imports
stringclasses 16
values | function1_signature
stringlengths 129
1.27k
| function1_human
stringlengths 152
1.91k
| function1_name
stringlengths 1
30
| function2_signature
stringlengths 143
1.53k
| function2_human
stringlengths 169
1.59k
| function2_name
stringlengths 3
62
| tests
stringlengths 164
1.07k
| stop_tokens
sequencelengths 4
4
| function1_docstring
stringlengths 66
1.13k
| function2_docstring
stringlengths 82
1.36k
| function1_implementation
stringlengths 17
858
| function2_implementation
stringlengths 25
397
| function1_declaration
stringlengths 18
97
| function2_declaration
stringlengths 15
89
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
from typing import List | def has_close_elements(numbers: List[float], threshold: float) -> bool:
"""Check if in given list of numbers, are any two numbers closer to each other than
given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
""" | def has_close_elements(numbers: List[float], threshold: float) -> bool:
"""Check if in given list of numbers, are any two numbers closer to each other than
given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
"""
for (idx, elem) in enumerate(numbers):
for (idx2, elem2) in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True
return False | has_close_elements | def has_close_elements_in_array(array: List[List[float]], threshold: float) -> bool:
"""Check if in given array, are any two numbers closer to each other than given threshold.
>>> has_close_elements_in_array([[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]], 0.5)
True
>>> has_close_elements_in_array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], 0.3)
False
""" | def has_close_elements_in_array(array: List[List[float]], threshold: float) -> bool:
"""Check if in given array, are any two numbers closer to each other than given threshold.
>>> has_close_elements_in_array([[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]], 0.5)
True
>>> has_close_elements_in_array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], 0.3)
False
"""
return has_close_elements([item for sublist in array for item in sublist], threshold) | has_close_elements_in_array | def check(candidate):
assert candidate([[2.0, 3.0, 1.0], [100.0, 101.0, 17.8]], 2.2) is True
assert candidate([[31.0, 22.7, 38.8], [34.8, 14.8, 22.5]], 0.5) is True
assert candidate([[1.0, 2.1, 1.6], [2.4, 2.7, 1.3]], 0.2) is False
def test_check():
check(has_close_elements_in_array)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Check if in given list of numbers, are any two numbers closer to each other than
given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True | Check if in given array, are any two numbers closer to each other than given threshold.
>>> has_close_elements_in_array([[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]], 0.5)
True
>>> has_close_elements_in_array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], 0.3)
False | for (idx, elem) in enumerate(numbers):
for (idx2, elem2) in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True
return False | return has_close_elements([item for sublist in array for item in sublist], threshold) | has_close_elements(numbers: List[float], threshold: float) -> bool | has_close_elements_in_array(array: List[List[float]], threshold: float) -> bool |
from typing import Any, List | def separate_paren_groups(paren_string: str) -> List[str]:
"""Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the list of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
>>> separate_paren_groups('( ) (( )) (( )( ))')
['()', '(())', '(()())']
""" | def separate_paren_groups(paren_string: str) -> List[str]:
"""Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the list of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
>>> separate_paren_groups('( ) (( )) (( )( ))')
['()', '(())', '(()())']
"""
result = []
current_string = []
current_depth = 0
for c in paren_string:
if c == '(':
current_depth += 1
current_string.append(c)
elif c == ')':
current_depth -= 1
current_string.append(c)
if current_depth == 0:
result.append(''.join(current_string))
current_string.clear()
return result | separate_paren_groups | def nested_separate_paren_groups(paren_string: str) -> Any:
"""Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the list of those.
Different from separate_paren_groups, you have to recursively separate a group into subgroups if it is nested.
Separate groups are balanced (each open brace is properly closed) and nested within each other
Ignore any spaces in the input string.
>>> nested_separate_paren_groups('( ) (( )) (( )( ))')
['()', ['()'], ['()', '()']]
""" | def nested_separate_paren_groups(paren_string: str) -> Any:
"""Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the list of those.
Different from separate_paren_groups, you have to recursively separate a group into subgroups if it is nested.
Separate groups are balanced (each open brace is properly closed) and nested within each other
Ignore any spaces in the input string.
>>> nested_separate_paren_groups('( ) (( )) (( )( ))')
['()', ['()'], ['()', '()']]
"""
print(paren_string)
groups = separate_paren_groups(paren_string)
for idx in range(len(groups)):
if groups[idx] == '()':
continue
else:
groups[idx] = nested_separate_paren_groups(groups[idx][1:-1])
return groups | nested_separate_paren_groups | def check(candidate):
assert candidate('(()(()))()()') == [['()', ['()']], '()', '()']
assert candidate('((((()))))') == [[[[['()']]]]]
assert candidate('()((()())())()(())') == ['()', [['()', '()'], '()'], '()', ['()']]
def test_check():
check(nested_separate_paren_groups)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the list of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
>>> separate_paren_groups('( ) (( )) (( )( ))')
['()', '(())', '(()())'] | Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the list of those.
Different from separate_paren_groups, you have to recursively separate a group into subgroups if it is nested.
Separate groups are balanced (each open brace is properly closed) and nested within each other
Ignore any spaces in the input string.
>>> nested_separate_paren_groups('( ) (( )) (( )( ))')
['()', ['()'], ['()', '()']] | result = []
current_string = []
current_depth = 0
for c in paren_string:
if c == '(':
current_depth += 1
current_string.append(c)
elif c == ')':
current_depth -= 1
current_string.append(c)
if current_depth == 0:
result.append(''.join(current_string))
current_string.clear()
return result | print(paren_string)
groups = separate_paren_groups(paren_string)
for idx in range(len(groups)):
if groups[idx] == '()':
continue
else:
groups[idx] = nested_separate_paren_groups(groups[idx][1:-1])
return groups | separate_paren_groups(paren_string: str) -> List[str] | nested_separate_paren_groups(paren_string: str) -> Any |
def truncate_number(number: float) -> float:
"""Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
>>> truncate_number(3.5)
0.5
""" | def truncate_number(number: float) -> float:
"""Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
>>> truncate_number(3.5)
0.5
"""
return number % 1.0 | truncate_number | def is_number_rounded_up(number: float) -> bool:
"""Given a positive floating point number, return True if the number is
rounded up, False otherwise.
>>> is_number_rounded_up(3.5)
True
>>> is_number_rounded_up(3.4)
False
""" | def is_number_rounded_up(number: float) -> bool:
"""Given a positive floating point number, return True if the number is
rounded up, False otherwise.
>>> is_number_rounded_up(3.5)
True
>>> is_number_rounded_up(3.4)
False
"""
return truncate_number(number) >= 0.5 | is_number_rounded_up | def check(candidate):
assert candidate(4.2) is False
assert candidate(3.141592) is False
assert candidate(19.865) is True
assert candidate(1.501) is True
def test_check():
check(is_number_rounded_up)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
>>> truncate_number(3.5)
0.5 | Given a positive floating point number, return True if the number is
rounded up, False otherwise.
>>> is_number_rounded_up(3.5)
True
>>> is_number_rounded_up(3.4)
False | return number % 1.0 | return truncate_number(number) >= 0.5 | truncate_number(number: float) -> float | is_number_rounded_up(number: float) -> bool |
|
from typing import List | def below_zero(operations: List[int]) -> bool:
"""You're given a list of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return True. Otherwise it should return False.
>>> below_zero([1, 2, 3])
False
>>> below_zero([1, 2, -4, 5])
True
""" | def below_zero(operations: List[int]) -> bool:
"""You're given a list of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return True. Otherwise it should return False.
>>> below_zero([1, 2, 3])
False
>>> below_zero([1, 2, -4, 5])
True
"""
balance = 0
for op in operations:
balance += op
if balance < 0:
return True
return False | below_zero | def below_zero_with_initial_value(operations: List[int], initial: int) -> bool:
"""You're given a list of deposit and withdrawal operations on a bank account that starts with
non-negative initial balance. Your task is to detect if at any point the balance of account fallls
below zero, and at that point function should return True. Otherwise it should return False.
>>> below_zero_with_initial_value([1, 2, 3], 0)
False
>>> below_zero_with_initial_value([1, 2, -4, 5], 3)
False
""" | def below_zero_with_initial_value(operations: List[int], initial: int) -> bool:
"""You're given a list of deposit and withdrawal operations on a bank account that starts with
non-negative initial balance. Your task is to detect if at any point the balance of account fallls
below zero, and at that point function should return True. Otherwise it should return False.
>>> below_zero_with_initial_value([1, 2, 3], 0)
False
>>> below_zero_with_initial_value([1, 2, -4, 5], 3)
False
"""
return below_zero([initial] + operations) | below_zero_with_initial_value | def check(candidate):
assert candidate([3, -15, 4, 2, 1], 14) is False
assert candidate([-2, -3, -4, -5], 14) is False
assert candidate([2, -4, 3], 1) is True
assert candidate([1, 2, -4, 5], 0) is True
def test_check():
check(below_zero_with_initial_value)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | You're given a list of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return True. Otherwise it should return False.
>>> below_zero([1, 2, 3])
False
>>> below_zero([1, 2, -4, 5])
True | You're given a list of deposit and withdrawal operations on a bank account that starts with
non-negative initial balance. Your task is to detect if at any point the balance of account fallls
below zero, and at that point function should return True. Otherwise it should return False.
>>> below_zero_with_initial_value([1, 2, 3], 0)
False
>>> below_zero_with_initial_value([1, 2, -4, 5], 3)
False | balance = 0
for op in operations:
balance += op
if balance < 0:
return True
return False | return below_zero([initial] + operations) | below_zero(operations: List[int]) -> bool | below_zero_with_initial_value(operations: List[int], initial: int) -> bool |
from typing import List | def mean_absolute_deviation(numbers: List[float]) -> float:
"""For a given list of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
>>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0])
1.0
""" | def mean_absolute_deviation(numbers: List[float]) -> float:
"""For a given list of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
>>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0])
1.0
"""
mean = sum(numbers) / len(numbers)
return sum((abs(x - mean) for x in numbers)) / len(numbers) | mean_absolute_deviation | def find_outlier(numbers: List[float]) -> List[float]:
"""For a given list of input numbers, find the outlier.
Outliers are defined as data whose distance from the mean is greater than
the mean absolute deviation.
The order of the outliers in the output list should be the same as in the input list.
>>> find_outlier([1.0, 2.0, 3.0, 4.0])
[1.0, 4.0]
""" | def find_outlier(numbers: List[float]) -> List[float]:
"""For a given list of input numbers, find the outlier.
Outliers are defined as data whose distance from the mean is greater than
the mean absolute deviation.
The order of the outliers in the output list should be the same as in the input list.
>>> find_outlier([1.0, 2.0, 3.0, 4.0])
[1.0, 4.0]
"""
mean = sum(numbers) / len(numbers)
mae = mean_absolute_deviation(numbers)
return [number for number in numbers if abs(number - mean) > mae] | find_outlier | def check(candidate):
assert candidate([3.0, 2.0, 1.0, 4.0]) == [1.0, 4.0]
assert candidate([1.0, 5.0]) == []
assert candidate([-5.0, 1.0, 0.0, 1.0]) == [-5.0]
assert candidate([1, 2, -4, 5]) == [-4, 5]
def test_check():
check(find_outlier)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | For a given list of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
>>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0])
1.0 | For a given list of input numbers, find the outlier.
Outliers are defined as data whose distance from the mean is greater than
the mean absolute deviation.
The order of the outliers in the output list should be the same as in the input list.
>>> find_outlier([1.0, 2.0, 3.0, 4.0])
[1.0, 4.0] | mean = sum(numbers) / len(numbers)
return sum((abs(x - mean) for x in numbers)) / len(numbers) | mean = sum(numbers) / len(numbers)
mae = mean_absolute_deviation(numbers)
return [number for number in numbers if abs(number - mean) > mae] | mean_absolute_deviation(numbers: List[float]) -> float | find_outlier(numbers: List[float]) -> List[float] |
from typing import List | def intersperse(numbers: List[int], delimeter: int) -> List[int]:
"""Insert a number 'delimeter' between every two consecutive elements of input list `numbers'
>>> intersperse([], 4)
[]
>>> intersperse([1, 2, 3], 4)
[1, 4, 2, 4, 3]
""" | def intersperse(numbers: List[int], delimeter: int) -> List[int]:
"""Insert a number 'delimeter' between every two consecutive elements of input list `numbers'
>>> intersperse([], 4)
[]
>>> intersperse([1, 2, 3], 4)
[1, 4, 2, 4, 3]
"""
if not numbers:
return []
result = []
for n in numbers[:-1]:
result.append(n)
result.append(delimeter)
result.append(numbers[-1])
return result | intersperse | def intersperse_with_start_end(numbers: List[int], delimeter: int) -> List[int]:
"""Insert a number 'delimeter' between every two consecutive elements of input list `numbers'
and also add 'delimeter' at the beginning and end of the list.
>>> intersperse_with_start_end([], 4)
[4, 4]
>>> intersperse_with_start_end([1, 2, 3], 4)
[4, 1, 4, 2, 4, 3, 4]
""" | def intersperse_with_start_end(numbers: List[int], delimeter: int) -> List[int]:
"""Insert a number 'delimeter' between every two consecutive elements of input list `numbers'
and also add 'delimeter' at the beginning and end of the list.
>>> intersperse_with_start_end([], 4)
[4, 4]
>>> intersperse_with_start_end([1, 2, 3], 4)
[4, 1, 4, 2, 4, 3, 4]
"""
return [delimeter] + intersperse(numbers, delimeter) + [delimeter] | intersperse_with_start_end | def check(candidate):
assert candidate([], 100) == [100, 100]
assert candidate([7, 7, 7], 1) == [1, 7, 1, 7, 1, 7, 1]
assert candidate([3, 6, 9, 12, 15], 6) == [6, 3, 6, 6, 6, 9, 6, 12, 6, 15, 6]
assert candidate([7, 5, 3, 2], 1) == [1, 7, 1, 5, 1, 3, 1, 2, 1]
assert candidate([101, 100, 98, 95], 100) == [100, 101, 100, 100, 100, 98, 100, 95, 100]
def test_check():
check(intersperse_with_start_end)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Insert a number 'delimeter' between every two consecutive elements of input list `numbers'
>>> intersperse([], 4)
[]
>>> intersperse([1, 2, 3], 4)
[1, 4, 2, 4, 3] | Insert a number 'delimeter' between every two consecutive elements of input list `numbers'
and also add 'delimeter' at the beginning and end of the list.
>>> intersperse_with_start_end([], 4)
[4, 4]
>>> intersperse_with_start_end([1, 2, 3], 4)
[4, 1, 4, 2, 4, 3, 4] | if not numbers:
return []
result = []
for n in numbers[:-1]:
result.append(n)
result.append(delimeter)
result.append(numbers[-1])
return result | return [delimeter] + intersperse(numbers, delimeter) + [delimeter] | intersperse(numbers: List[int], delimeter: int) -> List[int] | intersperse_with_start_end(numbers: List[int], delimeter: int) -> List[int] |
from typing import List | def parse_nested_parens(paren_string: str) -> List[int]:
"""Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
>>> parse_nested_parens('(()()) ((())) () ((())()())')
[2, 3, 1, 3]
""" | def parse_nested_parens(paren_string: str) -> List[int]:
"""Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
>>> parse_nested_parens('(()()) ((())) () ((())()())')
[2, 3, 1, 3]
"""
def parse_paren_group(s):
depth = 0
max_depth = 0
for c in s:
if c == '(':
depth += 1
max_depth = max(depth, max_depth)
else:
depth -= 1
return max_depth
return [parse_paren_group(x) for x in paren_string.split(' ') if x] | parse_nested_parens | def remove_nested_parens(paren_string: str) -> str:
"""Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
Filter out the group whose deepest level of nesting of parentheses is greater than 2.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
>>> remove_nested_parens('(()()) ((())) () ((())()())')
'(()()) ()'
""" | def remove_nested_parens(paren_string: str) -> str:
"""Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
Filter out the group whose deepest level of nesting of parentheses is greater than 2.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
>>> remove_nested_parens('(()()) ((())) () ((())()())')
'(()()) ()'
"""
depths = parse_nested_parens(paren_string)
return ' '.join((group for (group, depth) in zip(paren_string.split(), depths) if depth <= 2)) | remove_nested_parens | def check(candidate):
assert candidate('(()) () ()') == '(()) () ()'
assert candidate('((())) ((()))') == ''
assert candidate('() (()()) () ((())())') == '() (()()) ()'
assert candidate('(()) (()) (())') == '(()) (()) (())'
assert candidate('(()()()()) (()()()) (()()) (())') == '(()()()()) (()()()) (()()) (())'
def test_check():
check(remove_nested_parens)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
>>> parse_nested_parens('(()()) ((())) () ((())()())')
[2, 3, 1, 3] | Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
Filter out the group whose deepest level of nesting of parentheses is greater than 2.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
>>> remove_nested_parens('(()()) ((())) () ((())()())')
'(()()) ()' |
def parse_paren_group(s):
depth = 0
max_depth = 0
for c in s:
if c == '(':
depth += 1
max_depth = max(depth, max_depth)
else:
depth -= 1
return max_depth
return [parse_paren_group(x) for x in paren_string.split(' ') if x] | depths = parse_nested_parens(paren_string)
return ' '.join((group for (group, depth) in zip(paren_string.split(), depths) if depth <= 2)) | parse_nested_parens(paren_string: str) -> List[int] | remove_nested_parens(paren_string: str) -> str |
from typing import List | def filter_by_substring(strings: List[str], substring: str) -> List[str]:
"""Filter an input list of strings only for ones that contain given substring
>>> filter_by_substring([], 'a')
[]
>>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a')
['abc', 'bacd', 'array']
""" | def filter_by_substring(strings: List[str], substring: str) -> List[str]:
"""Filter an input list of strings only for ones that contain given substring
>>> filter_by_substring([], 'a')
[]
>>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a')
['abc', 'bacd', 'array']
"""
return [x for x in strings if substring in x] | filter_by_substring | def filter_by_substrings(strings: List[str], substrings: List[str]) -> List[str]:
"""Filter an input list of strings only for ones that contain all of given substrings
>>> filter_by_substrings([], ['a', 'b'])
[]
>>> filter_by_substrings(['abc', 'bacd', 'cde', 'array'], ['a', 'b'])
['abc', 'bacd']
""" | def filter_by_substrings(strings: List[str], substrings: List[str]) -> List[str]:
"""Filter an input list of strings only for ones that contain all of given substrings
>>> filter_by_substrings([], ['a', 'b'])
[]
>>> filter_by_substrings(['abc', 'bacd', 'cde', 'array'], ['a', 'b'])
['abc', 'bacd']
"""
for substring in substrings:
strings = filter_by_substring(strings, substring)
return strings | filter_by_substrings | def check(candidate):
assert candidate(['prefix', 'suffix', 'infix'], ['fix', 'pre']) == ['prefix']
assert candidate(['prefix', 'suffix', 'infix'], ['fix', 'pre', 'in']) == []
assert candidate(['hot', 'cold', 'warm'], ['o']) == ['hot', 'cold']
assert candidate(['abcdef', 'aboekxdeji', 'abekfj'], ['ab', 'de']) == ['abcdef', 'aboekxdeji']
def test_check():
check(filter_by_substrings)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Filter an input list of strings only for ones that contain given substring
>>> filter_by_substring([], 'a')
[]
>>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a')
['abc', 'bacd', 'array'] | Filter an input list of strings only for ones that contain all of given substrings
>>> filter_by_substrings([], ['a', 'b'])
[]
>>> filter_by_substrings(['abc', 'bacd', 'cde', 'array'], ['a', 'b'])
['abc', 'bacd'] | return [x for x in strings if substring in x] | for substring in substrings:
strings = filter_by_substring(strings, substring)
return strings | filter_by_substring(strings: List[str], substring: str) -> List[str] | filter_by_substrings(strings: List[str], substrings: List[str]) -> List[str] |
from typing import List, Tuple | def sum_product(numbers: List[int]) -> Tuple[int, int]:
"""For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list.
Empty sum should be equal to 0 and empty product should be equal to 1.
>>> sum_product([])
(0, 1)
>>> sum_product([1, 2, 3, 4])
(10, 24)
""" | def sum_product(numbers: List[int]) -> Tuple[int, int]:
"""For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list.
Empty sum should be equal to 0 and empty product should be equal to 1.
>>> sum_product([])
(0, 1)
>>> sum_product([1, 2, 3, 4])
(10, 24)
"""
sum_value = 0
prod_value = 1
for n in numbers:
sum_value += n
prod_value *= n
return (sum_value, prod_value) | sum_product | def product_sum(numbers: List[int]) -> Tuple[int, int]:
"""For a given list of integers, return a tuple consisting of a product and a sum of all the integers in a list.
Empty sum should be equal to 0 and empty product should be equal to 1.
>>> product_sum([])
(1, 0)
>>> product_sum([1, 2, 3, 4])
(24, 10)
""" | def product_sum(numbers: List[int]) -> Tuple[int, int]:
"""For a given list of integers, return a tuple consisting of a product and a sum of all the integers in a list.
Empty sum should be equal to 0 and empty product should be equal to 1.
>>> product_sum([])
(1, 0)
>>> product_sum([1, 2, 3, 4])
(24, 10)
"""
(s, p) = sum_product(numbers)
return (p, s) | product_sum | def check(candidate):
assert candidate([]) == (1, 0)
assert candidate([4, 3, 0, 8]) == (0, 15)
assert candidate([9, 2]) == (18, 11)
assert candidate([100, 101, 102]) == (1030200, 303)
def test_check():
check(product_sum)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list.
Empty sum should be equal to 0 and empty product should be equal to 1.
>>> sum_product([])
(0, 1)
>>> sum_product([1, 2, 3, 4])
(10, 24) | For a given list of integers, return a tuple consisting of a product and a sum of all the integers in a list.
Empty sum should be equal to 0 and empty product should be equal to 1.
>>> product_sum([])
(1, 0)
>>> product_sum([1, 2, 3, 4])
(24, 10) | sum_value = 0
prod_value = 1
for n in numbers:
sum_value += n
prod_value *= n
return (sum_value, prod_value) | (s, p) = sum_product(numbers)
return (p, s) | sum_product(numbers: List[int]) -> Tuple[int, int] | product_sum(numbers: List[int]) -> Tuple[int, int] |
from typing import List | def rolling_max(numbers: List[int]) -> List[int]:
"""From a given list of integers, generate a list of rolling maximum element found until given moment
in the sequence.
>>> rolling_max([1, 2, 3, 2, 3, 4, 2])
[1, 2, 3, 3, 3, 4, 4]
""" | def rolling_max(numbers: List[int]) -> List[int]:
"""From a given list of integers, generate a list of rolling maximum element found until given moment
in the sequence.
>>> rolling_max([1, 2, 3, 2, 3, 4, 2])
[1, 2, 3, 3, 3, 4, 4]
"""
running_max = None
result = []
for n in numbers:
if running_max is None:
running_max = n
else:
running_max = max(running_max, n)
result.append(running_max)
return result | rolling_max | def rolling_max_with_initial_value(numbers: List[int], initial: int) -> List[int]:
"""From a given list of integers, generate a list of rolling maximum element found until given moment
in the sequence. Additionally, the maximum value starts with `initial`.
>>> rolling_max_with_initial_value([1, 2, 3, 2, 3, 4, 2], 3)
[3, 3, 3, 3, 3, 4, 4]
""" | def rolling_max_with_initial_value(numbers: List[int], initial: int) -> List[int]:
"""From a given list of integers, generate a list of rolling maximum element found until given moment
in the sequence. Additionally, the maximum value starts with `initial`.
>>> rolling_max_with_initial_value([1, 2, 3, 2, 3, 4, 2], 3)
[3, 3, 3, 3, 3, 4, 4]
"""
return rolling_max([initial] + numbers)[1:] | rolling_max_with_initial_value | def check(candidate):
assert candidate([2, 4, 3, 2, 3, 2, 5, 4, 6], 3) == [3, 4, 4, 4, 4, 4, 5, 5, 6]
assert candidate([8, 3, 5, 9, 9, 11, 6, 4], 13) == [13, 13, 13, 13, 13, 13, 13, 13]
assert candidate([2, 2, 3, 7], 1) == [2, 2, 3, 7]
assert candidate([72, 74, 75, 76], 74) == [74, 74, 75, 76]
def test_check():
check(rolling_max_with_initial_value)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | From a given list of integers, generate a list of rolling maximum element found until given moment
in the sequence.
>>> rolling_max([1, 2, 3, 2, 3, 4, 2])
[1, 2, 3, 3, 3, 4, 4] | From a given list of integers, generate a list of rolling maximum element found until given moment
in the sequence. Additionally, the maximum value starts with `initial`.
>>> rolling_max_with_initial_value([1, 2, 3, 2, 3, 4, 2], 3)
[3, 3, 3, 3, 3, 4, 4] | running_max = None
result = []
for n in numbers:
if running_max is None:
running_max = n
else:
running_max = max(running_max, n)
result.append(running_max)
return result | return rolling_max([initial] + numbers)[1:] | rolling_max(numbers: List[int]) -> List[int] | rolling_max_with_initial_value(numbers: List[int], initial: int) -> List[int] |
def make_palindrome(string: str) -> str:
"""Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
>>> make_palindrome('')
''
>>> make_palindrome('cat')
'catac'
>>> make_palindrome('cata')
'catac'
""" | def make_palindrome(string: str) -> str:
"""Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
>>> make_palindrome('')
''
>>> make_palindrome('cat')
'catac'
>>> make_palindrome('cata')
'catac'
"""
def is_palindrome(string: str) -> bool:
return string == string[::-1]
if not string:
return ''
beginning_of_suffix = 0
while not is_palindrome(string[beginning_of_suffix:]):
beginning_of_suffix += 1
return string + string[:beginning_of_suffix][::-1] | make_palindrome | def find_shortest_palindrome_prefix(string: str) -> str:
"""Find the shortest prefix that generates the same shortest palindrome that
begins with the supplied string.
>>> find_shortest_palindrome_prefix('')
''
>>> find_shortest_palindrome_prefix('cat')
'cat'
>>> find_shortest_palindrome_prefix('cata')
'cat'
""" | def find_shortest_palindrome_prefix(string: str) -> str:
"""Find the shortest prefix that generates the same shortest palindrome that
begins with the supplied string.
>>> find_shortest_palindrome_prefix('')
''
>>> find_shortest_palindrome_prefix('cat')
'cat'
>>> find_shortest_palindrome_prefix('cata')
'cat'
"""
if len(string) == 0 or len(string) == 1:
return string
p = make_palindrome(string)
for idx in range(len(string) - 1, 0, -1):
if p != make_palindrome(string[:idx]):
return string[:idx + 1] | find_shortest_palindrome_prefix | def check(candidate):
assert candidate('owienfh') == 'owienfh'
assert candidate('abcdedcb') == 'abcde'
assert candidate('abababa') == 'ababab'
def test_check():
check(find_shortest_palindrome_prefix)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
>>> make_palindrome('')
''
>>> make_palindrome('cat')
'catac'
>>> make_palindrome('cata')
'catac' | Find the shortest prefix that generates the same shortest palindrome that
begins with the supplied string.
>>> find_shortest_palindrome_prefix('')
''
>>> find_shortest_palindrome_prefix('cat')
'cat'
>>> find_shortest_palindrome_prefix('cata')
'cat' |
def is_palindrome(string: str) -> bool:
return string == string[::-1]
if not string:
return ''
beginning_of_suffix = 0
while not is_palindrome(string[beginning_of_suffix:]):
beginning_of_suffix += 1
return string + string[:beginning_of_suffix][::-1] | if len(string) == 0 or len(string) == 1:
return string
p = make_palindrome(string)
for idx in range(len(string) - 1, 0, -1):
if p != make_palindrome(string[:idx]):
return string[:idx + 1] | make_palindrome(string: str) -> str | find_shortest_palindrome_prefix(string: str) -> str |
|
def string_xor(a: str, b: str) -> str:
"""Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
>>> string_xor('010', '110')
'100'
""" | def string_xor(a: str, b: str) -> str:
"""Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
>>> string_xor('010', '110')
'100'
"""
def xor(i, j):
if i == j:
return '0'
else:
return '1'
return ''.join((xor(x, y) for (x, y) in zip(a, b))) | string_xor | def string_xor_three(a: str, b: str, c: str) -> str:
"""Input are three strings a, b, and c consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
>>> string_xor('010', '110', '001')
'101'
""" | def string_xor_three(a: str, b: str, c: str) -> str:
"""Input are three strings a, b, and c consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
>>> string_xor('010', '110', '001')
'101'
"""
return string_xor(string_xor(a, b), c) | string_xor_three | def check(candidate):
assert candidate('000', '101', '110') == '011'
assert candidate('1100', '1011', '1111') == '1000'
assert candidate('010', '110', '100') == '000'
def test_check():
check(string_xor_three)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
>>> string_xor('010', '110')
'100' | Input are three strings a, b, and c consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
>>> string_xor('010', '110', '001')
'101' |
def xor(i, j):
if i == j:
return '0'
else:
return '1'
return ''.join((xor(x, y) for (x, y) in zip(a, b))) | return string_xor(string_xor(a, b), c) | string_xor(a: str, b: str) -> str | string_xor_three(a: str, b: str, c: str) -> str |
|
from typing import List, Optional | def longest(strings: List[str]) -> Optional[str]:
"""Out of list of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return None in case the input list is empty.
>>> longest([])
>>> longest(['a', 'b', 'c'])
'a'
>>> longest(['a', 'bb', 'ccc'])
'ccc'
""" | def longest(strings: List[str]) -> Optional[str]:
"""Out of list of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return None in case the input list is empty.
>>> longest([])
>>> longest(['a', 'b', 'c'])
'a'
>>> longest(['a', 'bb', 'ccc'])
'ccc'
"""
if not strings:
return None
maxlen = max((len(x) for x in strings))
for s in strings:
if len(s) == maxlen:
return s | longest | def second_longest(strings: List[str]) -> Optional[str]:
"""Out of list of strings, return the second longest one. Return the first one in case of multiple
strings of the same length. Return None in case the input list doesn't have the second longest elements.
>>> second_longest([])
None
>>> second_longest(['a', 'b', 'c'])
None
>>> second_longest(['a', 'bb', 'ccc'])
'bb'
""" | def second_longest(strings: List[str]) -> Optional[str]:
"""Out of list of strings, return the second longest one. Return the first one in case of multiple
strings of the same length. Return None in case the input list doesn't have the second longest elements.
>>> second_longest([])
None
>>> second_longest(['a', 'b', 'c'])
None
>>> second_longest(['a', 'bb', 'ccc'])
'bb'
"""
longest_string = longest(strings)
if longest_string is None:
return None
strings = [string for string in strings if len(string) < len(longest_string)]
return longest(strings) | second_longest | def check(candidate):
assert candidate([]) is None
assert candidate(['albha', 'iehwknsj', 'lwi', 'wihml']) == 'albha'
assert candidate(['apple', 'banana', 'kiwiiiiiii', 'xxxxxx', 'appledish']) == 'appledish'
assert candidate(['what', 'is', 'this']) == 'is'
def test_check():
check(second_longest)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Out of list of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return None in case the input list is empty.
>>> longest([])
>>> longest(['a', 'b', 'c'])
'a'
>>> longest(['a', 'bb', 'ccc'])
'ccc' | Out of list of strings, return the second longest one. Return the first one in case of multiple
strings of the same length. Return None in case the input list doesn't have the second longest elements.
