n_words
int64 3
1.95k
| n_ast_errors
int64 0
2
| complexity
int64 1
151
| nloc
int64 2
546
| path
stringlengths 8
125
| id
int64 280
339k
| commit_message
stringlengths 3
18.1k
| repo
stringlengths 3
28
| ast_levels
int64 4
28
| language
stringclasses 1
value | vocab_size
int64 3
677
| file_name
stringlengths 5
67
| code
stringlengths 101
24k
| commit_id
stringlengths 40
40
| ast_errors
stringlengths 0
2.76k
| token_counts
int64 7
3.77k
| url
stringlengths 31
61
| n_whitespaces
int64 4
13.9k
| random_cut
stringlengths 21
13.9k
| n_identifiers
int64 1
157
| n_ast_nodes
int64 10
3.6k
| fun_name
stringlengths 3
72
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16 | 0 | 2 | 4 | salt/modules/win_certutil.py | 215,879 | Fix win_certutil module to handle paths with spaces | salt | 9 | Python | 15 | win_certutil.py | def __virtual__():
if salt.utils.platform.is_windows():
return __virtualname__
return False, "Module win_certutil: module only works on Windows systems."
| 53b3ebc92648c2081c58865713b50a2859ae8310 | 22 | https://github.com/saltstack/salt.git | 32 | def __virtual__():
if salt.utils.platform.is_windows():
return __virtualname__ | 6 | 41 | __virtual__ |
|
22 | 0 | 1 | 6 | tests/sentry/api/endpoints/test_user_index.py | 100,121 | ref(tests): Remove `get_valid_response()` (#34822) | sentry | 12 | Python | 14 | test_user_index.py | def test_email_query(self):
response = self.get_success_response(qs_params={"query": "email:bar@example.com"})
assert len(response.data) == 1
assert response.data[0]["id"] == str(self.superuser.id)
response = self.get_success_response(qs_params={"query": "email:foobar"})
assert len(response.data) == 0
| 096b5511e244eecd8799b2a0324655207ce8985e | 70 | https://github.com/getsentry/sentry.git | 56 | def test_email_query(self):
response = self.get_success_response(qs_params={"query": "email:bar@example.com"})
assert len(response.data) == 1
assert response.data[0]["id"] == str(self.superuser.id)
response = s | 10 | 119 | test_email_query |
|
32 | 0 | 2 | 8 | rotate_string.py | 22,768 | refactor: clean code
Signed-off-by: slowy07 <slowy.arfy@gmail.com> | Python | 11 | Python | 25 | rotate_string.py | def circular_rotate(s):
s = list(s)
idx = 0
mid = len(s) // 2
for i in reversed(range(mid, len(s))):
s[idx], s[i] = s[i], s[idx]
idx += 1
return s
s = "aditya"
print("".join(circular_rotate(s)))
| f0af0c43340763724f139fa68aa1e5a9ffe458b4 | 61 | https://github.com/geekcomputers/Python.git | 58 | def circular_rotate(s):
s = list(s)
idx = 0
mid = len(s) // 2
for i in reversed(range(mid, len(s))):
s[idx], s[i] = s[i], s[ | 11 | 125 | circular_rotate |
|
14 | 1 | 1 | 4 | tests/gamestonk_terminal/economy/test_economy_controller.py | 282,025 | Tests : Economy + Conftest (#1260)
* Updating tests : economy
* Updating tests : removing breaklines
* Updating tests : economy
* Updating tests : conftest
* Updating tests : economy | OpenBBTerminal | 9 | Python | 12 | test_economy_controller.py | def test_switch(an_input, expected_queue):
controller = economy_controller.EconomyController(queue=None)
queue = controller.switch(an_input=an_input)
assert queue == expected_queue
@pytest.mark.vcr(record_mode="none") | 683a8bdd83c1b931df111a5b2b8b19350930b73a | @pytest.mark.vcr(record_mode="none") | 31 | https://github.com/OpenBB-finance/OpenBBTerminal.git | 21 | def test_switch(an_input, expected_queue):
| 12 | 69 | test_switch |
33 | 0 | 1 | 3 | airflow/decorators/base.py | 45,079 | Implement mapped value unpacking (#21641) | airflow | 8 | Python | 31 | base.py | def get_serialized_fields(cls):
# The magic super() doesn't work here, so we use the explicit form.
# Not using super(..., cls) to work around pyupgrade bug.
sup = super(DecoratedMappedOperator, DecoratedMappedOperator)
return sup.get_serialized_fields() | {"mapped_op_kwargs"}
| 46a337c8cda6fcc515fffe9a4e4cc324edaefa0a | 23 | https://github.com/apache/airflow.git | 60 | def get_serialized_fields(cls):
# The magic super() doesn't work here, so we use the explicit form.
# Not using super(..., cls) to work around pyupgrade bug.
sup = super(DecoratedMappedOperator, DecoratedMappedOperator)
return sup | 5 | 41 | get_serialized_fields |
|
75 | 1 | 2 | 21 | dask/dataframe/io/tests/test_parquet.py | 156,279 | Warn users that `engine='auto'` will change in future (#8907)
* Warn user that `engine='auto'` will change in future
Adds a warning to `read_parquet` and `to_parquet` that the meaning of
`engine='auto'` will change in the future (switching to using `pyarrow`
if it is installed, and falling back to `fastparquet`). This warning is
only raised for users that have both libraries installed and have
`engine='auto'`. Users without both libraries installed or that already
specify an engine will not see this warning.
* Fixup failing test
* Only warn if backend-specific options are passed
We now warn if:
- `engine='auto'`
- Both `pyarrow` and `fastparquet` are installed
- Backend specific options are provided | dask | 15 | Python | 58 | test_parquet.py | def test_optimize_and_not(tmpdir, engine):
path = os.path.join(tmpdir, "path.parquet")
df = pd.DataFrame(
{"a": [3, 4, 2], "b": [1, 2, 4], "c": [5, 4, 2], "d": [1, 2, 3]},
index=["a", "b", "c"],
)
df.to_parquet(path, engine=engine)
df2 = dd.read_parquet(path, engine=engine)
df2a = df2["a"].groupby(df2["c"]).first().to_delayed()
df2b = df2["b"].groupby(df2["c"]).first().to_delayed()
df2c = df2[["a", "b"]].rolling(2).max().to_delayed()
df2d = df2.rolling(2).max().to_delayed()
(result,) = dask.compute(df2a + df2b + df2c + df2d)
expected = [
dask.compute(df2a)[0][0],
dask.compute(df2b)[0][0],
dask.compute(df2c)[0][0],
dask.compute(df2d)[0][0],
]
for a, b in zip(result, expected):
assert_eq(a, b)
@write_read_engines() | bfc76afdcdc43c575a10ffefda94aaba424fe347 | @write_read_engines() | 274 | https://github.com/dask/dask.git | 161 | def test_optimize_and_not(tmpdir, engine):
path = os.path.join(tmpd | 32 | 437 | test_optimize_and_not |
49 | 0 | 5 | 19 | mindsdb/interfaces/model/model_controller.py | 118,276 | keep del company_id | mindsdb | 15 | Python | 43 | model_controller.py | def delete_model_version(self, models):
if len(models) == 0:
raise Exception(f"Version to delete is not found")
for model in models:
model_record = get_model_record(
name=model['NAME'],
project_name=model['PROJECT'],
version=model['VERSION']
)
if model_record.active:
raise Exception(f"Can't remove active version: f{model['PROJECT']}.{model['NAME']}.{model['VERSION']}")
is_cloud = self.config.get('cloud', False)
if is_cloud:
model_record.deleted_at = dt.datetime.now()
else:
db.session.delete(model_record)
modelStorage = ModelStorage(model_record.id)
modelStorage.delete()
db.session.commit()
| 402b28c300dbca149db75439c358f811ea1d36ac | 118 | https://github.com/mindsdb/mindsdb.git | 258 | def delete_model_version(self, models):
if len(models) == 0:
raise Exception(f"Version to dele | 26 | 224 | delete_model_version |
|
11 | 0 | 2 | 4 | dashboard/modules/job/tests/test_job_manager.py | 129,927 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | ray | 11 | Python | 11 | test_job_manager.py | async def test_unknown_job(self, job_manager):
with pytest.raises(RuntimeError, match="Job 'unknown' does not exist."): | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | 31 | https://github.com/ray-project/ray.git | 17 | async def test_unknown_job(self, job_manager):
with pytest.raises(RuntimeError, match="Job 'unknown' does not exist."): | 7 | 34 | test_unknown_job |
|
17 | 0 | 1 | 5 | tests/ludwig/utils/test_dataframe_utils.py | 8,288 | Ensure no ghost ray instances are running in tests (#2607)
* Add test fixtures to prevent double initialization
* contain dataframe utils test in ray test fixture
* add fixture for training determinism test
* fix typo in docstring | ludwig | 11 | Python | 16 | test_dataframe_utils.py | def test_to_numpy_dataset_with_pandas_backend_mismatch(ray_cluster_2cpu):
pd_df = pd.DataFrame([[1, 2, 3]], columns=["col1", "col2", "col3"])
ray_backend = create_backend("ray")
with pytest.raises(AttributeError):
to_numpy_dataset(pd_df, backend=ray_backend)
| 0f509327aed9f9ec687543e1b851f66061603375 | 53 | https://github.com/ludwig-ai/ludwig.git | 32 | def test_to_numpy_dataset_with_pandas_backend_mismatch(ray_cluster_2cpu):
pd_df = pd.DataFrame([[ | 13 | 89 | test_to_numpy_dataset_with_pandas_backend_mismatch |
|
73 | 0 | 3 | 17 | pandas/core/arrays/interval.py | 164,211 | REF: implement LossySetitemError (#45672) | pandas | 15 | Python | 51 | interval.py | def _validate_listlike(self, value):
# list-like of intervals
try:
array = IntervalArray(value)
self._check_closed_matches(array, name="value")
value_left, value_right = array.left, array.right
except TypeError as err:
# wrong type: not interval or NA
msg = f"'value' should be an interval type, got {type(value)} instead."
raise TypeError(msg) from err
try:
self.left._validate_fill_value(value_left)
except (LossySetitemError, TypeError) as err:
msg = (
"'value' should be a compatible interval type, "
f"got {type(value)} instead."
)
raise TypeError(msg) from err
return value_left, value_right
| 9a98aca4b57af277b7747e402029bd57088cba2c | 89 | https://github.com/pandas-dev/pandas.git | 254 | def _validate_listlike(self, value):
# list-like of intervals
try:
array = Inter | 17 | 166 | _validate_listlike |
|
59 | 1 | 2 | 18 | saleor/payment/tests/test_utils.py | 25,940 | Refactor voucher and shipping amount for payment lines data | saleor | 13 | Python | 49 | test_utils.py | def test_create_refund_data_order_lines(order_with_lines, refund_shipping_costs):
# given
order_lines = order_with_lines.lines.all()
order_refund_lines = [
OrderLineInfo(line=(line := order_lines[0]), quantity=2, variant=line.variant),
OrderLineInfo(line=(line := order_lines[1]), quantity=1, variant=line.variant),
]
fulfillment_refund_lines = []
# when
refund_data = create_refund_data(
order_with_lines,
order_refund_lines,
fulfillment_refund_lines,
refund_shipping_costs,
)
# then
assert refund_data.lines == {
line.variant_id: line.quantity - refund_line.quantity
for line, refund_line in zip(order_lines, order_refund_lines)
}
assert refund_data.shipping == refund_shipping_costs
@pytest.mark.parametrize("refund_shipping_costs", [True, False]) | f365f77eb90579cb0dcccc24735f82e039b71f62 | @pytest.mark.parametrize("refund_shipping_costs", [True, False]) | 120 | https://github.com/saleor/saleor.git | 149 | def test_create_refund_data_order_lines(order_with_lines, refund_shipping_costs):
# given
order_lines = order_with_lines.lines.all()
order_refund_lines = [
OrderLineInfo(line=(line := order_lines[0]), quantity=2, variant= | 21 | 201 | test_create_refund_data_order_lines |
211 | 0 | 28 | 71 | mindsdb/api/mysql/mysql_proxy/mysql_proxy.py | 113,967 | cast column names on create predictor | mindsdb | 17 | Python | 113 | mysql_proxy.py | def answer_create_predictor(self, statement):
struct = {
'predictor_name': statement.name.parts[-1],
'integration_name': statement.integration_name.parts[-1],
'select': statement.query_str,
'predict': [x.parts[-1] for x in statement.targets]
}
if len(struct['predict']) > 1:
raise Exception("Only one field can be in 'PREDICT'")
if statement.using is not None:
struct['using'] = statement.using
if statement.datasource_name is not None:
struct['datasource_name'] = statement.datasource_name.parts[-1]
if statement.order_by is not None:
struct['order_by'] = [x.field.parts[-1] for x in statement.order_by]
if len(struct['order_by']) > 1:
raise Exception("Only one field can be in 'OPRDER BY'")
if statement.group_by is not None:
struct['group_by'] = [x.parts[-1] for x in statement.group_by]
if statement.window is not None:
struct['window'] = statement.window
if statement.horizon is not None:
struct['horizon'] = statement.horizon
model_interface = self.session.model_interface
data_store = self.session.data_store
predictor_name = struct['predictor_name']
integration_name = struct['integration_name']
if integration_name.lower().startswith('datasource.'):
ds_name = integration_name[integration_name.find('.') + 1:]
ds = data_store.get_datasource_obj(ds_name, raw=True)
ds_data = data_store.get_datasource(ds_name)
else:
if self.session.datasource_interface.get_db_integration(integration_name) is None:
raise Exception(f"Unknown integration: {integration_name}")
ds_name = struct.get('datasource_name')
if ds_name is None:
ds_name = data_store.get_vacant_name(predictor_name)
ds = data_store.save_datasource(ds_name, integration_name, {'query': struct['select']})
ds_data = data_store.get_datasource(ds_name)
timeseries_settings = {}
for w in ['order_by', 'group_by', 'window', 'horizon']:
if w in struct:
timeseries_settings[w] = struct.get(w)
kwargs = struct.get('using', {})
if len(timeseries_settings) > 0:
if 'timeseries_settings' not in kwargs:
kwargs['timeseries_settings'] = timeseries_settings
else:
if isinstance(kwargs.get('timeseries_settings'), str):
kwargs['timeseries_settings'] = json.loads(kwargs['timeseries_settings'])
kwargs['timeseries_settings'].update(timeseries_settings)
ds_column_names = [x['name'] for x in ds_data['columns']]
try:
predict = self._check_predict_columns(struct['predict'], ds_column_names)
except Exception:
data_store.delete_datasource(ds_name)
raise
| 4f36633784a0b0e8a043bbd71d5a1f2ae8f584ed | 659 | https://github.com/mindsdb/mindsdb.git | 774 | def answer_create_predictor(self, statement):
struct = {
'predictor_name': statement.name.parts[-1],
'integration_name': statement.integration_name.parts[-1],
'select': statement.query_str,
'predict': [x.parts[-1] for x in statement.targets]
}
if len(struct['predict']) > 1:
raise Exception("Only one field can be in 'PREDICT'")
if statement.using is not None:
struct['using'] = statement.using
if statement.datasource_name is not None:
struct['datasource_name'] = statement.datasource_name.parts[-1]
if statement.order_by is not None:
struct['order_by'] = [x.field.parts[-1] for x in statement.order_by]
if len(struct['order_by']) > 1:
raise Exception("Only one field can be in 'OPRDER BY'")
if statemen | 49 | 837 | answer_create_predictor |
|
15 | 0 | 1 | 5 | tests/backends/sqlite/tests.py | 201,790 | Refs #33476 -- Reformatted code with Black. | django | 4 | Python | 14 | tests.py | def test_distinct_aggregation_multiple_args_no_distinct(self):
# Aggregate functions accept multiple arguments when DISTINCT isn't
# used, e.g. GROUP_CONCAT(). | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 34 | https://github.com/django/django.git | 28 | def test_distinct_aggregation_multiple_args_no_distinct(self):
# Aggregate | 2 | 11 | test_distinct_aggregation_multiple_args_no_distinct |
|
25 | 0 | 3 | 9 | packages/syft/src/syft/core/node/common/node_service/tff/tff_service.py | 2,049 | fixed security tests | PySyft | 13 | Python | 19 | tff_service.py | def aux_recursive_od2d(dit):
new_dict = {}
for key in dit:
if type(dit[key]) == collections.OrderedDict:
new_elem = aux_recursive_od2d(dit[key])
new_dict[key] = new_elem
else:
new_dict[key] = dit[key]
return new_dict
| 5724f9c7db0a840c6c209d1d02d03c24ddf59d35 | 55 | https://github.com/OpenMined/PySyft.git | 80 | def aux_recursive_od2d(dit):
new_dict = {}
for key in dit:
if type(dit[key]) == collections.OrderedDict:
new_elem = aux_recursive_od2d(dit[key])
new_dict[key] = new_elem
| 8 | 86 | aux_recursive_od2d |
|
331 | 0 | 8 | 70 | python/ray/tune/examples/cifar10_pytorch.py | 124,070 | [air] update documentation to use `session.report` (#26051)
Update documentation to use `session.report`.
Next steps:
1. Update our internal caller to use `session.report`. Most importantly, CheckpointManager and DataParallelTrainer.
2. Update `get_trial_resources` to use PGF notions to incorporate the requirement of ResourceChangingScheduler. @Yard1
3. After 2 is done, change all `tune.get_trial_resources` to `session.get_trial_resources`
4. [internal implementation] remove special checkpoint handling logic from huggingface trainer. Optimize the flow for checkpoint conversion with `session.report`.
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com> | ray | 18 | Python | 201 | cifar10_pytorch.py | def train_cifar(config):
net = Net(config["l1"], config["l2"])
device = "cpu"
if torch.cuda.is_available():
device = "cuda:0"
if torch.cuda.device_count() > 1:
net = nn.DataParallel(net)
net.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=config["lr"], momentum=0.9)
# Load existing checkpoint through `session.get_checkpoint()` API.
if session.get_checkpoint():
loaded_checkpoint = session.get_checkpoint()
with loaded_checkpoint.as_directory() as loaded_checkpoint_dir:
model_state, optimizer_state = torch.load(os.path.join(loaded_checkpoint_dir, "checkpoint.pt"))
net.load_state_dict(model_state)
optimizer.load_state_dict(optimizer_state)
data_dir = os.path.abspath("./data")
trainset, testset = load_data(data_dir)
test_abs = int(len(trainset) * 0.8)
train_subset, val_subset = random_split(
trainset, [test_abs, len(trainset) - test_abs])
trainloader = torch.utils.data.DataLoader(
train_subset,
batch_size=int(config["batch_size"]),
shuffle=True,
num_workers=8)
valloader = torch.utils.data.DataLoader(
val_subset,
batch_size=int(config["batch_size"]),
shuffle=True,
num_workers=8)
for epoch in range(10): # loop over the dataset multiple times
running_loss = 0.0
epoch_steps = 0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
epoch_steps += 1
if i % 2000 == 1999: # print every 2000 mini-batches
print("[%d, %5d] loss: %.3f" % (epoch + 1, i + 1,
running_loss / epoch_steps))
running_loss = 0.0
# Validation loss
val_loss = 0.0
val_steps = 0
total = 0
correct = 0
for i, data in enumerate(valloader, 0):
with torch.no_grad():
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
loss = criterion(outputs, labels)
val_loss += loss.cpu().numpy()
val_steps += 1
# Here we save a checkpoint. It is automatically registered with
# Ray Tune and will potentially be accessed through in ``session.get_checkpoint()``
# in future iterations.
# Note to save a file like checkpoint, you still need to put it under a directory
# to construct an AIR checkpoint.
os.makedirs("my_model", exist_ok=True) # ok to overwrite the previous one.
path = os.path.join("my_model", "checkpoint.pt")
torch.save(
(net.state_dict(), optimizer.state_dict()), path)
checkpoint = Checkpoint.from_directory("my_model")
session.report({"loss": (val_loss / val_steps), "accuracy": correct / total}, checkpoint=checkpoint)
print("Finished Training")
# __train_end__
# __test_acc_begin__ | ac831fded416381ad3c7fe2ba135eaa4aaab5879 | 572 | https://github.com/ray-project/ray.git | 1,035 | def train_cifar(config):
net = Net(config["l1"], config["l2"])
device = "cpu"
if torch.cuda.is_available():
device = "cuda:0"
if torch.cuda.device_count() > 1:
net = nn.DataParallel(net)
net.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=config["lr"], momentum=0.9)
# Load existing checkpoint through `session.get_checkpoint()` API.
if session.get_checkpoint():
loaded_checkpoint = session.get_checkpoint()
with loaded_checkpoint.as_directory() as loaded_checkpoint_dir:
model_state, optimizer_state = torch.load(os.path.join(loaded_checkpoint_dir, "checkpoint.pt"))
net.load_state_dict(model_state)
optimizer.load_state_dict(optimizer_state)
data_dir = os.path.abspath("./data")
trainset, testset = load_data(data_dir)
test_abs = int(len(trainset) * 0.8)
train_subset, val_subset = random_split(
trainset, [test_abs, len(trainset) - test_abs])
trainloader = torch.utils.data.DataLoader(
train_subset,
batch_size=int(config["batch_size"]),
shuffle=True,
num_workers=8)
valloader = torch.utils.data.DataLoader(
val_subset,
batch_size=int(config["batch_size"]),
shuffle=True,
num_workers=8)
for epoch in range(10): # loop over the dataset multiple times
running_loss = 0.0
epoch_steps = 0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
| 86 | 935 | train_cifar |
|
34 | 0 | 1 | 14 | tests/pipelines/test_pipelines_common.py | 32,004 | feat: add pipeline registry abstraction (#17905)
* feat: add pipeline registry abstraction
- added `PipelineRegistry` abstraction
- updates `add_new_pipeline.mdx` (english docs) to reflect the api addition
- migrate `check_task` and `get_supported_tasks` from
transformers/pipelines/__init__.py to
transformers/pipelines/base.py#PipelineRegistry.{check_task,get_supported_tasks}
Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>
* fix: update with upstream/main
chore: Apply suggestions from sgugger's code review
Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* chore: PR updates
- revert src/transformers/dependency_versions_table.py from upstream/main
- updates pipeline registry to use global variables
Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>
* tests: add tests for pipeline registry
Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>
* tests: add test for output warning.
Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>
* chore: fmt and cleanup unused imports
Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>
* fix: change imports to top of the file and address comments
Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> | transformers | 13 | Python | 32 | test_pipelines_common.py | def test_register_pipeline(self):
custom_text_classification = {
"impl": CustomPipeline,
"tf": (),
"pt": (AutoModelForSequenceClassification,),
"default": {"model": {"pt": "hf-internal-testing/tiny-random-distilbert"}},
"type": "text",
}
PIPELINE_REGISTRY.register_pipeline("custom-text-classification", custom_text_classification)
assert "custom-text-classification" in PIPELINE_REGISTRY.get_supported_tasks()
task_def, _ = PIPELINE_REGISTRY.check_task("custom-text-classification")
self.assertEqual(task_def, custom_text_classification)
self.assertEqual(task_def["type"], "text")
self.assertEqual(task_def["impl"], CustomPipeline)
| 49cd736a288a315d741e5c337790effa4c9fa689 | 97 | https://github.com/huggingface/transformers.git | 144 | def test_register_pipeline(self):
custom_text_classification = {
"impl": CustomPipeline,
"tf": (),
"pt": (AutoModelForSequenceClassification,),
"default": {"model": {"pt": "hf-internal-testing/tiny-random-d | 12 | 174 | test_register_pipeline |
|
91 | 0 | 2 | 26 | airbyte-integrations/connectors/source-chargebee/source_chargebee/source.py | 4,089 | :tada: Source Chargebee: add credit note model (#10795)
* feat(chargebee) add credit note model
* fix(airbyte): update version Dockerfile
* fix(airbyte): update version Dockerfile v2 | airbyte | 12 | Python | 55 | source.py | def streams(self, config) -> List[Stream]:
# Configure the Chargebee Python SDK
chargebee.configure(api_key=config["site_api_key"], site=config["site"])
kwargs = {"start_date": config["start_date"]}
product_catalog_version = config["product_catalog"]
# Below streams are suitable for both `Product Catalog 1.0` and `Product Catalog 2.0`.
common_streams = [
Coupon(**kwargs),
CreditNote(**kwargs),
Customer(**kwargs),
Event(**kwargs),
Invoice(**kwargs),
Order(**kwargs),
Subscription(**kwargs),
Transaction(**kwargs),
]
if product_catalog_version == "1.0":
# Below streams are suitable only for `Product Catalog 1.0`.
product_catalog_v1_streams = [
Addon(**kwargs),
Plan(**kwargs),
]
return common_streams + product_catalog_v1_streams
# Below streams are suitable only for `Product Catalog 2.0`.
product_catalog_v2_streams = [
Item(**kwargs),
ItemPrice(**kwargs),
AttachedItem(**kwargs),
]
return common_streams + product_catalog_v2_streams
| 16dfae0df7290392e5f0754731ae53ae7b7f939d | 149 | https://github.com/airbytehq/airbyte.git | 369 | def streams(self, config) -> List[Stream]:
# Configure the Chargebee Python SDK
chargebee.configure(api_key=config["site_api_key"], site=config["site"])
kwargs = {"start_date": config["start_date"]}
product_catalog_version = config["product_catalog"]
# Below streams are suitable for both `Product Catalog 1.0` and `Product Catalog 2.0`.
common_streams = [
Coupon(**kwargs),
CreditNote(**kwargs),
Customer(**kwargs),
Event(**kwargs),
Invoice(**kwargs),
Order(**kwargs),
Subscription(**kwargs),
Transaction(**kwargs),
]
if product_catalog_version == "1.0":
# Below streams are suitable only for `Product Catalog 1.0`.
product_catalog_v1_s | 27 | 242 | streams |
|
35 | 0 | 1 | 8 | saleor/plugins/webhook/tests/subscription_webhooks/test_create_deliveries_for_subscriptions_payments.py | 28,352 | GraphQL subscription support for synchronous webhook events (#9763)
* WIP add sync webhooks subscription payload handling
* add tests, fix minor things
* update schema
* remove unneeded code
* add fix for circular field resolve
* fix-filter-shipping-methods-payload
* added_in added to desription
* add missing types
* revert refactor, precommit issues
* fixes after review
* cosmetix fixes post-review
* subscription types description fixes
* remove unneeded description from PaymentBase
* add validation for creating webhook with two top level fields, add tests for shippingListMethodsForCheckout
* add docstring, refactor prevent_sync_event_circular_wuery wrapper
* fix docstring of revent_sync_event_circular_query
* fix linters | saleor | 11 | Python | 25 | test_create_deliveries_for_subscriptions_payments.py | def test_payment_confirm(payment, subscription_payment_confirm_webhook):
# given
webhooks = [subscription_payment_confirm_webhook]
event_type = WebhookEventSyncType.PAYMENT_CONFIRM
# when
deliveries = create_deliveries_for_subscriptions(event_type, payment, webhooks)
# then
expected_payload = generate_payment_payload(payment)
assert json.loads(deliveries[0].payload.payload) == expected_payload
assert len(deliveries) == len(webhooks)
assert deliveries[0].webhook == webhooks[0]
| 8201efcde2d7aacccf3512c544cceea6780a0598 | 71 | https://github.com/saleor/saleor.git | 64 | def test_payment_confirm(payment, subscription_payment_confirm_webhook):
# given
webhooks = [subscription_payment_confirm_webhoo | 16 | 111 | test_payment_confirm |
|
67 | 0 | 1 | 34 | tests/pytests/unit/state/test_state_compiler.py | 215,070 | Fix test cases with PermissionError on /var/cache/salt
When running the test cases without root permission, some test cases fail:
```
$ python3 -m pytest -ra tests/pytests/unit/state/test_state_compiler.py tests/pytests/unit/test_minion.py
[...]
FAILED tests/pytests/unit/state/test_state_compiler.py::test_render_requisite_require_disabled - PermissionError: [Errno 13] Permission denied: '/var/cache/salt'
FAILED tests/pytests/unit/state/test_state_compiler.py::test_render_requisite_require_in_disabled - PermissionError: [Errno 13] Permission denied: '/var/cache/salt'
FAILED tests/pytests/unit/test_minion.py::test_minion_module_refresh - PermissionError: [Errno 13] Permission denied: '/var/cache/salt'
FAILED tests/pytests/unit/test_minion.py::test_minion_module_refresh_beacons_refresh - PermissionError: [Errno 13] Permission denied: '/var/cache/salt'
```
Fix these test cases by using a temporary directory as cache directory.
Signed-off-by: Benjamin Drung <benjamin.drung@ionos.com> | salt | 25 | Python | 53 | test_state_compiler.py | def test_render_requisite_require_disabled(tmp_path):
with patch("salt.state.State._gather_pillar") as state_patch:
high_data = {
"step_one": OrderedDict(
[
(
"test",
[
OrderedDict(
[("require", [OrderedDict([("test", "step_two")])])]
),
"succeed_with_changes",
{"order": 10000},
],
),
("__sls__", "test.disable_require"),
("__env__", "base"),
]
),
"step_two": {
"test": ["succeed_with_changes", {"order": 10001}],
"__env__": "base",
"__sls__": "test.disable_require",
},
}
minion_opts = salt.config.DEFAULT_MINION_OPTS.copy()
minion_opts["cachedir"] = str(tmp_path)
minion_opts["disabled_requisites"] = ["require"]
state_obj = salt.state.State(minion_opts)
ret = state_obj.call_high(high_data)
run_num = ret["test_|-step_one_|-step_one_|-succeed_with_changes"][
"__run_num__"
]
assert run_num == 0
| fae21e4698d9bb45a407345e7dff5ce3b69f799d | 160 | https://github.com/saltstack/salt.git | 557 | def test_render_requisite_require_disabled(tmp_path):
with patch("salt.state.State._gather_pillar") as state_patch:
high_data = {
"step_one": OrderedDict(
[
(
"test",
[
OrderedDict(
[("require", [OrderedDict([("test", "step_two")])])]
),
"succeed_w | 18 | 288 | test_render_requisite_require_disabled |
|
6 | 0 | 1 | 2 | django/core/checks/security/sessions.py | 204,451 | Refs #33476 -- Reformatted code with Black. | django | 7 | Python | 6 | sessions.py | def _session_middleware():
return "django.contrib.sessions.middleware.SessionMiddleware" in settings.MIDDLEWARE
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 10 | https://github.com/django/django.git | 8 | def _session_middleware():
return "d | 3 | 19 | _session_middleware |
|
16 | 0 | 2 | 14 | mindsdb/integrations/handlers/lightwood_handler/tests/test_lightwood_handler.py | 115,854 | TS tests pass | mindsdb | 13 | Python | 15 | test_lightwood_handler.py | def test_13_train_ts_predictor_no_gby_hor1(self):
query = f
if self.test_model_2 not in self.handler.get_tables().data_frame.values:
self.handler.native_query(query)
else:
self.handler.native_query(f"DROP PREDICTOR {self.test_model_2}")
self.handler.native_query(query)
| 74977c69effc89a56080357449d5d337988daab7 | 54 | https://github.com/mindsdb/mindsdb.git | 69 | def test_13_train_ts_predictor_no_gby_hor1(self):
query = f
if self.test_ | 11 | 114 | test_13_train_ts_predictor_no_gby_hor1 |
|
130 | 0 | 4 | 29 | pandas/core/exchange/column.py | 166,205 | ENH: Implement DataFrame interchange protocol (#46141) | pandas | 16 | Python | 97 | column.py | def _get_offsets_buffer(self) -> Tuple[PandasBuffer, Any]:
if self.dtype[0] == DtypeKind.STRING:
# For each string, we need to manually determine the next offset
values = self._col.to_numpy()
ptr = 0
offsets = np.zeros(shape=(len(values) + 1,), dtype=np.int64)
for i, v in enumerate(values):
# For missing values (in this case, `np.nan` values)
# we don't increment the pointer
if isinstance(v, str):
b = v.encode(encoding="utf-8")
ptr += len(b)
offsets[i + 1] = ptr
# Convert the offsets to a Pandas "buffer" using
# the NumPy array as the backing store
buffer = PandasBuffer(offsets)
# Assemble the buffer dtype info
dtype = (
DtypeKind.INT,
64,
ArrowCTypes.INT64,
Endianness.NATIVE,
) # note: currently only support native endianness
else:
raise NoBufferPresent(
"This column has a fixed-length dtype so "
"it does not have an offsets buffer"
)
return buffer, dtype
| 90140f055892a46f473bd26affab88a7f171e394 | 139 | https://github.com/pandas-dev/pandas.git | 490 | def _get_offsets_buffer(self) -> Tuple[PandasBuffer, Any]:
if self.dtype[0] == DtypeKind.STRING:
# For each string, we need to manually determine the next offset
values = self._col.to_numpy()
ptr = 0
offsets = np.zeros(shape=(len(values) + 1,), dtype=np.int64)
for i, v in enumerate(values):
# For missing values (in this case, `np.nan` values)
# we don't increment the pointer
if isinstance(v, str):
b = v.encode(encoding="utf-8")
ptr += len(b)
offsets[i + 1] = ptr
# Convert the offsets to a Pandas "buffer" using
# the NumPy array as the backing store
buffer = PandasBuffer(offsets)
# Assemble the buffer dtype info
dtype = (
DtypeKind.INT,
64,
ArrowCTypes.INT64,
Endianness.NATIVE,
) # note: currently only support native endianness
else:
raise NoBufferPresent(
"This column has a fixed-length dtype so "
"it does not have an offsets buffer"
)
return buffer, dtype
| 33 | 228 | _get_offsets_buffer |
|
35 | 1 | 3 | 11 | rllib/evaluate.py | 137,777 | [RLlib] gymnasium support (new `Env.reset()/step()/seed()/render()` APIs). (#28369) | ray | 13 | Python | 22 | evaluate.py | def append_step(self, obs, action, next_obs, reward, terminated, truncated, info):
if self._outfile:
if self._save_info:
self._current_rollout.append(
[obs, action, next_obs, reward, terminated, truncated, info]
)
else:
self._current_rollout.append(
[obs, action, next_obs, reward, terminated, truncated]
)
self._total_steps += 1
@eval_app.command() | 8e680c483ce326cefc62e44f68ab1a6948b1c3d2 | @eval_app.command() | 79 | https://github.com/ray-project/ray.git | 175 | def append_step(self, obs, action, next_obs, reward, terminated, truncated, info):
if self._outfile:
if self._save_info:
self._current_rollout.append(
[obs, action, next_obs, reward, terminated, truncated, info]
)
else:
self._cur | 16 | 120 | append_step |
12 | 0 | 1 | 2 | django/contrib/gis/gdal/libgdal.py | 203,991 | Refs #33476 -- Reformatted code with Black. | django | 8 | Python | 11 | libgdal.py | def err_handler(error_class, error_number, message):
logger.error("GDAL_ERROR %d: %s", error_number, message)
err_handler = CPLErrorHandler(err_handler)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 19 | https://github.com/django/django.git | 13 | def err_handler(error_class, error_number, message):
logger.error("GDAL_ERROR %d: %s", error_number, messa | 7 | 39 | err_handler |
|
13 | 0 | 2 | 2 | rllib/agents/pg/pg.py | 133,783 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | ray | 10 | Python | 13 | pg.py | def get_default_policy_class(self, config) -> Type[Policy]:
return PGTorchPolicy if config.get("framework") == "torch" else PGTFPolicy
| 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | 25 | https://github.com/ray-project/ray.git | 19 | def get_default_policy_class(self, config) -> Type[Policy]:
return PGTorchPolicy if config.get("framework") == "torch" else PGTFPolicy
| 8 | 41 | get_default_policy_class |
|
58 | 0 | 4 | 36 | jina/orchestrate/flow/base.py | 11,806 | fix: properly disable graphql endpoint by default (#4471) | jina | 14 | Python | 38 | base.py | def _get_address_table(self, address_table):
address_table.add_row('🔗', 'Protocol: ', f'{self.protocol}')
address_table.add_row(
'🏠',
'Local access: ',
f'[underline]{self.host}:{self.port}[/underline]',
)
address_table.add_row(
'🔒',
'Private network: ',
f'[underline]{self.address_private}:{self.port}[/underline]',
)
if self.address_public:
address_table.add_row(
'🌐',
'Public address: ',
f'[underline]{self.address_public}:{self.port}[/underline]',
)
if self.protocol == GatewayProtocolType.HTTP:
address_table.add_row(
'💬',
'Swagger UI: ',
f'[underline]http://localhost:{self.port}/docs[/underline]',
)
address_table.add_row(
'📚',
'Redoc: ',
f'[underline]http://localhost:{self.port}/redoc[/underline]',
)
if self.args.expose_graphql_endpoint:
address_table.add_row(
'💬',
'GraphQL UI: ',
f'[underline][cyan]http://localhost:{self.port}/graphql[/underline][/cyan]',
)
return address_table
| 9bdefb0a693c4556e0902ef913f4426e3ef5ff65 | 113 | https://github.com/jina-ai/jina.git | 478 | def _get_address_table(self, address_table):
address_table.add_row('🔗', 'Protocol: ', f'{self.protocol}')
address_table.add_row(
'🏠',
'Local access: ',
f'[underline]{self.host}:{self.port}[/underline]',
)
address_table.add_row(
'🔒',
'Private network: ',
f'[underline]{self.address_private}:{self.port}[/underline]',
)
if self.address_public:
address_table.add_row(
'🌐',
'Public address: ',
f'[underline]{self.address_public}:{self.port}[/underline]',
)
if self.protocol == GatewayProtocolType.HTTP:
address_table.add_row(
'💬',
'Swagger UI: ',
f'[underline]http://localhost:{self.port}/docs[/underline]',
)
address_table.add_row(
'📚',
'Redoc: ',
f'[underline]http://localhost:{self.port}/redoc[/underline]',
)
if self.args.expose_graphql_e | 13 | 263 | _get_address_table |
|
47 | 0 | 4 | 10 | test/test_prototype_builtin_datasets.py | 191,954 | refactor prototype datasets tests (#5136)
* refactor prototype datasets tests
* skip tests with insufficient third party dependencies | vision | 13 | Python | 40 | test_prototype_builtin_datasets.py | def test_sample(self, dataset_mock, config):
dataset, _ = dataset_mock.load(config)
try:
sample = next(iter(dataset))
except Exception as error:
raise AssertionError("Drawing a sample raised the error above.") from error
if not isinstance(sample, dict):
raise AssertionError(f"Samples should be dictionaries, but got {type(sample)} instead.")
if not sample:
raise AssertionError("Sample dictionary is empty.")
