import gradio as gr import librosa import numpy as np import torch import string import httpx import inflect import re from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan import requests from requests.exceptions import Timeout checkpoint = "Edmon02/TTS_NB_2" processor = SpeechT5Processor.from_pretrained(checkpoint) model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint) vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") speaker_embeddings = { "BDL": "cmu_us_bdl_arctic-wav-arctic_a0004.npy", } def translate_text(text): trans_text = '' # Add a timeout of 5 seconds (adjust as needed) response = requests.get( "https://translate.googleapis.com/translate_a/single", params={ 'client': 'gtx', 'sl': 'auto', 'tl': 'hy', 'dt': 't', 'q': text, }, timeout=50, ) response.raise_for_status() # Raise an HTTPError for bad responses # Extract the translated text from the response translation = response.json()[0][0][0] trans_text += translation return trans_text def convert_number_to_words(number: float) -> str: p = inflect.engine() words = p.number_to_words(number) # Use asyncio.run even if an event loop is already running (nested asyncio) translated_words = translate_text(words) return translated_words def process_text(text: str) -> str: # Convert numbers to words words = [] text = str(text) if str(text) else '' for word in text.split(): # Check if the word is a number if re.search(r'\d', word): words.append(convert_number_to_words(int(''.join(filter(str.isdigit, word))))) else: words.append(word) # Join the words back into a sentence processed_text = ' '.join(words) return processed_text def predict(text, speaker): if len(text.strip()) == 0: return (16000, np.zeros(0).astype(np.int16)) text = process_text(text) inputs = processor(text=text, return_tensors="pt") # limit input length input_ids = inputs["input_ids"] input_ids = input_ids[..., :model.config.max_text_positions] speaker_embedding = np.load(speaker_embeddings[speaker[:3]]).astype(np.float32) speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0) speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder) speech = (speech.numpy() * 32767).astype(np.int16) return (16000, speech) title = "SpeechT5_hy: Speech Synthesis" description = """ The SpeechT5 model is pre-trained on text as well as speech inputs, with targets that are also a mix of text and speech. By pre-training on text and speech at the same time, it learns unified representations for both, resulting in improved modeling capabilities. SpeechT5 can be fine-tuned for different speech tasks. This space demonstrates the text-to-speech (TTS) checkpoint for the Armenian language. See also the speech recognition (ASR) demo and the voice conversion demo. Refer to this Colab notebook to learn how to fine-tune the SpeechT5 TTS model on your own dataset or language. How to use: Enter some Armenian text and choose a speaker. The output is a mel spectrogram, which is converted to a mono 16 kHz waveform by the HiFi-GAN vocoder. Because the model always applies random dropout, each attempt will give slightly different results. The Surprise Me! option creates a completely randomized speaker. """ examples = [ ["Մեր ճակատագիրը աստղերի մեջ չէ, այլ մեր մեջ:", "BDL (male)"], ["Հոկտեմբերին ութոտնուկն ու Օլիվերը գնացին օպերա։", "BDL (male)"], ["Նա ծովի ափին ծովախեցգետիններ է վաճառում: Ես տեսա, որ խոհանոցում հավ է ուտում մի ձագ:", "BDL (male)"], ["Կտրուկ խիզախ բրիգադները թափահարում էին լայն, պայծառ շեղբեր, կոպիտ ավտոբուսներ և մռութներ՝ վատ հավասարակշռելով դրանք:", "BDL (male)"], ["Դարչինի հոմանիշը դարչինի հոմանիշն է:", "BDL (male)"], ["Ինչքա՞ն փայտ կթափի փայտափայտը, եթե փայտափայտը կարողանար փայտ ծակել: Նա կխփեր, կաներ, այնքան, որքան կարող էր, և այնքան փայտ կխփեր, որքան փայտափայտը, եթե փայտափայտը կարողանար փայտ ծակել:", "BDL (male)"], ] gr.Interface( fn=predict, inputs=[ gr.Text(label="Input Text"), gr.Radio(label="Speaker", choices=[ "BDL (male)" ], value="BDL (male)"), ], outputs=[ gr.Audio(label="Generated Speech", type="numpy"), ], title=title, description=description, ).launch(share=True)