body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
5fbac1222e7e65440aacf634a83faffceb43c5f0de6a06797ed53ff9bc3e7b35
def run(self, messenger): '\n This method will be called by the Worker to execute in a process.\n\n Override this method.\n Use __init__ to set any params needed for this call\n The messenger parameter is a Messenger instance\n\n Use messenger.debug/info/warning/error to send logs\n Use messenger.submit_tasks to submit sub tasks to the server\n Use messenger.query_results to query for results of the submitted sub tasks\n\n If you call predefined functions in this method, to catch possible `print` in the function, do:\n predefined_function.__globals__["print"] = messenger.print # inject messenger.print as print\n See the RunFunction procedure as an example\n\n ATTENTION: do not use multiprocessing in this method.\n\n :param messenger: Messenger\n :return: The data if the task is successful. The data will be constructed to a successful\n TaskResult by the TaskWorker.\n :raise raise TaskFailed exception with the failed data if the task is unsuccessful. e.g.\n raise TaskFailed("ID not found"). The "ID not found" will be constructed to a failed TaskResult.\n Other exceptions will be caught by the Worker and be constructed to a unsuccessful TaskResult using\n the Exception instance as data\n ' raise NotImplementedError
This method will be called by the Worker to execute in a process. Override this method. Use __init__ to set any params needed for this call The messenger parameter is a Messenger instance Use messenger.debug/info/warning/error to send logs Use messenger.submit_tasks to submit sub tasks to the server Use messenger.query_results to query for results of the submitted sub tasks If you call predefined functions in this method, to catch possible `print` in the function, do: predefined_function.__globals__["print"] = messenger.print # inject messenger.print as print See the RunFunction procedure as an example ATTENTION: do not use multiprocessing in this method. :param messenger: Messenger :return: The data if the task is successful. The data will be constructed to a successful TaskResult by the TaskWorker. :raise raise TaskFailed exception with the failed data if the task is unsuccessful. e.g. raise TaskFailed("ID not found"). The "ID not found" will be constructed to a failed TaskResult. Other exceptions will be caught by the Worker and be constructed to a unsuccessful TaskResult using the Exception instance as data
src/palpable/procedures/procedure.py
run
XiaoMutt/palpable
0
python
def run(self, messenger): '\n This method will be called by the Worker to execute in a process.\n\n Override this method.\n Use __init__ to set any params needed for this call\n The messenger parameter is a Messenger instance\n\n Use messenger.debug/info/warning/error to send logs\n Use messenger.submit_tasks to submit sub tasks to the server\n Use messenger.query_results to query for results of the submitted sub tasks\n\n If you call predefined functions in this method, to catch possible `print` in the function, do:\n predefined_function.__globals__["print"] = messenger.print # inject messenger.print as print\n See the RunFunction procedure as an example\n\n ATTENTION: do not use multiprocessing in this method.\n\n :param messenger: Messenger\n :return: The data if the task is successful. The data will be constructed to a successful\n TaskResult by the TaskWorker.\n :raise raise TaskFailed exception with the failed data if the task is unsuccessful. e.g.\n raise TaskFailed("ID not found"). The "ID not found" will be constructed to a failed TaskResult.\n Other exceptions will be caught by the Worker and be constructed to a unsuccessful TaskResult using\n the Exception instance as data\n ' raise NotImplementedError
def run(self, messenger): '\n This method will be called by the Worker to execute in a process.\n\n Override this method.\n Use __init__ to set any params needed for this call\n The messenger parameter is a Messenger instance\n\n Use messenger.debug/info/warning/error to send logs\n Use messenger.submit_tasks to submit sub tasks to the server\n Use messenger.query_results to query for results of the submitted sub tasks\n\n If you call predefined functions in this method, to catch possible `print` in the function, do:\n predefined_function.__globals__["print"] = messenger.print # inject messenger.print as print\n See the RunFunction procedure as an example\n\n ATTENTION: do not use multiprocessing in this method.\n\n :param messenger: Messenger\n :return: The data if the task is successful. The data will be constructed to a successful\n TaskResult by the TaskWorker.\n :raise raise TaskFailed exception with the failed data if the task is unsuccessful. e.g.\n raise TaskFailed("ID not found"). The "ID not found" will be constructed to a failed TaskResult.\n Other exceptions will be caught by the Worker and be constructed to a unsuccessful TaskResult using\n the Exception instance as data\n ' raise NotImplementedError<|docstring|>This method will be called by the Worker to execute in a process. Override this method. Use __init__ to set any params needed for this call The messenger parameter is a Messenger instance Use messenger.debug/info/warning/error to send logs Use messenger.submit_tasks to submit sub tasks to the server Use messenger.query_results to query for results of the submitted sub tasks If you call predefined functions in this method, to catch possible `print` in the function, do: predefined_function.__globals__["print"] = messenger.print # inject messenger.print as print See the RunFunction procedure as an example ATTENTION: do not use multiprocessing in this method. :param messenger: Messenger :return: The data if the task is successful. The data will be constructed to a successful TaskResult by the TaskWorker. :raise raise TaskFailed exception with the failed data if the task is unsuccessful. e.g. raise TaskFailed("ID not found"). The "ID not found" will be constructed to a failed TaskResult. Other exceptions will be caught by the Worker and be constructed to a unsuccessful TaskResult using the Exception instance as data<|endoftext|>
ecf62cc1ea9f0fa2947e86dbd3c3096956d7d15453804987fa3605ecdac0f258
def comprep(): 'Preparation of the communication (termination, etc...)' print(f'VISA Manufacturer: {Instrument.visa_manufacturer}') Instrument.visa_timeout = 5000 Instrument.opc_timeout = 5000 Instrument.instrument_status_checking = True Instrument.clear_status()
Preparation of the communication (termination, etc...)
VectorNetworkAnalyzers/Python/RsInstrument/RsInstrument_ZNB_CAL_P1_Save_Reload.py
comprep
Rohde-Schwarz/examples
0
python
def comprep(): print(f'VISA Manufacturer: {Instrument.visa_manufacturer}') Instrument.visa_timeout = 5000 Instrument.opc_timeout = 5000 Instrument.instrument_status_checking = True Instrument.clear_status()
def comprep(): print(f'VISA Manufacturer: {Instrument.visa_manufacturer}') Instrument.visa_timeout = 5000 Instrument.opc_timeout = 5000 Instrument.instrument_status_checking = True Instrument.clear_status()<|docstring|>Preparation of the communication (termination, etc...)<|endoftext|>
f544a7d881d6d549903c86d32ee8ac85892e42f64389c7f5f13264bbd342aa21
def close(): 'Close the VISA session' Instrument.close()
Close the VISA session
VectorNetworkAnalyzers/Python/RsInstrument/RsInstrument_ZNB_CAL_P1_Save_Reload.py
close
Rohde-Schwarz/examples
0
python
def close(): Instrument.close()
def close(): Instrument.close()<|docstring|>Close the VISA session<|endoftext|>
9bea74ac8e321f50595cc7a0e895ba4a3cd9d732cedf641a55af3182598af6ba
def comcheck(): 'Check communication with the device' idnResponse = Instrument.query_str('*IDN?') sleep(1) print(('Hello, I am ' + idnResponse))
Check communication with the device
VectorNetworkAnalyzers/Python/RsInstrument/RsInstrument_ZNB_CAL_P1_Save_Reload.py
comcheck
Rohde-Schwarz/examples
0
python
def comcheck(): idnResponse = Instrument.query_str('*IDN?') sleep(1) print(('Hello, I am ' + idnResponse))
def comcheck(): idnResponse = Instrument.query_str('*IDN?') sleep(1) print(('Hello, I am ' + idnResponse))<|docstring|>Check communication with the device<|endoftext|>
ba61186c1f9e39d0df675e76d2adf2db0488f2c68dd23057b657e007b52401df
def meassetup(): 'Prepare measurement setup and define calkit' Instrument.write_str_with_opc('SYSTEM:DISPLAY:UPDATE ON') Instrument.write_str_with_opc('SENSe1:FREQuency:Start 1e9') Instrument.write_str_with_opc('SENSe1:FREQuency:Stop 2e9') Instrument.write_str_with_opc('SENSe1:SWEep:POINts 501') Instrument.write_str_with_opc('CALCulate1:PARameter:MEAsure "Trc1", "S11"') Instrument.write_str_with_opc('SENSe1:CORRection:CKIT:PC292:SELect "ZN-Z229"') Instrument.write_str_with_opc('SENSe1:CORRection:COLLect:CONN PC292MALE') Instrument.write_str_with_opc('SENSe1:CORRection:COLLect:METHod:DEFine "NewCal", FOPort, 1') Instrument.write_str_with_opc('SENSe:CORRection:COLLect:ACQuire:RSAVe:DEFault OFF')
Prepare measurement setup and define calkit
VectorNetworkAnalyzers/Python/RsInstrument/RsInstrument_ZNB_CAL_P1_Save_Reload.py
meassetup
Rohde-Schwarz/examples
0
python
def meassetup(): Instrument.write_str_with_opc('SYSTEM:DISPLAY:UPDATE ON') Instrument.write_str_with_opc('SENSe1:FREQuency:Start 1e9') Instrument.write_str_with_opc('SENSe1:FREQuency:Stop 2e9') Instrument.write_str_with_opc('SENSe1:SWEep:POINts 501') Instrument.write_str_with_opc('CALCulate1:PARameter:MEAsure "Trc1", "S11"') Instrument.write_str_with_opc('SENSe1:CORRection:CKIT:PC292:SELect "ZN-Z229"') Instrument.write_str_with_opc('SENSe1:CORRection:COLLect:CONN PC292MALE') Instrument.write_str_with_opc('SENSe1:CORRection:COLLect:METHod:DEFine "NewCal", FOPort, 1') Instrument.write_str_with_opc('SENSe:CORRection:COLLect:ACQuire:RSAVe:DEFault OFF')
def meassetup(): Instrument.write_str_with_opc('SYSTEM:DISPLAY:UPDATE ON') Instrument.write_str_with_opc('SENSe1:FREQuency:Start 1e9') Instrument.write_str_with_opc('SENSe1:FREQuency:Stop 2e9') Instrument.write_str_with_opc('SENSe1:SWEep:POINts 501') Instrument.write_str_with_opc('CALCulate1:PARameter:MEAsure "Trc1", "S11"') Instrument.write_str_with_opc('SENSe1:CORRection:CKIT:PC292:SELect "ZN-Z229"') Instrument.write_str_with_opc('SENSe1:CORRection:COLLect:CONN PC292MALE') Instrument.write_str_with_opc('SENSe1:CORRection:COLLect:METHod:DEFine "NewCal", FOPort, 1') Instrument.write_str_with_opc('SENSe:CORRection:COLLect:ACQuire:RSAVe:DEFault OFF')<|docstring|>Prepare measurement setup and define calkit<|endoftext|>
1a174ca8a92d6f72dea95e752a05bb690fafa023c79127a202c0dbc23104a5ae
def calopen(): 'Perform calibration of open element' print() print('Please connect OPEN to port 1 and confirm') _ = input() Instrument.write_str_with_opc('SENSe1:CORRection:COLLect:ACQuire:SELected OPEN, 1')
Perform calibration of open element
VectorNetworkAnalyzers/Python/RsInstrument/RsInstrument_ZNB_CAL_P1_Save_Reload.py
calopen
Rohde-Schwarz/examples
0
python
def calopen(): print() print('Please connect OPEN to port 1 and confirm') _ = input() Instrument.write_str_with_opc('SENSe1:CORRection:COLLect:ACQuire:SELected OPEN, 1')
def calopen(): print() print('Please connect OPEN to port 1 and confirm') _ = input() Instrument.write_str_with_opc('SENSe1:CORRection:COLLect:ACQuire:SELected OPEN, 1')<|docstring|>Perform calibration of open element<|endoftext|>
5246185cfcb1fd96f657be57e32b4e4e58ec72c9fc14b5659b7baa3f9190c0fc
def calshort(): 'Perform calibration with short element' print('Please connect SHORT to port 1 and confirm') _ = input() Instrument.write_str_with_opc('SENSe1:CORRection:COLLect:ACQuire:SELected SHORT, 1')
Perform calibration with short element
VectorNetworkAnalyzers/Python/RsInstrument/RsInstrument_ZNB_CAL_P1_Save_Reload.py
calshort
Rohde-Schwarz/examples
0
python
def calshort(): print('Please connect SHORT to port 1 and confirm') _ = input() Instrument.write_str_with_opc('SENSe1:CORRection:COLLect:ACQuire:SELected SHORT, 1')
def calshort(): print('Please connect SHORT to port 1 and confirm') _ = input() Instrument.write_str_with_opc('SENSe1:CORRection:COLLect:ACQuire:SELected SHORT, 1')<|docstring|>Perform calibration with short element<|endoftext|>
0ea980840a620f5ad8ba6bb680ddebd9c27ab8cb1869f0b5bb9d6b07de6a9b60
def calmatch(): 'Perform calibration with matched element' print('Please connect MATCH to port 1 and confirm') _ = input() Instrument.write_str_with_opc('SENSe1:CORRection:COLLect:ACQuire:SELected MATCH, 1')
Perform calibration with matched element
VectorNetworkAnalyzers/Python/RsInstrument/RsInstrument_ZNB_CAL_P1_Save_Reload.py
calmatch
Rohde-Schwarz/examples
0
python
def calmatch(): print('Please connect MATCH to port 1 and confirm') _ = input() Instrument.write_str_with_opc('SENSe1:CORRection:COLLect:ACQuire:SELected MATCH, 1')
def calmatch(): print('Please connect MATCH to port 1 and confirm') _ = input() Instrument.write_str_with_opc('SENSe1:CORRection:COLLect:ACQuire:SELected MATCH, 1')<|docstring|>Perform calibration with matched element<|endoftext|>
878fb1ef804542e23bfc82957d210873713d410be5cd1ec95d1c37d78abf1005
def applycal(): 'Apply calibration after it is finished and save the calfile' sleep(2) Instrument.write_str_with_opc('SENSe1:CORRection:COLLect:SAVE:SELected')
Apply calibration after it is finished and save the calfile
VectorNetworkAnalyzers/Python/RsInstrument/RsInstrument_ZNB_CAL_P1_Save_Reload.py
applycal
Rohde-Schwarz/examples
0
python
def applycal(): sleep(2) Instrument.write_str_with_opc('SENSe1:CORRection:COLLect:SAVE:SELected')
def applycal(): sleep(2) Instrument.write_str_with_opc('SENSe1:CORRection:COLLect:SAVE:SELected')<|docstring|>Apply calibration after it is finished and save the calfile<|endoftext|>
bacbe8468b363fdae186b5da7d9a47b110550b063a2c6580b26fd411d0103ff8
def savecal(): 'Save the calibration file to the pool' print('Now saving the calibration to the pool') Instrument.write('MMEMory:STORE:CORRection 1,"P1_OSM_1-2GHz"')
Save the calibration file to the pool
VectorNetworkAnalyzers/Python/RsInstrument/RsInstrument_ZNB_CAL_P1_Save_Reload.py
savecal
Rohde-Schwarz/examples
0
python
def savecal(): print('Now saving the calibration to the pool') Instrument.write('MMEMory:STORE:CORRection 1,"P1_OSM_1-2GHz"')
def savecal(): print('Now saving the calibration to the pool') Instrument.write('MMEMory:STORE:CORRection 1,"P1_OSM_1-2GHz"')<|docstring|>Save the calibration file to the pool<|endoftext|>
d7da93e442948bd267b4ff1cee4a8225015c47bb1845fc1e4a35de06cf1efe83
def loadprep(): 'Reset the instrument, add two channels and load calibration file to each channel' print() print('Resetting the instrument, assign three channels with adequate settings') Instrument.write_str_with_opc('*RST') Instrument.write_str_with_opc('SENSe1:FREQuency:Start 1e9') Instrument.write_str_with_opc('SENSe1:FREQuency:Stop 2e9') Instrument.write_str_with_opc('SENSe1:SWEep:POINts 501') Instrument.write_str_with_opc("CALCULATE2:PARAMETER:SDEFINE 'Trc2', 'S11'") Instrument.write_str_with_opc("CALCULATE2:PARAMETER:SELECT 'Trc2'") Instrument.write_str_with_opc('DISPLAY:WINDOW2:STATE ON') Instrument.write_str_with_opc("DISPLAY:WINDOW2:TRACE1:FEED 'Trc2'") Instrument.write_str_with_opc('SENSe2:FREQuency:Start 1e9') Instrument.write_str_with_opc('SENSe2:FREQuency:Stop 2e9') Instrument.write_str_with_opc('SENSe2:SWEep:POINts 501') Instrument.write_str_with_opc("CALCULATE3:PARAMETER:SDEFINE 'Trc3', 'S11'") Instrument.write_str_with_opc("CALCULATE3:PARAMETER:SELECT 'Trc3'") Instrument.write_str_with_opc('DISPLAY:WINDOW3:STATE ON') Instrument.write_str_with_opc("DISPLAY:WINDOW3:TRACE1:FEED 'Trc3'") Instrument.write_str_with_opc('SENSe3:FREQuency:Start 1e9') Instrument.write_str_with_opc('SENSe3:FREQuency:Stop 2e9') Instrument.write_str_with_opc('SENSe3:SWEep:POINts 501')
Reset the instrument, add two channels and load calibration file to each channel
VectorNetworkAnalyzers/Python/RsInstrument/RsInstrument_ZNB_CAL_P1_Save_Reload.py
loadprep
Rohde-Schwarz/examples
0
python
def loadprep(): print() print('Resetting the instrument, assign three channels with adequate settings') Instrument.write_str_with_opc('*RST') Instrument.write_str_with_opc('SENSe1:FREQuency:Start 1e9') Instrument.write_str_with_opc('SENSe1:FREQuency:Stop 2e9') Instrument.write_str_with_opc('SENSe1:SWEep:POINts 501') Instrument.write_str_with_opc("CALCULATE2:PARAMETER:SDEFINE 'Trc2', 'S11'") Instrument.write_str_with_opc("CALCULATE2:PARAMETER:SELECT 'Trc2'") Instrument.write_str_with_opc('DISPLAY:WINDOW2:STATE ON') Instrument.write_str_with_opc("DISPLAY:WINDOW2:TRACE1:FEED 'Trc2'") Instrument.write_str_with_opc('SENSe2:FREQuency:Start 1e9') Instrument.write_str_with_opc('SENSe2:FREQuency:Stop 2e9') Instrument.write_str_with_opc('SENSe2:SWEep:POINts 501') Instrument.write_str_with_opc("CALCULATE3:PARAMETER:SDEFINE 'Trc3', 'S11'") Instrument.write_str_with_opc("CALCULATE3:PARAMETER:SELECT 'Trc3'") Instrument.write_str_with_opc('DISPLAY:WINDOW3:STATE ON') Instrument.write_str_with_opc("DISPLAY:WINDOW3:TRACE1:FEED 'Trc3'") Instrument.write_str_with_opc('SENSe3:FREQuency:Start 1e9') Instrument.write_str_with_opc('SENSe3:FREQuency:Stop 2e9') Instrument.write_str_with_opc('SENSe3:SWEep:POINts 501')
def loadprep(): print() print('Resetting the instrument, assign three channels with adequate settings') Instrument.write_str_with_opc('*RST') Instrument.write_str_with_opc('SENSe1:FREQuency:Start 1e9') Instrument.write_str_with_opc('SENSe1:FREQuency:Stop 2e9') Instrument.write_str_with_opc('SENSe1:SWEep:POINts 501') Instrument.write_str_with_opc("CALCULATE2:PARAMETER:SDEFINE 'Trc2', 'S11'") Instrument.write_str_with_opc("CALCULATE2:PARAMETER:SELECT 'Trc2'") Instrument.write_str_with_opc('DISPLAY:WINDOW2:STATE ON') Instrument.write_str_with_opc("DISPLAY:WINDOW2:TRACE1:FEED 'Trc2'") Instrument.write_str_with_opc('SENSe2:FREQuency:Start 1e9') Instrument.write_str_with_opc('SENSe2:FREQuency:Stop 2e9') Instrument.write_str_with_opc('SENSe2:SWEep:POINts 501') Instrument.write_str_with_opc("CALCULATE3:PARAMETER:SDEFINE 'Trc3', 'S11'") Instrument.write_str_with_opc("CALCULATE3:PARAMETER:SELECT 'Trc3'") Instrument.write_str_with_opc('DISPLAY:WINDOW3:STATE ON') Instrument.write_str_with_opc("DISPLAY:WINDOW3:TRACE1:FEED 'Trc3'") Instrument.write_str_with_opc('SENSe3:FREQuency:Start 1e9') Instrument.write_str_with_opc('SENSe3:FREQuency:Stop 2e9') Instrument.write_str_with_opc('SENSe3:SWEep:POINts 501')<|docstring|>Reset the instrument, add two channels and load calibration file to each channel<|endoftext|>
05d018a3906438e60511401bb6b55027105fc08dc20fe444d27bbf0eb3a81247
def loadcal(): 'Now load the cal file to each channel' print() print('Load the calibration to all three channels') Instrument.write('MMEMory:LOAD:CORRection 1,"P1_OSM_1-2GHz"') Instrument.write('MMEMory:LOAD:CORRection 2,"P1_OSM_1-2GHz"') Instrument.write('MMEMory:LOAD:CORRection 3,"P1_OSM_1-2GHz"')
Now load the cal file to each channel
VectorNetworkAnalyzers/Python/RsInstrument/RsInstrument_ZNB_CAL_P1_Save_Reload.py
loadcal
Rohde-Schwarz/examples
0
python
def loadcal(): print() print('Load the calibration to all three channels') Instrument.write('MMEMory:LOAD:CORRection 1,"P1_OSM_1-2GHz"') Instrument.write('MMEMory:LOAD:CORRection 2,"P1_OSM_1-2GHz"') Instrument.write('MMEMory:LOAD:CORRection 3,"P1_OSM_1-2GHz"')
def loadcal(): print() print('Load the calibration to all three channels') Instrument.write('MMEMory:LOAD:CORRection 1,"P1_OSM_1-2GHz"') Instrument.write('MMEMory:LOAD:CORRection 2,"P1_OSM_1-2GHz"') Instrument.write('MMEMory:LOAD:CORRection 3,"P1_OSM_1-2GHz"')<|docstring|>Now load the cal file to each channel<|endoftext|>
3ff8b9203d34a658b8d6fbb38c1b4711d16c93ff7fbd743ce52f1d65d220ff9a
def test_collection_count(self, connect, collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection and add vectors in it,\n assert the value returned by count_entities method is equal to length of vectors\n expected: the count is equal to the length of vectors\n ' entities = gen_entities(insert_count) res = connect.insert(collection, entities) connect.flush([collection]) res = connect.count_entities(collection) assert (res == insert_count)
target: test collection rows_count is correct or not method: create collection and add vectors in it, assert the value returned by count_entities method is equal to length of vectors expected: the count is equal to the length of vectors
tests/milvus_python_test/collection/test_collection_count.py
test_collection_count
RyanWei/milvus
3
python
def test_collection_count(self, connect, collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection and add vectors in it,\n assert the value returned by count_entities method is equal to length of vectors\n expected: the count is equal to the length of vectors\n ' entities = gen_entities(insert_count) res = connect.insert(collection, entities) connect.flush([collection]) res = connect.count_entities(collection) assert (res == insert_count)
def test_collection_count(self, connect, collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection and add vectors in it,\n assert the value returned by count_entities method is equal to length of vectors\n expected: the count is equal to the length of vectors\n ' entities = gen_entities(insert_count) res = connect.insert(collection, entities) connect.flush([collection]) res = connect.count_entities(collection) assert (res == insert_count)<|docstring|>target: test collection rows_count is correct or not method: create collection and add vectors in it, assert the value returned by count_entities method is equal to length of vectors expected: the count is equal to the length of vectors<|endoftext|>
be8bf77bff628fe01eec36d76adf1c2e5399e41041412a592a347fc75cba9eb2
def test_collection_count_partition(self, connect, collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partition and add vectors in it,\n assert the value returned by count_entities method is equal to length of vectors\n expected: the count is equal to the length of vectors\n ' entities = gen_entities(insert_count) connect.create_partition(collection, tag) res_ids = connect.insert(collection, entities, partition_tag=tag) connect.flush([collection]) res = connect.count_entities(collection) assert (res == insert_count)
target: test collection rows_count is correct or not method: create collection, create partition and add vectors in it, assert the value returned by count_entities method is equal to length of vectors expected: the count is equal to the length of vectors
tests/milvus_python_test/collection/test_collection_count.py
test_collection_count_partition
RyanWei/milvus
3
python
def test_collection_count_partition(self, connect, collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partition and add vectors in it,\n assert the value returned by count_entities method is equal to length of vectors\n expected: the count is equal to the length of vectors\n ' entities = gen_entities(insert_count) connect.create_partition(collection, tag) res_ids = connect.insert(collection, entities, partition_tag=tag) connect.flush([collection]) res = connect.count_entities(collection) assert (res == insert_count)
def test_collection_count_partition(self, connect, collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partition and add vectors in it,\n assert the value returned by count_entities method is equal to length of vectors\n expected: the count is equal to the length of vectors\n ' entities = gen_entities(insert_count) connect.create_partition(collection, tag) res_ids = connect.insert(collection, entities, partition_tag=tag) connect.flush([collection]) res = connect.count_entities(collection) assert (res == insert_count)<|docstring|>target: test collection rows_count is correct or not method: create collection, create partition and add vectors in it, assert the value returned by count_entities method is equal to length of vectors expected: the count is equal to the length of vectors<|endoftext|>
b5920042c419c97a35a951c165a210d46ec2cad2fe7513107e0098ce80f976bb
def test_collection_count_multi_partitions_A(self, connect, collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partitions and add entities in it,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' new_tag = 'new_tag' entities = gen_entities(insert_count) connect.create_partition(collection, tag) connect.create_partition(collection, new_tag) res_ids = connect.insert(collection, entities) connect.flush([collection]) res = connect.count_entities(collection) assert (res == insert_count)
target: test collection rows_count is correct or not method: create collection, create partitions and add entities in it, assert the value returned by count_entities method is equal to length of entities expected: the count is equal to the length of entities
tests/milvus_python_test/collection/test_collection_count.py
test_collection_count_multi_partitions_A
RyanWei/milvus
3
python
def test_collection_count_multi_partitions_A(self, connect, collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partitions and add entities in it,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' new_tag = 'new_tag' entities = gen_entities(insert_count) connect.create_partition(collection, tag) connect.create_partition(collection, new_tag) res_ids = connect.insert(collection, entities) connect.flush([collection]) res = connect.count_entities(collection) assert (res == insert_count)
def test_collection_count_multi_partitions_A(self, connect, collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partitions and add entities in it,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' new_tag = 'new_tag' entities = gen_entities(insert_count) connect.create_partition(collection, tag) connect.create_partition(collection, new_tag) res_ids = connect.insert(collection, entities) connect.flush([collection]) res = connect.count_entities(collection) assert (res == insert_count)<|docstring|>target: test collection rows_count is correct or not method: create collection, create partitions and add entities in it, assert the value returned by count_entities method is equal to length of entities expected: the count is equal to the length of entities<|endoftext|>
272bebdbd5c9cd15c8052c3e53881740088089d3e7d213a941584aa0ea9556e2
def test_collection_count_multi_partitions_B(self, connect, collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partitions and add entities in one of the partitions,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' new_tag = 'new_tag' entities = gen_entities(insert_count) connect.create_partition(collection, tag) connect.create_partition(collection, new_tag) res_ids = connect.insert(collection, entities, partition_tag=tag) connect.flush([collection]) res = connect.count_entities(collection) assert (res == insert_count)
target: test collection rows_count is correct or not method: create collection, create partitions and add entities in one of the partitions, assert the value returned by count_entities method is equal to length of entities expected: the count is equal to the length of entities
tests/milvus_python_test/collection/test_collection_count.py
test_collection_count_multi_partitions_B
RyanWei/milvus
3
python
def test_collection_count_multi_partitions_B(self, connect, collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partitions and add entities in one of the partitions,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' new_tag = 'new_tag' entities = gen_entities(insert_count) connect.create_partition(collection, tag) connect.create_partition(collection, new_tag) res_ids = connect.insert(collection, entities, partition_tag=tag) connect.flush([collection]) res = connect.count_entities(collection) assert (res == insert_count)
def test_collection_count_multi_partitions_B(self, connect, collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partitions and add entities in one of the partitions,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' new_tag = 'new_tag' entities = gen_entities(insert_count) connect.create_partition(collection, tag) connect.create_partition(collection, new_tag) res_ids = connect.insert(collection, entities, partition_tag=tag) connect.flush([collection]) res = connect.count_entities(collection) assert (res == insert_count)<|docstring|>target: test collection rows_count is correct or not method: create collection, create partitions and add entities in one of the partitions, assert the value returned by count_entities method is equal to length of entities expected: the count is equal to the length of entities<|endoftext|>
00f1ab5395ac0bd32cec7ed3d8ab7fa0b8b288a3d202442c8a83d8066a8cfda6
def test_collection_count_multi_partitions_C(self, connect, collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partitions and add entities in one of the partitions,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of vectors\n ' new_tag = 'new_tag' entities = gen_entities(insert_count) connect.create_partition(collection, tag) connect.create_partition(collection, new_tag) res_ids = connect.insert(collection, entities) res_ids_2 = connect.insert(collection, entities, partition_tag=tag) connect.flush([collection]) res = connect.count_entities(collection) assert (res == (insert_count * 2))
target: test collection rows_count is correct or not method: create collection, create partitions and add entities in one of the partitions, assert the value returned by count_entities method is equal to length of entities expected: the count is equal to the length of vectors
tests/milvus_python_test/collection/test_collection_count.py
test_collection_count_multi_partitions_C
RyanWei/milvus
3
python
def test_collection_count_multi_partitions_C(self, connect, collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partitions and add entities in one of the partitions,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of vectors\n ' new_tag = 'new_tag' entities = gen_entities(insert_count) connect.create_partition(collection, tag) connect.create_partition(collection, new_tag) res_ids = connect.insert(collection, entities) res_ids_2 = connect.insert(collection, entities, partition_tag=tag) connect.flush([collection]) res = connect.count_entities(collection) assert (res == (insert_count * 2))
def test_collection_count_multi_partitions_C(self, connect, collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partitions and add entities in one of the partitions,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of vectors\n ' new_tag = 'new_tag' entities = gen_entities(insert_count) connect.create_partition(collection, tag) connect.create_partition(collection, new_tag) res_ids = connect.insert(collection, entities) res_ids_2 = connect.insert(collection, entities, partition_tag=tag) connect.flush([collection]) res = connect.count_entities(collection) assert (res == (insert_count * 2))<|docstring|>target: test collection rows_count is correct or not method: create collection, create partitions and add entities in one of the partitions, assert the value returned by count_entities method is equal to length of entities expected: the count is equal to the length of vectors<|endoftext|>
44e5a31f5f9477a111a82c0e28bd987d7fb6d1f958d33c358c33d8fe0a7fdc92
def test_collection_count_multi_partitions_D(self, connect, collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partitions and add entities in one of the partitions,\n assert the value returned by count_entities method is equal to length of entities\n expected: the collection count is equal to the length of entities\n ' new_tag = 'new_tag' entities = gen_entities(insert_count) connect.create_partition(collection, tag) connect.create_partition(collection, new_tag) res_ids = connect.insert(collection, entities, partition_tag=tag) res_ids2 = connect.insert(collection, entities, partition_tag=new_tag) connect.flush([collection]) res = connect.count_entities(collection) assert (res == (insert_count * 2))
target: test collection rows_count is correct or not method: create collection, create partitions and add entities in one of the partitions, assert the value returned by count_entities method is equal to length of entities expected: the collection count is equal to the length of entities
tests/milvus_python_test/collection/test_collection_count.py
test_collection_count_multi_partitions_D
RyanWei/milvus
3
python
def test_collection_count_multi_partitions_D(self, connect, collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partitions and add entities in one of the partitions,\n assert the value returned by count_entities method is equal to length of entities\n expected: the collection count is equal to the length of entities\n ' new_tag = 'new_tag' entities = gen_entities(insert_count) connect.create_partition(collection, tag) connect.create_partition(collection, new_tag) res_ids = connect.insert(collection, entities, partition_tag=tag) res_ids2 = connect.insert(collection, entities, partition_tag=new_tag) connect.flush([collection]) res = connect.count_entities(collection) assert (res == (insert_count * 2))
def test_collection_count_multi_partitions_D(self, connect, collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partitions and add entities in one of the partitions,\n assert the value returned by count_entities method is equal to length of entities\n expected: the collection count is equal to the length of entities\n ' new_tag = 'new_tag' entities = gen_entities(insert_count) connect.create_partition(collection, tag) connect.create_partition(collection, new_tag) res_ids = connect.insert(collection, entities, partition_tag=tag) res_ids2 = connect.insert(collection, entities, partition_tag=new_tag) connect.flush([collection]) res = connect.count_entities(collection) assert (res == (insert_count * 2))<|docstring|>target: test collection rows_count is correct or not method: create collection, create partitions and add entities in one of the partitions, assert the value returned by count_entities method is equal to length of entities expected: the collection count is equal to the length of entities<|endoftext|>
2cdb648a12c07332d4e0b0fd5801410c88a58b429306bae2303396c9dff41a46
def _test_collection_count_after_index_created(self, connect, collection, get_simple_index, insert_count): '\n target: test count_entities, after index have been created\n method: add vectors in db, and create index, then calling count_entities with correct params \n expected: count_entities raise exception\n ' entities = gen_entities(insert_count) res = connect.insert(collection, entities) connect.flush([collection]) connect.create_index(collection, default_float_vec_field_name, get_simple_index) res = connect.count_entities(collection) assert (res == insert_count)
target: test count_entities, after index have been created method: add vectors in db, and create index, then calling count_entities with correct params expected: count_entities raise exception
tests/milvus_python_test/collection/test_collection_count.py
_test_collection_count_after_index_created
RyanWei/milvus
3
python
def _test_collection_count_after_index_created(self, connect, collection, get_simple_index, insert_count): '\n target: test count_entities, after index have been created\n method: add vectors in db, and create index, then calling count_entities with correct params \n expected: count_entities raise exception\n ' entities = gen_entities(insert_count) res = connect.insert(collection, entities) connect.flush([collection]) connect.create_index(collection, default_float_vec_field_name, get_simple_index) res = connect.count_entities(collection) assert (res == insert_count)
def _test_collection_count_after_index_created(self, connect, collection, get_simple_index, insert_count): '\n target: test count_entities, after index have been created\n method: add vectors in db, and create index, then calling count_entities with correct params \n expected: count_entities raise exception\n ' entities = gen_entities(insert_count) res = connect.insert(collection, entities) connect.flush([collection]) connect.create_index(collection, default_float_vec_field_name, get_simple_index) res = connect.count_entities(collection) assert (res == insert_count)<|docstring|>target: test count_entities, after index have been created method: add vectors in db, and create index, then calling count_entities with correct params expected: count_entities raise exception<|endoftext|>
fad252f5927a259eb49255e0d517edd6b375822afd6bbed1958140078b404508
def test_count_without_connection(self, collection, dis_connect): '\n target: test count_entities, without connection\n method: calling count_entities with correct params, with a disconnected instance\n expected: count_entities raise exception\n ' with pytest.raises(Exception) as e: dis_connect.count_entities(collection)
target: test count_entities, without connection method: calling count_entities with correct params, with a disconnected instance expected: count_entities raise exception
tests/milvus_python_test/collection/test_collection_count.py
test_count_without_connection
RyanWei/milvus
3
python
def test_count_without_connection(self, collection, dis_connect): '\n target: test count_entities, without connection\n method: calling count_entities with correct params, with a disconnected instance\n expected: count_entities raise exception\n ' with pytest.raises(Exception) as e: dis_connect.count_entities(collection)
def test_count_without_connection(self, collection, dis_connect): '\n target: test count_entities, without connection\n method: calling count_entities with correct params, with a disconnected instance\n expected: count_entities raise exception\n ' with pytest.raises(Exception) as e: dis_connect.count_entities(collection)<|docstring|>target: test count_entities, without connection method: calling count_entities with correct params, with a disconnected instance expected: count_entities raise exception<|endoftext|>
8cd24880cb7b6ccf597167cc40e7109ac350ea8a7985433ac892171c95548b38
def test_collection_count_no_vectors(self, connect, collection): '\n target: test collection rows_count is correct or not, if collection is empty\n method: create collection and no vectors in it,\n assert the value returned by count_entities method is equal to 0\n expected: the count is equal to 0\n ' res = connect.count_entities(collection) assert (res == 0)
target: test collection rows_count is correct or not, if collection is empty method: create collection and no vectors in it, assert the value returned by count_entities method is equal to 0 expected: the count is equal to 0
tests/milvus_python_test/collection/test_collection_count.py
test_collection_count_no_vectors
RyanWei/milvus
3
python
def test_collection_count_no_vectors(self, connect, collection): '\n target: test collection rows_count is correct or not, if collection is empty\n method: create collection and no vectors in it,\n assert the value returned by count_entities method is equal to 0\n expected: the count is equal to 0\n ' res = connect.count_entities(collection) assert (res == 0)
def test_collection_count_no_vectors(self, connect, collection): '\n target: test collection rows_count is correct or not, if collection is empty\n method: create collection and no vectors in it,\n assert the value returned by count_entities method is equal to 0\n expected: the count is equal to 0\n ' res = connect.count_entities(collection) assert (res == 0)<|docstring|>target: test collection rows_count is correct or not, if collection is empty method: create collection and no vectors in it, assert the value returned by count_entities method is equal to 0 expected: the count is equal to 0<|endoftext|>
bf479c69039350542da1a3dbda5ad214bfc1765674ee1f4680e4879aa849e55b
def _test_collection_count_after_index_created(self, connect, collection, get_simple_index, insert_count): '\n target: test count_entities, after index have been created\n method: add vectors in db, and create index, then calling count_entities with correct params \n expected: count_entities raise exception\n ' entities = gen_entities(insert_count) res = connect.insert(collection, entities) connect.flush([collection]) connect.create_index(collection, field_name, get_simple_index) res = connect.count_entities(collection) assert (res == insert_count)
target: test count_entities, after index have been created method: add vectors in db, and create index, then calling count_entities with correct params expected: count_entities raise exception
tests/milvus_python_test/collection/test_collection_count.py
_test_collection_count_after_index_created
RyanWei/milvus
3
python
def _test_collection_count_after_index_created(self, connect, collection, get_simple_index, insert_count): '\n target: test count_entities, after index have been created\n method: add vectors in db, and create index, then calling count_entities with correct params \n expected: count_entities raise exception\n ' entities = gen_entities(insert_count) res = connect.insert(collection, entities) connect.flush([collection]) connect.create_index(collection, field_name, get_simple_index) res = connect.count_entities(collection) assert (res == insert_count)
def _test_collection_count_after_index_created(self, connect, collection, get_simple_index, insert_count): '\n target: test count_entities, after index have been created\n method: add vectors in db, and create index, then calling count_entities with correct params \n expected: count_entities raise exception\n ' entities = gen_entities(insert_count) res = connect.insert(collection, entities) connect.flush([collection]) connect.create_index(collection, field_name, get_simple_index) res = connect.count_entities(collection) assert (res == insert_count)<|docstring|>target: test count_entities, after index have been created method: add vectors in db, and create index, then calling count_entities with correct params expected: count_entities raise exception<|endoftext|>
d7915203feac9e3756bf67cb58d280b08395db2ff74b94246e7d41377c474472
def test_collection_count(self, connect, binary_collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection and add entities in it,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' (raw_vectors, entities) = gen_binary_entities(insert_count) res = connect.insert(binary_collection, entities) logging.getLogger().info(len(res)) connect.flush([binary_collection]) res = connect.count_entities(binary_collection) assert (res == insert_count)
target: test collection rows_count is correct or not method: create collection and add entities in it, assert the value returned by count_entities method is equal to length of entities expected: the count is equal to the length of entities
tests/milvus_python_test/collection/test_collection_count.py
test_collection_count
RyanWei/milvus
3
python
def test_collection_count(self, connect, binary_collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection and add entities in it,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' (raw_vectors, entities) = gen_binary_entities(insert_count) res = connect.insert(binary_collection, entities) logging.getLogger().info(len(res)) connect.flush([binary_collection]) res = connect.count_entities(binary_collection) assert (res == insert_count)
def test_collection_count(self, connect, binary_collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection and add entities in it,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' (raw_vectors, entities) = gen_binary_entities(insert_count) res = connect.insert(binary_collection, entities) logging.getLogger().info(len(res)) connect.flush([binary_collection]) res = connect.count_entities(binary_collection) assert (res == insert_count)<|docstring|>target: test collection rows_count is correct or not method: create collection and add entities in it, assert the value returned by count_entities method is equal to length of entities expected: the count is equal to the length of entities<|endoftext|>