>>> second_longest([])
None
>>> second_longest(['a', 'b', 'c'])
None
>>> second_longest(['a', 'bb', 'ccc'])
'bb' | if not strings:
return None
maxlen = max((len(x) for x in strings))
for s in strings:
if len(s) == maxlen:
return s | longest_string = longest(strings)
if longest_string is None:
return None
strings = [string for string in strings if len(string) < len(longest_string)]
return longest(strings) | longest(strings: List[str]) -> Optional[str] | second_longest(strings: List[str]) -> Optional[str] |
from typing import Tuple | def greatest_common_divisor(a: int, b: int) -> int:
"""Return a greatest common divisor of two integers a and b
>>> greatest_common_divisor(3, 5)
1
>>> greatest_common_divisor(25, 15)
5
""" | def greatest_common_divisor(a: int, b: int) -> int:
"""Return a greatest common divisor of two integers a and b
>>> greatest_common_divisor(3, 5)
1
>>> greatest_common_divisor(25, 15)
5
"""
while b:
(a, b) = (b, a % b)
return a | greatest_common_divisor | def reduce_fraction(nominator: int, denominator: int) -> Tuple[int, int]:
"""Given nominator and denominator, reduce them to the simplest form.
Reducing fractions means simplifying a fraction, wherein we divide the numerator and denominator by a common divisor until the common factor becomes 1.
>>> reduce_fraction(3, 5)
(3, 5)
>>> reduce_fraction(25, 15)
(5, 3)
""" | def reduce_fraction(nominator: int, denominator: int) -> Tuple[int, int]:
"""Given nominator and denominator, reduce them to the simplest form.
Reducing fractions means simplifying a fraction, wherein we divide the numerator and denominator by a common divisor until the common factor becomes 1.
>>> reduce_fraction(3, 5)
(3, 5)
>>> reduce_fraction(25, 15)
(5, 3)
"""
gcd = greatest_common_divisor(nominator, denominator)
return (nominator // gcd, denominator // gcd) | reduce_fraction | def check(candidate):
assert candidate(51, 34) == (3, 2)
assert candidate(81, 9) == (9, 1)
assert candidate(39, 52) == (3, 4)
def test_check():
check(reduce_fraction)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Return a greatest common divisor of two integers a and b
>>> greatest_common_divisor(3, 5)
1
>>> greatest_common_divisor(25, 15)
5 | Given nominator and denominator, reduce them to the simplest form.
Reducing fractions means simplifying a fraction, wherein we divide the numerator and denominator by a common divisor until the common factor becomes 1.
>>> reduce_fraction(3, 5)
(3, 5)
>>> reduce_fraction(25, 15)
(5, 3) | while b:
(a, b) = (b, a % b)
return a | gcd = greatest_common_divisor(nominator, denominator)
return (nominator // gcd, denominator // gcd) | greatest_common_divisor(a: int, b: int) -> int | reduce_fraction(nominator: int, denominator: int) -> Tuple[int, int] |
from typing import List | def all_prefixes(string: str) -> List[str]:
"""Return list of all prefixes from shortest to longest of the input string
>>> all_prefixes('abc')
['a', 'ab', 'abc']
""" | def all_prefixes(string: str) -> List[str]:
"""Return list of all prefixes from shortest to longest of the input string
>>> all_prefixes('abc')
['a', 'ab', 'abc']
"""
result = []
for i in range(len(string)):
result.append(string[:i + 1])
return result | all_prefixes | def all_suffixes_prefixes(string: str) -> List[str]:
"""Return list of suffixes which are also a prefix from shortest to
longest of the input string
>>> all_suffixes('abc')
['abc']
""" | def all_suffixes_prefixes(string: str) -> List[str]:
"""Return list of suffixes which are also a prefix from shortest to
longest of the input string
>>> all_suffixes('abc')
['abc']
"""
prefixes = all_prefixes(string)
suffixes = [x[::-1] for x in all_prefixes(string[::-1])]
return [x for x in suffixes if x in prefixes] | all_suffixes_prefixes | def check(candidate):
assert candidate('abcabc') == ['abc', 'abcabc']
assert candidate('ababab') == ['ab', 'abab', 'ababab']
assert candidate('dxewfoird') == ['d', 'dxewfoird']
def test_check():
check(all_suffixes_prefixes)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Return list of all prefixes from shortest to longest of the input string
>>> all_prefixes('abc')
['a', 'ab', 'abc'] | Return list of suffixes which are also a prefix from shortest to
longest of the input string
>>> all_suffixes('abc')
['abc'] | result = []
for i in range(len(string)):
result.append(string[:i + 1])
return result | prefixes = all_prefixes(string)
suffixes = [x[::-1] for x in all_prefixes(string[::-1])]
return [x for x in suffixes if x in prefixes] | all_prefixes(string: str) -> List[str] | all_suffixes_prefixes(string: str) -> List[str] |
def string_sequence(n: int) -> str:
"""Return a string containing space-delimited numbers starting from 0 upto n inclusive.
>>> string_sequence(0)
'0'
>>> string_sequence(5)
'0 1 2 3 4 5'
""" | def string_sequence(n: int) -> str:
"""Return a string containing space-delimited numbers starting from 0 upto n inclusive.
>>> string_sequence(0)
'0'
>>> string_sequence(5)
'0 1 2 3 4 5'
"""
return ' '.join([str(x) for x in range(n + 1)]) | string_sequence | def digit_sum(n: int) -> str:
"""Return the sum of all digits from 0 upto n inclusive.
>>> digit_sum(0)
0
>>> digit_sum(5)
15
""" | def digit_sum(n: int) -> str:
"""Return the sum of all digits from 0 upto n inclusive.
>>> digit_sum(0)
0
>>> digit_sum(5)
15
"""
sequence = string_sequence(n)
return sum((int(x) for x in sequence if x != ' ')) | digit_sum | def check(candidate):
assert candidate(14) == 60
assert candidate(21) == 105
assert candidate(104) == 915
def test_check():
check(digit_sum)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Return a string containing space-delimited numbers starting from 0 upto n inclusive.
>>> string_sequence(0)
'0'
>>> string_sequence(5)
'0 1 2 3 4 5' | Return the sum of all digits from 0 upto n inclusive.
>>> digit_sum(0)
0
>>> digit_sum(5)
15 | return ' '.join([str(x) for x in range(n + 1)]) | sequence = string_sequence(n)
return sum((int(x) for x in sequence if x != ' ')) | string_sequence(n: int) -> str | digit_sum(n: int) -> str |
|
from typing import List | def count_distinct_characters(string: str) -> int:
"""Given a string, find out how many distinct characters (regardless of case) does it consist of
>>> count_distinct_characters('xyzXYZ')
3
>>> count_distinct_characters('Jerry')
4
""" | def count_distinct_characters(string: str) -> int:
"""Given a string, find out how many distinct characters (regardless of case) does it consist of
>>> count_distinct_characters('xyzXYZ')
3
>>> count_distinct_characters('Jerry')
4
"""
return len(set(string.lower())) | count_distinct_characters | def count_words_with_distinct_characters(strings: List[str]) -> int:
"""Given a list of strings, count the number of words made up of all different letters (regardless of case)
>>> count_words_with_distinct_characters(['xyz', 'Jerry'])
1
>>> count_words_with_distinct_characters(['apple', 'bear', 'Take'])
2
""" | def count_words_with_distinct_characters(strings: List[str]) -> int:
"""Given a list of strings, count the number of words made up of all different letters (regardless of case)
>>> count_words_with_distinct_characters(['xyz', 'Jerry'])
1
>>> count_words_with_distinct_characters(['apple', 'bear', 'Take'])
2
"""
return len([string for string in strings if count_distinct_characters(string) == len(string)]) | count_words_with_distinct_characters | def check(candidate):
assert candidate(['valid', 'heart', 'orientation', 'class']) == 2
assert candidate(['hunter', 'frog']) == 2
assert candidate(['scratch']) == 0
def test_check():
check(count_words_with_distinct_characters)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Given a string, find out how many distinct characters (regardless of case) does it consist of
>>> count_distinct_characters('xyzXYZ')
3
>>> count_distinct_characters('Jerry')
4 | Given a list of strings, count the number of words made up of all different letters (regardless of case)
>>> count_words_with_distinct_characters(['xyz', 'Jerry'])
1
>>> count_words_with_distinct_characters(['apple', 'bear', 'Take'])
2 | return len(set(string.lower())) | return len([string for string in strings if count_distinct_characters(string) == len(string)]) | count_distinct_characters(string: str) -> int | count_words_with_distinct_characters(strings: List[str]) -> int |
from typing import List | def parse_music(music_string: str) -> List[int]:
"""Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return list of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
>>> parse_music('o o| .| o| o| .| .| .| .| o o')
[4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
""" | def parse_music(music_string: str) -> List[int]:
"""Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return list of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
>>> parse_music('o o| .| o| o| .| .| .| .| o o')
[4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
"""
note_map = {'o': 4, 'o|': 2, '.|': 1}
return [note_map[x] for x in music_string.split(' ') if x] | parse_music | def count_beats(music_string: str) -> int:
"""Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return the total number of beats in the song.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
>>> count_beats('o o| .| o| o| .| .| .| .| o o')
24
""" | def count_beats(music_string: str) -> int:
"""Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return the total number of beats in the song.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
>>> count_beats('o o| .| o| o| .| .| .| .| o o')
24
"""
return sum(parse_music(music_string)) | count_beats | def check(candidate):
assert candidate('o o| .|') == 7
assert candidate('o| o| o|') == 6
assert candidate('o .| o| o o| .| o|') == 16
def test_check():
check(count_beats)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return list of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
>>> parse_music('o o| .| o| o| .| .| .| .| o o')
[4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] | Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return the total number of beats in the song.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
>>> count_beats('o o| .| o| o| .| .| .| .| o o')
24 | note_map = {'o': 4, 'o|': 2, '.|': 1}
return [note_map[x] for x in music_string.split(' ') if x] | return sum(parse_music(music_string)) | parse_music(music_string: str) -> List[int] | count_beats(music_string: str) -> int |
def how_many_times(string: str, substring: str) -> int:
"""Find how many times a given substring can be found in the original string. Count overlaping cases.
>>> how_many_times('', 'a')
0
>>> how_many_times('aaa', 'a')
3
>>> how_many_times('aaaa', 'aa')
3
""" | def how_many_times(string: str, substring: str) -> int:
"""Find how many times a given substring can be found in the original string. Count overlaping cases.
>>> how_many_times('', 'a')
0
>>> how_many_times('aaa', 'a')
3
>>> how_many_times('aaaa', 'aa')
3
"""
times = 0
for i in range(len(string) - len(substring) + 1):
if string[i:i + len(substring)] == substring:
times += 1
return times | how_many_times | def match_cancer_pattern(dna: str, cancer_pattern: str) -> int:
"""Find how many times a given cancer pattern can be found in the given DNA. Count overlaping cases.
>>> match_cancer_pattern('ATGCGATACGCTTGA', 'CG')
3
>>> match_cancer_pattern('ATGCGATACGCTTGA', 'CGC')
1
""" | def match_cancer_pattern(dna: str, cancer_pattern: str) -> int:
"""Find how many times a given cancer pattern can be found in the given DNA. Count overlaping cases.
>>> match_cancer_pattern('ATGCGATACGCTTGA', 'CG')
3
>>> match_cancer_pattern('ATGCGATACGCTTGA', 'CGC')
1
"""
return how_many_times(dna, cancer_pattern) | match_cancer_pattern | def check(candidate):
assert candidate('ATATATAT', 'ATA') == 3
assert candidate('ATGCATGCATGCATGC', 'ATGCATGC') == 3
assert candidate('AGCTCTGATCGAT', 'GAT') == 2
def test_check():
check(match_cancer_pattern)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Find how many times a given substring can be found in the original string. Count overlaping cases.
>>> how_many_times('', 'a')
0
>>> how_many_times('aaa', 'a')
3
>>> how_many_times('aaaa', 'aa')
3 | Find how many times a given cancer pattern can be found in the given DNA. Count overlaping cases.
>>> match_cancer_pattern('ATGCGATACGCTTGA', 'CG')
3
>>> match_cancer_pattern('ATGCGATACGCTTGA', 'CGC')
1 | times = 0
for i in range(len(string) - len(substring) + 1):
if string[i:i + len(substring)] == substring:
times += 1
return times | return how_many_times(dna, cancer_pattern) | how_many_times(string: str, substring: str) -> int | match_cancer_pattern(dna: str, cancer_pattern: str) -> int |
|
def sort_numbers(numbers: str) -> str:
"""Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
>>> sort_numbers('three one five')
'one three five'
""" | def sort_numbers(numbers: str) -> str:
"""Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
>>> sort_numbers('three one five')
'one three five'
"""
value_map = {'zero': 0, 'one': 1, 'two': 2, 'three': 3, 'four': 4, 'five': 5, 'six': 6, 'seven': 7, 'eight': 8, 'nine': 9}
return ' '.join(sorted([x for x in numbers.split(' ') if x], key=lambda x: value_map[x])) | sort_numbers | def sort_numbers_descending(numbers: str) -> str:
"""Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from largest to smallest
>>> sort_numbers_descending('three one five')
'five three one'
""" | def sort_numbers_descending(numbers: str) -> str:
"""Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from largest to smallest
>>> sort_numbers_descending('three one five')
'five three one'
"""
return ' '.join((x for x in reversed(sort_numbers(numbers).split(' ')))) | sort_numbers_descending | def check(candidate):
assert candidate('two three four') == 'four three two'
assert candidate('nine zero six seven') == 'nine seven six zero'
assert candidate('five one three eight') == 'eight five three one'
def test_check():
check(sort_numbers_descending)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
>>> sort_numbers('three one five')
'one three five' | Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from largest to smallest
>>> sort_numbers_descending('three one five')
'five three one' | value_map = {'zero': 0, 'one': 1, 'two': 2, 'three': 3, 'four': 4, 'five': 5, 'six': 6, 'seven': 7, 'eight': 8, 'nine': 9}
return ' '.join(sorted([x for x in numbers.split(' ') if x], key=lambda x: value_map[x])) | return ' '.join((x for x in reversed(sort_numbers(numbers).split(' ')))) | sort_numbers(numbers: str) -> str | sort_numbers_descending(numbers: str) -> str |
|
from typing import List, Tuple | def find_closest_elements(numbers: List[float]) -> Tuple[float, float]:
"""From a supplied list of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])
(2.0, 2.2)
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])
(2.0, 2.0)
""" | def find_closest_elements(numbers: List[float]) -> Tuple[float, float]:
"""From a supplied list of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])
(2.0, 2.2)
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])
(2.0, 2.0)
"""
closest_pair = None
distance = None
for (idx, elem) in enumerate(numbers):
for (idx2, elem2) in enumerate(numbers):
if idx != idx2:
if distance is None:
distance = abs(elem - elem2)
closest_pair = tuple(sorted([elem, elem2]))
else:
new_distance = abs(elem - elem2)
if new_distance < distance:
distance = new_distance
closest_pair = tuple(sorted([elem, elem2]))
return closest_pair | find_closest_elements | def find_closest_distance(numbers: List[float]) -> float:
"""From a supplied list of numbers (of length at least two) select and return the distance between two that are
the closest to each other.
>>> find_closest_distance([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])
0.2
>>> find_closest_distance([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])
0.0
""" | def find_closest_distance(numbers: List[float]) -> float:
"""From a supplied list of numbers (of length at least two) select and return the distance between two that are
the closest to each other.
>>> find_closest_distance([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])
0.2
>>> find_closest_distance([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])
0.0
"""
(x, y) = find_closest_elements(numbers)
return y - x | find_closest_distance | def check(candidate):
assert round(candidate([1.7, 0.5, 3.1, 1.2, 2.1]), 2) == 0.4
assert round(candidate([3.0, 4.0, 5.0, 4.0, 3.9]), 2) == 0.0
assert round(candidate([1.0, 2.0, 3.0, 10.0]), 2) == 1.0
def test_check():
check(find_closest_distance)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | From a supplied list of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])
(2.0, 2.2)
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])
(2.0, 2.0) | From a supplied list of numbers (of length at least two) select and return the distance between two that are
the closest to each other.
>>> find_closest_distance([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])
0.2
>>> find_closest_distance([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])
0.0 | closest_pair = None
distance = None
for (idx, elem) in enumerate(numbers):
for (idx2, elem2) in enumerate(numbers):
if idx != idx2:
if distance is None:
distance = abs(elem - elem2)
closest_pair = tuple(sorted([elem, elem2]))
else:
new_distance = abs(elem - elem2)
if new_distance < distance:
distance = new_distance
closest_pair = tuple(sorted([elem, elem2]))
return closest_pair | (x, y) = find_closest_elements(numbers)
return y - x | find_closest_elements(numbers: List[float]) -> Tuple[float, float] | find_closest_distance(numbers: List[float]) -> float |
from typing import List | def rescale_to_unit(numbers: List[float]) -> List[float]:
"""Given list of numbers (of at least two elements), apply a linear transform to that list,
such that the smallest number will become 0 and the largest will become 1
>>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0])
[0.0, 0.25, 0.5, 0.75, 1.0]
""" | def rescale_to_unit(numbers: List[float]) -> List[float]:
"""Given list of numbers (of at least two elements), apply a linear transform to that list,
such that the smallest number will become 0 and the largest will become 1
>>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0])
[0.0, 0.25, 0.5, 0.75, 1.0]
"""
min_number = min(numbers)
max_number = max(numbers)
return [(x - min_number) / (max_number - min_number) for x in numbers] | rescale_to_unit | def rescale_to_percentile(numbers: List[float]) -> List[float]:
"""Given list of numbers (of at least two elements), apply a linear transform to that list,
such that the smallest number will become 0 and the largest will become 100
>>> rescale_to_percentile([1.0, 2.0, 3.0, 4.0, 5.0])
[0.0, 25.0, 50.0, 75.0, 100.0]
""" | def rescale_to_percentile(numbers: List[float]) -> List[float]:
"""Given list of numbers (of at least two elements), apply a linear transform to that list,
such that the smallest number will become 0 and the largest will become 100
>>> rescale_to_percentile([1.0, 2.0, 3.0, 4.0, 5.0])
[0.0, 25.0, 50.0, 75.0, 100.0]
"""
return [x * 100 for x in rescale_to_unit(numbers)] | rescale_to_percentile | def check(candidate):
assert list(map(lambda x: round(x, 2), candidate([38.7, 91.9, 3.4, 94.7, 33.2, 19.1]))) == [38.66, 96.93, 0.0, 100.0, 32.64, 17.2]
assert list(map(lambda x: round(x, 2), candidate([3.0, 4.0, 5.0, 4.0, 3.9]))) == [0.0, 50.0, 100.0, 50.0, 45.0]
assert list(map(lambda x: round(x, 2), candidate([1.0, 2.0, 3.0, 10.0]))) == [0.0, 11.11, 22.22, 100.0]
def test_check():
check(rescale_to_percentile)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Given list of numbers (of at least two elements), apply a linear transform to that list,
such that the smallest number will become 0 and the largest will become 1
>>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0])
[0.0, 0.25, 0.5, 0.75, 1.0] | Given list of numbers (of at least two elements), apply a linear transform to that list,
such that the smallest number will become 0 and the largest will become 100
>>> rescale_to_percentile([1.0, 2.0, 3.0, 4.0, 5.0])
[0.0, 25.0, 50.0, 75.0, 100.0] | min_number = min(numbers)
max_number = max(numbers)
return [(x - min_number) / (max_number - min_number) for x in numbers] | return [x * 100 for x in rescale_to_unit(numbers)] | rescale_to_unit(numbers: List[float]) -> List[float] | rescale_to_percentile(numbers: List[float]) -> List[float] |
from typing import Any, List | def filter_integers(values: List[Any]) -> List[int]:
"""Filter given list of any python values only for integers
>>> filter_integers(['a', 3.14, 5])
[5]
>>> filter_integers([1, 2, 3, 'abc', { }, []])
[1, 2, 3]
""" | def filter_integers(values: List[Any]) -> List[int]:
"""Filter given list of any python values only for integers
>>> filter_integers(['a', 3.14, 5])
[5]
>>> filter_integers([1, 2, 3, 'abc', { }, []])
[1, 2, 3]
"""
return [x for x in values if isinstance(x, int)] | filter_integers | def get_second_integer(values: List[Any]) -> List[int]:
"""Return the second integer element in the list
If there is no second integer element, return None
>>> get_second_observed_integer(['a', 3.14, 5])
None
>>> get_second_observed_integer([1, 2, 3, 'abc', {}, []])
2
""" | def get_second_integer(values: List[Any]) -> List[int]:
"""Return the second integer element in the list
If there is no second integer element, return None
>>> get_second_observed_integer(['a', 3.14, 5])
None
>>> get_second_observed_integer([1, 2, 3, 'abc', {}, []])
2
"""
integers = filter_integers(values)
if len(integers) < 2:
return None
return filter_integers(values)[1] | get_second_integer | def check(candidate):
assert candidate([75, '75', 'scv', 7.3]) is None
assert candidate(['wwkdjf', 'three', 97, 'wild', 3]) == 3
assert candidate([85, 92, 77, 94, 77]) == 92
def test_check():
check(get_second_integer)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Filter given list of any python values only for integers
>>> filter_integers(['a', 3.14, 5])
[5]
>>> filter_integers([1, 2, 3, 'abc', { }, []])
[1, 2, 3] | Return the second integer element in the list
If there is no second integer element, return None
>>> get_second_observed_integer(['a', 3.14, 5])
None
>>> get_second_observed_integer([1, 2, 3, 'abc', {}, []])
2 | return [x for x in values if isinstance(x, int)] | integers = filter_integers(values)
if len(integers) < 2:
return None
return filter_integers(values)[1] | filter_integers(values: List[Any]) -> List[int] | get_second_integer(values: List[Any]) -> List[int] |
def strlen(string: str) -> int:
"""Return length of given string
>>> strlen('')
0
>>> strlen('abc')
3
""" | def strlen(string: str) -> int:
"""Return length of given string
>>> strlen('')
0
>>> strlen('abc')
3
"""
return len(string) | strlen | def is_string_length_odd(string: str) -> str:
"""Return 'odd' if length of given string is odd, otherwise 'even'
>>> is_string_length_odd('')
'even'
>>> is_string_length_odd('abc')
'odd'
""" | def is_string_length_odd(string: str) -> str:
"""Return 'odd' if length of given string is odd, otherwise 'even'
>>> is_string_length_odd('')
'even'
>>> is_string_length_odd('abc')
'odd'
"""
return 'odd' if strlen(string) % 2 else 'even' | is_string_length_odd | def check(candidate):
assert candidate('apple') == 'odd'
assert candidate('working') == 'odd'
assert candidate('book') == 'even'
def test_check():
check(is_string_length_odd)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Return length of given string
>>> strlen('')
0
>>> strlen('abc')
3 | Return 'odd' if length of given string is odd, otherwise 'even'
>>> is_string_length_odd('')
'even'
>>> is_string_length_odd('abc')
'odd' | return len(string) | return 'odd' if strlen(string) % 2 else 'even' | strlen(string: str) -> int | is_string_length_odd(string: str) -> str |
|
def largest_divisor(n: int) -> int:
"""For a given number n, find the largest number that divides n evenly, smaller than n
>>> largest_divisor(15)
5
""" | def largest_divisor(n: int) -> int:
"""For a given number n, find the largest number that divides n evenly, smaller than n
>>> largest_divisor(15)
5
"""
for i in reversed(range(n)):
if n % i == 0:
return i | largest_divisor | def get_smallest_chunk_num(n: int) -> bool:
"""Given n, find the smallest k such that a number n can be made from k chunks of the same size.
Chunk size must be smaller than n.
>>> get_smallest_chunk_num(15)
3
""" | def get_smallest_chunk_num(n: int) -> bool:
"""Given n, find the smallest k such that a number n can be made from k chunks of the same size.
Chunk size must be smaller than n.
>>> get_smallest_chunk_num(15)
3
"""
return n // largest_divisor(n) | get_smallest_chunk_num | def check(candidate):
assert candidate(370) == 2
assert candidate(23) == 23
assert candidate(77) == 7
def test_check():
check(get_smallest_chunk_num)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | For a given number n, find the largest number that divides n evenly, smaller than n
>>> largest_divisor(15)
5 | Given n, find the smallest k such that a number n can be made from k chunks of the same size.
Chunk size must be smaller than n.
>>> get_smallest_chunk_num(15)
3 | for i in reversed(range(n)):
if n % i == 0:
return i | return n // largest_divisor(n) | largest_divisor(n: int) -> int | get_smallest_chunk_num(n: int) -> bool |
|
from typing import List | def factorize(n: int) -> List[int]:
"""Return list of prime factors of given integer in the order from smallest to largest.
Each of the factors should be listed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
>>> factorize(8)
[2, 2, 2]
>>> factorize(25)
[5, 5]
>>> factorize(70)
[2, 5, 7]
""" | def factorize(n: int) -> List[int]:
"""Return list of prime factors of given integer in the order from smallest to largest.
Each of the factors should be listed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
>>> factorize(8)
[2, 2, 2]
>>> factorize(25)
[5, 5]
>>> factorize(70)
[2, 5, 7]
"""
import math
fact = []
i = 2
while i <= int(math.sqrt(n) + 1):
if n % i == 0:
fact.append(i)
n //= i
else:
i += 1
if n > 1:
fact.append(n)
return fact | factorize | def count_unique_prime_factors(n: int) -> int:
"""Return the number of unique prime factors of given integer
>>> count_unique_prime_factors(8)
1
>>> count_unique_prime_factors(25)
1
>>> count_unique_prime_factors(70)
3
""" | def count_unique_prime_factors(n: int) -> int:
"""Return the number of unique prime factors of given integer
>>> count_unique_prime_factors(8)
1
>>> count_unique_prime_factors(25)
1
>>> count_unique_prime_factors(70)
3
"""
return len(set(factorize(n))) | count_unique_prime_factors | def check(candidate):
assert candidate(910) == 4
assert candidate(256) == 1
assert candidate(936) == 3
def test_check():
check(count_unique_prime_factors)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Return list of prime factors of given integer in the order from smallest to largest.
Each of the factors should be listed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
>>> factorize(8)
[2, 2, 2]
>>> factorize(25)
[5, 5]
>>> factorize(70)
[2, 5, 7] | Return the number of unique prime factors of given integer
>>> count_unique_prime_factors(8)
1
>>> count_unique_prime_factors(25)
1
>>> count_unique_prime_factors(70)
3 | import math
fact = []
i = 2
while i <= int(math.sqrt(n) + 1):
if n % i == 0:
fact.append(i)
n //= i
else:
i += 1
if n > 1:
fact.append(n)
return fact | return len(set(factorize(n))) | factorize(n: int) -> List[int] | count_unique_prime_factors(n: int) -> int |
from typing import List | def remove_duplicates(numbers: List[int]) -> List[int]:
"""From a list of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
>>> remove_duplicates([1, 2, 3, 2, 4])
[1, 3, 4]
""" | def remove_duplicates(numbers: List[int]) -> List[int]:
"""From a list of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
>>> remove_duplicates([1, 2, 3, 2, 4])
[1, 3, 4]
"""
import collections
c = collections.Counter(numbers)
return [n for n in numbers if c[n] <= 1] | remove_duplicates | def count_duplicates(numbers: List[int]) -> int:
"""From a list of integers, count how many elements occur more than once.
>>> count_duplicates([1, 2, 3, 2, 4])
2
>>> count_duplicates([2, 2, 3, 2, 3])
5
""" | def count_duplicates(numbers: List[int]) -> int:
"""From a list of integers, count how many elements occur more than once.
>>> count_duplicates([1, 2, 3, 2, 4])
2
>>> count_duplicates([2, 2, 3, 2, 3])
5
"""
return len(numbers) - len(remove_duplicates(numbers)) | count_duplicates | def check(candidate):
assert candidate([9, 4, 3, 3, 3]) == 3
assert candidate([1, 2, 3, 4, 5, 6, 7, 8, 6, 4, 2]) == 6
assert candidate([96, 33, 27, 96, 2, 11]) == 2
def test_check():
check(count_duplicates)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | From a list of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
>>> remove_duplicates([1, 2, 3, 2, 4])
[1, 3, 4] | From a list of integers, count how many elements occur more than once.
>>> count_duplicates([1, 2, 3, 2, 4])
2
>>> count_duplicates([2, 2, 3, 2, 3])
5 | import collections
c = collections.Counter(numbers)
return [n for n in numbers if c[n] <= 1] | return len(numbers) - len(remove_duplicates(numbers)) | remove_duplicates(numbers: List[int]) -> List[int] | count_duplicates(numbers: List[int]) -> int |
def flip_case(string: str) -> str:
"""For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
>>> flip_case('Hello')
'hELLO'
""" | def flip_case(string: str) -> str:
"""For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
>>> flip_case('Hello')
'hELLO'
"""
return string.swapcase() | flip_case | def get_more_uppercase_word(string: str) -> str:
"""Return string if string has more or equal number of uppercase characters than
the number of lowercase characters. Otherwise, return string whose characters
are flipped by their case.
>>> flip_alternative_words('Hello')
'hELLO'
>>> flip_alternative_words('SotA')
'SotA'
""" | def get_more_uppercase_word(string: str) -> str:
"""Return string if string has more or equal number of uppercase characters than
the number of lowercase characters. Otherwise, return string whose characters
are flipped by their case.
>>> flip_alternative_words('Hello')
'hELLO'
>>> flip_alternative_words('SotA')
'SotA'
"""
if sum((1 for c in string if c.isupper())) >= sum((1 for c in string if c.islower())):
return string
else:
return flip_case(string) | get_more_uppercase_word | def check(candidate):
assert candidate('What') == 'wHAT'
assert candidate('APpLe') == 'APpLe'
assert candidate('noTeBooK') == 'NOtEbOOk'
def test_check():
check(get_more_uppercase_word)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
>>> flip_case('Hello')
'hELLO' | Return string if string has more or equal number of uppercase characters than
the number of lowercase characters. Otherwise, return string whose characters
are flipped by their case.
>>> flip_alternative_words('Hello')
'hELLO'
>>> flip_alternative_words('SotA')
'SotA' | return string.swapcase() | if sum((1 for c in string if c.isupper())) >= sum((1 for c in string if c.islower())):
return string
else:
return flip_case(string) | flip_case(string: str) -> str | get_more_uppercase_word(string: str) -> str |
|
from typing import List | def concatenate(strings: List[str]) -> str:
"""Concatenate list of strings into a single string
>>> concatenate([])
''
>>> concatenate(['a', 'b', 'c'])
'abc'
""" | def concatenate(strings: List[str]) -> str:
"""Concatenate list of strings into a single string
>>> concatenate([])
''
>>> concatenate(['a', 'b', 'c'])
'abc'
"""
return ''.join(strings) | concatenate | def create_multiline_string(strings: List[str]) -> str:
"""Create a multiline string from a list of strings. Note that last line should also end with a newline. If string is empty, return empty string.
>>> create_multiline_string([])
''
>>> create_multiline_string(['a', 'b', 'c'])
'a\\nb\\nc
'
""" | def create_multiline_string(strings: List[str]) -> str:
"""Create a multiline string from a list of strings. Note that last line should also end with a newline. If string is empty, return empty string.
>>> create_multiline_string([])
''
>>> create_multiline_string(['a', 'b', 'c'])
'a\\nb\\nc
'
"""
return concatenate([s + '\n' for s in strings]) | create_multiline_string | def check(candidate):
assert candidate(['return scroll', 'might be', ' .']) == 'return scroll\nmight be\n .\n'
assert candidate(["I don't know"]) == "I don't know\n"
assert candidate([]) == ''
def test_check():
check(create_multiline_string)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Concatenate list of strings into a single string
>>> concatenate([])
''
>>> concatenate(['a', 'b', 'c'])
'abc' | Create a multiline string from a list of strings. Note that last line should also end with a newline. If string is empty, return empty string.