| 3e79d149a16e9fc9b9b6747609615cf8f8607346 | 66 | https://github.com/pytorch/vision.git | 125 | def test_sample(self, dataset_mock, config):
dataset, _ = dataset_mock.load(config)
try:
sample = next(iter(dataset))
except Exception as error:
raise AssertionError("Drawing a sample raised the error above.") from error
if not isinstance(sample, dict):
| 16 | 119 | test_sample |
|
20 | 0 | 1 | 7 | tests/components/http/test_init.py | 292,279 | Startup with an emergency self signed cert if the ssl certificate cannot be loaded (#66707) | core | 9 | Python | 15 | test_init.py | def _setup_broken_ssl_pem_files(tmpdir):
test_dir = tmpdir.mkdir("test_broken_ssl")
cert_path = pathlib.Path(test_dir) / "cert.pem"
cert_path.write_text("garbage")
key_path = pathlib.Path(test_dir) / "key.pem"
key_path.write_text("garbage")
return cert_path, key_path
| 3bf2be1765f7a33fbce06cbabeb2e2115f2f07c7 | 49 | https://github.com/home-assistant/core.git | 37 | def _setup_broken_ssl_pem_files(tmpdir):
test_dir = tmpdir.mkdir("test_broken_ssl")
cert_path = pathlib.Path(test_dir) / "cert.pem"
cert_path.write_text("garbage")
key_path = pathlib.Path(test_dir) / "key.pem"
key_path.write_text("garbage")
return cert_path, key_path
| 9 | 90 | _setup_broken_ssl_pem_files |
|
16 | 0 | 2 | 12 | src/prefect/client/orion.py | 59,097 | Improve client stability (#7090) | prefect | 11 | Python | 15 | orion.py | async def api_healthcheck(self) -> Optional[Exception]:
try:
await self._client.get("/health")
return None
except Exception as exc:
return exc
| 852644aa77ce2a6377e070ed0182859b0fdd0b98 | 31 | https://github.com/PrefectHQ/prefect.git | 70 | async def api_healthcheck(self) -> Optional[Exception]:
try:
await self._client.get("/health")
return None
except Exception as exc:
return exc
| 7 | 57 | api_healthcheck |
|
29 | 0 | 2 | 6 | ludwig/backend/ray.py | 7,477 | Respect the resource requests in RayPredictor (#2359)
* fix ordering to respect the passed down resources
* clean up | ludwig | 11 | Python | 24 | ray.py | def get_resources_per_worker(self) -> Tuple[int, int]:
trainer_kwargs = self.get_trainer_kwargs()
resources_per_worker = trainer_kwargs.get("resources_per_worker", {})
num_gpus = resources_per_worker.get("GPU", 0)
num_cpus = resources_per_worker.get("CPU", (1 if num_gpus == 0 else 0))
return num_cpus, num_gpus
| 15961c07d8a0d7fc25c5b7395b11f191eab840bd | 62 | https://github.com/ludwig-ai/ludwig.git | 63 | def get_resources_per_worker(self) -> Tuple[int, int]:
trainer_kwargs = self.get_trainer_kwargs()
resources_per_worker = trainer_kwargs.get("resources_per_worker", {})
num_gpus = resources_per_worker.get("GPU", 0)
num_cpus = resources_per_worker.get("CPU", (1 if num_g | 10 | 100 | get_resources_per_worker |
|
288 | 0 | 9 | 130 | bots/stocks/technical_analysis/aroon.py | 282,658 | Refactor Bot (#1326)
* First commit
* Renamed to bot
* change from discordbot to bots imports
* refractor cmds
+ autocomplete helpers
+ updated dps plots/candle
+ quote cmd
* isort fix
* Update helpers.py
* Added first refactor
* Added commands and refactor
* Added description handler
* Through grains
* ta + image border helper
* Added indices
* merged
* Finished econ
* options refactor
* dark_pool_shorts, candle, quote done
* pagination/dropdown logic to helpers + fixes
* dd/disc/insider done + add image logic to helpers
* linting
* removed plt style
* Almost done with Gov
* fixing conflicts
* Finished gov (excpect ones mentioned)
* screener done
* Test bug refactor
* Store changes to switch
* Finished refactor
* Fixed error
* Delete ::40
* Fixed issue
* Fixed black
* finished
* fixes
Co-authored-by: teh_coderer <me@tehcoderer.com>
Co-authored-by: didierlopes.eth <dro.lopes@campus.fct.unl.pt> | OpenBBTerminal | 14 | Python | 178 | aroon.py | def aroon_command(ticker="", length="25", scalar="100", start="", end=""):
# Debug
if cfg.DEBUG:
logger.debug(
"ta-aroon %s %s %s %s %s",
ticker,
length,
scalar,
start,
end,
)
# Check for argument
if ticker == "":
raise Exception("Stock ticker is required")
if start == "":
start = datetime.now() - timedelta(days=365)
else:
start = datetime.strptime(start, cfg.DATE_FORMAT)
if end == "":
end = datetime.now()
else:
end = datetime.strptime(end, cfg.DATE_FORMAT)
if not length.lstrip("-").isnumeric():
raise Exception("Number has to be an integer")
length = int(length)
if not scalar.lstrip("-").isnumeric():
raise Exception("Number has to be an integer")
scalar = float(scalar)
ticker = ticker.upper()
df_stock = helpers.load(ticker, start)
if df_stock.empty:
raise Exception("Stock ticker is invalid")
# Retrieve Data
df_stock = df_stock.loc[(df_stock.index >= start) & (df_stock.index < end)]
df_ta = trend_indicators_model.aroon(
df_stock["High"], df_stock["Low"], length, scalar
)
# Output Data
aadown = df_ta.columns[0].replace("_", " ")
aaup = df_ta.columns[1].replace("_", " ")
aaosc = df_ta.columns[2].replace("_", " ")
fig = make_subplots(
rows=3,
cols=1,
shared_xaxes=True,
vertical_spacing=0.07,
row_width=[0.2, 0.2, 0.2],
)
fig.add_trace(
go.Scatter(
name=ticker,
x=df_stock.index,
y=df_stock["Adj Close"].values,
line=dict(color="#fdc708", width=2),
opacity=1,
showlegend=False,
),
row=1,
col=1,
)
fig.add_trace(
go.Scatter(
name=f"Aroon DOWN ({aadown})",
x=df_ta.index,
y=df_ta.iloc[:, 0].values,
opacity=1,
),
row=2,
col=1,
)
fig.add_trace(
go.Scatter(
name=f"Aroon UP ({aaup})",
x=df_ta.index,
y=df_ta.iloc[:, 1].values,
opacity=1,
),
row=2,
col=1,
)
fig.add_trace(
go.Scatter(
name=f"Aroon OSC ({aaosc})",
x=df_ta.index,
y=df_ta.iloc[:, 2].values,
opacity=1,
),
row=3,
col=1,
)
fig.add_hline(
y=50,
fillcolor="grey",
opacity=1,
layer="below",
line_width=3,
line=dict(color="grey", dash="dash"),
row=2,
col=1,
)
fig.update_layout(
margin=dict(l=0, r=20, t=30, b=20),
template=cfg.PLT_TA_STYLE_TEMPLATE,
colorway=cfg.PLT_TA_COLORWAY,
title=f"Aroon on {ticker}",
title_x=0.5,
yaxis_title="Stock Price ($)",
yaxis=dict(
fixedrange=False,
),
xaxis=dict(
rangeslider=dict(visible=False),
type="date",
),
dragmode="pan",
legend=dict(yanchor="top", y=0.99, xanchor="left", x=0.01),
)
config = dict({"scrollZoom": True})
imagefile = "ta_aroon.png"
# Check if interactive settings are enabled
plt_link = ""
if cfg.INTERACTIVE:
html_ran = helpers.uuid_get()
fig.write_html(f"in/aroon_{html_ran}.html", config=config)
plt_link = f"[Interactive]({cfg.INTERACTIVE_URL}/aroon_{html_ran}.html)"
fig.update_layout(
width=800,
height=500,
)
imagefile = helpers.image_border(imagefile, fig=fig)
return {
"title": f"Stocks: Aroon-Indicator {ticker}",
"description": plt_link,
"imagefile": imagefile,
}
| fae93c67adc9015c1466712f9c8ffa35a8b70872 | 757 | https://github.com/OpenBB-finance/OpenBBTerminal.git | 1,149 | def aroon_command(ticker="", length="25", scalar="100", start="", end=""):
# Debug
if cfg.DEBUG:
logger.debug(
"ta-aroon %s %s %s %s %s",
ticker,
length,
scalar,
start,
end,
)
# Check for argument
if ticker == "":
raise Exception("Stock ticker is required")
if start == "":
start = datetime.now() - timedelta(days=365)
else:
start = datetime.strptime(start, cfg.DATE_FORMAT)
if end == "":
end = datetime.now()
else:
end = datetime.strptime(end, cfg.DATE_FORMAT)
if not length.lstrip("-").isnumeric():
raise Excep | 97 | 1,200 | aroon_command |
|
19 | 0 | 3 | 9 | python/ray/serve/config.py | 145,616 | [Serve] Add test for controller managing Java Replica (#22628) | ray | 13 | Python | 16 | config.py | def to_proto_bytes(self):
data = self.dict()
if data.get("user_config"):
data["user_config"] = pickle.dumps(data["user_config"])
if data.get("autoscaling_config"):
data["autoscaling_config"] = AutoscalingConfigProto(
**data["autoscaling_config"]
)
return DeploymentConfigProto(**data).SerializeToString()
| 0bab8dbfe0b5a58a06dd226950bdd70b0b186655 | 65 | https://github.com/ray-project/ray.git | 94 | def to_proto_bytes(self):
data = self.dict()
if data.get("user_config"):
data["user_conf | 10 | 117 | to_proto_bytes |
|
16 | 0 | 2 | 7 | homeassistant/components/plex/media_player.py | 306,988 | Use new media player enums [p] (#78058) | core | 11 | Python | 14 | media_player.py | def session(self, session):
self._session = session
if session:
self.session_device = self.session.player
self.update_state(self.session.state)
else:
self._attr_state = MediaPlayerState.IDLE
| 52b5e1779f1ed6e5005dc0bdff4137040d7216fb | 43 | https://github.com/home-assistant/core.git | 69 | def session(self, session):
self._session = session
if session:
self.session_device = self.session | 10 | 69 | session |
|
146 | 0 | 10 | 21 | python3.10.4/Lib/difflib.py | 222,505 | add python 3.10.4 for windows | XX-Net | 15 | Python | 76 | difflib.py | def get_grouped_opcodes(self, n=3):
codes = self.get_opcodes()
if not codes:
codes = [("equal", 0, 1, 0, 1)]
# Fixup leading and trailing groups if they show no changes.
if codes[0][0] == 'equal':
tag, i1, i2, j1, j2 = codes[0]
codes[0] = tag, max(i1, i2-n), i2, max(j1, j2-n), j2
if codes[-1][0] == 'equal':
tag, i1, i2, j1, j2 = codes[-1]
codes[-1] = tag, i1, min(i2, i1+n), j1, min(j2, j1+n)
nn = n + n
group = []
for tag, i1, i2, j1, j2 in codes:
# End the current group and start a new one whenever
# there is a large range with no changes.
if tag == 'equal' and i2-i1 > nn:
group.append((tag, i1, min(i2, i1+n), j1, min(j2, j1+n)))
yield group
group = []
i1, j1 = max(i1, i2-n), max(j1, j2-n)
group.append((tag, i1, i2, j1 ,j2))
if group and not (len(group)==1 and group[0][0] == 'equal'):
yield group
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 276 | https://github.com/XX-net/XX-Net.git | 386 | def get_grouped_opcodes(self, n=3):
codes = self.get_opcodes()
if not codes:
codes = [("equal", 0, 1, 0, 1)]
# Fixup leading and trailing groups if they show no changes.
if codes[0][0] == 'equal':
tag, i1, i2, j1, j2 = codes[0]
codes[0] = tag, max(i1, i2-n), i2, max(j1, j2-n), j2
if codes[-1][0] == 'equal':
tag, i1, i2, j1, j2 = codes[-1]
codes[-1] = tag, i1, min(i2, i1+n), j1, min(j2, j1+n)
nn = n + n
group = []
for tag, i1, i2, j1, j2 in codes:
# End the current group and start a new one whenever
# there is a large range with no changes.
if tag == 'equal' and i2-i1 > nn:
group.append((tag, i1, min(i2, i1+n), j1, min(j2, j1+n)))
yield group
group = []
i1, j1 = max(i1, i2-n), max(j1, j2-n)
| 16 | 410 | get_grouped_opcodes |
|
25 | 0 | 3 | 5 | wagtail/admin/forms/pages.py | 70,522 | Drop support for Django <3.2 | wagtail | 10 | Python | 21 | pages.py | def is_valid(self):
comments = self.formsets.get('comments')
# Remove the comments formset if the management form is invalid
if comments and not comments.management_form.is_valid():
del self.formsets['comments']
return super().is_valid()
| d6d43338efdeb85395918d106a1cb3f187ab6fa7 | 42 | https://github.com/wagtail/wagtail.git | 63 | def is_valid(self):
comments = self.formsets.get('comments')
# Remove the comments formset if the management form is invalid
if comments and not comments.management_form.is_valid | 7 | 74 | is_valid |
|
12 | 0 | 8 | 43 | tests/unit/hubble/test_hubio.py | 12,109 | feat(hub): add --no-cache option to "jina hub push" cli (#4594) | jina | 8 | Python | 12 | test_hubio.py | def test_push(mocker, monkeypatch, path, mode, tmpdir, force, tag, no_cache):
mock = mocker.Mock()
| fab9f0736c8d99558d93020cb3f27108627218f1 | 313 | https://github.com/jina-ai/jina.git | 14 | def test_push(mocker, monkeypatch, path, mode, tmpdir, force, tag, no_cache):
mock = mocker.Mock()
| 11 | 35 | test_push |
|
643 | 0 | 66 | 164 | label_studio/data_manager/managers.py | 177,832 | fix: DEV-2214: Use contain instead of icontain in annotation result (#2308)
* fix: Annotation result performance with contain
* Back
* Works!
* Some
* Try to fix completed at performance
* Fix tests
* Add merge migration | label-studio | 24 | Python | 267 | managers.py | def apply_filters(queryset, filters, project):
if not filters:
return queryset
# convert conjunction to orm statement
filter_expressions = []
for _filter in filters.items:
# we can also have annotations filters
if not _filter.filter.startswith("filter:tasks:") or _filter.value is None:
continue
# django orm loop expression attached to column name
preprocess_field_name = load_func(settings.PREPROCESS_FIELD_NAME)
field_name, _ = preprocess_field_name(_filter.filter, project.only_undefined_field)
# filter preprocessing, value type conversion, etc..
preprocess_filter = load_func(settings.DATA_MANAGER_PREPROCESS_FILTER)
_filter = preprocess_filter(_filter, field_name)
# custom expressions for enterprise
custom_filter_expressions = load_func(settings.DATA_MANAGER_CUSTOM_FILTER_EXPRESSIONS)
filter_expression = custom_filter_expressions(_filter, field_name)
if filter_expression:
filter_expressions.append(filter_expression)
continue
# annotators
if field_name == 'annotators' and _filter.operator == Operator.CONTAINS:
filter_expressions.append(Q(annotations__completed_by=int(_filter.value)))
continue
elif field_name == 'annotators' and _filter.operator == Operator.NOT_CONTAINS:
filter_expressions.append(~Q(annotations__completed_by=int(_filter.value)))
continue
elif field_name == 'annotators' and _filter.operator == Operator.EMPTY:
value = cast_bool_from_str(_filter.value)
filter_expressions.append(Q(annotations__completed_by__isnull=value))
continue
# annotations results & predictions results
if field_name in ['annotations_results', 'predictions_results']:
result = add_result_filter(field_name, _filter, filter_expressions, project)
if result == 'exit':
return queryset.none()
elif result == 'continue':
continue
# annotation ids
if field_name == 'annotations_ids':
field_name = 'annotations__id'
if 'contains' in _filter.operator:
# convert string like "1 2,3" => [1,2,3]
_filter.value = [int(value)
for value in re.split(',|;| ', _filter.value)
if value and value.isdigit()]
_filter.operator = 'in_list' if _filter.operator == 'contains' else 'not_in_list'
elif 'equal' in _filter.operator:
if not _filter.value.isdigit():
_filter.value = 0
# annotators
if field_name == 'annotators' and _filter.operator == Operator.CONTAINS:
filter_expressions.append(Q(annotations__completed_by=int(_filter.value)))
continue
elif field_name == 'annotators' and _filter.operator == Operator.NOT_CONTAINS:
filter_expressions.append(~Q(annotations__completed_by=int(_filter.value)))
continue
elif field_name == 'annotators' and _filter.operator == Operator.EMPTY:
value = cast_bool_from_str(_filter.value)
filter_expressions.append(Q(annotations__completed_by__isnull=value))
continue
# predictions model versions
if field_name == 'predictions_model_versions' and _filter.operator == Operator.CONTAINS:
q = Q()
for value in _filter.value:
q |= Q(predictions__model_version__contains=value)
filter_expressions.append(q)
continue
elif field_name == 'predictions_model_versions' and _filter.operator == Operator.NOT_CONTAINS:
q = Q()
for value in _filter.value:
q &= ~Q(predictions__model_version__contains=value)
filter_expressions.append(q)
continue
elif field_name == 'predictions_model_versions' and _filter.operator == Operator.EMPTY:
value = cast_bool_from_str(_filter.value)
filter_expressions.append(Q(predictions__model_version__isnull=value))
continue
# use other name because of model names conflict
if field_name == 'file_upload':
field_name = 'file_upload_field'
# annotate with cast to number if need
if _filter.type == 'Number' and field_name.startswith('data__'):
json_field = field_name.replace('data__', '')
queryset = queryset.annotate(**{
f'filter_{json_field.replace("$undefined$", "undefined")}':
Cast(KeyTextTransform(json_field, 'data'), output_field=FloatField())
})
clean_field_name = f'filter_{json_field.replace("$undefined$", "undefined")}'
else:
clean_field_name = field_name
# special case: predictions, annotations, cancelled --- for them 0 is equal to is_empty=True
if clean_field_name in ('total_predictions', 'total_annotations', 'cancelled_annotations') and \
_filter.operator == 'empty':
_filter.operator = 'equal' if cast_bool_from_str(_filter.value) else 'not_equal'
_filter.value = 0
# get type of annotated field
value_type = 'str'
if queryset.exists():
value_type = type(queryset.values_list(field_name, flat=True)[0]).__name__
if (value_type == 'list' or value_type == 'tuple') and 'equal' in _filter.operator:
raise Exception('Not supported filter type')
# special case: for strings empty is "" or null=True
if _filter.type in ('String', 'Unknown') and _filter.operator == 'empty':
value = cast_bool_from_str(_filter.value)
if value: # empty = true
q = Q(
Q(**{field_name: None}) | Q(**{field_name+'__isnull': True})
)
if value_type == 'str':
q |= Q(**{field_name: ''})
if value_type == 'list':
q = Q(**{field_name: [None]})
else: # empty = false
q = Q(
~Q(**{field_name: None}) & ~Q(**{field_name+'__isnull': True})
)
if value_type == 'str':
q &= ~Q(**{field_name: ''})
if value_type == 'list':
q = ~Q(**{field_name: [None]})
filter_expressions.append(q)
continue
# regex pattern check
elif _filter.operator == 'regex':
try:
re.compile(pattern=str(_filter.value))
except Exception as e:
logger.info('Incorrect regex for filter: %s: %s', _filter.value, str(e))
return queryset.none()
# append operator
field_name = f"{clean_field_name}{operators.get(_filter.operator, '')}"
# in
if _filter.operator == "in":
cast_value(_filter)
filter_expressions.append(
Q(
**{
f"{field_name}__gte": _filter.value.min,
f"{field_name}__lte": _filter.value.max,
}
),
)
# not in
elif _filter.operator == "not_in":
cast_value(_filter)
filter_expressions.append(
~Q(
**{
f"{field_name}__gte": _filter.value.min,
f"{field_name}__lte": _filter.value.max,
}
),
)
# in list
elif _filter.operator == "in_list":
filter_expressions.append(
Q(**{f"{field_name}__in": _filter.value}),
)
# not in list
elif _filter.operator == "not_in_list":
filter_expressions.append(
~Q(**{f"{field_name}__in": _filter.value}),
)
# empty
elif _filter.operator == 'empty':
if cast_bool_from_str(_filter.value):
filter_expressions.append(Q(**{field_name: True}))
else:
filter_expressions.append(~Q(**{field_name: True}))
# starting from not_
elif _filter.operator.startswith("not_"):
cast_value(_filter)
filter_expressions.append(~Q(**{field_name: _filter.value}))
# all others
else:
cast_value(_filter)
filter_expressions.append(Q(**{field_name: _filter.value}))
logger.debug(f'Apply filter: {filter_expressions}')
if filters.conjunction == ConjunctionEnum.OR:
result_filter = Q()
for filter_expression in filter_expressions:
result_filter.add(filter_expression, Q.OR)
queryset = queryset.filter(result_filter)
else:
for filter_expression in filter_expressions:
queryset = queryset.filter(filter_expression)
return queryset
| 5e054ce3ab751f3445d2fc1b2923bb604048c40b | 1,194 | https://github.com/heartexlabs/label-studio.git | 2,694 | def apply_filters(queryset, filters, project):
if not filters:
return queryset
# convert conjunction to orm statement
filter_expressions = []
for _filter in filters.items:
# we can also have annotations filters
if not _filter.filter.startswith("filter:tasks:") or _filter.value is None:
continue
# django orm loop expression attached to column name
preprocess_field_name = load_func(settings.PREPROCESS_FIELD_NAME)
field_name, _ = preprocess_field_name(_filter.filter, project.only_undefined_field)
