231
+IGNsYXk= 13232
+IGluc3RhbnRseQ== 13233
+IGdhdGhlcmluZw== 13234
+IEdhbGF4eQ== 13235
+IGJvcmVk 13236
+IEJ1ZGRo 13237
+Y8Op 13238
+IG1hbQ== 13239
+IHNsb3Bl 13240
+IOuLpOydjA== 13241
+IHNjaMO2bg== 13242
+IHBpcg== 13243
+Z2Vm 13244
+YW1lcg== 13245
+IGjDtg== 13246
+IGNvbGxlYWd1ZQ== 13247
+IHByZXNlbnRz 13248
+YWRpdW0= 13249
+IOCutQ== 13250
+IGZhbGFy 13251
+YmVlcA== 13252
+IGRyaWVk 13253
+aXNtcw== 13254
+IHJvcGU= 13255
+IHdvcmtzaG9w 13256
+IGVzdHVk 13257
+IGJhbmRz 13258
+IHRoZW1lcw== 13259
+2YrYsQ== 13260
+IHJlbWluZGVy 13261
+0YLRgw== 13262
+IEJo 13263
+IGNvY29udXQ= 13264
+INGB0YLQvg== 13265
+IENoYW5uZWw= 13266
+IGltbWlncmF0aW9u 13267
+w6Rz 13268
+Li4uLi4= 13269
+c3RvcA== 13270
+INC60LDRgA== 13271
+IGNvaW5z 13272
+INGH0LDRgQ== 13273
+IGRlc3RydWN0aW9u 13274
+bGluZWQ= 13275
+IGJhcnJpZXJz 13276
+YW50aW5l 13277
+IHByaW50ZWQ= 13278
+IGNvbmdyYXR1bGF0aW9ucw== 13279
+IEhlYXJ0 13280
+IGlucXU= 13281
+dGhh 13282
+IGhhcmRseQ== 13283
+IEF2ZW4= 13284
+IHRpbmhh 13285
+IFNvbnk= 13286
+IE5G 13287
+IGdyYWR1YXRlcw== 13288
+IHNxdWVlemU= 13289
+ZXJlbXk= 13290
+z4TOuQ== 13291
+IGVwaWM= 13292
+IEp1 13293
+IG9sbQ== 13294
+IExhdWdodGVy 13295
+IGJlbGllZnM= 13296
+IENydQ== 13297
+IFRydWU= 13298
+IFNvdWw= 13299
+b3dlZW4= 13300
+IHJvbWFudGlj 13301
+INC30LI= 13302
+IGFub3M= 13303
+IFl1cA== 13304
+ZGlt 13305
+IGluZmVy 13306
+INC30LDQvA== 13307
+IHNvYw== 13308
+dWth 13309
+IHByZWNpc2U= 13310
+IGRyb3BwaW5n 13311
+IGNsdWU= 13312
+IGVycm9ycw== 13313
+Y2hhcmdl 13314
+IFB1 13315
+b21ldGVy 13316
+IGxhbWJkYQ== 13317
+YWNpb25hbA== 13318
+IERvbmc= 13319
+IGNoYW1iZXI= 13320
+IHRoYW5rZnVs 13321
+IE51 13322
+IEhhd2Fp 13323
+IGluZm8= 13324
+IGFjdGl2YXRl 13325
+IFF1YWw= 13326
+IHF1ZWQ= 13327
+0YPQu9GM 13328
+IGNsb3Ro 13329
+IHdpY2h0aWc= 13330
+NTU= 13331
+IG90cmE= 13332
+b2dyYXBoZXI= 13333
+IGN1cmlvcw== 13334
+IDE5ODA= 13335
+IGVtcHJlcw== 13336
+ZGVzcw== 13337
+ZXVy 13338
+IGNsdXN0ZXI= 13339
+YXJ0ZXI= 13340
+b2JpbGU= 13341
+IFlhbg== 13342
+IEFkdg== 13343
+IGRpc2NpcGxpbmU= 13344
+IOygleuPhA== 13345
+IFBsYWNl 13346
+IFNlbGVjdA== 13347
+VEU= 13348
+INCx0YvQu9Cw 13349
+IHdoaXM= 13350
+IGJheQ== 13351
+IERvcg== 13352
+ZW5jaW5n 13353
+IHJlcGV0 13354
+IGZpY2Fy 13355
+cGFk 13356
+IGZvZw== 13357
+dXlvcg== 13358
+IHNuYXA= 13359
+aWJ0 13360
+IHNvYmll 13361
+IGFwcG9pbnRtZW50 13362
+IFJ5 13363
+IGNlaWxpbmc= 13364
+b3Vyc2U= 13365
+IHdyaXRlcw== 13366
+IEFmZ2hhbmlzdGFu 13367
+IG1vcw== 13368
+YXpl 13369
+IHBlbmFs 13370
+IGNyeXN0YWw= 13371
+SUNF 13372
+6rCQ 13373
+6Z8= 13374
+IFRlc2xh 13375
+IHRoZW9yaWVz 13376
+IGFwcGVhbA== 13377
+IG5ld3NwYXBlcg== 13378
+IGNvb2tpZXM= 13379
+5qk= 13380
+INin2YTZhA== 13381
+IG1hag== 13382
+IEdldHRpbmc= 13383
+a29tbWVu 13384
+IEhlYXZlbg== 13385
+ZWxscw== 13386
+IGRpdmluZQ== 13387
+xKs= 13388
+IGFrdA== 13389
+IGhvcGVz 13390
+IENoZW4= 13391
+d2VnZW4= 13392
+Kioq 13393
+IEZyYWdl 13394
+INC90Lg= 13395
+4Li5 13396
+bWluaXN0ZXI= 13397
+bmVzb3Rh 13398
+d2hpY2g= 13399
+IGV4cGxpY2l0 13400
+IHZlcmRhZA== 13401
+IGdyYWR1YXRlZA== 13402
+IFBoaWxpcHA= 13403
+UUw= 13404
+IE1J 13405
+IGRldm90 13406
+IGN1cmU= 13407
+IGNsb3Nlc3Q= 13408
+IMOE 13409
+IHNleHk= 13410
+IERlYXRo 13411
+b2tv 13412
+dWd1 13413
+IEFubmU= 13414
+aXRhcmlhbg== 13415
+ZXNh 13416
+0LXQs9C+0LQ= 13417
+IER1cg== 13418
+IDAwMA== 13419
+emVpdA== 13420
+IHRvdXJuYW1lbnQ= 13421
+IG1lbGhvcg== 13422
+4Liq 13423
+IGluZHU= 13424
+IGZsYXc= 13425
+IHdhcnM= 13426
+IE1pbmQ= 13427
+IElyb24= 13428
+0YLQsNC6 13429
+IFZS 13430
+IHNpeg== 13431
+IFNvdXRoZXJu 13432
+IOq3uOufrOs= 13433
+IGF3YWs= 13434
+IOyVng== 13435
+IGN1YmU= 13436
+YmVsaWV2YWJsZQ== 13437
+aWZhbGw= 13438
+ZGlz 13439
+IGFiYW5kb25lZA== 13440
+bWluZA== 13441
+IHBhcmw= 13442
+IGNsYXNzaWNhbA== 13443
+6Is= 13444
+4buZdA== 13445
+IEF1dG8= 13446
+IEJvcg== 13447
+56k= 13448
+NDAw 13449
+IFNvY2lldHk= 13450
+IHN1YnRsZQ== 13451
+IG1pc3Npb25z 13452
+IHJlbWVtYmVyZWQ= 13453
+IEVpdGhlcg== 13454
+IGRhZsO8cg== 13455
+T1JE 13456
+IGludGVuc2l0eQ== 13457
+RVNJTg== 13458
+IEN1cA== 13459
+IHJhcmVseQ== 13460
+IHRveXM= 13461
+IENoYXJsaWU= 13462
+4buf 13463
+IGdsYXViZQ== 13464
+IHJvdW5kcw== 13465
+VElO 13466
+IGNhcGFiaWxpdHk= 13467
+IGRlcml2YXRpdmU= 13468
+IHJlZmVycmluZw== 13469
+IGTDpQ== 13470
+IFRBTEk= 13471
+IGNvdHRvbg== 13472
+IGNvbmZlcg== 13473
+IGNvbHVtbnM= 13474
+IGxpYmVyYWw= 13475
+IG51bmNh 13476
+IM68zrU= 13477
+IGluZG8= 13478
+aWJlbg== 13479
+IEJlaXNwaWVs 13480
+IOq3uOughw== 13481
+INGD0Yc= 13482
+IGhveQ== 13483
+IGZyeQ== 13484
+IFNjb3R0aXNo 13485
+6Io= 13486
+IGNpdg== 13487
+IGNvbnNlcnZhdGl2ZQ== 13488
+IGFpcnBs 13489
+IHNhcg== 13490
+cnVz 13491
+IGludmVzdG1lbnRz 13492
+IGluZmluaXRl 13493
+IOCulQ== 13494
+IFRBTElFU0lO 13495
+IEdhcnk= 13496
+dWVsbA== 13497
+INCw0Lo= 13498
+IENpcg== 13499
+IHJpdHVhbA== 13500
+ID4+Pg== 13501
+IHRlbXB0 13502
+IFRlY2g= 13503
+IFBva2Vtb24= 13504
+IGltcHJvdmVtZW50cw== 13505
+IHNwYXJl 13506
+IHRyYW5zbGF0ZQ== 13507
+IHNvbnJh 13508
+IEZpbG0= 13509
+d29ydA== 13510
+INC80Lg= 13511
+IHBlcmlvZHM= 13512
+IGplYWxvdXM= 13513
+IHRpcg== 13514
+TUk= 13515
+IGNvbmR1Y3RlZA== 13516
+IOyViOuFlQ== 13517
+MDk= 13518
+IFBvbGl0 13519
+IFdoZXJlYXM= 13520
+IG1vaXN0dXJl 13521
+IHNpbnM= 13522
+IGthcA== 13523
+INGN0Lo= 13524
+IGJlbmlt 13525
+IGVsaW1pbmF0ZQ== 13526
+IGF0aGxldGVz 13527
+IE1hbmFnZXI= 13528
+IGZlYXR1cmVk 13529
+YXBvcmU= 13530
+IOuwnA== 13531
+IHBlcmY= 13532
+IFRodXM= 13533
+IGRlYnV0 13534
+0L7QsdGA 13535
+IHNlw7E= 13536
+IG15c3RlcmlvdXM= 13537
+d29yZHM= 13538
+lOqwgA== 13539
+IGNoZWNrcw== 13540
+IHZvbHVudGVlcg== 13541
+IHdhc2hpbmc= 13542
+IE1hcnZlbA== 13543
+IEFC 13544
+aXNzb3Jz 13545
+ISc= 13546
+IEZ1bGw= 13547
+eWVvbg== 13548
+IHdlaWdo 13549
+IEpPSE4= 13550
+IHZvcw== 13551
+IHByb2NlZHVyZXM= 13552
+IGFkZHJlc3NlZA== 13553
+IEJlcmxpbg== 13554
+cHV0ZXI= 13555
+IEJhbg== 13556
+IG1lZGljYXRpb24= 13557
+IGRyb25l 13558
+INGD0LE= 13559
+IEplYW4= 13560
+IGNhcHM= 13561
+IGRpc2FwcG9pbnRlZA== 13562
+IHdvcmU= 13563
+IOq1rQ== 13564
+IG9yZ2FuaXpl 13565
+IEhhbGxvd2Vlbg== 13566
+IGZhbnRhc3k= 13567
+eWFyZA== 13568
+IG5vc290cm9z 13569
+IGp1bXBlZA== 13570
+IHBob3RvZ3JhcGh5 13571
+IE5hbWU= 13572
+cmVj 13573
+QUI= 13574
+IGJsZXNzaW5n 13575
+IFNodXQ= 13576
+IGJpdHRlcg== 13577
+cG9w 13578
+IGRlaQ== 13579
+IGZ1bGZpbGw= 13580
+IGRlbmdhbg== 13581
+IGJlbG8= 13582
+IE1lYW53aGlsZQ== 13583
+IGRlcG9pcw== 13584
+IGRpYWJldGVz 13585
+IGJ1bmQ= 13586
+IFplYWxhbmQ= 13587
+IGRpZ2VzdA== 13588
+IHRpcmVz 13589
+IGRvZA== 13590
+YWduZQ== 13591
+4bq/dA== 13592
+IHBlZWw= 13593
+INC30LDQsQ== 13594
+IG5vZGVz 13595
+IHRyZW5kcw== 13596
+IFN3aXRjaA== 13597
+IEF3YXJk 13598
+IE9yaWc= 13599
+IEhhbA== 13600
+IGVzdGFz 13601
+IDM2MA== 13602
+IHNpbXVsdA== 13603
+IGNvbWlj 13604
+IG3DoA== 13605
+IGJhbGFuY2Vk 13606
+IFByaW5jZXNz 13607
+IGtpbG9tZXRlcnM= 13608
+4bup 13609
+IHBhcnRpcg== 13610
+7KSR 13611
+c29mdA== 13612
+IFZpZXc= 13613
+IGJpb2xvZ2ljYWw= 13614
+aW5zdA== 13615
+NDQ= 13616
+IG1hbmVyYQ== 13617
+IGNvbXByZWhlbnNpdmU= 13618
+IFNhYg== 13619
+IGNyaW1lcw== 13620
+eWVycw== 13621
+IENvbXBhbnk= 13622
+IFBob3Q= 13623
+IHBvdWNv 13624
+aWFj 13625
+IGJlaW0= 13626
+aW5hdGU= 13627
+IHN1YnNlcXU= 13628
+IE1heW9y 13629
+IGNlbnR1cmllcw== 13630
+w6hyZXM= 13631
+7J6W7JWE7JqU 13632
+IOq3uOufvA== 13633
+IEZyYXU= 13634
+IE9I 13635
+IOuBnQ== 13636
+IE5haA== 13637
+IFNlcmllcw== 13638
+IG92ZXJuaWdodA== 13639
+7ZKI 13640
+IOKAog== 13641
+IHRyYXZl 13642
+YXR0ZXJlZA== 13643
+IHdhcnJp 13644
+IEdydW5k 13645
+IEluZG9uZXM= 13646
+IHNjcmE= 13647
+b2J5 13648
+IEJyb29r 13649
+IGN1cnM= 13650
+IOu4 13651
+IGV4cGxhaW5z 13652
+cmFtYXRpYw== 13653
+IHBhcnRpY2lwYXRpbmc= 13654
+IG1pbnV0 13655
+IGNvbnRyYWN0cw== 13656
+IGdlZ2Vu 13657
+IGRpc2FwcGVhcmVk 13658
+IFNO 13659
+IHJvYnVzdA== 13660
+YXBo 13661
+IHNocmlt 13662
+IGRldmFzdA== 13663
+Y29wZQ== 13664
+IG1lZXRz 13665
+IHBlYWNlZnVs 13666
+bWF0ZQ== 13667
+IHdlbGQ= 13668
+INeq 13669
+ZG9u 13670
+0YPRgtGM 13671
+IHJlZ2lzdGVyZWQ= 13672
+IE5paw== 13673
+amlu 13674
+IGNhdg== 13675
+IGVjaHQ= 13676
+aW94 13677
+IGZsb3dpbmc= 13678
+0L3QvtGB0YLQuA== 13679
+IHRvZQ== 13680
+IGVudGl0eQ== 13681
+0L7QstCw 13682
+Zml0cw== 13683
+IFBhdHJpY2s= 13684
+0YLRgA== 13685
+IGxldmVyYWdl 13686
+IGNvcnJlbA== 13687
+aWFo 13688
+IHN0cmluZ3M= 13689
+aXN0aW5jdA== 13690
+IGd1ZQ== 13691
+YXJjaHk= 13692
+IHRlbmdv 13693
+xLFtxLF6 13694
+IG9yYml0 13695
+INC10YnRkQ== 13696
+Y2FrZQ== 13697
+INec15Q= 13698
+IE1pbm5lc290YQ== 13699
+IGJyYWtl 13700
+b3dpZQ== 13701
+IGNyYXc= 13702
+6riw66W8 13703
+IHByb2dyYW1tZQ== 13704
+INGB0LvRg9GH 13705
+aWVuY2Vz 13706
+IE91aQ== 13707
+IFBlcnM= 13708
+aW1pZW50bw== 13709
+IEludmVzdA== 13710
+IHNsb3dlcg== 13711
+IEJldGg= 13712
+IG51cnNl 13713
+IFNwcmluZw== 13714
+U3A= 13715
+IHVuZW1wbG95 13716
+0LTQuA== 13717
+IGdlbml1cw== 13718
+IEFhcm9u 13719
+IOq3uOufrA== 13720
+IGVp 13721
+IHRhbmtz 13722
+IGF1am91cmQ= 13723
+IGNvbXBsZXhpdHk= 13724
+INGA0LXRiA== 13725
+IG9sZGVzdA== 13726
+IGxldHo= 13727
+IHBoZW5vbWVub24= 13728
+cHJpbnQ= 13729
+IEJ1bmRlcw== 13730
+aXRhdA== 13731
+6ruY 13732
+IDQy 13733
+IFdp 13734
+IGluY29t 13735
+IGdlaw== 13736
+IGVtYnJhY2U= 13737
+IHRpZXM= 13738
+b3V0ZQ== 13739
+IGRvc2U= 13740
+IEZyaWVuZHM= 13741
+0YvRgg== 13742
+0LXQs9C+0LTQvdGP 13743
+IG9yZw== 13744
+hOuhnA== 13745
+w7Nn 13746
+IGV4Y2VlZA== 13747
+IGdvZHM= 13748
+IOqxsOyYiOyalA== 13749
+IHNvY2lldA== 13750
+IFVuaXZlcnM= 13751
+aXTDpHQ= 13752
+IHdvcmRlbg== 13753
+IHNtb2tpbmc= 13754
+IGludGVucw== 13755
+YWJ1bA== 13756
+ZW1pYQ== 13757
+6JE= 13758
+NDc= 13759
+Zmx5 13760
+IDIwMDY= 13761
+IFNlcmlvdXNseQ== 13762
+IHByemV6 13763
+5rw= 13764
+Y3Jl 13765
+IG5hbg== 13766
+IG1vZGVz 13767
+0L7QstCw0YLRjA== 13768
+IEhhbmc= 13769
+ZW1lbg== 13770
+IGJlbmVmaWNpYWw= 13771
+IHZvdGVycw== 13772
+IEJyb2Fk 13773
+IGJlbnQ= 13774
+V293 13775
+IG11bA== 13776
+IFVD 13777
+IGRhbWFnZWQ= 13778
+IFVrcmFpbmU= 13779
+IHdpcGU= 13780
+IHN0b25lcw== 13781
+IG1hbmFnZXJz 13782
+IHJhYg== 13783
+0YHRgtGA0L4= 13784
+bGF0 13785
+IGRlY2U= 13786
+IGdyYXBoaWM= 13787
+IGZvc3M= 13788
+IGRpc2FncmVl 13789
+IEFtZW4= 13790
+IHNlY3JldHM= 13791
+aG9sZQ== 13792
+aW5rbGU= 13793
+IGZvcnR1bmF0ZQ== 13794
+IOyx 13795
+7JyE 13796
+IGhhYml0cw== 13797
+IGJ1cmllZA== 13798
+IGhpbg== 13799
+IHZpcnR1YWxseQ== 13800
+b2xhcw== 13801
+IFJQ 13802
+IFRhYg== 13803
+bG93 13804
+IHNhY3JpZmlj 13805
+IGVzdGltYXRlZA== 13806
+b2xu 13807
+2Ys= 13808
+Y3Vy 13809
+IEZlZWw= 13810
+IGNhc3RsZQ== 13811
+IHVzZWxlc3M= 13812
+IGRpc2c= 13813
+IEphY29i 13814
+IGdhYW4= 13815
+IHVwc2lkZQ== 13816
+IHBhcmVjZQ== 13817
+IHNoaXBwaW5n 13818
+IENS 13819
+IGRpc3J1cHQ= 13820
+YWN0ZXI= 13821
+VU5E 13822
+ZnU= 13823
+IFBpY2s= 13824
+IENoYXJs 13825
+IEJ1bGw= 13826
+IGVudGVycHJpc2U= 13827
+IHB1bmlzaG1lbnQ= 13828
+YWNraW5n 13829
+IGZyYWN0aW9u 13830
+IHRhYmxldA== 13831
+IGNob3Jk 13832
+IHNpbWlsYXJseQ== 13833
+IFRvcm9udG8= 13834
+IGNvdXJ0cw== 13835
+xJ9s 13836
+ZXN6Y3pl 13837
+IHByb25vdW4= 13838
+IFNpc3Rlcg== 13839
+IE1Q 13840
+IGdyZWF0bHk= 13841
+IERhbms= 13842
+aWNvcA== 13843
+IGdhcmJhZ2U= 13844
+IHJlc29sdmU= 13845
+IFNhZg== 13846
+IEd1bg== 13847
+IGNvbXBvdW5k 13848
+IOuwsA== 13849
+IE11c2lr 13850
+4pmr 13851
+IGNoYW9z 13852
+IFdoZW5ldmVy 13853
+IGV1cm9z 13854
+IG9yY2hlc3Q= 13855
+IHJlZnJpZ2Vy 13856
+YWxhbg== 13857
+4Li3 13858
+IEFtYXppbmc= 13859
+IHB1ZA== 13860
+YWdhbg== 13861
+IGplc3pjemU= 13862
+aXN5 13863
+IGFjY3VyYWN5 13864
+IEFtYQ== 13865
+aXNvZGU= 13866
+64yA 13867
+IGludGVycHJldGF0aW9u 13868
+IExpYmVy 13869
+5rc= 13870
+Y2Ft 13871
+IGV2b2x2ZWQ= 13872
+IEtheQ== 13873
+0YbRiw== 13874
+IGNyZWF0b3I= 13875
+aXRhcw== 13876
+IGFsYXJt 13877
+IGNlbGVicmF0aW9u 13878
+emVudA== 13879
+IGZ1bmNpb24= 13880
+IG92 13881
+dW1ibGluZw== 13882
+ICU= 13883
+4LiI 13884
+IHJlc3RyaWN0aW9ucw== 13885
+INC90LDQsg== 13886
+IEtpbmRlcg== 13887
+IGJhbmFuYQ== 13888
+0YzRjw== 13889
+IGRpYW1ldGVy 13890
+IG5vcnRoZXJu 13891
+dXJlcnM= 13892
+IFBhcw== 13893
+IHdvcmtmb3JjZQ== 13894
+IGp1bmc= 13895
+IGd1YXJhbnRl 13896
+IGVxdWlsaWI= 13897
+IHN1aXRl 13898
+IGV1cm8= 13899
+IGRlbGliZXI= 13900
+U3Rl 13901
+IGRvd250b3du 13902
+IGNoaW4= 13903
+IGNvZGVz 13904
+ZWRpYQ== 13905
+IHNoZWVw 13906
+cmVzaG9sZA== 13907
+d25pZQ== 13908
+w7Ni 13909
+IHVuZGVybHlpbmc= 13910
+bGlh 13911
+amVy 13912
+z4DPjA== 13913
+550= 13914
+dGhyb3A= 13915
+IHphcA== 13916
+IHZhY3V1bQ== 13917
+IEhhYg== 13918
+IHdyYXBwZWQ= 13919
+7KI= 13920
+IGludmVudG9yeQ== 13921
+0LzQsA== 13922
+IGNvb3Jk 13923
+IHBsYXRlcw== 13924
+IHN5bW0= 13925
+VGU= 13926
+IHfFgmHFm25pZQ== 13927
+IHJlYWNoZXM= 13928
+IGxvbmVseQ== 13929
+U2NyaXB0 13930
+bGVl 13931
+ZXNzZXI= 13932
+IOqxuA== 13933
+IEdlc2No 13934
+IE1vdmluZw== 13935
+IHLDqXA= 13936
+IFZpbGw= 13937
+IFJhY2hlbA== 13938
+IHRlbW9z 13939
+T05F 13940
+IHN0cmFpbg== 13941
+IGFuZ2Vs 13942
+IGbDpQ== 13943
+VHI= 13944
+IGFjaG8= 13945
+IGhpZ2hsaWdodHM= 13946
+IFdlcg== 13947
+IENhcmw= 13948
+IGJsdXI= 13949
+IHJlZ2FyZHM= 13950
+wrc= 13951
+0LjQu9GB0Y8= 13952
+IHJlY3Jl 13953
+IFlhbmk= 13954
+VUNL 13955
+oLg= 13956
+IGVsZWN0cm9ucw== 13957
+IFNwaWVs 13958
+IHZlZA== 13959
+2r4= 13960
+IGJlYW0= 13961
+IGlkaW90 13962
+65Ok 13963
+0L3QsNGH 13964
+aWRk 13965
+IHNraQ== 13966
+aXRhdGl2ZQ== 13967
+IGh5cG90aGVz 13968
+ZW50ZXI= 13969
+IOyVhOuLiOs= 13970
+IGlocmU= 13971
+IHByZXZpZXc= 13972
+YW5nZWw= 13973
+IGRlbW9u 13974
+IGR1cw== 13975
+IGRpYw== 13976
+IEtvbQ== 13977
+TEVZ 13978
+Li4uIQ== 13979
+IHNpZWh0 13980
+IFNvbmlj 13981
+IHRlbmhv 13982
+YW5hcw== 13983
+IGRpZ2l0 13984
+IE1hYXI= 13985
+IHVuZGVyZ3JhZA== 13986
+b3VuY2Vy 13987
+dWZmeQ== 13988
+IGNvbnZlcnNpb24= 13989
+IGRpc2Nvbm5lY3Q= 13990
+IGVjaG8= 13991
+b21lcg== 13992
+IGN1cnJpY3VsdW0= 13993
+IHBlcmNow6k= 13994
+IHdhbmQ= 13995
+Li4/ 13996
+IHJvbGxlZA== 13997
+IGVudHJlcHJlbmV1cg== 13998
+IHRoZW9yZXQ= 13999
+INGJ0L4= 14000
+IGluc2lnaHRz 14001
+IHp1c2FtbWVu 14002
+b2lu 14003
+cmV0dA== 14004
+cHJvZHU= 14005
+IHZpc2l0b3Jz 14006
+ZW91cw== 14007
+IGdyYW5kbW90aGVy 14008
+IGh1bW9y 14009
+INC90LjRhQ== 14010
+emVuaWE= 14011
+aW5zb24= 14012
+IHJlc2V0 14013
+IGJhc2ViYWxs 14014
+IG1hdGNoaW5n 14015
+64uk6rCA 14016
+IHB1bnRv 14017
+7KE= 14018
+IHJlZGU= 14019
+IGFkZHJlc3Npbmc= 14020
+IGZvcmVjYXN0 14021
+IEJvbA== 14022
+IGNvbG9yZWQ= 14023
+IGRvY3VtZW50YXRpb24= 14024
+IGV4cGVjdGF0aW9u 14025
+IE5vcnRoZXJu 14026
+IGNyZW8= 14027
+IOCumg== 14028
+Zm9u 14029
+IHVuc2VyZQ== 14030
+VU0= 14031
+IGNvcGllcw== 14032
+IGV4cGFuZGVk 14033
+IHZldGVyYW5z 14034
+IEFsbQ== 14035
+INCy0L7QvtCx0YnQtQ== 14036
+IHBzeWNob2xvZ2ljYWw= 14037
+IG5vc3Nv 14038
+IHBheW1lbnRz 14039
+aW1ldGVycw== 14040
+IC0tPg== 14041
+IEplbm5pZmVy 14042
+IHZvbHVudGVlcnM= 14043
+b3NzZQ== 14044
+b3Jpb3Vz 14045
+INCx0YvQu9C4 14046
+6II= 14047
+IEVzcw== 14048
+d3M= 14049
+IEJD 14050
+IElD 14051
+V29tYW4= 14052
+IHZvbnQ= 14053
+IGV0aG5pYw== 14054
+RU5O 14055
+0LjQvNC+ 14056
+IGxvYg== 14057
+IG91aQ== 14058
+Y3M= 14059
+IHJlaGU= 14060
+IOyggQ== 14061
+IGNoaWNr 14062
+w7pzaWNh 14063
+IGtvbnQ= 14064
+IERpc3RyaWN0 14065
+IHBpbGU= 14066
+INCw0LI= 14067
+0LXQudGB0YLQsg== 14068
+IMKj 14069
+IGlzc3VlZA== 14070
+INC60L7QvNC/ 14071
+IHByb3NwZXI= 14072
+IHByb2ZvdW5k 14073
+IERlYXI= 14074
+IGZ1bmRlZA== 14075
+IGJpc2E= 14076
+npjr 14077
+158= 14078
+IOydmA== 14079
+IHR3ZWx2ZQ== 14080
+IENoYW1waW9ucw== 14081
+0YHQuw== 14082
+IDIwMDU= 14083
+cG0= 14084
+IG9uZGU= 14085
+IGRpZmbDqQ== 14086
+IENoYWxs 14087
+IGRpZmZpY3VsdGllcw== 14088
+IGdhcmFnZQ== 14089
+IGTDoQ== 14090
+w7xuaw== 14091
+IOusvA== 14092
+IHRyYW4= 14093
+IHN1Ym1pdHRlZA== 14094
+enc= 14095
+2YjYpw== 14096
+IGFyaw== 14097
+IOyEsQ== 14098
+IGdyb2Nlcnk= 14099
+0L7QvdCw 14100
+aWVyZQ== 14101
+IGFlc3Q= 14102
+IGV4aGliaXRpb24= 14103
+IHLDqXM= 14104
+IGNvbnNpc3RlbmN5 14105
+IGNvb2tpZQ== 14106
+0L3QtdC5 14107
+IHJlcGxhY2VtZW50 14108
+IFNlbQ== 14109
+IOyCrOyaqQ== 14110
+ODAw 14111
+IGdlbmVz 14112
+IHRyYW5zYWN0aW9u 14113
+IEVM 14114
+IGR1cmFudGU= 14115
+aWJsZXM= 14116
+IEVhdA== 14117
+dGFpbA== 14118
+aXNzYW5jZQ== 14119
+IHRvc3M= 14120
+IHN1cnZpdmVk 14121
+IG9mZmljZXM= 14122
+IHN1cHBvcnRpdmU= 14123
+V2hlcmU= 14124
+IHRvdXRlcw== 14125
+IOuniQ== 14126
+IGpva2Vz 14127
+aWVyb24= 14128
+YXBlcnM= 14129
+IG1hdHVyZQ== 14130
+IE1hcnNo 14131
+IHNpZG8= 14132
+a2luZA== 14133
+IHJlYWxtZW50ZQ== 14134
+IENoZWY= 14135
+IHF1ZWxxdWU= 14136
+IGp1ZGdlcw== 14137
+ZWZ0 14138
+RVJT 14139
+IGpldA== 14140
+IHBlcnNvbnM= 14141
+6Ls= 14142
+aXphdGlvbnM= 14143
+cmlr 14144
+IHNob3Bz 14145
+IFd5 14146
+IGVsZWc= 14147
+cXXDqA== 14148
+cXVvaQ== 14149
+IGp1Z2E= 14150
+IO2VnOuyiA== 14151
+IFF1ZXN0aW9u 14152
+IEdsb2JhbA== 14153
+IOyVveqwhA== 14154
+IFN0YXRpb24= 14155
+IE9oaW8= 14156
+IHN0aWNreQ== 14157
+IHN0cmVzc2Vk 14158
+IGfDvG4= 14159
+IO2d 14160
+0YHRgtGD0L8= 14161
+IFBoRA== 14162
+aW1tZXI= 14163
+IG1lbnRvcg== 14164
+IGludmVudGVk 14165
+IHJldW4= 14166
+IGluZXZpdA== 14167
+IHBvbMOtdA== 14168
+IGV4ZWN1dGU= 14169
+IFN0b3J5 14170
+IG91dHN0YW5kaW5n 14171
+IGd1ZXI= 14172
+IFJhaW4= 14173
+IGNob3Nlcw== 14174
+IFRpdA== 14175
+INGB0LXRgA== 14176
+IFNpbmdhcG9yZQ== 14177
+IE5vbmU= 14178
+IGNocm9uaWM= 14179
+sOuNsA== 14180
+IGVnbw== 14181
+RVNU 14182
+IFdhbmc= 14183
+IE5BVA== 14184
+IGF1Zw== 14185
+IGRlc2t0b3A= 14186
+IGV0ZXJuYWw= 14187
+IOyCrOyLpA== 14188
+IENvbnN0aXR1dGlvbg== 14189
+7IKs6w== 14190
+15nXnA== 14191
+cHJlcw== 14192
+INCi0Ys= 14193
+IGludGVyZg== 14194
+IGxpc3Rz 14195
+IGZpZ2h0cw== 14196
+ZnRlbg== 14197
+IElvd2E= 14198
+IG1vdGl2YXRlZA== 14199
+IEhvc3A= 14200
+IGVsc2V3aGVyZQ== 14201
+IHBhdGhz 14202
+IGluc3RhbmNlcw== 14203
+Qmw= 14204
+cmFuZ2U= 14205
+4bux 14206
+IFNpdA== 14207
+bWFuYQ== 14208
+IOyLnOyekQ== 14209
+IG3DrG5o 14210
+YW5zYXM= 14211
+IHNuYQ== 14212
+IHBoaWxvc29waA== 14213
+IHBhc3Nl 14214
+xrDhu51p 14215
+YWto 14216
+ZW50YWw= 14217
+IGlobg== 14218
+cnVjdG9y 14219
+INCy0LDRiA== 14220
+IGdlbmVyb3Vz 14221
+IHBpdm90 14222
+0L/QvtC7 14223
+IGphbWFpcw== 14224
+IGNvbWVudA== 14225
+IExldw== 14226
+b2R6aQ== 14227
+IFhib3g= 14228
+INCy0L7QtA== 14229
+IGNvbnNlbnQ= 14230
+ieyepQ== 14231
+IGRpc3Bhcg== 14232
+bGFzcw== 14233
+IEdvdmVybm9y 14234
+QmVpZmFsbA== 14235
+IOqwnA== 14236
+IGJlbG92ZWQ= 14237
+16DXlQ== 14238
+c2VsbA== 14239
+IGhvbm9yZWQ= 14240
+bGVo 14241
+IHfDpHJl 14242
+dW50aW5n 14243
+IGZyYXVk 14244
+IFJBTQ== 14245
+6rG4 14246
+IGtpbGxz 14247
+IGVjb25vbWljcw== 14248
+MDQ= 14249
+0L/QtdGA 14250
+IGNvaXNhcw== 14251
+INC40LPRgA== 14252
+w61t 14253
+IG3DtmNodGU= 14254
+IOy1nA== 14255
+IHN0aW11bA== 14256
+IGZhc3Rlc3Q= 14257
+bHY= 14258
+IGfDqW4= 14259
+IFNvdW5kcw== 14260
+IDE5NzA= 14261
+IGhvbWV3b3Jr 14262
+c3BlYWtpbmc= 14263
+IGVuY291cmFnaW5n 14264
+IHF1ZXJ5 14265
+IHJldmVycw== 14266
+cHJvZml0 14267
+IGR5 14268
+IOyekQ== 14269
+64qU642w7JqU 14270
+IHNvYXA= 14271
+IEdhbGw= 14272
+IENO 14273
+IEFucw== 14274
+IGZpYw== 14275
+YW5rcw== 14276
+IGRlc3NlcnQ= 14277
+IOyggO2drA== 14278
+IE1ha2luZw== 14279
+IGNvbWXDpw== 14280
+6rOE 14281
+IGFzc29jaWF0aW9u 14282
+RGFk 14283
+aGVl 14284
+IGhvZ3k= 14285
+IGFwcm8= 14286
+IGludmlzaWJsZQ== 14287
+QW1lcmljYW4= 14288
+7Y4= 14289
+IHZpYmU= 14290
+IGVtaXNzaW9ucw== 14291
+IGFkdm9jYXRl 14292
+IGtpY2tlZA== 14293
+IHZlbA== 14294
+IHN1bW1hcg== 14295
+IGZyZWFraW5n 14296
+Y2hyb24= 14297
+IHBpbmNo 14298
+IHdzenlzdGs= 14299
+aXNjYWw= 14300
+IHByb3ZlZA== 14301
+IG1pbmRmdWw= 14302
+IHTDpA== 14303
+IG5vaXNlcw== 14304
+IGlzb2xhdGVk 14305
+IGNyb3NzZWQ= 14306
+IOqwlQ== 14307
+IHZvaWzDoA== 14308
+IGNob3Jl 14309
+IFJB 14310
+Q29t 14311
+IHJlbGF4ZWQ= 14312
+YXRybw== 14313
+IHByZXZlbnRpb24= 14314
+Vm9pY2VvdmVy 14315
+T0Q= 14316
+IENvdmlk 14317
+IHNlcGFyYXRpb24= 14318
+IC1b 14319
+0LjRh9C10LPQvg== 14320
+IFNE 14321
+YmxlZXA= 14322
+IGluZGVwZW5kZW5jZQ== 14323
+IHBhcnRpYWw= 14324
+IGFsZ29yaXRobXM= 14325
+IEFueW9uZQ== 14326
+IGFzc29jaWF0ZQ== 14327
+aHVt 14328
+aWN1bGFy 14329
+IGLhuqFu 14330
+IGJhdHRsZXM= 14331
+R29vZA== 14332
+QXBwbGF1c2U= 14333
+IGJhc3RhbnRl 14334
+IGFkdmFudA== 14335
+IFN3ZWV0 14336
+IHJlZnVzZWQ= 14337
+INGC0LXQsdC1 14338
+cGxldA== 14339
+IGVuY291cmFnZWQ= 14340
+IG1pcmFjbGU= 14341
+IEJ1bg== 14342
+IFZhcg== 14343
+cmltaW5hdGlvbg== 14344
+ZWxlY3Q= 14345
+IE11bHQ= 14346
+IGRlbGl2ZXJpbmc= 14347
+ZWluZw== 14348
+IGNt 14349
+bmVobWVu 14350
+IExpbmU= 14351
+IOunjA== 14352
+ZW5jZWQ= 14353
+IFNvdW5k 14354
+IENvbnRpbg== 14355
+aWpk 14356
+VU5H 14357
+a2xl 14358
+IHRocmVzaG9sZA== 14359
+IGNvbXBhY3Q= 14360
+YWR0 14361
+IHRvZXM= 14362
+IFB1cg== 14363
+b3duZWQ= 14364
+bWVudGVk 14365
+IGRlc2lnbmluZw== 14366
+IHZhY2NpbmF0ZWQ= 14367
+IGV4aGF1c3Q= 14368
+IGJhc2ljcw== 14369
+IGNvbnNpc3Rz 14370
+IEd1eQ== 14371
+YWN6eQ== 14372
+IG3DrQ== 14373
+d29u 14374
+IDg1 14375
+5oI= 14376
+IG11bQ== 14377
+IGlnbm9y 14378
+IHByaW50aW5n 14379
+YWN1bGFy 14380
+cG93 14381
+IGV4cGFuZGluZw== 14382
+IGdpcg== 14383
+IENhYg== 14384
+7Zi4 14385
+0YLRjNGB0Y8= 14386
+IOyXrOufrOu2hA== 14387
+IGFuZ2xlcw== 14388
+IHRlcm1pbmFs 14389
+IFdvbg== 14390
+IEludGVyZXN0aW5n 14391
+IGNyb3NzaW5n 14392
+IGJvbmRz 14393
+IHB1ZWRlbg== 14394
+IG9yYg== 14395
+bGFyxLFu 14396
+IGNyZWVweQ== 14397
+IG51dHJpdGlvbg== 14398
+IGFsbGllcw== 14399
+IHdpcmVsZXNz 14400
+IGRlc2lyZWQ= 14401
+IGNvbXB1dGU= 14402
+IEFyaXpvbmE= 14403
+IEJlYXV0aWZ1bA== 14404
+IHByb2R1Y2Vz 14405
+IG51ZXN0cm8= 14406
+dGVk 14407
+IGVsaWdpYmxl 14408
+INGB0L7Qtw== 14409
+aWNpYWw= 14410
+IEhlcm8= 14411
+IGNvbnN1bWU= 14412
+IHJvYm90cw== 14413
+IHB1cmNoYXNlZA== 14414
+Y2Npw7Nu 14415
+IGl6 14416
+xrDhu6Nj 14417
+zq/Ovc6xzrk= 14418
+INij2YY= 14419
+IHNoYWRvd3M= 14420
+IE1lZGlh 14421
+IHByaW5jZXNz 14422
+IGtsYXI= 14423
+IHdvb2Rlbg== 14424
+IHVzYXI= 14425
+IGfDvHplbA== 14426
+IHNsb3Q= 14427
+cmFkZQ== 14428
+IOuS 14429
+IGhhcm1vbg== 14430
+IGluZ3JlZGllbnQ= 14431
+b3JzaGlw 14432
+ZWtp 14433
+IGdyYW5kZmF0aGVy 14434
+IGV4Y2l0ZW1lbnQ= 14435
+IHBvbGl0aWNpYW5z 14436
+Li4h 14437
+IG91dHM= 14438
+IHNlcGFyYXRlbHk= 14439
+INGP0Lo= 14440
+IFdlbHQ= 14441
+IFBvdw== 14442
+amFu 14443
+IG9yaWVudGF0aW9u 14444
+TEM= 14445
+YWdlbQ== 14446
+24zaug== 14447
+IGJyYW5jaGVz 14448
+YWRlbg== 14449
+cmVudGU= 14450
+IElocg== 14451
+YXNt 14452
+IGVzdMOjbw== 14453
+IE5pYw== 14454
+IHNsYXZl 14455
+IGNvbXByZXNz 14456
+Y3Jvd2Q= 14457
+IGNsaW1iaW5n 14458
+IE1hbmFnZW1lbnQ= 14459
+IEJhaA== 14460
+IHBhbmlj 14461
+IGtvcg== 14462
+IGNvb2xpbmc= 14463
+IGJpbmQ= 14464
+INC30LDQtA== 14465
+IHJhY2s= 14466
+IGVudGl0 14467
+IHNlbmRz 14468
+IHlvdXJzZWx2ZXM= 14469
+ZGVz 14470
+IE11c2xpbXM= 14471
+IO2a 14472
+aXNtYQ== 14473
+Y3ljbGU= 14474
+dW5rdA== 14475
+IENvcmU= 14476
+IGluanVyaWVz 14477
+IGlkZW50aWNhbA== 14478
+0LrQsNGP 14479
+IERldXRzY2hsYW5k 14480
+INC10LU= 14481
+aXNhbg== 14482
+IHRydWM= 14483
+bGV0b24= 14484
+IGJhY2t1cA== 14485
+IHVsdHJh 14486
+IGFidW5k 14487
+aWxsZXVycw== 14488
+IGJ5xYJv 14489
+b3J0ZWQ= 14490
+IGVhcnRocXU= 14491
+INC60Ls= 14492
+IG9ic2VydmF0aW9u 14493
+IG1haW50ZW5hbnQ= 14494
+ZWxlbg== 14495
+IHNldHRsZWQ= 14496
+IHBlbGE= 14497
+IEVjb25vbQ== 14498
+INU= 14499
+IHN0ZWVyaW5n 14500
+IEFMTA== 14501
+IENoZXI= 14502
+IHBhdGllbmNl 14503
+IFNub3c= 14504
+IGJvcg== 14505
+IHdvcnRoeQ== 14506
+IGPDoWk= 14507
+INen 14508
+IM66zrE= 14509
+ZG9n 14510
+IEthcmVu 14511
+aWxsZXM= 14512
+zrI= 14513
+IGFncmljdWx0dXJl 14514
+15XXnw== 14515
+IFNlYW4= 14516
+IHNlbnNvcnM= 14517
+7ZW06w== 14518
+YWdo 14519
+IHB1YmxpY2x5 14520
+IHBldXg= 14521
+IEFsZXhhbmRlcg== 14522
+IHByaW9yaXQ= 14523
+IGxhenk= 14524
+YXJkb24= 14525
+YXR0ZXJpbmc= 14526
+IGNvc3R1bWU= 14527
+2LPYqg== 14528
+IHVudw== 14529
+0Js= 14530
+IHRoaWNrbmVzcw== 14531
+cXVpdG8= 14532
+Z3VudA== 14533
+aXN0YXM= 14534
+bmV5cw== 14535
+IOuQmOqyjA== 14536
+IEJyYXNpbA== 14537
+IHRva2Vu 14538
+IGFmZmlsaQ== 14539
+bG9u 14540
+IGbDpXI= 14541
+IEJlYWNo 14542
+IHdpdGNo 14543
+IFNldmVu 14544
+IHBhbnQ= 14545
+zrvOuw== 14546
+IGNhcHRhaW4= 14547
+5Z0= 14548
+IHZldXQ= 14549
+IHBvdXZvaXI= 14550
+YWN6 14551
+IEJhcmI= 14552
+IHV0aWxpdHk= 14553
+IGNvbnRlbXBvcmFyeQ== 14554
+IG9idGFpbmVk 14555
+IHBhaW50aW5ncw== 14556
+ZWFy 14557
+IHBlYW4= 14558
+IE9n 14559
+IGN1c3Q= 14560
+0LvQtdC8 14561
+gpjr 14562
+IElzc28= 14563
+IGFjb250ZQ== 14564
+IFRlbGU= 14565
+IEFzc2lzdGFudA== 14566
+w4k= 14567
+7ZaI7Iq164uI64uk 14568
+IGNvdW50cw== 14569
+IGJ1Y2s= 14570
+IERlZXA= 14571
+IHRhY2tsZQ== 14572
+IGhhcnNo 14573
+IGRlY2lkZXM= 14574
+LuKAiw== 14575
+IEFuZ2Vs 14576
+IGxheWluZw== 14577
+IGNhbG9yaWVz 14578
+IGNvbnRyb2xsaW5n 14579
+IGFkdmFudGFnZXM= 14580
+INGN0YLQvtC5 14581
+IGFwcHJvYWNoaW5n 14582
+IHRocmVhdHM= 14583
+YWthbg== 14584
+ZW1hdGlj 14585
+bWFubg== 14586
+6rO1 14587
+bXVtYmxlcw== 14588
+YWNpw7M= 14589
+IG1haW50YWluaW5n 14590
+IGZvdW5kZXI= 14591
+bGFo 14592
+ZmlnaHQ= 14593
+IGFkbWl0dGVk 14594
+4oCmLg== 14595
+lYw= 14596
+YWJvbA== 14597
+IHVzYWdl 14598
+IG5vbnNlbnNl 14599
+IFBhbGVzdA== 14600
+IGNvbnRyZQ== 14601
+IERlbW9jcmF0aWM= 14602
+IEVS 14603
+amVrdA== 14604
+IGFyYml0 14605
+INCz0L7Quw== 14606
+IE1pY2hlbGxl 14607
+aWNoZXI= 14608
+ZXNo 14609
+IFBobw== 14610
+0LrQvtC8 14611
+NDk= 14612
+IEVuZXJneQ== 14613
+zr/PjQ== 14614
+IGNlbnRz 14615
+IHJlZmVycw== 14616
+IGdvc3BlbA== 14617
+IFNoYQ== 14618
+IFNoYXJl 14619
+15nXoA== 14620
+IGNsaW5pYw== 14621
+IOuEow== 14622
+IGVxdWFsaXR5 14623
+dWdz 14624
+IHNoZWQ= 14625
+IHBsYW5lcw== 14626
+IHRvdXRl 14627
+cmVjaw== 14628
+IHN0cmFuZA== 14629
+IGJpb2xvZ3k= 14630
+IGxlYWd1ZQ== 14631
+IFBvaw== 14632
+IG7Dum1lcm8= 14633
+IENvYXN0 14634
+IGNvbnNpc3RlbnRseQ== 14635
+IG51Y2xl 14636
+T09PTw== 14637
+IG9iamV0 14638
+IGNob3I= 14639
+IGdpbmdlcg== 14640
+IGRhYmVp 14641
+IGNvb3BlcmF0aW9u 14642
+4K+NLg== 14643
+bnRlbg== 14644
+56Q= 14645
+bMOg 14646
+7JaR 14647
+cmFkbw== 14648
+IHBhc3NpdmU= 14649
+IGdsb3Zlcw== 14650
+IHVuZGVyZ3JvdW5k 14651
+IGxvZ2ljYWw= 14652
+IGtldA== 14653
+IGZ1bmN0aW9uYWxpdHk= 14654
+uOumrA== 14655
+IHBvcnRhbA== 14656
+ZWxsZXI= 14657
+15nXqA== 14658
+IFRlZA== 14659
+IEdyZQ== 14660
+kJw= 14661
+IHBlcnNvbm5lbA== 14662
+IGVtZXJnaW5n 14663
+IEbDvHI= 14664
+IG1lYW50aW1l 14665
+dXNhbGVt 14666
+IENsZWFy 14667
+IHRyYXBwZWQ= 14668
+IOyasA== 14669
+IGRpc3Bs 14670
+IG1ldHRyZQ== 14671
+IG11bmljaXA= 14672
+IHdpdGhkcmF3 14673
+IHNwYXQ= 14674
+dW5lcw== 14675
+IGFjY2Vzc2liaWxpdHk= 14676
+IGFwYXJl 14677
+IHByb3NwZWN0 14678
+INC90LDQtw== 14679
+IGNvcHBlcg== 14680
+IFBSTw== 14681
+z4XPhA== 14682
+IGF0dGFja2luZw== 14683
+IFZpbg== 14684
+IFN0b25l 14685
+IGludmVzdGlnYXRl 14686
+c3R5bGU= 14687
+IM67 14688
+66Gd 14689
+66eI 14690
+IGluc3BlY3Q= 14691
+IGxpdmVy 14692
+0LDQu9C40YHRjA== 14693
+IHNlcmE= 14694
+aGFsdGVu 14695
+ZW1hbg== 14696
+IG1pbmlzdHJ5 14697
+Jyc= 14698
+IGRvdHM= 14699
+44WL44WL44WL44WL 14700
+0YPRgdGC 14701
+IEphaw== 14702
+QUtF 14703
+IGdhcHM= 14704
+dWNrZXI= 14705
+INC40L3RgtC10YDQtdGB 14706
+IEVtaWx5 14707
+IGludGVydmFs 14708
+IHRlbmRlcg== 14709
+IFRlY2hub2xvZ3k= 14710
+Z2FtZQ== 14711
+IHRyaWI= 14712
+2YTYpw== 14713
+IERldmVsb3BtZW50 14714
+2YXYpw== 14715
+IHdyaXN0 14716
+IGZpcmVz 14717
+IHRhcmdldGVk 14718
+7KCQ 14719
+IHNvZA== 14720
+7ZqM 14721
+IG9sZHXEnw== 14722
+IHNlYXNvbnM= 14723
+dmVudGlvbnM= 14724
+INC90LXQs9C+ 14725
+IHNvbWV0aW1l 14726
+0LvQuNCy 14727
+bsOp 14728
+IHTDug== 14729
+IERldXM= 14730
+IGV4ZWN1dGlvbg== 14731
+w6Fw 14732
+IENoYW5nZQ== 14733
+IEluZGVlZA== 14734
+IHJlZ3VsYXRpb24= 14735
+IEh1bmc= 14736
+w6lpcw== 14737
+IHdpc2hlcw== 14738
+IGpheno= 14739
+IHN0cnVjdHVyYWw= 14740
+IGJsb3dpbmc= 14741
+IGJ5xIc= 14742
+IHRoZXJtYWw= 14743
+cGhhbnQ= 14744
+0YDRg9C3 14745
+0LDQvdGC 14746
+IFB1bGw= 14747
+IGNvbmZ1c2lvbg== 14748
+0L3Ri9C80Lg= 14749
+IHNjZW5hcmlvcw== 14750
+7KCB7Jy866Gc 14751
+INC00LXRgg== 14752
+IHRhdHRvbw== 14753
+IGF1dHJl 14754
+IGhlYXRpbmc= 14755
+IHRyZWF0aW5n 14756
+INC/0L7QvdC40Lw= 14757
+IGV4Y2x1cw== 14758
+IExPTA== 14759
+d2Vhcg== 14760
+YWdsZQ== 14761
+IHp1csO8Y2s= 14762
+IHJhdGlvbmFs 14763
+c3U= 14764
+IGRldGVy 14765
+IE5hdGl2ZQ== 14766
+4K6V4K6z 14767
+YWNoZWQ= 14768
+IOOD 14769
+IEVudG9uY2Vz 14770
+IGhvcmE= 14771
+7J207JeQ7JqU 14772
+IGxpdGU= 14773
+w6s= 14774
+IHNpeHRo 14775
+INCx0L7Qu9C10LU= 14776
+YWN0b3I= 14777
+IHBzeWNob2xvZ3k= 14778
+IGRlbWFuZHM= 14779
+IHBlZXI= 14780
+IG5ld2x5 14781
+IFdXRQ== 14782
+RG9uYWxk 14783
+IEJveA== 14784
+IHBpbmU= 14785
+IGxvYWRpbmc= 14786
+IE5pY28= 14787
+IHPFgg== 14788
+b21tZQ== 14789
+QVJU 14790
+IHJlY3J1aXQ= 14791
+IGJ1Z3M= 14792
+YXJlbnRz 14793
+INC/0YDQvtCx 14794
+IEluc2lkZQ== 14795
+aXBwZXI= 14796
+ZHJhbWF0aWM= 14797
+IHBsYW5ldHM= 14798
+b3JkZQ== 14799
+IHlvZ2E= 14800
+Y2hpbGQ= 14801
+IE1hcmll 14802
+IEJM 14803
+IGZpbG1lZA== 14804
+IHJlZnJlc2g= 14805
+IHRvbWF0b2Vz 14806
+IGZldA== 14807
+UXXDqQ== 14808
+ICEh 14809
+IOuCtOs= 14810
+cmluZQ== 14811
+IGludGVyYWN0aXZl 14812
+c2Fs 14813
+YW5uYWg= 14814
+cGV6 14815
+IHVuZGVyc3RhbmRz 14816
+IFRva3lv 14817
+IGxpYnJhcmllcw== 14818
+IHJlYWRlcg== 14819
+kZA= 14820
+b3o= 14821
+IEVuZGU= 14822
+IEZsbw== 14823
+IG1pbGQ= 14824
+IHBvZXRyeQ== 14825
+INC20LjQsg== 14826
+IGJlaGF2ZQ== 14827
+IGRvZW4= 14828
+IFN1c2Fu 14829
+cGFnZQ== 14830
+cmFoYW0= 14831
+IGNvbW11bmljYXRpb25z 14832
+IHR1bmluZw== 14833
+IHBhYw== 14834
+IGFueGlvdXM= 14835
+SU8= 14836
+TWFyaw== 14837
+IGhpw6c= 14838
+Ym9va3M= 14839
+IHBpc3M= 14840
+IGVuYWJsZWQ= 14841
+YWNoZWxvcg== 14842
+IEZPUg== 14843
+IMOpYw== 14844
+IFRS 14845
+aWxzdA== 14846
+aGF0 14847
+IOydjA== 14848
+IHR5Y2g= 14849
+IGphcg== 14850
+IGJ1aWxkcw== 14851
+IEFyZ2VudA== 14852
+IGludGVybWVkaQ== 14853
+IGxvdQ== 14854
+IGFyYQ== 14855
+IGFzc2lnbm1lbnQ= 14856
+IGNhYmluZXQ= 14857
+IHJldGlyZW1lbnQ= 14858
+IGRpc2FibGVk 14859
+cmljYQ== 14860
+IGF3YXJkcw== 14861
+IGJvb3Rz 14862
+IGFja25vd2xlZA== 14863
+IHRoeQ== 14864
+IOq1rA== 14865
+IHN5bmQ= 14866
+0L3QuNC5 14867
+aWx0b24= 14868
+IHByb2Js 14869
+IEZhbA== 14870
+IHZlcmRhZGU= 14871
+IDcwMA== 14872
+IExlYXJuaW5n 14873
+b2N1cw== 14874
+IHBhbGFjZQ== 14875
+Tm90 14876
+dGFpbg== 14877
+Y20= 14878
+IG1hZ25ldA== 14879
+aW5jb2xu 14880
+IGZpZ3VyaW5n 14881
+IEx5bg== 14882
+IEJvc3M= 14883
+IFZP 14884
+IGRpYWdub3Npcw== 14885
+IGVxdWlwcGVk 14886
+d2F0Y2g= 14887
+aW5vcw== 14888
+YWRlcnM= 14889
+IHNoZWxm 14890
+IG9yZ2FuaXM= 14891
+IG5vZA== 14892
+IGvEsXo= 14893
+cHBlcnM= 14894
+IHJlc3RvcmU= 14895
+IGFydGlj 14896
+IFZvaWNl 14897
+xLF5b3J1bQ== 14898
+6rKp 14899
+IHNwcmVhZGluZw== 14900
+IGhpcHM= 14901
+IHdhcmQ= 14902
+dXJlYXU= 14903
+IGludGVyc2VjdGlvbg== 14904
+NjY= 14905
+IDM5 14906
+57M= 14907
+IHdhaXRlZA== 14908
+7LQ= 14909
+aGhoaA== 14910
+IGR5cw== 14911
+IEVO 14912
+IGJhdGNo 14913
+IGNhZg== 14914
+IG1hcmtlcg== 14915
+b3JhYmxl 14916
+w7NyaWE= 14917
+IHN0ZXBwZWQ= 14918
+IGNlbGVicmF0aW5n 14919
+0LDQvdCw 14920
+IHdvcm4= 14921
+IEZvbA== 14922
+IHBsYQ== 14923
+IGF0dGVtcHRz 14924
+IHR3ZWV0 14925
+IHJ1c3Q= 14926
+Z2VuY2U= 14927
+7Ya1 14928
+IHJldmVs 14929
+IHJlY2VwdA== 14930
+ZW5lc3M= 14931
+ICgo 14932
+IeKAiw== 14933
+IOyGkA== 14934
+IGluZmx1ZW5jZWQ= 14935
+0LjQtg== 14936
+INC60L7QvdC10YfQvdC+ 14937
+IGNvbGxlZ2Vz 14938
+aW9uaQ== 14939
+IHNhZw== 14940
+QW5u 14941
+b2xhcg== 14942
+IGV4cHJlc3Npb25z 14943
+IHN1aXRz 14944
+IG93bmVyc2hpcA== 14945
+ZWxhbmQ= 14946
+cGllY2U= 14947
+IGRlc3B1w6lz 14948
+IHRlbA== 14949
+IGluc3VsdA== 14950
+IOq1ieyepQ== 14951
+IFNtYWxs 14952
+IEZS 14953
+b2th 14954
+YmVycmllcw== 14955
+IEFudG9u 14956
+0LXQu9GP 14957
+0Y/RgQ== 14958
+IHZhbHZl 14959
+YWN0cw== 14960
+IHdvb2Rz 14961
+4K6j 14962
+IGN1bHRpdg== 14963
+IGbDoQ== 14964
+IGNoZWVycw== 14965
+IGFzc3VtcHRpb24= 14966
+IGZpdG5lc3M= 14967
+w61jdWw= 14968
+IHBvZHI= 14969
+IHdlaXQ= 14970
+IEhpbmQ= 14971
+IGRpZ24= 14972
+INC30L0= 14973
+IHNxdWFk 14974
+IGRlc3Rybw== 14975
+Y2VyZQ== 14976
+c2hpcnQ= 14977
+aW1tdA== 14978
+ZW5nZXJz 14979
+IHPDpA== 14980
+a8WCYWQ= 14981
+IMiZ 14982
+IG9jY2Fz 14983
+IOykhA== 14984
+IHByb2Nlc3Nvcg== 14985
+IERN 14986
+IERhZGR5 14987
+IHNvb25lcg== 14988
+IHN0cmFpZ2h0Zm9yd2FyZA== 14989
+IGRlcGFydG1lbnRz 14990
+IENocm9tZQ== 14991
+IHdvcmtwbGFjZQ== 14992
+IFB5dGhvbg== 14993
+IG1lbmc= 14994
+IERBTg== 14995
+IEljZQ== 14996
+IOuIiA== 14997
+IEdp 14998
+IGhpcmluZw== 14999
+IGxhbmRlZA== 15000
+IGRlbW9jcmF0aWM= 15001
+aWVkeg== 15002
+IHNldg== 15003
+aWNpYQ== 15004
+IGVzcGVjaWFs 15005
+IE5vdXM= 15006
+IGjDpHQ= 15007
+IGJvdQ== 15008
+cGVydA== 15009
+aWVzeg== 15010
+IHZpbA== 15011
+xZtsaQ== 15012
+IMOubg== 15013
+IGxvc3Nlcw== 15014
+IHRvYXN0 15015
+IHJlYWxt 15016
+IEF1c3Rpbg== 15017
+IEluZm9ybWF0aW9u 15018
+IHJlc3VtZQ== 15019
+IGNoYXNl 15020
+IHNhbGFyeQ== 15021
+IOu2hA== 15022
+0LvQuNGH 15023
+INGB0LvQtdC0 15024
+IEZ1cnRoZXI= 15025
+IGNhcmluZw== 15026
+IHZpZw== 15027
+IHZhbG9y 15028
+INGH0LA= 15029
+IGFuYWx5dGljcw== 15030
+IGdsb2Jl 15031
+IE1BTg== 15032
+IG5lbA== 15033
+7J207JW8 15034
+n7w= 15035
+IG95 15036
+7ZWY7IS47JqU 15037
+amVu 15038
+IHRyb3VibGVz 15039
+YWhhaGE= 15040
+IGNodXJjaGVz 15041
+dWV0 15042
+IG1lYXN1cmVtZW50cw== 15043
+Ymls 15044
+7L0= 15045
+aWZ1bGx5 15046
+0LjQvdGD 15047
+IFdpbHNvbg== 15048
+prQ= 15049
+IO2MjA== 15050
+IOywqA== 15051
+IHDDumJsaWM= 15052
+IEplcnVzYWxlbQ== 15053
+IG5haWxz 15054
+IHNwaW5l 15055
+IGhlbW9z 15056
+IHpu 15057
+cXVpcw== 15058
+IExlYmVu 15059
+IHJlZmVyZW5jZXM= 15060
+SVRI 15061
+aXBlcg== 15062
+INGB0LXQsdGP 15063
+7IE= 15064
+IFdh 15065
+c3RhdGU= 15066
+p50= 15067
+IEdlbmVy 15068
+IGFjdHJlc3M= 15069
+IEVuam95 15070
+4LmD 15071
+INeS 15072
+IGluZmVjdGVk 15073
+IHNoYWtpbmc= 15074
+IG5pY2s= 15075
+4Li4 15076
+IGZvdA== 15077
+IGFjY29tcGxpc2hlZA== 15078
+dWtl 15079
+IHNoZWV0cw== 15080
+IGZlbmNl 15081
+IG51cnNpbmc= 15082
+IGludHJvZHVjaW5n 15083
+IGZlYXQ= 15084
+T25l 15085
+VE8= 15086
+IGNsdWJz 15087
+IEJydWNl 15088
+b25nZQ== 15089
+Y2hhbmdl 15090
+IEJhdG1hbg== 15091
+IE9mZmljZXI= 15092
+IGh5ZHJv 15093
+IHN1cHBsZW1lbnQ= 15094
+IGNlbGE= 15095
+IGxvbmdlc3Q= 15096
+IGNvbXBldGluZw== 15097
+IGNvbmhl 15098
+Z2l2aW5n 15099
+IGJyYWlucw== 15100
+IGxvYW5z 15101
+IHdhZ2U= 15102
+IENsaW50b24= 15103
+IHPEgw== 15104
+YW5lb3Vz 15105
+IGxvcmQ= 15106
+0YDRg9C2 15107
+IHF1aXo= 15108
+IHN0aWZm 15109
+IExHQg== 15110
+c3o= 15111
+TUU= 15112
+bWFyZQ== 15113
+dGhlcmU= 15114
+IG7DpHI= 15115
+IE1hbmQ= 15116
+bGFzdA== 15117
+IGRhZw== 15118
+IGhhbGZ3YXk= 15119
+IEJhbmQ= 15120
+IOuLpOyLnA== 15121
+IEFyZW4= 15122
+IGlsZQ== 15123
+UE4= 15124
+ZW50bw== 15125
+IGFsZ3Vt 15126
+IHNvY2Nlcg== 15127
+IGJsb2NrZWQ= 15128
+IEpvbmF0aGFu 15129
+IHNldw== 15130
+IFRlc3RhbWVudA== 15131
+IHZhbGU= 15132
+IGJlaGF2aQ== 15133
+IGNvbm5h 15134
+SUNI 15135
+IGF1ZGllbmNlcw== 15136
+bWw= 15137
+YW1tYWQ= 15138
+IOyCtOw= 15139
+SUdI 15140
+IHJhY2Vz 15141
+ZW1lZA== 15142
+IG3hu5l0 15143
+w68= 15144
+IG92ZXJz 15145
+IGRlY2xhcmVk 15146
+IHNhbmE= 15147
+IFVuYQ== 15148
+INGA0LU= 15149
+dWNrcw== 15150
+IHBhaXJz 15151
+IGFuZ2U= 15152
+TmU= 15153
+IHVwcw== 15154
+YXZ5 15155
+w7hy 15156
+cmVlaw== 15157
+IGJlaGF2aW9ycw== 15158
+IHJlZmxlY3RlZA== 15159
+IHByaW9yaXRpZXM= 15160
+IGNvbmR1 15161
+IHJldHJlYXQ= 15162
+IGV4cGVuc2Vz 15163
+IOu0kA== 15164
+IHRyaXBsZQ== 15165
+IOq1ieyepe2eiA== 15166
+w6RsdA== 15167
+IGluZGlnZW5vdXM= 15168
+IG1pbmluZw== 15169
+IGFjY2VwdGFibGU= 15170
+IHJ1aW4= 15171
+Q0E= 15172
+dWluZQ== 15173
+IHBpcGVsaW5l 15174
+Y3RpYw== 15175
+w6p0 15176
+INCy0YHQtdCz0L4= 15177
+IGJvdW4= 15178
+IERpZ2l0YWw= 15179
+IEJvb20= 15180
+0YbQtQ== 15181
+INC70YPRhw== 15182
+IGFzYw== 15183
+jIDroZw= 15184
+IEdvb2RieWU= 15185
+IHJlbmRlcg== 15186
+ZW5leg== 15187
+YXJyZQ== 15188
+IFRIQVQ= 15189
+Ym91cg== 15190
+aWNpw7Nu 15191
+RXZlcnk= 15192
+IHdpcmVz 15193
+IFBhcmxpYW1lbnQ= 15194
+bnVuZw== 15195
+YXRldXI= 15196
+IFNhdmU= 15197
+IFBoeXM= 15198
+IGFtb3I= 15199
+IEV2ZQ== 15200
+IGZyaWdodA== 15201
+IGdhbW1h 15202
+IG1pY3Jvcw== 15203
+bWl0dA== 15204
+IENvZGU= 15205
+IEJleQ== 15206
+cGxlZA== 15207
+INC40YHQv9C+0LvRjNC3 15208
+55c= 15209
+7IOJ 15210
+IG1vbmV0 15211
+IEphaHJl 15212
+IGx1eHVyeQ== 15213
+IGRlYWY= 15214
+IGJldHJheQ== 15215
+IOqysA== 15216
+0LjQutC4 15217
+IGRlZmVhdGVk 15218
+IHVuZGVydA== 15219
+IHdlZw== 15220
+IGNvb2xlcg== 15221
+aWFtaQ== 15222
+IEplc3NpY2E= 15223
+IEpveQ== 15224
+IHNvcGhpc3RpYw== 15225
+0LXQvdC40Lg= 15226
+8J2Y 15227
+IGNoaWxp 15228
+IFR5cGU= 15229
+IHByb3RlaW5z 15230
+IHByZXNlbnRpbmc= 15231
+YWxpYQ== 15232
+7Jq4 15233
+IE1ham9y 15234
+IG1vbGVjdWxl 15235
+dW1lcg== 15236
+IGNvbGxhcHNl 15237
+IEFueXdheXM= 15238
+IE1vdW50YWlu 15239
+YW50ZWQ= 15240
+44CQ 15241
+INCy0LjQtNC10L4= 15242
+QXVk 15243
+IGNvbnF1 15244
+IHZvbGw= 15245
+IGtuaXQ= 15246
+IG1lbWJy 15247
+IE1hcmtldA== 15248
+IGRhcmk= 15249
+IGNhbGN1bGF0ZWQ= 15250
+0LPQuA== 15251
+IHNocmltcA== 15252
+IE11 15253
+INC/0YDQvtGC 15254
+IOyYgeyDgQ== 15255
+IHByb2R1Y3Rpdml0eQ== 15256
+IGNvZ25pdGl2ZQ== 15257
+IEhlYg== 15258
+aWN0aW9ucw== 15259
+6rK9 15260
+IGNyw6k= 15261
+ZsO2cg== 15262
+IHByYXlpbmc= 15263
+YXNoaQ== 15264
+IFRpaw== 15265
+w7Ny 15266
+d2Vu 15267
+0YzRjg== 15268
+aXhv 15269
+ICgi 15270
+INGC0LXQuw== 15271
+IOyWtOuWpA== 15272
+INC/0LXRgNC10LQ= 15273
+IERyaXZl 15274
+44CR 15275
+IEVxdQ== 15276
+IGVxdWlsaWJyaXVt 15277
+IGRlc2NyaWJlcw== 15278
+0L3QtdC1 15279
+NDI= 15280
+IEN1cnJlbnQ= 15281
+eXk= 15282
+IGFic29yYg== 15283
+IHNvbGRpZXI= 15284
+ZGVycw== 15285
+IHRlc3RpbW9ueQ== 15286
+IGRlY2xpbmU= 15287
+nOuhnA== 15288
+Z2FnZQ== 15289
+IGluc3BpcmU= 15290
+bGFwcGluZw== 15291
+IHNwaW5uaW5n 15292
+IHNsYXZlcnk= 15293
+IGZhY2lhbA== 15294
+IHRyYWRpdGlvbnM= 15295
+w6FyaW9z 15296
+IEhvc3BpdGFs 15297
+IG5lc3Q= 15298
+IOuIhA== 15299
+IHRvaQ== 15300
+IGZlYXJz 15301
+7IWo 15302
+IE11aA== 15303
+IGdyYWR1YXRpb24= 15304
+IGltcGFjdGVk 15305
+IGF1bnQ= 15306
+IExldHM= 15307
+IGFsdW1pbnVt 15308
+IGRvbWluYW50 15309
+IERhdmlz 15310
+IE5hdnk= 15311
+IGNvbXB0 15312
+b3BsZXM= 15313
+IGVzdGF2YQ== 15314
+6KU= 15315
+IHNjYWw= 15316
+IHByZXNlcnZl 15317
+IE9wcA== 15318
+IHByYWN0aWNhbGx5 15319
+IG1hZ25pdHVkZQ== 15320
+IGZpdHRpbmc= 15321
+IGNvb3JkaW5hdGU= 15322
+IGZ1cm5pdHVyZQ== 15323
+IEZhbWls 15324
+IGV4cGxvc2lvbg== 15325
+IGRvY3VtZW50YXJ5 15326
+IFNjcmlwdA== 15327
+IHBvcnRyYXk= 15328
+bWF0 15329
+IHNjaGVkdWxlZA== 15330
+IGR5bmFtaWNz 15331
+cGh5 15332
+YWt5 15333
+IFVJ 15334
+Q2hl 15335
+IGNvbnRpbnVvdXNseQ== 15336
+IFByb3Y= 15337
+0YPQtw== 15338
+cmFo 15339
+IGdlcm5l 15340
+cHJvb2Y= 15341
+IHNlY3JldGFyeQ== 15342
+IFBhdHJlb24= 15343
+c2NyZWFt 15344
+IEtpZHM= 15345
+4buTaQ== 15346
+IGtn 15347
+IHVuY2VydGFpbnR5 15348
+INC60LDQttC0 15349
+IG1pdGln 15350
+IHJlYWRz 15351
+IFJ1 15352
+IHByaWVzdA== 15353
+INC90LXQtA== 15354
+IGxpbWl0YXRpb25z 15355
+IGZsb2F0 15356
+NjAw 15357
+IFRveQ== 15358
+IEppbW15 15359
+IG9mZmVuc2l2ZQ== 15360
+ZW5p 15361
+IFhp 15362
+IGV5ZWJy 15363
+IFR1cms= 15364
+IGFjY2lkZW50YWxseQ== 15365
+IG9obmU= 15366
+IFNhdWQ= 15367
+OTU= 15368
+IER1dGNo 15369
+0LDQvdGB 15370
+IFNlYXR0bGU= 15371
+IOuTsQ== 15372
+Y2hlY2s= 15373
+a8SZ 15374
+IGNvbnRyaWJ1dGlvbnM= 15375
+IGJlc2lkZQ== 15376
+IHF1aW5kaQ== 15377
+IGZsZXc= 15378
+2LDYpw== 15379
+IExP 15380
+IHdhaXN0 15381
+IEVW 15382
+IGhvbGlkYXlz 15383
+am9u 15384
+IG1pc3VuZGVy 15385
+0Y/QvQ== 15386
+IGJvdXQ= 15387
+IGRpbWlu 15388
+4bq9 15389
+w7Ns 15390
+IEdyYWNl 15391
+IGlucHV0cw== 15392
+IGRlbnk= 15393
+IGZvcm1pbmc= 15394
+IEJpbGQ= 15395
+IGFkZXF1 15396
+IGZvbGs= 15397
+IHJlamVjdGVk 15398
+c2VtYg== 15399
+IGZydXN0cmF0ZWQ= 15400
+b3Blbg== 15401
+IEJldHRlcg== 15402
+aWxvbg== 15403
+IHRvd2Vs 15404
+IGRpZmZlcmVudGlhbA== 15405
+IHNhY3JlZA== 15406
+IHNhaWw= 15407
+ZW50aW1lcw== 15408
+IGdlbnRsZW1hbg== 15409
+IGljb25pYw== 15410
+IGNvbXBhcmluZw== 15411
+IHNhZ3Q= 15412
+IHRleHRz 15413
+IGdyYW5kbWE= 15414
+IHJvbGxz 15415
+IGNvbnRlbnRz 15416
+0L7RgdGB 15417
+IHN1c3BlbnNpb24= 15418
+cm9pdA== 15419
+prw= 15420
+IGFzc2V6 15421
+IGRvcnQ= 15422
+IE1hdGg= 15423
+IFZpY3Rvcg== 15424
+IEphdmFTY3JpcHQ= 15425
+IGVuaGFu 15426
+xZk= 15427
+IEJ1c2g= 15428
+IHByb21vdGlvbg== 15429
+IGtpbg== 15430
+IG1vbnN0ZXJz 15431
+IENvbG9yYWRv 15432
+IM6y 15433
+7ZW07JqU 15434
+aWZmZXJlbnQ= 15435
+IG5ha2Vk 15436
+IHByb2Q= 15437
+ZXRpY3M= 15438
+IFdvbWFu 15439
+IHRyZWF0bWVudHM= 15440
+IGVzdG95 15441
+dsOp 15442
+IGxpZnRpbmc= 15443
+IHlhcHQ= 15444
+IFJvYmVy 15445
+IOy5nA== 15446
+IHN1YnN0aXR1dGU= 15447
+YWt1 15448
+cmlkZ2U= 15449
+IOqxsOs= 15450
+IHJlc3BvbmRlZA== 15451
+IGLDqQ== 15452
+IEVuZ2luZWVy 15453
+IHRyYW5zZmVycmVk 15454
+67I= 15455
+IGhhYmVy 15456
+b29w 15457
+IFdF 15458
+IHZlc3Q= 15459
+IGZvcnR5 15460
+IERT 15461
+IDIwMDQ= 15462
+IGNvYWNoaW5n 15463
+bm9t 15464
+IEJhYg== 15465
+IG5vc3Nh 15466
+IEpha2U= 15467
+IGd5 15468
+IGRlbGVn 15469
+IOyeoA== 15470
+INC60YDQsNGB 15471
+IHN0YW5kcG9pbnQ= 15472
+IGRpc2Fk 15473
+IGFydHdvcms= 15474
+QWQ= 15475
+aWxsbw== 15476
+IMSRxrDhu6Nj 15477
+IFByb20= 15478
+IExpYg== 15479
+IGNyaXRpY2lzbQ== 15480
+IGNvbnRhY3Rz 15481
+0YDQsNC8 15482
+IGFjaGlldmVtZW50 15483
+0JTQsA== 15484
+IGRpc3NvbA== 15485
+IFZlZ2Fz 15486
+IHN0cmVhbXM= 15487
+IEtlbnQ= 15488
+INi52YTZiQ== 15489
+IHJhZGl1cw== 15490
+IHN1Y2tz 15491
+IEFjaA== 15492
+IGZp 15493
+b3VzdA== 15494
+INC70Y7QtNC4 15495
+IHBhbGV0dGU= 15496
+IEhheg== 15497
+IEFudGhvbnk= 15498
+IHRlbWE= 15499
+IENvcw== 15500
+IHNhZmVy 15501
+zrHPgg== 15502
+IGNvbnRyYWQ= 15503
+IG1haW9y 15504
+IGluZmxhdGlvbg== 15505
+IFNpbHZlcg== 15506
+IGF0dGVuZGluZw== 15507
+7ZWc7YWM 15508
+YXJ0bw== 15509
+IGFwcGxhdWRpbmc= 15510
+IGNvbXB1dGluZw== 15511
+IEhhdA== 15512
+5rs= 15513
+a25vdw== 15514
+bWFrZXJz 15515
+IGNvbm9j 15516
+IGVkdWNhdGVk 15517
+IG1vZGlmaWVk 15518
+IGluY2x1c2lvbg== 15519
+bWVudGFs 15520
+npA= 15521
+aXNpYQ== 15522
+IM+Azr/PhQ== 15523
+IGF1bg== 15524
+IElyZWxhbmQ= 15525
+IGvDtg== 15526
+IGNvbXBsaWFuY2U= 15527
+IGluc3BpcmluZw== 15528
+0LjRgtC10LvRjNC90L4= 15529
+IGRpc3Bvcw== 15530
+7LCo 15531
+IHdpcA== 15532
+cmljYWw= 15533
+cmF3ZA== 15534
+IHRyZXM= 15535
+IG1vYmls 15536
+b2x1dGlvbnM= 15537
+Qk8= 15538
+IGJvdW5jZQ== 15539
+IGFzc3VtZWQ= 15540
+IE1lZGljYWw= 15541
+IGZpc2NhbA== 15542
+IG5nxrDhu51p 15543
+aXRpb25hbGx5 15544
+IHN0b2xlbg== 15545
+IEJN 15546
+IG1lY2hhbmlzbXM= 15547
+zrXOrw== 15548
+IHF1YWxpZmllZA== 15549
+IOyekOs= 15550
+dWdodGVycw== 15551
+IEhJVg== 15552
+IExvdHM= 15553
+IHNlcnZlcnM= 15554
+IGNhcnI= 15555
+IFRvZ2V0aGVy 15556
+IGF0dHJhY3RlZA== 15557
+IGty 15558
+dGh1cg== 15559
+aW5pbg== 15560
+IEhhbGY= 15561
+yJs= 15562
+IFBhcA== 15563
+IHJlbWluZGVk 15564
+QUxM 15565
+IGhlbG1ldA== 15566
+IGJvdHRsZXM= 15567
+IHByb2Zlc3NvcnM= 15568
+IHNlaW5l 15569
+xYLEhQ== 15570
+IOqxsOyVvA== 15571
+INei15w= 15572
+ZnVu 15573
+IEJpcmQ= 15574
+IGZpZ2h0ZXI= 15575
+IOuUsOs= 15576
+IFRvb2w= 15577
+IHRpbg== 15578
+aW5vaXM= 15579
+67aE 15580
+15nXnw== 15581
+IENBUg== 15582
+aXJzdHk= 15583
+IG91dGRvb3I= 15584
+IE5T 15585
+44WO 15586
+ZmZlbg== 15587
+IGx1ZA== 15588
+SGVsbG8= 15589
+IHJvbGxlcg== 15590
+aWVsZQ== 15591
+IFBvbGFuZA== 15592
+IGFwYQ== 15593
+ZXhw 15594
+IGNlcnRpZmljYXRl 15595
+IFRvd24= 15596
+0LDRjtGC0YHRjw== 15597
+aWxkZQ== 15598
+IGRldGVybWlu 15599
+UFI= 15600
+IGZyZWV6ZQ== 15601
+IG1haW5zdHJlYW0= 15602
+IG9iamVjdGl2ZXM= 15603
+Ymxv 15604
+IHRha2ll 15605
+IOuwlOuhnA== 15606
+ZWxldA== 15607
+IElW 15608
+IEZhc3Q= 15609
+IGRlcmU= 15610
+ZW1w 15611
+IERyYQ== 15612
+IOyeiOyXiA== 15613
+IGRpc2NyaW1pbmF0aW9u 15614
+IM61zq/Ovc6xzrk= 15615
+bmVjZXNz 15616
+5q4= 15617
+xLHEn8Sx 15618
+IHBvc3Rpbmc= 15619
+d2nFm2NpZQ== 15620
+IGx1Yg== 15621
+IG9saXZl 15622
+IHJpbQ== 15623
+IG1vZGVsaW5n 15624
+IGHDsW8= 15625
+IFBha2lzdGFu 15626
+IG92ZXJs 15627
+IGluZmxhbQ== 15628
+TkU= 15629
+7JeQ6rKM 15630
+IGF0dGVuZGVk 15631
+IGRlYWx0 15632
+IEFsdA== 15633
+IExpbmNvbG4= 15634
+IGF3YWtl 15635
+IGZpbHRlcnM= 15636
+IFdpdGhpbg== 15637
+Y3p5d2nFm2NpZQ== 15638
+IHPDuw== 15639
+IEpvaG5ueQ== 15640
+IGludGVncml0eQ== 15641
+IGlzb2xhdGlvbg== 15642
+IEVhc3k= 15643
+INC/0YDQuNC9 15644
+IEFsaWNl 15645
+IHNtaWxpbmc= 15646
+ZW5peA== 15647
+LC4uLg== 15648
+zrY= 15649
+IGJlZ3Vu 15650
+IGpld2Vs 15651
+IGNvbnZlbnRpb25hbA== 15652
+IHN0YXRpc3Q= 15653
+IGhhbmRlZA== 15654
+IGlycmU= 15655
+IHByb2hpYg== 15656
+IHNhdGVsbGl0ZQ== 15657
+IEluZHVzdA== 15658
+IHRyYWdlZA== 15659
+IHRyYXZh 15660
+IGlobQ== 15661
+IGNydWVs 15662
+IEFnb3Jh 15663
+IERvYw== 15664
+IHpvbmVz 15665
+IG1hbGw= 15666
+IHRyYXk= 15667
+15XXoA== 15668
+IGlycml0 15669
+IGthbnM= 15670
+IEJlYXQ= 15671
+dWRnZQ== 15672
+aWVsbGU= 15673
+IHRydXN0ZWQ= 15674
+IGJpa2Vz 15675
+INGD0L8= 15676
+IE1lbWJlcg== 15677
+d2ljaw== 15678
+IGNyZWF0b3Jz 15679
+IGhlcml0YWdl 15680
+aW5kaXN0aW5jdA== 15681
+IHJlc3Vy 15682
+ZW5uZW4= 15683
+Q29tZQ== 15684
+IGZpcmluZw== 15685
+IEJ1ZW5v 15686
+INCi0L4= 15687
+aWthbg== 15688
+ZXR0ZXM= 15689
+IGtlcw== 15690
+IHRyaXBz 15691
+IGRpdm9yY2U= 15692
+IEts 15693
+IGNvbnNvbA== 15694
+a2VlcA== 15695
+6riw6rCA 15696
+IFJlcG9ydA== 15697
+IGhvc3Rpbmc= 15698
+IGRpYW1vbmQ= 15699
+IGNvbXBsaWM= 15700
+IGhlbGljb3A= 15701
+IGRlcHVpcw== 15702
+ZHM= 15703
+IENoYW4= 15704
+0Y/Quw== 15705
+IHNjaXNzb3Jz 15706
+aWxhdGlvbg== 15707
+IHByb3BvcnRpb24= 15708
+RVJF 15709
+INmI2KfZhA== 15710
+aW50YQ== 15711
+IG11Y2hhcw== 15712
+dWF0aW9u 15713
+aXRpcw== 15714
+0Y/RiQ== 15715
+IG5paW4= 15716
+IGVtcGhhc2l6ZQ== 15717
+dWVsYQ== 15718
+IHByb2R1Y2Vycw== 15719
+IHJ6ZQ== 15720
+w6RuZGVy 15721
+RVRI 15722
+5ro= 15723
+IGNvbnN0aXR1 15724
+IHBlcmZvcm1hbmNlcw== 15725
+aXN0bGU= 15726
+Z292 15727
+IExpdGVy 15728
+IGluY29ycG9yYXRl 15729
+IGVkdWNhdGU= 15730
+IE5pbg== 15731
+7Kq9 15732
+2YfZhQ== 15733
+ZWxlcmF0aW9u 15734
+15XXkQ== 15735
+IHlhxZ8= 15736
+b3JvdXM= 15737
+IENhcw== 15738
+IGdyYW50cw== 15739
+64ql 15740
+YW1lbA== 15741
+IOq3uOugh+qyjA== 15742
+IEVzdGU= 15743
+0YXQvtC00LjRgg== 15744
+INC/0L7RgdC70LU= 15745
+IGdlbnQ= 15746
+IGZvY3VzZXM= 15747
+YWxpdGllcw== 15748
+IFJo 15749
+67O0 15750
+IERhbmNl 15751
+cnI= 15752
+IGFtZXI= 15753
+IHV0aWxpemU= 15754
+IGzDrQ== 15755
+IEFtb25n 15756
+IHByZWduYW5jeQ== 15757
+IGxvb3Bz 15758
+0LDQu9C+0YHRjA== 15759
+IE1vaA== 15760
+IGNhdGNoaW5n 15761
+IGdsb2I= 15762
+IGFqdWQ= 15763
+IFs/ 15764
+IEFuYWw= 15765
+bG9va2luZw== 15766
+IHN1cmZhY2Vz 15767
+IHByb2dyZXNzaXZl 15768
+IHZpcmFs 15769
+MDg= 15770
+zr4= 15771
+S0E= 15772
+IMW8eQ== 15773
+IHBpY2tz 15774
+YW5ub24= 15775
+IGJ1bGs= 15776
+IFJvc3M= 15777
+IGRlc2NyaWJpbmc= 15778
+IEdlbA== 15779
+IGxvY2FsbHk= 15780
+IGVuZGxlc3M= 15781
+IG1hc3NhZ2U= 15782
+IGNsZWFuZWQ= 15783
+IHRyYXZlbGVk 15784
+0LXQvdGL 15785
+IHNlbnRpbWVudA== 15786
+aWdtYQ== 15787
+IE5hcw== 15788
+IGNoZW1pY2Fscw== 15789
+IHJpZ2h0ZW91cw== 15790
+IE1hZ2lj 15791
+IHJlbGF0ZXM= 15792
+IHRydWNrcw== 15793
+IDE5NjA= 15794
+IGFwcGV0 15795
+IHNuYWNrcw== 15796
+IFN1bW1lcg== 15797
+IHnDvHo= 15798
+IHByaXM= 15799
+IE1leGljYW4= 15800
+IHRyYW5zcGFyZW4= 15801
+IG1pbm9yaXR5 15802
+IHZlcnRl 15803
+IGxhc3Nlbg== 15804
+NDY= 15805
+0LvQtdC6 15806
+w6lw 15807
+INGE0LjQu9GM 15808
+IGl5aQ== 15809
+IHNwYW4= 15810
+7ZWY7KeA 15811
+IGluZGljYXRlZA== 15812
+cXVhcg== 15813
+IHNjaG9sYXJzaGlw 15814
+IExHQlQ= 15815
+IGhpc3RvcmljYWxseQ== 15816
+w7PFgg== 15817
+IG1pbmlzdA== 15818
+IHBlbmV0 15819
+IFJhcA== 15820
+IGNvbnNlcnZhdGlvbg== 15821
+IEhvbmV5 15822
+IEJlaQ== 15823
+aWRlbA== 15824
+IHJlc3BvbnNpYmlsaXRpZXM= 15825
+IG1lc3N5 15826
+IEV4Y2VwdA== 15827
+T1JF 15828
+IGluaXRpYXRpdmVz 15829
+IGp1bmlvcg== 15830
+IGRlc2lnbmVycw== 15831
+IGV4cGxvcmF0aW9u 15832
+IHNwb25zb3I= 15833
+IG1vYmlsaXR5 15834
+IGludGVn 15835
+bGFuZG8= 15836
+IGJhcms= 15837
+IGluZGljYXRlcw== 15838
+4LY= 15839
+IGVtcGxveWVy 15840
+IGNvdXNpbg== 15841
+IGJvaWxpbmc= 15842
+IGNocm9t 15843
+IMOnYWw= 15844
+IHBlcnBldA== 15845
+IGNvbnRhaW5lZA== 15846
+IHBhcmtz 15847
+0Ks= 15848
+IEVuZ2luZWVyaW5n 15849
+UGxlYXNl 15850
+IFN0YXJ0aW5n 15851
+aGVybw== 15852
+IGxhd3llcnM= 15853
+IHpk 15854
+IGZyYW5jaGlzZQ== 15855
+cmFnZQ== 15856
+IGludHVpdA== 15857
+IEdM 15858
+cmVhY2g= 15859
+IEVsbGU= 15860
+IG5oxrA= 15861
+IE5vcmQ= 15862
+IGJlYW4= 15863
+MDc= 15864
+IHBsZWFzYW50 15865
+dmlyb24= 15866
+IGdyYWRpZW50 15867
+enVz 15868
+IEVN 15869
+IGVzc2F5 15870
+7JeQ7JqU 15871
+4bq/bg== 15872
+bnU= 15873
+4bur 15874
+IMOJcw== 15875
+IGRlbm9taW4= 15876
+IEdpcmxz 15877
+IHBlcnNvbm5lcw== 15878
+INin2YTYow== 15879
+YmlsZA== 15880
+IFN0YXQ= 15881
+IGNvbXBsaW1lbnQ= 15882
+IEthdGU= 15883
+IG9wdGltYWw= 15884
+IGhpZA== 15885
+2K/Zig== 15886
+IHF1aWNrZXI= 15887
+d2FsbA== 15888
+RW4= 15889
+SU5F 15890
+Pz8/ 15891
+7LK0 15892
+IEFjdGlvbg== 15893
+5Z8= 15894
+IHBlbmFsdHk= 15895
+IEtheg== 15896
+Jz8= 15897
+IGNyaWVk 15898
+IGNhbnZhcw== 15899
+ZnRl 15900
+IGV4Y2x1ZA== 15901
+uOuhnA== 15902
+IGVtcGhhc2lz 15903
+IGVuenk= 15904
+IEhvdQ== 15905
+IG92ZXJzZWFz 15906
+w61hbW9z 15907
+w7ZnbGljaA== 15908
+IGhlYWRwaG9uZXM= 15909
+Y24= 15910
+IEFnZQ== 15911
+IGFrYW4= 15912
+IGNoYXJhY3RlcmlzdGlj 15913
+7ZWY66m0 15914
+Z2V0cw== 15915
+IOu2iA== 15916
+IHJpdmFs 15917
+IGJvcmRlcnM= 15918
+ZW1lbnRl 15919
+ZW3DoXM= 15920
+IHlvbA== 15921
+IGNvbXBl 15922
+ZW5kZXJz 15923
+xLFuZGFu 15924
+IG3DtmdsaWNo 15925
+IGJ1YmJsZXM= 15926
+bmF0dXJhbA== 15927
+IGFybWVk 15928
+IGVsYWJvcg== 15929
+IOydtOuyiA== 15930
+IHdhc2hlZA== 15931
+zr/Phc68zrU= 15932
+IGZsYXZvcnM= 15933
+IGV4aXN0ZQ== 15934
+IHByZXN0 15935
+IFRoZW1h 15936
+0L7Qv9GA0L7RgQ== 15937
+ZXJvbg== 15938
+VUU= 15939
+ZXJp 15940
+IGNvbmNlcg== 15941
+IGFpeMOy 15942
+IHByb3RlY3RpdmU= 15943
+INC30L3QsNGO 15944
+IOuCoA== 15945
+IElJSQ== 15946
+IG1lZXI= 15947
+IFNob3A= 15948
+bGxp 15949
+IE9yZGVy 15950
+IE1Z 15951
+IEdob3N0 15952
+YWRlbA== 15953
+IHN0b2xl 15954
+IHJlbGVhc2luZw== 15955
+IENvbW1lbnQ= 15956
+IHRyYWlucw== 15957
+66qF 15958
+IHdpc3Nlbg== 15959
+ZW5zZWQ= 15960
+IGRlc2NlbmQ= 15961
+IGZpZXI= 15962
+IHJhZGk= 15963
+IHBlcnN1 15964
+56I= 15965
+INC80L0= 15966
+IERlc3Q= 15967
+IHdvcnJpZXM= 15968
+aXRldA== 15969
+YmFz 15970
+IHN0YWI= 15971
+bmFtZQ== 15972
+b3JpYw== 15973
+IENsb3Nl 15974
+IGFsdW1uaQ== 15975
+IFNlbGY= 15976
+ZmZl 15977
+aXRhdGluZw== 15978
+YXRoZXJpbmU= 15979
+IFJpZ2h0cw== 15980
+IGVsbG9z 15981
+IHdhcnJhbnQ= 15982
+IG5lcnZl 15983
+IHZlZ2V0YWJsZQ== 15984
+IFRlaWw= 15985
+IOqwmeydtA== 15986
+Ulk= 15987
+IHN1c3RhaW5hYmlsaXR5 15988
+IHN0ZWh0 15989
+IGJyaWQ= 15990
+YWRhxZ8= 15991
+IHR2 15992
+IGR1cmF0aW9u 15993
+IHBlc3NvYQ== 15994
+IG1ldHJpY3M= 15995
+IGFkYW0= 15996
+Y2Fz 15997
+0LDRgNC4 15998
+IGV2aWRlbnQ= 15999
+IGRpc3BsYXllZA== 16000
+2KfYpg== 16001
+IHJlY2s= 16002
+IEJ1ZGRoYQ== 16003
+IGRlbGU= 16004
+IERpZWdv 16005
+b3NwaA== 16006
+IGJsYQ== 16007
+IE1paw== 16008
+dWxhdG9y 16009
+IDIwMDE= 16010
+IHByb21vdGluZw== 16011
+eWNo 16012
+IEVY 16013
+IGxhc3RseQ== 16014
+IG91dGxpbmU= 16015
+IHNwaXJpdHM= 16016
+IHZldXg= 16017
+IHN1YnRyYWN0 16018
+IMWfaW1kaQ== 16019
+IHBpbnM= 16020
+IGJ1cmdlcg== 16021
+IG1vbHRv 16022
+IGhhYsOtYQ== 16023
+IOuwmA== 16024
+aWd1 16025
+ZXJzdA== 16026
+IG5lbg== 16027
+IGJhY29u 16028
+aXRpb3Vz 16029
+IGNhcnJpZXM= 16030
+IHByb21pc2Vz 16031
+bmRl 16032
+IExlZnQ= 16033
+IExpbQ== 16034
+5qM= 16035
+IDQ0 16036
+IGNhcmVlcnM= 16037
+IOyjvOs= 16038
+IHNwZWVkcw== 16039
+cXXDqQ== 16040
+bWFk 16041
+bWFya2V0 16042
+aXNtZQ== 16043
+IDIwMDM= 16044
+IHJlY2Vzcw== 16045
+IEpVRA== 16046
+IHJhY2lzdA== 16047
+IFNjaGw= 16048
+IHBhcmxlcg== 16049
+IG90cm9z 16050
+aXNoZXM= 16051
+IGNvbnZlcnRlZA== 16052
+YWFhYQ== 16053
+0LDQvdC40Lg= 16054
+IEFyaw== 16055
+IENoYW5jZQ== 16056
+IGVsZW1lbnRhcnk= 16057
+zrXOvQ== 16058
+aW5rcw== 16059
+SW50ZXJ2aWV3ZXI= 16060
+IGZyZWVseQ== 16061
+YWxhaA== 16062
+IOuLpOuluA== 16063
+IHJlcXVlc3RlZA== 16064
+IHRvcnF1ZQ== 16065
+bm/Fm2Np 16066
+b3VyZWQ= 16067
+IFN0YWZm 16068
+IHN0YWlu 16069
+IEFsYW4= 16070
+IHZlcmU= 16071
+IFdpbnRlcg== 16072
+IGRlZmVjdA== 16073
+aWVkeQ== 16074
+IGJlYXRz 16075
+IGjDoQ== 16076
+dW1u 16077
+b29ucw== 16078
+aXR1ZGVz 16079
+IHNlaXQ= 16080
+b2x5 16081
+IHJlc2Vydg== 16082
+IGV4dHI= 16083
+IHBoeXNpY2lhbg== 16084
+dmlzb3I= 16085
+IGhhbmRmdWw= 16086
+IE5hdGlvbnM= 16087
+IOyii+ydgA== 16088
+dWNjZXNz 16089
+IHVwc3RhaXJz 16090
+IFNxdWFyZQ== 16091
+IGhlaW4= 16092
+IFNlYXNvbg== 16093
+b2xpcw== 16094
+IHByaW5jZQ== 16095
+IGRlZmVuc2l2ZQ== 16096
+570= 16097
+INC80LXRgdGC 16098
+0ZbQuQ== 16099
+INin2YY= 16100
+dW1ibGU= 16101
+6rmM7JqU 16102
+IGFzc2Fzcw== 16103
+IGNpcmN1bGFy 16104
+IHF1YWxpdGllcw== 16105
+IGhtbQ== 16106
+IGJsb3du 16107
+IExpeg== 16108
+IEt1cg== 16109
+IFNB 16110
+IGZpbmRpbmdz 16111
+IGNvbG91cnM= 16112
+IGRlbGxl 16113
+IElS 16114
+IEF0aA== 16115
+IER1Yg== 16116
+IE94 16117
+INiu 16118
+IHBvY2tldHM= 16119
+IGdyaWxs 16120
+IHN3aXRjaGluZw== 16121
+IHByZWZlcnJlZA== 16122
+IFdhbGVz 16123
+IGV4ZW1wbG8= 16124
+IGNob3BwZWQ= 16125
+IHZhY2NpbmF0aW9u 16126
+IG5ldXJv 16127
+IHNwZWNpZnk= 16128
+aXZvcw== 16129
+IHNlcsOh 16130
+IHppZQ== 16131
+IOCurg== 16132
+IHJlc3VsdGluZw== 16133
+IFVnaA== 16134
+IG1lc3NlZA== 16135
+Q0Q= 16136
+IHBhYXI= 16137
+IGNvbWVy 16138
+IGNvdWNo 16139
+IEZlc3RpdmFs 16140
+IDQ5 16141
+dm91cw== 16142
+emVucw== 16143
+IEtlbm5lZHk= 16144
+IFRz 16145
+IOuztOyX 16146
+IGRlbW9uc3RyYXRpb24= 16147
+IHVudG8= 16148
+IGZydXN0cmF0aW5n 16149
+IGxhYm9yYXRvcnk= 16150
+IGVneQ== 16151
+IGJlYXV0aWZ1bGx5 16152
+IOyerOs= 16153
+IGFsZ3U= 16154
+IMO2eWxl 16155
+IFBI 16156
+IGZvcnR1bmU= 16157
+IGNsZWFuZXI= 16158
+IFJvYmlu 16159
+IHNhdXM= 16160
+IEdlbGQ= 16161
+IGthdA== 16162
+b2Jz 16163
+IG9sdXI= 16164
+IG1hdHQ= 16165
+IHF1ZXN0YQ== 16166
+IHN1Z2dlc3Rpb24= 16167
+ZW5jZXI= 16168
+0L7RgdGC 16169
+IHJhZGFy 16170
+IOyeoQ== 16171
+aXNoYQ== 16172
+4K6o 16173
+amVz 16174
+IHZlZWw= 16175
+7IKw 16176
+IGF1dGhvcnM= 16177
+44CO 16178
+cGxhbg== 16179
+IGNvbGxhYm9yYXRpdmU= 16180
+IGluc3RpbmN0 16181
+IGZhcm1pbmc= 16182
+YXVnZQ== 16183
+RWR1 16184
+IG1lbWJlcnNoaXA= 16185
+IHNpbXVsdGFuZW91c2x5 16186
+IGJha2U= 16187
+IGvDpA== 16188
+IGxlY3R1cmVz 16189
+0YfQtdGB 16190
+IHByZW5kcmU= 16191
+IGNvbGxhcHM= 16192
+IFNheWE= 16193
+IEZ1dA== 16194
+IHlvZw== 16195
+IFJhdGhlcg== 16196
+2LHZig== 16197
+IGNhbXBz 16198
+0L7Qu9C+0LQ= 16199
+IHNpbXVsYXRpb24= 16200
+IE1haw== 16201
+TGF1Z2hz 16202
+IGdyZXk= 16203
+IHNlbnRlbmNlcw== 16204
+eWVu 16205
+IFVubGVzcw== 16206
+SmU= 16207
+IFNhdGFu 16208
+INGC0LDQutC20LU= 16209
+IE5B 16210
+IGJyb24= 16211
+ID9d 16212
+IHNvdWxz 16213
+IGxpZ2h0bmluZw== 16214
+IGltYWdpbmVk 16215
+IGN6eWxp 16216
+cHNpbG9u 16217
+ZXR0YQ== 16218
+IGJlbGlldmluZw== 16219
+IHN0cm9uZ2VzdA== 16220
+IENPTg== 16221
+IHF1ZWxxdWVz 16222
+IGltbWlncmFudHM= 16223
+IHdhbGxldA== 16224
+IEplcnNleQ== 16225
+IGltcGxpY2F0aW9ucw== 16226
+IGZvcmI= 16227
+44CP 16228
+IHVuYmVsaWV2YWJsZQ== 16229
+2KfYoQ== 16230
+IG9wZXJhdGlvbmFs 16231
+w7xz 16232
+IEdN 16233
+IOq3uOufsOuNsA== 16234
+IGdyYWNpYXM= 16235
+IGVudGVuZA== 16236
+IFJlZ2FyZA== 16237
+cm9i 16238
+INGC0LXRhQ== 16239
+6I8= 16240
+IFJldm9sdXRpb24= 16241
+IHdhYXI= 16242
+IEJpeg== 16243
+dGhlbGVzcw== 16244
+IHNwb25zb3JlZA== 16245
+cXVpZXI= 16246
+IOydvOs= 16247
+IHRlaw== 16248
+IOuQoA== 16249
+aWdrZWl0 16250
+IEx1Y2s= 16251
+IENlcnRhaW5seQ== 16252
+IHRvbGw= 16253
+INC90LjRh9C10LPQvg== 16254
+IE1vbmV5 16255
+INGB0YLQvtGA 16256
+IERvdWJsZQ== 16257
+IFdvbGY= 16258
+IGNodW5r 16259
+zqzOvQ== 16260
+aXTDqXM= 16261
+b25pbmc= 16262
+TWFy 16263
+IGdyYW5kZXM= 16264
+IGNvbGxlY3Rpb25z 16265
+IEV1cm9wYQ== 16266
+INCw0YA= 16267
+IOKAi+KAi+KAiw== 16268
+IOq3uOufrOuptA== 16269
+INC+0LHRig== 16270
+IOyLnOqwhA== 16271
+IEN1c3RvbQ== 16272
+IOyymA== 16273
+0ZbQu9GM 16274
+IGluZGl2aWR1YWxseQ== 16275
+7Zc= 16276
+IGRvemVu 16277
+IG93ZQ== 16278
+IFZpY3Rvcmlh 16279
+IGJlZXQ= 16280
+dXJi 16281
+IGFuYWxvZw== 16282
+acOnw6Nv 16283
+gpw= 16284
+c29ldmVy 16285
+IG1vZG8= 16286
+IHN1YnNjcmliZWQ= 16287
+7J6s 16288
+IGVudGl0aWVz 16289
+IGNsb3NldA== 16290
+IHJlc3BvbmRpbmc= 16291
+IHByaW50ZXI= 16292
+IFN0ZXBoYW4= 16293
+IGJ5xYI= 16294
+IERvbQ== 16295
+IEZlcm4= 16296
+IFBpZXI= 16297
+IHdpxJlj 16298
+IGhlbmNl 16299
+IG1vZHVsZXM= 16300
+IOuUsQ== 16301
+IERhbm55 16302
+INGB0LXQsdC1 16303
+IHZhZA== 16304
+IOyXhA== 16305
+IHNvdXM= 16306
+IHNwaGVyZQ== 16307
+Qlk= 16308
+IFBlZA== 16309
+aWduZWQ= 16310
+IHdoZWF0 16311
+IHVuZGVycw== 16312
+IGV2b2x2ZQ== 16313
+IGRlY2xhcg== 16314
+IGxpZ2h0bHk= 16315
+IGlkZW50aWZ5aW5n 16316
+IGxlZ2VuZGFyeQ== 16317
+IGdlbnVpbmU= 16318
+IGdyaW5k 16319
+IFVuZQ== 16320
+Z2ViZW4= 16321
+IGJpY3k= 16322
+IGp1bXBz 16323
+IHByb3ZpbmNl 16324
+emnEmQ== 16325
+INeQ16DXmQ== 16326
+IGhvYw== 16327
+INCx0Ls= 16328
+IEdyYWQ= 16329
+IHJldmVuZ2U= 16330
+INin2YTYqg== 16331
+b29o 16332
+0LDRhtC40Lg= 16333
+IGVsZWN0cm8= 16334
+IOuQkA== 16335
+IGZhbHM= 16336
+cmllbA== 16337
+b2tlcg== 16338
+IEV4Y2VsbGVudA== 16339
+IE1vcmdhbg== 16340
+IGJyaWNr 16341
+IHN1YnN0YW50aWFs 16342
+IHBvbGx1dGlvbg== 16343
+IFTDvHI= 16344
+IEV2ZXQ= 16345
+IGx1bmc= 16346
+15nXqQ== 16347
+b21tZXM= 16348
+IHJlYWxpemluZw== 16349
+IGh1bWJsZQ== 16350
+IExvY2s= 16351
+IGJvZA== 16352
+IOyWuA== 16353
+IHBlZXJz 16354
+dXp6 16355
+IGVtYmVkZGVk 16356
+IGNsYXJv 16357
+IGFnZ3JlZw== 16358
+IGVtcGxveWVycw== 16359
+IFJhag== 16360
+IFlp 16361
+IGpldQ== 16362
+YXRlcnM= 16363
+IHN0cmlrZXM= 16364
+bm9z 16365
+YXV0cmVz 16366
+ZHI= 16367
+b3BoZXI= 16368
+IEFwcGFyZW50bHk= 16369
+7ZiE 16370
+IGluZmFudA== 16371
+2KfYqA== 16372
+0YLRiw== 16373
+7Zs= 16374
+2q8= 16375
+IHJlZGVz 16376
+YWNhxJ/EsW0= 16377
+IERBVklE 16378
+IENoaWNrZW4= 16379
+IHBlcnNwZWN0aXZlcw== 16380
+IHZpZXdlcg== 16381
+IHNoYXI= 16382
+INC/0YDQvtC40Lc= 16383
+bGlndA== 16384
+ZXJvcw== 16385
+aXRhYmxl 16386
+0LjQu9C+0YHRjA== 16387
+IGRpZsOt 16388
+tOuNsA== 16389
+IHJldGlyZWQ= 16390
+IHRoYXRz 16391
+emVuaWU= 16392
+YmVpdGVu 16393
+IG15Y2tldA== 16394
+IFJhYg== 16395
+IGluZmxhbW0= 16396
+7LCu 16397
+IGR1bQ== 16398
+IGRhZGR5 16399
+IGltbWVycw== 16400
+IHBsYXlsaXN0 16401
+4K+G 16402
+IHRyYXVt 16403
+IHJlZnVzZQ== 16404
+c3RlcA== 16405
+4K6a 16406
+Y3Vw 16407
+IHBvcHM= 16408
+cmltaW4= 16409
+YXnEsW0= 16410
+IGFsZA== 16411
+IHVubmVjZXNz 16412
+IGRhaA== 16413
+IElyaXNo 16414
+IGNvbXBy 16415
+bGHFnw== 16416
+VFA= 16417
+IHRyYW5zbGF0ZWQ= 16418
+U2M= 16419
+Y2XEn2lt 16420
+tJA= 16421
+IGRyZWk= 16422
+INC70Y7QtNC10Lk= 16423
+IHF1aWVybw== 16424
+IGhlbGU= 16425
+emxpY2g= 16426
+IGFwcGxlcw== 16427
+IGRpc3RyaWN0cw== 16428
+IGNyZWRpdHM= 16429
+IGFzcA== 16430
+IOuLqA== 16431
+b3JhbA== 16432
+IHN0ZXBwaW5n 16433
+IFZh 16434
+IGdhaW5z 16435
+NjU= 16436
+IG51ZXN0cmE= 16437
+ZWRheQ== 16438
+YXNzYWRvcg== 16439
+IExpbmQ= 16440
+IGNyb3Bz 16441
+Y2llbmRv 16442
+aWd1ZQ== 16443
+IGJhbmE= 16444
+QW0= 16445
+IHBlbnQ= 16446
+IGFkZGljdGlvbg== 16447
+IHBhY2thZ2luZw== 16448
+w6Rk 16449
+qqg= 16450
+IHBlcnF1w6g= 16451
+IGNhbXBhaWducw== 16452
+IHN0ZWVw 16453
+IG5ldWU= 16454
+IGVtYmFycmFzc2Vk 16455
+IGRpc3RpbmN0aW9u 16456
+aXR6ZXI= 16457
+IHJlZ2lzdHJhdGlvbg== 16458
+IGxsYW0= 16459
+IEFsbWlnaHR5 16460
+bGllc3Q= 16461
+IHV6 16462
+bmFr 16463
+57o= 16464
+IHRlcmF6 16465
+aWFtZW50ZQ== 16466
+IHRyYW5zYWN0aW9ucw== 16467
+IGPDtHQ= 16468
+IHN3aXRjaGVk 16469
+IGNvbWJv 16470
+IHByYXllcnM= 16471
+IGludGVybnNoaXA= 16472
+IGFkZHJlc3Nlcw== 16473
+IGNoYXJpdHk= 16474
+IFdPTw== 16475
+IGJhaXQ= 16476
+IO+/vQ== 16477
+IGZpY2E= 16478
+IFR5bGVy 16479
+YXJ1 16480
+IGF0b21z 16481
+IExldmVs 16482
+INC/0L7RgtC+0Lw= 16483
+IGZhbWU= 16484
+dWxr 16485
+IHRlYWNoZXM= 16486
+IHJlYnVpbGQ= 16487
+0LXQtNGM 16488
+IEluZG9uZXNpYQ== 16489
+dXNoaQ== 16490
+IFNob3J0 16491
+IGVuc3VyaW5n 16492
+ZnM= 16493
+ZWxl 16494
+IG1hcmdpbmFs 16495
+IGNvbmNsdWRl 16496
+YW10 16497
+IHZlcmlmeQ== 16498
+IE1jRG9uYWxk 16499
+IHNrYWw= 16500
+IHJlY29uc3Q= 16501
+IE1hbm4= 16502
+IGJhc2VtZW50 16503
+IHRyYW5zZm9ybWVk 16504
+IG9jY2FzaW9uYWxseQ== 16505
+em9uZQ== 16506
+IERhbnM= 16507
+INC60LDQutC+0Lk= 16508
+IGRpYWdub3NlZA== 16509
+IM+EzrE= 16510
+IGNvbW1hbmRz 16511
+IHByZXNpZGVudGlhbA== 16512
+IGFiYg== 16513
+IGJyYWNrZXQ= 16514
+IExlbQ== 16515
+w6VuZw== 16516
+IGZhdm9yaXRlcw== 16517
+IHJldm9s 16518
+IO2KuQ== 16519
+IGhhcmFzcw== 16520
+6YU= 16521
+IGNsZWFucw== 16522
+c3TDpG5k 16523
+IGtub2NrZWQ= 16524
+IHBlb3BsZXM= 16525
+IG11c2ljaWFucw== 16526
+IG11dHVhbA== 16527
+IENvbGQ= 16528
+ODg= 16529
+emVq 16530
+YXRpZQ== 16531
+IEhvbm9y 16532
+IG9ic2Vzc2Vk 16533
+IE1VU0lD 16534
+IEJyZWFr 16535
+w7puZw== 16536
+IG1vZGlmeQ== 16537
+IHPDtnlsZQ== 16538
+INee15Q= 16539
+IE9ubGluZQ== 16540
+Zm8= 16541
+IE1pbGxlcg== 16542
+IGxpa2luZw== 16543
+IGluaGFi 16544
+IGdyYXRpdHVkZQ== 16545
+IEpvdXJuYWw= 16546
+YXJuZXNz 16547
+Sm9obg== 16548
+IEdpdA== 16549
+IHNpbmNlcmU= 16550
+IFNjaQ== 16551
+IEVsaQ== 16552
+IHN5bWJvbHM= 16553
+IG1hbnVhbGx5 16554
+zrXPgg== 16555
+INCy0ZbQtA== 16556
+IEZhdA== 16557
+IGxhYmVscw== 16558
+IHNvcGhpc3RpY2F0ZWQ= 16559
+dW1wcw== 16560
+IHJlbGVhc2Vz 16561
+IDQ3 16562
+IE9N 16563
+6rCA6w== 16564
+IEJpZW4= 16565
+IFJlZg== 16566
+IFN0YQ== 16567
+IEVnZw== 16568
+IGluZGljYXRvcg== 16569
+cHNvbg== 16570
+IG5hc8SxbA== 16571
+UmlnaHQ= 16572
+IGNvbnZleQ== 16573
+IGtub3Q= 16574
+IGNvbm5lY3Rz 16575
+dWxhcw== 16576
+IHByZWNlZA== 16577
+IGluZXF1YWxpdHk= 16578
+YW1pZW50bw== 16579
+IHJlcGx5 16580
+T1k= 16581
+IGRpc21pc3M= 16582
+IOuQnA== 16583
+INGF0L7RgNC+0YjQvg== 16584
+IG3DqWQ= 16585
+IHJhbmRvbWx5 16586
+IE9udA== 16587
+dWFyZA== 16588
+IHB1bGxz 16589
+INGC0LXQv9C10YDRjA== 16590
+IE5lZWQ= 16591
+IFNvZnQ= 16592
+IHN0cmVuZ3Rocw== 16593
+IGdvZWQ= 16594
+dW1lbg== 16595
+IO2OuA== 16596
+INC00L7QsQ== 16597
+IGNsYXJpdHk= 16598
+IEFp 16599
+IGJhbGxvb24= 16600
+IFBhbmQ= 16601
+IOyVhOuL 16602
+IHNoaW55 16603
+IHNtYWxsZXN0 16604
+b25pYQ== 16605
+aGlsbA== 16606
+b3Rpbmc= 16607
+IGVpbmc= 16608
+IG1lcmVseQ== 16609
+IHNldXM= 16610
+INC90LXQvw== 16611
+IO2GtQ== 16612
+IGd1aWRlcw== 16613
+IHNwZWNpYWxpc3Q= 16614
+IHN0ZWFr 16615
+IG1pZ3JhdGlvbg== 16616
+cXVlbGU= 16617
+IHJ1aW5lZA== 16618
+IHB1cHA= 16619
+IGtlbmQ= 16620
+YW5nYW4= 16621
+IHBhbG0= 16622
+IHVuZmFpcg== 16623
+IHpt 16624
+IERW 16625
+Y2hlc3Rlcg== 16626
+0LjRjg== 16627
+IG9vaA== 16628
+ZXJn 16629
+QVRI 16630
+sKk= 16631
+cmlzb24= 16632
+IGludm9sdmluZw== 16633
+IHBhcnRseQ== 16634
+YW7Dp2Fpcw== 16635
+IHZvdw== 16636
+IHByb21pbmVudA== 16637
+IGNyeXN0 16638
+aWJh 16639
+IGRlc2VydmVz 16640
+IG92ZXJ0 16641
+IHNlbnNpdA== 16642
+IFdoZQ== 16643
+IHRpZ2h0ZW4= 16644
+IGludGltaWQ= 16645
+IGFsaW1lbnQ= 16646
+d2lsbA== 16647
+IHN0cmVuZ3RoZW4= 16648
+IFRhbg== 16649
+b25p 16650
+IE11bg== 16651
+IHByb3Bo 16652
+IHJlaGVhcnM= 16653
+IEtsZQ== 16654
+IHZlY2Vz 16655
+IHdvbmRlcmVk 16656
+b2tp 16657
+IHNlbnNlcw== 16658
+tOyL 16659
+xrDhu5s= 16660
+IMiZaQ== 16661
+IG11Y2hvcw== 16662
+IHdhdGNoZXM= 16663
+b3J0dW5hdGU= 16664
+IEp1YW4= 16665
+7J6W7JWE 16666
+0YDQtQ== 16667
+ZWk= 16668
+aW9uZW4= 16669
+IGV4cGVyaW1lbnRhbA== 16670
+IGRhdWdodGVycw== 16671
+4Lib 16672
+IG1lbnRhbGx5 16673
+YmVjY2E= 16674
+YXdhcmU= 16675
+7ISd 16676
+IHdoYXRzb2V2ZXI= 16677
+IGVuYWJsZXM= 16678
+IExvdw== 16679
+b2lk 16680
+4LiK 16681
+w7Nk 16682
+2Lo= 16683
+IGNvbnN0cnVjdGVk 16684
+IExhZGllcw== 16685
+IGFjY3VzZWQ= 16686
+INCw0L0= 16687
+RGFu 16688
+IHNwYXdu 16689
+IGNvbnRhaW5lcnM= 16690
+IGFydGlzdGlj 16691
+xLFw 16692
+IGRpc2Ns 16693
+IGF1dHJlcw== 16694
+aW5hcw== 16695
+IE5hdGlvbg== 16696
+IG5hZw== 16697
+YmVhbg== 16698
+d2hl 16699
+nOuPhA== 16700
+IFNlb3Vs 16701
+IO2PrA== 16702
+IE5pY2g= 16703
+IGNvbXBsZW1lbnQ= 16704
+IGludGVydmVu 16705
+IE1vZGVs 16706
+IE9yYW5nZQ== 16707
+bmFtb24= 16708
+IGNhbGN1bGF0aW9u 16709
+c2Vl 16710
+IHVzdGVkZXM= 16711
+IGxlYg== 16712
+IGRvY3Q= 16713
+0ZbQvQ== 16714
+IGZvc3Rlcg== 16715
+IGVsYXN0aWM= 16716
+IEFoaA== 16717
+IGFjZQ== 16718
+IFBpbms= 16719
+IEplZw== 16720
+IGRlZXI= 16721
+c2lz 16722
+IGpha28= 16723
+IEVtbWE= 16724
+0YHRgtCy0LXQvdC90L4= 16725
+IHBvcnRyYWl0 16726
+IG1ha2Vy 16727
+IGF1bWVudA== 16728
+0YDQvtCx 16729
+IGFpcnBsYW5l 16730
+IHRyYW5zcGFyZW5jeQ== 16731
+IGFkanVzdG1lbnQ= 16732
+IENEQw== 16733
+w6dvbg== 16734
+IHVwbG9hZGVk 16735
+INC00LXQudGB0YLQsg== 16736
+INCz0L7RgtC+0LI= 16737
+IGl0ZXI= 16738
+IGN1cnNl 16739
+w7Ru 16740
+bWVyY2U= 16741
+YXJhbg== 16742
+IGxlYWs= 16743
+IGFic2VuY2U= 16744
+0YHQutC40Lk= 16745
+IHJlYWRlcnM= 16746
+YWxlcg== 16747
+IGJlbmVhdGg= 16748
+YW5nbw== 16749
+aGV0aWM= 16750
+IGZpbm5z 16751
+IHBvb3A= 16752
+IGR1cGxpYw== 16753
+SGk= 16754
+aWdz 16755
+b2xvZ2ljYWxseQ== 16756
+b3Bw 16757
+IGRpemVy 16758
+IEFsbGVu 16759
+IGdsaQ== 16760
+IGFjY2VsZXJhdGlvbg== 16761
+IHZpdGFtaW4= 16762
+dsOk 16763
+IEFjY2Vzcw== 16764
+4K6Z 16765
+csOhcw== 16766
+IGFwcHJlY2lhdGVk 16767
+IG5haA== 16768
+IHBvc3Rlcg== 16769
+IHRhbGU= 16770
+IGhpZ2hsaWdodGVk 16771
+xbxlbGk= 16772
+IGJsb2NrY2hhaW4= 16773
+IG1pY3Jvdw== 16774
+IGNpbmVtYQ== 16775
+IENoYW5n 16776
+IFNlYXJjaA== 16777
+dXN0ZXJz 16778
+IFplcm8= 16779
+IERpdmlzaW9u 16780
+0YDQsNGB 16781
+IHNjYXJl 16782
+IGplbGx5 16783
+IEFkbWluaXN0cmF0aW9u 16784
+U08= 16785
+IGxpbmVk 16786
+IOqwhA== 16787
+IGdlYmVu 16788
+IHNvZGE= 16789
+IHdpbm5lcnM= 16790
+s7w= 16791
+2ZI= 16792
+IEFtYg== 16793
+5ZQ= 16794
+IHBlZw== 16795
+NDM= 16796
+IHJhdXM= 16797
+IHJld2FyZHM= 16798
+IGluY2x1cw== 16799
+IGhpZ2h3YXk= 16800
+IGhhaA== 16801
+IG11bHRpcGxpZWQ= 16802
+IHPhur0= 16803
+IGRpc2NpcGxlcw== 16804
+IG5pbmc= 16805
+IGRyZXNzaW5n 16806
+IGF0dHJpYnV0ZXM= 16807
+IE1vc2M= 16808
+IEdyZWVjZQ== 16809
+IHNlaw== 16810
+IExlYXJu 16811
+IGp1cw== 16812
+cmVuZHJl 16813
+IHBlcnNvbm5l 16814
+cGxldGU= 16815
+IHBsYWNpbmc= 16816
+IGx1ZWdv 16817
+aWxsYW5jZQ== 16818
+INC+0LHRiQ== 16819
+IHByb3Zpc2lvbg== 16820
+IGxpb24= 16821
+dHJh 16822
+Ym9hcmRz 16823
+IGJlaGF2aW91cg== 16824
+aGV5 16825
+IHN1YnNjcmlwdGlvbg== 16826
+IHByb3RhZ29u 16827
+IHZhcmE= 16828
+IMWfdQ== 16829
+IGhhaGE= 16830
+IHRlYXNwb29u 16831
+5p8= 16832
+YXZvaXI= 16833
+IGNyeXB0bw== 16834
+INGB0YLQsNGA 16835
+IFN0b3Jl 16836
+YWJz 16837
+IFN0dWRlbnRz 16838
+IGxhdW5k 16839
+aW50bw== 16840
+IGFwcHJvYWNoZWQ= 16841
+sJw= 16842
+0YPRjtGJ 16843
+IExhYm9y 16844
+b3Rlcw== 16845
+aWF0cmlj 16846
+IGdyb8Of 16847
+dXRpdmU= 16848
+INC40LQ= 16849
+IEdpYg== 16850
+IHBsYWNlbWVudA== 16851
+IGRpZsOtY2ls 16852
+IGZyb2c= 16853
+INCy0YHQtdGF 16854
+IEpy 16855
+YXplZA== 16856
+0YPRiQ== 16857
+IOq8 16858
+ZnJhbWU= 16859
+0LDQtdGI0Yw= 16860
+IGxvY2tkb3du 16861
+IG1lZGk= 16862
+INeU157X 16863
+0LXQvdC40Lk= 16864
+ZW1hbGU= 16865
+7KKF 16866
+YXRlcmFs 16867
+IGRpc3RhbnQ= 16868
+IGJlYXJz 16869
+IGpvdXJuYWxpc3Q= 16870
+IE1hcnNoYWxs 16871
+IElobmVu 16872
+dWV0b290aA== 16873
+YmFn 16874
+IMSRw6M= 16875
+IEhpZ2huZXNz 16876
+IOywjQ== 16877
+0LjQutCw 16878
+IFd1 16879
+IEZyYW4= 16880
+IHBlbmc= 16881
+IGZvbg== 16882
+IGh5cG90aGVzaXM= 16883
+INGA0YM= 16884
+IGx5 16885
+15o= 16886
+7JuU 16887
+IFJhZGlv 16888
+4Lie 16889
+RGF2 16890
+IGVtYmFycmFzc2luZw== 16891
+IOyeiOyWtA== 16892
+IGNhc3Rpbmc= 16893
+IGNhZ2U= 16894
+IFBzeWNo 16895
+IOydvOuLqA== 16896
+IMW+ 16897
+aW1i 16898
+IGRpcmVjdG9ycw== 16899
+U0g= 16900
+IM+EzrfOvQ== 16901
+4buBdQ== 16902
+IGtvbnXFnw== 16903
+IG9wdGlvbmFs 16904
+cXVhcnRlcnM= 16905
+aWtlcg== 16906
+IFNhbnQ= 16907
+IHZlcnNlcw== 16908
+67aA 16909
+IG9sYXI= 16910
+IM+H 16911
+IM6zzrnOsQ== 16912
+IEltbQ== 16913
+IGNvbnRyb3ZlcnNpYWw= 16914
+IGVyc3Rlbg== 16915
+IHJlY2lw 16916
+IENocmlzdGlhbml0eQ== 16917
+IOq0nA== 16918
+b3Jkb24= 16919
+15XXqQ== 16920
+IHNsYXNo 16921
+IFBm 16922
+0YPQtNGM 16923
+15XXnQ== 16924
+IFBlcnJ5 16925
+IG1hbXk= 16926
+IGJhY2tncm91bmRz 16927
+IOCujuCuqQ== 16928
+IHBlbmRhbnQ= 16929
+IENvbHVtYmlh 16930
+IGludmVyc2U= 16931
+INGH0LXRgNC10Lc= 16932
+IHN2 16933
+IGRpZ2dpbmc= 16934
+NDE= 16935
+Y2hlbQ== 16936
+IG5hdmlnYXRpb24= 16937
+IFNoaW4= 16938
+IEZyb250 16939
+UEQ= 16940
+IGJlYXJpbmc= 16941
+IFdhc3Nlcg== 16942
+IHdheA== 16943
+IENIUklT 16944
+Y2hpbmc= 16945
+IHByZXNzZWQ= 16946
+RWw= 16947
+IERhbA== 16948
+b25zaW4= 16949
+IGJpbmRpbmc= 16950
+0YHQutC+0Lk= 16951
+cG9vbnM= 16952
+IG1vY2s= 16953
+YXJlc3Q= 16954
+0LrRgNCw 16955
+TU0= 16956
+IGNvcnJ1cHQ= 16957
+c3Rvcm0= 16958
+IHJlZnJlcw== 16959
+IENvYWNo 16960
+bGzDpA== 16961
+IFRISVM= 16962
+IHBhcmFn 16963
+IOyTsA== 16964
+cG9vbA== 16965
+IGJpbGxpb25z 16966
+IOq5gA== 16967
+Z3JvdXA= 16968
+IHdlbGNvbWluZw== 16969
+Y2VsbGVuY2U= 16970
+IER1a2U= 16971
+6ri0 16972
+IHByaW1lcmE= 16973
+7KC4 16974
+IHBvbmQ= 16975
+IHN0YXR1ZQ== 16976
+IOq1rOs= 16977
+IGhhdGNo 16978
+IGluc3RydW1lbnRhbA== 16979
+IHJlc2lkZW50aWFs 16980
+7Luk 16981
+IGFjY2VwdGluZw== 16982
+b3NoaQ== 16983
+ZGF0ZQ== 16984
+IOyUqA== 16985
+IHBsYW50ZWQ= 16986
+IGpva2luZw== 16987
+IOyEnA== 16988
+IGhhdGVk 16989
+INGA0LDRgdGB0Lo= 16990
+IHNsZXB0 16991
+IHBhY2thZ2Vz 16992
+IGlzbGFuZHM= 16993
+ZXNlbg== 16994
+xJ/EsQ== 16995
+IGRpYWdvbg== 16996
+IE9zYw== 16997
+IG1lc2g= 16998
+IHNjYWxlcw== 16999
+YXJpdHk= 17000
+IERlZmVuc2U= 17001
+IExld2lz 17002
+INGB0LXQs9C+0LTQvdGP 17003
+IGZsaWVz 17004
+dWluZWx5 17005
+IENvbnNpZGVy 17006
+IHN0YXJr 17007
+aGV3 17008
+IEFzw60= 17009
+s7Tr 17010
+IHByb3Bvc2U= 17011
+IO2VmOuptA== 17012
+b2Rv 17013
+IE5vcm1hbGx5 17014
+IGhlZWZ0 17015
+IEhhcnJpcw== 17016
+Z3Jv 17017
+IEJsb29k 17018
+YmFzZQ== 17019
+IGlPUw== 17020
+IHRvdWNoZXM= 17021
+IGluc3Bpcg== 17022
+INeT 17023
+IGJpbmFyeQ== 17024
+IOy2lA== 17025
+IHNlcmlhbA== 17026
+IGlvbg== 17027
+IHVuZW1wbG95bWVudA== 17028
+IG9kZHM= 17029
+IEZhYg== 17030
+IEZCSQ== 17031
+QlJVTg== 17032
+IHdlaWdodHM= 17033
+zr3Ovw== 17034
+YXRpbGU= 17035
+IG51cnNlcw== 17036
+IGludm9sdmVtZW50 17037
+IO2UvA== 17038
+IGdvdmVybmFuY2U= 17039
+IOKCrA== 17040
+0YDRg9C/ 17041
+aWVycmE= 17042
+7ZiV 17043
+IEplcnJ5 17044
+IGJlYXJk 17045
+IHNhbHZhdGlvbg== 17046
+IEFsb25n 17047
+Z2VudGxl 17048
+IEtp 17049
+Ym9s 17050
+IFBsYXQ= 17051
+IGhhc2h0 17052
+IHdhcmU= 17053
+IHBhcnRpZQ== 17054
+eWN6 17055
+IGludHI= 17056
+Rmlo 17057
+bmVudA== 17058
+IGNoZWF0 17059
+aWxlbg== 17060
+IOuv 17061
+b3JpZQ== 17062
+IGbDoWNpbA== 17063
+ZXRyaWM= 17064
+IGFmZmVjdGluZw== 17065
+dW5jaWF0aW9u 17066
+IGFmZmFpcnM= 17067
+IGJlZQ== 17068
+IHZpZXdpbmc= 17069
+IG9yYW5n 17070
+IExhbg== 17071
+INCh0YI= 17072
+IE1lcw== 17073
+g4E= 17074
+ZXJpZQ== 17075
+IGVzcGE= 17076
+IGludGVycHJl 17077
+IHBvc3Nlc3M= 17078
+IHB1cmVseQ== 17079
+cml0bw== 17080
+Zm91bmQ= 17081
+YXNtYQ== 17082
+7KCB7J24 17083
+IGV4YW1pbmU= 17084
+INGD0Lw= 17085
+IGJlc2No 17086
+IFRvbW9ycm93 17087
+IEJsb2Nr 17088
+IHZhcmlhbnQ= 17089
+IHByZWZlcmVuY2U= 17090
+IGNvYWNoZXM= 17091
+IG1lZGljYXRpb25z 17092
+IO2YhA== 17093
+IGVtcGlyZQ== 17094
+64Sk 17095
+IElsbGlub2lz 17096
+IGNyaXNweQ== 17097
+IHRow6w= 17098
+IGJlZXM= 17099
+Nzc= 17100
+IGdsb3c= 17101
+6Lo= 17102
+IFN0dWRpZXM= 17103
+IENoYWxsZW5nZQ== 17104
+IHVubGlrZWx5 17105
+0Kc= 17106
+xLF5b3JzdW4= 17107
+RElF 17108
+IG1pbmltaXpl 17109
+aXphcmQ= 17110
+IMO6bg== 17111
+IGVuY29udHJhcg== 17112
+IEtpbGw= 17113
+5bs= 17114
+IHZhbmlsbGE= 17115
+IEdyYW50 17116
+IEdU 17117
+c2Vh 17118
+IHNvdWdodA== 17119
+0LLQvtC0 17120
+IG7DpG0= 17121
+IEF1bnQ= 17122
+T1dO 17123
+IHB1bXBraW4= 17124
+c3RlbGxlbg== 17125
+IHJhZw== 17126
+0LXQs9C00LA= 17127
+IHN0b3J5dA== 17128
+IGZvcnVt 17129
+IGVzdGFiYQ== 17130
+dWNoZQ== 17131
+IGNvbmdyZXNz 17132
+IFJleQ== 17133
+IGRyYW1hdGljYWxseQ== 17134
+IFNwb3J0 17135
+IFllbGxvdw== 17136
+IOqzhOyGjQ== 17137
+IGRpc2d1c3Rpbmc= 17138
+IFJlY2VudA== 17139
+IGFjcXVpcmVk 17140
+IGNhYmxlcw== 17141
+ZGlu 17142
+IHZpc3Rv 17143
+IGNvbW11bmljYXRpbmc= 17144
+0YHRgtCw0LLQu9GP 17145
+0LXRgdGC0L4= 17146
+IHLDqWc= 17147
+IHNvY2tz 17148
+IHByb2Nlcw== 17149
+YmVjYXVzZQ== 17150
+IHV0dGVy 17151
+IGNvbG9jYXI= 17152
+IG5ld2VzdA== 17153
+IGdyYW1t 17154
+IHNoaWZ0aW5n 17155
+IGNhcnJpZXI= 17156
+INGB0LrQvtGA 17157
+IFNjaHc= 17158
+IGV4ZWN1dGVk 17159
+IG1haW50YWluZWQ= 17160
+IM+G 17161
+IE1vc2Vz 17162
+IGRpc3Nl 17163
+IGhvcnI= 17164
+44Cc 17165
+IHJhbGx5 17166
+IGFsbGVt 17167
+IEV2ZW50dWFsbHk= 17168
+IGRpeW9y 17169
+bHZhbmlh 17170
+IHNjaG5lbGw= 17171
+IOqzvA== 17172
+IOunpA== 17173
+IHN0cnVnZ2xlcw== 17174
+bGF0ZQ== 17175
+IGNsYXJpZnk= 17176
+w6ltZW50 17177
+IG11bHRpcGxpYw== 17178
+0LjQsdC+ 17179
+IGpvdXJu 17180
+IGZyYWdy 17181
+IHN1cnByaXNpbmdseQ== 17182
+IGRlc3BlcmF0ZQ== 17183
+NTI= 17184
+IHN1bA== 17185
+IFJlYWQ= 17186
+IEZyaWVk 17187
+IG1vbmQ= 17188
+d29v 17189
+IG9yZ2FuaXppbmc= 17190
+IFNvb24= 17191
+INCy0L7Qv9GA0L7RgQ== 17192
+IE51cg== 17193
+INCX0LQ= 17194
+IHNwaWRlcg== 17195
+0LXRgdGP 17196
+IHR1dG9yaWFscw== 17197
+IG51dHJpZW50cw== 17198
+b3Jlcg== 17199
+IGNvZWZmaWNpZW50 17200
+IGFycmFuZ2VtZW50 17201
+IHByaWNpbmc= 17202
+bmFu 17203
+eXU= 17204
+Qkw= 17205
+IHRyaWJl 17206
+IEhvd2FyZA== 17207
+dW5rcw== 17208
+IG5ld2Vy 17209
+IHByb3Zpbg== 17210
+IHByZWRpY3Rpb24= 17211
+aG9z 17212
+IG9sc3Vu 17213
+IEFyb3VuZA== 17214
+IHZpZXI= 17215
+INGB0YLQvtGA0L7QvQ== 17216
+IHZhbGxleQ== 17217
+IEVsYQ== 17218
+aWZp 17219
+IGdhbGF4eQ== 17220
+IHRyYW5xdQ== 17221
+IGFkdmVycw== 17222
+IFRlbXBsZQ== 17223
+aWZmcw== 17224
+aWdlbmNl 17225
+IGvDtm5udGU= 17226
+IMSRw7M= 17227
+RGlk 17228
+IHBob3RvZ3JhcGhz 17229
+IEFXUw== 17230
+0YbQuNGP 17231
+IGd1YXJkcw== 17232
+IGFwcG9pbnRlZA== 17233
+IEdpbA== 17234
+INC80L7QvA== 17235
+IGNvZA== 17236
+IFVubGlrZQ== 17237
+IGV2ZW5seQ== 17238
+aXNjb25zaW4= 17239
+IGVzdG91 17240
+IG1uaWU= 17241
+IEV4ZWM= 17242
+IE1W 17243
+IEVpbmU= 17244
+IFJvZ2Vy 17245
+IEZhYw== 17246
+IExpc3Q= 17247
+IGZ1ZXI= 17248
+0LDQtdGC0LU= 17249
+b21lZA== 17250
+IGF0dHJhY3Rpb24= 17251
+IHRlcnJhaW4= 17252
+IERyb3A= 17253
+IGNvcnBvcmF0aW9ucw== 17254
+IHNjaWVuY2Vz 17255
+IHRocm9uZQ== 17256
+IGFq 17257
+IFJvdA== 17258
+IHN1cHBvcnRlcnM= 17259
+IEJlcmU= 17260
+SGVyZQ== 17261
+IGRpZmVyZW50ZXM= 17262
+IHNpZ25pZmljYW5jZQ== 17263
+z4POtw== 17264
+IGNsYW1w 17265
+IOuMgOs= 17266
+IGZhYnVsb3Vz 17267
+cmV6 17268
+IGFzc3VtcHRpb25z 17269
+dXRoZXI= 17270
+d2lk 17271
+cG90 17272
+IHlhbg== 17273
+dWxpbg== 17274
+0YDRi9Cy 17275
+IFNsb3c= 17276
+IFBlbm5zeQ== 17277
+IO2VtOyEnA== 17278
+IG1laW8= 17279
+IHdlYWx0aHk= 17280
+IEVpZ2h0 17281
+IHB1bHNl 17282
+IGZyaWN0aW9u 17283
+aWRpdHk= 17284
+IEhvbGw= 17285
+aXlvcnVt 17286
+IHNvdW5kZWQ= 17287
+IENhcnI= 17288
+IGZvcms= 17289
+4pg= 17290
+IFBB 17291
+IGNvbnNwaXI= 17292
+IGNvZGluZw== 17293
+cnQ= 17294
+IFR5cA== 17295
+IOyWkQ== 17296
+INC/0L7Qsw== 17297
+IG1pc2Vy 17298
+INGB0LzQvtGC0YA= 17299
+IFN3ZWRlbg== 17300
+IG9sYXJhaw== 17301
+IFpoYW5n 17302
+IENoaQ== 17303
+IFRpdGFu 17304
+IHNjcmVlbmluZw== 17305
+IFNwaWRlcg== 17306
+IMWeaW1kaQ== 17307
+IG9ic3RhY2xlcw== 17308
+bGFyYQ== 17309
+IGNoYWxsZW5nZWQ= 17310
+cHNl 17311
+VE9O 17312
+4bul 17313
+IFBp 17314
+IGxhZ2k= 17315
+aWV1cnM= 17316
+IGh1cnRpbmc= 17317
+IG5lZ2xlY3Q= 17318
+IGdlbmVyYXRpbmc= 17319
+IHlvdW5nZXN0 17320
+IGF1ZGl0 17321
+INGA0LXQtw== 17322
+z4HOrA== 17323
+IGRvbmF0ZQ== 17324
+IFBERg== 17325
+IHZpc2l0cw== 17326
+IGNydWlzZQ== 17327
+UFA= 17328
+YXNlcg== 17329
+IHdzcA== 17330
+YmFja3M= 17331
+aXZhbHM= 17332
+IGRldmU= 17333
+IHByb3BvcnQ= 17334
+IGNhdGg= 17335
+IEVmZmVjdA== 17336
+IHdpbmRz 17337
+IOyZlA== 17338
+IGNoYXJ0cw== 17339
+IHNhbWE= 17340
+IGF1dG9tYXRpb24= 17341
+INC/0L7QutCw 17342
+IG9sYW4= 17343
+IGJvYXRz 17344
+IGNhZmU= 17345
+IGRlbmllZA== 17346
+IE1hbWE= 17347
+IGJsb2NraW5n 17348
+IFRob3I= 17349
+IHBoZW5vbWVuYWw= 17350
+IHN0YWtlaG9sZGVycw== 17351
+IHVub3M= 17352
+0YPQtdGC 17353
+IEFicmFoYW0= 17354
+IGRldGVjdGlvbg== 17355
+IGp1cmlz 17356
+IHBvd2VyZWQ= 17357
+emlhbA== 17358
+IHdlbGZhcmU= 17359
+IHVwZ3JhZA== 17360
+IG1vxbxuYQ== 17361
+IENhc2U= 17362
+Y3VsYXI= 17363
+lOydtA== 17364
+IEd1ZXNz 17365
+IGN5Y2xlcw== 17366
+cm9jaw== 17367
+dW1p 17368
+IGVsaXRl 17369
+IHF1w6g= 17370
+0YLQvtC8 17371
+IHNob3Jl 17372
+Z3VudGE= 17373
+IGt1 17374
+IGZhaXRoZnVs 17375
+IEplcmVteQ== 17376
+YWlk 17377
+4Lc= 17378
+dWdhbA== 17379
+IFZlbA== 17380
+IHZyYWk= 17381
+c3RlbGw= 17382
+qLg= 17383
+IGtvbA== 17384
+6L0= 17385
+IHF1YW50bw== 17386
+INC30LDRgA== 17387
+IDIwMDI= 17388
+ZXN5 17389
+IHJlc2VydmU= 17390
+INC80L7QvNC10L3Rgg== 17391
+IGRlcGxveWVk 17392
+IGRlZmluaW5n 17393
+IHNhdQ== 17394
+IGdhYXQ= 17395
+Iik= 17396
+IHRyYW5zbWl0 17397
+IHB1Ymxpc2hpbmc= 17398
+IHJhbmtpbmc= 17399
+IG9mZmVuc2U= 17400
+IDQ2 17401
+cGlu 17402
+IFRha2luZw== 17403
+IGVudGl0bGVk 17404
+IGdlbnVpbmVseQ== 17405
+IHZhcmlhdGlvbnM= 17406
+IGZpbmRl 17407
+IHRhdQ== 17408
+IHVuZm9ydHVuYXRl 17409
+IFJhaA== 17410
+cG9ydHM= 17411
+IGPF 17412
+IG1vbmtleQ== 17413
+IGJyYWM= 17414
+d2Vp 17415
+bHVuZw== 17416
+IGFydGlm 17417
+IHN5cnVw 17418
+INCU0LDQsg== 17419
+IGxpZnRlZA== 17420
+IGNoZXo= 17421
+IEFkdmVudA== 17422
+IFN0b2Nr 17423
+IGRvbA== 17424
+0LzQtdC9 17425
+0LjRiNGM 17426
+IHlu 17427
+Z2lv 17428
+ZGV0 17429
+IGRlc3Nl 17430
+IGdyaQ== 17431
+IENoYWlybWFu 17432
+54U= 17433
+IGN1ZW50YQ== 17434
+YW5pbQ== 17435
+IGNyYWI= 17436
+IGVzY2Fs 17437
+IHByZW1pw6hyZQ== 17438
+IEdlZg== 17439
+IGRpbmluZw== 17440
+IHNldmVudGg= 17441
+IGNoYXNpbmc= 17442
+IFRvd2Vy 17443
+IGJydXRhbA== 17444
+IGZ1bmRhbWVudGFsbHk= 17445
+0LvQtdC90LjRjw== 17446
+c3RhZ2U= 17447
+IGFjcXVpcw== 17448
+IGN5bGluZGVy 17449
+IGNvbW1hbmRlcg== 17450
+bWVt 17451
+IFVW 17452
+aGFwcHk= 17453
+IGVwc2lsb24= 17454
+IGludml0YXRpb24= 17455
+IGZhcm1lcg== 17456
+Y2hhaXI= 17457
+IGRlc3Rpbnk= 17458
+IHNvdmVyZQ== 17459
+IEhlYnJldw== 17460
+IHNlcnZhbnQ= 17461
+IGJldw== 17462
+IGdhc3Q= 17463
+dXRpZXM= 17464
+IGFkbWluaXN0cmF0aXZl 17465
+IENvbW1hbmQ= 17466
+w6l0YQ== 17467
+IG5pdHJvZ2Vu 17468
+6re8 17469
+IGFiaQ== 17470
+IHZpbGxhaW4= 17471
+IGJsYW5rZXQ= 17472
+IFNlbmQ= 17473
+IGJlYXRlbg== 17474
+soQ= 17475
+IHZvbHVudA== 17476
+IHNjaG9sYXI= 17477
+IEVtcGVyb3I= 17478
+IDQz 17479
+dmFibGU= 17480
+IER1cw== 17481
+IEdV 17482
+IHRhcmdldGluZw== 17483
+d3d3 17484
+IGFtZW5kbWVudA== 17485
+7IaM6w== 17486
+IHRpbmc= 17487
+IG5hc3R5 17488
+IGdhdWdl 17489
+INGA0L7QtA== 17490
+IEhhbnM= 17491
+WW91cg== 17492
+zrHOvQ== 17493
+IHByb2pldA== 17494
+IEhhd2FpaQ== 17495
+IHN1c3BpY2lvdXM= 17496
+IHNjaHc= 17497
+IHJlbW92YWw= 17498
+IGludHJpZw== 17499
+IE1V 17500
+IHBvbnRv 17501
+4KS+ 17502
+INC+0LHRgNCw0Lc= 17503
+IGd1ZXNzaW5n 17504
+cGFjZQ== 17505
+IG1vdGhlcnM= 17506
+IG1pbGxpbWV0ZXI= 17507
+0LvQtdC90LjQtQ== 17508
+IGF2YWlsYWJpbGl0eQ== 17509
+aWN6 17510
+IGZyYWN0 17511
+IGJhc2Vz 17512
+a20= 17513
+IEJUUw== 17514
+IEZpZWxk 17515
+IGR6aWU= 17516
+IHNlZ3VuZG8= 17517
+IOuCmOuKlA== 17518
+IGxlZ2l0aW1hdGU= 17519
+aW1hcw== 17520
+INCy0L0= 17521
+IGNvcnJ1cHRpb24= 17522
+IHNtYXNo 17523
+IFZhbGVudA== 17524
+IGFsaWduZWQ= 17525
+IFBlbm5zeWx2YW5pYQ== 17526
+IGdhYg== 17527
+IEV1bg== 17528
+ZW50aA== 17529
+IE1vcm5pbmc= 17530
+IGNhbmRsZQ== 17531
+IGJhY2twYWNr 17532
+IElzbGFtaWM= 17533
+YcOnw7Vlcw== 17534
+IGVuY3J5 17535
+IG11c2hyb29tcw== 17536
+7YyM 17537
+ZGl0 17538
+IHRyYW5zaXQ= 17539
+IFdpc2NvbnNpbg== 17540
+IHBhcnRpY2lwYXRlZA== 17541
+IElscw== 17542
+IHVuZm9sZA== 17543
+toDr 17544
+IHByb2ZpdHM= 17545
+IHdhcm1pbmc= 17546
+IEdhbmc= 17547
+IG5ldHdvcmtpbmc= 17548
+IG1lZ2E= 17549
+IHRob3JvdWdobHk= 17550
+bGVtZW50cw== 17551
+IEht 17552
+IGRlY2lkaW5n 17553
+IGVtb3Rpb25hbGx5 17554
+IGV4aGF1c3RlZA== 17555
+INCf0L7Rgg== 17556
+Y2lkbw== 17557
+IEhUTUw= 17558
+IGNvcHlyaWdodA== 17559
+IG1lbG9keQ== 17560
+eWlt 17561
+IGFuZGVycw== 17562
+b3Nob3A= 17563
+IOuzvA== 17564
+IGF0aGxldGU= 17565
+IEdF 17566
+IGZyZXF1ZW50 17567
+IGRlc2lyZXM= 17568
+IG5lZWRpbmc= 17569
+IFl1bg== 17570
+IHJpZmxl 17571
+IGxvdmVy 17572
+J1Q= 17573
+IGRlbnNl 17574
+IHTDo28= 17575
+IG5vdGlmaWVk 17576
+IGlkaQ== 17577
+7Jet 17578
+7YY= 17579
+IGludGVyYWN0aW5n 17580
+IHJhcHBvcnQ= 17581
+0LXRgNC4 17582
+c2tp 17583
+IGJlc3Nlcg== 17584
+IG1hbnVmYWN0dXJlcg== 17585
+IEt5bGU= 17586
+IGFjY291bnRhYmxl 17587
+IFNhaw== 17588
+IFBpbA== 17589
+IERvbWlu 17590
+IHByZXN1bQ== 17591
+INCS0YHQtQ== 17592
+IHZpbmVnYXI= 17593
+IGd1YXJhbnRlZWQ= 17594
+IGhhbmRsZWQ= 17595
+Y2F0 17596
+IGNpdmlsaXphdGlvbg== 17597
+IGFjY29tcA== 17598
+IFZN 17599
+w6ltb24= 17600
+IGRlemU= 17601
+IGdyYWRlcw== 17602
+IHNvbGx0ZQ== 17603
+IHN0YXJpbmc= 17604
+15DXqg== 17605
+YXJudA== 17606
+IGhvcml6b24= 17607
+IHRyYXZhaWw= 17608
+aG91cg== 17609
+IEVE 17610
+IERhaw== 17611
+IG55 17612
+IGNvbnZl 17613
+IENoYW0= 17614
+IGZpcm1z 17615
+IExpdQ== 17616
+INGB0YLRgNCw0L0= 17617
+IGxpYmVydA== 17618
+IGxlbnNlcw== 17619
+IGludGFrZQ== 17620
+INCy0YvQsQ== 17621
+IG1lbnNlbg== 17622
+aGVs 17623
+IHByYWN0aXRpb24= 17624
+IDM1MA== 17625
+Rk8= 17626
+IGJlZHM= 17627
+IGFuY2VzdG9ycw== 17628
+IOyXhOyyrQ== 17629
+IGRpc3R1cmI= 17630
+IExhc3RseQ== 17631
+IFN1cHBvcnQ= 17632
+4Li14LmJ 17633
+IENvcm9uYQ== 17634
+IGVudGh1c2k= 17635
+INCy0L7Qt9C8 17636
+IOyCrOuejOs= 17637
+IDUy 17638
+YmlyZA== 17639
+IHJlZHVjZXM= 17640
+IOyeiOydhA== 17641
+IEdlbmU= 17642
+6rWQ 17643
+xJlw 17644
+IMOcYmVy 17645
+IGNvbmNlcm5pbmc= 17646
+dXNlcg== 17647
+IGNvbmNlbnRyYXRl 17648
+IFdIQVQ= 17649
+aXNob3A= 17650
+b255bW91cw== 17651
+bm9sZA== 17652
+IHN1Z2dlc3Rpbmc= 17653
+qbA= 17654
+IEZpc2g= 17655
+Li4uLi4uLi4= 17656
+IHZlc3NlbA== 17657
+IHRyYWJham8= 17658
+IE9jZWFu 17659
+eWc= 17660
+IHRvd25z 17661
+ZGVs 17662
+IHRlcnJpZnlpbmc= 17663
+IMOnYWzEscWf 17664
+IHNpbm8= 17665
+IGVhdHM= 17666
+IGdleg== 17667
+IGdlbWU= 17668
+IOyZhA== 17669
+IGNvbXBhcnQ= 17670
+IGltcGxlbWVudGluZw== 17671
+IFBvdHRlcg== 17672
+IEdlcm1hbnM= 17673
+IGfFgg== 17674
+IHRlbm5pcw== 17675
+IGNhcnBldA== 17676
+YXVlcg== 17677
+IFNhdWRp 17678
+eWVvbmc= 17679
+IGN1cnJ5 17680
+IEZvcmVzdA== 17681
+0YvQuw== 17682
+IGZpZnRlZW4= 17683
+IGJvbHRz 17684
+IHtc 17685
+rLQ= 17686
+IHNldHRsZW1lbnQ= 17687
+IGxhbmdl 17688
+IGJhbQ== 17689
+R2V0 17690
+7ZWZ 17691
+IHN3YXA= 17692
+IEtoYW4= 17693
+IGNvbW1lbmNl 17694
+IHF1YXJhbnRpbmU= 17695
+IHNjb3JlZA== 17696
+55Y= 17697
+IDE5NTA= 17698
+IHRoaWNrZXI= 17699
+IHPDu3I= 17700
+IExhcnJ5 17701
+IGFsbGV6 17702
+7Iuc64qU 17703
+IGfDvA== 17704
+IHNwZWN0YWN1bGFy 17705
+Ly8= 17706
+Ym90aA== 17707
+IHN0YXRz 17708
+IE5hbmN5 17709
+IGJ1bnU= 17710
+IGNydXN0 17711
+IGFjdGl2YXRlZA== 17712
+IOq3uOue 17713
+b3V0aGU= 17714
+IHBvcnRz 17715
+IG5ldXJhbA== 17716
+IGphdw== 17717
+IG9ic2VydmF0aW9ucw== 17718
+IHZvaXQ= 17719
+YWJhbg== 17720
+4bqjaQ== 17721
+pqzrpbw= 17722
+b21lcw== 17723
+4K+L 17724
+cXVp 17725
+IGtpbmRuZXNz 17726
+0JE= 17727
+IDQx 17728
+IG1vZGVyYXRl 17729
+IGFuZ2Vscw== 17730
+IFRhbWI= 17731
+w6h0 17732
+IGNobG9y 17733
+IEJpbGx5 17734
+7LKY6w== 17735
+YWNvbg== 17736
+IHNlbGVjdGluZw== 17737
+IERlbHRh 17738
+IG51bGw= 17739
+ZGVubHk= 17740
+IGNpdWQ= 17741
+IHRlbmRlbmN5 17742
+IGJyZWFrZG93bg== 17743
+IG1pbnQ= 17744
+0YTQvtGA0Lw= 17745
+b3JwaA== 17746
+IGRhd24= 17747
+c3By 17748
+IFdJTEw= 17749
+w6RjaGxpY2g= 17750
+IHB1cHB5 17751
+NzAw 17752
+IOCupA== 17753
+IGZhaWxz 17754
+IENvbmM= 17755
+IHJlbGF0aXZlcw== 17756
+IGludml0aW5n 17757
+IGF1dG9ub20= 17758
+IGNvbXBvc2Vk 17759
+IHVuaXR5 17760
+IGRlY2lz 17761
+IGFjY2Vzc29yaWVz 17762
+IENhc3M= 17763
+IGJpc3Q= 17764
+IFRpcA== 17765
+7Ke4 17766
+IHB1bnQ= 17767
+IHLDoXA= 17768
+QU5L 17769
+ZXhpc3Q= 17770
+IGNvbXBhdGlibGU= 17771
+IG5lcg== 17772
+INC10LzRgw== 17773
+IGFwbGlj 17774
+IGJhcHQ= 17775
+IGZhaWxpbmc= 17776
+IFRhbWFt 17777
+IG9zY2lsbA== 17778
+IGxldHp0ZW4= 17779
+IHJlcGVhdGVkbHk= 17780
+IGp1bmdsZQ== 17781
+IFB1c2g= 17782
+aGFp 17783
+IM63 17784
+IGRlYWRseQ== 17785
+0Y/Qtg== 17786
+d2nEhQ== 17787
+IENvbW1vbg== 17788
+IM6V 17789
+IHNrYXRl 17790
+VEM= 17791
+IE1pbmk= 17792
+IGhvYmJ5 17793
+4bqnbg== 17794
+IHJvdXRlcw== 17795
+IGFtaWdvcw== 17796
+IGNvbmp1bg== 17797
+IHBhcnRuZXJzaGlwcw== 17798
+IG5vdm8= 17799
+IGF2ZXI= 17800
+IHBvdXZleg== 17801
+YnJpZGdl 17802
+IHByZW9j 17803
+aGlt 17804
+IHR1cmI= 17805
+IHNvYg== 17806
+IFNuYXA= 17807
+IOywuA== 17808
+bWludXRl 17809
+IHRyYWplY3Q= 17810
+dWrEmQ== 17811
+IGVhZ2Vy 17812
+IHJlZ3VsYXRvcnk= 17813
+IGJhbmtpbmc= 17814
+Ymxpbmc= 17815
+0YjRjA== 17816
+YcW8 17817
+IGJpemFycmU= 17818
+aXRhdGVk 17819
+ZGlyZQ== 17820
+IHRocmVhdGVuZWQ= 17821
+IHNoaW5pbmc= 17822
+IG5lc3Nl 17823
+IGNvcnBz 17824
+INGB0YM= 17825
+IHRlbGVz 17826
+IHRlbXA= 17827
+dGVt 17828
+INC60LDQvQ== 17829
+IGZldmVy 17830
+TmV3 17831
+IGhlYXZpZXI= 17832
+IFNhaA== 17833
+YnVk 17834
+IG91dHJvcw== 17835
+IOywvg== 17836
+IOuqhQ== 17837
+YXJyaW5n 17838
+IOq0nOywrg== 17839
+IE5hcA== 17840
+IHNlbWlu 17841
+IFRoYW4= 17842
+aWZz 17843
+IGRlc2Vu 17844
+INGC0LDQutC+0LU= 17845
+IGxvc2Vz 17846
+IEJhbHQ= 17847
+a29u 17848
+INC90LDQv9GA 17849
+IHZvaXM= 17850
+IE1vc2Nvdw== 17851
+IGNoYWlycw== 17852
+aGlz 17853
+IHJlZnVnZWVz 17854
+a2c= 17855
+IGtvbGU= 17856
+jag= 17857
+0LDRgdC40LHQvg== 17858
+pr0= 17859
+IFVuaXZlcnNl 17860
+IERpcmVjdA== 17861
+IGNoZWF0aW5n 17862
+IENpbg== 17863
+IHBhdHJp 17864
+IGFkdmlzZQ== 17865
+IE5ldGhlcg== 17866
+IHByaW1laXJv 17867
+IG1lbnRpb25pbmc= 17868
+bnV0 17869
+NTY= 17870
+YXLEsQ== 17871
+IHBldGl0ZQ== 17872
+YmxlZA== 17873
+IHBlbnNhcg== 17874
+aWNpbw== 17875
+SU5E 17876
+IHZldGVyYW4= 17877
+IGxhZGRlcg== 17878
+IGNvbnNlcXVlbmNl 17879
+0L7QttCw0Ls= 17880
+IEJ1cm4= 17881
+IHJ1Zw== 17882
+IE1hZGU= 17883
+IGdpdA== 17884
+Ii4uLg== 17885
+IGNvbXBldGl0b3Jz 17886
+IHByemVk 17887
+IGFwcGFyZW50 17888
+IEFyZ2VudGluYQ== 17889
+IFdvcmtpbmc= 17890
+IGNvbGxhYm9yYXRl 17891
+d29tYW4= 17892
+IHJldGFpbg== 17893
+IGxldXJz 17894
+IGRhc2hib2FyZA== 17895
+15nXkw== 17896
+IEVhcmx5 17897
+Qk0= 17898
+INC10ZE= 17899
+0L7Qu9C+0LM= 17900
+IHNhdGlzZnlpbmc= 17901
+IG9mdGVudGltZXM= 17902
+IG1hcHBpbmc= 17903
+w7xua8O8 17904
+YXJ0aA== 17905
+Zm9sZA== 17906
+IGxhdW5jaGluZw== 17907
+IGF1cmE= 17908
+IHByZWNpc2lvbg== 17909
+d29ya3M= 17910
+R29k 17911
+IHN0cmFw 17912
+IEltcGVy 17913
+IHJpdmVycw== 17914
+IHw= 17915
+IGN1ZXI= 17916
+cmVnb24= 17917
+IGFycml2YWw= 17918
+0LrQsNGF 17919
+IE1pYW1p 17920
+0LDQvdGL 17921
+IHN1cnZpdm9ycw== 17922
+IFNlbmlvcg== 17923
+RGF2aWQ= 17924
+IGVzdGFkbw== 17925
+IHNlY3RvcnM= 17926
+IHBvcHBpbmc= 17927
+IGNoaW0= 17928
+YXnEsQ== 17929
+IGt1bm5lbg== 17930
+IGdhbGxlcnk= 17931
+IHN1bmxpZ2h0 17932
+ZXNlaGVu 17933
+IHllbGxpbmc= 17934
+IE1laW4= 17935
+IFBob2VuaXg= 17936
+IG1hbm8= 17937
+IGhpc3Rvcmlh 17938
+IG9jY3VycmluZw== 17939
+7Lg= 17940
+0LDQtNC4 17941
+IGluc3RpdHV0aW9uYWw= 17942
+IFR1dA== 17943
+57I= 17944
+IHNsYXZlcw== 17945
+IGZvcmdpdmVuZXNz 17946
+IHR3aW4= 17947
+IEh5dW4= 17948
+0L3RjA== 17949
+IEtvbW0= 17950
+YW5kcmE= 17951
+c2hvdA== 17952
+c3PDpA== 17953
+INGG0LU= 17954
+YXR0YQ== 17955
+IGV4cGVuc2U= 17956
+IEdQVQ== 17957
+IFBhc3Q= 17958
+cmlibHk= 17959
+IOutkOyVvA== 17960
+INCz0L7QtNCw 17961
+IHJlc3Bpcg== 17962
+IFF1ZWVucw== 17963
+aG9wcw== 17964
+IHPDqXJpZQ== 17965
+IHByZWY= 17966
+IGNvbWVk 17967
+IHBsdXQ= 17968
+IE92ZXJhbGw= 17969
+IGN1c2g= 17970
+IHJpbmdpbmc= 17971
+IGluY29ycmVjdA== 17972
+INGB0YLRgA== 17973
+IGdlb21ldHJ5 17974
+IGFkdmVydGlz 17975
+INCo 17976
+IHJldmlld2Vk 17977
+IGRvemVucw== 17978
+IGRldGVybWluYXRpb24= 17979
+IFBoaWxs 17980
+IGNvbnRyaWJ1dGVk 17981
+IENpdA== 17982
+IHBhc3NlbmdlcnM= 17983
+IGPDtHTDqQ== 17984
+IHJldmVy 17985
+IHRlY2hub2xvZ2ljYWw= 17986
+IGFsbGVu 17987
+IHJhaW5pbmc= 17988
+YXZp 17989
+IHNhbHR5 17990
+IHR5cGluZw== 17991
+INGC0LU= 17992
+IHRpbHQ= 17993
+IOy5mA== 17994
+INC+0YA= 17995
+INC/0YDRj9C8 17996
+IHJvdQ== 17997
+IGFyZW5h 17998
+YXJhdA== 17999
+SEhISA== 18000
+IG1hbnVmYWN0dXJlcnM= 18001
+IEVkd2FyZA== 18002
+IHR1Y2s= 18003
+IGJsb3dz 18004
+aW5nbw== 18005
+IE1hcmM= 18006
+7JWE7ISc 18007
+TWljaA== 18008
+IENsZWFu 18009
+6LQ= 18010
+ZXN0bw== 18011
+IFBhY2s= 18012
+IHNoYWZ0 18013
+QlJVTk8= 18014
+IGF2ZW4= 18015
+dXVy 18016
+0YHQutC+0LvRjNC60L4= 18017
+6rSA 18018
+IGF1dG9tYXRlZA== 18019
+IHZlbnR1cmU= 18020
+IHN1cnZlaWxsYW5jZQ== 18021
+IEdyb3c= 18022
+IEVtZXI= 18023
+INC00L7RgA== 18024
+IGludmVzdG9y 18025
+IFlvaw== 18026
+IGxhdHRlcg== 18027
+IE5J 18028
+IGZ1bmN0aW9uaW5n 18029
+IEhhbWlsdG9u 18030
+IDUx 18031
+IG11cmRlcmVk 18032
+IGFuY2hvcg== 18033
+IGN1Yw== 18034
+IFNDUA== 18035
+IE1hZGFt 18036
+IGNvbnN0cmFpbnRz 18037
+IGJhcm4= 18038
+YW5rZW4= 18039
+IOunjuydgA== 18040
+IE1vdG9y 18041
+IERvaW5n 18042
+IGFtZW4= 18043
+ZXR0cw== 18044
+IGluc3RydWN0b3I= 18045
+ZWd0 18046
+YWtv 18047
+IHBvc3R1cmU= 18048
+aXZpYQ== 18049
+IFBvbGlzaA== 18050
+INC00LLQsA== 18051
+IGNvbG9yZnVs 18052
+IGVsYm93 18053
+IHBhcmxl 18054
+IHBhc3Nlcg== 18055
+IGNvbmRlbQ== 18056
+b3J0YWw= 18057
+IGZlcnRpbA== 18058
+2KfYrw== 18059
+IENvbG9tYg== 18060
+IGFsaWdubWVudA== 18061
+IGFzdHJvbmF1dA== 18062
+IE11dA== 18063
+IHNhbG1vbg== 18064
+IHN0cnVjdHVyZWQ= 18065
+nteo 18066
+IGNsaWNrcw== 18067
+IG1pZWo= 18068
+IFJvdW5k 18069
+IHJhaW5ib3c= 18070
+IFZB 18071
+7KeI 18072
+b3R6 18073
+LDwv 18074
+IE5pY29sZQ== 18075
+bGlzaGluZw== 18076
+IHdoaWxzdA== 18077
+IHJlcHVibGlj 18078
+IHRhbWFt 18079
+dmVydGVk 18080
+IHJlY29nbml6aW5n 18081
+INCz0LvQsNCy 18082
+IGR1Yg== 18083
+IEpvcw== 18084
+ZmFsbHM= 18085
+aWNoaQ== 18086
+IGN6xJk= 18087
+INCm 18088
+IE1pdGNo 18089
+Q1I= 18090
+Y2xpY2s= 18091
+IHN0dW5uaW5n 18092
+IEp1bGlh 18093
+bWVycw== 18094
+IFBvbHk= 18095
+IGRlc3Nh 18096
+IGludMOp 18097
+IOqzoOs= 18098
+IGRvxJ8= 18099
+IGRpdmVy 18100
+IHN0cmlraW5n 18101
+YXBob3I= 18102
+IGFwZW5hcw== 18103
+b3VzZXM= 18104
+IHRyYWdlZHk= 18105
+IEZhbg== 18106
+IFR1cmtpc2g= 18107
+IHByb3BoZXQ= 18108
+IGRpc3RhbmNpbmc= 18109
+IEhlbQ== 18110
+IGNhcnRvb24= 18111
+S2U= 18112
+YW50aW5n 18113
+IENsYXJr 18114
+578= 18115
+IGRhdm9u 18116
+IO2F 18117
+IHl1bW15 18118
+IGNvbXByb21pc2U= 18119
+IHN0YXJ0dXA= 18120
+cml0dA== 18121
+IGNlcnRpZmllZA== 18122
+IHBpbGxvdw== 18123
+YmVyZQ== 18124
+7KSA 18125
+IHNlZ3Vpcg== 18126
+IHN0YWRpdW0= 18127
+YXRpdm8= 18128
+IHNpbXBsZXI= 18129
+s7g= 18130
+IHZpc2E= 18131
+IHBhdGh3YXk= 18132
+IG51ZXZv 18133
+IHJheQ== 18134
+6Zw= 18135
+w7bDnw== 18136
+INC30LDQvQ== 18137
+IGNlbGVicml0eQ== 18138
+0LfQsA== 18139
+IGVpbmVz 18140
+IEdpdmVu 18141
+IEFyYQ== 18142
+IEpvYg== 18143
+IHlhaw== 18144
+IEFyYmVpdA== 18145
+cmVzc2luZw== 18146
+w6FuZA== 18147
+IGdyYWJiZWQ= 18148
+cGVuZA== 18149
+IHNpbmU= 18150
+aXJr 18151
+INCe0YI= 18152
+IEZsZQ== 18153
+aWNoZW4= 18154
+56Y= 18155
+IE5laWw= 18156
+IHJlcGVhdGluZw== 18157
+IGRyYXdpbmdz 18158
+cmlzZQ== 18159
+IGdsaXR0ZXI= 18160
+Zml2ZQ== 18161
+IHN1cnQ= 18162
+IHNpY2hlcg== 18163
+IGFkanVzdG1lbnRz 18164
+aXBwaQ== 18165
+Y2tl 18166
+IHJlcHJlc2VudGF0aXZlcw== 18167
+IG1pZHN0 18168
+IHNwb2ls 18169
+bWV5ZQ== 18170
+IHRhZ3M= 18171
+IHllcA== 18172
+IFN0ZXBoYW5pZQ== 18173
+IGdlcmU= 18174
+IFJ1ZA== 18175
+54s= 18176
+IGdyb3M= 18177
+IHF1ZXVl 18178
+IGFjY29yZA== 18179
+IG9yZ2FuaXNhdGlvbg== 18180
+ZW5keQ== 18181
+IFRleHQ= 18182
+w7x5b3I= 18183
+IMOt 18184
+IGNvbmNsdXM= 18185
+IOykgOs= 18186
+IGFtcA== 18187
+IExlc3M= 18188
+IOuQmOuKlA== 18189
+Y2Fubw== 18190
+IFBpeA== 18191
+YXBlZA== 18192
+IGRhcmF1Zg== 18193
+dW8= 18194
+eW50aA== 18195
+YWJlbA== 18196
+IERvbmU= 18197
+IGRpY2s= 18198
+YXRob24= 18199
+IGhpbGFy 18200
+YWNjbw== 18201
+IOyGjQ== 18202
+IE9yZWdvbg== 18203
+IFdlaWw= 18204
+IG1hdGhlbWF0aWNz 18205
+IGFsbQ== 18206
+IHBpeGVscw== 18207
+IGZyw6Vu 18208
+0LHQvg== 18209
+RkM= 18210
+0L3Rjg== 18211
+aGVpbQ== 18212
+Z29z 18213
+IEZvcmdldA== 18214
+ZmVuZA== 18215
+IFZvaWzDoA== 18216
+IEdyZWV0 18217
+IM6xz4XPhA== 18218
+IHJlY3Vy 18219
+NTE= 18220
+IOyeiOqzoA== 18221
+QXQ= 18222
+IHlhcmRz 18223
+0LjRgtC4 18224
+IG9mZnNldA== 18225
+cm9sbGluZw== 18226
+INCf0L7RgQ== 18227
+IGVubGlnaHQ= 18228
+IFBhZA== 18229
+bGltaXRlZA== 18230
+0LjQu9GM0L3Qvg== 18231
+IFNhcmE= 18232
+INGB0LTQtdC70LDRgtGM 18233
+bWFydA== 18234
+IEp1bXA= 18235
+IGFkb3JhYmxl 18236
+b3JzZQ== 18237
+Y2hlZXJpbmc= 18238
+IGVtcGF0aHk= 18239
+IFRvbmlnaHQ= 18240
+b3Jw 18241
+IEh1bnRlcg== 18242
+UG9pbnQ= 18243
+0LPQsA== 18244
+IHBhc3Nlbmdlcg== 18245
+IEtuaWdodA== 18246
+IHNlZW1pbmdseQ== 18247
+aHVo 18248
+IHRoZWF0cmU= 18249
+IHRvbWI= 18250
+IGRlcHJlc3NlZA== 18251
+IHN1bW1vbg== 18252
+IHNhdGlzZmFjdGlvbg== 18253
+ZG9vcnM= 18254
+IEhvdXN0b24= 18255
+0LDRjtGJ 18256
+IFJpbw== 18257
+0LPQu9GP 18258
+IGFycmFuZ2Vk 18259
+IGhhbmRsZXM= 18260
+IHRyaWxsaW9u 18261
+IG5pZ2h0bWFyZQ== 18262
+IFF1YW5kbw== 18263
+IG9sZQ== 18264
+IEd1aWRl 18265
+b29v 18266
+IGJpbGU= 18267
+IGVtcGV6 18268
+IDcy 18269
+Y3JpYmVk 18270
+IHByb2dyZXNzaW9u 18271
+IExpbnV4 18272
+66as 18273
+IOyymOydjA== 18274
+IGZvc3NpbA== 18275
+IHF1ZXJv 18276
+7Iah 18277
+YXRpdmE= 18278
+IHB1eno= 18279
+IFp1cw== 18280
+IHRocmlsbGVk 18281
+IENC 18282
+IG1pbmVy 18283
+0YDQsNGJ 18284
+IFNBUg== 18285
+IE5vcw== 18286
+INCz0L7RgNC+0LQ= 18287
+IGNhbWI= 18288
+INGC0LA= 18289
+IHJlc3VsdGVk 18290
+IERpY2s= 18291
+b3VuZw== 18292
+IGNvbWljcw== 18293
+IGFic29sdXQ= 18294
+c3Rhbg== 18295
+ZGltZW5zaW9uYWw= 18296
+IHRlbnNl 18297
+bXVz 18298
+IEludGVsbA== 18299
+INGN0YLRgw== 18300
+IHBoYXNlcw== 18301
+IHZvbHRh 18302
+IHbDo28= 18303
+Ym91bmQ= 18304
+IEFuZGVyc29u 18305
+IGN1cmlvc2l0eQ== 18306
+IHBvbnQ= 18307
+IGRlbW9uc3RyYXRlZA== 18308
+b2xpbmU= 18309
+IFNwZWVk 18310
+IG1hbWE= 18311
+IHNob2NraW5n 18312
+IGtpZWR5 18313
+IGVhcnRocXVha2U= 18314
+IGltcGxpZXM= 18315
+IGVudGVycw== 18316
+noA= 18317
+IGVsZXZhdG9y 18318
+IGRlbGlnaHRlZA== 18319
+IE1pdHQ= 18320
+IEJhc2Vk 18321
+IERvbA== 18322
+IGtlbg== 18323
+IHdvcnJ5aW5n 18324
+IGZpbGVk 18325
+YWlsYW5k 18326
+INC80LXRgg== 18327
+IG1hc2M= 18328
+IM6R 18329
+IEp1bGll 18330
+IGRpbWVuc2lvbmFs 18331
+aHVtYW4= 18332
+VG9r 18333
+w78= 18334
+IHVuc3Q= 18335
+IHNldWxl 18336
+IGVtYmFy 18337
+IO2VqeuLiOuLpA== 18338
+YWNpb24= 18339
+IOyJ 18340
+IOu2gOu2hA== 18341
+IGhlYXRlZA== 18342
+4oCm4oCm 18343
+IiE= 18344
+IHJlYWxpc2U= 18345
+0LXRgtGL 18346
+aWVuaWE= 18347
+aWV6 18348
+IGbDvGg= 18349
+IEVzc2U= 18350
+IHBz 18351
+IGTDsw== 18352
+YXN0ZXJz 18353
+IG9ucw== 18354
+UE0= 18355
+IHJldHJv 18356
+bWFrZXI= 18357
+d2hlbg== 18358
+IGVsbGE= 18359
+IExpdmluZw== 18360
+IExhbQ== 18361
+IHRyb25n 18362
+IGFwcHJvdmU= 18363
+IM64zrE= 18364
+IHN1bmc= 18365
+0LXQvdC40Y4= 18366
+IFJlbW92ZQ== 18367
+w6huZQ== 18368
+aXJlbg== 18369
+IHN0cmFuZ2Vy 18370
+0LjQvdGL 18371
+IHbDpg== 18372
+YWZ0ZXI= 18373
+b3R0bw== 18374
+lOuhnA== 18375
+IEFob3Jh 18376
+bWlsbA== 18377
+SVNI 18378
+IGdyYWR1YXRpbmc= 18379
+a3Rl 18380
+IHJlbm92 18381
+IHByb2Nlc3NlZA== 18382
+a2V5cw== 18383
+0LXQutC+ 18384
+IGVucmljaA== 18385
+IMWfZWs= 18386
+IGluc2Vj 18387
+IE5hbg== 18388
+Y2FrZXM= 18389
+IGlsbHVzaW9u 18390
+mOulvA== 18391
+IGFpcmw= 18392
+aW1z 18393
+IGFudGVu 18394
+4buvbmc= 18395
+c24= 18396
+IHByZWNpc2E= 18397
+6riw7J6Q 18398
+INin2YTYuQ== 18399
+IGZvcmVtb3N0 18400
+IHBhcmFncmFwaA== 18401
+YXZhaXM= 18402
+INCy0L7RgQ== 18403
+IG1hbnM= 18404
+w61maWM= 18405
+Ym90 18406
+INi52YY= 18407
+IGJyb3Ro 18408
+IGFsdGVybmF0ZQ== 18409
+IENoYXB0ZXI= 18410
+IHZlY3RvcnM= 18411
+ZXNhcg== 18412
+IGluZGljYXRpb24= 18413
+IE5laW4= 18414
+toE= 18415
+IGplYW5z 18416
+WUU= 18417
+Y29uZA== 18418
+IHVuaXRlZA== 18419
+YWJp 18420
+IFNlcmdl 18421
+IHBhcnRpYWxseQ== 18422
+IG1hY3Jv 18423
+IGV0aGljYWw= 18424
+cnVpdA== 18425
+IHNoaWZ0ZWQ= 18426
+IGNhYmU= 18427
+IG1hdGhlbWF0aWNhbA== 18428
+IHJ1ZGU= 18429
+15nXldeq 18430
+IE1lcmM= 18431
+IGdhbnpl 18432
+aWNpb24= 18433
+IHVuY29uc2Npb3Vz 18434
+IGJ1cm50 18435
+INGA0LXQsQ== 18436
+7Yq46w== 18437
+IGNoYXJt 18438
+YW5kYWw= 18439
+7LKc 18440
+b3RoeQ== 18441
+IEhhZGk= 18442
+IGFwcHJlY2lhdGlvbg== 18443
+RU5E 18444
+IHLDqWFs 18445
+toTrk6Q= 18446
+IE5hZw== 18447
+oKTqs6A= 18448
+IExhdXJlbg== 18449
+IHbhu5tp 18450
+IEJyaWRnZQ== 18451
+IFVtbQ== 18452
+IFdlZw== 18453
+IGNoYXF1ZQ== 18454
+IFNvcGg= 18455
+IGdkemll 18456
+7ZGc 18457
+IHN0ZXI= 18458
+IEJsYQ== 18459
+IHJlZmxlY3Rz 18460
+IGJlbmNobWFyaw== 18461
+0LLQsNGC 18462
+YW1pbmU= 18463
+IGFuaA== 18464
+IGNvbnRpbmVudA== 18465
+IEZEQQ== 18466
+7KGw 18467
+IMOqdGVz 18468
+15nXkA== 18469
+IGJsb29keQ== 18470
+IE5pbmU= 18471
+aWVsdA== 18472
+ZW1hbmQ= 18473
+IOuztOqzoA== 18474
+IHRpZGFr 18475
+IFNjaWVudA== 18476
+cGxleA== 18477
+b3N0ZW4= 18478
+IGFuaW1hdGVk 18479
+YXNzYQ== 18480
+IGRlcml2ZWQ= 18481
+INC40YHRgtC+0YA= 18482
+IE1pZw== 18483
+7IWY 18484
+IHJvcw== 18485
+cGx1cw== 18486
+b3NhdXI= 18487
+IF4= 18488
+IGludGVuc2l2ZQ== 18489
+IGdsb2JhbGx5 18490
+IGRpZmVyZW4= 18491
+7J206rOg 18492
+xIVk 18493
+IGTDqXM= 18494
+IHByZXNlbnRhdGlvbnM= 18495
+IENybw== 18496
+IGVzc2Vz 18497
+IEJldHdlZW4= 18498
+UGE= 18499
+IG5hdw== 18500
+4Lit4LiH 18501
+IGJyZWVk 18502
+aWNodGU= 18503
+INCe0L3QuA== 18504
+IEJ1aWxkaW5n 18505
+IGNvbmZvcm0= 18506
+TU8= 18507
+INCW 18508
+IEtpZA== 18509
+bmFz 18510
+IER1ZQ== 18511
+csOpcw== 18512
+IGRpb3g= 18513
+IEJpbg== 18514
+IHRheGk= 18515
+IHNhcA== 18516
+IEh1Yg== 18517
+IGNlbnRlcmVk 18518
+IHN1cmdl 18519
+IGF2b25z 18520
+IGxlYXJudA== 18521
+IFlhbQ== 18522
+IERpZXNl 18523
+0L3QuNC60Lg= 18524
+IEJlaWo= 18525
+V2lsbA== 18526
+IGF0dGVtcHRlZA== 18527
+IGdyaWVm 18528
+w7Nq 18529
+IGtpZG5leQ== 18530
+IG9wcG9uZW50cw== 18531
+IG5vbWU= 18532
+NTc= 18533
+0Y/RgtC90L4= 18534
+IG1pZG5pZ2h0 18535
+QW5ub3VuY2Vy 18536
+YWNpdHk= 18537
+b25lZA== 18538
+IHB1ZWRlcw== 18539
+IHByb2JsZW1hdGlj 18540
+IGNvcHM= 18541
+IFBldGU= 18542
+cmludA== 18543
+dW50ZWQ= 18544
+IGJpcA== 18545
+5qI= 18546
+IMOA 18547
+IGNlbnM= 18548
+YXRpdmVseQ== 18549
+IHVyZ2VudA== 18550
+IHN0cnVnZ2xlZA== 18551
+YWNodXM= 18552
+IG1pY3Jvd2F2ZQ== 18553
+IFNpZGU= 18554
+IERlbm4= 18555
+INGP0LI= 18556
+IHVyZ2U= 18557
+IGZvcmNpbmc= 18558
+d2FuZw== 18559
+INC60L7RgtC+0YDQsNGP 18560
+IG1hbW0= 18561
+IPCfjg== 18562
+IHRyaWJlcw== 18563
+IFNoYWRvdw== 18564
+IFNhbmc= 18565
+IEhpdGxlcg== 18566
+IGx1bg== 18567
+IHNjZW50 18568
+7KeR 18569
+IG92ZXJ3aGVsbWVk 18570
+IGJvbWJz 18571
+IGNyaW1pbg== 18572
+IGNvbnNvbGlk 18573
+IG1vbGVjdWxhcg== 18574
+15XXpw== 18575
+bm9y 18576
+IHBlcmNlaXZlZA== 18577
+IHbDqQ== 18578
+IGFsdG9nZXRoZXI= 18579
+IG9ydGg= 18580
+IHZlbQ== 18581
+IHp3YXI= 18582
+aXpv 18583
+xas= 18584
+IG1lbHRlZA== 18585
+b3JkZW4= 18586
+IENoYXJsb3R0ZQ== 18587
+IEV4Y2Vs 18588
+YXJ0YQ== 18589
+7Jyg 18590
+IEdldw== 18591
+IHJvbWFuY2U= 18592
+ZXJlbW9z 18593
+IGNvbG9uaWFs 18594
+IHRyYWRpdGlvbmFsbHk= 18595
+IHF1YW4= 18596
+aG9v 18597
+IGNoYW1waW9uc2hpcA== 18598
+IGFyYml0cg== 18599
+7IWU 18600
+INC80LjQvQ== 18601
+IHNlbGZpc2g= 18602
+IGJsZXc= 18603
+cnlpbmc= 18604
+IG9wZXJhdG9ycw== 18605
+IGp1cmlzZA== 18606
+j4U= 18607
+dWl0aW9u 18608
+IEVD 18609
+IEFueWJvZHk= 18610
+dmF0ZQ== 18611
+aWV0aWVz 18612
+IGFuYWx5c3Q= 18613
+tOyXkA== 18614
+INCy0YHQtdCz0LTQsA== 18615
+w6dlaw== 18616
+IEt1bg== 18617
+IGFnaW5n 18618
+1aE= 18619
+0YDQsNGE 18620
+IE1vbWVudA== 18621
+IEh1YQ== 18622
+6IM= 18623
+dGhlbg== 18624
+0LXQu9Cw 18625
+ZXN0b25l 18626
+IGVuZGU= 18627
+IGF3YXJkZWQ= 18628
+IG7DpGNoc3Rlbg== 18629
+IFNwb3Q= 18630
+IE5lZw== 18631
+IGZhaXJ5 18632
+IENvdmVy 18633
+IGRlcG9zaXQ= 18634
+IHN0cmVzc2Z1bA== 18635
+IGp1bms= 18636
+IG1ldGFib2w= 18637
+SmE= 18638
+IOq3gA== 18639
+IHVuZGVyZ3JhZHVhdGU= 18640
+IGNhbmNlbGw= 18641
+IGNvbnNlbnN1cw== 18642
+IG9zbw== 18643
+4bq3 18644
+xJ9lcg== 18645
+cmFkYQ== 18646
+IFBhbGFjZQ== 18647
+IHBlZGFs 18648
+IGV4YWdnZXI= 18649
+IGJlaGF2aW9yYWw= 18650
+cGxheWVy 18651
+bGxlcw== 18652
+IGNvbm5lY3Rvcg== 18653
+IHNrZXB0 18654
+jZTrnbzqs6A= 18655
+IG1pdHQ= 18656
+IEhhaGE= 18657
+IHBlcXVl 18658
+IEdvdHQ= 18659
+ZmFuZw== 18660
+4LA= 18661
+am9z 18662
+IGtpY2tpbmc= 18663
+IG1vdW50ZWQ= 18664
+IHJlcGxhY2luZw== 18665
+dm9z 18666
+IHF1aWV0bHk= 18667
+IG1pbGl0 18668
+IG93bnM= 18669
+IG5pdmVhdQ== 18670
+IGF1cg== 18671
+IEJ1eQ== 18672
+IHByZWRpY3RlZA== 18673
+IGNvd3M= 18674
+IHBvbmVy 18675
+IERyaQ== 18676
+IHJlbWFya3M= 18677
+IHJlcG9ydGVy 18678
+IGFya2FkYcWf 18679
+0LXRgdGC0Lg= 18680
+IHNhdmVz 18681
+IMOnb2M= 18682
+IG1ldGFwaG9y 18683
+IEtlbA== 18684
+c3RhdGlvbg== 18685
+c2VtYmx5 18686
+IGFkdmlzb3I= 18687
+IHdvcmtzaG9wcw== 18688
+IGFjY291bnRpbmc= 18689
+IHRvaw== 18690
+bmllcg== 18691
+aW5uZXI= 18692
+IGJ1cmFkYQ== 18693
+IEJC 18694
+IE9seW1waWM= 18695
+IFByYWN0 18696
+Q2hyaXN0 18697
+INGB0Y4= 18698
+IGthcw== 18699
+IHZpZXdlZA== 18700
+IG1hcmtlcnM= 18701
+IGZvdG8= 18702
+Z2V0aWM= 18703
+IEx1Y2Fz 18704
+IHBhZHM= 18705
+IEpvaA== 18706
+IENEVQ== 18707
+YWZmZW4= 18708
+YXJlbQ== 18709
+IEJlY2s= 18710
+IEdvc2g= 18711
+c2hpdA== 18712
+IE1hdGVy 18713
+YWJ1bGFyeQ== 18714
+IFJvb20= 18715
+bGxlbg== 18716
+IEZvbGxvd2luZw== 18717
+IGRvaXQ= 18718
+YmFsbHM= 18719
+aXhh 18720
+IGdyb3VuZHM= 18721
+IOyeiOuKlOuNsA== 18722
+TFM= 18723
+IHdpbGRsaWZl 18724
+IFNRTA== 18725
+IHNoaWZ0cw== 18726
+Qm9vaw== 18727
+IGhvc3RlZA== 18728
+bGxvcg== 18729
+IHNuYXBz 18730
+IGJlc29pbg== 18731
+INep15Q= 18732
+IHBlYW51dA== 18733
+w6RmdA== 18734
+uaA= 18735
+xZts 18736
+QXVkaWVuY2U= 18737
+IEJhcmJhcmE= 18738
+IGFkb3B0aW9u 18739
+IHdvbGY= 18740
+INC+0YHQvdC+0LI= 18741
+YXJkYQ== 18742
+IGV4cG9zZQ== 18743
+IOym 18744
+amFz 18745
+xJM= 18746
+IGNvdW50bGVzcw== 18747
+IOyngQ== 18748
+aGVhbHRo 18749
+dWVudA== 18750
+aXNv 18751
+b3Rpb24= 18752
+IGh1bmdlcg== 18753
+IG1vaXM= 18754
+b2Zmcw== 18755
+IGNsYWltaW5n 18756
+IM6a 18757
+IEJlbGc= 18758
+INC90LDQuQ== 18759
+6riw64+E 18760
+IHVucHJl 18761
+IGdlZA== 18762
+IElv 18763
+INC/0L7RgdC80L7RgtGA 18764
+IGNvxZs= 18765
+IE5hcnJhdG9y 18766
+IMOHb2s= 18767
+7Zmp 18768
+4Lit4Lii 18769
+Y2lwbA== 18770
+IHRpbWVy 18771
+IGRlZmlj 18772
+YXZpbg== 18773
+IGNhdGVnb3I= 18774
+IHRocm93cw== 18775
+IOuCnA== 18776
+INC/0L7RgdC70LXQtA== 18777
+IFRoYWk= 18778
+IG1hc2N1bA== 18779
+IGJla29tbWVu 18780
+IGludGVybmF0aW9u 18781
+dWxzZQ== 18782
+IGF5ZQ== 18783
+IHBvaQ== 18784
+IHBpeGVs 18785
+Q2hyaXM= 18786
+IHN0b3Zl 18787
+zr/OuQ== 18788
+IGdlbmVyYXRvcg== 18789
+IOy7rOs= 18790
+IGFjYWRlbQ== 18791
+IHByYWN0aWNlZA== 18792
+IGFxdWVzdA== 18793
+IGNvbnRyaWJ1dGluZw== 18794
+IEln 18795
+IOG7nw== 18796
+IGNvbnRhaW5pbmc= 18797
+IHdyZXN0bGluZw== 18798
+INGH0LXQs9C+ 18799
+aGF1cHQ= 18800
+IGVzc2Fz 18801
+dmVsb3Bl 18802
+IGV4Y2VwdGlvbmFs 18803
+WVU= 18804
+IEFwcGxhdXNl 18805
+cmljYW5l 18806
+IGNvbnZlbmllbmNl 18807
+INC00LXQu9Cw0YLRjA== 18808
+0LjQu9C40YHRjA== 18809
+IEVudmlyb24= 18810
+ODU= 18811
+IGPDog== 18812
+IOyViOuFle2VmOyEuOyalA== 18813
+IE1P 18814
+IFBvcGU= 18815
+IHNhaA== 18816
+b2Jp 18817
+IG1hc3RlcnM= 18818
+YWluZXM= 18819
+IGJsZXNzaW5ncw== 18820
+IG9iZXk= 18821
+IGZsdXg= 18822
+IGJyb3c= 18823
+IOyLpA== 18824
+IHBvcHVsYXJpdHk= 18825
+IExhbWI= 18826
+emV1Zw== 18827
+7JmU 18828
+j4TroZ0= 18829
+aXR1YXRpb24= 18830
+IGFjY29tcGFu 18831
+IGRpYWxvZw== 18832
+IEphbWll 18833
+IHNld2luZw== 18834
+IGJsZWVkaW5n 18835
+IGJhaWw= 18836
+IHRocmVhZHM= 18837
+b2RnZQ== 18838
+IFNoYW5n 18839
+IGRlcGxveW1lbnQ= 18840
+Y2hlZA== 18841
+IHNhdGlzZnk= 18842
+IGxheg== 18843
+IG1pc3NpbGU= 18844
+IExpbmtlZA== 18845
+IG1ha2Vycw== 18846
+Y2l1bQ== 18847
+ZnJl 18848
+IOuovA== 18849
+IOustOs= 18850
+IEVkZ2U= 18851
+IHNvY2lldGllcw== 18852
+IGFndWE= 18853
+IHN5bmNocm9u 18854
+oaA= 18855
+dW5mdA== 18856
+IHVubQ== 18857
+IHRyaWFuZw== 18858
+IGluanVzdA== 18859
+dG9w 18860
+IG9yYWw= 18861
+a29y 18862
+IO2VqA== 18863
+bGRpZ3Q= 18864
+Y2XEnw== 18865
+cXVldA== 18866
+IExlbw== 18867
+IHNhdm9pcg== 18868
+IGVhc3Rlcm4= 18869
+aWV1 18870
+IGV4cGVk 18871
+INCh0L8= 18872
+IHVubmVjZXNzYXJ5 18873
+IFBlcmZvcm0= 18874
+IE1pbmc= 18875
+INGA0LDQsg== 18876
+IGludGVudGlvbnM= 18877
+IGNvbXByZXNzaW9u 18878
+IFNhYw== 18879
+zr/Ouw== 18880
+YXJzb24= 18881
+IHRyb3V2ZQ== 18882
+IE11aGFtbWFk 18883
+INCy0YvRgQ== 18884
+IGZpbml0ZQ== 18885
+INC90LDRhdC+0LQ= 18886
+dWdh 18887
+0YDQsNC30YM= 18888
+IGNlbGVicmF0ZWQ= 18889
+IGNvbmZlc3M= 18890
+IHNxdWFyZXM= 18891
+IEdvcmRvbg== 18892
+IOuCmOyY 18893
+IHN5bmRyb21l 18894
+IGNvbXBsZXRpb24= 18895
+IGJhY2tpbmc= 18896
+IGRhcmY= 18897
+IFF1cmFu 18898
+IGludGVybWVkaWF0ZQ== 18899
+IGtlcg== 18900
+IGTDvA== 18901
+aGVzaXZl 18902
+IGFjY291bnRhYmlsaXR5 18903
+IFJlYmVjY2E= 18904
+IFNsZWVw 18905
+IGRpZmbDqXJlbnQ= 18906
+b2xz 18907
+IFJpY2U= 18908
+IOuzuA== 18909
+IGFudGliaW90 18910
+z4TOrA== 18911
+cno= 18912
+YW1ibGluZw== 18913
+IHNlbnNpdGl2aXR5 18914
+IGNocm9u 18915
+YWxsYXM= 18916
+NjQ= 18917
+IGZsZWV0 18918
+IG9wdGltaXN0aWM= 18919
+0YHQutC+0LPQvg== 18920
+IGphZGk= 18921
+YWlsbGV1cnM= 18922
+IEVub3VnaA== 18923
+IHNlbmlu 18924
+IHBhY2tz 18925
+Ym4= 18926
+IEFyZWE= 18927
+IFRybw== 18928
+qOumrA== 18929
+0LDRlA== 18930
+IFRob20= 18931
+IGhhcm1vbnk= 18932
+0L3QuNC60LA= 18933
+IHNvbWVkYXk= 18934
+SVNF 18935
+IEJyb2Fkd2F5 18936
+bGFyZXM= 18937
+ZXJuZXNz 18938
+4LmE4Lih 18939
+IFRlbm4= 18940
+IE5BVE8= 18941
+IG1pbnV0b3M= 18942
+IEthbnNhcw== 18943
+IE1vbmc= 18944
+IGNvbXB0ZQ== 18945
+iqQ= 18946
+IOyXrQ== 18947
+IHN1cGVyaGVybw== 18948
+IEdhcmRlbg== 18949
+IE1vcw== 18950
+IGF0dGFjaG1lbnQ= 18951
+IGJ1c3Q= 18952
+4K+K 18953
+IFRoYWlsYW5k 18954
+c3RhdA== 18955
+IHNwaWNl 18956
+IExlYg== 18957
+IGxlYXA= 18958
+emVjaA== 18959
+R0w= 18960
+IHZlcmw= 18961
+IGZpeGluZw== 18962
+IOuztOuptA== 18963
+IHBvcm4= 18964
+IGLDvHk= 18965
+INmF2Kc= 18966
+IFZpcnQ= 18967
+IFRvbW15 18968
+IGNhcmdv 18969
+IE9saGE= 18970
+IHJva3U= 18971
+2YPZhg== 18972
+IGJha2Vk 18973
+IHRhY3RpY3M= 18974
+IG1hcmtldHBsYWNl 18975
+IGt0w7NyYQ== 18976
+YXJsbw== 18977
+IHN3aXRjaGVz 18978
+IGNhY2hl 18979
+IEhS 18980
+IEdhbg== 18981
+IEdQUw== 18982
+IGR1YXM= 18983
+aGVyZXM= 18984
+0LXRgNGI 18985
+dHJhY2s= 18986
+IGx1bmdz 18987
+U3RhdGlvbg== 18988
+aWdnbGVz 18989
+IGNhbXBpbmc= 18990
+IGNvbXBsZXRpbmc= 18991
+YW1hcw== 18992
+IGN5Y2w= 18993
+IHByb3RvdHlwZQ== 18994
+IEp1ZGdl 18995
+b3R5cGVz 18996
+IGluZmVjdGlvbnM= 18997
+oKTr 18998
+0LXRgNCz 18999
+b2Jh 19000
+IEJvZA== 19001
+IFNlY29uZGx5 19002
+IGFwb3N0 19003
+IHNvZ2Fy 19004
+IHJlYXNz 19005
+aWVr 19006
+IGFzaGFtZWQ= 19007
+IGN1cnZlcw== 19008
+INCy0LDQtg== 19009
+IGVuc2VtYmxl 19010
+YXR1cg== 19011
+IHBob3RvZ3JhcGhlcg== 19012
+IGVpZ2h0aA== 19013
+IHdhc3RlZA== 19014
+IGRhbXA= 19015
+INC80LDQuw== 19016
+YXJlbmE= 19017
+IGludGVybmFsbHk= 19018
+IGhlZWxz 19019
+IFNhbHQ= 19020
+IGJsaXI= 19021
+iOuCmA== 19022
+IGNvbnRyYXJ5 19023
+IHByaW1h 19024
+IG9zcw== 19025
+IHJhYmJpdA== 19026
+IGF1dG9y 19027
+IGJyb2FkbHk= 19028
+w61zdA== 19029
+IGJhY2tz 19030
+7ZSE 19031
+ZXRv 19032
+IGp1cnk= 19033
+6LE= 19034
+IHByb3N0dQ== 19035
+IGJhcmE= 19036
+IHBhcmxpYW1lbnQ= 19037
+b3JpZW50 19038
+0LjQu9Cw0YHRjA== 19039
+IGluZGlyZWN0 19040
+w6Ft 19041
+IMOlcg== 19042
+IHRyYWl0cw== 19043
+IGTDrWFz 19044
+2YTZhQ== 19045
+IENU 19046
+YWx5c3Q= 19047
+IGxpdmVzdA== 19048
+IGtvcw== 19049
+TWF5 19050
+IEppbmc= 19051
+IGpvdXJuYWxpc3Rz 19052
+0YfQuNC6 19053
+YXJtcw== 19054
+IOqwkOyCrA== 19055
+INC40LzQtQ== 19056
+IMOpZ2Fs 19057
+IE5ld3Rvbg== 19058
+IHJlY292ZXJlZA== 19059
+IGJyYXVjaGVu 19060
+IEJyb24= 19061
+0LDQvdC+ 19062
+IHBhbGU= 19063
+cHJpc2Vz 19064
+IGhvcmFz 19065
+Y2h0cw== 19066
+w7/Dvw== 19067
+YWtlcnM= 19068
+IEFsYXNrYQ== 19069
+emllag== 19070
+IHNjb29w 19071
+7J206rCA 19072
+Y29y 19073
+w6lsw6k= 19074
+IHN1cmc= 19075
+IHZpZW5l 19076
+IEtyaXN0 19077
+NTQ= 19078
+IGJhbm5lZA== 19079
+IHNtb290aGx5 19080
+IHRyZWF0cw== 19081
+IHByb25vdW5jZQ== 19082
+IGZsdXNo 19083
+IGNhbWJp 19084
+IG11c2ljaWFu 19085
+IEFzaGxleQ== 19086
+IFNQRA== 19087
+IEJvYmJ5 19088
+IGdsb3Nz 19089
+cmVzcGVjdA== 19090
+IHJldmlld2luZw== 19091
+IGdlbmVyaWM= 19092
+xrDhu5tj 19093
+YXRzw6RjaGxpY2g= 19094
+IGhlYWx0aGllcg== 19095
+dWJlcnM= 19096
+INC00LDQvQ== 19097
+IE1lZGljYXJl 19098
+NTM= 19099
+IGNvbXBsYWludHM= 19100
+amFj 19101
+IGFncmljdWx0dXJhbA== 19102
+U3Bl 19103
+IEpvbmc= 19104
+IGRpb3hpZGU= 19105
+6rKo 19106
+ZWxpams= 19107
+IFNoaXQ= 19108
+YWludHM= 19109
+IElhbg== 19110
+IFNpbXBseQ== 19111
+IFN0cmU= 19112
+IEdEUA== 19113
+NTk= 19114
+YXN6 19115
+IEthdGll 19116
+INCx0YA= 19117
+IHBlZWs= 19118
+b3d5Y2g= 19119
+IHJlc29ydA== 19120
+IHJlc2lkZW5jZQ== 19121
+IHNwaWNlcw== 19122
+Y2nDsw== 19123
+IGplZGVy 19124
+IGVtbw== 19125
+YXJpdW0= 19126
+IHB1ZmY= 19127
+66eJ 19128
+0YPQu9GM0YI= 19129
+IG1ldGE= 19130
+IOyghOs= 19131
+IG9wdGltaXphdGlvbg== 19132
+Z2FuZw== 19133
+IO2VhA== 19134
+IGVmZmljaWVudGx5 19135
+IHZpc3VhbGx5 19136
+IGZyb3N0 19137
+IEFydGh1cg== 19138
+IMW8 19139
+IGFjaGlldmluZw== 19140
+IHJvdGF0aW5n 19141
+IGxpbmluZw== 19142
+IG9jY3VwaWVk 19143
+bWVudGF0aW9u 19144
+IHN0cmV0Y2hpbmc= 19145
+IHN0YWxs 19146
+b3N0aWM= 19147
+IFNldmVy 19148
+IGdsdWM= 19149
+IHLDs8W8 19150
+IG91dHJlYWNo 19151
+c3RyYQ== 19152
+aWtlbg== 19153
+IOyWmOq4sA== 19154
+IEpvaW4= 19155
+IGltcGU= 19156
+IGNvbXBlbnNhdGlvbg== 19157
+IFRhdA== 19158
+IENhcmxvcw== 19159
+w7xocnQ= 19160
+IEZyYW5jaXM= 19161
+Y2pp 19162
+eWVhaA== 19163
+IG1lbWJyYW5l 19164
+IGV4aGFsZQ== 19165
+IHJlbGk= 19166
+IE9S 19167
+IHJlZnJpZ2VyYXRvcg== 19168
+IFZlbmV6 19169
+TGlrZQ== 19170
+IHJhaXNlcw== 19171
+b3R0bGU= 19172
+YXR1cmE= 19173
+IHJ1bGVy 19174
+IHdlZXI= 19175
+IGd1aWRlZA== 19176
+IE1hZ24= 19177
+IENvcnBvcg== 19178
+jZQ= 19179
+IGF0dHJpYnV0ZQ== 19180
+IFdvYWg= 19181
+IGFycm93cw== 19182
+IGF3YWl0 19183
+IFByaW0= 19184
+IGRpZ25pdHk= 19185
+IE9udGFyaW8= 19186
+aXNjaGVy 19187
+IOyLnQ== 19188
+aW1lbg== 19189
+b3V2ZXI= 19190
+QVNT 19191
+4buHbg== 19192
+b3B5 19193
+YWNodXNldHRz 19194
+IGVsZGVybHk= 19195
+RkE= 19196
+IERhaWx5 19197
+c2hpbmU= 19198
+IDU2 19199
+6KI= 19200
+aWVybm8= 19201
+IHNraWxsZWQ= 19202
+IGdyb8OfZQ== 19203
+IE9haw== 19204
+aWdnbGU= 19205
+0LXQu9C10Lk= 19206
+IGJpcmF6 19207
+IGFyZ3Vpbmc= 19208
+INC/0L7RjdGC0L7QvNGD 19209
+IGRyaWZ0 19210
+IGhhcm5lc3M= 19211
+IGRlaXhhcg== 19212
+YXV0cmU= 19213
+IFNlZWluZw== 19214
+IGNhcGl0YWxpc20= 19215
+IEVsZA== 19216
+emlvbmU= 19217
+IEJleW9uZA== 19218
+IHBlcmZlY3Rpb24= 19219
+IGhvZQ== 19220
+IGRlY2xhcmU= 19221
+0LDQu9Cw0YHRjA== 19222
+IHBva2U= 19223
+INeh 19224
+IGZpZ2h0ZXJz 19225
+6rKg64uk 19226
+0L7RgNC+0LI= 19227
+IGFjY29yZGluZ2x5 19228
+IElzYQ== 19229
+IG9wdGltaXpl 19230
+IE1pbmlzdHJ5 19231
+IHNhZ2U= 19232
+7Iuc66m0 19233
+IGJlbmk= 19234
+IGRvbmF0aW9u 19235
+IGNsZWFyZWQ= 19236
+IEx1Y2tpbHk= 19237
+IGhhcm1mdWw= 19238
+tey7pA== 19239
+IGNlbWVudA== 19240
+0L/QuNGB 19241
+IGRlZGk= 19242
+IENyYWln 19243
+IGRlbW9ucw== 19244
+IGN1c3RvbWl6ZQ== 19245
+IGlnbm9yZWQ= 19246
+IFRpYW4= 19247
+IGhvcGVk 19248
+IEJ1cmVhdQ== 19249
+IHJp 19250
+IFlhaA== 19251
+IHNvY2tldA== 19252
+IGZlYXR1cmluZw== 19253
+IHBhcmY= 19254
+IFRF 19255
+IFRlYWNoZXI= 19256
+IGNhdGFsb2c= 19257
+6rCA7KeA6rOg 19258
+IFNlaXRl 19259
+IGNvbmU= 19260
+IFBhbGVzdGlu 19261
+IGdld29vbg== 19262
+IGdhaW5pbmc= 19263
+INii 19264
+IGNhdGFzdA== 19265
+IG5laWdoYm91cg== 19266
+SVNU 19267
+IHN0ZWFsaW5n 19268
+IHRyb2lz 19269
+IGludGVuZA== 19270
+IFNob290 19271
+IHBpb25l 19272
+IEludGVs 19273
+IExJTg== 19274
+IGJyaWdodGVy 19275
+IFllc3RlcmRheQ== 19276
+IHNvdw== 19277
+c2lu 19278
+b2Rz 19279
+IGV0aGljcw== 19280
+IGludGVydmlld2Vk 19281
+cmVsbA== 19282
+IHJlZnJlc2hpbmc= 19283
+c8Ol 19284
+IGFic3VyZA== 19285
+IHBob3NwaA== 19286
+Zmls 19287
+IHN0ZWhlbg== 19288
+dmFscw== 19289
+IGNhcmVk 19290
+IGRlbGw= 19291
+Ym9uZQ== 19292
+IGhvY2g= 19293
+IHB1cA== 19294
+IGlv 19295
+IGFjb250ZWNl 19296
+ZWxsZXM= 19297
+IFNwbA== 19298
+aWdp 19299
+IHTDpG4= 19300
+IGVsZXBoYW50 19301
+IGdhdGVz 19302
+IHNsaWNlcw== 19303
+IHByYW5r 19304
+b2tyYXQ= 19305
+IGhpbGFyaW91cw== 19306
+IFNpZA== 19307
+IOuSpA== 19308
+IGVzc2VyZQ== 19309
+IHRlbGVwaG9uZQ== 19310
+aW5hbGx5 19311
+cmF0b3I= 19312
+IGhlbGljb3B0ZXI= 19313
+IGnFn3Rl 19314
+IGdpZA== 19315
+IHRvdXJpc3Q= 19316
+IGNvbmZsaWN0cw== 19317
+0LDRgtCw 19318
+IHTDqQ== 19319
+IGFzc2VydA== 19320
+IGxhdW5kcnk= 19321
+IEJvbQ== 19322
+IHNwZWNpYWxpemVk 19323
+IE1vZGVybg== 19324
+b2dyYWY= 19325
+IGFubw== 19326
+IHJldHJpZQ== 19327
+IFB1dGlu 19328
+IEhBUg== 19329
+INC80LDRiA== 19330
+IM6xz4DPjA== 19331
+IHR1dHRp 19332
+INCy0YLQvtGA 19333
+7Ja1 19334
+IEJ1bA== 19335
+64uk66m0 19336
+xYJl 19337
+YXJpbg== 19338
+IHRoZXJhcGlzdA== 19339
+IGfDpXI= 19340
+IEN6eQ== 19341
+cHBl 19342
+bWly 19343
+IFRlcm0= 19344
+IEJlYXI= 19345
+bGFjZQ== 19346
+IE1vcmVvdmVy 19347
+IERpc2M= 19348
+IO2DgA== 19349
+IHRpdGxlZA== 19350
+IHN0cmlwcw== 19351
+IEZhaHI= 19352
+IFJpbmc= 19353
+cmFuZG8= 19354
+YWZh 19355
+IHNob3J0cw== 19356
+IHRydW5r 19357
+IHNlbnRpZG8= 19358
+z4nOvQ== 19359
+IGFjcmVz 19360
+IG92ZXJk 19361
+IE9seW1waWNz 19362
+IE1lcmNp 19363
+IOuCmOyYpA== 19364
+IGdlcm0= 19365
+YW1tZWQ= 19366
+IHByZWd1bnQ= 19367
+IE51dA== 19368
+IDwv 19369
+IHRyYXZlbHM= 19370
+IHZvY2FidWxhcnk= 19371
+ZXRlbg== 19372
+b2Rlcg== 19373
+IGNvbnN1bWluZw== 19374
+d3JpdGluZw== 19375
+IGFwcGVhcmluZw== 19376
+IGFkanVzdGVk 19377
+c2Vt 19378
+IGZyZW50ZQ== 19379
+IG1heGltaXpl 19380
+IHp3aXNjaGVu 19381
+IHphbQ== 19382
+Y29uc2Npb3Vz 19383
+emVr 19384
+aGFv 19385
+7LKY65+8 19386
+IEVwaXNvZGU= 19387
+IHZpc2liaWxpdHk= 19388
+IG1pam4= 19389
+IHZpZWxlbg== 19390
+IEJyb3RoZXJz 19391
+15nXkQ== 19392
+IHbDpGxkaWd0 19393
+IGNydXNoZWQ= 19394
+dWZlbg== 19395
+YWN0aWM= 19396
+IEJlZA== 19397
+IEZB 19398
+aXNzaXBwaQ== 19399
+IHJlbW90 19400
+IHBldHM= 19401
+IHRodW5kZXI= 19402
+IE1hbQ== 19403
+7JW17Luk 19404
+cGFyZW50cw== 19405
+IGLEsQ== 19406
+IHN1cnRvdXQ= 19407
+IHNlZ21lbnRz 19408
+IG5laG1lbg== 19409
+IHV0aWxpeg== 19410
+IFJ1Ynk= 19411
+IHLhu5Np 19412
+IGhhcHBpbHk= 19413
+IGJ1c2g= 19414
+dWx0YW4= 19415
+2Lg= 19416
+IEhpbA== 19417
+IGxhd24= 19418
+IGV5ZWJyb3dz 19419
+bWV6 19420
+IFN5ZA== 19421
+cmVw 19422
+aW5m 19423
+IG92ZXJoZWFk 19424
+Y3puaWU= 19425
+IG94aWQ= 19426
+IFdvbA== 19427
+IGRlc3Ryb3lpbmc= 19428
+IEFkZGl0aW9uYWxseQ== 19429
+dW1ibGVk 19430
+ZGVw 19431
+IGRlcG9z 19432
+IGNvbW1vZA== 19433
+IGNha2Vz 19434
+IHRhbGVudHM= 19435
+IHBvdXJxdW9p 19436
+IGNvbnRlbXBs 19437
+bmVscw== 19438
+0L7RiQ== 19439
+IEFyYWJpYw== 19440
+IE1hcnlsYW5k 19441
+b3dv 19442
+IFBsYQ== 19443
+xJ9sdW0= 19444
+IHByb3BoZQ== 19445
+IFJlcHJlc2VudA== 19446
+b3BvbA== 19447
+YWNjb3Jk 19448
+IE1lYW5pbmc= 19449
+IGpvaW50cw== 19450
+IGJyYWtlcw== 19451
+Y2t0 19452
+IDE5OTk= 19453
+IHB1YmxpY2F0aW9u 19454
+IFJldmlldw== 19455
+0L7QudC0 19456
+IG5pY2hl 19457
+IHNpZ25pZmljYQ== 19458
+IGRlYnI= 19459
+IG92ZXJsYXA= 19460
+IGRlbWFuZGluZw== 19461
+IFPDsw== 19462
+IHN1YnNlcXVlbnQ= 19463
+IHF1b3Rlcw== 19464
+IEN1cnJlbnRseQ== 19465
+IHByZXZlbnRpbmc= 19466
+IDEzMA== 19467
+IENlbA== 19468
+b25u 19469
+d25pZcW8 19470
+7JW9 19471
+INC60LDQutC40LU= 19472
+QUNI 19473
+IGd1bQ== 19474
+IElzcmFlbGk= 19475
+7Jy864uI6rmM 19476
+5ag= 19477
+cnVrdA== 19478
+IGNsYXBwaW5n 19479
+IE1hc3NhY2h1c2V0dHM= 19480
+IHJlc2lsaWVuY2U= 19481
+IHN1YnNjcmliaW5n 19482
+IGpld2Vscnk= 19483
+Z2VicmE= 19484
+IGNvcnJlY3Rpb24= 19485
+Ym9v 19486
+2KY= 19487
+bGlv 19488
+c2Ft 19489
+IGVudmVsb3Bl 19490
+a2Fs 19491
+IEZhcm0= 19492
+IGNhdHRsZQ== 19493
+IGJyYXM= 19494
+IHJlcGVudA== 19495
+IHRvbmVz 19496
+b3Npb24= 19497
+cGVjdGlvbg== 19498
+IGRlbmVu 19499
+yJtp 19500
+IE1hcmc= 19501
+IGFjcXVpcmU= 19502
+aWJsaW5ncw== 19503
+IGFzcGly 19504
+IHNpemVk 19505
+IGFsYw== 19506
+IHZpYnJhdGlvbg== 19507
+dGls 19508
+ZW1pbg== 19509
+IGNvcnJlbGF0aW9u 19510
+IHNpbmd1bGFy 19511
+INC/0L7Rj9Cy 19512
+cmVr 19513
+IGNoYXB0ZXJz 19514
+bWJyZQ== 19515
+IGF1ZGl0aW9u 19516
+w6dhcw== 19517
+IHZhbXA= 19518
+IHRlcw== 19519
+INGA0LDQt9Cy 19520
+IHJlc3BlY3RlZA== 19521
+Y2lu 19522
+IGZ1Y2tpbg== 19523
+IMO8YmVyaGF1cHQ= 19524
+INC/0L7QsQ== 19525
+IGFsaWtl 19526
