import gradio as gr import torch import torch.nn as nn import torchvision import torch.backends.cudnn as cudnn import torch.optim import os import sys import argparse import time import dataloader import model import numpy as np from torchvision import transforms from PIL import Image import glob import time def lowlight(image): os.environ['CUDA_VISIBLE_DEVICES']='' data_lowlight = Image.open(image) data_lowlight = (np.asarray(data_lowlight)/255.0) data_lowlight = torch.from_numpy(data_lowlight).float() data_lowlight = data_lowlight.permute(2,0,1) data_lowlight = data_lowlight.cpu().unsqueeze(0) DCE_net = model.enhance_net_nopool().cpu() DCE_net.load_state_dict(torch.load('Epoch99.pth', map_location=torch.device('cpu'))) start = time.time() _,enhanced_image,_ = DCE_net(data_lowlight) end_time = (time.time() - start) print(end_time) torchvision.utils.save_image(enhanced_image, f'01.png') return '01.png' title = "Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement" description = "Low-light image enhancement using Zero-DCE model. Full paper: http://openaccess.thecvf.com/content_CVPR_2020/papers/Guo_Zero-Reference_Deep_Curve_Estimation_for_Low-Light_Image_Enhancement_CVPR_2020_paper.pdf" article = "
Compound Multi-branch Feature Fusion for Real Image Restoration | Github Repo