5b4e0c2f85689b6a90d941758c5cc3ad6fa65a0a5677ce991414c5600d7aedd7
def test_collection_count_partition(self, connect, binary_collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partition and add entities in it,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' (raw_vectors, entities) = gen_binary_entities(insert_count) connect.create_partition(binary_collection, tag) res_ids = connect.insert(binary_collection, entities, partition_tag=tag) connect.flush([binary_collection]) res = connect.count_entities(binary_collection) assert (res == insert_count)
target: test collection rows_count is correct or not method: create collection, create partition and add entities in it, assert the value returned by count_entities method is equal to length of entities expected: the count is equal to the length of entities
tests/milvus_python_test/collection/test_collection_count.py
test_collection_count_partition
RyanWei/milvus
3
python
def test_collection_count_partition(self, connect, binary_collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partition and add entities in it,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' (raw_vectors, entities) = gen_binary_entities(insert_count) connect.create_partition(binary_collection, tag) res_ids = connect.insert(binary_collection, entities, partition_tag=tag) connect.flush([binary_collection]) res = connect.count_entities(binary_collection) assert (res == insert_count)
def test_collection_count_partition(self, connect, binary_collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partition and add entities in it,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' (raw_vectors, entities) = gen_binary_entities(insert_count) connect.create_partition(binary_collection, tag) res_ids = connect.insert(binary_collection, entities, partition_tag=tag) connect.flush([binary_collection]) res = connect.count_entities(binary_collection) assert (res == insert_count)<|docstring|>target: test collection rows_count is correct or not method: create collection, create partition and add entities in it, assert the value returned by count_entities method is equal to length of entities expected: the count is equal to the length of entities<|endoftext|>
9a8d4fa1c99ba833d2357767eb22394f9b78c9a3f54e8fba8742c0079b10bc64
@pytest.mark.level(2) def test_collection_count_multi_partitions_A(self, connect, binary_collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partitions and add entities in it,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' new_tag = 'new_tag' (raw_vectors, entities) = gen_binary_entities(insert_count) connect.create_partition(binary_collection, tag) connect.create_partition(binary_collection, new_tag) res_ids = connect.insert(binary_collection, entities) connect.flush([binary_collection]) res = connect.count_entities(binary_collection) assert (res == insert_count)
target: test collection rows_count is correct or not method: create collection, create partitions and add entities in it, assert the value returned by count_entities method is equal to length of entities expected: the count is equal to the length of entities
tests/milvus_python_test/collection/test_collection_count.py
test_collection_count_multi_partitions_A
RyanWei/milvus
3
python
@pytest.mark.level(2) def test_collection_count_multi_partitions_A(self, connect, binary_collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partitions and add entities in it,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' new_tag = 'new_tag' (raw_vectors, entities) = gen_binary_entities(insert_count) connect.create_partition(binary_collection, tag) connect.create_partition(binary_collection, new_tag) res_ids = connect.insert(binary_collection, entities) connect.flush([binary_collection]) res = connect.count_entities(binary_collection) assert (res == insert_count)
@pytest.mark.level(2) def test_collection_count_multi_partitions_A(self, connect, binary_collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partitions and add entities in it,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' new_tag = 'new_tag' (raw_vectors, entities) = gen_binary_entities(insert_count) connect.create_partition(binary_collection, tag) connect.create_partition(binary_collection, new_tag) res_ids = connect.insert(binary_collection, entities) connect.flush([binary_collection]) res = connect.count_entities(binary_collection) assert (res == insert_count)<|docstring|>target: test collection rows_count is correct or not method: create collection, create partitions and add entities in it, assert the value returned by count_entities method is equal to length of entities expected: the count is equal to the length of entities<|endoftext|>
a141514a7c944e8afc7fd4cf215584a7e3fd272263f44d9679e438737da77bbf
@pytest.mark.level(2) def test_collection_count_multi_partitions_B(self, connect, binary_collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partitions and add entities in one of the partitions,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' new_tag = 'new_tag' (raw_vectors, entities) = gen_binary_entities(insert_count) connect.create_partition(binary_collection, tag) connect.create_partition(binary_collection, new_tag) res_ids = connect.insert(binary_collection, entities, partition_tag=tag) connect.flush([binary_collection]) res = connect.count_entities(binary_collection) assert (res == insert_count)
target: test collection rows_count is correct or not method: create collection, create partitions and add entities in one of the partitions, assert the value returned by count_entities method is equal to length of entities expected: the count is equal to the length of entities
tests/milvus_python_test/collection/test_collection_count.py
test_collection_count_multi_partitions_B
RyanWei/milvus
3
python
@pytest.mark.level(2) def test_collection_count_multi_partitions_B(self, connect, binary_collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partitions and add entities in one of the partitions,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' new_tag = 'new_tag' (raw_vectors, entities) = gen_binary_entities(insert_count) connect.create_partition(binary_collection, tag) connect.create_partition(binary_collection, new_tag) res_ids = connect.insert(binary_collection, entities, partition_tag=tag) connect.flush([binary_collection]) res = connect.count_entities(binary_collection) assert (res == insert_count)
@pytest.mark.level(2) def test_collection_count_multi_partitions_B(self, connect, binary_collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partitions and add entities in one of the partitions,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' new_tag = 'new_tag' (raw_vectors, entities) = gen_binary_entities(insert_count) connect.create_partition(binary_collection, tag) connect.create_partition(binary_collection, new_tag) res_ids = connect.insert(binary_collection, entities, partition_tag=tag) connect.flush([binary_collection]) res = connect.count_entities(binary_collection) assert (res == insert_count)<|docstring|>target: test collection rows_count is correct or not method: create collection, create partitions and add entities in one of the partitions, assert the value returned by count_entities method is equal to length of entities expected: the count is equal to the length of entities<|endoftext|>
49b11d7d45cd31fee07a8dce5ac73b2193bffe1e5b58ea2120532b9768e65f8b
def test_collection_count_multi_partitions_C(self, connect, binary_collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partitions and add entities in one of the partitions,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' new_tag = 'new_tag' (raw_vectors, entities) = gen_binary_entities(insert_count) connect.create_partition(binary_collection, tag) connect.create_partition(binary_collection, new_tag) res_ids = connect.insert(binary_collection, entities) res_ids_2 = connect.insert(binary_collection, entities, partition_tag=tag) connect.flush([binary_collection]) res = connect.count_entities(binary_collection) assert (res == (insert_count * 2))
target: test collection rows_count is correct or not method: create collection, create partitions and add entities in one of the partitions, assert the value returned by count_entities method is equal to length of entities expected: the count is equal to the length of entities
tests/milvus_python_test/collection/test_collection_count.py
test_collection_count_multi_partitions_C
RyanWei/milvus
3
python
def test_collection_count_multi_partitions_C(self, connect, binary_collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partitions and add entities in one of the partitions,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' new_tag = 'new_tag' (raw_vectors, entities) = gen_binary_entities(insert_count) connect.create_partition(binary_collection, tag) connect.create_partition(binary_collection, new_tag) res_ids = connect.insert(binary_collection, entities) res_ids_2 = connect.insert(binary_collection, entities, partition_tag=tag) connect.flush([binary_collection]) res = connect.count_entities(binary_collection) assert (res == (insert_count * 2))
def test_collection_count_multi_partitions_C(self, connect, binary_collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partitions and add entities in one of the partitions,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' new_tag = 'new_tag' (raw_vectors, entities) = gen_binary_entities(insert_count) connect.create_partition(binary_collection, tag) connect.create_partition(binary_collection, new_tag) res_ids = connect.insert(binary_collection, entities) res_ids_2 = connect.insert(binary_collection, entities, partition_tag=tag) connect.flush([binary_collection]) res = connect.count_entities(binary_collection) assert (res == (insert_count * 2))<|docstring|>target: test collection rows_count is correct or not method: create collection, create partitions and add entities in one of the partitions, assert the value returned by count_entities method is equal to length of entities expected: the count is equal to the length of entities<|endoftext|>
058a27c1ade68860abe2630065d10cbb5c2c32e412e2282b77480b3130e51b73
@pytest.mark.level(2) def test_collection_count_multi_partitions_D(self, connect, binary_collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partitions and add entities in one of the partitions,\n assert the value returned by count_entities method is equal to length of entities\n expected: the collection count is equal to the length of entities\n ' new_tag = 'new_tag' (raw_vectors, entities) = gen_binary_entities(insert_count) connect.create_partition(binary_collection, tag) connect.create_partition(binary_collection, new_tag) res_ids = connect.insert(binary_collection, entities, partition_tag=tag) res_ids2 = connect.insert(binary_collection, entities, partition_tag=new_tag) connect.flush([binary_collection]) res = connect.count_entities(binary_collection) assert (res == (insert_count * 2))
target: test collection rows_count is correct or not method: create collection, create partitions and add entities in one of the partitions, assert the value returned by count_entities method is equal to length of entities expected: the collection count is equal to the length of entities
tests/milvus_python_test/collection/test_collection_count.py
test_collection_count_multi_partitions_D
RyanWei/milvus
3
python
@pytest.mark.level(2) def test_collection_count_multi_partitions_D(self, connect, binary_collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partitions and add entities in one of the partitions,\n assert the value returned by count_entities method is equal to length of entities\n expected: the collection count is equal to the length of entities\n ' new_tag = 'new_tag' (raw_vectors, entities) = gen_binary_entities(insert_count) connect.create_partition(binary_collection, tag) connect.create_partition(binary_collection, new_tag) res_ids = connect.insert(binary_collection, entities, partition_tag=tag) res_ids2 = connect.insert(binary_collection, entities, partition_tag=new_tag) connect.flush([binary_collection]) res = connect.count_entities(binary_collection) assert (res == (insert_count * 2))
@pytest.mark.level(2) def test_collection_count_multi_partitions_D(self, connect, binary_collection, insert_count): '\n target: test collection rows_count is correct or not\n method: create collection, create partitions and add entities in one of the partitions,\n assert the value returned by count_entities method is equal to length of entities\n expected: the collection count is equal to the length of entities\n ' new_tag = 'new_tag' (raw_vectors, entities) = gen_binary_entities(insert_count) connect.create_partition(binary_collection, tag) connect.create_partition(binary_collection, new_tag) res_ids = connect.insert(binary_collection, entities, partition_tag=tag) res_ids2 = connect.insert(binary_collection, entities, partition_tag=new_tag) connect.flush([binary_collection]) res = connect.count_entities(binary_collection) assert (res == (insert_count * 2))<|docstring|>target: test collection rows_count is correct or not method: create collection, create partitions and add entities in one of the partitions, assert the value returned by count_entities method is equal to length of entities expected: the collection count is equal to the length of entities<|endoftext|>
3d5a047123c96bac76431ad3bab6352d3980074083d2451a60078418aa4c247e
def _test_collection_count_after_index_created(self, connect, binary_collection, get_jaccard_index, insert_count): '\n target: test count_entities, after index have been created\n method: add vectors in db, and create index, then calling count_entities with correct params \n expected: count_entities raise exception\n ' (raw_vectors, entities) = gen_binary_entities(insert_count) res = connect.insert(binary_collection, entities) connect.flush([binary_collection]) connect.create_index(binary_collection, field_name, get_jaccard_index) res = connect.count_entities(binary_collection) assert (res == insert_count)
target: test count_entities, after index have been created method: add vectors in db, and create index, then calling count_entities with correct params expected: count_entities raise exception
tests/milvus_python_test/collection/test_collection_count.py
_test_collection_count_after_index_created
RyanWei/milvus
3
python
def _test_collection_count_after_index_created(self, connect, binary_collection, get_jaccard_index, insert_count): '\n target: test count_entities, after index have been created\n method: add vectors in db, and create index, then calling count_entities with correct params \n expected: count_entities raise exception\n ' (raw_vectors, entities) = gen_binary_entities(insert_count) res = connect.insert(binary_collection, entities) connect.flush([binary_collection]) connect.create_index(binary_collection, field_name, get_jaccard_index) res = connect.count_entities(binary_collection) assert (res == insert_count)
def _test_collection_count_after_index_created(self, connect, binary_collection, get_jaccard_index, insert_count): '\n target: test count_entities, after index have been created\n method: add vectors in db, and create index, then calling count_entities with correct params \n expected: count_entities raise exception\n ' (raw_vectors, entities) = gen_binary_entities(insert_count) res = connect.insert(binary_collection, entities) connect.flush([binary_collection]) connect.create_index(binary_collection, field_name, get_jaccard_index) res = connect.count_entities(binary_collection) assert (res == insert_count)<|docstring|>target: test count_entities, after index have been created method: add vectors in db, and create index, then calling count_entities with correct params expected: count_entities raise exception<|endoftext|>
4c0e83a981d71177f638fb5a4d4b3a825862d8ffd089741416ac16cebe3e10de
def _test_collection_count_after_index_created(self, connect, binary_collection, get_hamming_index, insert_count): '\n target: test count_entities, after index have been created\n method: add vectors in db, and create index, then calling count_entities with correct params \n expected: count_entities raise exception\n ' (raw_vectors, entities) = gen_binary_entities(insert_count) res = connect.insert(binary_collection, entities) connect.flush([binary_collection]) connect.create_index(binary_collection, field_name, get_hamming_index) res = connect.count_entities(binary_collection) assert (res == insert_count)
target: test count_entities, after index have been created method: add vectors in db, and create index, then calling count_entities with correct params expected: count_entities raise exception
tests/milvus_python_test/collection/test_collection_count.py
_test_collection_count_after_index_created
RyanWei/milvus
3
python
def _test_collection_count_after_index_created(self, connect, binary_collection, get_hamming_index, insert_count): '\n target: test count_entities, after index have been created\n method: add vectors in db, and create index, then calling count_entities with correct params \n expected: count_entities raise exception\n ' (raw_vectors, entities) = gen_binary_entities(insert_count) res = connect.insert(binary_collection, entities) connect.flush([binary_collection]) connect.create_index(binary_collection, field_name, get_hamming_index) res = connect.count_entities(binary_collection) assert (res == insert_count)
def _test_collection_count_after_index_created(self, connect, binary_collection, get_hamming_index, insert_count): '\n target: test count_entities, after index have been created\n method: add vectors in db, and create index, then calling count_entities with correct params \n expected: count_entities raise exception\n ' (raw_vectors, entities) = gen_binary_entities(insert_count) res = connect.insert(binary_collection, entities) connect.flush([binary_collection]) connect.create_index(binary_collection, field_name, get_hamming_index) res = connect.count_entities(binary_collection) assert (res == insert_count)<|docstring|>target: test count_entities, after index have been created method: add vectors in db, and create index, then calling count_entities with correct params expected: count_entities raise exception<|endoftext|>
a24a30860e0f364d690372fb1f4c159f1ed2570ec92578cd4bbe59b481126796
def test_collection_count_no_entities(self, connect, binary_collection): '\n target: test collection rows_count is correct or not, if collection is empty\n method: create collection and no vectors in it,\n assert the value returned by count_entities method is equal to 0\n expected: the count is equal to 0\n ' res = connect.count_entities(binary_collection) assert (res == 0)
target: test collection rows_count is correct or not, if collection is empty method: create collection and no vectors in it, assert the value returned by count_entities method is equal to 0 expected: the count is equal to 0
tests/milvus_python_test/collection/test_collection_count.py
test_collection_count_no_entities
RyanWei/milvus
3
python
def test_collection_count_no_entities(self, connect, binary_collection): '\n target: test collection rows_count is correct or not, if collection is empty\n method: create collection and no vectors in it,\n assert the value returned by count_entities method is equal to 0\n expected: the count is equal to 0\n ' res = connect.count_entities(binary_collection) assert (res == 0)
def test_collection_count_no_entities(self, connect, binary_collection): '\n target: test collection rows_count is correct or not, if collection is empty\n method: create collection and no vectors in it,\n assert the value returned by count_entities method is equal to 0\n expected: the count is equal to 0\n ' res = connect.count_entities(binary_collection) assert (res == 0)<|docstring|>target: test collection rows_count is correct or not, if collection is empty method: create collection and no vectors in it, assert the value returned by count_entities method is equal to 0 expected: the count is equal to 0<|endoftext|>
ad73705c4510671dba0039868bb12878060608b113ec70984d48560d03ce46b7
def test_collection_count_multi_collections_l2(self, connect, insert_count): '\n target: test collection rows_count is correct or not with multiple collections of L2\n method: create collection and add entities in it,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' entities = gen_entities(insert_count) collection_list = [] collection_num = 20 for i in range(collection_num): collection_name = gen_unique_str(uid) collection_list.append(collection_name) connect.create_collection(collection_name, default_fields) res = connect.insert(collection_name, entities) connect.flush(collection_list) for i in range(collection_num): res = connect.count_entities(collection_list[i]) assert (res == insert_count)
target: test collection rows_count is correct or not with multiple collections of L2 method: create collection and add entities in it, assert the value returned by count_entities method is equal to length of entities expected: the count is equal to the length of entities
tests/milvus_python_test/collection/test_collection_count.py
test_collection_count_multi_collections_l2
RyanWei/milvus
3
python
def test_collection_count_multi_collections_l2(self, connect, insert_count): '\n target: test collection rows_count is correct or not with multiple collections of L2\n method: create collection and add entities in it,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' entities = gen_entities(insert_count) collection_list = [] collection_num = 20 for i in range(collection_num): collection_name = gen_unique_str(uid) collection_list.append(collection_name) connect.create_collection(collection_name, default_fields) res = connect.insert(collection_name, entities) connect.flush(collection_list) for i in range(collection_num): res = connect.count_entities(collection_list[i]) assert (res == insert_count)
def test_collection_count_multi_collections_l2(self, connect, insert_count): '\n target: test collection rows_count is correct or not with multiple collections of L2\n method: create collection and add entities in it,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' entities = gen_entities(insert_count) collection_list = [] collection_num = 20 for i in range(collection_num): collection_name = gen_unique_str(uid) collection_list.append(collection_name) connect.create_collection(collection_name, default_fields) res = connect.insert(collection_name, entities) connect.flush(collection_list) for i in range(collection_num): res = connect.count_entities(collection_list[i]) assert (res == insert_count)<|docstring|>target: test collection rows_count is correct or not with multiple collections of L2 method: create collection and add entities in it, assert the value returned by count_entities method is equal to length of entities expected: the count is equal to the length of entities<|endoftext|>
811428e6bf687da6052e5ba2e4799f26d7adc67f3cad04cd312e8417f3d50986
@pytest.mark.level(2) def test_collection_count_multi_collections_binary(self, connect, binary_collection, insert_count): '\n target: test collection rows_count is correct or not with multiple collections of JACCARD\n method: create collection and add entities in it,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' (raw_vectors, entities) = gen_binary_entities(insert_count) res = connect.insert(binary_collection, entities) collection_list = [] collection_num = 20 for i in range(collection_num): collection_name = gen_unique_str(uid) collection_list.append(collection_name) connect.create_collection(collection_name, default_binary_fields) res = connect.insert(collection_name, entities) connect.flush(collection_list) for i in range(collection_num): res = connect.count_entities(collection_list[i]) assert (res == insert_count)
target: test collection rows_count is correct or not with multiple collections of JACCARD method: create collection and add entities in it, assert the value returned by count_entities method is equal to length of entities expected: the count is equal to the length of entities
tests/milvus_python_test/collection/test_collection_count.py
test_collection_count_multi_collections_binary
RyanWei/milvus
3
python
@pytest.mark.level(2) def test_collection_count_multi_collections_binary(self, connect, binary_collection, insert_count): '\n target: test collection rows_count is correct or not with multiple collections of JACCARD\n method: create collection and add entities in it,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' (raw_vectors, entities) = gen_binary_entities(insert_count) res = connect.insert(binary_collection, entities) collection_list = [] collection_num = 20 for i in range(collection_num): collection_name = gen_unique_str(uid) collection_list.append(collection_name) connect.create_collection(collection_name, default_binary_fields) res = connect.insert(collection_name, entities) connect.flush(collection_list) for i in range(collection_num): res = connect.count_entities(collection_list[i]) assert (res == insert_count)
@pytest.mark.level(2) def test_collection_count_multi_collections_binary(self, connect, binary_collection, insert_count): '\n target: test collection rows_count is correct or not with multiple collections of JACCARD\n method: create collection and add entities in it,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' (raw_vectors, entities) = gen_binary_entities(insert_count) res = connect.insert(binary_collection, entities) collection_list = [] collection_num = 20 for i in range(collection_num): collection_name = gen_unique_str(uid) collection_list.append(collection_name) connect.create_collection(collection_name, default_binary_fields) res = connect.insert(collection_name, entities) connect.flush(collection_list) for i in range(collection_num): res = connect.count_entities(collection_list[i]) assert (res == insert_count)<|docstring|>target: test collection rows_count is correct or not with multiple collections of JACCARD method: create collection and add entities in it, assert the value returned by count_entities method is equal to length of entities expected: the count is equal to the length of entities<|endoftext|>
b613c502350e3d6226c854117fbe6ad761cb98ef1873e21e6998896e4eab2c06
@pytest.mark.level(2) def test_collection_count_multi_collections_mix(self, connect): '\n target: test collection rows_count is correct or not with multiple collections of JACCARD\n method: create collection and add entities in it,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' collection_list = [] collection_num = 20 for i in range(0, int((collection_num / 2))): collection_name = gen_unique_str(uid) collection_list.append(collection_name) connect.create_collection(collection_name, default_fields) res = connect.insert(collection_name, default_entities) for i in range(int((collection_num / 2)), collection_num): collection_name = gen_unique_str(uid) collection_list.append(collection_name) connect.create_collection(collection_name, default_binary_fields) res = connect.insert(collection_name, default_binary_entities) connect.flush(collection_list) for i in range(collection_num): res = connect.count_entities(collection_list[i]) assert (res == default_nb)
target: test collection rows_count is correct or not with multiple collections of JACCARD method: create collection and add entities in it, assert the value returned by count_entities method is equal to length of entities expected: the count is equal to the length of entities
tests/milvus_python_test/collection/test_collection_count.py
test_collection_count_multi_collections_mix
RyanWei/milvus
3
python
@pytest.mark.level(2) def test_collection_count_multi_collections_mix(self, connect): '\n target: test collection rows_count is correct or not with multiple collections of JACCARD\n method: create collection and add entities in it,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' collection_list = [] collection_num = 20 for i in range(0, int((collection_num / 2))): collection_name = gen_unique_str(uid) collection_list.append(collection_name) connect.create_collection(collection_name, default_fields) res = connect.insert(collection_name, default_entities) for i in range(int((collection_num / 2)), collection_num): collection_name = gen_unique_str(uid) collection_list.append(collection_name) connect.create_collection(collection_name, default_binary_fields) res = connect.insert(collection_name, default_binary_entities) connect.flush(collection_list) for i in range(collection_num): res = connect.count_entities(collection_list[i]) assert (res == default_nb)
@pytest.mark.level(2) def test_collection_count_multi_collections_mix(self, connect): '\n target: test collection rows_count is correct or not with multiple collections of JACCARD\n method: create collection and add entities in it,\n assert the value returned by count_entities method is equal to length of entities\n expected: the count is equal to the length of entities\n ' collection_list = [] collection_num = 20 for i in range(0, int((collection_num / 2))): collection_name = gen_unique_str(uid) collection_list.append(collection_name) connect.create_collection(collection_name, default_fields) res = connect.insert(collection_name, default_entities) for i in range(int((collection_num / 2)), collection_num): collection_name = gen_unique_str(uid) collection_list.append(collection_name) connect.create_collection(collection_name, default_binary_fields) res = connect.insert(collection_name, default_binary_entities) connect.flush(collection_list) for i in range(collection_num): res = connect.count_entities(collection_list[i]) assert (res == default_nb)<|docstring|>target: test collection rows_count is correct or not with multiple collections of JACCARD method: create collection and add entities in it, assert the value returned by count_entities method is equal to length of entities expected: the count is equal to the length of entities<|endoftext|>
1451e621da424d5884a0589e168784a348aa8f2e4ab972e04705217f4be8b5b3
def extractKuronochandesuyoWordpressCom(item): "\n\tParser for 'kuronochandesuyo.wordpress.com'\n\t" (vol, chp, frag, postfix) = extractVolChapterFragmentPostfix(item['title']) if ((not (chp or vol)) or ('preview' in item['title'].lower())): return None if ('Since I reincarnated・・・・' in item['tags']): return buildReleaseMessageWithType(item, 'Since I reincarnated・・・・', vol, chp, frag=frag, postfix=postfix) return False
Parser for 'kuronochandesuyo.wordpress.com'
WebMirror/management/rss_parser_funcs/feed_parse_extractKuronochandesuyoWordpressCom.py
extractKuronochandesuyoWordpressCom
fake-name/ReadableWebProxy
193
python
def extractKuronochandesuyoWordpressCom(item): "\n\t\n\t" (vol, chp, frag, postfix) = extractVolChapterFragmentPostfix(item['title']) if ((not (chp or vol)) or ('preview' in item['title'].lower())): return None if ('Since I reincarnated・・・・' in item['tags']): return buildReleaseMessageWithType(item, 'Since I reincarnated・・・・', vol, chp, frag=frag, postfix=postfix) return False
def extractKuronochandesuyoWordpressCom(item): "\n\t\n\t" (vol, chp, frag, postfix) = extractVolChapterFragmentPostfix(item['title']) if ((not (chp or vol)) or ('preview' in item['title'].lower())): return None if ('Since I reincarnated・・・・' in item['tags']): return buildReleaseMessageWithType(item, 'Since I reincarnated・・・・', vol, chp, frag=frag, postfix=postfix) return False<|docstring|>Parser for 'kuronochandesuyo.wordpress.com'<|endoftext|>
2d02ed9b9acee1e940a18bbe08bd3a25919a069a553f38ed3b60c2bd4a5a8ae6
def fetch_videos(start=None, end=None, video_timestamps=None, camera_assignment_ids=None, environment_id=None, environment_name=None, camera_device_types=None, camera_device_ids=None, camera_part_numbers=None, camera_names=None, camera_serial_numbers=None, chunk_size=100, client=None, uri=None, token_uri=None, audience=None, client_id=None, client_secret=None, local_video_directory='./videos', video_filename_extension='mp4', download_workers=4): "\n Downloads videos that match search parameters and returns their metadata.\n\n This function simply combines the operations of fetch_video_metadata() and\n download_video_files(). See documentation of those functions for details.\n\n Args:\n start (datetime): Start of time period to fetch (default is None)\n end (datetime): End of time period to fetch (default is None)\n video_timestamps (list of datetime): List of video start times to fetch (default is None)\n camera_assignment_ids (list of str): Honeycomb assignment IDs (default is None)\n environment_id (str): Honeycomb environment ID (default is None)\n environment_name (str): Honeycomb environment name (default is None)\n camera_device_types (list of str): Honeycomb device types (default is None)\n camera_device_ids (list of str): Honeycomb device IDs (default is None)\n camera_part_numbers (list of str): Honeycomb device part numbers (default is None)\n camera_names (list of str): Honeycomb device names (default is None)\n camera_serial_numbers (list of str): Honeycomb device serial numbers (default is None)\n chunk_size (int): Maximum number of data points to be returned by each Honeycomb query (default is 100)\n client (MinimalHoneycombClient): Existing Honeycomb client (otherwise will create one)\n uri (str): Server URI for creating Honeycomb client (default is value of HONEYCOMB_URI environment variable)\n token_uri (str): Token URI for creating Honeycomb client (default is value of HONEYCOMB_TOKEN_URI environment variable)\n audience (str): Audience for creating Honeycomb client (default is value of HONEYCOMB_AUDIENCE environment variable)\n client_id: Client ID for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_ID environment variable)\n client_secret: Client secret for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_SECRET environment variable)\n local_video_directory (str): Base of local video tree (default is './videos')\n video_filename_extension (str): Filename extension for video files (default is 'mp4')\n\n Returns:\n (list of dict): Metadata for videos with local path information appended\n " logger.info('Fetching metadata for videos that match specified parameters') video_metadata = fetch_video_metadata(start=start, end=end, video_timestamps=video_timestamps, camera_assignment_ids=camera_assignment_ids, environment_id=environment_id, environment_name=environment_name, camera_device_types=camera_device_types, camera_device_ids=camera_device_ids, camera_part_numbers=camera_part_numbers, camera_names=camera_names, camera_serial_numbers=camera_serial_numbers, chunk_size=chunk_size, client=client, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret) logger.info('Downloading video files') video_metadata_with_local_paths = download_video_files(video_metadata=video_metadata, local_video_directory=local_video_directory, video_filename_extension=video_filename_extension, download_workers=download_workers) return video_metadata_with_local_paths
Downloads videos that match search parameters and returns their metadata. This function simply combines the operations of fetch_video_metadata() and download_video_files(). See documentation of those functions for details. Args: start (datetime): Start of time period to fetch (default is None) end (datetime): End of time period to fetch (default is None) video_timestamps (list of datetime): List of video start times to fetch (default is None) camera_assignment_ids (list of str): Honeycomb assignment IDs (default is None) environment_id (str): Honeycomb environment ID (default is None) environment_name (str): Honeycomb environment name (default is None) camera_device_types (list of str): Honeycomb device types (default is None) camera_device_ids (list of str): Honeycomb device IDs (default is None) camera_part_numbers (list of str): Honeycomb device part numbers (default is None) camera_names (list of str): Honeycomb device names (default is None) camera_serial_numbers (list of str): Honeycomb device serial numbers (default is None) chunk_size (int): Maximum number of data points to be returned by each Honeycomb query (default is 100) client (MinimalHoneycombClient): Existing Honeycomb client (otherwise will create one) uri (str): Server URI for creating Honeycomb client (default is value of HONEYCOMB_URI environment variable) token_uri (str): Token URI for creating Honeycomb client (default is value of HONEYCOMB_TOKEN_URI environment variable) audience (str): Audience for creating Honeycomb client (default is value of HONEYCOMB_AUDIENCE environment variable) client_id: Client ID for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_ID environment variable) client_secret: Client secret for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_SECRET environment variable) local_video_directory (str): Base of local video tree (default is './videos') video_filename_extension (str): Filename extension for video files (default is 'mp4') Returns: (list of dict): Metadata for videos with local path information appended
video_io/core.py
fetch_videos
optimuspaul/wf-video-io
0
python
def fetch_videos(start=None, end=None, video_timestamps=None, camera_assignment_ids=None, environment_id=None, environment_name=None, camera_device_types=None, camera_device_ids=None, camera_part_numbers=None, camera_names=None, camera_serial_numbers=None, chunk_size=100, client=None, uri=None, token_uri=None, audience=None, client_id=None, client_secret=None, local_video_directory='./videos', video_filename_extension='mp4', download_workers=4): "\n Downloads videos that match search parameters and returns their metadata.\n\n This function simply combines the operations of fetch_video_metadata() and\n download_video_files(). See documentation of those functions for details.\n\n Args:\n start (datetime): Start of time period to fetch (default is None)\n end (datetime): End of time period to fetch (default is None)\n video_timestamps (list of datetime): List of video start times to fetch (default is None)\n camera_assignment_ids (list of str): Honeycomb assignment IDs (default is None)\n environment_id (str): Honeycomb environment ID (default is None)\n environment_name (str): Honeycomb environment name (default is None)\n camera_device_types (list of str): Honeycomb device types (default is None)\n camera_device_ids (list of str): Honeycomb device IDs (default is None)\n camera_part_numbers (list of str): Honeycomb device part numbers (default is None)\n camera_names (list of str): Honeycomb device names (default is None)\n camera_serial_numbers (list of str): Honeycomb device serial numbers (default is None)\n chunk_size (int): Maximum number of data points to be returned by each Honeycomb query (default is 100)\n client (MinimalHoneycombClient): Existing Honeycomb client (otherwise will create one)\n uri (str): Server URI for creating Honeycomb client (default is value of HONEYCOMB_URI environment variable)\n token_uri (str): Token URI for creating Honeycomb client (default is value of HONEYCOMB_TOKEN_URI environment variable)\n audience (str): Audience for creating Honeycomb client (default is value of HONEYCOMB_AUDIENCE environment variable)\n client_id: Client ID for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_ID environment variable)\n client_secret: Client secret for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_SECRET environment variable)\n local_video_directory (str): Base of local video tree (default is './videos')\n video_filename_extension (str): Filename extension for video files (default is 'mp4')\n\n Returns:\n (list of dict): Metadata for videos with local path information appended\n " logger.info('Fetching metadata for videos that match specified parameters') video_metadata = fetch_video_metadata(start=start, end=end, video_timestamps=video_timestamps, camera_assignment_ids=camera_assignment_ids, environment_id=environment_id, environment_name=environment_name, camera_device_types=camera_device_types, camera_device_ids=camera_device_ids, camera_part_numbers=camera_part_numbers, camera_names=camera_names, camera_serial_numbers=camera_serial_numbers, chunk_size=chunk_size, client=client, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret) logger.info('Downloading video files') video_metadata_with_local_paths = download_video_files(video_metadata=video_metadata, local_video_directory=local_video_directory, video_filename_extension=video_filename_extension, download_workers=download_workers) return video_metadata_with_local_paths
def fetch_videos(start=None, end=None, video_timestamps=None, camera_assignment_ids=None, environment_id=None, environment_name=None, camera_device_types=None, camera_device_ids=None, camera_part_numbers=None, camera_names=None, camera_serial_numbers=None, chunk_size=100, client=None, uri=None, token_uri=None, audience=None, client_id=None, client_secret=None, local_video_directory='./videos', video_filename_extension='mp4', download_workers=4): "\n Downloads videos that match search parameters and returns their metadata.\n\n This function simply combines the operations of fetch_video_metadata() and\n download_video_files(). See documentation of those functions for details.\n\n Args:\n start (datetime): Start of time period to fetch (default is None)\n end (datetime): End of time period to fetch (default is None)\n video_timestamps (list of datetime): List of video start times to fetch (default is None)\n camera_assignment_ids (list of str): Honeycomb assignment IDs (default is None)\n environment_id (str): Honeycomb environment ID (default is None)\n environment_name (str): Honeycomb environment name (default is None)\n camera_device_types (list of str): Honeycomb device types (default is None)\n camera_device_ids (list of str): Honeycomb device IDs (default is None)\n camera_part_numbers (list of str): Honeycomb device part numbers (default is None)\n camera_names (list of str): Honeycomb device names (default is None)\n camera_serial_numbers (list of str): Honeycomb device serial numbers (default is None)\n chunk_size (int): Maximum number of data points to be returned by each Honeycomb query (default is 100)\n client (MinimalHoneycombClient): Existing Honeycomb client (otherwise will create one)\n uri (str): Server URI for creating Honeycomb client (default is value of HONEYCOMB_URI environment variable)\n token_uri (str): Token URI for creating Honeycomb client (default is value of HONEYCOMB_TOKEN_URI environment variable)\n audience (str): Audience for creating Honeycomb client (default is value of HONEYCOMB_AUDIENCE environment variable)\n client_id: Client ID for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_ID environment variable)\n client_secret: Client secret for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_SECRET environment variable)\n local_video_directory (str): Base of local video tree (default is './videos')\n video_filename_extension (str): Filename extension for video files (default is 'mp4')\n\n Returns:\n (list of dict): Metadata for videos with local path information appended\n " logger.info('Fetching metadata for videos that match specified parameters') video_metadata = fetch_video_metadata(start=start, end=end, video_timestamps=video_timestamps, camera_assignment_ids=camera_assignment_ids, environment_id=environment_id, environment_name=environment_name, camera_device_types=camera_device_types, camera_device_ids=camera_device_ids, camera_part_numbers=camera_part_numbers, camera_names=camera_names, camera_serial_numbers=camera_serial_numbers, chunk_size=chunk_size, client=client, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret) logger.info('Downloading video files') video_metadata_with_local_paths = download_video_files(video_metadata=video_metadata, local_video_directory=local_video_directory, video_filename_extension=video_filename_extension, download_workers=download_workers) return video_metadata_with_local_paths<|docstring|>Downloads videos that match search parameters and returns their metadata. This function simply combines the operations of fetch_video_metadata() and download_video_files(). See documentation of those functions for details. Args: start (datetime): Start of time period to fetch (default is None) end (datetime): End of time period to fetch (default is None) video_timestamps (list of datetime): List of video start times to fetch (default is None) camera_assignment_ids (list of str): Honeycomb assignment IDs (default is None) environment_id (str): Honeycomb environment ID (default is None) environment_name (str): Honeycomb environment name (default is None) camera_device_types (list of str): Honeycomb device types (default is None) camera_device_ids (list of str): Honeycomb device IDs (default is None) camera_part_numbers (list of str): Honeycomb device part numbers (default is None) camera_names (list of str): Honeycomb device names (default is None) camera_serial_numbers (list of str): Honeycomb device serial numbers (default is None) chunk_size (int): Maximum number of data points to be returned by each Honeycomb query (default is 100) client (MinimalHoneycombClient): Existing Honeycomb client (otherwise will create one) uri (str): Server URI for creating Honeycomb client (default is value of HONEYCOMB_URI environment variable) token_uri (str): Token URI for creating Honeycomb client (default is value of HONEYCOMB_TOKEN_URI environment variable) audience (str): Audience for creating Honeycomb client (default is value of HONEYCOMB_AUDIENCE environment variable) client_id: Client ID for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_ID environment variable) client_secret: Client secret for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_SECRET environment variable) local_video_directory (str): Base of local video tree (default is './videos') video_filename_extension (str): Filename extension for video files (default is 'mp4') Returns: (list of dict): Metadata for videos with local path information appended<|endoftext|>