+tog= 19527
+cm9iaQ== 19528
+w650 19529
+IFRvdWNo 19530
+YW56YQ== 19531
+IGZpcm1seQ== 19532
+IEdyZWV0aW5ncw== 19533
+c2NhbGU= 19534
+ZGFk 19535
+0LDQutGC0Lg= 19536
+IGJhY2t5YXJk 19537
+0L7QttC0 19538
+R3I= 19539
+IFNURQ== 19540
+0L7RgNGC 19541
+IGjDpHR0ZQ== 19542
+IEZpcnN0bHk= 19543
+IE9mdGVu 19544
+YXN1cmVz 19545
+IGRyYXdz 19546
+cmVkaXQ= 19547
+QVRF 19548
+UGU= 19549
+Q1A= 19550
+IGNvbXBlbGxpbmc= 19551
+IHN1YnNpZA== 19552
+IG5laWdoYm9yaG9vZHM= 19553
+IGRpcGxvbQ== 19554
+IGVudGVuZGVy 19555
+cGVyaW5n 19556
+YXVn 19557
+Y2hhdA== 19558
+0J3Rgw== 19559
+IERvbGw= 19560
+IOygkA== 19561
+IGhvc2U= 19562
+bmFy 19563
+IHJld2FyZGluZw== 19564
+IFNvbGQ= 19565
+IHRha2k= 19566
+IGJsYWRlcw== 19567
+IEthdGg= 19568
+IGpvZ28= 19569
+IHNlbnNhdGlvbg== 19570
+dWFuYQ== 19571
+cGVs 19572
+IFJlY2VudGx5 19573
+IHBvbHltZXI= 19574
+IFVQ 19575
+LS0t 19576
+IGhvdmVy 19577
+IHJ1bGVk 19578
+INeU15DX 19579
+IGFmZmVjdGlvbg== 19580
+IMSR4buD 19581
+IGJyZWU= 19582
+IExheQ== 19583
+IFlvbmc= 19584
+IHJlY2VpdmVy 19585
+nOulvA== 19586
+IGRpc3Nv 19587
+IFFpbmc= 19588
+IMOpdg== 19589
+IG3DunNpY2E= 19590
+IGFlc3RoZXRpYw== 19591
+IEJyZWF0 19592
+IFRB 19593
+IGFjY3VyYXRlbHk= 19594
+P+KAiw== 19595
+IHdhZ2Vz 19596
+cmF3ZMSZ 19597
+IHN3YWxsb3c= 19598
+IGNvbXBsYWludA== 19599
+IGxpZWQ= 19600
+YmVjdWU= 19601
+IHJlbGF4aW5n 19602
+IFBva8OpbW9u 19603
+IHRlY24= 19604
+YmFuZw== 19605
+s7Ts 19606
+IHF1aWVu 19607
+0L3QvtC80YM= 19608
+IGhhYml0YXQ= 19609
+Li4uLi4u 19610
+YWJsaW5n 19611
+INGC0LDQutC40LU= 19612
+IGJlc29uZA== 19613
+IGVtcGxveWVk 19614
+IGFycml2ZXM= 19615
+IHZlc3NlbHM= 19616
+IEF4 19617
+IGRpc3BsYXlz 19618
+MTUw 19619
+b2xvZ2ll 19620
+IOyXkA== 19621
+IGNsbw== 19622
+INC00L7Qsg== 19623
+INCe0LQ= 19624
+IHZ1ZWw= 19625
+d2VuZA== 19626
+IHNsaXBw 19627
+dXJw 19628
+IExvdA== 19629
+IGJ1bGxldHM= 19630
+IHJhZ2U= 19631
+IHNraXJ0 19632
+aWVudGVz 19633
+IG5o4buvbmc= 19634
+IE5hdHVyYWw= 19635
+IGhpbmQ= 19636
+IHdvcmtsb2Fk 19637
+bXU= 19638
+7YOc 19639
+IHN1bnNldA== 19640
+0LLQvtC7 19641
+cGl0 19642
+IEFTSA== 19643
+IOu2hOuTpA== 19644
+IGRvd25zdGFpcnM= 19645
+6a0= 19646
+IGNvdW50ZWQ= 19647
+IG5heg== 19648
+15XXpA== 19649
+IFBoaWxpcHBpbmVz 19650
+IDExMA== 19651
+IFBhcmtlcg== 19652
+IGdpdHU= 19653
+IGludGVyZXM= 19654
+IHVtYnJl 19655
+IE5hdHVyZQ== 19656
+IGplcg== 19657
+ZW5vcw== 19658
+IHBhbmVsaXN0cw== 19659
+IGNvYXRpbmc= 19660
+IGNoZXJyeQ== 19661
+IFBlbnQ= 19662
+IE1pc3Q= 19663
+cmVnYXRpb24= 19664
+IHZpbmQ= 19665
+IENvcnBz 19666
+IE1pc3Npb24= 19667
+IG5vYmxl 19668
+IGZvbmN0aW9u 19669
+IHdhcnJpb3I= 19670
+IHByb3Rlc3Rz 19671
+b3VyaQ== 19672
+IGNvbnN0aXR1dGlvbmFs 19673
+xYJhbQ== 19674
+IGVtZXJnZWQ= 19675
+IGR5ZQ== 19676
+IFRyeWluZw== 19677
+aWdt 19678
+w6lxdQ== 19679
+TE8= 19680
+IFZlcm0= 19681
+ZXJ2aW5n 19682
+IFRJTQ== 19683
+IENp 19684
+IGZyZWV6ZXI= 19685
+IGdydXBv 19686
+IFNwb3J0cw== 19687
+INC/0YDQvtCz 19688
+INmE2Kc= 19689
+b3RoZXJhcA== 19690
+aWZmYW55 19691
+Ymlhbg== 19692
+IHJhbmtlZA== 19693
+IHByb3Bvc2Fscw== 19694
+IMSRw6J5 19695
+IGZyZWV6aW5n 19696
+IGluc2VjdHM= 19697
+dmls 19698
+IGNvbXBvc3Q= 19699
+IHNlbWFuYQ== 19700
+IGRpc3Rpbmd1aXNo 19701
+IGZhY2lsaXRhdGU= 19702
+IHBsdXNpZXVycw== 19703
+IHZlcmc= 19704
+IGFsZ3Vucw== 19705
+IFRpa1Rvaw== 19706
+IEV4cHJlc3M= 19707
+0LzQtdC90YI= 19708
+U1U= 19709
+IGludGltYXRl 19710
+IEF1dGhvcg== 19711
+IHdpdG5lc3Nlcw== 19712
+IGthbGF1 19713
+IGFyZ3VlZA== 19714
+IGF2b2lkaW5n 19715
+Y3RpdmU= 19716
+IHB1cnN1aW5n 19717
+IHN5bGw= 19718
+w6F2ZWw= 19719
+IEF0bGFudGE= 19720
+IFV0YWg= 19721
+IFRpbGw= 19722
+IGVyZg== 19723
+IDIwMjI= 19724
+w6R0ZXI= 19725
+IGZ1bmVyYWw= 19726
+IEZsYXNo 19727
+IEF0bGFudGlj 19728
+IGdlbGU= 19729
+7KaI 19730
+IG1vcnRnYWdl 19731
+IOuEmA== 19732
+bGljaHQ= 19733
+IGFtYml0aW91cw== 19734
+IEJlaWppbmc= 19735
+IGRpdmluZw== 19736
+IHVuYm94 19737
+aWxsYXM= 19738
+IG90cmFz 19739
+IGV2YWM= 19740
+IG1hcmluZQ== 19741
+INGB0L7Qt9C0 19742
+IENyZWF0ZQ== 19743
+IGdq 19744
+IGZyZXF1ZW5jaWVz 19745
+aW5ndG9u 19746
+IFJvbWFucw== 19747
+IGFpbWluZw== 19748
+IEJ1ZmY= 19749
+IGVtcGVyb3I= 19750
+IE1vaQ== 19751
+IHByb21pc2luZw== 19752
+IGFsZ3VtYQ== 19753
+IHBhc2E= 19754
+IGRpc29yZGVycw== 19755
+U0k= 19756
+IHN1Y2NlZWRlZA== 19757
+IGN1ZXJwbw== 19758
+IHNvZGl1bQ== 19759
+IHN0dWI= 19760
+aGVpcm8= 19761
+IGRlbGF5ZWQ= 19762
+ZXRlcmE= 19763
+dHc= 19764
+IHN5bmM= 19765
+aGQ= 19766
+IHRvdXJpc3Rz 19767
+IHN5c3Q= 19768
+IG3DqXQ= 19769
+IHF1YWxpZnk= 19770
+IE90aGVycw== 19771
+bGxlcnM= 19772
+0LDRgtC10LvRjNC90L4= 19773
+INCe0L3QsA== 19774
+IHBlcmNlaXZl 19775
+IOqygA== 19776
+IOqwgOyepQ== 19777
+INC40YHQug== 19778
+IE1hdHRlcg== 19779
+IEJsdWV0b290aA== 19780
+IHBlYXJs 19781
+IGFyaXNl 19782
+IG1vbnVtZW50 19783
+INC40LzQtdC90L3Qvg== 19784
+YWdp 19785
+2YTZig== 19786
+IHJobw== 19787
+IHNtYXJ0ZXI= 19788
+IGNvbmo= 19789
+0L7QutCw 19790
+IGtlZW4= 19791
+IFRyZWF0 19792
+0LrQu9GO0Yc= 19793
+IHBhY2tldA== 19794
+ZWxzaXVz 19795
+IEFsYWI= 19796
+0LjQvdC4 19797
+IHBzaQ== 19798
+IGVuam95YWJsZQ== 19799
+IEVsbGVu 19800
+INCy0Lw= 19801
+IGVsaW1pbmF0ZWQ= 19802
+IFJvdw== 19803
+IHpvbWJpZQ== 19804
+IEt1 19805
+IHBocmFzZXM= 19806
+IGdyZW4= 19807
+dXRlcg== 19808
+IGRpcmVrdA== 19809
+15Y= 19810
+ZW5lbg== 19811
+dXNh 19812
+INGB0LvQvtCy 19813
+xLA= 19814
+IEdo 19815
+IGNvcnJpZA== 19816
+IHF1ZWVy 19817
+IExpbmRh 19818
+IG9uYQ== 19819
+IG9ibGlnYXRpb24= 19820
+ZGFy 19821
+INi1 19822
+ZW1tZW50 19823
+YWNpZXM= 19824
+IHNjcmV3ZWQ= 19825
+IG5haw== 19826
+IGF5dWQ= 19827
+w6Fy 19828
+bGV6 19829
+IGRyb3du 19830
+IE1lZGljaW5l 19831
+IGxhYnM= 19832
+IGp1c3F1 19833
+IEdvbm5h 19834
+IHRlcnJvcmlzdA== 19835
+cXVlc3Q= 19836
+IGZhcnRoZXI= 19837
+IHJlcGxpZWQ= 19838
+IFNX 19839
+IE1pc3Npc3NpcHBp 19840
+aXNobmE= 19841
+IGhvbGRlcg== 19842
+IHJlaWdu 19843
+IGFjY2VwdGFuY2U= 19844
+IHVs 19845
+tow= 19846
+IEhvdGVs 19847
+IENvb3Blcg== 19848
+dGFu 19849
+IEdyYWI= 19850
+IHZhcG9y 19851
+IGFjdGVk 19852
+IEthbmc= 19853
+ZmFu 19854
+IOydtOyDgQ== 19855
+dXRldA== 19856
+IHdvcmR0 19857
+IGZhcm1z 19858
+ZGF0 19859
+IGNvdXBsZXM= 19860
+IGJlYWRz 19861
+aWVudG9z 19862
+VGhlbg== 19863
+b3NpdHk= 19864
+IFN0YW5mb3Jk 19865
+Li0= 19866
+V2FpdA== 19867
+IGRhdGFz 19868
+b2lyZQ== 19869
+IGhhc2h0YWc= 19870
+aW1tZQ== 19871
+IGVuY291bnRlcmVk 19872
+IHNob3V0aW5n 19873
+IHJlc2lzdGFudA== 19874
+IFNldW5n 19875
+IHRyYWdpYw== 19876
+IERyYXc= 19877
+LCw= 19878
+IHNob3djYXNl 19879
+IEFG 19880
+IFN0cmk= 19881
+IGJhY2tlZA== 19882
+INGD0LM= 19883
+INCx0YPQtNGD0YI= 19884
+IENvbGU= 19885
+ZXVycw== 19886
+KD8p 19887
+IGVzY2FwZWQ= 19888
+QVNU 19889
+IEFzc2VtYmx5 19890
+IHN0aWNrZXI= 19891
+IG1pZXV4 19892
+IGVudGVydGFpbmluZw== 19893
+IERPTg== 19894
+IEFtZW5k 19895
+IEthcmw= 19896
+IGluaGli 19897
+c3N0 19898
+aWVn 19899
+fn5+ 19900
+IGhvb2tlZA== 19901
+IGxpdGVyYWw= 19902
+IHN1bm55 19903
+c3RlcHM= 19904
+IOuwnOs= 19905
+IE1hcmluZQ== 19906
+IHN1ZQ== 19907
+IHByaXNvbmVycw== 19908
+IEVi 19909
+NTg= 19910
+IGRydW1z 19911
+IGd1aWx0 19912
+YWxn 19913
+IGhhcHBpZXI= 19914
+IENN 19915
+IOyVhOuLiOyVvA== 19916
+INCf0LXRgA== 19917
+0YPQu9GP 19918
+IGtleXdvcmQ= 19919
+IFBhcmNl 19920
+IEZvcmVpZ24= 19921
+IEFtYW5kYQ== 19922
+IOuqqQ== 19923
+cGxlc3M= 19924
+iKw= 19925
+w7Ntbw== 19926
+IHF1YWxxdWVy 19927
+7J2065286rOg 19928
+IGNvbnNwaXJhY3k= 19929
+IHN0cmF3YmVycnk= 19930
+IGhhdHRlbg== 19931
+RXM= 19932
+IHNwb3M= 19933
+IHZpbGxhZ2Vz 19934
+IGxldg== 19935
+INGB0YDQtdC0 19936
+IHdha2luZw== 19937
+IGNhbGN1bGF0aW9ucw== 19938
+INmF2Lk= 19939
+IHBvdXJpbmc= 19940
+IGxlYmlo 19941
+IHBvbGlzaA== 19942
+IFRvdXQ= 19943
+IGZ1bmt0aW9u 19944
+0LzQvg== 19945
+IFRp 19946
+IHdhc3Rpbmc= 19947
+aXN0aWNhbGx5 19948
+IG1hbmlwdWxhdGU= 19949
+IHNpbXBsaWZ5 19950
+IHRlYW1tYXRlcw== 19951
+INCx0L4= 19952
+IGNvbnRhbQ== 19953
+IFF1aXRl 19954
+IGt1cno= 19955
+IENhbmQ= 19956
+dHlwZQ== 19957
+b3V0aGVhc3Q= 19958
+IGZpbmFuY2lhbGx5 19959
+0L7Qu9C9 19960
+ZWxzb24= 19961
+IGZvcmVoZWFk 19962
+dWFnZQ== 19963
+bmF1ZGlibGU= 19964
+IEJlaGluZA== 19965
+IG5lZ290aWF0aW9ucw== 19966
+IOuniOydjA== 19967
+IGFsdGVybmF0aXZlcw== 19968
+cmFuaw== 19969
+aG9sZGVy 19970
+IGhlYWxlZA== 19971
+0YLQvtGH 19972
+IFNwZWM= 19973
+IGV4aGliaXQ= 19974
+IHNoYWxsb3c= 19975
+IGdvYg== 19976
+IOuc 19977
+IGZydXN0cmF0aW9u 19978
+w61v 19979
+IG1lbHRpbmc= 19980
+IFN0b3Jt 19981
+IHBhdGVudA== 19982
+IEJhcmNlbA== 19983
+IHBlZGVzdA== 19984
+2YjZhQ== 19985
+IHRhaQ== 19986
+IE1vZGU= 19987
+IHdpbA== 19988
+IOuqqOultA== 19989
+IMOpZ2FsZW1lbnQ= 19990
+INeQ15c= 19991
+YXlhbg== 19992
+IGFtYXplZA== 19993
+7KeA64qU 19994
+IGhhY2llbmRv 19995
+IOydtOyVvA== 19996
+zrvOsQ== 19997
+4LiC 19998
+0LXRgtCw 19999
+IGV4YW1z 20000
+IHRyYXZlbGxpbmc= 20001
+UHJlc3M= 20002
+0LjRgNGD 20003
+IGJhc2VsaW5l 20004
+IGJ1c2Vz 20005
+IHJlaW5mb3I= 20006
+dmVuYW50 20007
+IFRydXRo 20008
+nb0= 20009
+b2Jl 20010
+IHllbGw= 20011
+IHNhdXNhZ2U= 20012
+VEY= 20013
+IEV2aWw= 20014
+IG1laW5lcg== 20015
+15nXpw== 20016
+IGhvcGVmdWw= 20017
+IHLDs3duaWXFvA== 20018
+IFBlcsOy 20019
+dHdv 20020
+bmRlcg== 20021
+INC80LjRgA== 20022
+IGNvbnNjaWVuY2U= 20023
+IFdhcnJlbg== 20024
+aWNreQ== 20025
+IGFpbWVk 20026
+IGfDtnJh 20027
+WFQ= 20028
+IHB5cmFt 20029
+UmVk 20030
+YXR1 20031
+IEVzdGE= 20032
+IGVhcm5pbmdz 20033
+IGhhdHM= 20034
+IFN0YWR0 20035
+aWNrZXQ= 20036
+cG9pbnRz 20037
+aW5hbmRlcg== 20038
+IG1vdG9yY3ljbGU= 20039
+IOuPjA== 20040
+IO2VtOyVvA== 20041
+a29t 20042
+IERpbmc= 20043
+5pI= 20044
+IHJlY3Vycw== 20045
+IGVzdGltYXRlcw== 20046
+IGRlcm5p 20047
+IHZlcnNjaA== 20048
+IE1JQw== 20049
+0LjQstCw0YLRjA== 20050
+INC/0YDQvtGI 20051
+IGRvc3Q= 20052
+INCy0YHRgtGA 20053
+IHdpZWw= 20054
+IHNpYmxpbmdz 20055
+INC00LXQsg== 20056
+IGVhcmxpZXN0 20057
+IGZhdGlndWU= 20058
+IG5oaQ== 20059
+IGd1c3Rh 20060
+IGJvbm5l 20061
+ZnJvbQ== 20062
+IEplbm55 20063
+IHN1cHBvc2VkbHk= 20064
+aW50YWdl 20065
+IGNvdW50aWVz 20066
+IHVucmU= 20067
+IHBsYW50aW5n 20068
+IEdyYWM= 20069
+IEdlbmVzaXM= 20070
+IEFscGhh 20071
+eXN6 20072
+IHRpbGU= 20073
+IOqyveyasA== 20074
+INeZ16k= 20075
+cXVlbA== 20076
+IGRpc3RyaWJ1dGU= 20077
+ZGVm 20078
+w6lyYWw= 20079
+IGNsdXRjaA== 20080
+YWRlbHBo 20081
+IFBsYXlTdGF0aW9u 20082
+hLg= 20083
+IHNq 20084
+YnJlYWtpbmc= 20085
+IOuQmOs= 20086
+IEN1YmE= 20087
+IFJ1c3NpYW5z 20088
+IE1BUks= 20089
+IHBlcnNl 20090
+IHJlc3RyaWN0ZWQ= 20091
+aWdlcw== 20092
+IFRyYXZlbA== 20093
+IGVsZWN0cm9uaWNz 20094
+IHF1YXJ0ZXJz 20095
+IEtlaXRo 20096
+c2l6ZWQ= 20097
+IGRlYWRsaW5l 20098
+YXJlbnRo 20099
+IHbDrWRlb3M= 20100
+IHByb3RvY29scw== 20101
+YW1tZW50 20102
+IFRyYWluaW5n 20103
+IMOi 20104
+IHNlcXVlbA== 20105
+0L3QsNC6 20106
+IGtlaW5lbg== 20107
+IG1hdHRyZXNz 20108
+bHVkaW5n 20109
+IGNsYXNzaWZpZWQ= 20110
+IHJlYWN0b3I= 20111
+IEtvbnQ= 20112
+IHBhc3Nhcg== 20113
+IGhvbm91cg== 20114
+b3JpZw== 20115
+SU5B 20116
+IE5hdGhhbg== 20117
+0LLQsA== 20118
+INGB0LrQsNC30LDRgtGM 20119
+dMSxcg== 20120
+IGV4Y2x1c2l2ZWx5 20121
+IHNoYWRlcw== 20122
+INC/0YDQvtGG 20123
+IG9jY2FzaW9ucw== 20124
+aWph 20125
+Zmln 20126
+IHR1cw== 20127
+IHJlbWVt 20128
+IENocmlzdG9waGVy 20129
+IHNsaW1l 20130
+IGFsZ3VuYQ== 20131
+IEZvcnR1bmF0ZWx5 20132
+IGxvcnM= 20133
+dm9sbA== 20134
+YXZlcg== 20135
+IG91dGxldA== 20136
+IExpbmtlZElu 20137
+IEV4ZWN1dGl2ZQ== 20138
+IG9yZ2Fucw== 20139
+IEJlZ2lu 20140
+IO2ZlA== 20141
+IHRyYW5zcGxhbnQ= 20142
+cmFnZW4= 20143
+Vk8= 20144
+IEbDtnI= 20145
+INio2KfZhA== 20146
+IEFuZHJl 20147
+aXNpbmU= 20148
+IGxhc3Rz 20149
+IGhpc3TDs3JpYQ== 20150
+IGx1eg== 20151
+IGNvbGxhcg== 20152
+IGtpZG5h 20153
+IG9wdGljYWw= 20154
+aW92 20155
+IHRvYg== 20156
+IGV4dGVyaW9y 20157
+IG1ldHJpYw== 20158
+aWV1cg== 20159
+IHRyb2xs 20160
+INGA0L7Qtw== 20161
+IHTDtA== 20162
+IOyYiOyB 20163
+IEdlc2V0eg== 20164
+INC10LQ= 20165
+IGRlbm9taW5hdG9y 20166
+7LM= 20167
+IGxldHQ= 20168
+IGdyw7bDnw== 20169
+IEx1dGhlcg== 20170
+IHJlc3Rl 20171
+IHJlc2VtYg== 20172
+IHBlcm1ldA== 20173
+a3Np 20174
+IGZpc2hlcg== 20175
+IFZvbg== 20176
+7ZS8 20177
+IM+Dz4TOvw== 20178
+IGxvY2tz 20179
+IHNob290cw== 20180
+IGthbXU= 20181
+IEtlcg== 20182
+IE9icw== 20183
+IGJpbGk= 20184
+IOuwsQ== 20185
+IHRvcnR1cmU= 20186
+YXNzeQ== 20187
+INC40LM= 20188
+IGxhc3Rpbmc= 20189
+IHRpZW5lcw== 20190
+IHJlY2VpdmVz 20191
+IE9zY2Fy 20192
+IHJlbWVtYmVyaW5n 20193
+IHByb2JsZW1hcw== 20194
+IGlh 20195
+IG1lbW9yYWJsZQ== 20196
+IGpvdXJz 20197
+IGZhw6dvbg== 20198
+YW1pYw== 20199
+IOu0pA== 20200
+YXRpcXVl 20201
+IOutlOqwgA== 20202
+IHppcA== 20203
+aGFsdA== 20204
+IPCfmA== 20205
+IGZyaWVz 20206
+IGZpbmRlbg== 20207
+Z3Jh 20208
+0YDRg9C0 20209
+aW1wb3J0 20210
+IOuLrOs= 20211
+IGlraQ== 20212
+IGNvbXBsYWluaW5n 20213
+IGZhemVuZG8= 20214
+IGdvb2dsZQ== 20215
+IHRhYnM= 20216
+IOuTpOyWtOw= 20217
+dWdv 20218
+aWVydG8= 20219
+YXVmZW4= 20220
+IOuovOyggA== 20221
+IHNrdWxsZQ== 20222
+IHN1aXY= 20223
+IHNweQ== 20224
+IEthaQ== 20225
+IG1hcnRpYWw= 20226
+IG9uZGVy 20227
+YXRpbGl0eQ== 20228
+IGlyZ2VuZHdpZQ== 20229
+IGNsYXA= 20230
+aW50ZWxs 20231
+IGluc3RhbGxpbmc= 20232
+IHVuaXF1 20233
+IENlbnRyZQ== 20234
+YXN0cw== 20235
+dWFy 20236
+IHJldmlz 20237
+IHRocmVhdGVuaW5n 20238
+cmFpcw== 20239
+IGN1aWQ= 20240
+c2th 20241
+IHJlc29sdmVk 20242
+IHJpZGVz 20243
+IGZhaWx1cmVz 20244
+IHNlbWI= 20245
+IG1hbGVz 20246
+VUZG 20247
+IHRyw6pz 20248
+YXBwZWQ= 20249
+IG5ld3NwYXBlcnM= 20250
+cmlldA== 20251
+IGFwcGxhdWRz 20252
+0JM= 20253
+IE5D 20254
+IGhldGVy 20255
+IGhhemFyZA== 20256
+IHJ5 20257
+IHN0cmljdGx5 20258
+IDU0 20259
+IOuTpOyWtOqwgA== 20260
+IHNwb250 20261
+IHRhdHPDpGNobGljaA== 20262
+IOunkOyU 20263
+bGF1Yg== 20264
+IGFic29yYmVk 20265
+YWNhxJ/EsXo= 20266
+IG9udQ== 20267
+INCQ0L0= 20268
+IGV4cGxpY2l0bHk= 20269
+IOyerA== 20270
+IEZ1dHVyZQ== 20271
+YWNodGVu 20272
+w6Bv 20273
+eW9u 20274
+IHNlcmlh 20275
+IEhlcnJlbg== 20276
+Y2Vq 20277
+IEFsYmVydA== 20278
+7J2064qU 20279
+ZWN0b3I= 20280
+IHBhY2tpbmc= 20281
+IHZpcnR1ZQ== 20282
+IHZlbmly 20283
+REQ= 20284
+IHlheg== 20285
+IGxvZ3M= 20286
+IFBob3Rvc2hvcA== 20287
+IHNpZA== 20288
+bGluZ3M= 20289
+IHJlbW90ZWx5 20290
+IERpZmZlcmVudA== 20291
+IG9wZXJhdGVk 20292
+bGlnaHRz 20293
+IGRpc2NyaW1pbg== 20294
+aXN0YW5jZQ== 20295
+IEdSRQ== 20296
+IHBsYWM= 20297
+IHNoaXJ0cw== 20298
+IGp1c3RpZnk= 20299
+IHRyYWJhbGhv 20300
+dXRpbA== 20301
+dm9j 20302
+IHF1YXJ0 20303
+IM6k 20304
+U0M= 20305
+IFNS 20306
+IC0i 20307
+IGhlc2l0YXRl 20308
+IHBhaw== 20309
+Z3Vh 20310
+Sm8= 20311
+IHNvdXZlbnQ= 20312
+IEFuZ2VsYQ== 20313
+ZXNzZWU= 20314
+YWRlbHBoaWE= 20315
+YXJrcw== 20316
+IHdlZWQ= 20317
+IGthbm5zdA== 20318
+IOq3uOufrOuLiOq5jA== 20319
+IHBsdXTDtHQ= 20320
+IENvbW1hbmRlcg== 20321
+IHN1bW1hcml6ZQ== 20322
+4K+A 20323
+IDk4 20324
+IGRldmVsb3BtZW50cw== 20325
+IENvc3Q= 20326
+IHRoZW9yZXRpY2Fs 20327
+IG9yZQ== 20328
+IG1ldGFsbA== 20329
+zr/Phc69 20330
+ZmFocg== 20331
+0JrQkA== 20332
+IGNodWNr 20333
+IGFkYXB0ZWQ= 20334
+IE9rbGFo 20335
+IE5ldGhlcmxhbmRz 20336
+IHBvZXQ= 20337
+c3Rv 20338
+a2F0 20339
+IHdlYXJz 20340
+568= 20341
+IOyWtOuUlA== 20342
+IEVzdG8= 20343
+IGxhdWdoZWQ= 20344
+IGRvbm5lcg== 20345
+IOuNsA== 20346
+IOybkOs= 20347
+b2N1cg== 20348
+IEtpY2s= 20349
+IERldHJvaXQ= 20350
+IGJpY3ljbGU= 20351
+IGxhY2tpbmc= 20352
+cGhhYmV0 20353
+IEtlbmQ= 20354
+QXNz 20355
+IHJldmVhbHM= 20356
+IM6g 20357
+IE5vYWg= 20358
+pqzripQ= 20359
+IHNlbGxz 20360
+IEFsYWJhbWE= 20361
+IHRlcnJpZmlj 20362
+IEVsZW1lbnQ= 20363
+IO2G 20364
+IHR1cmJv 20365
+IEhvbQ== 20366
+IHRoZW9yZW0= 20367
+IGFkdmVudHVyZXM= 20368
+IHB1cmNoYXNpbmc= 20369
+IFTDoQ== 20370
+INC80LDRgg== 20371
+IHZlbW9z 20372
+IGR1dGllcw== 20373
+IHdlbmln 20374
+IGJvb3Ro 20375
+IGVudHJhcg== 20376
+VkE= 20377
+IGdlYXJz 20378
+IEphZQ== 20379
+w6hu 20380
+IGNhbGNpdW0= 20381
+IFJvYmVydHM= 20382
+INC/0YDQvtCx0LvQtdC8 20383
+IHJpYmJvbg== 20384
+INC90LDQt9GL0LI= 20385
+IGxhdg== 20386
+IGludGVydmVudGlvbnM= 20387
+IFVsdHJh 20388
+IG5hbWVseQ== 20389
+IGFkZXF1YXRl 20390
+IHJlY2Fw 20391
+IGRvY2s= 20392
+ZnRpbmc= 20393
+IHZvaQ== 20394
+IGNvbnN1bHRhdGlvbg== 20395
+INGB0LXQvA== 20396
+IHBvZGVt 20397
+IHBvc3Nlc3Npb24= 20398
+IGNsdWVz 20399
+IFJ1c3NlbGw= 20400
+IHJlbmV3YWJsZQ== 20401
+INGD0Lc= 20402
+aW5mb3JtYXRpb24= 20403
+aWdnZXJz 20404
+V2l0aA== 20405
+d25v 20406
+IGVsYWJvcmF0ZQ== 20407
+Y3RvcmFs 20408
+IERvdw== 20409
+IHJhbWVu 20410
+4buV 20411
+IGVyc3Rl 20412
+IFplbA== 20413
+IHF1YXNp 20414
+INC90LDQug== 20415
+IFN0YXJz 20416
+IHRyaWJhbA== 20417
+IHNlYXRlZA== 20418
+IHdvbA== 20419
+IGNob2w= 20420
+w6Rtw6Q= 20421
+IG91dGJyZWFr 20422
+IGNyZXM= 20423
+IHVuc2VyZXI= 20424
+IO2RnA== 20425
+IHVuZGVyd2F0ZXI= 20426
+IGFzc3VyZQ== 20427
+T09E 20428
+IG5hcHJhd2TEmQ== 20429
+IGVzdGFibGlzaG1lbnQ= 20430
+IGluY29u 20431
+IGRpZmVyZW50ZQ== 20432
+IGV4Y3Vz 20433
+IERpbQ== 20434
+0L7RhQ== 20435
+IExpbmc= 20436
+cm9sb2c= 20437
+IG91dGRvb3Jz 20438
+bmFq 20439
+IGVwaWRlbWlj 20440
+IHVudGVycw== 20441
+IDMwMDA= 20442
+IEdhYnJpZWw= 20443
+IOyXhuuKlA== 20444
+IGVuY2w= 20445
+IE9kZXI= 20446
+IEZvb3Q= 20447
+cGFz 20448
+IFp1aw== 20449
+IHdvcmtmbG93 20450
+IHVucA== 20451
+IGFsbGlhbmNl 20452
+ZW5zY2hhZnQ= 20453
+IHlvZ3VydA== 20454
+0LjQvdC1 20455
+IGVydQ== 20456
+IGZpeg== 20457
+IGHFnw== 20458
+IGFwcmVuZA== 20459
+IGN1YWxxdWllcg== 20460
+IGNhcnJvdHM= 20461
+xLFuxLFu 20462
+YWZvb2Q= 20463
+IGZsb29ycw== 20464
+IGtleXdvcmRz 20465
+IHNwb3R0ZWQ= 20466
+IGRyYW5r 20467
+IHBhcmFz 20468
+IMO6bHRpbW8= 20469
+IGhhYmxhcg== 20470
+IHByb3NlY3V0 20471
+7JeQ64+E 20472
+IMOpcA== 20473
+IHN0aWNrZXJz 20474
+IHB1c2hlcw== 20475
+a2g= 20476
+IHJlc3RhcnQ= 20477
+IFRodW5kZXI= 20478
+4budaQ== 20479
+IG11aXRh 20480
+IGZveA== 20481
+YXJkZcWf 20482
+IFphY2g= 20483
+IE1pbmVjcmFmdA== 20484
+57g= 20485
+ID09PT0= 20486
+IGfDtnJl 20487
+IHN0YW5jZQ== 20488
+aWd1bmc= 20489
+2Y7ZkQ== 20490
+a8Ok 20491
+IHRlYWNoaW5ncw== 20492
+6YY= 20493
+IGRlY2F5 20494
+IHJpYw== 20495
+b21lbmE= 20496
+INCy0YHQtdC8 20497
+Y2h0ZW4= 20498
+IFZlcnQ= 20499
+IO2VnOq1rQ== 20500
+rLTr 20501
+IGNvYw== 20502
+Oik= 20503
+a2VpdGVu 20504
+IEJB 20505
+ZXRoZWxlc3M= 20506
+IGhlYWRxdWFydGVycw== 20507
+IHNwaWtl 20508
+IEJhc2U= 20509
+IDEwMQ== 20510
+IGNvb3JkaW5hdGVz 20511
+IHRhcmQ= 20512
+IGJvaWxlZA== 20513
+IE1vbnN0ZXI= 20514
+IG5vdGVib29r 20515
+IOq0gA== 20516
+IFdha2U= 20517
+IFNldHRpbmc= 20518
+7J207Jc= 20519
+IFN5ZG5leQ== 20520
+IEZpbm4= 20521
+IGxvYmJ5 20522
+IHNlbmlvcnM= 20523
+0L3QuNGF 20524
+YXZhbg== 20525
+IEpF 20526
+IHRyYWZm 20527
+dGhpbms= 20528
+IHNsYXA= 20529
+IENhc3RsZQ== 20530
+qW5n 20531
+IGFsZ3Vub3M= 20532
+IFBlcnNvbmFsbHk= 20533
+IE1hbGU= 20534
+7Yuw 20535
+IEdlbmVyYWxseQ== 20536
+IFBlbA== 20537
+IGRpYXM= 20538
+IGV2b2x2aW5n 20539
+aXRvbA== 20540
+0LLQvtGA 20541
+IHBsZWlu 20542
+IGZsaWdodHM= 20543
+IGVsZXZlbg== 20544
+b3dlag== 20545
+4buRbmc= 20546
+IGFrdQ== 20547
+IGdsYW5jZQ== 20548
+IGNvbm5lY3Rpdml0eQ== 20549
+IGJhbGQ= 20550
+0YvRhw== 20551
+IGludGVzdA== 20552
+w6Fn 20553
+IEdSw5w= 20554
+aWJsaWNhbA== 20555
+IFBhcGE= 20556
+IHBpdHk= 20557
+IGZhaW50 20558
+IHd1cmRlbg== 20559
+IGxlZ2FsbHk= 20560
+IHByZXk= 20561
+IFNjaWVuY2Vz 20562
+INC/0YDQvtGB 20563
+IHRyYWluZXI= 20564
+IHByb2Jsw6htZQ== 20565
+IGtpbG8= 20566
+0LrQvtCz0L4= 20567
+IGJyaWRnZXM= 20568
+ODk= 20569
+IGxhc3RlZA== 20570
+IGVsZWdhbnQ= 20571
+Ym93cw== 20572
+IHBhbGFi 20573
+IGRpcmVjdG9yeQ== 20574
+IGJ1bGI= 20575
+cGVvcGxl 20576
+SVg= 20577
+IGdlYg== 20578
+IDY2 20579
+IFRlbm5lc3NlZQ== 20580
+YWhsZW4= 20581
+aWV2YWw= 20582
+IGNhdXQ= 20583
+IERhbWVu 20584
+cGxv 20585
+aWFuZQ== 20586
+0LDQu9C1 20587
+YXR0YW4= 20588
+INin2YTYsw== 20589
+IHJpc2t5 20590
+IHNsZWV2ZQ== 20591
+IGluY2lkZW50cw== 20592
+IOuwlQ== 20593
+Q28= 20594
+IGFwcGxpY2FibGU= 20595
+IGltcGVyaWFs 20596
+IFBoaWxpcA== 20597
+IFllYQ== 20598
+0LXRgNC+ 20599
+INC/0L7QutCw0Lc= 20600
+w7xuZQ== 20601
+7JiA 20602
+SHVi 20603
+dG9y 20604
+IHNpZ3U= 20605
+Y2VuZA== 20606
+IHBvbGl0aWNhbGx5 20607
+IOyCtA== 20608
+IHBhcnM= 20609
+IG91dg== 20610
+IHByaW1laXJh 20611
+IFNoYWg= 20612
+IHNhdHVy 20613
+IGNvbWJ1c3Q= 20614
+IHByb21vdGVk 20615
+7KO86w== 20616
+IHRlbXBsYXRlcw== 20617
+IOuLrA== 20618
+IGhhdWw= 20619
+INGC0LXRgA== 20620
+IHNsaWRpbmc= 20621
+Y2VkZW50ZWQ= 20622
+Y2hpbGRyZW4= 20623
+TVI= 20624
+IFdlaQ== 20625
+IGLDtnI= 20626
+IHByw7N4aW1v 20627
+YXLDrWE= 20628
+IHNhbXBsaW5n 20629
+0LXQu9C10L0= 20630
+ZXNp 20631
+IERhbmllbGxl 20632
+IE9rbGFob21h 20633
+6IU= 20634
+0LXRgdC/ 20635
+IERWRA== 20636
+INCy0YvQvw== 20637
+cm91cw== 20638
+Y29ucw== 20639
+IGVuaGFuY2Vk 20640
+IHBhc3Rvcg== 20641
+IFN1ZGRlbmx5 20642
+ZmFy 20643
+UEVS 20644
+IE5n 20645
+MTAwMA== 20646
+IGNoZXc= 20647
+IHJ1bW9ycw== 20648
+IEFuYQ== 20649
+IGFubsOpZXM= 20650
+INGD0YHRgg== 20651
+IFBoaWxhZGVscGhpYQ== 20652
+0LXQttC00YM= 20653
+IGVmZmVjdGl2ZW5lc3M= 20654
+w6l0w6k= 20655
+IGRpbmc= 20656
+IHJlbGlnaW9ucw== 20657
+IGFnZWQ= 20658
+emllxIc= 20659
+IFJpYw== 20660
+IEthcA== 20661
+IFBhZ2U= 20662
+IHPDvA== 20663
+IG7DpG1saWNo 20664
+IG1hbmtpbmQ= 20665
+IHJlc3Rpbmc= 20666
+IGluZmx1ZW5jZXM= 20667
+IFNjaHVs 20668
+INC90LXQsg== 20669
+IG1hbmE= 20670
+IGNvbnN1bWVk 20671
+IFBvbQ== 20672
+IGNvbnNlZ3Vpcg== 20673
+IFRoYW5rc2dpdmluZw== 20674
+IEhpbmR1 20675
+bGFpcw== 20676
+IHRocml2ZQ== 20677
+IGNvbnRvdXI= 20678
+0LDRhtC40Y8= 20679
+IGZhbGFuZG8= 20680
+IErDoQ== 20681
+emFu 20682
+0LjRgtGD 20683
+aXBoZXI= 20684
+amFtaW4= 20685
+IEhhbGxv 20686
+IDE2MA== 20687
+INC+0YHQvtCx 20688
+IG1ldGU= 20689
+IOyVjOs= 20690
+IEJhcmNlbG9uYQ== 20691
+bGV0dGVy 20692
+INCd0LXRgg== 20693
+5Zk= 20694
+IGFkZW3DoXM= 20695
+IGNvb3JkaW5hdGlvbg== 20696
+dW50cw== 20697
+IHNsb3A= 20698
+INC/0YDQuNC0 20699
+7KeA66eJ 20700
+IHF1ZXN0aW9uaW5n 20701
+IGRpZXNlbA== 20702
+IGRlag== 20703
+IGFmZmlybQ== 20704
+jZTrnbzqs6DsmpQ= 20705
+aWVubmU= 20706
+IGNyYW5r 20707
+IHByZWRpY3Rpb25z 20708
+IHBoeXNp 20709
+Y2hzZWw= 20710
+IGNvbWJpbmF0aW9ucw== 20711
+IGV4Y2VsbGVuY2U= 20712
+4bud 20713
+d2lkdGg= 20714
+d2VlZA== 20715
+hOulvA== 20716
+hOuniA== 20717
+IGFsdG8= 20718
+IGRhaXJ5 20719
+IE5vcm1hbA== 20720
+cHBlbg== 20721
+IG9iZW4= 20722
+IGRldmFzdGF0aW5n 20723
+IHBveg== 20724
+IEh1cw== 20725
+bWF6 20726
+IHdhcm5lZA== 20727
+IGRlbms= 20728
+IEF1c3M= 20729
+IHRyYWRlcw== 20730
+aGVsbA== 20731
+IHByaW1lcm8= 20732
+IG1pYQ== 20733
+0LLQsNGA 20734
+2KjZig== 20735
+IGtpY2tz 20736
+IGHEnw== 20737
+IE3DvA== 20738
+IGx1Yw== 20739
+0LXQvdC40LXQvA== 20740
+IFN0YW5kYXJk 20741
+cmljZQ== 20742
+IEN1Yg== 20743
+IGdvdQ== 20744
+IEpvw6Nv 20745
+0YPRgdC6 20746
+IGVucXU= 20747
+o4w= 20748
+Z2V3 20749
+IO2BsA== 20750
+b3dhbmlh 20751
+aWFuaQ== 20752
+IGZha3Q= 20753
+0Y/QvdC4 20754
+IGJlZg== 20755
+IHRodW1ibmE= 20756
+IGNldXg= 20757
+YXBwbGU= 20758
+TkVO 20759
+IGdhZA== 20760
+YXBvbg== 20761
+IEZhbnRhc3RpYw== 20762
+IGNvbmNlbnRyYXRlZA== 20763
+Z2lybA== 20764
+bGVuZQ== 20765
+INCU0LvRjw== 20766
+IMOpdGE= 20767
+YWFu 20768
+IG91dHRh 20769
+IG5hcmM= 20770
+IEJvZHk= 20771
+YnJ1c2g= 20772
+IGxlZ2lzbGF0aXZl 20773
+IE1lZ2Fu 20774
+IG1pc3Rha2Vu 20775
+IE1pc3NvdXJp 20776
+IGxhYmVsZWQ= 20777
+0LvRj9C10YLRgdGP 20778
+IHJlYWxpc2Vk 20779
+eW9yc3Vu 20780
+IFNhZmV0eQ== 20781
+IGFjY2VsZXJhdGU= 20782
+IHNhbmN0aW9ucw== 20783
+IHBlZQ== 20784
+IGp1ZWdv 20785
+IHBlcHBlcnM= 20786
+IHdhbA== 20787
+6riJ 20788
+ZWxsb3c= 20789
+INC20LXQvQ== 20790
+IGNpbmNv 20791
+INGB0LjRgdGC 20792
+Y292ZXJ5 20793
+IGdyYW0= 20794
+IMOpcG8= 20795
+IEJNVw== 20796
+aXZvbA== 20797
+IENoZW0= 20798
+dXNlbWVudA== 20799
+IFN1cHBvc2U= 20800
+IOqwgOyngOqzoA== 20801
+IG1pbGxlbm4= 20802
+IFR1bg== 20803
+IG1lZGFs 20804
+IGhhY2lh 20805
+IHN0aW11bHVz 20806
+IGJyaWdodG5lc3M= 20807
+YWllbnQ= 20808
+IEhhbmRz 20809
+aW5ldA== 20810
+IGNvYWxpdGlvbg== 20811
+IHJpc2Vz 20812
+cmluYQ== 20813
+IHNjb290 20814
+IGRlZmVuZGluZw== 20815
+IGludmVycw== 20816
+IGhpbGxz 20817
+IGZ1bGZpbGxlZA== 20818
+bGxpZQ== 20819
+IGFkb2xlcw== 20820
+IENoYXNl 20821
+IEpK 20822
+IG5ldWVu 20823
+IFRydQ== 20824
+IGluaGVyaXQ= 20825
+IHNpeHR5 20826
+IEV4cA== 20827
+IENsYXk= 20828
+0L7RgdC+0LE= 20829
+YXJuYQ== 20830
+IEltcGVyaWFs 20831
+INGN0YLQsA== 20832
+IHNvY2lhbGx5 20833
+YXR5 20834
+b2R5bmFt 20835
+IHJpYnM= 20836
+b21pYw== 20837
+IFRvbA== 20838
+0L7Qu9C2 20839
+IDE5OTg= 20840
+IGZyYW0= 20841
+IHJhbmtz 20842
+INCx0YPQtNGD 20843
+IENvbG9u 20844
+SHo= 20845
+IGFjY29tbW9kYXRl 20846
+IGV4cGxvZGU= 20847
+7YSw6w== 20848
+SEFFTA== 20849
+IEhhcnQ= 20850
+INC20LjQt9C90Lg= 20851
+5qE= 20852
+IGRlbGljYXRl 20853
+oNeX 20854
+IHRvZnU= 20855
+IGFjaGlldmVtZW50cw== 20856
+IFNvcg== 20857
+IGFncmVlbWVudHM= 20858
+IDU3 20859
+IHRhbXA= 20860
+IGZyYW7Dp2Fpcw== 20861
+IGhlcmJz 20862
+Y29ybg== 20863
+IGtvbms= 20864
+QU5B 20865
+IFFp 20866
+IHByw7Nw 20867
+IHRpZ2Vy 20868
+IOuRmA== 20869
+xINt 20870
+IGFwcHJlbnQ= 20871
+YWhhbg== 20872
+IHJ1bGluZw== 20873
+IHRzcA== 20874
+IHR3aXR0ZXI= 20875
+IHRlZW5hZ2Vy 20876
+YnVz 20877
+IO2S 20878
+IEFtZW5kbWVudA== 20879
+IHRhcHBpbmc= 20880
+IEFQSXM= 20881
+IG1hdGNoZWQ= 20882
+66m0 20883
+V0E= 20884
+IEJlYXV0eQ== 20885
+IGluZXZpdGFibGU= 20886
+IGdhc2Vz 20887
+INm+ 20888
+aGlnaA== 20889
+IE9wdA== 20890
+IHByZWRvbWlu 20891
+z4HPjA== 20892
+IHR1YmVz 20893
+IOyVoA== 20894
+IEFh 20895
+b21ldG93bg== 20896
+IElN 20897
+IGRlc2Fy 20898
+w6RyZW4= 20899
+INC80LDRgQ== 20900
+IE3DtmdsaWNo 20901
+IHJlbnRhbA== 20902
+IO2VqOq7mA== 20903
+IERpYW5h 20904
+IGF1dGlzbQ== 20905
+IFB1ZXJ0bw== 20906
+xLFsZA== 20907
+IGZhbGFu 20908
+IGRyZWFtaW5n 20909
+IGd1dGU= 20910
+INC60LDQvA== 20911
+IHdyZWNr 20912
+IHN0b3J5dGVsbGluZw== 20913
+IExlZ2VuZA== 20914
+IFVrcmFpbg== 20915
+INC/0YDQvtC40YE= 20916
+IFNL 20917
+IO2WiQ== 20918
+IMWbd2k= 20919
+IEJlbGlldmU= 20920
+IG1vc3RyYXI= 20921
+IFRvZGQ= 20922
+IE5pZ2Vy 20923
+aWN0aW5n 20924
+aGFyZA== 20925
+Oi8v 20926
+aXJhYmxl 20927
+aWdhdGlvbg== 20928
+IE1lbWJlcnM= 20929
+IOygnO2SiA== 20930
+IGRpc2NvdXI= 20931
+n70= 20932
+cmlrYQ== 20933
+IERO 20934
+IEZpZg== 20935
+IENhcGl0YWw= 20936
+0YDQvtC8 20937
+IFNhbnM= 20938
+eXVu 20939
+IHBpbG90cw== 20940
+IHRyYXQ= 20941
+IG55dA== 20942
+IOuvvA== 20943
+IGV4cG9uZW50aWFs 20944
+IGVtZXJnZQ== 20945
+IHRyYWplY3Rvcnk= 20946
+INC/0L7Rh9C10LzRgw== 20947
+IHNlYWxlZA== 20948
+YXR0aQ== 20949
+IHdpZGVz 20950
+INC+0LPRgA== 20951
+aWFuY2Vz 20952
+IHdpdG5lc3NlZA== 20953
+T3I= 20954
+b3Np 20955
+IEpvZWw= 20956
+b25hbA== 20957
+IEludGU= 20958
+Y2VkZXM= 20959
+IEdvdHRh 20960
+YW5pdW0= 20961
+IGZlbWFsZXM= 20962
+IExlYmVucw== 20963
+IG1vaXN0dXI= 20964
+IFNpbXBsZQ== 20965
+IERvY2g= 20966
+YXLDoQ== 20967
+IGdlc2VoZW4= 20968
+VVNU 20969
+xqFp 20970
+IGNsYXNzaWZpY2F0aW9u 20971
+IGRpYWdvbmFs 20972
+IHBlcm1ldHQ= 20973
+Y29tcA== 20974
+INin2YTYrQ== 20975
+IE1hbGF5cw== 20976
+IGdlaMO2cnQ= 20977
+IHBvcHBlZA== 20978
+IGNvbnRhY3RlZA== 20979
+INeb15w= 20980
+IDE0MA== 20981
+IGFkYXB0YXRpb24= 20982
+IG1hbnVz 20983
+IHR1cmtleQ== 20984
+IHByZWFjaA== 20985
+YnJpZ2h0 20986
+IGRvd25z 20987
+IHVucHJlY2VkZW50ZWQ= 20988
+IG1pZ2h0eQ== 20989
+IGNhdGVy 20990
+aXR0aQ== 20991
+Z3M= 20992
+IERlcHV0eQ== 20993
+d3JpdGU= 20994
+IEJsZXNz 20995
+w6Fj 20996
+IHN1bW1pdA== 20997
+IOuPvOyalA== 20998
+IHRob3VnaHRmdWw= 20999
+IHNocmVk 21000
+c2luZ2luZw== 21001
+INC70YPRh9GI0LU= 21002
+IHllbg== 21003
+IHZpYnJhbnQ= 21004
+IFdhbHRlcg== 21005
+IGhvc3Rz 21006
+IGFtYnVs 21007
+IGludmFzaW9u 21008
+b2dhbg== 21009
+IHJlYXNvbmluZw== 21010
+IHN1Y2M= 21011
+0LvQtdC60YI= 21012
+IGZhbGE= 21013
+IGtpbmdz 21014
+IGdvaW4= 21015
+IGNhbGli 21016
+IEdSw5xORU4= 21017
+b3Rlcg== 21018
+IGVpbno= 21019
+IGluc3VsaW4= 21020
+iqg= 21021
+IHNjYWxpbmc= 21022
+IENvcm4= 21023
+aHlk 21024
+IG1hdHRl 21025
+UEw= 21026
+IGFsaWVucw== 21027
+IFNlZw== 21028
+ZXN0aQ== 21029
+YXN0aWNz 21030
+IHdhcm1lcg== 21031
+IGluZ2Vu 21032
+IE1M 21033
+IHJvZGU= 21034
+IEV5ZQ== 21035
+YmVpdHM= 21036
+IEJhcm4= 21037
+wrss 21038
+IENodWNr 21039
+IHByb2ZpdGFibGU= 21040
+dWd1ZXNl 21041
+IEFyYWJpYQ== 21042
+IGNvY28= 21043
+IHB1ZWRv 21044
+IGluZmxhbW1hdGlvbg== 21045
+Y2xpcA== 21046
+IHRhYmxlc3Bvb25z 21047
+IOygkQ== 21048
+IFN3ZWQ= 21049
+IGFuYXQ= 21050
+7Iig 21051
+IGFycmli 21052
+IGRhbmNlcg== 21053
+IENhcnRlcg== 21054
+IG1hZ25pZmlj 21055
+c3RvcmU= 21056
+IGZhZGU= 21057
+IGFjY29tcGFueQ== 21058
+IHdhaHI= 21059
+IHllYXN0 21060
+IG1pbmVyYWw= 21061
+IGxlZ2lzbGF0dXJl 21062
+aXJvcw== 21063
+IGNyb3dkZWQ= 21064
+0YDQsNGI 21065
+b2NhZG8= 21066
+7Ja07JW8 21067
+IO2bhA== 21068
+IEJhcnJ5 21069
+bWFzdGVy 21070
+IG5pY2tuYW1l 21071
+ICIuLi4= 21072
+IFJz 21073
+IE1vb3Jl 21074
+IHZlbnVl 21075
+INCx0YM= 21076
+bGlob29k 21077
+IEFnZW5jeQ== 21078
+0LvQvtCy 21079
+IGthaA== 21080
+IOyGjOumrA== 21081
+IG1hcnNo 21082
+IGluY29ycG9yYXRlZA== 21083
+YW50d29ydA== 21084
+IGtpbWNoaQ== 21085
+IHdvbw== 21086
+IGRpc3RyYWN0ZWQ= 21087
+ZXJpZXM= 21088
+IGluZm9ybWFjacOzbg== 21089
+IENob29zZQ== 21090
+IEphZGk= 21091
+IGFuYWxvZ3k= 21092
+c2F5 21093
+dWZmbGU= 21094
+Ym9r 21095
+IGFjaWRz 21096
+IGFjcXVpc2l0aW9u 21097
+IHZhcmlhbnRz 21098
+IHBhc3NpZXJ0 21099
+7J2064KY 21100
+cnVjdGl2ZQ== 21101
+YnJpZw== 21102
+IOOAjA== 21103
+ZXBoZXI= 21104
+IHBI 21105
+dXRsaWNo 21106
+IHJlbGll 21107
+dWl0ZQ== 21108
+IHJlY2VwdGlvbg== 21109
+IGNvaA== 21110
+IFByZXA= 21111
+IGFudGljaXBhdGU= 21112
+a2Vl 21113
+IGRlc2lnbmF0ZWQ= 21114
+0Y/RgtC4 21115
+IEtvcg== 21116
+IEFuaW0= 21117
+w7xobA== 21118
+IFdoaXQ= 21119
+IHVuY292ZXI= 21120
+IE1heWE= 21121
+INGC0L7Qs9C00LA= 21122
+sJU= 21123
+dXRlbmFudA== 21124
+IOyWvOs= 21125
+IGZvcmVzdHM= 21126
+IG1lbWU= 21127
+IGRpc3Rpbmd1aXNoZWQ= 21128
+IE1hcng= 21129
+IExpb24= 21130
+IHNlcnZhbnRz 21131
+IERpYW0= 21132
+IFBvbGljeQ== 21133
+jbw= 21134
+IHRyaWdnZXJlZA== 21135
+YWJpbGly 21136
+IOydkQ== 21137
+IG5lZ290aWF0ZQ== 21138
+IGZleg== 21139
+IGVydw== 21140
+IHZhcmllcw== 21141
+IGplbWFuZA== 21142
+IGRpc2NoYXJnZQ== 21143
+0YHRj9GH 21144
+IFBBUg== 21145
+IEFmZmFpcnM= 21146
+IHZvdGVy 21147
+IGF0ZW4= 21148
+IGNyb2lz 21149
+b2JpbA== 21150
+IE9vcHM= 21151
+IEFyYw== 21152
+IEhlYXRoZXI= 21153
+YW5rYQ== 21154
+IHNpbXBsZXM= 21155
+zr/OvQ== 21156
+Ij4= 21157
+IGNob3Jkcw== 21158
+IFNhbmRlcnM= 21159
+IOu2hOs= 21160
+QmVu 21161
+IGRhcsO8YmVy 21162
+aWxpYW5z 21163
+IG9yZGVyaW5n 21164
+IE1hbmg= 21165
+IGtpbG9ncmFt 21166
+IGthcsWf 21167
+IGdyYXNw 21168
+IGdob3N0cw== 21169
+YWxlbg== 21170
+IEplZGk= 21171
+INCx0LvQuA== 21172
+IGRvd25sb2FkZWQ= 21173
+IGNvbmR1Y3Rpbmc= 21174
+IEhhaw== 21175
+IHJlc2VhcmNoZXI= 21176
+aWxhbg== 21177
+Z29vZA== 21178
+IEhhbm5haA== 21179
+IGTDvMWfw7xu 21180
+IE1lc3NpYWg= 21181
+dWl0eQ== 21182
+aW9uYQ== 21183
+IHByb2JhYmxl 21184
+IFlF 21185
+IGluZGVwZW5kZW50bHk= 21186
+IGJ1ZmZlcg== 21187
+YnVybg== 21188
+b3VyZA== 21189
+IE1jSw== 21190
+IGxpbmd1 21191
+dWplbXk= 21192
+0LXRgNGC 21193
+IGludHVpdGl2ZQ== 21194
+IGNyYWNrcw== 21195
+YXBwcm9wcmk= 21196
+bnR5 21197
+IGdlZW4= 21198
+IGxlbmQ= 21199
+IGNlcnRpZmljYXRpb24= 21200
+SURT 21201
+dW50ZXI= 21202
+cGVlcw== 21203
+IHRydW1w 21204
+IGJhbmtydXB0 21205
+IGZlYXM= 21206
+6Jc= 21207
+IGR1xbw= 21208
+IHZpcnVzZXM= 21209
+IDU4 21210
+Z29k 21211
+INC20LXQuw== 21212
+IHN0YWxr 21213
+SW5k 21214
+YWNoaQ== 21215
+IENG 21216
+IENvbmQ= 21217
+IHNhbmN0 21218
+IGNvbnRlbg== 21219
+IGZyZWVk 21220
+IFJU 21221
+IG1lbnRvcnM= 21222
+7KGx 21223
+IHBvcnRhYmxl 21224
+IFBhdWxv 21225
+cmFuZQ== 21226
+SEFIQQ== 21227
+IFNlY3Rpb24= 21228
+54Y= 21229
+aHl1bg== 21230
+IM6tz4c= 21231
+IFB1Yg== 21232
+IEluZGVwZW5k 21233
+IGNvbXBvdW5kcw== 21234
+INGB0Ys= 21235
+IG1lc3NhZ2luZw== 21236
+IGRlZGljYXRpb24= 21237
+IG5vdGljaW5n 21238
+IGRldm90ZWQ= 21239
+0Y7RgtGB0Y8= 21240
+IHNuYWtlcw== 21241
+IGJhdHRsZWZpZWxk 21242
+cGVycw== 21243
+IGRlbGE= 21244
+OTI= 21245
+IGhhaQ== 21246
+aWxsw6Q= 21247
+w6lyZXI= 21248
+ZXZlcnk= 21249
+IHJlc3BvbnNpdmU= 21250
+15nXlQ== 21251
+b3Bm 21252
+6Yk= 21253
+irg= 21254
+QmVjYXVzZQ== 21255
+IHRvdXJpc20= 21256
+IOq3uOqyjA== 21257
+15XXpg== 21258
+IGNhbnM= 21259
+c3TDvHQ= 21260
+IGRvbm5l 21261
+IERpb3M= 21262
+IFViZXI= 21263
+YWN0b3J5 21264
+IG9yaWVudGVk 21265
+IEhlcm0= 21266
+IHBhdHJvbg== 21267
+dXJm 21268
+YmVp 21269
+IHByb2dyYW1h 21270
+IE9oaA== 21271
+Z2VuZXI= 21272
+IGZpc3Q= 21273
+IFdlbmR5 21274
+IGFuZGE= 21275
+IGd1ZXNzZWQ= 21276
+IGZyZWFr 21277
+IEtpbmdz 21278
+Y2hvb2w= 21279
+IG9mZmxpbmU= 21280
+IEluZGlhbmE= 21281
+IEFsbGlhbmNl 21282
+IDUz 21283
+IHBhcnRpY3Vs 21284
+IEZvY3Vz 21285
+IGluaGFiaXQ= 21286
+IOqwmeydgOuNsA== 21287
+IE1jRw== 21288
+b3dza2k= 21289
+IOydtOqxtA== 21290
+IHBhxYRzdA== 21291
+0L7QvdC4 21292
+aXR0YQ== 21293
+IGNvbmZpcm1hdGlvbg== 21294
+IEJyb29rbHlu 21295
+IG5vb2RsZQ== 21296
+ZnVuZA== 21297
+aXR1ZA== 21298
+IGdyYW5kcGFyZW50cw== 21299
+IGJhcmJlY3Vl 21300
+zrXOuc+C 21301
+IOE= 21302
+IGJhbGxvdA== 21303
+IFZldGVy 21304
+IHBpcGVz 21305
+aWdpb3Vz 21306
+IEdyYXBo 21307
+ZXN0ZWQ= 21308
+IOu4jOs= 21309
+IEtF 21310
+IGVpbnM= 21311
+IGhhdHJlZA== 21312
+IGRhbmc= 21313
+ZWVlZQ== 21314
+IGFyY2hhZQ== 21315
+IEplc3Nl 21316
+IGRldGVjdGVk 21317
+IHNlbmk= 21318
+YnVyZ2g= 21319
+IGRpc3BsYWNlbWVudA== 21320
+IGRvcA== 21321
+IGNvbmRpdGlvbmluZw== 21322
+INC90LXRgdC60L7Qu9GM0LrQvg== 21323
+IGRpc3R1cmJpbmc= 21324
+UEg= 21325
+IHRoaW5uZXI= 21326
+IHdvdW5kZWQ= 21327
+IEN1YW5kbw== 21328
+IGN1c2hpb24= 21329
+IHdoaXRlcw== 21330
+IHByZWZlcmVuY2Vz 21331
+IOykgOu5hA== 21332
+IGthxbw= 21333
+IEdhdGU= 21334
+IFBhdGg= 21335
+ZGxlcw== 21336
+4LiE4Lij 21337
+aW1vcmU= 21338
+IOuztOyXrA== 21339
+IGRpc2NpcGxpbmVz 21340
+4buP 21341
+IG1lc21h 21342
+IOyDiOs= 21343
+IOyLrA== 21344
+IGdpbmc= 21345
+IHVtYnJlbGxh 21346
+SUdIVA== 21347
+IHBlbnNpb24= 21348
+IGNvbWJpbmluZw== 21349
+U1M= 21350
+IHJlY3RhbmdsZQ== 21351
+4buHdA== 21352
+IHByb3hpbQ== 21353
+IENvdw== 21354
+uIw= 21355
+IGludGVudGlvbmFs 21356
+IGRlY2lk 21357
+INGB0LrQsNC2 21358
+IFVtYQ== 21359
+aWFzbQ== 21360
+YnV6 21361
+IGRlYnJpcw== 21362
+IGNhc3M= 21363
+IFByb3A= 21364
+aXNrYQ== 21365
+66Cl 21366
+ZXN0ZXJvbA== 21367
+dXNzaWFu 21368
+7J20656R 21369
+IHVubGltaXRlZA== 21370
+IGFkbWlyZQ== 21371
+IHRpZ2h0bHk= 21372
+IGdlbm9tZQ== 21373
+IEp1bmlvcg== 21374
+dmVuaXI= 21375
+Z3Vz 21376
+IGPEgw== 21377
+IFZsYWQ= 21378
+IO2C 21379
+IHJlbGF0aXY= 21380
+aW5jaQ== 21381
+IGF1bnF1ZQ== 21382
+IEJveXM= 21383
+0YbQuNC+0L0= 21384
+IFN3aXNz 21385
+IHBoeXNpY2lhbnM= 21386
+IO2PiQ== 21387
+IFBFVA== 21388
+IHdvdW5kcw== 21389
+YWJvdXQ= 21390
+w6Bp 21391
+b256 21392
+dXJpdGllcw== 21393
+INGD0LLQuNC0 21394
+IG1lbnRhbGl0eQ== 21395
+IHZhcmlhbmNl 21396
+IHNlZ3VuZGE= 21397
+IHZvbGNhbm8= 21398
+YWxpZQ== 21399
+4KWH 21400
+IHRpbGVz 21401
+IFRlcnJ5 21402
+INin2YTZhNmH 21403
+IGNhbm9u 21404
+IHNjYXR0ZXJlZA== 21405
+cHRvbg== 21406
+IGRlZmluaXRpb25z 21407
+IGFsZ2VicmE= 21408
+b3Rlbg== 21409
+YWJsbw== 21410
+aWp1YW5h 21411
+IHdyYXBwaW5n 21412
+IHNlc2FtZQ== 21413
+INC90LDRh9C40L3QsA== 21414
+IEFsZg== 21415
+INCg0L7RgdGB 21416
+b3Jubw== 21417
+IGFua2xl 21418
+IHNwZWNpYWx0eQ== 21419
+IGF0dGVtcHRpbmc= 21420
+aWxpYXRpb24= 21421
+IDE5MjA= 21422
+IHBoZW5vbWVuYQ== 21423
+IFByb2R1Y3Q= 21424
+IEJ1Y2s= 21425
+IEF3dw== 21426
+c2Vlbg== 21427
+IHZvaWQ= 21428
+IEZyYW5rbGlu 21429
+IGFkdm9jYWN5 21430
+IFNlcA== 21431
+IGNvb2xlc3Q= 21432
+INGB0YDQsNC30YM= 21433
+IFF1YW5k 21434
+IDkwMA== 21435
+IFRyYWQ= 21436
+ZGllcw== 21437
+IGhhc2g= 21438
+IHBvdHM= 21439
+IHNhZGx5 21440
+IHZpYWJsZQ== 21441
+IFRpZ2Vy 21442
+IE9ORQ== 21443
+IG5ldXJvbnM= 21444
+b3dhbmll 21445
+xJc= 21446
+IFNoYXI= 21447
+IExhbmRlcw== 21448
+IGNvbmZlcmVuY2Vz 21449
+IGNyZWRlbnRpYWw= 21450
+IGxpbWU= 21451
+aW5lZQ== 21452
+eGl0 21453
+cGF5 21454
+IGluY29ucw== 21455
+ID4+Og== 21456
+IO2emOs= 21457
+IGxlc3Nlcg== 21458
+IHNwaWxs 21459
+IHByZW1pc2U= 21460
+IDM2NQ== 21461
+IEhvc3Q= 21462
+IHRvbWFy 21463
+15DXnA== 21464
+67KI 21465
+IFdoYXRz 21466
+IGxpZ2h0d2VpZ2h0 21467
+IE1hcA== 21468
+Zmlh 21469
+ZWxsc2NoYWZ0 21470
+IHZlbmRvcnM= 21471
+dWVzdG8= 21472
+IE1pc3Rlcg== 21473
+INCf0YDQuA== 21474
+aG1h 21475
+IGludGVudGlvbmFsbHk= 21476
+IFRhbmc= 21477
+IGlkZW50aWZpY2F0aW9u 21478
+IGV0Y2V0ZXJh 21479
+IE5lZQ== 21480
+INGC0YDQuA== 21481
+6re4 21482
+IGNyeXB0b2N1cg== 21483
+IGluaGFsZQ== 21484
+IGFkZGljdA== 21485
+IG1hdQ== 21486
+INGC0LDQutCw0Y8= 21487
+IOuyhA== 21488
+IGNvbXByYXI= 21489
+aWVkemllxIc= 21490
+INC+0YLQvdC+ 21491
+IGJlZ2lubmVy 21492
+INC80YPQtg== 21493
+IG9ic2M= 21494
+IGxpbWl0aW5n 21495
+YXNjdWxhcg== 21496
+IGluc3BlY3Rpb24= 21497
+YWNp 21498
+IHJlam8= 21499
+TXVz 21500
+IHphdGVu 21501
+IHN6Y3o= 21502
+IE1hZHJpZA== 21503
+IHZhcmlldGllcw== 21504
+IGVzdMOg 21505
+IFNoYWtlcw== 21506
+IGtpdHM= 21507
+IGFkbWluaXN0ZXI= 21508
+IGxhdmE= 21509
+IGfDpQ== 21510
+16rXmQ== 21511
+IFdheW5l 21512
+IGluc3RhZ3JhbQ== 21513
+IHJhdGVk 21514
+cGFwZXI= 21515
+IGJpbGQ= 21516
+IHByZXRlbmRpbmc= 21517
+IG9ic2VydmluZw== 21518
+INGB0LDQvNC+0Lw= 21519
+IHRyb3I= 21520
+IG9yZ2FuaXNtcw== 21521
+IGZhbHRh 21522
+IGhvbWV0b3du 21523
+57E= 21524
+IO2L 21525
+IGNoZWc= 21526
+IOyh 21527
+IGNvbW1h 21528
+aXPDqQ== 21529
+IGxpa2VsaWhvb2Q= 21530
+YXZvcmVk 21531
+IGdlbGRp 21532
+0L3QuNC60L7Qsg== 21533
+IG1lZGlv 21534
+IGpha2ll 21535
+IEp1cA== 21536
+IGdyZWVuaG91c2U= 21537
+IHNwaXQ= 21538
+0LrQvtC1 21539
+INC60LDQtg== 21540
+IEdyYW0= 21541
+IENvbmZlcmVuY2U= 21542
+IGRlZmljaXQ= 21543
+c8Sxbg== 21544
+aW5zZQ== 21545
+dcSf 21546
+IHJpY2h0 21547
+IGNvaW5jaWRlbmNl 21548
+IGV1cm9w 21549
+IGJ1dHRlcmZseQ== 21550
+cHJlYWQ= 21551
+IOyWvA== 21552
+IHdhdmVs 21553
+IEluZmlu 21554
+IFBsYW5ldA== 21555
+IHNlbGZpZQ== 21556
+aWVudHJhcw== 21557
+IGFycm9n 21558
+b3Nlcg== 21559
+aWRhbA== 21560
+oNeX16DXlQ== 21561
+w7x0w7xu 21562
+IGZyZXNobWFu 21563
+IE1hY2hpbmU= 21564
+z4PPhA== 21565
+IERpYQ== 21566
+7J2064uk 21567
+bmVh 21568
+IGxpc3Rpbmc= 21569
+IGNvbmZpZ3VyZQ== 21570
+dXRvcg== 21571
+VXA= 21572
+dHNjaGFmdA== 21573
+cmnDqHJl 21574
+IHVwd2FyZHM= 21575
+INGF0L7Rh9GD 21576
+IHN3ZWVw 21577
+QnI= 21578
+IGV4cHJlc3Npbmc= 21579
+IHVuaGFwcHk= 21580
+IG1hbmRhdG9yeQ== 21581
+Z2VuZGVy 21582
+IEHDrQ== 21583
+IGluZGljYXRvcnM= 21584
+IG9pbHM= 21585
+bm90ZQ== 21586
+IHNlZ3Vy 21587
+0L7QttC10YI= 21588
+eW5hc3R5 21589
+IGRpc3RhbmNlcw== 21590
+IG1lcmdl 21591
+QkVSVA== 21592
+IHN1cnJlbmRlcg== 21593
+IGJ1YXQ= 21594
+IEF3YXJkcw== 21595
+IHNlw7Fvcg== 21596
+b2RveA== 21597
+IGZsYXZvdXI= 21598
+IGFiZG9t 21599
+IGNvbmZpZ3Vy 21600
+ODY= 21601
+IERJWQ== 21602
+IHJpZ2lk 21603
+sJg= 21604
+IGNvcnBvcmF0aW9u 21605
+IGdyb29t 21606
+amF3 21607
+IE5lYXI= 21608
+0LjQu9C+ 21609
+IG9wZXJh 21610
+IElubm92 21611
+0LjRgNCw 21612
+k7E= 21613
+IHNwZWNpZmllZA== 21614
+IGNvc20= 21615
+IEZyZWVkb20= 21616
+IGNsb3du 21617
+IE5lbQ== 21618
+INCy0L7Quw== 21619
+0ZHQvQ== 21620
+IGNoYXJnZXI= 21621
+4LmB4Lil 21622
+IGluZmx1ZW50aWFs 21623
+w6RzaWRlbnQ= 21624
+6aQ= 21625
+IOyEoOs= 21626
+IHZvbHVtZXM= 21627
+5pA= 21628
+IG91dHJhcw== 21629
+IFR3aXRjaA== 21630
+IGZvdW5kaW5n 21631
+IGF3aGlsZQ== 21632
+IGNvaWw= 21633
+6rCZ 21634
+IGPhuqM= 21635
+IFRocm93 21636
+IEhlbmNl 21637
+b21tdA== 21638
+IEJlbmphbWlu 21639
+0LPQu9GP0LQ= 21640
+VGltZQ== 21641
+b2JpYw== 21642
+IG1vdXI= 21643
+IGRyZWFk 21644
+IEzDoA== 21645
+IENoaWxl 21646
+IHByZXZhbA== 21647
+IHZhaW4= 21648
+IGFydMSxaw== 21649
+IHByZXNlcnZlZA== 21650
+INC+0YLQtA== 21651
+IHdhcmVob3VzZQ== 21652
+IGJlc3Rl 21653
+IFNldmVyYWw= 21654
+IFNpdHVhdGlvbg== 21655
+IGNhcmRib2FyZA== 21656
+VG9k 21657
+ZXJuYQ== 21658
+IGdhcmFudA== 21659
+IGdlc3R1cmU= 21660
+IGhlbg== 21661
+IHNwZWxsaW5n 21662
+b3NleHVhbA== 21663
+IGFubmU= 21664
+IG1pY2U= 21665
+IE1laW5l 21666
+Y2FyZA== 21667
+IHJlYmVsbA== 21668
+IGNlcnRv 21669
+IOycoOs= 21670
+IHZlcnNjaGllZA== 21671
+IEJvcw== 21672
+IGludmVudGlvbg== 21673
+IHRyemU= 21674
+IG1hbmnDqHJl 21675
+IENoYWQ= 21676
+IHNwcmU= 21677
+IG9yZ2FuaXNhdGlvbnM= 21678
+IHBvb3JseQ== 21679
+IGFudGVyaW9y 21680
+IHN0YWly 21681
+0LrRgA== 21682
+IGF0b21pYw== 21683
+IHN5bXBhdGg= 21684
+IGNvbnRpbnVhbGx5 21685
+IGtsZWluZQ== 21686
+w6h0ZQ== 21687
+0LjRiQ== 21688
+zr/Pgg== 21689
+cGV1dA== 21690
+IHJlcG9zaXQ= 21691
+IGVudHJh 21692
+RW0= 21693
+IGZpbmFuY2luZw== 21694
+INC80L3QvtCz 21695
+IHRoZXNpcw== 21696
+IENvbXB1dGVy 21697
+ZWF1 21698
+IFRyZWU= 21699
+IGJyaWRl 21700
+b25zaWV1cg== 21701
+c2hpcmU= 21702
+d2lj 21703
+REU= 21704
+IOyImOs= 21705
+IGFjb20= 21706
+IFBP 21707
+ZXJzY2g= 21708
+INC/0L7QvNC+0Yk= 21709
+IEFybWVu 21710
+IOyjvQ== 21711
+IHpvcg== 21712
+IHByaW50cw== 21713
+IERhc3M= 21714
+IGR1cmFibGU= 21715
+IFRyYW5zcG9ydA== 21716
+7J6Q6rCA 21717
+INC70LXQsw== 21718
+IGTDqXQ= 21719
+w7RsZQ== 21720
+YW1vdXM= 21721
+WU4= 21722
+IGNsaWZm 21723
+IGdyYW1tYXI= 21724
+INCf0L7RjdGC0L7QvNGD 21725
+IGzDoG0= 21726
+ZXNjaA== 21727
+IG1pc2VyYWJsZQ== 21728
+IHZvbHRz 21729
+IENhZA== 21730
+dWthbg== 21731
+0YLQuNCy 21732
+cnVzdA== 21733
+IOyYrOudvA== 21734
+IHZlcms= 21735
+IGNoaWNrZW5z 21736
+IFlvbw== 21737
+IG91dGZpdHM= 21738
+Y29kZQ== 21739
+IGhpZXJhcmNoeQ== 21740
+bmV0ZXM= 21741
+IGNvdW50ZXJwYXJ0 21742
+IHTDtGk= 21743
+IHRlZA== 21744
+IEJhcnQ= 21745
+IOudvA== 21746
+IEdlbmF1 21747
+IGluY29taW5n 21748
+IEFCQw== 21749
+cmlxdWU= 21750
+INC+0YLQvw== 21751
+cXVhbA== 21752
+IGluY2VudGl2ZQ== 21753
+IGlocmVu 21754
+16DXmQ== 21755
+bG9l 21756
+IDE5MzA= 21757
+IGJhcmc= 21758
+IGRpY3Rpb24= 21759
+IMO2bmNl 21760
+SU5T 21761
+IHJlaA== 21762
+aXNpYWo= 21763
+bW91dGg= 21764
+IHNjb3Jpbmc= 21765
+bMSxaw== 21766
+IOyVhOyjvA== 21767
+T1JJQQ== 21768
+IEVzdGFkb3M= 21769
+IGNvbXBhbmlvbg== 21770
+IGFzc2VtYmxl 21771
+IHB1bmlzaGVk 21772
+IGl0YWw= 21773
+IHByZXZlbnRz 21774
+aXN0ZXM= 21775
+IEtlbnR1Y2t5 21776
+IGxvY2F0ZQ== 21777
+IGZhc3Rpbmc= 21778
+g4A= 21779
+IFNlYg== 21780
+IENyb3du 21781
+b3BpYQ== 21782
+IHdoaXA= 21783
+dXN6 21784
+0LrQsNC80Lg= 21785
+IGRhdGFiYXNlcw== 21786
+IHByb3NlYw== 21787
+IDE5OTc= 21788
+IOyCtOynnQ== 21789
+IFNvbGFy 21790
+IFB1ZXM= 21791
+IFplbg== 21792
+b2xsbw== 21793
+IEd1cnU= 21794
+IHNxdWVleg== 21795
+INCX0LA= 21796
+IMSN 21797
+Y2VwdGlvbnM= 21798
+Y2Nh 21799
+aXphYmxl 21800
+bWFuZA== 21801
+IGJyZWFrdGhyb3VnaA== 21802
+IHRhYmxlc3Bvb24= 21803
+IFNFQw== 21804
+aWto 21805
+IFPDo28= 21806
+INC/0LvQvg== 21807
+YW1lbg== 21808
+IHByYWM= 21809
+IGRhcmxpbmc= 21810
+IHRhbGxlcg== 21811
+IHJlbmRlcmluZw== 21812
+IOyasOumrOqwgA== 21813
+IM+EzrfPgg== 21814
+IG3Dow== 21815
+IGVzb3M= 21816
+dWVyZG8= 21817
+INGB0YfQuNGC 21818
+YWxsZXI= 21819
+7JeI7Ja07JqU 21820
+IG1pbGxvbmVz 21821
+bGVyaW4= 21822
+IHBlZ2Fy 21823
+b25uZQ== 21824
+IGVucm9sbG1lbnQ= 21825
+IGxpZWd0 21826
+IGJvYQ== 21827
+d2nEmQ== 21828
+YnNw 21829
+IGN5Y2xpbmc= 21830
+IEJlcm5pZQ== 21831
+IDE5ODk= 21832
+INC00LDQu9GM 21833
+IERha290YQ== 21834
+INGB0LLRj9C3 21835
+IENQ 21836
+IHN0YXJl 21837
+7YKk 21838
+IHByb3NwZXJpdHk= 21839
+IGFycmFuZ2VtZW50cw== 21840
+IGFycml2aW5n 21841
+bcOk 21842
+IGtheWFr 21843
+aXB0 21844
+IHBhcmRvbg== 21845
+IHJlbGF0 21846
+IHZlcnN0ZQ== 21847
+IEZpZw== 21848
+IGZvaWw= 21849
+IFRhbGtpbmc= 21850
+cGVhcmU= 21851
+IG5vaQ== 21852
+INC/0YDQuNGI 21853
+IGhvY2tleQ== 21854
+IGFkbw== 21855
+IE9VVA== 21856
+Njc= 21857
+IGhvcm1vbmVz 21858
+IEF2ZW51ZQ== 21859
+IFN1cGVybWFu 21860
+IHByZXNjcmlwdGlvbg== 21861
+dWJlcm5ldGVz 21862
+Q0w= 21863
+b3RpdmU= 21864
+TklT 21865
+aWVuZW4= 21866
+IHNhZG5lc3M= 21867
+IFZpdA== 21868
+VHk= 21869
+IHN0YXJ0ZXI= 21870
+IGJlZGU= 21871
+IGZvdW5kYXRpb25z 21872
+IHNvcmU= 21873
+0YnQtdGB0YLQsg== 21874
+7Jqw6w== 21875
+INGH0YPQsg== 21876
+bGluaw== 21877
+IG1hbmV1 21878
+d29ya2luZw== 21879
+w6Bu 21880
+IEF0dGFjaw== 21881
+IENhcnQ= 21882
+dmVpcw== 21883
+IFJlc3A= 21884
+ZW5zaW5n 21885
+IOyii+yVhOyalA== 21886
+IGVzY3VjaA== 21887
+IFJOQQ== 21888
+grQ= 21889
+IGFkb3A= 21890
+IGJlbmRpbmc= 21891
+2LnYrw== 21892
+IG1hbmFnZXM= 21893
+dXNw 21894
+IHRhcnQ= 21895
+IHJvdXRlcg== 21896
+Qm8= 21897
+IGVzdGFibGlzaGluZw== 21898
+IGJhbGFuY2luZw== 21899
+IGF0aGxldGlj 21900
+IFNsbw== 21901
+IGZpbGxz 21902
+INC90LDQsQ== 21903
+INC00LDQuw== 21904
+IHBvc3Nv 21905
+IFZpZWxlbg== 21906
+IGNyaXRpY3M= 21907
+IGxhd3N1aXQ= 21908
+IElzYWFj 21909
+INGE0LjQu9GM0Lw= 21910
+IHRyYXM= 21911
+IHByYXc= 21912
+IENyYXp5 21913
+IG5ldQ== 21914
+IGt1bGw= 21915
+IHR1bW9y 21916
+IEFQUA== 21917
+Z2F0ZQ== 21918
+IEFSRQ== 21919
+OTg= 21920
+IFN0ZWFt 21921
+IGZ1Y2tlZA== 21922
+bGFnZQ== 21923
+IOKZrA== 21924
+IE1E 21925
+Znk= 21926
+IHNoZWxscw== 21927
+IFNlZW1z 21928
+aXplcnM= 21929
+IHJhbmdlcw== 21930
+IEFudG9uaW8= 21931
+QVRJT04= 21932
+IEJhYmE= 21933
+IOyDiQ== 21934
+a3Vu 21935
+IHByYXllZA== 21936
+0YDRjw== 21937
+INC/0YDQvtGC0LjQsg== 21938
+IHNlYXM= 21939
+YnVyeQ== 21940
+INeU16k= 21941
+IHRyYWl0 21942
+IERlcGVuZGluZw== 21943
+IGRyZQ== 21944
+IGvDtm5udA== 21945
+0YbRgw== 21946
+IGxpcHN0aWNr 21947
+ZWV6 21948
+INC/0YDQuNC80LXRgA== 21949
+IGFzc2lnbm1lbnRz 21950
+Qm9i 21951
+IG1ldGFscw== 21952
+IHNwZWNpYWxseQ== 21953
+IOyYiOs= 21954
+IMWh 21955
+IHZpc3Rh 21956
+IM6s 21957
+IHR3aW5z 21958
+IG5vdGFibGU= 21959
+IFNhdQ== 21960
+IGTDqXZlbG9w 21961
+IMOnZWs= 21962
+IHBvbHlub20= 21963
+YXZhbQ== 21964
+IHRhbWLDqQ== 21965
+0L7QvdC+0Lw= 21966
+IHBsYXNtYQ== 21967
+IGVmZWN0 21968
+IGzDpG5n 21969
+IGNhc2k= 21970
+0YHQsA== 21971
+xLFtxLE= 21972
+k6TsnYA= 21973
+IGxhYm91cg== 21974
+b3NzZW4= 21975
+IFB1bg== 21976
+cmlm 21977
+IGRvc2Vz 21978
+IG9wZXJhdGVz 21979
+0LjQu9C70Lg= 21980
+IGphYXI= 21981
+c3Rhdw== 21982
+IOyCrOuekQ== 21983
+IGF0bQ== 21984
+IHByb3RlY3Rz 21985
+IGltcGVk 21986
+SE8= 21987
+IGNpbWE= 21988
+IHRvY2g= 21989
+YWJpcw== 21990
+IHNlbmRv 21991
+bGF1cw== 21992
+IGN1cmw= 21993
+IE51bQ== 21994
+IHNwb25zb3Jz 21995
+IGTDqWJ1dA== 21996
+IEFsZXhh 21997
+IELDvHI= 21998
+IEFtZXI= 21999
+IGNvcGU= 22000
+INC40LfQsg== 22001
+amFs 22002
+IDE5OTU= 22003
+YXBhdA== 22004
+cmVzc2U= 22005
+IFByaXpl 22006
+IENsYWlyZQ== 22007
+IEJyYW5kb24= 22008
+IHdzenlzdGtv 22009
+IHZhbHVlZA== 22010
+4LiZ4Liw 22011
+IHNlY3Q= 22012
+IHNlY3JldGx5 22013
+IGRpYW1vbmRz 22014
+IEV2YW4= 22015
+IFJQRw== 22016
+iOuPhA== 22017
+IFVuaXZlcnNhbA== 22018
+IGRvdWJ0cw== 22019
+IFBpbg== 22020
+d2nEhXo= 22021
+mqk= 22022
+IGFsYm8= 22023
+IGJyYXVjaHQ= 22024
+QVVM 22025
+IE1vYmlsZQ== 22026
+Z3JhZGVz 22027
+IHNjaGVt 22028
+d2h5 22029
+IE5pY2h0 22030
+cGk= 22031
+Z2xl 22032
+IGNob3J1cw== 22033
+IGdseQ== 22034
+IHJlaW5mb3JjZQ== 22035
+IG11ZmY= 22036
+IFNoZW4= 22037
+IEhvbGE= 22038
+0YPQsw== 22039
+dmlkZW1tZW50 22040
+dmlhbA== 22041
+YWNpb3Vz 22042
+bGFpbWVk 22043
+IFJpY28= 22044
+IHZlZ2c= 22045
+IGlsbHVzdHJhdGlvbg== 22046
+IEJ1dHRlcg== 22047
+b3dhZA== 22048
+IGV1eA== 22049
+IGVuZmFudHM= 22050
+IExlYWRlcg== 22051
+IFZpbGxhZ2U= 22052
+ZXRpY2FsbHk= 22053
+2YbZig== 22054
+IHN0ZXc= 22055
+IHN1cnByaXNlcw== 22056
+IGN1ZQ== 22057
+IEdyYW5kbWE= 22058
+IENlbHNpdXM= 22059
+IFJpY2h0 22060
+ZW5j 22061
+IHBldGl0aW9u 22062
+IGhlcmI= 22063
+IHdpY2tlZA== 22064
+IHNjaGxl 22065
+b2NhbHk= 22066
+IHRyYW5zZg== 22067
+IHRva2Vucw== 22068
+IEdyYXk= 22069
+IEJCQw== 22070
+SUs= 22071
+IDE1MDA= 22072
+em4= 22073
+IE5ldg== 22074
+IGtveQ== 22075
+IHphcg== 22076
+IGJ1bGxzaGl0 22077
+IENvbG9tYmlh 22078
+dWxhdGl2ZQ== 22079
+IHdpZGVzcHJlYWQ= 22080
+eWVjdA== 22081
+a2l0 22082
+IGVtcHJlc2E= 22083
+IG5vdXI= 22084
+IGJ1cm5z 22085
+YXRpbg== 22086
+YWlyZWQ= 22087
+IHJldm9sdXRpb25hcnk= 22088
+INCz0L7QtNGD 22089
+IExvZ2Fu 22090
+IDE5OTY= 22091
+IEdyYWhhbQ== 22092
+cmVi 22093
+IE5IUw== 22094
+IGNvc3R1bWVz 22095
+IG5hd2V0 22096
+IGxvdmVycw== 22097
+IEx1Y3k= 22098
+IEluZGlnZW5vdXM= 22099
+7ZWY6riw 22100
+IGltbXVuaXR5 22101
+pbTr 22102
+dWl0bw== 22103
+IGV4Y2Vzc2l2ZQ== 22104
+IGRvbmF0aW9ucw== 22105
+INeU16g= 22106
+IOyyqw== 22107
+IGRyeWluZw== 22108
+bWVsb24= 22109
+IHN1cnZleXM= 22110
+IOustOyKqA== 22111
+YWFh 22112
+IHByb2Jl 22113
+YW5jaWFs 22114
+IGxvdWRlcg== 22115
+IGhvdGVscw== 22116
+w7zEnw== 22117
+YWduZXI= 22118
+IG9yaWdpbnM= 22119
+IOuniOyngOuniQ== 22120
+ICoq 22121
+IHN0cmFuZ2Vycw== 22122
+IEhhdXM= 22123
+Y29tZWQ= 22124
+IGFudGhyb3A= 22125
+IHVzbw== 22126
+IOyVhOyngQ== 22127
+IFl1YW4= 22128
+IO2VhOyalA== 22129
+cGxlcg== 22130
+cmVzc2l2ZQ== 22131
+IHNwcmF3 22132
+IFN0ZXc= 22133
+IDE5OTQ= 22134
+IGVsZGVycw== 22135
+IG1laW5lbg== 22136
+IGp1bnQ= 22137
+IGFjb3VzdA== 22138
+IFdvaG4= 22139
+IGJhbmFuYXM= 22140
+IHByb2plY3Rpb24= 22141
+IFN0aWNr 22142
+bGVndA== 22143
+c3BlZWQ= 22144
+IGPFqW5n 22145
+IFdvcnQ= 22146
+IEJhbHRpbW9yZQ== 22147
+INGG0LXQuw== 22148
+IGR1bm5v 22149
+Pyw= 22150
+IExvY2Fs 22151
+b3N0bw== 22152
+0K0= 22153
+0L7QtNCw 22154
+IFBvcnR1Z3Vlc2U= 22155
+IHRoZWlycw== 22156
+IGTDqW0= 22157
+IGRyYXVm 22158
+IEJ1ZGRoaXN0 22159
+ZXJ0YQ== 22160
+R2U= 22161
+IGNhcnJvdA== 22162
+IFdvbmRlcmZ1bA== 22163
+IHNvYWs= 22164
+IGNoYWlybWFu 22165
+Z2dp 22166
+SUNB 22167
+ZnJpZWQ= 22168
+IGZsaWNr 22169
+IFRocm91Z2hvdXQ= 22170
+IOyasOs= 22171
+IGNvdWdo 22172
+IGZsdWZmeQ== 22173
+c2Nob29s 22174
+IHJpcHBlZA== 22175
+LS0tLS0tLS0= 22176
+IFp1a3VuZnQ= 22177
+INC90LXQsQ== 22178
+IHN0bw== 22179
+IEJP 22180
+cGVudA== 22181
+IExhd3JlbmNl 22182
+z4nPgg== 22183
+c3RpY2tz 22184
+IEVpbnM= 22185
+INGA0Ys= 22186
+IFN0cm9uZw== 22187
+IGNhcmFtZWw= 22188
+IHNwaXRl 22189
+YXphcg== 22190
+IGNyaXRpY2FsbHk= 22191
+IG9icmE= 22192
+b3dpdHo= 22193
+IFpvbmU= 22194
+INGA0LXQug== 22195
+IHN1Zw== 22196
+YXJkZWQ= 22197
+IGfDrA== 22198
+ZmZlbnRsaWNo 22199
+YW5jaGU= 22200
+2J8= 22201
+YXN0aWNhbGx5 22202
+7J286w== 22203
+0LvQsNCy 22204
+IHNpbXBsZXN0 22205
+IEZyaWVuZA== 22206
+IHF1ZWxsbw== 22207
+IGFtYml0aW9u 22208
+IGFiYmlhbW8= 22209
+INGE0L7RgNC8 22210
+IEVzc2E= 22211
+IGVkdWNhdG9ycw== 22212
+IHN0YXRpc3RpY2Fs 22213
+IGNoYW5nZXI= 22214
+IGF0YXU= 22215
+w6l0YWlz 22216
+IFNoYWtlc3BlYXJl 22217
+65CY 22218
+IHRyaWdnZXJz 22219
+IHJlYWxpeg== 22220
+IGNlbHVp 22221
+d2hlZWw= 22222
+IGxveWFsdHk= 22223
+IHNjcmVhbXM= 22224
+a2Vocg== 22225
+IE1lZ2E= 22226
+ZWFzdA== 22227
+IHRvcHM= 22228
+IFRvdGFsbHk= 22229
+b3VudGFpbg== 22230
+bG9yZA== 22231
+IHZpb2xhdGlvbg== 22232
+IEdB 22233
+IG5pY2Vy 22234
+IEZyZXNo 22235
+IE1lbGlzc2E= 22236
+ZnVuY3Rpb24= 22237
+IHJhcGU= 22238
+IGV4Y2VwdGlvbnM= 22239
+IHNpbGljb24= 22240
+IGxpYmVydHk= 22241
+IGhvdXNlaG9sZHM= 22242
+IENB 22243
+INCe0LE= 22244
+IGxpYg== 22245
+now= 22246
+Y2lmaWM= 22247
+IHRyb3BpY2Fs 22248
+IGludmVzdGlnYXRpbmc= 22249
+SEQ= 22250
+IGFkYXB0ZXI= 22251
+IFBpdHQ= 22252
+YW5jaWE= 22253
+IFNoZWxs 22254
+ZnJpZW5kbHk= 22255
+IGNvbmNsdXNpb25z 22256
+IHR1cnRsZQ== 22257
+IGRlY29tcA== 22258
+IGFuaW1hdGlvbnM= 22259
+INGB0LXQug== 22260
+aW5zaQ== 22261
+IHJldGVudGlvbg== 22262
+a2ll 22263
+IGluamVjdGlvbg== 22264
+IE1hZGlzb24= 22265
+7LCw 22266
+IHZpZW50 22267
+IHZhcmllZA== 22268
+IHZpb2xpbg== 22269
+IEJpbA== 22270
+IGx1Y2tpbHk= 22271
+IGh0dA== 22272
+bMOk 22273
+IHJhbmNo 22274
+IHPDs2xv 22275
+7JWF 22276
+IERlcmVr 22277
+IFNjcmlwdHVyZQ== 22278
+0L7RgNCw 22279
+IGNsYXNzcm9vbXM= 22280
+YXZpbA== 22281
+Zm9ybWVk 22282
+IGJlZm9yZWhhbmQ= 22283
+IEdlbQ== 22284
+cHJlY2g= 22285
+IGxpbg== 22286
+IGdyZWVucw== 22287
+0YbQtdCy 22288
+IE1lcmNlZGVz 22289
+IGRyb3VnaHQ= 22290
+Z2FzcHM= 22291
+IGFib3J0aW9u 22292
+IHRlcnJpYmx5 22293
+IHNwb3PDs2I= 22294
+IHNlY3VyZWQ= 22295
+IGF0csOhcw== 22296
+IHdhdmVsZW5ndGg= 22297
+IGdyYWlucw== 22298
+ZWN0aXZl 22299
+IHNwYWNlY3JhZnQ= 22300
+IHRvdXJz 22301
+IHByb2Zlcw== 22302
+IHN1cmdlb24= 22303
+IFBpZQ== 22304
+IGlkZWFsbHk= 22305
+YXJuZXI= 22306
+VVA= 22307
+b3BhcmQ= 22308
+c2Nl 22309
+IGltbWVuc2U= 22310
+IE9ydA== 22311
+cm9sbGVy 22312
+IERhbGxhcw== 22313
+IE5pY2hvbGFz 22314
+IHN1bGY= 22315
+IFRveW90YQ== 22316
+IHF1YW50aXRpZXM= 22317
+Y2VhbnM= 22318
+IGN1aQ== 22319
+YW7Dp2E= 22320
+IENBTg== 22321
+aXR6ZXJsYW5k 22322
+IHpvdQ== 22323
+IEN5YmVy 22324
+bGVnZW4= 22325
+IEluaXQ= 22326
+ZWR1 22327
+IGFwZXJ0 22328
+IGFkamFj 22329
+b3V2 22330
+cnM= 22331
+IGNhYmJhZ2U= 22332
+IHdoZWVsY2hhaXI= 22333
+aW55bA== 22334
+IER5bmFt 22335
+IOyVhOuLiOudvA== 22336
+IGxpbmc= 22337
+aGw= 22338
+INC80L7Qs9GD 22339
+IGNyaXNw 22340
+IG1pag== 22341
+IGR1Zw== 22342
+bmlu 22343
+IGJsb3Nz 22344
+IGJlbG9uZ2luZw== 22345
+IGxvdWRseQ== 22346
+IG1pbmVyYWxz 22347
+IGNvbmNsdWRlZA== 22348
+IHNlYXJjaGVk 22349
+OTY= 22350
+IE1lZXQ= 22351
+IFNFTw== 22352
+INCh0Lo= 22353
+IEhvYg== 22354
+b3R0YQ== 22355
+IHByb3BhZ2FuZGE= 22356
+IGNpbm5hbW9u 22357
+IGh1bnRlcg== 22358
+IGdlbWVpbnM= 22359
+IHNjdWxwdHVyZQ== 22360
+dWxzaW9u 22361
+IHbDpGw= 22362
+IG1hZ2F6aW5lcw== 22363
+IGNvbnRyb3ZlcnN5 22364
+IHNlcXVlbmNlcw== 22365
+IO2ajA== 22366
+IGRlbGV0ZWQ= 22367
+kOuPhA== 22368
+IHZhcnlpbmc= 22369
+IG1vdW50aW5n 22370
+IGFmZmFpcg== 22371
+IHBhdGh3YXlz 22372
+5qY= 22373
+IGRpZ28= 22374
+INC00L7Qug== 22375
+QWxleA== 22376
+IHRvYmFjY28= 22377
+IENW 22378
+IGJvdGhlcmVk 22379
+IGFtYmllbnQ= 22380
+aW5reQ== 22381
+IFNM 22382
+IGhhdGVz 22383
+IGplxbxlbGk= 22384
+IGNvbmdyZWc= 22385
+IGVsYXM= 22386
+IGRldXRz 22387
+IFN0dWRpb3M= 22388
+Y2jEmQ== 22389
+IGRvY3VtZW50ZWQ= 22390
+IENydXo= 22391
+IExlbg== 22392
+IERvdWdsYXM= 22393
+IFBvcnR1Z2Fs 22394
+ZW50aQ== 22395
+IHNwb3VzZQ== 22396
+IGFuYWx5cw== 22397
+YXZpYQ== 22398
+IGVkaXRlZA== 22399
+IGzhuqFp 22400
+YnVpbHQ= 22401
+IHZpbGxl 22402
+YWRvcmE= 22403
+IGJyYWNlbGV0 22404
+IHN1c2hp 22405
+IHBt 22406
+IHRyYWlscw== 22407
+IGx1Zw== 22408
+IMO2dmVy 22409
+IHNvcnJvdw== 22410
+IGNvbG9ueQ== 22411
+YWRveA== 22412
+IHNlcmll 22413
+YW55YWs= 22414
+INi3 22415
+IEd1bGY= 22416
+IFBW 22417
+IFNhbXVlbA== 22418
+IEtpdA== 22419
+IFJhbA== 22420
+b250aW4= 22421
+ZXhwbA== 22422
+IGVudHJpZXM= 22423
+IGFjdGl2aXN0cw== 22424
+UHM= 22425
+IHNhbnQ= 22426
+INGC0L7Rhw== 22427
+IEJydW5v 22428
+a2VsZXk= 22429
+IHR1dHRv 22430
+6ZQ= 22431
+IHZpbnRhZ2U= 22432
+IHRlcnJpZmllZA== 22433
+INC/0L7RhQ== 22434
+dXNpdmU= 22435
+b3dlcnM= 22436
+0LDQudGC 22437
+64+Z 22438
+IHR3aXN0ZWQ= 22439
+IFRob3VnaHQ= 22440
+IHRhaA== 22441
+IHNocmluaw== 22442
+IHNoZWVy 22443
+bGl0 22444
+IGRhbGFt 22445
+IGRpYg== 22446
+IHZhcmQ= 22447
+b3dhbmU= 22448
+IGRvYnI= 22449
+IFJlbmE= 22450
+INGB0LLQvtGO 22451
+IHBhw61zZXM= 22452
+IEVyYQ== 22453
+IEJVVA== 22454
+c2lnaHM= 22455
+IOq3uOqxsA== 22456
+IGdyb8OfZW4= 22457
+IOu5qOumrA== 22458
+IG5lcnZlcw== 22459
+IGNvbnN0aXQ= 22460
+IHByZW9jdXA= 22461
+IEdheQ== 22462
+IFh1 22463
+a2VlcGVy 22464
+aGV1cmU= 22465
+Li4p 22466
+IENhbG0= 22467
+IFVuaWRvcw== 22468
+IOydtOqygw== 22469
+IEFxdWk= 22470
+IOygnOydvA== 22471
+ZMSxcg== 22472
+7KaY 22473
+eW91cg== 22474
+INGN0YLQuNC8 22475
+MjAyMA== 22476
+IHJ1bmQ= 22477
+IEhP 22478
+IENhdGhlcmluZQ== 22479
+aWVsaQ== 22480
+IGZ1c2lvbg== 22481
+IGlkZW9sb2d5 22482
+IGZvcmFt 22483
+c2hhcGVk 22484
+IO2bhOs= 22485
+IHd0 22486
+IHJldHI= 22487
+IHByw6lj 22488
+IOqwkQ== 22489
+IG9wZW5seQ== 22490
+dml0eQ== 22491
+6rWs7JqU 22492
+IG9ic3RhY2xl 22493
+IGJvbw== 22494
+IHNlaW5lcg== 22495
+aWNvcm4= 22496
+IGVpZ2VubGlqaw== 22497
+IGhlYWRlcg== 22498
+YXJlbW9z 22499
+IHNvZnRlcg== 22500
+INCf0L7QtA== 22501
+IHByZWp1ZA== 22502
+IGRlZmluZXM= 22503
+aWVydGU= 22504
+IGJsZW5kaW5n 22505
+IGJlbGlldmVycw== 22506
+IFdvY2hlbg== 22507
+INC90LjQutCw0Lo= 22508
+INCa0L7Qs9C00LA= 22509
+IFR5cGljYWxseQ== 22510
+IO2BrA== 22511
+Y2lvcw== 22512
+IG1pc3NpbGVz 22513
+IHNwb25nZQ== 22514
+IEtpdGNoZW4= 22515
+IHRyZW4= 22516
+bmluZ2Vu 22517
+IHNjcmFw 22518
+IHNlcmFpdA== 22519
+tOyg 22520
+57k= 22521
+IOuwmOs= 22522
+IHJlc3RvcmVk 22523
+IHByenlrxYJhZA== 22524
+IEt1YmVybmV0ZXM= 22525
+IHNhaXQ= 22526
+IHV3 22527
+IGVuYWJsaW5n 22528
+IHRyYXZlcnM= 22529
+YW1wcw== 22530
+IE9NRw== 22531
+ZW5zb3I= 22532
+IHpvc3Rh 22533
+IHByb25vdW5jZWQ= 22534
+QW5n 22535
+bm9ybWFs 22536
+IGVjb25vbWllcw== 22537
+dGlu 22538
+IENoYW1waW9u 22539
+aXplbg== 22540
+IGFyYmVpdGVu 22541
+IEdvc3BlbA== 22542
+IFp1 22543
+bmdh 22544
+IGxpdGVyYWN5 22545
+IE1hbnM= 22546
+IGNpcmN1bGF0aW9u 22547
+IGFkYXA= 22548
+IFRvdGFs 22549
+IG1lcmVrYQ== 22550
+IG9sYWNhaw== 22551
+0YHRgtCw0YLQuA== 22552
+SmFjaw== 22553
+IG11bmQ= 22554
+IHRoaWVm 22555
+Ymllcw== 22556
+IOqygQ== 22557
+YXF1ZQ== 22558
+INqp24w= 22559
+IFNjYXI= 22560
+5bI= 22561
+IGFib2w= 22562
+IGRldm90ZQ== 22563
+IDAx 22564
+IHNpdHRlbg== 22565
+IFZpc3VhbA== 22566
+d2Vlaw== 22567
+c29tZQ== 22568
+aW5ndA== 22569
+IGpvdXJuYWxpc20= 22570
+IEhpcg== 22571
+IEJhY2hlbG9y 22572
+aW5lcnk= 22573
+w5xORA== 22574
+IGNvbG9yaW5n 22575
+IENyaXN0 22576
+IGNlbGVicml0aWVz 22577
+INGH0LjRgQ== 22578
+IENyaXQ= 22579
+IGRpZmZlcmVudGlhdGU= 22580
+INCc0L3QtQ== 22581
+ZWxpbQ== 22582
+IHNlYWZvb2Q= 22583
+IGFsZ3VtYXM= 22584
+b3RoZXJhcHk= 22585
+IGdsYXVi 22586
+IGFyYml0cmFyeQ== 22587
+Z2Vucw== 22588
+INCx0YPQtNC10Lw= 22589
+IHRhdg== 22590
+IGNyZWFteQ== 22591
+IENvdW50cnk= 22592
+YcOx 22593
+0LzQtdGC 22594
+IGhpbnRlcg== 22595
+IG1pc20= 22596
+IGlsbHVzdHJhdGU= 22597
+w5xORE5JUw== 22598
+IGRlY3JlYXNpbmc= 22599
+IHdlbmlnZXI= 22600
+QUtJ 22601
+aXhvbg== 22602
+INC90LXQuQ== 22603
+IGZhdHRv 22604
+IG5lcmQ= 22605
+56A= 22606
+IGJpdHRl 22607
+UGVy 22608
+IHRhbmU= 22609
+IGfDtno= 22610
+IGZvcnRl 22611
+IEV5 22612
+INC90LDQstC10YA= 22613
+IFdvcmRQcmVzcw== 22614
+IE1pcw== 22615
+xa8= 22616
+esOkaA== 22617
+IGludMOpcmVzcw== 22618
+b3NhdXJz 22619
+IEZhbGxz 22620
+IG5lc3Nh 22621
+OTc= 22622
+IG11c2V1bXM= 22623
+IGNvcnJlc3BvbmRz 22624
+IHNpbmdz 22625
+Zm91cg== 22626
+IGVkZXI= 22627
+IENvbW11bmlzdA== 22628
+b2E= 22629
+bmVr 22630
+IFdITw== 22631
+IGNvcnBv 22632
+IG1lc3Npbmc= 22633
+z4TOsc65 22634
+IGJydXNoZXM= 22635
+IGJpc2M= 22636
+IEFyYmVpdHM= 22637
+IFRheA== 22638
+IHNlbGU= 22639
+IGZsYWdz 22640
+b3VwZQ== 22641
+IGFudGljaXBhdGVk 22642
+IE5hZA== 22643
+IHBvdXJlZA== 22644
+IG1s 22645
+IGxsYW1h 22646
+IHZpc3VhbGl6ZQ== 22647
+IGxpc3RlbmVycw== 22648
+2YTZgw== 22649
+YWx0ZW4= 22650
+TWljaGFlbA== 22651
+IGNvc8Os 22652
+1aHV 22653
+b3B1cw== 22654
+IO2VtOyjvA== 22655
+IGhpa2U= 22656
+IEF0dG9ybmV5 22657
+IEhpbGxhcnk= 22658
+dWRlZA== 22659
+IO2VmOyngOunjA== 22660
+IGRvdmU= 22661
+IHN0b3Jtcw== 22662
+0LDQutGB 22663
+IGRvY3RyaW5l 22664
+IGhleA== 22665
+aWtz 22666
+bm/Fm8SH 22667
+IHNjcmlwdHM= 22668
+IM60zrXOvQ== 22669
+INGN0YLQuNGF 22670
+INCG 22671
+YWJlcg== 22672
+IFZhcw== 22673
+IGNlbnRpbWV0ZXJz 22674
+157XlA== 22675
+0L3QuNCx 22676
+IHJpZGVycw== 22677
+IFRyaWI= 22678
+IHRha8W8ZQ== 22679
+IG5vdW4= 22680
+IGljb25z 22681
+IHNvbGVseQ== 22682
+bWluZGVk 22683
+IGRpc3Bvbg== 22684
+IFN3aXR6ZXJsYW5k 22685
+IGNsdXN0ZXJz 22686
+IHF1ZWRh 22687
+YWlsaW5n 22688
+IG1hbmdh 22689
+IDY4 22690
+hIg= 22691
+IHRldA== 22692
+Z2lucw== 22693
+aGF1cw== 22694
+IE9Q 22695
+b3RlZA== 22696
+IG5vdXZlYXU= 22697
+QUxMWQ== 22698
+2YjYrw== 22699
+w7Ju 22700
+IG1vcnRhbGl0eQ== 22701
+IEdpdEh1Yg== 22702
+ZHJvcA== 22703
+IGRpc2d1 22704
+IHJlY29t 22705
+IGxvY2Fscw== 22706
+IGhvbWVtYWRl 22707
+YW1iYQ== 22708
+IHByb251bmNpYXRpb24= 22709
+IGFscGhhYmV0 22710
+0LDQvdGM 22711
+b3dhbnk= 22712
+aXJhcw== 22713
+aWRlbmN5 22714
+T01F 22715
+INGA0LDRgdGB 22716
+YXJhaw== 22717
+dmlhbWVudGU= 22718
+IG5vbnByb2ZpdA== 22719
+IFlvdVR1YmVy 22720
+IHBhcmVudGg= 22721
+IEJvbw== 22722
+dmF0 22723
+IFN0aXI= 22724
+IHByZWNpcA== 22725
+IGFudHM= 22726
+IGFsbHk= 22727
+IE1hb3Jp 22728
+IOuMgO2VnA== 22729
+b2dlbmU= 22730
+IExhYm91cg== 22731
+YXJldHRl 22732
+IHJlY3ljbGluZw== 22733
+ZW5zYQ== 22734
+IHB1cnN1aXQ= 22735
+IHNhaw== 22736
+INCX0LTQtdGB0Yw= 22737
+IHRvbGVyYW5jZQ== 22738
+IHNhYXQ= 22739
+IGNsaWNrZWQ= 22740
+4pml 22741
+IGZhY2Vib29r 22742
+IEludG8= 22743
+IGluY2VudGl2ZXM= 22744
+6riw64qU 22745
+IERlbm5pcw== 22746
+IFdpaw== 22747
+Z2VzY2g= 22748
+4LmA4Lib 22749
+IM+AzrE= 22750
+IFdob28= 22751
+IHJvdW5kZWQ= 22752
+IGRvcGU= 22753
+IGNhcHR1cmluZw== 22754
+IFdhcnJp 22755
+IGNpdmlsaWFu 22756
+IGNoYXJtaW5n 22757
+IGVzYXM= 22758
+IHN1c3RhaW5lZA== 22759
+IGxlYW5pbmc= 22760
+IGFidW5kYW5jZQ== 22761
+w61saWE= 22762
+0LDQu9GM0L3Ri9C5 22763
+IHBo4bqjaQ== 22764
+YWNqYQ== 22765
+IOqwmeyVhA== 22766
+YWN0aXY= 22767
+4Liy4Lii 22768
+IDk3 22769
+INC80L7QuQ== 22770
+Y3Jv 22771
+IEphY2tpZQ== 22772
+aXR0ZWVz 22773
+YnJhY2h0 22774
+dWxlbnQ= 22775
+IOygnOs= 22776
+IHBsdWdpbg== 22777
+dmFudGFnZQ== 22778
+cGFydHk= 22779
+IHN1YXM= 22780
+IGFudGU= 22781
+0YPQuw== 22782
+0J3QkA== 22783
+IM+Dz4U= 22784
+IG1ldGg= 22785
+IGVudGh1c2lhc20= 22786
+0Y/RgtGB0Y8= 22787
+7ZmU6w== 22788
+IHN5bnRoZXRpYw== 22789
+IHNlYXNvbmluZw== 22790
+IExvc3Q= 22791
+b25vbXk= 22792
+IFNwYXJr 22793
+IGJ1cmU= 22794
+IGFzc3VyZWQ= 22795
+IGltYWdpbg== 22796
+IGNhcnJv 22797
+U2hh 22798
+xIV0 22799
+0L3Rg9GC0Yw= 22800
+w6F0aWNh 22801
+VFk= 22802
+IGtlcm4= 22803
+IEJyYXppbGlhbg== 22804
+w7A= 22805
+IHN1c3BlbmRlZA== 22806
+IENhcmli 22807
+IGJpemlt 22808
+IE9saXZlcg== 22809
+VG9t 22810
+INC/0LvQsNC9 22811
+IG5vcGU= 22812
+b21ldGhpbmc= 22813
+IGJlaWRlbg== 22814
+0YbQtdC9 22815
+IGZsdWN0 22816
+IM68zr/PhQ== 22817
+IGZhdGhlcnM= 22818
+IEJsYWtl 22819
+IHVwd2FyZA== 22820
+IERhc2g= 22821
+IExpbA== 22822
+IOyImOuPhA== 22823
+IHJldmVsYXRpb24= 22824
+IGVsZXZhdGVk 22825
+IEppYW5n 22826
+TEVE 22827
+IFRob21wc29u 22828
+INC80L7Qs9GD0YI= 22829
+0YHRgtGA0YM= 22830
+aWZpZXJz 22831
+IGNvbWViYWNr 22832
+IGJ1eWVycw== 22833
+6rKw 22834
+IFNhbGVz 22835
+0LjRh9C1 22836
+Y2lvbmVz 22837
+IHdoaXN0bGU= 22838
+IGR1bGw= 22839
+TEVY 22840
+IO2VmOqyoOyKteuLiOuLpA== 22841
+IGNyaW1pbmFscw== 22842
+IGRlc2NlbnQ= 22843
+aXBwbGU= 22844
+bWFzxLE= 22845
+IGZvb2xpc2g= 22846
+INC00YPQvNCw0Y4= 22847
+dGFy 22848
+IG1hbmdv 22849
+IGNob3Jlb2dyYXBoeQ== 22850
+TWF0dA== 22851
+IHRlcnJpdG9y 22852
+IGFjYWJh 22853
+IEVpbnN0ZWlu 22854
+IElCTQ== 22855
+IE1ldGFs 22856
+IENyeXN0YWw= 22857
+IHJhaA== 22858
+IGZvdWw= 22859
+IElzbGFuZHM= 22860
+IGludGFjdA== 22861
+IFJhaWw= 22862
+Ljo= 22863
+IGFjw6E= 22864
+INC/0YDQvtC/ 22865
+0LXRgNC1 22866
+IFdyaXRl 22867
+aGVoZQ== 22868
+IEZP 22869
+IM+Dz4TOtw== 22870
+IGRvaW4= 22871
+aGVsZA== 22872
+IGFwcHJvcHJpYXRlbHk= 22873
+IGRlbGliZXJhdGVseQ== 22874
+IGFyY2hpdmU= 22875
+IGdpdmVhd2F5 22876
+IGZpbmFsZQ== 22877
+0LvQsNGB 22878
+0LXQvdC+ 22879
+xqFu 22880
+b2dv 22881
+IEF1ZGllbmNl 22882
+44Wg 22883
+IHN1YnVy 22884
+IGhlYWRhY2hl 22885
+0LDQvdC90Y8= 22886
+IFdpdGNo 22887
+IFN3ZWRpc2g= 22888
+IEJJ 22889
+IGVyYXNl 22890
+IGtoaQ== 22891
+IGNvbW1lbnRhcnk= 22892
+IFN1bHRhbg== 22893
+7YOd 22894
+IExlYmFu 22895
+IOuztOyL 22896
+IFBhbQ== 22897
+cGVrdA== 22898
+bW9udGg= 22899
+IGdyb3VuZGVk 22900
+6r4= 22901
+IMWfZWtpbGRl 22902
+MjUw 22903
+IFNDSA== 22904
+aW9zbw== 22905
+IGluYXVn 22906
+aGVpbWVy 22907
+IHJlZmxlY3Rpbmc= 22908
+IFJ1dGg= 22909
+IE9pbA== 22910
+IHRyb3V2ZXI= 22911
+dWVw 22912
+Li5d 22913
+IOyeiOs= 22914
+IG9saGE= 22915
+IHJlYXNvbmFibHk= 22916
+IGdsaXRjaA== 22917
+VUI= 22918
+IEdyYW4= 22919
+IGFkYWxhaA== 22920
+IGxlbnQ= 22921
+2LHYpw== 22922
+IHRyYWN0aW9u 22923
+IGFkanVzdGluZw== 22924
+tKQ= 22925
+0L3QuNCx0YPQtNGM 22926
+INC00L7Qvw== 22927
+IHN0cmV0Y2hlZA== 22928
+IG9ydA== 22929
+IGNvc2luZQ== 22930
+dmlvbA== 22931
+IOyF 22932
+Y2ly 22933
+IGJhc3RhcmQ= 22934
+INGF0L7QtA== 22935
+IHF1aWVy 22936
+IHByZXNzdXJlcw== 22937
+IEFuaA== 22938
+IGVsbGVz 22939
+INC00YDRg9C3 22940
+INC80L7QttC10YLQtQ== 22941
+IGNo4bs= 22942
+IE3DqQ== 22943
+w7Zr 22944
+4bqndQ== 22945
+7KCI 22946
+emlu 22947
+IGNhdXRpb24= 22948
+aWJhbg== 22949
+IGp1ZGdpbmc= 22950
+0YPRjtGC 22951
+IGJhag== 22952
+INCh0LXQudGH0LDRgQ== 22953
+IFBvb3I= 22954
+IE5hemk= 22955
+IHVwYmVhdA== 22956
+eWFuZw== 22957
+IHdlZWtlbmRz 22958
+IEVzc2VudGlhbGx5 22959
+IG9sdXlvcg== 22960
+IHNwYXRpYWw= 22961
+YWNrZXI= 22962
+IHNlbGxlcg== 22963
+INeQ15XXqg== 22964
+kdec 22965
+IHZpdmlk 22966
+IEJvbmQ= 22967
+6raM 22968
+aXNrdA== 22969
+IGdvYXQ= 22970
+ZHJpdmVy 22971
+IG11Zw== 22972
+aWN0aW9uYWw= 22973
+IGFsbHQ= 22974
+IEluaXRp 22975
+IFJhbmQ= 22976
+IGZpbmlzaGVz 22977
+IOqwiA== 22978
+IHZpdGFt 22979
+IHRlZW5hZ2Vycw== 22980
+IE1vcnJpcw== 22981
+7KSE 22982
+IE9yaQ== 22983
+aXlh 22984
+IG15w7Zz 22985
+U3RlcA== 22986
+IEtyZQ== 22987
+IGRpbm9zYXVy 22988
+IOuqhw== 22989
+YWZmZQ== 22990
+IOuQqeuLiOuLpA== 22991
+IHplZw== 22992
+IE1hbmhhdHRhbg== 22993
+IHN1amV0 22994
+dWVsbGU= 22995
+c3RvZmY= 22996
+IGTDvHI= 22997
+IHN1Ym1hcg== 22998
+ZXNlcw== 22999
+IGFxdWVsZQ== 23000
+IG5vdQ== 23001
+IEZhaXRo 23002
+dHo= 23003
+INGC0L7QvNGD 23004
+YWNldXQ= 23005
+bGllcnM= 23006
+IGJhbmR3aWR0aA== 23007
+xrDhu50= 23008
+IHJlc3BlY3RpdmU= 23009
+IEF2ZQ== 23010
+IHNwcmVhZHNoZQ== 23011
+IFNlbnQ= 23012
+aWNhbWVudGU= 23013
+IGluZnJh 23014
+IGxlYXJuZXJz 23015
+IOCuiQ== 23016
+YWlhaA== 23017
+cmVuYWw= 23018
+IG11c3RhcmQ= 23019
+IGhhYnQ= 23020
+54M= 23021
+IFF1w6k= 23022
+IGFuYWx5emluZw== 23023
+IHNvbGlj 23024
+INeU15XXkA== 23025
+IGNhdXNh 23026
+IHdlbGNvbWVk 23027
+IFN1Y2Nlc3M= 23028
+IGZhY2lsZQ== 23029
+INCf0L7RgtC+0LzRgw== 23030
+c2NoZWlu 23031
+IGZldGNo 23032
+IHN0cmF0 23033
+INGB0YLQvtC40YI= 23034
+7JeQ7ISc64qU 23035
+INGB0L/QvtGB0L7QsQ== 23036
+bWFt 23037
+IHNlcsOtYQ== 23038
+bmFtZW50cw== 23039
+d3JpdGVy 23040
+IGNvbnN1bHRpbmc= 23041
+7ZiA 23042
+IEJlcmtlbGV5 23043
+ZXU= 23044
+YXNpdmU= 23045
+VVU= 23046
+IEFuYWx5dA== 23047
+IHN1Ym1pc3Npb24= 23048
+IG1hZ25pZmljZW50 23049
+ZW56YQ== 23050
+IGVjb24= 23051
+IHByb2ZpbGVz 23052
+IGluY2Fy 23053
+QWI= 23054
+IE51bg== 23055
+IGhpYw== 23056
+c2NyZWFtaW5n 23057
+IHJlc2lsaWVudA== 23058
+Z3J1bmQ= 23059
+IGNvbmN1cg== 23060
+IGJlcmVpdHM= 23061
+TEQ= 23062
+IG51cnQ= 23063
+7Ik= 23064
+IGZlYXN0 23065
+IGVuY3VlbnQ= 23066
+IE1pY2hlbA== 23067
+IHN1cHJlbQ== 23068
+Il0= 23069
+IGZlZWRz 23070
+IEtvbGxlZ2Vu 23071
+aXNzZXI= 23072
+IEZlbmc= 23073
+IFdlbg== 23074
+bXVu 23075
+IHRlbsOtYQ== 23076
+IFdyZXN0 23077
+IOyYpOuKmOydgA== 23078
+IHN0ZWFk 23079
+IHJlc3RvcmF0aW9u 23080
+IGRvbmF0ZWQ= 23081
+IGRlbHM= 23082
+IGNlbnN1cw== 23083
+IGRlc3BlcmF0ZWx5 23084
+d29ydGh5 23085
+SEU= 23086
+IFNwYQ== 23087
+IEJyeWFu 23088
+IGhq 23089
+IFJhdw== 23090
+7JWE6w== 23091
+IENhbWVyYQ== 23092
+IHppZW4= 23093
+IHN0eWw= 23094
+IFRX 23095
+IENoZWVzZQ== 23096
+Ym9ybmU= 23097
+IG9ibA== 23098
+IEFscmVhZHk= 23099
+IHVuc3RhYmxl 23100
+IGZsYW1lcw== 23101
+cG9zdA== 23102
+SGE= 23103
+cm9tYWdu 23104
+IOyXhOuniA== 23105
+ZGVzdA== 23106
+IGtvbGVq 23107
+IHRlbXBvcmFyaWx5 23108
+IGRldGVybWluaW5n 23109
+IEdsYXNz 23110
+0YDQvtC9 23111
+b2xhbg== 23112
+IGRvbWluYXRlZA== 23113
+X19fXw== 23114
+INmH2LDYpw== 23115
+IERhbmE= 23116
+IGRpbmhlaXJv 23117
+YXF1 23118
+66+8 23119
+IMOgcw== 23120
+IEpvZXk= 23121
+IEdyaWZm 23122
+IGF0dGFpbg== 23123
+IHRyYW5zaXRpb25z 23124
+IExpdGVyYWxseQ== 23125
+0LXQvdC0 23126
+IEhhdmVu 23127
+IGdyYWJiaW5n 23128
+IGNyeXN0YWxz 23129
+IEZvdXJ0aA== 23130
+IGNhbmRsZXM= 23131
+INGB0LvRg9GH0LA= 23132
+cmljbw== 23133
+IDUwMDA= 23134
+ZXR0bw== 23135
+IHVuZG8= 23136
+IGt0bw== 23137
+IGRpdmVydA== 23138
+IGNoaXI= 23139
+IHBlcnNlYw== 23140
+IGhpa2luZw== 23141
+IGFubm91bmNlbWVudHM= 23142
+0LfRiw== 23143
+IGF1Yw== 23144
+IHN5c3RlbWlj 23145
+IFJN 23146
+z4POsQ== 23147
+INCU0LY= 23148
+IHlhcg== 23149
+IFdhcmQ= 23150
+IHBpc3NlZA== 23151
+IGNhcm4= 23152
+IGF1dG9ub21vdXM= 23153
+44WO44WO 23154
+c292ZXI= 23155
+IHJlZmxleA== 23156
+IGdhcmRlbnM= 23157
+IGRhdGVk 23158
+7LE= 23159
+YW1pxJk= 23160
+IGNvbnRpbnVpdHk= 23161
+IGNpdGl6ZW5zaGlw 23162
+IHNjaHdlcg== 23163
+IHphaw== 23164
+dGFibGU= 23165
+INGB0Yc= 23166
+IM+DzrU= 23167
+IGdlbmVyYXRlcw== 23168
+6rWs64KY 23169
+w7Zo 23170
+w7Nt 23171
+YWxhbQ== 23172
+IEpVRFk= 23173
+IEJ1Zw== 23174
+IGRyb25lcw== 23175
+IMOhZ3Vh 23176
+YWNha3M= 23177
+5po= 23178
+INCa0L7QvQ== 23179
+15bXlA== 23180
+IHN0cml2ZQ== 23181
+IEFsdGVybg== 23182
+IG5lYXJlc3Q= 23183
+IHByb3llY3Q= 23184
+dGVyYQ== 23185
+IEFTSExFWQ== 23186
+IHdvcm0= 23187
+IHJlcGxheQ== 23188
+IHRhcmE= 23189
+IEluZGlhbnM= 23190
+aWNhaWQ= 23191
+IOyInA== 23192
+IGFwcGVhbGluZw== 23193
+IFdlcw== 23194
+IG1lbnRpb25z 23195
+INC00LXQu9C1 23196
+IGt3 23197
+IGZyYWdpbGU= 23198
+aXN6 23199
+a8Ozdw== 23200
+aGFuZw== 23201
+Y29sb3I= 23202
+IHByZXNpZGVudGU= 23203
+ODc= 23204
+0LXRhA== 23205
+INC00L7QsdCw0LI= 23206
+IE5lbHNvbg== 23207
+w6FmaWM= 23208
+IE1JQ0hBRUw= 23209
+IG1lY2hhbmlj 23210
+IG1ldHJlcw== 23211
+IG9jenl3acWbY2ll 23212
+IENpbmQ= 23213
+IG9nc8Ol 23214
+IGxhbmRzY2E= 23215
+QUNF 23216
+IGhlYWRsaW5lcw== 23217
+IGNhdGFseXN0 23218
+IENhdGNo 23219
+aW5rbGVz 23220
+IHBpbGxz 23221
+b3Jkbw== 23222
+IGltbWlncmFudA== 23223
+IGV4YW1pbmF0aW9u 23224
+IGFjY2lkZW50cw== 23225
+esSFZA== 23226
+IHF1aWVyZQ== 23227
+IG5lbGxh 23228
+IDY3 23229
+IHBhc3Nh 23230
+IHN1cGVyZmlj 23231
+aXN0b3I= 23232
+IG5vdg== 23233
+64u1 23234
+IG1hbmRhdGU= 23235
+aXNvbnM= 23236
+IFZpcnR1YWw= 23237
+IHNlbGJlcg== 23238
+IGNvdW5zZWxpbmc= 23239
+IE5CQQ== 23240
+IHNlcHQ= 23241
+IGJlbGlldmVy 23242
+IG1hcnZlbA== 23243
+IEludGVncg== 23244
+INC80ZY= 23245
+IG9ycGg= 23246
+IGJhY2t3YXJk 23247
+IEdlbmVyYXRpb24= 23248
+IFBpY3Q= 23249
+INGC0L7Rgg== 23250
+IHRhcGk= 23251
+cHJvY2hlbg== 23252
+IGhhbGx3YXk= 23253
+aHRl 23254
+INuB25I= 23255
+IFp1bQ== 23256
+YWNobWVudA== 23257
+aXF1ZXI= 23258
+Zm9sZw== 23259
+IEVkZGll 23260
+IEtpbA== 23261
+IHdlbGxuZXNz 23262
+c3RvY2s= 23263
+IGthw6c= 23264
+IHRlcnJvcmlzbQ== 23265
+IHBvaW50ZXI= 23266
+T2Y= 23267
+aGVyaWM= 23268
+IFVsdGltYXRlbHk= 23269
+IG1lc2Vz 23270
+IFRyYWRl 23271
+IHBpbnQ= 23272
+IHR1aXRpb24= 23273
+IGRpc2FncmU= 23274
+IOqyjOyehA== 23275
+IG1hbnVzY3JpcHQ= 23276
+IHJvb21t 23277
+IG91dHB1dHM= 23278
+0LXRhtC4 23279
+IHJpZXM= 23280
+IHNhbHVk 23281
+b3R6ZGVt 23282
+IG1hc3Nlcw== 23283
+IGJ5xYJh 23284
+IGNsZWFyaW5n 23285
+IGRpc2NvdXJzZQ== 23286
+YXRzb24= 23287
+IGZvbGRlZA== 23288
+IEphcg== 23289
+2YTZiQ== 23290
+OTAw 23291
+INGD0YHQvw== 23292
+IHByb3BoZWN5 23293
+IGludGVyZmVyZQ== 23294
+0LjRhdC+0LQ= 23295
+4LmM 23296
+IHRocmk= 23297
+INee16k= 23298
+IGxhesSxbQ== 23299
+IDE5OTI= 23300
+IGZ1dHVybw== 23301
+IGxvY2tpbmc= 23302
+IGVtYmFyZ28= 23303
+IE5laXRoZXI= 23304
+aXZhbWVudGU= 23305
+IG3DpXN0ZQ== 23306
+IG1paw== 23307
+IGNvbGxlY3Rvcg== 23308
+0LXQutC+0YLQvtGA 23309
+IEdhbmQ= 23310
+IHNlbnRpcg== 23311
+IE1pZ2h0 23312
+IGdhbnplbg== 23313
+VUM= 23314
+IHJlbGF0aW5n 23315
+U0Q= 23316
+IG1vc3F1aXRv 23317
+R1I= 23318
+IGhvbGxvdw== 23319
+4piF 23320
+IFdhbGtlcg== 23321
+IGFmZmlsaWF0ZQ== 23322
+IGR1cGxpY2F0ZQ== 23323
+0L3QtdC8 23324
+IGdyYXBl 23325
+IE9yZ2FuaXphdGlvbg== 23326
+IHN5bnQ= 23327
+Sm9l 23328
+IGdlZw== 23329
+IHJldmVhbGluZw== 23330
+IEV0aGFu 23331
+b3V0ZXI= 23332
+IHlheQ== 23333
+0LvQsNGA 23334
+IHJlcG9ydGVkbHk= 23335
+IGlocmVy 23336
+IHJlY29nbmlzZQ== 23337
+IGJ1bXBlcg== 23338
+IFJhbmR5 23339
+IFZlbnVz 23340
+dGxlcw== 23341
+IGFwcGV0aXRl 23342
+IGdsdWNvc2U= 23343
+IGNob2R6aQ== 23344
+IEZ1cnRoZXJtb3Jl 23345
+dGly 23346
+IGNvbnRh 23347
+IGludHVpdGlvbg== 23348
+IGFsdGl0dWRl 23349
+IGNodW5rcw== 23350
+IEpvc2h1YQ== 23351
+xLHEn8SxbQ== 23352
+cnlsaWM= 23353
+bGVhbnM= 23354
+IO2UvOs= 23355
+TEw= 23356
+UXVl 23357
+IGdvcg== 23358
+INC30L3QsNGH0LjRgg== 23359
+IHBvZW1z 23360
+IGV4Y2Vs 23361
+IGV4cGxvcmVk 23362
+IHBvcHVs 23363
+IGluY2x1c28= 23364
+c3TDpA== 23365
+IEdhdmlu 23366
+YWxsaW5n 23367
+IM+Ezr/OvQ== 23368
+6ak= 23369
+YXJiZWl0 23370
+IEdhcw== 23371
+IGdsb3Jpb3Vz 23372
+cmllYmVu 23373
+IHNwYW0= 23374
+IGluZG9vcg== 23375
+IHRocnVzdA== 23376
+IEFsZA== 23377
+IFByaW9y 23378
+IG9uYm9hcmQ= 23379
+b2Nh 23380
+QVNI 23381
+o6A= 23382
+IENocmlzdGluZQ== 23383
+IGRyYXdlcg== 23384
+IG5vb24= 23385
+IOyemOs= 23386
+IHBlcm1hbmVudGx5 23387
+INC90LDQv9GA0LjQvNC10YA= 23388
+IHBvZGNhc3Rz 23389
+ZXJhcGV1dA== 23390
+cHJpdA== 23391
+IHN0YWlubGVzcw== 23392
+INqp25I= 23393
+IGZhbWlsaWE= 23394
+INGA0LDQt9GA 23395
+dW50bw== 23396
+INGB0YLQvtC7 23397
+IGjDpA== 23398
+IEhhaQ== 23399
+IFBC 23400
+aXpvbg== 23401
+IGtvbm50ZQ== 23402
+IGLDvHnDvGs= 23403
+IHV0aWxpemFy 23404
+2oY= 23405
+IGFxdWVzdGE= 23406
+IG1peGVy 23407
+dWRlbnQ= 23408
+0LvQtdC60YE= 23409
+xYJ1 23410
+INGB0LjRgdGC0LXQvA== 23411
+INC90L7RgNC8 23412
+IGZhdGFs 23413
+IGNvbnNpZGVyYXRpb25z 23414
+IHZhbGlkYXRpb24= 23415
+IG9saQ== 23416
+IGthcmRlxZ8= 23417
+IEdMT1JJQQ== 23418
+IHBhbGw= 23419
+0LXRgdGC0LU= 23420
+IHJlY3Rhbmc= 23421
+IG1lZGlldmFs 23422
+YWxsYWhp 23423
+YXN0aQ== 23424
+IFN5cmlhbg== 23425
+IHNoZWFy 23426
+IGRlYnVn 23427
+IE1haQ== 23428
+IGtub2NraW5n 23429
+IExleA== 23430
+YXJkYW4= 23431
+cm92 23432
+IG1lbW9yaWFs 23433
+b29reQ== 23434
+IHN0dWZmZWQ= 23435
+IHBhc3PDqQ== 23436
+IHdpZw== 23437
+gqA= 23438
+IHByw7N4aW1h 23439
+IDE5OTE= 23440
+INC80LXQttC00YM= 23441
+IG51ZXN0cm9z 23442
+IEJlYXN0 23443
+IHNtbw== 23444
+YXRjaGVk 23445
+b2xvZ2lh 23446
+INC80L7QtA== 23447
+IGdlZQ== 23448
+IGNvbmNlcHR1YWw= 23449
+IMO0 23450
+IGRlY3JlYXNlcw== 23451
+IHF1ZXJpZXM= 23452
+0L7Qu9GM0Yg= 23453
+IEFwYXJ0 23454
+IGV4ZW1wbA== 23455
+IGZsZWQ= 23456
+IE9GRg== 23457
+Z2dhaw== 23458
+IGJlYWQ= 23459
+aGly 23460
+bGllcw== 23461
+IENsZWFybHk= 23462
+xLFsYXI= 23463
+IGNoZXNz 23464
+IHdoaWNoZXZlcg== 23465
+IDk2 23466
+4bqx 23467
+IHJlc3BlY3Rz 23468
+INC80L7RgA== 23469
+IG9yZ2FuaXNt 23470
+IGdyYW5kcGE= 23471
+IFZpZQ== 23472
+IGZsb29kaW5n 23473
+IHVwZ3JhZGVk 23474
+0ZHRgA== 23475
+IGNoZWVrcw== 23476
+IGNvbnF1ZXI= 23477
+IHN0dWJib3Ju 23478
+IHB1enpsZXM= 23479
+IGF1Y3Rpb24= 23480
+IHJlbHlpbmc= 23481
+IFBST0Y= 23482
+IEVzcGVy 23483
+INCc0KM= 23484
+IGh5cGU= 23485
+IHBvc3NpYmls 23486
+IGltcHJpc29u 23487
+IEVybg== 23488
+7JeI7Iq164uI64uk 23489
+IGVudmll 23490
+IHJlc3VycmVjdGlvbg== 23491
+IHNwZXI= 23492
+IFZlbmV6dWVsYQ== 23493
+c29t 23494
+IOyeoOq5 23495
+IG5vdXZlbGxl 23496
+IGNsb3Nlcw== 23497
+IDE5NDA= 23498
+IHF1YQ== 23499
+IEphcmVk 23500
+IFBpcg== 23501
+IGluZGU= 23502
+IHNjcnVi 23503
+dWt1 23504
+IHJlcXVpcmluZw== 23505
+INCy0LDQvNC4 23506
+IGNvbnNpZGVyYWJsZQ== 23507
+aWxpYQ== 23508
+IGlubmU= 23509
+IG1laW5lbQ== 23510
+IGhhcmRzaGlw 23511
+IHRyYXBz 23512
+cm9j 23513
+IOyEpOs= 23514
+IHJlc2VhcmNoaW5n 23515
+IE1hcmdhcmV0 23516
+IHBlbm55 23517
+IGLEsXJhaw== 23518
+0ZHQuw== 23519
+IHdvb2w= 23520
+IHJoZXQ= 23521
+IGZsYXR0ZW4= 23522
+54c= 23523
+4LmA4Lij 23524
+IHBpZWQ= 23525
+IENoYXA= 23526
+IHVuZGVybQ== 23527
+IGZyZXQ= 23528
+IGNyYXNoZWQ= 23529
+IEZyYXVlbg== 23530
+2LDZhw== 23531
+aXZhbg== 23532
+IGxpdGVyYXJ5 23533
+bGF0ZWdv 23534
+IHNww6R0ZXI= 23535
+IHNpbWlsYXJpdGllcw== 23536
+4oY= 23537
+IENvcm9u 23538
+IENyZWVr 23539
+IGJvc3Nlcw== 23540
+IGFjY29tcGFuaWVk 23541
+IGRlYmF0ZXM= 23542
+IGFzc2VtYmxlZA== 23543
+IMOB 23544
+IFZhaQ== 23545
+IHRyYWN0 23546
+IHNpbXBsZW1lbnQ= 23547
+IEFyaW4= 23548
+IHZ1bG5lcmFiaWxpdHk= 23549
+IGhvcm1vbmU= 23550
+SUVM 23551
+T09L 23552
+IHJlbGF5 23553
+IEFuZHJlYQ== 23554
+cmls 23555
+IG5lY2Vzc2l0eQ== 23556
+YWNldXRpY2Fs 23557
+0Y7RiQ== 23558
+b3VzaW5n 23559
+bmFobWVu 23560
+IGZvb3RwcmludA== 23561
+bWFw 23562
+IFRpZXI= 23563
+YW5ueWE= 23564
+aW50ZW5k 23565
+5aI= 23566
+IGRlY29yYXRl 23567
+IHpvbWJpZXM= 23568
+IEh5ZA== 23569
+IFN1eg== 23570
+IGNhbXB1c2Vz 23571
+IEVtYg== 23572
+IHRocm90dGxl 23573
+IGFkbWlu 23574
+IG9wb3J0dW4= 23575
+IG1pcnJvcnM= 23576
+IGlkZW50aXRpZXM= 23577
+IENsaW4= 23578
+IOu5hOs= 23579
+4bmj 23580
+IE90dA== 23581
+IGJsdWVz 23582
+IGltcHJlc3Npb25z 23583
+LSw= 23584
+IHZhZ3Vl 23585
+YWZl 23586
+IGluZmVyaW9y 23587
+ZXJhbGQ= 23588
+IG1lZGljaW5lcw== 23589
+IHByZWd1bnRh 23590
+b3NlbHk= 23591
+IHTDqWzDqQ== 23592
+IE1vbnRo 23593
+IExlYWRlcnM= 23594
+IEVneXB0aWFu 23595
+IHJhdGlvbg== 23596
+a2Vycw== 23597
+aGVpdHM= 23598
+IHJlY2h0 23599
+UGxheQ== 23600
+IGVn 23601
+IHBvbGxz 23602
+IFdPT0RS 23603
+IHNsb3Rz 23604
+amFt 23605
+Qm90aA== 23606
+IFJhdA== 23607
+0YDQsNC2 23608
+IEJyaWdodA== 23609
+4buRaQ== 23610
+dXJpb3Vz 23611
+IHNpbmdlcnM= 23612
+IGxvZ2lu 23613
+IHTDqm0= 23614
+bGF0aW9u 23615
+IE11bQ== 23616
+xrDhu51uZw== 23617
+IEVkaXRvcg== 23618
+IGlubm92YXRpb25z 23619
+aGF2ZQ== 23620
+IFNlaw== 23621
+IHdlYWtlcg== 23622
+IEdvYg== 23623
+QWZ0ZXI= 23624
+tOyngA== 23625
+IOusuOygnA== 23626
+IGRpc2FkdmFudGFnZQ== 23627
+IGdhemU= 23628
+IE1hY2s= 23629
+z4HOrw== 23630
+IEtpc3M= 23631
+IEhvbG8= 23632
+IEJpcnRo 23633
+aXpp 23634
+YmFi 23635
+7Iuc6rOg 23636
+0LTQtdGA0LY= 23637
+IHNxdWF0 23638
+0LrRg9GB 23639
+dW5p 23640
+IENvbW1l 23641
+IFdPT0RSVUZG 23642
+IENoYW1waW9uc2hpcA== 23643
+IHdlbGNoZQ== 23644
+IFlvdXRo 23645
+emVt 23646
+IG9kcG93 23647
+IHBlcnNpc3RlbnQ= 23648
+cnV0 23649
+7JSp 23650
+7Zal 23651
+bGFpcg== 23652
+aWt1 23653
+IHZlbmRvcg== 23654
+IGNow7puZw== 23655
+IGZpbmFuY2k= 23656
+IG92ZXJseQ== 23657
+w6J1 23658
+IGdsdXRlbg== 23659
+IDE4MDA= 23660
+IGRpdmlzaW9ucw== 23661
+IGNpdWRhZA== 23662
+IG9iZWQ= 23663
+IHdhcnVt 23664
+IGVoZXI= 23665
+IGVsaW0= 23666
+INCS0L4= 23667
+IHBldXZlbnQ= 23668
+IFdhbm5h 23669
+IGF0dGVuZGFuY2U= 23670
+IGFzc2Vzc21lbnRz 23671
+IEJvZw== 23672
+IGltYWdlcnk= 23673
+IGNvbGxlY3RpdmVseQ== 23674
+IGluZm9ybWFs 23675
+IFNjaHdl 23676
+IGRldXRsaWNo 23677
+IENoZWw= 23678
+IFBF 23679
+b3dlZA== 23680
+IGJhbm5lcg== 23681
+IHNoZWx2ZXM= 23682
+IFJldHVybg== 23683
+TEFVR0hT 23684
+IGNvbmdyYXR1bGF0ZQ== 23685
+IE5vcndheQ== 23686
+IGR3ZWxs 23687
+IENhcmliYmVhbg== 23688
+IG5vcm1z 23689
+IEFuaW1hbA== 23690
+IFZhbGVudGluZQ== 23691
+IGV4dGVuZGluZw== 23692
+IFZvdQ== 23693
+b3Jy 23694
+IENoZW5n 23695
+wqE= 23696
+INC00L7RgNC+0LM= 23697
+IHZlZw== 23698
+IGjDpQ== 23699
+IFhpbg== 23700
+IOy5tOs= 23701
+ZW1ldA== 23702
+IGh5cG90aA== 23703
+IGludGVyZXNzYW50ZQ== 23704
+cmljZXM= 23705
+SVo= 23706
+IFVTRA== 23707
+IHJ1bm5lcg== 23708
+IEJhZw== 23709
+IOq9 23710
+IGNvbWXDp2Fy 23711
+IHBpZ3M= 23712
+IHdlYWtuZXNzZXM= 23713
+UGg= 23714
+IFZpb2w= 23715
+IGRyYWdnaW5n 23716
+IEFxdcOt 23717
+IENTUw== 23718
+IG1pbGxpbWV0ZXJz 23719
+IGVzdMOhcw== 23720
+IGFjdXRl 23721
+IGRlamFy 23722
+acSf 23723
+b2JyYQ== 23724
+TG92ZQ== 23725
+IHNpbGs= 23726
+KioqKg== 23727
+IGpvaW5z 23728
+IHByb2w= 23729
+IOqwkOyCrO2VqeuLiOuLpA== 23730
+2K3Yrw== 23731
+YWdoZXR0aQ== 23732
+w6RubmVy 23733
+IHN0cmFuZw== 23734
+IGRvdWJsZWQ= 23735
+IGRlc2NyaXB0aW9ucw== 23736
+IHN0ZWxsZW4= 23737
+IHBhcnRp 23738
+soTr 23739
+IMO2xJ8= 23740
+aWdoaW5n 23741
+IGFuZ3VsYXI= 23742
+IG5hdHV1cg== 23743
+IFNoZWw= 23744
+xrDGoQ== 23745
+IHJheXM= 23746
+IHNlcGVy 23747
+c3RhcnQ= 23748
+dmlzZWQ= 23749
+IHJ1c2hlZA== 23750
+IGludGVybmF0aW9uYWxseQ== 23751
+IG5pdmVs 23752
+IGJveGluZw== 23753
+ZmFsbGVu 23754
+4buRYw== 23755
+IHNlaW5lbg== 23756
+cGxpY2l0eQ== 23757
+IGNhcmJvaA== 23758
+IFRyYXZpcw== 23759
+dXNv 23760
+IFBoYXNl 23761
+IGFjdGl2YXRpb24= 23762
+IG9waW8= 23763
+t6g= 23764
+IGRlY3JlYXNlZA== 23765
+Q2Fy 23766
+IGJ1bmRsZQ== 23767
+IGV4cGVuZA== 23768
+b3JtYWw= 23769
+IGFkamFjZW50 23770
+IG1lZQ== 23771
+INC+0YDQsw== 23772
+IHRyYW5zY3JpcHQ= 23773
+IExhbmd1YWdl 23774
+R1M= 23775
+IHNldWw= 23776
+w6BuaA== 23777
+IG55YQ== 23778
+bmluZ3M= 23779
+IOyLnOs= 23780
+IOuUsOudvA== 23781
+IEFncg== 23782
+w61k 23783
+IGFieQ== 23784
+IE5lbw== 23785
+xLF5b3J1eg== 23786
+IFRoaW5raW5n 23787
+YWltZQ== 23788
+IHZpdGU= 23789
+IHRyYXbDqXM= 23790
+INeR16I= 23791
+INC80LXQtA== 23792
+T3Vy 23793
+aG9vdA== 23794
+IGxpbmVy 23795
+IFBpenph 23796
+IGh5Zw== 23797
+ZmxpZXM= 23798
+IENvbnRpbnVl 23799
+IGRlbnRhbA== 23800
+IFRpYg== 23801
+IHJlZ3VsYXRl 23802
+bGllw58= 23803
+QUxL 23804
+IFRhZQ== 23805
+6ri4 23806
+IEJyZXhpdA== 23807
+IEd1dA== 23808
+IG9jY3VwYXRpb24= 23809
+IHpyb2Jp 23810
+w6Jt 23811
+IHdoaXNr 23812
+IGthbnNrZQ== 23813
+b21vbg== 23814
+cm9iZQ== 23815
+IHdhcmZhcmU= 23816
+IHRo4buD 23817
+IGpha2k= 23818
+IHN0cm9rZXM= 23819
+IHBlYXM= 23820
+IERhbWl0 23821
+SEFO 23822
+IGludGVyZmVyZW5jZQ== 23823
+INC80LjQvdGD0YI= 23824
+TkVS 23825
+b3V0aW5n 23826
+IHRleHR1cmVz 23827
+n4k= 23828
+b3dp 23829
+IO2VmQ== 23830
+IGRlbnM= 23831
+IHByb3RhZ29uaXN0 23832
+w6Rubg== 23833
+IGdvZGRlc3M= 23834
+IHdvbGx0ZQ== 23835
+aWpv 23836
+IFdvY2hl 23837
+IFZQTg== 23838
+c3Rvcnk= 23839
+IGtpbmRlcmc= 23840
+IGZ1bm5lbA== 23841
+IGRpc3RyZXNz 23842
+0L3QvtGB0YLRjNGO 23843
+IG5vaXN5 23844
+INC/0YDQvtC00L7Qu9C2 23845
+IGRhcmFu 23846
+IGVuenltZQ== 23847
+0LvQvtC2 23848
+IG11dGU= 23849
+IGR3YXI= 23850
+INin2LM= 23851
+IGtvbXBs 23852
+IG1lcml0 23853
+IGZvc3Nl 23854
+IERyaW5r 23855
+IGZvcmE= 23856
+IHdvaGw= 23857
+IGJyZWV6ZQ== 23858
+IHNhbml0 23859
+IGRyaW4= 23860
+IOydtOqxsOuKlA== 23861
+IDYy 23862
+IOywqOs= 23863
+YWJ5dGVz 23864
+IGRlZWRz 23865
+INC5 23866
+acOobWU= 23867
+aWdnbGluZw== 23868
+ICIn 23869
+INGH0LDRgdGC0Yw= 23870
+IEFuc3dlcg== 23871
+IGV2YW5nZWw= 23872
+IDEwODA= 23873
+IFZpc2l0 23874
+aWNpZW50 23875
+IHJlbGlhYmlsaXR5 23876
+0Y7RgdGM 23877
+IEVhcmxpZXI= 23878
+IGZpZA== 23879
+IHNsZWV2ZXM= 23880
+aXlvcnN1bg== 23881
+IGJpYg== 23882
+IEFjY291bnQ= 23883
+0Y/Qu9C4 23884
+Y2lwbGluYXJ5 23885
+emFz 23886
+INCx0LXRgA== 23887
+IG5lY2tsYWNl 23888
+IGJsZW5kZXI= 23889
+IFBoaWxsaXBz 23890
+ZXRp 23891
+IEp1cGl0ZXI= 23892
+IHByb3ZvYw== 23893
+IFllYXJz 23894
+ZW50cmU= 23895
+YWNpbw== 23896
+IGvDvA== 23897
+IGFudGVubmE= 23898
+IG5vdmVscw== 23899
+IGZhcnQ= 23900
+IFN1Z2Fy 23901
+IEp1ZHk= 23902
+IGNvbGxhcHNlZA== 23903
+57A= 23904
+cml0aXM= 23905
+IOyDge2ZqQ== 23906
+0JfQqw== 23907
+IFZlcmY= 23908
+cmFuZWFu 23909
+ZXJldW0= 23910
+IFRhcmdldA== 23911
+IDg4 23912
+INCY0Lc= 23913
+aWRlbw== 23914
+IHJlZ3Jlc3Npb24= 23915
+7Lac 23916
+IG3Ds3dp 23917
+IHN0dWRpb3M= 23918
+aWVucw== 23919
+aXBo 23920
+IGZyeWluZw== 23921
+IGZhc2NpbmF0ZWQ= 23922
+IFdhaA== 23923
+YnVja3M= 23924
+bWF5YQ== 23925
+IFNhdHVybg== 23926
+IE1vbW15 23927
+IHJhdGluZ3M= 23928
+IGF1dHVtbg== 23929
+xrDGoW5n 23930
+IGxvc2Vy 23931
+IGNlbnRybw== 23932
+w6lyaWV1cg== 23933
+IEZvbGQ= 23934
+IHN1cGVydmlzb3I= 23935
+IE5vYmVs 23936
+IHVuZGVyZXN0 23937
+b2JpYQ== 23938
+INCy0YHRjw== 23939
+IHZlcnc= 23940
+IGZ1ZWxz 23941
+IGFydGlmYWN0cw== 23942
+IOu2mQ== 23943
+IEF1dG9t 23944
+25Q= 23945
+15XXoQ== 23946
+IGlobmVu 23947
+IDU5 23948
+b3VuZGluZw== 23949
+0LXRgNGL 23950
+aW5hcnM= 23951
+Y2hhbnQ= 23952
+IGFkZGljdGVk 23953
+IGV4cGxvc2l2ZQ== 23954
+IGRpc3BlcnM= 23955
+4paI 23956
+YXhpcw== 23957
+QVJZ 23958
+IGx1bQ== 23959
+INGD0YHQuw== 23960
+INiM 23961
+IHJ1cGVlcw== 23962
+IFBlYXJs 23963
+Y2FtcA== 23964
+dHY= 23965
+b3lh 23966
+IGNvbmNsdWRlcw== 23967
+IGNvbGxpc2lvbg== 23968
+IGJ1eWVy 23969
+IHBsYXlncm91bmQ= 23970
+IHNwcmluZ3M= 23971
+IGZlbWluaW5l 23972
+IFJhcw== 23973
+IGluY2FyY2Vy 23974
+7ZeY 23975
+IGRpYWxlY3Q= 23976
+IGNsb3N1cmU= 23977
+IGNoYXR0aW5n 23978
+IGJhYmU= 23979
+IHNwb3RsaWdodA== 23980
+IG5vdGF0aW9u 23981
+U3Rhcg== 23982
+acOjbw== 23983
+IHTDqnRl 23984
+IHRpZGU= 23985
+IGp1bnRv 23986
+IHNlbmF0b3I= 23987
+0KU= 23988
+IGV4Y3VzZXM= 23989
+IGJsaW5r 23990
+IGFkbWlzc2lvbg== 23991
+IExpbHk= 23992
+0YvQvNC4 23993
+IGFtaWdv 23994
+IGx1c3Q= 23995
+64us 23996
+IGFtaW5v 23997
+IGNvbnN1bHRhbnQ= 23998
+IEVsZWN0cmlj 23999
+IOuFuOuemA== 24000
+dWphaA== 24001
+IHNob290ZXI= 24002
+aWNodGVu 24003
+IFVrcmFpbmlhbg== 24004
+IGFpbXM= 24005
+IEVudGVydGFpbg== 24006
+IG1pcmFjbGVz 24007
+IHplaWdlbg== 24008
+IGxhbQ== 24009
+IHJlc3M= 24010
+IEppbGw= 24011
+eWxhbg== 24012
+IHJvb2s= 24013
+IGhheWE= 24014
+IHBhc3Nwb3J0 24015
+YWRhdGE= 24016
+IGp1aWN5 24017
+Y29uZg== 24018
+0LvQtdC5 24019
+IFN6 24020
+IGludGVyY2VwdA== 24021
+IFRlYW1z 24022
+IG1ha2Vu 24023
+aXJyZWw= 24024
+IExJS0U= 24025
+4bqteQ== 24026
+6rWw 24027
+IHNob3J0YWdl 24028
+IHBhcmFkaWdt 24029
+IHBhcGVs 24030
+IGFzdGVybw== 24031
+IHNvbGxlbg== 24032
+IE1pY2tleQ== 24033
+IE9ybGVhbnM= 24034
+IGNob2xlc3Rlcm9s 24035
+IGdvb3Nl 24036
+0YbQuNGO 24037
+IEZM 24038
+INCz0L7Qu9C+0LI= 24039
+IHRyaWJ1dGU= 24040
+IEdhbQ== 24041
+IMOpdmlkZW1tZW50 24042
+0Y/RhQ== 24043
+IGluYXBwcm9wcmk= 24044
+dWhhbg== 24045
+IG9yZ2FuaXphdGlvbmFs 24046
+YWlsZWQ= 24047
+IGVuZHVyZQ== 24048
+IDc2 24049
+IHNob3RndW4= 24050
+IGxpdnJl 24051
+IHN1aXRlZA== 24052
+IHdhcm10aA== 24053
+IFNJTQ== 24054
+IGVudmlzaW9u 24055
+IGRlZ3JhZA== 24056
+w65uZQ== 24057
+TGF1Z2hpbmc= 24058
+IFdob2V2ZXI= 24059
+IEJ1ZGRoaXNt 24060
+IHNwcmlua2xl 24061
+Y2XEn2l6 24062
+IHJ1aW5z 24063
+IHN0YXJjaA== 24064
+IEhlcno= 24065
+IGluanVzdGljZQ== 24066
+IGh1bWlkaXR5 24067
+0L7QttCw0LvRg9C5 24068
+IE9iamVjdA== 24069
+IElnbg== 24070
+IEV4YW0= 24071
+aWdlcnM= 24072
+IHRob3U= 24073
+IFNveQ== 24074
+aXZhcw== 24075
+IHBvbGVz 24076
+bWF0aA== 24077
+INCy0L3QuNC8 24078
+SU5HSU5H 24079
+ZWRyYWw= 24080
+IGV4cGxvcg== 24081
+IHJvYXN0ZWQ= 24082
+IGNyYXds 24083
+IGNvZmY= 24084
+IGFub20= 24085
+IHdpag== 24086
+IGltcHJvdmVz 24087
+IHRyZWF0eQ== 24088
+IGRpc2NvdmVyaW5n 24089
+IHN0YXR1dGU= 24090
+IG1lcmNhZG8= 24091
+INGB0LjQuw== 24092
+IGludGVs 24093
+IENoYW5jZWxsb3I= 24094
+IE1lZGljYWlk 24095
+dWdp 24096
+IHZlcmJhbA== 24097
+IGTDtm4= 24098
+IHNjcmlwdHVyZQ== 24099
+IGl0ZXJhdGlvbg== 24100
+ZWtz 24101
+IE94Zm9yZA== 24102
+IHfDpGg= 24103
+IFZhZA== 24104
+IEFL 24105
+IOyVhOydtOs= 24106
+IGlldHM= 24107
+IG5lZWRsZXM= 24108
+2YPZhQ== 24109
+IHBhc2Fkbw== 24110
+IGFsYnVtcw== 24111
+IHllYQ== 24112
+ZXR6ZW4= 24113
+hOuPhA== 24114
+IGRldGVybWluZXM= 24115
+IHRoZWU= 24116
+IFBsYXlpbmc= 24117
+w6RydA== 24118
+INem 24119
+Y2xlZA== 24120
+IGRvd253YXJk 24121
+YWxvbmU= 24122
+IHNvbHU= 24123
+IHBhcnRpdGlvbg== 24124
+IHd6 24125
+ZGQ= 24126
+IHBlc3NvYWw= 24127
+IGZhY3Rvcmllcw== 24128
+IGJsZWlidA== 24129
+4Lih4Liy 24130
+YWxzYQ== 24131
+IE5GTA== 24132
+IGZ1ZXJh 24133
+IHJlc2VydmVk 24134
+IEVhcm4= 24135
+IGhlbHQ= 24136
+IHNob3J0Y3V0 24137
+IGNvbnZpbmNpbmc= 24138
+c3BhY2U= 24139
+IGVuZm9yY2U= 24140
+IGNvcmVz 24141
+IGVmdGVy 24142
+IHJlY2Vzc2lvbg== 24143
+eGljbw== 24144
+IHByb3Bvc2l0aW9u 24145
+YXJpYW5z 24146
+cm9wb2w= 24147
+IOuqsOs= 24148
+IM6c 24149
+IOyalOymmA== 24150
+IGFjdGl2aXN0 24151
+IGNvbnZpY3Rpb24= 24152
+IHphYg== 24153
+IGNhbmNlbGVk 24154
+0YLQvtGH0L3Qvg== 24155
+IM6u 24156
+bml0ZQ== 24157
+IGZ1bmRyYQ== 24158
+YnV6emVy 24159
+0LXQu9C+ 24160
+aWNhdGlvbnM= 24161
+IHpvbmE= 24162
+IHRlZW5z 24163
+IG1ldGhvZG9sb2d5 24164
+IOykkeyalA== 24165
+dGhhbg== 24166
+IFVs 24167
+IEdyZXk= 24168
+IGhvZw== 24169
+SU5L 24170
+IFN1bmc= 24171
+IENsYXVk 24172
+IENOTg== 24173
+IGRlbGl2ZXJz 24174
+YWxpbg== 24175
+IEFkb2Jl 24176
+b3RoZQ== 24177
+IERlc3dlZ2Vu 24178
+4Liz 24179
+IHdlcmRl 24180
+IGdyZWFzZQ== 24181
+IHVwZ3JhZGVz 24182
+IEZpbmxhbmQ= 24183
+YWNjZXB0 24184
+IGludGVycm9n 24185
+YmVl 24186
+IHByZWRl 24187
+IE5lcA== 24188
+IENhbWJyaWRnZQ== 24189
+IGdyYXBocw== 24190
+IGhhdW50ZWQ= 24191
+0YHQtdC8 24192
+5qc= 24193
+U29tZQ== 24194
+IE1hbGw= 24195
+IHJlaGVhcnNhbA== 24196
+IFVyYmFu 24197
+IExhZw== 24198
+IG5pbQ== 24199
+6rCV 24200
+IHBvc2l0aW9uZWQ= 24201
+IGF2b2lkZWQ= 24202
+RU1B 24203
+IGxsZWdhcg== 24204
+IHLDoXBpZG8= 24205
+IGdvdXZlcm4= 24206
+IGhpbmc= 24207
+IGRlYWxlcg== 24208
+IHJlZm9ybXM= 24209
+IGZhdHR5 24210
+0LrQvtC7 24211
+IEFjZQ== 24212
+IG5lcA== 24213
+IOyyrQ== 24214
+IGNvbXB1dGF0aW9u 24215
+IFN0cmVhbQ== 24216
+Ym91cm5l 24217
+dHVy 24218
+UG9y 24219
+IHNsZWVweQ== 24220
+IGJhbmdldA== 24221
+IHdlaWdocw== 24222
+IGJsZWliZW4= 24223
+IEdyZW4= 24224
+IHVuaW9ucw== 24225
+IOq1kA== 24226
+IGFwcmVuZGVy 24227
+dWl0YXI= 24228
+IEplc3Q= 24229
+dW1pbmc= 24230
+IFBsYXllcg== 24231
+IEV4dHJlbQ== 24232
+IGludGVnZXI= 24233
+0LDRh9C1 24234
+IGNvbmNlcnRz 24235
+15XXmw== 24236
+IHRyb2NoxJk= 24237
+IFJlcGU= 24238
+4LmC 24239
+xbxlbg== 24240
+IHNvdW5kaW5n 24241
+IGFub255bW91cw== 24242
+IGV4Y2E= 24243
+IElyYW5pYW4= 24244
+IGVuZXJnZXRpYw== 24245
+IHdpdmVz 24246
+INGG0LLQtdGC 24247
+IGFpcw== 24248
+IHN1ZGFo 24249
+IHVuZGVyd2Vhcg== 24250
+IGNydW5jaHk= 24251
+IFBhaW4= 24252
+IGdlcsOnZWs= 24253
+cmVkaWN0 24254
+IG1pc21h 24255
+0ZbRgg== 24256
+IHN1cnZpdmluZw== 24257
+zq3Pgg== 24258
+IHBhcnRpY2lwYW50 24259
+IEhlc3Nlbg== 24260
+w6FyaWFz 24261
+IHN1YndheQ== 24262
+aXN0w6Q= 24263
+IGNvcmFs 24264
+IG1hcmlqdWFuYQ== 24265
+IE1lbW9yaWFs 24266
+0YjQuNC5 24267
+cml6 24268
+IHNhdGVsbGl0ZXM= 24269
+IGxlYXNl 24270
+IENhbWVyb24= 24271
+dW1waA== 24272
+IGNsYXNzbWF0ZXM= 24273
+w6Row6Ru 24274
+0YHRgtCy0LU= 24275
+IGh1ZQ== 24276
+k6TsnYQ= 24277
+IHByb3BvcnRpb25hbA== 24278
+IG5vc3M= 24279
+IGxhcHM= 24280
+csOl 24281
+IGJpdGNvaW4= 24282
+0JfQq9Ca0JA= 24283
+IOy2qQ== 24284
+INmE2YQ= 24285
+IE1vcnQ= 24286
+IEVzcA== 24287
+YXJub3M= 24288
+INGB0LrQsNC30LDQuw== 24289
+IMOkbmQ= 24290
+15nXmded 24291
+IEdlYg== 24292
+Z2VoZW4= 24293
+SW5hdWRpYmxl 24294
+Ym9yb3VnaA== 24295
+0YTRhA== 24296
+IGZlbGxvd3NoaXA= 24297
+IFBhcGVy 24298
+IGN1cnZlZA== 24299
+IEdFT1I= 24300
+IGNhbGN1bGF0b3I= 24301
+IENhdGFs 24302
+IHbDoG8= 24303
+IGJ5cGFzcw== 24304
+0LvQtdGC 24305
+4LM= 24306
+dHJhbnM= 24307
+cmVuY2llcw== 24308
+7KGM 24309
+aWdlbnQ= 24310
+IHRhc3RlZA== 24311
+IG9jZWFucw== 24312
+dWZ0 24313
+ZXJ2aWNl 24314
+INCc0KPQl9Cr0JrQkA== 24315
+IENsYXNzaWM= 24316
+IHJlc3BlY3RpdmVseQ== 24317
+fik= 24318
+w650cmU= 24319
+IE5hc2g= 24320
+IHppdA== 24321
+IOybgw== 24322
+IOuGkg== 24323
+cXVvdGU= 24324
+IFVucw== 24325
+IHRhYw== 24326
+IHByb3Zlcw== 24327
+IFBvcnRsYW5k 24328
+Ymx5 24329
+IGVyZQ== 24330
+7LaU 24331
+IMOpcG9jYQ== 24332
+INGC0YvRgdGP0Yc= 24333
+NzY= 24334
+IGhhZGU= 24335
+IEZybw== 24336
+IHBvbMOtdGljYQ== 24337
+dGFn 24338
+IO2VrQ== 24339
+IHNjaMO2 24340
+YXJldHQ= 24341
+IHByb3Zpc2lvbnM= 24342
+IG1vdG9ycw== 24343
+IGltYWdpbmc= 24344
+IGRvaw== 24345
+dWxvdXNseQ== 24346
+IG1laWxsZQ== 24347
+65A= 24348
+IElTTw== 24349
+IFNURU0= 24350
+IEJvd2w= 24351
+IHRvd2Vycw== 24352
+IEVl 24353
+IFBlcmZvcm1hbmNl 24354
+IGxvaW4= 24355
+Y3Vzc2lvbg== 24356
+IGNvYXN0YWw= 24357
+aWFsZQ== 24358
+Y29tcGFzcw== 24359
+IHNwZWxscw== 24360
+IGRpc2FwcG9pbnRpbmc= 24361
+IOuyiOynuA== 24362
+RUVS 24363
+IHZlcnNhdGlsZQ== 24364
+YXN1cnk= 24365
+IGVuZmlu 24366
+IGRvd25zaWRl 24367
+IGd1aWRpbmc= 24368
+INin2YTZgg== 24369
+IG5pbmV0eQ== 24370
+Y2hhcmdlZA== 24371
+IEZhbnM= 24372
+IHBoaWxvc29waGljYWw= 24373
+IGdhcm4= 24374
+IG3DpW5nYQ== 24375
+IHdpbGxpbmduZXNz 24376
+IHBvcnRpb25z 24377
+YWJlbg== 24378
+IO8= 24379
+wr8= 24380
+cmF1bA== 24381
+IHNwcmludA== 24382
+aWZlbg== 24383
+xLF5bGE= 24384
+INC60YPQvw== 24385
+IGVuc3VpdGU= 24386
+IENhcGl0b2w= 24387
+IDYz 24388
+INCz0L7QstC+0YDQuNGC 24389
+IGFwcG9pbnRtZW50cw== 24390
+b21pYXN0 24391
+IGNhcmVn 24392
+IHB1Ymxpc2hlcg== 24393
+IGhlcmF1cw== 24394
+IM61zq8= 24395
+IFZT 24396
+IHNhY3JpZmljZXM= 24397
+dGhpcmQ= 24398
+IGh1bWFuaXRhcmlhbg== 24399
+IOuCtOw= 24400
+aW1vbg== 24401
+IGluZXF1 24402
+IHpvYg== 24403
+IGNvbWZvcnRhYmx5 24404
+IERpbmdl 24405
+IGNhbmNlbGxlZA== 24406
+IFBTQUtJ 24407
+IFJvYmluc29u 24408
+IGZpbnM= 24409
+KT8= 24410
+IEhpc3Rvcg== 24411
+INGH0LXQu9C+0LLQtdC60LA= 24412
+IHRic3A= 24413
+dGV4dA== 24414
+a2lt 24415
+IHVwZGF0aW5n 24416
+IGdlbGQ= 24417
+ZmVsZA== 24418
+j7w= 24419
+IG3DpA== 24420
+IGNhZsOp 24421
+1oA= 24422
+IFNyaQ== 24423
+IFJlZ2lvbg== 24424
+IEhhaGFoYQ== 24425
+IGZpbmFuY2Vz 24426
+INin2YTYtA== 24427
+IGJ1bms= 24428
+cnVr 24429
+aGFmdA== 24430
+IGxhdGVyYWw= 24431
+IGV4dGVuc2lvbnM= 24432
+IOyVhOydtA== 24433
+IGRlZmluaXRl 24434
+IFpoYW8= 24435
+IEx1aXM= 24436
+c3R5 24437
+IGNhc29z 24438
+IEtsaW0= 24439
+IDE5OTM= 24440
+IHJlYWxpemF0aW9u 24441
+IGhpc3Rvcmlhbg== 24442
+IGNyYWNrZWQ= 24443
+64K0 24444
+IHN5c3TDqG1l 24445
+IENJQQ== 24446
+INGC0LLQvg== 24447
+b3NwaGVyaWM= 24448
+IGZsZWU= 24449
+IHLhuqV0 24450
+IFJlZ2FyZGxlc3M= 24451
+IHJlbHVjdA== 24452
+IHRpbWVseQ== 24453
+IEp1bGlhbg== 24454
+R00= 24455
+6ZI= 24456
+YWR1cmE= 24457
+IGRyZXNzZXM= 24458
+IOuUlA== 24459
+IG5vbWluYXRlZA== 24460
+IGFkdm9jYXRlcw== 24461
+eW1waA== 24462
+IHJlY29yZGluZ3M= 24463
+IGRldmlhdGlvbg== 24464
+IHByaW9yaXRpemU= 24465
+IHNwaXJhbA== 24466
+IFlPVVI= 24467
+IHRyYW5zcG9zZQ== 24468
+YW1wb28= 24469
+IOybkOuemA== 24470
+IFZpc2lvbg== 24471
+IHBvbGl0ZQ== 24472
+IGhhbWI= 24473
+IFBhdGllbnQ= 24474
+7YGs6w== 24475
+IHNpYQ== 24476
+IOqzsw== 24477
+IMW+ZQ== 24478
+IHN1cGVybWFya2V0 24479
+67k= 24480
+IFNpZXJyYQ== 24481
+IGdyaWxsZWQ= 24482
+IFVwb24= 24483
+IGFic2VudA== 24484
+IG1lYw== 24485
+IEFwb2xsbw== 24486
+IHB1bms= 24487
+IFBhxYRzdA== 24488
+INGB0LLQvtC5 24489
+IOqxsOq4sA== 24490
+R2lybA== 24491
+IHNraW5ueQ== 24492
+IFByZW1pZXI= 24493
+IHRlcnJpdG9yaWVz 24494
+IGxpYWJpbGl0eQ== 24495
+IGplcms= 24496
+cmF0aWM= 24497
+IGRhbmNlcnM= 24498
+INGD0YDQvtCy 24499
+IOq0gOs= 24500
+b25seQ== 24501
+IFN0dQ== 24502
+IHNrZWxldG9u 24503
+IOutkOs= 24504
+INC30LDQutC+0L0= 24505
+xLFrdA== 24506
+IE1JS0U= 24507
+IGzDtg== 24508
+bWll 24509
+IHJlaXRlcg== 24510
+IEtvbGxlZw== 24511
+IEFkYW1z 24512
+bGljaGVy 24513
+IMOnb2N1aw== 24514
+0Y/Qsw== 24515
+IGJsdXNo 24516
+IHN1bnNoaW5l 24517
+IGV6 24518
+IERldmls 24519
+IOq4uA== 24520
+YWRk 24521
+IGxpY2Vuc2Vk 24522
+IHZpbnls 24523
+IEN6ZWNo 24524
+aW1hZw== 24525
+IGNyYWNraW5n 24526
+IOy6 24527
+IHVkYWg= 24528
+IHNvbW1lcw== 24529
+IOyWvOq1 24530
+d2HEhw== 24531
+IGZyZXM= 24532
+IFdhbG1hcnQ= 24533
+INCi0LXQv9C10YDRjA== 24534
+YXRpc2Y= 24535
+Q0k= 24536
+bGFuZw== 24537
+IGRpZmZ1c2lvbg== 24538
+IHNvbW9z 24539
+IE1ha2Vz 24540
+IFJpY2t5 24541
+IG11Y2hh 24542
+7ZWo 24543
+IGhvcnNlcG93ZXI= 24544
+YXNpYQ== 24545
+IGZpYmVycw== 24546
+IGVybQ== 24547
+0YHQutC40LU= 24548
+IGplc3Rl 24549
+IGZpcmVmaWdodA== 24550
+IGN1aXNpbmU= 24551
+IGJlc29uZGVycw== 24552
+ZGln 24553
+IOyihQ== 24554
+INGD0LY= 24555
+IHRyYWNpbmc= 24556
+IGNlcnRhaW5z 24557
+IEFwcGx5 24558
+0YvQstCw0YLRjA== 24559
+54w= 24560
+IGJydQ== 24561
+IFlFUw== 24562
+IEJhaQ== 24563
+IERpdA== 24564
+IEJpcw== 24565
+IHVubGU= 24566
+0YHRgtCw0YLQvtGH0L3Qvg== 24567
+IEF3YWs= 24568
+Li4i 24569
+IDEyNQ== 24570
+IHJvb3RlZA== 24571
+IGNhdXRpb3Vz 24572
+Y29uc3Q= 24573
+IG9yY2hlc3RyYQ== 24574
+INCy0L3Rg9GC 24575
+IHF1ZWxxdQ== 24576
+INC+0YLQstC10YI= 24577
+IE1ldGhvZA== 24578
+7Lmc 24579
+IM68zrHPgg== 24580
+bMO8 24581
+IOyVhOq5jA== 24582
+IG5hbWluZw== 24583
+Q2hhcg== 24584
+IFNpY2hlcg== 24585
+IHByaXZpbGVnZWQ= 24586
+IEZseQ== 24587
+4bqtdA== 24588
+IGFkdmFuY2Vz 24589
+IFplbGRh 24590
+IGFuZHJh 24591
+IGdyaW5kaW5n 24592
+IEVkaXRpb24= 24593
+cGY= 24594
+IHdhcnJpb3Jz 24595
+IGhlZGdl 24596
+IHVuc2VyZW4= 24597
+INGB0Y7QtNCw 24598
+ZWxpbmVzcw== 24599
+IHBlcnNvbmFsaXRpZXM= 24600
+IGbDtg== 24601
+J00= 24602
+INGC0L7Rh9C90L4= 24603
+IHNoaXBwZWQ= 24604
+IG1ldGVvcg== 24605
+IHN1cnJvdW5kaW5ncw== 24606
+IEZpbGw= 24607
+dWVzdGE= 24608
+IFBlcnNvbmFs 24609
+IEFsbGU= 24610
+T1JU 24611
+IFNjaGU= 24612
+Vkk= 24613
+IGNvbXBhcmFibGU= 24614
+ZGFtbg== 24615
+IGRpdGNo 24616
+WUFO 24617
+aXNtdXM= 24618
+IHBpY2t1cA== 24619
+IGRhaw== 24620
+IEVQ 24621
+YmVzdA== 24622
+IFN1ZQ== 24623
+w6RsbHQ= 24624
+IHBvcGNvcm4= 24625
+IGZvbGRpbmc= 24626
+aG9tZQ== 24627
+0LjQstCw0LXRgg== 24628
+IGFubm90 24629
+Y2h1Y2s= 24630
+IGZpZXJjZQ== 24631
+IGRhbWFnaW5n 24632
+IGZsb3A= 24633
+IHBhc2Fy 24634
+IHJlZWY= 24635
+INGB0LLQvtC10Lk= 24636
+IHpvbw== 24637
+b3ZlcnM= 24638
+amV0cw== 24639
+IHByw6hz 24640
+IFNpbGljb24= 24641
+dGVvaw== 24642
+IFNldGg= 24643
+YXRhbWVudGU= 24644
+IHRyYW5zbWl0dGVk 24645
+IHJlcGxpY2F0ZQ== 24646
+IHNsaW0= 24647
+IENyZWFt 24648
+IHNpZGV3YWxr 24649
+7IiY6w== 24650
+INC20LjQt9C90Yw= 24651
+IE1vbmljYQ== 24652
+IGNvcGllZA== 24653
+IFRlcnJh 24654
+aXN0ZW50 24655
+INC+0L3Qvg== 24656
+IHdoYWxl 24657
+IFdJVEg= 24658
+0LvRg9GI 24659
+IEVlbg== 24660
+INGB0LLQvtC4 24661
+IG9yZGlu 24662
+IHBsdXJhbA== 24663
+IHNwb2tlcw== 24664
+IGRpc3B1dGU= 24665
+IHNlbnNpYmxl 24666
+IHByZWFjaGluZw== 24667
+IGt0w7Nyenk= 24668
+cHRlZA== 24669
+YXZpZXI= 24670
+IHBpc3RvbA== 24671
+IFRhcGk= 24672
+IMWC 24673
+ZmZmZg== 24674
+IGFjcnlsaWM= 24675
+IGlnbm9yYW5jZQ== 24676
+IFppZWw= 24677
+cmFucw== 24678
+IHdlbGRpbmc= 24679
+bWlk 24680
+INC30LDQvdC40Lw= 24681
+IGxhbmVz 24682
+IG1pbmVz 24683
+IG1vbXM= 24684
+15XXlw== 24685
+IENoYW1iZXI= 24686
+dGllcg== 24687
+IG1vZGVzdA== 24688
+IOyXrOq4sOyEnA== 24689
+IHVuYXM= 24690
+IHdyZW5jaA== 24691
+aGFuZGVk 24692
+IHNhdHVyYXRlZA== 24693
+IEZhbmc= 24694
+IENvbW1pc3Npb25lcg== 24695
+4KSw 24696
+INeW 24697
+IExvdWlzaWFuYQ== 24698
+IE1hc2s= 24699
+IGN1YmVz 24700
+7JSo 24701
+IHZpZMOpb3M= 24702
+IG7DpWdvbg== 24703
+IHJpZGVy 24704
+IOy2nA== 24705
+IHPDs24= 24706
+IExhdGlubw== 24707
+YmFuaw== 24708
+7ZW07KO8 24709
+IEJyZW5k 24710
+IHNleHVhbGl0eQ== 24711
+Li4uLA== 24712
+IGZvcmdldHRpbmc= 24713
+INuM 24714
+IEF2ZW5nZXJz 24715
+IEJvbmpvdXI= 24716
+Y2Vzc29y 24717
+0LrRgNCw0Zc= 24718
+Y2VuY2U= 24719
+IGdlb2dyYXBo 24720
+Y3Vsbw== 24721
+0L7RgdGC0Yw= 24722
+IHN3ZWF0aW5n 24723
+7YOA 24724
+IHN5bW1ldHJ5 24725
+dHPDpQ== 24726
+IGphbg== 24727
+IEZlcnI= 24728
+IGFtYmFzc2Fkb3I= 24729
+emnEmWs= 24730
+IG11c3Vu 24731
+INGD0YI= 24732
+IExH 24733
+aXNzZW50 24734
+Y29tbXVu 24735
+IGNvdXJz 24736
+IGRldmVsb3Bz 24737
+IGJyb256ZQ== 24738
+IHN1YnN0YW5jZXM= 24739
+ZHJpdmVu 24740
+7KO87IS47JqU 24741
+IGFvcw== 24742
+IFBST0ZFU1M= 24743
+aGFsZg== 24744
+IHNvcnRlZA== 24745
+IEJvbWI= 24746
+0LvQsNCz 24747
+IE1hbGF5c2lh 24748
+IENocmlzdGluYQ== 24749
+IHRlYW1tYXRl 24750
+RlQ= 24751
+IGvEsQ== 24752
+aGVhcnRlZA== 24753
+Kys= 24754
+b2dlbmlj 24755
+IGJlbGxz 24756
+IE91YWlz 24757
+IHNwZWNpYWxpc3Rz 24758
+0LHRiw== 24759
+ZGVwdGg= 24760
+bGFzc2Vz 24761
+Z2llcw== 24762
+IENvZmZlZQ== 24763
+IG1hcmtpbmc= 24764
+IGZvbGw= 24765
+dWxp 24766
+IGFkaGVzaXZl 24767
+IEJvdA== 24768
+IFB1bmt0 24769
+ZXll 24770
+IEJ1Yg== 24771
+ZWxvbmc= 24772
+INC/0YDQuNC6 24773
+IGRvbm9y 24774
+ODQ= 24775
+IGVuZm9y 24776
+IGNhdGNoZXM= 24777
+IGJyaWNrcw== 24778
+IGtuaXR0aW5n 24779
+IEtub3dpbmc= 24780
+b2tz 24781
+SFk= 24782
+cmlkZQ== 24783
+IEZhbnRhc3k= 24784
+aW1hbg== 24785
+IHBzZQ== 24786
+IOyYqA== 24787
+INCy0LQ= 24788
+IHJlc3RyYQ== 24789
+IGV2YWx1YXRlZA== 24790
+0YDQtdCy 24791
+IGZvcnR1bmF0ZWx5 24792
+IGNoZWdhcg== 24793
+2LHYqA== 24794
+IGRvbWFpbnM= 24795
+aWJp 24796
+YXJyeQ== 24797
+IHNodXR0ZXI= 24798
+IGZpY291 24799
+TWlrZQ== 24800
+IGluY2x1 24801
+IGRvbm9ycw== 24802
+IGFwbA== 24803
+IExvd2Vy 24804
+IGltcG9ydGVk 24805
+IGFjYWRlbXk= 24806
+IGZpbmFscw== 24807
+IGRpc2FwcGVhcnM= 24808
+2YrYpw== 24809
+IGFkbWluaXN0cmF0b3I= 24810
+anM= 24811
+IGN1dHRlcg== 24812
+IHJhbmdpbmc= 24813
+w7ZycGVy 24814
+IGNvbnN0cmFpbnQ= 24815
+IFRhYmxl 24816
+IFNoYW4= 24817
+dmlj 24818
+IEZpeA== 24819
+IFN3aWZ0 24820
+b3VuY2Vz 24821
+IFdhcnVt 24822
+IGxldHR1Y2U= 24823
+YXBwZWxsZQ== 24824
+IHNoYXZl 24825
+IGLDoXM= 24826
+IDc3 24827
+IE9vbw== 24828
+YW8= 24829
+IE1jTQ== 24830
+IERyZXc= 24831
+IGx1bXA= 24832
+IGxhc2hlcw== 24833
+c2NoZWlubGljaA== 24834
+UmVw 24835
+aW5pcw== 24836
+IENldHRl 24837
+IGNvbXBvc2l0ZQ== 24838
+ZW1ldGVyeQ== 24839
+IHNvcnRl 24840
+IEZpbmFuY2lhbA== 24841
+0L7QvdC1 24842
+cm9uZXM= 24843
+IFZveQ== 24844
+IHTDqWM= 24845
+oLk= 24846
+IE5pbmph 24847
+IENvcmlu 24848
+0LXQvdC90Y8= 24849
+7J207JeI 24850
+IG5pY2g= 24851
+IGRldGVjdGl2ZQ== 24852
+4oCmIg== 24853
+z4POtQ== 24854
+nbzrj4Q= 24855
+IOuzgA== 24856
+IOu4lOs= 24857
+IHByb3Bl 24858
+IFdyaWdodA== 24859
+INeU16o= 24860
+IFNoaQ== 24861
+IGludmVzdGlnYXRpb25z 24862
+IFBvd2VyUG9pbnQ= 24863
+IENodQ== 24864
+IOyYpO0= 24865
+IOyZhOyghA== 24866
+IEZyYWdlbg== 24867
+dW5uaW5n 24868
+IHBvdXJyYWl0 24869
+IHRleHRib29r 24870
+0LzRiw== 24871
+IGZhaHJlbg== 24872
+INGC0L7RgA== 24873
+IGxha2Vz 24874
+w7xuZGU= 24875
+SW50 24876
+IE1ldHJv 24877
+IG1hbnNpb24= 24878
+INCw0LE= 24879
+IFpob3U= 24880
+IGNvcnJpZG9y 24881
+IGVzY29s 24882
+IGluZGljYXRpbmc= 24883
+aWHFgmE= 24884
+IG1vbW15 24885
+IGFyY2hpdmVz 24886
+IGZvdW5kZXJz 24887
+ZW5naW5l 24888
+IERpZXU= 24889
+IHNpY2tuZXNz 24890
+IOuztOuLiOq5jA== 24891
+IGFyYg== 24892
+IG5lZA== 24893
+IENob3A= 24894
+IGNvdmlk 24895
+IHNsYW0= 24896
+IHB1YmxpY2F0aW9ucw== 24897
+REM= 24898
+IHNwZW5kcw== 24899
+5r4= 24900
+IHJlZnVnZWU= 24901
+IGRpbGU= 24902
+INeQ15Y= 24903
+aWZpY2Fy 24904
+IFNhY2g= 24905
+R3U= 24906
+IHJlbG9hZA== 24907
+Pz8/Pw== 24908
+IGplxZtsaQ== 24909
+INGB0L7RgdGC0L4= 24910
+IHNpbXBsaWNpdHk= 24911
+IGJ1bGx5aW5n 24912
+INC80L7Quw== 24913
+IHJlYWxpZGFk 24914
+IHVuY2xlYXI= 24915
+YXBwYQ== 24916
+bGV2YW50 24917
+IElTSVM= 24918
+IFdhdHNvbg== 24919
+IGRlaW4= 24920
+IE1pY3Jv 24921
+7ZWc6w== 24922
+w7xn 24923
+IGRldmFt 24924
+IHR3ZWV0ZWQ= 24925
+IHVuZGVyc3RhbmRhYmxl 24926
+YXRhbg== 24927
+IHZlcnNh 24928
+IHByZWNh 24929
+IHbhu4E= 24930
+IENvcHk= 24931
+IE9yYWNsZQ== 24932
+IG1pbmRmdWxuZXNz 24933
+IGRpc2NyZXQ= 24934
+ZXJuZW4= 24935
+IFBsZQ== 24936
+SGF2ZQ== 24937
+IGlzb2xhdGU= 24938
+IGRldQ== 24939
+IHNldmVudHk= 24940
+IEhpbGxz 24941
+IGFyY2FkZQ== 24942
+INGB0L/QtdGG0Lg= 24943
+IHNpZ3VpZW50ZQ== 24944
+IELDnE5ETklT 24945
+bGlnYQ== 24946
+INCy0YHRgtGA0LXRhw== 24947
+w7Rt 24948
+IHR3ZWV0cw== 24949
+IHNjaGF1ZW4= 24950
+IGNyaXRpcXVl 24951
+IPCfjrU= 24952
+IHN0YXR0 24953
+INGB0LDQvNC+0LU= 24954
+w6JuY2lh 24955
+IHN1cGVybmF0dXJhbA== 24956
+IHBsdWdnZWQ= 24957
+Rmw= 24958
+eW7EsQ== 24959
+IFRhbWJpw6lu 24960
+IGVuY291cmFnZW1lbnQ= 24961
+IFNlcnZlcg== 24962
+64Kc 24963
+dXBh 24964
+IGFzdG9u 24965
+IGhlYXJz 24966
+0YDQsNGF 24967
+IHNjaGU= 24968
+IHJhdHM= 24969
+IHJlY3VwZXI= 24970
+IHVudGVu 24971
+IEZpZ2h0aW5n 24972
+IGFjYWRlbWljcw== 24973
+IFPDvA== 24974
+0YHQutC40YU= 24975
+IHBhaXJlZA== 24976
+gOydhA== 24977
+IMOhcmVh 24978
+IHN3ZWV0bmVzcw== 24979
+IGRlZmVy 24980
+IG11aXRhcw== 24981
+IEF1ZGlv 24982
+IGxvY2tlcg== 24983
+2YrYrw== 24984
+INGB0YLQsNCy 24985
+IGJ1ZW5h 24986
+QU5T 24987
+IGRldGVjdG9y 24988
+YXZv 24989
+YmVr 24990
+IM6xzr0= 24991
+7Y64 24992
+IGRyYWdnZWQ= 24993
+INC00L7Qu9C20LXQvQ== 24994
+w5Y= 24995
+2LHYqQ== 24996
+7J207KeA 24997
+IGNlbGxl 24998
+Y2tpbmc= 24999
+INin2YTYrA== 25000
+IENhbnZhcw== 25001
+IGVzcGHDsQ== 25002
+IGdsaW1w 25003
+IHNwcmVhZHM= 25004
+b25nbw== 25005
+IE1hc29u 25006
+IEluZw== 25007
+IOqwgOuKpQ== 25008
+z4TOuc66 25009
+IHNlY3VsYXI= 25010
+IGJhdGVy 25011
+IGlucXVpcnk= 25012
+IGVuZXJnaWVz 25013
+IG1hbnVmYWN0dXJlZA== 25014
+IHZlZ2V0YXJpYW4= 25015
+IHBpbmVhcHBsZQ== 25016
+0Y/RgtCw 25017
+IHByYWN0aXRpb25lcnM= 25018
+MjAwMA== 25019
+IO2VtOyalA== 25020
+IOyXrOufrOu2hOuTpA== 25021
+IOu2iOs= 25022
+IEplZmZlcnNvbg== 25023
+IEpvYW4= 25024
+IHRyYW0= 25025
+Y2htYWw= 25026
+IEhhaXQ= 25027
+4bmH 25028
+IHVucmVhbA== 25029
+IHN5bWJvbGlj 25030
+IHN0ZWFsdGg= 25031
+IHNwbGFzaA== 25032
+IEVudGVydGFpbm1lbnQ= 25033
+IG1ldGFsbGlj 25034
+PyIu 25035
+YXJvdW5k 25036
+IGRlc3BhaXI= 25037
+IE5ldmFkYQ== 25038
+IEZpbmFuY2U= 25039
+IGtyaWU= 25040
+IEx1eA== 25041
+IFNtYXNo 25042
+a2VlcGluZw== 25043
+INC30LDQsw== 25044
+IG5hcmNpc3M= 25045
+IGR6aXNpYWo= 25046
+IHRvbGVyYXRl 25047
+b2FyZA== 25048
+IGxpbmtpbmc= 25049
+IEVjb25vbWlj 25050
+IOy8 25051
+IG1vcnBo 25052
+IE5haw== 25053
+IEJha2Vy 25054
+YXRvbg== 25055
+cmluZ3M= 25056
+IFBlbmc= 25057
+IEFpcnBvcnQ= 25058
+7ZWY64uk 25059
+p4E= 25060
+cHJpbnRz 25061
+IGhhZGk= 25062
+IGVtcGly 25063
+IExpdmVz 25064
+YW5uZXJz 25065
+INC90LjQvA== 25066
+IFBST0ZFU1NPUg== 25067
+IHBvc2l0aXZlbHk= 25068
+YW50b20= 25069
+IGJhZGdl 25070
+a2VsdA== 25071
+IGludGVyZmVy 25072
+IGZ1bGZpbGxpbmc= 25073
+IHZpc3VhbGl6YXRpb24= 25074
+IFByaWNl 25075
+77+977+9 25076
+IHNjZW5lcnk= 25077
+IHByb25l 25078
+IHdpemFyZA== 25079
+IGJhbnlhaw== 25080
+dmVyYg== 25081
+c2t5 25082
+IHdpc2hlZA== 25083
+IHJhaWx3YXk= 25084
+IMO8emVy 25085
+IGFsZ3VpZW4= 25086
+IEFX 25087
+INC60L7Qu9C40YfQtQ== 25088
+IHJlYWN0aW5n 25089
+IEJ1Y2g= 25090
+4Li2 25091
+IGFudGg= 25092
+IHNpaA== 25093
+IGh1c3Q= 25094
+IFNjcmVlbg== 25095
+aWxhbnQ= 25096
+YWhv 25097
+IGZyYWdyYW5jZQ== 25098
+IGVsZXZhdGlvbg== 25099
+IE1lZGl0ZXI= 25100
+IOu/ 25101
+IMOpcXU= 25102
+IHdyYXBz 25103
+IGluZXJ0 25104
+IHJlY3JlYXRl 25105
+0LvQsNGC 25106
+IGJvbGVo 25107
+IGhhcmFzc21lbnQ= 25108
+dW5reQ== 25109
+IGdsaW1wc2U= 25110
+cmVnaWVydW5n 25111
+IGZ1dHVy 25112
+IHJlcG9zaXRvcnk= 25113
+IGVuZ3Jh 25114
+IHRyYWZmaWNraW5n 25115
+YXNzaXM= 25116
+IFRyZWs= 25117
+IOuyjA== 25118
+IOuniOs= 25119
+IEthYg== 25120
+YW5pdQ== 25121
+Z2l2ZQ== 25122
+IGRpbm9zYXVycw== 25123
+IGZlYXRoZXI= 25124
+IGF0dGl0dWRlcw== 25125
+IHBsdW0= 25126
+IFJT 25127
+IEFuZmFuZw== 25128
+aWxsZXJ5 25129
+IOyKpA== 25130
+TVk= 25131
+IHRyemViYQ== 25132
+IHNraWVz 25133
+IEFq 25134
+dXJhYmxl 25135
+Q1U= 25136
+IFNoYW5l 25137
+IGRlcGFydHVyZQ== 25138
+IFRPTg== 25139
+aWV0ZW4= 25140
+cmF0cw== 25141
+aXN1 25142
+IGJvcmQ= 25143
+IGludGVyZXN0aW5nbHk= 25144
+b3VnaGluZw== 25145
+IHJ1c2hpbmc= 25146
+IHZvbGF0aWxpdHk= 25147
+IHB5dA== 25148
+IGZvcm1hdHM= 25149
+INC30LDRgg== 25150
+IOq8rQ== 25151
+IHdoYXRub3Q= 25152
+IGNvbXBvcnQ= 25153
+c3c= 25154
+b3JlYW4= 25155
+IFJlbGF4 25156
+IGNsYW4= 25157
+IEFI 25158
+IHBldw== 25159
+IGRpY3Rpb25hcnk= 25160
+VGFrZQ== 25161
+c2hpcnRz 25162
+IEh1Z2g= 25163
+INi52YTZig== 25164
+IFBpYw== 25165
+IGVucm9sbGVk 25166
+IGplZG5haw== 25167
+IG9mZmVyaW5ncw== 25168
+IGNvcmF6 25169
+TGlmZQ== 25170
+ICEhIQ== 25171
+IGNsZXI= 25172
+IFZpZGVvcw== 25173
+IFJvZHJpZw== 25174
+IElkZW50 25175
+IFBvcw== 25176
+IFN0YWdl 25177
+IFJhY2U= 25178
+IGVuYWN0 25179
+IEd5 25180
+IEhpc3Bhbg== 25181
+IGRlZmVuY2U= 25182
+IENhbXBiZWxs 25183
+bWF0aWM= 25184
+IHJlbGV2 25185
+IHBlYWNo 25186
+hLjsmpQ= 25187
+IHBhcmFkaXNl 25188
+IGNlcmVtb24= 25189
+IGFubm95ZWQ= 25190
+bGF4 25191
+IGV4cGxvaXQ= 25192
+IGNsYXVzZQ== 25193
+ZWtlcg== 25194
+IEJsb29t 25195
+bmFudA== 25196
+YXRldXJz 25197
+IGhlaWdodHM= 25198
+RXZlbg== 25199
+0YHQvtC9 25200
+IG91dHJhZ2U= 25201
+IFZpZXRuYW1lc2U= 25202
+VFI= 25203
+IGVlcg== 25204
+IGNhbm5vbg== 25205
+IENvbWI= 25206
+kOunjA== 25207
+IOqyg+uPhA== 25208
+IGFjY29tcGxpc2htZW50cw== 25209
+IEFuYWx5dGljcw== 25210
+IHNoYXBpbmc= 25211
+cmVpYmVu 25212
+IGJhY2hlbG9y 25213
+IGZpbmdlcnQ= 25214
+YWNrZWQ= 25215
+IHB5cmFtaWQ= 25216
+IFN0ZXdhcnQ= 25217
+w6FzdA== 25218
+IHN1cnZpdm9y 25219
+IGR1Y3Q= 25220
+IGRlYWxlcnM= 25221
+2LnZhQ== 25222
+0LvQuNC9 25223
+IGVkZQ== 25224
+15XXog== 25225
+INmD2KfZhg== 25226
+IM+Ezrk= 25227
+IGNob29zZXM= 25228
+IE93bg== 25229
+0LPQvtGC0L7Qsg== 25230
+aGlyZQ== 25231
+0LDQu9GM0L3Ri9C1 25232
+INCb0Y4= 25233
+INC+0YHRgtCw0LI= 25234
+dGVjaA== 25235
+IGRyb2l0 25236
+IHN1YmplY3RpdmU= 25237
+ZW5lcw== 25238
+IGRpdmlz 25239
+YXZleg== 25240
+IG1hbmV1dmVy 25241
+4LmE4LiU 25242
+YWRlY2U= 25243
+IEVucw== 25244
+YWNpYWw= 25245
+IFByb3RlY3Rpb24= 25246
+lrQ= 25247
+IGZvcm1hbGx5 25248
+IHd5ZA== 25249
+aW5ndcOpbQ== 25250
+IHppZW0= 25251
+IHJlY3J1aXRpbmc= 25252
+15nXmg== 25253
+bmVt 25254
+IGZvcmJpZGRlbg== 25255
+IEJhcHQ= 25256
+15DXoNeZ 25257
+IHN1YnNldA== 25258
+IE1hZ2F6 25259
+bmVtZW50 25260
+IGFxdWVsYQ== 25261
+cmFnb24= 25262
+IGNvbW1pdHRlZXM= 25263
+IMOpdGFpZW50 25264
+dWRp 25265
+IERhd24= 25266
+IGJvcmU= 25267
+IGNvbXBvc2Vy 25268
+IHdpxJljZWo= 25269
+YW5nYQ== 25270
+IGRpc2xpa2U= 25271
+IERheXM= 25272
+IHBhcmFs 25273
+IG1pZW50cmFz 25274
+IGhlYXZlbnM= 25275
+aGVpZA== 25276
+IHRyYWRlcnM= 25277
+b25jZQ== 25278
+IG1hc2NhcmE= 25279
+IM+Az4HOvw== 25280
+IHdoaXNwZXI= 25281
+IE11c2s= 25282
+IEZhbWlsaWU= 25283
+QWxsYWg= 25284
+IE9saXZpYQ== 25285
+IFByb3M= 25286
+IG9saWth 25287
+aWxpbQ== 25288
+IHLDqXBvbmQ= 25289
+IFBldGVycw== 25290
+IGJpdGVz 25291
+IHZpYw== 25292
+IE5Z 25293
+ZW1wdGlvbg== 25294
+IDQ1MA== 25295
+IHZpc3VhbHM= 25296
+IGxpZXU= 25297
+w7xja2Vu 25298
+IFN0ZWVs 25299
+IEdQ 25300
+d2FpdA== 25301
+IG5vdGljZWFibGU= 25302
+dWNoYQ== 25303
+IHJlaGFiaWw= 25304
+IHJlamVjdGlvbg== 25305
+INGB0LvQtdC00YPRjtGJ 25306
+IHNsaWRlcg== 25307
+IHJlZ2FyZGVk 25308
+IGdyYXZpdA== 25309
+IFJlc2VydmU= 25310
+Y291bnQ= 25311
+IGJyZWVkaW5n 25312
+IGxvbmdl 25313
+YWxlYg== 25314
+IGtuaWdodA== 25315
+INCy0L7QuQ== 25316
+IHByw6lzZW50 25317
+gpjsmpQ= 25318
+IFNwZWNpZmljYWxseQ== 25319
+IHBvc2Vz 25320
+IHZldXJl 25321
+b2theQ== 25322
+ZW1hcw== 25323
+IG1hasSF 25324
+IHdlYmluYXJz 25325
+IGNhbm5hYmlz 25326
+IGRhbWFscw== 25327
+IE5vcnRod2VzdA== 25328
+IHBhZGE= 25329
+IGNyb3dkcw== 25330
+IGZ1dHVyZXM= 25331
+IMOkbg== 25332
+IGNpdmlsaWFucw== 25333
+IFNhY2hlbg== 25334
+5o0= 25335
+IHRyYWNlcw== 25336
+IOuoueqzoA== 25337
+UVU= 25338
+IElG 25339
+YW7EsW4= 25340
+7IK0 25341
+IGJpYmxpY2Fs 25342
+IFZlZA== 25343
+IHN0b3Jpbmc= 25344
+0YDQsNCy0LvRjw== 25345
+IG5hc3Q= 25346
+IGTDtg== 25347
+0YDQvtC/ 25348
+ZWxpYQ== 25349
+IHNpZGV3YXlz 25350
+IFVuZGVyc3RhbmQ= 25351
+IFF1cg== 25352
+IHBlcnBlbmQ= 25353
+IE1pbGxpb25lbg== 25354
+IHdhdGVybWVsb24= 25355
+IERpdmluZQ== 25356
+dWx0dXI= 25357
+YWJvcmQ= 25358
+IHN1Y2Nlc3Nlcw== 25359
+IGhvbWJyZQ== 25360
+IGNhcnA= 25361
+IHN1c2NlcHQ= 25362
+dW5na2lu 25363
+IGtpag== 25364
+dWx1cw== 25365
+2KfYrA== 25366
+IG5vdGNo 25367
+IHBvbHlub21pYWw= 25368
+5ak= 25369
+IMO6bmljbw== 25370
+IHRlbGVzY29wZQ== 25371
+IHBvbGl0aXF1ZQ== 25372
+a2llbQ== 25373
+IM6tzr3OsQ== 25374
+IGFnZ3JlZ2F0ZQ== 25375
+IEdlb2Zm 25376
+IHRyaWw= 25377
+IEdSQQ== 25378
+IHN1YnNjcmliZXI= 25379
+aW1ldA== 25380
+INC00L7Qu9C70LDRgA== 25381
+b3Bpbmc= 25382
+IHRoZXJhcGV1dA== 25383
+IENhbmNlcg== 25384
+IHBhcmFkZQ== 25385
+IGlycmln 25386
+4pmq4pmq 25387
+IGNsZWFyZXI= 25388
+IGJvZw== 25389
+IE1hdXI= 25390
+4Liy4LiH 25391
+IFNoYW5naGFp 25392
+YWNodGU= 25393
+IEtvbA== 25394
+ZWx1amFo 25395
+IGhhdg== 25396
+IENyaW1l 25397
+c2Vr 25398
+IOuhnA== 25399
+aWVubmE= 25400
+IEdvcg== 25401
+6Js= 25402
+INC/0L7RgtGA 25403
+INC60LDQttC10YLRgdGP 25404
+IExpZnQ= 25405
+IFNvcnQ= 25406
+IFBzYWw= 25407
+IHBpbmc= 25408
+k50= 25409
+cGhpcw== 25410
+IEZVQ0s= 25411
+IFN5bg== 25412
+IGJhbWJvbw== 25413
+rOyYgQ== 25414
+Y3V0cw== 25415
+IG1tbQ== 25416
+IGZ1bmt0aW9uaWVydA== 25417
+IF8= 25418
+w61jaW8= 25419
+U3RvcA== 25420
+IGltYWdpbmFyeQ== 25421
+IG5vdGFtbWVudA== 25422
+IEluaXRpYXRpdmU= 25423
+IEt1cnQ= 25424
+IGxvb3Nlbg== 25425
+IGJ1c2Nhcg== 25426
+IHplbGY= 25427
+IHByb3Bz 25428
+IG1vZXRlbg== 25429
+IG1pbGxp 25430
+IGhhbGxz 25431
+IE1hdGNo 25432
+IGJyYWNrZXRz 25433
+IENvdQ== 25434
+INCc0LDRgA== 25435
+SVNB 25436
+IGNpZ2FyZXR0ZQ== 25437
+IGNvbXBldGl0aW9ucw== 25438
+IE1JTg== 25439
+IGJlaMO2 25440
+dm9vcg== 25441
+IHVzdA== 25442
+IFpp 25443
+IE9jYw== 25444
+dWxhdGVz 25445
+IGJhbGxvb25z 25446
+IHByb250bw== 25447
+IE1peQ== 25448
+IEZpbGU= 25449
+INC60LvQsNGB0YE= 25450
+0L3Rg9C7 25451
+IGNlcmVhbA== 25452
+IGluY3JlbWVudA== 25453
+IHJlZmluZWQ= 25454
+cHJpc2luZw== 25455
+IFJG 25456
+IHJlc3BlY3RmdWw= 25457
+IGxvb3Q= 25458
+YXNrZXQ= 25459
+IGRlaXhh 25460
+aW5nbGU= 25461
+IGZ1bmNpb25h 25462
+IFJldmVs 25463
+IHNvYmVy 25464
+IHBlcmZvcm1z 25465
+IEdlbnRsZQ== 25466
+IHJlY2lwaWVudA== 25467
+IEhhdXNl 25468
+IOuD 25469
+RnJvbQ== 25470
+IG1pbmlzdGVycw== 25471
+IHBhcmFkb3g= 25472
+IHRhc3Rpbmc= 25473
+INeU15c= 25474
+IHJldXNl 25475
+IExhbmU= 25476
+INGB0L7QstC10YDRiA== 25477
+IHJlbWVtYmVycw== 25478
+IGZlbWluaXN0 25479
+IGNvbW1pdG1lbnRz 25480
+IHByb2plY3RlZA== 25481
+IGdheg== 25482
+aXlvcnV6 25483
+IG9ibGlnYXRpb25z 25484
+Um8= 25485
+emFy 25486
+IGNodw== 25487
+IEpBTQ== 25488
+IGLEmWTEhQ== 25489
+YXNwYmVycnk= 25490
+INC80LXRgdGC0L4= 25491
+67KV 25492
+IHJlZ3VsYXRlZA== 25493
+IHdpY2h0 25494
+IFRyZXZvcg== 25495
+IHNlY29uZGx5 25496
+IElocmU= 25497
+ZWxzaA== 25498
+IHJlcG9ydGVycw== 25499
+0YLQvtGA0LA= 25500
+b3lv 25501
+R0k= 25502
+IGludGVyY29ubmVjdA== 25503
+T1NI 25504
+IGJyYXNz 25505
+IGlnbm9yaW5n 25506
+aW5mZWN0 25507
+IHByb2pla3Q= 25508
+b3JldA== 25509
+z4TOsc69 25510
+INGC0LjQvw== 25511
+IG11dHRh 25512
+IHVuYm94aW5n 25513
+hLA= 25514
+IGFkdmlzZWQ= 25515
+IERlbnZlcg== 25516
+IHNldmVyZWx5 25517
+IE1obQ== 25518
+IGZsaXBwZWQ= 25519
+IHBpZW4= 25520
+IGtvbW11bg== 25521
+IEZSRQ== 25522
+IOCuh+CusA== 25523
+YWludGVk 25524
+IGtuaXZlcw== 25525
+IGhhYmw= 25526
+IGdld29yZGVu 25527
+YXJldHRlcw== 25528
+Q1M= 25529
+INC80LDQu9C10L3RjA== 25530
+IGdhbGF4 25531
+IG5pbmV0ZQ== 25532
+6rGw64KY 25533
+IHNpcw== 25534
+IGFkdmlzb3J5 25535
+IGRyaWxsaW5n 25536
+IFdvdWxkbg== 25537
+w7xuZg== 25538
+Z2VzdGVsbHQ= 25539
+IEhlbGVu 25540
+INee15A= 25541
+YXBvbGlz 25542
+IHJ6ZWN6eQ== 25543
+IHRlcnJh 25544
+IGhlcA== 25545
+IGFsZ8O6bg== 25546
+aWtr 25547
+IGFzdHJvbm9t 25548
+IFN0YXJidWNrcw== 25549
+a8SF 25550
+IHBhdHJvbA== 25551
+IOy9lA== 25552
+IGdvbg== 25553
+IOOAkA== 25554
+IHNvbnN0 25555
+IGVuY291bnRlcnM= 25556
+IHJldHJvdQ== 25557
+IHNoYXJrcw== 25558
+IGRvcg== 25559
+IFJldmVy 25560
+IGV2YXBvcg== 25561
+IHJlc2Vydm9pcg== 25562
+IGFsbGVnZWQ= 25563
+dWxlcg== 25564
+IHZlcm0= 25565
+IGNvbW1lcmNl 25566
+IGZpdHRlZA== 25567
+Z2Vt 25568
+IHRhY3RpY2Fs 25569
+IGxpdGg= 25570
+aGFk 25571
+IGNhcmJvaHlk 25572
+IGxlbmd0aHM= 25573
+zrnOvw== 25574
+IGRlbW9ncmFwaGlj 25575
+Um9i 25576
+IFNraW4= 25577
+Y2NvbGk= 25578
+IHNpbXBsaWZpZWQ= 25579
+IHJlYWRpbHk= 25580
+IEN1bQ== 25581
+YWRlc2g= 25582
+IETDpQ== 25583
+dXNzdA== 25584
+aWduZQ== 25585
+ZXRvbg== 25586
+IG1lbm9y 25587
+cWk= 25588
+T09N 25589
+4Lit4LiZ 25590
+IHBzeWNoaWF0 25591
+IGVpZ2h0eQ== 25592
+INC80LjQu9C70Lg= 25593
+IFRvYg== 25594
+ZWRv 25595
+IMSR4bq/bg== 25596
+IGNpcmN1aXRz 25597
+IExBVUdI 25598
+aWNpc20= 25599
+ZW1vcg== 25600
+IHJlZ2VuZXI= 25601
+ZWdyZWU= 25602
+IGJ1cmVhdWM= 25603
+IEFsYmVy 25604
+IFdvcg== 25605
+IHJlc2lu 25606
+IGJ5xYJ5 25607
+IElH 25608
+4K+NLA== 25609
+IDc4 25610
+IHdlZWRz 25611
+IE15dGg= 25612
+OTM= 25613
+5r8= 25614
+IOuCmOyZlA== 25615
+w6l2 25616
+4b0= 25617
+w7ZyZW4= 25618
+w6dhcg== 25619
+IFBBVUw= 25620
+IGRpc2FkdmFudA== 25621
+IHBvc2l0aW9uaW5n 25622
+IGNvY2t0YWls 25623
+IGFncmVlcw== 25624
+bm4= 25625
+IFNhbGx5 25626
+TXM= 25627
+IGluaGVyZW50 25628
+IG1vbmV0YXJ5 25629
+IG5hdHVy 25630
+IE5o 25631
+IEltcG9ydA== 25632
+IGxlYmVu 25633
+IHdp 25634
+dXNzeQ== 25635
+IG9iZXM= 25636
+IHdhbmRlcmluZw== 25637
+IOyLoOs= 25638
+xIVkYQ== 25639
+ZXRjaHVw 25640
+IGRpc3Bvc2Fs 25641
+IEpB 25642
+IENlcg== 25643
+emlsbGE= 25644
+IHZpcmdpbg== 25645
+IFNsaWRl 25646
+YW5kZWw= 25647
+IHJpZ2h0ZW91c25lc3M= 25648
+IM6j 25649
+IGlkZWlh 25650
+0LjRgNC+0LLQsNGC0Yw= 25651
+16jXkA== 25652
+Q29tbWVudA== 25653
+IHByZWxpbQ== 25654
+IFZhbGU= 25655
+IOyngOuCnA== 25656
+IFZhbmM= 25657
+T01BTg== 25658
+INC/0ZbQtA== 25659
+IHl1bQ== 25660
+c3RyZQ== 25661
+Y2Vt 25662
+IHBvY3o= 25663
+IGZyYWdtZW50 25664
+INGB0LvRg9GH0LDQtQ== 25665
+IHVuZGVyZ28= 25666
+IEhhbms= 25667
+Y2Vrcw== 25668
+IEZQUw== 25669
+IG9jdXI= 25670
+IGRldGVyaW9y 25671
+IGVtcHJlc2Fz 25672
+UGF1bA== 25673
+ICkpKQ== 25674
+INCy0YDQtdC80LXQvdC4 25675
+IHNjb2xk 25676
+15nXog== 25677
+IHN1c3BlY3RlZA== 25678
+IGFjY2Vzc2luZw== 25679
+IHN1YnN0aXQ= 25680
+IGhpc3RvcmlhbnM= 25681
+INC00LXQu9C+ 25682
+IHNvY2llZA== 25683
+cm9uZQ== 25684
+IHJlZGVu 25685
+IGV4dGVuZHM= 25686
+ZXBoZXJk 25687
+IGJhbGNvbg== 25688
+IFNvbG8= 25689
+IHBvbGl0aWNpYW4= 25690
+0L7Qu9GM0L3Qvg== 25691
+IGlyZ2VuZHc= 25692
+IHRyYXVtYXRpYw== 25693
+IHJhcHBlcg== 25694
+IFJPQkVSVA== 25695
+UmVhbGx5 25696
+IGxpbmV1cA== 25697
+QVNF 25698
+IGNvbnRyYWN0b3I= 25699
+IENvcnBvcmF0aW9u 25700
+Z29y 25701
+IFRvZG8= 25702
+0YHRgtGA0L7QuQ== 25703
+RkJF 25704
+IG5ld3NsZXR0ZXI= 25705
+IGtvxYQ= 25706
+YWx0aWVz 25707
+INC/0YDQuNGH 25708
+IEhlYXZ5 25709
+IHN3b3Jkcw== 25710
+IG1hbmlwdWxhdGlvbg== 25711
+IGZ1bms= 25712
+IHbDpXI= 25713
+IFRhbGliYW4= 25714
+IOuwpQ== 25715
+IGFjbmU= 25716
+w7xyw7w= 25717
+IGRlc3dlZ2Vu 25718
+IER1c3Q= 25719
+IHNpbGlj 25720
+IGhvb2tz 25721
+IGJsaWo= 25722
+IHBldGl0cw== 25723
+IGZpbG1l 25724
+IEJlcmVpY2g= 25725
+IFNhaWQ= 25726
+IGltcG9zZWQ= 25727
+IGRpYXJ5 25728
+INCz0L7RgA== 25729
+IEdhdGVz 25730
+IGFsdGE= 25731
+IGNoY2lh 25732
+cGxlYXNhbnQ= 25733
+IOuwnQ== 25734
+IG1vxbxlbXk= 25735
+IEF1c3RyaWE= 25736
+IGJyb2tlcg== 25737
+IHN1Y2tlZA== 25738
+IGNvbXBhcnRtZW50 25739
+IGNsb25l 25740
+INeU16I= 25741
+IERhbmtl 25742
+IG5vY2htYWw= 25743
+0LXQt9C0 25744
