id
int64
0
19
arxiv_id
stringlengths
11
12
page
int64
1
234
bounding_box
sequencelengths
4
4
latex_content
stringlengths
217
28.9k
extracted_content
sequencelengths
1
85
similarity_score
float64
0.36
1
table_image
unknown
page_image
unknown
0
1405.2377v1
4
[ 99.43800354003906, 121.62852478027344, 515.7630004882812, 146.0369873046875 ]
\begin{table}[H] \centering \scriptsize \begin{tabular}{|p{3cm}|p{3cm}|p{4cm}|p{3cm}|} \hline \hline \multicolumn{4}{c}{Details of Experiments for the Employed Data Set}\\ \cline{1-4} \emph{Domain} & \emph{Raw Features} & \emph{Response} & \emph{Data Set Cardinality}\\ \hline Australian Credit Scoring & 16 & Desired credit approval of individuals based on characteristics & 690\\\hline \end{tabular} \caption{\small Data set descriptions for the experiments used to validate the efficacy of the proposed algorithm. We summarize here the domain of the application, the input features to the algorithm, the response variable we wish to predict and the number of examples provided in the data.} \end{table}
[ [ "Domain", "Raw Features", "Response", "Data Set Cardinality" ], [ "Australian Credit Scor-\ning", "16", "Desired credit approval of indi-\nviduals based on characteristics", "690" ] ]
0.462025
null
null
1
1405.2377v1
5
[ 121.80699920654297, 121.62850952148438, 493.3940124511719, 170.34600830078125 ]
\begin{table}[H] \centering \scriptsize \begin{tabular}{|p{3cm}|p{2cm}|p{2cm}|p{2cm}|p{2cm}|} \hline \hline \multicolumn{5}{c}{Details of Experiments for the Variable Threshold Algorithm}\\ \cline{1-5} \emph{Statistic} & \emph{Average} & \emph{Minimum} & \emph{Maximum} & \emph{Standard Deviation}\\ \hline Predictive Accuracy of Random Forest & {\vspace{0mm}$85\%$} & {\vspace{0mm}$81\%$} & {\vspace{0mm}$90\%$} & {\vspace{0mm}$3.24\%$}\\\hline Convergence Time of Optimization Algorithm & {\vspace{0mm}$10$} & {\vspace{0mm}$7$} & {\vspace{0mm}$12$} & {\vspace{0mm}$2.2$}\\\hline \end{tabular} \caption{\small We present here some relevant statistics related to our experiments in parameter optimization. Notice that in the predictive accuracy criterion, larger values are preferable. By contrast, we have that convergence time is better for smaller values. We define as convergence time the number of iterations of the algorithm that are required to map out completely the known behavior of the accuracy function.} \end{table}
[ [ "Statistic", "Average", "Minimum", "Maximum", "Standard Devi-\nation" ], [ "Predictive Accuracy of\nRandom Forest", "85%", "81%", "90%", "3.24%" ], [ "Convergence Time of\nOptimization Algorithm", "10", "7", "12", "2.2" ] ]
0.383961
null
null
0
2207.05295v2
6
[ 51.43559646606445, 106.33673095703125, 297.42755126953125, 170.03900146484375 ]
\begin{table}[t] \centering \resizebox{\columnwidth}{!}{ \begin{tabular}{c|c|c|c|c|c} \hline \multirow{3}{*}{Data}& \multirow{3}{*}{Number of rows}& \multicolumn{4}{c}{TabSynDex Score}\\ \cline{3-6} & & \multicolumn{4}{c}{\% of real data treated as synthetic}\\ \cline{3-6} & &10\%&25\%&50\%&100\%\\ \hline Concrete~\cite{concrete_data} &1030&0.768&0.869&0.914&0.894\\ \hline News Popularity~\cite{news_data} &39644&0.891&0.916&0.901&0.898\\ \hline Wine Quality~\cite{wine_data} &4898&0.867&0.911&0.925&0.938\\ \hline Power Plant~\cite{electrical_data} &9568&0.946&0.961&0.981&0.969\\ \hline \end{tabular} } \caption{Experiment for sanity check of the TabSynDex metric for tabular data synthesis evaluation. The real dataset is divided into different subsets to check the similarity between them using TabSynDex.~\textit{A higher TabSynDex score is better}} \label{tab:subset_similarity} \end{table}
[ [ "Data", "Number of rows", "TabSynDex Score", null, null, null ], [ null, null, "% of real data treated as synthetic", null, null, null ], [ null, null, "10%", "25%", "50%", "100%" ], [ "Concrete [36]", "1030", "0.768", "0.869", "0.914", "0.894" ], [ "News Popularity [38]", "39644", "0.891", "0.916", "0.901", "0.898" ], [ "Wine Quality [37]", "4898", "0.867", "0.911", "0.925", "0.938" ], [ "Power Plant [39]", "9568", "0.946", "0.961", "0.981", "0.969" ] ]
0.545251
null
null
0
1911.00623v2
10
[ 45.827999114990234, 180.93701171875, 443.06201171875, 283.5989990234375 ]
\begin{table}[htbp] % \caption{Comparison of traditional machine learning algorithms. Notation: $m$-number of training samples; $n$-input dimension; $c$-number of classes.} % \centering % \begin{tabular}{ m{2.1cm}<{\centering}|m{1.8cm}<{\centering}| m{3.2cm}<{\centering}|m{2.8cm}<{\centering}|m{3.0cm}<{\centering}} % \toprule % Algorithm & Model size & Optimization & Training complexity & Inference complexity\\ % \noalign{ % \hrule height 2pt % } % Decision tree &$\mathcal{O}(m)$ &- &$\mathcal{O}(mnlog(m))$ & $\mathcal{O}(log(m))$\\ % \hline % Random forest & $\mathcal{O}(N_{tree}m)$ &- &$\mathcal{O}(N_{tree}mnlog(m))$ & $\mathcal{O}(N_{tree}log(m))$\\ % \hline % SVM & $\mathcal{O}(n)$ & gradient descent &$\mathcal{O}(m^2n)$ &$\mathcal{O}(m_{sv}n)$ \\ % \hline % Logistic regression & $\mathcal{O}(n)$ &Newton-Raphson &$\mathcal{O}(mn^2+n^3)$ & $\mathcal{O}(n)$ \\ % \hline % kNN &$\mathcal{O}(mn)$&- & - &$\mathcal{O}(mn)$ \\ % \hline % Naive Bayes &$\mathcal{O}(nc)$ &-&$\mathcal{O}(mn+nc)$ & $\mathcal{O}(nc)$ \\ % \hline % Linear regression &$\mathcal{O}(n)$ &matrix inversion &$\mathcal{O}(mn^2+n^3)$ &$\mathcal{O}(n)$ \\ % \noalign{ % \hrule height 2pt % } % k-Means &- &- &$\mathcal{O}(mnc)$ &- \\ % \hline % EM &-&-&$\mathcal{O}(mn^2+n^3)$ & -\\ % \noalign{ % \hrule height 2pt % } % PCA &- &eigen-decomposition &$\mathcal{O}(mn^2+n^3)$ & -\\ % \bottomrule % \end{tabular} % \label{table:MLcompare} % \end{table}
[ [ "Algorithm", "Model size", "Optimization", "Training complexity", "Inference complexity" ], [ "Decision tree", "O(m)", "-", "O(mnloд(m))", "O(loд(m))" ], [ "Random forest", "O(Ntreem)", "-", "O(Ntreemnloд(m))", "O(Ntreeloд(m))" ], [ "SVM", "O(n)", "gradient descent", "O(m2n)", "O(msvn)" ], [ "Logistic regression", "O(n)", "Newton-Raphson", "O(mn2 + n3 )", "O(n)" ], [ "kNN", "O(mn)", "-", "-", "O(mn)" ], [ "Naive Bayes", "O(nc)", "-", "O(mn + nc)", "O(nc)" ], [ "Linear regression", "O(n)", "matrix inversion", "O(mn2 + n3 )", "O(n)" ], [ "k-Means", "-", "-", "O(mnc)", "-" ], [ "EM", "-", "-", "O(mn2 + n3 )", "-" ], [ "PCA", "-", "eigen-decomposition", "O(mn2 + n3 )", "-" ] ]
0.715429
null
null
1
1911.00623v2
13
[ 50.15800094604492, 122.1409912109375, 434.0989990234375, 336.260009765625 ]
\begin{table}[htbp] % \caption{DNN resource requirements modeling. ASIC: Application-Specific Integrated Circuit. Matmul: matrix multiplication. RMSPE: root mean square percentage error.} % %\centering % %\begin{tabular}{ m{1.2cm}<{\centering}|m{1.6cm}<{\centering}| m{1.6cm}<{\centering}| m{1.8cm}<{\centering}|m{2.4cm}<{\centering}|m{2.2cm}<{\centering}|m{1.4cm}<{\centering}} % \begin{tabular}{ m{1.6cm}|m{1.6cm}| m{1.5cm}| m{1.4cm}|m{2.8cm}|m{1.4cm}|m{1.8cm}} % %\begin{tabularx}{1\linewidth}{X| X| X| X| X| X| X} % \toprule % Work & Platform & Framework & Metric & Measured features & Regression model & Relative ~~~~~~~~~~~~error \\ % \noalign{ % \hrule height 2pt % } % Augur\cite{lu2017modeling} & NVidia TK1, TX1 &Caffe &inference: memory, time &matrix dimensions in matmul, weights, activations&linear & memory: 28\% - 50\%; time: 6\% - 20\%\\ % \hline % Paleo\cite{qi2016paleo} & NVidia Titan X GPU cluster & TensorFlow&training \& inference: time&forward \& backward FLOPs, weights, activations, data, platform percent of peak&linear& 4\%-30\% \\ % \hline % Gianniti et al.\cite{giannitiperformance}&NVidia Quadro M6000 GPU & - &training: time & forward \& backward FLOPs of all types of layers & linear & < 23\% \\ % \hline % SyNERGY\cite{rodriguesfine} & Nvidia Jetson TX1 & Caffe & inference: energy & MACs & linear & < 17\% (w/o MobileNet)\\ % \hline % NeuralPower\cite{cai2017neuralpower}&Nvidia Titan X \& GTX 1070 &TensorFlow \& Caffe &inference: time, power, energy&layer configuration hyper-parameters, memory access, FLOPs, activations, batch size&polynomial&time: < 24\%; power: < 20\%; energy: < 5\%\\ % \hline % HyperPower\cite{stamoulis2018hyperpower}&Nvidia GTX1070 \& Tegra TX1&Caffe&inference: power, memory&layer configuration hyper-parameters&linear & RMSPE < 7\%\\ % \hline % Yang et al.\cite{yang2017designing} & ASIC Eyeriss\cite{chen2017eyeriss} & - & inference: energy & MACs, memory access&- & -\\ % \hline % DeLight\cite{rouhani2016delight} & Nvidia Tegra TK1& Theano & training\& inference: energy & layer configuration hyper-parameters & linear & -\\ % \bottomrule % \end{tabular} % \label{table:DNNresourcemodeling} % \end{table}
[ [ "Work", "Platform", "Framework", "Metric", "Measured\nfeatures", "Regression\nmodel", "Relative\nerror" ], [ "Augur[119]", "NVidia TK1,\nTX1", "Caffe", "inference:\nmemory,\ntime", "matrix dimensions\nin matmul, weights,\nactivations", "linear", "memory: 28% -\n50%; time: 6% -\n20%" ], [ "Paleo[141]", "NVidia Titan\nX GPU clus-\nter", "TensorFlow", "training &\ninference:\ntime", "forward & backward\nFLOPs, weights, acti-\nvations, data, platform\npercent of peak", "linear", "4%-30%" ], [ "Gianniti et al.\n[56]", "NVidia\nQuadro\nM6000 GPU", "-", "training:\ntime", "forward & backward\nFLOPs of all types of\nlayers", "linear", "< 23%" ], [ "SyNERGY\n[148]", "Nvidia\nJetson TX1", "Caffe", "inference:\nenergy", "MACs", "linear", "< 17% (w/o Mo-\nbileNet)" ], [ "NeuralPower\n[13]", "Nvidia Titan\nX & GTX\n1070", "TensorFlow\n& Caffe", "inference:\ntime, power,\nenergy", "layer configuration\nhyper-parameters, mem-\nory access, FLOPs,\nactivations, batch size", "polynomial", "time: < 24%;\npower: < 20%;\nenergy: < 5%" ], [ "HyperPower\n[160]", "Nvidia\nGTX1070 &\nTegra TX1", "Caffe", "inference:\npower,\nmemory", "layer configuration\nhyper-parameters", "linear", "RMSPE < 7%" ], [ "Yang et al.\n[202]", "ASIC\nEyeriss[22]", "-", "inference:\nenergy", "MACs, memory access", "-", "-" ], [ "DeLight\n[149]", "Nvidia Tegra\nTK1", "Theano", "training&\ninference:\nenergy", "layer configuration\nhyper-parameters", "linear", "-" ] ]
0.76588
null
null
2
1911.00623v2
11
[ 52.99300003051758, 111.1820068359375, 431.26300048828125, 264.3190002441406 ]
\begin{table}[htbp] \caption{Comparison of popular CNNs.} \centering \scriptsize \begin{tabular}{ m{2.4cm}<{\centering}|m{1.4cm}<{\centering}| m{1.4cm}<{\centering}| m{1.4cm}<{\centering}|m{1.4cm}<{\centering}|m{1.4cm}<{\centering}|m{1.4cm}<{\centering}} \toprule Metric & \makecell{ AlexNet \\ \cite{krizhevsky2012imagenet} } & \makecell{ VGG-16 \\ \cite{simonyan2014very}} & \makecell{ GoogLeNet \\ \cite{szegedy2015going} }& \makecell{ ResNet-18 \\ \cite{he2016deep}} & \makecell{ ResNet-50 \\ \cite{he2016deep}} & \makecell{ Inception\\ v3 \cite{szegedy2016rethinking} }\\ \noalign{ \hrule height 2pt } Top-1 acc. &57.2 &71.5 &69.8 &69.6 &76.0 &76.9 \\ \hline Top-5 acc. &80.2 &91.3 &90.0 &89.2 &93.0 &93.7 \\ \hline Input size &227$\times$227 &224$\times$224 & 224$\times$224&224$\times$224 &224$\times$224&299$\times$299 \\ \noalign{ \hrule height 2pt } $\#$ of stacked CONV layers &5 &13 & 21&17 &49 &16 \\ \hline Weights &2.3M &14.7M &6.0M & 9.5M&23.6M &22M \\ \hline Activations &0.94M &15.23M &6.8M &3.2M &11.5M &10.6M \\ \hline MACs &666M &15.3G &1.43G &1.8G &3.9G & 3.8G\\ \noalign{ \hrule height 2pt } $\#$ of FC layers &3 & 3&1 &1 & 1&1 \\ \hline Weights &58.7M &125M &1M &0.5M &2M & 2M\\ \hline Activations &9K &9K &2K &1.5K &3K &3K \\ \hline MACs &58.7M &125M&1M &0.5M &2M &2M \\ \noalign{ \hrule height 2pt } Total weights &61M &138M & 7M& 10M&25.6M &24M \\ \hline Total activations &0.95M &15.24M &6.8M &3.2M &11.5M &10.6M \\ \hline Total MACs &724M &15.5G &1.43G &1.8G &3.9G &3.8G \\ \bottomrule \end{tabular} \normalsize \label{table:bigCNNcompare} \end{table}
[ [ "Metric", "AlexNet\n[96]", "VGG-16\n[157]", "GoogLeNet\n[167]", "ResNet-18\n[69]", "ResNet-50\n[69]", "Inception\nv3 [168]" ], [ "Top-1 acc.", "57.2", "71.5", "69.8", "69.6", "76.0", "76.9" ], [ "Top-5 acc.", "80.2", "91.3", "90.0", "89.2", "93.0", "93.7" ], [ "Input size", "227×227", "224×224", "224×224", "224×224", "224×224", "299×299" ], [ "# of stacked CONV\nlayers", "5", "13", "21", "17", "49", "16" ], [ "Weights", "2.3M", "14.7M", "6.0M", "9.5M", "23.6M", "22M" ], [ "Activations", "0.94M", "15.23M", "6.8M", "3.2M", "11.5M", "10.6M" ], [ "MACs", "666M", "15.3G", "1.43G", "1.8G", "3.9G", "3.8G" ], [ "# of FC layers", "3", "3", "1", "1", "1", "1" ], [ "Weights", "58.7M", "125M", "1M", "0.5M", "2M", "2M" ], [ "Activations", "9K", "9K", "2K", "1.5K", "3K", "3K" ], [ "MACs", "58.7M", "125M", "1M", "0.5M", "2M", "2M" ], [ "Total weights", "61M", "138M", "7M", "10M", "25.6M", "24M" ], [ "Total activations", "0.95M", "15.24M", "6.8M", "3.2M", "11.5M", "10.6M" ], [ "Total MACs", "724M", "15.5G", "1.43G", "1.8G", "3.9G", "3.8G" ] ]
0.389231
null
null
3
1911.00623v2
16
[ 49.22999954223633, 111.18197631835938, 435.0270080566406, 272.28900146484375 ]
\begin{table}[tbp] \caption{Comparison of lightweight CNNs.} \centering \scriptsize \begin{tabular}{ m{2.3cm}<{\centering}|m{1.2cm}<{\centering}| m{1.2cm}<{\centering}| m{1.2cm}<{\centering}|m{1.2cm}<{\centering}|m{1.2cm}<{\centering}|m{1.2cm}<{\centering}|m{1.2cm}<{\centering}} \toprule Metric & MobileNet V1-1.0\cite{howard2017mobilenets}& MobileNet V2-1.0\cite{sandler2018mobilenetv2} & Squeeze-Net\cite{iandola2016squeezenet} & Squeeze-Next-1.0-23\cite{gholami2018squeezenext} & ShuffleNet $1\times g = 8$\cite{zhang1707shufflenet} & Condense-Net\cite{huang2018condensenet} & \makecell{ MnasNet \\ \cite{tan2018mnasnet} }\\ \noalign{ \hrule height 2pt } Top-1 acc. &70.9 &71.8 &57.5 &59.0 &67.6 &71.0 &74.0 \\ \hline Top-5 acc. &89.9 &91.0 &80.3 & 82.3&- &90.0 &91.8 \\ \hline Input size &224$\times$224 &224$\times$224 &224$\times$224 &227$\times$227 & 224$\times$224&224$\times$224 &224$\times$224 \\ \noalign{ \hrule height 2pt } $\#$ of stacked CONV layers &27 & 20&26 &22 &17 &37 & 18\\ \hline Weights &3.24M &2.17M &1.25M &0.62M &3.9M &2.8M &3.9M \\ \hline Activations &5.2M & 1.46M&4.8M &4.7M &3.2M & 1.1M&3.9M \\ \hline MACs &568M &299M &388M &282M &138M &274M &317M\\ \noalign{ \hrule height 2pt } $\#$ of FC layers & 1 &1 &0 &1 &1 &1 &1 \\ \hline Weights &1M & 1.3M&0 & 0.1M& 1.5M& 0.1M&0.3M \\ \hline Activations &2K &2.3K &0 &1.1K & 2.5K&1.1K &1.3K \\ \hline MACs &1M &1.3M & 0&0.1M &1.5M &0.1M & 0.3M\\ \noalign{ \hrule height 2pt } Total weights & 4.24M&3.47M &1.25M & 0.72M&5.4M &2.9M &4.2M \\ \hline Total activations &5.2M &1.46M&4.8M &4.7M &3.2M &1.1M &3.9M \\ \hline Total MACs & 569M&300M &388M &282M &140M &274M &317M \\ \bottomrule \end{tabular} \normalsize \label{table:smallCNNcompare} \end{table}
[ [ "Metric", "MobileNet\nV1-1.0[79]", "MobileNet\nV2-1.0[152]", "Squeeze-\nNet[85]", "Squeeze-\nNext-1.0-\n23[55]", "ShuffleNet\n1 × д =\n8[210]", "Condense-\nNet[83]", "MnasNet\n[170]" ], [ "Top-1 acc.", "70.9", "71.8", "57.5", "59.0", "67.6", "71.0", "74.0" ], [ "Top-5 acc.", "89.9", "91.0", "80.3", "82.3", "-", "90.0", "91.8" ], [ "Input size", "224×224", "224×224", "224×224", "227×227", "224×224", "224×224", "224×224" ], [ "# of stacked CONV\nlayers", "27", "20", "26", "22", "17", "37", "18" ], [ "Weights", "3.24M", "2.17M", "1.25M", "0.62M", "3.9M", "2.8M", "3.9M" ], [ "Activations", "5.2M", "1.46M", "4.8M", "4.7M", "3.2M", "1.1M", "3.9M" ], [ "MACs", "568M", "299M", "388M", "282M", "138M", "274M", "317M" ], [ "# of FC layers", "1", "1", "0", "1", "1", "1", "1" ], [ "Weights", "1M", "1.3M", "0", "0.1M", "1.5M", "0.1M", "0.3M" ], [ "Activations", "2K", "2.3K", "0", "1.1K", "2.5K", "1.1K", "1.3K" ], [ "MACs", "1M", "1.3M", "0", "0.1M", "1.5M", "0.1M", "0.3M" ], [ "Total weights", "4.24M", "3.47M", "1.25M", "0.72M", "5.4M", "2.9M", "4.2M" ], [ "Total activations", "5.2M", "1.46M", "4.8M", "4.7M", "3.2M", "1.1M", "3.9M" ], [ "Total MACs", "569M", "300M", "388M", "282M", "140M", "274M", "317M" ] ]
0.364123
null
null
4
1911.00623v2
19
[ 45.827999114990234, 119.05322647094727, 450.36199951171875, 583.1997528076172 ]