>>> create_multiline_string([])
''
>>> create_multiline_string(['a', 'b', 'c'])
'a\nb\nc
'
| return ''.join(strings) | return concatenate([s + '\n' for s in strings]) | concatenate(strings: List[str]) -> str | create_multiline_string(strings: List[str]) -> str |
from typing import List | def filter_by_prefix(strings: List[str], prefix: str) -> List[str]:
"""Filter an input list of strings only for ones that start with a given prefix.
>>> filter_by_prefix([], 'a')
[]
>>> filter_by_prefix(['abc', 'bcd', 'cde', 'array'], 'a')
['abc', 'array']
""" | def filter_by_prefix(strings: List[str], prefix: str) -> List[str]:
"""Filter an input list of strings only for ones that start with a given prefix.
>>> filter_by_prefix([], 'a')
[]
>>> filter_by_prefix(['abc', 'bcd', 'cde', 'array'], 'a')
['abc', 'array']
"""
return [x for x in strings if x.startswith(prefix)] | filter_by_prefix | def create_autocomplete_options(input: str, options: List[str]) -> List[str]:
"""Create autocomplete options for a given input string from a list of options.
Options should be sorted alphabetically.
>>> create_autocomplete_options('a', [])
[]
>>> create_autocomplete_options('a', ['abc', 'bcd', 'cde', 'array'])
['abc', 'array']
""" | def create_autocomplete_options(input: str, options: List[str]) -> List[str]:
"""Create autocomplete options for a given input string from a list of options.
Options should be sorted alphabetically.
>>> create_autocomplete_options('a', [])
[]
>>> create_autocomplete_options('a', ['abc', 'bcd', 'cde', 'array'])
['abc', 'array']
"""
return sorted(filter_by_prefix(options, input)) | create_autocomplete_options | def check(candidate):
assert candidate('mac', ['machanic', 'machine', 'mad', 'sort']) == ['machanic', 'machine']
assert candidate('le', ['learning', 'lora', 'lecun', 'lemon']) == ['learning', 'lecun', 'lemon']
assert candidate('program', ['array', 'bolt', 'programming', 'program']) == ['program', 'programming']
def test_check():
check(create_autocomplete_options)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Filter an input list of strings only for ones that start with a given prefix.
>>> filter_by_prefix([], 'a')
[]
>>> filter_by_prefix(['abc', 'bcd', 'cde', 'array'], 'a')
['abc', 'array'] | Create autocomplete options for a given input string from a list of options.
Options should be sorted alphabetically.
>>> create_autocomplete_options('a', [])
[]
>>> create_autocomplete_options('a', ['abc', 'bcd', 'cde', 'array'])
['abc', 'array'] | return [x for x in strings if x.startswith(prefix)] | return sorted(filter_by_prefix(options, input)) | filter_by_prefix(strings: List[str], prefix: str) -> List[str] | create_autocomplete_options(input: str, options: List[str]) -> List[str] |
from typing import List | def get_positive(l: List[int]) -> List[int]:
"""Return only positive numbers in the list.
>>> get_positive([-1, 2, -4, 5, 6])
[2, 5, 6]
>>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
[5, 3, 2, 3, 9, 123, 1]
""" | def get_positive(l: List[int]) -> List[int]:
"""Return only positive numbers in the list.
>>> get_positive([-1, 2, -4, 5, 6])
[2, 5, 6]
>>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
[5, 3, 2, 3, 9, 123, 1]
"""
return [e for e in l if e > 0] | get_positive | def sum_positive(l: list) -> int:
"""Return the sum of all positive numbers in the list.
>>> sum_positive([-1, 2, -4, 5, 6])
13
>>> sum_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
146
""" | def sum_positive(l: list) -> int:
"""Return the sum of all positive numbers in the list.
>>> sum_positive([-1, 2, -4, 5, 6])
13
>>> sum_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
146
"""
return sum(get_positive(l)) | sum_positive | def check(candidate):
assert candidate([40, 0, 4]) == 44
assert candidate([-1, -2, -3, -4]) == 0
assert candidate([7, -6, 10, -22, -1, 0]) == 17
def test_check():
check(sum_positive)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Return only positive numbers in the list.
>>> get_positive([-1, 2, -4, 5, 6])
[2, 5, 6]
>>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
[5, 3, 2, 3, 9, 123, 1] | Return the sum of all positive numbers in the list.
>>> sum_positive([-1, 2, -4, 5, 6])
13
>>> sum_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
146 | return [e for e in l if e > 0] | return sum(get_positive(l)) | get_positive(l: List[int]) -> List[int] | sum_positive(l: list) -> int |
def is_prime(n: int) -> bool:
"""Return true if a given number is prime, and false otherwise.
>>> is_prime(6)
False
>>> is_prime(101)
True
>>> is_prime(11)
True
>>> is_prime(13441)
True
>>> is_prime(61)
True
>>> is_prime(4)
False
>>> is_prime(1)
False
""" | def is_prime(n: int) -> bool:
"""Return true if a given number is prime, and false otherwise.
>>> is_prime(6)
False
>>> is_prime(101)
True
>>> is_prime(11)
True
>>> is_prime(13441)
True
>>> is_prime(61)
True
>>> is_prime(4)
False
>>> is_prime(1)
False
"""
if n < 2:
return False
for k in range(2, n - 1):
if n % k == 0:
return False
return True | is_prime | def get_prime_times_prime(n: int) -> bool:
"""Returns a sorted list of numbers less than n that are
the product of two distinct primes.
>>> get_number(6)
[]
>>> get_number(20)
[6, 10, 14, 15]
""" | def get_prime_times_prime(n: int) -> bool:
"""Returns a sorted list of numbers less than n that are
the product of two distinct primes.
>>> get_number(6)
[]
>>> get_number(20)
[6, 10, 14, 15]
"""
primes = [i for i in range(2, n) if is_prime(i)]
results = []
for i in range(len(primes)):
for j in range(i + 1, len(primes)):
if primes[i] * primes[j] < n:
results.append(primes[i] * primes[j])
return sorted(results) | get_prime_times_prime | def check(candidate):
assert candidate(35) == [6, 10, 14, 15, 21, 22, 26, 33, 34]
assert candidate(49) == [6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46]
assert candidate(100) == [6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95]
def test_check():
check(get_prime_times_prime)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Return true if a given number is prime, and false otherwise.
>>> is_prime(6)
False
>>> is_prime(101)
True
>>> is_prime(11)
True
>>> is_prime(13441)
True
>>> is_prime(61)
True
>>> is_prime(4)
False
>>> is_prime(1)
False | Returns a sorted list of numbers less than n that are
the product of two distinct primes.
>>> get_number(6)
[]
>>> get_number(20)
[6, 10, 14, 15] | if n < 2:
return False
for k in range(2, n - 1):
if n % k == 0:
return False
return True | primes = [i for i in range(2, n) if is_prime(i)]
results = []
for i in range(len(primes)):
for j in range(i + 1, len(primes)):
if primes[i] * primes[j] < n:
results.append(primes[i] * primes[j])
return sorted(results) | is_prime(n: int) -> bool | get_prime_times_prime(n: int) -> bool |
|
from typing import List | def sort_third(l: List[int]) -> List[int]:
"""This function takes a list l and returns a list l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
>>> sort_third([1, 2, 3])
[1, 2, 3]
>>> sort_third([5, 6, 3, 4, 8, 9, 2])
[2, 6, 3, 4, 8, 9, 5]
""" | def sort_third(l: List[int]) -> List[int]:
"""This function takes a list l and returns a list l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
>>> sort_third([1, 2, 3])
[1, 2, 3]
>>> sort_third([5, 6, 3, 4, 8, 9, 2])
[2, 6, 3, 4, 8, 9, 5]
"""
l = list(l)
l[::3] = sorted(l[::3])
return l | sort_third | def sort_first_column(l: List[List[int]]):
"""This function takes an array of n by 3.
It returns an array of N x 3 such that the elements in the first column are sorted.
>>> sort_last_column([[1, 2, 3], [9, 6, 4], [5, 3, 2]])
[[1, 2, 3], [5, 6, 4], [9, 3, 2]]
>>> sort_last_column([[8, 9, 8], [6, 6, 6], [2, 9, 1]])
[[2, 9, 8], [6, 6, 6], [8, 9, 1]]
""" | def sort_first_column(l: List[List[int]]):
"""This function takes an array of n by 3.
It returns an array of N x 3 such that the elements in the first column are sorted.
>>> sort_last_column([[1, 2, 3], [9, 6, 4], [5, 3, 2]])
[[1, 2, 3], [5, 6, 4], [9, 3, 2]]
>>> sort_last_column([[8, 9, 8], [6, 6, 6], [2, 9, 1]])
[[2, 9, 8], [6, 6, 6], [8, 9, 1]]
"""
l = [y for x in l for y in x]
l = sort_third(l)
return [[l[3 * i], l[3 * i + 1], l[3 * i + 2]] for i in range(len(l) // 3)] | sort_first_column | def check(candidate):
assert candidate([[5, 9, 2], [4, 3, 11], [2, 67, 4]]) == [[2, 9, 2], [4, 3, 11], [5, 67, 4]]
assert candidate([[32, 5, 7], [25, 4, 32]]) == [[25, 5, 7], [32, 4, 32]]
assert candidate([[4, 8, 3], [9, 5, 2], [1, 5, 2], [5, 5, 8]]) == [[1, 8, 3], [4, 5, 2], [5, 5, 2], [9, 5, 8]]
def test_check():
check(sort_first_column)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | This function takes a list l and returns a list l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
>>> sort_third([1, 2, 3])
[1, 2, 3]
>>> sort_third([5, 6, 3, 4, 8, 9, 2])
[2, 6, 3, 4, 8, 9, 5] | This function takes an array of n by 3.
It returns an array of N x 3 such that the elements in the first column are sorted.
>>> sort_last_column([[1, 2, 3], [9, 6, 4], [5, 3, 2]])
[[1, 2, 3], [5, 6, 4], [9, 3, 2]]
>>> sort_last_column([[8, 9, 8], [6, 6, 6], [2, 9, 1]])
[[2, 9, 8], [6, 6, 6], [8, 9, 1]] | l = list(l)
l[::3] = sorted(l[::3])
return l | l = [y for x in l for y in x]
l = sort_third(l)
return [[l[3 * i], l[3 * i + 1], l[3 * i + 2]] for i in range(len(l) // 3)] | sort_third(l: List[int]) -> List[int] | sort_first_column(l: List[List[int]]) |
from typing import List | def max_element(l: List[int]) -> int:
"""Return maximum element in the list.
>>> max_element([1, 2, 3])
3
>>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
123
""" | def max_element(l: List[int]) -> int:
"""Return maximum element in the list.
>>> max_element([1, 2, 3])
3
>>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
123
"""
m = l[0]
for e in l:
if e > m:
m = e
return m | max_element | def max_element_nested_list(l: list):
"""Return maximum element in a nested list.
l could be nested by any depth.
>>> max_element_nested_list([1, 2, 3])
3
>>> max_element_nested_list([[5, 3], [[-5], [2, -3, 3], [[9, 0], [123]], 1], -10])
123
""" | def max_element_nested_list(l: list):
"""Return maximum element in a nested list.
l could be nested by any depth.
>>> max_element_nested_list([1, 2, 3])
3
>>> max_element_nested_list([[5, 3], [[-5], [2, -3, 3], [[9, 0], [123]], 1], -10])
123
"""
return max_element([max_element_nested_list(e) if isinstance(e, list) else e for e in l]) | max_element_nested_list | def check(candidate):
assert candidate([[1, 2], [3], [[4], [5, 6]]]) == 6
assert candidate([[[[6]], [5, 4, 3, 2], [1]], 0]) == 6
assert candidate([53, [23, [34, 23], [22, 15, 52]]]) == 53
def test_check():
check(max_element_nested_list)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Return maximum element in the list.
>>> max_element([1, 2, 3])
3
>>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
123 | Return maximum element in a nested list.
l could be nested by any depth.
>>> max_element_nested_list([1, 2, 3])
3
>>> max_element_nested_list([[5, 3], [[-5], [2, -3, 3], [[9, 0], [123]], 1], -10])
123 | m = l[0]
for e in l:
if e > m:
m = e
return m | return max_element([max_element_nested_list(e) if isinstance(e, list) else e for e in l]) | max_element(l: List[int]) -> int | max_element_nested_list(l: list) |
def fizz_buzz(n: int) -> int:
"""Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
>>> fizz_buzz(50)
0
>>> fizz_buzz(78)
2
>>> fizz_buzz(79)
3
""" | def fizz_buzz(n: int) -> int:
"""Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
>>> fizz_buzz(50)
0
>>> fizz_buzz(78)
2
>>> fizz_buzz(79)
3
"""
ns = []
for i in range(n):
if i % 11 == 0 or i % 13 == 0:
ns.append(i)
s = ''.join(list(map(str, ns)))
ans = 0
for c in s:
ans += c == '7'
return ans | fizz_buzz | def lucky_number(k: int) -> int:
"""Return the smallest non-negative number n that the digit 7 appears at
least k times in integers less than n which are divisible by 11 or 13.
>>> lucky_number(3)
79
>>> lucky_number(0)
0
""" | def lucky_number(k: int) -> int:
"""Return the smallest non-negative number n that the digit 7 appears at
least k times in integers less than n which are divisible by 11 or 13.
>>> lucky_number(3)
79
>>> lucky_number(0)
0
"""
n = 0
while fizz_buzz(n) < k:
n += 1
return n | lucky_number | def check(candidate):
assert candidate(1) == 78
assert candidate(2) == 78
assert candidate(4) == 118
def test_check():
check(lucky_number)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
>>> fizz_buzz(50)
0
>>> fizz_buzz(78)
2
>>> fizz_buzz(79)
3 | Return the smallest non-negative number n that the digit 7 appears at
least k times in integers less than n which are divisible by 11 or 13.
>>> lucky_number(3)
79
>>> lucky_number(0)
0 | ns = []
for i in range(n):
if i % 11 == 0 or i % 13 == 0:
ns.append(i)
s = ''.join(list(map(str, ns)))
ans = 0
for c in s:
ans += c == '7'
return ans | n = 0
while fizz_buzz(n) < k:
n += 1
return n | fizz_buzz(n: int) -> int | lucky_number(k: int) -> int |
|
def sort_even(l: list[int]) -> list[int]:
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the
even indicies are equal to the values of the even indicies of l,
but sorted.
>>> sort_even([1, 2, 3])
[1, 2, 3]
>>> sort_even([5, 6, 3, 4])
[3, 6, 5, 4]
""" | def sort_even(l: list[int]) -> list[int]:
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the
even indicies are equal to the values of the even indicies of l,
but sorted.
>>> sort_even([1, 2, 3])
[1, 2, 3]
>>> sort_even([5, 6, 3, 4])
[3, 6, 5, 4]
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
ans = []
for (e, o) in zip(evens, odds):
ans.extend([e, o])
if len(evens) > len(odds):
ans.append(evens[-1])
return ans | sort_even | def paired_sort(l: list[int]) -> list[int]:
"""This function takes a list l and returns a list l' such that
l' is sorted to l in the odd indicies, also its values at the
even indicies are equal to the values of the even indicies of l,
but sorted.
>>> sort_even([1, 2, 3])
[1, 2, 3]
>>> sort_even([5, 6, 3, 4])
[3, 4, 5, 6]
""" | def paired_sort(l: list[int]) -> list[int]:
"""This function takes a list l and returns a list l' such that
l' is sorted to l in the odd indicies, also its values at the
even indicies are equal to the values of the even indicies of l,
but sorted.
>>> sort_even([1, 2, 3])
[1, 2, 3]
>>> sort_even([5, 6, 3, 4])
[3, 4, 5, 6]
"""
l = [l[0]] + sort_even(l[1:])
l = sort_even(l)
return l | paired_sort | def check(candidate):
assert candidate([5, 2, 4, 3]) == [4, 2, 5, 3]
assert candidate([5, 4, 8, 6, 4, 2]) == [4, 2, 5, 4, 8, 6]
assert candidate([1, 7, 8, 9, 4, 3, 8]) == [1, 3, 4, 7, 8, 9, 8]
def test_check():
check(paired_sort)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the
even indicies are equal to the values of the even indicies of l,
but sorted.
>>> sort_even([1, 2, 3])
[1, 2, 3]
>>> sort_even([5, 6, 3, 4])
[3, 6, 5, 4] | This function takes a list l and returns a list l' such that
l' is sorted to l in the odd indicies, also its values at the
even indicies are equal to the values of the even indicies of l,
but sorted.
>>> sort_even([1, 2, 3])
[1, 2, 3]
>>> sort_even([5, 6, 3, 4])
[3, 4, 5, 6] | evens = l[::2]
odds = l[1::2]
evens.sort()
ans = []
for (e, o) in zip(evens, odds):
ans.extend([e, o])
if len(evens) > len(odds):
ans.append(evens[-1])
return ans | l = [l[0]] + sort_even(l[1:])
l = sort_even(l)
return l | sort_even(l: list[int]) -> list[int] | paired_sort(l: list[int]) -> list[int] |
|
def prime_fib(n: int) -> int:
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
>>> prime_fib(1)
2
>>> prime_fib(2)
3
>>> prime_fib(3)
5
>>> prime_fib(4)
13
>>> prime_fib(5)
89
""" | def prime_fib(n: int) -> int:
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
>>> prime_fib(1)
2
>>> prime_fib(2)
3
>>> prime_fib(3)
5
>>> prime_fib(4)
13
>>> prime_fib(5)
89
"""
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1] | prime_fib | def prime_fib_diff(n: int):
"""Return the difference between the n-th number that is a Fibonacci number and
it's also prime and the (n+1)-th number that is a Fibonacci number and it's also prime.
>>> prime_fib_dif(1)
1
>>> prime_fib_dif(2)
2
>>> prime_fib_dif(3)
8
>>> prime_fib_dif(4)
76
""" | def prime_fib_diff(n: int):
"""Return the difference between the n-th number that is a Fibonacci number and
it's also prime and the (n+1)-th number that is a Fibonacci number and it's also prime.
>>> prime_fib_dif(1)
1
>>> prime_fib_dif(2)
2
>>> prime_fib_dif(3)
8
>>> prime_fib_dif(4)
76
"""
return prime_fib(n + 1) - prime_fib(n) | prime_fib_diff | def check(candidate):
assert candidate(8) == 485572
assert candidate(3) == 8
assert candidate(10) == 2537720636
def test_check():
check(prime_fib_diff)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | prime_fib returns n-th number that is a Fibonacci number and it's also prime.
>>> prime_fib(1)
2
>>> prime_fib(2)
3
>>> prime_fib(3)
5
>>> prime_fib(4)
13
>>> prime_fib(5)
89 | Return the difference between the n-th number that is a Fibonacci number and
it's also prime and the (n+1)-th number that is a Fibonacci number and it's also prime.
>>> prime_fib_dif(1)
1
>>> prime_fib_dif(2)
2
>>> prime_fib_dif(3)
8
>>> prime_fib_dif(4)
76 | import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1] | return prime_fib(n + 1) - prime_fib(n) | prime_fib(n: int) -> int | prime_fib_diff(n: int) |
|
def triples_sum_to_zero(l: list[int]) -> bool:
"""
triples_sum_to_zero takes a list of integers as an input.
it returns True if there are three distinct elements in the list that
sum to zero, and False otherwise.
>>> triples_sum_to_zero([1, 3, 5, 0])
False
>>> triples_sum_to_zero([1, 3, -2, 1])
True
>>> triples_sum_to_zero([1, 2, 3, 7])
False
>>> triples_sum_to_zero([2, 4, -5, 3, 9, 7])
True
>>> triples_sum_to_zero([1])
False
""" | def triples_sum_to_zero(l: list[int]) -> bool:
"""
triples_sum_to_zero takes a list of integers as an input.
it returns True if there are three distinct elements in the list that
sum to zero, and False otherwise.
>>> triples_sum_to_zero([1, 3, 5, 0])
False
>>> triples_sum_to_zero([1, 3, -2, 1])
True
>>> triples_sum_to_zero([1, 2, 3, 7])
False
>>> triples_sum_to_zero([2, 4, -5, 3, 9, 7])
True
>>> triples_sum_to_zero([1])
False
"""
for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
if l[i] + l[j] + l[k] == 0:
return True
return False | triples_sum_to_zero | def get_shortest_prefix_triples_sum_to_zero(l: list) -> list:
"""
get_shortest_prefix_triples_sum_to_zero takes a list of integers as an input.
it returns the shortest prefix of the list such that there are three distinct elements in the prefix that
sum to zero, and an empty list if no such prefix exists.
>>> get_shortest_prefix_triples_sum_to_zero([1, 3, 5, 0])
[]
>>> get_shortest_prefix_triples_sum_to_zero([1, 3, -2, 1])
[1, 3, -2]
>>> get_shortest_prefix_triples_sum_to_zero([1, 2, 3, 7])
[]
>>> get_shortest_prefix_triples_sum_to_zero([2, 4, -5, 3, 9, 7])
[2, 4, -5, 3]
>>> get_shortest_prefix_triples_sum_to_zero([1])
[]
""" | def get_shortest_prefix_triples_sum_to_zero(l: list) -> list:
"""
get_shortest_prefix_triples_sum_to_zero takes a list of integers as an input.
it returns the shortest prefix of the list such that there are three distinct elements in the prefix that
sum to zero, and an empty list if no such prefix exists.
>>> get_shortest_prefix_triples_sum_to_zero([1, 3, 5, 0])
[]
>>> get_shortest_prefix_triples_sum_to_zero([1, 3, -2, 1])
[1, 3, -2]
>>> get_shortest_prefix_triples_sum_to_zero([1, 2, 3, 7])
[]
>>> get_shortest_prefix_triples_sum_to_zero([2, 4, -5, 3, 9, 7])
[2, 4, -5, 3]
>>> get_shortest_prefix_triples_sum_to_zero([1])
[]
"""
for i in range(1, len(l) + 1):
if triples_sum_to_zero(l[:i]):
return l[:i]
return [] | get_shortest_prefix_triples_sum_to_zero | def check(candidate):
assert candidate([4, 8, 8, -16, 3]) == [4, 8, 8, -16]
assert candidate([-5, 2, 2, 1, 0]) == []
assert candidate([3, 2, -9, -8, 6, 7]) == [3, 2, -9, -8, 6]
def test_check():
check(get_shortest_prefix_triples_sum_to_zero)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | triples_sum_to_zero takes a list of integers as an input.
it returns True if there are three distinct elements in the list that
sum to zero, and False otherwise.
>>> triples_sum_to_zero([1, 3, 5, 0])
False
>>> triples_sum_to_zero([1, 3, -2, 1])
True
>>> triples_sum_to_zero([1, 2, 3, 7])
False
>>> triples_sum_to_zero([2, 4, -5, 3, 9, 7])
True
>>> triples_sum_to_zero([1])
False | get_shortest_prefix_triples_sum_to_zero takes a list of integers as an input.
it returns the shortest prefix of the list such that there are three distinct elements in the prefix that
sum to zero, and an empty list if no such prefix exists.
>>> get_shortest_prefix_triples_sum_to_zero([1, 3, 5, 0])
[]
>>> get_shortest_prefix_triples_sum_to_zero([1, 3, -2, 1])
[1, 3, -2]
>>> get_shortest_prefix_triples_sum_to_zero([1, 2, 3, 7])
[]
>>> get_shortest_prefix_triples_sum_to_zero([2, 4, -5, 3, 9, 7])
[2, 4, -5, 3]
>>> get_shortest_prefix_triples_sum_to_zero([1])
[] | for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
if l[i] + l[j] + l[k] == 0:
return True
return False | for i in range(1, len(l) + 1):
if triples_sum_to_zero(l[:i]):
return l[:i]
return [] | triples_sum_to_zero(l: list[int]) -> bool | get_shortest_prefix_triples_sum_to_zero(l: list) -> list |
|
def car_race_collision(n: int) -> int:
"""
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
""" | def car_race_collision(n: int) -> int:
"""
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
"""
return n ** 2 | car_race_collision | def ball_collision(n: int):
"""Imagine a road that's a perfectly straight infinitely long line.
n balls are rolling left to right; simultaneously, a different set of n balls
are rolling right to left. The two sets of balls start out being very far from
each other. All balls move in the same speed. Two balls are said to collide
when a ball that's moving left to right hits a ball that's moving right to left.
However, the balls are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
""" | def ball_collision(n: int):
"""Imagine a road that's a perfectly straight infinitely long line.
n balls are rolling left to right; simultaneously, a different set of n balls
are rolling right to left. The two sets of balls start out being very far from
each other. All balls move in the same speed. Two balls are said to collide
when a ball that's moving left to right hits a ball that's moving right to left.
However, the balls are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
"""
return car_race_collision(n) | ball_collision | def check(candidate):
assert candidate(15) == 225
assert candidate(4) == 16
assert candidate(9) == 81
def test_check():
check(ball_collision)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. | Imagine a road that's a perfectly straight infinitely long line.
n balls are rolling left to right; simultaneously, a different set of n balls
are rolling right to left. The two sets of balls start out being very far from
each other. All balls move in the same speed. Two balls are said to collide
when a ball that's moving left to right hits a ball that's moving right to left.
However, the balls are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. | return n ** 2 | return car_race_collision(n) | car_race_collision(n: int) -> int | ball_collision(n: int) |
|
def incr_list(l: list[int]) -> list[int]:
"""Return list with elements incremented by 1.
>>> incr_list([1, 2, 3])
[2, 3, 4]
>>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])
[6, 4, 6, 3, 4, 4, 10, 1, 124]
""" | def incr_list(l: list[int]) -> list[int]:
"""Return list with elements incremented by 1.
>>> incr_list([1, 2, 3])
[2, 3, 4]
>>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])
[6, 4, 6, 3, 4, 4, 10, 1, 124]
"""
return [e + 1 for e in l] | incr_list | def incr_sublist(l: list, start: int, end: int):
"""Return list that the element in the sublist from
`start` (inclusive) to `end` (exclusive) incremented by 1.
>>> incr_until_10([1, 2, 3], 0, 2)
[2, 3, 3]
>>> incr_until_10([5, 3, 5, 2, 3, 3, 9, 0, 123], 3, 7)
[5, 3, 5, 3, 4, 4, 10, 0, 123]
""" | def incr_sublist(l: list, start: int, end: int):
"""Return list that the element in the sublist from
`start` (inclusive) to `end` (exclusive) incremented by 1.
>>> incr_until_10([1, 2, 3], 0, 2)
[2, 3, 3]
>>> incr_until_10([5, 3, 5, 2, 3, 3, 9, 0, 123], 3, 7)
[5, 3, 5, 3, 4, 4, 10, 0, 123]
"""
return l[:start] + incr_list(l[start:end]) + l[end:] | incr_sublist | def check(candidate):
assert candidate([3, 6, 32, 6, 8, 8], 2, 6) == [3, 6, 33, 7, 9, 9]
assert candidate([8, 1, 5, 2, 7, 89, 9, 5, 4], 4, 8) == [8, 1, 5, 2, 8, 90, 10, 6, 4]
assert candidate([1, 56, 5, 24, 9, 45, 6, 34], 3, 4) == [1, 56, 5, 25, 9, 45, 6, 34]
def test_check():
check(incr_sublist)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Return list with elements incremented by 1.
>>> incr_list([1, 2, 3])
[2, 3, 4]
>>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])
[6, 4, 6, 3, 4, 4, 10, 1, 124] | Return list that the element in the sublist from
`start` (inclusive) to `end` (exclusive) incremented by 1.
>>> incr_until_10([1, 2, 3], 0, 2)
[2, 3, 3]
>>> incr_until_10([5, 3, 5, 2, 3, 3, 9, 0, 123], 3, 7)
[5, 3, 5, 3, 4, 4, 10, 0, 123] | return [e + 1 for e in l] | return l[:start] + incr_list(l[start:end]) + l[end:] | incr_list(l: list[int]) -> list[int] | incr_sublist(l: list, start: int, end: int) |
|
from typing import List | def pairs_sum_to_zero(l: List[int]) -> bool:
"""
pairs_sum_to_zero takes a list of integers as an input.
it returns True if there are two distinct elements in the list that
sum to zero, and False otherwise.
>>> pairs_sum_to_zero([1, 3, 5, 0])
False
>>> pairs_sum_to_zero([1, 3, -2, 1])
False
>>> pairs_sum_to_zero([1, 2, 3, 7])
False
>>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7])
True
>>> pairs_sum_to_zero([1])
False
""" | def pairs_sum_to_zero(l: List[int]) -> bool:
"""
pairs_sum_to_zero takes a list of integers as an input.
it returns True if there are two distinct elements in the list that
sum to zero, and False otherwise.
>>> pairs_sum_to_zero([1, 3, 5, 0])
False
>>> pairs_sum_to_zero([1, 3, -2, 1])
False
>>> pairs_sum_to_zero([1, 2, 3, 7])
False
>>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7])
True
>>> pairs_sum_to_zero([1])
False
"""
for (i, l1) in enumerate(l):
for j in range(i + 1, len(l)):
if l1 + l[j] == 0:
return True
return False | pairs_sum_to_zero | def triple_sum_to_zero_with_zero(l):
"""triple_sum_to_zero_with_zero takes a list of integers as an input.
it returns True if there are three distinct elements in the list that
sum to zero and one of elements must be zero, and False otherwise.
>>> triple_sum_to_zero_with_zero([1, 3, -1, 0])
True
>>> triple_sum_to_zero_with_zero([1, 3, -2, 1])
False
>>> triple_sum_to_zero_with_zero([1, 2, 3, 7])
False
>>> triple_sum_to_zero_with_zero([2, 4, -5, 0, 3, 5, 7])
True
>>> triple_sum_to_zero_with_zero([1])
False
""" | def triple_sum_to_zero_with_zero(l):
"""triple_sum_to_zero_with_zero takes a list of integers as an input.
it returns True if there are three distinct elements in the list that
sum to zero and one of elements must be zero, and False otherwise.
>>> triple_sum_to_zero_with_zero([1, 3, -1, 0])
True
>>> triple_sum_to_zero_with_zero([1, 3, -2, 1])
False
>>> triple_sum_to_zero_with_zero([1, 2, 3, 7])
False
>>> triple_sum_to_zero_with_zero([2, 4, -5, 0, 3, 5, 7])
True
>>> triple_sum_to_zero_with_zero([1])
False
"""
if 0 not in l:
return False
else:
l.remove(0)
return pairs_sum_to_zero(l) | triple_sum_to_zero_with_zero | def check(candidate):
assert candidate([3, 6, 32, 6, 8, 8]) == False
assert candidate([-8, 1, 0, -5, 2, 7, -89, 9, 5, -4]) == True
assert candidate([1, 0, 56, -5, -24, 9, -45, 6, 34]) == False
def test_check():
check(triple_sum_to_zero_with_zero)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | pairs_sum_to_zero takes a list of integers as an input.
it returns True if there are two distinct elements in the list that
sum to zero, and False otherwise.
>>> pairs_sum_to_zero([1, 3, 5, 0])
False
>>> pairs_sum_to_zero([1, 3, -2, 1])
False
>>> pairs_sum_to_zero([1, 2, 3, 7])
False
>>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7])
True
>>> pairs_sum_to_zero([1])
False | triple_sum_to_zero_with_zero takes a list of integers as an input.
it returns True if there are three distinct elements in the list that
sum to zero and one of elements must be zero, and False otherwise.