+IGFkcmVuYWw= 25745
+IGtsZWluZW4= 25746
+IHN1YnNlcXVlbnRseQ== 25747
+IGRlY2VudHJhbA== 25748
+IGdlbmV0aWNz 25749
+IOq0kQ== 25750
+IG1vbml0b3Jz 25751
+IEFwcGxpYw== 25752
+IFJlcG9ydGVy 25753
+d2VydA== 25754
+IHdpZW0= 25755
+IE1vdmVtZW50 25756
+IGludGVydmlld2luZw== 25757
+IGhhaXJz 25758
+IHB1w7I= 25759
+IENoZWxzZWE= 25760
+IGNvaGVy 25761
+IGNvdA== 25762
+IHphcw== 25763
+IHBhdGNoZXM= 25764
+IGxhaA== 25765
+0YPQvdC6 25766
+IFJlYWdhbg== 25767
+IE1hcmNv 25768
+Y2l0eQ== 25769
+IGRlZmVuZGVy 25770
+IGRlY29yYXRpb24= 25771
+aWpp 25772
+IGxpdHRlcg== 25773
+0Kg= 25774
+IGplZ28= 25775
+UkVX 25776
+IFBpaw== 25777
+IEhlZQ== 25778
+IEl2 25779
+INC40LTQtQ== 25780
+IFRoZWF0ZXI= 25781
+INGH0LDRgdGC0L4= 25782
+IHN3ZWF0ZXI= 25783
+IGhpZ2hsaWdodGluZw== 25784
+IGFpbnNp 25785
+IGRpcGxvbWF0aWM= 25786
+IE5ldmVydGhlbGVzcw== 25787
+5bM= 25788
+QVNPTg== 25789
+IHDDumJsaWNv 25790
+IGZlcm0= 25791
+cmVhdGVk 25792
+Y29k 25793
+IOusvOs= 25794
+IG1pc3Rlcg== 25795
+IFZhbmNvdXZlcg== 25796
+IHJlY29nbml6ZXM= 25797
+ZWNk 25798
+IGNvbXBsaWNhdGlvbnM= 25799
+ZW5jaWFs 25800
+IOqwgOyngA== 25801
+IFVsdGltYXRl 25802
+IHZhaWc= 25803
+IE1lcnJ5 25804
+15XXkg== 25805
+IE1hcmN1cw== 25806
+b3dlZ28= 25807
+IG1lbnRl 25808
+U20= 25809
+IGFqYQ== 25810
+IFRhbw== 25811
+IGp1ZGljaWFs 25812
+IGVudHJlcHJlbmV1cnNoaXA= 25813
+INC90LXQvNC90L7Qs9C+ 25814
+IHBpcw== 25815
+IGVyZw== 25816
+IGNocmlzdA== 25817
+IEN1cnQ= 25818
+INGA0LDRgdC/ 25819
+zrvOtQ== 25820
+ZW5zY2g= 25821
+w61yZQ== 25822
+IGZvY2Fs 25823
+IERpYW1vbmQ= 25824
+YXbDrWE= 25825
+IGhhbm5v 25826
+IFNxdWFk 25827
+IGFzc29jaWF0aW9ucw== 25828
+IENyZWF0aXZl 25829
+IG1lc3Nlbmdlcg== 25830
+IGJlZ2dpbmc= 25831
+IGRlY2ltYWw= 25832
+IGTEscWf 25833
+IG1ldGFkYXRh 25834
+c2Vscw== 25835
+IMSwxZ8= 25836
+4buvYQ== 25837
+IGRpZmZpY2lsZQ== 25838
+ZMSx 25839
+IHNsYXVnaHRlcg== 25840
+IFZlcmc= 25841
+INeS150= 25842
+IFRlYQ== 25843
+YXNzZXM= 25844
+T2s= 25845
+IHN5bnRoZXM= 25846
+b3RpYXRpb24= 25847
+IHBhaW50ZXI= 25848
+IGVsYm93cw== 25849
+IGFyY2hpdGVjdHVyYWw= 25850
+INGA0LDQtA== 25851
+IGdsb3I= 25852
+aW1hZ2U= 25853
+YW1wYQ== 25854
+Y3VsaWFy 25855
+oKg= 25856
+IHRldmU= 25857
+IFN0ZWxsZQ== 25858
+IEJhbQ== 25859
+IOy0iA== 25860
+YXNpcw== 25861
+aXBlZGlh 25862
+IEdJ 25863
+IEFjdGl2ZQ== 25864
+YXpp 25865
+IEx1Y2t5 25866
+7ZWp 25867
+INC/0YDQuNGF0L7QtA== 25868
+IHJ1bndheQ== 25869
+IGF1dGhlbnRpY2F0aW9u 25870
+IHBvc2libGU= 25871
+IHN1cHBsZW1lbnRz 25872
+IHN1cmdpY2Fs 25873
+R2Vu 25874
+IGZlYXNpYmxl 25875
+RE8= 25876
+IG91dGxvb2s= 25877
+IGludGVydmFscw== 25878
+IGFuZWNk 25879
+w6BuZw== 25880
+IHN0cmFwcw== 25881
+IFNodQ== 25882
+dWRk 25883
+aXNzZW5zY2hhZnQ= 25884
+IHBvcnRl 25885
+IGNvbW1pdHRpbmc= 25886
+IGFsbGV5 25887
+IGNvdmVuYW50 25888
+IFBlZHJv 25889
+bGVzc25lc3M= 25890
+IFNvbGlk 25891
+IE1vbGx5 25892
+INC90LXQutC+0YLQvtGA 25893
+IGNvb3BlcmF0ZQ== 25894
+b2xsZW4= 25895
+IHR1bmE= 25896
+IGtpbmRlcmdhcnRlbg== 25897
+IFNpeg== 25898
+IGR1xbxv 25899
+IE1CQQ== 25900
+IEdFT1JHRQ== 25901
+IEZpc2hlcg== 25902
+IENhZXNhcg== 25903
+INC60YDQsNGB0LjQsg== 25904
+IERlbGhp 25905
+enlt 25906
+IGV4cGxpY2Fy 25907
+6rCA7KeA 25908
+dW5z 25909
+Z3Jvdw== 25910
+INC/0YDQuNGB 25911
+IDg2 25912
+IHN0YXRpbmc= 25913
+IG1hc3Nh 25914
+Y2h0ZXI= 25915
+IOy7rOufrA== 25916
+IGRlcHV0eQ== 25917
+U00= 25918
+bm9j 25919
+IGdlb2dyYXBoeQ== 25920
+IEVudGVycHJpc2U= 25921
+IENhbnQ= 25922
+w7Z6 25923
+IHVucGFjaw== 25924
+IO2ZlOs= 25925
+IHNlYXJjaGVz 25926
+IHByZXNpZGVuY3k= 25927
+IHRyaXZpYWw= 25928
+IHBpZ2U= 25929
+b3VidA== 25930
+7LyA7J20 25931
+IGJ1ZGdldHM= 25932
+IHVi 25933
+IHBuZQ== 25934
+IFlhbGU= 25935
+IMWfw7Z5bGU= 25936
+cmVndWxhcg== 25937
+IGltcGVyZmVjdA== 25938
+QVJB 25939
+IGZhbcOtbGlh 25940
+dXJt 25941
+IEFkdmVudHVyZQ== 25942
+Y2lz 25943
+ZW1hcms= 25944
+IG5lZ28= 25945
+IGluYXBwcm9wcmlhdGU= 25946
+INC/0YDQuNC3 25947
+INGA0L7Quw== 25948
+IGRyZWFtZWQ= 25949
+QnJ5 25950
+IHNodXR0bGU= 25951
+IHBpbGxhcnM= 25952
+IGJpaw== 25953
+aW51bQ== 25954
+INGD0YE= 25955
+IE5lYnI= 25956
+IHBlcnBlbmRpY3VsYXI= 25957
+IGJvb2tlZA== 25958
+YmVyeQ== 25959
+IHZpa3Q= 25960
+YmVhcg== 25961
+ZXN1cw== 25962
+INCy0L7Qt9C80L7QttC90L4= 25963
+qLk= 25964
+IHByZXN1bWFibHk= 25965
+IE1lbXBoaXM= 25966
+IGFtYnVsYW5jZQ== 25967
+15XXnteo 25968
+IHRodW1ibmFpbA== 25969
+IG1vZGlmaWNhdGlvbg== 25970
+IGludGVycHJldGVk 25971
+IHByb21v 25972
+IM66zqw= 25973
+IM61z4A= 25974
+IGFjb3VzdGlj 25975
+IERC 25976
+IG5vbmV0aGVsZXNz 25977
+b3VsZQ== 25978
+IHBlcXU= 25979
+IGtub2I= 25980
+IOuPjOyVhA== 25981
+IHB1cmNoYXNlcw== 25982
+IMOHw7xua8O8 25983
+IGRpdmlkaW5n 25984
+cGVyZm9ybQ== 25985
+cmFjdGlvbg== 25986
+aGVhbHRoeQ== 25987
+IFRpdGxl 25988
+IHVr 25989
+IGNlcmNh 25990
+IGFyZ3VhYmx5 25991
+IGZhbGU= 25992
+67O1 25993
+IGdhbWVycw== 25994
+IHV0aWxpemluZw== 25995
+IG9mZmVuZGVk 25996
+IHRhdmE= 25997
+YWzEsQ== 25998
+IG1lZGlhbg== 25999
+IGluZmVjdGlvdXM= 26000
+IEFubmll 26001
+IHNtYXJ0cGhvbmVz 26002
+IHBhcm9sZQ== 26003
+IEVwaWM= 26004
+enph 26005
+IHVuaWZpZWQ= 26006
+IOq3uOuVjA== 26007
+IGN1cnRhaW4= 26008
+IMSD 26009
+IHNleHVhbGx5 26010
+IHVuc2VyZW0= 26011
+IENvbnZlbnRpb24= 26012
+IGFsbGVnZWRseQ== 26013
+WWE= 26014
+IEhvbw== 26015
+ZW5tZW50 26016
+7ZuE 26017
+IGdpZ2FudGlj 26018
+IG5vdGluZw== 26019
+IHJlYm8= 26020
+IEphbWE= 26021
+IEFseg== 26022
+IGJvcnJvd2Vk 26023
+7Lmo 26024
+IHBlcmlwaGVy 26025
+0L7RgtCw 26026
+IEdC 26027
+IEdlYXI= 26028
+IGVjb25vbWljYWxseQ== 26029
+IHRlbGVmb24= 26030
+IHF1ZXJlbW9z 26031
+INC00LDQu9GM0YjQtQ== 26032
+IHJhcw== 26033
+IFRlYWNo 26034
+aWNpb3M= 26035
+YXRvcw== 26036
+IHBsZWRnZQ== 26037
+YmF1 26038
+IEhpbXNlbGY= 26039
+TGluaw== 26040
+IGVzcGVybw== 26041
+IGNocm9tb3M= 26042
+IFBFUg== 26043
+IGVybGU= 26044
+IHBvZGl1bQ== 26045
+w6dvcw== 26046
+IG5pZXU= 26047
+IGZlbg== 26048
+IEdPRA== 26049
+IENob2NvbGF0ZQ== 26050
+d2Vyaw== 26051
+IHThu6s= 26052
+IHN1cHByZXNz 26053
+zrvOtw== 26054
+IDI0MA== 26055
+IHNpdMOk 26056
+IGhvbmVzdHk= 26057
+IEJpbw== 26058
+IEJhcmQ= 26059
+INC+0LHRidC10Lw= 26060
+INC80YPQtw== 26061
+IG1hcmJsZQ== 26062
+INGG0LXQvdGC 26063
+IHByb2N1cmU= 26064
+IHJvdG9y 26065
+YmVybg== 26066
+IHR1aA== 26067
+IGhlYWRzZXQ= 26068
+YXRlbQ== 26069
+IHdhcnJhbnR5 26070
+4K60 26071
+IGZpbGluZw== 26072
+zrnOrA== 26073
+IGNvbXByZW5kcmU= 26074
+IGltcHVsc2U= 26075
+IHNhbHY= 26076
+d3JpdHRlbg== 26077
+IGluc3RpdHV0ZQ== 26078
+S2lt 26079
+IExHQlRR 26080
+ZmljaWVudGU= 26081
+SGlz 26082
+IM6xz4XPhM+M 26083
+IHRlZW5hZ2U= 26084
+b3J1cw== 26085
+INGA0LDQt9Cx 26086
+U2Vl 26087
+IENvbnNlcnY= 26088
+4buBbg== 26089
+ZnVsbmVzcw== 26090
+IHN0cmF3YmVycmllcw== 26091
+IEFidQ== 26092
+0LjQvtC9 26093
+IG9sbGE= 26094
+Tk9JU0U= 26095
+IEVtcGxveQ== 26096
+IHdpcGVk 26097
+dXJnZXI= 26098
+IG1vZGlmaWNhdGlvbnM= 26099
+IO2VmOyngA== 26100
+IGZvb3RzdGVwcw== 26101
+IGhvbm9ycw== 26102
+IGFkdWw= 26103
+IGZsaXBwaW5n 26104
+IEhV 26105
+Wlk= 26106
+IGludGVncmF0aW5n 26107
+2KjYsQ== 26108
+dWxsYQ== 26109
+IG5hdHV1cmxpams= 26110
+IO2XiA== 26111
+IEV0aGVyZXVt 26112
+2YrZhA== 26113
+d2Vk 26114
+IHBlYWtz 26115
+IEtlcw== 26116
+IGJsb29t 26117
+IGNyYXNoaW5n 26118
+IDkxMQ== 26119
+INC+0YLQu9C40Yc= 26120
+IGNvbnRyb2xsZXJz 26121
+IERvZA== 26122
+INCy0LzQtdGB0YLQtQ== 26123
+IHNvcnRpcg== 26124
+IFN0cmFpZ2h0 26125
+IEdyYWNpYXM= 26126
+IGdyb292ZQ== 26127
+IHRvZ2c= 26128
+IOyLtuydgA== 26129
+w6lybw== 26130
+IG91dHdhcmQ= 26131
+IFdB 26132
+IFJvY2t5 26133
+IHNjYW0= 26134
+IGhheWF0 26135
+aWdudHk= 26136
+4oQ= 26137
+cGxpbmdz 26138
+IGFudGliaW90aWNz 26139
+IG5ldmVydGhlbGVzcw== 26140
+amFuZw== 26141
+Y29tbWVyY2U= 26142
+IHNwb2lsZXI= 26143
+IGdsb3Zl 26144
+IGNoYXR0ZXI= 26145
+IEJZ 26146
+fj8= 26147
+IO2YuA== 26148
+IGRlbW9s 26149
+d2VjaHNlbA== 26150
+aW1pcg== 26151
+IHJhaWQ= 26152
+0LXRgNGF 26153
+7J6Q6riw 26154
+ZW5m 26155
+IGNvbW1lbnRlZA== 26156
+IG9wdGltaXplZA== 26157
+IGNvbnZpY3RlZA== 26158
+IGJhdHM= 26159
+IFNC 26160
+IEF1cg== 26161
+IFRvbmc= 26162
+IGltcGxpY2l0 26163
+IEphbmV0 26164
+IHJlYWc= 26165
+IEFkdmFuY2Vk 26166
+IGltcG9zZQ== 26167
+16nXlA== 26168
+IHNjaGVtZXM= 26169
+b3VnaGVy 26170
+YWJvbGlj 26171
+IOqxsOyjoA== 26172
+IHNsb3dpbmc= 26173
+IHd0ZWR5 26174
+IGRlc3RydWN0aXZl 26175
+INC+0L/RgNC10LQ= 26176
+IGxhbmRtYXJr 26177
+IOuPiA== 26178
+IFdhbGtpbmc= 26179
+4bq5 26180
+IHRpamQ= 26181
+IEtO 26182
+IFF1YW50 26183
+7Jik6w== 26184
+INC60YDRgw== 26185
+IHBlcmRlcg== 26186
+IG5vdmU= 26187
+w6RuZGU= 26188
+Ymlh 26189
+IGN1c3RvZHk= 26190
+IGJpb2Q= 26191
+IGRpcmVjdGluZw== 26192
+Li4u4oCL 26193
+IHJlbG9j 26194
+IGRlbWFuZGU= 26195
+IG/En2x1bQ== 26196
+INC+0LTQvdCw 26197
+IE1pbGs= 26198
+IEtyYQ== 26199
+IEhvbmRh 26200
+IHB1ZQ== 26201
+IGVsZWt0 26202
+IGJlZ2lubmVycw== 26203
+IHNwZWFy 26204
+w61uaA== 26205
+IEx1ZnQ= 26206
+IG5pZw== 26207
+IFNjaG9vbHM= 26208
+IGZvcnVtcw== 26209
+IFFpbg== 26210
+cHBv 26211
+IHphZw== 26212
+INCu 26213
+IHRvb3RocA== 26214
+IFN0eWxl 26215
+7LSI 26216
+IHB1bmN0 26217
+IHJlcHM= 26218
+IEFseQ== 26219
+IGFtZW5kbWVudHM= 26220
+IMO2eg== 26221
+IGRpZ2l0cw== 26222
+dXJhaQ== 26223
+IGNoYW90aWM= 26224
+IE1hc3RlcnM= 26225
+ZW9u 26226
+IENhc2g= 26227
+IEN1eg== 26228
+IGJlZGV1dGV0 26229
+IHNjYW5uaW5n 26230
+INC20LQ= 26231
+0L3QtdGC 26232
+IGNlcnRhaW50eQ== 26233
+amVr 26234
+IGRpam8= 26235
+IENsaW1hdGU= 26236
+IHJpbnNl 26237
+IGtyaWo= 26238
+dmVsYW5k 26239
+IHNvdW5kdHJhY2s= 26240
+IFNhZmU= 26241
+IE5vdmE= 26242
+OTQ= 26243
+IGF0aGU= 26244
+IFZlcmI= 26245
+b2xlcg== 26246
+7J207KOg 26247
+IHZpbg== 26248
+IHJlc3BpcmF0b3J5 26249
+IFN0dWR5 26250
+IENBTQ== 26251
+IGF2b2NhZG8= 26252
+IFpoZW4= 26253
+IGxhdGVuY3k= 26254
+IGZlYXRoZXJz 26255
+IGNvbnRhcg== 26256
+INCy0LXRiQ== 26257
+IGZhcms= 26258
+IGJsZW5kZWQ= 26259
+IGV4cGxvZGVk 26260
+IFhY 26261
+IEJlbmlt 26262
+IGFsZ3XDqW0= 26263
+aXN0b2lyZQ== 26264
+IGNvbmZpZGVudGlhbA== 26265
+IG1hc3Q= 26266
+IOy/ 26267
+Z2Vo 26268
+IGRpc3Jlc3BlY3Q= 26269
+IFN5c3RlbXM= 26270
+xrBh 26271
+RWQ= 26272
+IHd5cw== 26273
+IGV4b3RpYw== 26274
+IGdsb3dpbmc= 26275
+w7luZw== 26276
+b3VuZ2U= 26277
+6IQ= 26278
+0LDQvdC40Lc= 26279
+IHBhbGF2 26280
+IFN3b3Jk 26281
+IGdpbQ== 26282
+IENyb3c= 26283
+IHBvdGVudA== 26284
+YmlzaA== 26285
+IGFidXNlZA== 26286
+IEplZA== 26287
+IGdhbWJsaW5n 26288
+IFNwZWN0 26289
+IGludmVzdGlnYXRvcnM= 26290
+IHJhdHQ= 26291
+IGRvYg== 26292
+IERFUw== 26293
+aG9n 26294
+INC+0YLQutGA0Ys= 26295
+7YyF 26296
+INC00LXQvdGM0LPQuA== 26297
+IO2YuQ== 26298
+IOuouOumrA== 26299
+IHNhdHVyYXRpb24= 26300
+IGluaGVyaXRlZA== 26301
+IElubm92YXRpb24= 26302
+7JeI642Y 26303
+IHRhbmdpYmxl 26304
+IGRlcHJp 26305
+aGVk 26306
+INC/0L7QvNC+0LM= 26307
+IHNsaWNlZA== 26308
+4KWN 26309
+IHRo4bq/ 26310
+xaU= 26311
+Njg= 26312
+IGNvcm9uYQ== 26313
+IGdpZnRlZA== 26314
+IHNvaXI= 26315
+IGh1bWlsaXR5 26316
+IOydtOqxuA== 26317
+IGZsYXdz 26318
+INC/0YDQsNC60YLQuA== 26319
+IGthbGQ= 26320
+d2HFvA== 26321
+eXc= 26322
+aXJ0ZWVu 26323
+IGNyb2NoZXRz 26324
+pqzqsIA= 26325
+IOyghOyXkA== 26326
+IGRlc2U= 26327
+INC80LDQsw== 26328
+IGR6aWHFgg== 26329
+IGzDqWc= 26330
+Y2hhbmdpbmc= 26331
+IGxsZXY= 26332
+xYRzaw== 26333
+IDE5ODQ= 26334
+b3Jucw== 26335
+IFdlbHNo 26336
+IHBoYXJtYWNldXRpY2Fs 26337
+IHB1bXBpbmc= 26338
+IFNoYXc= 26339
+cHVuaw== 26340
+IHZhdWx0 26341
+IGtpbmV0aWM= 26342
+IGh1cnJpY2FuZQ== 26343
+IEluY2x1ZGluZw== 26344
+4bupYw== 26345
+IEdyYW5kcGE= 26346
+YW5zaGlw 26347
+INCy0YvRhdC+0LQ= 26348
+0L3QvtC2 26349
+nKA= 26350
+dXR0YQ== 26351
+IOqygeuLiOuLpA== 26352
+IGJheg== 26353
+INC/0L7RiA== 26354
+IHBlY3VsaWFy 26355
+ennEhw== 26356
+IEVsbGll 26357
+IGxlYXJucw== 26358
+IEtyaXNobmE= 26359
+IGNvbnNlY3V0 26360
+IGVtcGF0aA== 26361
+IERpbg== 26362
+IHRyYWRlZA== 26363
+IEJvcmlz 26364
+dWdnYWdl 26365
+b2xsYQ== 26366
+INC90LDQt9Cy 26367
+IGV0ZXJuaXR5 26368
+INCy0L8= 26369
+w6htZXM= 26370
+IGdyYXBw 26371
+YsOp 26372
+INC/0YDQtdC00YHRgtCw0LI= 26373
+IEZD 26374
+jeuLiOuLpA== 26375
+ZXZlbg== 26376
+IE5lYnJhc2th 26377
+b3J0dW5l 26378
+IGthcmVuYQ== 26379
+IEFnZW50 26380
+IHN0aW5n 26381
+IFBJ 26382
+IG11bmljaXBhbA== 26383
+cG93ZXJlZA== 26384
+IGNvbnNlZ3Vl 26385
+IE1hbmNoZXN0ZXI= 26386
+IHJhaW55 26387
+IGJsaQ== 26388
+IGtvc3Q= 26389
+IGhhbHRlbg== 26390
+IEFoaGg= 26391
+aW5zdWxh 26392
+ZXJ0aW5n 26393
+INin2YTZgQ== 26394
+IHJlbGFjaW9u 26395
+IGtvbWVu 26396
+IGRvbWU= 26397
+IHByaWVzdHM= 26398
+IEludHJvZHU= 26399
+cm9waGU= 26400
+c2hvcmU= 26401
+dmVsdA== 26402
+Y2xpcHNl 26403
+INGA0YPRgQ== 26404
+15nXoQ== 26405
+IHNhYmVtb3M= 26406
+IEhvbGxhbmQ= 26407
+b2dp 26408
+YW5raQ== 26409
+IE1hdHM= 26410
+IHNtb2tlZA== 26411
+dWxsaWU= 26412
+IGV1cm9wZQ== 26413
+INC00LXQudGB0YLQstC40YLQtdC70YzQvdC+ 26414
+IGJhcmR6aWVq 26415
+IHRyYW5zZm9ybWluZw== 26416
+IEV6 26417
+b3BhdGg= 26418
+IOyWuOuLiA== 26419
+INGB0YLQsNC9 26420
+4bqxbmc= 26421
+4Lix4LmJ 26422
+IE91Y2g= 26423
+IGNsZWFyYW5jZQ== 26424
+dXN0YWlu 26425
+IHNvbGlkYXJpdHk= 26426
+IHByb3Zpbmc= 26427
+INCY0L0= 26428
+INGB0Yo= 26429
+IHByb2xvbmc= 26430
+0LDQtNC90L4= 26431
+IHNvcw== 26432
+IERlYWw= 26433
+IDE3MA== 26434
+bW9ucw== 26435
+INC30LXQvA== 26436
+IGxvZ2dlZA== 26437
+IGxpZmVsb25n 26438
+IHNlbnNvcnk= 26439
+IGJlaG9sZA== 26440
+IEZBUg== 26441
+w6h0ZW1lbnQ= 26442
+IEZlZGVyYXRpb24= 26443
+IGRvZGdl 26444
+IFNoaXI= 26445
+IGRyYWdvbnM= 26446
+IEFyY3RpYw== 26447
+xIXFvA== 26448
+xY0= 26449
+wro= 26450
+IGRlbmtl 26451
+IHBvZHLDrWE= 26452
+Y29sZQ== 26453
+0YPQu9GM0YLQsNGC 26454
+IHN5c3RlbWF0aWM= 26455
+0LDQvNCw 26456
+Y2hvcw== 26457
+IGNsaW5pY3M= 26458
+IEJT 26459
+IHRhbGVz 26460
+dXNpb25z 26461
+IO2IrA== 26462
+IHByZXNlcnZhdGlvbg== 26463
+IGxvcmU= 26464
+IFByb3Rlc3Q= 26465
+4bub 26466
+IGFja25vd2xlZGdlZA== 26467
+IElzYWlhaA== 26468
+IOuVjOuKlA== 26469
+INeY 26470
+IGNvbXBldGl0b3I= 26471
+IGFkdmFuY2luZw== 26472
+emlw 26473
+IHRlbnRo 26474
+IExhdXJl 26475
+IGhpbnRz 26476
+IGV4ZXJjaXNpbmc= 26477
+npzr 26478
+IEludGVsbGlnZW5jZQ== 26479
+dWF0ZWQ= 26480
+T1VU 26481
+b3BlZA== 26482
+IGF1dG9ub215 26483
+IGJyYW5kaW5n 26484
+IE1lZGl0ZXJyYW5lYW4= 26485
+0ZbQug== 26486
+IHNjcmV3ZHJpdmVy 26487
+IHN1cHJl 26488
+IHN0YXA= 26489
+IGp1cmlzZGljdGlvbg== 26490
+IFNldHRpbmdz 26491
+IGZvcmVmcm9udA== 26492
+IEZlbWFsZQ== 26493
+Y29tZm9ydA== 26494
+IG11bHRpcGxpY2F0aW9u 26495
+IE11cnJheQ== 26496
+IGJvYg== 26497
+IFRhcw== 26498
+IHRhaHU= 26499
+IG9udW4= 26500
+ZXR0ZXI= 26501
+IHByb3BoZXRz 26502
+bGFn 26503
+IHJldmVudWVz 26504
+IHByw6E= 26505
+IHVwbG9hZGluZw== 26506
+IG1hY2hpbmVyeQ== 26507
+YXNjYWw= 26508
+IEVzdMOh 26509
+IEdvdGg= 26510
+IEJhbGQ= 26511
+IFNhdw== 26512
+IHN0cmlwZXM= 26513
+7KCR 26514
+IHBvd2lu 26515
+IGhvc3RpbGU= 26516
+IGRhcnVt 26517
+IHByZXZlbnRlZA== 26518
+0L7QttCw0LvRg9C50YHRgtCw 26519
+IGFsZ3VuYXM= 26520
+IGhvcGVsZXNz 26521
+IHpuYWo= 26522
+IHJlYWRpbmdz 26523
+IGNyYXZpbmc= 26524
+dGF0 26525
+IFBpZw== 26526
+IGxpYXI= 26527
+IG11bHRpcGxheWVy 26528
+IGRhbGU= 26529
+IENvdXJzZQ== 26530
+7YG8 26531
+IEtpdGE= 26532
+IGN1c3RvbXM= 26533
+IHJlc3BvbmRz 26534
+ZW5kcmE= 26535
+IG1ldHJv 26536
+0YHQvtC7 26537
+IG1pdGlnYXRl 26538
+IG9wcHJlc3Npb24= 26539
+cXVpbmhv 26540
+IGFtbW8= 26541
+IGVuZmVy 26542
+IHBvbnk= 26543
+IG91bmNlcw== 26544
+sJQ= 26545
+IOyImOqwgA== 26546
+IGRpY2hv 26547
+IERlYg== 26548
+IHdvbmRlcnM= 26549
+IFJvb3Nl 26550
+IHByaXplcw== 26551
+IEFMRVg= 26552
+IHRoYW5rZnVsbHk= 26553
+IHRpc3N1ZXM= 26554
+INGA0LDQstC90L4= 26555
+IEx1bmE= 26556
+aW50ZWxsaWdpYmxl 26557
+IOyZuA== 26558
+6rCR 26559
+IEhlYXQ= 26560
+INGB0LjQtA== 26561
+IFF1aQ== 26562
+IGlvbnM= 26563
+IGFjY29tbW9kYXRpb24= 26564
+IEthcnQ= 26565
+aWVuc3Q= 26566
+IHRhcmRl 26567
+IHNvYWtlZA== 26568
+IENhc2V5 26569
+IOy0nQ== 26570
+INGA0YPQsQ== 26571
+IGRpZmZlcmVudGk= 26572
+IGxlZnRvdmVy 26573
+IGV4Y2hhbmdlcw== 26574
+c2Vjb25k 26575
+IGZpcnN0bHk= 26576
+IGJ1aWxkZXI= 26577
+cmllbg== 26578
+IGR3 26579
+IGJvdW5jaW5n 26580
+Pzwv 26581
+IOuMgO2VtOyEnA== 26582
+INGB0LU= 26583
+IE1pbGVz 26584
+aWVuaWU= 26585
+INC/0L7QtNC/0LjRgQ== 26586
+IOustA== 26587
+IGFyaXNlcw== 26588
+IHN1YmNvbnNjaW91cw== 26589
+IFNhbmR5 26590
+IGxvdHRlcnk= 26591
+4oCR 26592
+YW1pbGlhcg== 26593
+IGNvb3JkaW5hdG9y 26594
+6Iw= 26595
+IGV4dHJhb3JkaW4= 26596
+IFJvbmFsZA== 26597
+IE1PTg== 26598
+Z3JlZW4= 26599
+IG1hbnVmYWN0dXJl 26600
+IFJlY29yZA== 26601
+IE1hcmtldGluZw== 26602
+0LjRhg== 26603
+IGNyZWRlbnRpYWxz 26604
+IHVwcmlnaHQ= 26605
+IEhlcml0YWdl 26606
+IGfDtnJk 26607
+ZXhwZW5zaXZl 26608
+4bqtbg== 26609
+IOyxhA== 26610
+IG91dGxpbmVk 26611
+IE9vb2g= 26612
+b3JpZW50ZWQ= 26613
+IHdpcmVk 26614
+IG91dGxldHM= 26615
+IGh1Z2VseQ== 26616
+IO2WiOuKlOuNsA== 26617
+0LDRgNGC 26618
+IGxvZ2lzdGljcw== 26619
+IHNlYXNvbmFs 26620
+IGRlYmU= 26621
+IHRoZW9y 26622
+IHBpcmF0ZQ== 26623
+YXBweQ== 26624
+IGtub3Rz 26625
+IGZlbW1l 26626
+IFNvZnR3YXJl 26627
+Z2VuZGU= 26628
+0YLQsNC60Lg= 26629
+IHRlbXBsZXM= 26630
+IGxpbWl0YXRpb24= 26631
+IGFtcGxpdHVkZQ== 26632
+IGhhY2Vu 26633
+IGF1ZGk= 26634
+IOuWqA== 26635
+IFdhaGw= 26636
+IG5paA== 26637
+IGFtcGxpZmllcg== 26638
+YXJpdXM= 26639
+aXphZG8= 26640
+YWNoYQ== 26641
+IGt1bGxhbg== 26642
+IFR3aW4= 26643
+IEZvcmNlcw== 26644
+IGFicmly 26645
+IEVQQQ== 26646
+IEFoYQ== 26647
+IOq3uOuemOuPhA== 26648
+IGJpb20= 26649
+INCi0LDQvA== 26650
+IHNhaWxpbmc= 26651
+IEpva2Vy 26652
+Rmlyc3Q= 26653
+fl0= 26654
+b3JzY2g= 26655
+IHbDpnJl 26656
+IGJlZXRqZQ== 26657
+IFNwYcOf 26658
+cG9saXQ= 26659
+IHR1cmJ1bA== 26660
+IOyggO2drOqwgA== 26661
+IGNpYw== 26662
+IERyYWtl 26663
+IEJSSQ== 26664
+aXphw6fDo28= 26665
+IOyeiOuLpA== 26666
+IEx5bm4= 26667
+IHRyYW5zZ2VuZGVy 26668
+IHJlc2lnbg== 26669
+IGNoYXJ0ZXI= 26670
+IEpI 26671
+IEhvbG1lcw== 26672
+IExpcA== 26673
+ZGFz 26674
+IHBlZGlhdHJpYw== 26675
+IG1lbW9yaXpl 26676
+IGV2YWx1YXRpbmc= 26677
+IPCfkA== 26678
+Y2Fr 26679
+IGNvbmp1bmN0aW9u 26680
+IHJlc2VydmVz 26681
+IHNoYW1wb28= 26682
+IGp1ZGdlZA== 26683
+IHdpZHo= 26684
+VklO 26685
+IGFib2FyZA== 26686
+YXJpcw== 26687
+IFJvaA== 26688
+IGNvb2xlZA== 26689
+0YHRgtC1 26690
+Y2Vw 26691
+cm9zdA== 26692
+aG90cw== 26693
+IE1lbGJvdXJuZQ== 26694
+0L7Rh9GM 26695
+IHZlbnRpbA== 26696
+0LjQvdC+0LI= 26697
+IG1vdGlvbnM= 26698
+7JeI64qU642w 26699
+0LzQtdGA0LjQug== 26700
+IENoYXQ= 26701
+IGdvdXZlcm5lbWVudA== 26702
+IEtpdm9s 26703
+IEtpdm9sb3dpdHo= 26704
+IG7Ds2k= 26705
+INC60YPQtNCw 26706
+IGh5ZHJhdWw= 26707
+IEJlcmc= 26708
+eWx1bQ== 26709
+IFByw6RzaWRlbnQ= 26710
+cm9weQ== 26711
+IHNlbWlj 26712
+0Y/QtdGC 26713
+IENhcGU= 26714
+IGNhbmU= 26715
+IGJyaW5nZW4= 26716
+IHdpcmluZw== 26717
+dW55YQ== 26718
+IHJlcGF5 26719
+qqk= 26720
+IHdvbnQ= 26721
+w6FudA== 26722
+IGdvdmVy 26723
+IExpYmVydHk= 26724
+IGVsZWN0cm9tYWdu 26725
+IFNpbmdo 26726
+INCz0YDRg9C/ 26727
+0LPQvtCy 26728
+iOustOs= 26729
+IFJ1bGU= 26730
+IHVuZGVyd2F5 26731
+IEZyZWRlcg== 26732
+IHR1cmJpbmU= 26733
+aXNoaQ== 26734
+IGbDrXM= 26735
+IEN1bHR1cmU= 26736
+YWNyZQ== 26737
+IHdhbmRlcg== 26738
+IGd1ZXJyYQ== 26739
+IHPDtnk= 26740
+IEp1cg== 26741
+YXdheXM= 26742
+IHNjaHdpZXI= 26743
+Z3VhcmQ= 26744
+IEFiZA== 26745
+dWN0aW9u 26746
+IGFya2FkYcWfbGFy 26747
+IEhhbWI= 26748
+Py4= 26749
+c2l6ZQ== 26750
+IE9ydGg= 26751
+IHN3YXk= 26752
+IM6U 26753
+IGFic29ycHRpb24= 26754
+aW5lZXM= 26755
+IHBhdHJvbnM= 26756
+IGJlYWNoZXM= 26757
+R0c= 26758
+IGNvbnRhbWlu 26759
+aW50ZW5kZW50 26760
+INC90YDQsNCy 26761
+INC00LXRgNC2 26762
+IHF1aWx0 26763
+IGV2b2x1dGlvbmFyeQ== 26764
+7J206528 26765
+YXppb25p 26766
+IGVya2w= 26767
+IEJ1dGxlcg== 26768
+IGRvbw== 26769
+IG5lZ290aWF0aW9u 26770
+ZW5kdW0= 26771
+IHRlcm1pbm9sb2d5 26772
+IGt1bA== 26773
+IFVudGVybmVobWVu 26774
+w6lyaWM= 26775
+eGk= 26776
+YmFk 26777
+INC00L7Qu9C20L3Riw== 26778
+IE1pdGNoZWxs 26779
+dGhyZWU= 26780
+IHN1YnN0cmF0ZQ== 26781
+IEluaGFsZQ== 26782
+IEFncmlj 26783
+dW5nZQ== 26784
+INC30YA= 26785
+IGFkdmVyc2U= 26786
+IOyggOuPhA== 26787
+IHBpbGxhcg== 26788
+IE1pbnV0ZW4= 26789
+IE1hdGU= 26790
+IFBsYXR6 26791
+IGhlbHBsZXNz 26792
+IGFsYXI= 26793
+IGZyZW5jaA== 26794
+IGFsbG9jYXRpb24= 26795
+IHN0ZW1z 26796
+IG1hcmF0aG9u 26797
+IEhBUkY= 26798
+aXphY2nDs24= 26799
+SmVzcw== 26800
+INC30L3QsNGH 26801
+IGRlY2xhcmF0aW9u 26802
+RUVSSU5H 26803
+c3RlcmRhbQ== 26804
+YXNzaXVt 26805
+IHNlaXo= 26806
+IHByZXNpZGVudHM= 26807
+dGFrZQ== 26808
+IHdpbGRlcm5lc3M= 26809
+IGNvc21pYw== 26810
+IOuqqOuRkA== 26811
+c3Rybw== 26812
+IHBvd2llZHo= 26813
+IE1hZ2F6aW5l 26814
+IFZJ 26815
+INC00LXRgA== 26816
+IHfDvHJkZW4= 26817
+IHRhYmxldHM= 26818
+IHBpZXJ3cw== 26819
+IG1vcnRhbA== 26820
+IHN1cHBsaWVk 26821
+IE7Ds3M= 26822
+IFByb3Blcg== 26823
+INC60LDQttC00YvQuQ== 26824
+b2zDs2c= 26825
+67Cp 26826
+IG1pc2Nvbg== 26827
+IHByb3hpbWl0eQ== 26828
+IEFsbGVz 26829
+INCz0LvQsNC3 26830
+IGxhbWU= 26831
+IHZpYmVz 26832
+IGRlZW1lZA== 26833
+IHVyaW5l 26834
+IHJlbWluZGluZw== 26835
+IGNpcmN1bXN0YW5jZQ== 26836
+65Ok7J20 26837
+IGxhcHRvcHM= 26838
+wrI= 26839
+7ZW07JW8 26840
+IE9tZWdh 26841
+Tlk= 26842
+IHB1bXBz 26843
+IHJhaWxz 26844
+IHN1cnBhc3M= 26845
+IEJyb3M= 26846
+IG5hdGlvbmFsbHk= 26847
+IGdld2VzZW4= 26848
+s7Tri6Q= 26849
+b3NoaW5n 26850
+6rCI 26851
+IGNyaWFu 26852
+IOyCrOuejOydtA== 26853
+Y2F1c3Q= 26854
+0YbQuNC/ 26855
+IE9iZXI= 26856
+IERBWQ== 26857
+IENhbm9u 26858
+enVuZw== 26859
+IOqwlg== 26860
+INCw0LLRgtC+0Lw= 26861
+IGRpdm9yY2Vk 26862
+15nXpA== 26863
+z4HOtQ== 26864
+Y2VsYW5k 26865
+Y2llcg== 26866
+0YDQtdC3 26867
+VG9kYXk= 26868
+IG9yYml0YWw= 26869
+IHN0cmV0 26870
+IHNhdHU= 26871
+IO2BrOs= 26872
+em9z 26873
+IFNjbw== 26874
+zrzOrQ== 26875
+IEd1YXJkaWFu 26876
+aW50ZXJlc3Q= 26877
+IFZFUg== 26878
+w7xuZGVu 26879
+INGF0L7RgtC10Ls= 26880
+dGl0 26881
+Qnk= 26882
+IGFubGF0 26883
+U2hvdw== 26884
+IG9pbHk= 26885
+IGxlZ2VuZHM= 26886
+IHNwZWN1bGF0aW9u 26887
+IFdpc2g= 26888
+IG1vbms= 26889
+R0FO 26890
+IGjhu40= 26891
+IGRhbmdlcnM= 26892
+IEJlbmU= 26893
+aXF1ZW1lbnQ= 26894
+IOuCmOyZgA== 26895
+INCw0LQ= 26896
+IGRpc2NyZXRl 26897
+w4c= 26898
+IGNvbmRpdGlvbmFs 26899
+IEdpbGw= 26900
+dWF0ZXM= 26901
+INGB0L7QstGB0LXQvA== 26902
+IHNjcmVlbnNob3Q= 26903
+Y2Fkbw== 26904
+IOuqqOuToA== 26905
+IGZpbmdlcnRpcHM= 26906
+IE1BQw== 26907
+IGR1ZGVz 26908
+Y29zdA== 26909
+IGJ1bXBz 26910
+b25kbw== 26911
+IGRhdG9z 26912
+IGJlZXBz 26913
+IFByb24= 26914
+IEtoYWw= 26915
+emVnbw== 26916
+IEFiYnk= 26917
+VWg= 26918
+WW8= 26919
+IFRlbA== 26920
+IM68zq0= 26921
+S0k= 26922
+IHN0cmVzc2Vz 26923
+IHNwcmVhZHNoZWV0 26924
+IE5PVw== 26925
+REI= 26926
+IGxpYmVyYXRpb24= 26927
+IHByZWRpY3RhYmxl 26928
+IFF1ZXN0aW9ucw== 26929
+IHNwYWNpbmc= 26930
+IGluaGFiaXRhbnRz 26931
+IHp3acSFeg== 26932
+IFNBUA== 26933
+IGx1Z2dhZ2U= 26934
+IGhpcHA= 26935
+6JY= 26936
+IHRhbmdlbnQ= 26937
+IHbDpQ== 26938
+0LDQu9GM0L3QvtC5 26939
+c2VoZW4= 26940
+IHByb2Nlc3NvcnM= 26941
+IGZpbmRldA== 26942
+IGNhcnRyaWRnZQ== 26943
+IGFkbWluaXN0cmF0b3Jz 26944
+IOyWtOya 26945
+IHN1cHJlbWU= 26946
+IEFudGk= 26947
+IO2UhOuhnA== 26948
+IGluZm9ybWF0aXZl 26949
+IGtvbXQ= 26950
+15nXmA== 26951
+QXNzaXN0YW50 26952
+IGxpc3Rh 26953
+w7ZsbA== 26954
+IGRpc3RpbmN0aXZl 26955
+IEh1ZA== 26956
+IHNhbG9u 26957
+bcOqbWU= 26958
+IE1vdGlvbg== 26959
+IHNldWxlbWVudA== 26960
+IE1lbnNjaA== 26961
+IHB1bXBlZA== 26962
+w7xoZXI= 26963
+aWJv 26964
+IHdhxbw= 26965
+IHF1YW50aXRhdGl2ZQ== 26966
+2b4= 26967
+IOuqqOyKtQ== 26968
+IHBvdWNo 26969
+IFRoZWF0cmU= 26970
+YWhp 26971
+IHNwaW5hY2g= 26972
+IHJlYWxpdGllcw== 26973
+IGxleQ== 26974
+IE1hcnRoYQ== 26975
+IHJlY2hlcg== 26976
+ZWNoZXM= 26977
+IHBlcmlvZGlj 26978
+b2NpZGU= 26979
+IEluY3JlZA== 26980
+IHRo4bqleQ== 26981
+b3Rvbg== 26982
+IEVzbw== 26983
+IGfDqW7DqXJhbA== 26984
+aWxpZ2h0 26985
+IGltYWdpbmluZw== 26986
+aGVh 26987
+ZXRpY2Fs 26988
+4but 26989
+IERlbW9rcmF0 26990
+IGVuam8= 26991
+IGFkanVzdGFibGU= 26992
+IHJhaW5z 26993
+aWV3YcW8 26994
+IGp1c3RlbWVudA== 26995
+IGp1c3RpZmllZA== 26996
+IFNoYWtl 26997
+dml2 26998
+7IKs66W8 26999
+IG1ldHQ= 27000
+IEVudmlyb25tZW50YWw= 27001
+IHNvbGFtZW50ZQ== 27002
+IGludGVyc2VjdA== 27003
+IDE5ODg= 27004
+IHNpbXVsYXRl 27005
+SkE= 27006
+INC30LDRgQ== 27007
+IGNvbnRpbmc= 27008
+IFRlaw== 27009
+IHRvcmNo 27010
+INC00YDRg9Cz0L7QuQ== 27011
+IGluc2NyZQ== 27012
+IG1vZGVsbw== 27013
+IEdlZw== 27014
+IERlbW9jcmF0 27015
+0LrQsg== 27016
+IEJ1ZGR5 27017
+IHJlZHVuZA== 27018
+IGNyYWZ0cw== 27019
+IEhpag== 27020
+IGp1ZQ== 27021
+IEtpcms= 27022
+IGthYg== 27023
+4buj 27024
+IGFlc3RoZXQ= 27025
+IEpPTg== 27026
+IHN1cGVyY29t 27027
+INGB0LjRgtGD 27028
+IM+Mz4TOuQ== 27029
+2YXZhg== 27030
+IEVWRVI= 27031
+7JWY7Ja0 27032
+b2l0 27033
+IENsZXZlbGFuZA== 27034
+IHNpeHRlZW4= 27035
+IHdhdGVyZmFsbA== 27036
+77g= 27037
+aW5mbA== 27038
+IGNvdW5zZWxvcg== 27039
+IFB1bms= 27040
+IHNwcmVjaGVu 27041
+ZXhj 27042
+IFNraWxscw== 27043
+cm96 27044
+YWRhbWVudGU= 27045
+IHBhbmNha2Vz 27046
+6riw66Gc 27047
+IHBsYW5r 27048
+IHNvdmVyZWlnbnR5 27049
+IGZ1aQ== 27050
+INC90LXQvtCx 27051
+IFdpaQ== 27052
+IFNjaG9s 27053
+4oCO 27054
+IFNwZWFr 27055
+Y2lsaWF0aW9u 27056
+IHRoaWdo 27057
+IOqxsOydmA== 27058
+IGpvdA== 27059
+IOy0rOyYgQ== 27060
+INmF24zaug== 27061
+IENDUA== 27062
+INC/0L7RgdGC 27063
+IG9ic2VydmVy 27064
+w6Fi 27065
+IHN0aWdtYQ== 27066
+IHByb3ByaWV0 27067
+IGNpZGFkZQ== 27068
+IGJhxZ9rYQ== 27069
+2LnYqQ== 27070
+a3Jl 27071
+IHBvd2llZHppZcSH 27072
+IGNlYXNl 27073
+IHNraW5z 27074
+IHZlZ2dpZXM= 27075
+IG9wcG9zaW5n 27076
+b3BvbHk= 27077
+IEp1Zw== 27078
+IFlvb24= 27079
+IFVuaXQ= 27080
+IDE5ODY= 27081
+IGtvbnM= 27082
+IGRpYWdub3N0aWM= 27083
+IGVtcG93ZXJlZA== 27084
+IHRobw== 27085
+IGNlbg== 27086
+w6lyYXRpb24= 27087
+INGX 27088
+IHBoeXNpYw== 27089
+IFByYWN0aWNl 27090
+IFNvdXRoZWFzdA== 27091
+IEVzcGE= 27092
+IEdlb3I= 27093
+cm9wb3J0aW9u 27094
+IHNwZWNz 27095
+IGFkYXB0aXZl 27096
+IFVuaXR5 27097
+IFdvcmtz 27098
+dWdlbg== 27099
+IE1vbnRhbmE= 27100
+VGhhbmtz 27101
+IHdoaXBwZWQ= 27102
+IGR1bmdlb24= 27103
+IHZpdGFtaW5z 27104
+U1A= 27105
+IHNjYW5kYWw= 27106
+IGRpbmVybw== 27107
+b3Zh 27108
+IGVtYnJv 27109
+IEVhZ2xl 27110
+IHRoZW9sb2d5 27111
+IFZhbmVzc2E= 27112
+IEFJRFM= 27113
+65Cc 27114
+IGZyZWVs 27115
+IEFsemhlaW1lcg== 27116
+IMWa 27117
+SGVy 27118
+IHRvcm5hZG8= 27119
+YWdlbnM= 27120
+IOyeiOyWtOyEnA== 27121
+IFRyYW5zZm9ybQ== 27122
+IHByb2Nlc3Nv 27123
+IG1pbGxpc2U= 27124
+IHByb2Zlc3Npb25hbGx5 27125
+IG1lbWI= 27126
+b2NhdGlvbg== 27127
+IHN0eWxpbmc= 27128
+INC+0LHRj9C3 27129
+IE9wZXJhdGlvbg== 27130
+IHd5Z2w= 27131
+IFJhbg== 27132
+IEtpbg== 27133
+4buxYw== 27134
+IEJBUg== 27135
+IHBhcGVyd29yaw== 27136
+IHR1bGU= 27137
+IHF1ZXJpYQ== 27138
+IGNvbXBseQ== 27139
+IEhhaXI= 27140
+15nXmw== 27141
+INC/0YDQvtGB0YI= 27142
+IG11dGF0aW9u 27143
+IHJlcHLDqXM= 27144
+IG9jdG9wdXM= 27145
+IGltcG9ydGFudGVz 27146
+IGRlc2VydmVk 27147
+ZXRy 27148
+IGRpc2FzdGVycw== 27149
+bMSxbmRh 27150
+aXF1w6k= 27151
+IERlc2hhbGI= 27152
+c29v 27153
+b3NzaXA= 27154
+IHJlbGlldmVk 27155
+IENvbGxpbnM= 27156
+IHdhdGVycHJvb2Y= 27157
+IFl1aw== 27158
+IGNvcHlpbmc= 27159
+IGLDvHTDvG4= 27160
+IEhldXRl 27161
+IEVudHJl 27162
+IHJlc2lkdWFs 27163
+IGNvbG9uaWVz 27164
+IMOpbm9ybQ== 27165
+IEVyaW4= 27166
+IHN0YW4= 27167
+IHRyZW1lbmRvdXNseQ== 27168
+IGNhcHR1cmVz 27169
+IFNhaQ== 27170
+w6JjZQ== 27171
+IG1pYcWC 27172
+IDg3 27173
+IGxvZ2dpbmc= 27174
+IGluc2VydGVk 27175
+IGluaGVyZW50bHk= 27176
+7J2R 27177
+bGF2ZQ== 27178
+0L3QuNGH 27179
+IGZlbW1lcw== 27180
+IGTDqXA= 27181
+dWtz 27182
+YWNpYQ== 27183
+IFdhZGU= 27184
+IGppag== 27185
+IFZpbmNlbnQ= 27186
+IEljZWxhbmQ= 27187
+aGVt 27188
+IGFwb2xvZ3k= 27189
+IFBlZw== 27190
+IGdsdWVk 27191
+IGNvbXBhbmlvbnM= 27192
+IExpdmVy 27193
+IGNyaXRpY2l6ZWQ= 27194
+bGVhZGluZw== 27195
+IHPDpGdh 27196
+IHNxdWlk 27197
+IG5hcnJhdGl2ZXM= 27198
+IHRha2E= 27199
+bmV6 27200
+d2VpdA== 27201
+IHRyaXBvZA== 27202
+IGV4cGxpYw== 27203
+IHNwaW5hbA== 27204
+IGFwcHJveGltYXRpb24= 27205
+IHBhZ2Fy 27206
+IENhbHZpbg== 27207
+INCy0LXQtNGM 27208
+IGxhYw== 27209
+IHByb2FjdGl2ZQ== 27210
+IFRyYWlu 27211
+b3Jm 27212
+IHN0ZW4= 27213
+IGdyYXBlcw== 27214
+IG1ldXM= 27215
+IGF1dG9tYXQ= 27216
+IGJpYXNlZA== 27217
+IGNoYcOubmU= 27218
+Y29hbA== 27219
+IHJlbmNvbnQ= 27220
+IEt1bQ== 27221
+IGZlc3RpdmFscw== 27222
+IHN0YXJ0dXBz 27223
+IGFrYQ== 27224
+IGN5bGluZA== 27225
+c25h 27226
+Q1JJ 27227
+IHJlc3VsdGFkbw== 27228
+IG1pbGVzdG9uZQ== 27229
+IM+F 27230
+IHRlbGVwb3J0 27231
+enljaA== 27232
+NjI= 27233
+IEZlYXI= 27234
+IG51Y2xldXM= 27235
+IHNoaW5lcw== 27236
+aG92 27237
+IFBhcnRuZXJz 27238
+IEthcw== 27239
+IG5hZGll 27240
+IGFsZXJ0cw== 27241
+IEJJTEw= 27242
+c3Ryb25n 27243
+IE5hdGU= 27244
+IERlbm1hcms= 27245
+IENhdg== 27246
+T1NU 27247
+aMOkbHQ= 27248
+IOyVhOuLjA== 27249
+YW55b24= 27250
+IGVuY291cmFnZXM= 27251
+INC/0L7RgdGC0LDQsg== 27252
+IEh1YW5n 27253
+U1RB 27254
+IHBhaW50cw== 27255
+IHNjaGVkdWxlcw== 27256
+IGNoZWF0ZWQ= 27257
+IGFwcHJveA== 27258
+IO+3 27259
+IMK7Lg== 27260
+IHNtaWxlcw== 27261
+aXN1cmU= 27262
+IG5lcmVk 27263
+YXJkZW4= 27264
+IGN1cnQ= 27265
+IOuM 27266
+IFJvdGg= 27267
+IHB1aXNxdWU= 27268
+IEdFVA== 27269
+IFZlZ2V0 27270
+IHByb2R1eg== 27271
+IEJlbGdpdW0= 27272
+IENhbXB1cw== 27273
+16jXmded 27274
+aWN1dA== 27275
+INGB0L3QuNC8 27276
+IHLDqXVzcw== 27277
+IHNsaXBwZXJ5 27278
+IEV3 27279
+xbM= 27280
+IExlZ2VuZHM= 27281
+IFRpZmZhbnk= 27282
+0LDQu9C40Lc= 27283
+INC/0LXRgNC10LI= 27284
+INC+0LPRgNC+0Lw= 27285
+IGNyb3M= 27286
+IENF 27287
+QnU= 27288
+IGVuc3VyZXM= 27289
+IGdyYW5kY2hpbGRyZW4= 27290
+IGFjdWVyZG8= 27291
+IHByaXNvbmVy 27292
+IHRoaXJzdHk= 27293
+YmFuZQ== 27294
+IOu5oA== 27295
+IMO6bHRpbWE= 27296
+IExhdW5jaA== 27297
+bml0eQ== 27298
+IGNvbWJ1c3Rpb24= 27299
+IHVuaWNvcm4= 27300
+IGZhbWlsbGU= 27301
+IGxvd2VyaW5n 27302
+IFlpbmc= 27303
+YnVpbGRpbmc= 27304
+IGR1bw== 27305
+IE3DqXhpY28= 27306
+YXN0aWFu 27307
+IOuoueydhA== 27308
+IFJhbHBo 27309
+IHJld3JpdGU= 27310
+IGdsYW0= 27311
+aWZpcXVl 27312
+RXI= 27313
+IFJ1bm5pbmc= 27314
+0L7QvdC+0LI= 27315
+IG1lYW5pbmdz 27316
+IGNoZXd5 27317
+IExlc2xpZQ== 27318
+IGZpbmVzdA== 27319
+IGhhaGFoYQ== 27320
+IFNURVA= 27321
+IGxvbmVsaW5lc3M= 27322
+cmlhbnM= 27323
+IHF1ZXN0aW9uZWQ= 27324
+IGVzcXVl 27325
+IHNpbmtpbmc= 27326
+IHBlc28= 27327
+IFdyb25n 27328
+YXNtaW5l 27329
+IGRlZmluaXRpdmU= 27330
+IGJ1eXM= 27331
+IGNydWM= 27332
+Y29vbA== 27333
+IOugiA== 27334
+IHDDsw== 27335
+IHV0aWxpemVk 27336
+IHdvcnRod2hpbGU= 27337
+IER5bGFu 27338
+RVNF 27339
+IHZlcnRleA== 27340
+dMSx 27341
+IEZpcg== 27342
+IHphdw== 27343
+IEdlZA== 27344
+INCd0LDQvw== 27345
+ZHo= 27346
+IGN1cnNvcg== 27347
+IHN3aXBl 27348
+IGluZXZpdGFibHk= 27349
+IHBvc3RlcnM= 27350
+IGluY2xpbmVk 27351
+IGdyZWV0aW5n 27352
+IGRpc2FwcG9pbnRtZW50 27353
+IHJlbGHDp8Ojbw== 27354
+VFQ= 27355
+IHJhYmI= 27356
+IE1haW5l 27357
+IGFuYWx5emVk 27358
+RkU= 27359
+INCf0L7Quw== 27360
+IFNhbmRyYQ== 27361
+IHBsYWd1ZQ== 27362
+QVJF 27363
+IHbDpHI= 27364
+IFZpdg== 27365
+dW1lZA== 27366
+aGFuZG8= 27367
+aG91ZXR0ZQ== 27368
+IEJhaWxleQ== 27369
+eXNvbg== 27370
+IHNlbXVh 27371
+IGhhcmRjb3Jl 27372
+4oKs 27373
+0ZbQvA== 27374
+w6lyYQ== 27375
+T1RI 27376
+IGZvcmVpZ25lcnM= 27377
+IFBhbGVzdGluaWFu 27378
+IHByb3ByaW8= 27379
+0LDQvdC40Lk= 27380
+IG15dGhz 27381
+V0g= 27382
+IG5pbnRo 27383
+IENyZWF0b3I= 27384
+0LvQvtC8 27385
+IEZsaXA= 27386
+IGVtYW4= 27387
+IGtpxZ8= 27388
+emllaA== 27389
+IEVhcm5lc3Q= 27390
+c3lzdGVt 27391
+luyXkA== 27392
+IGFybWllcw== 27393
+IE91dHNpZGU= 27394
+IGhhcnVz 27395
+0L7QtNCw0YA= 27396
+IHZpc2l0b3I= 27397
+IHN0cmVuZ3RoZW5pbmc= 27398
+IDky 27399
+dmlv 27400
+IOumrA== 27401
+IGdyZWVkeQ== 27402
+IHBvcXVpdG8= 27403
+dWRlcg== 27404
+IEtvcGY= 27405
+IOuLpOydjOyXkA== 27406
+IHNlaXM= 27407
+w6F0aWNv 27408
+IHRydXN0aW5n 27409
+w61w 27410
+IEVtbQ== 27411
+bGVlbg== 27412
+INin2YTZhg== 27413
+IHJlY3J1aXRtZW50 27414
+IEZpbGlw 27415
+INmD2YQ= 27416
+Q2xpbnQ= 27417
+INCy0LXRgQ== 27418
+YXVmdA== 27419
+IGRvbWluYXRl 27420
+IHJlc3Rv 27421
+IGtyYQ== 27422
+w6Fp 27423
+IENhaXQ= 27424
+cm93cw== 27425
+IGNvdW50cnlzaWRl 27426
+IDE5NDU= 27427
+0LDRhtC40Y4= 27428
+INC00Lg= 27429
+IGtlcm5lbA== 27430
+bG92 27431
+IGNhbGN1bGF0aW5n 27432
+2K/Ypw== 27433
+IFdhbHQ= 27434
+IGVtcG93ZXJpbmc= 27435
+IGNoYXNzaXM= 27436
+bGluZWFy 27437
+0LPRgw== 27438
+IG5vdmE= 27439
+IHV5 27440
+IDY5 27441
+IGVuY29tcGFzcw== 27442
+dHJs 27443
+IGNvbXB1dGF0aW9uYWw= 27444
+IHdvcm1z 27445
+IG5oaeG7gXU= 27446
+IGFzdHJvbmF1dHM= 27447
+IHZlcw== 27448
+IHN5dHU= 27449
+IGRlbWFuZGVk 27450
+IGNz 27451
+IE1vbA== 27452
+IGA= 27453
+IGNoYW50 27454
+IHRoZXJlYnk= 27455
+IHBlbmlz 27456
+IGVtb2M= 27457
+d3lu 27458
+0YPQttC1 27459
+IHRyZWFk 27460
+w7NsZQ== 27461
+IGRlZXBlc3Q= 27462
+IG1hY2hl 27463
+IFZlbnQ= 27464
+IEFtc3RlcmRhbQ== 27465
+IHJlYmVs 27466
+IDYx 27467
+INCy0LrRg9GB 27468
+dWZmcw== 27469
+IGRvxJ9ydQ== 27470
+IE5hcG9sZQ== 27471
+zq7Pgw== 27472
+IHdvcmtvdXRz 27473
+IEdsYWQ= 27474
+0L3QtdGB 27475
+IHRlbnNpb25z 27476
+IFNoaWZ0 27477
+IEd1ZXI= 27478
+7YyQ 27479
+IOy5nOq1rA== 27480
+0JY= 27481
+IGltcGxhbnQ= 27482
+w6p1 27483
+6riA 27484
+IGF1dGhvcml6ZWQ= 27485
+Q0VS 27486
+IFJW 27487
+IGhpbA== 27488
+bGV2 27489
+Y2ltZW50bw== 27490
+IFVGTw== 27491
+7IOI 27492
+d29y 27493
+IGRhbmNlcw== 27494
+IFBpeGVs 27495
+IHRyb3R6ZGVt 27496
+IG9idGVu 27497
+IEFsZnJlZA== 27498
+IGNvc3RseQ== 27499
+IFN0YW5sZXk= 27500
+IHRlcnJvcmlzdHM= 27501
+IFdpZA== 27502
+heuLiOuLpA== 27503
+IGxlaWNodA== 27504
+7J207Iqk 27505
+IGRvYnJ6ZQ== 27506
+IGhlc2l0 27507
+IGVyesOkaA== 27508
+IGVpbmlnZQ== 27509
+IGhlYnQ= 27510
+0YHQtQ== 27511
+IHVucHJlZGljdA== 27512
+Q8OzbW8= 27513
+cmVtb3M= 27514
+IFRoYW5rZnVsbHk= 27515
+IHB1cnNl 27516
+Y2hz 27517
+YW5jZXI= 27518
+dWxvcw== 27519
+c3R1ZA== 27520
+IG5ldXJvbG9n 27521
+IEFuY2llbnQ= 27522
+T3V0 27523
+YXdzemU= 27524
+IG9wcG9zZQ== 27525
+IGFudGlib2RpZXM= 27526
+IFNvbWVob3c= 27527
+cm9wb2xpdGFu 27528
+a3Rvcg== 27529
+INGB0YLQvtGA0L7QvdGL 27530
+IHJvY2tldHM= 27531
+IGRpc2FibGU= 27532
+IGNhdGFzdHJvcGg= 27533
+tOye 27534
+IGN5bg== 27535
+INC00YDRg9C30YzRjw== 27536
+IGluc3RydWN0b3Jz 27537
+ZW1hYWw= 27538
+IGV0d2E= 27539
+IHl1YW4= 27540
+IEdyb3VuZA== 27541
+IHByZW1pZXJl 27542
+0YfQuNCy 27543
+IHNhaW50 27544
+eWJh 27545
+IGtvaw== 27546
+IGNvbnRyYWN0b3Jz 27547
+IOqwgQ== 27548
+INeQ15w= 27549
+IGhlYWRsaW5l 27550
+IGNvbXBsZXRhbWVudGU= 27551
+IGluZXhwZW5zaXZl 27552
+IHZpdQ== 27553
+IEdyYW5kZQ== 27554
+IGJsZWVk 27555
+66y8 27556
+IDcz 27557
+IHRvZGF2w61h 27558
+IFJ1c2g= 27559
+IEVsZGVy 27560
+6rCA64qU 27561
+IFJvdQ== 27562
+INC20LXQvdGJ 27563
+IE1pcmE= 27564
+IGRlaW5l 27565
+IGthcm1h 27566
+IHVtbQ== 27567
+IGVudHNjaGU= 27568
+IEhvbG9jYXVzdA== 27569
+IGRpc2NvdmVyaWVz 27570
+YW1lbnRz 27571
+IHJhaXNvbg== 27572
+IGJ1cmdlcnM= 27573
+QmFjaw== 27574
+IGdkeQ== 27575
+IEFH 27576
+IERhdw== 27577
+7JWg 27578
+aGVhZGVk 27579
+IENsYXI= 27580
+SW5zdA== 27581
+IExpZXV0ZW5hbnQ= 27582
+IEFmRA== 27583
+IENlcw== 27584
+IHBlcnNvbmFsaXplZA== 27585
+IGludGVyZmFjZXM= 27586
+4LiI4Liw 27587
+INGA0LXQtg== 27588
+IHN1aWM= 27589
+IHN0YXJ2aW5n 27590
+IG94aWRl 27591
+IGRlY29yYXRlZA== 27592
+IERV 27593
+IOyYiOyBmA== 27594
+IHF1bw== 27595
+IGRpc3RvcnRpb24= 27596
+IOuoueyWtOs= 27597
+IHN0YWtlcw== 27598
+IHN5bnRheA== 27599
+IGJp4bq/dA== 27600
+dGh5 27601
+aWNpZQ== 27602
+IGJyYXNpbGU= 27603
+aXNpcw== 27604
+UkM= 27605
+IHNob29r 27606
+IGRlcHRocw== 27607
+IENvc3Rh 27608
+IHZvY2Fscw== 27609
+IGNvYXN0ZXI= 27610
+IGZhbG91 27611
+ZXR0bGU= 27612
+IGtlbm5lbg== 27613
+IGRlcml2ZQ== 27614
+IGFpZHM= 27615
+INCd0LjQug== 27616
+IGVudHdpYw== 27617
+IHZlcnRpY2FsbHk= 27618
+IM0= 27619
+IFNVVg== 27620
+IGZpcmV3b3Jrcw== 27621
+IHNwZWNpZmljcw== 27622
+IGluc2lzdGVk 27623
+IGRlc2hhbGI= 27624
+IEdvbno= 27625
+bG92ZQ== 27626
+IE1pbGl0YXJ5 27627
+IFBpZXJyZQ== 27628
+IOKI 27629
+IFdob3Nl 27630
+IHBlcmZ1bWU= 27631
+IM+AzrU= 27632
+IGxvd2VyZWQ= 27633
+IGNyb3NzZXM= 27634
+IHRyYW5zbGF0ZXM= 27635
+IGFycmliYQ== 27636
+w61kbw== 27637
+IExldg== 27638
+IENpYW8= 27639
+IHNjaG9sYXJzaGlwcw== 27640
+IGdlc3R1cmVz 27641
+INGA0LXQt9GD0LvRjNGC0LDRgg== 27642
+IHF1ZXN0w6Nv 27643
+IENvbG9uZWw= 27644
+IEJvdHQ= 27645
+2LHZgQ== 27646
+TklORw== 27647
+IFdhdGNoaW5n 27648
+IFB1cnBsZQ== 27649
+0YHRgtGA0LDQvQ== 27650
+IGV4ZWN1dGl2ZXM= 27651
+IEtyaXM= 27652
+b3JuZXlz 27653
+0LXQvdC90YvQuQ== 27654
+IGNvYXRlZA== 27655
+xKk= 27656
+IHBhcmtlZA== 27657
+INGB0LLQtdGC 27658
+ISEhISE= 27659
+IEZsb3lk 27660
+xLFzxLE= 27661
+emnEhw== 27662
+IG1vdGl2YXRl 27663
+IEVsb24= 27664
+bGVhbg== 27665
+hpM= 27666
+IGlw 27667
+IG5pxbw= 27668
+IEV4cGVyaWVuY2U= 27669
+IFRpbmE= 27670
+IEtvbGxlZ2U= 27671
+IEFtYmFzc2Fkb3I= 27672
+aW55YQ== 27673
+IHRoZWZ0 27674
+IGhldXJlcw== 27675
+IE15c3Q= 27676
+IG1haXNvbg== 27677
+bGVi 27678
+IGJvd2xz 27679
+IELDvHJnZXI= 27680
+IFJvb3NldmVsdA== 27681
+UlA= 27682
+6rCA7JqU 27683
+IERlbGljaW91cw== 27684
+ZXJkaW5ncw== 27685
+IEFzc29jaWF0ZQ== 27686
+b3Vzc2U= 27687
+IENvcnQ= 27688
+IFJlcGVhdA== 27689
+IEdsb3J5 27690
+IGNvbnRhZw== 27691
+4LmA4Lil 27692
+IFBhcmFk 27693
+IEtlcnJ5 27694
+IOq/ 27695
+IFdhdmU= 27696
+IGdhdGV3YXk= 27697
+IeOAjQ== 27698
+IHRyYW5zY2VuZA== 27699
+IGRhbWFnZXM= 27700
+IHRhaWxz 27701
+IGdyYXZpdGF0aW9uYWw= 27702
+IFNoaWVsZA== 27703
+IHByaW1pdGl2ZQ== 27704
+IGNhcnJpZXJz 27705
+IEh1YXdlaQ== 27706
+2YLYrw== 27707
+IGZlbGl6 27708
+IE1pYQ== 27709
+INC/0YDRj9C80L4= 27710
+INC/0YDQvtC40YHRhdC+0LTQuNGC 27711
+IE11cnBoeQ== 27712
+IEFjdGl2 27713
+IGRpc2NvbWZvcnQ= 27714
+15HXlA== 27715
+IEtlbGw= 27716
+IENlbnR1cnk= 27717
+IHNwYWdoZXR0aQ== 27718
+IER1cmNo 27719
+IGNpZXJ0bw== 27720
+IEVtcHJlc3M= 27721
+IGd1dHM= 27722
+bmVn 27723
+INC00L7RgdGC0LDRgtC+0YfQvdC+ 27724
+IHZvbHVudGFyeQ== 27725
+IHNxdWlycmVs 27726
+IE1heg== 27727
+tOyLrA== 27728
+INCy0Lg= 27729
+INGC0LDQutC40YU= 27730
+IFNoYXJvbg== 27731
+IGVudGh1c2lhc3RpYw== 27732
+aXJlbWVudA== 27733
+IO2emOuTpA== 27734
+IHBvdHJ6ZQ== 27735
+IGluaXRpYXRlZA== 27736
+IMWbcm9k 27737
+IOydtOumhA== 27738
+IHJlbWFrZQ== 27739
+IGN1bG1pbg== 27740
+IGNvbmZ1c2U= 27741
+bWl5b3I= 27742
+dXJhcg== 27743
+Q1RPUg== 27744
+IGJ1bm55 27745
+ZWxw 27746
+IHZhbXBpcmU= 27747
+IGlsbHVtaW4= 27748
+IEhlbmQ= 27749
+INC60LDRh9C1 27750
+IFNhbHY= 27751
+INC60LDQvdCw0Ls= 27752
+IHBvcnRh 27753
+IGFzc2hvbGU= 27754
+IHN1cHBvcnRlcg== 27755
+IHNrZXB0aWNhbA== 27756
+IGtuZWFk 27757
+IOyYrA== 27758
+ZXph 27759
+IHF1w6o= 27760
+IERI 27761
+IHJvZHo= 27762
+b3duZXJz 27763
+IHBsb3Rz 27764
+IGRlbGF5cw== 27765
+IGJlbG9uZ2Vk 27766
+IGFoaA== 27767
+IGNhcnZlZA== 27768
+IHJpc2Vu 27769
+IG9yZGVu 27770
+cGhvbnk= 27771
+aXNzeQ== 27772
+ISEhISEhISE= 27773
+IG9sZHXEn3VudQ== 27774
+IHJvc2Vz 27775
+IGludHJpbnM= 27776
+IEFuZ3N0 27777
+IGZpbmFsZW1lbnQ= 27778
+7Ked 27779
+U09VTkQ= 27780
+IGluZHVs 27781
+sIw= 27782
+INeV15Q= 27783
+Y2h5 27784
+0LDQutGB0LjQvA== 27785
+IG5nZ2Fr 27786
+IGxpeg== 27787
+IGVsZWN0b3JhbA== 27788
+IFNoYXdu 27789
+cmljaWE= 27790
+IGFyc2Vu 27791
+IFBlcA== 27792
+IDIwMzA= 27793
+IHRyb3BoeQ== 27794
+IHNtb290aGVy 27795
+IGVycmU= 27796
+IGNyYXNoZXM= 27797
+IHNjaG5l 27798
+IGFzaQ== 27799
+IE1hw58= 27800
+0YPQu9C4 27801
+0YfQtdGB0LrQuA== 27802
+aWV2ZXM= 27803
+UkVBTQ== 27804
+IHN0aXJyaW5n 27805
+dXN0YQ== 27806
+IGludmVy 27807
+c2lnaHQ= 27808
+b3JkdQ== 27809
+b29y 27810
+IMSDbg== 27811
+IHBlcm1pdHRlZA== 27812
+0YDRjA== 27813
+IGNoYWxr 27814
+IHRhdHRvb3M= 27815
+IFJlbGF0aW9ucw== 27816
+IEhveQ== 27817
+a3NhbQ== 27818
+IGRlbnRpc3Q= 27819
+IOuvuOq1rQ== 27820
+IHNvZmE= 27821
+INGU 27822
+IGZvcm1l 27823
+2YLYqQ== 27824
+IOuyoA== 27825
+IGVtYnJhY2Vk 27826
+bWls 27827
+IHN1bmdsYXNzZXM= 27828
+IOqwlA== 27829
+IHNlYW1sZXNz 27830
+IGJlZXA= 27831
+w6RjaHN0 27832
+IHN3ZWV0cw== 27833
+IHNlbWFpbmU= 27834
+IGlycmVsZXZhbnQ= 27835
+IGRlc2Vudm9s 27836
+z4HPiQ== 27837
+INC/0YDQvtC40LfQstC+0LQ= 27838
+YW5ncw== 27839
+IGFyb21h 27840
+IHBvb2xz 27841
+IGdp4bud 27842
+IFVn 27843
+IGNsaW1iZWQ= 27844
+IHRyZW5kaW5n 27845
+IHNlcGVydGk= 27846
+IEJhcnI= 27847
+IHDFgg== 27848
+IE9yaWdpbmFsbHk= 27849
+INqv 27850
+dXR0bw== 27851
+irjr 27852
+INC60L7RgtC+0YDRi9GF 27853
+INC30LDRhQ== 27854
+IGVpZ2VuZW4= 27855
+IG11cmRlcmVy 27856
+ZXJuYW1l 27857
+xZ4= 27858
+IGFubm91bmNpbmc= 27859
+IFBsYXRmb3Jt 27860
+IGV4cGxhbmF0aW9ucw== 27861
+IHByZXNlbnRl 27862
+IE5hc8SxbA== 27863
+IG9ycGhhbg== 27864
+IEZvcnRuaXRl 27865
+cm9zcGVjdA== 27866
+ZXJlZGl0aA== 27867
+IOyXhuyWtA== 27868
+IE5JSA== 27869
+d2FnZW4= 27870
+IHJlbWVk 27871
+p4Dr 27872
+bW9udA== 27873
+IEplZmZyZXk= 27874
+cHJvbQ== 27875
+IGbDvG5m 27876
+INC90LDQt9Cw0LQ= 27877
+IGN1Y3VtYmVy 27878
+IFN1bW1pdA== 27879
+p6Q= 27880
+0J3QkNCv 27881
+IEpldA== 27882
+IGNhbWJpbw== 27883
+0YPQudGC0LU= 27884
+IGN1Ymlj 27885
+IGRpc3Byb3BvcnRpb24= 27886
+ZXJleg== 27887
+IG1hZG5lc3M= 27888
+IHRpbnQ= 27889
+IGZ1ZXJvbg== 27890
+IGt5 27891
+IGJpcGFydA== 27892
+U2Ft 27893
+IOu9 27894
+IHJpdg== 27895
+IFRhbms= 27896
+IOuGkw== 27897
+IHJlbmRlcmVk 27898
+xZtsxJk= 27899
+Y29uZHM= 27900
+IGRpc3J1cHRpb24= 27901
+IGluY29udmVu 27902
+IHF1aXNlcg== 27903
+IGRlbmlhbA== 27904
+IGdhbGF4aWVz 27905
+IHNvdmVyZWlnbg== 27906
+IHBvbHNr 27907
+z4HPjg== 27908
+IG1leA== 27909
+IGNhcmFjdGVy 27910
+IExlZ28= 27911
+YW5kZW4= 27912
+Lici 27913
+IO2UjOs= 27914
+IGNvbXByZXNzb3I= 27915
+IE1vdmll 27916
+IGFwcGxpY2FudHM= 27917
+emllaGVu 27918
+IHZlZ2V0YXRpb24= 27919
+IGJlbGxl 27920
+IEdPT0Q= 27921
+IEJhdQ== 27922
+IHJlc2VudA== 27923
+c2V4 27924
+YW1lbnRvcw== 27925
+INeU15bXlA== 27926
+IG92ZXJsb2Fk 27927
+IHNpbGljb25l 27928
+0LXRgdGC0L3Qvg== 27929
+IGRlbmtlbg== 27930
+IGRlZmluaXQ= 27931
+IFdhc24= 27932
+IGFsdGVyZWQ= 27933
+IFNvbw== 27934
+IFdpbmc= 27935
+aW5kcmU= 27936
+IE5QQw== 27937
+z4HOrQ== 27938
+IFR3ZW50eQ== 27939
+IExpZWJl 27940
+IGhvbWVsZXNzbmVzcw== 27941
+b3VsZGVy 27942
+INCY0YLQsNC6 27943
+0YHQutCw0Y8= 27944
+IGN1YXRybw== 27945
+IEhhcnZleQ== 27946
+IHBoaWxhbg== 27947
+IEJlZXQ= 27948
+IHBvbGljaW5n 27949
+IEFsZXhhbmQ= 27950
+INC80L7Qu9C+0LQ= 27951
+IG3DvHM= 27952
+IGhpem8= 27953
+67O064uk 27954
+INC/0L7Qt9Cy0L7Quw== 27955
+INC/0YvRgg== 27956
+0L7Rh9C10LzRgw== 27957
+IO2DnA== 27958
+IGNyeXB0b2N1cnJlbmN5 27959
+IGxvcm8= 27960
+IHN1bW1hdGlvbg== 27961
+IGJha2FsxLFt 27962
+IG5ldXJvcw== 27963
+2KU= 27964
+INC80L7QttC10Lw= 27965
+IMO8c3Q= 27966
+IHByZWxpbWluYXJ5 27967
+IGhvcm5z 27968
+IFRJ 27969
+2YPZhA== 27970
+WU8= 27971
+IGhpbmdl 27972
+IHJlcGFpcnM= 27973
+IGJvbmRpbmc= 27974
+IGJpemU= 27975
+INGI0YI= 27976
+IG1vdGl2ZQ== 27977
+IE5pZ2VyaWE= 27978
+MTIw 27979
+YmxvY2s= 27980
+IGF2aWF0aW9u 27981
+IEtvbW11bg== 27982
+INC+0LrQsNC3 27983
+IHRlbmhh 27984
+IGVkdWNhdGluZw== 27985
+IHN0YWF0 27986
+INGB0LrQvtC70YzQutC+ 27987
+IGZyaWdodGVuZWQ= 27988
+IHNlZWtz 27989
+0YDRg9GI 27990
+cXVlbnQ= 27991
+IE5vdQ== 27992
+IHByYXQ= 27993
+IFNob3Q= 27994
+V29yaw== 27995
+a2FyYW5n 27996
+IExpZ2h0bmluZw== 27997
+bm9sZHM= 27998
+cm9sbGVk 27999
+Z2xhc3M= 28000
+IGNyZWRpYmlsaXR5 28001
+SVRZ 28002
+IGF0bW9zcGhlcmlj 28003
+IGhhdmlh 28004
+w6RuZGVybg== 28005
+Y2hlZXJz 28006
+VGhlc2U= 28007
+IENlbGw= 28008
+IG1hZ25lcw== 28009
+IEJyYXZv 28010
+c2Vhc29u 28011
+IMWfZXlsZXI= 28012
+8J+O 28013
+d2hpdGU= 28014
+IE1C 28015
+IHN0YWNrZWQ= 28016
+IDc0 28017
+INC00LDQstCw0Lk= 28018
+IHBhdmU= 28019
+INC+0YU= 28020
+IGRhdGFzZXQ= 28021
+IHJldG91cg== 28022
+IG1hdHVyaXR5 28023
+IHF1YXNl 28024
+IDkz 28025
+IFN5bQ== 28026
+IGJyaWVmaW5n 28027
+IGN1bHR1cmFsbHk= 28028
+IOy3qA== 28029
+aW5oYXM= 28030
+IG1hZGFt 28031
+IGFqdWRhcg== 28032
+IFRpYmV0 28033
+IGxlYWtz 28034
+Y2lsZQ== 28035
+IHRoZWF0ZXJz 28036
+7Jio 28037
+NzI= 28038
+IFdhc2g= 28039
+IFF1YWxpdHk= 28040
+IEl2YW4= 28041
+IEJlbnQ= 28042
+aWdhdG9y 28043
+IEdlc2NoaWNodGU= 28044
+IHJlYWN0aXZl 28045
+IDE5MDA= 28046
+IGNvbnRyYWRpY3Q= 28047
+IHppZW1saWNo 28048
+IGNvaG9ydA== 28049
+4bun 28050
+IHBlc3RpYw== 28051
+IG9yYXo= 28052
+IHRlbGxlbWVudA== 28053
+6b4= 28054
+IE5vd2FkYXlz 28055
+Y3Jldw== 28056
+U3RldmU= 28057
+IGZpY3Rpb25hbA== 28058
+IGlsaw== 28059
+IGdhc29saW5l 28060
+emFt 28061
+IHBhbmNha2U= 28062
+w6huY2lh 28063
+IG11aXRvcw== 28064
+IGJ1cnk= 28065
+IGtvcA== 28066
+IElR 28067
+IHJlc2VydmF0aW9u 28068
+IFVwZGF0ZQ== 28069
+IGplag== 28070
+IEV5ZXM= 28071
+IHZpdmU= 28072
+IGNoY2U= 28073
+IEluaQ== 28074
+cmVzcG9ucw== 28075
+IHJlZmxlY3RpdmU= 28076
+IFdhbg== 28077
+0ZbQtw== 28078
+IGVuY2E= 28079
+IGVtYm9k 28080
+IEJ1cmdlcg== 28081
+IGFjYWRlbWlh 28082
+IENpcmM= 28083
+INC/0YDQtdC6 28084
+IGFubGFt 28085
+IHBoaWxhbnRocm9w 28086
+IEJhxZ8= 28087
+IEF1ZGk= 28088
+IHZvc3Q= 28089
+IHJlcGVy 28090
+UGV0ZXI= 28091
+IGNvbnNvbGVz 28092
+IHNjcnV0 28093
+IFR1cm5lcg== 28094
+INCx0YvQsg== 28095
+SUlJ 28096
+IEZsaWdodA== 28097
+4LiW 28098
+IFJhdmVu 28099
+IGNvcnJvcw== 28100
+ZmVybg== 28101
+IHByb3Zh 28102
+IFNldg== 28103
+IHJlY2lwcm8= 28104
+IDE5ODU= 28105
+IG51ZXZh 28106
+IGRhYg== 28107
+44CB44CM 28108
+IG1leg== 28109
+IFN0YXJr 28110
+cHBpbmdz 28111
+0L7RgdGC0Lg= 28112
+7Kad 28113
+IGZyYW1pbmc= 28114
+INCg0LDQtw== 28115
+IHBvc3Rw 28116
+IFNoYW5ub24= 28117
+INC60YPRgA== 28118
+IGpha2J5 28119
+aWVubmVudA== 28120
+IE1hcHM= 28121
+IFJldmVsYXRpb24= 28122
+INGB0YLQsNC7 28123
+7Jq0642w 28124
+IGRldmFudA== 28125
+IEdpdmluZw== 28126
+IFdBUw== 28127
+INC60L7Qs9C+ 28128
+IHJlbWE= 28129
+IFJD 28130
+bsOt 28131
+IHNsaXBwZWQ= 28132
+IFJhbXM= 28133
+IHdlZXQ= 28134
+IG1hc2N1bGluZQ== 28135
+IEVj 28136
+IHJlb3A= 28137
+IFBsYW50 28138
+IE1BWQ== 28139
+IHNwaWtlcw== 28140
+IG5venpsZQ== 28141
+IFdpa2lwZWRpYQ== 28142
+IENvaA== 28143
+SVNTQQ== 28144
+Y2hsb3NzZW4= 28145
+7KeA66W8 28146
+IOuvuOs= 28147
+IE5lZGVy 28148
+Sm9zaA== 28149
+INCg0L7RgdGB0LjQuA== 28150
+IDE5ODc= 28151
+IFRoZW9yeQ== 28152
+ZWtr 28153
+IHV0YW4= 28154
+INC00L7QvNCw 28155
+Y2h1 28156
+INGB0LE= 28157
+IGFwcm92ZQ== 28158
+VkVO 28159
+dWVwcmludA== 28160
+IDg0 28161
+Q29y 28162
+IHJpY2hlcg== 28163
+IHNhbmR3aWNoZXM= 28164
+YXRzdQ== 28165
+0YjQuNGF 28166
+IGxhdHQ= 28167
+fn5+fg== 28168
+ZnJpZW5kcw== 28169
+IGRlcm5pw6hyZQ== 28170
+IHN0ZXJlbw== 28171
+INGN0LrRgdC/ 28172
+IHByb3RlY3Rpb25z 28173
+IGhhdXQ= 28174
+RXZlcnlvbmU= 28175
+IGVudGVycHJpc2Vz 28176
+IE1vc3RseQ== 28177
+IFNwb3RpZnk= 28178
+IFNleA== 28179
+IHVuZw== 28180
+jOulvA== 28181
+IGFjdGl2aXNt 28182
+Y3RpY2E= 28183
+b3JpZ2luYWw= 28184
+INC/0YDQvtCz0YDQsNC8 28185
+IGJyb2Njb2xp 28186
+4KY= 28187
+0L7Qs9GA0LDRhA== 28188
+IHNla2FyYW5n 28189
+IGNyYWZ0aW5n 28190
+INCx0LDQvQ== 28191
+IFJheg== 28192
+IG5haXZl 28193
+IHNjcm9sbGluZw== 28194
+IG51bWVyaWNhbA== 28195
+IHNjaGVkdWxpbmc= 28196
+IGFwYXJ0bWVudHM= 28197
+540= 28198
+IHN0cmV0Y2hlcw== 28199
+YWNleQ== 28200
+IEhFUg== 28201
+IHppbmM= 28202
+IGRhcm4= 28203
+IGPDqWw= 28204
+IHdhcmRyb2Jl 28205
+IHJlZGlyZWN0 28206
+IGp1bQ== 28207
+IFN0cmFuZ2U= 28208
+IG7DoG8= 28209
+IGV4cGVyaW1lbnRpbmc= 28210
+w6lyw6k= 28211
+IHZvdWxleg== 28212
+IGdlYmU= 28213
+IEthbm4= 28214
+IMSR4buZ 28215
+IE1heGlt 28216
+IEvDtm4= 28217
+IEdsYXM= 28218
+IHBvbGlzaGVk 28219
+IG51bWE= 28220
+SWNo 28221
+IHJpdHVhbHM= 28222
+IFNJ 28223
+0LjRgtC10LvQuA== 28224
+IGluZmlsdA== 28225
+IHNjYXJm 28226
+b3BoeQ== 28227
+IHlpbmU= 28228
+IGNpdmlj 28229
+IE1lbmc= 28230
+w6RuZ2U= 28231
+1aU= 28232
+aGlzdG9pcmU= 28233
+IE9rZQ== 28234
+IOyYhg== 28235
+IHNvbGx0ZW4= 28236
+IDgy 28237
+IHByZXNjcmliZWQ= 28238
+IER1YmFp 28239
+IEVsdGVybg== 28240
+IG5hdGlvbndpZGU= 28241
+IHNrYXRpbmc= 28242
+aWFyeQ== 28243
+IHJld2FyZGVk 28244
+IG1vcmFsaXR5 28245
+IE1hZ2dpZQ== 28246
+IE9oaGg= 28247
+IEZhaHJlbg== 28248
+b2x2ZWQ= 28249
+IGRldXhpw6htZQ== 28250
+dGVjaG4= 28251
+cm9sZQ== 28252
+IGxlaWRlcg== 28253
+IEpBWQ== 28254
+INC40L3RhNC+0YDQvA== 28255
+IGNhZmZl 28256
+cmVpY2hlbg== 28257
+IGthcnQ= 28258
+IEN1dGU= 28259
+ZmZlY3RpdmU= 28260
+IGJ1bGx5 28261
+YWdhcg== 28262
+IGNvbW1vZGl0eQ== 28263
+IG9icmln 28264
+T1VS 28265
+IHVucGxlYXNhbnQ= 28266
+bm94 28267
+SnVs 28268
+b2xpdGg= 28269
+0YLQvtGP0Yk= 28270
+IEJlbGxh 28271
+IGRvbGxz 28272
+IEhvZmY= 28273
+IGFkdmlzb3Jz 28274
+IHRyYW5zZmVycw== 28275
+IEdva3U= 28276
+IDEyMDA= 28277
+aW5ob3M= 28278
+UGFs 28279
+IOuYkQ== 28280
+IHJlcHQ= 28281
+IGFjY29tcGxpc2htZW50 28282
+IHdlYXZl 28283
+IG92ZXJzaWdodA== 28284
+IHVuaGVhbHRoeQ== 28285
+IGZpbHQ= 28286
+IHB1ZGRpbmc= 28287
+IE1pZ3VlbA== 28288
+IGNodWNrbGVz 28289
+dmVyc2lvbg== 28290
+IGNvbmZlc3Npb24= 28291
+dmFsdWU= 28292
+IHRyaXVtcGg= 28293
+IHNhaXI= 28294
+IOuFuA== 28295
+IGFydGU= 28296
+IE1hdGVyaWFs 28297
+dXRp 28298
+IGxpcXVvcg== 28299
+IEJheWVybg== 28300
+IE1haWw= 28301
+IO2WpQ== 28302
+0YHQutC+0Lw= 28303
+IGNoZWFwZXN0 28304
+INGH0LDRgdGC0Lg= 28305
+IEpvYnM= 28306
+IENhbnlvbg== 28307
+aGFybWE= 28308
+YWxleQ== 28309
+YW5kcm8= 28310
+IGFwcGVhcmFuY2Vz 28311
+cHJvZg== 28312
+INC+0Lc= 28313
+bGFnZW4= 28314
+IC8v 28315
+INC70LjRiNGM 28316
+IHJlY292ZXJpbmc= 28317
+0LTQtg== 28318
+cHN5 28319
+IHN3aWZ0 28320
+IFNwaW4= 28321
+IHNlaW5lbQ== 28322
+IGRvbHBo 28323
+ZsO8aHI= 28324
+w6J0 28325
+IGFsdGlqZA== 28326
+IE1hcnR5 28327
+IEhvY2g= 28328
+IHByZWRhdG9ycw== 28329
+IHZvcmhlcg== 28330
+INCU0LDQstCw0Lk= 28331
+IGZyYWdtZW50cw== 28332
+IHBhc3RyeQ== 28333
+IGNvbW1lbg== 28334
+IFNhbmE= 28335
+IOqxtOuNsA== 28336
+dXNzZW4= 28337
+IHRlbGE= 28338
+IE5pbmE= 28339
+bGVr 28340
+IGNyaWVz 28341
+IHRoaWdocw== 28342
+IEZsZXg= 28343
+IEJ1eno= 28344
+44Q= 28345
+VXM= 28346
+IHBhc28= 28347
+IGRlY2xpbmVk 28348
+IE55 28349
+YmFsYW5jZQ== 28350
+IG1hc2E= 28351
+IGpvcw== 28352
+INCh0L/QsNGB0LjQsdC+ 28353
+YWNodQ== 28354
+bG91ZA== 28355
+IHBlbmE= 28356
+IFdhbGQ= 28357
+IGVsaW1pbmF0aW9u 28358
+INCy0LXRgdGM 28359
+b3JhZ2U= 28360
+IG1pc3VuZGVyc3RhbmRpbmc= 28361
+IGVuZG9yc2U= 28362
+IG9nw7NsZQ== 28363
+IGdyZWVk 28364
+IGtsZWlu 28365
+15zXlA== 28366
+UkVZ 28367
+IEVhdGluZw== 28368
+IHNlbWluYXI= 28369
+IEJpcnRoZGF5 28370
+IHF1ZWxsZQ== 28371
+IE11bHRp 28372
+IHRpcmFy 28373
+IHBlcmNo 28374
+IGxhdm9y 28375
+IEppYQ== 28376
+IG11dGF0aW9ucw== 28377
+IGNpZ2FyZXR0ZXM= 28378
+2YjYrA== 28379
+IGNvdXNpbnM= 28380
+IGNhcHN1bGU= 28381
+IGhvcnJpZmlj 28382
+IHN0dXI= 28383
+IHplaWd0 28384
+bnV0cw== 28385
+IG1lYW53aGlsZQ== 28386
+IENvbGlu 28387
+IGdvYmllcm5v 28388
+IGd3 28389
+IHVoaA== 28390
+IEpFUg== 28391
+c3BlY2lmaWM= 28392
+IGFsbGVnYXRpb25z 28393
+IOupiw== 28394
+IEVsbGE= 28395
+b29rZWQ= 28396
+IEZpdA== 28397
+YWZmbGU= 28398
+IEFwcsOocw== 28399
+IER1Y2s= 28400
+IGNlbGx1bGFy 28401
+Y8Ozdw== 28402
+INGH0YPQstGB0YLQsg== 28403
+Z2Vub21tZW4= 28404
+7Iqk7Yq4 28405
+IGxhaW4= 28406
+aXNvbA== 28407
+IGhvbGRlcnM= 28408
+IGJvb3N0ZXI= 28409
+IFNhc2hh 28410
+0YvQstCw0LXRgg== 28411
+gbw= 28412
+IHNlcGFyYXRpbmc= 28413
+IHJlaW5mb3JjZW1lbnQ= 28414
+INC+0LTQvdC+0Lk= 28415
+7JeG 28416
+SURF 28417
+IE9wdGlvbg== 28418
+cGhvbg== 28419
+IHBsYWlz 28420
+IENhbWI= 28421
+IO2ZmA== 28422
+IHVuY29tbW9u 28423
+Ijo= 28424
+bWl5b3J1bQ== 28425
+bW9p 28426
+YWNqZQ== 28427
+0LDQttGD 28428
+1bY= 28429
+IGdlbXM= 28430
+w7xsZXI= 28431
+b29scw== 28432
+IGVuenltZXM= 28433
+IGtpZG5hcHBlZA== 28434
+IGtldGNodXA= 28435
+dGFsaw== 28436
+IHphY2g= 28437
+IHdhc2hlcg== 28438
+44CC44CC 28439
+IEFyY2hpdGVjdA== 28440
+dmVudWU= 28441
+IFBsYW5uaW5n 28442
+IFNhdmlvcg== 28443
+INCz0YDRg9C/0L8= 28444
+7Yq8 28445
+YXJ5YQ== 28446
+IHByb2Nlc28= 28447
+IGxpbWJz 28448
+IHJlYWxpemVz 28449
+aWFuZGVy 28450
+RlM= 28451
+YWpp 28452
+IHVuaXRl 28453
+IOydmOs= 28454
+IHBvc3PDrXZlbA== 28455
+cmFpdHM= 28456
+IEFncmU= 28457
+24zaqQ== 28458
+7ISc64+E 28459
+INCy0LXQuw== 28460
+INC80LXRgdGP 28461
+YW5vcg== 28462
+UGF0 28463
+IGRlcm5pZXI= 28464
+z4PPhM61 28465
+INC60LDQutCw0Y8= 28466
+IGzDpHNzdA== 28467
+IE1laA== 28468
+IG5naA== 28469
+IGFtYXRldXI= 28470
+RmU= 28471
+IOq2gQ== 28472
+IHNpdHVhY2nDs24= 28473
+IHNlZGFu 28474
+IGNsZWFuc2luZw== 28475
+bGFzdGluZw== 28476
+IGNvbW11bmlzdA== 28477
+QU5F 28478
+IGlycmVndWxhcg== 28479
+IHNvdXQ= 28480
+IENhcm5leQ== 28481
+IGFsbGVtYWFs 28482
+IG11Y2jDrXM= 28483
+IGxpYnJv 28484
+0K3RgtC+ 28485
+INCw0L8= 28486
+IGNvbnRpbnVhdGlvbg== 28487
+IExvcg== 28488
+PyIs 28489
+cXVpbg== 28490
+IGNoYXJhY3Rlcml6ZWQ= 28491
+YWplcw== 28492
+IHNpZ2h0cw== 28493
+INGP0LfRiw== 28494
+IFVoaA== 28495
+YmlydGg= 28496
+ZG9uZw== 28497
+IGhhYmxhbmRv 28498
+IHN5bXB0b20= 28499
+IGNhcGFjaXRvcg== 28500
+IHRyYW5zcG9ydGVk 28501
+IGlnbm9yYW50 28502
+INC90LjQutC+0LPQtNCw 28503
+IGRyaXA= 28504
+IEV2YQ== 28505
+IGFkamVjdA== 28506
+IG1hc3NpdmVseQ== 28507
+IEV0aGk= 28508
+IENpcmNsZQ== 28509
+IHJhaW5mYWxs 28510
+IE1vdXNl 28511
+IHJlZnVuZA== 28512
+IFp3 28513
+YXNzZW1i 28514
+IDIyMA== 28515
+IE9yZA== 28516
+IHZlaW5z 28517
+IEdpYW50 28518
+IG3Do2U= 28519
+IHZhcA== 28520
+IG1pc3Nlcw== 28521
+zr/Phc+C 28522
+TW8= 28523
+IEVudHdpY2s= 28524
+SU5U 28525
+2YbYqg== 28526
+IHRoZW9yZXRpY2FsbHk= 28527
+IHRlYXJpbmc= 28528
+IHRyb3VibGVk 28529
+cHJlbQ== 28530
+IHJlcGV0aXRpdmU= 28531
+IOKW 28532
+IGhlYXZlbmx5 28533
+IEFtYmVy 28534
+INC/0L7Qu9C+0LY= 28535
+IO2VtOyk 28536
+IHZvd2Vs 28537
+YW5raW5n 28538
+IFdpcnRzY2hhZnQ= 28539
+IGlycg== 28540
+IGNvenk= 28541
+IHVuZmFtaWxpYXI= 28542
+IFBvcnM= 28543
+IOunnuyVhA== 28544
+IFRpbW90aHk= 28545
+0YHQvtC70Y7Rgg== 28546
+cGV4 28547
+IFZJUw== 28548
+KSg= 28549
+IHN1cGVyc3Q= 28550
+IGltcHJvdg== 28551
+IEJlbmc= 28552
+IGRpc2Nvbm5lY3RlZA== 28553
+IGFwdA== 28554
+0YDQtdC9 28555
+IEV4dHJh 28556
+INCx0LXQuw== 28557
+c2hvcA== 28558
+ZGluZ3M= 28559
+IENvbm5lY3RpY3V0 28560
+7LCs 28561
+IEdD 28562
+YmVo 28563
+SmVyZW15 28564
+IEJhdHQ= 28565
+YXRoYQ== 28566
+IFp1c2FtbWVu 28567
+c2NyZWFtcw== 28568
+IGdyYXM= 28569
+YWZmdA== 28570
+IEluaXRpYWxseQ== 28571
+IEJyZXR0 28572
+IHNwZWNpZmljYXRpb25z 28573
+IHNlYXdlZWQ= 28574
+IG9hdGg= 28575
+IGZvdW50YWlu 28576
+INC60L7RgtC+0YDQvtC5 28577
+IFN0ZWlu 28578
+IENvcmludGg= 28579
+IGNvbmp1Zw== 28580
+IGNvbXBlbnNhdGU= 28581
+IOuKkOuCjOydtA== 28582
+IG9uemU= 28583
+IHNraW5jYXJl 28584
+QnJpYW4= 28585
+IHNlcnZpcg== 28586
+fX0= 28587
+IFZpaw== 28588
+IHVuaW50 28589
+IHN1cHBsaWVycw== 28590
+IGJhbGNvbnk= 28591
+IGVuZXJnaWE= 28592
+b21ldHJpYw== 28593
+0LfRjw== 28594
+IHNpZ2g= 28595
+IFRPTQ== 28596
+IFB1cmU= 28597
+eXR0 28598
+0YvRgQ== 28599
+IFJhaW5ib3c= 28600
+IFBpdHRz 28601
+15nXng== 28602
+IHN0YXR1ZXM= 28603
+aGVhZHM= 28604
+IGNvdXBsZWQ= 28605
+IGhlcmQ= 28606
+IGV4Y2x1ZGVk 28607
+IGdpbHQ= 28608
+INGO 28609
+IHN3b2pl 28610
+IFN2ZXI= 28611
+NjM= 28612
+aXNzYW50 28613
+IGTDvHJmZW4= 28614
+oIjr 28615
+IGtpc3Npbmc= 28616
+b29m 28617
+IGN1cnNlZA== 28618
+IHNob3dlcnM= 28619
+IHN3aW5naW5n 28620
+IHJlcHJvZHVjZQ== 28621
+IHPDpHR0 28622
+ZWxjb21l 28623
+IGZ1bmRhbWVudGFscw== 28624
+IGFsbW9uZA== 28625
+IHDDqQ== 28626
+IHdlbGxiZWluZw== 28627
+IGh1bnRlcnM= 28628
+U2Vj 28629
+k5zrprQ= 28630
+IGVtaXNzaW9u 28631
+IHBzeWNob2xvZ2lzdA== 28632
+IGJldHJheWVk 28633
+IFJleW5vbGRz 28634
+TEVT 28635
+IHBvbGxpbmc= 28636
+IG5lZ2F0aXZlbHk= 28637
+IGNvbWJpbmVz 28638
+15zXkA== 28639
+0LDRgNCw 28640
+zrvOu86s 28641
+IFR1cm5z 28642
+T1RU 28643
+INeU15k= 28644
+YWlzb24= 28645
+IGFpcmxpbmU= 28646
+IHJlc3RyaWN0aW9u 28647
+d2Fs 28648
+IGF1cmFpdA== 28649
+IExlYmFub24= 28650
+IE1PUg== 28651
+IG1vbmtleXM= 28652
+w6luZXI= 28653
+0ZbRlw== 28654
+IG1vdGhlcmY= 28655
+INmH2LDZhw== 28656
+IGZldQ== 28657
+w7xocmVu 28658
+IGh5Z2llbmU= 28659
+ZW50ZWVu 28660
+RGVz 28661
+IGRpc3NpcA== 28662
+RXN0 28663
+IHNhaW50cw== 28664
+IHBvdGFzc2l1bQ== 28665
+IHJlY2tvbg== 28666
+Q2xpbnR1cw== 28667
+IG1hbmlmZXN0YXRpb24= 28668
+IEFwcHJv 28669
+IEluc3BlY3Q= 28670
+IHZlbnRpbGF0aW9u 28671
+IGhlbG0= 28672
+IGthcmE= 28673
+4Liy4LiZ 28674
+IGZhdm9yYWJsZQ== 28675
+IOyViuyVmA== 28676
+IEhpc3Bhbmlj 28677
+4Lic 28678
+INeU15s= 28679
+IHZhbGlkYXRl 28680
+IFJlc2lkZW50 28681
+IGNvbWVueg== 28682
+YmVpdGVy 28683
+ZXJlcg== 28684
+IGRhZG8= 28685
+YXRjaGluZw== 28686
+bWV0cm9z 28687
+IEhpbg== 28688
+IER1bQ== 28689
+IGhhesSxcg== 28690
+IE5hdGFsaWU= 28691
+IGVuY3J5cHRpb24= 28692
+0L7Rh9C60LA= 28693
+bW1h 28694
+aG91c2Vz 28695
+IGFuYWx5dGljYWw= 28696
+IERhbmc= 28697
+Zmlyc3Q= 28698
+IEVuYw== 28699
+Y2FuZG8= 28700
+IGx1ZHpp 28701
+d2FydA== 28702
+IHN0YXRpc3RpYw== 28703
+IOyCsA== 28704
+IGNvbW1lbnRpbmc= 28705
+IGNvb3JkaW5hdGVk 28706
+IEh5cGVy 28707
+5Zo= 28708
+IEJlcnQ= 28709
+IEhpcA== 28710
+a2Vt 28711
+w7xuw7w= 28712
+IHphbA== 28713
+IO2VmOuKlOuNsA== 28714
+IFJvYm90 28715
+cmF3bg== 28716
+IHJoZXRvcmlj 28717
+dWxsYWg= 28718
+IERpZXQ= 28719
+IHRha2ljaA== 28720
+IHBvc3Nlc3NlZA== 28721
+k5zripQ= 28722
+IHdha2Vz 28723
+IFJhZg== 28724
+TWFydA== 28725
+IGVjYw== 28726
+IEZN 28727
+IGRpZmlj 28728
+IEFsbGV6 28729
+IGN1cmVk 28730
+IFF1YWQ= 28731
+IGJlbGU= 28732
+IGpvdXJuYWxz 28733
+IHRhZA== 28734
+IHNvY2lhbGVz 28735
+IHdoYXRz 28736
+IEJhc3M= 28737
+IGplc3RlbQ== 28738
+IFNhZGx5 28739
+IFNvdXJjZQ== 28740
+IMO8w6c= 28741
+YWx0dW5n 28742
+aWVydGVu 28743
+IGp1bGxpZQ== 28744
+aWZh 28745
+INCa0L7RgA== 28746
+IERvb3I= 28747
+INCd0LDQtA== 28748
+INC30LTQvtGA0L7Qsg== 28749
+IHJ1bW9y 28750
+IHBpZXM= 28751
+INC/0LXRgNC1 28752
+INC+0YLQsg== 28753
+0LXQvdC90YvQtQ== 28754
+SG9zdA== 28755
+IFNvcGhpZQ== 28756
+YW50ZW4= 28757
+QW55 28758
+IEF1Zmc= 28759
+IEhEUg== 28760
+IFJvY2tldA== 28761
+cmVzc28= 28762
+IHZlcmRl 28763
+IHByw6lzaWRlbnQ= 28764
+IGluZG9vcnM= 28765
+IHN0YWdnZXI= 28766
+IHN0YXRv 28767
+IERpYWw= 28768
+IGJ1enppbmc= 28769
+ZW1lcg== 28770
+INCS0YHRkQ== 28771
+INC00LXRgNC10LI= 28772
+IHBvdXY= 28773
+IHN0cmFuZHM= 28774
+IOqyg+ydtA== 28775
+IFBhcmw= 28776
+0L7QutC+0Lk= 28777
+IHNpcA== 28778
+ICgq 28779
+w6RuZ3Q= 28780
+IGRlYmVy 28781
+IEFpbg== 28782
+IGRyYXN0aWNhbGx5 28783
+IFNsb3dseQ== 28784
+IEJyaWc= 28785
+IFRvcmFo 28786
+IGFjaGU= 28787
+ID8/Pw== 28788
+IERvYg== 28789
+a2FubnQ= 28790
+TWFyeQ== 28791
+IHN0YW0= 28792
+IERlbW9u 28793
+cGxh 28794
+IEZyZXVuZA== 28795
+IEJlbm4= 28796
+IGhpZ2hz 28797
+INqp2LE= 28798
+IFByZXBhcmU= 28799
+IHByb3h5 28800
+IGNhbXBv 28801
+IEF1Z2Vu 28802
+o6jr 28803
+IENobG9l 28804
+aWN1bGFybHk= 28805
+eW91bmc= 28806
+qZTr 28807
+IHNjcmF0Y2hpbmc= 28808
+IGdsYWM= 28809
+IGdlbWVpbnNhbQ== 28810
+YW5hbA== 28811
+YWNha3PEsW4= 28812
+IEZvcnVt 28813
+ZW5uaWFs 28814
+IFJlc291cmNlcw== 28815
+IG1laXN0ZW4= 28816
+IEZlbGw= 28817
+IHVuYW5pbQ== 28818
+IFRC 28819
+IFNlbGJzdA== 28820
+5oY= 28821
+IGludGltaWRhdGluZw== 28822
+IEdlZsO8aGw= 28823
+IOy9lOuhnA== 28824
+aWRvcg== 28825
+aWNpb25lcw== 28826
+YXJzYQ== 28827
+XS4u 28828
+YXpv 28829
+IGtlbmRp 28830
+IFRhZ2U= 28831
+dGVybWlu 28832
+IFByb3plbnQ= 28833
+TWF5YmU= 28834
+bMOp 28835
+IHF1ZXN0aQ== 28836
+IG1lbWVz 28837
+IGNvcnJl 28838
+IFZJUA== 28839
+IEdhbGxlcnk= 28840
+IHVyZ2VuY3k= 28841
+IG5vY2hl 28842
+IGtpbmRseQ== 28843
+IE1lcmVkaXRo 28844
+IHbhuq15 28845
+INin2YTYqA== 28846
+IEVzdGFkbw== 28847
+enVn 28848
+b3F1ZQ== 28849
+IG9iZXNpdHk= 28850
+T2Zm 28851
+IEV1cm9wZWFucw== 28852
+w7Zk 28853
+7Lm06w== 28854
+IGhvb3A= 28855
+IGVuam95cw== 28856
+IENoaXA= 28857
+cGF0aWVudA== 28858
+IG1pY3Jvc2NvcGU= 28859
+IGxlZ2l0aW0= 28860
+INGP0LLQu9GP0LXRgtGB0Y8= 28861
+z4POuQ== 28862
+YXJnZW50 28863
+IHNoYW0= 28864
+IGxpY2Vuc2luZw== 28865
+b2xpYQ== 28866
+U29ycnk= 28867
+cmFtYQ== 28868
+IGFjY2VsZXJhdGVk 28869
+IHd5bQ== 28870
+IGZhaXJuZXNz 28871
+IFJlYWRpbmc= 28872
+IHNsYWNr 28873
+IERvaw== 28874
+emnEmWt1asSZ 28875
+IHJ1YmJpbmc= 28876
+0LDRgtGD 28877
+IGFsbG9jYXRlZA== 28878
+anVuZw== 28879
+IHBhaW5z 28880
+IHdpbmRpbmc= 28881
+IGdlbGl5b3I= 28882
+IENV 28883
+bW90 28884
+Y29jaw== 28885
+IFBvc2l0aW9u 28886
+YnJvcw== 28887
+IGxpdmVzdHJlYW0= 28888
+IEJyYWlu 28889
+7LCp 28890
+IHByemVr 28891
+IEVp 28892
+IENvY28= 28893
+0LHQsA== 28894
+IHNob3ZlbA== 28895
+ZWE= 28896
+IGNob2NvbA== 28897
+IHJlYmVsbGlvbg== 28898
+IHNob3dj 28899
+IEhhbG8= 28900
+IGRpdmlkZW5k 28901
+bWlzc2lvbg== 28902
+IHVzYW5kbw== 28903
+IFsi 28904
+IGZhbGVp 28905
+QmxhY2s= 28906
+IFN1cmVseQ== 28907
+IMW7 28908
+IHBoaWxvc29waGVy 28909
+IG92ZXJoZQ== 28910
+IEJvcm4= 28911
+IG9iamV0aXZv 28912
+IDEyOA== 28913
+c2NoZWlk 28914
+IE5hemlz 28915
+IHNvbGNoZQ== 28916
+bGlmdA== 28917
+Y2VkZQ== 28918
+YWRvcnM= 28919
+IG1hcnNobQ== 28920
+IExPUkQ= 28921
+lOydtO2BrA== 28922
+IG93bmluZw== 28923
+Q29udA== 28924
+IGxhbmRzY2FwZXM= 28925
+IGxlbmRpbmc= 28926
+IEF1dGhvcml0eQ== 28927
+0L7QstC+0Lk= 28928
+b3F1 28929
+IFNlcw== 28930
+IEZlcnJhcmk= 28931
+IHJlc3BvbnNhYmls 28932
+IHbDoXJpb3M= 28933
+IGRlbGlj 28934
+IGVtYmFyaw== 28935
+IGVtYnJvaWRlcg== 28936
+IGZyYW1ld29ya3M= 28937
+IHNpbW1lcg== 28938
+IG5hY2lvbmFs 28939
+IHJlbWFpbmRlcg== 28940
+IFZpZWxsZWljaHQ= 28941
+IHF1aWVyZXM= 28942
+7JeU 28943
+IHRlc3Rvc3Rlcg== 28944
+aWhlbg== 28945
+IE96 28946
+w6hsZQ== 28947
+IHBvcnRyYXllZA== 28948
+zrrOtQ== 28949
+IFBvbGl0aWs= 28950
+IGFwZXJ0dXJl 28951
+IGJsYW5k 28952
+aW5kdXN0 28953
+INC+0LHRgNCw0YI= 28954
+IFRob3Vz 28955
+QmF5 28956
+IGRhbmRv 28957
+IHNoZXI= 28958
+IGFkbWlzc2lvbnM= 28959
+IENyZXc= 28960
+INGW0L0= 28961
+U0lOR0lORw== 28962
+IG91bmNl 28963
+IGl5 28964
+IGJhc2ls 28965
+IG92ZXJ0aW1l 28966
+IHRocmVhdGVu 28967
+IHBhcnRuZXJlZA== 28968
+IENhbm4= 28969
+YXZhbmE= 28970
+INC30L3QsNC10YLQtQ== 28971
+INC+0YLRgQ== 28972
+IFR1ZG8= 28973
+7L2U 28974
+IOuGgOs= 28975
+ZmVs 28976
+IHJlYXJy 28977
+IGlud2FyZA== 28978
+IFJvZ2Vycw== 28979
+4LmD4Lir 28980
+IHR3ZWFr 28981
+IGRyeWVy 28982
+Y2Vzc2lvbg== 28983
+IHJpZ29yb3Vz 28984
+IERhYXI= 28985
+b21pY3M= 28986
+IGZhdHM= 28987
+dmFk 28988
+IHppcHBlcg== 28989
+YWNjZXB0YWJsZQ== 28990
+IGRlbW9uc3RyYXRpbmc= 28991
+IFl1bQ== 28992
+IGJlYXU= 28993
+IHJvc3Rlcg== 28994
+IHByZWRvbWluYW50bHk= 28995
+0LXRgNGD 28996
+bmluZ2Fy 28997
+IHRyaWFuZ2xlcw== 28998
+IHRleHRpbmc= 28999
+IGJlcnJpZXM= 29000
+IOyCrOynhA== 29001
+YWRkZXI= 29002
+IGZhaXRlcw== 29003
+IEltYWdl 29004
+bGVyZQ== 29005
+IGJvdW5kcw== 29006
+IExhdXI= 29007
+IOyVhOustOs= 29008
+IG1pbw== 29009
+IHVzYQ== 29010
+INiw 29011
+IHRvZW4= 29012
+IEphbmc= 29013
+xb5l 29014
+Y2hvZA== 29015
+YW5hbg== 29016
+INC+0LHRgNCw0LfQvtC8 29017
+IHBlcnNldmVy 29018
+IFN3ZQ== 29019
+IGF1Z21lbnQ= 29020
+dWdnbGluZw== 29021
+acOocmVtZW50 29022
+aXN0bGVz 29023
+YWNqxJk= 29024
+OTE= 29025
+IG1haA== 29026
+IEtJUg== 29027
+RGll 29028
+IGRvd25oaWxs 29029
+IDE5Njg= 29030
+0L7RgNC+0YjQvg== 29031
+b2dyYXBoaWNz 29032
+IHTDpHNzw6Q= 29033
+6rKg7KOg 29034
+INC70LjRhw== 29035
+QVVESU8= 29036
+INC/0LvQvtGF 29037
+IHByb3Bvc2luZw== 29038
+IHRlbXB0ZWQ= 29039
+IGNvbnZlcnRpbmc= 29040
+IExlaHI= 29041
+IHBlcnNvbmU= 29042
+IEZlZWxpbmc= 29043
+7Ja07KO8 29044
+b21icmVz 29045
+INec15k= 29046
+IGd1cnU= 29047
+IGRlbWVudA== 29048
+0L3QuNC3 29049
+0LjRgtC10LvQtdC5 29050
+IGNvbXBhw7E= 29051
+IHJlZG8= 29052
+IGNvbmR1Y3Rvcg== 29053
+bWlh 29054
+IGlkb2xz 29055
+IE11bA== 29056
+IGluZXg= 29057
+IHTDpG3DpA== 29058
+IGltcGFjdGluZw== 29059
+IGRheWxpZ2h0 29060
+Z2ls 29061
+IGhlbGZlbg== 29062
+IGVudHNwcmVjaA== 29063
+IHdpxJlrcw== 29064
+IHNjcmlwdHVyZXM= 29065
+IGRpc21pc3NlZA== 29066
+IFBvZGNhc3Q= 29067
+2YXYsQ== 29068
+IGFubnVhbGx5 29069
+IHVzYWJsZQ== 29070
+IGxpYnJl 29071
+0L7Qt9C8 29072
+IHJ1YmJpc2g= 29073
+IGNvbnRpbnVhcg== 29074
+IGh1bWlsaQ== 29075
+IHNwZWVjaGVz 29076
+0YDQsNGH 29077
+YmFyZA== 29078
+NzE= 29079
+Pjw= 29080
+b2xvZ8OtYQ== 29081
+d2VhbHRo 29082
+IG1lZGl0YXRl 29083
+k6TsnZg= 29084
+IENyYWZ0 29085
+cml2 29086
+IEFnYWluc3Q= 29087
+IGNlcmFtaWM= 29088
+ZXNww6hyZQ== 29089
+IGNvbXBldGVudA== 29090
+IEhvcGtpbnM= 29091
+IGtpbG9z 29092
+IGdyYXZlbA== 29093
+IHBpc3Rvbg== 29094
+IGZyaWVuZHNoaXBz 29095
+IGVzY3Jl 29096
+IHZveg== 29097
+IEdlc2VsbHNjaGFmdA== 29098
+IHVudGVyc3TDvHQ= 29099
+IG11ag== 29100
+IHdhcm5pbmdz 29101
+cG9z 29102
+IFByb2Zlc3Npb25hbA== 29103
+d3N6eQ== 29104
+b2RsZQ== 29105
+YmFuZHM= 29106
+IHRlYW13b3Jr 29107
+c3RlbGx1bmc= 29108
+IGR4 29109
+IGF0dG9ybmV5cw== 29110
+IHdlaXRlcmU= 29111
+44WL44WL44WL 29112
+IE9yaWdpbmFs 29113
+15nXlw== 29114
+IGJyb2FkY2FzdGluZw== 29115
+INC/0LXRgNCy0YvQuQ== 29116
+dWNoaQ== 29117
+IGhldXJl 29118
+IGdyYWJz 29119
+IFdPUg== 29120
+IFBsYWlk 29121
+TWlu 29122
+IHBheg== 29123
+IFB1aXM= 29124
+dW11 29125
+aXRhdGVz 29126
+IGNvYXRz 29127
+IGJ1ZW4= 29128
+IGhlaXI= 29129
+IHBuZXVt 29130
+16nXqA== 29131
+ZW5zZXI= 29132
+IEpVREdF 29133
+IGJsb25kZQ== 29134
+4bmb 29135
+IGdhaw== 29136
+IHPEsWs= 29137
+IHF1b3RlZA== 29138
+IGVxdWlwbw== 29139
+IHdpc2hpbmc= 29140
+w61jaWE= 29141
+IHZlcmJz 29142
+IENhbmFkaWFucw== 29143
+IGdvdmVybmluZw== 29144
+IEV2YW5z 29145
+RXVybw== 29146
+IGdlbnJlcw== 29147
+IHVudGVyc2NoaWVk 29148
+IEJlY2t5 29149
+s7zqsozsmpQ= 29150
+IGVpbmdl 29151
+IFJhaXNl 29152
+b2xhbmQ= 29153
+IFN0cmF0ZWc= 29154
+IGVyZXM= 29155
+IFZldGVyYW5z 29156
+IGJyZWFrb3V0 29157
+IHNhbnTDqQ== 29158
+IGFkZWw= 29159
+IGludmVzdGlnYXRlZA== 29160
+IHBldXI= 29161
+IGFnaWxl 29162
+IHJhaWxyb2Fk 29163
+YW5za2E= 29164
+INC10Lk= 29165
+IGV4cG9z 29166
+YXRvcmllcw== 29167
+IENvbnRlbnQ= 29168
+IHRydXRocw== 29169
+IFRyYWls 29170
+IGd1YQ== 29171
+IHBvcmVz 29172
+IHdyaXRpbmdz 29173
+IFVocg== 29174
+IFRoYXRz 29175
+IGljaW5n 29176
+T0M= 29177
+IFByb2R1Y3Rpb24= 29178
+IGNhcm5l 29179
+SVNT 29180
+IG5pbmd1w6lt 29181
+bm9u 29182
+IHZpY2lvdXM= 29183
+15XXlA== 29184
+IHJlY29ubmVjdA== 29185
+IGNlbnRyZXM= 29186
+IEtlbQ== 29187
+IGNyZWFzZQ== 29188
+IOydtOuvuA== 29189
+0LDQudGC0LXRgdGM 29190
+INCx0L7RgA== 29191
+IEhhecSxcg== 29192
+INGB0YPQtA== 29193
+IMO6bmljYQ== 29194
+b3dhxYI= 29195
+IGFkaGVy 29196
+aHVh 29197
+Wlo= 29198
+IHByZWNpc28= 29199
+IGN1cnJlbnRz 29200
+IHNlYXNvbmVk 29201
+IElvVA== 29202
+IEJpc2hvcA== 29203
+c3RlZA== 29204
+IEJlcm5hcmQ= 29205
+7KSY 29206
+IEdsZW5u 29207
+IGt0w7NyeW0= 29208
+4Li34LmI 29209
+IGFzdHJvbG9n 29210
+IEtvdA== 29211
+IHBhcmZvaXM= 29212
+IGZvcndhcmRz 29213
+IFdpxJk= 29214
+IM6Y 29215
+IG5hbm8= 29216
+c3Vi 29217
+IEJyaWxs 29218
+IGdyaXQ= 29219
+IGNpdGVk 29220
+Z2Fkbw== 29221
+IG1lbHRz 29222
+IGZvcmPDqQ== 29223
+4paI4paI 29224
+IGJham8= 29225
+IGRpc2NyZXRpb24= 29226
+sLA= 29227
+YXRpdml0eQ== 29228
+IHNpdHVhdGVk 29229
+0YnQtdC1 29230
+INC/0YDQuNC90YbQuNC/ 29231
+YW1heg== 29232
+IGFxdWFyaXVt 29233
+IGRpc3NvbHZl 29234
+IEdvZHM= 29235
+U3VwZXI= 29236
+IGFtaWQ= 29237
+ems= 29238
+YW1wZg== 29239
+IGhlbGE= 29240
+JyE= 29241
+IGRldmVsb3BtZW50YWw= 29242
+IERpc2U= 29243
+INGA0LDQsdC+0YLQsNC10YI= 29244
+IHNuYXBzaG90 29245
+1bg= 29246
+IFl1ZQ== 29247
+IEh1bGs= 29248
+IERvb20= 29249
+IEZlbGl4 29250
+IHLDqWY= 29251
+TWFsZQ== 29252
+cGhhbnRz 29253
+RU5T 29254
+IE1lY2hhbg== 29255
+IEdvbGY= 29256
+IGdlbmVyb3NpdHk= 29257
+w6R0emU= 29258
+IHVubG9ja2Vk 29259
+7YOB 29260
+b2NhbHlwc2U= 29261
+QWxyaWdodA== 29262
+IOqwnOs= 29263
+INeQ15HXnA== 29264
+IEtlZXBpbmc= 29265
+IGNvbGxhYm9yYXRpbmc= 29266
+Y2hpZWY= 29267
+IEZlcm5hbmRv 29268
+IGNoZWZz 29269
+IO2UvOu2gA== 29270
+IHNraXBwZWQ= 29271
+IHBlcnNvbm4= 29272
+IGF4ZQ== 29273
+Y2hleg== 29274
+IGV4dHJhY3Rpb24= 29275
+IEFW 29276
+IEdpYmJz 29277
+IO2c 29278
+IHPEsQ== 29279
+SUFN 29280
+Vmlldw== 29281
+IEdSQU5U 29282
+IOuquA== 29283
+IHZlcmlmaWNhdGlvbg== 29284
+IGRlcGljdGVk 29285
+IE1veg== 29286
+b3V4 29287
+IHR1bA== 29288
+IHNjYW5uZXI= 29289
+IGNvbWVkaWFu 29290
+IFZvbGtz 29291
+IEpFRkY= 29292
+p4Q= 29293
+IGRpc3RyYWN0aW9u 29294
+csOh 29295
+IElOVEVS 29296
+IHNpbmNlcg== 29297
+INee16o= 29298
+INep16A= 29299
+IGNvbnN0cnVjdGl2ZQ== 29300
+YXJm 29301
+IOuIhOs= 29302
+IGVjbw== 29303
+cmFtb3M= 29304
+IHJlbmV3ZWQ= 29305
+aW5lbWVudA== 29306
+IFVi 29307
+IFBlcHBlcg== 29308
+7KeA6rCA 29309
+IERhcndpbg== 29310
+IG1lcmNoYW5k 29311
+IHbDoXJpYXM= 29312
+w6hjZQ== 29313
+Tkc= 29314
+IOychO2VtOyEnA== 29315
+INCw0LrRgtC40LI= 29316
+IFVudGVycw== 29317
+2LnZhA== 29318
+IGludHJpYw== 29319
+b21tYQ== 29320
+aWV2aW5n 29321
+IENhcm9saW5l 29322
+IFBSRVM= 29323
+IHBlcmZvcm1lcg== 29324
+IGF1dG91cg== 29325
+IHV0dGVybHk= 29326
+IHN5bnRoZXNpcw== 29327
+IGxlc2JpYW4= 29328
+IHJldHJpZXZl 29329
+IG1hbmVpcmE= 29330
+IGltcGFpcg== 29331
+IG1lbnRvcmluZw== 29332
+IFNvdWxz 29333
+IEdvUHJv 29334
+0YDQsNGC0Yw= 29335
+IGNvc2U= 29336
+IFNTRA== 29337
+SVJF 29338
+IHVwZnJvbnQ= 29339
+IEF1bg== 29340
+IGdhbWVy 29341
+IGxpdHQ= 29342
+IGFnZ3Jlc3Npb24= 29343
+IExpa2V3aXNl 29344
+IEJldHR5 29345
+IERhcnQ= 29346
+IERMQw== 29347
+aXNobWVudA== 29348
+7J6l7J2E 29349
+Y3JlYW0= 29350
+IEJhYnlsb24= 29351
+IG51Zw== 29352
+YnJhcg== 29353
+IGF5bsSx 29354
+YW1pbHk= 29355
+YmlrZQ== 29356
+YWhhaGFoYQ== 29357
+bG95ZA== 29358
+IG1pcmE= 29359
+IHBlcm1l 29360
+IEdhbWluZw== 29361
+IGZpcm13YXJl 29362
+TWE= 29363
+IGFzc2lzdGVk 29364
+YXRpY3M= 29365
+IOyVnuycvOuhnA== 29366
+IE1lbnRhbA== 29367
+bmllanM= 29368
+IEl6 29369
+b3fEhQ== 29370
+IHRvdWdoZXI= 29371
+IGRlZWQ= 29372
+IHN0eWxpc2g= 29373
+IFRvb2xz 29374
+IEhhbXA= 29375
+IHN1bnNjcmVlbg== 29376
+IGFydGljdWxhdGU= 29377
+aXll 29378
+0LjRhA== 29379
+IFNwcmVhZA== 29380
+IEhBVkU= 29381
+IHN3aXJs 29382
+IHNwb25zb3Jpbmc= 29383
+aW92YXNjdWxhcg== 29384
+bWVzaQ== 29385
+IHJlbGF4YXRpb24= 29386
+INGB0LLQvtC40YU= 29387
+IG1hcmdpbnM= 29388
+IHNhxJ8= 29389
+IFByaWRl 29390
+IM+Ezr/Phc+C 29391
+0LjRhtC4 29392
+ZW5jaQ== 29393
+RG9lcw== 29394
+IGNvcnBzZQ== 29395
+IGVuZHVyYW5jZQ== 29396
+IO2emA== 29397
+7Lm0 29398
+IGhhaXJjdXQ= 29399
+IGludGVycnVwdGVk 29400
+IHdpbmR5 29401
+IENhbGVi 29402
+z4HPhw== 29403
+IFBvdXJxdW9p 29404
+IGhvbGlzdGlj 29405
+dWNsZWFy 29406
+IFdob2xl 29407
+QWN0 29408
+IGdhbGxvbg== 29409
+Y2FkZQ== 29410
+IFJlZ2lvbmFs 29411
+cm9hZHM= 29412
+IFNjaG5l 29413
+w6FuZw== 29414
+INC40LfQvNC10L0= 29415
+IG1lbnVz 29416
+IHNwbGl0dGluZw== 29417
+IHByaWNlZA== 29418
+IM6T 29419
+IHVzZXJuYW1l 29420
+INCe0Yc= 29421
+IGNvbXByZXNzZWQ= 29422
+eWlu 29423
+IGd1YXJkaWFu 29424
+IGdvb2Y= 29425
+IGNoZWNrbGlzdA== 29426
+IGludGVyY2hhbmdl 29427
+IGV4cGVkaXRpb24= 29428
+IGV4dGVybg== 29429
+IGluZnJhcmVk 29430
+ZW5nbw== 29431
+IGRlbnlpbmc= 29432
+IHBhY2tldHM= 29433
+b25lbnQ= 29434
+QkI= 29435
+IEluY3Jl 29436
+IHNpbmk= 29437
+w59lcg== 29438
+w6hn 29439
+bWFhbA== 29440
+Z2VuZXJhdGlvbg== 29441
+IG1pbm9yaXRpZXM= 29442
+IGxsZXZhcg== 29443
+IG5vbWluYXRpb24= 29444
+IGNvbnNpZA== 29445
+INec16I= 29446
+bXXFnw== 29447
+IEVzYw== 29448
+IG51bWVyYXRvcg== 29449
+IGthaWs= 29450
+IGt0w7NyeWNo 29451
+aWVzZW4= 29452
+IHbDqg== 29453
+IFVTUw== 29454
+IFByaXZhdGU= 29455
+INC+0LTQvdC+ 29456
+IGFsw6lt 29457
+w610dWxv 29458
+IGxpbWI= 29459
+IGZvcmdpdmVu 29460
+IGRpc2Nsb3N1cmU= 29461
+z4TOrw== 29462
+IG5pbmfDum4= 29463
+IHRoZXJhcGV1dGlj 29464
+IG5lZ290aWF0aW5n 29465
+IE5pa2U= 29466
+ZW5zZWZ1bA== 29467
+IGluY2Fw 29468
+IGZsYWdzaGlw 29469
+dG93bg== 29470
+4og= 29471
+IM+Azr/Ouw== 29472
+IHdvbHZlcw== 29473
+IHZpb2xhdGlvbnM= 29474
+IEFybm9sZA== 29475
+IGludGVydmVuZQ== 29476
+IGhlYXRlcg== 29477
+IHJlY3Vyc29z 29478
+IG1haWQ= 29479
+6rK8 29480
+INC00LDQstCw0LnRgtC1 29481
+IENlbGVicg== 29482
+IGNhcGU= 29483
+IFN0eQ== 29484
+YWluZW4= 29485
+c2l0ZQ== 29486
+Ymlq 29487
+INC/0L7Qu9GM0Lc= 29488
+IGZyYW1lZA== 29489
+IHB1Ymxpc2hlcnM= 29490
+INGH0YPRgtGM 29491
+IHRlbXB0YXRpb24= 29492
+IGNlcnRlemE= 29493
+IGV4ZW1wdA== 29494
+7Iq5 29495
+c2VsbGluZw== 29496
+IFRhc2s= 29497
+aG9vbg== 29498
+IENvYw== 29499
+IFBhcmtz 29500
+IHJlcGV0aXRpb24= 29501
+INGC0YPQtNCw 29502
+IGVuc2w= 29503
+IGRlxJ9pxZ8= 29504
+IE9ybGFuZG8= 29505
+IE1haW50ZW4= 29506
+b2N1bWVudA== 29507
+IEhD 29508
+IHNjb290ZXI= 29509
+INC90LDQv9C40YE= 29510
+IHRpZ2h0ZXI= 29511
+IHRlYXNl 29512
+IHJlbW92ZXM= 29513
+IGtpamtlbg== 29514
+INGB0YPRidC10YHRgtCy 29515
+IHRow6k= 29516
+INCy0YvQs9C70Y/QtA== 29517
+IHJlbGlldmU= 29518
+IG1pdMOk 29519
+IHN0YXRpb25hcnk= 29520
+w7ZmZg== 29521
+cGFibGU= 29522
+IGFydGVy 29523
+IGTDqWY= 29524
+cmF0aXZl 29525
+IGNvbmVjdA== 29526
+IHNhZGRsZQ== 29527
+IERpYW5l 29528
+IGNvbW1lbW9y 29529
+ZmVuZGlt 29530
+U8Ot 29531
+IO2BtOs= 29532
+IG1hbmdl 29533
+YXR0ZQ== 29534
+IGFycm9nYW50 29535
+IHJvYm90aWM= 29536
+IGdpw6A= 29537
+IG5laWdoYm91cmhvb2Q= 29538
+aXNzb24= 29539
+INC00LLQuNC2 29540
+IFJJ 29541
+IE5vcm1hbg== 29542
+YnJhbmQ= 29543
+YW1hdGlvbg== 29544
+IHJhem9y 29545
+IG11cmRlcnM= 29546
+INGC0YM= 29547
+IHdzenlzdGtpbQ== 29548
+IHV0aWxpdGllcw== 29549
+IG1pY3Jvc2NvcA== 29550
+6r8= 29551
+IGRhcXVp 29552
+b2xsYXI= 29553
+INCU0LDQstCw0LnRgtC1 29554
+IGFubsOpZQ== 29555
+IGtpbG9tZXRyZXM= 29556
+IGhvbW9zZXh1YWw= 29557
+IGFyY2hpdGVjdHM= 29558
+IG5peWU= 29559
+TEVS 29560
+IG1pY3JvcGhvbmVz 29561
+IFN0dW5kZW4= 29562
+IGNvbnNlY3V0aXZl 29563
+aWVuZGE= 29564
+dsOkbmQ= 29565
+REVS 29566
+IGxpZnRz 29567
+IE1lYXQ= 29568
+IHNhdmV6 29569
+7ZaI642Y 29570
+TWVu 29571
+IGRpc21hbnQ= 29572
+6rGw66W8 29573
+IGluc3VsYXRpb24= 29574
+IHNjYWxs 29575
+IHNwb29reQ== 29576
+IHBhcmM= 29577
+IGJhbGxldA== 29578
+IFdoYXRzQXBw 29579
+IGZyYW5j 29580
+IGRlbGliZXJhdGU= 29581
+IO2FjA== 29582
+IG1hcnM= 29583
+IFp1cg== 29584
+UHI= 29585
+ZGlzY2lwbGluYXJ5 29586
+IG9ic2Vzc2lvbg== 29587
+0LzQtQ== 29588
+IG1hcmNoaW5n 29589
+IEVtZXJnZW5jeQ== 29590
+aWd1b3Vz 29591
+IHN6eQ== 29592
+IExhbmRz 29593
+IGJvYXJkaW5n 29594
+INC/0L7Rh9GC0Lg= 29595
+IGVudnk= 29596
+IGNvbXBhc3Npb25hdGU= 29597
+IG1lcmNp 29598
+IGRlc2lyYWJsZQ== 29599
+ZGFsZQ== 29600
+IGNhbsSxbQ== 29601
+IEFudGFy 29602
+dGVtcHM= 29603
+IGNvbmZpZ3VyZWQ= 29604
+IENvbXBhcmVk 29605
+bmVo 29606
+aWNhdGluZw== 29607
+IG5pY2tlbA== 29608
+2YjZgg== 29609
+2YPZiNmG 29610
+b3Blcw== 29611
+IGZvcm11bGFz 29612
+INCV0YHRgtGM 29613
+IHBvYmw= 29614
+IFBK 29615
+IEx1ZA== 29616
+IEJyaWQ= 29617
+IEhvZw== 29618
+IEJyaXM= 29619
+SmVu 29620
+IHNoYWRpbmc= 29621
+IFlhcw== 29622
+IGRpc3R1cmJlZA== 29623
+IHJlY29tbWVuZGluZw== 29624
+IGPDqQ== 29625
+IEhPVw== 29626
+7JeI7Ja0 29627
+IHJldmVyc2Vk 29628
+IEludGVyZXN0aW5nbHk= 29629
+aW94aWQ= 29630
+IOyYpOy8gOydtA== 29631
+4bq/dQ== 29632
+eHg= 29633
+IG91YWlz 29634
+IFlvdVR1YmVycw== 29635
+IFJvc2E= 29636
+IEhhdXB0 29637
+amFkaQ== 29638
+IHZsb2dz 29639
+IGN1bHR1cmE= 29640
+IExlYWRlcnNoaXA= 29641
+IEhlcA== 29642
+IGlsbHVt 29643
+tOuPmQ== 29644
+IGN1c3RvbWl6ZWQ= 29645
+IG1hcmNh 29646
+IHF1YXRybw== 29647
+INC90LDQsw== 29648
+IFNwYWNlWA== 29649
+IEVpZ2Vu 29650
+YXN0aW5n 29651
+IG9sZHXEn3U= 29652
+IGZvcnRz 29653
+cmltZW50 29654
+aWVuY2lh 29655
+IHRlbmly 29656
+cm9mZmVu 29657
+IDE5Nzk= 29658
+IGNpZQ== 29659
+IOuQmOqzoA== 29660
+IGVzY3Jp 29661
+z4zPgg== 29662
+7Y+s 29663
+dXp6eQ== 29664
+Q29uZw== 29665
+7J247J20 29666
+R3JlYXQ= 29667
+c2ls 29668
+w6ljaA== 29669
+IG11bHRpYw== 29670
+IERpc2s= 29671
+spU= 29672
+IGZhemxh 29673
+IGxldmFudA== 29674
+IGFiYWpv 29675
+dXJyeQ== 29676
+c3RydQ== 29677
+IOuoueuKlA== 29678
+IGFjY2Vzc29yeQ== 29679
+INC00LLQuNCz 29680
+IFJpZA== 29681
+MjAxOQ== 29682
+IGRvd25zdHJlYW0= 29683
+IGtheg== 29684
+dXRhbg== 29685
+IGNoYXJjb2Fs 29686
+IGFmZWN0 29687
+d3U= 29688
+IGNvbnRleHRz 29689
+IGZlYXJlZA== 29690
+IOyEpA== 29691
+IGhpc3Rvcmllcw== 29692
+IGZhcw== 29693
+ZW5zaWJsZQ== 29694
+IGNvY29h 29695
+aWxsYXI= 29696
+Z2VvbnM= 29697
+IHNwaXJpdHVhbGl0eQ== 29698
+IFBldw== 29699
+IHBoYXJtYWN5 29700
+IHBhc3Npb25z 29701
+IGJvcw== 29702
+IGFsbMOh 29703
+IHRocml2aW5n 29704
+IFJlYWN0 29705
+IG9jY3VweQ== 29706
+IHdpdGhkcmF3YWw= 29707
+IGFsbG93YW5jZQ== 29708
+IEZyYWt0aW9u 29709
+IGJ1ZGRpZXM= 29710
+IGlkbGU= 29711
+IGRpc3NvbHZlZA== 29712
+IHByZXZhbGVudA== 29713
+IG1pbGl0YXI= 29714
+IHNlbnNpbmc= 29715
+IHBvamF3 29716
+IGFuY29yYQ== 29717
+IGFidW5kYW50 29718
+IGhhaXJzdA== 29719
+IHR3ZWU= 29720
+IG7DpGNoc3Rl 29721
+IE3DtmdsaWNoa2VpdA== 29722
+IGhvbw== 29723
+dWZmaWNpZW50 29724
+IGZhbnRhc3Q= 29725
+IGVkaWJsZQ== 29726
+IOuWqOyWtOw= 29727
+7JuD 29728
+IHZlaW4= 29729
+dWNjaQ== 29730
+IGRldm90aW9u 29731
+IGNvbmNlYWxlcg== 29732
+aW5jb21l 29733
+IHJlY3ljbGVk 29734
+IOyKpO2DgA== 29735
+IHBvbnRvcw== 29736
+IGRlc3N1cw== 29737
+IHbDqXJpdA== 29738
+IHJlZmxlY3Rpb25z 29739
+IEFB 29740
+IHRha2Vhd2F5 29741
+YmFyZQ== 29742
+IENvbnRhY3Q= 29743
+ZWls 29744
+IEhlYXI= 29745
+IG1pcmFj 29746
+IEdlcmlsaW0= 29747
+INGB0LDQvNGL0Lk= 29748
+IHZpdm8= 29749
+IGtpbG9ncmFtcw== 29750
+IENyaW0= 29751
+w7t0 29752
+Nzg= 29753
+IHNpbmNlcmVseQ== 29754
+cmF6 29755
+IOuztQ== 29756
+IGFycml2 29757
+IGNvbmNlcHRpb24= 29758
+IFBlcnNpYW4= 29759
+IHNqw6Rs 29760
+IHN0YXJyaW5n 29761
+IOyVhOustA== 29762
+IEZvcmV2ZXI= 29763
+0LXRgdGC0Yw= 29764
+IHZlaWw= 29765
+IHN1YnRpdA== 29766
+b2RrYQ== 29767
+INC+0YLQvdC+0Yg= 29768
+IGNvb2tz 29769
+0LXQvdGP 29770
+S2F5 29771
+IG5pw7Fvcw== 29772
+IFBob25l 29773
+IHN0aXRjaGluZw== 29774
+IGZpbmdlcnByaW50 29775
+zrvOrA== 29776
+IGRlZGljYXRl 29777
+IExvYg== 29778
+IGJsYWNrcw== 29779
+IEJsZQ== 29780
+Ym91dA== 29781
+IMSRYW5n 29782
+IGVrcw== 29783
+IHNxdWFzaA== 29784
+IEvDvA== 29785
+b2Rp 29786
+IG7GsOG7m2M= 29787
+IHZveWFnZQ== 29788
+IHBsYXlmdWw= 29789
+INil2YTZiQ== 29790
+YW5pYw== 29791
+IGNvbmRlbW4= 29792
+IELDtnlsZQ== 29793
+IFBvbGl6ZQ== 29794
+IGF5dWRh 29795
+IHBhbQ== 29796
+4LmE4Lib 29797
+IEthdGh5 29798
+0LXQtNC40L0= 29799
+0L3QvtCy0LA= 29800
+IGJyaWc= 29801
+ZWdlcg== 29802
+IGVhZ2xl 29803
+IHZpc2lvbnM= 29804
+IO2VreyDgQ== 29805
+IHNoaXR0eQ== 29806
+IGhvdHQ= 29807
+IEJyaXR0 29808
+dXRvcnM= 29809
+RU5URQ== 29810
+IHBob24= 29811
+IEJpbmc= 29812
+INC/0L7QtNC00LXRgNC2 29813
+c3ByaW5n 29814
+ZXR0ZW4= 29815
+IHBpbGdy 29816
+IGVkaXlvcg== 29817
+0LXQvdGC0Ys= 29818
+YWdnaW8= 29819
+IGp1bA== 29820
+IGNvbXByZW5k 29821
+dGVpbA== 29822
+INiy 29823
+IHBlcmZvcm1lcnM= 29824
+IGluZmFtb3Vz 29825
+IE1L 29826
+56o= 29827
+b3RsZQ== 29828
+ZWZm 29829
+IEhhc2g= 29830
+IGNvd2FyZA== 29831
+IEJSQQ== 29832
+IERE 29833
+IGNvbWlkYQ== 29834
+IHBsYXRh 29835
+IGZsYXA= 29836
+IE1laHI= 29837
+cmlidXRpb24= 29838
+IFllbWVu 29839
+IG15c3Rlcmllcw== 29840
+IMSweWk= 29841
+IHN0ZWxs 29842
+IGV5ZWxpbmVy 29843
+IGRlbGVz 29844
+IG5haWxlZA== 29845
+IGlsbG5lc3Nlcw== 29846
+IHN0YWNrcw== 29847
+IHRyYWJhamFy 29848
+Zmxvd2Vy 29849
+Y2l1 29850
+IGNydWRl 29851
+IHN1YnN0YW50aWFsbHk= 29852
+IGhvbWVt 29853
+IG5lcGhldw== 29854
+IHN0YW1wcw== 29855
+IGNhcmJz 29856
+0YzRgtC1 29857
+bW9vdGg= 29858
+IHR1bm5lbHM= 29859
+YWNpZQ== 29860
+IFNlw7E= 29861
+IEhlcmE= 29862
+IOyVhOuLiOyXkOyalA== 29863
+IFd5b21pbmc= 29864
+IEhETUk= 29865
+IExpcw== 29866
+dWNpw7Nu 29867
+IHN0ZWVy 29868
+0L7Rjg== 29869
+0LjRgtCw 29870
+TlQ= 29871
+IOyWvOq1tA== 29872
+IHBhbG1z 29873
+IG5lb24= 29874
+0L7QstCw0L3QuNGP 29875
+IGZpbHRlcmluZw== 29876
+IGpvdWVy 29877
+IEjDtg== 29878
+INC90LXRgQ== 29879
+6rKg7Ja07JqU 29880
+IDgx 29881
+IHN0b3J5bGluZQ== 29882
+IHByemVw 29883
+IHRoYW5raW5n 29884
+IEJvZWluZw== 29885
+IHNvZnRseQ== 29886
+amVt 29887
+0LDQu9GM0L3Ri9GF 29888
+IGZsYXNobGlnaHQ= 29889
+INC/0YM= 29890
+IFdPTUFO 29891
+4bqvYw== 29892
+w61jaA== 29893
+IGx1eHVyaW91cw== 29894
+IHfDvG4= 29895
+IGltcGFjdGZ1bA== 29896
+IGNvbnNvbg== 29897
+cmV1 29898
+aXJyaW5n 29899
+aWZ0ZXI= 29900
+IGNvbnN0aXR1ZW50cw== 29901
+IDk0 29902
+IFRvdQ== 29903
+Z29t 29904
+IOyDneqwgeydhA== 29905
+IHN0ZXJlb3R5cGVz 29906
+IG1vxbxsaQ== 29907
+gqg= 29908
+IHBlbmNpbHM= 29909
+INGB0LvQvtC2 29910
+IGlocmVt 29911
+IEJlc2No 29912
+IEtvaA== 29913
+IEVudHNjaGVpZA== 29914
+IGxlaw== 29915
+IGbDtnJz 29916
+IHRvdGFsbWVudGU= 29917
+IGxpdmVseQ== 29918
+IGVudHJvcHk= 29919
+IGRpc2Nlcm4= 29920
+INCX0L3QsA== 29921
+IGRvdg== 29922
+IG15dGhvbG9neQ== 29923
+YXBhbmVzZQ== 29924
+IGFwcHJveGltYXRl 29925
+0LDRgtC40LI= 29926
+aWZpYWJsZQ== 29927
+IFNlbw== 29928
+tOyLrO2eiA== 29929
+IOyYtw== 29930
+IHRlbXBvcmFs 29931
+IGlU 29932
+IGVzdGF0 29933
+0LrQuNC8 29934
+IHNwcmluaw== 29935
+IGdydW5k 29936
+IGluZmFudHJ5 29937
+IHNjaGFmZmVu 29938
+IGFuaw== 29939
+cmlhZ2Vz 29940
+IFllb24= 29941
+IE1vcm9j 29942
+IGludmFzaXZl 29943
+gZQ= 29944
+IHBhcmVudGluZw== 29945
+IFJpcw== 29946
+aWJpbGU= 29947
+IG1vZHM= 29948
+INC/0YDQvtCy0LXRgA== 29949
+IFRoaW5n 29950
+IFdoZXJldmVy 29951
+IGFja25vd2xlZGdpbmc= 29952
+IHBhd24= 29953
+dW1tZXI= 29954
+b3Ji 29955
+Njk= 29956
+IHJldHJvdXZl 29957
+IHJlbGllcw== 29958
+IEhpZ2h3YXk= 29959
+IGF3ZQ== 29960
+aXRhaXJl 29961
+IGFwcGxpY2FudA== 29962
+IGFpc2xl 29963
+d29ybQ== 29964
+IHBheWxvYWQ= 29965
+IGNhcnJl 29966
+IEJhY2g= 29967
+IOy5nOq1rOs= 29968
+0L3QuNC1 29969
+IGl0w61z 29970
+b25uYWlzZQ== 29971
+c29s 29972
+YWxnaWE= 29973
+IHJvY2tpbmc= 29974
+IGJlc3Rlbg== 29975
+cml0ZXM= 29976
+Xl4= 29977
+0LjQvdC+0Lk= 29978
+IGJhaXhv 29979
+IOq4sOyWtQ== 29980
+0L7RgtGA0Lg= 29981
+c2lt 29982
+IGluY2Fybg== 29983
+64uk7J2M 29984
+IGxpY2s= 29985
+c2lkZWQ= 29986
+IDcx 29987
+Zm9yZGVy 29988
+IHJlc29uYW5jZQ== 29989
+IHRlZ2Vu 29990
+IG1ldGFwaA== 29991
+b3dzZXI= 29992
+INeQ16DXl9eg15U= 29993
+P+OAjQ== 29994
+IHNwaWVsZW4= 29995
+IHZvbGxleQ== 29996
+lOydtO2BrOyXhQ== 29997
+bG9va2Vk 29998
+IHNlbnRlbmNlZA== 29999
+IG11bHRpcGx5aW5n 30000
+IGlkZWFscw== 30001
+IHdhaHJzY2hlaW5saWNo 30002
+IGRlcG9zaXRz 30003
+YmlsaXI= 30004
+IGVmZmV0 30005
+aWxsb24= 30006
+iOunjA== 30007
+IHRlc3RpbW9u 30008
+IHphd3N6ZQ== 30009
+INC/0YDQvtGG0LXRgdGB 30010
+IExhdg== 30011
+IHRyYXZhaWxsZXI= 30012
+IGxhaXNzZQ== 30013
+IE1vdW50YWlucw== 30014
+INGA0L7QsQ== 30015
+IGV4YW1pbmVk 30016
+aXR1cw== 30017
+V2Fz 30018
+0LvRiw== 30019
+IGF0dHJpYnV0ZWQ= 30020
+IOyKuQ== 30021
+IEJhcm9u 30022
+IGdlcA== 30023
+IGF0dGVudA== 30024
+IENvbGxlY3Rpb24= 30025
+IHRoZWF0 30026
+IENhaQ== 30027
+IHdlbGxz 30028
+IGh1bWFubw== 30029
+IEhhc3Q= 30030
+INGF0L7RgtGP 30031
+Y3phcw== 30032
+IHBlcm1pdHM= 30033
+IGxlZ2c= 30034
+IGVwbw== 30035
+IEZlbg== 30036
+IHRoaQ== 30037
+IEZvaQ== 30038
+IMOpbGVjdA== 30039
+IDgz 30040
+IG92ZXJ0aA== 30041
+IHRlbmFudA== 30042
+TmV4dA== 30043
+IHByYWlzZWQ= 30044
+c2VjdXJpdHk= 30045
+IEltcGFjdA== 30046
+IHZvdWNo 30047
+IG5lZ8Oz 30048
+IHVudmU= 30049
+IGNyaXRpY2l6ZQ== 30050
+IEtlbnlh 30051
+IHRhY3RpYw== 30052
+IGxvZ3I= 30053
+IHBvaXM= 30054
+IHBhcGE= 30055
+c3BlYWtz 30056
+8J+R 30057
+aXNwZXJz 30058
+IHN1cnBsdXM= 30059
+IGNvbGRlcg== 30060
+cGxldHM= 30061
+IFZpZW5uYQ== 30062
+IExlYWQ= 30063
+IGFlcmlhbA== 30064
+IFRhaA== 30065
+0LXQvdGC0L7Qsg== 30066
+IEdyZWVrcw== 30067
+Q2Ft 30068
+IG3DoXhpbQ== 30069
+IGt1aW4= 30070
+Y2hpbw== 30071
+IGRlbW9uc3RyYXRlcw== 30072
+YW5vcw== 30073
+IENlcnQ= 30074
+INGN0L0= 30075
+IGJsb2dz 30076
+IOyEnOyauA== 30077
+IGJlYW1z 30078
+0LjQutC+0LI= 30079
+IHByb21wdGVk 30080
+IGZyaWdodGVuaW5n 30081
+IFBvcnNjaGU= 30082
+bGFyxLFuxLE= 30083
+IGNoaWxsaW5n 30084
+aXNwaGVyZQ== 30085
+IGZsYXNoaW5n 30086
+IEthcmQ= 30087
+YnJlYWQ= 30088
+IGV4aA== 30089
+IHR5Y2tlcg== 30090
+IGVjb2xvZ2ljYWw= 30091
+IE1hZQ== 30092
+INee15DXldeT 30093
+IOuCmOuPhA== 30094
+0LvQvtC9 30095
+eXNz 30096
+IHBlcmd1bnQ= 30097
+IHByaXg= 30098
+aXp6YXJk 30099
+IGNhbmNlcnM= 30100
+IDkx 30101
+c3VzcA== 30102
+IEl0ZW0= 30103
+xZ9h 30104
+IHBlc3Q= 30105
+IHRha8SF 30106
+IGx5bXBo 30107
+IFBhdHJp 30108
+ZmlsbA== 30109
+IHJlY29ubmE= 30110
+IG9wdGltaXNt 30111
+IG1pbWlj 30112
+IOyynA== 30113
+IE1hZGFtZQ== 30114
+b2N5 30115
+bGluaW5n 30116
+ZXJtZQ== 30117
+IGZvbGRlcnM= 30118
+IGN6xYI= 30119
+dWNoYXI= 30120
+IGN1cnNv 30121
+IGJyZWFjaA== 30122
+0L3QuNGC0Yw= 30123
+IHBhbWnEmQ== 30124
+IGVsaWc= 30125
+IGF1dG9w 30126
+Rmxvdw== 30127
+IHByb2dyYW1tZWQ= 30128
+IFByb2Nlc3M= 30129
+IGZpZ3Vy 30130
+IFNG 30131
+IEVsZXM= 30132
+IHByb2dyYW1tZXM= 30133
+IGRpenp5 30134
+7Iuc6rCE 30135
+INC70LjQsdC+ 30136
+IHNuaWZm 30137
+IFNlYmFzdGlhbg== 30138
+IEh5ZQ== 30139
+IDQwMDA= 30140
+IHBlcm1pdGU= 30141
+INC30LDRiQ== 30142
+IGd1aXQ= 30143
+IERhaXM= 30144
+IGFjY29yZGFuY2U= 30145
+IG1vZHVsYXI= 30146
+b2dlbmVvdXM= 30147
+IHBvdXF1aW5obw== 30148
+IGFydGlsbGVyeQ== 30149
+IGx1YnJpYw== 30150
+IHZvbGNhbg== 30151
+IE5I 30152
+8J+k 30153
+IGRlYW4= 30154
+Umg= 30155
+IG1pbmlzdHJl 30156
+IEludg== 30157
+IEJ1bGdhcg== 30158
+IERhdGVu 30159
+6I4= 30160
+SW0= 30161
+IG9yaWdpbmF0ZWQ= 30162
+IE5peG9u 30163
+aW50ZWdy 30164
+IGxhY2tz 30165
+IE5hY2h0 30166
+7Ja064KY 30167
+Y2FtZXJh 30168
+IHJhZGlzaA== 30169
+a2l5ZQ== 30170
+IGFuZ2Vz 30171
+IHByw6lm 30172
+anVr 30173
+IEJlZQ== 30174
+IEJV 30175
+INCy0L7RgdC/ 30176
+IEJU 30177
+w6ptZXM= 30178
+IFN0w7xjaw== 30179
+IEluaw== 30180
+IFNlcmdlYW50 30181
+IE11bHRpcA== 30182
+IGhpw6diaXI= 30183
+INCh0LDQvA== 30184
+IETDqQ== 30185
+b2xwaA== 30186
+7Ja4 30187
+IGltcGF0 30188
+IOyViuqzoA== 30189
+INGC0LDQutC+0LPQvg== 30190
+INC90LDQstC10YDQvdC+0LU= 30191
+IHVucHJlZGljdGFibGU= 30192
+IG1lbmQ= 30193
+IOyXhuyWtOyalA== 30194
+IGpha2llxZs= 30195
+IGFubmk= 30196
+IGRvbm7DqQ== 30197
+IEtpcnN0eQ== 30198
+IHJlY3Rhbmd1bGFy 30199
+IGVtcGV6YXI= 30200
+IEV4Y2hhbmdl 30201
+6rCU 30202
+IMOpY29ub20= 30203
+ZWxpbg== 30204
+cmVpYnQ= 30205
+INeU16Q= 30206
+IGNlbWV0ZXJ5 30207
+IGVzcGHDsW9s 30208
+b2xpbg== 30209
+0LvRjtC0 30210
+IGdyw6JjZQ== 30211
+YWxsZW4= 30212
+IFBoaWxvcw== 30213
+IEVyc3Q= 30214
+IOyDiA== 30215
+IFZpZA== 30216
+R2l2ZQ== 30217
+T0g= 30218
+zrzOvw== 30219
+IFBhcmU= 30220
+IG1ldGFib2xpc20= 30221
+IG1hcGxl 30222
+IGF4bGU= 30223
+IER5 30224
+IGtvbW1l 30225
+z47OvQ== 30226
+IGdyZWF0bmVzcw== 30227
+IHZlcmlmaWVk 30228
+IHNww6k= 30229
+IEZhaHJlbmhlaXQ= 30230
+IEJyZW4= 30231
+IENvbmZlZGVy 30232
+IGhpc3RvaXJl 30233
+IGVsaW1pbmF0aW5n 30234
+IEFkZGluZw== 30235
+IEFiaQ== 30236
+IGhvc3BpdGFsaXR5 30237
+dGlt 30238
+IGJvbml0bw== 30239
+IHBhcnRlcw== 30240
+INC00YDRg9Cz0LjRhQ== 30241
+IFNoYXk= 30242
+IFNlZA== 30243
+IHJlZ3JldHM= 30244
+0Y/QvNC4 30245
+IHRlbmFudHM= 30246
+IFBUUw== 30247
+IGRldmk= 30248
+IExhdGU= 30249
+dWV6 30250
+IHPDtnls 30251
+IOyerOuwjA== 30252
+IHRvZ2dsZQ== 30253
+IG1hc2tpbmc= 30254
+0LDQu9GM0L3QvtCz0L4= 30255
+IHBlcnPDtm4= 30256
+IGFtZXJpY2Fu 30257
+Zmlr 30258
+IFJHQg== 30259
+ZW5zb24= 30260
+IEtB 30261
+d3d3dw== 30262
+INGA0LXQsw== 30263
+bWV0aWNz 30264
+IGVkdWNhdG9y 30265
+cGFyaw== 30266
+0LXQu9GM0LfRjw== 30267
+YXJ1cw== 30268
+0YDQtdGC 30269
+IGZlaXRv 30270
+IGNob2ly 30271
+IGxhcmdv 30272
+IGVlbnM= 30273
+IHdhdHRz 30274
+IFNpbmdsZQ== 30275
+IHN1c2NlcHRpYmxl 30276
+aWNlcg== 30277
+INCy0LrQu9GO0Yc= 30278
+IHB1cw== 30279
+7ZmY 30280
+RW5n 30281
+IGZhbnRhcw== 30282
+IHNwZWNpZmljYXRpb24= 30283
+IGNvbmZyb250ZWQ= 30284
+IENvbHVtYnVz 30285
+0LjQstC10YI= 30286
+YXLEsW0= 30287
+IGNhZmZlaW5l 30288
+bXVuaXRpb24= 30289
+IG1pZ3JhbnRz 30290
+bGlkZQ== 30291
+aXRhdGlvbnM= 30292
+IEdlbWU= 30293
+4bqr 30294
+IHBsYW5uZXI= 30295
+IHN0aW11bGF0ZQ== 30296
+IGFwcm94aW0= 30297
+Y2V1 30298
+IE5vbQ== 30299
+IHZvZw== 30300
+INGA0LDRgdGC 30301
+IGVuc2XDsQ== 30302
+IHNlbGxlcnM= 30303
+IGd1dGVu 30304
+emQ= 30305
+Q2Fs 30306
+IGRlc2NyaXB0 30307
+IHJlY29uY2lsaWF0aW9u 30308
+emluaG8= 30309
+4bmHYQ== 30310
+YWN5ag== 30311
+IENPTA== 30312
+c2F3 30313
+IO2ZleyduA== 30314
+IHZhcml0 30315
+IHBhcnRuZXJpbmc= 30316
+IGRldGVudGlvbg== 30317
+IGJvbWJpbmc= 30318
+Y2xhcHBpbmc= 30319
+aWVuY2llcw== 30320
+b25kdQ== 30321
+QU1F 30322
+IOqwmeyKteuLiOuLpA== 30323
+Y8OtYQ== 30324
+INC/0L7RgdGC0L4= 30325
+IEFTTVI= 30326
+IGhvbWVwYWdl 30327
+IHNpw6g= 30328
+YW50aGE= 30329
+IFBvbGw= 30330
+IGlnZW4= 30331
+Y3ljaA== 30332
+IOqwkeyekOq4sA== 30333
+IGNvbnNpZGVyYWJseQ== 30334
+IEFyaXN0 30335
+IHdpdGhzdGFuZA== 30336
+IHF1YWxpdGF0aXZl 30337
+IEtyYWZ0 30338
+INGN0LvQtdC60YI= 30339
+IEJlYWQ= 30340
+0LXQutGC0LjQsg== 30341
+IGNydXNoaW5n 30342
+7LOQ 30343
+IG5hdnk= 30344
+2Yjaug== 30345
+c2hv 30346
+IG9haw== 30347
+aXBwZXJz 30348
+IHNvaWxz 30349
+IHBpZ21lbnQ= 30350
+IGV2aXRhcg== 30351
+IGZ1c2U= 30352
+IERhbGU= 30353
+OiI= 30354
+IGNvbXBsw6h0ZW1lbnQ= 30355
+IGtlbA== 30356
+4LmG 30357
+IHF1YXRyZQ== 30358
+IFVN 30359
+IOunkOs= 30360
+w61y 30361
+IGxlaXN1cmU= 30362
+IEhvdXNpbmc= 30363
+IGZvbGRz 30364
+ZXN0aW9u 30365
+QVJT 30366
+IG1hc2g= 30367
+dXJwb3Nl 30368
+IGFjY3VtdWxhdGVk 30369
+IFN0dWZm 30370
+IHRhcGVz 30371
+INGB0LjQu9GM0L3Qvg== 30372
+IExPVkU= 30373
+IDE5ODI= 30374
+IHNjYXJz 30375
+IGNhcGl0YWxpc3Q= 30376
+IE5lZA== 30377
+IHNvZnRlbg== 30378
+IG5vdGFibHk= 30379
+IGZvcmPDqW1lbnQ= 30380
+IFJhdW0= 30381
+INC90LXQvtCx0YXQvtC0 30382
+IHRyYWRlbWFyaw== 30383
+IGZlcnRpZw== 30384
+ID8h 30385
+IHJlaW5mb3JjZWQ= 30386
+IHJlY2hhcmdl 30387
+IFB1dHRpbmc= 30388
+IHZpbGxhaW5z 30389
+IGhhbmRpYw== 30390
+IGFkdmVydGlzZW1lbnQ= 30391
+2KrZig== 30392
+INGB0YPQvA== 30393
+IFJpbGV5 30394
+15XXkdc= 30395
+T3M= 30396
+2KfYsg== 30397
+Qm95 30398
+IHNxdWlzaA== 30399
+b2NrZXQ= 30400
+IHRlc3RpZnk= 30401
+INec157X 30402
+INC80LDRgdGB 30403
+bWFudWVs 30404
+IEFya2Fuc2Fz 30405
+aWZmZQ== 30406
+IGFuYWx5c3Rz 30407
+IERlYWY= 30408
+IGrDsw== 30409
+IGdyb2Nlcmllcw== 30410
+IFdoZWVs 30411
+INGA0LjRgQ== 30412
+IGPDsm4= 30413
+IENvYg== 30414
+IHByaXNvbnM= 30415
+w6h2ZQ== 30416
+IENhYmluZXQ= 30417
+IHBvc2Vk 30418
+IGd1ZXJyZQ== 30419
+IExsb3lk 30420
+IGNsZXJr 30421
+IGNyaXNlcw== 30422
+IFNobw== 30423
+IE9yZQ== 30424
+IEZvb3RiYWxs 30425
+IEFkdmlz 30426
+IFpoZW5n 30427
+6I0= 30428
+IEFNWQ== 30429
+IHVuZm9y 30430
+IG1vbmFzdGVy 30431
+IGNvbXBpbGU= 30432
+IGltbW9ydGFs 30433
+YXRhYmxl 30434
+IHBhcmFubw== 30435
+IHRpdmVy 30436
+IFN0ZXBo 30437
+IEZ1w58= 30438
+IGRpc2NvbnRpbg== 30439
+IHJpcGU= 30440
+IGhhY2tpbmc= 30441
+IHNpZW5kbw== 30442
+IHNlZ3Vybw== 30443
+YWx0cmVz 30444
+IGFuZGVyZXM= 30445
+IOumrOs= 30446
+IGV4cG9ydHM= 30447
+IHRhYmlp 30448
+IOq4sOuLpOs= 30449
+IGJvdGhlcmluZw== 30450
+IHBpY2tsZQ== 30451
+IEJSSUFO 30452
+IGFsdGFy 30453
+INC/0YDQuNCx 30454
+IHRyYW5zZmVycmluZw== 30455
+IFZvcnM= 30456
+INmH2Yg= 30457
+IFph 30458
+IEZyYW5jZXM= 30459
+IGJyb3dzZQ== 30460
+ZW1pdA== 30461
+IGNoZXdpbmc= 30462
+IEZyZWRkeQ== 30463
+IGVkaXRvcnM= 30464
+w6RsbGU= 30465
+IO2MgA== 30466
+IFNxdWU= 30467
+IEN1bHR1cmFs 30468
+YXdr 30469
+IFNhY2hl 30470
+IENhcmJvbg== 30471
+4bqvdA== 30472
+Rkw= 30473
+IE5HTw== 30474
+cGXFgg== 30475
+IFNvdQ== 30476
+IGh2b3I= 30477
+dW5pbnRlbGxpZ2libGU= 30478
+IOuylQ== 30479
+IMKw 30480
+aWlu 30481
+INei150= 30482
+IGRlcnJpw6hyZQ== 30483
+IGN6eW0= 30484
+IEFwb3N0 30485
+IHJlZ2FyZGVy 30486
+IGFncmFkZQ== 30487
+IENhbmR5 30488
+IG1hcmU= 30489
+IGludHJvZHVjZXM= 30490
+YmlyZHM= 30491
+IHVuaXF1ZWx5 30492
+IG11aw== 30493
+IGNvb2tlcg== 30494
+IGNyZXdz 30495
+IGplaXRv 30496
+RVJU 30497
+toTr 30498
+bmlzc2U= 30499
+IGVm 30500
+IGNhcnRl 30501
+IFlhaw== 30502
+IFBBVA== 30503
+0LjQvdC+ 30504
+Ym9ra2k= 30505
+IG1hdGVz 30506
+IGRpc3RpbnQ= 30507
+IOy9lOuhnOuCmA== 30508
+IHnEsWw= 30509
+IM66zqzOvQ== 30510
+IGNvbmZpZ3VyYXRpb25z 30511
+ZW5nYQ== 30512
+cmVjaHQ= 30513
+SGFwcHk= 30514
+aW52ZXN0 30515
+IHJlY29uc3RydWN0 30516
+INGN0YLQvtC80YM= 30517
+IG1vc3F1ZQ== 30518
+cmF1bQ== 30519
+IHZveWV6 30520
+IE5CQw== 30521
+IOyekOyLoA== 30522
+IHN0dXJkeQ== 30523
+INC60LDQvw== 30524
+IGFuc2No 30525
+YWxpZA== 30526
+IG1hc2lo 30527
+IFJFUA== 30528
+IOy9lOs= 30529
+IGRlZHVjdA== 30530
+IHNhbGly 30531
+d3VyZg== 30532
+aWxvdA== 30533
+IE11dHRlcg== 30534
+b2xkcw== 30535
+IEZFTUE= 30536
+IEJpYg== 30537
+IG5laWdoYm9yaW5n 30538
+IGJsaXNz 30539
+IO2YvA== 30540
+0LvQuNGB0Yw= 30541
+INGC0YDQtdCx 30542
+IGdyZW5hZGU= 30543
+IGVnYWw= 30544
+IGZpbmVseQ== 30545
+IHBldGFscw== 30546
+IGtlZXI= 30547
+IGNoeWJh 30548
+IHNraXBwaW5n 30549
+IHRoaXJ0ZWVu 30550
+IGdyYXZ5 30551
+IFNBVA== 30552
+NjE= 30553
+INC90L7Qsw== 30554
+IG1pbnM= 30555
+SVRF 30556
+IHNvemlhbA== 30557
+7ZWY66m07ISc 30558
+cnVrdHVy 30559
+INCy0L7Qt9C80L7Qtg== 30560
+INC+0L/Rj9GC0Yw= 30561
+IGFydGg= 30562
+IEN1YmFu 30563
+IHRyZWFzdXJlcw== 30564
+IGZlcnRpbGl6ZXI= 30565
+IGF3YWtlbmluZw== 30566
+IOuwseyLoA== 30567
+IHJhbGw= 30568
+IGRlcGljdA== 30569
+IFBhYmxv 30570
+IG5pbmV0ZWVu 30571
+IHdhdHQ= 30572
+IGVudGlyZXR5 30573
+S1M= 30574
+IFdvb2Rz 30575
+U2No 30576
+INqp2Yg= 30577
+IERyeQ== 30578
+dXZl 30579
+IHJlY29uc3RydWN0aW9u 30580
+IGFuYXRvbXk= 30581
+iOulvA== 30582
+IGJhYmE= 30583
+IGxpc3RlbmVy 30584
+IHNoYXJwZW4= 30585
+IFBlcnU= 30586
+INCy0YvQtw== 30587
+IHJlY3JlYXRpb24= 30588
+IGluaXRpYXRl 30589
+IGNhbG9y 30590
+IE5hag== 30591
+Z2Vl 30592
+IEZlZWxz 30593
+IFNuYXBjaGF0 30594
+IFRldA== 30595
+IE5lc3Q= 30596
+IERhZg== 30597
+IEZpbmlzaA== 30598
+INGC0LDQutC40Lw= 30599
+w7pj 30600
+aXplbnM= 30601
+IHNwaW5z 30602
+IGVtYnJ5 30603
+IHBhc3NhZ2Vz 30604
+IGNpZW50 30605
+IGp1c3RpZmljYXRpb24= 30606
+IG9sbWF6 30607
+IGZsb29kZWQ= 30608
+IGVtb2pp 30609
+IGVtYnJhY2luZw== 30610
+IGRpc2NhcmQ= 30611
+IEJhc2lj 30612
+YWdvZw== 30613
+IOychO2VtA== 30614
+IGFzeWx1bQ== 30615
+ZXJpbg== 30616
+IGZpbQ== 30617
+IG5pbmph 30618
+IGF1dG9tYXRl 30619
+IGFsbGVyZ2lj 30620
+w7/Dv8O/w78= 30621
+YW1hbQ== 30622
+INC80LDRgA== 30623
+IE9p 30624
+w6R1cw== 30625
+IGluZHVjdA== 30626
+IEJFTg== 30627
+IHrFgg== 30628
+IGthxbxkeQ== 30629
+IEFNUA== 30630
+bsSb 30631
+U3VyZQ== 30632
+IHF1aWw= 30633
+IGVzcGVj 30634
+cm9r 30635
+QlNDUkk= 30636
+IGxpZWJl 30637
+cHVz 30638
+YWNoc2Vu 30639
+IGNyaWNrZXQ= 30640
+64qQ 30641
+IEZyYW1l 30642
+ZWtrw7xy 30643
+YXJi 30644
+IHDFmQ== 30645
+0LjRgdGB 30646
+IHplZ2dlbg== 30647
+IGRvdWJsZXM= 30648
+IERyZQ== 30649
+dGVzdA== 30650
+aW5zcA== 30651
+Ym95cw== 30652
+IG3Do28= 30653
+IFZlcnNl 30654
+IG11c2N1bGFy 30655
+IE1BTEU= 30656
+IGR1bHU= 30657
+IG9jY2FzaW9uYWw= 30658
+TG8= 30659
+Y29ub21pYw== 30660
+IHZhaw== 30661
+IHJlbWVkeQ== 30662
+IOKZquKZquKZqg== 30663
+dmVt 30664
+IMO2bmVt 30665
+IGthcsWfxLE= 30666
+IFNoYXJw 30667
+aHVy 30668
+IOuwqeuylQ== 30669
+IGdyYW5kc29u 30670
+IGFrdGl2 30671
+IFRocm9uZXM= 30672
+IOyViOyXkA== 30673
+IHRvdHM= 30674
+IHN1YmQ= 30675
+IFBhdWxh 30676
+IGdyYXZlcw== 30677
+IEJyZW50 30678
+INC90LjQutGC0L4= 30679
+IHPDtno= 30680
+IGNyZWM= 30681
+IFZsYWRpbWly 30682
+INC/0L7QuQ== 30683
+ICIt 30684
+IHBzeQ== 30685
+YXRyaQ== 30686
+aWRhbg== 30687
+IGHDum4= 30688
+IHN0YW5kYXJkaXplZA== 30689
+7LmY6w== 30690
+INC60YDQvtCy 30691
+IFpodQ== 30692
+c29tZXRoaW5n 30693
+IDc1MA== 30694
+IG11amVyZXM= 30695
+IGFpdA== 30696
+YWd1 30697
+IGNvcnJlY3RlZA== 30698
+aWtrYQ== 30699
+ZWxlZA== 30700
+IENhcmVlcg== 30701
+b3d5bQ== 30702
+IHJvb21tYXRl 30703
+IGRlc2NlbmRhbnRz 30704
+IE5hcG9sZW9u 30705
+INCU0L4= 30706
+7ZaI7Ja07JqU 30707
+IGJ1bnVu 30708
+IE1pY2hh 30709
+IGRlc2NvYg== 30710
+UEk= 30711
+IHBhbGFicmE= 30712
+IHRyYWNrZWQ= 30713
+IGRlcGVuZGVuY2U= 30714
+IEJhcmFjaw== 30715
+IGZlcnRpbGl0eQ== 30716
+IFNvdXRod2VzdA== 30717
+IGluY29tcGxldGU= 30718
+IGNvbXVuaWM= 30719
+IGNvbXByaXM= 30720
+IFJlc3RhdXI= 30721
+IGFjcm9u 30722
+zrrOsQ== 30723
+IGFwcHJlbnRpY2Vz 30724
+IG11c3N0 30725
+IEFicg== 30726
+IHBlbnRydQ== 30727
+IENvbnNvcnQ= 30728
+IEF2ZWM= 30729
+IGR1bXBsaW5ncw== 30730
+TFI= 30731
+IHdzenlzdGtpZQ== 30732
+IHN3YW1w 30733
+0L3QtdCy 30734
+dWdnbGU= 30735
+IHdhdGVyY29sb3I= 30736
+IHByb3Rvbg== 30737
+IEVzcGHDsWE= 30738
+b2NraW5n 30739
+0L7QstCw0Ls= 30740
+IHRha2lt 30741
+VmVyeQ== 30742
+IGRlbWVudGlh 30743
+IMWfZXlp 30744
+SmFj 30745
+IE1hY0Jvb2s= 30746
+IExpdg== 30747
+ZmZpY2llbnRz 30748
+IEh1bnQ= 30749
+IG92ZXJsYXk= 30750
+IFNreXBl 30751
+cHVua3Q= 30752
+IGNvbmZpbmVk 30753
+IEFkcmlhbg== 30754
+2LHZgw== 30755
+IEplZXA= 30756
+IGVucXVhbnRv 30757
+IGFuZXN0 30758
+0L7RgtCy0LXRgg== 30759
+INC80LXQvdGM 30760
+IGlycmlnYXRpb24= 30761
+4buRbg== 30762
+IGVpZ2h0ZWVu 30763
+IFBvbg== 30764
+IHJlc2N1ZWQ= 30765
+IDE5ODM= 30766
+csO8 30767
+amFl 30768
+IEplb25n 30769
+IGFtYXppbmdseQ== 30770
+IEZEUA== 30771
+IGJhY2tzdGFnZQ== 30772
+Y3Vl 30773
+IM+Dz4TOt869 30774
+INin2YTYtQ== 30775
+IGxpdmVzdG9jaw== 30776
+IFdhcm5lcg== 30777
+IG1ham9ycw== 30778
+IGNvb3BlcmF0aXZl 30779
+IEJyYWR5 30780
+cmFpbmVk 30781
+cmllYg== 30782
+INeR157X 30783
+INC00L7QstC+0LvRjNC90L4= 30784
+IEZF 30785
+IGxlYWtlZA== 30786
+IE1lcmN1cnk= 30787
+IHBlcnN1YWRl 30788
+IHRyYW5zZm9ybWVy 30789
+IE5vcndlZw== 30790
+IOyXrOufrA== 30791
+IHpyb2JpxIc= 30792
+IGNhcmRpb3Zhc2N1bGFy 30793
+IENyYXNo 30794
+IGdvc3NpcA== 30795
+0LDRgdGC0Yw= 30796
+IOyqvQ== 30797
+IHN3ZXB0 30798
+IEhvcm4= 30799
+IEF0w6k= 30800
+IGJ1a2Fu 30801
+IEthdw== 30802
+S1k= 30803
+IFN0b3JpZXM= 30804
+R2FyeQ== 30805
+IGdhcmRlbmluZw== 30806
+IFF1aWNrbHk= 30807
+IEZhbGNvbg== 30808
+IG92YXQ= 30809
+Y8Sx 30810
+IENvbXBsZXQ= 30811
+IERhdGU= 30812
+INC/0YDQuNC8 30813
+IGzDpHVmdA== 30814
+IEF1ZHJleQ== 30815
+IFdlbnQ= 30816
+IHBlbMOtY3Vs 30817
+IGNhcnJpYWdl 30818
+IHVuYWNjZXB0YWJsZQ== 30819
+bnltaQ== 30820
+INGB0LvRi9GI 30821
+IHRlcnJl 30822
+dWVsbGVtZW50 30823
+RUVFRQ== 30824
+IHBoYXJtYWM= 30825
+aMO1ZXM= 30826
+IHppY2g= 30827
+IG1pZ3JhdGU= 30828
+IEZyeQ== 30829
+w7FhbmE= 30830
+IE11aXRv 30831
+RU9WRVI= 30832
+IGZvcnRyZXNz 30833
+IENvbXBhbg== 30834
+IEpTT04= 30835
+b3JkbnVuZw== 30836
+IHdhcnRv 30837
+IHVuZ2Vm 30838
+7IWU7ISc 30839
+INGA0L7Qug== 30840
+IHBhZGRsZQ== 30841
+SmFyZWQ= 30842
+IHN1Ym1pdHRpbmc= 30843
+IGxhdGNo 30844
+IGZ1Zw== 30845
+INC60L7RgQ== 30846
+IEVm 30847
+IGxhdW5jaGVz 30848
+IGZ0 30849
+b3RlY2hu 30850
+IHRyYXZlbGxlZA== 30851
+2KfZgQ== 30852
+IHByb2No 30853
+IGRlZGlt 30854
+ODM= 30855
+IHJlYm91bmQ= 30856
+IExV 30857
+cGF0aA== 30858
+INGB0L/RgNCw0LI= 30859
+IMO2bA== 30860
+IO2CpA== 30861
+IHByaXZhdA== 30862
+IHRyYWN0b3I= 30863
+IEF0dGVudGlvbg== 30864
+U2Vy 30865
+IGNvc2Vz 30866
+w6FyaWE= 30867
+cGFs 30868
+IOydgA== 30869
+IHN1Y2Nlc3Nvcg== 30870
+IGNvbm5lY3RvcnM= 30871
+INGD0YHRgtCw0L3QvtCy 30872
+IGdlbm9jaWRl 30873
+IHN1ZmZpY2llbnRseQ== 30874
+IEFpeMOy 30875
+IHN0YWJpbGl6ZQ== 30876
+IGNvbmdlc3Q= 30877
+IGNhcnZpbmc= 30878
+IHpvc3Q= 30879
+INCx0YvRgdGC0YDQvg== 30880
+IHNob3J0ZXN0 30881
+IGxpdmVs 30882
+IDg5 30883
+IGVyaw== 30884
+IHBvcnRyYWl0cw== 30885
+4KWA 30886
+6Jg= 30887
+Ym9hdA== 30888
+bGxhaA== 30889
+QU5D 30890
+IGVtcGlyaWNhbA== 30891
+IEVjaG8= 30892
+IE5lZGVybGFuZA== 30893
+TmV0 30894
+IGN1aWRhZG8= 30895
+IFJvbWE= 30896
+IGNhbGY= 30897
+IGdpYW50cw== 30898
+IEV4cGxvcmVy 30899
+IENvbGxlY3Q= 30900
+YWxpdGlvbg== 30901
+IERlc3Rpbnk= 30902
+IGF1c2dl 30903
+IEVkdQ== 30904
+IENsbw== 30905
+IGVhcnJpbmdz 30906
+IFRyYWNr 30907
+IFJPUw== 30908
+IEJlbGxl 30909
+IHB1ZWRh 30910
+IGRheXRpbWU= 30911
+IHN1cHBsaWVy 30912
+IFNW 30913
+IEV4aGFsZQ== 30914
+IGdhbGVyYQ== 30915
+Y291cnNl 30916
+IGNlbnRpbWV0ZXI= 30917
+IEJhc3Q= 30918
+bXVk 30919
+IHNhbmdhdA== 30920
+IFBoeXNpY2Fs 30921
+IHByaXZhdGVseQ== 30922
+IHRyYXRh 30923
+bHlubg== 30924
+aWxsaQ== 30925
+IOuplOydtO2BrOyXhQ== 30926
+IGNyeXN0YWxs 30927
+IHBvZHM= 30928
+4bqjbg== 30929
+aW5hdG9y 30930
+IFJlY29yZHM= 30931
+xJ9pbWl6 30932
+aXNzZW1lbnQ= 30933
+aGFyZQ== 30934
+aGFkb3c= 30935
+IERL 30936
+IOyVjOqzoA== 30937
+IHd5bg== 30938
+IHJlcXVlc3Rpbmc= 30939
+IERvbm5h 30940
+IOyXtOyLrO2eiA== 30941
+aW5lYQ== 30942
+IGV4ZXJ0 30943
+IER1bmNhbg== 30944
+INCy0LXRhw== 30945
+IEhhaA== 30946
+4KSC 30947
+IExpZg== 30948
+IEZpbmRpbmc= 30949
+IE5vdg== 30950
+INC30L3QsNC6 30951
+INC+0YQ= 30952
+IFF1w6g= 30953
+IHF1YXJ0ZXJiYWNr 30954
+INGE0LDQug== 30955
+IGJpcGFydGlzYW4= 30956
+xJ9pbg== 30957
+IG7DqWNlc3M= 30958
+IHJlZmVyZW5kdW0= 30959
+IGNvbXBpbGVy 30960
+IHByb2JhYmls 30961
+0LXQtNC4 30962
+IHRyYWRlcg== 30963
+IFJ1bQ== 30964
+Z2VtZQ== 30965
+IGRpbw== 30966
+IGLEmWR6aWVteQ== 30967
+IM+Azqw= 30968
+6r64 30969
+15XXmA== 30970
+IOCklQ== 30971
+INCx0LvQsNCz 30972
+IHNjYWxw 30973
+IFBhdXNl 30974
+IGNhcHRpb24= 30975
+IGVuZGFuZ2Vy 30976
+IGVubGFy 30977
+IHJvdHRlbg== 30978
+IHdhaA== 30979
+IGR6aQ== 30980
+IEluc3RhbGw= 30981
+QXk= 30982
+IGNyZWFy 30983
+0LXQvdGC0LA= 30984
+IHdlaWdoaW5n 30985
+IGJ1dHRlcmZsaWVz 30986
+IEdhc3Q= 30987
+aG9ybg== 30988
+d2Fyeg== 30989
+SUNFT1ZFUg== 30990
+INC90LDQudGC0Lg= 30991
+IGNvZWZmaWNpZW50cw== 30992
+IFNwZW5jZXI= 30993
+IEhpZ2hlcg== 30994
+IGNvd29yaw== 30995
+INC60L7RgtC+0YDQvtC1 30996
+IG1vbml0 30997
+IGR5c2Z1bmN0aW9u 30998
+INGB0YLQsNC90L7Qsg== 30999
+IHRvdXJuYW1lbnRz 31000
+IG95c3Rlcg== 31001
+Qk4= 31002
+IHRydWQ= 31003
+c2xvdw== 31004
+IFBlbm55 31005
+IE9keXM= 31006
+w6Zy 31007
+IGZvdQ== 31008
+IGVuam95bWVudA== 31009
+0LDRgtGL 31010
+IHd5Z2zEhWRh 31011
+0LDQu9GM0L3QsNGP 31012
+IFByb3RlY3Q= 31013
+IG1veQ== 31014
+IGNsYXc= 31015
+IHN1c3BpY2lvbg== 31016
+IHNhY3JpZmljZWQ= 31017
+IGdvc3Rv 31018
+Qmln 31019
+IGFnZ3Jlc3NpdmVseQ== 31020
+IHZvcm5l 31021
+IGJsYW1lZA== 31022
+IFNlaHI= 31023
+16TXqA== 31024
+Y2l0bw== 31025
+IHNlYWxz 31026
+IG11amVy 31027
+IFdlaXJk 31028
+IGZvcmVucw== 31029
+IGNvbnRyaWJ1dGVz 31030
+ZXN0cmE= 31031
+IHBvZw== 31032
+TE9M 31033
+IGhhY2VybG8= 31034
+0L7RgtGM 31035
+ZmljdGlvbg== 31036
+Nzk= 31037
+zrvOvw== 31038
+INGC0L7QsQ== 31039
+IEdT 31040
+IENsYXJh 31041
+aXRleg== 31042
+IGFkdm9jYXRpbmc= 31043
+IO2UhOs= 31044
+c3VuZw== 31045
+IHZlcnRpY2Vz 31046
+IG5hdmlnYXRpbmc= 31047
+IGV1cm9ww6k= 31048
+IHNsb3dlZA== 31049
+IGZvcmVncm91bmQ= 31050
+IEluZHVzdHJpYWw= 31051
+IGFkb3Jl 31052
+7Iut 31053
+IGNyw6llcg== 31054
+Y2huaXR0 31055
+IHVuYXdhcmU= 31056
+IGN1cmx5 31057
+ZW50YXI= 31058
+IGxlcg== 31059
+IHByb2hpYml0ZWQ= 31060
+IEhlcm9lcw== 31061
+IFJlZWQ= 31062
+dWNh 31063
+IHNtb2s= 31064
+IGt1bm5h 31065
+emVpdGln 31066
+aW1tZW4= 31067
+IEx1bg== 31068
+INCw0LHRgdC+0LvRjtGC 31069
+IGRlZ2xp 31070
+IHZpbGxhZ2Vycw== 31071
+IHByZXNldA== 31072
+emVwdA== 31073
+dWRz 31074
+IGVtaXQ= 31075
+IOuJ 31076
+64qU7KeA 31077
+0L3QsNC60L4= 31078
+IG9zw7Ni 31079
+IDE5Njk= 31080
+INCQ0YA= 31081
+IG1hbmNobWFs 31082
+IEJyb2Nr 31083
+IG1hbnRyYQ== 31084
+IFdJTA== 31085
+YmFjaA== 31086
+aW7DpA== 31087
+ZWxhcw== 31088
+a2Vsbg== 31089
+IGRpc2NpcGxl 31090
+IHF1YWxj 31091
+IGRlaHlk 31092
+7J20652864qU 31093
+QWY= 31094
+7ISx7J20 31095
+Unlhbg== 31096
+IHB1cHBldA== 31097
+INC00YDRg9Cz0LjQtQ== 31098
+IHJ1ZA== 31099
+IHBlbmRpbmc= 31100
+UGx1cw== 31101
+IOyViuydhA== 31102
+IGLhu4s= 31103
+IFNlZ2E= 31104
+w6dl 31105
+IHByb2dyYW1tZXI= 31106
+Ymxp 31107
+IHVubA== 31108
+IGVuc2xhdmVk 31109
+IHNvY2nDqXTDqQ== 31110
+xIFo 31111
+IGluaGVyaXRhbmNl 31112
+IEJhbmds 31113
+ZXJtYWlk 31114
+IHByYWN0aXRpb25lcg== 31115
+IFN0YWxpbg== 31116
+IFVzZXI= 31117
+Y2libGU= 31118
+IGNhcmRpYWM= 31119
+IEtvcmVhbnM= 31120
+IGR1bXBlZA== 31121
+INeU15nXlA== 31122
+w6Fpcw== 31123
+IGh5ZHJhdWxpYw== 31124
+b3VidGVkbHk= 31125
+IFBpdA== 31126
+IHBpY25pYw== 31127
+IGJlaMO2dmVy 31128
+INGB0LzQvtCz 31129
+IGJyYWtpbmc= 31130
+dXRhcg== 31131
+IOyEuOs= 31132
+dWJs 31133
+IMO8eg== 31134
+IG1hamVzdHk= 31135
+IGJlcnM= 31136
+dXRhYmxl 31137
+IGhvdHRlcg== 31138
+24zZhg== 31139
+IGJpYXNlcw== 31140
+IHN1YmplY3RlZA== 31141
+IG5hdWdodHk= 31142
+IGNpcmN1cw== 31143
+IEltbWVkaQ== 31144
+IFN0ZWZhbg== 31145
+IFRyaXBsZQ== 31146
+ZW5r 31147
+IHdpdA== 31148
+IHJlY3ljbGU= 31149
+ZW1pZQ== 31150
+ZGF0ZWQ= 31151
+IHVubG9hZA== 31152
+IHBvcHVsYQ== 31153
+Y2hpbg== 31154
+IHlpZWxkcw== 31155
+IGVuZ2xpc2g= 31156
+IEJvbm5pZQ== 31157
+IHNwaWRlcnM= 31158
+w4E= 31159
+IGVyb3Npb24= 31160
+IE5JQ0s= 31161
+0LjRj9GF 31162
+IGltcGFydA== 31163
+INC60L3QuA== 31164
+IHJlc29sdXRpb25z 31165
+IGxpdGhpdW0= 31166
+IGNvbnZlcmdlbmNl 31167
+IFRhcmE= 31168
+INC00LLQtQ== 31169
+dGhz 31170
+IENpbmR5 31171
+IERJRQ== 31172
+IGFzc3VyYW5jZQ== 31173
+INC+0L/QuNGB 31174
+IGJ1Y2tldHM= 31175
+IGN1ZXM= 31176
+IFF1aWV0 31177
+IHNpbWlsYXJpdHk= 31178
+IGZvdW5kYXRpb25hbA== 31179
+IE1pbmlzdA== 31180
+IHBpYW4= 31181
+IGNlbnRy 31182
+IG51bWI= 31183
+IG1vbmtz 31184
+dWpvdXJk 31185
+ZW56aWU= 31186
+IHNrYXRlYm9hcmQ= 31187
+IGRsYXRlZ28= 31188
+INGB0L7Rgg== 31189
+IEFF 31190
+IG1hc3RlcnBpZWNl 31191
+IFNvbG9tb24= 31192
+IFJlZGRpdA== 31193
+IHJpb3Q= 31194
+YWJs 31195
+IEpheno= 31196
+IGVsZWN0cm9tYWduZXRpYw== 31197
+IGluc2VjdXJl 31198
+IENvbXBldA== 31199
+Z2VyaWVz 31200
+0L7QsdC+0LQ= 31201
+oNeV 31202
+8J+S 31203
+IHNlbmF0b3Jz 31204
+IEJyaXNiYW5l 31205
+IEFsYg== 31206
+dXR0ZXJpbmc= 31207
+IEFsbG93 31208
+emVybw== 31209
+IHBhaQ== 31210
+INCQ0LvQtdC60YE= 31211
+IERpc3BsYXk= 31212
+IEJsYWRl 31213
+IEFwcHM= 31214
+IHDDpA== 31215
+INC00LXRgdGP 31216
+IHF1ZWxsYQ== 31217
+IEdhbw== 31218
+0LXQvdC90YvRhQ== 31219
+IHNwb2lsZXJz 31220
+IGdhbGxvbnM= 31221
+INmE2Yo= 31222
+IFppb24= 31223
+b25pZQ== 31224
+cmFndA== 31225
+IENoYW5k 31226
+IOuzkQ== 31227
+IGJsdW50 31228
+IHVzdQ== 31229
+IEthZA== 31230
+cmFrdA== 31231
+IGNpbmVtYXRpYw== 31232
+IGFtbXVuaXRpb24= 31233
+cmVuZQ== 31234
+IGZvdXJ0ZWVu 31235
+IENhcm4= 31236
+Y3JpdA== 31237
+IHRlbnVyZQ== 31238
+dnU= 31239
+IHByaW5jaXBhbG1lbnRl 31240
+IGFsbGVlbg== 31241
+IGtvbXBsZXR0 31242
+IGTDvG55 31243
+SmFtZXM= 31244
+IHJlY2VwdG9y 31245
+IG9uZXNlbGY= 31246
+Z3VydQ== 31247
+IG1lcmNoYW50 31248
+bGluZXNz 31249
+IG92ZXJsb29rZWQ= 31250
+IGhhcm1vbmlj 31251
+aWVzbw== 31252
+15XXng== 31253
+Y29sbQ== 31254
+INC/0YDQvtC10LrRgg== 31255
+IEFkYQ== 31256
+2KfYsw== 31257
+VGlt 31258
+IHJlY3VycmluZw== 31259
+IHByb2NlZWRz 31260
+IFBhcnRpY3VsYXJseQ== 31261
+IERvd25sb2Fk 31262
+ZXRyaWNhbA== 31263
+IG1hdHJpY2Vz 31264
+IHByb3llY3Rv 31265
+YW5jaWVz 31266
+IFVobQ== 31267
+IGNhdmVz 31268
+IOyWtOugpA== 31269
+IExlYWY= 31270
+INC+0LHRi9GH 31271
+IOydtOycoA== 31272
+RXVyb3Bl 31273
+IHTEhQ== 31274
+IHB1bHM= 31275
+IHRha2llZ28= 31276
+0J3QtQ== 31277
+R1U= 31278
+IGZvcnM= 31279
+z4HOsw== 31280
+IGZvdG9z 31281
+ICkp 31282
+IOuppOs= 31283
+IGFxdWlsbw== 31284
+IEt1cmQ= 31285
+77iP 31286
+cHRpYw== 31287
+IERvcnQ= 31288
+IG1pc2VyeQ== 31289
+YXVzbw== 31290
+Y2h1Y2tsaW5n 31291
+IFJpZGdl 31292
+IO2WiOyKteuLiOuLpA== 31293
+ICoqKg== 31294
+IEhtbW0= 31295
+IGdlb2dyYXBoaWM= 31296
+IGFueXM= 31297
+IHRhbHZleg== 31298
+IHNrZWxldA== 31299
+IHNpZ25hdHVyZXM= 31300
+IGxpdGVycw== 31301
+kOuptA== 31302
+INGB0LLQvtC10LPQvg== 31303
+IHNraWluZw== 31304
+INCc0L7RgQ== 31305
+IGFkb3B0aW5n 31306
+IGhhZnQ= 31307
+IHN5bW1ldHJpYw== 31308
+IExpcXU= 31309
+IHRoeXJvaWQ= 31310
+IG1pc2lu 31311
+bHVkZQ== 31312
+IGh1bGw= 31313
+IFhE 31314
+IEd1c3Q= 31315
+emVpY2g= 31316
+IHZpYnJhdGlvbnM= 31317
+IGVzZW1w 31318
+INCy0YHRjg== 31319
+IFF1ZW0= 31320
+IMO8YnJpZw== 31321
+IFNrZQ== 31322
+IEx5bmNo 31323
+cm9vbXM= 31324
+YXJ0ZXQ= 31325
+ZmVzdA== 31326
+IGZyw7xoZXI= 31327
+IGx1cmU= 31328
+IOyVjOyVhA== 31329
+IFdJTg== 31330
+IFJZQU4= 31331
+INC60L7RgtC+0YDRg9GO 31332
+IEthc2g= 31333
+INeU154= 31334
+IHNhZmVn 31335
+IEhhbGxlbHVqYWg= 31336
+INC00LLRg9GF 31337
+IHN0YXBsZQ== 31338
+IHNlZGltZW50 31339
+IEFjdHM= 31340
+IGJsYW1pbmc= 31341
+IG1haW5sYW5k 31342
+IHNwb3J0aW5n 31343
+IGRlY29yYXRpb25z 31344
+IGV4ZWN1dGluZw== 31345
+IHBhcmFu 31346
+IERvbGxhcg== 31347
+IHByb2plY3Rpb25z 31348
+IGNvbW1pc3Npb25lZA== 31349
+IGJvdXI= 31350
+w7Zt 31351
+IHN0ZWFtZWQ= 31352
+IOutmA== 31353
+IHBldHJvbA== 31354
+IGNlbHVsYXI= 31355
+IEh1bmdhcnk= 31356
+IHJlbnRlZA== 31357
+INCy0LDRgNC4 31358
+YmJpZQ== 31359
+IHPDqWN1cg== 31360
+w7xsbA== 31361
+IHN3aW5ncw== 31362
+YmV0d2Vlbg== 31363
+INC40YI= 31364
+ZXN0cm8= 31365
+IG5pZW1hbmQ= 31366
+IOyCvA== 31367
+IFBhcmRvbg== 31368
+ZXNzZXM= 31369
+IE1JRA== 31370
+IGNlbnRyYWxpemVk 31371
+IEFsaWVu 31372
+Y3Vsb3M= 31373
+IGNyaXNl 31374
+IGNsYXNzZQ== 31375
+YmVpdGV0 31376
+acSfaQ== 31377
+IHdoYWxlcw== 31378
+IHBlcmltZXRlcg== 31379
+IHR5aW5n 31380
+IHN0cm9ueQ== 31381
+IGxpa2V3aXNl 31382
+IFB1bmNo 31383
+RGE= 31384
+IEJhcHRpc3Q= 31385
+IHNvcnRpbmc= 31386
+IGl2 31387
+IO2VqQ== 31388
+IHJlaGFi 31389
+IGV0YQ== 31390
+cml2ZXI= 31391
+IHNhaQ== 31392
+b2R1cw== 31393
+IGVzc2F5ZXI= 31394
+IHR1cnRsZXM= 31395
+IEhhenJhdA== 31396
+IGZhYnJpY3M= 31397
+IGNhdml0eQ== 31398
+IHBvbmlld2HFvA== 31399
+IHNjaGxlY2h0 31400
+IHNhbHNh 31401
+xZ9la2vDvHI= 31402
+IHNlYXRpbmc= 31403
+IGVjb25vbWlzdHM= 31404
+IG1hbmc= 31405
+IHNlZ3VpbnRl 31406
+IHJhbmc= 31407
+IHJhdGlvcw== 31408
+IGNvbnN0ZWxs 31409
+IGxvbmd0ZW1wcw== 31410
+dWF0aW5n 31411
+IHNwb2lsZWQ= 31412
+IHJlY2lwaWVudHM= 31413
+IHNuaXBlcg== 31414
+7Iq164uI6rmM 31415
+IHdw 31416
+IExJTktF 31417
+IGZsYXJl 31418
+IEFkcmk= 31419
+w7Fhcw== 31420
+IGJhY2ts 31421
+bcOkw58= 31422
+IEJlbmQ= 31423
+IHdvcmtsb2Fkcw== 31424
+INGB0YPQvw== 31425
+IDE5NzU= 31426
+0LjQvNGB0Y8= 31427
+0LDQvdC1 31428
+INC80L7QvQ== 31429
+IGFzcGlyYXRpb25z 31430
+IEFlcg== 31431
+INCz0L7QstC+0YDQuNGC0Yw= 31432
+IFFpYW4= 31433
+IGNvbXByb21pc2Vk 31434
+IHlvbGs= 31435
+0LvQsNGB0YI= 31436
+IGhlbWVu 31437
+cm92ZQ== 31438
+ZGVucw== 31439
+INC60L7QvNC80LXQvdGC 31440
+IC0tLQ== 31441
+IGZsdW9yZXM= 31442
+0L3QvtGB 31443
+IExpdmVycG9vbA== 31444
+INGB0L7QsdC+0Lk= 31445
+IFp3ZQ== 31446
+IGx1bWlu 31447
+IE9H 31448
+4bg= 31449
+aG9sbQ== 31450
+cHJvZml0cw== 31451
+U04= 31452
+IHByb3BvcnRpb25z 31453
+IG1pY2E= 31454
+IEJvaA== 31455
+IEF0bGFz 31456
+IHVuc3VyZQ== 31457
+IHRvdXJpbmc= 31458
+IG5pZWQ= 31459
+IHTEmQ== 31460
+IGltcGVyYXRpdmU= 31461
+IGRlbWVr 31462
+IFNoZXJpZmY= 31463
+cmFuY2U= 31464
+IGhvbWVsYW5k 31465
+IEhhaWw= 31466
+IEdhbno= 31467
+eW1t 31468
+TW9u 31469
+dmlkYQ== 31470
+IGRlc2Fycm9sbA== 31471
+IGludHJpZ3Vpbmc= 31472
+IEh1Z28= 31473
+6aw= 31474
+0LDRhg== 31475
+IFdpxJlj 31476
+YXR0ZWQ= 31477
+IOyVhOuLiOqzoA== 31478
+IFZhcmk= 31479
+w6Fk 31480
+IHN1cnJlYWw= 31481
+IGRpc3Bhcml0aWVz 31482
+IG3Dsw== 31483
+dWxsZW4= 31484
+IOyeiOuLpOqzoA== 31485
+INC/0L7QttCw0LvRg9C50YHRgtCw 31486
+IG1haW5z 31487
+IGVqZWN0 31488
+IG1ldGhhbmU= 31489
+IG1hcmdpbmFsaXplZA== 31490
+IGNoaWxsaQ== 31491
+csOocw== 31492
+IHllbQ== 31493
+IENodW4= 31494
+IGRlYnRz 31495
+IGRvd25sb2FkaW5n 31496
+IEF0aGVucw== 31497
+aXNpZXJ1bmc= 31498
+cnlu 31499
+IHRla24= 31500
+IFF1aW5kaQ== 31501
+IHRhcmFm 31502
+IGjDqQ== 31503
+IGNvbnNjaW91c2x5 31504
+IGZpeGVz 31505
+dWNrbGU= 31506
+bWF5xLFu 31507
+IGZyZWk= 31508
+IHNwYQ== 31509
+IOynhO2WiQ== 31510
+INin2YTYsA== 31511
+INGD0Lo= 31512
+bGV0dA== 31513
+IG9sbXXFnw== 31514
+IGNoZWVzeQ== 31515
+4Liy4LiB 31516
+bmFpcmU= 31517
+IHdpZGVu 31518
+IGxpZW4= 31519
+IGVzY2FwaW5n 31520
+aWdncw== 31521
+IEJsaWNr 31522
+Y8SF 31523
+IOyEnOs= 31524
+INeU16E= 31525
+INCy0L/QtdGA 31526
+b3Bob25l 31527
+aWVsbA== 31528
+IFNVQlNDUkk= 31529
+IGxpb25z 31530
+IOq3uOqygw== 31531
+IGluc3BpcmVz 31532
+IGd1YXJhbnRlZXM= 31533
+IGNvbWXDp2E= 31534
+IEdyb3dpbmc= 31535
+IG5lZ2xpZw== 31536
+IEZyYW5rZg== 31537
+IGdlZ2ViZW4= 31538
+IMSR4bqndQ== 31539
+IGVuZGxpY2g= 31540
+IOyNqA== 31541
+IFRU 31542
+IExpdGg= 31543
+z4DOsQ== 31544
+YXN0ZXJu 31545
+IEF6ZXI= 31546
+IGx1bmFy 31547
+aGlj 31548
+INC90LDRgNC+0LQ= 31549
+IG5lbmh1bQ== 31550
+IFNhbHZhZG9y 31551
+IFByb2dyZXNz 31552
+IHByaXZpbGVnZXM= 31553
+IOuPmeyViA== 31554
+IGFudGFnb24= 31555
+IEltcGY= 31556
+IGRlc2N1Yg== 31557
+IExlaQ== 31558
+IOyDiOuhnA== 31559
+0YfQtQ== 31560
+IGTDs2xhcmVz 31561
+IE1lZ2hhbg== 31562
+IFdpcmU= 31563
+dG9v 31564
+YXlpbmc= 31565
+dXNj 31566
+IHR1ZA== 31567
+IGFwcGVhbHM= 31568
+ZWR1Yw== 31569
+IHBhbmU= 31570
+IGpp 31571
+IGRlY2tz 31572
+IEFsdGVy 31573
+7ISk 31574
+IHByb2R1Y3Rpb25z 31575
+IFdJTExJQU0= 31576
+IGltcGxpZWQ= 31577
+IGZ1bGZpbGxtZW50 31578
+IEFhaA== 31579
+IHNhamE= 31580
+eHVz 31581
+IM6azrHOuQ== 31582
+w6Bz 31583
+dWNjaA== 31584
+0L7QutC+ 31585
+IERpc2NvcmQ= 31586
+IFNZ 31587
+anNr 31588
+IFdhbGxhY2U= 31589
+dW5jdGlvbg== 31590
+RGFuaWVs 31591
+IGvDtnQ= 31592
+aWphaA== 31593
+IG1hcmNoZQ== 31594
+IGRpc2dy 31595
+IG11bmdraW4= 31596
+IGFsbWE= 31597
+s7U= 31598
+IGV4dGVuc2l2ZWx5 31599
+IEZsb3Jlbg== 31600
+IEFsbGlzb24= 31601
+2YrZhQ== 31602
+IGp1dmVu 31603
+IFJlbmFpc3NhbmNl 31604
+IGZ1bmRyYWlzaW5n 31605
+IENoYW9z 31606
+IHBhcmFseQ== 31607
+IG5hcnJhdG9y 31608
+IGVjb3N5c3RlbXM= 31609
+QXNo 31610
+IG1pdGlnYXRpb24= 31611
+IEF1am91cmQ= 31612
+IElkZWU= 31613
+ISw= 31614
+IMK9 31615
+IGxhbmRsb3Jk 31616
+IGRlZmVjdHM= 31617
+IGFjcmU= 31618
+dWxzaXZl 31619
+IGFsZ2Fl 31620
+cGVr 31621
+IGVtYmE= 31622
+IFJvYw== 31623
+a3NvbQ== 31624
+w6RjaGU= 31625
+IGxldWs= 31626
+IGxldmVyYWdpbmc= 31627
+IOq3uOugh+yngA== 31628
+IFBhbG0= 31629
+IMOkdmVu 31630
+IGxpcw== 31631
+IEluc3A= 31632
+IFJpdGE= 31633
+IEFiYg== 31634
+aXRobQ== 31635
+IHN1cGVydmlzaW9u 31636
+IHJldmlzaXQ= 31637
+IHBpxJk= 31638
+IGV1aA== 31639
+IGZhZGVz 31640
+IG1vdHRv 31641
+0LXQt9C2 31642
+IFNoaW0= 31643
+IHJlbGV2YW5jZQ== 31644
+IG9v 31645
+IG9zdGF0 31646
+bmljYQ== 31647
+IGNob2l4 31648
+IEZhY3VsdHk= 31649
+IOykkeyXkA== 31650
+IEFib3Zl 31651
+INC90LXQsdC+0LvRjNGI 31652
+IHNlcXVlbmNpbmc= 31653
+IG51dHJpZW50 31654
+IGNvbnF1ZXJlZA== 31655
+IGRpZ2VzdGl2ZQ== 31656
+IGJhY2tkcm9w 31657
+IExvcmk= 31658
+YWlsYWJsZQ== 31659
+R2FtZQ== 31660
+IG5lZ2xlY3RlZA== 31661
+b21vcnBo 31662
+aWxsYWg= 31663
+IGtuZQ== 31664
+IHNpaXTDpA== 31665
+IHdvcmtzcGFjZQ== 31666
+IFZlbmljZQ== 31667
+IEtuZQ== 31668
+0YnQvg== 31669
+hYA= 31670
+IEhhc3M= 31671
+IHZpdGE= 31672
+nbzrqbQ= 31673
+IGxheXM= 31674
+w6puY2lhcw== 31675
+w6lyaWNh 31676
+IExs 31677
+IENvY2E= 31678
+IFdIWQ== 31679
+IHJvdXRpbmc= 31680
+IHBlcm1pc3Npb25z 31681
+IGRpbmdz 31682
+cHJlbmQ= 31683
+cHJvZ3JhbQ== 31684
+IGNyb2NvZA== 31685
+YnJhbA== 31686
+QUFBQUFBQUE= 31687
+YWdpdA== 31688
+IE7DpA== 31689
+IGdla29tbWVu 31690
+YXR0ZW4= 31691
+IHJlZmVyZW5jZWQ= 31692
+IHBhaXJpbmc= 31693
+IFBhcnRuZXI= 31694
+IENvcm9uYXZpcnVz 31695
+0ZbRgQ== 31696
+INeU15M= 31697
+IGVzcGVjw61maWM= 31698
+YXJzaQ== 31699
+cXVlbGxl 31700
+IHNwb250YW5lb3Vz 31701
+IOqyg+ydhA== 31702
+INCf0L7RgdC70LU= 31703
+INin2YTYrw== 31704
+IFNob3V0 31705
+INC90LDQuw== 31706
+IGRpc2d1aXNl 31707
+IEpvcmQ= 31708
+IHdlZQ== 31709
+IG1pZWpzYw== 31710
+IHNlcnVt 31711
+IHBsYWlzaXI= 31712
+IGNyZWRpYmxl 31713
+IGLDpQ== 31714
+IEFK 31715
+bWFyZXM= 31716
+IHJvZHM= 31717
+IGVyYW4= 31718
+IHDDpMOk 31719
+IFVB 31720
+IFVua25vd24= 31721
+INmE2YU= 31722
+IFJhYmJp 31723
+IGxhYXQ= 31724
+IGhhaXJzdHlsZQ== 31725
+INi6 31726
+IGNhY2g= 31727
+IFdyaXRpbmc= 31728
+0L7Rh9C60Lg= 31729
+YWJhZA== 31730
+IHN0cmFpZ2h0ZW4= 31731
+LS0i 31732
+d2lmZQ== 31733
+IGhvdHRlc3Q= 31734
+IHB1bnlh 31735
+IEZhc2hpb24= 31736
+Z3JpZmY= 31737
+IFFS 31738
+b3RjaA== 31739
+INCc0L7QttC10YI= 31740
+Q2xvdWQ= 31741
+IFN0cmlrZQ== 31742
+IEhlaW4= 31743
+IGxlaQ== 31744
+IEZsb3c= 31745
+d2Vncw== 31746
+IGhhYnI= 31747
+bmFobWU= 31748
+zIE= 31749
+IHBsZWFzaW5n 31750
+b3BwaW5n 31751
+IOq1rOuPhQ== 31752
+IGRyYW4= 31753
+IGJhbmdz 31754
+IDc5 31755
+IHNrZXQ= 31756
+IGNhdmFs 31757
+IE1hY3Jvbg== 31758
+IHdlaWdodGVk 31759
+IG11dGVk 31760
+IG51ZXN0cmFz 31761
+RUVQ 31762
+IG1hdGhlbWF0aWM= 31763
+IE1SSQ== 31764
+YWd1cw== 31765
+IHRoZXJhcGllcw== 31766
+zrjOtQ== 31767
+IHVucGw= 31768
+IGNvbW1lbmNlcg== 31769
+ZnVsbA== 31770
+IHRvd2Vscw== 31771
+IHBydWU= 31772
+IGxpY2Vuc2Vz 31773
+15vXldec 31774
+INCf0L7Rh9C10LzRgw== 31775
+IHBvaW50bGVzcw== 31776
+Qnll 31777
+IGVsaWdpYmlsaXR5 31778
+IHNjcmFwZQ== 31779
+IGFidXNpdmU= 31780
+IE1hbnQ= 31781
+IGpldW5lcw== 31782
+dGFs 31783
+IFByaW5jaXA= 31784
+IE9ydGhvZG94 31785
+IG1lbG9k 31786
+INC80LDRgtC10YDQuA== 31787
+IHByb3NlY3V0b3I= 31788
+IG9waW9pZA== 31789
+INGD0LLQtdGA 31790
+IEJlZW4= 31791
+IOygkeyihQ== 31792
+IGR5bmFzdHk= 31793
+IGFqdWRh 31794
+IGVudHJlZw== 31795
+IHdlaWdoZWQ= 31796
+IGV1cmU= 31797
+IEJlbQ== 31798
+IGFibm9ybWFs 31799
+ODI= 31800
+IEpS 31801
+IEFrdA== 31802
+IEJyaQ== 31803
+w7p0 31804
+IHN0YWdu 31805
+ISo= 31806
+IHdlZ2Vu 31807
+IGxlYWtpbmc= 31808
+IFdvcmRz 31809
+IE1hdQ== 31810
+IHZ1ZQ== 31811
+IExpYW0= 31812
+0LDQvdC40LXQvA== 31813
+IGNsaW5pY2lhbnM= 31814
+IFB1bXA= 31815
+IGbDtnJzdA== 31816
+Py4uLg== 31817
+IGF1dG9tb3RpdmU= 31818
+IE93ZW4= 31819
+enVzYWdlbg== 31820
+IEh1bmRyZWQ= 31821
+IGRlY2VudHJhbGl6ZWQ= 31822
+IGJ1bGJz 31823
+INec15s= 31824
+IHByb3ZpbmNlcw== 31825
+IE1pbGFu 31826
+ODE= 31827
+a2Fz 31828
+IOuTow== 31829
+IGZvcsOnYQ== 31830
+IHJpZ2h0bHk= 31831
+csSF 31832
+IHZlbnVlcw== 31833
+IHdhaQ== 31834
+IHByZWRpY3Rpbmc= 31835
+IFdpRmk= 31836
+IOq2geq4iA== 31837
+2LHZiA== 31838
+INeU15Y= 31839
+Y2VudHVyeQ== 31840
+IGdyYWR1YWw= 31841
+IFByb2JsZW1l 31842
+IOyXhQ== 31843
+IGNvcGluZw== 31844
+IEJydXM= 31845
+IHBlYW51dHM= 31846
+aXJ0c2NoYWZ0 31847
+INC30LDQuw== 31848
+IFRyb3k= 31849
+IHNwZXJt 31850
+IE1pdGFy 31851
+IFTDvHJraXll 31852
+Z3JhbmQ= 31853
+pq0= 31854
+INee16E= 31855
+IHBhbnM= 31856
+IEtub3dsZWRnZQ== 31857