\begin{table} \begin{threeparttable}[tb] \centering \tabcolsep=0.04cm \caption{The chronology of the recent approaches which modifies the training algorithm to account for quantization error.} \label{quanttable} \begin{scriptsize} %\begin{sc} \begin{tabular}{c|c|c|ccc|cc} \noalign{ \hrule height 2pt } \multirow{2}{*}{Year} &\multirow{2}{*}{Approach} & \multirow{2}{*}{Keywords} & \multicolumn{3}{c}{Quantization\tnote{1}} & \multicolumn{2}{c}{Benchmark} \\ \cline{4-6} \cline{7-8} & & & Forward & Backward & \specialcell{Parameter\\ Update} & Data & Model \\ \noalign{ \hrule height 2pt } 2014 & EBP \cite{soudry2014expectation} & Expectation Back Propagation & 1 bit, FP & - & - & used in \cite{crammer2013adaptive} & Proprietary MLP \\ \noalign{ \hrule height 2pt } \multirow{4}{*} {2015} & \multirow{3}{*} {Gupta et. al \cite{gupta2015deep} } & \multirow{2}{*} {Stochastic Rounding} & 16 bits & 16 bits & 16 bits & MNIST & Proprietary MLP , LeNet-5 \\ \cline{4-8} & & & 20 bits & 20 bits & 20 bits & CIFAR-10& used in \cite{hinton2012improving}\\ \cline{2-8} & Binary Connect \cite{courbariaux2015binaryconnect} & Stochastic Binarization & 1 bit & 1 bit & Float 32 \tnote{2} & \specialcell{MNIST \\ CIFAR-10\\SVHN} & Proprietary MLP, CNN \\ \noalign{ \hrule height 2pt } \multirow{5}{*}{2016} & Lin et. al \cite{lin2015neural} & \specialcell{Stochastic Binarization \\No forward pass multiplication\\ Quantized back propagation} & 1 bit & 1 bit & Float 32 & \specialcell{MNIST \\ CIFAR-10\\SVHN} & \specialcell{Proprietary \\ MLP, CNN} \\ \cline{2-8} & Bitwise Net \cite{kim2016bitwise} & \specialcell{Weight Compression\\ Noisy back propagation} & 1 bit & 1 bit & \specialcell{1 bit \\ Float 32\tnote{3}} & MNIST & Proprietary MLP\\ \cline{2-8} & XNOR-Net \cite{rastegari2016xnor} & \specialcell{Binary convolution\\Binary dot-product\\ Scaling binary gradient} & 1 bit & 1 bit & \specialcell{1 bit \\ Float 32\tnote{4}} & ImageNet & \specialcell{AlexNet \\ ResNet-18 \\ GoogLenet} \\ \cline{2-8} & \multirow{2}{*}{DoReFa-Net \cite{zhou2016dorefa}} & \multirow{2}{*}{\specialcell{stochastic gradient quantization \\ arbitrary bit-width}} &\multirow{2}{*}{1-8 bit} & \multirow{2}{*}{1-8 bit} & \multirow{2}{*}{2-32 bit} & SVHN & proprietary CNN \\ \cline{7-8} && & & && ImageNet & AlexNet \\ \noalign{ \hrule height 2pt } \multirow{4}{*}{2017} & \multirow{4}{*}{QNN \cite{hubara2017quantized}} & \multirow{4}{*}{\specialcell{Deterministic binarization \\ Straight through estimators \\ to avoid saturation \\ Shift based Batch Normalization \\ Shift based AdaMAX}} & \multirow{3}{*}{1 bit}& \multirow{3}{*}{1 bit} & \multirow{3}{*}{1 bit \tnote{5}} & & \\ & & & & & & MNIST & proprietary MLP \\ \cline{7-8} & & & & & & \specialcell{CiFAR-10\\SVHN} & CNN from \cite{courbariaux2015binaryconnect} \\ \cline{7-8} & & & & & & \specialcell{ImageNet} & \specialcell{AlexNet\\GoogLenet} \\ \cline{4-8} & & & 4 bit & 4 bit & 4 bit \tnote{6} & \specialcell{Penn \\ Treebank} & \specialcell{proprietary RNN\\LSTM} \\ \noalign{ \hrule height 2pt } \multirow{6}{*}{2018} & \multirow{3}{*}{Wang et. al \cite{wang2018training} } & \multirow{3}{*}{\specialcell{novel floating point\\ chunk based accumulation \\ stochastic rounding}} & \multirow{3}{*}{8 bit} & \multirow{3}{*}{8 bit} & \multirow{3}{*}{8 bit \tnote{7}} & CIFAR-10 & \specialcell{proprietary CNN\\ResNET} \\\cline{7-8} && & & && BN50 \cite{van2017training}& proprietary MLP \\ \cline{7-8} &&&&&& ImageNet & \specialcell{AlexNet\\ResNET18\\ResNET50} \\ \cline{2-8} & \multirow{3}{*}{Jacob et. al \cite{jacob2018quantization}} & \multirow{3}{*}{\specialcell{training with simulated\\quantization}}& \multirow{3}{*}{8 bit} & \multirow{3}{*}{8 bit} & \multirow{3}{*}{8 bit \tnote{8}} & Imagenet & \specialcell{Resnet\\Inception v3\\MobileNet} \\ \cline{7-8} && & & && COCO & MobileNet SSD \\ \cline{7-8} && & & && Flickr \cite{howard2017mobilenets} & MobileNet SSD \\ \noalign{ \hrule height 2pt } 2019 & WAGEUBN \cite{yang2020training} & \specialcell{batch-norm layer quantization \\8-bit integer representation \\combination of direct, constant \\and shift quantization} &8 bit & 8 bit & 8 bit & ImageNet & ResNet18/34/50 \\ \noalign{ \hrule height 2pt } \multirow{12}{*}{2020} &\multirow{4}{*}{S2FP8 \cite{cambier2020shifted}} & \multirow{4}{*}{\specialcell{shifted and squeezed FP8 \\ representation of tensors \\ tensor distribution learning }} &\multirow{4}{*}{8 bit} & \multirow{4}{*}{8 bit} & \multirow{4}{*}{32 bit} & CIFAR-10 & ResNet20/34/50 \\ \cline{7-8} && & & && ImageNet & ResNet18/50 \\ \cline{7-8} && & & && English-Vietnamese & Transformer-Tiny \\ \cline{7-8} && & & && MovieLens & \specialcell{Neural Collaborative\\ Filtering (NCF)} \\ \cline{2-8} & \multirow{3}{*}{Wiedemann et. al \cite{wiedemann2020dithered}} & \multirow{3}{*}{\specialcell{stochastic gradient quantization \\ induce sparsity \\ non-subtractive dither}} &\multirow{3}{*}{8 bit} & \multirow{3}{*}{8 bit} & \multirow{3}{*}{32 bit} & MNIST & LeNet \\ \cline{7-8} && & & && CIFAR-10/100 & \specialcell{AlexNet\\ResNet18\\VGG11} \\ \cline{7-8} && & & && ImageNet &ResNet18 \\ \cline{2-8} & \multirow{3}{*}{Quant-Noise \cite{fan2020training} }& \multirow{3}{*}{\specialcell{training using\\quantization noise}} & \multirow{3}{*}{8 bit} & \multirow{3}{*}{8 bit} & \multirow{3}{*}{8 bit} & Wikitext-103 & RoBERT \\ && & & && MNLI & RoBERT\\ && & & && ImageNet & EfficientNet-B3\\ \\ \noalign{ \hrule height 2pt } \end{tabular} %\end{sc} \begin{tablenotes} \item[1] minimum quantization for best performing model reported. \item[2] all real valued vectors are reported as Float 32 by default. \item[3] involves tuning a separate set of parameters with floating point precision. \item[4] becomes Float 32 if gradient scaling is used. \item[5] except the first layer input of 8 bits. \item[6] contains results with 2 bit, 3 bit and floating point precision. \item[7] additional 16 bit for accumulation. \item[8] uses 7 bit precision for some Inception v3 experiments. \end{tablenotes} %\normalsize \end{scriptsize} \end{threeparttable} \end{table}
[ [ "Year", "Approach", "Keywords", "Quantization1 Benchmark", null ], [ null, null, null, "Parameter\nForward Backward\nUpdate", "Data Model" ], [ "2014", "EBP [158]", "Expectation Back Propagation", "1 bit, FP - -", "used in [30] Proprietary MLP" ], [ "2015", "Gupta et. al [65]", "Stochastic Rounding", "16 bits 16 bits 16 bits", "MNIST Proprietary MLP , LeNet-5" ], [ null, null, null, "20 bits 20 bits 20 bits", "CIFAR-10 used in [75]" ], [ null, "Binary Connect [28]", "Stochastic Binarization", "1 bit 1 bit Float 32 2", "MNIST\nCIFAR-10 Proprietary MLP, CNN\nSVHN" ], [ "2016", "Lin et. al [116]", "Stochastic Binarization\nNo forward pass multiplication\nQuantized back propagation", "1 bit 1 bit Float 32", "MNIST\nProprietary\nCIFAR-10\nMLP, CNN\nSVHN" ], [ null, "Bitwise Net [94]", "Weight Compression\nNoisy back propagation", "1 bit\n1 bit 1 bit Float 323", "MNIST Proprietary MLP" ], [ null, "XNOR-Net [143]", "Binary convolution\nBinary dot-product\nScaling binary gradient", "1 bit\n1 bit 1 bit Float 324", "AlexNet\nImageNet ResNet-18\nGoogLenet" ], [ null, "DoReFa-Net [211]", "stochastic gradient quantization\narbitrary bit-width", "1-8 bit 1-8 bit 2-32 bit", "SVHN proprietary CNN" ], [ null, null, null, null, "ImageNet AlexNet" ], [ "2017", "QNN [84]", "Deterministic binarization\nStraight through estimators\nto avoid saturation\nShift based Batch Normalization\nShift based AdaMAX", "1 bit 1 bit 1 bit 5", "MNIST proprietary MLP" ], [ null, null, null, null, "CiFAR-10\nCNN from [28]\nSVHN" ], [ null, null, null, null, "AlexNet\nImageNet\nGoogLenet" ], [ null, null, null, "4 bit 4 bit 4 bit 6", "Penn proprietary RNN\nTreebank LSTM" ], [ "2018", "Wang et. al [186]", "novel floating point\nchunk based accumulation\nstochastic rounding", "8 bit 8 bit 8 bit 7", "proprietary CNN\nCIFAR-10\nResNET" ], [ null, null, null, null, "BN50 [177] proprietary MLP" ], [ null, null, null, null, "AlexNet\nImageNet ResNET18\nResNET50" ], [ null, "Jacob et. al [89]", "training with simulated\nquantization", "8 bit 8 bit 8 bit 8", "Resnet\nImagenet Inception v3\nMobileNet" ], [ null, null, null, null, "COCO MobileNet SSD" ], [ null, null, null, null, "Flickr [79] MobileNet SSD" ], [ "2019", "WAGEUBN [204]", "batch-norm layer quantization\n8-bit integer representation\ncombination of direct, constant\nand shift quantization", "8 bit 8 bit 8 bit", "ImageNet ResNet18/34/50" ], [ "2020", "S2FP8 [15]", "shifted and squeezed FP8\nrepresentation of tensors\ntensor distribution learning", "8 bit 8 bit 32 bit", "CIFAR-10 ResNet20/34/50" ], [ null, null, null, null, "ImageNet ResNet18/50" ], [ null, null, null, null, "English-Vietnamese Transformer-Tiny" ], [ null, null, null, null, "Neural Collaborative\nMovieLens\nFiltering (NCF)" ], [ null, "Wiedemann et. al [194]", "stochastic gradient quantization\ninduce sparsity\nnon-subtractive dither", "8 bit 8 bit 32 bit", "MNIST LeNet" ], [ null, null, null, null, "AlexNet\nCIFAR-10/100 ResNet18\nVGG11" ], [ null, null, null, null, "ImageNet ResNet18" ], [ null, "Wikitext-103 RoBERT\ntraining using\nQuant-Noise [43] 8 bit 8 bit 8 bit MNLI RoBERT\nquantization noise\nImageNet EfficientNet-B3", null, null, null ] ]
0.545965
null
null
0
2303.01111v1
3
[ 348.371831258138, 234.2020263671875, 526.6413065592448, 281.0260009765625 ]
\begin{table}[!ht] \centering \caption{Confusion Matrix} \label{tbl:performance_results} \begin{tabular}{|c|c|c|c|c|} \hline True / Prediction & 0 & 1 & 2 & SUM\\ \hline 0 & 1200 & 728 & 386 & 2314\\ \hline 1 & 185 & 324 & 57 & 566\\ \hline 2 & 131 & 56 & 112 & 299\\ \hline SUM & 1516 & 1108 & 555 & 3179\\ \hline \end{tabular} \end{table}
[ [ "True / Prediction", "0", "1", "2", "SUM" ], [ "0", "1200", "728", "386", "2314" ], [ "1", "185", "324", "57", "566" ], [ "2", "131", "56", "112", "299" ], [ "SUM", "1516", "1108", "555", "3179" ] ]
1
null
null
1
2303.01111v1
3
[ 356.1202026367188, 322.2659912109375, 518.892822265625, 359.72601318359375 ]
\begin{table}[!ht] \centering \caption{Performance Metrics} \label{Table:performance_metrics} \begin{tabular}{|c|c|c|c|c|} \hline & precision & recall & f1-score & support\\ \hline 0 & 0.79 & 0.52 & 0.63 & 2314\\ \hline 1 & 0.29 & 0.57 & 0.39 & 566\\ \hline 2 & 0.20 & 0.37 & 0.26 & 299\\ \hline \end{tabular} \end{table}
[ [ "", "precision", "recall", "f1-score", "support" ], [ "0", "0.79", "0.52", "0.63", "2314" ], [ "1", "0.29", "0.57", "0.39", "566" ], [ "2", "0.20", "0.37", "0.26", "299" ] ]
1
null
null
2
2303.01111v1
4
[ 57.297001647949216, 365.5790100097656, 291.68959350585936, 403.03900146484375 ]
\begin{table}[h] \caption{Monte Carlo Parameters} \label{table:monte_carlo_parameters} \centering %\renewcommand{\arraystretch}{1.3} \begin{tabular}{|c|c|c|c|c|c|c|c|} \hline Class & $\mu$ & $\sigma$ & a & b & Exp1 & Exp2 & Exp3\\ \hline 1 & 0.03 & 0.015 & 0.02 & 0.15 & 33 & 100 & 50\\ \hline 2 & 0.0 & 0.01 & -0.02 & 0.02 & 10 & 10 & 10\\ \hline 3 & -0.03 & 0.015 & -0.15 & -0.02 & 100 & 100 & 300\\ \hline \end{tabular} \end{table}
[ [ "Class", "µ", "σ", "a", "b", "Exp1", "Exp2", "Exp3" ], [ "1", "0.03", "0.015", "0.02", "0.15", "33", "100", "50" ], [ "2", "0.0", "0.01", "-0.02", "0.02", "10", "10", "10" ], [ "3", "-0.03", "0.015", "-0.15", "-0.02", "100", "100", "300" ] ]
0.966038
null
null
3
2303.01111v1
5
[ 100.95309982299804, 84.16400146484375, 248.03300018310546, 168.447998046875 ]
\begin{table}[h] \caption{Algorithm's Predictions: Statistics} \label{Table: Algorithm's Predictions} \centering \begin{tabular}{|c|c|c|c|} \hline \multicolumn{1}{|c|}{} & \multicolumn{1}{c|}{C0} & \multicolumn{1}{c|}{C1} & \multicolumn{1}{c|}{C2}\\ \hline AVG & 1.0011 & 1.0095 & 0.9955\\ \hline MEDIAN & 1.0000 & 1.0070 & 0.9964\\ \hline SD & 0.0171 & 0.0216 & 0.0209\\ \hline MIN & 0.9040 & 0.9330 & 0.8756\\ \hline MAX & 1.1080 & 1.1520 & 1.1217\\ \hline Q1 & 0.9920 & 0.9958 & 0.9829\\ \hline Q3 & 1.0100 & 1.0230 & 1.0064\\ \hline N & 1516 & 1108 & 555\\ \hline \end{tabular} \end{table}
[ [ "", "C0", "C1", "C2" ], [ "AVG", "1.0011", "1.0095", "0.9955" ], [ "MEDIAN", "1.0000", "1.0070", "0.9964" ], [ "SD", "0.0171", "0.0216", "0.0209" ], [ "MIN", "0.9040", "0.9330", "0.8756" ], [ "MAX", "1.1080", "1.1520", "1.1217" ], [ "Q1", "0.9920", "0.9958", "0.9829" ], [ "Q3", "1.0100", "1.0230", "1.0064" ], [ "N", "1516", "1108", "555" ] ]
0.966019
null
null
4
2303.01111v1
6
[ 325.555658976237, 305.0200958251953, 549.4581604003906, 350.68479614257814 ]
\begin{table}[h] \caption{Multinomial Logit Regression Summary} \label{tab:logit_regression} \centering \begin{tabular}{|l|c|c|c|} \hline & AVG & Prediction = C1 & Prediction = C2 \\ \hline coef & & -22.8763 (0.0000) & 14.9750 (0.000)\\ \hline yield & 1.003 & 22.4499 (0.0000) & -16.0069 (0.000)\\ \hline LL & \multicolumn{3}{r|}{-3151.802} \\ \hline LLR test: $\chi^2$ & \multicolumn{3}{r|}{214.596 (0.0000)} \\ \hline \end{tabular} \end{table}
[ [ "", "AVG Predicti", "on = C1 Prediction = C2" ], [ "coef", "-22.8763", "(0.0000) 14.9750 (0.000)" ], [ "yield", "1.003 22.4499", "(0.0000) -16.0069 (0.000)" ], [ "LL", "-3151.802", null ], [ "LLR test: χ2", "214.596 (0.0000)", null ] ]
0.93913
null
null
5
2303.01111v1
8
[ 97.31366729736328, 217.01202392578125, 251.6729990641276, 263.83599853515625 ]
\begin{table}[!htp] \centering %\renewcommand{\arraystretch}{1.3} \caption{95\% Approval Rate} \label{Table: Approval Rate} \begin{tabular}{|c|c|c|c|c|} \hline True / Prediction & 0 & 1 & 2 & SUM\\ \hline 0 & 46 & 1 & 5 & 52\\ \hline 1 & 2 & 14 & 0 & 16\\ \hline 2 & 0 & 0 & 3 & 3\\ \hline SUM & 48 & 15 & 8 & 71\\ \hline \end{tabular} \end{table}
[ [ "True / Prediction", "0", "1", "2", "SUM" ], [ "0", "46", "1", "5", "52" ], [ "1", "2", "14", "0", "16" ], [ "2", "0", "0", "3", "3" ], [ "SUM", "48", "15", "8", "71" ] ]
1
null
null
0
2212.04974v1
6
[ 129.3623335096571, 360.97601318359375, 482.63778347439234, 415.3970031738281 ]
\begin{table}[!ht] %\begin{tabular}{llll} %\toprule %Model & MSE with GAE-ARR & MSE without GAE-ARR & P-value of difference \\ %\midrule %Linear & $\mathbf{0.360279^*}$ & 0.107617 & 0.00 \\ %Tree & $\mathbf{0.357711^*}$ & 0.310005 & 0.043 \\ %MLP & $\mathbf{0.380436^*}$ & 0.317938 & 0.003 \\ %\bottomrule %Note : * signifies p-value<0.05 %\end{tabular} %\caption{Results of Log-RV forecasting at the 1 hour frequency} % %\label{tab:my-table} %\end{table}
[ [ "Model", "R2 with AUROC\nt+1", "R2 without AUROC\nt+1", "p-value of difference" ], [ "Linear", "0.360∗", "0.107", "0.00" ], [ "Tree", "0.357∗", "0.310", "0.043" ], [ "MLP", "0.380∗", "0.317", "0.003" ] ]
0.526077
null
null
0
1508.05417v2
9
[ 315.7550048828125, 580.4850158691406, 556.8099975585938, 746.3389892578125 ]
\begin{table}[!b]\scriptsize \centering \caption{Simulation Parameters} \begin{tabular}{ l | l } \hline \hline Size of active region ($W \times L$) & $0.1 \times 5$ ($\mu m$) \\ \hline Temperature ($T$) & $298$ ($K$) \\ \hline Relative permittivity of SiO$_2$ layer ($\epsilon_{ox}/\epsilon_0$) & $3.9$ \\ \hline Thickness of SiO$_2$ layer ($t_{ox}$) & $17.5$ ($nm$) \\ \hline Effective mobility ($\mu_{eff}$) & $16 \times 10^{-3}$ ($m^2 V^{-1} s^{-1}$) \\ \hline Drain-source voltage ($V_{DS}$) & $0.1$ ($V$) \\ \hline Relative permittivity of solvent ($\epsilon_R/\epsilon_0$) & $78$ \\ \hline Ionic concentration of medium ($c_{ion}$) & $70$ ($mM$) \\ \hline % physiological conditions Trap density ($N_t$) & $2.3 \times 10^{24}$ ($eV^{-1} m^{-3}$) \\ \hline Tunneling distance ($\lambda$) & $0.05$ ($nm$) \\ \hline Average net charge of ligands ($N_e$) & $4$ \\ \hline % protein, DNA Length of receptor ($L_R$) & $4$ ($nm$) \\ \hline % range of aptamer and antibody sizes. Binding rate ($k_+$) & $2 \times 10^{-18}$ ($m^3 s^{-1}$) \\ \hline Unbinding rate ($k_-$) & $10$ ($s^{-1}$) \\ \hline Ligand concentration in reception space ($c_i$) & 4$K_D$ \\ \hline Concentration of receptors on the surface ($c_R$) & $2 \times 10^{16}$ ($m^{-2}$) \\ \hline Molecular capacitance ($C_{mol,L}, C_{mol,R}$) & $2 \times 10^{-20}$ ($F$) \\ \hline Capacitance of dielectric layer ($C_{dl}$) & $5 \times 10^{-2}$ ($F/m^2$)\\ \hline Capacitance of silicon ($C_s$) & $2 \times 10^{-3}$ ($F/m^2$) \\ \hline \end{tabular} \label{table:parameters} \end{table}
[ [ "Size of active region (W × L)", "0.1 × 5 (µm)" ], [ "Temperature (T )", "298 (K)" ], [ "Relative permittivity of SiO2 layer (ϵox/ϵ0)", "3.9" ], [ "Thickness of SiO2 layer (tox)", "17.5 (nm)" ], [ "Effective mobility (µeff )", "16 × 10−3 (m2V −1s−1)" ], [ "Drain-source voltage (VDS)", "0.1 (V )" ], [ "Relative permittivity of solvent (ϵR/ϵ0)", "78" ], [ "Ionic concentration of medium (cion)", "70 (mM)" ], [ "Trap density (Nt)", "2.3 × 1024 (eV −1m−3)" ], [ "Tunneling distance (λ)", "0.05 (nm)" ], [ "Average net charge of ligands (Ne)", "4" ], [ "Length of receptor (LR)", "4 (nm)" ], [ "Binding rate (k+)", "2 × 10−18 (m3s−1)" ], [ "Unbinding rate (k )\n−", "10 (s−1)" ], [ "Ligand concentration in reception space (ci)", "4KD" ], [ "Concentration of receptors on the surface (cR)", "2 × 1016 (m−2)" ], [ "Molecular capacitance (Cmol,L, Cmol,R)", "2 × 10−20 (F )" ], [ "Capacitance of dielectric layer (Cdl)", "5 × 10−2 (F/m2)" ], [ "Capacitance of silicon (Cs)", "2 × 10−3 (F/m2)" ] ]
