id
int64 0
19
| arxiv_id
stringlengths 11
12
| page
int64 1
234
| bounding_box
sequencelengths 4
4
| latex_content
stringlengths 217
28.9k
| extracted_content
sequencelengths 1
85
| similarity_score
float64 0.36
1
| table_image
unknown | page_image
unknown |
---|---|---|---|---|---|---|---|---|
0 | 1405.2377v1 | 4 | [
99.43800354003906,
121.62852478027344,
515.7630004882812,
146.0369873046875
] | \begin{table}[H]
\centering
\scriptsize
\begin{tabular}{|p{3cm}|p{3cm}|p{4cm}|p{3cm}|}
\hline
\hline
\multicolumn{4}{c}{Details of Experiments for the Employed Data Set}\\
\cline{1-4}
\emph{Domain} & \emph{Raw Features} & \emph{Response} & \emph{Data Set Cardinality}\\
\hline
Australian Credit Scoring & 16 & Desired credit approval of individuals based on characteristics & 690\\\hline
\end{tabular}
\caption{\small Data set descriptions for the experiments used to validate the efficacy of the proposed algorithm. We summarize here the domain of the application, the input features to the algorithm, the response variable we wish to predict and the number of examples provided in the data.}
\end{table} | [
[
"Domain",
"Raw Features",
"Response",
"Data Set Cardinality"
],
[
"Australian Credit Scor-\ning",
"16",
"Desired credit approval of indi-\nviduals based on characteristics",
"690"
]
] | 0.462025 | null | null |
1 | 1405.2377v1 | 5 | [
121.80699920654297,
121.62850952148438,
493.3940124511719,
170.34600830078125
] | \begin{table}[H]
\centering
\scriptsize
\begin{tabular}{|p{3cm}|p{2cm}|p{2cm}|p{2cm}|p{2cm}|}
\hline
\hline
\multicolumn{5}{c}{Details of Experiments for the Variable Threshold Algorithm}\\
\cline{1-5}
\emph{Statistic} & \emph{Average} & \emph{Minimum} & \emph{Maximum} & \emph{Standard Deviation}\\
\hline
Predictive Accuracy of Random Forest & {\vspace{0mm}$85\%$} & {\vspace{0mm}$81\%$} & {\vspace{0mm}$90\%$} & {\vspace{0mm}$3.24\%$}\\\hline
Convergence Time of Optimization Algorithm & {\vspace{0mm}$10$} & {\vspace{0mm}$7$} & {\vspace{0mm}$12$} & {\vspace{0mm}$2.2$}\\\hline
\end{tabular}
\caption{\small We present here some relevant statistics related to our experiments in parameter optimization. Notice that in the predictive accuracy criterion, larger values are preferable. By contrast, we have that convergence time is better for smaller values. We define as convergence time the number of iterations of the algorithm that are required to map out completely the known behavior of the accuracy function.}
\end{table} | [
[
"Statistic",
"Average",
"Minimum",
"Maximum",
"Standard Devi-\nation"
],
[
"Predictive Accuracy of\nRandom Forest",
"85%",
"81%",
"90%",
"3.24%"
],
[
"Convergence Time of\nOptimization Algorithm",
"10",
"7",
"12",
"2.2"
]
] | 0.383961 | null | null |
0 | 2207.05295v2 | 6 | [
51.43559646606445,
106.33673095703125,
297.42755126953125,
170.03900146484375
] | \begin{table}[t]
\centering
\resizebox{\columnwidth}{!}{
\begin{tabular}{c|c|c|c|c|c}
\hline
\multirow{3}{*}{Data}& \multirow{3}{*}{Number of rows}& \multicolumn{4}{c}{TabSynDex Score}\\ \cline{3-6}
& & \multicolumn{4}{c}{\% of real data treated as synthetic}\\ \cline{3-6}
& &10\%&25\%&50\%&100\%\\ \hline
Concrete~\cite{concrete_data} &1030&0.768&0.869&0.914&0.894\\ \hline
News Popularity~\cite{news_data} &39644&0.891&0.916&0.901&0.898\\ \hline
Wine Quality~\cite{wine_data} &4898&0.867&0.911&0.925&0.938\\ \hline
Power Plant~\cite{electrical_data} &9568&0.946&0.961&0.981&0.969\\ \hline
\end{tabular}
}
\caption{Experiment for sanity check of the TabSynDex metric for tabular data synthesis evaluation. The real dataset is divided into different subsets to check the similarity between them using TabSynDex.~\textit{A higher TabSynDex score is better}}
\label{tab:subset_similarity}
\end{table} | [
[
"Data",
"Number of rows",
"TabSynDex Score",
null,
null,
null
],
[
null,
null,
"% of real data treated as synthetic",
null,
null,
null
],
[
null,
null,
"10%",
"25%",
"50%",
"100%"
],
[
"Concrete [36]",
"1030",
"0.768",
"0.869",
"0.914",
"0.894"
],
[
"News Popularity [38]",
"39644",
"0.891",
"0.916",
"0.901",
"0.898"
],
[
"Wine Quality [37]",
"4898",
"0.867",
"0.911",
"0.925",
"0.938"
],
[
"Power Plant [39]",
"9568",
"0.946",
"0.961",
"0.981",
"0.969"
]
] | 0.545251 | null | null |
0 | 1911.00623v2 | 10 | [
45.827999114990234,
180.93701171875,
443.06201171875,
283.5989990234375
] | \begin{table}[htbp]
% \caption{Comparison of traditional machine learning algorithms. Notation: $m$-number of training samples; $n$-input dimension; $c$-number of classes.}
% \centering
% \begin{tabular}{ m{2.1cm}<{\centering}|m{1.8cm}<{\centering}| m{3.2cm}<{\centering}|m{2.8cm}<{\centering}|m{3.0cm}<{\centering}}
% \toprule
% Algorithm & Model size & Optimization & Training complexity & Inference complexity\\
% \noalign{
% \hrule height 2pt
% }
% Decision tree &$\mathcal{O}(m)$ &- &$\mathcal{O}(mnlog(m))$ & $\mathcal{O}(log(m))$\\
% \hline
% Random forest & $\mathcal{O}(N_{tree}m)$ &- &$\mathcal{O}(N_{tree}mnlog(m))$ & $\mathcal{O}(N_{tree}log(m))$\\
% \hline
% SVM & $\mathcal{O}(n)$ & gradient descent &$\mathcal{O}(m^2n)$ &$\mathcal{O}(m_{sv}n)$ \\
% \hline
% Logistic regression & $\mathcal{O}(n)$ &Newton-Raphson &$\mathcal{O}(mn^2+n^3)$ & $\mathcal{O}(n)$ \\
% \hline
% kNN &$\mathcal{O}(mn)$&- & - &$\mathcal{O}(mn)$ \\
% \hline
% Naive Bayes &$\mathcal{O}(nc)$ &-&$\mathcal{O}(mn+nc)$ & $\mathcal{O}(nc)$ \\
% \hline
% Linear regression &$\mathcal{O}(n)$ &matrix inversion &$\mathcal{O}(mn^2+n^3)$ &$\mathcal{O}(n)$ \\
% \noalign{
% \hrule height 2pt
% }
% k-Means &- &- &$\mathcal{O}(mnc)$ &- \\
% \hline
% EM &-&-&$\mathcal{O}(mn^2+n^3)$ & -\\
% \noalign{
% \hrule height 2pt
% }
% PCA &- &eigen-decomposition &$\mathcal{O}(mn^2+n^3)$ & -\\
% \bottomrule
% \end{tabular}
% \label{table:MLcompare}
% \end{table} | [
[
"Algorithm",
"Model size",
"Optimization",
"Training complexity",
"Inference complexity"
],
[
"Decision tree",
"O(m)",
"-",
"O(mnloд(m))",
"O(loд(m))"
],
[
"Random forest",
"O(Ntreem)",
"-",
"O(Ntreemnloд(m))",
"O(Ntreeloд(m))"
],
[
"SVM",
"O(n)",
"gradient descent",
"O(m2n)",
"O(msvn)"
],
[
"Logistic regression",
"O(n)",
"Newton-Raphson",
"O(mn2 + n3 )",
"O(n)"
],
[
"kNN",
"O(mn)",
"-",
"-",
"O(mn)"
],
[
"Naive Bayes",
"O(nc)",
"-",
"O(mn + nc)",
"O(nc)"
],
[
"Linear regression",
"O(n)",
"matrix inversion",
"O(mn2 + n3 )",
"O(n)"
],
[
"k-Means",
"-",
"-",
"O(mnc)",
"-"
],
[
"EM",
"-",
"-",
"O(mn2 + n3 )",
"-"
],
[
"PCA",
"-",
"eigen-decomposition",
"O(mn2 + n3 )",
"-"
]
] | 0.715429 | null | null |
1 | 1911.00623v2 | 13 | [
50.15800094604492,
122.1409912109375,
434.0989990234375,
336.260009765625
] | \begin{table}[htbp]
% \caption{DNN resource requirements modeling. ASIC: Application-Specific Integrated Circuit. Matmul: matrix multiplication. RMSPE: root mean square percentage error.}
% %\centering
% %\begin{tabular}{ m{1.2cm}<{\centering}|m{1.6cm}<{\centering}| m{1.6cm}<{\centering}| m{1.8cm}<{\centering}|m{2.4cm}<{\centering}|m{2.2cm}<{\centering}|m{1.4cm}<{\centering}}
% \begin{tabular}{ m{1.6cm}|m{1.6cm}| m{1.5cm}| m{1.4cm}|m{2.8cm}|m{1.4cm}|m{1.8cm}}
% %\begin{tabularx}{1\linewidth}{X| X| X| X| X| X| X}
% \toprule
% Work & Platform & Framework & Metric & Measured features & Regression model & Relative ~~~~~~~~~~~~error \\
% \noalign{
% \hrule height 2pt
% }
% Augur\cite{lu2017modeling} & NVidia TK1, TX1 &Caffe &inference: memory, time &matrix dimensions in matmul, weights, activations&linear & memory: 28\% - 50\%; time: 6\% - 20\%\\
% \hline
% Paleo\cite{qi2016paleo} & NVidia Titan X GPU cluster & TensorFlow&training \& inference: time&forward \& backward FLOPs, weights, activations, data, platform percent of peak&linear& 4\%-30\% \\
% \hline
% Gianniti et al.\cite{giannitiperformance}&NVidia Quadro M6000 GPU & - &training: time & forward \& backward FLOPs of all types of layers & linear & < 23\% \\
% \hline
% SyNERGY\cite{rodriguesfine} & Nvidia Jetson TX1 & Caffe & inference: energy & MACs & linear & < 17\% (w/o MobileNet)\\
% \hline
% NeuralPower\cite{cai2017neuralpower}&Nvidia Titan X \& GTX 1070 &TensorFlow \& Caffe &inference: time, power, energy&layer configuration hyper-parameters, memory access, FLOPs, activations, batch size&polynomial&time: < 24\%; power: < 20\%; energy: < 5\%\\
% \hline
% HyperPower\cite{stamoulis2018hyperpower}&Nvidia GTX1070 \& Tegra TX1&Caffe&inference: power, memory&layer configuration hyper-parameters&linear & RMSPE < 7\%\\
% \hline
% Yang et al.\cite{yang2017designing} & ASIC Eyeriss\cite{chen2017eyeriss} & - & inference: energy & MACs, memory access&- & -\\
% \hline
% DeLight\cite{rouhani2016delight} & Nvidia Tegra TK1& Theano & training\& inference: energy & layer configuration hyper-parameters & linear & -\\
% \bottomrule
% \end{tabular}
% \label{table:DNNresourcemodeling}
% \end{table} | [
[
"Work",
"Platform",
"Framework",
"Metric",
"Measured\nfeatures",
"Regression\nmodel",
"Relative\nerror"
],
[
"Augur[119]",
"NVidia TK1,\nTX1",
"Caffe",
"inference:\nmemory,\ntime",
"matrix dimensions\nin matmul, weights,\nactivations",
"linear",
"memory: 28% -\n50%; time: 6% -\n20%"
],
[
"Paleo[141]",
"NVidia Titan\nX GPU clus-\nter",
"TensorFlow",
"training &\ninference:\ntime",
"forward & backward\nFLOPs, weights, acti-\nvations, data, platform\npercent of peak",
"linear",
"4%-30%"
],
[
"Gianniti et al.\n[56]",
"NVidia\nQuadro\nM6000 GPU",
"-",
"training:\ntime",
"forward & backward\nFLOPs of all types of\nlayers",
"linear",
"< 23%"
],
[
"SyNERGY\n[148]",
"Nvidia\nJetson TX1",
"Caffe",
"inference:\nenergy",
"MACs",
"linear",
"< 17% (w/o Mo-\nbileNet)"
],
[
"NeuralPower\n[13]",
"Nvidia Titan\nX & GTX\n1070",
"TensorFlow\n& Caffe",
"inference:\ntime, power,\nenergy",
"layer configuration\nhyper-parameters, mem-\nory access, FLOPs,\nactivations, batch size",
"polynomial",
"time: < 24%;\npower: < 20%;\nenergy: < 5%"
],
[
"HyperPower\n[160]",
"Nvidia\nGTX1070 &\nTegra TX1",
"Caffe",
"inference:\npower,\nmemory",
"layer configuration\nhyper-parameters",
"linear",
"RMSPE < 7%"
],
[
"Yang et al.\n[202]",
"ASIC\nEyeriss[22]",
"-",
"inference:\nenergy",
"MACs, memory access",
"-",
"-"
],
[
"DeLight\n[149]",
"Nvidia Tegra\nTK1",
"Theano",
"training&\ninference:\nenergy",
"layer configuration\nhyper-parameters",
"linear",
"-"
]
] | 0.76588 | null | null |
2 | 1911.00623v2 | 11 | [
52.99300003051758,
111.1820068359375,
431.26300048828125,
264.3190002441406
] | \begin{table}[htbp]
\caption{Comparison of popular CNNs.}
\centering
\scriptsize
\begin{tabular}{ m{2.4cm}<{\centering}|m{1.4cm}<{\centering}| m{1.4cm}<{\centering}| m{1.4cm}<{\centering}|m{1.4cm}<{\centering}|m{1.4cm}<{\centering}|m{1.4cm}<{\centering}}
\toprule
Metric & \makecell{ AlexNet \\ \cite{krizhevsky2012imagenet} } & \makecell{ VGG-16 \\ \cite{simonyan2014very}} & \makecell{ GoogLeNet \\ \cite{szegedy2015going} }& \makecell{ ResNet-18 \\ \cite{he2016deep}} & \makecell{ ResNet-50 \\ \cite{he2016deep}} & \makecell{ Inception\\ v3 \cite{szegedy2016rethinking} }\\
\noalign{
\hrule height 2pt
}
Top-1 acc. &57.2 &71.5 &69.8 &69.6 &76.0 &76.9 \\
\hline
Top-5 acc. &80.2 &91.3 &90.0 &89.2 &93.0 &93.7 \\
\hline
Input size &227$\times$227 &224$\times$224 & 224$\times$224&224$\times$224 &224$\times$224&299$\times$299 \\
\noalign{
\hrule height 2pt
}
$\#$ of stacked CONV layers &5 &13 & 21&17 &49 &16 \\
\hline
Weights &2.3M &14.7M &6.0M & 9.5M&23.6M &22M \\
\hline
Activations &0.94M &15.23M &6.8M &3.2M &11.5M &10.6M \\
\hline
MACs &666M &15.3G &1.43G &1.8G &3.9G & 3.8G\\
\noalign{
\hrule height 2pt
}
$\#$ of FC layers &3 & 3&1 &1 & 1&1 \\
\hline
Weights &58.7M &125M &1M &0.5M &2M & 2M\\
\hline
Activations &9K &9K &2K &1.5K &3K &3K \\
\hline
MACs &58.7M &125M&1M &0.5M &2M &2M \\
\noalign{
\hrule height 2pt
}
Total weights &61M &138M & 7M& 10M&25.6M &24M \\
\hline
Total activations &0.95M &15.24M &6.8M &3.2M &11.5M &10.6M \\
\hline
Total MACs &724M &15.5G &1.43G &1.8G &3.9G &3.8G \\
\bottomrule
\end{tabular}
\normalsize
\label{table:bigCNNcompare}
\end{table} | [
[
"Metric",
"AlexNet\n[96]",
"VGG-16\n[157]",
"GoogLeNet\n[167]",
"ResNet-18\n[69]",
"ResNet-50\n[69]",
"Inception\nv3 [168]"
],
[
"Top-1 acc.",
"57.2",
"71.5",
"69.8",
"69.6",
"76.0",
"76.9"
],
[
"Top-5 acc.",
"80.2",
"91.3",
"90.0",
"89.2",
"93.0",
"93.7"
],
[
"Input size",
"227×227",
"224×224",
"224×224",
"224×224",
"224×224",
"299×299"
],
[
"# of stacked CONV\nlayers",
"5",
"13",
"21",
"17",
"49",
"16"
],
[
"Weights",
"2.3M",
"14.7M",
"6.0M",
"9.5M",
"23.6M",
"22M"
],
[
"Activations",
"0.94M",
"15.23M",
"6.8M",
"3.2M",
"11.5M",
"10.6M"
],
[
"MACs",
"666M",
"15.3G",
"1.43G",
"1.8G",
"3.9G",
"3.8G"
],
[
"# of FC layers",
"3",
"3",
"1",
"1",
"1",
"1"
],
[
"Weights",
"58.7M",
"125M",
"1M",
"0.5M",
"2M",
"2M"
],
[
"Activations",
"9K",
"9K",
"2K",
"1.5K",
"3K",
"3K"
],
[
"MACs",
"58.7M",
"125M",
"1M",
"0.5M",
"2M",
"2M"
],
[
"Total weights",
"61M",
"138M",
"7M",
"10M",
"25.6M",
"24M"
],
[
"Total activations",
"0.95M",
"15.24M",
"6.8M",
"3.2M",
"11.5M",
"10.6M"
],
[
"Total MACs",
"724M",
"15.5G",
"1.43G",
"1.8G",
"3.9G",
"3.8G"
]
] | 0.389231 | null | null |
3 | 1911.00623v2 | 16 | [
49.22999954223633,
111.18197631835938,
435.0270080566406,
272.28900146484375
] | \begin{table}[tbp]
\caption{Comparison of lightweight CNNs.}
\centering
\scriptsize
\begin{tabular}{ m{2.3cm}<{\centering}|m{1.2cm}<{\centering}| m{1.2cm}<{\centering}| m{1.2cm}<{\centering}|m{1.2cm}<{\centering}|m{1.2cm}<{\centering}|m{1.2cm}<{\centering}|m{1.2cm}<{\centering}}
\toprule
Metric & MobileNet V1-1.0\cite{howard2017mobilenets}& MobileNet V2-1.0\cite{sandler2018mobilenetv2} & Squeeze-Net\cite{iandola2016squeezenet} & Squeeze-Next-1.0-23\cite{gholami2018squeezenext} & ShuffleNet $1\times g = 8$\cite{zhang1707shufflenet} & Condense-Net\cite{huang2018condensenet} & \makecell{ MnasNet \\ \cite{tan2018mnasnet} }\\
\noalign{
\hrule height 2pt
}
Top-1 acc. &70.9 &71.8 &57.5 &59.0 &67.6 &71.0 &74.0 \\
\hline
Top-5 acc. &89.9 &91.0 &80.3 & 82.3&- &90.0 &91.8 \\
\hline
Input size &224$\times$224 &224$\times$224 &224$\times$224 &227$\times$227 & 224$\times$224&224$\times$224 &224$\times$224 \\
\noalign{
\hrule height 2pt
}
$\#$ of stacked CONV layers &27 & 20&26 &22 &17 &37 & 18\\
\hline
Weights &3.24M &2.17M &1.25M &0.62M &3.9M &2.8M &3.9M \\
\hline
Activations &5.2M & 1.46M&4.8M &4.7M &3.2M & 1.1M&3.9M \\
\hline
MACs &568M &299M &388M &282M &138M &274M &317M\\
\noalign{
\hrule height 2pt
}
$\#$ of FC layers & 1 &1 &0 &1 &1 &1 &1 \\
\hline
Weights &1M & 1.3M&0 & 0.1M& 1.5M& 0.1M&0.3M \\
\hline
Activations &2K &2.3K &0 &1.1K & 2.5K&1.1K &1.3K \\
\hline
MACs &1M &1.3M & 0&0.1M &1.5M &0.1M & 0.3M\\
\noalign{
\hrule height 2pt
}
Total weights & 4.24M&3.47M &1.25M & 0.72M&5.4M &2.9M &4.2M \\
\hline
Total activations &5.2M &1.46M&4.8M &4.7M &3.2M &1.1M &3.9M \\
\hline
Total MACs & 569M&300M &388M &282M &140M &274M &317M \\
\bottomrule
\end{tabular}
\normalsize
\label{table:smallCNNcompare}
\end{table} | [
[
"Metric",
"MobileNet\nV1-1.0[79]",
"MobileNet\nV2-1.0[152]",
"Squeeze-\nNet[85]",
"Squeeze-\nNext-1.0-\n23[55]",
"ShuffleNet\n1 × д =\n8[210]",
"Condense-\nNet[83]",
"MnasNet\n[170]"
],
[
"Top-1 acc.",
"70.9",
"71.8",
"57.5",
"59.0",
"67.6",
"71.0",
"74.0"
],
[
"Top-5 acc.",
"89.9",
"91.0",
"80.3",
"82.3",
"-",
"90.0",
"91.8"
],
[
"Input size",
"224×224",
"224×224",
"224×224",
"227×227",
"224×224",
"224×224",
"224×224"
],
[
"# of stacked CONV\nlayers",
"27",
"20",
"26",
"22",
"17",
"37",
"18"
],
[
"Weights",
"3.24M",
"2.17M",
"1.25M",
"0.62M",
"3.9M",
"2.8M",
"3.9M"
],
[
"Activations",
"5.2M",
"1.46M",
"4.8M",
"4.7M",
"3.2M",
"1.1M",
"3.9M"
],
[
"MACs",
"568M",
"299M",
"388M",
"282M",
"138M",
"274M",
"317M"
],
[
"# of FC layers",
"1",
"1",
"0",
"1",
"1",
"1",
"1"
],
[
"Weights",
"1M",
"1.3M",
"0",
"0.1M",
"1.5M",
"0.1M",
"0.3M"
],
[
"Activations",
"2K",
"2.3K",
"0",
"1.1K",
"2.5K",
"1.1K",
"1.3K"
],
[
"MACs",
"1M",
"1.3M",
"0",
"0.1M",
"1.5M",
"0.1M",
"0.3M"
],
[
"Total weights",
"4.24M",
"3.47M",
"1.25M",
"0.72M",
"5.4M",
"2.9M",
"4.2M"
],
[
"Total activations",
"5.2M",
"1.46M",
"4.8M",
"4.7M",
"3.2M",
"1.1M",
"3.9M"
],
[
"Total MACs",
"569M",
"300M",
"388M",
"282M",
"140M",
"274M",
"317M"
]
] | 0.364123 | null | null |
4 | 1911.00623v2 | 19 | [
45.827999114990234,
119.05322647094727,
450.36199951171875,
583.1997528076172
] | \begin{table}
\begin{threeparttable}[tb]
\centering
\tabcolsep=0.04cm
\caption{The chronology of the recent approaches which modifies the training algorithm to account for quantization error.}
\label{quanttable}
\begin{scriptsize}
%\begin{sc}
\begin{tabular}{c|c|c|ccc|cc}
\noalign{
\hrule height 2pt
}
\multirow{2}{*}{Year} &\multirow{2}{*}{Approach} & \multirow{2}{*}{Keywords} & \multicolumn{3}{c}{Quantization\tnote{1}} & \multicolumn{2}{c}{Benchmark}
\\ \cline{4-6} \cline{7-8}
& & & Forward & Backward & \specialcell{Parameter\\ Update} & Data & Model \\
\noalign{
\hrule height 2pt
}
2014 & EBP \cite{soudry2014expectation} & Expectation Back Propagation & 1 bit, FP & - & - & used in \cite{crammer2013adaptive} & Proprietary MLP \\
\noalign{
\hrule height 2pt
}
\multirow{4}{*} {2015} & \multirow{3}{*} {Gupta et. al \cite{gupta2015deep} } & \multirow{2}{*} {Stochastic Rounding} & 16 bits & 16 bits & 16 bits & MNIST & Proprietary MLP , LeNet-5 \\ \cline{4-8}
& & & 20 bits & 20 bits & 20 bits & CIFAR-10& used in \cite{hinton2012improving}\\ \cline{2-8}
& Binary Connect \cite{courbariaux2015binaryconnect} & Stochastic Binarization & 1 bit & 1 bit & Float 32 \tnote{2} & \specialcell{MNIST \\ CIFAR-10\\SVHN} & Proprietary MLP, CNN \\ \noalign{
\hrule height 2pt
}
\multirow{5}{*}{2016} & Lin et. al \cite{lin2015neural} & \specialcell{Stochastic Binarization \\No forward pass multiplication\\
Quantized back propagation} & 1 bit & 1 bit & Float 32 & \specialcell{MNIST \\ CIFAR-10\\SVHN} & \specialcell{Proprietary \\ MLP, CNN} \\ \cline{2-8}
& Bitwise Net \cite{kim2016bitwise} & \specialcell{Weight Compression\\
Noisy back propagation} & 1 bit & 1 bit & \specialcell{1 bit \\ Float 32\tnote{3}} & MNIST & Proprietary MLP\\ \cline{2-8}
& XNOR-Net \cite{rastegari2016xnor} & \specialcell{Binary convolution\\Binary dot-product\\
Scaling binary gradient} & 1 bit & 1 bit & \specialcell{1 bit \\ Float 32\tnote{4}} & ImageNet & \specialcell{AlexNet \\ ResNet-18 \\ GoogLenet}
\\ \cline{2-8}
& \multirow{2}{*}{DoReFa-Net \cite{zhou2016dorefa}} & \multirow{2}{*}{\specialcell{stochastic gradient quantization \\ arbitrary bit-width}} &\multirow{2}{*}{1-8 bit} & \multirow{2}{*}{1-8 bit} & \multirow{2}{*}{2-32 bit} & SVHN & proprietary CNN \\ \cline{7-8}
&& & & && ImageNet & AlexNet
\\ \noalign{
\hrule height 2pt
}
\multirow{4}{*}{2017} & \multirow{4}{*}{QNN \cite{hubara2017quantized}} & \multirow{4}{*}{\specialcell{Deterministic binarization \\ Straight through estimators \\ to avoid saturation \\ Shift based Batch Normalization \\ Shift based AdaMAX}} & \multirow{3}{*}{1 bit}& \multirow{3}{*}{1 bit} & \multirow{3}{*}{1 bit \tnote{5}} & & \\
& & & & & & MNIST & proprietary MLP \\ \cline{7-8}
& & & & & & \specialcell{CiFAR-10\\SVHN} & CNN from \cite{courbariaux2015binaryconnect} \\ \cline{7-8}
& & & & & & \specialcell{ImageNet} & \specialcell{AlexNet\\GoogLenet} \\ \cline{4-8}
& & & 4 bit & 4 bit & 4 bit \tnote{6} & \specialcell{Penn \\ Treebank} & \specialcell{proprietary RNN\\LSTM} \\
\noalign{
\hrule height 2pt
}
\multirow{6}{*}{2018} & \multirow{3}{*}{Wang et. al \cite{wang2018training} } & \multirow{3}{*}{\specialcell{novel floating point\\ chunk based accumulation \\ stochastic rounding}} & \multirow{3}{*}{8 bit} & \multirow{3}{*}{8 bit} & \multirow{3}{*}{8 bit \tnote{7}} & CIFAR-10 & \specialcell{proprietary CNN\\ResNET}
\\\cline{7-8}
&& & & && BN50 \cite{van2017training}& proprietary MLP
\\ \cline{7-8}
&&&&&& ImageNet & \specialcell{AlexNet\\ResNET18\\ResNET50}
\\ \cline{2-8}
& \multirow{3}{*}{Jacob et. al \cite{jacob2018quantization}} & \multirow{3}{*}{\specialcell{training with simulated\\quantization}}& \multirow{3}{*}{8 bit} & \multirow{3}{*}{8 bit} & \multirow{3}{*}{8 bit \tnote{8}} & Imagenet & \specialcell{Resnet\\Inception v3\\MobileNet} \\ \cline{7-8}
&& & & && COCO & MobileNet SSD
\\ \cline{7-8}
&& & & && Flickr \cite{howard2017mobilenets} & MobileNet SSD
\\
\noalign{
\hrule height 2pt
}
2019
& WAGEUBN \cite{yang2020training} & \specialcell{batch-norm layer quantization \\8-bit integer representation \\combination of direct, constant \\and shift quantization} &8 bit & 8 bit & 8 bit & ImageNet & ResNet18/34/50 \\
\noalign{
\hrule height 2pt
}
\multirow{12}{*}{2020}
&\multirow{4}{*}{S2FP8 \cite{cambier2020shifted}} & \multirow{4}{*}{\specialcell{shifted and squeezed FP8 \\ representation of tensors \\ tensor distribution learning }} &\multirow{4}{*}{8 bit} & \multirow{4}{*}{8 bit} & \multirow{4}{*}{32 bit} & CIFAR-10 & ResNet20/34/50
\\ \cline{7-8}
&& & & && ImageNet & ResNet18/50
\\ \cline{7-8}
&& & & && English-Vietnamese & Transformer-Tiny
\\ \cline{7-8}
&& & & && MovieLens & \specialcell{Neural Collaborative\\ Filtering (NCF)}
\\ \cline{2-8}
& \multirow{3}{*}{Wiedemann et. al \cite{wiedemann2020dithered}} &
\multirow{3}{*}{\specialcell{stochastic gradient quantization \\ induce sparsity \\ non-subtractive dither}} &\multirow{3}{*}{8 bit} & \multirow{3}{*}{8 bit} & \multirow{3}{*}{32 bit} & MNIST & LeNet
\\ \cline{7-8}
&& & & && CIFAR-10/100 & \specialcell{AlexNet\\ResNet18\\VGG11}
\\ \cline{7-8}
&& & & && ImageNet &ResNet18
\\ \cline{2-8}
& \multirow{3}{*}{Quant-Noise \cite{fan2020training} }& \multirow{3}{*}{\specialcell{training using\\quantization noise}} & \multirow{3}{*}{8 bit} & \multirow{3}{*}{8 bit} & \multirow{3}{*}{8 bit} & Wikitext-103 & RoBERT \\
&& & & && MNLI & RoBERT\\
&& & & && ImageNet & EfficientNet-B3\\
\\ \noalign{
\hrule height 2pt
}
\end{tabular}
%\end{sc}
\begin{tablenotes}
\item[1] minimum quantization for best performing model reported.
