Diffusers documentation


Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started


A pipeline is an end-to-end class that provides a quick and easy way to use a diffusion system for inference by bundling independently trained models and schedulers together. Certain combinations of models and schedulers define specific pipeline types, like StableDiffusionPipeline or StableDiffusionControlNetPipeline, with specific capabilities. All pipeline types inherit from the base DiffusionPipeline class; pass it any checkpoint, and it’ll automatically detect the pipeline type and load the necessary components.

This section introduces you to some of the tasks supported by our pipelines such as unconditional image generation and different techniques and variations of text-to-image generation. You’ll also learn how to gain more control over the generation process by setting a seed for reproducibility and weighting prompts to adjust the influence certain words in the prompt has over the output. Finally, you’ll see how you can create a community pipeline for a custom task like generating images from speech.