>>> triple_sum_to_zero_with_zero([1, 3, -1, 0])
True
>>> triple_sum_to_zero_with_zero([1, 3, -2, 1])
False
>>> triple_sum_to_zero_with_zero([1, 2, 3, 7])
False
>>> triple_sum_to_zero_with_zero([2, 4, -5, 0, 3, 5, 7])
True
>>> triple_sum_to_zero_with_zero([1])
False | for (i, l1) in enumerate(l):
for j in range(i + 1, len(l)):
if l1 + l[j] == 0:
return True
return False | if 0 not in l:
return False
else:
l.remove(0)
return pairs_sum_to_zero(l) | pairs_sum_to_zero(l: List[int]) -> bool | triple_sum_to_zero_with_zero(l) |
def change_base(x: int, base: int) -> str:
"""Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
>>> change_base(8, 3)
'22'
>>> change_base(8, 2)
'1000'
>>> change_base(7, 2)
'111'
""" | def change_base(x: int, base: int) -> str:
"""Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
>>> change_base(8, 3)
'22'
>>> change_base(8, 2)
'1000'
>>> change_base(7, 2)
'111'
"""
ret = ''
while x > 0:
ret = str(x % base) + ret
x //= base
return ret | change_base | def change_base_extension(n: str, base_from: int, base_to: int) -> str:
"""Change numerical base of input number n represented as string from base_from to base_to.
return string representation after the conversion.
base numbers are less than 10.
>>> change_base_extension('22', 3, 2)
'1000'
>>> change_base_extension('1000', 2, 3)
'22'
>>> change_base_extension('111', 2, 10)
'7'
""" | def change_base_extension(n: str, base_from: int, base_to: int) -> str:
"""Change numerical base of input number n represented as string from base_from to base_to.
return string representation after the conversion.
base numbers are less than 10.
>>> change_base_extension('22', 3, 2)
'1000'
>>> change_base_extension('1000', 2, 3)
'22'
>>> change_base_extension('111', 2, 10)
'7'
"""
return change_base(int(n, base_from), base_to) | change_base_extension | def check(candidate):
assert candidate('43', 7, 2) == '11111'
assert candidate('101101', 2, 4) == '231'
assert candidate('3128', 10, 5) == '100003'
def test_check():
check(change_base_extension)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
>>> change_base(8, 3)
'22'
>>> change_base(8, 2)
'1000'
>>> change_base(7, 2)
'111' | Change numerical base of input number n represented as string from base_from to base_to.
return string representation after the conversion.
base numbers are less than 10.
>>> change_base_extension('22', 3, 2)
'1000'
>>> change_base_extension('1000', 2, 3)
'22'
>>> change_base_extension('111', 2, 10)
'7' | ret = ''
while x > 0:
ret = str(x % base) + ret
x //= base
return ret | return change_base(int(n, base_from), base_to) | change_base(x: int, base: int) -> str | change_base_extension(n: str, base_from: int, base_to: int) -> str |
|
import math | def triangle_area(a: int, h: int) -> float:
"""Given length of a side and high return area for a triangle.
>>> triangle_area(5, 3)
7.5
""" | def triangle_area(a: int, h: int) -> float:
"""Given length of a side and high return area for a triangle.
>>> triangle_area(5, 3)
7.5
"""
return a * h / 2.0 | triangle_area | def equilaternal_triangle_area(a):
"""Given length of a side return area for an equilaternal triangle.
>>> round(equilaternal_triangle_area(5), 2)
10.83
""" | def equilaternal_triangle_area(a):
"""Given length of a side return area for an equilaternal triangle.
>>> round(equilaternal_triangle_area(5), 2)
10.83
"""
return triangle_area(a, a * math.sqrt(3) / 2.0) | equilaternal_triangle_area | def check(candidate):
assert round(candidate(3.5), 2) == 5.3
assert round(candidate(10), 2) == 43.3
assert round(candidate(7.8), 2) == 26.34
def test_check():
check(equilaternal_triangle_area)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Given length of a side and high return area for a triangle.
>>> triangle_area(5, 3)
7.5 | Given length of a side return area for an equilaternal triangle.
>>> round(equilaternal_triangle_area(5), 2)
10.83 | return a * h / 2.0 | return triangle_area(a, a * math.sqrt(3) / 2.0) | triangle_area(a: int, h: int) -> float | equilaternal_triangle_area(a) |
def fib4(n: int) -> int:
"""The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
""" | def fib4(n: int) -> int:
"""The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
results = [0, 0, 2, 0]
if n < 4:
return results[n]
for _ in range(4, n + 1):
results.append(results[-1] + results[-2] + results[-3] + results[-4])
results.pop(0)
return results[-1] | fib4 | def fib2_to_4(n: int):
"""Return the n-th value of sequence defined by the following recurrence relation.
fib2_to_4(0) -> 0
fib2_to_4(1) -> 1
fib2_to_4(n) -> fib4(n) if n is even
fib2_to_4(n) -> fib2_to_4(n-1) + fib2_to_4(n-2) if n is odd
>>> fib2_to_4(5)
8
>>> fib2_to_4(0)
0
>>> get_smallest_fib4_number(10)
14
""" | def fib2_to_4(n: int):
"""Return the n-th value of sequence defined by the following recurrence relation.
fib2_to_4(0) -> 0
fib2_to_4(1) -> 1
fib2_to_4(n) -> fib4(n) if n is even
fib2_to_4(n) -> fib2_to_4(n-1) + fib2_to_4(n-2) if n is odd
>>> fib2_to_4(5)
8
>>> fib2_to_4(0)
0
>>> get_smallest_fib4_number(10)
14
"""
if n < 2:
return n
if n % 2 == 0:
return fib4(n)
else:
return fib2_to_4(n - 1) + fib2_to_4(n - 2) | fib2_to_4 | def check(candidate):
assert candidate(4) == 2
assert candidate(8) == 28
assert candidate(11) == 145
def test_check():
check(fib2_to_4)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14 | Return the n-th value of sequence defined by the following recurrence relation.
fib2_to_4(0) -> 0
fib2_to_4(1) -> 1
fib2_to_4(n) -> fib4(n) if n is even
fib2_to_4(n) -> fib2_to_4(n-1) + fib2_to_4(n-2) if n is odd
>>> fib2_to_4(5)
8
>>> fib2_to_4(0)
0
>>> get_smallest_fib4_number(10)
14 | results = [0, 0, 2, 0]
if n < 4:
return results[n]
for _ in range(4, n + 1):
results.append(results[-1] + results[-2] + results[-3] + results[-4])
results.pop(0)
return results[-1] | if n < 2:
return n
if n % 2 == 0:
return fib4(n)
else:
return fib2_to_4(n - 1) + fib2_to_4(n - 2) | fib4(n: int) -> int | fib2_to_4(n: int) |
|
from typing import List | def median(l: List[int]) -> float:
"""Return median of elements in the list l.
>>> median([3, 1, 2, 4, 5])
3
>>> median([-10, 4, 6, 1000, 10, 20])
15.0
""" | def median(l: List[int]) -> float:
"""Return median of elements in the list l.
>>> median([3, 1, 2, 4, 5])
3
>>> median([-10, 4, 6, 1000, 10, 20])
15.0
"""
l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0 | median | def is_skewed(l: list):
"""Return "positive" if the list l is positive skewed, "negative" if the list l is negative skewed.
Otherwise, return "neutral".
A distribution with negative skew can have its mean greater than the median.
A distribution with positive skew can have its mean less than the median.
>>> is_skewed([1, 2, 3, 4, 5])
"neutral"
>>> is_skewed([-10, 4, 6, 1000, 10, 20])
"positive"
""" | def is_skewed(l: list):
"""Return "positive" if the list l is positive skewed, "negative" if the list l is negative skewed.
Otherwise, return "neutral".
A distribution with negative skew can have its mean greater than the median.
A distribution with positive skew can have its mean less than the median.
>>> is_skewed([1, 2, 3, 4, 5])
"neutral"
>>> is_skewed([-10, 4, 6, 1000, 10, 20])
"positive"
"""
median_val = median(l)
mean_val = sum(l) / len(l)
if mean_val > median_val:
return 'positive'
elif mean_val < median_val:
return 'negative'
else:
return 'neutral' | is_skewed | def check(candidate):
assert candidate([1, 1, 1, 1, 1]) == 'neutral'
assert candidate([3, 4, 8, 9, 10]) == 'negative'
assert candidate([8, 3, 6, 2, 3, 4, 5, 7]) == 'positive'
def test_check():
check(is_skewed)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Return median of elements in the list l.
>>> median([3, 1, 2, 4, 5])
3
>>> median([-10, 4, 6, 1000, 10, 20])
15.0 | Return "positive" if the list l is positive skewed, "negative" if the list l is negative skewed.
Otherwise, return "neutral".
A distribution with negative skew can have its mean greater than the median.
A distribution with positive skew can have its mean less than the median.
>>> is_skewed([1, 2, 3, 4, 5])
"neutral"
>>> is_skewed([-10, 4, 6, 1000, 10, 20])
"positive" | l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0 | median_val = median(l)
mean_val = sum(l) / len(l)
if mean_val > median_val:
return 'positive'
elif mean_val < median_val:
return 'negative'
else:
return 'neutral' | median(l: List[int]) -> float | is_skewed(l: list) |
def is_palindrome(text: str) -> bool:
"""
Checks if given string is a palindrome
>>> is_palindrome('')
True
>>> is_palindrome('aba')
True
>>> is_palindrome('aaaaa')
True
>>> is_palindrome('zbcd')
False
""" | def is_palindrome(text: str) -> bool:
"""
Checks if given string is a palindrome
>>> is_palindrome('')
True
>>> is_palindrome('aba')
True
>>> is_palindrome('aaaaa')
True
>>> is_palindrome('zbcd')
False
"""
for i in range(len(text)):
if text[i] != text[len(text) - 1 - i]:
return False
return True | is_palindrome | def is_even_palidrome(s: str) -> bool:
"""
Checks if the chacters located in the even indices in the
given string is a palindrome.
>>> is_palindrome('')
True
>>> is_palindrome('aba')
True
>>> is_palindrome('acaaa')
True
>>> is_palindrome('zbcd')
False
""" | def is_even_palidrome(s: str) -> bool:
"""
Checks if the chacters located in the even indices in the
given string is a palindrome.
>>> is_palindrome('')
True
>>> is_palindrome('aba')
True
>>> is_palindrome('acaaa')
True
>>> is_palindrome('zbcd')
False
"""
return is_palindrome(s[::2]) | is_even_palidrome | def check(candidate):
assert candidate('afbwccdhcebwa') == True
assert candidate('dabbrctdscfbeaa') == False
assert candidate('aabbcccybua') == True
def test_check():
check(is_even_palidrome)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Checks if given string is a palindrome
>>> is_palindrome('')
True
>>> is_palindrome('aba')
True
>>> is_palindrome('aaaaa')
True
>>> is_palindrome('zbcd')
False | Checks if the chacters located in the even indices in the
given string is a palindrome.
>>> is_palindrome('')
True
>>> is_palindrome('aba')
True
>>> is_palindrome('acaaa')
True
>>> is_palindrome('zbcd')
False | for i in range(len(text)):
if text[i] != text[len(text) - 1 - i]:
return False
return True | return is_palindrome(s[::2]) | is_palindrome(text: str) -> bool | is_even_palidrome(s: str) -> bool |
|
def modp(n: int, p: int) -> int:
"""Return 2^n modulo p (be aware of numerics).
>>> modp(3, 5)
3
>>> modp(1101, 101)
2
>>> modp(0, 101)
1
>>> modp(3, 11)
8
>>> modp(100, 101)
1
""" | def modp(n: int, p: int) -> int:
"""Return 2^n modulo p (be aware of numerics).
>>> modp(3, 5)
3
>>> modp(1101, 101)
2
>>> modp(0, 101)
1
>>> modp(3, 11)
8
>>> modp(100, 101)
1
"""
ret = 1
for i in range(n):
ret = 2 * ret % p
return ret | modp | def modp4(n: int, p: int) -> int:
"""Return 4^n modulo p (be aware of numerics).
>>> modp4(3, 5)
4
>>> modp4(1101, 101)
""" | def modp4(n: int, p: int) -> int:
"""Return 4^n modulo p (be aware of numerics).
>>> modp4(3, 5)
4
>>> modp4(1101, 101)
"""
return modp(2 * n, p) | modp4 | def check(candidate):
assert candidate(403, 22) == 20
assert candidate(441, 2) == 0
assert candidate(9, 9) == 1
def test_check():
check(modp4)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Return 2^n modulo p (be aware of numerics).
>>> modp(3, 5)
3
>>> modp(1101, 101)
2
>>> modp(0, 101)
1
>>> modp(3, 11)
8
>>> modp(100, 101)
1 | Return 4^n modulo p (be aware of numerics).
>>> modp4(3, 5)
4
>>> modp4(1101, 101) | ret = 1
for i in range(n):
ret = 2 * ret % p
return ret | return modp(2 * n, p) | modp(n: int, p: int) -> int | modp4(n: int, p: int) -> int |
|
def remove_vowels(text: str) -> str:
"""
remove_vowels is a function that takes string and returns string without vowels.
>>> remove_vowels('')
''
>>> remove_vowels('abcdef')
'bcdf'
>>> remove_vowels('aaaaa')
''
>>> remove_vowels('aaBAA')
'B'
>>> remove_vowels('zbcd')
'zbcd'
""" | def remove_vowels(text: str) -> str:
"""
remove_vowels is a function that takes string and returns string without vowels.
>>> remove_vowels('')
''
>>> remove_vowels('abcdef')
'bcdf'
>>> remove_vowels('aaaaa')
''
>>> remove_vowels('aaBAA')
'B'
>>> remove_vowels('zbcd')
'zbcd'
"""
return ''.join([s for s in text if s.lower() not in ['a', 'e', 'i', 'o', 'u']]) | remove_vowels | def equal(text1: str, text2: str) -> bool:
"""
check if the non-vowel characters in text1 and the non-vowel characters in texts is equal or not.
>>> count_vowels('apple', 'pple')
True
>>> count_vowels("pear", "par")
True
>>> count_vowels("test", "text")
False
""" | def equal(text1: str, text2: str) -> bool:
"""
check if the non-vowel characters in text1 and the non-vowel characters in texts is equal or not.
>>> count_vowels('apple', 'pple')
True
>>> count_vowels("pear", "par")
True
>>> count_vowels("test", "text")
False
"""
return remove_vowels(text1) == remove_vowels(text2) | equal | def check(candidate):
assert candidate('coke', 'cake') == True
assert candidate('desk', 'dust') == False
assert candidate('pandas', 'aeponeedosi') == True
def test_check():
check(equal)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | remove_vowels is a function that takes string and returns string without vowels.
>>> remove_vowels('')
''
>>> remove_vowels('abcdef')
'bcdf'
>>> remove_vowels('aaaaa')
''
>>> remove_vowels('aaBAA')
'B'
>>> remove_vowels('zbcd')
'zbcd' | check if the non-vowel characters in text1 and the non-vowel characters in texts is equal or not.
>>> count_vowels('apple', 'pple')
True
>>> count_vowels("pear", "par")
True
>>> count_vowels("test", "text")
False | return ''.join([s for s in text if s.lower() not in ['a', 'e', 'i', 'o', 'u']]) | return remove_vowels(text1) == remove_vowels(text2) | remove_vowels(text: str) -> str | equal(text1: str, text2: str) -> bool |
|
from typing import List | def below_threshold(l: List[int], t: int) -> bool:
"""Return True if all numbers in the list l are below threshold t.
>>> below_threshold([1, 2, 4, 10], 100)
True
>>> below_threshold([1, 20, 4, 10], 5)
False
""" | def below_threshold(l: List[int], t: int) -> bool:
"""Return True if all numbers in the list l are below threshold t.
>>> below_threshold([1, 2, 4, 10], 100)
True
>>> below_threshold([1, 20, 4, 10], 5)
False
"""
for e in l:
if e >= t:
return False
return True | below_threshold | def detect_high_blood_sugar(blood_sugar_graph: list) -> bool:
"""Return True if the symptom of high blood sugar is detected in the blood sugar graph.
High blood sugar rate means that the blood sugar level is above 100.
High blood sugar is detected even if only one high blood sugar level is present.
>>> blood_sugar_graph([65, 66, 70, 84, 81])
False
>>> blood_sugar_graph([65, 76, 81, 95, 101])
True
""" | def detect_high_blood_sugar(blood_sugar_graph: list) -> bool:
"""Return True if the symptom of high blood sugar is detected in the blood sugar graph.
High blood sugar rate means that the blood sugar level is above 100.
High blood sugar is detected even if only one high blood sugar level is present.
>>> blood_sugar_graph([65, 66, 70, 84, 81])
False
>>> blood_sugar_graph([65, 76, 81, 95, 101])
True
"""
return not below_threshold(blood_sugar_graph, 100) | detect_high_blood_sugar | def check(candidate):
assert round(candidate([77, 79, 75, 81, 82, 81, 84])) == False
assert round(candidate([101, 102, 99, 95, 93, 90])) == True
assert round(candidate([91, 95, 98, 101, 99])) == True
def test_check():
check(detect_high_blood_sugar)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Return True if all numbers in the list l are below threshold t.
>>> below_threshold([1, 2, 4, 10], 100)
True
>>> below_threshold([1, 20, 4, 10], 5)
False | Return True if the symptom of high blood sugar is detected in the blood sugar graph.
High blood sugar rate means that the blood sugar level is above 100.
High blood sugar is detected even if only one high blood sugar level is present.
>>> blood_sugar_graph([65, 66, 70, 84, 81])
False
>>> blood_sugar_graph([65, 76, 81, 95, 101])
True | for e in l:
if e >= t:
return False
return True | return not below_threshold(blood_sugar_graph, 100) | below_threshold(l: List[int], t: int) -> bool | detect_high_blood_sugar(blood_sugar_graph: list) -> bool |
def fib(n: int) -> int:
"""Return n-th Fibonacci number.
>>> fib(10)
55
>>> fib(1)
1
>>> fib(8)
21
""" | def fib(n: int) -> int:
"""Return n-th Fibonacci number.
>>> fib(10)
55
>>> fib(1)
1
>>> fib(8)
21
"""
if n == 0:
return 0
if n == 1:
return 1
return fib(n - 1) + fib(n - 2) | fib | def sum_fib(n: int):
"""Return sum of first n Fibonacci numbers.
You can use this property: sum_{i=1}^{n} F_i = F_{n+2} - 1
>>> sum_fib(8)
54
>>> sum_fib(1)
1
>>> sum_fib(6)
20
""" | def sum_fib(n: int):
"""Return sum of first n Fibonacci numbers.
You can use this property: sum_{i=1}^{n} F_i = F_{n+2} - 1
>>> sum_fib(8)
54
>>> sum_fib(1)
1
>>> sum_fib(6)
20
"""
return fib(n + 2) - 1 | sum_fib | def check(candidate):
assert candidate(3) == 4
assert candidate(10) == 143
assert candidate(7) == 33
def test_check():
check(sum_fib)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Return n-th Fibonacci number.
>>> fib(10)
55
>>> fib(1)
1
>>> fib(8)
21 | Return sum of first n Fibonacci numbers.
You can use this property: sum_{i=1}^{n} F_i = F_{n+2} - 1
>>> sum_fib(8)
54
>>> sum_fib(1)
1
>>> sum_fib(6)
20 | if n == 0:
return 0
if n == 1:
return 1
return fib(n - 1) + fib(n - 2) | return fib(n + 2) - 1 | fib(n: int) -> int | sum_fib(n: int) |
|
def correct_bracketing(brackets: str) -> bool:
"""brackets is a string of "<" and ">".
return True if every opening bracket has a corresponding closing bracket.
>>> correct_bracketing('<')
False
>>> correct_bracketing('<>')
True
>>> correct_bracketing('<<><>>')
True
>>> correct_bracketing('><<>')
False
""" | def correct_bracketing(brackets: str) -> bool:
"""brackets is a string of "<" and ">".
return True if every opening bracket has a corresponding closing bracket.
>>> correct_bracketing('<')
False
>>> correct_bracketing('<>')
True
>>> correct_bracketing('<<><>>')
True
>>> correct_bracketing('><<>')
False
"""
depth = 0
for b in brackets:
if b == '<':
depth += 1
else:
depth -= 1
if depth < 0:
return False
return depth == 0 | correct_bracketing | def extended_correct_bracketing(brackets: str) -> bool:
"""brackets is a string of "<", "(", ">" and ")".
There is opening bracket "<" and "(" and closing bracket ">", ")".
return True if every opening bracket has a corresponding closing bracket.
Note that it is ok not to match the shape between opening bracket and closing bracket.
For example, "<)" is also true.
>>> extended_correct_bracketing("(>")
True
>>> extended_correct_bracketing("(<)<<)>)")
True
>>> extended_correct_bracketing("><)(<>)")
False
""" | def extended_correct_bracketing(brackets: str) -> bool:
"""brackets is a string of "<", "(", ">" and ")".
There is opening bracket "<" and "(" and closing bracket ">", ")".
return True if every opening bracket has a corresponding closing bracket.
Note that it is ok not to match the shape between opening bracket and closing bracket.
For example, "<)" is also true.
>>> extended_correct_bracketing("(>")
True
>>> extended_correct_bracketing("(<)<<)>)")
True
>>> extended_correct_bracketing("><)(<>)")
False
"""
return correct_bracketing(brackets.replace('(', '<').replace(')', '>')) | extended_correct_bracketing | def check(candidate):
assert candidate('(<(>)>') == True
assert candidate('<<>)<()<>>') == True
assert candidate('<<(<))<>))<>>') == False
def test_check():
check(extended_correct_bracketing)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | brackets is a string of "<" and ">".
return True if every opening bracket has a corresponding closing bracket.
>>> correct_bracketing('<')
False
>>> correct_bracketing('<>')
True
>>> correct_bracketing('<<><>>')
True
>>> correct_bracketing('><<>')
False | brackets is a string of "<", "(", ">" and ")".
There is opening bracket "<" and "(" and closing bracket ">", ")".
return True if every opening bracket has a corresponding closing bracket.
Note that it is ok not to match the shape between opening bracket and closing bracket.
For example, "<)" is also true.
>>> extended_correct_bracketing("(>")
True
>>> extended_correct_bracketing("(<)<<)>)")
True
>>> extended_correct_bracketing("><)(<>)")
False | depth = 0
for b in brackets:
if b == '<':
depth += 1
else:
depth -= 1
if depth < 0:
return False
return depth == 0 | return correct_bracketing(brackets.replace('(', '<').replace(')', '>')) | correct_bracketing(brackets: str) -> bool | extended_correct_bracketing(brackets: str) -> bool |
|
def monotonic(l: list[int]) -> bool:
"""Return True is list elements are monotonically increasing or decreasing.
>>> monotonic([1, 2, 4, 20])
True
>>> monotonic([1, 20, 4, 10])
False
>>> monotonic([4, 1, 0, -10])
True
""" | def monotonic(l: list[int]) -> bool:
"""Return True is list elements are monotonically increasing or decreasing.
>>> monotonic([1, 2, 4, 20])
True
>>> monotonic([1, 20, 4, 10])
False
>>> monotonic([4, 1, 0, -10])
True
"""
if l == sorted(l) or l == sorted(l, reverse=True):
return True
return False | monotonic | def monotonic_2d(arr: list[list[int]]) -> bool:
"""Check if all rows and columns in the given array is monotonimally
increasing or decreasing.
Assume that the given array is rectangular.
>>> monotonic_2d([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
True
>>> monotonic_2d([[3, 5, 8], [2, 6, 9], [4, 7, 10]])
False
""" | def monotonic_2d(arr: list[list[int]]) -> bool:
"""Check if all rows and columns in the given array is monotonimally
increasing or decreasing.
Assume that the given array is rectangular.
>>> monotonic_2d([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
True
>>> monotonic_2d([[3, 5, 8], [2, 6, 9], [4, 7, 10]])
False
"""
for i in range(len(arr)):
if not monotonic(arr[i]):
return False
for j in range(len(arr[0])):
if not monotonic([arr[i][j] for i in range(len(arr))]):
return False
return True | monotonic_2d | def check(candidate):
assert candidate([[4, 9, 13], [24, 19, 15], [25, 26, 27]]) == True
assert candidate([[100, 0], [0, 100]]) == True
assert candidate([[8, 6, 4], [8, 6, 4], [7, 8, 5]]) == False
def test_check():
check(monotonic_2d)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Return True is list elements are monotonically increasing or decreasing.
>>> monotonic([1, 2, 4, 20])
True
>>> monotonic([1, 20, 4, 10])
False
>>> monotonic([4, 1, 0, -10])
True | Check if all rows and columns in the given array is monotonimally
increasing or decreasing.
Assume that the given array is rectangular.
>>> monotonic_2d([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
True
>>> monotonic_2d([[3, 5, 8], [2, 6, 9], [4, 7, 10]])
False | if l == sorted(l) or l == sorted(l, reverse=True):
return True
return False | for i in range(len(arr)):
if not monotonic(arr[i]):
return False
for j in range(len(arr[0])):
if not monotonic([arr[i][j] for i in range(len(arr))]):
return False
return True | monotonic(l: list[int]) -> bool | monotonic_2d(arr: list[list[int]]) -> bool |
|
def largest_prime_factor(n: int) -> int:
"""Return the largest prime factor of n. Assume n > 1 and is not a prime.
>>> largest_prime_factor(13195)
29
>>> largest_prime_factor(2048)
2
""" | def largest_prime_factor(n: int) -> int:
"""Return the largest prime factor of n. Assume n > 1 and is not a prime.
>>> largest_prime_factor(13195)
29
>>> largest_prime_factor(2048)
2
"""
def is_prime(k):
if k < 2:
return False
for i in range(2, k - 1):
if k % i == 0:
return False
return True
largest = 1
for j in range(2, n + 1):
if n % j == 0 and is_prime(j):
largest = max(largest, j)
return largest | largest_prime_factor | def get_exponent_of_largest_prime_factor(n: int):
"""Return the exponent of largest prime factor after factorizing n. Assume n > 1 and is not a prime.
>>> get_exponent_of_largest_prime_factor(13195) # 13195 = 5 * 7 * 13 * 29
1
>>> get_exponent_of_largest_prime_factor(2048) # 2048 = 2^11
11
""" | def get_exponent_of_largest_prime_factor(n: int):
"""Return the exponent of largest prime factor after factorizing n. Assume n > 1 and is not a prime.
>>> get_exponent_of_largest_prime_factor(13195) # 13195 = 5 * 7 * 13 * 29
1
>>> get_exponent_of_largest_prime_factor(2048) # 2048 = 2^11
11
"""
largest = largest_prime_factor(n)
ans = 1
while largest_prime_factor(n // largest) == largest:
ans += 1
n = n // largest
return ans | get_exponent_of_largest_prime_factor | def check(candidate):
assert candidate(162) == 4
assert candidate(506250) == 5
assert candidate(1071875) == 3
def test_check():
check(get_exponent_of_largest_prime_factor)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Return the largest prime factor of n. Assume n > 1 and is not a prime.
>>> largest_prime_factor(13195)
29
>>> largest_prime_factor(2048)
2 | Return the exponent of largest prime factor after factorizing n. Assume n > 1 and is not a prime.
>>> get_exponent_of_largest_prime_factor(13195) # 13195 = 5 * 7 * 13 * 29
1
>>> get_exponent_of_largest_prime_factor(2048) # 2048 = 2^11
11 |
def is_prime(k):
if k < 2:
return False
for i in range(2, k - 1):
if k % i == 0:
return False
return True
largest = 1
for j in range(2, n + 1):
if n % j == 0 and is_prime(j):
largest = max(largest, j)
return largest | largest = largest_prime_factor(n)
ans = 1
while largest_prime_factor(n // largest) == largest:
ans += 1
n = n // largest
return ans | largest_prime_factor(n: int) -> int | get_exponent_of_largest_prime_factor(n: int) |
|
def derivative(xs: list[int]) -> list[int]:
"""xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
>>> derivative([3, 1, 2, 4, 5])
[1, 4, 12, 20]
>>> derivative([1, 2, 3])
[2, 6]
""" | def derivative(xs: list[int]) -> list[int]:
"""xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
>>> derivative([3, 1, 2, 4, 5])
[1, 4, 12, 20]
>>> derivative([1, 2, 3])
[2, 6]
"""
return [i * x for (i, x) in enumerate(xs)][1:] | derivative | def second_derivative(xs: list[int]) -> list[int]:
"""xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return second derivative of this polynomial in the same form.
>>> derivative([3, 1, 2, 4, 5])
[4, 24, 60]
>>> derivative([1, 2, 3])
[6]
""" | def second_derivative(xs: list[int]) -> list[int]:
"""xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return second derivative of this polynomial in the same form.
>>> derivative([3, 1, 2, 4, 5])
[4, 24, 60]
>>> derivative([1, 2, 3])
[6]
"""
return derivative(derivative(xs)) | second_derivative | def check(candidate):
assert candidate([4, 9, 5, 2]) == [10, 12]
assert candidate([9, 8, 2, 5, 3]) == [4, 30, 36]
assert candidate([10, 8, 43, 4, 23, 4]) == [86, 24, 276, 80]
def test_check():
check(second_derivative)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
>>> derivative([3, 1, 2, 4, 5])
[1, 4, 12, 20]
>>> derivative([1, 2, 3])
[2, 6] | xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return second derivative of this polynomial in the same form.
>>> derivative([3, 1, 2, 4, 5])
[4, 24, 60]
>>> derivative([1, 2, 3])
[6] | return [i * x for (i, x) in enumerate(xs)][1:] | return derivative(derivative(xs)) | derivative(xs: list[int]) -> list[int] | second_derivative(xs: list[int]) -> list[int] |
|
def vowels_count(s: str) -> int:
"""Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
>>> vowels_count('abcde')
2
>>> vowels_count('ACEDY')
3
""" | def vowels_count(s: str) -> int:
"""Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
>>> vowels_count('abcde')
2
>>> vowels_count('ACEDY')
3
"""
vowels = 'aeiouAEIOU'
n_vowels = sum((c in vowels for c in s))
if s[-1] == 'y' or s[-1] == 'Y':
n_vowels += 1
return n_vowels | vowels_count | def is_vowel_enough(s: str) -> bool:
"""Check if the given string contains at least 30% of vowels.
>>> is_vowel_enough("abcde")
True
>>> is_vowel_enough("abc")
False
""" | def is_vowel_enough(s: str) -> bool:
"""Check if the given string contains at least 30% of vowels.
>>> is_vowel_enough("abcde")
True
>>> is_vowel_enough("abc")
False
"""
return vowels_count(s) / len(s) >= 0.3 | is_vowel_enough | def check(candidate):
assert candidate('Eulogia') == True
assert candidate('Drain') == True
assert candidate('hardship') == False
def test_check():
check(is_vowel_enough)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
>>> vowels_count('abcde')
2
>>> vowels_count('ACEDY')
3 | Check if the given string contains at least 30% of vowels.
>>> is_vowel_enough("abcde")
True
>>> is_vowel_enough("abc")
False | vowels = 'aeiouAEIOU'
n_vowels = sum((c in vowels for c in s))
if s[-1] == 'y' or s[-1] == 'Y':
n_vowels += 1
return n_vowels | return vowels_count(s) / len(s) >= 0.3 | vowels_count(s: str) -> int | is_vowel_enough(s: str) -> bool |
|
def circular_shift(x: int, shift: int) -> str:
"""Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
>>> circular_shift(12, 1)
'21'
>>> circular_shift(12, 2)
'12'
""" | def circular_shift(x: int, shift: int) -> str:
"""Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
>>> circular_shift(12, 1)
'21'
>>> circular_shift(12, 2)
'12'
"""
s = str(x)
if shift > len(s):
return s[::-1]
else:
return s[len(s) - shift:] + s[:len(s) - shift] | circular_shift | def is_circular_same(x: int, y: int) -> bool:
"""Return True if x and y are circularly same, False otherwise.
Circulary same means that any of circular shift of x is equal
to any of circular shift of y.
>>> is_circular_same(12, 21)
True
>>> is_circular_same(354, 453)
False
""" | def is_circular_same(x: int, y: int) -> bool:
"""Return True if x and y are circularly same, False otherwise.
Circulary same means that any of circular shift of x is equal
to any of circular shift of y.