0.817975
null
null
0
2105.00030v1
4
[ 312.1571014404297, 78.635986328125, 562.8569763183593, 342.24798583984375 ]
\begin{table}[t] \caption{Summary of curatorial actions in annotation schema} \centering \begin{tabularx}{\columnwidth}{|l|X|} \hline \textbf{Curatorial Action} & \textbf{Examples} \\ \hline \textit{Initial review and planning} & Look at deposited files, determine curation work needed, compose processing plan, create processing history syntax \\ \hline \textit{Data transformation} & Locate identifiers, revise or add variable/value labels, designate or fix missing values, reorder/standardize/convert variables, create variable-level metadata, collapse categories for disclosure \\ \hline \textit{Metadata} & Draft or revise study description, copy metadata from deposit system, update collection dates based on dataset, create survey question text, describe variable level labels \\ \hline \textit{Documentation} & Create a codebook, document major changes or issues with the data, compile documentation archived by the data producer \\ \hline \textit{Quality checks} & Check all files and metadata for completeness, adherence to standards, alignment with JIRA request after all data and documentation curation is complete (Self QC, 1QC, 2QC) \\ \hline \textit{Communication} & Discuss study with project manager, consult supervisor on curation standards for study, check how to handle specific variables \\ \hline \textit{Other} & Compile folders for study, ambiguous or overly-general curation work \\ \hline \textit{Non-curation} & Staff meetings, timesheets, administrative work \\ \hline \end{tabularx} \label{table:definitions} \end{table}
[ [ "Curatorial Action", "Examples" ], [ "Initial review and planning", "Look at deposited files, determine curation\nwork needed, compose processing plan,\ncreate processing history syntax" ], [ "Data transformation", "Locate identifiers, revise or add vari-\nable/value labels, designate or fix miss-\ning values, reorder/standardize/convert vari-\nables, create variable-level metadata, col-\nlapse categories for disclosure" ], [ "Metadata", "Draft or revise study description, copy\nmetadata from deposit system, update col-\nlection dates based on dataset, create survey\nquestion text, describe variable level labels" ], [ "Documentation", "Create a codebook, document major\nchanges or issues with the data, compile\ndocumentation archived by the data pro-\nducer" ], [ "Quality checks", "Check all files and metadata for complete-\nness, adherence to standards, alignment\nwith JIRA request after all data and docu-\nmentation curation is complete (Self QC,\n1QC, 2QC)" ], [ "Communication", "Discuss study with project manager, consult\nsupervisor on curation standards for study,\ncheck how to handle specific variables" ], [ "Other", "Compile folders for study, ambiguous or\noverly-general curation work" ], [ "Non-curation", "Staff meetings, timesheets, administrative\nwork" ] ]
0.985605
null
null
1
2105.00030v1
6
[ 49.144907517866656, 79.66400146484375, 299.84118097478694, 188.85498046875 ]
\begin{table}[t] \centering \caption{Description of Jira ticket corpus of curation requests} \begin{tabularx}{\columnwidth}{|X|X|X|X|X|X|} \hline & & \textbf{Total \newline tickets \newline (n=669)} & \textbf{Total \newline studies \newline (n=566)} & \textbf{Average curation hours/study} \\ \hline \multirow{3}{*}{\textbf{Curation}} & Level 1 & 221 & 178 & 51 \\ & Level 2 & 229 & 210 & 79 \\ & Level 3 & 219 & 178 & 165 \\ \hline \multirow{3}{*}{\textbf{Archive}} & BJS & 131 & 124 & 78 \\ & ICPSR & 116 & 104 & 105 \\ & Other & 422 & 338 & 102 \\ \hline \multirow{3}{*}{\textbf{Year}} & 2017 & 133 & 119 & 107 \\ & 2018 & 305 & 276 & 99 \\ & 2019 & 231 & 171 & 88 \\ \hline \end{tabularx} \label{table:tickets} \end{table}
[ [ "", "", "Total\ntickets\n(n=669)", "Total\nstudies\n(n=566)", "Average\ncuration\nhours/study" ], [ "Curation", "Level 1\nLevel 2\nLevel 3", "221\n229\n219", "178\n210\n178", "51\n79\n165" ], [ "Archive", "BJS\nICPSR\nOther", "131\n116\n422", "124\n104\n338", "78\n105\n102" ], [ "Year", "2017\n2018\n2019", "133\n305\n231", "119\n276\n171", "107\n99\n88" ] ]
0.492806
null
null
2
2105.00030v1
6
[ 312.1548902723524, 87.60302734375, 562.8591986762153, 180.4539794921875 ]
\begin{table}[t] \centering \caption{Studies recording curation actions and percent of hours logged across all studies} \begin{tabularx}{\columnwidth}{|l|X|X|} \hline \textbf{Action} & \textbf{Percent of studies containing action} & \textbf{Percent of total work log hours classified as action} \\ \hline \textit{Quality checks} & 90.1 & 31.6 \\ \hline \textit{Initial review and planning} & 70.0 & 14.0 \\ \hline \textit{Data transformation} & 67.6 & 29.9 \\ \hline \textit{Metadata} & 57.7 & 6.5 \\ \hline \textit{Documentation} & 56.2 & 7.5 \\ \hline \textit{Communication} & 54.6 & 7.9 \\ \hline \textit{Other} & 40.9 & 2.8 \\ \hline \end{tabularx} \label{table:actions} \end{table}
[ [ "Action", "Percent of studies\ncontaining action", "Percent of total\nwork log hours\nclassified as action" ], [ "Quality checks", "90.1", "31.6" ], [ "Initial review and planning", "70.0", "14.0" ], [ "Data transformation", "67.6", "29.9" ], [ "Metadata", "57.7", "6.5" ], [ "Documentation", "56.2", "7.5" ], [ "Communication", "54.6", "7.9" ], [ "Other", "40.9", "2.8" ] ]
0.974545
null
null
0
1704.06497v2
6
[ 320.2085876464844, 63.13209533691406, 512.6093139648438, 111.67950439453125 ]
\begin{table}[t] \begin{center} \resizebox{0.9\columnwidth}{!}{ \begin{tabular}{ll|lll} \toprule \bf Domain &\bf Version &\bf Train &\bf Valid. &\bf Test\\ \midrule Europarl & v.5 & 1.6M & 2k & 2k\\ News Commentary & WMT07 & 40k & 1k & 2k\\ %nc-dev2007 nc-devtest2007 TED & TED2013 & 153k & 2k & 2k\\ \bottomrule \end{tabular} } \end{center} \caption{Number of parallel sentences for training, validation and test sets for French-to-English domain adaptation.} \label{tab:data} \end{table}
[ [ "Domain Version", "Train Valid. Test" ], [ "Europarl v.5\nNews Commentary WMT07\nTED TED2013", "1.6M 2k 2k\n40k 1k 2k\n153k 2k 2k" ] ]
0.396476
null
null
0
2406.00459v1
26
[ 74.63157435825893, 608.0700073242188, 537.3684517996652, 675.1179809570312 ]
\begin{table}[H] \centering \begin{tabular}{ |p{2.0cm}<{\centering}|p{1.3cm}<{\centering}|p{1.3cm}<{\centering}|p{1.3cm}<{\centering}|p{1.3cm}<{\centering}|p{1.3cm}<{\centering}|p{1.3cm}<{\centering}|p{1.3cm}<{\centering}|p{1.3cm}<{\centering}| } \hline \multicolumn{9}{|c|}{Hedging for two months period (without recalibration).} \\ \hline Days & \multicolumn{2}{c|}{BS} & \multicolumn{2}{c|}{Local Volatility} & \multicolumn{2}{c|}{Heston} & \multicolumn{2}{c|}{2D-NN} \\ \hline & Call & Put & Call & Put & Call & Put & Call & Put\\ \hline \multirow{3}{*}{\makecell{2017/09 $\sim$\\ 2017/10}} & NA & NA & 2.466 & 0.870 & 1.044 & 0.486 & 0.963 & 0.449\\ & NA & NA & 19.332 & 4.171 & 2.138 & 0.674 & 1.875 & 0.615\\ & NA & NA & 7.698\% & 7.344 \% & 7.224\% & 6.982\% & 2.348\% & 6.650\%\\ \hline \end{tabular}\\ \caption{Out-of-sample hedging performance over a two month time period period without recalibration. There are three rows for each cell. The first row reports MAE, the second row reports MSE, and the third row reports relative MAE.} \label{Tab:HedgeOutofSample1} \end{table}
[ [ "Hedging for two months period (without recalibration).", null, null, null, null, null, null, null, null ], [ "Days", "BS", null, "Local Volatility", null, "Heston", null, "2D-NN", null ], [ "", "Call", "Put", "Call", "Put", "Call", "Put", "Call", "Put" ], [ "2017/09\n∼\n2017/10", "NA\nNA\nNA", "NA\nNA\nNA", "2.466\n19.332\n7.698%", "0.870\n4.171\n7.344 %", "1.044\n2.138\n7.224%", "0.486\n0.674\n6.982%", "0.963\n1.875\n2.348%", "0.449\n0.615\n6.650%" ] ]
0.382253
null
null
0
2111.15634v1
4
[ 323.8572021484375, 71.4520263671875, 552.3309814453125, 135.81097412109375 ]
\begin{table}[] \centering \caption{Datasets Information} \begin{tabularx}{0.45\textwidth}{|*{4}{c}} \hline \multicolumn{1}{|p{1.86cm}|}{Index} & \multicolumn{1}{p{1.86cm}|}{Asset Count} & \multicolumn{1}{p{1.86cm}|}{Train Range} & \multicolumn{1}{p{1.86cm}|}{Test Range} \\ \hline \multicolumn{1}{|p{1.86cm}|}{S\&P 500} & \multicolumn{1}{p{1.86cm}|}{465} & \multicolumn{1}{p{1.86cm}|}{2019-04-01 to 2019-08-01} & \multicolumn{1}{p{1.86cm}|}{2019-08-02 to 2019-09-01} \\ \hline \multicolumn{1}{|p{1.86cm}|}{Nikkei 225} & \multicolumn{1}{p{1.86cm}|}{225} & \multicolumn{1}{p{1.86cm}|}{0 to 200} & \multicolumn{1}{p{1.86cm}|}{201 to 290} \\ \hline \multicolumn{1}{|p{1.86cm}|}{S\&P 100} & \multicolumn{1}{p{1.86cm}|}{98} & \multicolumn{1}{p{1.86cm}|}{0 to 200} & \multicolumn{1}{p{1.86cm}|}{201 to 290} \\ \hline \end{tabularx} \label{tab:datasets} \end{table}
[ [ "Index", "Asset Count", "Train Range", "Test Range" ], [ "S&P 500", "465", "2019-04-01\nto 2019-08-\n01", "2019-08-02\nto 2019-09-\n01" ], [ "Nikkei 225", "225", "0 to 200", "201 to 290" ], [ "S&P 100", "98", "0 to 200", "201 to 290" ] ]
0.665331
null
null
0
2312.01024v1
3
[ 75.28099822998047, 261.4310302734375, 273.7049865722656, 406.0880126953125 ]
\begin{table}[ht] \caption{Hybrid Model Architecture and Parameters} \centering \begin{tabular}{|l|l|l|} \hline \textbf{Layer (type)} & \textbf{Output Shape} & \textbf{Param \#} \\ \hline Conv2d-1 & [-1, 64, 64, 64] & 9,408 \\ BatchNorm2d-2 & [-1, 64, 64, 64] & 128 \\ ReLU-3 & [-1, 64, 64, 64] & 0 \\ MaxPool2d-4 & [-1, 64, 32, 32] & 0 \\ Conv2d-5 & [-1, 128, 32, 32] & 8,192 \\ BatchNorm2d-6 & [-1, 128, 32, 32] & 256 \\ ReLU-7 & [-1, 128, 32, 32] & 0 \\ Conv2d-8 & [-1, 128, 32, 32] & 4,608 \\ BatchNorm2d-9 & [-1, 128, 32, 32] & 256 \\ ... & ... & ... \\ Linear-100 & [-1, 1] & 513 \\ TorchConnector-101 & [-1, 2] & 2 \\ \hline \textbf{Total params} & & 1,412,931 \\ \textbf{Trainable params} & & 1,412,931 \\ \textbf{Non-trainable params} & & 0 \\ \hline \end{tabular} \end{table}
[ [ "Layer (type)", "Output Shape", "Param #" ], [ "Conv2d-1\nBatchNorm2d-2\nReLU-3\nMaxPool2d-4\nConv2d-5\nBatchNorm2d-6\nReLU-7\nConv2d-8\nBatchNorm2d-9\n...\nLinear-100\nTorchConnector-101", "[-1, 64, 64, 64]\n[-1, 64, 64, 64]\n[-1, 64, 64, 64]\n[-1, 64, 32, 32]\n[-1, 128, 32, 32]\n[-1, 128, 32, 32]\n[-1, 128, 32, 32]\n[-1, 128, 32, 32]\n[-1, 128, 32, 32]\n...\n[-1, 1]\n[-1, 2]", "9,408\n128\n0\n0\n8,192\n256\n0\n4,608\n256\n...\n513\n2" ], [ "Total params\nTrainable params\nNon-trainable params", "", "1,412,931\n1,412,931\n0" ] ]
0.48366
null
null
0
1612.04858v1
3
[ 132.07166544596353, 581.5969848632812, 477.4373372395833, 639.1220092773438 ]
\begin{table}[H] \begin{center} \begin{tabular}{ |>{\centering}m{1.7cm}|>{\centering}m{2.5cm}|>{\centering}m{2cm} |>{\centering}m{1.8cm}|>{\centering}m{2.0cm} | } \hline & SigOpt & Rnd. Search & Grid Search & \hspace{0.5mm} No Tuning \newline (Baseline) \tabularnewline \hline Best Found \newline ACC & \bf{0.8760} ({\color{ForestGreen}{+5.72\%}}) & 0.8673 & 0.8680 & 0.8286 \tabularnewline \hline \end{tabular} \vspace{4mm} \caption{Best found accuracy results averaged over 20 optimization runs, each run consisting of 60 function evaluations} \end{center} \end{table}
[ [ "", "SigOpt", "Rnd. Search", "Grid Search", "No Tuning\n(Baseline)" ], [ "Best Found\nACC", "0.8760 (+5.72%)", "0.8673", "0.8680", "0.8286" ] ]
0.532637
null
null
1
1612.04858v1
8
[ 108.13266499837239, 261.9530029296875, 511.20566813151044, 330.385986328125 ]
\begin{table}[H] \begin{center} \begin{tabular}{ |>{\centering}m{1.4cm}|>{\centering}m{2.5cm}|>{\centering}m{2.0cm} |>{\centering}m{1.9cm}|>{\centering}m{1.9cm} |>{\centering}m{1.9cm} | } \hline & \hspace{4mm} SigOpt \newline (xgboost + \newline Unsup. Feats) & Rnd Search \newline (xgboost + \newline Unsup. Feats) & SigOpt \newline (xgboost + \newline Raw Feats) & Rnd Search \newline (xgboost + \newline Raw Feats) & No Tuning \newline (sklearn RF + \newline Raw Feats) \tabularnewline \hline Hold out \newline ACC & \bf{0.8601} ({\color{ForestGreen}{+49.2\%}}) & 0.8190 & 0.7483 & 0.7386 & 0.5756 \tabularnewline \hline \end{tabular} \vspace{4mm} \caption{Comparison of model accuracy on held out (test) dataset after different tuning strategies} \end{center} \end{table}
[ [ "", "SigOpt\n(xgboost +\nUnsup. Feats)", "Rnd Search\n(xgboost +\nUnsup. Feats)", "SigOpt\n(xgboost +\nRaw Feats)", "Rnd Search\n(xgboost +\nRaw Feats)", "No Tuning\n(sklearn RF +\nRaw Feats)" ], [ "Hold out\nACC", "0.8601 (+49.2%)", "0.8190", "0.7483", "0.7386", "0.5756" ] ]
0.41018
null
null
2
1612.04858v1
11
[ 108.13266499837239, 419.7349853515625, 505.93932088216144, 477.2590026855469 ]
\begin{table}[H] \begin{center} \begin{tabular}{ |>{\centering}m{1.25cm}|>{\centering}m{2.9cm}|>{\centering}m{3cm} |>{\centering}m{1.8cm}|>{\centering}m{2.9cm} | } \hline & \hspace{4mm} SigOpt \newline (TensorFlow CNN) & Random Search \newline (TensorFlow CNN) & No Tuning \newline (sklearn RF) & \hspace{4mm} No Tuning \newline (TensorFlow CNN) \tabularnewline \hline Hold out \newline ACC & \bf{0.8130} ({\color{ForestGreen}{+315.2\%}}) & 0.5690 & 0.5278 & 0.1958 \tabularnewline \hline \end{tabular} \vspace{4mm} \caption{Comparison of model accuracy on the held out (test) dataset after different tuning strategies} \end{center} \end{table}
[ [ "", "SigOpt\n(TensorFlow CNN)", "Random Search\n(TensorFlow CNN)", "No Tuning\n(sklearn RF)", "No Tuning\n(TensorFlow CNN)" ], [ "Hold out\nACC", "0.8130 (+315.2%)", "0.5690", "0.5278", "0.1958" ] ]
0.620968
null
null
3
1612.04858v1
14
[ 145.3353271484375, 151.614013671875, 464.1740010579427, 209.13800048828125 ]
\begin{table}[H] \begin{center} \begin{tabular}{ |>{\centering}m{1.5cm}|>{\centering}m{2.5cm} |>{\centering}m{2cm} |>{\centering}m{3.5cm}| } \hline & SigOpt & Random Search & \hspace{3mm} No Tuning \newline (Default MLlib ALS) \tabularnewline \hline Hold out \newline RMSE & \bf{0.7864} ({\color{ForestGreen}{-40.7\%}}) & 0.7901 & 1.3263 \tabularnewline \hline \end{tabular} \vspace{4mm} \caption{Comparison of RMSE on the hold out (test) ratings after tuning ALS algorithm} \end{center} \end{table}
[ [ "", "SigOpt", "Random\nSearch", "No Tuning\n(Default MLlib ALS)" ], [ "Hold out\nRMSE", "0.7864 (-40.7%)", "0.7901", "1.3263" ] ]
0.56535
null
null
0
2004.14107v1
11
[ 52.460500717163086, 78.83766174316406, 292.7359924316406, 135.29302978515625 ]
\begin{table}[tb] \centering \begin{tabular}{c|c|c|c|c} Information / Setting & Random & SDR & SDRT & SDRTS \\ \hline \small{Starting/Dest. Areas} & $\checkmark$ & $\checkmark$ & $\checkmark$ & $\checkmark$ \\ \hline \small{Exact Starting/Dest. Positions} & $\times$ & $\checkmark$ & $\checkmark$ & $\checkmark$ \\ \hline \small{Trajectory Entry Timing} & $\times$ & $\times$ & $\checkmark$ & $\checkmark$ \\ \hline \small{Trajectory Average Speed} & $\times$ & $\times$ & $\times$ & $\checkmark$\\ \hline \end{tabular} \caption{Different simulation settings and the information provided.} \label{tab:simSettings} \vspace{-1em} \end{table}
[ [ "Information / Setting", "Random", "SDR", "SDRT", "SDRTS" ], [ "Starting/Dest. Areas", "✓", "✓", "✓", "✓" ], [ "Exact Starting/Dest. Positions", "×", "✓", "✓", "✓" ], [ "Trajectory Entry Timing", "×", "×", "✓", "✓" ], [ "Trajectory Average Speed", "×", "×", "×", "✓" ] ]
0.470588
null
null
1
2004.14107v1
11
[ 330.8890075683594, 78.83766174316406, 547.260986328125, 162.3909912109375 ]
\begin{table}[tb] \centering \begin{tabular}{c|c|c|c|c} \hline Metric/Simulations & SDR & SDRT & SDRTS & Ours\\ \hline DPD-Space & 0.4751 & 0.3813 & 0.4374 & {\bf0.2988} \\ \hline DPD-Time & 0.3545 & 0.0795 & 0.064 & {\bf0.0419} \\ \hline DPD-TS & 1.0 & 0.8879 & 1.0 & {\bf 0.4443} \\ \hline \hline \hline DPD-Space &0.2753 &0.2461 &0.2423 & {\bf 0.1173} \\ \hline DPD-Time & 0.0428 & 0.0319 & 0.0295 & {\bf 0.0213} \\ \hline DPD-TS &0.9970 &0.8157 &0.9724 & {\bf 0.5091} \\ \hline \end{tabular} \caption{Comparison on space flow P2 in Forum (Top) and space flow P1 in TrainStation (Bottom) based on DPD metrics, both shown in \figref{std_vis}. {\bf Lower} is better.} \label{tab:DPD_trainStation} \end{table}