# filter preprocessing, value type conversion, etc..
preprocess_filter = load_func(settings.DATA_MANAGER_PREPROCESS_FILTER)
_filter = preprocess_filter(_filter, field_name)
# custom expressions for enterprise
custom_filter_expressions = load_func(settings.DATA_MANAGER_CUSTOM_FILTER_EXPRESSIONS)
filter_expression = custom_filter_expressions(_filter, field_name)
if filter_expression:
filter_expressions.append(filter_expression)
continue
# annotators
if field_name == 'annotators' and _filter.operator == Operator.CONTAINS:
filter_expressions.append(Q(annotations__completed_by=int(_filter.value)))
continue
elif field_name == 'annotators' and _filter.operator == Operator.NOT_CONTAINS:
filter_expressions.append(~Q(annotations__completed_by=int(_filter.value)))
continue
elif field_name == 'annotators' and _filter.operator == Operator.EMPTY:
value = cast_bool_from_str(_filter.value)
filter_expressions.append(Q(annotations__completed_by__isnull=value))
continue
# annotations results & predictions results
if field_name in ['annotations_results', 'predictions_results']:
result = add_result_filter(field_name, _filter, filter_expressions, project)
if result == 'exit':
return queryset.none()
elif result == 'continue':
continue
# annotation ids
if field_name == 'annotations_ids':
field_name = 'annotations__id'
if 'contains' in _filter.operator:
# convert string like "1 2,3" => [1,2,3]
_filter.value = [int(value)
for value in re.split(',|;| ', _filter.value)
if value and value.isdigit()]
_filter.operator = 'in_list' if _filter.operator == 'contains' else 'not_in_list'
elif 'equal' in _filter.operator:
if not _filter.value.isdigit():
_filter.value = 0
# annotators
if field_name == 'annotators' and _filter.operator == Operator.CONTAINS:
filter_expressions.append(Q(annotations__completed_by=int(_filter.value)))
continue
elif field_name == 'annotators' and _filter.operator == Operator.NOT_CONTAINS:
filter_expressions.append(~Q(annotations__completed_by=int(_filter.value)))
continue
elif field_name == 'annotators' and _filter.operator == Operator.EMPTY:
value = cast_bool_from_str(_filter.value)
filter_expressions.append(Q(annotations__completed_by__isnull=value))
continue
# predictions model versions
if field_name == 'predictions_model_versions' and _filter.operator == Operator.CONTAINS:
q = Q()
for value in _filter.value:
q |= Q(predictions__model_version__contains=value)
filter_expressions.append(q)
continue
elif field_name == 'predictions_model_versions' and _filter.operator == Operator.NOT_CONTAINS:
q = Q()
for value in _filter.value:
q &= ~Q(predictions__model_version__contains=value)
filter_expressions.append(q)
continue
elif field_name == 'predictions_model_versions' and _filter.operator == Operator.EMPTY:
value = cast_bool_from_str(_filter.value)
filter_expressions.append(Q(predictions__model_version__isnull=value))
continue
# use other name because of model names conflict
if field_name == 'file_upload':
field_name = 'file_upload_field'
# annotate with cast to number if need
if _filter.type == 'Number' and field_name.startswith('data__'):
json_field = field_name.replace('data__', '')
queryset = queryset.annotate(**{
f'filter_{json_field.replace("$undefined$", "undefined")}':
Cast(KeyTextTransform(json_field, 'data'), output_field=FloatField())
})
clean_field_name = f'filter_{json_field.replace("$undefined$", "undefined")}'
else:
clean_field_name = field_name
# special case: predictions, annotations, cancelled --- for them 0 is equal to is_empty=True
if clean_field_name in ('total_predictions', 'total_annotations', 'cancelled_annotations') and \
_filter.operator == 'empty':
_filter.operator = 'equal' if cast_bool_from_str(_filter.value) else 'not_equal'
_filter.value = 0
# get type of annotated field
value_type = 'str'
if queryset.exists():
value_type = type(queryset.values_list(field_name, flat=True)[0]).__name__
if (value_type == 'list' or value_type == 'tuple') and 'equal' in _filter.operator:
raise Exception('Not supported filter type')
# special case: for strings empty is "" or null=True
if _filter.type in ('String', 'Unknown') and _filter.operator == 'empty':
value = cast_bool_from_str(_filter.value)
if value: # empty = true
q = Q(
Q(**{field_name: None}) | Q(**{field_name+'__isnull': True})
)
if value_type == 'str':
q |= Q(**{field_name: ''})
if value_type == 'list':
q = Q(**{field_name: [None]})
else: # empty = false
q = Q(
~Q(**{field_name: None}) & ~Q(**{field_name+'__isnull': True})
)
if value_type == 'str':
q &= ~Q(**{field_name: ''})
if value_type == 'list':
q = ~Q(**{field_name: [None]})
filter_expressions.append(q)
continue
# regex pattern check
elif _filter.operator == 'regex':
try:
re.compile(pattern=str(_filter.value))
except Exception as e:
logger.info('Incorrect regex for filter: %s: %s', _filter.value, str(e))
return queryset.none()
# append operator
field_name = f"{clean_field_name}{operators.get(_filter.operator, '')}"
# in
if _filter.operator == "in | 74 | 2,132 | apply_filters |
|
14 | 0 | 2 | 6 | homeassistant/components/zha/light.py | 303,375 | Improve type hints in zha light (#75947) | core | 10 | Python | 14 | light.py | async def async_update(self) -> None:
if self._transitioning:
self.debug("skipping async_update while transitioning")
return
await self.async_get_state()
| 9af64b1c3b1a712d24fc7b86ed2cc5e1fa613f26 | 26 | https://github.com/home-assistant/core.git | 57 | async def async_update(self) -> None:
if self._transitioning:
self.debug("skipping asy | 5 | 50 | async_update |
|
14 | 1 | 1 | 8 | tests/openbb_terminal/stocks/discovery/test_finnhub_view.py | 285,345 | Here we merge all API Refactor related branches (#2236)
* Update api.py
* Updated forex menu
* refactor ycrv command
* refactor ycrv command black
* refactor ecocal command
* Minh changes
* Adding space to test pushing
* title fix ecocal df
* get economic calendar annotation
* fix investingcom tests
* refactor index command
* refactor overview command
* give defaults to wsj view function args
* rename date args investincom
* refacto bigmac command
* fix ecocal typo
* refactor rtps command
* alphavantage gdp
* alphavantage gdp per capita
* alphavantage cpi
* alphavantage tyld
* alphavantage inf
* refactor macro command
* refactor macro command w helpers
* refactor treasury command
* fix macro on terminal
* treasury labels
* refactor maturities
* update treasury maturities doc strings
* refactor get economic calendar finhub
* refactor map command api
* display map filter choices
* route economy api to performance map
* route economy api to performance map
* display group choices on valuation command
* refactor performance and valuation commands
* refactor spectrum model and view
* add choices to spectrum controller
* delete image after view
* fix model tests finviz
* fix finciz view tests
* refactor futures
* fix some tests
* fix more tests
* fix controller test
* refactor fred series notes
* update fred notes docstring
* refacto fred series ids
* fix pred and qa when empty datasets
* refactor fred
* uncomment stuff
* refacto get series data
* fix some tests
* set defaults on args
* refactor fred yield curve
* black
* fix spell and remove ecocal names
* fix linting
* linting
* pylint fix
* change dangerous defaults
* Working through crypto fixes (#2256)
* Working through crypto fixes
* Continued adding crypto stuff
* Added crypto overview
* Added test fixes
* Added fixtures
* Fixed tests
* Fixed charting issue
* Removed broken APIs
* Final adjustments
* Added test fixes
* map get groups and get ycrv countries into old api
* exposed econdb helper funcs
* remove helpers
* refactor search indices
* linting
* refactor arg currency
* pylint from currency
* Started switching crpyto ascending to ascend
* Merging
* Portfolio model arguements, params, and docstring
* Refactored for etf commands (#2292)
* Refactored for etf commands
* Fixed tests
* Added load command
* Fixed menu
* Portfolio logic fixes
* Added econometrics (#2260)
* Added econometrics
* Fixed tests
* Simplified API
* Added test fixes
* Added test csv
* Allowed examples to be loaded
* Fund refactor (#2291)
* Fund refactor
* Changed fund_name and fund to name
* Changed ascending to ascend
* Stock menu refactoring for easier API usage (#2194)
* Stocks refactoring for easier API usage
* Linting
* Refactor newly added features
* Linting
* Fixing tests
* Refactor common files used by stocks menu
* Fixing flake8
* Fix linting and tests
* Linting
* Fix flake8
* refactor insider_data
* refactor mentions
* refactor watchlist
* refactor sentiment
* refactor sentiment
* fix yahoofinance tests
* refactor load and candle
* refactor get_news and display_news
* refactor stocks.ins.act
* candle default matplotlib
* fix yahoofinance_view tests
* fix ark model tests
* fix ark view tests
* fix business insider model
* fix business insider view
* refactor csimarket model
* fix tests csi market model
* update dd controller
* fix get suppliers tests
* fix dd controller tests
* fix finhub tests
* fix finviz tests
* fix fmp tests
* fix marketwatch tests
* corrected argument keywords in test_bt_model
* corrected argument keywords in test_bt_view
* refactor fa controller
* refactor marketwatch view
* refactor gov controller
* fix tests fa av
* fix tests elect
* fix dcf tests
* fix polygon tests
* fix fmp tests
* fix quiverquant tests
* fix yahoofinance fa tests
* fix more fa tests
* fix insider tests
* fix more tests
* fix more tests
* fix options tests
* fix stock gov tests
* fix tests test_ba_controller
* fix tests for test_finviz_compare_model.py
* fixed 2 tests
* fixed tests
* fixed tests
* fixed tests
* fixed tests
* fixed tests
* fixed tests
* fixed tests
* fixed tests
* fixed tests
* fixed tests
* fix final tests
* fixed tests
* fixed tests
* Fix tests
* black
* forgot to black tests
* fixed tests
* fixed tests
* fixed tests
* fixed tests
* flakefix
* Tests + code : Stocks / Discovery
* fix tests
* added recorder
* fixed tests
* fixed tests
* black
* black
* remove unused imports
* refactor display raw
* sia dicts fix
* pylint
* linting
* remove dangerous default
* fix tests
* fix beta model test
* black
* skip screener qa test
* change sector path to sectors
* update tests readme
* fix metric defaults
* black
* substitute lost ticker
* defaults cpic
* another round on sia
* refactor cramer
* reduce default tweets on sentiment
* refactor yf hist, corr, volume
* arkorders default
* refactor income, balance, cashflow
* refacto scorr, screener, getfinnhub
* refactor stockgrid
* ibkr refactor
* another round on stockgrid
* add dividens end point
* refactor discovery endpoints
* update docstrings with similar input
* refactor messages
* refactor ba
* refactor regioons
* refactor twitter sentiment
* refactor hist
* refactor regions
* give default to timeframe
* refactor bunch of defaults and arg names
* remove leftover imports
* refactor vwap
* let tests run
* fix tests
* fix stock tests
* fix stockanalysis tests
* flake
* MYPY
* Made important changes
* added fixes
* Fixed big issue
* Added fixes to tests
* fix qa tests
* fix tests
* fix 1 more test
* last stocks failing
* fix crypto test
Co-authored-by: Chavithra PARANA <chavithra@gmail.com>
Co-authored-by: montezdesousa <montezdesousa@gmail.com>
Co-authored-by: hjoaquim <h.joaquim@campus.fct.unl.pt>
Co-authored-by: montezdesousa <79287829+montezdesousa@users.noreply.github.com>
Co-authored-by: colin99d <colin99delahunty@gmail.com>
* fix portfolio tests
* change period to window
* update ca docstrings
* refactor get_similar_companies func
* Fixed
* Update CI
* Update CI 2
* Update CI 3
* Update dependencies
Co-authored-by: colin99d <colin99delahunty@gmail.com>
Co-authored-by: Colin Delahunty <72827203+colin99d@users.noreply.github.com>
Co-authored-by: montezdesousa <montezdesousa@gmail.com>
Co-authored-by: James Simmons <simmonsj330@gmail.com>
Co-authored-by: Theodore Aptekarev <aptekarev@gmail.com>
Co-authored-by: minhhoang1023 <40023817+minhhoang1023@users.noreply.github.com>
Co-authored-by: jose-donato <43375532+jose-donato@users.noreply.github.com>
Co-authored-by: montezdesousa <79287829+montezdesousa@users.noreply.github.com>
Co-authored-by: northern-64bit <75195383+northern-64bit@users.noreply.github.com>
Co-authored-by: hjoaquim <h.joaquim@campus.fct.unl.pt> | OpenBBTerminal | 10 | Python | 13 | test_finnhub_view.py | def test_past_ipo_empty_df(mocker):
mocker.patch(
"openbb_terminal.stocks.discovery.finnhub_view.finnhub_model.get_ipo_calendar",
return_value=pd.DataFrame(),
)
finnhub_view.past_ipo(
num_days_behind=2, start_date="2021-12-01", limit=20, export=""
)
@pytest.mark.vcr(record_mode="none")
@pytest.mark.record_stdout | 9e1a58e2dbedec4e4a9f9c2e32ddf091776c606b | @pytest.mark.vcr(record_mode="none")
@pytest.mark.record_stdout | 40 | https://github.com/OpenBB-finance/OpenBBTerminal.git | 44 | def test_past_ipo_empty_df(mocker):
mocker.patch(
| 17 | 95 | test_past_ipo_empty_df |
77 | 0 | 1 | 25 | sklearn/semi_supervised/tests/test_self_training.py | 259,194 | MNT Replace if_delegate_has_method with available_if in ensemble and semi_supervised (#20545)
Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com>
Co-authored-by: Jérémie du Boisberranger <34657725+jeremiedbb@users.noreply.github.com> | scikit-learn | 14 | Python | 53 | test_self_training.py | def test_base_estimator_meta_estimator():
# Check that a meta-estimator relying on an estimator implementing
# `predict_proba` will work even if it does expose this method before being
# fitted.
# Non-regression test for:
# https://github.com/scikit-learn/scikit-learn/issues/19119
base_estimator = StackingClassifier(
estimators=[
("svc_1", SVC(probability=True)),
("svc_2", SVC(probability=True)),
],
final_estimator=SVC(probability=True),
cv=2,
)
assert hasattr(base_estimator, "predict_proba")
clf = SelfTrainingClassifier(base_estimator=base_estimator)
clf.fit(X_train, y_train_missing_labels)
clf.predict_proba(X_test)
base_estimator = StackingClassifier(
estimators=[
("svc_1", SVC(probability=False)),
("svc_2", SVC(probability=False)),
],
final_estimator=SVC(probability=False),
cv=2,
)
assert not hasattr(base_estimator, "predict_proba")
clf = SelfTrainingClassifier(base_estimator=base_estimator)
with pytest.raises(AttributeError):
clf.fit(X_train, y_train_missing_labels)
| a794c58692a1f3e7a85a42d8c7f7ddd5fcf18baa | 155 | https://github.com/scikit-learn/scikit-learn.git | 231 | def test_base_estimator_meta_estimator():
# Check that a meta-estimator relying on an estimator implementing
# `predict_proba` will work even if it does expose this method before being
# fitted.
# Non-regression test for:
# https://github.com/scikit-learn/scikit-learn/issues/19119
base_estimator = StackingClassifier(
estimators=[
("svc_1", SVC(probability=True)),
("svc_2", SVC(probability=True)),
],
final_estimator=SVC(probability=True),
cv=2,
)
assert hasat | 19 | 250 | test_base_estimator_meta_estimator |
|
45 | 0 | 4 | 16 | rllib/tests/test_io.py | 128,982 | [RLlib] QMIX better defaults + added to CI learning tests (#21332) | ray | 15 | Python | 39 | test_io.py | def test_agent_input_eval_sim(self):
for fw in framework_iterator():
self.write_outputs(self.test_dir, fw)
agent = PGTrainer(
env="CartPole-v0",
config={
"input": self.test_dir + fw,
"input_evaluation": ["simulation"],
"framework": fw,
})
for _ in range(50):
result = agent.train()
if not np.isnan(result["episode_reward_mean"]):
return # simulation ok
time.sleep(0.1)
assert False, "did not see any simulation results"
| abd3bef63b486fe3e43c1608d93205a702880414 | 93 | https://github.com/ray-project/ray.git | 262 | def test_agent_input_eval_sim(self):
for fw in framework_iterator():
self.write_outputs(self.test_dir, fw)
agent = PGTrainer(
env="CartPole-v0",
config={
"input": self.test_dir + fw | 18 | 154 | test_agent_input_eval_sim |
|
97 | 0 | 6 | 27 | ppdet/modeling/heads/s2anet_head.py | 211,220 | refactor s2anet (#6604)
* refactor s2anet to support batch_size > 1
* fix problem of inference
* support batch_size > 1 for training
* fix empty results
* fix dota eval
* fix configs of s2anet_head
* modify s2anet_spine_1x to 73 mAP | PaddleDetection | 18 | Python | 62 | s2anet_head.py | def get_bboxes_single(self, cls_score_list, bbox_pred_list):
mlvl_bboxes = []
mlvl_scores = []
for cls_score, bbox_pred in zip(cls_score_list, bbox_pred_list):
if self.use_sigmoid_cls:
scores = F.sigmoid(cls_score)
else:
scores = F.softmax(cls_score, axis=-1)
if scores.shape[0] > self.nms_pre:
# Get maximum scores for foreground classes.
if self.use_sigmoid_cls:
max_scores = paddle.max(scores, axis=1)
else:
max_scores = paddle.max(scores[:, :-1], axis=1)
topk_val, topk_inds = paddle.topk(max_scores, self.nms_pre)
bbox_pred = paddle.gather(bbox_pred, topk_inds)
scores = paddle.gather(scores, topk_inds)
mlvl_bboxes.append(bbox_pred)
mlvl_scores.append(scores)
mlvl_bboxes = paddle.concat(mlvl_bboxes)
mlvl_scores = paddle.concat(mlvl_scores)
mlvl_polys = rbox2poly(mlvl_bboxes).unsqueeze(0)
mlvl_scores = paddle.transpose(mlvl_scores, [1, 0]).unsqueeze(0)
bbox, bbox_num, _ = self.nms(mlvl_polys, mlvl_scores)
if bbox.shape[0] <= 0:
bbox = self.fake_bbox
bbox_num = self.fake_bbox_num
return bbox, bbox_num
| b4727677751081b257c6fa23c3c124ab9e5a32a1 | 237 | https://github.com/PaddlePaddle/PaddleDetection.git | 401 | def get_bboxes_single(self, cls_score_list, bbox_pred_list):
mlvl_bboxes = []
mlvl_scores = []
for cls_score, bbox_pred in zip(cls_score_list, bbox_pred_list):
if self.use_sigmoid_cls:
scores = F.sigmoid(cls_score)
else:
scores = F.softmax(cls_score, axis=-1)
if scores.shape[0] > self.nms_pre:
# Get maximum scores for foreground classes.
if self.use_sigmoid_cls:
max_scores = paddle.max(scores, axis=1)
else:
max_scores = paddle.max(scores[:, :-1], axis=1)
topk_val, topk_inds = paddle.topk(max_scores, self.nms_pre)
bbox_pred = paddle.gather(bbox_pred, topk_inds)
scores = paddle.gather(scores, topk_inds)
mlvl_bboxes.append(bbox_pred)
mlvl_scores.append(scores)
mlvl_bboxes = paddle.concat(mlvl_bboxes)
mlvl_scores = paddle.concat(ml | 36 | 367 | get_bboxes_single |
|
26 | 0 | 1 | 15 | tests/components/onvif/__init__.py | 296,882 | Add diagnostics to ONVIF (#69708) | core | 9 | Python | 21 | __init__.py | def setup_mock_device(mock_device):
mock_device.async_setup = AsyncMock(return_value=True)
mock_device.available = True
mock_device.name = NAME
mock_device.info = DeviceInfo(
MANUFACTURER,
MODEL,
FIRMWARE_VERSION,
SERIAL_NUMBER,
MAC,
)
mock_device.capabilities = Capabilities()
mock_device.profiles = []
| 22db21b9d4a7c5c2a79d43d8edf5295aeb99c13d | 63 | https://github.com/home-assistant/core.git | 85 | def setup_mock_device(mock_device):
mock_device.async_setup = AsyncMock(return_value=True)
mock_device.a | 18 | 89 | setup_mock_device |
|
28 | 0 | 1 | 10 | tests/sentry/integrations/msteams/test_message_builder.py | 93,205 | test(msteams): Add tests for building group card (#36834)
Add tests for build_group_card which builds issues cards. Does NOT test all visual aspects of the card. Only ensures that certain important elements are present and the basic structure of the card is correct. | sentry | 11 | Python | 23 | test_message_builder.py | def test_resolved_issue_message(self):
self.group1.status = GroupStatus.RESOLVED
self.group1.save()
issue_card = build_group_card(
group=self.group1, event=self.event1, rules=self.rules, integration=self.integration
)
action_set = issue_card["body"][2]["items"][0]
resolve_action = action_set["actions"][0]
assert ActionType.SUBMIT == resolve_action["type"]
assert "Unresolve" == resolve_action["title"]
| db35e231ceababe8c9f5ca7b5d2ca685f07c7d5b | 89 | https://github.com/getsentry/sentry.git | 94 | def test_resolved_issue_message(self):
self.group1.status = | 18 | 144 | test_resolved_issue_message |
|
39 | 0 | 1 | 8 | tests/models/mvp/test_modeling_mvp.py | 31,875 | Add MVP model (#17787)
* Add MVP model
* Update README
* Remove useless module
* Update docs
* Fix bugs in tokenizer
* Remove useless test
* Remove useless module
* Update vocab
* Remove specifying
* Remove specifying
* Add #Copied ... statement
* Update paper link
* Remove useless TFMvp
* Add #Copied ... statement
* Fix style in test mvp model
* Fix some typos
* Fix properties of unset special tokens in non verbose mode
* Update paper link
* Update MVP doc
* Update MVP doc
* Fix README
* Fix typos in docs
* Update docs | transformers | 13 | Python | 33 | test_modeling_mvp.py | def test_shift_tokens_right(self):
input_ids = torch.tensor([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=torch.long)
shifted = shift_tokens_right(input_ids, 1, 2)
n_pad_before = input_ids.eq(1).float().sum()
n_pad_after = shifted.eq(1).float().sum()
self.assertEqual(shifted.shape, input_ids.shape)
self.assertEqual(n_pad_after, n_pad_before - 1)
self.assertTrue(torch.eq(shifted[:, 0], 2).all())
| 3cff4cc58730409c68f8afa2f3b9c61efa0e85c6 | 137 | https://github.com/huggingface/transformers.git | 87 | def test_shift_tokens_right(self):
input_ids = torch.tensor([[71, 82, 18, 33, | 18 | 200 | test_shift_tokens_right |
|
21 | 0 | 1 | 7 | python3.10.4/Lib/distutils/tests/test_archive_util.py | 223,027 | add python 3.10.4 for windows | XX-Net | 10 | Python | 19 | test_archive_util.py | def test_make_archive_tar(self):
base_dir = self._create_files()
base_name = os.path.join(self.mkdtemp() , 'archive')
res = make_archive(base_name, 'tar', base_dir, 'dist')
self.assertTrue(os.path.exists(res))
self.assertEqual(os.path.basename(res), 'archive.tar')
self.assertEqual(self._tarinfo(res), self._created_files)
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 83 | https://github.com/XX-net/XX-Net.git | 63 | def test_make_archive_tar(self):
base_dir = self._create_files()
base_name = os.path.join(self.mkdtemp() , 'archive')
res = make_archive(base_name, 'tar', base_dir, 'dist')
self.assertTrue(os.path.exists(res))
self.assertEqual(os.path.basename(res), 'archive.tar')
self.assertEqual(self._tarinfo(res), self._created_files)
| 17 | 137 | test_make_archive_tar |
|
23 | 0 | 3 | 6 | homeassistant/components/zha/lock.py | 295,087 | Bump zigpy to 0.44.1 and zha-quirks to 0.0.69 (#68921)
* Make unit tests pass
* Flip response type check to not rely on it being a list
https://github.com/zigpy/zigpy/pull/716#issuecomment-1025236190
* Bump zigpy and quirks versions to ZCLR8 releases
* Fix renamed zigpy cluster attributes
* Handle the default response for ZLL `get_group_identifiers`
* Add more error context to `stage failed` errors
* Fix unit test returning lists as ZCL request responses
* Always load quirks when testing ZHA
* Bump zha-quirks to 0.0.69 | core | 10 | Python | 23 | lock.py | async def async_lock(self, **kwargs):
result = await self._doorlock_channel.lock_door()
if isinstance(result, Exception) or result[0] is not Status.SUCCESS:
self.error("Error with lock_door: %s", result)
return
self.async_write_ha_state()
| 0f6296e4b520ec8daf0f12e7b6db3c863c811ae8 | 51 | https://github.com/home-assistant/core.git | 73 | async def async_lock(self, **kwargs):
result = await self._doorlock_channel.lock_door()
if isinstance(result, Exception) or result[0] is not Status.SUCCESS:
| 12 | 86 | async_lock |
|
11 | 0 | 1 | 2 | src/transformers/utils/fx.py | 38,741 | Traced models serialization and torchscripting fix (#17206)
* Fix torch.jit.script and pickling issues
* Fix get_attr issues
* Fix import in function
* Fix GPT-J and T5 tracing for torch=1.11
* Gate graph surgery on torch version
* Modeling minor changes to enable TorchScripting
* Model serialization / deserialization test
* Remove _assert_is_none users | transformers | 8 | Python | 10 | fx.py | def __setitem__(self, indices, values):
return self.tracer.create_proxy("call_function", operator.setitem, (self, indices, values), {})
| 2e7e4280aa6f380a4e3afad6524295a17901c56c | 33 | https://github.com/huggingface/transformers.git | 17 | def __setitem__(self, indices, values):
return self.tracer.create_proxy("call_function", operator.setitem, (self, in | 8 | 47 | __setitem__ |
|
6 | 0 | 1 | 4 | keras/optimizers/optimizers_test.py | 275,632 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | keras | 12 | Python | 6 | optimizers_test.py | def test_rmsprop(self):
with self.cached_session():
self._test_optimizer(optimizer_v1.RMSprop())
self._test_optimizer(optimizer_v1.RMSprop(decay=1e-3))
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 37 | https://github.com/keras-team/keras.git | 34 | def test_rmsprop(self):
with self.cached_session():
self._te | 7 | 61 | test_rmsprop |
|
18 | 0 | 1 | 6 | homeassistant/components/ws66i/media_player.py | 300,151 | Add ws66i core integration (#56094)
* Add ws66i core integration
* Remove all ws66i translations
* Update ws66i unit tests to meet minimum code coverage
* Update ws66i based on @bdraco review
* General improvements after 2nd PR review
* Disable entities if amp shutoff, set default source names, set 30sec polling
* Add _attr_ and change async_on_unload
* Improve entity generation
* Implement coordinator
* Made options fields required, retry connection on failed attempts, use ZoneStatus for attributes
* Refactor WS66i entity properties, raise HomeAssistantError on restore service if no snapshot
* Update to pyws66i v1.1
* Add quality scale of silver to manifest
* Update config_flow test | core | 11 | Python | 15 | media_player.py | async def async_set_volume_level(self, volume):
await self.hass.async_add_executor_job(
self._ws66i.set_volume, self._zone_id, int(volume * MAX_VOL)
)
self._status.volume = int(volume * MAX_VOL)
self._async_update_attrs_write_ha_state()
| 5e737bfe4fbc5a724f5fdf04ea9319c2224cb114 | 49 | https://github.com/home-assistant/core.git | 64 | async def async_set_volume_level(self, volume):
await self.hass.async_add_executor_job(
self._ws66i.set_volume, self._zone_id, int( | 12 | 80 | async_set_volume_level |
|
29 | 0 | 1 | 8 | rllib/examples/two_trainer_workflow.py | 147,686 | [RLlib] Examples folder: All `training_iteration` translations. (#23712) | ray | 10 | Python | 28 | two_trainer_workflow.py | def get_default_config(cls) -> TrainerConfigDict:
# Run this Trainer with new `training_iteration` API and set some PPO-specific
# parameters.
return with_common_config(
{
"_disable_execution_plan_api": True,
"num_sgd_iter": 10,
"sgd_minibatch_size": 128,
}
)
| 434265edd0926f7838cca4dbce00e88149e6bbf0 | 25 | https://github.com/ray-project/ray.git | 123 | def get_default_config(cls) -> TrainerConfigDict:
# Run this Trainer with new `training_iteration` API and set some PPO-specific
# parameters.
return with_common_config(
| 4 | 45 | get_default_config |
|
7 | 0 | 1 | 3 | python/ray/_private/runtime_env/utils.py | 129,516 | [1/n][cross-language runtime env] runtime env protobuf refactor (#21551)
We need to support runtime env for java、c++ and cross-language. This PR only do a refactor of protobuf.
Related issue #21731 | ray | 9 | Python | 7 | utils.py | def has_conda(self) -> str:
return self._proto_runtime_env.python_runtime_env.HasField(
"conda_runtime_env")
| f8e41215b3fc8f45660e6afac4fe6faad73287f4 | 18 | https://github.com/ray-project/ray.git | 24 | def has_conda(self) -> str:
return self._proto_runtime_env.python_runtime_env.HasField(
"conda_runtime_en | 6 | 31 | has_conda |
|
117 | 0 | 3 | 39 | erpnext/regional/report/eway_bill/eway_bill.py | 67,202 | style: format code with black | erpnext | 18 | Python | 98 | eway_bill.py | def get_data(filters):
conditions = get_conditions(filters)
data = frappe.db.sql(
% conditions,
as_dict=1,
)
unit = {
"Bag": "BAGS",
"Bottle": "BOTTLES",
"Kg": "KILOGRAMS",
"Liter": "LITERS",
"Meter": "METERS",
"Nos": "NUMBERS",
"PKT": "PACKS",
"Roll": "ROLLS",
"Set": "SETS",
}
# Regular expression set to remove all the special characters
special_characters = r"[$%^*()+\\[\]{};':\"\\|<>.?]"
for row in data:
set_defaults(row)
set_taxes(row, filters)
set_address_details(row, special_characters)
# Eway Bill accepts date as dd/mm/yyyy and not dd-mm-yyyy
row.posting_date = "/".join(str(row.posting_date).replace("-", "/").split("/")[::-1])
row.lr_date = "/".join(str(row.lr_date).replace("-", "/").split("/")[::-1])
if row.gst_vehicle_type == "Over Dimensional Cargo (ODC)":
row.gst_vehicle_type = "ODC"
row.item_name = re.sub(special_characters, " ", row.item_name)
row.description = row.item_name
row.uom = unit.get(row.uom, row.uom)
# For removing special charactes and numbers from customer.
row.customer = re.sub(special_characters[:-1] + "&0-9" + "]", "", row.customer)
return data
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 235 | https://github.com/frappe/erpnext.git | 83 | def get_data(filters):
conditions = get_conditions(filters)
data = frappe.db.sql(
% conditions,
as_dict=1,
)
unit = {
"Bag": "BAGS",
"Bottle": "BOTTLES",
"Kg": "KILOGRAMS",
"Liter": "LITERS",
"Meter": "METERS",
"Nos": "NUMBERS",
"PKT": "PACKS",
"Roll": "ROLLS",
"Set": "SETS",
}
# Regular expression set to remove all the special characters
special_characters | 29 | 423 | get_data |
|
18 | 0 | 1 | 9 | tests/sentry/replays/test_organization_issue_replay_count.py | 89,383 | feat(replays): Add issue replay count endpoint (#41996)
## What this PR does
We create an endpoint that provides accurate counts of replay_ids
associated with issue ids within a timeframe. The endpoint will return a
format like so:
```
{
issue_id_1: 1,
issue_id_2: 20,
etc. etc.
}
```
### Constraints
- Between 1 and 25 issue_ids may be passed in (25 being the current
pagination size of the issue stream)
- We will only count up to 50 replay_ids, 50 chosen somewhat arbitrarily
but seems a reasonable size.
- We will only retrieve up to 100 replay_ids per issue_id. this means
that if over half of replay_ids are sampled, it's possible that we may
undercount replays as we will miss some. This is a small edge case and
is acceptable.
## Modifications:
- We modify discover.py to allow for private_use of the `groupArray`
clickhouse function
- In our endpoint we use QueryBuilder to hit the discover dataset, then
query the replays dataset with the replay_ids returned
- We then count up each replay_id confirmed to exist by its associated
issue_id, and return the resulting dict
### Why are we doing this?
Because of sampling / dropped data, events can have replay_ids that
don't exist. this is nominally fine, although it results in missing
counts / the product not seeming trustworthy in places.
Fixes https://github.com/getsentry/replay-backend/issues/190 | sentry | 14 | Python | 16 | test_organization_issue_replay_count.py | def setUp(self):
super().setUp()
self.min_ago = before_now(minutes=1)
self.login_as(user=self.user)
self.url = reverse(
"sentry-api-0-organization-issue-replay-count",
kwargs={"organization_slug": self.project.organization.slug},
)
self.features = {"organizations:session-replay": True}
| 6e2d3d461e9638981b6619952f59f78e44a93917 | 64 | https://github.com/getsentry/sentry.git | 81 | def setUp(self):
super().setUp()
self.min_ago = before_now(minutes=1)
self.login_as(user=self.user)
self.url = reverse(
"sentry-api-0-organization-issue-replay-count",
| 15 | 108 | setUp |
|
66 | 1 | 1 | 16 | tests/models/opt/test_modeling_opt.py | 30,686 | Fix expected value for OPT test `test_inference_no_head` (#17395)
* Fix expected value
* 5e-5
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com> | transformers | 12 | Python | 61 | test_modeling_opt.py | def test_inference_no_head(self):
model = OPTModel.from_pretrained("facebook/opt-350m").to(torch_device)
input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
with torch.no_grad():
output = model(input_ids=input_ids).last_hidden_state
expected_shape = torch.Size((1, 11, 512))
self.assertEqual(output.shape, expected_shape)
# expected value works for CPU, as well as GPU (with TF32 disabled)
expected_slice = torch.tensor(
[
[-0.28726277, -1.9241608, -0.3058734],
[-1.2737825, -0.13332152, -0.18766522],
[0.41159445, 0.1191957, -1.3107123],
],
device=torch_device,
)
assert_tensors_close(output[0, :3, :3], expected_slice, atol=5e-5)
@require_torch
@slow | 4d727bd2dff377caeab21ff4e1bf4b26c2397c8a | @require_torch
@slow | 173 | https://github.com/huggingface/transformers.git | 215 | def test_inference_no_head(self):
model = OPTModel.from_pretrained("facebook/opt-350m").to(torch_device)
i | 24 | 229 | test_inference_no_head |
49 | 0 | 1 | 11 | jina/parsers/orchestrate/runtimes/remote.py | 13,648 | docs: fix port and protocol description for the gateway (#5456)
Co-authored-by: Jina Dev Bot <dev-bot@jina.ai> | jina | 14 | Python | 43 | remote.py | def mixin_gateway_protocol_parser(parser):
from jina.enums import GatewayProtocolType
parser.add_argument(
'--protocol',
'--protocols',
nargs='+',
type=GatewayProtocolType.from_string,
choices=list(GatewayProtocolType),
default=[GatewayProtocolType.GRPC],
help=f'Communication protocol of the server exposed by the Gateway. This can be a single value or a list of protocols, depending on your chosen Gateway. Choose the convenient protocols from: {[protocol.to_string() for protocol in list(GatewayProtocolType)]}.',
)
| 47da80beca9cd60db51081594f1fcc5bee6d1246 | 51 | https://github.com/jina-ai/jina.git | 110 | def mixin_gateway_protocol_parser(parser):
from jina.enums import GatewayProtocolType
parser.add_argument(
'--protocol',
'--protocols',
nargs='+',
type=GatewayProtocolType.from_string,
choices=l | 16 | 106 | mixin_gateway_protocol_parser |
|
25 | 0 | 1 | 5 | tests/test_console.py | 161,881 | Test to ensure NullFile set as Console.file when stdout null | rich | 8 | Python | 24 | test_console.py | def test_console_null_file(monkeypatch):
# When stdout and stderr are null, Console.file should be replaced with NullFile
monkeypatch.setattr("sys.stdout", None)
monkeypatch.setattr("sys.stderr", None)
console = Console()
assert isinstance(console.file, NullFile)
| 97bffbc7b1640dfc7bc20809dc0b9d1b536d7644 | 35 | https://github.com/Textualize/rich.git | 39 | def test_console_null_file(monkeypatch):
# When stdout and stderr are null, Console.file should be replaced with NullFile
monkeypatch.setattr("sys.stdout", None)
| 8 | 60 | test_console_null_file |
|
49 | 0 | 1 | 11 | wagtail/admin/tests/pages/test_delete_page.py | 71,510 | Reformat with black | wagtail | 10 | Python | 38 | test_delete_page.py | def setUp(self):
# Find root page
self.root_page = Page.objects.get(id=2)
# Add child page
self.child_page = SimplePage(
title="Hello world!", slug="hello-world", content="hello"
)
self.root_page.add_child(instance=self.child_page)
# Add a page with child pages of its own
self.child_index = StandardIndex(title="Hello index", slug="hello-index")
self.root_page.add_child(instance=self.child_index)
self.grandchild_page = StandardChild(title="Hello Kitty", slug="hello-kitty")
self.child_index.add_child(instance=self.grandchild_page)
# Login
self.user = self.login()
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 110 | https://github.com/wagtail/wagtail.git | 150 | def setUp(self):
# Find root page
self.root_page = Page.objects.get(id=2)
# Add child page
self.child_page = SimplePage(
title="Hello world!", slug="hello-world", content="hello"
)
self.root_page.add_child(instance=self.child_page)
# Add a page with child pages of its own
self.child_index = StandardIndex(title="Hello index", slug="hello-index")
self.root_page.add_child(instance=self | 20 | 189 | setUp |
|
16 | 0 | 1 | 8 | tests/test_client.py | 54,216 | Fix bug where log workers would access a cached client across event loops | prefect | 10 | Python | 14 | test_client.py | async def test_client_can_opt_out_of_lifespan_management(self):
startup, shutdown = MagicMock(), MagicMock()
app = FastAPI(on_startup=[startup], on_shutdown=[shutdown])
client = OrionClient(app, manage_ephemeral_lifespan=False)
| ef229fdb02297bcfff6aa95f210ce73e35074b99 | 57 | https://github.com/PrefectHQ/prefect.git | 36 | async def test_client_can_opt_out_of_lifespan_management(self):
startup, shutdown = MagicMock(), MagicMock()
app = FastAPI(on_startup=[startup], on_shutdown=[shutdown] | 12 | 68 | test_client_can_opt_out_of_lifespan_management |
|
53 | 1 | 3 | 14 | pandas/tests/resample/test_base.py | 164,179 | TST: Use more xfail instead of skip (#45719) | pandas | 14 | Python | 48 | test_base.py | def test_resample_empty_series(freq, empty_series_dti, resample_method, request):
# GH12771 & GH12868
if resample_method == "ohlc" and isinstance(empty_series_dti.index, PeriodIndex):
request.node.add_marker(
pytest.mark.xfail(
reason=f"GH13083: {resample_method} fails for PeriodIndex"
)
)
ser = empty_series_dti
result = getattr(ser.resample(freq), resample_method)()
expected = ser.copy()
expected.index = _asfreq_compat(ser.index, freq)
tm.assert_index_equal(result.index, expected.index)
assert result.index.freq == expected.index.freq
tm.assert_series_equal(result, expected, check_dtype=False)
@all_ts
@pytest.mark.parametrize("freq", ["M", "D", "H"]) | bfe2d528a9398679acf05ffcdc60d3c181e0f17e | @all_ts
@pytest.mark.parametrize("freq", ["M", "D", "H"]) | 116 | https://github.com/pandas-dev/pandas.git | 128 | def test_resample_empty_series(freq, empty_series_dti, resample_method, request):
# GH12771 & GH12868
if resample_method == "ohlc" and i | 27 | 219 | test_resample_empty_series |
28 | 0 | 3 | 7 | torch/testing/_comparison.py | 102,547 | make meta tensor data access error message for expressive in assert_close (#68802)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68802
Without this patch, the error message of comparing meta tensors looks like this after #68722 was merged:
```python
>>> t = torch.empty((), device="meta")
>>> assert_close(t, t)
NotImplementedError: Could not run 'aten::abs.out' with arguments from the 'Meta' backend. [...]
[...]
The above exception was the direct cause of the following exception:
[...]
RuntimeError: Comparing
TensorLikePair(
id=(),
actual=tensor(..., device='meta', size=()),
expected=tensor(..., device='meta', size=()),
rtol=1.3e-06,
atol=1e-05,
equal_nan=False,
check_device=True,
check_dtype=True,
check_layout=True,
check_stride=False,
check_is_coalesced=True,
)
resulted in the unexpected exception above. If you are a user and see this message during normal operation please file an issue at https://github.com/pytorch/pytorch/issues. If you are a developer and working on the comparison functions, please except the previous error and raise an expressive `ErrorMeta` instead.
```
Thus, we follow our own advice and turn it into an expected exception until #68592 is resolved:
```python
>>> t = torch.empty((), device="meta")
>>> assert_close(t, t)
ValueError: Comparing meta tensors is currently not supported
```
Test Plan: Imported from OSS
Reviewed By: ngimel
Differential Revision: D33542999
Pulled By: mruberry
fbshipit-source-id: 0fe1ddee15b5decdbd4c5dd84f03804ca7eac95b | pytorch | 13 | Python | 26 | _comparison.py | def _handle_meta_tensor_data_access(self):
try:
yield
except NotImplementedError as error:
if "meta" not in str(error).lower():
raise error
# TODO: See https://github.com/pytorch/pytorch/issues/68592
raise self._make_error_meta(NotImplementedError, "Comparing meta tensors is currently not supported.")