\item[2] all real valued vectors are reported as Float 32 by default.
\item[3] involves tuning a separate set of parameters with floating point precision.
\item[4] becomes Float 32 if gradient scaling is used.
\item[5] except the first layer input of 8 bits.
\item[6] contains results with 2 bit, 3 bit and floating point precision.
\item[7] additional 16 bit for accumulation.
\item[8] uses 7 bit precision for some Inception v3 experiments.
\end{tablenotes}
%\normalsize
\end{scriptsize}
\end{threeparttable}
\end{table} | [
[
"Year",
"Approach",
"Keywords",
"Quantization1 Benchmark",
null
],
[
null,
null,
null,
"Parameter\nForward Backward\nUpdate",
"Data Model"
],
[
"2014",
"EBP [158]",
"Expectation Back Propagation",
"1 bit, FP - -",
"used in [30] Proprietary MLP"
],
[
"2015",
"Gupta et. al [65]",
"Stochastic Rounding",
"16 bits 16 bits 16 bits",
"MNIST Proprietary MLP , LeNet-5"
],
[
null,
null,
null,
"20 bits 20 bits 20 bits",
"CIFAR-10 used in [75]"
],
[
null,
"Binary Connect [28]",
"Stochastic Binarization",
"1 bit 1 bit Float 32 2",
"MNIST\nCIFAR-10 Proprietary MLP, CNN\nSVHN"
],
[
"2016",
"Lin et. al [116]",
"Stochastic Binarization\nNo forward pass multiplication\nQuantized back propagation",
"1 bit 1 bit Float 32",
"MNIST\nProprietary\nCIFAR-10\nMLP, CNN\nSVHN"
],
[
null,
"Bitwise Net [94]",
"Weight Compression\nNoisy back propagation",
"1 bit\n1 bit 1 bit Float 323",
"MNIST Proprietary MLP"
],
[
null,
"XNOR-Net [143]",
"Binary convolution\nBinary dot-product\nScaling binary gradient",
"1 bit\n1 bit 1 bit Float 324",
"AlexNet\nImageNet ResNet-18\nGoogLenet"
],
[
null,
"DoReFa-Net [211]",
"stochastic gradient quantization\narbitrary bit-width",
"1-8 bit 1-8 bit 2-32 bit",
"SVHN proprietary CNN"
],
[
null,
null,
null,
null,
"ImageNet AlexNet"
],
[
"2017",
"QNN [84]",
"Deterministic binarization\nStraight through estimators\nto avoid saturation\nShift based Batch Normalization\nShift based AdaMAX",
"1 bit 1 bit 1 bit 5",
"MNIST proprietary MLP"
],
[
null,
null,
null,
null,
"CiFAR-10\nCNN from [28]\nSVHN"
],
[
null,
null,
null,
null,
"AlexNet\nImageNet\nGoogLenet"
],
[
null,
null,
null,
"4 bit 4 bit 4 bit 6",
"Penn proprietary RNN\nTreebank LSTM"
],
[
"2018",
"Wang et. al [186]",
"novel floating point\nchunk based accumulation\nstochastic rounding",
"8 bit 8 bit 8 bit 7",
"proprietary CNN\nCIFAR-10\nResNET"
],
[
null,
null,
null,
null,
"BN50 [177] proprietary MLP"
],
[
null,
null,
null,
null,
"AlexNet\nImageNet ResNET18\nResNET50"
],
[
null,
"Jacob et. al [89]",
"training with simulated\nquantization",
"8 bit 8 bit 8 bit 8",
"Resnet\nImagenet Inception v3\nMobileNet"
],
[
null,
null,
null,
null,
"COCO MobileNet SSD"
],
[
null,
null,
null,
null,
"Flickr [79] MobileNet SSD"
],
[
"2019",
"WAGEUBN [204]",
"batch-norm layer quantization\n8-bit integer representation\ncombination of direct, constant\nand shift quantization",
"8 bit 8 bit 8 bit",
"ImageNet ResNet18/34/50"
],
[
"2020",
"S2FP8 [15]",
"shifted and squeezed FP8\nrepresentation of tensors\ntensor distribution learning",
"8 bit 8 bit 32 bit",
"CIFAR-10 ResNet20/34/50"
],
[
null,
null,
null,
null,
"ImageNet ResNet18/50"
],
[
null,
null,
null,
null,
"English-Vietnamese Transformer-Tiny"
],
[
null,
null,
null,
null,
"Neural Collaborative\nMovieLens\nFiltering (NCF)"
],
[
null,
"Wiedemann et. al [194]",
"stochastic gradient quantization\ninduce sparsity\nnon-subtractive dither",
"8 bit 8 bit 32 bit",
"MNIST LeNet"
],
[
null,
null,
null,
null,
"AlexNet\nCIFAR-10/100 ResNet18\nVGG11"
],
[
null,
null,
null,
null,
"ImageNet ResNet18"
],
[
null,
"Wikitext-103 RoBERT\ntraining using\nQuant-Noise [43] 8 bit 8 bit 8 bit MNLI RoBERT\nquantization noise\nImageNet EfficientNet-B3",
null,
null,
null
]
] | 0.545965 | null | null |
0 | 2303.01111v1 | 3 | [
348.371831258138,
234.2020263671875,
526.6413065592448,
281.0260009765625
] | \begin{table}[!ht]
\centering
\caption{Confusion Matrix}
\label{tbl:performance_results}
\begin{tabular}{|c|c|c|c|c|}
\hline True / Prediction & 0 & 1 & 2 & SUM\\
\hline 0 & 1200 & 728 & 386 & 2314\\
\hline 1 & 185 & 324 & 57 & 566\\
\hline 2 & 131 & 56 & 112 & 299\\
\hline SUM & 1516 & 1108 & 555 & 3179\\
\hline
\end{tabular}
\end{table} | [
[
"True / Prediction",
"0",
"1",
"2",
"SUM"
],
[
"0",
"1200",
"728",
"386",
"2314"
],
[
"1",
"185",
"324",
"57",
"566"
],
[
"2",
"131",
"56",
"112",
"299"
],
[
"SUM",
"1516",
"1108",
"555",
"3179"
]
] | 1 | null | null |
1 | 2303.01111v1 | 3 | [
356.1202026367188,
322.2659912109375,
518.892822265625,
359.72601318359375
] | \begin{table}[!ht]
\centering
\caption{Performance Metrics}
\label{Table:performance_metrics}
\begin{tabular}{|c|c|c|c|c|}
\hline & precision & recall & f1-score & support\\
\hline 0 & 0.79 & 0.52 & 0.63 & 2314\\
\hline 1 & 0.29 & 0.57 & 0.39 & 566\\
\hline 2 & 0.20 & 0.37 & 0.26 & 299\\
\hline
\end{tabular}
\end{table} | [
[
"",
"precision",
"recall",
"f1-score",
"support"
],
[
"0",
"0.79",
"0.52",
"0.63",
"2314"
],
[
"1",
"0.29",
"0.57",
"0.39",
"566"
],
[
"2",
"0.20",
"0.37",
"0.26",
"299"
]
] | 1 | null | null |
2 | 2303.01111v1 | 4 | [
57.297001647949216,
365.5790100097656,
291.68959350585936,
403.03900146484375
] | \begin{table}[h]
\caption{Monte Carlo Parameters}
\label{table:monte_carlo_parameters}
\centering
%\renewcommand{\arraystretch}{1.3}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Class & $\mu$ & $\sigma$ & a & b & Exp1 & Exp2 & Exp3\\
\hline 1 & 0.03 & 0.015 & 0.02 & 0.15 & 33 & 100 & 50\\
\hline 2 & 0.0 & 0.01 & -0.02 & 0.02 & 10 & 10 & 10\\
\hline 3 & -0.03 & 0.015 & -0.15 & -0.02 & 100 & 100 & 300\\
\hline
\end{tabular}
\end{table} | [
[
"Class",
"µ",
"σ",
"a",
"b",
"Exp1",
"Exp2",
"Exp3"
],
[
"1",
"0.03",
"0.015",
"0.02",
"0.15",
"33",
"100",
"50"
],
[
"2",
"0.0",
"0.01",
"-0.02",
"0.02",
"10",
"10",
"10"
],
[
"3",
"-0.03",
"0.015",
"-0.15",
"-0.02",
"100",
"100",
"300"
]
] | 0.966038 | null | null |
3 | 2303.01111v1 | 5 | [
100.95309982299804,
84.16400146484375,
248.03300018310546,
168.447998046875
] | \begin{table}[h]
\caption{Algorithm's Predictions: Statistics}
\label{Table: Algorithm's Predictions}
\centering
\begin{tabular}{|c|c|c|c|}
\hline
\multicolumn{1}{|c|}{} & \multicolumn{1}{c|}{C0} & \multicolumn{1}{c|}{C1} & \multicolumn{1}{c|}{C2}\\
\hline AVG & 1.0011 & 1.0095 & 0.9955\\
\hline MEDIAN & 1.0000 & 1.0070 & 0.9964\\
\hline SD & 0.0171 & 0.0216 & 0.0209\\
\hline MIN & 0.9040 & 0.9330 & 0.8756\\
\hline MAX & 1.1080 & 1.1520 & 1.1217\\
\hline Q1 & 0.9920 & 0.9958 & 0.9829\\
\hline Q3 & 1.0100 & 1.0230 & 1.0064\\
\hline N & 1516 & 1108 & 555\\
\hline
\end{tabular}
\end{table} | [
[
"",
"C0",
"C1",
"C2"
],
[
"AVG",
"1.0011",
"1.0095",
"0.9955"
],
[
"MEDIAN",
"1.0000",
"1.0070",
"0.9964"
],
[
"SD",
"0.0171",
"0.0216",
"0.0209"
],
[
"MIN",
"0.9040",
"0.9330",
"0.8756"
],
[
"MAX",
"1.1080",
"1.1520",
"1.1217"
],
[
"Q1",
"0.9920",
"0.9958",
"0.9829"
],
[
"Q3",
"1.0100",
"1.0230",
"1.0064"
],
[
"N",
"1516",
"1108",
"555"
]
] | 0.966019 | null | null |
4 | 2303.01111v1 | 6 | [
325.555658976237,
305.0200958251953,
549.4581604003906,
350.68479614257814
] | \begin{table}[h]
\caption{Multinomial Logit Regression Summary}
\label{tab:logit_regression}
\centering
\begin{tabular}{|l|c|c|c|}
\hline
& AVG & Prediction = C1 & Prediction = C2 \\
\hline coef & & -22.8763 (0.0000) & 14.9750 (0.000)\\
\hline yield & 1.003 & 22.4499 (0.0000) & -16.0069 (0.000)\\
\hline LL & \multicolumn{3}{r|}{-3151.802} \\
\hline LLR test: $\chi^2$ & \multicolumn{3}{r|}{214.596 (0.0000)} \\
\hline
\end{tabular}
\end{table} | [
[
"",
"AVG Predicti",
"on = C1 Prediction = C2"
],
[
"coef",
"-22.8763",
"(0.0000) 14.9750 (0.000)"
],
[
"yield",
"1.003 22.4499",
"(0.0000) -16.0069 (0.000)"
],
[
"LL",
"-3151.802",
null
],
[
"LLR test: χ2",
"214.596 (0.0000)",
null
]
] | 0.93913 | null | null |
5 | 2303.01111v1 | 8 | [
97.31366729736328,
217.01202392578125,
251.6729990641276,
263.83599853515625
] | \begin{table}[!htp]
\centering
%\renewcommand{\arraystretch}{1.3}
\caption{95\% Approval Rate}
\label{Table: Approval Rate}
\begin{tabular}{|c|c|c|c|c|}
\hline True / Prediction & 0 & 1 & 2 & SUM\\
\hline 0 & 46 & 1 & 5 & 52\\
\hline 1 & 2 & 14 & 0 & 16\\
\hline 2 & 0 & 0 & 3 & 3\\
\hline SUM & 48 & 15 & 8 & 71\\
\hline
\end{tabular}
\end{table} | [
[
"True / Prediction",
"0",
"1",
"2",
"SUM"
],
[
"0",
"46",
"1",
"5",
"52"
],
[
"1",
"2",
"14",
"0",
"16"
],
[
"2",
"0",
"0",
"3",
"3"
],
[
"SUM",
"48",
"15",
"8",
"71"
]
] | 1 | null | null |
0 | 2212.04974v1 | 6 | [
129.3623335096571,
360.97601318359375,
482.63778347439234,
415.3970031738281
] | \begin{table}[!ht]
%\begin{tabular}{llll}
%\toprule
%Model & MSE with GAE-ARR & MSE without GAE-ARR & P-value of difference \\
%\midrule
%Linear & $\mathbf{0.360279^*}$ & 0.107617 & 0.00 \\
%Tree & $\mathbf{0.357711^*}$ & 0.310005 & 0.043 \\
%MLP & $\mathbf{0.380436^*}$ & 0.317938 & 0.003 \\
%\bottomrule
%Note : * signifies p-value<0.05
%\end{tabular}
%\caption{Results of Log-RV forecasting at the 1 hour frequency}
%
%\label{tab:my-table}
%\end{table} | [
[
"Model",
"R2 with AUROC\nt+1",
"R2 without AUROC\nt+1",
"p-value of difference"
],
[
"Linear",
"0.360∗",
"0.107",
"0.00"
],
[
"Tree",
"0.357∗",
"0.310",
"0.043"
],
[
"MLP",
"0.380∗",
"0.317",
"0.003"
]
] | 0.526077 | null | null |
0 | 1508.05417v2 | 9 | [
315.7550048828125,
580.4850158691406,
556.8099975585938,
746.3389892578125
] | \begin{table}[!b]\scriptsize
\centering
\caption{Simulation Parameters}
\begin{tabular}{ l | l }
\hline \hline
Size of active region ($W \times L$) & $0.1 \times 5$ ($\mu m$) \\ \hline
Temperature ($T$) & $298$ ($K$) \\ \hline
Relative permittivity of SiO$_2$ layer ($\epsilon_{ox}/\epsilon_0$) & $3.9$ \\ \hline
Thickness of SiO$_2$ layer ($t_{ox}$) & $17.5$ ($nm$) \\ \hline
Effective mobility ($\mu_{eff}$) & $16 \times 10^{-3}$ ($m^2 V^{-1} s^{-1}$) \\ \hline
Drain-source voltage ($V_{DS}$) & $0.1$ ($V$) \\ \hline
Relative permittivity of solvent ($\epsilon_R/\epsilon_0$) & $78$ \\ \hline
Ionic concentration of medium ($c_{ion}$) & $70$ ($mM$) \\ \hline % physiological conditions
Trap density ($N_t$) & $2.3 \times 10^{24}$ ($eV^{-1} m^{-3}$) \\ \hline
Tunneling distance ($\lambda$) & $0.05$ ($nm$) \\ \hline
Average net charge of ligands ($N_e$) & $4$ \\ \hline % protein, DNA
Length of receptor ($L_R$) & $4$ ($nm$) \\ \hline % range of aptamer and antibody sizes.
