instruction
stringlengths
16
55
input
dict
output
stringlengths
573
7.08k
Analyze loyalty score city
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": [ 62.13, 111.4, 87.11, 154.16, 107.24, 146.92, 101.84, 175.28, 118.98, 196.76, 62.21, 133.22, 51.67, 129.18, 53.01, 85.66, 193.85, 114.23, 160.13, 162.11, 69.25, 96.35, 115.85, 149.45, 107.2, 165.05, 63.38, 184.09, 161.6, 174.27 ], "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": [ 0.022, 0.0869, 0.028800000000000003, 0.0658, 0.0323, 0.0151, 0.0472, 0.0443, 0.025500000000000002, 0.07, 0.0932, 0.0847, 0.0128, 0.0175, 0.0826, 0.0898, 0.0345, 0.051300000000000005, 0.020200000000000003, 0.0613, 0.0733, 0.0979, 0.0845, 0.046, 0.0143, 0.0877, 0.08650000000000001, 0.0257, 0.049100000000000005, 0.014100000000000001 ], "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": [ "2025-03-23", "2025-03-24", "2025-03-25", "2025-03-26", "2025-03-27", "2025-03-28", "2025-03-29", "2025-03-30", "2025-03-31", "2025-04-01", "2025-04-02", "2025-04-03", "2025-04-04", "2025-04-05", "2025-04-06", "2025-04-07", "2025-04-08", "2025-04-09", "2025-04-10", "2025-04-11", "2025-04-12", "2025-04-13", "2025-04-14", "2025-04-15", "2025-04-16", "2025-04-17", "2025-04-18", "2025-04-19", "2025-04-20", "2025-04-21" ], "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": [ 1929.56, 2117.12, 2109.38, 1986.4, 1992.98, 1972.83, 1987.38, 1867.88, 1737.17, 1630.69, 1612.29, 1619.72, 1596.98, 1547.03, 1559.29, 1737.04, 1906.76, 1920.3, 1791.25, 1914.52, 1786.25, 1734.57, 1653.68, 1486.43, 1521.8, 1345.34, 1437.81, 1495.01, 1476.22, 1532 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": [ 211, 108, 129, 213, 283, 288, 150, 103, 112, 74, 251, 54, 290, 121, 71, 80, 126, 302, 109, 244, 220, 155, 142, 251, 83, 97, 221, 169, 167, 198 ] }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Date/Tanggal': ['2025-03-23', '2025-03-24', '2025-03-25', '2025-03-26', '2025-03-27', '2025-03-28', '2025-03-29', '2025-03-30', '2025-03-31', '2025-04-01', '2025-04-02', '2025-04-03', '2025-04-04', '2025-04-05', '2025-04-06', '2025-04-07', '2025-04-08', '2025-04-09', '2025-04-10', '2025-04-11', '2025-04-12', '2025-04-13', '2025-04-14', '2025-04-15', '2025-04-16', '2025-04-17', '2025-04-18', '2025-04-19', '2025-04-20', '2025-04-21'], 'Revenue/Pendapatan': [1929.56, 2117.12, 2109.38, 1986.4, 1992.98, 1972.83, 1987.38, 1867.88, 1737.17, 1630.69, 1612.29, 1619.72, 1596.98, 1547.03, 1559.29, 1737.04, 1906.76, 1920.3, 1791.25, 1914.52, 1786.25, 1734.57, 1653.68, 1486.43, 1521.8, 1345.34, 1437.81, 1495.01, 1476.22, 1532.0], 'Visitors/Pengunjung': [211, 108, 129, 213, 283, 288, 150, 103, 112, 74, 251, 54, 290, 121, 71, 80, 126, 302, 109, 244, 220, 155, 142, 251, 83, 97, 221, 169, 167, 198], 'Conversion Rate/Rasio Konversi': [0.022, 0.0869, 0.0288, 0.0658, 0.0323, 0.0151, 0.0472, 0.0443, 0.0255, 0.07, 0.0932, 0.0847, 0.0128, 0.0175, 0.0826, 0.0898, 0.0345, 0.0513, 0.0202, 0.0613, 0.0733, 0.0979, 0.0845, 0.046, 0.0143, 0.0877, 0.0865, 0.0257, 0.0491, 0.0141], 'Avg. Order Value/Nilai Pesanan Rata2': [62.13, 111.4, 87.11, 154.16, 107.24, 146.92, 101.84, 175.28, 118.98, 196.76, 62.21, 133.22, 51.67, 129.18, 53.01, 85.66, 193.85, 114.23, 160.13, 162.11, 69.25, 96.35, 115.85, 149.45, 107.2, 165.05, 63.38, 184.09, 161.6, 174.27]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Kelompokkan pendapatan wilayah
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": [ 198.79, 196.59, 57.68, 123.24, 134.05, 137.3, 191.65, 179, 141.71, 55.59, 190.14, 142.75, 112.47, 85.63, 144.38, 175.87, 100.44, 126.06, 108.54, 63.68, 130.18, 67.88, 183.94, 191.18, 180.88, 170.04, 176.09, 51.36, 166.22, 156.79 ], "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": [ 0.0455, 0.0344, 0.0475, 0.057600000000000005, 0.0253, 0.0784, 0.025500000000000002, 0.0553, 0.0548, 0.0502, 0.0458, 0.024300000000000002, 0.0879, 0.0789, 0.0723, 0.037700000000000004, 0.0173, 0.058800000000000005, 0.0327, 0.033, 0.0262, 0.0155, 0.051300000000000005, 0.040400000000000005, 0.08660000000000001, 0.0949, 0.0145, 0.061500000000000006, 0.0993, 0.049800000000000004 ], "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": [ "2025-03-23", "2025-03-24", "2025-03-25", "2025-03-26", "2025-03-27", "2025-03-28", "2025-03-29", "2025-03-30", "2025-03-31", "2025-04-01", "2025-04-02", "2025-04-03", "2025-04-04", "2025-04-05", "2025-04-06", "2025-04-07", "2025-04-08", "2025-04-09", "2025-04-10", "2025-04-11", "2025-04-12", "2025-04-13", "2025-04-14", "2025-04-15", "2025-04-16", "2025-04-17", "2025-04-18", "2025-04-19", "2025-04-20", "2025-04-21" ], "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": [ 4861.23, 4947.73, 5082.19, 5032.59, 5131.35, 5023.4, 4956.69, 4921.76, 4809.65, 4737.92, 4684.5, 4636.31, 4754.67, 4764.03, 4837.01, 4864.16, 4899.43, 5073.01, 5064.28, 4960.93, 4908.85, 4863.06, 4707.71, 4729.92, 4602.12, 4604.99, 4561.8, 4605.6, 4698.84, 4778.39 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": [ 153, 259, 62, 250, 193, 259, 114, 122, 141, 149, 168, 64, 255, 282, 233, 77, 239, 253, 137, 70, 62, 105, 188, 46, 79, 289, 244, 214, 173, 180 ] }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Date/Tanggal': ['2025-03-23', '2025-03-24', '2025-03-25', '2025-03-26', '2025-03-27', '2025-03-28', '2025-03-29', '2025-03-30', '2025-03-31', '2025-04-01', '2025-04-02', '2025-04-03', '2025-04-04', '2025-04-05', '2025-04-06', '2025-04-07', '2025-04-08', '2025-04-09', '2025-04-10', '2025-04-11', '2025-04-12', '2025-04-13', '2025-04-14', '2025-04-15', '2025-04-16', '2025-04-17', '2025-04-18', '2025-04-19', '2025-04-20', '2025-04-21'], 'Revenue/Pendapatan': [4861.23, 4947.73, 5082.19, 5032.59, 5131.35, 5023.4, 4956.69, 4921.76, 4809.65, 4737.92, 4684.5, 4636.31, 4754.67, 4764.03, 4837.01, 4864.16, 4899.43, 5073.01, 5064.28, 4960.93, 4908.85, 4863.06, 4707.71, 4729.92, 4602.12, 4604.99, 4561.8, 4605.6, 4698.84, 4778.39], 'Visitors/Pengunjung': [153, 259, 62, 250, 193, 259, 114, 122, 141, 149, 168, 64, 255, 282, 233, 77, 239, 253, 137, 70, 62, 105, 188, 46, 79, 289, 244, 214, 173, 180], 'Conversion Rate/Rasio Konversi': [0.0455, 0.0344, 0.0475, 0.0576, 0.0253, 0.0784, 0.0255, 0.0553, 0.0548, 0.0502, 0.0458, 0.0243, 0.0879, 0.0789, 0.0723, 0.0377, 0.0173, 0.0588, 0.0327, 0.033, 0.0262, 0.0155, 0.0513, 0.0404, 0.0866, 0.0949, 0.0145, 0.0615, 0.0993, 0.0498], 'Avg. Order Value/Nilai Pesanan Rata2': [198.79, 196.59, 57.68, 123.24, 134.05, 137.3, 191.65, 179.0, 141.71, 55.59, 190.14, 142.75, 112.47, 85.63, 144.38, 175.87, 100.44, 126.06, 108.54, 63.68, 130.18, 67.88, 183.94, 191.18, 180.88, 170.04, 176.09, 51.36, 166.22, 156.79]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Analisis diskon periode waktu
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": [ "Paris", "Mexico City", "Berlin", "São Paulo", "Tokyo" ], "Conversion Rate/Rasio Konversi": null, "Country/Negara": [ "France", "Mexico", "Germany", "Brazil", "Japan" ], "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": [ 0.19, 0.19, 0.04, 0.11, 0.15 ], "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": [ -5.2544, 34.6242, 52.8123, 78.8455, 71.0469 ], "Longitude/Bujur": [ 64.3982, 137.1681, -85.9355, 122.9545, 147.7382 ], "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": [ 0.38, 0.15, 0.41000000000000003, 0.4, 0.32 ], "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": [ "Europe", "North America", "Europe", "South America", "Asia" ], "Revenue/Pendapatan": [ 1165, 1522, 1802, 3046, 3632 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'City/Kota': ['Paris', 'Mexico City', 'Berlin', 'São Paulo', 'Tokyo'], 'Country/Negara': ['France', 'Mexico', 'Germany', 'Brazil', 'Japan'], 'Region/Wilayah': ['Europe', 'North America', 'Europe', 'South America', 'Asia'], 'Latitude/Lintang': [-5.2544, 34.6242, 52.8123, 78.8455, 71.0469], 'Longitude/Bujur': [64.3982, 137.1681, -85.9355, 122.9545, 147.7382], 'Revenue/Pendapatan': [1165, 1522, 1802, 3046, 3632], 'Market Share/Pangsa Pasar': [0.38, 0.15, 0.41, 0.4, 0.32], 'Growth Rate/Pertumbuhan': [0.19, 0.19, 0.04, 0.11, 0.15]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Calculate loyalty score time period
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Automotive/Otomotif", "Automotive/Otomotif", "Automotive/Otomotif" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.07, 0.28, 0.2 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 29.16, 46.31, 144.04 ], "Product/Produk": [ "Oil_1", "Tires_2", "Accessories_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 297, 929, 378 ], "Stock/Stok": [ 181, 131, 25 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Oil_1', 'Tires_2', 'Accessories_3'], 'Sales/Penjualan': [297, 929, 378], 'Price/Harga': [29.16, 46.31, 144.04], 'Category/Kategori': ['Automotive/Otomotif', 'Automotive/Otomotif', 'Automotive/Otomotif'], 'Discount/Diskon': [0.07, 0.28, 0.2], 'Stock/Stok': [181, 131, 25]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # profit margin calculation result = df['Discount/Diskon'].(df['Revenue'] - df['Cost'])/df['Revenue'] print(result)
Compare growth rate gender
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Automotive/Otomotif", "Automotive/Otomotif", "Automotive/Otomotif" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.12, 0.29, 0.12 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 107.6, 161.95, 78.78 ], "Product/Produk": [ "Oil_1", "Tools_2", "Tires_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 803, 723, 775 ], "Stock/Stok": [ 28, 147, 127 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Oil_1', 'Tools_2', 'Tires_3'], 'Sales/Penjualan': [803, 723, 775], 'Price/Harga': [107.6, 161.95, 78.78], 'Category/Kategori': ['Automotive/Otomotif', 'Automotive/Otomotif', 'Automotive/Otomotif'], 'Discount/Diskon': [0.12, 0.29, 0.12], 'Stock/Stok': [28, 147, 127]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Analisis pangsa pasar negara