f604327861369202603d278580ab22d60679b560735fa9056d7e5287c44834db
def fetch_images(image_timestamps, camera_assignment_ids=None, environment_id=None, environment_name=None, camera_device_types=None, camera_device_ids=None, camera_part_numbers=None, camera_names=None, camera_serial_numbers=None, chunk_size=100, client=None, uri=None, token_uri=None, audience=None, client_id=None, client_secret=None, local_image_directory='./images', image_filename_extension='png', local_video_directory='./videos', video_filename_extension='mp4'): "\n Downloads images that match search parameters and returns their metadata.\n\n This function simply combines the operations of fetch_image_metadata() and\n download_image_files(). See documentation of those functions for details.\n\n Args:\n image_timestamps (list of datetime): List of image timestamps to fetch\n camera_assignment_ids (list of str): Honeycomb assignment IDs (default is None)\n environment_id (str): Honeycomb environment ID (default is None)\n environment_name (str): Honeycomb environment name (default is None)\n camera_device_types (list of str): Honeycomb device types (default is None)\n camera_device_ids (list of str): Honeycomb device IDs (default is None)\n camera_part_numbers (list of str): Honeycomb device part numbers (default is None)\n camera_names (list of str): Honeycomb device names (default is None)\n camera_serial_numbers (list of str): Honeycomb device serial numbers (default is None)\n chunk_size (int): Maximum number of data points to be returned by each Honeycomb query (default is 100)\n client (MinimalHoneycombClient): Existing Honeycomb client (otherwise will create one)\n uri (str): Server URI for creating Honeycomb client (default is value of HONEYCOMB_URI environment variable)\n token_uri (str): Token URI for creating Honeycomb client (default is value of HONEYCOMB_TOKEN_URI environment variable)\n audience (str): Audience for creating Honeycomb client (default is value of HONEYCOMB_AUDIENCE environment variable)\n client_id: Client ID for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_ID environment variable)\n client_secret: Client secret for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_SECRET environment variable)\n local_image_directory (str): Base of local image file tree (default is './images')\n image_filename_extension (str): Filename extension for image files (default is 'png')\n local_video_directory (str): Base of local video file tree (default is './videos')\n video_filename_extension (str): Filename extension for video files (default is 'mp4')\n\n Returns:\n (list of dict): Metadata for images with local path information appended\n " logger.info('Fetching metadata for images that match specified parameters') image_metadata = fetch_image_metadata(image_timestamps=image_timestamps, camera_assignment_ids=camera_assignment_ids, environment_id=environment_id, environment_name=environment_name, camera_device_types=camera_device_types, camera_device_ids=camera_device_ids, camera_part_numbers=camera_part_numbers, camera_names=camera_names, camera_serial_numbers=camera_serial_numbers, chunk_size=chunk_size, client=client, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret) logger.info('Downloading image files') image_metadata_with_local_paths = download_image_files(image_metadata=image_metadata, local_image_directory=local_image_directory, image_filename_extension=image_filename_extension, local_video_directory=local_video_directory, video_filename_extension=video_filename_extension) return image_metadata_with_local_paths
Downloads images that match search parameters and returns their metadata. This function simply combines the operations of fetch_image_metadata() and download_image_files(). See documentation of those functions for details. Args: image_timestamps (list of datetime): List of image timestamps to fetch camera_assignment_ids (list of str): Honeycomb assignment IDs (default is None) environment_id (str): Honeycomb environment ID (default is None) environment_name (str): Honeycomb environment name (default is None) camera_device_types (list of str): Honeycomb device types (default is None) camera_device_ids (list of str): Honeycomb device IDs (default is None) camera_part_numbers (list of str): Honeycomb device part numbers (default is None) camera_names (list of str): Honeycomb device names (default is None) camera_serial_numbers (list of str): Honeycomb device serial numbers (default is None) chunk_size (int): Maximum number of data points to be returned by each Honeycomb query (default is 100) client (MinimalHoneycombClient): Existing Honeycomb client (otherwise will create one) uri (str): Server URI for creating Honeycomb client (default is value of HONEYCOMB_URI environment variable) token_uri (str): Token URI for creating Honeycomb client (default is value of HONEYCOMB_TOKEN_URI environment variable) audience (str): Audience for creating Honeycomb client (default is value of HONEYCOMB_AUDIENCE environment variable) client_id: Client ID for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_ID environment variable) client_secret: Client secret for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_SECRET environment variable) local_image_directory (str): Base of local image file tree (default is './images') image_filename_extension (str): Filename extension for image files (default is 'png') local_video_directory (str): Base of local video file tree (default is './videos') video_filename_extension (str): Filename extension for video files (default is 'mp4') Returns: (list of dict): Metadata for images with local path information appended
video_io/core.py
fetch_images
optimuspaul/wf-video-io
0
python
def fetch_images(image_timestamps, camera_assignment_ids=None, environment_id=None, environment_name=None, camera_device_types=None, camera_device_ids=None, camera_part_numbers=None, camera_names=None, camera_serial_numbers=None, chunk_size=100, client=None, uri=None, token_uri=None, audience=None, client_id=None, client_secret=None, local_image_directory='./images', image_filename_extension='png', local_video_directory='./videos', video_filename_extension='mp4'): "\n Downloads images that match search parameters and returns their metadata.\n\n This function simply combines the operations of fetch_image_metadata() and\n download_image_files(). See documentation of those functions for details.\n\n Args:\n image_timestamps (list of datetime): List of image timestamps to fetch\n camera_assignment_ids (list of str): Honeycomb assignment IDs (default is None)\n environment_id (str): Honeycomb environment ID (default is None)\n environment_name (str): Honeycomb environment name (default is None)\n camera_device_types (list of str): Honeycomb device types (default is None)\n camera_device_ids (list of str): Honeycomb device IDs (default is None)\n camera_part_numbers (list of str): Honeycomb device part numbers (default is None)\n camera_names (list of str): Honeycomb device names (default is None)\n camera_serial_numbers (list of str): Honeycomb device serial numbers (default is None)\n chunk_size (int): Maximum number of data points to be returned by each Honeycomb query (default is 100)\n client (MinimalHoneycombClient): Existing Honeycomb client (otherwise will create one)\n uri (str): Server URI for creating Honeycomb client (default is value of HONEYCOMB_URI environment variable)\n token_uri (str): Token URI for creating Honeycomb client (default is value of HONEYCOMB_TOKEN_URI environment variable)\n audience (str): Audience for creating Honeycomb client (default is value of HONEYCOMB_AUDIENCE environment variable)\n client_id: Client ID for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_ID environment variable)\n client_secret: Client secret for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_SECRET environment variable)\n local_image_directory (str): Base of local image file tree (default is './images')\n image_filename_extension (str): Filename extension for image files (default is 'png')\n local_video_directory (str): Base of local video file tree (default is './videos')\n video_filename_extension (str): Filename extension for video files (default is 'mp4')\n\n Returns:\n (list of dict): Metadata for images with local path information appended\n " logger.info('Fetching metadata for images that match specified parameters') image_metadata = fetch_image_metadata(image_timestamps=image_timestamps, camera_assignment_ids=camera_assignment_ids, environment_id=environment_id, environment_name=environment_name, camera_device_types=camera_device_types, camera_device_ids=camera_device_ids, camera_part_numbers=camera_part_numbers, camera_names=camera_names, camera_serial_numbers=camera_serial_numbers, chunk_size=chunk_size, client=client, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret) logger.info('Downloading image files') image_metadata_with_local_paths = download_image_files(image_metadata=image_metadata, local_image_directory=local_image_directory, image_filename_extension=image_filename_extension, local_video_directory=local_video_directory, video_filename_extension=video_filename_extension) return image_metadata_with_local_paths
def fetch_images(image_timestamps, camera_assignment_ids=None, environment_id=None, environment_name=None, camera_device_types=None, camera_device_ids=None, camera_part_numbers=None, camera_names=None, camera_serial_numbers=None, chunk_size=100, client=None, uri=None, token_uri=None, audience=None, client_id=None, client_secret=None, local_image_directory='./images', image_filename_extension='png', local_video_directory='./videos', video_filename_extension='mp4'): "\n Downloads images that match search parameters and returns their metadata.\n\n This function simply combines the operations of fetch_image_metadata() and\n download_image_files(). See documentation of those functions for details.\n\n Args:\n image_timestamps (list of datetime): List of image timestamps to fetch\n camera_assignment_ids (list of str): Honeycomb assignment IDs (default is None)\n environment_id (str): Honeycomb environment ID (default is None)\n environment_name (str): Honeycomb environment name (default is None)\n camera_device_types (list of str): Honeycomb device types (default is None)\n camera_device_ids (list of str): Honeycomb device IDs (default is None)\n camera_part_numbers (list of str): Honeycomb device part numbers (default is None)\n camera_names (list of str): Honeycomb device names (default is None)\n camera_serial_numbers (list of str): Honeycomb device serial numbers (default is None)\n chunk_size (int): Maximum number of data points to be returned by each Honeycomb query (default is 100)\n client (MinimalHoneycombClient): Existing Honeycomb client (otherwise will create one)\n uri (str): Server URI for creating Honeycomb client (default is value of HONEYCOMB_URI environment variable)\n token_uri (str): Token URI for creating Honeycomb client (default is value of HONEYCOMB_TOKEN_URI environment variable)\n audience (str): Audience for creating Honeycomb client (default is value of HONEYCOMB_AUDIENCE environment variable)\n client_id: Client ID for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_ID environment variable)\n client_secret: Client secret for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_SECRET environment variable)\n local_image_directory (str): Base of local image file tree (default is './images')\n image_filename_extension (str): Filename extension for image files (default is 'png')\n local_video_directory (str): Base of local video file tree (default is './videos')\n video_filename_extension (str): Filename extension for video files (default is 'mp4')\n\n Returns:\n (list of dict): Metadata for images with local path information appended\n " logger.info('Fetching metadata for images that match specified parameters') image_metadata = fetch_image_metadata(image_timestamps=image_timestamps, camera_assignment_ids=camera_assignment_ids, environment_id=environment_id, environment_name=environment_name, camera_device_types=camera_device_types, camera_device_ids=camera_device_ids, camera_part_numbers=camera_part_numbers, camera_names=camera_names, camera_serial_numbers=camera_serial_numbers, chunk_size=chunk_size, client=client, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret) logger.info('Downloading image files') image_metadata_with_local_paths = download_image_files(image_metadata=image_metadata, local_image_directory=local_image_directory, image_filename_extension=image_filename_extension, local_video_directory=local_video_directory, video_filename_extension=video_filename_extension) return image_metadata_with_local_paths<|docstring|>Downloads images that match search parameters and returns their metadata. This function simply combines the operations of fetch_image_metadata() and download_image_files(). See documentation of those functions for details. Args: image_timestamps (list of datetime): List of image timestamps to fetch camera_assignment_ids (list of str): Honeycomb assignment IDs (default is None) environment_id (str): Honeycomb environment ID (default is None) environment_name (str): Honeycomb environment name (default is None) camera_device_types (list of str): Honeycomb device types (default is None) camera_device_ids (list of str): Honeycomb device IDs (default is None) camera_part_numbers (list of str): Honeycomb device part numbers (default is None) camera_names (list of str): Honeycomb device names (default is None) camera_serial_numbers (list of str): Honeycomb device serial numbers (default is None) chunk_size (int): Maximum number of data points to be returned by each Honeycomb query (default is 100) client (MinimalHoneycombClient): Existing Honeycomb client (otherwise will create one) uri (str): Server URI for creating Honeycomb client (default is value of HONEYCOMB_URI environment variable) token_uri (str): Token URI for creating Honeycomb client (default is value of HONEYCOMB_TOKEN_URI environment variable) audience (str): Audience for creating Honeycomb client (default is value of HONEYCOMB_AUDIENCE environment variable) client_id: Client ID for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_ID environment variable) client_secret: Client secret for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_SECRET environment variable) local_image_directory (str): Base of local image file tree (default is './images') image_filename_extension (str): Filename extension for image files (default is 'png') local_video_directory (str): Base of local video file tree (default is './videos') video_filename_extension (str): Filename extension for video files (default is 'mp4') Returns: (list of dict): Metadata for images with local path information appended<|endoftext|>
3fe1e452e5a6a5d9dc5d01f3a9b0c3e6e583a704d2b63764c48ea1fe0517685b
def fetch_video_metadata(start=None, end=None, video_timestamps=None, camera_assignment_ids=None, environment_id=None, environment_name=None, camera_device_types=None, camera_device_ids=None, camera_part_numbers=None, camera_names=None, camera_serial_numbers=None, chunk_size=100, client=None, uri=None, token_uri=None, audience=None, client_id=None, client_secret=None): "\n Searches Honeycomb for videos that match specified search parameters and\n returns their metadata.\n\n Videos must match all specified search parameters (i.e., the function\n performs a logical AND of all of the queries). If camera information is not\n specified, returns results for all devices that have one of the specified\n camera device types ('PI3WITHCAMERA' and 'PIZEROWITHCAMERA' by default).\n Redundant combinations of search terms will generate an error (e.g., user\n cannot specify environment name and environment ID, camera assignment IDs\n and camera device IDs, etc.)\n\n If start and end are specified, returns all videos that overlap with\n specified start and end (e.g., if start is 10:32:56 and end is 10:33:20,\n returns videos starting at 10:32:50, 10:33:00 and 10:33:10).\n\n Returned metadata is a list of dictionaries, one for each video. Each\n dictionary has the following fields: data_id, video_timestamp,\n environment_id, assignment_id, device_id, bucket, key.\n\n Args:\n start (datetime): Start of time period to fetch (default is None)\n end (datetime): End of time period to fetch (default is None)\n video_timestamps (list of datetime): List of video start times to fetch (default is None)\n camera_assignment_ids (list of str): Honeycomb assignment IDs (default is None)\n environment_id (str): Honeycomb environment ID (default is None)\n environment_name (str): Honeycomb environment name (default is None)\n camera_device_types (list of str): Honeycomb device types (default is None)\n camera_device_ids (list of str): Honeycomb device IDs (default is None)\n camera_part_numbers (list of str): Honeycomb device part numbers (default is None)\n camera_names (list of str): Honeycomb device names (default is None)\n camera_serial_numbers (list of str): Honeycomb device serial numbers (default is None)\n chunk_size (int): Maximum number of data points to be returned by each Honeycomb query (default is 100)\n client (MinimalHoneycombClient): Existing Honeycomb client (otherwise will create one)\n uri (str): Server URI for creating Honeycomb client (default is value of HONEYCOMB_URI environment variable)\n token_uri (str): Token URI for creating Honeycomb client (default is value of HONEYCOMB_TOKEN_URI environment variable)\n audience (str): Audience for creating Honeycomb client (default is value of HONEYCOMB_AUDIENCE environment variable)\n client_id: Client ID for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_ID environment variable)\n client_secret: Client secret for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_SECRET environment variable)\n\n Returns:\n (list of dict): Metadata for videos that match search parameters\n " if (((start is not None) or (end is not None)) and (video_timestamps is not None)): raise ValueError('Cannot specify start/end and list of video timestamps') if ((video_timestamps is None) and ((start is None) or (end is None))): raise ValueError('If not specifying specific timestamps, must specify both start and end times') if ((camera_assignment_ids is not None) and ((environment_id is not None) or (environment_name is not None))): raise ValueError('Cannot specify camera assignment IDs and environment') if ((camera_assignment_ids is not None) and ((camera_device_ids is not None) or (camera_part_numbers is not None) or (camera_names is not None) or (camera_serial_numbers is not None))): raise ValueError('Cannot specify camera assignment IDs and camera device properties') if ((environment_id is not None) and (environment_name is not None)): raise ValueError('Cannot specify environment ID and environment name') if (video_timestamps is not None): video_timestamps_utc = [video_timestamp.astimezone(datetime.timezone.utc) for video_timestamp in video_timestamps] video_timestamp_min_utc = min(video_timestamps) video_timestamp_max_utc = max(video_timestamps) start_utc = video_timestamp_min_utc end_utc = (video_timestamp_max_utc + VIDEO_DURATION) video_timestamps_utc_honeycomb = [honeycomb_io.to_honeycomb_datetime(video_timestamp_utc) for video_timestamp_utc in video_timestamps_utc] else: start_utc = start.astimezone(datetime.timezone.utc) end_utc = end.astimezone(datetime.timezone.utc) video_timestamp_min_utc = video_timestamp_min(start_utc) video_timestamp_max_utc = video_timestamp_max(end_utc) start_utc_honeycomb = honeycomb_io.to_honeycomb_datetime(start_utc) end_utc_honeycomb = honeycomb_io.to_honeycomb_datetime(end_utc) if (environment_name is not None): environment_id = honeycomb_io.fetch_environment_id(environment_name=environment_name, client=client, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret) camera_assignment_ids_from_environment = honeycomb_io.fetch_camera_assignment_ids_from_environment(start=start_utc, end=end_utc, environment_id=environment_id, camera_device_types=camera_device_types, client=client, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret) camera_assignment_ids_from_camera_properties = honeycomb_io.fetch_camera_assignment_ids_from_camera_properties(start=start_utc, end=end_utc, camera_device_ids=camera_device_ids, camera_part_numbers=camera_part_numbers, camera_names=camera_names, camera_serial_numbers=camera_serial_numbers, chunk_size=100, client=None, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret) logger.info('Building query list for video metadata search') query_list = list() if (start is not None): query_list.append({'field': 'timestamp', 'operator': 'GTE', 'value': video_timestamp_min_utc}) if (end is not None): query_list.append({'field': 'timestamp', 'operator': 'LTE', 'value': video_timestamp_max_utc}) if (video_timestamps is not None): query_list.append({'field': 'timestamp', 'operator': 'IN', 'values': video_timestamps_utc_honeycomb}) if (camera_assignment_ids is not None): query_list.append({'field': 'source', 'operator': 'IN', 'values': camera_assignment_ids}) if (camera_assignment_ids_from_environment is not None): query_list.append({'field': 'source', 'operator': 'IN', 'values': camera_assignment_ids_from_environment}) if (camera_assignment_ids_from_camera_properties is not None): query_list.append({'field': 'source', 'operator': 'IN', 'values': camera_assignment_ids_from_camera_properties}) return_data = ['data_id', 'timestamp', {'source': [{'... on Assignment': [{'environment': ['environment_id']}, 'assignment_id', {'assigned': [{'... on Device': ['device_id']}]}]}]}, {'file': ['bucketName', 'key']}] result = honeycomb_io.search_datapoints(query_list=query_list, return_data=return_data, chunk_size=chunk_size, client=None, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret) video_metadata = list() logger.info('Parsing {} returned camera datapoints'.format(len(result))) for datum in result: source = (datum.get('source') if (datum.get('source') is not None) else {}) file = (datum.get('file') if (datum.get('file') is not None) else {}) video_metadata.append({'data_id': datum.get('data_id'), 'video_timestamp': honeycomb_io.from_honeycomb_datetime(datum.get('timestamp')), 'environment_id': (source.get('environment') if (source.get('environment') is not None) else {}).get('environment_id'), 'assignment_id': source.get('assignment_id'), 'device_id': (source.get('assigned') if (source.get('assigned') is not None) else {}).get('device_id'), 'bucket': file.get('bucketName'), 'key': file.get('key')}) return video_metadata
Searches Honeycomb for videos that match specified search parameters and returns their metadata. Videos must match all specified search parameters (i.e., the function performs a logical AND of all of the queries). If camera information is not specified, returns results for all devices that have one of the specified camera device types ('PI3WITHCAMERA' and 'PIZEROWITHCAMERA' by default). Redundant combinations of search terms will generate an error (e.g., user cannot specify environment name and environment ID, camera assignment IDs and camera device IDs, etc.) If start and end are specified, returns all videos that overlap with specified start and end (e.g., if start is 10:32:56 and end is 10:33:20, returns videos starting at 10:32:50, 10:33:00 and 10:33:10). Returned metadata is a list of dictionaries, one for each video. Each dictionary has the following fields: data_id, video_timestamp, environment_id, assignment_id, device_id, bucket, key. Args: start (datetime): Start of time period to fetch (default is None) end (datetime): End of time period to fetch (default is None) video_timestamps (list of datetime): List of video start times to fetch (default is None) camera_assignment_ids (list of str): Honeycomb assignment IDs (default is None) environment_id (str): Honeycomb environment ID (default is None) environment_name (str): Honeycomb environment name (default is None) camera_device_types (list of str): Honeycomb device types (default is None) camera_device_ids (list of str): Honeycomb device IDs (default is None) camera_part_numbers (list of str): Honeycomb device part numbers (default is None) camera_names (list of str): Honeycomb device names (default is None) camera_serial_numbers (list of str): Honeycomb device serial numbers (default is None) chunk_size (int): Maximum number of data points to be returned by each Honeycomb query (default is 100) client (MinimalHoneycombClient): Existing Honeycomb client (otherwise will create one) uri (str): Server URI for creating Honeycomb client (default is value of HONEYCOMB_URI environment variable) token_uri (str): Token URI for creating Honeycomb client (default is value of HONEYCOMB_TOKEN_URI environment variable) audience (str): Audience for creating Honeycomb client (default is value of HONEYCOMB_AUDIENCE environment variable) client_id: Client ID for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_ID environment variable) client_secret: Client secret for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_SECRET environment variable) Returns: (list of dict): Metadata for videos that match search parameters
video_io/core.py
fetch_video_metadata
optimuspaul/wf-video-io
0
python
def fetch_video_metadata(start=None, end=None, video_timestamps=None, camera_assignment_ids=None, environment_id=None, environment_name=None, camera_device_types=None, camera_device_ids=None, camera_part_numbers=None, camera_names=None, camera_serial_numbers=None, chunk_size=100, client=None, uri=None, token_uri=None, audience=None, client_id=None, client_secret=None): "\n Searches Honeycomb for videos that match specified search parameters and\n returns their metadata.\n\n Videos must match all specified search parameters (i.e., the function\n performs a logical AND of all of the queries). If camera information is not\n specified, returns results for all devices that have one of the specified\n camera device types ('PI3WITHCAMERA' and 'PIZEROWITHCAMERA' by default).\n Redundant combinations of search terms will generate an error (e.g., user\n cannot specify environment name and environment ID, camera assignment IDs\n and camera device IDs, etc.)\n\n If start and end are specified, returns all videos that overlap with\n specified start and end (e.g., if start is 10:32:56 and end is 10:33:20,\n returns videos starting at 10:32:50, 10:33:00 and 10:33:10).\n\n Returned metadata is a list of dictionaries, one for each video. Each\n dictionary has the following fields: data_id, video_timestamp,\n environment_id, assignment_id, device_id, bucket, key.\n\n Args:\n start (datetime): Start of time period to fetch (default is None)\n end (datetime): End of time period to fetch (default is None)\n video_timestamps (list of datetime): List of video start times to fetch (default is None)\n camera_assignment_ids (list of str): Honeycomb assignment IDs (default is None)\n environment_id (str): Honeycomb environment ID (default is None)\n environment_name (str): Honeycomb environment name (default is None)\n camera_device_types (list of str): Honeycomb device types (default is None)\n camera_device_ids (list of str): Honeycomb device IDs (default is None)\n camera_part_numbers (list of str): Honeycomb device part numbers (default is None)\n camera_names (list of str): Honeycomb device names (default is None)\n camera_serial_numbers (list of str): Honeycomb device serial numbers (default is None)\n chunk_size (int): Maximum number of data points to be returned by each Honeycomb query (default is 100)\n client (MinimalHoneycombClient): Existing Honeycomb client (otherwise will create one)\n uri (str): Server URI for creating Honeycomb client (default is value of HONEYCOMB_URI environment variable)\n token_uri (str): Token URI for creating Honeycomb client (default is value of HONEYCOMB_TOKEN_URI environment variable)\n audience (str): Audience for creating Honeycomb client (default is value of HONEYCOMB_AUDIENCE environment variable)\n client_id: Client ID for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_ID environment variable)\n client_secret: Client secret for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_SECRET environment variable)\n\n Returns:\n (list of dict): Metadata for videos that match search parameters\n " if (((start is not None) or (end is not None)) and (video_timestamps is not None)): raise ValueError('Cannot specify start/end and list of video timestamps') if ((video_timestamps is None) and ((start is None) or (end is None))): raise ValueError('If not specifying specific timestamps, must specify both start and end times') if ((camera_assignment_ids is not None) and ((environment_id is not None) or (environment_name is not None))): raise ValueError('Cannot specify camera assignment IDs and environment') if ((camera_assignment_ids is not None) and ((camera_device_ids is not None) or (camera_part_numbers is not None) or (camera_names is not None) or (camera_serial_numbers is not None))): raise ValueError('Cannot specify camera assignment IDs and camera device properties') if ((environment_id is not None) and (environment_name is not None)): raise ValueError('Cannot specify environment ID and environment name') if (video_timestamps is not None): video_timestamps_utc = [video_timestamp.astimezone(datetime.timezone.utc) for video_timestamp in video_timestamps] video_timestamp_min_utc = min(video_timestamps) video_timestamp_max_utc = max(video_timestamps) start_utc = video_timestamp_min_utc end_utc = (video_timestamp_max_utc + VIDEO_DURATION) video_timestamps_utc_honeycomb = [honeycomb_io.to_honeycomb_datetime(video_timestamp_utc) for video_timestamp_utc in video_timestamps_utc] else: start_utc = start.astimezone(datetime.timezone.utc) end_utc = end.astimezone(datetime.timezone.utc) video_timestamp_min_utc = video_timestamp_min(start_utc) video_timestamp_max_utc = video_timestamp_max(end_utc) start_utc_honeycomb = honeycomb_io.to_honeycomb_datetime(start_utc) end_utc_honeycomb = honeycomb_io.to_honeycomb_datetime(end_utc) if (environment_name is not None): environment_id = honeycomb_io.fetch_environment_id(environment_name=environment_name, client=client, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret) camera_assignment_ids_from_environment = honeycomb_io.fetch_camera_assignment_ids_from_environment(start=start_utc, end=end_utc, environment_id=environment_id, camera_device_types=camera_device_types, client=client, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret) camera_assignment_ids_from_camera_properties = honeycomb_io.fetch_camera_assignment_ids_from_camera_properties(start=start_utc, end=end_utc, camera_device_ids=camera_device_ids, camera_part_numbers=camera_part_numbers, camera_names=camera_names, camera_serial_numbers=camera_serial_numbers, chunk_size=100, client=None, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret) logger.info('Building query list for video metadata search') query_list = list() if (start is not None): query_list.append({'field': 'timestamp', 'operator': 'GTE', 'value': video_timestamp_min_utc}) if (end is not None): query_list.append({'field': 'timestamp', 'operator': 'LTE', 'value': video_timestamp_max_utc}) if (video_timestamps is not None): query_list.append({'field': 'timestamp', 'operator': 'IN', 'values': video_timestamps_utc_honeycomb}) if (camera_assignment_ids is not None): query_list.append({'field': 'source', 'operator': 'IN', 'values': camera_assignment_ids}) if (camera_assignment_ids_from_environment is not None): query_list.append({'field': 'source', 'operator': 'IN', 'values': camera_assignment_ids_from_environment}) if (camera_assignment_ids_from_camera_properties is not None): query_list.append({'field': 'source', 'operator': 'IN', 'values': camera_assignment_ids_from_camera_properties}) return_data = ['data_id', 'timestamp', {'source': [{'... on Assignment': [{'environment': ['environment_id']}, 'assignment_id', {'assigned': [{'... on Device': ['device_id']}]}]}]}, {'file': ['bucketName', 'key']}] result = honeycomb_io.search_datapoints(query_list=query_list, return_data=return_data, chunk_size=chunk_size, client=None, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret) video_metadata = list() logger.info('Parsing {} returned camera datapoints'.format(len(result))) for datum in result: source = (datum.get('source') if (datum.get('source') is not None) else {}) file = (datum.get('file') if (datum.get('file') is not None) else {}) video_metadata.append({'data_id': datum.get('data_id'), 'video_timestamp': honeycomb_io.from_honeycomb_datetime(datum.get('timestamp')), 'environment_id': (source.get('environment') if (source.get('environment') is not None) else {}).get('environment_id'), 'assignment_id': source.get('assignment_id'), 'device_id': (source.get('assigned') if (source.get('assigned') is not None) else {}).get('device_id'), 'bucket': file.get('bucketName'), 'key': file.get('key')}) return video_metadata
def fetch_video_metadata(start=None, end=None, video_timestamps=None, camera_assignment_ids=None, environment_id=None, environment_name=None, camera_device_types=None, camera_device_ids=None, camera_part_numbers=None, camera_names=None, camera_serial_numbers=None, chunk_size=100, client=None, uri=None, token_uri=None, audience=None, client_id=None, client_secret=None): "\n Searches Honeycomb for videos that match specified search parameters and\n returns their metadata.\n\n Videos must match all specified search parameters (i.e., the function\n performs a logical AND of all of the queries). If camera information is not\n specified, returns results for all devices that have one of the specified\n camera device types ('PI3WITHCAMERA' and 'PIZEROWITHCAMERA' by default).\n Redundant combinations of search terms will generate an error (e.g., user\n cannot specify environment name and environment ID, camera assignment IDs\n and camera device IDs, etc.)\n\n If start and end are specified, returns all videos that overlap with\n specified start and end (e.g., if start is 10:32:56 and end is 10:33:20,\n returns videos starting at 10:32:50, 10:33:00 and 10:33:10).\n\n Returned metadata is a list of dictionaries, one for each video. Each\n dictionary has the following fields: data_id, video_timestamp,\n environment_id, assignment_id, device_id, bucket, key.\n\n Args:\n start (datetime): Start of time period to fetch (default is None)\n end (datetime): End of time period to fetch (default is None)\n video_timestamps (list of datetime): List of video start times to fetch (default is None)\n camera_assignment_ids (list of str): Honeycomb assignment IDs (default is None)\n environment_id (str): Honeycomb environment ID (default is None)\n environment_name (str): Honeycomb environment name (default is None)\n camera_device_types (list of str): Honeycomb device types (default is None)\n camera_device_ids (list of str): Honeycomb device IDs (default is None)\n camera_part_numbers (list of str): Honeycomb device part numbers (default is None)\n camera_names (list of str): Honeycomb device names (default is None)\n camera_serial_numbers (list of str): Honeycomb device serial numbers (default is None)\n chunk_size (int): Maximum number of data points to be returned by each Honeycomb query (default is 100)\n client (MinimalHoneycombClient): Existing Honeycomb client (otherwise will create one)\n uri (str): Server URI for creating Honeycomb client (default is value of HONEYCOMB_URI environment variable)\n token_uri (str): Token URI for creating Honeycomb client (default is value of HONEYCOMB_TOKEN_URI environment variable)\n audience (str): Audience for creating Honeycomb client (default is value of HONEYCOMB_AUDIENCE environment variable)\n client_id: Client ID for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_ID environment variable)\n client_secret: Client secret for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_SECRET environment variable)\n\n Returns:\n (list of dict): Metadata for videos that match search parameters\n " if (((start is not None) or (end is not None)) and (video_timestamps is not None)): raise ValueError('Cannot specify start/end and list of video timestamps') if ((video_timestamps is None) and ((start is None) or (end is None))): raise ValueError('If not specifying specific timestamps, must specify both start and end times') if ((camera_assignment_ids is not None) and ((environment_id is not None) or (environment_name is not None))): raise ValueError('Cannot specify camera assignment IDs and environment') if ((camera_assignment_ids is not None) and ((camera_device_ids is not None) or (camera_part_numbers is not None) or (camera_names is not None) or (camera_serial_numbers is not None))): raise ValueError('Cannot specify camera assignment IDs and camera device properties') if ((environment_id is not None) and (environment_name is not None)): raise ValueError('Cannot specify environment ID and environment name') if (video_timestamps is not None): video_timestamps_utc = [video_timestamp.astimezone(datetime.timezone.utc) for video_timestamp in video_timestamps] video_timestamp_min_utc = min(video_timestamps) video_timestamp_max_utc = max(video_timestamps) start_utc = video_timestamp_min_utc end_utc = (video_timestamp_max_utc + VIDEO_DURATION) video_timestamps_utc_honeycomb = [honeycomb_io.to_honeycomb_datetime(video_timestamp_utc) for video_timestamp_utc in video_timestamps_utc] else: start_utc = start.astimezone(datetime.timezone.utc) end_utc = end.astimezone(datetime.timezone.utc) video_timestamp_min_utc = video_timestamp_min(start_utc) video_timestamp_max_utc = video_timestamp_max(end_utc) start_utc_honeycomb = honeycomb_io.to_honeycomb_datetime(start_utc) end_utc_honeycomb = honeycomb_io.to_honeycomb_datetime(end_utc) if (environment_name is not None): environment_id = honeycomb_io.fetch_environment_id(environment_name=environment_name, client=client, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret) camera_assignment_ids_from_environment = honeycomb_io.fetch_camera_assignment_ids_from_environment(start=start_utc, end=end_utc, environment_id=environment_id, camera_device_types=camera_device_types, client=client, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret) camera_assignment_ids_from_camera_properties = honeycomb_io.fetch_camera_assignment_ids_from_camera_properties(start=start_utc, end=end_utc, camera_device_ids=camera_device_ids, camera_part_numbers=camera_part_numbers, camera_names=camera_names, camera_serial_numbers=camera_serial_numbers, chunk_size=100, client=None, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret) logger.info('Building query list for video metadata search') query_list = list() if (start is not None): query_list.append({'field': 'timestamp', 'operator': 'GTE', 'value': video_timestamp_min_utc}) if (end is not None): query_list.append({'field': 'timestamp', 'operator': 'LTE', 'value': video_timestamp_max_utc}) if (video_timestamps is not None): query_list.append({'field': 'timestamp', 'operator': 'IN', 'values': video_timestamps_utc_honeycomb}) if (camera_assignment_ids is not None): query_list.append({'field': 'source', 'operator': 'IN', 'values': camera_assignment_ids}) if (camera_assignment_ids_from_environment is not None): query_list.append({'field': 'source', 'operator': 'IN', 'values': camera_assignment_ids_from_environment}) if (camera_assignment_ids_from_camera_properties is not None): query_list.append({'field': 'source', 'operator': 'IN', 'values': camera_assignment_ids_from_camera_properties}) return_data = ['data_id', 'timestamp', {'source': [{'... on Assignment': [{'environment': ['environment_id']}, 'assignment_id', {'assigned': [{'... on Device': ['device_id']}]}]}]}, {'file': ['bucketName', 'key']}] result = honeycomb_io.search_datapoints(query_list=query_list, return_data=return_data, chunk_size=chunk_size, client=None, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret) video_metadata = list() logger.info('Parsing {} returned camera datapoints'.format(len(result))) for datum in result: source = (datum.get('source') if (datum.get('source') is not None) else {}) file = (datum.get('file') if (datum.get('file') is not None) else {}) video_metadata.append({'data_id': datum.get('data_id'), 'video_timestamp': honeycomb_io.from_honeycomb_datetime(datum.get('timestamp')), 'environment_id': (source.get('environment') if (source.get('environment') is not None) else {}).get('environment_id'), 'assignment_id': source.get('assignment_id'), 'device_id': (source.get('assigned') if (source.get('assigned') is not None) else {}).get('device_id'), 'bucket': file.get('bucketName'), 'key': file.get('key')}) return video_metadata<|docstring|>Searches Honeycomb for videos that match specified search parameters and returns their metadata. Videos must match all specified search parameters (i.e., the function performs a logical AND of all of the queries). If camera information is not specified, returns results for all devices that have one of the specified camera device types ('PI3WITHCAMERA' and 'PIZEROWITHCAMERA' by default). Redundant combinations of search terms will generate an error (e.g., user cannot specify environment name and environment ID, camera assignment IDs and camera device IDs, etc.) If start and end are specified, returns all videos that overlap with specified start and end (e.g., if start is 10:32:56 and end is 10:33:20, returns videos starting at 10:32:50, 10:33:00 and 10:33:10). Returned metadata is a list of dictionaries, one for each video. Each dictionary has the following fields: data_id, video_timestamp, environment_id, assignment_id, device_id, bucket, key. Args: start (datetime): Start of time period to fetch (default is None) end (datetime): End of time period to fetch (default is None) video_timestamps (list of datetime): List of video start times to fetch (default is None) camera_assignment_ids (list of str): Honeycomb assignment IDs (default is None) environment_id (str): Honeycomb environment ID (default is None) environment_name (str): Honeycomb environment name (default is None) camera_device_types (list of str): Honeycomb device types (default is None) camera_device_ids (list of str): Honeycomb device IDs (default is None) camera_part_numbers (list of str): Honeycomb device part numbers (default is None) camera_names (list of str): Honeycomb device names (default is None) camera_serial_numbers (list of str): Honeycomb device serial numbers (default is None) chunk_size (int): Maximum number of data points to be returned by each Honeycomb query (default is 100) client (MinimalHoneycombClient): Existing Honeycomb client (otherwise will create one) uri (str): Server URI for creating Honeycomb client (default is value of HONEYCOMB_URI environment variable) token_uri (str): Token URI for creating Honeycomb client (default is value of HONEYCOMB_TOKEN_URI environment variable) audience (str): Audience for creating Honeycomb client (default is value of HONEYCOMB_AUDIENCE environment variable) client_id: Client ID for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_ID environment variable) client_secret: Client secret for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_SECRET environment variable) Returns: (list of dict): Metadata for videos that match search parameters<|endoftext|>