+YmVybHk= 31858
+INCV0LPQvg== 31859
+IGRhbmNlZA== 31860
+IEZyb3N0 31861
+IEJ1cmc= 31862
+IGJpdGluZw== 31863
+7KCV7J2E 31864
+bWVhbA== 31865
+IGhlcm9pYw== 31866
+IG1vdGhlcmJvYXJk 31867
+IExpY2h0 31868
+bGxhbg== 31869
+0LDQudC9 31870
+INGA0Y/QtA== 31871
+IOC5gOC4 31872
+b25lbg== 31873
+aXJpZQ== 31874
+QXJ0 31875
+cmFuZw== 31876
+zr3Otw== 31877
+IG5ld2Jvcm4= 31878
+IGFtaXM= 31879
+INin2YjYsQ== 31880
+IHNvcGhvbQ== 31881
+IENhcmVmdWw= 31882
+IHByb3NwZWN0cw== 31883
+ZW5zZW4= 31884
+IHRocmlsbA== 31885
+IFZp4buHdA== 31886
+QWRhbQ== 31887
+cml0aW9u 31888
+ZW50cmlj 31889
+dWRlbg== 31890
+IGNlcnRpZmljYXRlcw== 31891
+IGFzaGVz 31892
+cGxheWluZw== 31893
+IHNhZGVjZQ== 31894
+IG9zdA== 31895
+IGFpcnBsYW5lcw== 31896
+0YDQvtC6 31897
+b25lcg== 31898
+IG1hZ25lc2l1bQ== 31899
+IGdvZGRhbW4= 31900
+IDE5NzI= 31901
+IFNjaHVsZQ== 31902
+IHRlbWF0 31903
+IHBhcnRvdXQ= 31904
+4K+C 31905
+IGludmU= 31906
+IFNjaWVudGlzdHM= 31907
+IEh1ZHNvbg== 31908
+d2lubmluZw== 31909
+Y2Vrc2lu 31910
+IGNvbmdyZXNzaW9uYWw= 31911
+b3J1 31912
+IHJvcGVz 31913
+0LLQtdC0 31914
+IG1hZHJl 31915
+IGZlcnJ5 31916
+IENvaGVu 31917
+IFByZWQ= 31918
+IHZhZ3k= 31919
+INCx0LXRgdC/ 31920
+IG11bHRpbQ== 31921
+IGRyYWluYWdl 31922
+IHNpbXVsYXRvcg== 31923
+Z2lnZ2xlcw== 31924
+IFN0YWRpdW0= 31925
+0L7QsdGJ 31926
+IG5vdGljZXM= 31927
+IGNyYXdsaW5n 31928
+IGdyb3VwZQ== 31929
+IGt0b8Wb 31930
+IFlvZ2E= 31931
+IG1lZGlkYQ== 31932
+INGF0LLQsNGC 31933
+IExpdGU= 31934
+IHJhdg== 31935
+b3JhbWE= 31936
+IGRpc2NvcmQ= 31937
+IERJUkU= 31938
+IHRlaA== 31939
+IE51cnM= 31940
+IHBpdGNoZWQ= 31941
+IGJhcmtpbmc= 31942
+IENva2U= 31943
+d2lhZA== 31944
+IHBvcHVsYXRlZA== 31945
+cGVsbGVk 31946
+INCx0L7Qsw== 31947
+IHBld25v 31948
+IEN1YmU= 31949
+IHJlY3J1aXRlZA== 31950
+IENhcmE= 31951
+xLHEn8SxbsSx 31952
+aW1hdGVk 31953
+INGI0LrQvtC7 31954
+aWNpb25hbA== 31955
+INC/0YDQvtGE 31956
+IGNvbnRhbWluYXRpb24= 31957
+IMO6bHRpbW9z 31958
+IGZlYXJmdWw= 31959
+IGVsZXBoYW50cw== 31960
+dXNp 31961
+IGlUdW5lcw== 31962
+IFN3YW1p 31963
+6rw= 31964
+IOyEpOuqhQ== 31965
+IFJpY2hhcmRz 31966
+IG1hZ25ldHM= 31967
+IFJpY2h0dW5n 31968
+IExlZ2lvbg== 31969
+IGtpdHR5 31970
+IGtpc3NlZA== 31971
+IHdhdGVyaW5n 31972
+IGNvbm8= 31973
+IFBhbGVzdGluZQ== 31974
+aWRpcg== 31975
+IG1hemU= 31976
+IGZsdWlkcw== 31977
+IFByb2R1Y2Vy 31978
+IEtyc25h 31979
+bGFm 31980
+INeQ15U= 31981
+IG1pZXN6 31982
+IFhpbmc= 31983
+b2ludGVk 31984
+c2Vpbg== 31985
+IEZ1aw== 31986
+IERlcHJlc3Npb24= 31987
+IER1dHk= 31988
+IFBhbnRoZXI= 31989
+IHN1bmQ= 31990
+IHJlZmVyZQ== 31991
+IGV4Y2x1c2lvbg== 31992
+IG5hdmFs 31993
+IFdpbnN0b24= 31994
+IHNsb2dhbg== 31995
+IGh5cG90aGV0aWNhbA== 31996
+IGVsZXZhdGU= 31997
+66C5 31998
+IGNhYmXDp2E= 31999
+IEdlc3VuZA== 32000
+bWV0ZXI= 32001
+IOyVhOuLiOuptA== 32002
+IGNsb3VkeQ== 32003
+4oCmPw== 32004
+IFNjaHJpdHQ= 32005
+IEpT 32006
+7I0= 32007
+IFNwcmluZ3M= 32008
+IEJhdHRlcg== 32009
+t7A= 32010
+IHRhaWxvcg== 32011
+IFBUU0Q= 32012
+IEdlbnQ= 32013
+IGJhxJ8= 32014
+IHNwYXR1bGE= 32015
+IGNyYXk= 32016
+IExlZ2lzbA== 32017
+IHPDug== 32018
+IGxldmU= 32019
+4Liy4Lih 32020
+IGVyYWQ= 32021
+IGRvbmc= 32022
+IGRlcm0= 32023
+IEJhbmtz 32024
+aWNobw== 32025
+IEZyYW56 32026
+cmF2ZWw= 32027
+0L7Qu9C+ 32028
+IGZsdXRl 32029
+IEVr 32030
+IGpveWZ1bA== 32031
+IGNoYXNlZA== 32032
+IExhcmdl 32033
+T3Zlcg== 32034
+IGVudHJlcHJlbmV1cmlhbA== 32035
+IGNvbnNpZGVycw== 32036
+0YPQtdC8 32037
+b3Bh 32038
+IGRvcm1pcg== 32039
+IEVsZW1lbnRhcnk= 32040
+IHByenlwYWQ= 32041
+0YPRgdC60LA= 32042
+INC+0YfQtdGA 32043
+dWdlbmU= 32044
+IHRlbmlkbw== 32045
+IGx1Z2FyZXM= 32046
+66U= 32047
+INGH0LDRgdGC 32048
+IHNhbw== 32049
+IGJyYWlk 32050
+IFZlcmU= 32051
+IFJlaWNo 32052
+IFBvc3M= 32053
+IGluYW4= 32054
+d2FuZA== 32055
+cmVm 32056
+IG1vbnRyZXI= 32057
+IDE5ODE= 32058
+YXPEsW5kYQ== 32059
+IGNocm9tZQ== 32060
+IFRyaW5pdHk= 32061
+IGV4cGxvaXRhdGlvbg== 32062
+IFNlbnNl 32063
+IENNUw== 32064
+IE5vYmxl 32065
+IOyEoO2DnQ== 32066
+IHN3ZWxsaW5n 32067
+ZWxlY3Ryb25pYw== 32068
+XT8= 32069
+IGJydXNoaW5n 32070
+IGxpcXVpZGl0eQ== 32071
+IEhvb2s= 32072
+IENvbm5vcg== 32073
+IEFsdW0= 32074
+IGd1Y2tlbg== 32075
+c3VpdGU= 32076
+IHdpZWxl 32077
+IGJhcnJlbHM= 32078
+IFJlZ2Vs 32079
+IE1lbnQ= 32080
+IFRyaXA= 32081
+IEJydXNo 32082
+IEVyaWs= 32083
+dXJhdGU= 32084
+yZly 32085
+IEN5cg== 32086
+b3VibGU= 32087
+IEJlY2Nh 32088
+IHBhc3N3b3Jkcw== 32089
+xbE= 32090
+Ym9yZw== 32091
+IHZlbmRv 32092
+IENsYXVz 32093
+IEZheg== 32094
+aW5kZXN0 32095
+IGRlY2Vhc2Vk 32096
+IGNvbXBhcmlzb25z 32097
+IExDRA== 32098
+IFBvcms= 32099
+IGV2ZW50dWFs 32100
+IHBhdHJlb24= 32101
+IGluYWJpbGl0eQ== 32102
+IGV4dGluY3Rpb24= 32103
+IOyii+yVhO2VmOuKlA== 32104
+INGB0L7RgQ== 32105
+YWp1 32106
+INeR15DX 32107
+IHNvZm9ydA== 32108
+IGRlc3RpbmVk 32109
+IFJpbg== 32110
+IG1vdXRocw== 32111
+IE5hdMO8cmxpY2g= 32112
+IHByZXNlcnZpbmc= 32113
+IGxpbXA= 32114
+b2N1c2Vk 32115
+0LjQvdCz 32116
+IGV4cG9zaW5n 32117
+IM6+ 32118
+640= 32119
+bGF1Z2g= 32120
+IGhpc3M= 32121
+IGluZGll 32122
+IGRldGFs 32123
+0YDQsNCy0YHRgtCy 32124
+IHRyw6pu 32125
+IG9nbmk= 32126
+IHNpbXBsZW1lbnRl 32127
+IDE5Nzg= 32128
+IGdvbw== 32129
+IDE5Njc= 32130
+IGdlbnVn 32131
+aMO2 32132
+IGhpc3TDsw== 32133
+IGxvYnN0ZXI= 32134
+Y2VuZG8= 32135
+IHRlaWw= 32136
+IGFsbGV2aQ== 32137
+MDAwMA== 32138
+T0xE 32139
+IHBlc29z 32140
+IGJvbnVzZXM= 32141
+IGFtaQ== 32142
+IHJldml2YWw= 32143
+IEhvcnNl 32144
+IHNhY2s= 32145
+VGFsaw== 32146
+IG11bGhlcg== 32147
+INC/0L7RgdGC0L7Rj9C9 32148
+IEhvb2Q= 32149
+SHVo 32150
+IOu2gQ== 32151
+IGh5dW5n 32152
+IE1lZXRpbmc= 32153
+IGltcG9ydGE= 32154
+IOywvuyVhA== 32155
+IFZlcm4= 32156
+IHN0cmlwcGVk 32157
+IHJlZnVzZXM= 32158
+IHF1YWxpZmljYXRpb25z 32159
+b3Bs 32160
+gOuPhA== 32161
+aXjDrQ== 32162
+IGRpYWI= 32163
+aXRpbWU= 32164
+Zmxvd3M= 32165
+IGluYWM= 32166
+IEdvbmc= 32167
+IG1lYW5pbmdsZXNz 32168
+IGNvdXJhZ2VvdXM= 32169
+IG1pY3JvYmk= 32170
+YXp5 32171
+aGlzdA== 32172
+IHZvbHVudGVlcmluZw== 32173
+VklF 32174
+IHZpb2xhdGVk 32175
+IHN5bXBhdGh5 32176
+IEVkaXQ= 32177
+ZWxlY3RyaWM= 32178
+cHJvZHVjdA== 32179
+IHBhbmRlbWlh 32180
+IGdlb21ldHJpYw== 32181
+IENvbnZlcnM= 32182
+Z3Jl 32183
+IGdsdXQ= 32184
+aXN0ZWQ= 32185
+INin2YTZgw== 32186
+IENoYWlu 32187
+IFByZXNlbnQ= 32188
+IFlpbg== 32189
+INGB0L7Qsw== 32190
+IFZsb2c= 32191
+IOyWtOuouA== 32192
+IGRvbm4= 32193
+IGhpdGNo 32194
+dWNraW5n 32195
+d2FsZA== 32196
+cmlzaw== 32197
+IGhhcmk= 32198
+IEtlbnM= 32199
+IElkb2w= 32200
+INCy0L3QuNC80LDQvdC40LU= 32201
+IHRvZGQ= 32202
+IHNtYXNoZWQ= 32203
+IGludmFyaQ== 32204
+INC60L7QvdGC0YA= 32205
+IGF1dGlzdGlj 32206
+7J6l64uY 32207
+UmVz 32208
+0LTRiw== 32209
+Y2hhdQ== 32210
+IHNlbHY= 32211
+IGjDpHR0ZW4= 32212
+4KS/ 32213
+IGV4cGVjdHM= 32214
+z4HOtw== 32215
+IGHDp8Sxaw== 32216
+IEhUVFA= 32217
+bGXFnw== 32218
+IHN3ZWVwaW5n 32219
+IEJldGE= 32220
+IGNvdW50ZXJwYXJ0cw== 32221
+YWJpbGU= 32222
+IFNpbXM= 32223
+Q3M= 32224
+IHJlcGFy 32225
+c3F1 32226
+IHByb3ZpbmNpYWw= 32227
+IHNoYXJlaG9sZGVycw== 32228
+IHJ1bnRlcg== 32229
+IGdlZGFjaHQ= 32230
+IFRlZW4= 32231
+IGdyYW5kcw== 32232
+YWdsZXM= 32233
+IHJvY2t5 32234
+dmVucw== 32235
+IHJpdmFscw== 32236
+dW5hbA== 32237
+IHJlYWN0cw== 32238
+66k= 32239
+IG1lcmN1cnk= 32240
+IEx1aWdp 32241
+INC+0LM= 32242
+IEpVU1Q= 32243
+IGxvZA== 32244
+IGNvcnRleA== 32245
+d2ln 32246
+IGxha2g= 32247
+7KSR7JeQ 32248
+IFZpYw== 32249
+IE11bmQ= 32250
+IG1hcHBlZA== 32251
+IERlbGw= 32252
+IERydWNr 32253
+IGxpZmVz 32254
+0LDQu9GM0L3QvtC1 32255
+aXZpZHVhbA== 32256
+YWTEsW0= 32257
+IGF0cmF2 32258
+IEZsdWc= 32259
+IEtsZWlu 32260
+6rGw7JW8 32261
+4Lir4LiZ 32262
+IGFwcGxp 32263
+4K6+Pw== 32264
+w7x5b3J1bQ== 32265
+INC40L3RgtC10YDQtdGB0L3Qvg== 32266
+IGRpc2luZmVjdA== 32267
+Pi0= 32268
+IGNoYW1wYWduZQ== 32269
+IGtsYQ== 32270
+b3BlcnM= 32271
+VHJhbnM= 32272
+IERlc2VydA== 32273
+IGN1bHRpdmF0ZQ== 32274
+IEZ1Y2tpbmc= 32275
+aWRlbGl0eQ== 32276
+INGC0LDQvQ== 32277
+IGluY3Vi 32278
+IHRlbXU= 32279
+IGxlYXJuZXI= 32280
+Zm91bmRlcg== 32281
+IFN5bA== 32282
+IGZhdG8= 32283
+emllcg== 32284
+IOyXhuydtA== 32285
+IOyIqA== 32286
+IHBzeWNobw== 32287
+INGC0LXQu9C10YQ= 32288
+IHJlZ2FyZGU= 32289
+IHJlcHJlc2VudGF0aW9ucw== 32290
+IGxpdGlnYXRpb24= 32291
+IHNwYW5u 32292
+dWx0cw== 32293
+Ymlvcg== 32294
+IFN1cnZleQ== 32295
+IExFRHM= 32296
+IHRyw6Q= 32297
+IGzDqm4= 32298
+IGFudGlveGlk 32299
+0LXRgNC+0Lw= 32300
+IGluZHVjdGlvbg== 32301
+IGZvb2xlZA== 32302
+w6R0emxpY2g= 32303
+INCz0L7QstC+0YDRj9GC 32304
+IEZhY3Q= 32305
+dW1iYWk= 32306
+IHdpZ2dsZQ== 32307
+Tk9VTg== 32308
+IGTDqXZlbG9wcA== 32309
+IENsYXJv 32310
+IOy4 32311
+66w= 32312
+IGFjY3VtdWxhdGU= 32313
+IG1haW50YWlucw== 32314
+64Q= 32315
+IEZpZ2h0ZXI= 32316
+7Yag 32317
+IG1hdGlu 32318
+IGNvdXBvbg== 32319
+IHN0dW50 32320
+IGRlYnV0ZWQ= 32321
+IHByYWc= 32322
+0LjQstCw0LXQvA== 32323
+NzM= 32324
+IGV4cHJlcw== 32325
+IOyYpOu5oA== 32326
+INC/0LXRgNGB0L7QvQ== 32327
+IGNhbGN1bHVz 32328
+IGFicnVwdA== 32329
+IEluc3BlY3Rvcg== 32330
+b3VydA== 32331
+xbpuaWVq 32332
+aW50ZW5zZQ== 32333
+QmE= 32334
+IGxvdW5nZQ== 32335
+IGFzdGhtYQ== 32336
+IEhpw6c= 32337
+qrs= 32338
+IGVkaXRvcmlhbA== 32339
+IHNlaXpl 32340
+IGvEsXI= 32341
+IG1vdXZl 32342
+IHRpZXJyYQ== 32343
+IHRlc3Rvc3Rlcm9uZQ== 32344
+IHJo 32345
+IEtpbmdzdG9u 32346
+RUxMRQ== 32347
+IFJlcHJlc2VudGF0aXZl 32348
+IDE5NzQ= 32349
+IGliYQ== 32350
+VHM= 32351
+IHNvcnRh 32352
+ICg/KQ== 32353
+INiq2Yg= 32354
+IOuCtOugpA== 32355
+IGJla29tbXQ= 32356
+IHNwaXJpdHVhbGx5 32357
+IGRpc3RvcnRlZA== 32358
+TWFk 32359
+IHJlaW0= 32360
+w6FuaA== 32361
+IE90dG9tYW4= 32362
+IFJlbGln 32363
+IEVscw== 32364
+IHJldGFpbmVk 32365
+IExhdWdocw== 32366
+IFNBUw== 32367
+INC60L7Qu9C40YfQtdGB0YLQstC+ 32368
+15XXqteo 32369
+IGlubm92YXRl 32370
+IGtvcms= 32371
+INGA0LDRgdGB0LrQsNC30YvQsg== 32372
+b25kZXJl 32373
+aXZp 32374
+YXll 32375
+b3VudHk= 32376
+INC/0L7Qu9GD0YfQsNC10YLRgdGP 32377
+IGJ1bnM= 32378
+IHnDvHpkZW4= 32379
+IHN1cmdlcmllcw== 32380
+2KPZhg== 32381
+IGJhbmtydXB0Y3k= 32382
+d2VsdA== 32383
+IHNpYW1v 32384
+IGRhcmtlc3Q= 32385
+IEhhbm4= 32386
+Z2dh 32387
+IGZvcm1hcw== 32388
+IERq 32389
+bmFtZWQ= 32390
+IHNoaWVsZHM= 32391
+dWVsbGVy 32392
+IEZldw== 32393
+IGxhY2U= 32394
+IGZ1cmlvdXM= 32395
+IFlV 32396
+IHNvY2lldGFs 32397
+IGp1ZGdlbWVudA== 32398
+IERvcw== 32399
+IGphYg== 32400
+bGF3cw== 32401
+IHJlaW52ZW50 32402
+IEthdGhlcmluZQ== 32403
+IENob2k= 32404
+YWRvd3M= 32405
+IHJhbnM= 32406
+b2Rlbg== 32407
+IE1pZHdlc3Q= 32408
+bsSxbg== 32409
+IGRlcG9ydA== 32410
+IERpcA== 32411
+IGF0ZW5jacOzbg== 32412
+IENvdXJ0bmV5 32413
+aXZpZGFk 32414
+INqp24E= 32415
+IGVmZmljYWN5 32416
+IEJyb29rcw== 32417
+IHJlZmVycmFs 32418
+INC60L7QvdGG 32419
+IG1hbGljaW91cw== 32420
+IGtpcg== 32421
+IEdvZGRlc3M= 32422
+IGZ1bmt5 32423
+IGludGVyaW0= 32424
+IEvDtnJwZXI= 32425
+IOyWvOun 32426
+a3Vy 32427
+INC60LvQuA== 32428
+IHRydWNz 32429
+Z2VzZXR6 32430
+IHp1Zw== 32431
+IEdsw7xjaw== 32432
+IE1pbnV0ZQ== 32433
+IHByZXN0aWdpb3Vz 32434
+IG5pZXo= 32435
+IGNvbmNlbnRyYXRpb25z 32436
+0LvQsNGB0YLQuA== 32437
+IFNpcw== 32438
+IFZpdGFtaW4= 32439
+a292 32440
+IFBCUw== 32441
+INC90LXQtQ== 32442
+IHJldGFpbGVycw== 32443
+IGNvbnZlbnRpb25z 32444
+IFNhbWFudGhh 32445
+IHByb3VkbHk= 32446
+Sm9yZGFu 32447
+IEpBU09O 32448
+YXRr 32449
+IHRyaXN0ZQ== 32450
+IHN0w6Ry 32451
+IHJlaXRlcmF0ZQ== 32452
+IHBvc3Rlcmlvcg== 32453
+IDE5NzM= 32454
+IFBpbmU= 32455
+IEp1bGlldA== 32456
+IHBlZGly 32457
+a2ls 32458
+IG92ZXJsYXBwaW5n 32459
+IGV4Y2x1ZGU= 32460
+IGVjb27Ds20= 32461
+IGFjY2VwdHM= 32462
+IFN0ZXI= 32463
+IOyatOuPmQ== 32464
+ZXN0YWI= 32465
+IHR1Zw== 32466
+YXJn 32467
+IGxpdnJv 32468
+2KfYtQ== 32469
+IHNlYW1z 32470
+IGJ1cmF5YQ== 32471
+IGVsbG8= 32472
+IFRN 32473
+IFBhdw== 32474
+IEluZGV4 32475
+RXhj 32476
+IGluc3BpcmF0aW9uYWw= 32477
+IGR1bms= 32478
+YWt0ZXI= 32479
+IGNvbmRpdGlvbmVy 32480
+IFNhbHV0 32481
+xYJlYw== 32482
+IOyJvQ== 32483
+INGD0LfQvdCw 32484
+IFJvbWVv 32485
+ZnJ1aXQ= 32486
+IFlP 32487
+IGNo4buJ 32488
+0LHRgw== 32489
+Ym9ucw== 32490
+IHJlcHJvZHVjdGl2ZQ== 32491
+IG9yYWRh 32492
+IO2aqA== 32493
+IHRlbnRhcg== 32494
+IG1hw7FhbmE= 32495
+IHNvbHZlbnQ= 32496
+SmVzc2ljYQ== 32497
+IExlZ2Fs 32498
+IHR1YQ== 32499
+IHNpYw== 32500
+IEVR 32501
+YXVrZWU= 32502
+7Iuc64uk 32503
+IMWedQ== 32504
+IGFkaGVyZQ== 32505
+IFR1bA== 32506
+IOCuhg== 32507
+IHRleHRib29rcw== 32508
+IEZpZnRo 32509
+IGV4cGVyaQ== 32510
+IGNoaWM= 32511
+IGhlYXA= 32512
+aW5lbHk= 32513
+YXRyYQ== 32514
+VHdv 32515
+IGhlbGVtYWFs 32516
+IGZyZW4= 32517
+IGJpc2hlcg== 32518
+2KfYtA== 32519
+IOyEoOyDnQ== 32520
+IFRhZ2Vz 32521
+IHPhu7E= 32522
+IGJ1bGxpZWQ= 32523
+2KQ= 32524
+IGJlbmVmaXRlZA== 32525
+IFByZXZpb3VzbHk= 32526
+INGN0YTRhA== 32527
+2Y0= 32528
+IHNlbmF0ZQ== 32529
+IE1vcm0= 32530
+aWprZQ== 32531
+IEZsdQ== 32532
+IGluY29ycG9yYXRpbmc= 32533
+amFjaw== 32534
+INC/0LjRgg== 32535
+IGltcGx5 32536
+IGhhY2tz 32537
+IFJJQ0g= 32538
+INC60LLQsNGA 32539
+INC/0YDQtdC60YDQsNGB 32540
+IGRlcGVuZGVuY3k= 32541
+IOyaqQ== 32542
+IOyxhQ== 32543
+IHfDpGhyZW5k 32544
+IHN1bGxh 32545
+IFBpdHRzYnVyZ2g= 32546
+IGVzZW1waW8= 32547
+vOuhnA== 32548
+cHJvdA== 32549
+IFJvc2Vu 32550
+IEluZGVwZW5kZW5jZQ== 32551
+IHBhcnNsZXk= 32552
+aWVnZW4= 32553
+IGhhdw== 32554
+IGFxdWVsbA== 32555
+IENBUA== 32556
+INGA0LDQsdC+0YLQsNGC0Yw= 32557
+IENsaWZm 32558
+aW9uYXI= 32559
+IHNlY3VyaW5n 32560
+zr3OtQ== 32561
+IHV0aWxpcw== 32562
+IGNvdWxl 32563
+IFBpbmc= 32564
+IHRyZWs= 32565
+IGZhaw== 32566
+IGVub3JtZQ== 32567
+IOyLqw== 32568
+IGRvdWJsaW5n 32569
+INC90YDQsNCy0LjRgtGB0Y8= 32570
+IGhlZA== 32571
+aG92ZW4= 32572
+IFN0YW5kaW5n 32573
+IG3DrW4= 32574
+IEppbWlu 32575
+IG1vbmFyY2g= 32576
+IGNva2U= 32577
+IG1y 32578
+IGNsaWM= 32579
+w40= 32580
+IGltcGVhY2htZW50 32581
+IGR1cmFiaWxpdHk= 32582
+IHZhcmlvcw== 32583
+IGNvbW1lcmNpYWxz 32584
+IGdyZWV0aW5ncw== 32585
+IFJp 32586
+IEFwcHJlY2k= 32587
+7J6I64qU 32588
+IHLDqXN1bHQ= 32589
+w6lydA== 32590
+IHNhbHV0ZQ== 32591
+IHBvZGVyaWE= 32592
+IHN1bnJpc2U= 32593
+dmVjaw== 32594
+IHJlbHVjdGFudA== 32595
+IGNvbW1pc3Npb25lcg== 32596
+w6J0ZQ== 32597
+IEtlbm55 32598
+IFNpcmk= 32599
+IOuKmA== 32600
+IEVF 32601
+IHVuY2g= 32602
+0LrQvtC9 32603
+INin2YTYpQ== 32604
+IGJlbHRz 32605
+IGhhc3M= 32606
+INC80L7Rjw== 32607
+IGRpc3BsYWNlZA== 32608
+IGFicmE= 32609
+zq3Ouw== 32610
+IHNjcmF0Y2hlcw== 32611
+IGNvbWV0 32612
+IGF1dGhvcml6YXRpb24= 32613
+IExMQw== 32614
+IHByb2R1aw== 32615
+IHJlaGFiaWxpdGF0aW9u 32616
+5Z4= 32617
+0ZbRhw== 32618
+dWRpbmc= 32619
+b2xpdA== 32620
+IDEwNQ== 32621
+IGV4cGFuZHM= 32622
+IGFsdHJp 32623
+IEtvbW1lbnQ= 32624
+IGFuZg== 32625
+UGw= 32626
+IE1hbmE= 32627
+ZmVk 32628
+IGJyaQ== 32629
+IG9yYQ== 32630
+R3M= 32631
+IEd1cg== 32632
+dWNrbGFuZA== 32633
+IGp1bmN0aW9u 32634
+IGlyb25pYw== 32635
+IEZlZWQ= 32636
+IHByYWt0 32637
+IEhhbW1lcg== 32638
+jOuPhA== 32639
+IFRyYWN5 32640
+IEFzaWRl 32641
+0L3QtdCz0L4= 32642
+INC40YHQv9C+0LvRjNC30L7QstCw0YLRjA== 32643
+IHphag== 32644
+IGVxdWl0YWJsZQ== 32645
+IGN1cmI= 32646
+IGRlcml2YXRpdmVz 32647
+IHB1cHBpZXM= 32648
+IEtlbm5ldGg= 32649
+IENvbXBs 32650
+aWdyYW0= 32651
+IEdhcmNpYQ== 32652
+KSI= 32653
+IEhhcmJvcg== 32654
+ZXN0aWFs 32655
+IGVycw== 32656
+5rk= 32657
+IHVud2FudGVk 32658
+IGJlbGFuZw== 32659
+0LDQs9C+ 32660
+ZW1i 32661
+ZG9z 32662
+IOyZnOs= 32663
+IEJ1ZGdldA== 32664
+IGJhdHRsaW5n 32665
+2K3Yqg== 32666
+a29r 32667
+0L3QsNGH0LDQu9Cw 32668
+IHBsYWc= 32669
+IGNhbnRpZGFk 32670
+IGdydXBvcw== 32671
+IHBsdWdpbnM= 32672
+bGVyaW5p 32673
+INC40LzQtdC10YI= 32674
+IHNvenVzYWdlbg== 32675
+b2xpY3M= 32676
+IHB1ZWJsbw== 32677
+IHJlbWluaXM= 32678
+csOkbg== 32679
+IE1vcnJpc29u 32680
+IGxpbmhh 32681
+IGJyZWF0aHM= 32682
+IFRhc3Rl 32683
+IGVuZnJlbnQ= 32684
+IERvY2tlcg== 32685
+INC00LXQvQ== 32686
+IGV0aG5pY2l0eQ== 32687
+IHdvYg== 32688
+IHN1ZmZlcnM= 32689
+IHRyYW5zaXRpb25pbmc= 32690
+IFJhbmdl 32691
+xJlkenk= 32692
+INC60LDRgg== 32693
+IHN5bmVy 32694
+IGRvbnV0 32695
+IHByb2JhYmlsaXRpZXM= 32696
+IE9tYXI= 32697
+V2hpY2g= 32698
+dWlzaA== 32699
+aXNpbg== 32700
+IGRlbW9z 32701
+IOyggOq4sA== 32702
+IOuYkeqwmQ== 32703
+INC10LTQuNC9 32704
+IGNlcnZl 32705
+IGpva2E= 32706
+SUFO 32707
+IGtpbG9tZXRlcg== 32708
+IGhvcml6b250YWxseQ== 32709
+IEJoYWc= 32710
+IC0+ 32711
+IE1vbml0b3I= 32712
+IGtub3dsZWRnZWFibGU= 32713
+IGZhdg== 32714
+IHBpbm5lZA== 32715
+IGVCYXk= 32716
+aWNrZXI= 32717
+IOyeoOq5kOunjA== 32718
+IFhpYW9taQ== 32719
+IGNhcGl0 32720
+IG5w 32721
+IDE5NjU= 32722
+aG9l 32723
+IG5vaw== 32724
+IFNhZ2U= 32725
+INC90LXQu9GM0LfRjw== 32726
+IFRvdw== 32727
+Z2Ft 32728
+IGRpY2Vu 32729
+IFNVQlNDUklCRQ== 32730
+IHJlYm9vdA== 32731
+IHBhag== 32732
+IOuztOyXrOs= 32733
+IHRoaWNrZW4= 32734
+IFJlYWxpdHk= 32735
+aWTDpG4= 32736
+TmE= 32737
+IOqyg+ydgA== 32738
+ISEp 32739
+IHJvdXRpbmVz 32740
+INC+0LTQvdC+0LPQvg== 32741
+IGV4dGluZw== 32742
+IOymnQ== 32743
+IHN1bGZ1cg== 32744
+IGNhcnZl 32745
+IGFzdGVyb2lk 32746
+IFdhcnJpb3I= 32747
+IHBob3RvZ3JhcGhlcnM= 32748
+IHBlbGw= 32749
+IGNyb3Nzb3Zlcg== 32750
+IGhhY2Vtb3M= 32751
+IE5lag== 32752
+IHNldHRsaW5n 32753
+IGlybQ== 32754
+IEJvb2tz 32755
+aWVudMO0dA== 32756
+IGVzcGFjaW8= 32757
+IFNjaG9sYXJz 32758
+IGRvb21lZA== 32759
+IElSUw== 32760
+d29obA== 32761
+IHNlZ3Vl 32762
+IOuIhOqwgA== 32763
+IHByYXRpYw== 32764
+QlQ= 32765
+IENvbnNpZGVyaW5n 32766
+IEJ1ZmZhbG8= 32767
+IHRyYWluaW5ncw== 32768
+IGdlYnJ1 32769
+IEdsZWljaA== 32770
+IHBpcmF0ZXM= 32771
+IGVudmVsb3A= 32772
+IHJlb3Blbg== 32773
+aW1hdA== 32774
+IHRlZQ== 32775
+IHN1ZWQ= 32776
+ZmVo 32777
+INeU16c= 32778
+IGRpZXRz 32779
+IGp1bnRvcw== 32780
+YXN0bw== 32781
+IG1pc3VuZGVyc3Rvb2Q= 32782
+IHJ1aW0= 32783
+IGNsYXNzaWZ5 32784
+INC/0YDQvtC00YPQug== 32785
+IGluc2U= 32786
+IGlsbHVzdHJhdGVk 32787
+IGNvcnJvc2lvbg== 32788
+IGFjY3JlZA== 32789
+IEF1bnRpZQ== 32790
+INC/0YDQuNCy0LXRgg== 32791
+IExJVkU= 32792
+IHJlaw== 32793
+IHJlY2VpcHQ= 32794
+IEJhcmJpZQ== 32795
+IFNuYWtl 32796
+dHVybg== 32797
+SmVmZg== 32798
+lYQ= 32799
+Vk9JQ0VPVkVS 32800
+Y29sbA== 32801
+IHJ1bm5lcnM= 32802
+7KCc6w== 32803
+b3Nvcw== 32804
+bW9vbg== 32805
+IGtleW5vdGU= 32806
+IEluc3RpdA== 32807
+U1BFQUs= 32808
+IHBsdWdz 32809
+IGN1cnY= 32810
+IFl1cmk= 32811
+IFRoZXJlcw== 32812
+IFBz 32813
+IM68z4DOvw== 32814
+IGNvbnZlcnRlcg== 32815
+IHJlZmluZQ== 32816
+IGJhZGFzcw== 32817
+IM6/zrk= 32818
+IHJlZ2Vu 32819
+YXp6aQ== 32820
+2YrZgQ== 32821
+IHNlaXplZA== 32822
+IGnDp2Vy 32823
+aWxlZQ== 32824
+IHVwc3RyZWFt 32825
+IGJ1ZHM= 32826
+IHBpbQ== 32827
+IO2VmOujqA== 32828
+IGFsbHVkZWQ= 32829
+IHRoZW1lZA== 32830
+IGNvbnNpc3Rpbmc= 32831
+IGJvbnM= 32832
+dW51eg== 32833
+INC/0YDQvtCy0L7QtA== 32834
+IExvdmVseQ== 32835
+4KWL 32836
+IHBhcmFjaA== 32837
+IFN0YWF0cw== 32838
+IHNlbGVjdGl2ZQ== 32839
+IGZhc2U= 32840
+IEdlb3JnZXQ= 32841
+IGNvY2FpbmU= 32842
+IHJlcHJvZHVjdGlvbg== 32843
+IExhcmE= 32844
+IExE 32845
+IGdo 32846
+Sm9u 32847
+IGzDpQ== 32848
+IOuRkOs= 32849
+IHR5cGVk 32850
+IEJhbmE= 32851
+65Oc6w== 32852
+IHNhdm9yeQ== 32853
+IFpvbWI= 32854
+c3RhbmRlbg== 32855
+IHBlZGVzdHJpYW4= 32856
+IGRpZmbDqXJlbnRz 32857
+IOyLuA== 32858
+IGNvbXBsYWluZWQ= 32859
+INCa0YLQvg== 32860
+INec16Q= 32861
+YWxpxZtteQ== 32862
+IG1vcnRhcg== 32863
+IHZlcmRpY3Q= 32864
+IHN1ZmljaWVudGU= 32865
+IE1pbGxpb24= 32866
+bWl0dGVs 32867
+aW5hbHM= 32868
+INin2YTYrg== 32869
+0LDRjtGB0Yw= 32870
+IG1pxJlkenk= 32871
+IE9sZQ== 32872
+IGludmVydA== 32873
+Y3p5xIc= 32874
+0L7Qt9C80L7QttC90L4= 32875
+c3RhcnRlcg== 32876
+IGF1ZGl0b3I= 32877
+IFNjb3V0 32878
+Y2hpZW4= 32879
+IFN2ZXJpZ2U= 32880
+dWZmbGVk 32881
+IHplaG4= 32882
+IEF1Y2tsYW5k 32883
+IGFyZ2VudA== 32884
+IDE5NzY= 32885
+IEhvZQ== 32886
+IGJvdGhlcnM= 32887
+IHNvY2lhbGlzdA== 32888
+IHBsaWVycw== 32889
+IGVtZXJnZW4= 32890
+IFhQ 32891
+0LXRgNC+0LI= 32892
+TW9yZQ== 32893
+IExldmk= 32894
+IEFuZGVycw== 32895
+aWJpbGlkYWQ= 32896
+IFBhcmVudHM= 32897
+IGluZHVjZWQ= 32898
+7Ja07KQ= 32899
+IGJhbGFuY2Vz 32900
+INCy0YvRiA== 32901
+IHN1Ym1hcmluZQ== 32902
+U3RhcnQ= 32903
+IGRyaWVz 32904
+IHZvbHZlcg== 32905
+IHRpY2tpbmc= 32906
+Y290dA== 32907
+IGZhag== 32908
+cHLDqXM= 32909
+IFNhYmI= 32910
+INC30LDRhw== 32911
+INC/0L7QutGD0L8= 32912
+IGJhcHRpemVk 32913
+IEJyaWxsaWFudA== 32914
+INCR0L7Qsw== 32915
+IG1vdHM= 32916
+Yml0cw== 32917
+IGxhdHRpY2U= 32918
+IGNvcmlhbmRlcg== 32919
+IHJlc2lkZW5jeQ== 32920
+eW5j 32921
+IHBpZXJ3c3p5 32922
+IEtub2Nr 32923
+IFphcA== 32924
+INCV0LI= 32925
+6rKs 32926
+IHVuZXZlbg== 32927
+IEphcw== 32928
+b2Rvcg== 32929
+NzQ= 32930
+IFNpdGU= 32931
+IGFjb250ZWNldQ== 32932
+eW1wdA== 32933
+IHRyaWxvZ3k= 32934
+IGxhbnRlcm4= 32935
+IFp1Y2tlcg== 32936
+dmFyaQ== 32937
+d2VsbGluZw== 32938
+IFBvdGF0bw== 32939
+Z29tZXJ5 32940
+IHJlYWN0ZWQ= 32941
+IENocm9u 32942
+IGplZGU= 32943
+YmVlbGQ= 32944
+IHR3ZW50 32945
+IGxhY3Q= 32946
+IHLDqXNl 32947
+IHJlbGVudA== 32948
+IGZ1cm5hY2U= 32949
+IHdpZGdldA== 32950
+IGVhcnRocXVha2Vz 32951
+IEFkanVzdA== 32952
+aWxpdA== 32953
+INij2Yg= 32954
+IGhlYXJpbmdz 32955
+IGRlZmVuZGFudA== 32956
+aXJzaW5peg== 32957
+IGJhc2s= 32958
+Y2ph 32959
+nKg= 32960
+IHJpZmxlcw== 32961
+IGluc3RhbA== 32962
+IEZvcmdpdmU= 32963
+cGljYWw= 32964
+INCe0YfQtdC90Yw= 32965
+IHBldGl0ZXM= 32966
+IGhw 32967
+IHJlbm93bmVk 32968
+IElubg== 32969
+IOyjvOyEuOyalA== 32970
+IGVtcGhhc2l6ZWQ= 32971
+IOyeiOyjoA== 32972
+IOqyg+ycvOuhnA== 32973
+xZM= 32974
+Z2lsaQ== 32975
+RGF2ZQ== 32976
+IGV4aGF1c3Rpbmc= 32977
+xYJ1Zw== 32978
+IHNjaGVtYQ== 32979
+zrzOrA== 32980
+Y3ljbA== 32981
+IGF1dGFudA== 32982
+IHBhcmNlbA== 32983
+IG1hdGVyaWE= 32984
+IEJlcnJ5 32985
+INGB0LDQvNC4 32986
+IGV4dHJhY3RlZA== 32987
+IFNheWluZw== 32988
+aXNtYXRpYw== 32989
+INC/0L7Qv9GA0L7QsQ== 32990
+IG5ldXJvbg== 32991
+Z3JhcGg= 32992
+nOuptA== 32993
+IGVuY2xvc3VyZQ== 32994
+IEpvaGFubg== 32995
+IGFmdGVybWF0aA== 32996
+0YLQvtCx 32997
+IHXFvHk= 32998
+IHNhbXA= 32999
+MzYw 33000
+IE1laQ== 33001
+IHRhY28= 33002
+IHJlY2VwdG9ycw== 33003
+IHB1bmNoZXM= 33004
+IEhvamU= 33005
+INmH2YbYpw== 33006
+PSIj 33007
+IEFuZ3VsYXI= 33008
+IG11c2lxdWU= 33009
+IHJvbA== 33010
+IMOx 33011
+c3RlcnJlaWNo 33012
+IGNsYW0= 33013
+IFRyZWFzdXJ5 33014
+Y2hlbWljYWw= 33015
+IGFwYXI= 33016
+IGFwcGVuZA== 33017
+IGZvcmJpZA== 33018
+IEhhbWJ1cmc= 33019
+0LDQutC+0LI= 33020
+IOq4iA== 33021
+aWxkYQ== 33022
+IHByZXBhcmF0aW9ucw== 33023
+IG1vZ8SF 33024
+IGNhbWlubw== 33025
+RXJpYw== 33026
+IEJsaW5k 33027
+IERpc2NvdmVyeQ== 33028
+7Lig 33029
+IGludGVycHJldGVy 33030
+IGJyZWQ= 33031
+IFBzYWxt 33032
+IGRlZmVuZGVk 33033
+7Ims 33034
+IEVyZmFocg== 33035
+IFBlYWNo 33036
+IG1vb25z 33037
+IE9zdA== 33038
+IHNww6ljaWFs 33039
+IGFycml2ZXI= 33040
+IFdpcw== 33041
+dWNp 33042
+IHJvYm90aWNz 33043
+SVZF 33044
+IHNpZWdl 33045
+YXJsYQ== 33046
+IHNlcGFyYXRlcw== 33047
+IFRD 33048
+7Y+w 33049
+cXVpc2l0ZQ== 33050
+IHBhcmVudGhlc2Vz 33051
+0LjQutC1 33052
+IHRyb3Vz 33053
+INGB0LjQu9GM 33054
+IGJlZXJz 33055
+INC/0LvQsNGC 33056
+IHNvbGE= 33057
+IGTDqHM= 33058
+bWluZ2hhbQ== 33059
+aWt0ZQ== 33060
+IG9vcHM= 33061
+IHR3aXRjaA== 33062
+z4g= 33063
+IFNob3VsZG4= 33064
+dXZyZQ== 33065
+IGxlZXI= 33066
+Y3JpcHRpb25z 33067
+IGV5ZXNoYWRvdw== 33068
+IEd1bw== 33069
+IFBvd2VsbA== 33070
+IHN1cHVlc3Rv 33071
+IGFuYQ== 33072
+cmFscw== 33073
+IE1vbnRyZWFs 33074
+IHN1cmZpbmc= 33075
+INCf0LXRgNCy 33076
+157XlQ== 33077
+IG1pbGxpc2Vjb25kcw== 33078
+IHN1YnVyYnM= 33079
+IHBsYW5ldGE= 33080
+0YPRiNC60LA= 33081
+aHJsaWNo 33082
+IEhZ 33083
+INiz25I= 33084
+IE1N 33085
+IEVmZg== 33086
+IEhT 33087
+YW5zb24= 33088
+IOyngeygkQ== 33089
+IHN1bw== 33090
+IGRlcGxveWluZw== 33091
+IGt1bnQ= 33092
+dGVyaW5n 33093
+IGVyZWN0 33094
+7J6l7J20 33095
+IOydjOyLnQ== 33096
+IHNwZWNpbWVu 33097
+IS4uLg== 33098
+IGxpZ25l 33099
+IGtvbnN0 33100
+YWRlcXU= 33101
+IOyDge2DnA== 33102
+IGFjY2Vzc2Vk 33103
+IFBvbGU= 33104
+a2lsbA== 33105
+IOuyhOs= 33106
+IGF1dGhlbnRpY2l0eQ== 33107
+IGFwcGVsbGU= 33108
+dWxsZQ== 33109
+IHJldmlzaW9u 33110
+IGdvYXRz 33111
+0LPQu9C4 33112
+IHBhdQ== 33113
+IFJhbmdlcg== 33114
+IEltYWc= 33115
+YXV0aG9y 33116
+IGV2ZQ== 33117
+IE1lc3Nlbmdlcg== 33118
+IG5heQ== 33119
+IHdob2xlcw== 33120
+w6R0dGU= 33121
+IG9ud2FyZHM= 33122
+IERlcG9pcw== 33123
+IO2RnO2YhA== 33124
+IFNBUlM= 33125
+IHdzenlzdGtpY2g= 33126
+IGRlc3RydQ== 33127
+dW1iaW5n 33128
+IGNvbXBhdGliaWxpdHk= 33129
+IG1pc2luZm9ybWF0aW9u 33130
+b2RvcmU= 33131
+IEZhdm9y 33132
+ZWtv 33133
+j4w= 33134
+d2F1a2Vl 33135
+IFRlYWNoaW5n 33136
+IEtP 33137
+IGJldHRpbmc= 33138
+IHF1ZXN0cw== 33139
+IHZpdnJl 33140
+INC80YPQt9GL 33141
+IHNhZ2E= 33142
+IHN3ZWxs 33143
+IGdlaGU= 33144
+INC+0YDQs9Cw0L3QuNC3 33145
+IGdpZGU= 33146
+IEdyb3Nz 33147
+IGRhbGVq 33148
+IGNsYXdz 33149
+4buZYw== 33150
+IHByZWp1ZGljZQ== 33151
+IGluc2lnbg== 33152
+aWhvb2Q= 33153
+IHBsZWQ= 33154
+IGTDs25kZQ== 33155
+IFBvbGl0aWNhbA== 33156
+IHByZW1pc2Vz 33157
+dW5kZXJ0 33158
+2LnYqg== 33159
+b25uZW4= 33160
+IGVzcGHDp28= 33161
+IGbDqQ== 33162
+IEhhcnJpc29u 33163
+IENlbnN1cw== 33164
+IGNhcmRpbw== 33165
+IGRpeQ== 33166
+IG1pbGlldQ== 33167
+IGpvdXJuw6ll 33168
+IFJlbGVhc2U= 33169
+TklF 33170
+IE11aw== 33171
+aWTDqWU= 33172
+4buNaQ== 33173
+IGnDp2luZGU= 33174
+npk= 33175
+IHJlc29uYXRl 33176
+IG1vbGVz 33177
+IEZseWluZw== 33178
+IEdsb3JpYQ== 33179
+IFBhc3Rvcg== 33180
+IEFyZW5h 33181
+Tk9O 33182
+0L7Qu9C+0LI= 33183
+IGFsbMOt 33184
+b21hdA== 33185
+7Ja064+E 33186
+IGNhcmFjdGVyw61zdA== 33187
+IGRlY2xpbmluZw== 33188
+0ZbRjw== 33189
+YW5jbw== 33190
+IEluZm9ybQ== 33191
+IGJhcmdhaW4= 33192
+IGJ1c2hlcw== 33193
+IE5hdHVyYWxseQ== 33194
+IHJlY2h0cw== 33195
+IFRlbnNvcg== 33196
+IFBhdHJpY2lh 33197
+IHByaW5jaXBpbw== 33198
+IE11bWJhaQ== 33199
+IHdvbWI= 33200
+IG5vc3RyYQ== 33201
+IGRpbGVtbWE= 33202
+IGlyZ2VuZHdhbm4= 33203
+IDE5NjQ= 33204
+IGVuZXJnw61h 33205
+INC90LDRgA== 33206
+IHNlZ3JlZ2F0aW9u 33207
+IEF0aGxldA== 33208
+IMK7LA== 33209
+IHllbmk= 33210
+IFNlaXQ= 33211
+IHZlbm9t 33212
+IGRha2lrYQ== 33213
+IOuPjOs= 33214
+IMOJbA== 33215
+IGZ1cw== 33216
+IE1vZw== 33217
+pr3ri4jri6Q= 33218
+IHJlbWFy 33219
+IFRlZGR5 33220
+IGJyZWFzdHM= 33221
+aWNhbnM= 33222
+a2Fw 33223
+IGjGoW4= 33224
+IEpQ 33225
+IHJlc3VycmVjdA== 33226
+IOyduOs= 33227
+aGVyaWNhbA== 33228
+IGZvdG9ncmFm 33229
+IEpvc8Op 33230
+IGxpdmVsaWhvb2Q= 33231
+IGJpYmxp 33232
+dGVyaQ== 33233
+IHZvcnN0ZWxsZW4= 33234
+IEFBQQ== 33235
+IGFzc2Vzc2luZw== 33236
+WUE= 33237
+IHNwbGVuZA== 33238
+IGV4Y2F2 33239
+IGJhcHRpc20= 33240
+eWxs 33241
+d293 33242
+TWFj 33243
+IHBsYXN0aWNz 33244
+dGVva2Jva2tp 33245
+IGludMOpcmVzc2FudA== 33246
+IGNvbW1hbmRlZA== 33247
+IGZhbW91c2x5 33248
+INCY0LvQuA== 33249
+IE1hbnVlbA== 33250
+IHNvdXRod2VzdA== 33251
+IGRlZm9ybWF0aW9u 33252
+w61jdWxv 33253
+INC90LDRhdC+0LTQuNGC0YHRjw== 33254
+IFBhdHRlcg== 33255
+ZGVncmVl 33256
+IGN6xJlzdG8= 33257
+Ii0= 33258
+IOyFiw== 33259
+IG1hbmdlcg== 33260
+IFRydXN0ZWU= 33261
+gOumrA== 33262
+IHB1bnRvcw== 33263
+aXZhYmxl 33264
+IHZvbGF0aWxl 33265
+IOuKkA== 33266
+IGluc3RhYmlsaXR5 33267
+IGNpZWw= 33268
+Y2nEhQ== 33269
+IHB1cml0eQ== 33270
+0L3QvtGB0YI= 33271
+U2ls 33272
+ZWRhcg== 33273
+Tk9VTkNFUg== 33274
+IHNwZWxsZWQ= 33275
+R0VS 33276
+IHNhbmN0dWFyeQ== 33277
+IGFjY2VsZXJhdGluZw== 33278
+IHNjb3V0 33279
+INC/0YDQtdCy 33280
+ZmFocmVu 33281
+IOuCmOyYqA== 33282
+IHBvY3rEhXQ= 33283
+IE1ldQ== 33284
+a2Fhcg== 33285
+s7Tqs6A= 33286
+YWtyYQ== 33287
+RG93bg== 33288
+IMOEcg== 33289
+IEVsaXRl 33290
+IGFsbG9ucw== 33291
+IG1heW9ubmFpc2U= 33292
+IFN1c3RhaW4= 33293
+cHJpc2luZ2x5 33294
+IHN1cGVydmlz 33295
+IOq3uOugh+yjoA== 33296
+IHVuZW1wbG95ZWQ= 33297
+IGZyZXNobHk= 33298
+INee16I= 33299
+IERo 33300
+IHRhY2tsaW5n 33301
+IG9ncg== 33302
+IOy0iOs= 33303
+IGxvZnQ= 33304
+YXJhaA== 33305
+IEFpcmw= 33306
+IERpcg== 33307
+INCc0L7QttC90L4= 33308
+IGJvb2tpbmc= 33309
+IENSQQ== 33310
+IGh0dHBz 33311
+IGNob2tl 33312
+IGdvd24= 33313
+IG5vaXRl 33314
+IHphYw== 33315
+aXN0b2w= 33316
+IHNlY3Jl 33317
+IHJlc2VtYmxlcw== 33318
+IGN1YWQ= 33319
+7IKs6rCA 33320
+c2hvdw== 33321
+IGJsYW5j 33322
+IGFndQ== 33323
+IFByaW50 33324
+YXN0ZWQ= 33325
+IFdlYXRoZXI= 33326
+aXBs 33327
+IG9ic2N1cmU= 33328
+IGNvbnRl 33329
+b3VnaHM= 33330
+KTs= 33331
+IERhbWU= 33332
+IGNsYXJpZmljYXRpb24= 33333
+IGludGltYWN5 33334
+IHVwaG9sZA== 33335
+IE1pcnJvcg== 33336
+IHdhZ29u 33337
+eGlkZQ== 33338
+IGNsb2c= 33339
+YXBwZXI= 33340
+IEltbWVkaWF0ZWx5 33341
+w7pkZQ== 33342
+IHRvdWNoZG93bg== 33343
+IHJvb2Z0 33344
+0LDRiNCw 33345
+IMOnxLFrdA== 33346
+IGxhaXNzZXI= 33347
+IFVucmVhbA== 33348
+ZW5zaXRpdmU= 33349
+IDEyMw== 33350
+IHBsYXN0ZXI= 33351
+IGR1Y2tz 33352
+IGV0bWU= 33353
+IGJpc2hvcA== 33354
+YnJldmk= 33355
+IGJpYw== 33356
+IHJ1bnRpbWU= 33357
+IGFtYml0aW9ucw== 33358
+0LzQsNGC 33359
+IFdlaW4= 33360
+IE1hcmk= 33361
+IO2KuOs= 33362
+IHJlc29sdmVy 33363
+IG5nw6B5 33364
+IFJpc2U= 33365
+IENydXM= 33366
+IG1lcmNoYW5kaXNl 33367
+IGVsaQ== 33368
+IHN0YXRld2lkZQ== 33369
+IG93bA== 33370
+IHR3aXN0aW5n 33371
+IGNvbnRhbWluYXRlZA== 33372
+IENvbW1lcmNl 33373
+aHl0aG0= 33374
+IMOI 33375
+IOyLpOs= 33376
+IG11c3N0ZQ== 33377
+dWly 33378
+IHN1bXM= 33379
+IFNvbWV3aGVyZQ== 33380
+IGthbWk= 33381
+IGFpcmVk 33382
+IEFORFJFVw== 33383
+IOq6 33384
+IHZpZW5kbw== 33385
+IGFudGlib2R5 33386
+IGFic29sdW1lbnQ= 33387
+IHByb3Rlc3RlcnM= 33388
+IFF1w6liZWM= 33389
+c3RhZHQ= 33390
+U2hhdW4= 33391
+IGNoYW1iZXJz 33392
+IFdlYXI= 33393
+IEVmZmVjdHM= 33394
+IGhhemFyZHM= 33395
+IG5laQ== 33396
+IGNvcmF6w7Nu 33397
+IOG8 33398
+IFNH 33399
+lKk= 33400
+IOyXreyLnA== 33401
+IGNvbWZ5 33402
+IENvZHk= 33403
+IHBlbnNhbmRv 33404
+IGdhbnNrYQ== 33405
+IEFjcm9zcw== 33406
+w7ZsbGln 33407
+YWJ5dGU= 33408
+IHdlZGdl 33409
+IGthbGlhbg== 33410
+IHNpZ3Vl 33411
+ZW5kZXM= 33412
+IEdyb8Of 33413
+IHV0aWxpc2Vy 33414
+IGZsb3du 33415
+0LDQvdC40Y4= 33416
+IGxldmFy 33417
+cmVzdHJpYWw= 33418
+IGlsbHVzdHJhdGlvbnM= 33419
+IGFzbMSxbmRh 33420
+QkxFRVA= 33421
+INC00L7RgdGC 33422
+IHR1cnJldA== 33423
+IHN1aXRjYXNl 33424
+emnEmWtp 33425
+IHNrZXRjaGVz 33426
+IGFjcmVk 33427
+IFJlaQ== 33428
+IHRzdW4= 33429
+IFNhZw== 33430
+IHRoaXJkcw== 33431
+IEtJUkJZ 33432
+cmFp 33433
+IGh1bWFub3M= 33434
+IHJlY29tbWVuZHM= 33435
+IGV4dHJhb3JkaW5hcmlseQ== 33436
+IGNvbW1lbmNlbWVudA== 33437
+S04= 33438
+b3Bleg== 33439
+INeR16k= 33440
+IGxldGhhbA== 33441
+IEVzdGFtb3M= 33442
+IGluc3BlY3Rvcg== 33443
+IFNlb2s= 33444
+ZXVu 33445
+IG9mZnNob3Jl 33446
+IGdldHRpbg== 33447
+eWVhcnM= 33448
+IFNpbGVuY2U= 33449
+IE5hdHVy 33450
+dXB1bg== 33451
+IHRyenk= 33452
+IG5vZ2V0 33453
+IGhhbWJ1cmdlcg== 33454
+IFByYWlzZQ== 33455
+w6luZA== 33456
+IDE5NzE= 33457
+eWxpZQ== 33458
+a3JpdA== 33459
+IOyDneqwgeydtA== 33460
+IG1vbWVudG9z 33461
+IGVzdMOp 33462
+IGRpc3NlbWlu 33463
+IGdpZ3M= 33464
+IGRlc2Fm 33465
+IGF2aXM= 33466
+IFpvbw== 33467
+IOyViuydgA== 33468
+aMOkbmc= 33469
+aGFrZQ== 33470
+IEJpc20= 33471
+IHJldGhpbms= 33472
+IE1hbGNvbG0= 33473
+IGlkZW50aWZpZXM= 33474
+bG93ZXI= 33475
+aXhlbA== 33476
+IHR2w6U= 33477
+a2Vk 33478
+aWVyeg== 33479
+IMO2ZmZlbnRsaWNo 33480
+IHByb2NsYWlt 33481
+c29vbg== 33482
+bG9s 33483
+IGxvaQ== 33484
+IGJpdHRlbg== 33485
+cm9sbG8= 33486
+IHNlcm1vbg== 33487
+IGVzcXU= 33488
+IGphY2tldHM= 33489
+IGdyw6FmaWM= 33490
+INC/0L7QutCw0LfRi9Cy 33491
+IGNhYmV6YQ== 33492
+Y2hvZHpp 33493
+IHBlbHZpcw== 33494
+IG5vc3RhbGdpYQ== 33495
+IGJyZXc= 33496
+IHNob3J0Y3V0cw== 33497
+IEFkZW3DoXM= 33498
+IHN1cGVyZmljaWFs 33499
+IGJvY2E= 33500
+aW1lbnRvcw== 33501
+IHNwcm91dHM= 33502
+IEpvbmFz 33503
+IEZsb3JlbmNl 33504
+c3RhdGlj 33505
+ZGF1Z2h0ZXI= 33506
+Kik= 33507
+xYJieQ== 33508
+ZmFzaGlvbg== 33509
+IEdpbmdlcg== 33510
+IOunpOs= 33511
+IGh1c3RsZQ== 33512
+dXRvcw== 33513
+INGC0Y/Qtg== 33514
+IEzDtnM= 33515
+16nXmded 33516
+YW55Y2g= 33517
+dHViZXI= 33518
+IHRpZHk= 33519
+IGZyb250YWw= 33520
+IHdoaXNrZXk= 33521
+IGh1bWlk 33522
+IM6f 33523
+IHJpZGdl 33524
+IG1hcmlu 33525
+IGJpZW50w7R0 33526
+IENhcnJpZQ== 33527
+Y2h3 33528
+IHRhaHVu 33529
+IEVyZ2Vi 33530
+RlI= 33531
+IOygleu2gA== 33532
+IFNvbGRpZXI= 33533
+IGVubGlnaHRlbm1lbnQ= 33534
+IGV4YW1pbmluZw== 33535
+IE5vdHJl 33536
+IGVyYW0= 33537
+IFN1bm55 33538
+IGxheWVyZWQ= 33539
+IERhenU= 33540
+cmFkZXM= 33541
+INC90LDRiNC10Lk= 33542
+IHRpbWJlcg== 33543
+IG1hbm5lcnM= 33544
+IEJpcm1pbmdoYW0= 33545
+IG1pbmlhdHVyZQ== 33546
+b21ldGVycw== 33547
+IGZpbGxlcg== 33548
+IFJpcA== 33549
+IEtvbWI= 33550
+b3duZXI= 33551
+7L8= 33552
+aWRpYW4= 33553
+IGRlbcOhcw== 33554
+INmI2Ko= 33555
+IHByZWNhdXRpb25z 33556
+IGdvdmVybm8= 33557
+emVsZg== 33558
+IENvbXBsZXRl 33559
+IFBoYW50b20= 33560
+INC90LXQtw== 33561
+INC60LDRgNGC 33562
+IEFudHdvcnQ= 33563
+IFBmaXplcg== 33564
+IEZyYW5jbw== 33565
+IHfFgg== 33566
+IGZyaWc= 33567
+ZXNwZXI= 33568
+IGthbGU= 33569
+IGZpbG1tYWtlcg== 33570
+IGt1cnQ= 33571
+IGludmFsaWQ= 33572
+YXJlbGxh 33573
+xINuZw== 33574
+cmFtZW50bw== 33575
+IG51dHJpdGlvbmFs 33576
+IGRpY3RhdG9ycw== 33577
+IGFmaW4= 33578
+IGZ1enp5 33579
+IEdpbmE= 33580
+w7N0 33581
+IEV4dHJlbWFkdXJh 33582
+IGRlbW9uc3RyYXRpb25z 33583
+IE1vbnRnb21lcnk= 33584
+7ZW07ISk 33585
+IEdhbmRoaQ== 33586
+IHJldW5pb24= 33587
+IGpha2nFmw== 33588
+IFp1Zw== 33589
+T1VHSA== 33590
+bGlmdGluZw== 33591
+IOCy 33592
+4bmb4bmj 33593
+ZWI= 33594
+IFdPVw== 33595
+IFNoaXZh 33596
+b21ldHJ5 33597
+IHdpbGRseQ== 33598
+IHRlbmRlZA== 33599
+IG1lZ2Fw 33600
+7LKY 33601
+IG5hdXNl 33602
+IGdlcmVr 33603
+IE1hcmNlbA== 33604
+IG5lc3Rl 33605
+2K7YsQ== 33606
+IGZlaA== 33607
+c3VzcGVuc2VmdWw= 33608
+IFdyZXN0bGU= 33609
+IFBhbGVzdGluaWFucw== 33610
+IEdPUkQ= 33611
+aXlldA== 33612
+INGA0LDQtNC4 33613
+IHZlcnN1Y2hlbg== 33614
+IHRyYW5zaXN0b3I= 33615
+INCf0YDQvtGB0YLQvg== 33616
+INC/0L7QvdGA0LDQsg== 33617
+IHJoeW1l 33618
+IFZlcm1vbnQ= 33619
+cGxhdHo= 33620
+IMSwxZ90ZQ== 33621
+IEhhZw== 33622
+INCY0Lw= 33623
+INGA0LDRgdGB0LrQsNC3 33624
+IG1ldHJvcw== 33625
+IEluZmluaXR5 33626
+d29sZg== 33627
+aWJhbA== 33628
+ZnRpZw== 33629
+INqG 33630
+IO2YueyLnA== 33631
+IG9nZ2k= 33632
+IGRpc3Bvc2l0 33633
+INC/0YDQuNC7 33634
+INCy0YvQv9C+0Ls= 33635
+IHRow7Rp 33636
+IEtFTk4= 33637
+IGhhbmRpbmc= 33638
+YWN0dXM= 33639
+IHRhY29z 33640
+IGZvcm1lcmx5 33641
+IENvcmludGhpYW5z 33642
+0YbRltGX 33643
+IHBhZHJl 33644
+IGNvbmdyZWdhdGlvbg== 33645
+5pE= 33646
+ZmVydA== 33647
+IHN1Ymly 33648
+YWlzZXI= 33649
+cXVh 33650
+YXJhb2g= 33651
+IEN1cnJ5 33652
+IOyViuuKlA== 33653
+0LXQu9GO 33654
+IGZ1c3M= 33655
+IGJvb3R5 33656
+IGxvd3M= 33657
+IGhvbW1lcw== 33658
+IE1I 33659
+IERpc25leWxhbmQ= 33660
+d2VudA== 33661
+IHJlc2lkdWU= 33662
+IGJlZXBpbmc= 33663
+w6R0dGE= 33664
+IG1vdWxk 33665
+IFByb2pla3Q= 33666
+c3RhbGs= 33667
+IGFydGlmYWN0 33668
+IEFudHJhZw== 33669
+IEFNRA== 33670
+IENyeXB0 33671
+IOuplA== 33672
+IEZlbGlwZQ== 33673
+IENPQg== 33674
+ZWx1 33675
+IHNlbGZpZXM= 33676
+IFNhbnRp 33677
+Y2h1dHo= 33678
+INCj0LrRgNCw0Zc= 33679
+Z2VzYW10 33680
+IGZsb2Nr 33681
+amF6 33682
+cGxhaW4= 33683
+IHdyaW5rbGVz 33684
+IHJlYWlz 33685
+IHBhbGpvbg== 33686
+IGVtcG93ZXJtZW50 33687
+IGF0dGVuZGVlcw== 33688
+cHBh 33689
+IG5lZGVu 33690
+0L7QvdGL 33691
+IHRpbWVmcmFtZQ== 33692
+IENoZXJyeQ== 33693
+IGlkw6ll 33694
+IGdhZw== 33695
+IGRvbmtleQ== 33696
+IMO0bmc= 33697
+IEhhcmU= 33698
+IEthcmE= 33699
+IGFjb21wYW4= 33700
+cGxhY2Vz 33701
+aW1pZW50b3M= 33702
+IEhhbW0= 33703
+0LHQuA== 33704
+dWJlbg== 33705
+aWxpeW9y 33706
+IHRoaXJzdA== 33707
+IGtyeQ== 33708
+IEdlb3JnZXRvd24= 33709
+16DXlA== 33710
+IG9yY2g= 33711
+IGhlYXJ0YmVhdA== 33712
+IHRyYW5zZm9ybWF0aW9ucw== 33713
+ZXN0b25lcw== 33714
+IEtI 33715
+IGNhcnRvb25z 33716
+IGFuY2k= 33717
+IHdvcnRobGVzcw== 33718
+IHRhaWxvcmVk 33719
+cHU= 33720
+QW1lcmljYW5z 33721
+IHBpbGVz 33722
+IE1vbmtleQ== 33723
+IGJhc2lu 33724
+IFRlbXBlcg== 33725
+IFBhaW50 33726
+IHB1bmNoaW5n 33727
+IGJhaWs= 33728
+IE9ha2xhbmQ= 33729
+dnJl 33730
+xZ9hbGxhaA== 33731
+eWRk 33732
+IGNhc3VhbGx5 33733
+b2R1 33734
+IGNvZGVk 33735
+IE5vcndlZ2lhbg== 33736
+IFZpbmNl 33737
+IHByZW1hdHVyZQ== 33738
+IFByb21pc2U= 33739
+0LXQutGB0YI= 33740
+IGRldmFzdGF0ZWQ= 33741
+IFByZW1pdW0= 33742
+IFBhcmFt 33743
+IMOWeWxl 33744
+dW11eg== 33745
+UE8= 33746
+cmF0b3Jz 33747
+IGxhbXBz 33748
+IHRlcnJpdG9yaWFs 33749
+IGJhY2tib25l 33750
+bGlzdGVk 33751
+RFk= 33752
+INin2YTYsQ== 33753
+IHB1cnN1ZWQ= 33754
+IENvbW1vbnM= 33755
+IOqzoQ== 33756
+bG9ja3M= 33757
+ZWRvcg== 33758
+IGNvbmNlaXZlZA== 33759
+Z2VyZQ== 33760
+IGRpc2FwcGVhcmluZw== 33761
+IFN1bGw= 33762
+IOyXsOs= 33763
+IGhvZmZl 33764
+IGRldG94 33765
+7ZSM 33766
+IHJldGly 33767
+IOuBneuC 33768
+IHBlcmd1bnRh 33769
+IEJPWQ== 33770
+IHBlbm4= 33771
+aMOpcw== 33772
+aG9u 33773
+IGNhdGFzdHJvcGhpYw== 33774
+IGF1c3Q= 33775
+IHRvcnNv 33776
+IOyWtOuKkA== 33777
+IOyCrOuejOuTpOydtA== 33778
+IG1hcnZlbG91cw== 33779
+IEhhcmxleQ== 33780
+YWNoaW5l 33781
+IHRp4bq/ 33782
+aXR0bw== 33783
+IEnDrW0= 33784
+eWxvbg== 33785
+IHNodXRkb3du 33786
+Licn 33787
+IGFwb2xvZ2llcw== 33788
+IENvbW11bmljYXRpb24= 33789
+INCz0L7QstC+0YDRjg== 33790
+4oSi 33791
+w612ZWlz 33792
+YWN1bg== 33793
+IHJldGFpbmluZw== 33794
+IGNvbnRyYWRpY3Rpb24= 33795
+IEFEQU0= 33796
+Q09N 33797
+QnJ5YW4= 33798
+IE1vbnNpZXVy 33799
+IGFkYXB0aW5n 33800
+0KjQkA== 33801
+IFNjcg== 33802
+w6RuZGVydA== 33803
+IHBsYXVz 33804
+IG9uc2V0 33805
+IGFzc2lzdGFudHM= 33806
+IHZhbHZlcw== 33807
+IHNjYXR0ZXI= 33808
+IFJ1c3Q= 33809
+YXdpYQ== 33810
+IHJlYWRpbmVzcw== 33811
+IHBhaXM= 33812
+IGJpYmxl 33813
+IGFtYmllbnRl 33814
+INCw0LzQtdGA0LjQug== 33815
+IHVuY29uZA== 33816
+IGthbGs= 33817
+IG1vYw== 33818
+dW5u 33819
+IGFjdHU= 33820
+IGh1bW1pbmc= 33821
+aXNzaW1v 33822
+IFBhdHJvbA== 33823
+Z293 33824
+IFRIRVk= 33825
+IEJvZGVu 33826
+IEJpZQ== 33827
+IHJlZWw= 33828
+INGD0YHQu9C+0LI= 33829
+IGVuZGVhdm9y 33830
+IFBlcmlvZA== 33831
+dXN0b21lZA== 33832
+bWFscw== 33833
+YWxvbg== 33834
+Qm94 33835
+IM+DzrHPgg== 33836
+IG9tZGF0 33837
+IGFsdHJl 33838
+IEhlaA== 33839
+a2Fk 33840
+IHByb3RlY3Rvcg== 33841
+IGRvbWluYW5jZQ== 33842
+b2R5bmFtaWM= 33843
+IGNvbW11bmljYXRlZA== 33844
+a8O2 33845
+IHByZWRlY2Vzc29y 33846
+IEx1aw== 33847
+IEZsb3dlcg== 33848
+cG9xdWU= 33849
+0YLQuNGA0L7Qsg== 33850
+IHJldHJvc3BlY3Q= 33851
+IGRlY2lzaXZl 33852
+IGV4ZW1wZWw= 33853
+e1w= 33854
+IFLDvGNr 33855
+cml0ZQ== 33856
+IFpldXM= 33857
+IGNhbG9yaWU= 33858
+IGF0dHJhY3Rpb25z 33859
+IEhpbnRlcg== 33860
+IHVobQ== 33861
+IO2MkA== 33862
+IHJ1bGVycw== 33863
+IGRpc2NvdXJhZ2Vk 33864
+IGFjb250ZWNlcg== 33865
+IGFjY2VudHM= 33866
+IE9wdGlt 33867
+IEFsZw== 33868
+a2lkcw== 33869
+MjAyMQ== 33870
+IExpbmRzYXk= 33871
+IGZpbG1tYWtlcnM= 33872
+cHJvd2Fk 33873
+IHRlcnVn 33874
+64u0 33875
+IFNvbW1lcg== 33876
+MjAxOA== 33877
+IGJvcnJvd2luZw== 33878
+IFRyYW5zZmVy 33879
+0L3QvtC/ 33880
+YXJpYXM= 33881
+IGhlYWRwaG9uZQ== 33882
+7Lyc 33883
+IHRyYW5zbGF0aW5n 33884
+IGF1Zmdl 33885
+4K6q4K6f 33886
+d2Vpcw== 33887
+YXZhbnQ= 33888
+cGFpZA== 33889
+YmFieQ== 33890
+IHRvdWdoZXN0 33891
+IHJlcGVhdHM= 33892
+IFRlcmVzYQ== 33893
+TG9yZA== 33894
+IGFjYWJhcg== 33895
+IFJpZGU= 33896
+ZGly 33897
+IGxlbmc= 33898
+IGR3YQ== 33899
+IGhlYWRhY2hlcw== 33900
+IG7hu69h 33901
+INC90LDRgdGC0L7Rj9GJ 33902
+IGJvaWxz 33903
+IGxvbmdpbmc= 33904
+cmlhcw== 33905
+w7NyaW8= 33906
+IFBhcmFkaXNl 33907
+IFNlw7Fvcg== 33908
+ZXJkZW0= 33909
+IHJlaW5zdA== 33910
+IHNhbGFyaWVz 33911
+IGluc2VjdXJpdHk= 33912
+xYJvxZtjaQ== 33913
+INCw0LHRgdC+0LvRjtGC0L3Qvg== 33914
+aW5rZW4= 33915
+IEVkZHk= 33916
+dWRvcw== 33917
+IGR1bW15 33918
+0JrQsNC6 33919
+c2l4 33920
+IGluYm94 33921
+4bqp 33922
+UGVvcGxl 33923
+4buTbmc= 33924
+IG9yZ2FuaXplcnM= 33925
+ZmluZA== 33926
+IMO8bA== 33927
+IENPTQ== 33928
+xbxh 33929
+d2VpbGU= 33930
+Q29tbWVudGFyeQ== 33931
+7Yq466W8 33932
+IE1pdHRlbA== 33933
+a3Vz 33934
+4KSo 33935
+aXJhbA== 33936
+IGdhcm1lbnQ= 33937
+zrnOus6s 33938
+IHN0b29s 33939
+cGF5ZXJz 33940
+IHNoaW1tZXI= 33941
+IE9sbGll 33942
+IEplxbxlbGk= 33943
+IDE5Nzc= 33944
+IGpldXg= 33945
+IGV4dGluY3Q= 33946
+IFRyYW5zcG9ydGF0aW9u 33947
+IE1ha2Vy 33948
+IGpvaG4= 33949
+IHJpY2hlc3Q= 33950
+IHRyYXVtYXQ= 33951
+IGxpZWdlbg== 33952
+tOulvA== 33953
+IHVucmVzdA== 33954
+IFN0cmF3 33955
+IGNvbWE= 33956
+IEtyaXN0ZW4= 33957
+INCa0L7QvdC10YfQvdC+ 33958
+IEJyeWNl 33959
+INGP0LrRlg== 33960
+IHBlYXJscw== 33961
+INC/0L7QvdC40LzQsNGO 33962
+IGFkZGl0aW9ucw== 33963
+IGFzeW1wdA== 33964
+INC80LXQvdGM0YjQtQ== 33965
+IHNjYW5z 33966
+Q2hpbGQ= 33967
+IEhpZGU= 33968
+0LrRg9GO 33969
+ZXRhcw== 33970
+IGRhbms= 33971
+IHBsZWFz 33972
+IGVzc2F5cw== 33973
+IGpldHM= 33974
+INCy0LXQtA== 33975
+IHBvc2l0aXZlcw== 33976
+aG9m 33977
+LSk= 33978
+enpv 33979
+IHN0YXJ0ZXJz 33980
+IHNtaWxlZA== 33981
+IDE5NDQ= 33982
+cXVpZXJh 33983
+IHJvaw== 33984
+IHB1ZXN0bw== 33985
+Tmljbw== 33986
+IHNpbXVsYXRpb25z 33987
+IOC2 33988
+IGludHJpZ3VlZA== 33989
+IE92ZXJ3YXRjaA== 33990
+c2lnaA== 33991
+YmFp 33992
+IOunkOqzoA== 33993
+aWTDqQ== 33994
+IGNyYWJz 33995
+4bqtcA== 33996
+IElyYXFp 33997
+7J2066W8 33998
+0YLRjw== 33999
+IFNvcGhpYQ== 34000
+IEROUw== 34001
+IMO2bmVtbGk= 34002
+IEx1bw== 34003
+naQ= 34004
+IENvdW5zZWw= 34005
+bGlnZW4= 34006
+0LDQvdGM0YjQtQ== 34007
+IHRydW1wZXQ= 34008
+IGRhcGF0 34009
+IEpN 34010
+IEVWRVJZ 34011
+IExheWVy 34012
+IGPDtA== 34013
+0L3QsNC7 34014
+IEpvbw== 34015
+IEhhY2s= 34016
+IHN1bnQ= 34017
+IExlb25hcmQ= 34018
+IEZpcmViYXNl 34019
+w6RuZ2Vy 34020
+IGV4cGxvZGluZw== 34021
+dm95 34022
+IOymkA== 34023
+INGB0LXRgNGM 34024
+IHNldmVyaXR5 34025
+IGJlc3RpbW0= 34026
+IHRpcmluZw== 34027
+IHByb2N1cmVtZW50 34028
+IGRpcGxvbWFjeQ== 34029
+IGRlY29yYXRpdmU= 34030
+INmK2Kc= 34031
+IHBlbmV0cmF0aW9u 34032
+1as= 34033
+IG91dHJpZ2h0 34034
+RU5F 34035
+IFVuaQ== 34036
+b2RsZXM= 34037
+IHplcm9z 34038
+IGRlbGlnaHRmdWw= 34039
+am0= 34040
+IGRvcG8= 34041
+IHBvc2l0aXZpdHk= 34042
+IFZJU1RB 34043
+IFJlc291cmNl 34044
+7YOA6w== 34045
+0YjQuNC1 34046
+Q2FybA== 34047
+IHBpcGluZw== 34048
+IGNob3BwaW5n 34049
+IEdhbnpl 34050
+w7xzcw== 34051
+IEFv 34052
+IHNoYXR0ZXJlZA== 34053
+IERldGVjdGl2ZQ== 34054
+IHVuZG91YnRlZGx5 34055
+IGhhbGx1Yw== 34056
+IGVuY2g= 34057
+0YvRh9C90L4= 34058
+0YPQu9GP0YA= 34059
+aXNlc3Rp 34060
+IHBlZGFscw== 34061
+IGR1cnVt 34062
+pO2U 34063
+bGFpbWVy 34064
+IHByb3ByZQ== 34065
+Q3U= 34066
+IHRyYW5zbGF0b3I= 34067
+IGNhxYI= 34068
+IOq3uOqxuA== 34069
+IGNhxYJ5 34070
+VUE= 34071
+IHJldmlzZWQ= 34072
+INC/0L7QtNC+0LE= 34073
+IEFydGljbGU= 34074
+IEhhaXRp 34075
+IMOT 34076
+IEN0cmw= 34077
+IHJvem0= 34078
+bGFpdA== 34079
+IGxldHp0ZQ== 34080
+aXNwZXJpbmc= 34081
+ZGlzcGxheQ== 34082
+IGFsdW1pbml1bQ== 34083
+IHBhbGFicmFz 34084
+IGNvbm9jZXI= 34085
+IHppdHRlbg== 34086
+IGRpcmln 34087
+IGJyYWluc3Rvcm0= 34088
+IHdpZmk= 34089
+IFBhcnRpY2lw 34090
+IHZpZXdwb2ludA== 34091
+IFF1YW4= 34092
+IGhpZXJhcmNo 34093
+V2VsY29tZQ== 34094
+IG9mZmVu 34095
+IFJlY292ZXJ5 34096
+Z2Fubw== 34097
+V291bGQ= 34098
+IHJlcHJv 34099
+IHBlcmNlcHRpb25z 34100
+IGRlbWFzaQ== 34101
+IEJhbmdsYWRlc2g= 34102
+IEluY3JlZGlibGU= 34103
+IGxldHp0 34104
+IGJlaGF2aW5n 34105
+IGFzdG9uaXNoaW5n 34106
+IOKG 34107
+IOuCqOyekA== 34108
+IEdPUkRPTg== 34109
+Q0FS 34110
+PyEi 34111
+IFByZXN0 34112
+IOunnuyVhOyalA== 34113
+IHRhbmQ= 34114
+IGxhc2g= 34115
+54o= 34116
+aWZpY2FudA== 34117
+IGludG9sZXI= 34118
+INCz0LXRgNC+ 34119
+IHRldQ== 34120
+YXNv 34121
+INGB0L7QstC10YI= 34122
+IHRyYXZlbGVycw== 34123
+IFN5bmQ= 34124
+INCy0LXRgNGB 34125
+Rm9uZGE= 34126
+YWTEsQ== 34127
+IHRyYW5zY3JpcHRpb24= 34128
+IHRpdGFuaXVt 34129
+IHR3aXN0cw== 34130
+IGdlYXJib3g= 34131
+ZW5zYXRpb24= 34132
+ZmF0 34133
+Q29sbA== 34134
+IENvbW1vbndlYWx0aA== 34135
+em9u 34136
+IFBvbGl6ZWk= 34137
+IEFQUExBVVNF 34138
+ZnJ5 34139
+IEp1ZGE= 34140
+ZXN0ZWVt 34141
+IHNvY2s= 34142
+IEp1Z2VuZA== 34143
+INC60YHRgtCw0YLQuA== 34144
+IERybw== 34145
+IHByb2NoYWluZQ== 34146
+IGxpa3NvbQ== 34147
+IEVuZXJnaWU= 34148
+IE1hcmluYQ== 34149
+IDIzMA== 34150
+IOqwgOyEnA== 34151
+dW1waW5n 34152
+IGxvbmU= 34153
+IGZvbnRz 34154
+IGJ1c2luZXNzbWFu 34155
+IHBseQ== 34156
+IGRvZQ== 34157
+Z3JpZA== 34158
+IE1pbHdhdWtlZQ== 34159
+IEVkZW4= 34160
+ISIu 34161
+INuM24E= 34162
+b2dlbnM= 34163
+IHRlYXNlcg== 34164
+IHF1acOpbg== 34165
+IGluY2VudGl2 34166
+Z292ZXJu 34167
+IGNoaWxkY2FyZQ== 34168
+IHNuZWFrZXJz 34169
+IGltcHJpc29uZWQ= 34170
+wq4= 34171
+0LjRgtC10YHRjA== 34172
+YW5idWw= 34173
+IHJlZ2Fpbg== 34174
+IHRyYW5xdWls 34175
+UmVkbmVy 34176
+SUZB 34177
+IGlkZW9sb2dpY2Fs 34178
+IG1heW9yw61h 34179
+IGJ1cmVhdQ== 34180
+ZXRlcm0= 34181
+IERJRA== 34182
+7Iq3 34183
+IHdhdmluZw== 34184
+IGJlYg== 34185
+IMOhcg== 34186
+INC60LI= 34187
+IGVudm95 34188
+YW51dA== 34189
+0LjQutGD 34190
+IEVudmlyb25tZW50 34191
+IEFzc2Fzcw== 34192
+IEJyZWFk 34193
+INCi0YPRgg== 34194
+IHN0YWlyY2FzZQ== 34195
+IERpc2Vhc2U= 34196
+IGF1Y3Vu 34197
+IOuLiA== 34198
+IGNvbmZyb250YXRpb24= 34199
+IDE5NDE= 34200
+IGlyb255 34201
+IHdvcnNo 34202
+IGZpY2s= 34203
+IE5hb21p 34204
+IGJhY2tzaWRl 34205
+aWV1eA== 34206
+S2Fw 34207
+IHZlZGVyZQ== 34208
+IGxlbmd0aHk= 34209
+IGJyZWFrZXI= 34210
+IFJvbGxl 34211
+IHByZWRhdG9y 34212
+IG5vc3Nvcw== 34213
+IGFkdmVydGlzZQ== 34214
+0YDQvtC00LU= 34215
+UmVkbmVyd2VjaHNlbA== 34216
+cmV0ZW4= 34217
+IGNvbGxlY3RvcnM= 34218
+xLHEn8SxbcSxeg== 34219
+IHRyaWc= 34220
+IGF4ZXM= 34221
+aW50ZXJz 34222
+IHBlbmFsdGllcw== 34223
+IE9zbWFu 34224
+IEplbm5h 34225
+IGZsYWtlcw== 34226
+IHRyYWluZXJz 34227
+IHN0dW5uZWQ= 34228
+IFNjcm9sbA== 34229
+IFBpcA== 34230
+INC90LDRgdGC 34231
+IG5ow6A= 34232
+IFNtYWNr 34233
+4bqrbg== 34234
+cmF0b3M= 34235
+INGA0LDQsdC+0YLRiw== 34236
+IHVjeg== 34237
+IExlbW9u 34238
+IFNpbmQ= 34239
+IHBzeWNoaWM= 34240
+IEFiZw== 34241
+IG1hbW1hbHM= 34242
+IGltbWVyc2l2ZQ== 34243
+IGJvdHM= 34244
+IHZlcnNjaGllZGVuZQ== 34245
+IGdlcmFs 34246
+IGZvbGxvd2Vy 34247
+IHNlZ3VyaWRhZA== 34248
+IGltbWVyc2Vk 34249
+ZmVpdG8= 34250
+Y3Jvc3M= 34251
+IMO2bGQ= 34252
+7YOE 34253
+INeU15nXkA== 34254
+IEppYW4= 34255
+IGJpbGl5b3I= 34256
+YXJlYQ== 34257
+IGthZg== 34258
+IGdvZHQ= 34259
+IOuwqeyGoQ== 34260
+IGRldHJpbWVudA== 34261
+0ZbQuw== 34262
+IMSRw6J1 34263
+IGNobG9yaWRl 34264
+w7hyZQ== 34265
+bGVp 34266
+IG1vbnRl 34267
+IGRpZmbDqXJlbnRlcw== 34268
+4K+BLg== 34269
+IGNhcmVnaXZlcnM= 34270
+IGluYWRlcXU= 34271
+IGZhcmV3ZWxs 34272
+INGC0LjQv9Cw 34273
+b250ZWM= 34274
+IEVwaA== 34275
+SEhI 34276
+IFRvZG9z 34277
+INCh0KjQkA== 34278
+IHRyb3Y= 34279
+IGxpZ2U= 34280
+IGPDtG5n 34281
+IENpdg== 34282
+IGNhcGF6 34283
+IFZhbGxhaGk= 34284
+IHF1ZXN0ZQ== 34285
+IHJlcGxpY2E= 34286
+2LPYqA== 34287
+em5h 34288
+INGB0LvRg9C2 34289
+IFBU 34290
+d2F2ZQ== 34291
+aWVuaQ== 34292
+IHJlbGllZA== 34293
+ZGV2ZWxvcA== 34294
+IGRlbWU= 34295
+IEFtYW4= 34296
+IFsuLi5d 34297
+IGNvbXBsaW1lbnRz 34298
+dWFpcw== 34299
+IO2MqA== 34300
+IHNtZWxsaW5n 34301
+IGRhZHVyY2g= 34302
+2YjYqg== 34303
+IG9yYW5nZXM= 34304
+INC70LDQuQ== 34305
+IHN0YWJpbGl6YXRpb24= 34306
+IGFwcGxpYW5jZXM= 34307
+IGht 34308
+g5DrqbQ= 34309
+b2R5bmFtaWNz 34310
+IGNpxJk= 34311
+IENvdHQ= 34312
+TU9O 34313
+IE1hbmc= 34314
+IGFsbGVyZGluZ3M= 34315
+zrnOus6u 34316
+c2hvdHM= 34317
+IHRz 34318
+IEfDtnI= 34319
+IENIQVI= 34320
+IDoo 34321
+IHdyYXRo 34322
+IGZpcXVl 34323
+IGbDvGhyZW4= 34324
+IHRlc3RhbWVudA== 34325
+IF5e 34326
+4bmb4bmj4bmHYQ== 34327
+QUxE 34328
+IHRleHRv 34329
+IERvZ3M= 34330
+IHNpYg== 34331
+IHBhdGhldGlj 34332
+b2Nrcw== 34333
+IHJhZGljYWxseQ== 34334
+IE1PUkU= 34335
+IEpBTUVT 34336
+IGluZ2w= 34337
+IFRlY2huaWNhbA== 34338
+IHBvcmNo 34339
+IFVU 34340
+INC+0LHRj9C30LDRgtC10LvRjNC90L4= 34341
+IHJlbmV3YWw= 34342
+IGFlc3RoZXRpY3M= 34343
+aWt1bQ== 34344
+IGJldmVyYWdl 34345
+ZGVybg== 34346
+IHByZWRpY3RpdmU= 34347
+IGNodXk= 34348
+IFJlZ2FyZGluZw== 34349
+IEZvcndhcmQ= 34350
+INmI2YQ= 34351
+IGNvbnRleHR1YWw= 34352
+IGR3YXJm 34353
+IHByZWhl 34354
+IGdvdmVybmVk 34355
+hYQ= 34356
+IHRyYWJhbGhhcg== 34357
+IG5lZ8OzY2lv 34358
+INCx0L7Qu9GM0YjQvtC5 34359
+0LXRh9Cw0YI= 34360
+INC00YPRhQ== 34361
+IGZsb29kcw== 34362
+IGJvd2xpbmc= 34363
+IE9C 34364
+IEjDpHI= 34365
+IGdyYWRpbmc= 34366
+7KO864qU 34367
+IGdhcnM= 34368
+ZGxpbmc= 34369
+IHJhaw== 34370
+64g= 34371
+Y3JlYXQ= 34372
+INGJ0LU= 34373
+IG5laWdoYm91cnM= 34374
+Zm9vZA== 34375
+UXVlcnk= 34376
+IGhlcm9pbg== 34377
+aWNlcHM= 34378
+IEtpbmRh 34379
+TkVU 34380
+IG1hcmk= 34381
+IGltaXRhdGU= 34382
+IGFjaHRlcg== 34383
+IHNldHRsZW1lbnRz 34384
+cmFyZQ== 34385
+Y2Npb25lcw== 34386
+IOuTnA== 34387
+IGZpaw== 34388
+aXR1bmc= 34389
+INC80LDQutGB0LjQvA== 34390
+IGVsZg== 34391
+IGRhbGxh 34392
+IFBvbHNjZQ== 34393
+IFB1bA== 34394
+0KfRgtC+ 34395
+IE1vcmdlbg== 34396
+2K3ZhQ== 34397
+IHN1cHJlbWFjeQ== 34398
+IGt5cw== 34399
+IEh1cnJpY2FuZQ== 34400
+IEdUQQ== 34401
+IEZlaA== 34402
+IGZpbmFsbWVudGU= 34403
+bXVuZA== 34404
+IEtyaWU= 34405
+w6lwb3F1ZQ== 34406
+IFR1Y2tlcg== 34407
+SVRU 34408
+IGx1cg== 34409
+IGRpcHBpbmc= 34410
+w6R2 34411
+IGVlcnN0ZQ== 34412
+IEZsaW50 34413
+YmlsZHVuZw== 34414
+4Li54LmJ 34415
+IHRvaW0= 34416
+IHByYWN5 34417
+IHRyYW5zZm9ybXM= 34418
+IHNwZWVkaW5n 34419
+IHByZXNlbnRlcg== 34420
+IGZlbGxvd3M= 34421
+ZmlsbGVk 34422
+aWV6YQ== 34423
+IGFkdmlzaW5n 34424
+IEludGVydmlldw== 34425
+0LjQs9GA 34426
+d2Vocg== 34427
+IERhbnRl 34428
+cHR1cmU= 34429
+iOusuA== 34430
+r7jr 34431
+kJA= 34432
+IENvdW50ZXI= 34433
+IGNyaXN0 34434
+IOynnA== 34435
+IGpldW5l 34436
+INGB0YLRgNCw0Yg= 34437
+IG1pZcSH 34438
+IHR1dG9y 34439
+IG1hc2FsYQ== 34440
+IHBvd2RlcmVk 34441
+IG5hdQ== 34442
+IEZyZWRlcmljaw== 34443
+IGJpbGxpbmc= 34444
+IEVpc2Vu 34445
+INC00L7QsdGA 34446
+IG1lc3Q= 34447
+5r0= 34448
+IHNuaXBw 34449
+IG1vbm8= 34450
+IEFsbw== 34451
+IE1lcmN5 34452
+w6lyaWVuY2U= 34453
+IGNhc3VhbHRpZXM= 34454
+IEFOTk9VTkNFUg== 34455
+IHRvY2Fy 34456
+IGJhY3RlcmlhbA== 34457
+SG8= 34458
+IHN0cmVhaw== 34459
+IEpFTk4= 34460
+IHBsYXN0 34461
+0YHQu9C10LQ= 34462
+IHJlYXBw 34463
+IHBheWNoZWNr 34464
+IG1pbmVycw== 34465
+aGFidA== 34466
+IEphcA== 34467
+0L3Rg9GC 34468
+IHJlZGVtcHRpb24= 34469
+IHF1aXI= 34470
+aG5saWNo 34471
+IGFjY3VtdWxhdGlvbg== 34472
+IHNob3Zl 34473
+IGFkcmVuYWxpbmU= 34474
+TWFrZQ== 34475
+IEhlcm4= 34476
+b3NzaW5n 34477
+IFZpbA== 34478
+dWJieQ== 34479
+aGVydHo= 34480
+YnJlYWtz 34481
+IHNwdXI= 34482
+IERhaGE= 34483
+VVNUSU4= 34484
+IGNvbnRpbnVlcg== 34485
+IFNhdWw= 34486
+IO2PrQ== 34487
+IOuQmOuptA== 34488
+IOunkOyUgA== 34489
+INC+0LY= 34490
+IHN1c3BlY3Rz 34491
+IGxhcXVlbGxl 34492
+IE11Y2hhcw== 34493
+IHbDtmxsaWc= 34494
+dWxlbg== 34495
+IGltcHJlcw== 34496
+IGxvYmI= 34497
+ZW5lZQ== 34498
+INC90LDQtg== 34499
+VGE= 34500
+IHLDqWFsaXTDqQ== 34501
+IFJleA== 34502
+IGhhcnZlc3Rpbmc= 34503
+IGVzdHI= 34504
+5rY= 34505
+b3NwYWNl 34506
+T1NT 34507
+IGRpc3R1cmJhbmNl 34508
+YXNzaWM= 34509
+IElzYWI= 34510
+IGTDqWNvdXY= 34511
+IEhhbXBzaGlyZQ== 34512
+IG9ybmFtZW50 34513
+IGx1w7Ru 34514
+IFVX 34515
+IGrEhQ== 34516
+IHJlc3BlY3Rv 34517
+IGNvbXVuaWRhZA== 34518
+IGNvbWlnbw== 34519
+YWduYQ== 34520
+IGludHJpbnNpYw== 34521
+IEFsdW1uaQ== 34522
+IHNlc2xlcmk= 34523
+IGVzdGltYXRpb24= 34524
+4oCU4oCU 34525
+IHByb2R1aXQ= 34526
+44CC44CN 34527
+INCy0YA= 34528
+IHdoaXJs 34529
+IGFjY2Vz 34530
+w6d1 34531
+IHZhcmlhYmlsaXR5 34532
+IHZvZGth 34533
+aXRzdQ== 34534
+IGludGVybnNoaXBz 34535
+IGFsbG9jYXRl 34536
+UlI= 34537
+7ZuI 34538
+IGluc3RydWN0aW9uYWw= 34539
+dGFudA== 34540
+IOCuheCupA== 34541
+IGludml0ZXM= 34542
+IGhhaw== 34543
+IHNjYXJlcw== 34544
+IGVjbGlwc2U= 34545
+0L/QvtCy 34546
+0LrQvtC70Yw= 34547
+YXRpdmFz 34548
+IHN0YWJiZWQ= 34549
+IERPTQ== 34550
+cm9vdHM= 34551
+IFBpY3R1cmU= 34552
+7Zi8 34553
+IENIQQ== 34554
+aWVj 34555
+xLHEsQ== 34556
+aGFub2w= 34557
+IG1pc3VuZGVyc3RhbmQ= 34558
+UmF5 34559
+IHJvYWRtYXA= 34560
+b2N1bWVudGVk 34561
+aXppb25l 34562
+IE9saXZl 34563
+cmlmdA== 34564
+INeU16A= 34565
+bGVzdA== 34566
+Ozs= 34567
+IEVB 34568
+0L7QtNGD 34569
+IGhvYmJpZXM= 34570
+IGJ1cmlhbA== 34571
+0KQ= 34572
+bGVnZQ== 34573
+IEhK 34574
+IG9iamVjdGlvbg== 34575
+Y3Rvcnk= 34576
+IGluY3JlbWVudGFs 34577
+IGd5bW4= 34578
+IGVwaWRlbWk= 34579
+0YHRi9C7 34580
+w5E= 34581
+IGFkdmFuY2VtZW50 34582
+IHBhcmNo 34583
+TmV3cw== 34584
+IGF5cg== 34585
+0LvQsNC8 34586
+INec16k= 34587
+IGRpcGxvbWE= 34588
+IHJvYmJlZA== 34589
+T25seQ== 34590
+IGluY3Vy 34591
+IGNoYW50aW5n 34592
+IO2VtOuPhA== 34593
+IHJpY2hlcw== 34594
+IENhcm1lbg== 34595
+IG5vc3Rybw== 34596
+zrvOrQ== 34597
+IFBvd2Rlcg== 34598
+4LmA4Lir 34599
+IOyeiOycvOuptA== 34600
+IGdlcsOnZWt0ZW4= 34601
+IFBpa2FjaHU= 34602
+0LXQvNC+0L0= 34603
+T0xM 34604
+IHBsYW5ldGFyeQ== 34605
+IHNsb3dz 34606
+IGNsb2Nrd2lzZQ== 34607
+YWxpb24= 34608
+IOyM 34609
+IHZlcm4= 34610
+IGhvbW1l 34611
+IGVuZHBvaW50 34612
+IGlubm9jZW5jZQ== 34613
+IGVsZW1lbnRvcw== 34614
+IHNvcGhvbW9yZQ== 34615
+IG5vdGlvbnM= 34616
+IENvdWxkbg== 34617
+cHVy 34618
+IHphdA== 34619
+IG9ic2Vzcw== 34620
+IG1vdGl2bw== 34621
+IEt1Yg== 34622
+IERydWc= 34623
+QW50 34624
+IFBsYXllcnM= 34625
+IEh1bWFucw== 34626
+IG1lbGVl 34627
+IFdpbGRsaWZl 34628
+IFZQ 34629
+IHZvbGNhbmlj 34630
+IGNvbWlu 34631
+IEd1YW5n 34632
+IM+EzrnPgg== 34633
+INC+0YHQvtCx0LXQvdC90L4= 34634
+IFNpemU= 34635
+TGlzdGVu 34636
+IEFhYQ== 34637
+YXBwcm8= 34638
+IGJhcmJhcg== 34639
+IFBhcmtpbnNvbg== 34640
+0L3Rj9GC0Yw= 34641
+IHVuZGVyZXN0aW1hdGU= 34642
+IHN1YnN0aXR1dGlvbg== 34643
+IGNvc21ldGlj 34644
+IHdpbGxlbg== 34645
+IGJlaWRl 34646
+YW5uaQ== 34647
+IGNvbmRpdGlvbmVk 34648
+IERlYmJpZQ== 34649
+IGlzdG8= 34650
+IEVkd2FyZHM= 34651
+7JuM7JqU 34652
+INGC0L7Qsg== 34653
+IGFiYnJldmk= 34654
+IE3DvG4= 34655
+IFByaW5j 34656
+IExpYW5n 34657
+IHN0aW5r 34658
+IHJhZGlvYWN0aXZl 34659
+IGFjb250ZWM= 34660
+IHVuY29u 34661
+IFR1cmJv 34662
+IGtpc3Nlcw== 34663
+0LXRgtGA0L7Qsg== 34664
+IGZyb250aWVy 34665
+IFNweQ== 34666
+IEJlbGFydXM= 34667
+IENCUw== 34668
+4buX 34669
+YW1vdG8= 34670
+7ZWc642w 34671
+INGB0YLRgNC+ 34672
+IEVuZmlu 34673
+IGJyZWFkdGg= 34674
+IENhZmU= 34675
+IERhZsO8cg== 34676
+IEJvdXI= 34677
+YXJhcw== 34678
+IGJsdWVwcmludA== 34679
+YW7EsQ== 34680
+IGNvbnN0YW50cw== 34681
+IGF0dGFja2Vy 34682
+IEZvcm11bGE= 34683
+emHEhw== 34684
+IHNvd2ll 34685
+IGV5ZWJyb3c= 34686
+b2Jvb2s= 34687
+IHNldHplbg== 34688
+b25zaWRlcg== 34689
+YXduaW5n 34690
+IHPDtnlsZXll 34691
+IGludmFkZWQ= 34692
+IHByb25vdW5z 34693
+IGRvYnJ5 34694
+U2k= 34695
+INCl0L7Rgg== 34696
+IHZvbGxleWJhbGw= 34697
+IGxhbWVudA== 34698
+aXNjaGVz 34699
+YXJtZQ== 34700
+YXBp 34701
+IFdpa2k= 34702
+0LvQuNGI 34703
+IGthc2lo 34704
+IHBlc3M= 34705
+INGE0L7Rgg== 34706
+IFN1bA== 34707
+IHBzZXVkbw== 34708
+IG1lbW8= 34709
+IOyXsOyKtQ== 34710
+INC00L7Qu9C70LDRgNC+0LI= 34711
+INC/0LXRgNC10Lw= 34712
+IFJlYWNo 34713
+bWlyYWw= 34714
+YWx0ZWQ= 34715
+IHN0YXR1dA== 34716
+cmVhZGluZw== 34717
+IHPDtnlsZWQ= 34718
+IExpbmRzZXk= 34719
+IEFobWFk 34720
+67aA6w== 34721
+INCh0LXQs9C+0LTQvdGP 34722
+IHByenlnb3Q= 34723
+IGh5c3Rlcg== 34724
+VVJF 34725
+IE5laWdo 34726
+UmVwb3J0ZXI= 34727
+IEJ1bnU= 34728
+IFRyZWF0eQ== 34729
+IFJhbms= 34730
+IEZhbWU= 34731
+aW5pc2hlZA== 34732
+IGdlYXJlZA== 34733
+IGNvbXBvc2U= 34734
+b2RpYQ== 34735
+IExvbg== 34736
+IGplc3RlxZtteQ== 34737
+IERJUkVDVE9S 34738
+IGVsa2Fhcg== 34739
+IFZpZWw= 34740
+15DXqQ== 34741
+eW50aGlh 34742
+IG3DqHJl 34743
+IFRvbWF0bw== 34744
+IGV4YXRhbWVudGU= 34745
+bmnEmQ== 34746
+IEZyZWk= 34747
+IERpZg== 34748
+IG9wZW5pbmdz 34749
+IGdyYXBoaWNhbA== 34750
+INGD0LTQvtCx 34751
+INCy0YHQvw== 34752
+IFdlZWtseQ== 34753
+0LXQstCw 34754
+IGhhbmdz 34755
+IHVuc2FmZQ== 34756
+IGVtYmxlbQ== 34757
+IEtvbGxlZ2lubmVu 34758
+YWxheQ== 34759
+IGtzaQ== 34760
+IGhpZGVz 34761
+IG9sbWF5 34762
+IGVudHN0ZQ== 34763
+IGFydGhyaXRpcw== 34764
+w59lcmRlbQ== 34765
+IGJpbm5lbg== 34766
+IGxpc3RlbnM= 34767
+IEhlc3M= 34768
+IExvdWlzZQ== 34769
+bGRlbg== 34770
+0LXQvdGB 34771
+IFZlcnNpb24= 34772
+IEFncmljdWx0dXJl 34773
+7Iqk66W8 34774
+0LzQsNC9 34775
+64Sk7JqU 34776
+IHdpbmVz 34777
+IElORg== 34778
+cnVs 34779
+IEpL 34780
+xLF5b3JsYXI= 34781
+c2hpZWxk 34782
+cmVhdGg= 34783
+IHRlcnVz 34784
+IEx1bQ== 34785
+IGFudGljaXBhdGlvbg== 34786
+IGFjY3VzdG9tZWQ= 34787
+IE1pbmE= 34788
+IHdpZWxk 34789
+aW/DqA== 34790
+bWVyYQ== 34791
+IGNvdW50ZG93bg== 34792
+IGNsaW5n 34793
+IGNvbW1lbmQ= 34794
+IGZha3Rpc2t0 34795
+IGRlZmVuc2Vz 34796
+IGNvY2twaXQ= 34797
+INC60L7QvNCw0L3QtA== 34798
+IGRpc2h3YXM= 34799
+IFRoYW5vcw== 34800
+IGtpZG5leXM= 34801
+IHNlaGU= 34802
+IG1pY3JvYmVz 34803
+IGN1ZmY= 34804
+INCy0YvRgdC+0Lo= 34805
+IFNwaWN5 34806
+4K614K6w 34807
+Y3VsdXM= 34808
+b3Jj 34809
+aXhlcw== 34810
+IENyZWRpdA== 34811
+IHJhag== 34812
+IGJyaW5ndA== 34813
+IE5pc3M= 34814
+IGdyaW0= 34815
+IFNPTA== 34816
+IHRlbmlt 34817
+IFN1ZGFu 34818
+IFNwYXJ0 34819
+IHByb21vdGVz 34820
+IE5vc3Nh 34821
+INGB0L7RgdGC0L7Rj9C90Lg= 34822
+IOywqQ== 34823
+IHVuY29udA== 34824
+IExpYmVyYWw= 34825
+INCi0L7Qu9GM0LrQvg== 34826
+IFZpZWxl 34827
+IGt0w7NyZWo= 34828
+ICoqKio= 34829
+TWF4 34830
+INCn0YLQvtCx0Ys= 34831
+MzUw 34832
+IO2YvOyekA== 34833
+IOu2hOuTpOydtA== 34834
+IHdhcnA= 34835
+IHRlbmdh 34836
+IHN5bXBhdGhldGlj 34837
+IGJpemk= 34838
+IFphY2s= 34839
+aWVkbw== 34840
+IOuJtOw= 34841
+cGllbA== 34842
+INGC0L7Quw== 34843
+IHNjYWxlZA== 34844
+IFBFVEVS 34845
+IENPTU0= 34846
+IENhbWU= 34847
+IGNhdGFzdHJvcGhl 34848
+IHN3ZWF0eQ== 34849
+aWdyYXRpb24= 34850
+IHN0dWZmaW5n 34851
+IM+Azr/Ou8+N 34852
+IERyaXZlcg== 34853
+enlzdA== 34854
+VGVjaA== 34855
+IGFzc2Vzc2Vk 34856
+IFN1cmZhY2U= 34857
+xLFyxLFt 34858
+c3Vy 34859
+bGVyd2VpbGU= 34860
+INC00L7Qsw== 34861
+IHNodXR0aW5n 34862
+IGZyYWN0aW9ucw== 34863
+INGB0L7Quw== 34864
+ZXZlcnlvbmU= 34865
+IGVybg== 34866
+INCd0L7Qsg== 34867
+IGRlZmVuZGVycw== 34868
+IHZlcnN1Y2h0 34869
+IHBvbGl0eQ== 34870
+INCf0L7QvQ== 34871
+dmVyc3TDpG5k 34872
+IGJyb3dzZXJz 34873
+IHRyYW5zZm9ybWF0aXZl 34874
+IGRpY3RhdGU= 34875
+IExFR08= 34876
+IG5pbmd1bmE= 34877
+6rSR 34878
+IHBpeno= 34879
+IEhhcm9sZA== 34880
+IExvcGV6 34881
+2r7bjA== 34882
+YW7EsXo= 34883
+YXRjaGV0 34884
+2YrYqg== 34885
+IGxlcm5lbg== 34886
+IOq3gOyXrA== 34887
+IGhvdXNlZA== 34888
+IGNsZWFuc2U= 34889
+IFdBVA== 34890
+bGFyYXRpb24= 34891
+IGJ5dGVz 34892
+IHR1Y2tlZA== 34893
+IGZhdWx0cw== 34894
+0LTQvg== 34895
+Rlg= 34896
+IOyWvOuniOuCmA== 34897
+IGRlZm9ybQ== 34898
+IGNvbnRyYWN0aW5n 34899
+IFRJTUU= 34900
+aXJzZQ== 34901
+IG5lYmVu 34902
+IGNlcmM= 34903
+IEFybXN0cm9uZw== 34904
+IHRlc3Rlcg== 34905
+IHBhcmZhaXQ= 34906
+IGplYWxvdXN5 34907
+IHRveGlucw== 34908
+IGRpc2JlbA== 34909
+0YPRgNGL 34910
+aW1wcmVzc2lvbg== 34911
+IHByb3N0YXRl 34912
+IGZpcmV3YWxs 34913
+IGNsYXNzaWNz 34914
+0LXRh9GM 34915
+IHNvY2lhbGlzbQ== 34916
+IGdyYWNpb3Vz 34917
+INGB0L3QvtCy0LA= 34918
+INC00L3Rjw== 34919
+IGJ1cm5lcg== 34920
+IE1pbm9y 34921
+IOyasOumrOs= 34922
+IGplZGVz 34923
+IGNvbnRpbnV1bQ== 34924
+IGhvdHM= 34925
+IG9jY3VycmVuY2U= 34926
+IGFkbWluaXN0ZXJlZA== 34927
+INC30LDQvNC10YI= 34928
+IGhlc2l0YXRpb24= 34929
+IGRyaWxscw== 34930
+ZXJjYQ== 34931
+INCy0YLQvtGA0L7QuQ== 34932
+IHN0ZWFkaWx5 34933
+IGluc2FubGFy 34934
+IGloYW4= 34935
+7ZE= 34936
+IGhlbHBlcg== 34937
+IFNlbmlu 34938
+0L7QstCw0L3QuNC1 34939
+IEVSSUM= 34940
+Ymxh 34941
+IEFjYWRlbWlj 34942
+IGh1bWFuaXRpZXM= 34943
+YmxhY2s= 34944
+dW1weQ== 34945
+b3J0ZXg= 34946
+IOygiOs= 34947
+INil2YY= 34948
+IGRpc2Nsb3Nl 34949
+IEVsaWphaA== 34950
+IM67zq0= 34951
+IFF1ZXI= 34952
+2KjZhA== 34953
+VGVsbA== 34954
+YXJsZQ== 34955
+0ZbRgA== 34956
+IGF1Z21lbnRlZA== 34957
+IOu5hOyKtw== 34958
+IGFuZHJvaWQ= 34959
+4KSk 34960
+YXJtYQ== 34961
+IHN6ZXI= 34962
+Z2VvcmQ= 34963
+IGdlZWs= 34964
+IHlldXg= 34965
+IHBvbmc= 34966
+IHRvcnR1cmVk 34967
+IEJhdGg= 34968
+emln 34969
+YXNvbmFibGU= 34970
+IG5ldHM= 34971
+IGJhcnU= 34972
+IEZsYXQ= 34973
+IFZhdGVy 34974
+IFRlcnJvcg== 34975
+IEF2bw== 34976
+IGNlcmVtb25pZXM= 34977
+cm9l 34978
+2YHYsw== 34979
+T3Bz 34980
+IGh5dmlu 34981
+IGFwcmVzZW50 34982
+b2xvcg== 34983
+INC40LPRgNGL 34984
+b3J0b24= 34985
+IOq3uOuerA== 34986
+IGxvb2tpbg== 34987
+IFRZ 34988
+IE1pbnQ= 34989
+QWRk 34990
+IG1pdGU= 34991
+IFNtb2tl 34992
+IG5vdGE= 34993
+IG1vc3M= 34994
+IEFiZW5k 34995
+IOy7qA== 34996
+IGV4YWdnZXJhdGVk 34997
+ZmlyZXM= 34998
+IHJlZGlzdA== 34999
+ZmZpdGk= 35000
+IG9wZW5uZXNz 35001
+6rCQ7J20 35002
+ZW5kZXU= 35003
+0LXQvdC90L7QuQ== 35004
+V2F0Y2g= 35005
+IGF2YXRhcg== 35006
+IFBleQ== 35007
+dXJ1bg== 35008
+IHNlbnph 35009
+IOyngOyXrQ== 35010
+IE5hdG9taWFzdA== 35011
+IGVtZXJnZW5jZQ== 35012
+cmF5cw== 35013
+IGNyYWZ0ZWQ= 35014
+Z2FyeQ== 35015
+w7xuZw== 35016
+LSI= 35017
+IGhhY2tlZA== 35018
+IHN0cmF5 35019
+ZW5jaWU= 35020
+ZW1v 35021
+IGNvbWVu 35022
+IEvEsXo= 35023
+IEphc21pbmU= 35024
+IEhpbmRp 35025
+bWFuYXM= 35026
+IGluZmluaXRlbHk= 35027
+ZW1vbg== 35028
+7J24642w7JqU 35029
+amFr 35030
+IHJvYXJpbmc= 35031
+w6lyaXF1ZQ== 35032
+c3dlaXNl 35033
+IFJvbGV4 35034
+IFN0dWFydA== 35035
+Ym5i 35036
+IGRpYWdub3Nl 35037
+IGNvaGVyZW50 35038
+IE1K 35039
+IHBpa2U= 35040
+bGF2 35041
+IG9yY2hlc3RyYWw= 35042
+0LDRgdGC0Lg= 35043
+IHRlcm1pbmFy 35044
+IGdhdGhlcmluZ3M= 35045
+IGNvbXBsaWFudA== 35046
+IHVwZ3JhZGluZw== 35047
+IHJlZ3VsYXRvcg== 35048
+IGxhbsOn 35049
+IG1lcmNoYW50cw== 35050
+dGF3YQ== 35051
+IG1vbml0b3JlZA== 35052
+IHJlbmRyZQ== 35053
+IHVudGVyd2Vncw== 35054
+YW5ndWFyZA== 35055
+Z2FyZA== 35056
+IEJlbG93 35057
+ZHVpbm8= 35058
+INCm0LU= 35059
+IGltcGVkYW5jZQ== 35060
+7Jyh 35061
+IGFrdHVlbGw= 35062
+IFZhdGlj 35063
+IHN0ZXdhcmRz 35064
+IGJyaWdodGVzdA== 35065
+IGtlbm4= 35066
+IGthdQ== 35067
+IE1hdHJpeA== 35068
+IEJhcms= 35069
+IPCfkQ== 35070
+IHRhcGVy 35071
+IGNhc2lubw== 35072
+16jXlA== 35073
+eXNpY2Fs 35074
+IGJ1aWxkZXJz 35075
+IGN6xYJvd2ll 35076
+IE5lcGFs 35077
+ICEi 35078
+IHRlcm1l 35079
+IGlubnljaA== 35080
+IG1hdGhz 35081
+IGRyYWZ0ZWQ= 35082
+IEJhbGs= 35083
+IGhlc2l0YW50 35084
+IHZvbHRhcg== 35085
+IHJldml2ZQ== 35086
+INGE0LjQu9GM0LzQsA== 35087
+IGFzc2Fzc2lu 35088
+IFNvbHV0aW9ucw== 35089
+IGR1ZWw= 35090
+IGJlYXJpbmdz 35091
+4LiE4Liw 35092
+IHJvb2tpZQ== 35093
+aWthdA== 35094
+IGJpc2N1aXRz 35095
+IGNvcmRz 35096
+0YPQstCw0YLQuA== 35097
+QVJJTg== 35098
+IHByb2dyZXNzaW5n 35099
+IEdpcg== 35100
+IHBlbmV0cmF0ZQ== 35101
+IFN0b3JhZ2U= 35102
+ZWlnaHQ= 35103
+INGC0YDRgw== 35104
+IGRvbsOtdA== 35105
+IHNpemlu 35106
+IG91dGRhdGVk 35107
+INC90LDRiNC4 35108
+IGFmZmly 35109
+IHNwb29ucw== 35110
+IG9uaQ== 35111
+IGZsYW5r 35112
+IEdvbA== 35113
+aMOj 35114
+IHDDqXJp 35115
+IGhvbm9yYWJsZQ== 35116
+IEJyZWF0aGU= 35117
+c2NlbmVz 35118
+IG9idmlhbWVudGU= 35119
+0LjQutGB 35120
+INep157X 35121
+IHNtb290aGll 35122
+nojr 35123
+IGRpbWU= 35124
+IO2WiOyWtOyalA== 35125
+IGFwcGVs 35126
+IENhdGhvbGljcw== 35127
+IHNpbmdsZXM= 35128
+IGxhdGVu 35129
+IMOnw7xua8O8 35130
+IFZhZGVy 35131
+IHZhcmTEsQ== 35132
+IElzdGFuYnVs 35133
+Z3LDqQ== 35134
+IEVsc2E= 35135
+w6ts 35136
+IGludmVjZQ== 35137
+IGNyYW5l 35138
+IG9iZQ== 35139
+IFNoYXJr 35140
+IHNtYWNr 35141
+IHJlc3RvcmluZw== 35142
+Llw= 35143
+IOu5oOs= 35144
+IGZhZGVk 35145
+dW1iZXJz 35146
+U2luZ2luZw== 35147
+IGRlcHJlc3Npbmc= 35148
+dGhlc3Q= 35149
+IFdhaHI= 35150
+IG11bHRpdHVkZQ== 35151
+0YDQsNCy0YHRgtCy0YPQudGC0LU= 35152
+cmlqaw== 35153
+ZWth 35154
+IGNvbXBsZXRlcw== 35155
+IFdlbGxz 35156
+IHJveQ== 35157
+IFByYXk= 35158
+IEthbGF1 35159
+aXppbg== 35160
+aWHFgmVt 35161
+IGxvY29t 35162
+IE5hc2h2aWxsZQ== 35163
+IFBlbnRhZ29u 35164
+66+4 35165
+IE5FVw== 35166
+xIXEhw== 35167
+w61zcw== 35168
+IG1hcnJ5aW5n 35169
+IGZldWQ= 35170
+7ZmV 35171
+KSE= 35172
+IE9wZXJhdGlvbnM= 35173
+0YPRlA== 35174
+IG1vamU= 35175
+IGluc3RydWN0ZWQ= 35176
+IOuIhOq1rA== 35177
+INeU15I= 35178
+INC/0L7QvNC+0YnRjNGO 35179
+IHNhYmlh 35180
+7JWY7Ja07JqU 35181
+cGxhbmU= 35182
+cHJp 35183
+INC/0L7Qu9C90L7RgdGC0YzRjg== 35184
+IEtpdHR5 35185
+IHByw7Nwcmlv 35186
+ZWRlcmU= 35187
+IGludGVyZXNhbnRl 35188
+INC00LU= 35189
+IGNvbmRlbnNlZA== 35190
+IGF2ZW50 35191
+VE9S 35192
+IGdyZWFzeQ== 35193
+QVJL 35194
+b3J0YQ== 35195
+QUo= 35196
+IGRpc3JlZw== 35197
+IGNvcnJlY3Rpb25z 35198
+IHN0ZXJv 35199
+IGluZmx1ZW56YQ== 35200
+IGRlc3Nlcw== 35201
+IGJhbGxvdHM= 35202
+IG1lZ2V0 35203
+IG1hZmlh 35204
+IGLDtmw= 35205
+bm9zdA== 35206
+INGB0YLQsNGC0Yw= 35207
+IHJlc3BvbmRlcg== 35208
+IGhpbnRlbg== 35209
+Z3Jhdg== 35210
+4Lit4Liw 35211
+eW5jaHJvbg== 35212
+IHZpZW5z 35213
+IHNhbW8= 35214
+IGR0 35215
+cGFubnQ= 35216
+IMWbd2lhdA== 35217
+INC30LDQv9C40YE= 35218
+IG1lcmdlZA== 35219
+IGtlcA== 35220
+IG1pc2xlYWRpbmc= 35221
+IGRpZ2Ftb3M= 35222
+IGFtbW9u 35223
+Y2hldA== 35224
+IOqwgOyguA== 35225
+IHVuaQ== 35226
+IOuQmOuKlOuNsA== 35227
+INC90LDQv9GA0LDQsg== 35228
+INC60L7RgtC+0YDQvtCz0L4= 35229
+IGFuaW1hdGU= 35230
+15XXkNc= 35231
+0LXRgNCy 35232
+IG1pbmNlZA== 35233
+IGthdW0= 35234
+z4DOtQ== 35235
+0LvQtdCz 35236
+ZXhpc3Rpbmc= 35237
+IHBsYXRhZm9ybQ== 35238
+IEtSSVM= 35239
+7Jug 35240
+IEZhbWlsaWVu 35241
+IExpYnlh 35242
+IGJpb2RpdmVyc2l0eQ== 35243
+IGlkaW90cw== 35244
+aXJkaQ== 35245
+IHN6eWI= 35246
+IFJvbGxpbmc= 35247
+w7xjaHQ= 35248
+INGD0LTQuNCy 35249
+0YHRg9C0 35250
+IHJlYWxpemFy 35251
+IGNhbm5lZA== 35252
+INGA0LDQvQ== 35253
+IG1ldGFib2xpYw== 35254
+IEJlZWY= 35255
+IGtpbGth 35256
+0LvRjtGB 35257
+IHJlZ2lzdHJ5 35258
+0LzQvtGC0YDQuNGC0LU= 35259
+IHZpZWzDpA== 35260
+IG9kYw== 35261
+IGNvbmRlbW5lZA== 35262
+ZmFs 35263
+IERpbA== 35264
+d2/Fm2Np 35265
+QXc= 35266
+IHN0YXRpc3RpY2FsbHk= 35267
+IHNvZ2Vu 35268
+IEJFVEg= 35269
+IHNoYXZpbmc= 35270
+b2NhbA== 35271
+IEZ1bm55 35272
+IHBlYWNlZnVsbHk= 35273
+IGFkZGljdGl2ZQ== 35274
+IEluc2VydA== 35275
+bGF1Zg== 35276
+IGV4cGVyaWVuY2lh 35277
+0LjRgtC10LvRjw== 35278
+w61nZW4= 35279
+w6FnaW5h 35280
+IGFiZG9tZW4= 35281
+7ZWc64uk 35282
+aWN1cw== 35283
+aW1hbmE= 35284
+7I2o 35285
+YXJjaGluZw== 35286
+IGtvbmtyZXQ= 35287
+7JWY6w== 35288
+0LXQutCw 35289
+b3VmbA== 35290
+aXZlbA== 35291
+IG51ZGU= 35292
+w6h0cmVz 35293
+IG1vbnNpZXVy 35294
+IGNsYXNo 35295
+IHRoZXJhcGlzdHM= 35296
+IGN1YmVk 35297
+IHJldHJvdXZlcg== 35298
+IHdhdmVmb3Jt 35299
+IHBvdGVt 35300
+IEZvcm1lcg== 35301
+aXNpw7Nu 35302
+INeQ150= 35303
+dW5kb3M= 35304
+IE1laW51bmc= 35305
+2LXZhA== 35306
+IEp1ZGU= 35307
+IG7DpXI= 35308
+IExlb25hcmRv 35309
+IENyaXN0bw== 35310
+IEdPVA== 35311
+0YHRgtGA0YPQug== 35312
+TEFO 35313
+IGfDpW5n 35314
+IGTDqWI= 35315
+IEZyYW5rZnVydA== 35316
+IGNyYXBweQ== 35317
+IGxpbA== 35318
+YW5uw6ll 35319
+INC80LXRgdGC0LU= 35320
+UkVU 35321
+IE5lcg== 35322
+IENPU1RB 35323
+IGplZGVt 35324
+IGN1cnRhaW5z 35325
+IGl0ZXJhdGlvbnM= 35326
+IHVuYXY= 35327
+IHBsYXF1ZQ== 35328
+b3J1bQ== 35329
+IM62 35330
+IG7Dum1lcm9z 35331
+IGRlc2Fw 35332
+sr0= 35333
+IGNvbXBpbGVk 35334
+IHJlZmxl 35335
+IHJhbmtpbmdz 35336
+IHJlcGFpcmVk 35337
+INCd0LDQv9GA 35338
+IGRvd25sb2Fkcw== 35339
+IGFybW91cg== 35340
+INeZ15XXqteo 35341
+IGxvbmdldml0eQ== 35342
+IFRPTkVS 35343
+INC60L7QvNC80LXQvdGC0LDRgA== 35344
+IGN6ZWdv 35345
+IG5vdGlmeQ== 35346
+IGFpcnBvcnRz 35347
+IGVuZHVyaW5n 35348
+bGV0dGU= 35349
+IGFwcGFyYXQ= 35350
+IGhhYmls 35351
+4buHYw== 35352
+bmFk 35353
+SUNP 35354
+IEJyYWg= 35355
+IHNlZ8O6bg== 35356
+IGdvdmVybm9ycw== 35357
+a2FoYQ== 35358
+IFNjaGx1c3M= 35359
+IG9kcG93aWVk 35360
+aXJ0aW5n 35361
+IHJlbXBs 35362
+IEFib3JpZ2luYWw= 35363
+aWRlbnRhbGx5 35364
+IGVuaGFuY2luZw== 35365
+bGljdGluZw== 35366
+IEhhd2FpaWFu 35367
+IHN0cml2aW5n 35368
+IE5pZXQ= 35369
+IHpuYWN6eQ== 35370
+IG9iZWRpZW5jZQ== 35371
+IG7DpWdvdA== 35372
+IGV4cGlyZWQ= 35373
+IDE5MTg= 35374
+cHJlc2VudGVk 35375
+IHByb3dhZA== 35376
+IFRlcnI= 35377
+IFByaW5jZXRvbg== 35378
+IG1vcmdlbg== 35379
+IGF0dHJhY3Rpbmc= 35380
+IFNpZ21h 35381
+aWduZXI= 35382
+IFJlY2h0cw== 35383
+IFBla2k= 35384
+IG1ldGh5 35385
+IGhhbW0= 35386
+IGRpcmVpdG8= 35387
+IGRlbGVnYXRpb24= 35388
+0LjQstCw0Y7Rgg== 35389
+IGdpbg== 35390
+WW91bmc= 35391
+IGRlcGVuZGVuY2llcw== 35392
+IEJyYWRsZXk= 35393
+YnVkcw== 35394
+IGZpcw== 35395
+IHB5dGFuaWU= 35396
+IGludGVyY29ubmVjdGVk 35397
+IGVtYmFpeG8= 35398
+IFNhcw== 35399
+IHJ1aA== 35400
+IFNpY2h0 35401
+U3Vy 35402
+IHN1cGVyYg== 35403
+IFNhYmJhdGg= 35404
+IERhbmdlcg== 35405
+a29s 35406
+IGhvdQ== 35407
+c3VwcA== 35408
+IE5hY2lvbmFs 35409
+IHN1Y2Nlc3Npb24= 35410
+IHbDoQ== 35411
+IE1hw59uYWhtZW4= 35412
+IEplc3NpZQ== 35413
+IElkYWhv 35414
+Zm9yZXN0 35415
+hZg= 35416
+INee15M= 35417
+INij2Yo= 35418
+IHN3ZWV0aGVhcnQ= 35419
+IG5lYXRseQ== 35420
+IEV2YW5nZWw= 35421
+6rOh 35422
+IFN1aXRl 35423
+w7pibGljYQ== 35424
+INGD0LvQuA== 35425
+IEFubm91bmNlcg== 35426
+bGlnaA== 35427
+IHNlbnNhdGlvbnM= 35428
+IHNoZWx0ZXJz 35429
+IGhhcnQ= 35430
+IHNxdWVlemluZw== 35431
+IFJpdmVycw== 35432
+IENvb2tpbmc= 35433
+7LGF 35434
+cGVyc29uYWw= 35435
+IG1hbm9z 35436
+0ZHRgtGB0Y8= 35437
+d2lq 35438
+IGdvZ2c= 35439
+IE1pbGxp 35440
+IEZQ 35441
+w7xuc3Q= 35442
+IExT 35443
+IHNwcmF5aW5n 35444
+IGZhdXg= 35445
+IGF1dG9ncmFwaA== 35446
+b2xvZ2lj 35447
+IHRvcm1lbnQ= 35448
+IGVuY3J5cHRlZA== 35449
+4buF 35450
+IGVzdHJl 35451
+4LE= 35452
+IHN0dW1ibGVk 35453
+IGFpZGVy 35454
+IHNhYmVu 35455
+eHRlcg== 35456
+IENpdGllcw== 35457
+IFTDvHJr 35458
+64ul 35459
+Y2hpbmU= 35460
+IHRvcHBpbmc= 35461
+IHBvaXNvbmVk 35462
+IFJvbWFuaWE= 35463
+15PXmQ== 35464
+gOuhnA== 35465
+INC/0L7RgNGP0LQ= 35466
+IGNoaXJwaW5n 35467
+IOyZhOs= 35468
+15HXog== 35469
+IGN1YW50bw== 35470
+IGRvbmF0aW5n 35471
+IFJlZ2VudA== 35472
+IEJlcnVm 35473
+IGRpc3RyYWN0aW5n 35474
+IHN0YW1pbmE= 35475
+IERhcnJlbg== 35476
+IOy2lQ== 35477
+bGlzdHM= 35478
+ZGFs 35479
+Y2h1c3M= 35480
+IGVjb25vbWlzdA== 35481
+b3JndA== 35482
+IGlzdGl5b3J1bQ== 35483
+IFN1cnByaXNl 35484
+IEhhbw== 35485
+IOy1nOqzoA== 35486
+IEdX 35487
+IElubmVy 35488
+IHF1aWVyZW4= 35489
+IG1pbmRlZA== 35490
+IHN1cGVyY29tcHV0ZXI= 35491
+IGRpYWdyYW1z 35492
+7Yqc6w== 35493
+6rKg7Ja0 35494
+INC+0LHRitGP0YE= 35495
+IGVzdGFiYW4= 35496
+IGRlc3Ryb3lz 35497
+IEJyZWFraW5n 35498
+IGthcsSxxZ8= 35499
+IHJlYnVpbGRpbmc= 35500
+nOuMgA== 35501
+0LvQuNCy0L4= 35502
+IFNhdWNl 35503
+IEZ1c2lvbg== 35504
+15XXntc= 35505
+IFF1aW5u 35506
+IGdhdWNoZQ== 35507
+INmI2KM= 35508
+IMg= 35509
+IHRlY2hubw== 35510
+IGRpc3BhdGNo 35511
+IGHFn2s= 35512
+IGVpbnplbA== 35513
+IEdtYWls 35514
+554= 35515
+IOqwnOyduA== 35516
+INGB0LXQvNGM 35517
+IGpvdXJuZXlz 35518
+IGlodA== 35519
+IGZpYnJl 35520
+IGRyYW1hcw== 35521
+b3VjaGVk 35522
+IHJlbmFtZQ== 35523
+INC+0L/QtdGA 35524
+IHBvbw== 35525
+IERydQ== 35526
+INC40YLQvtCz 35527
+IHphc3Q= 35528
+IGNveg== 35529
+IHp1Y2No 35530
+IG9idGFpbmluZw== 35531
+IGNvbW11dGU= 35532
+IHN1Ym1lcg== 35533
+IFZpc2g= 35534
+IFJhYmI= 35535
+b2dn 35536
+IGh1dA== 35537
+7ZaI7Ja0 35538
+ZXJlbWk= 35539
+IM68zrE= 35540
+IGRpc2t1dA== 35541
+INCx0YPQug== 35542
+IGltcGFpcmVk 35543
+ZGVwZW5k 35544
+INmI2Kc= 35545
+INGA0YPQug== 35546
+INCx0LDRgA== 35547
+IG94aWRhdGlvbg== 35548
+IHNpdHVhw6fDo28= 35549
+yZlu 35550
+dcOnw6Nv 35551
+IHNhZ3Rl 35552
+IFNFUg== 35553
+IENha2U= 35554
+IHR1cm1lcmlj 35555
+IEthaw== 35556
+YnVuZw== 35557
+IEvhuZvhuaPhuYdh 35558
+IHBvaXNvbmluZw== 35559
+IHNsaXBwaW5n 35560
+IFNheXM= 35561
+w7JuZw== 35562
+wqs= 35563
+IENsYXVkaWE= 35564
+IENoYXJhY3Rlcg== 35565
+0L3QuNGG 35566
+Y29hdA== 35567
+IHByb2dyZXNzZWQ= 35568
+IEZlcmd1cw== 35569
+IOyYpOuK 35570
+IG9hdA== 35571
+b3JkYWJsZQ== 35572
+IExleQ== 35573
+IEhlcmF1cw== 35574
+IHJlc3VsdGFkb3M= 35575
+IEtheWxh 35576
+IHJpZmY= 35577
+IGNoZWdvdQ== 35578
+IHhp 35579
+IHNwYWNpb3Vz 35580
+IHJlY29nbmlzZWQ= 35581
+IGVjaA== 35582
+IFRpZQ== 35583
+IGxhdW5jaGVy 35584
+Smlt 35585
+IHN1cHByZXNzaW9u 35586
+IEltcG9zc2libGU= 35587
+IGd1aXRhcnM= 35588
+IEZvdXJpZXI= 35589
+0LjRh9C10YHQutC40Lk= 35590
+IFRoZXJhcA== 35591
+IEthZg== 35592
+Y2VudGVyZWQ= 35593
+INGB0L7QvtGC0LLQtdGC 35594
+IGtsaW0= 35595
+IGNhcmJvaHlkcmF0ZXM= 35596
+aWduYW50 35597
+IEFzdHJvbg== 35598
+IGVtcGxl 35599
+IGRyYXN0aWM= 35600
+INC80LjRgNC1 35601
+0LLQuNC9 35602
+dXc= 35603
+IHByZXR0aWVy 35604
+IGRvbnV0cw== 35605
+IEF0aGVuYQ== 35606
+IGRpc3NlcnQ= 35607
+IHBsYW50ZQ== 35608
+IHVyYW5pdW0= 35609
+7J2M6w== 35610
+YXLDqQ== 35611
+IHJ6ZWN6 35612
+IGRpc3BsYXlpbmc= 35613
+IHNhcmM= 35614
+csOjbw== 35615
+IHRhbXBvY28= 35616
+IHBoaWxvc29waGVycw== 35617
+IFJlY2h0 35618
+IGNvbWVudGFyaW9z 35619
+eXNl 35620
+IOycpA== 35621
+IG1pc2U= 35622
+IEdpbg== 35623
+INC90L7QvA== 35624
+IEZST00= 35625
+bGluZXI= 35626
+YXRpZg== 35627
+IHNwb8WCZWM= 35628
+eGE= 35629
+INGC0YDRg9C0 35630
+IHdhZw== 35631
+6riw7JeQ 35632
+IE1H 35633
+IG9mZnNwcmluZw== 35634
+IFVuZGVyc3RhbmRpbmc= 35635
+T1JB 35636
+IHdoaXJyaW5n 35637
+IHN1cnJlbmQ= 35638
+IHBva2Vy 35639
+IG1vbnVtZW50cw== 35640
+IOKZqQ== 35641
+IG9yZ2FuaXNlZA== 35642
+IFNvemlhbA== 35643
+IEZhY3Rvcnk= 35644
+0YXQsA== 35645
+IHJlc2VtYmxl 35646
+0LfQtA== 35647
+IGV4cGxvc2lvbnM= 35648
+IHBheXJvbGw= 35649
+IG9tbg== 35650
+IEpvcmdl 35651
+zrnPgw== 35652
+IGZyYWN0dXJl 35653
+IHBlcnNlY3V0aW9u 35654
+IGRlbWFpcw== 35655
+RUNI 35656
+LCk= 35657
+IGNyaWFy 35658
+IEpPU0g= 35659
+IGRlbW9ncmFwaGljcw== 35660
+IDE2MDA= 35661
+IGN1cnJlbmNpZXM= 35662
+IFRpcHM= 35663
+IFJlZmVy 35664
+IERhbmNpbmc= 35665
+IGluY29uc2lzdGVudA== 35666
+IGRlaA== 35667
+IGltbWVucw== 35668
+IG1laXN0 35669
+IGltcGF0aWVudA== 35670
+IGJlaGF2ZXM= 35671
+IOuCtOyaqQ== 35672
+IGJhY2tzdG9yeQ== 35673
+IGFncmVlaW5n 35674
+IMWB 35675
+aWhpbg== 35676
+IHRlbXBlcmF0dXJh 35677
+IEJhY2tncm91bmQ= 35678
+IG51dHplbg== 35679
+IOuFuQ== 35680
+IE3DpG5uZXI= 35681
+IGNvbGxhYm9yYXRpb25z 35682
+IEtvcw== 35683
+IG5pZ2h0bWFyZXM= 35684
+65Ox 35685
+IFF1ZWVuc2xhbmQ= 35686
+IGFzc29jaWF0ZXM= 35687
+IEtvaw== 35688
+IGZhY3RvcmlhbA== 35689
+IEh5dW5n 35690
+IOq3uOuLpOydjA== 35691
+IGZpbGhv 35692
+IGVsw6l0 35693
+IO2WieuztQ== 35694
+sLE= 35695
+IGdlZnVuZGVu 35696
+IHNlbWljb25kdQ== 35697
+IGNvdW5zZWxvcnM= 35698
+IFVwcGVy 35699
+IEF1Yg== 35700
+aWNrZXJz 35701
+VmVy 35702
+IG5vcnRod2VzdA== 35703
+IE1haW50ZW5hbnQ= 35704
+IExha2Vz 35705
+0LDRj9Cy 35706
+aW50w6k= 35707
+7LC9 35708
+INCz0LDQtw== 35709
+IGdpb3Ju 35710
+IGRpZ2l0YWxseQ== 35711
+IENpcmN1aXQ= 35712
+7LyA 35713
+IGNoZWVyZnVs 35714
+IFBldGVyc29u 35715
+IERhbmlzaA== 35716
+YXRpdm9z 35717
+IGxpa2Vu 35718
+IGhhcmJvcg== 35719
+0LDQu9C40YHRgg== 35720
+eGU= 35721
+IGN1cmxz 35722
+IFJob2Q= 35723
+RW5k 35724
+IEVU 35725
+IGFjcXVhaW50 35726
+IEtlbHZpbg== 35727
+IHRyaWY= 35728
+IEF3YXk= 35729
+7J6Q64qU 35730
+dnM= 35731
+IHDDoWdpbmE= 35732
+IGlubGV0 35733
+IFNhbnRvcw== 35734
+IOyasOyZgA== 35735
+IHlhcMSxeW9yc3Vu 35736
+dGhlbWU= 35737
+IHNvdWZm 35738
+IGluamVjdGVk 35739
+IHDDs8W6bmllag== 35740
+aXZlcnNv 35741
+YW1wZWQ= 35742
+IGRhaGVy 35743
+IGRhZ2dlcg== 35744
+INC70Y7QsdC40Lw= 35745
+IHR1bW15 35746
+IGVubGlnaHRlbmVk 35747
+Y2VudHM= 35748
+IERhaA== 35749
+IGN1ZXN0 35750
+SUxZ 35751
+INeR16g= 35752
+IGJhbmdpbmc= 35753
+IEVtaWw= 35754
+IENsZXI= 35755
+IEJvcmRlcg== 35756
+0LjQttGD 35757
+IHByZXNlbnRlcnM= 35758
+IFNUVUQ= 35759
+Y29pbnM= 35760
+IO2ZjQ== 35761
+IHBlcmtz 35762
+IHBhcmFw 35763
+IGNlcnRhaW5lcw== 35764
+IExvcmU= 35765
+w7ZzdA== 35766
+IE1BUlRJTg== 35767
+IGJpb3M= 35768
+IHdoZXJlYnk= 35769
+dmVydHM= 35770
+IE1pcmFuZGE= 35771
+IHN0aXA= 35772
+YW5kZXo= 35773
+15vXnA== 35774
+dWppbg== 35775
+IOq+ 35776
+IGFsbGVyZ2llcw== 35777
+cGxhdGU= 35778
+IHlhcMSxbA== 35779
+IHVuZGVydGFrZQ== 35780
+IOuCmOqwgA== 35781
+UGFydA== 35782
+IGvEsXrEsW0= 35783
+aGd1cnU= 35784
+IEpvaG5z 35785
+IGV5ZWxhc2hlcw== 35786
+IGRyYWluZWQ= 35787
+IHN0w6Vy 35788
+IEphZGU= 35789
+IGNhbGVuZA== 35790
+ZmlsbQ== 35791
+IG1lc2E= 35792
+IGx1ZHppZQ== 35793
+IGF0dHJhY3Rz 35794
+IGp1aWNlcw== 35795
+INC60LjQuw== 35796
+IG5pZXV3ZQ== 35797
+IG1lbmNpb24= 35798
+IGlnbml0aW9u 35799
+IGJsYWRkZXI= 35800
+YW5kYWFn 35801
+IEV4dGVuc2lvbg== 35802
+7YKo 35803
+ZmVlZA== 35804
+INmI2Yc= 35805
+IHNwdW4= 35806
+IHTDpHQ= 35807
+0L7RgNC+0YI= 35808
+dHlhcmQ= 35809
+cm9uaWNz 35810
+IEh1Z2U= 35811
+0YPQttC0 35812
+c3RyaW5n 35813
+IHVuanVzdA== 35814
+IHByYXdu 35815
+IGZyb3N0aW5n 35816
+IGRpc2FwcGVhcmFuY2U= 35817
+aW9zYQ== 35818
+IGNhcmRp 35819
+IFByaWVzdA== 35820
+IGNpZW50w61maWM= 35821
+INCS0LDRgQ== 35822
+IOu2gO2DgQ== 35823
+IHRoaWV2ZXM= 35824
+IHBoeXNpcXVl 35825
+IEV1Z2VuZQ== 35826
+INCx0LvQuNC3 35827
+IG1vbm9wb2x5 35828
+IGJpb2dyYXBoeQ== 35829
+IGhvxZ8= 35830
+IHTDtg== 35831
+bWFj 35832
+IHNob2Nrcw== 35833
+7IS46w== 35834
+aGl0 35835
+IHNudWc= 35836
+IGluY2w= 35837
+IGRlZGlj 35838
+IHVsdHJhcw== 35839
+INC40LfQstC10YHRgg== 35840
+IHV0aWxpemF0aW9u 35841
+INGB0L7QstC10YDRiNC10L3QvdC+ 35842
+IHNlcnZp 35843
+c3RhZw== 35844
+MTgw 35845
+IHNld2Vy 35846
+IENob2ljZQ== 35847
+IGRpc2NoYXJnZWQ= 35848
+IEpE 35849
+0L7Qu9C10YI= 35850
+INC60LLQsNGA0YLQuA== 35851
+IHRlbGVzY29w 35852
+IEplxZtsaQ== 35853
+IE5hbmE= 35854
+Y2FsZQ== 35855
+INGC0L7QvQ== 35856
+bW1t 35857
+IGdlaGFidA== 35858
+64Kg 35859
+4LiZ4LiZ 35860
+IGV0aGVy 35861
+IHplbg== 35862
+IHJlc2VhcmNoZWQ= 35863
+IEN6eWxp 35864
+d29ya2Vycw== 35865
+IOqyveywsA== 35866
+IHNoZXJpZmY= 35867
+YWxsbw== 35868
+IHRpcG9z 35869
+IHByb3NlY3V0aW9u 35870
+IGZyb2dz 35871
+IGZhbHQ= 35872
+amQ= 35873
+IO2MlA== 35874
+IGZpbHRlcmVk 35875
+IE9mdA== 35876
+IOyN 35877
+IGRpc2Zy 35878
+IE11c3Rhbmc= 35879
+IHdvYWg= 35880
+IFJFQUxMWQ== 35881
+INC80L7Qs9C70Lg= 35882
+IGVudHJhZGE= 35883
+INC40LPRgNCw 35884
+IG1peGVz 35885
+INCw0LLRgtC+0LzQvtCx 35886
+0Jk= 35887
+IHNoaW4= 35888
+IHBhcmFub3JtYWw= 35889
+IHNvbWVwbGFjZQ== 35890
+IGRpc2hvbg== 35891
+ZXRhYW4= 35892
+IGZ1ZXJ0ZQ== 35893
+2bk= 35894
+IGRvb20= 35895
+7Iic 35896
+IGV4aXN0ZW50aWFs 35897
+IGJ1bGQ= 35898
+IFNESw== 35899
+INC/0YDQsNCy0LTQsA== 35900
+IHR1cm5vdmVy 35901
+IOyXrOq4sOyXkA== 35902
+IOCkuQ== 35903
+IG1vZGVsZWQ= 35904
+IGJ1Z8O8bg== 35905
+IGV4cGVyaW1lbnRhdGlvbg== 35906
+IG1vcm5pbmdz 35907
+IG1lZG8= 35908
+U3Rldmll 35909
+IHBsYXlhYmxl 35910
+IGFpcmxpbmVz 35911
+Z21lbnRz 35912
+IOq4sOu2hA== 35913
+IFRvbWI= 35914
+IE1WUA== 35915
+QVVESUVOQ0U= 35916
+IGNoZWNrb3V0 35917
+IHBhc3N0 35918
+IGJlaXNwaWVs 35919
+IExpbmtz 35920
+aGVhdnk= 35921
+IHF1ZXN0aW9uYWJsZQ== 35922
+IOyTsOs= 35923
+IHNpbGw= 35924
+IG1hbmlwdWxhdGVk 35925
+IExvcmVu 35926
+IOycvA== 35927
+IHZlcmdl 35928
+w6Fr 35929
+SUVT 35930
+IHNhYm90 35931
+IEN1c3RvbWVy 35932
+YWxlxbx5 35933
+IG5vbWluZWU= 35934
+IEdhZA== 35935
+IG5vdXZlbGxlcw== 35936
+IFNQRQ== 35937
+aXN0bGluZw== 35938
+IG92YWw= 35939
+0L7QsdGA0LDQtg== 35940
+aWZ0eQ== 35941
+IGJlemVs 35942
+eWV0 35943
+IGZyZWlnaHQ= 35944
+IEhhbsSxbQ== 35945
+csOtYQ== 35946
+IHpvbmluZw== 35947
+IGluZGVt 35948
+IELDvA== 35949
+IGZlbWluaXNt 35950
+IHZvaXg= 35951
+IG9maWNpYWw= 35952
+IGRpeW9ydW0= 35953
+u5A= 35954
+IGFyb3Nl 35955
+IHBhcmFy 35956
+7J247KeA 35957
+IE1hcnRpbmU= 35958
+IExlY3Q= 35959
+IHJlc3Rlcg== 35960
+IGRyb3duaW5n 35961
+dXlh 35962
+Y2lkYQ== 35963
+IEFyaWVs 35964
+IDAy 35965
+INeU15Q= 35966
+IFdlcnQ= 35967
+0KLRiw== 35968
+IHdpZG93 35969
+IHBhcmNobWVudA== 35970
+IGNvdHRhZ2U= 35971
+IFhM 35972
+IFNsYWNr 35973
+IE5FUw== 35974
+IHJvYmU= 35975
+IGdpbW0= 35976
+IGNhbWluaG8= 35977
+IEhhcnBlcg== 35978
+IGNpdHJ1cw== 35979
+IGZpcmVmaWdodGVycw== 35980
+IGRvcGFtaW5l 35981
+ZWxldHM= 35982
+IGRlbW9jcmF0 35983
+7KCc66Gc 35984
+IHBsYXliYWNr 35985
+b2o= 35986
+INC/0YDQvtC6 35987
+IFN1bGxpdmFu 35988
+c2VtYmxl 35989
+IFdvcnRo 35990
+IE11c3RhZmE= 35991
+4Liy4Lij 35992
+IG1ldHM= 35993
+0LvQvtGB0Yw= 35994
+IGluZXJ0aWE= 35995
+IHVuaWZvcm1z 35996
+w6lyaW8= 35997
+15XXqNeU 35998
+w6ludA== 35999
+IOCukg== 36000
+INGB0LDQvNGL0YU= 36001
+IHZvdWxhaXM= 36002
+IFppbW1lcg== 36003
+6rKg6w== 36004
+INC90L7RgQ== 36005
+ZW5jaWFz 36006
+IHJlbGFjacOzbg== 36007
+IOqxuOs= 36008
+IGZhY3Rpb24= 36009
+IGdvc3A= 36010
+0L/QvtC70L7Qtg== 36011
+bmFw 36012
+aGFr 36013
+IHByb2NlZWRpbmdz 36014
+IOyGlA== 36015
+7JWE64uI 36016
+IOyekOq4sA== 36017
+IHdlcmQ= 36018
+IHNvZg== 36019
+IHNjaGxpbQ== 36020
+IGZsYXZvcmVk 36021
+IHF1YWRyYXRpYw== 36022
+IEJvb3Q= 36023
+IHB1YmxpY2l0eQ== 36024
+IENhcm8= 36025
+ID8i 36026
+0L3QuNGG0LA= 36027
+bWFuaWE= 36028
+IFNVUg== 36029
+IEJVUg== 36030
+bGFuY2U= 36031
+w6l0aWNh 36032
+IHpvYmFjenk= 36033
+IHRyaW8= 36034
+c2FtYQ== 36035
+IHRhxZ8= 36036
+IGFzeW1t 36037
+cmVzc2Vy 36038
+INiq2Lk= 36039
+INC/0LXRgQ== 36040
+IGJlZ2lubmluZ3M= 36041
+bGFkxLFt 36042
+INCx0YvRgdGC0YA= 36043
+IG1vbw== 36044
+IEdlbmV2YQ== 36045
+ZXJ1cw== 36046
+Ym9yYWg= 36047
+IHJlZnVzaW5n 36048
+YnVsbA== 36049
+IFdhaXRpbmc= 36050
+IEluZGl2aWR1YWw= 36051
+IGFub255bQ== 36052
+aW1lbnM= 36053
+IG1lZGlkYXM= 36054
+IGZyYWdyYW50 36055
+IGRpcmVjdGVtZW50 36056
+IOyVhOuniA== 36057
+dXJpYQ== 36058
+IHNwaGVyaWNhbA== 36059
+IGFiZ2U= 36060
+IFZpY3Rvcmlhbg== 36061
+IHNwZWN0YWNsZQ== 36062
+IFJvZHJpZ3Vleg== 36063
+IG9jdXA= 36064
+IE7DpHI= 36065
+bWFya3M= 36066
+bmd1bG8= 36067
+IEx1Y2k= 36068
+IHNob3V0ZWQ= 36069
+IHJlZ3VsYXRvcnM= 36070
+xJ9pbmk= 36071
+IGRpc2VudA== 36072
+INGA0YvQvQ== 36073
+64Ko 36074
+IOyCtOs= 36075
+IHByb2Jsw6htZXM= 36076
+IEZpbmdlcg== 36077
+YXNzZW1ibGU= 36078
+IHBlYXI= 36079
+IGRyb2l0ZQ== 36080
+IEV2ZXJ5d2hlcmU= 36081
+dGFt 36082
+0L7RgtC40LI= 36083
+0LLQvtC5 36084
+b3JkaW5hdGU= 36085
+IExhaw== 36086
+IG3hu5tp 36087
+IFRlbGV2aXNpb24= 36088
+IGV4cG9uZW50aWFsbHk= 36089
+YXZhcw== 36090
+IGJsZXY= 36091
+IE1U 36092
+Q29ubmVsbA== 36093
+IOq1reuvvA== 36094
+INGB0LLQvtC40Lw= 36095
+IGFjaGE= 36096
+IER5bmFzdHk= 36097
+Smlu 36098
+IHRvcmU= 36099
+IGZsb3I= 36100
+INC80L3QvtCz0LjQtQ== 36101
+b3dhbg== 36102
+YmFo 36103
+IOyjhA== 36104
+IENlbGE= 36105
+IOy1nOq3vA== 36106
+IHBlcm1ldHRyZQ== 36107
+IGFicmFz 36108
+IHZlcnN0ZWhlbg== 36109
+IGVzY29ydA== 36110
+IFRoZW0= 36111
+w6Rya2U= 36112
+cG9ydGVy 36113
+IGthaGthaGE= 36114
+IGhlY3Q= 36115
+IGRhdQ== 36116
+d2Fo 36117
+b2x2ZQ== 36118
+IEFnZXM= 36119
+c2NoYWZ0 36120
+IFN0ZWxs 36121
+bmVsbGU= 36122
+IEVuc3VpdGU= 36123
+INCS0YHQtdC8 36124
+IGNyw6lk 36125
+IFBQ 36126
+bG9yZHM= 36127
+Z3J1bnRpbmc= 36128
+IGNvbnRyYWN0aW9u 36129
+R290 36130
+IGFjcXVpcmluZw== 36131
+IHNvcHI= 36132
+IHBvaXNvbm91cw== 36133
+Uk5B 36134
+IGFuYXI= 36135
+IEhvZg== 36136
+Jyk= 36137
+IHJlbWFya2FibHk= 36138
+IGludGVybmFjaW9uYWw= 36139
+w7xja2U= 36140
+aW5xdQ== 36141
+IGR1eQ== 36142
+IGJlYXN0cw== 36143
+IExBTg== 36144
+IHByZWNlZGVudA== 36145
+IFJQTQ== 36146
+IHNlbG9u 36147
+IG1vcnRl 36148
+IGNvbWXDp291 36149
+0Y/Qu9Cw 36150
+IGludGVycHJldGluZw== 36151
+IEJ1cmtl 36152
+0YLRgNCw 36153
+IOydtOufrA== 36154
+IHBlc3NpbQ== 36155
+IE5vaw== 36156
+7Yyd 36157
+RmVtYWxl 36158
+IOyLpO0= 36159
+mYA= 36160
+IHN0aW11bGF0aW9u 36161
+IHNsaWNr 36162
+IOqwgOuKlA== 36163
+INC60LDQtw== 36164
+IEhCTw== 36165
+IHBhcGllcg== 36166
+IGvDtm5udGVu 36167
+0YPQsdC70Lg= 36168
+IENvbnN0YW50 36169
+U1BFQUtJTkc= 36170
+IGt0w7NyxIU= 36171
+IGNvc21ldGljcw== 36172
+IFRyZW5k 36173
+IHJvYmJlcnk= 36174
+IHRpdHQ= 36175
+IGdqb3J0 36176
+IGRpZXRhcnk= 36177
+oIw= 36178
+IEtpcmJ5 36179
+INC/0YDQuNC80LXRgNC90L4= 36180
+IHF1YWxpZmljYXRpb24= 36181
+IOyViQ== 36182
+IGNhYmluZXRz 36183
+IGh0dHA= 36184
+IEVyaWNh 36185
+IGRpc2FkdmFudGFnZXM= 36186
+IGNoYXR0ZXJpbmc= 36187
+eXo= 36188
+ZmVpdA== 36189
+IGd1aWxk 36190
+IEVURg== 36191
+IERyYWdvbnM= 36192
+IEhFUkU= 36193
+dmVudGg= 36194
+2YTYp9mF 36195
+IG1hcmNow6k= 36196
+RGFt 36197
+IHBob3Rvbg== 36198
+IGVzdGFibGU= 36199
+TWFn 36200
+IG9saGFy 36201
+IGNvdXBsaW5n 36202
+IEhpbGZl 36203
+IFdpemFyZA== 36204
+INC80LDQu9C+ 36205
+aGVscA== 36206
+IGzDrW5lYQ== 36207
+IOyr 36208
+IHN0YW5kYWxvbmU= 36209
+IG1vcmFsZQ== 36210
+IHp3ZWl0ZQ== 36211
+w6RocnQ= 36212
+IGRvdHRlZA== 36213
+IGRyaXBwaW5n 36214
+IEZsYWc= 36215
+cm9ja2V0 36216
+cmF0ZWd5 36217
+aXJpbQ== 36218
+IO2VmOuptOyEnA== 36219
+IHNvZ2VuYW4= 36220
+IFVubw== 36221
+IFNjaHV0eg== 36222
+IGVzdGlsbw== 36223
+IFN1YnM= 36224
+IERhaXN5 36225
+0J3QtdGC 36226
+Jy4uLg== 36227
+IHBsYXRpbnVt 36228
+IGJpcmw= 36229
+IFNvdmk= 36230
+IHZpb2xhdGU= 36231
+0YPQtdGC0YHRjw== 36232
+cmlsbA== 36233
+IHRyYXo= 36234
+IHNuaXA= 36235
+IGN1bXBs 36236
+4Lit4LiB 36237
+IGN1aw== 36238
+IFBhcmxhbWVudA== 36239
+IGh5cGVydA== 36240
+IHB1bHA= 36241
+IHRvbmd1ZXM= 36242
+YXR0bw== 36243
+IGJ1c2Nh 36244
+aWhu 36245
+RVJP 36246
+INmK2Lk= 36247
+IHZhcmlhcw== 36248
+IE1hcmlhbg== 36249
+IGJvdW5kZWQ= 36250
+IHBpdGNoaW5n 36251
+IGRlZmljaWVuY3k= 36252
+IEJsZXNzZWQ= 36253
+IEV4ZXJj 36254
+dWNocw== 36255
+IG5oxrBuZw== 36256
+IHJhcGVk 36257
+aGFsZXM= 36258
+IG1hbGE= 36259
+cGlj 36260
+IDQwMQ== 36261
+xZtuaWVq 36262
+YXJpbmE= 36263
+65Ok7J2E 36264
+b3R0aQ== 36265
+INC00L7Qu9Cz0L4= 36266
+IHRyYWNrZXI= 36267
+IFNoZWxieQ== 36268
+IHZhbmlzaGVk 36269
+IGJha2VyeQ== 36270
+S2FwxLE= 36271
+SmVzdXM= 36272
+IEtS 36273
+Sk8= 36274
+hbg= 36275
+IGRpc2Nz 36276
+7ISv 36277
+7KeA6w== 36278
+15nXpg== 36279
+ZW1hcnk= 36280
+S2VuZHJh 36281
+IHnDvGs= 36282
+w7xja3Q= 36283
+IHZheg== 36284
+IGt1cA== 36285
+YWt0dQ== 36286
+INGB0L/QsNGB0LjQsdC+ 36287
+IGFpaw== 36288
+IG51cnNlcnk= 36289
+IGVuZGFuZ2VyZWQ= 36290
+w6ptZW1lbnQ= 36291
+ZW1hdGljcw== 36292
+IHJlc3BvbmRlcnM= 36293
+IFJlcHJlc2VudGF0aXZlcw== 36294
+IHNjdWxwdHVyZXM= 36295
+aWdrZWl0ZW4= 36296
+IGRlcGw= 36297
+IGludGVycHJldGF0aW9ucw== 36298
+IGRlYWRsaW5lcw== 36299
+IDE5NDI= 36300
+w5c= 36301
+IHN1Z2Fycw== 36302
+ZW11 36303
+bGl2ZWx5 36304
+IHJlY3JlYXRpb25hbA== 36305
+IGRpc3RvcnQ= 36306
+IHVuZGVyc2NvcmU= 36307
+IHVucXVvdGU= 36308
+IHNhZmVzdA== 36309
+IHN3b2xsZW4= 36310
+IGFuYWx5c2Vz 36311
+IGNvbW1lbmPDqQ== 36312
+YW5kaW4= 36313
+INCl0L7RgNC+0YjQvg== 36314
+IGRpYXJy 36315
+emllc3Q= 36316
+IHRvb3RoYnJ1c2g= 36317
+dWF0aW9ucw== 36318
+IGNhZGU= 36319
+IGJhY2tsYXNo 36320
+aGluZA== 36321
+IHJpc3F1ZQ== 36322
+emVzcw== 36323
+IOydtOyVvOq4sA== 36324
+IGVzcGVyYXI= 36325
+IHRyYW5zbGF0aW9ucw== 36326
+aW9uZWQ= 36327
+Z3JvYW5z 36328
+INC/0YPRgg== 36329
+IGdlbmV0aWNhbGx5 36330
+IGhhcHBpZXN0 36331
+IHdlcms= 36332
+YXRvb24= 36333
+IG11c2k= 36334
+IGZ1bsOnw6Nv 36335
+IOyeheuLiOuLpA== 36336
+INGA0LDQuQ== 36337
+IGJldm9y 36338
+QkxBTks= 36339
+IHJlcGVudGFuY2U= 36340
+UHV0 36341
+IHBvdHJ6ZWI= 36342
+IHNhbGE= 36343
+IGNhbXBh 36344
+V0VS 36345
+IGRlY8OtYQ== 36346
+IHPDqWN1cml0w6k= 36347
+IEFwcHJlY2lhdGU= 36348
+0YfQuA== 36349
+IFJhbmRvbQ== 36350
+67OE 36351
+a2Fo 36352
+IG3Dtmo= 36353
+IHPDpGdlcg== 36354
+INeZ15vXldec 36355
+IDE5MA== 36356
+eHR1cmVz 36357
+RXU= 36358
+IGfDpA== 36359
+INeR16o= 36360
+IENyb2F0 36361
+YXBv 36362
+UExF 36363
+IHBlcnNpc3RlbmNl 36364
+IGJsZW5kcw== 36365
+IHRyZWZmZW4= 36366
+IFNhbnRpYWdv 36367
+eWRpYQ== 36368
+YWxkbw== 36369
+IFRlbnNvckZsb3c= 36370
+IER1YWw= 36371
+IGNoaWZm 36372
+7Je0 36373
+IGNvbnRyYWN0ZWQ= 36374
+IHNlZ3JlZw== 36375
+IEZhaXJ5 36376
+IHdpc2VseQ== 36377
+IHZ1bG5lcmFiaWxpdGllcw== 36378
+IGhhbmRoZWxk 36379
+IGdhZGdldHM= 36380
+IGJvxZ8= 36381
+IFBvcHVsYXI= 36382
+IGN1cnZhdHVyZQ== 36383
+66y4 36384
+IE1BUlk= 36385
+7J207Io= 36386
+IGZvcm11bGF0aW9u 36387
+IGNlbGVyeQ== 36388
+IGJsdXJyeQ== 36389
+IFRT 36390
+YWxleg== 36391
+IHdz 36392
+IHByb2dyYW1t 36393
+IFN0YWNr 36394
+IEpJTQ== 36395
+0L7QstCw0LvQuA== 36396
+xLFsbA== 36397
+IHDDqHJl 36398
+IEthbnll 36399
+IERlbGF3YXJl 36400
+IGRhdW50aW5n 36401
+INCx0LXRgQ== 36402
+IFN0dXBpZA== 36403
+Ymln 36404
+ZmZpY2lhbA== 36405
+IHByZWNpcGl0YXRpb24= 36406
+IHBsdW5n 36407
+4bulYw== 36408
+YnVyc2U= 36409
+IGRhcmxl 36410
+IGNyaXBw 36411
+IHBpb25lZXI= 36412
+IGRpc3B1dA== 36413
+IHNlYW4= 36414
+IHJlc2lzdG9y 36415
+IGFsbGVpbg== 36416
+aXBwbGVz 36417
+YXJlbA== 36418
+IGVuZG9ycw== 36419
+enVzdA== 36420
+INGA0LXQsdGP0YLQsA== 36421
+ZWRlZA== 36422
+IOy5tOuplOs= 36423
+IGxsZXZh 36424
+IGtlbm50 36425
+INCx0LDQuw== 36426
+IERvY3VtZW50 36427
+IEtuaWdodHM= 36428
+IGJ1Y2tsZQ== 36429
+IOyJrA== 36430
+IGFsaw== 36431
+IEV2ZXJ5ZGF5 36432
+YXR0ZXJz 36433
+IHRvaWxldHM= 36434
+IGp1Z2Fy 36435
+IOyeiOyngA== 36436
+IGdlbmF1c28= 36437
+IExhbmRlc3JlZ2llcnVuZw== 36438
+aWpl 36439
+IHRyYWlsZXJz 36440
+IFRpZ2Vycw== 36441
+IGdpdHRp 36442
+IGZvcmdpdmluZw== 36443
+IGNvbmN1cnJlbnQ= 36444
+IFZ1 36445
+IO2Kue2eiA== 36446
+IEJST1dO 36447
+b3VuZGVk 36448
+Ijs= 36449
+IHRyZW1i 36450
+IHRpZXQ= 36451
+INGA0LXQttC40Lw= 36452
+IG51dHNoZWxs 36453
+0LXQu9C40Yc= 36454
+IGxvc2Vycw== 36455
+cmljdGluZw== 36456
+IHJlZGVlbQ== 36457
+ZGVmaW5lZA== 36458
+TmljZQ== 36459
+IGJyb2FkYmFuZA== 36460
+S08= 36461
+IHRlYXNpbmc= 36462
+IHBhcnRpc2Fu 36463
+xLFtYQ== 36464
+IOyerOuvuA== 36465
+IEpvdXJuZXk= 36466
+IHNsb3Blcw== 36467
+dW5pbmc= 36468
+Z3J1bnRz 36469
+IHTDpGxs 36470
+IHVuY292ZXJlZA== 36471
+IG15xZtsxJk= 36472
+IEVzdGhlcg== 36473
+IEhlYWx0aHk= 36474
+IOuwkQ== 36475
+csOpZQ== 36476
+IHBvbGFyaXphdGlvbg== 36477
+IGZsYXY= 36478
+IGNhbWJpYXI= 36479
+IHly 36480
+IFJhbmNo 36481
+IHNwbGl0cw== 36482
+IHRyb3V2w6k= 36483
+IHJlY29yZGVy 36484
+IGTDqXBhcnQ= 36485
+2YjYqA== 36486
+IEtyeQ== 36487
+IGludGVyZXNzYW50 36488
+IGVkZXJpbQ== 36489
+xZt3aWFk 36490
+aWxhdGVyYWw= 36491
+d3JpZ2h0 36492
+IHBvdXJyYQ== 36493
+w6p0ZXI= 36494
+IGNhbWVs 36495
+4Z4= 36496
+IHJhcGlkZW1lbnQ= 36497
+IG1lag== 36498
+IHN0aWZmbmVzcw== 36499
+QURBUw== 36500
+IGRpZmZlcnM= 36501
+IGFsb3Q= 36502
+IFNpZw== 36503
+0Y/RgtC10LvRjA== 36504
+IGFic3RyYWN0aW9u 36505
+IGtlaW5lcg== 36506
+Z3J1cHA= 36507
+IFNoZXJsb2Nr 36508
+7ZiU 36509
+IGNpdGU= 36510
+IG92ZXJmbG93 36511
+IHThuqFp 36512
+w7pjYXI= 36513
+YnVsYQ== 36514
+IGNvbmp1bnRv 36515
+IENJ 36516
+IG1vZGVyYXRvcg== 36517
+IGluZGlyZWN0bHk= 36518
+IGFsbGVpbmU= 36519
+4oI= 36520
+0YjQuNCx 36521
+INCx0LDQsQ== 36522
+IGRhbmFjaA== 36523
+IDE5Mzk= 36524
+IHByb21ldA== 36525
+IGRlc3RpbmF0aW9ucw== 36526
+IElsbHVzdA== 36527
+zrnOus+M 36528
+IHNhYmVz 36529
+IGhlaA== 36530
+IEdlc2V0emVudA== 36531
+IE1peg== 36532
+0LXQvdC60L4= 36533
+IE15cw== 36534
+0Kw= 36535
+IEp1ZGFpc20= 36536
+IG11c3RhY2hl 36537
+IHN0aW1tdA== 36538
+IEdhemE= 36539
+IHZvbHRl 36540
+IG51bw== 36541
+IG3Ds24= 36542
+IENvbXB1dA== 36543
+4Li54LmI 36544
+IFJhZGk= 36545
+IGV4Y2VwdGlvbmFsbHk= 36546
+IGFzc3VtZXM= 36547
+aW5mb3Jt 36548
+IHNocmluZQ== 36549
+IGltcGxpY2F0aW9u 36550
+IEZpdHo= 36551
+IS4= 36552
+IGx0 36553
+IGFsbG95 36554
+IGV0aGlj 36555
+IG1vbmFzdGVyeQ== 36556
+7Iuc7KOg 36557
+aWNhw6fDo28= 36558
+IGNvb3JkaW5hdGluZw== 36559
+IE1vdG8= 36560
+IG92ZXJsb29r 36561
+IGNob2lz 36562
+IGFudGliaW90aWM= 36563
+IE1pbm5l 36564
+IEJK 36565
+IEFwYQ== 36566
+b3JpYW4= 36567
+IHNwaWxsZWQ= 36568
+SmFt 36569
+IGh1c2JhbmRz 36570
+IGNyZWF0aW9ucw== 36571
+IGHDsQ== 36572
+w7xzc2Vs 36573
+IOydtOyaqQ== 36574
+IGFuYWx5c2U= 36575
+cm9zZQ== 36576
+IHB1bmNoZWQ= 36577
+IHByZXNxdWU= 36578
+IGFzdHJvbm9teQ== 36579
+IHNjaHdpZXJpZw== 36580
+IEVib2xh 36581
+IGNpcw== 36582
+IGFjZXQ= 36583
+IEZY 36584
+ZW5kcmU= 36585
+IOydjOyVhQ== 36586
+IHdlYnBhZ2U= 36587
+IGZyZWFrZWQ= 36588
+IGxhdHRl 36589
+IOy/oA== 36590
+IOuouOs= 36591
+TmV2ZXI= 36592
+R3Jh 36593
+7ZmU66W8 36594
+ZXllZA== 36595
+IOuwnOudvA== 36596
+IGVzcGVyYQ== 36597
+IGFwYXJlY2U= 36598
+cmHDp8Ojbw== 36599
+IGRpc3J1cHRpdmU= 36600
+IEpvaW50 36601
+dXJvdXM= 36602
+cmVhcw== 36603
+IHF1ZXLDrWE= 36604
+IGRpc3RyaWJ1dGlvbnM= 36605
+IGV4cG9uZW50 36606
+7LmY66W8 36607
+IGRs 36608
+emhvdQ== 36609
+IEhlYXJpbmc= 36610
+IENyYXc= 36611
+IGZsb2F0cw== 36612
+b3VuY2Vk 36613
+TGFi 36614
+V29ybGQ= 36615
+IGJ1cmRlbnM= 36616
+IGF1dGhvcml0YXJpYW4= 36617
+IEJvbHQ= 36618
+INC+0LTQvdGD 36619
+IHBpZ2Vvbg== 36620
+IGRpc3RyYWN0aW9ucw== 36621
+IEhlcmF1c2ZvcmRlcg== 36622
+IHplc3Q= 36623
+ZXNj 36624
+IHNoYWtlcw== 36625
+YXRhcw== 36626
+INmF2LQ= 36627
+aG9sZXM= 36628
+IHRoaW5rZXJz 36629
+YWx0YQ== 36630
+IGFyY2hl 36631
+IFN1aw== 36632
+YW5oYQ== 36633
+IHRlbXB0aW5n 36634
+IHlvdXR1YmVy 36635
+IHbDrA== 36636
+IGR6aWHFgmE= 36637
+IFZhdGljYW4= 36638
+UGFyaw== 36639
+IHN1cGVycw== 36640
+IE5pa2tp 36641
+64qQ6w== 36642
+b3Jhbmc= 36643
+cmFtaWVudA== 36644
+IOqwluqzoA== 36645
+IGRlc3NlcnRz 36646
+IGF2ZXJl 36647
+IEdyZWdvcnk= 36648
+IOuTpOyWtOyY 36649
+IGNvc3Rpbmc= 36650
+IENsaW5pYw== 36651
+IHJlYmVscw== 36652
+IE1vYg== 36653
+IGJ1bmxhcg== 36654
+IFlvdXJz 36655
+ZXJ0aW1l 36656
+IHJldGFsaQ== 36657
+bWFyYQ== 36658
+YXR1cw== 36659
+YWxsZXM= 36660
+INC00YA= 36661
+INC00LjRgQ== 36662
+IGRpc2NvdW50cw== 36663
+IEdVWQ== 36664
+INC60LDQutC+0LU= 36665
+IEV4cGVyaW1lbnQ= 36666
+cmVtZW50 36667
+IFhpYW5n 36668
+IGJhdGU= 36669
+V0U= 36670
+IHNwZWNpYWxpemU= 36671
+IGRlaXR5 36672
+IExva2k= 36673
+bWFn 36674
+IE5pdA== 36675
+V2VzdA== 36676
+IG1hdGVybmFs 36677
+IHF1aXM= 36678
+YnJva2Vu 36679
+IGxhc2Vycw== 36680
+IGhha2s= 36681
+IEFuZ2Vscw== 36682
+IG1hc3Rlcnk= 36683
+YW50aXM= 36684
+VGlmZmFueQ== 36685
+ZWVl 36686
+55E= 36687
+b3JlbQ== 36688
+IGluYWNj 36689
+IGp1cmlzZGljdGlvbnM= 36690
+IEthcmRhc2g= 36691
+SWw= 36692
+IFNpbm4= 36693
+IGF0aGxldGljcw== 36694
+Y8SZ 36695
+IGxvb3NlbHk= 36696
+IGRpZXRh 36697
+QWc= 36698
+ID8/ 36699
+IOuMgO2RnA== 36700
+IHN1cGVydg== 36701
+IG51dHJpdA== 36702
+IGRyaWZ0aW5n 36703
+IOyEoOyDneuLmA== 36704
+INC/0L7QvdGP0Ls= 36705
+IFZpY3Rvcnk= 36706
+2YTYqQ== 36707
+15XXoNeU 36708
+INC/0LjRiA== 36709
+IHNoYXZlZA== 36710
+IG1lc3VyZQ== 36711
+b25kZW4= 36712
+2YPYsQ== 36713
+IGV4aWxl 36714
+IERlc2Rl 36715
+IFBpbnRlcmVzdA== 36716
+IGF0dGFjaG1lbnRz 36717
+IGhvbWJyZXM= 36718
+IGZpbmVz 36719
+IOyEuOyDgQ== 36720
+IHNsZWVwcw== 36721
+IFRhY28= 36722
+IElSQQ== 36723
+cmlvcw== 36724
+IG9sbA== 36725
+ZXRlcw== 36726
+IHVudXQ= 36727
+ZmFzaGlvbmVk 36728
+IHRyZWJhbGw= 36729
+IE5lYXJseQ== 36730
+INGA0LXQsNC70YzQvdC+ 36731
+IGNoaWw= 36732
+xJ9h 36733
+IE1FTA== 36734
+cm9zY29w 36735
+IENH 36736
+IHZlbmdl 36737
+IGRpc2h3YXNoZXI= 36738
+YWxnaWM= 36739
+IG1vZGlmaWVy 36740
+IGVtYmFzc3k= 36741
+dGltZXI= 36742
+ZW1pY3M= 36743
+IGludHJpY2F0ZQ== 36744
+IGV2ZXQ= 36745
+IOuMgOuwlQ== 36746
+IGlzb3Q= 36747
+INC90LDRg9GH 36748
+IFF1aXo= 36749
+cmVzbw== 36750
+zrTPjg== 36751
+IHllbGxlZA== 36752
+IGZlZGVy 36753
+RUxMRVI= 36754
+IGV4Y2VlZGVk 36755
+b25hcw== 36756
+aWNhbm8= 36757
+INC20LjQstC+0YI= 36758
+IE1hbw== 36759
+IEthenV0bw== 36760
+IOOFi+OFi+OFi+OFiw== 36761
+IGZyb250bGluZQ== 36762
+IEh1bmdhcmlhbg== 36763
+IMO8YmVyYWxs 36764
+YXdhdA== 36765
+IGdyaXBz 36766
+acOnw7Vlcw== 36767
+YXJueWE= 36768
+IM2h 36769
+IHNlaWQ= 36770
+IGFuYWs= 36771
+IGFjYWJvdQ== 36772
+7ZWR 36773
+IG5vdG9yaW91cw== 36774
+IEdvZHppbGxh 36775
+IG92ZXJjb21pbmc= 36776
+IFBlbmQ= 36777
+IG9sYWJpbGly 36778
+w7xsbWU= 36779
+IGVyaGFsdGVu 36780
+6re5 36781
+IE1ldGVy 36782
+IHN0YWFu 36783
+T2w= 36784
+IGNoYXRz 36785
+IEJ1ZW5vcw== 36786
+w612ZQ== 36787
+YWx1YWJsZQ== 36788
+IHN0cmF0ZWdpY2FsbHk= 36789
+IGNvbXByaXNlZA== 36790
+INC/0LXRgNGB0L7QvdCw0LY= 36791
+IHdhbm4= 36792
+IENlbg== 36793
+0L3QuNGC0LU= 36794
+n4E= 36795
+INGC0L7QsdC+0Lk= 36796
+aWFk 36797
+IGthcmRlxZ9pbQ== 36798
+IENvbmdyZXNzbWFu 36799
+cmVhbWluZw== 36800
+aG9tbWU= 36801
+IGNvbW11bmF1dA== 36802
+IGFsY29ob2xpYw== 36803
+IHBpY2tsZWQ= 36804
+IGFjb3Jk 36805
+cG9zaXRpb24= 36806
+ZWfDs2w= 36807
+IHRyb3VibGluZw== 36808
+IE1hcmNoZWc= 36809
+IHp1bWluZGVzdA== 36810
+IHNlYW1sZXNzbHk= 36811
+IG9sdW4= 36812
+IFRWcw== 36813
+INC/0YDQsNC60YLQuNGH0LXRgdC60Lg= 36814
+IGJhY2tlbmQ= 36815
+aWRhYmxl 36816
+IGdhZGdldA== 36817
+IGZhw6dv 36818
+IE1hcmNoZWdpYW5p 36819
+IOuwpA== 36820
+IGFjY2lkZW50YWw= 36821
+IExQ 36822
+IGVsZGVzdA== 36823
+IEFkbWlyYWw= 36824
+IG7Eg20= 36825
+bGV2ZXI= 36826
+IHBhc3RlbA== 36827
+IGZvbmRv 36828
+Q29ubmll 36829
+IHRlcmNlcg== 36830
+IHBhY3Q= 36831
+IE1vbnRl 36832
+IG1lYXRz 36833
+IFNNUw== 36834
+IEF1c3RyYWxpYW5z 36835
+57w= 36836
+UmhldHQ= 36837
+IGV4YWN0ZW1lbnQ= 36838
+IOu5vA== 36839
+IE1PRA== 36840
+56E= 36841
+IFJhcHQ= 36842
+IE5vY2g= 36843
+IGFib3J0 36844
+IE5hdmFs 36845
+IEZ1amk= 36846
+SU5URVI= 36847
+INC90L7QstGL0Lk= 36848
+IG1pZWpzY2U= 36849
+IElDVQ== 36850
+IEdyYWR1YXRl 36851
+IEdsZW4= 36852
+YXJkaQ== 36853
+IMiY 36854
+IHNvbGRlcg== 36855
+IHByb2Zlc3Npb25z 36856
+IG9ydGhvZw== 36857
+b21u 36858
+aW50cm9kdQ== 36859
+IERlbmlzZQ== 36860
+7J6Q66W8 36861
+IGNvcnJlc3BvbmRlbmNl 36862
+QU1B 36863
+IGluZmxpY3Q= 36864
+IGZhbmQ= 36865
+IEfDvA== 36866
+INGH0LXRgg== 36867
+IHRyYWNlZA== 36868
+IHBhdGVudHM= 36869
+IGFtYnVzaA== 36870
+IGxvdHRh 36871
+ZmZlcg== 36872
+IFdhZ25lcg== 36873
+IGltcGVyc29u 36874
+IGV4dHLDqm1lbWVudA== 36875
+2YLYqg== 36876
+Y29uZHVjdA== 36877
+QXR0 36878
+IE11ZWxsZXI= 36879
+IEFsaWNpYQ== 36880
+IGN5Yw== 36881
+IGhhY2tlcg== 36882
+IHR5cw== 36883
+IGhhaWw= 36884
+INC30LDRj9Cy 36885
+IHBhc3Nv 36886
+IOy2lOqwgA== 36887
+IM6I 36888
+IHBhY2thZ2Vk 36889
+IEN5bnRoaWE= 36890
+aGVldA== 36891
+IE5pc3Nhbg== 36892
+IFF1ZXN0bw== 36893
+6ag= 36894
+ZGlk 36895
+IM68zrnOsQ== 36896
+IEVsbGlz 36897
+IEFuYWx5c2lz 36898
+Y2Vtb3M= 36899
+IGFzZWc= 36900
+IE15c3Rlcg== 36901
+IENhbw== 36902
+IHR1dg== 36903
+IEluZHVzdHJ5 36904
+7KO86rOg 36905
+b3RhbA== 36906
+IHBlcXVlw7Fv 36907
+YnJhcw== 36908
+IGNvbXByZWhlbmQ= 36909
+IFNpbXBzb24= 36910
+0YHRgtCy0LjQtQ== 36911
+b2NyYWN5 36912
+0LjRh9C10YHQutC4 36913
+IE11c2g= 36914
+IExhdXJpZQ== 36915
+IHRyaWFuZ3VsYXI= 36916
+IFByZXNlbnRz 36917
+IEt1bmRlbg== 36918
+IElzcw== 36919
+IERlY2s= 36920
+4buDbg== 36921
+IERhcmtuZXNz 36922
+IGluZmxhbW1hdG9yeQ== 36923
+ZXJlbWlhaA== 36924
+IHdhcm1lZA== 36925
+dmV5YXJk 36926
+IE1lbW9yeQ== 36927
+ZXR0eQ== 36928
+IHRheHBheWVycw== 36929
+4LiT 36930
+2KE= 36931
+IHByYWN0aXNl 36932
+64us6w== 36933
+IGRyaWxsZWQ= 36934
+bcO8xZ8= 36935
+bG9nbw== 36936
+IEZhY2g= 36937
+pOuhnA== 36938
+IMO8YnJpZ2Vucw== 36939
+IGtvbm50ZW4= 36940
+IG5vcm1hbG1lbnRl 36941
+IGFyZ3Vlcw== 36942
+aWxpbmd1YWw= 36943
+sOulvA== 36944
+ZWdhbA== 36945
+IHRyYXZhaWxs 36946
+b3Z5 36947
+0LDRgtC+ 36948
+IHJ1dGg= 36949
+IExpZ2h0cw== 36950
+IGNvbnNpc3RlZA== 36951
+15HXqNeZ150= 36952
+IHN0ZXJlb3R5cGU= 36953
+IHBheWVy 36954
+IFJlZQ== 36955
+IEFpcmJuYg== 36956
+IGRyb3duZWQ= 36957
+IFpvZQ== 36958
+IGNhbm9weQ== 36959
+IGJhcnI= 36960
+INC90L7Rhw== 36961
+IHBhZ2Fu 36962
+IGphcnM= 36963
+IHLDqg== 36964
+ZXJ2ZXI= 36965
+aWViZW4= 36966
+IGVzcGVjdA== 36967
+IEZp 36968
+IHVud2lsbGluZw== 36969
+IHRlY2huaWNpYW4= 36970
+4bq3dA== 36971
+bWVtYmVy 36972
+IENhbmFs 36973
+2LPZhQ== 36974
+IGxpZWJlcg== 36975
+IGluZmVyZW5jZQ== 36976
+IGhvbm9yaW5n 36977
+IENhbXBhaWdu 36978
+IGxpbmVhZ2U= 36979
+IFN0cmVzcw== 36980
+IHZpY3Rvcmllcw== 36981
+IGRlamE= 36982
+16M= 36983
+w6p0ZXM= 36984
+YmxpY2s= 36985
+INC80LXQvdC10LU= 36986
+b3Rocw== 36987
+IENvdXBsZQ== 36988
+SmFzb24= 36989
+IE5pY29sYXM= 36990
+0LXQutGB 36991
+bGli 36992
+IGhlcnJhbWllbnQ= 36993
+INeQ15XXnteo 36994
+INCy0LjQtNC40Lw= 36995
+bWlsbGltZXRlcg== 36996
+IHNpbGhvdWV0dGU= 36997
+IGRyaXZld2F5 36998
+IGNoZXJpc2g= 36999
+44Wg44Wg 37000
+IHJhbnNvbQ== 37001
+IGludGVyZGlzY2lwbGluYXJ5 37002
+IFBvcnRhbA== 37003
+IHRyYWc= 37004
+dGhvb2Q= 37005
+IHRlZGlvdXM= 37006
+IGdsb3NzeQ== 37007
+IHByw6lwYXI= 37008
+IENheQ== 37009
+IFRvb2s= 37010
+IEJvdHRvbQ== 37011
+IHppZw== 37012
+5as= 37013
+cmVwcmVzZW50ZWQ= 37014
+4LmA4Lil4Lii 37015
+IGRlc2Fycm9sbG8= 37016
+7ISc6w== 37017
+IHZpc2Nvcw== 37018
+IG1pbGxpZ3JhbQ== 37019
+IEd1bmQ= 37020
+IGZlcm1lbnQ= 37021
+ZHJ1bQ== 37022
+IGRyYXdlcnM= 37023
+TGF1Z2g= 37024
+IHBlbG9z 37025
+IHBhdmVtZW50 37026
+IG1lbW9pcg== 37027
+YXZhaXQ= 37028
+IDIwNTA= 37029
+pOulvA== 37030
+IHJhesOzbg== 37031
+IGZsb3VyaXNo 37032
+IHN0ZXJu 37033
+IENodW5n 37034
+IHNlcnBlbnQ= 37035
+IEdlbnRsZW1lbg== 37036
+a29vaw== 37037
+IGx1dA== 37038
+aW1wb3J0ZQ== 37039
+cGFyZW50 37040
+IHdzeg== 37041
+IHNjcmVl 37042
+IE1pdGFyYmVpdGVy 37043
+bXV0 37044
+IOyWmOq4sOulvA== 37045
+IHNlbWJsZQ== 37046
+IE9X 37047
+IGludmVzdGlnYXRvcg== 37048
+IENoZXJ5bA== 37049
+IEdlcmFsZA== 37050
+IHByZXJl 37051
+IGNvbXBhcmVz 37052
+bnl0 37053
+IGRpZmVyZW7Dp2E= 37054
+Py0= 37055
+IHF1w6E= 37056
+16jXmQ== 37057
+U2Vu 37058
+IGhlcHM= 37059
+IGdyYXR1aXQ= 37060
+IGNvbnNvcnQ= 37061
+IFNUT1A= 37062
+IFByb3Rlc3RhbnQ= 37063
+IGVsZWN0cm9kZQ== 37064
+4pc= 37065
+IHNlY3VyZWx5 37066
+0LjRh9C10YHQutC+0Lk= 37067
+IHTDpMOk 37068
+IHJlZ2lzdGVycw== 37069
+IEhlYXZlbmx5 37070
+b2dseQ== 37071
+aXNzw6Q= 37072
+IFBoeXNpY3M= 37073
+IE1lcmtlbA== 37074
+IHLDqXY= 37075
+IGVyYXNlZA== 37076
+IFNhY3JhbWVudG8= 37077
+IGNvZmZpbg== 37078
+IGV4YWNlcg== 37079
+IGxhbno= 37080
+IHBvZXRz 37081
+dWxpZg== 37082
+IOy5mOs= 37083
+IE5lcmQ= 37084
+IE5DVA== 37085
+IEhvdXI= 37086
+bmVobWVy 37087
+npjrj4Q= 37088
+IFByaW5jaQ== 37089
+U3c= 37090
+bWllcw== 37091
+YXJtZWQ= 37092
+IEJlYXRsZXM= 37093
+IHByb3BhZ2F0aW9u 37094
+IGV4Y2hhbmdlZA== 37095
+IGN1bXVsYXRpdmU= 37096
+IOynkeyXkA== 37097
+IGRlZmVhdGluZw== 37098
+YmVscw== 37099
+IHdlcw== 37100
+IE9keXNzZXk= 37101
+YXZpb3I= 37102
+IOychOyXkA== 37103
+IGJyaXQ= 37104
+IGhpam8= 37105
+REFZ 37106
+INin2YTYqtmK 37107
+INCh0LXRgNCz 37108
+0YPQutCw 37109
+ZWRzacSZ 37110
+IGltcG9z 37111
+IGVsbGFz 37112
+IGZpcmVhcm1z 37113
+IE5S 37114
+INeR15A= 37115
+INCf0L7QutCw 37116
+YXdp 37117
+IOyEseqztQ== 37118
+IHB1cGlscw== 37119
+IFRhY2s= 37120
+IGZyYXNl 37121
+IFNoaXA= 37122
+IHN0YWQ= 37123
+IEdyZWF0ZXI= 37124
+dW51bg== 37125
+aW1tdW5n 37126
+Z3Jvd24= 37127
+IE5YVA== 37128
+IEFtZXJpY2Fz 37129
+Zm94 37130
+IG1hbnRlbg== 37131
+INGB0L7Qug== 37132
+IHJpa3Q= 37133
+bGVjdHJpYw== 37134
+ZGVlcA== 37135
+INC30L3QsNC10YjRjA== 37136
+IGJlbnV0 37137
+IEluZnJhc3Q= 37138
+IEVtaXI= 37139
+INC+0YLQv9GA0LDQsg== 37140
+IEtpbWNoaQ== 37141
+IEZpbm5pc2g= 37142
+tOyggQ== 37143
+aW5haXJl 37144
+IG9pa2U= 37145
+IGhvc3RhZ2U= 37146
+IEJ1dHRvbg== 37147
+2YLZig== 37148
+ZWtpbmc= 37149
+IEthemFraA== 37150
+IGNvbWZvcnRpbmc= 37151
+IHNvZw== 37152
+IGdyZWV0ZWQ= 37153
+Z3VpdGFy 37154
+cGF5ZXI= 37155
+IHJlbGF0aW9uYWw= 37156
+IGNvbnN0cnVpcg== 37157
+b3BpYW4= 37158
+IFZvbHVtZQ== 37159
+aWV0aA== 37160
+0YHRgtCy0L7QvA== 37161
+dXJyZWN0aW9u 37162
+bGnFm215 37163
+IGhlbWlzcGhlcmU= 37164
+IEJlYW4= 37165
+SUdO 37166
+IGvDtnTDvA== 37167
+IEZhbGxvdXQ= 37168
+IGJyYWNl 37169
+z4DOrA== 37170
+IEhBUw== 37171
+IGfDqQ== 37172
+IGNoYXJhY3Rlcml6ZQ== 37173
+4bq3Yw== 37174
+IE1pbGt5 37175
+IHR1bW9ycw== 37176
+IG51aXQ= 37177
+IEdheg== 37178
+IOyeiOuLpOuKlA== 37179
+INCz0LDRgA== 37180
+ZXNzbWVudA== 37181
+IEFiZQ== 37182
+IOu9kQ== 37183
+IEVpbnNhdHo= 37184
+SklO 37185
+asOk 37186
+Q3J5 37187
+IFByb21pc2Vk 37188
+INGB0LXRgNC0 37189
+b2t1cw== 37190
+IHNjYWxhYmxl 37191
+INC/0L7RgdC80L7RgtGA0LXRgtGM 37192
+w7xja2xpY2g= 37193
+IHJlYWxpc20= 37194
+IG1heW8= 37195
+IGp1dmVuaWxl 37196
+IGhlYWRsaWdodHM= 37197
+IGfDtnLDvMWf 37198
+IFJlZm9ybQ== 37199
+IGhhbHZlcw== 37200
+Y3puZQ== 37201
+IGJyZWFrdXA= 37202
+xbxlag== 37203
+IHLDpHR0 37204
+RGF5 37205
+IOydvOuzuA== 37206
+IG11ZXJ0ZQ== 37207
+IHR1bmVz 37208
+IFNtaWxl 37209
+cmVjb3Jk 37210
+IHJlY2hlcmNoZQ== 37211
+YXRpc2ZpZWQ= 37212
+IHBvemk= 37213
+IGNlbGVicmF0aW9ucw== 37214
+aXNleHVhbA== 37215
+IFJPQg== 37216
+dGhpcmRz 37217
+IEZvcnR1bmU= 37218
+INGC0L7QuQ== 37219
+IGJyYW5kZWQ= 37220
+bG9v 37221
+IGR1ZA== 37222
+IHJhbmRvbWl6ZWQ= 37223
+IGNvbWJpbg== 37224
+aWVyYW4= 37225
+Y3plbmlh 37226
+IGN1cmF0b3I= 37227
+IGFydGVyeQ== 37228
+INGD0Yg= 37229
+INGH0LjRgg== 37230
+IHN1YnNpZGllcw== 37231
+IGJsb3Nzb20= 37232
+IFR3aWxpZ2h0 37233
+IGh5dsOk 37234
+IFBvbXBl 37235
+IENpc2Nv 37236
+INCf0YDQvg== 37237
+IGJpcmk= 37238
+IGdlcm4= 37239
+IHJlYnVpbHQ= 37240
+IHdjemU= 37241
+IGJlbmVmaWNp 37242
+IGRydW1tZXI= 37243
+IHNvbGlkcw== 37244
+IGRpeW9yc3Vu 37245
+bGF0ZWQ= 37246
+IG11ZGR5 37247
+IGhvbG9n 37248
+IGNsYXBz 37249
+IFJpbmdz 37250
+IE9rZXk= 37251
+IEJyYXZl 37252
+IHZhbHVhdGlvbg== 37253
+IG1pZ3JhbnQ= 37254
+IGludGVybWl0dA== 37255
+IGVpZ2VuZQ== 37256
+aWxpYXJ5 37257
+bWFya3Q= 37258
+a3I= 37259
+IFJpYg== 37260
+4buZaQ== 37261
+IGFjY3VzYXRpb25z 37262
+IGFyYWI= 37263
+d2FzaA== 37264
+IEJhcmR6bw== 37265
+IHVnaA== 37266
+ZXN0ZXJz 37267
+b3BocmVu 37268
+IGFsaW1lbnRvcw== 37269
+IFV6 37270
+1oI= 37271
+IDY1MA== 37272
+INC/0YDQuNC10YU= 37273
+Rkk= 37274
+IHNhbXBhaQ== 37275
+IHBhcmzDqQ== 37276
+aGVzaW9u 37277
+IHPEsXI= 37278
+IGFwcGFyYXR1cw== 37279
+IGNvcnJlbGF0ZWQ= 37280
+IFByaW5jaXBhbA== 37281
+IGNvcnI= 37282
+IE9mZmljaWFs 37283
+0LjRh9C10YHQutC40LU= 37284
+IHRlcm1pbmFscw== 37285
+U2hvdWxk 37286
+IHZhY3Vu 37287
+IHN0ZWxsdA== 37288
+IG1vb2k= 37289
+ZXR6dW5n 37290
+INC60YDQsA== 37291
+IGRhaQ== 37292
+INC/0L7Qtg== 37293
+VGVhbQ== 37294
+IFBQRQ== 37295
+INCe0YE= 37296
+IExlYWg= 37297
+IEl2eQ== 37298
+eXN0 37299
+IHVoaGg= 37300
+IG5pZ2h0dGltZQ== 37301
+IHRyZW5keQ== 37302
+IHNlY3VyaXRpZXM= 37303
+IGNvbnRpbmVudHM= 37304
+IGZpcnN0aGFuZA== 37305
+IFZlcm9u 37306
+IOuCrg== 37307
+IGJyb3dzaW5n 37308
+IENhZGE= 37309
+dHJv 37310
+IHRyYW1w 37311
+cmVpYg== 37312
+IGVyc3RtYWw= 37313
+aXJsZXI= 37314
+IHBzaWM= 37315
+IGdldGly 37316
+IE5Q 37317
+IGR6aWVjaQ== 37318
+0L7QsdGA0LDQtw== 37319
+IG1hZ2ljaWFu 37320
+IHNjcnV0aW55 37321
+IHNsYWI= 37322
+IE9U 37323
+aXN0eQ== 37324
+aXJpZXM= 37325
+b3Jlc3Q= 37326
+IHRhc2tlZA== 37327
+IG1vcmFsbHk= 37328
+7JW87KeA 37329
+dXN0ZXJlZA== 37330
+IGZvb2xz 37331
+IGlycmVzcG9ucw== 37332
+IGVpbmY= 37333
+IHZp4buHYw== 37334
+IHNjb3I= 37335
+IHBpbGxvd3M= 37336
+IEdlZ2Vu 37337
+IHR1dHRl 37338
+IHF1YXJ0ZXJseQ== 37339
+IGRpZG50 37340
+IEd5bQ== 37341
+IEV0aGVy 37342
+INir 37343
+0LvQuNGI0LrQvtC8 37344
+IHNpZ25hbGluZw== 37345
+IE5vZGU= 37346
+IERvbmNz 37347
+IHlhaA== 37348
+IEthbmFs 37349
+IGZhZGluZw== 37350
+ZXRpbg== 37351
+IGluZmx1ZW5jZXJz 37352
+IG1lZGFscw== 37353
+IGVuZ2luZWVyZWQ= 37354
+IGZlcm1lbnRlZA== 37355
+6rKg7KeA66eM 37356
+IEJlZXRob3Zlbg== 37357
+157XqQ== 37358
+aW5lbnRhbA== 37359
+IOyVjOugpA== 37360
+w7x0ZmVu 37361
+YWxueWE= 37362
+IG92ZXJl 37363
+IGRlbmt0 37364
+0LDQutGC0LXRgA== 37365
+IOKY 37366
+IG5lY2VzaXQ= 37367
+IGdlbmVyYXRvcnM= 37368
+Z3Jhc3M= 37369
+INC/0L7QtNGD0Lw= 37370
+bGllw59lbg== 37371
+QmFy 37372
+nOuPmQ== 37373
+INC00LXRgtC10Lk= 37374
+IHN1Y2tpbmc= 37375
+IHN0ZW5jaWw= 37376
+IHByaW1v 37377
+IEJyZWF0aA== 37378
+c3Ryb20= 37379
+IGltbWVuc2VseQ== 37380
+IGFwcHJlaA== 37381
+7KCV7J20 37382
+UG9w 37383
+IGpvbmc= 37384
+IEdpdWw= 37385
+IEFESEQ= 37386
+IGjDtnJlbg== 37387
+IGVsbw== 37388
+aXZlbnQ= 37389
+IHJ1cw== 37390
+IG91dHJhZ2VvdXM= 37391
+IG1hc3RlcmVk 37392
+IOy7pA== 37393
+2YjZgQ== 37394
+aXBlcw== 37395
+IFJ1ZHk= 37396
+SmFjb2I= 37397
+IGJ1bGxpc2g= 37398
+IHRhcHBlZA== 37399
+IGZhdWQ= 37400
+aXpvcGhyZW4= 37401
+INGB0L7RhQ== 37402
+IERhcmxpbmc= 37403
+IDE5NjM= 37404
+IFByZXZlbnRpb24= 37405
+spQ= 37406
+IGFiZG9taW5hbA== 37407
+c3RvbmVz 37408
+IGF2YWllbnQ= 37409
+4buVaQ== 37410
+bWFrZQ== 37411
+IHNhcmU= 37412
+IEluc3RhbnQ= 37413
+0LrQsNC8 37414
+IGtlZXBlcg== 37415
+IGJsYW5rZXRz 37416
+IHN3ZWF0cw== 37417
+IE1pbm5lYXBvbGlz 37418
+IGdlbm9tbWVu 37419
+IGZhc3Rlbg== 37420
+IEJydXNzZWxz 37421
+IGNhZmV0ZXI= 37422
+IGFic29yYmluZw== 37423
+IGhhZ28= 37424
+IEVsbW8= 37425
+IGd1c3Rv 37426
+IFlhcA== 37427
+TcO6c2ljYQ== 37428
+IHRlcnQ= 37429
+IGJhbmRh 37430
+IG1pbHk= 37431
+IHRoZXJlYWZ0ZXI= 37432
+IFN0b2NraG9sbQ== 37433
+IENhcnNvbg== 37434
+IGNhbGlicmF0aW9u 37435
+YXZhxZ8= 37436
+YW5zYQ== 37437
+aWtrZQ== 37438
+IGZvcmVzZWU= 37439
+IHF1YWxjaGU= 37440
+IGRlc3Rl 37441
+5qQ= 37442
+w7xuw7x6 37443
+IGZvcmdl 37444
+RGlz 37445
+ZXN0ZW4= 37446
+IM60zrnOsQ== 37447
+IGVuY2Fwcw== 37448
+IEdlc3By 37449
+IGNoZXJjaGVy 37450
+aWNrZXRz 37451
+0YLQvtGA0Ys= 37452
+Q3I= 37453
+INCi0LDQutC20LU= 37454
+IHJhYmJpdHM= 37455
+IERvdA== 37456
+aGVpdGVu 37457
+IGNhdXNhbA== 37458
+IEZvc3Rlcg== 37459
+YWrEhWM= 37460
+IGJlcmVpdA== 37461
+IGF5dWRhcg== 37462
+c29uZw== 37463
+Y29tYg== 37464
+IGZyaW5nZQ== 37465
+IGN5YmVyc2VjdXJpdHk= 37466
+IOucqA== 37467
+IGtpZXI= 37468
+IGJlc2Now6RmdA== 37469
+INC60L7QvdGG0LU= 37470
+IGZhY2lsaXQ= 37471
+IE5hbWVu 37472
+IGJpbGF0ZXJhbA== 37473
+dHg= 37474
+IFdpc3NlbnNjaGFmdA== 37475
+IG51YW5jZXM= 37476
+IHJpcHBpbmc= 37477
+IGZ5 37478
+IFNpY2hlcmhlaXQ= 37479
+IEdoYW5h 37480
+b2xvbg== 37481
+IHRvcHBlZA== 37482
+IE1vcm9jY28= 37483
+IHJhZGlhbA== 37484
+IExFRQ== 37485
+IEFuZHJlYXM= 37486
+ZWRk 37487
+IOyXtOs= 37488
+IEFpcmxpbmVz 37489
+IHZhbG9yZXM= 37490
+6rec 37491
+SHk= 37492
+INC30LDQtNCw0Yc= 37493
+IEtlbmRhbGw= 37494
+INGF0LDRgA== 37495
+IFZhbXA= 37496
+IHB5dGhvbg== 37497
+IG1hbmFnZWFibGU= 37498
+IEdlbnRl 37499
+b2lzZQ== 37500
+aWNpYXJ5 37501
+IGltcG9zcw== 37502
+IEJ1bm55 37503
+aWVzdGE= 37504
+QW5kcmV3 37505
+IHNlcnQ= 37506
+IENlYw== 37507
+enphcmVsbGE= 37508
+IGF1dG9tb2JpbGU= 37509
+IFRpZXJl 37510
+YWxsb3dz 37511
+IOuwgA== 37512
+IFNjb3Jw 37513
+IEplbGx5 37514
+YWdhcmE= 37515
+IFN0cmV0Y2g= 37516
+IHJlZGVm 37517
+IGV4YWNlcmI= 37518
+IFNIQQ== 37519
+w6lm 37520
+b3JzYQ== 37521
+IGZsYXdlZA== 37522
+IE5vZWw= 37523
+PyE/ 37524
+IHByb2NlbnQ= 37525
+IG1lbnN0cnU= 37526
+INC/0YDQvtGH 37527
+IGluZmFudHM= 37528
+8J+OtQ== 37529
+cGF1c2U= 37530
+IFJhY2luZw== 37531
+IDE5NDg= 37532
+IHN1cGVyaW50ZW5kZW50 37533
+aWRvcmVz 37534
+aWR5 37535
+YnJhaGlt 37536
+IHVubHVja3k= 37537
+IHBlcms= 37538
+YW5jaQ== 37539
+IOunjOuCmA== 37540
+INCc0L7RgdC60LI= 37541
+IGZpbmFucw== 37542
+IGRpZmVyZW5jaWE= 37543
+oIjsnbQ= 37544
+T1JZ 37545
+IFRhYw== 37546
+24zYpw== 37547
+IGRlc2Vt 37548
+INCy0LDQttC90L4= 37549
+IEpV 37550
+IOyeiOyeluyVhOyalA== 37551
+IM6d 37552
+IGluZm9ybWF0aW9ucw== 37553
+IEhFTA== 37554
+aHN0 37555
+INC/0L7Qs9C+0LLQvtGA 37556
+IHZvaXR1cmU= 37557
+IHJldXM= 37558
+w6RuZGln 37559
+INC/0L7RhdC+0LY= 37560
+amluZw== 37561
+IGRydQ== 37562
+YWx0cmE= 37563
+IHByb2R1aXRz 37564
+IGtpdGU= 37565
+IGV5ZWJhbGw= 37566
+IEJlbHQ= 37567
+IFJlc3RhdXJhbnQ= 37568
+IGdhbWI= 37569
+IHBvcnJpZGdl 37570
+aXR0ZXJz 37571
+IGNvbnZlcnRz 37572
+IHlhcmTEsW0= 37573
+IG3DoXhpbW8= 37574
+d2lydHNjaGFmdA== 37575
+IO2VmOuCmOs= 37576
+IOykgA== 37577
+IGljZWJlcmc= 37578
+IHZvcmJlaQ== 37579
+IDI1Ng== 37580
+b2NyYXRpYw== 37581
+IHJlY2tsZXNz 37582
+b25uZXI= 37583
+IG3DunM= 37584
+IGxvZ2ljYWxseQ== 37585
+IFByaXNvbg== 37586
+IE5ldHo= 37587
+IHZhY2FudA== 37588
+IG5pbW10 37589
+IEhBUlI= 37590
+INC30L7Qsg== 37591
+IERlZQ== 37592
+cmluZ2U= 37593
+bmllc3Q= 37594
+IFJ1bGVz 37595
+7Iqk65+9 37596
+Y3Vzc2lvbnM= 37597
+IGZsb3JhbA== 37598
+IGNvbnN0cmFpbmVk 37599
+IGRpZmZlcmVudGlhdGlvbg== 37600
+IFF1ZWJlYw== 37601
+INuB24zaug== 37602
+IHDDumJsaWNh 37603
+aXRlbA== 37604
+IGFjY29tbW9kYXRpb25z 37605
+IEdyw7w= 37606
+7Zw= 37607
+IHBpY2tsZXM= 37608
+0LjRh9C10YHQutC40YU= 37609
+IGNvbW1pc3Npb25z 37610
+IEJhZWs= 37611
+IMOnb2N1xJ8= 37612
+IE1lZGl1bQ== 37613
+IHBlcmlvZGljYWxseQ== 37614
+IHdvbmRlcmZ1bGx5 37615
+IHN0YWZmaW5n 37616
+7JuQ6w== 37617
+cmlyZQ== 37618
+Zmxl 37619
+IE1jTA== 37620
+INGC0LXQvw== 37621
+INC/0LXRgNC10Lo= 37622
+0L3QvtC70L7Qsw== 37623
+IO2BrOqyjA== 37624
+IHByb3NwZXJvdXM= 37625
+IFNwaXJpdHVhbA== 37626
+IENoaWNr 37627
+RElB 37628
+INCf0YDQuNCy0LXRgg== 37629
+IHBlcsOt 37630
+0YzRjtGC 37631
+IGNvbnN1bHRhbnRz 37632
+IEVhcmw= 37633
+IHJ1aW5pbmc= 37634
+0L7RgNC1 37635
+IHBlbnNlcg== 37636
+IHRha2llag== 37637
+IHN0cmVuZ3RoZW5lZA== 37638
+IExpcXVpZA== 37639
+0L7QvdC10YY= 37640
+0LDQstCw0YLRjA== 37641
+IGNhbWVy 37642
+IGRpc2FncmVlbWVudA== 37643
+IGJhdGhpbmc= 37644
+IFlvc2g= 37645
+YWFs 37646
+cHJlY2hlbg== 37647
+UklTQURBUw== 37648
+IHN1cGVyc3Rhcg== 37649
+0LvRj9GC0Yw= 37650
+IG5pYg== 37651
+IFRoZXJt 37652
+IERBTklFTA== 37653
+IHBhdw== 37654
+IGxpcXVpZHM= 37655
+IGNhcGFjaXQ= 37656
+YXJrZW4= 37657
+IHZhZ2luYQ== 37658
+IG1hc2hlZA== 37659
+IGVtZXJnZXM= 37660
+eXNjeQ== 37661
+IHVucmVsYXRlZA== 37662
+IEd1aWxk 37663
+IGludmVydGVk 37664
+aXRpdmVz 37665
+VHJh 37666
+IGJlZ3I= 37667
+IGFsdGU= 37668
+7KeV 37669
+INGA0LDQt9GA0LDQsdC+0YI= 37670
+ZmluZGVy 37671
+INC00LDQu9C10LU= 37672
+INCx0LvQsNCz0L7QtNCw0YA= 37673
+d2Fsa2Vy 37674
+IGNyYXRlcg== 37675
+YXNzYWRvcnM= 37676
+cmVuY2Vz 37677
+aW5za2k= 37678
+IEtJTQ== 37679
+IEVsbGlvdA== 37680
+MjAxNw== 37681
+IFNy 37682
+aW5rYQ== 37683
+YW5vdg== 37684
+IOyemOuquw== 37685
+IHByb3ByaWV0YXJ5 37686
+ZGlzcGxheXN0eWxl 37687
+INGB0LjQvA== 37688
+INC40LfQsQ== 37689
+IFBhbmVs 37690
+IGluc3RpbmN0cw== 37691
+IENvbW11bmljYXRpb25z 37692
+bWlkdA== 37693
+IOunjOuTpOyWtA== 37694
+INGB0LvQvtCy0LA= 37695
+IEdpbGJlcnQ= 37696
+0KLQsNC6 37697
+dm9vcmJlZWxk 37698
+0LXRjtGB0Yw= 37699
+YXJ5bg== 37700
+cXVleg== 37701
+IGRhcnQ= 37702
+0ZbRiA== 37703
+IEh1dA== 37704
+U2Fs 37705
+IHNvdXRoZWFzdA== 37706
+IHBlc3RpY2lkZXM= 37707
+IGhlbGljb3B0ZXJz 37708
+IGVuZHVyZWQ= 37709
+aWFkYQ== 37710
+IGJyZXdpbmc= 37711
+7Jes6w== 37712
+INGB0LLQvtCx0L7QtA== 37713
+IFNhaW50cw== 37714
+IEZyYW7Dp2Fpcw== 37715
+IEVjb25vbWljcw== 37716
+IGRpc2xvYw== 37717
+b3Bob2JpYQ== 37718
+Q2FtZXI= 37719
+IG5lZ290aWF0ZWQ= 37720
+INGB0YLQsNC70Lg= 37721
+7Iqk7YE= 37722
+b2dpZQ== 37723
+IHRzdW5hbWk= 37724
+IHBlZWxlZA== 37725
+IG1vdGl2YXRpb25z 37726
+b3N0YXQ= 37727
+Zmxhbg== 37728
+IERBQw== 37729
+IGthdg== 37730
+J1JF 37731
+IFBlYXJzb24= 37732
+YmJl 37733
+Y3plbmll 37734
+IGF0ZW7Dp8Ojbw== 37735
+7Ya166C5 37736
+INGD0LTQsNGA 37737
+IGludHJvZHVjdG9yeQ== 37738
+IEljaQ== 37739
+64yA6w== 37740
+YWthdA== 37741
+IHRyZW5jaA== 37742
+IHByb2NlZWRlZA== 37743
+IENvaW4= 37744
+IGRlcmVjaG8= 37745
+IFJlZGU= 37746
+0LDQvdC90YvQuQ== 37747
+IGluY2FyY2VyYXRlZA== 37748
+IFJpY2htb25k 37749
+Um9jaw== 37750
+IFBhdg== 37751
+IEthcm1h 37752
+dWdlcw== 37753
+IGNvbnRlw7o= 37754
+67mE 37755
+IOq3uOunjA== 37756
+IEdvbmU= 37757
+IHdzcMOzxYI= 37758
+IFJhaG1lbg== 37759
+dW5rZW4= 37760
+IOykkeyalO2VnA== 37761
+IGli 37762
+IGF0dGFjaGluZw== 37763
+SGF5 37764
+IHN1a2E= 37765
+7I25 37766
+IHBpdm90YWw= 37767
+IFJlc3BlY3Q= 37768
+w61kYQ== 37769
+SUI= 37770
+IFZlcmFudHdvcnQ= 37771
+d2lldA== 37772
+IGZvcmVuc2lj 37773
+0YDQuNGB0YI= 37774
+INC/0YDQuNC90YbQuNC/0LU= 37775
+IG1hcmtpbmdz 37776
+IGtldHRsZQ== 37777
+IE9wZXJh 37778
+IERvY3RvcnM= 37779
+IHNocmVkZGVk 37780
+IHJlY3Vlcg== 37781
+IHZpZ2ls 37782
+IEZhaWw= 37783
+IGVudHJldg== 37784
+INC00YPRiA== 37785
+IG91dGJyZWFrcw== 37786
+IM+Azr8= 37787
+IHJvZ3Vl 37788
+YW5nbGVk 37789
+IHllYXJseQ== 37790
+IENyZWVk 37791
+IHdhbQ== 37792
+IGxvdHVz 37793
+6rO86w== 37794
+44CB44CB 37795
+IFNwaXQ= 37796
+IEl0dQ== 37797
+IHN0cmFpbnM= 37798
+IHN0YW1wZWQ= 37799
+IHBsYWludA== 37800
+IHBvdGlvbg== 37801
+IGNvbnNvbGlkYXRpb24= 37802
+0L7Rh9C60YM= 37803
+IHZsb2dnaW5n 37804
+IHNsYXRl 37805
+IEF1ZnQ= 37806
+IEluY29y 37807
+4burbmc= 37808
+p5A= 37809
+ZW5o 37810
+IGhlacOf 37811
+IGRvbWVzdA== 37812
+IFN0cm9t 37813
+YWtpcw== 37814
+IGZyYWdlbg== 37815
+IGZpbmVy 37816
+IFN1Zw== 37817
+IHVwaGlsbA== 37818
+IMOpw6lu 37819
+4oCmKQ== 37820
+INGB0L7Qvw== 37821
+IENvcmV5 37822
+IHNpZWJpZQ== 37823
+IG11c2U= 37824
+IGNsb3Zlcw== 37825
+IHBvdXM= 37826
+IEZpbmFueg== 37827
+IFJvdXRl 37828
+YW1hdA== 37829
+IG11dHVhbGx5 37830
+INCy0L3Rg9GC0YDQuA== 37831
+IFNlbGVuYQ== 37832
+65Q= 37833
+IEdhdXNzaWFu 37834
+67aA7YSw 37835
+INeR15s= 37836
+IGVqZXJj 37837
+a2Vh 37838
+IEdlcnJ5 37839
+IFNpYw== 37840
+IDE5NjY= 37841
+aWVzZQ== 37842
+IGZvc3NpbHM= 37843
+IGVzdGFk 37844
+IEthbmU= 37845
+Y2nEhw== 37846
+IOycoO2KnOs= 37847
+INC/0LDQvA== 37848
+IENydWlzZQ== 37849
+aW50w6lyaWV1cg== 37850
+IGJla2FubnQ= 37851
+IFBvZGU= 37852
+IGRlbWFuZGVy 37853
+UmVt 37854
+IGludmFkZQ== 37855
+IGRlY29yYXRpbmc= 37856
+cm9waWM= 37857
+IGNvd2JveQ== 37858
+IFBob3Rv 37859
+b3BvbGl0 37860
+IOy7rOufrOs= 37861
+IHJlYXA= 37862
+IGhhbmR3cml0aW5n 37863
+4LmE4Lij 37864
+IOua 37865
+INio2LnYrw== 37866
+IE10 37867
+2YA= 37868
+IHNwYWNlc2hpcA== 37869
+IG5hdGlvbmFsaXNt 37870
+IGNvdW5jaWxz 37871
+IEdyaWZmaW4= 37872
+IEFobWVk 37873
+IGNsaWNo 37874
+IE9M 37875
+d2w= 37876
+IFBpbG90 37877
+IGFjcm9ueW0= 37878
+IGdlbHM= 37879
+IGVsZWN0cm9seQ== 37880
+6JM= 37881
+INC80L3QvtC5 37882
+IGVwaXNvZA== 37883
+IERpZXNlcw== 37884
+IEFUUA== 37885
+IGVkaXlvcnVt 37886
+IGV4cHJlc3Nlcw== 37887
+IGV4aGliaXRz 37888
+Q29tbQ== 37889
+INC60YDRg9C/ 37890
+IG1hdGFy 37891
+IDIwMjU= 37892
+IEFydGVt 37893
+dmFzaXZl 37894
+csOg 37895
+IGJlxZ8= 37896
+IGxpemFyZA== 37897
+IGZpbGxl 37898
+IOyniOusuA== 37899
+INC80L7RiQ== 37900
+IHTDvHI= 37901