[ [ "Metric/Simulations", "SDR", "SDRT", "SDRTS", "Ours" ], [ "DPD-Space", "0.4751", "0.3813", "0.4374", "0.2988" ], [ "DPD-Time", "0.3545", "0.0795", "0.064", "0.0419" ], [ "DPD-TS", "1.0", "0.8879", "1.0", "0.4443" ], [ "DPD-Space", "0.2753", "0.2461", "0.2423", "0.1173" ], [ "DPD-Time", "0.0428", "0.0319", "0.0295", "0.0213" ], [ "DPD-TS", "0.9970", "0.8157", "0.9724", "0.5091" ] ]
0.524496
null
null
0
2305.19573v1
13
[ 320.91282653808594, 241.884033203125, 543.3533528645834, 334.00502522786456 ]
\begin{table}[t] \centering \setlength{\tabcolsep}{11pt} \begin{tabular}{|m{0.7cm}|c|c|c|} \hline & Within ($d_1$) & Between ($d_2$)\\ \hline $d_J$ & $0.0784 \pm 0.0194$ & $0.1027 \pm 0.0232$\\ \hline $d_\text{H}$ & $0.3145 \pm 0.4864$ & $0.3623 \pm 0.4967$\\ \hline $d_{\rm basin}$ & $0.0309 \pm 0.0314$ & $0.0386 \pm 0.0325$\\ \hline $d_L$ & $0.2535 \pm 0.1619$ & $0.2921 \pm 0.1783$\\ \hline \end{tabular} \caption{Discrepancy between two energy landscapes estimated by the conventional likelihood maximization method applied to the HCP data. ``Within'' and ``Between'' in the table stand for within-participant and between-participant, respectively.} \label{table:HCP_results} \end{table}
[ [ "", "Within (d )\n1", "Between (d )\n2" ], [ "d\nJ", "0.0784 0.0194\n±", "0.1027 0.0232\n±" ], [ "d\nH", "0.3145 0.4864\n±", "0.3623 0.4967\n±" ], [ "d\nbasin", "0.0309 0.0314\n±", "0.0386 0.0325\n±" ], [ "d\nL", "0.2535 0.1619\n±", "0.2921 0.1783\n±" ] ]
0.5
null
null
0
2401.16220v1
8
[ 250.31500244140625, 141.19403076171875, 344.9599914550781, 190.6090087890625 ]
\begin{table}[h] \centering \begin{tabular}{|c||c|c|c|}\hline $ t$&$L_t$&$P_t$&$A_t $ \\\hline 0& 107& 73& 214\\\hline 1& 33&86 &240 \\\hline 2& 67& 27& 267\\\hline \end{tabular} \caption{Population data for Section~\ref{ex:workedexample}} \label{table:workedexample} \end{table}
[ [ "t", "L\nt", "P\nt", "A\nt" ], [ "0", "107", "73", "214" ], [ "1", "33", "86", "240" ], [ "2", "67", "27", "267" ] ]
0.569697
null
null
1
2401.16220v1
8
[ 178.54400634765625, 628.718994140625, 416.73099517822266, 665.780029296875 ]
\begin{table}[h] \centering \begin{tabular}{|c||c|c|c|c|}\hline t &$R_{L_t}$&$\alpha_t$&$R_{A_t}$&$\beta_t$ \\\hline 1&$[-3.67,-2.67]$& $-3.17$&$[-1.48,-0.77]$& $-1.13$\\ \hline 2&$[-4.50,-3.28]$& $-3.89$&$[-1.65,-0.86] $&$-1.25$\\\hline \end{tabular} \caption{Expansion ranges and midpoints} \label{table:exampleranges} \end{table}
[ [ "t", "R\nLt", "α\nt", "R\nAt", "β\nt" ], [ "1", "[ 3.67, 2.67]\n− −", "3.17\n−", "[ 1.48, 0.77]\n− −", "1.13\n−" ], [ "2", "[ 4.50, 3.28]\n− −", "3.89\n−", "[ 1.65, 0.86]\n− −", "1.25\n−" ] ]
0.614286
null
null
2
2401.16220v1
9
[ 143.85299682617188, 337.1020202636719, 450.5694318498884, 374.802001953125 ]
\begin{table}[h] \centering \begin{tabular}{|c||c|c||c|}\hline t & $\hat{T}_{L_t}$ & $\hat{T}_{A_t}$\\\hline 1 & $0.18 + 0.04\tau_1 + 0.02(\tau_1+ 3.17)^2$ & $0.69 + 0.32\tau_2 + 0.16(\tau_2 + 1.13)^2$\\\hline 2 &$0.10 + 0.02\tau_1 + 0.01(\tau_1 + 3.89)^2$ &$0.64 + 0.29\tau_2 + 0.14(\tau_2 + 1.25)^2$ \\\hline \end{tabular} \caption{Taylor polynomials in $\tau_1,\tau_2$} \label{table:examplepolynosubs} \end{table}
[ [ "t", "Tˆ\nLt", "Tˆ\nAt" ], [ "1", "0.18+0.04τ +0.02(τ +3.17)2\n1 1", "0.69+0.32τ +0.16(τ +1.13)2\n2 2" ], [ "2", "0.10+0.02τ +0.01(τ +3.89)2\n1 1", "0.64+0.29τ +0.14(τ +1.25)2\n2 2" ] ]
0.644258
null
null
3
2401.16220v1
16
[ 205.9810028076172, 141.19403076171875, 389.29400634765625, 204.95501708984375 ]
\begin{table} \centering \begin{tabular}{|c|c|c|c|}\hline $t$& $L_t$ &$P_t$&$A_t$\\\hline 3& 36 & 54&273\\\hline\hline $t$&$R_{L_t}$&-&$R_{A_t}$\\\hline 3&$[-4.16,-3.02]$&-&$[-1.69,-0.87]$\\\hline &$\alpha=-3.59$&-&$\beta=-1.28$\\\hline \end{tabular} \caption{ Prolongation data and results from Algorithm~\ref{alg:expansionrange}} \label{tab:continuedexampledata} \end{table}
[ [ "t", "L\nt", "P\nt", "A\nt" ], [ "3", "36", "54", "273" ], [ "t", "R\nLt", "-", "R\nAt" ], [ "3", "[ 4.16, 3.02]\n− −", "-", "[ 1.69, 0.87]\n− −" ], [ "", "α = 3.59\n−", "-", "β = 1.28\n−" ] ]
0.538462
null
null
0
1903.09030v1
7
[ 212.6929931640625, 294.0369873046875, 395.8699951171875, 326.5150146484375 ]
\begin{table}[!t] \scriptsize \caption{A comparison with the ladder network. We represent error percentage.} \centering \begin{tabular}{c|ccc} \hline \textbf{Labeled Samples} & \textbf{10} & \textbf{100} & \textbf{1000} \\\hline \textbf{Baseline} & 58.88 & 28.39 & 7.25 \\ \textbf{Ladder Network} & 48.85 & 24.74 & 6.96 \\ \textbf{RBM DA} & \textbf{45.34 } & \textbf{ 18.66} &\textbf{ 5.60 } \end{tabular} \label{tab6} \end{table}
[ [ "Labeled Samples", "10 100 1000" ], [ "Baseline\nLadder Network\nRBM DA", "58.88 28.39 7.25\n48.85 24.74 6.96\n45.34 18.66 5.60" ] ]
0.780269
null
null
0
2405.04539v1
28
[ 115.52999877929688, 148.56298828125, 494.72100830078125, 671.4019775390625 ]
\begin{table}[h] \caption{Hyper-parameter search space for the base and proposed models.} \label{tab:HPspace} \centering \begin{tabular}{|l|l|l|} \hline \textbf{Model} & \textbf{Parameter} & \textbf{Values} \\ \hline LSTM & nodes & $[16, 32, 50, 64, 96, 100, 128]$ \\ & Layers & $[0, 1, 2, 3]$ \\ & Optimizer & Adam \\ & Activation & [ReLU, $\tanh$] \\ & Dropout Rate & $(0, 0.5)$ \\ \hline GRU & nodes & $[16, 32, 50, 64, 96, 100, 128]$ \\ & Layers & $[0, 1, 2, 3]$ \\ & Optimizer & Adam \\ & Activation & [ReLU, $\tanh$] \\ & Dropout Rate & (0, 0.5) \\ \hline Hybrid LSTM & LSTM nodes & $[16, 32, 50, 64, 96, 100, 128]$ \\ & GRU nodes & $[16, 32, 50, 64, 96, 100, 128]$ \\ & LSTM Layers & $[0, 1, 2, 3]$ \\ & Optimizer & Adam \\ & Activation & [ReLU, $\tanh$, sigmoid] \\ & Dropout Rate & $(0, 0.5)$ \\ \hline Highway LSTM & LSTM nodes & $[16, 32, 50, 64, 96, 100, 128]$ \\ & Layers & $[1, 2, 3, 4, 5]$ \\ & t\_bias & $(-5, 5)$\\ & Optimizer & Adam \\ & acti\_h & ReLU \\ & acti\_t & sigmoid \\ & learning rate & $(1e-6, 1e-2)$ \\ \hline Transformer & nodes & $(32, 200, 2)$ \\ & Layers & $[1, 2, 3, 4, 5]$ \\ & Optimizer & Adam \\ & Activation & [ReLU, $\tanh$, sigmoid] \\ & d\_k / d\_v & $[32, 64, 96]$ \\ & learning rate & $(1e-5, 1e-2)$ \\ & Dropout Rate & $(0, 0.5)$ \\ & feedforward dimension & $(32, 200, 2)$ \\ & Number of heads & $[1,2,4,8,12]$\\ \hline DPE-based models & $\epsilon$ & $(0,1)$ \\ & $\alpha$ & [$\frac{1}{5}$, $\frac{2}{5}$, $\frac{3}{5}$, $\frac{4}{5}$, $1$] \\ & $\frac{n_1}{n}$ & $(0,1)$\\ \hline \end{tabular} \end{table}
[ [ "Model", "Parameter", "Values" ], [ "LSTM", "nodes\nLayers\nOptimizer\nActivation\nDropout Rate", "[16, 32, 50, 64, 96, 100, 128]\n[0, 1, 2, 3]\nAdam\n[ReLU, tanh]\n(0, 0.5)" ], [ "GRU", "nodes\nLayers\nOptimizer\nActivation\nDropout Rate", "[16, 32, 50, 64, 96, 100, 128]\n[0, 1, 2, 3]\nAdam\n[ReLU, tanh]\n(0, 0.5)" ], [ "Hybrid LSTM", "LSTM nodes\nGRU nodes\nLSTM Layers\nOptimizer\nActivation\nDropout Rate", "[16, 32, 50, 64, 96, 100, 128]\n[16, 32, 50, 64, 96, 100, 128]\n[0, 1, 2, 3]\nAdam\n[ReLU, tanh, sigmoid]\n(0, 0.5)" ], [ "Highway LSTM", "LSTM nodes\nLayers\nt bias\nOptimizer\nacti h\nacti t\nlearning rate", "[16, 32, 50, 64, 96, 100, 128]\n[1, 2, 3, 4, 5]\n( 5, 5)\n−\nAdam\nReLU\nsigmoid\n(1e 6, 1e 2)\n− −" ], [ "Transformer", "nodes\nLayers\nOptimizer\nActivation\nd k / d v\nlearning rate\nDropout Rate\nfeedforward dimension\nNumber of heads", "(32, 200, 2)\n[1, 2, 3, 4, 5]\nAdam\n[ReLU, tanh, sigmoid]\n[32, 64, 96]\n(1e 5, 1e 2)\n− −\n(0, 0.5)\n(32, 200, 2)\n[1, 2, 4, 8, 12]" ], [ "DPE-based models", "ϵ\nα\nn1\nn", "(0, 1)\n[ 1, 2, 3, 4, 1]\n5 5 5 5\n(0, 1)" ] ]
0.396765
null
null
1
2405.04539v1
29
[ 152.7469940185547, 315.02398681640625, 457.5050746372768, 504.9419860839844 ]
\begin{table}[h] \caption{Hyper-parameter search space for the benchmark models.} \label{tab:HPspace2} \centering \begin{tabular}{|l|l|l|} \hline \textbf{Model} & \textbf{Parameter} & \textbf{Values} \\ \hline AdaBoost & estimators & $[10, 50, 100, 200, 300, 400, 500]$ \\ & learning Rate & $[10^{-3}, 10^{-2}, 10^{-1}]$ \\ \hline XGBoost& estimators & $[10, 50, 100, 200, 300, 400, 500]$ \\ & depth & $[1, 2, 3, 4, 5]$ \\ & subsample & $[0.5, 0.6, 0.7, 0.8, 0.9]$ \\ & child weight & $[2, 4, 6, 8, 10]$ \\ \hline K-NN & neighbours & $[1, 2, 3, 4, 5]$ \\ & weights & $[\text{uniform}, \text{distance}]$ \\ & P & $[1, 2, 3, 4, 5]$ \\ \hline COBRA & $\epsilon$ & $(0,1)$ \\ & $\alpha$ & [$\frac{1}{5}$, $\frac{2}{5}$, $\frac{3}{5}$, $\frac{4}{5}$, $1$] \\ & $\frac{l}{n}$ & $(0,1)$\\ \hline \end{tabular} \end{table}
[ [ "Model", "Parameter", "Values" ], [ "AdaBoost", "estimators\nlearning Rate", "[10, 50, 100, 200, 300, 400, 500]\n[10−3, 10−2, 10−1]" ], [ "XGBoost", "estimators\ndepth\nsubsample\nchild weight", "[10, 50, 100, 200, 300, 400, 500]\n[1, 2, 3, 4, 5]\n[0.5, 0.6, 0.7, 0.8, 0.9]\n[2, 4, 6, 8, 10]" ], [ "K-NN", "neighbours\nweights\nP", "[1, 2, 3, 4, 5]\n[uniform, distance]\n[1, 2, 3, 4, 5]" ], [ "COBRA", "ϵ\nα\nl\nn", "(0, 1)\n[ 1, 2, 3, 4, 1]\n5 5 5 5\n(0, 1)" ] ]
0.578534
null
null
0
1411.4911v5
27
[ 232.3800048828125, 66.68902587890625, 376.29901123046875, 317.3479919433594 ]
\begin{table}[htbp] \centering \caption{Factor coordinates of the variables obtained with \code{MFAmix}} {\small \label{coord_var} \begin{tabular}{l|r|r} \hline & dim 1 & dim 2\\ \hline farmers & -0.45 & -0.30\\ \hline tradesmen & -0.14 & 0.12\\ \hline \textbf{managers} & 0.31 &\textbf{ 0.55}\\ \hline workers & -0.13 & -0.04\\ \hline unemployed & 0.32 & -0.08\\ \hline \textbf{middleempl} & 0.24 & \textbf{0.60}\\ \hline retired & -0.03 & -0.44\\ \hline employrate & -0.33 & 0.55\\ \hline \textbf{income} & 0.13 & \textbf{0.60}\\ \hline \textbf{density} & \textbf{0.72} & -0.15\\ \hline primaryres & 0.03 & 0.36\\ \hline \textbf{owners} & \textbf{-0.69} & 0.41\\ \hline \textbf{building} & \textbf{0.72} & -0.21\\ \hline water & 0.19 & -0.20\\ \hline \textbf{vegetation} & 0.08 & 0.56\\ \hline \textbf{agricul }& \textbf{-0.54} & -0.47\\ \hline \end{tabular} } \end{table}
[ [ "", "dim 1", "dim 2" ], [ "farmers", "-0.45", "-0.30" ], [ "tradesmen", "-0.14", "0.12" ], [ "managers", "0.31", "0.55" ], [ "workers", "-0.13", "-0.04" ], [ "unemployed", "0.32", "-0.08" ], [ "middleempl", "0.24", "0.60" ], [ "retired", "-0.03", "-0.44" ], [ "employrate", "-0.33", "0.55" ], [ "income", "0.13", "0.60" ], [ "density", "0.72", "-0.15" ], [ "primaryres", "0.03", "0.36" ], [ "owners", "-0.69", "0.41" ], [ "building", "0.72", "-0.21" ], [ "water", "0.19", "-0.20" ], [ "vegetation", "0.08", "0.56" ], [ "agricul", "-0.54", "-0.47" ] ]
1
null
null
0
2007.06775v3
4
[ 319.1729990641276, 377.90379333496094, 556.9841715494791, 465.5619888305664 ]
\begin{table}[!h] \small \centering \ra{0.95} \begin{tabular}{!{\VRule[1pt]}M{0.09\textwidth}!{\VRule[1pt]}m{0.3\textwidth}!{\VRule[1pt]}m{0.04\textwidth}!{\VRule[1pt]}} \specialrule{1.2pt}{0pt}{0pt} \rowcolor{white} %\begin{tabular}{@{}p{7.5cm}c@{}} % \toprule[1.2pt] % & \multicolumn{3}{c}{\% dataset cached}\\ %\% dataset cached & 8-GPU training & \multicolumn{2}{c}{8-job HP search}\\ % (Size : 146GB) & Cache Miss & Disk IO (GB) & Read amp \\ % \midrule \vheading{ Fetch Stalls (Remote)} & Is remote storage a bottleneck for training? & \sref{sec-fetch-remote}\\ \specialrule{0.5pt}{0pt}{0pt} \vheading{Fetch Stalls (Local)} & When does the local storage device (SSD/HDD) become a bottleneck for DNN training? & \sref{sec-fetch}\\ \specialrule{0.5pt}{0pt}{0pt} \vheading{Prep Stalls} & When does data prep at the CPU become a bottleneck for DNN training? & \sref{sec-prep} \\ \specialrule{0.5pt}{0pt}{0pt} \vheading{Generality} & Do fetch and prep stalls exist in other training platforms like TensorFlow? & \sref{sec-tf}\\ \specialrule{1.2pt}{0pt}{0pt} %\bottomrule[1.2pt] \end{tabular} %\vspace{-1em} % \mycaption{Data stalls in Tensorflow}{The fundamental problems that result in data stalls-inefficient caching and thrashing due to lack of coordination in HP search, exist in TF.} \label{tbl-analysis-q} \vspace{-1.5em} \end{table}
[ [ "Fetch Stalls\n(Remote)", "Is remote storage a bottleneck for training?", "§4.3.1" ], [ "Fetch Stalls\n(Local)", "When does the local storage device (SSD/HDD)\nbecome a bottleneck for DNN training?", "§4.3.2" ], [ "Prep Stalls", "When does data prep at the CPU become a bot-\ntleneck for DNN training?", "§4.3.3" ], [ "Generality", "Do fetch and prep stalls exist in other training\nplatforms like TensorFlow?", "§4.3.4" ] ]
0.52454
null
null
0
2003.04735v2
4
[ 72, 78.68902587890625, 354.6669921875, 188.926025390625 ]
\begin{table}[http]{ \begin{tabular}{cc} \hline \multicolumn{2}{c}{Summary of Notations} \\ \hline \multicolumn{1}{c|}{$\mathcal{V}$, $v$, $\mathcal{B}_v$} & Set of Nodes, Node $v$, Set of Neighboring Nodes of Node $v$ \\ \multicolumn{1}{c|}{$\mathbf{w}_v$, $b_v$, $\mathbf{r}_v$} & Decision Variables at Node $v$ \\ \multicolumn{1}{c|}{$\mathbf{x}_{vn}$, $y_{vn}$} & $n$-th Data and Label at Node $v$ \\ \multicolumn{1}{c|}{$\mathbf{X}_v$, $\mathbf{Y}_v$} & Data Matrix and Label Matrix at Node $v$ \\ \multicolumn{1}{c|}{$\omega_{vu}$} & Consensus Variable between Node $v$ and Node $u$ \\ \multicolumn{1}{c|}{$\theta_v$} & Indicator Vector of Flipped Labels at Node $v$ \\ \multicolumn{1}{c|}{$\delta_{vn}$} & Vector of Data Poisoning on the $n$-th Data at Node $v$ \\ \hline \end{tabular}} \end{table}
[ [ "V , v, Bv\nwv, bv, rv\nxvn, yvn\nXv, Yv\nωvu\nθv\nδvn", "Set of Nodes, Node v, Set of Neighboring Nodes of Node v\nDecision Variables at Node v\nn-th Data and Label at Node v\nData Matrix and Label Matrix at Node v\nConsensus Variable between Node v and Node u\nIndicator Vector of Flipped Labels at Node v\nVector of Data Poisoning on the n-th Data at Node v" ] ]
0.422611
null
null
1
2003.04735v2
17
[ 194.77185712541853, 136.6090087890625, 415.6090087890625, 191.60302734375 ]
\begin{table} \caption{Average equilibrium classification risks $(\%)$ of DSVM using Spambase dataset \cite{Spambase} in Network 1 and Network 2. } \label{tab:LabelNetwork12} \begin{center} \begin{small} \begin{sc} \begin{tabular}{|c|c|c|c|c|c|c|} \hline Net & 1 & 1L & 1D & 2 & 2L & 2D \\ \hline Risk & 11.6 & 32.3 & 42.2 & 10.6 & 29.4& 39.3 \\ \hline STD & 1.6 & 0.6 & 2.6 & 0.6 & 0.3 & 1.1 \\ \hline \end{tabular} \end{sc} \end{small} \end{center} \vskip -0.1in \end{table}
[ [ "NET", "1", "1L", "1D", "2", "2L", "2D" ], [ "RISK", "11.6", "32.3", "42.2", "10.6", "29.4", "39.3" ], [ "STD", "1.6", "0.6", "2.6", "0.6", "0.3", "1.1" ] ]
0.870056
null
null
2
2003.04735v2
17
[ 162.51800537109375, 286.8940124511719, 446.9909973144531, 341.88800048828125 ]
\begin{table} \caption{Average equilibrium classification risks $(\%)$ of DSVM using Spambase dataset \cite{Spambase} in Network 3 and Network 4. } \label{tab:LabelNetwork34} \begin{center} \begin{small} \begin{sc} \begin{tabular}{|c|c|c|c|c|c|c|c|c|} \hline Net & 3 & 3La & 3Lb & 3Da & 3Db & 4 & 4L & 4D \\ \hline Risk & 11.7 & 29.5 & 26.9 & 36.4 & 34.6 & 13.5 & 35.0 & 47.0\\ \hline STD & 1.5 & 0.6 & 1.2 & 0.9 & 0.8 & 1.8 & 0.9 & 2.5\\ \hline \end{tabular} \end{sc} \end{small} \end{center} \vskip -0.1in \end{table}
[ [ "NET", "3", "3LA", "3LB", "3DA", "3DB", "4", "4L", "4D" ], [ "RISK", "11.7", "29.5", "26.9", "36.4", "34.6", "13.5", "35.0", "47.0" ], [ "STD", "1.5", "0.6", "1.2", "0.9", "0.8", "1.8", "0.9", "2.5" ] ]
0.866953
null
null
0
2310.00490v1
4
[ 111.0884257725307, 72.198974609375, 500.9114249093192, 134.36602783203125 ]
\begin{table}[] \centering \small \begin{tabular}{|c|c|c|c|} \hline Timespan & 1976:2023 & Average citation per doc & 19.26 \\ \hline Sources & 294 & Authors & 1316 \\ \hline Documents & 616 & Total author`s keywords & 1612 \\ \hline The annual growth rate of published documents & 3.48\% & Document average age(year) & 8.32 \\ \hline Authors of single-authored docs & 107 & International Co-Authorship & 24.51\% \\ \hline Co-Authors per Doc & 2.5 & Author's Keywords & 1612 \\ \hline \end{tabular} \caption{General information of investigated database} \label{Table 2} \end{table}
[ [ "Timespan", "1976:2023", "Average citation per doc", "19.26" ], [ "Sources", "294", "Authors", "1316" ], [ "Documents", "616", "Total author‘s keywords", "1612" ], [ "The annual growth rate of published documents", "3.48%", "Document average age(year)", "8.32" ], [ "Authors of single-authored docs", "107", "International Co-Authorship", "24.51%" ], [ "Co-Authors per Doc", "2.5", "Author’s Keywords", "1612" ] ]
0.914119
null
null
1
2310.00490v1
9
[ 178.13942209879556, 72.198974609375, 433.8605779012044, 186.1719970703125 ]