7573517164918a66d27e76d61c49c21a1342131a5af838d7931148cdb15668fe
def download_video_files(video_metadata, local_video_directory='./videos', video_filename_extension='mp4', download_workers=4): "\n Downloads videos from S3 to local directory tree and returns metadata with\n local path information added.\n\n Videos are specified as a list of dictionaries, as returned by the function\n fetch_video_metadata(). Each dictionary is assumed to have the following\n fields: data_id, video_timestamp, environment_id, assignment_id, device_id,\n bucket, and key (though only a subset of these are currently used).\n\n Structure of resulting tree is [base directory]/[environment ID]/[camera\n assignment ID]/[year]/[month]/[day]. Filenames are in the form\n [hour]-[minute]-[second].[filename extension]. Videos are only downloaded if\n they don't already exist in the local directory tree. Directories are\n created as necessary.\n\n Function returns the metadata with local path information appended to each\n record (in the field video_local_path).\n\n Args:\n video_metadata (list of dict): Metadata in the format output by fetch_video_metadata()\n local_video_directory (str): Base of local video file tree (default is './videos')\n video_filename_extension (str): Filename extension for video files (default is 'mp4')\n\n Returns:\n (list of dict): Metadata for videos with local path information appended\n " video_metadata_with_local_paths = [] executor = ProcessPoolExecutor(max_workers=download_workers) futures = [executor.submit(_download_video, video, local_video_directory, video_filename_extension) for video in video_metadata] for future in as_completed(futures): video_metadata_with_local_paths.append(future.result()) return video_metadata_with_local_paths
Downloads videos from S3 to local directory tree and returns metadata with local path information added. Videos are specified as a list of dictionaries, as returned by the function fetch_video_metadata(). Each dictionary is assumed to have the following fields: data_id, video_timestamp, environment_id, assignment_id, device_id, bucket, and key (though only a subset of these are currently used). Structure of resulting tree is [base directory]/[environment ID]/[camera assignment ID]/[year]/[month]/[day]. Filenames are in the form [hour]-[minute]-[second].[filename extension]. Videos are only downloaded if they don't already exist in the local directory tree. Directories are created as necessary. Function returns the metadata with local path information appended to each record (in the field video_local_path). Args: video_metadata (list of dict): Metadata in the format output by fetch_video_metadata() local_video_directory (str): Base of local video file tree (default is './videos') video_filename_extension (str): Filename extension for video files (default is 'mp4') Returns: (list of dict): Metadata for videos with local path information appended
video_io/core.py
download_video_files
optimuspaul/wf-video-io
0
python
def download_video_files(video_metadata, local_video_directory='./videos', video_filename_extension='mp4', download_workers=4): "\n Downloads videos from S3 to local directory tree and returns metadata with\n local path information added.\n\n Videos are specified as a list of dictionaries, as returned by the function\n fetch_video_metadata(). Each dictionary is assumed to have the following\n fields: data_id, video_timestamp, environment_id, assignment_id, device_id,\n bucket, and key (though only a subset of these are currently used).\n\n Structure of resulting tree is [base directory]/[environment ID]/[camera\n assignment ID]/[year]/[month]/[day]. Filenames are in the form\n [hour]-[minute]-[second].[filename extension]. Videos are only downloaded if\n they don't already exist in the local directory tree. Directories are\n created as necessary.\n\n Function returns the metadata with local path information appended to each\n record (in the field video_local_path).\n\n Args:\n video_metadata (list of dict): Metadata in the format output by fetch_video_metadata()\n local_video_directory (str): Base of local video file tree (default is './videos')\n video_filename_extension (str): Filename extension for video files (default is 'mp4')\n\n Returns:\n (list of dict): Metadata for videos with local path information appended\n " video_metadata_with_local_paths = [] executor = ProcessPoolExecutor(max_workers=download_workers) futures = [executor.submit(_download_video, video, local_video_directory, video_filename_extension) for video in video_metadata] for future in as_completed(futures): video_metadata_with_local_paths.append(future.result()) return video_metadata_with_local_paths
def download_video_files(video_metadata, local_video_directory='./videos', video_filename_extension='mp4', download_workers=4): "\n Downloads videos from S3 to local directory tree and returns metadata with\n local path information added.\n\n Videos are specified as a list of dictionaries, as returned by the function\n fetch_video_metadata(). Each dictionary is assumed to have the following\n fields: data_id, video_timestamp, environment_id, assignment_id, device_id,\n bucket, and key (though only a subset of these are currently used).\n\n Structure of resulting tree is [base directory]/[environment ID]/[camera\n assignment ID]/[year]/[month]/[day]. Filenames are in the form\n [hour]-[minute]-[second].[filename extension]. Videos are only downloaded if\n they don't already exist in the local directory tree. Directories are\n created as necessary.\n\n Function returns the metadata with local path information appended to each\n record (in the field video_local_path).\n\n Args:\n video_metadata (list of dict): Metadata in the format output by fetch_video_metadata()\n local_video_directory (str): Base of local video file tree (default is './videos')\n video_filename_extension (str): Filename extension for video files (default is 'mp4')\n\n Returns:\n (list of dict): Metadata for videos with local path information appended\n " video_metadata_with_local_paths = [] executor = ProcessPoolExecutor(max_workers=download_workers) futures = [executor.submit(_download_video, video, local_video_directory, video_filename_extension) for video in video_metadata] for future in as_completed(futures): video_metadata_with_local_paths.append(future.result()) return video_metadata_with_local_paths<|docstring|>Downloads videos from S3 to local directory tree and returns metadata with local path information added. Videos are specified as a list of dictionaries, as returned by the function fetch_video_metadata(). Each dictionary is assumed to have the following fields: data_id, video_timestamp, environment_id, assignment_id, device_id, bucket, and key (though only a subset of these are currently used). Structure of resulting tree is [base directory]/[environment ID]/[camera assignment ID]/[year]/[month]/[day]. Filenames are in the form [hour]-[minute]-[second].[filename extension]. Videos are only downloaded if they don't already exist in the local directory tree. Directories are created as necessary. Function returns the metadata with local path information appended to each record (in the field video_local_path). Args: video_metadata (list of dict): Metadata in the format output by fetch_video_metadata() local_video_directory (str): Base of local video file tree (default is './videos') video_filename_extension (str): Filename extension for video files (default is 'mp4') Returns: (list of dict): Metadata for videos with local path information appended<|endoftext|>
622b22814916798db87451f451a18212d5d5ffe00e816a0ab0e674ed8f46d326
def fetch_image_metadata(image_timestamps, camera_assignment_ids=None, environment_id=None, environment_name=None, camera_device_types=None, camera_device_ids=None, camera_part_numbers=None, camera_names=None, camera_serial_numbers=None, chunk_size=100, client=None, uri=None, token_uri=None, audience=None, client_id=None, client_secret=None): "\n Searches Honeycomb for videos containing images that match specified search\n parameters and returns video/image metadata.\n\n Image timestamps are rounded to the nearest tenth of a second to synchronize\n with video frames. Videos containing these images must match all specified\n search parameters (i.e., the function performs a logical AND of all of the\n queries). If camera information is not specified, returns results for all\n devices that have one of the specified camera device types ('PI3WITHCAMERA'\n and 'PIZEROWITHCAMERA' by default). Redundant combinations of search terms\n will generate an error (e.g., user cannot specify environment name and\n environment ID, camera assignment IDs and camera device IDs, etc.)\n\n Returned metadata is a list of dictionaries, one for each image. Each\n dictionary contains information both about the image and the video that\n contains the image: data_id, video_timestamp, environment_id, assignment_id,\n device_id, bucket, key, and image_timestamp, and frame_number.\n\n Args:\n image_timestamps (list of datetime): List of image timestamps to fetch\n camera_assignment_ids (list of str): Honeycomb assignment IDs (default is None)\n environment_id (str): Honeycomb environment ID (default is None)\n environment_name (str): Honeycomb environment name (default is None)\n camera_device_types (list of str): Honeycomb device types (default is None)\n camera_device_ids (list of str): Honeycomb device IDs (default is None)\n camera_part_numbers (list of str): Honeycomb device part numbers (default is None)\n camera_names (list of str): Honeycomb device names (default is None)\n camera_serial_numbers (list of str): Honeycomb device serial numbers (default is None)\n chunk_size (int): Maximum number of data points to be returned by each Honeycomb query (default is 100)\n client (MinimalHoneycombClient): Existing Honeycomb client (otherwise will create one)\n uri (str): Server URI for creating Honeycomb client (default is value of HONEYCOMB_URI environment variable)\n token_uri (str): Token URI for creating Honeycomb client (default is value of HONEYCOMB_TOKEN_URI environment variable)\n audience (str): Audience for creating Honeycomb client (default is value of HONEYCOMB_AUDIENCE environment variable)\n client_id: Client ID for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_ID environment variable)\n client_secret: Client secret for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_SECRET environment variable)\n\n Returns:\n (list of dict): Metadata for images that match search parameters\n " image_metadata_by_video_timestamp = dict() for image_timestamp in image_timestamps: image_timestamp = image_timestamp.astimezone(datetime.timezone.utc) timestamp_floor = image_timestamp.replace(second=0, microsecond=0) video_timestamp = (timestamp_floor + (math.floor(((image_timestamp - timestamp_floor) / datetime.timedelta(seconds=10))) * datetime.timedelta(seconds=10))) frame_number = round(((image_timestamp - video_timestamp) / datetime.timedelta(milliseconds=100))) if (video_timestamp not in image_metadata_by_video_timestamp.keys()): image_metadata_by_video_timestamp[video_timestamp] = list() image_metadata_by_video_timestamp[video_timestamp].append({'image_timestamp': image_timestamp, 'frame_number': frame_number}) video_timestamps = list(image_metadata_by_video_timestamp.keys()) video_metadata = fetch_video_metadata(video_timestamps=video_timestamps, camera_assignment_ids=camera_assignment_ids, environment_id=environment_id, environment_name=environment_name, camera_device_types=camera_device_types, camera_device_ids=camera_device_ids, camera_part_numbers=camera_part_numbers, camera_names=camera_names, camera_serial_numbers=camera_serial_numbers, chunk_size=chunk_size, client=client, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret) image_metadata = list() for video in video_metadata: for image in image_metadata_by_video_timestamp[video['video_timestamp']]: image_metadata.append({**video, **image}) return image_metadata
Searches Honeycomb for videos containing images that match specified search parameters and returns video/image metadata. Image timestamps are rounded to the nearest tenth of a second to synchronize with video frames. Videos containing these images must match all specified search parameters (i.e., the function performs a logical AND of all of the queries). If camera information is not specified, returns results for all devices that have one of the specified camera device types ('PI3WITHCAMERA' and 'PIZEROWITHCAMERA' by default). Redundant combinations of search terms will generate an error (e.g., user cannot specify environment name and environment ID, camera assignment IDs and camera device IDs, etc.) Returned metadata is a list of dictionaries, one for each image. Each dictionary contains information both about the image and the video that contains the image: data_id, video_timestamp, environment_id, assignment_id, device_id, bucket, key, and image_timestamp, and frame_number. Args: image_timestamps (list of datetime): List of image timestamps to fetch camera_assignment_ids (list of str): Honeycomb assignment IDs (default is None) environment_id (str): Honeycomb environment ID (default is None) environment_name (str): Honeycomb environment name (default is None) camera_device_types (list of str): Honeycomb device types (default is None) camera_device_ids (list of str): Honeycomb device IDs (default is None) camera_part_numbers (list of str): Honeycomb device part numbers (default is None) camera_names (list of str): Honeycomb device names (default is None) camera_serial_numbers (list of str): Honeycomb device serial numbers (default is None) chunk_size (int): Maximum number of data points to be returned by each Honeycomb query (default is 100) client (MinimalHoneycombClient): Existing Honeycomb client (otherwise will create one) uri (str): Server URI for creating Honeycomb client (default is value of HONEYCOMB_URI environment variable) token_uri (str): Token URI for creating Honeycomb client (default is value of HONEYCOMB_TOKEN_URI environment variable) audience (str): Audience for creating Honeycomb client (default is value of HONEYCOMB_AUDIENCE environment variable) client_id: Client ID for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_ID environment variable) client_secret: Client secret for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_SECRET environment variable) Returns: (list of dict): Metadata for images that match search parameters
video_io/core.py
fetch_image_metadata
optimuspaul/wf-video-io
0
python
def fetch_image_metadata(image_timestamps, camera_assignment_ids=None, environment_id=None, environment_name=None, camera_device_types=None, camera_device_ids=None, camera_part_numbers=None, camera_names=None, camera_serial_numbers=None, chunk_size=100, client=None, uri=None, token_uri=None, audience=None, client_id=None, client_secret=None): "\n Searches Honeycomb for videos containing images that match specified search\n parameters and returns video/image metadata.\n\n Image timestamps are rounded to the nearest tenth of a second to synchronize\n with video frames. Videos containing these images must match all specified\n search parameters (i.e., the function performs a logical AND of all of the\n queries). If camera information is not specified, returns results for all\n devices that have one of the specified camera device types ('PI3WITHCAMERA'\n and 'PIZEROWITHCAMERA' by default). Redundant combinations of search terms\n will generate an error (e.g., user cannot specify environment name and\n environment ID, camera assignment IDs and camera device IDs, etc.)\n\n Returned metadata is a list of dictionaries, one for each image. Each\n dictionary contains information both about the image and the video that\n contains the image: data_id, video_timestamp, environment_id, assignment_id,\n device_id, bucket, key, and image_timestamp, and frame_number.\n\n Args:\n image_timestamps (list of datetime): List of image timestamps to fetch\n camera_assignment_ids (list of str): Honeycomb assignment IDs (default is None)\n environment_id (str): Honeycomb environment ID (default is None)\n environment_name (str): Honeycomb environment name (default is None)\n camera_device_types (list of str): Honeycomb device types (default is None)\n camera_device_ids (list of str): Honeycomb device IDs (default is None)\n camera_part_numbers (list of str): Honeycomb device part numbers (default is None)\n camera_names (list of str): Honeycomb device names (default is None)\n camera_serial_numbers (list of str): Honeycomb device serial numbers (default is None)\n chunk_size (int): Maximum number of data points to be returned by each Honeycomb query (default is 100)\n client (MinimalHoneycombClient): Existing Honeycomb client (otherwise will create one)\n uri (str): Server URI for creating Honeycomb client (default is value of HONEYCOMB_URI environment variable)\n token_uri (str): Token URI for creating Honeycomb client (default is value of HONEYCOMB_TOKEN_URI environment variable)\n audience (str): Audience for creating Honeycomb client (default is value of HONEYCOMB_AUDIENCE environment variable)\n client_id: Client ID for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_ID environment variable)\n client_secret: Client secret for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_SECRET environment variable)\n\n Returns:\n (list of dict): Metadata for images that match search parameters\n " image_metadata_by_video_timestamp = dict() for image_timestamp in image_timestamps: image_timestamp = image_timestamp.astimezone(datetime.timezone.utc) timestamp_floor = image_timestamp.replace(second=0, microsecond=0) video_timestamp = (timestamp_floor + (math.floor(((image_timestamp - timestamp_floor) / datetime.timedelta(seconds=10))) * datetime.timedelta(seconds=10))) frame_number = round(((image_timestamp - video_timestamp) / datetime.timedelta(milliseconds=100))) if (video_timestamp not in image_metadata_by_video_timestamp.keys()): image_metadata_by_video_timestamp[video_timestamp] = list() image_metadata_by_video_timestamp[video_timestamp].append({'image_timestamp': image_timestamp, 'frame_number': frame_number}) video_timestamps = list(image_metadata_by_video_timestamp.keys()) video_metadata = fetch_video_metadata(video_timestamps=video_timestamps, camera_assignment_ids=camera_assignment_ids, environment_id=environment_id, environment_name=environment_name, camera_device_types=camera_device_types, camera_device_ids=camera_device_ids, camera_part_numbers=camera_part_numbers, camera_names=camera_names, camera_serial_numbers=camera_serial_numbers, chunk_size=chunk_size, client=client, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret) image_metadata = list() for video in video_metadata: for image in image_metadata_by_video_timestamp[video['video_timestamp']]: image_metadata.append({**video, **image}) return image_metadata
def fetch_image_metadata(image_timestamps, camera_assignment_ids=None, environment_id=None, environment_name=None, camera_device_types=None, camera_device_ids=None, camera_part_numbers=None, camera_names=None, camera_serial_numbers=None, chunk_size=100, client=None, uri=None, token_uri=None, audience=None, client_id=None, client_secret=None): "\n Searches Honeycomb for videos containing images that match specified search\n parameters and returns video/image metadata.\n\n Image timestamps are rounded to the nearest tenth of a second to synchronize\n with video frames. Videos containing these images must match all specified\n search parameters (i.e., the function performs a logical AND of all of the\n queries). If camera information is not specified, returns results for all\n devices that have one of the specified camera device types ('PI3WITHCAMERA'\n and 'PIZEROWITHCAMERA' by default). Redundant combinations of search terms\n will generate an error (e.g., user cannot specify environment name and\n environment ID, camera assignment IDs and camera device IDs, etc.)\n\n Returned metadata is a list of dictionaries, one for each image. Each\n dictionary contains information both about the image and the video that\n contains the image: data_id, video_timestamp, environment_id, assignment_id,\n device_id, bucket, key, and image_timestamp, and frame_number.\n\n Args:\n image_timestamps (list of datetime): List of image timestamps to fetch\n camera_assignment_ids (list of str): Honeycomb assignment IDs (default is None)\n environment_id (str): Honeycomb environment ID (default is None)\n environment_name (str): Honeycomb environment name (default is None)\n camera_device_types (list of str): Honeycomb device types (default is None)\n camera_device_ids (list of str): Honeycomb device IDs (default is None)\n camera_part_numbers (list of str): Honeycomb device part numbers (default is None)\n camera_names (list of str): Honeycomb device names (default is None)\n camera_serial_numbers (list of str): Honeycomb device serial numbers (default is None)\n chunk_size (int): Maximum number of data points to be returned by each Honeycomb query (default is 100)\n client (MinimalHoneycombClient): Existing Honeycomb client (otherwise will create one)\n uri (str): Server URI for creating Honeycomb client (default is value of HONEYCOMB_URI environment variable)\n token_uri (str): Token URI for creating Honeycomb client (default is value of HONEYCOMB_TOKEN_URI environment variable)\n audience (str): Audience for creating Honeycomb client (default is value of HONEYCOMB_AUDIENCE environment variable)\n client_id: Client ID for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_ID environment variable)\n client_secret: Client secret for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_SECRET environment variable)\n\n Returns:\n (list of dict): Metadata for images that match search parameters\n " image_metadata_by_video_timestamp = dict() for image_timestamp in image_timestamps: image_timestamp = image_timestamp.astimezone(datetime.timezone.utc) timestamp_floor = image_timestamp.replace(second=0, microsecond=0) video_timestamp = (timestamp_floor + (math.floor(((image_timestamp - timestamp_floor) / datetime.timedelta(seconds=10))) * datetime.timedelta(seconds=10))) frame_number = round(((image_timestamp - video_timestamp) / datetime.timedelta(milliseconds=100))) if (video_timestamp not in image_metadata_by_video_timestamp.keys()): image_metadata_by_video_timestamp[video_timestamp] = list() image_metadata_by_video_timestamp[video_timestamp].append({'image_timestamp': image_timestamp, 'frame_number': frame_number}) video_timestamps = list(image_metadata_by_video_timestamp.keys()) video_metadata = fetch_video_metadata(video_timestamps=video_timestamps, camera_assignment_ids=camera_assignment_ids, environment_id=environment_id, environment_name=environment_name, camera_device_types=camera_device_types, camera_device_ids=camera_device_ids, camera_part_numbers=camera_part_numbers, camera_names=camera_names, camera_serial_numbers=camera_serial_numbers, chunk_size=chunk_size, client=client, uri=uri, token_uri=token_uri, audience=audience, client_id=client_id, client_secret=client_secret) image_metadata = list() for video in video_metadata: for image in image_metadata_by_video_timestamp[video['video_timestamp']]: image_metadata.append({**video, **image}) return image_metadata<|docstring|>Searches Honeycomb for videos containing images that match specified search parameters and returns video/image metadata. Image timestamps are rounded to the nearest tenth of a second to synchronize with video frames. Videos containing these images must match all specified search parameters (i.e., the function performs a logical AND of all of the queries). If camera information is not specified, returns results for all devices that have one of the specified camera device types ('PI3WITHCAMERA' and 'PIZEROWITHCAMERA' by default). Redundant combinations of search terms will generate an error (e.g., user cannot specify environment name and environment ID, camera assignment IDs and camera device IDs, etc.) Returned metadata is a list of dictionaries, one for each image. Each dictionary contains information both about the image and the video that contains the image: data_id, video_timestamp, environment_id, assignment_id, device_id, bucket, key, and image_timestamp, and frame_number. Args: image_timestamps (list of datetime): List of image timestamps to fetch camera_assignment_ids (list of str): Honeycomb assignment IDs (default is None) environment_id (str): Honeycomb environment ID (default is None) environment_name (str): Honeycomb environment name (default is None) camera_device_types (list of str): Honeycomb device types (default is None) camera_device_ids (list of str): Honeycomb device IDs (default is None) camera_part_numbers (list of str): Honeycomb device part numbers (default is None) camera_names (list of str): Honeycomb device names (default is None) camera_serial_numbers (list of str): Honeycomb device serial numbers (default is None) chunk_size (int): Maximum number of data points to be returned by each Honeycomb query (default is 100) client (MinimalHoneycombClient): Existing Honeycomb client (otherwise will create one) uri (str): Server URI for creating Honeycomb client (default is value of HONEYCOMB_URI environment variable) token_uri (str): Token URI for creating Honeycomb client (default is value of HONEYCOMB_TOKEN_URI environment variable) audience (str): Audience for creating Honeycomb client (default is value of HONEYCOMB_AUDIENCE environment variable) client_id: Client ID for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_ID environment variable) client_secret: Client secret for creating Honeycomb client (default is value of HONEYCOMB_CLIENT_SECRET environment variable) Returns: (list of dict): Metadata for images that match search parameters<|endoftext|>
0a74803d9a65b6329b937cdf81f8d61e3d450d249379347b92c95c3a0d4295be
def download_image_files(image_metadata, local_image_directory='./images', image_filename_extension='png', local_video_directory='./videos', video_filename_extension='mp4'): "\n Downloads videos from S3 to local directory tree, extract images, saves\n images to local directory tree, and returns metadata with local path\n information added.\n\n Images are specified as a list of dictionaries, as returned by the function\n fetch_image_metadata(). Each dictionary is expected to contain information\n both about the image and the video that contains the image and is assumed to\n have the following fields: data_id, video_timestamp, environment_id,\n assignment_id, device_id, bucket, key, and image_timestamp, and frame_number\n (though only a subset of these are currently used).\n\n Structure of resulting video file tree is as described in documentation for\n download_video_files(). Structure of resulting image file tree is [base\n directory]/[environment ID]/[camera assignment ID]/[year]/[month]/[day].\n Filenames contain the timestamp for the start of the containing video and\n the frame number of the image in the form [hour]-[minute]-[second]_[frame\n number].[filename extension]. Videos and images are only downloaded if they\n don't already exist in the local directory trees. Directories are created as\n necessary.\n\n Function returns the metadata with local path information appended to each\n record (in the fields video_local_path and image_local_path).\n\n Args:\n image_metadata (list of dict): Metadata in the format output by fetch_image_metadata()\n local_image_directory (str): Base of local image file tree (default is './images')\n image_filename_extension (str): Filename extension for image files (default is 'png')\n local_video_directory (str): Base of local video file tree (default is './videos')\n video_filename_extension (str): Filename extension for video files (default is 'mp4')\n\n Returns:\n (list of dict): Metadata for images with local path information appended\n " image_metadata_with_local_video_paths = download_video_files(image_metadata, local_video_directory=local_video_directory, video_filename_extension=video_filename_extension) image_metadata_with_local_paths = list() for image in image_metadata_with_local_video_paths: download_path = image_local_path(local_image_directory=local_image_directory, environment_id=image.get('environment_id'), assignment_id=image.get('assignment_id'), video_timestamp=image.get('video_timestamp'), frame_number=image.get('frame_number'), image_filename_extension=image_filename_extension) if (not os.path.exists(download_path)): video_input = cv_utils.VideoInput(image.get('video_local_path')) image_data = video_input.get_frame_by_frame_number(image.get('frame_number')) os.makedirs(os.path.dirname(download_path), exist_ok=True) cv.imwrite(download_path, image_data) else: logger.info('File {} already exists'.format(download_path)) image['image_local_path'] = download_path image_metadata_with_local_paths.append(image) return image_metadata_with_local_paths
Downloads videos from S3 to local directory tree, extract images, saves images to local directory tree, and returns metadata with local path information added. Images are specified as a list of dictionaries, as returned by the function fetch_image_metadata(). Each dictionary is expected to contain information both about the image and the video that contains the image and is assumed to have the following fields: data_id, video_timestamp, environment_id, assignment_id, device_id, bucket, key, and image_timestamp, and frame_number (though only a subset of these are currently used). Structure of resulting video file tree is as described in documentation for download_video_files(). Structure of resulting image file tree is [base directory]/[environment ID]/[camera assignment ID]/[year]/[month]/[day]. Filenames contain the timestamp for the start of the containing video and the frame number of the image in the form [hour]-[minute]-[second]_[frame number].[filename extension]. Videos and images are only downloaded if they don't already exist in the local directory trees. Directories are created as necessary. Function returns the metadata with local path information appended to each record (in the fields video_local_path and image_local_path). Args: image_metadata (list of dict): Metadata in the format output by fetch_image_metadata() local_image_directory (str): Base of local image file tree (default is './images') image_filename_extension (str): Filename extension for image files (default is 'png') local_video_directory (str): Base of local video file tree (default is './videos') video_filename_extension (str): Filename extension for video files (default is 'mp4') Returns: (list of dict): Metadata for images with local path information appended
video_io/core.py
download_image_files
optimuspaul/wf-video-io
0
python
def download_image_files(image_metadata, local_image_directory='./images', image_filename_extension='png', local_video_directory='./videos', video_filename_extension='mp4'): "\n Downloads videos from S3 to local directory tree, extract images, saves\n images to local directory tree, and returns metadata with local path\n information added.\n\n Images are specified as a list of dictionaries, as returned by the function\n fetch_image_metadata(). Each dictionary is expected to contain information\n both about the image and the video that contains the image and is assumed to\n have the following fields: data_id, video_timestamp, environment_id,\n assignment_id, device_id, bucket, key, and image_timestamp, and frame_number\n (though only a subset of these are currently used).\n\n Structure of resulting video file tree is as described in documentation for\n download_video_files(). Structure of resulting image file tree is [base\n directory]/[environment ID]/[camera assignment ID]/[year]/[month]/[day].\n Filenames contain the timestamp for the start of the containing video and\n the frame number of the image in the form [hour]-[minute]-[second]_[frame\n number].[filename extension]. Videos and images are only downloaded if they\n don't already exist in the local directory trees. Directories are created as\n necessary.\n\n Function returns the metadata with local path information appended to each\n record (in the fields video_local_path and image_local_path).\n\n Args:\n image_metadata (list of dict): Metadata in the format output by fetch_image_metadata()\n local_image_directory (str): Base of local image file tree (default is './images')\n image_filename_extension (str): Filename extension for image files (default is 'png')\n local_video_directory (str): Base of local video file tree (default is './videos')\n video_filename_extension (str): Filename extension for video files (default is 'mp4')\n\n Returns:\n (list of dict): Metadata for images with local path information appended\n " image_metadata_with_local_video_paths = download_video_files(image_metadata, local_video_directory=local_video_directory, video_filename_extension=video_filename_extension) image_metadata_with_local_paths = list() for image in image_metadata_with_local_video_paths: download_path = image_local_path(local_image_directory=local_image_directory, environment_id=image.get('environment_id'), assignment_id=image.get('assignment_id'), video_timestamp=image.get('video_timestamp'), frame_number=image.get('frame_number'), image_filename_extension=image_filename_extension) if (not os.path.exists(download_path)): video_input = cv_utils.VideoInput(image.get('video_local_path')) image_data = video_input.get_frame_by_frame_number(image.get('frame_number')) os.makedirs(os.path.dirname(download_path), exist_ok=True) cv.imwrite(download_path, image_data) else: logger.info('File {} already exists'.format(download_path)) image['image_local_path'] = download_path image_metadata_with_local_paths.append(image) return image_metadata_with_local_paths
def download_image_files(image_metadata, local_image_directory='./images', image_filename_extension='png', local_video_directory='./videos', video_filename_extension='mp4'): "\n Downloads videos from S3 to local directory tree, extract images, saves\n images to local directory tree, and returns metadata with local path\n information added.\n\n Images are specified as a list of dictionaries, as returned by the function\n fetch_image_metadata(). Each dictionary is expected to contain information\n both about the image and the video that contains the image and is assumed to\n have the following fields: data_id, video_timestamp, environment_id,\n assignment_id, device_id, bucket, key, and image_timestamp, and frame_number\n (though only a subset of these are currently used).\n\n Structure of resulting video file tree is as described in documentation for\n download_video_files(). Structure of resulting image file tree is [base\n directory]/[environment ID]/[camera assignment ID]/[year]/[month]/[day].\n Filenames contain the timestamp for the start of the containing video and\n the frame number of the image in the form [hour]-[minute]-[second]_[frame\n number].[filename extension]. Videos and images are only downloaded if they\n don't already exist in the local directory trees. Directories are created as\n necessary.\n\n Function returns the metadata with local path information appended to each\n record (in the fields video_local_path and image_local_path).\n\n Args:\n image_metadata (list of dict): Metadata in the format output by fetch_image_metadata()\n local_image_directory (str): Base of local image file tree (default is './images')\n image_filename_extension (str): Filename extension for image files (default is 'png')\n local_video_directory (str): Base of local video file tree (default is './videos')\n video_filename_extension (str): Filename extension for video files (default is 'mp4')\n\n Returns:\n (list of dict): Metadata for images with local path information appended\n " image_metadata_with_local_video_paths = download_video_files(image_metadata, local_video_directory=local_video_directory, video_filename_extension=video_filename_extension) image_metadata_with_local_paths = list() for image in image_metadata_with_local_video_paths: download_path = image_local_path(local_image_directory=local_image_directory, environment_id=image.get('environment_id'), assignment_id=image.get('assignment_id'), video_timestamp=image.get('video_timestamp'), frame_number=image.get('frame_number'), image_filename_extension=image_filename_extension) if (not os.path.exists(download_path)): video_input = cv_utils.VideoInput(image.get('video_local_path')) image_data = video_input.get_frame_by_frame_number(image.get('frame_number')) os.makedirs(os.path.dirname(download_path), exist_ok=True) cv.imwrite(download_path, image_data) else: logger.info('File {} already exists'.format(download_path)) image['image_local_path'] = download_path image_metadata_with_local_paths.append(image) return image_metadata_with_local_paths<|docstring|>Downloads videos from S3 to local directory tree, extract images, saves images to local directory tree, and returns metadata with local path information added. Images are specified as a list of dictionaries, as returned by the function fetch_image_metadata(). Each dictionary is expected to contain information both about the image and the video that contains the image and is assumed to have the following fields: data_id, video_timestamp, environment_id, assignment_id, device_id, bucket, key, and image_timestamp, and frame_number (though only a subset of these are currently used). Structure of resulting video file tree is as described in documentation for download_video_files(). Structure of resulting image file tree is [base directory]/[environment ID]/[camera assignment ID]/[year]/[month]/[day]. Filenames contain the timestamp for the start of the containing video and the frame number of the image in the form [hour]-[minute]-[second]_[frame number].[filename extension]. Videos and images are only downloaded if they don't already exist in the local directory trees. Directories are created as necessary. Function returns the metadata with local path information appended to each record (in the fields video_local_path and image_local_path). Args: image_metadata (list of dict): Metadata in the format output by fetch_image_metadata() local_image_directory (str): Base of local image file tree (default is './images') image_filename_extension (str): Filename extension for image files (default is 'png') local_video_directory (str): Base of local video file tree (default is './videos') video_filename_extension (str): Filename extension for video files (default is 'mp4') Returns: (list of dict): Metadata for images with local path information appended<|endoftext|>
81cc6a0e21117326ece647121458da8655ee0c603f3343583fc838454d9bed46
@wrap_input(0) def _surface_selection(surf, array, low=(- np.inf), upp=np.inf, use_cell=False): 'Selection of points or cells meeting some thresholding criteria.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n array : str or ndarray\n Array used to perform selection.\n low : float or -np.inf\n Lower threshold. Default is -np.inf.\n upp : float or np.inf\n Upper threshold. Default is +np.inf.\n use_cell : bool, optional\n If True, apply selection to cells. Otherwise, use points.\n Default is False.\n\n Returns\n -------\n surf_selected : BSPolyData\n Surface after thresholding.\n\n ' if (low > upp): raise ValueError('Threshold not valid: [{},{}]'.format(low, upp)) at = ('c' if use_cell else 'p') if isinstance(array, np.ndarray): drop_array = True array_name = surf.append_array(array, at=at) else: drop_array = False array_name = array array = surf.get_array(name=array, at=at, return_name=False) if (array.ndim > 1): raise ValueError('Arrays has more than one dimension.') if (low == (- np.inf)): low = array.min() if (upp == np.inf): upp = array.max() tf = wrap_vtk(vtkThreshold, allScalars=True) tf.ThresholdBetween(low, upp) if use_cell: tf.SetInputArrayToProcess(0, 0, 0, ASSOC_CELLS, array_name) else: tf.SetInputArrayToProcess(0, 0, 0, ASSOC_POINTS, array_name) gf = wrap_vtk(vtkGeometryFilter(), merging=False) surf_sel = serial_connect(surf, tf, gf) n_exp = np.logical_and((array >= low), (array <= upp)).sum() n_sel = (surf_sel.n_cells if use_cell else surf_sel.n_points) if (n_exp != n_sel): element = ('cells' if use_cell else 'points') warnings.warn('Number of selected {}={}. Expected {}.This may be due to the topology after selection.'.format(element, n_exp, n_sel)) if drop_array: surf.remove_array(name=array_name, at=at) surf_sel.remove_array(name=array_name, at=at) return surf_sel
Selection of points or cells meeting some thresholding criteria. Parameters ---------- surf : vtkPolyData or BSPolyData Input surface. array : str or ndarray Array used to perform selection. low : float or -np.inf Lower threshold. Default is -np.inf. upp : float or np.inf Upper threshold. Default is +np.inf. use_cell : bool, optional If True, apply selection to cells. Otherwise, use points. Default is False. Returns ------- surf_selected : BSPolyData Surface after thresholding.