+IGN1bHByaXQ= 37902
+IHdvdmVu 37903
+IEFOWQ== 37904
+bmlt 37905
+IHRheQ== 37906
+IHByb21pbg== 37907
+IGFjb21wYQ== 37908
+IGlkw6k= 37909
+IGJvaWxlcg== 37910
+IFRoZW1lbg== 37911
+IGF2ZW51ZQ== 37912
+IE11ZA== 37913
+INC90L7QstGL0LU= 37914
+IHdpdG5lc3Npbmc= 37915
+IGxhbmNl 37916
+IENIQU4= 37917
+IEJldmVy 37918
+2KrZhQ== 37919
+IGNoZW1vdGhlcmFweQ== 37920
+S2luZw== 37921
+IGLEmWTEmQ== 37922
+IGF0dWFs 37923
+IHRpdmU= 37924
+IHRhbGtpbg== 37925
+IHF1ZWRhcg== 37926
+aWXDnw== 37927
+ZWRlbA== 37928
+IOyWtOygnA== 37929
+IGpvZ2Fy 37930
+IMO2cg== 37931
+IHVuZGVydGFraW5n 37932
+IFN0cmVuZ3Ro 37933
+IG1pbGjDtWVz 37934
+IFdpbmU= 37935
+IE1vbHQ= 37936
+IHVuZGVybWluZQ== 37937
+IEFyY2hpdmVz 37938
+dmFuYQ== 37939
+bWVyY2lhbA== 37940
+TUM= 37941
+IGNhc3Rl 37942
+0L/RgA== 37943
+IGxlZ2lzbGF0b3Jz 37944
+dWxhdG9ycw== 37945
+w6puaW8= 37946
+IOuNsOs= 37947
+INGF0L7RgtC40YLQtQ== 37948
+INC90LXQug== 37949
+IHN1cm4= 37950
+IGNvbnNjaQ== 37951
+IFBPVw== 37952
+IGN1bGluYXJ5 37953
+IEtBVA== 37954
+IEZvbGtz 37955
+0YvQstCw0LXQvA== 37956
+INCy0L7Qug== 37957
+c2VydmljZQ== 37958
+cHRz 37959
+INC/0L7QsdC10LQ= 37960
+IHRlbnRz 37961
+IG5vcmQ= 37962
+U1RF 37963
+IHJlcHVibGljYW4= 37964
+IHd5aw== 37965
+IG1pbmlvbnM= 37966
+IG1lbWFuZw== 37967
+amVzdA== 37968
+IGNvbXBhcmF0aXZl 37969
+IHR5bGU= 37970
+Y2FyYm9u 37971
+YmVkaW5ndA== 37972
+a3Nlbg== 37973
+IG5lZ2F0aXZpdHk= 37974
+IHNqw6Rsdg== 37975
+IGTDug== 37976
+IHJlY2FsbGVk 37977
+Y3Jh 37978
+IFRhZGE= 37979
+INGA0YPQutC4 37980
+INC+0L/RgNC10LTQtdC7 37981
+IHByb2NyYXN0 37982
+IGpvZ29z 37983
+IE9v 37984
+IEhlYXJ0cw== 37985
+IMOpY2g= 37986
+IGtzacSFxbw= 37987
+IGNvYXJzZQ== 37988
+IFR1YmU= 37989
+IEdyZWVucw== 37990
+IMOpbg== 37991
+IGR1bWJiZWxs 37992
+INGC0Lg= 37993
+IHF1ZXJlcg== 37994
+2KfYrQ== 37995
+z4POtc65 37996
+INC/0YDQsNCy0LjQu9GM0L3Qvg== 37997
+INC/0LDQvw== 37998
+IGNvbXByYQ== 37999
+IHTDqXI= 38000
+IEFudGVz 38001
+IG9wdGltdW0= 38002
+IGJpc2N1aXQ= 38003
+zrrOuQ== 38004
+YWN6ZWdv 38005
+IOyLnOqwhOydtA== 38006
+IE1hcmluZXM= 38007
+dmVybw== 38008
+IHZhY2NpbmF0aW9ucw== 38009
+IHBldHR5 38010
+cml0ZXJz 38011
+INCw0Ls= 38012
+Y291bnRyeQ== 38013
+IGNvdW50ZXJz 38014
+IGF0dGVuZGFudA== 38015
+IEh1aQ== 38016
+Y2th 38017
+0YHRgtCy0LXQvdC90YvQuQ== 38018
+Z3V5 38019
+IHRyaWNrZWQ= 38020
+IFJFRA== 38021
+IHRocmlsbGluZw== 38022
+z4DOv865 38023
+IHBpZ2d5 38024
+IGFudW5jaQ== 38025
+T1JURVI= 38026
+IFZhbHVl 38027
+IHJvbmQ= 38028
+IEFEQQ== 38029
+IHBvc2Vy 38030
+aG9yZXM= 38031
+IFJvbGFuZA== 38032
+k68= 38033
+IG5vaXI= 38034
+INep15DX 38035
+67Cc 38036
+aWVtYW5k 38037
+INC/0L7RgtC10YA= 38038
+6rOz 38039
+IOqxsQ== 38040
+IGZvcm1hdHRpbmc= 38041
+IExlZA== 38042
+IGtpbGxlcnM= 38043
+IMSR4bqleQ== 38044
+IGhhYXI= 38045
+YWdhaW4= 38046
+ITwv 38047
+IHNvbWV0aGlu 38048
+IGNvdWdoaW5n 38049
+IG5hdmU= 38050
+IHByb3NwZWN0aXZl 38051
+IEhL 38052
+IFJlc2N1ZQ== 38053
+bWF5YmU= 38054
+Z2dlcg== 38055
+INGA0LDQsdC+0YLRgw== 38056
+15XXnNed 38057
+dGFpbHM= 38058
+7ZWY7ZWY 38059
+IGV5ZWxpZA== 38060
+IGN1c3RvbWl6YXRpb24= 38061
+YXZpbGlvbg== 38062
+IHByb2NoYWlu 38063
+IGdsYXpl 38064
+U2lt 38065
+INC+0L/QsNGB 38066
+IG1vc3F1aXRvZXM= 38067
+IGZlbnQ= 38068
+IGNhcGFjaXRpZXM= 38069
+IGFwb3N0bGVz 38070
+IGFsdHVyYQ== 38071
+IOusuw== 38072
+IHNlcm9udA== 38073
+IEFueXRpbWU= 38074
+pbTripQ= 38075
+IGNvc3BsYXk= 38076
+IHNwYWM= 38077
+IHNhbWVu 38078
+dWNj 38079
+acOocmVz 38080
+IHNpYmxpbmc= 38081
+IENvY2s= 38082
+IOuPhQ== 38083
+INC/0YDQtdC00YHRgtCw0LLQu9GP 38084
+IGluc3RhbGxtZW50 38085
+IGRpamU= 38086
+IE1DVQ== 38087
+IEVI 38088
+IE5pbmc= 38089
+IHByZXBhcmVz 38090
+IGh5cG9jcg== 38091
+cHR5 38092
+IGthZMSxbg== 38093
+IEZyb3plbg== 38094
+aGF1bA== 38095
+IEt5bGll 38096
+IHNodWZmbGU= 38097
+IGVsZW1lbnRhbA== 38098
+IGF1w59lcg== 38099
+IEtOT1c= 38100
+IEFMSVNTQQ== 38101
+WkE= 38102
+7LKg 38103
+IHJlY2l0ZQ== 38104
+IHNjcmli 38105
+IDExNQ== 38106
+IHN0YXJyZWQ= 38107
+IGxlcXVlbA== 38108
+IGJyZXdlcg== 38109
+IE9wcG9ydHVu 38110
+IHLDpA== 38111
+IGNob3BzdGlja3M= 38112
+IEthaA== 38113
+IEV0aGlvcGlh 38114
+IGhhbmRtYWRl 38115
+IGVyZm9sZw== 38116
+IER6 38117
+aXR0ZW5z 38118
+0LLQsNC7 38119
+zrfOvQ== 38120
+YnJpbmdlbg== 38121
+IHVucGx1Zw== 38122
+IG9mZnM= 38123
+IGhlcm1hbg== 38124
+bGllZA== 38125
+YXNvbmlj 38126
+IFNlcmJpYQ== 38127
+IEd1YXRlbQ== 38128
+IC4uLiI= 38129
+IGVycmVpY2hlbg== 38130
+IGFtYmlndW91cw== 38131
+IFdoaXRuZXk= 38132
+enVm 38133
+TUFORA== 38134
+oLU= 38135
+IHNxdWVlemVk 38136
+eWFz 38137
+IFNob2Nr 38138
+IHV0aWxpc2U= 38139
+dWtv 38140
+Ym9sdA== 38141
+IG1vdGlm 38142
+IGlubWF0ZXM= 38143
+IGNvcnJ1cHRlZA== 38144
+IGNvbmNyZXQ= 38145
+IENyaXRpY2Fs 38146
+IFNpbmdpbmc= 38147
+INGE0YPQvdC6 38148
+bm92YQ== 38149
+cmViYmU= 38150
+ZHQ= 38151
+VW5pcw== 38152
+IHdlYmNhbQ== 38153
+IGNhbW91Zmw= 38154
+S2Vu 38155
+IGxhd3N1aXRz 38156
+IENvbnN1bWVy 38157
+IHJlY29sbA== 38158
+IGtsZWluZXI= 38159
+IEZJRkE= 38160
+IDE5NjI= 38161
+IG1hbGFk 38162
+IOywvQ== 38163
+IMOldA== 38164
+IGluZmx1ZW5jZXI= 38165
+IEFydGlzdA== 38166
+c3Rp 38167
+4Lin4Lii 38168
+eXPFgg== 38169
+IEJpYW4= 38170
+iOuEpA== 38171
+IGZpcmVwbGFjZQ== 38172
+IEFwcGxpY2F0aW9u 38173
+IG1uaWVq 38174
+IGFjaWRpYw== 38175
+IE1vcm1vbg== 38176
+c3Nh 38177
+IHNuZWFreQ== 38178
+IG9qb3M= 38179
+IHZvdWQ= 38180
+IERhaQ== 38181
+IGdyYXNzcm9vdHM= 38182
+IFVuYmVsaWV2YWJsZQ== 38183
+IEdhYmU= 38184
+IEV4dHJlbWU= 38185
+IGhhc3NsZQ== 38186
+IGNvYg== 38187
+bXVtYmxpbmc= 38188
+UGFzcw== 38189
+jOufrA== 38190
+IHN5c3RlbWF0aWNhbGx5 38191
+IHNldmVudGVlbg== 38192
+z4DOtc65 38193
+4pmh 38194
+INC60L7Rgg== 38195
+IHNlbmRpcmk= 38196
+IGJhdGhyb29tcw== 38197
+IFN0ZXJu 38198
+IEFyZHVpbm8= 38199
+6Lk= 38200
+Y3JpYmluZw== 38201
+IHJlb3BlbmluZw== 38202
+IGNlcnY= 38203
+cGVl 38204
+QVJJ 38205
+IGNhZHJl 38206
+IEFuY2g= 38207
+TGVl 38208
+IE1BWA== 38209
+IG3DpG5u 38210
+IGNob3Jlcw== 38211
+IGFkZXNzbw== 38212
+IE5pZw== 38213
+IGRpc3NlcnRhdGlvbg== 38214
+IFZheQ== 38215
+U1RBTEs= 38216
+0LDQutCw 38217
+YXZhdA== 38218
+IHB1bmt0 38219
+IHBhZGRpbmc= 38220
+IFRlbXBs 38221
+IGVqZQ== 38222
+IO2EsA== 38223
+IGF6dA== 38224
+IOuMgO2GteuguQ== 38225
+IHJlYXJyYW5nZQ== 38226
+w6FjaA== 38227
+IOyCrOuejOuTpA== 38228
+IGZyZWFraW4= 38229
+Y3JpcmU= 38230
+IOy7pOs= 38231
+IEV4cGxhaW4= 38232
+IM+Ez4nOvQ== 38233
+IGJvZGlseQ== 38234
+IExlaXN0 38235
+IHNpZ3Vp 38236
+IGJ1bmtlcg== 38237
+IGF6dWw= 38238
+IEhhdXNo 38239
+U3Vi 38240
+INCQ0L3QtA== 38241
+INC60YDQsNC5 38242
+IGlsbGVnYWxseQ== 38243
+IE11eQ== 38244
+IEZlaQ== 38245
+IEJhbmFuYQ== 38246
+IHNjaG9sYXJseQ== 38247
+IFByenk= 38248
+IE1vc3M= 38249
+IEZpbHRlcg== 38250
+IOyWtOuWoQ== 38251
+IE1heHdlbGw= 38252
+dGVuc2U= 38253
+IGxvbmdpdHVk 38254
+IGxhbmdzYW0= 38255
+INee16c= 38256
+c21pdGg= 38257
+aXphZGE= 38258
+INC90L7RgNC80LDQu9GM0L3Qvg== 38259
+IFZvbGw= 38260
+IEVsZW5h 38261
+INGF0L7RgtGM 38262
+IERhYmVp 38263
+IGNvbnNlcnZhdGl2ZXM= 38264
+IHByw7Nwcmlh 38265
+IERpZXNlcg== 38266
+IEJyZW5kYQ== 38267
+b29raWU= 38268
+IGJhbmM= 38269
+7J207KY= 38270
+7JuD7J2M 38271
+IGtlaA== 38272
+IHdlZGRpbmdz 38273
+IHRodW5kZXJzdG9ybQ== 38274
+IENvb3JkaW4= 38275
+7IiY6rCA 38276
+IHByemVjaQ== 38277
+T1NTVEFMSw== 38278
+bWFhbg== 38279
+IOqxtOs= 38280
+INio2Yc= 38281
+IMW8YWQ= 38282
+IHlhY2h0 38283
+IGfDtnQ= 38284
+IGJsZWFjaA== 38285
+IHNob3J0ZW4= 38286
+INGB0YLQsNC70L4= 38287
+dXNhbg== 38288
+IOyekOyXsA== 38289
+IGRlcnM= 38290
+eGlz 38291
+jZTri4g= 38292
+IHF1YW50aWRhZGU= 38293
+IG9wcHJlc3NlZA== 38294
+INC30LDQutC+0L3Rhw== 38295
+INGH0LXRgtGL 38296
+INCd0LDQv9GA0LjQvNC10YA= 38297
+dWxw 38298
+2YLZiNmE 38299
+0L7Rh9C1 38300
+zqzOuw== 38301
+emVuaXU= 38302
+IGZvcm1hdGlvbnM= 38303
+IHNwYXJrZWQ= 38304
+IEVudHdpY2tsdW5n 38305
+YWxscw== 38306
+IHZpdmly 38307
+IGV4cGlyYXRpb24= 38308
+b3RpbmU= 38309
+INCn0LXRgA== 38310
+IFR1cm5pbmc= 38311
+IHRhcmlmZnM= 38312
+IG5hc3TEmXA= 38313
+IGFiaWRl 38314
+aWtzaQ== 38315
+IGZsYXNoZXM= 38316
+IGRpc3B1dGVz 38317
+IOyytA== 38318
+IG1lcmFr 38319
+IGVub3Jtb3VzbHk= 38320
+emFobA== 38321
+IGbDvGhydA== 38322
+0LLQvtC9 38323
+INC30LDQstC40YE= 38324
+IHBlcnNldmVyYW5jZQ== 38325
+IGRpdmlkZW5kcw== 38326
+IGNvbnRlc3RhbnRz 38327
+IHByb3N6xJk= 38328
+IEZyYW5rZW4= 38329
+IGV4cGxvcmVy 38330
+IGJ1ZmZhbG8= 38331
+4oCV 38332
+IGVjb2xvZ3k= 38333
+IHNjYWxhcg== 38334
+IGNyYW4= 38335
+zrXPhM6xzrk= 38336
+xbx5xIc= 38337
+IOyalOs= 38338
+IGdpYQ== 38339
+IEdvZw== 38340
+IFByaXY= 38341
+IOunkOydhA== 38342
+IFJlYXNvbg== 38343
+cmFrdGlvbg== 38344
+IERlYm9yYWg= 38345
+IGtpdHRlbg== 38346
+IEVkaW4= 38347
+cGllag== 38348
+IOuLtA== 38349
+IG3DoXF1 38350
+IGJpZGRpbmc= 38351
+IGFmZmluaXR5 38352
+IGFpa2E= 38353
+Zm9saw== 38354
+IENvbnNl 38355
+IGRldXRzY2hlbg== 38356
+6IY= 38357
+IGRlYml0 38358
+xLHEn8Sxbg== 38359
+aXNlbA== 38360
+IOykkeq1rQ== 38361
+IOutkOqwgA== 38362
+IHRydXN0d29ydGh5 38363
+IFN0YXJ0ZWQ= 38364
+w7xyZA== 38365
+INC/0L7QvdGP0YLQvdC+ 38366
+IHNjaWVudGlmaWNhbGx5 38367
+UG9kcw== 38368
+Q1JPU1NUQUxL 38369
+IHByZWd1bnRhcw== 38370
+IGNhbG1pbmc= 38371
+IFByZW1pZXJl 38372
+15vXqQ== 38373
+INGF0L7Qu9C+0LQ= 38374
+IGNhcGl0YQ== 38375
+IHRvbWE= 38376
+IG11cm0= 38377
+IGZ1ZXJ6YQ== 38378
+IEhhbmk= 38379
+w7xm 38380
+YXJsb3M= 38381
+IGjDpHVm 38382
+IG9zb2J5 38383
+amVnbw== 38384
+INC/0LjRgQ== 38385
+IGNhbG1seQ== 38386
+aWRldA== 38387
+YnVjaA== 38388
+Z29uZQ== 38389
+IHZpc2Nvc2l0eQ== 38390
+IG1vZGFs 38391
+IGdlc2Ft 38392
+IEh6 38393
+IG11bmljaXBhbGl0aWVz 38394
+IGNpcmN1bGF0aW5n 38395
+b2xpbmE= 38396
+U2hv 38397
+IEJlbmVk 38398
+b2x1 38399
+IHJlc3Rz 38400
+IGzDpW5n 38401
+INCe0LTQvdCw0LrQvg== 38402
+IHByemV3 38403
+IHBlcHA= 38404
+IG1hcnJpYWdlcw== 38405
+IEJJRw== 38406
+YW5kYW4= 38407
+IG1hZ2ljYWxseQ== 38408
+IGJhYnlz 38409
+IOuMkw== 38410
+IGhhY2tlcnM= 38411
+QmFieQ== 38412
+IE1vbnN0 38413
+IGNpZXI= 38414
+IEFyYWJz 38415
+INC80LDQs9Cw0Lc= 38416
+IEluZG9uZXNpYW4= 38417
+IE1hcmt0 38418
+IGRhY2h0ZQ== 38419
+IFNjaMO8bGVy 38420
+IFZORA== 38421
+IHNwaWVsdA== 38422
+IHBlcmx1 38423
+INC/0YDQvtGF0L7QtA== 38424
+IHNhbHRlZA== 38425
+IGltcHJvdmlz 38426
+IEluc3Ry 38427
+dmVsbWVudGU= 38428
+IG5lc3M= 38429
+IGZ1bmd1cw== 38430
+IGNvbGxhYm9yYXRvcnM= 38431
+IFZpcnVz 38432
+ZXN0YXI= 38433
+IHByb2plY3Rvcg== 38434
+INCf0YDQsNCy 38435
+IGFnaWxpdHk= 38436
+15nXoNeV 38437
+ZXJlbA== 38438
+INCy0L7Qt9Cy 38439
+INCx0LDQtw== 38440
+IENhdGh5 38441
+xJ91 38442
+INCz0L7QstC+0YDQuNC7 38443
+YmlsaXR5 38444
+IExhbmM= 38445
+IEtpbWJlcmx5 38446
+IEJyaWVm 38447
+IHV0dmVjaw== 38448
+IGdvZ2dsZXM= 38449
+IHByZXNjaG9vbA== 38450
+QVRIRVI= 38451
+IG1vdGl2ZXM= 38452
+IEJvbmc= 38453
+RVg= 38454
+IGNoaWxseQ== 38455
+IEFkdmlzb3J5 38456
+4oCL4oCL 38457
+INC60L7RgtC+0YDQvtC8 38458
+IHRyYWl0b3I= 38459
+IGRlbWFzaWFkbw== 38460
+INGG0LXQvQ== 38461
+INC80L7QuA== 38462
+IG11bHRpZg== 38463
+7JSs 38464
+IEFsZXhpcw== 38465
+IHppZXQ= 38466
+IFJhbWE= 38467
+YnJhbmNl 38468
+IHNhbmN0aW9u 38469
+aXRvdXM= 38470
+15XXmg== 38471
+IOuztOuC 38472
+0YHRgtCw0L3QvtCy 38473
+INGA0LXRgQ== 38474
+IENodXJjaGlsbA== 38475
+INC/0YDQtdC3 38476
+IElP 38477
+IEdlZQ== 38478
+IEdhdGhlcg== 38479
+YXRvcmk= 38480
+VHlsZXI= 38481
+INC90LXQvNC90L7Qtg== 38482
+IGLDpWRl 38483
+IEtpbGxlcg== 38484
+IHR1YmVy 38485
+IFJhbWFkYW4= 38486
+4b8= 38487
+aWVodA== 38488
+IHN0cmFuZ2VseQ== 38489
+0LvRgw== 38490
+IHJlZGVzaWdu 38491
+IGluY3VtYg== 38492
+IGJlcmFiZXI= 38493
+IFZvbGtzd2FnZW4= 38494
+bWV0YWw= 38495
+ZHp5 38496
+cGNpw7Nu 38497
+IOyViuyVhA== 38498
+IEdvb2RuZXNz 38499
+0LjQstCw0LXRgtGB0Y8= 38500
+YmFobg== 38501
+IEFudGFyY3RpY2E= 38502
+0LXQutGC0L7RgA== 38503
+IGhvbWVvd25lcnM= 38504
+emVpZ3Q= 38505
+IO2YhOyerA== 38506
+7KeA64+E 38507
+IGdlb2dyYXBoaWNhbA== 38508
+dGhpbmtpbmc= 38509
+IGdvc3Rh 38510
+IEltYW0= 38511
+dWxpZmxvd2Vy 38512
+ZGFn 38513
+YW5udA== 38514
+YWtvdg== 38515
+IGRvd253YXJkcw== 38516
+7LK06rCA 38517
+Q1VCRQ== 38518
+INCa0YHRgtCw0YLQuA== 38519
+INC/0L7Qu9C+0LI= 38520
+IHBsYXRlYXU= 38521
+4bil 38522
+IGNobG9yaW5l 38523
+IGFjY2VsZXJhdG9y 38524
+IHNvbHZlcw== 38525
+IEdyYXNz 38526
+cGlhbm8= 38527
+INqp2Kc= 38528
+INio2Ko= 38529
+IFJvY2hlc3Rlcg== 38530
+INmH2Yo= 38531
+IGNvbGxlY3Rz 38532
+jZTrnbw= 38533
+IENoZWVy 38534
+bGluZ2Vu 38535
+INGA0LDQt9Cz 38536
+IGFtw6lyaWM= 38537
+aHRh 38538
+RUNU 38539
+IGFydGlmaWM= 38540
+IFBheVBhbA== 38541
+aGFuYQ== 38542
+U3RlcGhlbg== 38543
+IEdlc3Q= 38544
+cGhhbHQ= 38545
+IHJlcGxpY2F0aW9u 38546
+IFdpbGxpZQ== 38547
+IG5ldXRy 38548
+IGlycmF0aW9uYWw= 38549
+IGRhZG9z 38550
+IEFpZA== 38551
+a2Ft 38552
+YW50ZXI= 38553
+INC00YPQttC1 38554
+IGRldG9u 38555
+IGhhcmU= 38556
+IGJldHM= 38557
+YmFnYWk= 38558
+IHN0YWluZWQ= 38559
+IHBsYXVzaWJsZQ== 38560
+IHBlZWxpbmc= 38561
+IGNyw610 38562
+IGdyb3Rl 38563
+7Law 38564
+pbTqsow= 38565
+YWx0ZXQ= 38566
+UGhvbmU= 38567
+Rmls 38568
+U1FM 38569
+IGdlZmFsbGVu 38570
+IHNhw7pkZQ== 38571
+IFRhbWls 38572
+Y291cw== 38573
+INCz0LvQsNCy0L3QvtC1 38574
+IGF0cmF2w6lz 38575
+dXNzaWE= 38576
+IHp3ZWl0ZW4= 38577
+IEVsdmlz 38578
+IG1vdmVy 38579
+IGxpbWl0ZQ== 38580
+YXJleg== 38581
+pbTqs6A= 38582
+IEtyYW5rZW4= 38583
+w7xyZQ== 38584
+IOyViuyVhOyalA== 38585
+IHRow6BuaA== 38586
+IHByb2ZvdW5kbHk= 38587
+IGJlZHJvb21z 38588
+IHRvb3RocGFzdGU= 38589
+IEFjY2VwdA== 38590
+w6l0aWNv 38591
+IGvDvMOn 38592
+IEFyeQ== 38593
+YWRpbg== 38594
+IGdyYW51bGFy 38595
+ZWN0ZWQ= 38596
+IG1lbmphZGk= 38597
+IGNvbXBldGVuY2U= 38598
+ZG9j 38599
+IHNwYXJrbGluZw== 38600
+IOyii+ydhA== 38601
+IGNvbnN0cnVjdGluZw== 38602
+IGFtdXNlbWVudA== 38603
+IEluc3VyYW5jZQ== 38604
+IEZldWVy 38605
+IHJlbm92YXRpb24= 38606
+c3VjaA== 38607
+cGxhdA== 38608
+IHByb3N0aA== 38609
+IGJleQ== 38610
+IENvbXBsZXRlbHk= 38611
+IHpvZA== 38612
+YWxu 38613
+VmljdA== 38614
+IGNvbmZpcm1z 38615
+w6R0eg== 38616
+4pY= 38617
+aGFtbWVy 38618
+INC30L3QsNC10YI= 38619
+IGFkbWlyZWQ= 38620
+oOulvA== 38621
+IEZydWl0 38622
+ZXJ0ZW4= 38623
+IG5pZWNl 38624
+IFRpbnk= 38625
+IHBsdW1iaW5n 38626
+ZXJtYQ== 38627
+INC70LXQs9C60L4= 38628
+IHdpbmRzaGllbGQ= 38629
+INGB0LzQtdGA 38630
+IGJ6dw== 38631
+IGFib2xpdGlvbg== 38632
+IFNhZGhndXJ1 38633
+IHByZWFjaGVk 38634
+IENyZWF0aW5n 38635
+cGVyZWQ= 38636
+IHZvbG9udA== 38637
+IHF1aW50 38638
+IHByaW50ZXJz 38639
+IG5lZ3Jv 38640
+IGdyb3NzZQ== 38641
+IFRoeQ== 38642
+IEZlbGxvd3M= 38643
+IHN0YW5pZQ== 38644
+IG5ld2NvbQ== 38645
+IEh1ZQ== 38646
+IEZyZXVuZGU= 38647
+IENvbnN0cnVjdGlvbg== 38648
+IGFkdmVyc2l0eQ== 38649
+IG5lZ2F0aXZlcw== 38650
+IGhhemFyZG91cw== 38651
+IGNvbXBlbGxlZA== 38652
+IHdvaw== 38653
+IE95 38654
+0L/QsA== 38655
+qqjr 38656
+IHJlbmRleg== 38657
+IG92ZXJj 38658
+IHdlYXZpbmc= 38659
+INC40LTQtdGC 38660
+IHByb3NlY3V0b3Jz 38661
+IGF1ZGlvYm9vaw== 38662
+IGFuY2VzdG9y 38663
+IHVuZGVyZ29pbmc= 38664
+IHBvdW5kaW5n 38665
+IO2SgA== 38666
+IOy2pA== 38667
+IHR1bGVl 38668
+IOyXtOw= 38669
+IHpvYWxz 38670
+IG5laW4= 38671
+IG9rZQ== 38672
+IEpveWNl 38673
+IG51ZA== 38674
+IGRpbGlnZW5jZQ== 38675
+IExhYnM= 38676
+IHZlbnRz 38677
+IGFuY2VzdHJhbA== 38678
+4Lir4Lih 38679
+INC80YPQttGH 38680
+IG5vbcOpcw== 38681
+d2FsaQ== 38682
+cWluZw== 38683
+IE11bHRpcGxl 38684
+IENvbnN1bHQ= 38685
+IGlzdGVkaQ== 38686
+IERveQ== 38687
+YWthaA== 38688
+IGRpc2NpcGxpbmVk 38689
+IGFsdGVybmF0aW5n 38690
+55I= 38691
+IHZlcm1l 38692
+INC+0Yk= 38693
+IHRvdGE= 38694
+IFByYWc= 38695
+IHN3b3Ju 38696
+IGJlYmVy 38697
+IEF1ZmdhYmU= 38698
+7Jq06w== 38699
+IHl1cA== 38700
+IHJlY2xhaW0= 38701
+b251dA== 38702
+IGF1Y3VuZQ== 38703
+IGFtcGg= 38704
+IMWbd2ll 38705
+IGFh 38706
+aXNjb3Zlcg== 38707
+IEFyZw== 38708
+Y2llxbw= 38709
+IGRlc3Nhcw== 38710
+IFfDpGg= 38711
+4bu5 38712
+INC00LDQstC90L4= 38713
+IHNpbGVudGx5 38714
+YXJj 38715
+IO2bhOuztA== 38716
+IHR3ZWV0aW5n 38717
+IE9uZA== 38718
+pqzrqbQ= 38719
+IGJvd2Vs 38720
+7IWo7Ja07JqU 38721
+T1NF 38722
+IHByb3Bpbw== 38723
+IEt1bnN0 38724
+a3VuZw== 38725
+IGRvbm7DqWVz 38726
+IEhvcml6b24= 38727
+IEZyb2c= 38728
+IGFyaXN0 38729
+w6Js 38730
+INC60L7Qtg== 38731
+IHNlZ3VuZG9z 38732
+IFNob3J0bHk= 38733
+IENyb3dk 38734
+aXJhbg== 38735
+IHfFgmHFm2Np 38736
+IExhYw== 38737
+aWRlbnRl 38738
+IOqwgOyekA== 38739
+IGxlbg== 38740
+IFNVUw== 38741
+IE1vdG9ycw== 38742
+IFRyZW50 38743
+b21pZQ== 38744
+IHRyYW5zbWl0dGVy 38745
+IEFzc2Fk 38746
+IHBzeWNoaWF0cmlj 38747
+INC20LjRgtGM 38748
+IG91dGxpbmVz 38749
+IGVmZmVjdGl2ZW1lbnQ= 38750
+IFJlbGlnaW9u 38751
+cHJlaA== 38752
+INC00L7Qu9C20L3QsA== 38753
+IM2hwrA= 38754
+IENvbnNlcnZhdGlvbg== 38755
+IOG7 38756
+INC30LDQuQ== 38757
+IHJlc2lkZQ== 38758
+IGNvbXBsZXRv 38759
+S0VO 38760
+IOuCmOyYpOuKlA== 38761
+IHN1YnVyYmFu 38762
+IHLDqXBvbmRyZQ== 38763
+INGA0LDQt9C70LjRhw== 38764
+IGdhbGxlcmllcw== 38765
+IHJhcHQ= 38766
+KS4uLg== 38767
+IGNydWVsdHk= 38768
+IFZNd2FyZQ== 38769
+7Yis 38770
+IGhhecSxcg== 38771
+IGdyb3VwaW5n 38772
+IFJpZGVy 38773
+IHN5bGxhYmxl 38774
+IGJlaXNwaWVsc3dlaXNl 38775
+IHNhZmVndWFyZA== 38776
+IHBlbMOtY3VsYQ== 38777
+YXJ0aQ== 38778
+INCh0L4= 38779
+IGNoZWdh 38780
+INC60L7QvNGD 38781
+IHNlaXNt 38782
+IGhhcm1sZXNz 38783
+IFdhcnJpb3Jz 38784
+INC/0YE= 38785
+IHNoYW1lbGVzcw== 38786
+IEJhdW0= 38787
+aW5zdGFsbA== 38788
+IHRvb2xraXQ= 38789
+IHBpcGVsaW5lcw== 38790
+IHB1c3N5 38791
+IGNvbmNlYWw= 38792
+IHByb3Rlc3Rpbmc= 38793
+b2Nob25k 38794
+IGR1YQ== 38795
+IFBvc2U= 38796
+IGhlbGl1bQ== 38797
+IFVY 38798
+aWtsZQ== 38799
+IFN1ZmY= 38800
+IOyEuOqzhA== 38801
+aW5nZXJz 38802
+INGB0LvRg9GH0LDQuQ== 38803
+IGRlc2NlbmRpbmc= 38804
+IG1vbnRhZ2U= 38805
+SGlnaA== 38806
+IOydtOyW 38807
+IElkaQ== 38808
+INeR16E= 38809
+IGV4cHJlc3NpdmU= 38810
+INC/0L7Qu9C10Lc= 38811
+IHBvbmU= 38812
+IGFkb2xlc2NlbnQ= 38813
+0LDQvdC90YvQtQ== 38814
+IGFzc2Fzc2luYXRpb24= 38815
+d2Vpc2Vu 38816
+ZW1hdGljYWxseQ== 38817
+YXV0aA== 38818
+IHVyZw== 38819
+IGdhbmhhcg== 38820
+IGZ1bmRv 38821
+IFJob2Rl 38822
+INC40YHRgtC+0YDQuNC4 38823
+IGNvbXBhcnRpbA== 38824
+IGRpbWluaXNoZWQ= 38825
+IGFwcHJlbnRpY2U= 38826
+INCR0YPQtA== 38827
+IHBob3RvbnM= 38828
+IGPDs2Q= 38829
+b25haw== 38830
+IGFkZWxhbnRl 38831
+IGNodQ== 38832
+b3BpYw== 38833
+IGFpeMOt 38834
+ZWRkYXI= 38835
+IENvbmdyYXRz 38836
+bW9y 38837
+IHJlc2VydmF0aW9ucw== 38838
+IFRvYnk= 38839
+IEtlcm4= 38840
+IHJhemVt 38841
+IGZvcmdlZA== 38842
+IGhvcnJpZnlpbmc= 38843
+2YrYuQ== 38844
+IEpvaW5pbmc= 38845
+IEF1dGg= 38846
+ZGFo 38847
+IGNvbnNpZw== 38848
+IGludGltaWRhdGVk 38849
+IHBlcmlwaGVyYWw= 38850
+IG1lbm8= 38851
+IGRldGVjdGluZw== 38852
+IHRlb3I= 38853
+IHRhZ2dlZA== 38854
+IG5vc3RhbGdpYw== 38855
+IOuvuOyViA== 38856
+IHZlcmRp 38857
+IGxhYmVsaW5n 38858
+0L/QvtC0 38859
+YXN0ZXM= 38860
+IHZpc3Q= 38861
+IGN5dA== 38862
+IGZsaXBz 38863
+0YDQuNC3 38864
+YmFsYW5jZWQ= 38865
+INC+0YjQuNCx 38866
+IGRlc3Rpbg== 38867
+bGFzc2U= 38868
+ZXJlaQ== 38869
+IGthbG8= 38870
+IGFycXU= 38871
+IHBsYW5v 38872
+IG9yZGluYW5jZQ== 38873
+IGNvbXBpbGF0aW9u 38874
+IFZvY8Oqcw== 38875
+IEVjbw== 38876
+IOy2lOyynA== 38877
+IGVuY2ltYQ== 38878
+IEdhcnJldHQ= 38879
+IENvcmQ= 38880
+w7Zsa2Vy 38881
+IEFycm93 38882
+IHByb3RvbnM= 38883
+LOKAiw== 38884
+IOyymOs= 38885
+IHNjYW5k 38886
+IGJlaWdl 38887
+Y29uZw== 38888
+IGJpa2luZw== 38889
+IFRM 38890
+0YPQvdC0 38891
+IOyGlOyngQ== 38892
+IFZpbGxh 38893
+IEpBQ0s= 38894
+IMO2xJ9yZW4= 38895
+IHRlbWFz 38896
+IEt5dW5n 38897
+SmVubg== 38898
+IGN1ZA== 38899
+IGltcG9zaW5n 38900
+IGNvbW1hbmRtZW50cw== 38901
+IE1lYW5z 38902
+IETDpHI= 38903
+IHJlY29tZW5k 38904
+IGRpc3Bvc2l0aW9u 38905
+2KfZhw== 38906
+IHRodQ== 38907
+IHJlZHVjdGlvbnM= 38908
+IGRpdQ== 38909
+INeV15DX 38910
+INC40YHRgdC70LXQtA== 38911
+dGhyZW4= 38912
+IGxhZG9z 38913
+IFJC 38914
+aXhlZA== 38915
+IOyP 38916
+RnI= 38917
+c3RpbGw= 38918
+IG9sbWFz 38919
+Q0hVQ0s= 38920
+IO2GoA== 38921
+IEluZGVwZW5kZW50 38922
+0JLQng== 38923
+IHBpdHM= 38924
+IHVuZGVydGFrZW4= 38925
+IGbDuHI= 38926
+IE5hdw== 38927
+IOyekeyXhQ== 38928
+IHNoZXBoZXJk 38929
+IGxhbmd1ZQ== 38930
+IEphYg== 38931
+IERydW0= 38932
+IEVsZWt0 38933
+4buRdA== 38934
+IOydtOyqvQ== 38935
+IGJlZ2lubmVu 38936
+IEZ1cnk= 38937
+4buDdQ== 38938
+c2VjdGlvbnM= 38939
+IHNwcmF5ZWQ= 38940
+IG3DoXI= 38941
+IFZvbHQ= 38942
+IFNlb25n 38943
+0LjRgtC10Ls= 38944
+ZHVjdGlvbg== 38945
+YXNhbg== 38946
+IGp1ZGdtZW50cw== 38947
+aW1hYW4= 38948
+nteq 38949
+IHNpZW50bw== 38950
+IEFDVA== 38951
+IEJI 38952
+ZGV2 38953
+IOyii+yVhO2VmA== 38954
+IGpvcm4= 38955
+SVNUSU4= 38956
+IHJvYXI= 38957
+IGltbWVyc2lvbg== 38958
+YWZmbGVz 38959
+IHRyYWluZWU= 38960
+IEJpbGxib2FyZA== 38961
+cmVzc2Vz 38962
+IFdhcm0= 38963
+IFJvYmVydG8= 38964
+IHV0aWxpeno= 38965
+IElnb3I= 38966
+IHJhc2g= 38967
+IGFuYWx5dGlj 38968
+aXJhbQ== 38969
+IHN5bW1ldHJpY2Fs 38970
+IGxpZmVzcGFu 38971
+IGVhdGVy 38972
+IEJsb29tYmVyZw== 38973
+YXRlcmlhbA== 38974
+IOuvvw== 38975
+IGlzdGVy 38976
+IGludmFsdWFibGU= 38977
+IGFzc2lzdGluZw== 38978
+IHNoYWNr 38979
+zrzOsc+EzrE= 38980
+amlz 38981
+ZW5peg== 38982
+INC/0YDQtdC00LvQvtC2 38983
+IGRlY2xhcmluZw== 38984
+IFZpa2luZw== 38985
+IEFzc2lt 38986
+IGV4cGVuZGl0dXJl 38987
+IHBvc2luZw== 38988
+IE9udW4= 38989
+IGluaWM= 38990
+0LDRjtGC0Yw= 38991
+cmV2 38992
+IG1pZWRv 38993
+IGZpbHRoeQ== 38994
+IElC 38995
+IERpc2NvdmVy 38996
+aWNodGV0 38997
+bWlsbGlvbg== 38998
+toTrk6TsnbQ= 38999
+IGFtYmlndQ== 39000
+IEZseW5u 39001
+YmFyZHppZWo= 39002
+IGluY29tcA== 39003
+0LDQstC90L4= 39004
+emlh 39005
+IGluZmx1ZW5jaW5n 39006
+IHdvcmxkbHk= 39007
+IFNhbGVzZm9yY2U= 39008
+emV0 39009
+IHBhcnRpY3VsaWVy 39010
+IEtvY2g= 39011
+IDE5NDM= 39012
+IHRvbmVy 39013
+INGN0LrRgdC/0LXRgA== 39014
+IHN1c2NyaQ== 39015
+IHRyaWdnZXJpbmc= 39016
+SUNFUw== 39017
+7Iqk6rCA 39018
+zrTOsQ== 39019
+0YDQsNCx0L7Rgg== 39020
+IGFmdGVyd2FyZA== 39021
+cGluZQ== 39022
+IElM 39023
+YXJldGg= 39024
+INC/0LDQuw== 39025
+IHNha2Vy 39026
+IDE5NDc= 39027
+QUY= 39028
+dXlvcnN1bg== 39029
+IOyKpOs= 39030
+IHF1YW50aWZ5 39031
+IG1lbnRvcnNoaXA= 39032
+IGxsZWdh 39033
+IFRhbWFyYQ== 39034
+IG9wdGltaXppbmc= 39035
+IGZyb250cw== 39036
+b3N0ZXJz 39037
+IGVzcXVlcg== 39038
+IHN1Ym1pc3Npb25z 39039
+IGFubmlo 39040
+IHN1Y3Rpb24= 39041
+bHVlbmNl 39042
+Y2hpZWRlbg== 39043
+SU5HUw== 39044
+INeR15Q= 39045
+INGB0YbQtdC9 39046
+IHdpZWx1 39047
+IG9iamV0bw== 39048
+IGJvb2Jz 39049
+IEdlc2Now6RmdA== 39050
+IGVhcmJ1ZHM= 39051
+INGA0LDQvdGM0YjQtQ== 39052
+IHJvdXRpbmVseQ== 39053
+IGNvbGxhZ2Vu 39054
+0L7QtNGL 39055
+IENpbm5hbW9u 39056
+IGJhaXg= 39057
+2K/ZhQ== 39058
+ZnJhZ2U= 39059
+INC60L3QvtC/ 39060
+IGRlY2VwdGlvbg== 39061
+IHVuZXhwZWN0ZWRseQ== 39062
+IHNtZWxsZWQ= 39063
+IGxvb3M= 39064
+IGhpZ2hsaWdodGVy 39065
+IOq4sOuzuA== 39066
+IEdsYXNnb3c= 39067
+b3dhbmE= 39068
+bW4= 39069
+IEplcmVtaWFo 39070
+IERhdGFi 39071
+aWV0ZQ== 39072
+IGJhdw== 39073
+IHByb3BpYQ== 39074
+IHByb3ByaQ== 39075
+T09PT09PT08= 39076
+aW5rZXI= 39077
+IHBlcnR1cmI= 39078
+IEZha2U= 39079
+7J207JY= 39080
+aW1taW5n 39081
+IHVuZG9jdW1lbnRlZA== 39082
+IHRyYWJhamFuZG8= 39083
+IHJvYW0= 39084
+INC00L7Qu9C20L3Qvg== 39085
+IGFyYmU= 39086
+IGFuaQ== 39087
+YXRhbA== 39088
+IGFyYWRh 39089
+IEFuZGE= 39090
+IOybgA== 39091
+IEJyYW5jaA== 39092
+b2lyZXM= 39093
+IG91dHNpZGVy 39094
+ZG9sbGFy 39095
+aXNzZXM= 39096
+YmVhbnM= 39097
+IEdpZw== 39098
+cmFkb3M= 39099
+IFN1dA== 39100
+IExhbmNl 39101
+ZWRzacSZYmlvcg== 39102
+IGNvbGE= 39103
+b25lbnRz 39104
+IHJlY29uc2lkZXI= 39105
+IG1vbmRv 39106
+IHVuc3VjY2Vzcw== 39107
+IEvDpA== 39108
+IHJlZ2Vs 39109
+IGJpc29n 39110
+ZXR1cw== 39111
+IHVucmF2ZWw= 39112
+IHN3ZWV0aWU= 39113
+IHJlcHLDqXNlbnQ= 39114
+b3VyaW5n 39115
+IGdyb3VuZHdhdGVy 39116
+IEJldw== 39117
+IHNjcmF0Y2hlZA== 39118
+IGNhc3NldHRl 39119
+IGNpZGVy 39120
+cGlz 39121
+INGB0LDQvNCw 39122
+IGdsb2JhbGl6YXRpb24= 39123
+IGRlZ3JhZGF0aW9u 39124
+IGRlZ2VuZXI= 39125
+IFJvc2ll 39126
+aWNrdA== 39127
+IG92ZXJ3ZWlnaHQ= 39128
+IE1FTQ== 39129
+IGd1YXJkaWFucw== 39130
+IGNvbnNlYw== 39131
+SG1t 39132
+INC/0L7RgtGA0LXQsQ== 39133
+IG1ldmE= 39134
+IGdyYWZmaXRp 39135
+IGZsaXJ0 39136
+IEJQ 39137
+IGp1c3Rv 39138
+IFRob3VzYW5kcw== 39139
+n6zsmrQ= 39140
+Lio= 39141
+IFJBVw== 39142
+IGZsdW9y 39143
+aXlp 39144
+YW50YWw= 39145
+amVk 39146
+IFNoZW5n 39147
+IEVsaXNl 39148
+IENoYXJnZQ== 39149
+7J207Yq4 39150
+IGNvbmVz 39151
+bmllcw== 39152
+Z2lh 39153
+INC90LDRh9Cw0LvQsA== 39154
+IERoYXJtYQ== 39155
+IOuLpOyWkQ== 39156
+IGZhdm9ycw== 39157
+IFRydW5n 39158
+aGV0dG8= 39159
+IHBvenc= 39160
+IGxvbmdv 39161
+IGtlbHU= 39162
+IGRpZ2VzdGlvbg== 39163
+IEVpZw== 39164
+IFRIRVJF 39165
+IHRpZXJz 39166
+IHN1bms= 39167
+IG15c3RpY2Fs 39168
+enVi 39169
+IMOJdA== 39170
+IGFudGljaXBhdGluZw== 39171
+IFZpbmU= 39172
+WVk= 39173
+IGNvbmNlbnRyYXRpbmc= 39174
+IEFncmVlbWVudA== 39175
+INC+0LrQvtC70L4= 39176
+IGxpZHQ= 39177
+IFlhbw== 39178
+INGB0LvQuNGI0LrQvtC8 39179
+csOt 39180
+SVNUSU5DVA== 39181
+IE9GRklD 39182
+IHNvYWtpbmc= 39183
+IHNpaWhlbg== 39184
+IHJlZmVyZW5jaW5n 39185
+IFRhbXBh 39186
+YW5leQ== 39187
+IHJlc3B1ZXN0YQ== 39188
+IENvYWxpdGlvbg== 39189
+INGB0L7Qs9C70LDRgQ== 39190
+YW5raW5k 39191
+IOub 39192
+IFl1bW15 39193
+67Cw 39194
+IG9uYw== 39195
+dWnDp8Ojbw== 39196
+IHRoZW8= 39197
+IG11cmFs 39198
+IFRlYWNoZXJz 39199
+IHdhaXRz 39200
+IHJlbnRpbmc= 39201
+IEhhcm1vbg== 39202
+IGXFnw== 39203
+IE11bmljaA== 39204
+7Zmc 39205
+7Ja8 39206
+Y2FyZHM= 39207
+IHJvdWdl 39208
+IG7Dqm4= 39209
+Y2x1Yg== 39210
+IHVuc2Vlbg== 39211
+IGRlcHJlY2k= 39212
+IGNvbXB1dGVk 39213
+IHdpcGluZw== 39214
+IEVsbGk= 39215
+aWRlbnRpZmllZA== 39216
+IGNsdXR0ZXI= 39217
+cm9sZXVt 39218
+IHRlbGVm 39219
+IGxldmVsaW5n 39220
+IFdvb2R5 39221
+IEd1cw== 39222
+IEJlbm5ldHQ= 39223
+IHNpdGlv 39224
+acWC 39225
+IHBvc3Nlc3Npb25z 39226
+IE5hdGFzaGE= 39227
+b2xkb3du 39228
+INGB0L7QvtCx0Yk= 39229
+IExpYw== 39230
+IOunjOuToA== 39231
+IGxvcnNxdWU= 39232
+d2Vo 39233
+INC80LDQvA== 39234
+bGl0ZXI= 39235
+YWRvbW8= 39236
+IGZpbmk= 39237
+z47Pgg== 39238
+INGD0LHQuNC5 39239
+IGluZGlzcA== 39240
+IHRlbGV2aXM= 39241
+IHDDoQ== 39242
+IENyZW8= 39243
+w61sbA== 39244
+IGd1cg== 39245
+IE1BTA== 39246
+INGA0LDQt9C90YvRhQ== 39247
+IHppZWhlbg== 39248
+IGZhc2hpb25lZA== 39249
+IGRlYmF0aW5n 39250
+IFNvdXA= 39251
+IFByb3ZpbmNl 39252
+6re466CH 39253
+IGltcHJvcGVy 39254
+IGltYWdlbg== 39255
+INGB0LTQtdC70LDQuw== 39256
+IGxvZ29z 39257
+IGV2ZW50bw== 39258
+4bqjbw== 39259
+bGFyZGE= 39260
+INC90LDQt9GL0LLQsNC10YLRgdGP 39261
+IHZlcmY= 39262
+IHNjcmVlbnNob3Rz 39263
+15XXk9ei 39264
+IEF1cm9yYQ== 39265
+IEJhbGk= 39266
+dGVyZWQ= 39267
+IGNvbnRhZ2lvdXM= 39268
+IGNvbXBhcnRpcg== 39269
+dmVuaWRvcw== 39270
+cmlrZQ== 39271
+INCy0YvQs9C70Y/QtNC40YI= 39272
+IGZyZWVkb21z 39273
+bmljYXM= 39274
+oKTshJw= 39275
+IHJlZHV6 39276
+IEVjdQ== 39277
+IGFib25u 39278
+IFNFw5E= 39279
+IEJpdGNo 39280
+IHByb2pldG8= 39281
+0LjRh9C90L4= 39282
+ZXR0cmU= 39283
+QU5OQQ== 39284
+dGhhbms= 39285
+IEFP 39286
+YXJuaXNo 39287
+aWXDn2Vu 39288
+IHJpcHBsZQ== 39289
+IHBhbnRyeQ== 39290
+IEdI 39291
+zrPOsQ== 39292
+IOydtOuyiOyXkA== 39293
+IHZhbGlkYXRlZA== 39294
+IGJydXNoZWQ= 39295
+IEVtaW4= 39296
+IERhcnRo 39297
+ZXNpbg== 39298
+LC4= 39299
+IHZhbGxl 39300
+IGplcnNleQ== 39301
+dWxhbg== 39302
+UmVhZA== 39303
+IFJhbmdlcnM= 39304
+IHNvb3RoaW5n 39305
+IGNvbXBsZW1lbnRhcnk= 39306
+IFZlcmtlaHI= 39307
+YWNha3Q= 39308
+IGJhdGh0 39309
+IE5E 39310
+U29u 39311
+IO2ZlOyepQ== 39312
+IEF2aQ== 39313
+IFNBTA== 39314
+YWlzc2U= 39315
+IHNlbWFpbmVz 39316
+IFN1cnY= 39317
+d2llcg== 39318
+INCy0LjQtNC10Ls= 39319
+IHNpZXRl 39320
+lOuPhA== 39321
+IFJhbXNheQ== 39322
+IFF1ZWVuc2Jvcm91Z2g= 39323
+IE1lbmdl 39324
+IEZvb2Rz 39325
+IHRoZW9sb2dpY2Fs 39326
+IFsj 39327
+INCy0L7QvdC4 39328
+IGltbWlu 39329
+aW9zaXR5 39330
+IEFiZ2VvcmQ= 39331
+IEFjaG8= 39332
+IMOU 39333
+IHN0YWlucw== 39334
+IHJlYWxpc3RpY2FsbHk= 39335
+IGZhc2hpb25hYmxl 39336
+IENFT3M= 39337
+IFNraWxs 39338
+INCy0LbQtQ== 39339
+IGRldmVy 39340
+IFBsdWc= 39341
+5qo= 39342
+UG9k 39343
+IGxvYWY= 39344
+IGdlYnJhY2h0 39345
+IGFic29yYnM= 39346
+IEdyYW5ueQ== 39347
+IG1hbHdhcmU= 39348
+YWfEmQ== 39349
+IGNpdmlsaXphdGlvbnM= 39350
+IM+B 39351
+IGjDpGx0 39352
+0KHQog== 39353
+Z3JlYXQ= 39354
+IGxheWVyaW5n 39355
+c2luZ3M= 39356
+INCy0ZbQvQ== 39357
+IHJlY29nbml6YWJsZQ== 39358
+IHdvag== 39359
+IHdldGVu 39360
+zrPOvw== 39361
+U3R1ZGVudA== 39362
+IGTDqWZpbg== 39363
+cGxlYXNl 39364
+ZW5jaA== 39365
+IGF0dGlj 39366
+IE90dGF3YQ== 39367
+IG9wdGVk 39368
+IGNhcHRpdg== 39369
+IG3Fgg== 39370
+IFlB 39371
+IFdhbmQ= 39372
+IGJvdW50eQ== 39373
+IDI3MA== 39374
+IHNwZWN1bGF0ZQ== 39375
+IGVuaGFuY2VtZW50 39376
+IGNvbW1vZGl0aWVz 39377
+IE1pbHRvbg== 39378
+ZWo= 39379
+YWxvbQ== 39380
+RGFz 39381
+IGNvb2xkb3du 39382
+16jXkNec 39383
+INeQ16Q= 39384
+IHdjemXFm25pZWo= 39385
+IGVsb25n 39386
+IGRpb2Rl 39387
+aW5hw6fDo28= 39388
+IElyaXM= 39389
+IEli 39390
+IHN1bW1vbmVk 39391
+IHJlc3Bl 39392
+IFJhY2g= 39393
+IMK7Og== 39394
+IHZ1cg== 39395
+IG1vdmltZW50bw== 39396
+IGZsdWVudA== 39397
+IEV2b2x1dGlvbg== 39398
+IEJ1dHQ= 39399
+aWZpY2FjacOzbg== 39400
+lJTslrQ= 39401
+INGN0L3QtdGA0LM= 39402
+IG1hbmlwdWxhdGluZw== 39403
+IHBvc2l0aXY= 39404
+0LzQvtGB 39405
+IHdpeg== 39406
+IGludG94 39407
+zq3PgQ== 39408
+0LXQvNGB0Y8= 39409
+aXZlc3Nl 39410
+aW1pemk= 39411
+IOyauA== 39412
+IGtub2Nrcw== 39413
+IGNvbmdlc3Rpb24= 39414
+IElkZWFsbHk= 39415
+IEhvbGRpbmc= 39416
+IHBvYnJl 39417
+IEpVTA== 39418
+IOu2hOuTpOydgA== 39419
+IM6xzro= 39420
+IEZlcmd1c29u 39421
+IExhYm9yYXRvcnk= 39422
+cmljaHRlbg== 39423
+cm9waHk= 39424
+cHJvZHVjdGlvbg== 39425
+YXNzdW5n 39426
+SVRB 39427
+IHNpw6hjbGU= 39428
+16jXqg== 39429
+Y2lzaW9u 39430
+INek15Q= 39431
+IElyZW5l 39432
+YW5jYQ== 39433
+IOyCrOqzoA== 39434
+IHBpbnBvaW50 39435
+IGRlc2lnbmF0aW9u 39436
+xZ9hbQ== 39437
+bMSxxZ8= 39438
+YWF0 39439
+IG7DpWdyYQ== 39440
+IG15dGhpY2Fs 39441
+IERlY2xhcmF0aW9u 39442
+IOyeoeyVhA== 39443
+IGJ5dGU= 39444
+LuKZqg== 39445
+RGVs 39446
+IO2NvA== 39447
+IG51dHJpdGlvdXM= 39448
+INGA0YPQsdC70LXQuQ== 39449
+U0FZ 39450
+TWFzdGVy 39451
+INGE0L7RgtC+0LPRgNCw0YQ= 39452
+IOuSpOyXkA== 39453
+IG5laA== 39454
+IGRva3VtZW50 39455
+IGN6YXN1 39456
+IGNvbnRpbnVh 39457
+IFNpbGVudA== 39458
+IHRlbnNvcg== 39459
+IHRhbnRh 39460
+IGlyZ2VuZHdv 39461
+IExFVA== 39462
+IFNoYWt0 39463
+bGFtYQ== 39464
+Y2hsYWc= 39465
+IGRpbmdlbg== 39466
+0YHRgtGA0LA= 39467
+IGVocmxpY2g= 39468
+IE1hY2h0 39469
+cmVscw== 39470
+w6BjaWVz 39471
+dmlkZW8= 39472
+IG5hdHVyYWxl 39473
+IFNURVZF 39474
+dW1t 39475
+QkFDSw== 39476
+IDcyMA== 39477
+IG1vbWVuY2ll 39478
+IFN3YW4= 39479
+IHRlY2huaWNpYW5z 39480
+IGdlZWhy 39481
+IE1lbmQ= 39482
+UmVn 39483
+IHNjYWZm 39484
+IGFpZGU= 39485
+IOuztOuKlA== 39486
+IHByZXNzZXM= 39487
+bGVyZGU= 39488
+XCc= 39489
+IHVsdHJhc291bmQ= 39490
+IGRpc2NsYWltZXI= 39491
+IE1pdHM= 39492
+IEhvbGlkYXk= 39493
+IGV4dGVybmFsbHk= 39494
+IEZhdGU= 39495
+SU5P 39496
+IENhdHM= 39497
+67CV 39498
+dW1v 39499
+Y29udHJvbA== 39500
+IHRoZUNVQkU= 39501
+dGlj 39502
+aWVydW5ncw== 39503
+INC30L3QsNC60L7QvA== 39504
+IGZyZWVzdHlsZQ== 39505
+TUFOREFSSU4= 39506
+IGlzZQ== 39507
+YXVydXM= 39508
+IFN0cmF0ZWd5 39509
+IEJlYW0= 39510
+csOkZ2U= 39511
+IGV4cGxvaXRlZA== 39512
+aWRpcw== 39513
+IGNoaW1l 39514
+IFBlbmluc3VsYQ== 39515
+IG1lcml0cw== 39516
+IGFsdHJv 39517
+IFRPUA== 39518
+IFNlbnM= 39519
+IEthbnQ= 39520
+b3Jhcw== 39521
+IHJveWFsdHk= 39522
+IElERQ== 39523
+cmFjeQ== 39524
+IFRIT00= 39525
+b21vcw== 39526
+IGzDpG5nZXI= 39527
+IG51bWJlcmVk 39528
+VW0= 39529
+IE5peWU= 39530
+zrjOtw== 39531
+enlrYQ== 39532
+bGltZQ== 39533
+IFBlcnNvbmVu 39534
+IHZhbGlkaXR5 39535
+IGNvbnRyYXQ= 39536
+IENvbWlj 39537
+w6dvbnM= 39538
+IEhlaWRp 39539
+IHpn 39540
+IHJlbmFtZWQ= 39541
+IGN1bWlu 39542
+IEpG 39543
+aW5lbA== 39544
+IGVuZm9yY2Vk 39545
+IGNoYW1h 39546
+0LvQuNGH0L3Qvg== 39547
+4bq7 39548
+INC00LXQvdC10LM= 39549
+IHByb2Z1bmQ= 39550
+IHBlbHZpYw== 39551
+IHBhbGF2cmE= 39552
+IGV4dHJhcw== 39553
+IGFua2xlcw== 39554
+7JeQ7ISc64+E 39555
+IFRG 39556
+IGluc2FuZWx5 39557
+INC80Y/RgQ== 39558
+IHLDqXBvbnNl 39559
+IGfDtnN0ZXI= 39560
+IEJCUQ== 39561
+INGD0YfQsNGB0YI= 39562
+IHNoYWtlbg== 39563
+IGFsbW9uZHM= 39564
+ZGlzaA== 39565
+IFBH 39566
+IEJsaXp6YXJk 39567
+0YzQvtCz0L4= 39568
+IOOF 39569
+IGtuYXBw 39570
+VG9v 39571
+IHVuZGU= 39572
+IG1vdW50cw== 39573
+0L7QvNC40L3QsA== 39574
+IG5vcnRoZWFzdA== 39575
+IGNlbnNvcnNoaXA= 39576
+0Y/RgtGM0YHRjw== 39577
+bHI= 39578
+IGxhd21ha2Vycw== 39579
+IHPDpWRhbg== 39580
+IGluc2lkZXI= 39581
+IGNsZWFudXA= 39582
+IE5hZGE= 39583
+w7Nj 39584
+IGhhcnZlc3RlZA== 39585
+IERlc3B1w6lz 39586
+7ZqN 39587
+IHJlZHVuZGFudA== 39588
+RU5B 39589
+IGRlbGVnYXRl 39590
+IGJ1cmc= 39591
+IEFsaXNvbg== 39592
+IGNlbGVzdGlhbA== 39593
+IHNpbm5lcnM= 39594
+IG1hcnR5cg== 39595
+IFBlcm0= 39596
+IHNwZWNpbWVucw== 39597
+IG1pdG9jaG9uZA== 39598
+IG1hcmF2aWw= 39599
+IGNhdmFscnk= 39600
+IGFycmF5cw== 39601
+IGFubmV4 39602
+IGxhYm9yYXRvcmllcw== 39603
+IEJ5eg== 39604
+IGF0YWM= 39605
+INGB0LvQvtC20L3Qvg== 39606
+IHRvcGw= 39607
+IGdlcmk= 39608
+IENvbWJhdA== 39609
+0YHRj9GC 39610
+ZWtlbg== 39611
+INCS0LvQsNC0 39612
+IGFqdXN0 39613
+IG1hcnF1ZQ== 39614
+IGxvb2tvdXQ= 39615
+IExvbA== 39616
+IHJvb2Z0b3A= 39617
+IE9yaW9u 39618
+INCx0L7QuQ== 39619
+IGhlYXJ0YnJlYWtpbmc= 39620
+IGRldHRv 39621
+emg= 39622
+w6R0dGVy 39623
+Y2VyYQ== 39624
+IGhlYXRz 39625
+IGFudGlxdQ== 39626
+IHVuZmluaXNoZWQ= 39627
+IEthenU= 39628
+xLFsxLE= 39629
+IHNsaWdodGVzdA== 39630
+bGVv 39631
+IHbDpXJh 39632
+IHZlcnNjaGllZGVuZW4= 39633
+IGxvdGlvbg== 39634
+0YjQtdCz0L4= 39635
+Y3Rpb25hbA== 39636
+IOydtOyg 39637
+ZHJhZ29u 39638
+IHJlc29uYXRlcw== 39639
+IGlubQ== 39640
+YXZpYw== 39641
+IGZ1bGZpbA== 39642
+IOq4sOuMgA== 39643
+IGp1c3RhbWVudGU= 39644
+INC00L7RgdGC0YPQvw== 39645
+IOq3uOqxtA== 39646
+IHJlY29uY2lsZQ== 39647
+IFNjaMO2bg== 39648
+IEF2b2lk 39649
+6rmA 39650
+J0Q= 39651
+IGNvbmZpbmVtZW50 39652
+IO2R 39653
+IG1vdGl2YXRpbmc= 39654
+IEJyaXR0YW55 39655
+IHNjcmVhbWVk 39656
+b2JqZWN0 39657
+IGRlY3JlZQ== 39658
+IHRyYXZhaWxsZQ== 39659
+aXNzaWJsZQ== 39660
+IGJ1c3RlZA== 39661
+cHJvY2Vzcw== 39662
+IG1hc3NhY3Jl 39663
+IG5naMSp 39664
+aWx5bg== 39665
+INCy0YDQvtC00LU= 39666
+IHBvZXRpYw== 39667
+IG5o4bqldA== 39668
+IGlyb25pY2FsbHk= 39669
+dXN1 39670
+bmlv 39671
+IHN0YWdpbmc= 39672
+b21lZGljYWw= 39673
+bGVhc2Vk 39674
+IOyDiOuhnOyatA== 39675
+IE5a 39676
+YWN0aW5n 39677
+IEJhdHRsZWZpZWxk 39678
+cGxheWZ1bA== 39679
+Vmk= 39680
+IHNlw7FvcmE= 39681
+IHByb21wdHM= 39682
+bGljaGtlaXQ= 39683
+IMOnxLFrYXI= 39684
+amlhbmc= 39685
+IHBpY2t5 39686
+IENhdmU= 39687
+IG1pcmFjdWxvdXM= 39688
+IEh1Z2hlcw== 39689
+MjAxNg== 39690
+IHh1 39691
+IERvcm90aHk= 39692
+IHZpcnR1ZXM= 39693
+IHJldHJhY3Q= 39694
+IHR5cg== 39695
+IGNoYXJpc21hdGlj 39696
+IGJvbGE= 39697
+6bw= 39698
+IOunkOyUgOs= 39699
+IHBhcmVudGFs 39700
+IG1pbGxpb25haXJl 39701
+YXJpYXQ= 39702
+IGludm9rZQ== 39703
+xbxlbmll 39704
+IGV4dHJlbWVz 39705
+IEFrdQ== 39706
+aXZpZGFkZQ== 39707
+IO+3ug== 39708
+IOyLnOyyrQ== 39709
+IEdhcmxpYw== 39710
+UklB 39711
+INC00L7RgQ== 39712
+IFBvbnQ= 39713
+IG1pbGo= 39714
+ZWxsaQ== 39715
+IHJhY2tldA== 39716
+IGNvbXBldGl0 39717
+IFdoaXM= 39718
+IHJlYWx0 39719
+aWdubWVudA== 39720
+ZXN0cmU= 39721
+IHBlcm5haA== 39722
+IE9wZW5pbmc= 39723
+IEZT 39724
+IERlbW9rcmF0ZW4= 39725
+YWNlbWVudHM= 39726
+IHdvcmxkdmlldw== 39727
+IHBsYXlvZmZz 39728
+IENBRA== 39729
+IMOpdGFudA== 39730
+IHllbWVr 39731
+IHNlbnRpbWVudHM= 39732
+b2RlbA== 39733
+YnVzdGVy 39734
+YcWf 39735
+IEtZ 39736
+Y3rEmQ== 39737
+IHNjaMO2bmU= 39738
+YXBl 39739
+IFJhc3BiZXJyeQ== 39740
+IGNyZWRpdGVk 39741
+IEhpZGRlbg== 39742
+IHNhdXNhZ2Vz 39743
+cnVjZQ== 39744
+IEJldg== 39745
+aWxhbnRybw== 39746
+IHBva2Vtb24= 39747
+IOqwgOqyqQ== 39748
+IHByb2NlZWRpbmc= 39749
+IHZlaW8= 39750
+IDE3NQ== 39751
+6Lg= 39752
+bWF4 39753
+IGZyYXRlcg== 39754
+7KCE7JeQ 39755
+IGVnZW50 39756
+IDI1MDA= 39757
+dXNjaA== 39758
+VHViZQ== 39759
+IGFtcGxpZnk= 39760
+IHByYXdk 39761
+IG9kb3I= 39762
+IFNjYW4= 39763
+IHBsb3R0aW5n 39764
+aXRobWV0aWM= 39765
+IHJlc2lnbmVk 39766
+IFNDT1RU 39767
+IHN0ZXJlb3R5 39768
+IGRvYWJsZQ== 39769
+IENvbXBsZXg= 39770
+2YHZig== 39771
+dMSxbQ== 39772
+0YDQuNCz 39773
+bGFyZGFu 39774
+ZXNv 39775
+REVO 39776
+IGhvb2RpZQ== 39777
+IENBVA== 39778
+2KfYtw== 39779
+IGJvbmRlZA== 39780
+IEJ1cm5z 39781
+0L7Qv9Cw0YE= 39782
+IHLEmQ== 39783
+zrXOuc6x 39784
+INC+0YLQtNC10LvRjA== 39785
+IHRpbWVsZXNz 39786
+IFZpag== 39787
+IFBhbmFtYQ== 39788
+IHJlb3JnYW4= 39789
+IFTDpA== 39790
+IFBsdXRv 39791
+T3Jhbmdl 39792
+INC/0L7QudC0 39793
+IEJyaXN0b2w= 39794
+dWNlZA== 39795
+IOuQmOyWtA== 39796
+IHVuYmVkaW5ndA== 39797
+YWRsZQ== 39798
+IHZvbHVudGVlcmVk 39799
+IG1pZWxp 39800
+IEVkaW5idXJnaA== 39801
+aWthbA== 39802
+IGFsdGVu 39803
+IEFyc2Vu 39804
+IG1vdXZlbWVudA== 39805
+IGFudGlxdWU= 39806
+IGJo 39807
+IEhlcnM= 39808
+IHNhdXRl 39809
+IGFzcGlyZQ== 39810
+IHNwaGVyZXM= 39811
+IFdhbQ== 39812
+4bqvbQ== 39813
+IHdpcGVz 39814
+IDI4MA== 39815
+IFZlaA== 39816
+IGNvbG9jYQ== 39817
+0LDRhA== 39818
+INCy0L7Qt9C80L7QttC90L7RgdGC0Yw= 39819
+IHBoeXNpb2xvZ2ljYWw= 39820
+aHdh 39821
+ZXR1 39822
+IHByb2xvbmdlZA== 39823
+IGV4cGVyacOqbmNpYQ== 39824
+INCy0LjQtNC90L4= 39825
+IHF1YXJhbnQ= 39826
+IHB1ZWRhbg== 39827
+6JQ= 39828
+dmluZQ== 39829
+IFVTREE= 39830
+cGhlbQ== 39831
+IGZvcm1pZGFibGU= 39832
+IGZsYXR0ZXI= 39833
+7Ja07KeA 39834
+IGLDqW4= 39835
+4LmB4LiV 39836
+IOusvOuhoA== 39837
+IGZhY3Rpb25z 39838
+IExlYXZpbmc= 39839
+INeQ16rXlA== 39840
+IEV4cGVydA== 39841
+ZGlv 39842
+IFZlcmQ= 39843
+IHNpbnQ= 39844
+2YbYrw== 39845
+bnVtYmVy 39846
+IG93ZWQ= 39847
+IGluZHVjZQ== 39848
+IEZyZWRkaWU= 39849
+YWJv 39850
+IEZpbGlwaW5v 39851
+r7zr 39852
+YmVsaWV2YWJseQ== 39853
+YXRobG9u 39854
+YW1hYW4= 39855
+IGRldmVuaXI= 39856
+IEdvcw== 39857
+IEplbmtpbnM= 39858
+YmFpdA== 39859
+IGJpbnM= 39860
+IE1JQ0g= 39861
+dXlvcnVt 39862
+aWdyYWRl 39863
+aXNzbw== 39864
+IOyXtA== 39865
+IOyVhOu5oA== 39866
+IGRpYXJyaGVh 39867
+IHRvcm5hcg== 39868
+YWRkaW4= 39869
+IHVuZ2Vmw6Rocg== 39870
+IHJlc3Ryb29t 39871
+IHBzeWNoaWF0cmlzdA== 39872
+IEtpY2tzdGFydGVy 39873
+IGdlcmE= 39874
+IGFscmVk 39875
+IFdyYXA= 39876
+z4zPgw== 39877
+IHNpbm5lcg== 39878
+Q0hFRVJJTkc= 39879
+IGtpbG93 39880
+IGRldGVybWluYW50 39881
+IGRlbW9uaWM= 39882
+aWRlbmNlcw== 39883
+Y2hhcw== 39884
+IERlZA== 39885
+IHN0dW1ibGU= 39886
+IFVycw== 39887
+IGRlY2VpdmVk 39888
+IFRFUg== 39889
+IEPDsw== 39890
+ZWxsZWQ= 39891
+IG5vdHdlbmQ= 39892
+IOyngOq4iOq5jOyngA== 39893
+IHBhcnRpZG8= 39894
+IGRlc2NlbmRlZA== 39895
+IHZhcmTEsXI= 39896
+IGVuYWN0ZWQ= 39897
+IGN6xJnFm2Np 39898
+IHRyYWluZWVz 39899
+IGF1ZGlibGU= 39900
+IG1hbGY= 39901
+IHZlbw== 39902
+w6xu 39903
+IEdQQQ== 39904
+IEFwcGU= 39905
+IHJ1dA== 39906
+IENhcmxh 39907
+a2FjaA== 39908
+IHNhdmlvcg== 39909
+aXRjaGVk 39910
+IGNsaW1heA== 39911
+0LDRgtC10LvRjw== 39912
+IE1jQ29ubmVsbA== 39913
+0L7Qu9GP 39914
+ZXJleWU= 39915
+INGB0L7Qt9C9 39916
+IGNhYm8= 39917
+IFNuZQ== 39918
+IEFmZm9yZGFibGU= 39919
+IHNhcsOg 39920
+IGxlZ2l0aW1hY3k= 39921
+IHNjYXJjZQ== 39922
+Li4uPC8= 39923
+IDEwOA== 39924
+IGFjdW0= 39925
+IEZyYW5rbHk= 39926
+IHJhZGlhdG9y 39927
+IGdlbmVyYWxz 39928
+IGRpdmlkZXM= 39929
+IGNoZWVzZWNha2U= 39930
+IHNvcmNlcg== 39931
+IG1pc2NvbmNlcHRpb24= 39932
+IGhhcmRzaGlwcw== 39933
+IE9uZVBsdXM= 39934
+w7x5b3JzdW4= 39935
+IFNvdmlldHM= 39936
+IEl0YWxpYQ== 39937
+aWNraQ== 39938
+IEFmdGVyd2FyZHM= 39939
+IHJpZGljdWxvdXNseQ== 39940
+IGdkemllxZs= 39941
+IE5vdGVz 39942
+2YPYp9mG 39943
+IHJvbWFu 39944
+IG9yZ2FuaXplcg== 39945
+IGNvdXJ0eWFyZA== 39946
+INGH0LXQu9C+0LLQtdGH 39947
+IFdpdG5lc3M= 39948
+INC/0Y/Rgg== 39949
+IENoaWxs 39950
+IFZhbHZl 39951
+IM6szrvOuw== 39952
+IEtQ 39953
+Y2hsdXNz 39954
+IGRlZmxlY3Q= 39955
+IFRvbmk= 39956
+IGNsYWly 39957
+IHN0YWNraW5n 39958
+cmFzemFt 39959
+IFNvbnJh 39960
+IEF0YXJp 39961
+IHBhc8Oz 39962
+IGNoYXJtcw== 39963
+YW5zdA== 39964
+IHRlcmNl 39965
+IExpbGx5 39966
+IHBzeWNob2xvZ2ljYWxseQ== 39967
+IGPFkw== 39968
+dXN0ZQ== 39969
+pbTs 39970
+Q1RW 39971
+IG1pZWw= 39972
+Q2FyZQ== 39973
+IOKAkQ== 39974
+IHNuYXBwZWQ= 39975
+IOqwkOs= 39976
+0L7RgtGL 39977
+IG3DqnM= 39978
+Lj8= 39979
+IHRvbm5lcw== 39980
+15XXk9eU 39981
+4LiE4LiZ 39982
+VHU= 39983
+IGRpc3RyaWJ1dGluZw== 39984
+IGNyYWNrZXJz 39985
+IGNvcmHDp8Ojbw== 39986
+w6Rtw6Ru 39987
+Y2xhbWF0aW9u 39988
+0L7RgNC0 39989
+k5zrprTqsozsmpQ= 39990
+IFVudGVyc2NoaWVk 39991
+RmluZQ== 39992
+Y2tv 39993
+INGA0LXQsdC10L0= 39994
+IHNwaWM= 39995
+IGRvY3RvcmFs 39996
+INGB0LrQvtGA0LXQtQ== 39997
+dW5pdmVycw== 39998
+YWN1bGE= 39999
+IMOWc3RlcnJlaWNo 40000
+IGdyaW5kZXI= 40001
+IGFtYm9z 40002
+IHZhc3RseQ== 40003
+IGNvbmZlc3NlZA== 40004
+IFNoaA== 40005
+YW5kZXJz 40006
+IEd1YW4= 40007
+INC90LXQvtCx0YXQvtC00LjQvNC+ 40008
+IGNoYW1waW9uc2hpcHM= 40009
+IFZ1bA== 40010
+IFBoaQ== 40011
+IE1lYXN1cmU= 40012
+IGluc2dlc2FtdA== 40013
+dmV0dGU= 40014
+IGdlbm9t 40015
+aW5kdW5n 40016
+Z2xp 40017
+RGV0 40018
+IHVubXV0ZQ== 40019
+IHNhdWNlcw== 40020
+IER3 40021
+15HXqg== 40022
+IEJSRQ== 40023
+IG51cnR1cmU= 40024
+IGRldGFpbmVk 40025
+IEJlZXI= 40026
+INC80LjRgNCw 40027
+0LLQtQ== 40028
+IEJpcmRz 40029
+IG1laWxsZXVy 40030
+IHJld2luZA== 40031
+IHBvcmU= 40032
+15nXlg== 40033
+w6lnZXI= 40034
+cXVlbGE= 40035
+IHRyb3VzZXJz 40036
+IHNpaW7DpA== 40037
+IEdhZ2E= 40038
+IEJSQU5E 40039
+bGViZW4= 40040
+IHJhc3BiZXJyeQ== 40041
+aWxpaw== 40042
+IHZlcnPDo28= 40043
+bGFr 40044
+IGxvZ2Fy 40045
+IE1JREk= 40046
+IOychO2VnA== 40047
+INC/0YDQvtC40LfQvtGI 40048
+IHN0ZXJpbA== 40049
+IGhhcm1lZA== 40050
+0LDQstC70LjQsg== 40051
+INGB0YHRi9C7 40052
+IGxhY2tlZA== 40053
+IGNvbnRhY3Rpbmc= 40054
+IOq4sOyekA== 40055
+IGdlZsOkaHI= 40056
+IGNveQ== 40057
+aWtlbA== 40058
+IGJpbmdl 40059
+IG9ydGhvZ29uYWw= 40060
+IGVudGVuZHU= 40061
+IFRoaXJ0eQ== 40062
+IHNtYXJ0ZXN0 40063
+IHJhc2E= 40064
+IFF14buRYw== 40065
+0YvQstCw0Y7Rgg== 40066
+IHNsdXQ= 40067
+0LvRg9GH 40068
+aWd0ZW4= 40069
+INGA0LDQsQ== 40070
+IHRhbWFu 40071
+IHF1YWxpZGFkZQ== 40072
+IGRvbWluYXRpb24= 40073
+IHNpbnVz 40074
+IHByb2dyYW1tZXJz 40075
+IGFsbGVyZ3k= 40076
+IFRvcnJlcw== 40077
+IEF1c3RyaWFu 40078
+bmFudHM= 40079
+TWVs 40080
+INGD0LLQtdC70LjRhw== 40081
+IEFnZw== 40082
+IHNvaw== 40083
+IHBsdWNr 40084
+IGJpbmRz 40085
+IHByb3Bvcg== 40086
+IE1hZg== 40087
+IG9zb2I= 40088
+IFZJQw== 40089
+6aU= 40090
+INC30LDRh9C10Lw= 40091
+IGV4aGliaXRpb25z 40092
+IGV0dGk= 40093
+Y3ph 40094
+INC90LDRiNC40YU= 40095
+IE1pdHRl 40096
+0L7QsdGL0YLQuA== 40097
+IGNsb2Nrcw== 40098
+IHJpY28= 40099
+INC40YHRgtC+0YDQuNGP 40100
+IHNjaGl6b3BocmVu 40101
+IGZsdWZm 40102
+INGB0L7QsdC40YA= 40103
+IGFwb3k= 40104
+IHByaW5jZXM= 40105
+IGJyYWNlcw== 40106
+IEZJUg== 40107
+IFNuYQ== 40108
+IDsp 40109
+dmVuZXM= 40110
+IHZ1ZWx0YQ== 40111
+IG1pZXM= 40112
+IGJyb29t 40113
+IG1lcnJ5 40114
+IGVzcGVjaWFsbWVudGU= 40115
+IEFsYmFu 40116
+INC/0L7RgdGC0L7Rj9C90L3Qvg== 40117
+IExlbmE= 40118
+IEN1bHQ= 40119
+YWxzbw== 40120
+IHF1b3Rpbmc= 40121
+IGdlbmVyZQ== 40122
+IFlhcg== 40123
+IExhZ2U= 40124
+IGRlbW9zdA== 40125
+IGRhZ2U= 40126
+IEVjdWFkb3I= 40127
+IGFudsOkbmQ= 40128
+dcOfZW4= 40129
+IOuwm+yVhA== 40130
+IHBzeWNob2xvZ2lzdHM= 40131
+IExhcnM= 40132
+IHBvc3Nh 40133
+IG91dGdvaW5n 40134
+IG1ldGlj 40135
+IGJhZ2dhZ2U= 40136
+ZXJpYQ== 40137
+IHJpY2h0aWdl 40138
+7Iuc7JeQ 40139
+INGB0L7RhdGA0LDQvQ== 40140
+IHJvb3Rpbmc= 40141
+IGRyb3BsZXRz 40142
+IG5hc2Fs 40143
+IENveA== 40144
+WGk= 40145
+IGRpc3Bvc2FibGU= 40146
+IGJ1dGNoZXI= 40147
+IFphcg== 40148
+IEFybWVuaWFu 40149
+IOu/jOs= 40150
+IEZvb2w= 40151
+IENCRA== 40152
+IHNvc3Q= 40153
+IHBlcmlzaA== 40154
+IFLDqXA= 40155
+IEZyZXVk 40156
+IGZhbmRvbQ== 40157
+IGJsb3F1ZQ== 40158
+IGludmVudG9y 40159
+IGFicmU= 40160
+IMOpbm9ybcOpbWVudA== 40161
+IGltcG9ydHM= 40162
+6Yg= 40163
+IG90dXI= 40164
+IFJ5dQ== 40165
+IOKGkg== 40166
+IHNlY29uZG8= 40167
+IGluY29tcGV0 40168
+IGluY2FyY2VyYXRpb24= 40169
+IGFzY2VuZA== 40170
+YmVuZQ== 40171
+IG9sdXJz 40172
+bm9jaA== 40173
+IGJyZWVkcw== 40174
+0LvQuNC3 40175
+IFZlcmbDvGc= 40176
+IG1haWxpbmc= 40177
+cmVhbGx5 40178
+IGVzZg== 40179
+IHBlbGU= 40180
+IGxlYXNo 40181
+IGRpc2tz 40182
+INC30LDQvNC10Yc= 40183
+7JWE7JWE 40184
+YWJvdXRz 40185
+IE11bGw= 40186
+IERlbnQ= 40187
+ZWRlcmVlbg== 40188
+RHJpdmU= 40189
+IHRpcHBpbmc= 40190
+IG5pZ2dh 40191
+b3JkdW0= 40192
+IHBvcnRlcg== 40193
+IGthcmFva2U= 40194
+IGRvY3VtZW50YXJpZXM= 40195
+IFJJR0hU 40196
+IFB1cmQ= 40197
+INC+0YHRgtCw0L0= 40198
+0LrQu9Cw0LQ= 40199
+w6lyZW5jZQ== 40200
+IOqxuOuhnA== 40201
+INGC0L7Qvw== 40202
+IFdvbmc= 40203
+INC/0YDQuNGA 40204
+IG5vbWluYWw= 40205
+IGF1bGE= 40206
+INGN0LrRgNCw0L0= 40207
+IGNoZXJjaGU= 40208
+IFRocg== 40209
+IGxhdWZlbg== 40210
+IEthdGhsZWVu 40211
+IHJlYWN0b3Jz 40212
+aWhhdA== 40213
+IHNpZGVk 40214
+IFNpbW9uZQ== 40215
+IGd1aWRlbGluZQ== 40216
+aW1wb3J0YW50 40217
+YnVtcHM= 40218
+dG9uZQ== 40219
+IGVudHJlcHJpc2Vz 40220
+IGNvbnN0aXR1dGU= 40221
+b3Njb3Bl 40222
+IE15c3Rlcnk= 40223
+Y3ljbGVz 40224
+IFdhcnNhdw== 40225
+IGJ1cnN0cw== 40226
+IFpob25n 40227
+IFNBUkFI 40228
+IOuKkOq7 40229
+6Y0= 40230
+IGJlYWNvbg== 40231
+QURF 40232
+IOyngOuCmA== 40233
+IGVyc2No 40234
+IGludGVnZXJz 40235
+IENyb3NzaW5n 40236
+c291cmNl 40237
+IHNjaG9vbGluZw== 40238
+IFJPTQ== 40239
+YXRvcml1bQ== 40240
+IOyeiOqyjA== 40241
+IHLDtGxl 40242
+0JXQnQ== 40243
+Q2hhdA== 40244
+IHNocmlua2luZw== 40245
+IHJlaW1idXJzZQ== 40246
+IGx1bWJlcg== 40247
+w7xja3M= 40248
+IHNhbGFo 40249
+TW90aGVy 40250
+IGthbGk= 40251
+IFFhdGFy 40252
+b3Rpb25hbA== 40253
+IG9wYWNpdHk= 40254
+IG5lZQ== 40255
+IENvcnk= 40256
+IOy4oQ== 40257
+IHR1cmJ1bGVudA== 40258
+emVycw== 40259
+INGC0LXRgdGC 40260
+IMOpY3JpdA== 40261
+IOuztO2GtQ== 40262
+IGRpc2dyYWNl 40263
+IOy5tA== 40264
+IGNvdXJ0ZXN5 40265
+aW5nYQ== 40266
+IGh1Z2dpbmc= 40267
+IEFCUw== 40268
+bWl0aA== 40269
+IGluc3VmZmljaWVudA== 40270
+IGNyb29rZWQ= 40271
+IOq3uOuMgOuhnA== 40272
+7Iuk7Q== 40273
+IHNpbXVsYXRlZA== 40274
+IOuEpOqwgA== 40275
+IGLDtg== 40276
+IE90dG8= 40277
+TElORw== 40278
+IGlsbHVzdHJhdGVz 40279
+IERlc3Ryb3k= 40280
+IDE5NjE= 40281
+IFRhZ2Vu 40282
+IG1lbG9u 40283
+IFBhc2NhbA== 40284
+UVVF 40285
+INC/0L7Qu9GD0YfQuNGC0Yw= 40286
+IGluY2lkZW5jZQ== 40287
+IFN0ZXZlbnM= 40288
+IEdpbnM= 40289
+cnVl 40290
+IHVucmVhc29uYWJsZQ== 40291
+IEppZQ== 40292
+eXNpY3M= 40293
+IOuqsOudvA== 40294
+IGZpc2hlcw== 40295
+qbTs 40296
+IHByZWN1cnM= 40297
+IG1vZ8SZ 40298
+dGlnaHQ= 40299
+ZXTDqQ== 40300
+IG11bmRpYWw= 40301
+7JeI64uk 40302
+4oCmIQ== 40303
+QlU= 40304
+IHNvY2lvbG9neQ== 40305
+IGJydXRhbGl0eQ== 40306
+IHBlcnNvbmFqZQ== 40307
+IG7DrXZlbA== 40308
+IGZhemVt 40309
+IGVzc2Vu 40310
+IGR3ZWxsaW5n 40311
+IGNvbW1lcmNpYWxseQ== 40312
+IGVkaXRz 40313
+IGR1ZXM= 40314
+IEdTQQ== 40315
+7J246rCA 40316
+IO2XiO2MnQ== 40317
+IFlhaG9v 40318
+0LXQvdC10YA= 40319
+7Jyo 40320
+0YPRiNC60Lg= 40321
+bGVmdA== 40322
+IGNhcHRpdmU= 40323
+Y2lwaGVy 40324
+INee157X 40325
+INCz0YDQvtC8 40326
+IGlubmF0ZQ== 40327
+IGltcHVs 40328
+IOyXrOyekA== 40329
+IHN3YWxsb3dlZA== 40330
+IFRhYmlp 40331
+7J207Is= 40332
+INGB0L7RgdGC0LDQsg== 40333
+IG95dW4= 40334
+IG9icmlnYWRv 40335
+IEFwaA== 40336
+S2F0aWU= 40337
+IGNlbmE= 40338
+IEFsbMSBaA== 40339
+2YjYsw== 40340
+IHByenlw 40341
+IHBlcHQ= 40342
+IHZvbHVudGFyaWx5 40343
+IE/En2x1bQ== 40344
+IEVsbw== 40345
+b3Vl 40346
+Qmly 40347
+YnVyZ2Vy 40348
+IFNCUw== 40349
+IDYwMDA= 40350
+IHByb21vdGlvbmFs 40351
+IEhlcnJu 40352
+IHN0YW1waW5n 40353
+IHF1YWxpZnlpbmc= 40354
+IGNvc21vcw== 40355
+IGFmYXI= 40356
+YWJ1cw== 40357
+IGRhZHM= 40358
+INGN0LrQvtC90L7QvA== 40359
+aW5jYXJu 40360
+IOyWtOuU 40361
+INC70LXQtg== 40362
+IEJFVA== 40363
+INC90LDQudC0 40364
+b250ZXI= 40365
+IHJldXNhYmxl 40366
+IGtvbW1h 40367
+IEJpag== 40368
+IFRlcmF6 40369
+IE9sw6E= 40370
+IOyVhOy5qA== 40371
+INGA0LDQt9C80LXRgA== 40372
+YXdhbg== 40373
+IGNhcnRh 40374
+aWNlbGVzcw== 40375
+IHNtZQ== 40376
+IFR1dGFq 40377
+IMiYaQ== 40378
+IHByb2JhdGlvbg== 40379
+IGFkZXF1YXRlbHk= 40380
+IFByZXNpZGVudGlhbA== 40381
+aW5kcnVjaw== 40382
+YmxhZGU= 40383
+IHZldWxlbnQ= 40384
+IGNpb8Oo 40385
+IHJldmVyYg== 40386
+IGdlZ2Vuw7xiZXI= 40387
+IEVzcGVybw== 40388
+IGJlZ2U= 40389
+IFNUVURFTlQ= 40390
+c291bmQ= 40391
+IETDvA== 40392
+IG9mZmVuZA== 40393
+ICIuLg== 40394
+a2VubnQ= 40395
+INGB0LvRg9GI 40396
+IHB1cnBvc2VseQ== 40397
+IExpdA== 40398
+IO2bqA== 40399
+dWNoZXI= 40400
+IGhpbmE= 40401
+w71jaA== 40402
+aWdub24= 40403
+VEhF 40404
+IGdsaWRl 40405
+b3VyY2luZw== 40406
+INij2YbYpw== 40407
+IG9sbHV0 40408
+IGFyY2hldHk= 40409
+IHNoYWR5 40410
+IHNvbW0= 40411
+IGVwaWxl 40412
+S2VlcA== 40413
+IG5hamJhcmR6aWVq 40414
+4KSV 40415
+aXR1dGlvbmFs 40416
+INC80LDQuQ== 40417
+IHNpbmZ1bA== 40418
+IEJyb254 40419
+INCz0LvRg9Cx 40420
+IHZhbQ== 40421
+IHByZXNldHM= 40422
+IERhZw== 40423
+IOyZhOyEsQ== 40424
+IGNyZWVr 40425
+aXR1cmVz 40426
+IExvcmRz 40427
+w7Z0dA== 40428
+VU5U 40429
+UmE= 40430
+IGluZXF1YWxpdGllcw== 40431
+IGNvbGxhdGVyYWw= 40432
+IHdyaXN0cw== 40433
+IGdyb3VwZWQ= 40434
+INC+0LHRi9GH0L3Qvg== 40435
+IGFybW9yZWQ= 40436
+IHR1bmc= 40437
+IGNvbnZlcmdl 40438
+IGJvaw== 40439
+IERvZGdl 40440
+0L3Rj9GP 40441
+IGZsZWVpbmc= 40442
+IE1hcnRpbmV6 40443
+IERyZWFtcw== 40444
+a2Vr 40445
+IHNvY2lhbGU= 40446
+IFBsYXph 40447
+2K/YqQ== 40448
+IGtlbGw= 40449
+IFN0ZWxsZW4= 40450
+ZmVsdA== 40451
+INGB0L/QsNGB 40452
+IFB2 40453
+IGNhbmNpw7Nu 40454
+IEhlcnQ= 40455
+IEJhbGFuY2U= 40456
+IHNlbHZlcw== 40457
+IHZhbmRhYWc= 40458
+IHByeQ== 40459
+IG5hamxl 40460
+INCy0LjQtNC40YLQtQ== 40461
+IHZlbHZldA== 40462
+IGdyb290 40463
+IGZvdXQ= 40464
+IFNjaHVsZW4= 40465
+IE1vaGFtbWVk 40466
+IENlbnRlcnM= 40467
+IGhhdmVy 40468
+IGZyZXVlbg== 40469
+pO2KuA== 40470
+0LvQsNC9 40471
+UE9T 40472
+aW5raQ== 40473
+IOuLtQ== 40474
+IHBhcmFseXplZA== 40475
+R0xJU0g= 40476
+IGNhc3Rz 40477
+IFZD 40478
+7J207IWY 40479
+INiq2r4= 40480
+IOykmA== 40481
+INeo15XXpg== 40482
+IHN1Y2Vk 40483
+IHByb2dyZXNzZXM= 40484
+IEXEn2Vy 40485
+sOuPhA== 40486
+IGluc3RhbGxhdGlvbnM= 40487
+cGVkbw== 40488
+0LXRgNCx 40489
+aW50ZXJwcmV0 40490
+IOqzoOuvvA== 40491
+IEF6ZXJiYWk= 40492
+aXZpZGFkZXM= 40493
+IOyjhOyGoQ== 40494
+IGVudGZlcg== 40495
+IGNod2ls 40496
+IEhlcmJlcnQ= 40497
+IEFsZXhhbmRyaWE= 40498
+eXR5 40499
+IHNlY2hz 40500
+IGNhbGliZXI= 40501
+IFdlaXNl 40502
+IEhlY2s= 40503
+IFl1Zw== 40504
+INin2YTYtw== 40505
+IHBlc2Fy 40506
+IGNpZ2Fy 40507
+IG3DqWw= 40508
+IGhhaXJk 40509
+IHByenlwYWRrdQ== 40510
+IGNvbmZpZGVudGx5 40511
+IGFuYXJjaA== 40512
+IEdpYW4= 40513
+IGRvYnJl 40514
+Y2rEmQ== 40515
+YXd5 40516
+IFJlY2U= 40517
+IEdvYmllcm5v 40518
+IGNhcmdh 40519
+dW1zeQ== 40520
+IG5vcnRl 40521
+IGhhbmRsZXI= 40522
+IHJlc3BlY3Rpbmc= 40523
+IGFsbGllZA== 40524
+IFBpZXQ= 40525
+aWNodGxpY2g= 40526
+IG9sZHM= 40527
+IGR1c3R5 40528
+IGdyeQ== 40529
+IC0uLi4= 40530
+R0hU 40531
+IG5lbw== 40532
+0YfQuNC60Lg= 40533
+0LXQttC0 40534
+YWlkZQ== 40535
+INCx0YPQu9C+ 40536
+7Y28 40537
+IHRlbXBvcmFkYQ== 40538
+IGRvdXRl 40539
+4piG 40540
+IOyIoA== 40541
+IEpVU1RJTg== 40542
+YXV0bw== 40543
+IHJhdGlvbmFsZQ== 40544
+cHJvYg== 40545
+IGZpc2h5 40546
+IGRvb3J3YXk= 40547
+IGVtcHRpbmVzcw== 40548
+0LXQvdC90LDRjw== 40549
+IGJyYWc= 40550
+INCT0LTQtQ== 40551
+IHRyYW5zaWVudA== 40552
+IG1pdHRsZXJ3ZWlsZQ== 40553
+IEJyZXQ= 40554
+IGZpag== 40555
+IGRlcG9zaXRlZA== 40556
+TlM= 40557
+IOyVnuyXkA== 40558
+IGtpbXNl 40559
+IGNoYXJpdGllcw== 40560
+IE1pbGxlbm4= 40561
+ZG9ncw== 40562
+IG1veWVu 40563
+IG51ZXZvcw== 40564
+IENvb2tpZQ== 40565
+cGFyYWJsZQ== 40566
+ZG9pbmc= 40567
+IFNhaWw= 40568
+IGljeQ== 40569
+aGFiYQ== 40570
+IHF1ZWVucw== 40571
+IGNob2NvbGF0ZXM= 40572
+IE5heQ== 40573
+INGE0LjQvQ== 40574
+IHZlYw== 40575
+IGhlbG1ldHM= 40576
+VE0= 40577
+IEFybWVk 40578
+IGltcGFpcm1lbnQ= 40579
+IFR1cw== 40580
+IE3Dqm1l 40581
+b21leg== 40582
+IFJlcXU= 40583
+IEludmVzdGln 40584
+7Y6Y 40585
+IGdvbHBl 40586
+IFJhYw== 40587
+aWdyYXBo 40588
+IGt3ZXN0 40589
+IHNhaWxvcnM= 40590
+IHN0YXR1dG9yeQ== 40591
+IG1pbGVzdG9uZXM= 40592
+IE1hc2g= 40593
+IEdlc2V0emVudHd1cmY= 40594
+6Yo= 40595
+IGNvbG91cmVk 40596
+aHVtYQ== 40597
+IHllcmU= 40598
+IHN1YnRpdGxlcw== 40599
+IGVtYm9kaWVk 40600
+IG1pc3NjaGllbg== 40601
+IGlQaA== 40602
+w7x0emVu 40603
+IGRldGFjaGVk 40604
+IGRlc2NyacOnw6Nv 40605
+Y2lhbW8= 40606
+IHJlY29pbA== 40607
+INCt0YLQvtGC 40608
+IGV4cG9ydGVk 40609
+IEFsb25l 40610
+YW50cnk= 40611
+IGVzdGFu 40612
+IFNvZA== 40613
+IGxhdm9ybw== 40614
+16jXkQ== 40615
+IMSR4buL 40616
+IHN3YWc= 40617
+IFBDQg== 40618
+IEthaXNlcg== 40619
+IE1vZGVy 40620
+anVn 40621
+IHRleHRpbGU= 40622
+VHc= 40623
+IG5hYw== 40624
+ZnJlaQ== 40625
+IHJldGFyZA== 40626
+aXNjZXJu 40627
+IHRhbGxlc3Q= 40628
+IEx1Y2E= 40629
+UmFo 40630
+IHByZWFjaGVy 40631
+IGp1dA== 40632
+IFJpY2E= 40633
+aWNpZW5jeQ== 40634
+IMSRaeG7gXU= 40635
+IGthdWZlbg== 40636
+IG5ldHQ= 40637
+IGRpc2N1dA== 40638
+IGRlcHJpdmVk 40639
+oa0= 40640
+IHNwcmljaHQ= 40641
+IGVuY2xvc2Vk 40642
+IFN1YnN0 40643
+IFJhYmJpdA== 40644
+cHJpc2Vk 40645
+IGJpdGNoZXM= 40646
+7J+B 40647
+IHRhcGE= 40648
+IEVzc2Vu 40649
+IEJhbw== 40650
+IGRldmllbnQ= 40651
+IFd1aGFu 40652
+IFRpcHA= 40653
+IGRpc2FzdA== 40654
+0YHRgtCy0YM= 40655
+dWJsaXF1ZQ== 40656
+IHF1YWxpdMOp 40657
+IGluYWRlcXVhdGU= 40658
+IGJhcmdhaW5pbmc= 40659
+IEdvdGNoYQ== 40660
+0LXQstC40Yc= 40661
+aWV2b3Vz 40662
+ZXJ0b24= 40663
+Ymx1ZQ== 40664
+IOybgOyngQ== 40665
+IHNhbmRib3g= 40666
+IFJlaW4= 40667
+IOydtOqyg+uPhA== 40668
+IHNheA== 40669
+em9nZW4= 40670
+dW7DpGNoc3Q= 40671
+IGhlcmtlcw== 40672
+IC0s 40673
+emVuaQ== 40674
+cmlzaW5n 40675
+IHJlc3Bvc3Rh 40676
+IHByb21vdGlvbnM= 40677
+IFVudGVyc3TDvHQ= 40678
+IE1BUw== 40679
+Tm90aGluZw== 40680
+b3RpY3M= 40681
+INCy0YvQuQ== 40682
+IHJvdGF0ZXM= 40683
+a2llbg== 40684
+IGhhYmxh 40685
+IERhbmk= 40686
+dW5pb24= 40687
+IHdhY2s= 40688
+IGFyY2hhZW9sb2dpY2Fs 40689
+IEN1cnRpcw== 40690
+IEhvcml6 40691
+IOqzqOs= 40692
+IHdhaXZlcg== 40693
+Qm9u 40694
+IHJvdGF0ZWQ= 40695
+IHBpdGNoZXI= 40696
+IGluYWQ= 40697
+IGh1Z3M= 40698
+IE5vcnRoZWFzdA== 40699
+15nXqteZ 40700
+IHBsZWE= 40701
+IGN1cGNha2U= 40702
+IExZ 40703
+IGZhbWlsaQ== 40704
+IGdyb28= 40705
+IEJsYWly 40706
+IGxpag== 40707
+IGhhYml0YXRz 40708
+IGNvbW11bmlzbQ== 40709
+b3NpdW0= 40710
+YmFycw== 40711
+IEZyZWVtYW4= 40712
+bmVv 40713
+IGRpZmZ1c2U= 40714
+IGN5bGluZGVycw== 40715
+IERlYmF0 40716
+7ZaI64qU642w 40717
+0LXRiNC1 40718
+IGZpbmdlcnByaW50cw== 40719
+IGFtYXI= 40720
+0LLQuNC0 40721
+IOygleuPhOuhnA== 40722
+IGFmZmlsaWF0ZWQ= 40723
+INGF0L7Rh9C10YI= 40724
+IGV0aXF1 40725
+IGNow61uaA== 40726
+IGNydWlzaW5n 40727
+IFdlaWhu 40728
+IFRpdGFuaWM= 40729
+IE5hc3Q= 40730
+IOuTpOs= 40731
+INCy0LDQuw== 40732
+IGRlbWk= 40733
+IEtyaXN0aW4= 40734
+TUlO 40735
+IHJpZ29y 40736
+IG1vdG8= 40737
+IExBS0U= 40738
+IO2ZnA== 40739
+IOunjOyVvQ== 40740
+IFN0cm8= 40741
+IHByb3RvdHlwZXM= 40742
+IExD 40743
+7J247J2E 40744
+0YDQuNC8 40745
+IHZpb2xhdGluZw== 40746
+IGdpb3Jubw== 40747
+IGNoaWxkaXNo 40748
+INeQ15fXkw== 40749
+IG92ZXJkb3Nl 40750
+YWdvZ3Vl 40751
+0LDQtNGG 40752
+aGV1cw== 40753
+INCz0L7QstC+0YDRjw== 40754
+IGluY3I= 40755
+IGRlYmF0ZWQ= 40756
+2YXZhA== 40757
+IGNoaWNrcw== 40758
+IHF1aW4= 40759
+TEFVR0hJTkc= 40760
+IHRpZ2h0ZW5pbmc= 40761
+IHN1cGVydmlzb3Jz 40762
+IEhhd2s= 40763
+IEJheg== 40764
+INC/0L7QstGC0L7RgA== 40765
+INCx0LvQvtC6 40766
+xIFu 40767
+IGR1bXBpbmc= 40768
+IGZhY3Rv 40769
+YmVyZ2Vy 40770
+IGFyc2VuYWw= 40771
+IEFmcmljYW5z 40772
+oYA= 40773
+IGNhZmV0ZXJpYQ== 40774
+ZmVlZGluZw== 40775
+cXVpbGE= 40776
+IHBhxYRzdHdv 40777
+xLFudA== 40778
+hLE= 40779
+IGVudmlyb25tZW50YWxseQ== 40780
+IGRlc3Byw6lz 40781
+IFdpbGx5 40782
+IFBhxYRzdHdv 40783
+IEdH 40784
+IGNoYWN1bg== 40785
+IGRpcmVjdGlvbmFs 40786
+IGjDtnJ0 40787
+IPCd 40788
+ZW5hcnk= 40789
+IHZvaWNlZA== 40790
+YcSfxLE= 40791
+IHBvcGU= 40792
+IGNvbXJhZGVz 40793
+IEdpYnNvbg== 40794
+IEFDQw== 40795
+dmlr 40796
+IG1vZGVsbGluZw== 40797
+IGFnZ2k= 40798
+IGNvbnZlcnNpb25z 40799
+IGF2ZXJhZ2Vz 40800
+RWxsaWU= 40801
+IGdlc3RlbGx0 40802
+IFVF 40803
+b3NhaWM= 40804
+0JLQvtGC 40805
+U2F5 40806
+INGB0LDQvNC+0LPQvg== 40807
+IG1lc3VyZXM= 40808
+aXNpZXJ0 40809
+Z2FzcA== 40810
+dm9pY2U= 40811
+IGNoZWNrcG9pbnQ= 40812
+IHBlcmNlbnRhZ2Vz 40813
+IGRpc3J1cHRlZA== 40814
+IFR1Yw== 40815
+IEhvbWVy 40816
+IFdBWQ== 40817
+IFR1cmtz 40818
+aGVlbg== 40819
+aW1vdG8= 40820
+IE9D 40821
+w61uYQ== 40822
+emllbA== 40823
+IG11ZGFy 40824
+Z2VzZXR6dA== 40825
+IG1lam9yZXM= 40826
+IENK 40827
+0L3QsNGA0YPQtg== 40828
+IG1vZHVsdXM= 40829
+IG1vZHVsYXRpb24= 40830
+IHJlcGxpZXM= 40831
+IGxhcnZh 40832
+IGdpZGVy 40833
+IE1hbmRhcmlu 40834
+INC/0L7RgdC80L7RgtGA0LjQvA== 40835
+IHNhY3JpZmljaW5n 40836
+IHByZcOnbw== 40837
+IG95c3RlcnM= 40838
+IE15YW4= 40839
+b2xvZ3Vl 40840
+IFdpdA== 40841
+IGTDuw== 40842
+IExldXRlbg== 40843
+IHBhdGVy 40844
+IEtFTk5FVEg= 40845
+0LDQsdCw0YI= 40846
+YXJ0aHk= 40847
+IHNvY2llZGFk 40848
+IG5pw7Fv 40849
+0LXQstC+0Lk= 40850
+IGrEmQ== 40851
+IGFkdmVydGlzZWQ= 40852
+IFBlcHNp 40853
+dXRldXI= 40854
+IG1hc3Nl 40855
+IHNjYXR0ZXJpbmc= 40856
+IHnDtm4= 40857
+IGRlc2FwYXJl 40858
+IEh1YmJsZQ== 40859
+IEjDqQ== 40860
+a3LDpA== 40861
+IERhcmU= 40862
+IG92ZXJyaWRl 40863
+IEVsYWluZQ== 40864
+IER1Ymxpbg== 40865
+ZHVsbGFo 40866
+TWF0 40867
+IEdhcnI= 40868
+Li4uJw== 40869
+IGFkdWx0aG9vZA== 40870
+RVo= 40871
+IGJlbGFuZ3Jpams= 40872
+aWVuemE= 40873
+IHVuaXZlcnNv 40874
+IHN0ZWxsYXI= 40875
+7ZSE6w== 40876
+IOqysOq1rQ== 40877
+IGNvbnN0ZWxsYXRpb24= 40878
+IFNoZWxsZXk= 40879
+IG11bHRpdA== 40880
+IG1hc2NvdA== 40881
+IGhvc3BpdGFsaXplZA== 40882
+IPCdmA== 40883
+0L7RgNGL 40884
+YWRpYQ== 40885
+IE1pa2V5 40886
+IEFtZXJpa2E= 40887
+IGhhaXJ5 40888
+SG9sZA== 40889
+4bqvbg== 40890
+a2llZ28= 40891
+4LmA4LiU 40892
+IHJpdmFscnk= 40893
+IEpvbmFo 40894
+IHN1cmdlb25z 40895
+IHJlbGF0YWJsZQ== 40896
+6JI= 40897
+IHN3aW1z 40898
+IGJpbGxpb25haXJl 40899
+bW9kZXJu 40900
+IGRvY3VtZW50aW5n 40901
+IERhZQ== 40902
+IHN3YXRjaA== 40903
+IHB1aXNzZQ== 40904
+IG1hc3Vr 40905
+IG1hcmM= 40906
+IGtyw7M= 40907
+IFBldGVyc2J1cmc= 40908
+IEFyaXN0b3RsZQ== 40909
+aXhl 40910
+UHJvZHU= 40911
+INC90LjQvNC4 40912
+IGthbmE= 40913
+INCp 40914
+IHZvbWl0 40915
+IFdvcmtlcnM= 40916
+cG9wdWxhcg== 40917
+IEJpZWJlcg== 40918
+0LXRgtC4 40919
+w6l0aXF1ZQ== 40920
+IGVuY2FudA== 40921
+Z3Jhbg== 40922
+Zmly 40923
+IGFudGhlbQ== 40924
+0YHRg9C00LDRgA== 40925
+TGFzdA== 40926
+IGhhZw== 40927
+IHZpY2luaXR5 40928
+cmVuY2hlZA== 40929
+YW5kaW5n 40930
+INCz0L7Qu9C+0YE= 40931
+IENvcm5lcg== 40932
+0JLRiw== 40933
+b3Nhcw== 40934
+aWV2ZXJz 40935
+Y2lvbmFs 40936
+IHZpZ29y 40937
+IHJlam9pY2U= 40938
+IGNpxIU= 40939
+INC60L7Qvw== 40940
+IHF1YWxjb3Nh 40941
+ZGVzc3Vz 40942
+INC10LI= 40943
+IFNjYW5kaW4= 40944
+IFNtb290aA== 40945
+aGFwZQ== 40946
+IOuLrOudvA== 40947
+IFRV 40948
+IGx5cmlj 40949
+IGJlc3M= 40950
+6ZA= 40951
+0YHRgtGA0YPQvNC10L3Rgg== 40952
+IEFjdGluZw== 40953
+IE9yY2hlc3Q= 40954
+w6ljb2xl 40955
+IGRvbG9y 40956
+IO2LsA== 40957
+IHZlcmdlc3Nlbg== 40958
+IGV5ZWxpZHM= 40959
+IFRhbno= 40960
+0LLQtdGA0LY= 40961
+IOyVoOs= 40962
+dcOp 40963
+IHNjw6huZQ== 40964
+IOyasOumrOuKlA== 40965
+IGNyYXRl 40966
+a2ljaw== 40967
+IFRoZW1l 40968
+IDMyMA== 40969
+IGdhcm5pc2g= 40970
+IG1ldHJl 40971
+IGNvbnZleA== 40972
+cGxhbnRz 40973
+ZXNpYW4= 40974
+IOqxsOyngA== 40975
+IG3DqWRp 40976
+IE1lZGFs 40977
+MTMw 40978
+IEFsbWE= 40979
+Q29sYQ== 40980
+INCy0LDRgNC40LDQvdGC 40981
+IGdvcmQ= 40982
+IGF2YW56 40983
+IHdoaXNwZXJpbmc= 40984
+IGludGVzdGluZQ== 40985
+0KDQlQ== 40986
+IExJU0E= 40987
+YW3EsXo= 40988
+U1BE 40989
+IHBlYw== 40990
+IHBhc3RvcnM= 40991
+IG114buRbg== 40992
+b2NyZQ== 40993
+U3Vu 40994
+INGC0LDQutGD0Y4= 40995
+IHJldml0YWw= 40996
+IGluY29tZXM= 40997
+IGRldGFpbGluZw== 40998
+IEJhY29u 40999
+IOuFuOuemOs= 41000
+IHBhcnJvdA== 41001
+IGNvbGxhYm9yYXRlZA== 41002
+aGVzaWE= 41003
+IHNldmE= 41004
+IHBoeXNpY2lzdA== 41005
+IEJBQ0s= 41006
+15zXmQ== 41007
+IGJpcG9sYXI= 41008
+z4HOtc6v 41009
+Y3Jvcw== 41010
+IGtlZA== 41011
+IGVjb25vbWljYWw= 41012
+IGVuZGluZ3M= 41013
+IHRpY2tz 41014
+IOq3vA== 41015
+IE9saXY= 41016
+b25ncw== 41017
+IGNvbnRpbmVudGFs 41018
+IHdlaXRlcmhpbg== 41019
+IGFjdGl2YXRpbmc= 41020
+IHBvbGxlbg== 41021
+IEFuaw== 41022
+YmF5 41023
+INec15c= 41024
+IEVnZ3M= 41025
+IFJBTVNBWQ== 41026
+IEJFUg== 41027
+IO2bqOyUrA== 41028
+IHBhc3NhZG8= 41029
+IGdyb3VuZGJyZWFraW5n 41030
+cHJlc2E= 41031
+IGhpbGZ0 41032
+IFRlY2huaWNhbGx5 41033
+0YbQuNC5 41034
+Tkk= 41035
+IHR1cm5vdXQ= 41036
+IExhcA== 41037
+IEd3ZW4= 41038
+IFZpa3Q= 41039
+IGVzY29sYQ== 41040
+IENpbmVtYQ== 41041
+IGNvbnN1bW8= 41042
+IFB1cmR1ZQ== 41043
+IHNlbWFuYXM= 41044
+IFBSRVNJRA== 41045
+xrBuZw== 41046
+IHNhY2g= 41047
+IHNhdmFnZQ== 41048
+IFJX 41049
+IDU1MA== 41050
+Ym9sZA== 41051
+IFNpbW1vbnM= 41052
+IHNsYW5n 41053
+IE5hcnU= 41054
+IFRoZW8= 41055
+7ZaI64uk 41056
+Lu+/vQ== 41057
+IHNlaXp1cmU= 41058
+IGhpdmU= 41059
+IGNlbGxwaG9uZQ== 41060
+aWlpaQ== 41061
+IE11c2ljYWw= 41062
+IE51Y2xlYXI= 41063
+w6F2ZWlz 41064
+IHByZXN0aWdl 41065
+IGJhbG0= 41066
+IHJlZmlsbA== 41067
+eWFo 41068
+aGFydA== 41069
+IHRhcHM= 41070
+IGRpc3Bvc2U= 41071
+IE1pY2s= 41072
+IHRoZXJtb21ldGVy 41073
+IG9iZWRpZW50 41074
+IGluZm9ybWHDp8O1ZXM= 41075
+IFdpZGU= 41076
+bW9t 41077
+U3Vk 41078
+IHN1c3BlbmQ= 41079
+IE9ic2Vydg== 41080
+INC70LXRgQ== 41081
+IHRyYXRhcg== 41082
+IEthdHJpbmE= 41083
+IHRoZXJlcw== 41084
+IHRleHRlZA== 41085
+IHN0w7Zy 41086
+IHNuYWls 41087
+IEZpb25h 41088
+IHZpY3RvcmlvdXM= 41089
+IGxpYnJhcmlhbg== 41090
+cHJhY3Q= 41091
+IGZpbm8= 41092
+IEFybXM= 41093
+cHB0 41094
+bHVr 41095
+IHR5cmVz 41096
+IHRvYw== 41097
+IEtvbW11bmVu 41098
+IHJldm9sdA== 41099
+IG1vdGl2YXRlcw== 41100
+IGJpc2V4dWFs 41101
+IHd1cw== 41102
+IGhhbmRsYXI= 41103
+IE1VRUxMRVI= 41104
+IGV4cGVjdGFuY3k= 41105
+IGVtYm9keQ== 41106
+IFByaW1hcnk= 41107
+0YDQtdC5 41108
+IHVuc2NyZXc= 41109
+aWFudGx5 41110
+LOKApg== 41111
+IHNuZWw= 41112
+IHByZXZhbGVuY2U= 41113
+IGVydXB0aW9u 41114
+IGRlc2NyaXB0aXZl 41115
+dmFn 41116
+INCx0YPQutCy 41117
+IG3Dqm1lcw== 41118
+IGV0aG4= 41119
+IGhpam9z 41120
+IEFiZHVs 41121
+IFphaGw= 41122
+YmVsdA== 41123
+IGfDtnN0 41124
+IFRoZXJlc2E= 41125
+IFNVTg== 41126
+IEJha2U= 41127
+IG9wdGljcw== 41128
+IGFwb2NhbHlwc2U= 41129
+cHVycG9zZQ== 41130
+IHLDs8W8bnljaA== 41131
+IGNydXM= 41132
+INCX0LXQvA== 41133
+IGhhcmRlbmVk 41134
+IFRE 41135
+IGdyYXZleWFyZA== 41136
+IFNpYmVy 41137
+IFBvcnRlcg== 41138
+IGV4cGxvZGVz 41139
+IFNvZmlh 41140
+INCS0LXQtNGM 41141
+IHdlYWtlbmVk 41142
+VUxM 41143
+IHBpbmt5 41144
+IGNoYXBlbA== 41145
+IEZyZXM= 41146
+INC/0YDQuNCz 41147
+TUVS 41148
+IFNjaG1pZHQ= 41149
+IER1ZA== 41150
+ZXN0ZW5z 41151
+IG51YW5jZQ== 41152
+IG1vZGlmeWluZw== 41153
+IE3DtmdsaWNoa2VpdGVu 41154
+IEFuYXQ= 41155
+IGVjY2VudHJpYw== 41156
+IFNjcmV3 41157
+IExlaA== 41158
+IGhvbW9nZW5lb3Vz 41159
+IFRhbGw= 41160
+IFJpY2FyZG8= 41161
+w5o= 41162
+aWducw== 41163
+INC70LjRiA== 41164
+IGdlZnJhZ3Q= 41165
+UnVu 41166
+Y2FzdGVy 41167
+bm9pc2U= 41168
+IGFzeW5jaHJvbg== 41169
+xJlkemll 41170
+INee15c= 41171
+IHN1cHByZXNzZWQ= 41172
+QXJ0aHVy 41173
+zq7Pgg== 41174
+w6Jy 41175
+ZGlzdA== 41176
+INC60LDQtA== 41177
+IGjDtnI= 41178
+IDEzNQ== 41179
+IE1vemFydA== 41180
+INGB0L7QsdGL0YLQuA== 41181
+IE51cnNpbmc= 41182
+IEhhaGFo 41183
+IERvcA== 41184
+IHBvbGljZW1hbg== 41185
+tOyXkOyEnA== 41186
+IOq0gOugqA== 41187
+aHl1aw== 41188
+IHJ1Z2dlZA== 41189
+IG51Z2dldHM= 41190
+IENvbW1z 41191
+U3R1ZA== 41192
+INGB0LLQvtC1 41193
+IGN6YXNpZQ== 41194
+IHLDqWdpb24= 41195
+IGZpc2hlcm1lbg== 41196
+IExU 41197
+w5M= 41198
+Y2lhxbw= 41199
+aGVp 41200
+IGNydW1icw== 41201
+IEltbWVy 41202
+IEZlbGQ= 41203
+dGhlc2U= 41204
+IGFkdmVydGlzZXJz 41205
+IHJvYW1pbmc= 41206
+IGZ1bm5pZXN0 41207
+IE5ZVQ== 41208
+IGhlaGU= 41209
+IHBva2luZw== 41210
+IOyViOuPvA== 41211
+aXN0aWNhbA== 41212
+IG9wYXF1ZQ== 41213
+dcOn 41214
+d2lyZQ== 41215
+IFdlYmVy 41216
+IEphY3F1ZXM= 41217
+IDIxMA== 41218
+w7xw 41219
+dXl1 41220
+IGVuZmVybWVk 41221
+IGJ1bXBlZA== 41222
+IFNldw== 41223
+IENoYW5lbA== 41224
+IHBlcnPDtm5saWNo 41225
+IGJldHJheWFs 41226
+IGFsbGV2aWF0ZQ== 41227
+IHbDpGjDpG4= 41228
+IGd1ZXNzZXM= 41229
+IENlbGluZQ== 41230
+YXNzaW5n 41231
+c3Ryb2tl 41232
+IOyhsOs= 41233
+INGC0LXRhdC90L7Qu9C+0LM= 41234
+INC+0YHRgtGA 41235
+IHNvaWVudA== 41236
+RGVhcg== 41237
+IGpz 41238
+IGdlc3Byb2NoZW4= 41239
+YXRoaQ== 41240
+xaFl 41241
+U2V0 41242
+b2dlcg== 41243
+IFJpZw== 41244
+INC80LXRhw== 41245
+IHNlcnZpY2lvcw== 41246
+IFJ1dA== 41247
+INCe0Lk= 41248
+IE15YW5tYXI= 41249
+aWZpZQ== 41250
+IHNuYXBwaW5n 41251
+IEthbWVyYQ== 41252
+IGZlc3RpdmU= 41253
+IEZZ 41254
+IENhcm9seW4= 41255
+0ZbQsQ== 41256
+IGxlZ2dpbmdz 41257
+IHlhdA== 41258
+IGVyZ29u 41259
+IGVwaXPDs2Q= 41260
+IGFub21hbHk= 41261
+dWVzdG9z 41262
+SWQ= 41263
+IGV2YWN1YXRpb24= 41264
+IGdpZ2FieXRlcw== 41265
+IGFuZGFyZQ== 41266
+IFJlbnQ= 41267
+bXQ= 41268
+aXN0aW5l 41269
+IGVzdHJhdA== 41270
+ZXR0dQ== 41271
+IHJlY2ViZXI= 41272
+IGRyYW1hdA== 41273
+cmljdWxhcg== 41274
+YWxuxLF6 41275
+IFNlbmk= 41276
+IG95bg== 41277
+IENoZW1pY2Fs 41278
+INGB0YU= 41279
+IHR1cmY= 41280
+IDE5MTc= 41281
+aXNjZXJuaWJsZQ== 41282
+IG1hbnRlbmVy 41283
+IGV4Y2Vy 41284
+IHNwZWN0cmFs 41285
+IG5ldXJvc2NpZW5jZQ== 41286
+IG1pY3JvZg== 41287
+IGZvcmVpZ25lcg== 41288
+IExhbmth 41289
+INGC0LLQvtGA 41290
+IHRvc3NlZA== 41291
+IHBvYmxhY2nDs24= 41292
+IG1hdGVpeA== 41293
+IHNpZWxsw6Q= 41294
+IG90dA== 41295
+IGNvbXB1bHM= 41296
+YWt1a2Fu 41297
+IG1hbmlmZXN0ZWQ= 41298
+IOyTuA== 41299
+IHV0bW9zdA== 41300
+IHJldmVyc2Fs 41301
+IHBsYWNlYm8= 41302
+IGJsYXQ= 41303
+IFN0dW5kZQ== 41304
+bWFuc2hpcA== 41305
+IGF0dGU= 41306
+IOyGjOqwnA== 41307
+IGlzdGVt 41308
+IGFubmF0 41309
+IFBsYXlzdGF0aW9u 41310
+IHphZA== 41311
+IHF1aXR0aW5n 41312
+IGZhbWluZQ== 41313
+IFJvdWdo 41314
+IEZsYW1l 41315
+IGhldXQ= 41316
+IG9wb3J0dW5pZGFk 41317
+IGZhaXNhaXQ= 41318
+IERQ 41319
+IGRpY2llbmRv 41320
+IE1lbGFuaWU= 41321
+IENhcm5l 41322
+bWVn 41323
+cGV0dG8= 41324
+SlVO 41325
+INC70Y7QsdC+0Lk= 41326
+IG9zdGU= 41327
+IEpKb25haw== 41328
+IHRoZWF0cmljYWw= 41329
+IGludmluY2k= 41330
+IGNvbW11bmlvbg== 41331
+dm9jYWw= 41332
+RWg= 41333
+IERldGFpbHM= 41334
+IHN0cm9sbA== 41335
+IFJheW1vbmQ= 41336
+IEFtZWxpYQ== 41337
+kaU= 41338
+IHByb2R1a3Q= 41339
+IG51ZXZhcw== 41340
+IG11c3Ru 41341
+bWF5xLE= 41342
+Y29sb3JlZA== 41343
+ZGVj 41344
+IGhqw6Rs 41345
+IHNlbnRpbWVudGFs 41346
+IHJlYWxtcw== 41347
+IGtyaXQ= 41348
+IHNleHQ= 41349
+IFBzeWNob2xvZ3k= 41350
+aGls 41351
+INC60L7RgNCw0LE= 41352
+IOuCtOydvA== 41353
+IFVuZGVyc3Rvb2Q= 41354
+IEd1dGVu 41355
+IGdhbmdz 41356
+IGV2ZW5pbmdz 41357
+RW50 41358
+IExlZ2FjeQ== 41359
+IENvbmdv 41360
+IGR1cmNoYXVz 41361
+IGJ1b3k= 41362
+ZXJlbGxh 41363
+V0FO 41364
+UHJl 41365
+INGA0LXQtA== 41366
+IENyaXNpcw== 41367
+IOydvOydtA== 41368
+IG1hbnVzY3JpcHRz 41369
+0LXRgtGA 41370
+IG5vbnByb2ZpdHM= 41371
+IGRpY3RhdG9y 41372
+IGJhc2tldHM= 41373
+IElzaA== 41374
+IHBlcnRv 41375
+IGRhdGFzZXRz 41376
+IGFtcGxl 41377
+Z2ViYXV0 41378
+IGNvbnRyaWJ1dG9y 41379
+IGNpYW8= 41380
+IGNvbmZpcm1pbmc= 41381
+IFVDTEE= 41382
+4pms 41383
+INGB0L0= 41384
+IG92ZXJ0dXJu 41385
+IHVucmVhbGlzdGlj 41386
+IFBpZWNl 41387
+b2NhdGU= 41388
+IGbDpGxsdA== 41389
+cG94 41390
+IOuztOyLnOuptA== 41391
+IOuplOs= 41392
+IENyZWF0aW9u 41393
+0Y7QtNCw 41394
+INeU15A= 41395
+IHdoYWNr 41396
+b2xpdGhpYw== 41397
+Y2VseQ== 41398
+INGB0L7QstGA0LXQvA== 41399
+IHNlcXVlbnRpYWw= 41400
+IHByb2Zlc2lvbmFs 41401
+IGNvb2xz 41402
+IHJlcGVudGU= 41403
+IGFpcmU= 41404
+ZW5uZXM= 41405
+cml0b3M= 41406
+INCS0LjQtA== 41407
+IGvDtnI= 41408
+IEJpdHRl 41409
+dWxhcnM= 41410
+IGluY29ycmVjdGx5 41411
+IHNoYXJwbHk= 41412
+IGJvbWJhcmQ= 41413
+64uY7J20 41414
+IGNocm9tb3NvbWU= 41415
+IGFkdmVydGlzZW1lbnRz 41416
+aHVu 41417
+INGJ0L7QsQ== 41418
+INCU0LDQttC1 41419
+IGJhdGh0dWI= 41420
+IFNubw== 41421
+2ZDZkQ== 41422
+IGJ1ZmZldA== 41423
+IEdyaWQ= 41424
+IEJyZXc= 41425
+aXNldA== 41426
+IEltcG9ydGFudA== 41427
+w7xtw7x6 41428
+IHZldG8= 41429
+IFdlcms= 41430
+IFNoYW0= 41431
+a3Jh 41432
+aWxlZW4= 41433
+aGVhcmQ= 41434
+IGRyYWluaW5n 41435
+IGtsYXNz 41436
+IGJha2F5xLFt 41437
+Y3R1cmU= 41438
+YW1vdXI= 41439
+IHNwb25zb3JzaGlw 41440
+IGRpc3RpbGw= 41441
+IHBhdGlv 41442
+IGtvbWI= 41443
+IG92ZXJ3aGVsbWluZ2x5 41444
+IEphbWFpY2E= 41445
+dWl0ZW4= 41446
+TGl0dGxl 41447
+IExPVA== 41448
+dGHEhw== 41449
+IGNvbW1hbmRlcnM= 41450
+IFdhdHRz 41451
+IE9wdGlvbnM= 41452
+7J2066m0 41453
+QUNU 41454
+IGluZGlzcGVucw== 41455
+IEZvcnNjaA== 41456
+b3RvbQ== 41457
+IM6tz4fOtc65 41458
+IHByYWlzaW5n 41459
+IOyYgeyDgeydhA== 41460
+IGFtYW4= 41461
+IGh5cG5vdA== 41462
+dGhtcw== 41463
+IG5hc3plag== 41464
+IG1vdXJuaW5n 41465
+IFNBWQ== 41466
+Y3lq 41467
+INCz0L7RgdGD0LTQsNGA 41468
+IGNhdQ== 41469
+bWVl 41470
+IHRhZGk= 41471
+TWVk 41472
+IGNhbGlkYWQ= 41473
+IHN0cmlwZQ== 41474
+IM61zr0= 41475
+IEthdHk= 41476
+IEVzY2FwZQ== 41477
+IG3DvHNzdGU= 41478
+INin2YTYpw== 41479
+0LrRgg== 41480
+IGpvYmJhcg== 41481
+IEplanU= 41482
+b3Jhcg== 41483
+IFNlcsOh 41484
+IE1lc3Np 41485
+w6F6 41486
+IFRyYW4= 41487
+IHBpZXJjaW5n 41488
+IGFyaXRobWV0aWM= 41489
+IHN0YWdnZXJpbmc= 41490
+IHBsdWdnaW5n 41491
+IEtBUg== 41492
+dmw= 41493
+tOyY 41494
+IFJlZ2llcnVuZw== 41495
+IE9jenl3acWbY2ll 41496
+IEVkZ2Fy 41497
+IGNvbmR1Y3Rpdml0eQ== 41498
+eWVsbGluZw== 41499
+dmFpcw== 41500
+YWRpYW4= 41501
+IGJ1bGt5 41502
+INGB0YDQsNCy 41503
+INC/0YDQvtC8 41504
+IHBhdmVk 41505
+IGJlbmRz 41506
+IFNraWxsc2hhcmU= 41507
+IE1tbW0= 41508
+IEhvcnJvcg== 41509
+IHR1bWI= 41510
+IGdvb2Z5 41511
+IE1lb3c= 41512
+15nXnNeV 41513
+IFdhc3M= 41514
+IFNjYWxl 41515
+IFJhaw== 41516
+IHByb2plY3Rpbmc= 41517
+IGxpbmd1aXN0aWM= 41518
+IFdvcmxkcw== 41519
+ZW5zZW1ibGU= 41520
+IHBlZ2E= 41521
+c3RvcHBhYmxl 41522
+IGltYmFsYW5jZQ== 41523
+IMO4 41524
+IHRocmlsbGVy 41525
+0LrQvtC70YzQutGD 41526
+IGxlZnRvdmVycw== 41527
+IGNhdmVhdA== 41528
+IFNUUg== 41529
+dW5kYWk= 41530
+IHdhdGVyeQ== 41531
+IE1hcmlu 41532
+IGVnZ3BsYW50 41533
+IEpC 41534
+2YXZg9mG 41535
+dmlkaWE= 41536
+IEZJTg== 41537
+aWNhYmxl 41538
+IHBvZG9i 41539
+IGNvaGVzaXZl 41540
+IFZlcmbDvGd1bmc= 41541
+IFBsYXRv 41542
+0LDRgNC40Yk= 41543
+IGtvdA== 41544
+INCf0L7QvA== 41545
+INC00L7QutGD0Lw= 41546
+IGltcGxhbnRz 41547
+aXNzZXo= 41548
+QnJl 41549
+IGdhc3Bz 41550
+IFRFRA== 41551
+cmF0bw== 41552
+Skk= 41553
+IGF2ZW51ZXM= 41554
+IENob25n 41555
+bGFkxLE= 41556
+2LHYtg== 41557
+IGluaWNp 41558
+IFN1YmFydQ== 41559
+4LiL 41560
+IGFjaHQ= 41561
+IEFyY2hpdGVjdHVyZQ== 41562
+INCy0LXRidC4 41563
+IERldk9wcw== 41564
+IHRvcHBpbmdz 41565
+IG9ic29s 41566
+YWluYQ== 41567
+IEJhbmdrb2s= 41568
+ZXN0cnVjdA== 41569
+IGtvYg== 41570
+IOuTrw== 41571
+INGA0LDQt9C90YvQtQ== 41572
+IHJlZQ== 41573
+IGJpanZvb3JiZWVsZA== 41574
+IERlbW9jcmFjeQ== 41575
+4LmA4Lij4Liy 41576
+INC60L7QvdGC 41577
+IHNlw6c= 41578
+IHJhaGF0 41579
+IHBhcmxpYW1lbnRhcnk= 41580
+IEJhc2g= 41581
+emlhxYI= 41582
+SVRDSA== 41583
+IEJ1YmJsZQ== 41584
+a3TDsw== 41585
+V2hvYQ== 41586
+IGZsYXRz 41587
+em5l 41588
+IHNlcnZpY2lv 41589
+IERldw== 41590
+1bjWgg== 41591
+IHVudGVyc3TDvHR6ZW4= 41592
+IFdpbmRz 41593
+IOyWmOuKlA== 41594
+IGV2YWx1YXRpb25z 41595
+IHJlY2E= 41596
+IGVsdmVz 41597
+Y2hlZXI= 41598
+IGphbA== 41599
+IHJlc3RlZA== 41600
+IHF1aWVuZXM= 41601
+IEJyb29rZQ== 41602
+IOuniOydjOyXkA== 41603
+IGludGVu 41604
+IG9hdHM= 41605
+IHJlZmVyZWU= 41606
+IHBuZXVtb25pYQ== 41607
+IGRlbHZl 41608
+cGVhY2U= 41609
+ZW55 41610
+IG1vc3RyYQ== 41611
+IENhbm5vbg== 41612
+z4HOv8+N 41613
+INCQ0Ls= 41614
+IG1vbnVtZW50YWw= 41615
+zr/Pjc68zrU= 41616
+aW1tZXJz 41617
+YXZpYW4= 41618
+INC00LXQu9Cw0LXRgg== 41619
+IHBpdGNoZXM= 41620
+IEdyb3Zl 41621
+IHNlbWluYXJz 41622
+IHLDqWN1cA== 41623
+IFZvb3I= 41624
+IGRldmVu 41625
+IGRC 41626
+IGJvb3N0aW5n 41627
+ZWdhbg== 41628
+IHdlbHQ= 41629
+IEd1YXRlbWFsYQ== 41630
+IG1pbGVhZ2U= 41631
+IGJlaGFuZA== 41632
+IFdhYXI= 41633
+IFN1cmY= 41634
+IGNhdWxpZmxvd2Vy 41635
+IFR5cg== 41636
+IG1pdGVpbmFuZGVy 41637
+IGRhcmluZw== 41638
+IFNpdHRpbmc= 41639
+ZGxlZA== 41640
+IHJlc2VudG1lbnQ= 41641
+bcOkw59pZw== 41642
+IGZpbG1tYWtpbmc= 41643
+d2FydHM= 41644
+dGhvdWdodA== 41645
+b2xvZ2lxdWU= 41646
+IENPUg== 41647
+IGFjY291bnRlZA== 41648
+IGFwZXI= 41649
+IElOVA== 41650
+b2xhcmU= 41651
+IGFjb21wYcOx 41652
+IMahaQ== 41653
+IG1lcm1haWQ= 41654
+IEJlbnRsZXk= 41655
+YXRvcmU= 41656
+IHByZW4= 41657
+IGV0aGFub2w= 41658
+IGFzdHJvbm9tZXJz 41659
+c2VhdA== 41660
+a2VlcGVycw== 41661
+IGV4ZW1wdGlvbg== 41662
+IGFtbw== 41663
+IOuCmOyEnA== 41664
+IGluaGFs 41665
+IGJvd3M= 41666
+0YHQutGD0Y4= 41667
+MzAwMA== 41668
+IGZlcm1lbnRhdGlvbg== 41669
+IHNpbmtz 41670
+IGNvbWVyY2lhbA== 41671
+IHN0dW1w 41672
+IGNlbGU= 41673
+IFNpc3RlcnM= 41674
+IFJlZ2lzdGVy 41675
+IHNvb3J0 41676
+IG5hdG9taWFzdA== 41677
+IOq3uOumvA== 41678
+IMWeZXk= 41679
+IGh5cGVk 41680
+IFJhZmFlbA== 41681
+IEVpcw== 41682
+IEJhc2ls 41683
+IEFzc2Fzc2lu 41684
+IEFkZQ== 41685
+csOlbg== 41686
+IG9ubGFy 41687
+IG1vdmltaWVudG8= 41688
+IGFkZGl0aW9uYWxseQ== 41689
+IHNsaXQ= 41690
+IENocnk= 41691
+IEludGVydmlld2Vy 41692
+15zXpw== 41693
+IGRpc2w= 41694
+IGxpZ2dlcg== 41695
+0YPQutC4 41696
+YmVyaXNo 41697
+INGA0Y/QtNC+0Lw= 41698
+QVJPTg== 41699
+XSws 41700
+IGx1bWnDqHJl 41701
+IG9sdmlk 41702
+IGZyZXVl 41703
+IFRpbmc= 41704
+IEvDtg== 41705
+IGdlbw== 41706
+IGR5ZWQ= 41707
+0YjQtdC5 41708
+IMW8eWNpZQ== 41709
+IGll 41710
+IHRheHBheWVy 41711
+IHBlxYI= 41712
+IGTDqWNpZMOp 41713
+IGPFk3Vy 41714
+IGVudHdpY2tlbHQ= 41715
+IEhR 41716
+S0s= 41717
+b2Rhcg== 41718
+IGhvbmU= 41719
+IGNvbmZpYW5jZQ== 41720
+IGlzc3Vpbmc= 41721
+IGRpYWdub3N0 41722
+IOyehA== 41723
+INC60YDRg9GC 41724
+INC60LDRgQ== 41725
+IMO+ 41726
+IHJlc3RyaWN0aXZl 41727
+IENhc3Rybw== 41728
+IHXEnw== 41729
+IGVtcHJl 41730
+IE1vbw== 41731
+IEZpZ3VyZQ== 41732
+cGhvbmV0aWM= 41733
+UHJvZg== 41734
+INC/0YDQtQ== 41735
+IHRpbHRlZA== 41736
+IE5lZ2F0aXZl 41737
+IExpbWl0ZWQ= 41738
+bWVubw== 41739
+bGFtYXRpb24= 41740
+IHRydXN0ZWVz 41741
+IGludGVuc2VseQ== 41742
+IGHDp8SxbA== 41743
+IFVzZWQ= 41744
+IHp1bA== 41745
+IGFwcHJlY2lhdGl2ZQ== 41746
+IHRpbmM= 41747
+IGNvbnF1ZXN0 41748
+INi52YbYrw== 41749
+IHN1aWNpZGFs 41750
+IG11bGhlcmVz 41751
+IGRldGFjaA== 41752
+IGthbWVyYQ== 41753
+IEFpclBvZHM= 41754
+SU5ESVNUSU5DVA== 41755
+0LPQu9C40Lk= 41756
+IOuDhA== 41757
+IHdyZXN0bGU= 41758
+IGZpcmVhcm0= 41759
+IGxpcmU= 41760
+cHJh 41761
+IGpld2Vscw== 41762
+IENvcm5lbGw= 41763
+IO2VoOqyjOyalA== 41764
+IHN1Y2tlcg== 41765
+IG5vbWJyZXV4 41766
+IEZlcm0= 41767
+7JuQ7J20 41768
+IFBpcw== 41769
+INC40LfRg9GH 41770
+IG1pdGVu 41771
+IGNldg== 41772
+IFVSTHM= 41773
+IENBUw== 41774
+ZmluZGVu 41775
+IGJyYXZlcnk= 41776
+INGB0LvQvtCy0L4= 41777
+IG5lbmh1bWE= 41778
+IGVuY3VlbnRyYQ== 41779
+IFNoaXJsZXk= 41780
+IHBlcmNlcHQ= 41781
+ZnJhbWVz 41782
+IFJvdmVy 41783
+IEFsYmVydGE= 41784
+b2Nj 41785
+IOudvOqzoA== 41786
+IHPDunBlcg== 41787
+IHByZXN1bWU= 41788
+IGdsYW5k 41789
+IHBhY2luZw== 41790
+IG5ldXJvdA== 41791
+IHNubw== 41792
+IHBsb3R0ZWQ= 41793
+IHBhxYRzdHdh 41794
+IE93bmVy 41795
+IERlZmVuY2U= 41796
+cmlkZ2Vz 41797
+IHdhbGxwYXBlcg== 41798
+b25pYW4= 41799
+QnJv 41800
+IEFyaWFuYQ== 41801
+a3J5 41802
+IG5hcnJhdGlvbg== 41803
+IGNyaWFuw6dh 41804
+IEFscmlnaHR5 41805
+IOydvQ== 41806
+IOyTsOqzoA== 41807
+IGxpYmVyYXRlZA== 41808
+IGV4Y2VlZHM= 41809
+IGRvbWluYXRpbmc= 41810
+IGJha8Sxbg== 41811
+bGs= 41812
+IHNsYXBwZWQ= 41813
+0JfQtA== 41814
+dW1lbnRhbA== 41815
+Z2V0dGFibGU= 41816
+IFJveg== 41817
+IEd1bA== 41818
+b3V2ZXJ0 41819
+IHNtYXNoaW5n 41820
+YXp1amU= 41821
+U2ly 41822
+IGdyYXRlZA== 41823
+QVRU 41824
+IGFydGljdWxhdGVk 41825
+IHN0b3Jh 41826
+IGV4dHJhdGVy 41827
+4buJ 41828
+z4PPiQ== 41829
+d2ly 41830
+IE1ldGU= 41831
+SW1w 41832
+IGhvb3I= 41833
+cGhhc2U= 41834
+INGH0YPQtA== 41835
+INCx0YDQsNGC 41836
+IGlkYWc= 41837
+IGNpbnE= 41838
+IGFwYXJlY2Vy 41839
+IElDRQ== 41840
+IHF1aWV0ZXI= 41841
+IGZhbHNjaA== 41842
+YWRpYw== 41843
+INC/0LvRjtGB 41844
+IE1lbnU= 41845
+dXhl 41846
+IFTDtGk= 41847
+IE1JTA== 41848
+IEhhag== 41849
+dmVyYnM= 41850
+IHR1YmluZw== 41851
+IG1hY2hzdA== 41852
+IGRhbGw= 41853
+VGVy 41854
+IGdlbGVu 41855
+IGN1Y3VtYmVycw== 41856
+IHdpZGdldHM= 41857
+IGRldnJhaXQ= 41858
+IG1pa2U= 41859
+IGludHJh 41860
+7ZWt 41861
+IMOF 41862
+IEh1bmQ= 41863
+cXVhcnRlcg== 41864
+IGV3 41865
+IGtlbHVhcg== 41866
+IG1hdHM= 41867
+IFRyaWNr 41868
+IEluZmluaXRl 41869
+nqg= 41870
+IHBlYWM= 41871
+IFByb3Rl 41872
+4KWI 41873
+IDE3MDA= 41874
+IFJhaXM= 41875
+4LmK 41876
+w6RobHQ= 41877
+aWZpY2E= 41878
+YWltZXI= 41879
+YcSH 41880
+IGFrbA== 41881
+IFZvbHZv 41882
+IFR5c29u 41883
+IFJvbmc= 41884
+aXJzaW4= 41885
+IOKZpQ== 41886
+IHBhcm9keQ== 41887
+bmF0aW9uYWw= 41888
+cG9k 41889
+YXlk 41890
+YW1ibGVk 41891
+IGdvdmVybm1lbnRhbA== 41892
+IGNvbmZvcnQ= 41893
+aWNpZGVz 41894
+IG5hc3pl 41895
+IFNoZXBoZXJk 41896
+IEtvbnRha3Q= 41897
+IGRpc3Byb3BvcnRpb25hdGVseQ== 41898
+INC60LvRjtGH 41899
+IHTDrXR1bG8= 41900
+IHNpbmE= 41901
+IGNvbXBvc2l0aW9ucw== 41902
+IFBG 41903
+IHZlcmts 41904
+IHN1aXZyZQ== 41905
+IGFzdGE= 41906
+IHN0YWtlaG9sZGVy 41907
+IHNhbW1h 41908
+IEJMQUNL 41909
+IG5vZGln 41910
+IGxldmE= 41911
+IGp1ZWdvcw== 41912
+IGVybnN0 41913
+IGJvdHRvbXM= 41914
+IFNpZ25hbA== 41915
+IHBvbGx1dA== 41916
+IGR1cmE= 41917
+TXVzaWs= 41918
+INC60L7QvNC90LA= 41919
+INCy0YHQtdC5 41920
+YWx0ZXI= 41921
+IFN0ZWY= 41922
+IEJpZ1F1ZXJ5 41923
+IFZlcmFudHdvcnR1bmc= 41924
+IOuLueyXsA== 41925
+IHF1aXp6 41926
+IExldHRlcg== 41927
+IEludmVzdG1lbnQ= 41928
+0YjRgg== 41929
+kOuNsA== 41930
+IGVuY29kaW5n 41931
+IHTDpG5rZXI= 41932
+IEt3 41933
+YW5uaWU= 41934
+MTEw 41935
+IHp3eQ== 41936
+IOynpw== 41937
+IGRhdw== 41938
+ZXN0w6Q= 41939
+IGRlY2VpdmU= 41940
+IEzDpG5kZXI= 41941
+aXNrbw== 41942
+IHBvZHN0YXc= 41943
+IFBoYXJhb2g= 41944
+7LOk 41945
+w7psdA== 41946
+IHR5w7Y= 41947
+IG11c2lteQ== 41948
+IHBj 41949
+IE5U 41950
+IENvc3Rjbw== 41951
+IM+Dzr/PhQ== 41952
+IHVuaW4= 41953
+cm91bmRz 41954
+IHJlbWluZGVycw== 41955
+IHB1aXNxdQ== 41956
+IGtyaWpnZW4= 41957
+IHdvcmtmbG93cw== 41958
+bmV0ZW4= 41959
+IOuQmOyngA== 41960
+IHNsZWVr 41961
+IGNvd29ya2Vycw== 41962
+YW1pZW50b3M= 41963
+IHdpdGNoZXM= 41964
+YmFhcg== 41965
+ZXRpZXM= 41966
+IHVubmF0dXJhbA== 41967
+IFNpY2s= 41968
+IEVmZW5kaQ== 41969
+amNpZQ== 41970
+IGNoYW1hZG8= 41971
+7JiA7Iq164uI64uk 41972
+IHByemVkc2nEmWJpb3I= 41973
+IGJvb2tzdG9yZQ== 41974
+IOyeoOq5kA== 41975
+IFNlcGFy 41976
+YW5naQ== 41977
+RXZldA== 41978
+IGVtZXJnZW5jaWVz 41979
+IFhNTA== 41980
+0L3QtA== 41981
+pbTrqbQ= 41982
+IOq/iA== 41983
+IOuTpOqzoA== 41984
+IHN1dA== 41985
+IFdpeg== 41986
+IGR5bmFtaWNhbGx5 41987
+b3BlcmF0aW9u 41988
+ZG90 41989
+IGluZWZmaWNpZW50 41990
+Y2xlYXJz 41991
+IG11bmRhbmU= 41992
+IFZlcm9uaWNh 41993
+2LHYqg== 41994
+cG9zZQ== 41995
+cGFp 41996
+IG55bG9u 41997
+IGF1bWVudGFy 41998
+IGFsbHRzw6U= 41999
+dmFr 42000
+IGNhcGFjaWRhZA== 42001
+IFdyZXN0bGluZw== 42002
+IGZlcnRpbGU= 42003
+IG3DqWc= 42004
+IE5hbm8= 42005
+0LDRgtC10LvQuA== 42006
+IOyWtOyp 42007
+IHRvY2E= 42008
+IEVn 42009
+4oE= 42010
+IOyz 42011
+bHVlbnQ= 42012
+IHNvbGVt 42013
+IGNpbmVtYXQ= 42014
+IFF1ZWw= 42015
+IG9yYml0cw== 42016
+IEhhcm0= 42017
+cmljYW5lcw== 42018
+IGJsdXJyZWQ= 42019
+INin2YTYsNmK 42020
+IGppbg== 42021
+IGdyZW5hZGVz 42022
+IGF0cm9j 42023
+IHdoZXJlaW4= 42024
+IHJlcGxlbg== 42025
+IENvbWljcw== 42026
+ZWRhYW4= 42027
+IGRlbmlt 42028
+IGVtYmFycmFzc21lbnQ= 42029
+IEdvbWV6 42030
+IEJ1c2Fu 42031
+aXZpdGllcw== 42032
+IHNhbGl2YQ== 42033
+IG1lcms= 42034
+IGlsZ2lsaQ== 42035
+INC60YDRg9Cz 42036
+IG9jY3VwYXRpb25hbA== 42037
+IFNhaGli 42038
+U3Rh 42039
+IGFkdmlzZXI= 42040
+IFRydWx5 42041
+IFlFQUg= 42042
+IOyeiOuKlOuNsOyalA== 42043
+emV3 42044
+YmFyZW4= 42045
+IHN0b2w= 42046
+IGJlbG9uZ2luZ3M= 42047
+IFJlc2VhcmNoZXJz 42048
+IGVmZW5kaW0= 42049
+z4XPhw== 42050
+xYLEhWN6 42051
+IFVuZw== 42052
+IEp1Yg== 42053
+IGNlcmVicmFs 42054
+4buHdQ== 42055
+INem16g= 42056
+INC/0L7QtNCw0YA= 42057
+IG1hcmNoZWQ= 42058
+IGF3YWtlbg== 42059
+IGFrbw== 42060
+IGFjZXB0 42061
+IGluaXRpYXRpb24= 42062
+bG90 42063
+IHfFgmFz 42064
+IE1vbmdvbA== 42065
+dXRyYWw= 42066
+IHRlbnRhbmc= 42067
+IGludmVyc2lvbg== 42068
+IOydtO2bhA== 42069
+IGxvaw== 42070
+xYJieW0= 42071
+UlM= 42072
+IHN0b3M= 42073
+IGludGVyYWN0cw== 42074
+IENhbGVuZGFy 42075
+IHZhbmlzaA== 42076
+IHBoeXNpb2xvZ3k= 42077
+IGxpbmVhcmx5 42078
+IEpZ 42079
+xJ9hbg== 42080
+ZnVuZGVk 42081
+aXppZXJ0 42082
+IHptaWFu 42083
+IEdyaWxs 42084
+IHVuYmVsaWV2YWJseQ== 42085
+b3RlY2hub2xvZ3k= 42086
+IENhcnM= 42087
+INmG24E= 42088
+IEZvbGdl 42089
+IEJldmVybHk= 42090
+w6Rpc2NoZW4= 42091
+IGF1bWVudG8= 42092
+7JuM7ISc 42093
+IG1haWxib3g= 42094
+IHN0ZWVkcw== 42095
+IFBlYWs= 42096
+IHd5a29y 42097
+IHByYXdkYQ== 42098
+0LjRgtGL 42099
+IGRpc2NvdXJz 42100
+IGFjY3VzZQ== 42101
+Y2Vzc28= 42102
+dWlyZQ== 42103
+INC/0L7Qv9Cw0LQ= 42104
+IHRoYQ== 42105
+IG1lYXN1cmFibGU= 42106
+YmVlcGluZw== 42107
+IElubmVu 42108
+INC/0Y/RgtGM 42109
+IGNvbXBldGVk 42110
+IEl0YWxpYW5z 42111
+IGVuY29udHJh 42112
+IG5pZXc= 42113
+IGZpbHRyYXRpb24= 42114
+INC/0YDQvtGE0LXRgdGB 42115
+IHBhamFtYXM= 42116
+IGNpbGFudHJv 42117
+IFNvYw== 42118
+THVj 42119
+IOq5gOs= 42120
+IE9kZA== 42121
+IGh5ZHJhdGlvbg== 42122
+0LzQvtCy 42123
+IHBseXdvb2Q= 42124
+IENvbXBldGl0aW9u 42125
+0LjQt9C90LXRgQ== 42126
+ZmxpZ2h0 42127
+IEJlaXQ= 42128
+Ym91cmc= 42129
+IGNvaWxz 42130
+IGPDom1lcmE= 42131
+IGFtZW5kZWQ= 42132
+xIFt 42133
+QW5nZWw= 42134
+IFN0YWN5 42135
+Zmxv 42136
+IG5vcm1hbGU= 42137
+IGNvbnNvbmFudA== 42138
+IGFjY29tcGFueWluZw== 42139
+0LrRlg== 42140
+IGlycml0YXRlZA== 42141
+IGbDpXR0 42142
+IGNyb2NvZGlsZQ== 42143
+kJjripQ= 42144
+IGFsYmVpdA== 42145
+IFBoaWxvc29waHk= 42146
+xYY= 42147
+eXRpYw== 42148
+IHLDqGc= 42149
+IGZyYW7Dp2E= 42150
+IGF0dGVudGl2ZQ== 42151
+SGFt 42152
+IGFscmVkZWRvcg== 42153
+c2Vp 42154
+INGB0LLQuNC0 42155
+IGdpbWJhbA== 42156
+IGNoaW5h 42157
+IPCfjrY= 42158
+INCS0LDQvA== 42159
+IHN0aW11bGF0aW5n 42160
+IE9yYQ== 42161
+eXRlcw== 42162
+IGhlZnQ= 42163
+IGhhdGVycw== 42164
+IGNvbXBsZXhlcw== 42165
+IDAz 42166
+csOzZA== 42167
+Y2xlYXI= 42168
+IGJlc3RlaHQ= 42169
+d255 42170
+bW9pbA== 42171
+IHNsb3BweQ== 42172
+IGluc2lnbmlmaWNhbnQ= 42173
+IGR1YmJlZA== 42174
+IOuWoA== 42175
+IGNvbnNpZ28= 42176
+0LvRg9GI0LDQuQ== 42177
+U24= 42178
+INeU16Y= 42179
+IM6M 42180
+IG5hZHppZQ== 42181
+IGZyZXNobWVu 42182
+dGFh 42183
+IHV3YWfEmQ== 42184
+IEZhdm9yaXRl 42185
+IENyaW1pbmFs 42186
+IGV2aWRlbg== 42187
+IHN5bWI= 42188
+TGVz 42189
+IEJlYXU= 42190
+dW5lZA== 42191
+cGxlbWVudA== 42192
+QWM= 42193
+IGRlcm1hdA== 42194
+IE5vbGFu 42195
+0YvQvw== 42196
+IHNpdHQ= 42197
+IGV2ZXJsYXN0aW5n 42198
+IGVzdGF2YW0= 42199
+INC80LjQug== 42200
+IGtow6Fj 42201
+IGludml0 42202
+IHRyZWJsZQ== 42203
+IGppZw== 42204
+bWFuaQ== 42205
+IHR1dm8= 42206
+IFJVUw== 42207
+IEVyZGU= 42208
+IER6acSZa3VqxJk= 42209
+IGJsdWViZXJyaWVz 42210
+a2VsbA== 42211
+YWNpb25z 42212
+0LLQuA== 42213
+TEVU 42214
+IHNwcm91dA== 42215
+IHNwb3I= 42216
+IGLDqm4= 42217
+IE1vbmE= 42218
+IENvbnRhaW4= 42219
+IEtleXM= 42220
+0L7Qt9GP 42221
+IGZ1bmNpw7Nu 42222
+IHJhcHBlbGxl 42223
+IGV2b2x2ZXM= 42224
+IHNjcmFwaW5n 42225
+IGNvbWVudMOhcmlvcw== 42226
+IHByYXRpcXVl 42227
+IGF1eGlsaWFyeQ== 42228
+IFNwb25nZQ== 42229
+0YHQutC40Lw= 42230
+dXZv 42231
+INGB0LDQvNC+ 42232
+IHNhbms= 42233
+IGhpZ2h3YXlz 42234
+IGludmVudGlvbnM= 42235
+INC40L3QvtCz0LTQsA== 42236
+IGNyZWF0aXZlbHk= 42237
+IGJlbmNobWFya3M= 42238
+b25jw6k= 42239
+YWxhbA== 42240
+IHNvdHRv 42241
+IGNhbHZlcw== 42242
+IE1vdg== 42243
+IGxhdmVuZGVy 42244
+IGV5ZWJhbGxz 42245
+IGF3YWl0aW5n 42246
+IFBhdHk= 42247
+2YTZhw== 42248
+IGVtYnJvaWRlcnk= 42249
+IGR1aA== 42250
+IGNhbWFy 42251
+IEJPQg== 42252
+IHNwYWNlZA== 42253
+IGfFgm9z 42254
+0LDQtdC80YHRjw== 42255
+IGVzY2FwZXM= 42256
+IFJvZ3Vl 42257
+emN6 42258
+6J4= 42259
+rOulvA== 42260
+IE1vxbxl 42261
+INC10YHRgtC1 42262
+IEJ1cmFkYQ== 42263
+d2Q= 42264
+dXV1dQ== 42265
+IHNhc2g= 42266
+IEx1Yg== 42267
+IG5vdGVib29rcw== 42268
+IG1hZQ== 42269
+IGNvbmZsaWN0aW5n 42270
+IHN1bW1lcnRpbWU= 42271
+YWNhcw== 42272
+IGJhdWVu 42273
+Ymxvd2luZw== 42274
+4bqhbw== 42275
+IOyWuOygnA== 42276
+IFNlbmhvcg== 42277
+IGlQaG9uZXM= 42278
+IFF1YXJ0ZXI= 42279
+IOygnOuMgOuhnA== 42280
+dcOf 42281
+IOuniOustOs= 42282
+IHNldHRsZXJz 42283
+IGNyZXN0 42284
+IHRyYW5zYw== 42285
+IHJpb3Rz 42286
+IGNsb25lcw== 42287
+IE9wcmFo 42288
+zq/Otg== 42289
+IHBhbHM= 42290
+Li4uLi4uLg== 42291
+INGA0L7RgdGB 42292
+IExhc2Vy 42293
+IHphY3p5 42294
+IHNldmk= 42295
+IHJlZ2VuZXJhdGlvbg== 42296
+7Je8 42297
+d291bGQ= 42298
+IMO8emVyaW5l 42299
+IFN0cmHDn2U= 42300
+IHZlbmdlYW5jZQ== 42301
+IHJlcg== 42302
+IFNhZmFyaQ== 42303
+IEhFWQ== 42304
+IHNhY2Fy 42305
+IGltYWdlbQ== 42306
+IEJ1bmRlc3Q= 42307
+bWVzYW4= 42308
+IFBhc3Rl 42309
+IHNpeno= 42310
+INC/0L7RgdGC0YPQvw== 42311
+15TXlQ== 42312
+dHJhZA== 42313
+IGZyYW7Dp2Fpc2U= 42314
+IEJvdQ== 42315
+IGJhcnJl 42316
+IFpoaQ== 42317
+IEdlZXo= 42318
+aWhhZA== 42319
+IHJlY29ub2M= 42320
+IHBlbGln 42321
+IGluZGljZXM= 42322
+IOuwlOuA 42323
+IGNvbmR1Y3Rpb24= 42324
+IOyVhQ== 42325
+IHpla2Vy 42326
+IGZ1bQ== 42327
+IFfDvHI= 42328
+YnJlYWtlcg== 42329
+IHNwcml0ZQ== 42330
+Q3Jvd2Q= 42331
+IG9wZW5lcg== 42332
+IG9sdg== 42333
+IGJ1ZW5hcw== 42334
+IFNpbGs= 42335
+IEhJTQ== 42336
+a29w 42337
+Y29tcGw= 42338
+IHBvc3Nvbm8= 42339
+s4A= 42340
+IG9zY2lsbGF0b3I= 42341
+IFNpdGg= 42342
+0LDQttC4 42343
+IHJhZnQ= 42344
+aGFsbA== 42345
+IHNjaG5lbGxlcg== 42346
+IGltcG9ydGluZw== 42347
+IGFzc2VtYmxpbmc= 42348
+IHViaXF1 42349
+IGFjdGl2YXRlcw== 42350
+YWNjaQ== 42351
+k5zrpbw= 42352
+IGNvbXBvc2Vycw== 42353
+IEFDTA== 42354
+Q29uZg== 42355
+IOy9mA== 42356
+INC90LXQutC+0YLQvtGA0YvQtQ== 42357
+IGNhbmRpZXM= 42358
+IE11c3M= 42359
+4LmD4LiK 42360
+IGR1ZGE= 42361
+0L3QuNC60L7QvA== 42362
+bWVkZW4= 42363
+IOyWtOuVjA== 42364
+IFllc2h1YQ== 42365
+emFn 42366
+aG9kb3U= 42367
+IGFsb3Vk 42368
+IFBhbG1lcg== 42369
+aW1pemU= 42370
+IG1hcml0aW1l 42371
+IGNvbW11bmFs 42372
+IGJhZGdlcw== 42373
+IHJ1Z2J5 42374
+IG1hcnNobWFsbG93 42375
+IGZpZXJ5 42376
+IGFjY291bnRhbnQ= 42377
+IGFibGE= 42378
+IE1vbnJvZQ== 42379
+IEZvbnQ= 42380
+IEJvb3N0 42381
+IEJhcm5lcw== 42382
+YW5zd2Vy 42383
+IEJ1cm5pbmc= 42384
+IGFuZ2Vm 42385
+IFdlc2xleQ== 42386
+bGxz 42387
+7LU= 42388
+16nXnA== 42389
+aWxpxZtteQ== 42390
+15DXnw== 42391
+YW11cmE= 42392
+IEZ1ag== 42393
+IHBhbmk= 42394
+IFRyb3A= 42395
+YXJiZWl0ZW4= 42396
+IHJ1ZQ== 42397
+IFJhcmU= 42398
+w6RuZ2Vu 42399
+INGB0LzQvtGC0YDQtdGC0Yw= 42400
+INCa0LDRgA== 42401
+IE1UVg== 42402
+Ym9hcmRpbmc= 42403
+XVs= 42404
+IOugiOs= 42405
+c3RhbmJ1bA== 42406
+cGllbHQ= 42407
+IEhhcmR5 42408
+IEVuZ2FnZW1lbnQ= 42409
+IERpZW5zdA== 42410
+IHfDpHJlbg== 42411
+IGZ1ZWdv 42412
+IGVzdHJ1Y3Q= 42413
+IGNhbGFt 42414
+IFJlc3BvbnNl 42415
+IE1vaGFtbWFk 42416
+IHJlc2lzdGluZw== 42417
+IGR1cmFudA== 42418
+IE9MRUQ= 42419
+IHZlcno= 42420
+bcOkbg== 42421
+INmG25I= 42422
+IHBhcmFub2lk 42423
+IEF3YXJl 42424
+IEVuZ2luZWVycw== 42425
+IHByb2NlZHVyYWw= 42426
+IHBlcnNvbm5hZ2U= 42427
+IGZhcmtsxLE= 42428
+Zmxvd2luZw== 42429
+INC80LXRgdGC0LA= 42430
+IEJhcmU= 42431
+aXN0ZW0= 42432
+IHBvY3rEhXRrdQ== 42433
+IHBlcnNvbmFqZXM= 42434
+IOyWtOugtQ== 42435
+rYk= 42436
+INCl0L7RgtGP 42437
+IHVuc2V0dA== 42438
+IEFic29s 42439
+IOG6pXk= 42440
+IE1BWU9S 42441
+0L/QvtC70L3QtQ== 42442
+IGluZm9ybWluZw== 42443
+IGFtcHM= 42444
+0J/RgA== 42445
+IOutlA== 42446
+YWVkYQ== 42447
+INeU15HX 42448
+4bqlbg== 42449
+a2VsaWpr 42450
+IGF0aGVpc3Q= 42451
+IHRyb3V0 42452
+IG5ldWVz 42453
+IE5va2lh 42454
+bWFjaGVu 42455
+IHdob2xlc2FsZQ== 42456
+xLFyZA== 42457
+SW5z 42458
+INGN0L8= 42459
+IHByaWNr 42460
+IEtpbmRlcm4= 42461
+4LiX4Liz 42462
+IGNsYXNzeQ== 42463
+IMOubnQ= 42464
+IFNob3BpZnk= 42465
+INGB0L7RgA== 42466
+INC30LDQutGA0Ys= 42467
+enVr 42468
+IHVuaXZlcnNhbGx5 42469
+IHRlYXNwb29ucw== 42470
+IHJlY291bnQ= 42471
+IG7DpWdvbnRpbmc= 42472
+IFh1ZQ== 42473
+aXNpw6htZQ== 42474
+IHdlYWtlc3Q= 42475
+IHRlxZ9la2vDvHI= 42476
+IG1hdGhlbWF0aWNhbGx5 42477
+IEhvcw== 42478
+IO2VnOuLpA== 42479
+IHBhcnRhZ2Vy 42480
+IERhcnI= 42481
+6ro= 42482
+IM61zro= 42483
+IGdlcm1z 42484
+IGdlbGly 42485
+IGR1bA== 42486
+LC0= 42487
+IOyWuOs= 42488
+INee16Y= 42489
+INGP0YA= 42490
+IHF1b3RpZA== 42491
+IHByenlzeg== 42492
+IGhhcmRuZXNz 42493
+IGFxdWF0aWM= 42494
+IEp1bmdsZQ== 42495
+IFBDUg== 42496
+IEVsaW90 42497
+IG9zdHI= 42498
+IG1hcGE= 42499
+ZXNzw6Q= 42500
+IEdJUg== 42501
+IERyaXZpbmc= 42502
+IFNhbWk= 42503
+IE1lZGllbg== 42504
+IENvbXBhbmllcw== 42505
+IFBoYXJt 42506
+c2VpdHM= 42507
+IFJpbQ== 42508
+IM6/z4DOvw== 42509
+IHdlaXRlcmVu 42510
+IHBpenphcw== 42511
+IEx5ZGlh 42512
+IEhlaWdodHM= 42513
+IHNpbmNlcml0eQ== 42514
+IG5vc3Nhcw== 42515
+IGTFgg== 42516
+IGFsYXJtaW5n 42517
+IENhdWM= 42518
+INGB0LzRi9GB 42519
+ZmFjaW5n 42520
+YmFncw== 42521
+V1c= 42522
+INi02Yo= 42523
+IGNvdXJ0cm9vbQ== 42524
+IFBoaWxsaXA= 42525
+IOqyg+yymOufvA== 42526
+IFNwaWVsZXI= 42527
+IGthbnQ= 42528
+IGFkbWl0dGluZw== 42529
+IGNvbnRhaW5tZW50 42530
+IHJlbW92YWJsZQ== 42531
+IGp1bXBlcg== 42532
+Zm9jdXNlZA== 42533
+INC40YLQvtCz0LU= 42534
+INCi0LXQvA== 42535
+IHZhc2U= 42536
+IFVTQw== 42537
+IE1vbmF0ZQ== 42538
+IEphY29icw== 42539
+IEhPTA== 42540
+aWtlZA== 42541
+ZXJ3ZWlzZQ== 42542
+IGdvb2RpZXM= 42543
+IGhvbWFnZQ== 42544
+15vXqdeZ15U= 42545
+IHF1YWlz 42546
+IGluaWNpYWw= 42547
+IGd1YXJkaW5n 42548
+IGRheno= 42549
+IGNvbWJvcw== 42550
+INGD0L/RgNCw0LI= 42551
+IFRhbGVudA== 42552
+IMOzcg== 42553
+IGludGVybWl0dGVudA== 42554
+IE1jQ2FydGh5 42555
+IHNwYW5z 42556
+IHR5cmU= 42557
+IHF1eQ== 42558
+anV0 42559
+IFplbnQ= 42560
+IGdhdA== 42561
+IHNjYWZmb2xk 42562
+IG5lY2VzYXJpbw== 42563
+IFphaGxlbg== 42564
+IFNBTkQ= 42565
+IFBV 42566
+RXZlcnl0aGluZw== 42567
+LS0tLS0tLS0tLS0tLS0tLQ== 42568
+INCy0LfRj9GC0Yw= 42569
+IHNwYXJrcw== 42570
+IHBlbmR1bHVt 42571
+157Xnw== 42572
+IOyDieq5 42573
+IG11bHRpcGxpZXI= 42574
+INC70LDQtNC90L4= 42575
+dXJhdA== 42576
+IHVwc2V0dGluZw== 42577
+YmFr 42578
+IOy1nOuMgA== 42579
+IGFuw6Fs 42580
+IEpPRQ== 42581
+IGtvc3Rlbg== 42582
+IFBhdHR5 42583
+IEd1aW4= 42584
+Y2tlZA== 42585
+IEVneXB0aWFucw== 42586
+IENpdGl6ZW5z 42587
+16jXmw== 42588
+INCV0YnQtQ== 42589
+INC50L7Qs9C+ 42590
+IHNub3dmbA== 42591
+IGxla2tlcg== 42592
+IGFjb3N0 42593
+IEJhYmU= 42594
+IGdhbWJsZQ== 42595
+IGFkamVjdGl2ZQ== 42596
+0LrQuNC80Lg= 42597
+b3lz 42598
+IG1vbnRyZQ== 42599
+IEh5dW5kYWk= 42600
+IG1vaXN0dXJpemluZw== 42601
+IG1venphcmVsbGE= 42602
+T09P 42603
+IGZhY3VsdA== 42604
+IGRvZXQ= 42605
+IGZlYXJsZXNz 42606
+IGVzcHJlc3Nv 42607
+IGFsbG9yYQ== 42608
+IENpbmM= 42609
+IGNvbnRlw7pkbw== 42610
+IFBlbG9zaQ== 42611
+IG1pbmRlcg== 42612
+cm9vdA== 42613
+IO2VoOs= 42614
+INC/0LDQtA== 42615
+IENhbGxpbmc= 42616
+IENvbmZpZw== 42617
+IENvbnNvbGU= 42618
+aW5za3k= 42619
+w6luZXJnaWU= 42620
+IHNvbGl0YXJ5 42621
+0L7QtNC1 42622
+IGd1YXJkZWQ= 42623
+MTYw 42624
+INC/0YHQuNGF 42625
+IFNoYXA= 42626
+IHRpdHJl 42627
+b2xvZ25l 42628
+INC/0LDRgNGD 42629
+IFBSRQ== 42630
+IGxu 42631
+IE1pdGds 42632
+IENhcnJ5 42633
+IHNwaW5k 42634
+IENhbnRvbg== 42635
+IGtpbmdkb21z 42636
+cmVtbw== 42637
+IHJhZ2luZw== 42638
+IGluY2FwYWJsZQ== 42639
+IFdS 42640
+INGB0L7QsdGB0YLQstC10L0= 42641
+INC60LDQutC40YU= 42642
+IFNIRQ== 42643
+64u57Z6I 42644
+IHNjYXJjaXR5 42645
+IHBlcmRl 42646
+IGV4aXRz 42647
+IFNpbmdlcg== 42648
+IHN1cHBlcg== 42649
+IG11bmljaXBhbGl0eQ== 42650
+IERpdmVyc2l0eQ== 42651
+IHRpcm8= 42652
+aWVscw== 42653
+IGzDrWRlcg== 42654
+IGJsdWZm 42655
+IGF0cmE= 42656
+bHlz 42657
+IG1haGQ= 42658
+IGPDs2RpZ28= 42659
+IEhhcmxlbQ== 42660
+cnVsZQ== 42661
+aWNpdHk= 42662
+IHNpbXBsaXN0aWM= 42663
+IEtvbnN0 42664
+RUxMSQ== 42665
+IGbDtnJzdGE= 42666
+IGNvbnN0aXR1dGVz 42667
+INGB0YLQvtGA0L7QvdGD 42668
+IHVyZ2Vk 42669
+IFBhbmRh 42670
+7LCo6w== 42671
+cmVjZQ== 42672
+IHBhdHJpb3Q= 42673
+IENydXNo 42674
+IHdpbms= 42675
+0L7QudGC0Lg= 42676
+dXJhbsOnYQ== 42677
+IHNlaXp1cmVz 42678
+IGVsZWN0cm9k 42679
+IERvbmtleQ== 42680
+IElV 42681
+IE1PUw== 42682
+IGFsa2Fs 42683
+7LSJ 42684
+YmVzb25kZXJl 42685
+IHBhcmFsbGVscw== 42686
+IGJpdHRlcm5lc3M= 42687
+w6R0dHJl 42688
+ZXNzaW9uYWw= 42689
+IHNveWJlYW4= 42690
+IGNvbGxhYg== 42691
+IFJlcG9ydGluZw== 42692
+INC60L7QvNC/0LDQvdC40Lg= 42693
+IHdzenlzY3k= 42694
+IENydW5jaA== 42695
+aXNlZW4= 42696
+IGFtYmFzc2Fkb3Jz 42697
+IENoZXY= 42698
+0L7QstGL0LU= 42699
+c2Nh 42700
+INGA0LXRiNC40Ls= 42701
+0L7RgtC+ 42702
+IGdsZWljaHplaXRpZw== 42703
+bWVybg== 42704
+w7xzdA== 42705
+IEhhZQ== 42706
+s7TqsqDsirXri4jri6Q= 42707
+IHNob3Jlcw== 42708
+IGRlcHJlc3M= 42709
+IGFob3I= 42710
+IFN0ZXVlcg== 42711
+YWho 42712
+IHJldmlzZQ== 42713
+INGB0LDQvNGL0LU= 42714
+amF0 42715
+IGhlcmJhbA== 42716
+IGN1w6FudA== 42717
+IGJ1bmE= 42718
+bmllanN6ZQ== 42719
+RmluYWxseQ== 42720
+15XXlg== 42721
+Y2pl 42722
+IOyeiOqxsOuToOyalA== 42723
+IOuCmOuI 42724
+IHByemVzdA== 42725
+bGljYQ== 42726
+IER1Y2g= 42727
+0ZbQudGB0Yw= 42728
+cGFzc2Vu 42729
+IHNhdGlzZmllcw== 42730
+IEFkZGl0aW9uYWw= 42731
+IGPDoW1hcmE= 42732
+0LXRh9C10L3QuNC1 42733
+IHBvbXA= 42734
+IOunkOydtA== 42735
+IE1pbGxz 42736
+0LXQstC40LQ= 42737
+IHJlc3BlY3RhYmxl 42738
+IGZpbGFtZW50 42739
+IHZlbmRlcg== 42740
+IG1hdHRlcmVk 42741
+b3VyZQ== 42742
+7Li1 42743
+S29yZWFu 42744
+IGVzdHVkaW8= 42745
+IGNhY3R1cw== 42746
+IFZpdmU= 42747
+IFJhZw== 42748
+IGNvbXBsaXF1w6k= 42749
+INmI24E= 42750
+IHRhbw== 42751
+pr8= 42752
+U2luY2U= 42753
+IGplb3BhcmQ= 42754
+IFNlbGw= 42755
+IOyYmw== 42756
+IGtldG8= 42757
+IGludGVsaWc= 42758
+IEFuZ2Vi 42759
+IHRpZGVu 42760
+IHNvY2lv 42761
+IHJlbWluaXNjZW50 42762
+IGNhcmVnaXZlcg== 42763
+U3BhY2U= 42764
+IEV4ZXJjaXNl 42765
+IEJlY29tZQ== 42766
+w6p0cw== 42767
+YWtr 42768
+IS4u 42769
+INGB0L/RgNC+0YE= 42770
+IM6xz4DOvw== 42771
+IHNob290aW5ncw== 42772
+IGFwZQ== 42773
+IFNhbW15 42774
+IEt1bmc= 42775
+IGN1w6Fs 42776
+IEx1cA== 42777
+INGB0YLRg9C0 42778
+IHN3ZWV0ZXI= 42779
+IGNvbXVt 42780
+IEFkcw== 42781
+aHl1bmc= 42782
+INCx0YPQtNGD0Yk= 42783
+IHdhZmZsZQ== 42784
+IE9yYg== 42785
+IGxhdXQ= 42786
+IGZvcmVjYXN0aW5n 42787
+5ao= 42788
+IHJhcHBpbmc= 42789
+IHByZWZlcnM= 42790
+IGJlbno= 42791
+IG5paw== 42792
+IEJhaG4= 42793
+IHNhbmRpbmc= 42794
+IGltbWluZW50 42795
+INC/0YDQvtCx0LvQtdC80Ys= 42796
+IGRvaXZlbnQ= 42797
+0L7Qu9Cw 42798
+IMW8eWNpYQ== 42799
+aWh1 42800
+IGV4aXN0ZW0= 42801
+IEludGVyaW9y 42802
+IFRha2Vz 42803
+IHRvZGRsZXI= 42804
+IGRpY3RhdG9yc2hpcA== 42805
+IFNtaXRoc29u 42806
+IEFsbGFodQ== 42807
+z47Pgc6x 42808
+7JWY7Iq164uI64uk 42809
+IFZvdGU= 42810
+IFNtZWxscw== 42811
+0L7QtNC90L4= 42812
+IGhpbmRzaWdodA== 42813
+VlI= 42814
+IFBhdGNo 42815
+IEphaHJlcw== 42816
+IHNvdXZlbmly 42817
+IG5ldXRyb24= 42818
+IGxvbmd0aW1l 42819
+IHNheWlu 42820
+YXNha2k= 42821
+INC+0YHRgtCw0L3QvtCy 42822
+IGV4cGVsbGVk 42823
+IGNyeXB0b2N1cnJlbmNpZXM= 42824
+IE11cmRlcg== 42825
+IENpdGl6ZW4= 42826
+V0FZ 42827
+IHBsdQ== 42828
+IGxlbW9uYWRl 42829
+IGNvbnZlbmllbnRseQ== 42830
+IEhJ 42831
+IDIwMjM= 42832
+16nXldeq 42833
+0LDRhtC40L7QvQ== 42834
+IOubsA== 42835
+INmE2YPZhg== 42836
+INC90LXQvNC90L7QttC60L4= 42837
+IHVudXNlZA== 42838
+IG1haW9yaWE= 42839
+IGFzdHJvbG9neQ== 42840
+IERvd250 42841
+Tmljaw== 42842
+IHByZW9jY3Vw 42843
+IGRlbWFpbg== 42844
+157Xog== 42845
+INCy0L7QtNGL 42846
+IFNhbnNrcml0 42847
+IHByw6p0 42848
+IHN0cmFuZGVk 42849
+IHJlZmlu 42850
+INC/0YDQuNC90LjQvA== 42851
+INC/0L7QstC10YDRhQ== 42852
+4K+NPw== 42853
+IHpyb2I= 42854
+IGludGVydHc= 42855
+IERhdmlkc29u 42856
+0LvQtdC90LA= 42857
+INC/0L7QvdGP0YLRjA== 42858
+IFJlbm8= 42859
+INC/0L7Qu9GD0YfQuNC70L7RgdGM 42860
+IGNvcnJlc3BvbmRlbnQ= 42861
+IFVyYW4= 42862
+ZWxzZQ== 42863
+wrfCtw== 42864
+IHR1dG9yaW5n 42865
+IGdyYW5kZGF1Z2h0ZXI= 42866
+bHVkZWQ= 42867
+IHN0ZXNzbw== 42868
+IGjhur90 42869
+IGdlZ2FuZ2Vu 42870
+INCd0JA= 42871
+IGFudGln 42872
+YmFja2dyb3VuZA== 42873
+IGdlZGFhbg== 42874
+IGZhdm9yZWQ= 42875
+IEVtbWFudWVs 42876
+IGlvZA== 42877
+IGNsYW1wcw== 42878
+IGNvbXBsZQ== 42879
+IEFkdmFuY2U= 42880
+IOyeiOqzoOyalA== 42881
+IFJveA== 42882
+IOyXkOs= 42883
+IGludGVzdGluZXM= 42884
+IHBlcmN1c3Npb24= 42885
+IGxlZ2l0aW1hdGVseQ== 42886
+IEV0ZXJuYWw= 42887
+ZmFtaWx5 42888
+YWxvZw== 42889
+QnJhZA== 42890
+0LXQvdC40YLRjA== 42891
+INGB0L3QsNGH0LDQu9Cw 42892
+IGNlcnRh 42893
+IGFra29y 42894
+IM61zrTPjg== 42895
+IG9jdGF2ZQ== 42896
+IFZhYw== 42897
+0LzQvtGC0YDQuA== 42898
+IMOJdGF0cw== 42899
+IGxvbmd1ZQ== 42900
+IGRpc3NvY2k= 42901
+0YDRj9C0 42902
+aGVpbg== 42903
+IHBhbnRhbGxh 42904
+IGluZGljYXRpb25z 42905
+IEx0 42906
+IEdyYWRl 42907
+b2luZQ== 42908
+YnVn 42909
+IFZlcml6b24= 42910
+IEFsw6lt 42911
+IHZpZW5uZW50 42912
+INGH0LjRgdGC 42913
+IEJlbmk= 42914
+IFRzY2g= 42915
+IFRQ 42916
+IGluc3VsdGluZw== 42917
+IFdlaWdodA== 42918
+IGFkYXB0YXRpb25z 42919
+IGhhYsOtYW4= 42920
+IGNsaXF1ZQ== 42921
+b8WbY2k= 42922
+anVuYQ== 42923
+IHN1Y2hlbg== 42924
+IEdvZXM= 42925
+IEV4b2R1cw== 42926
+Q2hv 42927
+IGFudGlz 42928
+IO2MjOs= 42929
+c2V2ZW4= 42930
+INGH0LDRgdC+0LI= 42931
+IGJhbGxpc3RpYw== 42932
+em9ueQ== 42933
+SUNJQQ== 42934
+INC/0YDQtdGB0YI= 42935
+IHNpbXBsZXNtZW50ZQ== 42936
+IENvbGxhYm9y 42937
+RnJlZA== 42938
+INGC0LXQu9C10YTQvtC9 42939
+IFJhdmk= 42940
+7ZW07KQ= 42941
+0L/QtdGA0LI= 42942
+IOyeiOycvOuLiOq5jA== 42943
+IMOzdA== 42944
+IGFsZWc= 42945
+w7pw 42946
+IGRpc3JlZ2FyZA== 42947
+IGluZGVudA== 42948
+Y2xvdWQ= 42949
+Y2hsYWdlbg== 42950
+IGl0ZXJhdGU= 42951
+IGdlbmVyYWxpemVk 42952
+4KS5 42953
+ZWxlcmk= 42954
+IGRpc2FzdHJvdXM= 42955
+INGB0YLQsNC70LA= 42956
+s5E= 42957
+S05PV04= 42958
+IHJpY2huZXNz 42959
+IGNvbnNjaWVudA== 42960
+aWNodHM= 42961
+INGN0LvQtdC8 42962
+2KjYrw== 42963
+aXJlbnM= 42964
+IGhhdW50aW5n 42965
+cnVjdHVyZXM= 42966
+YXR0YWNr 42967
+IGN1cGNha2Vz 42968
+c3F1ZQ== 42969
+IG5hc3plZ28= 42970
+IGFudGhyb3BvbG9neQ== 42971
+Y2hhZQ== 42972
+IGRpc2NvdmVycw== 42973
+IFBlcnNvbmFsaXR5 42974
+IM6kzr8= 42975
+IGRpxJ9lcg== 42976
+INC90LXRkQ== 42977
+IEFuaXRh 42978
+IFvimao= 42979
+IENhcm0= 42980
+IEJlbm55 42981
+7Iqs 42982
+IHB1cGls 42983
+IG9jYXM= 42984
+w6RsbGV0 42985
+asWbxIc= 42986
+YW1lbnRhbA== 42987
+INC+0YLQvdC+0YE= 42988
+IHBpZA== 42989
+IGFybXA= 42990
+UkVF 42991
+INC+0YLQutGA0YvQsg== 42992
+IHVkYQ== 42993
+IFN5bmRyb21l 42994
+IFN0YW5kYXJkcw== 42995
+IHBvaW50ZXJz 42996
+IGVuYW0= 42997
+IFRpZw== 42998
+w616 42999
+INC90LDQvNC4 43000
+IHVuY2hhbmdlZA== 43001
+IHR1cm1vaWw= 43002
+4bupbmc= 43003
+ISEi 43004
+NTAwMA== 43005
+IOusvOyWtOs= 43006
+IG1lcmdpbmc= 43007
+IGVudHNjaGVpZGVu 43008
+Zm9ybWU= 43009
+IHRyaW1tZWQ= 43010
+IGRhcmVk 43011
+IGFzcGlyYXRpb24= 43012
+IE15dGhpY2Fs 43013
+IEhlag== 43014
+IEFsZWo= 43015
+0YbQvg== 43016
+0L7RgtGD 43017
+WmU= 43018
+INC40L3RgdGC0YDRg9C80LXQvdGC 43019
+IFJUWA== 43020
+IGxvY2FsaXplZA== 43021
+IHN1cnJvdW5kcw== 43022
+IGVtcGllemE= 43023
+IGNsYXNl 43024
+IOC4gQ== 43025
+IFJhcGlk 43026
+b21pbm91cw== 43027
+aWdhaWw= 43028
+INGI0LjRgA== 43029
+IGzDpg== 43030
+IHphc2Fk 43031
+IHVuZm9sZGluZw== 43032
+PyE/IQ== 43033
+IOyInOqwhA== 43034
+IFBvbHNraQ== 43035
+IEthdWY= 43036
+IENlbHQ= 43037
+aXRpYw== 43038
+IHRvb2xib3g= 43039
+IFBvY2tldA== 43040
+IOyEnOuhnA== 43041
+IGJlbGtp 43042
+IGFkbWlyYXRpb24= 43043
+cGhy 43044
+IFByb2R1a3Q= 43045
+IFRydWNr 43046
+IGRyYXXDn2Vu 43047
+d2HFgg== 43048
+IEhlYnJld3M= 43049
+IO2VmOqyjA== 43050
+IEFDRQ== 43051
+dXJnZW5jZQ== 43052
+YXVyYWlz 43053
+IGNoYXJpdGFibGU= 43054
+xLF0 43055
+IGFybWFz 43056
+IEdlZGFua2Vu 43057
+cmVhdGluZw== 43058
+cG9ydGU= 43059
+IGltcHJpbnQ= 43060
+ZsOkaA== 43061
+INC/0L7QtNGF0L7QtA== 43062
+IG91dHNldA== 43063
+4Lin4LiB 43064
+0LXQvdC90L7Qs9C+ 43065
+Q2xhc3M= 43066
+IHZhbml0eQ== 43067
+IFZPSUNFUw== 43068
+IDI2MA== 43069
+cmVzaWRlbnQ= 43070
+VVNF 43071
+IOqwgOyatOuNsA== 43072
+6b0= 43073
+IHRocm91Z2hwdXQ= 43074
+IGN1bWE= 43075
+7Jqx 43076
+INC/0LvQvtGJ 43077
+IHBhcnRpcw== 43078
+IEFuaW1hdGlvbg== 43079
+p4jr 43080
+Q3Jl 43081
+w7Z0emxpY2g= 43082
+IG1hZ2c= 43083
+IGNsdW1zeQ== 43084
+IGJvdHRsZW5l 43085
+IGJpcmxpa3Rl 43086
+IEdhbWI= 43087
+INeb158= 43088
+IG1ldHJvcG9saXRhbg== 43089
+T29o 43090
+IG9iamVjdGlvbnM= 43091
+INmF2Ko= 43092
+INC80LXQuw== 43093
+IHJlbW5hbnRz 43094
+IFhhdmllcg== 43095
+UmljaA== 43096
+IG9sc2E= 43097
+IFBpbGw= 43098
+IGdyb2Fucw== 43099
+IE5hcnVob2RvdQ== 43100
+IENvbnRyYWN0 43101
+0LDQtNCw 43102
+bmFp 43103
+INGE0LjQtw== 43104
+IG9wcw== 43105
+4bqhdA== 43106
+IHBhcmFjaHV0ZQ== 43107
+IG5lbGw= 43108
+IEVudHNjaGVpZHVuZw== 43109
+15zXmded 43110
+IHRydXRoZnVs 43111
+IHNoYXJwZXI= 43112
+IGJ1cmVhdWNyYWN5 43113
+Y2FydA== 43114
+INC40L3Rgg== 43115
+d2llaw== 43116
+IHdpbGxpbmdseQ== 43117
+IEhlcm1hbg== 43118
+IG1laHJlcmU= 43119
+IGVsaXRlcw== 43120
+IEFybW9y 43121
+IGVtYm9yYQ== 43122
+IFJlY29nbg== 43123
+INC70Y7QsdC70Y4= 43124
+IEV4Y2VsbGVuY2U= 43125
+aWJlbA== 43126
+IGV4cG9ydGluZw== 43127
+7LK07KCB 43128
+S2VsbHk= 43129
+Q2FtZXJhbWFu 43130
+IHNsaXBz 43131
+IGZpZ3VyYQ== 43132
+IGtvbGw= 43133
+IFBhbmRlbWll 43134
+IHRpbWVk 43135
+bGllw59saWNo 43136
+INee15s= 43137
+IHBlcsOtb2Rv 43138
+aXZhdA== 43139
+IHF1ZXN0aW9ubmFpcmU= 43140
+IHDDqXJpb2Rl 43141
+IHNpZ2hz 43142
+IGFsbGVnaWFuY2U= 43143
+IFhW 43144
+IEtlbnN1a2U= 43145
+IEdlc3VuZGhlaXRz 43146
+IHBvc2l0aXZv 43147
+IEphbmVpcm8= 43148
+IFNFRQ== 43149
+INin2LPYqg== 43150
+IEtlbHNleQ== 43151
+dG9iZXI= 43152
+IM6xzrvOu86s 43153
+IFBhcmVudA== 43154
+IERheXRvbg== 43155
+IEJpbGRlcg== 43156
+b3VyYWdl 43157
+IHNlcmVz 43158
+IG11Y2jDrXNpbW8= 43159
+IFJlYWxt 43160
+IE9GRklDRVI= 43161
+ZXJzb25pYw== 43162
+b255YQ== 43163
+IOq4iQ== 43164
+IGFuY2VzdHJ5 43165
+IEp1cmFzc2lj 43166
+IGNlbnRpZ3JhZGU= 43167
+4bqldQ== 43168
+dWrEhWM= 43169
+bWFucw== 43170
+IHRpbw== 43171
+IE1vxbw= 43172
+IHRyYWdlbg== 43173
+IHN0YXJlZA== 43174
+IHNjaGVtYXRpYw== 43175
+IHBhc3NvdQ== 43176
+IG1lYXRiYWxscw== 43177
+xYJvxZvEhw== 43178
+IHN5bmNocm9ub3Vz 43179
+IHBlcm1pcw== 43180
+YXJpYWw= 43181
+IHplcg== 43182
+IHBhcml0eQ== 43183
+IEF2YXRhcg== 43184
+aW5kZWVy 43185
+ZXN0b24= 43186
+IG1laWTDpG4= 43187
+IENseQ== 43188
+tIk= 43189
+IGVzdHJvZ2Vu 43190
+IGNlbnRpbWV0 43191
+IGNvbnZpY3Rpb25z 43192
+IHBvc3NpYW1v 43193
+IHBlcmR1 43194
+IHBhdGhvZ2Vucw== 43195
+IFF1aW4= 43196
+IFByb2dyYW1z 43197
+IFBvaW50cw== 43198
+cmFtZW50 43199
+cmFpbA== 43200
+IHZ5 43201
+IGdyYWZ0 43202
+IGJhcnQ= 43203
+IExvdHVz 43204
+4Kg= 43205
+IOuztOyLnA== 43206
+cmFtZXI= 43207
+RmF0aGVy 43208
+IOucuw== 43209
+INeU150= 43210
+IHRyYXplcg== 43211
+IHRhcms= 43212
+w6hjZXM= 43213
+Zm9ydGg= 43214
+INGB0LTQtdC70LDQu9C4 43215
+IHp1Y2NoaW5p 43216
+IHdha3R1 43217
+IGVudGVydGFpbmVk 43218
+IE1pbGxpYXJkZW4= 43219
+IHNoYWt5 43220
+IHByemVkZQ== 43221
+uIzr 43222
+IHJldmVyc2libGU= 43223
+IE5BVQ== 43224
+dWlucw== 43225
+w6lyw6p0 43226
+YW5uZW4= 43227
+IEh1bnRpbmc= 43228
+IEZlbGxvdw== 43229
+w6lsaW9y 43230
+IHJvdGF0aW9ucw== 43231
+IGdyYW5ueQ== 43232
+eHRvbg== 43233
+INGB0YLQsNC90L7QstC40YLRgdGP 43234
+INC90LDRh9Cw0Ls= 43235
+IGFydGVyaWVz 43236
+cmnDsw== 43237
+INC/0L7Qu9GM0LfQvtCy 43238
+INCR0Ys= 43239
+IG5vdmVsdHk= 43240
+cG91bmQ= 43241
+IHdlaXJkZXN0 43242
+IGJvaXM= 43243
+w6ltaWU= 43244
+dXBs 43245
+QVRB 43246
+IHRlaGQ= 43247
+IE5pcg== 43248
+c8SxbsSxeg== 43249
+ISIs 43250
+IGltbW9ydA== 43251
+IGVsaw== 43252
+0LDQvdC40Yc= 43253
+IGZhYnJpY2F0aW9u 43254
+IE5vaXNl 43255
+IEF2YW50 43256
+2LHbjA== 43257
+d2F0 43258
+IHdob29zaGluZw== 43259
+INeb15k= 43260
+INCX0L3QsNGH0LjRgg== 43261
+IGNlbnRyaWY= 43262
+YW5zaW5n 43263
+U291bmQ= 43264
+IOudvOs= 43265
+IGNhcHRpb25z 43266
+4LON 43267
+IG9yZ2Fz 43268
+IGRvbHBoaW5z 43269
+IEJsZW5k 43270
+IFRhag== 43271
+IENDVFY= 43272
+IGlub20= 43273
+IGVkaXRpb25z 43274
+IGJ1cm5vdXQ= 43275
+IGLDpHR0cmU= 43276
+IENhc2E= 43277
+b3ZpY2g= 43278
+IG1vbHRlbg== 43279
+IGJsaW5kZm9sZA== 43280
+IEd1ZQ== 43281
+IHNwaW5uZXI= 43282
+IG3DtmdsaWNoc3Q= 43283
+IFbDoA== 43284
+ZW5lY2E= 43285
+IG3DqWRpY28= 43286
+w6FzdGljbw== 43287
+IGFyZA== 43288
+IFN1bmRheXM= 43289
+IFJlbW90ZQ== 43290
+IOyWvOuniA== 43291
+IHRyxrDhu5tj 43292
+7IWo6w== 43293
+IGRvcHA= 43294
+IGJlxJ8= 43295
+aWNhbmE= 43296
+IOuCmOykkeyXkA== 43297
+IGhvbGluZXNz 43298
+ZGlyZWN0 43299
+IOyYge2ZlA== 43300
+IGN1bHBh 43301
+IFN0aXRjaA== 43302
+bGlnaHRseQ== 43303
+0LDQvNC10L0= 43304
+INC80LXRiA== 43305
+INC/0LXRhw== 43306
+IHlodGU= 43307
+b3NwaGVyZQ== 43308
+IOyTsOuKlA== 43309
+w6lr 43310
+IHNlcmlvdXNuZXNz 43311
+IGdhcm1lbnRz 43312
+IGNvbmNpc2U= 43313
+IFNK 43314
+IHZlcmxvcmVu 43315
+IHBhcmVjZXI= 43316
+IFVOQw== 43317
+7Iqk7YOA 43318
+IGVuZmFudA== 43319
+IGJvbWJlcg== 43320
+IEdpZnQ= 43321
+IOyii+uLpA== 43322
+IHJoeXRobXM= 43323
+IEtsYXI= 43324
+b3duaWs= 43325
+IFJldmVyZW5k 43326
+IGVtaXR0ZWQ= 43327
+bGFzc2Vu 43328
+IHJldmVuaXI= 43329
+IGFyaXNpbmc= 43330
+IHByZWNpc2FtZW50ZQ== 43331
+IGludGVycG9s 43332
+IFRlbmVtb3M= 43333
+b2JlZA== 43334
+IHRlY25vbG9naWE= 43335
+IG5lcmVkZQ== 43336
+IFZpc2E= 43337
+IHNhdmE= 43338
+IGVzY3JldmVy 43339
+IGFzc2F1bHRlZA== 43340
+IEZsZWlzY2g= 43341
+IENvdW5jaWxsb3Jz 43342
+IOqwgOq5jA== 43343
+IGJlZ2c= 43344
+IERldmVsb3Blcg== 43345
+IEJyb256ZQ== 43346
+IEJvbnVz 43347
+INeo16c= 43348
+ZmFjdA== 43349
+IGVuZGxlc3NseQ== 43350
+IG1hY2Ft 43351
+IHJ6ZWN6eXdpxZtjaWU= 43352
+IGhvdmVyaW5n 43353
+w6hnZQ== 43354
+IHBvb3Jlc3Q= 43355
+IFNjaGVk 43356
+bWlsZQ== 43357
+aXNzZW1lbnRz 43358
+YWPEgw== 43359
+IOumvQ== 43360
+IHZhY2Npbg== 43361
+IGZ1dHVyaXN0aWM= 43362
+IFdpbmRvdw== 43363
+0L/QsNGA 43364
+INGA0L7RgQ== 43365
+IGxvd2Vycw== 43366
+YWNz 43367
+INCQ0LvQtdC60YHQsNC90LQ= 43368
+IEFsZXJ0 43369
+aWVtZQ== 43370
+IENhdWNhcw== 43371
+IGphd3M= 43372
+IGh1bnRlZA== 43373
+7Je9 43374
+INio2YY= 43375
+INec16DXlQ== 43376
+IHR1cmJpbmVz 43377
+IGx1bXBz 43378
+IEFsbGllcw== 43379
+YWhsdA== 43380
+IHN1YnNjcmlwdGlvbnM= 43381
+IG5vdXZlYXV4 43382
+dWdlcg== 43383
+Ym9uZXM= 43384
+IGJlcnJ5 43385
+IOyEoOusvA== 43386
+IE1hbnVmYWN0 43387
+IEx1bmNo 43388
+6re4656Y 43389
+IGh5ZHJhdGVk 43390
+IGFjaGVp 43391
+IFlheg== 43392
+IFRpYmV0YW4= 43393
+IFF1YW50dW0= 43394
+IEplcm9tZQ== 43395
+INC+0YnRg9GJ 43396
+0L7QstCw0L0= 43397
+bW90aW9u 43398
+IENvbnRyb2xsZXI= 43399
+ZW5lcmdldGlj 43400
+INGB0LrQvtGA0L4= 43401
+IHZvd2Vscw== 43402
+INGD0LbQsNGB 43403
+IGhvb2Y= 43404
+IEJ1bGxldA== 43405
+aW1hZ2lu 43406
+16DXmded 43407
+IGVuZ2FnZW1lbnRz 43408
+IEJsdWVz 43409
+IGHDsWFk 43410
+IGZwcw== 43411
+IGNhdGVycA== 43412
+IHPhu5E= 43413
+IFRyaWJl 43414
+0L/QvtC9 43415
+aWZlcmF0aW9u 43416
+IHJ1bWFo 43417
+IFB1bmo= 43418
+bGFi 43419
+IGNvbXByZWhlbnNpb24= 43420
+YnJpbmdpbmc= 43421
+V28= 43422
+IHRpaw== 43423
+IGFueWhvdw== 43424
+w6F0aWNhcw== 43425
+IHNpdHplbg== 43426
+IGtvbGF5 43427
+IENvbmZlZGVyYXRl 43428
+IENhbGxlZA== 43429
+IG5hc3p5Y2g= 43430
+IGR6acSZa2k= 43431
+IGNsb2Fr 43432
+IEdvb2c= 43433
+IEFzaGU= 43434
+ZW5hbg== 43435
+INC80YvRiA== 43436
+INCy0LXRgg== 43437
+IFNwbw== 43438
+IFNrZXQ= 43439
+IEhlbmRlcnNvbg== 43440
+aWxhaA== 43441
+INCx0LXQt9C+0L/QsNGB 43442
+IHNla2FsaQ== 43443
+7Ja06rCA 43444
+IHNuYXJl 43445
+IHLhurFuZw== 43446
+IGbDtnJzw7Y= 43447
+c3p5Y2g= 43448
+IMO8YmVycw== 43449
+IHN0cmF0w6ln 43450
+IOy6kOs= 43451
+IHJhcHBlcnM= 43452
+IGNlcA== 43453
+IEhhc3Rh 43454
+IGhvcnJpYmx5 43455
+IGZyw7xo 43456
+INio2Lk= 43457
+IG1hbnRsZQ== 43458
+44CF 43459
+ZnVuZGluZw== 43460
+IHp1c3Q= 43461
+IFBlbnM= 43462
+c2Vk 43463
+IO2XpA== 43464
+IGdlcmVraQ== 43465
+IGFsYXJtcw== 43466
+IFdoYQ== 43467
+IE1hcmt1cw== 43468
+YWtzaQ== 43469
+INCQ0LvQtQ== 43470
+a2xvcmU= 43471
+IMOpbmVy 43472
+IHRpbGRl 43473
+Ym94aW5n 43474
+IOyEng== 43475
+IGVuY29udHJhbW9z 43476
+IFBoYXI= 43477
+0L3QsNC60L7QvA== 43478
+w7NzdA== 43479
+IMSwcw== 43480
+IOuLmA== 43481
+IHNxdWF0cw== 43482
+IHByZXRlbmRlZA== 43483
+IGRleg== 43484
+IOq0nOywruyVhA== 43485
+amFjaA== 43486
+65286rOg 43487
+IO2ZleynhA== 43488
+IEFuc2No 43489
+aW1lcms= 43490
+IGNvbmp1Z2F0ZQ== 43491
+IHBlbmluc3VsYQ== 43492
+IGdvcmlsbGE= 43493
+IHBob3RvZ3JhcGhlZA== 43494
+IEF1bnF1ZQ== 43495
+IGVudHJlbg== 43496
+IERldXRzY2hlbg== 43497
+IEFsYWRkaW4= 43498
+IOustOyEnA== 43499
+IFN0ZWxsYQ== 43500
+IEVsZWN0aW9u 43501
+b3V0aW5l 43502
+R3JhbmQ= 43503
+IFdhaw== 43504
+IFNlcmdpbw== 43505
+aG9yc2U= 43506
+YWhvbg== 43507
+IEZhbWlsaWVz 43508
+IGhhdGluZw== 43509
+IEJldHQ= 43510
+4LiZ4Liw4LiE4Liw 43511
+IGN1cmxpbmc= 43512
+IElzcmFlbGlz 43513
+INec15DX 43514
+IE15ZXJz 43515
+IHNjYW5uZWQ= 43516
+IEJFQw== 43517
+aWxlcmk= 43518
+IGNhbGxl 43519
+IE1pbmg= 43520
+IG1pY3Jvbg== 43521
+IGNvbmR1Yw== 43522
+w612 43523
+INCy0L7Qt9GM 43524
+IGFjdGlvbmFibGU= 43525
+IFRydXN0ZWVz 43526
+IHRpZWY= 43527
+IGhlYWRlcnM= 43528
+IGFuaW1hbGVz 43529
+7JuA 43530
+0LvQvtGF 43531
+dW5pdHk= 43532
+bHlh 43533
+IGphbmdhbg== 43534
+IGhhbmk= 43535
+IGNhc2luZw== 43536
+IGrDs3ZlbmVz 43537
+IFNwbGl0 43538
+IENhcmxv 43539
+IEJlaW0= 43540
+IG51YW5jZWQ= 43541
+IHRlZGR5 43542
+IENsYW4= 43543
+w6RjaGVu 43544
+cGllcg== 43545
+INC00L7Qv9C+0LvQvQ== 43546
+IGRpYXBlcg== 43547
+ZWZmZWN0aXZl 43548
+IE5pYWdhcmE= 43549
+IHdhcnQ= 43550
+IGNvcnJv 43551
+IEthbXBm 43552
+enRl 43553
+IGTDqXZlbG9wcGVtZW50 43554
+IGF0dGFja2Vycw== 43555
+IFNoZXJtYW4= 43556
+IDE5MTQ= 43557
+IG1lb3c= 43558
+IFDDpQ== 43559
+7Lo= 43560
+Y2l0 43561
+IGNvdXBl 43562
+IOq3uOuLpOydjOyXkA== 43563
+IGh1bW91cg== 43564
+IGNvbGU= 43565
+IFdhcm5pbmc= 43566
+IFRpbA== 43567
+Y2FsbQ== 43568
+YnVhdA== 43569
+IGNpbmU= 43570
+a2llag== 43571
+S2V2aW4= 43572
+IG1pbGxpZ3JhbXM= 43573
+15PXqA== 43574
+YXJpYW1lbnRl 43575
+IG9ybw== 43576
+IEhvZA== 43577
+ZXJ0b3M= 43578
+IGxpaGF0 43579
+IGZ1bGxlc3Q= 43580
+IGdyYW5kaQ== 43581
+INCx0L7Qug== 43582
+IHdob2xseQ== 43583
+IG1haGRvbGw= 43584
+IGNvbnRyb2xs 43585
+IEJ1bnVu 43586
+IGRpcHBlZA== 43587
+IHJlZ2nDs24= 43588
+INmE2Yg= 43589
+INCx0LDQsw== 43590
+IHByZW1pZXJz 43591
+IGNo4buL 43592
+aWRleg== 43593
+IHF1b3Rh 43594
+IGdoZWU= 43595
+YXJrYW4= 43596
+IGdlbGF0aW4= 43597
+IENsZXJr 43598
+YmJsZXM= 43599
+IFBhaWdl 43600
+IHN0YWdlZA== 43601
+IHNvY2lhaXM= 43602
+IEJpemlt 43603
+IHZlbG9jaWRhZGU= 43604
+IG1hbGFyaWE= 43605
+IHNob3J0ZW5lZA== 43606
+IHNhbHV0 43607
+IEhlaGU= 43608
+IHbhu4s= 43609
+IFRhaXdhbmVzZQ== 43610
+IEFycmk= 43611
+Z3Jlcw== 43612
+KCk= 43613
+cmlhZA== 43614
+kZDr 43615
+IG1hc2N1bGluaXR5 43616
+TFA= 43617
+IOuWoQ== 43618
+IHTDqXJtaW4= 43619
+IFbDpA== 43620
+IFNlaXRlbg== 43621
+IHJlc3BlY3RmdWxseQ== 43622
+w6Fv 43623
+IHRvdGFsZW1lbnQ= 43624
+IHNjcmFwcw== 43625
+IGluZnJpbmc= 43626
+IEJvc2U= 43627
+YW1hcg== 43628
+IEx1aXph 43629
+IEFSTQ== 43630
+INC/0LvQvtGF0L4= 43631
+IG1laWxsw6Q= 43632
+IERpb24= 43633
+IHNvdWhh 43634
+IGdlc2NoYWZmdA== 43635
+IGNvbnZvbHV0aW9u 43636
+IOKAkeKAkQ== 43637
+IDE0NA== 43638
+bGluZ3Q= 43639
+IG3DpG5uaXNr 43640
+IGd1c3RhZG8= 43641
+IGNvaW5lZA== 43642
+IEx1bHU= 43643
+b3BvdA== 43644
+IFByYXllcg== 43645
+IHJvYXN0aW5n 43646
+IGNocm9tb3NvbWVz 43647
+0LXQu9C1 43648
+Qmx1ZQ== 43649
+IEVyZm9sZw== 43650
+INC/0YDQuNC00YPQvA== 43651
+IHJpc2tpbmc= 43652
+IEd1YXJkaWFucw== 43653
+IDIwMjQ= 43654
+w6hzZQ== 43655
+INCx0YPQtNGC0L4= 43656
+IGNvbnNlcnZl 43657
+IEJyaW5naW5n 43658
+IEFzdHJh 43659
+4LmA4LiC 43660
+INC60LDQutGD0Y4= 43661
+cmVzcGFjZQ== 43662
+INCe0L8= 43663
+INCy0L7QutGA0YPQsw== 43664
+IG1hc2tlZA== 43665
+IFNoeQ== 43666
+IE5pbQ== 43667
+ZW5kYXM= 43668
+IO2PrOyduA== 43669
+IOuqqOyWkQ== 43670
+IHZhbGV1cg== 43671
+IE5lZ3Jv 43672
+IENEcw== 43673
+aW5rbGluZw== 43674
+IG1vbnTDs24= 43675
+IEhvbmQ= 43676
+UmVhbA== 43677
+IGZ1bGxuZXNz 43678
+IFdob29wcw== 43679
+IFNoYW5r 43680
+IEJyYW4= 43681
+IHRyYW5zbHVj 43682
+IGVycg== 43683
+IEdhcmRlbnM= 43684
+b3l1 43685
+IGFmZmlybWF0aXZl 43686
+IHBvdHRlcnk= 43687
+bGl2ZQ== 43688
+aWF1 43689
+bW91bnQ= 43690
+IGZsdWN0dWF0aW9ucw== 43691
+w61lbQ== 43692
+IHB1bHNlcw== 43693
+IGNyaWFuw6dhcw== 43694
+zq/Osc+C 43695
+IGJhc3Rh 43696
+RU5OSVM= 43697
+INC60L7RgNC/ 43698
+IEZ1bms= 43699
+w6VydA== 43700
+INC30LDRgtC10Lw= 43701
+IHBhcmFzaXRlcw== 43702
+IGFpcmZsb3c= 43703
+IFh1YW4= 43704
+R8O8bG1l 43705
+IGJsb29taW5n 43706
+IG11bW15 43707
+IGJhbw== 43708
+IENsYXA= 43709
+YW50aWNz 43710
+c2tpbg== 43711
+Y2VudHJpYw== 43712
+YmVmb3Jl 43713
+IFJJQ0hBUkQ= 43714
+IEhhaG4= 43715
+VEFLRQ== 43716
+INGC0YDQtdGC0Yw= 43717
+IHByZXNzdXJlZA== 43718
+IEt1cno= 43719
+aXN0aQ== 43720
+INC90LDRiNC10LPQvg== 43721
+IHNlbWljb25kdWN0b3I= 43722
+IENsaW50 43723
+IHBsdXA= 43724
+IE9yaWdpbg== 43725
+IEV2ZW50cw== 43726
+IOqxseyglQ== 43727
+bXBmZW4= 43728
+TkVZ 43729
+IERX 43730
+IOu2ge2VnA== 43731
+IGluZm9ybXM= 43732
+IGZvcnNr 43733
+IGFtaWdh 43734
+IENpbmNpbm4= 43735
+U3Ry 43736
+IHBhcmlzaA== 43737
+IOy7pO2U 43738
+IHNpemk= 43739
+IHBsYW50YXRpb24= 43740
+IGJsaXZlcg== 43741
+INC/0L7Qu9C40YI= 43742
+IHN1YmRpdg== 43743
+IHJhbnQ= 43744
+IHByaW5jaXBhbHM= 43745
+IGt1bm5l 43746
+w7xnZW4= 43747
+YXJlc3BhY2U= 43748
+IHZhbGxhaGk= 43749
+IGNvbGxhcHNpbmc= 43750
+2KfZhNmF 43751
+IGxpZGVy 43752
+IHRhbWE= 43753
+IGdhZ25lcg== 43754
+cm9sbGU= 43755
+IOunkOyUgOuTnOs= 43756
+IGNhdGhlZHJhbA== 43757
+IFdlYnM= 43758
+IFBvbGl0aWNz 43759
+IERlbmlz 43760
+IHR1bw== 43761
+IHJlZnJhY3Q= 43762
+IGRpc2ludGVncg== 43763
+c3Rlcw== 43764
+INC70Y7QsdC+0LI= 43765
+IHdpbHQ= 43766
+IHRydXN0cw== 43767
+IGtvbXVu 43768
+IEJhc2tldA== 43769
+fiEh 43770
+bmFl 43771
+INCa0L7Quw== 43772
+IHN5bGxhYmxlcw== 43773
+IEhlbnJp 43774
+IE5hYg== 43775
+2YjYuQ== 43776
+IHdu 43777
+IGthbXA= 43778
+IFByYWd1ZQ== 43779
+IEJyZWFrZmFzdA== 43780
+IOq3uOuftA== 43781
+IGNodXQ= 43782
+IDMzMA== 43783
+IEluZHVzdHJpZXM= 43784
+IGnFn2k= 43785
+IEdvbGRtYW4= 43786
+IMSwbnM= 43787
+dXNzYQ== 43788
+aXRoZQ== 43789
+hJA= 43790
+IFNPVU5E 43791
+0LDQu9GM0L3Ri9C8 43792
+Lig= 43793
+INCz0L7RgNCw0Lc= 43794
+IGRhZ2VnZW4= 43795
+IOuu 43796
+IHdhaXRlcg== 43797
+bGVuZ3Ro 43798
+IM+Dz4TOsQ== 43799
+IGNodW5reQ== 43800
+U2E= 43801
+IHJ1c3R5 43802
+IEp1ZGl0aA== 43803
+NzUw 43804
+IGVwb3h5 43805
+7Lmg 43806
+bWV0cm8= 43807
+IHJlamVjdGluZw== 43808
+IHNxdWlzaHk= 43809
+IHBsdXBhcnQ= 43810
+IG3DqXRo 43811
+IGFzcGlyaW5n 43812
+IERyYW1h 43813
+IHVwbGlmdA== 43814
+p4jri6Q= 43815
+Li4uLi4uLi4uLi4uLi4uLg== 43816
+oKTsmpQ= 43817
+IHTDqWNuaWNh 43818
+IHBhc2FuZG8= 43819
+VGhvc2U= 43820
+INGA0LDQt9C00LXQuw== 43821
+IG1lZGlvY3Jl 43822
+IE5pY2tlbA== 43823
+IHN1cGVyaGVyb2Vz 43824
+IG1pc3Npb25hcnk= 43825
+IFBhcmVjZQ== 43826
+IHJvdGF0aW9uYWw= 43827
+IHByZXR0 43828
+IGxhbWE= 43829
+IGNhbnlvbg== 43830
+IGJldGVy 43831
+IFByb3Zvc3Q= 43832
+IGh2aXM= 43833
+IGRlYWN0aXY= 43834
+IEhlbHM= 43835
+cGZsaWNodA== 43836
+U29tZXRoaW5n 43837
+IFBpZXJjZQ== 43838
+IOqygOywsA== 43839
+bHVuZ2Vu 43840
+IHNpemluZw== 43841
+IGxhdGl0dWRl 43842
+IE5vbmV0aGVsZXNz 43843
+b21uaWE= 43844
+IFNhYnJpbmE= 43845
+IER5bmFtaWM= 43846
+b250YQ== 43847
+7IaQ 43848
+IGRpcmVjdGl2ZQ== 43849
+IERlcG90 43850
+IGZ1ZWxlZA== 43851
+IGV4cGlyZQ== 43852
+IGNvbcO6bg== 43853
+IFNleHVhbA== 43854
+IEdvcmU= 43855
+IHJlc3RsZXNz 43856
+IEpBS0U= 43857
+0YLQtdGA0LXRgQ== 43858
+INGC0YDQsNC9 43859
+IEhvbHo= 43860
+IEFjdG9y 43861
+Y2FsbA== 43862
+IGVtYWlsZWQ= 43863
+IFBlYXI= 43864
+0YPQtNC4 43865
+0YDQsNC7 43866
+IG3DoHk= 43867
+IENIRUVSSU5H 43868
+IHJldGFpbGVy 43869
+IHByb3Ry 43870
+IGRpc2NhcmRlZA== 43871
+IEhJUw== 43872
+IGV2YW5nZWxpY2Fs 43873
+IEVsc2U= 43874
+IGV4cGxvcmVz 43875
+IGNyaXRpY2l6aW5n 43876
+aWZpaw== 43877
+IHdoaXBwaW5n 43878
+IG9waXM= 43879
+b3VzZWQ= 43880
+RnJlZQ== 43881
+IO2MrA== 43882
+IG1pY3M= 43883
+cnVubmluZw== 43884
+T2I= 43885
+aXRpw6k= 43886
+IG5lY2VzaXRh 43887
+IERvbWluaWNhbg== 43888
+IEJhZ2g= 43889
+IHRlbmRlbmNpZXM= 43890
+IE1ldHJvcG9saXRhbg== 43891
+xZFs 43892
+INC30L3QsNC10Lw= 43893
+IFphbQ== 43894
+IERlYWRwb29s 43895
+YWxlxbw= 43896
+IGludmVzdGlnYXRpdmU= 43897
+IFByb251bmNpYXRpb24= 43898
+IGVtdWxhdGU= 43899
+IGJhbmNv 43900
+IC3imao= 43901
+IG92ZXJhcmNoaW5n 43902
+bGljaGVz 43903