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": [ 113.75, 144.75, 121.19, 74.37, 91.78, 60.88, 64.61, 96.77, 99.36, 143.42, 83.28, 168.7, 113.59, 98.14, 54.31, 199.02, 108.99, 89.33, 126.97, 138.8, 70.74, 191.31, 150.77, 85.52, 155.72, 172.99, 67.02, 198.59, 122.05, 163.97 ], "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": [ 0.0167, 0.0504, 0.0618, 0.0115, 0.0162, 0.029500000000000002, 0.0648, 0.0143, 0.0864, 0.0913, 0.0844, 0.0734, 0.0358, 0.0937, 0.0526, 0.0618, 0.016, 0.0227, 0.058, 0.08750000000000001, 0.07010000000000001, 0.02, 0.0415, 0.08850000000000001, 0.0472, 0.06810000000000001, 0.08, 0.07, 0.0823, 0.0114 ], "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": [ "2025-03-23", "2025-03-24", "2025-03-25", "2025-03-26", "2025-03-27", "2025-03-28", "2025-03-29", "2025-03-30", "2025-03-31", "2025-04-01", "2025-04-02", "2025-04-03", "2025-04-04", "2025-04-05", "2025-04-06", "2025-04-07", "2025-04-08", "2025-04-09", "2025-04-10", "2025-04-11", "2025-04-12", "2025-04-13", "2025-04-14", "2025-04-15", "2025-04-16", "2025-04-17", "2025-04-18", "2025-04-19", "2025-04-20", "2025-04-21" ], "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": [ 3010.64, 3045.43, 3060.29, 3128.93, 3143.19, 3084.98, 2989.56, 2915.09, 2812.27, 2721.09, 2585.29, 2678.03, 2725.86, 2804.14, 2747.48, 2949.53, 2996.84, 3050.78, 3038.66, 3075.41, 2915.4, 2991.14, 2928.31, 2690.9, 2736.94, 2610, 2587.68, 2620.29, 2688.18, 2785.11 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": [ 290, 294, 212, 305, 175, 55, 258, 76, 243, 262, 251, 187, 113, 90, 293, 232, 283, 240, 191, 75, 270, 291, 215, 68, 198, 265, 62, 154, 285, 211 ] }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Date/Tanggal': ['2025-03-23', '2025-03-24', '2025-03-25', '2025-03-26', '2025-03-27', '2025-03-28', '2025-03-29', '2025-03-30', '2025-03-31', '2025-04-01', '2025-04-02', '2025-04-03', '2025-04-04', '2025-04-05', '2025-04-06', '2025-04-07', '2025-04-08', '2025-04-09', '2025-04-10', '2025-04-11', '2025-04-12', '2025-04-13', '2025-04-14', '2025-04-15', '2025-04-16', '2025-04-17', '2025-04-18', '2025-04-19', '2025-04-20', '2025-04-21'], 'Revenue/Pendapatan': [3010.64, 3045.43, 3060.29, 3128.93, 3143.19, 3084.98, 2989.56, 2915.09, 2812.27, 2721.09, 2585.29, 2678.03, 2725.86, 2804.14, 2747.48, 2949.53, 2996.84, 3050.78, 3038.66, 3075.41, 2915.4, 2991.14, 2928.31, 2690.9, 2736.94, 2610.0, 2587.68, 2620.29, 2688.18, 2785.11], 'Visitors/Pengunjung': [290, 294, 212, 305, 175, 55, 258, 76, 243, 262, 251, 187, 113, 90, 293, 232, 283, 240, 191, 75, 270, 291, 215, 68, 198, 265, 62, 154, 285, 211], 'Conversion Rate/Rasio Konversi': [0.0167, 0.0504, 0.0618, 0.0115, 0.0162, 0.0295, 0.0648, 0.0143, 0.0864, 0.0913, 0.0844, 0.0734, 0.0358, 0.0937, 0.0526, 0.0618, 0.016, 0.0227, 0.058, 0.0875, 0.0701, 0.02, 0.0415, 0.0885, 0.0472, 0.0681, 0.08, 0.07, 0.0823, 0.0114], 'Avg. Order Value/Nilai Pesanan Rata2': [113.75, 144.75, 121.19, 74.37, 91.78, 60.88, 64.61, 96.77, 99.36, 143.42, 83.28, 168.7, 113.59, 98.14, 54.31, 199.02, 108.99, 89.33, 126.97, 138.8, 70.74, 191.31, 150.77, 85.52, 155.72, 172.99, 67.02, 198.59, 122.05, 163.97]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Segment discount gender
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": [ "New York", "Paris", "Tokyo", "London", "Sydney" ], "Conversion Rate/Rasio Konversi": null, "Country/Negara": [ "US", "France", "Japan", "UK", "Australia" ], "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": [ -0.02, -0.02, 0.13, -0.05, 0.07 ], "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": [ 6.7207, 69.9411, 23.6835, -35.1688, 13.9049 ], "Longitude/Bujur": [ 134.9165, 10.2526, 17.9766, -55.5542, 49.4581 ], "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": [ 0.26, 0.1, 0.25, 0.32, 0.45 ], "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": [ "North America", "Europe", "Asia", "Europe", "Oceania" ], "Revenue/Pendapatan": [ 4230, 1060, 4837, 1094, 4029 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'City/Kota': ['New York', 'Paris', 'Tokyo', 'London', 'Sydney'], 'Country/Negara': ['US', 'France', 'Japan', 'UK', 'Australia'], 'Region/Wilayah': ['North America', 'Europe', 'Asia', 'Europe', 'Oceania'], 'Latitude/Lintang': [6.7207, 69.9411, 23.6835, -35.1688, 13.9049], 'Longitude/Bujur': [134.9165, 10.2526, 17.9766, -55.5542, 49.4581], 'Revenue/Pendapatan': [4230, 1060, 4837, 1094, 4029], 'Market Share/Pangsa Pasar': [0.26, 0.1, 0.25, 0.32, 0.45], 'Growth Rate/Pertumbuhan': [-0.02, -0.02, 0.13, -0.05, 0.07]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Customer segmentation using KMeans from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler # Select features and scale X = df[['Age/Usia', 'Income/Pendapatan', 'Loyalty Score/Skor Loyalitas']] scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # Cluster into 3 segments kmeans = KMeans(n_clusters=3, random_state=42) df['Segment/Segmen'] = kmeans.fit_predict(X_scaled) # Visualize segments fig = px.scatter_3d(df, x='Age/Usia', y='Income/Pendapatan', z='Loyalty Score/Skor Loyalitas', color='Segment/Segmen', title='Customer Segments') fig.show()
Visualisasikan penjualan jenis kelamin
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": [ "Singapore", "Berlin", "Jakarta", "Dubai", "Tokyo" ], "Conversion Rate/Rasio Konversi": null, "Country/Negara": [ "Singapore", "Germany", "Indonesia", "UAE", "Japan" ], "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": [ -0.07, -0.03, 0.09, 0, -0.05 ], "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": [ -11.3435, 76.4062, 36.7018, 63.4598, 20.6415 ], "Longitude/Bujur": [ 28.9065, -158.1406, -11.0484, -79.435, 34.5191 ], "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": [ 0.49, 0.46, 0.24, 0.27, 0.17 ], "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": [ "Asia", "Europe", "Asia", "Middle East", "Asia" ], "Revenue/Pendapatan": [ 3918, 2918, 4028, 3395, 1926 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'City/Kota': ['Singapore', 'Berlin', 'Jakarta', 'Dubai', 'Tokyo'], 'Country/Negara': ['Singapore', 'Germany', 'Indonesia', 'UAE', 'Japan'], 'Region/Wilayah': ['Asia', 'Europe', 'Asia', 'Middle East', 'Asia'], 'Latitude/Lintang': [-11.3435, 76.4062, 36.7018, 63.4598, 20.6415], 'Longitude/Bujur': [28.9065, -158.1406, -11.0484, -79.435, 34.5191], 'Revenue/Pendapatan': [3918, 2918, 4028, 3395, 1926], 'Market Share/Pangsa Pasar': [0.49, 0.46, 0.24, 0.27, 0.17], 'Growth Rate/Pertumbuhan': [-0.07, -0.03, 0.09, 0.0, -0.05]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Geospatial visualization fig = px.choropleth(df, locations='Country/Negara', locationmode='country names', color='Revenue/Pendapatan', hover_name='City/Kota', scope='world', title='Revenue by Country') fig.update_geos(showcountries=True) fig.show()
Identifikasi skor loyalitas jenis kelamin
{ "Age/Usia": [ 32, 46, 39, 67, 21, 34, 42, 53, 47, 34, 29, 29, 56, 44, 38, 53, 45, 22, 63, 26, 27, 29, 67, 63, 26, 27, 42, 44, 37, 57, 66, 37, 48, 68, 64, 48, 31, 70, 69, 38, 30, 39, 30, 37, 23, 35, 18, 61, 20, 67, 62, 53, 48, 32, 48, 41, 52, 28, 22, 35, 24, 62, 55, 23, 24, 51, 19, 40, 66, 70, 63, 53, 31, 40, 52, 29, 45, 42, 48, 57, 31, 64, 54, 48, 41, 62, 52, 52, 31, 51, 55, 64, 65, 51, 20, 56, 53, 25, 24 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053", "CUST_0054", "CUST_0055", "CUST_0056", "CUST_0057", "CUST_0058", "CUST_0059", "CUST_0060", "CUST_0061", "CUST_0062", "CUST_0063", "CUST_0064", "CUST_0065", "CUST_0066", "CUST_0067", "CUST_0068", "CUST_0069", "CUST_0070", "CUST_0071", "CUST_0072", "CUST_0073", "CUST_0074", "CUST_0075", "CUST_0076", "CUST_0077", "CUST_0078", "CUST_0079", "CUST_0080", "CUST_0081", "CUST_0082", "CUST_0083", "CUST_0084", "CUST_0085", "CUST_0086", "CUST_0087", "CUST_0088", "CUST_0089", "CUST_0090", "CUST_0091", "CUST_0092", "CUST_0093", "CUST_0094", "CUST_0095", "CUST_0096", "CUST_0097", "CUST_0098", "CUST_0099" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Other/Lainnya", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Other/Lainnya", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 4000, 2000, 2000, 7000, 7000, 2000, 3000, 8000, 8000, 4000, 1000, 5000, 7000, 1000, 8000, 10000, 6000, 5000, 9000, 9000, 2000, 9000, 9000, 4000, 10000, 5000, 2000, 3000, 10000, 3000, 3000, 2000, 7000, 9000, 5000, 3000, 6000, 5000, 8000, 5000, 6000, 7000, 5000, 6000, 9000, 8000, 5000, 5000, 6000, 10000, 5000, 7000, 1000, 9000, 7000, 7000, 1000, 8000, 6000, 4000, 4000, 1000, 5000, 1000, 2000, 10000, 2000, 3000, 2000, 8000, 10000, 5000, 8000, 7000, 4000, 3000, 10000, 4000, 6000, 6000, 4000, 1000, 2000, 6000, 10000, 2000, 5000, 6000, 4000, 2000, 4000, 4000, 3000, 7000, 3000, 3000, 2000, 5000, 6000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2024-11-13", "2025-03-27", "2025-02-17", "2025-01-28", "2024-07-31", "2024-09-27", "2024-05-21", "2025-01-23", "2025-01-22", "2024-05-17", "2024-09-03", "2025-04-18", "2025-03-20", "2024-11-25", "2024-09-17", "2024-06-27", "2025-02-23", "2024-10-04", "2024-09-12", "2025-03-12", "2024-12-09", "2024-05-19", "2024-05-31", "2024-11-16", "2024-10-30", "2025-01-11", "2024-07-02", "2024-07-26", "2025-03-19", "2025-02-21", "2024-06-28", "2024-05-25", "2024-07-19", "2025-03-10", "2024-06-08", "2025-02-15", "2024-05-05", "2025-02-04", "2024-11-05", "2024-06-21", "2025-03-29", "2025-02-26", "2025-01-02", "2024-12-26", "2024-10-04", "2025-03-14", "2024-11-24", "2025-03-14", "2024-06-10", "2025-01-10", "2024-12-11", "2024-09-13", "2025-04-07", "2024-07-20", "2025-01-28", "2024-05-14", "2024-10-05", "2025-03-29", "2025-01-02", "2024-10-09", "2024-11-17", "2024-08-26", "2024-10-11", "2025-04-05", "2024-12-28", "2024-10-03", "2024-06-12", "2024-10-15", "2025-01-08", "2024-09-04", "2024-11-01", "2024-10-08", "2025-02-12", "2025-04-16", "2024-11-28", "2024-12-02", "2024-09-03", "2024-12-11", "2024-10-13", "2025-02-14", "2024-12-10", "2024-10-04", "2025-01-06", "2025-03-05", "2024-08-12", "2024-05-10", "2024-09-01", "2024-12-13", "2024-05-14", "2024-11-07", "2024-09-07", "2024-08-01", "2024-11-10", "2025-03-04", "2024-08-11", "2025-01-16", "2024-09-08", "2025-01-11", "2024-11-09" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 20, 89, 8, 39, 24, 37, 42, 19, 83, 3, 77, 85, 28, 4, 70, 31, 89, 63, 22, 6, 91, 21, 53, 89, 11, 40, 85, 6, 45, 27, 5, 50, 91, 15, 71, 67, 29, 65, 23, 32, 17, 80, 75, 33, 88, 39, 57, 30, 8, 9, 11, 96, 7, 18, 83, 95, 52, 81, 82, 5, 45, 99, 50, 65, 3, 72, 40, 96, 94, 5, 76, 51, 47, 43, 29, 96, 57, 65, 28, 7, 93, 89, 53, 34, 22, 87, 25, 62, 24, 50, 17, 40, 59, 8, 12, 54, 21, 91, 31 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053', 'CUST_0054', 'CUST_0055', 'CUST_0056', 'CUST_0057', 'CUST_0058', 'CUST_0059', 'CUST_0060', 'CUST_0061', 'CUST_0062', 'CUST_0063', 'CUST_0064', 'CUST_0065', 'CUST_0066', 'CUST_0067', 'CUST_0068', 'CUST_0069', 'CUST_0070', 'CUST_0071', 'CUST_0072', 'CUST_0073', 'CUST_0074', 'CUST_0075', 'CUST_0076', 'CUST_0077', 'CUST_0078', 'CUST_0079', 'CUST_0080', 'CUST_0081', 'CUST_0082', 'CUST_0083', 'CUST_0084', 'CUST_0085', 'CUST_0086', 'CUST_0087', 'CUST_0088', 'CUST_0089', 'CUST_0090', 'CUST_0091', 'CUST_0092', 'CUST_0093', 'CUST_0094', 'CUST_0095', 'CUST_0096', 'CUST_0097', 'CUST_0098', 'CUST_0099'], 'Age/Usia': [32, 46, 39, 67, 21, 34, 42, 53, 47, 34, 29, 29, 56, 44, 38, 53, 45, 22, 63, 26, 27, 29, 67, 63, 26, 27, 42, 44, 37, 57, 66, 37, 48, 68, 64, 48, 31, 70, 69, 38, 30, 39, 30, 37, 23, 35, 18, 61, 20, 67, 62, 53, 48, 32, 48, 41, 52, 28, 22, 35, 24, 62, 55, 23, 24, 51, 19, 40, 66, 70, 63, 53, 31, 40, 52, 29, 45, 42, 48, 57, 31, 64, 54, 48, 41, 62, 52, 52, 31, 51, 55, 64, 65, 51, 20, 56, 53, 25, 24], 'Gender/Jenis