>>> is_circular_same(12, 21)
True
>>> is_circular_same(354, 453)
False
"""
xs = set((circular_shift(x, i) for i in range(len(str(x)))))
ys = set((circular_shift(y, i) for i in range(len(str(y)))))
return len(xs.intersection(ys)) > 0 | is_circular_same | def check(candidate):
assert candidate(40273, 73402) is True
assert candidate(33, 23) is False
assert candidate(9447, 4794) is True
def test_check():
check(is_circular_same)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
>>> circular_shift(12, 1)
'21'
>>> circular_shift(12, 2)
'12' | Return True if x and y are circularly same, False otherwise.
Circulary same means that any of circular shift of x is equal
to any of circular shift of y.
>>> is_circular_same(12, 21)
True
>>> is_circular_same(354, 453)
False | s = str(x)
if shift > len(s):
return s[::-1]
else:
return s[len(s) - shift:] + s[:len(s) - shift] | xs = set((circular_shift(x, i) for i in range(len(str(x)))))
ys = set((circular_shift(y, i) for i in range(len(str(y)))))
return len(xs.intersection(ys)) > 0 | circular_shift(x: int, shift: int) -> str | is_circular_same(x: int, y: int) -> bool |
|
from typing import List | def digitSum(s: str) -> int:
"""Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
>>> digitSum('')
0
>>> digitSum('abAB')
131
>>> digitSum('abcCd')
67
>>> digitSum('helloE')
69
>>> digitSum('woArBld')
131
>>> digitSum('aAaaaXa')
153
""" | def digitSum(s: str) -> int:
"""Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
>>> digitSum('')
0
>>> digitSum('abAB')
131
>>> digitSum('abcCd')
67
>>> digitSum('helloE')
69
>>> digitSum('woArBld')
131
>>> digitSum('aAaaaXa')
153
"""
if s == '':
return 0
return sum((ord(char) if char.isupper() else 0 for char in s)) | digitSum | def sort_by_sum_upper_character_ascii(s: List[str]) -> List[str]:
"""Sort string based on the custom key defined as the sum of the upper
characters only' ASCII codes. The order of string should be preserved in
case of a tie.
Examples:
sort_by_digitsum(["", "abAB", "abcCd", "helloE"]) => ["", "abcCd", "helloE", "abAB"]
""" | def sort_by_sum_upper_character_ascii(s: List[str]) -> List[str]:
"""Sort string based on the custom key defined as the sum of the upper
characters only' ASCII codes. The order of string should be preserved in
case of a tie.
Examples:
sort_by_digitsum(["", "abAB", "abcCd", "helloE"]) => ["", "abcCd", "helloE", "abAB"]
"""
return sorted(s, key=digitSum) | sort_by_sum_upper_character_ascii | def check(candidate):
assert candidate(['abAB', 'ABab']) == ['abAB', 'ABab']
assert candidate(['AAAAAAAA', 'zzzzzzzzz', 'B']) == ['zzzzzzzzz', 'B', 'AAAAAAAA']
assert candidate(['My', 'Name', 'Is', 'Hulk']) == ['Hulk', 'Is', 'My', 'Name']
def test_check():
check(sort_by_sum_upper_character_ascii)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
>>> digitSum('')
0
>>> digitSum('abAB')
131
>>> digitSum('abcCd')
67
>>> digitSum('helloE')
69
>>> digitSum('woArBld')
131
>>> digitSum('aAaaaXa')
153 | Sort string based on the custom key defined as the sum of the upper
characters only' ASCII codes. The order of string should be preserved in
case of a tie.
Examples:
sort_by_digitsum(["", "abAB", "abcCd", "helloE"]) => ["", "abcCd", "helloE", "abAB"] | if s == '':
return 0
return sum((ord(char) if char.isupper() else 0 for char in s)) | return sorted(s, key=digitSum) | digitSum(s: str) -> int | sort_by_sum_upper_character_ascii(s: List[str]) -> List[str] |
def fruit_distribution(s: str, n: int) -> int:
"""
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
>>> fruit_distribution('5 apples and 6 oranges', 19)
8
>>> fruit_distribution('0 apples and 1 oranges', 3)
2
>>> fruit_distribution('2 apples and 3 oranges', 100)
95
>>> fruit_distribution('100 apples and 1 oranges', 120)
19
""" | def fruit_distribution(s: str, n: int) -> int:
"""
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
>>> fruit_distribution('5 apples and 6 oranges', 19)
8
>>> fruit_distribution('0 apples and 1 oranges', 3)
2
>>> fruit_distribution('2 apples and 3 oranges', 100)
95
>>> fruit_distribution('100 apples and 1 oranges', 120)
19
"""
lis = list()
for i in s.split(' '):
if i.isdigit():
lis.append(int(i))
return n - sum(lis) | fruit_distribution | def happy_fruit_distribution(s: str, n: int) -> int:
"""
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket, your task is to check the fruit distribution is happy or not.
The fruit distribution is happy when the number of the mango fruits is more than the
total number of remainders.
for example:
>>> happy_fruit_distribution('5 apples and 6 oranges', 19)
'not happy'
>>> fruit_distribution('0 apples and 1 oranges', 3)
'happy'
>>> fruit_distribution('2 apples and 3 oranges', 100)
'happy'
>>> fruit_distribution('100 apples and 1 oranges', 120)
'not happy'
""" | def happy_fruit_distribution(s: str, n: int) -> int:
"""
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket, your task is to check the fruit distribution is happy or not.
The fruit distribution is happy when the number of the mango fruits is more than the
total number of remainders.
for example:
>>> happy_fruit_distribution('5 apples and 6 oranges', 19)
'not happy'
>>> fruit_distribution('0 apples and 1 oranges', 3)
'happy'
>>> fruit_distribution('2 apples and 3 oranges', 100)
'happy'
>>> fruit_distribution('100 apples and 1 oranges', 120)
'not happy'
"""
return 'happy' if fruit_distribution(s, n) > n // 2 else 'not happy' | happy_fruit_distribution | def check(candidate):
assert candidate('3 apples and 3 oranges', 9) == 'not happy'
assert candidate('9 apples and 1 oranges', 21) == 'happy'
assert candidate('0 apples and 0 oranges', 1) == 'happy'
def test_check():
check(happy_fruit_distribution)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
>>> fruit_distribution('5 apples and 6 oranges', 19)
8
>>> fruit_distribution('0 apples and 1 oranges', 3)
2
>>> fruit_distribution('2 apples and 3 oranges', 100)
95
>>> fruit_distribution('100 apples and 1 oranges', 120)
19 | In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket, your task is to check the fruit distribution is happy or not.
The fruit distribution is happy when the number of the mango fruits is more than the
total number of remainders.
for example:
>>> happy_fruit_distribution('5 apples and 6 oranges', 19)
'not happy'
>>> fruit_distribution('0 apples and 1 oranges', 3)
'happy'
>>> fruit_distribution('2 apples and 3 oranges', 100)
'happy'
>>> fruit_distribution('100 apples and 1 oranges', 120)
'not happy' | lis = list()
for i in s.split(' '):
if i.isdigit():
lis.append(int(i))
return n - sum(lis) | return 'happy' if fruit_distribution(s, n) > n // 2 else 'not happy' | fruit_distribution(s: str, n: int) -> int | happy_fruit_distribution(s: str, n: int) -> int |
|
from typing import List | def pluck(arr: List[int]) -> List[int]:
"""
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in a list, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
>>> pluck([4, 2, 3])
[2, 1]
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
>>> pluck([1, 2, 3])
[2, 1]
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
>>> pluck([])
[]
Example 4:
>>> pluck([5, 0, 3, 0, 4, 2])
[0, 1]
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
""" | def pluck(arr: List[int]) -> List[int]:
"""
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in a list, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
>>> pluck([4, 2, 3])
[2, 1]
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
>>> pluck([1, 2, 3])
[2, 1]
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
>>> pluck([])
[]
Example 4:
>>> pluck([5, 0, 3, 0, 4, 2])
[0, 1]
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
"""
if len(arr) == 0:
return []
evens = list(filter(lambda x: x % 2 == 0, arr))
if evens == []:
return []
return [min(evens), arr.index(min(evens))] | pluck | def pluck_and_select_larger_branch(arr: List[int]) -> List[int]:
"""
Given a branch represented as a list of non-negative integers,
plucking (and then cutting) a node will result in the branch
being split into two (or fewer) seperate branches.
Among the divided branches,
return the one with a larger sum of the nodes that compose it.
If the sum of nodes in the divided branches is the same,
return the branch with the smaller index.
Assuming the sum of nodes in an empty branch is -1,
return `[]` if there are only empty branches remaining after plucking.
Examples:
>>> pluck_and_select_larger_branch([1, 3, 2, 4, 5])
[4, 5]
>>> pluck_and_select_larger_branch([1, 3, 2, 3, 1])
[1, 3]
>>> pluck_and_select_larger_branch([2, 1, 2, 1])
[1, 2, 1]
>>> pluck_and_select_larger_branch([2])
[]
>>> pluck_and_select_larger_branch([1, 3, 5, 7, 9])
[1, 3, 5, 7, 9]
""" | def pluck_and_select_larger_branch(arr: List[int]) -> List[int]:
"""
Given a branch represented as a list of non-negative integers,
plucking (and then cutting) a node will result in the branch
being split into two (or fewer) seperate branches.
Among the divided branches,
return the one with a larger sum of the nodes that compose it.
If the sum of nodes in the divided branches is the same,
return the branch with the smaller index.
Assuming the sum of nodes in an empty branch is -1,
return `[]` if there are only empty branches remaining after plucking.
Examples:
>>> pluck_and_select_larger_branch([1, 3, 2, 4, 5])
[4, 5]
>>> pluck_and_select_larger_branch([1, 3, 2, 3, 1])
[1, 3]
>>> pluck_and_select_larger_branch([2, 1, 2, 1])
[1, 2, 1]
>>> pluck_and_select_larger_branch([2])
[]
>>> pluck_and_select_larger_branch([1, 3, 5, 7, 9])
[1, 3, 5, 7, 9]
"""
plucked_node = pluck(arr)
if plucked_node == []:
return arr
(_, index) = plucked_node
left_branch = arr[:index]
right_branch = arr[index + 1:]
left_branch_value = sum(left_branch) if left_branch != [] else -1
right_branch_value = sum(right_branch) if right_branch != [] else -1
return left_branch if left_branch_value >= right_branch_value else right_branch | pluck_and_select_larger_branch | def check(candidate):
assert candidate([33, 12, 10, 10, 1, 3, 1]) == [33, 12]
assert candidate([1, 7, 12, 5, 3]) == [1, 7]
assert candidate([12, 9, 7, 8]) == [12, 9, 7]
assert candidate([100]) == []
assert candidate([11, 21, 31, 41, 51]) == [11, 21, 31, 41, 51]
assert candidate([]) == []
def test_check():
check(pluck_and_select_larger_branch)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | "Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in a list, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
>>> pluck([4, 2, 3])
[2, 1]
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
>>> pluck([1, 2, 3])
[2, 1]
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
>>> pluck([])
[]
Example 4:
>>> pluck([5, 0, 3, 0, 4, 2])
[0, 1]
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value | Given a branch represented as a list of non-negative integers,
plucking (and then cutting) a node will result in the branch
being split into two (or fewer) seperate branches.
Among the divided branches,
return the one with a larger sum of the nodes that compose it.
If the sum of nodes in the divided branches is the same,
return the branch with the smaller index.
Assuming the sum of nodes in an empty branch is -1,
return `[]` if there are only empty branches remaining after plucking.
Examples:
>>> pluck_and_select_larger_branch([1, 3, 2, 4, 5])
[4, 5]
>>> pluck_and_select_larger_branch([1, 3, 2, 3, 1])
[1, 3]
>>> pluck_and_select_larger_branch([2, 1, 2, 1])
[1, 2, 1]
>>> pluck_and_select_larger_branch([2])
[]
>>> pluck_and_select_larger_branch([1, 3, 5, 7, 9])
[1, 3, 5, 7, 9] | if len(arr) == 0:
return []
evens = list(filter(lambda x: x % 2 == 0, arr))
if evens == []:
return []
return [min(evens), arr.index(min(evens))] | plucked_node = pluck(arr)
if plucked_node == []:
return arr
(_, index) = plucked_node
left_branch = arr[:index]
right_branch = arr[index + 1:]
left_branch_value = sum(left_branch) if left_branch != [] else -1
right_branch_value = sum(right_branch) if right_branch != [] else -1
return left_branch if left_branch_value >= right_branch_value else right_branch | pluck(arr: List[int]) -> List[int] | pluck_and_select_larger_branch(arr: List[int]) -> List[int] |
from typing import List | def search(lst: List[int]) -> int:
"""
You are given a non-empty list of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the list.
If no such a value exist, return -1.
Examples:
>>> search([4, 1, 2, 2, 3, 1])
2
>>> search([1, 2, 2, 3, 3, 3, 4, 4, 4])
3
>>> search([5, 5, 4, 4, 4])
-1
""" | def search(lst: List[int]) -> int:
"""
You are given a non-empty list of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the list.
If no such a value exist, return -1.
Examples:
>>> search([4, 1, 2, 2, 3, 1])
2
>>> search([1, 2, 2, 3, 3, 3, 4, 4, 4])
3
>>> search([5, 5, 4, 4, 4])
-1
"""
frq = [0] * (max(lst) + 1)
for i in lst:
frq[i] += 1
ans = -1
for i in range(1, len(frq)):
if frq[i] >= i:
ans = i
return ans | search | def remove_integers_with_higher_frequency(lst: List[int]) -> List[int]:
"""
Return a list obtained from the given non-empty list of positive integers
by removing all integers whose frequency is greater than or equal to the integer itself.
Ensure that the order of elements between them is preserverd.
Examples:
>>> remove_integers_with_higher_frequency([2, 3, 3, 3, 3, 3, 4, 4])
[2, 4, 4]
>>> remove_integers_with_higher_frequency([3, 2, 4, 5, 1, 4, 3, 2])
[3, 4, 5, 4, 3]
>>> remove_integers_with_higher_frequency([2, 3, 3, 4, 4, 4])
[2, 3, 3, 4, 4, 4]
""" | def remove_integers_with_higher_frequency(lst: List[int]) -> List[int]:
"""
Return a list obtained from the given non-empty list of positive integers
by removing all integers whose frequency is greater than or equal to the integer itself.
Ensure that the order of elements between them is preserverd.
Examples:
>>> remove_integers_with_higher_frequency([2, 3, 3, 3, 3, 3, 4, 4])
[2, 4, 4]
>>> remove_integers_with_higher_frequency([3, 2, 4, 5, 1, 4, 3, 2])
[3, 4, 5, 4, 3]
>>> remove_integers_with_higher_frequency([2, 3, 3, 4, 4, 4])
[2, 3, 3, 4, 4, 4]
"""
integer = search(lst)
while integer != -1:
lst = [i for i in lst if i != integer]
integer = search(lst)
return lst | remove_integers_with_higher_frequency | def check(candidate):
assert candidate([11, 5, 4, 22, 4, 33, 5, 5, 5, 44, 4, 55, 4, 5]) == [11, 22, 33, 44, 55]
assert candidate([1, 5, 2, 4, 3, 5, 4, 5, 3, 1, 2, 1, 3, 4, 3, 3, 2, 5]) == [5, 4, 5, 4, 5, 4, 5]
assert candidate([3, 4, 4, 2, 4, 3]) == [3, 4, 4, 2, 4, 3]
assert candidate([10, 10, 10, 10, 10, 10, 10, 10, 10]) == [10, 10, 10, 10, 10, 10, 10, 10, 10]
assert candidate([100]) == [100]
def test_check():
check(remove_integers_with_higher_frequency)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | You are given a non-empty list of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the list.
If no such a value exist, return -1.
Examples:
>>> search([4, 1, 2, 2, 3, 1])
2
>>> search([1, 2, 2, 3, 3, 3, 4, 4, 4])
3
>>> search([5, 5, 4, 4, 4])
-1 | Return a list obtained from the given non-empty list of positive integers
by removing all integers whose frequency is greater than or equal to the integer itself.
Ensure that the order of elements between them is preserverd.
Examples:
>>> remove_integers_with_higher_frequency([2, 3, 3, 3, 3, 3, 4, 4])
[2, 4, 4]
>>> remove_integers_with_higher_frequency([3, 2, 4, 5, 1, 4, 3, 2])
[3, 4, 5, 4, 3]
>>> remove_integers_with_higher_frequency([2, 3, 3, 4, 4, 4])
[2, 3, 3, 4, 4, 4] | frq = [0] * (max(lst) + 1)
for i in lst:
frq[i] += 1
ans = -1
for i in range(1, len(frq)):
if frq[i] >= i:
ans = i
return ans | integer = search(lst)
while integer != -1:
lst = [i for i in lst if i != integer]
integer = search(lst)
return lst | search(lst: List[int]) -> int | remove_integers_with_higher_frequency(lst: List[int]) -> List[int] |
def strange_sort_list(lst: list[int]) -> list[int]:
"""
Given list of integers, return list in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
>>> strange_sort_list([1, 2, 3, 4])
[1, 4, 3, 2]
>>> strange_sort_list([5, 5, 5, 5])
[5, 5, 5, 5]
>>> strange_sort_list([])
[]
""" | def strange_sort_list(lst: list[int]) -> list[int]:
"""
Given list of integers, return list in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
>>> strange_sort_list([1, 2, 3, 4])
[1, 4, 3, 2]
>>> strange_sort_list([5, 5, 5, 5])
[5, 5, 5, 5]
>>> strange_sort_list([])
[]
"""
(res, switch) = ([], True)
while lst:
res.append(min(lst) if switch else max(lst))
lst.remove(res[-1])
switch = not switch
return res | strange_sort_list | def extended_strange_sort_list(lst: list[int]) -> list[int]:
"""
Given list of integers, return list in strange order.
Extended strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then maximum and minimum and so on.
Examples:
>>> extended_strange_sort_list([1, 2, 3, 4])
[1, 4, 3, 2]
>>> extended_strange_sort_list([5, 5, 5, 5])
[5, 5, 5, 5]
>>> extended_strange_sort_list([])
[]
""" | def extended_strange_sort_list(lst: list[int]) -> list[int]:
"""
Given list of integers, return list in strange order.
Extended strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then maximum and minimum and so on.
Examples:
>>> extended_strange_sort_list([1, 2, 3, 4])
[1, 4, 3, 2]
>>> extended_strange_sort_list([5, 5, 5, 5])
[5, 5, 5, 5]
>>> extended_strange_sort_list([])
[]
"""
res = []
for idx in range(len(lst)):
res.append(min(lst) if idx % 4 in [0, 3] else max(lst))
lst.remove(res[-1])
return res | extended_strange_sort_list | def check(candidate):
assert candidate([9, 2, 4, 3, 8, 9]) == [2, 9, 9, 3, 4, 8]
assert candidate([5, 2, 1, 7, 5, 4, 4, 9]) == [1, 9, 7, 2, 4, 5, 5, 4]
assert candidate([8, 7, 2, 4, 6, 5, 1, 5]) == [1, 8, 7, 2, 4, 6, 5, 5]
def test_check():
check(extended_strange_sort_list)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Given list of integers, return list in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
>>> strange_sort_list([1, 2, 3, 4])
[1, 4, 3, 2]
>>> strange_sort_list([5, 5, 5, 5])
[5, 5, 5, 5]
>>> strange_sort_list([])
[] | Given list of integers, return list in strange order.
Extended strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then maximum and minimum and so on.
Examples:
>>> extended_strange_sort_list([1, 2, 3, 4])
[1, 4, 3, 2]
>>> extended_strange_sort_list([5, 5, 5, 5])
[5, 5, 5, 5]
>>> extended_strange_sort_list([])
[] | (res, switch) = ([], True)
while lst:
res.append(min(lst) if switch else max(lst))
lst.remove(res[-1])
switch = not switch
return res | res = []
for idx in range(len(lst)):
res.append(min(lst) if idx % 4 in [0, 3] else max(lst))
lst.remove(res[-1])
return res | strange_sort_list(lst: list[int]) -> list[int] | extended_strange_sort_list(lst: list[int]) -> list[int] |
|
from typing import List | def triangle_area(a: int, b: int, c: int) -> float:
"""
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
>>> triangle_area(3, 4, 5)
6.0
>>> triangle_area(1, 2, 10)
-1
""" | def triangle_area(a: int, b: int, c: int) -> float:
"""
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
>>> triangle_area(3, 4, 5)
6.0
>>> triangle_area(1, 2, 10)
-1
"""
if a + b <= c or a + c <= b or b + c <= a:
return -1
s = (a + b + c) / 2
area = (s * (s - a) * (s - b) * (s - c)) ** 0.5
area = round(area, 2)
return area | triangle_area | def sum_of_triangle_areas(triangles: List[List[int]]) -> float:
"""
Return the sum of the areas of all given triangles.
Each triangle is given as a list of the lengths of its three sides.
If the input includes any invalid triangles, return -1.
Example:
>>> sum_of_triangle_areas([[3, 4, 5], [5, 12, 13]])
36.0
>>> sum_of_triangle_areas([[5, 12, 13], [1, 1, 10]])
-1
""" | def sum_of_triangle_areas(triangles: List[List[int]]) -> float:
"""
Return the sum of the areas of all given triangles.
Each triangle is given as a list of the lengths of its three sides.
If the input includes any invalid triangles, return -1.
Example:
>>> sum_of_triangle_areas([[3, 4, 5], [5, 12, 13]])
36.0
>>> sum_of_triangle_areas([[5, 12, 13], [1, 1, 10]])
-1
"""
triangle_areas = [triangle_area(a, b, c) for (a, b, c) in triangles]
if -1 in triangle_areas:
return -1
else:
return sum(triangle_areas) | sum_of_triangle_areas | def check(candidate):
assert candidate([[3, 4, 5], [5, 12, 13], [5, 5, 6]]) == 48.0
assert candidate([[6, 8, 10], [10, 10, 12]]) == 72.0
assert candidate([[3, 4, 5], [3, 4, 7]]) == -1.0
def test_check():
check(sum_of_triangle_areas)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
>>> triangle_area(3, 4, 5)
6.0
>>> triangle_area(1, 2, 10)
-1 | Return the sum of the areas of all given triangles.
Each triangle is given as a list of the lengths of its three sides.
If the input includes any invalid triangles, return -1.
Example:
>>> sum_of_triangle_areas([[3, 4, 5], [5, 12, 13]])
36.0
>>> sum_of_triangle_areas([[5, 12, 13], [1, 1, 10]])
-1 | if a + b <= c or a + c <= b or b + c <= a:
return -1
s = (a + b + c) / 2
area = (s * (s - a) * (s - b) * (s - c)) ** 0.5
area = round(area, 2)
return area | triangle_areas = [triangle_area(a, b, c) for (a, b, c) in triangles]
if -1 in triangle_areas:
return -1
else:
return sum(triangle_areas) | triangle_area(a: int, b: int, c: int) -> float | sum_of_triangle_areas(triangles: List[List[int]]) -> float |
from typing import List | def will_it_fly(q: List[int], w: int) -> bool:
"""
Write a function that returns True if the object q will fly, and False otherwise.
The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
>>> will_it_fly([1, 2], 5)
False
# 1+2 is less than the maximum possible weight, but it's unbalanced.
>>> will_it_fly([3, 2, 3], 1)
False
# it's balanced, but 3+2+3 is more than the maximum possible weight.
>>> will_it_fly([3, 2, 3], 9)
True
# 3+2+3 is less than the maximum possible weight, and it's balanced.
>>> will_it_fly([3], 5)
True
# 3 is less than the maximum possible weight, and it's balanced.
""" | def will_it_fly(q: List[int], w: int) -> bool:
"""
Write a function that returns True if the object q will fly, and False otherwise.
The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
>>> will_it_fly([1, 2], 5)
False
# 1+2 is less than the maximum possible weight, but it's unbalanced.
>>> will_it_fly([3, 2, 3], 1)
False
# it's balanced, but 3+2+3 is more than the maximum possible weight.
>>> will_it_fly([3, 2, 3], 9)
True
# 3+2+3 is less than the maximum possible weight, and it's balanced.
>>> will_it_fly([3], 5)
True
# 3 is less than the maximum possible weight, and it's balanced.
"""
if sum(q) > w:
return False
(i, j) = (0, len(q) - 1)
while i < j:
if q[i] != q[j]:
return False
i += 1
j -= 1
return True | will_it_fly | def is_palindrome(q: List[int]) -> bool:
"""
Write a function that determines whether a given list is a palindrome.
Example:
>>> is_palindrome([1, 2])
False
>>> is_palindrome([1, 2, 1])
True
""" | def is_palindrome(q: List[int]) -> bool:
"""
Write a function that determines whether a given list is a palindrome.
Example:
>>> is_palindrome([1, 2])
False
>>> is_palindrome([1, 2, 1])
True
"""
return will_it_fly(q, sum(q)) | is_palindrome | def check(candidate):
assert candidate([1, 2, 3, 4, 5, 6, 7, 8]) is False
assert candidate([1, 2, 3, 2, 1]) is True
assert candidate([1, 1, 1, 1]) is True
def test_check():
check(is_palindrome)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Write a function that returns True if the object q will fly, and False otherwise.
The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
>>> will_it_fly([1, 2], 5)
False
# 1+2 is less than the maximum possible weight, but it's unbalanced.
>>> will_it_fly([3, 2, 3], 1)
False
# it's balanced, but 3+2+3 is more than the maximum possible weight.
>>> will_it_fly([3, 2, 3], 9)
True
# 3+2+3 is less than the maximum possible weight, and it's balanced.
>>> will_it_fly([3], 5)
True
# 3 is less than the maximum possible weight, and it's balanced. | Write a function that determines whether a given list is a palindrome.
Example:
>>> is_palindrome([1, 2])
False
>>> is_palindrome([1, 2, 1])
True | if sum(q) > w:
return False
(i, j) = (0, len(q) - 1)
while i < j:
if q[i] != q[j]:
return False
i += 1
j -= 1
return True | return will_it_fly(q, sum(q)) | will_it_fly(q: List[int], w: int) -> bool | is_palindrome(q: List[int]) -> bool |
from typing import List | def smallest_change(arr: List[int]) -> int:
"""
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
>>> smallest_change([1, 2, 3, 5, 4, 7, 9, 6])
4
>>> smallest_change([1, 2, 3, 4, 3, 2, 2])
1
>>> smallest_change([1, 2, 3, 2, 1])
0
""" | def smallest_change(arr: List[int]) -> int:
"""
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
>>> smallest_change([1, 2, 3, 5, 4, 7, 9, 6])
4
>>> smallest_change([1, 2, 3, 4, 3, 2, 2])
1
>>> smallest_change([1, 2, 3, 2, 1])
0
"""
ans = 0
for i in range(len(arr) // 2):
if arr[i] != arr[len(arr) - i - 1]:
ans += 1
return ans | smallest_change | def is_palindrome(arr: List[int]) -> bool:
"""
Write a function that determines whether a given list is a palindrome.
Example:
>>> is_palindrome([1, 2])
False
>>> is_palindrome([1, 2, 1])
True
""" | def is_palindrome(arr: List[int]) -> bool:
"""
Write a function that determines whether a given list is a palindrome.
Example:
>>> is_palindrome([1, 2])
False
>>> is_palindrome([1, 2, 1])
True
"""
return smallest_change(arr) == 0 | is_palindrome | def check(candidate):
assert candidate([1, 2, 3, 4, 5, 6, 7, 8]) is False
assert candidate([1, 2, 3, 2, 1]) is True
assert candidate([1, 1, 1, 1]) is True
def test_check():
check(is_palindrome)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
>>> smallest_change([1, 2, 3, 5, 4, 7, 9, 6])
4
>>> smallest_change([1, 2, 3, 4, 3, 2, 2])
1
>>> smallest_change([1, 2, 3, 2, 1])
0 | Write a function that determines whether a given list is a palindrome.
Example:
>>> is_palindrome([1, 2])
False
>>> is_palindrome([1, 2, 1])
True | ans = 0
for i in range(len(arr) // 2):
if arr[i] != arr[len(arr) - i - 1]:
ans += 1
return ans | return smallest_change(arr) == 0 | smallest_change(arr: List[int]) -> int | is_palindrome(arr: List[int]) -> bool |
from typing import List | def total_match(lst1: List[str], lst2: List[str]) -> List[str]:
"""
Write a function that accepts two lists of strings and returns the list that has
total number of chars in the all strings of the list less than the other list.
if the two lists have the same number of chars, return the first list.
Examples
>>> total_match([], [])
[]
>>> total_match(['hi', 'admin'], ['hI', 'Hi'])
['hI', 'Hi']
>>> total_match(['hi', 'admin'], ['hi', 'hi', 'admin', 'project'])
['hi', 'admin']
>>> total_match(['hi', 'admin'], ['hI', 'hi', 'hi'])
['hI', 'hi', 'hi']
>>> total_match(['4'], ['1', '2', '3', '4', '5'])
['4']
""" | def total_match(lst1: List[str], lst2: List[str]) -> List[str]:
"""
Write a function that accepts two lists of strings and returns the list that has
total number of chars in the all strings of the list less than the other list.
if the two lists have the same number of chars, return the first list.
Examples
>>> total_match([], [])
[]
>>> total_match(['hi', 'admin'], ['hI', 'Hi'])
['hI', 'Hi']
>>> total_match(['hi', 'admin'], ['hi', 'hi', 'admin', 'project'])
['hi', 'admin']
>>> total_match(['hi', 'admin'], ['hI', 'hi', 'hi'])
['hI', 'hi', 'hi']
>>> total_match(['4'], ['1', '2', '3', '4', '5'])
['4']
"""
l1 = 0
for st in lst1:
l1 += len(st)
l2 = 0
for st in lst2:
l2 += len(st)
if l1 <= l2:
return lst1
else:
return lst2 | total_match | def total_match_three(lst1: List[str], lst2: List[str], lst3: List[str]) -> List[str]:
"""
Return the list of strings with the smallest total number of characters
among the three string lists.
If some lists have the same total number of characters,
return the list that appears ealier.
Examples:
>>> total_match_three(['a'], ['a', 'b'], ['a', 'b', 'c'])
['a']
>>> total_match_three(['abcd'], ['a', 'b'])
['a', 'b']
>>> total_match_three(['a'], ['b'], ['c'])
['a']
""" | def total_match_three(lst1: List[str], lst2: List[str], lst3: List[str]) -> List[str]:
"""
Return the list of strings with the smallest total number of characters
among the three string lists.
If some lists have the same total number of characters,
return the list that appears ealier.
Examples:
>>> total_match_three(['a'], ['a', 'b'], ['a', 'b', 'c'])
['a']
>>> total_match_three(['abcd'], ['a', 'b'])
['a', 'b']
>>> total_match_three(['a'], ['b'], ['c'])
['a']
"""
return total_match(total_match(lst1, lst2), lst3) | total_match_three | def check(candidate):
assert candidate(['total', 'match', 'three'], ['I', 'love', 'you'], ['This', 'is', 'good']) == ['I', 'love', 'you']
assert candidate(['a', 'aa', 'aaa'], ['aaaaa'], ['aaaaaaa']) == ['aaaaa']
assert candidate(['a', 'bcd'], ['ab', 'cd'], ['abc', 'd']) == ['a', 'bcd']
def test_check():
check(total_match_three)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Write a function that accepts two lists of strings and returns the list that has
total number of chars in the all strings of the list less than the other list.
if the two lists have the same number of chars, return the first list.