\begin{table}[] \centering \small \begin{tabular}{|c|c|} \hline Affiliation & Number of articles \\ \hline University of California & 8\\ \hline Northeastern university & 7\\ \hline The Bucharest university of economic studies & 7\\ \hline University Kebangsaan & 6\\ \hline Brunel university & 5\\ \hline Central university of finance and economics & 5\\ \hline Deutsche bundesbank & 5\\ \hline Fordham university & 5\\ \hline Universidade nova de Lisboa & 5\\ \hline Not reported & 5\\ \hline \end{tabular} \caption{Most relevant affiliations} \label{Table 3} \end{table}
[ [ "Affiliation", "Number of articles" ], [ "University of California", "8" ], [ "Northeastern university", "7" ], [ "The Bucharest university of economic studies", "7" ], [ "University Kebangsaan", "6" ], [ "Brunel university", "5" ], [ "Central university of finance and economics", "5" ], [ "Deutsche bundesbank", "5" ], [ "Fordham university", "5" ], [ "Universidade nova de Lisboa", "5" ], [ "Not reported", "5" ] ]
0.946237
null
null
0
2210.00770v1
2
[ 53.465999603271484, 85.41702270507812, 295.5110168457031, 101.35699462890625 ]
\begin{table}[H] \scriptsize \caption{Comparison Between Agents Trained With and Without PID Controller Coaching. Even though the PID controllers are less capable than the eventual RL agent, they are still useful and can accelerate the RL agent training. There two measures we used to gauge training acceleration. The first is five consecutive wins, and the second is the scoring average. The "win" is a predetermined benchmark. } \label{episode_compare} \centering \begin{tabular}{ cccccc } \rowcolor{airforceblue} Environment & Target & Measure & With PID & Without & Percentage\\ \rowcolor{airforceblue} Name & Score & & Coaching & Coaching & Increase \\ \hline Inverted & 800& Win Streak & 100 & 160& 37.5\% \\ Pendulum & &Average & 104 & 159& 34.6\%\\ \rowcolor{beaublue} Double & 5500& 5 Wins & 908 & 1335& 31.9\%\\ \rowcolor{beaublue} Pendulum & &Average & 935 & 1370& 29.9\%\\ Hopper & 800& 5 Wins & 2073 & 2851& 27.3\%\\ & &Average & 2155 & 2911& 25.9\%\\ \rowcolor{beaublue} Walker & 800& 5 Wins & 4784 & 5170& 7.5\%\\ \rowcolor{beaublue} & &Average & 5659 & 7135& 20.7\%\\ \end{tabular} \end{table}
[ [ "Double", "5500", "5 Wins", "908", "1335", "31.9%" ], [ "Pendulum", "", "Average", "935", "1370", "29.9%" ] ]
0.368421
null
null
0
2305.10911v1
20
[ 63.68640060424805, 78.8809814453125, 553.6804077148438, 139.97259521484375 ]
\begin{table}[htbp] \centering \vspace{5pt} {\renewcommand{\arraystretch}{1.1} \hspace*{-10pt}{\small{ \begin{tabular}{*{5}{!{\vrule width 0.9pt}p{3cm}}!{\vrule width 1.5pt}} \hline \textbf{Method} & \textbf{AUC} & \textbf{BCV} & \textbf{Time (min.)} & $\boldsymbol{\beta}^{*}$ \\ \hhline{|-|-|-|-|-|} \textbf{MaxCGF} & \cellcolor[rgb]{ 1, 1, 0}$0.9843$ & \cellcolor[rgb]{ 1, 1, 0}$0.9533$ & \cellcolor[rgb]{ 0, .69, .314}$0.6032$ & 3.25 \\ \hhline{|-|-|-|-|-|} \textbf{Domino} & \cellcolor[rgb]{ 1, 0.44, 0.37} $0.9316$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.7489$ & \cellcolor[rgb]{ 1, 1, 0}$21.6774$ & 4.25 \\ \hhline{|-|-|-|-|-|} \textbf{Pe\~{n}a-Prieto} & \cellcolor[rgb]{ 0, .69, .314} $0.9867$ & \cellcolor[rgb]{ 0, .69, .314}$0.9867$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$66.6850$ & 2.25 \\ \hline \end{tabular}}} } \caption{Performances for the standard normal dataset. We mark in green the best, in yellow the intermediate, and in red the worst results.} \label{tab:StdNormperf}% \end{table}
[ [ "Method", "AUC", "BCV", "Time (min.)", "β∗" ], [ "MaxCGF", "0.9843", "0.9533", "0.6032", "3.25" ], [ "Domino", "0.9316", "0.7489", "21.6774", "4.25" ], [ "Pen˜a-Prieto", "0.9867", "0.9867", "66.6850", "2.25" ] ]
0.376266
null
null
1
2305.10911v1
20
[ 63.68640060424805, 613.0989990234375, 553.6804077148438, 674.189990234375 ]
\begin{table}[htbp] \centering \vspace{5pt} {\renewcommand{\arraystretch}{1.1} \hspace*{-10pt}{\small{ \begin{tabular}{*{5}{!{\vrule width 0.9pt}p{3cm}}!{\vrule width 1.5pt}} \hline \textbf{Method} & \textbf{AUC} & \textbf{BCV} & \textbf{Time (min.)} & $\boldsymbol{\beta}^{*}$ \\ \hhline{|-|-|-|-|-|} \textbf{MaxCGF} & \cellcolor[rgb]{ 1, 1, 0} $0.8811$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.6067$ & \cellcolor[rgb]{ 0, .69, .314}$0.9592$ & 8.00 \\ \hhline{|-|-|-|-|-|} \textbf{Domino} & \cellcolor[rgb]{ 1, 0.44, 0.37} $0.8809$ & \cellcolor[rgb]{ 1, 1, 0}$0.6311$ & \cellcolor[rgb]{ 1, 1, 0}$14.3293$ & 7.50 \\ \hhline{|-|-|-|-|-|} \textbf{Pe\~{n}a-Prieto} & \cellcolor[rgb]{ 0, .69, .314} $0.9847$ & \cellcolor[rgb]{ 0, .69, .314}$0.9644$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$67.2382$ & 1.75 \\ \hline \end{tabular}}} } \caption{Performances for the normal dataset.} \label{tab:Normperf}% \end{table}
[ [ "Method", "AUC", "BCV", "Time (min.)", "β∗" ], [ "MaxCGF", "0.8811", "0.6067", "0.9592", "8.00" ], [ "Domino", "0.8809", "0.6311", "14.3293", "7.50" ], [ "Pen˜a-Prieto", "0.9847", "0.9644", "67.2382", "1.75" ] ]
0.447059
null
null
2
2305.10911v1
21
[ 82.17135925292969, 585.4257202148438, 523.1659545898438, 644.066162109375 ]
\begin{table}[htbp] \centering \vspace{5pt} {\renewcommand{\arraystretch}{1.1} \hspace*{-10pt}{ %\small{ \scalebox{0.9}{ \begin{tabular}{*{5}{!{\vrule width 0.9pt}p{3cm}}!{\vrule width 1.5pt}} \hline \textbf{Method} & \textbf{AUC} & \textbf{BCV} & \textbf{Time (min.)} & $\boldsymbol{\beta}^{*}$ \\ \hhline{|-|-|-|-|-|} \textbf{MaxCGF} & \cellcolor[rgb]{ 0, .69, .314}$0.9140$ & \cellcolor[rgb]{ 0, .69, .314}$0.6911$ & \cellcolor[rgb]{ 0, .69, .314}$1.0387$ & 7.25 \\ \hhline{|-|-|-|-|-|} \textbf{Domino} & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.8896$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.6467$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$15.8041$ & 6.50 \\ \hhline{|-|-|-|-|-|} \textbf{Pe\~{n}a-Prieto} & - & - & - & - \\ \hline \end{tabular}}} } \caption{Performances for the skew-normal dataset.} \label{tab:SkewNormperf}% \end{table}
[ [ "Method", "AUC", "BCV", "Time (min.)", "β∗" ], [ "MaxCGF", "0.9140", "0.6911", "1.0387", "7.25" ], [ "Domino", "0.8896", "0.6467", "15.8041", "6.50" ], [ "Pen˜a-Prieto", "-", "-", "-", "-" ] ]
0.458753
null
null
3
2305.10911v1
24
[ 82.17135925292969, 104.18867492675781, 523.1659545898438, 162.8291015625 ]
\begin{table}[htbp] \centering \vspace{5pt} {\renewcommand{\arraystretch}{1.1} \hspace*{-10pt}{ \scalebox{0.9}{ \begin{tabular}{*{5}{!{\vrule width 0.9pt}p{3cm}}!{\vrule width 1.5pt}} \hline \textbf{Method} & \textbf{AUC} & \textbf{BCV} & \textbf{Time (min.)} & $\boldsymbol{\beta}^{*}$ \\ \hhline{|-|-|-|-|-|} \textbf{MaxCGF} & \cellcolor[rgb]{ 1, 0.44, 0.37} $0.8333$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.5356$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$10.0730$ & 7.25 \\ \hhline{|-|-|-|-|-|} \textbf{Domino} & \cellcolor[rgb]{ 0, .69, .314} $0.8498$ & \cellcolor[rgb]{ 0, .69, .314}$0.5622$ & \cellcolor[rgb]{ 0, .69, .314}$8.6374$ & 7.50 \\ \hhline{|-|-|-|-|-|} \textbf{Pe\~{n}a-Prieto} & - & - & - & - \\ \hline \end{tabular}}} } \caption{Performances for the Student's t dataset for $\nu=10$.} \label{tab:Studtperfnu10}% \end{table}
[ [ "Method", "AUC", "BCV", "Time (min.)", "β∗" ], [ "MaxCGF", "0.8333", "0.5356", "10.0730", "7.25" ], [ "Domino", "0.8498", "0.5622", "8.6374", "7.50" ], [ "Pen˜a-Prieto", "-", "-", "-", "-" ] ]
0.447059
null
null
4
2305.10911v1
24
[ 82.17135925292969, 209.5257110595703, 523.1659545898438, 268.1661376953125 ]
\begin{table}[htbp] \centering \vspace{5pt} {\renewcommand{\arraystretch}{1.1} \hspace*{-10pt}{ \scalebox{0.9}{ \begin{tabular}{*{5}{!{\vrule width 0.9pt}p{3cm}}!{\vrule width 1.5pt}} \hline \textbf{Method} & \textbf{AUC} & \textbf{BCV} & \textbf{Time (min.)} & $\boldsymbol{\beta}^{*}$ \\ \hhline{|-|-|-|-|-|} \textbf{MaxCGF} & \cellcolor[rgb]{ 0, .69, .314}$0.9116$ & \cellcolor[rgb]{ 0, .69, .314}$0.7044$ & \cellcolor[rgb]{ 0, .69, .314}$8.0739$ & 7.75 \\ \hhline{|-|-|-|-|-|} \textbf{Domino} & \cellcolor[rgb]{ 1, 0.44, 0.37} $0.8903$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.6267$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$19.1567$ & 7.25 \\ \hhline{|-|-|-|-|-|} \textbf{Pe\~{n}a-Prieto} & - & - & - & - \\ \hline \end{tabular}}} } \caption{Performances for the Student's t dataset for $\nu=30$.} \label{tab:Studtperfnu30}% \end{table}
[ [ "Method", "AUC", "BCV", "Time (min.)", "β∗" ], [ "MaxCGF", "0.9116", "0.7044", "8.0739", "7.75" ], [ "Domino", "0.8903", "0.6267", "19.1567", "7.25" ], [ "Pen˜a-Prieto", "-", "-", "-", "-" ] ]
0.447937
null
null
5
2305.10911v1
25
[ 63.68640060424805, 439.31500244140625, 553.6804077148438, 500.40659790039064 ]
\begin{table}[htbp] \centering \vspace{5pt} {\renewcommand{\arraystretch}{1.1} \hspace*{-10pt}{\small{ \begin{tabular}{*{5}{!{\vrule width 0.9pt}p{3cm}}!{\vrule width 1.5pt}} \hline \textbf{Method} & \textbf{AUC} & \textbf{BCV} & \textbf{Time (min.)} & $\boldsymbol{\beta}^{*}$ \\ \hhline{|-|-|-|-|-|} \textbf{MaxCGF} & \cellcolor[rgb]{ 0, .69, .314}$0.9057$ & \cellcolor[rgb]{ 0, .69, .314}$0.7156$ & \cellcolor[rgb]{ 0, .69, .314}$5.9174$ & 6.75 \\ \hhline{|-|-|-|-|-|} \textbf{Domino} & \cellcolor[rgb]{ 1, 1, 0}$0.8282$ & \cellcolor[rgb]{ 1, 1, 0}$0.6178$ & \cellcolor[rgb]{ 1, 1, 0}$25.6869$ & 5.75 \\ \hhline{|-|-|-|-|-|} \textbf{Pe\~{n}a-Prieto} & \cellcolor[rgb]{ 1, 0.44, 0.37}0.7873 & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.5511$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$84.0113$ & 6.50 \\ \hline \end{tabular}}} } \caption{Performances for DJIA.} \label{tab:DJIAperf}% \end{table}
[ [ "Method", "AUC", "BCV", "Time (min.)", "β∗" ], [ "MaxCGF", "0.9057", "0.7156", "5.9174", "6.75" ], [ "Domino", "0.8282", "0.6178", "25.6869", "5.75" ], [ "Pen˜a-Prieto", "0.7873", "0.5511", "84.0113", "6.50" ] ]
0.460208
null
null
6
2305.10911v1
25
[ 63.68640060424805, 554.7559814453125, 553.6804077148438, 615.9660034179688 ]
\begin{table}[htbp] \centering \vspace{5pt} {\renewcommand{\arraystretch}{1.1} \hspace*{-10pt}{\small{ \begin{tabular}{*{5}{!{\vrule width 0.9pt}p{3cm}}!{\vrule width 1.5pt}} \hline \textbf{Method} & \textbf{AUC} & \textbf{BCV} & \textbf{Time (min.)} & $\boldsymbol{\beta}^{*}$ \\ \hhline{|-|-|-|-|-|} \textbf{MaxCGF} & \cellcolor[rgb]{ 0, .69, .314} $0.8312$ & \cellcolor[rgb]{ 0, .69, .314}$0.5666$ & \cellcolor[rgb]{ 0, .69, .314}$3.6558$ & 8.00 \\ \hhline{|-|-|-|-|-|} \textbf{Domino} & \cellcolor[rgb]{ 1, 0.44, 0.37} $0.7480$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.4713$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$92.4653$ & 7.50 \\ \hhline{|-|-|-|-|-|} \textbf{Pe\~{n}a-Prieto} & - & - & - & - \\ \hline \end{tabular}}} } \caption{Performances for STOXX50.} \label{tab:ESTXperf}% \end{table}
[ [ "Method", "AUC", "BCV", "Time (min.)", "β∗" ], [ "MaxCGF", "0.8312", "0.5666", "3.6558", "8.00" ], [ "Domino", "0.7480", "0.4713", "92.4653", "7.50" ], [ "Pen˜a-Prieto", "-", "-", "-", "-" ] ]
0.475992
null
null
7
2305.10911v1
26
[ 63.68640060424805, 80.7039794921875, 553.6804077148438, 141.91497802734375 ]
\begin{table}[htbp] \centering \vspace{5pt} {\renewcommand{\arraystretch}{1.1} \hspace*{-10pt}{\small{ \begin{tabular}{*{5}{!{\vrule width 0.9pt}p{3cm}}!{\vrule width 1.5pt}} \hline \textbf{Method} & \textbf{AUC} & \textbf{BCV} & \textbf{Time (min.)} & $\boldsymbol{\beta}^{*}$ \\ \hhline{|-|-|-|-|-|} \textbf{MaxCGF} & \cellcolor[rgb]{ 0, .69, .314}$0.8866$ & \cellcolor[rgb]{ 0, .69, .314}$0.6555$ & \cellcolor[rgb]{ 0, .69, .314}$3.8149$ & 5.75 \\ \hhline{|-|-|-|-|-|} \textbf{Domino} & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.7924$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.5701$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$17.2033$ & 7.00\\ \hhline{|-|-|-|-|-|} \textbf{Pe\~{n}a-Prieto} & - & - & - & -\\ \hline \end{tabular}}} } \caption{Performances for DAX.} \label{tab:DAXperf}% \end{table}
[ [ "Method", "AUC", "BCV", "Time (min.)", "β∗" ], [ "MaxCGF", "0.8866", "0.6555", "3.8149", "5.75" ], [ "Domino", "0.7924", "0.5701", "17.2033", "7.00" ], [ "Pen˜a-Prieto", "-", "-", "-", "-" ] ]
0.483051
null
null
8
2305.10911v1
26
[ 63.68640060424805, 186.3070068359375, 553.6804077148438, 247.51800537109375 ]
\begin{table}[htbp] \centering \vspace{5pt} {\renewcommand{\arraystretch}{1.1} \hspace*{-10pt}{\small{ \begin{tabular}{*{5}{!{\vrule width 0.9pt}p{3cm}}!{\vrule width 1.5pt}} \hline \textbf{Method} & \textbf{AUC} & \textbf{BCV} & \textbf{Time (min.)} & $\boldsymbol{\beta}^{*}$ \\ \hhline{|-|-|-|-|-|} \textbf{MaxCGF} & \cellcolor[rgb]{ 0, .69, .314} $0.8326$ & \cellcolor[rgb]{ 0, .69, .314}$0.5187$ & \cellcolor[rgb]{ 0, .69, .314}$3.7390$ & 8.25 \\ \hhline{|-|-|-|-|-|} \textbf{Domino} & \cellcolor[rgb]{ 1, 0.44, 0.37} $0.7391$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.4637$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$75.1684$ & 6.50 \\ \hhline{|-|-|-|-|-|} \textbf{Pe\~{n}a-Prieto} & - & - & - & - \\ \hline \end{tabular}}} } \caption{Performances for CAC.} \label{tab:CAC40perf}% \end{table}
[ [ "Method", "AUC", "BCV", "Time (min.)", "β∗" ], [ "MaxCGF", "0.8326", "0.5187", "3.7390", "8.25" ], [ "Domino", "0.7391", "0.4637", "75.1684", "6.50" ], [ "Pen˜a-Prieto", "-", "-", "-", "-" ] ]
0.478992
null
null
9
2305.10911v1
26
[ 63.68640060424805, 291.9100036621094, 553.6804077148438, 353.1210021972656 ]
\begin{table}[htbp] \centering \vspace{5pt} {\renewcommand{\arraystretch}{1.1} \hspace*{-10pt}{\small{ \begin{tabular}{*{5}{!{\vrule width 0.9pt}p{3cm}}!{\vrule width 1.5pt}} \hline \textbf{Method} & \textbf{AUC} & \textbf{BCV} & \textbf{Time (min.)} & $\boldsymbol{\beta}^{*}$ \\ \hhline{|-|-|-|-|-|} \textbf{MaxCGF} & \cellcolor[rgb]{ 0, .69, .314} $0.8021$ & \cellcolor[rgb]{ 0, .69, .314}$0.5207$ & \cellcolor[rgb]{ 0, .69, .314}$5.4309$ & 7.50 \\ \hhline{|-|-|-|-|-|} \textbf{Domino} & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.7061$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.4641$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$2644.9669$ & 7.50 \\ \hhline{|-|-|-|-|-|} \textbf{Pe\~{n}a-Prieto} & - & - & - & - \\ \hline \end{tabular}}} } \caption{Performances for FTSE.} \label{tab:FTSEperf}% \end{table}
[ [ "Method", "AUC", "BCV", "Time (min.)", "β∗" ], [ "MaxCGF", "0.8021", "0.5207", "5.4309", "7.50" ], [ "Domino", "0.7061", "0.4641", "2644.9669", "7.50" ], [ "Pen˜a-Prieto", "-", "-", "-", "-" ] ]
0.484342
null
null
10
2305.10911v1
26
[ 63.68640060424805, 397.51300048828125, 553.6804077148438, 458.7239990234375 ]
\begin{table}[htbp] \centering \vspace{5pt} {\renewcommand{\arraystretch}{1.1} \hspace*{-10pt}{\small{ \begin{tabular}{*{5}{!{\vrule width 0.9pt}p{3cm}}!{\vrule width 1.5pt}} \hline \textbf{Method} & \textbf{AUC} & \textbf{BCV} & \textbf{Time (min.)} & $\boldsymbol{\beta}^{*}$ \\ \hhline{|-|-|-|-|-|} \textbf{MaxCGF} & \cellcolor[rgb]{ 0, .69, .314}$0.8643$ & \cellcolor[rgb]{ 0, .69, .314}$0.5474$ & \cellcolor[rgb]{ 0, .69, .314}$6.2306$ & 7.75 \\ \hhline{|-|-|-|-|-|} \textbf{Domino} & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.6794$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.3624$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$2986.0548$ & 7.75 \\ \hhline{|-|-|-|-|-|} \textbf{Pe\~{n}a-Prieto} & - & - & - & - \\ \hline \end{tabular}}} } \caption{Performances for N100.} \label{tab:ENXperf}% \end{table}
[ [ "Method", "AUC", "BCV", "Time (min.)", "β∗" ], [ "MaxCGF", "0.8643", "0.5474", "6.2306", "7.75" ], [ "Domino", "0.6794", "0.3624", "2986.0548", "7.75" ], [ "Pen˜a-Prieto", "-", "-", "-", "-" ] ]
0.486373
null
null
0
2202.01947v1
10
[ 181.30999755859375, 86.00799560546875, 413.96600341796875, 186.23199462890625 ]
\begin{table} \tbl{Response patterns and sample sizes for ADNI data.} {\begin{tabular}{c|c|cccc|c} \hline & \multicolumn{5}{c|}{Data source} & \\ \hline $k$ & MMSE & CSF & PET & MRI & GENE & Sample size \\ \hline 1 & $\ast$ & $\ast$ & $\ast$ & $\ast$ & $\ast$ & 409 \\ 2 & $\ast$ & $\ast$ & $\ast$ & $\ast$ & & 368 \\ 3 & $\ast$ & $\ast$ & $\ast$ & & $\ast$ & 40 \\ 4 & $\ast$ & & $\ast$ & $\ast$ & $\ast$ & 105 \\ 5 & $\ast$ & & $\ast$ & & $\ast$ & 86 \\ 6 & $\ast$ & & $\ast$ & $\ast$ & & 53 \\ 7 & $\ast$ & & & & $\ast$ & 53 \\ 8 & $\ast$ & & & $\ast$ & & 56 \\ \hline & & & & & Total & 1170 \\ \hline \end{tabular}} \tabnote{{$\ast$}the datum is available.} \label{table1}% \end{table}
[ [ "", "Data source", null, "" ], [ "k", "MMSE", "CSF PET MRI GENE", "Sample size" ], [ "1\n2\n3\n4\n5\n6\n7\n8", "∗\n∗\n∗\n∗\n∗\n∗\n∗\n∗", "∗ ∗ ∗ ∗\n∗ ∗ ∗\n∗ ∗ ∗\n∗ ∗ ∗\n∗ ∗\n∗ ∗\n∗\n∗", "409\n368\n40\n105\n86\n53\n53\n56" ], [ "", "", "Total", "1170" ] ]