Kelamin': ['Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Other/Lainnya', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Other/Lainnya', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan'], 'Income/Pendapatan': [4000, 2000, 2000, 7000, 7000, 2000, 3000, 8000, 8000, 4000, 1000, 5000, 7000, 1000, 8000, 10000, 6000, 5000, 9000, 9000, 2000, 9000, 9000, 4000, 10000, 5000, 2000, 3000, 10000, 3000, 3000, 2000, 7000, 9000, 5000, 3000, 6000, 5000, 8000, 5000, 6000, 7000, 5000, 6000, 9000, 8000, 5000, 5000, 6000, 10000, 5000, 7000, 1000, 9000, 7000, 7000, 1000, 8000, 6000, 4000, 4000, 1000, 5000, 1000, 2000, 10000, 2000, 3000, 2000, 8000, 10000, 5000, 8000, 7000, 4000, 3000, 10000, 4000, 6000, 6000, 4000, 1000, 2000, 6000, 10000, 2000, 5000, 6000, 4000, 2000, 4000, 4000, 3000, 7000, 3000, 3000, 2000, 5000, 6000], 'Loyalty Score/Skor Loyalitas': [20, 89, 8, 39, 24, 37, 42, 19, 83, 3, 77, 85, 28, 4, 70, 31, 89, 63, 22, 6, 91, 21, 53, 89, 11, 40, 85, 6, 45, 27, 5, 50, 91, 15, 71, 67, 29, 65, 23, 32, 17, 80, 75, 33, 88, 39, 57, 30, 8, 9, 11, 96, 7, 18, 83, 95, 52, 81, 82, 5, 45, 99, 50, 65, 3, 72, 40, 96, 94, 5, 76, 51, 47, 43, 29, 96, 57, 65, 28, 7, 93, 89, 53, 34, 22, 87, 25, 62, 24, 50, 17, 40, 59, 8, 12, 54, 21, 91, 31], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2024-11-13', '2025-03-27', '2025-02-17', '2025-01-28', '2024-07-31', '2024-09-27', '2024-05-21', '2025-01-23', '2025-01-22', '2024-05-17', '2024-09-03', '2025-04-18', '2025-03-20', '2024-11-25', '2024-09-17', '2024-06-27', '2025-02-23', '2024-10-04', '2024-09-12', '2025-03-12', '2024-12-09', '2024-05-19', '2024-05-31', '2024-11-16', '2024-10-30', '2025-01-11', '2024-07-02', '2024-07-26', '2025-03-19', '2025-02-21', '2024-06-28', '2024-05-25', '2024-07-19', '2025-03-10', '2024-06-08', '2025-02-15', '2024-05-05', '2025-02-04', '2024-11-05', '2024-06-21', '2025-03-29', '2025-02-26', '2025-01-02', '2024-12-26', '2024-10-04', '2025-03-14', '2024-11-24', '2025-03-14', '2024-06-10', '2025-01-10', '2024-12-11', '2024-09-13', '2025-04-07', '2024-07-20', '2025-01-28', '2024-05-14', '2024-10-05', '2025-03-29', '2025-01-02', '2024-10-09', '2024-11-17', '2024-08-26', '2024-10-11', '2025-04-05', '2024-12-28', '2024-10-03', '2024-06-12', '2024-10-15', '2025-01-08', '2024-09-04', '2024-11-01', '2024-10-08', '2025-02-12', '2025-04-16', '2024-11-28', '2024-12-02', '2024-09-03', '2024-12-11', '2024-10-13', '2025-02-14', '2024-12-10', '2024-10-04', '2025-01-06', '2025-03-05', '2024-08-12', '2024-05-10', '2024-09-01', '2024-12-13', '2024-05-14', '2024-11-07', '2024-09-07', '2024-08-01', '2024-11-10', '2025-03-04', '2024-08-11', '2025-01-16', '2024-09-08', '2025-01-11', '2024-11-09']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Segmentasi pertumbuhan grup usia
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": [ "Tokyo", "Mumbai", "Mexico City", "London", "New York" ], "Conversion Rate/Rasio Konversi": null, "Country/Negara": [ "Japan", "India", "Mexico", "UK", "US" ], "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": [ -0.05, 0.07, -0.07, 0.01, 0.09 ], "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": [ 41.5197, 21.7984, 66.6411, -86.7752, 63.1073 ], "Longitude/Bujur": [ 45.0023, -10.0756, 36.7255, 174.7464, -99.6719 ], "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": [ 0.49, 0.39, 0.23, 0.29, 0.19 ], "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": [ "Asia", "Asia", "North America", "Europe", "North America" ], "Revenue/Pendapatan": [ 4688, 3787, 2954, 2237, 4598 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'City/Kota': ['Tokyo', 'Mumbai', 'Mexico City', 'London', 'New York'], 'Country/Negara': ['Japan', 'India', 'Mexico', 'UK', 'US'], 'Region/Wilayah': ['Asia', 'Asia', 'North America', 'Europe', 'North America'], 'Latitude/Lintang': [41.5197, 21.7984, 66.6411, -86.7752, 63.1073], 'Longitude/Bujur': [45.0023, -10.0756, 36.7255, 174.7464, -99.6719], 'Revenue/Pendapatan': [4688, 3787, 2954, 2237, 4598], 'Market Share/Pangsa Pasar': [0.49, 0.39, 0.23, 0.29, 0.19], 'Growth Rate/Pertumbuhan': [-0.05, 0.07, -0.07, 0.01, 0.09]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Customer segmentation using KMeans from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler # Select features and scale X = df[['Age/Usia', 'Income/Pendapatan', 'Loyalty Score/Skor Loyalitas']] scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # Cluster into 3 segments kmeans = KMeans(n_clusters=3, random_state=42) df['Segment/Segmen'] = kmeans.fit_predict(X_scaled) # Visualize segments fig = px.scatter_3d(df, x='Age/Usia', y='Income/Pendapatan', z='Loyalty Score/Skor Loyalitas', color='Segment/Segmen', title='Customer Segments') fig.show()
Optimize income gender
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": [ 98.75, 122.42, 167.55, 170.74, 187.8, 181.51, 123.15, 136.72, 96.95, 162.23, 60.25, 87.53, 54.87, 129.71, 162.76, 146.62, 104.05, 105.14, 78.33, 114.94, 74.9, 67.73, 127.26, 61.33, 106.71, 168.17, 101.91, 104.36, 184.17, 101.27 ], "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": [ 0.0728, 0.0712, 0.0538, 0.07250000000000001, 0.0898, 0.0275, 0.020300000000000002, 0.0111, 0.016900000000000002, 0.0761, 0.0204, 0.034, 0.0177, 0.0945, 0.0256, 0.059300000000000005, 0.0853, 0.0625, 0.0471, 0.08560000000000001, 0.046200000000000005, 0.06770000000000001, 0.079, 0.0152, 0.0985, 0.0978, 0.0762, 0.016300000000000002, 0.0884, 0.0244 ], "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": [ "2025-03-23", "2025-03-24", "2025-03-25", "2025-03-26", "2025-03-27", "2025-03-28", "2025-03-29", "2025-03-30", "2025-03-31", "2025-04-01", "2025-04-02", "2025-04-03", "2025-04-04", "2025-04-05", "2025-04-06", "2025-04-07", "2025-04-08", "2025-04-09", "2025-04-10", "2025-04-11", "2025-04-12", "2025-04-13", "2025-04-14", "2025-04-15", "2025-04-16", "2025-04-17", "2025-04-18", "2025-04-19", "2025-04-20", "2025-04-21" ], "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": [ 1346.18, 1452.59, 1492.83, 1510.15, 1517.06, 1594.15, 1514.21, 1518.82, 1350.76, 1263.83, 1223.37, 1198.38, 1248.63, 1377.75, 1443.75, 1627.11, 1692.7, 1695.31, 1765.33, 1744.86, 1808.01, 1700.14, 1578.81, 1533, 1470.04, 1399.48, 1476.33, 1448.49, 1614.95, 1631.57 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": [ 164, 144, 74, 201, 157, 292, 110, 107, 251, 155, 182, 59, 260, 299, 174, 199, 103, 307, 127, 213, 205, 210, 230, 90, 254, 255, 61, 141, 168, 184 ] }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Date/Tanggal': ['2025-03-23', '2025-03-24', '2025-03-25', '2025-03-26', '2025-03-27', '2025-03-28', '2025-03-29', '2025-03-30', '2025-03-31', '2025-04-01', '2025-04-02', '2025-04-03', '2025-04-04', '2025-04-05', '2025-04-06', '2025-04-07', '2025-04-08', '2025-04-09', '2025-04-10', '2025-04-11', '2025-04-12', '2025-04-13', '2025-04-14', '2025-04-15', '2025-04-16', '2025-04-17', '2025-04-18', '2025-04-19', '2025-04-20', '2025-04-21'], 'Revenue/Pendapatan': [1346.18, 1452.59, 1492.83, 1510.15, 1517.06, 1594.15, 1514.21, 1518.82, 1350.76, 1263.83, 1223.37, 1198.38, 1248.63, 1377.75, 1443.75, 1627.11, 1692.7, 1695.31, 1765.33, 1744.86, 1808.01, 1700.14, 1578.81, 1533.0, 1470.04, 1399.48, 1476.33, 1448.49, 1614.95, 1631.57], 'Visitors/Pengunjung': [164, 144, 74, 201, 157, 292, 110, 107, 251, 155, 182, 59, 260, 299, 174, 199, 103, 307, 127, 213, 205, 210, 230, 90, 254, 255, 61, 141, 168, 184], 'Conversion Rate/Rasio Konversi': [0.0728, 0.0712, 0.0538, 0.0725, 0.0898, 0.0275, 0.0203, 0.0111, 0.0169, 0.0761, 0.0204, 0.034, 0.0177, 0.0945, 0.0256, 0.0593, 0.0853, 0.0625, 0.0471, 0.0856, 0.0462, 0.0677, 0.079, 0.0152, 0.0985, 0.0978, 0.0762, 0.0163, 0.0884, 0.0244], 'Avg. Order Value/Nilai Pesanan Rata2': [98.75, 122.42, 167.55, 170.74, 187.8, 181.51, 123.15, 136.72, 96.95, 162.23, 60.25, 87.53, 54.87, 129.71, 162.76, 146.62, 104.05, 105.14, 78.33, 114.94, 74.9, 67.73, 127.26, 61.33, 106.71, 168.17, 101.91, 104.36, 184.17, 101.27]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Calculate conversion rate age group
{ "Age/Usia": [ 19, 40, 63, 52, 68, 24, 53, 37, 48, 65, 39, 26, 46, 50, 61, 69, 20, 67, 46, 62, 28, 62, 45, 26, 59, 65, 21, 33, 57, 20, 25, 58, 47, 32, 27, 19, 62, 33, 43, 31, 44, 65, 26, 57, 38, 36, 31, 29, 62, 65, 37, 43, 29, 39, 36, 50, 44, 22, 22, 39, 48, 50, 54 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053", "CUST_0054", "CUST_0055", "CUST_0056", "CUST_0057", "CUST_0058", "CUST_0059", "CUST_0060", "CUST_0061", "CUST_0062", "CUST_0063" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Other/Lainnya", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Other/Lainnya", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Other/Lainnya", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Other/Lainnya", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 8000, 6000, 9000, 9000, 7000, 3000, 9000, 1000, 6000, 7000, 3000, 4000, 2000, 3000, 7000, 8000, 8000, 2000, 9000, 4000, 9000, 2000, 5000, 2000, 1000, 7000, 6000, 4000, 8000, 6000, 7000, 1000, 3000, 5000, 8000, 4000, 2000, 3000, 7000, 6000, 6000, 9000, 4000, 2000, 8000, 1000, 7000, 8000, 8000, 4000, 6000, 3000, 4000, 8000, 7000, 8000, 4000, 7000, 8000, 4000, 3000, 2000, 3000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2024-12-05", "2025-01-25", "2025-03-24", "2024-08-14", "2024-06-10", "2024-09-09", "2024-10-10", "2024-07-03", "2024-05-10", "2024-05-25", "2025-01-17", "2025-01-04", "2024-10-28", "2024-04-30", "2024-07-03", "2025-01-19", "2024-12-07", "2024-04-29", "2025-03-19", "2024-10-22", "2024-12-15", "2024-09-28", "2024-07-28", "2025-01-25", "2024-08-29", "2025-03-29", "2024-05-02", "2024-08-22", "2024-10-01", "2024-06-29", "2025-02-12", "2024-12-08", "2025-01-03", "2025-01-06", "2025-03-14", "2024-09-17", "2024-10-14", "2024-12-26", "2024-07-05", "2024-06-22", "2024-05-16", "2024-11-16", "2024-09-25", "2024-05-12", "2024-10-01", "2025-01-24", "2024-07-23", "2024-08-30", "2024-07-31", "2024-06-08", "2025-01-04", "2024-08-20", "2024-06-08", "2025-04-12", "2024-09-30", "2024-12-24", "2024-12-16", "2024-11-25", "2024-09-21", "2024-11-05", "2025-03-27", "2025-01-09", "2024-12-04" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 25, 91, 93, 79, 27, 95, 69, 32, 20, 31, 29, 55, 69, 8, 40, 43, 14, 54, 77, 67, 40, 43, 4, 12, 77, 70, 31, 29, 54, 12, 29, 22, 90, 66, 60, 71, 78, 92, 97, 60, 13, 82, 81, 17, 66, 98, 63, 61, 69, 1, 40, 53, 13, 6, 97, 35, 98, 77, 52, 74, 70, 49, 15 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053', 'CUST_0054', 'CUST_0055', 'CUST_0056', 'CUST_0057', 'CUST_0058', 'CUST_0059', 'CUST_0060', 'CUST_0061', 'CUST_0062', 'CUST_0063'], 'Age/Usia': [19, 40, 63, 52, 68, 24, 53, 37, 48, 65, 39, 26, 46, 50, 61, 69, 20, 67, 46, 62, 28, 62, 45, 26, 59, 65, 21, 33, 57, 20, 25, 58, 47, 32, 27, 19, 62, 33, 43, 31, 44, 65, 26, 57, 38, 36, 31, 29, 62, 65, 37, 43, 29, 39, 36, 50, 44, 22, 22, 39, 48, 50, 54], 'Gender/Jenis