Examples
>>> total_match([], [])
[]
>>> total_match(['hi', 'admin'], ['hI', 'Hi'])
['hI', 'Hi']
>>> total_match(['hi', 'admin'], ['hi', 'hi', 'admin', 'project'])
['hi', 'admin']
>>> total_match(['hi', 'admin'], ['hI', 'hi', 'hi'])
['hI', 'hi', 'hi']
>>> total_match(['4'], ['1', '2', '3', '4', '5'])
['4'] | Return the list of strings with the smallest total number of characters
among the three string lists.
If some lists have the same total number of characters,
return the list that appears ealier.
Examples:
>>> total_match_three(['a'], ['a', 'b'], ['a', 'b', 'c'])
['a']
>>> total_match_three(['abcd'], ['a', 'b'])
['a', 'b']
>>> total_match_three(['a'], ['b'], ['c'])
['a'] | l1 = 0
for st in lst1:
l1 += len(st)
l2 = 0
for st in lst2:
l2 += len(st)
if l1 <= l2:
return lst1
else:
return lst2 | return total_match(total_match(lst1, lst2), lst3) | total_match(lst1: List[str], lst2: List[str]) -> List[str] | total_match_three(lst1: List[str], lst2: List[str], lst3: List[str]) -> List[str] |
from typing import List | def is_multiply_prime(a: int) -> bool:
"""Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
>>> is_multiply_prime(30)
True
30 = 2 * 3 * 5
""" | def is_multiply_prime(a: int) -> bool:
"""Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
>>> is_multiply_prime(30)
True
30 = 2 * 3 * 5
"""
def is_prime(n):
for j in range(2, n):
if n % j == 0:
return False
return True
for i in range(2, 101):
if not is_prime(i):
continue
for j in range(2, 101):
if not is_prime(j):
continue
for k in range(2, 101):
if not is_prime(k):
continue
if i * j * k == a:
return True
return False | is_multiply_prime | def sum_of_multiply_primes(nums: List[int]) -> int:
"""
Return the sum of numbers among the given numbers
that can be expressed as the product of three prime numbers.
Examples:
>>> sum_of_multiply_prime([30, 42])
72
>>> sum_of_multiply_prime([30, 35, 40, 42])
72
""" | def sum_of_multiply_primes(nums: List[int]) -> int:
"""
Return the sum of numbers among the given numbers
that can be expressed as the product of three prime numbers.
Examples:
>>> sum_of_multiply_prime([30, 42])
72
>>> sum_of_multiply_prime([30, 35, 40, 42])
72
"""
return sum([n for n in nums if is_multiply_prime(n)]) | sum_of_multiply_primes | def check(candidate):
assert candidate([30, 42, 66, 70, 78]) == 286
assert candidate([25, 40, 55, 72, 77]) == 0
assert candidate([25, 30, 40, 42, 55, 66, 70, 72, 77, 78]) == 286
def test_check():
check(sum_of_multiply_primes)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
>>> is_multiply_prime(30)
True
30 = 2 * 3 * 5 | Return the sum of numbers among the given numbers
that can be expressed as the product of three prime numbers.
Examples:
>>> sum_of_multiply_prime([30, 42])
72
>>> sum_of_multiply_prime([30, 35, 40, 42])
72 |
def is_prime(n):
for j in range(2, n):
if n % j == 0:
return False
return True
for i in range(2, 101):
if not is_prime(i):
continue
for j in range(2, 101):
if not is_prime(j):
continue
for k in range(2, 101):
if not is_prime(k):
continue
if i * j * k == a:
return True
return False | return sum([n for n in nums if is_multiply_prime(n)]) | is_multiply_prime(a: int) -> bool | sum_of_multiply_primes(nums: List[int]) -> int |
def is_simple_power(x: int, n: int) -> bool:
"""Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
>>> is_simple_power(1, 4)
True
>>> is_simple_power(2, 2)
True
>>> is_simple_power(8, 2)
True
>>> is_simple_power(3, 2)
False
>>> is_simple_power(3, 1)
False
>>> is_simple_power(5, 3)
False
""" | def is_simple_power(x: int, n: int) -> bool:
"""Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
>>> is_simple_power(1, 4)
True
>>> is_simple_power(2, 2)
True
>>> is_simple_power(8, 2)
True
>>> is_simple_power(3, 2)
False
>>> is_simple_power(3, 1)
False
>>> is_simple_power(5, 3)
False
"""
if n == 1:
return x == 1
power = 1
while power < x:
power = power * n
return power == x | is_simple_power | def log(n: int, x: int) -> int:
"""
Implement a function that calculates the value log_n(x)
and returns it if it is an integer, otherwise returns -1.
Examples:
>>> log(2, 8)
3
>>> log(2, 3)
-1
""" | def log(n: int, x: int) -> int:
"""
Implement a function that calculates the value log_n(x)
and returns it if it is an integer, otherwise returns -1.
Examples:
>>> log(2, 8)
3
>>> log(2, 3)
-1
"""
if is_simple_power(x, n):
value = 0
while x > 1:
x /= n
value += 1
return value
else:
return -1 | log | def check(candidate):
assert candidate(2, 1024) == 10
assert candidate(3, 27) == 3
assert candidate(3, 8) == -1
def test_check():
check(log)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
>>> is_simple_power(1, 4)
True
>>> is_simple_power(2, 2)
True
>>> is_simple_power(8, 2)
True
>>> is_simple_power(3, 2)
False
>>> is_simple_power(3, 1)
False
>>> is_simple_power(5, 3)
False | Implement a function that calculates the value log_n(x)
and returns it if it is an integer, otherwise returns -1.
Examples:
>>> log(2, 8)
3
>>> log(2, 3)
-1 | if n == 1:
return x == 1
power = 1
while power < x:
power = power * n
return power == x | if is_simple_power(x, n):
value = 0
while x > 1:
x /= n
value += 1
return value
else:
return -1 | is_simple_power(x: int, n: int) -> bool | log(n: int, x: int) -> int |
|
from typing import List | def iscube(a: int) -> bool:
"""
Write a function that takes an integer a and returns True
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
>>> iscube(1)
True
>>> iscube(2)
False
>>> iscube(-1)
True
>>> iscube(64)
True
>>> iscube(0)
True
>>> iscube(180)
False
""" | def iscube(a: int) -> bool:
"""
Write a function that takes an integer a and returns True
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
>>> iscube(1)
True
>>> iscube(2)
False
>>> iscube(-1)
True
>>> iscube(64)
True
>>> iscube(0)
True
>>> iscube(180)
False
"""
a = abs(a)
return int(round(a ** (1.0 / 3))) ** 3 == a | iscube | def num_cube_pairs(nums1: List[int], nums2: List[int]) -> int:
"""
Find the number of pairs (n1, n2) where n1 + n2 equals to
a cube of some integer number. (n1 in nums1 and n2 in nums2)
Examples:
>>> num_cube_pairs([1, 2, 3], [1, 2, 3])
0
>>> num_cube_pairs([1, 2, 3], [5, 6])
2
""" | def num_cube_pairs(nums1: List[int], nums2: List[int]) -> int:
"""
Find the number of pairs (n1, n2) where n1 + n2 equals to
a cube of some integer number. (n1 in nums1 and n2 in nums2)
Examples:
>>> num_cube_pairs([1, 2, 3], [1, 2, 3])
0
>>> num_cube_pairs([1, 2, 3], [5, 6])
2
"""
return len([1 for n1 in nums1 for n2 in nums2 if iscube(n1 + n2)]) | num_cube_pairs | def check(candidate):
assert candidate([1, 2, 3, 4], [1, 2, 3, 4]) == 1
assert candidate([1, 2, 3, 4], [-2, 0, 2, 4]) == 5
assert candidate([5, 25], [39, 100]) == 2
def test_check():
check(num_cube_pairs)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Write a function that takes an integer a and returns True
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
>>> iscube(1)
True
>>> iscube(2)
False
>>> iscube(-1)
True
>>> iscube(64)
True
>>> iscube(0)
True
>>> iscube(180)
False | Find the number of pairs (n1, n2) where n1 + n2 equals to
a cube of some integer number. (n1 in nums1 and n2 in nums2)
Examples:
>>> num_cube_pairs([1, 2, 3], [1, 2, 3])
0
>>> num_cube_pairs([1, 2, 3], [5, 6])
2 | a = abs(a)
return int(round(a ** (1.0 / 3))) ** 3 == a | return len([1 for n1 in nums1 for n2 in nums2 if iscube(n1 + n2)]) | iscube(a: int) -> bool | num_cube_pairs(nums1: List[int], nums2: List[int]) -> int |
def hex_key(num: str) -> int:
"""You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
>>> hex_key('AB')
1
>>> hex_key('1077E')
2
>>> hex_key('ABED1A33')
4
>>> hex_key('123456789ABCDEF0')
6
>>> hex_key('2020')
2
""" | def hex_key(num: str) -> int:
"""You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
>>> hex_key('AB')
1
>>> hex_key('1077E')
2
>>> hex_key('ABED1A33')
4
>>> hex_key('123456789ABCDEF0')
6
>>> hex_key('2020')
2
"""
primes = ('2', '3', '5', '7', 'B', 'D')
total = 0
for i in range(0, len(num)):
if num[i] in primes:
total += 1
return total | hex_key | def num_not_hex_primes(num: str) -> int:
"""
Count the number of hexadecimal digits in the given hexadecimal string
that are not prime.
Examples:
>>> num_not_hex_primes('AB')
1
>>> num_not_hex_primes('1077E')
3
""" | def num_not_hex_primes(num: str) -> int:
"""
Count the number of hexadecimal digits in the given hexadecimal string
that are not prime.
Examples:
>>> num_not_hex_primes('AB')
1
>>> num_not_hex_primes('1077E')
3
"""
return len(num) - hex_key(num) | num_not_hex_primes | def check(candidate):
assert candidate('12345678') == 4
assert candidate('ABCDEF') == 4
assert candidate('11AA22BB33CC44DD') == 8
def test_check():
check(num_not_hex_primes)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
>>> hex_key('AB')
1
>>> hex_key('1077E')
2
>>> hex_key('ABED1A33')
4
>>> hex_key('123456789ABCDEF0')
6
>>> hex_key('2020')
2 | Count the number of hexadecimal digits in the given hexadecimal string
that are not prime.
Examples:
>>> num_not_hex_primes('AB')
1
>>> num_not_hex_primes('1077E')
3 | primes = ('2', '3', '5', '7', 'B', 'D')
total = 0
for i in range(0, len(num)):
if num[i] in primes:
total += 1
return total | return len(num) - hex_key(num) | hex_key(num: str) -> int | num_not_hex_primes(num: str) -> int |
|
def decimal_to_binary(decimal: int) -> str:
"""You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
>>> decimal_to_binary(15)
'db1111db'
>>> decimal_to_binary(32)
'db100000db'
""" | def decimal_to_binary(decimal: int) -> str:
"""You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
>>> decimal_to_binary(15)
'db1111db'
>>> decimal_to_binary(32)
'db100000db'
"""
return 'db' + bin(decimal)[2:] + 'db' | decimal_to_binary | def num_1s_in_binary(decimal: int) -> int:
"""
Return the count of digit 1 in the binary representation of the given number.
Examples:
>>> num_1s_in_binary(15)
4
>>> num_1s_in_binary(32)
1
""" | def num_1s_in_binary(decimal: int) -> int:
"""
Return the count of digit 1 in the binary representation of the given number.
Examples:
>>> num_1s_in_binary(15)
4
>>> num_1s_in_binary(32)
1
"""
return decimal_to_binary(decimal).count('1') | num_1s_in_binary | def check(candidate):
assert candidate(1000) == 6
assert candidate(1023) == 10
assert candidate(1024) == 1
def test_check():
check(num_1s_in_binary)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
>>> decimal_to_binary(15)
'db1111db'
>>> decimal_to_binary(32)
'db100000db' | Return the count of digit 1 in the binary representation of the given number.
Examples:
>>> num_1s_in_binary(15)
4
>>> num_1s_in_binary(32)
1 | return 'db' + bin(decimal)[2:] + 'db' | return decimal_to_binary(decimal).count('1') | decimal_to_binary(decimal: int) -> str | num_1s_in_binary(decimal: int) -> int |
|
def is_happy(s: str) -> bool:
"""You are given a string s.
Your task is to check if the string is happy or not.
A string is happy if its length is at least 3 and every 3 consecutive letters are distinct
For example:
>>> is_happy('a')
False
>>> is_happy('aa')
False
>>> is_happy('abcd')
True
>>> is_happy('aabb')
False
>>> is_happy('adb')
True
>>> is_happy('xyy')
False
""" | def is_happy(s: str) -> bool:
"""You are given a string s.
Your task is to check if the string is happy or not.
A string is happy if its length is at least 3 and every 3 consecutive letters are distinct
For example:
>>> is_happy('a')
False
>>> is_happy('aa')
False
>>> is_happy('abcd')
True
>>> is_happy('aabb')
False
>>> is_happy('adb')
True
>>> is_happy('xyy')
False
"""
if len(s) < 3:
return False
for i in range(len(s) - 2):
if s[i] == s[i + 1] or s[i + 1] == s[i + 2] or s[i] == s[i + 2]:
return False
return True | is_happy | def num_happy_sentences(d: str) -> int:
"""
Implement a function that, given a document d where sentences are concatenated
with newlines as separators, returns the count of happy sentences.
Examples:
>>> num_happy_sentences('a
aa')
0
>>> num_happy_sentences('abcd
aabb
adb')
2
""" | def num_happy_sentences(d: str) -> int:
"""
Implement a function that, given a document d where sentences are concatenated
with newlines as separators, returns the count of happy sentences.
Examples:
>>> num_happy_sentences('a
aa')
0
>>> num_happy_sentences('abcd
aabb
adb')
2
"""
return len([1 for s in d.splitlines() if is_happy(s)]) | num_happy_sentences | def check(candidate):
assert candidate('aaa\nababab\nabcabcabc') == 1
assert candidate('a\nab\nabc\nabcd') == 2
assert candidate('numhappysentences\niloveyou\nthisisgood') == 1
def test_check():
check(num_happy_sentences)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | You are given a string s.
Your task is to check if the string is happy or not.
A string is happy if its length is at least 3 and every 3 consecutive letters are distinct
For example:
>>> is_happy('a')
False
>>> is_happy('aa')
False
>>> is_happy('abcd')
True
>>> is_happy('aabb')
False
>>> is_happy('adb')
True
>>> is_happy('xyy')
False | Implement a function that, given a document d where sentences are concatenated
with newlines as separators, returns the count of happy sentences.
Examples:
>>> num_happy_sentences('a
aa')
0
>>> num_happy_sentences('abcd
aabb
adb')
2
| if len(s) < 3:
return False
for i in range(len(s) - 2):
if s[i] == s[i + 1] or s[i + 1] == s[i + 2] or s[i] == s[i + 2]:
return False
return True | return len([1 for s in d.splitlines() if is_happy(s)]) | is_happy(s: str) -> bool | num_happy_sentences(d: str) -> int |
|
from typing import List | def numerical_letter_grade(grades: List[float]) -> List[str]:
"""It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you a list of GPAs for some students and you have to write
a function that can output a list of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
>>> grade_equation([4.0, 3, 1.7, 2, 3.5])
['A+', 'B', 'C-', 'C', 'A-']
""" | def numerical_letter_grade(grades: List[float]) -> List[str]:
"""It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you a list of GPAs for some students and you have to write
a function that can output a list of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
>>> grade_equation([4.0, 3, 1.7, 2, 3.5])
['A+', 'B', 'C-', 'C', 'A-']
"""
letter_grade = []
for gpa in grades:
if gpa == 4.0:
letter_grade.append('A+')
elif gpa > 3.7:
letter_grade.append('A')
elif gpa > 3.3:
letter_grade.append('A-')
elif gpa > 3.0:
letter_grade.append('B+')
elif gpa > 2.7:
letter_grade.append('B')
elif gpa > 2.3:
letter_grade.append('B-')
elif gpa > 2.0:
letter_grade.append('C+')
elif gpa > 1.7:
letter_grade.append('C')
elif gpa > 1.3:
letter_grade.append('C-')
elif gpa > 1.0:
letter_grade.append('D+')
elif gpa > 0.7:
letter_grade.append('D')
elif gpa > 0.0:
letter_grade.append('D-')
else:
letter_grade.append('E')
return letter_grade | numerical_letter_grade | def num_students_above_C(grades: List[float]) -> int:
"""
Given a list of students' GPAs, return the number of students
who will receive a grade of B- or higher.
Examples:
>>> num_students_above_C([4.0, 3, 1.7, 2, 3.5])
3
""" | def num_students_above_C(grades: List[float]) -> int:
"""
Given a list of students' GPAs, return the number of students
who will receive a grade of B- or higher.
Examples:
>>> num_students_above_C([4.0, 3, 1.7, 2, 3.5])
3
"""
grades = numerical_letter_grade(grades)
return len([1 for grade in grades if grade[0] < 'C']) | num_students_above_C | def check(candidate):
assert candidate([0.0, 1.0, 2.0, 3.0, 4.0]) == 2
assert candidate([2.1, 2.2, 2.3, 2.4, 2.5]) == 2
assert candidate([1.4, 2.8, 2.0, 3.5, 3.0, 2.1, 0.7]) == 3
def test_check():
check(num_students_above_C)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you a list of GPAs for some students and you have to write
a function that can output a list of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
>>> grade_equation([4.0, 3, 1.7, 2, 3.5])
['A+', 'B', 'C-', 'C', 'A-'] | Given a list of students' GPAs, return the number of students
who will receive a grade of B- or higher.
Examples:
>>> num_students_above_C([4.0, 3, 1.7, 2, 3.5])
3 | letter_grade = []
for gpa in grades:
if gpa == 4.0:
letter_grade.append('A+')
elif gpa > 3.7:
letter_grade.append('A')
elif gpa > 3.3:
letter_grade.append('A-')
elif gpa > 3.0:
letter_grade.append('B+')
elif gpa > 2.7:
letter_grade.append('B')
elif gpa > 2.3:
letter_grade.append('B-')
elif gpa > 2.0:
letter_grade.append('C+')
elif gpa > 1.7:
letter_grade.append('C')
elif gpa > 1.3:
letter_grade.append('C-')
elif gpa > 1.0:
letter_grade.append('D+')
elif gpa > 0.7:
letter_grade.append('D')
elif gpa > 0.0:
letter_grade.append('D-')
else:
letter_grade.append('E')
return letter_grade | grades = numerical_letter_grade(grades)
return len([1 for grade in grades if grade[0] < 'C']) | numerical_letter_grade(grades: List[float]) -> List[str] | num_students_above_C(grades: List[float]) -> int |
from typing import List | def prime_length(string: str) -> bool:
"""Write a function that takes a string and returns True if the string
length is a prime number or False otherwise
Examples
>>> prime_length('Hello')
True
>>> prime_length('abcdcba')
True
>>> prime_length('kittens')
True
>>> prime_length('orange')
False
""" | def prime_length(string: str) -> bool:
"""Write a function that takes a string and returns True if the string
length is a prime number or False otherwise
Examples
>>> prime_length('Hello')
True
>>> prime_length('abcdcba')
True
>>> prime_length('kittens')
True
>>> prime_length('orange')
False
"""
l = len(string)
if l == 0 or l == 1:
return False
for i in range(2, l):
if l % i == 0:
return False
return True | prime_length | def is_concat_length_prime(strings: List[str]) -> bool:
"""
Implement a function that checks whether the length of the string
obtained by concatenating the given strings is a prime number.
Examples:
>>> is_concat_length_prime(['He', 'llo'])
True
>>> is_concat_length_prime(['or', 'an', 'ge'])
False
""" | def is_concat_length_prime(strings: List[str]) -> bool:
"""
Implement a function that checks whether the length of the string
obtained by concatenating the given strings is a prime number.
Examples:
>>> is_concat_length_prime(['He', 'llo'])
True
>>> is_concat_length_prime(['or', 'an', 'ge'])
False
"""
return prime_length(''.join(strings)) | is_concat_length_prime | def check(candidate):
assert candidate(['ab', 'abc', 'abcd', 'ab']) is True
assert candidate(['aaaaaaaaaa', 'aaaaa']) is False
assert candidate(['is', 'concat', 'length', 'prime']) is True
def test_check():
check(is_concat_length_prime)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Write a function that takes a string and returns True if the string
length is a prime number or False otherwise
Examples
>>> prime_length('Hello')
True
>>> prime_length('abcdcba')
True
>>> prime_length('kittens')
True
>>> prime_length('orange')
False | Implement a function that checks whether the length of the string
obtained by concatenating the given strings is a prime number.
Examples:
>>> is_concat_length_prime(['He', 'llo'])
True
>>> is_concat_length_prime(['or', 'an', 'ge'])
False | l = len(string)
if l == 0 or l == 1:
return False
for i in range(2, l):
if l % i == 0:
return False
return True | return prime_length(''.join(strings)) | prime_length(string: str) -> bool | is_concat_length_prime(strings: List[str]) -> bool |
def starts_one_ends(n: int) -> int:
"""
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
""" | def starts_one_ends(n: int) -> int:
"""
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
"""
if n == 1:
return 1
return 18 * 10 ** (n - 2) | starts_one_ends | def non_starts_or_ends_with_one_count(n: int) -> int:
"""
Return the count of n-digit positive integers
that do not start or end with 1.
Examples:
>>> non_starts_or_ends_with_one_count(1)
8
>>> non_starts_or_ends_with_one_count(2)
72
""" | def non_starts_or_ends_with_one_count(n: int) -> int:
"""
Return the count of n-digit positive integers
that do not start or end with 1.
Examples:
>>> non_starts_or_ends_with_one_count(1)
8
>>> non_starts_or_ends_with_one_count(2)
72
"""
return len(range(10 ** (n - 1), 10 ** n)) - starts_one_ends(n) | non_starts_or_ends_with_one_count | def check(candidate):
assert candidate(3) == 720
assert candidate(4) == 7200
assert candidate(5) == 72000
def test_check():
check(non_starts_or_ends_with_one_count)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. | Return the count of n-digit positive integers
that do not start or end with 1.
Examples:
>>> non_starts_or_ends_with_one_count(1)
8
>>> non_starts_or_ends_with_one_count(2)
72 | if n == 1:
return 1
return 18 * 10 ** (n - 2) | return len(range(10 ** (n - 1), 10 ** n)) - starts_one_ends(n) | starts_one_ends(n: int) -> int | non_starts_or_ends_with_one_count(n: int) -> int |
|
def solve(N: int) -> str:
"""Given a positive integer N, return the total sum of its digits in binary.
Example
>>> solve(1000)
'1'
>>> solve(150)
'110'
>>> solve(147)
'1100'
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
""" | def solve(N: int) -> str:
"""Given a positive integer N, return the total sum of its digits in binary.
Example
>>> solve(1000)
'1'
>>> solve(150)
'110'
>>> solve(147)
'1100'
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
"""
return bin(sum((int(i) for i in str(N))))[2:] | solve | def sum_digits_to_binary(string: str) -> str:
"""
Calculate the sum of numerical characters in the given string
and return it as a binary representation.
Examples:
>>> sum_digits_to_binary('10a00')
'1'
>>> sum_digits_to_binary('a1b5c0d')
'110'
""" | def sum_digits_to_binary(string: str) -> str:
"""
Calculate the sum of numerical characters in the given string
and return it as a binary representation.
Examples:
>>> sum_digits_to_binary('10a00')
'1'
>>> sum_digits_to_binary('a1b5c0d')
'110'
"""
digits = ''.join([c for c in string if c.isdecimal()])
return solve(int(digits)) | sum_digits_to_binary | def check(candidate):
assert candidate('1234') == '1010'
assert candidate('a3b2c1d0e') == '110'
assert candidate('sum2digits9to4binary1') == '10000'
def test_check():
check(sum_digits_to_binary)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Given a positive integer N, return the total sum of its digits in binary.
Example
>>> solve(1000)
'1'
>>> solve(150)
'110'
>>> solve(147)
'1100'
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number | Calculate the sum of numerical characters in the given string
and return it as a binary representation.
Examples:
>>> sum_digits_to_binary('10a00')
'1'
>>> sum_digits_to_binary('a1b5c0d')
'110' | return bin(sum((int(i) for i in str(N))))[2:] | digits = ''.join([c for c in string if c.isdecimal()])
return solve(int(digits)) | solve(N: int) -> str | sum_digits_to_binary(string: str) -> str |
|
from typing import List | def add(lst: List[int]) -> int:
"""Given a non-empty list of integers lst. add the even elements that are at odd indices..
Examples:
>>> add([4, 2, 6, 7])
2
""" | def add(lst: List[int]) -> int:
"""Given a non-empty list of integers lst. add the even elements that are at odd indices..
Examples:
>>> add([4, 2, 6, 7])
2
"""
return sum([lst[i] for i in range(1, len(lst), 2) if lst[i] % 2 == 0]) | add | def sum_even_second_digits(number: int) -> int:
"""
Return the sum of even numbers among every second digit in the given number.
Examples:
>>> sum_even_second_digits(4267)
2
""" | def sum_even_second_digits(number: int) -> int:
"""
Return the sum of even numbers among every second digit in the given number.
Examples:
>>> sum_even_second_digits(4267)
2
"""
return add([int(c) for c in str(number)]) | sum_even_second_digits | def check(candidate):
assert candidate(123456) == 12
assert candidate(234567) == 0
assert candidate(202307102232) == 4
def test_check():
check(sum_even_second_digits)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Given a non-empty list of integers lst. add the even elements that are at odd indices..
Examples:
>>> add([4, 2, 6, 7])
2 | Return the sum of even numbers among every second digit in the given number.
Examples:
>>> sum_even_second_digits(4267)
2 | return sum([lst[i] for i in range(1, len(lst), 2) if lst[i] % 2 == 0]) | return add([int(c) for c in str(number)]) | add(lst: List[int]) -> int | sum_even_second_digits(number: int) -> int |
from typing import List | def anti_shuffle(s: str) -> str:
"""
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
>>> anti_shuffle('Hi')
'Hi'
>>> anti_shuffle('hello')
'ehllo'
>>> anti_shuffle('Hello World!!!')
'Hello !!!Wdlor'
""" | def anti_shuffle(s: str) -> str:
"""
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
>>> anti_shuffle('Hi')
'Hi'
>>> anti_shuffle('hello')
'ehllo'
>>> anti_shuffle('Hello World!!!')
'Hello !!!Wdlor'
"""
return ' '.join([''.join(sorted(list(i))) for i in s.split(' ')]) | anti_shuffle | def sort_and_concatenate_strings(strings: List[str]) -> str:
"""
Implement a function that takes a list of strings,
sorts each string in ascending order,
and then concatenates them using a space as the separator.
Examples:
>>> sort_and_concatenate_strings(['hello'])
'ehllo'
>>> sort_and_concatenate_strings(['Hello', 'World!!!'])
'Hello !!!Wdlor'
""" | def sort_and_concatenate_strings(strings: List[str]) -> str:
"""
Implement a function that takes a list of strings,
sorts each string in ascending order,
and then concatenates them using a space as the separator.
Examples:
>>> sort_and_concatenate_strings(['hello'])
'ehllo'
>>> sort_and_concatenate_strings(['Hello', 'World!!!'])
'Hello !!!Wdlor'
"""
return anti_shuffle(' '.join(strings)) | sort_and_concatenate_strings | def check(candidate):
assert candidate(['abcd', 'dcba', 'bdac']) == 'abcd abcd abcd'
assert candidate(['sort', 'and', 'concatenate', 'strings']) == 'orst adn aacceennott ginrsst'
assert candidate(['heLLo', 'worLd!']) == 'LLeho !Ldorw'
def test_check():
check(sort_and_concatenate_strings)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
>>> anti_shuffle('Hi')
'Hi'
>>> anti_shuffle('hello')
'ehllo'
>>> anti_shuffle('Hello World!!!')
'Hello !!!Wdlor' | Implement a function that takes a list of strings,
sorts each string in ascending order,
and then concatenates them using a space as the separator.
Examples:
>>> sort_and_concatenate_strings(['hello'])
'ehllo'
>>> sort_and_concatenate_strings(['Hello', 'World!!!'])
'Hello !!!Wdlor' | return ' '.join([''.join(sorted(list(i))) for i in s.split(' ')]) | return anti_shuffle(' '.join(strings)) | anti_shuffle(s: str) -> str | sort_and_concatenate_strings(strings: List[str]) -> str |
from typing import List, Tuple | def get_row(lst: List[List[int]], x: int) -> List[Tuple[int, int]]:
"""
You are given a 2 dimensional data, as a nested lists,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the list,
and return list of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
>>> get_row([[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], 1)
[(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
>>> get_row([], 1)
[]
>>> get_row([[], [1], [1, 2, 3]], 3)
[(2, 2)]
""" | def get_row(lst: List[List[int]], x: int) -> List[Tuple[int, int]]:
"""
You are given a 2 dimensional data, as a nested lists,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the list,
and return list of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
>>> get_row([[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], 1)
[(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
>>> get_row([], 1)
[]
>>> get_row([[], [1], [1, 2, 3]], 3)
[(2, 2)]
"""
coords = [(i, j) for i in range(len(lst)) for j in range(len(lst[i])) if lst[i][j] == x]
return sorted(sorted(coords, key=lambda x: x[1], reverse=True), key=lambda x: x[0]) | get_row | def count_integer_in_nested_lists(lst: List[List[int]], x: int) -> int:
"""
Implement a function that counts how many times an integer x appears
in a list of lists of integers.
Examples:
>>> count_integer_in_nested_lists([[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], 1)
5
>>> count_integer_in_nested_lists([[], [1], [1, 2, 3]], 3)
1
""" | def count_integer_in_nested_lists(lst: List[List[int]], x: int) -> int:
"""
Implement a function that counts how many times an integer x appears
in a list of lists of integers.
Examples:
>>> count_integer_in_nested_lists([[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], 1)
5
>>> count_integer_in_nested_lists([[], [1], [1, 2, 3]], 3)
1
"""
return len(get_row(lst, x)) | count_integer_in_nested_lists | def check(candidate):
assert candidate([[0, 0, 0, 0, 0], [0, 0, 1, 0], [1, 1, 1]], 1) == 4
assert candidate([[1, 3, 5, 7, 9], [], [3, 4, 5, 6, 7], []], 2) == 0
assert candidate([[3, 3, 3, 3, 3], [3, 3, 3], [3]], 3) == 9
def test_check():
check(count_integer_in_nested_lists)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | You are given a 2 dimensional data, as a nested lists,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the list,
and return list of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
>>> get_row([[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], 1)
[(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
>>> get_row([], 1)
[]
>>> get_row([[], [1], [1, 2, 3]], 3)
[(2, 2)] | Implement a function that counts how many times an integer x appears
in a list of lists of integers.
Examples:
>>> count_integer_in_nested_lists([[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], 1)
5
>>> count_integer_in_nested_lists([[], [1], [1, 2, 3]], 3)
1 | coords = [(i, j) for i in range(len(lst)) for j in range(len(lst[i])) if lst[i][j] == x]
return sorted(sorted(coords, key=lambda x: x[1], reverse=True), key=lambda x: x[0]) | return len(get_row(lst, x)) | get_row(lst: List[List[int]], x: int) -> List[Tuple[int, int]] | count_integer_in_nested_lists(lst: List[List[int]], x: int) -> int |
from typing import List | def sort_array(array: List[int]) -> List[int]:
"""
Given an array of non-negative integers, return a copy of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
>>> sort_array([])
[]
>>> sort_array([5])
[5]
>>> sort_array([2, 4, 3, 0, 1, 5])
[0, 1, 2, 3, 4, 5]
>>> sort_array([2, 4, 3, 0, 1, 5, 6])
[6, 5, 4, 3, 2, 1, 0]
""" | def sort_array(array: List[int]) -> List[int]:
"""
Given an array of non-negative integers, return a copy of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
>>> sort_array([])
[]
>>> sort_array([5])
[5]
>>> sort_array([2, 4, 3, 0, 1, 5])
[0, 1, 2, 3, 4, 5]
>>> sort_array([2, 4, 3, 0, 1, 5, 6])
[6, 5, 4, 3, 2, 1, 0]
"""
return [] if len(array) == 0 else sorted(array, reverse=(array[0] + array[-1]) % 2 == 0) | sort_array | def count_elements_in_original_position(array: List[int]) -> int:
"""
Given an integer array, return the count of elements that remain in their original positions
when the array is sorted in ascending order if the sum of the first and last elements is odd,
or in descending order if the sum is even.