| 8d05174defd689cb1cb2346e0cde5b7fa572814a | 38 | https://github.com/pytorch/pytorch.git | 108 | def _handle_meta_tensor_data_access(self):
try:
yield
except NotImplementedError as error:
if "meta" not in str(error).lower():
raise error
# TODO: See https://github.com/pytorch/pytorch/issues/68592
raise self._make_error_meta(NotImplementedError, "Compa | 7 | 71 | _handle_meta_tensor_data_access |
|
105 | 0 | 7 | 26 | homeassistant/components/auth/login_flow.py | 313,425 | Add FlowResultType enum to data entry flow (#72955) | core | 15 | Python | 80 | login_flow.py | async def _async_flow_result_to_response(self, request, client_id, result):
if result["type"] != data_entry_flow.FlowResultType.CREATE_ENTRY:
# @log_invalid_auth does not work here since it returns HTTP 200.
# We need to manually log failed login attempts.
if (
result["type"] == data_entry_flow.FlowResultType.FORM
and (errors := result.get("errors"))
and errors.get("base")
in (
"invalid_auth",
"invalid_code",
)
):
await process_wrong_login(request)
return self.json(_prepare_result_json(result))
result.pop("data")
hass: HomeAssistant = request.app["hass"]
result_obj: Credentials = result.pop("result")
# Result can be None if credential was never linked to a user before.
user = await hass.auth.async_get_user_by_credentials(result_obj)
if user is not None and (
user_access_error := async_user_not_allowed_do_auth(hass, user)
):
return self.json_message(
f"Login blocked: {user_access_error}", HTTPStatus.FORBIDDEN
)
await process_success_login(request)
result["result"] = self._store_result(client_id, result_obj)
return self.json(result)
| f91aa33c5f7bc13ed031a95f946f70e11af1e2f3 | 169 | https://github.com/home-assistant/core.git | 420 | async def _async_flow_result_to_response(self, request, client_id, result):
if result["type"] != data_entry_flow.FlowResultType.CREATE_ENTRY:
# @log_invalid_auth does not work here since it returns HTTP 200.
# We need to manually log failed login attempts.
if (
result["type"] == data_entry_flow.FlowResultType.FORM
and (errors := result.get("errors"))
and errors.get("base")
in (
"invalid_auth",
"invalid_code",
)
):
await process_wrong_login(request)
return self.json(_prepare_result_json(result))
result.pop("data")
hass: HomeAssistant = request.app["hass"]
result_obj: Credentials = result.pop("result")
# Result can be None if credential was never linked to a user before.
user = await hass.auth.async_get_user_by_credentials(result_obj)
if user is not None and (
user_access_error := async_user_not_allowed_do_auth(hass, user)
| 30 | 289 | _async_flow_result_to_response |
|
23 | 0 | 2 | 8 | homeassistant/components/avea/light.py | 318,227 | Improve type hints in light [a-i] (#75936)
* Improve type hints in ads light
* Improve type hints in avea light
* Improve type hints in avion light
* Improve type hints in broadlink light
* More type hints
* One more | core | 13 | Python | 20 | light.py | def update(self) -> None:
if (brightness := self._light.get_brightness()) is not None:
self._attr_is_on = brightness != 0
self._attr_brightness = round(255 * (brightness / 4095))
| 20fec104e2a11b1a5164d7fe779eb0d894e098cf | 45 | https://github.com/home-assistant/core.git | 59 | def update(self) -> None:
| 8 | 74 | update |
|
117 | 0 | 4 | 60 | src/documents/consumer.py | 319,877 | When raising an exception during exception handling, chain them together for slightly cleaner logs | paperless-ngx | 21 | Python | 84 | consumer.py | def run_post_consume_script(self, document):
if not settings.POST_CONSUME_SCRIPT:
return
if not os.path.isfile(settings.POST_CONSUME_SCRIPT):
self._fail(
MESSAGE_POST_CONSUME_SCRIPT_NOT_FOUND,
f"Configured post-consume script "
f"{settings.POST_CONSUME_SCRIPT} does not exist.",
)
self.log(
"info",
f"Executing post-consume script {settings.POST_CONSUME_SCRIPT}",
)
script_env = os.environ.copy()
script_env["DOCUMENT_ID"] = str(document.pk)
script_env["DOCUMENT_CREATED"] = str(document.created)
script_env["DOCUMENT_MODIFIED"] = str(document.modified)
script_env["DOCUMENT_ADDED"] = str(document.added)
script_env["DOCUMENT_FILE_NAME"] = document.get_public_filename()
script_env["DOCUMENT_SOURCE_PATH"] = os.path.normpath(document.source_path)
script_env["DOCUMENT_ARCHIVE_PATH"] = os.path.normpath(
str(document.archive_path),
)
script_env["DOCUMENT_THUMBNAIL_PATH"] = os.path.normpath(
document.thumbnail_path,
)
script_env["DOCUMENT_DOWNLOAD_URL"] = reverse(
"document-download",
kwargs={"pk": document.pk},
)
script_env["DOCUMENT_THUMBNAIL_URL"] = reverse(
"document-thumb",
kwargs={"pk": document.pk},
)
script_env["DOCUMENT_CORRESPONDENT"] = str(document.correspondent)
script_env["DOCUMENT_TAGS"] = str(
",".join(document.tags.all().values_list("name", flat=True)),
)
try:
Popen(
(
settings.POST_CONSUME_SCRIPT,
str(document.pk),
document.get_public_filename(),
os.path.normpath(document.source_path),
os.path.normpath(document.thumbnail_path),
reverse("document-download", kwargs={"pk": document.pk}),
reverse("document-thumb", kwargs={"pk": document.pk}),
str(document.correspondent),
str(",".join(document.tags.all().values_list("name", flat=True))),
),
env=script_env,
).wait()
except Exception as e:
self._fail(
MESSAGE_POST_CONSUME_SCRIPT_ERROR,
f"Error while executing post-consume script: {e}",
exc_info=True,
exception=e,
)
| b70e21a6d50bfc84e76fd68ce0b8c22b0928ff51 | 383 | https://github.com/paperless-ngx/paperless-ngx.git | 781 | def run_post_consume_script(self, document):
if not settings.POST_CONSUME_SCRIPT:
return
if not os.path.isfile(settings.POST_CONSUME_SCRIPT):
self._fail(
MESSAGE_POST_CONSUME_SCRIPT_NOT_FOUND,
f"Configured post-consume script "
f"{settings.POST_CONSUME_SCRIPT} does not exist.",
)
self.log(
"info",
f"Executing post-consume script {settings.POST_CONSUME_SCRIPT}",
)
script_env = os.environ.copy()
script_env["DOCUMENT_ID"] = str(document.pk)
script_env["DOCUMENT_CREATED"] = str(document.created)
script_env["DOCUMENT_MODIFIED"] = str(document.modified)
script_env["DOCUMENT_ADDED"] = str(document.added)
script_env["DOCUMENT_FILE_NAME"] = document.get_public_filename()
script_env["DOCUMENT_SOURCE_PATH"] = os.path.normpath(document.source_path)
| 40 | 648 | run_post_consume_script |
|
39 | 0 | 1 | 15 | tests/sentry/snuba/metrics/test_metrics_layer/test_metrics_enhanced_performance.py | 88,393 | feat(metrics): Add support for wildcard searches (#41114) | sentry | 12 | Python | 34 | test_metrics_enhanced_performance.py | def test_broken_custom_metric(self, mock):
# Store valid metric
self.store_transaction_metric(
1,
metric="measurements.something_custom",
internal_metric="d:transactions/measurements.something_custom@millisecond",
entity="metrics_distributions",
timestamp=self.day_ago + timedelta(hours=1, minutes=0),
)
# mock mri failing to parse the metric
mock.return_value = None
result = get_custom_measurements(
project_ids=[self.project.id],
organization_id=self.organization.id,
start=self.day_ago,
)
assert result == []
| f322fa798595b3bc7dc54e904c9628e44102f1f5 | 82 | https://github.com/getsentry/sentry.git | 182 | def test_broken_custom_metric(self, mock):
# Store valid metric
self.store_transaction_metric(
1,
metric="measurements.something_custom",
internal_metric="d:transactions/measurements.something_custom@millisecond",
entity="metrics_distributions",
timestamp=self.day_ago + timedelta(hours=1, minutes=0),
)
# mock mri failing to parse the metric
mock.return_value = None
result = get_custom_measurements(
project_ids=[self.project.id],
organiz | 21 | 127 | test_broken_custom_metric |
|
95 | 1 | 3 | 30 | tests/components/wemo/conftest.py | 301,222 | Use properties of wemo Maker device (#72378) | core | 10 | Python | 67 | conftest.py | def create_pywemo_device(pywemo_registry, pywemo_model):
cls = getattr(pywemo, pywemo_model)
device = create_autospec(cls, instance=True)
device.host = MOCK_HOST
device.port = MOCK_PORT
device.name = MOCK_NAME
device.serialnumber = MOCK_SERIAL_NUMBER
device.model_name = pywemo_model.replace("LongPress", "")
device.udn = f"uuid:{device.model_name}-1_0-{device.serialnumber}"
device.firmware_version = MOCK_FIRMWARE_VERSION
device.get_state.return_value = 0 # Default to Off
device.supports_long_press.return_value = cls.supports_long_press()
if issubclass(cls, pywemo.Insight):
device.get_standby_state = pywemo.StandbyState.OFF
device.current_power_watts = MOCK_INSIGHT_CURRENT_WATTS
device.today_kwh = MOCK_INSIGHT_TODAY_KWH
device.threshold_power_watts = MOCK_INSIGHT_STATE_THRESHOLD_POWER
device.on_for = 1234
device.today_on_time = 5678
device.total_on_time = 9012
if issubclass(cls, pywemo.Maker):
device.has_sensor = 1
device.sensor_state = 1
device.switch_mode = 1
device.switch_state = 0
url = f"http://{MOCK_HOST}:{MOCK_PORT}/setup.xml"
with patch("pywemo.setup_url_for_address", return_value=url), patch(
"pywemo.discovery.device_from_description", return_value=device
):
yield device
@pytest.fixture(name="pywemo_device") | 92582beeff7a5d1e9fa6cfae3afa41f596b5e3c2 | @pytest.fixture(name="pywemo_device") | 191 | https://github.com/home-assistant/core.git | 237 | def create_pywemo_device(pywemo_registry, pywemo_model):
cls = getattr(pywemo, pywemo_model)
device = create_autospec(cls, instance=True)
device.host = MOCK_HOST
device.port = MOCK_PORT
device.name = MOCK_NAME
device.serialnumber = MOCK_SERIAL_NUMBER
device.model_name = pywemo_model.replace("LongPress", "")
device.udn = f"uuid:{device.model_name}-1_0-{device.serialnumber}"
devic | 48 | 352 | create_pywemo_device |
19 | 0 | 2 | 10 | homeassistant/components/mqtt/vacuum/schema_state.py | 290,441 | Use `_attr_` for MQTT vacuum (#81534)
* Use `_attr_` for MQTT vacuum
* Remove unneeded properties
* Follow-up comment
* Remove default value | core | 10 | Python | 19 | schema_state.py | async def async_locate(self, **kwargs):
if self.supported_features & VacuumEntityFeature.LOCATE == 0:
return
await self.async_publish(
self._command_topic,
self._config[CONF_PAYLOAD_LOCATE],
self._config[CONF_QOS],
self._config[CONF_RETAIN],
self._config[CONF_ENCODING],
)
| b364ef98a073214aad8deff4ff9b91e9ff041557 | 59 | https://github.com/home-assistant/core.git | 113 | async def async_locate(self, **kwargs):
if self.sup | 13 | 89 | async_locate |
|
10 | 1 | 1 | 5 | airbyte-integrations/connectors/source-google-analytics-v4/unit_tests/unit_test.py | 3,562 | reintroduce window in days, log warning when sampling occurs (#9480)
* reintroduce window in days, log warning when sampling occurs
* Unit tests
* Documentation update
* Update airbyte-integrations/connectors/source-google-analytics-v4/source_google_analytics_v4/source.py
Co-authored-by: Sergei Solonitcyn <11441558+sergei-solonitcyn@users.noreply.github.com>
* fix the spec
Signed-off-by: Sergei Solonitcyn <sergei.solonitcyn@zazmic.com>
* some mypy fixes
Signed-off-by: Sergei Solonitcyn <sergei.solonitcyn@zazmic.com>
* bump version
* format
* updated spec and def yaml
* Update source.py
Co-authored-by: Sergei Solonitcyn <11441558+sergei-solonitcyn@users.noreply.github.com>
Co-authored-by: Sergei Solonitcyn <sergei.solonitcyn@zazmic.com>
Co-authored-by: auganbay <auganenu@gmail.com> | airbyte | 14 | Python | 10 | unit_test.py | def mock_auth_check_connection(requests_mock):
yield requests_mock.post(
"https://analyticsreporting.googleapis.com/v4/reports:batchGet",
json={"data": {"test": "value"}},
)
@pytest.fixture | f78ede0b511de022482c5f0713752ddf01460eb4 | @pytest.fixture | 25 | https://github.com/airbytehq/airbyte.git | 28 | def mock_auth_check_connection(requests_mock):
yield requests_mock.post(
"https://analyticsreporting.googleapis.com/v4/reports:batchGet",
json={"data": {"test": "value"}},
)
@pytest.fixture | 6 | 54 | mock_auth_check_connection |
275 | 0 | 19 | 51 | rllib/models/utils.py | 143,803 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | ray | 14 | Python | 125 | utils.py | def get_filter_config(shape):
# VizdoomGym (large 480x640).
filters_480x640 = [
[16, [24, 32], [14, 18]],
[32, [6, 6], 4],
[256, [9, 9], 1],
]
# VizdoomGym (small 240x320).
filters_240x320 = [
[16, [12, 16], [7, 9]],
[32, [6, 6], 4],
[256, [9, 9], 1],
]
# 96x96x3 (e.g. CarRacing-v0).
filters_96x96 = [
[16, [8, 8], 4],
[32, [4, 4], 2],
[256, [11, 11], 2],
]
# Atari.
filters_84x84 = [
[16, [8, 8], 4],
[32, [4, 4], 2],
[256, [11, 11], 1],
]
# Small (1/2) Atari.
filters_42x42 = [
[16, [4, 4], 2],
[32, [4, 4], 2],
[256, [11, 11], 1],
]
# Test image (10x10).
filters_10x10 = [
[16, [5, 5], 2],
[32, [5, 5], 2],
]
shape = list(shape)
if len(shape) in [2, 3] and (shape[:2] == [480, 640] or shape[1:] == [480, 640]):
return filters_480x640
elif len(shape) in [2, 3] and (shape[:2] == [240, 320] or shape[1:] == [240, 320]):
return filters_240x320
elif len(shape) in [2, 3] and (shape[:2] == [96, 96] or shape[1:] == [96, 96]):
return filters_96x96
elif len(shape) in [2, 3] and (shape[:2] == [84, 84] or shape[1:] == [84, 84]):
return filters_84x84
elif len(shape) in [2, 3] and (shape[:2] == [42, 42] or shape[1:] == [42, 42]):
return filters_42x42
elif len(shape) in [2, 3] and (shape[:2] == [10, 10] or shape[1:] == [10, 10]):
return filters_10x10
else:
raise ValueError(
"No default configuration for obs shape {}".format(shape)
+ ", you must specify `conv_filters` manually as a model option. "
"Default configurations are only available for inputs of shape "
"[42, 42, K] and [84, 84, K]. You may alternatively want "
"to use a custom model or preprocessor."
)
| 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | 505 | https://github.com/ray-project/ray.git | 586 | def get_filter_config(shape):
# VizdoomGym (large 480x640).
filters_480x640 = [
[16, [24, 32], [14, 18]],
[32, [6, 6], 4],
[256, [9, 9], 1],
]
# VizdoomGym (small 240x320).
filters_240x320 = [
[16, [12, 16], [7, 9]],
[32, [6, 6], 4],
[256, [9, 9], 1],
]
# 96x96x3 (e.g. CarRacing-v0).
filters_96x96 = [
[16, [8, 8], 4],
[32, [4, 4], 2],
[256, [11, 11], 2],
]
# Atari.
filters_84x84 = [
[16, [8, 8], 4],
[32, [4, 4], 2],
[256, [11, 11], 1],
]
# Small (1/2) Atari.
filters_42x42 = [
[16, [4, 4], 2],
[32, [4, 4], 2],
[256, [11, 11], 1],
]
# Test image (10x10).
filters_10x10 = [
[16, [5, 5], 2],
[32, [5, 5], 2] | 12 | 704 | get_filter_config |
|
12 | 0 | 2 | 2 | django/db/backends/oracle/operations.py | 205,102 | Refs #33476 -- Reformatted code with Black. | django | 7 | Python | 11 | operations.py | def convert_empty_string(value, expression, connection):
return "" if value is None else value
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 17 | https://github.com/django/django.git | 18 | def convert_empty_string(value, expression, connection):
| 4 | 26 | convert_empty_string |
|
138 | 0 | 2 | 29 | test/units/galaxy/test_collection_install.py | 268,464 | Add --offline option to 'ansible-galaxy collection install' (#78678)
* Add --offline option to 'ansible-galaxy collection install' to prevent querying distribution servers
This allows installing/upgrading individual tarfiles to have dependency resolution.
Previously needed to be done manually with --no-deps or else all collections and dependencies needed to be included in the requirements.