+INCy0L7Qt9Cy0YDQsNGJ 43904
+IFNjYXJ5 43905
+IEtpYQ== 43906
+cm9udGluZw== 43907
+aW5uZWQ= 43908
+INuB2Yg= 43909
+7IiY66W8 43910
+d2Vs 43911
+IOuzhOuhnA== 43912
+IHVuaW50ZW50aW9u 43913
+YWFT 43914
+IG5pY2VzdA== 43915
+IFRlc3Rpbmc= 43916
+IElTSUw= 43917
+b2dlbm91cw== 43918
+INif 43919
+IGxpZXV0ZW5hbnQ= 43920
+IGJyYXVjaA== 43921
+IFRpcg== 43922
+ZHJpdmU= 43923
+IHRvbGVyYW50 43924
+IHNob290ZXJz 43925
+IOyYiOu7kA== 43926
+b250b24= 43927
+IHRlcmlh 43928
+aWV0ZXQ= 43929
+Um9u 43930
+bGVpZ2g= 43931
+Z2Fl 43932
+IG9sbWFr 43933
+IENsb25l 43934
+c29sZA== 43935
+IHNrZWxldG9ucw== 43936
+IGluY3VtYmVudA== 43937
+0L7QvNC1 43938
+Q09O 43939
+IGxldmVu 43940
+IG1pbGxlbm5pYWxz 43941
+IGVxdWF0b3I= 43942
+IEZlZGVy 43943
+IEFsZXhhbmRyYQ== 43944
+IHZyaWo= 43945
+IEhlYWx0aGNhcmU= 43946
+IO2VkQ== 43947
+IGVtcGhhc2l6aW5n 43948
+IGRpYWxvZ3Vlcw== 43949
+IGNoaWxsZWQ= 43950
+IHByb3c= 43951
+IFBhc3Npb24= 43952
+IExhZGVu 43953
+YXJpZXN0 43954
+YXBocmFn 43955
+IGFkZGl0aXZl 43956
+IFN0YWF0 43957
+IE5lcHQ= 43958
+IEhBTQ== 43959
+4LmA4Lit 43960
+ZGF5cw== 43961
+IO2WiOuNmA== 43962
+IHZvaWxh 43963
+INGF0Ls= 43964
+IERldXRzY2hl 43965
+cXVpcg== 43966
+T3Blbg== 43967
+IHJhbmdlZA== 43968
+IGxldmVycw== 43969
+IE1hbnNpb24= 43970
+cGFyZWQ= 43971
+IFRpdGFucw== 43972
+YXRvaXJl 43973
+IGVuZ2FnZXM= 43974
+eWV6 43975
+bmFkZW4= 43976
+IG9ic3RydWN0 43977
+IEVtbXk= 43978
+sKU= 43979
+IHRyb3Bo 43980
+IHRha2Vhd2F5cw== 43981
+Ky4= 43982
+dHljem5pZQ== 43983
+aMOpc2l0ZXo= 43984
+IHBvZMOtYQ== 43985
+IOyjvOuKlA== 43986
+IGNpdGF0aW9u 43987
+IEFxdWE= 43988
+IGRlYnVnZ2luZw== 43989
+0LLQsNC9 43990
+IOuLueyLoA== 43991
+INin2YTZig== 43992
+IGluc3RhbnRhbmVvdXM= 43993
+IEF1dHVtbg== 43994
+IGtlcGFkYQ== 43995
+IGdldGFu 43996
+aGluaQ== 43997
+eW50aGVzaXM= 43998
+INC/0LXRgNC4 43999
+IE1hY2Vk 44000
+UGFj 44001
+dW50dQ== 44002
+QnJh 44003
+INCz0L7RgNCw0LfQtNC+ 44004
+IDE5NTk= 44005
+INGC0LXQvNC/0LXRgA== 44006
+IHNhbmU= 44007
+IE9VUg== 44008
+YXN1 44009
+IOustOyX 44010
+IHZhbGxleXM= 44011
+IGxpc3Rpbmdz 44012
+IHByemVkc3Rhdw== 44013
+IGd1bW15 44014
+IGNvcnRpc29s 44015
+IE9icmln 44016
+IEFsbGllZA== 44017
+0L7QttGD 44018
+IGfDqW7DqXI= 44019
+IGRvY3M= 44020
+IENoaWxp 44021
+IEFiZHVsbGFo 44022
+S2l0 44023
+IGNvbnRyaWJ1dG9ycw== 44024
+0LPQvtGA 44025
+0LvQtdGA 44026
+IGJpbmRlcg== 44027
+IG1vZMOobGU= 44028
+7YWQ 44029
+IGludGVpcm8= 44030
+bWlz 44031
+ZmVyYQ== 44032
+2KfYsA== 44033
+TWFuaWE= 44034
+IO2ZnOuPmQ== 44035
+IOu0kOyalA== 44036
+IEpheg== 44037
+0ZbQu9GM0LrQuA== 44038
+cmlzaG5h 44039
+IOq1sA== 44040
+IHRhbWFuaG8= 44041
+IGFwcGxpYW5jZQ== 44042
+IFJlc2lzdGFuY2U= 44043
+IExPT0s= 44044
+IEh5cA== 44045
+IEhlaWw= 44046
+RmlyZQ== 44047
+dWp1 44048
+IGhlYWxz 44049
+IG1hbHQ= 44050
+IFZFUlk= 44051
+INGF0L7Rh9C10YjRjA== 44052
+IGxpbmdlcg== 44053
+IE5hcnI= 44054
+IFJlZ3VsYXI= 44055
+IExvb3A= 44056
+IExlbm8= 44057
+IHNvcnRpZQ== 44058
+IFNlcnZl 44059
+IOydtQ== 44060
+IEx1ZWdv 44061
+aXR0w6Q= 44062
+IHVuZGVz 44063
+IHNsaXBwZXJz 44064
+IG9uZGE= 44065
+IMSQw6J5 44066
+IHRhcGVk 44067
+IHRyYXZlcnNl 44068
+IHJlbGF0aXZpdHk= 44069
+IFlvc2hp 44070
+Y2pvbg== 44071
+aWxhdGVk 44072
+YWN0aXZlbHk= 44073
+INCh0L7Qsg== 44074
+IFBPTA== 44075
+0KDQmA== 44076
+aW5mbGFtbQ== 44077
+Y2hlZXJmdWw= 44078
+INee15DX 44079
+ID4+Ww== 44080
+bWluc3Rlcg== 44081
+INCy0LvQuA== 44082
+IGlkZW50aWZpZXI= 44083
+IExhbWJkYQ== 44084
+IHRyb3M= 44085
+IGZsYXdsZXNz 44086
+IGRldHJpbWVudGFs 44087
+IGJ1bmxhcsSx 44088
+V2Fy 44089
+IHJlZ2nDo28= 44090
+IEJpa2U= 44091
+Y2Vzc29ycw== 44092
+IGPDuW5n 44093
+IFJO 44094
+IOq9gw== 44095
+IGvDvMOnw7xr 44096
+IEJlZ2lubmluZw== 44097
+7Zi46w== 44098
+IGdld2U= 44099
+IGRlbm90ZQ== 44100
+IEFsYmVydG8= 44101
+IHByb2Jpb3Q= 44102
+IG9kZQ== 44103
+IG1vbGFy 44104
+IGJ1cnN0aW5n 44105
+YXNzdW1lZA== 44106
+IGZvb3RwcmludHM= 44107
+dmVkYQ== 44108
+IHN0ZXJvaWRz 44109
+IGZsYW1pbmc= 44110
+IEVsbGVy 44111
+IGVya2VubmVu 44112
+w6R0emVu 44113
+IGxpZmVjeWNsZQ== 44114
+IERPVQ== 44115
+IEthcmVuYQ== 44116
+IEd1ZXJyYQ== 44117
+IHNpbmlzdGVy 44118
+IHBvZMOpaXM= 44119
+IHBhcmFi 44120
+IG9rbw== 44121
+IG1hdMOpcmk= 44122
+IGNhcmlj 44123
+c29uYXJv 44124
+IHByYXRpY2FtZW50ZQ== 44125
+0YPRgdCw 44126
+IGNvbXVucXVl 44127
+IHZpZ2lsYW50 44128
+IHJlZ2ltZXM= 44129
+IFNob290aW5n 44130
+IHJhaWRz 44131
+IE5vcmE= 44132
+IFdpZWRlcg== 44133
+bWVucw== 44134
+INGB0L7QtA== 44135
+IOqyveyasOyXkOuKlA== 44136
+INCy0YXQvtC0 44137
+IGF1dG9iaQ== 44138
+IFNjaG4= 44139
+IFJvYmJpZQ== 44140
+IEZpdG5lc3M= 44141
+INC60L7QvdGE 44142
+IHBlbmd1aW4= 44143
+0LzQvtGC0YDRjw== 44144
+INC80LjQvdC40Lw= 44145
+cGxheXM= 44146
+IGRlbGVnYXRlcw== 44147
+TWVy 44148
+IHNpc3RlbQ== 44149
+IE1pY2hhZWxz 44150
+bWFsZQ== 44151
+2KfYuQ== 44152
+IGPDoWNo 44153
+IEjDpA== 44154
+INeZ15XXk9ei 44155
+IHN1cGVycG93ZXI= 44156
+IHN0cm9u 44157
+IHJvdmVy 44158
+IGTDqXBlbmQ= 44159
+IHJldGlyaW5n 44160
+IHZhbXBpcmVz 44161
+IG1lcmRl 44162
+IENoYW5naW5n 44163
+IHRhbWU= 44164
+IHNwb2tlc3BlcnNvbg== 44165
+IGNheQ== 44166
+IGZsaXJ0aW5n 44167
+IEdyw7Y= 44168
+IHfDpHI= 44169
+IHd5Yg== 44170
+IGNvZXVy 44171
+4bqhbmg= 44172
+IOyZgOyEnA== 44173
+IGNvbm5haXM= 44174
+IEh1bmRyZWRz 44175
+IEJlYQ== 44176
+IM6xz4A= 44177
+cHJ1Y2g= 44178
+IHNvY2llZGFkZQ== 44179
+IFdoaWxzdA== 44180
+IEthaXQ= 44181
+ZXNwYWNl 44182
+IGNoaWE= 44183
+IEVybQ== 44184
+IOuwlOq/ 44185
+IGZlbmNlcw== 44186
+IE1vcnRhbA== 44187
+6rKB 44188
+INCz0YDQsNGE 44189
+IEhvbWVsYW5k 44190
+IEpVTg== 44191
+aXNzdA== 44192
+IHBhcmxhcg== 44193
+IHNwb3J0eQ== 44194
+w6lv 44195
+IGRlZXBlbg== 44196
+IEJlaGF2aW9y 44197
+IGVycmFuZA== 44198
+IHJvdGFyeQ== 44199
+IFdlbGxpbmd0b24= 44200
+V2luZA== 44201
+IG1lc2VsYQ== 44202
+4bqjbmc= 44203
+aWVuZGU= 44204
+IGV4Y2VsbA== 44205
+IEdlbml1cw== 44206
+IEVkdWFyZG8= 44207
+IMWfdW51 44208
+IMSwc3RhbmJ1bA== 44209
+IHByb2R1dG8= 44210
+IOOFjuOFjg== 44211
+T0ZG 44212
+IHdvbGx0 44213
+IOuJtOyKpA== 44214
+IGxhc3M= 44215
+IGhlcnR6 44216
+IGFyb21hdGlj 44217
+INC30LLQvtC9 44218
+IGF1dG9j 44219
+IEx1c3Q= 44220
+IDExMg== 44221
+IM6X 44222
+IHJldmlld2Vycw== 44223
+IHJlY2VwdGl2ZQ== 44224
+w6JuZA== 44225
+b2dsbw== 44226
+IOyVhOuLmQ== 44227
+IG5nbw== 44228
+0ZbRgtC4 44229
+w6V0 44230
+Y29ubw== 44231
+IHRla3Jhcg== 44232
+IOyjvOqzoA== 44233
+IGdlbG1pxZ8= 44234
+IGJlZHRpbWU= 44235
+IEFyZ2g= 44236
+QURB 44237
+INCz0L7RgNC+0LTQsA== 44238
+IMSH 44239
+IGFsbGlhbmNlcw== 44240
+Z2lnZ2xpbmc= 44241
+IHllcmRl 44242
+IHNwaWVz 44243
+IGd1dGVz 44244
+w6dp 44245
+IGFsbHRpZA== 44246
+IExhaA== 44247
+npDr 44248
+IGRva8WCYWQ= 44249
+2YjZig== 44250
+IHRveGljaXR5 44251
+IGNhbmNlbGxhdGlvbg== 44252
+IDE5NTg= 44253
+ZHJv 44254
+IOyekeydgA== 44255
+IE1vdG9yb2xh 44256
+IG11bHRpbg== 44257
+IGVudGh1c2lhc3Rz 44258
+IE1pZ2h0eQ== 44259
+IENvY29udXQ= 44260
+OuOAjA== 44261
+IFBpY3R1cmVz 44262
+IHNhbmdyZQ== 44263
+IGJsaW5raW5n 44264
+b2xlc29tZQ== 44265
+IOyKpO2DgOydvA== 44266
+RlA= 44267
+IGJvb21pbmc= 44268
+INC00LXRgdGP0YI= 44269
+IHJhdGNoZXQ= 44270
+IHRpbWVsaW5lcw== 44271
+bGVuZXNz 44272
+IGNhZ2Vz 44273
+IEdvb2RuaWdodA== 44274
+b21ldGltZXM= 44275
+IGN1bm5pbmc= 44276
+IFJpc2s= 44277
+dWxlZA== 44278
+ZGFkZQ== 44279
+IHByYXRh 44280
+IGd1c3RhcsOtYQ== 44281
+YW11cw== 44282
+IEppbnBpbmc= 44283
+IGVzdHJ1dA== 44284
+IGRlc2NvYnJpcg== 44285
+IE3EgQ== 44286
+IEFsbGFu 44287
+INec16c= 44288
+IHByZXNlcnY= 44289
+IFN0cmF3YmVycnk= 44290
+xI8= 44291
+THU= 44292
+IGtybw== 44293
+IFJlcG9ydHM= 44294
+7IWU7JW8 44295
+IHZhbHQ= 44296
+IHBvdXZhaXQ= 44297
+IGFwcGFy 44298
+IEJvbmU= 44299
+IHByZWZlcmFibHk= 44300
+IFJlcMO6YmxpY2E= 44301
+IGhlcnpsaWNo 44302
+IGNoaW1uZXk= 44303
+IMOnZXY= 44304
+IHZpc2Fz 44305
+IHZlcnI= 44306
+IGN1bHRpdmF0aW9u 44307
+IEFybWVuaWE= 44308
+INCy0LTRgNGD0LM= 44309
+IGNvY2tybw== 44310
+cmV0Y2hlZA== 44311
+YXJ0eg== 44312
+INC70Y7QtNGP0Lw= 44313
+IHBvbMOtdGljYXM= 44314
+IFBhbno= 44315
+IEFLQQ== 44316
+IOuIjOufrA== 44317
+IGVycm8= 44318
+IGNhbXBlcg== 44319
+IDEwMg== 44320
+4KS4 44321
+ZG9uZQ== 44322
+IGhvYXJk 44323
+INCf0L7RgtC+0Lw= 44324
+amVvbmc= 44325
+IGRlc3Rh 44326
+cGFr 44327
+IGluaW0= 44328
+IGdyb3dlcnM= 44329
+IE1lc3NhZ2U= 44330
+IGVsZWN0b3I= 44331
+ZW5nYWdl 44332
+IEZvcmJlcw== 44333
+IENpbmNpbm5hdGk= 44334
+IGRpZmbDqXJlbmNl 44335
+ZGY= 44336
+IHNwYXI= 44337
+IGF3YWl0cw== 44338
+IFVTU1I= 44339
+IFJpc2luZw== 44340
+IEhvxZ8= 44341
+IGZvb3Rpbmc= 44342
+IGNvbmRpY2lvbmVz 44343
+0YLQvtGA0L7Qsg== 44344
+IGNsaW5pY2lhbg== 44345
+IERpc2t1c3M= 44346
+16jXkg== 44347
+16U= 44348
+aXRlaXQ= 44349
+Z3Jlbg== 44350
+IGNoYXJpc21h 44351
+IGxldWtl 44352
+IGlycml0YXRpbmc= 44353
+IGNpcmNh 44354
+IFJob2Rlcw== 44355
+IHBpb3I= 44356
+IGhhbmRpY2Fw 44357
+cm95YWJsZQ== 44358
+IHZ1bGw= 44359
+T0c= 44360
+IGluw61jaW8= 44361
+aWVyaQ== 44362
+IHNwbGFzaGluZw== 44363
+IGRlbWlzZQ== 44364
+IGFzc2lzdGly 44365
+0YfRgtC+ 44366
+IGNvdmVydA== 44367
+IEd1ZA== 44368
+4LiJ 44369
+a2zDpHI= 44370
+IOyekOq+uA== 44371
+IHZlcsOkbmRlcnQ= 44372
+IFJFTQ== 44373
+IENvbnZlbg== 44374
+YXRnZQ== 44375
+IHBpZXJ3c3pl 44376
+IGNsZXJneQ== 44377
+bGluZ3Rvbg== 44378
+bGl2 44379
+VlBO 44380
+INGB0L7QttCw0Ls= 44381
+IEhhdGU= 44382
+z4bOvw== 44383
+IFJlc3BvbnM= 44384
+0L7Qt9C0 44385
+IGV0bWVr 44386
+IGNoZW1pbg== 44387
+2YXYqQ== 44388
+IOqwgOyhsQ== 44389
+VHJl 44390
+IHVtYXM= 44391
+IEJ1cnRvbg== 44392
+IHBhdHJpYXJjaA== 44393
+IFNtaXRoc29uaWFu 44394
+pZg= 44395
+TW9vbg== 44396
+QWly 44397
+IG1lZGlvcw== 44398
+IGVyYXNlcg== 44399
+IHdvbGx0ZW4= 44400
+IHBhcmVpbA== 44401
+IEJpbGxpZQ== 44402
+0LXRgNGC0LI= 44403
+IHBhcmxhbWVudA== 44404
+IGFnb255 44405
+IFFVRQ== 44406
+c2VxdWVudGx5 44407
+QW5vdGhlcg== 44408
+IFdoZXc= 44409
+IEFubnVhbA== 44410
+IHNlYmVu 44411
+7IOB7J2E 44412
+dmFsdWVz 44413
+npzrp4w= 44414
+IHNpbm9u 44415
+ZXJlYWw= 44416
+IEVubGlnaHQ= 44417
+IENoZW1pc3RyeQ== 44418
+IENhdGFsdW55YQ== 44419
+IGRvY3Ry 44420
+YW50b24= 44421
+IHN0dWs= 44422
+IFBsYXRl 44423
+IEthcmRhc2hpYW4= 44424
+IGZpbG9z 44425
+IFdldA== 44426
+INC/0L7Qv9GL0YI= 44427
+IHVua25vd25z 44428
+IFNjaG9u 44429
+IEJhbGR3aW4= 44430
+IHRlbGVzY29wZXM= 44431
+IEd1Y2Np 44432
+b3hpZGU= 44433
+IENvbnNlcnZhdGl2ZQ== 44434
+7ISx7J2E 44435
+IGhpbmF1cw== 44436
+UG93ZXI= 44437
+IOqxtOqwlQ== 44438
+IHByZXZhaWw= 44439
+b3JtYW4= 44440
+bWFjaGluZQ== 44441
+IDE5NDY= 44442
+IHVuYmVs 44443
+IHNjaGF1dA== 44444
+IHBpZWw= 44445
+ZWVudGg= 44446
+IG9iamVjdGl2ZWx5 44447
+IGNoYWtyYQ== 44448
+YXVkaW8= 44449
+IGNoaWNvcw== 44450
+IFZhdWx0 44451
+IG1lZGljaW5hbA== 44452
+IFRhaWw= 44453
+V2hpbGU= 44454
+IGFzcGhhbHQ= 44455
+IGZyb3pl 44456
+IEVL 44457
+dW5jaGluZw== 44458
+bm9zaXM= 44459
+MjAxNQ== 44460
+IEdyaQ== 44461
+IG9kZGx5 44462
+IE3DpHI= 44463
+IEFlZw== 44464
+Y29sbw== 44465
+UGFy 44466
+IOuTpOyWtOs= 44467
+IHZpbmRlbg== 44468
+IE9WRVI= 44469
+IGljZWQ= 44470
+IHNjb3Jw 44471
+IGhhYw== 44472
+cXVhbGlmaWVk 44473
+INGD0LLQuNC00LXRgtGM 44474
+ZXJtbw== 44475
+SEVO 44476
+IHNvaQ== 44477
+IG11bHRpcGxlcw== 44478
+IGxheW91dHM= 44479
+IGJsaW5kbmVzcw== 44480
+IEJvd3Nlcg== 44481
+INC/0L7QtNGC 44482
+IMOO 44483
+dmVudGlvbmFs 44484
+IG1hdGE= 44485
+bWFkxLE= 44486
+IGdlZXo= 44487
+IGNhZGVuY2U= 44488
+IHdhxbxuZQ== 44489
+IENocmlzdGll 44490
+dmVuZ2U= 44491
+Q2FsbA== 44492
+IHR1cm5hcm91bmQ= 44493
+IGJsb2I= 44494
+INCv0Lo= 44495
+IFZvaWNlb3Zlcg== 44496
+IHBlcmls 44497
+IEphaW1l 44498
+IEhPWQ== 44499
+bGFuZQ== 44500
+IHNlYmVs 44501
+IER1bw== 44502
+IEhpc3RvcmljYWw= 44503
+IGRuaQ== 44504
+IGdlbWE= 44505
+eWs= 44506
+IHNhYmVt 44507
+4bqvbmc= 44508
+IHZhcnM= 44509
+IFJvbm5pZQ== 44510
+IFJvbmFsZG8= 44511
+IFBlcnF1w6g= 44512
+bnNpbm4= 44513
+aGFpcg== 44514
+IHJlbGVudGxlc3M= 44515
+IGx5bg== 44516
+IHRyYXZlbGVy 44517
+bmluZQ== 44518
+IGFudGlt 44519
+IOy8gA== 44520
+IHNub3diYWxs 44521
+INGF0LDRgNCw0LrRgtC10YA= 44522
+IGludGVybnM= 44523
+IGNvbnN0aXR1ZW5jeQ== 44524
+INCd0LDQvA== 44525
+15zXnA== 44526
+VkVM 44527
+IHZpa3RpZ3Q= 44528
+IGFwb3lv 44529
+2YTYqA== 44530
+IGphcmQ= 44531
+IGhlaWdodGVuZWQ= 44532
+0YDQvtGB0YI= 44533
+IFNNSVRI 44534
+INC00LXQu9Cw 44535
+IHJlcGFpcmluZw== 44536
+IHJpZ3Q= 44537
+IFNoZWlraA== 44538
+IEJyaXRuZXk= 44539
+IGV2ZXJ5dGltZQ== 44540
+IGFkdmVudHVyb3Vz 44541
+b2NrZXk= 44542
+ZXJudA== 44543
+IGF0YXF1ZQ== 44544
+IEFsdGVybmF0aXZlbHk= 44545
+ZWZmZWN0 44546
+IHBhbGF2cmFz 44547
+IEVsbGlvdHQ= 44548
+IHLDqXVzc2k= 44549
+IGh5cGVydGVuc2lvbg== 44550
+IE1hbnVhbA== 44551
+IHByb3BoZXRpYw== 44552
+IGhhbmRj 44553
+0YzQtQ== 44554
+IHJlZnJhaW4= 44555
+IFNxdWlk 44556
+7J6h 44557
+INC60L7QvNCw0L0= 44558
+w6RsbGVu 44559
+IGxsZWfDsw== 44560
+IGJhc2g= 44561
+aW9ueQ== 44562
+INGB0LrQu9Cw0LQ= 44563
+INC60LDQsQ== 44564
+IGNhcmVsZXNz 44565
+IFBvb2w= 44566
+IHRyw6Fz 44567
+IGZpbHM= 44568
+IFNjaHI= 44569
+IHNwcmF3ZA== 44570
+IE1vbmF0ZW4= 44571
+IHVuZm9yZ2V0dGFibGU= 44572
+IENvdHRvbg== 44573
+IGluY29udmVuaWVudA== 44574
+IFJY 44575
+b3Jpcw== 44576
+IGh1bWJsZWQ= 44577
+16rXlw== 44578
+INii2b4= 44579
+IGluY3Jlw60= 44580
+IEtvbW1lbnRhcmU= 44581
+cmFjacOzbg== 44582
+IHZhbnRhZ2U= 44583
+IFNlYWw= 44584
+IOydtOqxsOulvA== 44585
+IGpvdWU= 44586
+IOyYpOuemA== 44587
+INC40YHQv9GL0YI= 44588
+b2Jlbg== 44589
+IGdyYXRl 44590
+IGNvbnRyb2xl 44591
+IFBlcmN5 44592
+xYJhZGE= 44593
+IHNpbXVsdGFuZW91cw== 44594
+IHByb3RvdHk= 44595
+IGdyb8OfZXI= 44596
+IGJld3Vzc3Q= 44597
+aW5pemk= 44598
+IHBhc3NpZXJlbg== 44599
+IEhhcHBpbmVzcw== 44600
+c2hp 44601
+Z2VodA== 44602
+IHN0YXRpb25lZA== 44603
+IEVyZ2Vibmlz 44604
+IGRpcmVjdGFtZW50ZQ== 44605
+IHN1cnZpdmVz 44606
+IHBlcnNvbmVz 44607
+QkVSRw== 44608
+IHZvbWl0aW5n 44609
+IGNvbmhlY2Vy 44610
+IGFkam91cg== 44611
+IENpdmlj 44612
+cGVp 44613
+YnVyc3Q= 44614
+IOuLpOuLiA== 44615
+6Y8= 44616
+IHNsZWQ= 44617
+IHBsYXRhZm9ybWE= 44618
+IFNlY3Q= 44619
+IERlZmlu 44620
+w6lub20= 44621
+Y2huZXQ= 44622
+IHByb2ZpdGFiaWxpdHk= 44623
+IGVycmVpY2h0 44624
+4buPaQ== 44625
+Y2F0aW9u 44626
+IOyngOq4 44627
+IHBlcmRyZQ== 44628
+IGZlbG9ueQ== 44629
+IDE5NTc= 44630
+IHVuc3VjY2Vzc2Z1bA== 44631
+IG5hZ3lvbg== 44632
+IGVsYXN0aWNpdHk= 44633
+IGZhY2FkZQ== 44634
+IGVhcnRobHk= 44635
+INCw0LzQtdGA0LjQutCw0L0= 44636
+IGNvbm4= 44637
+Y2xh 44638
+RHU= 44639
+IHBvbGl0aXF1ZXM= 44640
+IGhhbG8= 44641
+aWFudGVz 44642
+INC80L7QtdC5 44643
+dG9uZXM= 44644
+ZWxpZXI= 44645
+aHRha2luZw== 44646
+IHdpY2h0aWdl 44647
+IGFubm8= 44648
+IExvaw== 44649
+aWxsaW9ucw== 44650
+IHZpdmVy 44651
+IHNvbGNoZW4= 44652
+IHN1Zg== 44653
+IFNhbHo= 44654
+IE52aWRpYQ== 44655
+enVnZQ== 44656
+IFNwaWtl 44657
+VmlkZW8= 44658
+IHR3b3I= 44659
+IEFsYQ== 44660
+IGhhbnlh 44661
+IEFkbQ== 44662
+7J21 44663
+IFBhdGllbnRlbg== 44664
+IE9uaW9u 44665
+IEtvYmU= 44666
+IFNjZW5l 44667
+IFJhc2g= 44668
+0YDQsNGB0YI= 44669
+aXN0YW5p 44670
+R2VuZXJhbA== 44671
+bGV5ZQ== 44672
+aW1iYXA= 44673
+IGNvbmNlYWxlZA== 44674
+IEZyaWRheXM= 44675
+IFdvb2w= 44676
+INC90L7QstGL0YU= 44677
+2LTYsQ== 44678
+IOqysOqzvA== 44679
+IGplZG9jaA== 44680
+tOyLnA== 44681
+k6Trj4Q= 44682
+IOyepeuCnA== 44683
+dWt0 44684
+TG91 44685
+IOuoueyWtA== 44686
+IEV4cGVjdA== 44687
+INC00L7QvNC+0Lk= 44688
+IGlycmVzcG9uc2libGU= 44689
+IGFjZXJjYQ== 44690
+IFp1c3Q= 44691
+16jXmA== 44692
+VUk= 44693
+IHlvdXR1YmVycw== 44694
+IFBvc2l0aXZl 44695
+IHNvY2lvZQ== 44696
+IHNuYXRjaA== 44697
+IHJlZnJlc2hlZA== 44698
+IG5vbWluYXRpb25z 44699
+IFBhdHQ= 44700
+IG9ic29sZXRl 44701
+IGRlbWnFnw== 44702
+b3JtdcWf 44703
+IOyGlOynge2eiA== 44704
+IGZsYQ== 44705
+IGNyYXppZXN0 44706
+IFppZQ== 44707
+IFTDug== 44708
+emVw 44709
+aWNlbQ== 44710
+IOupi+yeiA== 44711
+IGN5bmljYWw= 44712
+IHRyZXNw 44713
+IGNyYXo= 44714
+1aXV 44715
+IG5lbGxl 44716
+IG1waA== 44717
+IE5lcmVk 44718
+IEtvYg== 44719
+IEVjaw== 44720
+qLjri4g= 44721
+SmFu 44722
+INCi0L7Qs9C00LA= 44723
+IGRlY2k= 44724
+IFZvZw== 44725
+IGJ1YmJsaW5n 44726
+w7ph 44727
+IHByb2R1Y3Rvcw== 44728
+aWJlcmFs 44729
+IHJlcGxpY2F0ZWQ= 44730
+IEltcHJvdmU= 44731
+aWxsYXJ5 44732
+Q2hh 44733
+IHLDqWR1 44734
+g5DtlZjrqbQ= 44735
+IGNvbm5vdA== 44736
+IEtyaXQ= 44737
+INC00YPRhdC+0LI= 44738
+IHRyZWFkbWlsbA== 44739
+IFBX 44740
+INC30L7QstGD0YI= 44741
+IGNsYW1z 44742
+IGRyYWZ0aW5n 44743
+IDE5NTY= 44744
+dW50YQ== 44745
+IGV4cGVuZGl0dXJlcw== 44746
+IEhvb3Zlcg== 44747
+V09P 44748
+0YjQtdC1 44749
+IGRlZHVjdGlvbg== 44750
+bW9uYXJ5 44751
+IHJlY2li 44752
+IHBvdm8= 44753
+IOuNlOs= 44754
+IFBBTA== 44755
+IEJsb3c= 44756
+IHd5cA== 44757
+IGRlc3RhYw== 44758
+ZGVhbA== 44759
+R3JhZW1l 44760
+IG7DqWNlc3NhaXJl 44761
+IGRhbW5lZA== 44762
+IDE5Mzg= 44763
+IOyLpOygnOuhnA== 44764
+IHRyb29w 44765
+IGluc2lnaHRmdWw= 44766
+IFRK 44767
+INC+0YHQsg== 44768
+IGZpZGVsaXR5 44769
+IFNraXA= 44770
+IE1heW8= 44771
+66ed 44772
+YXBwZQ== 44773
+IGJsYXM= 44774
+IFdZ 44775
+IEdO 44776
+Y3Rhcg== 44777
+U3U= 44778
+IGN1ZW50 44779
+aGV3cw== 44780
+IGNvcnBzZXM= 44781
+QWJz 44782
+IHdhc3Rld2F0ZXI= 44783
+IGNpZWs= 44784
+IE9udQ== 44785
+IGV4cGxvc2l2ZXM= 44786
+IGFybWE= 44787
+IFNURVBIQU4= 44788
+cG9saXRpaw== 44789
+IE9zYWth 44790
+dGHFgg== 44791
+IHlhcMSxeW9y 44792
+IGl6cXVpZXI= 44793
+IGJlbGV6YQ== 44794
+IFd5YXR0 44795
+IHN1aw== 44796
+IHNwZWNqYWw= 44797
+IGRhbmtl 44798
+d2hpc3RsZQ== 44799
+IGbDrXNpY2E= 44800
+IEhhcnJpZXQ= 44801
+IOyVhO2MjA== 44802
+IHdpbGxrb21tZW4= 44803
+aXBpbmc= 44804
+INGB0LzQvtGC0YDQuNGC0LU= 44805
+INC80L7QttC10YjRjA== 44806
+IGluYWNjdXJhdGU= 44807
+IGFycm9nYW5jZQ== 44808
+IFJlbW8= 44809
+zrPOrA== 44810
+YXNzZWQ= 44811
+IGRlbGl2ZXJpZXM= 44812
+IHN0aW5reQ== 44813
+INC/0LXRgNC10LY= 44814
+amF5 44815
+IHRyYW5zaXRpb25hbA== 44816
+IHJlcmU= 44817
+IE5HT3M= 44818
+IEFUTQ== 44819
+2K7Yqg== 44820
+aW9sb2d5 44821
+INCy0LvQsNC0 44822
+IHNjaG1l 44823
+IFNoaW5l 44824
+7JWh 44825
+cGFudHM= 44826
+IHNlcmdl 44827
+IHNlbmhvcg== 44828
+IGFiZHVjdA== 44829
+IEJyeWFudA== 44830
+VkVT 44831
+IGF3YWtlbmVk 44832
+IExheg== 44833
+cm9wb2xpcw== 44834
+IExhbw== 44835
+IHZpbGxh 44836
+IHN1bW1lcnM= 44837
+IGVudGhhbA== 44838
+IDE5NDk= 44839
+Vmlh 44840
+IOyWtOyo 44841
+IHRlbmRvbg== 44842
+IHZpb2xldA== 44843
+IGludGVsbGVjdHVhbGx5 44844
+IGJvdW5jZWQ= 44845
+YXJhdXM= 44846
+IDE5MTk= 44847
+IHZyYWFn 44848
+IHNwZWw= 44849
+IFNjaHdhcg== 44850
+U2NvdHQ= 44851
+IEluZG8= 44852
+IOunnQ== 44853
+IGNhbm9uaWNhbA== 44854
+IElLRQ== 44855
+IHRoYXTDrXM= 44856
+IG1lbGxhbg== 44857
+aWdtYXQ= 44858
+Q291bGQ= 44859
+Li4uPyk= 44860
+IGZvYXJ0ZQ== 44861
+IEt1bWFy 44862
+cmVuZG8= 44863
+IMOpbMOp 44864
+4LQ= 44865
+dmFsdWF0aW9u 44866
+Y2FzZXM= 44867
+IGludHVpdGl2ZWx5 44868
+aG9uZw== 44869
+ZXR0ZWQ= 44870
+IHNvdXZlbg== 44871
+IG1vcmI= 44872
+IGNvcnM= 44873
+IE5W 44874
+IEhhc2Fu 44875
+aWV2ZWQ= 44876
+IOyngOq4iOydgA== 44877
+IGR1bXBsaW5n 44878
+IGNvbnRyw7RsZQ== 44879
+IGFtYmlndWl0eQ== 44880
+IGNvZw== 44881
+IFNjcmlwdHVyZXM= 44882
+IGNhaQ== 44883
+IGJldmVy 44884
+IGh1aXM= 44885
+IGFpbWU= 44886
+IGVya2zDpHJlbg== 44887
+IExN 44888
+IEZleQ== 44889
+4K6x4K6k 44890
+IHN1cGVydmlzZWQ= 44891
+IGpld2U= 44892
+c3Bs 44893
+INGG0LXQvdGC0YA= 44894
+IGNvbGxpc2lvbnM= 44895
+2YTZgQ== 44896
+IEhvZ3dhcnRz 44897
+IER1cmhhbQ== 44898
+15XXow== 44899
+IHBob3NwaGF0ZQ== 44900
+IG92ZXJzZWU= 44901
+IGluc3BlY3Rpb25z 44902
+IGJyaW5j 44903
+IFphaw== 44904
+IHBheW9mZg== 44905
+IGNoYXVk 44906
+IEh1bmdlcg== 44907
+w6Nvcw== 44908
+dmly 44909
+IGZpYW5jZQ== 44910
+IGJvdWc= 44911
+bGl2ZWQ= 44912
+Y3J5 44913
+IGpvaW50bHk= 44914
+IGdpcmxmcmllbmRz 44915
+IE5leHVz 44916
+pqzqsqDsirXri4jri6Q= 44917
+IEt3YW5n 44918
+xYLEmQ== 44919
+IE5lZGVu 44920
+aWVjZQ== 44921
+IGluc2VydGluZw== 44922
+IE11bW15 44923
+IEdsb2Jl 44924
+IGxlZQ== 44925
+IGdlcm1hbg== 44926
+IGNyZWFtcw== 44927
+YWNobw== 44928
+IGNoxrBh 44929
+IEdhbGlsZQ== 44930
+IGbDvHJz 44931
+IGVzdGl2ZXI= 44932
+Y2lkb3M= 44933
+Q2hyaXN0aWFu 44934
+IGxvcnNxdQ== 44935
+IGN1dGVzdA== 44936
+dmFsZQ== 44937
+INC60YDQtdC/ 44938
+IHdhcnk= 44939
+IHNsaWNpbmc= 44940
+IGVzcGVyYW5kbw== 44941
+IFZhbmRlcg== 44942
+IERlaXhh 44943
+IDE5NTQ= 44944
+IG3Ds3dpxIU= 44945
+0ZbRlA== 44946
+IHRvb2xpbmc= 44947
+IHJlc3Rvcg== 44948
+IHBvc2ljacOzbg== 44949
+IGludGVudGFy 44950
+IEFwYWNoZQ== 44951
+T1VM 44952
+INmI2Kg= 44953
+IG1hdGnDqHJl 44954
+IGxpbmVu 44955
+IGVzdHJhdMOpZw== 44956
+IE11dHRh 44957
+IHBhcnRpbmc= 44958
+IG1pbmltaXppbmc= 44959
+IGFwcHJlbmRyZQ== 44960
+INCw0L3Qs9C70LjQuQ== 44961
+IERvbw== 44962
+IEZpcmVmb3g= 44963
+Y8OzbW8= 44964
+IGdlb3BvbGl0 44965
+IG1ha2Fu 44966
+IG1vZ2VsaWpr 44967
+IM+AzrXPgc65 44968
+IGPhu6k= 44969
+IGluc3RhbGxlcg== 44970
+IGRpYnVq 44971
+IEhlYXRo 44972
+bG9vcA== 44973
+IEJyb2tlbg== 44974
+SFlVTg== 44975
+c2hlbGY= 44976
+IGZpemVy 44977
+IGVuaGFuY2Vz 44978
+INC00L7RgdGC0Lg= 44979
+IFBVQg== 44980
+IEtvbGxlZ2lu 44981
+IGF0dGFpbmVk 44982
+xL4= 44983
+IG1pc3RyZXNz 44984
+IE9mdGVudGltZXM= 44985
+157Xmded 44986
+IGJld2U= 44987
+IFNvcmE= 44988
+cmF1ZW4= 44989
+YmF1bQ== 44990
+IHJvbGxlcnM= 44991
+IG1lcmluZw== 44992
+IFBBQw== 44993
+INC90ZY= 44994
+IFLDqXB1YmxpcXVl 44995
+INGC0YDQsNCy 44996
+IFZhbmd1YXJk 44997
+dWNpb25lcw== 44998
+IOustOuMgA== 44999
+IGdvdXI= 45000
+r6Q= 45001
+IM+J 45002
+IHNhdW5h 45003
+IHBlaW5l 45004
+IFZhbGVyaWU= 45005
+IFNpa2g= 45006
+ZmVuZGltaXo= 45007
+YmVybw== 45008
+INGH0Lg= 45009
+IGRvxZt3aWFk 45010
+IEV1cm9z 45011
+IGNvbW1lbnRhaXJlcw== 45012
+IHR3ZWFrcw== 45013
+IEZhc3Rlcg== 45014
+INGA0LDRgdC6 45015
+IHByb2dyZXNzaXZlbHk= 45016
+IEV1Y2g= 45017
+Ym9ybw== 45018
+IEluZ3JlZA== 45019
+Q2Fw 45020
+IHVuY2hlY2s= 45021
+IOyYpOuluA== 45022
+IHdyZQ== 45023
+IEZU 45024
+w7ZydW5n 45025
+IG1lbW9yaXplZA== 45026
+IERpbm5lcg== 45027
+IFBoZXc= 45028
+b3VibA== 45029
+IHB1dGE= 45030
+IGFkbWl0cw== 45031
+0LXQt9C00LU= 45032
+b3BvZA== 45033
+IHBhbmRh 45034
+IGhpbmdlcw== 45035
+Y2lwZQ== 45036
+IHRyYW5zYWN0 45037
+IHBvZGlh 45038
+IHBpY3M= 45039
+IGNyaXRlcmlvbg== 45040
+IE9yY2hlc3RyYQ== 45041
+IEJsb2c= 45042
+IHNvbGVtbg== 45043
+IFBpeGFy 45044
+VGhyZWU= 45045
+INCy0L3QuNC3 45046
+IFZvbHVudGU= 45047
+IFNhdmFnZQ== 45048
+IFBWQw== 45049
+IENhZg== 45050
+IHd5a29u 45051
+IGdyYWRlcnM= 45052
+IGNyb3VjaA== 45053
+IGNsaWNoZQ== 45054
+IHNveWJlYW5z 45055
+IE1VUg== 45056
+IEdvbnphbGV6 45057
+IE1pbWk= 45058
+IEJvbHNvbmFybw== 45059
+IGRpYXBocmFn 45060
+IGJpbGFuZw== 45061
+65CY64qU 45062
+IHJlZ3VsYXRpbmc= 45063
+TWM= 45064
+SnVkZ2U= 45065
+INC90L7Qtg== 45066
+IGpha8SF 45067
+aXRlc3Nl 45068
+IFdpag== 45069
+IGxhdGE= 45070
+Z3JvYW5pbmc= 45071
+UE9TSU5H 45072
+INeQ15XXqteV 45073
+IGhhZ2E= 45074
+IGdyb3VuZGluZw== 45075
+IHZpb2xlbnRseQ== 45076
+IHRpbGxz 45077
+IGVuZ2Fn 45078
+IEhvbGxvdw== 45079
+INC/0L7Qv9GD0LvRj9GA 45080
+IHdwcm93YWQ= 45081
+IHJlcGxhY2Vz 45082
+IGZsdW9yZXNjZW50 45083
+dXJnaWNhbA== 45084
+aWdnbHk= 45085
+IFRyYWRpdGlvbmFs 45086
+dHRl 45087
+INmE2Yc= 45088
+IHBob3NwaG9ydXM= 45089
+IGFwcm9u 45090
+IFdhdGVycw== 45091
+IEt1bHR1cg== 45092
+0LDQstCw0Lk= 45093
+IG9saXZlcw== 45094
+INeU15DXnA== 45095
+IHRlaWx3ZWlzZQ== 45096
+IHNlbmNpbGw= 45097
+IHByZW5kcw== 45098
+IG5hcnJvd2Vy 45099
+IGrDpHR0ZQ== 45100
+IEluZm9ybWF0aW9uZW4= 45101
+7IOB7J20 45102
+IHN0YXJ2ZQ== 45103
+IGZyaWNr 45104
+IEJld2Vn 45105
+4KSy 45106
+IGRvbHBoaW4= 45107
+IExBVUdIVEVS 45108
+IElOVEVSVklF 45109
+IHlhbmzEscWf 45110
+IHRvcnBlZG8= 45111
+IHNob3J0YWdlcw== 45112
+7J2065Oc 45113
+xLFsZMSx 45114
+IHBhd3M= 45115
+IG96b25l 45116
+IGN1bHRpdmF0ZWQ= 45117
+IEZvdA== 45118
+IG5vdG9y 45119
+0L3QvtC3 45120
+INC60L7RiA== 45121
+IHRvdWNoc2NyZWVu 45122
+IEFsbHk= 45123
+IOunm+yeiOyWtOyalA== 45124
+INCh0LXRgA== 45125
+INCy0L/QvtC70L3QtQ== 45126
+IHBhcHJpa2E= 45127
+IER1c3Rpbg== 45128
+IGVmZWN0bw== 45129
+IG9waW5p 45130
+IG11dXQ= 45131
+IGjhu41j 45132
+IGludGVyamVjdA== 45133
+xJl0 45134
+IGJ1dHRz 45135
+dXJleg== 45136
+IFBpa2U= 45137
+IEhvaw== 45138
+IEd1aW5lYQ== 45139
+IENhdGhlZHJhbA== 45140
+IDE0MDA= 45141
+Q3Jh 45142
+Kyw= 45143
+66eb 45144
+s7Trj4TroZ0= 45145
+YWJ5cmlu 45146
+IHZpZGVvZw== 45147
+INC+0YDRg9C2 45148
+IHXFvg== 45149
+IGJ1c2NhbmRv 45150
+IEFzc2lzdGFuY2U= 45151
+IG1lbGhvcmVz 45152
+7KG0 45153
+IOuBvA== 45154
+IFJK 45155
+INiq2YU= 45156
+IG9taW4= 45157
+IG1vdG9yY3ljbGVz 45158
+IFNhcHA= 45159
+IHN1cHBseWluZw== 45160
+IEFsZ3Vu 45161
+IGFlcm9zcGFjZQ== 45162
+16LXnA== 45163
+b2NjdXA= 45164
+bGVpc3Q= 45165
+IOqxsOuKlA== 45166
+IGNvbXBsZXRh 45167
+YnJlcw== 45168
+ISg= 45169
+INCf0YDQtdC0 45170
+IGRpc2FkdmFudGFnZWQ= 45171
+IEF0dGVuZA== 45172
+IEp1ZGFo 45173
+4buLY2g= 45174
+eWxlbmU= 45175
+YWN0bHk= 45176
+IHNldHVwcw== 45177
+IGFtbW9uaWE= 45178
+IFNjaHdlaXo= 45179
+IFNoYW1l 45180
+IGJhbmRl 45181
+IEZ1ZWw= 45182
+IHRyb3VibGVzb21l 45183
+IG51bWVybw== 45184
+IE1PTQ== 45185
+INC/0YDQtdC00LvQsNCz 45186
+bWVudGlvbmVk 45187
+INCx0L7Qu9GM0YjQvtC1 45188
+IFZpa3Rvcg== 45189
+IFN0eWxlcw== 45190
+IGNydWNpZmllZA== 45191
+cnVjdHVyZWQ= 45192
+ZW52aXJvbg== 45193
+IG1vcmFscw== 45194
+IG1lZGl0YXRpbmc= 45195
+IGF4aWFs 45196
+aXNhbmNl 45197
+IEFic3Q= 45198
+R3JlZW4= 45199
+IOqxtOw= 45200
+IHF1YWRyYW50 45201
+IHBlcmdp 45202
+IGNhbWVyYW1hbg== 45203
+IFNlcXU= 45204
+IHBhdXNlZA== 45205
+IExhdWdoaW5n 45206
+6reA 45207
+Py4u 45208
+IMW7ZQ== 45209
+IHBlcm1pdGly 45210
+IGRldGVjdG9ycw== 45211
+IEhVRA== 45212
+YXZhbA== 45213
+IOyXrOq4sOq5jOyngA== 45214
+IGh1YnM= 45215
+IGJlc3RpbW10 45216
+INCx0YPQtNC10YLQtQ== 45217
+SU5URVJQT1NJTkc= 45218
+IHRlbmdhbg== 45219
+IGNyYXZl 45220
+IEJ1bmRlc3JlZ2llcnVuZw== 45221
+IEJsb29keQ== 45222
+IHVzYWJpbGl0eQ== 45223
+IEVhcw== 45224
+IMSR4buZbmc= 45225
+IDE5NTU= 45226
+IGtyaWVnZW4= 45227
+IGhhYml0dWFs 45228
+IGVzc2VudGlhbHM= 45229
+cmltaW5hbA== 45230
+IHJvb21tYXRlcw== 45231
+INC/0LXRgNC10YXQvtC0 45232
+IG5naGk= 45233
+IG1lbmluZw== 45234
+IFN5bXBob255 45235
+IEh1Zw== 45236
+YWdnaQ== 45237
+IHdpZWQ= 45238
+IG1pdGFk 45239
+dGVlbnRo 45240
+aWRhxIc= 45241
+U2F2ZQ== 45242
+IHJvYmnEhw== 45243
+IGJvdW5jZXM= 45244
+sJbsl5A= 45245
+c3RhcnM= 45246
+IHByYWdtYXRpYw== 45247
+IGNvZ25pdGlvbg== 45248
+IHdyYXBwZXI= 45249
+IHdhcnRlbg== 45250
+YWRo 45251
+IHBlbnNh 45252
+IEhlcnR6 45253
+IG7Emw== 45254
+IFJlaWQ= 45255
+IFBDcw== 45256
+IE1vbGU= 45257
+IC4uLi4u 45258
+IHByZWNpbw== 45259
+IENoYW1waW9uc2hpcHM= 45260
+6rCA6529 45261
+IHbDqXI= 45262
+IGNvcnJpZG9ycw== 45263
+IEVsZWN0cm9uaWM= 45264
+U2w= 45265
+INCw0LvQtQ== 45266
+IG92ZXJ0aHJvdw== 45267
+IGthYnVs 45268
+IFJFUw== 45269
+IEN5YmVycHVuaw== 45270
+0L7Qs9C+0LQ= 45271
+INCd0LDQsg== 45272
+IHdhbg== 45273
+IG1hbmlmZXN0YXRpb25z 45274
+IGN1YWxlcw== 45275
+IFdpc2U= 45276
+IEzDtnN1bmc= 45277
+IGV4Zm9s 45278
+IGVhcm5z 45279
+0YPRgdGC0LjRgtGM 45280
+IHNhcHA= 45281
+IEJyYXVu 45282
+IEJSQU5ET04= 45283
+7LmZ 45284
+IHNhbm8= 45285
+IEZFTA== 45286
+0YvQstCw0LnRgtC10YHRjA== 45287
+0L7QttC00LXQvdC40Y8= 45288
+IHNld24= 45289
+RnVu 45290
+IHJlY2lwcm9jYWw= 45291
+IGV4cGFuc2l2ZQ== 45292
+IFRyYWZmaWM= 45293
+IGt0w7NyZWdv 45294
+INmI2LM= 45295
+IOu5qA== 45296
+cHJvdmU= 45297
+aWdhcmU= 45298
+IGxvaA== 45299
+2KfYtg== 45300
+SG9wZQ== 45301
+IGRldm90ZWVz 45302
+IEdvbQ== 45303
+IHN0ZWFscw== 45304
+IFVtcw== 45305
+IFR3aWNl 45306
+aXlpbQ== 45307
+IHJoeXRobWlj 45308
+IFZvcnRl 45309
+IHByZWZpeA== 45310
+b21pbmF0aW9u 45311
+IGRhdG8= 45312
+IGN1c3RhcmQ= 45313
+IFZPSUNF 45314
+IG1lbnk= 45315
+aXN0b3Jz 45316
+IO2YkQ== 45317
+IOyCtOyVhA== 45318
+IO2DhA== 45319
+IGtvcnQ= 45320
+IGFiYQ== 45321
+IFZlcmE= 45322
+ZXB5 45323
+IOy5tOuplOudvA== 45324
+IHN1Ym1lcmdlZA== 45325
+IENsb2Nr 45326
+IHRodW1ibmFpbHM= 45327
+IGJvYXN0 45328
+IEZhcmU= 45329
+ISFd 45330
+IMWbbQ== 45331
+IGthaWtraQ== 45332
+IFRlY2hub2xvZ2llcw== 45333
+7Jm4 45334
+0LjRgtCw0Lk= 45335
+INCw0YI= 45336
+IGtub2Jz 45337
+IHJlaWNodA== 45338
+xrDhu6NuZw== 45339
+Z2xpbw== 45340
+IOunm+ydtA== 45341
+6rCQ7J2E 45342
+IGpvdGth 45343
+IEhhbmR5 45344
+IEhhYmVu 45345
+bm91cw== 45346
+IGlubGFuZA== 45347
+IGFtYXpvbg== 45348
+aG9vdGluZw== 45349
+U0w= 45350
+IGxlaXN0ZW4= 45351
+fiI= 45352
+IHByb3Zva2U= 45353
+IFR3aXN0 45354
+INeR15c= 45355
+IGRlcGFydGVk 45356
+6rCc66W8 45357
+IGtvbnNl 45358
+IENhcnd5bg== 45359
+7ZWY7Iug 45360
+aWRlbnRhbA== 45361
+RVNDTw== 45362
+IHR0ZW9rYm9ra2k= 45363
+IGRpemVuZG8= 45364
+xLFuZGFraQ== 45365
+aW1hc3U= 45366
+YWZhcg== 45367
+IGxhbmRmaWxs 45368
+IGNvcnJlY3Rpbmc= 45369
+IGNsZWFycw== 45370
+IE51bW1lcg== 45371
+SEFN 45372
+IGNhcnRyaWRnZXM= 45373
+IERpZXNlbA== 45374
+cGFjZWQ= 45375
+IG9ibGl2 45376
+IG1veWVucw== 45377
+IFNpbm5l 45378
+IFByZWlz 45379
+aWxpeg== 45380
+INGB0LzQvtC2 45381
+IGJyb2FkZW4= 45382
+eGVz 45383
+IGNhcmJvaHlkcmF0ZQ== 45384
+7Zi5 45385
+c2Vvaw== 45386
+IGVjaG9lcw== 45387
+IGNlc3M= 45388
+67CU 45389
+INCx0LjQt9C90LXRgQ== 45390
+IGxsYW1hZG8= 45391
+IGVzc2VudA== 45392
+IOydvOuwmA== 45393
+IEFpcmVz 45394
+cGhlbg== 45395
+IHplYnJh 45396
+IHN5bWJvbGlzbQ== 45397
+T25jZQ== 45398
+IHJhY2tz 45399
+IEthZmth 45400
+INGB0LXRgNGM0LXQtw== 45401
+IHNpbm4= 45402
+cGljaW91cw== 45403
+a2Fh 45404
+IG1vdGhlcmZ1Y2tlcg== 45405
+IGFwcHJlbnRpY2VzaGlw 45406
+IHJwbQ== 45407
+IHRheGF0aW9u 45408
+IGZ1cnJ5 45409
+IFNhY3JlZA== 45410
+INGA0LDQt9C8 45411
+cG9yYQ== 45412
+ZW5nZXM= 45413
+IO2XiOs= 45414
+INGB0LjQvQ== 45415
+IHNhbml0aXplcg== 45416
+IGNyaW5nZQ== 45417
+IFNjYQ== 45418
+0L7Rh9C90L4= 45419
+IG9mZXJl 45420
+IG1lbG9kaWVz 45421
+IFZlbHZldA== 45422
+IElocmVy 45423
+IEh5YnJpZA== 45424
+IEdpb3Y= 45425
+IGlyZ2VuZHdhcw== 45426
+IGRlcGVuZGU= 45427
+IFVzZXJz 45428
+IGh1bXA= 45429
+ZHJpdmluZw== 45430
+IHNm 45431
+IHJ1dGhsZXNz 45432
+4LmA4LiE 45433
+IGxlbW9ucw== 45434
+IGbDtnJldA== 45435
+IE9q 45436
+INC80LDQvNCw 45437
+IGludGVycGVyc29uYWw= 45438
+IGdldg== 45439
+IGFibm9ybQ== 45440
+0LjRgdC7 45441
+INC40L3QtA== 45442
+IGtvbnRyb2xs 45443
+IHJlZ3Jlcw== 45444
+IGxlZGdl 45445
+IGVyesOkaGx0 45446
+IFRhY3Q= 45447
+IGFycml2w6k= 45448
+IHN1YnN0YW50aXZl 45449
+IHNwb29uZnVs 45450
+endpc2NoZW4= 45451
+b29vb28= 45452
+IGNvbnRlbmlkbw== 45453
+IGJlc2w= 45454
+4buDbQ== 45455
+a3Rlbg== 45456
+SmFtaWU= 45457
+IHNhbmR5 45458
+4os= 45459
+IHBhc2U= 45460
+IGRldHRl 45461
+IEJlbGdpYW4= 45462
+6rCc6w== 45463
+dWxhcmVz 45464
+cnVk 45465
+aWdvcg== 45466
+IO2MrOs= 45467
+IHJlbWVkaWVz 45468
+IGJsYXN0aW5n 45469
+IFNpY2g= 45470
+INC+0LbQuNC0 45471
+IG1vbnN0cg== 45472
+IG1hbmlmb2xk 45473
+IGdsYXViZW4= 45474
+IEVTVA== 45475
+IHN0cmVhbWxpbmU= 45476
+IGxvYmJ5aW5n 45477
+IEdvdGhpYw== 45478
+dG9pcmU= 45479
+Li4n 45480
+IGTDqW1vY3I= 45481
+INC90LDQsdC70Y7QtA== 45482
+IHdzcMOzbA== 45483
+IGN6xJnFm8SH 45484
+aXPDqXM= 45485
+Z2FuZ2Vu 45486
+IGJlenBpZQ== 45487
+cmVtbGlu 45488
+6rCd 45489
+U3RpbGw= 45490
+IHJlc2lkZXM= 45491
+IGdlbGVjZWs= 45492
+IHTDqWzDqXBob25l 45493
+IHBld24= 45494
+IGxlb3BhcmQ= 45495
+IGNvbXBsaW1lbnRhcnk= 45496
+IGNyaWI= 45497
+IEFuaW1hbHM= 45498
+IGdlaWw= 45499
+ZXNzZWw= 45500
+IGdhcmRlcg== 45501
+IGNhdGNoeQ== 45502
+IEV0cw== 45503
+IENvbW1lcmNpYWw= 45504
+IERFTk5JUw== 45505
+IENvb3JkaW5hdG9y 45506
+IEFiaWdhaWw= 45507
+ZmZmZmZm 45508
+4bqlcA== 45509
+IHBlcXVlw7Fh 45510
+IGluamVjdGlvbnM= 45511
+Y2VrdA== 45512
+IHBoaWxhbnRocm9weQ== 45513
+IHB1Y2s= 45514
+IGNlbGVicmF0ZXM= 45515
+IER1bms= 45516
+IERsYXRlZ28= 45517
+zrTOrg== 45518
+Z3JhZHVhdGU= 45519
+IE1vYmls 45520
+dGlsbA== 45521
+YWNhbQ== 45522
+IHlvbGtz 45523
+IHRhbmdsZWQ= 45524
+IG1hbmlhYw== 45525
+IG9ibGlnZWQ= 45526
+IExhaW5r 45527
+IHZlcmRlcg== 45528
+IERhbW9u 45529
+IG11dGFudA== 45530
+IGhvcHBpbmc= 45531
+IHJlaW5z 45532
+IGludmVydGVy 45533
+IGNvbnRlbXB0 45534
+16DXoQ== 45535
+bGVhcm5pbmc= 45536
+TWlzcw== 45537
+INCT0L7RgQ== 45538
+IE1leWVy 45539
+6ruY7ISc 45540
+15XXoNeZ150= 45541
+YXNraW5n 45542
+IHRyaW1taW5n 45543
+IHRyZWFzdXJ5 45544
+IHNlbnRl 45545
+QXVzdA== 45546
+IFVudGVyc3TDvHR6dW5n 45547
+IENvbWVkeQ== 45548
+IEFuYWtpbg== 45549
+6bk= 45550
+0YDRg9GC 45551
+IEhhcmk= 45552
+b2dyYXBoZXJz 45553
+IG9hdG1lYWw= 45554
+IEJvdHM= 45555
+INC/0LDQu9GM 45556
+IGFja25vd2xlZGdlbWVudA== 45557
+eGlj 45558
+IOq0gOyLrA== 45559
+Z2FzcGluZw== 45560
+IHRlcnJhY2U= 45561
+IG9ybmFtZW50cw== 45562
+IE1FUg== 45563
+Y29tbWl0dGVl 45564
+IOyXhuyKteuLiOuLpA== 45565
+IHJpag== 45566
+6bM= 45567
+16bXnQ== 45568
+bGVtZQ== 45569
+IGxpYmVydGllcw== 45570
+IGZlbGxhcw== 45571
+IENvcHBlcg== 45572
+YmVuY2g= 45573
+IElkZWE= 45574
+4buNbg== 45575
+0YjQsA== 45576
+IHZlcnNpw7Nu 45577
+z4TOv8+N 45578
+INCc0Lg= 45579
+INC/0YDQuNC70L7Qtg== 45580
+IGJveGVy 45581
+IFRhbm5lcg== 45582
+IE1veQ== 45583
+7LmY64qU 45584
+VGhy 45585
+IHRpbmhhbQ== 45586
+IHBvbGlzaGluZw== 45587
+IGNvbnNlcXVlbnRseQ== 45588
+IGFtZW5pdGllcw== 45589
+IEtJ 45590
+IEdSRUVO 45591
+IEZyYW5raWU= 45592
+0L3QuNGC 45593
+aXR0ZWw= 45594
+0YHQutC+0LU= 45595
+dXJzZWQ= 45596
+IHVwYnJpbmdpbmc= 45597
+IHRo4bup 45598
+IOyLneycvOuhnA== 45599
+IHdoaW0= 45600
+IGNoaW5lc2U= 45601
+Y29uZmlkZW5jZQ== 45602
+IEplZGVy 45603
+YWpjaWU= 45604
+IFRvdXM= 45605
+IFBvd2Vycw== 45606
+4burYQ== 45607
+b3RoZXJtYWw= 45608
+INCy0YvRiNC1 45609
+cmFsZQ== 45610
+2KfYrg== 45611
+IOyngOybkA== 45612
+IMOpcGlzb2Rl 45613
+IHN1bHBo 45614
+IGVuY2FyYQ== 45615
+a3JhZnQ= 45616
+YWxhcsSx 45617
+IENvbWVz 45618
+IGRpdnVs 45619
+IFJ1ZG9scGg= 45620
+IE11c2U= 45621
+IHV0ZW5z 45622
+IOyekOyjvA== 45623
+IHBhbmE= 45624
+IFZlZ2V0YQ== 45625
+IFBIUA== 45626
+IE5TQQ== 45627
+ZW50aW4= 45628
+IENhcm5lZ2ll 45629
+2KfZig== 45630
+acSZY3k= 45631
+SGFycnk= 45632
+IGbEsXI= 45633
+0KHQvw== 45634
+IGdsYWRseQ== 45635
+IGF2ZXJhZ2luZw== 45636
+7ZWY6rKg7Iq164uI64uk 45637
+0LvRj9GO0YLRgdGP 45638
+INCc0LXQvdGP 45639
+IHF1b3RhdGlvbg== 45640
+cmlyZXM= 45641
+aXRjaGVucw== 45642
+YXllZA== 45643
+IHVuYXR0 45644
+IFBlcmV6 45645
+INC+0YLQvNC10YI= 45646
+IHRhY3RpbGU= 45647
+IEV1aA== 45648
+aXNpbmk= 45649
+YnVo 45650
+IGhhdMSxcg== 45651
+IOyeiOycvA== 45652
+IHBvbGljeW1ha2Vycw== 45653
+s7TshLjsmpQ= 45654
+YWPEsQ== 45655
+IM66zrk= 45656
+IHJlZ2lzdGVyaW5n 45657
+cmV0bw== 45658
+IFNwcmlua2xl 45659
+IEdyYW1teQ== 45660
+YXh0ZXI= 45661
+INCx0Lg= 45662
+IHNpdHRlcg== 45663
+IHByZWRpYw== 45664
+IHRoaW5seQ== 45665
+IHN0cnVt 45666
+IGFnZ3Jhdg== 45667
+IGFoYQ== 45668
+2LHYrA== 45669
+bWVsbG93 45670
+IGNvbnN0YW50ZQ== 45671
+IExhdXQ= 45672
+aXN0b24= 45673
+IHRyYW5zaXRpb25lZA== 45674
+IENhbWJvZGlh 45675
+YXJ0ZWQ= 45676
+IG1pc2Y= 45677
+IFB1bmt0ZQ== 45678
+jOuToA== 45679
+IHRyZW1ibGluZw== 45680
+IGdlc3Bhbm50 45681
+INi52YTZitmH 45682
+INC90LjQutCw0LrQuNGF 45683
+IOu2gOuTnOs= 45684
+INGA0LDQt9Cy0LjRgg== 45685
+IGl0Y2h5 45686
+IGNpZW50bw== 45687
+IHBsYWlucw== 45688
+IGtpdHRlbnM= 45689
+IGJhY2tsb2c= 45690
+IFByZXNpZGluZw== 45691
+cHRh 45692
+IGhhdm9j 45693
+IERhcnJpbg== 45694
+INCb0Y7QsQ== 45695
+IHNlZ3JlZ2F0ZWQ= 45696
+IGdoZXR0bw== 45697
+IGVybGVidA== 45698
+IGRydWdpZWo= 45699
+IFNpeHQ= 45700
+4Lij4Liw 45701
+dWVuY2lh 45702
+IO2VmOq4sA== 45703
+IOuGjQ== 45704
+IHJvYmk= 45705
+IHBpb25lZXJz 45706
+IG1pbGxpYXJkcw== 45707
+IFdpdGNoZXI= 45708
+IOustOyXhw== 45709
+b3Jybw== 45710
+bWFzcw== 45711
+IGRpdmVyZ2VuY2U= 45712
+IFJpdmVyYQ== 45713
+IE5vb2RsZXM= 45714
+IGVuZHJvaXQ= 45715
+IEtvc3Rlbg== 45716
+INC00YDRg9Cz0LA= 45717
+IG3DrW5pbW8= 45718
+IEthemFraHN0YW4= 45719
+2KrZhw== 45720
+INCy0L7Qt9C00YM= 45721
+IGdlc2NocmllYmVu 45722
+IE5pbA== 45723
+0YHQutC4 45724
+IEZyw7xo 45725
+IGJldmVyYWdlcw== 45726
+IEdvbg== 45727
+QXJpbg== 45728
+IEludHJv 45729
+b2NhbHlwdGlj 45730
+IGV4aGF1c3Rpb24= 45731
+IFN0YXR1cw== 45732
+IEJhdHRlcnk= 45733
+w6lzeg== 45734
+o7zr 45735
+YWlyeQ== 45736
+IOuztOyXrOuTnOs= 45737
+IGRpc3Bhcml0eQ== 45738
+2Yw= 45739
+IFR1Y3Nvbg== 45740
+IGJyaWdodGx5 45741
+cHJvYmxlbQ== 45742
+IGJpb21hc3M= 45743
+p4k= 45744
+IGh1cmRsZQ== 45745
+IHdhdmVsZW5ndGhz 45746
+IDw8 45747
+IHRlYW1lZA== 45748
+RkZGRg== 45749
+IFNsaW0= 45750
+b21pYWw= 45751
+IHVudmVpbGVk 45752
+IFZlcmVpbg== 45753
+2YLYtw== 45754
+ZXN0cnk= 45755
+IGNsw6Fz 45756
+IGNoZWRkYXI= 45757
+IGFjY3VzaW5n 45758
+IFNjaWVudGlmaWM= 45759
+INCx0YPQtNC1 45760
+IEN5cnVz 45761
+zrXPhM61 45762
+hpPqs6A= 45763
+IOuzhA== 45764
+IGN1cmQ= 45765
+IHJlZmVycmFscw== 45766
+c2hpZnQ= 45767
+bmlrw7N3 45768
+IG1pZXI= 45769
+IGNvbmZyb250aW5n 45770
+6rKD64+E 45771
+YXds 45772
+IHRyeWlu 45773
+IOq3uOuemOyalA== 45774
+IGNoaWFy 45775
+IOyYpOuKmOuPhA== 45776
+ZXNxdWU= 45777
+IG1pc21vcw== 45778
+IFNoYWs= 45779
+IHNvY2lhdXg= 45780
+IHBpxZ8= 45781
+IGtpxZ9p 45782
+IGN5YW4= 45783
+aGF5 45784
+YmV3 45785
+Ym9k 45786
+IM65 45787
+IE1haW5seQ== 45788
+0Y7RgtGM 45789
+aGFiaXR1ZGU= 45790
+INGB0L/QvtC60L7QuQ== 45791
+IHByZWNvbg== 45792
+IE1hbmR5 45793
+8J+kow== 45794
+aWxsb3M= 45795
+IGdydXBw 45796
+IGNydW1ibGU= 45797
+IGNvbnN0cnVjdG9y 45798
+ZXJ2aWNlcw== 45799
+IGxpZ2h0aG91c2U= 45800
+IENvbmNlcHQ= 45801
+0LDQvdGC0Lg= 45802
+YWx0cm8= 45803
+aG9wZQ== 45804
+IEFsbGVn 45805
+7Ja066W8 45806
+cGllY2Vz 45807
+b3VudGVy 45808
+IO2VmOuLiOq5jA== 45809
+IOyduO2EsOs= 45810
+IHbDqXJpdGFibGU= 45811
+IHRocmVhZGVk 45812
+YmxpbmQ= 45813
+gpjrnbw= 45814
+IHRyYXlz 45815
+IEVkaXNvbg== 45816
+IMOWeg== 45817
+IFN0ZXZpZQ== 45818
+IGxlbmRlcg== 45819
+IGJyaWdhZGU= 45820
+IGRldXRzY2hl 45821
+bXVmZmxlZA== 45822
+YmFydA== 45823
+IGluc2FuaXR5 45824
+IHNhdnZ5 45825
+IHNlbnNhdGlvbmFs 45826
+IGRlcmVjaG9z 45827
+IE1Y 45828
+INC/0YDQtdC/ 45829
+IHRocmVhdGVucw== 45830
+IHJlYWx0w6A= 45831
+IGluZGljYXRpdmU= 45832
+IGNob3Bz 45833
+IGJlbmVmaXRpbmc= 45834
+IFZlcm5vbg== 45835
+IFN0cmFuZA== 45836
+bnVu 45837
+cXVlbnRseQ== 45838
+MTAx 45839
+IGVlbA== 45840
+7IiZ 45841
+cmludHM= 45842
+INmF2LM= 45843
+INio2K8= 45844
+INC/0L7RgdGC0YDQvg== 45845
+IHlhcG3EscWf 45846
+IG9sbWFzxLE= 45847
+IGllZGVyZWVu 45848
+b2zDqQ== 45849
+a2Vm 45850
+IOuwnOyDnQ== 45851
+IHJhaW5lZA== 45852
+IGFsbWlnaHR5 45853
+INCy0YvQtA== 45854
+IENQUg== 45855
+RnJl 45856
+IGluaGFiaXRlZA== 45857
+IGFyYmV0cw== 45858
+IGFraW4= 45859
+0LDRgdGC0LI= 45860
+dmFuaWE= 45861
+IGjDpHVmaWc= 45862
+IE1hdHRl 45863
+c29ycnk= 45864
+SmVubnk= 45865
+INCz0YDQsNC0 45866
+IHdoaXQ= 45867
+IGJyb2tlcnM= 45868
+IGhpbmU= 45869
+YXN0ZW4= 45870
+INCz0YDRgw== 45871
+TUI= 45872
+IFBSSQ== 45873
+U2Fi 45874
+IHdyZXN0bGVy 45875
+IGZhY2lsaXRhdGluZw== 45876
+IGVoa8Ok 45877
+IENyZWQ= 45878
+IDEyNw== 45879
+IG5vdGhpbg== 45880
+IG1hbmRhdGVk 45881
+0YPRgtGB0YLQsg== 45882
+RnJhbms= 45883
+IHdvcnM= 45884
+IGR6aWXFhA== 45885
+IFVuZGVyZ3JvdW5k 45886
+IHpuYWpkdQ== 45887
+IELDpA== 45888
+IFByaW56aXA= 45889
+0LDRgtC10LvQtdC5 45890
+IHZldGVyaW5hcg== 45891
+IHNwbGVuZGlk 45892
+IHJvenA= 45893
+IHBzeWNob3BhdGg= 45894
+aWdvbg== 45895
+IGhvcHM= 45896
+IGPhuqdu 45897
+IFhpYW4= 45898
+IHRyb2lzacOobWU= 45899
+IHByb2R1Y3Rv 45900
+IGRlxJ9lcg== 45901
+IENvbnRpbnVpbmc= 45902
+0LjQstCw0Ls= 45903
+Y8Sxaw== 45904
+IG1vaXN0dXJpemVy 45905
+V2hpdGU= 45906
+IHNpaXM= 45907
+IEV2ZXJlc3Q= 45908
+aWVuY2Vk 45909
+IGPhuqNt 45910
+IEphcG9u 45911
+tOyghA== 45912
+IHRlbsOtYW4= 45913
+IGVuY2FudGE= 45914
+TW0= 45915
+IGRyb3Bkb3du 45916
+IEl5YQ== 45917
+s7TrqbQ= 45918
+IHdvcmRpbmc= 45919
+IFNxdWVlemU= 45920
+IE1hcGxl 45921
+IGNsYXJpZmllZA== 45922
+IE11bmljaXA= 45923
+IFJvdWdl 45924
+IE5pY2tp 45925
+IEdvbw== 45926
+dm9sdA== 45927
+dGVr 45928
+ZmVjdHVyZQ== 45929
+ZnJlZA== 45930
+YXJyaXZl 45931
+dGV6 45932
+RXA= 45933
+IG9icmFz 45934
+IFZJRA== 45935
+IFJpdg== 45936
+IE1vZGk= 45937
+aWJl 45938
+IGFjb250ZWNlbmRv 45939
+IGltaXRhdGlvbg== 45940
+IGNhbW91ZmxhZ2U= 45941
+IHNwYW5uaW5n 45942
+IFNFQ1JFVA== 45943
+IE9yZW8= 45944
+7IaM66as 45945
+IGh1bmNo 45946
+IGNhxYJl 45947
+IHNwb250YW5lb3VzbHk= 45948
+IFBlcmQ= 45949
+IGV0YXA= 45950
+IEhvbGU= 45951
+IERpc2FiaWxpdHk= 45952
+IGFmdGVybGlmZQ== 45953
+IHRlc3RpZmllZA== 45954
+IHByZXN1cA== 45955
+IHBldHJvbGV1bQ== 45956
+IGNvbnRyYXJpbw== 45957
+IEFzc2Vzc21lbnQ= 45958
+xJ9sdQ== 45959
+IHBlc3Rz 45960
+IGRpbGln 45961
+INCy0YHRgtGA0LXRgg== 45962
+IGNvbnPDqXF1 45963
+IGNhbm5vbnM= 45964
+IGNhbm9l 45965
+IE1pbGU= 45966
+IGNpdG95 45967
+IGJlZ2dlZA== 45968
+IE1pbm5pZQ== 45969
+xYJ5Y2g= 45970
+IHByaW5jaXBl 45971
+z4DPjM69 45972
+bW5pZWo= 45973
+IHdlcnQ= 45974
+IOuLpOuTpA== 45975
+YW5zZQ== 45976
+IHVuY2xlcw== 45977
+IHByb3ZvY2F0aXZl 45978
+IGludGVyc2VjdGlvbnM= 45979
+IGRlbW9jcmF0cw== 45980
+IEp1bGl1cw== 45981
+0LjQvdC60Lg= 45982
+eWd1c2Fs 45983
+INec15U= 45984
+IGdqb3JkZQ== 45985
+IGdhc2tldA== 45986
+IEJvY2s= 45987
+IMSwbg== 45988
+YnJlYXQ= 45989
+IEVxdWl0eQ== 45990
+YXJkxLE= 45991
+INC60LDQvdCw0LvQtQ== 45992
+INC00L3QtdC5 45993
+IHThu5tp 45994
+IGZpeHR1cmU= 45995
+IGFidXNlcw== 45996
+IHZheWE= 45997
+IG91dmVydA== 45998
+IG11bHRpY3VsdHVyYWw= 45999
+IGNvbnRleHRv 46000
+IFNlc2FtZQ== 46001
+IGTDqXBs 46002
+IGNvbnNvbW0= 46003
+IFBhcnRl 46004
+IHBlbQ== 46005
+IENvbmFu 46006
+INCx0ZbQu9GM 46007
+IHBlcnN1YWRlZA== 46008
+IGRyYWlucw== 46009
+TW9v 46010
+Rk9SRQ== 46011
+INCx0LDRgg== 46012
+IGZvZA== 46013
+IFByb2R1Y3Rz 46014
+7KeE7Kec 46015
+ICJb 46016
+IFdpY2s= 46017
+IE5hcnV0bw== 46018
+0L3QsNC70Lg= 46019
+cnl3 46020
+IGxvZGdl 46021
+IGluaA== 46022
+IHZvbnRhZGU= 46023
+IGRpag== 46024
+IEplc8O6cw== 46025
+TG9va2luZw== 46026
+IGZvcmVhcm0= 46027
+IEludGVncmF0aW9u 46028
+IEhBUlJJUw== 46029
+IHRvb2xiYXI= 46030
+bGVhZGVy 46031
+IHNlbGRvbQ== 46032
+INCx0YDQvtGB 46033
+IEtvb2s= 46034
+0L7QvdC0 46035
+IG1vbm9wb2w= 46036
+IG1pbGxldA== 46037
+IGxpcmE= 46038
+IEFzaWFucw== 46039
+IDE4OTA= 46040
+Y2nEn2lt 46041
+IGVkZW4= 46042
+IElLRUE= 46043
+IE5laWdoYm9y 46044
+IEthenV5YQ== 46045
+w7xk 46046
+IHBzeWNoZWRlbA== 46047
+IGVudmlzaW9uZWQ= 46048
+IO+3uw== 46049
+IHd1bmRlcg== 46050
+IEJ1bGdhcmlh 46051
+QnJpZA== 46052
+IG1hcnJvdw== 46053
+IGRlcGljdGlvbg== 46054
+IFRpbg== 46055
+IFBoYXJpc2U= 46056
+IGVpbnppZ2U= 46057
+IGJsaW5kbHk= 46058
+IGRlZmVucw== 46059
+RGlyZQ== 46060
+IHZpYnJhdGluZw== 46061
+IHRyb2xscw== 46062
+IGRpc3Jlc3BlY3RmdWw= 46063
+IHdvZA== 46064
+IHN0aW11bGk= 46065
+IGNyZWVwaW5n 46066
+IGNsYWlyZW1lbnQ= 46067
+IHNjYXJpZXN0 46068
+IGTDqWNvdXZyaXI= 46069
+IDEwNA== 46070
+INCy0LXRgNGF 46071
+IMWCYXQ= 46072
+IHLDs8W8bmU= 46073
+IGJhcmxleQ== 46074
+IFJlcGw= 46075
+IFR3ZQ== 46076
+a2tl 46077
+IFJlZG1p 46078
+IE1ldHJvaWQ= 46079
+IM6uz4TOsc69 46080
+Q2hlY2s= 46081
+IFNFTg== 46082
+IGlkbw== 46083
+0YLQvtGA0LjQuA== 46084
+w7Nw 46085
+VU5LTk9XTg== 46086
+IMOkbmRlcm4= 46087
+IEp1aWNl 46088
+IEdlc2ljaHQ= 46089
+INC90LDRgdGC0L7Qu9GM0LrQvg== 46090
+7YOV 46091
+wq0= 46092
+ZXhoYWxlcw== 46093
+IOy0iQ== 46094
+IGpzZW0= 46095
+z4DPic+C 46096
+IGl0dA== 46097
+66qF7J20 46098
+IHJlbWl4 46099
+IGJsb3Nzb21z 46100
+IFJlbmVl 46101
+aXNhdGlvbnM= 46102
+7Iqk7YSw 46103
+IOuztOydtOuKlA== 46104
+dWVzdGFz 46105
+b3BlZGlh 46106
+IEFpbQ== 46107
+7J207KaI 46108
+c2NlbmU= 46109
+IGxlYWthZ2U= 46110
+dWNrdA== 46111
+U2Fk 46112
+QXNr 46113
+IHN1c3BlbnNl 46114
+IGltcG9zdA== 46115
+IFN0cmF0ZWdpYw== 46116
+IEl0w61z 46117
+4oCM 46118
+IGtleWJvYXJkcw== 46119
+IGFtdXNpbmc= 46120
+b2dy 46121
+aWRlcm1hbg== 46122
+npY= 46123
+INCy0LjQttGD 46124
+IGRpcHM= 46125
+IGFwb2xvZ2l6ZWQ= 46126
+IFNUQVI= 46127
+IGVzY3VlbGE= 46128
+IENoaW5n 46129
+0L3QtdC90LjRjw== 46130
+IOu2gOu2hOydtA== 46131
+IEZsZWV0 46132
+IHNhbWI= 46133
+IGVudHNwcmVjaGVuZA== 46134
+IGVsZWN0cm9kZXM= 46135
+IEZyZWloZWl0 46136
+IFNocmlt 46137
+acOfZQ== 46138
+IHNlbGVjdGlvbnM= 46139
+IGZvcmRp 46140
+IGRvc3M= 46141
+0Y/Rhw== 46142
+IGRpc2NyaW1pbmF0ZQ== 46143
+IEF1w59lcmRlbQ== 46144
+IGRlc2Vudm9sdg== 46145
+IEludGVybmFs 46146
+IEJlbmVkaWN0 46147
+IFNoaXY= 46148
+TWlzc3k= 46149
+INC+0LHQvdCw0YDRg9C2 46150
+INC90LDRgdGC0YDQvg== 46151
+IGNvbnRyb2xhcg== 46152
+IExpYQ== 46153
+IG9waW9pZHM= 46154
+YW50dQ== 46155
+IGN1cGJvYXJk 46156
+0LPQtQ== 46157
+YWNodHM= 46158
+IGN1cmF0ZWQ= 46159
+IHhlbQ== 46160
+IHdlYXJ5 46161
+IGJyZXRocmVu 46162
+IGJ1ZGdldGluZw== 46163
+IHBvdXJ0YW50 46164
+YWlzaWE= 46165
+INC+0YLQstC10Yc= 46166
+IEdJUw== 46167
+zrzOsc65 46168
+INep15TXldeQ 46169
+IHNhdWQ= 46170
+IGzhu5s= 46171
+0JXQog== 46172
+dWJpbmU= 46173
+INC90YPQttC10L0= 46174
+IGtpZG5hcHBpbmc= 46175
+IGJyYXQ= 46176
+IFRlcnJl 46177
+IE1vbmV0 46178
+IOuniOyKpO2B 46179
+IGZsYXNoeQ== 46180
+IElTQk4= 46181
+IGZyZWVsYW5jZQ== 46182
+aWFnZQ== 46183
+IGp1bmdl 46184
+7Lap 46185
+Y2VyYWw= 46186
+INGC0L7Rh9C60Lg= 46187
+IGZvcm11bGF0ZQ== 46188
+IEZFUg== 46189
+IERhcnRtb3V0aA== 46190
+7Jy866m07ISc 46191
+b3dpxIU= 46192
+IOuUlOyekA== 46193
+IHJlZ2ltZW50 46194
+IG1ldGFib2xpc21v 46195
+IFBhcnI= 46196
+IOy2qeu2hA== 46197
+IHNhbml0eQ== 46198
+IExhbA== 46199
+IEfDtg== 46200
+IEdsYQ== 46201
+IHByb3Rv 46202
+IG1pY3Jvc2NvcGlj 46203
+IGthbmc= 46204
+IFNjYWxpYQ== 46205
+IHB1Zw== 46206
+IFNjb3Jl 46207
+IFNhdmFubmFo 46208
+IGdhcmRl 46209
+IE5PUg== 46210
+IHNjaGVpbnQ= 46211
+IHDDs8WC 46212
+IGNvcnJp 46213
+IGJydXRl 46214
+IMWCYWQ= 46215
+IHN1Y2NlZWRpbmc= 46216
+IGJpY3ljbGVz 46217
+Tm9u 46218
+IHNlZWtlcnM= 46219
+IHVuY29uZGl0aW9uYWw= 46220
+IHJoeW1lcw== 46221
+IEdhcmFnZQ== 46222
+IGludm9pY2U= 46223
+IGNhbnZp 46224
+bmVjaw== 46225
+IGN1c3RvbWl6YWJsZQ== 46226
+aXJpdHVhbA== 46227
+UXVlZW4= 46228
+7ZWY7Iuc64qU 46229
+IHBvd2VybGVzcw== 46230
+IGNzYWs= 46231
+aXNvZnQ= 46232
+IOygle2ZlQ== 46233
+IG5ow6Ju 46234
+IE1BTkQ= 46235
+IEhhZg== 46236
+IHJldm9sdmVz 46237
+b3Zhbg== 46238
+YXJvbw== 46239
+IEdyaW5k 46240
+IGluZGlzcGVuc2FibGU= 46241
+IGNvbnN1bHRlZA== 46242
+IENsaW5pY2Fs 46243
+QWNj 46244
+IG9saG9z 46245
+IG1vbnRlcg== 46246
+IEhhbmE= 46247
+ZXRhaA== 46248
+IHZhYW4= 46249
+IHRpZ2Vycw== 46250
+IGNhdWN1cw== 46251
+8J+Ygg== 46252
+s7TsnpA= 46253
+cG93ZXJz 46254
+aXVtcw== 46255
+IO2GoOs= 46256
+IHRyYWRpY2lvbmFs 46257
+IHJlc29uYXRlZA== 46258
+IOyLoOq4sA== 46259
+dGhlbQ== 46260
+Um9iZXJ0 46261
+IGVsZW1lbnRv 46262
+IGFudGlk 46263
+INC+0LHRgQ== 46264
+IG5hdGl2ZXM= 46265
+IGxvY2E= 46266
+b3dtZW50 46267
+IFRpZ2h0 46268
+IG1lbGFu 46269
+IE51ZQ== 46270
+YW1pcw== 46271
+IHNvcmdlbg== 46272
+YXPEsW5h 46273
+SG9tZQ== 46274
+IFBVQkc= 46275
+IGF3ZnVsbHk= 46276
+IFNob3Jl 46277
+IFBlcmNow6k= 46278
+IExhdQ== 46279
+IENpbmRlcmVsbGE= 46280
+IENoZXN0 46281
+IHNlbWFudGlj 46282
+IGRlc2VydGVk 46283
+IE1vbW8= 46284
+IEhlcm5hbmRleg== 46285
+Z2VuZXM= 46286
+IEFkdWx0 46287
+0LjRh9C10YHQutC+0LPQvg== 46288
+b3NoaW1h 46289
+IGNhcmFjdGVyw61zdGljYXM= 46290
+IEtM 46291
+tOyepQ== 46292
+b2Nhcg== 46293
+IGZlaGx0 46294
+IGRydWs= 46295
+IFBvcHB5 46296
+RU5HTElTSA== 46297
+IFZlcmdsZWljaA== 46298
+QnJpZW4= 46299
+IHJlY29tcA== 46300
+INGB0LQ= 46301
+IG1lcmdlcg== 46302
+IG1hcmtldGVycw== 46303
+IGhvbmV5bW9vbg== 46304
+IHBlbnNv 46305
+IGJlbGxp 46306
+0LXRgtGD 46307
+IGJhbmtlcg== 46308
+Q2FtZXJh 46309
+IFN0YWxs 46310
+IFN0YW1w 46311
+IEJpdGU= 46312
+0LXQttC00LU= 46313
+IHPDvHI= 46314
+IGfDvMOn 46315
+IFBhc3NvdmVy 46316
+IEJ1Z8O8bg== 46317
+INGB0L7QttCw0LvQtdC90LjRjg== 46318
+INC90LjQtw== 46319
+IG1hbnVyZQ== 46320
+IGdsYWNpZXI= 46321
+UkFZ 46322
+dGVycm9y 46323
+IHNhbGFkcw== 46324
+IGh1cnJpY2FuZXM= 46325
+IERlc2lnbmVy 46326
+YXRvcmlv 46327
+IGZhY3R1YWw= 46328
+IFRhbW15 46329
+INC30LLRg9GH 46330
+IGludHJvZHVjdGlvbnM= 46331
+IGhvdXNla2VlcGluZw== 46332
+IGhhbmdlcg== 46333
+64uY6w== 46334
+YWt0ZQ== 46335
+IENvbGE= 46336
+J10= 46337
+IEdlbmRlcg== 46338
+0L7RgNC+0L0= 46339
+aXBzZQ== 46340
+aWNpYXM= 46341
+IHN1Y2Nlc3NpdmU= 46342
+IHBvbGl0aWM= 46343
+IGjDtmhlcg== 46344
+IFFpYW8= 46345
+IEdpbW1l 46346
+INC70L7Qtg== 46347
+IHNlYg== 46348
+IFdlaXRlcg== 46349
+IFNha3VyYQ== 46350
+IEJvdWxkZXI= 46351
+IEFtw6lyaWNh 46352
+cGXFgm5pZQ== 46353
+IHRlY25vbG9nw61h 46354
+aXNob3Bz 46355
+ZnVy 46356
+IG1vb25saWdodA== 46357
+IGRpc3BlcnNlZA== 46358
+IHJleg== 46359
+0LXQvdC90L7QtQ== 46360
+0LDQu9GM0L3Rg9GO 46361
+IFR3ZWx2ZQ== 46362
+IEhPUg== 46363
+7Iuk7Z6I 46364
+aWxhZ2U= 46365
+IHNoYWRlZA== 46366
+IHJlc3VtZXM= 46367
+IFBlYW51dA== 46368
+IE1JTEw= 46369
+YXBvbnM= 46370
+IFVGQw== 46371
+IFNvbGU= 46372
+IGpveXN0aWNr 46373
+IE9saXZpZXI= 46374
+d2FybWluZw== 46375
+IHN5bGxhYnVz 46376
+INC+0LHRidC1 46377
+IGhp4buHbg== 46378
+IGZlc3Rh 46379
+IGNyYWRsZQ== 46380
+IFphYw== 46381
+IHJlbWVtYnJhbmNl 46382
+IOqwmeyVhOyEnA== 46383
+IHBpxJlr 46384
+IGNvZXhpc3Q= 46385
+IFZJSQ== 46386
+IMOhcmVhcw== 46387
+IHV3YcW8 46388
+IG9ic2VydmVycw== 46389
+IG3DpG5uaXNrb3I= 46390
+Y29vbg== 46391
+IERBTQ== 46392
+IG5hc3p5bQ== 46393
+IGFsbGlnYXRvcg== 46394
+IEZyZWV6ZQ== 46395
+IEVzdGF0ZQ== 46396
+INGC0YDQsNC00Lg= 46397
+IHVuZGVyY292ZXI= 46398
+IG5pZXM= 46399
+IEZlaGxlcg== 46400
+cGxpbg== 46401
+IEthYnVs 46402
+aWxhdGU= 46403
+IOqzoOyWkQ== 46404
+IG1vcA== 46405
+7IS8 46406
+IGFuZGVyZXI= 46407
+IEtFTEw= 46408
+0L7QutC4 46409
+INC20LXRgdGC 46410
+IGdyYXppbmc= 46411
+IGRhw60= 46412
+IGNhcGl0YWxpemU= 46413
+IGFwZXg= 46414
+IG51cnR1cmluZw== 46415
+IGNvcnRhcg== 46416
+IGNvbnRyYWM= 46417
+xLFtxLF6xLE= 46418
+IHRhbmRlbQ== 46419
+Z2VtZW50 46420
+INGB0LjRgdGC0LXQvNCw 46421
+IG1hbnF1ZQ== 46422
+aWFqxIU= 46423
+V09S 46424
+INin2Kg= 46425
+IGNhcnRz 46426
+QU5P 46427
+IOuwm+qzoA== 46428
+IENlbmE= 46429
+IEJpb2xvZ3k= 46430
+aWRhcg== 46431
+IGHFvA== 46432
+ZXJuZQ== 46433
+YW51 46434
+IHRoYW5rZWQ= 46435
+IHN1Ym1hcmluZXM= 46436
+IG1hbmlj 46437
+INC80L7Qtw== 46438
+aW5zdGFudA== 46439
+ZXNzZW50aWFs 46440
+IHNhbXVyYWk= 46441
+IHBhc3Rp 46442
+IGFsYW4= 46443
+IGJyb2No 46444
+IGJha2Vy 46445
+IEd1aWxs 46446
+qLw= 46447
+IHdpdGhkcmF3bg== 46448
+64ud 46449
+UGVyZmVjdA== 46450
+cXVlbmN5 46451
+IHN0cmVhbWxpbmVk 46452
+IDEzMDA= 46453
+tOuPhA== 46454
+IOuWoOs= 46455
+IGh2YWQ= 46456
+IHZlcmJhbGx5 46457
+IEtvbnM= 46458
+IOyhsOyLrA== 46459
+IGRpZXo= 46460
+IGNodWNrbGluZw== 46461
+IE1paA== 46462
+IHJhbGxpZXM= 46463
+IG1hbnRlcg== 46464
+IGVhcm5lc3Q= 46465
+c3VwZXI= 46466
+IGdlY2U= 46467
+IFJlbmQ= 46468
+IEdlcmFkZQ== 46469
+amVuaWdlbg== 46470
+IFZhbGw= 46471
+IOyeiOuCmA== 46472
+INGB0LrQsNC30LDQu9Cw 46473
+IHRyYWJhbGg= 46474
+INC90LDRiNC10Lw= 46475
+INC80LXRhQ== 46476
+aWtpdA== 46477
+IG5vdW5z 46478
+IG5ldXJvbG9naWNhbA== 46479
+IG1vdGl2YXRpb25hbA== 46480
+IE1jTWFob24= 46481
+IEZpbmlzaGVk 46482
+IOuztOydtA== 46483
+IEZpZWxkcw== 46484
+IGFkb2xlc2NlbnRz 46485
+IFRpc2No 46486
+IE5lYmVu 46487
+IEZsb3dlcnM= 46488
+IEVuZXJn 46489
+IGRpcmV0 46490
+IFRoaQ== 46491
+IFBpY2Fz 46492
+IGF2ZXRl 46493
+IEZvcnM= 46494
+IENoYXBlbA== 46495
+TsOjbw== 46496
+RXQ= 46497
+INGB0L7QtNC10YDQtg== 46498
+cmVubw== 46499
+IHN2ZW4= 46500
+IGRvc3TEmXA= 46501
+bmVl 46502
+IFNuYXBkcmFnb24= 46503
+IElEcw== 46504
+7JWY64qU642w 46505
+16jXmg== 46506
+IHN1bmZsb3dlcg== 46507
+IHBlcnBldHVhbA== 46508
+IGtuaWdodHM= 46509
+IGdpcmQ= 46510
+IFRvbGQ= 46511
+IHZvbGNhbm9lcw== 46512
+IGFkdmVyc2FyeQ== 46513
+IEVjb25vbXk= 46514
+IGV4dHJhcG9s 46515
+IGJsdWV0b290aA== 46516
+IHpvb21pbmc= 46517
+IHNreXM= 46518
+IGdlbmlhbA== 46519
+w61jdWxvcw== 46520
+YW1icmU= 46521
+INC80LXRgA== 46522
+IHRlZW55 46523
+IHN0cmVzc2luZw== 46524
+7JWM 46525
+T05Z 46526
+IHRyYW5zbHVjZW50 46527
+IHJvdW5kaW5n 46528
+IGdydWVz 46529
+15nXoNeU 46530
+YXByw6hz 46531
+IHBydWViYQ== 46532
+IHBvbHlnb24= 46533
+IGJsdWViZXJyeQ== 46534
+IFByb2dyYW1t 46535
+IHRyZW5jaGVz 46536
+IHNlYmFnYWk= 46537
+IHBhbGF0ZQ== 46538
+IGxhdWRl 46539
+IGJlaGF2ZWQ= 46540
+IGxvbmdpdHVkaW5hbA== 46541
+IE1vZHVsZQ== 46542
+IGFkbWly 46543
+zrvOuQ== 46544
+R3JlZw== 46545
+IHd5c3Q= 46546
+IHByb3BhZ2F0ZQ== 46547
+IG1vbGRz 46548
+IFR1Yg== 46549
+IExvdWQ= 46550
+dXN0bw== 46551
+IHVuc3RvcHBhYmxl 46552
+IHJlaW5mb3JjaW5n 46553
+INC/0YDQvtCx0LvQtdC80LA= 46554
+IHBvdGVuY2lhbA== 46555
+IGhlbXA= 46556
+7J6U 46557
+4KSv 46558
+IG9wdGlj 46559
+IGVyZm9sZ3JlaWNo 46560
+0YHRiw== 46561
+0L7Qu9GM0YjQtQ== 46562
+dXJzdA== 46563
+IFBvaXM= 46564
+IHJlc3BvbmRlbnRz 46565
+IG5laG1l 46566
+IEV4dGVybmFs 46567
+b2xhdGU= 46568
+SHl1bg== 46569
+IHF1YXJ0eg== 46570
+IG1hdGhlbWF0aWNpYW4= 46571
+IGLDoXNpY2FtZW50ZQ== 46572
+IGFpbA== 46573
+7KCc66W8 46574
+YXR0dXR0bw== 46575
+IG5vb2l0 46576
+IGFmZmxpY3Q= 46577
+IE9sZ2E= 46578
+INC90LDRgg== 46579
+IGRpdGVz 46580
+IHJlYWxpZGFkZQ== 46581
+IGvDpG4= 46582
+IHVuaXF1ZW5lc3M= 46583
+IHBhZHJlcw== 46584
+IHN1YnNpZGk= 46585
+IHBpZ2VvbnM= 46586
+zrLOsQ== 46587
+c3RhZA== 46588
+IGRlcmVu 46589
+INCh0LvQtdC0 46590
+ZG9v 46591
+INC+0L/QuNGB0LDQvdC40Lg= 46592
+IGFtYmVy 46593
+IGdvb3NlYnVtcHM= 46594
+IGZyw6Vnb3I= 46595
+IFZpdGFs 46596
+IElzcmFlbGl0ZXM= 46597
+d2Fzc2Vy 46598
+SXNu 46599
+IGNvbW1pdHM= 46600
+IFNURVZFTg== 46601
+IEJldsO2bGtlcg== 46602
+dWl0aXZl 46603
+IGxlZ2Vu 46604
+IGJydWs= 46605
+0LjRgNC+0LLQsNC9 46606
+eW5lbg== 46607
+aGVsbQ== 46608
+IGdlbmVyYXRpb25hbA== 46609
+IEzDpG5kZXJu 46610
+zr/Ouc+Az4zOvQ== 46611
+dXp1 46612
+IGNhbGxlcg== 46613
+0L7QvdGM 46614
+w7xtw7w= 46615
+IGJlc2Fy 46616
+IHBsYXRz 46617
+IG1pZ3JhdGVk 46618
+IGphcA== 46619
+IFdBUg== 46620
+IGRpc3NlY3Q= 46621
+IFp1c2No 46622
+IFplaXRlbg== 46623
+IExpb25z 46624
+IERG 46625
+4pQ= 46626
+0LrQuNCy 46627
+IHBlZGVzdHJpYW5z 46628
+IE1hcmlseW4= 46629
+ZG9jaw== 46630
+IHlodA== 46631
+IHJlaW5jYXJu 46632
+IFNvbm8= 46633
+IEdyb3d0aA== 46634
+0YPRgdC+0LI= 46635
+IGR1bmdlb25z 46636
+IGJhZ3Vz 46637
+a2ljaA== 46638
+INGD0LrRgNCw0Zc= 46639
+IEtlbGxlcg== 46640
+Y2hlbWlzdHJ5 46641
+SmFwYW5lc2U= 46642
+IHdpbGxzdA== 46643
+IGRlY29tcG9zaXRpb24= 46644
+INGB0YLQtdC9 46645
+IHJldml2ZWQ= 46646
+7ZWZ6rWQ 46647
+IMWT 46648
+7Iu4 46649
+aXBweQ== 46650
+IGhvdXJseQ== 46651
+asOkbg== 46652
+IFdvcmtzaG9w 46653
+nbzshJw= 46654
+IGN1YXJ0bw== 46655
+IHBhdHJpbQ== 46656
+IEJ1cmNo 46657
+IOyeiOq4sA== 46658
+IGhlcGF0 46659
+IGjDoG5n 46660
+IOuMgO2VtA== 46661
+INCy0LDRiNC4 46662
+IHJld29yaw== 46663
+IHBhcnNl 46664
+IMOnxLFrdMSx 46665
+IFNheA== 46666
+IE1vbmdv 46667
+IEFhYWg= 46668
+cmFtYmxl 46669
+REo= 46670
+IHN0YWJpbGl6ZWQ= 46671
+IFNwZWVjaA== 46672
+Qm9va3M= 46673
+IGh1cmRsZXM= 46674
+IFdP 46675
+IExhbWJvcmc= 46676
+IDE5MzM= 46677
+IHZvcmJlcmU= 46678
+IGNsaW5pY2FsbHk= 46679
+IGJyZWF0aHRha2luZw== 46680
+IEdhdGV3YXk= 46681
+0L/QtdGA0LLRi9GF 46682
+dXRlcnM= 46683
+IOu5tQ== 46684
+IHlldGVy 46685
+IHB1bGxleQ== 46686
+IG11ZmZpbg== 46687
+IFByZWZlcg== 46688
+IFBlbmNl 46689
+IGluZm9ybWHDp8Ojbw== 46690
+7Iqk7Yq46w== 46691
+IFR1cnRsZQ== 46692
+IFJlZ2luYQ== 46693
+IExvYWQ= 46694
+ZG9lcw== 46695
+cGFuemU= 46696
+uJQ= 46697
+IG1pbmE= 46698
+IExhdGlub3M= 46699
+YW1tZXJz 46700
+IFRvcnQ= 46701
+IEJleW9uY2U= 46702
+0LjQvNC+0YHRgtC4 46703
+INCy0L7Qv9GA0L7RgdGL 46704
+IGJ1bHVu 46705
+aW5law== 46706
+YmVyZWljaA== 46707
+IHBhc3R1cmU= 46708
+IE9B 46709
+IE1lbHQ= 46710
+IEV0dA== 46711
+IERZ 46712
+IG9id29obA== 46713
+IGxlYWd1ZXM= 46714
+0YLQtdGB0Yw= 46715
+INC60YPRgQ== 46716
+IHZvcnM= 46717
+IHRvcHA= 46718
+b2dyYXBoaWNhbA== 46719
+YXNzdA== 46720
+IGxpbmRv 46721
+IOuwne2YlA== 46722
+IHLDqWZs 46723
+IGNsaW1icw== 46724
+IHZhcnNh 46725
+IG1ldGh5bA== 46726
+IEthcmVyZQ== 46727
+xrDhu58= 46728
+UmFk 46729
+IHByZXBhcmVkbmVzcw== 46730
+0L7QvdGH 46731
+IE9E 46732
+IENHSQ== 46733
+IOCkrg== 46734
+IHNwZWVjaGxlc3M= 46735
+IGxhc2Np 46736
+IGJvbGFn 46737
+INGF0L7Rh9C10YLRgdGP 46738
+IGdyaWV2aW5n 46739
+IEpvaGFubmVz 46740
+IENhcnJvbGw= 46741
+YWRha2k= 46742
+iKzr 46743
+IHPFgnU= 46744
+IGlubmVyaGFsYg== 46745
+IGd5bW5hc3RpY3M= 46746
+0L/RgNC4 46747
+aWZpcXVlcw== 46748
+IGthcmF0ZQ== 46749
+IGRvbXU= 46750
+T1RIRVI= 46751
+IGRlbWFuZMOp 46752
+IGJvb2tsZXQ= 46753
+IEt5b3Rv 46754
+IHdvaA== 46755
+IE1hcsOtYQ== 46756
+dmlvbGVudA== 46757
+SkU= 46758
+IGzDs2c= 46759
+IGJydXRhbGx5 46760
+Y290 46761
+INmF24w= 46762
+IFdhcnN6 46763
+d29s 46764
+IG1pa8Ok 46765
+IFByb25vdW5jZQ== 46766
+IEJyZW5kYW4= 46767
+IHJvdXA= 46768
+IGl0YWxpYW5v 46769
+INC60L7QvNC/0YzRjtGC 46770
+IHVyZ2luZw== 46771
+ZWRlcw== 46772
+IGNhcmJvbm8= 46773
+IFJpY2hhcmRzb24= 46774
+INCd0LDRhw== 46775
+IFRyYWluZXI= 46776
+IENyaW1lYQ== 46777
+IGRpYXBlcnM= 46778
+IGNvdmV0 46779
+IE1haGFy 46780
+IEh1dGNo 46781
+IEF1c3c= 46782
+YmVydHk= 46783
+IGluZGlmZmVyZW50 46784
+0LrRgNC10YI= 46785
+dWxkYWRl 46786
+IGhhcm1z 46787
+otmG 46788
+bGVzaWE= 46789
+IGdpbw== 46790
+IE1pc3RyZXNz 46791
+IEtub3g= 46792
+IEZSRUU= 46793
+IOujqOs= 46794
+INC90LDRiNCw 46795
+IGludmluY2libGU= 46796
+IG1haWRlbg== 46797
+IEplZXo= 46798
+IGJyZXZl 46799
+cG9sZQ== 46800
+IGNyaXRpY2lzbXM= 46801
+IFJ1c2lh 46802
+4KSu 46803
+cGhpbg== 46804
+IENvbXBhcmU= 46805
+IEJPTg== 46806
+IHNuZWFraW5n 46807
+IFJhaWxz 46808
+IEdlcmFs 46809
+IDE5NTM= 46810
+SG9sYQ== 46811
+INC+0L/Ri9GC 46812
+IHJhaW5mb3Jlc3Q= 46813
+IGJlbHVt 46814
+IE9iaQ== 46815
+IElTUw== 46816
+INCh0LI= 46817
+IGJsb25k 46818
+IHd6Z2w= 46819
+IHBvd2llZHppYcWC 46820
+IGNob2tpbmc= 46821
+IFNvbmdz 46822
+IEJpcmF6 46823
+IHllbGxz 46824
+IHN0eWxpc3Q= 46825
+z4zPhM61 46826
+IHNjaHJlaWJlbg== 46827
+IEphdw== 46828
+IEVsZXZlbg== 46829
+IFJpZg== 46830
+Ly4= 46831
+IOyYpOuenOunjA== 46832
+IHRyZWF0aWVz 46833
+dWZmZWQ= 46834
+IOKIkg== 46835
+IHJvb2Zz 46836
+4LmA4Liq 46837
+IOu7 46838
+IHNwYXJrbGU= 46839
+IEtpZXY= 46840
+IEFyZ3U= 46841
+ZXJlY2h0 46842
+INCd0LDQtNC+ 46843
+IEZJTA== 46844
+IG1vbHRh 46845
+IERldmk= 46846
+IGNhbXBl 46847
+IGJlbmV2b2w= 46848
+IFRvdWdo 46849
+IG1vaW0= 46850
+IGV2YWN1YXRl 46851
+IGVycmFkbw== 46852
+0YDRg9Cz0L4= 46853
+IO2OmA== 46854
+IM6TzrnOsQ== 46855
+IHdlYWtlbg== 46856
+IGlsbHVtaW5hdGVk 46857
+IHNpZ2xv 46858
+IFZhY2M= 46859
+0LjQtdC5 46860
+YWxpcw== 46861
+INGD0YHRgtGA0L7QuQ== 46862
+IGRvbmE= 46863
+xYJvcw== 46864
+w7xtYW4= 46865
+IHByb2R1Y2Npw7Nu 46866
+IGNsb3Q= 46867
+IE1hbmdv 46868
+IHVuZWFzeQ== 46869
+IHNodXRz 46870
+IEV4YW1wbGVz 46871
+dmVsbA== 46872
+ZWJl 46873
+IHByb21wdGx5 46874
+IFRlbGVz 46875
+INC/0YDQvtGI0Ls= 46876
+IHB1ZXJ0YQ== 46877
+IMO8YmVyemV1Zw== 46878
+IGNvY2g= 46879
+c29jaWFs 46880
+IEJlbnNvbg== 46881
+IE1ldGg= 46882
+IEV4cGVk 46883
+IHN1cHBsZW1lbnRhbA== 46884
+IGNvbmNlaXZl 46885
+INeY15XXkQ== 46886
+IGNhcHRpdml0eQ== 46887
+j5nslYg= 46888
+INGF0YPQtA== 46889
+Zm9ybWluZw== 46890
+IHVwbG9hZHM= 46891
+IHR1cmJ1bGVuY2U= 46892
+am9pbnQ= 46893
+IHNhdGlzZmFjdG9yeQ== 46894
+IEFuaW1l 46895
+IHdhc2hlcw== 46896
+IGxpYmVyYWxz 46897
+IFN1bnNoaW5l 46898
+IFJFQUw= 46899
+dWJsaWs= 46900
+YmluYXJ5 46901
+VG9ueQ== 46902
+IHBvbGFyaXplZA== 46903
+IGVucmljaGVk 46904
+dGFraW5n 46905
+IOuBneuCmA== 46906
+IHBsZWFzdXJlcw== 46907
+IGV4dGVybWlu 46908
+aW5lc2U= 46909
+YXRs 46910
+dsOkcg== 46911
+0LDRgNGL 46912
+IG15xZs= 46913
+bmFycmF0b3I= 46914
+INC+0LTQvdC+0Lw= 46915
+IG5handpxJk= 46916
+IG1vYmlsaXpl 46917
+IG1pbGxvcg== 46918
+IGF0YQ== 46919
+IHBvbMOtdGljbw== 46920
+IHBsZWFk 46921
+IHBhaW50ZXJz 46922
+IFNvdw== 46923
+0L7RhA== 46924
+IOyYm+uCoA== 46925
+INGH0YLQvtCx 46926
+IHNhYm9y 46927
+IFVuZGVydA== 46928
+IEpFUlJZ 46929
+xaHDrQ== 46930
+IOuwluyXkA== 46931
+IHByw6ljw6lk 46932
+IGFubm90YXRpb24= 46933
+IEluYXVkaWJsZQ== 46934
+IHRleHR1cmVk 46935
+IGZpc2hlcm1hbg== 46936
+dm9yZGFu 46937
+aWNoZXJ1bmc= 46938
+IOyggeydtA== 46939
+IGdlemVpZ3Q= 46940
+IG1hbmRhdGVz 46941
+IGJlYWs= 46942
+IFRXTw== 46943
+IEFrYmFy 46944
+aWxpYW4= 46945
+IHRp4bq/cA== 46946
+IHN1cGVyaW9yaXR5 46947
+aW5rdQ== 46948
+IGx5cw== 46949
+IEZDQw== 46950
+IENQQQ== 46951
+dXN0ZXJpbmc= 46952
+bmljb3M= 46953
+YW5qYQ== 46954
+IGNoaWxscw== 46955
+IENhZ2U= 46956
+IHNlYWxpbmc= 46957
+IHNhw6c= 46958
+IGRlZGFucw== 46959
+IEFsZ2Vy 46960
+IHNwZXppZQ== 46961
+IGNvbG9zcw== 46962
+xLF5xLE= 46963
+Y2xvY2t3aXNl 46964
+IGV4YWN0YW1lbnRl 46965
+IGllbWFuZA== 46966
+YW3EsQ== 46967
+IG1hbmRhcg== 46968
+cmFq 46969
+ZmFjZWQ= 46970
+YWd1YQ== 46971
+IOq5lOs= 46972
+IGluc2Jlc29uZGVyZQ== 46973
+IGRyaXp6bGU= 46974
+IGRpbWluaXNo 46975
+IFlvZGE= 46976
+QUk= 46977
+IGJpbG1peW9ydW0= 46978
+IE1NQQ== 46979
+YXRlZ29yeQ== 46980
+INC/0LXRgNC10L8= 46981
+IHBhcnRpY2lwYXI= 46982
+IG5vcm1hbGl6ZWQ= 46983
+IGNvbXBsZXhpdGllcw== 46984
+0LDRgNC+0LI= 46985
+bWlzdA== 46986
+aWNoYQ== 46987
+R3JvdXA= 46988
+IHJlc2lsaWVuY3k= 46989
+IG5vZ2xl 46990
+IENOQw== 46991
+cHLDvA== 46992
+IHBoeXNpY2lzdHM= 46993
+0L3QvtC6 46994
+TEk= 46995
+IHN0dWZmcw== 46996
+IHNpc3RlbWFz 46997
+IGludGVyZmVyaW5n 46998
+IE1hcnZpbg== 46999
+w6lyY2l0bw== 47000
+IOyXhuqzoA== 47001
+IHNvbmlj 47002
+IGVxdWl2 47003
+IGFib3Jk 47004
+IFJhbWVu 47005
+IDA5 47006
+bWVkaW0= 47007
+YXRpcXVlcw== 47008
+INC00LXQu9Cw0Y7Rgg== 47009
+IHVuYW5pbW91c2x5 47010
+IHNraXJ0cw== 47011
+IO2KueuzhA== 47012
+IFByaXg= 47013
+a2FtaQ== 47014
+IGZydWl0aW9u 47015
+IGJpcnRoZGF5cw== 47016
+0LjQutC+0Lw= 47017
+IGluYXVndXJhbA== 47018
+IGNvcnJlbGF0ZQ== 47019
+IFRvcnk= 47020
+IOuCmOyB 47021
+IGRldw== 47022
+IFByZWNpcw== 47023
+aWhp 47024
+IOusuOygnOqwgA== 47025
+IGNpdGluZw== 47026
+IExhbmE= 47027
+IEthZw== 47028
+IHBsYXl0aHJvdWdo 47029
+IFByb3RvY29s 47030
+ZnJpc3Q= 47031
+aG92YWg= 47032
+IG1lcmNpZnVs 47033
+IGJpbGluZ3VhbA== 47034
+IEd1aXRhcg== 47035
+cmg= 47036
+IGdsYW1vcm91cw== 47037
+IFZpa2luZ3M= 47038
+IE9vb29o 47039
+7ZWY64qU642w 47040
+IFVnYW5kYQ== 47041
+IGNvbGxhcHNlcw== 47042
+ZW50cnk= 47043
+IGFudGlveGlkYW50cw== 47044
+64KY6w== 47045
+0YjQsNGP 47046
+IHRyaXZpYQ== 47047
+IGfDpGxsZXI= 47048
+IGZ1bmdp 47049
+IG1pbGtz 47050
+IGRpY2h0 47051
+zrzOtw== 47052
+cG9rZQ== 47053
+INCy0YvQv9GD0YHQug== 47054
+IGZlZWRlcg== 47055
+IEFsY29ob2w= 47056
+aG93ZXI= 47057
+IGRlc2VydmluZw== 47058
+IFJlYmVs 47059
+aW9zaXM= 47060
+IDEwMw== 47061
+IGhhbmRvdXQ= 47062
+IGVubQ== 47063
+IGxhbmRsb3Jkcw== 47064
+IGdlb2xvZ3k= 47065
+cmlscw== 47066
+IGNvYnJh 47067
+IFZvbGQ= 47068
+IFBhbmNo 47069
+IEdSRUc= 47070
+IHByb3Nz 47071
+IGJyYWNlbGV0cw== 47072
+IFZlZ2E= 47073
+IHJvenVt 47074
+0LDQt9C0 47075
+IEx5bmQ= 47076
+IEhvbm9ycw== 47077
+IHN1cnJlbmRlcmVk 47078
+IGxpYnJhcmlhbnM= 47079
+MTI1 47080
+INGB0LjQsw== 47081
+IHVuaWZvcm1seQ== 47082
+IEVhZ2xlcw== 47083
+7JWZ 47084
+0LjRgtCw0L0= 47085
+YW5kaWQ= 47086
+IOygiOuMgA== 47087
+INi2 47088
+IGFycmVzdHM= 47089
+IENTVg== 47090
+IEF6ZXJiYWlqYW4= 47091
+b3J0aWM= 47092
+IERY 47093
+IEFkdmVudHVyZXM= 47094
+IGFidXM= 47095
+IEZhdQ== 47096
+IHNjaGxpbW0= 47097
+IHJhdHRsaW5n 47098
+IGNvbnN1bWVz 47099
+IFRvbGtpZW4= 47100
+IHJlc3VycmVjdGVk 47101
+IFhZ 47102
+7Yq46rCA 47103
+INCy0YvRgdGC0YPQvw== 47104
+IEFuZ2ll 47105
+xbxlbmlh 47106
+TWlj 47107
+IFNoZWlsYQ== 47108
+YWNodGV0 47109
+IG92ZXJzdA== 47110
+IGzDog== 47111
+IGluZWZmZWN0aXZl 47112
+IHdpY2h0aWdlcg== 47113
+IHZpbm8= 47114
+IHB1bQ== 47115
+IGFuZ2xlZA== 47116
+IFBpb25l 47117
+IE3hu7k= 47118
+d2/Fm8SH 47119
+ZHJhdw== 47120
+4Lix4LmI 47121
+bWFya2V0cw== 47122
+IGNhZmVz 47123
+IENlbQ== 47124
+4p2k 47125
+IFN1aXQ= 47126
+TUs= 47127
+IGVtcGhhc2l6ZXM= 47128
+IHRvcnRpbGxh 47129
+IG1lam9yYXI= 47130
+IFN1cnZpdg== 47131
+Y2FzdGluZw== 47132
+IGVkdWNhY2nDs24= 47133
+IEd1bQ== 47134
+dWVseQ== 47135
+IOyXrOq4sOuKlA== 47136
+IHN0cmV0Y2h5 47137
+ZW7Dp2E= 47138
+IHdpdGhob2xk 47139
+IGV4aXRpbmc= 47140
+IGVudGhhbHB5 47141
+IFRyYW5zaXQ= 47142
+xLFsbcSxxZ8= 47143
+YWxpZXM= 47144
+IHNhbHZhcg== 47145
+IGxlYW5lZA== 47146
+IGdyb8OfZXM= 47147
+IGZpdHQ= 47148
+0LDQutC4 47149
+U2FyYWg= 47150
+IGhvc3RlbA== 47151
+IGZpbmdlcm5h 47152
+IG5hZHppZWrEmQ== 47153
+d2l2ZXM= 47154
+UmVj 47155
+IHNwb29s 47156
+0LDRgtC+0LI= 47157
+IEVuZW15 47158
+IGZ1cnk= 47159
+IGRldHRh 47160
+IEZheQ== 47161
+0Y/RjtGC 47162
+IGFwcm94aW1hZGFtZW50ZQ== 47163
+IHNpbG9z 47164
+IG1hZ2lzdA== 47165
+IGNyZWU= 47166
+IEtyYW5r 47167
+IERPV04= 47168
+IHN0YXJ0bGVk 47169
+IHJlYm9ybg== 47170
+IFVtd2VsdA== 47171
+IFN1emFubmU= 47172
+0L3QuNGG0Ys= 47173
+b3V0ZXo= 47174
+IEpBQw== 47175
+eWFyZHM= 47176
+cmFkYXM= 47177
+cmF1 47178
+aXB0cw== 47179
+aGFpbA== 47180
+IHBhcmFncmFwaHM= 47181
+IG1lZ2xpbw== 47182
+IGlzb2xhdGluZw== 47183
+IGFjZWl0ZQ== 47184
+IEhhcnNo 47185
+IGN5c3Q= 47186
+IEJsb2NrY2hhaW4= 47187
+INGF0L7RgNC+0YjQuNC5 47188
+IHZpcnR1b3Vz 47189
+IGludmVzdGlnYWNpw7Nu 47190
+IGRldm9pcg== 47191
+IG1hc3R1cmI= 47192
+IFNhbGU= 47193
+2YrYsdip 47194
+IM6n 47195
+IFN0cmHDn2Vu 47196
+IGRpa2s= 47197
+IGFmb3Jl 47198
+IEp1bmdrb29r 47199
+IGNob2NpYcW8 47200
+IERlYmF0dGU= 47201
+IHdlaXJkbHk= 47202
+IHZpYWpl 47203
+cmVnaXN0 47204
+SGVscA== 47205
+IGtpbmRlcmVu 47206
+IGZvcm11bGF0ZWQ= 47207
+IGVuZmlt 47208
+IFRvd2FyZHM= 47209
+0LrQvtGX 47210
+aXZlcmluZw== 47211
+INC00LXRgtC4 47212
+Y2hhcmdlcg== 47213
+IHB1cmw= 47214
+IGFjYWRlbWljYWxseQ== 47215
+IE51cnNl 47216
+IGRlbGV0aW5n 47217
+YXlv 47218
+IHJlZnVzYWw= 47219
+IGRlcGljdHM= 47220
+IERyYWN1bGE= 47221
+IHRvYXN0ZWQ= 47222
+IFpvbWJpZQ== 47223
+IFN1cGVyaW9y 47224
+IEJvbGQ= 47225
+IHF1aXp6ZXM= 47226
+IGdsZQ== 47227
+NDUw 47228
+IGNvbWXDp28= 47229
+eW5u 47230
+IHZlcnN0 47231
+IE9sYWY= 47232
+IHBvbW9j 47233
+IFNhc2s= 47234
+65g= 47235
+IFRDUA== 47236
+IFByb3BlcnR5 47237
+7ZWY7KOg 47238
+4Lic4Lih 47239
+Ym9vbQ== 47240
+YXJvcw== 47241
+INGA0L7RgdGB0LjQuQ== 47242
+INCx0YvQstCw0LXRgg== 47243
+IOydtOyVvOq4sOulvA== 47244
+IGNvbWJpZW4= 47245
+dmFjYw== 47246
+IGViZW5mYWxscw== 47247
+cGFyYQ== 47248
+INC30Lw= 47249
+IGRlc3BlcmF0aW9u 47250
+b3JkcmU= 47251
+INep15zXmQ== 47252
+IGdlbmVyb3VzbHk= 47253
+INCe0Lo= 47254
+IG9yYml0aW5n 47255
+Pjwv 47256
+IGVzcMOt 47257
+IENPUA== 47258
+dmlzaWJsZQ== 47259
+INC/0YDQtdGB0YLRg9C/ 47260
+IHN0aXRjaGVk 47261
+4K+ILg== 47262
+IGxhdGVudA== 47263
+IFByYWI= 47264
+IE1jTg== 47265
+IEhlYWxpbmc= 47266
+IEN1cmlvc2l0eQ== 47267
+Y2VydA== 47268
+IOuvvOyjvA== 47269
+IHBhdGllbnRseQ== 47270
+IFlU 47271
+Zm9yZWlnbg== 47272
+IHbhuqtu 47273
+IGluZHVzdHJp 47274
+IGNvY2t0YWlscw== 47275
+IGJyaWdodGVu 47276
+IGNvbnNvbGlkYXRlZA== 47277
+0LDRgNC0 47278
+bHRyeQ== 47279
+IGdyaWxsZQ== 47280
+IGJvbmE= 47281
+IGRpbGlnZW50bHk= 47282
+IFdyZXN0bGVNYW5pYQ== 47283
+ZXJrdA== 47284
+ZW5lcmd5 47285
+OTk5 47286
+4K6V4K61 47287
+IHRvdGU= 47288
+aW9ubw== 47289
+RElP 47290
+IHNjaGl6b3BocmVuaWE= 47291
+IHBvc3Rwb25lZA== 47292
+IFFpdQ== 47293
+IM+Dz4XOvQ== 47294
+IHpkasSZ 47295
+IHNwYW5uZW5k 47296
+IERJUw== 47297
+UmVs 47298
+IHJoaW4= 47299
+aW1tdW5l 47300
+T2xk 47301
+IHBsw7Z0emxpY2g= 47302
+IG1vdW5k 47303
+IGFzdHJvbm9taWNhbA== 47304
+IEd1aWQ= 47305
+IEN1bA== 47306
+SEk= 47307
+IMWg 47308
+IHJlcG8= 47309
+IE1hdXJpY2U= 47310
+IGJhbmRpdHM= 47311
+IERlc2t0b3A= 47312
+w6Rzcw== 47313
+ZnRh 47314
+IGxpY2VuY2U= 47315
+IGltYWdpbmFy 47316
+IEVudHJlcHJlbmU= 47317
+eG8= 47318
+IOunm+yeiOuKlA== 47319
+INeU15E= 47320
+IHB1bXBraW5z 47321
+IGthbnNzYQ== 47322
+IGrEmXp5 47323
+IGNvbW11bmF1dMOp 47324
+YsO8cg== 47325
+IGVyaMO2 47326
+IFdvbHZlcg== 47327
+IFNoYXJpbmc= 47328
+IHBha2Fp 47329
+IGluc3VsdGVk 47330
+0JzRiw== 47331
+0L7Rlw== 47332
+IGNvbnNpc3Rl 47333
+IHlvdW5nc3RlcnM= 47334
+IGdsZWljaGVu 47335
+d2VkZXI= 47336
+IG1vdGU= 47337
+IGNsYXVzZXM= 47338
+w6l0YXQ= 47339
+cHJ1cw== 47340
+IHdhc3Q= 47341
+IENyaXNw 47342
+IG9mZmVuZGVycw== 47343
+IGNvbnZlY3Rpb24= 47344
+IGNvbmZpYW4= 47345
+b2xsb3c= 47346
+YW1ldA== 47347
+INGX0YU= 47348
+ZmZpY2llbmN5 47349
+IHVuZ2xhdWI= 47350
+aWdhbnM= 47351
+IG1hcmtldGVk 47352
+IFZBTg== 47353
+IHByb2NsYWltZWQ= 47354
+IGPDqWx1bGFz 47355
+IGNvbGxpZGU= 47356
+IE9jdWx1cw== 47357
+YWRvcmU= 47358
+Smk= 47359
+IHN1c3RhaW5pbmc= 47360
+IEZhc2M= 47361
+IHNldHp0 47362
+IG5vc2FsdHJlcw== 47363
+TW9zdA== 47364
+INCy0Yc= 47365
+IG5hdWM= 47366
+IEJoYXI= 47367
+IHnDqnU= 47368
+IHRpbWVzdA== 47369
+IHBlcnRhbWE= 47370
+aXJtaQ== 47371
+IHp3cg== 47372
+IHZlcmJlc3M= 47373
+IHZvcnRleA== 47374
+IFNUQUNL 47375
+2KvYsQ== 47376
+uYTr 47377
+lJTsmKQ= 47378
+IGxpbmthZ2U= 47379
+IEZyYXNlcg== 47380
+ZW5hcmlv 47381
+IOudvOuKlA== 47382
+IOyEoOuwsA== 47383
+aHRoYWw= 47384
+IOq5jA== 47385
+IEtow7RuZw== 47386
+w4M= 47387
+IHNjcmFtYmxlZA== 47388
+IEVpbms= 47389
+IG1pY3Jvb3JnYW4= 47390
+IG5hcmNpc3Npc3Q= 47391
+IEtvbWJhdA== 47392
+IOunoQ== 47393
+IEFHQQ== 47394
+IHBlcmZla3Q= 47395
+IFNlcmll 47396
+ZGV0ZXJt 47397
+LSc= 47398
+IHBvbnl0YWls 47399
+IGtvc2th 47400
+7JM= 47401
+IG9iZWM= 47402
+IGNoZXN0cw== 47403
+dmVlcg== 47404
+IHVwcmlzaW5n 47405
+IHN0b2tlZA== 47406
+YXNzb2Np 47407
+IHByb2R1w6fDo28= 47408
+IFNoYXBl 47409
+7KCc6rCA 47410
+IOuUsA== 47411
+IGpvbg== 47412
+IGluYWR2ZXJ0 47413
+YW50YXM= 47414
+INC90LDQutC+0L3QtdGG 47415
+IEFyc2VuYWw= 47416
+IHByb3RlZw== 47417
+IGxpYmVydMOp 47418
+IGdsYXJl 47419
+IHZlcmVpbg== 47420
+IGluc2VydHM= 47421
+IEphbmE= 47422
+IHd5ZGFqZQ== 47423
+xYJ1bQ== 47424
+ICUu 47425
+b3JpZ2luZQ== 47426
+IHN5bmFnb2d1ZQ== 47427
+IGZhbGxhaXQ= 47428
+IGRpc29iZWQ= 47429
+IGFudGlj 47430
+IEN5Y2w= 47431
+IGFzeW5jaHJvbm91cw== 47432
+IOuyjOyNqA== 47433
+IGdlc3VuZA== 47434
+IGdhZ24= 47435
+IHBlYQ== 47436
+IGdyaW4= 47437
+w6lzdA== 47438
+IHNhdWM= 47439
+IE3DpGQ= 47440
+7ZW064+E 47441
+cHBz 47442
+IM61z4DOuQ== 47443
+IHBldXBsZQ== 47444
+IGRlYmVu 47445
+IEJyZWU= 47446
+INGA0L7Qu9GM 47447
+INC60LDQutC40Lw= 47448
+IMO6dGls 47449
+IGRpc3RyaWJ1dG9y 47450
+0LDQu9GL 47451
+IHN3b2rEhQ== 47452
+IGZvbGtsb3Jl 47453
+IHJlY2VpdmVycw== 47454
+IE1PTw== 47455
+Ymlucw== 47456
+YXN0cmU= 47457
+7JWI6w== 47458
+IOuEo+qzoA== 47459
+IG11bHRpbWVkaWE= 47460
+IGdlYmF1dA== 47461
+0L7QstGL0YU= 47462
+w6N5 47463
+IGRhbmU= 47464
+b2tvbA== 47465
+ZW1pdGlzbQ== 47466
+T05FWQ== 47467
+IHlhxJ8= 47468
+IGNoYXVmZg== 47469
+IGVzZnVlcg== 47470
+xINu 47471
+ZXJ0YXM= 47472
+IGZvbmN0aW9ubmU= 47473
+b21pbmE= 47474
+IGl2b3J5 47475
+IFlvdXR1YmVy 47476
+IFNreXdhbGtlcg== 47477
+0LjRh9C10YHQutCw0Y8= 47478
+dG9p 47479
+IHZleWE= 47480
+IGdlbGVybnQ= 47481
+IGNoYW5jZWxsb3I= 47482
+IFN0YXRpc3RpY3M= 47483
+IHdlbGRlZA== 47484
+IG9uZGFu 47485
+IFNlaQ== 47486
+IG1lZGljYWxseQ== 47487
+IGVuZXJnaXplZA== 47488
+IFZpYQ== 47489
+INCy0LjQug== 47490
+IHVuaW50ZXI= 47491
+IGhpZ2huZXNz 47492
+IO2MlOs= 47493
+IGFtcGxpZmllZA== 47494
+IFNlcmdleQ== 47495
+IE1pbnM= 47496
+d2FybQ== 47497
+cGVsbA== 47498
+b3BoaWxl 47499
+IGjDqA== 47500
+IEJlbG8= 47501
+IFNrZXRjaA== 47502
+IGNoYXJhY3Rlcml6YXRpb24= 47503
+YW5zZW4= 47504
+INGC0YPRgA== 47505
+IOOFi+OFi+OFiw== 47506
+Tm90ZQ== 47507
+IGtvxZ8= 47508
+IGNpZXJ0 47509
+Zmx1 47510
+IGJhaHQ= 47511
+IERvd250b3du 47512
+IENSSVM= 47513
+b2RpZQ== 47514
+MTQw 47515
+IGxpdHJlcw== 47516
+IGdyaWV2 47517
+IOyUqOqwgA== 47518
+IHN1Y2NlZWRz 47519
+IF9f 47520
+ZW50aW5n 47521
+IHZpbW9z 47522
+IHPDrA== 47523
+ZGVmZW5zZQ== 47524
+IE1jRA== 47525
+IE1hcmlvbg== 47526
+IERvbnQ= 47527
+IEREUg== 47528
+IExhemFy 47529
+IERBUg== 47530
+IGt1dg== 47531
+S24= 47532
+IHNlbWJsYQ== 47533
+IGFpcmJvcm5l 47534
+IFZpb2xlbmNl 47535
+65CQ 47536
+IHJlc3RyYWludA== 47537
+IHdoaXN0bGVz 47538
+IHNjb2xkZWQ= 47539
+IGFjY2Vzbw== 47540
+IGFic29sdXRhbWVudGU= 47541
+IFR5bA== 47542
+IFNhcA== 47543
+toDrtoQ= 47544
+aXTDpHRlbg== 47545
+YWRlbQ== 47546
+IMO9 47547
+IHByZXNjcmliZQ== 47548
+IE1hZ2U= 47549
+IEhlbGVuYQ== 47550
+dnQ= 47551
+IHZpZW5lbg== 47552
+IHNuZWV6 47553
+IG1vbMOp 47554
+xrDhu59uZw== 47555
+IHRyYW5zcG9ydGluZw== 47556
+IExlYW4= 47557
+IGt1bmc= 47558
+0YPRgNCw 47559
+z4TOrQ== 47560
+dXRjaGVz 47561
+b25kZXJz 47562
+bGl5b3I= 47563
+TmF0 47564
+IHppag== 47565
+IG1hbW1hbA== 47566
+IGvDpHl0 47567
+IEpvYW5uYQ== 47568
+c2VudA== 47569
+IOCkuA== 47570
+IHZlc3RlZA== 47571
+IEVyZmFocnVuZw== 47572
+b2tlZQ== 47573
+IGNsaXBwaW5n 47574
+IExpc3RlbmluZw== 47575
+ICgj 47576
+ZsO2 47577
+IHZpZGFyZQ== 47578
+IGJyaXR0bGU= 47579
+IFNUQVJU 47580
+IERhbWFz 47581
+IFlvZw== 47582
+Z2FydA== 47583
+IHZlcmxpZXI= 47584
+IGhlYXJ0ZmVsdA== 47585
+IGRvxZvEhw== 47586
+7LmY6rCA 47587
+LsK7 47588
+IG1heGltYWw= 47589
+IGRpc3RpbnRvcw== 47590
+IOyZnOuDkO2VmOuptA== 47591
+IHNhaWxlZA== 47592
+IGNvbnZleWVk 47593
+IFRpbmRlcg== 47594
+IFNVUEVS 47595
+0L3QuNGG0YM= 47596
+Y29udHJvbGxlZA== 47597
+IGZ1bno= 47598
+IGJhc3RhcmRz 47599
+IEdpbnNidXJn 47600
+IG51b3Zv 47601
+IFBlcmU= 47602
+IEpFUw== 47603
+IERpbmdlbg== 47604
+IEJldHM= 47605
+dW1iYQ== 47606
+YWNjacOzbg== 47607
+IOyeiOyngOunjA== 47608
+IHJldHJh 47609
+IExhdXJlbnQ= 47610
+IHBvenk= 47611
+IGdyb292ZXM= 47612
+IG3DoXF1aW5h 47613
+IG1pbmlvbg== 47614
+IGRlaW5lbg== 47615
+IFNoYXVu 47616
+15nXmQ== 47617
+IGhvbm9yYXJ5 47618
+b3NhdXJ1cw== 47619
+IHplaXQ= 47620
+IGVzcGVjaWU= 47621
+IEJDRQ== 47622
+0LDRgtC1 47623
+SnVzdGlu 47624
+IFdoZWVscw== 47625
+IOydtO2VtA== 47626
+INio2YrZhg== 47627
+IHByb3B1bHNpb24= 47628
+IHBlcmNlYmVy 47629
+IE5ld21hbg== 47630
+5bQ= 47631
+Y3Vsb3Npcw== 47632
+TWk= 47633
+INCw0LrQutGD 47634
+IG1hc3RlcmluZw== 47635
+IGzDpGg= 47636
+IGZpc3Rz 47637
+IG1hcmluYWRl 47638
+TGlsbHk= 47639
+IOuFuOugpQ== 47640
+IFlI 47641
+IHVyZ2VudGx5 47642
+IGluZm9ybWF0aW9uYWw= 47643
+IGFjb3Jkbw== 47644
+aXp6eQ== 47645
+7J207Ja0 47646
+aW1hcg== 47647
+IOuCmOyYpOs= 47648
+IHR3ZW50aWVz 47649
+IHJhc3A= 47650
+IGJ1bXB5 47651
+2KjYqQ== 47652
+d29ya2Vy 47653
+IHF1aWNrZXN0 47654
+IGF0dGFjaGVz 47655
+0LLQuNCz 47656
+IOuCmO2DgOs= 47657
+IHB1cmVl 47658
+IG92ZXJzaXplZA== 47659
+IHN0aXJyZWQ= 47660
+IGpha2lt 47661
+IGhvbWljaWRl 47662
+aXNjaWxsYQ== 47663
+IOyxmQ== 47664
+IHNwZWN1bGF0aXZl 47665
+IGFzc2lzdHM= 47666
+bWFpbg== 47667
+asOkaHI= 47668
+aW5kZXQ= 47669
+IMWfdXI= 47670
+IGZvcmVjYXN0cw== 47671
+IGRpdmVyc2lvbg== 47672
+IHRhcmU= 47673
+IG9nbA== 47674
+IE9yZ2FuaXNhdGlvbg== 47675
+IENoZXZ5 47676
+IGJhamE= 47677
+YW5kxLFy 47678
+INmI2YTYpw== 47679
+IHJhZGlhbnQ= 47680
+IGxpYWlzb24= 47681
+IGRlbW9rcmF0 47682
+IE1BUkM= 47683
+z4DOv8+F 47684
+IHJ1bnQ= 47685
+IHByw6ljaXM= 47686
+IGdldmVu 47687
+IHbDqWhpYw== 47688
+IEpFU1M= 47689
+U1RS 47690
+IOyWmOs= 47691
+IHZpc2lvbmFyeQ== 47692
+IGJ1cmFkYW4= 47693
+IHJlYmlydGg= 47694
+IGV4aGliaXRlZA== 47695
+IE1ldGFsbA== 47696
+b2xpZQ== 47697
+ZWx5bg== 47698
+IGZsYXZvdXJz 47699
+IGVzY3JpdG8= 47700
+IERlbGV0ZQ== 47701
+IOyVjOyVmOyWtA== 47702
+INGD0LrRgNCw0ZfQvQ== 47703
+IGludGVycnVwdGluZw== 47704
+IGlkZW50aWZpYw== 47705
+IFN1enVraQ== 47706
+IExhbmRpbmc= 47707
+YW5kaQ== 47708
+IGVzdHJhbg== 47709
+IGNvdWxldXI= 47710
+IGFncmFk 47711
+IFNueQ== 47712
+IOCuh+Cusg== 47713
+IGFuZGVy 47714
+IHJ1YQ== 47715
+IHByaXNl 47716
+IGxhdXJl 47717
+IO2KgA== 47718
+IG1vZGVyYXRpb24= 47719
+IGVyZmFocmVu 47720
+IGRlY29uc3Q= 47721
+IFJlZXNl 47722
+IFBL 47723
+ZXRvcw== 47724
+IEdyYXZpdHk= 47725
+IEVyZW4= 47726
+IG92ZXJib2FyZA== 47727
+IG3DvHNzdA== 47728
+IEVtYWls 47729
+0LXRgNC8 47730
+eWRp 47731
+acSZZHp5 47732
+IExPVQ== 47733
+IEZ1w59iYWxs 47734
+IFJE 47735
+YWx0cw== 47736
+IOyKpO2KuOs= 47737
+INCa0YDQsNGB 47738
+IHRlbGV2 47739
+INGA0L4= 47740
+IHJlc2lnbmF0aW9u 47741
+IGppbmdsZQ== 47742
+IFN0dWRpZW4= 47743
+IElY 47744
+IFNlbnRpbmVs 47745
+IFBhbmc= 47746
+6YQ= 47747
+SmFrZQ== 47748
+IHBlcnNvbmFnZW0= 47749
+IG3DqWRpYQ== 47750
+IENoZXJu 47751
+YW50aWNhbGx5 47752
+IHRo4budaQ== 47753
+IHBhcmFseXNpcw== 47754
+IGphcGFuZXNl 47755
+IGNvbmV4 47756
+IGVmaWM= 47757
+IHVuZGVyc2lkZQ== 47758
+IG5lb2w= 47759
+IGZpYW4= 47760
+0LjQvNC+0YHRgtGM 47761
+IHF1aXJreQ== 47762
+IHBpc3Rh 47763
+IENsZW1lbnQ= 47764
+bm90aGluZw== 47765
+INC/0L7QtdGF 47766
+IGhvcnJlbmQ= 47767
+IGNvbnNvbGlkYXRl 47768
+cGxveXM= 47769
+ZW1ha2Vy 47770
+SmVubmlmZXI= 47771
+IG51bcOpcm8= 47772
+IGZhbW9zbw== 47773
+IE5lcHR1bmU= 47774
+IO2WiOyWtA== 47775
+INC/0YDQtdC30LjQtA== 47776
+IHNpdGNvbQ== 47777
+IHNlcmlv 47778
+IG11ZQ== 47779
+IGdsYW5kcw== 47780
+IGLDtnJqYXI= 47781
+IFlK 47782
+IFJpb3Q= 47783
+cGFyYWd1cw== 47784
+IHNlZ3VyYW7Dp2E= 47785
+IGltbWF0dXJl 47786
+IE1hZG9ubmE= 47787
+4LiN 47788
+IGxpbmdlcmluZw== 47789
+IGFjZXNzbw== 47790
+IE9yaWVudA== 47791
+IFJlY29tbQ== 47792
+IGNvbXBsYWM= 47793
+Zm91bmRlZA== 47794
+YXR0ZW5k 47795
+IGNpZWxv 47796
+IFpoYW4= 47797
+bmFpcmVz 47798
+Y2Nv 47799
+INeQ16A= 47800
+IHN0YXRh 47801
+IGNvbnRyYWRpY3Rvcnk= 47802
+IFPDqQ== 47803
+IFNBTg== 47804
+IENvbm5pZQ== 47805
+IOuLueyLnA== 47806
+INGB0LDQvNC+0Lk= 47807
+IG1hamVzdGlj 47808
+IFBlbmd1aW4= 47809
+IENPTUU= 47810
+w61jaW9z 47811
+cGVybw== 47812
+IG1n 47813
+IGZhdWM= 47814
+IGNvcnJlcg== 47815
+IEdvdHRlcw== 47816
+IEFuZ2xv 47817
+SGFy 47818
+4buXaQ== 47819
+IHZpdGVzc2U= 47820
+IGFubm91bmNlcg== 47821
+IE9tYWhh 47822
+a3Vt 47823
+IHNwYXJlZA== 47824
+INGA0LDQt9Cw 47825
+INC/0L7Qu9GD0YfQuNGC0YHRjw== 47826
+IHTDpGjDpG4= 47827
+INC/0L7QvdCw0LQ= 47828
+IHBlcnRhaW5pbmc= 47829
+IFJhdGU= 47830
+aWVybg== 47831
+R29sZA== 47832
+IHRlc3Rl 47833
+IGRlxJ9pbGQ= 47834
+IGRhbXBpbmc= 47835
+IFBhcnRuZXJzaGlw 47836
+enlzdGE= 47837
+Z2VsZA== 47838
+IHNtb2tlcw== 47839
+IE1hcnJpYWdl 47840
+7Kq97JeQ 47841
+aXNjZQ== 47842
+IHRyeW5h 47843
+IERpcmVjdG9yeQ== 47844
+IOuCmOyYrA== 47845
+IHNoYW1lZnVs 47846
+IG1lbnRyZQ== 47847
+IGFzc2lnbmluZw== 47848
+IHJlcGVydG9pcmU= 47849
+IG9iamV0b3M= 47850
+IHVuZGVyd29ybGQ= 47851
+IGVuZGVhdm9ycw== 47852
+IGlnbml0ZQ== 47853
+INmI2Kw= 47854
+IGV4cGVyaWVudA== 47855
+INCX0LDQvw== 47856
+INC30LDQutC70Y7Rhw== 47857
+IHZvbHRhZ2Vz 47858
+IG5pZWdv 47859
+IGRlZmljaXRz 47860
+IGJ1ZW5vcw== 47861
+IFNsZWVwaW5n 47862
+IFNhbGVt 47863
+IHVubG9ja2luZw== 47864
+IGludGVyYWN0ZWQ= 47865
+IGVudGVuZGV1 47866
+IFN1cGVyaW50ZW5kZW50 47867
+IHN6Y3plZ8OzbA== 47868
+IHF1YXM= 47869
+IHBhbGluZw== 47870
+IGtobw== 47871
+2KjYrQ== 47872
+IGNvbGFib3I= 47873
+INC/0YDQuNCz0L7RgtC+0LI= 47874
+IG1hdXY= 47875
+IEp1ZGFz 47876
+IEFzc2lzdA== 47877
+INGC0LXRgNGA0Lg= 47878
+INC90LDRgdC60L7Qu9GM0LrQvg== 47879
+IHN1YnNpZHk= 47880
+IEVtYmFzc3k= 47881
+IGRhZ2Vu 47882
+IFNhbnRv 47883
+16nXldeR 47884
+IGFicnVwdGx5 47885
+IEFkYXB0 47886
+IHZhYWs= 47887
+IHBvc3RhbA== 47888
+IGludmVzdGly 47889
+IGZpcXVlaQ== 47890
+IGRvd250aW1l 47891
+IFdlYmI= 47892
+IE5DQUE= 47893
+IEVzdG95 47894
+0L7Qu9C+0YI= 47895
+IOyCrOqxtA== 47896
+IG5hdGlvbmFsaXN0 47897
+IEthdGhyeW4= 47898
+IEtvcA== 47899
+6ao= 47900
+U2Vhbg== 47901
+T05B 47902
+IEJq 47903
+16LXnQ== 47904
+w61i 47905
+aWRhbWVudGU= 47906
+INCz0LvQsNC30LA= 47907
+IHVubmll 47908
+IGdlbWFha3Q= 47909
+IElOVEVSVklFV0VS 47910
+IEhhdXQ= 47911
+zq/Ovw== 47912
+Z2VvaXM= 47913
+d3lkZA== 47914
+INC60L7Qu9C4 47915
+IHRpZ2h0ZW5lZA== 47916
+IHBsYW5uZXJz 47917
+IGhlcnVt 47918
+IGfDtnLDvG4= 47919
+IGVsZWN0cm9uaWNhbGx5 47920
+IGNlcmFt 47921
+IOuLpOyWke2VnA== 47922
+IGVwaWxlcHN5 47923
+IGXEnw== 47924
+bGlucw== 47925
+IFNoaW55 47926
+INGB0L7Qu9C9 47927
+IG1hY2Fyb24= 47928
+IGltcGFjdG8= 47929
+IFZlZ2Fu 47930
+emXFhA== 47931
+IFJhcGhh 47932
+IFBhcnM= 47933
+IExFTw== 47934
+Y8O8 47935
+INec15TXmdeV16o= 47936
+IMOkaG5saWNo 47937
+IGZsb3Nz 47938
+IEFa 47939
+IG3DtmNodGVu 47940
+IGdyb29taW5n 47941
+IGdyYXNzZXM= 47942
+cmFuY2g= 47943
+IHJlY2liaXI= 47944
+IGJvdW5jeQ== 47945
+IEhvYmJ5 47946
+IHZpa3RpZw== 47947
+IGJlZ2l0dQ== 47948
+IFBpY2Fzc28= 47949
+IEt1c2g= 47950
+66qo 47951
+IG9ic3RydWN0aW9u 47952
+IOu2hOychA== 47953
+IG1pY3JvYg== 47954
+IFdlc3RtaW5zdGVy 47955
+cm9wcw== 47956
+ZHVs 47957
+IGRldm8= 47958
+IExlaHJlcg== 47959
+IEFkdmlzb3I= 47960
+dWNrZW4= 47961
+INCx0YPQvA== 47962
+IGZsYXR0ZXJpbmc= 47963
+IFRydW1hbg== 47964
+IFNlbXByZQ== 47965
+IE1jQ2Fpbg== 47966
+IEhpbmR1cw== 47967
+SnVsaWE= 47968
+IHdhdGVyc2hlZA== 47969
+IGx1c2g= 47970
+7KCE6w== 47971
+QmVmb3Jl 47972
+INCS0YLQvtGA 47973
+IFNhYVM= 47974
+IHNpdHp0 47975
+IGJlZXRsZQ== 47976
+IEVzc2VudGlhbA== 47977
+ZW5rbw== 47978
+IOuVjOuPhA== 47979
+IHJldnZpbmc= 47980
+IHBvb3Jlcg== 47981
+IGNvZXJj 47982
+IGlkZWU= 47983
+IGNvw7s= 47984
+YWxldA== 47985
+IHpkcm93 47986
+IGZlbmRlcg== 47987
+Z3Jvd3Ro 47988
+RElORw== 47989
+IHpkZQ== 47990
+RU5UUw== 47991
+IGZhY2V0cw== 47992
+dXNoaW1h 47993
+IMWfZWg= 47994
+IHBhcmFzaXRl 47995
+IGxhcHNl 47996
+IE1lZXI= 47997
+IEt1bmQ= 47998
+IHNsb2c= 47999
+IGJydW5jaA== 48000
+IENoYXJ0 48001
+YXJ6 48002
+IE1VUw== 48003
+IG9mZmVuc2Vz 48004
+IGluZ2zDqXM= 48005
+IGZvbGlhZ2U= 48006
+b3BsYW4= 48007
+QXV0 48008
+IEphY3F1 48009
+dGFr 48010
+aWVtYnJl 48011
+IHhlbg== 48012
+IG5vbWluZWVz 48013
+IGJpb21lZGljYWw= 48014
+w6lzdXM= 48015
+IGVzdHV2 48016
+z4TPjA== 48017
+QVRIQU4= 48018
+IO2VnOuNsA== 48019
+IGhlZWQ= 48020
+Y3Jvc3N0YWxr 48021
+QmlsbA== 48022
+IHNwb3VzZXM= 48023
+INGB0Y7Qtg== 48024
+IHZlcnNv 48025
+IFN2ZW4= 48026
+IENhdQ== 48027
+Y3V6 48028
+IOuztOyEuOyalA== 48029
+INGF0L7Qt9GP 48030
+IG1vY2tpbmc= 48031
+IE9uYQ== 48032
+IETDoQ== 48033
+IGZydWl0ZnVs 48034
+IGJhbnF1ZXQ= 48035
+dWRkaW5n 48036
+aW5jdGlvbnM= 48037
+ZGVydA== 48038
+c3Vk 48039
+IGRlc2Nvbg== 48040
+IEpD 48041
+IMKn 48042
+IHB1Ymxp 48043
+64iI 48044
+IGVudHNjaGllZGVu 48045
+IFJPSQ== 48046
+IOyDneqyvA== 48047
+IGvDpHl0dA== 48048
+eWFuaQ== 48049
+c2hhdw== 48050
+IHVubGVhc2g= 48051
+IG1hbm5l 48052
+IGhpc3RvZ3JhbQ== 48053
+4Lit4Liw4LmE4Lij 48054
+IGdu 48055
+IGZlbGxh 48056
+IGVpbmdlcw== 48057
+IEJ1aWx0 48058
+IHJlcHJlc2VudGE= 48059
+IHB1bmlzaGluZw== 48060
+IG91dHNpZGVycw== 48061
+0L3Rg9GC0YzRgdGP 48062
+Y3VycmVudA== 48063
+IGZhbWlsaWFyaXR5 48064
+INC00LjQsg== 48065
+IHByb2pldHM= 48066
+IGFxdWVsZXM= 48067
+IEdsdWU= 48068
+dGhvc2U= 48069
+IGluY2VwdGlvbg== 48070
+IGFxdWVsbG9z 48071
+IGlsbHVzaW9ucw== 48072
+IGF0dGVuZHM= 48073
+cmVzZQ== 48074
+IHN3YXJt 48075
+IHN3YWI= 48076
+IHJlZ2FyZGV6 48077
+IHBvc2nDp8Ojbw== 48078
+IGFraGly 48079
+IGV4dHJhY3Rpbmc= 48080
+IGFuZWNkb3Rl 48081
+IFRhbGU= 48082
+INCy0LjQvQ== 48083
+IGFiZ2Vz 48084
+IG9sdcWf 48085
+IGNvbXBsaWNhZG8= 48086
+IGNvdmFyaQ== 48087
+0ZbRgtGM 48088
+RGVy 48089
+INeZ15Q= 48090
+Rm9ybQ== 48091
+IOyWtOyojOuToA== 48092
+IHJlYWRhYmxl 48093
+IGluaGliaXQ= 48094
+IGRlY2lwaGVy 48095
+IEFuZ3J5 48096
+cGc= 48097
+4K614K6k 48098
+INGB0L7QsdGB0YLQstC10L3QvdC+ 48099
+IHNhbWg= 48100
+IGVzY3I= 48101
+IGVuY29tcGFzc2Vz 48102
+IGF1c3Rlcg== 48103
+IGNvbmZpc2M= 48104
+IE1hbmRhbA== 48105
+IH0= 48106
+YXRjaGVy 48107
+PSM= 48108
+INC60LjQvdC+ 48109
+IHN0YWw= 48110
+bHVuZ3M= 48111
+IHZvbGU= 48112
+IHJlcXVpcw== 48113
+IHDDqW4= 48114
+IGxlY3R1cmVy 48115
+IGluc2NyaXB0aW9u 48116
+IGNlcnZpY2Fs 48117
+IFRyZWFzdXJl 48118
+IEpX 48119
+Y29taW5ncw== 48120
+IGV5ZXNpZ2h0 48121
+IFRhaWxz 48122
+w61zaW1v 48123
+IHdvcmtzaGVldA== 48124
+IHN3aWZ0bHk= 48125
+IGNvbm9z 48126
+IGVsaW1pbmF0ZXM= 48127
+IEJsYXpl 48128
+0LDQu9C+0LM= 48129
+IHBpY3R1cmVk 48130
+IGdpcmFmZmU= 48131
+IExvZ2lj 48132
+IGVucmljaG1lbnQ= 48133
+Rml0 48134
+IHVuaW50ZW5kZWQ= 48135
+IHBlcnNlY3V0ZWQ= 48136
+YWthcA== 48137
+67CY 48138
+IGJhcmJlcg== 48139
+IGFyYmVpdGV0 48140
+IFN1cnByaXNpbmdseQ== 48141
+IEF1dG9i 48142
+dW5rdQ== 48143
+cHJvdg== 48144
+IExvY2g= 48145
+b2J5bA== 48146
+INC/0L7QtNCz0L7RgtC+0LI= 48147
+IMOpY29ub21pcXVl 48148
+IHBhdHQ= 48149
+IGNlYXNlZA== 48150
+INGB0L/QuNGB 48151
+IG51Y2xlaQ== 48152
+IGlzdGU= 48153
+IFdhZw== 48154
+IHp1cGXFgm5pZQ== 48155
+IHByb3ZlcmI= 48156
+IEFow60= 48157
+bGlhbW8= 48158
+IHJlbGlhYmx5 48159
+IHBpaw== 48160
+IFRyYWRpbmc= 48161
+IENvbGVtYW4= 48162
+IM6xzr3OsQ== 48163
+IG1hZ2FyaQ== 48164
+IFBISUw= 48165
+IHNoZWRkaW5n 48166
+b2huZXI= 48167
+IHBvcm5vZ3JhcGh5 48168
+IGJlbmVmaWNpYXJpZXM= 48169
+4oCi 48170
+ZW5pbg== 48171
+IHJlc29sdmluZw== 48172
+INGB0L/QvtGA0YI= 48173
+INCx0LXQsw== 48174
+IG5lY3Rhcg== 48175
+dWx0dXJh 48176
+aW1zaWNhbA== 48177
+jIDrpbw= 48178
+IHZpc8Ojbw== 48179
+w7/Dv8O/w7/Dv8O/w7/Dvw== 48180
+YXR0Zm9ybQ== 48181
+IOunnuuKlA== 48182
+IHBpbGdyaW1hZ2U= 48183
+IG1hdGluZw== 48184
+IFJlYXBlcg== 48185
+IEJyZWY= 48186
+INeR15M= 48187
+IG5vdmFtZW50ZQ== 48188
+IGdyaWxsaW5n 48189
+IFdpcmVsZXNz 48190
+IFJvbWFuaWFu 48191
+0ps= 48192
+7Jyg6w== 48193
+aGFpdA== 48194
+IEJvcmE= 48195
+QVJSWQ== 48196
+IGh5cG90aGVzZXM= 48197
+aWt1dA== 48198
+IOyVhOuyhA== 48199
+INGW0Lc= 48200
+IG5hdGlvbmFsZQ== 48201
+2KrZiQ== 48202
+w7xsbHQ= 48203
+IMOpbMOpbWVudHM= 48204
+IFdhcmU= 48205
+ICgt 48206
+0LDQu9GM0L3QvtC8 48207
+IGluZGljdA== 48208
+IFN0b25lcw== 48209
+ZXhwbG9zaW9u 48210
+IOuDhOyDiA== 48211
+IGZlbGlj 48212
+IGp1ZGljaWFyeQ== 48213
+IGluY2FybmF0aW9u 48214
+IGlubmluZw== 48215
+IGZvcm11bA== 48216
+IHNoaXBtZW50 48217
+IHJlaW5kZWVy 48218
+INC+0LfQvdCw0Yc= 48219
+IGVudm9s 48220
+dW5keQ== 48221
+INC30L3QsNGC0Yw= 48222
+INCy0LjQtNC10LvQuA== 48223
+IGV4Y2x1ZGluZw== 48224
+ZGVhdGg= 48225
+IGJlcm0= 48226
+IHNvcHJhdHR1dHRv 48227
+IGRlYmlkbw== 48228
+IFppZw== 48229
+IE92 48230
+IEtFVklO 48231
+IFBhbGU= 48232
+IE1pcmU= 48233
+IGFuZGFy 48234
+aW5jbHVkaW5n 48235
+IHN3YXBwZWQ= 48236
+IG1pc2NvbmNlcHRpb25z 48237
+IHNwb25n 48238
+csOpYWw= 48239
+IG9yYml0YWxz 48240
+IGhhc2h0YWdz 48241
+b3JpdA== 48242
+IG1hdXZhaXM= 48243
+0LjRgdCw 48244
+IGxpdnJlcw== 48245
+IElQUw== 48246
+IDA0 48247
+w7Zn 48248
+aW5zdHI= 48249
+INCy0L3QtdGI 48250
+IGhpY2U= 48251
+aXPDqWU= 48252
+IG93ZXM= 48253
+IGVzaW1lcms= 48254
+IFVI 48255
+IGlycml0YXRpb24= 48256
+IGdpZ2dsZXM= 48257
+IGNvbG9uaWFsaXNt 48258
+IEJsaXNz 48259
+c3RyaW5ncw== 48260
+IHJldW5pdGVk 48261
+IFBzYWtp 48262
+d2FjaA== 48263
+IGNsaWZmcw== 48264
+IEZhbHNl 48265
+w6Rn 48266
+cGlwZQ== 48267
+IHdob3BwaW5n 48268
+IG1lcmluZ3Vl 48269
+IGJ1bmc= 48270
+aW5kdXN0cmll 48271
+IGxlY2hl 48272
+IExveQ== 48273
+IGRyaWU= 48274
+IHBhc3NhdA== 48275
+IG9sZWg= 48276
+IGPDqXU= 48277
+IEdhYnJpZQ== 48278
+IHJlZWZz 48279
+IGJvbWJlcnM= 48280
+IGVwaXPDs2Rpbw== 48281
+IFJ1Zw== 48282
+IFByb3Nl 48283
+b25vcw== 48284
+IG9iZXNl 48285
+IGdvb2c= 48286
+IHBpYWNl 48287
+Zmxhbnplbg== 48288
+IGZsYXBz 48289
+IEFsdG8= 48290
+Rmlu 48291
+IHJlc2l6ZQ== 48292
+6re4656o 48293
+TmF0aGFu 48294
+nojroKQ= 48295
+INGC0LDQuQ== 48296
+IE5GVA== 48297
+IHNuZWV6ZQ== 48298
+IHNocm91ZA== 48299
+acOp 48300
+IHZlcmFtZW50ZQ== 48301
+IGNhc2NhZGU= 48302
+IE9vaw== 48303
+7JeG7J20 48304
+IGluZnVzZWQ= 48305
+ZnBz 48306
+Y2VudGVy 48307
+IGdyYXBwbGluZw== 48308
+IFdvaG51bmc= 48309
+IFR1bWI= 48310
+IEltbWE= 48311
+IER1eWd1c2Fs 48312
+0LXQvdGC0Lg= 48313
+IHN0ZXdhcmRzaGlw 48314
+IGhhcnA= 48315
+IGVuZG9yc2Vk 48316
+xLFsYW4= 48317
+INC+0LTQvdC40Lw= 48318
+IGNvbXBldGVuY3k= 48319
+IGJlcnQ= 48320
+IFRhbGVz 48321
+IHJoZQ== 48322
+IG9oaA== 48323
+IOqwhOuLqA== 48324
+IG1STkE= 48325
+IGdhbmdzdGVy 48326
+IFJ1bm5lcg== 48327
+0LXQvdC90YvQvA== 48328
+cGhvcmlh 48329
+IHfFgmHFm2Npd2ll 48330
+IHF1YXJ0bw== 48331
+IG9yZ2FuaXNl 48332
+IFZldA== 48333
+UGFk 48334
+INmF2Ks= 48335
+IHN0aW5rcw== 48336
+IER1bA== 48337
+dWVt 48338
+aXNpZWo= 48339
+VG9w 48340
+IHR1c3Nlbg== 48341
+IEVmZW5kaW1peg== 48342
+IEJvdWxl 48343
+IFNsb3Zlbg== 48344
+IEzDtg== 48345
+0ZHQtw== 48346
+0YDQuNC/ 48347
+Y2F2ZQ== 48348
+IGJvw64= 48349
+IGFwb2xvZ2lzZQ== 48350
+IE1hcmx5 48351
+IEV4cG9ydA== 48352
+IENhaXRsaW4= 48353
+IHRhdmFsbGE= 48354
+IGVudGFpbHM= 48355
+IGJyb20= 48356
+IENvcGVuaA== 48357
+IHdhbG51dA== 48358
+IGluc2lzdHM= 48359
+IGN14buZYw== 48360
+IFF1aXQ= 48361
+IERldmljZQ== 48362
+15LXnQ== 48363
+IERPVA== 48364
+IHZlbG9jaWRhZA== 48365
+TElF 48366
+Q29vbA== 48367
+IHNhbml0YXRpb24= 48368
+IG9saG8= 48369
+IEVC 48370
+IO2ZleyLpO2eiA== 48371
+INCc0LjRhQ== 48372
+IHp1aw== 48373
+IHN1cm5hbWU= 48374
+IFNjaHVsZA== 48375
+cnVmZg== 48376
+Y3VsdHVyYWw= 48377
+INGB0YLQvtC70YzQutC+ 48378
+jOuNsA== 48379
+IHRvcnRv 48380
+IGJhY2t1cHM= 48381
+0YDQuNC5 48382
+cmVsYXg= 48383
+IHN5bmVyZ3k= 48384
+IGJ1ZmZz 48385
+IGFwbw== 48386
+IFdlbGxuZXNz 48387
+cm91bmRlZA== 48388
+IHVuaXZlcnNlcw== 48389
+IGZlcmE= 48390
+IHN0YW5kYnk= 48391
+IFNpbHZh 48392
+IEpJ 48393
+ZW5zb3JlZA== 48394
+IOyXhuuLpA== 48395
+INCQ0LI= 48396
+INC+0YLQtNC10Ls= 48397
+IGbDuA== 48398
+IFJvY2tlZg== 48399
+IENvbXBhc3M= 48400
+IEJlYXJz 48401
+VHVybg== 48402
+IHRo4buxYw== 48403
+IHBvc3NpYmlsZQ== 48404
+IGVzdGVt 48405
+IENyb2F0aWE= 48406
+IHTDpHTDpA== 48407
+IENBTA== 48408
+4LmA4Lie 48409
+INGB0YLRgNCw0YU= 48410
+IHNhbHRz 48411
+IG1pbmltYWxpc3Q= 48412
+IGluY29ycG9yYXRlcw== 48413
+INmG24HbjNq6 48414
+YWNhbw== 48415
+IHNsYW1tZWQ= 48416
+IGNhbWE= 48417
+VGV4dA== 48418
+ISEhISEh 48419
+IGFsY2Fueg== 48420
+w6ltYQ== 48421
+IGluY2Vuc2U= 48422
+IGhhcmRlbg== 48423
+IGdyYW50aW5n 48424
+IE5haQ== 48425
+IEZpcm1h 48426
+IGh5cG9j 48427
+am9i 48428
+IFJI 48429
+enVy 48430
+0LjQu9GP 48431
+IMW6 48432
+IGRhcmVz 48433
+YW5o 48434
+IOunjO2BvA== 48435
+IGN1ZXN0acOzbg== 48436
+IExpbWE= 48437
+IGFzc3VudG8= 48438
+IElQTw== 48439
+IEJlbmdhbA== 48440
+IEJpZXI= 48441
+IHBzeWNoZQ== 48442
+IGFjcXVhaW50ZWQ= 48443
+IEfDvG4= 48444
+0L7Qt9C4 48445
+xZtjacSF 48446
+QUc= 48447
+IG1hbGZ1bmN0aW9u 48448
+IGFzdGVyb2lkcw== 48449
+aXJleg== 48450
+YW1vcnBo 48451
+INGB0L7RgtGA0YPQtA== 48452
+IGZyZXNod2F0ZXI= 48453
+IGFycmFu 48454
+INC/0YDRiw== 48455
+0L3QvtCz 48456
+IGRpYWJldGlj 48457
+INmC2KfZhA== 48458
+IG9wcHJlc3M= 48459
+IGNhcGFjaXRhbmNl 48460
+cGVyZm9ybWFuY2U= 48461
+Y3JhdGVz 48462
+IGFwb3N0bGU= 48463
+IEpFTg== 48464
+T1VMRA== 48465
+SW50cm8= 48466
+IHN0YWxscw== 48467
+IEFCT1VU 48468
+Y3RpY2FtZW50ZQ== 48469
+IGRpbGlnZW50 48470
+IG1hbmlmZXN0cw== 48471
+IFBha2lzdGFuaQ== 48472
+ICgn 48473
+= 48474
+6ZM= 48475
+6bI= 48476
+55g= 48477
+6Jw= 48478
+6bg= 48479
+6a4= 48480
+6Jo= 48481
+6J0= 48482
+6a8= 48483
+6JU= 48484
+6KQ= 48485
+6bA= 48486
+6J8= 48487
+56M= 48488
+6KA= 48489
+6ZE= 48490
+6bU= 48491
+6bE= 48492
+6bQ= 48493
+5bU= 48494
+54A= 48495
+6Z4= 48496
+6bY= 48497
+6Y4= 48498
+6ac= 48499
+6bc= 48500
+5aw= 48501
+6Ys= 48502
+5bY= 48503
+5qs= 48504
+55M= 48505
+77w= 48506
+46k= 48507
+770= 48508
+45Y= 48509
+45c= 48510
+5IE= 48511
+8KA= 48512
+4oCY 48513
+4oCZ 48514
+4oCc 48515
+4oCd 48516
+4oCn 48517
+4oSD 48518
+4peL 48519
+44CD 48520
+44CG 48521
+44CH 48522
+44CI 48523
+44CJ 48524
+44CS 48525
+44Cd 48526
+44Ce 48527
+44GB 48528
+44GC 48529
+44GD 48530
+44GE 48531
+44GF 48532
+44GG 48533
+44GH 48534
+44GI 48535
+44GJ 48536
+44GK 48537
+44GL 48538
+44GM 48539
+44GN 48540
+44GO 48541
+44GP 48542
+44GQ 48543
+44GR 48544
+44GS 48545
+44GT 48546
+44GU 48547
+44GV 48548
+44GW 48549
+44GX 48550
+44GY 48551
+44GZ 48552
+44Ga 48553
+44Gb 48554
+44Gc 48555
+44Gd 48556
+44Ge 48557
+44Gf 48558
+44Gg 48559
+44Gh 48560
+44Gi 48561
+44Gj 48562
+44Gk 48563
+44Gl 48564
+44Gm 48565
+44Gn 48566
+44Go 48567
+44Gp 48568
+44Gq 48569
+44Gr 48570
+44Gs 48571
+44Gt 48572
+44Gu 48573
+44Gv 48574
+44Gw 48575
+44Gx 48576
+44Gy 48577
+44Gz 48578
+44G0 48579
+44G1 48580
+44G2 48581
+44G3 48582
+44G4 48583
+44G5 48584
+44G6 48585
+44G7 48586
+44G8 48587
+44G9 48588
+44G+ 48589
+44G/ 48590
+44KA 48591
+44KB 48592
+44KC 48593
+44KD 48594
+44KE 48595
+44KF 48596
+44KG 48597
+44KH 48598
+44KI 48599
+44KJ 48600
+44KK 48601
+44KL 48602
+44KM 48603
+44KN 48604
+44KP 48605
+44KQ 48606
+44KR 48607
+44KS 48608
+44KT 48609
+44Kd 48610
+44Ke 48611
+44Kh 48612
+44Ki 48613
+44Kj 48614
+44Kk 48615
+44Kl 48616
+44Km 48617
+44Kn 48618
+44Ko 48619
+44Kp 48620
+44Kq 48621
+44Kr 48622
+44Ks 48623
+44Kt 48624
+44Ku 48625
+44Kv 48626
+44Kw 48627
+44Kx 48628
+44Ky 48629
+44Kz 48630
+44K0 48631
+44K1 48632
+44K2 48633
+44K3 48634
+44K4 48635
+44K5 48636
+44K6 48637
+44K7 48638
+44K8 48639
+44K9 48640
+44K+ 48641
+44K/ 48642
+44OA 48643
+44OB 48644
+44OC 48645
+44OD 48646
+44OE 48647
+44OF 48648
+44OG 48649
+44OH 48650
+44OI 48651
+44OJ 48652
+44OK 48653
+44OL 48654
+44OM 48655
+44ON 48656
+44OO 48657
+44OP 48658
+44OQ 48659
+44OR 48660
+44OS 48661
+44OT 48662
+44OU 48663
+44OV 48664
+44OW 48665
+44OX 48666
+44OY 48667
+44OZ 48668
+44Oa 48669
+44Ob 48670
+44Oc 48671
+44Od 48672
+44Oe 48673
+44Of 48674
+44Og 48675
+44Oh 48676
+44Oi 48677
+44Oj 48678
+44Ok 48679
+44Ol 48680
+44Om 48681
+44On 48682
+44Oo 48683
+44Op 48684
+44Oq 48685
+44Or 48686
+44Os 48687
+44Ot 48688
+44Ou 48689
+44Ov 48690
+44Ow 48691
+44Ox 48692
+44Oy 48693
+44Oz 48694
+44O0 48695
+44O1 48696
+44O2 48697
+44O7 48698
+44O8 48699
+44O+ 48700
+45at 48701
+45eO 48702
+46mS 48703
+46mn 48704
+5IGv 48705
+5LiA 48706
+5LiB 48707
+5LiD 48708
+5LiH 48709
+5LiI 48710
+5LiJ 48711
+5LiK 48712
+5LiL 48713
+5LiN 48714
+5LiO 48715
+5LiQ 48716
+5LiR 48717
+5LiT 48718
+5LiU 48719
+5LiV 48720
+5LiW 48721
+5LiX 48722
+5LiY 48723
+5LiZ 48724
+5Lia 48725
+5Lib 48726
+5Lic 48727
+5Lid 48728
+5Lie 48729
+5Lif 48730
+5Lih 48731
+5Lii 48732
+5Lik 48733
+5Lil 48734
+5Lim 48735
+5Lin 48736
+5Lio 48737
+5Liq 48738
+5Lir 48739
+5Lit 48740
+5Liw 48741
+5Liy 48742
+5Li0 48743
+5Li2 48744
+5Li4 48745
+5Li5 48746
+5Li6 48747
+5Li7 48748
+5Li8 48749
+5Li9 48750
+5Li+ 48751
+5LmC 48752
+5LmD 48753
+5LmF 48754
+5LmH 48755
+5LmI 48756
+5LmJ 48757
+5LmL 48758
+5LmM 48759
+5LmN 48760
+5LmO 48761
+5LmP 48762
+5LmQ 48763
+5LmS 48764
+5LmT 48765
+5LmU 48766
+5LmW 48767
+5LmX 48768
+5LmY 48769
+5LmZ 48770
+5Lmc 48771
+5Lmd 48772
+5Lme 48773
+5Lmf 48774
+5Lmg 48775
+5Lmh 48776
+5Lmi 48777
+5Lmm 48778
+5Lmp 48779
+5Lmq 48780
+5Lmw 48781
+5Lmx 48782
+5Lmz 48783
+5Lm4 48784
+5Lm+ 48785
+5LqA 48786
+5LqB 48787
+5LqC 48788
+5LqG 48789
+5LqI 48790
+5LqJ 48791
+5LqL 48792
+5LqM 48793
+5LqN 48794
+5LqO 48795
+5LqP 48796
+5LqR 48797
+5LqS 48798
+5LqT 48799
+5LqU 48800
+5LqV 48801
+5LqY 48802
+5LqZ 48803
+5Lqa 48804
+5Lqb 48805
+5Lqc 48806
+5Lqe 48807
+5Lqf 48808
+5Lqh 48809
+5Lqi 48810
+5Lqk 48811
+5Lql 48812
+5Lqm 48813
+5Lqn 48814
+5Lqo 48815
+5Lqp 48816
+5Lqr 48817
+5Lqs 48818
+5Lqt 48819
+5Lqu 48820
+5Lqw 48821
+5Lqy 48822
+5Lqz 48823
+5Lq1 48824
+5Lq2 48825
+5Lq5 48826
+5Lq6 48827
+5Lq/ 48828
+5LuA 48829
+5LuB 48830
+5LuC 48831
+5LuD 48832
+5LuE 48833
+5LuF 48834
+5LuG 48835
+5LuH 48836
+5LuJ 48837
+5LuK 48838
+5LuL 48839
+5LuN 48840
+5LuO 48841
+5LuP 48842
+5LuR 48843
+5LuT 48844
+5LuU 48845
+5LuV 48846
+5LuW 48847
+5LuX 48848
+5LuY 48849
+5LuZ 48850
+5Lud 48851
+5Lue 48852
+5Luf 48853
+5Luh 48854
+5Luj 48855
+5Luk 48856
+5Lul 48857
+5Luo 48858
+5Luq 48859
+5Lur 48860
+5Lus 48861
+5Lut 48862
+5Luu 48863
+5Luw 48864
+5Luy 48865
+5Luz 48866
+5Lu1 48867
+5Lu2 48868
+5Lu3 48869
+5Lu7 48870
+5Lu9 48871
+5Lu/ 48872
+5LyB 48873
+5LyD 48874
+5LyE 48875
+5LyJ 48876
+5LyK 48877
+5LyL 48878
+5LyN 48879
+5LyO 48880
+5LyP 48881
+5LyQ 48882
+5LyR 48883
+5LyX 48884
+5LyY 48885
+5LyZ 48886
+5Lya 48887
+5Lyb 48888
+5Lyc 48889
+5Lyd 48890
+5Lye 48891
+5Lyf 48892
+5Lyg 48893
+5Lyi 48894
+5Lyk 48895
+5Lyl 48896
+5Lym 48897
+5Lyn 48898
+5Lyq 48899
+5Lyr 48900
+5Lyv 48901
+5Lyw 48902
+5Lyx 48903
+5Lyy 48904
+5Ly0 48905
+5Ly2 48906
+5Ly3 48907
+5Ly4 48908
+5Ly6 48909
+5Ly8 48910
+5Ly9 48911
+5L2D 48912
+5L2G 48913
+5L2H 48914
+5L2I 48915
+5L2J 48916
+5L2N 48917
+5L2O 48918
+5L2P 48919
+5L2Q 48920
+5L2R 48921
+5L2T 48922
+5L2U 48923
+5L2V 48924
+5L2X 48925
+5L2Y 48926
+5L2Z 48927
+5L2a 48928
+5L2b 48929
+5L2c 48930
+5L2d 48931
+5L2e 48932
+5L2f 48933
+5L2g 48934
+5L2i 48935
+5L2j 48936
+5L2k 48937
+5L2l 48938
+5L2p 48939
+5L2s 48940
+5L2v 48941
+5L2w 48942
+5L2z 48943
+5L21 48944
+5L22 48945
+5L23 48946
+5L26 48947
+5L27 48948
+5L28 48949
+5L2+ 48950
+5L2/ 48951
+5L6C 48952
+5L6D 48953
+5L6E 48954
+5L6G 48955
+5L6I 48956
+5L6J 48957
+5L6L 48958
+5L6N 48959
+5L6P 48960
+5L6R 48961
+5L6T 48962
+5L6U 48963
+5L6X 48964
+5L6Y 48965
+5L6b 48966
+5L6d 48967
+5L6g 48968
+5L6h 48969
+5L6j 48970
+5L6l 48971
+5L6m 48972
+5L6n 48973
+5L6o 48974
+5L6p 48975
+5L6q 48976
+5L6s 48977
+5L6t 48978
+5L6u 48979
+5L6v 48980
+5L61 48981
+5L62 48982
+5L63 48983
+5L6/ 48984
+5L+C 48985
+5L+D 48986
+5L+E 48987
+5L+F 48988
+5L+K 48989
+5L+O 48990
+5L+P 48991
+5L+Q 48992
+5L+R 48993
+5L+U 48994
+5L+X 48995
+5L+Y 48996
+5L+a 48997
+5L+b 48998
+5L+c 48999
+5L+d 49000
+5L+e 49001
+5L+f 49002
+5L+g 49003
+5L+h 49004
+5L+i 49005
+5L+j 49006
+5L+k 49007
+5L+m 49008
+5L+o 49009
+5L+p 49010
+5L+q 49011
+5L+s 49012
+5L+t 49013
+5L+u 49014
+5L+v 49015
+5L+x 49016
+5L+z 49017
+5L+1 49018
+5L+2 49019
+5L+4 49020
+5L+6 49021
+5L++ 49022
+5YCF 49023
+5YCG 49024
+5YCJ 49025
+5YCL 49026
+5YCM 49027
+5YCN 49028
+5YCP 49029
+5YCR 49030
+5YCS 49031
+5YCT 49032
+5YCU 49033
+5YCW 49034
+5YCY 49035
+5YCZ 49036
+5YCa 49037
+5YCc 49038
+5YCf 49039
+5YCh 49040
+5YCi 49041
+5YCj 49042
+5YCk 49043
+5YCl 49044
+5YCm 49045
+5YCn 49046
+5YCo 49047
+5YCp 49048
+5YCq 49049
+5YCr 49050
+5YCs 49051
+5YCt 49052
+5YCu 49053
+5YC2 49054
+5YC5 49055
+5YC6 49056
+5YC8 49057
+5YC+ 49058
+5YGB 49059
+5YGD 49060
+5YGH 49061
+5YGI 49062
+5YGJ 49063
+5YGM 49064
+5YGO 49065
+5YGP 49066
+5YGT 49067
+5YGV 49068
+5YGW 49069
+5YGa 49070
+5YGc 49071
+5YGl 49072
+5YGs 49073
+5YGt 49074
+5YGx 49075
+5YGy 49076
+5YG0 49077
+5YG1 49078
+5YG2 49079
+5YG3 49080
+5YG4 49081
+5YG7 49082
+5YG9 49083
+5YG+ 49084
+5YG/ 49085
+5YKA 49086
+5YKF 49087
+5YKI 49088
+5YKN 49089
+5YKR 49090
+5YKV 49091
+5YKY 49092
+5YKZ 49093
+5YKc 49094
+5YKi 49095
+5YKj 49096
+5YKl 49097
+5YKn 49098
+5YKo 49099
+5YKp 49100
+5YKr 49101
+5YKs 49102
+5YKt 49103
+5YKy 49104
+5YKz 49105
+5YK0 49106
+5YK1 49107
+5YK3 49108
+5YK6 49109
+5YK7 49110
+5YK+ 49111
+5YOC 49112
+5YOF 49113
+5YOG 49114
+5YOJ 49115
+5YOK 49116
+5YON 49117
+5YOP 49118
+5YOR 49119
+5YOU 49120
+5YOV 49121
+5YOW 49122
+5YOa 49123
+5YOe 49124
+5YOj 49125
+5YOl 49126
+5YOm 49127
+5YOn 49128
+5YOs 49129
+5YOt 49130
+5YOu 49131
+5YOx 49132
+5YOz 49133
+5YO1 49134
+5YO5 49135
+5YO7 49136
+5YSA 49137
+5YSB 49138
+5YSC 49139
+5YSE 49140
+5YSG 49141
+5YSI 49142
+5YSJ 49143
+5YSL 49144
+5YSS 49145
+5YSU 49146
+5YSV 49147
+5YSY 49148
+5YSa 49149
+5YSf 49150
+5YSh 49151
+5YSq 49152
+5YSy 49153
+5YS3 49154
+5YS6 49155
+5YS8 49156
+5YS/ 49157
+5YWA 49158
+5YWB 49159
+5YWD 49160
+5YWE 49161
+5YWF 49162
+5YWG 49163
+5YWH 49164
+5YWI 49165
+5YWJ 49166
+5YWK 49167
+5YWL 49168
+5YWM 49169
+5YWN 49170
+5YWO 49171
+5YWQ 49172
+5YWR 49173
+5YWS 49174
+5YWU 49175
+5YWV 49176
+5YWW 49177
+5YWa 49178
+5YWc 49179
+5YWi 49180
+5YWl 49181
+5YWn 49182
+5YWo 49183
+5YWp 49184
+5YWq 49185
+5YWr 49186
+5YWs 49187
+5YWt 49188
+5YWu 49189
+5YWw 49190
+5YWx 49191
+5YWz 49192
+5YW0 49193
+5YW1 49194
+5YW2 49195
+5YW3 49196
+5YW4 49197
+5YW5 49198
+5YW7 49199
+5YW8 49200
+5YW9 49201
+5YaA 49202
+5YaC 49203
+5YaF 49204
+5YaG 49205
+5YaH 49206
+5YaI 49207
+5YaJ 49208
+5YaK 49209
+5YaM 49210
+5YaN 49211
+5YaP 49212
+5YaR 49213
+5YaS 49214
+5YaV 49215
+5YaW 49216
+5YaX 49217
+5YaZ 49218
+5Yaa 49219
+5Yab 49220
+5Yac 49221
+5Yag 49222
+5Yai 49223
+5Yak 49224
+5Yal 49225
+5Yam 49226
+5Yan 49227
+5Yao 49228
+5Yap 49229
+5Yaq 49230
+5Yar 49231
+5Yas 49232
+5Yau 49233
+5Yav 49234
+5Yaw 49235
+5Yax 49236
+5Yay 49237
+5Yaz 49238
+5Ya0 49239
+5Ya1 49240
+5Ya2 49241
+5Ya3 49242
+5Ya7 49243
+5Ya8 49244
+5Ya9 49245
+5Ya/ 49246
+5YeA 49247
+5YeE 49248
+5YeG 49249
+5YeH 49250
+5YeI 49251
+5YeJ 49252
+5YeK 49253
+5YeL 49254
+5YeM 49255
+5YeN 49256
+5YeP 49257
+5YeR 49258
+5YeW 49259
+5Yeb 49260
+5Yec 49261
+5Yed 49262
+5Yeg 49263
+5Yeh 49264
+5Yei 49265
+5Yek 49266
+5Yem 49267
+5Yen 49268
+5Yep 49269
+5Yeq 49270
+5Yer 49271
+5Yet 49272
+5Yev 49273
+5Yew 49274
+5Yex 49275
+5Yez 49276
+5Ye1 49277
+5Ye2 49278
+5Ye4 49279
+5Ye5 49280
+5Ye6 49281
+5Ye7 49282
+5Ye8 49283
+5Ye9 49284
+5Ye/ 49285
+5YiA 49286
+5YiB 49287
+5YiD 49288
+5YiG 49289
+5YiH 49290
+5YiI 49291
+5YiK 49292
+5YiN 49293
+5YiO 49294
+5YiR 49295
+5YiS 49296
+5YiU 49297
+5YiX 49298
+5YiY 49299
+5YiZ 49300
+5Yia 49301
+5Yib 49302
+5Yid 49303
+5Yig 49304
+5Yik 49305
+5Yil 49306
+5Yio 49307
+5Yip 49308
+5Yiq 49309
+5Yir 49310
+5Yis 49311
+5Yit 49312
+5Yiu 49313
+5Yiw 49314
+5Yiz 49315
+5Yi2 49316
+5Yi3 49317
+5Yi4 49318
+5Yi5 49319
+5Yi6 49320
+5Yi7 49321
+5Yi8 49322
+5Yi9 49323
+5Yi/ 49324
+5YmA 49325
+5YmB 49326
+5YmC 49327
+5YmD 49328
+5YmF 49329
+5YmH 49330
+5YmK 49331
+5YmL 49332
+5YmM 49333
+5YmN 49334
+5YmO 49335
+5YmQ 49336
+5YmR 49337
+5YmU 49338
+5YmV 49339
+5YmW 49340
+5Ymb 49341
+5Ymc 49342
+5Ymd 49343
+5Yme 49344
+5Ymf 49345
+5Ymh 49346
+5Ymj 49347
+5Ymk 49348
+5Yml 49349
+5Ymn 49350
+5Ymp 49351
+5Ymq 49352
+5Ymv 49353
+5Ymw 49354
+5Ymx 49355
+5Ymy 49356
+5Ym0 49357
+5Ym1 49358
+5Ym9 49359
+5Ym/ 49360
+5YqC 49361
+5YqD 49362
+5YqH 49363
+5YqI 49364
+5YqJ 49365
+5YqN 49366
+5YqP 49367
+5YqR 49368
+5YqS 49369
+5YqT 49370
+5YqU 49371
+5Yqb 49372
+5Yqd 49373
+5Yqe 49374
+5Yqf 49375
+5Yqg 49376
+5Yqh 49377
+5Yqi 49378
+5Yqj 49379
+5Yqo 49380
+5Yqp 49381
+5Yqq 49382
+5Yqr 49383
+5Yqs 49384
+5Yqt 49385
+5Yqx 49386
+5Yqy 49387
+5Yqz 49388
+5Yq0 49389
+5Yq1 49390
+5Yq5 49391
+5Yq8 49392
+5Yq+ 49393
+5Yq/ 49394
+5YuB 49395
+5YuD 49396
+5YuF 49397
+5YuH 49398
+5YuJ 49399
+5YuL 49400
+5YuN 49401
+5YuQ 49402
+5YuS 49403
+5YuV 49404
+5YuW 49405
+5YuX 49406
+5YuY 49407
+5YuZ 49408
+5Yub 49409
+5Yud 49410
+5Yue 49411
+5Yuf 49412
+5Yug 49413
+5Yui 49414
+5Yuj 49415
+5Yuk 49416
+5Yum 49417
+5Yun 49418
+5Yuu 49419
+5Yuw 49420
+5Yuy 49421
+5Yuz 49422
+5Yu1 49423
+5Yu4 49424
+5Yu5 49425
+5Yu6 49426
+5Yu7 49427
+5Yu+ 49428
+5Yu/ 49429
+5YyA 49430
+5YyB 49431
+5YyC 49432
+5YyF 49433
+5YyG 49434
+5YyI 49435
+5YyN 49436
+5YyP 49437
+5YyQ 49438
+5YyV 49439
+5YyW 49440
+5YyX 49441
+5YyZ 49442
+5Yya 49443
+5Yyc 49444
+5Yyd 49445
+5Yyg 49446
+5Yyh 49447
+5Yyj 49448
+5Yyq 49449
+5Yyu 49450
+5Yyv 49451
+5Yyx 49452
+5Yy4 49453
+5Yy5 49454
+5Yy6 49455
+5Yy7 49456
+5Yy8 49457
+5Yy9 49458
+5Yy+ 49459
+5Yy/ 49460
+5Y2A 49461
+5Y2B 49462
+5Y2D 49463
+5Y2F 49464
+5Y2G 49465
+5Y2H 49466
+5Y2I 49467
+5Y2J 49468
+5Y2K 49469
+5Y2N 49470
+5Y2O 49471
+5Y2P 49472
+5Y2R 49473
+5Y2S 49474
+5Y2T 49475
+5Y2U 49476
+5Y2V 49477
+5Y2W 49478
+5Y2X 49479
+5Y2Y 49480
+5Y2a 49481
+5Y2c 49482
+5Y2e 49483
+5Y2f 49484
+5Y2g 49485
+5Y2h 49486
+5Y2i 49487
+5Y2j 49488
+5Y2k 49489
+5Y2m 49490
+5Y2n 49491
+5Y2r 49492
+5Y2s 49493
+5Y2u 49494
+5Y2v 49495
+5Y2w 49496
+5Y2x 49497
+5Y2y 49498
+5Y2z 49499
+5Y20 49500
+5Y21 49501
+5Y23 49502
+5Y24 49503
+5Y26 49504
+5Y27 49505
+5Y2/ 49506
+5Y6C 49507
+5Y6E 49508
+5Y6F 49509
+5Y6G 49510
+5Y6J 49511
+5Y6L 49512
+5Y6M 49513
+5Y6N 49514
+5Y6Q 49515
+5Y6T 49516
+5Y6U 49517
+5Y6V 49518
+5Y6W 49519
+5Y6Y 49520
+5Y6a 49521
+5Y6d 49522
+5Y6f 49523
+5Y6g 49524
+5Y6i 49525
+5Y6j 49526
+5Y6l 49527
+5Y6m 49528
+5Y6o 49529
+5Y6p 49530
+5Y6t 49531
+5Y6u 49532
+5Y6w 49533
+5Y6y 49534
+5Y6z 49535
+5Y62 49536
+5Y67 49537
+5Y6/ 49538
+5Y+B 49539
+5Y+C 49540
+5Y+D 49541
+5Y+G 49542
+5Y+I 49543
+5Y+J 49544
+5Y+K 49545
+5Y+L 49546
+5Y+M 49547
+5Y+N 49548
+5Y+O 49549
+5Y+R 49550
+5Y+U 49551
+5Y+W 49552
+5Y+X 49553
+5Y+Y 49554
+5Y+Z 49555
+5Y+b 49556
+5Y+f 49557
+5Y+g 49558
+5Y+h 49559
+5Y+i 49560
+5Y+j 49561
+5Y+k 49562
+5Y+l 49563
+5Y+m 49564
+5Y+o 49565
+5Y+p 49566
+5Y+q 49567
+5Y+r 49568
+5Y+s 49569
+5Y+t 49570
+5Y+u 49571
+5Y+v 49572
+5Y+w 49573
+5Y+x 49574
+5Y+y 49575
+5Y+z 49576
+5Y+1 49577
+5Y+2 49578
+5Y+3 49579
+5Y+4 49580
+5Y+5 49581
+5Y+6 49582
+5Y+7 49583
+5Y+8 49584
+5Y+9 49585
+5ZCB 49586
+5ZCD 49587
+5ZCE 49588
+5ZCF 49589
+5ZCG 49590
+5ZCH 49591
+5ZCI 49592
+5ZCJ 49593
+5ZCK 49594
+5ZCL 49595
+5ZCM 49596
+5ZCN 49597
+5ZCO 49598
+5ZCP 49599
+5ZCQ 49600
+5ZCR 49601
+5ZCS 49602
+5ZCT 49603
+5ZCU 49604
+5ZCV 49605
+5ZCW 49606
+5ZCX 49607
+5ZCZ 49608
+5ZCb 49609
+5ZCd 49610
+5ZCe 49611
+5ZCf 49612
+5ZCg 49613
+5ZCh 49614
+5ZCj 49615
+5ZCl 49616
+5ZCm 49617
+5ZCn 49618
+5ZCo 49619
+5ZCp 49620
+5ZCr 49621
+5ZCs 49622
+5ZCt 49623
+5ZCu 49624
+5ZCv 49625
+5ZCx 49626
+5ZCy 49627
+5ZCz 49628
+5ZC0 49629
+5ZC1 49630
+5ZC2 49631
+5ZC4 49632
+5ZC5 49633
+5ZC7 49634
+5ZC8 49635
+5ZC9 49636
+5ZC+ 49637
+5ZC/ 49638
+5ZGA 49639
+5ZGC 49640
+5ZGD 49641
+5ZGG 49642
+5ZGI 49643
+5ZGJ 49644
+5ZGK 49645
+5ZGL 49646
+5ZGO 49647
+5ZGQ 49648
+5ZGR 49649
+5ZGS 49650
+5ZGT 49651
+5ZGU 49652
+5ZGV 49653
+5ZGW 49654
+5ZGX 49655
+5ZGY 49656
+5ZGZ 49657
+5ZGb 49658
+5ZGc 49659
+5ZGf 49660
+5ZGi 49661
+5ZGj 49662
+5ZGk 49663
+5ZGm 49664
+5ZGo 49665
+5ZGq 49666
+5ZGr 49667
+5ZGv 49668
+5ZGw 49669
+5ZGx 49670
+5ZGy 49671
+5ZGz 49672
+5ZG1 49673
+5ZG2 49674
+5ZG3 49675
+5ZG4 49676
+5ZG7 49677
+5ZG8 49678
+5ZG9 49679
+5ZKA 49680
+5ZKB 49681
+5ZKC 49682
+5ZKE 49683
+5ZKG 49684
+5ZKJ 49685
+5ZKL 49686
+5ZKM 49687
+5ZKO 49688
+5ZKP 49689
+5ZKQ 49690
+5ZKS 49691
+5ZKU 49692
+5ZKV 49693
+5ZKW 49694
+5ZKX 49695
+5ZKY 49696
+5ZKZ 49697
+5ZKa 49698
+5ZKb 49699
+5ZKd 49700
+5ZKj 49701
+5ZKk 49702
+5ZKm 49703
+5ZKn 49704
+5ZKo 49705
+5ZKp 49706
+5ZKq 49707
+5ZKr 49708
+5ZKs 49709
+5ZKt 49710
+5ZKv 49711
+5ZKx 49712
+5ZKy 49713
+5ZKz 49714
+5ZK0 49715
+5ZK1 49716
+5ZK2 49717
+5ZK3 49718
+5ZK4 49719
+5ZK5 49720
+5ZK7 49721
+5ZK9 49722
+5ZK+ 49723
+5ZK/ 49724
+5ZOA 49725
+5ZOB 49726
+5ZOC 49727
+5ZOD 49728
+5ZOE 49729
+5ZOG 49730
+5ZOH 49731
+5ZOI 49732
+5ZOJ 49733
+5ZOL 49734
+5ZOM 49735
+5ZON 49736
+5ZOO 49737
+5ZOP 49738
+5ZOQ 49739
+5ZOR 49740
+5ZOS 49741
+5ZOT 49742
+5ZOU 49743
+5ZOV 49744
+5ZOW 49745
+5ZOX 49746
+5ZOY 49747
+5ZOZ 49748
+5ZOa 49749
+5ZOc 49750
+5ZOd 49751
+5ZOe 49752
+5ZOf 49753
+5ZOg 49754
+5ZOh 49755
+5ZOl 49756
+5ZOm 49757
+5ZOn 49758
+5ZOo 49759
+5ZOp 49760
+5ZOq 49761
+5ZOt 49762
+5ZOu 49763
+5ZOy 49764
+5ZO6 49765
+5ZO8 49766
+5ZO9 49767
+5ZSB 49768
+5ZSE 49769
+5ZSG 49770
+5ZSH 49771
+5ZSJ 49772
+5ZSP 49773
+5ZSQ 49774
+5ZSR 49775
+5ZSU 49776
+5ZSW 49777
+5ZSb 49778
+5ZSe 49779
+5ZSg 49780
+5ZSi 49781
+5ZSj 49782
+5ZSk 49783
+5ZSn 49784
+5ZSq 49785
+5ZSs 49786
+5ZSu 49787
+5ZSv 49788
+5ZSw 49789
+5ZSx 49790
+5ZSz 49791
+5ZS1 49792
+5ZS3 49793
+5ZS4 49794
+5ZS7 49795
+5ZS8 49796
+5ZS+ 49797
+5ZS/ 49798
+5ZWA 49799
+5ZWB 49800
+5ZWC 49801
+5ZWD 49802
+5ZWE 49803
+5ZWG 49804
+5ZWJ 49805
+5ZWK 49806
+5ZWL 49807
+5ZWP 49808
+5ZWQ 49809
+5ZWT 49810
+5ZWV 49811
+5ZWW 49812
+5ZWc 49813
+5ZWe 49814
+5ZWf 49815
+5ZWh 49816
+5ZWk 49817
+5ZWl 49818
+5ZWm 49819
+5ZWn 49820
+5ZWp 49821
+5ZWq 49822
+5ZWr 49823
+5ZWs 49824
+5ZWt 49825
+5ZWu 49826
+5ZWv 49827
+5ZWw 49828
+5ZWx 49829
+5ZWy 49830
+5ZW1 49831
+5ZW2 49832
+5ZW3 49833
+5ZW4 49834
+5ZW7 49835
+5ZW8 49836
+5ZW+ 49837
+5ZaA 49838
+5ZaB 49839
+5ZaC 49840
+5ZaD 49841
+5ZaE 49842
+5ZaG 49843
+5ZaH 49844
+5ZaI 49845
+5ZaJ 49846
+5ZaK 49847
+5ZaL 49848
+5ZaO 49849
+5ZaP 49850
+5ZaQ 49851
+5ZaR 49852
+5ZaS 49853
+5ZaT 49854
+5ZaU 49855
+5ZaY 49856
+5ZaZ 49857
+5Zaa 49858
+5Zab 49859
+5Zac 49860
+5Zad 49861
+5Zaf 49862
+5Zak 49863
+5Zan 49864
+5Zao 49865
+5Zap 49866
+5Zaq 49867
+5Zar 49868
+5Zas 49869
+5Zau 49870
+5Zaw 49871
+5Zax 49872
+5Zay 49873
+5Zaz 49874
+5Za1 49875
+5Za2 49876
+5Za3 49877
+5Za5 49878
+5Za6 49879
+5Za7 49880
+5Za9 49881
+5Za+ 49882
+5ZeE 49883
+5ZeF 49884
+5ZeG 49885
+5ZeH 49886
+5ZeJ 49887
+5ZeM 49888
+5ZeN 49889
+5ZeO 49890
+5ZeQ 49891
+5ZeR 49892
+5ZeS 49893
+5ZeT 49894
+5ZeU 49895
+5ZeW 49896
+5ZeZ 49897
+5Zea 49898
+5Zeb 49899
+5Zec 49900
+5Zed 49901
+5Zee 49902
+5Zef 49903
+5Zeh 49904
+5Zej 49905
+5Zek 49906
+5Zel 49907
+5Zem 49908
+5Zeo 49909
+5Zeq 49910
+5Zer 49911
+5Zes 49912
+5Zeu 49913
+5Zev 49914
+5Zew 49915
+5Zex 49916
+5Zey 49917
+5Zez 49918
+5Ze1 49919
+5Ze2 49920
+5Ze3 49921
+5Ze7 49922
+5Ze9 49923
+5Ze+ 49924
+5ZiA 49925
+5ZiB 49926
+5ZiF 49927
+5ZiG 49928
+5ZiI 49929
+5ZiJ 49930
+5ZiM 49931
+5ZiO 49932
+5ZiP 49933
+5ZiU 49934
+5ZiW 49935
+5ZiX 49936
+5ZiY 49937
+5Zia 49938
+5Zib 49939
+5Zie 49940
+5Zif 49941
+5Zih 49942
+5Zii 49943
+5Zij 49944
+5Zik 49945
+5Zil 49946
+5Zin 49947
+5Zip 49948
+5Zis 49949
+5Zit 49950
+5Ziv 49951
+5Ziw 49952
+5Zix 49953
+5Ziy 49954
+5Zi0 49955
+5Zi2 49956
+5Zi4 49957
+5Zi5 49958
+5Zi7 49959
+5Zi/ 49960
+5ZmC 49961
+5ZmD 49962
+5ZmM 49963
+5ZmN 49964
+5ZmO 49965
+5ZmT 49966
+5ZmU 49967
+5ZmX 49968
+5ZmY 49969
+5ZmZ 49970
+5Zmb 49971
+5Zmc 49972
+5Zmg 49973
+5Zmi 49974
+5Zmk 49975
+5Zmo 49976
+5Zmp 49977
+5Zmq 49978
+5Zmr 49979
+5Zms 49980
+5Zmx 49981
+5Zm0 49982
+5Zm2 49983
+5Zm4 49984
+5Zm5 49985
+5Zm6 49986
+5Zm7 49987
+5Zm8 49988
+5ZqA 49989
+5ZqF 49990
+5ZqG 49991
+5ZqH 49992
+5ZqK 49993
+5ZqO 49994
+5ZqP 49995
+5ZqQ 49996
+5ZqS 49997
+5ZqT 49998
+5ZqU 49999
+5ZqV 50000
+5ZqX 50001
+5Zqc 50002
+5Zqf 50003
+5Zqg 50004
+5Zqi 50005
+5Zqj 50006
+5Zql 50007
+5Zqo 50008
+5Zqp 50009
+5Zqt 50010
+5Zqu 50011
+5Zqv 50012
+5Zq0 50013
+5Zq2 50014
+5Zq3 50015
+5Zq8 50016
+5ZuA 50017
+5ZuB 50018
+5ZuC 50019
+5ZuD 50020
+5ZuI 50021
+5ZuJ 50022
+5ZuK 50023
+5ZuN 50024
+5ZuO 50025
+5ZuR 50026
+5ZuU 50027
+5ZuW 50028
+5ZuX 50029
+5Zua 50030
+5Zub 50031
+5Zud 50032
+5Zue 50033
+5Zuf 50034
+5Zug 50035
+5Zuh 50036
+5Zui 50037
+5Zuj 50038
+5Zuk 50039
+5Zun 50040
+5Zuo 50041
+5Zur 50042
+5Zut 50043
+5Zuu 50044
+5Zuv 50045
+5Zuw 50046
+5Zux 50047
+5Zuy 50048
+5Zuz 50049
+5Zu0 50050
+5Zu1 50051
+5Zu3 50052
+5Zu5 50053
+5Zu6 50054
+5Zu9 50055
+5Zu+ 50056
+5Zu/ 50057
+5ZyA 50058
+5ZyD 50059
+5ZyE 50060
+5ZyG 50061
+5ZyI 50062
+5ZyJ 50063
+5ZyK 50064
+5ZyL 50065
+5ZyN 50066
+5ZyP 50067
+5ZyS 50068
+5ZyT 50069
+5ZyW 50070
+5ZyY 50071
+5Zyc 50072
+5Zyf 50073
+5Zyj 50074
+5Zym 50075
+5Zyn 50076
+5Zyo 50077
+5Zyp 50078
+5Zyq 50079
+5Zys 50080
+5Zyt 50081
+5Zyu 50082
+5Zyv 50083
+5Zyw 50084
+5Zyz 50085
+5Zy3 50086
+5Zy5 50087
+5Zy6 50088
+5Zy7 50089
+5Zy+ 50090
+5Z2A 50091
+5Z2C 50092
+5Z2H 50093
+5Z2K 50094
+5Z2N 50095
+5Z2O 50096
+5Z2P 50097
+5Z2Q 50098
+5Z2R 50099
+5Z2S 50100
+5Z2X 50101
+5Z2a 50102
+5Z2b 50103
+5Z2c 50104
+5Z2d 50105
+5Z2e 50106
+5Z2f 50107
+5Z2g 50108
+5Z2h 50109
+5Z2k 50110
+5Z2m 50111
+5Z2o 50112
+5Z2p 50113
+5Z2q 50114
+5Z2t 50115
+5Z2u 50116
+5Z2v 50117
+5Z2z 50118
+5Z23 50119
+5Z27 50120
+5Z28 50121
+5Z6C 50122
+5Z6D 50123
+5Z6E 50124
+5Z6F 50125
+5Z6G 50126
+5Z6H 50127
+5Z6I 50128
+5Z6L 50129
+5Z6M 50130
+5Z6N 50131
+5Z6S 50132
+5Z6T 50133
+5Z6V 50134
+5Z6X 50135
+5Z6a 50136
+5Z6b 50137
+5Z6d 50138
+5Z6g 50139
+5Z6h 50140
+5Z6i 50141
+5Z6j 50142
+5Z6k 50143
+5Z6m 50144
+5Z6n 50145
+5Z6p 50146
+5Z6q 50147
+5Z6r 50148
+5Z6t 50149
+5Z6u 50150
+5Z6v 50151
+5Z6w 50152
+5Z6x 50153
+5Z6z 50154
+5Z60 50155
+5Z61 50156
+5Z64 50157
+5Z+A 50158
+5Z+C 50159
+5Z+D 50160
+5Z+G 50161
+5Z+H 50162
+5Z+L 50163
+5Z+M 50164
+5Z+O 50165
+5Z+P 50166
+5Z+S 50167
+5Z+T 50168
+5Z+U 50169
+5Z+V 50170
+5Z+W 50171
+5Z+X 50172
+5Z+Z 50173
+5Z+a 50174
+5Z+c 50175
+5Z+d 50176
+5Z+f 50177
+5Z+g 50178
+5Z+j 50179
+5Z+k 50180
+5Z+q 50181
+5Z+t 50182
+5Z+y 50183
+5Z+0 50184
+5Z+1 50185
+5Z+3 50186
+5Z+4 50187
+5Z+5 50188
+5Z+6 50189
+5Z+8 50190
+5Z+9 50191
+5aCA 50192
+5aCC 50193
+5aCD 50194
+5aCF 50195
+5aCG 50196
+5aCH 50197
+5aCK 50198
+5aCL 50199
+5aCM 50200
+5aCN 50201
+5aCO 50202
+5aCQ 50203
+5aCR 50204
+5aCV 50205
+5aCZ 50206
+5aCd 50207
+5aCe 50208
+5aCg 50209
+5aCh 50210
+5aCi 50211
+5aCk 50212
+5aCo 50213
+5aCq 50214
+5aCv 50215
+5aCw 50216
+5aCx 50217
+5aC0 50218
+5aC1 50219
+5aC6 50220
+5aC8 50221
+5aGA 50222
+5aGB 50223
+5aGE 50224
+5aGK 50225
+5aGL 50226
+5aGM 50227
+5aGN 50228
+5aGR 50229
+5aGS 50230
+5aGU 50231
+5aGX 50232
+5aGY 50233
+5aGZ 50234
+5aGa 50235
+5aGe 50236
+5aGi 50237
+5aGp 50238
+5aGr 50239
+5aGs 50240
+5aGy 50241
+5aG1 50242
+5aG5 50243
+5aG9 50244
+5aG+ 50245
+5aKA 50246
+5aKB 50247
+5aKD 50248
+5aKF 50249
+5aKJ 50250
+5aKK 50251
+5aKO 50252
+5aKS 50253
+5aKT 50254
+5aKV 50255
+5aKX 50256
+5aKZ 50257
+5aKa 50258
+5aKc 50259
+5aKe 50260
+5aKf 50261
+5aKh 50262
+5aKo 50263
+5aKp 50264
+5aKr 50265
+5aKu 50266
+5aKz 50267
+5aK5 50268
+5aK6 50269
+5aK7 50270
+5aK8 50271
+5aK+ 50272
+5aOB 50273
+5aOF 50274
+5aOH 50275
+5aOK 50276
+5aOM 50277
+5aOR 50278
+5aOT 50279
+5aOV 50280
+5aOX 50281
+5aOY 50282
+5aOc 50283
+5aOe 50284
+5aOf 50285
+5aOk 50286
+5aOp 50287
+5aOr 50288
+5aOs 50289
+5aOu 50290
+5aOv 50291
+5aOw 50292
+5aOx 50293
+5aOy 50294
+5aOz 50295
+5aO2 50296
+5aO3 50297
+5aO4 50298
+5aO5 50299
+5aO6 50300
+5aO7 50301
+5aO9 50302
+5aSE 50303
+5aSH 50304
+5aSJ 50305
+5aSK 50306
+5aSM 50307
+5aSN 50308
+5aSP 50309
+5aSQ 50310
+5aSU 50311
+5aSV 50312
+5aSW 50313
+5aSZ 50314
+5aSa 50315
+5aSb 50316
+5aSc 50317
+5aSf 50318
+5aSg 50319
+5aSi 50320
+5aSk 50321
+5aSl 50322
+5aSn 50323
+5aSp 50324
+5aSq 50325
+5aSr 50326
+5aSs 50327
+5aSt 50328
+5aSu 50329
+5aSv 50330
+5aSx 50331
+5aS0 50332
+5aS3 50333
+5aS4 50334
+5aS5 50335
+5aS6 50336
+5aS8 50337
+5aS+ 50338
+5aWB 50339
+5aWC 50340
+5aWE 50341
+5aWH 50342
+5aWI 50343
+5aWJ 50344
+5aWL 50345
+5aWM 50346
+5aWO 50347
+5aWP 50348
+5aWQ 50349
+5aWR 50350
+5aWU 50351
+5aWV 50352
+5aWW 50353
+5aWX 50354
+5aWY 50355
+5aWa 50356
+5aWg 50357
+5aWi 50358
+5aWl 50359
+5aWn 50360
+5aWo 50361
+5aWq 50362
+5aWs 50363
+5aWt 50364
+5aWu 50365
+5aWz 50366
+5aW0 50367
+5aW2 50368
+5aW4 50369
+5aW5 50370
+5aW9 50371
+5aaB 50372
+5aaC 50373
+5aaD 50374
+5aaE 50375
+5aaG 50376
+5aaH 50377
+5aaI 50378
+5aaK 50379
+5aaN 50380
+5aaS 50381
+5aaT 50382
+5aaW 50383
+5aaX 50384
+5aaZ 50385
+5aad 50386
+5aae 50387
+5aaj 50388
+5aak 50389
+5aal 50390
+5aan 50391
+5aao 50392
+5aap 50393
+5aaq 50394
+5aar 50395
+5aas 50396
+5aau 50397
+5aav 50398
+5aax 50399
+5aay 50400
+5aa5 50401
+5aa6 50402
+5aa7 50403
+5aa9 50404
+5aa+ 50405
+5aeG 50406
+5aeJ 50407
+5aeK 50408
+5aeL 50409
+5aeN 50410
+5aeQ 50411
+5aeR 50412
+5aeS 50413
+5aeT 50414
+5aeU 50415
+5aeX 50416
+5aeY 50417
+5aea 50418
+5aec 50419
+5aed 50420
+5aej 50421
+5aek 50422
+5ael 50423
+5aem 50424
+5aeo 50425
+5aep 50426
+5aeq 50427
+5aer 50428
+5aes 50429
+5aeu 50430
+5ae2 50431
+5ae4 50432
+5ae5 50433
+5ae6 50434
+5ae7 50435
+5ae/ 50436
+5aiB 50437
+5aiD 50438
+5aiE 50439
+5aiF 50440
+5aiG 50441
+5aiH 50442
+5aiI 50443
+5aiJ 50444
+5aiM 50445
+5aiR 50446
+5aiT 50447
+5aiY 50448
+5aia 50449
+5aib 50450
+5aic 50451
+5aif 50452
+5aig 50453
+5aih 50454
+5aij 50455
+5ail 50456
+5aip 50457
+5aiv 50458
+5aix 50459
+5aiy 50460
+5ai0 50461
+5ai2 50462
+5ai8 50463
+5ai/ 50464
+5amA 50465
+5amB 50466
+5amE 50467
+5amG 50468
+5amJ 50469
+5amK 50470
+5amM 50471
+5amV 50472
+5ama 50473
+5ami 50474
+5amm 50475
+5amn 50476
+5amq 50477
+5ams 50478
+5am0 50479
+5am1 50480
+5am2 50481
+5am3 50482
+5am6 50483
+5am/ 50484
+5aqS 50485
+5aqW 50486
+5aqa 50487
+5aqb 50488
+5aqc 50489
+5aqe 50490
+5aqq 50491
+5aqx 50492
+5aqy 50493
+5aqz 50494
+5aq1 50495
+5aq8 50496
+5aq9 50497
+5aq+ 50498
+5auB 50499
+5auC 50500
+5auE 50501
+5auJ 50502
+5auL 50503
+5auM 50504
+5auS 50505
+5auU 50506
+5auW 50507
+5auX 50508
+5auY 50509
+5aua 50510
+5auh 50511
+5auj 50512
+5auk 50513
+5aum 50514
+5aup 50515
+5auq 50516
+5aur 50517
+5auw 50518
+5aux 50519
+5auy 50520
+5au1 50521
+5au7 50522
+5ayF 50523
+5ayJ 50524
+5ayL 50525
+5ayM 50526
+5ayW 50527
+5ayX 50528
+5ayb 50529
+5ayi 50530
+5ayl 50531
+5ayq 50532
+5ays 50533
+5ayw 50534
+5ayy 50535
+5ay0 50536
+5ay2 50537
+5ay3 50538
+5ay4 50539
+5a2A 50540
+5a2D 50541
+5a2Q 50542
+5a2R 50543
+5a2T 50544
+5a2U 50545
+5a2V 50546
+5a2W 50547
+5a2X 50548
+5a2Y 50549
+5a2Z 50550
+5a2a 50551
+5a2b 50552
+5a2c 50553
+5a2d 50554
+5a2f 50555
+5a2i 50556
+5a2j 50557
+5a2k 50558
+5a2l 50559
+5a2m 50560
+5a2p 50561
+5a2q 50562
+5a2r 50563
+5a2s 50564
+5a2t 50565
+5a2w 50566
+5a2x 50567
+5a2z 50568
+5a21 50569
+5a24 50570
+5a26 50571
+5a29 50572
+5a6B 50573
+5a6D 50574
+5a6E 50575
+5a6F 50576
+5a6H 50577
+5a6I 50578
+5a6J 50579
+5a6L 50580
+5a6M 50581
+5a6N 50582
+5a6P 50583
+5a6T 50584
+5a6V 50585
+5a6X 50586
+5a6Y 50587
+5a6Z 50588
+5a6a 50589
+5a6b 50590
+5a6c 50591
+5a6d 50592
+5a6e 50593
+5a6f 50594
+5a6g 50595
+5a6h 50596
+5a6i 50597
+5a6j 50598
+5a6k 50599
+5a6l 50600
+5a6m 50601
+5a6q 50602
+5a6r 50603
+5a6u 50604
+5a6w 50605
+5a6z 50606
+5a60 50607
+5a61 50608
+5a62 50609
+5a64 50610
+5a65 50611
+5a69 50612
+5a6+ 50613
+5a6/ 50614
+5a+C 50615
+5a+E 50616
+5a+F 50617
+5a+G 50618
+5a+H 50619
+5a+M 50620
+5a+Q 50621
+5a+S 50622
+5a+T 50623
+5a+U 50624
+5a+V 50625
+5a+W 50626
+5a+b 50627
+5a+d 50628
+5a+e 50629
+5a+f 50630
+5a+g 50631
+5a+h 50632
+5a+i 50633
+5a+k 50634
+5a+l 50635
+5a+m 50636
+5a+n 50637
+5a+o 50638
+5a+p 50639
+5a+r 50640
+5a+s 50641
+5a+u 50642
+5a+w 50643
+5a+z 50644
+5a+1 50645
+5a+2 50646
+5a+4 50647
