# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Updated to account for UI changes from https://github.com/rkfg/audiocraft/blob/long/app.py
# also released under the MIT license.
import argparse
from concurrent.futures import ProcessPoolExecutor
import logging
import os
from pathlib import Path
import subprocess as sp
import sys
from tempfile import NamedTemporaryFile
import time
import typing as tp
import warnings
import spaces
from einops import rearrange
import torch
import gradio as gr
from audiocraft.data.audio_utils import convert_audio
from audiocraft.data.audio import audio_write
from audiocraft.models.encodec import InterleaveStereoCompressionModel
from audiocraft.models import MusicGen, MultiBandDiffusion
MODEL = None # Last used model
SPACE_ID = os.environ.get('SPACE_ID', '')
IS_BATCHED = "facebook/MusicGen" in SPACE_ID or 'musicgen-internal/musicgen_dev' in SPACE_ID
print(IS_BATCHED)
MAX_BATCH_SIZE = 12
BATCHED_DURATION = 30
INTERRUPTING = False
MBD = None
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform
_old_call = sp.call
def _call_nostderr(*args, **kwargs):
# Avoid ffmpeg vomiting on the logs.
kwargs['stderr'] = sp.DEVNULL
kwargs['stdout'] = sp.DEVNULL
_old_call(*args, **kwargs)
sp.call = _call_nostderr
# Preallocating the pool of processes.
pool = ProcessPoolExecutor(4)
pool.__enter__()
def interrupt():
global INTERRUPTING
INTERRUPTING = True
class FileCleaner:
def __init__(self, file_lifetime: float = 3600):
self.file_lifetime = file_lifetime
self.files = []
def add(self, path: tp.Union[str, Path]):
self._cleanup()
self.files.append((time.time(), Path(path)))
def _cleanup(self):
now = time.time()
for time_added, path in list(self.files):
if now - time_added > self.file_lifetime:
if path.exists():
path.unlink()
self.files.pop(0)
else:
break
file_cleaner = FileCleaner()
def make_waveform(*args, **kwargs):
# Further remove some warnings.
be = time.time()
with warnings.catch_warnings():
warnings.simplefilter('ignore')
out = gr.make_waveform(*args, **kwargs)
print("Make a video took", time.time() - be)
return out
def load_model(version='facebook/musicgen-melody'):
global MODEL
print("Loading model", version)
if MODEL is None or MODEL.name != version:
del MODEL
MODEL = None # in case loading would crash
MODEL = MusicGen.get_pretrained(version)
def load_diffusion():
global MBD
if MBD is None:
print("loading MBD")
MBD = MultiBandDiffusion.get_mbd_musicgen()
def _do_predictions(texts, melodies, duration, progress=False, gradio_progress=None, **gen_kwargs):
MODEL.set_generation_params(duration=duration, **gen_kwargs)
print("new batch", len(texts), texts, [None if m is None else (m[0], m[1].shape) for m in melodies])
be = time.time()
processed_melodies = []
target_sr = 32000
target_ac = 1
for melody in melodies:
if melody is None:
processed_melodies.append(None)
else:
sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t()
if melody.dim() == 1:
melody = melody[None]
melody = melody[..., :int(sr * duration)]
melody = convert_audio(melody, sr, target_sr, target_ac)
processed_melodies.append(melody)
try:
if any(m is not None for m in processed_melodies):
outputs = MODEL.generate_with_chroma(
descriptions=texts,
melody_wavs=processed_melodies,
melody_sample_rate=target_sr,
progress=progress,
return_tokens=USE_DIFFUSION
)
else:
outputs = MODEL.generate(texts, progress=progress, return_tokens=USE_DIFFUSION)
except RuntimeError as e:
raise gr.Error("Error while generating " + e.args[0])
if USE_DIFFUSION:
if gradio_progress is not None:
gradio_progress(1, desc='Running MultiBandDiffusion...')