Kelamin': ['Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Other/Lainnya', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Other/Lainnya', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Other/Lainnya', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Other/Lainnya', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki'], 'Income/Pendapatan': [8000, 6000, 9000, 9000, 7000, 3000, 9000, 1000, 6000, 7000, 3000, 4000, 2000, 3000, 7000, 8000, 8000, 2000, 9000, 4000, 9000, 2000, 5000, 2000, 1000, 7000, 6000, 4000, 8000, 6000, 7000, 1000, 3000, 5000, 8000, 4000, 2000, 3000, 7000, 6000, 6000, 9000, 4000, 2000, 8000, 1000, 7000, 8000, 8000, 4000, 6000, 3000, 4000, 8000, 7000, 8000, 4000, 7000, 8000, 4000, 3000, 2000, 3000], 'Loyalty Score/Skor Loyalitas': [25, 91, 93, 79, 27, 95, 69, 32, 20, 31, 29, 55, 69, 8, 40, 43, 14, 54, 77, 67, 40, 43, 4, 12, 77, 70, 31, 29, 54, 12, 29, 22, 90, 66, 60, 71, 78, 92, 97, 60, 13, 82, 81, 17, 66, 98, 63, 61, 69, 1, 40, 53, 13, 6, 97, 35, 98, 77, 52, 74, 70, 49, 15], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2024-12-05', '2025-01-25', '2025-03-24', '2024-08-14', '2024-06-10', '2024-09-09', '2024-10-10', '2024-07-03', '2024-05-10', '2024-05-25', '2025-01-17', '2025-01-04', '2024-10-28', '2024-04-30', '2024-07-03', '2025-01-19', '2024-12-07', '2024-04-29', '2025-03-19', '2024-10-22', '2024-12-15', '2024-09-28', '2024-07-28', '2025-01-25', '2024-08-29', '2025-03-29', '2024-05-02', '2024-08-22', '2024-10-01', '2024-06-29', '2025-02-12', '2024-12-08', '2025-01-03', '2025-01-06', '2025-03-14', '2024-09-17', '2024-10-14', '2024-12-26', '2024-07-05', '2024-06-22', '2024-05-16', '2024-11-16', '2024-09-25', '2024-05-12', '2024-10-01', '2025-01-24', '2024-07-23', '2024-08-30', '2024-07-31', '2024-06-08', '2025-01-04', '2024-08-20', '2024-06-08', '2025-04-12', '2024-09-30', '2024-12-24', '2024-12-16', '2024-11-25', '2024-09-21', '2024-11-05', '2025-03-27', '2025-01-09', '2024-12-04']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # growth rate calculation result = df['Customer ID/ID Pelanggan'].pct_change() print(result)
Bandingkan pendapatan kota
{ "Age/Usia": [ 54, 53, 68, 42, 53, 56, 22, 42, 19, 40, 66, 68, 18, 18, 39, 64, 70, 53, 56, 23, 64, 45, 47, 32, 33, 61, 23, 22, 21, 50, 19, 19, 64, 35, 32, 66, 59, 68, 21, 55, 24, 35, 38, 29, 54, 43, 28, 67, 41, 27, 42, 62, 34, 49, 61, 26, 35, 54, 70 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053", "CUST_0054", "CUST_0055", "CUST_0056", "CUST_0057", "CUST_0058", "CUST_0059" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Other/Lainnya", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Other/Lainnya", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Other/Lainnya", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 9000, 2000, 7000, 9000, 6000, 9000, 9000, 3000, 9000, 1000, 4000, 3000, 6000, 9000, 8000, 4000, 8000, 1000, 7000, 5000, 5000, 7000, 9000, 5000, 9000, 3000, 3000, 8000, 6000, 3000, 6000, 6000, 6000, 7000, 5000, 1000, 3000, 3000, 2000, 8000, 5000, 3000, 6000, 3000, 9000, 2000, 4000, 9000, 9000, 3000, 5000, 7000, 4000, 4000, 1000, 6000, 6000, 4000, 2000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2025-03-19", "2025-01-29", "2024-12-12", "2024-10-20", "2025-01-11", "2025-01-27", "2025-01-19", "2024-11-24", "2024-12-01", "2024-12-30", "2024-07-24", "2024-07-30", "2025-02-17", "2024-11-10", "2024-05-14", "2024-12-31", "2025-01-15", "2024-05-01", "2024-07-24", "2024-05-26", "2024-05-25", "2024-06-24", "2025-01-16", "2024-08-25", "2024-05-09", "2024-10-07", "2024-12-23", "2025-03-13", "2024-12-11", "2025-01-23", "2024-05-14", "2024-10-28", "2025-01-29", "2024-12-30", "2025-01-30", "2024-09-04", "2024-07-04", "2025-03-18", "2024-09-28", "2025-01-27", "2025-01-24", "2024-07-02", "2024-11-15", "2025-02-09", "2025-01-09", "2024-10-18", "2024-09-20", "2025-02-21", "2025-03-29", "2025-01-14", "2024-05-06", "2024-12-27", "2025-01-17", "2024-09-14", "2024-08-04", "2024-12-13", "2024-04-25", "2025-04-09", "2025-04-08" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 22, 92, 19, 30, 74, 63, 52, 22, 42, 3, 82, 90, 70, 42, 5, 15, 51, 12, 98, 39, 10, 89, 40, 59, 36, 33, 96, 27, 79, 99, 71, 68, 100, 25, 62, 50, 68, 37, 3, 24, 8, 78, 98, 64, 13, 53, 48, 4, 21, 25, 50, 61, 52, 77, 38, 61, 55, 28, 40 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053', 'CUST_0054', 'CUST_0055', 'CUST_0056', 'CUST_0057', 'CUST_0058', 'CUST_0059'], 'Age/Usia': [54, 53, 68, 42, 53, 56, 22, 42, 19, 40, 66, 68, 18, 18, 39, 64, 70, 53, 56, 23, 64, 45, 47, 32, 33, 61, 23, 22, 21, 50, 19, 19, 64, 35, 32, 66, 59, 68, 21, 55, 24, 35, 38, 29, 54, 43, 28, 67, 41, 27, 42, 62, 34, 49, 61, 26, 35, 54, 70], 'Gender/Jenis Kelamin': ['Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Other/Lainnya', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Other/Lainnya', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Other/Lainnya', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan'], 'Income/Pendapatan': [9000, 2000, 7000, 9000, 6000, 9000, 9000, 3000, 9000, 1000, 4000, 3000, 6000, 9000, 8000, 4000, 8000, 1000, 7000, 5000, 5000, 7000, 9000, 5000, 9000, 3000, 3000, 8000, 6000, 3000, 6000, 6000, 6000, 7000, 5000, 1000, 3000, 3000, 2000, 8000, 5000, 3000, 6000, 3000, 9000, 2000, 4000, 9000, 9000, 3000, 5000, 7000, 4000, 4000, 1000, 6000, 6000, 4000, 2000], 'Loyalty Score/Skor Loyalitas': [22, 92, 19, 30, 74, 63, 52, 22, 42, 3, 82, 90, 70, 42, 5, 15, 51, 12, 98, 39, 10, 89, 40, 59, 36, 33, 96, 27, 79, 99, 71, 68, 100, 25, 62, 50, 68, 37, 3, 24, 8, 78, 98, 64, 13, 53, 48, 4, 21, 25, 50, 61, 52, 77, 38, 61, 55, 28, 40], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2025-03-19', '2025-01-29', '2024-12-12', '2024-10-20', '2025-01-11', '2025-01-27', '2025-01-19', '2024-11-24', '2024-12-01', '2024-12-30', '2024-07-24', '2024-07-30', '2025-02-17', '2024-11-10', '2024-05-14', '2024-12-31', '2025-01-15', '2024-05-01', '2024-07-24', '2024-05-26', '2024-05-25', '2024-06-24', '2025-01-16', '2024-08-25', '2024-05-09', '2024-10-07', '2024-12-23', '2025-03-13', '2024-12-11', '2025-01-23', '2024-05-14', '2024-10-28', '2025-01-29', '2024-12-30', '2025-01-30', '2024-09-04', '2024-07-04', '2025-03-18', '2024-09-28', '2025-01-27', '2025-01-24', '2024-07-02', '2024-11-15', '2025-02-09', '2025-01-09', '2024-10-18', '2024-09-20', '2025-02-21', '2025-03-29', '2025-01-14', '2024-05-06', '2024-12-27', '2025-01-17', '2024-09-14', '2024-08-04', '2024-12-13', '2024-04-25', '2025-04-09', '2025-04-08']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Segmentasi pangsa pasar grup usia
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Automotive/Otomotif", "Automotive/Otomotif", "Automotive/Otomotif" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.01, 0.16, 0.16 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 79.74, 69.58, 51.78 ], "Product/Produk": [ "Accessories_1", "Oil_2", "Tools_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 271, 507, 383 ], "Stock/Stok": [ 71, 23, 141 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Accessories_1', 'Oil_2', 'Tools_3'], 'Sales/Penjualan': [271, 507, 383], 'Price/Harga': [79.74, 69.58, 51.78], 'Category/Kategori': ['Automotive/Otomotif', 'Automotive/Otomotif', 'Automotive/Otomotif'], 'Discount/Diskon': [0.01, 0.16, 0.16], 'Stock/Stok': [71, 23, 141]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Customer segmentation using KMeans from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler # Select features and scale X = df[['Age/Usia', 'Income/Pendapatan', 'Loyalty Score/Skor Loyalitas']] scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # Cluster into 3 segments kmeans = KMeans(n_clusters=3, random_state=42) df['Segment/Segmen'] = kmeans.fit_predict(X_scaled) # Visualize segments fig = px.scatter_3d(df, x='Age/Usia', y='Income/Pendapatan', z='Loyalty Score/Skor Loyalitas', color='Segment/Segmen', title='Customer Segments') fig.show()
Bandingkan pangsa pasar kota
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": [ 172.48, 85.7, 188.02, 97.63, 185.68, 75.64, 130.46, 130.7, 126.33, 145, 96.98, 129.09, 54.07, 145.62, 191.73, 51.63, 119.15, 59.05, 125.72, 124.68, 128.19, 133.96, 55.92, 130, 98.77, 61.24, 63.03, 110.15, 81.04, 161.63 ], "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": [ 0.0969, 0.0173, 0.028200000000000003, 0.0356, 0.0908, 0.0478, 0.0584, 0.0772, 0.07930000000000001, 0.026000000000000002, 0.0782, 0.028800000000000003, 0.0864, 0.030100000000000002, 0.0727, 0.0818, 0.0782, 0.0614, 0.0937, 0.0567, 0.0714, 0.046, 0.0592, 0.0857, 0.0694, 0.0732, 0.07, 0.042100000000000005, 0.036500000000000005, 0.09280000000000001 ], "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": [ "2025-03-23", "2025-03-24", "2025-03-25", "2025-03-26", "2025-03-27", "2025-03-28", "2025-03-29", "2025-03-30", "2025-03-31", "2025-04-01", "2025-04-02", "2025-04-03", "2025-04-04", "2025-04-05", "2025-04-06", "2025-04-07", "2025-04-08", "2025-04-09", "2025-04-10", "2025-04-11", "2025-04-12", "2025-04-13", "2025-04-14", "2025-04-15", "2025-04-16", "2025-04-17", "2025-04-18", "2025-04-19", "2025-04-20", "2025-04-21" ], "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": [ 1375.32, 1477.47, 1475.19, 1528.11, 1517.37, 1474.4, 1425.08, 1363.82, 1258.41, 1096.3, 1188.2, 1169.2, 1080.2, 1110.14, 1194.24, 1205.47, 1378.74, 1340.1, 1404.61, 1393.52, 1311.56, 1231.01, 1139.49, 1000.63, 964.85, 968.06, 962.57, 954.1, 1024.57, 1180.15 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": [ 262, 297, 294, 200, 136, 110, 72, 296, 184, 114, 288, 271, 95, 242, 62, 263, 152, 261, 76, 257, 46, 226, 76, 243, 277, 229, 72, 81, 217, 242 ] }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Date/Tanggal': ['2025-03-23', '2025-03-24', '2025-03-25', '2025-03-26', '2025-03-27', '2025-03-28', '2025-03-29', '2025-03-30', '2025-03-31', '2025-04-01', '2025-04-02', '2025-04-03', '2025-04-04', '2025-04-05', '2025-04-06', '2025-04-07', '2025-04-08', '2025-04-09', '2025-04-10', '2025-04-11', '2025-04-12', '2025-04-13', '2025-04-14', '2025-04-15', '2025-04-16', '2025-04-17', '2025-04-18', '2025-04-19', '2025-04-20', '2025-04-21'], 'Revenue/Pendapatan': [1375.32, 1477.47, 1475.19, 1528.11, 1517.37, 1474.4, 1425.08, 1363.82, 1258.41, 1096.3, 1188.2, 1169.2, 1080.2, 1110.14, 1194.24, 1205.47, 1378.74, 1340.1, 1404.61, 1393.52, 1311.56, 1231.01, 1139.49, 1000.63, 964.85, 968.06, 962.57, 954.1, 1024.57, 1180.15], 'Visitors/Pengunjung': [262, 297, 294, 200, 136, 110, 72, 296, 184, 114, 288, 271, 95, 242, 62, 263, 152, 261, 76, 257, 46, 226, 76, 243, 277, 229, 72, 81, 217, 242], 'Conversion Rate/Rasio Konversi': [0.0969, 0.0173, 0.0282, 0.0356, 0.0908, 0.0478, 0.0584, 0.0772, 0.0793, 0.026, 0.0782, 0.0288, 0.0864, 0.0301, 0.0727, 0.0818, 0.0782, 0.0614, 0.0937, 0.0567, 0.0714, 0.046, 0.0592, 0.0857, 0.0694, 0.0732, 0.07, 0.0421, 0.0365, 0.0928], 'Avg. Order Value/Nilai Pesanan Rata2': [172.48, 85.7, 188.02, 97.63, 185.68, 75.64, 130.46, 130.7, 126.33, 145.0, 96.98, 129.09, 54.07, 145.62, 191.73, 51.63, 119.15, 59.05, 125.72, 124.68, 128.19, 133.96, 55.92, 130.0, 98.77, 61.24, 63.03, 110.15, 81.04, 161.63]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Forecast market share for/untuk month
