The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 2 new columns ({'data_points', 'cluster_label'}) and 1 missing columns ({'distance'}).

This happened while the csv dataset builder was generating data using

hf://datasets/snats/datacomp_lists/filtered_high_value_data_minipile_style.csv (at revision d4639799bdade9bfabcd484218196e69d114cade)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1869, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 580, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              uid: string
              data_points: string
              cluster_label: int64
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 614
              to
              {'uid': Value(dtype='string', id=None), 'distance': Value(dtype='float64', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1392, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1041, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 924, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 999, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1740, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 2 new columns ({'data_points', 'cluster_label'}) and 1 missing columns ({'distance'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/snats/datacomp_lists/filtered_high_value_data_minipile_style.csv (at revision d4639799bdade9bfabcd484218196e69d114cade)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

uid
string
distance
float64
f9a3cebe236a50f351fc5f05badfc1da
1.531697
6d147bb7fdf47436589c4932b0ac5152
1.513262
ec39249116bd5500fb5a9bf019ae38f5
1.505712
bacc5721a2a56f30b82769630c294b48
1.500551
46dc3613709b702441e39c2243e8636e
1.499014
2c5194180fdc7191f668b1940218c8ff
1.494036
083314a929b7857f191f49c036fca7f7
1.491354
d33b607edb71644c8f2a223a1d61e888
1.490318
7117dcc8fdd2af87a9820f6d31d124ec
1.490307
2ca4d471cb0885864b275179a9301e7e
1.488182
1ab43239f4395a9c87e102dd2f526a98
1.481829
1a1a97b7985d20e30728d65fe5f43f86
1.478141
60084ba19c1ba112c119a5daf3f549fd
1.477156
6d7f9dce7762d9d7a2b38fffc39b1098
1.476613
eae6e57ffb63715dc40e8cc6c977e9c6
1.476419
5ffcab7e6777f4e799129110c6fe2c5b
1.475223
4434e2e0411d5e0e49187b510c21c6e8
1.472353
2a25f27aaef1ac32706d7ad3e3e69f0f
1.471516
35783c80ae0a42a2178a49bc8ba3ab65
1.469138
663df67dc2ad4aba154d68e20446e660
1.468987
6d3d6f859d7ae6ddb9f5982ef475289b
1.468277
383fab25ed5a4538ecbfc7e16eb99fe0
1.468247
c8af166b15bb31d1e6403e0b3b8ce93f
1.464517
af43de758f22a65f2600967e6fbba952
1.463557
1cfb3e273d3d6dfce12cc084a75891a3
1.463507
6a218faba4498d16764a9962141dac72
1.462498
14f52dbdb4a3f9e2b8352d8f90a3acf3
1.46093
0b485541f5a8d645c7960718de605452
1.460177
65821129544e2d8970b023a7ec6f616e
1.459819
04e3430b41e40c3f507737b65ae0f815
1.459151
da2363b6d175c1b1b2d4a488d464a228
1.458583
db917d3b41a34fbc4f92888fac12d45d
1.457784
e9db14c98614cabaec400a118b2e3d44
1.457594
4746b55e6f8e9228c63918b282403731
1.456817
c5be644fc6fe7c52081fe7990714c6d1
1.456751
fe32f32244d6c2e7743a5b0485d5d69d
1.45503
16bacabad9e76d0e205acc8a886ca626
1.454745
a59b091cb2683cb176768a61ad43b206
1.453482
1a096b2482ec0a9a0d0201895b2e9842
1.453292
1ff4cbb8aecebaada45b926c273292a5
1.452762
e91512bfba1c7b528891774f09593d2d
1.452604
1ee0f5923f6c663c95025f149f619252
1.452191
151622bb634a70584f0afd7664675d44
1.452043
e12978ae36f800351e587a255a73d8b7
1.451476
4afa5f6f3e7fd86deddb2268ef0cf485
1.451367
b6fe1dae2bb3bbff813c8e5d59db09e5
1.451253
ce4cbbd726ba90158912462a05686fa9
1.450773
36c09f9a8a589be3f24e133654329769
1.450228
0c0cd64ef4482bffcb2b83a226236f54
1.449262
30df070a97ce56ba93b104f6f304bdf3
1.448634
ee9e82ee7fb68f35b0d6b16aa709df83
1.447898
be6e313e8fed4ae8952596f839b57666
1.447729
ed90f341c7df5ef284cc71c4f1037877
1.447376
209094170827abf806d7800b28e5ead1
1.446919
948fbdb7b5f8ac643634c62bbc18bbac
1.446858
3fdfc7d37e1a4a6ccac941a5653831e3
1.44671
416f2af7997d375fc1757df0fa8bec12
1.446239
5126f55c3c0dbfac79f7807b85e32fd2
1.445905
d6eefaaa0cfca4b291938abbbbd66507
1.445901
c34b458f68713834f9fd74ad77eb3a59
1.445831
6404db51cdfd3c4be3779a8678f746a5
1.445243
602b3cadc6fc1cc1ffe1b1c2952d905e
1.444892
d750bfac35ff3e897e83e7ee3e6e7d8e
1.444502
faab1717acf687f60b1b633228788861
1.444256
dc57f05e7b264b81c1a0d97397fb4321
1.44419
20cefab2de467c5a5f67ba108c5887f6
1.443861
ad21663ca36cdc1f438bc0a9f5298919
1.443738
3398fe2d47eee41c7ca4355c3282a5d6
1.442744
985c93784652330b9bd7c6ff79076aa1
1.442539
c2ae604dfa4ce18061b5c8c0e7b0a444
1.441934
bc0c0968d877ac74422c82c73ef82ed0
1.44187
259a57e43e683bf0f22adf704f14ab1e
1.441784
230925098f6294ca60ed0f9cb54a1614
1.441754
d5cda52f3ae501b89dbbca0f5fbcecb2
1.441395
31acb91d295f259aed90c125a2bebb1b
1.441394
4db0390c941912a56c62d022b65a02f1
1.44136
37bfb4578ea2bf37e591a78d126a9f96
1.441165
f05800664163742df22f64b9c3adb25e
1.441156
eba2ed1d4851ba4ac3b1e82a3056f8d6
1.43949
fcf26101169eb7a3335dfc8c2567e55a
1.43932
5bb5ebf16c246b0facda66a80dfd7d85
1.439258
fc2a66360b873626c9c97e0f76255d5d
1.439129
154cf3fd9532ea73dfd02b39ffb3e303
1.438921
6256826e3edf7f49518621c2b9486d85
1.438672
5218f4d20c813ce11d75bb75d7d988e5
1.438616
61232bca12d2807bd3f58cd260e5da10
1.437774
db608ca3b915f6ed9b823335790bd64b
1.437519
a6f575effdb413b3922f91910e4628e2
1.437473
41b1820de035ea2aeb15915aca0df33d
1.437356
d50edac513ddbda6f9b267787de37444
1.437142
bc333345c99171008c27c35f2c7660b8
1.436856
e53a6c2e53799965914cf5d6caec01fd
1.436841
0d2f7d0840860f96d41254647c997fec
1.436738
e3d2a228b622270fba2e0f03dae03565
1.435899
6b4db1f8e6b4f69df269956cdc8875f4
1.435636
fc22e0ed628a58ce3ab04d526bff56bb
1.435412
12460597d09c706616b05b264b980361
1.435224
1a8d966dd5bdd52a84a70e0cb910bf3d
1.434825
42a6edee609df7b8db5b0bb022f74ac7
1.434626
536545c774915b985d3cd2eaf9bf30d0
1.434014
End of preview.