tokens = outputs[1]
if isinstance(MODEL.compression_model, InterleaveStereoCompressionModel):
left, right = MODEL.compression_model.get_left_right_codes(tokens)
tokens = torch.cat([left, right])
outputs_diffusion = MBD.tokens_to_wav(tokens)
if isinstance(MODEL.compression_model, InterleaveStereoCompressionModel):
assert outputs_diffusion.shape[1] == 1 # output is mono
outputs_diffusion = rearrange(outputs_diffusion, '(s b) c t -> b (s c) t', s=2)
outputs = torch.cat([outputs[0], outputs_diffusion], dim=0)
outputs = outputs.detach().cpu().float()
pending_videos = []
out_wavs = []
for output in outputs:
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
audio_write(
file.name, output, MODEL.sample_rate, strategy="loudness",
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
pending_videos.append(pool.submit(make_waveform, file.name))
out_wavs.append(file.name)
file_cleaner.add(file.name)
out_videos = [pending_video.result() for pending_video in pending_videos]
for video in out_videos:
file_cleaner.add(video)
print("batch finished", len(texts), time.time() - be)
print("Tempfiles currently stored: ", len(file_cleaner.files))
return out_videos, out_wavs
@spaces.GPU(duration=420)
def predict_batched(texts, melodies):
max_text_length = 512
texts = [text[:max_text_length] for text in texts]
load_model('facebook/musicgen-stereo-melody')
res = _do_predictions(texts, melodies, BATCHED_DURATION)
return res
def check(model, model_path, decoder, text, melody, duration, topk, topp, temperature, cfg_coef, output_hint):
if temperature < 0:
raise gr.Error("Temperature must not be negative.")
if topk < 0:
raise gr.Error("Topk must not be negative.")
if topp < 0:
raise gr.Error("Topp must not be negative.")
@spaces.GPU(duration=420)
def predict_full(model, model_path, decoder, text, melody, duration, topk, topp, temperature, cfg_coef, output_hint, progress=gr.Progress()):
global INTERRUPTING
global USE_DIFFUSION
INTERRUPTING = False
progress(0, desc="Loading model...")
model_path = model_path.strip()
if model_path:
if not Path(model_path).exists():
raise gr.Error(f"Model path {model_path} doesn't exist.")
if not Path(model_path).is_dir():
raise gr.Error(f"Model path {model_path} must be a folder containing "
"state_dict.bin and compression_state_dict_.bin.")
model = model_path
topk = int(topk)
if decoder == "MultiBand_Diffusion":
USE_DIFFUSION = True
progress(0, desc="Loading diffusion model...")
load_diffusion()
else:
USE_DIFFUSION = False
load_model(model)
max_generated = 0
def _progress(generated, to_generate):
nonlocal max_generated
max_generated = max(generated, max_generated)
progress((min(max_generated, to_generate), to_generate))
if INTERRUPTING:
raise gr.Error("Interrupted.")
MODEL.set_custom_progress_callback(_progress)
videos, wavs = _do_predictions(
[text], [melody], duration, progress=True,
top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef,
gradio_progress=progress)
information = "To download the output, right-click and click on Save as..."
if USE_DIFFUSION:
return videos[0], wavs[0], information, videos[1], wavs[1]
return videos[0], wavs[0], information, None, None
def toggle_audio_src(choice):
if choice == "mic":
return gr.update(source = "microphone", value = None, label = "Microphone")
else:
return gr.update(source = "upload", value = None, label = "File")
def toggle_diffusion(choice):
if choice == "MultiBand_Diffusion":
return [gr.update(visible = True)] * 2
else:
return [gr.update(visible = False)] * 2
def show_information(choice):
return [gr.update(visible = True)]
def hide_information(choice):
return [gr.update(visible = False)]
def ui_full(launch_kwargs):
with gr.Blocks() as interface:
gr.HTML(
"""
Text-to-Music / Music-to-Music
Generates up to 2 minutes of music freely, without account and without watermark that you can download
✨ Powered by MusicGen.
You'd rather create way better quality music with AI Jukebox or on Udio.
If you are looking for sound effect rather than music, I recommend you Tango 2 or Stable Audio.
The generated tracks tend to be very monotone so I advise you to add an original track to force the AI to make variations.
""" + ("🏃♀️ Estimated time: few minutes." if torch.cuda.is_available() else "🐌 Slow process... ~6 hours for 2 minutes of music.") + """
Your computer must not enter into standby mode.
You can duplicate this space on a free account, it's designed to work on CPU, GPU and ZeroGPU.
⚖️ If you use the standard models, you can use, modify and share the generated musics but not for commercial uses.