brainspace/mesh/mesh_operations.py
_surface_selection
anibalsolon/BrainSpace
100
python
@wrap_input(0) def _surface_selection(surf, array, low=(- np.inf), upp=np.inf, use_cell=False): 'Selection of points or cells meeting some thresholding criteria.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n array : str or ndarray\n Array used to perform selection.\n low : float or -np.inf\n Lower threshold. Default is -np.inf.\n upp : float or np.inf\n Upper threshold. Default is +np.inf.\n use_cell : bool, optional\n If True, apply selection to cells. Otherwise, use points.\n Default is False.\n\n Returns\n -------\n surf_selected : BSPolyData\n Surface after thresholding.\n\n ' if (low > upp): raise ValueError('Threshold not valid: [{},{}]'.format(low, upp)) at = ('c' if use_cell else 'p') if isinstance(array, np.ndarray): drop_array = True array_name = surf.append_array(array, at=at) else: drop_array = False array_name = array array = surf.get_array(name=array, at=at, return_name=False) if (array.ndim > 1): raise ValueError('Arrays has more than one dimension.') if (low == (- np.inf)): low = array.min() if (upp == np.inf): upp = array.max() tf = wrap_vtk(vtkThreshold, allScalars=True) tf.ThresholdBetween(low, upp) if use_cell: tf.SetInputArrayToProcess(0, 0, 0, ASSOC_CELLS, array_name) else: tf.SetInputArrayToProcess(0, 0, 0, ASSOC_POINTS, array_name) gf = wrap_vtk(vtkGeometryFilter(), merging=False) surf_sel = serial_connect(surf, tf, gf) n_exp = np.logical_and((array >= low), (array <= upp)).sum() n_sel = (surf_sel.n_cells if use_cell else surf_sel.n_points) if (n_exp != n_sel): element = ('cells' if use_cell else 'points') warnings.warn('Number of selected {}={}. Expected {}.This may be due to the topology after selection.'.format(element, n_exp, n_sel)) if drop_array: surf.remove_array(name=array_name, at=at) surf_sel.remove_array(name=array_name, at=at) return surf_sel
@wrap_input(0) def _surface_selection(surf, array, low=(- np.inf), upp=np.inf, use_cell=False): 'Selection of points or cells meeting some thresholding criteria.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n array : str or ndarray\n Array used to perform selection.\n low : float or -np.inf\n Lower threshold. Default is -np.inf.\n upp : float or np.inf\n Upper threshold. Default is +np.inf.\n use_cell : bool, optional\n If True, apply selection to cells. Otherwise, use points.\n Default is False.\n\n Returns\n -------\n surf_selected : BSPolyData\n Surface after thresholding.\n\n ' if (low > upp): raise ValueError('Threshold not valid: [{},{}]'.format(low, upp)) at = ('c' if use_cell else 'p') if isinstance(array, np.ndarray): drop_array = True array_name = surf.append_array(array, at=at) else: drop_array = False array_name = array array = surf.get_array(name=array, at=at, return_name=False) if (array.ndim > 1): raise ValueError('Arrays has more than one dimension.') if (low == (- np.inf)): low = array.min() if (upp == np.inf): upp = array.max() tf = wrap_vtk(vtkThreshold, allScalars=True) tf.ThresholdBetween(low, upp) if use_cell: tf.SetInputArrayToProcess(0, 0, 0, ASSOC_CELLS, array_name) else: tf.SetInputArrayToProcess(0, 0, 0, ASSOC_POINTS, array_name) gf = wrap_vtk(vtkGeometryFilter(), merging=False) surf_sel = serial_connect(surf, tf, gf) n_exp = np.logical_and((array >= low), (array <= upp)).sum() n_sel = (surf_sel.n_cells if use_cell else surf_sel.n_points) if (n_exp != n_sel): element = ('cells' if use_cell else 'points') warnings.warn('Number of selected {}={}. Expected {}.This may be due to the topology after selection.'.format(element, n_exp, n_sel)) if drop_array: surf.remove_array(name=array_name, at=at) surf_sel.remove_array(name=array_name, at=at) return surf_sel<|docstring|>Selection of points or cells meeting some thresholding criteria. Parameters ---------- surf : vtkPolyData or BSPolyData Input surface. array : str or ndarray Array used to perform selection. low : float or -np.inf Lower threshold. Default is -np.inf. upp : float or np.inf Upper threshold. Default is +np.inf. use_cell : bool, optional If True, apply selection to cells. Otherwise, use points. Default is False. Returns ------- surf_selected : BSPolyData Surface after thresholding.<|endoftext|>
f230446db801268a887c24f50556692d9c9e2a36fea1037246e9547c6cc92881
@wrap_input(0) def _surface_mask(surf, mask, use_cell=False): 'Selection fo points or cells meeting some criteria.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n mask : str or ndarray\n Binary boolean or integer array. Zero or False elements are\n discarded.\n use_cell : bool, optional\n If True, apply selection to cells. Otherwise, use points.\n Default is False.\n\n Returns\n -------\n surf_masked : BSPolyData\n PolyData after masking.\n\n ' if isinstance(mask, np.ndarray): if np.issubdtype(mask.dtype, np.bool_): mask = mask.astype(np.uint8) else: mask = surf.get_array(name=mask, at=('c' if use_cell else 'p')) if np.any((np.unique(mask) > 1)): raise ValueError('Cannot work with non-binary mask.') return _surface_selection(surf, mask, low=1, upp=1, use_cell=use_cell)
Selection fo points or cells meeting some criteria. Parameters ---------- surf : vtkPolyData or BSPolyData Input surface. mask : str or ndarray Binary boolean or integer array. Zero or False elements are discarded. use_cell : bool, optional If True, apply selection to cells. Otherwise, use points. Default is False. Returns ------- surf_masked : BSPolyData PolyData after masking.
brainspace/mesh/mesh_operations.py
_surface_mask
anibalsolon/BrainSpace
100
python
@wrap_input(0) def _surface_mask(surf, mask, use_cell=False): 'Selection fo points or cells meeting some criteria.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n mask : str or ndarray\n Binary boolean or integer array. Zero or False elements are\n discarded.\n use_cell : bool, optional\n If True, apply selection to cells. Otherwise, use points.\n Default is False.\n\n Returns\n -------\n surf_masked : BSPolyData\n PolyData after masking.\n\n ' if isinstance(mask, np.ndarray): if np.issubdtype(mask.dtype, np.bool_): mask = mask.astype(np.uint8) else: mask = surf.get_array(name=mask, at=('c' if use_cell else 'p')) if np.any((np.unique(mask) > 1)): raise ValueError('Cannot work with non-binary mask.') return _surface_selection(surf, mask, low=1, upp=1, use_cell=use_cell)
@wrap_input(0) def _surface_mask(surf, mask, use_cell=False): 'Selection fo points or cells meeting some criteria.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n mask : str or ndarray\n Binary boolean or integer array. Zero or False elements are\n discarded.\n use_cell : bool, optional\n If True, apply selection to cells. Otherwise, use points.\n Default is False.\n\n Returns\n -------\n surf_masked : BSPolyData\n PolyData after masking.\n\n ' if isinstance(mask, np.ndarray): if np.issubdtype(mask.dtype, np.bool_): mask = mask.astype(np.uint8) else: mask = surf.get_array(name=mask, at=('c' if use_cell else 'p')) if np.any((np.unique(mask) > 1)): raise ValueError('Cannot work with non-binary mask.') return _surface_selection(surf, mask, low=1, upp=1, use_cell=use_cell)<|docstring|>Selection fo points or cells meeting some criteria. Parameters ---------- surf : vtkPolyData or BSPolyData Input surface. mask : str or ndarray Binary boolean or integer array. Zero or False elements are discarded. use_cell : bool, optional If True, apply selection to cells. Otherwise, use points. Default is False. Returns ------- surf_masked : BSPolyData PolyData after masking.<|endoftext|>
8347d72ce29689c17013ac815f533f88d3978bf5db2208a7c9067c4f76486cad
def drop_points(surf, array, low=(- np.inf), upp=np.inf): 'Remove surface points whose values fall within the threshold.\n\n Cells corresponding to these points are also removed.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n array : str or 1D ndarray\n Array used to perform selection. If str, it must be an array in\n the PointData attributes of the PolyData.\n low : float or -np.inf\n Lower threshold. Default is -np.inf.\n upp : float or np.inf\n Upper threshold. Default is np.inf.\n\n Returns\n -------\n surf_selected : vtkPolyData or BSPolyData\n PolyData after thresholding.\n\n See Also\n --------\n :func:`drop_cells`\n :func:`select_points`\n :func:`mask_points`\n\n ' if isinstance(array, str): array = surf.get_array(name=array, at='p') mask = np.logical_or((array < low), (array > upp)) return mask_points(surf, mask)
Remove surface points whose values fall within the threshold. Cells corresponding to these points are also removed. Parameters ---------- surf : vtkPolyData or BSPolyData Input surface. array : str or 1D ndarray Array used to perform selection. If str, it must be an array in the PointData attributes of the PolyData. low : float or -np.inf Lower threshold. Default is -np.inf. upp : float or np.inf Upper threshold. Default is np.inf. Returns ------- surf_selected : vtkPolyData or BSPolyData PolyData after thresholding. See Also -------- :func:`drop_cells` :func:`select_points` :func:`mask_points`
brainspace/mesh/mesh_operations.py
drop_points
anibalsolon/BrainSpace
100
python
def drop_points(surf, array, low=(- np.inf), upp=np.inf): 'Remove surface points whose values fall within the threshold.\n\n Cells corresponding to these points are also removed.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n array : str or 1D ndarray\n Array used to perform selection. If str, it must be an array in\n the PointData attributes of the PolyData.\n low : float or -np.inf\n Lower threshold. Default is -np.inf.\n upp : float or np.inf\n Upper threshold. Default is np.inf.\n\n Returns\n -------\n surf_selected : vtkPolyData or BSPolyData\n PolyData after thresholding.\n\n See Also\n --------\n :func:`drop_cells`\n :func:`select_points`\n :func:`mask_points`\n\n ' if isinstance(array, str): array = surf.get_array(name=array, at='p') mask = np.logical_or((array < low), (array > upp)) return mask_points(surf, mask)
def drop_points(surf, array, low=(- np.inf), upp=np.inf): 'Remove surface points whose values fall within the threshold.\n\n Cells corresponding to these points are also removed.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n array : str or 1D ndarray\n Array used to perform selection. If str, it must be an array in\n the PointData attributes of the PolyData.\n low : float or -np.inf\n Lower threshold. Default is -np.inf.\n upp : float or np.inf\n Upper threshold. Default is np.inf.\n\n Returns\n -------\n surf_selected : vtkPolyData or BSPolyData\n PolyData after thresholding.\n\n See Also\n --------\n :func:`drop_cells`\n :func:`select_points`\n :func:`mask_points`\n\n ' if isinstance(array, str): array = surf.get_array(name=array, at='p') mask = np.logical_or((array < low), (array > upp)) return mask_points(surf, mask)<|docstring|>Remove surface points whose values fall within the threshold. Cells corresponding to these points are also removed. Parameters ---------- surf : vtkPolyData or BSPolyData Input surface. array : str or 1D ndarray Array used to perform selection. If str, it must be an array in the PointData attributes of the PolyData. low : float or -np.inf Lower threshold. Default is -np.inf. upp : float or np.inf Upper threshold. Default is np.inf. Returns ------- surf_selected : vtkPolyData or BSPolyData PolyData after thresholding. See Also -------- :func:`drop_cells` :func:`select_points` :func:`mask_points`<|endoftext|>
9e2349377ae3fa6a41cd32dfe7c727a8d2d4ace99fa253a559029f4de8a2f590
def drop_cells(surf, array, low=(- np.inf), upp=np.inf): 'Remove surface cells whose values fall within the threshold.\n\n Points corresponding to these cells are also removed.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n array : str or 1D ndarray\n Array used to perform selection. If str, it must be an array in\n the CellData attributes of the PolyData.\n low : float or -np.inf\n Lower threshold. Default is -np.inf.\n upp : float or np.inf\n Upper threshold. Default is np.inf.\n\n Returns\n -------\n surf_selected : vtkPolyData or BSPolyData\n PolyData after thresholding.\n\n See Also\n --------\n :func:`drop_points`\n :func:`select_cells`\n :func:`mask_cells`\n\n ' if isinstance(array, str): array = surf.get_array(name=array, at='c') mask = np.logical_or((array < low), (array > upp)) return mask_cells(surf, mask)
Remove surface cells whose values fall within the threshold. Points corresponding to these cells are also removed. Parameters ---------- surf : vtkPolyData or BSPolyData Input surface. array : str or 1D ndarray Array used to perform selection. If str, it must be an array in the CellData attributes of the PolyData. low : float or -np.inf Lower threshold. Default is -np.inf. upp : float or np.inf Upper threshold. Default is np.inf. Returns ------- surf_selected : vtkPolyData or BSPolyData PolyData after thresholding. See Also -------- :func:`drop_points` :func:`select_cells` :func:`mask_cells`
brainspace/mesh/mesh_operations.py
drop_cells
anibalsolon/BrainSpace
100
python
def drop_cells(surf, array, low=(- np.inf), upp=np.inf): 'Remove surface cells whose values fall within the threshold.\n\n Points corresponding to these cells are also removed.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n array : str or 1D ndarray\n Array used to perform selection. If str, it must be an array in\n the CellData attributes of the PolyData.\n low : float or -np.inf\n Lower threshold. Default is -np.inf.\n upp : float or np.inf\n Upper threshold. Default is np.inf.\n\n Returns\n -------\n surf_selected : vtkPolyData or BSPolyData\n PolyData after thresholding.\n\n See Also\n --------\n :func:`drop_points`\n :func:`select_cells`\n :func:`mask_cells`\n\n ' if isinstance(array, str): array = surf.get_array(name=array, at='c') mask = np.logical_or((array < low), (array > upp)) return mask_cells(surf, mask)
def drop_cells(surf, array, low=(- np.inf), upp=np.inf): 'Remove surface cells whose values fall within the threshold.\n\n Points corresponding to these cells are also removed.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n array : str or 1D ndarray\n Array used to perform selection. If str, it must be an array in\n the CellData attributes of the PolyData.\n low : float or -np.inf\n Lower threshold. Default is -np.inf.\n upp : float or np.inf\n Upper threshold. Default is np.inf.\n\n Returns\n -------\n surf_selected : vtkPolyData or BSPolyData\n PolyData after thresholding.\n\n See Also\n --------\n :func:`drop_points`\n :func:`select_cells`\n :func:`mask_cells`\n\n ' if isinstance(array, str): array = surf.get_array(name=array, at='c') mask = np.logical_or((array < low), (array > upp)) return mask_cells(surf, mask)<|docstring|>Remove surface cells whose values fall within the threshold. Points corresponding to these cells are also removed. Parameters ---------- surf : vtkPolyData or BSPolyData Input surface. array : str or 1D ndarray Array used to perform selection. If str, it must be an array in the CellData attributes of the PolyData. low : float or -np.inf Lower threshold. Default is -np.inf. upp : float or np.inf Upper threshold. Default is np.inf. Returns ------- surf_selected : vtkPolyData or BSPolyData PolyData after thresholding. See Also -------- :func:`drop_points` :func:`select_cells` :func:`mask_cells`<|endoftext|>
43b5bded9186d18d173e5654e0b2cf4948d14a918ddbbdf69a1794595cc9eee2
def select_points(surf, array, low=(- np.inf), upp=np.inf): 'Select surface points whose values fall within the threshold.\n\n Cells corresponding to these points are also kept.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n array : str or 1D ndarray\n Array used to perform selection. If str, it must be an array in\n the PointData attributes of the PolyData.\n low : float or -np.inf\n Lower threshold. Default is -np.inf.\n upp : float or np.inf\n Upper threshold. Default is np.inf.\n\n Returns\n -------\n surf_selected : vtkPolyData or BSPolyData\n PolyData after selection.\n\n See Also\n --------\n :func:`select_cells`\n :func:`drop_points`\n :func:`mask_points`\n\n ' return _surface_selection(surf, array, low=low, upp=upp)
Select surface points whose values fall within the threshold. Cells corresponding to these points are also kept. Parameters ---------- surf : vtkPolyData or BSPolyData Input surface. array : str or 1D ndarray Array used to perform selection. If str, it must be an array in the PointData attributes of the PolyData. low : float or -np.inf Lower threshold. Default is -np.inf. upp : float or np.inf Upper threshold. Default is np.inf. Returns ------- surf_selected : vtkPolyData or BSPolyData PolyData after selection. See Also -------- :func:`select_cells` :func:`drop_points` :func:`mask_points`
brainspace/mesh/mesh_operations.py
select_points
anibalsolon/BrainSpace
100
python
def select_points(surf, array, low=(- np.inf), upp=np.inf): 'Select surface points whose values fall within the threshold.\n\n Cells corresponding to these points are also kept.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n array : str or 1D ndarray\n Array used to perform selection. If str, it must be an array in\n the PointData attributes of the PolyData.\n low : float or -np.inf\n Lower threshold. Default is -np.inf.\n upp : float or np.inf\n Upper threshold. Default is np.inf.\n\n Returns\n -------\n surf_selected : vtkPolyData or BSPolyData\n PolyData after selection.\n\n See Also\n --------\n :func:`select_cells`\n :func:`drop_points`\n :func:`mask_points`\n\n ' return _surface_selection(surf, array, low=low, upp=upp)
def select_points(surf, array, low=(- np.inf), upp=np.inf): 'Select surface points whose values fall within the threshold.\n\n Cells corresponding to these points are also kept.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n array : str or 1D ndarray\n Array used to perform selection. If str, it must be an array in\n the PointData attributes of the PolyData.\n low : float or -np.inf\n Lower threshold. Default is -np.inf.\n upp : float or np.inf\n Upper threshold. Default is np.inf.\n\n Returns\n -------\n surf_selected : vtkPolyData or BSPolyData\n PolyData after selection.\n\n See Also\n --------\n :func:`select_cells`\n :func:`drop_points`\n :func:`mask_points`\n\n ' return _surface_selection(surf, array, low=low, upp=upp)<|docstring|>Select surface points whose values fall within the threshold. Cells corresponding to these points are also kept. Parameters ---------- surf : vtkPolyData or BSPolyData Input surface. array : str or 1D ndarray Array used to perform selection. If str, it must be an array in the PointData attributes of the PolyData. low : float or -np.inf Lower threshold. Default is -np.inf. upp : float or np.inf Upper threshold. Default is np.inf. Returns ------- surf_selected : vtkPolyData or BSPolyData PolyData after selection. See Also -------- :func:`select_cells` :func:`drop_points` :func:`mask_points`<|endoftext|>
f0c4af8ab1ae794c78d6a1b92ae427676b697c884d5aad3f54d41bd7cb0877ed
def select_cells(surf, array, low=(- np.inf), upp=np.inf): 'Select surface cells whose values fall within the threshold.\n\n Points corresponding to these cells are also kept.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n array : str or 1D ndarray\n Array used to perform selection. If str, it must be an array in\n the CellData attributes of the PolyData.\n low : float or -np.inf\n Lower threshold. Default is -np.inf.\n upp : float or np.inf\n Upper threshold. Default is np.inf.\n\n Returns\n -------\n surf_selected : vtkPolyData or BSPolyData\n PolyData after selection.\n\n See Also\n --------\n :func:`select_points`\n :func:`drop_cells`\n :func:`mask_cells`\n\n ' return _surface_selection(surf, array, low=low, upp=upp, use_cell=True)
Select surface cells whose values fall within the threshold. Points corresponding to these cells are also kept. Parameters ---------- surf : vtkPolyData or BSPolyData Input surface. array : str or 1D ndarray Array used to perform selection. If str, it must be an array in the CellData attributes of the PolyData. low : float or -np.inf Lower threshold. Default is -np.inf. upp : float or np.inf Upper threshold. Default is np.inf. Returns ------- surf_selected : vtkPolyData or BSPolyData PolyData after selection. See Also -------- :func:`select_points` :func:`drop_cells` :func:`mask_cells`
brainspace/mesh/mesh_operations.py
select_cells
anibalsolon/BrainSpace
100
python
def select_cells(surf, array, low=(- np.inf), upp=np.inf): 'Select surface cells whose values fall within the threshold.\n\n Points corresponding to these cells are also kept.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n array : str or 1D ndarray\n Array used to perform selection. If str, it must be an array in\n the CellData attributes of the PolyData.\n low : float or -np.inf\n Lower threshold. Default is -np.inf.\n upp : float or np.inf\n Upper threshold. Default is np.inf.\n\n Returns\n -------\n surf_selected : vtkPolyData or BSPolyData\n PolyData after selection.\n\n See Also\n --------\n :func:`select_points`\n :func:`drop_cells`\n :func:`mask_cells`\n\n ' return _surface_selection(surf, array, low=low, upp=upp, use_cell=True)
def select_cells(surf, array, low=(- np.inf), upp=np.inf): 'Select surface cells whose values fall within the threshold.\n\n Points corresponding to these cells are also kept.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n array : str or 1D ndarray\n Array used to perform selection. If str, it must be an array in\n the CellData attributes of the PolyData.\n low : float or -np.inf\n Lower threshold. Default is -np.inf.\n upp : float or np.inf\n Upper threshold. Default is np.inf.\n\n Returns\n -------\n surf_selected : vtkPolyData or BSPolyData\n PolyData after selection.\n\n See Also\n --------\n :func:`select_points`\n :func:`drop_cells`\n :func:`mask_cells`\n\n ' return _surface_selection(surf, array, low=low, upp=upp, use_cell=True)<|docstring|>Select surface cells whose values fall within the threshold. Points corresponding to these cells are also kept. Parameters ---------- surf : vtkPolyData or BSPolyData Input surface. array : str or 1D ndarray Array used to perform selection. If str, it must be an array in the CellData attributes of the PolyData. low : float or -np.inf Lower threshold. Default is -np.inf. upp : float or np.inf Upper threshold. Default is np.inf. Returns ------- surf_selected : vtkPolyData or BSPolyData PolyData after selection. See Also -------- :func:`select_points` :func:`drop_cells` :func:`mask_cells`<|endoftext|>
8331b95580b14e9e1784b6a1caafa47ac5b38970699ccf5271c53b8cc39f32b8
def mask_points(surf, mask): 'Mask surface points.\n\n Cells corresponding to these points are also kept.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n mask : 1D ndarray\n Binary boolean array. Zero elements are discarded.\n\n Returns\n -------\n surf_masked : vtkPolyData or BSPolyData\n PolyData after masking.\n\n See Also\n --------\n :func:`mask_cells`\n :func:`drop_points`\n :func:`select_points`\n\n ' return _surface_mask(surf, mask)
Mask surface points. Cells corresponding to these points are also kept. Parameters ---------- surf : vtkPolyData or BSPolyData Input surface. mask : 1D ndarray Binary boolean array. Zero elements are discarded. Returns ------- surf_masked : vtkPolyData or BSPolyData PolyData after masking. See Also -------- :func:`mask_cells` :func:`drop_points` :func:`select_points`
brainspace/mesh/mesh_operations.py
mask_points
anibalsolon/BrainSpace
100
python
def mask_points(surf, mask): 'Mask surface points.\n\n Cells corresponding to these points are also kept.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n mask : 1D ndarray\n Binary boolean array. Zero elements are discarded.\n\n Returns\n -------\n surf_masked : vtkPolyData or BSPolyData\n PolyData after masking.\n\n See Also\n --------\n :func:`mask_cells`\n :func:`drop_points`\n :func:`select_points`\n\n ' return _surface_mask(surf, mask)
def mask_points(surf, mask): 'Mask surface points.\n\n Cells corresponding to these points are also kept.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n mask : 1D ndarray\n Binary boolean array. Zero elements are discarded.\n\n Returns\n -------\n surf_masked : vtkPolyData or BSPolyData\n PolyData after masking.\n\n See Also\n --------\n :func:`mask_cells`\n :func:`drop_points`\n :func:`select_points`\n\n ' return _surface_mask(surf, mask)<|docstring|>Mask surface points. Cells corresponding to these points are also kept. Parameters ---------- surf : vtkPolyData or BSPolyData Input surface. mask : 1D ndarray Binary boolean array. Zero elements are discarded. Returns ------- surf_masked : vtkPolyData or BSPolyData PolyData after masking. See Also -------- :func:`mask_cells` :func:`drop_points` :func:`select_points`<|endoftext|>
0011734548eb2283b05baa53e4bad25854261888a01b57d3877e6cbc47948745
def mask_cells(surf, mask): 'Mask surface cells.\n\n Points corresponding to these cells are also kept.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n mask : 1D ndarray\n Binary boolean array. Zero elements are discarded.\n\n Returns\n -------\n surf_masked : vtkPolyData or BSPolyData\n PolyData after masking.\n\n See Also\n --------\n :func:`mask_points`\n :func:`drop_cells`\n :func:`select_cells`\n\n ' return _surface_mask(surf, mask, use_cell=True)
Mask surface cells. Points corresponding to these cells are also kept. Parameters ---------- surf : vtkPolyData or BSPolyData Input surface. mask : 1D ndarray Binary boolean array. Zero elements are discarded. Returns ------- surf_masked : vtkPolyData or BSPolyData PolyData after masking. See Also -------- :func:`mask_points` :func:`drop_cells` :func:`select_cells`
brainspace/mesh/mesh_operations.py
mask_cells
anibalsolon/BrainSpace
100
python
def mask_cells(surf, mask): 'Mask surface cells.\n\n Points corresponding to these cells are also kept.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n mask : 1D ndarray\n Binary boolean array. Zero elements are discarded.\n\n Returns\n -------\n surf_masked : vtkPolyData or BSPolyData\n PolyData after masking.\n\n See Also\n --------\n :func:`mask_points`\n :func:`drop_cells`\n :func:`select_cells`\n\n ' return _surface_mask(surf, mask, use_cell=True)
def mask_cells(surf, mask): 'Mask surface cells.\n\n Points corresponding to these cells are also kept.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n mask : 1D ndarray\n Binary boolean array. Zero elements are discarded.\n\n Returns\n -------\n surf_masked : vtkPolyData or BSPolyData\n PolyData after masking.\n\n See Also\n --------\n :func:`mask_points`\n :func:`drop_cells`\n :func:`select_cells`\n\n ' return _surface_mask(surf, mask, use_cell=True)<|docstring|>Mask surface cells. Points corresponding to these cells are also kept. Parameters ---------- surf : vtkPolyData or BSPolyData Input surface. mask : 1D ndarray Binary boolean array. Zero elements are discarded. Returns ------- surf_masked : vtkPolyData or BSPolyData PolyData after masking. See Also -------- :func:`mask_points` :func:`drop_cells` :func:`select_cells`<|endoftext|>
66beded77d7d01759a34d72674cbe17a7df99ba6a6df2d922556f01f3ce1d705
def combine_surfaces(*surfs): ' Combine surfaces.\n\n Parameters\n ----------\n surfs : sequence of vtkPolyData and/or BSPolyData\n Input surfaces.\n\n Returns\n -------\n res : BSPolyData\n Combination of input surfaces.\n\n See Also\n --------\n :func:`split_surface`\n\n ' alg = vtkAppendPolyData() for s in surfs: alg = connect(s, alg, add_conn=True) return get_output(alg)
Combine surfaces. Parameters ---------- surfs : sequence of vtkPolyData and/or BSPolyData Input surfaces. Returns ------- res : BSPolyData Combination of input surfaces. See Also -------- :func:`split_surface`
brainspace/mesh/mesh_operations.py
combine_surfaces
anibalsolon/BrainSpace
100
python
def combine_surfaces(*surfs): ' Combine surfaces.\n\n Parameters\n ----------\n surfs : sequence of vtkPolyData and/or BSPolyData\n Input surfaces.\n\n Returns\n -------\n res : BSPolyData\n Combination of input surfaces.\n\n See Also\n --------\n :func:`split_surface`\n\n ' alg = vtkAppendPolyData() for s in surfs: alg = connect(s, alg, add_conn=True) return get_output(alg)
def combine_surfaces(*surfs): ' Combine surfaces.\n\n Parameters\n ----------\n surfs : sequence of vtkPolyData and/or BSPolyData\n Input surfaces.\n\n Returns\n -------\n res : BSPolyData\n Combination of input surfaces.\n\n See Also\n --------\n :func:`split_surface`\n\n ' alg = vtkAppendPolyData() for s in surfs: alg = connect(s, alg, add_conn=True) return get_output(alg)<|docstring|>Combine surfaces. Parameters ---------- surfs : sequence of vtkPolyData and/or BSPolyData Input surfaces. Returns ------- res : BSPolyData Combination of input surfaces. See Also -------- :func:`split_surface`<|endoftext|>
25eaecc7593978a50788d66f6875c8fd7a05803a14175f58c5de32cd1eafc152
@append_vtk(to='point') def get_connected_components(surf, labeling=None, mask=None, fill=0, append=False, key='components'): "Get connected components.\n\n Connected components are based on connectivity (and same label if\n `labeling` is provided).\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n labeling : str or 1D ndarray, optional\n Array with labels. If str, it must be in the point data\n attributes of `surf`. Default is None. If provided, connectivity is\n based on neighboring points with the same label.\n mask : str or 1D ndarray, optional\n Boolean mask. If str, it must be in the point data\n attributes of `surf`. Default is None. If specified, only consider\n points within the mask.\n fill : int or float, optional\n Value used for entries out of the mask. Only used if the\n `target_mask` is provided. Default is 0.\n append : bool, optional\n If True, append array to point data attributes of input surface and\n return surface. Otherwise, only return array. Default is False.\n key : str, optional\n Array name to append to surface's point data attributes. Only used if\n ``append == True``. Default is 'components'.\n\n Returns\n -------\n output : vtkPolyData, BSPolyData or ndarray\n 1D array with different labels for each connected component.\n Return ndarray if ``append == False``. Otherwise, return input surface\n with the new array.\n\n Notes\n -----\n VTK point data does not accept boolean arrays. If the mask is provided as\n a string, the mask is built from the corresponding array such that any\n value larger than 0 is True.\n\n " if isinstance(mask, str): mask = (surf.get_array(name=mask, at='p') > 0) if (labeling is None): alg = wrap_vtk(vtkPolyDataConnectivityFilter, colorRegions=True, extractionMode='AllRegions') cc = (serial_connect(surf, alg).PointData['RegionId'] + 1) if (mask is not None): cc[(~ mask)] = 0 return cc if isinstance(labeling, str): labeling = surf.get_array(name=labeling, at='p') mlab = (labeling if (mask is None) else labeling[mask]) adj = get_immediate_adjacency(surf, mask=mask) adj = ssp.triu(adj, 1) mask_remove = (mlab[adj.row] != mlab[adj.col]) adj.data[mask_remove] = 0 adj.eliminate_zeros() (nc, cc) = csg.connected_components(adj, directed=True, connection='weak') cc += 1 if (mask is not None): cc = map_to_mask(cc, mask=mask, fill=fill) return cc
Get connected components. Connected components are based on connectivity (and same label if `labeling` is provided). Parameters ---------- surf : vtkPolyData or BSPolyData Input surface. labeling : str or 1D ndarray, optional Array with labels. If str, it must be in the point data attributes of `surf`. Default is None. If provided, connectivity is based on neighboring points with the same label. mask : str or 1D ndarray, optional Boolean mask. If str, it must be in the point data attributes of `surf`. Default is None. If specified, only consider points within the mask. fill : int or float, optional Value used for entries out of the mask. Only used if the `target_mask` is provided. Default is 0. append : bool, optional If True, append array to point data attributes of input surface and return surface. Otherwise, only return array. Default is False. key : str, optional Array name to append to surface's point data attributes. Only used if ``append == True``. Default is 'components'. Returns ------- output : vtkPolyData, BSPolyData or ndarray 1D array with different labels for each connected component. Return ndarray if ``append == False``. Otherwise, return input surface with the new array. Notes ----- VTK point data does not accept boolean arrays. If the mask is provided as a string, the mask is built from the corresponding array such that any value larger than 0 is True.