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": [ "London", "Jakarta", "Singapore", "São Paulo", "Mumbai" ], "Conversion Rate/Rasio Konversi": null, "Country/Negara": [ "UK", "Indonesia", "Singapore", "Brazil", "India" ], "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": [ 0.15, 0.19, -0.03, 0.24, 0.08 ], "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": [ 11.884, 77.0865, -35.2855, 3.0397, -54.4591 ], "Longitude/Bujur": [ -151.3358, -120.2734, -62.8963, 20.5467, -34.682900000000004 ], "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": [ 0.12, 0.15, 0.31, 0.29, 0.44 ], "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": [ "Europe", "Asia", "Asia", "South America", "Asia" ], "Revenue/Pendapatan": [ 4302, 4025, 4238, 1680, 4559 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'City/Kota': ['London', 'Jakarta', 'Singapore', 'São Paulo', 'Mumbai'], 'Country/Negara': ['UK', 'Indonesia', 'Singapore', 'Brazil', 'India'], 'Region/Wilayah': ['Europe', 'Asia', 'Asia', 'South America', 'Asia'], 'Latitude/Lintang': [11.884, 77.0865, -35.2855, 3.0397, -54.4591], 'Longitude/Bujur': [-151.3358, -120.2734, -62.8963, 20.5467, -34.6829], 'Revenue/Pendapatan': [4302, 4025, 4238, 1680, 4559], 'Market Share/Pangsa Pasar': [0.12, 0.15, 0.31, 0.29, 0.44], 'Growth Rate/Pertumbuhan': [0.15, 0.19, -0.03, 0.24, 0.08]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Time series forecasting from statsmodels.tsa.arima.model import ARIMA # Prepare data ts_data = df.set_index('Date/Tanggal')['Revenue/Pendapatan'] model = ARIMA(ts_data, order=(1,1,1)) model_fit = model.fit() forecast = model_fit.forecast(steps=7) print('Forecast for next 7 days:', forecast)
Visualisasikan pengunjung grup usia
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": [ "London", "Mumbai", "Sydney", "Berlin", "New York" ], "Conversion Rate/Rasio Konversi": null, "Country/Negara": [ "UK", "India", "Australia", "Germany", "US" ], "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": [ -0.05, 0.01, -0.07, 0.18, -0.04 ], "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": [ 72.3728, -58.5947, 89.7596, 22.3944, 0.8445 ], "Longitude/Bujur": [ 140.0561, -161.8252, 93.5911, 97.8351, -170.5593 ], "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": [ 0.46, 0.36, 0.48, 0.33, 0.28 ], "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": [ "Europe", "Asia", "Oceania", "Europe", "North America" ], "Revenue/Pendapatan": [ 1130, 1401, 3581, 1703, 3700 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'City/Kota': ['London', 'Mumbai', 'Sydney', 'Berlin', 'New York'], 'Country/Negara': ['UK', 'India', 'Australia', 'Germany', 'US'], 'Region/Wilayah': ['Europe', 'Asia', 'Oceania', 'Europe', 'North America'], 'Latitude/Lintang': [72.3728, -58.5947, 89.7596, 22.3944, 0.8445], 'Longitude/Bujur': [140.0561, -161.8252, 93.5911, 97.8351, -170.5593], 'Revenue/Pendapatan': [1130, 1401, 3581, 1703, 3700], 'Market Share/Pangsa Pasar': [0.46, 0.36, 0.48, 0.33, 0.28], 'Growth Rate/Pertumbuhan': [-0.05, 0.01, -0.07, 0.18, -0.04]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Geospatial visualization fig = px.choropleth(df, locations='Country/Negara', locationmode='country names', color='Revenue/Pendapatan', hover_name='City/Kota', scope='world', title='Revenue by Country') fig.update_geos(showcountries=True) fig.show()
Perkiraan pendapatan for/untuk minggu
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": [ "Paris", "New York", "Dubai", "Sydney", "London" ], "Conversion Rate/Rasio Konversi": null, "Country/Negara": [ "France", "US", "UAE", "Australia", "UK" ], "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": [ 0.24, 0.28, 0.05, -0.04, -0.08 ], "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": [ 17.3867, 36.0032, 28.9952, 22.4, 88.1219 ], "Longitude/Bujur": [ -169.4641, 0.12250000000000001, 99.2327, -4.8377, 150.5256 ], "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": [ 0.21, 0.49, 0.30000000000000004, 0.38, 0.46 ], "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": [ "Europe", "North America", "Middle East", "Oceania", "Europe" ], "Revenue/Pendapatan": [ 3692, 1823, 2049, 2757, 4673 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'City/Kota': ['Paris', 'New York', 'Dubai', 'Sydney', 'London'], 'Country/Negara': ['France', 'US', 'UAE', 'Australia', 'UK'], 'Region/Wilayah': ['Europe', 'North America', 'Middle East', 'Oceania', 'Europe'], 'Latitude/Lintang': [17.3867, 36.0032, 28.9952, 22.4, 88.1219], 'Longitude/Bujur': [-169.4641, 0.1225, 99.2327, -4.8377, 150.5256], 'Revenue/Pendapatan': [3692, 1823, 2049, 2757, 4673], 'Market Share/Pangsa Pasar': [0.21, 0.49, 0.3, 0.38, 0.46], 'Growth Rate/Pertumbuhan': [0.24, 0.28, 0.05, -0.04, -0.08]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Time series forecasting from statsmodels.tsa.arima.model import ARIMA # Prepare data ts_data = df.set_index('Date/Tanggal')['Revenue/Pendapatan'] model = ARIMA(ts_data, order=(1,1,1)) model_fit = model.fit() forecast = model_fit.forecast(steps=7) print('Forecast for next 7 days:', forecast)
Correlate loyalty score and/dan income
{ "Age/Usia": [ 54, 19, 42, 56, 40, 70, 49, 23, 38, 68, 68, 38, 30, 44, 19, 69, 48, 39, 59, 59, 70, 54, 42, 51, 54, 25, 37, 41, 58, 18, 36, 55, 48, 33, 40, 53, 41, 59, 69, 34, 42, 39, 30, 25, 21, 50, 64, 45, 32, 61, 58, 40, 67 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Other/Lainnya", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Other/Lainnya", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Other/Lainnya", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 2000, 6000, 2000, 4000, 3000, 10000, 1000, 9000, 9000, 1000, 7000, 3000, 2000, 2000, 4000, 7000, 3000, 7000, 10000, 6000, 5000, 8000, 8000, 10000, 7000, 8000, 6000, 7000, 8000, 2000, 6000, 4000, 4000, 3000, 5000, 6000, 2000, 9000, 4000, 3000, 4000, 1000, 3000, 6000, 5000, 7000, 4000, 7000, 5000, 7000, 9000, 9000, 6000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2025-01-30", "2024-05-05", "2024-05-02", "2024-10-19", "2025-01-24", "2024-12-17", "2025-02-08", "2024-10-12", "2025-02-18", "2024-10-28", "2025-04-20", "2025-02-14", "2025-03-05", "2025-03-19", "2024-06-07", "2025-02-13", "2025-01-16", "2025-04-09", "2025-04-17", "2024-10-08", "2025-02-01", "2024-07-01", "2024-11-27", "2024-11-21", "2024-09-28", "2025-02-05", "2024-05-03", "2024-11-13", "2025-01-13", "2025-03-15", "2025-03-03", "2024-12-02", "2024-06-18", "2024-07-06", "2024-10-31", "2024-10-22", "2025-04-10", "2025-01-31", "2024-07-08", "2025-03-19", "2025-03-18", "2024-08-27", "2024-10-07", "2024-10-05", "2024-12-26", "2024-11-06", "2024-08-13", "2024-05-02", "2024-10-24", "2024-07-24", "2024-09-10", "2024-07-24", "2024-06-20" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 90, 99, 85, 64, 6, 40, 61, 19, 69, 78, 26, 42, 90, 17, 82, 84, 96, 40, 83, 41, 25, 21, 75, 18, 3, 50, 8, 29, 13, 85, 87, 6, 59, 30, 96, 92, 93, 83, 1, 92, 53, 10, 52, 68, 13, 66, 76, 98, 94, 91, 15, 69, 37 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053'], 'Age/Usia': [54, 19, 42, 56, 40, 70, 49, 23, 38, 68, 68, 38, 30, 44, 19, 69, 48, 39, 59, 59, 70, 54, 42, 51, 54, 25, 37, 41, 58, 18, 36, 55, 48, 33, 40, 53, 41, 59, 69, 34, 42, 39, 30, 25, 21, 50, 64, 45, 32, 61, 58, 40, 67], 'Gender/Jenis Kelamin': ['Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Other/Lainnya', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Other/Lainnya', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Other/Lainnya', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki'], 'Income/Pendapatan': [2000, 6000, 2000, 4000, 3000, 10000, 1000, 9000, 9000, 1000, 7000, 3000, 2000, 2000, 4000, 7000, 3000, 7000, 10000, 6000, 5000, 8000, 8000, 10000, 7000, 8000, 6000, 7000, 8000, 2000, 6000, 4000, 4000, 3000, 5000, 6000, 2000, 9000, 4000, 3000, 4000, 1000, 3000, 6000, 5000, 7000, 4000, 7000, 5000, 7000, 9000, 9000, 6000], 'Loyalty Score/Skor Loyalitas': [90, 99, 85, 64, 6, 40, 61, 19, 69, 78, 26, 42, 90, 17, 82, 84, 96, 40, 83, 41, 25, 21, 75, 18, 3, 50, 8, 29, 13, 85, 87, 6, 59, 30, 96, 92, 93, 83, 1, 92, 53, 10, 52, 68, 13, 66, 76, 98, 94, 91, 15, 69, 37], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2025-01-30', '2024-05-05', '2024-05-02', '2024-10-19', '2025-01-24', '2024-12-17', '2025-02-08', '2024-10-12', '2025-02-18', '2024-10-28', '2025-04-20', '2025-02-14', '2025-03-05', '2025-03-19', '2024-06-07', '2025-02-13', '2025-01-16', '2025-04-09', '2025-04-17', '2024-10-08', '2025-02-01', '2024-07-01', '2024-11-27', '2024-11-21', '2024-09-28', '2025-02-05', '2024-05-03', '2024-11-13', '2025-01-13', '2025-03-15', '2025-03-03', '2024-12-02', '2024-06-18', '2024-07-06', '2024-10-31', '2024-10-22', '2025-04-10', '2025-01-31', '2024-07-08', '2025-03-19', '2025-03-18', '2024-08-27', '2024-10-07', '2024-10-05', '2024-12-26', '2024-11-06', '2024-08-13', '2024-05-02', '2024-10-24', '2024-07-24', '2024-09-10', '2024-07-24', '2024-06-20']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Correlation analysis corr_matrix = df.corr(numeric_only=True) fig = px.imshow(corr_matrix, text_auto=True, title='Correlation Matrix') fig.show()
Hitung pangsa pasar produk
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": [ "Mumbai", "Paris", "São Paulo", "Tokyo", "New York" ], "Conversion Rate/Rasio Konversi": null, "Country/Negara": [ "India", "France", "Brazil", "Japan", "US" ], "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": [ 0.12, 0.24, 0.02, -0.05, -0.1 ], "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": [ 59.244, 82.4541, 2.4613, 61.4826, -24.3944 ], "Longitude/Bujur": [ 52.2886, 176.4716, -138.0176, -98.3051, 71.9768 ], "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": [ 0.13, 0.19, 0.1, 0.46, 0.26 ], "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": [ "Asia", "Europe", "South America", "Asia", "North America" ], "Revenue/Pendapatan": [ 4680, 3152, 3672, 4987, 4793 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'City/Kota': ['Mumbai', 'Paris', 'São Paulo', 'Tokyo', 'New York'], 'Country/Negara': ['India', 'France', 'Brazil', 'Japan', 'US'], 'Region/Wilayah': ['Asia', 'Europe', 'South America', 'Asia', 'North America'], 'Latitude/Lintang': [59.244, 82.4541, 2.4613, 61.4826, -24.3944], 'Longitude/Bujur': [52.2886, 176.4716, -138.0176, -98.3051, 71.9768], 'Revenue/Pendapatan': [4680, 3152, 3672, 4987, 4793], 'Market Share/Pangsa Pasar': [0.13, 0.19, 0.1, 0.46, 0.26], 'Growth Rate/Pertumbuhan': [0.12, 0.24, 0.02, -0.05, -0.1]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # moving average calculation result = df['Longitude/Bujur'].rolling(7).mean() print(result)