Co-authored-by: Sviatoslav Sydorenko <wk.cvs.github@sydorenko.org.ua> | ansible | 12 | Python | 100 | test_collection_install.py | def test_build_requirement_from_name_multiple_version_results(galaxy_server, monkeypatch, tmp_path_factory):
test_dir = to_bytes(tmp_path_factory.mktemp('test-ÅÑŚÌβŁÈ Collections Input'))
concrete_artifact_cm = collection.concrete_artifact_manager.ConcreteArtifactsManager(test_dir, validate_certs=False)
multi_api_proxy = collection.galaxy_api_proxy.MultiGalaxyAPIProxy([galaxy_server], concrete_artifact_cm)
dep_provider = dependency_resolution.providers.CollectionDependencyProvider(apis=multi_api_proxy, concrete_artifacts_manager=concrete_artifact_cm)
matches = RequirementCandidates()
mock_find_matches = MagicMock(side_effect=matches.func_wrapper(dep_provider.find_matches), autospec=True)
monkeypatch.setattr(dependency_resolution.providers.CollectionDependencyProvider, 'find_matches', mock_find_matches)
mock_get_info = MagicMock()
mock_get_info.return_value = api.CollectionVersionMetadata('namespace', 'collection', '2.0.5', None, None, {}, None, None)
monkeypatch.setattr(galaxy_server, 'get_collection_version_metadata', mock_get_info)
mock_get_versions = MagicMock()
mock_get_versions.return_value = ['1.0.1', '1.0.2', '1.0.3']
monkeypatch.setattr(galaxy_server, 'get_collection_versions', mock_get_versions)
mock_get_versions.return_value = ['2.0.0', '2.0.1', '2.0.2', '2.0.3', '2.0.4', '2.0.5']
monkeypatch.setattr(galaxy_server, 'get_collection_versions', mock_get_versions)
cli = GalaxyCLI(args=['ansible-galaxy', 'collection', 'install', 'namespace.collection:!=2.0.2'])
requirements = cli._require_one_of_collections_requirements(
['namespace.collection:!=2.0.2'], None, artifacts_manager=concrete_artifact_cm
)['collections']
actual = collection._resolve_depenency_map(
requirements, [galaxy_server], concrete_artifact_cm, None, False, True, False, False, False)['namespace.collection']
assert actual.namespace == u'namespace'
assert actual.name == u'collection'
assert actual.src == galaxy_server
assert actual.ver == u'2.0.5'
# should be ordered latest to earliest
assert [c.ver for c in matches.candidates] == [u'2.0.5', u'2.0.4', u'2.0.3', u'2.0.1', u'2.0.0']
assert mock_get_versions.call_count == 1
assert mock_get_versions.mock_calls[0][1] == ('namespace', 'collection')
| a02e22e902a69aeb465f16bf03f7f5a91b2cb828 | 337 | https://github.com/ansible/ansible.git | 232 | def test_build_requirement_from_name_multiple_version_results(galaxy_server, monkeypatch, tmp_path_factory):
test_dir = to_bytes(tmp_path_factory.mktemp('test-ÅÑŚÌβŁÈ Collections Input'))
concrete_artifact_cm = collection.concrete_artifact_manager.ConcreteArtifactsManager(test_dir, validate_certs=False)
multi_api_proxy = collection.galaxy_api_proxy.MultiGalaxyAPIProxy([galaxy_server], concrete_artifact_cm)
dep_provider = dependency_resolution.providers.CollectionDependencyProvider(apis=multi_api_proxy, concrete_artifacts_manager=concrete_artifact_cm)
matches = RequirementCandidates()
mock_find_matches = MagicMock(side_effect=matches.func_wrapper(dep_provider.find_matches), autospec=True)
monkeypatch.setattr(dependency_resolution.providers.CollectionDependencyProvider, 'find_matches', mock_find_match | 51 | 535 | test_build_requirement_from_name_multiple_version_results |
|
19 | 0 | 2 | 10 | setup.py | 9,809 | Implement numpy hack in setup.py to enable install under Poetry (#3363)
* Closes #3362: Install issue poetry
* get rid of redundant exception handling
this code can never raise an exception, so we shouldn't be expecting
them
Co-authored-by: Michael Penkov <m@penkov.dev> | gensim | 14 | Python | 16 | setup.py | def finalize_options(self):
build_ext.finalize_options(self)
import builtins
builtins.__NUMPY_SETUP__ = False
import numpy
self.include_dirs.append(numpy.get_include())
if need_cython():
import Cython.Build
Cython.Build.cythonize(list(make_c_ext(use_cython=True)), language_level=3)
Cython.Build.cythonize(list(make_cpp_ext(use_cython=True)), language_level=3)
| 3331b824d2e3f7a65f5df7903382a0c0a30dcc61 | 81 | https://github.com/RaRe-Technologies/gensim.git | 93 | def finalize_options(self):
build_ext.finalize_options(self)
import builtins
builtins.__NUMPY_SETUP__ = False
import numpy
self.include_dirs.append(numpy.get_include())
if need_cython():
import Cython.Build
Cython.Build.cythonize(list(make_c_ext(use_cython=True)), language_level=3)
Cython | 18 | 132 | finalize_options |
|
17 | 0 | 1 | 5 | tests/providers/google/cloud/hooks/test_translate.py | 44,943 | Extract ClientInfo to module level (#21554) | airflow | 9 | Python | 13 | test_translate.py | def test_translate_client_creation(self, mock_client, mock_get_creds):
result = self.hook.get_conn()
mock_client.assert_called_once_with(credentials=mock_get_creds.return_value, client_info=CLIENT_INFO)
assert mock_client.return_value == result
assert self.hook._client == result
| 1b568d73e1dfb838a3a0446e3a6063b9f27f04b8 | 46 | https://github.com/apache/airflow.git | 44 | def test_translate_client_creation(self, mock_client, mock_get_creds):
result = self.hook.get_conn()
mock_client.assert_called_once_with(credentials=mock_get_creds.r | 13 | 70 | test_translate_client_creation |
|
18 | 0 | 2 | 9 | erpnext/hr/doctype/training_event/test_training_event.py | 66,208 | style: format code with black | erpnext | 14 | Python | 16 | test_training_event.py | def create_training_program(training_program):
if not frappe.db.get_value("Training Program", training_program):
frappe.get_doc(
{
"doctype": "Training Program",
"training_program": training_program,
"description": training_program,
}
).insert()
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 41 | https://github.com/frappe/erpnext.git | 9 | def create_training_program(training_program):
if not frappe.db.get_value("Training Program", training_program):
frappe.get_doc(
{
"doctype": "Training Program",
"training_program": training_program,
| 7 | 73 | create_training_program |
|
72 | 1 | 6 | 13 | pandas/tests/series/indexing/test_setitem.py | 163,209 | TST/REF: port coercion tests to SetitemCastingEquivalents (#45209) | pandas | 13 | Python | 59 | test_setitem.py | def assert_warns(self, request):
# check that we issue a FutureWarning about timezone-matching
if request.function.__name__ == "test_slice_key":
key = request.getfixturevalue("key")
if not isinstance(key, slice):
# The test is a no-op, so no warning will be issued
yield
return
exp_dtype = request.getfixturevalue("exp_dtype")
val = request.getfixturevalue("val")
if exp_dtype == object and isinstance(val, Timestamp) and val.tz is not None:
with tm.assert_produces_warning(FutureWarning, match="mismatched timezone"):
yield
else:
yield
@pytest.mark.parametrize(
"val,exp_dtype",
[(Timedelta("12 day"), "timedelta64[ns]"), (1, object), ("x", object)],
) | 3111ff0317171f03c8ed2e3f7a153872c85d798f | @pytest.mark.parametrize(
"val,exp_dtype",
[(Timedelta("12 day"), "timedelta64[ns]"), (1, object), ("x", object)],
) | 86 | https://github.com/pandas-dev/pandas.git | 217 | def assert_warns(self, request):
# check that we issue a FutureWarning about timezone-matching
if request.function.__name__ == "test_slice_key":
key = request.getfixturevalue("key")
if not isinstance(key, slice):
# The test is a no-op, so no warning will be issued
yield
return
exp_dtype = request.getfixturevalue("exp_dtype")
val = request.getfixturevalue("val")
if exp_dtype == object and isinstance(val, Timestamp) and val.tz is not None:
wit | 22 | 206 | assert_warns |
27 | 0 | 1 | 14 | tests/components/telegram_bot/test_broadcast.py | 295,776 | Fix telegram broadcast (#69452) | core | 13 | Python | 24 | test_broadcast.py | async def test_setup(hass):
assert await async_setup_component(
hass,
"telegram_bot",
{
"telegram_bot": {
"platform": "broadcast",
"api_key": "1234567890:ABC",
"allowed_chat_ids": [1],
}
},
)
await hass.async_block_till_done()
assert hass.services.has_service("telegram_bot", "send_message") is True
| c765e11f55282530275396f8bdc837cb96259920 | 55 | https://github.com/home-assistant/core.git | 137 | async def test_setup(hass):
assert await async_setup_componen | 6 | 103 | test_setup |
|
250 | 1 | 1 | 5 | jax/_src/numpy/ufuncs.py | 121,242 | DOC: ensure that _wraps() generates correct links to wrapped functions | jax | 15 | Python | 169 | ufuncs.py | def _logical_op(np_op, bitwise_op):
@_wraps(np_op, update_doc=False, module='numpy')
@partial(jit, inline=True)
def op(*args):
zero = lambda x: lax.full_like(x, shape=(), fill_value=0)
args = (x if dtypes.issubdtype(dtypes.dtype(x), np.bool_) else lax.ne(x, zero(x))
for x in args)
return bitwise_op(*_promote_args(np_op.__name__, *args))
return op
fabs = _one_to_one_unop(np.fabs, lax.abs, True)
bitwise_not = _one_to_one_unop(np.bitwise_not, lax.bitwise_not)
invert = _one_to_one_unop(np.invert, lax.bitwise_not)
negative = _one_to_one_unop(np.negative, lax.neg)
positive = _one_to_one_unop(np.positive, lambda x: x)
floor = _one_to_one_unop(np.floor, lax.floor, True)
ceil = _one_to_one_unop(np.ceil, lax.ceil, True)
exp = _one_to_one_unop(np.exp, lax.exp, True)
log = _one_to_one_unop(np.log, lax.log, True)
expm1 = _one_to_one_unop(np.expm1, lax.expm1, True)
log1p = _one_to_one_unop(np.log1p, lax.log1p, True)
sin = _one_to_one_unop(np.sin, lax.sin, True)
cos = _one_to_one_unop(np.cos, lax.cos, True)
tan = _one_to_one_unop(np.tan, lax.tan, True)
arcsin = _one_to_one_unop(np.arcsin, lax.asin, True)
arccos = _one_to_one_unop(np.arccos, lax.acos, True)
arctan = _one_to_one_unop(np.arctan, lax.atan, True)
sinh = _one_to_one_unop(np.sinh, lax.sinh, True)
cosh = _one_to_one_unop(np.cosh, lax.cosh, True)
arcsinh = _one_to_one_unop(np.arcsinh, lax.asinh, True)
tanh = _one_to_one_unop(np.tanh, lax.tanh, True)
arctanh = _one_to_one_unop(np.arctanh, lax.atanh, True)
sqrt = _one_to_one_unop(np.sqrt, lax.sqrt, True)
cbrt = _one_to_one_unop(np.cbrt, lax.cbrt, True)
add = _maybe_bool_binop(np.add, lax.add, lax.bitwise_or)
bitwise_and = _one_to_one_binop(np.bitwise_and, lax.bitwise_and)
bitwise_or = _one_to_one_binop(np.bitwise_or, lax.bitwise_or)
bitwise_xor = _one_to_one_binop(np.bitwise_xor, lax.bitwise_xor)
left_shift = _one_to_one_binop(np.left_shift, lax.shift_left)
equal = _one_to_one_binop(np.equal, lax.eq)
multiply = _maybe_bool_binop(np.multiply, lax.mul, lax.bitwise_and)
not_equal = _one_to_one_binop(np.not_equal, lax.ne)
subtract = _one_to_one_binop(np.subtract, lax.sub)
arctan2 = _one_to_one_binop(np.arctan2, lax.atan2, True)
minimum = _one_to_one_binop(np.minimum, lax.min)
maximum = _one_to_one_binop(np.maximum, lax.max)
float_power = _one_to_one_binop(np.float_power, lax.pow, True)
nextafter = _one_to_one_binop(np.nextafter, lax.nextafter, True, True)
greater_equal = _comparison_op(np.greater_equal, lax.ge)
greater = _comparison_op(np.greater, lax.gt)
less_equal = _comparison_op(np.less_equal, lax.le)
less = _comparison_op(np.less, lax.lt)
logical_and = _logical_op(np.logical_and, lax.bitwise_and)
logical_not = _logical_op(np.logical_not, lax.bitwise_not)
logical_or = _logical_op(np.logical_or, lax.bitwise_or)
logical_xor = _logical_op(np.logical_xor, lax.bitwise_xor)
@_wraps(np.arccosh, module='numpy')
@jit | 9769a0accf77c4e62ff3ace0f71b5c0697b35b54 | @_wraps(np.arccosh, module='numpy')
@jit | 33 | https://github.com/google/jax.git | 225 | def _logical_op(np_op, bitwise_op):
@_wraps(np_op, update_doc=False, module='numpy')
@partial(jit, inline=True)
def op(*args):
zero = lambda x: lax.full_like(x, shape=(), fill_value=0)
args = (x if dtypes.issubdtype(dtypes.dtype(x), np.bool_) else lax.ne(x, zero(x))
for x in args)
return bitwise_op(*_promote_args(np_op.__name__ | 95 | 1,075 | _logical_op |
19 | 0 | 1 | 11 | saleor/plugins/webhook/tests/subscription_webhooks/payloads.py | 27,437 | Meta fields added to subscription webhooks event types. (#9759)
* Meta fields added to subscription webhooks event types.
* Imports adjustments.
* Change Event type from Union to Interface.
* Rebase fixes.
* Review fixes
* Handle AnonymousUser as requestor. | saleor | 12 | Python | 17 | payloads.py | def generate_app_payload(app, app_global_id):
return json.dumps(
{
"app": {
"id": app_global_id,
"isActive": app.is_active,
"name": app.name,
"appUrl": app.app_url,
}
}
)
| f2ce999fa5865917b8d104d38ef3269eebaf6c06 | 41 | https://github.com/saleor/saleor.git | 120 | def generate_app_payload(app, app_global_id):
return json.dumps(
{
"app": {
"id": app_global_id,
| 8 | 69 | generate_app_payload |
|
116 | 1 | 1 | 21 | dashboard/modules/job/tests/test_job_agent.py | 127,687 | [Job Submission][refactor 4/N] Complete the remaining interfaces on JobAgent (#28533)
Signed-off-by: Catch-Bull <burglarralgrub@gmail.com>
just need to implement stop_job, and I remove get_job_info because we can access JobInfoStorage without call `ray.init`. | ray | 13 | Python | 89 | test_job_agent.py | async def test_submit_job(job_sdk_client, runtime_env_option, monkeypatch):
# This flag allows for local testing of runtime env conda functionality
# without needing a built Ray wheel. Rather than insert the link to the
# wheel into the conda spec, it links to the current Python site.
monkeypatch.setenv("RAY_RUNTIME_ENV_LOCAL_DEV_MODE", "1")
agent_client, head_client = job_sdk_client
runtime_env = runtime_env_option["runtime_env"]
runtime_env = upload_working_dir_if_needed(runtime_env, logger=logger)
runtime_env = upload_py_modules_if_needed(runtime_env, logger=logger)
runtime_env = RuntimeEnv(**runtime_env_option["runtime_env"]).to_dict()
request = validate_request_type(
{"runtime_env": runtime_env, "entrypoint": runtime_env_option["entrypoint"]},
JobSubmitRequest,
)
submit_result = await agent_client.submit_job_internal(request)
job_id = submit_result.submission_id
wait_for_condition(
partial(
_check_job, client=head_client, job_id=job_id, status=JobStatus.SUCCEEDED
),
timeout=120,
)
# There is only one node, so there is no need to replace the client of the JobAgent
resp = await agent_client.get_job_logs_internal(job_id)
assert runtime_env_option["expected_logs"] in resp.logs
@pytest.mark.asyncio | 8840be1942a69b2595a05c5c5556b0daec7abbcd | @pytest.mark.asyncio | 140 | https://github.com/ray-project/ray.git | 215 | async def test_submit_job(job_sdk_client, runtime_env_option, monkeypatch):
# This flag allows for local testing of runtime env conda functionality
# without needing a built Ray wheel. Rather than insert the link to the
# wheel into the conda spec, it links to the current Python site.
monkeypatch.setenv("RAY_RUNTIME_ENV_LOCAL_DEV_MODE", "1")
agent_client, head_client = job_sdk_client
runtime_env = runtime_env_option["runtime_env"]
runtime_env = upload_working_dir_if_needed(runtime_env, logger=logger)
runtime_env = upload_py_modules_if_needed(runtime_env, logger=logger)
runtime_env = RuntimeEnv(**runtime_env_option["runtime_env"]).to_dict()
request = validate_request_type(
{"runtime_env": runtime_env, "entrypoint": runtime_env_option["entrypoint"]},
JobSubmitRequest,
)
submit_result = await agent_client.submit_job_internal(request)
job_id = submit_result.submission_id
wait_for_condition(
partial(
_check_job, client=head_client, job_id=job_id, status=JobStatus.SUCCEEDED
),
timeout=120,
)
# There is only one node, so there is no need to replace the client of the | 34 | 241 | test_submit_job |
21 | 0 | 1 | 3 | networkx/algorithms/traversal/tests/test_dfs.py | 176,671 | MAINT: Update dfs_test with more comprehensive tests (#5654) | networkx | 9 | Python | 14 | test_dfs.py | def test_predecessor(self):
assert nx.dfs_predecessors(self.G, source=0) == {1: 0, 2: 1, 3: 1, 4: 2}
assert nx.dfs_predecessors(self.D) == {1: 0, 3: 2}
| 84aa3823e2904fd63178608373ffbed3096ae0d9 | 55 | https://github.com/networkx/networkx.git | 34 | def test_predecessor(self):
assert nx.dfs_predecessors(self.G, source=0) == {1: 0, 2: 1, 3: 1, 4: 2}
assert nx.dfs_predecessors(self | 7 | 80 | test_predecessor |
|
9 | 0 | 2 | 3 | sympy/combinatorics/graycode.py | 196,091 | Updated import locations | sympy | 13 | Python | 9 | graycode.py | def graycode_subsets(gray_code_set):
for bitstring in list(GrayCode(len(gray_code_set)).generate_gray()):
yield get_subset_from_bitstring(gray_code_set, bitstring)
| 498015021131af4dbb07eb110e5badaba8250c7b | 31 | https://github.com/sympy/sympy.git | 22 | def graycode_subsets(gray_code_set):
for bitstring in list(GrayCode(len(gray_code_set)).generate_gray()):
yield get_subset_from_bitstring(gray_code_set, bitstring)
| 8 | 56 | graycode_subsets |
|
34 | 0 | 1 | 7 | pandas/tests/plotting/test_series.py | 165,017 | TST: Clean tests/plotting (#45992) | pandas | 11 | Python | 17 | test_series.py | def test_plot_6951(self, ts):
# GH 6951
ax = _check_plot_works(ts.plot, subplots=True)
self._check_axes_shape(ax, axes_num=1, layout=(1, 1))
ax = _check_plot_works(ts.plot, subplots=True, layout=(-1, 1))
self._check_axes_shape(ax, axes_num=1, layout=(1, 1))
ax = _check_plot_works(ts.plot, subplots=True, layout=(1, -1))
self._check_axes_shape(ax, axes_num=1, layout=(1, 1))
| 03fef5f0e35200aa5828975b62782bcf11faa0d2 | 115 | https://github.com/pandas-dev/pandas.git | 82 | def test_plot_6951(self, ts):
# GH 6951
ax = _check_plot_works(ts.plot, subplots=True)
self._check_axes_shape(ax, axes_num=1, layout=(1, 1))
| 10 | 165 | test_plot_6951 |
|
8 | 1 | 1 | 19 | wagtail/admin/ui/sidebar.py | 76,493 | Sidebar style updates (#8118)
Co-authored-by: Thibaud Colas <thibaudcolas@gmail.com> | wagtail | 9 | Python | 8 | sidebar.py | def js_args(self):
return [
reverse("wagtailadmin_home"),
]
@adapter("wagtail.sidebar.SearchModule", base=BaseSidebarAdapter) | 229fbf476aded9d5d5a6b32e1ad03025e8cbf392 | @adapter("wagtail.sidebar.SearchModule", base=BaseSidebarAdapter) | 51 | https://github.com/wagtail/wagtail.git | 31 | def js_args(self):
return [
reverse("wagtailadmin_home"),
]
@adapter("wagtail.sidebar.SearchModule", base=B | 6 | 39 | js_args |
28 | 0 | 2 | 6 | lib/ansible/cli/doc.py | 267,208 | ansible-config added json/yaml output to list/dump (#77447)
fixes #733644 | ansible | 13 | Python | 27 | doc.py | def jdump(text):
try:
display.display(json_dump(text))
except TypeError as e:
display.vvv(traceback.format_exc())
raise AnsibleError('We could not convert all the documentation into JSON as there was a conversion issue: %s' % to_native(e))
| a12e0a0e874c6c0d18a1a2d83dcb106d207136af | 41 | https://github.com/ansible/ansible.git | 54 | def jdump(text):
try:
display.display(json_dump(text))
except TypeError as e:
displa | 11 | 72 | jdump |
|
79 | 0 | 1 | 31 | test/mitmproxy/test_addonmanager.py | 252,909 | switch to stdlib logging
mitmproxy previously used a homegrown logging mechanism based around
`mitmproxy.ctx.log` and the `add_log` hook. This worked well for everything
we control, but does not work outside the mitmproxy universe.
For now we have simply ignored logging in e.g. tornado or h2, but with the
upcoming introduction of mitmproxy_wireguard we now have a dependency
on some Rust/PyO3 code for which we definitely want logs, but which also
cannot easily be changed to use our homegrown logging (PyO3 does the heavy
lifting to add interoperability with stdlib logging). Long story short,
we want to introduce a log handler for stdlib logging.
Now there are two ways how such a handler could operate:
1. We could build a handler that forwards all stdlib log events
into our homegrown mechanism.
2. We embrace stdlib's logging as the correct way to do things,
and get rid of our homegrown stuff.
This PR follows the second approach by removing the `add_log` hook and
rewriting the `TermLog` and `EventStore` addons to listen for stdlib log records.
This means that all `mitmproxy.ctx.log.info` events are now simply `logging.info` etc.
One upside of this approach is that many parts of the codebase now don't depend
on the existence of `mitmproxy.ctx` and we can use off-the-shelf things like pytest's
`caplog`. We can also now better colorize log output and/or add timestamps. | mitmproxy | 12 | Python | 39 | test_addonmanager.py | async def test_simple(caplog):
with taddons.context(loadcore=False) as tctx:
a = tctx.master.addons
assert len(a) == 0
a.add(TAddon("one"))
assert a.get("one")
assert not a.get("two")
assert len(a) == 1
a.clear()
assert len(a) == 0
assert not a.chain
with taddons.context(loadcore=False) as tctx:
a.add(TAddon("one"))
a.trigger("nonexistent")
assert "AssertionError" in caplog.text
f = tflow.tflow()
a.trigger(hooks.RunningHook())
a.trigger(HttpResponseHook(f))
assert "not callable" in caplog.text
caplog.clear()
caplog.clear()
a.get("one").response = addons
a.trigger(HttpResponseHook(f))
assert "not callable" not in caplog.text
a.remove(a.get("one"))
assert not a.get("one")
ta = TAddon("one")
a.add(ta)
a.trigger(hooks.RunningHook())
assert ta.running_called
assert ta in a
| c69239bb90c55993326c324908ac78cc2a174e44 | 229 | https://github.com/mitmproxy/mitmproxy.git | 280 | async def test_simple(caplog):
with taddons.context(loadcore=False) as tctx:
a = tctx.master.addons
assert len(a) == 0
a.add(TAddon("one"))
assert a.get("one")
assert not a.get("two")
assert len(a) == 1
a.clear()
assert len(a) == 0
assert not a.chain
with taddons.context(loadcore=False) as tctx:
a.add(TAddon("one"))
a.trigger("nonexistent")
assert "AssertionError" in caplog.text
f = tflow.tflow()
| 26 | 404 | test_simple |
|
41 | 0 | 1 | 5 | test/test_prototype_transforms_functional.py | 193,603 | cleanup prototype transforms functional tests (#6622)
* cleanup prototype transforms functional tests
* fix
* oust local functions | vision | 9 | Python | 37 | test_prototype_transforms_functional.py | def test_scripted_smoke(self, info, args_kwargs, device):
dispatcher = script(info.dispatcher)
(image_feature, *other_args), kwargs = args_kwargs.load(device)
image_simple_tensor = torch.Tensor(image_feature)
dispatcher(image_simple_tensor, *other_args, **kwargs)
# TODO: We need this until the dispatchers below also have `DispatcherInfo`'s. If they do, `test_scripted_smoke`
# replaces this test for them. | 658ca539369c80d8d609bf0e716dc9109186fbf4 | 52 | https://github.com/pytorch/vision.git | 75 | def test_scripted_smoke(self, info, args_kwargs, device):
dispatcher = script(info.dispatcher)
(image_feature, *other_args), kwargs = args_kwargs.load(device)
image_simple_tensor = torch.Tensor(image_feature)
dispatcher(image_simple_tensor, *other_args, **kwargs)
# TODO: We need this until the dispatchers below also have `DispatcherInfo`'s. If they do, `test_scripted_smoke`
# replaces this te | 14 | 81 | test_scripted_smoke |
|
11 | 0 | 1 | 2 | awx/main/dispatch/control.py | 81,675 | Refactor canceling to work through messaging and signals, not database
If canceled attempted before, still allow attempting another cancel
in this case, attempt to send the sigterm signal again.
Keep clicking, you might help!