brainspace/mesh/mesh_operations.py
get_connected_components
anibalsolon/BrainSpace
100
python
@append_vtk(to='point') def get_connected_components(surf, labeling=None, mask=None, fill=0, append=False, key='components'): "Get connected components.\n\n Connected components are based on connectivity (and same label if\n `labeling` is provided).\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n labeling : str or 1D ndarray, optional\n Array with labels. If str, it must be in the point data\n attributes of `surf`. Default is None. If provided, connectivity is\n based on neighboring points with the same label.\n mask : str or 1D ndarray, optional\n Boolean mask. If str, it must be in the point data\n attributes of `surf`. Default is None. If specified, only consider\n points within the mask.\n fill : int or float, optional\n Value used for entries out of the mask. Only used if the\n `target_mask` is provided. Default is 0.\n append : bool, optional\n If True, append array to point data attributes of input surface and\n return surface. Otherwise, only return array. Default is False.\n key : str, optional\n Array name to append to surface's point data attributes. Only used if\n ``append == True``. Default is 'components'.\n\n Returns\n -------\n output : vtkPolyData, BSPolyData or ndarray\n 1D array with different labels for each connected component.\n Return ndarray if ``append == False``. Otherwise, return input surface\n with the new array.\n\n Notes\n -----\n VTK point data does not accept boolean arrays. If the mask is provided as\n a string, the mask is built from the corresponding array such that any\n value larger than 0 is True.\n\n " if isinstance(mask, str): mask = (surf.get_array(name=mask, at='p') > 0) if (labeling is None): alg = wrap_vtk(vtkPolyDataConnectivityFilter, colorRegions=True, extractionMode='AllRegions') cc = (serial_connect(surf, alg).PointData['RegionId'] + 1) if (mask is not None): cc[(~ mask)] = 0 return cc if isinstance(labeling, str): labeling = surf.get_array(name=labeling, at='p') mlab = (labeling if (mask is None) else labeling[mask]) adj = get_immediate_adjacency(surf, mask=mask) adj = ssp.triu(adj, 1) mask_remove = (mlab[adj.row] != mlab[adj.col]) adj.data[mask_remove] = 0 adj.eliminate_zeros() (nc, cc) = csg.connected_components(adj, directed=True, connection='weak') cc += 1 if (mask is not None): cc = map_to_mask(cc, mask=mask, fill=fill) return cc
@append_vtk(to='point') def get_connected_components(surf, labeling=None, mask=None, fill=0, append=False, key='components'): "Get connected components.\n\n Connected components are based on connectivity (and same label if\n `labeling` is provided).\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n labeling : str or 1D ndarray, optional\n Array with labels. If str, it must be in the point data\n attributes of `surf`. Default is None. If provided, connectivity is\n based on neighboring points with the same label.\n mask : str or 1D ndarray, optional\n Boolean mask. If str, it must be in the point data\n attributes of `surf`. Default is None. If specified, only consider\n points within the mask.\n fill : int or float, optional\n Value used for entries out of the mask. Only used if the\n `target_mask` is provided. Default is 0.\n append : bool, optional\n If True, append array to point data attributes of input surface and\n return surface. Otherwise, only return array. Default is False.\n key : str, optional\n Array name to append to surface's point data attributes. Only used if\n ``append == True``. Default is 'components'.\n\n Returns\n -------\n output : vtkPolyData, BSPolyData or ndarray\n 1D array with different labels for each connected component.\n Return ndarray if ``append == False``. Otherwise, return input surface\n with the new array.\n\n Notes\n -----\n VTK point data does not accept boolean arrays. If the mask is provided as\n a string, the mask is built from the corresponding array such that any\n value larger than 0 is True.\n\n " if isinstance(mask, str): mask = (surf.get_array(name=mask, at='p') > 0) if (labeling is None): alg = wrap_vtk(vtkPolyDataConnectivityFilter, colorRegions=True, extractionMode='AllRegions') cc = (serial_connect(surf, alg).PointData['RegionId'] + 1) if (mask is not None): cc[(~ mask)] = 0 return cc if isinstance(labeling, str): labeling = surf.get_array(name=labeling, at='p') mlab = (labeling if (mask is None) else labeling[mask]) adj = get_immediate_adjacency(surf, mask=mask) adj = ssp.triu(adj, 1) mask_remove = (mlab[adj.row] != mlab[adj.col]) adj.data[mask_remove] = 0 adj.eliminate_zeros() (nc, cc) = csg.connected_components(adj, directed=True, connection='weak') cc += 1 if (mask is not None): cc = map_to_mask(cc, mask=mask, fill=fill) return cc<|docstring|>Get connected components. Connected components are based on connectivity (and same label if `labeling` is provided). Parameters ---------- surf : vtkPolyData or BSPolyData Input surface. labeling : str or 1D ndarray, optional Array with labels. If str, it must be in the point data attributes of `surf`. Default is None. If provided, connectivity is based on neighboring points with the same label. mask : str or 1D ndarray, optional Boolean mask. If str, it must be in the point data attributes of `surf`. Default is None. If specified, only consider points within the mask. fill : int or float, optional Value used for entries out of the mask. Only used if the `target_mask` is provided. Default is 0. append : bool, optional If True, append array to point data attributes of input surface and return surface. Otherwise, only return array. Default is False. key : str, optional Array name to append to surface's point data attributes. Only used if ``append == True``. Default is 'components'. Returns ------- output : vtkPolyData, BSPolyData or ndarray 1D array with different labels for each connected component. Return ndarray if ``append == False``. Otherwise, return input surface with the new array. Notes ----- VTK point data does not accept boolean arrays. If the mask is provided as a string, the mask is built from the corresponding array such that any value larger than 0 is True.<|endoftext|>
747103dbafc160fd25ff99453313d32b2442d4ed799316330554c9fd3a6a9159
@wrap_input(0) def split_surface(surf, labeling=None): ' Split surface according to the labeling.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n labeling : str, 1D ndarray or None, optional\n Array used to perform the splitting. If str, it must be an array in\n the PointData attributes of `surf`. If None, split surface in its\n connected components. Default is None.\n\n Returns\n -------\n res : dict[int, BSPolyData]\n Dictionary of sub-surfaces for each label.\n\n See Also\n --------\n :func:`combine_surfaces`\n :func:`mask_points`\n\n ' if (labeling is None): labeling = get_connected_components(surf) elif isinstance(labeling, str): labeling = surf.get_array(labeling, at='p') ulab = np.unique(labeling) return {l: mask_points(surf, (labeling == l)) for l in ulab}
Split surface according to the labeling. Parameters ---------- surf : vtkPolyData or BSPolyData Input surface. labeling : str, 1D ndarray or None, optional Array used to perform the splitting. If str, it must be an array in the PointData attributes of `surf`. If None, split surface in its connected components. Default is None. Returns ------- res : dict[int, BSPolyData] Dictionary of sub-surfaces for each label. See Also -------- :func:`combine_surfaces` :func:`mask_points`
brainspace/mesh/mesh_operations.py
split_surface
anibalsolon/BrainSpace
100
python
@wrap_input(0) def split_surface(surf, labeling=None): ' Split surface according to the labeling.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n labeling : str, 1D ndarray or None, optional\n Array used to perform the splitting. If str, it must be an array in\n the PointData attributes of `surf`. If None, split surface in its\n connected components. Default is None.\n\n Returns\n -------\n res : dict[int, BSPolyData]\n Dictionary of sub-surfaces for each label.\n\n See Also\n --------\n :func:`combine_surfaces`\n :func:`mask_points`\n\n ' if (labeling is None): labeling = get_connected_components(surf) elif isinstance(labeling, str): labeling = surf.get_array(labeling, at='p') ulab = np.unique(labeling) return {l: mask_points(surf, (labeling == l)) for l in ulab}
@wrap_input(0) def split_surface(surf, labeling=None): ' Split surface according to the labeling.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n labeling : str, 1D ndarray or None, optional\n Array used to perform the splitting. If str, it must be an array in\n the PointData attributes of `surf`. If None, split surface in its\n connected components. Default is None.\n\n Returns\n -------\n res : dict[int, BSPolyData]\n Dictionary of sub-surfaces for each label.\n\n See Also\n --------\n :func:`combine_surfaces`\n :func:`mask_points`\n\n ' if (labeling is None): labeling = get_connected_components(surf) elif isinstance(labeling, str): labeling = surf.get_array(labeling, at='p') ulab = np.unique(labeling) return {l: mask_points(surf, (labeling == l)) for l in ulab}<|docstring|>Split surface according to the labeling. Parameters ---------- surf : vtkPolyData or BSPolyData Input surface. labeling : str, 1D ndarray or None, optional Array used to perform the splitting. If str, it must be an array in the PointData attributes of `surf`. If None, split surface in its connected components. Default is None. Returns ------- res : dict[int, BSPolyData] Dictionary of sub-surfaces for each label. See Also -------- :func:`combine_surfaces` :func:`mask_points`<|endoftext|>
da77e6d42a7be8d764b51733e87d85d7465d30cece9a80ca63dae2eac62135d8
@wrap_input(0) def downsample_with_parcellation(surf, labeling, name='parcel', check_connected=True): " Downsample surface according to the labeling.\n\n Such that, each parcel centroid is used as a point in the new donwsampled\n surface. Connectivity is based on neighboring parcels.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n labeling : str or 1D ndarray\n Array of labels used to perform the downsampling. If str, it must be an\n array in the PointData attributes of `surf`.\n name : str, optional\n Name of the downsampled parcellation appended to the PointData of the\n new surface. Default is 'parcel'.\n check_connected : bool, optional\n Whether to check if the points in each parcel are connected.\n Downsampling may produce inconsistent results if some parcels have more\n than one connected component. Default is True.\n\n Returns\n -------\n res : BSPolyData\n Downsampled surface.\n\n " if isinstance(labeling, str): labeling = surf.get_array(labeling, at='p') labeling_small = np.unique(labeling) nlabs = labeling_small.size labeling_con = relabel_consecutive(labeling) adj = get_immediate_adjacency(surf) adj_neigh = adj.multiply(labeling_con).tocsr() adj_small = np.zeros((nlabs, nlabs), dtype=np.bool) for i in range(nlabs): arow = adj_neigh[(labeling_con == i)] for j in range((i + 1), nlabs): adj_small[(j, i)] = adj_small[(i, j)] = np.any((arow.data == j)) points = np.empty((nlabs, 3)) cells = [] for i in range(nlabs): m = (labeling_con == i) if (check_connected and (csg.connected_components(adj[m][(:, m)])[0] > 1)): warnings.warn(('Parcel %d is not fully connected. Downsampling may produce inconsistent results.' % labeling_small[i])) neigh = np.unique(adj_neigh[m].data) neigh = neigh[(neigh != i)] if (neigh.size < 2): continue edges = np.array(list(combinations(neigh, 2))) edges = edges[adj_small[(edges[(:, 0)], edges[(:, 1)])]] c = np.hstack([np.full(edges.shape[0], i)[(:, None)], edges]) cells.append(c) p = surf.Points[m] d = cdist(p, p.mean(0, keepdims=True))[(:, 0)] points[i] = p[np.argmin(d)] cells = np.unique(np.sort(np.vstack(cells), axis=1), axis=0) surf_small = build_polydata(points, cells=cells) surf_small.append_array(labeling_small, name=name, at='p') return surf_small
Downsample surface according to the labeling. Such that, each parcel centroid is used as a point in the new donwsampled surface. Connectivity is based on neighboring parcels. Parameters ---------- surf : vtkPolyData or BSPolyData Input surface. labeling : str or 1D ndarray Array of labels used to perform the downsampling. If str, it must be an array in the PointData attributes of `surf`. name : str, optional Name of the downsampled parcellation appended to the PointData of the new surface. Default is 'parcel'. check_connected : bool, optional Whether to check if the points in each parcel are connected. Downsampling may produce inconsistent results if some parcels have more than one connected component. Default is True. Returns ------- res : BSPolyData Downsampled surface.
brainspace/mesh/mesh_operations.py
downsample_with_parcellation
anibalsolon/BrainSpace
100
python
@wrap_input(0) def downsample_with_parcellation(surf, labeling, name='parcel', check_connected=True): " Downsample surface according to the labeling.\n\n Such that, each parcel centroid is used as a point in the new donwsampled\n surface. Connectivity is based on neighboring parcels.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n labeling : str or 1D ndarray\n Array of labels used to perform the downsampling. If str, it must be an\n array in the PointData attributes of `surf`.\n name : str, optional\n Name of the downsampled parcellation appended to the PointData of the\n new surface. Default is 'parcel'.\n check_connected : bool, optional\n Whether to check if the points in each parcel are connected.\n Downsampling may produce inconsistent results if some parcels have more\n than one connected component. Default is True.\n\n Returns\n -------\n res : BSPolyData\n Downsampled surface.\n\n " if isinstance(labeling, str): labeling = surf.get_array(labeling, at='p') labeling_small = np.unique(labeling) nlabs = labeling_small.size labeling_con = relabel_consecutive(labeling) adj = get_immediate_adjacency(surf) adj_neigh = adj.multiply(labeling_con).tocsr() adj_small = np.zeros((nlabs, nlabs), dtype=np.bool) for i in range(nlabs): arow = adj_neigh[(labeling_con == i)] for j in range((i + 1), nlabs): adj_small[(j, i)] = adj_small[(i, j)] = np.any((arow.data == j)) points = np.empty((nlabs, 3)) cells = [] for i in range(nlabs): m = (labeling_con == i) if (check_connected and (csg.connected_components(adj[m][(:, m)])[0] > 1)): warnings.warn(('Parcel %d is not fully connected. Downsampling may produce inconsistent results.' % labeling_small[i])) neigh = np.unique(adj_neigh[m].data) neigh = neigh[(neigh != i)] if (neigh.size < 2): continue edges = np.array(list(combinations(neigh, 2))) edges = edges[adj_small[(edges[(:, 0)], edges[(:, 1)])]] c = np.hstack([np.full(edges.shape[0], i)[(:, None)], edges]) cells.append(c) p = surf.Points[m] d = cdist(p, p.mean(0, keepdims=True))[(:, 0)] points[i] = p[np.argmin(d)] cells = np.unique(np.sort(np.vstack(cells), axis=1), axis=0) surf_small = build_polydata(points, cells=cells) surf_small.append_array(labeling_small, name=name, at='p') return surf_small
@wrap_input(0) def downsample_with_parcellation(surf, labeling, name='parcel', check_connected=True): " Downsample surface according to the labeling.\n\n Such that, each parcel centroid is used as a point in the new donwsampled\n surface. Connectivity is based on neighboring parcels.\n\n Parameters\n ----------\n surf : vtkPolyData or BSPolyData\n Input surface.\n labeling : str or 1D ndarray\n Array of labels used to perform the downsampling. If str, it must be an\n array in the PointData attributes of `surf`.\n name : str, optional\n Name of the downsampled parcellation appended to the PointData of the\n new surface. Default is 'parcel'.\n check_connected : bool, optional\n Whether to check if the points in each parcel are connected.\n Downsampling may produce inconsistent results if some parcels have more\n than one connected component. Default is True.\n\n Returns\n -------\n res : BSPolyData\n Downsampled surface.\n\n " if isinstance(labeling, str): labeling = surf.get_array(labeling, at='p') labeling_small = np.unique(labeling) nlabs = labeling_small.size labeling_con = relabel_consecutive(labeling) adj = get_immediate_adjacency(surf) adj_neigh = adj.multiply(labeling_con).tocsr() adj_small = np.zeros((nlabs, nlabs), dtype=np.bool) for i in range(nlabs): arow = adj_neigh[(labeling_con == i)] for j in range((i + 1), nlabs): adj_small[(j, i)] = adj_small[(i, j)] = np.any((arow.data == j)) points = np.empty((nlabs, 3)) cells = [] for i in range(nlabs): m = (labeling_con == i) if (check_connected and (csg.connected_components(adj[m][(:, m)])[0] > 1)): warnings.warn(('Parcel %d is not fully connected. Downsampling may produce inconsistent results.' % labeling_small[i])) neigh = np.unique(adj_neigh[m].data) neigh = neigh[(neigh != i)] if (neigh.size < 2): continue edges = np.array(list(combinations(neigh, 2))) edges = edges[adj_small[(edges[(:, 0)], edges[(:, 1)])]] c = np.hstack([np.full(edges.shape[0], i)[(:, None)], edges]) cells.append(c) p = surf.Points[m] d = cdist(p, p.mean(0, keepdims=True))[(:, 0)] points[i] = p[np.argmin(d)] cells = np.unique(np.sort(np.vstack(cells), axis=1), axis=0) surf_small = build_polydata(points, cells=cells) surf_small.append_array(labeling_small, name=name, at='p') return surf_small<|docstring|>Downsample surface according to the labeling. Such that, each parcel centroid is used as a point in the new donwsampled surface. Connectivity is based on neighboring parcels. Parameters ---------- surf : vtkPolyData or BSPolyData Input surface. labeling : str or 1D ndarray Array of labels used to perform the downsampling. If str, it must be an array in the PointData attributes of `surf`. name : str, optional Name of the downsampled parcellation appended to the PointData of the new surface. Default is 'parcel'. check_connected : bool, optional Whether to check if the points in each parcel are connected. Downsampling may produce inconsistent results if some parcels have more than one connected component. Default is True. Returns ------- res : BSPolyData Downsampled surface.<|endoftext|>
1108281b6d405b7acfc807b371fa2b9c76afeb8a7eb7c841eb177f9b3ddc9346
def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, amsgrad=False, use_locking=False, name='RAdam'): 'Construct a new Rectified Adam optimizer.\n Args:\n learning_rate: A Tensor or a floating point value. The learning rate.\n beta1: A float value or a constant float tensor. The exponential decay\n rate for the 1st moment estimates.\n beta2: A float value or a constant float tensor. The exponential decay\n rate for the 2nd moment estimates.\n epsilon: A small constant for numerical stability. This epsilon is\n "epsilon hat" in the Kingma and Ba paper (in the formula just before\n Section 2.1), not the epsilon in Algorithm 1 of the paper.\n amsgrad: boolean. Whether to apply AMSGrad variant of this algorithm from\n the paper "On the Convergence of Adam and beyond".\n use_locking: If `True` use locks for update operations.\n name: Optional name for the operations created when applying gradients.\n Defaults to "Adam". @compatibility(eager) When eager execution is\n enabled, `learning_rate`, `beta1`, `beta2`, and `epsilon` can each be\n a callable that takes no arguments and returns the actual value to use.\n This can be useful for changing these values across different\n invocations of optimizer functions. @end_compatibility\n ' super(RAdam, self).__init__(use_locking, name) self._lr = learning_rate self._beta1 = beta1 self._beta2 = beta2 self._epsilon = epsilon self._amsgrad = amsgrad
Construct a new Rectified Adam optimizer. Args: learning_rate: A Tensor or a floating point value. The learning rate. beta1: A float value or a constant float tensor. The exponential decay rate for the 1st moment estimates. beta2: A float value or a constant float tensor. The exponential decay rate for the 2nd moment estimates. epsilon: A small constant for numerical stability. This epsilon is "epsilon hat" in the Kingma and Ba paper (in the formula just before Section 2.1), not the epsilon in Algorithm 1 of the paper. amsgrad: boolean. Whether to apply AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and beyond". use_locking: If `True` use locks for update operations. name: Optional name for the operations created when applying gradients. Defaults to "Adam". @compatibility(eager) When eager execution is enabled, `learning_rate`, `beta1`, `beta2`, and `epsilon` can each be a callable that takes no arguments and returns the actual value to use. This can be useful for changing these values across different invocations of optimizer functions. @end_compatibility
radam.py
__init__
klicperajo/tensorflow_v1_rectified_adam
0
python
def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, amsgrad=False, use_locking=False, name='RAdam'): 'Construct a new Rectified Adam optimizer.\n Args:\n learning_rate: A Tensor or a floating point value. The learning rate.\n beta1: A float value or a constant float tensor. The exponential decay\n rate for the 1st moment estimates.\n beta2: A float value or a constant float tensor. The exponential decay\n rate for the 2nd moment estimates.\n epsilon: A small constant for numerical stability. This epsilon is\n "epsilon hat" in the Kingma and Ba paper (in the formula just before\n Section 2.1), not the epsilon in Algorithm 1 of the paper.\n amsgrad: boolean. Whether to apply AMSGrad variant of this algorithm from\n the paper "On the Convergence of Adam and beyond".\n use_locking: If `True` use locks for update operations.\n name: Optional name for the operations created when applying gradients.\n Defaults to "Adam". @compatibility(eager) When eager execution is\n enabled, `learning_rate`, `beta1`, `beta2`, and `epsilon` can each be\n a callable that takes no arguments and returns the actual value to use.\n This can be useful for changing these values across different\n invocations of optimizer functions. @end_compatibility\n ' super(RAdam, self).__init__(use_locking, name) self._lr = learning_rate self._beta1 = beta1 self._beta2 = beta2 self._epsilon = epsilon self._amsgrad = amsgrad
def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, amsgrad=False, use_locking=False, name='RAdam'): 'Construct a new Rectified Adam optimizer.\n Args:\n learning_rate: A Tensor or a floating point value. The learning rate.\n beta1: A float value or a constant float tensor. The exponential decay\n rate for the 1st moment estimates.\n beta2: A float value or a constant float tensor. The exponential decay\n rate for the 2nd moment estimates.\n epsilon: A small constant for numerical stability. This epsilon is\n "epsilon hat" in the Kingma and Ba paper (in the formula just before\n Section 2.1), not the epsilon in Algorithm 1 of the paper.\n amsgrad: boolean. Whether to apply AMSGrad variant of this algorithm from\n the paper "On the Convergence of Adam and beyond".\n use_locking: If `True` use locks for update operations.\n name: Optional name for the operations created when applying gradients.\n Defaults to "Adam". @compatibility(eager) When eager execution is\n enabled, `learning_rate`, `beta1`, `beta2`, and `epsilon` can each be\n a callable that takes no arguments and returns the actual value to use.\n This can be useful for changing these values across different\n invocations of optimizer functions. @end_compatibility\n ' super(RAdam, self).__init__(use_locking, name) self._lr = learning_rate self._beta1 = beta1 self._beta2 = beta2 self._epsilon = epsilon self._amsgrad = amsgrad<|docstring|>Construct a new Rectified Adam optimizer. Args: learning_rate: A Tensor or a floating point value. The learning rate. beta1: A float value or a constant float tensor. The exponential decay rate for the 1st moment estimates. beta2: A float value or a constant float tensor. The exponential decay rate for the 2nd moment estimates. epsilon: A small constant for numerical stability. This epsilon is "epsilon hat" in the Kingma and Ba paper (in the formula just before Section 2.1), not the epsilon in Algorithm 1 of the paper. amsgrad: boolean. Whether to apply AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and beyond". use_locking: If `True` use locks for update operations. name: Optional name for the operations created when applying gradients. Defaults to "Adam". @compatibility(eager) When eager execution is enabled, `learning_rate`, `beta1`, `beta2`, and `epsilon` can each be a callable that takes no arguments and returns the actual value to use. This can be useful for changing these values across different invocations of optimizer functions. @end_compatibility<|endoftext|>
92a2c2c4e59e586b829638a15e0ca5e55b8155aace41654cfd0c56add66424fd
def __init__(self, service_url: str, update_interval: float, context_features: Sequence[str], *, http_client_args: Dict[(str, Any)]=None): '\n Args:\n service_url: The HTTP url to the Heksher server.\n update_interval: The interval to wait between any two regular update calls, in seconds.\n context_features: The context features to expect in the Heksher server.\n http_client_args: Forwarded as kwargs to httpx.AsyncClient constructor.\n ' super().__init__(context_features) http_client_args = (http_client_args or {}) self._service_url = service_url self._update_interval = update_interval self._http_client = AsyncClient(base_url=service_url, **http_client_args) self._undeclared: Queue[Setting] = Queue() self._declaration_task: Optional[Task[NoReturn]] = None self._update_task: Optional[Task[NoReturn]] = None self._last_cache_time: Optional[datetime] = None self.modification_lock = Lock() '\n A lock that is acquired whenever setting values are updated. To ensure that no modifications are made to\n settings, acquire this lock.\n ' self._update_event = Event() 'This event marks that an update occurred' self._manual_update = Event() 'This event is waited on by the update loop (with a timeout), set it to instantly begin an update'
Args: service_url: The HTTP url to the Heksher server. update_interval: The interval to wait between any two regular update calls, in seconds. context_features: The context features to expect in the Heksher server. http_client_args: Forwarded as kwargs to httpx.AsyncClient constructor.
heksher/clients/async_client.py
__init__
biocatchltd/heksher-py
2
python
def __init__(self, service_url: str, update_interval: float, context_features: Sequence[str], *, http_client_args: Dict[(str, Any)]=None): '\n Args:\n service_url: The HTTP url to the Heksher server.\n update_interval: The interval to wait between any two regular update calls, in seconds.\n context_features: The context features to expect in the Heksher server.\n http_client_args: Forwarded as kwargs to httpx.AsyncClient constructor.\n ' super().__init__(context_features) http_client_args = (http_client_args or {}) self._service_url = service_url self._update_interval = update_interval self._http_client = AsyncClient(base_url=service_url, **http_client_args) self._undeclared: Queue[Setting] = Queue() self._declaration_task: Optional[Task[NoReturn]] = None self._update_task: Optional[Task[NoReturn]] = None self._last_cache_time: Optional[datetime] = None self.modification_lock = Lock() '\n A lock that is acquired whenever setting values are updated. To ensure that no modifications are made to\n settings, acquire this lock.\n ' self._update_event = Event() 'This event marks that an update occurred' self._manual_update = Event() 'This event is waited on by the update loop (with a timeout), set it to instantly begin an update'
def __init__(self, service_url: str, update_interval: float, context_features: Sequence[str], *, http_client_args: Dict[(str, Any)]=None): '\n Args:\n service_url: The HTTP url to the Heksher server.\n update_interval: The interval to wait between any two regular update calls, in seconds.\n context_features: The context features to expect in the Heksher server.\n http_client_args: Forwarded as kwargs to httpx.AsyncClient constructor.\n ' super().__init__(context_features) http_client_args = (http_client_args or {}) self._service_url = service_url self._update_interval = update_interval self._http_client = AsyncClient(base_url=service_url, **http_client_args) self._undeclared: Queue[Setting] = Queue() self._declaration_task: Optional[Task[NoReturn]] = None self._update_task: Optional[Task[NoReturn]] = None self._last_cache_time: Optional[datetime] = None self.modification_lock = Lock() '\n A lock that is acquired whenever setting values are updated. To ensure that no modifications are made to\n settings, acquire this lock.\n ' self._update_event = Event() 'This event marks that an update occurred' self._manual_update = Event() 'This event is waited on by the update loop (with a timeout), set it to instantly begin an update'<|docstring|>Args: service_url: The HTTP url to the Heksher server. update_interval: The interval to wait between any two regular update calls, in seconds. context_features: The context features to expect in the Heksher server. http_client_args: Forwarded as kwargs to httpx.AsyncClient constructor.<|endoftext|>
a3af8c8687a717ce9e75176ab7f6067cfc42fa795449e9282daaad6cbfa242b4
async def _declaration_loop(self) -> NoReturn: '\n The method for the task that continuously declares new settings.\n ' async def declare_setting(setting): declaration_data = {'name': setting.name, 'configurable_features': list(setting.configurable_features), 'type': setting.type.heksher_string(), 'metadata': setting.metadata} if (setting.default_value is not NO_DEFAULT): declaration_data['default_value'] = setting.default_value response = (await self._http_client.put('api/v1/settings/declare', content=orjson.dumps(declaration_data), headers=content_header)) self._handle_declaration_response(setting, response) while True: setting = (await self._undeclared.get()) try: (await declare_setting(setting)) except CancelledError: raise except Exception: logger.exception('setting declaration failed', extra={'setting': setting.name}) finally: self._undeclared.task_done()
The method for the task that continuously declares new settings.
heksher/clients/async_client.py
_declaration_loop
biocatchltd/heksher-py
2
python
async def _declaration_loop(self) -> NoReturn: '\n \n ' async def declare_setting(setting): declaration_data = {'name': setting.name, 'configurable_features': list(setting.configurable_features), 'type': setting.type.heksher_string(), 'metadata': setting.metadata} if (setting.default_value is not NO_DEFAULT): declaration_data['default_value'] = setting.default_value response = (await self._http_client.put('api/v1/settings/declare', content=orjson.dumps(declaration_data), headers=content_header)) self._handle_declaration_response(setting, response) while True: setting = (await self._undeclared.get()) try: (await declare_setting(setting)) except CancelledError: raise except Exception: logger.exception('setting declaration failed', extra={'setting': setting.name}) finally: self._undeclared.task_done()
async def _declaration_loop(self) -> NoReturn: '\n \n ' async def declare_setting(setting): declaration_data = {'name': setting.name, 'configurable_features': list(setting.configurable_features), 'type': setting.type.heksher_string(), 'metadata': setting.metadata} if (setting.default_value is not NO_DEFAULT): declaration_data['default_value'] = setting.default_value response = (await self._http_client.put('api/v1/settings/declare', content=orjson.dumps(declaration_data), headers=content_header)) self._handle_declaration_response(setting, response) while True: setting = (await self._undeclared.get()) try: (await declare_setting(setting)) except CancelledError: raise except Exception: logger.exception('setting declaration failed', extra={'setting': setting.name}) finally: self._undeclared.task_done()<|docstring|>The method for the task that continuously declares new settings.<|endoftext|>
c02f6996ed45f524bc6c2b862db07c8641d1d74191406d51683f321b2d6cfe75
async def _update_loop(self) -> NoReturn: '\n The method for the task that continuously updates declared settings.\n ' async def update(): logger.debug('heksher reload started') data = {'setting_names': list(self._tracked_settings.keys()), 'context_features_options': self._context_feature_options(), 'include_metadata': False} if self._last_cache_time: data['cache_time'] = self._last_cache_time.isoformat() new_cache_time = datetime.utcnow() response = (await self._http_client.post('/api/v1/rules/query', content=orjson.dumps(data), headers=content_header)) response.raise_for_status() updated_settings = response.json()['rules'] async with self.modification_lock: self._update_settings_from_query(updated_settings) self._last_cache_time = new_cache_time logger.info('heksher reload done', extra={'updated_settings': list(updated_settings.keys())}) while True: try: (await update()) except CancelledError: raise except Exception: logger.exception('error during heksher update') finally: self._update_event.set() try: self._manual_update.clear() (await wait_for(self._manual_update.wait(), self._update_interval)) except TimeoutError: pass
The method for the task that continuously updates declared settings.
heksher/clients/async_client.py
_update_loop
biocatchltd/heksher-py
2
python
async def _update_loop(self) -> NoReturn: '\n \n ' async def update(): logger.debug('heksher reload started') data = {'setting_names': list(self._tracked_settings.keys()), 'context_features_options': self._context_feature_options(), 'include_metadata': False} if self._last_cache_time: data['cache_time'] = self._last_cache_time.isoformat() new_cache_time = datetime.utcnow() response = (await self._http_client.post('/api/v1/rules/query', content=orjson.dumps(data), headers=content_header)) response.raise_for_status() updated_settings = response.json()['rules'] async with self.modification_lock: self._update_settings_from_query(updated_settings) self._last_cache_time = new_cache_time logger.info('heksher reload done', extra={'updated_settings': list(updated_settings.keys())}) while True: try: (await update()) except CancelledError: raise except Exception: logger.exception('error during heksher update') finally: self._update_event.set() try: self._manual_update.clear() (await wait_for(self._manual_update.wait(), self._update_interval)) except TimeoutError: pass
async def _update_loop(self) -> NoReturn: '\n \n ' async def update(): logger.debug('heksher reload started') data = {'setting_names': list(self._tracked_settings.keys()), 'context_features_options': self._context_feature_options(), 'include_metadata': False} if self._last_cache_time: data['cache_time'] = self._last_cache_time.isoformat() new_cache_time = datetime.utcnow() response = (await self._http_client.post('/api/v1/rules/query', content=orjson.dumps(data), headers=content_header)) response.raise_for_status() updated_settings = response.json()['rules'] async with self.modification_lock: self._update_settings_from_query(updated_settings) self._last_cache_time = new_cache_time logger.info('heksher reload done', extra={'updated_settings': list(updated_settings.keys())}) while True: try: (await update()) except CancelledError: raise except Exception: logger.exception('error during heksher update') finally: self._update_event.set() try: self._manual_update.clear() (await wait_for(self._manual_update.wait(), self._update_interval)) except TimeoutError: pass<|docstring|>The method for the task that continuously updates declared settings.<|endoftext|>
f831d01f7351573049850604dd5f6fac4c6aa4455261cfcd12fdf1cb8edbb868
async def reload(self): '\n Block until all the tracked settings are up to date\n ' (await self._undeclared.join()) self._update_event.clear() self._manual_update.set() (await self._update_event.wait())
Block until all the tracked settings are up to date
heksher/clients/async_client.py
reload
biocatchltd/heksher-py
2
python
async def reload(self): '\n \n ' (await self._undeclared.join()) self._update_event.clear() self._manual_update.set() (await self._update_event.wait())
async def reload(self): '\n \n ' (await self._undeclared.join()) self._update_event.clear() self._manual_update.set() (await self._update_event.wait())<|docstring|>Block until all the tracked settings are up to date<|endoftext|>
e585175b80554f0dc94ed70d03cbff69f5cc91b45bbe37dc95832f1dbc7062d6
async def ping(self) -> None: '\n Check the health of the heksher server\n Raises:\n httpx.HTTPError, if an error occurs\n ' response = (await self._http_client.get('/api/health')) response.raise_for_status()
Check the health of the heksher server Raises: httpx.HTTPError, if an error occurs
heksher/clients/async_client.py
ping
biocatchltd/heksher-py
2
python
async def ping(self) -> None: '\n Check the health of the heksher server\n Raises:\n httpx.HTTPError, if an error occurs\n ' response = (await self._http_client.get('/api/health')) response.raise_for_status()
async def ping(self) -> None: '\n Check the health of the heksher server\n Raises:\n httpx.HTTPError, if an error occurs\n ' response = (await self._http_client.get('/api/health')) response.raise_for_status()<|docstring|>Check the health of the heksher server Raises: httpx.HTTPError, if an error occurs<|endoftext|>
ce9e148d8dd48c296c5e5650f3a0a2bb4b4348d322a66619e992aa2e92cf38e9
async def get_settings(self) -> Dict: '\n List all the settings in the service\n ' response = (await self._http_client.get('/api/v1/settings', params=orjson.dumps({'include_additional_data': True}))) response.raise_for_status() settings = SettingsOutput.parse_obj(response.json()).to_settings_data() return settings
List all the settings in the service
heksher/clients/async_client.py
get_settings
biocatchltd/heksher-py
2
python
async def get_settings(self) -> Dict: '\n \n ' response = (await self._http_client.get('/api/v1/settings', params=orjson.dumps({'include_additional_data': True}))) response.raise_for_status() settings = SettingsOutput.parse_obj(response.json()).to_settings_data() return settings
async def get_settings(self) -> Dict: '\n \n ' response = (await self._http_client.get('/api/v1/settings', params=orjson.dumps({'include_additional_data': True}))) response.raise_for_status() settings = SettingsOutput.parse_obj(response.json()).to_settings_data() return settings<|docstring|>List all the settings in the service<|endoftext|>
91416fe4d6fb9d62cc8cf77fae8fb0702d2bb686d8b9e8ef4d0b00329c88f2f1
def make_hyper_patch_conv2d_block(in_nc, out_nc, kernel_size=3, stride=1, padding=None, dilation=1, groups=1, padding_mode='reflect', norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU')): " Defines a Hyper patch-wise convolution block with a normalization layer, an activation layer, and an optional\n dropout layer.\n\n Args:\n in_nc (int): Input number of channels\n out_nc (int): Output number of channels\n kernel_size (int): Convolution kernel size\n stride (int): Convolution stride\n padding (int, optional): The amount of padding for the height and width dimensions\n dilation (int or tuple, optional): Spacing between kernel elements. Default: 1\n groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1\n padding_mode (str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``\n norm_cfg (dict): Type of feature normalization layer\n act_cfg (dict): Type of activation layer\n " padding = ((kernel_size // 2) if (padding is None) else padding) if (padding == 0): layers = [HyperPatchNoPadding(in_nc, out_nc, kernel_size, stride, dilation, groups)] else: layers = [HyperPatchConv2d(in_nc, out_nc, kernel_size, stride, padding, dilation, groups, padding_mode)] if (norm_cfg is not None): layers.append(build_norm_layer(norm_cfg, out_nc)[1]) if (act_cfg is not None): layers.append(build_activation_layer(act_cfg)) return MetaSequential(*layers)
Defines a Hyper patch-wise convolution block with a normalization layer, an activation layer, and an optional dropout layer. Args: in_nc (int): Input number of channels out_nc (int): Output number of channels kernel_size (int): Convolution kernel size stride (int): Convolution stride padding (int, optional): The amount of padding for the height and width dimensions dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 padding_mode (str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'`` norm_cfg (dict): Type of feature normalization layer act_cfg (dict): Type of activation layer
mmseg/models/decode_heads/hyperseg_head.py
make_hyper_patch_conv2d_block
yunchu/mmsegmentation
3
python
def make_hyper_patch_conv2d_block(in_nc, out_nc, kernel_size=3, stride=1, padding=None, dilation=1, groups=1, padding_mode='reflect', norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU')): " Defines a Hyper patch-wise convolution block with a normalization layer, an activation layer, and an optional\n dropout layer.\n\n Args:\n in_nc (int): Input number of channels\n out_nc (int): Output number of channels\n kernel_size (int): Convolution kernel size\n stride (int): Convolution stride\n padding (int, optional): The amount of padding for the height and width dimensions\n dilation (int or tuple, optional): Spacing between kernel elements. Default: 1\n groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1\n padding_mode (str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``\n norm_cfg (dict): Type of feature normalization layer\n act_cfg (dict): Type of activation layer\n " padding = ((kernel_size // 2) if (padding is None) else padding) if (padding == 0): layers = [HyperPatchNoPadding(in_nc, out_nc, kernel_size, stride, dilation, groups)] else: layers = [HyperPatchConv2d(in_nc, out_nc, kernel_size, stride, padding, dilation, groups, padding_mode)] if (norm_cfg is not None): layers.append(build_norm_layer(norm_cfg, out_nc)[1]) if (act_cfg is not None): layers.append(build_activation_layer(act_cfg)) return MetaSequential(*layers)
def make_hyper_patch_conv2d_block(in_nc, out_nc, kernel_size=3, stride=1, padding=None, dilation=1, groups=1, padding_mode='reflect', norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU')): " Defines a Hyper patch-wise convolution block with a normalization layer, an activation layer, and an optional\n dropout layer.\n\n Args:\n in_nc (int): Input number of channels\n out_nc (int): Output number of channels\n kernel_size (int): Convolution kernel size\n stride (int): Convolution stride\n padding (int, optional): The amount of padding for the height and width dimensions\n dilation (int or tuple, optional): Spacing between kernel elements. Default: 1\n groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1\n padding_mode (str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``\n norm_cfg (dict): Type of feature normalization layer\n act_cfg (dict): Type of activation layer\n " padding = ((kernel_size // 2) if (padding is None) else padding) if (padding == 0): layers = [HyperPatchNoPadding(in_nc, out_nc, kernel_size, stride, dilation, groups)] else: layers = [HyperPatchConv2d(in_nc, out_nc, kernel_size, stride, padding, dilation, groups, padding_mode)] if (norm_cfg is not None): layers.append(build_norm_layer(norm_cfg, out_nc)[1]) if (act_cfg is not None): layers.append(build_activation_layer(act_cfg)) return MetaSequential(*layers)<|docstring|>Defines a Hyper patch-wise convolution block with a normalization layer, an activation layer, and an optional dropout layer. Args: in_nc (int): Input number of channels out_nc (int): Output number of channels kernel_size (int): Convolution kernel size stride (int): Convolution stride padding (int, optional): The amount of padding for the height and width dimensions dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 padding_mode (str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'`` norm_cfg (dict): Type of feature normalization layer act_cfg (dict): Type of activation layer<|endoftext|>
b7bcc3e1633e96710d3ff2d259d2be0bd623414cbcbf08ade756ebe5487e8cf6
def divide_feature(in_feature, out_features, min_unit=8): ' Divides in_feature relative to each of the provided out_features.\n\n The division of the input feature will be in multiplies of "min_unit".\n The algorithm makes sure that equal output features will get the same portion of the input feature.\n The smallest out feature will receive all the round down overflow (usually the final fc)\n\n Args:\n in_feature: the input feature to divide\n out_features: the relative sizes of the output features\n min_unit: each division of the input feature will be divisible by this number.\n in_feature must be divisible by this number as well\n\n Returns:\n np.array: array of integers of the divided input feature in the size of out_features.\n ' assert ((in_feature % min_unit) == 0), f'in_feature ({in_feature}) must be divisible by min_unit ({min_unit})' units = (in_feature // min_unit) indices = np.argsort(out_features) out_features_sorted = np.array(out_features)[indices] out_feat_groups = [(k, indices[list(g)]) for (k, g) in groupby(range(len(indices)), (lambda i: out_features_sorted[i]))] out_feat_groups.sort(key=(lambda x: (x[0] * len(x[1]))), reverse=True) units_feat_ratio = (float(units) / sum(out_features)) out_group_units = [len(out_feat_group[1]) for out_feat_group in out_feat_groups] remaining_units = (units - sum(out_group_units)) for (i, out_feat_group) in enumerate(out_feat_groups): if (i < (len(out_feat_groups) - 1)): n = len(out_feat_group[1]) curr_out_feat_size = (out_feat_group[0] * n) curr_units = max((curr_out_feat_size * units_feat_ratio), n) curr_units = (((curr_units // n) * n) - n) curr_units = min(curr_units, remaining_units) out_group_units[i] += curr_units remaining_units -= curr_units if (remaining_units == 0): break else: out_group_units[(- 1)] += remaining_units divided_in_features = np.zeros(len(out_features), dtype=int) for (i, out_feat_group) in enumerate(out_feat_groups): for j in range(len(out_feat_group[1])): divided_in_features[out_feat_group[1][j]] = ((out_group_units[i] // len(out_feat_group[1])) * min_unit) return divided_in_features
Divides in_feature relative to each of the provided out_features. The division of the input feature will be in multiplies of "min_unit". The algorithm makes sure that equal output features will get the same portion of the input feature. The smallest out feature will receive all the round down overflow (usually the final fc) Args: in_feature: the input feature to divide out_features: the relative sizes of the output features min_unit: each division of the input feature will be divisible by this number. in_feature must be divisible by this number as well Returns: np.array: array of integers of the divided input feature in the size of out_features.