Analisis pendapatan periode waktu
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Electronics/Elektronik", "Electronics/Elektronik", "Electronics/Elektronik" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.2, 0.07, 0.16 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 20.56, 11.1, 138.72 ], "Product/Produk": [ "Smartphone_1", "TV_2", "Laptop_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 497, 276, 658 ], "Stock/Stok": [ 115, 115, 20 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Smartphone_1', 'TV_2', 'Laptop_3'], 'Sales/Penjualan': [497, 276, 658], 'Price/Harga': [20.56, 11.1, 138.72], 'Category/Kategori': ['Electronics/Elektronik', 'Electronics/Elektronik', 'Electronics/Elektronik'], 'Discount/Diskon': [0.2, 0.07, 0.16], 'Stock/Stok': [115, 115, 20]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Forecast revenue for/untuk year
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": [ "Paris", "Mexico City", "Mumbai", "New York", "Sydney" ], "Conversion Rate/Rasio Konversi": null, "Country/Negara": [ "France", "Mexico", "India", "US", "Australia" ], "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": [ 0.29, 0.05, -0.04, 0.26, -0.07 ], "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": [ -54.8075, 18.1095, 73.0632, -75.4714, 59.7417 ], "Longitude/Bujur": [ 2.6261, 103.6082, -145.1563, 83.3641, -125.4302 ], "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": [ 0.41000000000000003, 0.29, 0.43, 0.34, 0.14 ], "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": [ "Europe", "North America", "Asia", "North America", "Oceania" ], "Revenue/Pendapatan": [ 1564, 4896, 2098, 4459, 2281 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'City/Kota': ['Paris', 'Mexico City', 'Mumbai', 'New York', 'Sydney'], 'Country/Negara': ['France', 'Mexico', 'India', 'US', 'Australia'], 'Region/Wilayah': ['Europe', 'North America', 'Asia', 'North America', 'Oceania'], 'Latitude/Lintang': [-54.8075, 18.1095, 73.0632, -75.4714, 59.7417], 'Longitude/Bujur': [2.6261, 103.6082, -145.1563, 83.3641, -125.4302], 'Revenue/Pendapatan': [1564, 4896, 2098, 4459, 2281], 'Market Share/Pangsa Pasar': [0.41, 0.29, 0.43, 0.34, 0.14], 'Growth Rate/Pertumbuhan': [0.29, 0.05, -0.04, 0.26, -0.07]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Time series forecasting from statsmodels.tsa.arima.model import ARIMA # Prepare data ts_data = df.set_index('Date/Tanggal')['Revenue/Pendapatan'] model = ARIMA(ts_data, order=(1,1,1)) model_fit = model.fit() forecast = model_fit.forecast(steps=7) print('Forecast for next 7 days:', forecast)
Segment revenue time period
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Automotive/Otomotif", "Automotive/Otomotif", "Automotive/Otomotif" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.12, 0.09, 0.29 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 197.94, 177.55, 155.37 ], "Product/Produk": [ "Oil_1", "Tires_2", "Accessories_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 177, 820, 234 ], "Stock/Stok": [ 21, 34, 151 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Oil_1', 'Tires_2', 'Accessories_3'], 'Sales/Penjualan': [177, 820, 234], 'Price/Harga': [197.94, 177.55, 155.37], 'Category/Kategori': ['Automotive/Otomotif', 'Automotive/Otomotif', 'Automotive/Otomotif'], 'Discount/Diskon': [0.12, 0.09, 0.29], 'Stock/Stok': [21, 34, 151]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Customer segmentation using KMeans from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler # Select features and scale X = df[['Age/Usia', 'Income/Pendapatan', 'Loyalty Score/Skor Loyalitas']] scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # Cluster into 3 segments kmeans = KMeans(n_clusters=3, random_state=42) df['Segment/Segmen'] = kmeans.fit_predict(X_scaled) # Visualize segments fig = px.scatter_3d(df, x='Age/Usia', y='Income/Pendapatan', z='Loyalty Score/Skor Loyalitas', color='Segment/Segmen', title='Customer Segments') fig.show()
Segmentasi nilai pesanan rata-rata produk
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Food/Makanan", "Food/Makanan", "Food/Makanan" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.14, 0.22, 0.2 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 90, 56, 73.15 ], "Product/Produk": [ "Dairy_1", "Fruits_2", "Snacks_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 107, 103, 397 ], "Stock/Stok": [ 87, 143, 53 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Dairy_1', 'Fruits_2', 'Snacks_3'], 'Sales/Penjualan': [107, 103, 397], 'Price/Harga': [90.0, 56.0, 73.15], 'Category/Kategori': ['Food/Makanan', 'Food/Makanan', 'Food/Makanan'], 'Discount/Diskon': [0.14, 0.22, 0.2], 'Stock/Stok': [87, 143, 53]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Customer segmentation using KMeans from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler # Select features and scale X = df[['Age/Usia', 'Income/Pendapatan', 'Loyalty Score/Skor Loyalitas']] scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # Cluster into 3 segments kmeans = KMeans(n_clusters=3, random_state=42) df['Segment/Segmen'] = kmeans.fit_predict(X_scaled) # Visualize segments fig = px.scatter_3d(df, x='Age/Usia', y='Income/Pendapatan', z='Loyalty Score/Skor Loyalitas', color='Segment/Segmen', title='Customer Segments') fig.show()
Segmentasi pertumbuhan segmen pelanggan
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": [ 58.28, 97.08, 188.67, 191.48, 137.45, 50.38, 147.9, 161.82, 97.03, 102.29, 108.59, 192.72, 75.99, 115.55, 185.04, 92.28, 152.81, 132.72, 144.53, 168.4, 63.73, 67.32, 53.66, 165.26, 61.51, 180.79, 56.46, 184.8, 112.93, 88.08 ], "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": [ 0.0644, 0.0361, 0.08510000000000001, 0.010700000000000001, 0.018500000000000003, 0.0746, 0.049800000000000004, 0.031100000000000003, 0.098, 0.0487, 0.0757, 0.0772, 0.0495, 0.09630000000000001, 0.0426, 0.09910000000000001, 0.09330000000000001, 0.0985, 0.08, 0.0131, 0.028800000000000003, 0.055, 0.032, 0.0918, 0.0227, 0.0126, 0.0815, 0.0649, 0.0194, 0.060700000000000004 ], "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": [ "2025-03-23", "2025-03-24", "2025-03-25", "2025-03-26", "2025-03-27", "2025-03-28", "2025-03-29", "2025-03-30", "2025-03-31", "2025-04-01", "2025-04-02", "2025-04-03", "2025-04-04", "2025-04-05", "2025-04-06", "2025-04-07", "2025-04-08", "2025-04-09", "2025-04-10", "2025-04-11", "2025-04-12", "2025-04-13", "2025-04-14", "2025-04-15", "2025-04-16", "2025-04-17", "2025-04-18", "2025-04-19", "2025-04-20", "2025-04-21" ], "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": [ 1274.72, 1416.61, 1413.81, 1412.13, 1459.62, 1370.37, 1318.63, 1279.75, 1115.48, 1115.38, 969.3, 995.12, 994.94, 1137.95, 1179.37, 1319.15, 1345.13, 1353.37, 1435.74, 1354.5, 1356.67, 1164.41, 1179.29, 1083.02, 1015.72, 1025.43, 953.98, 1020.91, 1112.51, 1193.95 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": [ 242, 86, 134, 290, 173, 299, 116, 84, 183, 200, 229, 131, 236, 122, 288, 147, 188, 210, 58, 143, 194, 140, 224, 182, 214, 168, 83, 83, 216, 194 ] }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Date/Tanggal': ['2025-03-23', '2025-03-24', '2025-03-25', '2025-03-26', '2025-03-27', '2025-03-28', '2025-03-29', '2025-03-30', '2025-03-31', '2025-04-01', '2025-04-02', '2025-04-03', '2025-04-04', '2025-04-05', '2025-04-06', '2025-04-07', '2025-04-08', '2025-04-09', '2025-04-10', '2025-04-11', '2025-04-12', '2025-04-13', '2025-04-14', '2025-04-15', '2025-04-16', '2025-04-17', '2025-04-18', '2025-04-19', '2025-04-20', '2025-04-21'], 'Revenue/Pendapatan': [1274.72, 1416.61, 1413.81, 1412.13, 1459.62, 1370.37, 1318.63, 1279.75, 1115.48, 1115.38, 969.3, 995.12, 994.94, 1137.95, 1179.37, 1319.15, 1345.13, 1353.37, 1435.74, 1354.5, 1356.67, 1164.41, 1179.29, 1083.02, 1015.72, 1025.43, 953.98, 1020.91, 1112.51, 1193.95], 'Visitors/Pengunjung': [242, 86, 134, 290, 173, 299, 116, 84, 183, 200, 229, 131, 236, 122, 288, 147, 188, 210, 58, 143, 194, 140, 224, 182, 214, 168, 83, 83, 216, 194], 'Conversion Rate/Rasio Konversi': [0.0644, 0.0361, 0.0851, 0.0107, 0.0185, 0.0746, 0.0498, 0.0311, 0.098, 0.0487, 0.0757, 0.0772, 0.0495, 0.0963, 0.0426, 0.0991, 0.0933, 0.0985, 0.08, 0.0131, 0.0288, 0.055, 0.032, 0.0918, 0.0227, 0.0126, 0.0815, 0.0649, 0.0194, 0.0607], 'Avg. Order Value/Nilai Pesanan Rata2': [58.28, 97.08, 188.67, 191.48, 137.45, 50.38, 147.9, 161.82, 97.03, 102.29, 108.59, 192.72, 75.99, 115.55, 185.04, 92.28, 152.81, 132.72, 144.53, 168.4, 63.73, 67.32, 53.66, 165.26, 61.51, 180.79, 56.46, 184.8, 112.93, 88.08]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Customer segmentation using KMeans from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler # Select features and scale X = df[['Age/Usia', 'Income/Pendapatan', 'Loyalty Score/Skor Loyalitas']] scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # Cluster into 3 segments kmeans = KMeans(n_clusters=3, random_state=42) df['Segment/Segmen'] = kmeans.fit_predict(X_scaled) # Visualize segments fig = px.scatter_3d(df, x='Age/Usia', y='Income/Pendapatan', z='Loyalty Score/Skor Loyalitas', color='Segment/Segmen', title='Customer Segments') fig.show()
Optimalkan nilai pesanan rata-rata negara