"""
)
with gr.Row():
with gr.Column():
with gr.Row():
text = gr.Text(label = "Input Text", placeholder = "Describe your music here", interactive = True, autofocus = True)
with gr.Column():
radio = gr.Radio(["file", "mic"], value = "file",
label="Condition on a melody (optional) File or Microphone")
melody = gr.Audio(source = "upload", type = "numpy", label = "File",
interactive = True, elem_id="melody-input")
with gr.Row():
duration = gr.Slider(label = "Duration", info = "(in seconds)", minimum = 1, maximum = 120, value = 30, interactive = True)
with gr.Accordion("Advanced options", open = False):
with gr.Row():
topk = gr.Number(label = "Top-k", info = "Number of tokens shortlisted", value = 250, minimum = 0, interactive = True)
topp = gr.Number(label = "Top-p", info = "Percent of tokens shortlisted", value = 0, minimum = 0, interactive = True)
temperature = gr.Number(label = "Temperature", info = "lower=Always similar, higher=More creative", value = 1.0, interactive = True)
cfg_coef = gr.Number(label = "Classifier-Free Guidance", info = "lower=Audio quality, higher=Follow the prompt", value = 3.0, minimum = 1, interactive = True)
with gr.Row():
decoder = gr.Radio(["Default", "MultiBand_Diffusion"],
label = "Decoder", value = "Default", interactive = True)
with gr.Row():
model = gr.Radio(["facebook/musicgen-melody", "facebook/musicgen-medium", "facebook/musicgen-small",
"facebook/musicgen-large",
"facebook/musicgen-melody-large",
"facebook/musicgen-stereo-small", "facebook/musicgen-stereo-medium",
"facebook/musicgen-stereo-melody", "facebook/musicgen-stereo-large",
"facebook/musicgen-stereo-melody-large"],
label="Model", value="facebook/musicgen-stereo-melody", interactive=True)
model_path = gr.Text(label="Model Path (custom models)")
with gr.Row():
submit = gr.Button("🚀 Generate", variant = "primary")
# Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
_ = gr.Button("Abort all", variant="stop").click(fn=interrupt, queue = False)
with gr.Column():
output = gr.Video(label="Generated Music")
audio_output = gr.Audio(label = "Generated Music (wav)", type='filepath', autoplay = True, show_download_button = True)
output_hint = gr.Label()
diffusion_output = gr.Video(label="MultiBand Diffusion Decoder")
audio_diffusion = gr.Audio(label="MultiBand Diffusion Decoder (wav)", type='filepath')
submit.click(toggle_diffusion, decoder, [
diffusion_output,
audio_diffusion
], queue = False, show_progress = False).then(hide_information, decoder, [
output_hint
], queue = False, show_progress = False).then(check, inputs = [
model,
model_path,
decoder,
text,
melody,
duration,
topk,
topp,
temperature,
cfg_coef,
output_hint
], outputs = [], queue = False, show_progress = False).success(predict_full, inputs = [
model,
model_path,
decoder,
text,
melody,
duration,
topk,
topp,
temperature,
cfg_coef,
output_hint
], outputs = [
output,
audio_output,
output_hint,
diffusion_output,
audio_diffusion
], scroll_to_output = True).then(show_information, decoder, [
output_hint
], queue = False, show_progress = False)
radio.change(toggle_audio_src, radio, [melody], queue = False, show_progress = False)
gr.Examples(
fn = predict_full,
examples = [
[
"An angry propulsive industrial score with distorted synthesizers and tortured vocals.",
None,
10,
"facebook/musicgen-stereo-melody",
"Default"
],
[
"A monstrous industrial bach hybrid",
"./assets/bach.mp3",
10,
"facebook/musicgen-stereo-melody",
"Default"
],
],
inputs=[text, melody, duration, model, decoder],
outputs=[output]
)
gr.Markdown(
"""
### How to prompt your music
You can use round brackets to increase the importance of a part:
```
Classical music, violin, harp, (piano)
```
You can use several levels of round brackets to even more increase the importance of a part:
```
Classical music, violin, (harp), ((piano))
```
You can use number instead of several round brackets:
```
Classical music, (violin), (harp:1.5), ((piano))
```
You can do the same thing with square brackets to decrease the importance of a part:
```
Classical music, strings, [violin], [[harp]], [piano:10]
```
### More details
The model can generate up to 30 seconds of audio in one pass.
The model was trained with description from a stock music catalog, descriptions that will work best
should include some level of details on the instruments present, along with some intended use case
(e.g. adding "perfect for a commercial" can somehow help).
Using one of the `melody` model (e.g. `musicgen-melody-*`), you can optionally provide a reference audio
from which a broad melody will be extracted.
The model will then try to follow both the description and melody provided.
For best results, the melody should be 30 seconds long (I know, the samples we provide are not...)
It is now possible to extend the generation by feeding back the end of the previous chunk of audio.
This can take a long time, and the model might lose consistency. The model might also
decide at arbitrary positions that the song ends.
**WARNING:** Choosing long durations will take a long time to generate (2min might take ~10min).
An overlap of 12 seconds is kept with the previously generated chunk, and 18 "new" seconds
are generated each time.
We present 10 model variations:
1. facebook/musicgen-melody -- a music generation model capable of generating music condition
on text and melody inputs. **Note**, you can also use text only.
