import gradio as gr import numpy as np import torch from PIL import Image from skimage.feature import graycomatrix, graycoprops from torchvision import transforms # Load the model model = torch.jit.load("SuSy.pt") def process_image(image): # Set Parameters top_k_patches = 5 patch_size = 224 # Get the image dimensions width, height = image.size # Calculate the number of patches num_patches_x = width // patch_size num_patches_y = height // patch_size # Divide the image in patches patches = np.zeros((num_patches_x * num_patches_y, patch_size, patch_size, 3), dtype=np.uint8) for i in range(num_patches_x): for j in range(num_patches_y): x = i * patch_size y = j * patch_size patch = image.crop((x, y, x + patch_size, y + patch_size)) patches[i * num_patches_y + j] = np.array(patch) # Compute the most relevant patches (optional) dissimilarity_scores = [] for patch in patches: transform_patch = transforms.Compose([transforms.PILToTensor(), transforms.Grayscale()]) grayscale_patch = transform_patch(Image.fromarray(patch)).squeeze(0) glcm = graycomatrix(grayscale_patch, [5], [0], 256, symmetric=True, normed=True) dissimilarity_scores.append(graycoprops(glcm, "contrast")[0, 0]) # Sort patch indices by their dissimilarity score sorted_indices = np.argsort(dissimilarity_scores)[::-1] # Extract top k patches and convert them to tensor top_patches = patches[sorted_indices[:top_k_patches]] top_patches = torch.from_numpy(np.transpose(top_patches, (0, 3, 1, 2))) / 255.0 # Predict patches model.eval() with torch.no_grad(): preds = model(top_patches) # Process results classes = ['Authentic', 'DALL·E 3', 'Stable Diffusion 1.x', 'MJ V5/V6', 'MJ V1/V2', 'Stable Diffusion XL'] mean_probs = preds.mean(dim=0).numpy() # Create a dictionary of class probabilities class_probs = {cls: prob for cls, prob in zip(classes, mean_probs)} # Sort probabilities in descending order sorted_probs = dict(sorted(class_probs.items(), key=lambda item: item[1], reverse=True)) return sorted_probs # Define Gradio interface iface = gr.Interface( fn=process_image, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=6), title="SuSy: Synthetic Image Detector", description="""
Detect synthetic images with SuSy! SuSy can distinguish between authentic images and those generated by DALL·E, Midjourney and Stable Diffusion. Learn more about SuSy: Present and Future Generalization of Synthetic Image Detectors |