{ "Age/Usia": [ 64, 68, 69, 66, 62, 51, 38, 20, 33, 70, 42, 21, 36, 25, 28, 43, 63, 51, 29, 19, 67, 43, 37, 49, 55, 41, 36, 33, 60, 60, 48, 25, 40, 36, 63, 56, 53, 68, 59, 70, 27, 69, 64, 24, 46, 29, 51, 42, 36, 29, 41, 19, 26, 36, 42, 21, 61, 70, 24, 40, 42, 44, 18, 39, 54, 21, 70, 60, 52, 33, 61, 62, 31, 47, 49, 64, 22, 22, 61, 51, 67, 27, 26, 48, 56, 23, 18, 55, 46, 45, 31, 30, 21, 19, 24, 40, 27, 65, 56, 24 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053", "CUST_0054", "CUST_0055", "CUST_0056", "CUST_0057", "CUST_0058", "CUST_0059", "CUST_0060", "CUST_0061", "CUST_0062", "CUST_0063", "CUST_0064", "CUST_0065", "CUST_0066", "CUST_0067", "CUST_0068", "CUST_0069", "CUST_0070", "CUST_0071", "CUST_0072", "CUST_0073", "CUST_0074", "CUST_0075", "CUST_0076", "CUST_0077", "CUST_0078", "CUST_0079", "CUST_0080", "CUST_0081", "CUST_0082", "CUST_0083", "CUST_0084", "CUST_0085", "CUST_0086", "CUST_0087", "CUST_0088", "CUST_0089", "CUST_0090", "CUST_0091", "CUST_0092", "CUST_0093", "CUST_0094", "CUST_0095", "CUST_0096", "CUST_0097", "CUST_0098", "CUST_0099", "CUST_0100" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Other/Lainnya", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Other/Lainnya", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Other/Lainnya", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Other/Lainnya", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 3000, 7000, 8000, 5000, 10000, 1000, 6000, 4000, 4000, 6000, 6000, 2000, 7000, 4000, 9000, 1000, 4000, 5000, 1000, 4000, 9000, 8000, 5000, 7000, 9000, 10000, 7000, 5000, 9000, 3000, 9000, 9000, 3000, 10000, 3000, 4000, 4000, 1000, 2000, 8000, 6000, 5000, 4000, 5000, 9000, 1000, 2000, 4000, 7000, 10000, 7000, 3000, 8000, 10000, 6000, 8000, 4000, 7000, 1000, 1000, 7000, 6000, 4000, 4000, 3000, 3000, 6000, 6000, 2000, 5000, 6000, 10000, 5000, 6000, 6000, 5000, 2000, 5000, 6000, 2000, 10000, 3000, 4000, 3000, 4000, 3000, 8000, 7000, 8000, 4000, 5000, 2000, 2000, 8000, 2000, 8000, 6000, 2000, 9000, 6000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2025-01-03", "2024-09-22", "2025-04-15", "2024-05-05", "2025-03-16", "2024-07-14", "2024-09-30", "2024-04-24", "2025-03-10", "2025-04-20", "2024-10-23", "2024-11-15", "2024-09-20", "2024-10-10", "2024-12-14", "2024-05-23", "2024-04-24", "2025-02-27", "2024-09-30", "2024-08-12", "2024-09-16", "2024-05-16", "2025-04-13", "2024-11-07", "2024-06-20", "2024-07-06", "2024-09-27", "2024-10-12", "2025-02-06", "2024-05-14", "2024-09-15", "2024-10-18", "2024-12-12", "2024-05-12", "2024-12-27", "2024-09-11", "2024-05-15", "2024-06-04", "2024-12-07", "2024-08-11", "2024-09-20", "2024-10-17", "2024-11-26", "2025-01-14", "2025-01-10", "2024-07-26", "2024-05-16", "2025-03-31", "2025-01-18", "2024-10-31", "2024-10-26", "2024-05-26", "2024-10-10", "2024-07-26", "2025-01-10", "2024-12-20", "2024-10-27", "2025-01-02", "2024-12-14", "2025-01-26", "2024-10-17", "2024-11-15", "2024-05-18", "2024-08-20", "2024-10-20", "2024-10-12", "2025-03-29", "2025-04-11", "2024-11-12", "2024-05-13", "2025-04-11", "2024-08-14", "2024-08-16", "2025-02-13", "2024-11-18", "2024-05-27", "2025-02-27", "2024-05-28", "2024-11-16", "2024-06-20", "2024-12-24", "2024-06-02", "2024-12-16", "2024-05-21", "2024-06-27", "2024-08-13", "2025-03-31", "2024-10-03", "2024-06-06", "2025-03-25", "2024-12-25", "2024-08-18", "2024-11-13", "2024-09-17", "2024-05-28", "2024-12-21", "2025-01-05", "2024-06-04", "2025-01-19", "2024-07-10" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 89, 4, 65, 19, 31, 95, 35, 68, 47, 98, 60, 58, 93, 83, 34, 75, 84, 90, 30, 18, 46, 35, 19, 35, 63, 16, 26, 95, 4, 86, 21, 93, 100, 18, 53, 20, 82, 31, 46, 18, 19, 48, 42, 51, 83, 54, 55, 80, 39, 51, 4, 76, 41, 94, 55, 23, 33, 5, 41, 74, 82, 2, 44, 1, 61, 28, 91, 43, 61, 39, 33, 99, 43, 79, 53, 91, 70, 55, 38, 47, 62, 57, 1, 2, 91, 23, 47, 80, 67, 91, 3, 8, 34, 100, 91, 46, 67, 68, 38, 96 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053', 'CUST_0054', 'CUST_0055', 'CUST_0056', 'CUST_0057', 'CUST_0058', 'CUST_0059', 'CUST_0060', 'CUST_0061', 'CUST_0062', 'CUST_0063', 'CUST_0064', 'CUST_0065', 'CUST_0066', 'CUST_0067', 'CUST_0068', 'CUST_0069', 'CUST_0070', 'CUST_0071', 'CUST_0072', 'CUST_0073', 'CUST_0074', 'CUST_0075', 'CUST_0076', 'CUST_0077', 'CUST_0078', 'CUST_0079', 'CUST_0080', 'CUST_0081', 'CUST_0082', 'CUST_0083', 'CUST_0084', 'CUST_0085', 'CUST_0086', 'CUST_0087', 'CUST_0088', 'CUST_0089', 'CUST_0090', 'CUST_0091', 'CUST_0092', 'CUST_0093', 'CUST_0094', 'CUST_0095', 'CUST_0096', 'CUST_0097', 'CUST_0098', 'CUST_0099', 'CUST_0100'], 'Age/Usia': [64, 68, 69, 66, 62, 51, 38, 20, 33, 70, 42, 21, 36, 25, 28, 43, 63, 51, 29, 19, 67, 43, 37, 49, 55, 41, 36, 33, 60, 60, 48, 25, 40, 36, 63, 56, 53, 68, 59, 70, 27, 69, 64, 24, 46, 29, 51, 42, 36, 29, 41, 19, 26, 36, 42, 21, 61, 70, 24, 40, 42, 44, 18, 39, 54, 21, 70, 60, 52, 33, 61, 62, 31, 47, 49, 64, 22, 22, 61, 51, 67, 27, 26, 48, 56, 23, 18, 55, 46, 45, 31, 30, 21, 19, 24, 40, 27, 65, 56, 24], 'Gender/Jenis Kelamin': ['Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Other/Lainnya', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Other/Lainnya', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Other/Lainnya', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Other/Lainnya', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan'], 'Income/Pendapatan': [3000, 7000, 8000, 5000, 10000, 1000, 6000, 4000, 4000, 6000, 6000, 2000, 7000, 4000, 9000, 1000, 4000, 5000, 1000, 4000, 9000, 8000, 5000, 7000, 9000, 10000, 7000, 5000, 9000, 3000, 9000, 9000, 3000, 10000, 3000, 4000, 4000, 1000, 2000, 8000, 6000, 5000, 4000, 5000, 9000, 1000, 2000, 4000, 7000, 10000, 7000, 3000, 8000, 10000, 6000, 8000, 4000, 7000, 1000, 1000, 7000, 6000, 4000, 4000, 3000, 3000, 6000, 6000, 2000, 5000, 6000, 10000, 5000, 6000, 6000, 5000, 2000, 5000, 6000, 2000, 10000, 3000, 4000, 3000, 4000, 3000, 8000, 7000, 8000, 4000, 5000, 2000, 2000, 8000, 2000, 8000, 6000, 2000, 9000, 6000], 'Loyalty Score/Skor Loyalitas': [89, 4, 65, 19, 31, 95, 35, 68, 47, 98, 60, 58, 93, 83, 34, 75, 84, 90, 30, 18, 46, 35, 19, 35, 63, 16, 26, 95, 4, 86, 21, 93, 100, 18, 53, 20, 82, 31, 46, 18, 19, 48, 42, 51, 83, 54, 55, 80, 39, 51, 4, 76, 41, 94, 55, 23, 33, 5, 41, 74, 82, 2, 44, 1, 61, 28, 91, 43, 61, 39, 33, 99, 43, 79, 53, 91, 70, 55, 38, 47, 62, 57, 1, 2, 91, 23, 47, 80, 67, 91, 3, 8, 34, 100, 91, 46, 67, 68, 38, 96], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2025-01-03', '2024-09-22', '2025-04-15', '2024-05-05', '2025-03-16', '2024-07-14', '2024-09-30', '2024-04-24', '2025-03-10', '2025-04-20', '2024-10-23', '2024-11-15', '2024-09-20', '2024-10-10', '2024-12-14', '2024-05-23', '2024-04-24', '2025-02-27', '2024-09-30', '2024-08-12', '2024-09-16', '2024-05-16', '2025-04-13', '2024-11-07', '2024-06-20', '2024-07-06', '2024-09-27', '2024-10-12', '2025-02-06', '2024-05-14', '2024-09-15', '2024-10-18', '2024-12-12', '2024-05-12', '2024-12-27', '2024-09-11', '2024-05-15', '2024-06-04', '2024-12-07', '2024-08-11', '2024-09-20', '2024-10-17', '2024-11-26', '2025-01-14', '2025-01-10', '2024-07-26', '2024-05-16', '2025-03-31', '2025-01-18', '2024-10-31', '2024-10-26', '2024-05-26', '2024-10-10', '2024-07-26', '2025-01-10', '2024-12-20', '2024-10-27', '2025-01-02', '2024-12-14', '2025-01-26', '2024-10-17', '2024-11-15', '2024-05-18', '2024-08-20', '2024-10-20', '2024-10-12', '2025-03-29', '2025-04-11', '2024-11-12', '2024-05-13', '2025-04-11', '2024-08-14', '2024-08-16', '2025-02-13', '2024-11-18', '2024-05-27', '2025-02-27', '2024-05-28', '2024-11-16', '2024-06-20', '2024-12-24', '2024-06-02', '2024-12-16', '2024-05-21', '2024-06-27', '2024-08-13', '2025-03-31', '2024-10-03', '2024-06-06', '2025-03-25', '2024-12-25', '2024-08-18', '2024-11-13', '2024-09-17', '2024-05-28', '2024-12-21', '2025-01-05', '2024-06-04', '2025-01-19', '2024-07-10']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Compare average order value city
{ "Age/Usia": [ 48, 62, 64, 20, 56, 18, 27, 66, 27, 48, 38, 44, 41, 25, 28, 47, 40, 42, 30, 57, 67, 29, 53, 61, 42, 35, 24, 44, 53, 58, 19, 58, 53, 25, 23, 55, 58, 21, 59, 50, 29, 55, 65, 18, 28, 45, 51, 47, 62, 26, 28, 22, 18, 38, 36, 53, 39, 25, 51, 39, 70, 19, 31, 50, 66, 59, 28, 37, 59, 21, 29, 33, 54, 32, 18, 50, 55, 28, 64, 20, 53, 47, 41, 23, 19, 29, 68, 69, 33, 53, 48, 27, 58, 50, 65 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053", "CUST_0054", "CUST_0055", "CUST_0056", "CUST_0057", "CUST_0058", "CUST_0059", "CUST_0060", "CUST_0061", "CUST_0062", "CUST_0063", "CUST_0064", "CUST_0065", "CUST_0066", "CUST_0067", "CUST_0068", "CUST_0069", "CUST_0070", "CUST_0071", "CUST_0072", "CUST_0073", "CUST_0074", "CUST_0075", "CUST_0076", "CUST_0077", "CUST_0078", "CUST_0079", "CUST_0080", "CUST_0081", "CUST_0082", "CUST_0083", "CUST_0084", "CUST_0085", "CUST_0086", "CUST_0087", "CUST_0088", "CUST_0089", "CUST_0090", "CUST_0091", "CUST_0092", "CUST_0093", "CUST_0094", "CUST_0095" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Other/Lainnya", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Other/Lainnya", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 10000, 9000, 7000, 3000, 1000, 4000, 2000, 6000, 1000, 2000, 2000, 9000, 3000, 2000, 4000, 1000, 3000, 5000, 1000, 2000, 8000, 9000, 4000, 5000, 3000, 3000, 4000, 9000, 9000, 4000, 3000, 4000, 7000, 6000, 7000, 10000, 6000, 10000, 7000, 3000, 4000, 3000, 6000, 9000, 7000, 3000, 5000, 9000, 4000, 3000, 2000, 6000, 9000, 5000, 5000, 6000, 1000, 4000, 1000, 8000, 8000, 4000, 8000, 10000, 10000, 7000, 5000, 9000, 5000, 7000, 8000, 6000, 6000, 2000, 3000, 4000, 2000, 5000, 4000, 7000, 1000, 8000, 7000, 6000, 4000, 3000, 2000, 1000, 3000, 2000, 4000, 2000, 1000, 5000, 8000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2025-01-05", "2024-06-30", "2024-10-06", "2024-07-10", "2025-01-09", "2025-02-17", "2025-03-24", "2024-10-04", "2024-05-28", "2024-12-17", "2025-01-13", "2024-07-20", "2025-03-17", "2024-06-01", "2025-03-16", "2025-01-22", "2024-09-28", "2024-07-12", "2025-03-16", "2024-04-21", "2024-10-12", "2025-01-21", "2024-12-29", "2024-09-27", "2025-04-10", "2024-05-27", "2024-07-12", "2025-03-10", "2024-12-02", "2024-12-30", "2024-11-17", "2025-01-05", "2025-02-27", "2024-07-17", "2024-12-25", "2024-10-05", "2024-06-30", "2024-08-26", "2025-02-14", "2024-10-19", "2025-03-07", "2025-03-04", "2024-11-04", "2024-10-23", "2024-05-19", "2025-01-28", "2025-04-13", "2024-06-06", "2024-06-23", "2024-05-27", "2025-02-07", "2025-01-06", "2024-10-06", "2025-03-03", "2024-09-26", "2025-01-27", "2024-11-30", "2024-09-13", "2025-03-17", "2024-10-10", "2025-01-31", "2025-03-15", "2024-10-07", "2024-04-25", "2024-12-05", "2024-06-04", "2024-12-29", "2025-01-09", "2024-05-27", "2024-07-19", "2024-11-25", "2025-01-14", "2024-09-12", "2024-07-11", "2024-10-13", "2024-08-06", "2024-05-17", "2024-06-11", "2024-10-01", "2024-08-06", "2024-10-09", "2024-11-05", "2025-03-24", "2024-11-01", "2025-03-01", "2024-12-24", "2024-06-15", "2024-05-10", "2024-07-08", "2024-12-21", "2024-08-23", "2024-09-05", "2024-11-05", "2024-06-04", "2024-05-17" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 96, 40, 41, 15, 54, 78, 15, 23, 63, 17, 51, 77, 90, 88, 87, 26, 22, 10, 88, 96, 19, 99, 85, 31, 83, 58, 12, 42, 92, 28, 73, 98, 63, 45, 36, 90, 98, 40, 5, 26, 99, 5, 6, 24, 81, 43, 54, 15, 19, 65, 7, 49, 48, 25, 2, 43, 15, 13, 23, 60, 3, 55, 44, 92, 1, 89, 48, 18, 15, 43, 40, 93, 93, 50, 29, 99, 51, 93, 1, 11, 31, 26, 76, 55, 93, 38, 40, 22, 83, 91, 99, 40, 36, 2, 26 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053', 'CUST_0054', 'CUST_0055', 'CUST_0056', 'CUST_0057', 'CUST_0058', 'CUST_0059', 'CUST_0060', 'CUST_0061', 'CUST_0062', 'CUST_0063', 'CUST_0064', 'CUST_0065', 'CUST_0066', 'CUST_0067', 'CUST_0068', 'CUST_0069', 'CUST_0070', 'CUST_0071', 'CUST_0072', 'CUST_0073', 'CUST_0074', 'CUST_0075', 'CUST_0076', 'CUST_0077', 'CUST_0078', 'CUST_0079', 'CUST_0080', 'CUST_0081', 'CUST_0082', 'CUST_0083', 'CUST_0084', 'CUST_0085', 'CUST_0086', 'CUST_0087', 'CUST_0088', 'CUST_0089', 'CUST_0090', 'CUST_0091', 'CUST_0092', 'CUST_0093', 'CUST_0094', 'CUST_0095'], 'Age/Usia': [48, 62, 64, 20, 56, 18, 27, 66, 27, 48, 38, 