import gradio as gr
import librosa
import numpy as np
import torch
import string
import httpx
import inflect
import re
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
import requests
from requests.exceptions import Timeout
checkpoint = "Edmon02/TTS_NB_2"
processor = SpeechT5Processor.from_pretrained(checkpoint)
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
speaker_embeddings = {
"BDL": "cmu_us_bdl_arctic-wav-arctic_a0004.npy",
}
def translate_text(text):
trans_text = ''
# Add a timeout of 5 seconds (adjust as needed)
response = requests.get(
"https://translate.googleapis.com/translate_a/single",
params={
'client': 'gtx',
'sl': 'auto',
'tl': 'hy',
'dt': 't',
'q': text,
},
timeout=50,
)
response.raise_for_status() # Raise an HTTPError for bad responses
# Extract the translated text from the response
translation = response.json()[0][0][0]
trans_text += translation
return trans_text
def convert_number_to_words(number: float) -> str:
p = inflect.engine()
words = p.number_to_words(number)
# Use asyncio.run even if an event loop is already running (nested asyncio)
translated_words = translate_text(words)
return translated_words
def process_text(text: str) -> str:
# Convert numbers to words
words = []
text = str(text) if str(text) else ''
for word in text.split():
# Check if the word is a number
if re.search(r'\d', word):
words.append(convert_number_to_words(int(''.join(filter(str.isdigit, word)))))
else:
words.append(word)
# Join the words back into a sentence
processed_text = ' '.join(words)
return processed_text
def predict(text, speaker):
if len(text.strip()) == 0:
return (16000, np.zeros(0).astype(np.int16))
text = process_text(text)
inputs = processor(text=text, return_tensors="pt")
# limit input length
input_ids = inputs["input_ids"]
input_ids = input_ids[..., :model.config.max_text_positions]
speaker_embedding = np.load(speaker_embeddings[speaker[:3]]).astype(np.float32)
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder)
speech = (speech.numpy() * 32767).astype(np.int16)
return (16000, speech)
title = "SpeechT5_hy: Speech Synthesis"
description = """
The SpeechT5 model is pre-trained on text as well as speech inputs, with targets that are also a mix of text and speech.
By pre-training on text and speech at the same time, it learns unified representations for both, resulting in improved modeling capabilities.
SpeechT5 can be fine-tuned for different speech tasks. This space demonstrates the text-to-speech (TTS) checkpoint for the Armenian language.
See also the speech recognition (ASR) demo
and the voice conversion demo.
Refer to this Colab notebook to learn how to fine-tune the SpeechT5 TTS model on your own dataset or language.
How to use: Enter some Armenian text and choose a speaker. The output is a mel spectrogram, which is converted to a mono 16 kHz waveform by the
HiFi-GAN vocoder. Because the model always applies random dropout, each attempt will give slightly different results.
The Surprise Me! option creates a completely randomized speaker.
"""
examples = [
["Մեր ճակատագիրը աստղերի մեջ չէ, այլ մեր մեջ:", "BDL (male)"],
["Հոկտեմբերին ութոտնուկն ու Օլիվերը գնացին օպերա։", "BDL (male)"],
["Նա ծովի ափին ծովախեցգետիններ է վաճառում: Ես տեսա, որ խոհանոցում հավ է ուտում մի ձագ:", "BDL (male)"],
["Կտրուկ խիզախ բրիգադները թափահարում էին լայն, պայծառ շեղբեր, կոպիտ ավտոբուսներ և մռութներ՝ վատ հավասարակշռելով դրանք:", "BDL (male)"],
["Դարչինի հոմանիշը դարչինի հոմանիշն է:", "BDL (male)"],
["Ինչքա՞ն փայտ կթափի փայտափայտը, եթե փայտափայտը կարողանար փայտ ծակել: Նա կխփեր, կաներ, այնքան, որքան կարող էր, և այնքան փայտ կխփեր, որքան փայտափայտը, եթե փայտափայտը կարողանար փայտ ծակել:", "BDL (male)"],
]
gr.Interface(
fn=predict,
inputs=[
gr.Text(label="Input Text"),
gr.Radio(label="Speaker", choices=[
"BDL (male)"
],
value="BDL (male)"),
],
outputs=[
gr.Audio(label="Generated Speech", type="numpy"),
],
title=title,
description=description,
).launch(share=True)