Binding rate ($k_+$) & $2 \times 10^{-18}$ ($m^3 s^{-1}$) \\ \hline
Unbinding rate ($k_-$) & $10$ ($s^{-1}$) \\ \hline
Ligand concentration in reception space ($c_i$) & 4$K_D$ \\ \hline
Concentration of receptors on the surface ($c_R$) & $2 \times 10^{16}$ ($m^{-2}$) \\ \hline
Molecular capacitance ($C_{mol,L}, C_{mol,R}$) & $2 \times 10^{-20}$ ($F$) \\ \hline
Capacitance of dielectric layer ($C_{dl}$) & $5 \times 10^{-2}$ ($F/m^2$)\\ \hline
Capacitance of silicon ($C_s$) & $2 \times 10^{-3}$ ($F/m^2$) \\ \hline
\end{tabular}
\label{table:parameters}
\end{table} | [
[
"Size of active region (W × L)",
"0.1 × 5 (µm)"
],
[
"Temperature (T )",
"298 (K)"
],
[
"Relative permittivity of SiO2 layer (ϵox/ϵ0)",
"3.9"
],
[
"Thickness of SiO2 layer (tox)",
"17.5 (nm)"
],
[
"Effective mobility (µeff )",
"16 × 10−3 (m2V −1s−1)"
],
[
"Drain-source voltage (VDS)",
"0.1 (V )"
],
[
"Relative permittivity of solvent (ϵR/ϵ0)",
"78"
],
[
"Ionic concentration of medium (cion)",
"70 (mM)"
],
[
"Trap density (Nt)",
"2.3 × 1024 (eV −1m−3)"
],
[
"Tunneling distance (λ)",
"0.05 (nm)"
],
[
"Average net charge of ligands (Ne)",
"4"
],
[
"Length of receptor (LR)",
"4 (nm)"
],
[
"Binding rate (k+)",
"2 × 10−18 (m3s−1)"
],
[
"Unbinding rate (k )\n−",
"10 (s−1)"
],
[
"Ligand concentration in reception space (ci)",
"4KD"
],
[
"Concentration of receptors on the surface (cR)",
"2 × 1016 (m−2)"
],
[
"Molecular capacitance (Cmol,L, Cmol,R)",
"2 × 10−20 (F )"
],
[
"Capacitance of dielectric layer (Cdl)",
"5 × 10−2 (F/m2)"
],
[
"Capacitance of silicon (Cs)",
"2 × 10−3 (F/m2)"
]
] | 0.817975 | null | null |
0 | 2105.00030v1 | 4 | [
312.1571014404297,
78.635986328125,
562.8569763183593,
342.24798583984375
] | \begin{table}[t]
\caption{Summary of curatorial actions in annotation schema}
\centering
\begin{tabularx}{\columnwidth}{|l|X|}
\hline
\textbf{Curatorial Action} & \textbf{Examples} \\
\hline
\textit{Initial review and planning} &
Look at deposited files, determine curation work needed, compose processing plan, create processing history syntax \\
\hline
\textit{Data transformation} & Locate identifiers, revise or add variable/value labels, designate or fix missing values, reorder/standardize/convert variables, create variable-level metadata, collapse categories for disclosure \\
\hline
\textit{Metadata} & Draft or revise study description, copy metadata from deposit system, update collection dates based on dataset, create survey question text, describe variable level labels \\
\hline
\textit{Documentation} & Create a codebook, document major changes or issues with the data, compile documentation archived by the data producer \\
\hline
\textit{Quality checks} & Check all files and metadata for completeness, adherence to standards, alignment with JIRA request after all data and documentation curation is complete (Self QC, 1QC, 2QC) \\
\hline
\textit{Communication} & Discuss study with project manager, consult supervisor on curation standards for study, check how to handle specific variables \\
\hline
\textit{Other} & Compile folders for study, ambiguous or overly-general curation work \\
\hline
\textit{Non-curation} & Staff meetings, timesheets, administrative work \\
\hline
\end{tabularx}
\label{table:definitions}
\end{table} | [
[
"Curatorial Action",
"Examples"
],
[
"Initial review and planning",
"Look at deposited files, determine curation\nwork needed, compose processing plan,\ncreate processing history syntax"
],
[
"Data transformation",
"Locate identifiers, revise or add vari-\nable/value labels, designate or fix miss-\ning values, reorder/standardize/convert vari-\nables, create variable-level metadata, col-\nlapse categories for disclosure"
],
[
"Metadata",
"Draft or revise study description, copy\nmetadata from deposit system, update col-\nlection dates based on dataset, create survey\nquestion text, describe variable level labels"
],
[
"Documentation",
"Create a codebook, document major\nchanges or issues with the data, compile\ndocumentation archived by the data pro-\nducer"
],
[
"Quality checks",
"Check all files and metadata for complete-\nness, adherence to standards, alignment\nwith JIRA request after all data and docu-\nmentation curation is complete (Self QC,\n1QC, 2QC)"
],
[
"Communication",
"Discuss study with project manager, consult\nsupervisor on curation standards for study,\ncheck how to handle specific variables"
],
[
"Other",
"Compile folders for study, ambiguous or\noverly-general curation work"
],
[
"Non-curation",
"Staff meetings, timesheets, administrative\nwork"
]
] | 0.985605 | null | null |
1 | 2105.00030v1 | 6 | [
49.144907517866656,
79.66400146484375,
299.84118097478694,
188.85498046875
] | \begin{table}[t]
\centering
\caption{Description of Jira ticket corpus of curation requests}
\begin{tabularx}{\columnwidth}{|X|X|X|X|X|X|}
\hline
& & \textbf{Total \newline tickets \newline (n=669)} & \textbf{Total \newline studies \newline (n=566)} & \textbf{Average curation hours/study} \\
\hline
\multirow{3}{*}{\textbf{Curation}} & Level 1 & 221 & 178 & 51 \\
& Level 2 & 229 & 210 & 79 \\
& Level 3 & 219 & 178 & 165 \\
\hline
\multirow{3}{*}{\textbf{Archive}} & BJS & 131 & 124 & 78 \\
& ICPSR & 116 & 104 & 105 \\
& Other & 422 & 338 & 102 \\
\hline
\multirow{3}{*}{\textbf{Year}} & 2017 & 133 & 119 & 107 \\
& 2018 & 305 & 276 & 99 \\
& 2019 & 231 & 171 & 88 \\
\hline
\end{tabularx}
\label{table:tickets}
\end{table} | [
[
"",
"",
"Total\ntickets\n(n=669)",
"Total\nstudies\n(n=566)",
"Average\ncuration\nhours/study"
],
[
"Curation",
"Level 1\nLevel 2\nLevel 3",
"221\n229\n219",
"178\n210\n178",
"51\n79\n165"
],
[
"Archive",
"BJS\nICPSR\nOther",
"131\n116\n422",
"124\n104\n338",
"78\n105\n102"
],
[
"Year",
"2017\n2018\n2019",
"133\n305\n231",
"119\n276\n171",
"107\n99\n88"
]
] | 0.492806 | null | null |
2 | 2105.00030v1 | 6 | [
312.1548902723524,
87.60302734375,
562.8591986762153,
180.4539794921875
] | \begin{table}[t]
\centering
\caption{Studies recording curation actions and percent of hours logged across all studies}
\begin{tabularx}{\columnwidth}{|l|X|X|}
\hline
\textbf{Action} & \textbf{Percent of studies containing action} & \textbf{Percent of total work log hours classified as action} \\ \hline
\textit{Quality checks} & 90.1 & 31.6 \\ \hline
\textit{Initial review and planning} & 70.0 & 14.0 \\ \hline
\textit{Data transformation} & 67.6 & 29.9 \\ \hline
\textit{Metadata} & 57.7 & 6.5 \\ \hline
\textit{Documentation} & 56.2 & 7.5 \\ \hline
\textit{Communication} & 54.6 & 7.9 \\ \hline
\textit{Other} & 40.9 & 2.8 \\ \hline
\end{tabularx}
\label{table:actions}
\end{table} | [
[
"Action",
"Percent of studies\ncontaining action",
"Percent of total\nwork log hours\nclassified as action"
],
[
"Quality checks",
"90.1",
"31.6"
],
[
"Initial review and planning",
"70.0",
"14.0"
],
[
"Data transformation",
"67.6",
"29.9"
],
[
"Metadata",
"57.7",
"6.5"
],
[
"Documentation",
"56.2",
"7.5"
],
[
"Communication",
"54.6",
"7.9"
],
[
"Other",
"40.9",
"2.8"
]
] | 0.974545 | null | null |
0 | 1704.06497v2 | 6 | [
320.2085876464844,
63.13209533691406,
512.6093139648438,
111.67950439453125
] | \begin{table}[t]
\begin{center}
\resizebox{0.9\columnwidth}{!}{
\begin{tabular}{ll|lll}
\toprule
\bf Domain &\bf Version &\bf Train &\bf Valid. &\bf Test\\
\midrule
Europarl & v.5 & 1.6M & 2k & 2k\\
News Commentary & WMT07 & 40k & 1k & 2k\\ %nc-dev2007 nc-devtest2007
TED & TED2013 & 153k & 2k & 2k\\
\bottomrule
\end{tabular}
}
\end{center}
\caption{Number of parallel sentences for training, validation and test sets for French-to-English domain adaptation.}
\label{tab:data}
\end{table} | [
[
"Domain Version",
"Train Valid. Test"
],
[
"Europarl v.5\nNews Commentary WMT07\nTED TED2013",
"1.6M 2k 2k\n40k 1k 2k\n153k 2k 2k"
]
] | 0.396476 | null | null |
0 | 2406.00459v1 | 26 | [
74.63157435825893,
608.0700073242188,
537.3684517996652,
675.1179809570312
] | \begin{table}[H]
\centering
\begin{tabular}{ |p{2.0cm}<{\centering}|p{1.3cm}<{\centering}|p{1.3cm}<{\centering}|p{1.3cm}<{\centering}|p{1.3cm}<{\centering}|p{1.3cm}<{\centering}|p{1.3cm}<{\centering}|p{1.3cm}<{\centering}|p{1.3cm}<{\centering}| }
\hline
\multicolumn{9}{|c|}{Hedging for two months period (without recalibration).} \\
\hline
Days & \multicolumn{2}{c|}{BS} & \multicolumn{2}{c|}{Local Volatility} & \multicolumn{2}{c|}{Heston} & \multicolumn{2}{c|}{2D-NN} \\
\hline
& Call & Put & Call & Put & Call & Put & Call & Put\\
\hline
\multirow{3}{*}{\makecell{2017/09 $\sim$\\ 2017/10}} & NA & NA & 2.466 & 0.870 & 1.044 & 0.486 & 0.963 & 0.449\\
& NA & NA & 19.332 & 4.171 & 2.138 & 0.674 & 1.875 & 0.615\\
& NA & NA & 7.698\% & 7.344 \% & 7.224\% & 6.982\% & 2.348\% & 6.650\%\\
\hline
\end{tabular}\\
\caption{Out-of-sample hedging performance over a two month time period period without recalibration. There are three rows for each cell. The first row reports MAE, the second row reports MSE, and the third row reports relative MAE.}
\label{Tab:HedgeOutofSample1}
\end{table} | [
[
"Hedging for two months period (without recalibration).",
null,
null,
null,
null,
null,
null,
null,
null
],
[
"Days",
"BS",
null,
"Local Volatility",
null,
"Heston",
null,
"2D-NN",
null
],
[
"",
"Call",
"Put",
"Call",
"Put",
"Call",
"Put",
"Call",
"Put"
],
[
"2017/09\n∼\n2017/10",
"NA\nNA\nNA",
"NA\nNA\nNA",
"2.466\n19.332\n7.698%",
"0.870\n4.171\n7.344 %",
"1.044\n2.138\n7.224%",
"0.486\n0.674\n6.982%",
"0.963\n1.875\n2.348%",
"0.449\n0.615\n6.650%"
]
] | 0.382253 | null | null |
0 | 2111.15634v1 | 4 | [
323.8572021484375,
71.4520263671875,
552.3309814453125,
135.81097412109375
] | \begin{table}[]
\centering
\caption{Datasets Information}
\begin{tabularx}{0.45\textwidth}{|*{4}{c}}
\hline
\multicolumn{1}{|p{1.86cm}|}{Index} & \multicolumn{1}{p{1.86cm}|}{Asset Count} & \multicolumn{1}{p{1.86cm}|}{Train Range} & \multicolumn{1}{p{1.86cm}|}{Test Range} \\ \hline
\multicolumn{1}{|p{1.86cm}|}{S\&P 500} & \multicolumn{1}{p{1.86cm}|}{465} & \multicolumn{1}{p{1.86cm}|}{2019-04-01 to 2019-08-01} & \multicolumn{1}{p{1.86cm}|}{2019-08-02 to 2019-09-01} \\ \hline
\multicolumn{1}{|p{1.86cm}|}{Nikkei 225} & \multicolumn{1}{p{1.86cm}|}{225} & \multicolumn{1}{p{1.86cm}|}{0 to 200} & \multicolumn{1}{p{1.86cm}|}{201 to 290} \\ \hline
\multicolumn{1}{|p{1.86cm}|}{S\&P 100} & \multicolumn{1}{p{1.86cm}|}{98} & \multicolumn{1}{p{1.86cm}|}{0 to 200} & \multicolumn{1}{p{1.86cm}|}{201 to 290} \\ \hline
\end{tabularx}
\label{tab:datasets}
\end{table} | [
[
"Index",
"Asset Count",
"Train Range",
"Test Range"
],
[
"S&P 500",
"465",
"2019-04-01\nto 2019-08-\n01",
"2019-08-02\nto 2019-09-\n01"
],
[
"Nikkei 225",
"225",
"0 to 200",
"201 to 290"
],
[
"S&P 100",
"98",
"0 to 200",
"201 to 290"
]
] | 0.665331 | null | null |
0 | 2312.01024v1 | 3 | [
75.28099822998047,
261.4310302734375,
273.7049865722656,
406.0880126953125
] | \begin{table}[ht]
\caption{Hybrid Model Architecture and Parameters}
\centering
\begin{tabular}{|l|l|l|}
\hline
\textbf{Layer (type)} & \textbf{Output Shape} & \textbf{Param \#} \\
\hline
Conv2d-1 & [-1, 64, 64, 64] & 9,408 \\
BatchNorm2d-2 & [-1, 64, 64, 64] & 128 \\
ReLU-3 & [-1, 64, 64, 64] & 0 \\
MaxPool2d-4 & [-1, 64, 32, 32] & 0 \\
Conv2d-5 & [-1, 128, 32, 32] & 8,192 \\
BatchNorm2d-6 & [-1, 128, 32, 32] & 256 \\
ReLU-7 & [-1, 128, 32, 32] & 0 \\
Conv2d-8 & [-1, 128, 32, 32] & 4,608 \\
BatchNorm2d-9 & [-1, 128, 32, 32] & 256 \\
... & ... & ... \\
Linear-100 & [-1, 1] & 513 \\
TorchConnector-101 & [-1, 2] & 2 \\
\hline
\textbf{Total params} & & 1,412,931 \\
\textbf{Trainable params} & & 1,412,931 \\
\textbf{Non-trainable params} & & 0 \\
\hline
\end{tabular}
\end{table} | [
[
"Layer (type)",
"Output Shape",
"Param #"
],
[
"Conv2d-1\nBatchNorm2d-2\nReLU-3\nMaxPool2d-4\nConv2d-5\nBatchNorm2d-6\nReLU-7\nConv2d-8\nBatchNorm2d-9\n...\nLinear-100\nTorchConnector-101",
"[-1, 64, 64, 64]\n[-1, 64, 64, 64]\n[-1, 64, 64, 64]\n[-1, 64, 32, 32]\n[-1, 128, 32, 32]\n[-1, 128, 32, 32]\n[-1, 128, 32, 32]\n[-1, 128, 32, 32]\n[-1, 128, 32, 32]\n...\n[-1, 1]\n[-1, 2]",
"9,408\n128\n0\n0\n8,192\n256\n0\n4,608\n256\n...\n513\n2"
],
[
"Total params\nTrainable params\nNon-trainable params",
"",
"1,412,931\n1,412,931\n0"
]
] | 0.48366 | null | null |
0 | 1612.04858v1 | 3 | [
132.07166544596353,
581.5969848632812,
477.4373372395833,
639.1220092773438
] | \begin{table}[H]
\begin{center}
\begin{tabular}{ |>{\centering}m{1.7cm}|>{\centering}m{2.5cm}|>{\centering}m{2cm} |>{\centering}m{1.8cm}|>{\centering}m{2.0cm} | }
\hline
& SigOpt & Rnd. Search & Grid Search & \hspace{0.5mm} No Tuning \newline (Baseline) \tabularnewline
\hline
Best Found \newline ACC & \bf{0.8760} ({\color{ForestGreen}{+5.72\%}}) & 0.8673 & 0.8680 & 0.8286 \tabularnewline
\hline
\end{tabular}
\vspace{4mm}
\caption{Best found accuracy results averaged over 20 optimization runs, each run consisting of 60 function evaluations}
\end{center}
\end{table} | [
[
"",
"SigOpt",
"Rnd. Search",
"Grid Search",
"No Tuning\n(Baseline)"
],
[
"Best Found\nACC",
"0.8760 (+5.72%)",
"0.8673",
"0.8680",
"0.8286"
]
] | 0.532637 | null | null |
1 | 1612.04858v1 | 8 | [
108.13266499837239,
261.9530029296875,
511.20566813151044,
330.385986328125
] | \begin{table}[H]
\begin{center}
\begin{tabular}{ |>{\centering}m{1.4cm}|>{\centering}m{2.5cm}|>{\centering}m{2.0cm} |>{\centering}m{1.9cm}|>{\centering}m{1.9cm} |>{\centering}m{1.9cm} | }
\hline
& \hspace{4mm} SigOpt \newline (xgboost + \newline Unsup. Feats) & Rnd Search \newline (xgboost + \newline Unsup. Feats) & SigOpt \newline (xgboost + \newline Raw Feats) & Rnd Search \newline (xgboost + \newline Raw Feats) & No Tuning \newline (sklearn RF + \newline Raw Feats) \tabularnewline
\hline
Hold out \newline ACC & \bf{0.8601} ({\color{ForestGreen}{+49.2\%}}) & 0.8190 & 0.7483 & 0.7386 & 0.5756 \tabularnewline
\hline
\end{tabular}
\vspace{4mm}
\caption{Comparison of model accuracy on held out (test) dataset after different tuning strategies}
\end{center}
\end{table} | [
[
"",
"SigOpt\n(xgboost +\nUnsup. Feats)",
"Rnd Search\n(xgboost +\nUnsup. Feats)",
"SigOpt\n(xgboost +\nRaw Feats)",
"Rnd Search\n(xgboost +\nRaw Feats)",
"No Tuning\n(sklearn RF +\nRaw Feats)"
],
[
"Hold out\nACC",
"0.8601 (+49.2%)",
"0.8190",
"0.7483",
"0.7386",
"0.5756"
]
] | 0.41018 | null | null |
2 | 1612.04858v1 | 11 | [
108.13266499837239,
419.7349853515625,
505.93932088216144,
477.2590026855469
] | \begin{table}[H]
\begin{center}
\begin{tabular}{ |>{\centering}m{1.25cm}|>{\centering}m{2.9cm}|>{\centering}m{3cm} |>{\centering}m{1.8cm}|>{\centering}m{2.9cm} | }
\hline
& \hspace{4mm} SigOpt \newline (TensorFlow CNN) & Random Search \newline (TensorFlow CNN) & No Tuning \newline (sklearn RF) & \hspace{4mm} No Tuning \newline (TensorFlow CNN) \tabularnewline
\hline
Hold out \newline ACC & \bf{0.8130} ({\color{ForestGreen}{+315.2\%}}) & 0.5690 & 0.5278 & 0.1958 \tabularnewline
\hline
\end{tabular}
\vspace{4mm}
\caption{Comparison of model accuracy on the held out (test) dataset after different tuning strategies}
\end{center}
\end{table} | [
[
"",
"SigOpt\n(TensorFlow CNN)",
"Random Search\n(TensorFlow CNN)",
"No Tuning\n(sklearn RF)",
"No Tuning\n(TensorFlow CNN)"
],
[
"Hold out\nACC",
"0.8130 (+315.2%)",
"0.5690",
"0.5278",
"0.1958"
]
] | 0.620968 | null | null |
3 | 1612.04858v1 | 14 | [
145.3353271484375,
151.614013671875,
464.1740010579427,
209.13800048828125
] | \begin{table}[H]
\begin{center}
\begin{tabular}{ |>{\centering}m{1.5cm}|>{\centering}m{2.5cm} |>{\centering}m{2cm} |>{\centering}m{3.5cm}| }
\hline
& SigOpt & Random Search & \hspace{3mm} No Tuning \newline (Default MLlib ALS) \tabularnewline
\hline
Hold out \newline RMSE & \bf{0.7864} ({\color{ForestGreen}{-40.7\%}}) & 0.7901 & 1.3263 \tabularnewline
\hline
\end{tabular}
\vspace{4mm}
\caption{Comparison of RMSE on the hold out (test) ratings after tuning ALS algorithm}
\end{center}
\end{table} | [
[
"",
"SigOpt",
"Random\nSearch",
"No Tuning\n(Default MLlib ALS)"
],
[
"Hold out\nRMSE",
"0.7864 (-40.7%)",
"0.7901",
"1.3263"
]
] | 0.56535 | null | null |
0 | 2004.14107v1 | 11 | [
52.460500717163086,
78.83766174316406,
292.7359924316406,
135.29302978515625
] | \begin{table}[tb]
\centering
\begin{tabular}{c|c|c|c|c}
Information / Setting & Random & SDR & SDRT & SDRTS \\
\hline
\small{Starting/Dest. Areas} & $\checkmark$ & $\checkmark$ & $\checkmark$ & $\checkmark$ \\
\hline
\small{Exact Starting/Dest. Positions} & $\times$ & $\checkmark$ & $\checkmark$ & $\checkmark$ \\
\hline
\small{Trajectory Entry Timing} & $\times$ & $\times$ & $\checkmark$ & $\checkmark$ \\
\hline
\small{Trajectory Average Speed} & $\times$ & $\times$ & $\times$ & $\checkmark$\\
\hline
\end{tabular}
\caption{Different simulation settings and the information provided.}
\label{tab:simSettings}
\vspace{-1em}
\end{table} | [
[
"Information / Setting",
"Random",
"SDR",
"SDRT",
"SDRTS"
],
[
"Starting/Dest. Areas",
"✓",
"✓",
"✓",
"✓"
],
[
"Exact Starting/Dest. Positions",
"×",
"✓",
"✓",
"✓"
],
[
"Trajectory Entry Timing",
"×",
"×",
"✓",
"✓"
],
[
"Trajectory Average Speed",
"×",
"×",
"×",
"✓"
]
] | 0.470588 | null | null |
1 | 2004.14107v1 | 11 | [
330.8890075683594,
78.83766174316406,
547.260986328125,
162.3909912109375
] | \begin{table}[tb]
\centering
\begin{tabular}{c|c|c|c|c}
\hline
Metric/Simulations & SDR & SDRT & SDRTS & Ours\\
\hline
DPD-Space & 0.4751 & 0.3813 & 0.4374 & {\bf0.2988} \\
\hline
DPD-Time & 0.3545 & 0.0795 & 0.064 & {\bf0.0419} \\
\hline
DPD-TS & 1.0 & 0.8879 & 1.0 & {\bf 0.4443} \\
\hline
\hline
\hline
DPD-Space &0.2753 &0.2461 &0.2423 & {\bf 0.1173} \\
\hline
DPD-Time & 0.0428 & 0.0319 & 0.0295 & {\bf 0.0213} \\
\hline
DPD-TS &0.9970 &0.8157 &0.9724 & {\bf 0.5091} \\
\hline
\end{tabular}
\caption{Comparison on space flow P2 in Forum (Top) and space flow P1 in TrainStation (Bottom) based on DPD metrics, both shown in \figref{std_vis}. {\bf Lower} is better.}