mmseg/models/decode_heads/hyperseg_head.py
divide_feature
yunchu/mmsegmentation
3
python
def divide_feature(in_feature, out_features, min_unit=8): ' Divides in_feature relative to each of the provided out_features.\n\n The division of the input feature will be in multiplies of "min_unit".\n The algorithm makes sure that equal output features will get the same portion of the input feature.\n The smallest out feature will receive all the round down overflow (usually the final fc)\n\n Args:\n in_feature: the input feature to divide\n out_features: the relative sizes of the output features\n min_unit: each division of the input feature will be divisible by this number.\n in_feature must be divisible by this number as well\n\n Returns:\n np.array: array of integers of the divided input feature in the size of out_features.\n ' assert ((in_feature % min_unit) == 0), f'in_feature ({in_feature}) must be divisible by min_unit ({min_unit})' units = (in_feature // min_unit) indices = np.argsort(out_features) out_features_sorted = np.array(out_features)[indices] out_feat_groups = [(k, indices[list(g)]) for (k, g) in groupby(range(len(indices)), (lambda i: out_features_sorted[i]))] out_feat_groups.sort(key=(lambda x: (x[0] * len(x[1]))), reverse=True) units_feat_ratio = (float(units) / sum(out_features)) out_group_units = [len(out_feat_group[1]) for out_feat_group in out_feat_groups] remaining_units = (units - sum(out_group_units)) for (i, out_feat_group) in enumerate(out_feat_groups): if (i < (len(out_feat_groups) - 1)): n = len(out_feat_group[1]) curr_out_feat_size = (out_feat_group[0] * n) curr_units = max((curr_out_feat_size * units_feat_ratio), n) curr_units = (((curr_units // n) * n) - n) curr_units = min(curr_units, remaining_units) out_group_units[i] += curr_units remaining_units -= curr_units if (remaining_units == 0): break else: out_group_units[(- 1)] += remaining_units divided_in_features = np.zeros(len(out_features), dtype=int) for (i, out_feat_group) in enumerate(out_feat_groups): for j in range(len(out_feat_group[1])): divided_in_features[out_feat_group[1][j]] = ((out_group_units[i] // len(out_feat_group[1])) * min_unit) return divided_in_features
def divide_feature(in_feature, out_features, min_unit=8): ' Divides in_feature relative to each of the provided out_features.\n\n The division of the input feature will be in multiplies of "min_unit".\n The algorithm makes sure that equal output features will get the same portion of the input feature.\n The smallest out feature will receive all the round down overflow (usually the final fc)\n\n Args:\n in_feature: the input feature to divide\n out_features: the relative sizes of the output features\n min_unit: each division of the input feature will be divisible by this number.\n in_feature must be divisible by this number as well\n\n Returns:\n np.array: array of integers of the divided input feature in the size of out_features.\n ' assert ((in_feature % min_unit) == 0), f'in_feature ({in_feature}) must be divisible by min_unit ({min_unit})' units = (in_feature // min_unit) indices = np.argsort(out_features) out_features_sorted = np.array(out_features)[indices] out_feat_groups = [(k, indices[list(g)]) for (k, g) in groupby(range(len(indices)), (lambda i: out_features_sorted[i]))] out_feat_groups.sort(key=(lambda x: (x[0] * len(x[1]))), reverse=True) units_feat_ratio = (float(units) / sum(out_features)) out_group_units = [len(out_feat_group[1]) for out_feat_group in out_feat_groups] remaining_units = (units - sum(out_group_units)) for (i, out_feat_group) in enumerate(out_feat_groups): if (i < (len(out_feat_groups) - 1)): n = len(out_feat_group[1]) curr_out_feat_size = (out_feat_group[0] * n) curr_units = max((curr_out_feat_size * units_feat_ratio), n) curr_units = (((curr_units // n) * n) - n) curr_units = min(curr_units, remaining_units) out_group_units[i] += curr_units remaining_units -= curr_units if (remaining_units == 0): break else: out_group_units[(- 1)] += remaining_units divided_in_features = np.zeros(len(out_features), dtype=int) for (i, out_feat_group) in enumerate(out_feat_groups): for j in range(len(out_feat_group[1])): divided_in_features[out_feat_group[1][j]] = ((out_group_units[i] // len(out_feat_group[1])) * min_unit) return divided_in_features<|docstring|>Divides in_feature relative to each of the provided out_features. The division of the input feature will be in multiplies of "min_unit". The algorithm makes sure that equal output features will get the same portion of the input feature. The smallest out feature will receive all the round down overflow (usually the final fc) Args: in_feature: the input feature to divide out_features: the relative sizes of the output features min_unit: each division of the input feature will be divisible by this number. in_feature must be divisible by this number as well Returns: np.array: array of integers of the divided input feature in the size of out_features.<|endoftext|>
790c7ab8b6070abbf043af689df2c5db8b550b9bd16d316cef240a159e87c65d
def __focus(): "Sİmilasyona odaklanma\n Fare'yi similasyona getirir ve üzerine tıklar.\n Odaklanma olmadan tuş kombinasyonlarının gönderimi başarısız olur.\n " mouse.position = POSITION mouse.click(MButton.left) time.sleep(FOCUS_WAITING_TIME)
Sİmilasyona odaklanma Fare'yi similasyona getirir ve üzerine tıklar. Odaklanma olmadan tuş kombinasyonlarının gönderimi başarısız olur.
src/simulator.py
__focus
yedhrab/OTOBIL-Simulator
0
python
def __focus(): "Sİmilasyona odaklanma\n Fare'yi similasyona getirir ve üzerine tıklar.\n Odaklanma olmadan tuş kombinasyonlarının gönderimi başarısız olur.\n " mouse.position = POSITION mouse.click(MButton.left) time.sleep(FOCUS_WAITING_TIME)
def __focus(): "Sİmilasyona odaklanma\n Fare'yi similasyona getirir ve üzerine tıklar.\n Odaklanma olmadan tuş kombinasyonlarının gönderimi başarısız olur.\n " mouse.position = POSITION mouse.click(MButton.left) time.sleep(FOCUS_WAITING_TIME)<|docstring|>Sİmilasyona odaklanma Fare'yi similasyona getirir ve üzerine tıklar. Odaklanma olmadan tuş kombinasyonlarının gönderimi başarısız olur.<|endoftext|>
194f81471abb431621d2744ff6fe462482ef971fc77a08e45192e6b00a6eded8
def turn(ratio: float, save_speed=True): 'Aracın dönemsini sağlar\n Aracın dönüşünü, isteğe bağlı olarak hız kaybını engelleyerek sağlar\n\n Arguments:\n ratio {float} -- Dönüş değeri, `-1` sola 90 derece dönüş, `+1` sağa 90 derece dönüş anlamına gelir\n\n Keyword Arguments:\n save_speed {bool} -- Hızı koru (default: {True})\n ' key = ('d' if (ratio > 0) else 'a') if save_speed: __hold_key(key, (TURN_TIME * abs(ratio))) else: keyboard.release('w') __hold_key(key, (TURN_TIME * abs(ratio))) keyboard.press('w')
Aracın dönemsini sağlar Aracın dönüşünü, isteğe bağlı olarak hız kaybını engelleyerek sağlar Arguments: ratio {float} -- Dönüş değeri, `-1` sola 90 derece dönüş, `+1` sağa 90 derece dönüş anlamına gelir Keyword Arguments: save_speed {bool} -- Hızı koru (default: {True})
src/simulator.py
turn
yedhrab/OTOBIL-Simulator
0
python
def turn(ratio: float, save_speed=True): 'Aracın dönemsini sağlar\n Aracın dönüşünü, isteğe bağlı olarak hız kaybını engelleyerek sağlar\n\n Arguments:\n ratio {float} -- Dönüş değeri, `-1` sola 90 derece dönüş, `+1` sağa 90 derece dönüş anlamına gelir\n\n Keyword Arguments:\n save_speed {bool} -- Hızı koru (default: {True})\n ' key = ('d' if (ratio > 0) else 'a') if save_speed: __hold_key(key, (TURN_TIME * abs(ratio))) else: keyboard.release('w') __hold_key(key, (TURN_TIME * abs(ratio))) keyboard.press('w')
def turn(ratio: float, save_speed=True): 'Aracın dönemsini sağlar\n Aracın dönüşünü, isteğe bağlı olarak hız kaybını engelleyerek sağlar\n\n Arguments:\n ratio {float} -- Dönüş değeri, `-1` sola 90 derece dönüş, `+1` sağa 90 derece dönüş anlamına gelir\n\n Keyword Arguments:\n save_speed {bool} -- Hızı koru (default: {True})\n ' key = ('d' if (ratio > 0) else 'a') if save_speed: __hold_key(key, (TURN_TIME * abs(ratio))) else: keyboard.release('w') __hold_key(key, (TURN_TIME * abs(ratio))) keyboard.press('w')<|docstring|>Aracın dönemsini sağlar Aracın dönüşünü, isteğe bağlı olarak hız kaybını engelleyerek sağlar Arguments: ratio {float} -- Dönüş değeri, `-1` sola 90 derece dönüş, `+1` sağa 90 derece dönüş anlamına gelir Keyword Arguments: save_speed {bool} -- Hızı koru (default: {True})<|endoftext|>
8e507e43fcdf5b66864eeefbaa09dd52c3d24eadc2d2f02e3135d5739c25abfe
def set_speed_limit(limit: bool): '20 Hız limitini aktif eder\n\n Arguments:\n limit {bool} -- `True` veya `False`\n ' if limit: keyboard.press('k') else: keyboard.release('k')
20 Hız limitini aktif eder Arguments: limit {bool} -- `True` veya `False`
src/simulator.py
set_speed_limit
yedhrab/OTOBIL-Simulator
0
python
def set_speed_limit(limit: bool): '20 Hız limitini aktif eder\n\n Arguments:\n limit {bool} -- `True` veya `False`\n ' if limit: keyboard.press('k') else: keyboard.release('k')
def set_speed_limit(limit: bool): '20 Hız limitini aktif eder\n\n Arguments:\n limit {bool} -- `True` veya `False`\n ' if limit: keyboard.press('k') else: keyboard.release('k')<|docstring|>20 Hız limitini aktif eder Arguments: limit {bool} -- `True` veya `False`<|endoftext|>
89c228647ba271ee1d32757b93ca5e8f9344c39718c99cccd3405f512d8d90a1
def move(): "Similasyondaki aracın ilerlemesi\n Similasyonda manuel olarak 'w' tuşuna basma işlemini sağlar.\n\n Keyword Arguments:\n stable {bool} -- Sabit hızda gitme (default: {False})\n " __hold_key('w', 0)
Similasyondaki aracın ilerlemesi Similasyonda manuel olarak 'w' tuşuna basma işlemini sağlar. Keyword Arguments: stable {bool} -- Sabit hızda gitme (default: {False})
src/simulator.py
move
yedhrab/OTOBIL-Simulator
0
python
def move(): "Similasyondaki aracın ilerlemesi\n Similasyonda manuel olarak 'w' tuşuna basma işlemini sağlar.\n\n Keyword Arguments:\n stable {bool} -- Sabit hızda gitme (default: {False})\n " __hold_key('w', 0)
def move(): "Similasyondaki aracın ilerlemesi\n Similasyonda manuel olarak 'w' tuşuna basma işlemini sağlar.\n\n Keyword Arguments:\n stable {bool} -- Sabit hızda gitme (default: {False})\n " __hold_key('w', 0)<|docstring|>Similasyondaki aracın ilerlemesi Similasyonda manuel olarak 'w' tuşuna basma işlemini sağlar. Keyword Arguments: stable {bool} -- Sabit hızda gitme (default: {False})<|endoftext|>
0b87592ec0ec1164631b54c9092f38b54911491661280c78871596a27ac243f9
def stop(): '\n Aracı durdurup 5 saniye bekler\n ' keyboard.release('w') keyboard.press(Key.space) time.sleep(5) keyboard.release(Key.space)
Aracı durdurup 5 saniye bekler
src/simulator.py
stop
yedhrab/OTOBIL-Simulator
0
python
def stop(): '\n \n ' keyboard.release('w') keyboard.press(Key.space) time.sleep(5) keyboard.release(Key.space)
def stop(): '\n \n ' keyboard.release('w') keyboard.press(Key.space) time.sleep(5) keyboard.release(Key.space)<|docstring|>Aracı durdurup 5 saniye bekler<|endoftext|>
80bff4ee3fca17955882dac0aeb89afc1710c4139db58fa48d7b917ba4a531b1
def initiate(): 'Similasyonu başlatma\n Arabayı tam gazla hızlanacak şekilde similasyonu başlatır.\n ' __focus() move()
Similasyonu başlatma Arabayı tam gazla hızlanacak şekilde similasyonu başlatır.
src/simulator.py
initiate
yedhrab/OTOBIL-Simulator
0
python
def initiate(): 'Similasyonu başlatma\n Arabayı tam gazla hızlanacak şekilde similasyonu başlatır.\n ' __focus() move()
def initiate(): 'Similasyonu başlatma\n Arabayı tam gazla hızlanacak şekilde similasyonu başlatır.\n ' __focus() move()<|docstring|>Similasyonu başlatma Arabayı tam gazla hızlanacak şekilde similasyonu başlatır.<|endoftext|>
3a3a3c9d2bce66f2b81b030a30312a02e7b749c2957da01ba6a83d60ce662921
def slow_down(ratio=1.0): 'Arabayı yavaşlatma\n Durak gibi alanlar görüldüğünde arabayı belli bir oranda yavaşlatma\n\n Keyword Arguments:\n ratio {float} -- Hız düşürme oranı (default: {1.})\n\n Examples:\n Oran `1` ise araba durur. `0.5` ise hız yarıya indirilir\n ' keyboard.release('w') __hold_key(Key.space, (BREAK_TIME * ratio))
Arabayı yavaşlatma Durak gibi alanlar görüldüğünde arabayı belli bir oranda yavaşlatma Keyword Arguments: ratio {float} -- Hız düşürme oranı (default: {1.}) Examples: Oran `1` ise araba durur. `0.5` ise hız yarıya indirilir
src/simulator.py
slow_down
yedhrab/OTOBIL-Simulator
0
python
def slow_down(ratio=1.0): 'Arabayı yavaşlatma\n Durak gibi alanlar görüldüğünde arabayı belli bir oranda yavaşlatma\n\n Keyword Arguments:\n ratio {float} -- Hız düşürme oranı (default: {1.})\n\n Examples:\n Oran `1` ise araba durur. `0.5` ise hız yarıya indirilir\n ' keyboard.release('w') __hold_key(Key.space, (BREAK_TIME * ratio))
def slow_down(ratio=1.0): 'Arabayı yavaşlatma\n Durak gibi alanlar görüldüğünde arabayı belli bir oranda yavaşlatma\n\n Keyword Arguments:\n ratio {float} -- Hız düşürme oranı (default: {1.})\n\n Examples:\n Oran `1` ise araba durur. `0.5` ise hız yarıya indirilir\n ' keyboard.release('w') __hold_key(Key.space, (BREAK_TIME * ratio))<|docstring|>Arabayı yavaşlatma Durak gibi alanlar görüldüğünde arabayı belli bir oranda yavaşlatma Keyword Arguments: ratio {float} -- Hız düşürme oranı (default: {1.}) Examples: Oran `1` ise araba durur. `0.5` ise hız yarıya indirilir<|endoftext|>
a99dc301065de11f7e163eac7db87894e901453efa7e24492352a02ac235c7f5
def test_method(other_test): 'Test metodlarını test eder\n Test metodlarını geçen süreyi ve adını yazarak test eder\n\n Arguments:\n other_test {function} -- Test metodu\n ' first_time = time.time() other_test() print(f"'{other_test.__name__}' metodunda geçen süre: {(time.time() - first_time)}")
Test metodlarını test eder Test metodlarını geçen süreyi ve adını yazarak test eder Arguments: other_test {function} -- Test metodu
src/simulator.py
test_method
yedhrab/OTOBIL-Simulator
0
python
def test_method(other_test): 'Test metodlarını test eder\n Test metodlarını geçen süreyi ve adını yazarak test eder\n\n Arguments:\n other_test {function} -- Test metodu\n ' first_time = time.time() other_test() print(f"'{other_test.__name__}' metodunda geçen süre: {(time.time() - first_time)}")
def test_method(other_test): 'Test metodlarını test eder\n Test metodlarını geçen süreyi ve adını yazarak test eder\n\n Arguments:\n other_test {function} -- Test metodu\n ' first_time = time.time() other_test() print(f"'{other_test.__name__}' metodunda geçen süre: {(time.time() - first_time)}")<|docstring|>Test metodlarını test eder Test metodlarını geçen süreyi ve adını yazarak test eder Arguments: other_test {function} -- Test metodu<|endoftext|>
dff57aed4e658ef53745d70d510ab137c8f42ea2f6fcbedc58d8141e1cb8e0b0
def first_part(): 'İlk parçayı test etme\n Başlangıçtan, ilk Girilmez levhasındaki dönüşe kadar olan kısmı ele alır.\n ' initiate() time.sleep(4.9) slow_down(1) move() time.sleep(2.9) slow_down(1) move() time.sleep(2.35) turn((- 0.755))
İlk parçayı test etme Başlangıçtan, ilk Girilmez levhasındaki dönüşe kadar olan kısmı ele alır.
src/simulator.py
first_part
yedhrab/OTOBIL-Simulator
0
python
def first_part(): 'İlk parçayı test etme\n Başlangıçtan, ilk Girilmez levhasındaki dönüşe kadar olan kısmı ele alır.\n ' initiate() time.sleep(4.9) slow_down(1) move() time.sleep(2.9) slow_down(1) move() time.sleep(2.35) turn((- 0.755))
def first_part(): 'İlk parçayı test etme\n Başlangıçtan, ilk Girilmez levhasındaki dönüşe kadar olan kısmı ele alır.\n ' initiate() time.sleep(4.9) slow_down(1) move() time.sleep(2.9) slow_down(1) move() time.sleep(2.35) turn((- 0.755))<|docstring|>İlk parçayı test etme Başlangıçtan, ilk Girilmez levhasındaki dönüşe kadar olan kısmı ele alır.<|endoftext|>
87f8283327721aee2adecf81afb6b78ccbda8963f0b1d7115d31f52a12c4cfc2
def build_device_capabilities(device: 'MusicCastDevice') -> List[Capability]: "\n Function to build all Capabilities of a given device.\n The ID of the capabilities will be set to '{feature.name.lower()}_{key}'\n @param device: The MusicCastDevice to generate the capabilities for\n @return: the list of capabilities of the device\n " result = [] for feature in [f for f in DeviceFeature if (f in device.features)]: feature_entry = _device_capabilities.get(feature) if (feature_entry is not None): if isinstance(feature_entry, dict): for (key, capability) in feature_entry.items(): capability_id = f'{feature.name}_{key}' result.append(capability(capability_id, device)) else: result.append(feature_entry(feature.name, device)) return result
Function to build all Capabilities of a given device. The ID of the capabilities will be set to '{feature.name.lower()}_{key}' @param device: The MusicCastDevice to generate the capabilities for @return: the list of capabilities of the device
aiomusiccast/capability_registry.py
build_device_capabilities
vigonotion/aiomusiccast
3
python
def build_device_capabilities(device: 'MusicCastDevice') -> List[Capability]: "\n Function to build all Capabilities of a given device.\n The ID of the capabilities will be set to '{feature.name.lower()}_{key}'\n @param device: The MusicCastDevice to generate the capabilities for\n @return: the list of capabilities of the device\n " result = [] for feature in [f for f in DeviceFeature if (f in device.features)]: feature_entry = _device_capabilities.get(feature) if (feature_entry is not None): if isinstance(feature_entry, dict): for (key, capability) in feature_entry.items(): capability_id = f'{feature.name}_{key}' result.append(capability(capability_id, device)) else: result.append(feature_entry(feature.name, device)) return result
def build_device_capabilities(device: 'MusicCastDevice') -> List[Capability]: "\n Function to build all Capabilities of a given device.\n The ID of the capabilities will be set to '{feature.name.lower()}_{key}'\n @param device: The MusicCastDevice to generate the capabilities for\n @return: the list of capabilities of the device\n " result = [] for feature in [f for f in DeviceFeature if (f in device.features)]: feature_entry = _device_capabilities.get(feature) if (feature_entry is not None): if isinstance(feature_entry, dict): for (key, capability) in feature_entry.items(): capability_id = f'{feature.name}_{key}' result.append(capability(capability_id, device)) else: result.append(feature_entry(feature.name, device)) return result<|docstring|>Function to build all Capabilities of a given device. The ID of the capabilities will be set to '{feature.name.lower()}_{key}' @param device: The MusicCastDevice to generate the capabilities for @return: the list of capabilities of the device<|endoftext|>
543b37006278b1ba9821b1c9fefafcec78631a8d15316f73fa6013272e1e56aa
def build_zone_capabilities(device: 'MusicCastDevice', zone_id) -> List[Capability]: "\n Function to build all Capabilities of a given zone of a device.\n The ID of the capabilities will be set to 'zone_{feature.name.lower()}_{key}'\n @param device: The MusicCastDevice to generate the capabilities for\n @param zone_id: The zone to generate the capabilities for\n @return: The list of capabilities of the given zone\n " result = [] for feature in [f for f in ZoneFeature if (f in device.data.zones[zone_id].features)]: feature_entry = _zone_capabilities.get(feature) if (feature_entry is not None): if isinstance(feature_entry, dict): for (key, capability) in feature_entry.items(): capability_id = f'zone_{feature.name}_{key}' result.append(capability(capability_id, device, zone_id)) else: result.append(feature_entry(f'zone_{feature.name}', device, zone_id)) return result
Function to build all Capabilities of a given zone of a device. The ID of the capabilities will be set to 'zone_{feature.name.lower()}_{key}' @param device: The MusicCastDevice to generate the capabilities for @param zone_id: The zone to generate the capabilities for @return: The list of capabilities of the given zone
aiomusiccast/capability_registry.py
build_zone_capabilities
vigonotion/aiomusiccast
3
python
def build_zone_capabilities(device: 'MusicCastDevice', zone_id) -> List[Capability]: "\n Function to build all Capabilities of a given zone of a device.\n The ID of the capabilities will be set to 'zone_{feature.name.lower()}_{key}'\n @param device: The MusicCastDevice to generate the capabilities for\n @param zone_id: The zone to generate the capabilities for\n @return: The list of capabilities of the given zone\n " result = [] for feature in [f for f in ZoneFeature if (f in device.data.zones[zone_id].features)]: feature_entry = _zone_capabilities.get(feature) if (feature_entry is not None): if isinstance(feature_entry, dict): for (key, capability) in feature_entry.items(): capability_id = f'zone_{feature.name}_{key}' result.append(capability(capability_id, device, zone_id)) else: result.append(feature_entry(f'zone_{feature.name}', device, zone_id)) return result
def build_zone_capabilities(device: 'MusicCastDevice', zone_id) -> List[Capability]: "\n Function to build all Capabilities of a given zone of a device.\n The ID of the capabilities will be set to 'zone_{feature.name.lower()}_{key}'\n @param device: The MusicCastDevice to generate the capabilities for\n @param zone_id: The zone to generate the capabilities for\n @return: The list of capabilities of the given zone\n " result = [] for feature in [f for f in ZoneFeature if (f in device.data.zones[zone_id].features)]: feature_entry = _zone_capabilities.get(feature) if (feature_entry is not None): if isinstance(feature_entry, dict): for (key, capability) in feature_entry.items(): capability_id = f'zone_{feature.name}_{key}' result.append(capability(capability_id, device, zone_id)) else: result.append(feature_entry(f'zone_{feature.name}', device, zone_id)) return result<|docstring|>Function to build all Capabilities of a given zone of a device. The ID of the capabilities will be set to 'zone_{feature.name.lower()}_{key}' @param device: The MusicCastDevice to generate the capabilities for @param zone_id: The zone to generate the capabilities for @return: The list of capabilities of the given zone<|endoftext|>
d97ecbdbbe35fdd05d9f1a3852119fd1de00a88b862a7d3cd86ddb6a2fff2223
def select_startpts_BFGS(list_sampled_points, point_to_start_from, num_multistart, problem): '\n create starting points for BFGS, first select points from previously sampled points,\n but not more than half of the starting points\n :return: numpy array with starting points for BFGS\n ' if (len(list_sampled_points) > 0): indices_chosen = np.random.choice(len(list_sampled_points), int(min(len(list_sampled_points), ((num_multistart / 2.0) - 1.0))), replace=False) start_pts = np.array(list_sampled_points)[indices_chosen] start_pts = np.vstack((point_to_start_from, start_pts)) else: start_pts = [point_to_start_from] start_pts = np.vstack((start_pts, problem.obj_func_min.get_moe_domain().generate_uniform_random_points_in_domain((num_multistart - len(start_pts))))) return start_pts
create starting points for BFGS, first select points from previously sampled points, but not more than half of the starting points :return: numpy array with starting points for BFGS
multifidelity_KG/misokg_utils.py
select_startpts_BFGS
JammyL/NIPS2017
19
python
def select_startpts_BFGS(list_sampled_points, point_to_start_from, num_multistart, problem): '\n create starting points for BFGS, first select points from previously sampled points,\n but not more than half of the starting points\n :return: numpy array with starting points for BFGS\n ' if (len(list_sampled_points) > 0): indices_chosen = np.random.choice(len(list_sampled_points), int(min(len(list_sampled_points), ((num_multistart / 2.0) - 1.0))), replace=False) start_pts = np.array(list_sampled_points)[indices_chosen] start_pts = np.vstack((point_to_start_from, start_pts)) else: start_pts = [point_to_start_from] start_pts = np.vstack((start_pts, problem.obj_func_min.get_moe_domain().generate_uniform_random_points_in_domain((num_multistart - len(start_pts))))) return start_pts
def select_startpts_BFGS(list_sampled_points, point_to_start_from, num_multistart, problem): '\n create starting points for BFGS, first select points from previously sampled points,\n but not more than half of the starting points\n :return: numpy array with starting points for BFGS\n ' if (len(list_sampled_points) > 0): indices_chosen = np.random.choice(len(list_sampled_points), int(min(len(list_sampled_points), ((num_multistart / 2.0) - 1.0))), replace=False) start_pts = np.array(list_sampled_points)[indices_chosen] start_pts = np.vstack((point_to_start_from, start_pts)) else: start_pts = [point_to_start_from] start_pts = np.vstack((start_pts, problem.obj_func_min.get_moe_domain().generate_uniform_random_points_in_domain((num_multistart - len(start_pts))))) return start_pts<|docstring|>create starting points for BFGS, first select points from previously sampled points, but not more than half of the starting points :return: numpy array with starting points for BFGS<|endoftext|>
abf41a511426939667521bcc859c17e38b3a6d415bf28152fca624e8b3490f67
def prepare_context(self, image_obj, context): "\n Pre-processes the image's dockerfile.\n Leaves the context with a dictionary of dockerfile lines by directive.\n e.g.\n context.data['dockerfile']['RUN'] = ['RUN apt-get update', 'RUN blah']\n context.data['dockerfile']['VOLUME'] = ['VOLUME /tmp', 'VOLUMN /var/log']\n\n :return: updated context\n " return context
Pre-processes the image's dockerfile. Leaves the context with a dictionary of dockerfile lines by directive. e.g. context.data['dockerfile']['RUN'] = ['RUN apt-get update', 'RUN blah'] context.data['dockerfile']['VOLUME'] = ['VOLUME /tmp', 'VOLUMN /var/log'] :return: updated context
anchore_engine/services/policy_engine/engine/policy/gates/image_metadata.py
prepare_context
Talanor/anchore-engine
0
python
def prepare_context(self, image_obj, context): "\n Pre-processes the image's dockerfile.\n Leaves the context with a dictionary of dockerfile lines by directive.\n e.g.\n context.data['dockerfile']['RUN'] = ['RUN apt-get update', 'RUN blah']\n context.data['dockerfile']['VOLUME'] = ['VOLUME /tmp', 'VOLUMN /var/log']\n\n :return: updated context\n " return context
def prepare_context(self, image_obj, context): "\n Pre-processes the image's dockerfile.\n Leaves the context with a dictionary of dockerfile lines by directive.\n e.g.\n context.data['dockerfile']['RUN'] = ['RUN apt-get update', 'RUN blah']\n context.data['dockerfile']['VOLUME'] = ['VOLUME /tmp', 'VOLUMN /var/log']\n\n :return: updated context\n " return context<|docstring|>Pre-processes the image's dockerfile. Leaves the context with a dictionary of dockerfile lines by directive. e.g. context.data['dockerfile']['RUN'] = ['RUN apt-get update', 'RUN blah'] context.data['dockerfile']['VOLUME'] = ['VOLUME /tmp', 'VOLUMN /var/log'] :return: updated context<|endoftext|>
a6d199835f96c8dad009282824d3e2d266345b14f233b58fbf6e49431a841a1b
def bytes_to_long(bs): ' convert 8 bytes bs to unsigned long (bigendian) ' return bytes_to_int(bs)
convert 8 bytes bs to unsigned long (bigendian)
dubbo/utils.py
bytes_to_long
feiyuw/dubbo-py
14
python
def bytes_to_long(bs): ' ' return bytes_to_int(bs)
def bytes_to_long(bs): ' ' return bytes_to_int(bs)<|docstring|>convert 8 bytes bs to unsigned long (bigendian)<|endoftext|>
1db88ce332fe99f7881edfb2b0dbc6d96962da04898395a7f2698e979434dc4e
def long_to_bytes(num): ' convert long to 8 bytes (bigendian) ' return struct.pack('>Q', num)
convert long to 8 bytes (bigendian)
dubbo/utils.py
long_to_bytes
feiyuw/dubbo-py
14
python
def long_to_bytes(num): ' ' return struct.pack('>Q', num)
def long_to_bytes(num): ' ' return struct.pack('>Q', num)<|docstring|>convert long to 8 bytes (bigendian)<|endoftext|>
770f0f8d3b5e1977d4e0c6134aec34f4f310a84721714dae1a2d8be5a20553d5
def byte(num): ' convert num to one byte int' return int_to_bytes(int(bin(num)[(- 8):], 2))
convert num to one byte int
dubbo/utils.py
byte
feiyuw/dubbo-py
14
python
def byte(num): ' ' return int_to_bytes(int(bin(num)[(- 8):], 2))
def byte(num): ' ' return int_to_bytes(int(bin(num)[(- 8):], 2))<|docstring|>convert num to one byte int<|endoftext|>
2e4afd3dedc1fdcf8af93732f8c03e733df38021ad500c4449c2d558f69bdf62
def bytes_to_int(bs, signed=False): ' convert 4 bytes bs to unsigned/signed long integer (bigendian) ' if signed: return int.from_bytes(bs, 'big', signed=True) return reduce((lambda x, y: ((x * 256) + y)), bs)
convert 4 bytes bs to unsigned/signed long integer (bigendian)
dubbo/utils.py
bytes_to_int
feiyuw/dubbo-py
14
python
def bytes_to_int(bs, signed=False): ' ' if signed: return int.from_bytes(bs, 'big', signed=True) return reduce((lambda x, y: ((x * 256) + y)), bs)
def bytes_to_int(bs, signed=False): ' ' if signed: return int.from_bytes(bs, 'big', signed=True) return reduce((lambda x, y: ((x * 256) + y)), bs)<|docstring|>convert 4 bytes bs to unsigned/signed long integer (bigendian)<|endoftext|>
eb33ed66868c880d16bbfdf673386c41f6abb380a4e9d7101fafba0eb3a44068
def int_to_bytes(num, length=None, signed=False): ' convert integer to bytes (bigendian) ' if (length == 4): return struct.pack(((signed and '>i') or '>I'), num) int_bytes = None if (num == 0): int_bytes = num.to_bytes(1, 'big') else: int_bytes = num.to_bytes(((num.bit_length() + 7) // 8), 'big', signed=signed) if length: return ((b'\x00' * (length - len(int_bytes))) + int_bytes) return int_bytes
convert integer to bytes (bigendian)
dubbo/utils.py
int_to_bytes
feiyuw/dubbo-py
14
python
def int_to_bytes(num, length=None, signed=False): ' ' if (length == 4): return struct.pack(((signed and '>i') or '>I'), num) int_bytes = None if (num == 0): int_bytes = num.to_bytes(1, 'big') else: int_bytes = num.to_bytes(((num.bit_length() + 7) // 8), 'big', signed=signed) if length: return ((b'\x00' * (length - len(int_bytes))) + int_bytes) return int_bytes
def int_to_bytes(num, length=None, signed=False): ' ' if (length == 4): return struct.pack(((signed and '>i') or '>I'), num) int_bytes = None if (num == 0): int_bytes = num.to_bytes(1, 'big') else: int_bytes = num.to_bytes(((num.bit_length() + 7) // 8), 'big', signed=signed) if length: return ((b'\x00' * (length - len(int_bytes))) + int_bytes) return int_bytes<|docstring|>convert integer to bytes (bigendian)<|endoftext|>
98438eb5adc7d06efe36761e450860d80eefbfadd3998249113a968319fca919
def double_to_bytes(num): ' convert double to 8 bytes (bigendian) ' return struct.pack('>d', num)
convert double to 8 bytes (bigendian)
dubbo/utils.py
double_to_bytes
feiyuw/dubbo-py
14
python
def double_to_bytes(num): ' ' return struct.pack('>d', num)
def double_to_bytes(num): ' ' return struct.pack('>d', num)<|docstring|>convert double to 8 bytes (bigendian)<|endoftext|>
3660215da192211c12da374eb2b34cdea3bdf6791319326be227f3fb274cea42
def bytes_to_double(bs): ' convert 8 bytes bs to double (bigendian) ' return struct.unpack('>d', bs)[0]
convert 8 bytes bs to double (bigendian)
dubbo/utils.py
bytes_to_double
feiyuw/dubbo-py
14
python
def bytes_to_double(bs): ' ' return struct.unpack('>d', bs)[0]
def bytes_to_double(bs): ' ' return struct.unpack('>d', bs)[0]<|docstring|>convert 8 bytes bs to double (bigendian)<|endoftext|>
cd4cb7a1eac9c75ca77bc76b6a6fe8a940804e3a3d9811cc6b52320454d53cc5
def __init__(self, placeholder_text: str=None): '\n Args:\n placeholder_text (str): Placeholder text.. Defaults to None.\n ' self._placeholder_text = (placeholder_text if placeholder_text else self.__placeholder_text) self._placeholder_label = QLabel(self._placeholder_text, self) self.setup_placeholder_label()
Args: placeholder_text (str): Placeholder text.. Defaults to None.