Examples:
>>> count_elements_in_original_position([2, 4, 3, 0, 1, 5])
1
>>> count_elements_in_original_position([2, 4, 3, 0, 1, 5, 6])
0
""" | def count_elements_in_original_position(array: List[int]) -> int:
"""
Given an integer array, return the count of elements that remain in their original positions
when the array is sorted in ascending order if the sum of the first and last elements is odd,
or in descending order if the sum is even.
Examples:
>>> count_elements_in_original_position([2, 4, 3, 0, 1, 5])
1
>>> count_elements_in_original_position([2, 4, 3, 0, 1, 5, 6])
0
"""
sorted_array = sort_array(array)
return len([1 for (a, b) in zip(array, sorted_array) if a == b]) | count_elements_in_original_position | def check(candidate):
assert candidate([10, 2, 8, 3, 1, 5, 4, 7, 9, 6]) == 4
assert candidate([6, 8, 3, 1, 5, 7, 4, 2, 9]) == 3
assert candidate([1, 3, 5, 3, 1, 3, 5]) == 1
def test_check():
check(count_elements_in_original_position)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Given an array of non-negative integers, return a copy of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
>>> sort_array([])
[]
>>> sort_array([5])
[5]
>>> sort_array([2, 4, 3, 0, 1, 5])
[0, 1, 2, 3, 4, 5]
>>> sort_array([2, 4, 3, 0, 1, 5, 6])
[6, 5, 4, 3, 2, 1, 0] | Given an integer array, return the count of elements that remain in their original positions
when the array is sorted in ascending order if the sum of the first and last elements is odd,
or in descending order if the sum is even.
Examples:
>>> count_elements_in_original_position([2, 4, 3, 0, 1, 5])
1
>>> count_elements_in_original_position([2, 4, 3, 0, 1, 5, 6])
0 | return [] if len(array) == 0 else sorted(array, reverse=(array[0] + array[-1]) % 2 == 0) | sorted_array = sort_array(array)
return len([1 for (a, b) in zip(array, sorted_array) if a == b]) | sort_array(array: List[int]) -> List[int] | count_elements_in_original_position(array: List[int]) -> int |
def encrypt(s: str) -> str:
"""Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
>>> encrypt('hi')
'lm'
>>> encrypt('asdfghjkl')
'ewhjklnop'
>>> encrypt('gf')
'kj'
>>> encrypt('et')
'ix'
""" | def encrypt(s: str) -> str:
"""Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
>>> encrypt('hi')
'lm'
>>> encrypt('asdfghjkl')
'ewhjklnop'
>>> encrypt('gf')
'kj'
>>> encrypt('et')
'ix'
"""
d = 'abcdefghijklmnopqrstuvwxyz'
out = ''
for c in s:
if c in d:
out += d[(d.index(c) + 2 * 2) % 26]
else:
out += c
return out | encrypt | def is_start_of_end_with_x_after_encryption(string: str) -> bool:
"""
Implement a function that determines whether a given string starts or ends with 'x' after encryption.
Examples:
>>> is_start_of_end_with_x_after_encryption('gf')
False
>>> is_start_of_end_with_x_after_encryption('et')
True
""" | def is_start_of_end_with_x_after_encryption(string: str) -> bool:
"""
Implement a function that determines whether a given string starts or ends with 'x' after encryption.
Examples:
>>> is_start_of_end_with_x_after_encryption('gf')
False
>>> is_start_of_end_with_x_after_encryption('et')
True
"""
string = encrypt(string)
return string[0] == 'x' or string[-1] == 'x' | is_start_of_end_with_x_after_encryption | def check(candidate):
assert candidate('abcdttttefgh') is False
assert candidate('abcdefght') is True
assert candidate('tttttttttt') is True
def test_check():
check(is_start_of_end_with_x_after_encryption)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
>>> encrypt('hi')
'lm'
>>> encrypt('asdfghjkl')
'ewhjklnop'
>>> encrypt('gf')
'kj'
>>> encrypt('et')
'ix' | Implement a function that determines whether a given string starts or ends with 'x' after encryption.
Examples:
>>> is_start_of_end_with_x_after_encryption('gf')
False
>>> is_start_of_end_with_x_after_encryption('et')
True | d = 'abcdefghijklmnopqrstuvwxyz'
out = ''
for c in s:
if c in d:
out += d[(d.index(c) + 2 * 2) % 26]
else:
out += c
return out | string = encrypt(string)
return string[0] == 'x' or string[-1] == 'x' | encrypt(s: str) -> str | is_start_of_end_with_x_after_encryption(string: str) -> bool |
|
from typing import List, Optional | def next_smallest(lst: List[int]) -> Optional[int]:
"""
You are given a list of integers.
Write a function next_smallest() that returns the 2nd smallest element of the list.
Return None if there is no such element.
>>> next_smallest([1, 2, 3, 4, 5])
2
>>> next_smallest([5, 1, 4, 3, 2])
2
>>> next_smallest([])
None
>>> next_smallest([1, 1])
None
""" | def next_smallest(lst: List[int]) -> Optional[int]:
"""
You are given a list of integers.
Write a function next_smallest() that returns the 2nd smallest element of the list.
Return None if there is no such element.
>>> next_smallest([1, 2, 3, 4, 5])
2
>>> next_smallest([5, 1, 4, 3, 2])
2
>>> next_smallest([])
None
>>> next_smallest([1, 1])
None
"""
lst = sorted(set(lst))
return None if len(lst) < 2 else lst[1] | next_smallest | def remove_second_smallest(lst: List[int]) -> List[int]:
"""
Return the list obtained by removing the second smallest value(s) from the given integer list.
If there is no such value, return the original integer list.
Examples:
>>> remove_second_smallest([1, 2, 3, 4, 5])
[1, 3, 4, 5]
>>> remove_second_smallest([1, 1])
[1, 1]
>>> remove_second_smallest([1, 1, 2, 2])
[1, 1]
""" | def remove_second_smallest(lst: List[int]) -> List[int]:
"""
Return the list obtained by removing the second smallest value(s) from the given integer list.
If there is no such value, return the original integer list.
Examples:
>>> remove_second_smallest([1, 2, 3, 4, 5])
[1, 3, 4, 5]
>>> remove_second_smallest([1, 1])
[1, 1]
>>> remove_second_smallest([1, 1, 2, 2])
[1, 1]
"""
second_smallest = next_smallest(lst)
if second_smallest is not None:
lst = [n for n in lst if n != second_smallest]
return lst | remove_second_smallest | def check(candidate):
assert candidate([5, 7, 1, 10, 2, 8, 9, 3, 4, 6]) == [5, 7, 1, 10, 8, 9, 3, 4, 6]
assert candidate([1, 2, 2, 3, 3, 3, 3, 2, 1]) == [1, 3, 3, 3, 3, 1]
assert candidate([2, 2, 2, 2, 2, 2, 2, 2, 2, 2]) == [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
def test_check():
check(remove_second_smallest)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | You are given a list of integers.
Write a function next_smallest() that returns the 2nd smallest element of the list.
Return None if there is no such element.
>>> next_smallest([1, 2, 3, 4, 5])
2
>>> next_smallest([5, 1, 4, 3, 2])
2
>>> next_smallest([])
None
>>> next_smallest([1, 1])
None | Return the list obtained by removing the second smallest value(s) from the given integer list.
If there is no such value, return the original integer list.
Examples:
>>> remove_second_smallest([1, 2, 3, 4, 5])
[1, 3, 4, 5]
>>> remove_second_smallest([1, 1])
[1, 1]
>>> remove_second_smallest([1, 1, 2, 2])
[1, 1] | lst = sorted(set(lst))
return None if len(lst) < 2 else lst[1] | second_smallest = next_smallest(lst)
if second_smallest is not None:
lst = [n for n in lst if n != second_smallest]
return lst | next_smallest(lst: List[int]) -> Optional[int] | remove_second_smallest(lst: List[int]) -> List[int] |
def is_bored(S: str) -> int:
"""
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
>>> is_bored('Hello world')
0
>>> is_bored('The sky is blue. The sun is shining. I love this weather')
1
""" | def is_bored(S: str) -> int:
"""
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
>>> is_bored('Hello world')
0
>>> is_bored('The sky is blue. The sun is shining. I love this weather')
1
"""
import re
sentences = re.split('[.?!]\\s*', S)
return sum((sentence[0:2] == 'I ' for sentence in sentences)) | is_bored | def count_non_boredoms(string: str) -> int:
"""
Return the count of non-boredoms in the given string.
Here, boredom refers to sentences starting with the word 'I',
and sentences are separated by '.', '?', or '!'.
Note that empty sentences are not counted.
Examples:
>>> is_bored('Hello world')
1
>>> is_bored('The sky is blue. The sun is shining. I love this weather')
2
>>> is_bored('. ? !')
0
""" | def count_non_boredoms(string: str) -> int:
"""
Return the count of non-boredoms in the given string.
Here, boredom refers to sentences starting with the word 'I',
and sentences are separated by '.', '?', or '!'.
Note that empty sentences are not counted.
Examples:
>>> is_bored('Hello world')
1
>>> is_bored('The sky is blue. The sun is shining. I love this weather')
2
>>> is_bored('. ? !')
0
"""
sentences = string.replace('?', '.').replace('!', '.').split('.')
num_sentences = len([sentence for sentence in sentences if len(sentence.strip()) > 0])
return num_sentences - is_bored(string) | count_non_boredoms | def check(candidate):
assert candidate('aa. bb? cc! dd. ee? ff!') == 6
assert candidate('You and I... A I!!') == 2
assert candidate('Count non boredoms. This is good? I love you!') == 2
def test_check():
check(count_non_boredoms)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
>>> is_bored('Hello world')
0
>>> is_bored('The sky is blue. The sun is shining. I love this weather')
1 | Return the count of non-boredoms in the given string.
Here, boredom refers to sentences starting with the word 'I',
and sentences are separated by '.', '?', or '!'.
Note that empty sentences are not counted.
Examples:
>>> is_bored('Hello world')
1
>>> is_bored('The sky is blue. The sun is shining. I love this weather')
2
>>> is_bored('. ? !')
0 | import re
sentences = re.split('[.?!]\\s*', S)
return sum((sentence[0:2] == 'I ' for sentence in sentences)) | sentences = string.replace('?', '.').replace('!', '.').split('.')
num_sentences = len([sentence for sentence in sentences if len(sentence.strip()) > 0])
return num_sentences - is_bored(string) | is_bored(S: str) -> int | count_non_boredoms(string: str) -> int |
|
from typing import List | def any_int(x: float, y: float, z: float) -> bool:
"""
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
>>> any_int(5, 2, 7)
True
>>> any_int(3, 2, 2)
False
>>> any_int(3, -2, 1)
True
>>> any_int(3.6, -2.2, 2)
False
""" | def any_int(x: float, y: float, z: float) -> bool:
"""
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
>>> any_int(5, 2, 7)
True
>>> any_int(3, 2, 2)
False
>>> any_int(3, -2, 1)
True
>>> any_int(3.6, -2.2, 2)
False
"""
if isinstance(x, int) and isinstance(y, int) and isinstance(z, int):
if x + y == z or x + z == y or y + z == x:
return True
return False
return False | any_int | def count_integer_sum_cases(xs: List[float], ys: List[float], zs: List[float]) -> int:
"""
Return the count of cases where,
by selecting one element from each of the three given lists,
if all three selected elements are integers
and one element can be expressed as the sum of the other two elements.
Examples:
>>> count_integer_sum_cases([5, 10], [2], [7])
1
>>> count_integer_sum_cases([3], [2, -2], [2, 1])
2
""" | def count_integer_sum_cases(xs: List[float], ys: List[float], zs: List[float]) -> int:
"""
Return the count of cases where,
by selecting one element from each of the three given lists,
if all three selected elements are integers
and one element can be expressed as the sum of the other two elements.
Examples:
>>> count_integer_sum_cases([5, 10], [2], [7])
1
>>> count_integer_sum_cases([3], [2, -2], [2, 1])
2
"""
return len([1 for x in xs for y in ys for z in zs if any_int(x, y, z)]) | count_integer_sum_cases | def check(candidate):
assert candidate([1], [1, 2], [1, 2, 3]) == 3
assert candidate([1], [1, 2.0], [1, 2, 3]) == 1
assert candidate([-1, 0, 1], [-10, 0, 10], [-100, 0, 100]) == 1
def test_check():
check(count_integer_sum_cases)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
>>> any_int(5, 2, 7)
True
>>> any_int(3, 2, 2)
False
>>> any_int(3, -2, 1)
True
>>> any_int(3.6, -2.2, 2)
False | Return the count of cases where,
by selecting one element from each of the three given lists,
if all three selected elements are integers
and one element can be expressed as the sum of the other two elements.
Examples:
>>> count_integer_sum_cases([5, 10], [2], [7])
1
>>> count_integer_sum_cases([3], [2, -2], [2, 1])
2 | if isinstance(x, int) and isinstance(y, int) and isinstance(z, int):
if x + y == z or x + z == y or y + z == x:
return True
return False
return False | return len([1 for x in xs for y in ys for z in zs if any_int(x, y, z)]) | any_int(x: float, y: float, z: float) -> bool | count_integer_sum_cases(xs: List[float], ys: List[float], zs: List[float]) -> int |
def encode(message: str) -> str:
"""
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
>>> encode('test')
'TGST'
>>> encode('This is a message')
'tHKS KS C MGSSCGG'
""" | def encode(message: str) -> str:
"""
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
>>> encode('test')
'TGST'
>>> encode('This is a message')
'tHKS KS C MGSSCGG'
"""
vowels = 'aeiouAEIOU'
vowels_replace = dict([(i, chr(ord(i) + 2)) for i in vowels])
message = message.swapcase()
return ''.join([vowels_replace[i] if i in vowels else i for i in message]) | encode | def count_changed_alphabet_characters(message: str) -> int:
"""
Return the count of characters in the given string
that change their alphabet after encoding.
Examples:
>>> count_changed_alphabet_characters('test')
1
>>> count_changed_alphabet_characters('This is a message')
6
""" | def count_changed_alphabet_characters(message: str) -> int:
"""
Return the count of characters in the given string
that change their alphabet after encoding.
Examples:
>>> count_changed_alphabet_characters('test')
1
>>> count_changed_alphabet_characters('This is a message')
6
"""
encoded_message = encode(message)
return len([1 for (a, b) in zip(message.lower(), encoded_message.lower()) if a != b]) | count_changed_alphabet_characters | def check(candidate):
assert candidate('abebcciddBCDOUBCD') == 5
assert candidate('a bc def gae') == 4
assert candidate('Count Changed Alphabet Characters') == 10
def test_check():
check(count_changed_alphabet_characters)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
>>> encode('test')
'TGST'
>>> encode('This is a message')
'tHKS KS C MGSSCGG' | Return the count of characters in the given string
that change their alphabet after encoding.
Examples:
>>> count_changed_alphabet_characters('test')
1
>>> count_changed_alphabet_characters('This is a message')
6 | vowels = 'aeiouAEIOU'
vowels_replace = dict([(i, chr(ord(i) + 2)) for i in vowels])
message = message.swapcase()
return ''.join([vowels_replace[i] if i in vowels else i for i in message]) | encoded_message = encode(message)
return len([1 for (a, b) in zip(message.lower(), encoded_message.lower()) if a != b]) | encode(message: str) -> str | count_changed_alphabet_characters(message: str) -> int |
|
from typing import List | def skjkasdkd(lst: List[int]) -> int:
"""You are given a list of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
>>> skjkasdkd([0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3])
10
>>> skjkasdkd([1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1])
25
>>> skjkasdkd([1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3])
13
>>> skjkasdkd([0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6])
11
>>> skjkasdkd([0, 81, 12, 3, 1, 21])
3
>>> skjkasdkd([0, 8, 1, 2, 1, 7])
7
""" | def skjkasdkd(lst: List[int]) -> int:
"""You are given a list of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
>>> skjkasdkd([0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3])
10
>>> skjkasdkd([1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1])
25
>>> skjkasdkd([1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3])
13
>>> skjkasdkd([0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6])
11
>>> skjkasdkd([0, 81, 12, 3, 1, 21])
3
>>> skjkasdkd([0, 8, 1, 2, 1, 7])
7
"""
def isPrime(n):
for i in range(2, int(n ** 0.5) + 1):
if n % i == 0:
return False
return True
maxx = 0
i = 0
while i < len(lst):
if lst[i] > maxx and isPrime(lst[i]):
maxx = lst[i]
i += 1
result = sum((int(digit) for digit in str(maxx)))
return result | skjkasdkd | def sum_of_digits_of_largest_prime_substring(integer: str) -> int:
"""
Given a string representing non-negative integers,
return the sum of digits of the largest prime number among all the contiguous substrings of length 3.
Examples:
>>> sum_of_digits_of_largest_prime_substring('1019')
2
>>> sum_of_digits_of_largest_prime_substring('10199')
19
""" | def sum_of_digits_of_largest_prime_substring(integer: str) -> int:
"""
Given a string representing non-negative integers,
return the sum of digits of the largest prime number among all the contiguous substrings of length 3.
Examples:
>>> sum_of_digits_of_largest_prime_substring('1019')
2
>>> sum_of_digits_of_largest_prime_substring('10199')
19
"""
return skjkasdkd([int(integer[i:i + 3]) for i in range(len(integer) - 2)]) | sum_of_digits_of_largest_prime_substring | def check(candidate):
assert candidate('1232131') == 5
assert candidate('99773') == 25
assert candidate('20230711') == 10
def test_check():
check(sum_of_digits_of_largest_prime_substring)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | You are given a list of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
>>> skjkasdkd([0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3])
10
>>> skjkasdkd([1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1])
25
>>> skjkasdkd([1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3])
13
>>> skjkasdkd([0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6])
11
>>> skjkasdkd([0, 81, 12, 3, 1, 21])
3
>>> skjkasdkd([0, 8, 1, 2, 1, 7])
7 | Given a string representing non-negative integers,
return the sum of digits of the largest prime number among all the contiguous substrings of length 3.
Examples:
>>> sum_of_digits_of_largest_prime_substring('1019')
2
>>> sum_of_digits_of_largest_prime_substring('10199')
19 |
def isPrime(n):
for i in range(2, int(n ** 0.5) + 1):
if n % i == 0:
return False
return True
maxx = 0
i = 0
while i < len(lst):
if lst[i] > maxx and isPrime(lst[i]):
maxx = lst[i]
i += 1
result = sum((int(digit) for digit in str(maxx)))
return result | return skjkasdkd([int(integer[i:i + 3]) for i in range(len(integer) - 2)]) | skjkasdkd(lst: List[int]) -> int | sum_of_digits_of_largest_prime_substring(integer: str) -> int |
from typing import Dict, List | def check_dict_case(dict: Dict[str, str]) -> bool:
"""
Given a dictionary, return True if all keys are strings in lower
case or all keys are strings in upper case, else return False.
The function should return False is the given dictionary is empty.
Examples:
>>> check_dict_case({ 'a': 'apple', 'b': 'banana' })
True
>>> check_dict_case({ 'a': 'apple', 'A': 'banana', 'B': 'banana' })
False
>>> check_dict_case({ 'a': 'apple', 8: 'banana', 'a': 'apple' })
False
>>> check_dict_case({ 'Name': 'John', 'Age': '36', 'City': 'Houston' })
False
>>> check_dict_case({ 'STATE': 'NC', 'ZIP': '12345' })
True
""" | def check_dict_case(dict: Dict[str, str]) -> bool:
"""
Given a dictionary, return True if all keys are strings in lower
case or all keys are strings in upper case, else return False.
The function should return False is the given dictionary is empty.
Examples:
>>> check_dict_case({ 'a': 'apple', 'b': 'banana' })
True
>>> check_dict_case({ 'a': 'apple', 'A': 'banana', 'B': 'banana' })
False
>>> check_dict_case({ 'a': 'apple', 8: 'banana', 'a': 'apple' })
False
>>> check_dict_case({ 'Name': 'John', 'Age': '36', 'City': 'Houston' })
False
>>> check_dict_case({ 'STATE': 'NC', 'ZIP': '12345' })
True
"""
if len(dict.keys()) == 0:
return False
else:
state = 'start'
for key in dict.keys():
if not isinstance(key, str):
state = 'mixed'
break
if state == 'start':
if key.isupper():
state = 'upper'
elif key.islower():
state = 'lower'
else:
break
elif state == 'upper' and (not key.isupper()) or (state == 'lower' and (not key.islower())):
state = 'mixed'
break
else:
break
return state == 'upper' or state == 'lower' | check_dict_case | def check_case_consistency(lst: List[str]) -> bool:
"""
Implement a function that returns true if all the strings in the given list
are either all lowercase or all uppercase, and false otherwise.
Examples:
>>> check_case_consistency(['Name', 'Age', 'City'])
False
>>> check_case_consistency(['STATE', 'ZIP'])
True
""" | def check_case_consistency(lst: List[str]) -> bool:
"""
Implement a function that returns true if all the strings in the given list
are either all lowercase or all uppercase, and false otherwise.
Examples:
>>> check_case_consistency(['Name', 'Age', 'City'])
False
>>> check_case_consistency(['STATE', 'ZIP'])
True
"""
return check_dict_case({string: None for string in lst}) | check_case_consistency | def check(candidate):
assert candidate(['aa', 'bb', 'cc', 'abc', 'abcd']) is True
assert candidate(['AAA', 'ABCD', 'ABCDE']) is True
assert candidate(['Check', 'case', 'consistency']) is False
def test_check():
check(check_case_consistency)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Given a dictionary, return True if all keys are strings in lower
case or all keys are strings in upper case, else return False.
The function should return False is the given dictionary is empty.
Examples:
>>> check_dict_case({ 'a': 'apple', 'b': 'banana' })
True
>>> check_dict_case({ 'a': 'apple', 'A': 'banana', 'B': 'banana' })
False
>>> check_dict_case({ 'a': 'apple', 8: 'banana', 'a': 'apple' })
False
>>> check_dict_case({ 'Name': 'John', 'Age': '36', 'City': 'Houston' })
False
>>> check_dict_case({ 'STATE': 'NC', 'ZIP': '12345' })
True | Implement a function that returns true if all the strings in the given list
are either all lowercase or all uppercase, and false otherwise.
Examples:
>>> check_case_consistency(['Name', 'Age', 'City'])
False
>>> check_case_consistency(['STATE', 'ZIP'])
True | if len(dict.keys()) == 0:
return False
else:
state = 'start'
for key in dict.keys():
if not isinstance(key, str):
state = 'mixed'
break
if state == 'start':
if key.isupper():
state = 'upper'
elif key.islower():
state = 'lower'
else:
break
elif state == 'upper' and (not key.isupper()) or (state == 'lower' and (not key.islower())):
state = 'mixed'
break
else:
break
return state == 'upper' or state == 'lower' | return check_dict_case({string: None for string in lst}) | check_dict_case(dict: Dict[str, str]) -> bool | check_case_consistency(lst: List[str]) -> bool |
from typing import List | def count_up_to(n: int) -> List[int]:
"""Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
>>> count_up_to(5)
[2, 3]
>>> count_up_to(11)
[2, 3, 5, 7]
>>> count_up_to(0)
[]
>>> count_up_to(20)
[2, 3, 5, 7, 11, 13, 17, 19]
>>> count_up_to(1)
[]
>>> count_up_to(18)
[2, 3, 5, 7, 11, 13, 17]
""" | def count_up_to(n: int) -> List[int]:
"""Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
>>> count_up_to(5)
[2, 3]
>>> count_up_to(11)
[2, 3, 5, 7]
>>> count_up_to(0)
[]
>>> count_up_to(20)
[2, 3, 5, 7, 11, 13, 17, 19]
>>> count_up_to(1)
[]
>>> count_up_to(18)
[2, 3, 5, 7, 11, 13, 17]
"""
primes = []
for i in range(2, n):
is_prime = True
for j in range(2, i):
if i % j == 0:
is_prime = False
break
if is_prime:
primes.append(i)
return primes | count_up_to | def sum_of_primes_smaller_than(number: int) -> int:
"""
Calculate the sum of all prime numbers smaller than the given number.
Examples:
>>> sum_of_primes_smaller_than(5)
5
>>> sum_of_primes_smaller_than(11)
17
""" | def sum_of_primes_smaller_than(number: int) -> int:
"""
Calculate the sum of all prime numbers smaller than the given number.
Examples:
>>> sum_of_primes_smaller_than(5)
5
>>> sum_of_primes_smaller_than(11)
17
"""
return sum(count_up_to(number)) | sum_of_primes_smaller_than | def check(candidate):
assert candidate(2) == 0
assert candidate(20) == 77
assert candidate(100) == 1060
def test_check():
check(sum_of_primes_smaller_than)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
>>> count_up_to(5)
[2, 3]
>>> count_up_to(11)
[2, 3, 5, 7]
>>> count_up_to(0)
[]
>>> count_up_to(20)
[2, 3, 5, 7, 11, 13, 17, 19]
>>> count_up_to(1)
[]
>>> count_up_to(18)
[2, 3, 5, 7, 11, 13, 17] | Calculate the sum of all prime numbers smaller than the given number.
Examples:
>>> sum_of_primes_smaller_than(5)
5
>>> sum_of_primes_smaller_than(11)
17 | primes = []
for i in range(2, n):
is_prime = True
for j in range(2, i):
if i % j == 0:
is_prime = False
break
if is_prime:
primes.append(i)
return primes | return sum(count_up_to(number)) | count_up_to(n: int) -> List[int] | sum_of_primes_smaller_than(number: int) -> int |
def multiply(a: int, b: int) -> int:
"""Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
>>> multiply(148, 412)
16
>>> multiply(19, 28)
72
>>> multiply(2020, 1851)
0
>>> multiply(14, -15)
20
""" | def multiply(a: int, b: int) -> int:
"""Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
>>> multiply(148, 412)
16
>>> multiply(19, 28)
72
>>> multiply(2020, 1851)
0
>>> multiply(14, -15)
20
"""
return abs(a % 10) * abs(b % 10) | multiply | def calculate_sum_or_difference_based_on_product(a: int, b: int) -> int:
"""
Implement an efficient function that returns the sum of the two numbers
if their product is even, and the difference of the two numbers if their product is odd.
Examples:
>>> calculate_sum_or_difference_based_on_product(3, 4)
7
>>> calculate_sum_or_difference_based_on_product(3, 5)
-2
""" | def calculate_sum_or_difference_based_on_product(a: int, b: int) -> int:
"""
Implement an efficient function that returns the sum of the two numbers
if their product is even, and the difference of the two numbers if their product is odd.
Examples:
>>> calculate_sum_or_difference_based_on_product(3, 4)
7
>>> calculate_sum_or_difference_based_on_product(3, 5)
-2
"""
return a + b if multiply(a, b) % 2 == 0 else a - b | calculate_sum_or_difference_based_on_product | def check(candidate):
assert candidate(11, 33) == -22
assert candidate(22, 44) == 66
assert candidate(-111, 333) == -444
def test_check():
check(calculate_sum_or_difference_based_on_product)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
>>> multiply(148, 412)
16
>>> multiply(19, 28)
72
>>> multiply(2020, 1851)
0
>>> multiply(14, -15)
20 | Implement an efficient function that returns the sum of the two numbers
if their product is even, and the difference of the two numbers if their product is odd.
Examples:
>>> calculate_sum_or_difference_based_on_product(3, 4)
7
>>> calculate_sum_or_difference_based_on_product(3, 5)
-2 | return abs(a % 10) * abs(b % 10) | return a + b if multiply(a, b) % 2 == 0 else a - b | multiply(a: int, b: int) -> int | calculate_sum_or_difference_based_on_product(a: int, b: int) -> int |
|
from typing import List | def count_upper(s: str) -> int:
"""
Given a string s, count the number of uppercase vowels in even indices.
For example:
>>> count_upper('aBCdEf')
1
>>> count_upper('abcdefg')
0
>>> count_upper('dBBE')
0
""" | def count_upper(s: str) -> int:
"""
Given a string s, count the number of uppercase vowels in even indices.
For example:
>>> count_upper('aBCdEf')
1
>>> count_upper('abcdefg')
0
>>> count_upper('dBBE')
0
"""
count = 0
for i in range(0, len(s), 2):
if s[i] in 'AEIOU':
count += 1
return count | count_upper | def find_string_with_highest_uppercase_vowel_count_at_even_indices(strings: List[str]) -> str:
"""
Return the string from the given list of strings
that has the highest count of uppercase vowels at even indices.
In the case of having the same count, return the string that is located at the frontmost position.
Examples:
>>> find_string_with_highest_uppercase_vowel_count_at_even_indices(['aBCdEf', 'abcdefg', 'dBBE'])
'aBCdEf'
>>> find_string_with_highest_uppercase_vowel_count_at_even_indices(['b', 'Eb', 'Ab'])
'Eb'
""" | def find_string_with_highest_uppercase_vowel_count_at_even_indices(strings: List[str]) -> str:
"""
Return the string from the given list of strings
that has the highest count of uppercase vowels at even indices.
In the case of having the same count, return the string that is located at the frontmost position.
Examples:
>>> find_string_with_highest_uppercase_vowel_count_at_even_indices(['aBCdEf', 'abcdefg', 'dBBE'])
'aBCdEf'
>>> find_string_with_highest_uppercase_vowel_count_at_even_indices(['b', 'Eb', 'Ab'])
'Eb'
"""
return max(strings, key=count_upper) | find_string_with_highest_uppercase_vowel_count_at_even_indices | def check(candidate):
assert candidate(['ABBBBBBB', 'ABABABAB', 'AAAAAA', 'BBBBBBBBBB']) == 'ABABABAB'
assert candidate(['BABEBIBOBU', 'acecicocuc', 'bbccAdd']) == 'bbccAdd'
assert candidate(['ABEC', 'EBIC', 'IBOC', 'OBUC']) == 'ABEC'
def test_check():
check(find_string_with_highest_uppercase_vowel_count_at_even_indices)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Given a string s, count the number of uppercase vowels in even indices.
For example:
>>> count_upper('aBCdEf')
1
>>> count_upper('abcdefg')
0
>>> count_upper('dBBE')
0 | Return the string from the given list of strings
that has the highest count of uppercase vowels at even indices.
In the case of having the same count, return the string that is located at the frontmost position.
Examples:
>>> find_string_with_highest_uppercase_vowel_count_at_even_indices(['aBCdEf', 'abcdefg', 'dBBE'])
'aBCdEf'
>>> find_string_with_highest_uppercase_vowel_count_at_even_indices(['b', 'Eb', 'Ab'])
'Eb' | count = 0
for i in range(0, len(s), 2):
if s[i] in 'AEIOU':
count += 1
return count | return max(strings, key=count_upper) | count_upper(s: str) -> int | find_string_with_highest_uppercase_vowel_count_at_even_indices(strings: List[str]) -> str |
def closest_integer(value: str) -> int:
"""
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
>>> closest_integer('10')
10
>>> closest_integer('15.3')
15
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
""" | def closest_integer(value: str) -> int:
"""
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
>>> closest_integer('10')
10
>>> closest_integer('15.3')
15
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
"""
from math import ceil, floor
if value.count('.') == 1:
while value[-1] == '0':
value = value[:-1]
num = float(value)
if value[-2:] == '.5':
if num > 0:
res = ceil(num)
else:
res = floor(num)
elif len(value) > 0:
res = int(round(num))
else:
res = 0
return res | closest_integer | def find_largest_rearranged_decimal_number(number: str) -> int:
"""
Given a positive decimal number represented as a string,
return the rounded value of the largest decimal number that can be obtained
by rearranging the order of digits, excluding the decimal point (.).