\label{tab:DPD_trainStation}
\end{table} | [
[
"Metric/Simulations",
"SDR",
"SDRT",
"SDRTS",
"Ours"
],
[
"DPD-Space",
"0.4751",
"0.3813",
"0.4374",
"0.2988"
],
[
"DPD-Time",
"0.3545",
"0.0795",
"0.064",
"0.0419"
],
[
"DPD-TS",
"1.0",
"0.8879",
"1.0",
"0.4443"
],
[
"DPD-Space",
"0.2753",
"0.2461",
"0.2423",
"0.1173"
],
[
"DPD-Time",
"0.0428",
"0.0319",
"0.0295",
"0.0213"
],
[
"DPD-TS",
"0.9970",
"0.8157",
"0.9724",
"0.5091"
]
] | 0.524496 | null | null |
0 | 2305.19573v1 | 13 | [
320.91282653808594,
241.884033203125,
543.3533528645834,
334.00502522786456
] | \begin{table}[t]
\centering
\setlength{\tabcolsep}{11pt}
\begin{tabular}{|m{0.7cm}|c|c|c|}
\hline
& Within ($d_1$) & Between ($d_2$)\\
\hline
$d_J$ & $0.0784 \pm 0.0194$ & $0.1027 \pm 0.0232$\\
\hline
$d_\text{H}$ & $0.3145 \pm 0.4864$ & $0.3623 \pm 0.4967$\\
\hline
$d_{\rm basin}$ & $0.0309 \pm 0.0314$ & $0.0386 \pm 0.0325$\\
\hline
$d_L$ & $0.2535 \pm 0.1619$ & $0.2921 \pm 0.1783$\\
\hline
\end{tabular}
\caption{Discrepancy between two energy landscapes estimated by the conventional likelihood maximization method applied to the HCP data. ``Within'' and ``Between'' in the table stand for within-participant and between-participant, respectively.}
\label{table:HCP_results}
\end{table} | [
[
"",
"Within (d )\n1",
"Between (d )\n2"
],
[
"d\nJ",
"0.0784 0.0194\n±",
"0.1027 0.0232\n±"
],
[
"d\nH",
"0.3145 0.4864\n±",
"0.3623 0.4967\n±"
],
[
"d\nbasin",
"0.0309 0.0314\n±",
"0.0386 0.0325\n±"
],
[
"d\nL",
"0.2535 0.1619\n±",
"0.2921 0.1783\n±"
]
] | 0.5 | null | null |
0 | 2401.16220v1 | 8 | [
250.31500244140625,
141.19403076171875,
344.9599914550781,
190.6090087890625
] | \begin{table}[h]
\centering
\begin{tabular}{|c||c|c|c|}\hline
$ t$&$L_t$&$P_t$&$A_t $ \\\hline
0& 107& 73& 214\\\hline
1& 33&86 &240 \\\hline
2& 67& 27& 267\\\hline
\end{tabular}
\caption{Population data for Section~\ref{ex:workedexample}}
\label{table:workedexample}
\end{table} | [
[
"t",
"L\nt",
"P\nt",
"A\nt"
],
[
"0",
"107",
"73",
"214"
],
[
"1",
"33",
"86",
"240"
],
[
"2",
"67",
"27",
"267"
]
] | 0.569697 | null | null |
1 | 2401.16220v1 | 8 | [
178.54400634765625,
628.718994140625,
416.73099517822266,
665.780029296875
] | \begin{table}[h]
\centering
\begin{tabular}{|c||c|c|c|c|}\hline
t &$R_{L_t}$&$\alpha_t$&$R_{A_t}$&$\beta_t$ \\\hline
1&$[-3.67,-2.67]$& $-3.17$&$[-1.48,-0.77]$& $-1.13$\\ \hline
2&$[-4.50,-3.28]$& $-3.89$&$[-1.65,-0.86] $&$-1.25$\\\hline
\end{tabular}
\caption{Expansion ranges and midpoints}
\label{table:exampleranges}
\end{table} | [
[
"t",
"R\nLt",
"α\nt",
"R\nAt",
"β\nt"
],
[
"1",
"[ 3.67, 2.67]\n− −",
"3.17\n−",
"[ 1.48, 0.77]\n− −",
"1.13\n−"
],
[
"2",
"[ 4.50, 3.28]\n− −",
"3.89\n−",
"[ 1.65, 0.86]\n− −",
"1.25\n−"
]
] | 0.614286 | null | null |
2 | 2401.16220v1 | 9 | [
143.85299682617188,
337.1020202636719,
450.5694318498884,
374.802001953125
] | \begin{table}[h]
\centering
\begin{tabular}{|c||c|c||c|}\hline
t & $\hat{T}_{L_t}$ & $\hat{T}_{A_t}$\\\hline
1 & $0.18 + 0.04\tau_1 + 0.02(\tau_1+ 3.17)^2$ & $0.69 + 0.32\tau_2 + 0.16(\tau_2 + 1.13)^2$\\\hline
2 &$0.10 + 0.02\tau_1 + 0.01(\tau_1 + 3.89)^2$ &$0.64 + 0.29\tau_2 + 0.14(\tau_2 + 1.25)^2$ \\\hline
\end{tabular}
\caption{Taylor polynomials in $\tau_1,\tau_2$}
\label{table:examplepolynosubs}
\end{table} | [
[
"t",
"Tˆ\nLt",
"Tˆ\nAt"
],
[
"1",
"0.18+0.04τ +0.02(τ +3.17)2\n1 1",
"0.69+0.32τ +0.16(τ +1.13)2\n2 2"
],
[
"2",
"0.10+0.02τ +0.01(τ +3.89)2\n1 1",
"0.64+0.29τ +0.14(τ +1.25)2\n2 2"
]
] | 0.644258 | null | null |
3 | 2401.16220v1 | 16 | [
205.9810028076172,
141.19403076171875,
389.29400634765625,
204.95501708984375
] | \begin{table}
\centering
\begin{tabular}{|c|c|c|c|}\hline
$t$& $L_t$ &$P_t$&$A_t$\\\hline
3& 36 & 54&273\\\hline\hline
$t$&$R_{L_t}$&-&$R_{A_t}$\\\hline
3&$[-4.16,-3.02]$&-&$[-1.69,-0.87]$\\\hline
&$\alpha=-3.59$&-&$\beta=-1.28$\\\hline
\end{tabular}
\caption{
Prolongation data and results from Algorithm~\ref{alg:expansionrange}}
\label{tab:continuedexampledata}
\end{table} | [
[
"t",
"L\nt",
"P\nt",
"A\nt"
],
[
"3",
"36",
"54",
"273"
],
[
"t",
"R\nLt",
"-",
"R\nAt"
],
[
"3",
"[ 4.16, 3.02]\n− −",
"-",
"[ 1.69, 0.87]\n− −"
],
[
"",
"α = 3.59\n−",
"-",
"β = 1.28\n−"
]
] | 0.538462 | null | null |
0 | 1903.09030v1 | 7 | [
212.6929931640625,
294.0369873046875,
395.8699951171875,
326.5150146484375
] | \begin{table}[!t]
\scriptsize
\caption{A comparison with the ladder network. We represent error percentage.}
\centering
\begin{tabular}{c|ccc}
\hline
\textbf{Labeled Samples} & \textbf{10} & \textbf{100} & \textbf{1000} \\\hline
\textbf{Baseline} & 58.88 & 28.39 & 7.25 \\
\textbf{Ladder Network} & 48.85 & 24.74 & 6.96 \\
\textbf{RBM DA} & \textbf{45.34 } & \textbf{ 18.66} &\textbf{ 5.60 }
\end{tabular}
\label{tab6}
\end{table} | [
[
"Labeled Samples",
"10 100 1000"
],
[
"Baseline\nLadder Network\nRBM DA",
"58.88 28.39 7.25\n48.85 24.74 6.96\n45.34 18.66 5.60"
]
] | 0.780269 | null | null |
0 | 2405.04539v1 | 28 | [
115.52999877929688,
148.56298828125,
494.72100830078125,
671.4019775390625
] | \begin{table}[h]
\caption{Hyper-parameter search space for the base and proposed models.}
\label{tab:HPspace}
\centering
\begin{tabular}{|l|l|l|}
\hline
\textbf{Model} & \textbf{Parameter} & \textbf{Values} \\
\hline
LSTM & nodes & $[16, 32, 50, 64, 96, 100, 128]$ \\
& Layers & $[0, 1, 2, 3]$ \\
& Optimizer & Adam \\
& Activation & [ReLU, $\tanh$] \\
& Dropout Rate & $(0, 0.5)$ \\
\hline
GRU & nodes & $[16, 32, 50, 64, 96, 100, 128]$ \\
& Layers & $[0, 1, 2, 3]$ \\
& Optimizer & Adam \\
& Activation & [ReLU, $\tanh$] \\
& Dropout Rate & (0, 0.5) \\
\hline
Hybrid LSTM & LSTM nodes & $[16, 32, 50, 64, 96, 100, 128]$ \\
& GRU nodes & $[16, 32, 50, 64, 96, 100, 128]$ \\
& LSTM Layers & $[0, 1, 2, 3]$ \\
& Optimizer & Adam \\
& Activation & [ReLU, $\tanh$, sigmoid] \\
& Dropout Rate & $(0, 0.5)$ \\
\hline
Highway LSTM & LSTM nodes & $[16, 32, 50, 64, 96, 100, 128]$ \\
& Layers & $[1, 2, 3, 4, 5]$ \\
& t\_bias & $(-5, 5)$\\
& Optimizer & Adam \\
& acti\_h & ReLU \\
& acti\_t & sigmoid \\
& learning rate & $(1e-6, 1e-2)$ \\
\hline
Transformer & nodes & $(32, 200, 2)$ \\
& Layers & $[1, 2, 3, 4, 5]$ \\
& Optimizer & Adam \\
& Activation & [ReLU, $\tanh$, sigmoid] \\
& d\_k / d\_v & $[32, 64, 96]$ \\
& learning rate & $(1e-5, 1e-2)$ \\
& Dropout Rate & $(0, 0.5)$ \\
& feedforward dimension & $(32, 200, 2)$ \\
& Number of heads & $[1,2,4,8,12]$\\
\hline
DPE-based models & $\epsilon$ & $(0,1)$ \\
& $\alpha$ & [$\frac{1}{5}$, $\frac{2}{5}$, $\frac{3}{5}$, $\frac{4}{5}$, $1$] \\
& $\frac{n_1}{n}$ & $(0,1)$\\
\hline
\end{tabular}
\end{table} | [
[
"Model",
"Parameter",
"Values"
],
[
"LSTM",
"nodes\nLayers\nOptimizer\nActivation\nDropout Rate",
"[16, 32, 50, 64, 96, 100, 128]\n[0, 1, 2, 3]\nAdam\n[ReLU, tanh]\n(0, 0.5)"
],
[
"GRU",
"nodes\nLayers\nOptimizer\nActivation\nDropout Rate",
"[16, 32, 50, 64, 96, 100, 128]\n[0, 1, 2, 3]\nAdam\n[ReLU, tanh]\n(0, 0.5)"
],
[
"Hybrid LSTM",
"LSTM nodes\nGRU nodes\nLSTM Layers\nOptimizer\nActivation\nDropout Rate",
"[16, 32, 50, 64, 96, 100, 128]\n[16, 32, 50, 64, 96, 100, 128]\n[0, 1, 2, 3]\nAdam\n[ReLU, tanh, sigmoid]\n(0, 0.5)"
],
[
"Highway LSTM",
"LSTM nodes\nLayers\nt bias\nOptimizer\nacti h\nacti t\nlearning rate",
"[16, 32, 50, 64, 96, 100, 128]\n[1, 2, 3, 4, 5]\n( 5, 5)\n−\nAdam\nReLU\nsigmoid\n(1e 6, 1e 2)\n− −"
],
[
"Transformer",
"nodes\nLayers\nOptimizer\nActivation\nd k / d v\nlearning rate\nDropout Rate\nfeedforward dimension\nNumber of heads",
"(32, 200, 2)\n[1, 2, 3, 4, 5]\nAdam\n[ReLU, tanh, sigmoid]\n[32, 64, 96]\n(1e 5, 1e 2)\n− −\n(0, 0.5)\n(32, 200, 2)\n[1, 2, 4, 8, 12]"
],
[
"DPE-based models",
"ϵ\nα\nn1\nn",
"(0, 1)\n[ 1, 2, 3, 4, 1]\n5 5 5 5\n(0, 1)"
]
] | 0.396765 | null | null |
1 | 2405.04539v1 | 29 | [
152.7469940185547,
315.02398681640625,
457.5050746372768,
504.9419860839844
] | \begin{table}[h]
\caption{Hyper-parameter search space for the benchmark models.}
\label{tab:HPspace2}
\centering
\begin{tabular}{|l|l|l|}
\hline
\textbf{Model} & \textbf{Parameter} & \textbf{Values} \\
\hline
AdaBoost & estimators & $[10, 50, 100, 200, 300, 400, 500]$ \\
& learning Rate & $[10^{-3}, 10^{-2}, 10^{-1}]$ \\
\hline
XGBoost& estimators & $[10, 50, 100, 200, 300, 400, 500]$ \\
& depth & $[1, 2, 3, 4, 5]$ \\
& subsample & $[0.5, 0.6, 0.7, 0.8, 0.9]$ \\
& child weight & $[2, 4, 6, 8, 10]$ \\
\hline
K-NN & neighbours & $[1, 2, 3, 4, 5]$ \\
& weights & $[\text{uniform}, \text{distance}]$ \\
& P & $[1, 2, 3, 4, 5]$ \\
\hline
COBRA & $\epsilon$ & $(0,1)$ \\
& $\alpha$ & [$\frac{1}{5}$, $\frac{2}{5}$, $\frac{3}{5}$, $\frac{4}{5}$, $1$] \\
& $\frac{l}{n}$ & $(0,1)$\\
\hline
\end{tabular}
\end{table} | [
[
"Model",
"Parameter",
"Values"
],
[
"AdaBoost",
"estimators\nlearning Rate",
"[10, 50, 100, 200, 300, 400, 500]\n[10−3, 10−2, 10−1]"
],
[
"XGBoost",
"estimators\ndepth\nsubsample\nchild weight",
"[10, 50, 100, 200, 300, 400, 500]\n[1, 2, 3, 4, 5]\n[0.5, 0.6, 0.7, 0.8, 0.9]\n[2, 4, 6, 8, 10]"
],
[
"K-NN",
"neighbours\nweights\nP",
"[1, 2, 3, 4, 5]\n[uniform, distance]\n[1, 2, 3, 4, 5]"
],
[
"COBRA",
"ϵ\nα\nl\nn",
"(0, 1)\n[ 1, 2, 3, 4, 1]\n5 5 5 5\n(0, 1)"
]
] | 0.578534 | null | null |
0 | 1411.4911v5 | 27 | [
232.3800048828125,
66.68902587890625,
376.29901123046875,
317.3479919433594
] | \begin{table}[htbp]
\centering
\caption{Factor coordinates of the variables obtained with \code{MFAmix}}
{\small
\label{coord_var}
\begin{tabular}{l|r|r}
\hline
& dim 1 & dim 2\\
\hline
farmers & -0.45 & -0.30\\
\hline
tradesmen & -0.14 & 0.12\\
\hline
\textbf{managers} & 0.31 &\textbf{ 0.55}\\
\hline
workers & -0.13 & -0.04\\
\hline
unemployed & 0.32 & -0.08\\
\hline
\textbf{middleempl} & 0.24 & \textbf{0.60}\\
\hline
retired & -0.03 & -0.44\\
\hline
employrate & -0.33 & 0.55\\
\hline
\textbf{income} & 0.13 & \textbf{0.60}\\
\hline
\textbf{density} & \textbf{0.72} & -0.15\\
\hline
primaryres & 0.03 & 0.36\\
\hline
\textbf{owners} & \textbf{-0.69} & 0.41\\
\hline
\textbf{building} & \textbf{0.72} & -0.21\\
\hline
water & 0.19 & -0.20\\
\hline
\textbf{vegetation} & 0.08 & 0.56\\
\hline
\textbf{agricul }& \textbf{-0.54} & -0.47\\
\hline
\end{tabular}
}
\end{table} | [
[
"",
"dim 1",
"dim 2"
],
[
"farmers",
"-0.45",
"-0.30"
],
[
"tradesmen",
"-0.14",
"0.12"
],
[
"managers",
"0.31",
"0.55"
],
[
"workers",
"-0.13",
"-0.04"
],
[
"unemployed",
"0.32",
"-0.08"
],
[
"middleempl",
"0.24",
"0.60"
],
[
"retired",
"-0.03",
"-0.44"
],
[
"employrate",
"-0.33",
"0.55"
],
[
"income",
"0.13",
"0.60"
],
[
"density",
"0.72",
"-0.15"
],
[
"primaryres",
"0.03",
"0.36"
],
[
"owners",
"-0.69",
"0.41"
],
[
"building",
"0.72",
"-0.21"
],
[
"water",
"0.19",
"-0.20"
],
[
"vegetation",
"0.08",
"0.56"
],
[
"agricul",
"-0.54",
"-0.47"
]
] | 1 | null | null |
0 | 2007.06775v3 | 4 | [
319.1729990641276,
377.90379333496094,
556.9841715494791,
465.5619888305664
] | \begin{table}[!h]
\small
\centering
\ra{0.95}
\begin{tabular}{!{\VRule[1pt]}M{0.09\textwidth}!{\VRule[1pt]}m{0.3\textwidth}!{\VRule[1pt]}m{0.04\textwidth}!{\VRule[1pt]}}
\specialrule{1.2pt}{0pt}{0pt}
\rowcolor{white}
%\begin{tabular}{@{}p{7.5cm}c@{}}
% \toprule[1.2pt]
% & \multicolumn{3}{c}{\% dataset cached}\\
%\% dataset cached & 8-GPU training & \multicolumn{2}{c}{8-job HP search}\\
% (Size : 146GB) & Cache Miss & Disk IO (GB) & Read amp \\
% \midrule
\vheading{ Fetch Stalls (Remote)} & Is remote storage
a bottleneck for training? & \sref{sec-fetch-remote}\\
\specialrule{0.5pt}{0pt}{0pt}
\vheading{Fetch Stalls (Local)} & When does the local storage device
(SSD/HDD)
become a bottleneck for DNN training? & \sref{sec-fetch}\\
\specialrule{0.5pt}{0pt}{0pt}
\vheading{Prep Stalls} & When does data prep at the CPU
become a bottleneck for DNN training? & \sref{sec-prep} \\
\specialrule{0.5pt}{0pt}{0pt}
\vheading{Generality} & Do fetch and prep stalls exist in other training platforms like TensorFlow? & \sref{sec-tf}\\
\specialrule{1.2pt}{0pt}{0pt}
%\bottomrule[1.2pt]
\end{tabular}
%\vspace{-1em}
% \mycaption{Data stalls in Tensorflow}{The fundamental problems that result in data stalls-inefficient caching and thrashing due to lack of coordination in HP search, exist in TF.}
\label{tbl-analysis-q}
\vspace{-1.5em}
\end{table} | [
[
"Fetch Stalls\n(Remote)",
"Is remote storage a bottleneck for training?",
"§4.3.1"
],
[
"Fetch Stalls\n(Local)",
"When does the local storage device (SSD/HDD)\nbecome a bottleneck for DNN training?",
"§4.3.2"
],
[
"Prep Stalls",
"When does data prep at the CPU become a bot-\ntleneck for DNN training?",
"§4.3.3"
],
[
"Generality",
"Do fetch and prep stalls exist in other training\nplatforms like TensorFlow?",
"§4.3.4"
]
] | 0.52454 | null | null |
0 | 2003.04735v2 | 4 | [
72,
78.68902587890625,
354.6669921875,
188.926025390625
] | \begin{table}[http]{
\begin{tabular}{cc}
\hline
\multicolumn{2}{c}{Summary of Notations}
\\ \hline
\multicolumn{1}{c|}{$\mathcal{V}$, $v$, $\mathcal{B}_v$} & Set of Nodes, Node $v$, Set of Neighboring Nodes of Node $v$
\\ \multicolumn{1}{c|}{$\mathbf{w}_v$, $b_v$, $\mathbf{r}_v$} & Decision Variables at Node $v$
\\ \multicolumn{1}{c|}{$\mathbf{x}_{vn}$, $y_{vn}$} & $n$-th Data and Label at Node $v$
\\ \multicolumn{1}{c|}{$\mathbf{X}_v$, $\mathbf{Y}_v$} & Data Matrix and Label Matrix at Node $v$
\\ \multicolumn{1}{c|}{$\omega_{vu}$} & Consensus Variable between Node $v$ and Node $u$
\\ \multicolumn{1}{c|}{$\theta_v$} & Indicator Vector of Flipped Labels at Node $v$
\\ \multicolumn{1}{c|}{$\delta_{vn}$} & Vector of Data Poisoning on the $n$-th Data at Node $v$
\\ \hline
\end{tabular}}
\end{table} | [
[
"V , v, Bv\nwv, bv, rv\nxvn, yvn\nXv, Yv\nωvu\nθv\nδvn",
"Set of Nodes, Node v, Set of Neighboring Nodes of Node v\nDecision Variables at Node v\nn-th Data and Label at Node v\nData Matrix and Label Matrix at Node v\nConsensus Variable between Node v and Node u\nIndicator Vector of Flipped Labels at Node v\nVector of Data Poisoning on the n-th Data at Node v"
]
] | 0.422611 | null | null |
1 | 2003.04735v2 | 17 | [
194.77185712541853,
136.6090087890625,
415.6090087890625,
191.60302734375
] | \begin{table}
\caption{Average equilibrium classification risks $(\%)$ of DSVM using Spambase dataset \cite{Spambase} in Network 1 and Network 2. }
\label{tab:LabelNetwork12}
\begin{center}
\begin{small}
\begin{sc}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
Net & 1 & 1L & 1D & 2 & 2L & 2D \\
\hline
Risk & 11.6 & 32.3 & 42.2 & 10.6 & 29.4& 39.3 \\
\hline
STD & 1.6 & 0.6 & 2.6 & 0.6 & 0.3 & 1.1 \\
\hline
\end{tabular}
\end{sc}
\end{small}
\end{center}
\vskip -0.1in
\end{table} | [
[
"NET",
"1",
"1L",
"1D",
"2",
"2L",
"2D"
],
[
"RISK",
"11.6",
"32.3",
"42.2",
"10.6",
"29.4",
"39.3"
],
[
"STD",
"1.6",
"0.6",
"2.6",
"0.6",
"0.3",
"1.1"
]
] | 0.870056 | null | null |
2 | 2003.04735v2 | 17 | [
162.51800537109375,
286.8940124511719,
446.9909973144531,
341.88800048828125
] | \begin{table}
\caption{Average equilibrium classification risks $(\%)$ of DSVM using Spambase dataset \cite{Spambase} in Network 3 and Network 4. }
\label{tab:LabelNetwork34}
\begin{center}
\begin{small}
\begin{sc}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
Net & 3 & 3La & 3Lb & 3Da & 3Db & 4 & 4L & 4D \\
\hline
Risk & 11.7 & 29.5 & 26.9 & 36.4 & 34.6 & 13.5 & 35.0 & 47.0\\
\hline
STD & 1.5 & 0.6 & 1.2 & 0.9 & 0.8 & 1.8 & 0.9 & 2.5\\
\hline
\end{tabular}
\end{sc}
\end{small}
\end{center}
\vskip -0.1in
\end{table} | [
[
"NET",
"3",
"3LA",
"3LB",
"3DA",
"3DB",
"4",
"4L",
"4D"
],
[
"RISK",
"11.7",
"29.5",
"26.9",
"36.4",
"34.6",
"13.5",
"35.0",
"47.0"
],
[
"STD",
"1.5",
"0.6",
"1.2",
"0.9",
"0.8",
"1.8",
"0.9",
"2.5"
]
] | 0.866953 | null | null |
0 | 2310.00490v1 | 4 | [
111.0884257725307,
72.198974609375,
500.9114249093192,
134.36602783203125
] | \begin{table}[]
\centering
\small
\begin{tabular}{|c|c|c|c|}
\hline
Timespan & 1976:2023 & Average citation per doc & 19.26 \\
\hline
Sources & 294 & Authors & 1316 \\
\hline
Documents & 616 & Total author`s keywords & 1612 \\
\hline
The annual growth rate of published documents & 3.48\% & Document average age(year) & 8.32 \\
\hline
Authors of single-authored docs & 107 & International Co-Authorship & 24.51\% \\
\hline
Co-Authors per Doc & 2.5 & Author's Keywords & 1612 \\
\hline
\end{tabular}
\caption{General information of investigated database}
\label{Table 2}
\end{table} | [
[
"Timespan",
"1976:2023",
"Average citation per doc",
"19.26"
],
[
"Sources",
"294",
"Authors",
"1316"
],
[
"Documents",
"616",
"Total author‘s keywords",
"1612"
],
[
"The annual growth rate of published documents",
"3.48%",
"Document average age(year)",
"8.32"
],
[
"Authors of single-authored docs",
"107",
"International Co-Authorship",
"24.51%"
],
[
"Co-Authors per Doc",
"2.5",
"Author’s Keywords",
"1612"
]
] | 0.914119 | null | null |
1 | 2310.00490v1 | 9 | [
178.13942209879556,
72.198974609375,
433.8605779012044,
186.1719970703125
] | \begin{table}[]
\centering
\small
\begin{tabular}{|c|c|}
\hline
Affiliation & Number of articles \\
\hline
University of California & 8\\
\hline
Northeastern university & 7\\
\hline
The Bucharest university of economic studies & 7\\
\hline
University Kebangsaan & 6\\
\hline
Brunel university & 5\\
\hline
Central university of finance and economics & 5\\
\hline
Deutsche bundesbank & 5\\
\hline
Fordham university & 5\\
\hline
Universidade nova de Lisboa & 5\\
\hline
Not reported & 5\\
\hline
\end{tabular}
\caption{Most relevant affiliations}
\label{Table 3}
\end{table} | [
[
"Affiliation",
"Number of articles"
],
[
"University of California",
"8"
],
[
"Northeastern university",
"7"
],
[
"The Bucharest university of economic studies",
"7"
],
[
"University Kebangsaan",
"6"
],
[
"Brunel university",
"5"
],
[
"Central university of finance and economics",
"5"
],
[