qiskit_metal/_gui/widgets/bases/QWidget_PlaceholderText.py
__init__
camponogaraviera/qiskit-metal
167
python
def __init__(self, placeholder_text: str=None): '\n Args:\n placeholder_text (str): Placeholder text.. Defaults to None.\n ' self._placeholder_text = (placeholder_text if placeholder_text else self.__placeholder_text) self._placeholder_label = QLabel(self._placeholder_text, self) self.setup_placeholder_label()
def __init__(self, placeholder_text: str=None): '\n Args:\n placeholder_text (str): Placeholder text.. Defaults to None.\n ' self._placeholder_text = (placeholder_text if placeholder_text else self.__placeholder_text) self._placeholder_label = QLabel(self._placeholder_text, self) self.setup_placeholder_label()<|docstring|>Args: placeholder_text (str): Placeholder text.. Defaults to None.<|endoftext|>
622d961491b1123f85145ff012a641b2dc09cefe4be08ee55b010d046efbf203
def setup_placeholder_label(self): 'QComponents will be displayed here when you create them.' self.update_placeholder_text() if (not self.layout()): layout = QVBoxLayout() self.setLayout(layout) self.layout().addWidget(self._placeholder_label)
QComponents will be displayed here when you create them.
qiskit_metal/_gui/widgets/bases/QWidget_PlaceholderText.py
setup_placeholder_label
camponogaraviera/qiskit-metal
167
python
def setup_placeholder_label(self): self.update_placeholder_text() if (not self.layout()): layout = QVBoxLayout() self.setLayout(layout) self.layout().addWidget(self._placeholder_label)
def setup_placeholder_label(self): self.update_placeholder_text() if (not self.layout()): layout = QVBoxLayout() self.setLayout(layout) self.layout().addWidget(self._placeholder_label)<|docstring|>QComponents will be displayed here when you create them.<|endoftext|>
d994265beed398126d65f3f57ae255a984d6b73ab4c58ab61447742f3fce24dd
def update_placeholder_text(self, text=None): 'Update the placeholder text to the given string.\n\n Args:\n text (str): New placeholder text.. Defaults to None.\n ' if text: self._placeholder_text = text label = self._placeholder_label label.setText(self._placeholder_text) label.setWordWrap(True) label.setAlignment((Qt.AlignHCenter | Qt.AlignVCenter)) label.setAutoFillBackground(False) label.setAttribute(Qt.WA_TranslucentBackground) palette = self.palette() if hasattr(palette, 'PlaceholderText'): placeholder_color = palette.PlaceholderText else: placeholder_color = palette.WindowText color = palette.color(placeholder_color) palette.setColor(palette.Text, color) palette.setColor(palette.Text, color) label.setPalette(palette)
Update the placeholder text to the given string. Args: text (str): New placeholder text.. Defaults to None.
qiskit_metal/_gui/widgets/bases/QWidget_PlaceholderText.py
update_placeholder_text
camponogaraviera/qiskit-metal
167
python
def update_placeholder_text(self, text=None): 'Update the placeholder text to the given string.\n\n Args:\n text (str): New placeholder text.. Defaults to None.\n ' if text: self._placeholder_text = text label = self._placeholder_label label.setText(self._placeholder_text) label.setWordWrap(True) label.setAlignment((Qt.AlignHCenter | Qt.AlignVCenter)) label.setAutoFillBackground(False) label.setAttribute(Qt.WA_TranslucentBackground) palette = self.palette() if hasattr(palette, 'PlaceholderText'): placeholder_color = palette.PlaceholderText else: placeholder_color = palette.WindowText color = palette.color(placeholder_color) palette.setColor(palette.Text, color) palette.setColor(palette.Text, color) label.setPalette(palette)
def update_placeholder_text(self, text=None): 'Update the placeholder text to the given string.\n\n Args:\n text (str): New placeholder text.. Defaults to None.\n ' if text: self._placeholder_text = text label = self._placeholder_label label.setText(self._placeholder_text) label.setWordWrap(True) label.setAlignment((Qt.AlignHCenter | Qt.AlignVCenter)) label.setAutoFillBackground(False) label.setAttribute(Qt.WA_TranslucentBackground) palette = self.palette() if hasattr(palette, 'PlaceholderText'): placeholder_color = palette.PlaceholderText else: placeholder_color = palette.WindowText color = palette.color(placeholder_color) palette.setColor(palette.Text, color) palette.setColor(palette.Text, color) label.setPalette(palette)<|docstring|>Update the placeholder text to the given string. Args: text (str): New placeholder text.. Defaults to None.<|endoftext|>
1bd923ad44a7b7b90fe48a071ab3ab16d2d60590eacf1332c6a092c77e08339a
def show_placeholder_text(self): 'Show the placeholder text.' self._placeholder_label.show()
Show the placeholder text.
qiskit_metal/_gui/widgets/bases/QWidget_PlaceholderText.py
show_placeholder_text
camponogaraviera/qiskit-metal
167
python
def show_placeholder_text(self): self._placeholder_label.show()
def show_placeholder_text(self): self._placeholder_label.show()<|docstring|>Show the placeholder text.<|endoftext|>
04cc597f3086219da0e28740040b1a8ceb18002080c7ed78cd53795e9482b366
def hide_placeholder_text(self): 'Hide the placeholder text.' self._placeholder_label.hide()
Hide the placeholder text.
qiskit_metal/_gui/widgets/bases/QWidget_PlaceholderText.py
hide_placeholder_text
camponogaraviera/qiskit-metal
167
python
def hide_placeholder_text(self): self._placeholder_label.hide()
def hide_placeholder_text(self): self._placeholder_label.hide()<|docstring|>Hide the placeholder text.<|endoftext|>
37335e6a132373d6fb375f4796c1ed99f4a7102e0abdbe3a70d5af244f83d868
@tf.function def f1_loss(y, y_hat): 'Compute the macro soft F1-score as a cost (average 1 - soft-F1 across all labels).' y_hat = tf.cast(y_hat, tf.float32) y = tf.cast(y, tf.float32) tp = tf.reduce_sum((y_hat * y), axis=0) fp = tf.reduce_sum((y_hat * (1 - y)), axis=0) fn = tf.reduce_sum(((1 - y_hat) * y), axis=0) soft_f1 = ((2 * tp) / ((((2 * tp) + fn) + fp) + e)) cost = (1 - soft_f1) macro_cost = tf.reduce_mean(cost) return macro_cost
Compute the macro soft F1-score as a cost (average 1 - soft-F1 across all labels).
maupassant/tensorflow_helper/losses_helper.py
f1_loss
Jwuthri/TextToolKit
2
python
@tf.function def f1_loss(y, y_hat): y_hat = tf.cast(y_hat, tf.float32) y = tf.cast(y, tf.float32) tp = tf.reduce_sum((y_hat * y), axis=0) fp = tf.reduce_sum((y_hat * (1 - y)), axis=0) fn = tf.reduce_sum(((1 - y_hat) * y), axis=0) soft_f1 = ((2 * tp) / ((((2 * tp) + fn) + fp) + e)) cost = (1 - soft_f1) macro_cost = tf.reduce_mean(cost) return macro_cost
@tf.function def f1_loss(y, y_hat): y_hat = tf.cast(y_hat, tf.float32) y = tf.cast(y, tf.float32) tp = tf.reduce_sum((y_hat * y), axis=0) fp = tf.reduce_sum((y_hat * (1 - y)), axis=0) fn = tf.reduce_sum(((1 - y_hat) * y), axis=0) soft_f1 = ((2 * tp) / ((((2 * tp) + fn) + fp) + e)) cost = (1 - soft_f1) macro_cost = tf.reduce_mean(cost) return macro_cost<|docstring|>Compute the macro soft F1-score as a cost (average 1 - soft-F1 across all labels).<|endoftext|>
f481cf8d0d0d352399fd24085c265fdad60f0bdb855857f39150434aa26685c9
@tf.function def iou_loss(y, y_hat): 'The IoU metric, or Jaccard Index, is similar to the Dice metric and is calculated as the ratio between the\n overlap of the positive instances between two sets, and their mutual combined values:\n https://arxiv.org/abs/1911.08287' y_hat = K.flatten(y_hat) y = K.flatten(y) intersection = K.sum(K.dot(y, y_hat)) total = (K.sum(y) + K.sum(y_hat)) union = (total - intersection) iou = ((intersection + e) / (union + e)) return (1 - iou)
The IoU metric, or Jaccard Index, is similar to the Dice metric and is calculated as the ratio between the overlap of the positive instances between two sets, and their mutual combined values: https://arxiv.org/abs/1911.08287
maupassant/tensorflow_helper/losses_helper.py
iou_loss
Jwuthri/TextToolKit
2
python
@tf.function def iou_loss(y, y_hat): 'The IoU metric, or Jaccard Index, is similar to the Dice metric and is calculated as the ratio between the\n overlap of the positive instances between two sets, and their mutual combined values:\n https://arxiv.org/abs/1911.08287' y_hat = K.flatten(y_hat) y = K.flatten(y) intersection = K.sum(K.dot(y, y_hat)) total = (K.sum(y) + K.sum(y_hat)) union = (total - intersection) iou = ((intersection + e) / (union + e)) return (1 - iou)
@tf.function def iou_loss(y, y_hat): 'The IoU metric, or Jaccard Index, is similar to the Dice metric and is calculated as the ratio between the\n overlap of the positive instances between two sets, and their mutual combined values:\n https://arxiv.org/abs/1911.08287' y_hat = K.flatten(y_hat) y = K.flatten(y) intersection = K.sum(K.dot(y, y_hat)) total = (K.sum(y) + K.sum(y_hat)) union = (total - intersection) iou = ((intersection + e) / (union + e)) return (1 - iou)<|docstring|>The IoU metric, or Jaccard Index, is similar to the Dice metric and is calculated as the ratio between the overlap of the positive instances between two sets, and their mutual combined values: https://arxiv.org/abs/1911.08287<|endoftext|>
06ab48841910dfef546d2cfd90abf5449e19b7a9676f220be32567e688e9e9fa
@tf.function def focal_loss(y, y_hat, alpha=0.8, gamma=2): 'Focal Loss was introduced by Lin et al of Facebook AI Research in 2017 as a means of combatting extremely\n imbalanced datasets where positive cases were relatively rare:\n https://arxiv.org/abs/1708.02002' y_hat = K.flatten(y_hat) y = K.flatten(y) bce = K.binary_crossentropy(y, y_hat) bce_exp = K.exp((- bce)) focal = K.mean(((alpha * K.pow((1 - bce_exp), gamma)) * bce)) return focal
Focal Loss was introduced by Lin et al of Facebook AI Research in 2017 as a means of combatting extremely imbalanced datasets where positive cases were relatively rare: https://arxiv.org/abs/1708.02002
maupassant/tensorflow_helper/losses_helper.py
focal_loss
Jwuthri/TextToolKit
2
python
@tf.function def focal_loss(y, y_hat, alpha=0.8, gamma=2): 'Focal Loss was introduced by Lin et al of Facebook AI Research in 2017 as a means of combatting extremely\n imbalanced datasets where positive cases were relatively rare:\n https://arxiv.org/abs/1708.02002' y_hat = K.flatten(y_hat) y = K.flatten(y) bce = K.binary_crossentropy(y, y_hat) bce_exp = K.exp((- bce)) focal = K.mean(((alpha * K.pow((1 - bce_exp), gamma)) * bce)) return focal
@tf.function def focal_loss(y, y_hat, alpha=0.8, gamma=2): 'Focal Loss was introduced by Lin et al of Facebook AI Research in 2017 as a means of combatting extremely\n imbalanced datasets where positive cases were relatively rare:\n https://arxiv.org/abs/1708.02002' y_hat = K.flatten(y_hat) y = K.flatten(y) bce = K.binary_crossentropy(y, y_hat) bce_exp = K.exp((- bce)) focal = K.mean(((alpha * K.pow((1 - bce_exp), gamma)) * bce)) return focal<|docstring|>Focal Loss was introduced by Lin et al of Facebook AI Research in 2017 as a means of combatting extremely imbalanced datasets where positive cases were relatively rare: https://arxiv.org/abs/1708.02002<|endoftext|>
47dc5dc111b289357482875482718f653468ef695d7e01302a34d3d8f13f1b6d
@tf.function def focal_loss_fixed(y_true, y_pred, gamma=2, alpha=0.4): 'Focal loss for multi-classification\n FL(p_t)=-alpha(1-p_t)^{gamma}ln(p_t)\n Notice: y_pred is probability after softmax\n gradient is d(Fl)/d(p_t) not d(Fl)/d(x) as described in paper\n d(Fl)/d(p_t) * [p_t(1-p_t)] = d(Fl)/d(x)\n Focal Loss for Dense Object Detection\n https://arxiv.org/abs/1708.02002\n ' y_true = tf.convert_to_tensor(y_true, tf.float32) y_pred = tf.convert_to_tensor(y_pred, tf.float32) model_out = tf.add(y_pred, e) ce = tf.multiply(y_true, (- tf.math.log(model_out))) weight = tf.multiply(y_true, tf.pow(tf.subtract(1.0, model_out), gamma)) fl = tf.multiply(alpha, tf.multiply(weight, ce)) reduced_fl = tf.reduce_max(fl, axis=1) return tf.reduce_mean(reduced_fl)
Focal loss for multi-classification FL(p_t)=-alpha(1-p_t)^{gamma}ln(p_t) Notice: y_pred is probability after softmax gradient is d(Fl)/d(p_t) not d(Fl)/d(x) as described in paper d(Fl)/d(p_t) * [p_t(1-p_t)] = d(Fl)/d(x) Focal Loss for Dense Object Detection https://arxiv.org/abs/1708.02002
maupassant/tensorflow_helper/losses_helper.py
focal_loss_fixed
Jwuthri/TextToolKit
2
python
@tf.function def focal_loss_fixed(y_true, y_pred, gamma=2, alpha=0.4): 'Focal loss for multi-classification\n FL(p_t)=-alpha(1-p_t)^{gamma}ln(p_t)\n Notice: y_pred is probability after softmax\n gradient is d(Fl)/d(p_t) not d(Fl)/d(x) as described in paper\n d(Fl)/d(p_t) * [p_t(1-p_t)] = d(Fl)/d(x)\n Focal Loss for Dense Object Detection\n https://arxiv.org/abs/1708.02002\n ' y_true = tf.convert_to_tensor(y_true, tf.float32) y_pred = tf.convert_to_tensor(y_pred, tf.float32) model_out = tf.add(y_pred, e) ce = tf.multiply(y_true, (- tf.math.log(model_out))) weight = tf.multiply(y_true, tf.pow(tf.subtract(1.0, model_out), gamma)) fl = tf.multiply(alpha, tf.multiply(weight, ce)) reduced_fl = tf.reduce_max(fl, axis=1) return tf.reduce_mean(reduced_fl)
@tf.function def focal_loss_fixed(y_true, y_pred, gamma=2, alpha=0.4): 'Focal loss for multi-classification\n FL(p_t)=-alpha(1-p_t)^{gamma}ln(p_t)\n Notice: y_pred is probability after softmax\n gradient is d(Fl)/d(p_t) not d(Fl)/d(x) as described in paper\n d(Fl)/d(p_t) * [p_t(1-p_t)] = d(Fl)/d(x)\n Focal Loss for Dense Object Detection\n https://arxiv.org/abs/1708.02002\n ' y_true = tf.convert_to_tensor(y_true, tf.float32) y_pred = tf.convert_to_tensor(y_pred, tf.float32) model_out = tf.add(y_pred, e) ce = tf.multiply(y_true, (- tf.math.log(model_out))) weight = tf.multiply(y_true, tf.pow(tf.subtract(1.0, model_out), gamma)) fl = tf.multiply(alpha, tf.multiply(weight, ce)) reduced_fl = tf.reduce_max(fl, axis=1) return tf.reduce_mean(reduced_fl)<|docstring|>Focal loss for multi-classification FL(p_t)=-alpha(1-p_t)^{gamma}ln(p_t) Notice: y_pred is probability after softmax gradient is d(Fl)/d(p_t) not d(Fl)/d(x) as described in paper d(Fl)/d(p_t) * [p_t(1-p_t)] = d(Fl)/d(x) Focal Loss for Dense Object Detection https://arxiv.org/abs/1708.02002<|endoftext|>
2b7314629d33569559a9cd93c3e90027ef7b64645489dee794052767caa56fe1
@tf.function def combo_loss(y, y_hat, alpha=0.5, ce_ratio=0.5, smooth=1): 'Combo loss is a combination of Dice Loss and a modified Cross-Entropy function that, like Tversky loss, has\n additional constants which penalise either false positives or false negatives more respectively:\n https://arxiv.org/abs/1805.02798' y = K.flatten(y) y_hat = K.flatten(y_hat) intersection = K.sum((y * y_hat)) dice = (((2.0 * intersection) + smooth) / ((K.sum(y) + K.sum(y_hat)) + smooth)) y_hat = K.clip(y_hat, e, (1.0 - e)) out = (- (alpha * ((y * K.log(y_hat)) + (((1 - alpha) * (1.0 - y)) * K.log((1.0 - y_hat)))))) weighted_ce = K.mean(out, axis=(- 1)) combo = ((ce_ratio * weighted_ce) - ((1 - ce_ratio) * dice)) return combo
Combo loss is a combination of Dice Loss and a modified Cross-Entropy function that, like Tversky loss, has additional constants which penalise either false positives or false negatives more respectively: https://arxiv.org/abs/1805.02798
maupassant/tensorflow_helper/losses_helper.py
combo_loss
Jwuthri/TextToolKit
2
python
@tf.function def combo_loss(y, y_hat, alpha=0.5, ce_ratio=0.5, smooth=1): 'Combo loss is a combination of Dice Loss and a modified Cross-Entropy function that, like Tversky loss, has\n additional constants which penalise either false positives or false negatives more respectively:\n https://arxiv.org/abs/1805.02798' y = K.flatten(y) y_hat = K.flatten(y_hat) intersection = K.sum((y * y_hat)) dice = (((2.0 * intersection) + smooth) / ((K.sum(y) + K.sum(y_hat)) + smooth)) y_hat = K.clip(y_hat, e, (1.0 - e)) out = (- (alpha * ((y * K.log(y_hat)) + (((1 - alpha) * (1.0 - y)) * K.log((1.0 - y_hat)))))) weighted_ce = K.mean(out, axis=(- 1)) combo = ((ce_ratio * weighted_ce) - ((1 - ce_ratio) * dice)) return combo
@tf.function def combo_loss(y, y_hat, alpha=0.5, ce_ratio=0.5, smooth=1): 'Combo loss is a combination of Dice Loss and a modified Cross-Entropy function that, like Tversky loss, has\n additional constants which penalise either false positives or false negatives more respectively:\n https://arxiv.org/abs/1805.02798' y = K.flatten(y) y_hat = K.flatten(y_hat) intersection = K.sum((y * y_hat)) dice = (((2.0 * intersection) + smooth) / ((K.sum(y) + K.sum(y_hat)) + smooth)) y_hat = K.clip(y_hat, e, (1.0 - e)) out = (- (alpha * ((y * K.log(y_hat)) + (((1 - alpha) * (1.0 - y)) * K.log((1.0 - y_hat)))))) weighted_ce = K.mean(out, axis=(- 1)) combo = ((ce_ratio * weighted_ce) - ((1 - ce_ratio) * dice)) return combo<|docstring|>Combo loss is a combination of Dice Loss and a modified Cross-Entropy function that, like Tversky loss, has additional constants which penalise either false positives or false negatives more respectively: https://arxiv.org/abs/1805.02798<|endoftext|>
acee355d5eeda00564488e280c133aaf7689ed8cdbf5241f3537afa2c4870178
def get_source_packages(self): ' Returns dictionary mapping source package names to Package() objects. ' package_dict = {} for (source_repo_name, source_repo) in self.source_repo_package_xmls.items(): for pkg_name in source_repo: package_dict[pkg_name] = Package(pkg_name, source_repo_name) return package_dict
Returns dictionary mapping source package names to Package() objects.
src/rosdistro/distribution_cache.py
get_source_packages
kunaltyagi/rosdistro
6
python
def get_source_packages(self): ' ' package_dict = {} for (source_repo_name, source_repo) in self.source_repo_package_xmls.items(): for pkg_name in source_repo: package_dict[pkg_name] = Package(pkg_name, source_repo_name) return package_dict
def get_source_packages(self): ' ' package_dict = {} for (source_repo_name, source_repo) in self.source_repo_package_xmls.items(): for pkg_name in source_repo: package_dict[pkg_name] = Package(pkg_name, source_repo_name) return package_dict<|docstring|>Returns dictionary mapping source package names to Package() objects.<|endoftext|>
7636549ae9bf01a18ff6bbaed8e1fdbfb19a666cb08c30bae64a477c9ff79173
def __init__(self, bias: int=None, daylight_bias: int=None, daylight_date: MapiCalendarTimeZoneRuleDto=None, standard_bias: int=None, standard_date: MapiCalendarTimeZoneRuleDto=None, time_zone_flags: List[str]=None, year: int=None): "\n Represents the mapi calendar time zone rule. \n :param bias: Time zone's offset in minutes from UTC. \n :type bias: int\n :param daylight_bias: Offset in minutes from lBias during daylight saving time. \n :type daylight_bias: int\n :param daylight_date: Date and local time that indicate when to begin using the DaylightBias. \n :type daylight_date: MapiCalendarTimeZoneRuleDto\n :param standard_bias: Offset in minutes from lBias during standard time. \n :type standard_bias: int\n :param standard_date: Date and local time that indicate when to begin using the StandardBias. \n :type standard_date: MapiCalendarTimeZoneRuleDto\n :param time_zone_flags: Individual bit flags that specify information about this TimeZoneRule. \n :type time_zone_flags: List[str]\n :param year: Year in which this rule is scheduled to take effect. \n :type year: int\n " self._bias = None self._daylight_bias = None self._daylight_date = None self._standard_bias = None self._standard_date = None self._time_zone_flags = None self._year = None if (bias is not None): self.bias = bias if (daylight_bias is not None): self.daylight_bias = daylight_bias if (daylight_date is not None): self.daylight_date = daylight_date if (standard_bias is not None): self.standard_bias = standard_bias if (standard_date is not None): self.standard_date = standard_date if (time_zone_flags is not None): self.time_zone_flags = time_zone_flags if (year is not None): self.year = year
Represents the mapi calendar time zone rule. :param bias: Time zone's offset in minutes from UTC. :type bias: int :param daylight_bias: Offset in minutes from lBias during daylight saving time. :type daylight_bias: int :param daylight_date: Date and local time that indicate when to begin using the DaylightBias. :type daylight_date: MapiCalendarTimeZoneRuleDto :param standard_bias: Offset in minutes from lBias during standard time. :type standard_bias: int :param standard_date: Date and local time that indicate when to begin using the StandardBias. :type standard_date: MapiCalendarTimeZoneRuleDto :param time_zone_flags: Individual bit flags that specify information about this TimeZoneRule. :type time_zone_flags: List[str] :param year: Year in which this rule is scheduled to take effect. :type year: int
sdk/AsposeEmailCloudSdk/models/mapi_calendar_time_zone_info_dto.py
__init__
aspose-email-cloud/aspose-email-cloud-python
1
python
def __init__(self, bias: int=None, daylight_bias: int=None, daylight_date: MapiCalendarTimeZoneRuleDto=None, standard_bias: int=None, standard_date: MapiCalendarTimeZoneRuleDto=None, time_zone_flags: List[str]=None, year: int=None): "\n Represents the mapi calendar time zone rule. \n :param bias: Time zone's offset in minutes from UTC. \n :type bias: int\n :param daylight_bias: Offset in minutes from lBias during daylight saving time. \n :type daylight_bias: int\n :param daylight_date: Date and local time that indicate when to begin using the DaylightBias. \n :type daylight_date: MapiCalendarTimeZoneRuleDto\n :param standard_bias: Offset in minutes from lBias during standard time. \n :type standard_bias: int\n :param standard_date: Date and local time that indicate when to begin using the StandardBias. \n :type standard_date: MapiCalendarTimeZoneRuleDto\n :param time_zone_flags: Individual bit flags that specify information about this TimeZoneRule. \n :type time_zone_flags: List[str]\n :param year: Year in which this rule is scheduled to take effect. \n :type year: int\n " self._bias = None self._daylight_bias = None self._daylight_date = None self._standard_bias = None self._standard_date = None self._time_zone_flags = None self._year = None if (bias is not None): self.bias = bias if (daylight_bias is not None): self.daylight_bias = daylight_bias if (daylight_date is not None): self.daylight_date = daylight_date if (standard_bias is not None): self.standard_bias = standard_bias if (standard_date is not None): self.standard_date = standard_date if (time_zone_flags is not None): self.time_zone_flags = time_zone_flags if (year is not None): self.year = year
def __init__(self, bias: int=None, daylight_bias: int=None, daylight_date: MapiCalendarTimeZoneRuleDto=None, standard_bias: int=None, standard_date: MapiCalendarTimeZoneRuleDto=None, time_zone_flags: List[str]=None, year: int=None): "\n Represents the mapi calendar time zone rule. \n :param bias: Time zone's offset in minutes from UTC. \n :type bias: int\n :param daylight_bias: Offset in minutes from lBias during daylight saving time. \n :type daylight_bias: int\n :param daylight_date: Date and local time that indicate when to begin using the DaylightBias. \n :type daylight_date: MapiCalendarTimeZoneRuleDto\n :param standard_bias: Offset in minutes from lBias during standard time. \n :type standard_bias: int\n :param standard_date: Date and local time that indicate when to begin using the StandardBias. \n :type standard_date: MapiCalendarTimeZoneRuleDto\n :param time_zone_flags: Individual bit flags that specify information about this TimeZoneRule. \n :type time_zone_flags: List[str]\n :param year: Year in which this rule is scheduled to take effect. \n :type year: int\n " self._bias = None self._daylight_bias = None self._daylight_date = None self._standard_bias = None self._standard_date = None self._time_zone_flags = None self._year = None if (bias is not None): self.bias = bias if (daylight_bias is not None): self.daylight_bias = daylight_bias if (daylight_date is not None): self.daylight_date = daylight_date if (standard_bias is not None): self.standard_bias = standard_bias if (standard_date is not None): self.standard_date = standard_date if (time_zone_flags is not None): self.time_zone_flags = time_zone_flags if (year is not None): self.year = year<|docstring|>Represents the mapi calendar time zone rule. :param bias: Time zone's offset in minutes from UTC. :type bias: int :param daylight_bias: Offset in minutes from lBias during daylight saving time. :type daylight_bias: int :param daylight_date: Date and local time that indicate when to begin using the DaylightBias. :type daylight_date: MapiCalendarTimeZoneRuleDto :param standard_bias: Offset in minutes from lBias during standard time. :type standard_bias: int :param standard_date: Date and local time that indicate when to begin using the StandardBias. :type standard_date: MapiCalendarTimeZoneRuleDto :param time_zone_flags: Individual bit flags that specify information about this TimeZoneRule. :type time_zone_flags: List[str] :param year: Year in which this rule is scheduled to take effect. :type year: int<|endoftext|>
fd4c3ec1ae4f7b28c44f41431b3e02fec6dbc727390f0ec6cb06c5c7d020f7a9
@property def bias(self) -> int: "\n Time zone's offset in minutes from UTC. \n\n :return: The bias of this MapiCalendarTimeZoneInfoDto.\n :rtype: int\n " return self._bias
Time zone's offset in minutes from UTC. :return: The bias of this MapiCalendarTimeZoneInfoDto. :rtype: int
sdk/AsposeEmailCloudSdk/models/mapi_calendar_time_zone_info_dto.py
bias
aspose-email-cloud/aspose-email-cloud-python
1
python
@property def bias(self) -> int: "\n Time zone's offset in minutes from UTC. \n\n :return: The bias of this MapiCalendarTimeZoneInfoDto.\n :rtype: int\n " return self._bias
@property def bias(self) -> int: "\n Time zone's offset in minutes from UTC. \n\n :return: The bias of this MapiCalendarTimeZoneInfoDto.\n :rtype: int\n " return self._bias<|docstring|>Time zone's offset in minutes from UTC. :return: The bias of this MapiCalendarTimeZoneInfoDto. :rtype: int<|endoftext|>
14417fa76921317d475e50d2618bd360d8d76d8ae1102f5f24fa3e3673dedc80
@bias.setter def bias(self, bias: int): "\n Time zone's offset in minutes from UTC. \n\n :param bias: The bias of this MapiCalendarTimeZoneInfoDto.\n :type: int\n " if (bias is None): raise ValueError('Invalid value for `bias`, must not be `None`') self._bias = bias
Time zone's offset in minutes from UTC. :param bias: The bias of this MapiCalendarTimeZoneInfoDto. :type: int
sdk/AsposeEmailCloudSdk/models/mapi_calendar_time_zone_info_dto.py
bias
aspose-email-cloud/aspose-email-cloud-python
1
python
@bias.setter def bias(self, bias: int): "\n Time zone's offset in minutes from UTC. \n\n :param bias: The bias of this MapiCalendarTimeZoneInfoDto.\n :type: int\n " if (bias is None): raise ValueError('Invalid value for `bias`, must not be `None`') self._bias = bias
@bias.setter def bias(self, bias: int): "\n Time zone's offset in minutes from UTC. \n\n :param bias: The bias of this MapiCalendarTimeZoneInfoDto.\n :type: int\n " if (bias is None): raise ValueError('Invalid value for `bias`, must not be `None`') self._bias = bias<|docstring|>Time zone's offset in minutes from UTC. :param bias: The bias of this MapiCalendarTimeZoneInfoDto. :type: int<|endoftext|>
861e9519fae7d7fef86b6284dbf810a1b9007838fc7dc82ad07cdfa9d76f7a1a
@property def daylight_bias(self) -> int: '\n Offset in minutes from lBias during daylight saving time. \n\n :return: The daylight_bias of this MapiCalendarTimeZoneInfoDto.\n :rtype: int\n ' return self._daylight_bias
Offset in minutes from lBias during daylight saving time. :return: The daylight_bias of this MapiCalendarTimeZoneInfoDto. :rtype: int
sdk/AsposeEmailCloudSdk/models/mapi_calendar_time_zone_info_dto.py
daylight_bias
aspose-email-cloud/aspose-email-cloud-python
1
python
@property def daylight_bias(self) -> int: '\n Offset in minutes from lBias during daylight saving time. \n\n :return: The daylight_bias of this MapiCalendarTimeZoneInfoDto.\n :rtype: int\n ' return self._daylight_bias
@property def daylight_bias(self) -> int: '\n Offset in minutes from lBias during daylight saving time. \n\n :return: The daylight_bias of this MapiCalendarTimeZoneInfoDto.\n :rtype: int\n ' return self._daylight_bias<|docstring|>Offset in minutes from lBias during daylight saving time. :return: The daylight_bias of this MapiCalendarTimeZoneInfoDto. :rtype: int<|endoftext|>
fbe714c7ae8f0b1b5444cdc9838e92f854600d9aef7d7e7ab3979a3d01430798
@daylight_bias.setter def daylight_bias(self, daylight_bias: int): '\n Offset in minutes from lBias during daylight saving time. \n\n :param daylight_bias: The daylight_bias of this MapiCalendarTimeZoneInfoDto.\n :type: int\n ' if (daylight_bias is None): raise ValueError('Invalid value for `daylight_bias`, must not be `None`') self._daylight_bias = daylight_bias
Offset in minutes from lBias during daylight saving time. :param daylight_bias: The daylight_bias of this MapiCalendarTimeZoneInfoDto. :type: int
sdk/AsposeEmailCloudSdk/models/mapi_calendar_time_zone_info_dto.py
daylight_bias
aspose-email-cloud/aspose-email-cloud-python
1
python
@daylight_bias.setter def daylight_bias(self, daylight_bias: int): '\n Offset in minutes from lBias during daylight saving time. \n\n :param daylight_bias: The daylight_bias of this MapiCalendarTimeZoneInfoDto.\n :type: int\n ' if (daylight_bias is None): raise ValueError('Invalid value for `daylight_bias`, must not be `None`') self._daylight_bias = daylight_bias
@daylight_bias.setter def daylight_bias(self, daylight_bias: int): '\n Offset in minutes from lBias during daylight saving time. \n\n :param daylight_bias: The daylight_bias of this MapiCalendarTimeZoneInfoDto.\n :type: int\n ' if (daylight_bias is None): raise ValueError('Invalid value for `daylight_bias`, must not be `None`') self._daylight_bias = daylight_bias<|docstring|>Offset in minutes from lBias during daylight saving time. :param daylight_bias: The daylight_bias of this MapiCalendarTimeZoneInfoDto. :type: int<|endoftext|>
12f21fbc0c7d465d5a71a19c47b076a110febc86b3b66ad946406e1977f9d935
@property def daylight_date(self) -> MapiCalendarTimeZoneRuleDto: '\n Date and local time that indicate when to begin using the DaylightBias. \n\n :return: The daylight_date of this MapiCalendarTimeZoneInfoDto.\n :rtype: MapiCalendarTimeZoneRuleDto\n ' return self._daylight_date
Date and local time that indicate when to begin using the DaylightBias. :return: The daylight_date of this MapiCalendarTimeZoneInfoDto. :rtype: MapiCalendarTimeZoneRuleDto
sdk/AsposeEmailCloudSdk/models/mapi_calendar_time_zone_info_dto.py
daylight_date
aspose-email-cloud/aspose-email-cloud-python
1
python
@property def daylight_date(self) -> MapiCalendarTimeZoneRuleDto: '\n Date and local time that indicate when to begin using the DaylightBias. \n\n :return: The daylight_date of this MapiCalendarTimeZoneInfoDto.\n :rtype: MapiCalendarTimeZoneRuleDto\n ' return self._daylight_date
@property def daylight_date(self) -> MapiCalendarTimeZoneRuleDto: '\n Date and local time that indicate when to begin using the DaylightBias. \n\n :return: The daylight_date of this MapiCalendarTimeZoneInfoDto.\n :rtype: MapiCalendarTimeZoneRuleDto\n ' return self._daylight_date<|docstring|>Date and local time that indicate when to begin using the DaylightBias. :return: The daylight_date of this MapiCalendarTimeZoneInfoDto. :rtype: MapiCalendarTimeZoneRuleDto<|endoftext|>
2f60eabf826ca92f69ec304bba1ff18e8705fb86ae01a4f2a19883947d0b4dc2
@daylight_date.setter def daylight_date(self, daylight_date: MapiCalendarTimeZoneRuleDto): '\n Date and local time that indicate when to begin using the DaylightBias. \n\n :param daylight_date: The daylight_date of this MapiCalendarTimeZoneInfoDto.\n :type: MapiCalendarTimeZoneRuleDto\n ' self._daylight_date = daylight_date
Date and local time that indicate when to begin using the DaylightBias. :param daylight_date: The daylight_date of this MapiCalendarTimeZoneInfoDto. :type: MapiCalendarTimeZoneRuleDto
sdk/AsposeEmailCloudSdk/models/mapi_calendar_time_zone_info_dto.py
daylight_date
aspose-email-cloud/aspose-email-cloud-python
1
python
@daylight_date.setter def daylight_date(self, daylight_date: MapiCalendarTimeZoneRuleDto): '\n Date and local time that indicate when to begin using the DaylightBias. \n\n :param daylight_date: The daylight_date of this MapiCalendarTimeZoneInfoDto.\n :type: MapiCalendarTimeZoneRuleDto\n ' self._daylight_date = daylight_date
@daylight_date.setter def daylight_date(self, daylight_date: MapiCalendarTimeZoneRuleDto): '\n Date and local time that indicate when to begin using the DaylightBias. \n\n :param daylight_date: The daylight_date of this MapiCalendarTimeZoneInfoDto.\n :type: MapiCalendarTimeZoneRuleDto\n ' self._daylight_date = daylight_date<|docstring|>Date and local time that indicate when to begin using the DaylightBias. :param daylight_date: The daylight_date of this MapiCalendarTimeZoneInfoDto. :type: MapiCalendarTimeZoneRuleDto<|endoftext|>