Examples:
>>> find_largest_rearranged_decimal_number('13.24')
43
""" | def find_largest_rearranged_decimal_number(number: str) -> int:
"""
Given a positive decimal number represented as a string,
return the rounded value of the largest decimal number that can be obtained
by rearranging the order of digits, excluding the decimal point (.).
Examples:
>>> find_largest_rearranged_decimal_number('13.24')
43
"""
index = number.index('.')
digits = number[:index] + number[index + 1:]
digits = ''.join(sorted(digits, reverse=True))
number = digits[:index] + '.' + digits[index:]
return closest_integer(number) | find_largest_rearranged_decimal_number | def check(candidate):
assert candidate('1234.5678') == 8765
assert candidate('567.567') == 777
assert candidate('2023.0712') == 7322
def test_check():
check(find_largest_rearranged_decimal_number)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
>>> closest_integer('10')
10
>>> closest_integer('15.3')
15
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15. | Given a positive decimal number represented as a string,
return the rounded value of the largest decimal number that can be obtained
by rearranging the order of digits, excluding the decimal point (.).
Examples:
>>> find_largest_rearranged_decimal_number('13.24')
43 | from math import ceil, floor
if value.count('.') == 1:
while value[-1] == '0':
value = value[:-1]
num = float(value)
if value[-2:] == '.5':
if num > 0:
res = ceil(num)
else:
res = floor(num)
elif len(value) > 0:
res = int(round(num))
else:
res = 0
return res | index = number.index('.')
digits = number[:index] + number[index + 1:]
digits = ''.join(sorted(digits, reverse=True))
number = digits[:index] + '.' + digits[index:]
return closest_integer(number) | closest_integer(value: str) -> int | find_largest_rearranged_decimal_number(number: str) -> int |
|
from typing import List | def make_a_pile(n: int) -> List[int]:
"""
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in a list, where element at index
i represents the number of stones in the level (i+1).
Examples:
>>> make_a_pile(3)
[3, 5, 7]
""" | def make_a_pile(n: int) -> List[int]:
"""
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in a list, where element at index
i represents the number of stones in the level (i+1).
Examples:
>>> make_a_pile(3)
[3, 5, 7]
"""
return [n + 2 * i for i in range(n)] | make_a_pile | def get_last_elements_of_piles(numbers: List[int]) -> List[int]:
"""
Given a list of positive integers,
return a list of the last elements of the piles corresponding to each integer.
Examples:
>>> get_last_elements_of_piles([2, 3])
[4, 7]
""" | def get_last_elements_of_piles(numbers: List[int]) -> List[int]:
"""
Given a list of positive integers,
return a list of the last elements of the piles corresponding to each integer.
Examples:
>>> get_last_elements_of_piles([2, 3])
[4, 7]
"""
return [make_a_pile(number)[-1] for number in numbers] | get_last_elements_of_piles | def check(candidate):
assert candidate([1, 2, 3, 4, 5]) == [1, 4, 7, 10, 13]
assert candidate([5, 3, 1, 5, 3, 1]) == [13, 7, 1, 13, 7, 1]
assert candidate([7, 10]) == [19, 28]
def test_check():
check(get_last_elements_of_piles)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in a list, where element at index
i represents the number of stones in the level (i+1).
Examples:
>>> make_a_pile(3)
[3, 5, 7] | Given a list of positive integers,
return a list of the last elements of the piles corresponding to each integer.
Examples:
>>> get_last_elements_of_piles([2, 3])
[4, 7] | return [n + 2 * i for i in range(n)] | return [make_a_pile(number)[-1] for number in numbers] | make_a_pile(n: int) -> List[int] | get_last_elements_of_piles(numbers: List[int]) -> List[int] |
from typing import List | def words_string(s: str) -> List[str]:
"""
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
>>> words_string('Hi, my name is John')
['Hi', 'my', 'name', 'is', 'John']
>>> words_string('One, two, three, four, five, six')
['One', 'two', 'three', 'four', 'five', 'six']
""" | def words_string(s: str) -> List[str]:
"""
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
>>> words_string('Hi, my name is John')
['Hi', 'my', 'name', 'is', 'John']
>>> words_string('One, two, three, four, five, six')
['One', 'two', 'three', 'four', 'five', 'six']
"""
if not s:
return []
s_list = []
for letter in s:
if letter == ',':
s_list.append(' ')
else:
s_list.append(letter)
s_list = ''.join(s_list)
return s_list.split() | words_string | def words_string_lower(s: str) -> List[str]:
"""
You will be given a string of words separated by commas or spaces. Your task is
to split the lowercased version of the string into words and return an array of the words.
For example:
>>> words_string_lower('Hi, my name is John')
['hi', 'my', 'name', 'is', 'john']
>>> words_string_lower('One, two, three, four, five, six')
['one', 'two', 'three', 'four', 'five', 'six']
""" | def words_string_lower(s: str) -> List[str]:
"""
You will be given a string of words separated by commas or spaces. Your task is
to split the lowercased version of the string into words and return an array of the words.
For example:
>>> words_string_lower('Hi, my name is John')
['hi', 'my', 'name', 'is', 'john']
>>> words_string_lower('One, two, three, four, five, six')
['one', 'two', 'three', 'four', 'five', 'six']
"""
return words_string(s.lower()) | words_string_lower | def check(candidate):
assert candidate('') == []
assert candidate(' ') == []
assert candidate('Hi, my name is John') == ['hi', 'my', 'name', 'is', 'john']
assert candidate('One, two, three, Four, five') == ['one', 'two', 'three', 'four', 'five']
assert candidate(' , APPLE BANANA,, CANDY') == ['apple', 'banana', 'candy']
def test_check():
check(words_string_lower)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
>>> words_string('Hi, my name is John')
['Hi', 'my', 'name', 'is', 'John']
>>> words_string('One, two, three, four, five, six')
['One', 'two', 'three', 'four', 'five', 'six'] | You will be given a string of words separated by commas or spaces. Your task is
to split the lowercased version of the string into words and return an array of the words.
For example:
>>> words_string_lower('Hi, my name is John')
['hi', 'my', 'name', 'is', 'john']
>>> words_string_lower('One, two, three, four, five, six')
['one', 'two', 'three', 'four', 'five', 'six'] | if not s:
return []
s_list = []
for letter in s:
if letter == ',':
s_list.append(' ')
else:
s_list.append(letter)
s_list = ''.join(s_list)
return s_list.split() | return words_string(s.lower()) | words_string(s: str) -> List[str] | words_string_lower(s: str) -> List[str] |
def choose_num(x: int, y: int) -> int:
"""This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
>>> choose_num(12, 15)
14
>>> choose_num(13, 12)
-1
""" | def choose_num(x: int, y: int) -> int:
"""This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
>>> choose_num(12, 15)
14
>>> choose_num(13, 12)
-1
"""
if x > y:
return -1
if y % 2 == 0:
return y
if x == y:
return -1
return y - 1 | choose_num | def choose_num_two_intervals(x: int, y: int, z: int, w: int) -> int:
"""This function takes two positive numbers x, y, z, and w and returns the
biggest even integer number that is in the ranges [x, y] and [z, w] inclusive.
If there's no such number, then the function should return -1.
For example:
>>> choose_num_two_intervals(12, 15, 18, 20)
20
>>> choose_num_two_intervals(13, 12, 0, 10)
-1
""" | def choose_num_two_intervals(x: int, y: int, z: int, w: int) -> int:
"""This function takes two positive numbers x, y, z, and w and returns the
biggest even integer number that is in the ranges [x, y] and [z, w] inclusive.
If there's no such number, then the function should return -1.
For example:
>>> choose_num_two_intervals(12, 15, 18, 20)
20
>>> choose_num_two_intervals(13, 12, 0, 10)
-1
"""
a = choose_num(x, y)
b = choose_num(z, w)
if a == -1 or b == -1:
return -1
else:
return max(a, b) | choose_num_two_intervals | def check(candidate):
assert candidate(12, 15, 18, 20) == 20
assert candidate(13, 12, 1, 10) == -1
assert candidate(1, 5, 2, 3) == 4
assert candidate(10, 20, 13, 10) == -1
assert candidate(8, 6, 4, 2) == -1
assert candidate(2, 5, 5, 9) == 8
def test_check():
check(choose_num_two_intervals)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
>>> choose_num(12, 15)
14
>>> choose_num(13, 12)
-1 | This function takes two positive numbers x, y, z, and w and returns the
biggest even integer number that is in the ranges [x, y] and [z, w] inclusive.
If there's no such number, then the function should return -1.
For example:
>>> choose_num_two_intervals(12, 15, 18, 20)
20
>>> choose_num_two_intervals(13, 12, 0, 10)
-1 | if x > y:
return -1
if y % 2 == 0:
return y
if x == y:
return -1
return y - 1 | a = choose_num(x, y)
b = choose_num(z, w)
if a == -1 or b == -1:
return -1
else:
return max(a, b) | choose_num(x: int, y: int) -> int | choose_num_two_intervals(x: int, y: int, z: int, w: int) -> int |
|
from typing import Union | def rounded_avg(n: int, m: int) -> Union[str, int]:
"""You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
>>> rounded_avg(1, 5)
'0b11'
>>> rounded_avg(7, 5)
-1
>>> rounded_avg(10, 20)
'0b1111'
>>> rounded_avg(20, 33)
'0b11010'
""" | def rounded_avg(n: int, m: int) -> Union[str, int]:
"""You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
>>> rounded_avg(1, 5)
'0b11'
>>> rounded_avg(7, 5)
-1
>>> rounded_avg(10, 20)
'0b1111'
>>> rounded_avg(20, 33)
'0b11010'
"""
if m < n:
return -1
summation = 0
for i in range(n, m + 1):
summation += i
return bin(round(summation / (m - n + 1))) | rounded_avg | def biggest_multiplier_of_two(n: int, m: int) -> int:
"""You are given two positive integers n and m, and your task is to compute the
the biggest multiplier of 2 among the numbers that are smaller than
the average of [n, m] rounded to the nearest integer.
If n is greater than m, return -1.
Example:
>>> biggest_multiplier_of_two(1, 5)
2
>>> biggest_multiplier_of_two(7, 5)
-1
>>> biggest_multiplier_of_two(10, 20)
8
>>> biggest_multiplier_of_two(20, 33)
16
""" | def biggest_multiplier_of_two(n: int, m: int) -> int:
"""You are given two positive integers n and m, and your task is to compute the
the biggest multiplier of 2 among the numbers that are smaller than
the average of [n, m] rounded to the nearest integer.
If n is greater than m, return -1.
Example:
>>> biggest_multiplier_of_two(1, 5)
2
>>> biggest_multiplier_of_two(7, 5)
-1
>>> biggest_multiplier_of_two(10, 20)
8
>>> biggest_multiplier_of_two(20, 33)
16
"""
if m < n:
return -1
return 2 ** (len(rounded_avg(n, m)) - 3) | biggest_multiplier_of_two | def check(candidate):
assert candidate(1, 5) == 2
assert candidate(7, 5) == -1
assert candidate(10, 20) == 8
assert candidate(20, 33) == 16
assert candidate(1, 10) == 4
assert candidate(16, 64) == 32
def test_check():
check(biggest_multiplier_of_two)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
>>> rounded_avg(1, 5)
'0b11'
>>> rounded_avg(7, 5)
-1
>>> rounded_avg(10, 20)
'0b1111'
>>> rounded_avg(20, 33)
'0b11010' | You are given two positive integers n and m, and your task is to compute the
the biggest multiplier of 2 among the numbers that are smaller than
the average of [n, m] rounded to the nearest integer.
If n is greater than m, return -1.
Example:
>>> biggest_multiplier_of_two(1, 5)
2
>>> biggest_multiplier_of_two(7, 5)
-1
>>> biggest_multiplier_of_two(10, 20)
8
>>> biggest_multiplier_of_two(20, 33)
16 | if m < n:
return -1
summation = 0
for i in range(n, m + 1):
summation += i
return bin(round(summation / (m - n + 1))) | if m < n:
return -1
return 2 ** (len(rounded_avg(n, m)) - 3) | rounded_avg(n: int, m: int) -> Union[str, int] | biggest_multiplier_of_two(n: int, m: int) -> int |
from typing import List | def unique_digits(x: List[int]) -> List[int]:
"""Given a list of positive integers x. return a sorted list of all
elements that hasn't any even digit.
Note: Returned list should be sorted in increasing order.
For example:
>>> unique_digits([15, 33, 1422, 1])
[1, 15, 33]
>>> unique_digits([152, 323, 1422, 10])
[]
""" | def unique_digits(x: List[int]) -> List[int]:
"""Given a list of positive integers x. return a sorted list of all
elements that hasn't any even digit.
Note: Returned list should be sorted in increasing order.
For example:
>>> unique_digits([15, 33, 1422, 1])
[1, 15, 33]
>>> unique_digits([152, 323, 1422, 10])
[]
"""
odd_digit_elements = []
for i in x:
if all((int(c) % 2 == 1 for c in str(i))):
odd_digit_elements.append(i)
return sorted(odd_digit_elements) | unique_digits | def unique_sum_of_digits(x: List[int]) -> List[int]:
"""Given a list of positive integers x. Compute a sorted list of all
elements that hasn't any even digit, and convert each element into the
sum of digits of the number.
For example:
>>> unique_sum_of_digits([15, 33, 1422, 1])
[1, 6, 6]
>>> unique_sum_of_digits([152, 323, 1422, 10])
[]
""" | def unique_sum_of_digits(x: List[int]) -> List[int]:
"""Given a list of positive integers x. Compute a sorted list of all
elements that hasn't any even digit, and convert each element into the
sum of digits of the number.
For example:
>>> unique_sum_of_digits([15, 33, 1422, 1])
[1, 6, 6]
>>> unique_sum_of_digits([152, 323, 1422, 10])
[]
"""
return [sum((int(digit) for digit in str(elem))) for elem in unique_digits(x)] | unique_sum_of_digits | def check(candidate):
assert candidate([15, 33, 1422, 1]) == [1, 6, 6]
assert candidate([152, 323, 1422, 10]) == []
assert candidate([1, 2, 3, 4, 5, 6]) == [1, 3, 5]
assert candidate([12, 34, 56, 78, 90]) == []
assert candidate([11, 22, 33, 44, 55, 66]) == [2, 6, 10]
assert candidate([97, 86, 75, 64, 53, 42, 31, 20]) == [4, 8, 12, 16]
def test_check():
check(unique_sum_of_digits)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Given a list of positive integers x. return a sorted list of all
elements that hasn't any even digit.
Note: Returned list should be sorted in increasing order.
For example:
>>> unique_digits([15, 33, 1422, 1])
[1, 15, 33]
>>> unique_digits([152, 323, 1422, 10])
[] | Given a list of positive integers x. Compute a sorted list of all
elements that hasn't any even digit, and convert each element into the
sum of digits of the number.
For example:
>>> unique_sum_of_digits([15, 33, 1422, 1])
[1, 6, 6]
>>> unique_sum_of_digits([152, 323, 1422, 10])
[] | odd_digit_elements = []
for i in x:
if all((int(c) % 2 == 1 for c in str(i))):
odd_digit_elements.append(i)
return sorted(odd_digit_elements) | return [sum((int(digit) for digit in str(elem))) for elem in unique_digits(x)] | unique_digits(x: List[int]) -> List[int] | unique_sum_of_digits(x: List[int]) -> List[int] |
from typing import List | def by_length(arr: List[int]) -> List[str]:
"""
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
>>> by_length([2, 1, 1, 4, 5, 8, 2, 3])
['Eight', 'Five', 'Four', 'Three', 'Two', 'Two', 'One', 'One']
If the array is empty, return an empty array:
>>> by_length([])
[]
If the array has any strange number ignore it:
>>> by_length([1, -1, 55])
['One']
""" | def by_length(arr: List[int]) -> List[str]:
"""
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
>>> by_length([2, 1, 1, 4, 5, 8, 2, 3])
['Eight', 'Five', 'Four', 'Three', 'Two', 'Two', 'One', 'One']
If the array is empty, return an empty array:
>>> by_length([])
[]
If the array has any strange number ignore it:
>>> by_length([1, -1, 55])
['One']
"""
dic = {1: 'One', 2: 'Two', 3: 'Three', 4: 'Four', 5: 'Five', 6: 'Six', 7: 'Seven', 8: 'Eight', 9: 'Nine'}
sorted_arr = sorted(arr, reverse=True)
new_arr = []
for var in sorted_arr:
try:
new_arr.append(dic[var])
except:
pass
return new_arr | by_length | def by_length_csv(arr: List[int]) -> str:
"""
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
Convert the list of digit names into a comma-separated string.
For example:
>>> by_length_csv([2, 1, 1, 4, 5, 8, 2, 3])
'Eight,Five,Four,Three,Two,Two,One,One'
If the array is empty, return an empty string:
>>> by_length_csv([])
''
If the array has any strange number ignore it:
>>> by_length_csv([1, -1, 55])
'One'
""" | def by_length_csv(arr: List[int]) -> str:
"""
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
Convert the list of digit names into a comma-separated string.
For example:
>>> by_length_csv([2, 1, 1, 4, 5, 8, 2, 3])
'Eight,Five,Four,Three,Two,Two,One,One'
If the array is empty, return an empty string:
>>> by_length_csv([])
''
If the array has any strange number ignore it:
>>> by_length_csv([1, -1, 55])
'One'
"""
return ','.join(by_length(arr)) | by_length_csv | def check(candidate):
assert candidate([2, 1, 1, 4, 5, 8, 2, 3]) == 'Eight,Five,Four,Three,Two,Two,One,One'
assert candidate([]) == ''
assert candidate([1, -1, 55]) == 'One'
assert candidate([1, 3, 5, 7]) == 'Seven,Five,Three,One'
assert candidate([0, 0, 0, 0]) == ''
assert candidate([99, 0, 1, 4, 4, 1]) == 'Four,Four,One,One'
def test_check():
check(by_length_csv)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
>>> by_length([2, 1, 1, 4, 5, 8, 2, 3])
['Eight', 'Five', 'Four', 'Three', 'Two', 'Two', 'One', 'One']
If the array is empty, return an empty array:
>>> by_length([])
[]
If the array has any strange number ignore it:
>>> by_length([1, -1, 55])
['One'] | Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
Convert the list of digit names into a comma-separated string.
For example:
>>> by_length_csv([2, 1, 1, 4, 5, 8, 2, 3])
'Eight,Five,Four,Three,Two,Two,One,One'
If the array is empty, return an empty string:
>>> by_length_csv([])
''
If the array has any strange number ignore it:
>>> by_length_csv([1, -1, 55])
'One' | dic = {1: 'One', 2: 'Two', 3: 'Three', 4: 'Four', 5: 'Five', 6: 'Six', 7: 'Seven', 8: 'Eight', 9: 'Nine'}
sorted_arr = sorted(arr, reverse=True)
new_arr = []
for var in sorted_arr:
try:
new_arr.append(dic[var])
except:
pass
return new_arr | return ','.join(by_length(arr)) | by_length(arr: List[int]) -> List[str] | by_length_csv(arr: List[int]) -> str |
from typing import List | def f(n: int) -> List[int]:
"""Implement the function f that takes n as a parameter,
and returns a list of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
>>> f(5)
[1, 2, 6, 24, 15]
""" | def f(n: int) -> List[int]:
"""Implement the function f that takes n as a parameter,
and returns a list of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
>>> f(5)
[1, 2, 6, 24, 15]
"""
ret = []
for i in range(1, n + 1):
if i % 2 == 0:
x = 1
for j in range(1, i + 1):
x *= j
ret += [x]
else:
x = 0
for j in range(1, i + 1):
x += j
ret += [x]
return ret | f | def sorted_f(n: int) -> List[int]:
"""Implement the function f that takes n as a parameter,
and compute a list of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
Sort the integer values in a descending order.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
>>> sorted_f(5)
[24, 15, 6, 2, 1]
""" | def sorted_f(n: int) -> List[int]:
"""Implement the function f that takes n as a parameter,
and compute a list of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
Sort the integer values in a descending order.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
>>> sorted_f(5)
[24, 15, 6, 2, 1]
"""
return sorted(f(n), reverse=True) | sorted_f | def check(candidate):
assert candidate(1) == [1]
assert candidate(5) == [24, 15, 6, 2, 1]
assert candidate(10) == [3628800, 40320, 720, 45, 28, 24, 15, 6, 2, 1]
def test_check():
check(sorted_f)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Implement the function f that takes n as a parameter,
and returns a list of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
>>> f(5)
[1, 2, 6, 24, 15] | Implement the function f that takes n as a parameter,
and compute a list of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
Sort the integer values in a descending order.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
>>> sorted_f(5)
[24, 15, 6, 2, 1] | ret = []
for i in range(1, n + 1):
if i % 2 == 0:
x = 1
for j in range(1, i + 1):
x *= j
ret += [x]
else:
x = 0
for j in range(1, i + 1):
x += j
ret += [x]
return ret | return sorted(f(n), reverse=True) | f(n: int) -> List[int] | sorted_f(n: int) -> List[int] |
from typing import Tuple | def even_odd_palindrome(n: int) -> Tuple[int, int]:
"""
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
>>> even_odd_palindrome(3)
(1, 2)
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
>>> even_odd_palindrome(12)
(4, 6)
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
""" | def even_odd_palindrome(n: int) -> Tuple[int, int]:
"""
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
>>> even_odd_palindrome(3)
(1, 2)
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
>>> even_odd_palindrome(12)
(4, 6)
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
"""
def is_palindrome(n):
return str(n) == str(n)[::-1]
even_palindrome_count = 0
odd_palindrome_count = 0
for i in range(1, n + 1):
if i % 2 == 1 and is_palindrome(i):
odd_palindrome_count += 1
elif i % 2 == 0 and is_palindrome(i):
even_palindrome_count += 1
return (even_palindrome_count, odd_palindrome_count) | even_odd_palindrome | def even_odd_palindrome_interval(m: int, n: int) -> Tuple[int, int]:
"""
Given two positive integers m and n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(m+1, n), inclusive.
If m is greater than n, return (0, 0).
Example 1:
>>> even_odd_palindrome_interval(3, 12)
(3, 4)
Explanation:
Integer palindrome within the range(3+1, 12) are 4, 5, 6, 7, 8, 9, 11. three of them are even, and four of them are odd.
Note:
1. 1 <= m, n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
""" | def even_odd_palindrome_interval(m: int, n: int) -> Tuple[int, int]:
"""
Given two positive integers m and n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(m+1, n), inclusive.
If m is greater than n, return (0, 0).
Example 1:
>>> even_odd_palindrome_interval(3, 12)
(3, 4)
Explanation:
Integer palindrome within the range(3+1, 12) are 4, 5, 6, 7, 8, 9, 11. three of them are even, and four of them are odd.
Note:
1. 1 <= m, n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
"""
if m > n:
return (0, 0)
return tuple((en - em for (em, en) in zip(even_odd_palindrome(m), even_odd_palindrome(n)))) | even_odd_palindrome_interval | def check(candidate):
assert candidate(3, 12) == (3, 4)
assert candidate(5, 3) == (0, 0)
assert candidate(4, 4) == (0, 0)
assert candidate(4, 5) == (0, 1)
assert candidate(10, 20) == (0, 1)
assert candidate(11, 21) == (0, 0)
def test_check():
check(even_odd_palindrome_interval)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
>>> even_odd_palindrome(3)
(1, 2)
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
>>> even_odd_palindrome(12)
(4, 6)
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively. | Given two positive integers m and n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(m+1, n), inclusive.
If m is greater than n, return (0, 0).
Example 1:
>>> even_odd_palindrome_interval(3, 12)
(3, 4)
Explanation:
Integer palindrome within the range(3+1, 12) are 4, 5, 6, 7, 8, 9, 11. three of them are even, and four of them are odd.
Note:
1. 1 <= m, n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively. |
def is_palindrome(n):
return str(n) == str(n)[::-1]
even_palindrome_count = 0
odd_palindrome_count = 0
for i in range(1, n + 1):
if i % 2 == 1 and is_palindrome(i):
odd_palindrome_count += 1
elif i % 2 == 0 and is_palindrome(i):
even_palindrome_count += 1
return (even_palindrome_count, odd_palindrome_count) | if m > n:
return (0, 0)
return tuple((en - em for (em, en) in zip(even_odd_palindrome(m), even_odd_palindrome(n)))) | even_odd_palindrome(n: int) -> Tuple[int, int] | even_odd_palindrome_interval(m: int, n: int) -> Tuple[int, int] |
from typing import List | def count_nums(arr: List[int]) -> int:
"""
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
>>> count_nums([])
0
>>> count_nums([-1, 11, -11])
1
>>> count_nums([1, 1, 2])
3
""" | def count_nums(arr: List[int]) -> int:
"""
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
>>> count_nums([])
0
>>> count_nums([-1, 11, -11])
1
>>> count_nums([1, 1, 2])
3
"""
def digits_sum(n):
neg = 1
if n < 0:
(n, neg) = (-1 * n, -1)
n = [int(i) for i in str(n)]
n[0] = n[0] * neg
return sum(n)
return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr]))) | count_nums | def count_nums_union(arr1: List[int], arr2: List[int]) -> int:
"""
Write a function count_nums_union which takes two arrays of integers and returns
the number of elements which has a sum of digits > 0 from union of the arrays (without repetition of elements).
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
>>> count_nums_union([], [])
0
>>> count_nums_union([-1, 11, -11], [1, 1, 2])
3
""" | def count_nums_union(arr1: List[int], arr2: List[int]) -> int:
"""
Write a function count_nums_union which takes two arrays of integers and returns
the number of elements which has a sum of digits > 0 from union of the arrays (without repetition of elements).
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
>>> count_nums_union([], [])
0
>>> count_nums_union([-1, 11, -11], [1, 1, 2])
3
"""
return count_nums(list(set(arr1) | set(arr2))) | count_nums_union | def check(candidate):
assert candidate([], []) == 0
assert candidate([-1, 11, -11], [1, 1, 2]) == 3
assert candidate([-525, 124, 345], []) == 3
assert candidate([1, 2, 3, 4], [1, 2, 3, 4]) == 4
assert candidate([-4, -3, -2, -1], [-2, -1, 0, 1]) == 1
assert candidate([1, 1, 1, 1], [2, 2, 2, 2]) == 2
def test_check():
check(count_nums_union)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
>>> count_nums([])
0
>>> count_nums([-1, 11, -11])
1
>>> count_nums([1, 1, 2])
3 | Write a function count_nums_union which takes two arrays of integers and returns
the number of elements which has a sum of digits > 0 from union of the arrays (without repetition of elements).
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
>>> count_nums_union([], [])
0
>>> count_nums_union([-1, 11, -11], [1, 1, 2])
3 |
def digits_sum(n):
neg = 1
if n < 0:
(n, neg) = (-1 * n, -1)
n = [int(i) for i in str(n)]
n[0] = n[0] * neg
return sum(n)
return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr]))) | return count_nums(list(set(arr1) | set(arr2))) | count_nums(arr: List[int]) -> int | count_nums_union(arr1: List[int], arr2: List[int]) -> int |
from typing import List | def move_one_ball(arr: List[int]) -> bool:
"""We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return True else return False.
If the given array is empty then return True.
Note: The given list is guaranteed to have unique elements.
For Example:
>>> move_one_ball([3, 4, 5, 1, 2])
True
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
>>> move_one_ball([3, 5, 4, 1, 2])
False
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
""" | def move_one_ball(arr: List[int]) -> bool:
"""We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return True else return False.
If the given array is empty then return True.
Note: The given list is guaranteed to have unique elements.
For Example:
>>> move_one_ball([3, 4, 5, 1, 2])
True
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
>>> move_one_ball([3, 5, 4, 1, 2])
False
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
"""
if len(arr) == 0:
return True
sorted_array = sorted(arr)
my_arr = []
min_value = min(arr)
min_index = arr.index(min_value)
my_arr = arr[min_index:] + arr[0:min_index]
for i in range(len(arr)):
if my_arr[i] != sorted_array[i]:
return False
return True | move_one_ball | def move_one_ball_any_order(arr: List[int]) -> bool:
"""We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing or non-increasing order
by performing the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return True else return False.
If the given array is empty then return True.
Note: The given list is guaranteed to have unique elements.
For Example:
>>> move_one_ball_any_order([3, 4, 5, 1, 2])
True
Explanation: By performing 2 right shift operations, non-decreasing order can
be achieved for the given array.
>>> move_one_ball_any_order([2, 1, 5, 4, 3])
True
Explanation: By performing 3 right shift operations, non-increasing order can
be achieved for the given array.
>>> move_one_ball_any_order([3, 5, 4, 1, 2])
False
Explanation:It is not possible to get non-decreasing or non-increasing order
for the given array by performing any number of right shift operations.
""" | def move_one_ball_any_order(arr: List[int]) -> bool:
"""We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing or non-increasing order
by performing the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return True else return False.
If the given array is empty then return True.
Note: The given list is guaranteed to have unique elements.
For Example:
>>> move_one_ball_any_order([3, 4, 5, 1, 2])
True
Explanation: By performing 2 right shift operations, non-decreasing order can
be achieved for the given array.
>>> move_one_ball_any_order([2, 1, 5, 4, 3])
True
Explanation: By performing 3 right shift operations, non-increasing order can
be achieved for the given array.
>>> move_one_ball_any_order([3, 5, 4, 1, 2])
False
Explanation:It is not possible to get non-decreasing or non-increasing order
for the given array by performing any number of right shift operations.
"""
return move_one_ball(arr) or move_one_ball([-e for e in arr]) | move_one_ball_any_order | def check(candidate):
assert candidate([3, 4, 5, 1, 2]) is True
assert candidate([2, 1, 5, 4, 3]) is True
assert candidate([3, 5, 4, 1, 2]) is False
assert candidate([3, 5, 4, 2, 1]) is False
assert candidate([5, 6, 7, 1, 2, 3, 4]) is True
assert candidate([3, 2, 1, 7, 6, 5, 4]) is True
def test_check():
check(move_one_ball_any_order)
test_check() | [
"\ndef",
"\n#",
"\nif",
"\nclass"
] | We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return True else return False.
If the given array is empty then return True.
Note: The given list is guaranteed to have unique elements.
For Example:
>>> move_one_ball([3, 4, 5, 1, 2])
True
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
>>> move_one_ball([3, 5, 4, 1, 2])
False
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations. | We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing or non-increasing order
by performing the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return True else return False.
If the given array is empty then return True.
Note: The given list is guaranteed to have unique elements.
For Example:
>>> move_one_ball_any_order([3, 4, 5, 1, 2])
True
Explanation: By performing 2 right shift operations, non-decreasing order can
be achieved for the given array.
>>> move_one_ball_any_order([2, 1, 5, 4, 3])
True
Explanation: By performing 3 right shift operations, non-increasing order can
be achieved for the given array.
>>> move_one_ball_any_order([3, 5, 4, 1, 2])
False
Explanation:It is not possible to get non-decreasing or non-increasing order
for the given array by performing any number of right shift operations. | if len(arr) == 0:
return True
sorted_array = sorted(arr)
my_arr = []
min_value = min(arr)
min_index = arr.index(min_value)
my_arr = arr[min_index:] + arr[0:min_index]
for i in range(len(arr)):
if my_arr[i] != sorted_array[i]:
return False
return True | return move_one_ball(arr) or move_one_ball([-e for e in arr]) | move_one_ball(arr: List[int]) -> bool | move_one_ball_any_order(arr: List[int]) -> bool |