0.453202
null
null
0
1909.10578v1
5
[ 311.9779968261719, 65.08697509765625, 567.6640014648438, 213.72998046875 ]
\begin{table}[t!] \centering \scriptsize %\tiny \caption{List of assets in the portfolios \textit{usht}, and \textit{eucar}.} % , including Yahoo ticker, asset type, industry sector, description, and currency.} \setlength\tabcolsep{0.15cm} \begin{tabular}{|c|| c|c|c|c|c| } % \hline % & & \multicolumn{5}{c||}{\textbf{Training DOE}} & \multicolumn{5}{c|}{\textbf{Test DOE}} \\ \hline & \textbf{Ticker} & \textbf{Type} & \textbf{Industry} & \textbf{Description} & \textbf{Cur.} \\ \hline \hline \multirow{11}{*}{\textit{usgen}} & GOOG & Share & IT & Alphabet & USD \\ & MSFT & Share & IT & Microsoft & USD \\ \cline{2-6} & \textit{CELG} & Share & Healthcare & Celgene & USD \\ & PFE & Share & Healthcare & Pfizer & USD \\ \cline{2-6} & HES & Share & Energy & Hess & USD \\ & XOM & Share & Energy & Exxon Mobil & USD \\ \cline{2-6} & KR & Share & Consumer staples & The Kroger & USD \\ & WBA & Share & Consumer staples & Walgreens Boots Alliance & USD \\ \cline{2-6} & IYY & ETF & Dow Jones & iShares Dow Jones & USD \\ & IYR & ETF & Real estate & iShares US Real Estate & USD \\ & SHY & ETF & US treasury bond & iShares Treasury Bond & USD \\ \hline \hline \multirow{6}{*}{\textit{eucar}} & BMW.DE & Share & Automotive & BMW & EUR \\ & FCA.MI & Share & Automotive & Fiat Chrysler Automobiles & EUR \\ & UG.PA & Share & Automotive & Peugeot & EUR \\ & VOW3.DE & Share & Automotive & Volkswagen & EUR \\ \cline{2-6} & $\hat{ }$~FCHI & Index & French market & CAC 40 & EUR \\ & $\hat{ }$~GDAXI & Index & German market & DAX & EUR \\ \hline \end{tabular} \label{tab:portfolios} \end{table}
[ [ "", "Ticker", "Type", "Industry", "Description", "Cur." ], [ "usgen", "GOOG\nMSFT", "Share\nShare", "IT\nIT", "Alphabet\nMicrosoft", "USD\nUSD" ], [ null, "CELG\nPFE", "Share\nShare", "Healthcare\nHealthcare", "Celgene\nPfizer", "USD\nUSD" ], [ null, "HES\nXOM", "Share\nShare", "Energy\nEnergy", "Hess\nExxon Mobil", "USD\nUSD" ], [ null, "KR\nWBA", "Share\nShare", "Consumer staples\nConsumer staples", "The Kroger\nWalgreens Boots Alliance", "USD\nUSD" ], [ null, "IYY\nIYR\nSHY", "ETF\nETF\nETF", "Dow Jones\nReal estate\nUS treasury bond", "iShares Dow Jones\niShares US Real Estate\niShares Treasury Bond", "USD\nUSD\nUSD" ], [ "eucar", "BMW.DE\nFCA.MI\nUG.PA\nVOW3.DE", "Share\nShare\nShare\nShare", "Automotive\nAutomotive\nAutomotive\nAutomotive", "BMW\nFiat Chrysler Automobiles\nPeugeot\nVolkswagen", "EUR\nEUR\nEUR\nEUR" ], [ null, "ˆFCHI\nˆGDAXI", "Index\nIndex", "French market\nGerman market", "CAC 40\nDAX", "EUR\nEUR" ] ]
0.50672
null
null
0
2101.00523v2
33
[ 313.6881072998047, 222.4849853515625, 460.31199340820314, 333.6679992675781 ]
\begin{table}[] \centering \begin{tabular}{|c|c|} \hline \textbf{Parameter} & \textbf{baseline value}\tabularnewline \hline $D$ & 0.00035 \\ \hline $\chi$ & 0.38 \\ \hline $\rho$ & 0.34\\ \hline $\beta$ & 0.05 \\ \hline $\gamma$ & 0.1 \\ \hline $\epsilon_1$ & 0.45 \\ \hline $\epsilon_2$ & 0.45 \\ \hline $k$ & 0.75 \\ \hline \end{tabular} \vspace{0.1cm} \textbf{S2 Table. Anderson-Chaplain model nondimensionalized parameters.} Baseline nondimensionalized mechanistic parameters for the Chaplain-Anderson Model from \cite{anderson_continuous_1998}. \label{tab:SItab2} \end{table}
[ [ "Parameter", "baseline value" ], [ "D", "0.00035" ], [ "χ", "0.38" ], [ "ρ", "0.34" ], [ "β", "0.05" ], [ "γ", "0.1" ], [ "ϵ\n1", "0.45" ], [ "ϵ\n2", "0.45" ], [ "k", "0.75" ] ]
0.389027
null
null
0
2103.11233v4
5
[ 211.28485688709077, 295.8224182128906, 400.9983840215774, 389.3440246582031 ]
\begin{table}[htbp] \caption{Signals' details and summary of parameters} \centering \scalebox{0.8}{\begin{tabular}{|| c | c | c | c | c ||} \hline Labels & Samples & $(L,a,b)$ & $x_0$ & $\mu_i$, $i=1,2,3,*$\\ \hline\hline Cusp & 33 & $(33,1,11)$ & zero vector & $\|\Phi_ix\|_\infty$\\ \hline Ramp & 33 & $(33,1,11)$ & zero vector & $\|\Phi_ix\|_\infty$\\ \hline Sing & 45 & $(45,1,9)$ & zero vector & $\|\Phi_ix\|_\infty$\\ \hline SI1899 & 22938 & $(20349,19,21)$ & $A^TAx$ & $10^{-1}\|\Phi_ix\|_\infty$\\ \hline SI1948 & 27680 & $(27531,19,23)$ & $A^TAx$ & $10^{-1}\|\Phi_ix\|_\infty$\\ \hline SI2141 & 42800 & $(41769,21,17)$ & $A^TAx$ & $10^{-1}\|\Phi_ix\|_\infty$\\ \hline SX5 & 24167 & $(23205,17,13)$ & $A^TAx$ & $10^{-1}\|\Phi_ix\|_\infty$\\ \hline SX224 & 25805 & $(24633,23,21)$ & $A^TAx$ & $10^{-1}\|\Phi_ix\|_\infty$\\ \hline SI1716 & 25908 & $(24633,23,21)$ & $A^TAx$ & $\|\Phi_ix\|_\infty$\\ \hline \end{tabular}} \label{sigdec} \end{table}
[ [ "Labels", "Samples", "(L, a, b)", "x0", "µi, i = 1, 2, 3, ∗" ], [ "Cusp", "33", "(33, 1, 11)", "zero vector", "∥Φix∥∞" ], [ "Ramp", "33", "(33, 1, 11)", "zero vector", "∥Φix∥∞" ], [ "Sing", "45", "(45, 1, 9)", "zero vector", "∥Φix∥∞" ], [ "SI1899", "22938", "(20349, 19, 21)", "AT Ax", "10−1 ∥Φix∥∞" ], [ "SI1948", "27680", "(27531, 19, 23)", "AT Ax", "10−1 ∥Φix∥∞" ], [ "SI2141", "42800", "(41769, 21, 17)", "AT Ax", "10−1 ∥Φix∥∞" ], [ "SX5", "24167", "(23205, 17, 13)", "AT Ax", "10−1 ∥Φix∥∞" ], [ "SX224", "25805", "(24633, 23, 21)", "AT Ax", "10−1 ∥Φix∥∞" ], [ "SI1716", "25908", "(24633, 23, 21)", "AT Ax", "∥Φix∥∞" ] ]
0.524554
null
null
0
2401.06452v1
12
[ 187.1016616821289, 290.6700134277344, 424.8981577555339, 352.43798828125 ]
\begin{table}[] \caption{Hyperparameters of the BO-Auto-PU system, with their default values.}\label{tab2} \centering \small \begin{tabular}{|l|l|} \hline Hyperparameter & Value \\\hline \(It\_count\) & 50 \\\hline \(\#Configs\) & 101 \\\hline \(Surr\_model\) & Random Forest Regressor \\\hline \(Acquisition function\) & \(Surr\_model\) predicted value \\ \hline \end{tabular} \end{table}
[ [ "Hyperparameter", "Value" ], [ "It count", "50" ], [ "#Configs", "101" ], [ "Surr model", "Random Forest Regressor" ], [ "Acquisitionfunction", "Surr model predicted value" ] ]
0.946565
null
null
1
2401.06452v1
13
[ 165.7580993652344, 111.71697998046875, 446.24188842773435, 222.9000244140625 ]
\begin{table}[] \caption{Hyperparameters of the EBO-Auto-PU system, with their default values.}\label{tab3} \centering \small \begin{tabular}{|l|l|} \hline Hyperparameter & Value \\ \hline \(\#Configs\) & 101 \\ \hline \(It\_count\) & 50 \\ \hline \(Surr\_model\) & Random Forest Regressor \\ \hline Crossover probability & 0.9 \\ \hline Component crossover probability & 0.5 \\ \hline Mutation probability & 0.1 \\ \hline Tournament size & 2 \\ \hline \(k\) & 10 \\ \hline \end{tabular} \end{table}
[ [ "Hyperparameter", "Value" ], [ "#Configs", "101" ], [ "It count", "50" ], [ "Surr model", "Random Forest Regressor" ], [ "Crossover probability", "0.9" ], [ "Component crossover probability", "0.5" ], [ "Mutation probability", "0.1" ], [ "Tournament size", "2" ], [ "k", "10" ] ]
0.974093
null
null
2
2401.06452v1
21
[ 188.83457728794642, 552.6729736328125, 423.16542271205356, 638.7509765625 ]
\begin{table}[htbp] \caption{Linear (Pearson’s) correlation coefficient value between the F-measure and the percentage of positive examples in the original dataset (before hiding some positive examples in the unlabelled set) for each combination of an Auto-PU system (with base search space) or PU method and a \(\delta\) value}\label{tab6} \centering \small \begin{tabular}{|l|c|c|c|} \hline \begin{tabular}[c]{@{}l@{}}Auto-PU system \\ or PU method\end{tabular} & \(\delta\) = 20\% & \(\delta\) = 40\% & \(\delta\) = 60\% \\ \hline EBO-1 & 0.440 & 0.469 & 0.460 \\ \hline BO-1 & 0.398 & 0.360 & 0.498 \\ \hline GA-1 & 0.333 & 0.385 & 0.504 \\ \hline DF-PU & 0.381 & 0.504 & 0.445 \\ \hline S-EM & 0.690 & 0.631 & 0.686 \\ \hline \end{tabular} \end{table}
[ [ "Auto-PU system\nor PU method", "δ = 20%", "δ = 40%", "δ = 60%" ], [ "EBO-1", "0.440", "0.469", "0.460" ], [ "BO-1", "0.398", "0.360", "0.498" ], [ "GA-1", "0.333", "0.385", "0.504" ], [ "DF-PU", "0.381", "0.504", "0.445" ], [ "S-EM", "0.690", "0.631", "0.686" ] ]
0.816901
null
null
3
2401.06452v1
27
[ 208.19256591796875, 424.61700439453125, 403.8074210030692, 498.739013671875 ]
\begin{table}[htbp] \caption{Linear (Pearson’s) correlation coefficient value between the F-measure and the percentage of positive examples in the original dataset (before hiding some positive examples in the unlabelled set) for each combination of an Auto-PU system (with extended search space) or PU method and a \(\delta\) value}\label{tab11} \centering \small \begin{tabular}{|l|l|l|l|} \hline \multicolumn{1}{|c|}{Method} & \multicolumn{1}{c|}{\(\delta\) = 20\%} & \multicolumn{1}{c|}{\(\delta\) = 40\%} & \multicolumn{1}{c|}{\(\delta\) = 60\%} \\ \hline EBO-2 & 0.363 & 0.361 & 0.447 \\ \hline BO-2 & 0.339 & 0.348 & 0.225 \\ \hline GA-2 & 0.340 & 0.357 & 0.580 \\ \hline DF-PU & 0.381 & 0.504 & 0.445 \\ \hline S-EM & 0.690 & 0.631 & 0.686 \\ \hline \end{tabular} \end{table}
[ [ "Method", "δ = 20%", "δ = 40%", "δ = 60%" ], [ "EBO-2", "0.363", "0.361", "0.447" ], [ "BO-2", "0.339", "0.348", "0.225" ], [ "GA-2", "0.340", "0.357", "0.580" ], [ "DF-PU", "0.381", "0.504", "0.445" ], [ "S-EM", "0.690", "0.631", "0.686" ] ]
0.875776
null
null
4
2401.06452v1
30
[ 98.25995185158469, 118.4990234375, 513.7401067560369, 385.89599609375 ]
\begin{table}[] \caption{Hyperparameter values most frequently selected by BO-Auto-PU}\label{tab14} \centering \small \begin{tabular}{|l|l|l|ll|ll|ll|} \hline \textbf{Hyperparameter} & \textbf{\begin{tabular}[c]{@{}l@{}}Search \\ space\end{tabular}} & \textbf{\begin{tabular}[c]{@{}l@{}}Most selected \\ value\end{tabular}} & \multicolumn{2}{l|}{\textbf{\begin{tabular}[c]{@{}l@{}}Selection\\ Freq. (\%)\end{tabular}}} & \multicolumn{2}{l|}{\textbf{\begin{tabular}[c]{@{}l@{}}Baseline \\ Freq. (\%)\end{tabular}}} & \multicolumn{2}{l|}{\textbf{\begin{tabular}[c]{@{}l@{}}Diff.\\ (\%)\end{tabular}}} \\ \hline \multirow{2}{*}{Phase 1A Iteration Count} & base & 2 & \multicolumn{2}{l|}{19.00} & \multicolumn{2}{l|}{10.00} & \multicolumn{2}{l|}{9.00} \\ \cline{2-9} & extended & 2 & \multicolumn{2}{l|}{21.00} & \multicolumn{2}{l|}{10.00} & \multicolumn{2}{l|}{11.00} \\ \hline \multirow{2}{*}{Phase 1A RN Threshold} & base & 0.05 & \multicolumn{2}{l|}{14.33} & \multicolumn{2}{l|}{10.00} & \multicolumn{2}{l|}{4.33} \\ \cline{2-9} & extended & 0.25 & \multicolumn{2}{l|}{13.00} & \multicolumn{2}{l|}{10.00} & \multicolumn{2}{l|}{3.00} \\ \hline \multirow{2}{*}{Phase 1A Classifier} & base & Bernoulli NB & \multicolumn{2}{l|}{8.67} & \multicolumn{2}{l|}{5.56} & \multicolumn{2}{l|}{3.11} \\ \cline{2-9} & extended & Logistic reg. & \multicolumn{2}{l|}{8.67} & \multicolumn{2}{l|}{5.56} & \multicolumn{2}{l|}{3.11} \\ \hline \multirow{2}{*}{Phase 1B Flag} & base & True & \multicolumn{2}{l|}{52.67} & \multicolumn{2}{l|}{50.00} & \multicolumn{2}{l|}{2.67} \\ \cline{2-9} & extended & True & \multicolumn{2}{l|}{50.67} & \multicolumn{2}{l|}{50.00} & \multicolumn{2}{l|}{0.67} \\ \hline \multirow{2}{*}{Phase 1B RN Threshold} & base & 0.2 & \multicolumn{2}{l|}{14.00} & \multicolumn{2}{l|}{10.00} & \multicolumn{2}{l|}{4.00} \\ \cline{2-9} & extended & 0.2 & \multicolumn{2}{l|}{14.67} & \multicolumn{2}{l|}{10.00} & \multicolumn{2}{l|}{4.67} \\ \hline \multirow{2}{*}{Phase 1B Classifier} & base & HGBoost & \multicolumn{2}{l|}{8.00} & \multicolumn{2}{l|}{5.56} & \multicolumn{2}{l|}{2.44} \\ \cline{2-9} & extended & Bagging clas. & \multicolumn{2}{l|}{7.67} & \multicolumn{2}{l|}{5.56} & \multicolumn{2}{l|}{2.11} \\ \hline \multirow{2}{*}{Spy rate} & base & N/A & \multicolumn{2}{l|}{N/A} & \multicolumn{2}{l|}{N/A} & \multicolumn{2}{l|}{N/A} \\ \cline{2-9} & extended & 0.3 & \multicolumn{2}{l|}{18.00} & \multicolumn{2}{l|}{14.29} & \multicolumn{2}{l|}{3.71} \\ \hline \multirow{2}{*}{Spy tolerance} & base & N/A & \multicolumn{2}{l|}{N/A} & \multicolumn{2}{l|}{N/A} & \multicolumn{2}{l|}{N/A} \\ \cline{2-9} & extended & 0.08 & \multicolumn{2}{l|}{12.18} & \multicolumn{2}{l|}{9.09} & \multicolumn{2}{l|}{3.09} \\ \hline \multirow{2}{*}{Spy flag} & base & N/A & \multicolumn{2}{l|}{N/A} & \multicolumn{2}{l|}{N/A} & \multicolumn{2}{l|}{N/A} \\ \cline{2-9} & extended & False & \multicolumn{2}{l|}{74.00} & \multicolumn{2}{l|}{50.00} & \multicolumn{2}{l|}{24.00} \\ \hline \multirow{2}{*}{Phase 2 Classifier} & base & LDA & \multicolumn{2}{l|}{32.67} & \multicolumn{2}{l|}{5.56} & \multicolumn{2}{l|}{27.11} \\ \cline{2-9} & extended & LDA & \multicolumn{2}{l|}{51.67} & \multicolumn{2}{l|}{5.56} & \multicolumn{2}{l|}{46.11} \\ \hline \end{tabular} \end{table}
[ [ "Hyperparameter", "Search\nspace", "Most selected\nvalue", "Selection\nFreq. (%)", "Baseline\nFreq. (%)", "Diff.\n(%)" ], [ "Phase 1A Iteration Count", "base", "2", "19.00", "10.00", "9.00" ], [ null, "extended", "2", "21.00", "10.00", "11.00" ], [ "Phase 1A RN Threshold", "base", "0.05", "14.33", "10.00", "4.33" ], [ null, "extended", "0.25", "13.00", "10.00", "3.00" ], [ "Phase 1A Classifier", "base", "Bernoulli NB", "8.67", "5.56", "3.11" ], [ null, "extended", "Logistic reg.", "8.67", "5.56", "3.11" ], [ "Phase 1B Flag", "base", "True", "52.67", "50.00", "2.67" ], [ null, "extended", "True", "50.67", "50.00", "0.67" ], [ "Phase 1B RN Threshold", "base", "0.2", "14.00", "10.00", "4.00" ], [ null, "extended", "0.2", "14.67", "10.00", "4.67" ], [ "Phase 1B Classifier", "base", "HGBoost", "8.00", "5.56", "2.44" ], [ null, "extended", "Bagging clas.", "7.67", "5.56", "2.11" ], [ "Spy rate", "base", "N/A", "N/A", "N/A", "N/A" ], [ null, "extended", "0.3", "18.00", "14.29", "3.71" ], [ "Spy tolerance", "base", "N/A", "N/A", "N/A", "N/A" ], [ null, "extended", "0.08", "12.18", "9.09", "3.09" ], [ "Spy flag", "base", "N/A", "N/A", "N/A", "N/A" ], [ null, "extended", "False", "74.00", "50.00", "24.00" ], [ "Phase 2 Classifier", "base", "LDA", "32.67", "5.56", "27.11" ], [ null, "extended", "LDA", "51.67", "5.56", "46.11" ] ]
0.441176
null
null
5
2401.06452v1
31
[ 198.05100440979004, 139.5830078125, 413.9488830566406, 226.05902099609375 ]
\begin{table}[] \centering \caption{Pearson’s correlation coefficient values for Phase 1A iteration count to class imbalance. }\label{tab16} \centering \small \begin{tabular}{|l|l|l|l|} \hline \multicolumn{1}{|c|}{\textbf{Method}} & \multicolumn{1}{c|}{\textbf{\(\delta\) = 20\%}} & \multicolumn{1}{c|}{\textbf{\(\delta\) = 40\%}} & \multicolumn{1}{c|}{\textbf{\(\delta\) = 60\%}} \\ \hline GA-1 & -0.646 & -0.655 & -0.689 \\ \hline GA-2 & -0.631 & -0.687 & -0.723 \\ \hline BO-1 & -0.677 & -0.700 & -0.700 \\ \hline BO-2 & -0.641 & -0.706 & -0.736 \\ \hline EBO-1 & -0.656 & -0.688 & -0.696 \\ \hline EBO-2 & -0.680 & -0.710 & -0.687 \\ \hline \end{tabular} \end{table}
[ [ "Method", "δ = 20%", "δ = 40%", "δ = 60%" ], [ "GA-1", "-0.646", "-0.655", "-0.689" ], [ "GA-2", "-0.631", "-0.687", "-0.723" ], [ "BO-1", "-0.677", "-0.700", "-0.700" ], [ "BO-2", "-0.641", "-0.706", "-0.736" ], [ "EBO-1", "-0.656", "-0.688", "-0.696" ], [ "EBO-2", "-0.680", "-0.710", "-0.687" ] ]
0.90099
null
null
0
1701.02440v1
12
[ 241.6300048828125, 524.5880126953125, 368.62200927734375, 612.0590209960938 ]
\begin{table}[h] \centering \label{table_results} \begin{tabular}{|c|c|c|} \hline & Decay & Diff.\\ Gene & ($\lambda^a$) & ($D^a$) \\ \hline Hb & 0.1606 & 0.3669 \\ Kr & 0.0797 & 0.4490 \\ Gt & 0.1084 & 0.4543 \\ Kni & 0.0807 & 0.2683 \\ \hline \end{tabular} \caption{Inferred parameter values for the decay $\lambda^a$ and diffusion $D^a$ rates of protein $a$.} \end{table}
[ [ "Gene", "Decay\n(λa)", "Diff.\n(Da)" ], [ "Hb\nKr\nGt\nKni", "0.1606\n0.0797\n0.1084\n0.0807", "0.3669\n0.4490\n0.4543\n0.2683" ] ]
0.385714
null
null
0
2008.10893v1
23
[ 101.90603256225586, 126.50918579101562, 512.7994079589844, 217.797119140625 ]