"Deutsche bundesbank",
"5"
],
[
"Fordham university",
"5"
],
[
"Universidade nova de Lisboa",
"5"
],
[
"Not reported",
"5"
]
] | 0.946237 | null | null |
0 | 2210.00770v1 | 2 | [
53.465999603271484,
85.41702270507812,
295.5110168457031,
101.35699462890625
] | \begin{table}[H]
\scriptsize
\caption{Comparison Between Agents Trained With and Without PID Controller Coaching. Even though the PID controllers are less capable than the eventual RL agent, they are still useful and can accelerate the RL agent training. There two measures we used to gauge training acceleration. The first is five consecutive wins, and the second is the scoring average. The "win" is a predetermined benchmark. }
\label{episode_compare}
\centering
\begin{tabular}{ cccccc }
\rowcolor{airforceblue}
Environment & Target & Measure & With PID & Without & Percentage\\
\rowcolor{airforceblue}
Name & Score & & Coaching & Coaching & Increase \\
\hline
Inverted & 800& Win Streak & 100 & 160& 37.5\% \\
Pendulum & &Average & 104 & 159& 34.6\%\\
\rowcolor{beaublue}
Double & 5500& 5 Wins & 908 & 1335& 31.9\%\\
\rowcolor{beaublue}
Pendulum & &Average & 935 & 1370& 29.9\%\\
Hopper & 800& 5 Wins & 2073 & 2851& 27.3\%\\
& &Average & 2155 & 2911& 25.9\%\\
\rowcolor{beaublue}
Walker & 800& 5 Wins & 4784 & 5170& 7.5\%\\
\rowcolor{beaublue}
& &Average & 5659 & 7135& 20.7\%\\
\end{tabular}
\end{table} | [
[
"Double",
"5500",
"5 Wins",
"908",
"1335",
"31.9%"
],
[
"Pendulum",
"",
"Average",
"935",
"1370",
"29.9%"
]
] | 0.368421 | null | null |
0 | 2305.10911v1 | 20 | [
63.68640060424805,
78.8809814453125,
553.6804077148438,
139.97259521484375
] | \begin{table}[htbp]
\centering
\vspace{5pt}
{\renewcommand{\arraystretch}{1.1}
\hspace*{-10pt}{\small{
\begin{tabular}{*{5}{!{\vrule width 0.9pt}p{3cm}}!{\vrule width 1.5pt}}
\hline
\textbf{Method} & \textbf{AUC} & \textbf{BCV} & \textbf{Time (min.)} & $\boldsymbol{\beta}^{*}$ \\ \hhline{|-|-|-|-|-|}
\textbf{MaxCGF} & \cellcolor[rgb]{ 1, 1, 0}$0.9843$ & \cellcolor[rgb]{ 1, 1, 0}$0.9533$ & \cellcolor[rgb]{ 0, .69, .314}$0.6032$ & 3.25 \\
\hhline{|-|-|-|-|-|}
\textbf{Domino} & \cellcolor[rgb]{ 1, 0.44, 0.37} $0.9316$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.7489$ & \cellcolor[rgb]{ 1, 1, 0}$21.6774$ & 4.25 \\
\hhline{|-|-|-|-|-|}
\textbf{Pe\~{n}a-Prieto} & \cellcolor[rgb]{ 0, .69, .314} $0.9867$ & \cellcolor[rgb]{ 0, .69, .314}$0.9867$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$66.6850$ & 2.25 \\
\hline
\end{tabular}}}
}
\caption{Performances for the standard normal dataset. We mark in green the best, in yellow the intermediate, and in red the worst results.}
\label{tab:StdNormperf}%
\end{table} | [
[
"Method",
"AUC",
"BCV",
"Time (min.)",
"β∗"
],
[
"MaxCGF",
"0.9843",
"0.9533",
"0.6032",
"3.25"
],
[
"Domino",
"0.9316",
"0.7489",
"21.6774",
"4.25"
],
[
"Pen˜a-Prieto",
"0.9867",
"0.9867",
"66.6850",
"2.25"
]
] | 0.376266 | null | null |
1 | 2305.10911v1 | 20 | [
63.68640060424805,
613.0989990234375,
553.6804077148438,
674.189990234375
] | \begin{table}[htbp]
\centering
\vspace{5pt}
{\renewcommand{\arraystretch}{1.1}
\hspace*{-10pt}{\small{
\begin{tabular}{*{5}{!{\vrule width 0.9pt}p{3cm}}!{\vrule width 1.5pt}}
\hline
\textbf{Method} & \textbf{AUC} & \textbf{BCV} & \textbf{Time (min.)} & $\boldsymbol{\beta}^{*}$ \\ \hhline{|-|-|-|-|-|}
\textbf{MaxCGF} & \cellcolor[rgb]{ 1, 1, 0} $0.8811$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.6067$ & \cellcolor[rgb]{ 0, .69, .314}$0.9592$ & 8.00 \\
\hhline{|-|-|-|-|-|}
\textbf{Domino} & \cellcolor[rgb]{ 1, 0.44, 0.37} $0.8809$ & \cellcolor[rgb]{ 1, 1, 0}$0.6311$ & \cellcolor[rgb]{ 1, 1, 0}$14.3293$ & 7.50 \\
\hhline{|-|-|-|-|-|}
\textbf{Pe\~{n}a-Prieto} & \cellcolor[rgb]{ 0, .69, .314} $0.9847$ & \cellcolor[rgb]{ 0, .69, .314}$0.9644$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$67.2382$ & 1.75 \\
\hline
\end{tabular}}}
}
\caption{Performances for the normal dataset.}
\label{tab:Normperf}%
\end{table} | [
[
"Method",
"AUC",
"BCV",
"Time (min.)",
"β∗"
],
[
"MaxCGF",
"0.8811",
"0.6067",
"0.9592",
"8.00"
],
[
"Domino",
"0.8809",
"0.6311",
"14.3293",
"7.50"
],
[
"Pen˜a-Prieto",
"0.9847",
"0.9644",
"67.2382",
"1.75"
]
] | 0.447059 | null | null |
2 | 2305.10911v1 | 21 | [
82.17135925292969,
585.4257202148438,
523.1659545898438,
644.066162109375
] | \begin{table}[htbp]
\centering
\vspace{5pt}
{\renewcommand{\arraystretch}{1.1}
\hspace*{-10pt}{
%\small{
\scalebox{0.9}{
\begin{tabular}{*{5}{!{\vrule width 0.9pt}p{3cm}}!{\vrule width 1.5pt}}
\hline
\textbf{Method} & \textbf{AUC} & \textbf{BCV} & \textbf{Time (min.)} & $\boldsymbol{\beta}^{*}$ \\ \hhline{|-|-|-|-|-|}
\textbf{MaxCGF} & \cellcolor[rgb]{ 0, .69, .314}$0.9140$ & \cellcolor[rgb]{ 0, .69, .314}$0.6911$ & \cellcolor[rgb]{ 0, .69, .314}$1.0387$ & 7.25 \\ \hhline{|-|-|-|-|-|}
\textbf{Domino} & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.8896$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.6467$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$15.8041$ & 6.50 \\
\hhline{|-|-|-|-|-|}
\textbf{Pe\~{n}a-Prieto} & - & - & - & - \\
\hline
\end{tabular}}}
}
\caption{Performances for the skew-normal dataset.}
\label{tab:SkewNormperf}%
\end{table} | [
[
"Method",
"AUC",
"BCV",
"Time (min.)",
"β∗"
],
[
"MaxCGF",
"0.9140",
"0.6911",
"1.0387",
"7.25"
],
[
"Domino",
"0.8896",
"0.6467",
"15.8041",
"6.50"
],
[
"Pen˜a-Prieto",
"-",
"-",
"-",
"-"
]
] | 0.458753 | null | null |
3 | 2305.10911v1 | 24 | [
82.17135925292969,
104.18867492675781,
523.1659545898438,
162.8291015625
] | \begin{table}[htbp]
\centering
\vspace{5pt}
{\renewcommand{\arraystretch}{1.1}
\hspace*{-10pt}{
\scalebox{0.9}{
\begin{tabular}{*{5}{!{\vrule width 0.9pt}p{3cm}}!{\vrule width 1.5pt}}
\hline
\textbf{Method} & \textbf{AUC} & \textbf{BCV} & \textbf{Time (min.)} & $\boldsymbol{\beta}^{*}$ \\ \hhline{|-|-|-|-|-|}
\textbf{MaxCGF} & \cellcolor[rgb]{ 1, 0.44, 0.37} $0.8333$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.5356$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$10.0730$ & 7.25 \\
\hhline{|-|-|-|-|-|}
\textbf{Domino} & \cellcolor[rgb]{ 0, .69, .314} $0.8498$ & \cellcolor[rgb]{ 0, .69, .314}$0.5622$ & \cellcolor[rgb]{ 0, .69, .314}$8.6374$ & 7.50 \\
\hhline{|-|-|-|-|-|}
\textbf{Pe\~{n}a-Prieto} & - & - & - & - \\
\hline
\end{tabular}}}
}
\caption{Performances for the Student's t dataset for $\nu=10$.}
\label{tab:Studtperfnu10}%
\end{table} | [
[
"Method",
"AUC",
"BCV",
"Time (min.)",
"β∗"
],
[
"MaxCGF",
"0.8333",
"0.5356",
"10.0730",
"7.25"
],
[
"Domino",
"0.8498",
"0.5622",
"8.6374",
"7.50"
],
[
"Pen˜a-Prieto",
"-",
"-",
"-",
"-"
]
] | 0.447059 | null | null |
4 | 2305.10911v1 | 24 | [
82.17135925292969,
209.5257110595703,
523.1659545898438,
268.1661376953125
] | \begin{table}[htbp]
\centering
\vspace{5pt}
{\renewcommand{\arraystretch}{1.1}
\hspace*{-10pt}{
\scalebox{0.9}{
\begin{tabular}{*{5}{!{\vrule width 0.9pt}p{3cm}}!{\vrule width 1.5pt}}
\hline
\textbf{Method} & \textbf{AUC} & \textbf{BCV} & \textbf{Time (min.)} & $\boldsymbol{\beta}^{*}$ \\ \hhline{|-|-|-|-|-|}
\textbf{MaxCGF} & \cellcolor[rgb]{ 0, .69, .314}$0.9116$ & \cellcolor[rgb]{ 0, .69, .314}$0.7044$ & \cellcolor[rgb]{ 0, .69, .314}$8.0739$ & 7.75 \\
\hhline{|-|-|-|-|-|}
\textbf{Domino} & \cellcolor[rgb]{ 1, 0.44, 0.37} $0.8903$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.6267$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$19.1567$ & 7.25 \\
\hhline{|-|-|-|-|-|}
\textbf{Pe\~{n}a-Prieto} & - & - & - & - \\
\hline
\end{tabular}}}
}
\caption{Performances for the Student's t dataset for $\nu=30$.}
\label{tab:Studtperfnu30}%
\end{table} | [
[
"Method",
"AUC",
"BCV",
"Time (min.)",
"β∗"
],
[
"MaxCGF",
"0.9116",
"0.7044",
"8.0739",
"7.75"
],
[
"Domino",
"0.8903",
"0.6267",
"19.1567",
"7.25"
],
[
"Pen˜a-Prieto",
"-",
"-",
"-",
"-"
]
] | 0.447937 | null | null |
5 | 2305.10911v1 | 25 | [
63.68640060424805,
439.31500244140625,
553.6804077148438,
500.40659790039064
] | \begin{table}[htbp]
\centering
\vspace{5pt}
{\renewcommand{\arraystretch}{1.1}
\hspace*{-10pt}{\small{
\begin{tabular}{*{5}{!{\vrule width 0.9pt}p{3cm}}!{\vrule width 1.5pt}}
\hline
\textbf{Method} & \textbf{AUC} & \textbf{BCV} & \textbf{Time (min.)} & $\boldsymbol{\beta}^{*}$ \\ \hhline{|-|-|-|-|-|}
\textbf{MaxCGF} & \cellcolor[rgb]{ 0, .69, .314}$0.9057$ & \cellcolor[rgb]{ 0, .69, .314}$0.7156$ & \cellcolor[rgb]{ 0, .69, .314}$5.9174$ & 6.75 \\ \hhline{|-|-|-|-|-|}
\textbf{Domino} & \cellcolor[rgb]{ 1, 1, 0}$0.8282$ & \cellcolor[rgb]{ 1, 1, 0}$0.6178$ & \cellcolor[rgb]{ 1, 1, 0}$25.6869$ & 5.75 \\
\hhline{|-|-|-|-|-|}
\textbf{Pe\~{n}a-Prieto} & \cellcolor[rgb]{ 1, 0.44, 0.37}0.7873 & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.5511$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$84.0113$ & 6.50 \\
\hline
\end{tabular}}}
}
\caption{Performances for DJIA.}
\label{tab:DJIAperf}%
\end{table} | [
[
"Method",
"AUC",
"BCV",
"Time (min.)",
"β∗"
],
[
"MaxCGF",
"0.9057",
"0.7156",
"5.9174",
"6.75"
],
[
"Domino",
"0.8282",
"0.6178",
"25.6869",
"5.75"
],
[
"Pen˜a-Prieto",
"0.7873",
"0.5511",
"84.0113",
"6.50"
]
] | 0.460208 | null | null |
6 | 2305.10911v1 | 25 | [
63.68640060424805,
554.7559814453125,
553.6804077148438,
615.9660034179688
] | \begin{table}[htbp]
\centering
\vspace{5pt}
{\renewcommand{\arraystretch}{1.1}
\hspace*{-10pt}{\small{
\begin{tabular}{*{5}{!{\vrule width 0.9pt}p{3cm}}!{\vrule width 1.5pt}}
\hline
\textbf{Method} & \textbf{AUC} & \textbf{BCV} & \textbf{Time (min.)} & $\boldsymbol{\beta}^{*}$ \\ \hhline{|-|-|-|-|-|}
\textbf{MaxCGF} & \cellcolor[rgb]{ 0, .69, .314} $0.8312$ & \cellcolor[rgb]{ 0, .69, .314}$0.5666$ & \cellcolor[rgb]{ 0, .69, .314}$3.6558$ & 8.00 \\ \hhline{|-|-|-|-|-|}
\textbf{Domino} & \cellcolor[rgb]{ 1, 0.44, 0.37} $0.7480$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.4713$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$92.4653$ & 7.50 \\ \hhline{|-|-|-|-|-|}
\textbf{Pe\~{n}a-Prieto} & - & - & - & - \\
\hline
\end{tabular}}}
}
\caption{Performances for STOXX50.}
\label{tab:ESTXperf}%
\end{table} | [
[
"Method",
"AUC",
"BCV",
"Time (min.)",
"β∗"
],
[
"MaxCGF",
"0.8312",
"0.5666",
"3.6558",
"8.00"
],
[
"Domino",
"0.7480",
"0.4713",
"92.4653",
"7.50"
],
[
"Pen˜a-Prieto",
"-",
"-",
"-",
"-"
]
] | 0.475992 | null | null |
7 | 2305.10911v1 | 26 | [
63.68640060424805,
80.7039794921875,
553.6804077148438,
141.91497802734375
] | \begin{table}[htbp]
\centering
\vspace{5pt}
{\renewcommand{\arraystretch}{1.1}
\hspace*{-10pt}{\small{
\begin{tabular}{*{5}{!{\vrule width 0.9pt}p{3cm}}!{\vrule width 1.5pt}}
\hline
\textbf{Method} & \textbf{AUC} & \textbf{BCV} & \textbf{Time (min.)} & $\boldsymbol{\beta}^{*}$ \\ \hhline{|-|-|-|-|-|}
\textbf{MaxCGF} & \cellcolor[rgb]{ 0, .69, .314}$0.8866$ & \cellcolor[rgb]{ 0, .69, .314}$0.6555$ & \cellcolor[rgb]{ 0, .69, .314}$3.8149$ & 5.75 \\ \hhline{|-|-|-|-|-|}
\textbf{Domino} & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.7924$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.5701$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$17.2033$ & 7.00\\ \hhline{|-|-|-|-|-|}
\textbf{Pe\~{n}a-Prieto} & - & - & - & -\\
\hline
\end{tabular}}}
}
\caption{Performances for DAX.}
\label{tab:DAXperf}%
\end{table} | [
[
"Method",
"AUC",
"BCV",
"Time (min.)",
"β∗"
],
[
"MaxCGF",
"0.8866",
"0.6555",
"3.8149",
"5.75"
],
[
"Domino",
"0.7924",
"0.5701",
"17.2033",
"7.00"
],
[
"Pen˜a-Prieto",
"-",
"-",
"-",
"-"
]
] | 0.483051 | null | null |
8 | 2305.10911v1 | 26 | [
63.68640060424805,
186.3070068359375,
553.6804077148438,
247.51800537109375
] | \begin{table}[htbp]
\centering
\vspace{5pt}
{\renewcommand{\arraystretch}{1.1}
\hspace*{-10pt}{\small{
\begin{tabular}{*{5}{!{\vrule width 0.9pt}p{3cm}}!{\vrule width 1.5pt}}
\hline
\textbf{Method} & \textbf{AUC} & \textbf{BCV} & \textbf{Time (min.)} & $\boldsymbol{\beta}^{*}$ \\ \hhline{|-|-|-|-|-|}
\textbf{MaxCGF} & \cellcolor[rgb]{ 0, .69, .314} $0.8326$ & \cellcolor[rgb]{ 0, .69, .314}$0.5187$ & \cellcolor[rgb]{ 0, .69, .314}$3.7390$ & 8.25 \\
\hhline{|-|-|-|-|-|}
\textbf{Domino} & \cellcolor[rgb]{ 1, 0.44, 0.37} $0.7391$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.4637$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$75.1684$ & 6.50 \\ \hhline{|-|-|-|-|-|}
\textbf{Pe\~{n}a-Prieto} & - & - & - & - \\
\hline
\end{tabular}}}
}
\caption{Performances for CAC.}
\label{tab:CAC40perf}%
\end{table} | [
[
"Method",
"AUC",
"BCV",
"Time (min.)",
"β∗"
],
[
"MaxCGF",
"0.8326",
"0.5187",
"3.7390",
"8.25"
],
[
"Domino",
"0.7391",
"0.4637",
"75.1684",
"6.50"
],
[
"Pen˜a-Prieto",
"-",
"-",
"-",
"-"
]
] | 0.478992 | null | null |
9 | 2305.10911v1 | 26 | [
63.68640060424805,
291.9100036621094,
553.6804077148438,
353.1210021972656
] | \begin{table}[htbp]
\centering
\vspace{5pt}
{\renewcommand{\arraystretch}{1.1}
\hspace*{-10pt}{\small{
\begin{tabular}{*{5}{!{\vrule width 0.9pt}p{3cm}}!{\vrule width 1.5pt}}
\hline
\textbf{Method} & \textbf{AUC} & \textbf{BCV} & \textbf{Time (min.)} & $\boldsymbol{\beta}^{*}$ \\ \hhline{|-|-|-|-|-|}
\textbf{MaxCGF} & \cellcolor[rgb]{ 0, .69, .314} $0.8021$ & \cellcolor[rgb]{ 0, .69, .314}$0.5207$ & \cellcolor[rgb]{ 0, .69, .314}$5.4309$ & 7.50 \\
\hhline{|-|-|-|-|-|}
\textbf{Domino} & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.7061$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.4641$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$2644.9669$ & 7.50 \\ \hhline{|-|-|-|-|-|}
\textbf{Pe\~{n}a-Prieto} & - & - & - & - \\
\hline
\end{tabular}}}
}
\caption{Performances for FTSE.}
\label{tab:FTSEperf}%
\end{table} | [
[
"Method",
"AUC",
"BCV",
"Time (min.)",
"β∗"
],
[
"MaxCGF",
"0.8021",
"0.5207",
"5.4309",
"7.50"
],
[
"Domino",
"0.7061",
"0.4641",
"2644.9669",
"7.50"
],
[
"Pen˜a-Prieto",
"-",
"-",
"-",
"-"
]
] | 0.484342 | null | null |
10 | 2305.10911v1 | 26 | [
63.68640060424805,
397.51300048828125,
553.6804077148438,
458.7239990234375
] | \begin{table}[htbp]
\centering
\vspace{5pt}
{\renewcommand{\arraystretch}{1.1}
\hspace*{-10pt}{\small{
\begin{tabular}{*{5}{!{\vrule width 0.9pt}p{3cm}}!{\vrule width 1.5pt}}
\hline
\textbf{Method} & \textbf{AUC} & \textbf{BCV} & \textbf{Time (min.)} & $\boldsymbol{\beta}^{*}$ \\ \hhline{|-|-|-|-|-|}
\textbf{MaxCGF} & \cellcolor[rgb]{ 0, .69, .314}$0.8643$ & \cellcolor[rgb]{ 0, .69, .314}$0.5474$ & \cellcolor[rgb]{ 0, .69, .314}$6.2306$ & 7.75 \\ \hhline{|-|-|-|-|-|}
\textbf{Domino} & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.6794$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$0.3624$ & \cellcolor[rgb]{ 1, 0.44, 0.37}$2986.0548$ & 7.75 \\
\hhline{|-|-|-|-|-|}
\textbf{Pe\~{n}a-Prieto} & - & - & - & - \\
\hline
\end{tabular}}}
}
\caption{Performances for N100.}
\label{tab:ENXperf}%
\end{table} | [
[
"Method",
"AUC",
"BCV",
"Time (min.)",
"β∗"
],
[
"MaxCGF",
"0.8643",
"0.5474",
"6.2306",
"7.75"
],
[
"Domino",
"0.6794",
"0.3624",
"2986.0548",
"7.75"
],
[
"Pen˜a-Prieto",
"-",
"-",
"-",
"-"
]
] | 0.486373 | null | null |
0 | 2202.01947v1 | 10 | [
181.30999755859375,
86.00799560546875,
413.96600341796875,
186.23199462890625
] | \begin{table}
\tbl{Response patterns and sample sizes for ADNI data.}
{\begin{tabular}{c|c|cccc|c}
\hline
& \multicolumn{5}{c|}{Data source} & \\
\hline
$k$ & MMSE & CSF & PET & MRI & GENE & Sample size \\
\hline
1 & $\ast$ & $\ast$ & $\ast$ & $\ast$ & $\ast$ & 409 \\
2 & $\ast$ & $\ast$ & $\ast$ & $\ast$ & & 368 \\
3 & $\ast$ & $\ast$ & $\ast$ & & $\ast$ & 40 \\
4 & $\ast$ & & $\ast$ & $\ast$ & $\ast$ & 105 \\
5 & $\ast$ & & $\ast$ & & $\ast$ & 86 \\
6 & $\ast$ & & $\ast$ & $\ast$ & & 53 \\
7 & $\ast$ & & & & $\ast$ & 53 \\
8 & $\ast$ & & & $\ast$ & & 56 \\
\hline
& & & & & Total & 1170 \\
\hline
\end{tabular}}
\tabnote{{$\ast$}the datum is available.}
\label{table1}%
\end{table} | [
[
"",
"Data source",
null,
""
],
[
"k",
"MMSE",
"CSF PET MRI GENE",
"Sample size"
],
[
"1\n2\n3\n4\n5\n6\n7\n8",
"∗\n∗\n∗\n∗\n∗\n∗\n∗\n∗",
"∗ ∗ ∗ ∗\n∗ ∗ ∗\n∗ ∗ ∗\n∗ ∗ ∗\n∗ ∗\n∗ ∗\n∗\n∗",
"409\n368\n40\n105\n86\n53\n53\n56"
],
[
"",
"",
"Total",
"1170"
]
] | 0.453202 | null | null |
0 | 1909.10578v1 | 5 | [
311.9779968261719,
65.08697509765625,
567.6640014648438,
213.72998046875
] | \begin{table}[t!]
\centering
\scriptsize
%\tiny
\caption{List of assets in the portfolios \textit{usht}, and \textit{eucar}.} % , including Yahoo ticker, asset type, industry sector, description, and currency.}
\setlength\tabcolsep{0.15cm}
\begin{tabular}{|c|| c|c|c|c|c| }
% \hline
% & & \multicolumn{5}{c||}{\textbf{Training DOE}} & \multicolumn{5}{c|}{\textbf{Test DOE}} \\
\hline
& \textbf{Ticker} & \textbf{Type} & \textbf{Industry} & \textbf{Description} & \textbf{Cur.} \\
\hline
\hline
\multirow{11}{*}{\textit{usgen}} & GOOG & Share & IT & Alphabet & USD \\
& MSFT & Share & IT & Microsoft & USD \\
\cline{2-6}
& \textit{CELG} & Share & Healthcare & Celgene & USD \\
& PFE & Share & Healthcare & Pfizer & USD \\
\cline{2-6}
& HES & Share & Energy & Hess & USD \\
& XOM & Share & Energy & Exxon Mobil & USD \\
\cline{2-6}
& KR & Share & Consumer staples & The Kroger & USD \\
& WBA & Share & Consumer staples & Walgreens Boots Alliance & USD \\
\cline{2-6}
& IYY & ETF & Dow Jones & iShares Dow Jones & USD \\
& IYR & ETF & Real estate & iShares US Real Estate & USD \\
& SHY & ETF & US treasury bond & iShares Treasury Bond & USD \\
\hline
\hline
\multirow{6}{*}{\textit{eucar}} & BMW.DE & Share & Automotive & BMW & EUR \\
& FCA.MI & Share & Automotive & Fiat Chrysler Automobiles & EUR \\
& UG.PA & Share & Automotive & Peugeot & EUR \\
& VOW3.DE & Share & Automotive & Volkswagen & EUR \\
\cline{2-6}
& $\hat{ }$~FCHI & Index & French market & CAC 40 & EUR \\
& $\hat{ }$~GDAXI & Index & German market & DAX & EUR \\
\hline
\end{tabular}
\label{tab:portfolios}
\end{table} | [
[
"",
"Ticker",
"Type",
"Industry",
"Description",
"Cur."