2. facebook/musicgen-small -- a 300M transformer decoder conditioned on text only.
3. facebook/musicgen-medium -- a 1.5B transformer decoder conditioned on text only.
4. facebook/musicgen-large -- a 3.3B transformer decoder conditioned on text only.
5. facebook/musicgen-melody-large -- a 3.3B transformer decoder conditioned on and melody.
6. facebook/musicgen-stereo-*: same as the previous models but fine tuned to output stereo audio.
We also present two way of decoding the audio tokens
1. Use the default GAN based compression model. It can suffer from artifacts especially
for crashes, snares etc.
2. Use [MultiBand Diffusion](https://arxiv.org/abs/2308.02560). Should improve the audio quality,
at an extra computational cost. When this is selected, we provide both the GAN based decoded
audio, and the one obtained with MBD.
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft/blob/main/docs/MUSICGEN.md)
for more details.
"""
)
interface.queue().launch(**launch_kwargs)
def ui_batched(launch_kwargs):
with gr.Blocks() as demo:
gr.Markdown(
"""
# MusicGen
For Metropolis - from: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284).
for longer sequences, more control and no queue.
"""
)
with gr.Row():
with gr.Column():
with gr.Row():
text = gr.Text(label="Describe your music", lines=2, interactive=True)
with gr.Column():
radio = gr.Radio(["file", "mic"], value="file",
label="Condition on a melody (optional) File or Microphone")
melody = gr.Audio(source="upload", type="numpy", label="File",
interactive=True, elem_id="melody-input")
with gr.Row():
submit = gr.Button("Generate", variant="primary")
with gr.Column():
output = gr.Video(label="Generated Music")
audio_output = gr.Audio(label="Generated Music (wav)", type='filepath')
submit.click(predict_batched, inputs=[text, melody],
outputs=[output, audio_output], batch=True, max_batch_size=MAX_BATCH_SIZE)
radio.change(toggle_audio_src, radio, [melody], queue=False, show_progress=False)
gr.Examples(
fn=predict_batched,
examples=[
[
"An angry propulsive industrial score with distorted synthesizers and tortured vocals.",
None,
"facebook/musicgen-stereo-melody",
"Default"
],
[
"A monstrous industrial bach hybrid",
"./assets/bach.mp3",
"facebook/musicgen-stereo-melody",
"Default"
],
],
inputs=[text, melody],
outputs=[output]
)
gr.Markdown("""
### More details
The model will generate 30 seconds of audio.
The model was trained with description from a stock music catalog, descriptions that will work best
should include some level of details on the instruments present, along with some intended use case
(e.g. adding "perfect for a commercial" can somehow help).
You can optionally provide a reference audio from which a broad melody will be extracted.
The model will then try to follow both the description and melody provided.
For best results, the melody should be 30 seconds long (I know, the samples we provide are not...)
You can access more control (longer generation, more models etc.) by clicking
the
(you will then need a paid GPU from HuggingFace).
If you have a GPU, you can run the gradio demo locally (click the link to our repo below for more info).
Finally, you can get a GPU for free from Google
and run the demo in [a Google Colab.](https://ai.honu.io/red/musicgen-colab).
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft/blob/main/docs/MUSICGEN.md)
for more details. All samples are generated with the `stereo-melody` model.
""")
demo.queue(max_size=8 * 4).launch(**launch_kwargs)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--listen',
type=str,
default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
help='IP to listen on for connections to Gradio',
)
parser.add_argument(
'--username', type=str, default='', help='Username for authentication'
)
parser.add_argument(
'--password', type=str, default='', help='Password for authentication'
)
parser.add_argument(
'--server_port',
type=int,
default=0,
help='Port to run the server listener on',
)
parser.add_argument(
'--inbrowser', action='store_true', help='Open in browser'
)
parser.add_argument(
'--share', action='store_true', help='Share the gradio UI'
)
args = parser.parse_args()
launch_kwargs = {}
launch_kwargs['server_name'] = args.listen
if args.username and args.password:
launch_kwargs['auth'] = (args.username, args.password)
if args.server_port:
launch_kwargs['server_port'] = args.server_port
if args.inbrowser:
launch_kwargs['inbrowser'] = args.inbrowser
if args.share:
launch_kwargs['share'] = args.share
logging.basicConfig(level=logging.INFO, stream=sys.stderr)
# Show the interface
if IS_BATCHED:
global USE_DIFFUSION
USE_DIFFUSION = False
ui_batched(launch_kwargs)
else:
ui_full(launch_kwargs)