\begin{table}[!ht] \begin{center} \resizebox{\textwidth}{!}{ \begin{tabular}{ |c|ll|ll|ll|ll|} \hline & $\abs{y_\mathcal{N}-y^*_h}_1$ & $\abs{y_\mathcal{N}-y^*_h}_1$ & $\abs{y_\mathcal{N}-y^*}_1$ & $\abs{y_\mathcal{N}-y^*}_1$ & $\norm{y_\mathcal{N}-y^*_h}_0$ & $\norm{y_\mathcal{N}-y^*_h}_0$ &$\norm{y_\mathcal{N}-y^*}_0$ & $\norm{y_\mathcal{N}-y^*}_0$ \\ \hline & min & max & min & max & min & max & min & max \\ \hline 1-L & $0.2506 $ & $0.6532 $ & $ 0.2868 $ & $ 0.6713 $ & $0.0752 $ & $ 0.2422 $ & $0.0808 $ & $0.2435 $ \\ \hline 3-L & $ 0.2575 $ & $0.7537 $ & $ 0.2391 $ & $0.7777 $ & $ 0.0817 $ & $0.2524 $ & $0.0791 $ & $0.2565 $ \\ \hline 5-L & $0.2157 $ & $36.2640 $ & $ 0.2235 $ & $ 36.2731 $ & $0.0539 $ & $29.4926 $ & $ 0.0544 $ & $ 29.4936 $ \\ \hline & mean& deviation & mean & deviation & mean& deviation & mean& deviation \\ \hline 1-L & $0.4276 $ & $0.1099 $ & $ 0.4496 $ & $ 0.1075 $ & $0.1472 $ & $ 0.0484 $ & $0.1506 $ & $0.0485 $ \\ \hline 3-L & $ 0.3853 $ & $0.1350 $ & $ 0.4003 $ & $0.1687 $ & $ 0.1425 $ & $0.0462 $ & $0.1268 $ & $0.0482 $ \\ \hline 5-L & $3.0242 $ & $ 8.9087 $ & $3.0287 $ & $8.9103 $ & $ 2.1309 $ & $7.3143 $ & $ 2.1299 $ & $ 7.3149 $ \\ \hline \end{tabular}} {\small \caption{\label{tab:layer_comparison}Statistics on learning-informed PDEs with different layers in neural networks using small size training data, small DoF in $\Theta$, and 15 samples in total.}} \end{center} \end{table}
[ [ "", "|y −y h∗|1 |y −y h∗|1\nN N", "|y −y∗|1 |y −y∗|1\nN N", "∥y −y h∗∥0 ∥y −y h∗∥0\nN N", "∥y −y∗∥0 ∥y −y∗∥0\nN N" ], [ "", "min max", "min max", "min max", "min max" ], [ "1-L", "0.2506 0.6532", "0.2868 0.6713", "0.0752 0.2422", "0.0808 0.2435" ], [ "3-L", "0.2575 0.7537", "0.2391 0.7777", "0.0817 0.2524", "0.0791 0.2565" ], [ "5-L", "0.2157 36.2640", "0.2235 36.2731", "0.0539 29.4926", "0.0544 29.4936" ], [ "", "mean deviation", "mean deviation", "mean deviation", "mean deviation" ], [ "1-L", "0.4276 0.1099", "0.4496 0.1075", "0.1472 0.0484", "0.1506 0.0485" ], [ "3-L", "0.3853 0.1350", "0.4003 0.1687", "0.1425 0.0462", "0.1268 0.0482" ], [ "5-L", "3.0242 8.9087", "3.0287 8.9103", "2.1309 7.3143", "2.1299 7.3149" ] ]
0.703902
null
null
0
2310.14848v1
18
[ 64.23982100053267, 84.16400146484375, 284.74709250710225, 262.9840087890625 ]
\begin{table}[htbp] \centering \caption{Efficiency} \label{E&F} \begin{tabular}{|c|c|c|} \hline \thead{Computation} & \thead{Scheme} & \thead{Efficiency\\(P/V/C)} \\ \hline \multirow{2}{*}{\thead{MatrixMult\\$O(n^3)$}} & \thead{SafetyNets} & \thead{$O(n^2)$ / $O(n^2)$/ $O(\log n)$} \\ \cline{2-3} % \multicolumn{1}{|c|}{} & \multicolumn{1}{c|}{} & & \thead{Mystique} & $\CIRCLE$ & $\CIRCLE$ & $\CIRCLE$ & \thead{extended\\privacy} & $O(n^2)$ \\ \cline{4-9} % \\(hybrid\\commitment) & \thead{Mystique,\\Fan,\\zkMLaaS} & $O(n^2)/O(n^2)/O(1)$ \\ \cline{1-3} % \\(threshold\\cryptosystem\\\& noise) \multirow{5}{*}{\thead{Convolution\\$O(n^2w^2)$}} & \thead{SafeTPU} & -- \\ \cline{2-3} & \thead{zkCNN} & \thead{$O(n^2)/O(\log^2n)/$/$O(\log^2n)$} \\ \cline{2-3} & \thead{vCNN} & $O(n^2)/O(n^2)/O(1)$ \\ \cline{2-3} % \\(CP-SNARK) & \thead{pvCNN} & $O(n^2)/O(n^2)/O(1)$ \\ \cline{2-3} % \\(network\\splitting) & \thead{Fan} & $O(n^2)/O(n^2)/O(1)$ \\ \cline{1-3} % \\(network\\splitting) \multirow{2}{*}{\thead{Decision Tree\\$O(hd)$}} & \thead{zkDT} & \thead{$O(d\log d)/$/$O(d)/O(\log^2d)$} \\ \cline{2-3} & \thead{Singh} & \thead{$O(d\log d)/$/$O(d)/O(1)$} \\ \hline % \\(polynomial\\interpolation) \end{tabular} \end{table}
[ [ "Computation", "Scheme", "Efficiency\n(P/V/C)" ], [ "MatrixMult\nO(n3)", "SafetyNets", "O(n2) / O(n2)/ O(log n)" ], [ null, "Mystique,\nFan,\nzkMLaaS", "O(n2)/O(n2)/O(1)" ], [ "Convolution\nO(n2w2)", "SafeTPU", "–" ], [ null, "zkCNN", "O(n2)/O(log2 n)//O(log2 n)" ], [ null, "vCNN", "O(n2)/O(n2)/O(1)" ], [ null, "pvCNN", "O(n2)/O(n2)/O(1)" ], [ null, "Fan", "O(n2)/O(n2)/O(1)" ], [ "Decision Tree\nO(hd)", "zkDT", "O(d log d)//O(d)/O(log2 d)" ], [ null, "Singh", "O(d log d)//O(d)/O(1)" ] ]
0.609626
null
null
0
2403.02528v1
14
[ 108, 250.14299774169922, 504, 466.53150939941406 ]
\begin{table}[!hbp] \centering \begin{tabularx}{\linewidth}{l|r|X} \hline & \% & Example \\ \hline \makecell[l]{Large difference \\ (similarity$<$0.5)} & 46 & As a weather forecaster, I want to study the correlation between weather conditions and bike rentals. ~~ \textit{v.s.} \\ & & As a tourist attraction planner, I want to evaluate the bike-sharing program's impact on tourism and visitor satisfaction. \\ & & \textit{Similarity} = 0.42 \\ \hline \makecell[l]{Medium difference \\(0.5$<$similarity$<$0.8)} & 52 & As a farmer, I want to determine the suitable fruit varieties to grow on my farm. ~~ \textit{v.s.} \\ & & As a fruit exporter, I want to identify the fruits that meet export standards and have a longer shelf life. \\ & & \textit{Similarity} = 0.69 \\ \hline \makecell[l]{Repetitive \\(similarity$>$0.8)} & 2 & As a consultant for honey market, I want to study the honey production trend to recommend business strategies for my clients. ~~ \textit{v.s.} \\ & & As a curious analyst, I want to study the production trend to understand the US honey industry. \\ & & \textit{Similarity} = 0.85 \\ \hline \end{tabularx} \caption{\footnotesize Cosine similarity and qualitative examples of pairs of input queries.} \label{tab:query_diversity} \end{table}
[ [ "", "%", "Example" ], [ "Large difference\n(similarity<0.5)", "46", "As a weather forecaster, I want to study the correlation\nbetween weather conditions and bike rentals. v.s.\nAs a tourist attraction planner, I want to evaluate the bike-\nsharing program’s impact on tourism and visitor satisfac-\ntion.\nSimilarity = 0.42" ], [ "Medium difference\n(0.5<similarity<0.8)", "52", "As a farmer, I want to determine the suitable fruit varieties\nto grow on my farm. v.s.\nAs a fruit exporter, I want to identify the fruits that meet\nexport standards and have a longer shelf life.\nSimilarity = 0.69" ], [ "Repetitive\n(similarity>0.8)", "2", "As a consultant for honey market, I want to study the honey\nproduction trend to recommend business strategies for my\nclients. v.s.\nAs a curious analyst, I want to study the production trend\nto understand the US honey industry.\nSimilarity = 0.85" ] ]
0.915784
null
null
1
2403.02528v1
15
[ 219.98800659179688, 233.21400451660156, 392.010986328125, 299.9635009765625 ]
\begin{table}[!hbp] \centering \begin{tabular}{l|rr} \hline & SFT & RL \\ \hline learning rate & 1e-5 & 2e-6 \\ gradient accumulation & 4 & 4 \\ total steps & 600 & 200 \\ $\lambda$ & - & 1.0 \\ $\gamma$ & - & 1.0 \\ \hline \end{tabular} \caption{\footnotesize \textbf{Hyperparameters.}} \label{tab:hyperparameters} \end{table}
[ [ "", "SFT RL" ], [ "learning rate\ngradient accumulation\ntotal steps\nλ\nγ", "1e-5 2e-6\n4 4\n600 200\n- 1.0\n- 1.0" ] ]
0.554217
null
null
0
1809.09420v1
5
[ 59.13878549848284, 83.051025390625, 287.36119951520647, 233.0880126953125 ]
\begin{table}[tb] \begin{center} \caption{A table comparing the summed reward each agent receives on the test data.} \begin{tabular}{ |l?c|c|c|c|c| } \hline participant & Ours & SMB & MC & GR & LSTM \\ \hline 0 & 1.45 & 7.34 & \textbf{10.0} & 0.00 & 10.0 \\ \hline 1 & \textbf{1.32} & -4.63 & -4.00 & -1.00 & -6.00\\ \hline 2 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ \hline 3 & \textbf{-0.53} & -1.57 & 0.00 & 0.00 & -3.00 \\ \hline 4 & 0.01 & \textbf{0.31} & 0.00 & 0.00 & 0.00 \\ \hline 5 & \textbf{5.50} & 1.36 & 0.00 & 0.00 & 1.00 \\ \hline 6 & \textbf{0.29} & -0.07 & 0.00 & 0.00 & 0.00 \\ \hline 7 & 0.10 & 1.00 & \textbf{2.00} & 0.00 & 1.00 \\ \hline 8 & \textbf{-0.14} & -10.1 & -60.1 & 0.00 & -40.2 \\ \hline 9 & 3.85 & \textbf{14.0} & 0.00 & 0.00 & -1.10 \\ \hline 10 & \textbf{-3.01} & -5.89 & 0.00 & 0.00 & 0.00 \\ \hline \hline Avg \% & \textbf{53.9} & 0.8 & -0.6 & -0.0 & -0.5 \\ \hline \end{tabular} \end{center} \label{tab:pretrainedResults} \end{table}
[ [ "participant", "Ours", "SMB", "MC", "GR", "LSTM" ], [ "0", "1.45", "7.34", "10.0", "0.00", "10.0" ], [ "1", "1.32", "-4.63", "-4.00", "-1.00", "-6.00" ], [ "2", "0.00", "0.00", "0.00", "0.00", "0.00" ], [ "3", "-0.53", "-1.57", "0.00", "0.00", "-3.00" ], [ "4", "0.01", "0.31", "0.00", "0.00", "0.00" ], [ "5", "5.50", "1.36", "0.00", "0.00", "1.00" ], [ "6", "0.29", "-0.07", "0.00", "0.00", "0.00" ], [ "7", "0.10", "1.00", "2.00", "0.00", "1.00" ], [ "8", "-0.14", "-10.1", "-60.1", "0.00", "-40.2" ], [ "9", "3.85", "14.0", "0.00", "0.00", "-1.10" ], [ "10", "-3.01", "-5.89", "0.00", "0.00", "0.00" ], [ "Avg %", "53.9", "0.8", "-0.6", "-0.0", "-0.5" ] ]
0.96875
null
null
1
1809.09420v1
6
[ 75.64271218436105, 85.0679931640625, 270.8572017124721, 235.10601806640625 ]
\begin{table}[tb] \begin{center} \caption{A table comparing two variations on an active learning version of our agent.} \begin{tabular}{ |l?c|c|c|} \hline participant & Ours & Episodic & Continuous \\ \hline 0 & 1.45 & \textbf{1.47} & \textbf{1.47} \\ \hline 1 & \textbf{1.32} & -11.7 & -10.1 \\ \hline 2 & 0.00 & 0.00 & 0.00 \\ \hline 3 & -0.53 & 0.94 & \textbf{1.08} \\ \hline 4 & \textbf{0.01} & -0.05 & -0.25\\ \hline 5 & \textbf{5.50} & \textbf{5.50} & -7.55 \\ \hline 6 & \textbf{0.29} & \textbf{0.29} & 0.04 \\ \hline 7 & \textbf{0.10} & \textbf{0.10} & -0.04 \\ \hline 8 & -0.14 & \textbf{5.22} & 0.42 \\ \hline 9 & 3.85 & \textbf{42.7} & 41.0 \\ \hline 10 & \textbf{-3.01} & -3.76 & -4.62 \\ \hline \hline Avg \% & 53.9 & \textbf{56.6} & 53.1 \\ \hline \end{tabular} \end{center} \label{tab:activeResults} \end{table}
[ [ "participant", "Ours", "Episodic", "Continuous" ], [ "0", "1.45", "1.47", "1.47" ], [ "1", "1.32", "-11.7", "-10.1" ], [ "2", "0.00", "0.00", "0.00" ], [ "3", "-0.53", "0.94", "1.08" ], [ "4", "0.01", "-0.05", "-0.25" ], [ "5", "5.50", "5.50", "-7.55" ], [ "6", "0.29", "0.29", "0.04" ], [ "7", "0.10", "0.10", "-0.04" ], [ "8", "-0.14", "5.22", "0.42" ], [ "9", "3.85", "42.7", "41.0" ], [ "10", "-3.01", "-3.76", "-4.62" ], [ "Avg %", "53.9", "56.6", "53.1" ] ]
0.909091
null
null
0
2012.12899v2
15
[ 179.23899841308594, 168.802978515625, 429.1239929199219, 237.7440185546875 ]
\begin{table}[t] \caption{Results for ablation setting 1. “Audience only” means that only the audience's validation loss is minimized to update the architecture of the explainer. “Audience + explainer” means that both the validation loss of the audience and the validation loss of the explainer itself are minimized to learn the explainer's architecture. } \centering \begin{tabular}{l|c} \hline Method & Error (\%)\\ \hline Audience only (CIFAR-100) & 16.08$\pm$0.15 \\ Audience + explainer (CIFAR-100) &\textbf{15.23}$\pm$0.11 \\ \hline Audience only (CIFAR-10) & 2.72$\pm$0.07 \\ Audience + explainer (CIFAR-10) &\textbf{2.59}$\pm$0.06 \\ \hline \end{tabular} \label{tab:ab1} \end{table}
[ [ "Method", "Error (%)" ], [ "Audience only (CIFAR-100)\nAudience + explainer (CIFAR-100)", "16.08 0.15\n±\n15.23 0.11\n±" ], [ "Audience only (CIFAR-10)\nAudience + explainer (CIFAR-10)", "2.72 0.07\n±\n2.59 0.06\n±" ] ]
0.822888
null
null
0
2304.08906v2
20
[ 72.66038513183594, 349.05718994140625, 541.2995849609375, 428.80665283203126 ]
\begin{table}[h] \centering \resizebox{\columnwidth}{!}{% \begin{tabular}{l|cccccccccc} {} & LEAM & LEAS & LECO & LEGR & \boxitthree{0.4in}{0.13in}LEJR & LERS & \boxit{0.4in}{0.13in}LEST & LEVX & LEXJ & LEZG \\ \midrule LEAL & 65.504814 & 75.441186 & 94.909454 & 87.043069 & 54.712340 & 68.100410 & 58.413992 & 75.539541 & 74.799185 & 128.027181 \\ LEBB & 29.198655 & 41.969953 & 59.934764 & 52.396055 & 22.803751 & 35.392877 & \boxit{0.67in}{0.11in}24.141713 & 39.741042 & 40.259694 & 154.062811 \\ LEIB & 31.662067 & 48.491843 & 65.367969 & 57.828287 & 29.556105 & 42.296863 & 31.017462 & 44.619687 & 46.300496 & 147.477518 \\ LEMG & 101.622129 & 113.412149 & 132.270438 & 124.550755 & 92.450573 & 105.891984 & 95.728206 & 112.713383 & 112.382984 & 98.779637 \\ \boxittwo{9in}{0.11in}LEMH & 22.235551 & 13.098385 & 23.636059 & 18.860090 & 22.874975 & 16.988746 & \boxit{0.67in}{0.11in}24.121190 & 18.826095 & 9.367364 & 197.854459 \\ LEVC & 58.145394 & 64.315003 & 83.967244 & 76.139405 & 43.387298 & 56.810028 & 47.252928 & 64.782664 & 63.471159 & 140.867244 \\ \boxitthree{0.4in}{0.11in}LEZL & 28.195391 & 33.835790 & 52.657957 & 44.801351 & \boxitthree{0.67in}{0.11in}15.408263 & 27.620714 & \boxit{0.67in}{0.11in}22.850649 & 33.738975 & 31.919736 & \boxittwo{0.79in}{1.48in}161.608615 \\ \end{tabular}} \caption{Distance matrix corresponding to the Group 2 (columns) and Group 1 (rows) with different marks} \label{tablagrupo12} \end{table}
[ [ "", "LEAM LEAS LECO LEGR", "LEJR", "LERS", null, "LEST", "LEVX LEXJ", null, "LEZG" ], [ "LEAL 65.504814 75.441186 94.909454 87.043069 54.712340 68.100410 58.413992 75.539541 74.799185\nLEBB 29.198655 41.969953 59.934764 52.396055 22.803751 35.392877 24.141713 39.741042 40.259694\nLEIB 31.662067 48.491843 65.367969 57.828287 29.556105 42.296863 31.017462 44.619687 46.300496\nLEMG 101.622129 113.412149 132.270438 124.550755 92.450573 105.891984 95.728206 112.713383 112.382984", null, null, null, null, null, null, null, "128.027181\n154.062811\n147.477518\n98.779637" ], [ "LEMH", "22.235551 13.098385 23.636059 18.860090 22.874975 16.988746", null, null, "24.121190", null, null, "18.826095 9.367364", "197.854459" ], [ "LEVC\nLEZL", "58.145394 64.315003 83.967244 76.139405 43.387298 56.810028 47.252928 64.782664 63.471159\n28.195391 33.835790 52.657957 44.801351 15.408263 27.620714 22.850649 33.738975 31.919736", null, null, null, null, null, null, "140.867244\n161.608615" ], [ "LEZL", null, null, null, null, null, null, null, null ] ]
0.513487
null
null
1
2304.08906v2
22
[ 194.0189971923828, 69.58441162109375, 419.29595947265625, 193.34282684326172 ]
\begin{table}[h] \centering \begin{tabular}{l|ccc} {} & LEBL & LEMD & LEPA \\ \midrule LEAL & 306.889358 & 448.504444 & 36.365912 \\ LEBB & 324.835653 & 460.189156 & 21.295013 \\ LEIB & 317.479314 & 440.603971 & 23.693028 \\ LEMG & 281.082335 & 438.527134 & 71.778743 \\ LEMH & 360.303093 & 465.556130 & 47.727144 \\ LEST & 336.209183 & 459.760991 & 32.267111 \\ LEVC & 313.409909 & 453.896185 & 23.766301 \\ LEZL & 329.622714 & 461.415099 & \boxit{0.71in}{1.64in}17.107494 \\ \end{tabular} \caption{Distance matrix corresponding to the Special Group (columns) and the Group 1 (rows) with Palma's airport (LEPA) highlighted} \label{tablagrupo1e} \end{table}
[ [ "", "LEBL LEMD", "LEPA" ], [ "LEAL 306.889358 448.504444\nLEBB 324.835653 460.189156\nLEIB 317.479314 440.603971\nLEMG 281.082335 438.527134\nLEMH 360.303093 465.556130\nLEST 336.209183 459.760991\nLEVC 313.409909 453.896185\nLEZL 329.622714 461.415099", null, "36.365912\n21.295013\n23.693028\n71.778743\n47.727144\n32.267111\n23.766301\n17.107494" ] ]
0.577396
null
null
2
2304.08906v2
26
[ 72, 443.1675109863281, 540.0121765136719, 469.0586853027344 ]
\begin{table}[h] \centering \resizebox{\columnwidth}{!}{% \begin{tabular}{l|cccccccc} {} & LEAL & LEBB & LEIB & LEMG & LEMH & LEST & LEVC & LEZL \\ \midrule LECU & 76.429339 & 39.996884 & 44.150946 & 113.354491 & 44.848810 & 48.728730 & 68.114063 & 41.422093 \\ LELL & 116.139308 & 79.099542 & 81.423800 & 152.035126 & 65.809856 & 67.527648 & 108.086198 & 79.073484 \\ \bottomrule \end{tabular}} \caption{Distance matrix corresponding to Group 3 - \textit{General aviation airports} and Group 1} \label{tablagrupo3g1} \end{table}
[ [ "LECU\nLELL", "76.429339 39.996884 44.150946 113.354491 44.848810 48.728730 68.114063 41.422093\n116.139308 79.099542 81.423800 152.035126 65.809856 67.527648 108.086198 79.073484" ] ]
0.604317
null
null
0
1701.00030v1
19
[ 178.44000244140625, 220.17303466796875, 416.83599853515625, 248.06903076171875 ]
\begin{table}[H] \begin{center} \begin{tabular}{| c | c | c | c | c | c |} \hline $E_1(0)$ & $L_1(0)$ & $A_1(0)$ & $E_2(0)$ & $L_2(0)$ & $A_2(0)$ \\ \hline 6.02& 137.70& 143.72& 6.23 & 86.41 & 92.64 \\ \hline \end{tabular} \caption{Assets and liabilities on 30/06/2015 (Bloomberg).} \label{data_table} \end{center} \end{table}
[ [ "𝐸 (0)\n1", "𝐿 (0)\n1", "𝐴 (0)\n1", "𝐸 (0)\n2", "𝐿 (0)\n2", "𝐴 (0)\n2" ], [ "6.02", "137.70", "143.72", "6.23", "86.41", "92.64" ] ]
0.588785
null
null
1
1701.00030v1
20
[ 171.37399291992188, 72.19903564453125, 423.9394989013672, 100.09503173828125 ]
\begin{table}[H] \begin{center} \begin{tabular}{| c | c | c | c | c | c |} \hline $\sigma_1$ & $\lambda_1$ & $\varsigma_1$ & $\sigma_2$ & $\lambda_2$ & $\varsigma_2$ \\ \hline 0.0117& 0.1001& 0.3661& 0.0154 & 0.0160 & 0.0545\\ \hline \end{tabular} \caption{Calibrated parameters of one-dimensional models on 30/06/2015 for $T = 1$.} \label{table:params_1d} \end{center} \end{table}
[ [ "𝜎\n1", "𝜆\n1", "𝜍\n1", "𝜎\n2", "𝜆\n2", "𝜍\n2" ], [ "0.0117", "0.1001", "0.3661", "0.0154", "0.0160", "0.0545" ] ]
0.434426
null
null
2
1701.00030v1
20
[ 160.11700439453125, 388.4620056152344, 435.15899658203125, 430.4530029296875 ]
