import pandas as pd from tqdm.auto import tqdm import streamlit as st from huggingface_hub import HfApi, hf_hub_download from huggingface_hub.repocard import metadata_load from ascending_metrics import ascending_metrics import numpy as np from st_aggrid import AgGrid, GridOptionsBuilder, JsCode from os.path import exists import threading def get_model_ids(author=None): api = HfApi() if author is None: models = api.list_models(filter="model-index") else: models = api.list_models(filter="model-index", author="autoevaluate") model_ids = [x.modelId for x in models] return model_ids def get_metadata(model_id): try: readme_path = hf_hub_download(model_id, filename="README.md") return metadata_load(readme_path) except Exception: # 404 README.md not found or problem loading it return None def parse_metric_value(value): if isinstance(value, str): "".join(value.split("%")) try: value = float(value) except: # noqa: E722 value = None elif isinstance(value, list): if len(value) > 0: value = value[0] else: value = None value = round(value, 2) if isinstance(value, float) else None return value def parse_metrics_rows(meta, only_verified=False): if not isinstance(meta["model-index"], list) or len(meta["model-index"]) == 0 or "results" not in meta["model-index"][0]: return None for result in meta["model-index"][0]["results"]: if not isinstance(result, dict) or "dataset" not in result or "metrics" not in result or "type" not in result["dataset"]: continue dataset = result["dataset"]["type"] row = {"dataset": dataset, "split": "-unspecified-", "config": "-unspecified-"} if "split" in result["dataset"]: row["split"] = result["dataset"]["split"] if "config" in result["dataset"]: row["config"] = result["dataset"]["config"] no_results = True for metric in result["metrics"]: name = metric["type"].lower().strip() if name in ("model_id", "dataset", "split", "config"): # Metrics are not allowed to be named "dataset", "split", "config". continue value = parse_metric_value(metric.get("value", None)) if value is None: continue if name in row: new_metric_better = value < row[name] if name in ascending_metrics else value > row[name] if name not in row or new_metric_better: # overwrite the metric if the new value is better. if only_verified: if "verified" in metric and metric["verified"]: no_results = False row[name] = value else: no_results = False row[name] = value if no_results: continue yield row @st.cache(ttl=3600) def get_data_wrapper(): def get_data(): data = [] verified_data = [] model_ids = get_model_ids() model_ids_from_autoeval = set(get_model_ids(author="autoevaluate")) for model_id in tqdm(model_ids): meta = get_metadata(model_id) if meta is None: continue for row in parse_metrics_rows(meta): if row is None: continue row["model_id"] = model_id data.append(row) for row in parse_metrics_rows(meta, only_verified=True): if row is None: continue row["model_id"] = model_id verified_data.append(row) dataframe = pd.DataFrame.from_records(data) dataframe.to_pickle("cache.pkl") verified_dataframe = pd.DataFrame.from_records(verified_data) verified_dataframe.to_pickle("verified_cache.pkl") if exists("cache.pkl") and exists("verified_cache.pkl"): # If we have saved the results previously, call an asynchronous process # to fetch the results and update the saved file. Don't make users wait # while we fetch the new results. Instead, display the old results for # now. The new results should be loaded when this method # is called again. dataframe = pd.read_pickle("cache.pkl") verified_dataframe = pd.read_pickle("verified_cache.pkl") t = threading.Thread(name='get_data procs', target=get_data) t.start() else: # We have to make the users wait during the first startup of this app. get_data() dataframe = pd.read_pickle("cache.pkl") verified_dataframe = pd.read_pickle("verified_cache.pkl") return dataframe, verified_dataframe dataframe, verified_dataframe = get_data_wrapper() st.markdown("# 🤗 Leaderboards") only_verified_results = st.sidebar.checkbox( "Filter for Verified Results", ) selectable_datasets = list(set(dataframe.dataset.tolist() + verified_dataframe.dataset.tolist())) if only_verified_results: dataframe = verified_dataframe query_params = st.experimental_get_query_params() default_dataset = "common_voice" if "dataset" in query_params: if len(query_params["dataset"]) > 0 and query_params["dataset"][0] in selectable_datasets: default_dataset = query_params["dataset"][0] dataset = st.sidebar.selectbox( "Dataset", selectable_datasets, index=selectable_datasets.index(default_dataset), ) st.experimental_set_query_params(**{"dataset": [dataset]}) dataset_df = dataframe[dataframe.dataset == dataset] dataset_df = dataset_df.dropna(axis="columns", how="all") if len(dataset_df) > 0: selectable_configs = list(set(dataset_df["config"])) config = st.sidebar.selectbox( "Config", selectable_configs, ) dataset_df = dataset_df[dataset_df.config == config] selectable_splits = list(set(dataset_df["split"])) split = st.sidebar.selectbox( "Split", selectable_splits, ) dataset_df = dataset_df[dataset_df.split == split] selectable_metrics = list(filter(lambda column: column not in ("model_id", "dataset", "split", "config"), dataset_df.columns)) dataset_df = dataset_df.filter(["model_id"] + selectable_metrics) dataset_df = dataset_df.dropna(thresh=2) # Want at least two non-na values (one for model_id and one for a metric). sorting_metric = st.sidebar.radio( "Sorting Metric", selectable_metrics, ) st.markdown( "Please click on the model's name to be redirected to its model card." ) st.markdown( "Want to beat the leaderboard? Don't see your model here? Simply request an automatic evaluation [here](https://huggingface.co/spaces/autoevaluate/autoevaluate)." ) # Make the default metric appear right after model names cols = dataset_df.columns.tolist() cols.remove(sorting_metric) cols = cols[:1] + [sorting_metric] + cols[1:] dataset_df = dataset_df[cols] # Sort the leaderboard, giving the sorting metric highest priority and then ordering by other metrics in the case of equal values. dataset_df = dataset_df.sort_values(by=cols[1:], ascending=[metric in ascending_metrics for metric in cols[1:]]) dataset_df = dataset_df.replace(np.nan, '-') # Make the leaderboard gb = GridOptionsBuilder.from_dataframe(dataset_df) gb.configure_default_column(sortable=False) gb.configure_column( "model_id", cellRenderer=JsCode('''function(params) {return ''+params.value+''}'''), ) for name in selectable_metrics: gb.configure_column(name, type=["numericColumn","numberColumnFilter","customNumericFormat"], precision=2, aggFunc='sum') gb.configure_column( sorting_metric, sortable=True, cellStyle=JsCode('''function(params) { return {'backgroundColor': '#FFD21E'}}''') ) go = gb.build() AgGrid(dataset_df, gridOptions=go, allow_unsafe_jscode=True) else: st.markdown( "No data to display." )