Replace other cancel_callbacks with sigterm watcher
adapt special inventory mechanism for this too
Get rid of the cancel_watcher method with exception in main thread
Handle academic case of sigterm race condition
Process cancelation as control signal
Fully connect cancel method and run_dispatcher to control
Never transition workflows directly to canceled, add logs | awx | 11 | Python | 10 | control.py | def cancel(self, task_ids, *args, **kwargs):
return self.control_with_reply('cancel', *args, extra_data={'task_ids': task_ids}, **kwargs)
| c59bbdecdbdd920c5d3d298d691129c6bbc94c5e | 34 | https://github.com/ansible/awx.git | 17 | def cancel(self, task_ids, *args, **kwargs):
return self.control_with_reply('cancel', *args, extra_data={'task_ids': task_ids}, **kwargs)
| 7 | 53 | cancel |
|
12 | 0 | 2 | 5 | django/forms/widgets.py | 206,034 | Refs #33476 -- Reformatted code with Black. | django | 10 | Python | 12 | widgets.py | def render_js(self):
return [
format_html('<script src="{}"></script>', self.absolute_path(path))
for path in self._js
]
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 25 | https://github.com/django/django.git | 47 | def render_js(self):
return [
format_html('<script src="{}"></script>', self.absolute_path(path))
for path in self._js
]
| 6 | 40 | render_js |
|
54 | 0 | 4 | 14 | erpnext/accounts/doctype/pos_invoice/pos_invoice.py | 69,301 | fix: POS properly validate stock for bundle products
Stock availability was not calculated properly for Product Bundle with non stock item so i have added logic to properly calculate that as well. | erpnext | 11 | Python | 35 | pos_invoice.py | def get_bundle_availability(bundle_item_code, warehouse):
product_bundle = frappe.get_doc("Product Bundle", bundle_item_code)
bundle_bin_qty = 1000000
for item in product_bundle.items:
item_bin_qty = get_bin_qty(item.item_code, warehouse)
item_pos_reserved_qty = get_pos_reserved_qty(item.item_code, warehouse)
available_qty = item_bin_qty - item_pos_reserved_qty
max_available_bundles = available_qty / item.qty
if bundle_bin_qty > max_available_bundles and frappe.get_value(
"Item", item.item_code, "is_stock_item"
):
bundle_bin_qty = max_available_bundles
pos_sales_qty = get_pos_reserved_qty(bundle_item_code, warehouse)
return bundle_bin_qty - pos_sales_qty
| e392ea1104fee5add5c893c4e092edb6ad21f486 | 92 | https://github.com/frappe/erpnext.git | 40 | def get_bundle_availability(bundle_item_code, warehouse):
product_bundle = frappe.get_doc("Product Bundle", bundle_item_code)
bundle_bin_qty = 1000000
for item in product_bundle.items:
item_bin_qty = get_bin_qty(item.item_code, warehouse)
item_pos_reserved_qty = get_pos_reserved_qty( | 19 | 145 | get_bundle_availability |
|
18 | 0 | 2 | 6 | src/sentry/runner/commands/sendmail.py | 92,867 | feat(runner): Add sendmail command to send emails from sentry command (#36732) | sentry | 13 | Python | 18 | sendmail.py | def sendmail(files, fail_silently):
from sentry.runner import configure
configure()
for file in files:
with open(file) as f:
send_prepared_email(f.read(), fail_silently=fail_silently)
| b72ff60d06f2cd1dae8390bebf71d191ae341faf | 42 | https://github.com/getsentry/sentry.git | 48 | def sendmail(files, fail_silently):
fr | 11 | 72 | sendmail |
|
20 | 1 | 1 | 3 | modin/pandas/test/test_series.py | 154,811 | TEST-#5040: Rework test_series using eval_general() (#5041)
Signed-off-by: Vasily Litvinov <fam1ly.n4me@yandex.ru> | modin | 11 | Python | 20 | test_series.py | def test_str_get(data, i):
modin_series, pandas_series = create_test_series(data)
eval_general(modin_series, pandas_series, lambda series: series.str.get(i))
@pytest.mark.parametrize(
"data", test_string_list_data_values, ids=test_string_list_data_keys
)
@pytest.mark.parametrize("sep", string_sep_values, ids=string_sep_keys) | d86dda5094eba47840f42a21cf4b2c953e698960 | @pytest.mark.parametrize(
"data", test_string_list_data_values, ids=test_string_list_data_keys
)
@pytest.mark.parametrize("sep", string_sep_values, ids=string_sep_keys) | 33 | https://github.com/modin-project/modin.git | 25 | def test_str_get(data, i):
modin_series, pandas_series = create_test_series(data)
eval_general(modin_series, pandas_series, lambda series: series.str.get(i))
@pytest.mark.parametrize(
"data", test_string_list_data_values, ids=test_string_list_data_keys
)
@pytest.mark.parametrize("sep", string_sep_values, ids=string_sep_keys) | 18 | 98 | test_str_get |
216 | 0 | 7 | 40 | mindsdb/api/mysql/mysql_proxy/datahub/information_schema.py | 114,202 | return columns list for files | mindsdb | 14 | Python | 85 | information_schema.py | def _get_columns(self):
columns = self.information_schema['COLUMNS']
# NOTE there is a lot of types in mysql, but listed below should be enough for our purposes
row_templates = {
'text': ['def', 'SCHEMA_NAME', 'TABLE_NAME', 'COLUMN_NAME', 'COL_INDEX', None, 'YES', 'varchar', 1024, 3072, None, None, None, 'utf8', 'utf8_bin', 'varchar(1024)', None, None, 'select', None, None],
'timestamp': ['def', 'SCHEMA_NAME', 'TABLE_NAME', 'COLUMN_NAME', 'COL_INDEX', 'CURRENT_TIMESTAMP', 'YES', 'timestamp', None, None, None, None, 0, None, None, 'timestamp', None, None, 'select', None, None],
'bigint': ['def', 'SCHEMA_NAME', 'TABLE_NAME', 'COLUMN_NAME', 'COL_INDEX', None, 'YES', 'bigint', None, None, 20, 0, None, None, None, 'bigint unsigned', None, None, 'select', None, None],
'float': ['def', 'SCHEMA_NAME', 'TABLE_NAME', 'COLUMN_NAME', 'COL_INDEX', None, 'YES', 'float', None, None, 12, 0, None, None, None, 'float', None, None, 'select', None, None]
}
result = []
for table_name in self.information_schema:
table_columns = self.information_schema[table_name]
for i, column_name in enumerate(table_columns):
result_row = row_templates['text'].copy()
result_row[1] = 'information_schema'
result_row[2] = table_name
result_row[3] = column_name
result_row[4] = i
result.append(result_row)
mindsb_dn = self.get('MINDSDB')
for table_name in mindsb_dn.get_tables():
table_columns = mindsb_dn.get_table_columns(table_name)
for i, column_name in enumerate(table_columns):
result_row = row_templates['text'].copy()
result_row[1] = 'mindsdb'
result_row[2] = table_name
result_row[3] = column_name
result_row[4] = i
result.append(result_row)
mindsb_dn = self.get('FILES')
for table_name in mindsb_dn.get_tables():
table_columns = mindsb_dn.get_table_columns(table_name)
for i, column_name in enumerate(table_columns):
result_row = row_templates['text'].copy()
result_row[1] = 'files'
result_row[2] = table_name
result_row[3] = column_name
result_row[4] = i
result.append(result_row)
df = pd.DataFrame(result, columns=columns)
return df
| 284fb890eca785bec894e69c6d5b122e83ef93d0 | 433 | https://github.com/mindsdb/mindsdb.git | 679 | def _get_columns(self):
columns = self.information_schema['COLUMNS']
# NOTE there is a lot of types in mysql, but listed below should be enough for our purposes
row_templates = {
'text': ['def', 'SCHEMA_NAME', 'TABLE_NAME', 'COLUMN_NAME', 'COL_INDEX', None, 'YES', 'varchar', 1024, 3072, None, None, None, 'utf8', 'utf8_bin', 'varchar(1024)', None, None, 'select', None, None],
'timestamp': ['def', 'SCHEMA_NAME', 'TABLE_NAME', 'COLUMN_NAME', 'COL_INDEX', 'CURRENT_TIMESTAMP', 'YES', 'timestamp', None, None, None, None, 0, None, None, 'timestamp', None, None, 'select', None, None],
'bigint': ['def', 'SCHEMA_NAME', 'TABLE_NAME', 'COLUMN_NAME', 'COL_INDEX', None, 'YES', 'bigint', None, None, 20, 0, None, None, None, 'bigint unsigned', None, None, 'select', None, None],
'float': ['def', 'SCHEMA_NAME', 'TABLE_NAME', 'COLUMN_NAME', 'COL_INDEX', None, 'YES', 'float', None, None, 12, 0, None, None, None, 'float', None, None, 'select', None, None]
}
result = []
for table_name in self.information_schema:
table_columns = self.information_schema[table_name]
for i, column_name in enumerate(table_columns):
result_row = row_templates['text'].copy()
result_row[1] = 'information_schema'
result_row[2] = table_name
result_row[3] = column_name
result_row[4] = i
result.append(result_row)
mindsb_dn = self.get('MINDSDB')
for table_name in mindsb_dn.get_tables():
table_columns = mindsb_dn.get_table_columns(table_name)
for i, column_name in enumerate(table_columns):
result_row = row_templates['text'].copy()
resu | 21 | 685 | _get_columns |
|
9 | 0 | 2 | 7 | wagtail/core/migrations/0027_fix_collection_path_collation.py | 73,767 | Reformat with black | wagtail | 10 | Python | 9 | 0027_fix_collection_path_collation.py | def set_collection_path_collation(apps, schema_editor):
if schema_editor.connection.vendor == "postgresql":
schema_editor.execute(
)
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 23 | https://github.com/wagtail/wagtail.git | 41 | def set_collection_path_collation(apps, schema_editor):
if schema_editor.connection.vendor == "postgresql":
schema_editor.execute(
)
| 6 | 43 | set_collection_path_collation |
|
102 | 1 | 1 | 22 | sklearn/manifold/tests/test_isomap.py | 261,683 | TST use global_dtype in sklearn/manifold/tests/test_isomap.py (#22673)
Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com>
Co-authored-by: Jérémie du Boisberranger <jeremiedbb@users.noreply.github.com> | scikit-learn | 15 | Python | 70 | test_isomap.py | def test_pipeline_with_nearest_neighbors_transformer(global_dtype):
# Test chaining NearestNeighborsTransformer and Isomap with
# neighbors_algorithm='precomputed'
algorithm = "auto"
n_neighbors = 10
X, _ = datasets.make_blobs(random_state=0)
X2, _ = datasets.make_blobs(random_state=1)
X = X.astype(global_dtype, copy=False)
X2 = X2.astype(global_dtype, copy=False)
# compare the chained version and the compact version
est_chain = pipeline.make_pipeline(
neighbors.KNeighborsTransformer(
n_neighbors=n_neighbors, algorithm=algorithm, mode="distance"
),
manifold.Isomap(n_neighbors=n_neighbors, metric="precomputed"),
)
est_compact = manifold.Isomap(
n_neighbors=n_neighbors, neighbors_algorithm=algorithm
)
Xt_chain = est_chain.fit_transform(X)
Xt_compact = est_compact.fit_transform(X)
assert_allclose(Xt_chain, Xt_compact)
Xt_chain = est_chain.transform(X2)
Xt_compact = est_compact.transform(X2)
assert_allclose(Xt_chain, Xt_compact)
@pytest.mark.parametrize(
"metric, p, is_euclidean",
[
("euclidean", 2, True),
("manhattan", 1, False),
("minkowski", 1, False),
("minkowski", 2, True),
(lambda x1, x2: np.sqrt(np.sum(x1**2 + x2**2)), 2, False),
],
) | 35b826a49c66bc6cb03dc751784483806aba6400 | @pytest.mark.parametrize(
"metric, p, is_euclidean",
[
("euclidean", 2, True),
("manhattan", 1, False),
("minkowski", 1, False),
("minkowski", 2, True),
(lambda x1, x2: np.sqrt(np.sum(x1**2 + x2**2)), 2, False),
],
) | 154 | https://github.com/scikit-learn/scikit-learn.git | 239 | def test_pipeline_with_nearest_neighbors_transformer(global_dtype):
# Test chaining NearestNeighborsTransformer and Isomap with
# neighbors_algorithm='precomputed'
algorithm = "auto"
n_neighbors = 10
X, _ = datasets.make_blobs(random_state=0)
X2, _ = datasets.make_blobs(random_state=1)
X = X.astype(global_dtype, copy=False)
X2 = X2.astype(global_dtype, copy=False)
# compare the chained version and the compact version
est_chain = pipeline.make_pipeline(
| 36 | 353 | test_pipeline_with_nearest_neighbors_transformer |
103 | 0 | 3 | 22 | ppocr/data/imaug/fce_aug.py | 23,174 | add fcenet | PaddleOCR | 15 | Python | 66 | fce_aug.py | def generate_crop_target(self, image, all_polys, pad_h, pad_w):
h, w, _ = image.shape
h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
w_array = np.zeros((w + pad_w * 2), dtype=np.int32)
text_polys = []
for polygon in all_polys:
rect = cv2.minAreaRect(polygon.astype(np.int32).reshape(-1, 2))
box = cv2.boxPoints(rect)
box = np.int0(box)
text_polys.append([box[0], box[1], box[2], box[3]])
polys = np.array(text_polys, dtype=np.int32)
for poly in polys:
poly = np.round(poly, decimals=0).astype(np.int32)
minx = np.min(poly[:, 0])
maxx = np.max(poly[:, 0])
w_array[minx + pad_w:maxx + pad_w] = 1
miny = np.min(poly[:, 1])
maxy = np.max(poly[:, 1])
h_array[miny + pad_h:maxy + pad_h] = 1
h_axis = np.where(h_array == 0)[0]
w_axis = np.where(w_array == 0)[0]
return h_axis, w_axis
| 9f62b610dea6161627200ed85d92e19b1923279a | 281 | https://github.com/PaddlePaddle/PaddleOCR.git | 301 | def generate_crop_target(self, image, all_polys, pad_h, pad_w):
h, w, _ = image.shape
h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
w_array = np.zeros((w + pad_w * 2), dtype=np.int32)
text_polys = []
for polygon in all_polys:
rect = cv2.minAreaRect(polygon.astype(np.int32).reshape(-1, 2))
box = cv2.boxPoints(rect)
box = np.int0(box)
text_polys.append([box[0], box[1], box[2], box[3]])
polys = np.array(text_polys, dtype=np.int32)
for poly in polys:
poly = np.round(poly, decimals=0).astype(np.int32)
minx = np.min(poly[:, 0])
maxx = np.max(poly[:, 0])
w_array[minx + pad_w:maxx + pad_w] = 1
miny = np.min(po | 41 | 424 | generate_crop_target |
|
67 | 0 | 2 | 26 | netbox/dcim/views.py | 264,595 | Fixes #8935: Correct ordering of next/previous racks to use naturalized names | netbox | 14 | Python | 57 | views.py | def get_extra_context(self, request, instance):
# Get 0U devices located within the rack
nonracked_devices = Device.objects.filter(
rack=instance,
position__isnull=True,
parent_bay__isnull=True
).prefetch_related('device_type__manufacturer')
peer_racks = Rack.objects.restrict(request.user, 'view').filter(site=instance.site)
if instance.location:
peer_racks = peer_racks.filter(location=instance.location)
else:
peer_racks = peer_racks.filter(location__isnull=True)
next_rack = peer_racks.filter(_name__gt=instance._name).first()
prev_rack = peer_racks.filter(_name__lt=instance._name).reverse().first()
reservations = RackReservation.objects.restrict(request.user, 'view').filter(rack=instance)
power_feeds = PowerFeed.objects.restrict(request.user, 'view').filter(rack=instance).prefetch_related(
'power_panel'
)
device_count = Device.objects.restrict(request.user, 'view').filter(rack=instance).count()
return {
'device_count': device_count,
'reservations': reservations,
'power_feeds': power_feeds,
'nonracked_devices': nonracked_devices,
'next_rack': next_rack,
'prev_rack': prev_rack,
}
| 197dfca5b2d181369b90e40704ac9188d149a688 | 221 | https://github.com/netbox-community/netbox.git | 296 | def get_extra_context(self, request, instance):
# Get 0U devices located within the rack
nonracked_devices = Device.objects.filter(
rack=instance,
position__isnull=True,
parent_bay__isnull=True
).prefetch_related('device_type__manufacturer')
peer_racks = Rack.objects.restrict(request.user, 'view').filter(site=instance.site)
if instance.location:
peer_racks = peer_racks.filter(location=instance.location)
else:
peer_racks = peer_racks.filter(location__isnull | 32 | 362 | get_extra_context |
|
35 | 1 | 1 | 21 | tests/integration_tests/test_ray.py | 8,608 | int: Refactor `test_ray.py` to limit number of full train jobs (#2637)
* refactors majority of ray tests to compare preprocessing results
* reverted changes to concatenate_datasets; use fixed split config
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* added partial modin fix; fixed reshape guard
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Justin Zhao <justinxzhao@gmail.com> | ludwig | 13 | Python | 29 | test_ray.py | def test_ray_tabular(tmpdir, df_engine, ray_cluster_2cpu):
input_features = [
category_feature(encoder={"vocab_size": 2}, reduce_input="sum"),
number_feature(normalization="zscore"),
set_feature(),
binary_feature(),
bag_feature(),
h3_feature(),
date_feature(),
]
output_features = [
binary_feature(bool2str=["No", "Yes"]),
binary_feature(),
number_feature(normalization="zscore"),
]
run_preprocessing(
tmpdir,
df_engine,
input_features,
output_features,
)
@pytest.mark.parametrize("dataset_type", ["csv", "parquet"])
@pytest.mark.distributed | 0b33b3f6524ecbf3671b2c911efe429feb93988f | @pytest.mark.parametrize("dataset_type", ["csv", "parquet"])
@pytest.mark.distributed | 92 | https://github.com/ludwig-ai/ludwig.git | 148 | def test_ray_tabular(tmpdir, df_engine, ray_cluster_2cpu):
input_features = [
category_feature(encoder={"vocab_size": 2}, reduce_input="sum"),
number_feature(normalization="zscore"),
set_feature(),
binary_feature(),
bag_feature(),
h3_feature(),
date_feature(),
]
output_features = [
binary_ | 22 | 182 | test_ray_tabular |
103 | 0 | 7 | 41 | src/paperless_tika/parsers.py | 319,393 | improve pdf generation | paperless-ngx | 15 | Python | 65 | parsers.py | def extract_metadata(self, document_path, mime_type):
result = []
prefix_pattern = re.compile(r"(.*):(.*)")
try:
parsed = self.get_tika_result(document_path)
except ParseError as e:
self.log(
"warning",
f"Error while fetching document metadata for " f"{document_path}: {e}",
)
return result
for key, value in parsed["metadata"].items():
if isinstance(value, list):
value = ", ".join([str(e) for e in value])
value = str(value)
try:
m = prefix_pattern.match(key)
result.append(
{
"namespace": "",
"prefix": m.group(1),
"key": m.group(2),
"value": value,
},
)
except AttributeError:
result.append(
{
"namespace": "",
"prefix": "",
"key": key,
"value": value,
},
)
except Exception as e:
self.log(
"warning",
f"Error while reading metadata {key}: {value}. Error: " f"{e}",
)
result.sort(key=lambda item: (item["prefix"], item["key"]))
return result
| c8081595c4450780eade4921a81d0b1bd08105cc | 207 | https://github.com/paperless-ngx/paperless-ngx.git | 702 | def extract_metadata(self, document_path, mime_type):
result = []
prefix_pattern = re.compile(r"(.*):(.*)")
try:
parsed = self.get_tika_result(document_path)
except ParseError as e:
self.log(
"warning",
f"Error while fetching document metadata for " f"{document_path}: {e}",
)
return result
for key, value in parsed["metadata"].items():
if isinstance(value, list):
value = ", ".join([str(e) for e in value])
value = str(value)
try:
m = prefix | 28 | 372 | extract_metadata |
|
42 | 0 | 5 | 13 | lib/matplotlib/axis.py | 110,246 | DOC: improve grammar and consistency | matplotlib | 10 | Python | 27 | axis.py | def update_units(self, data):
converter = munits.registry.get_converter(data)
if converter is None:
return False
neednew = self.converter != converter
self.converter = converter
default = self.converter.default_units(data, self)
if default is not None and self.units is None:
self.set_units(default)
elif neednew:
self._update_axisinfo()
self.stale = True
return True
| 9b6abd0b4933811e0a45c2535ab8fd107db65dd9 | 82 | https://github.com/matplotlib/matplotlib.git | 145 | def update_units(self, data):
converter = munits.registry.get_converter(data)
if converter is None:
| 14 | 132 | update_units |
|
13 | 0 | 1 | 11 | wagtail/snippets/views/snippets.py | 79,882 | Fix missing preview_url_name in SnippetViewSet.revisions_revert_view (#9663) | wagtail | 11 | Python | 13 | snippets.py | def revisions_revert_view(self):
return self.revisions_revert_view_class.as_view(
model=self.model,
permission_policy=self.permission_policy,
index_url_name=self.get_url_name("list"),
edit_url_name=self.get_url_name("edit"),
delete_url_name=self.get_url_name("delete"),
history_url_name=self.get_url_name("history"),
preview_url_name=self.get_url_name("preview_on_edit"),
revisions_revert_url_name=self.get_url_name("revisions_revert"),
)
| baddbfad424afa797287151e6b04d9c0459df3ef | 79 | https://github.com/wagtail/wagtail.git | 114 | def revisions_revert_view(self):
return self.revisions_revert_view_class.as_view(
model=self.model,
permission_policy=self.permission_policy,
index_url_name=self.get_url_name("list"),
edit_url_name=self.get_url_name("edit"),
delete_url_name=self.get_url_name("delete"),
history_url_name=self.get_url_name("history"),
preview_url_name=self.get_url_name("preview_on_edit"),
revisions_revert_u | 13 | 128 | revisions_revert_view |