\begin{table}[H] \begin{center} \begin{tabular}{| c | c | c | } \hline & $\rho$ & $\lambda_{\{12\}} $ \\ \hline Estimated value & 0.510 & 0.0188 \\ \hline Confidence interval \footnotemark & (0.500, 0.526)& (0.0182, 0.0194) \\ \hline \end{tabular} \caption{Historically estimated correlation coefficients on 30/06/2015 with 1 year window.} \label{table:corr_params} \end{center} \end{table}
[ [ "", "𝜌", "𝜆\n{12}" ], [ "Estimated value", "0.510", "0.0188" ], [ "Confidence interval 1", "(0.500, 0.526)", "(0.0182, 0.0194)" ] ]
0.574324
null
null
3
1701.00030v1
21
[ 190.9550018310547, 72.19903564453125, 404.32000732421875, 113.64404296875 ]
\begin{table}[H] \begin{center} \begin{tabular}{|c | c | c | c | c | c | c | c |} \hline Model &Joint s/p & Marginal s/p \\ \hline With jumps & 0.9328 & 0.9666 \\ Without jumps & 0.9717 & 0.9801 \\ \hline \end{tabular} \caption{Joint and marginal survival probabilities for the calibrated models.} \label{table:results} \end{center} \end{table}
[ [ "Model", "Joint s/p", "Marginal s/p" ], [ "With jumps\nWithout jumps", "0.9328\n0.9717", "0.9666\n0.9801" ] ]
0.546939
null
null
4
1701.00030v1
16
[ 137.0800018310547, 459.280029296875, 458.1960144042969, 487.176025390625 ]
\begin{table}[H] \begin{center} \begin{tabular}{| c | c | c | c | c | c | c | c | c | c | c | c |} \hline $L_{1,0}$ & $L_{2, 0}$ & $L_{12, 0}$ & $L_{21, 0}$ & $R_1$ & $R_2$ & $T$ & $\sigma_1$ & $\sigma_2$ & $\rho$ & $\varsigma_1$ & $\varsigma_2$ \\ \hline 60 & 70 & 10 & 15 & 0.4 & 0.45 & 1 & 1 & 1 & 0.5 & 1 & 1 \\ \hline \end{tabular} \caption{Model parameters.\label{table:params}} \end{center} \end{table}
[ [ "𝐿\n1,0", "𝐿\n2,0", "𝐿\n12,0", "𝐿\n21,0", "𝑅\n1", "𝑅\n2", "𝑇", "𝜎\n1", "𝜎\n2", "𝜌", "𝜍\n1", "𝜍\n2" ], [ "60", "70", "10", "15", "0.4", "0.45", "1", "1", "1", "0.5", "1", "1" ] ]
0.578947
null
null
5
1701.00030v1
16
[ 258.1780090332031, 563.6180419921875, 337.09800211588544, 591.5130004882812 ]
\begin{table}[H] \begin{center} \begin{tabular}{| c | c | c | } \hline $\lambda_1$& $\lambda_2$ & $\lambda_{12}$ \\ \hline 0.5 & 0.5 & 0.3 \\ \hline \end{tabular} \caption{Jump intensities.\label{table:jumps}} \end{center} \end{table}
[ [ "𝜆\n1", "𝜆\n2", "𝜆\n12" ], [ "0.5", "0.5", "0.3" ] ]
0.382979
null
null
0
2107.14695v1
15
[ 208.58900451660156, 243.6820068359375, 489.4070129394531, 315.4129943847656 ]
\begin{table}[H] \centering \caption{Goodness of fit.} \begin{tabular}{ | l | c | r |} \hline Stock & KS-Test ($p$-value) & KL Div Test (entropy) \\ \hline \hline \textbf{Apple} & 0.47 & 3.99e-05 \\ \hline \textbf{Amazon} & 0.87 & 0.0001\\ \hline \textbf{Google} & 0.15 & 3.01e-05 \\ \hline \textbf{Microsoft} & 0.99 & 6.54e-05 \\ \hline \end{tabular} \end{table}
[ [ "Stock", "KS-Test (p-value)", "KL Div Test (entropy)" ], [ "Apple", "0.47", "3.99e-05" ], [ "Amazon", "0.87", "0.0001" ], [ "Google", "0.15", "3.01e-05" ], [ "Microsoft", "0.99", "6.54e-05" ] ]
1
null
null
1
2107.14695v1
15
[ 262.7879943847656, 641.0540161132812, 435.2080078125, 712.7839965820312 ]
\begin{table}[H] \centering \caption{Classification results.} \begin{tabular}{ | l | c | r |} \hline Stock & Accuracy & F1-score \\ \hline \hline \textbf{Apple} & 91.66 & 0.91 \\ \hline \textbf{Amazon} & 95.8 & 0.95 \\ \hline \textbf{Google} & 95.83 & 0.92 \\ \hline \textbf{Microsoft} & 95.80 & 0.94 \\ \hline \end{tabular} \end{table}
[ [ "Stock", "Accuracy", "F1-score" ], [ "Apple", "91.66", "0.91" ], [ "Amazon", "95.8", "0.95" ], [ "Google", "95.83", "0.92" ], [ "Microsoft", "95.80", "0.94" ] ]
1
null
null
2
2107.14695v1
16
[ 179.01400756835938, 515.2239990234375, 518.9819946289062, 586.9550170898438 ]
\begin{table}[H] \centering \caption{Accuracy results on test set 1: 02/22/21 to 04/26/21.} \begin{tabular}{ | l | c | c | c |} \hline Data set & Random Forest & SVM Classifier & XGB Classifier \\ \hline \hline \textbf{Google test} & 88 & 90 & 79\\ \hline \textbf{Microsoft test} & 88 & 90 & 81 \\ \hline \textbf{Amazon test} & 90 & 86 & 88\\ \hline \textbf{Apple test} & 85 & 86 & 82\\ \hline \end{tabular} \end{table}
[ [ "Data set", "Random Forest", "SVM Classifier", "XGB Classifier" ], [ "Google test", "88", "90", "79" ], [ "Microsoft test", "88", "90", "81" ], [ "Amazon test", "90", "86", "88" ], [ "Apple test", "85", "86", "82" ] ]
1
null
null
3
2107.14695v1
16
[ 179.01400756835938, 634.1279907226562, 518.9819946289062, 705.8590087890625 ]
\begin{table}[H] \centering \caption{F1-score results on test set 1: 02/22/21 to 04/26/21.} \begin{tabular}{ | l | c | c | c |} \hline Data set & Random Forest & SVM Classifier & XGB Classifier \\ \hline \hline \textbf{Google test} & 0.83 & 0.91 & 0.75\\ \hline \textbf{Microsoft test} & 0.83 & 0.91 & 0.83 \\ \hline \textbf{Amazon test} & 0.86 & 0.84 & 0.85\\ \hline \textbf{Apple test} & 0.84 & 0.85 & 0.79\\ \hline \end{tabular} \end{table}
[ [ "Data set", "Random Forest", "SVM Classifier", "XGB Classifier" ], [ "Google test", "0.83", "0.91", "0.75" ], [ "Microsoft test", "0.83", "0.91", "0.83" ], [ "Amazon test", "0.86", "0.84", "0.85" ], [ "Apple test", "0.84", "0.85", "0.79" ] ]
1
null
null
4
2107.14695v1
17
[ 179.01400756835938, 151.85101318359375, 518.9819946289062, 223.58099365234375 ]
\begin{table}[H] \centering \caption{Accuracy results on test set 2: 04/27/21 to 06/25/21.} \begin{tabular}{ | l | c | c | c |} \hline Data set & Random Forest & SVM Classifier & XGB Classifier \\ \hline \hline \textbf{Google test} & 98 & 97 & 97\\ \hline \textbf{Microsoft test} & 98 & 98 & 96 \\ \hline \textbf{Amazon test} & 97 & 98 & 97\\ \hline \textbf{Apple test} & 93 & 98 & 93\\ \hline \end{tabular} \end{table}
[ [ "Data set", "Random Forest", "SVM Classifier", "XGB Classifier" ], [ "Google test", "98", "97", "97" ], [ "Microsoft test", "98", "98", "96" ], [ "Amazon test", "97", "98", "97" ], [ "Apple test", "93", "98", "93" ] ]
1
null
null
5
2107.14695v1
17
[ 179.01400756835938, 270.7550048828125, 518.9819946289062, 342.4849853515625 ]
\begin{table}[H] \centering \caption{F1-score results on test set 2: 04/27/21 to 06/25/21.} \begin{tabular}{ | l | c | c | c |} \hline Data set & Random Forest & SVM Classifier & XGB Classifier \\ \hline \hline \textbf{Google test} & 0.97 & 0.97 &0.97\\ \hline \textbf{Microsoft test} & 0.98 & 0.98 & 0.97 \\ \hline \textbf{Amazon test} & 0.97 & 0.97 & 0.97\\ \hline \textbf{Apple test} & 0.96 & 0.98 & 0.97\\ \hline \end{tabular} \end{table}
[ [ "Data set", "Random Forest", "SVM Classifier", "XGB Classifier" ], [ "Google test", "0.97", "0.97", "0.97" ], [ "Microsoft test", "0.98", "0.98", "0.97" ], [ "Amazon test", "0.97", "0.97", "0.97" ], [ "Apple test", "0.96", "0.98", "0.97" ] ]
1
null
null
0
1904.03335v1
19
[ 72, 384.4170227050781, 559.802001953125, 424.46600341796875 ]
\begin{table}[h!] \centering \begin{tabular}{ |c|c|c|c|c|c|c|c|c|c| } \hline &$\sigma=0.1$ & $\sigma=0.2$ & $ \sigma=0.3$ & $\sigma=0.4$ & $\sigma=0.5$ & $ \sigma=0.6$ & $\sigma=0.7$ & $\sigma=0.8$ & $\sigma=0.9$ \\ \hline $\|D_{\mathcal{X}_n}-D_{\Y_n}\|_F$ &1.33&4.18&7.97&12.11&16.59&21.15&25.78&30.47&35.53 \\ \hline $\|D_{\mathcal{X}_n}-D_{\bar{\Y}_n}\|_F$ & 0.73& 1.49 & 1.44 & 1.70 & 1.74 & 1.85 & 1.86 & 2.01&2.16\\ \hline \end{tabular} \caption{Frobenius norm of $D_{\mathcal{X}_n}-D_{\Y_n}$ and $D_{\mathcal{X}_n}-D_{\bar{\Y}_n}$ on $\mathcal{S}$ for several values of $\sigma.$} \label{table:1} \end{table}
[ [ "", "σ = 0.1", "σ = 0.2", "σ = 0.3", "σ = 0.4", "σ = 0.5", "σ = 0.6", "σ = 0.7", "σ = 0.8", "σ = 0.9" ], [ "D D\n∥ Xn − Yn∥F", "1.33", "4.18", "7.97", "12.11", "16.59", "21.15", "25.78", "30.47", "35.53" ], [ "∥D −D\nXn Y¯ n∥F", "0.73", "1.49", "1.44", "1.70", "1.74", "1.85", "1.86", "2.01", "2.16" ] ]
0.624746
null
null
1
1904.03335v1
21
[ 98.80899810791016, 439.9010009765625, 496.46600341796875, 479.95001220703125 ]
\begin{table}[h!] \centering \begin{tabular}{ |c|c|c|c|c|c|c|c| } \hline & $\sigma=0.1 $ &$\sigma=0.2$& $\sigma=0.3$& $\sigma=0.4$ & $\sigma=0.5$ & $\sigma=0.6$ & $\sigma=0.7$\\ \hline $\|D_{\mathcal{X}_n}-D_{\Y_n}\|_F$ & 0.78& 1.64& 2.49& 3.42& 4.26& 5.15&6.05\\ \hline $\|D_{\mathcal{X}_n}-D_{\bar{\Y}_n}\|_F$& 0.13& 0.23& 0.31& 0.37& 0.47& 0.63 & 0.65 \\ \hline \end{tabular} \caption{Frobenius norm of $D_{\mathcal{X}_n}-D_{\Y_n}$ and $D_{\mathcal{X}_n}-D_{\bar{\Y}_n}$ on two moons for different values of $\sigma$.} \label{table:2} \end{table}
[ [ "", "σ = 0.1", "σ = 0.2", "σ = 0.3", "σ = 0.4", "σ = 0.5", "σ = 0.6", "σ = 0.7" ], [ "D D\n∥ Xn − Yn∥F", "0.78", "1.64", "2.49", "3.42", "4.26", "5.15", "6.05" ], [ "∥D −D\nXn Y¯ n∥F", "0.13", "0.23", "0.31", "0.37", "0.47", "0.63", "0.65" ] ]
0.568675
null
null
2
1904.03335v1
21
[ 125.68099975585938, 541.5640258789062, 469.593994140625, 594.9630126953125 ]
\begin{table}[h!] \centering \begin{tabular}{ |c|c|c|c|c|c|c|c| } \hline & $\sigma=0.1 $ &$\sigma=0.2$& $\sigma=0.3$& $\sigma=0.4$ & $\sigma=0.5$ & $\sigma=0.6$ & $\sigma=0.7$\\ \hline $\Gamma_{\mathcal{X}_n}$& 0 & 0 & 0& 0&0 &0 &0 \\ \hline $\Gamma_{\Y_n}$ & 0 & 0 & 60& 137& 183& 198 & 218 \\ \hline $\Gamma_{\bar{\Y}_n}$ & 0 & 0 & 0 & 0&0 &0 &0\\ \hline \end{tabular} \caption{Classification error of $\Gamma_{\mathcal{X}_n}$, $\Gamma_{\Y_n}$ and $\Gamma_{\bar{\Y}_n}$ on two moons for different values of $\sigma$.} \label{table:3} \end{table}
[ [ "", "σ = 0.1", "σ = 0.2", "σ = 0.3", "σ = 0.4", "σ = 0.5", "σ = 0.6", "σ = 0.7" ], [ "Γ\nXn", "0", "0", "0", "0", "0", "0", "0" ], [ "Γ\nYn", "0", "0", "60", "137", "183", "198", "218" ], [ "Γ\n¯\nYn", "0", "0", "0", "0", "0", "0", "0" ] ]
0.496042
null
null
3
1904.03335v1
23
[ 99.22599792480469, 178.92401123046875, 496.04998779296875, 218.9739990234375 ]
\begin{table}[h!] \centering \begin{tabular}{ |c|c|c|c|c|c|c|c|c|c| } \hline Fully-connected& 3\&8 & 5\&8 & 4\&9 & 7\&9 & $K$-NN variant & 3\&8 &5\&8 & 4\&9& 7\&9\\ \hline $\Gamma_{\Y_n}$ &277 &480 & 480&480 &$\Gamma_{\Y_n}$ & 76& 55& 133& 73\\ \hline $\Gamma_{\bar{\Y}_n}$ & 134 &174 &300 & 153& $\Gamma_{\bar{\Y}_n}$ & 60 &36 & 96& 54\\ \hline \end{tabular} \caption{Classification error for different pairs of digits 3\&8, 5\&8, 4\&9, and 7\&9.} \label{table:4} \end{table}
[ [ "Fully-connected", "3&8", "5&8", "4&9", "7&9", "K-NN variant", "3&8", "5&8", "4&9", "7&9" ], [ "Γ\nYn", "277", "480", "480", "480", "Γ\nYn", "76", "55", "133", "73" ], [ "Γ\n¯\nYn", "134", "174", "300", "153", "Γ\n¯\nYn", "60", "36", "96", "54" ] ]
0.648794
null
null
4
1904.03335v1
23
[ 104.0739974975586, 271.16900634765625, 491.2009963989258, 311.218994140625 ]
\begin{table}[h!] \centering \begin{tabular}{ |c|c|c|c|c|c|c|c|c|c| } \hline Fully-connected& 4\% & 8\% & 12\% & 16\% & $K$-NN variant & 4\%&8\% &12\% & 16\% \\ \hline $\Gamma_{\Y_n}$ & 480&427 & 388& 294& $\Gamma_{\Y_n}$&133 &109 &76 &51\\ \hline $\Gamma_{\bar{\Y}_n}$ & 300&261 & 219& 182& $\Gamma_{\bar{\Y}_n}$& 96&64 &60 &45\\ \hline \end{tabular} \caption{Classification error for 4\&9 with different number of labels.} \label{table:5} \end{table}
[ [ "Fully-connected", "4%", "8%", "12%", "16%", "K-NN variant", "4%", "8%", "12%", "16%" ], [ "Γ\nYn", "480", "427", "388", "294", "Γ\nYn", "133", "109", "76", "51" ], [ "Γ\n¯\nYn", "300", "261", "219", "182", "Γ\n¯\nYn", "96", "64", "60", "45" ] ]
0.682081
null
null
5
1904.03335v1
24
[ 75.0739974975586, 510.9110107421875, 520.2009887695312, 577.6600341796875 ]
\begin{table}[h!] \centering \begin{tabular}{ |c|c|c|c|c|c|c|c|c|c|c| } \hline Fully-connected & 3\&8 & 5\&8 & 4\&9 & 7\&9 & $K$-NN variant & 3\&8 & 5\&8 & 4\&9 & 7\&9\\ \hline $\Gamma_{\Y_n}$ & 277&480 & 480& 480& $\Gamma_{\Y_n}$ & 76& 55 &128 &73\\ \hline $\Gamma_{\bar{\Y}_n}$ &134 &174 & 369& 153& $\Gamma_{\bar{\Y}_n}$&69 &36 &97 &54\\ \hline $k$-NN regularization & 115& 74&431 & 183& $k$-NN regularization &53 &59 &96 &61\\ \hline self-tuning graph &161 & 139& 334& 263& self-tuning graph& 76&31 &88 &56\\ \hline \end{tabular} \caption{Comparison of classification errors with 4\% labeled data.} \label{table:6} \end{table}
[ [ "Fully-connected", "3&8", "5&8", "4&9", "7&9", "K-NN variant", "3&8", "5&8", "4&9", "7&9" ], [ "Γ\nYn", "277", "480", "480", "480", "Γ\nYn", "76", "55", "128", "73" ], [ "Γ\n¯\nYn", "134", "174", "369", "153", "Γ\n¯\nYn", "69", "36", "97", "54" ], [ "k-NN regularization", "115", "74", "431", "183", "k-NN regularization", "53", "59", "96", "61" ], [ "self-tuning graph", "161", "139", "334", "263", "self-tuning graph", "76", "31", "88", "56" ] ]
0.690438
null
null
0
2102.02279v1
6
[ 319.5, 85.88002014160156, 577.2739868164062, 149.84100341796875 ]
\begin{table}[t] \centering \footnotesize \caption{Average soft classification score of race/ethnicity and gender for three categories of authors.} \begin{tabular}{c|c|c|c|c||c} & Asian & Hispanic & Black & White & Male \\\hline no cs.cy & 0.370 & 0.077 & 0.057 & 0.497 & 0.791 \\\hline both & 0.367 & 0.073 & 0.055 & 0.504 & 0.777 \\\hline only cs.cy & 0.266 & 0.097 & 0.071 & 0.566 & 0.726 \\\hline\hline slope & -0.0430 & 0.0077 & 0.0055 & 0.0298 & -0.0293 \\\hline p-value & 0 & 0.0062 & 0.0241 & $<$0.0001 & $<$0.0001 \\\hline \end{tabular} \label{tab:all} \end{table}
[ [ "", "Asian", "Hispanic", "Black", "White", "Male" ], [ "no cs.cy", "0.370", "0.077", "0.057", "0.497", "0.791" ], [ "both", "0.367", "0.073", "0.055", "0.504", "0.777" ], [ "only cs.cy", "0.266", "0.097", "0.071", "0.566", "0.726" ], [ "slope", "-0.0430", "0.0077", "0.0055", "0.0298", "-0.0293" ], [ "p-value", "0", "0.0062", "0.0241", "<0.0001", "<0.0001" ] ]
0.907834
null
null
1
2102.02279v1
7
[ 64.03800201416016, 85.88002014160156, 280.22100830078125, 149.84100341796875 ]
\begin{table}[t] \centering \footnotesize \caption{Average soft classification score of race/ethnicity among estimated males for three categories of authors.} \begin{tabular}{c|c|c|c|c} & Asian & Hispanic & Black & White \\\hline no cs.cy & 0.335 & 0.078 & 0.059 & 0.528 \\\hline both & 0.343 & 0.076 & 0.057 & 0.525 \\\hline only cs.cy & 0.247 & 0.097 & 0.073 & 0.583\\\hline\hline slope & -0.0345 & 0.0072 & 0.0051 & 0.0223 \\\hline p-value & $<$0.0001 & 0.0113 & 0.0404 & $<$0.0001 \\\hline \end{tabular} \label{tab:male} \end{table}
[ [ "", "Asian", "Hispanic", "Black", "White" ], [ "no cs.cy", "0.335", "0.078", "0.059", "0.528" ], [ "both", "0.343", "0.076", "0.057", "0.525" ], [ "only cs.cy", "0.247", "0.097", "0.073", "0.583" ], [ "slope", "-0.0345", "0.0072", "0.0051", "0.0223" ], [ "p-value", "<0.0001", "0.0113", "0.0404", "<0.0001" ] ]
0.903743
null
null
2
2102.02279v1
7
[ 69.71299743652344, 194.86399841308594, 274.5459899902344, 258.82501220703125 ]
\begin{table}[t] \centering \footnotesize \caption{Average soft classification score of race/ethnicity among estimated females for three categories of authors.} \begin{tabular}{c|c|c|c|c} & Asian & Hispanic & Black & White \\\hline no cs.cy & 0.446 & 0.071 & 0.050 & 0.433 \\\hline both & 0.420 & 0.067 & 0.051 & 0.463 \\\hline only cs.cy & 0.287 & 0.093 & 0.068 & 0.551\\\hline\hline slope & -0.0695 & 0.0081 & 0.0077 & 0.0537 \\\hline p-value & 0 & 0.0029 & 0.0007 & 0 \\\hline \end{tabular} \label{tab:female} \end{table}
[ [ "", "Asian", "Hispanic", "Black", "White" ], [ "no cs.cy", "0.446", "0.071", "0.050", "0.433" ], [ "both", "0.420", "0.067", "0.051", "0.463" ], [ "only cs.cy", "0.287", "0.093", "0.068", "0.551" ], [ "slope", "-0.0695", "0.0081", "0.0077", "0.0537" ], [ "p-value", "0", "0.0029", "0.0007", "0" ] ]
0.892045
null
null
3
2102.02279v1
7
[ 392.6949920654297, 85.88002014160156, 482.5635070800781, 149.84100341796875 ]
\begin{table}[t] \centering \footnotesize \caption{Average soft classification score of gender among estimated Asians for three categories of authors.} \begin{tabular}{c|c} & Male \\\hline no cs.cy & 0.738 \\\hline both & 0.732 \\\hline only cs.cy & 0.696 \\\hline\hline slope & -0.0183 \\\hline p-value & $<$0.0001 \\\hline \end{tabular} \label{tab:asian} \end{table}
[ [ "", "Male" ], [ "no cs.cy", "0.738" ], [ "both", "0.732" ], [ "only cs.cy", "0.696" ], [ "slope", "-0.0183" ], [ "p-value", "<0.0001" ] ]
0.90566
null
null
4
2102.02279v1
7
[ 392.6949920654297, 194.86399841308594, 482.5635070800781, 258.82501220703125 ]
\begin{table}[t] \centering \footnotesize \caption{Average soft classification score of gender among estimated Hispanics for three categories of authors.} \begin{tabular}{c|c} & Male \\\hline no cs.cy & 0.830 \\\hline both & 0.815 \\\hline only cs.cy & 0.722 \\\hline\hline slope & -0.0473 \\\hline p-value & 0 \\\hline \end{tabular} \label{tab:hisp} \end{table}
[ [ "", "Male" ], [ "no cs.cy", "0.830" ], [ "both", "0.815" ], [ "only cs.cy", "0.722" ], [ "slope", "-0.0473" ], [ "p-value", "0" ] ]
0.90411
null
null