+5a+5 50648
+5a+6 50649
+5a+7 50650
+5a+8 50651
+5a++ 50652
+5a+/ 50653
+5bCB 50654
+5bCC 50655
+5bCE 50656
+5bCF 50657
+5bCG 50658
+5bCH 50659
+5bCI 50660
+5bCJ 50661
+5bCK 50662
+5bCL 50663
+5bCN 50664
+5bCO 50665
+5bCP 50666
+5bCR 50667
+5bCT 50668
+5bCU 50669
+5bCV 50670
+5bCW 50671
+5bCY 50672
+5bCZ 50673
+5bCa 50674
+5bCd 50675
+5bCe 50676
+5bCg 50677
+5bCh 50678
+5bCi 50679
+5bCk 50680
+5bCl 50681
+5bCn 50682
+5bCo 50683
+5bCq 50684
+5bCs 50685
+5bCt 50686
+5bCw 50687
+5bCx 50688
+5bC0 50689
+5bC3 50690
+5bC4 50691
+5bC5 50692
+5bC6 50693
+5bC7 50694
+5bC8 50695
+5bC9 50696
+5bC+ 50697
+5bC/ 50698
+5bGA 50699
+5bGB 50700
+5bGC 50701
+5bGE 50702
+5bGF 50703
+5bGG 50704
+5bGI 50705
+5bGJ 50706
+5bGK 50707
+5bGL 50708
+5bGM 50709
+5bGN 50710
+5bGO 50711
+5bGP 50712
+5bGQ 50713
+5bGR 50714
+5bGT 50715
+5bGV 50716
+5bGY 50717
+5bGZ 50718
+5bGc 50719
+5bGe 50720
+5bGg 50721
+5bGh 50722
+5bGi 50723
+5bGj 50724
+5bGk 50725
+5bGl 50726
+5bGm 50727
+5bGs 50728
+5bGv 50729
+5bGx 50730
+5bG5 50731
+5bG6 50732
+5bG/ 50733
+5bKA 50734
+5bKB 50735
+5bKC 50736
+5bKI 50737
+5bKM 50738
+5bKN 50739
+5bKQ 50740
+5bKR 50741
+5bKU 50742
+5bKV 50743
+5bKW 50744
+5bKX 50745
+5bKY 50746
+5bKZ 50747
+5bKa 50748
+5bKb 50749
+5bKc 50750
+5bKe 50751
+5bKh 50752
+5bKi 50753
+5bKo 50754
+5bKp 50755
+5bKr 50756
+5bKs 50757
+5bKt 50758
+5bKx 50759
+5bKz 50760
+5bK1 50761
+5bK3 50762
+5bK4 50763
+5bK7 50764
+5bK8 50765
+5bK9 50766
+5bK/ 50767
+5bOB 50768
+5bOE 50769
+5bOF 50770
+5bOH 50771
+5bOL 50772
+5bOS 50773
+5bOZ 50774
+5bOg 50775
+5bOh 50776
+5bOj 50777
+5bOk 50778
+5bOl 50779
+5bOm 50780
+5bOo 50781
+5bOq 50782
+5bOt 50783
+5bOv 50784
+5bOw 50785
+5bO2 50786
+5bO7 50787
+5bO9 50788
+5bSC 50789
+5bSD 50790
+5bSG 50791
+5bSH 50792
+5bSL 50793
+5bSO 50794
+5bSQ 50795
+5bSR 50796
+5bSS 50797
+5bSU 50798
+5bSV 50799
+5bSW 50800
+5bSX 50801
+5bSZ 50802
+5bSa 50803
+5bSb 50804
+5bSe 50805
+5bSf 50806
+5bSi 50807
+5bSk 50808
+5bSm 50809
+5bSn 50810
+5bSp 50811
+5bSt 50812
+5bSu 50813
+5bS0 50814
+5bS9 50815
+5bS+ 50816
+5bWC 50817
+5bWH 50818
+5bWK 50819
+5bWL 50820
+5bWM 50821
+5bWO 50822
+5bWQ 50823
+5bWS 50824
+5bWW 50825
+5bWY 50826
+5bWb 50827
+5bWc 50828
+5bWo 50829
+5bWp 50830
+5bWq 50831
+5bWr 50832
+5bWs 50833
+5bWv 50834
+5bW0 50835
+5baC 50836
+5baD 50837
+5baE 50838
+5baH 50839
+5baL 50840
+5baM 50841
+5baT 50842
+5baW 50843
+5baZ 50844
+5bad 50845
+5bas 50846
+5bau 50847
+5ba3 50848
+5ba6 50849
+5ba8 50850
+5ba9 50851
+5beC 50852
+5beF 50853
+5beH 50854
+5beJ 50855
+5beM 50856
+5beN 50857
+5beS 50858
+5beT 50859
+5beW 50860
+5bed 50861
+5bee 50862
+5beh 50863
+5bei 50864
+5bej 50865
+5bel 50866
+5bem 50867
+5ben 50868
+5beo 50869
+5bep 50870
+5ber 50871
+5beu 50872
+5bev 50873
+5bex 50874
+5bey 50875
+5bez 50876
+5be0 50877
+5be1 50878
+5be3 50879
+5be6 50880
+5be7 50881
+5be9 50882
+5be+ 50883
+5be/ 50884
+5biA 50885
+5biB 50886
+5biC 50887
+5biD 50888
+5biF 50889
+5biG 50890
+5biI 50891
+5biM 50892
+5biP 50893
+5biQ 50894
+5biR 50895
+5biU 50896
+5biV 50897
+5biW 50898
+5biY 50899
+5biZ 50900
+5bia 50901
+5bib 50902
+5bic 50903
+5bid 50904
+5bil 50905
+5bim 50906
+5bin 50907
+5bir 50908
+5bit 50909
+5biu 50910
+5biv 50911
+5biw 50912
+5biz 50913
+5bi2 50914
+5bi3 50915
+5bi4 50916
+5bi7 50917
+5bi8 50918
+5bi9 50919
+5bmA 50920
+5bmC 50921
+5bmE 50922
+5bmF 50923
+5bmH 50924
+5bmM 50925
+5bmU 50926
+5bmV 50927
+5bmX 50928
+5bmb 50929
+5bmf 50930
+5bmh 50931
+5bmi 50932
+5bmj 50933
+5bmr 50934
+5bmy 50935
+5bmz 50936
+5bm0 50937
+5bm2 50938
+5bm3 50939
+5bm4 50940
+5bm5 50941
+5bm6 50942
+5bm7 50943
+5bm8 50944
+5bm9 50945
+5bm+ 50946
+5bm/ 50947
+5bqB 50948
+5bqD 50949
+5bqE 50950
+5bqF 50951
+5bqG 50952
+5bqH 50953
+5bqK 50954
+5bqP 50955
+5bqQ 50956
+5bqR 50957
+5bqT 50958
+5bqU 50959
+5bqV 50960
+5bqW 50961
+5bqX 50962
+5bqZ 50963
+5bqa 50964
+5bqc 50965
+5bqe 50966
+5bqf 50967
+5bqg 50968
+5bqm 50969
+5bqn 50970
+5bqr 50971
+5bqt 50972
+5bq1 50973
+5bq2 50974
+5bq3 50975
+5bq4 50976
+5bq5 50977
+5bq+ 50978
+5buB 50979
+5buC 50980
+5buD 50981
+5buG 50982
+5buI 50983
+5buJ 50984
+5buK 50985
+5buL 50986
+5buR 50987
+5buT 50988
+5buW 50989
+5bua 50990
+5bub 50991
+5bud 50992
+5buf 50993
+5bug 50994
+5bui 50995
+5buj 50996
+5buo 50997
+5buq 50998
+5bus 50999
+5buz 51000
+5bu0 51001
+5bu2 51002
+5bu3 51003
+5bu6 51004
+5bu7 51005
+5bu8 51006
+5bu/ 51007
+5byA 51008
+5byB 51009
+5byC 51010
+5byD 51011
+5byE 51012
+5byH 51013
+5byI 51014
+5byJ 51015
+5byK 51016
+5byL 51017
+5byP 51018
+5byQ 51019
+5byR 51020
+5byT 51021
+5byU 51022
+5byV 51023
+5byW 51024
+5byX 51025
+5byY 51026
+5byb 51027
+5byf 51028
+5byg 51029
+5byi 51030
+5byl 51031
+5bym 51032
+5byn 51033
+5byo 51034
+5byp 51035
+5byt 51036
+5byv 51037
+5byx 51038
+5by1 51039
+5by3 51040
+5by5 51041
+5by6 51042
+5by8 51043
+5by+ 51044
+5b2A 51045
+5b2F 51046
+5b2G 51047
+5b2I 51048
+5b2K 51049
+5b2M 51050
+5b2O 51051
+5b2R 51052
+5b2S 51053
+5b2T 51054
+5b2V 51055
+5b2W 51056
+5b2X 51057
+5b2Y 51058
+5b2Z 51059
+5b2d 51060
+5b2f 51061
+5b2h 51062
+5b2i 51063
+5b2k 51064
+5b2l 51065
+5b2m 51066
+5b2n 51067
+5b2p 51068
+5b2q 51069
+5b2r 51070
+5b2s 51071
+5b2t 51072
+5b2w 51073
+5b2x 51074
+5b2z 51075
+5b23 51076
+5b25 51077
+5b26 51078
+5b27 51079
+5b28 51080
+5b2/ 51081
+5b6A 51082
+5b6B 51083
+5b6C 51084
+5b6D 51085
+5b6E 51086
+5b6F 51087
+5b6H 51088
+5b6I 51089
+5b6J 51090
+5b6K 51091
+5b6L 51092
+5b6M 51093
+5b6N 51094
+5b6Q 51095
+5b6R 51096
+5b6S 51097
+5b6T 51098
+5b6V 51099
+5b6X 51100
+5b6Y 51101
+5b6Z 51102
+5b6c 51103
+5b6e 51104
+5b6g 51105
+5b6h 51106
+5b6o 51107
+5b6p 51108
+5b6q 51109
+5b6s 51110
+5b6t 51111
+5b6u 51112
+5b6z 51113
+5b60 51114
+5b61 51115
+5b63 51116
+5b65 51117
+5b68 51118
+5b69 51119
+5b+D 51120
+5b+E 51121
+5b+F 51122
+5b+G 51123
+5b+L 51124
+5b+M 51125
+5b+N 51126
+5b+P 51127
+5b+Q 51128
+5b+R 51129
+5b+S 51130
+5b+W 51131
+5b+X 51132
+5b+Y 51133
+5b+Z 51134
+5b+c 51135
+5b+d 51136
+5b+g 51137
+5b+h 51138
+5b+k 51139
+5b+n 51140
+5b+q 51141
+5b+r 51142
+5b+w 51143
+5b+x 51144
+5b+1 51145
+5b+4 51146
+5b+7 51147
+5b+9 51148
+5b++ 51149
+5b+/ 51150
+5oCA 51151
+5oCB 51152
+5oCC 51153
+5oCD 51154
+5oCE 51155
+5oCF 51156
+5oCG 51157
+5oCN 51158
+5oCO 51159
+5oCP 51160
+5oCS 51161
+5oCU 51162
+5oCV 51163
+5oCW 51164
+5oCX 51165
+5oCZ 51166
+5oCb 51167
+5oCc 51168
+5oCd 51169
+5oCg 51170
+5oCh 51171
+5oCl 51172
+5oCm 51173
+5oCn 51174
+5oCo 51175
+5oCp 51176
+5oCq 51177
+5oCr 51178
+5oCv 51179
+5oCx 51180
+5oC1 51181
+5oC5 51182
+5oC7 51183
+5oC8 51184
+5oC/ 51185
+5oGB 51186
+5oGC 51187
+5oGD 51188
+5oGG 51189
+5oGL 51190
+5oGN 51191
+5oGQ 51192
+5oGS 51193
+5oGT 51194
+5oGV 51195
+5oGZ 51196
+5oGa 51197
+5oGf 51198
+5oGi 51199
+5oGj 51200
+5oGk 51201
+5oGl 51202
+5oGo 51203
+5oGp 51204
+5oGq 51205
+5oGr 51206
+5oGs 51207
+5oGt 51208
+5oGv 51209
+5oGw 51210
+5oGz 51211
+5oG1 51212
+5oG2 51213
+5oG4 51214
+5oG5 51215
+5oG6 51216
+5oG7 51217
+5oG8 51218
+5oG9 51219
+5oG/ 51220
+5oKD 51221
+5oKE 51222
+5oKF 51223
+5oKG 51224
+5oKJ 51225
+5oKL 51226
+5oKM 51227
+5oKN 51228
+5oKS 51229
+5oKU 51230
+5oKV 51231
+5oKW 51232
+5oKa 51233
+5oKb 51234
+5oKd 51235
+5oKf 51236
+5oKg 51237
+5oKj 51238
+5oKm 51239
+5oKn 51240
+5oKo 51241
+5oKp 51242
+5oKq 51243
+5oKr 51244
+5oKs 51245
+5oKt 51246
+5oKv 51247
+5oKx 51248
+5oKy 51249
+5oKz 51250
+5oK0 51251
+5oK1 51252
+5oK2 51253
+5oK4 51254
+5oK7 51255
+5oK8 51256
+5oK9 51257
+5oOF 51258
+5oOG 51259
+5oOH 51260
+5oOK 51261
+5oOL 51262
+5oOO 51263
+5oOR 51264
+5oOV 51265
+5oOY 51266
+5oOZ 51267
+5oOa 51268
+5oOc 51269
+5oOf 51270
+5oOg 51271
+5oOh 51272
+5oOj 51273
+5oOm 51274
+5oOn 51275
+5oOo 51276
+5oOp 51277
+5oOr 51278
+5oOs 51279
+5oOt 51280
+5oOu 51281
+5oOv 51282
+5oOw 51283
+5oOx 51284
+5oOz 51285
+5oO0 51286
+5oO2 51287
+5oO5 51288
+5oO6 51289
+5oO7 51290
+5oSA 51291
+5oSB 51292
+5oSG 51293
+5oSH 51294
+5oSI 51295
+5oSJ 51296
+5oSK 51297
+5oSN 51298
+5oSO 51299
+5oSP 51300
+5oSU 51301
+5oSV 51302
+5oSa 51303
+5oSb 51304
+5oSf 51305
+5oSg 51306
+5oSj 51307
+5oSk 51308
+5oSm 51309
+5oSn 51310
+5oSr 51311
+5oSs 51312
+5oS0 51313
+5oS3 51314
+5oS8 51315
+5oS+ 51316
+5oS/ 51317
+5oWC 51318
+5oWE 51319
+5oWG 51320
+5oWH 51321
+5oWI 51322
+5oWK 51323
+5oWL 51324
+5oWM 51325
+5oWO 51326
+5oWR 51327
+5oWT 51328
+5oWV 51329
+5oWY 51330
+5oWZ 51331
+5oWa 51332
+5oWc 51333
+5oWd 51334
+5oWf 51335
+5oWi 51336
+5oWj 51337
+5oWl 51338
+5oWn 51339
+5oWo 51340
+5oWr 51341
+5oWu 51342
+5oWw 51343
+5oWz 51344
+5oW0 51345
+5oW1 51346
+5oW2 51347
+5oW3 51348
+5oW+ 51349
+5oaC 51350
+5oaK 51351
+5oaL 51352
+5oaN 51353
+5oaO 51354
+5oaQ 51355
+5oaR 51356
+5oaU 51357
+5oaW 51358
+5oaZ 51359
+5oaa 51360
+5oak 51361
+5oan 51362
+5oao 51363
+5oap 51364
+5oar 51365
+5oas 51366
+5oau 51367
+5oay 51368
+5oa2 51369
+5oa3 51370
+5oa6 51371
+5oa+ 51372
+5oeC 51373
+5oeD 51374
+5oeG 51375
+5oeH 51376
+5oeI 51377
+5oeJ 51378
+5oeK 51379
+5oeL 51380
+5oeQ 51381
+5oeR 51382
+5oeS 51383
+5oej 51384
+5oem 51385
+5oey 51386
+5oe1 51387
+5oe2 51388
+5oe3 51389
+5oe4 51390
+5oe6 51391
+5oe8 51392
+5oe+ 51393
+5oe/ 51394
+5oiA 51395
+5oiG 51396
+5oiH 51397
+5oiI 51398
+5oiK 51399
+5oiM 51400
+5oiN 51401
+5oiO 51402
+5oiP 51403
+5oiQ 51404
+5oiR 51405
+5oiS 51406
+5oiU 51407
+5oiV 51408
+5oiW 51409
+5oiX 51410
+5oiY 51411
+5oia 51412
+5oib 51413
+5oie 51414
+5oif 51415
+5oih 51416
+5oii 51417
+5oil 51418
+5oim 51419
+5oiq 51420
+5ois 51421
+5oiu 51422
+5oiv 51423
+5oiw 51424
+5oiy 51425
+5oiz 51426
+5oi0 51427
+5oi2 51428
+5oi3 51429
+5oi4 51430
+5oi7 51431
+5oi9 51432
+5oi+ 51433
+5oi/ 51434
+5omA 51435
+5omB 51436
+5omD 51437
+5omG 51438
+5omH 51439
+5omI 51440
+5omJ 51441
+5omL 51442
+5omN 51443
+5omO 51444
+5omQ 51445
+5omR 51446
+5omS 51447
+5omT 51448
+5omU 51449
+5omV 51450
+5omY 51451
+5omb 51452
+5ome 51453
+5omg 51454
+5omj 51455
+5omk 51456
+5oml 51457
+5omm 51458
+5omn 51459
+5omo 51460
+5omp 51461
+5omq 51462
+5omr 51463
+5oms 51464
+5omt 51465
+5omu 51466
+5omv 51467
+5omw 51468
+5omx 51469
+5omz 51470
+5om2 51471
+5om5 51472
+5om8 51473
+5om+ 51474
+5om/ 51475
+5oqA 51476
+5oqD 51477
+5oqE 51478
+5oqF 51479
+5oqJ 51480
+5oqK 51481
+5oqM 51482
+5oqR 51483
+5oqS 51484
+5oqT 51485
+5oqU 51486
+5oqV 51487
+5oqW 51488
+5oqX 51489
+5oqY 51490
+5oqa 51491
+5oqb 51492
+5oqc 51493
+5oqe 51494
+5oqf 51495
+5oqg 51496
+5oqh 51497
+5oqi 51498
+5oqk 51499
+5oql 51500
+5oqo 51501
+5oqr 51502
+5oqs 51503
+5oqx 51504
+5oq1 51505
+5oq5 51506
+5oq7 51507
+5oq8 51508
+5oq9 51509
+5oq+ 51510
+5oq/ 51511
+5ouC 51512
+5ouD 51513
+5ouE 51514
+5ouF 51515
+5ouG 51516
+5ouH 51517
+5ouI 51518
+5ouJ 51519
+5ouK 51520
+5ouL 51521
+5ouM 51522
+5ouN 51523
+5ouO 51524
+5ouQ 51525
+5ouS 51526
+5ouT 51527
+5ouU 51528
+5ouW 51529
+5ouX 51530
+5ouY 51531
+5ouZ 51532
+5oua 51533
+5oub 51534
+5ouc 51535
+5oud 51536
+5ouf 51537
+5oug 51538
+5ouh 51539
+5oui 51540
+5ouj 51541
+5ouk 51542
+5oul 51543
+5oum 51544
+5oun 51545
+5ouo 51546
+5oup 51547
+5ous 51548
+5out 51549
+5ouu 51550
+5ouv 51551
+5oux 51552
+5ouz 51553
+5ou0 51554
+5ou1 51555
+5ou2 51556
+5ou3 51557
+5ou8 51558
+5ou9 51559
+5ou+ 51560
+5ou/ 51561
+5oyB 51562
+5oyC 51563
+5oyH 51564
+5oyI 51565
+5oyJ 51566
+5oyM 51567
+5oyO 51568
+5oyR 51569
+5oyS 51570
+5oyW 51571
+5oyZ 51572
+5oya 51573
+5oyb 51574
+5oyd 51575
+5oye 51576
+5oyf 51577
+5oyg 51578
+5oyh 51579
+5oyi 51580
+5oyj 51581
+5oyk 51582
+5oyl 51583
+5oyo 51584
+5oyq 51585
+5oyr 51586
+5oyv 51587
+5oyy 51588
+5oy5 51589
+5oy6 51590
+5oy8 51591
+5oy9 51592
+5oy+ 51593
+5oy/ 51594
+5o2C 51595
+5o2F 51596
+5o2G 51597
+5o2J 51598
+5o2K 51599
+5o2L 51600
+5o2M 51601
+5o2N 51602
+5o2O 51603
+5o2P 51604
+5o2Q 51605
+5o2V 51606
+5o2X 51607
+5o2c 51608
+5o2e 51609
+5o2f 51610
+5o2h 51611
+5o2i 51612
+5o2j 51613
+5o2n 51614
+5o2o 51615
+5o2p 51616
+5o2r 51617
+5o2t 51618
+5o2u 51619
+5o2v 51620
+5o2x 51621
+5o2y 51622
+5o22 51623
+5o23 51624
+5o26 51625
+5o27 51626
+5o6A 51627
+5o6C 51628
+5o6D 51629
+5o6H 51630
+5o6I 51631
+5o6J 51632
+5o6K 51633
+5o6M 51634
+5o6O 51635
+5o6P 51636
+5o6Q 51637
+5o6S 51638
+5o6V 51639
+5o6W 51640
+5o6Y 51641
+5o6Z 51642
+5o6b 51643
+5o6e 51644
+5o6f 51645
+5o6g 51646
+5o6h 51647
+5o6i 51648
+5o6j 51649
+5o6l 51650
+5o6n 51651
+5o6o 51652
+5o6p 51653
+5o6q 51654
+5o6s 51655
+5o6u 51656
+5o6w 51657
+5o6y 51658
+5o6z 51659
+5o60 51660
+5o63 51661
+5o64 51662
+5o65 51663
+5o66 51664
+5o67 51665
+5o68 51666
+5o6+ 51667
+5o+A 51668
+5o+D 51669
+5o+E 51670
+5o+G 51671
+5o+I 51672
+5o+J 51673
+5o+N 51674
+5o+O 51675
+5o+P 51676
+5o+Q 51677
+5o+S 51678
+5o+W 51679
+5o+a 51680
+5o+b 51681
+5o+e 51682
+5o+g 51683
+5o+h 51684
+5o+j 51685
+5o+p 51686
+5o+q 51687
+5o+t 51688
+5o+u 51689
+5o+y 51690
+5o+0 51691
+5o+1 51692
+5o+2 51693
+5o+4 51694
+5o+6 51695
+5o+8 51696
+5o+9 51697
+5o+/ 51698
+5pCA 51699
+5pCB 51700
+5pCC 51701
+5pCF 51702
+5pCG 51703
+5pCL 51704
+5pCM 51705
+5pCN 51706
+5pCP 51707
+5pCQ 51708
+5pCT 51709
+5pCU 51710
+5pCW 51711
+5pCX 51712
+5pCb 51713
+5pCc 51714
+5pCe 51715
+5pCg 51716
+5pCh 51717
+5pCi 51718
+5pCj 51719
+5pCm 51720
+5pCn 51721
+5pCo 51722
+5pCq 51723
+5pCs 51724
+5pCt 51725
+5pC0 51726
+5pC1 51727
+5pC2 51728
+5pC5 51729
+5pC6 51730
+5pC9 51731
+5pC+ 51732
+5pGB 51733
+5pGC 51734
+5pGE 51735
+5pGF 51736
+5pGG 51737
+5pGH 51738
+5pGI 51739
+5pGK 51740
+5pGQ 51741
+5pGS 51742
+5pGU 51743
+5pGY 51744
+5pGb 51745
+5pGe 51746
+5pGf 51747
+5pGn 51748
+5pGp 51749
+5pGt 51750
+5pGv 51751
+5pG1 51752
+5pG4 51753
+5pG5 51754
+5pG6 51755
+5pG9 51756
+5pKC 51757
+5pKD 51758
+5pKE 51759
+5pKF 51760
+5pKH 51761
+5pKI 51762
+5pKQ 51763
+5pKR 51764
+5pKS 51765
+5pKT 51766
+5pKV 51767
+5pKW 51768
+5pKZ 51769
+5pKa 51770
+5pKe 51771
+5pKk 51772
+5pKl 51773
+5pKp 51774
+5pKr 51775
+5pKs 51776
+5pKt 51777
+5pKu 51778
+5pKw 51779
+5pKy 51780
+5pKz 51781
+5pK0 51782
+5pK1 51783
+5pK3 51784
+5pK4 51785
+5pK5 51786
+5pK6 51787
+5pK7 51788
+5pK8 51789
+5pK/ 51790
+5pOA 51791
+5pOB 51792
+5pOC 51793
+5pOF 51794
+5pOH 51795
+5pOK 51796
+5pOL 51797
+5pON 51798
+5pOO 51799
+5pOQ 51800
+5pOS 51801
+5pOU 51802
+5pOX 51803
+5pOY 51804
+5pOa 51805
+5pOe 51806
+5pOg 51807
+5pOh 51808
+5pOi 51809
+5pOj 51810
+5pOk 51811
+5pOm 51812
+5pOn 51813
+5pOs 51814
+5pOv 51815
+5pOw 51816
+5pOx 51817
+5pOy 51818
+5pOz 51819
+5pO0 51820
+5pO2 51821
+5pO6 51822
+5pO7 51823
+5pO9 51824
+5pO+ 51825
+5pSA 51826
+5pSG 51827
+5pSJ 51828
+5pSP 51829
+5pSS 51830
+5pSU 51831
+5pSY 51832
+5pSZ 51833
+5pSc 51834
+5pSd 51835
+5pSe 51836
+5pSj 51837
+5pSk 51838
+5pSl 51839
+5pSq 51840
+5pSr 51841
+5pSs 51842
+5pSu 51843
+5pSv 51844
+5pSw 51845
+5pS0 51846
+5pS1 51847
+5pS2 51848
+5pS3 51849
+5pS4 51850
+5pS5 51851
+5pS7 51852
+5pS+ 51853
+5pS/ 51854
+5pWF 51855
+5pWI 51856
+5pWJ 51857
+5pWM 51858
+5pWN 51859
+5pWP 51860
+5pWR 51861
+5pWV 51862
+5pWW 51863
+5pWX 51864
+5pWY 51865
+5pWZ 51866
+5pWb 51867
+5pWd 51868
+5pWe 51869
+5pWi 51870
+5pWj 51871
+5pWm 51872
+5pWr 51873
+5pWs 51874
+5pWw 51875
+5pWy 51876
+5pW0 51877
+5pW1 51878
+5pW3 51879
+5pW4 51880
+5paB 51881
+5paC 51882
+5paD 51883
+5paH 51884
+5paJ 51885
+5paL 51886
+5paM 51887
+5paO 51888
+5paQ 51889
+5paR 51890
+5paT 51891
+5paV 51892
+5paX 51893
+5paZ 51894
+5pab 51895
+5pac 51896
+5pad 51897
+5paf 51898
+5pah 51899
+5pak 51900
+5pal 51901
+5pan 51902
+5pap 51903
+5par 51904
+5pas 51905
+5pat 51906
+5pav 51907
+5paw 51908
+5pa3 51909
+5pa5 51910
+5pa8 51911
+5pa9 51912
+5pa/ 51913
+5peB 51914
+5peD 51915
+5peE 51916
+5peF 51917
+5peG 51918
+5peJ 51919
+5peL 51920
+5peM 51921
+5peO 51922
+5peP 51923
+5peS 51924
+5peW 51925
+5peX 51926
+5peb 51927
+5peg 51928
+5pei 51929
+5pel 51930
+5pem 51931
+5pen 51932
+5peo 51933
+5pep 51934
+5pes 51935
+5pet 51936
+5peu 51937
+5pev 51938
+5pew 51939
+5pex 51940
+5pez 51941
+5pe2 51942
+5pe3 51943
+5pe4 51944
+5pe6 51945
+5pe7 51946
+5pe8 51947
+5piA 51948
+5piC 51949
+5piD 51950
+5piG 51951
+5piH 51952
+5piJ 51953
+5piK 51954
+5piM 51955
+5piO 51956
+5piP 51957
+5piT 51958
+5piU 51959
+5piV 51960
+5piZ 51961
+5pia 51962
+5pid 51963
+5pie 51964
+5pif 51965
+5pig 51966
+5pil 51967
+5pin 51968
+5pio 51969
+5pit 51970
+5piv 51971
+5pix 51972
+5pi0 51973
+5pi1 51974
+5pi2 51975
+5pi6 51976
+5pi8 51977
+5pi+ 51978
+5pmB 51979
+5pmC 51980
+5pmD 51981
+5pmE 51982
+5pmJ 51983
+5pmL 51984
+5pmM 51985
+5pmP 51986
+5pmS 51987
+5pmT 51988
+5pmU 51989
+5pmV 51990
+5pmW 51991
+5pmX 51992
+5pma 51993
+5pmd 51994
+5pme 51995
+5pmf 51996
+5pmh 51997
+5pmi 51998
+5pmk 51999
+5pml 52000
+5pmm 52001
+5pmn 52002
+5pmo 52003
+5pmp 52004
+5pms 52005
+5pmu 52006
+5pmv 52007
+5pmw 52008
+5pmz 52009
+5pm0 52010
+5pm2 52011
+5pm3 52012
+5pm6 52013
+5pm7 52014
+5pm+ 52015
+5pqB 52016
+5pqC 52017
+5pqE 52018
+5pqH 52019
+5pqI 52020
+5pqJ 52021
+5pqM 52022
+5pqN 52023
+5pqO 52024
+5pqR 52025
+5pqW 52026
+5pqX 52027
+5pqY 52028
+5pqd 52029
+5pqi 52030
+5pqm 52031
+5pqn 52032
+5pqo 52033
+5pqr 52034
+5pqu 52035
+5pqy 52036
+5pq0 52037
+5pq5 52038
+5pq7 52039
+5pq8 52040
+5pq+ 52041
+5puE 52042
+5puG 52043
+5puH 52044
+5puI 52045
+5puJ 52046
+5puM 52047
+5puW 52048
+5puZ 52049
+5pua 52050
+5pub 52051
+5puc 52052
+5pud 52053
+5pug 52054
+5puh 52055
+5pum 52056
+5pup 52057
+5pus 52058
+5puw 52059
+5pux 52060
+5puy 52061
+5puz 52062
+5pu0 52063
+5pu1 52064
+5pu3 52065
+5pu4 52066
+5pu5 52067
+5pu6 52068
+5pu8 52069
+5pu9 52070
+5pu+ 52071
+5pu/ 52072
+5pyA 52073
+5pyD 52074
+5pyI 52075
+5pyJ 52076
+5pyK 52077
+5pyL 52078
+5pyN 52079
+5pyP 52080
+5pyQ 52081
+5pyT 52082
+5pyU 52083
+5pyV 52084
+5pyX 52085
+5pyb 52086
+5pyd 52087
+5pyf 52088
+5pym 52089
+5pyn 52090
+5pyo 52091
+5pyq 52092
+5pyr 52093
+5pys 52094
+5pyt 52095
+5pyu 52096
+5pyv 52097
+5pyx 52098
+5py0 52099
+5py1 52100
+5py2 52101
+5py4 52102
+5py6 52103
+5py9 52104
+5py+ 52105
+5p2A 52106
+5p2B 52107
+5p2C 52108
+5p2D 52109
+5p2G 52110
+5p2I 52111
+5p2J 52112
+5p2M 52113
+5p2O 52114
+5p2P 52115
+5p2Q 52116
+5p2R 52117
+5p2T 52118
+5p2W 52119
+5p2Z 52120
+5p2c 52121
+5p2e 52122
+5p2f 52123
+5p2g 52124
+5p2h 52125
+5p2i 52126
+5p2j 52127
+5p2k 52128
+5p2l 52129
+5p2o 52130
+5p2p 52131
+5p2q 52132
+5p2s 52133
+5p2t 52134
+5p2u 52135
+5p2v 52136
+5p2w 52137
+5p2x 52138
+5p2y 52139
+5p2z 52140
+5p21 52141
+5p23 52142
+5p27 52143
+5p28 52144
+5p2+ 52145
+5p2/ 52146
+5p6B 52147
+5p6E 52148
+5p6F 52149
+5p6H 52150
+5p6J 52151
+5p6L 52152
+5p6M 52153
+5p6O 52154
+5p6Q 52155
+5p6T 52156
+5p6V 52157
+5p6X 52158
+5p6Y 52159
+5p6a 52160
+5p6c 52161
+5p6d 52162
+5p6e 52163
+5p6g 52164
+5p6h 52165
+5p6i 52166
+5p6j 52167
+5p6l 52168
+5p6m 52169
+5p6n 52170
+5p6o 52171
+5p6q 52172
+5p6r 52173
+5p6t 52174
+5p6v 52175
+5p6w 52176
+5p6x 52177
+5p6y 52178
+5p6z 52179
+5p60 52180
+5p62 52181
+5p63 52182
+5p64 52183
+5p65 52184
+5p+A 52185
+5p+B 52186
+5p+D 52187
+5p+E 52188
+5p+H 52189
+5p+K 52190
+5p+P 52191
+5p+Q 52192
+5p+R 52193
+5p+S 52194
+5p+T 52195
+5p+U 52196
+5p+Y 52197
+5p+a 52198
+5p+c 52199
+5p+d 52200
+5p+e 52201
+5p+g 52202
+5p+i 52203
+5p+k 52204
+5p+l 52205
+5p+n 52206
+5p+p 52207
+5p+s 52208
+5p+v 52209
+5p+w 52210
+5p+x 52211
+5p+z 52212
+5p+0 52213
+5p+1 52214
+5p+3 52215
+5p+4 52216
+5p+5 52217
+5p+7 52218
+5p+9 52219
+5p++ 52220
+5p+/ 52221
+5qCA 52222
+5qCC 52223
+5qCD 52224
+5qCE 52225
+5qCF 52226
+5qCH 52227
+5qCI 52228
+5qCJ 52229
+5qCK 52230
+5qCL 52231
+5qCM 52232
+5qCO 52233
+5qCP 52234
+5qCR 52235
+5qCT 52236
+5qCW 52237
+5qCX 52238
+5qCY 52239
+5qCd 52240
+5qCe 52241
+5qCf 52242
+5qCh 52243
+5qCi 52244
+5qCn 52245
+5qCp 52246
+5qCq 52247
+5qCr 52248
+5qCs 52249
+5qCx 52250
+5qCy 52251
+5qCz 52252
+5qC0 52253
+5qC3 52254
+5qC4 52255
+5qC5 52256
+5qC7 52257
+5qC8 52258
+5qC9 52259
+5qC+ 52260
+5qGA 52261
+5qGB 52262
+5qGC 52263
+5qGD 52264
+5qGE 52265
+5qGF 52266
+5qGG 52267
+5qGI 52268
+5qGJ 52269
+5qGM 52270
+5qGO 52271
+5qGQ 52272
+5qGR 52273
+5qGT 52274
+5qGU 52275
+5qGV 52276
+5qGW 52277
+5qGZ 52278
+5qGc 52279
+5qGd 52280
+5qGf 52281
+5qGg 52282
+5qGh 52283
+5qGi 52284
+5qGj 52285
+5qGk 52286
+5qGl 52287
+5qGm 52288
+5qGn 52289
+5qGo 52290
+5qGp 52291
+5qGr 52292
+5qGv 52293
+5qG0 52294
+5qG2 52295
+5qG3 52296
+5qG8 52297
+5qG+ 52298
+5qG/ 52299
+5qKB 52300
+5qKD 52301
+5qKF 52302
+5qKG 52303
+5qKI 52304
+5qKP 52305
+5qKT 52306
+5qKU 52307
+5qKX 52308
+5qKb 52309
+5qKd 52310
+5qKf 52311
+5qKg 52312
+5qKh 52313
+5qKi 52314
+5qKj 52315
+5qKm 52316
+5qKn 52317
+5qKo 52318
+5qKq 52319
+5qKr 52320
+5qKt 52321
+5qKv 52322
+5qKw 52323
+5qKx 52324
+5qKz 52325
+5qK1 52326
+5qK2 52327
+5qK5 52328
+5qK6 52329
+5qK7 52330
+5qK8 52331
+5qK/ 52332
+5qOA 52333
+5qOC 52334
+5qOE 52335
+5qOF 52336
+5qOI 52337
+5qOJ 52338
+5qOK 52339
+5qOL 52340
+5qON 52341
+5qOS 52342
+5qOU 52343
+5qOV 52344
+5qOX 52345
+5qOY 52346
+5qOa 52347
+5qOf 52348
+5qOg 52349
+5qOh 52350
+5qOj 52351
+5qOn 52352
+5qOo 52353
+5qOs 52354
+5qOu 52355
+5qOv 52356
+5qOw 52357
+5qOx 52358
+5qOy 52359
+5qO1 52360
+5qO2 52361
+5qO3 52362
+5qO5 52363
+5qO6 52364
+5qO7 52365
+5qO8 52366
+5qSA 52367
+5qSB 52368
+5qSF 52369
+5qSI 52370
+5qSK 52371
+5qSL 52372
+5qSM 52373
+5qSN 52374
+5qSO 52375
+5qSP 52376
+5qSQ 52377
+5qSS 52378
+5qSZ 52379
+5qSa 52380
+5qSb 52381
+5qSc 52382
+5qSf 52383
+5qSh 52384
+5qSj 52385
+5qSk 52386
+5qSl 52387
+5qSo 52388
+5qSq 52389
+5qSt 52390
+5qSw 52391
+5qS0 52392
+5qS5 52393
+5qS9 52394
+5qS/ 52395
+5qWA 52396
+5qWC 52397
+5qWJ 52398
+5qWK 52399
+5qWT 52400
+5qWU 52401
+5qWV 52402
+5qWX 52403
+5qWZ 52404
+5qWa 52405
+5qWc 52406
+5qWd 52407
+5qWe 52408
+5qWg 52409
+5qWh 52410
+5qWi 52411
+5qWj 52412
+5qWm 52413
+5qWq 52414
+5qWr 52415
+5qWt 52416
+5qWu 52417
+5qWv 52418
+5qWx 52419
+5qWz 52420
+5qW1 52421
+5qW3 52422
+5qW4 52423
+5qW5 52424
+5qW8 52425
+5qW9 52426
+5qW+ 52427
+5qaB 52428
+5qaC 52429
+5qaE 52430
+5qaG 52431
+5qaH 52432
+5qaI 52433
+5qaJ 52434
+5qaK 52435
+5qaO 52436
+5qaR 52437
+5qaU 52438
+5qaV 52439
+5qaW 52440
+5qaY 52441
+5qab 52442
+5qac 52443
+5qan 52444
+5qao 52445
+5qar 52446
+5qat 52447
+5qau 52448
+5qay 52449
+5qa0 52450
+5qa3 52451
+5qa7 52452
+5qa8 52453
+5qa+ 52454
+5qa/ 52455
+5qeB 52456
+5qeD 52457
+5qeF 52458
+5qeH 52459
+5qeK 52460
+5qeL 52461
+5qeM 52462
+5qeN 52463
+5qeO 52464
+5qeQ 52465
+5qeT 52466
+5qeW 52467
+5qeY 52468
+5qeZ 52469
+5qeb 52470
+5qef 52471
+5qen 52472
+5qeo 52473
+5qep 52474
+5qer 52475
+5qet 52476
+5qey 52477
+5qez 52478
+5qe7 52479
+5qe9 52480
+5qe/ 52481
+5qiA 52482
+5qiB 52483
+5qiC 52484
+5qiF 52485
+5qiJ 52486
+5qiK 52487
+5qiL 52488
+5qiR 52489
+5qiS 52490
+5qiT 52491
+5qiW 52492
+5qiX 52493
+5qiY 52494
+5qiZ 52495
+5qib 52496
+5qie 52497
+5qif 52498
+5qih 52499
+5qij 52500
+5qio 52501
+5qip 52502
+5qiq 52503
+5qir 52504
+5qiu 52505
+5qiv 52506
+5qix 52507
+5qi1 52508
+5qi4 52509
+5qi5 52510
+5qi6 52511
+5qi9 52512
+5qi+ 52513
+5qmE 52514
+5qmF 52515
+5qmH 52516
+5qmI 52517
+5qmL 52518
+5qmQ 52519
+5qmY 52520
+5qmZ 52521
+5qmb 52522
+5qme 52523
+5qmf 52524
+5qmh 52525
+5qmi 52526
+5qml 52527
+5qmm 52528
+5qmr 52529
+5qmx 52530
+5qmy 52531
+5qm5 52532
+5qm8 52533
+5qm/ 52534
+5qqA 52535
+5qqE 52536
+5qqJ 52537
+5qqN 52538
+5qqO 52539
+5qqQ 52540
+5qqU 52541
+5qqX 52542
+5qqc 52543
+5qqe 52544
+5qqg 52545
+5qqi 52546
+5qqj 52547
+5qqp 52548
+5qqq 52549
+5qqr 52550
+5qqs 52551
+5qqu 52552
+5qqv 52553
+5qqz 52554
+5qq4 52555
+5qq7 52556
+5qq/ 52557
+5quB 52558
+5quC 52559
+5quD 52560
+5quI 52561
+5quT 52562
+5qua 52563
+5qub 52564
+5que 52565
+5quf 52566
+5qun 52567
+5quo 52568
+5quq 52569
+5qu6 52570
+5qu7 52571
+5qyE 52572
+5qyF 52573
+5qyK 52574
+5qyS 52575
+5qyW 52576
+5qyd 52577
+5qye 52578
+5qyg 52579
+5qyh 52580
+5qyi 52581
+5qyj 52582
+5qyk 52583
+5qyn 52584
+5qyy 52585
+5qy3 52586
+5qy4 52587
+5qy5 52588
+5qy6 52589
+5qy7 52590
+5qy9 52591
+5qy+ 52592
+5q2A 52593
+5q2D 52594
+5q2G 52595
+5q2H 52596
+5q2J 52597
+5q2M 52598
+5q2O 52599
+5q2Q 52600
+5q2T 52601
+5q2U 52602
+5q2Y 52603
+5q2Z 52604
+5q2h 52605
+5q2i 52606
+5q2j 52607
+5q2k 52608
+5q2l 52609
+5q2m 52610
+5q2n 52611
+5q2p 52612
+5q2q 52613
+5q2t 52614
+5q2v 52615
+5q2y 52616
+5q2z 52617
+5q20 52618
+5q23 52619
+5q24 52620
+5q25 52621
+5q27 52622
+5q28 52623
+5q2/ 52624
+5q6B 52625
+5q6C 52626
+5q6D 52627
+5q6E 52628
+5q6G 52629
+5q6H 52630
+5q6J 52631
+5q6K 52632
+5q6L 52633
+5q6N 52634
+5q6S 52635
+5q6T 52636
+5q6W 52637
+5q6Y 52638
+5q6a 52639
+5q6b 52640
+5q6h 52641
+5q6q 52642
+5q6t 52643
+5q6u 52644
+5q6v 52645
+5q6y 52646
+5q6z 52647
+5q60 52648
+5q61 52649
+5q63 52650
+5q66 52651
+5q67 52652
+5q68 52653
+5q69 52654
+5q6/ 52655
+5q+A 52656
+5q+B 52657
+5q+C 52658
+5q+F 52659
+5q+G 52660
+5q+L 52661
+5q+N 52662
+5q+O 52663
+5q+P 52664
+5q+Q 52665
+5q+S 52666
+5q+T 52667
+5q+U 52668
+5q+V 52669
+5q+W 52670
+5q+X 52671
+5q+Y 52672
+5q+Z 52673
+5q+b 52674
+5q+f 52675
+5q+h 52676
+5q+r 52677
+5q+s 52678
+5q+v 52679
+5q+z 52680
+5q+5 52681
+5q+9 52682
+5rCF 52683
+5rCG 52684
+5rCH 52685
+5rCI 52686
+5rCN 52687
+5rCP 52688
+5rCQ 52689
+5rCR 52690
+5rCT 52691
+5rCU 52692
+5rCV 52693
+5rCW 52694
+5rCX 52695
+5rCY 52696
+5rCZ 52697
+5rCa 52698
+5rCb 52699
+5rCf 52700
+5rCh 52701
+5rCi 52702
+5rCj 52703
+5rCk 52704
+5rCm 52705
+5rCn 52706
+5rCo 52707
+5rCp 52708
+5rCq 52709
+5rCu 52710
+5rCv 52711
+5rCw 52712
+5rCy 52713
+5rC0 52714
+5rC3 52715
+5rC4 52716
+5rC5 52717
+5rC9 52718
+5rC+ 52719
+5rGA 52720
+5rGB 52721
+5rGC 52722
+5rGG 52723
+5rGH 52724
+5rGI 52725
+5rGJ 52726
+5rGK 52727
+5rGO 52728
+5rGQ 52729
+5rGU 52730
+5rGV 52731
+5rGX 52732
+5rGa 52733
+5rGb 52734
+5rGc 52735
+5rGd 52736
+5rGe 52737
+5rGf 52738
+5rGg 52739
+5rGh 52740
+5rGk 52741
+5rGo 52742
+5rGp 52743
+5rGq 52744
+5rGt 52745
+5rGw 52746
+5rGy 52747
+5rG0 52748
+5rG1 52749
+5rG2 52750
+5rG5 52751
+5rG6 52752
+5rG9 52753
+5rG+ 52754
+5rKB 52755
+5rKC 52756
+5rKD 52757
+5rKE 52758
+5rKF 52759
+5rKG 52760
+5rKI 52761
+5rKJ 52762
+5rKM 52763
+5rKP 52764
+5rKQ 52765
+5rKS 52766
+5rKT 52767
+5rKU 52768
+5rKW 52769
+5rKZ 52770
+5rKa 52771
+5rKb 52772
+5rKf 52773
+5rKh 52774
+5rKi 52775
+5rKj 52776
+5rKk 52777
+5rKl 52778
+5rKm 52779
+5rKn 52780
+5rKo 52781
+5rKp 52782
+5rKq 52783
+5rKr 52784
+5rKt 52785
+5rKu 52786
+5rKx 52787
+5rKz 52788
+5rK4 52789
+5rK5 52790
+5rK7 52791
+5rK8 52792
+5rK9 52793
+5rK+ 52794
+5rK/ 52795
+5rOB 52796
+5rOD 52797
+5rOE 52798
+5rOF 52799
+5rOG 52800
+5rOJ 52801
+5rOK 52802
+5rOM 52803
+5rOQ 52804
+5rOS 52805
+5rOT 52806
+5rOU 52807
+5rOV 52808
+5rOW 52809
+5rOX 52810
+5rOZ 52811
+5rOa 52812
+5rOb 52813
+5rOe 52814
+5rOg 52815
+5rOh 52816
+5rOi 52817
+5rOj 52818
+5rOl 52819
+5rOo 52820
+5rOq 52821
+5rOr 52822
+5rOs 52823
+5rOu 52824
+5rOv 52825
+5rOw 52826
+5rOx 52827
+5rOz 52828
+5rO1 52829
+5rO3 52830
+5rO4 52831
+5rO6 52832
+5rO7 52833
+5rO8 52834
+5rO9 52835
+5rO+ 52836
+5rSB 52837
+5rSE 52838
+5rSH 52839
+5rSL 52840
+5rSM 52841
+5rSO 52842
+5rSP 52843
+5rSR 52844
+5rSS 52845
+5rSX 52846
+5rSZ 52847
+5rSb 52848
+5rSe 52849
+5rSf 52850
+5rSj 52851
+5rSl 52852
+5rSn 52853
+5rSp 52854
+5rSq 52855
+5rSu 52856
+5rSx 52857
+5rSy 52858
+5rSz 52859
+5rS1 52860
+5rS2 52861
+5rS4 52862
+5rS5 52863
+5rS6 52864
+5rS7 52865
+5rS8 52866
+5rS9 52867
+5rS+ 52868
+5rS/ 52869
+5rWB 52870
+5rWD 52871
+5rWE 52872
+5rWF 52873
+5rWG 52874
+5rWH 52875
+5rWI 52876
+5rWJ 52877
+5rWK 52878
+5rWL 52879
+5rWN 52880
+5rWO 52881
+5rWP 52882
+5rWQ 52883
+5rWR 52884
+5rWS 52885
+5rWT 52886
+5rWU 52887
+5rWZ 52888
+5rWa 52889
+5rWb 52890
+5rWc 52891
+5rWe 52892
+5rWg 52893
+5rWj 52894
+5rWl 52895
+5rWm 52896
+5rWp 52897
+5rWq 52898
+5rWs 52899
+5rWu 52900
+5rWv 52901
+5rW0 52902
+5rW3 52903
+5rW4 52904
+5rW5 52905
+5raC 52906
+5raF 52907
+5raI 52908
+5raJ 52909
+5raM 52910
+5raO 52911
+5raR 52912
+5raT 52913
+5raU 52914
+5raV 52915
+5raW 52916
+5raY 52917
+5raZ 52918
+5rab 52919
+5rac 52920
+5rad 52921
+5rae 52922
+5raf 52923
+5rag 52924
+5rah 52925
+5raj 52926
+5rak 52927
+5ram 52928
+5ran 52929
+5rao 52930
+5rap 52931
+5raq 52932
+5rau 52933
+5rav 52934
+5ray 52935
+5ra1 52936
+5ra4 52937
+5ra8 52938
+5ra/ 52939
+5reA 52940
+5reE 52941
+5reF 52942
+5reG 52943
+5reH 52944
+5reL 52945
+5reM 52946
+5reP 52947
+5reR 52948
+5reS 52949
+5reW 52950
+5reY 52951
+5reZ 52952
+5rea 52953
+5rec 52954
+5red 52955
+5ree 52956
+5reg 52957
+5reh 52958
+5rek 52959
+5rem 52960
+5reo 52961
+5req 52962
+5rer 52963
+5res 52964
+5reu 52965
+5rev 52966
+5rex 52967
+5rez 52968
+5re1 52969
+5re3 52970
+5re4 52971
+5re5 52972
+5re6 52973
+5re7 52974
+5re8 52975
+5riA 52976
+5riF 52977
+5riH 52978
+5riI 52979
+5riJ 52980
+5riK 52981
+5riL 52982
+5riM 52983
+5riN 52984
+5riO 52985
+5riQ 52986
+5riR 52987
+5riT 52988
+5riU 52989
+5riV 52990
+5riX 52991
+5riZ 52992
+5ria 52993
+5rib 52994
+5rid 52995
+5rif 52996
+5rig 52997
+5rih 52998
+5rij 52999
+5rik 53000
+5ril 53001
+5rim 53002
+5rip 53003
+5rir 53004
+5ris 53005
+5rit 53006
+5riv 53007
+5riy 53008
+5ri0 53009
+5ri4 53010
+5ri6 53011
+5ri+ 53012
+5rmD 53013
+5rmE 53014
+5rmJ 53015
+5rmK 53016
+5rmN 53017
+5rmO 53018
+5rmT 53019
+5rmU 53020
+5rmW 53021
+5rmY 53022
+5rmb 53023
+5rmc 53024
+5rmd 53025
+5rmf 53026
+5rmj 53027
+5rmn 53028
+5rmr 53029
+5rmu 53030
+5rmv 53031
+5rmy 53032
+5rm0 53033
+5rm2 53034
+5rm+ 53035
+5rm/ 53036
+5rqA 53037
+5rqC 53038
+5rqD 53039
+5rqF 53040
+5rqG 53041
+5rqH 53042
+5rqJ 53043
+5rqM 53044
+5rqN 53045
+5rqP 53046
+5rqQ 53047
+5rqW 53048
+5rqY 53049
+5rqc 53050
+5rqd 53051
+5rqf 53052
+5rqi 53053
+5rql 53054
+5rqn 53055
+5rqq 53056
+5rqr 53057
+5rqv 53058
+5rqx 53059
+5rqy 53060
+5rq0 53061
+5rq2 53062
+5rq3 53063
+5rq6 53064
+5rq9 53065
+5ruB 53066
+5ruC 53067
+5ruE 53068
+5ruF 53069
+5ruH 53070
+5ruI 53071
+5ruJ 53072
+5ruL 53073
+5ruM 53074
+5ruP 53075
+5ruR 53076
+5ruT 53077
+5ruU 53078
+5ruV 53079
+5ruX 53080
+5ruY 53081
+5rua 53082
+5rud 53083
+5rue 53084
+5ruf 53085
+5rug 53086
+5ruh 53087
+5rui 53088
+5ruk 53089
+5rul 53090
+5rum 53091
+5ruo 53092
+5rup 53093
+5rus 53094
+5ruv 53095
+5ruy 53096
+5ru0 53097
+5ru4 53098
+5ru5 53099
+5ru+ 53100
+5ru/ 53101
+5ryB 53102
+5ryC 53103
+5ryG 53104
+5ryI 53105
+5ryJ 53106
+5ryP 53107
+5ryR 53108
+5ryT 53109
+5ryU 53110
+5ryV 53111
+5ryg 53112
+5ryi 53113
+5ryj 53114
+5ryp 53115
+5ryq 53116
+5ryr 53117
+5rys 53118
+5ryt 53119
+5ryv 53120
+5ryx 53121
+5ryy 53122
+5ryz 53123
+5ry0 53124
+5ry2 53125
+5ry3 53126
+5ry4 53127
+5ry8 53128
+5ry+ 53129
+5ry/ 53130
+5r2F 53131
+5r2G 53132
+5r2H 53133
+5r2L 53134
+5r2N 53135
+5r2O 53136
+5r2P 53137
+5r2R 53138
+5r2U 53139
+5r2Y 53140
+5r2b 53141
+5r2c 53142
+5r2e 53143
+5r2f 53144
+5r2h 53145
+5r2i 53146
+5r2k 53147
+5r2l 53148
+5r2m 53149
+5r2p 53150
+5r2s 53151
+5r2t 53152
+5r2u 53153
+5r2w 53154
+5r2y 53155
+5r20 53156
+5r21 53157
+5r24 53158
+5r26 53159
+5r28 53160
+5r6A 53161
+5r6B 53162
+5r6E 53163
+5r6G 53164
+5r6I 53165
+5r6M 53166
+5r6N 53167
+5r6O 53168
+5r6X 53169
+5r6c 53170
+5r6h 53171
+5r6j 53172
+5r6k 53173
+5r6n 53174
+5r6q 53175
+5r6x 53176
+5r6z 53177
+5r60 53178
+5r62 53179
+5r65 53180
+5r+A 53181
+5r+B 53182
+5r+C 53183
+5r+D 53184
+5r+G 53185
+5r+J 53186
+5r+R 53187
+5r+S 53188
+5r+V 53189
+5r+Y 53190
+5r+b 53191
+5r+e 53192
+5r+f 53193
+5r+g 53194
+5r+h 53195
+5r+k 53196
+5r+p 53197
+5r+r 53198
+5r+s 53199
+5r+u 53200
+5r+v 53201
+5r+x 53202
+5r+2 53203
+5r+6 53204
+5r++ 53205
+54CJ 53206
+54CL 53207
+54CN 53208
+54CP 53209
+54CR 53210
+54CV 53211
+54Ca 53212
+54Cb 53213
+54Cd 53214
+54Ce 53215
+54Cf 53216
+54Cj 53217
+54Cm 53218
+54Cn 53219
+54Cs 53220
+54Cw 53221
+54Cy 53222
+54C5 53223
+54C+ 53224
+54GM 53225
+54GP 53226
+54GR 53227
+54GY 53228
+54Ge 53229
+54Gj 53230
+54Gr 53231
+54Gt 53232
+54Gv 53233
+54Gw 53234
+54G1 53235
+54G2 53236
+54G4 53237
+54G8 53238
+54G9 53239
+54G+ 53240
+54G/ 53241
+54KA 53242
+54KB 53243
+54KF 53244
+54KG 53245
+54KJ 53246
+54KK 53247
+54KO 53248
+54KS 53249
+54KU 53250
+54KV 53251
+54KW 53252
+54KZ 53253
+54Kc 53254
+54Kd 53255
+54Kf 53256
+54Kk 53257
+54Kq 53258
+54Kr 53259
+54Ks 53260
+54Kt 53261
+54Ku 53262
+54Kv 53263
+54Kz 53264
+54K0 53265
+54K3 53266
+54K4 53267
+54K5 53268
+54K6 53269
+54K8 53270
+54K9 53271
+54OA 53272
+54OB 53273
+54OC 53274
+54OD 53275
+54OI 53276
+54OK 53277
+54OP 53278
+54OW 53279
+54OY 53280
+54OZ 53281
+54Ob 53282
+54Oc 53283
+54Of 53284
+54Ok 53285
+54Om 53286
+54On 53287
+54Oo 53288
+54Op 53289
+54Or 53290
+54Os 53291
+54Ot 53292
+54Ov 53293
+54Ox 53294
+54O3 53295
+54O5 53296
+54O9 53297
+54SJ 53298
+54SK 53299
+54SQ 53300
+54ST 53301
+54SU 53302
+54SV 53303
+54SW 53304
+54SX 53305
+54SY 53306
+54SZ 53307
+54Sa 53308
+54Sc 53309
+54Sh 53310
+54Sm 53311
+54Sv 53312
+54Sw 53313
+54Sx 53314
+54S2 53315
+54S8 53316
+54WF 53317
+54WJ 53318
+54WK 53319
+54WL 53320
+54WM 53321
+54WO 53322
+54WV 53323
+54WW 53324
+54WZ 53325
+54Wc 53326
+54We 53327
+54Wf 53328
+54Wi 53329
+54Wk 53330
+54Wl 53331
+54Wm 53332
+54Wn 53333
+54Wo 53334
+54Wp 53335
+54Ws 53336
+54Wu 53337
+54Wy 53338
+54Wz 53339
+54W4 53340
+54W6 53341
+54W9 53342
+54W/ 53343
+54aE 53344
+54aK 53345
+54aP 53346
+54aU 53347
+54aY 53348
+54aZ 53349
+54ac 53350
+54af 53351
+54ag 53352
+54ao 53353
+54as 53354
+54ax 53355
+54az 53356
+54a1 53357
+54a5 53358
+54a+ 53359
+54eD 53360
+54eE 53361
+54eI 53362
+54eJ 53363
+54eK 53364
+54eL 53365
+54eO 53366
+54eQ 53367
+54eS 53368
+54eU 53369
+54eV 53370
+54eX 53371
+54eZ 53372
+54ea 53373
+54ef 53374
+54eg 53375
+54el 53376
+54em 53377
+54en 53378
+54et 53379
+54eu 53380
+54e1 53381
+54e5 53382
+54e7 53383
+54e8 53384
+54e/ 53385
+54iG 53386
+54iN 53387
+54iQ 53388
+54ib 53389
+54io 53390
+54iq 53391
+54is 53392
+54it 53393
+54iw 53394
+54ix 53395
+54iy 53396
+54i1 53397
+54i2 53398
+54i3 53399
+54i4 53400
+54i5 53401
+54i6 53402
+54i7 53403
+54i8 53404
+54i9 53405
+54i+ 53406
+54i/ 53407
+54mA 53408
+54mB 53409
+54mC 53410
+54mG 53411
+54mH 53412
+54mI 53413
+54mM 53414
+54mN 53415
+54mS 53416
+54mV 53417
+54mW 53418
+54mY 53419
+54mZ 53420
+54mb 53421
+54md 53422
+54mf 53423
+54mg 53424
+54mh 53425
+54mi 53426
+54mk 53427
+54mm 53428
+54mn 53429
+54mp 53430
+54mu 53431
+54mv 53432
+54my 53433
+54m0 53434
+54m1 53435
+54m4 53436
+54m5 53437
+54m6 53438
+54m9 53439
+54m+ 53440
+54qA 53441
+54qB 53442
+54qC 53443
+54qE 53444
+54qH 53445
+54qK 53446
+54qL 53447
+54qN 53448
+54qS 53449
+54qW 53450
+54qf 53451
+54qg 53452
+54qi 53453
+54qn 53454
+54qs 53455
+54qv 53456
+54qw 53457
+54qz 53458
+54q0 53459
+54q2 53460
+54q3 53461
+54q4 53462
+54q5 53463
+54q8 53464
+54uA 53465
+54uC 53466
+54uE 53467
+54uG 53468
+54uI 53469
+54uM 53470
+54uN 53471
+54uO 53472
+54uQ 53473
+54uS 53474
+54uX 53475
+54uZ 53476
+54ub 53477
+54ud 53478
+54ue 53479
+54ug 53480
+54uh 53481
+54ui 53482
+54uo 53483
+54up 53484
+54us 53485
+54ut 53486
+54uu 53487
+54uw 53488
+54ux 53489
+54uy 53490
+54u0 53491
+54u3 53492
+54u4 53493
+54u5 53494
+54u7 53495
+54u8 53496
+54u9 53497
+54yB 53498
+54yH 53499
+54yK 53500
+54yO 53501
+54yV 53502
+54yW 53503
+54yX 53504
+54yZ 53505
+54yb 53506
+54yc 53507
+54yd 53508
+54ye 53509
+54yf 53510
+54yh 53511
+54yi 53512
+54yl 53513
+54yo 53514
+54yp 53515
+54yq 53516
+54yr 53517
+54ys 53518
+54yu 53519
+54yv 53520
+54yx 53521
+54yy 53522
+54y0 53523
+54y2 53524
+54y3 53525
+54y5 53526
+54y+ 53527
+54y/ 53528
+542E 53529
+542F 53530
+542O 53531
+542P 53532
+542Q 53533
+542S 53534
+542X 53535
+542g 53536
+542j 53537
+542o 53538
+542q 53539
+542s 53540
+542t 53541
+542w 53542
+542y 53543
+5421 53544
+5424 53545
+5426 53546
+5427 53547
+542+ 53548
+546E 53549
+546H 53550
+546J 53551
+546L 53552
+546O 53553
+546R 53554
+546V 53555
+546W 53556
+546Y 53557
+546Z 53558
+546a 53559
+546b 53560
+546f 53561
+546g 53562
+546i 53563
+546l 53564
+546m 53565
+546p 53566
+546r 53567
+546u 53568
+546v 53569
+546w 53570
+546y 53571
+546z 53572
+5463 53573
+5465 53574
+5466 53575
+5467 53576
+54+A 53577
+54+C 53578
+54+F 53579
+54+I 53580
+54+J 53581
+54+K 53582
+54+N 53583
+54+O 53584
+54+P 53585
+54+Q 53586
+54+R 53587
+54+Z 53588
+54+c 53589
+54+e 53590
+54+g 53591
+54+j 53592
+54+l 53593
+54+m 53594
+54+n 53595
+54+p 53596
+54+q 53597
+54+r 53598
+54+t 53599
+54+u 53600
+54+w 53601
+54+y 53602
+54+4 53603
+54+6 53604
+54+9 53605
+54++ 53606
+55CD 53607
+55CF 53608
+55CG 53609
+55CH 53610
+55CJ 53611
+55CK 53612
+55CN 53613
+55CO 53614
+55CP 53615
+55CQ 53616
+55Ca 53617
+55Cb 53618
+55Ci 53619
+55Ck 53620
+55Cl 53621
+55Cm 53622
+55Co 53623
+55Cq 53624
+55Cs 53625
+55Cu 53626
+55Cv 53627
+55Cw 53628
+55Cy 53629
+55Cz 53630
+55C0 53631
+55C1 53632
+55C2 53633
+55C6 53634
+55C8 53635
+55GA 53636
+55GB 53637
+55GE 53638
+55GV 53639
+55GX 53640
+55GZ 53641
+55Ga 53642
+55Gb 53643
+55Gc 53644
+55Ge 53645
+55Gf 53646
+55Gg 53647
+55Gj 53648
+55Gk 53649
+55Gp 53650
+55Gq 53651
+55Gt 53652
+55Gu 53653
+55Gv 53654
+55Gw 53655
+55Gx 53656
+55Gz 53657
+55G0 53658
+55G2 53659
+55G3 53660
+55G+ 53661
+55KA 53662
+55KB 53663
+55KD 53664
+55KH 53665
+55KI 53666
+55KL 53667
+55KO 53668
+55KQ 53669
+55KY 53670
+55Kc 53671
+55Kd 53672
+55Ke 53673
+55Kf 53674
+55Kg 53675
+55Kj 53676
+55Kn 53677
+55Ko 53678
+55Kp 53679
+55Kw 53680
+55K6 53681
+55K9 53682
+55OK 53683
+55OP 53684
+55OS 53685
+55OU 53686
+55OY 53687
+55Oc 53688
+55Og 53689
+55Oi 53690
+55Oj 53691
+55Ok 53692
+55Om 53693
+55Or 53694
+55Ou 53695
+55Ov 53696
+55O0 53697
+55O2 53698
+55O3 53699
+55O/ 53700
+55SD 53701
+55SE 53702
+55SM 53703
+55SN 53704
+55SO 53705
+55SP 53706
+55SR 53707
+55ST 53708
+55SV 53709
+55SY 53710
+55SZ 53711
+55Sa 53712
+55Sc 53713
+55Sf 53714
+55Si 53715
+55Sj 53716
+55Sl 53717
+55Sm 53718
+55So 53719
+55Sp 53720
+55Sq 53721
+55Sr 53722
+55Ss 53723
+55St 53724
+55Sv 53725
+55Sw 53726
+55Sx 53727
+55Sy 53728
+55Sz 53729
+55S0 53730
+55S1 53731
+55S3 53732
+55S4 53733
+55S6 53734
+55S7 53735
+55S+ 53736
+55WA 53737
+55WF 53738
+55WI 53739
+55WJ 53740
+55WK 53741
+55WL 53742
+55WM 53743
+55WO 53744
+55WP 53745
+55WR 53746
+55WU 53747
+55WZ 53748
+55Wa 53749
+55Wb 53750
+55Wc 53751
+55Wd 53752
+55Wg 53753
+55Wi 53754
+55Wk 53755
+55Wl 53756
+55Wm 53757
+55Wq 53758
+55Wr 53759
+55Ws 53760
+55Wt 53761
+55Wv 53762
+55Ww 53763
+55Wy 53764
+55Wz 53765
+55W0 53766
+55W1 53767
+55W2 53768
+55W3 53769
+55W4 53770
+55W5 53771
+55W/ 53772
+55aD 53773
+55aG 53774
+55aH 53775
+55aK 53776
+55aL 53777
+55aN 53778
+55aO 53779
+55aP 53780
+55aR 53781
+55aU 53782
+55aW 53783
+55aX 53784
+55aZ 53785
+55aa 53786
+55ad 53787
+55af 53788
+55ag 53789
+55ah 53790
+55aj 53791
+55ak 53792
+55al 53793
+55ar 53794
+55as 53795
+55at 53796
+55au 53797
+55av 53798
+55aw 53799
+55ax 53800
+55ay 53801
+55az 53802
+55a0 53803
+55a1 53804
+55a4 53805
+55a5 53806
+55a8 53807
+55a9 53808
+55a+ 53809
+55eC 53810
+55eD 53811
+55eE 53812
+55eF 53813
+55eH 53814
+55eI 53815
+55eJ 53816
+55eK 53817
+55eN 53818
+55eS 53819
+55eU 53820
+55eV 53821
+55eY 53822
+55eZ 53823
+55eb 53824
+55ee 53825
+55ei 53826
+55ej 53827
+55ek 53828
+55em 53829
+55en 53830
+55eo 53831
+55ep 53832
+55eq 53833
+55er 53834
+55ew 53835
+55ex 53836
+55ey 53837
+55ez 53838
+55e0 53839
+55e5 53840
+55e6 53841
+55e8 53842
+55e+ 53843
+55e/ 53844
+55iA 53845
+55iB 53846
+55iF 53847
+55iG 53848
+55iK 53849
+55iL 53850
+55iM 53851
+55iN 53852
+55iT 53853
+55iV 53854
+55iX 53855
+55iY 53856
+55iZ 53857
+55id 53858
+55if 53859
+55ig 53860
+55ih 53861
+55ii 53862
+55ik 53863
+55im 53864
+55in 53865
+55ip 53866
+55iq 53867
+55ir 53868
+55iw 53869
+55iz 53870
+55i0 53871
+55i1 53872
+55i4 53873
+55i7 53874
+55i8 53875
+55i+ 53876
+55i/ 53877
+55mA 53878
+55mC 53879
+55mD 53880
+55mG 53881
+55mH 53882
+55mI 53883
+55mM 53884
+55mN 53885
+55mO 53886
+55mS 53887
+55mU 53888
+55mW 53889
+55mY 53890
+55mc 53891
+55me 53892
+55mh 53893
+55mi 53894
+55mj 53895
+55ml 53896
+55mn 53897
+55mp 53898
+55mq 53899
+55mr 53900
+55ms 53901
+55mu 53902
+55mv 53903
+55mw 53904
+55mx 53905
+55my 53906
+55m4 53907
+55m6 53908
+55m7 53909
+55m8 53910
+55m9 53911
+55m+ 53912
+55qA 53913
+55qC 53914
+55qE 53915
+55qG 53916
+55qH 53917
+55qI 53918
+55qL 53919
+55qM 53920
+55qO 53921
+55qQ 53922
+55qR 53923
+55qT 53924
+55qV 53925
+55qW 53926
+55qZ 53927
+55qa 53928
+55qd 53929
+55qe 53930
+55qk 53931
+55qm 53932
+55qu 53933
+55qv 53934
+55qw 53935
+55qx 53936
+55qy 53937
+55q0 53938
+55q3 53939
+55q4 53940
+55q5 53941
+55q6 53942
+55q/ 53943
+55uC 53944
+55uD 53945
+55uF 53946
+55uG 53947
+55uI 53948
+55uJ 53949
+55uK 53950
+55uN 53951
+55uO 53952
+55uP 53953
+55uQ 53954
+55uR 53955
+55uS 53956
+55uU 53957
+55uW 53958
+55uX 53959
+55uY 53960
+55ub 53961
+55uc 53962
+55ue 53963
+55uf 53964
+55uh 53965
+55uj 53966
+55uk 53967
+55ul 53968
+55un 53969
+55up 53970
+55uq 53971
+55uu 53972
+55uv 53973
+55ux 53974
+55uy 53975
+55u0 53976
+55u4 53977
+55u5 53978
+55u7 53979
+55u8 53980
+55u+ 53981
+55yA 53982
+55yB 53983
+55yE 53984
+55yH 53985
+55yI 53986
+55yJ 53987
+55yL 53988
+55yM 53989
+55yN 53990
+55yZ 53991
+55ya 53992
+55yb 53993
+55yc 53994
+55ye 53995
+55yf 53996
+55yg 53997
+55yl 53998
+55ym 53999
+55yo 54000
+55yp 54001
+55ys 54002
+55yt 54003
+55yv 54004
+55y1 54005
+55y2 54006
+55y3 54007
+55y4 54008
+55y6 54009
+55y8 54010
+55y+ 54011
+552A 54012
+552B 54013
+552D 54014
+552G 54015
+552H 54016
+552Q 54017
+552R 54018
+552a 54019
+552b 54020
+552c 54021
+552e 54022
+552f 54023
+552h 54024
+552i 54025
+552j 54026
+552l 54027
+552m 54028
+552o 54029
+552r 54030
+552s 54031
+552x 54032
+5525 54033
+5526 54034
+5529 54035
+552+ 54036
+552/ 54037
+556A 54038
+556E 54039
+556F 54040
+556G 54041
+556H 54042
+556L 54043
+556M 54044
+556O 54045
+556R 54046
+556S 54047
+556T 54048
+556e 54049
+556f 54050
+556g 54051
+556i 54052
+556l 54053
+556n 54054
+556p 54055
+556q 54056
+556s 54057
+556t 54058
+556w 54059
+556z 54060
+5561 54061
+5567 54062
+5568 54063
+5569 54064
+556+ 54065
+556/ 54066
+55+H 54067
+55+N 54068
+55+T 54069
+55+X 54070
+55+a 54071
+55+b 54072
+55+c 54073
+55+i 54074
+55+j 54075
+55+l 54076
+55+n 54077
+55+p 54078
+55+r 54079
+55+s 54080
+55+t 54081
+55+u 54082
+55+v 54083
+55+x 54084
+55+z 54085
+55+2 54086
+55+4 54087
+55+8 54088
+55+9 54089
+55++ 54090
+55+/ 54091
+56CA 54092
+56CB 54093
+56CC 54094
+56CK 54095
+56CM 54096
+56CN 54097
+56CS 54098
+56CU 54099
+56CV 54100
+56CW 54101
+56CX 54102
+56CY 54103
+56Ca 54104
+56Cc 54105
+56Cd 54106
+56Cf 54107
+56Cg 54108
+56Cj 54109
+56Cl 54110
+56Cm 54111
+56Cn 54112
+56Cp 54113
+56Cr 54114
+56Cs 54115
+56Ct 54116
+56Cw 54117
+56Cy 54118
+56C0 54119
+56C1 54120
+56C3 54121
+56C4 54122
+56C6 54123
+56C7 54124
+56C8 54125
+56C+ 54126
+56C/ 54127
+56GA 54128
+56GB 54129
+56GF 54130
+56GM 54131
+56GQ 54132
+56GS 54133
+56GV 54134
+56GW 54135
+56GX 54136
+56Ga 54137
+56Gd 54138
+56Ge 54139
+56Gq 54140
+56Gr 54141
+56Gs 54142
+56Gt 54143
+56Gu 54144
+56Gv 54145
+56Gy 54146
+56G0 54147
+56G3 54148
+56G8 54149
+56G/ 54150
+56KB 54151
+56KG 54152
+56KH 54153
+56KJ 54154
+56KM 54155
+56KN 54156
+56KO 54157
+56KR 54158
+56KT 54159
+56KV 54160
+56KX 54161
+56KY 54162
+56Ka 54163
+56Kb 54164
+56Kc 54165
+56Kf 54166
+56Kh 54167
+56Kj 54168
+56Kn 54169
+56Kp 54170
+56Kq 54171
+56Kw 54172
+56Kx 54173
+56Ky 54174
+56Kz 54175
+56K0 54176
+56K6 54177
+56K8 54178
+56K+ 54179
+56OB 54180
+56OF 54181
+56OG 54182
+56OJ 54183
+56OK 54184
+56OL 54185
+56OQ 54186
+56OR 54187
+56OS 54188
+56OU 54189
+56OV 54190
+56OZ 54191
+56Oa 54192
+56Oh 54193
+56On 54194
+56Oo 54195
+56Os 54196
+56Ov 54197
+56Oy 54198
+56O0 54199
+56O3 54200
+56O6 54201
+56O7 54202
+56O+ 54203
+56SB 54204
+56SF 54205
+56SM 54206
+56SO 54207
+56SS 54208
+56ST 54209
+56SZ 54210
+56Se 54211
+56Sm 54212
+56Sq 54213
+56Sr 54214
+56Ss 54215
+56S0 54216
+56S6 54217
+56S7 54218
+56S8 54219
+56S9 54220
+56S+ 54221
+56WA 54222
+56WB 54223
+56WG 54224
+56WH 54225
+56WI 54226
+56WJ 54227
+56WO 54228
+56WP 54229
+56WQ 54230
+56WT 54231
+56WW 54232
+56WX 54233
+56Wa 54234
+56Wb 54235
+56Wc 54236
+56Wd 54237
+56We 54238
+56Wf 54239
+56Wg 54240
+56Wi 54241
+56Wl 54242
+56Wn 54243
+56Wo 54244
+56Wt 54245
+56Wv 54246
+56W3 54247
+56W4 54248
+56W6 54249
+56W8 54250
+56W/ 54251
+56aA 54252
+56aB 54253
+56aE 54254
+56aF 54255
+56aK 54256
+56aN 54257
+56aO 54258
+56aP 54259
+56ab 54260
+56al 54261
+56am 54262
+56an 54263
+56ao 54264
+56ap 54265
+56aq 54266
+56au 54267
+56aw 54268
+56ax 54269
+56az 54270
+56a5 54271
+56a6 54272
+56a7 54273
+56a9 54274
+56a+ 54275
+56a/ 54276
+56eA 54277
+56eB 54278
+56eC 54279
+56eD 54280
+56eG 54281
+56eJ 54282
+56eL 54283
+56eN 54284
+56eP 54285
+56eR 54286
+56eS 54287
+56eV 54288
+56eY 54289
+56ef 54290
+56eh 54291
+56ej 54292
+56ek 54293
+56em 54294
+56en 54295
+56ep 54296
+56er 54297
+56es 54298
+56et 54299
+56ev 54300
+56ew 54301
+56e4 54302
+56e7 54303
+56e9 54304
+56e+ 54305
+56iA 54306
+56iC 54307
+56iF 54308
+56iI 54309
+56iK 54310
+56iL 54311
+56iN 54312
+56iO 54313
+56iU 54314
+56iX 54315
+56iZ 54316
+56ia 54317
+56ic 54318
+56ie 54319
+56if 54320
+56ig 54321
+56ij 54322
+56iu 54323
+56ix 54324
+56iy 54325
+56iz 54326
+56i3 54327
+56i5 54328
+56i7 54329
+56i8 54330
+56i9 54331
+56i/ 54332
+56mA 54333
+56mC 54334
+56mG 54335
+56mH 54336
+56mM 54337
+56mN 54338
+56mO 54339
+56mP 54340
+56mQ 54341
+56mR 54342
+56mX 54343
+56mh 54344
+56mi 54345
+56mj 54346
+56mp 54347
+56mr 54348
+56mw 54349
+56m0 54350
+56m2 54351
+56m3 54352
+56m4 54353
+56m5 54354
+56m6 54355
+56m9 54356
+56m/ 54357
+56qA 54358
+56qB 54359
+56qD 54360
+56qE 54361
+56qI 54362
+56qN 54363
+56qO 54364
+56qR 54365
+56qS 54366
+56qT 54367
+56qV 54368
+56qW 54369
+56qX 54370
+56qY 54371
+56qc 54372
+56qd 54373
+56qf 54374
+56qg 54375
+56qh 54376
+56qj 54377
+56ql 54378
+56qm 54379
+56qo 54380
+56qp 54381
+56qq 54382
+56qt 54383
+56qu 54384
+56qv 54385
+56qz 54386
+56q2 54387
+56q4 54388
+56q6 54389
+56q+ 54390
+56q/ 54391
+56uD 54392
+56uE 54393
+56uF 54394
+56uH 54395
+56uI 54396
+56uK 54397
+56uL 54398
+56uR 54399
+56uW 54400
+56uZ 54401
+56uc 54402
+56ud 54403
+56ue 54404
+56uf 54405
+56ug 54406
+56ui 54407
+56uj 54408
+56ul 54409
+56um 54410
+56uq 54411
+56ut 54412
+56uv 54413
+56uy 54414
+56u2 54415
+56u5 54416
+56u6 54417
+56u9 54418
+56u/ 54419
+56yC 54420
+56yD 54421
+56yE 54422
+56yG 54423
+56yI 54424
+56yK 54425
+56yL 54426
+56yP 54427
+56yR 54428
+56yU 54429
+56yV 54430
+56yW 54431
+56yY 54432
+56yZ 54433
+56yb 54434
+56ye 54435
+56yg 54436
+56yk 54437
+56yl 54438
+56ym 54439
+56yo 54440
+56yp 54441
+56yq 54442
+56yr 54443
+56ys 54444
+56yz 54445
+56y1 54446
+56y4 54447
+56y5 54448
+56y6 54449
+56y8 54450
+56y+ 54451
+562F 54452
+562G 54453
+562H 54454
+562I 54455
+562J 54456
+562K 54457
+562L 54458
+562M 54459
+562N 54460
+562P 54461
+562Q 54462
+562R 54463
+562S 54464
+562U 54465
+562W 54466
+562Y 54467
+562a 54468
+562b 54469
+562c 54470
+562d 54471
+562g 54472
+562i 54473
+562l 54474
+562n 54475
+562s 54476
+562u 54477
+562w 54478
+562x 54479
+562y 54480
+5621 54481
+5623 54482
+5625 54483
+5626 54484
+5627 54485
+5628 54486
+562+ 54487
+566A 54488
+566F 54489
+566G 54490
+566H 54491
+566L 54492
+566N 54493
+566P 54494
+566Q 54495
+566S 54496
+566T 54497
+566U 54498
+566V 54499
+566X 54500
+566Z 54501
+566a 54502
+566c 54503
+566d 54504
+566f 54505
+566h 54506
+566i 54507
+566l 54508
+566m 54509
+566n 54510
+566o 54511
+566p 54512
+566q 54513
+566r 54514
+566s 54515
+566t 54516
+566x 54517
+5660 54518
+5664 54519
+5667 54520
+5668 54521
+566+ 54522
+56+A 54523
+56+B 54524
+56+E 54525
+56+G 54526
+56+H 54527
+56+J 54528
+56+L 54529
+56+M 54530
+56+R 54531
+56+T 54532
+56+Z 54533
+56+a 54534
+56+d 54535
+56+g 54536
+56+h 54537
+56+k 54538
+56+l 54539
+56+m 54540
+56+p 54541
+56+q 54542
+56+t 54543
+56+u 54544
+56+x 54545
+56+z 54546
+56+2 54547
+56+3 54548
+56+8 54549
+56++ 54550
+57CA 54551
+57CD 54552
+57CH 54553
+57CL 54554
+57CM 54555
+57CN 54556
+57CP 54557
+57CR 54558
+57CS 54559
+57CT 54560
+57CU 54561
+57CW 54562
+57CX 54563
+57Cf 54564
+57Ch 54565
+57Cj 54566
+57Cm 54567
+57Cn 54568
+57Cq 54569
+57Cr 54570
+57Cw 54571
+57C3 54572
+57C4 54573
+57C6 54574
+57C9 54575
+57C+ 54576
+57C/ 54577
+57GA 54578
+57GB 54579
+57GD 54580
+57GH 54581
+57GM 54582
+57GN 54583
+57GP 54584
+57GQ 54585
+57GT 54586
+57GU 54587
+57GW 54588
+57Gf 54589
+57Gg 54590
+57Gj 54591
+57Gk 54592
+57Gs 54593
+57Gu 54594
+57Gy 54595
+57Gz 54596
+57G7 54597
+57G8 54598
+57G9 54599
+57G+ 54600
+57KB 54601
+57KC 54602
+57KD 54603
+57KJ 54604
+57KL 54605
+57KN 54606
+57KR 54607
+57KS 54608
+57KV 54609
+57KX 54610
+57KY 54611
+57Kb 54612
+57Kd 54613
+57Kf 54614
+57Ki 54615
+57Kk 54616
+57Kl 54617
+57Km 54618
+57Kn 54619
+57Kq 54620
+57Kt 54621
+57Ku 54622
+57Kx 54623
+57Ky 54624
+57Kz 54625
+57K1 54626
+57K5 54627
+57K8 54628
+57K9 54629
+57K+ 54630
+57OA 54631
+57OB 54632
+57OF 54633
+57OK 54634
+57OM 54635
+57ON 54636
+57OO 54637
+57OS 54638
+57OV 54639
+57OW 54640
+57OX 54641
+57OY 54642
+57OZ 54643
+57Oc 54644
+57Oe 54645
+57Of 54646
+57Og 54647
+57Oi 54648
+57On 54649
+57Oo 54650
+57Ov 54651
+57Oy 54652
+57O2 54653
+57O4 54654
+57O6 54655
+57O7 54656
+57O+ 54657
+57SA 54658
+57SC 54659
+57SE 54660
+57SF 54661
+57SG 54662
+57SJ 54663
+57SK 54664
+57SL 54665
+57SN 54666
+57SQ 54667
+57SU 54668
+57SX 54669
+57SY 54670
+57SZ 54671
+57Sa 54672
+57Sb 54673
+57Sc 54674
+57Sg 54675
+57Sh 54676
+57Si 54677
+57Sn 54678
+57Sr 54679
+57Ss 54680
+57Su 54681
+57Sv 54682
+57Sw 54683
+57Sy 54684
+57Sz 54685
+57S1 54686
+57S5 54687
+57S6 54688
+57WA 54689
+57WC 54690
+57WD 54691
+57WE 54692
+57WF 54693
+57WG 54694
+57WL 54695
+57WM 54696
+57WO 54697
+57WP 54698
+57WQ 54699
+57WV 54700
+57WW 54701
+57Wb 54702
+57Wc 54703
+57We 54704
+57Wh 54705
+57Wi 54706
+57Wj 54707
+57Wm 54708
+57Wo 54709
+57Wu 54710
+57Wv 54711
+57Wx 54712
+57Wy 54713
+57Wz 54714
+57W1 54715
+57W2 54716
+57W5 54717
+57W6 54718
+57W9 54719
+57aB 54720
+57aJ 54721
+57aP 54722
+57aT 54723
+57aZ 54724
+57aa 54725
+57ab 54726
+57ac 54727
+57af 54728
+57ag 54729
+57ai 54730
+57aj 54731
+57am 54732
+57as 54733
+57at 54734
+57au 54735
+57av 54736
+57aw 54737
+57ax 54738
+57ay 54739
+57a0 54740
+57a1 54741
+57a2 54742
+57a4 54743
+57a6 54744
+57a7 54745
+57a9 54746
+57a+ 54747
+57a/ 54748
+57eH 54749
+57eK 54750
+57eL 54751
+57eP 54752
+57eR 54753
+57eS 54754
+57eY 54755
+57ea 54756
+57eb 54757
+57ed 54758
+57ee 54759
+57eg 54760
+57eh 54761
+57ej 54762
+57ek 54763
+57eo 54764
+57ep 54765
+57es 54766
+57ev 54767
+57ey 54768
+57e0 54769
+57e7 54770
+57iB 54771
+57iE 54772
+57iF 54773
+57iI 54774
+57iJ 54775
+57iK 54776
+57iL 54777
+57iS 54778
+57ib 54779
+57ie 54780
+57if 54781
+57ig 54782
+57ii 54783
+57ij 54784
+57im 54785
+57ir 54786
+57iu 54787
+57ix 54788
+57iy 54789
+57i0 54790
+57i1 54791
+57i3 54792
+57i5 54793
+57i6 54794
+57i7 54795
+57i9 54796
+57i+ 54797
+57mB 54798
+57mD 54799
+57mG 54800
+57mH 54801
+57mK 54802
+57mL 54803
+57mN 54804
+57mR 54805
+57mU 54806
+57mV 54807
+57mW 54808
+57mZ 54809
+57ma 54810
+57md 54811
+57me 54812
+57mh 54813
+57mn 54814
+57mp 54815
+57mq 54816
+57mr 54817
+57mt 54818
+57mw 54819
+57mz 54820
+57m5 54821
+57m7 54822
+57m8 54823
+57m9 54824
+57qC 54825
+57qH 54826
+57qI 54827
+57qM 54828
+57qN 54829
+57qP 54830
+57qQ 54831
+57qS 54832
+57qT 54833
+57qU 54834
+57qW 54835
+57qb 54836
+57qc 54837
+57qg 54838
+57qh 54839
+57qi 54840
+57qj 54841
+57qk 54842
+57ql 54843
+57qm 54844
+57qn 54845
+57qo 54846
+57qp 54847
+57qq 54848
+57qr 54849
+57qs 54850
+57qt 54851
+57qu 54852
+57qv 54853
+57qw 54854
+57qx 54855
+57qy 54856
+57qz 54857
+57q1 54858
+57q2 54859
+57q3 54860
+57q4 54861
+57q5 54862
+57q6 54863
+57q7 54864
+57q9 54865
+57q+ 54866
+57q/ 54867
+57uA 54868
+57uB 54869
+57uC 54870
+57uD 54871
+57uE 54872
+57uF 54873
+57uG 54874
+57uH 54875
+57uI 54876
+57uJ 54877
+57uK 54878
+57uL 54879
+57uM 54880
+57uN 54881
+57uO 54882
+57uP 54883
+57uQ 54884
+57uR 54885
+57uS 54886
+57uT 54887
+57uU 54888
+57uV 54889
+57uX 54890
+57uY 54891
+57uZ 54892
+57ua 54893
+57ub 54894
+57uc 54895
+57ud 54896
+57ue 54897
+57uf 54898
+57uh 54899
+57ui 54900
+57uj 54901
+57uk 54902
+57ul 54903
+57um 54904
+57un 54905
+57uo 54906
+57up 54907
+57uq 54908
+57ur 54909
+57ut 54910
+57uu 54911
+57uv 54912
+57uw 54913
+57ux 54914
+57uy 54915
+57uz 54916
+57u0 54917
+57u1 54918
+57u2 54919
+57u3 54920
+57u4 54921
+57u6 54922
+57u7 54923
+57u8 54924
+57u9 54925
+57u+ 54926
+57u/ 54927
+57yA 54928
+57yB 54929
+57yC 54930
+57yD 54931
+57yE 54932
+57yF 54933
+57yG 54934
+57yH 54935
+57yI 54936
+57yJ 54937
+57yK 54938
+57yL 54939
+57yM 54940
+57yO 54941
+57yR 54942
+57yS 54943
+57yT 54944
+57yU 54945
+57yV 54946
+57yW 54947
+57yX 54948
+57yY 54949
+57yZ 54950
+57ya 54951
+57yb 54952
+57yc 54953
+57yd 54954
+57yf 54955
+57yg 54956
+57yi 54957
+57yj 54958
+57yk 54959
+57yl 54960
+57ym 54961
+57yn 54962
+57yo 54963
+57yp 54964
+57yq 54965
+57yr 54966
+57ys 54967
+57yt 54968
+57yu 54969
+57yv 54970
+57yw 54971
+57yx 54972
+57yz 54973
+57y0 54974
+57y1 54975
+57y2 54976
+57y4 54977
+57y6 54978
+572C 54979
+572E 54980
+572F 54981
+572H 54982
+572M 54983
+572N 54984
+572Q 54985
+572R 54986
+572U 54987
+572V 54988
+572X 54989
+572Y 54990
+572a 54991
+572f 54992
+572g 54993
+572h 54994
+572i 54995
+572n 54996
+572o 54997
+572p 54998
+572q 54999
+572r 55000
+572u 55001
+572w 55002
+572y 55003
+5720 55004
+5721 55005
+5723 55006
+5725 55007
+572+ 55008
+576B 55009
+576C 55010
+576D 55011
+576F 55012
+576G 55013
+576H 55014
+576I 55015
+576K 55016
+576M 55017
+576O 55018
+576R 55019
+576U 55020
+576W 55021
+576X 55022
+576a 55023
+576d 55024
+576e 55025
+576f 55026
+576h 55027
+576j 55028
+576k 55029
+576n 55030
+576o 55031
+576p 55032
+576v 55033
+576w 55034
+576y 55035
+5762 55036
+5764 55037
+5765 55038
+5769 55039
+576/ 55040
+57+A 55041
+57+B 55042
+57+D 55043
+57+F 55044
+57+G 55045
+57+K 55046
+57+M 55047
+57+O 55048
+57+S 55049
+57+U 55050
+57+V 55051
+57+Y 55052
+57+a 55053
+57+b 55054
+57+f 55055
+57+g 55056
+57+h 55057
+57+l 55058
+57+m 55059
+57+p 55060
+57+r 55061
+57+u 55062
+57+w 55063
+57+x 55064
+57+z 55065
+57+5 55066
+57+7 55067
+57+8 55068
+6ICA 55069
+6ICB 55070
+6ICD 55071
+6ICE 55072
+6ICF 55073
+6ICG 55074
+6ICL 55075
+6ICM 55076
+6ICN 55077
+6ICQ 55078
+6ICS 55079
+6ICV 55080
+6ICX 55081
+6ICY 55082
+6ICZ 55083
+6ICc 55084
+6ICm 55085
+6ICn 55086
+6ICo 55087
+6ICq 55088
+6ICx 55089
+6ICz 55090
+6IC1 55091
+6IC2 55092
+6IC3 55093
+6IC4 55094
+6IC7 55095
+6IC9 55096
+6IC/ 55097
+6IGC 55098
+6IGD 55099
+6IGG 55100
+6IGK 55101
+6IGL 55102
+6IGM 55103
+6IGN 55104
+6IGS 55105
+6IGU 55106
+6IGW 55107
+6IGY 55108
+6IGa 55109
+6IGe 55110
+6IGf 55111
+6IGh 55112
+6IGi 55113
+6IGo 55114
+6IGp 55115
+6IGq 55116
+6IGv 55117
+6IGw 55118
+6IGy 55119
+6IGz 55120
+6IG0 55121
+6IG1 55122
+6IG2 55123
+6IG3 55124
+6IG9 55125
+6IG+ 55126
+6IG/ 55127
+6IKD 55128
+6IKE 55129
+6IKF 55130
+6IKG 55131
+6IKH 55132
+6IKJ 55133
+6IKL 55134
+6IKM 55135
+6IKP 55136
+6IKT 55137
+6IKW 55138
+6IKY 55139
+6IKa 55140
+6IKb 55141
+6IKd 55142
+6IKf 55143
+6IKg 55144
+6IKh 55145
+6IKi 55146
+6IKk 55147
+6IKl 55148
+6IKp 55149
+6IKq 55150
+6IKr 55151
+6IKs 55152
+6IKt 55153
+6IKu 55154
+6IKv 55155
+6IKx 55156
+6IKy 55157
+6IK0 55158
+6IK3 55159
+6IK4 55160
+6IK6 55161
+6IK8 55162
+6IK9 55163
+6IK+ 55164
+6IK/ 55165
+6IOA 55166
+6IOB 55167
+6IOD 55168
+6IOE 55169
+6IOG 55170
+6IOM 55171
+6ION 55172
+6IOO 55173
+6IOW 55174
+6IOX 55175
+6IOZ 55176
+6IOa 55177
+6IOb 55178
+6IOc 55179
+6IOd 55180
+6IOe 55181
+6IOh 55182
+6IOk 55183
+6IOl 55184
+6IOn 55185
+6IOq 55186
+6IOr 55187
+6IOs 55188
+6IOt 55189
+6IOv 55190
+6IOw 55191
+6IOx 55192
+6IOz 55193
+6IO0 55194
+6IO2 55195
+6IO4 55196
+6IO6 55197
+6IO8 55198
+6IO9 55199
+6ISB 55200
+6ISC 55201
+6ISF 55202
+6ISG 55203
+6ISH 55204
+6ISI 55205
+6ISJ 55206
+6ISK 55207
+6ISN 55208
+6ISP 55209
+6ISQ 55210
+6ISR 55211
+6ISS 55212
+6IST 55213
+6ISU 55214
+6ISW 55215
+6ISY 55216
+6ISa 55217
+6ISb 55218
+6ISj 55219
+6ISp 55220
+6ISr 55221
+6ISs 55222
+6ISv 55223
+6ISw 55224
+6ISx 55225
+6ISy 55226
+6ISz 55227
+6IS3 55228
+6IS4 55229
+6IS5 55230
+6IS+ 55231
+6IWG 55232
+6IWI 55233
+6IWK 55234
+6IWL 55235
+6IWM 55236
+6IWO 55237
+6IWQ 55238
+6IWR 55239
+6IWT 55240
+6IWU 55241
+6IWV 55242
+6IWY 55243
+6IWZ 55244
+6IWa 55245
+6IWf 55246
+6IWg 55247
+6IWl 55248
+6IWm 55249
+6IWn 55250
+6IWp 55251
+6IWr 55252
+6IWt 55253
+6IWu 55254
+6IWw 55255
+6IWx 55256
+6IWz 55257
+6IW0 55258
+6IW4 55259
+6IW5 55260
+6IW6 55261
+6IW7 55262
+6IW8 55263
+6IW+ 55264
+6IW/ 55265
+6IaA 55266
+6IaC 55267
+6IaD 55268
+6IaI 55269
+6IaK 55270
+6IaP 55271
+6IaR 55272
+6IaV 55273
+6IaY 55274
+6Iaa 55275
+6Iab 55276
+6Iac 55277
+6Iad 55278
+6Iag 55279
+6Iaj 55280
+6Iam 55281
+6Iao 55282
+6Iap 55283
+6Iaz 55284
+6Ia0 55285
+6Ia1 55286
+6Ia6 55287
+6Ia7 55288
+6Ia9 55289
+6Ia+ 55290
+6Ia/ 55291
+6IeA 55292
+6IeC 55293
+6IeD 55294
+6IeG 55295
+6IeH 55296
+6IeI 55297
+6IeJ 55298
+6IeK 55299
+6IeM 55300
+6IeN 55301
+6IeR 55302
+6IeT 55303
+6IeY 55304
+6IeZ 55305
+6Iea 55306
+6Iec 55307
+6Ief 55308
+6Iej 55309
+6Iel 55310
+6Ien 55311
+6Ieo 55312
+6Ieq 55313
+6Ies 55314
+6Iet 55315
+6Iez 55316
+6Ie0 55317
+6Ie6 55318
+6Ie7 55319
+6Ie8 55320
+6Ie+ 55321
+6IiA 55322
+6IiB 55323
+6IiC 55324
+6IiF 55325
+6IiG 55326
+6IiH 55327
+6IiI 55328
+6IiJ 55329
+6IiK 55330
+6IiM 55331
+6IiN 55332
+6IiO 55333
+6IiQ 55334
+6IiS 55335
+6IiU 55336
+6IiW 55337
+6IiX 55338
+6IiY 55339
+6Iib 55340
+6Iic 55341
+6Iie 55342
+6Iif 55343
+6Iii 55344
+6Iij 55345
+6Iip 55346
+6Iiq 55347
+6Iir 55348
+6Iis 55349
+6Iiu 55350
+6Iiv 55351
+6Iiw 55352
+6Iix 55353
+6Iiy 55354
+6Iiz 55355
+6Ii1 55356
+6Ii2 55357
+6Ii3 55358
+6Ii4 55359
+6Ii5 55360
+6Ii+ 55361
+6ImA 55362
+6ImE 55363
+6ImH 55364
+6ImJ 55365
+6ImL 55366
+6ImP 55367
+6ImY 55368
+6ImZ 55369
+6Imf 55370
+6Imk 55371
+6Imm 55372
+6Imo 55373
+6Imq 55374
+6Imr 55375
+6Imu 55376
+6Imv 55377
+6Imw 55378
+6Imx 55379
+6Imy 55380
+6Imz 55381
+6Im2 55382
+6Im3 55383
+6Im4 55384
+6Im5 55385
+6Im6 55386
+6Im9 55387
+6Im+ 55388
+6Im/ 55389
+6IqC 55390
+6IqD 55391
+6IqI 55392
+6IqK 55393
+6IqL 55394
+6IqN 55395
+6IqO 55396
+6IqR 55397
+6IqS 55398
+6IqX 55399
+6IqY 55400
+6IqZ 55401
+6Iqc 55402
+6Iqd 55403
+6Iqf 55404
+6Iqh 55405
+6Iqj 55406
+6Iqk 55407
+6Iql 55408
+6Iqm 55409
+6Iqo 55410
+6Iqp 55411
+6Iqq 55412
+6Iqr 55413
+6Iqs 55414
+6Iqt 55415
+6Iqu 55416
+6Iqv 55417
+6Iqw 55418
+6Iqx 55419
+6Iqz 55420
+6Iq3 55421
+6Iq4 55422
+6Iq5 55423
+6Iq7 55424
+6Iq9 55425
+6Iq+ 55426
+6IuB 55427
+6IuE 55428
+6IuF 55429
+6IuH 55430
+6IuI 55431
+6IuK 55432
+6IuL 55433
+6IuM 55434
+6IuN 55435
+6IuO 55436
+6IuP 55437
+6IuR 55438
+6IuS 55439
+6IuT 55440
+6IuU 55441
+6IuV 55442
+6IuX 55443
+6IuY 55444
+6IuZ 55445
+6Iub 55446
+6Iuc 55447
+6Iue 55448
+6Iuf 55449
+6Iuh 55450
+6Iui 55451
+6Iuj 55452
+6Iuk 55453
+6Iul 55454
+6Ium 55455
+6Iun 55456
+6Iur 55457
+6Iuv 55458
+6Iux 55459
+6Iuz 55460
+6Iu0 55461
+6Iu3 55462
+6Iu5 55463
+6Iu6 55464
+6Iu7 55465
+6Iu8 55466
+6Iu+ 55467
+6IyB 55468
+6IyC 55469
+6IyD 55470
+6IyE 55471
+6IyF 55472
+6IyG 55473
+6IyI 55474
+6IyJ 55475
+6IyM 55476
+6IyO 55477
+6IyP 55478
+6IyR 55479
+6IyU 55480
+6IyV 55481
+6IyX 55482
+6IyY 55483
+6Iya 55484
+6Iyb 55485
+6Iyc 55486
+6Iyj 55487
+6Iyn 55488
+6Iyo 55489
+6Iyr 55490
+6Iys 55491
+6Iyt 55492
+6Iyv 55493
+6Iyx 55494
+6Iyy 55495
+6Iyz 55496
+6Iy0 55497
+6Iy1 55498
+6Iy2 55499
+6Iy4 55500
+6Iy5 55501
+6Iy6 55502
+6Iy8 55503
+6I2A 55504
+6I2D 55505
+6I2F 55506
+6I2G 55507
+6I2H 55508
+6I2J 55509
+6I2K 55510
+6I2P 55511
+6I2Q 55512
+6I2R 55513
+6I2S 55514
+6I2U 55515
+6I2Y 55516
+6I2Z 55517
+6I2a 55518
+6I2b 55519
+6I2c 55520
+6I2e 55521
+6I2f 55522
+6I2g 55523
+6I2h 55524
+6I2j 55525
+6I2k 55526
+6I2l 55527
+6I2m 55528
+6I2n 55529
+6I2o 55530
+6I2p 55531
+6I2q 55532
+6I2r 55533
+6I2s 55534
+6I2v 55535
+6I2z 55536
+6I23 55537
+6I24 55538
+6I27 55539
+6I28 55540
+6I29 55541
+6I6F 55542
+6I6G 55543
+6I6H 55544
+6I6J 55545
+6I6K 55546
+6I6O 55547
+6I6S 55548
+6I6T 55549
+6I6V 55550
+6I6W 55551
+6I6Y 55552
+6I6Z 55553
+6I6a 55554
+6I6c 55555
+6I6e 55556
+6I6f 55557
+6I6g 55558
+6I6i 55559
+6I6n 55560
+6I6o 55561
+6I6p 55562
+6I6q 55563
+6I6r 55564
+6I6x 55565
+6I6y 55566
+6I6z 55567
+6I60 55568
+6I61 55569
+6I62 55570
+6I63 55571
+6I64 55572
+6I65 55573
+6I66 55574
+6I68 55575
+6I69 55576
+6I+A 55577
+6I+B 55578
+6I+F 55579
+6I+H 55580
+6I+J 55581
+6I+K 55582
+6I+M 55583
+6I+O 55584
+6I+P 55585
+6I+T 55586
+6I+U 55587
+6I+W 55588
+6I+Y 55589
+6I+c 55590
+6I+f 55591
+6I+g 55592
+6I+h 55593
+6I+l 55594
+6I+o 55595
+6I+p 55596
+6I+q 55597
+6I+r 55598
+6I+v 55599
+6I+w 55600
+6I+x 55601
+6I+y 55602
+6I+0 55603
+6I+4 55604
+6I+5 55605
+6I+9 55606
+6JCB 55607
+6JCD 55608
+6JCE 55609
+6JCG 55610
+6JCK 55611
+6JCL 55612
+6JCM 55613
+6JCN 55614
+6JCO 55615
+6JCP 55616
+6JCT 55617
+6JCY 55618
+6JCc 55619
+6JCd 55620
+6JCg 55621
+6JCi 55622
+6JCk 55623
+6JCl 55624
+6JCm 55625
+6JCn 55626
+6JCo 55627
+6JCp 55628
+6JCs 55629
+6JCx 55630
+6JC1 55631
+6JC4 55632
+6JC5 55633
+6JC8 55634
+6JC9 55635
+6JGG 55636
+6JGI 55637
+6JGJ 55638
+6JGO 55639
+6JGR 55640
+6JGX 55641
+6JGZ 55642
+6JGa 55643
+6JGb 55644
+6JGh 55645
+6JGj 55646
+6JGm 55647
+6JGp 55648
+6JGr 55649
+6JGs 55650
+6JGt 55651
+6JGv 55652
+6JGx 55653
+6JGz 55654
+6JG1 55655
+6JG2 55656
+6JG3 55657
+6JG4 55658
+6JG5 55659
+6JG6 55660
+6JKC 55661
+6JKE 55662
+6JKL 55663
+6JKM 55664
+6JKO 55665
+6JKQ 55666
+6JKU 55667
+6JKX 55668
+6JKZ 55669
+6JKc 55670
+6JKf 55671
+6JKh 55672
+6JKv 55673
+6JKy 55674
+6JK0 55675
+6JK4 55676
+6JK5 55677
+6JK6 55678
+6JK7 55679
+6JK8 55680
+6JK9 55681
+6JK/ 55682
+6JOA 55683
+6JOB 55684
+6JOC 55685
+6JOE 55686
+6JOG 55687
+6JOJ 55688
+6JOK 55689
+6JOL 55690
+6JON 55691
+6JOQ 55692
+6JOR 55693
+6JOT 55694
+6JOW 55695
+6JOZ 55696
+6JOa 55697
+6JOd 55698
+6JOf 55699
+6JOg 55700
+6JOj 55701
+6JOl 55702
+6JOm 55703
+6JOs 55704
+6JOu 55705
+6JO0 55706
+6JO8 55707
+6JO/ 55708
+6JSA 55709
+6JSM 55710
+6JSR 55711
+6JST 55712
+6JSU 55713
+6JSV 55714
+6JSX 55715
+6JSa 55716
+6JSf 55717
+6JSh 55718
+6JSj 55719
+6JSk 55720
+6JSl 55721
+6JSm 55722
+6JSr 55723
+6JSs 55724
+6JSt 55725
+6JS1 55726
+6JS3 55727
+6JS4 55728
+6JS5 55729
+6JS6 55730
+6JS7 55731
+6JS8 55732
+6JS9 55733
+6JWB 55734
+6JWD 55735
+6JWI 55736
+6JWJ 55737
+6JWK 55738
+6JWL 55739
+6JWO 55740
+6JWW 55741
+6JWX 55742
+6JWZ 55743
+6JWa 55744
+6JWe 55745
+6JWj 55746
+6JWk 55747
+6JWo 55748
+6JWp 55749
+6JWq 55750
+6JWr 55751
+6JWt 55752
+6JWy 55753
+6JW0 55754
+6JW3 55755
+6JW6 55756
+6JW7 55757
+6JW+ 55758
+6JaA 55759
+6JaB 55760
+6JaE 55761
+6JaF 55762
+6JaH 55763
+6JaI 55764
+6JaK 55765
+6JaP 55766
+6JaQ 55767
+6JaR 55768
+6JaU 55769
+6JaX 55770
+6JaZ 55771
+6Jab 55772
+6Jac 55773
+6Jai 55774
+6Jak 55775
+6Jam 55776
+6Jao 55777
+6Jap 55778
+6Jaq 55779
+6Jar 55780
+6Jas 55781
+6Jat 55782
+6Jau 55783
+6Jav 55784
+6Jaw 55785
+6Jaz 55786
+6Ja3 55787
+6Ja5 55788
+6Ja6 55789
+6JeB 55790
+6JeJ 55791
+6JeN 55792
+6JeP 55793
+6JeQ 55794
+6JeT 55795
+6JeV 55796
+6Jec 55797
+6Jed 55798
+6Jeg 55799
+6Jek 55800
+6Jel 55801
+6Jem 55802
+6Jep 55803
+6Jeq 55804
+6Je3 55805
+6Je5 55806
+6Je6 55807
+6Je7 55808
+6Je/ 55809
+6JiC 55810
+6JiF 55811
+6JiG 55812
+6JiH 55813
+6JiK 55814
+6JiL 55815
+6JiR 55816
+6JiT 55817
+6JiW 55818
+6JiX 55819
+6JiY 55820
+6Jia 55821
+6Jin 55822
+6Jit 55823
+6Jiw 55824
+6Ji4 55825
+6Ji8 55826
+6Ji/ 55827
+6JmO 55828
+6JmP 55829
+6JmQ 55830
+6JmR 55831
+6JmT 55832
+6JmU 55833
+6JmV 55834
+6Jma 55835
+6Jmb 55836
+6Jmc 55837
+6Jme 55838
+6Jmf 55839
+6Jmi 55840
+6Jmn 55841
+6Jmr 55842
+6Jms 55843
+6Jmu 55844
+6Jmx 55845
+6Jm1 55846
+6Jm5 55847
+6Jm6 55848
+6Jm7 55849
+6Jm9 55850
+6Jm+ 55851
+6Jm/ 55852
+6JqA 55853
+6JqB 55854
+6JqC 55855
+6JqK 55856
+6JqL 55857
+6JqM 55858
+6JqN 55859
+6JqT 55860
+6JqV 55861
+6Jqc 55862
+6Jqd 55863
+6Jqh 55864
+6Jqj 55865
+6Jqk 55866
+6Jqn 55867
+6Jqo 55868
+6Jqp 55869
+6Jqq 55870
+6Jqr 55871
+6Jqs 55872
+6Jqv 55873
+6Jqw 55874
+6Jqx 55875
+6Jqz 55876
+6Jq0 55877
+6Jq1 55878
+6Jq2 55879
+6JuA 55880
+6JuE 55881
+6JuG 55882
+6JuH 55883
+6JuJ 55884
+6JuK 55885
+6JuL 55886
+6JuN 55887
+6JuO 55888
+6JuP 55889
+6JuQ 55890
+6JuR 55891
+6JuU 55892
+6JuY 55893
+6JuZ 55894
+6Jub 55895
+6Jue 55896
+6Juf 55897
+6Juk 55898
+6Jup 55899
+6Jus 55900
+6Jut 55901
+6Juu 55902
+6Juv 55903
+6Juw 55904
+6Jux 55905
+6Juy 55906
+6Juz 55907
+6Ju0 55908
+6Ju4 55909
+6Ju5 55910
+6Ju7 55911
+6Ju8 55912
+6Ju9 55913
+6Ju+ 55914
+6JyA 55915
+6JyC 55916
+6JyD 55917
+6JyG 55918
+6JyH 55919
+6JyI 55920
+6JyJ 55921
+6JyK 55922
+6JyN 55923
+6JyO 55924
+6JyR 55925
+6JyS 55926
+6JyT 55927
+6JyV 55928
+6JyX 55929
+6JyY 55930
+6Jya 55931
+6Jyb 55932
+6Jyc 55933
+6Jye 55934
+6Jyh 55935
+6Jyi 55936
+6Jyj 55937
+6Jyl 55938
+6Jyp 55939
+6Jyu 55940
+6Jyx 55941
+6Jy0 55942
+6Jy3 55943
+6Jy7 55944
+6Jy+ 55945
+6Jy/ 55946
+6J2H 55947
+6J2I 55948
+6J2J 55949
+6J2L 55950
+6J2M 55951
+6J2O 55952
+6J2T 55953
+6J2V 55954
+6J2X 55955
+6J2Y 55956
+6J2Z 55957
+6J2f 55958
+6J2g 55959
+6J2j 55960
+6J2l 55961
+6J2m 55962
+6J2o 55963
+6J2u 55964
+6J2w 55965
+6J2y 55966
+6J20 55967
+6J22 55968
+6J24 55969
+6J27 55970
+6J28 55971
+6J29 55972
+6J2+ 55973
+6J2/ 55974
+6J6C 55975
+6J6D 55976
+6J6F 55977
+6J6I 55978
+6J6L 55979
+6J6N 55980
+6J6e 55981
+6J6f 55982
+6J6g 55983
+6J6i 55984
+6J6o 55985
+6J6r 55986
+6J6s 55987
+6J6t 55988
+6J6v 55989
+6J6z 55990
+6J61 55991
+6J66 55992
+6J67 55993
+6J69 55994
+6J+A 55995
+6J+E 55996
+6J+G 55997
+6J+H 55998
+6J+K 55999
+6J+L 56000
+6J+Q 56001
+6J+R 56002
+6J+S 56003
+6J+b 56004
+6J+c 56005
+6J+f 56006
+6J+g 56007
+6J+l 56008
+6J+q 56009
+6J+s 56010
+6J+t 56011
+6J+u 56012
+6J+v 56013
+6J+y 56014
+6J+2 56015
+6J+3 56016
+6J+5 56017
+6J+7 56018
+6J++ 56019
+6KCD 56020
+6KCF 56021
+6KCK 56022
+6KCL 56023
+6KCN 56024
+6KCO 56025
+6KCP 56026
+6KCR 56027
+6KCT 56028
+6KCV 56029
+6KCW 56030
+6KCb 56031
+6KCc 56032
+6KCf 56033
+6KCh 56034
+6KCi 56035
+6KCj 56036
+6KCn 56037
+6KCx 56038
+6KCy 56039
+6KC2 56040
+6KC5 56041
+6KC7 56042
+6KC8 56043
+6KGA 56044
+6KGE 56045
+6KGF 56046
+6KGG 56047
+6KGM 56048
+6KGN 56049
+6KGO 56050
+6KGS 56051
+6KGT 56052
+6KGU 56053
+6KGX 56054
+6KGZ 56055
+6KGb 56056
+6KGd 56057
+6KGe 56058
+6KGh 56059
+6KGi 56060
+6KGj 56061
+6KGl 56062
+6KGo 56063
+6KGp 56064
+6KGr 56065
+6KGs 56066
+6KGu 56067
+6KGv 56068
+6KGw 56069
+6KGy 56070
+6KG1 56071
+6KG3 56072
+6KG9 56073
+6KG+ 56074
+6KG/ 56075
+6KKB 56076
+6KKC 56077
+6KKE 56078
+6KKF 56079
+6KKG 56080
+6KKI 56081
+6KKL 56082
+6KKN 56083
+6KKS 56084
+6KKT 56085
+6KKW 56086
+6KKX 56087
+6KKZ 56088
+6KKc 56089
+6KKd 56090
+6KKe 56091
+6KKi 56092
+6KKk 56093
+6KKq 56094
+6KKr 56095
+6KKt 56096
+6KKw 56097
+6KKx 56098
+6KK0 56099
+6KK1 56100
+6KK3 56101
+6KK8 56102
+6KK/ 56103
+6KOB 56104
+6KOC 56105
+6KOD 56106
+6KOE 56107
+6KOF 56108
+6KOG 56109
+6KOH 56110
+6KOJ 56111
+6KOK 56112
+6KOO 56113
+6KOP 56114
+6KOS 56115
+6KOU 56116
+6KOV 56117
+6KOY 56118
+6KOZ 56119
+6KOb 56120
+6KOc 56121
+6KOd 56122
+6KOf 56123
+6KOh 56124
+6KOi 56125
+6KOk 56126
+6KOl 56127
+6KOo 56128
+6KOw 56129
+6KOx 56130
+6KOy 56131
+6KOz 56132
+6KO0 56133
+6KO4 56134
+6KO5 56135
+6KO9 56136
+6KO+ 56137
+6KSA 56138
+6KSC 56139
+6KSE 56140
+6KSH 56141
+6KSK 56142
+6KSM 56143
+6KSQ 56144
+6KSS 56145
+6KST 56146
+6KSU 56147
+6KSZ 56148
+6KSa 56149
+6KSb 56150
+6KSe 56151
+6KSh 56152
+6KSl 56153
+6KSq 56154
+6KSr 56155
+6KSt 56156
+6KSw 56157
+6KSy 56158
+6KS0 56159
+6KS2 56160
+6KS4 56161
+6KS7 56162
+6KWA 56163
+6KWB 56164
+6KWE 56165
+6KWW 56166
+6KWc 56167
+6KWe 56168
+6KWf 56169
+6KWg 56170
+6KWk 56171
+6KWm 56172
+6KWq 56173
+6KWv 56174
+6KWy 56175
+6KW0 56176
+6KW3 56177
+6KW7 56178
+6KW/ 56179
+6KaB 56180
+6KaD 56181
+6KaG 56182
+6KaH 56183
+6KaL 56184
+6KaP 56185
+6KaT 56186
+6KaW 56187
+6KaX 56188
+6KaY 56189
+6Kaa 56190
+6Kah 56191
+6Kan 56192
+6Kap 56193
+6Kaq 56194
+6Kav 56195
+6Kay 56196
+6Kaz 56197
+6Ka3 56198
+6Ka6 56199
+6Ka9 56200
+6Ka/ 56201
+6KeA 56202
+6KeB 56203
+6KeC 56204
+6KeE 56205
+6KeF 56206
+6KeG 56207
+6KeH 56208
+6KeI 56209
+6KeJ 56210
+6KeK 56211
+6KeM 56212
+6KeO 56213
+6KeP 56214
+6KeQ 56215
+6KeR 56216
+6KeS 56217
+6Kea 56218
+6Kec 56219
+6Ked 56220
+6Kee 56221
+6Kej 56222
+6Kel 56223
+6Kem 56224
+6Ker 56225
+6Kev 56226
+6Kex 56227
+6Kez 56228
+6Ke0 56229
+6Ke4 56230
+6KiA 56231
+6KiC 56232
+6KiD 56233
+6KiH 56234
+6KiI 56235
+6KiK 56236
+6KiM 56237
+6KiO 56238
+6KiT 56239
+6KiV 56240
+6KiX 56241
+6KiY 56242
+6Kia 56243
+6Kib 56244
+6Kid 56245
+6Kif 56246
+6Kii 56247
+6Kij 56248
+6Kil 56249
+6Kiq 56250
+6Kit 56251
+6Kix 56252
+6Kiz 56253
+6Ki0 56254
+6Ki2 56255
+6Ki6 56256
+6Ki7 56257
+6Ki8 56258
+6Ki+ 56259
+6KmB 56260
+6KmI 56261
+6KmQ 56262
+6KmS 56263
+6KmU 56264
+6KmV 56265
+6Kmb 56266
+6Kmd 56267
+6Kme 56268
+6Kmg 56269
+6Kmi 56270
+6Kmj 56271
+6Kmm 56272
+6Kmp 56273
+6Kmr 56274
+6Kms 56275
+6Kmt 56276
+6Kmu 56277
+6Kmw 56278
+6Kmx 56279
+6Kmy 56280
+6Kmz 56281
+6Km5 56282
+6KqC 56283
+6KqE 56284
+6KqF 56285
+6KqH 56286
+6KqJ 56287
+6KqK 56288
+6KqM 56289
+6KqN 56290
+6KqR 56291
+6KqS 56292
+6KqT 56293
+6KqV 56294
+6KqY 56295
+6Kqe 56296
+6Kqg 56297
+6Kqh 56298
+6Kqj 56299
+6Kqk 56300
+6Kql 56301
+6Kqm 56302
+6Kqo 56303
+6Kqq 56304
+6Kqs 56305
+6Kqt 56306
+6Kqw 56307
+6Kqy 56308
+6Kq5 56309
+6Kq8 56310
+6Kq/ 56311
+6KuC 56312
+6KuE 56313
+6KuH 56314
+6KuL 56315
+6KuM 56316
+6KuN 56317
+6KuP 56318
+6KuS 56319
+6KuW 56320
+6KuX 56321
+6Kua 56322
+6Kub 56323
+6Kuc 56324
+6Kuh 56325
+6Kui 56326
+6Kuk 56327
+6Kum 56328
+6Kun 56329
+6Kur 56330
+6Kut 56331
+6Kuu 56332
+6Kux 56333
+6Kuz 56334
+6Ku3 56335
+6Ku4 56336
+6Ku6 56337
+6Ku8 56338
+6Ku+ 56339
+6KyA 56340
+6KyB 56341
+6KyC 56342
+6KyE 56343
+6KyH 56344
+6KyK 56345
+6KyO 56346
+6KyQ 56347
+6KyU 56348
+6KyW 56349
+6KyX 56350
+6KyZ 56351
+6Kya 56352
+6Kyb 56353
+6Kyd 56354
+6Kyg 56355
+6Kyh 56356
+6Kym 56357
+6Kyo 56358
+6Kyp 56359
+6Kyr 56360
+6Kys 56361
+6Kyz 56362
+6Ky3 56363
+6Ky5 56364
+6K2B 56365
+6K2J 56366
+6K2O 56367
+6K2P 56368
+6K2W 56369
+6K2Y 56370
+6K2a 56371
+6K2c 56372
+6K2e 56373
+6K2f 56374
+6K2m 56375
+6K2r 56376
+6K2s 56377
+6K2v 56378
+6K2w 56379
+6K2y 56380
+6K20 56381
+6K23 56382
+6K29 56383
+6K6A 56384
+6K6D 56385
+6K6K 56386
+6K6M 56387
+6K6O 56388
+6K6Q 56389
+6K6S 56390
+6K6T 56391
+6K6W 56392
+6K6a 56393
+6K6g 56394
+6K6h 56395
+6K6i 56396
+6K6j 56397
+6K6k 56398
+6K6l 56399
+6K6m 56400
+6K6n 56401
+6K6o 56402
+6K6p 56403
+6K6q 56404
+6K6r 56405
+6K6t 56406
+6K6u 56407
+6K6v 56408
+6K6w 56409
+6K6y 56410
+6K6z 56411
+6K60 56412
+6K61 56413
+6K62 56414
+6K63 56415
+6K64 56416
+6K65 56417
+6K66 56418
+6K68 56419
+6K69 56420
+6K6+ 56421
+6K6/ 56422
+6K+A 56423
+6K+B 56424
+6K+C 56425
+6K+D 56426
+6K+E 56427
+6K+F 56428
+6K+G 56429
+6K+I 56430
+6K+J 56431
+6K+K 56432
+6K+L 56433
+6K+M 56434
+6K+N 56435
+6K+O 56436
+6K+P 56437
+6K+Q 56438
+6K+R 56439
+6K+S 56440
+6K+T 56441
+6K+U 56442
+6K+V 56443
+6K+W 56444
+6K+X 56445
+6K+Y 56446
+6K+Z 56447
+6K+a 56448
+6K+b 56449
+6K+c 56450
+6K+d 56451
+6K+e 56452
+6K+f 56453
+6K+g 56454
+6K+h 56455
+6K+i 56456
+6K+j 56457
+6K+k 56458
+6K+l 56459
+6K+m 56460
+6K+n 56461
+6K+o 56462
+6K+p 56463
+6K+r 56464
+6K+s 56465
+6K+t 56466
+6K+u 56467
+6K+v 56468
+6K+w 56469
+6K+x 56470
+6K+y 56471
+6K+z 56472
+6K+0 56473
+6K+1 56474
+6K+2 56475
+6K+3 56476
+6K+4 56477
+6K+5 56478
+6K+6 56479
+6K+7 56480
+6K+8 56481
+6K+9 56482
+6K++ 56483
+6K+/ 56484
+6LCA 56485
+6LCB 56486
+6LCC 56487
+6LCD 56488
+6LCE 56489
+6LCF 56490
+6LCG 56491
+6LCI 56492
+6LCK 56493
+6LCL 56494
+6LCM 56495
+6LCN 56496
+6LCO 56497
+6LCP 56498
+6LCQ 56499
+6LCR 56500
+6LCS 56501
+6LCT 56502
+6LCU 56503
+6LCV 56504
+6LCW 56505
+6LCX 56506
+6LCY 56507
+6LCZ 56508
+6LCa 56509
+6LCb 56510
+6LCc 56511
+6LCd 56512
+6LCe 56513
+6LCf 56514
+6LCg 56515
+6LCh 56516
+6LCi 56517
+6LCj 56518
+6LCk 56519
+6LCl 56520
+6LCm 56521
+6LCn 56522
+6LCo 56523
+6LCp 56524
+6LCq 56525
+6LCs 56526
+6LCt 56527
+6LCu 56528
+6LCv 56529
+6LCw 56530
+6LCx 56531
+6LCy 56532
+6LCz 56533
+6LC0 56534
+6LC1 56535
+6LC2 56536
+6LC3 56537
+6LC6 56538
+6LC/ 56539
+6LGB 56540
+6LGF 56541
+6LGG 56542
+6LGH 56543
+6LGI 56544
+6LGJ 56545
+6LGK 56546
+6LGM 56547
+6LGO 56548
+6LGQ 56549
+6LGU 56550
+6LGV 56551
+6LGa 56552
+6LGb 56553
+6LGd 56554
+6LGh 56555
+6LGi 56556
+6LGo 56557
+6LGq 56558
+6LGr 56559
+6LGs 56560
+6LGz 56561
+6LG4 56562
+6LG5 56563
+6LG6 56564
+6LKC 56565
+6LKF 56566
+6LKJ 56567
+6LKK 56568
+6LKM 56569
+6LKT 56570
+6LKU 56571
+6LKY 56572
+6LKd 56573
+6LKe 56574
+6LKg 56575
+6LKh 56576
+6LKi 56577
+6LKn 56578
+6LKo 56579
+6LKp 56580
+6LKq 56581
+6LKr 56582
+6LKs 56583
+6LKv 56584
+6LKw 56585
+6LKy 56586
+6LKz 56587
+6LK0 56588
+6LK2 56589
+6LK3 56590
+6LK4 56591
+6LK7 56592
+6LK8 56593
+6LK9 56594
+6LK/ 56595
+6LOA 56596
+6LOB 56597
+6LOC 56598
+6LOD 56599
+6LOE 56600
+6LOH 56601
+6LOI 56602
+6LOK 56603
+6LOO 56604
+6LOR 56605
+6LOS 56606
+6LOT 56607
+6LOa 56608
+6LOb 56609
+6LOc 56610
+6LOe 56611
+6LOg 56612
+6LOi 56613
+6LOj 56614
+6LOk 56615
+6LOm 56616
+6LOq 56617
+6LOs 56618
+6LOt 56619
+6LO0 56620
+6LO6 56621
+6LO8 56622
+6LO9 56623
+6LSE 56624
+6LSF 56625
+6LSH 56626
+6LSI 56627
+6LSK 56628
+6LSL 56629
+6LSP 56630
+6LSQ 56631
+6LST 56632
+6LSU 56633
+6LSW 56634
+6LSd 56635
+6LSe 56636
+6LSf 56637
+6LSh 56638
+6LSi 56639
+6LSj 56640
+6LSk 56641
+6LSl 56642
+6LSm 56643
+6LSn 56644
+6LSo 56645
+6LSp 56646
+6LSq 56647
+6LSr 56648
+6LSs 56649
+6LSt 56650
+6LSu 56651
+6LSv 56652
+6LSw 56653
+6LSx 56654
+6LSy 56655
+6LS0 56656
+6LS1 56657
+6LS2 56658
+6LS3 56659
+6LS4 56660
+6LS5 56661
+6LS6 56662
+6LS7 56663
+6LS8 56664
+6LS9 56665
+6LS+ 56666
+6LS/ 56667
+6LWB 56668
+6LWC 56669
+6LWD 56670
+6LWE 56671
+6LWF 56672
+6LWI 56673
+6LWJ 56674
+6LWK 56675
+6LWL 56676
+6LWM 56677
+6LWN 56678
+6LWO 56679
+6LWP 56680
+6LWQ 56681
+6LWT 56682
+6LWU 56683
+6LWV 56684
+6LWW 56685
+6LWY 56686
+6LWZ 56687
+6LWa 56688
+6LWb 56689
+6LWc 56690
+6LWd 56691
+6LWe 56692
+6LWf 56693
+6LWg 56694
+6LWh 56695
+6LWi 56696
+6LWj 56697
+6LWk 56698
+6LWm 56699
+6LWn 56700
+6LWq 56701
+6LWr 56702
+6LWs 56703
+6LWt 56704
+6LWw 56705
+6LWz 56706
+6LW0 56707
+6LW1 56708
+6LW2 56709
+6LW3 56710
+6LaB 56711
+6LaE 56712
+6LaF 56713
+6LaK 56714
+6LaL 56715
+6LaU 56716
+6LaV 56717
+6LaZ 56718
+6Laf 56719
+6Laj 56720
+6Lao 56721
+6Laz 56722
+6La0 56723
+6La1 56724
+6La4 56725
+6La6 56726
+6La+ 56727
+6La/ 56728
+6LeC 56729
+6LeD 56730
+6LeE 56731
+6LeG 56732
+6LeL 56733
+6LeM 56734
+6LeO 56735
+6LeP 56736
+6LeR 56737
+6LeW 56738
+6LeX 56739
+6Lea 56740
+6Leb 56741
+6Led 56742
+6Lee 56743
+6Lef 56744
+6Leh 56745
+6Lej 56746
+6Lek 56747
+6Leo 56748
+6Lep 56749
+6Leq 56750
+6Ler 56751
+6Les 56752
+6Lev 56753
+6Lex 56754
+6Lez 56755
+6Le1 56756
+6Le2 56757
+6Le3 56758
+6Le4 56759
+6Le5 56760
+6Le6 56761
+6Le7 56762
+6Le8 56763
+6Le9 56764
+6Le/ 56765
+6LiF 56766
+6LiJ 56767
+6LiK 56768
+6LiM 56769
+6LiO 56770
+6LiP 56771
+6LiQ 56772
+6LiU 56773
+6LiW 56774
+6Lid 56775
+6Lie 56776
+6Lif 56777
+6Lih 56778
+6Lii 56779
+6Lij 56780
+6Lim 56781
+6Lin 56782
+6Lip 56783
+6Liq 56784
+6Lis 56785
+6Lit 56786
+6Liu 56787
+6Liv 56788
+6Liw 56789
+6Lix 56790
+6Li0 56791
+6Li1 56792
+6Li5 56793
+6Li6 56794
+6Li9 56795
+6LmA 56796
+6LmB 56797
+6LmC 56798
+6LmE 56799
+6LmH 56800
+6LmI 56801
+6LmJ 56802
+6LmK 56803
+6LmL 56804
+6LmM 56805
+6LmQ 56806
+6LmR 56807
+6LmS 56808
+6LmV 56809
+6LmZ 56810
+6Lma 56811
+6Lmf 56812
+6Lmg 56813
+6Lmh 56814
+6Lmj 56815
+6Lmk 56816
+6Lmm 56817
+6Lmp 56818
+6Lms 56819
+6Lmt 56820
+6Lmv 56821
+6Lmw 56822
+6Lmy 56823
+6Lm0 56824
+6Lm2 56825
+6Lm8 56826
+6Lm9 56827
+6Lm/ 56828
+6LqB 56829
+6LqE 56830
+6LqF 56831
+6LqH 56832
+6LqK 56833
+6LqN 56834
+6LqP 56835
+6LqQ 56836
+6LqR 56837
+6LqT 56838
+6LqU 56839
+6LqZ 56840
+6Lqc 56841
+6Lqh 56842
+6Lqq 56843
+6Lqr 56844
+6Lqs 56845
+6Lqv 56846
+6Lqw 56847
+6Lqx 56848
+6Lqy 56849
+6Lq6 56850
+6Lq+ 56851
+6LuA 56852
+6LuI 56853
+6LuK 56854
+6LuL 56855
+6LuM 56856
+6LuN 56857
+6LuO 56858
+6LuS 56859
+6Lub 56860
+6Luf 56861
+6Lui 56862
+6Luj 56863
+6Lur 56864
+6Lu4 56865
+6Lu7 56866
+6Lu8 56867
+6Lu9 56868
+6LyD 56869
+6LyJ 56870
+6LyK 56871
+6LyM 56872
+6LyS 56873
+6LyT 56874
+6LyU 56875
+6LyV 56876
+6Lyb 56877
+6Lyc 56878
+6Lyd 56879
+6Lym 56880
+6Lyp 56881
+6Lyq 56882
+6Lyv 56883
+6Lyz 56884
+6Ly2 56885
+6Ly4 56886
+6Ly7 56887
+6Ly+ 56888
+6Ly/ 56889
+6L2C 56890
+6L2E 56891
+6L2F 56892
+6L2G 56893
+6L2J 56894
+6L2M 56895
+6L2N 56896
+6L2O 56897
+6L2X 56898
+6L2f 56899
+6L2h 56900
+6L2i 56901
+6L2j 56902
+6L2k 56903
+6L2m 56904
+6L2n 56905
+6L2o 56906
+6L2p 56907
+6L2r 56908
+6L2s 56909
+6L2t 56910
+6L2u 56911
+6L2v 56912
+6L2w 56913
+6L2x 56914
+6L2y 56915
+6L2z 56916
+6L20 56917
+6L21 56918
+6L22 56919
+6L24 56920
+6L25 56921
+6L26 56922
+6L27 56923
+6L28 56924
+6L29 56925
+6L2+ 56926
+6L2/ 56927
+6L6C 56928
+6L6D 56929
+6L6E 56930
+6L6F 56931
+6L6G 56932
+6L6H 56933
+6L6I 56934
+6L6J 56935
+6L6K 56936
+6L6L 56937
+6L6N 56938
+6L6O 56939
+6L6P 56940
+6L6Q 56941
+6L6R 56942
+6L6T 56943
+6L6U 56944
+6L6V 56945
+6L6W 56946
+6L6X 56947
+6L6Y 56948
+6L6Z 56949
+6L6a 56950
+6L6b 56951
+6L6c 56952
+6L6e 56953
+6L6f 56954
+6L6j 56955
+6L6m 56956
+6L6o 56957
+6L6p 56958
+6L6r 56959
+6L6t 56960
+6L6u 56961
+6L6v 56962
+6L6w 56963
+6L6x 56964
+6L6y 56965
+6L63 56966
+6L65 56967
+6L66 56968
+6L67 56969
+6L68 56970
+6L69 56971
+6L6+ 56972
+6L6/ 56973
+6L+B 56974
+6L+C 56975
+6L+E 56976
+6L+F 56977
+6L+H 56978
+6L+I 56979
+6L+O 56980
+6L+Q 56981
+6L+R 56982
+6L+T 56983
+6L+U 56984
+6L+V 56985
+6L+Y 56986
+6L+Z 56987
+6L+a 56988
+6L+b 56989
+6L+c 56990
+6L+d 56991
+6L+e 56992
+6L+f 56993
+6L+g 56994
+6L+i 56995
+6L+k 56996
+6L+l 56997
+6L+m 56998
+6L+o 56999
+6L+p 57000
+6L+q 57001
+6L+r 57002
+6L+t 57003
+6L+u 57004
+6L+w 57005
+6L+z 57006
+6L+0 57007
+6L+3 57008
+6L+4 57009
+6L+5 57010
+6L+9 57011
+6YCA 57012
+6YCB 57013
+6YCC 57014
+6YCD 57015
+6YCE 57016
+6YCF 57017
+6YCG 57018
+6YCJ 57019
+6YCK 57020
+6YCL 57021
+6YCN 57022
+6YCP 57023
+6YCQ 57024
+6YCR 57025
+6YCS 57026
+6YCT 57027
+6YCU 57028
+6YCV 57029
+6YCW 57030
+6YCX 57031
+6YCZ 57032
+6YCa 57033
+6YCb 57034
+6YCd 57035
+6YCe 57036
+6YCf 57037
+6YCg 57038
+6YCh 57039
+6YCi 57040
+6YCj 57041
+6YCm 57042
+6YCu 57043
+6YCv 57044
+6YCx 57045
+6YCy 57046
+6YC1 57047
+6YC2 57048
+6YC4 57049
+6YC7 57050
+6YC8 57051
+6YC+ 57052
+6YGB 57053
+6YGC 57054
+6YGE 57055
+6YGF 57056
+6YGH 57057
+6YGJ 57058
+6YGK 57059
+6YGL 57060
+6YGN 57061
+6YGO 57062
+6YGP 57063
+6YGQ 57064
+6YGR 57065
+6YGS 57066
+6YGT 57067
+6YGU 57068
+6YGV 57069
+6YGW 57070
+6YGX 57071
+6YGY 57072
+6YGZ 57073
+6YGb 57074
+6YGc 57075
+6YGe 57076
+6YGg 57077
+6YGh 57078
+6YGi 57079
+6YGj 57080
+6YGl 57081
+6YGo 57082
+6YGp 57083
+6YGt 57084
+6YGu 57085
+6YGv 57086
+6YGy 57087
+6YG0 57088
+6YG1 57089
+6YG3 57090
+6YG4 57091
+6YG5 57092
+6YG6 57093
+6YG8 57094
+6YG9 57095
+6YG/ 57096
+6YKA 57097
+6YKB 57098
+6YKC 57099
+6YKD 57100
+6YKE 57101
+6YKF 57102
+6YKH 57103
+6YKI 57104
+6YKJ 57105
+6YKK 57106
+6YKL 57107
+6YKP 57108
+6YKR 57109
+6YKT 57110
+6YKV 57111
+6YKX 57112
+6YKY 57113
+6YKZ 57114
+6YKb 57115
+6YKd 57116
+6YKg 57117
+6YKh 57118
+6YKi 57119
+6YKj 57120
+6YKm 57121
+6YKo 57122
+6YKq 57123
+6YKs 57124
+6YKu 57125
+6YKv 57126
+6YKw 57127
+6YKx 57128
+6YKz 57129
+6YK0 57130
+6YK1 57131
+6YK2 57132
+6YK4 57133
+6YK5 57134
+6YK6 57135
+6YK7 57136
+6YK9 57137
+6YK+ 57138
+6YOB 57139
+6YOD 57140
+6YOE 57141
+6YOF 57142
+6YOH 57143
+6YOK 57144
+6YOO 57145
+6YOP 57146
+6YOQ 57147
+6YOR 57148
+6YOT 57149
+6YOV 57150
+6YOb 57151
+6YOc 57152
+6YOd 57153
+6YOe 57154
+6YOh 57155
+6YOi 57156
+6YOk 57157
+6YOm 57158
+6YOn 57159
+6YOo 57160
+6YOr 57161
+6YOt 57162
+6YOv 57163
+6YO0 57164
+6YO1 57165
+6YO3 57166
+6YO4 57167
+6YO9 57168
+6YO+ 57169
+6YO/ 57170
+6YSC 57171
+6YSE 57172
+6YSF 57173
+6YSJ 57174
+6YSP 57175
+6YSS 57176
+6YSY 57177
+6YSZ 57178
+6YSa 57179
+6YSc 57180
+6YSe 57181
+6YSg 57182
+6YSi 57183
+6YSj 57184
+6YSn 57185
+6YSp 57186
+6YSr 57187
+6YSt 57188
+6YSu 57189
+6YSv 57190
+6YSw 57191
+6YSx 57192
+6YSy 57193
+6YS6 57194
+6YWG 57195
+6YWJ 57196
+6YWK 57197
+6YWL 57198
+6YWM 57199
+6YWN 57200
+6YWO 57201
+6YWQ 57202
+6YWS 57203
+6YWU 57204
+6YWX 57205
+6YWY 57206
+6YWa 57207
+6YWd 57208
+6YWe 57209
+6YWh 57210
+6YWi 57211
+6YWj 57212
+6YWk 57213
+6YWl 57214
+6YWp 57215
+6YWq 57216
+6YWr 57217
+6YWs 57218
+6YWu 57219
+6YWv 57220
+6YWw 57221
+6YWx 57222
+6YW1 57223
+6YW2 57224
+6YW3 57225
+6YW4 57226
+6YW5 57227
+6YW6 57228
+6YW9 57229
+6YW/ 57230
+6YaC 57231
+6YaF 57232
+6YaH 57233
+6YaJ 57234
+6YaL 57235
+6YaM 57236
+6YaN 57237
+6YaQ 57238
+6YaS 57239
+6YaX 57240
+6Yaa 57241
+6Yab 57242
+6Yac 57243
+6Yae 57244
+6Yai 57245
+6Yaj 57246
+6Yak 57247
+6Yaq 57248
+6Yar 57249
+6Yas 57250
+6Yat 57251
+6Yau 57252
+6Yav 57253
+6Yay 57254
+6Ya0 57255
+6Ya1 57256
+6Ya4 57257
+6Ya6 57258
+6YeA 57259
+6YeB 57260
+6YeG 57261
+6YeH 57262
+6YeI 57263
+6YeJ 57264
+6YeK 57265
+6YeL 57266
+6YeM 57267
+6YeN 57268
+6YeO 57269
+6YeP 57270
+6YeQ 57271
+6YeR 57272
+6YeY 57273
+6Yeb 57274
+6Yec 57275
+6Yed 57276
+6Yeh 57277
+6Yej 57278
+6Yem 57279
+6Yen 57280
+6Yet 57281
+6Ye1 57282
+6Ye2 57283
+6Ye8 57284
+6Ye/ 57285
+6YiH 57286
+6YiN 57287
+6YiO 57288
+6YiR 57289
+6YiU 57290
+6YiV 57291
+6Yie 57292
+6Yip 57293
+6Yiq 57294
+6Yiz 57295
+6Yi0 57296
+6Yi3 57297
+6Yi/ 57298
+6YmE 57299
+6YmI 57300
+6YmJ 57301
+6YmL 57302
+6YmP 57303
+6YmX 57304
+6Ymb 57305
+6Yme 57306
+6Ymi 57307
+6Ymk 57308
+6Ymm 57309
+6Ymx 57310
+6Ym0 57311
+6Ym+ 57312
+6YqA 57313
+6YqD 57314
+6YqF 57315
+6YqR 57316
+6YqT 57317
+6YqV 57318
+6YqW 57319
+6YqY 57320
+6Yqa 57321
+6Yqb 57322
+6Yqc 57323
+6Yqt 57324
+6Yqu 57325
+6Yqz 57326
+6Yq2 57327
+6Yq3 57328
+6Yq5 57329
+6YuG 57330
+6YuI 57331
+6YuP 57332
+6YuQ 57333
+6YuS 57334
+6Yuk 57335
+6Yup 57336
+6Yuq 57337
+6Yut 57338
+6Yuy 57339
+6Yuz 57340
+6Yu4 57341
+6Yu5 57342
+6Yu6 57343
+6Yu8 57344
+6YyE 57345
+6YyG 57346
+6YyP 57347
+6YyQ 57348
+6YyY 57349
+6YyZ 57350
+6Yya 57351
+6Yye 57352
+6Yyg 57353
+6Yyi 57354
+6Yyj 57355
+6Yym 57356
+6Yyo 57357
+6Yyr 57358
+6Yys 57359
+6Yyu 57360
+6Yyv 57361
+6Yyy 57362
+6Yy1 57363
+6Yy2 57364
+6Yy6 57365
+6Yy+ 57366
+6Y2J 57367
+6Y2K 57368
+6Y2L 57369
+6Y2N 57370
+6Y2S 57371
+6Y2U 57372
+6Y2b 57373
+6Y2c 57374
+6Y2l 57375
+6Y2q 57376
+6Y2s 57377
+6Y2u 57378
+6Y21 57379
+6Y28 57380
+6Y2+ 57381
+6Y6J 57382
+6Y6K 57383
+6Y6M 57384
+6Y6P 57385
+6Y6U 57386
+6Y6W 57387
+6Y6X 57388
+6Y6a 57389
+6Y6b 57390
+6Y6n 57391
+6Y6s 57392
+6Y6t 57393
+6Y6u 57394
+6Y6w 57395
+6Y64 57396
+6Y65 57397
+6Y+D 57398
+6Y+I 57399
+6Y+K 57400
+6Y+Q 57401
+6Y+R 57402
+6Y+W 57403
+6Y+X 57404
+6Y+Y 57405
+6Y+d 57406
+6Y+f 57407
+6Y+h 57408
+6Y+k 57409
+6Y+l 57410
+6Y+o 57411
+6ZCD 57412
+6ZCH 57413
+6ZCO 57414
+6ZCQ 57415
+6ZCU 57416
+6ZCY 57417
+6ZCZ 57418
+6ZCa 57419
+6ZCh 57420
+6ZCn 57421
+6ZCu 57422
+6ZCy 57423
+6ZC1 57424
+6ZC2 57425
+6ZC4 57426
+6ZC6 57427
+6ZGB 57428
+6ZGE 57429
+6ZGK 57430
+6ZGR 57431
+6ZGS 57432
+6ZGT 57433
+6ZGb 57434
+6ZGe 57435
+6ZGg 57436
+6ZGi 57437
+6ZGq 57438
+6ZGr 57439
+6ZGw 57440
+6ZGx 57441
+6ZGy 57442
+6ZG1 57443
+6ZG3 57444
+6ZG5 57445
+6ZG8 57446
+6ZG9 57447
+6ZG/ 57448
+6ZKH 57449
+6ZKI 57450
+6ZKJ 57451
+6ZKK 57452
+6ZKL 57453
+6ZKM 57454
+6ZKN 57455
+6ZKO 57456
+6ZKP 57457
+6ZKQ 57458
+6ZKS 57459
+6ZKT 57460
+6ZKU 57461
+6ZKV 57462
+6ZKX 57463
+6ZKY 57464
+6ZKZ 57465
+6ZKa 57466
+6ZKb 57467
+6ZKc 57468
+6ZKd 57469
+6ZKe 57470
+6ZKf 57471
+6ZKg 57472
+6ZKh 57473
+6ZKi 57474
+6ZKj 57475
+6ZKk 57476
+6ZKl 57477
+6ZKm 57478
+6ZKn 57479
+6ZKo 57480
+6ZKp 57481
+6ZKq 57482
+6ZKr 57483
+6ZKs 57484
+6ZKu 57485
+6ZKv 57486
+6ZKw 57487
+6ZKx 57488
+6ZKy 57489
+6ZKz 57490
+6ZK0 57491
+6ZK1 57492
+6ZK5 57493
+6ZK6 57494
+6ZK7 57495
+6ZK8 57496
+6ZK9 57497
+6ZK+ 57498
+6ZK/ 57499
+6ZOA 57500
+6ZOB 57501
+6ZOC 57502
+6ZOD 57503
+6ZOE 57504
+6ZOF 57505
+6ZOG 57506
+6ZOI 57507
+6ZOJ 57508
+6ZOK 57509
+6ZOL 57510
+6ZOM 57511
+6ZON 57512
+6ZOO 57513
+6ZOQ 57514
+6ZOR 57515
+6ZOS 57516
+6ZOT 57517
+6ZOW 57518
+6ZOX 57519
+6ZOZ 57520
+6ZOa 57521
+6ZOb 57522
+6ZOc 57523
+6ZOd 57524
+6ZOe 57525
+6ZOf 57526
+6ZOg 57527
+6ZOh 57528
+6ZOi 57529
+6ZOj 57530
+6ZOk 57531
+6ZOl 57532
+6ZOm 57533
+6ZOn 57534
+6ZOo 57535
+6ZOp 57536
+6ZOq 57537
+6ZOr 57538
+6ZOs 57539
+6ZOt 57540
+6ZOu 57541
+6ZOv 57542
+6ZOw 57543
+6ZOx 57544
+6ZOy 57545
+6ZOz 57546
+6ZO1 57547
+6ZO2 57548
+6ZO3 57549
+6ZO4 57550
+6ZO6 57551
+6ZO8 57552
+6ZO+ 57553
+6ZO/ 57554
+6ZSA 57555
+6ZSB 57556
+6ZSC 57557
+6ZSD 57558
+6ZSE 57559
+6ZSF 57560
+6ZSG 57561
+6ZSH 57562
+6ZSI 57563
+6ZSJ 57564
+6ZSK 57565
+6ZSL 57566
+6ZSM 57567
+6ZSN 57568
+6ZSP 57569
+6ZSQ 57570
+6ZSR 57571
+6ZSS 57572
+6ZSU 57573
+6ZSV 57574
+6ZSW 57575
+6ZSX 57576
+6ZSY 57577
+6ZSZ 57578
+6ZSa 57579
+6ZSb 57580
+6ZSc 57581
+6ZSd 57582
+6ZSe 57583
+6ZSf 57584
+6ZSh 57585
+6ZSi 57586
+6ZSj 57587
+6ZSk 57588
+6ZSl 57589
+6ZSm 57590
+6ZSo 57591
+6ZSp 57592
+6ZSr 57593
+6ZSs 57594
+6ZSt 57595
+6ZSu 57596
+6ZSv 57597
+6ZSw 57598
+6ZSx 57599
+6ZSy 57600
+6ZS0 57601
+6ZS1 57602
+6ZS2 57603
+6ZS3 57604
+6ZS4 57605
+6ZS5 57606
+6ZS6 57607
+6ZS7 57608
+6ZWA 57609
+6ZWB 57610
+6ZWC 57611
+6ZWF 57612
+6ZWG 57613
+6ZWH 57614
+6ZWJ 57615
+6ZWK 57616
+6ZWL 57617
+6ZWM 57618
+6ZWN 57619
+6ZWP 57620
+6ZWQ 57621
+6ZWR 57622
+6ZWS 57623
+6ZWU 57624
+6ZWV 57625
+6ZWW 57626
+6ZWX 57627
+6ZWY 57628
+6ZWb 57629
+6ZWc 57630
+6ZWd 57631
+6ZWe 57632
+6ZWf 57633
+6ZWg 57634
+6ZWh 57635
+6ZWi 57636
+6ZWj 57637
+6ZWl 57638
+6ZWn 57639
+6ZWp 57640
+6ZWq 57641
+6ZWr 57642
+6ZWs 57643
+6ZWt 57644
+6ZWv 57645
+6ZWw 57646
+6ZWx 57647
+6ZWy 57648
+6ZWz 57649
+6ZW1 57650
+6ZW2 57651
+6ZW3 57652
+6ZW/ 57653
+6ZaA 57654
+6ZaC 57655
+6ZaD 57656
+6ZaH 57657
+6ZaJ 57658
+6ZaK 57659
+6ZaL 57660
+6ZaO 57661
+6ZaP 57662
+6ZaR 57663
+6ZaS 57664
+6ZaT 57665
+6ZaU 57666
+6ZaW 57667
+6ZaY 57668
+6Zaf 57669
+6Zai 57670
+6Zaj 57671
+6Zak 57672
+6Zal 57673
+6Zam 57674
+6Zao 57675
+6Zat 57676
+6Zax 57677
+6Zay 57678
+6Za5 57679
+6Za7 57680
+6Za8 57681
+6Za+ 57682
+6ZeD 57683
+6ZeG 57684
+6ZeH 57685
+6ZeK 57686
+6ZeM 57687
+6ZeN 57688
+6ZeV 57689
+6ZeW 57690
+6ZeY 57691
+6Zec 57692
+6Zeh 57693
+6Zei 57694
+6Zel 57695
+6Zeo 57696
+6Zep 57697
+6Zeq 57698
+6Zer 57699
+6Zet 57700
+6Zeu 57701
+6Zev 57702
+6Zew 57703
+6Zex 57704
+6Zey 57705
+6Zez 57706
+6Ze0 57707
+6Ze1 57708
+6Ze3 57709
+6Ze4 57710
+6Ze5 57711
+6Ze6 57712
+6Ze7 57713
+6Ze8 57714
+6Ze9 57715
+6Ze+ 57716
+6Ze/ 57717
+6ZiA 57718
+6ZiB 57719
+6ZiC 57720
+6ZiD 57721
+6ZiE 57722
+6ZiF 57723
+6ZiG 57724
+6ZiH 57725
+6ZiI 57726
+6ZiJ 57727
+6ZiK 57728
+6ZiL 57729
+6ZiM 57730
+6ZiN 57731
+6ZiO 57732
+6ZiP 57733
+6ZiQ 57734
+6ZiR 57735
+6ZiS 57736
+6ZiU 57737
+6ZiV 57738
+6ZiW 57739
+6ZiX 57740
+6ZiZ 57741
+6Zia 57742
+6Zic 57743
+6Zid 57744
+6Zif 57745
+6Zih 57746
+6Zio 57747
+6Ziq 57748
+6Zis 57749
+6Ziu 57750
+6Zix 57751
+6Ziy 57752
+6Ziz 57753
+6Zi0 57754
+6Zi1 57755
+6Zi2 57756
+6Zi7 57757
+6Zi8 57758
+6Zi9 57759
+6Zi/ 57760
+6ZmA 57761
+6ZmC 57762
+6ZmE 57763
+6ZmF 57764
+6ZmG 57765
+6ZmH 57766
+6ZmI 57767
+6ZmJ 57768
+6ZmL 57769
+6ZmM 57770
+6ZmN 57771
+6ZmQ 57772
+6ZmU 57773
+6ZmV 57774
+6Zmb 57775
+6Zmc 57776
+6Zmd 57777
+6Zme 57778
+6Zmf 57779
+6Zmh 57780
+6Zmi 57781
+6Zmj 57782
+6Zmk 57783
+6Zml 57784
+6Zmm 57785
+6Zmn 57786
+6Zmo 57787
+6Zmp 57788
+6Zmq 57789
+6Zms 57790
+6Zmw 57791
+6Zmy 57792
+6Zmz 57793
+6Zm1 57794
+6Zm2 57795
+6Zm3 57796
+6Zm4 57797
+6Zm6 57798
+6Zm9 57799
+6ZqF 57800
+6ZqG 57801
+6ZqI 57802
+6ZqK 57803
+6ZqL 57804
+6ZqN 57805
+6ZqO 57806
+6ZqP 57807
+6ZqQ 57808
+6ZqU 57809
+6ZqV 57810
+6ZqX 57811
+6ZqY 57812
+6ZqZ 57813
+6Zqb 57814
+6Zqc 57815
+6Zqg 57816
+6Zqj 57817
+6Zqn 57818
+6Zqo 57819
+6Zqq 57820
+6Zqw 57821
+6Zqx 57822
+6Zqy 57823
+6Zqz 57824
+6Zq2 57825
+6Zq3 57826
+6Zq4 57827
+6Zq5 57828
+6Zq7 57829
+6Zq8 57830
+6Zq9 57831
+6Zq+ 57832
+6ZuA 57833
+6ZuB 57834
+6ZuE 57835
+6ZuF 57836
+6ZuG 57837
+6ZuH 57838
+6ZuJ 57839
+6ZuL 57840
+6ZuM 57841
+6ZuN 57842
+6ZuO 57843
+6ZuP 57844
+6ZuR 57845
+6ZuS 57846
+6ZuV 57847
+6ZuW 57848
+6ZuZ 57849
+6Zub 57850
+6Zuc 57851
+6Zue 57852
+6Zug 57853
+6Zui 57854
+6Zuj 57855
+6Zuo 57856
+6Zup 57857
+6Zuq 57858
+6Zur 57859
+6Zuv 57860
+6Zuw 57861
+6Zux 57862
+6Zuy 57863
+6Zuz 57864
+6Zu2 57865
+6Zu3 57866
+6Zu5 57867
+6Zu7 57868
+6Zu+ 57869
+6ZyA 57870
+6ZyB 57871
+6ZyE 57872
+6ZyG 57873
+6ZyH 57874
+6ZyI 57875
+6ZyJ 57876
+6ZyK 57877
+6ZyN 57878
+6ZyO 57879
+6ZyP 57880
+6ZyR 57881
+6ZyT 57882
+6ZyW 57883
+6ZyZ 57884
+6Zyc 57885
+6Zye 57886
+6Zyn 57887
+6Zyq 57888
+6Zyr 57889
+6Zyt 57890
+6Zyw 57891
+6Zyy 57892
+6Zy4 57893
+6Zy5 57894
+6Zy9 57895
+6Zy+ 57896
+6Z2C 57897
+6Z2E 57898
+6Z2G 57899
+6Z2I 57900
+6Z2J 57901
+6Z2R 57902
+6Z2S 57903
+6Z2T 57904
+6Z2W 57905
+6Z2Z 57906
+6Z2a 57907
+6Z2b 57908
+6Z2c 57909
+6Z2e 57910
+6Z2g 57911
+6Z2h 57912
+6Z2i 57913
+6Z2l 57914
+6Z2m 57915
+6Z2o 57916
+6Z2p 57917
+6Z2r 57918
+6Z2t 57919
+6Z2x 57920
+6Z2z 57921
+6Z20 57922
+6Z22 57923
+6Z24 57924
+6Z25 57925
+6Z26 57926
+6Z28 57927
+6Z6B 57928
+6Z6E 57929
+6Z6F 57930
+6Z6G 57931
+6Z6L 57932
+6Z6N 57933
+6Z6P 57934
+6Z6Q 57935
+6Z6R 57936
+6Z6Y 57937
+6Z6c 57938
+6Z6g 57939
+6Z6j 57940
+6Z6l 57941
+6Z6m 57942
+6Z6n 57943
+6Z6o 57944
+6Z6r 57945
+6Z6s 57946
+6Z6t 57947
+6Z60 57948
+6Z62 57949
+6Z+C 57950
+6Z+D 57951
+6Z+L 57952
+6Z+M 57953
+6Z+T 57954
+6Z+Y 57955
+6Z+c 57956
+6Z+h 57957
+6Z+m 57958
+6Z+n 57959
+6Z+p 57960
+6Z+q 57961
+6Z+r 57962
+6Z+s 57963
+6Z+t 57964
+6Z+u 57965
+6Z+y 57966
+6Z+z 57967
+6Z+1 57968
+6Z+2 57969
+6Z+7 57970
+6Z+/ 57971
+6aCB 57972
+6aCC 57973
+6aCD 57974
+6aCF 57975
+6aCG 57976
+6aCI 57977
+6aCM 57978
+6aCP 57979
+6aCQ 57980
+6aCR 57981
+6aCS 57982
+6aCT 57983
+6aCX 57984
+6aCY 57985
+6aCa 57986
+6aCg 57987
+6aCh 57988
+6aCk 57989
+6aCr 57990
+6aCs 57991
+6aCt 57992
+6aCw 57993
+6aC0 57994
+6aC3 57995
+6aC4 57996
+6aC5 57997
+6aC7 57998
+6aC8 57999
+6aC9 58000
+6aGG 58001
+6aGL 58002
+6aGM 58003
+6aGN 58004
+6aGO 58005
+6aGP 58006
+6aGS 58007
+6aGU 58008
+6aGV 58009
+6aGX 58010
+6aGY 58011
+6aGb 58012
+6aGe 58013
+6aGn 58014
+6aGr 58015
+6aGs 58016
+6aGv 58017
+6aGw 58018
+6aGx 58019
+6aGz 58020
+6aG0 58021
+6aG1 58022
+6aG2 58023
+6aG3 58024
+6aG4 58025
+6aG5 58026
+6aG6 58027
+6aG7 58028
+6aG8 58029
+6aG9 58030
+6aG+ 58031
+6aG/ 58032
+6aKA 58033
+6aKB 58034
+6aKC 58035
+6aKE 58036
+6aKF 58037
+6aKG 58038
+6aKH 58039
+6aKI 58040
+6aKJ 58041
+6aKK 58042
+6aKL 58043
+6aKM 58044
+6aKN 58045
+6aKO 58046
+6aKP 58047
+6aKQ 58048
+6aKR 58049
+6aKT 58050
+6aKU 58051
+6aKW 58052
+6aKX 58053
+6aKY 58054
+6aKZ 58055
+6aKa 58056
+6aKb 58057
+6aKc 58058
+6aKd 58059
+6aKe 58060
+6aKf 58061
+6aKg 58062
+6aKh 58063
+6aKi 58064
+6aKk 58065
+6aKm 58066
+6aKn 58067
+6aKo 58068
+6aKq 58069
+6aKv 58070
+6aKx 58071
+6aK2 58072
+6aOE 58073
+6aOG 58074
+6aOK 58075
+6aOO 58076
+6aOQ 58077
+6aOS 58078
+6aOT 58079
+6aOV 58080
+6aOW 58081
+6aOX 58082
+6aOY 58083
+6aOZ 58084
+6aOa 58085
+6aOb 58086
+6aOe 58087
+6aOf 58088
+6aOi 58089
+6aOn 58090
+6aOo 58091
+6aOp 58092
+6aOq 58093
+6aOr 58094
+6aOt 58095
+6aOv 58096
+6aOy 58097
+6aO0 58098
+6aO8 58099
+6aO9 58100
+6aO+ 58101
+6aSD 58102
+6aSF 58103
+6aSJ 58104
+6aSK 58105
+6aSM 58106
+6aSN 58107
+6aSQ 58108
+6aSR 58109
+6aSS 58110
+6aST 58111
+6aSY 58112
+6aSa 58113
+6aSd 58114
+6aSe 58115
+6aSg 58116
+6aSh 58117
+6aSo 58118
+6aSs 58119
+6aSu 58120
+6aS1 58121
+6aS4 58122
+6aWC 58123
+6aWF 58124
+6aWJ 58125
+6aWL 58126
+6aWM 58127
+6aWQ 58128
+6aWR 58129
+6aWS 58130
+6aWU 58131
+6aWV 58132
+6aWX 58133
+6aWk 58134
+6aWl 58135
+6aWn 58136
+6aWo 58137
+6aWq 58138
+6aWs 58139
+6aWt 58140
+6aWu 58141
+6aWv 58142
+6aWw 58143
+6aWx 58144
+6aWy 58145
+6aW0 58146
+6aW1 58147
+6aW2 58148
+6aW3 58149
+6aW4 58150
+6aW5 58151
+6aW6 58152
+6aW8 58153
+6aW9 58154
+6aW/ 58155
+6aaA 58156
+6aaB 58157
+6aaD 58158
+6aaE 58159
+6aaF 58160
+6aaG 58161
+6aaH 58162
+6aaI 58163
+6aaK 58164
+6aaL 58165
+6aaN 58166
+6aaP 58167
+6aaQ 58168
+6aaR 58169
+6aaS 58170
+6aaT 58171
+6aaU 58172
+6aaV 58173
+6aaW 58174
+6aaX 58175
+6aaY 58176
+6aaZ 58177
+6aal 58178
+6aao 58179
+6aas 58180
+6aat 58181
+6aau 58182
+6aaz 58183
+6aa0 58184
+6aa/ 58185
+6aeB 58186
+6aeD 58187
+6aeE 58188
+6aeF 58189
+6aeG 58190
+6aeI 58191
+6aeQ 58192
+6aeR 58193
+6aeS 58194
+6aeV 58195
+6aeY 58196
+6aeb 58197
+6aed 58198
+6aef 58199
+6aei 58200
+6aet 58201
+6aeu 58202
+6aex 58203
+6ae4 58204
+6ae7 58205
+6ae/ 58206
+6aiB 58207
+6aiO 58208
+6aiP 58209
+6aiR 58210
+6aiS 58211
+6aiT 58212
+6aiV 58213
+6aiW 58214
+6aiZ 58215
+6aig 58216
+6aio 58217
+6aiu 58218
+6aiw 58219
+6ai3 58220
+6ai+ 58221
+6amA 58222
+6amD 58223
+6amF 58224
+6amN 58225
+6amV 58226
+6amX 58227
+6ama 58228
+6amb 58229
+6amf 58230
+6ami 58231
+6aml 58232
+6amp 58233
+6amq 58234
+6amr 58235
+6ams 58236
+6amt 58237
+6amu 58238
+6amv 58239
+6amw 58240
+6amx 58241
+6amz 58242
+6am0 58243
+6am2 58244
+6am3 58245
+6am4 58246
+6am5 58247
+6am6 58248
+6am7 58249
+6am8 58250
+6am9 58251
+6am+ 58252
+6am/ 58253
+6aqA 58254
+6aqB 58255
+6aqC 58256
+6aqE 58257
+6aqF 58258
+6aqG 58259
+6aqH 58260
+6aqI 58261
+6aqK 58262
+6aqL 58263
+6aqM 58264
+6aqN 58265
+6aqO 58266
+6aqP 58267
+6aqQ 58268
+6aqR 58269
+6aqS 58270
+6aqT 58271
+6aqV 58272
+6aqW 58273
+6aqX 58274
+6aqY 58275
+6aqa 58276
+6aqb 58277
+6aqc 58278
+6aqd 58279
+6aqe 58280
+6aqf 58281
+6aqg 58282
+6aqh 58283
+6aqi 58284
+6aqk 58285
+6aql 58286
+6aqn 58287
+6aqo 58288
+6aqv 58289
+6aqw 58290
+6aq2 58291
+6aq3 58292
+6aq4 58293
+6aq6 58294
+6aq8 58295
+6auA 58296
+6auB 58297
+6auC 58298
+6auD 58299
+6auE 58300
+6auF 58301
+6auI 58302
+6auL 58303
+6auM 58304
+6auO 58305
+6auP 58306
+6auR 58307
+6auS 58308
+6auT 58309
+6auU 58310
+6auY 58311
+6auZ 58312
+6auf 58313
+6auh 58314
+6aui 58315
+6auj 58316
+6aum 58317
+6auq 58318
+6aur 58319
+6aut 58320
+6auu 58321
+6auv 58322
+6aux 58323
+6au0 58324
+6au3 58325
+6au5 58326
+6au7 58327
+6au9 58328
+6ayD 58329
+6ayE 58330
+6ayG 58331
+6ayN 58332
+6ayP 58333
+6ayQ 58334
+6ayT 58335
+6ayY 58336
+6aya 58337
+6ayf 58338
+6ayi 58339
+6ayj 58340
+6ayl 58341
+6ayn 58342
+6ayo 58343
+6ayp 58344
+6ayu 58345
+6ayv 58346
+6ayx 58347
+6ayy 58348
+6ay2 58349
+6ay7 58350
+6ay8 58351
+6a2B 58352
+6a2C 58353
+6a2D 58354
+6a2E 58355
+6a2F 58356
+6a2H 58357
+6a2I 58358
+6a2J 58359
+6a2N 58360
+6a2O 58361
+6a2P 58362
+6a2R 58363
+6a2U 58364
+6a2Y 58365
+6a2a 58366
+6a2f 58367
+6a2j 58368
+6a2m 58369
+6a2s 58370
+6a2v 58371
+6a2z 58372
+6a20 58373
+6a21 58374
+6a6A 58375
+6a6D 58376
+6a6E 58377
+6a6J 58378
+6a6K 58379
+6a6L 58380
+6a6O 58381
+6a6P 58382
+6a6Q 58383
+6a6R 58384
+6a6S 58385
+6a6T 58386
+6a6U 58387
+6a6W 58388
+6a6X 58389
+6a6f 58390
+6a6g 58391
+6a6n 58392
+6a6o 58393
+6a6q 58394
+6a6r 58395
+6a6t 58396
+6a6u 58397
+6a6x 58398
+6a6y 58399
+6a60 58400
+6a64 58401
+6a65 58402
+6a+A 58403
+6a+G 58404
+6a+H 58405
+6a+J 58406
+6a+K 58407
+6a+O 58408
+6a+P 58409
+6a+R 58410
+6a+S 58411
+6a+U 58412
+6a+W 58413
+6a+b 58414
+6a+h 58415
+6a+i 58416
+6a+j 58417
+6a+l 58418
+6a+n 58419
+6a+o 58420
+6a+q 58421
+6a+w 58422
+6a+x 58423
+6a+y 58424
+6a+z 58425
+6a+1 58426
+6a+3 58427
+6a+9 58428
+6bCE 58429
+6bCG 58430
+6bCI 58431
+6bCJ 58432
+6bCK 58433
+6bCM 58434
+6bCN 58435
+6bCQ 58436
+6bCR 58437
+6bCS 58438
+6bCT 58439
+6bCU 58440
+6bCV 58441
+6bCW 58442
+6bCY 58443
+6bCZ 58444
+6bCa 58445
+6bCh 58446
+6bCk 58447
+6bCl 58448
+6bCn 58449
+6bCt 58450
+6bCu 58451
+6bCv 58452
+6bCw 58453
+6bCy 58454
+6bC2 58455
+6bC5 58456
+6bC6 58457
+6bC7 58458
+6bC+ 58459
+6bGA 58460
+6bGF 58461
+6bGG 58462
+6bGH 58463
+6bGI 58464
+6bGP 58465
+6bGS 58466
+6bGT 58467
+6bGX 58468
+6bGY 58469
+6bGa 58470
+6bGd 58471
+6bGg 58472
+6bGn 58473
+6bGu 58474
+6bGw 58475
+6bG1 58476
+6bG2 58477
+6bG4 58478
+6bG8 58479
+6bG/ 58480
+6bKA 58481
+6bKB 58482
+6bKC 58483
+6bKF 58484
+6bKH 58485
+6bKI 58486
+6bKK 58487
+6bKL 58488
+6bKM 58489
+6bKN 58490
+6bKQ 58491
+6bKR 58492
+6bKS 58493
+6bKU 58494
+6bKW 58495
+6bKa 58496
+6bKb 58497
+6bKc 58498
+6bKe 58499
+6bKf 58500
+6bKg 58501
+6bKh 58502
+6bKi 58503
+6bKj 58504
+6bKk 58505
+6bKl 58506
+6bKm 58507
+6bKn 58508
+6bKo 58509
+6bKp 58510
+6bKr 58511
+6bKt 58512
+6bKu 58513
+6bKx 58514
+6bKy 58515
+6bKz 58516
+6bK0 58517
+6bK1 58518
+6bK2 58519
+6bK3 58520
+6bK4 58521
+6bK7 58522
+6bK8 58523
+6bK9 58524
+6bOA 58525
+6bOD 58526
+6bOE 58527
+6bOF 58528
+6bOH 58529
+6bOJ 58530
+6bOK 58531
+6bOM 58532
+6bON 58533
+6bOO 58534
+6bOP 58535
+6bOQ 58536
+6bOU 58537
+6bOV 58538
+6bOW 58539
+6bOX 58540
+6bOZ 58541
+6bOc 58542
+6bOd 58543
+6bOe 58544
+6bOf 58545
+6bOj 58546
+6bOl 58547
+6bOn 58548
+6bOp 58549
+6bOr 58550
+6bOw 58551
+6bOz 58552
+6bO0 58553
+6bO2 58554
+6bSC 58555
+6bSD 58556
+6bSG 58557
+6bSH 58558
+6bSI 58559
+6bSJ 58560
+6bSL 58561
+6bSO 58562
+6bSQ 58563
+6bSS 58564
+6bSb 58565
+6bSe 58566
+6bSf 58567
+6bSj 58568
+6bSm 58569
+6bSo 58570
+6bSr 58571
+6bSs 58572
+6bSy 58573
+6bS7 58574
+6bS+ 58575
+6bS/ 58576
+6bWA 58577
+6bWE 58578
+6bWG 58579
+6bWH 58580
+6bWQ 58581
+6bWR 58582
+6bWZ 58583
+6bWc 58584
+6bWd 58585
+6bWe 58586
+6bWf 58587
+6bWg 58588
+6bWh 58589
+6bWk 58590
+6bWr 58591
+6bWs 58592
+6bWv 58593
+6bWw 58594
+6bWy 58595
+6bW6 58596
+6bW8 58597
+6baH 58598
+6baJ 58599
+6baP 58600
+6baS 58601
+6baW 58602
+6baX 58603
+6baa 58604
+6bah 58605
+6bak 58606
+6bap 58607
+6bar 58608
+6bav 58609
+6bay 58610
+6ba0 58611
+6ba4 58612
+6ba6 58613
+6ba7 58614
+6beB 58615
+6beC 58616
+6beD 58617
+6beG 58618
+6beT 58619
+6beZ 58620
+6bea 58621
+6beg 58622
+6bem 58623
+6bet 58624
+6bev 58625
+6bey 58626
+6be4 58627
+6be5 58628
+6be6 58629
+6be9 58630
+6biC 58631
+6biZ 58632
+6bia 58633
+6bib 58634
+6bie 58635
+6bif 58636
+6big 58637
+6bih 58638
+6bii 58639
+6bij 58640
+6bil 58641
+6bim 58642
+6bio 58643
+6bip 58644
+6biq 58645
+6bir 58646
+6bis 58647
+6bit 58648
+6biu 58649
+6biv 58650
+6biw 58651
+6bix 58652
+6biz 58653
+6bi1 58654
+6bi2 58655
+6bi3 58656
+6bi4 58657
+6bi5 58658
+6bi9 58659
+6bi+ 58660
+6bi/ 58661
+6bmA 58662
+6bmB 58663
+6bmC 58664
+6bmD 58665
+6bmE 58666
+6bmF 58667
+6bmG 58668
+6bmH 58669
+6bmI 58670
+6bmJ 58671
+6bmK 58672
+6bmL 58673
+6bmM 58674
+6bmO 58675
+6bmP 58676
+6bmR 58677
+6bmV 58678
+6bmW 58679
+6bmX 58680
+6bmY 58681
+6bma 58682
+6bmc 58683
+6bme 58684
+6bmj 58685
+6bmk 58686
+6bmm 58687
+6bmn 58688
+6bmo 58689
+6bmp 58690
+6bmq 58691
+6bmr 58692
+6bms 58693
+6bmt 58694
+6bmu 58695
+6bmv 58696
+6bmw 58697
+6bmx 58698
+6bmz 58699
+6bm1 58700
+6bm4 58701
+6bm5 58702
+6bm9 58703
+6bm+ 58704
+6bm/ 58705
+6bqB 58706
+6bqC 58707
+6bqH 58708
+6bqI 58709
+6bqL 58710
+6bqS 58711
+6bqT 58712
+6bqV 58713
+6bqX 58714
+6bqd 58715
+6bqe 58716
+6bqf 58717
+6bql 58718
+6bqm 58719
+6bqp 58720
+6bqq 58721
+6bqt 58722
+6bq0 58723
+6bq1 58724
+6bq4 58725
+6bq5 58726
+6bq6 58727
+6bq7 58728
+6bq8 58729
+6bq9 58730
+6bq+ 58731
+6bq/ 58732
+6buD 58733
+6buE 58734
+6buJ 58735
+6buM 58736
+6buN 58737
+6buO 58738
+6buP 58739
+6buQ 58740
+6buR 58741
+6buS 58742
+6buU 58743
+6buY 58744
+6buZ 58745
+6bub 58746
+6buc 58747
+6bud 58748
+6bue 58749
+6buf 58750
+6bug 58751
+6buh 58752
+6bui 58753
+6bul 58754
+6bun 58755
+6buo 58756
+6bup 58757
+6buv 58758
+6bu0 58759
+6bu5 58760
+6bu7 58761
+6bu8 58762
+6bu9 58763
+6byH 58764
+6byI 58765
+6byL 58766
+6byN 58767
+6byO 58768
+6byQ 58769
+6byT 58770
+6byV 58771
+6byZ 58772
+6byg 58773
+6byh 58774
+6byi 58775
+6byp 58776
+6byq 58777
+6bys 58778
+6byv 58779
+6byx 58780
+6by5 58781
+6by7 58782
+6by+ 58783
+6b2B 58784
+6b2J 58785
+6b2K 58786
+6b2L 58787
+6b2O 58788
+6b2Q 58789
+6b2R 58790
+6b2S 58791
+6b2U 58792
+6b2f 58793
+6b2h 58794
+6b2i 58795
+6b2j 58796
+6b2m 58797
+6b2n 58798
+6b2q 58799
+6b2s 58800
+6b2y 58801
+6b23 58802
+6b2/ 58803
+6b6D 58804
+6b6E 58805
+6b6F 58806
+6b6H 58807
+6b6I 58808
+6b6J 58809
+6b6K 58810
+6b6L 58811
+6b6M 58812
+6b6N 58813
+6b6Q 58814
+6b6V 58815
+6b6Z 58816
+6b6a 58817
+6b6b 58818
+6b6c 58819
+6b6d 58820
+6b6f 58821
+6b6g 58822
+6b6i 58823
+77yB 58824
+77yI 58825
+77yJ 58826
+77yM 58827
+77yN 58828
+77ya 58829
+77yb 58830
+77yf 58831
+772Y 58832
+772Z 58833
+8KCx 58834
+8KCxgQ== 58835
diff --git a/cosyvoice/tokenizer/tokenizer.py b/cosyvoice/tokenizer/tokenizer.py
new file mode 100644
index 0000000000000000000000000000000000000000..43fb39a2b543cc7ba4ec95fca9327596c34dcff0
--- /dev/null
+++ b/cosyvoice/tokenizer/tokenizer.py
@@ -0,0 +1,279 @@
+import base64
+import os
+from functools import lru_cache
+from typing import Optional
+import torch
+from transformers import AutoTokenizer
+from whisper.tokenizer import Tokenizer
+
+import tiktoken
+
+LANGUAGES = {
+ "en": "english",
+ "zh": "chinese",
+ "de": "german",
+ "es": "spanish",
+ "ru": "russian",
+ "ko": "korean",
+ "fr": "french",
+ "ja": "japanese",
+ "pt": "portuguese",
+ "tr": "turkish",
+ "pl": "polish",
+ "ca": "catalan",
+ "nl": "dutch",
+ "ar": "arabic",
+ "sv": "swedish",
+ "it": "italian",
+ "id": "indonesian",
+ "hi": "hindi",
+ "fi": "finnish",
+ "vi": "vietnamese",
+ "he": "hebrew",
+ "uk": "ukrainian",
+ "el": "greek",
+ "ms": "malay",
+ "cs": "czech",
+ "ro": "romanian",
+ "da": "danish",
+ "hu": "hungarian",
+ "ta": "tamil",
+ "no": "norwegian",
+ "th": "thai",
+ "ur": "urdu",
+ "hr": "croatian",
+ "bg": "bulgarian",
+ "lt": "lithuanian",
+ "la": "latin",
+ "mi": "maori",
+ "ml": "malayalam",
+ "cy": "welsh",
+ "sk": "slovak",
+ "te": "telugu",
+ "fa": "persian",
+ "lv": "latvian",
+ "bn": "bengali",
+ "sr": "serbian",
+ "az": "azerbaijani",
+ "sl": "slovenian",
+ "kn": "kannada",
+ "et": "estonian",
+ "mk": "macedonian",
+ "br": "breton",
+ "eu": "basque",
+ "is": "icelandic",
+ "hy": "armenian",
+ "ne": "nepali",
+ "mn": "mongolian",
+ "bs": "bosnian",
+ "kk": "kazakh",
+ "sq": "albanian",
+ "sw": "swahili",
+ "gl": "galician",
+ "mr": "marathi",
+ "pa": "punjabi",
+ "si": "sinhala",
+ "km": "khmer",
+ "sn": "shona",
+ "yo": "yoruba",
+ "so": "somali",
+ "af": "afrikaans",
+ "oc": "occitan",
+ "ka": "georgian",
+ "be": "belarusian",
+ "tg": "tajik",
+ "sd": "sindhi",
+ "gu": "gujarati",
+ "am": "amharic",
+ "yi": "yiddish",
+ "lo": "lao",
+ "uz": "uzbek",
+ "fo": "faroese",
+ "ht": "haitian creole",
+ "ps": "pashto",
+ "tk": "turkmen",
+ "nn": "nynorsk",
+ "mt": "maltese",
+ "sa": "sanskrit",
+ "lb": "luxembourgish",
+ "my": "myanmar",
+ "bo": "tibetan",
+ "tl": "tagalog",
+ "mg": "malagasy",
+ "as": "assamese",
+ "tt": "tatar",
+ "haw": "hawaiian",
+ "ln": "lingala",
+ "ha": "hausa",
+ "ba": "bashkir",
+ "jw": "javanese",
+ "su": "sundanese",
+ "yue": "cantonese",
+ "minnan": "minnan",
+ "wuyu": "wuyu",
+ "dialect": "dialect",
+ "zh/en": "zh/en",
+ "en/zh": "en/zh",
+}
+
+# language code lookup by name, with a few language aliases
+TO_LANGUAGE_CODE = {
+ **{language: code for code, language in LANGUAGES.items()},
+ "burmese": "my",
+ "valencian": "ca",
+ "flemish": "nl",
+ "haitian": "ht",
+ "letzeburgesch": "lb",
+ "pushto": "ps",
+ "panjabi": "pa",
+ "moldavian": "ro",
+ "moldovan": "ro",
+ "sinhalese": "si",
+ "castilian": "es",
+ "mandarin": "zh",
+}
+
+AUDIO_EVENT = {
+ "ASR": "ASR",
+ "AED": "AED",
+ "SER": "SER",
+ "Speech": "Speech",
+ "/Speech": "/Speech",
+ "BGM": "BGM",
+ "/BGM": "/BGM",
+ "Laughter": "Laughter",
+ "/Laughter": "/Laughter",
+ "Applause": "Applause",
+ "/Applause": "/Applause",
+}
+
+EMOTION = {
+ "HAPPY": "HAPPY",
+ "SAD": "SAD",
+ "ANGRY": "ANGRY",
+ "NEUTRAL": "NEUTRAL",
+}
+
+TTS_Vocal_Token = {
+ "TTS/B": "TTS/B",
+ "TTS/O": "TTS/O",
+ "TTS/Q": "TTS/Q",
+ "TTS/A": "TTS/A",
+ "TTS/CO": "TTS/CO",
+ "TTS/CL": "TTS/CL",
+ "TTS/H": "TTS/H",
+ **{f"TTS/SP{i:02d}": f"TTS/SP{i:02d}" for i in range(1, 14)}
+}
+
+
+@lru_cache(maxsize=None)
+def get_encoding(name: str = "gpt2", num_languages: int = 99):
+ vocab_path = os.path.join(os.path.dirname(__file__), "assets", f"{name}.tiktoken")
+ ranks = {
+ base64.b64decode(token): int(rank)
+ for token, rank in (line.split() for line in open(vocab_path) if line)
+ }
+ n_vocab = len(ranks)
+ special_tokens = {}
+
+ specials = [
+ "<|endoftext|>",
+ "<|startoftranscript|>",
+ *[f"<|{lang}|>" for lang in list(LANGUAGES.keys())[:num_languages]],
+ *[f"<|{audio_event}|>" for audio_event in list(AUDIO_EVENT.keys())],
+ *[f"<|{emotion}|>" for emotion in list(EMOTION.keys())],
+ "<|translate|>",
+ "<|transcribe|>",
+ "<|startoflm|>",
+ "<|startofprev|>",
+ "<|nospeech|>",
+ "<|notimestamps|>",
+ *[f"<|SPECIAL_TOKEN_{i}|>" for i in range(1, 31)], # register special tokens for ASR
+ *[f"<|{tts}|>" for tts in list(TTS_Vocal_Token.keys())], # register special tokens for TTS
+ *[f"<|{i * 0.02:.2f}|>" for i in range(1501)],
+ ]
+
+ for token in specials:
+ special_tokens[token] = n_vocab
+ n_vocab += 1
+
+ return tiktoken.Encoding(
+ name=os.path.basename(vocab_path),
+ explicit_n_vocab=n_vocab,
+ pat_str=r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""",
+ mergeable_ranks=ranks,
+ special_tokens=special_tokens,
+ )
+
+
+@lru_cache(maxsize=None)
+def get_tokenizer(
+ multilingual: bool,
+ *,
+ num_languages: int = 99,
+ language: Optional[str] = None,
+ task: Optional[str] = None, # Literal["transcribe", "translate", None]
+) -> Tokenizer:
+ if language is not None:
+ language = language.lower()
+ if language not in LANGUAGES:
+ if language in TO_LANGUAGE_CODE:
+ language = TO_LANGUAGE_CODE[language]
+ else:
+ raise ValueError(f"Unsupported language: {language}")
+
+ if multilingual:
+ encoding_name = "multilingual_zh_ja_yue_char_del"
+ language = language or "en"
+ task = task or "transcribe"
+ else:
+ encoding_name = "gpt2"
+ language = None
+ task = None
+
+ encoding = get_encoding(name=encoding_name, num_languages=num_languages)
+
+ return Tokenizer(
+ encoding=encoding, num_languages=num_languages, language=language, task=task
+ )
+
+
+class QwenTokenizer():
+ def __init__(self, token_path, skip_special_tokens=True):
+ super().__init__()
+ # NOTE: non-chat model, all these special tokens keep randomly initialized.
+ special_tokens = {
+ 'eos_token': '<|endoftext|>',
+ 'pad_token': '<|endoftext|>',
+ 'additional_special_tokens': [
+ '<|im_start|>', '<|im_end|>', '<|endofprompt|>',
+ '[breath]', '', '', '[noise]',
+ '[laughter]', '[cough]', '[clucking]', '[accent]',
+ '[quick_breath]',
+ "", "",
+ "[hissing]", "[sigh]", "[vocalized-noise]",
+ "[lipsmack]", "[mn]"
+ ]
+ }
+ self.special_tokens = special_tokens
+ self.tokenizer = AutoTokenizer.from_pretrained(token_path)
+ self.tokenizer.add_special_tokens(special_tokens)
+ self.skip_special_tokens = skip_special_tokens
+
+ def encode(self, text, **kwargs):
+ tokens = self.tokenizer([text], return_tensors="pt")
+ tokens = tokens["input_ids"][0].cpu().tolist()
+ return tokens
+
+ def decode(self, tokens):
+ tokens = torch.tensor(tokens, dtype=torch.int64)
+ text = self.tokenizer.batch_decode([tokens], skip_special_tokens=self.skip_special_tokens)[0]
+ return text
+
+
+@lru_cache(maxsize=None)
+def get_qwen_tokenizer(
+ token_path: str,
+ skip_special_tokens: bool
+) -> QwenTokenizer:
+ return QwenTokenizer(token_path=token_path, skip_special_tokens=skip_special_tokens)
diff --git a/cosyvoice/transformer/__init__.py b/cosyvoice/transformer/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/cosyvoice/transformer/activation.py b/cosyvoice/transformer/activation.py
new file mode 100644
index 0000000000000000000000000000000000000000..8cea54816385d3b6585ccc2417bc71630d578177
--- /dev/null
+++ b/cosyvoice/transformer/activation.py
@@ -0,0 +1,84 @@
+# Copyright (c) 2020 Johns Hopkins University (Shinji Watanabe)
+# 2020 Northwestern Polytechnical University (Pengcheng Guo)
+# 2020 Mobvoi Inc (Binbin Zhang)
+# 2024 Alibaba Inc (Xiang Lyu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Swish() activation function for Conformer."""
+
+import torch
+from torch import nn, sin, pow
+from torch.nn import Parameter
+
+
+class Swish(torch.nn.Module):
+ """Construct an Swish object."""
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ """Return Swish activation function."""
+ return x * torch.sigmoid(x)
+
+
+# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
+# LICENSE is in incl_licenses directory.
+class Snake(nn.Module):
+ '''
+ Implementation of a sine-based periodic activation function
+ Shape:
+ - Input: (B, C, T)
+ - Output: (B, C, T), same shape as the input
+ Parameters:
+ - alpha - trainable parameter
+ References:
+ - This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
+ https://arxiv.org/abs/2006.08195
+ Examples:
+ >>> a1 = snake(256)
+ >>> x = torch.randn(256)
+ >>> x = a1(x)
+ '''
+ def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
+ '''
+ Initialization.
+ INPUT:
+ - in_features: shape of the input
+ - alpha: trainable parameter
+ alpha is initialized to 1 by default, higher values = higher-frequency.
+ alpha will be trained along with the rest of your model.
+ '''
+ super(Snake, self).__init__()
+ self.in_features = in_features
+
+ # initialize alpha
+ self.alpha_logscale = alpha_logscale
+ if self.alpha_logscale: # log scale alphas initialized to zeros
+ self.alpha = Parameter(torch.zeros(in_features) * alpha)
+ else: # linear scale alphas initialized to ones
+ self.alpha = Parameter(torch.ones(in_features) * alpha)
+
+ self.alpha.requires_grad = alpha_trainable
+
+ self.no_div_by_zero = 0.000000001
+
+ def forward(self, x):
+ '''
+ Forward pass of the function.
+ Applies the function to the input elementwise.
+ Snake ∶= x + 1/a * sin^2 (xa)
+ '''
+ alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
+ if self.alpha_logscale:
+ alpha = torch.exp(alpha)
+ x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
+
+ return x
diff --git a/cosyvoice/transformer/attention.py b/cosyvoice/transformer/attention.py
new file mode 100644
index 0000000000000000000000000000000000000000..8c0c0983a833a6a91cae306a8198ebb2ca82696f
--- /dev/null
+++ b/cosyvoice/transformer/attention.py
@@ -0,0 +1,330 @@
+# Copyright (c) 2019 Shigeki Karita
+# 2020 Mobvoi Inc (Binbin Zhang)
+# 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
+# 2024 Alibaba Inc (Xiang Lyu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Multi-Head Attention layer definition."""
+
+import math
+from typing import Tuple
+
+import torch
+from torch import nn
+
+
+class MultiHeadedAttention(nn.Module):
+ """Multi-Head Attention layer.
+
+ Args:
+ n_head (int): The number of heads.
+ n_feat (int): The number of features.
+ dropout_rate (float): Dropout rate.
+
+ """
+
+ def __init__(self,
+ n_head: int,
+ n_feat: int,
+ dropout_rate: float,
+ key_bias: bool = True):
+ """Construct an MultiHeadedAttention object."""
+ super().__init__()
+ assert n_feat % n_head == 0
+ # We assume d_v always equals d_k
+ self.d_k = n_feat // n_head
+ self.h = n_head
+ self.linear_q = nn.Linear(n_feat, n_feat)
+ self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias)
+ self.linear_v = nn.Linear(n_feat, n_feat)
+ self.linear_out = nn.Linear(n_feat, n_feat)
+ self.dropout = nn.Dropout(p=dropout_rate)
+
+ def forward_qkv(
+ self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
+ """Transform query, key and value.
+
+ Args:
+ query (torch.Tensor): Query tensor (#batch, time1, size).
+ key (torch.Tensor): Key tensor (#batch, time2, size).
+ value (torch.Tensor): Value tensor (#batch, time2, size).
+
+ Returns:
+ torch.Tensor: Transformed query tensor, size
+ (#batch, n_head, time1, d_k).
+ torch.Tensor: Transformed key tensor, size
+ (#batch, n_head, time2, d_k).
+ torch.Tensor: Transformed value tensor, size
+ (#batch, n_head, time2, d_k).
+
+ """
+ n_batch = query.size(0)
+ q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
+ k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
+ v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
+ q = q.transpose(1, 2) # (batch, head, time1, d_k)
+ k = k.transpose(1, 2) # (batch, head, time2, d_k)
+ v = v.transpose(1, 2) # (batch, head, time2, d_k)
+
+ return q, k, v
+
+ def forward_attention(
+ self,
+ value: torch.Tensor,
+ scores: torch.Tensor,
+ mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool)
+ ) -> torch.Tensor:
+ """Compute attention context vector.
+
+ Args:
+ value (torch.Tensor): Transformed value, size
+ (#batch, n_head, time2, d_k).
+ scores (torch.Tensor): Attention score, size
+ (#batch, n_head, time1, time2).
+ mask (torch.Tensor): Mask, size (#batch, 1, time2) or
+ (#batch, time1, time2), (0, 0, 0) means fake mask.
+
+ Returns:
+ torch.Tensor: Transformed value (#batch, time1, d_model)
+ weighted by the attention score (#batch, time1, time2).
