Hugging Face HubΒΆ

Now that you are all setup, the first step is to load a dataset. The easiest way to load a dataset is from the Hugging Face Hub. There are already over 900 datasets in over 100 languages on the Hub. Choose from a wide category of datasets to use for NLP tasks like question answering, summarization, machine translation, and language modeling. For a more in-depth look inside a dataset, use the live Datasets Viewer.

Load a datasetΒΆ

Before you take the time to download a dataset, it is often helpful to quickly get all the relevant information about a dataset. The datasets.load_dataset_builder() method allows you to inspect the attributes of a dataset without downloading it.

>>> from datasets import load_dataset_builder
>>> dataset_builder = load_dataset_builder('imdb')
>>> print(dataset_builder.cache_dir)
>>> print(
{'text': Value(dtype='string', id=None), 'label': ClassLabel(num_classes=2, names=['neg', 'pos'], names_file=None, id=None)}
>>> print(
{'train': SplitInfo(name='train', num_bytes=33432835, num_examples=25000, dataset_name='imdb'), 'test': SplitInfo(name='test', num_bytes=32650697, num_examples=25000, dataset_name='imdb'), 'unsupervised': SplitInfo(name='unsupervised', num_bytes=67106814, num_examples=50000, dataset_name='imdb')}

See also

Take a look at datasets.DatasetInfo for a full list of attributes you can use with dataset_builder.

Once you are happy with the dataset you want, load it in a single line with datasets.load_dataset():

>>> from datasets import load_dataset
>>> dataset = load_dataset('glue', 'mrpc', split='train')

Select a splitΒΆ

A split is a specific subset of the dataset like train and test. Make sure you select a split when you load a dataset. If you don’t supply a split argument, πŸ€— Datasets will only return a dictionary containing the subsets of the dataset.

>>> from datasets import load_dataset
>>> datasets = load_dataset('glue', 'mrpc')
>>> print(datasets)
{train: Dataset({
    features: ['idx', 'label', 'sentence1', 'sentence2'],
    num_rows: 3668
validation: Dataset({
    features: ['idx', 'label', 'sentence1', 'sentence2'],
    num_rows: 408
test: Dataset({
    features: ['idx', 'label', 'sentence1', 'sentence2'],
    num_rows: 1725

Select a configurationΒΆ

Some datasets, like the General Language Understanding Evaluation (GLUE) benchmark, are actually made up of several datasets. These sub-datasets are called configurations, and you must explicitly select one when you load the dataset. If you don’t provide a configuration name, πŸ€— Datasets will raise a ValueError and remind you to select a configuration.

Use get_dataset_config_names to retrieve a a list of all the possible configurations available to your dataset:

from datasets import get_dataset_config_names

configs = get_dataset_config_names("glue")
# ['cola', 'sst2', 'mrpc', 'qqp', 'stsb', 'mnli', 'mnli_mismatched', 'mnli_matched', 'qnli', 'rte', 'wnli', 'ax']

❌ Incorrect way to load a configuration:

>>> from datasets import load_dataset
>>> dataset = load_dataset('glue')
ValueError: Config name is missing.
Please pick one among the available configs: ['cola', 'sst2', 'mrpc', 'qqp', 'stsb', 'mnli', 'mnli_mismatched', 'mnli_matched', 'qnli', 'rte', 'wnli', 'ax']
Example of usage:
        `load_dataset('glue', 'cola')`

βœ… Correct way to load a configuration:

>>> dataset = load_dataset('glue', 'sst2')
Downloading and preparing dataset glue/sst2 (download: 7.09 MiB, generated: 4.81 MiB, total: 11.90 MiB) to /Users/thomwolf/.cache/huggingface/datasets/glue/sst2/1.0.0...
Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 7.44M/7.44M [00:01<00:00, 7.03MB/s]
Dataset glue downloaded and prepared to /Users/huggignface/.cache/huggingface/datasets/glue/sst2/1.0.0. Subsequent calls will reuse this data.
>>> print(dataset)
{'train': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 67349),
    'validation': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 872),
    'test': Dataset(schema: {'sentence': 'string', 'label': 'int64', 'idx': 'int32'}, num_rows: 1821)