import torch import os import shutil import tempfile import gradio as gr from PIL import Image from rembg import remove import sys import uuid import subprocess from glob import glob import requests from huggingface_hub import snapshot_download # Download models os.makedirs("ckpts", exist_ok=True) snapshot_download( repo_id = "pengHTYX/PSHuman_Unclip_768_6views", local_dir = "./ckpts" ) os.makedirs("smpl_related", exist_ok=True) snapshot_download( repo_id = "fffiloni/PSHuman-SMPL-related", local_dir = "./smpl_related" ) # Folder containing example images examples_folder = "examples" # Retrieve all file paths in the folder images_examples = [ os.path.join(examples_folder, file) for file in os.listdir(examples_folder) if os.path.isfile(os.path.join(examples_folder, file)) ] def remove_background(input_pil, remove_bg): # Create a temporary folder for downloaded and processed images temp_dir = tempfile.mkdtemp() unique_id = str(uuid.uuid4()) image_path = os.path.join(temp_dir, f'input_image_{unique_id}.png') try: # Check if input_url is already a PIL Image if isinstance(input_pil, Image.Image): image = input_pil else: # Otherwise, assume it's a file path and open it image = Image.open(input_pil) # Flip the image horizontally image = image.transpose(Image.FLIP_LEFT_RIGHT) # Save the resized image image.save(image_path) except Exception as e: shutil.rmtree(temp_dir) raise gr.Error(f"Error downloading or saving the image: {str(e)}") if remove_bg is True: # Run background removal removed_bg_path = os.path.join(temp_dir, f'output_image_rmbg_{unique_id}.png') try: img = Image.open(image_path) result = remove(img) result.save(removed_bg_path) # Remove the input image to keep the temp directory clean os.remove(image_path) except Exception as e: shutil.rmtree(temp_dir) raise gr.Error(f"Error removing background: {str(e)}") return removed_bg_path, temp_dir else: return image_path, temp_dir def run_inference(temp_dir, removed_bg_path): # Define the inference configuration inference_config = "configs/inference-768-6view.yaml" pretrained_model = "./ckpts" crop_size = 740 seed = 600 num_views = 7 save_mode = "rgb" try: # Run the inference command subprocess.run( [ "python", "inference.py", "--config", inference_config, f"pretrained_model_name_or_path={pretrained_model}", f"validation_dataset.crop_size={crop_size}", f"with_smpl=false", f"validation_dataset.root_dir={temp_dir}", f"seed={seed}", f"num_views={num_views}", f"save_mode={save_mode}" ], check=True ) # Retrieve the file name without the extension removed_bg_file_name = os.path.splitext(os.path.basename(removed_bg_path))[0] # List objects in the "out" folder out_folder_path = "out" out_folder_objects = os.listdir(out_folder_path) print(f"Objects in '{out_folder_path}':") for obj in out_folder_objects: print(f" - {obj}") # List objects in the "out/{removed_bg_file_name}" folder specific_out_folder_path = os.path.join(out_folder_path, removed_bg_file_name) if os.path.exists(specific_out_folder_path) and os.path.isdir(specific_out_folder_path): specific_out_folder_objects = os.listdir(specific_out_folder_path) print(f"\nObjects in '{specific_out_folder_path}':") for obj in specific_out_folder_objects: print(f" - {obj}") else: print(f"\nThe folder '{specific_out_folder_path}' does not exist.") output_video = glob(os.path.join(f"out/{removed_bg_file_name}", "*.mp4")) output_objects = glob(os.path.join(f"out/{removed_bg_file_name}", "*.obj")) return output_video, output_objects except subprocess.CalledProcessError as e: return f"Error during inference: {str(e)}" def process_image(input_pil, remove_bg): torch.cuda.empty_cache() # Remove background result = remove_background(input_pil, remove_bg) if isinstance(result, str) and result.startswith("Error"): raise gr.Error(f"{result}") # Return the error message if something went wrong removed_bg_path, temp_dir = result # Unpack only if successful # Run inference output_video, output_objects = run_inference(temp_dir, removed_bg_path) if isinstance(output_video, str) and output_video.startswith("Error"): shutil.rmtree(temp_dir) raise gr.Error(f"{output_video}") # Return the error message if inference failed shutil.rmtree(temp_dir) # Cleanup temporary folder print(output_video) torch.cuda.empty_cache() return output_video[0], output_objects[0], output_objects[1] css=""" div#col-container{ margin: 0 auto; max-width: 982px; } div#video-out-elm{ height: 323px; } """ def gradio_interface(): with gr.Blocks(css=css) as app: with gr.Column(elem_id="col-container"): gr.Markdown("# PSHuman: Photorealistic Single-image 3D Human Reconstruction using Cross-Scale Multiview Diffusion and Explicit Remeshing") gr.HTML("""
Duplicate this Space Follow me on HF
""") with gr.Group(): with gr.Row(): with gr.Column(scale=2): input_image = gr.Image( label="Image input", type="pil", image_mode="RGBA", height=480 ) remove_bg = gr.Checkbox(label="Need to remove BG ?", value=False) submit_button = gr.Button("Process") with gr.Column(scale=4): output_video= gr.Video(label="Output Video", elem_id="video-out-elm") with gr.Row(): output_object_mesh = gr.Model3D(label=".OBJ Mesh", height=240) output_object_color = gr.Model3D(label=".OBJ colored", height=240) gr.Examples( examples = examples_folder, inputs = [input_image], examples_per_page = 11 ) submit_button.click(process_image, inputs=[input_image, remove_bg], outputs=[output_video, output_object_mesh, output_object_color]) return app # Launch the Gradio app app = gradio_interface() app.launch(show_api=False, show_error=True)