],
[
"usgen",
"GOOG\nMSFT",
"Share\nShare",
"IT\nIT",
"Alphabet\nMicrosoft",
"USD\nUSD"
],
[
null,
"CELG\nPFE",
"Share\nShare",
"Healthcare\nHealthcare",
"Celgene\nPfizer",
"USD\nUSD"
],
[
null,
"HES\nXOM",
"Share\nShare",
"Energy\nEnergy",
"Hess\nExxon Mobil",
"USD\nUSD"
],
[
null,
"KR\nWBA",
"Share\nShare",
"Consumer staples\nConsumer staples",
"The Kroger\nWalgreens Boots Alliance",
"USD\nUSD"
],
[
null,
"IYY\nIYR\nSHY",
"ETF\nETF\nETF",
"Dow Jones\nReal estate\nUS treasury bond",
"iShares Dow Jones\niShares US Real Estate\niShares Treasury Bond",
"USD\nUSD\nUSD"
],
[
"eucar",
"BMW.DE\nFCA.MI\nUG.PA\nVOW3.DE",
"Share\nShare\nShare\nShare",
"Automotive\nAutomotive\nAutomotive\nAutomotive",
"BMW\nFiat Chrysler Automobiles\nPeugeot\nVolkswagen",
"EUR\nEUR\nEUR\nEUR"
],
[
null,
"ˆFCHI\nˆGDAXI",
"Index\nIndex",
"French market\nGerman market",
"CAC 40\nDAX",
"EUR\nEUR"
]
] | 0.50672 | null | null |
0 | 2101.00523v2 | 33 | [
313.6881072998047,
222.4849853515625,
460.31199340820314,
333.6679992675781
] | \begin{table}[]
\centering
\begin{tabular}{|c|c|}
\hline
\textbf{Parameter} & \textbf{baseline value}\tabularnewline
\hline
$D$ & 0.00035 \\
\hline
$\chi$ & 0.38 \\
\hline
$\rho$ & 0.34\\
\hline
$\beta$ & 0.05 \\
\hline
$\gamma$ & 0.1 \\
\hline
$\epsilon_1$ & 0.45 \\
\hline
$\epsilon_2$ & 0.45 \\
\hline
$k$ & 0.75 \\
\hline
\end{tabular}
\vspace{0.1cm}
\textbf{S2 Table. Anderson-Chaplain model nondimensionalized parameters.} Baseline nondimensionalized mechanistic parameters for the Chaplain-Anderson Model from \cite{anderson_continuous_1998}.
\label{tab:SItab2}
\end{table} | [
[
"Parameter",
"baseline value"
],
[
"D",
"0.00035"
],
[
"χ",
"0.38"
],
[
"ρ",
"0.34"
],
[
"β",
"0.05"
],
[
"γ",
"0.1"
],
[
"ϵ\n1",
"0.45"
],
[
"ϵ\n2",
"0.45"
],
[
"k",
"0.75"
]
] | 0.389027 | null | null |
0 | 2103.11233v4 | 5 | [
211.28485688709077,
295.8224182128906,
400.9983840215774,
389.3440246582031
] | \begin{table}[htbp]
\caption{Signals' details and summary of parameters}
\centering
\scalebox{0.8}{\begin{tabular}{|| c | c | c | c | c ||}
\hline
Labels & Samples & $(L,a,b)$ & $x_0$ & $\mu_i$, $i=1,2,3,*$\\
\hline\hline
Cusp & 33 & $(33,1,11)$ & zero vector & $\|\Phi_ix\|_\infty$\\
\hline
Ramp & 33 & $(33,1,11)$ & zero vector & $\|\Phi_ix\|_\infty$\\
\hline
Sing & 45 & $(45,1,9)$ & zero vector & $\|\Phi_ix\|_\infty$\\
\hline
SI1899 & 22938 & $(20349,19,21)$ & $A^TAx$ & $10^{-1}\|\Phi_ix\|_\infty$\\
\hline
SI1948 & 27680 & $(27531,19,23)$ & $A^TAx$ & $10^{-1}\|\Phi_ix\|_\infty$\\
\hline
SI2141 & 42800 & $(41769,21,17)$ & $A^TAx$ & $10^{-1}\|\Phi_ix\|_\infty$\\
\hline
SX5 & 24167 & $(23205,17,13)$ & $A^TAx$ & $10^{-1}\|\Phi_ix\|_\infty$\\
\hline
SX224 & 25805 & $(24633,23,21)$ & $A^TAx$ & $10^{-1}\|\Phi_ix\|_\infty$\\
\hline
SI1716 & 25908 & $(24633,23,21)$ & $A^TAx$ & $\|\Phi_ix\|_\infty$\\
\hline
\end{tabular}}
\label{sigdec}
\end{table} | [
[
"Labels",
"Samples",
"(L, a, b)",
"x0",
"µi, i = 1, 2, 3, ∗"
],
[
"Cusp",
"33",
"(33, 1, 11)",
"zero vector",
"∥Φix∥∞"
],
[
"Ramp",
"33",
"(33, 1, 11)",
"zero vector",
"∥Φix∥∞"
],
[
"Sing",
"45",
"(45, 1, 9)",
"zero vector",
"∥Φix∥∞"
],
[
"SI1899",
"22938",
"(20349, 19, 21)",
"AT Ax",
"10−1 ∥Φix∥∞"
],
[
"SI1948",
"27680",
"(27531, 19, 23)",
"AT Ax",
"10−1 ∥Φix∥∞"
],
[
"SI2141",
"42800",
"(41769, 21, 17)",
"AT Ax",
"10−1 ∥Φix∥∞"
],
[
"SX5",
"24167",
"(23205, 17, 13)",
"AT Ax",
"10−1 ∥Φix∥∞"
],
[
"SX224",
"25805",
"(24633, 23, 21)",
"AT Ax",
"10−1 ∥Φix∥∞"
],
[
"SI1716",
"25908",
"(24633, 23, 21)",
"AT Ax",
"∥Φix∥∞"
]
] | 0.524554 | null | null |
0 | 2401.06452v1 | 12 | [
187.1016616821289,
290.6700134277344,
424.8981577555339,
352.43798828125
] | \begin{table}[]
\caption{Hyperparameters of the BO-Auto-PU system, with their default values.}\label{tab2}
\centering
\small
\begin{tabular}{|l|l|}
\hline
Hyperparameter & Value \\\hline
\(It\_count\) & 50 \\\hline
\(\#Configs\) & 101 \\\hline
\(Surr\_model\) & Random Forest Regressor \\\hline
\(Acquisition function\) & \(Surr\_model\) predicted value \\ \hline
\end{tabular}
\end{table} | [
[
"Hyperparameter",
"Value"
],
[
"It count",
"50"
],
[
"#Configs",
"101"
],
[
"Surr model",
"Random Forest Regressor"
],
[
"Acquisitionfunction",
"Surr model predicted value"
]
] | 0.946565 | null | null |
1 | 2401.06452v1 | 13 | [
165.7580993652344,
111.71697998046875,
446.24188842773435,
222.9000244140625
] | \begin{table}[]
\caption{Hyperparameters of the EBO-Auto-PU system, with their default values.}\label{tab3}
\centering
\small
\begin{tabular}{|l|l|}
\hline
Hyperparameter & Value \\ \hline
\(\#Configs\) & 101 \\ \hline
\(It\_count\) & 50 \\ \hline
\(Surr\_model\) & Random Forest Regressor \\ \hline
Crossover probability & 0.9 \\ \hline
Component crossover probability & 0.5 \\ \hline
Mutation probability & 0.1 \\ \hline
Tournament size & 2 \\ \hline
\(k\) & 10 \\ \hline
\end{tabular}
\end{table} | [
[
"Hyperparameter",
"Value"
],
[
"#Configs",
"101"
],
[
"It count",
"50"
],
[
"Surr model",
"Random Forest Regressor"
],
[
"Crossover probability",
"0.9"
],
[
"Component crossover probability",
"0.5"
],
[
"Mutation probability",
"0.1"
],
[
"Tournament size",
"2"
],
[
"k",
"10"
]
] | 0.974093 | null | null |
2 | 2401.06452v1 | 21 | [
188.83457728794642,
552.6729736328125,
423.16542271205356,
638.7509765625
] | \begin{table}[htbp]
\caption{Linear (Pearson’s) correlation coefficient value between the F-measure and the percentage of positive examples in the original dataset (before hiding some positive examples in the unlabelled set) for each combination of an Auto-PU system (with base search space) or PU method and a \(\delta\) value}\label{tab6}
\centering
\small
\begin{tabular}{|l|c|c|c|}
\hline
\begin{tabular}[c]{@{}l@{}}Auto-PU system \\ or PU method\end{tabular} & \(\delta\) = 20\% & \(\delta\) = 40\% & \(\delta\) = 60\% \\ \hline
EBO-1 & 0.440 & 0.469 & 0.460 \\ \hline
BO-1 & 0.398 & 0.360 & 0.498 \\ \hline
GA-1 & 0.333 & 0.385 & 0.504 \\ \hline
DF-PU & 0.381 & 0.504 & 0.445 \\ \hline
S-EM & 0.690 & 0.631 & 0.686 \\ \hline
\end{tabular}
\end{table} | [
[
"Auto-PU system\nor PU method",
"δ = 20%",
"δ = 40%",
"δ = 60%"
],
[
"EBO-1",
"0.440",
"0.469",
"0.460"
],
[
"BO-1",
"0.398",
"0.360",
"0.498"
],
[
"GA-1",
"0.333",
"0.385",
"0.504"
],
[
"DF-PU",
"0.381",
"0.504",
"0.445"
],
[
"S-EM",
"0.690",
"0.631",
"0.686"
]
] | 0.816901 | null | null |
3 | 2401.06452v1 | 27 | [
208.19256591796875,
424.61700439453125,
403.8074210030692,
498.739013671875
] | \begin{table}[htbp]
\caption{Linear (Pearson’s) correlation coefficient value between the F-measure and the percentage of positive examples in the original dataset (before hiding some positive examples in the unlabelled set) for each combination of an Auto-PU system (with extended search space) or PU method and a \(\delta\) value}\label{tab11}
\centering
\small
\begin{tabular}{|l|l|l|l|}
\hline
\multicolumn{1}{|c|}{Method} & \multicolumn{1}{c|}{\(\delta\) = 20\%} & \multicolumn{1}{c|}{\(\delta\) = 40\%} & \multicolumn{1}{c|}{\(\delta\) = 60\%} \\ \hline
EBO-2 & 0.363 & 0.361 & 0.447 \\ \hline
BO-2 & 0.339 & 0.348 & 0.225 \\ \hline
GA-2 & 0.340 & 0.357 & 0.580 \\ \hline
DF-PU & 0.381 & 0.504 & 0.445 \\ \hline
S-EM & 0.690 & 0.631 & 0.686 \\ \hline
\end{tabular}
\end{table} | [
[
"Method",
"δ = 20%",
"δ = 40%",
"δ = 60%"
],
[
"EBO-2",
"0.363",
"0.361",
"0.447"
],
[
"BO-2",
"0.339",
"0.348",
"0.225"
],
[
"GA-2",
"0.340",
"0.357",
"0.580"
],
[
"DF-PU",
"0.381",
"0.504",
"0.445"
],
[
"S-EM",
"0.690",
"0.631",
"0.686"
]
] | 0.875776 | null | null |
4 | 2401.06452v1 | 30 | [
98.25995185158469,
118.4990234375,
513.7401067560369,
385.89599609375
] | \begin{table}[]
\caption{Hyperparameter values most frequently selected by BO-Auto-PU}\label{tab14}
\centering
\small
\begin{tabular}{|l|l|l|ll|ll|ll|}
\hline
\textbf{Hyperparameter} & \textbf{\begin{tabular}[c]{@{}l@{}}Search \\ space\end{tabular}} & \textbf{\begin{tabular}[c]{@{}l@{}}Most selected \\ value\end{tabular}} & \multicolumn{2}{l|}{\textbf{\begin{tabular}[c]{@{}l@{}}Selection\\ Freq. (\%)\end{tabular}}} & \multicolumn{2}{l|}{\textbf{\begin{tabular}[c]{@{}l@{}}Baseline \\ Freq. (\%)\end{tabular}}} & \multicolumn{2}{l|}{\textbf{\begin{tabular}[c]{@{}l@{}}Diff.\\ (\%)\end{tabular}}} \\ \hline
\multirow{2}{*}{Phase 1A Iteration Count} & base & 2 & \multicolumn{2}{l|}{19.00} & \multicolumn{2}{l|}{10.00} & \multicolumn{2}{l|}{9.00} \\ \cline{2-9}
& extended & 2 & \multicolumn{2}{l|}{21.00} & \multicolumn{2}{l|}{10.00} & \multicolumn{2}{l|}{11.00} \\ \hline
\multirow{2}{*}{Phase 1A RN Threshold} & base & 0.05 & \multicolumn{2}{l|}{14.33} & \multicolumn{2}{l|}{10.00} & \multicolumn{2}{l|}{4.33} \\ \cline{2-9}
& extended & 0.25 & \multicolumn{2}{l|}{13.00} & \multicolumn{2}{l|}{10.00} & \multicolumn{2}{l|}{3.00} \\ \hline
\multirow{2}{*}{Phase 1A Classifier} & base & Bernoulli NB & \multicolumn{2}{l|}{8.67} & \multicolumn{2}{l|}{5.56} & \multicolumn{2}{l|}{3.11} \\ \cline{2-9}
& extended & Logistic reg. & \multicolumn{2}{l|}{8.67} & \multicolumn{2}{l|}{5.56} & \multicolumn{2}{l|}{3.11} \\ \hline
\multirow{2}{*}{Phase 1B Flag} & base & True & \multicolumn{2}{l|}{52.67} & \multicolumn{2}{l|}{50.00} & \multicolumn{2}{l|}{2.67} \\ \cline{2-9}
& extended & True & \multicolumn{2}{l|}{50.67} & \multicolumn{2}{l|}{50.00} & \multicolumn{2}{l|}{0.67} \\ \hline
\multirow{2}{*}{Phase 1B RN Threshold} & base & 0.2 & \multicolumn{2}{l|}{14.00} & \multicolumn{2}{l|}{10.00} & \multicolumn{2}{l|}{4.00} \\ \cline{2-9}
& extended & 0.2 & \multicolumn{2}{l|}{14.67} & \multicolumn{2}{l|}{10.00} & \multicolumn{2}{l|}{4.67} \\ \hline
\multirow{2}{*}{Phase 1B Classifier} & base & HGBoost & \multicolumn{2}{l|}{8.00} & \multicolumn{2}{l|}{5.56} & \multicolumn{2}{l|}{2.44} \\ \cline{2-9}
& extended & Bagging clas. & \multicolumn{2}{l|}{7.67} & \multicolumn{2}{l|}{5.56} & \multicolumn{2}{l|}{2.11} \\ \hline
\multirow{2}{*}{Spy rate} & base & N/A & \multicolumn{2}{l|}{N/A} & \multicolumn{2}{l|}{N/A} & \multicolumn{2}{l|}{N/A} \\ \cline{2-9}
& extended & 0.3 & \multicolumn{2}{l|}{18.00} & \multicolumn{2}{l|}{14.29} & \multicolumn{2}{l|}{3.71} \\ \hline
\multirow{2}{*}{Spy tolerance} & base & N/A & \multicolumn{2}{l|}{N/A} & \multicolumn{2}{l|}{N/A} & \multicolumn{2}{l|}{N/A} \\ \cline{2-9}
& extended & 0.08 & \multicolumn{2}{l|}{12.18} & \multicolumn{2}{l|}{9.09} & \multicolumn{2}{l|}{3.09} \\ \hline
\multirow{2}{*}{Spy flag} & base & N/A & \multicolumn{2}{l|}{N/A} & \multicolumn{2}{l|}{N/A} & \multicolumn{2}{l|}{N/A} \\ \cline{2-9}
& extended & False & \multicolumn{2}{l|}{74.00} & \multicolumn{2}{l|}{50.00} & \multicolumn{2}{l|}{24.00} \\ \hline
\multirow{2}{*}{Phase 2 Classifier} & base & LDA & \multicolumn{2}{l|}{32.67} & \multicolumn{2}{l|}{5.56} & \multicolumn{2}{l|}{27.11} \\ \cline{2-9}
& extended & LDA & \multicolumn{2}{l|}{51.67} & \multicolumn{2}{l|}{5.56} & \multicolumn{2}{l|}{46.11} \\ \hline
\end{tabular}
\end{table} | [
[
"Hyperparameter",
"Search\nspace",
"Most selected\nvalue",
"Selection\nFreq. (%)",
"Baseline\nFreq. (%)",
"Diff.\n(%)"
],
[
"Phase 1A Iteration Count",
"base",
"2",
"19.00",
"10.00",
"9.00"
],
[
null,
"extended",
"2",
"21.00",
"10.00",
"11.00"
],
[
"Phase 1A RN Threshold",
"base",
"0.05",
"14.33",
"10.00",
"4.33"
],
[
null,
"extended",
"0.25",
"13.00",
"10.00",
"3.00"
],
[
"Phase 1A Classifier",
"base",
"Bernoulli NB",
"8.67",
"5.56",
"3.11"
],
[
null,
"extended",
"Logistic reg.",
"8.67",
"5.56",
"3.11"
],
[
"Phase 1B Flag",
"base",
"True",
"52.67",
"50.00",
"2.67"
],
[
null,
"extended",
"True",
"50.67",
"50.00",
"0.67"
],
[
"Phase 1B RN Threshold",
"base",
"0.2",
"14.00",
"10.00",
"4.00"
],
[
null,
"extended",
"0.2",
"14.67",
"10.00",
"4.67"
],
[
"Phase 1B Classifier",
"base",
"HGBoost",
"8.00",
"5.56",
"2.44"
],
[
null,
"extended",
"Bagging clas.",
"7.67",
"5.56",
"2.11"
],
[
"Spy rate",
"base",
"N/A",
"N/A",
"N/A",
"N/A"
],
[
null,
"extended",
"0.3",
"18.00",
"14.29",
"3.71"
],
[
"Spy tolerance",
"base",
"N/A",
"N/A",
"N/A",
"N/A"
],
[
null,
"extended",
"0.08",
"12.18",
"9.09",
"3.09"
],
[
"Spy flag",
"base",
"N/A",
"N/A",
"N/A",
"N/A"
],
[
null,
"extended",
"False",
"74.00",
"50.00",
"24.00"
],
[
"Phase 2 Classifier",
"base",
"LDA",
"32.67",
"5.56",
"27.11"
],
[
null,
"extended",
"LDA",
"51.67",
"5.56",
"46.11"
]
] | 0.441176 | null | null |
5 | 2401.06452v1 | 31 | [
198.05100440979004,
139.5830078125,
413.9488830566406,
226.05902099609375
] | \begin{table}[]
\centering
\caption{Pearson’s correlation coefficient values for Phase 1A iteration count to class imbalance. }\label{tab16}
\centering
\small
\begin{tabular}{|l|l|l|l|}
\hline
\multicolumn{1}{|c|}{\textbf{Method}} & \multicolumn{1}{c|}{\textbf{\(\delta\) = 20\%}} & \multicolumn{1}{c|}{\textbf{\(\delta\) = 40\%}} & \multicolumn{1}{c|}{\textbf{\(\delta\) = 60\%}} \\ \hline
GA-1 & -0.646 & -0.655 & -0.689 \\ \hline
GA-2 & -0.631 & -0.687 & -0.723 \\ \hline
BO-1 & -0.677 & -0.700 & -0.700 \\ \hline
BO-2 & -0.641 & -0.706 & -0.736 \\ \hline
EBO-1 & -0.656 & -0.688 & -0.696 \\ \hline
EBO-2 & -0.680 & -0.710 & -0.687 \\ \hline
\end{tabular}
\end{table} | [
[
"Method",
"δ = 20%",
"δ = 40%",
"δ = 60%"
],
[
"GA-1",
"-0.646",
"-0.655",
"-0.689"
],
[
"GA-2",
"-0.631",
"-0.687",
"-0.723"
],
[
"BO-1",
"-0.677",
"-0.700",
"-0.700"
],
[
"BO-2",
"-0.641",
"-0.706",
"-0.736"
],
[
"EBO-1",
"-0.656",
"-0.688",
"-0.696"
],
[
"EBO-2",
"-0.680",
"-0.710",
"-0.687"
]
] | 0.90099 | null | null |
0 | 1701.02440v1 | 12 | [
241.6300048828125,
524.5880126953125,
368.62200927734375,
612.0590209960938
] | \begin{table}[h]
\centering
\label{table_results}
\begin{tabular}{|c|c|c|}
\hline
& Decay & Diff.\\
Gene & ($\lambda^a$) & ($D^a$) \\ \hline
Hb & 0.1606 & 0.3669 \\
Kr & 0.0797 & 0.4490 \\
Gt & 0.1084 & 0.4543 \\
Kni & 0.0807 & 0.2683 \\ \hline
\end{tabular}
\caption{Inferred parameter values for the decay $\lambda^a$ and diffusion $D^a$ rates of protein $a$.}
\end{table} | [
[
"Gene",
"Decay\n(λa)",
"Diff.\n(Da)"
],
[
"Hb\nKr\nGt\nKni",
"0.1606\n0.0797\n0.1084\n0.0807",
"0.3669\n0.4490\n0.4543\n0.2683"
]
] | 0.385714 | null | null |
0 | 2008.10893v1 | 23 | [
101.90603256225586,
126.50918579101562,
512.7994079589844,
217.797119140625
] | \begin{table}[!ht]
\begin{center}
\resizebox{\textwidth}{!}{
\begin{tabular}{ |c|ll|ll|ll|ll|}
\hline
& $\abs{y_\mathcal{N}-y^*_h}_1$ & $\abs{y_\mathcal{N}-y^*_h}_1$ &
$\abs{y_\mathcal{N}-y^*}_1$ & $\abs{y_\mathcal{N}-y^*}_1$ & $\norm{y_\mathcal{N}-y^*_h}_0$ & $\norm{y_\mathcal{N}-y^*_h}_0$ &$\norm{y_\mathcal{N}-y^*}_0$ & $\norm{y_\mathcal{N}-y^*}_0$ \\ \hline
& min & max & min & max & min & max & min & max \\ \hline
1-L & $0.2506 $ & $0.6532 $ & $ 0.2868 $ & $ 0.6713 $ & $0.0752 $ & $ 0.2422 $ & $0.0808 $ & $0.2435 $ \\ \hline
3-L & $ 0.2575 $ & $0.7537 $ & $ 0.2391 $ & $0.7777 $ & $ 0.0817 $ & $0.2524 $ & $0.0791 $ & $0.2565 $ \\ \hline
5-L & $0.2157 $ & $36.2640 $ & $ 0.2235 $ & $ 36.2731 $ & $0.0539 $ & $29.4926 $ & $ 0.0544 $ & $ 29.4936 $ \\ \hline
& mean& deviation & mean & deviation & mean& deviation & mean& deviation \\ \hline
1-L & $0.4276 $ & $0.1099 $ & $ 0.4496 $ & $ 0.1075 $ & $0.1472 $ & $ 0.0484 $ & $0.1506 $ & $0.0485 $ \\ \hline
3-L & $ 0.3853 $ & $0.1350 $ & $ 0.4003 $ & $0.1687 $ & $ 0.1425 $ & $0.0462 $ & $0.1268 $ & $0.0482 $ \\ \hline
5-L & $3.0242 $ & $ 8.9087 $ & $3.0287 $ & $8.9103 $ & $ 2.1309 $ & $7.3143 $ & $ 2.1299 $ & $ 7.3149 $ \\ \hline
\end{tabular}}
{\small \caption{\label{tab:layer_comparison}Statistics on learning-informed PDEs with different layers in neural networks using small size training data, small DoF in $\Theta$, and 15 samples in total.}}
\end{center}
\end{table} | [
[
"",
"|y −y h∗|1 |y −y h∗|1\nN N",
"|y −y∗|1 |y −y∗|1\nN N",
"∥y −y h∗∥0 ∥y −y h∗∥0\nN N",
"∥y −y∗∥0 ∥y −y∗∥0\nN N"
],
[
"",
"min max",
"min max",
"min max",
"min max"
],
[
"1-L",
"0.2506 0.6532",
"0.2868 0.6713",
"0.0752 0.2422",
"0.0808 0.2435"
],
[
"3-L",
"0.2575 0.7537",
"0.2391 0.7777",
"0.0817 0.2524",
"0.0791 0.2565"
],
[
"5-L",
"0.2157 36.2640",
"0.2235 36.2731",
"0.0539 29.4926",
"0.0544 29.4936"
],
[
"",
"mean deviation",
"mean deviation",
"mean deviation",
"mean deviation"
],
[
"1-L",
"0.4276 0.1099",
"0.4496 0.1075",