+
+ """
+ n_batch = value.size(0)
+ # NOTE(xcsong): When will `if mask.size(2) > 0` be True?
+ # 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the
+ # 1st chunk to ease the onnx export.]
+ # 2. pytorch training
+ if mask.size(2) > 0: # time2 > 0
+ mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
+ # For last chunk, time2 might be larger than scores.size(-1)
+ mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2)
+ scores = scores.masked_fill(mask, -float('inf'))
+ attn = torch.softmax(scores, dim=-1).masked_fill(
+ mask, 0.0) # (batch, head, time1, time2)
+ # NOTE(xcsong): When will `if mask.size(2) > 0` be False?
+ # 1. onnx(16/-1, -1/-1, 16/0)
+ # 2. jit (16/-1, -1/-1, 16/0, 16/4)
+ else:
+ attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
+
+ p_attn = self.dropout(attn)
+ x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
+ x = (x.transpose(1, 2).contiguous().view(n_batch, -1,
+ self.h * self.d_k)
+ ) # (batch, time1, d_model)
+
+ return self.linear_out(x) # (batch, time1, d_model)
+
+ def forward(
+ self,
+ query: torch.Tensor,
+ key: torch.Tensor,
+ value: torch.Tensor,
+ mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
+ pos_emb: torch.Tensor = torch.empty(0),
+ cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
+ """Compute scaled dot product attention.
+
+ Args:
+ query (torch.Tensor): Query tensor (#batch, time1, size).
+ key (torch.Tensor): Key tensor (#batch, time2, size).
+ value (torch.Tensor): Value tensor (#batch, time2, size).
+ mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
+ (#batch, time1, time2).
+ 1.When applying cross attention between decoder and encoder,
+ the batch padding mask for input is in (#batch, 1, T) shape.
+ 2.When applying self attention of encoder,
+ the mask is in (#batch, T, T) shape.
+ 3.When applying self attention of decoder,
+ the mask is in (#batch, L, L) shape.
+ 4.If the different position in decoder see different block
+ of the encoder, such as Mocha, the passed in mask could be
+ in (#batch, L, T) shape. But there is no such case in current
+ CosyVoice.
+ cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
+ where `cache_t == chunk_size * num_decoding_left_chunks`
+ and `head * d_k == size`
+
+
+ Returns:
+ torch.Tensor: Output tensor (#batch, time1, d_model).
+ torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
+ where `cache_t == chunk_size * num_decoding_left_chunks`
+ and `head * d_k == size`
+
+ """
+ q, k, v = self.forward_qkv(query, key, value)
+
+ # NOTE(xcsong):
+ # when export onnx model, for 1st chunk, we feed
+ # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
+ # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
+ # In all modes, `if cache.size(0) > 0` will alwayse be `True`
+ # and we will always do splitting and
+ # concatnation(this will simplify onnx export). Note that
+ # it's OK to concat & split zero-shaped tensors(see code below).
+ # when export jit model, for 1st chunk, we always feed
+ # cache(0, 0, 0, 0) since jit supports dynamic if-branch.
+ # >>> a = torch.ones((1, 2, 0, 4))
+ # >>> b = torch.ones((1, 2, 3, 4))
+ # >>> c = torch.cat((a, b), dim=2)
+ # >>> torch.equal(b, c) # True
+ # >>> d = torch.split(a, 2, dim=-1)
+ # >>> torch.equal(d[0], d[1]) # True
+ if cache.size(0) > 0:
+ key_cache, value_cache = torch.split(cache,
+ cache.size(-1) // 2,
+ dim=-1)
+ k = torch.cat([key_cache, k], dim=2)
+ v = torch.cat([value_cache, v], dim=2)
+ # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
+ # non-trivial to calculate `next_cache_start` here.
+ new_cache = torch.cat((k, v), dim=-1)
+
+ scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
+ return self.forward_attention(v, scores, mask), new_cache
+
+
+class RelPositionMultiHeadedAttention(MultiHeadedAttention):
+ """Multi-Head Attention layer with relative position encoding.
+ Paper: https://arxiv.org/abs/1901.02860
+ Args:
+ n_head (int): The number of heads.
+ n_feat (int): The number of features.
+ dropout_rate (float): Dropout rate.
+ """
+
+ def __init__(self,
+ n_head: int,
+ n_feat: int,
+ dropout_rate: float,
+ key_bias: bool = True):
+ """Construct an RelPositionMultiHeadedAttention object."""
+ super().__init__(n_head, n_feat, dropout_rate, key_bias)
+ # linear transformation for positional encoding
+ self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
+ # these two learnable bias are used in matrix c and matrix d
+ # as described in https://arxiv.org/abs/1901.02860 Section 3.3
+ self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
+ self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
+ torch.nn.init.xavier_uniform_(self.pos_bias_u)
+ torch.nn.init.xavier_uniform_(self.pos_bias_v)
+
+ def rel_shift(self, x: torch.Tensor) -> torch.Tensor:
+ """Compute relative positional encoding.
+
+ Args:
+ x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
+ time1 means the length of query vector.
+
+ Returns:
+ torch.Tensor: Output tensor.
+
+ """
+ zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1),
+ device=x.device,
+ dtype=x.dtype)
+ x_padded = torch.cat([zero_pad, x], dim=-1)
+
+ x_padded = x_padded.view(x.size()[0],
+ x.size()[1],
+ x.size(3) + 1, x.size(2))
+ x = x_padded[:, :, 1:].view_as(x)[
+ :, :, :, : x.size(-1) // 2 + 1
+ ] # only keep the positions from 0 to time2
+ return x
+
+ def forward(
+ self,
+ query: torch.Tensor,
+ key: torch.Tensor,
+ value: torch.Tensor,
+ mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
+ pos_emb: torch.Tensor = torch.empty(0),
+ cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
+ """Compute 'Scaled Dot Product Attention' with rel. positional encoding.
+ Args:
+ query (torch.Tensor): Query tensor (#batch, time1, size).
+ key (torch.Tensor): Key tensor (#batch, time2, size).
+ value (torch.Tensor): Value tensor (#batch, time2, size).
+ mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
+ (#batch, time1, time2), (0, 0, 0) means fake mask.
+ pos_emb (torch.Tensor): Positional embedding tensor
+ (#batch, time2, size).
+ cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
+ where `cache_t == chunk_size * num_decoding_left_chunks`
+ and `head * d_k == size`
+ Returns:
+ torch.Tensor: Output tensor (#batch, time1, d_model).
+ torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
+ where `cache_t == chunk_size * num_decoding_left_chunks`
+ and `head * d_k == size`
+ """
+ q, k, v = self.forward_qkv(query, key, value)
+ q = q.transpose(1, 2) # (batch, time1, head, d_k)
+
+ # NOTE(xcsong):
+ # when export onnx model, for 1st chunk, we feed
+ # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
+ # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
+ # In all modes, `if cache.size(0) > 0` will alwayse be `True`
+ # and we will always do splitting and
+ # concatnation(this will simplify onnx export). Note that
+ # it's OK to concat & split zero-shaped tensors(see code below).
+ # when export jit model, for 1st chunk, we always feed
+ # cache(0, 0, 0, 0) since jit supports dynamic if-branch.
+ # >>> a = torch.ones((1, 2, 0, 4))
+ # >>> b = torch.ones((1, 2, 3, 4))
+ # >>> c = torch.cat((a, b), dim=2)
+ # >>> torch.equal(b, c) # True
+ # >>> d = torch.split(a, 2, dim=-1)
+ # >>> torch.equal(d[0], d[1]) # True
+ if cache.size(0) > 0:
+ key_cache, value_cache = torch.split(cache,
+ cache.size(-1) // 2,
+ dim=-1)
+ k = torch.cat([key_cache, k], dim=2)
+ v = torch.cat([value_cache, v], dim=2)
+ # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
+ # non-trivial to calculate `next_cache_start` here.
+ new_cache = torch.cat((k, v), dim=-1)
+
+ n_batch_pos = pos_emb.size(0)
+ p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
+ p = p.transpose(1, 2) # (batch, head, time1, d_k)
+
+ # (batch, head, time1, d_k)
+ q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
+ # (batch, head, time1, d_k)
+ q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
+
+ # compute attention score
+ # first compute matrix a and matrix c
+ # as described in https://arxiv.org/abs/1901.02860 Section 3.3
+ # (batch, head, time1, time2)
+ matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
+
+ # compute matrix b and matrix d
+ # (batch, head, time1, time2)
+ matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
+ # NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used
+ if matrix_ac.shape != matrix_bd.shape:
+ matrix_bd = self.rel_shift(matrix_bd)
+
+ scores = (matrix_ac + matrix_bd) / math.sqrt(
+ self.d_k) # (batch, head, time1, time2)
+
+ return self.forward_attention(v, scores, mask), new_cache
diff --git a/cosyvoice/transformer/convolution.py b/cosyvoice/transformer/convolution.py
new file mode 100644
index 0000000000000000000000000000000000000000..4d5d96149154776000991a681a666fbe55e562fe
--- /dev/null
+++ b/cosyvoice/transformer/convolution.py
@@ -0,0 +1,145 @@
+# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
+# 2024 Alibaba Inc (Xiang Lyu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# Modified from ESPnet(https://github.com/espnet/espnet)
+"""ConvolutionModule definition."""
+
+from typing import Tuple
+
+import torch
+from torch import nn
+
+
+class ConvolutionModule(nn.Module):
+ """ConvolutionModule in Conformer model."""
+
+ def __init__(self,
+ channels: int,
+ kernel_size: int = 15,
+ activation: nn.Module = nn.ReLU(),
+ norm: str = "batch_norm",
+ causal: bool = False,
+ bias: bool = True):
+ """Construct an ConvolutionModule object.
+ Args:
+ channels (int): The number of channels of conv layers.
+ kernel_size (int): Kernel size of conv layers.
+ causal (int): Whether use causal convolution or not
+ """
+ super().__init__()
+
+ self.pointwise_conv1 = nn.Conv1d(
+ channels,
+ 2 * channels,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ bias=bias,
+ )
+ # self.lorder is used to distinguish if it's a causal convolution,
+ # if self.lorder > 0: it's a causal convolution, the input will be
+ # padded with self.lorder frames on the left in forward.
+ # else: it's a symmetrical convolution
+ if causal:
+ padding = 0
+ self.lorder = kernel_size - 1
+ else:
+ # kernel_size should be an odd number for none causal convolution
+ assert (kernel_size - 1) % 2 == 0
+ padding = (kernel_size - 1) // 2
+ self.lorder = 0
+ self.depthwise_conv = nn.Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ stride=1,
+ padding=padding,
+ groups=channels,
+ bias=bias,
+ )
+
+ assert norm in ['batch_norm', 'layer_norm']
+ if norm == "batch_norm":
+ self.use_layer_norm = False
+ self.norm = nn.BatchNorm1d(channels)
+ else:
+ self.use_layer_norm = True
+ self.norm = nn.LayerNorm(channels)
+
+ self.pointwise_conv2 = nn.Conv1d(
+ channels,
+ channels,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ bias=bias,
+ )
+ self.activation = activation
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
+ cache: torch.Tensor = torch.zeros((0, 0, 0)),
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
+ """Compute convolution module.
+ Args:
+ x (torch.Tensor): Input tensor (#batch, time, channels).
+ mask_pad (torch.Tensor): used for batch padding (#batch, 1, time),
+ (0, 0, 0) means fake mask.
+ cache (torch.Tensor): left context cache, it is only
+ used in causal convolution (#batch, channels, cache_t),
+ (0, 0, 0) meas fake cache.
+ Returns:
+ torch.Tensor: Output tensor (#batch, time, channels).
+ """
+ # exchange the temporal dimension and the feature dimension
+ x = x.transpose(1, 2) # (#batch, channels, time)
+
+ # mask batch padding
+ if mask_pad.size(2) > 0: # time > 0
+ x.masked_fill_(~mask_pad, 0.0)
+
+ if self.lorder > 0:
+ if cache.size(2) == 0: # cache_t == 0
+ x = nn.functional.pad(x, (self.lorder, 0), 'constant', 0.0)
+ else:
+ assert cache.size(0) == x.size(0) # equal batch
+ assert cache.size(1) == x.size(1) # equal channel
+ x = torch.cat((cache, x), dim=2)
+ assert (x.size(2) > self.lorder)
+ new_cache = x[:, :, -self.lorder:]
+ else:
+ # It's better we just return None if no cache is required,
+ # However, for JIT export, here we just fake one tensor instead of
+ # None.
+ new_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
+
+ # GLU mechanism
+ x = self.pointwise_conv1(x) # (batch, 2*channel, dim)
+ x = nn.functional.glu(x, dim=1) # (batch, channel, dim)
+
+ # 1D Depthwise Conv
+ x = self.depthwise_conv(x)
+ if self.use_layer_norm:
+ x = x.transpose(1, 2)
+ x = self.activation(self.norm(x))
+ if self.use_layer_norm:
+ x = x.transpose(1, 2)
+ x = self.pointwise_conv2(x)
+ # mask batch padding
+ if mask_pad.size(2) > 0: # time > 0
+ x.masked_fill_(~mask_pad, 0.0)
+
+ return x.transpose(1, 2), new_cache
diff --git a/cosyvoice/transformer/decoder.py b/cosyvoice/transformer/decoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..98f3a66a6649b125343bb111b337f92793c492a9
--- /dev/null
+++ b/cosyvoice/transformer/decoder.py
@@ -0,0 +1,396 @@
+# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
+# 2024 Alibaba Inc (Xiang Lyu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# Modified from ESPnet(https://github.com/espnet/espnet)
+"""Decoder definition."""
+from typing import Tuple, List, Optional
+
+import torch
+import torch.utils.checkpoint as ckpt
+import logging
+
+from cosyvoice.transformer.decoder_layer import DecoderLayer
+from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
+from cosyvoice.utils.class_utils import (
+ COSYVOICE_EMB_CLASSES,
+ COSYVOICE_ATTENTION_CLASSES,
+ COSYVOICE_ACTIVATION_CLASSES,
+)
+from cosyvoice.utils.mask import (subsequent_mask, make_pad_mask)
+
+
+class TransformerDecoder(torch.nn.Module):
+ """Base class of Transfomer decoder module.
+ Args:
+ vocab_size: output dim
+ encoder_output_size: dimension of attention
+ attention_heads: the number of heads of multi head attention
+ linear_units: the hidden units number of position-wise feedforward
+ num_blocks: the number of decoder blocks
+ dropout_rate: dropout rate
+ self_attention_dropout_rate: dropout rate for attention
+ input_layer: input layer type
+ use_output_layer: whether to use output layer
+ pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
+ normalize_before:
+ True: use layer_norm before each sub-block of a layer.
+ False: use layer_norm after each sub-block of a layer.
+ src_attention: if false, encoder-decoder cross attention is not
+ applied, such as CIF model
+ key_bias: whether use bias in attention.linear_k, False for whisper models.
+ gradient_checkpointing: rerunning a forward-pass segment for each
+ checkpointed segment during backward.
+ tie_word_embedding: Tie or clone module weights depending of whether we are
+ using TorchScript or not
+ """
+
+ def __init__(
+ self,
+ vocab_size: int,
+ encoder_output_size: int,
+ attention_heads: int = 4,
+ linear_units: int = 2048,
+ num_blocks: int = 6,
+ dropout_rate: float = 0.1,
+ positional_dropout_rate: float = 0.1,
+ self_attention_dropout_rate: float = 0.0,
+ src_attention_dropout_rate: float = 0.0,
+ input_layer: str = "embed",
+ use_output_layer: bool = True,
+ normalize_before: bool = True,
+ src_attention: bool = True,
+ key_bias: bool = True,
+ activation_type: str = "relu",
+ gradient_checkpointing: bool = False,
+ tie_word_embedding: bool = False,
+ ):
+ super().__init__()
+ attention_dim = encoder_output_size
+ activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
+
+ self.embed = torch.nn.Sequential(
+ torch.nn.Identity() if input_layer == "no_pos" else
+ torch.nn.Embedding(vocab_size, attention_dim),
+ COSYVOICE_EMB_CLASSES[input_layer](attention_dim,
+ positional_dropout_rate),
+ )
+
+ self.normalize_before = normalize_before
+ self.after_norm = torch.nn.LayerNorm(attention_dim, eps=1e-5)
+ self.use_output_layer = use_output_layer
+ if use_output_layer:
+ self.output_layer = torch.nn.Linear(attention_dim, vocab_size)
+ else:
+ self.output_layer = torch.nn.Identity()
+ self.num_blocks = num_blocks
+ self.decoders = torch.nn.ModuleList([
+ DecoderLayer(
+ attention_dim,
+ COSYVOICE_ATTENTION_CLASSES["selfattn"](
+ attention_heads, attention_dim,
+ self_attention_dropout_rate, key_bias),
+ COSYVOICE_ATTENTION_CLASSES["selfattn"](
+ attention_heads, attention_dim, src_attention_dropout_rate,
+ key_bias) if src_attention else None,
+ PositionwiseFeedForward(attention_dim, linear_units,
+ dropout_rate, activation),
+ dropout_rate,
+ normalize_before,
+ ) for _ in range(self.num_blocks)
+ ])
+
+ self.gradient_checkpointing = gradient_checkpointing
+ self.tie_word_embedding = tie_word_embedding
+
+ def forward(
+ self,
+ memory: torch.Tensor,
+ memory_mask: torch.Tensor,
+ ys_in_pad: torch.Tensor,
+ ys_in_lens: torch.Tensor,
+ r_ys_in_pad: torch.Tensor = torch.empty(0),
+ reverse_weight: float = 0.0,
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
+ """Forward decoder.
+ Args:
+ memory: encoded memory, float32 (batch, maxlen_in, feat)
+ memory_mask: encoder memory mask, (batch, 1, maxlen_in)
+ ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
+ ys_in_lens: input lengths of this batch (batch)
+ r_ys_in_pad: not used in transformer decoder, in order to unify api
+ with bidirectional decoder
+ reverse_weight: not used in transformer decoder, in order to unify
+ api with bidirectional decode
+ Returns:
+ (tuple): tuple containing:
+ x: decoded token score before softmax (batch, maxlen_out,
+ vocab_size) if use_output_layer is True,
+ torch.tensor(0.0), in order to unify api with bidirectional decoder
+ olens: (batch, )
+ NOTE(xcsong):
+ We pass the `__call__` method of the modules instead of `forward` to the
+ checkpointing API because `__call__` attaches all the hooks of the module.
+ https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
+ """
+ tgt = ys_in_pad
+ maxlen = tgt.size(1)
+ # tgt_mask: (B, 1, L)
+ tgt_mask = ~make_pad_mask(ys_in_lens, maxlen).unsqueeze(1)
+ tgt_mask = tgt_mask.to(tgt.device)
+ # m: (1, L, L)
+ m = subsequent_mask(tgt_mask.size(-1),
+ device=tgt_mask.device).unsqueeze(0)
+ # tgt_mask: (B, L, L)
+ tgt_mask = tgt_mask & m
+ x, _ = self.embed(tgt)
+ if self.gradient_checkpointing and self.training:
+ x = self.forward_layers_checkpointed(x, tgt_mask, memory,
+ memory_mask)
+ else:
+ x = self.forward_layers(x, tgt_mask, memory, memory_mask)
+ if self.normalize_before:
+ x = self.after_norm(x)
+ if self.use_output_layer:
+ x = self.output_layer(x)
+ olens = tgt_mask.sum(1)
+ return x, torch.tensor(0.0), olens
+
+ def forward_layers(self, x: torch.Tensor, tgt_mask: torch.Tensor,
+ memory: torch.Tensor,
+ memory_mask: torch.Tensor) -> torch.Tensor:
+ for layer in self.decoders:
+ x, tgt_mask, memory, memory_mask = layer(x, tgt_mask, memory,
+ memory_mask)
+ return x
+
+ @torch.jit.unused
+ def forward_layers_checkpointed(self, x: torch.Tensor,
+ tgt_mask: torch.Tensor,
+ memory: torch.Tensor,
+ memory_mask: torch.Tensor) -> torch.Tensor:
+ for layer in self.decoders:
+ x, tgt_mask, memory, memory_mask = ckpt.checkpoint(
+ layer.__call__, x, tgt_mask, memory, memory_mask)
+ return x
+
+ def forward_one_step(
+ self,
+ memory: torch.Tensor,
+ memory_mask: torch.Tensor,
+ tgt: torch.Tensor,
+ tgt_mask: torch.Tensor,
+ cache: Optional[List[torch.Tensor]] = None,
+ ) -> Tuple[torch.Tensor, List[torch.Tensor]]:
+ """Forward one step.
+ This is only used for decoding.
+ Args:
+ memory: encoded memory, float32 (batch, maxlen_in, feat)
+ memory_mask: encoded memory mask, (batch, 1, maxlen_in)
+ tgt: input token ids, int64 (batch, maxlen_out)
+ tgt_mask: input token mask, (batch, maxlen_out)
+ dtype=torch.uint8 in PyTorch 1.2-
+ dtype=torch.bool in PyTorch 1.2+ (include 1.2)
+ cache: cached output list of (batch, max_time_out-1, size)
+ Returns:
+ y, cache: NN output value and cache per `self.decoders`.
+ y.shape` is (batch, maxlen_out, token)
+ """
+ x, _ = self.embed(tgt)
+ new_cache = []
+ for i, decoder in enumerate(self.decoders):
+ if cache is None:
+ c = None
+ else:
+ c = cache[i]
+ x, tgt_mask, memory, memory_mask = decoder(x,
+ tgt_mask,
+ memory,
+ memory_mask,
+ cache=c)
+ new_cache.append(x)
+ if self.normalize_before:
+ y = self.after_norm(x[:, -1])
+ else:
+ y = x[:, -1]
+ if self.use_output_layer:
+ y = torch.log_softmax(self.output_layer(y), dim=-1)
+ return y, new_cache
+
+ def tie_or_clone_weights(self, jit_mode: bool = True):
+ """Tie or clone module weights (between word_emb and output_layer)
+ depending of whether we are using TorchScript or not"""
+ if not self.use_output_layer:
+ return
+ if jit_mode:
+ logging.info("clone emb.weight to output.weight")
+ self.output_layer.weight = torch.nn.Parameter(
+ self.embed[0].weight.clone())
+ else:
+ logging.info("tie emb.weight with output.weight")
+ self.output_layer.weight = self.embed[0].weight
+
+ if getattr(self.output_layer, "bias", None) is not None:
+ self.output_layer.bias.data = torch.nn.functional.pad(
+ self.output_layer.bias.data,
+ (
+ 0,
+ self.output_layer.weight.shape[0] -
+ self.output_layer.bias.shape[0],
+ ),
+ "constant",
+ 0,
+ )
+
+
+class BiTransformerDecoder(torch.nn.Module):
+ """Base class of Transfomer decoder module.
+ Args:
+ vocab_size: output dim
+ encoder_output_size: dimension of attention
+ attention_heads: the number of heads of multi head attention
+ linear_units: the hidden units number of position-wise feedforward
+ num_blocks: the number of decoder blocks
+ r_num_blocks: the number of right to left decoder blocks
+ dropout_rate: dropout rate
+ self_attention_dropout_rate: dropout rate for attention
+ input_layer: input layer type
+ use_output_layer: whether to use output layer
+ pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
+ normalize_before:
+ True: use layer_norm before each sub-block of a layer.
+ False: use layer_norm after each sub-block of a layer.
+ key_bias: whether use bias in attention.linear_k, False for whisper models.
+ """
+
+ def __init__(
+ self,
+ vocab_size: int,
+ encoder_output_size: int,
+ attention_heads: int = 4,
+ linear_units: int = 2048,
+ num_blocks: int = 6,
+ r_num_blocks: int = 0,
+ dropout_rate: float = 0.1,
+ positional_dropout_rate: float = 0.1,
+ self_attention_dropout_rate: float = 0.0,
+ src_attention_dropout_rate: float = 0.0,
+ input_layer: str = "embed",
+ use_output_layer: bool = True,
+ normalize_before: bool = True,
+ key_bias: bool = True,
+ gradient_checkpointing: bool = False,
+ tie_word_embedding: bool = False,
+ ):
+
+ super().__init__()
+ self.tie_word_embedding = tie_word_embedding
+ self.left_decoder = TransformerDecoder(
+ vocab_size,
+ encoder_output_size,
+ attention_heads,
+ linear_units,
+ num_blocks,
+ dropout_rate,
+ positional_dropout_rate,
+ self_attention_dropout_rate,
+ src_attention_dropout_rate,
+ input_layer,
+ use_output_layer,
+ normalize_before,
+ key_bias=key_bias,
+ gradient_checkpointing=gradient_checkpointing,
+ tie_word_embedding=tie_word_embedding)
+
+ self.right_decoder = TransformerDecoder(
+ vocab_size,
+ encoder_output_size,
+ attention_heads,
+ linear_units,
+ r_num_blocks,
+ dropout_rate,
+ positional_dropout_rate,
+ self_attention_dropout_rate,
+ src_attention_dropout_rate,
+ input_layer,
+ use_output_layer,
+ normalize_before,
+ key_bias=key_bias,
+ gradient_checkpointing=gradient_checkpointing,
+ tie_word_embedding=tie_word_embedding)
+
+ def forward(
+ self,
+ memory: torch.Tensor,
+ memory_mask: torch.Tensor,
+ ys_in_pad: torch.Tensor,
+ ys_in_lens: torch.Tensor,
+ r_ys_in_pad: torch.Tensor,
+ reverse_weight: float = 0.0,
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
+ """Forward decoder.
+ Args:
+ memory: encoded memory, float32 (batch, maxlen_in, feat)
+ memory_mask: encoder memory mask, (batch, 1, maxlen_in)
+ ys_in_pad: padded input token ids, int64 (batch, maxlen_out)
+ ys_in_lens: input lengths of this batch (batch)
+ r_ys_in_pad: padded input token ids, int64 (batch, maxlen_out),
+ used for right to left decoder
+ reverse_weight: used for right to left decoder
+ Returns:
+ (tuple): tuple containing:
+ x: decoded token score before softmax (batch, maxlen_out,
+ vocab_size) if use_output_layer is True,
+ r_x: x: decoded token score (right to left decoder)
+ before softmax (batch, maxlen_out, vocab_size)
+ if use_output_layer is True,
+ olens: (batch, )
+ """
+ l_x, _, olens = self.left_decoder(memory, memory_mask, ys_in_pad,
+ ys_in_lens)
+ r_x = torch.tensor(0.0)
+ if reverse_weight > 0.0:
+ r_x, _, olens = self.right_decoder(memory, memory_mask,
+ r_ys_in_pad, ys_in_lens)
+ return l_x, r_x, olens
+
+ def forward_one_step(
+ self,
+ memory: torch.Tensor,
+ memory_mask: torch.Tensor,
+ tgt: torch.Tensor,
+ tgt_mask: torch.Tensor,
+ cache: Optional[List[torch.Tensor]] = None,
+ ) -> Tuple[torch.Tensor, List[torch.Tensor]]:
+ """Forward one step.
+ This is only used for decoding.
+ Args:
+ memory: encoded memory, float32 (batch, maxlen_in, feat)
+ memory_mask: encoded memory mask, (batch, 1, maxlen_in)
+ tgt: input token ids, int64 (batch, maxlen_out)
+ tgt_mask: input token mask, (batch, maxlen_out)
+ dtype=torch.uint8 in PyTorch 1.2-
+ dtype=torch.bool in PyTorch 1.2+ (include 1.2)
+ cache: cached output list of (batch, max_time_out-1, size)
+ Returns:
+ y, cache: NN output value and cache per `self.decoders`.
+ y.shape` is (batch, maxlen_out, token)
+ """
+ return self.left_decoder.forward_one_step(memory, memory_mask, tgt,
+ tgt_mask, cache)
+
+ def tie_or_clone_weights(self, jit_mode: bool = True):
+ """Tie or clone module weights (between word_emb and output_layer)
+ depending of whether we are using TorchScript or not"""
+ self.left_decoder.tie_or_clone_weights(jit_mode)
+ self.right_decoder.tie_or_clone_weights(jit_mode)
diff --git a/cosyvoice/transformer/decoder_layer.py b/cosyvoice/transformer/decoder_layer.py
new file mode 100644
index 0000000000000000000000000000000000000000..91c7c5d7fb2a8e79cea7705646e5381016f73466
--- /dev/null
+++ b/cosyvoice/transformer/decoder_layer.py
@@ -0,0 +1,132 @@
+# Copyright (c) 2019 Shigeki Karita
+# 2020 Mobvoi Inc (Binbin Zhang)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Decoder self-attention layer definition."""
+from typing import Optional, Tuple
+
+import torch
+from torch import nn
+
+
+class DecoderLayer(nn.Module):
+ """Single decoder layer module.
+
+ Args:
+ size (int): Input dimension.
+ self_attn (torch.nn.Module): Self-attention module instance.
+ `MultiHeadedAttention` instance can be used as the argument.
+ src_attn (torch.nn.Module): Inter-attention module instance.
+ `MultiHeadedAttention` instance can be used as the argument.
+ If `None` is passed, Inter-attention is not used, such as
+ CIF, GPT, and other decoder only model.
+ feed_forward (torch.nn.Module): Feed-forward module instance.
+ `PositionwiseFeedForward` instance can be used as the argument.
+ dropout_rate (float): Dropout rate.
+ normalize_before (bool):
+ True: use layer_norm before each sub-block.
+ False: to use layer_norm after each sub-block.
+ """
+
+ def __init__(
+ self,
+ size: int,
+ self_attn: nn.Module,
+ src_attn: Optional[nn.Module],
+ feed_forward: nn.Module,
+ dropout_rate: float,
+ normalize_before: bool = True,
+ ):
+ """Construct an DecoderLayer object."""
+ super().__init__()
+ self.size = size
+ self.self_attn = self_attn
+ self.src_attn = src_attn
+ self.feed_forward = feed_forward
+ self.norm1 = nn.LayerNorm(size, eps=1e-5)
+ self.norm2 = nn.LayerNorm(size, eps=1e-5)
+ self.norm3 = nn.LayerNorm(size, eps=1e-5)
+ self.dropout = nn.Dropout(dropout_rate)
+ self.normalize_before = normalize_before
+
+ def forward(
+ self,
+ tgt: torch.Tensor,
+ tgt_mask: torch.Tensor,
+ memory: torch.Tensor,
+ memory_mask: torch.Tensor,
+ cache: Optional[torch.Tensor] = None
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
+ """Compute decoded features.
+
+ Args:
+ tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
+ tgt_mask (torch.Tensor): Mask for input tensor
+ (#batch, maxlen_out).
+ memory (torch.Tensor): Encoded memory
+ (#batch, maxlen_in, size).
+ memory_mask (torch.Tensor): Encoded memory mask
+ (#batch, maxlen_in).
+ cache (torch.Tensor): cached tensors.
+ (#batch, maxlen_out - 1, size).
+
+ Returns:
+ torch.Tensor: Output tensor (#batch, maxlen_out, size).
+ torch.Tensor: Mask for output tensor (#batch, maxlen_out).
+ torch.Tensor: Encoded memory (#batch, maxlen_in, size).
+ torch.Tensor: Encoded memory mask (#batch, maxlen_in).
+
+ """
+ residual = tgt
+ if self.normalize_before:
+ tgt = self.norm1(tgt)
+
+ if cache is None:
+ tgt_q = tgt
+ tgt_q_mask = tgt_mask
+ else:
+ # compute only the last frame query keeping dim: max_time_out -> 1
+ assert cache.shape == (
+ tgt.shape[0],
+ tgt.shape[1] - 1,
+ self.size,
+ ), "{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}"
+ tgt_q = tgt[:, -1:, :]
+ residual = residual[:, -1:, :]
+ tgt_q_mask = tgt_mask[:, -1:, :]
+
+ x = residual + self.dropout(
+ self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)[0])
+ if not self.normalize_before:
+ x = self.norm1(x)
+
+ if self.src_attn is not None:
+ residual = x
+ if self.normalize_before:
+ x = self.norm2(x)
+ x = residual + self.dropout(
+ self.src_attn(x, memory, memory, memory_mask)[0])
+ if not self.normalize_before:
+ x = self.norm2(x)
+
+ residual = x
+ if self.normalize_before:
+ x = self.norm3(x)
+ x = residual + self.dropout(self.feed_forward(x))
+ if not self.normalize_before:
+ x = self.norm3(x)
+
+ if cache is not None:
+ x = torch.cat([cache, x], dim=1)
+
+ return x, tgt_mask, memory, memory_mask
diff --git a/cosyvoice/transformer/embedding.py b/cosyvoice/transformer/embedding.py
new file mode 100644
index 0000000000000000000000000000000000000000..ba20d71bec11baa7081bed522399cf3a2046ef56
--- /dev/null
+++ b/cosyvoice/transformer/embedding.py
@@ -0,0 +1,302 @@
+# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
+# 2024 Alibaba Inc (Xiang Lyu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# Modified from ESPnet(https://github.com/espnet/espnet)
+"""Positonal Encoding Module."""
+
+import math
+from typing import Tuple, Union
+
+import torch
+import torch.nn.functional as F
+import numpy as np
+
+
+class PositionalEncoding(torch.nn.Module):
+ """Positional encoding.
+
+ :param int d_model: embedding dim
+ :param float dropout_rate: dropout rate
+ :param int max_len: maximum input length
+
+ PE(pos, 2i) = sin(pos/(10000^(2i/dmodel)))
+ PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel)))
+ """
+
+ def __init__(self,
+ d_model: int,
+ dropout_rate: float,
+ max_len: int = 5000,
+ reverse: bool = False):
+ """Construct an PositionalEncoding object."""
+ super().__init__()
+ self.d_model = d_model
+ self.xscale = math.sqrt(self.d_model)
+ self.dropout = torch.nn.Dropout(p=dropout_rate)
+ self.max_len = max_len
+
+ self.pe = torch.zeros(self.max_len, self.d_model)
+ position = torch.arange(0, self.max_len,
+ dtype=torch.float32).unsqueeze(1)
+ div_term = torch.exp(
+ torch.arange(0, self.d_model, 2, dtype=torch.float32) *
+ -(math.log(10000.0) / self.d_model))
+ self.pe[:, 0::2] = torch.sin(position * div_term)
+ self.pe[:, 1::2] = torch.cos(position * div_term)
+ self.pe = self.pe.unsqueeze(0)
+
+ def forward(self,
+ x: torch.Tensor,
+ offset: Union[int, torch.Tensor] = 0) \
+ -> Tuple[torch.Tensor, torch.Tensor]:
+ """Add positional encoding.
+
+ Args:
+ x (torch.Tensor): Input. Its shape is (batch, time, ...)
+ offset (int, torch.tensor): position offset
+
+ Returns:
+ torch.Tensor: Encoded tensor. Its shape is (batch, time, ...)
+ torch.Tensor: for compatibility to RelPositionalEncoding
+ """
+
+ self.pe = self.pe.to(x.device)
+ pos_emb = self.position_encoding(offset, x.size(1), False)
+ x = x * self.xscale + pos_emb
+ return self.dropout(x), self.dropout(pos_emb)
+
+ def position_encoding(self,
+ offset: Union[int, torch.Tensor],
+ size: int,
+ apply_dropout: bool = True) -> torch.Tensor:
+ """ For getting encoding in a streaming fashion
+
+ Attention!!!!!
+ we apply dropout only once at the whole utterance level in a none
+ streaming way, but will call this function several times with
+ increasing input size in a streaming scenario, so the dropout will
+ be applied several times.
+
+ Args:
+ offset (int or torch.tensor): start offset
+ size (int): required size of position encoding
+
+ Returns:
+ torch.Tensor: Corresponding encoding
+ """
+ # How to subscript a Union type:
+ # https://github.com/pytorch/pytorch/issues/69434
+ if isinstance(offset, int):
+ assert offset + size <= self.max_len
+ pos_emb = self.pe[:, offset:offset + size]
+ elif isinstance(offset, torch.Tensor) and offset.dim() == 0: # scalar
+ assert offset + size <= self.max_len
+ pos_emb = self.pe[:, offset:offset + size]
+ else: # for batched streaming decoding on GPU
+ assert torch.max(offset) + size <= self.max_len
+ index = offset.unsqueeze(1) + \
+ torch.arange(0, size).to(offset.device) # B X T
+ flag = index > 0
+ # remove negative offset
+ index = index * flag
+ pos_emb = F.embedding(index, self.pe[0]) # B X T X d_model
+
+ if apply_dropout:
+ pos_emb = self.dropout(pos_emb)
+ return pos_emb
+
+
+class RelPositionalEncoding(PositionalEncoding):
+ """Relative positional encoding module.
+ See : Appendix B in https://arxiv.org/abs/1901.02860
+ Args:
+ d_model (int): Embedding dimension.
+ dropout_rate (float): Dropout rate.
+ max_len (int): Maximum input length.
+ """
+
+ def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000):
+ """Initialize class."""
+ super().__init__(d_model, dropout_rate, max_len, reverse=True)
+
+ def forward(self,
+ x: torch.Tensor,
+ offset: Union[int, torch.Tensor] = 0) \
+ -> Tuple[torch.Tensor, torch.Tensor]:
+ """Compute positional encoding.
+ Args:
+ x (torch.Tensor): Input tensor (batch, time, `*`).
+ Returns:
+ torch.Tensor: Encoded tensor (batch, time, `*`).
+ torch.Tensor: Positional embedding tensor (1, time, `*`).
+ """
+ self.pe = self.pe.to(x.device)
+ x = x * self.xscale
+ pos_emb = self.position_encoding(offset, x.size(1), False)
+ return self.dropout(x), self.dropout(pos_emb)
+
+
+class WhisperPositionalEncoding(PositionalEncoding):
+ """ Sinusoids position encoding used in openai-whisper.encoder
+ """
+
+ def __init__(self, d_model: int, dropout_rate: float, max_len: int = 1500):
+ super().__init__(d_model, dropout_rate, max_len)
+ self.xscale = 1.0
+ log_timescale_increment = np.log(10000) / (d_model // 2 - 1)
+ inv_timescales = torch.exp(-log_timescale_increment *
+ torch.arange(d_model // 2))
+ scaled_time = torch.arange(max_len)[:, np.newaxis] * \
+ inv_timescales[np.newaxis, :]
+ pe = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
+ delattr(self, "pe")
+ self.register_buffer("pe", pe.unsqueeze(0))
+
+
+class LearnablePositionalEncoding(PositionalEncoding):
+ """ Learnable position encoding used in openai-whisper.decoder
+ """
+
+ def __init__(self, d_model: int, dropout_rate: float, max_len: int = 448):
+ super().__init__(d_model, dropout_rate, max_len)
+ # NOTE(xcsong): overwrite self.pe & self.xscale
+ self.pe = torch.nn.Parameter(torch.empty(1, max_len, d_model))
+ self.xscale = 1.0
+
+
+class NoPositionalEncoding(torch.nn.Module):
+ """ No position encoding
+ """
+
+ def __init__(self, d_model: int, dropout_rate: float):
+ super().__init__()
+ self.d_model = d_model
+ self.dropout = torch.nn.Dropout(p=dropout_rate)
+
+ def forward(self,
+ x: torch.Tensor,
+ offset: Union[int, torch.Tensor] = 0) \
+ -> Tuple[torch.Tensor, torch.Tensor]:
+ """ Just return zero vector for interface compatibility
+ """
+ pos_emb = torch.zeros(1, x.size(1), self.d_model).to(x.device)
+ return self.dropout(x), pos_emb
+
+ def position_encoding(self, offset: Union[int, torch.Tensor],
+ size: int) -> torch.Tensor:
+ return torch.zeros(1, size, self.d_model)
+
+
+class EspnetRelPositionalEncoding(torch.nn.Module):
+ """Relative positional encoding module (new implementation).
+
+ Details can be found in https://github.com/espnet/espnet/pull/2816.
+
+ See : Appendix B in https://arxiv.org/abs/1901.02860
+
+ Args:
+ d_model (int): Embedding dimension.
+ dropout_rate (float): Dropout rate.
+ max_len (int): Maximum input length.
+
+ """
+
+ def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000):
+ """Construct an PositionalEncoding object."""
+ super(EspnetRelPositionalEncoding, self).__init__()
+ self.d_model = d_model
+ self.xscale = math.sqrt(self.d_model)
+ self.dropout = torch.nn.Dropout(p=dropout_rate)
+ self.pe = None
+ self.extend_pe(torch.tensor(0.0).expand(1, max_len))
+
+ def extend_pe(self, x: torch.Tensor):
+ """Reset the positional encodings."""
+ if self.pe is not None:
+ # self.pe contains both positive and negative parts
+ # the length of self.pe is 2 * input_len - 1
+ if self.pe.size(1) >= x.size(1) * 2 - 1:
+ if self.pe.dtype != x.dtype or self.pe.device != x.device:
+ self.pe = self.pe.to(dtype=x.dtype, device=x.device)
+ return
+ # Suppose `i` means to the position of query vecotr and `j` means the
+ # position of key vector. We use position relative positions when keys
+ # are to the left (i>j) and negative relative positions otherwise (i Tuple[torch.Tensor, torch.Tensor]:
+ """Add positional encoding.
+
+ Args:
+ x (torch.Tensor): Input tensor (batch, time, `*`).
+
+ Returns:
+ torch.Tensor: Encoded tensor (batch, time, `*`).
+
+ """
+ self.extend_pe(x)
+ x = x * self.xscale
+ pos_emb = self.position_encoding(size=x.size(1), offset=offset)
+ return self.dropout(x), self.dropout(pos_emb)
+
+ def position_encoding(self,
+ offset: Union[int, torch.Tensor],
+ size: int) -> torch.Tensor:
+ """ For getting encoding in a streaming fashion
+
+ Attention!!!!!
+ we apply dropout only once at the whole utterance level in a none
+ streaming way, but will call this function several times with
+ increasing input size in a streaming scenario, so the dropout will
+ be applied several times.
+
+ Args:
+ offset (int or torch.tensor): start offset
+ size (int): required size of position encoding
+
+ Returns:
+ torch.Tensor: Corresponding encoding
+ """
+ # How to subscript a Union type:
+ # https://github.com/pytorch/pytorch/issues/69434
+ if isinstance(offset, int):
+ pos_emb = self.pe[
+ :,
+ self.pe.size(1) // 2 - size - offset + 1: self.pe.size(1) // 2 + size + offset,
+ ]
+ elif isinstance(offset, torch.Tensor):
+ pos_emb = self.pe[
+ :,
+ self.pe.size(1) // 2 - size - offset + 1: self.pe.size(1) // 2 + size + offset,
+ ]
+ return pos_emb
diff --git a/cosyvoice/transformer/encoder.py b/cosyvoice/transformer/encoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..c5709d0ce86b71cb994a9ea188e66fd233ebda67
--- /dev/null
+++ b/cosyvoice/transformer/encoder.py
@@ -0,0 +1,474 @@
+# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
+# 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
+# 2024 Alibaba Inc (Xiang Lyu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# Modified from ESPnet(https://github.com/espnet/espnet)
+"""Encoder definition."""
+from typing import Tuple
+
+import torch
+import torch.utils.checkpoint as ckpt
+
+from cosyvoice.transformer.convolution import ConvolutionModule
+from cosyvoice.transformer.encoder_layer import TransformerEncoderLayer
+from cosyvoice.transformer.encoder_layer import ConformerEncoderLayer
+from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
+from cosyvoice.utils.class_utils import (
+ COSYVOICE_EMB_CLASSES,
+ COSYVOICE_SUBSAMPLE_CLASSES,
+ COSYVOICE_ATTENTION_CLASSES,
+ COSYVOICE_ACTIVATION_CLASSES,
+)
+from cosyvoice.utils.mask import make_pad_mask
+from cosyvoice.utils.mask import add_optional_chunk_mask
+
+
+class BaseEncoder(torch.nn.Module):
+
+ def __init__(
+ self,
+ input_size: int,
+ output_size: int = 256,
+ attention_heads: int = 4,
+ linear_units: int = 2048,
+ num_blocks: int = 6,
+ dropout_rate: float = 0.1,
+ positional_dropout_rate: float = 0.1,
+ attention_dropout_rate: float = 0.0,
+ input_layer: str = "conv2d",
+ pos_enc_layer_type: str = "abs_pos",
+ normalize_before: bool = True,
+ static_chunk_size: int = 0,
+ use_dynamic_chunk: bool = False,
+ global_cmvn: torch.nn.Module = None,
+ use_dynamic_left_chunk: bool = False,
+ gradient_checkpointing: bool = False,
+ ):
+ """
+ Args:
+ input_size (int): input dim
+ output_size (int): dimension of attention
+ attention_heads (int): the number of heads of multi head attention
+ linear_units (int): the hidden units number of position-wise feed
+ forward
+ num_blocks (int): the number of decoder blocks
+ dropout_rate (float): dropout rate
+ attention_dropout_rate (float): dropout rate in attention
+ positional_dropout_rate (float): dropout rate after adding
+ positional encoding
+ input_layer (str): input layer type.
+ optional [linear, conv2d, conv2d6, conv2d8]
+ pos_enc_layer_type (str): Encoder positional encoding layer type.
+ opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
+ normalize_before (bool):
+ True: use layer_norm before each sub-block of a layer.
+ False: use layer_norm after each sub-block of a layer.
+ static_chunk_size (int): chunk size for static chunk training and
+ decoding
+ use_dynamic_chunk (bool): whether use dynamic chunk size for
+ training or not, You can only use fixed chunk(chunk_size > 0)
+ or dyanmic chunk size(use_dynamic_chunk = True)
+ global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
+ use_dynamic_left_chunk (bool): whether use dynamic left chunk in
+ dynamic chunk training
+ key_bias: whether use bias in attention.linear_k, False for whisper models.
+ gradient_checkpointing: rerunning a forward-pass segment for each
+ checkpointed segment during backward.
+ """
+ super().__init__()
+ self._output_size = output_size
+
+ self.global_cmvn = global_cmvn
+ self.embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
+ input_size,
+ output_size,
+ dropout_rate,
+ COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
+ positional_dropout_rate),
+ )
+
+ self.normalize_before = normalize_before
+ self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)
+ self.static_chunk_size = static_chunk_size
+ self.use_dynamic_chunk = use_dynamic_chunk
+ self.use_dynamic_left_chunk = use_dynamic_left_chunk
+ self.gradient_checkpointing = gradient_checkpointing
+
+ def output_size(self) -> int:
+ return self._output_size
+
+ def forward(
+ self,
+ xs: torch.Tensor,
+ xs_lens: torch.Tensor,
+ decoding_chunk_size: int = 0,
+ num_decoding_left_chunks: int = -1,
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
+ """Embed positions in tensor.
+
+ Args:
+ xs: padded input tensor (B, T, D)
+ xs_lens: input length (B)
+ decoding_chunk_size: decoding chunk size for dynamic chunk
+ 0: default for training, use random dynamic chunk.
+ <0: for decoding, use full chunk.
+ >0: for decoding, use fixed chunk size as set.
+ num_decoding_left_chunks: number of left chunks, this is for decoding,
+ the chunk size is decoding_chunk_size.
+ >=0: use num_decoding_left_chunks
+ <0: use all left chunks
+ Returns:
+ encoder output tensor xs, and subsampled masks
+ xs: padded output tensor (B, T' ~= T/subsample_rate, D)
+ masks: torch.Tensor batch padding mask after subsample
+ (B, 1, T' ~= T/subsample_rate)
+ NOTE(xcsong):
+ We pass the `__call__` method of the modules instead of `forward` to the
+ checkpointing API because `__call__` attaches all the hooks of the module.
+ https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
+ """
+ T = xs.size(1)
+ masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
+ if self.global_cmvn is not None:
+ xs = self.global_cmvn(xs)
+ xs, pos_emb, masks = self.embed(xs, masks)
+ mask_pad = masks # (B, 1, T/subsample_rate)
+ chunk_masks = add_optional_chunk_mask(xs, masks,
+ self.use_dynamic_chunk,
+ self.use_dynamic_left_chunk,
+ decoding_chunk_size,
+ self.static_chunk_size,
+ num_decoding_left_chunks)
+ if self.gradient_checkpointing and self.training:
+ xs = self.forward_layers_checkpointed(xs, chunk_masks, pos_emb,
+ mask_pad)
+ else:
+ xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
+ if self.normalize_before:
+ xs = self.after_norm(xs)
+ # Here we assume the mask is not changed in encoder layers, so just
+ # return the masks before encoder layers, and the masks will be used
+ # for cross attention with decoder later
+ return xs, masks
+
+ def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
+ pos_emb: torch.Tensor,
+ mask_pad: torch.Tensor) -> torch.Tensor:
+ for layer in self.encoders:
+ xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
+ return xs
+
+ @torch.jit.unused
+ def forward_layers_checkpointed(self, xs: torch.Tensor,
+ chunk_masks: torch.Tensor,
+ pos_emb: torch.Tensor,
+ mask_pad: torch.Tensor) -> torch.Tensor:
+ for layer in self.encoders:
+ xs, chunk_masks, _, _ = ckpt.checkpoint(layer.__call__, xs,
+ chunk_masks, pos_emb,
+ mask_pad)
+ return xs
+
+ @torch.jit.export
+ def forward_chunk(
+ self,
+ xs: torch.Tensor,
+ offset: int,
+ required_cache_size: int,
+ att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
+ cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
+ att_mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
+ """ Forward just one chunk
+
+ Args:
+ xs (torch.Tensor): chunk input, with shape (b=1, time, mel-dim),
+ where `time == (chunk_size - 1) * subsample_rate + \
+ subsample.right_context + 1`
+ offset (int): current offset in encoder output time stamp
+ required_cache_size (int): cache size required for next chunk
+ compuation
+ >=0: actual cache size
+ <0: means all history cache is required
+ att_cache (torch.Tensor): cache tensor for KEY & VALUE in
+ transformer/conformer attention, with shape
+ (elayers, head, cache_t1, d_k * 2), where
+ `head * d_k == hidden-dim` and
+ `cache_t1 == chunk_size * num_decoding_left_chunks`.
+ cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer,
+ (elayers, b=1, hidden-dim, cache_t2), where
+ `cache_t2 == cnn.lorder - 1`
+
+ Returns:
+ torch.Tensor: output of current input xs,
+ with shape (b=1, chunk_size, hidden-dim).
+ torch.Tensor: new attention cache required for next chunk, with
+ dynamic shape (elayers, head, ?, d_k * 2)
+ depending on required_cache_size.
+ torch.Tensor: new conformer cnn cache required for next chunk, with
+ same shape as the original cnn_cache.
+
+ """
+ assert xs.size(0) == 1
+ # tmp_masks is just for interface compatibility
+ tmp_masks = torch.ones(1,
+ xs.size(1),
+ device=xs.device,
+ dtype=torch.bool)
+ tmp_masks = tmp_masks.unsqueeze(1)
+ if self.global_cmvn is not None:
+ xs = self.global_cmvn(xs)
+ # NOTE(xcsong): Before embed, shape(xs) is (b=1, time, mel-dim)
+ xs, pos_emb, _ = self.embed(xs, tmp_masks, offset)
+ # NOTE(xcsong): After embed, shape(xs) is (b=1, chunk_size, hidden-dim)
+ elayers, cache_t1 = att_cache.size(0), att_cache.size(2)
+ chunk_size = xs.size(1)
+ attention_key_size = cache_t1 + chunk_size
+ pos_emb = self.embed.position_encoding(offset=offset - cache_t1,
+ size=attention_key_size)
+ if required_cache_size < 0:
+ next_cache_start = 0
+ elif required_cache_size == 0:
+ next_cache_start = attention_key_size
+ else:
+ next_cache_start = max(attention_key_size - required_cache_size, 0)
+ r_att_cache = []
+ r_cnn_cache = []
+ for i, layer in enumerate(self.encoders):
+ # NOTE(xcsong): Before layer.forward
+ # shape(att_cache[i:i + 1]) is (1, head, cache_t1, d_k * 2),
+ # shape(cnn_cache[i]) is (b=1, hidden-dim, cache_t2)
+ xs, _, new_att_cache, new_cnn_cache = layer(
+ xs,
+ att_mask,
+ pos_emb,
+ att_cache=att_cache[i:i + 1] if elayers > 0 else att_cache,
+ cnn_cache=cnn_cache[i] if cnn_cache.size(0) > 0 else cnn_cache)
+ # NOTE(xcsong): After layer.forward
+ # shape(new_att_cache) is (1, head, attention_key_size, d_k * 2),
+ # shape(new_cnn_cache) is (b=1, hidden-dim, cache_t2)
+ r_att_cache.append(new_att_cache[:, :, next_cache_start:, :])
+ r_cnn_cache.append(new_cnn_cache.unsqueeze(0))
+ if self.normalize_before:
+ xs = self.after_norm(xs)
+
+ # NOTE(xcsong): shape(r_att_cache) is (elayers, head, ?, d_k * 2),
+ # ? may be larger than cache_t1, it depends on required_cache_size
+ r_att_cache = torch.cat(r_att_cache, dim=0)
+ # NOTE(xcsong): shape(r_cnn_cache) is (e, b=1, hidden-dim, cache_t2)
+ r_cnn_cache = torch.cat(r_cnn_cache, dim=0)
+
+ return (xs, r_att_cache, r_cnn_cache)
+
+ @torch.jit.unused
+ def forward_chunk_by_chunk(
+ self,
+ xs: torch.Tensor,
+ decoding_chunk_size: int,
+ num_decoding_left_chunks: int = -1,
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
+ """ Forward input chunk by chunk with chunk_size like a streaming
+ fashion
+
+ Here we should pay special attention to computation cache in the
+ streaming style forward chunk by chunk. Three things should be taken
+ into account for computation in the current network:
+ 1. transformer/conformer encoder layers output cache
+ 2. convolution in conformer
+ 3. convolution in subsampling
+
+ However, we don't implement subsampling cache for:
+ 1. We can control subsampling module to output the right result by
+ overlapping input instead of cache left context, even though it
+ wastes some computation, but subsampling only takes a very
+ small fraction of computation in the whole model.
+ 2. Typically, there are several covolution layers with subsampling
+ in subsampling module, it is tricky and complicated to do cache
+ with different convolution layers with different subsampling
+ rate.
+ 3. Currently, nn.Sequential is used to stack all the convolution
+ layers in subsampling, we need to rewrite it to make it work
+ with cache, which is not preferred.
+ Args:
+ xs (torch.Tensor): (1, max_len, dim)
+ chunk_size (int): decoding chunk size
+ """
+ assert decoding_chunk_size > 0
+ # The model is trained by static or dynamic chunk
+ assert self.static_chunk_size > 0 or self.use_dynamic_chunk
+ subsampling = self.embed.subsampling_rate
+ context = self.embed.right_context + 1 # Add current frame
+ stride = subsampling * decoding_chunk_size
+ decoding_window = (decoding_chunk_size - 1) * subsampling + context
+ num_frames = xs.size(1)
+ att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
+ cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
+ outputs = []
+ offset = 0
+ required_cache_size = decoding_chunk_size * num_decoding_left_chunks
+
+ # Feed forward overlap input step by step
+ for cur in range(0, num_frames - context + 1, stride):
+ end = min(cur + decoding_window, num_frames)
+ chunk_xs = xs[:, cur:end, :]
+ (y, att_cache,
+ cnn_cache) = self.forward_chunk(chunk_xs, offset,
+ required_cache_size, att_cache,
+ cnn_cache)
+ outputs.append(y)
+ offset += y.size(1)
+ ys = torch.cat(outputs, 1)
+ masks = torch.ones((1, 1, ys.size(1)),
+ device=ys.device,
+ dtype=torch.bool)
+ return ys, masks
+
+
+class TransformerEncoder(BaseEncoder):
+ """Transformer encoder module."""
+
+ def __init__(
+ self,
+ input_size: int,
+ output_size: int = 256,
+ attention_heads: int = 4,
+ linear_units: int = 2048,
+ num_blocks: int = 6,
+ dropout_rate: float = 0.1,
+ positional_dropout_rate: float = 0.1,
+ attention_dropout_rate: float = 0.0,
+ input_layer: str = "conv2d",
+ pos_enc_layer_type: str = "abs_pos",
+ normalize_before: bool = True,
+ static_chunk_size: int = 0,
+ use_dynamic_chunk: bool = False,
+ global_cmvn: torch.nn.Module = None,
+ use_dynamic_left_chunk: bool = False,
+ key_bias: bool = True,
+ selfattention_layer_type: str = "selfattn",
+ activation_type: str = "relu",
+ gradient_checkpointing: bool = False,
+ ):
+ """ Construct TransformerEncoder
+
+ See Encoder for the meaning of each parameter.
+ """
+ super().__init__(input_size, output_size, attention_heads,
+ linear_units, num_blocks, dropout_rate,
+ positional_dropout_rate, attention_dropout_rate,
+ input_layer, pos_enc_layer_type, normalize_before,
+ static_chunk_size, use_dynamic_chunk, global_cmvn,
+ use_dynamic_left_chunk, gradient_checkpointing)
+ activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
+ self.encoders = torch.nn.ModuleList([
+ TransformerEncoderLayer(
+ output_size,
+ COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](attention_heads,
+ output_size,
+ attention_dropout_rate,
+ key_bias),
+ PositionwiseFeedForward(output_size, linear_units,
+ dropout_rate, activation),
+ dropout_rate, normalize_before) for _ in range(num_blocks)
+ ])
+
+
+class ConformerEncoder(BaseEncoder):
+ """Conformer encoder module."""
+
+ def __init__(
+ self,
+ input_size: int,
+ output_size: int = 256,
+ attention_heads: int = 4,
+ linear_units: int = 2048,
+ num_blocks: int = 6,
+ dropout_rate: float = 0.1,
+ positional_dropout_rate: float = 0.1,
+ attention_dropout_rate: float = 0.0,
+ input_layer: str = "conv2d",
+ pos_enc_layer_type: str = "rel_pos",
+ normalize_before: bool = True,
+ static_chunk_size: int = 0,
+ use_dynamic_chunk: bool = False,
+ global_cmvn: torch.nn.Module = None,
+ use_dynamic_left_chunk: bool = False,
+ positionwise_conv_kernel_size: int = 1,
+ macaron_style: bool = True,
+ selfattention_layer_type: str = "rel_selfattn",
+ activation_type: str = "swish",
+ use_cnn_module: bool = True,
+ cnn_module_kernel: int = 15,
+ causal: bool = False,
+ cnn_module_norm: str = "batch_norm",
+ key_bias: bool = True,
+ gradient_checkpointing: bool = False,
+ ):
+ """Construct ConformerEncoder
+
+ Args:
+ input_size to use_dynamic_chunk, see in BaseEncoder
+ positionwise_conv_kernel_size (int): Kernel size of positionwise
+ conv1d layer.
+ macaron_style (bool): Whether to use macaron style for
+ positionwise layer.
+ selfattention_layer_type (str): Encoder attention layer type,
+ the parameter has no effect now, it's just for configure
+ compatibility.
+ activation_type (str): Encoder activation function type.
+ use_cnn_module (bool): Whether to use convolution module.
+ cnn_module_kernel (int): Kernel size of convolution module.
+ causal (bool): whether to use causal convolution or not.
+ key_bias: whether use bias in attention.linear_k, False for whisper models.
+ """
+ super().__init__(input_size, output_size, attention_heads,
+ linear_units, num_blocks, dropout_rate,
+ positional_dropout_rate, attention_dropout_rate,
+ input_layer, pos_enc_layer_type, normalize_before,
+ static_chunk_size, use_dynamic_chunk, global_cmvn,
+ use_dynamic_left_chunk, gradient_checkpointing)
+ activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
+
+ # self-attention module definition
+ encoder_selfattn_layer_args = (
+ attention_heads,
+ output_size,
+ attention_dropout_rate,
+ key_bias,
+ )
+ # feed-forward module definition
+ positionwise_layer_args = (
+ output_size,
+ linear_units,
+ dropout_rate,
+ activation,
+ )
+ # convolution module definition
+ convolution_layer_args = (output_size, cnn_module_kernel, activation,
+ cnn_module_norm, causal)
+
+ self.encoders = torch.nn.ModuleList([
+ ConformerEncoderLayer(
+ output_size,
+ COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
+ *encoder_selfattn_layer_args),
+ PositionwiseFeedForward(*positionwise_layer_args),
+ PositionwiseFeedForward(
+ *positionwise_layer_args) if macaron_style else None,
+ ConvolutionModule(
+ *convolution_layer_args) if use_cnn_module else None,
+ dropout_rate,
+ normalize_before,
+ ) for _ in range(num_blocks)
+ ])
diff --git a/cosyvoice/transformer/encoder_layer.py b/cosyvoice/transformer/encoder_layer.py
new file mode 100644
index 0000000000000000000000000000000000000000..efbb12dd365770bebe8bca75276fe63be260a08f
--- /dev/null
+++ b/cosyvoice/transformer/encoder_layer.py
@@ -0,0 +1,236 @@
+# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
+# 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# Modified from ESPnet(https://github.com/espnet/espnet)
+"""Encoder self-attention layer definition."""
+
+from typing import Optional, Tuple
+
+import torch
+from torch import nn
+
+
+class TransformerEncoderLayer(nn.Module):
+ """Encoder layer module.
+
+ Args:
+ size (int): Input dimension.
+ self_attn (torch.nn.Module): Self-attention module instance.
+ `MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
+ instance can be used as the argument.
+ feed_forward (torch.nn.Module): Feed-forward module instance.
+ `PositionwiseFeedForward`, instance can be used as the argument.
+ dropout_rate (float): Dropout rate.
+ normalize_before (bool):
+ True: use layer_norm before each sub-block.
+ False: to use layer_norm after each sub-block.
+ """
+
+ def __init__(
+ self,
+ size: int,
+ self_attn: torch.nn.Module,
+ feed_forward: torch.nn.Module,
+ dropout_rate: float,
+ normalize_before: bool = True,
+ ):
+ """Construct an EncoderLayer object."""
+ super().__init__()
+ self.self_attn = self_attn
+ self.feed_forward = feed_forward
+ self.norm1 = nn.LayerNorm(size, eps=1e-12)
+ self.norm2 = nn.LayerNorm(size, eps=1e-12)
+ self.dropout = nn.Dropout(dropout_rate)
+ self.size = size
+ self.normalize_before = normalize_before
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ mask: torch.Tensor,
+ pos_emb: torch.Tensor,
+ mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
+ att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
+ cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
+ """Compute encoded features.
+
+ Args:
+ x (torch.Tensor): (#batch, time, size)
+ mask (torch.Tensor): Mask tensor for the input (#batch, time,time),
+ (0, 0, 0) means fake mask.
+ pos_emb (torch.Tensor): just for interface compatibility
+ to ConformerEncoderLayer
+ mask_pad (torch.Tensor): does not used in transformer layer,
+ just for unified api with conformer.
+ att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
+ (#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
+ cnn_cache (torch.Tensor): Convolution cache in conformer layer
+ (#batch=1, size, cache_t2), not used here, it's for interface
+ compatibility to ConformerEncoderLayer.
+ Returns:
+ torch.Tensor: Output tensor (#batch, time, size).
+ torch.Tensor: Mask tensor (#batch, time, time).
+ torch.Tensor: att_cache tensor,
+ (#batch=1, head, cache_t1 + time, d_k * 2).
+ torch.Tensor: cnn_cahce tensor (#batch=1, size, cache_t2).
+
+ """
+ residual = x
+ if self.normalize_before:
+ x = self.norm1(x)
+ x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb=pos_emb, cache=att_cache)
+ x = residual + self.dropout(x_att)
+ if not self.normalize_before:
+ x = self.norm1(x)
+
+ residual = x
+ if self.normalize_before:
+ x = self.norm2(x)
+ x = residual + self.dropout(self.feed_forward(x))
+ if not self.normalize_before:
+ x = self.norm2(x)
+
+ fake_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
+ return x, mask, new_att_cache, fake_cnn_cache
+
+
+class ConformerEncoderLayer(nn.Module):
+ """Encoder layer module.
+ Args:
+ size (int): Input dimension.
+ self_attn (torch.nn.Module): Self-attention module instance.
+ `MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
+ instance can be used as the argument.
+ feed_forward (torch.nn.Module): Feed-forward module instance.
+ `PositionwiseFeedForward` instance can be used as the argument.
+ feed_forward_macaron (torch.nn.Module): Additional feed-forward module
+ instance.
+ `PositionwiseFeedForward` instance can be used as the argument.
+ conv_module (torch.nn.Module): Convolution module instance.
+ `ConvlutionModule` instance can be used as the argument.
+ dropout_rate (float): Dropout rate.
+ normalize_before (bool):
+ True: use layer_norm before each sub-block.
+ False: use layer_norm after each sub-block.
+ """
+
+ def __init__(
+ self,
+ size: int,
+ self_attn: torch.nn.Module,
+ feed_forward: Optional[nn.Module] = None,
+ feed_forward_macaron: Optional[nn.Module] = None,
+ conv_module: Optional[nn.Module] = None,
+ dropout_rate: float = 0.1,
+ normalize_before: bool = True,
+ ):
+ """Construct an EncoderLayer object."""
+ super().__init__()
+ self.self_attn = self_attn
+ self.feed_forward = feed_forward
+ self.feed_forward_macaron = feed_forward_macaron
+ self.conv_module = conv_module
+ self.norm_ff = nn.LayerNorm(size, eps=1e-12) # for the FNN module
+ self.norm_mha = nn.LayerNorm(size, eps=1e-12) # for the MHA module
+ if feed_forward_macaron is not None:
+ self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-12)
+ self.ff_scale = 0.5
+ else:
+ self.ff_scale = 1.0
+ if self.conv_module is not None:
+ self.norm_conv = nn.LayerNorm(size, eps=1e-12) # for the CNN module
+ self.norm_final = nn.LayerNorm(
+ size, eps=1e-12) # for the final output of the block
+ self.dropout = nn.Dropout(dropout_rate)
+ self.size = size
+ self.normalize_before = normalize_before
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ mask: torch.Tensor,
+ pos_emb: torch.Tensor,
+ mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
+ att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
+ cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
+ """Compute encoded features.
+
+ Args:
+ x (torch.Tensor): (#batch, time, size)
+ mask (torch.Tensor): Mask tensor for the input (#batch, time,time),
+ (0, 0, 0) means fake mask.
+ pos_emb (torch.Tensor): positional encoding, must not be None
+ for ConformerEncoderLayer.
+ mask_pad (torch.Tensor): batch padding mask used for conv module.
+ (#batch, 1,time), (0, 0, 0) means fake mask.
+ att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
+ (#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
+ cnn_cache (torch.Tensor): Convolution cache in conformer layer
+ (#batch=1, size, cache_t2)
+ Returns:
+ torch.Tensor: Output tensor (#batch, time, size).
+ torch.Tensor: Mask tensor (#batch, time, time).
+ torch.Tensor: att_cache tensor,
+ (#batch=1, head, cache_t1 + time, d_k * 2).
+ torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2).
+ """
+
+ # whether to use macaron style
+ if self.feed_forward_macaron is not None:
+ residual = x
+ if self.normalize_before:
+ x = self.norm_ff_macaron(x)
+ x = residual + self.ff_scale * self.dropout(
+ self.feed_forward_macaron(x))
+ if not self.normalize_before:
+ x = self.norm_ff_macaron(x)
+
+ # multi-headed self-attention module
+ residual = x
+ if self.normalize_before:
+ x = self.norm_mha(x)
+ x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb,
+ att_cache)
+ x = residual + self.dropout(x_att)
+ if not self.normalize_before:
+ x = self.norm_mha(x)
+
+ # convolution module
+ # Fake new cnn cache here, and then change it in conv_module
+ new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
+ if self.conv_module is not None:
+ residual = x
+ if self.normalize_before:
+ x = self.norm_conv(x)
+ x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache)
+ x = residual + self.dropout(x)
+
+ if not self.normalize_before:
+ x = self.norm_conv(x)
+
+ # feed forward module
+ residual = x
+ if self.normalize_before:
+ x = self.norm_ff(x)
+
+ x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
+ if not self.normalize_before:
+ x = self.norm_ff(x)
+
+ if self.conv_module is not None:
+ x = self.norm_final(x)
+
+ return x, mask, new_att_cache, new_cnn_cache
diff --git a/cosyvoice/transformer/label_smoothing_loss.py b/cosyvoice/transformer/label_smoothing_loss.py
new file mode 100644
index 0000000000000000000000000000000000000000..feacabf09609ee6eb047c89ce18d372256c72c71
--- /dev/null
+++ b/cosyvoice/transformer/label_smoothing_loss.py
@@ -0,0 +1,96 @@
+# Copyright (c) 2019 Shigeki Karita
+# 2020 Mobvoi Inc (Binbin Zhang)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Label smoothing module."""
+
+import torch
+from torch import nn
+
+
+class LabelSmoothingLoss(nn.Module):
+ """Label-smoothing loss.
+
+ In a standard CE loss, the label's data distribution is:
+ [0,1,2] ->
+ [
+ [1.0, 0.0, 0.0],
+ [0.0, 1.0, 0.0],
+ [0.0, 0.0, 1.0],
+ ]
+
+ In the smoothing version CE Loss,some probabilities
+ are taken from the true label prob (1.0) and are divided
+ among other labels.
+
+ e.g.
+ smoothing=0.1
+ [0,1,2] ->
+ [
+ [0.9, 0.05, 0.05],
+ [0.05, 0.9, 0.05],
+ [0.05, 0.05, 0.9],
+ ]
+
+ Args:
+ size (int): the number of class
+ padding_idx (int): padding class id which will be ignored for loss
+ smoothing (float): smoothing rate (0.0 means the conventional CE)
+ normalize_length (bool):
+ normalize loss by sequence length if True
+ normalize loss by batch size if False
+ """
+
+ def __init__(self,
+ size: int,
+ padding_idx: int,
+ smoothing: float,
+ normalize_length: bool = False):
+ """Construct an LabelSmoothingLoss object."""
+ super(LabelSmoothingLoss, self).__init__()
+ self.criterion = nn.KLDivLoss(reduction="none")
+ self.padding_idx = padding_idx
+ self.confidence = 1.0 - smoothing
+ self.smoothing = smoothing
+ self.size = size
+ self.normalize_length = normalize_length
+
+ def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
+ """Compute loss between x and target.
+
+ The model outputs and data labels tensors are flatten to
+ (batch*seqlen, class) shape and a mask is applied to the
+ padding part which should not be calculated for loss.
+
+ Args:
+ x (torch.Tensor): prediction (batch, seqlen, class)
+ target (torch.Tensor):
+ target signal masked with self.padding_id (batch, seqlen)
+ Returns:
+ loss (torch.Tensor) : The KL loss, scalar float value
+ """
+ assert x.size(2) == self.size
+ batch_size = x.size(0)
+ x = x.view(-1, self.size)
+ target = target.view(-1)
+ # use zeros_like instead of torch.no_grad() for true_dist,
+ # since no_grad() can not be exported by JIT
+ true_dist = torch.zeros_like(x)
+ true_dist.fill_(self.smoothing / (self.size - 1))
+ ignore = target == self.padding_idx # (B,)
+ total = len(target) - ignore.sum().item()
+ target = target.masked_fill(ignore, 0) # avoid -1 index
+ true_dist.scatter_(1, target.unsqueeze(1), self.confidence)
+ kl = self.criterion(torch.log_softmax(x, dim=1), true_dist)
+ denom = total if self.normalize_length else batch_size
+ return kl.masked_fill(ignore.unsqueeze(1), 0).sum() / denom
diff --git a/cosyvoice/transformer/positionwise_feed_forward.py b/cosyvoice/transformer/positionwise_feed_forward.py
new file mode 100644
index 0000000000000000000000000000000000000000..b7a2cf6e7315e3a5ed2794423daff0a59cc5b208
--- /dev/null
+++ b/cosyvoice/transformer/positionwise_feed_forward.py
@@ -0,0 +1,115 @@
+# Copyright (c) 2019 Shigeki Karita
+# 2020 Mobvoi Inc (Binbin Zhang)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Positionwise feed forward layer definition."""
+
+import torch
+
+
+class PositionwiseFeedForward(torch.nn.Module):
+ """Positionwise feed forward layer.
+
+ FeedForward are appied on each position of the sequence.
+ The output dim is same with the input dim.
+
+ Args:
+ idim (int): Input dimenstion.
+ hidden_units (int): The number of hidden units.
+ dropout_rate (float): Dropout rate.
+ activation (torch.nn.Module): Activation function
+ """
+
+ def __init__(
+ self,
+ idim: int,
+ hidden_units: int,
+ dropout_rate: float,
+ activation: torch.nn.Module = torch.nn.ReLU(),
+ ):
+ """Construct a PositionwiseFeedForward object."""
+ super(PositionwiseFeedForward, self).__init__()
+ self.w_1 = torch.nn.Linear(idim, hidden_units)
+ self.activation = activation
+ self.dropout = torch.nn.Dropout(dropout_rate)
+ self.w_2 = torch.nn.Linear(hidden_units, idim)
+
+ def forward(self, xs: torch.Tensor) -> torch.Tensor:
+ """Forward function.
+
+ Args:
+ xs: input tensor (B, L, D)
+ Returns:
+ output tensor, (B, L, D)
+ """
+ return self.w_2(self.dropout(self.activation(self.w_1(xs))))
+
+
+class MoEFFNLayer(torch.nn.Module):
+ """
+ Mixture of expert with Positionwise feed forward layer
+ See also figure 1 in https://arxiv.org/pdf/2305.15663.pdf
+ The output dim is same with the input dim.
+
+ Modified from https://github.com/Lightning-AI/lit-gpt/pull/823
+ https://github.com/mistralai/mistral-src/blob/b46d6/moe_one_file_ref.py#L203-L219
+ Args:
+ n_expert: number of expert.
+ n_expert_per_token: The actual number of experts used for each frame
+ idim (int): Input dimenstion.
+ hidden_units (int): The number of hidden units.
+ dropout_rate (float): Dropout rate.
+ activation (torch.nn.Module): Activation function
+ """
+
+ def __init__(
+ self,
+ n_expert: int,
+ n_expert_per_token: int,
+ idim: int,
+ hidden_units: int,
+ dropout_rate: float,
+ activation: torch.nn.Module = torch.nn.ReLU(),
+ ):
+ super(MoEFFNLayer, self).__init__()
+ self.gate = torch.nn.Linear(idim, n_expert, bias=False)
+ self.experts = torch.nn.ModuleList(
+ PositionwiseFeedForward(idim, hidden_units, dropout_rate,
+ activation) for _ in range(n_expert))
+ self.n_expert_per_token = n_expert_per_token
+
+ def forward(self, xs: torch.Tensor) -> torch.Tensor:
+ """Foward function.
+ Args:
+ xs: input tensor (B, L, D)
+ Returns:
+ output tensor, (B, L, D)
+
+ """
+ B, L, D = xs.size(
+ ) # batch size, sequence length, embedding dimension (idim)
+ xs = xs.view(-1, D) # (B*L, D)
+ router = self.gate(xs) # (B*L, n_expert)
+ logits, indices = torch.topk(
+ router, self.n_expert_per_token
+ ) # probs:(B*L, n_expert), indices: (B*L, n_expert)
+ weights = torch.nn.functional.softmax(
+ logits, dim=1,
+ dtype=torch.float).to(dtype=xs.dtype) # (B*L, n_expert_per_token)
+ output = torch.zeros_like(xs) # (B*L, D)
+ for i, expert in enumerate(self.experts):
+ mask = indices == i
+ batch_idx, ith_expert = torch.where(mask)
+ output[batch_idx] += weights[batch_idx, ith_expert, None] * expert(
+ xs[batch_idx])
+ return output.view(B, L, D)
diff --git a/cosyvoice/transformer/subsampling.py b/cosyvoice/transformer/subsampling.py
new file mode 100644
index 0000000000000000000000000000000000000000..e17c2e324e3afb24e1b619effe29cef07c9c5b3a
--- /dev/null
+++ b/cosyvoice/transformer/subsampling.py
@@ -0,0 +1,383 @@
+# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
+# 2024 Alibaba Inc (Xiang Lyu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# Modified from ESPnet(https://github.com/espnet/espnet)
+"""Subsampling layer definition."""
+
+from typing import Tuple, Union
+
+import torch
+
+
+class BaseSubsampling(torch.nn.Module):
+
+ def __init__(self):
+ super().__init__()
+ self.right_context = 0
+ self.subsampling_rate = 1
+
+ def position_encoding(self, offset: Union[int, torch.Tensor],
+ size: int) -> torch.Tensor:
+ return self.pos_enc.position_encoding(offset, size)
+
+
+class EmbedinigNoSubsampling(BaseSubsampling):
+ """Embedding input without subsampling
+ """
+
+ def __init__(self, idim: int, odim: int, dropout_rate: float,
+ pos_enc_class: torch.nn.Module):
+ super().__init__()
+ self.embed = torch.nn.Embedding(idim, odim)
+ self.pos_enc = pos_enc_class
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ x_mask: torch.Tensor,
+ offset: Union[int, torch.Tensor] = 0
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
+ """Input x.
+
+ Args:
+ x (torch.Tensor): Input tensor (#batch, time, idim).
+ x_mask (torch.Tensor): Input mask (#batch, 1, time).
+
+ Returns:
+ torch.Tensor: linear input tensor (#batch, time', odim),
+ where time' = time .
+ torch.Tensor: linear input mask (#batch, 1, time'),
+ where time' = time .
+
+ """
+ x = self.embed(x)
+ x, pos_emb = self.pos_enc(x, offset)
+ return x, pos_emb, x_mask
+
+
+class LinearNoSubsampling(BaseSubsampling):
+ """Linear transform the input without subsampling
+
+ Args:
+ idim (int): Input dimension.
+ odim (int): Output dimension.
+ dropout_rate (float): Dropout rate.
+
+ """
+
+ def __init__(self, idim: int, odim: int, dropout_rate: float,
+ pos_enc_class: torch.nn.Module):
+ """Construct an linear object."""
+ super().__init__()
+ self.out = torch.nn.Sequential(
+ torch.nn.Linear(idim, odim),
+ torch.nn.LayerNorm(odim, eps=1e-5),
+ torch.nn.Dropout(dropout_rate),
+ )
+ self.pos_enc = pos_enc_class
+ self.right_context = 0
+ self.subsampling_rate = 1
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ x_mask: torch.Tensor,
+ offset: Union[int, torch.Tensor] = 0
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
+ """Input x.
+
+ Args:
+ x (torch.Tensor): Input tensor (#batch, time, idim).
+ x_mask (torch.Tensor): Input mask (#batch, 1, time).
+
+ Returns:
+ torch.Tensor: linear input tensor (#batch, time', odim),
+ where time' = time .
+ torch.Tensor: linear input mask (#batch, 1, time'),
+ where time' = time .
+
+ """
+ x = self.out(x)
+ x, pos_emb = self.pos_enc(x, offset)
+ return x, pos_emb, x_mask
+
+
+class Conv1dSubsampling2(BaseSubsampling):
+ """Convolutional 1D subsampling (to 1/2 length).
+ It is designed for Whisper, ref:
+ https://github.com/openai/whisper/blob/main/whisper/model.py
+
+ Args:
+ idim (int): Input dimension.
+ odim (int): Output dimension.
+ dropout_rate (float): Dropout rate.
+
+ """
+
+ def __init__(self, idim: int, odim: int, dropout_rate: float,
+ pos_enc_class: torch.nn.Module):
+ """Construct an Conv1dSubsampling2 object."""
+ super().__init__()
+ self.conv = torch.nn.Sequential(
+ torch.nn.Conv1d(idim, odim, kernel_size=3, padding=1),
+ torch.nn.GELU(),
+ torch.nn.Conv1d(odim, odim, kernel_size=3, stride=2, padding=1),
+ torch.nn.GELU(),
+ )
+ self.pos_enc = pos_enc_class
+ # The right context for every conv layer is computed by:
+ # (kernel_size - 1) * frame_rate_of_this_layer
+ self.subsampling_rate = 2
+ # 4 = (3 - 1) * 1 + (3 - 1) * 1
+ self.right_context = 4
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ x_mask: torch.Tensor,
+ offset: Union[int, torch.Tensor] = 0
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
+ """Subsample x.
+
+ Args:
+ x (torch.Tensor): Input tensor (#batch, time, idim).
+ x_mask (torch.Tensor): Input mask (#batch, 1, time).
+
+ Returns:
+ torch.Tensor: Subsampled tensor (#batch, time', odim),
+ where time' = time // 2.
+ torch.Tensor: Subsampled mask (#batch, 1, time'),
+ where time' = time // 2.
+ torch.Tensor: positional encoding
+
+ """
+ time = x.size(1)
+ x = x.transpose(1, 2) # (b, f, t)
+ x = self.conv(x)
+ x = x.transpose(1, 2) # (b, t, f)
+ x, pos_emb = self.pos_enc(x, offset)
+ return x, pos_emb, x_mask[:, :, (time + 1) % 2::2]
+
+
+class Conv2dSubsampling4(BaseSubsampling):
+ """Convolutional 2D subsampling (to 1/4 length).
+
+ Args:
+ idim (int): Input dimension.
+ odim (int): Output dimension.
+ dropout_rate (float): Dropout rate.
+
+ """
+
+ def __init__(self, idim: int, odim: int, dropout_rate: float,
+ pos_enc_class: torch.nn.Module):
+ """Construct an Conv2dSubsampling4 object."""
+ super().__init__()
+ self.conv = torch.nn.Sequential(
+ torch.nn.Conv2d(1, odim, 3, 2),
+ torch.nn.ReLU(),
+ torch.nn.Conv2d(odim, odim, 3, 2),
+ torch.nn.ReLU(),
+ )
+ self.out = torch.nn.Sequential(
+ torch.nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim))
+ self.pos_enc = pos_enc_class
+ # The right context for every conv layer is computed by:
+ # (kernel_size - 1) * frame_rate_of_this_layer
+ self.subsampling_rate = 4
+ # 6 = (3 - 1) * 1 + (3 - 1) * 2
+ self.right_context = 6
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ x_mask: torch.Tensor,
+ offset: Union[int, torch.Tensor] = 0
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
+ """Subsample x.
+
+ Args:
+ x (torch.Tensor): Input tensor (#batch, time, idim).
+ x_mask (torch.Tensor): Input mask (#batch, 1, time).
+
+ Returns:
+ torch.Tensor: Subsampled tensor (#batch, time', odim),
+ where time' = time // 4.
+ torch.Tensor: Subsampled mask (#batch, 1, time'),
+ where time' = time // 4.
+ torch.Tensor: positional encoding
+
+ """
+ x = x.unsqueeze(1) # (b, c=1, t, f)
+ x = self.conv(x)
+ b, c, t, f = x.size()
+ x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
+ x, pos_emb = self.pos_enc(x, offset)
+ return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2]
+
+
+class Conv2dSubsampling6(BaseSubsampling):
+ """Convolutional 2D subsampling (to 1/6 length).
+ Args:
+ idim (int): Input dimension.
+ odim (int): Output dimension.
+ dropout_rate (float): Dropout rate.
+ pos_enc (torch.nn.Module): Custom position encoding layer.
+ """
+
+ def __init__(self, idim: int, odim: int, dropout_rate: float,
+ pos_enc_class: torch.nn.Module):
+ """Construct an Conv2dSubsampling6 object."""
+ super().__init__()
+ self.conv = torch.nn.Sequential(
+ torch.nn.Conv2d(1, odim, 3, 2),
+ torch.nn.ReLU(),
+ torch.nn.Conv2d(odim, odim, 5, 3),
+ torch.nn.ReLU(),
+ )
+ self.linear = torch.nn.Linear(odim * (((idim - 1) // 2 - 2) // 3),
+ odim)
+ self.pos_enc = pos_enc_class
+ # 10 = (3 - 1) * 1 + (5 - 1) * 2
+ self.subsampling_rate = 6
+ self.right_context = 10
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ x_mask: torch.Tensor,
+ offset: Union[int, torch.Tensor] = 0
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
+ """Subsample x.
+ Args:
+ x (torch.Tensor): Input tensor (#batch, time, idim).
+ x_mask (torch.Tensor): Input mask (#batch, 1, time).
+
+ Returns:
+ torch.Tensor: Subsampled tensor (#batch, time', odim),
+ where time' = time // 6.
+ torch.Tensor: Subsampled mask (#batch, 1, time'),
+ where time' = time // 6.
+ torch.Tensor: positional encoding
+ """
+ x = x.unsqueeze(1) # (b, c, t, f)
+ x = self.conv(x)
+ b, c, t, f = x.size()
+ x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
+ x, pos_emb = self.pos_enc(x, offset)
+ return x, pos_emb, x_mask[:, :, 2::2][:, :, 4::3]
+
+
+class Conv2dSubsampling8(BaseSubsampling):
+ """Convolutional 2D subsampling (to 1/8 length).
+
+ Args:
+ idim (int): Input dimension.
+ odim (int): Output dimension.
+ dropout_rate (float): Dropout rate.
+
+ """
+
+ def __init__(self, idim: int, odim: int, dropout_rate: float,
+ pos_enc_class: torch.nn.Module):
+ """Construct an Conv2dSubsampling8 object."""
+ super().__init__()
+ self.conv = torch.nn.Sequential(
+ torch.nn.Conv2d(1, odim, 3, 2),
+ torch.nn.ReLU(),
+ torch.nn.Conv2d(odim, odim, 3, 2),
+ torch.nn.ReLU(),
+ torch.nn.Conv2d(odim, odim, 3, 2),
+ torch.nn.ReLU(),
+ )
+ self.linear = torch.nn.Linear(
+ odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2), odim)
+ self.pos_enc = pos_enc_class
+ self.subsampling_rate = 8
+ # 14 = (3 - 1) * 1 + (3 - 1) * 2 + (3 - 1) * 4
+ self.right_context = 14
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ x_mask: torch.Tensor,
+ offset: Union[int, torch.Tensor] = 0
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
+ """Subsample x.
+
+ Args:
+ x (torch.Tensor): Input tensor (#batch, time, idim).
+ x_mask (torch.Tensor): Input mask (#batch, 1, time).
+
+ Returns:
+ torch.Tensor: Subsampled tensor (#batch, time', odim),
+ where time' = time // 8.
+ torch.Tensor: Subsampled mask (#batch, 1, time'),
+ where time' = time // 8.
+ torch.Tensor: positional encoding
+ """
+ x = x.unsqueeze(1) # (b, c, t, f)
+ x = self.conv(x)
+ b, c, t, f = x.size()
+ x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f))
+ x, pos_emb = self.pos_enc(x, offset)
+ return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2][:, :, 2::2]
+
+
+class LegacyLinearNoSubsampling(BaseSubsampling):
+ """Linear transform the input without subsampling
+
+ Args:
+ idim (int): Input dimension.
+ odim (int): Output dimension.
+ dropout_rate (float): Dropout rate.
+
+ """
+
+ def __init__(self, idim: int, odim: int, dropout_rate: float,
+ pos_enc_class: torch.nn.Module):
+ """Construct an linear object."""
+ super().__init__()
+ self.out = torch.nn.Sequential(
+ torch.nn.Linear(idim, odim),
+ torch.nn.LayerNorm(odim, eps=1e-5),
+ torch.nn.Dropout(dropout_rate),
+ torch.nn.ReLU(),
+ )
+ self.pos_enc = pos_enc_class
+ self.right_context = 0
+ self.subsampling_rate = 1
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ x_mask: torch.Tensor,
+ offset: Union[int, torch.Tensor] = 0
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
+ """Input x.
+
+ Args:
+ x (torch.Tensor): Input tensor (#batch, time, idim).
+ x_mask (torch.Tensor): Input mask (#batch, 1, time).
+
+ Returns:
+ torch.Tensor: linear input tensor (#batch, time', odim),
+ where time' = time .
+ torch.Tensor: linear input mask (#batch, 1, time'),
+ where time' = time .
+
+ """
+ x = self.out(x)
+ x, pos_emb = self.pos_enc(x, offset)
+ return x, pos_emb, x_mask
diff --git a/cosyvoice/transformer/upsample_encoder.py b/cosyvoice/transformer/upsample_encoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..22cc9bc6bfe6487c23794ff2b35d1f69a6bd8d98
--- /dev/null
+++ b/cosyvoice/transformer/upsample_encoder.py
@@ -0,0 +1,321 @@
+# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
+# 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
+# 2024 Alibaba Inc (Xiang Lyu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# Modified from ESPnet(https://github.com/espnet/espnet)
+"""Encoder definition."""
+from typing import Tuple
+
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+from cosyvoice.transformer.convolution import ConvolutionModule
+from cosyvoice.transformer.encoder_layer import ConformerEncoderLayer
+from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
+from cosyvoice.utils.class_utils import (
+ COSYVOICE_EMB_CLASSES,
+ COSYVOICE_SUBSAMPLE_CLASSES,
+ COSYVOICE_ATTENTION_CLASSES,
+ COSYVOICE_ACTIVATION_CLASSES,
+)
+from cosyvoice.utils.mask import make_pad_mask
+from cosyvoice.utils.mask import add_optional_chunk_mask
+
+
+class Upsample1D(nn.Module):
+ """A 1D upsampling layer with an optional convolution.
+
+ Parameters:
+ channels (`int`):
+ number of channels in the inputs and outputs.
+ use_conv (`bool`, default `False`):
+ option to use a convolution.
+ use_conv_transpose (`bool`, default `False`):
+ option to use a convolution transpose.
+ out_channels (`int`, optional):
+ number of output channels. Defaults to `channels`.
+ """
+
+ def __init__(self, channels: int, out_channels: int, stride: int = 2):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels
+ self.stride = stride
+ # In this mode, first repeat interpolate, than conv with stride=1
+ self.conv = nn.Conv1d(self.channels, self.out_channels, stride * 2 + 1, stride=1, padding=0)
+
+ def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
+ outputs = F.interpolate(inputs, scale_factor=float(self.stride), mode="nearest")
+ outputs = F.pad(outputs, (self.stride * 2, 0), value=0.0)
+ outputs = self.conv(outputs)
+ return outputs, input_lengths * self.stride
+
+
+class PreLookaheadLayer(nn.Module):
+ def __init__(self, channels: int, pre_lookahead_len: int = 1):
+ super().__init__()
+ self.channels = channels
+ self.pre_lookahead_len = pre_lookahead_len
+ self.conv1 = nn.Conv1d(
+ channels, channels,
+ kernel_size=pre_lookahead_len + 1,
+ stride=1, padding=0,
+ )
+ self.conv2 = nn.Conv1d(
+ channels, channels,
+ kernel_size=3, stride=1, padding=0,
+ )
+
+ def forward(self, inputs: torch.Tensor, context: torch.Tensor = torch.zeros(0, 0, 0)) -> torch.Tensor:
+ """
+ inputs: (batch_size, seq_len, channels)
+ """
+ outputs = inputs.transpose(1, 2).contiguous()
+ context = context.transpose(1, 2).contiguous()
+ # look ahead
+ if context.size(2) == 0:
+ outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0)
+ else:
+ assert self.training is False, 'you have passed context, make sure that you are running inference mode'
+ assert context.size(2) == self.pre_lookahead_len
+ outputs = F.pad(torch.concat([outputs, context], dim=2), (0, self.pre_lookahead_len - context.size(2)), mode='constant', value=0.0)
+ outputs = F.leaky_relu(self.conv1(outputs))
+ # outputs
+ outputs = F.pad(outputs, (self.conv2.kernel_size[0] - 1, 0), mode='constant', value=0.0)
+ outputs = self.conv2(outputs)
+ outputs = outputs.transpose(1, 2).contiguous()
+
+ # residual connection
+ outputs = outputs + inputs
+ return outputs
+
+
+class UpsampleConformerEncoder(torch.nn.Module):
+
+ def __init__(
+ self,
+ input_size: int,
+ output_size: int = 256,
+ attention_heads: int = 4,
+ linear_units: int = 2048,
+ num_blocks: int = 6,
+ dropout_rate: float = 0.1,
+ positional_dropout_rate: float = 0.1,
+ attention_dropout_rate: float = 0.0,
+ input_layer: str = "conv2d",
+ pos_enc_layer_type: str = "rel_pos",
+ normalize_before: bool = True,
+ static_chunk_size: int = 0,
+ use_dynamic_chunk: bool = False,
+ global_cmvn: torch.nn.Module = None,
+ use_dynamic_left_chunk: bool = False,
+ positionwise_conv_kernel_size: int = 1,
+ macaron_style: bool = True,
+ selfattention_layer_type: str = "rel_selfattn",
+ activation_type: str = "swish",
+ use_cnn_module: bool = True,
+ cnn_module_kernel: int = 15,
+ causal: bool = False,
+ upsample_stride: int = 2,
+ cnn_module_norm: str = "batch_norm",
+ key_bias: bool = True,
+ gradient_checkpointing: bool = False,
+ ):
+ """
+ Args:
+ input_size (int): input dim
+ output_size (int): dimension of attention
+ attention_heads (int): the number of heads of multi head attention
+ linear_units (int): the hidden units number of position-wise feed
+ forward
+ num_blocks (int): the number of decoder blocks
+ dropout_rate (float): dropout rate
+ attention_dropout_rate (float): dropout rate in attention
+ positional_dropout_rate (float): dropout rate after adding
+ positional encoding
+ input_layer (str): input layer type.
+ optional [linear, conv2d, conv2d6, conv2d8]
+ pos_enc_layer_type (str): Encoder positional encoding layer type.
+ opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
+ normalize_before (bool):
+ True: use layer_norm before each sub-block of a layer.
+ False: use layer_norm after each sub-block of a layer.
+ static_chunk_size (int): chunk size for static chunk training and
+ decoding
+ use_dynamic_chunk (bool): whether use dynamic chunk size for
+ training or not, You can only use fixed chunk(chunk_size > 0)
+ or dyanmic chunk size(use_dynamic_chunk = True)
+ global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
+ use_dynamic_left_chunk (bool): whether use dynamic left chunk in
+ dynamic chunk training
+ key_bias: whether use bias in attention.linear_k, False for whisper models.
+ gradient_checkpointing: rerunning a forward-pass segment for each
+ checkpointed segment during backward.
+ """
+ super().__init__()
+ self._output_size = output_size
+
+ self.global_cmvn = global_cmvn
+ self.embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
+ input_size,
+ output_size,
+ dropout_rate,
+ COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
+ positional_dropout_rate),
+ )
+
+ self.normalize_before = normalize_before
+ self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)
+ self.static_chunk_size = static_chunk_size
+ self.use_dynamic_chunk = use_dynamic_chunk
+ self.use_dynamic_left_chunk = use_dynamic_left_chunk
+ self.gradient_checkpointing = gradient_checkpointing
+ activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
+ # self-attention module definition
+ encoder_selfattn_layer_args = (
+ attention_heads,
+ output_size,
+ attention_dropout_rate,
+ key_bias,
+ )
+ # feed-forward module definition
+ positionwise_layer_args = (
+ output_size,
+ linear_units,
+ dropout_rate,
+ activation,
+ )
+ # convolution module definition
+ convolution_layer_args = (output_size, cnn_module_kernel, activation,
+ cnn_module_norm, causal)
+ self.pre_lookahead_layer = PreLookaheadLayer(channels=512, pre_lookahead_len=3)
+ self.encoders = torch.nn.ModuleList([
+ ConformerEncoderLayer(
+ output_size,
+ COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
+ *encoder_selfattn_layer_args),
+ PositionwiseFeedForward(*positionwise_layer_args),
+ PositionwiseFeedForward(
+ *positionwise_layer_args) if macaron_style else None,
+ ConvolutionModule(
+ *convolution_layer_args) if use_cnn_module else None,
+ dropout_rate,
+ normalize_before,
+ ) for _ in range(num_blocks)
+ ])
+ self.up_layer = Upsample1D(channels=512, out_channels=512, stride=upsample_stride)
+ self.up_embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
+ input_size,
+ output_size,
+ dropout_rate,
+ COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
+ positional_dropout_rate),
+ )
+ self.up_encoders = torch.nn.ModuleList([
+ ConformerEncoderLayer(
+ output_size,
+ COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
+ *encoder_selfattn_layer_args),
+ PositionwiseFeedForward(*positionwise_layer_args),
+ PositionwiseFeedForward(
+ *positionwise_layer_args) if macaron_style else None,
+ ConvolutionModule(
+ *convolution_layer_args) if use_cnn_module else None,
+ dropout_rate,
+ normalize_before,
+ ) for _ in range(4)
+ ])
+
+ def output_size(self) -> int:
+ return self._output_size
+
+ def forward(
+ self,
+ xs: torch.Tensor,
+ xs_lens: torch.Tensor,
+ context: torch.Tensor = torch.zeros(0, 0, 0),
+ decoding_chunk_size: int = 0,
+ num_decoding_left_chunks: int = -1,
+ streaming: bool = False,
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
+ """Embed positions in tensor.
+
+ Args:
+ xs: padded input tensor (B, T, D)
+ xs_lens: input length (B)
+ decoding_chunk_size: decoding chunk size for dynamic chunk
+ 0: default for training, use random dynamic chunk.
+ <0: for decoding, use full chunk.
+ >0: for decoding, use fixed chunk size as set.
+ num_decoding_left_chunks: number of left chunks, this is for decoding,
+ the chunk size is decoding_chunk_size.
+ >=0: use num_decoding_left_chunks
+ <0: use all left chunks
+ Returns:
+ encoder output tensor xs, and subsampled masks
+ xs: padded output tensor (B, T' ~= T/subsample_rate, D)
+ masks: torch.Tensor batch padding mask after subsample
+ (B, 1, T' ~= T/subsample_rate)
+ NOTE(xcsong):
+ We pass the `__call__` method of the modules instead of `forward` to the
+ checkpointing API because `__call__` attaches all the hooks of the module.
+ https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
+ """
+ T = xs.size(1)
+ masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
+ if self.global_cmvn is not None:
+ xs = self.global_cmvn(xs)
+ xs, pos_emb, masks = self.embed(xs, masks)
+ if context.size(1) != 0:
+ assert self.training is False, 'you have passed context, make sure that you are running inference mode'
+ context_masks = torch.ones(1, 1, context.size(1)).to(masks)
+ context, _, _ = self.embed(context, context_masks, offset=xs.size(1))
+ mask_pad = masks # (B, 1, T/subsample_rate)
+ chunk_masks = add_optional_chunk_mask(xs, masks, False, False, 0, self.static_chunk_size if streaming is True else 0, -1)
+ # lookahead + conformer encoder
+ xs = self.pre_lookahead_layer(xs, context=context)
+ xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
+
+ # upsample + conformer encoder
+ xs = xs.transpose(1, 2).contiguous()
+ xs, xs_lens = self.up_layer(xs, xs_lens)
+ xs = xs.transpose(1, 2).contiguous()
+ T = xs.size(1)
+ masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
+ xs, pos_emb, masks = self.up_embed(xs, masks)
+ mask_pad = masks # (B, 1, T/subsample_rate)
+ chunk_masks = add_optional_chunk_mask(xs, masks, False, False, 0, self.static_chunk_size * self.up_layer.stride if streaming is True else 0, -1)
+ xs = self.forward_up_layers(xs, chunk_masks, pos_emb, mask_pad)
+
+ if self.normalize_before:
+ xs = self.after_norm(xs)
+ # Here we assume the mask is not changed in encoder layers, so just
+ # return the masks before encoder layers, and the masks will be used
+ # for cross attention with decoder later
+ return xs, masks
+
+ def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
+ pos_emb: torch.Tensor,
+ mask_pad: torch.Tensor) -> torch.Tensor:
+ for layer in self.encoders:
+ xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
+ return xs
+
+ def forward_up_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
+ pos_emb: torch.Tensor,
+ mask_pad: torch.Tensor) -> torch.Tensor:
+ for layer in self.up_encoders:
+ xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
+ return xs
diff --git a/cosyvoice/utils/__init__.py b/cosyvoice/utils/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/cosyvoice/utils/class_utils.py b/cosyvoice/utils/class_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..c49de00c873340e6c45dd05299b684d81f19c5a4
--- /dev/null
+++ b/cosyvoice/utils/class_utils.py
@@ -0,0 +1,83 @@
+# Copyright [2023-11-28]
+# 2024 Alibaba Inc (authors: Xiang Lyu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import torch
+
+from cosyvoice.transformer.activation import Swish
+from cosyvoice.transformer.subsampling import (
+ LinearNoSubsampling,
+ EmbedinigNoSubsampling,
+ Conv1dSubsampling2,
+ Conv2dSubsampling4,
+ Conv2dSubsampling6,
+ Conv2dSubsampling8,
+)
+from cosyvoice.transformer.embedding import (PositionalEncoding,
+ RelPositionalEncoding,
+ WhisperPositionalEncoding,
+ LearnablePositionalEncoding,
+ NoPositionalEncoding)
+from cosyvoice.transformer.attention import (MultiHeadedAttention,
+ RelPositionMultiHeadedAttention)
+from cosyvoice.transformer.embedding import EspnetRelPositionalEncoding
+from cosyvoice.transformer.subsampling import LegacyLinearNoSubsampling
+from cosyvoice.llm.llm import TransformerLM, Qwen2LM
+from cosyvoice.flow.flow import MaskedDiffWithXvec, CausalMaskedDiffWithXvec
+from cosyvoice.hifigan.generator import HiFTGenerator
+from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
+
+
+COSYVOICE_ACTIVATION_CLASSES = {
+ "hardtanh": torch.nn.Hardtanh,
+ "tanh": torch.nn.Tanh,
+ "relu": torch.nn.ReLU,
+ "selu": torch.nn.SELU,
+ "swish": getattr(torch.nn, "SiLU", Swish),
+ "gelu": torch.nn.GELU,
+}
+
+COSYVOICE_SUBSAMPLE_CLASSES = {
+ "linear": LinearNoSubsampling,
+ "linear_legacy": LegacyLinearNoSubsampling,
+ "embed": EmbedinigNoSubsampling,
+ "conv1d2": Conv1dSubsampling2,
+ "conv2d": Conv2dSubsampling4,
+ "conv2d6": Conv2dSubsampling6,
+ "conv2d8": Conv2dSubsampling8,
+ 'paraformer_dummy': torch.nn.Identity
+}
+
+COSYVOICE_EMB_CLASSES = {
+ "embed": PositionalEncoding,
+ "abs_pos": PositionalEncoding,
+ "rel_pos": RelPositionalEncoding,
+ "rel_pos_espnet": EspnetRelPositionalEncoding,
+ "no_pos": NoPositionalEncoding,
+ "abs_pos_whisper": WhisperPositionalEncoding,
+ "embed_learnable_pe": LearnablePositionalEncoding,
+}
+
+COSYVOICE_ATTENTION_CLASSES = {
+ "selfattn": MultiHeadedAttention,
+ "rel_selfattn": RelPositionMultiHeadedAttention,
+}
+
+
+def get_model_type(configs):
+ # NOTE CosyVoice2Model inherits CosyVoiceModel
+ if isinstance(configs['llm'], TransformerLM) and isinstance(configs['flow'], MaskedDiffWithXvec) and isinstance(configs['hift'], HiFTGenerator):
+ return CosyVoiceModel
+ if isinstance(configs['llm'], Qwen2LM) and isinstance(configs['flow'], CausalMaskedDiffWithXvec) and isinstance(configs['hift'], HiFTGenerator):
+ return CosyVoice2Model
+ raise TypeError('No valid model type found!')
diff --git a/cosyvoice/utils/common.py b/cosyvoice/utils/common.py
new file mode 100644
index 0000000000000000000000000000000000000000..6f5a3dd8b7ae99601783c3a4ed91b3b64270fab3
--- /dev/null
+++ b/cosyvoice/utils/common.py
@@ -0,0 +1,186 @@
+# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
+# 2024 Alibaba Inc (authors: Xiang Lyu)
+# 2025 Alibaba Inc (authors: Xiang Lyu, Bofan Zhou)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# Modified from ESPnet(https://github.com/espnet/espnet)
+"""Unility functions for Transformer."""
+
+import queue
+import random
+from typing import List
+
+import numpy as np
+import torch
+
+IGNORE_ID = -1
+
+
+def pad_list(xs: List[torch.Tensor], pad_value: int):
+ """Perform padding for the list of tensors.
+
+ Args:
+ xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
+ pad_value (float): Value for padding.
+
+ Returns:
+ Tensor: Padded tensor (B, Tmax, `*`).
+
+ Examples:
+ >>> x = [torch.ones(4), torch.ones(2), torch.ones(1)]
+ >>> x
+ [tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])]
+ >>> pad_list(x, 0)
+ tensor([[1., 1., 1., 1.],
+ [1., 1., 0., 0.],
+ [1., 0., 0., 0.]])
+
+ """
+ max_len = max([len(item) for item in xs])
+ batchs = len(xs)
+ ndim = xs[0].ndim
+ if ndim == 1:
+ pad_res = torch.zeros(batchs,
+ max_len,
+ dtype=xs[0].dtype,
+ device=xs[0].device)
+ elif ndim == 2:
+ pad_res = torch.zeros(batchs,
+ max_len,
+ xs[0].shape[1],
+ dtype=xs[0].dtype,
+ device=xs[0].device)
+ elif ndim == 3:
+ pad_res = torch.zeros(batchs,
+ max_len,
+ xs[0].shape[1],
+ xs[0].shape[2],
+ dtype=xs[0].dtype,
+ device=xs[0].device)
+ else:
+ raise ValueError(f"Unsupported ndim: {ndim}")
+ pad_res.fill_(pad_value)
+ for i in range(batchs):
+ pad_res[i, :len(xs[i])] = xs[i]
+ return pad_res
+
+
+def th_accuracy(pad_outputs: torch.Tensor, pad_targets: torch.Tensor,
+ ignore_label: int) -> torch.Tensor:
+ """Calculate accuracy.
+
+ Args:
+ pad_outputs (Tensor): Prediction tensors (B * Lmax, D).
+ pad_targets (LongTensor): Target label tensors (B, Lmax).
+ ignore_label (int): Ignore label id.
+
+ Returns:
+ torch.Tensor: Accuracy value (0.0 - 1.0).
+
+ """
+ pad_pred = pad_outputs.view(pad_targets.size(0), pad_targets.size(1),
+ pad_outputs.size(1)).argmax(2)
+ mask = pad_targets != ignore_label
+ numerator = torch.sum(
+ pad_pred.masked_select(mask) == pad_targets.masked_select(mask))
+ denominator = torch.sum(mask)
+ return (numerator / denominator).detach()
+
+
+def get_padding(kernel_size, dilation=1):
+ return int((kernel_size * dilation - dilation) / 2)
+
+
+def init_weights(m, mean=0.0, std=0.01):
+ classname = m.__class__.__name__
+ if classname.find("Conv") != -1:
+ m.weight.data.normal_(mean, std)
+
+
+# Repetition Aware Sampling in VALL-E 2
+def ras_sampling(weighted_scores, decoded_tokens, sampling, top_p=0.8, top_k=25, win_size=10, tau_r=0.1):
+ top_ids = nucleus_sampling(weighted_scores, top_p=top_p, top_k=top_k)
+ rep_num = (torch.tensor(decoded_tokens[-win_size:]).to(weighted_scores.device) == top_ids).sum().item()
+ if rep_num >= win_size * tau_r:
+ top_ids = random_sampling(weighted_scores, decoded_tokens, sampling)
+ return top_ids
+
+
+def nucleus_sampling(weighted_scores, top_p=0.8, top_k=25):
+ prob, indices = [], []
+ cum_prob = 0.0
+ sorted_value, sorted_idx = weighted_scores.softmax(dim=0).sort(descending=True, stable=True)
+ for i in range(len(sorted_idx)):
+ # sampling both top-p and numbers.
+ if cum_prob < top_p and len(prob) < top_k:
+ cum_prob += sorted_value[i]
+ prob.append(sorted_value[i])
+ indices.append(sorted_idx[i])
+ else:
+ break
+ prob = torch.tensor(prob).to(weighted_scores)
+ indices = torch.tensor(indices, dtype=torch.long).to(weighted_scores.device)
+ top_ids = indices[prob.multinomial(1, replacement=True)]
+ return top_ids
+
+
+def random_sampling(weighted_scores, decoded_tokens, sampling):
+ top_ids = weighted_scores.softmax(dim=0).multinomial(1, replacement=True)
+ return top_ids
+
+
+def fade_in_out(fade_in_mel, fade_out_mel, window):
+ device = fade_in_mel.device
+ fade_in_mel, fade_out_mel = fade_in_mel.cpu(), fade_out_mel.cpu()
+ mel_overlap_len = int(window.shape[0] / 2)
+ if fade_in_mel.device == torch.device('cpu'):
+ fade_in_mel = fade_in_mel.clone()
+ fade_in_mel[..., :mel_overlap_len] = fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \
+ fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:]
+ return fade_in_mel.to(device)
+
+
+def set_all_random_seed(seed):
+ random.seed(seed)
+ np.random.seed(seed)
+ torch.manual_seed(seed)
+ torch.cuda.manual_seed_all(seed)
+
+
+def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
+ assert mask.dtype == torch.bool
+ assert dtype in [torch.float32, torch.bfloat16, torch.float16]
+ mask = mask.to(dtype)
+ # attention mask bias
+ # NOTE(Mddct): torch.finfo jit issues
+ # chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min
+ mask = (1.0 - mask) * -1.0e+10
+ return mask
+
+
+class TrtContextWrapper:
+ def __init__(self, trt_engine, trt_concurrent=1, device='cuda:0'):
+ self.trt_context_pool = queue.Queue(maxsize=trt_concurrent)
+ self.trt_engine = trt_engine
+ for _ in range(trt_concurrent):
+ trt_context = trt_engine.create_execution_context()
+ trt_stream = torch.cuda.stream(torch.cuda.Stream(device))
+ assert trt_context is not None, 'failed to create trt context, maybe not enough CUDA memory, try reduce current trt concurrent {}'.format(trt_concurrent)
+ self.trt_context_pool.put([trt_context, trt_stream])
+ assert self.trt_context_pool.empty() is False, 'no avaialbe estimator context'
+
+ def acquire_estimator(self):
+ return self.trt_context_pool.get(), self.trt_engine
+
+ def release_estimator(self, context, stream):
+ self.trt_context_pool.put([context, stream])
diff --git a/cosyvoice/utils/executor.py b/cosyvoice/utils/executor.py
new file mode 100644
index 0000000000000000000000000000000000000000..3276835d08a061e5de907076d2505e2ce00bb5da
--- /dev/null
+++ b/cosyvoice/utils/executor.py
@@ -0,0 +1,376 @@
+# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
+# 2024 Alibaba Inc (authors: Xiang Lyu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import shutil
+import logging
+from contextlib import nullcontext
+import os
+import torchaudio
+import torch
+import torch.distributed as dist
+import torchaudio
+from cosyvoice.utils.train_utils import update_parameter_and_lr, log_per_step, log_per_save, batch_forward, batch_backward, save_model, cosyvoice_join
+import datetime
+import sys
+from datetime import timedelta
+sys.path.append('/inspire/hdd/project/embodied-multimodality/public/lzjjin/CosyVoice/cosyvoice/utils')
+from file_utils import get_dataset_name_from_path
+class Executor:
+
+ def __init__(self, gan: bool = False, ref_model: torch.nn.Module = None, dpo_loss: torch.nn.Module = None):
+ self.gan = gan
+ self.ref_model = ref_model
+ self.dpo_loss = dpo_loss
+ self.step = 0
+ self.epoch = 0
+ self.validate_interval=None
+ self.rank = int(os.environ.get('RANK', 0))
+ self.device = torch.device('cuda:{}'.format(self.rank))
+
+ def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join, ref_model=None):
+ ''' Train one epoch
+ '''
+
+ lr = optimizer.param_groups[0]['lr']
+ logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
+ logging.info('using accumulate grad, new batch size is {} times'
+ ' larger than before'.format(info_dict['accum_grad']))
+ # A context manager to be used in conjunction with an instance of
+ # torch.nn.parallel.DistributedDataParallel to be able to train
+ # with uneven inputs across participating processes.
+ model.train()
+ if self.ref_model is not None:
+ self.ref_model.eval()
+ model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
+ with model_context():
+ for batch_idx, batch_dict in enumerate(train_data_loader):
+ info_dict["tag"] = "TRAIN"
+ info_dict["step"] = self.step
+ info_dict["epoch"] = self.epoch
+ info_dict["batch_idx"] = batch_idx
+ if cosyvoice_join(group_join, info_dict):
+ break
+
+ # Disable gradient synchronizations across DDP processes.
+ # Within this context, gradients will be accumulated on module
+ # variables, which will later be synchronized.
+ if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
+ context = model.no_sync
+ # Used for single gpu training and DDP gradient synchronization
+ # processes.
+ else:
+ context = nullcontext
+
+ with context():
+ info_dict = batch_forward(model, batch_dict, scaler, info_dict, ref_model=self.ref_model, dpo_loss=self.dpo_loss)
+ info_dict = batch_backward(model, scaler, info_dict)
+
+ info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
+ log_per_step(writer, info_dict)
+ # NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
+ if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
+ (batch_idx + 1) % info_dict["accum_grad"] == 0:
+ dist.barrier()
+ self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
+ model.train()
+ if (batch_idx + 1) % info_dict["accum_grad"] == 0:
+ self.step += 1
+ dist.barrier()
+ self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)
+
+ def train_one_epoc_gan(self, model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
+ writer, info_dict, scaler, group_join):
+ ''' Train one epoch
+ '''
+
+ lr = optimizer.param_groups[0]['lr']
+ logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
+ logging.info('using accumulate grad, new batch size is {} times'
+ ' larger than before'.format(info_dict['accum_grad']))
+ # A context manager to be used in conjunction with an instance of
+ # torch.nn.parallel.DistributedDataParallel to be able to train
+ # with uneven inputs across participating processes.
+ model.train()
+ model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
+ with model_context():
+ for batch_idx, batch_dict in enumerate(train_data_loader):
+ info_dict["tag"] = "TRAIN"
+ info_dict["step"] = self.step
+ info_dict["epoch"] = self.epoch
+ info_dict["batch_idx"] = batch_idx
+ if cosyvoice_join(group_join, info_dict):
+ break
+
+ # Disable gradient synchronizations across DDP processes.
+ # Within this context, gradients will be accumulated on module
+ # variables, which will later be synchronized.
+ if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
+ context = model.no_sync
+ # Used for single gpu training and DDP gradient synchronization
+ # processes.
+ else:
+ context = nullcontext
+
+ with context():
+ batch_dict['turn'] = 'discriminator'
+ info_dict = batch_forward(model, batch_dict, scaler, info_dict)
+ info_dict = batch_backward(model, scaler, info_dict)
+ info_dict = update_parameter_and_lr(model, optimizer_d, scheduler_d, scaler, info_dict)
+ optimizer.zero_grad()
+ log_per_step(writer, info_dict)
+ with context():
+ batch_dict['turn'] = 'generator'
+ info_dict = batch_forward(model, batch_dict, scaler, info_dict)
+ info_dict = batch_backward(model, scaler, info_dict)
+ info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
+ optimizer_d.zero_grad()
+ log_per_step(writer, info_dict)
+ # NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
+ if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
+ (batch_idx + 1) % info_dict["accum_grad"] == 0:
+ dist.barrier()
+ self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
+ model.train()
+ if (batch_idx + 1) % info_dict["accum_grad"] == 0:
+ self.step += 1
+ dist.barrier()
+ self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)
+
+
+ # def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join, ref_model=None):
+ # ''' Train one epoch
+ # '''
+
+ # lr = optimizer.param_groups[0]['lr']
+ # logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
+ # logging.info('using accumulate grad, new batch size is {} times'
+ # ' larger than before'.format(info_dict['accum_grad']))
+ # # A context manager to be used in conjunction with an instance of
+ # # torch.nn.parallel.DistributedDataParallel to be able to train
+ # # with uneven inputs across participating processes.
+ # model.train()
+ # if self.ref_model is not None:
+ # self.ref_model.eval()
+ # model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
+ # train_loader_iter = iter(train_data_loader)
+ # info_dict["tag"] = "TRAIN"
+ # info_dict["epoch"] = self.epoch
+ # with model_context():
+ # batch_idx = -1
+ # while True:
+ # batch_idx += 1
+ # data_exhausted_local = False
+ # try:
+ # current_batch_dict = next(train_loader_iter)
+ # except StopIteration:
+ # data_exhausted_local = True
+ # data_exhausted_global_signal = torch.tensor([int(data_exhausted_local)], dtype=torch.int, device=self.device)
+ # dist.all_reduce(data_exhausted_global_signal, op=dist.ReduceOp.MAX, group=group_join)
+ # if data_exhausted_global_signal.item() == 1:
+ # break
+ # batch_dict = current_batch_dict
+
+ # torch.cuda.empty_cache()
+ # info_dict["step"] = self.step
+ # info_dict["batch_idx"] = batch_idx
+
+ # # if cosyvoice_join(group_join, info_dict):
+ # # break
+
+ # if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
+ # context = model.no_sync
+ # else:
+ # context = nullcontext
+
+ # with context():
+ # info_dict = batch_forward(model, batch_dict, scaler, info_dict, ref_model=self.ref_model, dpo_loss=self.dpo_loss)
+ # info_dict = batch_backward(model, scaler, info_dict)
+
+ # info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
+ # log_per_step(writer, info_dict)
+ # if info_dict.get('save_per_step', 0) > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
+ # (batch_idx + 1) % info_dict["accum_grad"] == 0:
+ # dist.barrier()
+ # self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
+ # model.train()
+ # if (batch_idx + 1) % info_dict["accum_grad"] == 0:
+ # self.step += 1
+ # dist.barrier()
+ # self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)
+
+ def train_one_epoc_gan(self, model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
+ writer, info_dict, scaler, group_join):
+ ''' Train one epoch
+ '''
+
+ lr = optimizer.param_groups[0]['lr']
+ logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
+ logging.info('using accumulate grad, new batch size is {} times'
+ ' larger than before'.format(info_dict['accum_grad']))
+ # A context manager to be used in conjunction with an instance of
+ # torch.nn.parallel.DistributedDataParallel to be able to train
+ # with uneven inputs across participating processes.
+ model.train()
+ model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
+ with model_context():
+ for batch_idx, batch_dict in enumerate(train_data_loader):
+ import pdb
+ pdb.set_trace()
+ info_dict["tag"] = "TRAIN"
+ info_dict["step"] = self.step
+ info_dict["epoch"] = self.epoch
+ info_dict["batch_idx"] = batch_idx
+ if cosyvoice_join(group_join, info_dict):
+ break
+
+ # Disable gradient synchronizations across DDP processes.
+ # Within this context, gradients will be accumulated on module
+ # variables, which will later be synchronized.
+ if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
+ context = model.no_sync
+ # Used for single gpu training and DDP gradient synchronization
+ # processes.
+ else:
+ context = nullcontext
+
+ with context():
+ batch_dict['turn'] = 'discriminator'
+ info_dict = batch_forward(model, batch_dict, scaler, info_dict)
+ info_dict = batch_backward(model, scaler, info_dict)
+ info_dict = update_parameter_and_lr(model, optimizer_d, scheduler_d, scaler, info_dict)
+ optimizer.zero_grad()
+ log_per_step(writer, info_dict)
+ with context():
+ batch_dict['turn'] = 'generator'
+ info_dict = batch_forward(model, batch_dict, scaler, info_dict)
+ info_dict = batch_backward(model, scaler, info_dict)
+ info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
+ optimizer_d.zero_grad()
+ log_per_step(writer, info_dict)
+ # NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
+ if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
+ (batch_idx + 1) % info_dict["accum_grad"] == 0:
+ dist.barrier()
+ self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
+ model.train()
+ if (batch_idx + 1) % info_dict["accum_grad"] == 0:
+ self.step += 1
+ dist.barrier()
+ self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)
+
+ @torch.inference_mode()
+ def cv(self, model, cv_data_loader, writer, info_dict, on_batch_end=True):
+ ''' Cross validation on
+ '''
+ logging.info('Epoch {} Step {} on_batch_end {} CV rank {}'.format(self.epoch, self.step + 1, on_batch_end, self.rank))
+ model.eval()
+ total_num_utts, total_loss_dict = 0, {} # avoid division by 0
+ for batch_idx, batch_dict in enumerate(cv_data_loader):
+ info_dict["tag"] = "CV"
+ info_dict["step"] = self.step
+ info_dict["epoch"] = self.epoch
+ info_dict["batch_idx"] = batch_idx
+
+ num_utts = len(batch_dict["utts"])
+ total_num_utts += num_utts
+
+ if self.gan is True:
+ batch_dict['turn'] = 'generator'
+ info_dict = batch_forward(model, batch_dict, None, info_dict)
+
+ for k, v in info_dict['loss_dict'].items():
+ if k not in total_loss_dict:
+ total_loss_dict[k] = []
+ total_loss_dict[k].append(v.mean().item() * num_utts)
+ log_per_step(None, info_dict)
+ for k, v in total_loss_dict.items():
+ total_loss_dict[k] = sum(v) / total_num_utts
+ info_dict['loss_dict'] = total_loss_dict
+ log_per_save(writer, info_dict)
+ model_name = 'epoch_{}_whole'.format(self.epoch) if on_batch_end else 'epoch_{}_step_{}'.format(self.epoch, self.step + 1)
+ save_model(model, model_name, info_dict)
+
+
+ @torch.inference_mode()
+ def generate(self, model, generate_data_loader, writer, info_dict, on_batch_end=True,hift=None, output_folder=None):
+ ''' Cross validation on
+ '''
+ logging.info('Epoch {} Step {} on_batch_end {} Start Generating'.format(self.epoch, self.step + 1, on_batch_end))
+ model.eval()
+ total_num_utts, total_loss_dict = 0, {} # avoid division by 0
+ if output_folder==None:
+ output_folder=info_dict['model_dir']
+ for batch_idx, batch_dict in enumerate(generate_data_loader):
+ print(batch_idx)
+ info_dict["tag"] = "GENERATE"
+ info_dict["step"] = self.step
+ info_dict["epoch"] = self.epoch
+ info_dict["batch_idx"] = batch_idx
+
+ num_utts = len(batch_dict["utts"])
+ total_num_utts += num_utts
+ ref_wavs=batch_dict['wavs']
+ speech_token=batch_dict['speech_token']
+ speech_token_len=batch_dict['speech_token_len']
+ speech_feat=batch_dict['speech_feat']
+ speech_feat_len=batch_dict['speech_feat_len']
+ speech_embedding=batch_dict['embedding']
+ path=batch_dict['wavs'][0]
+ name=os.path.splitext(os.path.basename(path))[0]
+ random_ratios = torch.rand(1) * 0.5
+ prompt_lengths = (speech_token_len.min().float() * random_ratios).int().to(speech_feat.device)
+ prompt_token=speech_token[:,:prompt_lengths]
+ input_token=speech_token[:,prompt_lengths:]
+ input_token_len=speech_token_len-prompt_lengths
+ prompt_token_len=speech_token_len-input_token_len
+ prompt_feat_lengths=prompt_lengths*model.module.token_mel_ratio
+ input_feat_len=speech_feat_len-prompt_feat_lengths
+ prompt_feat_len=speech_feat_len-input_feat_len
+ input_feat=speech_feat[:,prompt_feat_lengths:]
+ prompt_feat=speech_feat[:,:prompt_feat_lengths]
+ device=model.module.encoder_proj.weight.device
+ mel=model.module.inference(input_token.to(device),input_token_len.to(device),prompt_token.to(device),prompt_token_len.to(device),prompt_feat.to(device),prompt_feat_len.to(device),speech_embedding.to(device),streaming=True,finalize=True)[0]
+ mel=torch.cat([prompt_feat.to(mel.device).transpose(-1,-2),mel],dim=-1)
+ gen_speech=hift.inference(mel)[0]
+ ref_audio_source_path = ref_wavs[0]
+ dataset_name = get_dataset_name_from_path(ref_audio_source_path)
+ ref_audio_output_dir = os.path.join(output_folder, 'ref', dataset_name)
+ os.makedirs(ref_audio_output_dir, exist_ok=True)
+ ref_audio_dest_path = os.path.join(ref_audio_output_dir, f'{name}.wav')
+ if not os.path.exists(ref_audio_dest_path):
+ if ref_audio_source_path.lower().endswith('.wav'):
+ shutil.copy(ref_audio_source_path, ref_audio_dest_path)
+ else:
+ waveform, sample_rate = torchaudio.load(ref_audio_source_path)
+ torchaudio.save(ref_audio_dest_path, waveform, sample_rate)
+ generate_audio_output_dir = os.path.join(output_folder, 'generate', dataset_name)
+ os.makedirs(generate_audio_output_dir, exist_ok=True)
+ generated_audio_path = os.path.join(generate_audio_output_dir, f'{name}.wav')
+ torchaudio.save(generated_audio_path, gen_speech.cpu(), 24000)
+
+ # if self.gan is True:
+ # batch_dict['turn'] = 'generator'
+ # info_dict = batch_forward(model, batch_dict, None, info_dict)
+
+ # for k, v in info_dict['loss_dict'].items():
+ # if k not in total_loss_dict:
+ # total_loss_dict[k] = []
+ # total_loss_dict[k].append(v.mean().item() * num_utts)
+ # log_per_step(None, info_dict)
+ # for k, v in total_loss_dict.items():
+ # total_loss_dict[k] = sum(v) / total_num_utts
+ # info_dict['loss_dict'] = total_loss_dict
+ # log_per_save(writer, info_dict)
+ # model_name = 'epoch_{}_whole'.format(self.epoch) if on_batch_end else 'epoch_{}_step_{}'.format(self.epoch, self.step + 1)
+ # save_model(model, model_name, info_dict)
\ No newline at end of file
diff --git a/cosyvoice/utils/file_utils.py b/cosyvoice/utils/file_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..d11a26001229b1195570bf00535bdf1ac4f45204
--- /dev/null
+++ b/cosyvoice/utils/file_utils.py
@@ -0,0 +1,142 @@
+# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
+# 2024 Alibaba Inc (authors: Xiang Lyu, Zetao Hu)
+# 2025 Alibaba Inc (authors: Xiang Lyu, Yabin Li)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import os
+import json
+import torch
+import torchaudio
+import logging
+logging.getLogger('matplotlib').setLevel(logging.WARNING)
+logging.basicConfig(level=logging.DEBUG,
+ format='%(asctime)s %(levelname)s %(message)s')
+
+
+def read_lists(list_file):
+ lists = []
+ with open(list_file, 'r', encoding='utf8') as fin:
+ for line in fin:
+ lists.append(line.strip())
+ return lists
+
+
+def read_json_lists(list_file):
+ lists = read_lists(list_file)
+ results = {}
+ for fn in lists:
+ with open(fn, 'r', encoding='utf8') as fin:
+ results.update(json.load(fin))
+ return results
+
+
+def load_wav(wav, target_sr):
+ speech, sample_rate = torchaudio.load(wav, backend='soundfile')
+ speech = speech.mean(dim=0, keepdim=True)
+ if sample_rate != target_sr:
+ assert sample_rate > target_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr)
+ speech = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(speech)
+ return speech
+
+
+def convert_onnx_to_trt(trt_model, trt_kwargs, onnx_model, fp16):
+ import tensorrt as trt
+ logging.info("Converting onnx to trt...")
+ network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
+ logger = trt.Logger(trt.Logger.INFO)
+ builder = trt.Builder(logger)
+ network = builder.create_network(network_flags)
+ parser = trt.OnnxParser(network, logger)
+ config = builder.create_builder_config()
+ config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 32) # 4GB
+ if fp16:
+ config.set_flag(trt.BuilderFlag.FP16)
+ profile = builder.create_optimization_profile()
+ # load onnx model
+ with open(onnx_model, "rb") as f:
+ if not parser.parse(f.read()):
+ for error in range(parser.num_errors):
+ print(parser.get_error(error))
+ raise ValueError('failed to parse {}'.format(onnx_model))
+ # set input shapes
+ for i in range(len(trt_kwargs['input_names'])):
+ profile.set_shape(trt_kwargs['input_names'][i], trt_kwargs['min_shape'][i], trt_kwargs['opt_shape'][i], trt_kwargs['max_shape'][i])
+ tensor_dtype = trt.DataType.HALF if fp16 else trt.DataType.FLOAT
+ # set input and output data type
+ for i in range(network.num_inputs):
+ input_tensor = network.get_input(i)
+ input_tensor.dtype = tensor_dtype
+ for i in range(network.num_outputs):
+ output_tensor = network.get_output(i)
+ output_tensor.dtype = tensor_dtype
+ config.add_optimization_profile(profile)
+ engine_bytes = builder.build_serialized_network(network, config)
+ # save trt engine
+ with open(trt_model, "wb") as f:
+ f.write(engine_bytes)
+ logging.info("Succesfully convert onnx to trt...")
+
+
+def export_cosyvoice2_vllm(model, model_path, device):
+ if os.path.exists(model_path):
+ return
+ pad_to = DEFAULT_VOCAB_PADDING_SIZE = 64
+ vocab_size = model.speech_embedding.num_embeddings
+ feature_size = model.speech_embedding.embedding_dim
+ pad_vocab_size = ((vocab_size + pad_to - 1) // pad_to) * pad_to
+
+ dtype = torch.bfloat16
+ # lm_head
+ new_lm_head = torch.nn.Linear(in_features=feature_size, out_features=pad_vocab_size, bias=True)
+ with torch.no_grad():
+ new_lm_head.weight[:vocab_size] = model.llm_decoder.weight
+ new_lm_head.bias[:vocab_size] = model.llm_decoder.bias
+ new_lm_head.weight[vocab_size:] = 0
+ new_lm_head.bias[vocab_size:] = 0
+ model.llm.model.lm_head = new_lm_head
+ new_codec_embed = torch.nn.Linear(in_features=feature_size, out_features=pad_vocab_size)
+ # embed_tokens
+ embed_tokens = model.llm.model.model.embed_tokens
+ with torch.no_grad():
+ new_codec_embed.weight[:vocab_size] = model.speech_embedding.weight
+ new_codec_embed.weight[vocab_size:] = 0
+ model.llm.model.set_input_embeddings(new_codec_embed)
+ model.llm.model.to(device)
+ model.llm.model.to(dtype)
+ tmp_vocab_size = model.llm.model.config.vocab_size
+ tmp_tie_embedding = model.llm.model.config.tie_word_embeddings
+ del model.llm.model.generation_config.eos_token_id
+ del model.llm.model.config.bos_token_id
+ del model.llm.model.config.eos_token_id
+ model.llm.model.config.vocab_size = pad_vocab_size
+ model.llm.model.config.tie_word_embeddings = False
+ model.llm.model.config.use_bias = True
+ model.llm.model.save_pretrained(model_path)
+ os.system('sed -i s@Qwen2ForCausalLM@CosyVoice2ForCausalLM@g {}/config.json'.format(os.path.abspath(model_path)))
+ model.llm.model.config.vocab_size = tmp_vocab_size
+ model.llm.model.config.tie_word_embeddings = tmp_tie_embedding
+ model.llm.model.set_input_embeddings(embed_tokens)
+
+
+def get_dataset_name_from_path(path):
+ if 'haitian' in path.lower():
+ return 'haitian'
+ elif 'librispeech_test' in path.lower():
+ return 'librispeech_test_clean'
+ elif 'emilia' in path.lower():
+ return 'emilia_test'
+ elif 'role_play' in path.lower():
+ return 'role_play_prompt_test'
+ else:
+ return 'other'
\ No newline at end of file
diff --git a/cosyvoice/utils/frontend_utils.py b/cosyvoice/utils/frontend_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..ea1c9fc8cc7438f257eecffe460a8b6f4ddf8584
--- /dev/null
+++ b/cosyvoice/utils/frontend_utils.py
@@ -0,0 +1,136 @@
+# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import re
+import regex
+chinese_char_pattern = re.compile(r'[\u4e00-\u9fff]+')
+
+
+# whether contain chinese character
+def contains_chinese(text):
+ return bool(chinese_char_pattern.search(text))
+
+
+# replace special symbol
+def replace_corner_mark(text):
+ text = text.replace('²', '平方')
+ text = text.replace('³', '立方')
+ return text
+
+
+# remove meaningless symbol
+def remove_bracket(text):
+ text = text.replace('(', '').replace(')', '')
+ text = text.replace('【', '').replace('】', '')
+ text = text.replace('`', '').replace('`', '')
+ text = text.replace("——", " ")
+ return text
+
+
+# spell Arabic numerals
+def spell_out_number(text: str, inflect_parser):
+ new_text = []
+ st = None
+ for i, c in enumerate(text):
+ if not c.isdigit():
+ if st is not None:
+ num_str = inflect_parser.number_to_words(text[st: i])
+ new_text.append(num_str)
+ st = None
+ new_text.append(c)
+ else:
+ if st is None:
+ st = i
+ if st is not None and st < len(text):
+ num_str = inflect_parser.number_to_words(text[st:])
+ new_text.append(num_str)
+ return ''.join(new_text)
+
+
+# split paragrah logic:
+# 1. per sentence max len token_max_n, min len token_min_n, merge if last sentence len less than merge_len
+# 2. cal sentence len according to lang
+# 3. split sentence according to puncatation
+def split_paragraph(text: str, tokenize, lang="zh", token_max_n=80, token_min_n=60, merge_len=20, comma_split=False):
+ def calc_utt_length(_text: str):
+ if lang == "zh":
+ return len(_text)
+ else:
+ return len(tokenize(_text))
+
+ def should_merge(_text: str):
+ if lang == "zh":
+ return len(_text) < merge_len
+ else:
+ return len(tokenize(_text)) < merge_len
+
+ if lang == "zh":
+ pounc = ['。', '?', '!', ';', ':', '、', '.', '?', '!', ';']
+ else:
+ pounc = ['.', '?', '!', ';', ':']
+ if comma_split:
+ pounc.extend([',', ','])
+
+ if text[-1] not in pounc:
+ if lang == "zh":
+ text += "。"
+ else:
+ text += "."
+
+ st = 0
+ utts = []
+ for i, c in enumerate(text):
+ if c in pounc:
+ if len(text[st: i]) > 0:
+ utts.append(text[st: i] + c)
+ if i + 1 < len(text) and text[i + 1] in ['"', '”']:
+ tmp = utts.pop(-1)
+ utts.append(tmp + text[i + 1])
+ st = i + 2
+ else:
+ st = i + 1
+
+ final_utts = []
+ cur_utt = ""
+ for utt in utts:
+ if calc_utt_length(cur_utt + utt) > token_max_n and calc_utt_length(cur_utt) > token_min_n:
+ final_utts.append(cur_utt)
+ cur_utt = ""
+ cur_utt = cur_utt + utt
+ if len(cur_utt) > 0:
+ if should_merge(cur_utt) and len(final_utts) != 0:
+ final_utts[-1] = final_utts[-1] + cur_utt
+ else:
+ final_utts.append(cur_utt)
+
+ return final_utts
+
+
+# remove blank between chinese character
+def replace_blank(text: str):
+ out_str = []
+ for i, c in enumerate(text):
+ if c == " ":
+ if ((text[i + 1].isascii() and text[i + 1] != " ") and
+ (text[i - 1].isascii() and text[i - 1] != " ")):
+ out_str.append(c)
+ else:
+ out_str.append(c)
+ return "".join(out_str)
+
+
+def is_only_punctuation(text):
+ # Regular expression: Match strings that consist only of punctuation marks or are empty.
+ punctuation_pattern = r'^[\p{P}\p{S}]*$'
+ return bool(regex.fullmatch(punctuation_pattern, text))
diff --git a/cosyvoice/utils/losses.py b/cosyvoice/utils/losses.py
new file mode 100644
index 0000000000000000000000000000000000000000..2429fdcd5624297bf0c8ac3842e2e93ac84aee43
--- /dev/null
+++ b/cosyvoice/utils/losses.py
@@ -0,0 +1,57 @@
+import torch
+import torch.nn.functional as F
+from typing import Tuple
+
+
+def tpr_loss(disc_real_outputs, disc_generated_outputs, tau):
+ loss = 0
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
+ m_DG = torch.median((dr - dg))
+ L_rel = torch.mean((((dr - dg) - m_DG) ** 2)[dr < dg + m_DG])
+ loss += tau - F.relu(tau - L_rel)
+ return loss
+
+
+def mel_loss(real_speech, generated_speech, mel_transforms):
+ loss = 0
+ for transform in mel_transforms:
+ mel_r = transform(real_speech)
+ mel_g = transform(generated_speech)
+ loss += F.l1_loss(mel_g, mel_r)
+ return loss
+
+
+class DPOLoss(torch.nn.Module):
+ """
+ DPO Loss
+ """
+
+ def __init__(self, beta: float, label_smoothing: float = 0.0, ipo: bool = False) -> None:
+ super().__init__()
+ self.beta = beta
+ self.label_smoothing = label_smoothing
+ self.ipo = ipo
+
+ def forward(
+ self,
+ policy_chosen_logps: torch.Tensor,
+ policy_rejected_logps: torch.Tensor,
+ reference_chosen_logps: torch.Tensor,
+ reference_rejected_logps: torch.Tensor,
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
+ pi_logratios = policy_chosen_logps - policy_rejected_logps
+ ref_logratios = reference_chosen_logps - reference_rejected_logps
+ logits = pi_logratios - ref_logratios
+ if self.ipo:
+ losses = (logits - 1 / (2 * self.beta)) ** 2 # Eq. 17 of https://arxiv.org/pdf/2310.12036v2.pdf
+ else:
+ # Eq. 3 https://ericmitchell.ai/cdpo.pdf; label_smoothing=0 gives original DPO (Eq. 7 of https://arxiv.org/pdf/2305.18290.pdf)
+ losses = (
+ -F.logsigmoid(self.beta * logits) * (1 - self.label_smoothing)
+ - F.logsigmoid(-self.beta * logits) * self.label_smoothing
+ )
+ loss = losses.mean()
+ chosen_rewards = self.beta * (policy_chosen_logps - reference_chosen_logps).detach()
+ rejected_rewards = self.beta * (policy_rejected_logps - reference_rejected_logps).detach()
+
+ return loss, chosen_rewards, rejected_rewards
diff --git a/cosyvoice/utils/mask.py b/cosyvoice/utils/mask.py
new file mode 100644
index 0000000000000000000000000000000000000000..5d3dfd6ca6cd84e95f237a9aef4467cb7d2d4c33
--- /dev/null
+++ b/cosyvoice/utils/mask.py
@@ -0,0 +1,265 @@
+# Copyright (c) 2019 Shigeki Karita
+# 2020 Mobvoi Inc (Binbin Zhang)
+# 2024 Alibaba Inc (authors: Xiang Lyu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import torch
+'''
+def subsequent_mask(
+ size: int,
+ device: torch.device = torch.device("cpu"),
+) -> torch.Tensor:
+ """Create mask for subsequent steps (size, size).
+
+ This mask is used only in decoder which works in an auto-regressive mode.
+ This means the current step could only do attention with its left steps.
+
+ In encoder, fully attention is used when streaming is not necessary and
+ the sequence is not long. In this case, no attention mask is needed.
+
+ When streaming is need, chunk-based attention is used in encoder. See
+ subsequent_chunk_mask for the chunk-based attention mask.
+
+ Args:
+ size (int): size of mask
+ str device (str): "cpu" or "cuda" or torch.Tensor.device
+ dtype (torch.device): result dtype
+
+ Returns:
+ torch.Tensor: mask
+
+ Examples:
+ >>> subsequent_mask(3)
+ [[1, 0, 0],
+ [1, 1, 0],
+ [1, 1, 1]]
+ """
+ ret = torch.ones(size, size, device=device, dtype=torch.bool)
+ return torch.tril(ret)
+'''
+
+
+def subsequent_mask(
+ size: int,
+ device: torch.device = torch.device("cpu"),
+) -> torch.Tensor:
+ """Create mask for subsequent steps (size, size).
+
+ This mask is used only in decoder which works in an auto-regressive mode.
+ This means the current step could only do attention with its left steps.
+
+ In encoder, fully attention is used when streaming is not necessary and
+ the sequence is not long. In this case, no attention mask is needed.
+
+ When streaming is need, chunk-based attention is used in encoder. See
+ subsequent_chunk_mask for the chunk-based attention mask.
+
+ Args:
+ size (int): size of mask
+ str device (str): "cpu" or "cuda" or torch.Tensor.device
+ dtype (torch.device): result dtype
+
+ Returns:
+ torch.Tensor: mask
+
+ Examples:
+ >>> subsequent_mask(3)
+ [[1, 0, 0],
+ [1, 1, 0],
+ [1, 1, 1]]
+ """
+ arange = torch.arange(size, device=device)
+ mask = arange.expand(size, size)
+ arange = arange.unsqueeze(-1)
+ mask = mask <= arange
+ return mask
+
+
+def subsequent_chunk_mask_deprecated(
+ size: int,
+ chunk_size: int,
+ num_left_chunks: int = -1,
+ device: torch.device = torch.device("cpu"),
+) -> torch.Tensor:
+ """Create mask for subsequent steps (size, size) with chunk size,
+ this is for streaming encoder
+
+ Args:
+ size (int): size of mask
+ chunk_size (int): size of chunk
+ num_left_chunks (int): number of left chunks
+ <0: use full chunk
+ >=0: use num_left_chunks
+ device (torch.device): "cpu" or "cuda" or torch.Tensor.device
+
+ Returns:
+ torch.Tensor: mask
+
+ Examples:
+ >>> subsequent_chunk_mask(4, 2)
+ [[1, 1, 0, 0],
+ [1, 1, 0, 0],
+ [1, 1, 1, 1],
+ [1, 1, 1, 1]]
+ """
+ ret = torch.zeros(size, size, device=device, dtype=torch.bool)
+ for i in range(size):
+ if num_left_chunks < 0:
+ start = 0
+ else:
+ start = max((i // chunk_size - num_left_chunks) * chunk_size, 0)
+ ending = min((i // chunk_size + 1) * chunk_size, size)
+ ret[i, start:ending] = True
+ return ret
+
+
+def subsequent_chunk_mask(
+ size: int,
+ chunk_size: int,
+ num_left_chunks: int = -1,
+ device: torch.device = torch.device("cpu"),
+) -> torch.Tensor:
+ """Create mask for subsequent steps (size, size) with chunk size,
+ this is for streaming encoder
+
+ Args:
+ size (int): size of mask
+ chunk_size (int): size of chunk
+ num_left_chunks (int): number of left chunks
+ <0: use full chunk
+ >=0: use num_left_chunks
+ device (torch.device): "cpu" or "cuda" or torch.Tensor.device
+
+ Returns:
+ torch.Tensor: mask
+
+ Examples:
+ >>> subsequent_chunk_mask(4, 2)
+ [[1, 1, 0, 0],
+ [1, 1, 0, 0],
+ [1, 1, 1, 1],
+ [1, 1, 1, 1]]
+ """
+ # NOTE this modified implementation meets onnx export requirements, but it doesn't support num_left_chunks
+ pos_idx = torch.arange(size, device=device)
+ block_value = (torch.div(pos_idx, chunk_size, rounding_mode='trunc') + 1) * chunk_size
+ ret = pos_idx.unsqueeze(0) < block_value.unsqueeze(1)
+ return ret
+
+
+def add_optional_chunk_mask(xs: torch.Tensor,
+ masks: torch.Tensor,
+ use_dynamic_chunk: bool,
+ use_dynamic_left_chunk: bool,
+ decoding_chunk_size: int,
+ static_chunk_size: int,
+ num_decoding_left_chunks: int,
+ enable_full_context: bool = True):
+ """ Apply optional mask for encoder.
+
+ Args:
+ xs (torch.Tensor): padded input, (B, L, D), L for max length
+ mask (torch.Tensor): mask for xs, (B, 1, L)
+ use_dynamic_chunk (bool): whether to use dynamic chunk or not
+ use_dynamic_left_chunk (bool): whether to use dynamic left chunk for
+ training.
+ decoding_chunk_size (int): decoding chunk size for dynamic chunk, it's
+ 0: default for training, use random dynamic chunk.
+ <0: for decoding, use full chunk.
+ >0: for decoding, use fixed chunk size as set.
+ static_chunk_size (int): chunk size for static chunk training/decoding
+ if it's greater than 0, if use_dynamic_chunk is true,
+ this parameter will be ignored
+ num_decoding_left_chunks: number of left chunks, this is for decoding,
+ the chunk size is decoding_chunk_size.
+ >=0: use num_decoding_left_chunks
+ <0: use all left chunks
+ enable_full_context (bool):
+ True: chunk size is either [1, 25] or full context(max_len)
+ False: chunk size ~ U[1, 25]
+
+ Returns:
+ torch.Tensor: chunk mask of the input xs.
+ """
+ # Whether to use chunk mask or not
+ if use_dynamic_chunk:
+ max_len = xs.size(1)
+ if decoding_chunk_size < 0:
+ chunk_size = max_len
+ num_left_chunks = -1
+ elif decoding_chunk_size > 0:
+ chunk_size = decoding_chunk_size
+ num_left_chunks = num_decoding_left_chunks
+ else:
+ # chunk size is either [1, 25] or full context(max_len).
+ # Since we use 4 times subsampling and allow up to 1s(100 frames)
+ # delay, the maximum frame is 100 / 4 = 25.
+ chunk_size = torch.randint(1, max_len, (1, )).item()
+ num_left_chunks = -1
+ if chunk_size > max_len // 2 and enable_full_context:
+ chunk_size = max_len
+ else:
+ chunk_size = chunk_size % 25 + 1
+ if use_dynamic_left_chunk:
+ max_left_chunks = (max_len - 1) // chunk_size
+ num_left_chunks = torch.randint(0, max_left_chunks,
+ (1, )).item()
+ chunk_masks = subsequent_chunk_mask(xs.size(1), chunk_size,
+ num_left_chunks,
+ xs.device) # (L, L)
+ chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L)
+ chunk_masks = masks & chunk_masks # (B, L, L)
+ elif static_chunk_size > 0:
+ num_left_chunks = num_decoding_left_chunks
+ chunk_masks = subsequent_chunk_mask(xs.size(1), static_chunk_size,
+ num_left_chunks,
+ xs.device) # (L, L)
+ chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L)
+ chunk_masks = masks & chunk_masks # (B, L, L)
+ else:
+ chunk_masks = masks
+ assert chunk_masks.dtype == torch.bool
+ if (chunk_masks.sum(dim=-1) == 0).sum().item() != 0:
+ print('get chunk_masks all false at some timestep, force set to true, make sure they are masked in futuer computation!')
+ chunk_masks[chunk_masks.sum(dim=-1) == 0] = True
+ return chunk_masks
+
+
+def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
+ """Make mask tensor containing indices of padded part.
+
+ See description of make_non_pad_mask.
+
+ Args:
+ lengths (torch.Tensor): Batch of lengths (B,).
+ Returns:
+ torch.Tensor: Mask tensor containing indices of padded part.
+
+ Examples:
+ >>> lengths = [5, 3, 2]
+ >>> make_pad_mask(lengths)
+ masks = [[0, 0, 0, 0 ,0],
+ [0, 0, 0, 1, 1],
+ [0, 0, 1, 1, 1]]
+ """
+ batch_size = lengths.size(0)
+ max_len = max_len if max_len > 0 else lengths.max().item()
+ seq_range = torch.arange(0,
+ max_len,
+ dtype=torch.int64,
+ device=lengths.device)
+ seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
+ seq_length_expand = lengths.unsqueeze(-1)
+ mask = seq_range_expand >= seq_length_expand
+ return mask
diff --git a/cosyvoice/utils/scheduler.py b/cosyvoice/utils/scheduler.py
new file mode 100644
index 0000000000000000000000000000000000000000..06e7f3dacbd3f890f35020acea56783b58f98e0e
--- /dev/null
+++ b/cosyvoice/utils/scheduler.py
@@ -0,0 +1,738 @@
+# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
+# 2022 Ximalaya Inc (Yuguang Yang)
+# 2024 Alibaba Inc (authors: Xiang Lyu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# Modified from ESPnet(https://github.com/espnet/espnet)
+# NeMo(https://github.com/NVIDIA/NeMo)
+
+from typing import Union
+
+import math
+import warnings
+import torch
+from torch.optim.lr_scheduler import _LRScheduler
+
+
+class WarmupLR(_LRScheduler):
+ """The WarmupLR scheduler
+
+ This scheduler is almost same as NoamLR Scheduler except for following
+ difference:
+
+ NoamLR:
+ lr = optimizer.lr * model_size ** -0.5
+ * min(step ** -0.5, step * warmup_step ** -1.5)
+ WarmupLR:
+ lr = optimizer.lr * warmup_step ** 0.5
+ * min(step ** -0.5, step * warmup_step ** -1.5)
+
+ Note that the maximum lr equals to optimizer.lr in this scheduler.
+
+ """
+
+ def __init__(
+ self,
+ optimizer: torch.optim.Optimizer,
+ warmup_steps: Union[int, float] = 25000,
+ last_epoch: int = -1,
+ ):
+ self.warmup_steps = warmup_steps
+
+ # __init__() must be invoked before setting field
+ # because step() is also invoked in __init__()
+ super().__init__(optimizer, last_epoch)
+
+ def __repr__(self):
+ return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps})"
+
+ def get_lr(self):
+ step_num = self.last_epoch + 1
+ if self.warmup_steps == 0:
+ return [lr * step_num**-0.5 for lr in self.base_lrs]
+ else:
+ return [
+ lr * self.warmup_steps**0.5 *
+ min(step_num**-0.5, step_num * self.warmup_steps**-1.5)
+ for lr in self.base_lrs
+ ]
+
+ def set_step(self, step: int):
+ self.last_epoch = step
+
+
+class WarmupPolicy(_LRScheduler):
+ """Adds warmup kwargs and warmup logic to lr policy.
+ All arguments should be passed as kwargs for clarity,
+ Args:
+ warmup_steps: Number of training steps in warmup stage
+ warmup_ratio: Ratio of warmup steps to total steps
+ max_steps: Total number of steps while training or `None` for
+ infinite training
+ """
+
+ def __init__(self,
+ optimizer,
+ *,
+ warmup_steps=None,
+ warmup_ratio=None,
+ max_steps=None,
+ min_lr=0.0,
+ last_epoch=-1):
+ assert not (warmup_steps is not None and warmup_ratio is not None),\
+ "Either use particular number of step or ratio"
+ assert warmup_ratio is None or max_steps is not None, \
+ "If there is a ratio, there should be a total steps"
+
+ # It is necessary to assign all attributes *before* __init__,
+ # as class is wrapped by an inner class.
+ self.max_steps = max_steps
+ if warmup_steps is not None:
+ self.warmup_steps = warmup_steps
+ elif warmup_ratio is not None:
+ self.warmup_steps = int(warmup_ratio * max_steps)
+ else:
+ self.warmup_steps = 0
+
+ self.min_lr = min_lr
+ super().__init__(optimizer, last_epoch)
+
+ def get_lr(self):
+ if not self._get_lr_called_within_step:
+ warnings.warn(
+ "To get the last learning rate computed "
+ "by the scheduler, please use `get_last_lr()`.",
+ UserWarning,
+ stacklevel=2)
+
+ step = self.last_epoch
+
+ if step <= self.warmup_steps and self.warmup_steps > 0:
+ return self._get_warmup_lr(step)
+
+ if step > self.max_steps:
+ return [self.min_lr for _ in self.base_lrs]
+
+ return self._get_lr(step)
+
+ def _get_warmup_lr(self, step):
+ lr_val = (step + 1) / (self.warmup_steps + 1)
+ return [initial_lr * lr_val for initial_lr in self.base_lrs]
+
+ def _get_lr(self, step):
+ """Simple const lr policy"""
+ return self.base_lrs
+
+
+class SquareRootConstantPolicy(_LRScheduler):
+ """Adds warmup kwargs and warmup logic to lr policy.
+ All arguments should be passed as kwargs for clarity,
+ Args:
+ warmup_steps: Number of training steps in warmup stage
+ warmup_ratio: Ratio of warmup steps to total steps
+ max_steps: Total number of steps while training or `None` for
+ infinite training
+ """
+
+ def __init__(self,
+ optimizer,
+ *,
+ constant_steps=None,
+ constant_ratio=None,
+ max_steps=None,
+ min_lr=0.0,
+ last_epoch=-1):
+ assert not (constant_steps is not None
+ and constant_ratio is not None), \
+ "Either use particular number of step or ratio"
+ assert constant_ratio is None or max_steps is not None, \
+ "If there is a ratio, there should be a total steps"
+
+ # It is necessary to assign all attributes *before* __init__,
+ # as class is wrapped by an inner class.
+ self.max_steps = max_steps
+ if constant_steps is not None:
+ self.constant_steps = constant_steps
+ elif constant_ratio is not None:
+ self.constant_steps = int(constant_ratio * max_steps)
+ else:
+ self.constant_steps = 0
+
+ self.constant_lr = 1 / (constant_steps**0.5)
+ self.min_lr = min_lr
+ super().__init__(optimizer, last_epoch)
+
+ def get_lr(self):
+ if not self._get_lr_called_within_step:
+ warnings.warn(
+ "To get the last learning rate computed "
+ "by the scheduler, please use `get_last_lr()`.",
+ UserWarning,
+ stacklevel=2)
+
+ step = self.last_epoch
+
+ if step <= self.constant_steps:
+ return [self.constant_lr for _ in self.base_lrs]
+
+ if step > self.max_steps:
+ return [self.min_lr for _ in self.base_lrs]
+
+ return self._get_lr(step)
+
+ def _get_lr(self, step):
+ """Simple const lr policy"""
+ return self.base_lrs
+
+
+class WarmupHoldPolicy(WarmupPolicy):
+ """Variant of WarmupPolicy which maintains high
+ learning rate for a defined number of steps.
+ All arguments should be passed as kwargs for clarity,
+ Args:
+ warmup_steps: Number of training steps in warmup stage
+ warmup_ratio: Ratio of warmup steps to total steps
+ hold_steps: Number of training steps to
+ hold the learning rate after warm up
+ hold_ratio: Ratio of hold steps to total steps
+ max_steps: Total number of steps while training or `None` for
+ infinite training
+ """
+
+ def __init__(
+ self,
+ optimizer,
+ *,
+ warmup_steps=None,
+ warmup_ratio=None,
+ hold_steps=None,
+ hold_ratio=None,
+ max_steps=None,
+ min_lr=0.0,
+ last_epoch=-1,
+ ):
+ assert not (hold_steps is not None and hold_ratio is not None), \
+ "Either use particular number of step or ratio"
+ assert hold_ratio is None or max_steps is not None, \
+ "If there is a ratio, there should be a total steps"
+
+ self.min_lr = min_lr
+ self._last_warmup_lr = 0.0
+
+ # Necessary to duplicate as class attributes are hidden in inner class
+ self.max_steps = max_steps
+ if warmup_steps is not None:
+ self.warmup_steps = warmup_steps
+ elif warmup_ratio is not None:
+ self.warmup_steps = int(warmup_ratio * max_steps)
+ else:
+ self.warmup_steps = 0
+
+ if hold_steps is not None:
+ self.hold_steps = hold_steps + self.warmup_steps
+ elif hold_ratio is not None:
+ self.hold_steps = int(hold_ratio * max_steps) + self.warmup_steps
+ else:
+ self.hold_steps = 0
+
+ super().__init__(
+ optimizer,
+ warmup_steps=warmup_steps,
+ warmup_ratio=warmup_ratio,
+ max_steps=max_steps,
+ last_epoch=last_epoch,
+ min_lr=min_lr,
+ )
+
+ def get_lr(self):
+ if not self._get_lr_called_within_step:
+ warnings.warn(
+ "To get the last learning rate computed by the scheduler,"
+ " "
+ "please use `get_last_lr()`.",
+ UserWarning,
+ stacklevel=2)
+
+ step = self.last_epoch
+
+ # Warmup phase
+ if step <= self.warmup_steps and self.warmup_steps > 0:
+ return self._get_warmup_lr(step)
+
+ # Hold phase
+ if (step >= self.warmup_steps) and (step < self.hold_steps):
+ return self.base_lrs
+
+ if step > self.max_steps:
+ return [self.min_lr for _ in self.base_lrs]
+
+ return self._get_lr(step)
+
+
+class WarmupAnnealHoldPolicy(_LRScheduler):
+ """Adds warmup kwargs and warmup logic to lr policy.
+ All arguments should be passed as kwargs for clarity,
+ Args:
+ warmup_steps: Number of training steps in warmup stage
+ warmup_ratio: Ratio of warmup steps to total steps
+ max_steps: Total number of steps while training or `None` for
+ infinite training
+ min_lr: Minimum lr to hold the learning rate after decay at.
+ constant_steps: Number of steps to keep lr constant at.
+ constant_ratio: Ratio of steps to keep lr constant.
+ """
+
+ def __init__(
+ self,
+ optimizer,
+ *,
+ warmup_steps=None,
+ warmup_ratio=None,
+ constant_steps=None,
+ constant_ratio=None,
+ max_steps=None,
+ min_lr=0.0,
+ last_epoch=-1,
+ ):
+ assert not (warmup_steps is not None
+ and warmup_ratio is not None), \
+ "Either use particular number of step or ratio"
+ assert not (constant_steps is not None
+ and constant_ratio is not None), \
+ "Either use constant_steps or constant_ratio"
+ assert warmup_ratio is None or max_steps is not None, \
+ "If there is a ratio, there should be a total steps"
+
+ # It is necessary to assign all attributes *before* __init__,
+ # as class is wrapped by an inner class.
+ self.max_steps = max_steps
+
+ if warmup_steps is not None:
+ self.warmup_steps = warmup_steps
+ elif warmup_ratio is not None:
+ self.warmup_steps = int(warmup_ratio * max_steps)
+ else:
+ self.warmup_steps = 0
+
+ if constant_steps is not None:
+ self.constant_steps = constant_steps
+ elif constant_ratio is not None:
+ self.constant_steps = int(constant_ratio * max_steps)
+ else:
+ self.constant_steps = 0
+
+ self.decay_steps = max_steps - (self.constant_steps +
+ self.warmup_steps)
+
+ self.min_lr = min_lr
+ super().__init__(optimizer, last_epoch)
+
+ def get_lr(self):
+ if not self._get_lr_called_within_step:
+ warnings.warn(
+ "To get the last learning rate computed "
+ "by the scheduler, please use `get_last_lr()`.",
+ UserWarning,
+ stacklevel=2)
+
+ step = self.last_epoch
+
+ # Warmup steps
+ if self.warmup_steps > 0 and step <= self.warmup_steps:
+ return self._get_warmup_lr(step)
+
+ # Constant steps after warmup and decay
+ if self.constant_steps > 0 and (
+ self.warmup_steps + self.decay_steps) < step <= self.max_steps:
+ return self._get_constant_lr(step)
+
+ # Min lr after max steps of updates
+ if step > self.max_steps:
+ return [self.min_lr for _ in self.base_lrs]
+
+ return self._get_lr(step)
+
+ def _get_warmup_lr(self, step):
+ lr_val = (step + 1) / (self.warmup_steps + 1)
+ return [initial_lr * lr_val for initial_lr in self.base_lrs]
+
+ def _get_constant_lr(self, step):
+ return [self.min_lr for _ in self.base_lrs]
+
+ def _get_lr(self, step):
+ """Simple const lr policy"""
+ return self.base_lrs
+
+
+def _squareroot_annealing(initial_lr, step, max_steps, min_lr):
+ mult = ((max_steps - step) / max_steps)**0.5
+ out_lr = initial_lr * mult
+ out_lr = max(out_lr, min_lr)
+ return out_lr
+
+
+def _square_annealing(initial_lr, step, max_steps, min_lr):
+ mult = ((max_steps - step) / max_steps)**2
+ out_lr = initial_lr * mult
+ out_lr = max(out_lr, min_lr)
+ return out_lr
+
+
+def _cosine_annealing(initial_lr, step, max_steps, min_lr):
+ mult = 0.5 * (1 + math.cos(math.pi * step / max_steps))
+ out_lr = (initial_lr - min_lr) * mult + min_lr
+ return out_lr
+
+
+def _linear_warmup_with_cosine_annealing(max_lr, warmup_steps, step,
+ decay_steps, min_lr):
+ assert max_lr > min_lr
+ # Use linear warmup for the initial part.
+ if warmup_steps > 0 and step <= warmup_steps:
+ return max_lr * float(step) / float(warmup_steps)
+
+ # For any steps larger than `decay_steps`, use `min_lr`.
+ if step > warmup_steps + decay_steps:
+ return min_lr
+
+ # If we are done with the warmup period, use the decay style.
+ num_steps_ = step - warmup_steps
+ decay_steps_ = decay_steps
+ decay_ratio = float(num_steps_) / float(decay_steps_)
+ assert decay_ratio >= 0.0
+ assert decay_ratio <= 1.0
+ delta_lr = max_lr - min_lr
+
+ coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0)
+
+ return min_lr + coeff * delta_lr
+
+
+def _poly_decay(initial_lr, step, decay_steps, power, min_lr, cycle):
+ if cycle:
+ multiplier = 1.0 if step == 0 else math.ceil(step / decay_steps)
+ decay_steps *= multiplier
+ else:
+ step = min(step, decay_steps)
+ p = step / decay_steps
+ lr = (initial_lr - min_lr) * math.pow(1.0 - p, power)
+ lr += min_lr
+ return lr
+
+
+def _noam_hold_annealing(initial_lr, step, warmup_steps, hold_steps,
+ decay_rate, min_lr):
+ # hold_steps = total number of steps
+ # to hold the LR, not the warmup + hold steps.
+ T_warmup_decay = max(1, warmup_steps**decay_rate)
+ T_hold_decay = max(1, (step - hold_steps)**decay_rate)
+ lr = (initial_lr * T_warmup_decay) / T_hold_decay
+ lr = max(lr, min_lr)
+ return lr
+
+
+class SquareAnnealing(WarmupPolicy):
+
+ def __init__(self,
+ optimizer,
+ *,
+ max_steps,
+ min_lr=1e-5,
+ last_epoch=-1,
+ **kwargs):
+ super().__init__(optimizer=optimizer,
+ max_steps=max_steps,
+ last_epoch=last_epoch,
+ min_lr=min_lr,
+ **kwargs)
+
+ def _get_lr(self, step):
+ new_lrs = [
+ _square_annealing(
+ initial_lr=initial_lr,
+ step=step - self.warmup_steps,
+ max_steps=self.max_steps - self.warmup_steps,
+ min_lr=self.min_lr,
+ ) for initial_lr in self.base_lrs
+ ]
+ return new_lrs
+
+
+class SquareRootAnnealing(WarmupPolicy):
+
+ def __init__(self,
+ optimizer,
+ *,
+ max_steps,
+ min_lr=0,
+ last_epoch=-1,
+ **kwargs):
+ super().__init__(optimizer=optimizer,
+ max_steps=max_steps,
+ last_epoch=last_epoch,
+ min_lr=min_lr,
+ **kwargs)
+
+ def _get_lr(self, step):
+ new_lrs = [
+ _squareroot_annealing(initial_lr=initial_lr,
+ step=step,
+ max_steps=self.max_steps,
+ min_lr=self.min_lr)
+ for initial_lr in self.base_lrs
+ ]
+ return new_lrs
+
+
+class CosineAnnealing(WarmupAnnealHoldPolicy):
+
+ def __init__(self,
+ optimizer,
+ *,
+ max_steps,
+ min_lr=0,
+ last_epoch=-1,
+ **kwargs):
+ super().__init__(optimizer=optimizer,
+ max_steps=max_steps,
+ last_epoch=last_epoch,
+ min_lr=min_lr,
+ **kwargs)
+
+ def _get_lr(self, step):
+ for initial_lr in self.base_lrs:
+ if initial_lr < self.min_lr:
+ raise ValueError(
+ f"{self} received an initial learning rate "
+ f"that was lower than the minimum learning rate.")
+
+ if self.constant_steps is None or self.constant_steps == 0:
+ new_lrs = [
+ _cosine_annealing(
+ initial_lr=initial_lr,
+ step=step - self.warmup_steps,
+ max_steps=self.max_steps - self.warmup_steps,
+ min_lr=self.min_lr,
+ ) for initial_lr in self.base_lrs
+ ]
+ else:
+ new_lrs = self._get_linear_warmup_with_cosine_annealing_lr(step)
+ return new_lrs
+
+ def _get_warmup_lr(self, step):
+ if self.constant_steps is None or self.constant_steps == 0:
+ return super()._get_warmup_lr(step)
+ else:
+ # Use linear warmup for the initial part.
+ return self._get_linear_warmup_with_cosine_annealing_lr(step)
+
+ def _get_constant_lr(self, step):
+ # Only called when `constant_steps` > 0.
+ return self._get_linear_warmup_with_cosine_annealing_lr(step)
+
+ def _get_linear_warmup_with_cosine_annealing_lr(self, step):
+ # Cosine Schedule for Megatron LM,
+ # slightly different warmup schedule + constant LR at the end.
+ new_lrs = [
+ _linear_warmup_with_cosine_annealing(
+ max_lr=self.base_lrs[0],
+ warmup_steps=self.warmup_steps,
+ step=step,
+ decay_steps=self.decay_steps,
+ min_lr=self.min_lr,
+ ) for _ in self.base_lrs
+ ]
+ return new_lrs
+
+
+class NoamAnnealing(_LRScheduler):
+
+ def __init__(self,
+ optimizer,
+ *,
+ d_model,
+ warmup_steps=None,
+ warmup_ratio=None,
+ max_steps=None,
+ min_lr=0.0,
+ last_epoch=-1):
+ self._normalize = d_model**(-0.5)
+ assert not (warmup_steps is not None and warmup_ratio is not None), \
+ "Either use particular number of step or ratio"
+ assert warmup_ratio is None or max_steps is not None, \
+ "If there is a ratio, there should be a total steps"
+
+ # It is necessary to assign all attributes *before* __init__,
+ # as class is wrapped by an inner class.
+ self.max_steps = max_steps
+ if warmup_steps is not None:
+ self.warmup_steps = warmup_steps
+ elif warmup_ratio is not None:
+ self.warmup_steps = int(warmup_ratio * max_steps)
+ else:
+ self.warmup_steps = 0
+
+ self.min_lr = min_lr
+ super().__init__(optimizer, last_epoch)
+
+ def get_lr(self):
+ if not self._get_lr_called_within_step:
+ warnings.warn(
+ "To get the last learning rate computed "
+ "by the scheduler, please use `get_last_lr()`.",
+ UserWarning,
+ stacklevel=2)
+
+ step = max(1, self.last_epoch)
+
+ for initial_lr in self.base_lrs:
+ if initial_lr < self.min_lr:
+ raise ValueError(
+ f"{self} received an initial learning rate "
+ f"that was lower than the minimum learning rate.")
+
+ new_lrs = [
+ self._noam_annealing(initial_lr=initial_lr, step=step)
+ for initial_lr in self.base_lrs
+ ]
+ return new_lrs
+
+ def _noam_annealing(self, initial_lr, step):
+ if self.warmup_steps > 0:
+ mult = self._normalize * min(step**(-0.5),
+ step * (self.warmup_steps**(-1.5)))
+ else:
+ mult = self._normalize * step**(-0.5)
+
+ out_lr = initial_lr * mult
+ if step > self.warmup_steps:
+ out_lr = max(out_lr, self.min_lr)
+ return out_lr
+
+
+class NoamHoldAnnealing(WarmupHoldPolicy):
+
+ def __init__(self,
+ optimizer,
+ *,
+ max_steps,
+ decay_rate=0.5,
+ min_lr=0.0,
+ last_epoch=-1,
+ **kwargs):
+ """
+ From Nemo:
+ Implementation of the Noam Hold Annealing policy
+ from the SqueezeFormer paper.
+
+ Unlike NoamAnnealing, the peak learning rate
+ can be explicitly set for this scheduler.
+ The schedule first performs linear warmup,
+ then holds the peak LR, then decays with some schedule for
+ the remainder of the steps.
+ Therefore the min-lr is still dependent
+ on the hyper parameters selected.
+
+ It's schedule is determined by three factors-
+
+ Warmup Steps: Initial stage, where linear warmup
+ occurs uptil the peak LR is reached. Unlike NoamAnnealing,
+ the peak LR is explicitly stated here instead of a scaling factor.
+
+ Hold Steps: Intermediate stage, where the peak LR
+ is maintained for some number of steps. In this region,
+ the high peak LR allows the model to converge faster
+ if training is stable. However the high LR
+ may also cause instability during training.
+ Should usually be a significant fraction of training
+ steps (around 30-40% of the entire training steps).
+
+ Decay Steps: Final stage, where the LR rapidly decays
+ with some scaling rate (set by decay rate).
+ To attain Noam decay, use 0.5,
+ for Squeezeformer recommended decay, use 1.0.
+ The fast decay after prolonged high LR during
+ hold phase allows for rapid convergence.
+
+ References:
+ - [Squeezeformer:
+ An Efficient Transformer for Automatic Speech Recognition]
+ (https://arxiv.org/abs/2206.00888)
+
+ Args:
+ optimizer: Pytorch compatible Optimizer object.
+ warmup_steps: Number of training steps in warmup stage
+ warmup_ratio: Ratio of warmup steps to total steps
+ hold_steps: Number of training steps to
+ hold the learning rate after warm up
+ hold_ratio: Ratio of hold steps to total steps
+ max_steps: Total number of steps while training or `None` for
+ infinite training
+ decay_rate: Float value describing the polynomial decay
+ after the hold period. Default value
+ of 0.5 corresponds to Noam decay.
+ min_lr: Minimum learning rate.
+ """
+ self.decay_rate = decay_rate
+ super().__init__(optimizer=optimizer,
+ max_steps=max_steps,
+ last_epoch=last_epoch,
+ min_lr=min_lr,
+ **kwargs)
+
+ def _get_lr(self, step):
+ if self.warmup_steps is None or self.warmup_steps == 0:
+ raise ValueError(
+ "Noam scheduler cannot be used without warmup steps")
+
+ if self.hold_steps > 0:
+ hold_steps = self.hold_steps - self.warmup_steps
+ else:
+ hold_steps = 0
+
+ new_lrs = [
+ _noam_hold_annealing(
+ initial_lr,
+ step=step,
+ warmup_steps=self.warmup_steps,
+ hold_steps=hold_steps,
+ decay_rate=self.decay_rate,
+ min_lr=self.min_lr,
+ ) for initial_lr in self.base_lrs
+ ]
+ return new_lrs
+
+ def set_step(self, step: int):
+ self.last_epoch = step
+
+
+class ConstantLR(_LRScheduler):
+ """The ConstantLR scheduler
+
+ This scheduler keeps a constant lr
+
+ """
+
+ def __init__(
+ self,
+ optimizer: torch.optim.Optimizer,
+ ):
+ # __init__() must be invoked before setting field
+ # because step() is also invoked in __init__()
+ super().__init__(optimizer)
+
+ def get_lr(self):
+ return self.base_lrs
+
+ def set_step(self, step: int):
+ self.last_epoch = step
diff --git a/cosyvoice/utils/train_utils.py b/cosyvoice/utils/train_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..8b75eac2d8004e6ca9516f0834f45ac7faac4bac
--- /dev/null
+++ b/cosyvoice/utils/train_utils.py
@@ -0,0 +1,374 @@
+# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
+# 2023 Horizon Inc. (authors: Xingchen Song)
+# 2024 Alibaba Inc (authors: Xiang Lyu)
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from datetime import timedelta
+import logging
+import os
+import torch
+import json
+import re
+import datetime
+import yaml
+
+import deepspeed
+import torch.optim as optim
+import torch.distributed as dist
+
+from torch.utils.tensorboard import SummaryWriter
+from torch.utils.data import DataLoader
+from torch.nn.utils import clip_grad_norm_
+
+from deepspeed.runtime.zero.stage_1_and_2 import estimate_zero2_model_states_mem_needs_all_live
+
+from cosyvoice.dataset.dataset import Dataset
+from cosyvoice.utils.scheduler import WarmupLR, NoamHoldAnnealing, ConstantLR
+import datetime
+
+def init_distributed(args):
+ world_size = int(os.environ.get('WORLD_SIZE', 1))
+ local_rank = int(os.environ.get('LOCAL_RANK', 0))
+ rank = int(os.environ.get('RANK', 0))
+ timeout = datetime.timedelta(seconds=360000)
+ logging.info('training on multiple gpus, this gpu {}'.format(local_rank) +
+ ', rank {}, world_size {}'.format(rank, world_size))
+ if args.train_engine == 'torch_ddp':
+ torch.cuda.set_device(local_rank)
+ dist.init_process_group(args.dist_backend,timeout=timeout)
+ else:
+ deepspeed.init_distributed(dist_backend=args.dist_backend)
+ return world_size, local_rank, rank
+
+
+def init_dataset_and_dataloader(args, configs, gan, dpo):
+ data_pipeline = configs['data_pipeline_gan'] if gan is True else configs['data_pipeline']
+ data_pipeline_generate = configs.get('data_pipeline_generate',configs['data_pipeline'])
+ train_dataset = Dataset(args.train_data, data_pipeline=data_pipeline, mode='train', gan=gan, dpo=dpo, shuffle=True, partition=True)
+ cv_dataset = Dataset(args.cv_data, data_pipeline=data_pipeline, mode='train', gan=gan, dpo=dpo, shuffle=False, partition=False)
+ generate_dataset = Dataset(args.generate_data, data_pipeline=data_pipeline_generate, mode='train', gan=gan, dpo=dpo, shuffle=False, partition=False)
+ # do not use persistent_workers=True, as whisper tokenizer opens tiktoken file each time when the for loop starts
+ train_data_loader = DataLoader(train_dataset,
+ batch_size=None,
+ pin_memory=args.pin_memory,
+ num_workers=args.num_workers,
+ prefetch_factor=args.prefetch)
+ cv_data_loader = DataLoader(cv_dataset,
+ batch_size=None,
+ pin_memory=args.pin_memory,
+ num_workers=args.num_workers,
+ prefetch_factor=args.prefetch)
+ generate_data_loader = DataLoader(generate_dataset,
+ batch_size=None,
+ pin_memory=args.pin_memory,
+ num_workers=args.num_workers,
+ prefetch_factor=args.prefetch)
+ return train_dataset, cv_dataset,generate_dataset, train_data_loader, cv_data_loader,generate_data_loader
+
+
+def check_modify_and_save_config(args, configs):
+ if args.train_engine == "torch_ddp":
+ configs['train_conf']["dtype"] = 'bf16' if args.use_amp is True else 'fp32'
+ else:
+ with open(args.deepspeed_config, 'r') as fin:
+ ds_configs = json.load(fin)
+ if "fp16" in ds_configs and ds_configs["fp16"]["enabled"]:
+ configs['train_conf']["dtype"] = "fp16"
+ elif "bf16" in ds_configs and ds_configs["bf16"]["enabled"]:
+ configs['train_conf']["dtype"] = "bf16"
+ else:
+ configs['train_conf']["dtype"] = "fp32"
+ assert ds_configs["train_micro_batch_size_per_gpu"] == 1
+ # if use deepspeed, override ddp config
+ configs['train_conf']['save_per_step'] = int(configs['train_conf']['save_per_step'] *
+ configs['train_conf']['accum_grad'] / ds_configs["gradient_accumulation_steps"])
+ configs['train_conf']['accum_grad'] = ds_configs["gradient_accumulation_steps"]
+ configs['train_conf']['grad_clip'] = ds_configs["gradient_clipping"]
+ configs['train_conf']['log_interval'] = ds_configs["steps_per_print"]
+ return configs
+
+
+def wrap_cuda_model(args, model):
+ local_world_size = int(os.environ.get('LOCAL_WORLD_SIZE', 1))
+ world_size = int(os.environ.get('WORLD_SIZE', 1))
+ if args.train_engine == "torch_ddp": # native pytorch ddp
+ assert (torch.cuda.is_available())
+ model.cuda()
+ model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
+ else:
+ if int(os.environ.get('RANK', 0)) == 0:
+ logging.info("Estimating model states memory needs (zero2)...")
+ estimate_zero2_model_states_mem_needs_all_live(
+ model,
+ num_gpus_per_node=local_world_size,
+ num_nodes=world_size // local_world_size)
+ return model
+
+
+def init_optimizer_and_scheduler(args, configs, model, gan):
+ if gan is False:
+ if configs['train_conf']['optim'] == 'adam':
+ optimizer = optim.Adam(model.parameters(), **configs['train_conf']['optim_conf'])
+ elif configs['train_conf']['optim'] == 'adamw':
+ optimizer = optim.AdamW(model.parameters(), **configs['train_conf']['optim_conf'])
+ else:
+ raise ValueError("unknown optimizer: " + configs['train_conf'])
+
+ if configs['train_conf']['scheduler'] == 'warmuplr':
+ scheduler_type = WarmupLR
+ scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
+ elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
+ scheduler_type = NoamHoldAnnealing
+ scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
+ elif configs['train_conf']['scheduler'] == 'constantlr':
+ scheduler_type = ConstantLR
+ scheduler = ConstantLR(optimizer)
+ else:
+ raise ValueError("unknown scheduler: " + configs['train_conf'])
+
+ # use deepspeed optimizer for speedup
+ if args.train_engine == "deepspeed":
+ def scheduler(opt):
+ return scheduler_type(opt, **configs['train_conf']['scheduler_conf'])
+ model, optimizer, _, scheduler = deepspeed.initialize(
+ args=args,
+ model=model,
+ optimizer=None,
+ lr_scheduler=scheduler,
+ model_parameters=model.parameters())
+
+ optimizer_d, scheduler_d = None, None
+
+ else:
+ # currently we wrap generator and discriminator in one model, so we cannot use deepspeed
+ if configs['train_conf']['optim'] == 'adam':
+ optimizer = optim.Adam(model.module.generator.parameters(), **configs['train_conf']['optim_conf'])
+ elif configs['train_conf']['optim'] == 'adamw':
+ optimizer = optim.AdamW(model.module.generator.parameters(), **configs['train_conf']['optim_conf'])
+ else:
+ raise ValueError("unknown optimizer: " + configs['train_conf'])
+
+ if configs['train_conf']['scheduler'] == 'warmuplr':
+ scheduler_type = WarmupLR
+ scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
+ elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
+ scheduler_type = NoamHoldAnnealing
+ scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
+ elif configs['train_conf']['scheduler'] == 'constantlr':
+ scheduler_type = ConstantLR
+ scheduler = ConstantLR(optimizer)
+ else:
+ raise ValueError("unknown scheduler: " + configs['train_conf'])
+
+ if configs['train_conf']['optim_d'] == 'adam':
+ optimizer_d = optim.Adam(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf'])
+ elif configs['train_conf']['optim_d'] == 'adamw':
+ optimizer_d = optim.AdamW(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf'])
+ else:
+ raise ValueError("unknown optimizer: " + configs['train_conf'])
+
+ if configs['train_conf']['scheduler_d'] == 'warmuplr':
+ scheduler_type = WarmupLR
+ scheduler_d = WarmupLR(optimizer_d, **configs['train_conf']['scheduler_conf'])
+ elif configs['train_conf']['scheduler_d'] == 'NoamHoldAnnealing':
+ scheduler_type = NoamHoldAnnealing
+ scheduler_d = NoamHoldAnnealing(optimizer_d, **configs['train_conf']['scheduler_conf'])
+ elif configs['train_conf']['scheduler'] == 'constantlr':
+ scheduler_type = ConstantLR
+ scheduler_d = ConstantLR(optimizer_d)
+ else:
+ raise ValueError("unknown scheduler: " + configs['train_conf'])
+ return model, optimizer, scheduler, optimizer_d, scheduler_d
+
+
+def init_summarywriter(args):
+ writer = None
+ if int(os.environ.get('RANK', 0)) == 0:
+ os.makedirs(args.model_dir, exist_ok=True)
+ writer = SummaryWriter(args.tensorboard_dir)
+ return writer
+
+
+def save_model(model, model_name, info_dict):
+ rank = int(os.environ.get('RANK', 0))
+ model_dir = info_dict["model_dir"]
+ save_model_path = os.path.join(model_dir, '{}.pt'.format(model_name))
+
+ if info_dict["train_engine"] == "torch_ddp":
+ if rank == 0:
+ torch.save({**model.module.state_dict(), 'epoch': info_dict['epoch'], 'step': info_dict['step']}, save_model_path)
+ else:
+ with torch.no_grad():
+ model.save_checkpoint(save_dir=model_dir,
+ tag=model_name,
+ client_state=info_dict)
+ if rank == 0:
+ info_path = re.sub('.pt$', '.yaml', save_model_path)
+ info_dict['save_time'] = datetime.datetime.now().strftime('%d/%m/%Y %H:%M:%S')
+ with open(info_path, 'w') as fout:
+ data = yaml.dump(info_dict)
+ fout.write(data)
+ logging.info('[Rank {}] Checkpoint: save to checkpoint {}'.format(rank, save_model_path))
+
+
+def cosyvoice_join(group_join, info_dict):
+ world_size = int(os.environ.get('WORLD_SIZE', 1))
+ local_rank = int(os.environ.get('LOCAL_RANK', 0))
+ rank = int(os.environ.get('RANK', 0))
+
+ if info_dict["batch_idx"] != 0:
+ # we try to join all rank in both ddp and deepspeed mode, in case different rank has different lr
+ try:
+ dist.monitored_barrier(group=group_join,
+ timeout=timedelta(seconds=30))
+ return False
+ except RuntimeError as e:
+ # logging.info("Detected uneven workload distribution: {}\n".format(e) +
+ # "Break current worker to manually join all workers, " +
+ # "world_size {}, current rank {}, current local_rank {}\n".
+ # format(world_size, rank, local_rank))
+ return True
+ else:
+ return False
+
+
+def batch_forward(model, batch, scaler, info_dict, ref_model=None, dpo_loss=None):
+ device = int(os.environ.get('LOCAL_RANK', 0))
+
+ dtype = info_dict["dtype"]
+ if dtype == "fp16":
+ dtype = torch.float16
+ elif dtype == "bf16":
+ dtype = torch.bfloat16
+ else: # fp32
+ dtype = torch.float32
+
+ if info_dict['train_engine'] == 'torch_ddp':
+ autocast = torch.cuda.amp.autocast(enabled=scaler is not None, dtype=dtype)
+ else:
+ autocast = torch.cuda.amp.autocast(enabled=True, dtype=dtype, cache_enabled=False)
+
+ with autocast:
+ info_dict['loss_dict'] = model(batch, device)
+ if ref_model is not None and dpo_loss is not None:
+ chosen_logps = info_dict['loss_dict']["chosen_logps"]
+ rejected_logps = info_dict['loss_dict']["rejected_logps"]
+ sft_loss = info_dict['loss_dict']['loss']
+ with torch.no_grad():
+ ref_loss_dict = ref_model(batch, device)
+ reference_chosen_logps = ref_loss_dict["chosen_logps"]
+ reference_rejected_logps = ref_loss_dict["rejected_logps"]
+ preference_loss, chosen_reward, reject_reward = dpo_loss(
+ chosen_logps, rejected_logps, reference_chosen_logps, reference_rejected_logps
+ )
+ dpo_acc = (chosen_reward > reject_reward).float().mean()
+ info_dict['loss_dict']["loss"] = preference_loss + sft_loss
+ info_dict['loss_dict']["sft_loss"] = sft_loss
+ info_dict['loss_dict']["dpo_loss"] = preference_loss
+ info_dict['loss_dict']["dpo_acc"] = dpo_acc
+ info_dict['loss_dict']["chosen_reward"] = chosen_reward.mean()
+ info_dict['loss_dict']["reject_reward"] = reject_reward.mean()
+ return info_dict
+
+
+def batch_backward(model, scaler, info_dict):
+ if info_dict["train_engine"] == "deepspeed":
+ scaled_loss = model.backward(info_dict['loss_dict']['loss'])
+ else:
+ scaled_loss = info_dict['loss_dict']['loss'] / info_dict['accum_grad']
+ if scaler is not None:
+ scaler.scale(scaled_loss).backward()
+ else:
+ scaled_loss.backward()
+
+ info_dict['loss_dict']['loss'] = scaled_loss
+ return info_dict
+
+
+def update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict):
+ grad_norm = 0.0
+ if info_dict['train_engine'] == "deepspeed":
+ info_dict["is_gradient_accumulation_boundary"] = model.is_gradient_accumulation_boundary()
+ model.step()
+ grad_norm = model.get_global_grad_norm()
+ elif (info_dict['batch_idx'] + 1) % info_dict["accum_grad"] == 0:
+ # Use mixed precision training
+ if scaler is not None:
+ scaler.unscale_(optimizer)
+ grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
+ # We don't check grad here since that if the gradient
+ # has inf/nan values, scaler.step will skip
+ # optimizer.step().
+ if torch.isfinite(grad_norm):
+ scaler.step(optimizer)
+ else:
+ logging.warning('get infinite grad_norm, check your code/data if it appears frequently')
+ scaler.update()
+ else:
+ grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
+ if torch.isfinite(grad_norm):
+ optimizer.step()
+ else:
+ logging.warning('get infinite grad_norm, check your code/data if it appears frequently')
+ optimizer.zero_grad()
+ scheduler.step()
+ info_dict["lr"] = optimizer.param_groups[0]['lr']
+ info_dict["grad_norm"] = grad_norm
+ return info_dict
+
+
+def log_per_step(writer, info_dict):
+ tag = info_dict["tag"]
+ epoch = info_dict.get('epoch', 0)
+ step = info_dict["step"]
+ batch_idx = info_dict["batch_idx"]
+ loss_dict = info_dict['loss_dict']
+ rank = int(os.environ.get('RANK', 0))
+
+ # only rank 0 write to tensorboard to avoid multi-process write
+ if writer is not None:
+ if (info_dict['train_engine'] == 'deepspeed' and info_dict['is_gradient_accumulation_boundary'] is True) or \
+ (info_dict['train_engine'] == 'torch_ddp' and (info_dict['batch_idx'] + 1) % info_dict['accum_grad'] == 0):
+ for k in ['epoch', 'lr', 'grad_norm']:
+ writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1)
+ for k, v in loss_dict.items():
+ writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)
+
+ # TRAIN & CV, Shell log (stdout)
+ if (info_dict['batch_idx'] + 1) % info_dict['log_interval'] == 0:
+ log_str = '{} Batch {}/{} '.format(tag, epoch, batch_idx + 1)
+ for name, value in loss_dict.items():
+ log_str += '{} {:.6f} '.format(name, value)
+ if tag == "TRAIN":
+ log_str += 'lr {:.8f} grad_norm {:.6f}'.format(
+ info_dict["lr"], info_dict['grad_norm'])
+ log_str += ' rank {}'.format(rank)
+ logging.debug(log_str)
+
+
+def log_per_save(writer, info_dict):
+ tag = info_dict["tag"]
+ epoch = info_dict["epoch"]
+ step = info_dict["step"]
+ loss_dict = info_dict["loss_dict"]
+ lr = info_dict['lr']
+ rank = int(os.environ.get('RANK', 0))
+ logging.info(
+ 'Epoch {} Step {} CV info lr {} {} rank {}'.format(
+ epoch, step + 1, lr, rank, ' '.join(['{} {}'.format(k, v) for k, v in loss_dict.items()])))
+
+ if writer is not None:
+ for k in ['epoch', 'lr']:
+ writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1)
+ for k, v in loss_dict.items():
+ writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)
diff --git a/cosyvoice/vllm/cosyvoice2.py b/cosyvoice/vllm/cosyvoice2.py
new file mode 100644
index 0000000000000000000000000000000000000000..de0bc76bfaef351eb035c61fcb8eb9f1824cc971
--- /dev/null
+++ b/cosyvoice/vllm/cosyvoice2.py
@@ -0,0 +1,103 @@
+# SPDX-License-Identifier: Apache-2.0
+
+# Adapted from
+# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/qwen2/modeling_qwen2.py
+# Copyright 2024 The Qwen team.
+# Copyright 2023 The vLLM team.
+# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
+#
+# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
+# and OPT implementations in this library. It has been modified from its
+# original forms to accommodate minor architectural differences compared
+# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Inference-only Qwen2 model compatible with HuggingFace weights."""
+from vllm.model_executor.models.qwen2 import *
+
+
+class CosyVoice2ForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
+ packed_modules_mapping = {
+ "qkv_proj": [
+ "q_proj",
+ "k_proj",
+ "v_proj",
+ ],
+ "gate_up_proj": [
+ "gate_proj",
+ "up_proj",
+ ],
+ }
+
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
+ super().__init__()
+ config = vllm_config.model_config.hf_config
+ quant_config = vllm_config.quant_config
+ lora_config = vllm_config.lora_config
+
+ self.config = config
+ self.lora_config = lora_config
+
+ self.quant_config = quant_config
+ self.model = Qwen2Model(vllm_config=vllm_config,
+ prefix=maybe_prefix(prefix, "model"))
+
+ if get_pp_group().is_last_rank:
+ if config.tie_word_embeddings:
+ self.lm_head = self.model.embed_tokens
+ else:
+ self.lm_head = ParallelLMHead(config.vocab_size,
+ config.hidden_size,
+ True,
+ quant_config=quant_config,
+ prefix=maybe_prefix(
+ prefix, "lm_head"))
+ else:
+ self.lm_head = PPMissingLayer()
+
+ self.logits_processor = LogitsProcessor(config.vocab_size)
+
+ self.make_empty_intermediate_tensors = (
+ self.model.make_empty_intermediate_tensors)
+
+ def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
+ return self.model.get_input_embeddings(input_ids)
+
+ def forward(
+ self,
+ input_ids: torch.Tensor,
+ positions: torch.Tensor,
+ intermediate_tensors: Optional[IntermediateTensors] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ ) -> Union[torch.Tensor, IntermediateTensors]:
+ hidden_states = self.model(input_ids, positions, intermediate_tensors,
+ inputs_embeds)
+ return hidden_states
+
+ def compute_logits(
+ self,
+ hidden_states: torch.Tensor,
+ sampling_metadata: SamplingMetadata,
+ ) -> Optional[torch.Tensor]:
+ logits = self.logits_processor(self.lm_head, hidden_states,
+ sampling_metadata, self.lm_head.bias)
+ return logits
+
+ def load_weights(self, weights: Iterable[tuple[str,
+ torch.Tensor]]) -> set[str]:
+ loader = AutoWeightsLoader(
+ self,
+ skip_prefixes=(["lm_head."]
+ if self.config.tie_word_embeddings else None),
+ )
+ return loader.load_weights(weights)
diff --git a/gradio_demo.py b/gradio_demo.py
new file mode 100644
index 0000000000000000000000000000000000000000..4f948e3fb11f5be7bae1437d5296e3d7f8809a33
--- /dev/null
+++ b/gradio_demo.py
@@ -0,0 +1,55 @@
+#!/usr/bin/env python3
+"""
+Moss Speech Demo - Multimodal Speech Interaction System
+Main Program Entry
+"""
+
+import argparse
+import os
+import sys
+
+sys.path.append(os.path.dirname(os.path.abspath(__file__)))
+
+from utils.interface import MIMOInterface
+
+
+def parse_args():
+ parser = argparse.ArgumentParser(description="Moss Speech Demo")
+ parser.add_argument(
+ "--model_path",
+ type=str,
+ default="fnlp/MOSS-Speech",
+ help="the path of model",
+ )
+ parser.add_argument(
+ '--codec_path',
+ type=str,
+ default='fnlp/MOSS-Speech-Codec'
+ help="the path of codec",
+ )
+ parser.add_argument("--host", type=str, default="0.0.0.0", help="server address")
+ parser.add_argument("--port", type=int, default=7860, help="server port")
+ parser.add_argument("--share", action="store_true", help="cweather reate a public link")
+ return parser.parse_args()
+
+
+def main():
+ args = parse_args()
+
+ # create demo
+ interface = MIMOInterface(args.model_path)
+ demo = interface.create_interface()
+
+ print(f"🚀 running Moss Speech Demo...")
+ print(f"📱 model path: {args.model_path}")
+ print(f"🌐 server link: http://{args.host}:{args.port}")
+
+ demo.launch(
+ server_name=args.host,
+ server_port=args.port,
+ share=args.share
+ )
+
+
+if __name__ == "__main__":
+ main()
diff --git a/utils/interface.py b/utils/interface.py
new file mode 100644
index 0000000000000000000000000000000000000000..8cdba10ee20f2b3f68ae635513c856fab88d7704
--- /dev/null
+++ b/utils/interface.py
@@ -0,0 +1,506 @@
+import gradio as gr
+import io
+import os
+import time
+import uuid
+import traceback
+import soundfile as sf
+import torchaudio
+import torch
+from transformers import AutoModel, AutoProcessor, GenerationConfig, StoppingCriteria
+from dataclasses import astuple
+import sys
+
+
+class MIMOStopper(StoppingCriteria):
+ def __init__(self, stop_id: int) -> None:
+ super().__init__()
+ self.stop_id = stop_id
+
+ def __call__(self, input_ids: torch.LongTensor, scores) -> bool:
+ # Stop when last token of channel 0 is the stop token
+ return input_ids[0, -1].item() == self.stop_id
+
+
+class Inference:
+ def __init__(self, model_path, codec_path=None, device='cuda'):
+ self.device = device
+ self.processor = AutoProcessor.from_pretrained(
+ model_path,
+ codec_path=codec_path if codec_path else "fnlp/MOSS-Speech-Codec",
+ device=self.device,
+ trust_remote_code=True,
+ )
+ self.model = AutoModel.from_pretrained(
+ model_path, trust_remote_code=True, device_map="auto"
+ ).eval()
+
+ def forward(
+ self,
+ task: str,
+ conversation_history_for_model: list, # Pass the entire conversation history formatted for the model
+ temperature: float,
+ top_p: float,
+ repetition_penalty: float,
+ max_new_tokens: int,
+ min_new_tokens: int,
+ top_k: int,
+ system_prompt: str,
+ decoder_audio_prompt_path: str = None
+ ):
+ # Prepare the conversation for the processor
+ full_conversation = []
+ if system_prompt:
+ full_conversation.append({"role": "system", "content": system_prompt})
+
+
+ # Add previous turns from the formatted history
+ full_conversation.extend(conversation_history_for_model)
+
+ output_modalities = []
+ if task.endswith("speech_response"):
+ output_modalities.append('audio')
+ if task.endswith("text_response"):
+ output_modalities.append('text')
+
+ # This should always be exactly one modality based on task
+ if len(output_modalities) != 1:
+ raise ValueError("Expected exactly one output modality based on task.")
+
+ inputs = self.processor([full_conversation], output_modalities)
+
+ stopping_criteria = [
+ MIMOStopper(self.processor.tokenizer.pad_token_id),
+ MIMOStopper(
+ self.processor.tokenizer.convert_tokens_to_ids("<|im_end|>"),
+ ),
+ ]
+
+ generate_kwargs = {
+ "temperature": temperature,
+ "top_p": top_p,
+ "repetition_penalty": repetition_penalty,
+ "max_new_tokens": max_new_tokens,
+ "min_new_tokens": min_new_tokens,
+ "do_sample": True, # Always true for these parameters
+ "use_cache": True,
+ "top_k": top_k,
+ }
+ generation_config = GenerationConfig(**generate_kwargs)
+
+ token_ids = self.model.generate(
+ input_ids=inputs["input_ids"].to(self.device),
+ attention_mask=inputs["attention_mask"].to(self.device),
+ generation_config=generation_config,
+ stopping_criteria=stopping_criteria
+ )
+
+ results = self.processor.decode(
+ token_ids.to(self.device),
+ output_modalities,
+ decoder_audio_prompt_path=decoder_audio_prompt_path
+ )
+
+ # As per requirement, always one output modality, so take the first result
+ response_obj = results[0]
+
+ text_out = None
+ audio_out = None
+
+ if output_modalities[0] == 'audio':
+ audio_out = (response_obj.sampling_rate, response_obj.audio.squeeze(0).cpu().numpy()) if response_obj.audio is not None else None
+ elif output_modalities[0] == 'text':
+ text_out = response_obj.generated_text if response_obj.generated_text is not None else None
+
+ # Clean up temporary user audio file if it was created (only temporary for processor)
+ # if temp_user_audio_path and os.path.exists(temp_user_audio_path):
+ # os.remove(temp_user_audio_path)
+
+ return text_out, audio_out
+
+
+class MIMOInterface:
+ def __init__(self, model_path):
+ self.inference = Inference(model_path, codec_path="fnlp/MOSS-Speech-Codec")
+ self.audio_dir = "chat_audio"
+ os.makedirs(self.audio_dir, exist_ok=True)
+ self.default_decoder_audio_prompt_path = ".assets/prompt_cn.wav"
+
+
+ # ---------- Helpers ----------
+
+ def get_system_prompt_default(self, task):
+ if task.endswith("speech_response"):
+ return "You are a helpful voice assistant. Answer the user's questions with spoken responses."
+ elif task.endswith("text_response"):
+ return "You are a helpful assistant. Answer the user's questions with text."
+ else:
+ return "You are a helpful assistant."
+
+ def _unique_wav_path(self, prefix: str) -> str:
+ return os.path.join(self.audio_dir, f"{prefix}_{int(time.time()*1000)}_{uuid.uuid4().hex[:8]}.wav")
+
+ def _save_audio_numpy(self, audio_np_tuple, prefix="audio") -> str:
+ """
+ audio_np_tuple: (sample_rate, np.ndarray)
+ Returns local .wav path.
+ """
+ if audio_np_tuple is None:
+ return ""
+
+ sr, arr = audio_np_tuple
+ if len(arr.shape) > 1:
+ arr = arr[:, 0] # Ensure mono
+ path = self._unique_wav_path(prefix)
+ sf.write(path, arr, sr, format="WAV")
+ return path
+
+ def _delete_audio_files(self, file_paths: list):
+ """Deletes a list of audio files."""
+ for path in file_paths:
+ if os.path.exists(path) and os.path.isfile(path):
+ try:
+ os.remove(path)
+ except Exception as e:
+ print(f"Error deleting audio file {path}: {e}")
+
+ # ---------- Core inference + chat sync ----------
+
+ def process_input(
+ self,
+ audio_input,
+ text_input,
+ mode,
+ temperature,
+ top_p,
+ repetition_penalty,
+ max_new_tokens,
+ min_new_tokens,
+ top_k,
+ system_prompt,
+ history_state_tuple, # (chatbot_messages, audio_file_paths_to_delete, conversation_for_model)
+ decoder_audio_prompt # numpy tuple from gradio audio component
+ ):
+ chatbot_messages, audio_file_paths_to_delete, conversation_for_model = history_state_tuple
+ # Keep a copy of the state before any changes in case of warning/error
+ original_chatbot_messages = list(chatbot_messages)
+ original_audio_file_paths_to_delete = list(audio_file_paths_to_delete)
+ original_conversation_for_model = list(conversation_for_model)
+
+ # new_chatbot_message = []
+ try:
+ # --- Handle Decoder Audio Prompt ---
+ decoder_audio_prompt_path_for_model = None
+ if decoder_audio_prompt is not None:
+ saved_decoder_audio_path = self._save_audio_numpy(decoder_audio_prompt, prefix="decoder_prompt")
+ audio_file_paths_to_delete.append(saved_decoder_audio_path)
+ decoder_audio_prompt_path_for_model = saved_decoder_audio_path
+ else:
+ decoder_audio_prompt_path_for_model = self.default_decoder_audio_prompt_path
+
+
+ # --- Prepare User Input for Model and Display ---
+ user_display_message_content = ""
+ user_audio_path_display = None
+ current_user_turn_for_model = None
+
+ if mode.startswith("speech_instruct"):
+ if audio_input is None:
+ gr.Warning("Speech Input mode requires an audio input.")
+ return original_chatbot_messages[-1][1][0] if original_chatbot_messages else "", None, original_chatbot_messages, history_state_tuple # Return previous state
+ else:
+ user_audio_path_display = self._save_audio_numpy(audio_input, prefix="user")
+ audio_file_paths_to_delete.append(user_audio_path_display)
+ user_display_message_content = "🎤 Voice message" # Consistent text for speech input
+
+ buffer = io.BytesIO()
+ sf.write(buffer, audio_input[1], audio_input[0], format="WAV")
+ buffer.seek(0)
+ current_user_turn_for_model = {"role": "user", "content": {'path': user_audio_path_display, 'type': 'audio/wav'}}
+ else: # Text instruct modes
+ txt = (text_input or "").strip()
+ if not txt:
+ gr.Warning("Text Input mode requires a text input.")
+ return original_chatbot_messages[-1][1][0] if original_chatbot_messages else "", None, original_chatbot_messages, history_state_tuple # Return previous state
+ else:
+ user_display_message_content = txt
+ current_user_turn_for_model = {"role": "user", "content": user_display_message_content}
+
+ # Add user input to chatbot messages and model's conversation history
+ # Always add a single entry for user turn in chatbot_messages
+ if user_audio_path_display:
+ # chatbot_messages.append([user_display_message_content, None])
+ # new_chatbot_message.append([None, gr.Audio(user_audio_path_display, type='audio/wav')])
+ chatbot_messages.append({'role': 'user', 'content': {'path': user_audio_path_display}})
+ else:
+ chatbot_messages.append({'role': 'user', 'content': user_display_message_content})
+
+ if current_user_turn_for_model:
+ conversation_for_model.append(current_user_turn_for_model)
+
+ # --- Run Inference ---
+ text_out, audio_out = self.inference.forward(
+ task=mode,
+ conversation_history_for_model=conversation_for_model,
+ temperature=temperature,
+ top_p=top_p,
+ repetition_penalty=repetition_penalty,
+ max_new_tokens=max_new_tokens,
+ min_new_tokens=min_new_tokens,
+ top_k=top_k,
+ system_prompt=system_prompt,
+ decoder_audio_prompt_path=decoder_audio_prompt_path_for_model
+ )
+
+ # --- Process Assistant Output for Display and Model History ---
+ assistant_response_for_model_content = None # This will be string or dict for model history
+ final_text_output_panel = None
+ assistant_audio_output_panel = None
+
+ # Assistant text for display/chatbot
+ assistant_text_display = None
+ assistant_audio_path_display = None
+
+ if mode.endswith("speech_response"):
+ if audio_out is None:
+ gr.Warning("Model failed to generate speech response.")
+ # Restore original history state if generation failed
+ return original_chatbot_messages[-1][1][0] if original_chatbot_messages else "", None, original_chatbot_messages, (original_chatbot_messages, original_audio_file_paths_to_delete, original_conversation_for_model)
+
+ assistant_audio_output_panel = audio_out
+ saved_assistant_audio_path = self._save_audio_numpy(audio_out, prefix="assistant")
+ audio_file_paths_to_delete.append(saved_assistant_audio_path)
+ assistant_audio_path_display = saved_assistant_audio_path
+
+ # Chatbot message for speech response mode
+ # The text part is usually not needed, but can be a placeholder or empty
+ # chatbot_messages.append(["🔊 Generated speech.", None])
+ # new_chatbot_message.append([None, gr.Audio(assistant_audio_path_display, type="filepath")])
+ chatbot_messages.append({'role': 'assistant', 'content': {'path': assistant_audio_path_display}})
+ assistant_response_for_model_content = {'path': saved_assistant_audio_path, 'type': 'filepath'}
+
+ elif mode.endswith("text_response"):
+ if text_out is None or str(text_out).strip() == "":
+ gr.Warning("Model failed to generate text response.")
+ # Restore original history state if generation failed
+ return original_chatbot_messages[-1][1][0] if original_chatbot_messages else "", None, original_chatbot_messages, (original_chatbot_messages, original_audio_file_paths_to_delete, original_conversation_for_model)
+
+ final_text_output_panel = text_out
+ assistant_text_display = text_out
+
+ # Chatbot message for text response mode
+ chatbot_messages.append({'role': 'assistant', 'content': assistant_text_display})
+ assistant_response_for_model_content = text_out
+
+ # Add assistant's actual response to the conversation for the next model turn
+ if assistant_response_for_model_content:
+ conversation_for_model.append({"role": "assistant", "content": assistant_response_for_model_content})
+
+ # Return updated history state tuple
+ new_history_state_tuple = (chatbot_messages, audio_file_paths_to_delete, conversation_for_model)
+ # Return panel outputs + chat + state
+ return final_text_output_panel, assistant_audio_output_panel, chatbot_messages, new_history_state_tuple
+
+ except Exception as e:
+ traceback.print_exc()
+ err = f"Error: {str(e)}"
+ gr.Error(f"An unexpected error occurred: {err}")
+ # Restore original history state on any unhandled exception
+ return original_chatbot_messages[-1][0] if original_chatbot_messages else "", None, original_chatbot_messages, (original_chatbot_messages, original_audio_file_paths_to_delete, original_conversation_for_model)
+
+ def _submit_with_clear(
+ self, audio_in, text_in, mode, temperature, top_p, repetition_penalty, max_new_tokens, min_new_tokens, top_k,
+ system_prompt, history_state, decoder_audio_prompt, clear_on_submit
+ ):
+ if clear_on_submit:
+ _, audio_files, _ = history_state
+ self._delete_audio_files(audio_files)
+ history_state = ([], [], [])
+ return self.process_input(
+ audio_in, text_in, mode, temperature, top_p, repetition_penalty,
+ max_new_tokens, min_new_tokens, top_k, system_prompt,
+ history_state, decoder_audio_prompt
+ )
+
+ # ---------- UI factory ----------
+
+ def create_interface(self):
+ theme = gr.themes.Soft()
+
+ with gr.Blocks(theme=theme) as demo:
+ gr.HTML(
+ """
+
+
🎤 MOSS-Speech Demo
+
+ """
+ )
+
+
+ mode = gr.Radio(
+ [
+ ("Speech In → Speech Out", "speech_instruct_speech_response"),
+ ("Speech In → Text Out", "speech_instruct_text_response"),
+ ("Text In → Speech Out", "text_instruct_speech_response"),
+ ("Text In → Text Out", "text_instruct_text_response"),
+ ],
+ label="🎯 Interaction Mode",
+ value="speech_instruct_speech_response",
+ container=True,
+ scale=1,
+ )
+
+ system_prompt = gr.Textbox(
+ label="🤖 System Prompt",
+ value=self.get_system_prompt_default("speech_instruct_speech_response"),
+ lines=2,
+ container=True,
+ scale=1,
+ )
+
+ with gr.Accordion("⚙️ Generation Parameters", open=False, elem_classes="param-accordion"):
+ with gr.Row():
+ temperature = gr.Slider(0.1, 2.0, value=0.6, step=0.1, label="🌡️ Temperature", info="Higher = more random")
+ top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="🎯 Top-p", info="Nucleus sampling")
+ top_k = gr.Slider(1, 100, value=20, step=1, label="🔝 Top-k", info="Candidate tokens")
+
+ with gr.Row():
+ repetition_penalty = gr.Slider(1.0, 2.0, value=1.1, step=0.1, label="🔄 Repetition Penalty", info="Discourage repeats")
+ max_new_tokens = gr.Slider(1, 2000, value=500, step=1, label="📝 Max New Tokens", info="Upper bound")
+ min_new_tokens = gr.Slider(0, 100, value=0, step=1, label="📏 Min New Tokens", info="Lower bound")
+
+ decoder_audio_prompt = gr.Audio(type="numpy", value=".assets/prompt_cn.wav", label="🎙️ Decoder Audio Prompt (Optional)", visible=True)
+
+ with gr.Row():
+ with gr.Column(scale=1, elem_classes="input-section"):
+ gr.Markdown("### 📥 Input")
+
+ audio_input = gr.Audio(type="numpy", label="🎙️ Speech Input", visible=True)
+
+ text_input = gr.Textbox(
+ label="🧾 Text Input",
+ placeholder="Type your question here…",
+ lines=3,
+ info="Enter text to query the assistant",
+ visible=False,
+ )
+
+ with gr.Column(scale=1, elem_classes="output-section"):
+ gr.Markdown("### 📤 Output")
+
+ text_output = gr.Textbox(
+ label="📄 Text Output",
+ lines=8,
+ interactive=False,
+ info="Model-generated text response",
+ visible=False,
+ )
+
+ audio_output = gr.Audio(label="🔊 Speech Output", visible=True, autoplay=False)
+
+ with gr.Row():
+ submit_btn = gr.Button("🚀 Submit", variant="primary", elem_classes="btn-primary")
+ clear_history_btn = gr.Button("🗑️ Clear All History", variant="secondary", elem_classes="btn-secondary")
+
+ with gr.Row():
+ clear_history_on_mode_change_checkbox = gr.Checkbox(
+ label="Clear history on mode change", value=True, interactive=True
+ )
+ clear_history_on_submit_checkbox = gr.Checkbox(
+ label="Clear history on each submit", value=False, interactive=True
+ )
+
+ # history_state will now be a tuple: (chatbot_messages, audio_file_paths_to_delete, conversation_for_model)
+ history_state = gr.State(([], [], []))
+ chatbot = gr.Chatbot(
+ elem_id="chatbot",
+ bubble_full_width=True,
+ type="messages", # Keep commented to allow [text, audio] in chatbot
+ scale=1,
+ label="💬 Chat History",
+ show_copy_button=True
+ )
+
+
+ # ---------- Event handlers ----------
+
+ submit_btn.click(
+ fn=self._submit_with_clear,
+ inputs=[
+ audio_input,
+ text_input,
+ mode,
+ temperature,
+ top_p,
+ repetition_penalty,
+ max_new_tokens,
+ min_new_tokens,
+ top_k,
+ system_prompt,
+ history_state, # Pass the current Gradio state tuple
+ decoder_audio_prompt,
+ clear_history_on_submit_checkbox
+ ],
+ outputs=[text_output, audio_output, chatbot, history_state],
+ )
+
+ def _hard_clear(current_history_state_tuple):
+ _, audio_files, _ = current_history_state_tuple
+ self._delete_audio_files(audio_files)
+ gr.Info("Conversation history and associated audio files cleared.")
+ return "", None, [], ([], [], [])
+
+ clear_history_btn.click(
+ fn=_hard_clear,
+ inputs=[history_state],
+ outputs=[text_output, audio_output, chatbot, history_state],
+ )
+
+ def update_interface_visibility(selected_mode):
+ if selected_mode.startswith("speech_instruct"):
+ return gr.update(visible=True), gr.update(visible=False)
+ else:
+ return gr.update(visible=False), gr.update(visible=True)
+
+ def update_output_visibility(selected_mode):
+ if selected_mode.endswith("speech_response"):
+ return gr.update(visible=False), gr.update(visible=True)
+ else:
+ return gr.update(visible=True), gr.update(visible=False)
+
+ def _on_mode_change(task, clear_history_on_mode_change, current_history_state_tuple):
+ if clear_history_on_mode_change:
+ _, audio_files_to_delete, _ = current_history_state_tuple
+ self._delete_audio_files(audio_files_to_delete)
+ gr.Info("Interaction mode changed. History cleared.")
+ return self.get_system_prompt_default(task), [], ([], [], [])
+ else:
+ gr.Info("Interaction mode changed. History preserved.")
+ # Keep existing chatbot messages and state
+ chatbot_messages, audio_files, conv_state = current_history_state_tuple
+ return self.get_system_prompt_default(task), chatbot_messages, (chatbot_messages, audio_files, conv_state)
+
+ mode.change(
+ fn=_on_mode_change,
+ inputs=[mode, clear_history_on_mode_change_checkbox, history_state],
+ outputs=[system_prompt, chatbot, history_state],
+ )
+ mode.change(
+ fn=update_interface_visibility,
+ inputs=[mode],
+ outputs=[audio_input, text_input],
+ )
+ mode.change(
+ fn=update_output_visibility,
+ inputs=[mode],
+ outputs=[text_output, audio_output],
+ )
+
+ return demo
+
+if __name__ == "__main__":
+ model_path = "fnlp/MOSS-Speech"
+
+ interface = MIMOInterface(model_path)
+ demo = interface.create_interface()
+ demo.launch()
\ No newline at end of file