"0.1472 0.0484",
"0.1506 0.0485"
],
[
"3-L",
"0.3853 0.1350",
"0.4003 0.1687",
"0.1425 0.0462",
"0.1268 0.0482"
],
[
"5-L",
"3.0242 8.9087",
"3.0287 8.9103",
"2.1309 7.3143",
"2.1299 7.3149"
]
] | 0.703902 | null | null |
0 | 2310.14848v1 | 18 | [
64.23982100053267,
84.16400146484375,
284.74709250710225,
262.9840087890625
] | \begin{table}[htbp]
\centering
\caption{Efficiency}
\label{E&F}
\begin{tabular}{|c|c|c|}
\hline
\thead{Computation} & \thead{Scheme} & \thead{Efficiency\\(P/V/C)} \\ \hline
\multirow{2}{*}{\thead{MatrixMult\\$O(n^3)$}} & \thead{SafetyNets} & \thead{$O(n^2)$ / $O(n^2)$/ $O(\log n)$} \\ \cline{2-3}
% \multicolumn{1}{|c|}{} & \multicolumn{1}{c|}{} & & \thead{Mystique} & $\CIRCLE$ & $\CIRCLE$ & $\CIRCLE$ & \thead{extended\\privacy} & $O(n^2)$ \\ \cline{4-9} % \\(hybrid\\commitment)
& \thead{Mystique,\\Fan,\\zkMLaaS} & $O(n^2)/O(n^2)/O(1)$ \\ \cline{1-3} % \\(threshold\\cryptosystem\\\& noise)
\multirow{5}{*}{\thead{Convolution\\$O(n^2w^2)$}} & \thead{SafeTPU} & -- \\ \cline{2-3}
& \thead{zkCNN} & \thead{$O(n^2)/O(\log^2n)/$/$O(\log^2n)$} \\ \cline{2-3}
& \thead{vCNN} & $O(n^2)/O(n^2)/O(1)$ \\ \cline{2-3} % \\(CP-SNARK)
& \thead{pvCNN} & $O(n^2)/O(n^2)/O(1)$ \\ \cline{2-3} % \\(network\\splitting)
& \thead{Fan} & $O(n^2)/O(n^2)/O(1)$ \\ \cline{1-3} % \\(network\\splitting)
\multirow{2}{*}{\thead{Decision Tree\\$O(hd)$}} & \thead{zkDT} & \thead{$O(d\log d)/$/$O(d)/O(\log^2d)$} \\ \cline{2-3}
& \thead{Singh} & \thead{$O(d\log d)/$/$O(d)/O(1)$} \\ \hline % \\(polynomial\\interpolation)
\end{tabular}
\end{table} | [
[
"Computation",
"Scheme",
"Efficiency\n(P/V/C)"
],
[
"MatrixMult\nO(n3)",
"SafetyNets",
"O(n2) / O(n2)/ O(log n)"
],
[
null,
"Mystique,\nFan,\nzkMLaaS",
"O(n2)/O(n2)/O(1)"
],
[
"Convolution\nO(n2w2)",
"SafeTPU",
"–"
],
[
null,
"zkCNN",
"O(n2)/O(log2 n)//O(log2 n)"
],
[
null,
"vCNN",
"O(n2)/O(n2)/O(1)"
],
[
null,
"pvCNN",
"O(n2)/O(n2)/O(1)"
],
[
null,
"Fan",
"O(n2)/O(n2)/O(1)"
],
[
"Decision Tree\nO(hd)",
"zkDT",
"O(d log d)//O(d)/O(log2 d)"
],
[
null,
"Singh",
"O(d log d)//O(d)/O(1)"
]
] | 0.609626 | null | null |
0 | 2403.02528v1 | 14 | [
108,
250.14299774169922,
504,
466.53150939941406
] | \begin{table}[!hbp]
\centering
\begin{tabularx}{\linewidth}{l|r|X}
\hline
& \% & Example \\
\hline
\makecell[l]{Large difference \\ (similarity$<$0.5)} & 46 & As a weather forecaster, I want to study the correlation between weather conditions and bike rentals. ~~ \textit{v.s.} \\
& & As a tourist attraction planner, I want to evaluate the bike-sharing program's impact on tourism and visitor satisfaction. \\
& & \textit{Similarity} = 0.42 \\
\hline
\makecell[l]{Medium difference \\(0.5$<$similarity$<$0.8)} & 52 & As a farmer, I want to determine the suitable fruit varieties to grow on my farm. ~~ \textit{v.s.} \\
& & As a fruit exporter, I want to identify the fruits that meet export standards and have a longer shelf life. \\
& & \textit{Similarity} = 0.69 \\
\hline
\makecell[l]{Repetitive \\(similarity$>$0.8)} & 2 & As a consultant for honey market, I want to study the honey production trend to recommend business strategies for my clients. ~~ \textit{v.s.} \\
& & As a curious analyst, I want to study the production trend to understand the US honey industry. \\
& & \textit{Similarity} = 0.85 \\
\hline
\end{tabularx}
\caption{\footnotesize Cosine similarity and qualitative examples of pairs of input queries.}
\label{tab:query_diversity}
\end{table} | [
[
"",
"%",
"Example"
],
[
"Large difference\n(similarity<0.5)",
"46",
"As a weather forecaster, I want to study the correlation\nbetween weather conditions and bike rentals. v.s.\nAs a tourist attraction planner, I want to evaluate the bike-\nsharing program’s impact on tourism and visitor satisfac-\ntion.\nSimilarity = 0.42"
],
[
"Medium difference\n(0.5<similarity<0.8)",
"52",
"As a farmer, I want to determine the suitable fruit varieties\nto grow on my farm. v.s.\nAs a fruit exporter, I want to identify the fruits that meet\nexport standards and have a longer shelf life.\nSimilarity = 0.69"
],
[
"Repetitive\n(similarity>0.8)",
"2",
"As a consultant for honey market, I want to study the honey\nproduction trend to recommend business strategies for my\nclients. v.s.\nAs a curious analyst, I want to study the production trend\nto understand the US honey industry.\nSimilarity = 0.85"
]
] | 0.915784 | null | null |
1 | 2403.02528v1 | 15 | [
219.98800659179688,
233.21400451660156,
392.010986328125,
299.9635009765625
] | \begin{table}[!hbp]
\centering
\begin{tabular}{l|rr}
\hline
& SFT & RL \\
\hline
learning rate & 1e-5 & 2e-6 \\
gradient accumulation & 4 & 4 \\
total steps & 600 & 200 \\
$\lambda$ & - & 1.0 \\
$\gamma$ & - & 1.0 \\
\hline
\end{tabular}
\caption{\footnotesize \textbf{Hyperparameters.}}
\label{tab:hyperparameters}
\end{table} | [
[
"",
"SFT RL"
],
[
"learning rate\ngradient accumulation\ntotal steps\nλ\nγ",
"1e-5 2e-6\n4 4\n600 200\n- 1.0\n- 1.0"
]
] | 0.554217 | null | null |
0 | 1809.09420v1 | 5 | [
59.13878549848284,
83.051025390625,
287.36119951520647,
233.0880126953125
] | \begin{table}[tb]
\begin{center}
\caption{A table comparing the summed reward each agent receives on the test data.}
\begin{tabular}{ |l?c|c|c|c|c| }
\hline
participant & Ours & SMB & MC & GR & LSTM \\
\hline
0 & 1.45 & 7.34 & \textbf{10.0} & 0.00 & 10.0 \\
\hline
1 & \textbf{1.32} & -4.63 & -4.00 & -1.00 & -6.00\\
\hline
2 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
3 & \textbf{-0.53} & -1.57 & 0.00 & 0.00 & -3.00 \\
\hline
4 & 0.01 & \textbf{0.31} & 0.00 & 0.00 & 0.00 \\
\hline
5 & \textbf{5.50} & 1.36 & 0.00 & 0.00 & 1.00 \\
\hline
6 & \textbf{0.29} & -0.07 & 0.00 & 0.00 & 0.00 \\
\hline
7 & 0.10 & 1.00 & \textbf{2.00} & 0.00 & 1.00 \\
\hline
8 & \textbf{-0.14} & -10.1 & -60.1 & 0.00 & -40.2 \\
\hline
9 & 3.85 & \textbf{14.0} & 0.00 & 0.00 & -1.10 \\
\hline
10 & \textbf{-3.01} & -5.89 & 0.00 & 0.00 & 0.00 \\
\hline
\hline
Avg \% & \textbf{53.9} & 0.8 & -0.6 & -0.0 & -0.5 \\
\hline
\end{tabular}
\end{center}
\label{tab:pretrainedResults}
\end{table} | [
[
"participant",
"Ours",
"SMB",
"MC",
"GR",
"LSTM"
],
[
"0",
"1.45",
"7.34",
"10.0",
"0.00",
"10.0"
],
[
"1",
"1.32",
"-4.63",
"-4.00",
"-1.00",
"-6.00"
],
[
"2",
"0.00",
"0.00",
"0.00",
"0.00",
"0.00"
],
[
"3",
"-0.53",
"-1.57",
"0.00",
"0.00",
"-3.00"
],
[
"4",
"0.01",
"0.31",
"0.00",
"0.00",
"0.00"
],
[
"5",
"5.50",
"1.36",
"0.00",
"0.00",
"1.00"
],
[
"6",
"0.29",
"-0.07",
"0.00",
"0.00",
"0.00"
],
[
"7",
"0.10",
"1.00",
"2.00",
"0.00",
"1.00"
],
[
"8",
"-0.14",
"-10.1",
"-60.1",
"0.00",
"-40.2"
],
[
"9",
"3.85",
"14.0",
"0.00",
"0.00",
"-1.10"
],
[
"10",
"-3.01",
"-5.89",
"0.00",
"0.00",
"0.00"
],
[
"Avg %",
"53.9",
"0.8",
"-0.6",
"-0.0",
"-0.5"
]
] | 0.96875 | null | null |
1 | 1809.09420v1 | 6 | [
75.64271218436105,
85.0679931640625,
270.8572017124721,
235.10601806640625
] | \begin{table}[tb]
\begin{center}
\caption{A table comparing two variations on an active learning version of our agent.}
\begin{tabular}{ |l?c|c|c|}
\hline
participant & Ours & Episodic & Continuous \\
\hline
0 & 1.45 & \textbf{1.47} & \textbf{1.47} \\
\hline
1 & \textbf{1.32} & -11.7 & -10.1 \\
\hline
2 & 0.00 & 0.00 & 0.00 \\
\hline
3 & -0.53 & 0.94 & \textbf{1.08} \\
\hline
4 & \textbf{0.01} & -0.05 & -0.25\\
\hline
5 & \textbf{5.50} & \textbf{5.50} & -7.55 \\
\hline
6 & \textbf{0.29} & \textbf{0.29} & 0.04 \\
\hline
7 & \textbf{0.10} & \textbf{0.10} & -0.04 \\
\hline
8 & -0.14 & \textbf{5.22} & 0.42 \\
\hline
9 & 3.85 & \textbf{42.7} & 41.0 \\
\hline
10 & \textbf{-3.01} & -3.76 & -4.62 \\
\hline
\hline
Avg \% & 53.9 & \textbf{56.6} & 53.1 \\
\hline
\end{tabular}
\end{center}
\label{tab:activeResults}
\end{table} | [
[
"participant",
"Ours",
"Episodic",
"Continuous"
],
[
"0",
"1.45",
"1.47",
"1.47"
],
[
"1",
"1.32",
"-11.7",
"-10.1"
],
[
"2",
"0.00",
"0.00",
"0.00"
],
[
"3",
"-0.53",
"0.94",
"1.08"
],
[
"4",
"0.01",
"-0.05",
"-0.25"
],
[
"5",
"5.50",
"5.50",
"-7.55"
],
[
"6",
"0.29",
"0.29",
"0.04"
],
[
"7",
"0.10",
"0.10",
"-0.04"
],
[
"8",
"-0.14",
"5.22",
"0.42"
],
[
"9",
"3.85",
"42.7",
"41.0"
],
[
"10",
"-3.01",
"-3.76",
"-4.62"
],
[
"Avg %",
"53.9",
"56.6",
"53.1"
]
] | 0.909091 | null | null |
0 | 2012.12899v2 | 15 | [
179.23899841308594,
168.802978515625,
429.1239929199219,
237.7440185546875
] | \begin{table}[t]
\caption{Results for ablation setting 1. “Audience only” means that only the audience's validation loss is minimized to update the architecture of the explainer. “Audience + explainer” means that both the validation loss of the audience and the validation loss of the explainer itself are minimized to learn the explainer's architecture.
}
\centering
\begin{tabular}{l|c}
\hline
Method & Error (\%)\\
\hline
Audience only (CIFAR-100) & 16.08$\pm$0.15 \\
Audience + explainer (CIFAR-100) &\textbf{15.23}$\pm$0.11 \\
\hline
Audience only (CIFAR-10) & 2.72$\pm$0.07 \\
Audience + explainer (CIFAR-10) &\textbf{2.59}$\pm$0.06 \\
\hline
\end{tabular}
\label{tab:ab1}
\end{table} | [
[
"Method",
"Error (%)"
],
[
"Audience only (CIFAR-100)\nAudience + explainer (CIFAR-100)",
"16.08 0.15\n±\n15.23 0.11\n±"
],
[
"Audience only (CIFAR-10)\nAudience + explainer (CIFAR-10)",
"2.72 0.07\n±\n2.59 0.06\n±"
]
] | 0.822888 | null | null |
0 | 2304.08906v2 | 20 | [
72.66038513183594,
349.05718994140625,
541.2995849609375,
428.80665283203126
] | \begin{table}[h]
\centering
\resizebox{\columnwidth}{!}{%
\begin{tabular}{l|cccccccccc}
{} & LEAM & LEAS & LECO & LEGR & \boxitthree{0.4in}{0.13in}LEJR & LERS & \boxit{0.4in}{0.13in}LEST & LEVX & LEXJ & LEZG \\
\midrule
LEAL & 65.504814 & 75.441186 & 94.909454 & 87.043069 & 54.712340 & 68.100410 & 58.413992 & 75.539541 & 74.799185 & 128.027181 \\
LEBB & 29.198655 & 41.969953 & 59.934764 & 52.396055 & 22.803751 & 35.392877 & \boxit{0.67in}{0.11in}24.141713 & 39.741042 & 40.259694 & 154.062811 \\
LEIB & 31.662067 & 48.491843 & 65.367969 & 57.828287 & 29.556105 & 42.296863 & 31.017462 & 44.619687 & 46.300496 & 147.477518 \\
LEMG & 101.622129 & 113.412149 & 132.270438 & 124.550755 & 92.450573 & 105.891984 & 95.728206 & 112.713383 & 112.382984 & 98.779637 \\
\boxittwo{9in}{0.11in}LEMH & 22.235551 & 13.098385 & 23.636059 & 18.860090 & 22.874975 & 16.988746 & \boxit{0.67in}{0.11in}24.121190 & 18.826095 & 9.367364 & 197.854459 \\
LEVC & 58.145394 & 64.315003 & 83.967244 & 76.139405 & 43.387298 & 56.810028 & 47.252928 & 64.782664 & 63.471159 & 140.867244 \\
\boxitthree{0.4in}{0.11in}LEZL & 28.195391 & 33.835790 & 52.657957 & 44.801351 & \boxitthree{0.67in}{0.11in}15.408263 & 27.620714 & \boxit{0.67in}{0.11in}22.850649 & 33.738975 & 31.919736 & \boxittwo{0.79in}{1.48in}161.608615 \\
\end{tabular}}
\caption{Distance matrix corresponding to the Group 2 (columns) and Group 1 (rows) with different marks}
\label{tablagrupo12}
\end{table} | [
[
"",
"LEAM LEAS LECO LEGR",
"LEJR",
"LERS",
null,
"LEST",
"LEVX LEXJ",
null,
"LEZG"
],
[
"LEAL 65.504814 75.441186 94.909454 87.043069 54.712340 68.100410 58.413992 75.539541 74.799185\nLEBB 29.198655 41.969953 59.934764 52.396055 22.803751 35.392877 24.141713 39.741042 40.259694\nLEIB 31.662067 48.491843 65.367969 57.828287 29.556105 42.296863 31.017462 44.619687 46.300496\nLEMG 101.622129 113.412149 132.270438 124.550755 92.450573 105.891984 95.728206 112.713383 112.382984",
null,
null,
null,
null,
null,
null,
null,
"128.027181\n154.062811\n147.477518\n98.779637"
],
[
"LEMH",
"22.235551 13.098385 23.636059 18.860090 22.874975 16.988746",
null,
null,
"24.121190",
null,
null,
"18.826095 9.367364",
"197.854459"
],
[
"LEVC\nLEZL",
"58.145394 64.315003 83.967244 76.139405 43.387298 56.810028 47.252928 64.782664 63.471159\n28.195391 33.835790 52.657957 44.801351 15.408263 27.620714 22.850649 33.738975 31.919736",
null,
null,
null,
null,
null,
null,
"140.867244\n161.608615"
],
[
"LEZL",
null,
null,
null,
null,
null,
null,
null,
null
]
] | 0.513487 | null | null |
1 | 2304.08906v2 | 22 | [
194.0189971923828,
69.58441162109375,
419.29595947265625,
193.34282684326172
] | \begin{table}[h]
\centering
\begin{tabular}{l|ccc}
{} & LEBL & LEMD & LEPA \\
\midrule
LEAL & 306.889358 & 448.504444 & 36.365912 \\
LEBB & 324.835653 & 460.189156 & 21.295013 \\
LEIB & 317.479314 & 440.603971 & 23.693028 \\
LEMG & 281.082335 & 438.527134 & 71.778743 \\
LEMH & 360.303093 & 465.556130 & 47.727144 \\
LEST & 336.209183 & 459.760991 & 32.267111 \\
LEVC & 313.409909 & 453.896185 & 23.766301 \\
LEZL & 329.622714 & 461.415099 & \boxit{0.71in}{1.64in}17.107494 \\
\end{tabular}
\caption{Distance matrix corresponding to the Special Group (columns) and the Group 1 (rows) with Palma's airport (LEPA) highlighted}
\label{tablagrupo1e}
\end{table} | [
[
"",
"LEBL LEMD",
"LEPA"
],
[
"LEAL 306.889358 448.504444\nLEBB 324.835653 460.189156\nLEIB 317.479314 440.603971\nLEMG 281.082335 438.527134\nLEMH 360.303093 465.556130\nLEST 336.209183 459.760991\nLEVC 313.409909 453.896185\nLEZL 329.622714 461.415099",
null,
"36.365912\n21.295013\n23.693028\n71.778743\n47.727144\n32.267111\n23.766301\n17.107494"
]
] | 0.577396 | null | null |
2 | 2304.08906v2 | 26 | [
72,
443.1675109863281,
540.0121765136719,
469.0586853027344
] | \begin{table}[h]
\centering
\resizebox{\columnwidth}{!}{%
\begin{tabular}{l|cccccccc}
{} & LEAL & LEBB & LEIB & LEMG & LEMH & LEST & LEVC & LEZL \\
\midrule
LECU & 76.429339 & 39.996884 & 44.150946 & 113.354491 & 44.848810 & 48.728730 & 68.114063 & 41.422093 \\
LELL & 116.139308 & 79.099542 & 81.423800 & 152.035126 & 65.809856 & 67.527648 & 108.086198 & 79.073484 \\
\bottomrule
\end{tabular}}
\caption{Distance matrix corresponding to Group 3 - \textit{General aviation airports} and Group 1}
\label{tablagrupo3g1}
\end{table} | [
[
"LECU\nLELL",
"76.429339 39.996884 44.150946 113.354491 44.848810 48.728730 68.114063 41.422093\n116.139308 79.099542 81.423800 152.035126 65.809856 67.527648 108.086198 79.073484"
]
] | 0.604317 | null | null |
0 | 1701.00030v1 | 19 | [
178.44000244140625,
220.17303466796875,
416.83599853515625,
248.06903076171875
] | \begin{table}[H]
\begin{center}
\begin{tabular}{| c | c | c | c | c | c |}
\hline
$E_1(0)$ & $L_1(0)$ & $A_1(0)$ & $E_2(0)$ & $L_2(0)$ & $A_2(0)$ \\
\hline
6.02& 137.70& 143.72& 6.23 & 86.41 & 92.64 \\
\hline
\end{tabular}
\caption{Assets and liabilities on 30/06/2015 (Bloomberg).}
\label{data_table}
\end{center}
\end{table} | [
[
"𝐸 (0)\n1",
"𝐿 (0)\n1",
"𝐴 (0)\n1",
"𝐸 (0)\n2",
"𝐿 (0)\n2",
"𝐴 (0)\n2"
],
[
"6.02",
"137.70",
"143.72",
"6.23",
"86.41",
"92.64"
]
] | 0.588785 | null | null |
1 | 1701.00030v1 | 20 | [
171.37399291992188,
72.19903564453125,
423.9394989013672,
100.09503173828125
] | \begin{table}[H]
\begin{center}
\begin{tabular}{| c | c | c | c | c | c |}
\hline
$\sigma_1$ & $\lambda_1$ & $\varsigma_1$ & $\sigma_2$ & $\lambda_2$ & $\varsigma_2$ \\
\hline
0.0117& 0.1001& 0.3661& 0.0154 & 0.0160 & 0.0545\\
\hline
\end{tabular}
\caption{Calibrated parameters of one-dimensional models on 30/06/2015 for $T = 1$.}
\label{table:params_1d}
\end{center}
\end{table} | [
[
"𝜎\n1",
"𝜆\n1",
"𝜍\n1",
"𝜎\n2",
"𝜆\n2",
"𝜍\n2"
],
[
"0.0117",
"0.1001",
"0.3661",
"0.0154",
"0.0160",
"0.0545"
]
] | 0.434426 | null | null |
2 | 1701.00030v1 | 20 | [
160.11700439453125,
388.4620056152344,
435.15899658203125,
430.4530029296875
] | \begin{table}[H]
\begin{center}
\begin{tabular}{| c | c | c | }
\hline
& $\rho$ & $\lambda_{\{12\}} $ \\
\hline
Estimated value & 0.510 & 0.0188 \\
\hline
Confidence interval \footnotemark & (0.500, 0.526)& (0.0182, 0.0194) \\
\hline
\end{tabular}
\caption{Historically estimated correlation coefficients on 30/06/2015 with 1 year window.}
\label{table:corr_params}
\end{center}
\end{table} | [
[
"",
"𝜌",
"𝜆\n{12}"
],
[
"Estimated value",
"0.510",
"0.0188"
],
[
"Confidence interval 1",
"(0.500, 0.526)",
"(0.0182, 0.0194)"
]
] | 0.574324 | null | null |
3 | 1701.00030v1 | 21 | [
190.9550018310547,
72.19903564453125,
404.32000732421875,
113.64404296875
] | \begin{table}[H]
\begin{center}
\begin{tabular}{|c | c | c | c | c | c | c | c |}
\hline
Model &Joint s/p & Marginal s/p \\
\hline
With jumps & 0.9328 & 0.9666 \\
Without jumps & 0.9717 & 0.9801 \\
\hline
\end{tabular}
\caption{Joint and marginal survival probabilities for the calibrated models.}
\label{table:results}
\end{center}
\end{table} | [
[
"Model",
"Joint s/p",
"Marginal s/p"
],
[
"With jumps\nWithout jumps",
"0.9328\n0.9717",
"0.9666\n0.9801"
]
] | 0.546939 | null | null |
4 | 1701.00030v1 | 16 | [
137.0800018310547,
459.280029296875,
458.1960144042969,
487.176025390625
] | \begin{table}[H]
\begin{center}
\begin{tabular}{| c | c | c | c | c | c | c | c | c | c | c | c |}
\hline
$L_{1,0}$ & $L_{2, 0}$ & $L_{12, 0}$ & $L_{21, 0}$ & $R_1$ & $R_2$ & $T$ & $\sigma_1$ & $\sigma_2$ & $\rho$ & $\varsigma_1$ & $\varsigma_2$ \\
\hline
60 & 70 & 10 & 15 & 0.4 & 0.45 & 1 & 1 & 1 & 0.5 & 1 & 1 \\
\hline
\end{tabular}
\caption{Model parameters.\label{table:params}}
\end{center}
\end{table} | [
[
"𝐿\n1,0",
"𝐿\n2,0",
"𝐿\n12,0",
"𝐿\n21,0",
"𝑅\n1",
"𝑅\n2",
"𝑇",
"𝜎\n1",
"𝜎\n2",
"𝜌",
"𝜍\n1",
"𝜍\n2"
],
[
"60",
"70",
"10",
"15",
"0.4",
"0.45",
"1",
"1",
"1",
"0.5",
"1",
"1"
]
] | 0.578947 | null | null |
5 | 1701.00030v1 | 16 | [
258.1780090332031,
563.6180419921875,
337.09800211588544,
591.5130004882812
] | \begin{table}[H]
\begin{center}
\begin{tabular}{| c | c | c | }
\hline
$\lambda_1$& $\lambda_2$ & $\lambda_{12}$ \\
\hline
0.5 & 0.5 & 0.3 \\
\hline
\end{tabular}
\caption{Jump intensities.\label{table:jumps}}
\end{center}
\end{table} | [
[
"𝜆\n1",
"𝜆\n2",
"𝜆\n12"
],
[
"0.5",
"0.5",
"0.3"
]
] | 0.382979 | null | null |
0 | 2107.14695v1 | 15 | [
208.58900451660156,
243.6820068359375,
489.4070129394531,
315.4129943847656
] | \begin{table}[H]
\centering
\caption{Goodness of fit.}
\begin{tabular}{ | l | c | r |}
\hline
Stock & KS-Test ($p$-value) & KL Div Test (entropy) \\ \hline \hline
\textbf{Apple} & 0.47 & 3.99e-05 \\ \hline
\textbf{Amazon} & 0.87 & 0.0001\\ \hline
\textbf{Google} & 0.15 & 3.01e-05 \\ \hline
\textbf{Microsoft} & 0.99 & 6.54e-05 \\ \hline
\end{tabular}
\end{table} | [
[
"Stock",
"KS-Test (p-value)",
"KL Div Test (entropy)"
],
[
"Apple",
"0.47",
"3.99e-05"
],
[
"Amazon",
"0.87",
"0.0001"
],
[
"Google",
"0.15",
"3.01e-05"
],
[
"Microsoft",
"0.99",
"6.54e-05"
]
] | 1 | null | null |
1 | 2107.14695v1 | 15 | [
262.7879943847656,
641.0540161132812,
435.2080078125,
712.7839965820312
] | \begin{table}[H]
\centering
\caption{Classification results.}
\begin{tabular}{ | l | c | r |}
\hline
Stock & Accuracy & F1-score \\ \hline \hline
\textbf{Apple} & 91.66 & 0.91 \\ \hline
\textbf{Amazon} & 95.8 & 0.95 \\ \hline
\textbf{Google} & 95.83 & 0.92 \\ \hline
\textbf{Microsoft} & 95.80 & 0.94 \\ \hline
\end{tabular}
\end{table} | [
[
"Stock",
"Accuracy",
"F1-score"
],
[
"Apple",
"91.66",
"0.91"
],
[
"Amazon",
"95.8",
"0.95"
],
[
"Google",
"95.83",
"0.92"
],
[
"Microsoft",
"95.80",
"0.94"
]
] | 1 | null | null |
2 | 2107.14695v1 | 16 | [
179.01400756835938,
515.2239990234375,
518.9819946289062,
586.9550170898438
] | \begin{table}[H]
\centering
\caption{Accuracy results on test set 1: 02/22/21 to 04/26/21.}
\begin{tabular}{ | l | c | c | c |}
\hline
Data set & Random Forest & SVM Classifier & XGB Classifier \\ \hline \hline
\textbf{Google test} & 88 & 90 & 79\\ \hline
\textbf{Microsoft test} & 88 & 90 & 81 \\ \hline
\textbf{Amazon test} & 90 & 86 & 88\\ \hline
\textbf{Apple test} & 85 & 86 & 82\\ \hline
\end{tabular}
\end{table} | [
[
"Data set",
"Random Forest",
"SVM Classifier",
"XGB Classifier"
],
[
"Google test",
"88",
"90",
"79"
],
[
"Microsoft test",
"88",
"90",
"81"
],
[
"Amazon test",
"90",
"86",
"88"
],
[
"Apple test",
"85",
"86",
"82"
]
] | 1 | null | null |
3 | 2107.14695v1 | 16 | [
179.01400756835938,
634.1279907226562,
518.9819946289062,
705.8590087890625
] | \begin{table}[H]
\centering
\caption{F1-score results on test set 1: 02/22/21 to 04/26/21.}
\begin{tabular}{ | l | c | c | c |}
\hline
Data set & Random Forest & SVM Classifier & XGB Classifier \\ \hline \hline
\textbf{Google test} & 0.83 & 0.91 & 0.75\\ \hline
\textbf{Microsoft test} & 0.83 & 0.91 & 0.83 \\ \hline
\textbf{Amazon test} & 0.86 & 0.84 & 0.85\\ \hline
\textbf{Apple test} & 0.84 & 0.85 & 0.79\\ \hline
\end{tabular}
\end{table} | [
[
"Data set",
"Random Forest",
"SVM Classifier",
"XGB Classifier"
],
[
"Google test",
"0.83",
"0.91",
"0.75"
],
[
"Microsoft test",
"0.83",
"0.91",
"0.83"
],
[
"Amazon test",
"0.86",
"0.84",
"0.85"
],
[
"Apple test",
"0.84",
"0.85",
"0.79"
]
] | 1 | null | null |
4 | 2107.14695v1 | 17 | [
179.01400756835938,
151.85101318359375,
518.9819946289062,
223.58099365234375
] | \begin{table}[H]
\centering
\caption{Accuracy results on test set 2: 04/27/21 to 06/25/21.}
\begin{tabular}{ | l | c | c | c |}
\hline
Data set & Random Forest & SVM Classifier & XGB Classifier \\ \hline \hline
\textbf{Google test} & 98 & 97 & 97\\ \hline
\textbf{Microsoft test} & 98 & 98 & 96 \\ \hline
\textbf{Amazon test} & 97 & 98 & 97\\ \hline
\textbf{Apple test} & 93 & 98 & 93\\ \hline
\end{tabular}
\end{table} | [
[
"Data set",
"Random Forest",
"SVM Classifier",
"XGB Classifier"
],
[
"Google test",
"98",
"97",
"97"
],
[
"Microsoft test",
"98",
"98",
"96"
],
[
"Amazon test",
"97",
"98",
"97"
],
[
"Apple test",
"93",
"98",
"93"
]
] | 1 | null | null |
5 | 2107.14695v1 | 17 | [
179.01400756835938,
270.7550048828125,
518.9819946289062,
342.4849853515625
] | \begin{table}[H]
\centering
\caption{F1-score results on test set 2: 04/27/21 to 06/25/21.}
\begin{tabular}{ | l | c | c | c |}
\hline
Data set & Random Forest & SVM Classifier & XGB Classifier \\ \hline \hline
\textbf{Google test} & 0.97 & 0.97 &0.97\\ \hline
\textbf{Microsoft test} & 0.98 & 0.98 & 0.97 \\ \hline
\textbf{Amazon test} & 0.97 & 0.97 & 0.97\\ \hline
\textbf{Apple test} & 0.96 & 0.98 & 0.97\\ \hline
\end{tabular}
\end{table} | [
[
"Data set",
"Random Forest",
"SVM Classifier",
"XGB Classifier"
],
[
"Google test",
"0.97",
"0.97",
"0.97"
],
[
"Microsoft test",
"0.98",
"0.98",
"0.97"
],
[
"Amazon test",
"0.97",
"0.97",
"0.97"
],
[
"Apple test",
"0.96",
"0.98",
"0.97"
]
] | 1 | null | null |
0 | 1904.03335v1 | 19 | [
72,
384.4170227050781,
559.802001953125,
424.46600341796875
] | \begin{table}[h!]
\centering
\begin{tabular}{ |c|c|c|c|c|c|c|c|c|c| }
\hline
&$\sigma=0.1$ & $\sigma=0.2$ & $ \sigma=0.3$ & $\sigma=0.4$ & $\sigma=0.5$ & $ \sigma=0.6$ &
$\sigma=0.7$ & $\sigma=0.8$ & $\sigma=0.9$ \\
\hline
$\|D_{\mathcal{X}_n}-D_{\Y_n}\|_F$ &1.33&4.18&7.97&12.11&16.59&21.15&25.78&30.47&35.53 \\
\hline
$\|D_{\mathcal{X}_n}-D_{\bar{\Y}_n}\|_F$ & 0.73& 1.49 & 1.44 & 1.70 & 1.74 & 1.85 & 1.86 & 2.01&2.16\\
\hline
\end{tabular}
\caption{Frobenius norm of $D_{\mathcal{X}_n}-D_{\Y_n}$ and $D_{\mathcal{X}_n}-D_{\bar{\Y}_n}$ on $\mathcal{S}$ for several values of $\sigma.$}
\label{table:1}
\end{table} | [
[
"",
"σ = 0.1",
"σ = 0.2",
"σ = 0.3",
"σ = 0.4",
"σ = 0.5",
"σ = 0.6",
"σ = 0.7",
"σ = 0.8",
"σ = 0.9"
],
[
"D D\n∥ Xn − Yn∥F",
"1.33",
"4.18",
"7.97",
"12.11",
"16.59",
"21.15",
"25.78",
"30.47",
"35.53"
],
[
"∥D −D\nXn Y¯ n∥F",
"0.73",
"1.49",
"1.44",
"1.70",
"1.74",
"1.85",
"1.86",
"2.01",
"2.16"
]
] | 0.624746 | null | null |
1 | 1904.03335v1 | 21 | [
98.80899810791016,
439.9010009765625,
496.46600341796875,
479.95001220703125
] | \begin{table}[h!]
\centering
\begin{tabular}{ |c|c|c|c|c|c|c|c| }
\hline
& $\sigma=0.1 $ &$\sigma=0.2$& $\sigma=0.3$& $\sigma=0.4$ & $\sigma=0.5$ & $\sigma=0.6$ & $\sigma=0.7$\\
\hline
$\|D_{\mathcal{X}_n}-D_{\Y_n}\|_F$ & 0.78& 1.64& 2.49& 3.42& 4.26& 5.15&6.05\\
\hline
$\|D_{\mathcal{X}_n}-D_{\bar{\Y}_n}\|_F$& 0.13& 0.23& 0.31& 0.37& 0.47& 0.63 & 0.65 \\
\hline
\end{tabular}
\caption{Frobenius norm of $D_{\mathcal{X}_n}-D_{\Y_n}$ and $D_{\mathcal{X}_n}-D_{\bar{\Y}_n}$ on two moons for different values of $\sigma$.}
\label{table:2}
\end{table} | [
[
"",
"σ = 0.1",
"σ = 0.2",
"σ = 0.3",
"σ = 0.4",
"σ = 0.5",
"σ = 0.6",
"σ = 0.7"
],
[
"D D\n∥ Xn − Yn∥F",
"0.78",
"1.64",
"2.49",
"3.42",
"4.26",
"5.15",
"6.05"
],
[
"∥D −D\nXn Y¯ n∥F",
"0.13",
"0.23",
"0.31",
"0.37",
"0.47",
"0.63",
"0.65"
]
] | 0.568675 | null | null |
2 | 1904.03335v1 | 21 | [
125.68099975585938,
541.5640258789062,
469.593994140625,
594.9630126953125
] | \begin{table}[h!]
\centering
\begin{tabular}{ |c|c|c|c|c|c|c|c| }
\hline
& $\sigma=0.1 $ &$\sigma=0.2$& $\sigma=0.3$& $\sigma=0.4$ & $\sigma=0.5$ & $\sigma=0.6$ & $\sigma=0.7$\\
\hline
$\Gamma_{\mathcal{X}_n}$& 0 & 0 & 0& 0&0 &0 &0 \\
\hline
$\Gamma_{\Y_n}$ & 0 & 0 & 60& 137& 183& 198 & 218 \\
\hline
$\Gamma_{\bar{\Y}_n}$ & 0 & 0 & 0 & 0&0 &0 &0\\
\hline
\end{tabular}
\caption{Classification error of $\Gamma_{\mathcal{X}_n}$, $\Gamma_{\Y_n}$ and $\Gamma_{\bar{\Y}_n}$ on two moons for different values of $\sigma$.}
\label{table:3}
\end{table} | [
[
"",
"σ = 0.1",
"σ = 0.2",
"σ = 0.3",
"σ = 0.4",
"σ = 0.5",
"σ = 0.6",
"σ = 0.7"
],
[
"Γ\nXn",
"0",
"0",
"0",
"0",
"0",
"0",
"0"
],
[
"Γ\nYn",
"0",
"0",
"60",
"137",
"183",
"198",
"218"
],
[
"Γ\n¯\nYn",
"0",
"0",
"0",
"0",
"0",
"0",
"0"
]
] | 0.496042 | null | null |
3 | 1904.03335v1 | 23 | [
99.22599792480469,
178.92401123046875,
496.04998779296875,
218.9739990234375
] | \begin{table}[h!]
\centering
\begin{tabular}{ |c|c|c|c|c|c|c|c|c|c| }
\hline
Fully-connected& 3\&8 & 5\&8 & 4\&9 & 7\&9 & $K$-NN variant & 3\&8 &5\&8 & 4\&9& 7\&9\\
\hline
$\Gamma_{\Y_n}$ &277 &480 & 480&480 &$\Gamma_{\Y_n}$ & 76& 55& 133& 73\\
\hline
$\Gamma_{\bar{\Y}_n}$ & 134 &174 &300 & 153& $\Gamma_{\bar{\Y}_n}$ & 60 &36 & 96& 54\\
\hline
\end{tabular}
\caption{Classification error for different pairs of digits 3\&8, 5\&8, 4\&9, and 7\&9.}
\label{table:4}
\end{table} | [
[
"Fully-connected",
"3&8",
"5&8",
"4&9",
"7&9",
"K-NN variant",
"3&8",
"5&8",
"4&9",
"7&9"
],
[
"Γ\nYn",
"277",
"480",
"480",
"480",
"Γ\nYn",
"76",
"55",
"133",
"73"
],
[
"Γ\n¯\nYn",
"134",
"174",
"300",
"153",
"Γ\n¯\nYn",
"60",
"36",
"96",
"54"
]
] | 0.648794 | null | null |
4 | 1904.03335v1 | 23 | [
104.0739974975586,
271.16900634765625,
491.2009963989258,
311.218994140625
] | \begin{table}[h!]
\centering
\begin{tabular}{ |c|c|c|c|c|c|c|c|c|c| }
\hline
Fully-connected& 4\% & 8\% & 12\% & 16\% & $K$-NN variant & 4\%&8\% &12\% & 16\% \\
\hline
$\Gamma_{\Y_n}$ & 480&427 & 388& 294& $\Gamma_{\Y_n}$&133 &109 &76 &51\\
\hline
$\Gamma_{\bar{\Y}_n}$ & 300&261 & 219& 182& $\Gamma_{\bar{\Y}_n}$& 96&64 &60 &45\\
\hline
\end{tabular}
\caption{Classification error for 4\&9 with different number of labels.}
\label{table:5}
\end{table} | [
[
"Fully-connected",
"4%",
"8%",
"12%",
"16%",
"K-NN variant",
"4%",
"8%",
"12%",
"16%"
],
[
"Γ\nYn",
"480",
"427",
"388",
"294",
"Γ\nYn",
"133",
"109",
"76",
"51"
],
[
"Γ\n¯\nYn",
"300",
"261",
"219",
"182",
"Γ\n¯\nYn",
"96",
"64",
"60",
"45"
]
] | 0.682081 | null | null |
5 | 1904.03335v1 | 24 | [
75.0739974975586,
510.9110107421875,
520.2009887695312,
577.6600341796875
] | \begin{table}[h!]
\centering
\begin{tabular}{ |c|c|c|c|c|c|c|c|c|c|c| }
\hline
Fully-connected & 3\&8 & 5\&8 & 4\&9 & 7\&9 & $K$-NN variant & 3\&8 & 5\&8 & 4\&9 & 7\&9\\
\hline
$\Gamma_{\Y_n}$ & 277&480 & 480& 480& $\Gamma_{\Y_n}$ & 76& 55 &128 &73\\
\hline
$\Gamma_{\bar{\Y}_n}$ &134 &174 & 369& 153& $\Gamma_{\bar{\Y}_n}$&69 &36 &97 &54\\
\hline
$k$-NN regularization & 115& 74&431 & 183& $k$-NN regularization &53 &59 &96 &61\\
\hline
self-tuning graph &161 & 139& 334& 263& self-tuning graph& 76&31 &88 &56\\
\hline
\end{tabular}
\caption{Comparison of classification errors with 4\% labeled data.}
\label{table:6}
\end{table} | [
[
"Fully-connected",
"3&8",
"5&8",
"4&9",
"7&9",
"K-NN variant",
"3&8",
"5&8",
"4&9",
"7&9"
],
[
"Γ\nYn",
"277",
"480",
"480",
"480",
"Γ\nYn",
"76",
"55",
"128",
"73"
],
[
"Γ\n¯\nYn",
"134",
"174",
"369",
"153",
"Γ\n¯\nYn",
"69",
"36",
"97",
"54"
],
[
"k-NN regularization",
"115",
"74",
"431",
"183",
"k-NN regularization",
"53",
"59",
"96",
"61"
],
[
"self-tuning graph",
"161",
"139",
"334",
"263",
"self-tuning graph",
"76",
"31",
"88",
"56"
]
] | 0.690438 | null | null |
0 | 2102.02279v1 | 6 | [
319.5,
85.88002014160156,
577.2739868164062,
149.84100341796875
] | \begin{table}[t]
\centering
\footnotesize
\caption{Average soft classification score of race/ethnicity and gender for three categories of authors.}
\begin{tabular}{c|c|c|c|c||c}
& Asian & Hispanic & Black & White & Male \\\hline
no cs.cy & 0.370 & 0.077 & 0.057 & 0.497 & 0.791 \\\hline
both & 0.367 & 0.073 & 0.055 & 0.504 & 0.777 \\\hline
only cs.cy & 0.266 & 0.097 & 0.071 & 0.566 & 0.726 \\\hline\hline
slope & -0.0430 & 0.0077 & 0.0055 & 0.0298 & -0.0293 \\\hline
p-value & 0 & 0.0062 & 0.0241 & $<$0.0001 & $<$0.0001 \\\hline
\end{tabular}
\label{tab:all}
\end{table} | [
[
"",
"Asian",
"Hispanic",
"Black",
"White",
"Male"
],
[
"no cs.cy",
"0.370",
"0.077",
"0.057",
"0.497",
"0.791"
],
[
"both",
"0.367",
"0.073",
"0.055",
"0.504",
"0.777"
],
[
"only cs.cy",
"0.266",
"0.097",
"0.071",
"0.566",
"0.726"
],
[
"slope",
"-0.0430",
"0.0077",
"0.0055",
"0.0298",
"-0.0293"
],
[
"p-value",
"0",
"0.0062",
"0.0241",
"<0.0001",
"<0.0001"
]
] | 0.907834 | null | null |
1 | 2102.02279v1 | 7 | [
64.03800201416016,
85.88002014160156,
280.22100830078125,
149.84100341796875
] | \begin{table}[t]
\centering
\footnotesize
\caption{Average soft classification score of race/ethnicity among estimated males for three categories of authors.}
\begin{tabular}{c|c|c|c|c}
& Asian & Hispanic & Black & White \\\hline
no cs.cy & 0.335 & 0.078 & 0.059 & 0.528 \\\hline
both & 0.343 & 0.076 & 0.057 & 0.525 \\\hline
only cs.cy & 0.247 & 0.097 & 0.073 & 0.583\\\hline\hline
slope & -0.0345 & 0.0072 & 0.0051 & 0.0223 \\\hline
p-value & $<$0.0001 & 0.0113 & 0.0404 & $<$0.0001 \\\hline
\end{tabular}
\label{tab:male}
\end{table} | [
[
"",
"Asian",
"Hispanic",
"Black",
"White"
],
[
"no cs.cy",
"0.335",
"0.078",
"0.059",
"0.528"
],
[
"both",
"0.343",
"0.076",
"0.057",
"0.525"
],
[
"only cs.cy",
"0.247",
"0.097",
"0.073",
"0.583"
],
[
"slope",
"-0.0345",
"0.0072",
"0.0051",
"0.0223"
],
[
"p-value",
"<0.0001",
"0.0113",
"0.0404",
"<0.0001"
]
] | 0.903743 | null | null |
2 | 2102.02279v1 | 7 | [
69.71299743652344,
194.86399841308594,
274.5459899902344,
258.82501220703125
] | \begin{table}[t]
\centering
\footnotesize
\caption{Average soft classification score of race/ethnicity among estimated females for three categories of authors.}
\begin{tabular}{c|c|c|c|c}
& Asian & Hispanic & Black & White \\\hline
no cs.cy & 0.446 & 0.071 & 0.050 & 0.433 \\\hline
both & 0.420 & 0.067 & 0.051 & 0.463 \\\hline
only cs.cy & 0.287 & 0.093 & 0.068 & 0.551\\\hline\hline
slope & -0.0695 & 0.0081 & 0.0077 & 0.0537 \\\hline
p-value & 0 & 0.0029 & 0.0007 & 0 \\\hline
\end{tabular}
\label{tab:female}
\end{table} | [
[
"",
"Asian",
"Hispanic",
"Black",
"White"
],
[
"no cs.cy",
"0.446",
"0.071",
"0.050",
"0.433"
],
[
"both",
"0.420",
"0.067",
"0.051",
"0.463"
],
[
"only cs.cy",
"0.287",
"0.093",
"0.068",
"0.551"
],
[
"slope",
"-0.0695",
"0.0081",
"0.0077",
"0.0537"
],
[
"p-value",
"0",
"0.0029",
"0.0007",
"0"
]
] | 0.892045 | null | null |
3 | 2102.02279v1 | 7 | [
392.6949920654297,
85.88002014160156,
482.5635070800781,
149.84100341796875
] | \begin{table}[t]
\centering
\footnotesize
\caption{Average soft classification score of gender among estimated Asians for three categories of authors.}
\begin{tabular}{c|c}
& Male \\\hline
no cs.cy & 0.738 \\\hline
both & 0.732 \\\hline
only cs.cy & 0.696 \\\hline\hline
slope & -0.0183 \\\hline
p-value & $<$0.0001 \\\hline
\end{tabular}
\label{tab:asian}
\end{table} | [
[
"",
"Male"
],
[
"no cs.cy",
"0.738"
],
[
"both",
"0.732"
],
[
"only cs.cy",
"0.696"
],
[
"slope",
"-0.0183"
],
[
"p-value",
"<0.0001"
]
] | 0.90566 | null | null |
4 | 2102.02279v1 | 7 | [
392.6949920654297,
194.86399841308594,
482.5635070800781,
258.82501220703125
] | \begin{table}[t]
\centering
\footnotesize
\caption{Average soft classification score of gender among estimated Hispanics for three categories of authors.}
\begin{tabular}{c|c}
& Male \\\hline
no cs.cy & 0.830 \\\hline
both & 0.815 \\\hline
only cs.cy & 0.722 \\\hline\hline
slope & -0.0473 \\\hline
p-value & 0 \\\hline
\end{tabular}
\label{tab:hisp}
\end{table} | [
[
"",
"Male"
],
[
"no cs.cy",
"0.830"
],
[
"both",
"0.815"
],
[
"only cs.cy",
"0.722"
],
[
"slope",
"-0.0473"
],
[
"p-value",
"0"
]
] | 0.90411 | null | null |