44, 41, 25, 28, 47, 40, 42, 30, 57, 67, 29, 53, 61, 42, 35, 24, 44, 53, 58, 19, 58, 53, 25, 23, 55, 58, 21, 59, 50, 29, 55, 65, 18, 28, 45, 51, 47, 62, 26, 28, 22, 18, 38, 36, 53, 39, 25, 51, 39, 70, 19, 31, 50, 66, 59, 28, 37, 59, 21, 29, 33, 54, 32, 18, 50, 55, 28, 64, 20, 53, 47, 41, 23, 19, 29, 68, 69, 33, 53, 48, 27, 58, 50, 65], 'Gender/Jenis Kelamin': ['Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Other/Lainnya', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Other/Lainnya', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan'], 'Income/Pendapatan': [10000, 9000, 7000, 3000, 1000, 4000, 2000, 6000, 1000, 2000, 2000, 9000, 3000, 2000, 4000, 1000, 3000, 5000, 1000, 2000, 8000, 9000, 4000, 5000, 3000, 3000, 4000, 9000, 9000, 4000, 3000, 4000, 7000, 6000, 7000, 10000, 6000, 10000, 7000, 3000, 4000, 3000, 6000, 9000, 7000, 3000, 5000, 9000, 4000, 3000, 2000, 6000, 9000, 5000, 5000, 6000, 1000, 4000, 1000, 8000, 8000, 4000, 8000, 10000, 10000, 7000, 5000, 9000, 5000, 7000, 8000, 6000, 6000, 2000, 3000, 4000, 2000, 5000, 4000, 7000, 1000, 8000, 7000, 6000, 4000, 3000, 2000, 1000, 3000, 2000, 4000, 2000, 1000, 5000, 8000], 'Loyalty Score/Skor Loyalitas': [96, 40, 41, 15, 54, 78, 15, 23, 63, 17, 51, 77, 90, 88, 87, 26, 22, 10, 88, 96, 19, 99, 85, 31, 83, 58, 12, 42, 92, 28, 73, 98, 63, 45, 36, 90, 98, 40, 5, 26, 99, 5, 6, 24, 81, 43, 54, 15, 19, 65, 7, 49, 48, 25, 2, 43, 15, 13, 23, 60, 3, 55, 44, 92, 1, 89, 48, 18, 15, 43, 40, 93, 93, 50, 29, 99, 51, 93, 1, 11, 31, 26, 76, 55, 93, 38, 40, 22, 83, 91, 99, 40, 36, 2, 26], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2025-01-05', '2024-06-30', '2024-10-06', '2024-07-10', '2025-01-09', '2025-02-17', '2025-03-24', '2024-10-04', '2024-05-28', '2024-12-17', '2025-01-13', '2024-07-20', '2025-03-17', '2024-06-01', '2025-03-16', '2025-01-22', '2024-09-28', '2024-07-12', '2025-03-16', '2024-04-21', '2024-10-12', '2025-01-21', '2024-12-29', '2024-09-27', '2025-04-10', '2024-05-27', '2024-07-12', '2025-03-10', '2024-12-02', '2024-12-30', '2024-11-17', '2025-01-05', '2025-02-27', '2024-07-17', '2024-12-25', '2024-10-05', '2024-06-30', '2024-08-26', '2025-02-14', '2024-10-19', '2025-03-07', '2025-03-04', '2024-11-04', '2024-10-23', '2024-05-19', '2025-01-28', '2025-04-13', '2024-06-06', '2024-06-23', '2024-05-27', '2025-02-07', '2025-01-06', '2024-10-06', '2025-03-03', '2024-09-26', '2025-01-27', '2024-11-30', '2024-09-13', '2025-03-17', '2024-10-10', '2025-01-31', '2025-03-15', '2024-10-07', '2024-04-25', '2024-12-05', '2024-06-04', '2024-12-29', '2025-01-09', '2024-05-27', '2024-07-19', '2024-11-25', '2025-01-14', '2024-09-12', '2024-07-11', '2024-10-13', '2024-08-06', '2024-05-17', '2024-06-11', '2024-10-01', '2024-08-06', '2024-10-09', '2024-11-05', '2025-03-24', '2024-11-01', '2025-03-01', '2024-12-24', '2024-06-15', '2024-05-10', '2024-07-08', '2024-12-21', '2024-08-23', '2024-09-05', '2024-11-05', '2024-06-04', '2024-05-17']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Identifikasi skor loyalitas jenis kelamin
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Automotive/Otomotif", "Automotive/Otomotif", "Automotive/Otomotif" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.2, 0.25, 0.15 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 93.43, 126.36, 183.55 ], "Product/Produk": [ "Accessories_1", "Tires_2", "Oil_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 868, 428, 790 ], "Stock/Stok": [ 184, 130, 198 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Accessories_1', 'Tires_2', 'Oil_3'], 'Sales/Penjualan': [868, 428, 790], 'Price/Harga': [93.43, 126.36, 183.55], 'Category/Kategori': ['Automotive/Otomotif', 'Automotive/Otomotif', 'Automotive/Otomotif'], 'Discount/Diskon': [0.2, 0.25, 0.15], 'Stock/Stok': [184, 130, 198]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Segment growth rate region
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": [ "Berlin", "Dubai", "Sydney", "Singapore", "São Paulo" ], "Conversion Rate/Rasio Konversi": null, "Country/Negara": [ "Germany", "UAE", "Australia", "Singapore", "Brazil" ], "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": [ 0.17, 0.17, -0.03, -0.01, -0.04 ], "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": [ -40.1641, 47.8796, 39.1437, -58.8714, 57.1894 ], "Longitude/Bujur": [ 175.8081, -136.9615, 51.1702, 166.526, 38.7624 ], "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": [ 0.46, 0.33, 0.15, 0.33, 0.2 ], "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": [ "Europe", "Middle East", "Oceania", "Asia", "South America" ], "Revenue/Pendapatan": [ 4876, 3122, 3611, 2876, 1584 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'City/Kota': ['Berlin', 'Dubai', 'Sydney', 'Singapore', 'São Paulo'], 'Country/Negara': ['Germany', 'UAE', 'Australia', 'Singapore', 'Brazil'], 'Region/Wilayah': ['Europe', 'Middle East', 'Oceania', 'Asia', 'South America'], 'Latitude/Lintang': [-40.1641, 47.8796, 39.1437, -58.8714, 57.1894], 'Longitude/Bujur': [175.8081, -136.9615, 51.1702, 166.526, 38.7624], 'Revenue/Pendapatan': [4876, 3122, 3611, 2876, 1584], 'Market Share/Pangsa Pasar': [0.46, 0.33, 0.15, 0.33, 0.2], 'Growth Rate/Pertumbuhan': [0.17, 0.17, -0.03, -0.01, -0.04]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Customer segmentation using KMeans from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler # Select features and scale X = df[['Age/Usia', 'Income/Pendapatan', 'Loyalty Score/Skor Loyalitas']] scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # Cluster into 3 segments kmeans = KMeans(n_clusters=3, random_state=42) df['Segment/Segmen'] = kmeans.fit_predict(X_scaled) # Visualize segments fig = px.scatter_3d(df, x='Age/Usia', y='Income/Pendapatan', z='Loyalty Score/Skor Loyalitas', color='Segment/Segmen', title='Customer Segments') fig.show()
Perkiraan nilai pesanan rata-rata for/untuk 3 bulan
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Automotive/Otomotif", "Automotive/Otomotif", "Automotive/Otomotif" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.16, 0.23, 0.21 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 39.42, 72.33, 52.47 ], "Product/Produk": [ "Tools_1", "Tires_2", "Oil_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 476, 233, 993 ], "Stock/Stok": [ 181, 70, 109 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Tools_1', 'Tires_2', 'Oil_3'], 'Sales/Penjualan': [476, 233, 993], 'Price/Harga': [39.42, 72.33, 52.47], 'Category/Kategori': ['Automotive/Otomotif', 'Automotive/Otomotif', 'Automotive/Otomotif'], 'Discount/Diskon': [0.16, 0.23, 0.21], 'Stock/Stok': [181, 70, 109]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Time series forecasting from statsmodels.tsa.arima.model import ARIMA # Prepare data ts_data = df.set_index('Date/Tanggal')['Revenue/Pendapatan'] model = ARIMA(ts_data, order=(1,1,1)) model_fit = model.fit() forecast = model_fit.forecast(steps=7) print('Forecast for next 7 days:', forecast)
Optimalkan rasio konversi kategori
{ "Age/Usia": [ 67, 39, 58, 64, 69, 69, 70, 53, 61, 26, 57, 58, 41, 52, 26, 38, 21, 19, 54, 47, 23, 23, 60, 52, 45, 49, 66, 34, 59, 36, 25, 62, 57, 55, 21, 22, 62, 47, 45, 66, 33, 30, 32, 53, 50, 22, 51, 66, 68, 47, 23, 29, 64, 24, 37, 28, 21, 58 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053", "CUST_0054", "CUST_0055", "CUST_0056", "CUST_0057", "CUST_0058" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Other/Lainnya", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 7000, 10000, 7000, 9000, 10000, 7000, 9000, 2000, 8000, 8000, 7000, 2000, 8000, 8000, 3000, 3000, 5000, 6000, 6000, 8000, 8000, 6000, 2000, 9000, 7000, 10000, 9000, 7000, 5000, 4000, 8000, 3000, 5000, 10000, 3000, 3000, 3000, 5000, 3000, 4000, 3000, 5000, 10000, 3000, 2000, 5000, 3000, 9000, 10000, 1000, 7000, 10000, 5000, 4000, 5000, 10000, 2000, 9000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2024-11-01", "2024-08-11", "2024-07-31", "2025-02-09", "2024-10-21", "2024-11-05", "2024-07-28", "2024-07-21", "2025-02-04", "2025-02-03", "2024-12-23", "2024-08-05", "2025-04-15", "2025-01-20", "2025-03-15", "2025-03-26", "2024-12-06", "2024-05-26", "2024-08-08", "2024-07-13", "2024-12-08", "2024-08-03", "2024-08-27", "2025-01-07", "2024-11-18", "2024-08-30", "2025-02-16", "2024-10-07", "2025-03-04", "2024-04-22", "2025-02-19", "2024-09-25", "2025-03-26", "2025-03-16", "2024-06-01", "2025-02-25", "2024-06-08", "2024-08-29", "2024-12-10", "2024-05-25", "2024-11-02", "2024-06-03", "2025-03-10", "2024-12-16", "2024-12-01", "2024-07-11", "2025-02-25", "2025-02-15", "2024-11-20", "2024-06-13", "2025-03-31", "2024-09-01", "2024-10-25", "2025-04-02", "2024-12-22", "2024-08-06", "2024-09-23", "2024-10-15" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 96, 66, 55, 68, 35, 96, 13, 85, 26, 48, 48, 43, 30, 56, 96, 24, 31, 18, 5, 71, 58, 29, 70, 15, 52, 89, 18, 96, 83, 84, 50, 63, 29, 4, 13, 88, 29, 89, 41, 23, 99, 53, 58, 59, 38, 14, 42, 46, 31, 14, 42, 58, 44, 57, 19, 33, 22, 88 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053', 'CUST_0054', 'CUST_0055', 'CUST_0056', 'CUST_0057', 'CUST_0058'], 'Age/Usia': [67, 39, 58, 64, 69, 69, 70, 53, 61, 26, 57, 58, 41, 52, 26, 38, 21, 19, 54, 47, 23, 23, 60, 52, 45, 49, 66, 34, 59, 36, 25, 62, 57, 55, 21, 22, 62, 47, 45, 66, 33, 30, 32, 53, 50, 22, 51, 66, 68, 47, 23, 29, 64, 24, 37, 28, 21, 58], 'Gender/Jenis Kelamin': ['Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Other/Lainnya', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan'], 'Income/Pendapatan': [7000, 10000, 7000, 9000, 10000, 7000, 9000, 2000, 8000, 8000, 7000, 2000, 8000, 8000, 3000, 3000, 5000, 6000, 6000, 8000, 8000, 6000, 2000, 9000, 7000, 10000, 9000, 7000, 5000, 4000, 8000, 3000, 5000, 10000, 3000, 3000, 3000, 5000, 3000, 4000, 3000, 5000, 10000, 3000, 2000, 5000, 3000, 9000, 10000, 1000, 7000, 10000, 5000, 4000, 5000, 10000, 2000, 9000], 'Loyalty Score/Skor Loyalitas': [96, 66, 55, 68, 35, 96, 13, 85, 26, 48, 48, 43, 30, 56, 96, 24, 31, 18, 5, 71, 58, 29, 70, 15, 52, 89, 18, 96, 83, 84, 50, 63, 29, 4, 13, 88, 29, 89, 41, 23, 99, 53, 58, 59, 38, 14, 42, 46, 31, 14, 42, 58, 44, 57, 19, 33, 22, 88], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2024-11-01', '2024-08-11', '2024-07-31', '2025-02-09', '2024-10-21', '2024-11-05', '2024-07-28', '2024-07-21', '2025-02-04', '2025-02-03', '2024-12-23', '2024-08-05', '2025-04-15', '2025-01-20', '2025-03-15', '2025-03-26', '2024-12-06', '2024-05-26', '2024-08-08', '2024-07-13', '2024-12-08', '2024-08-03', '2024-08-27', '2025-01-07', '2024-11-18', '2024-08-30', '2025-02-16', '2024-10-07', '2025-03-04', '2024-04-22', '2025-02-19', '2024-09-25', '2025-03-26', '2025-03-16', '2024-06-01', '2025-02-25', '2024-06-08', '2024-08-29', '2024-12-10', '2024-05-25', '2024-11-02', '2024-06-03', '2025-03-10', '2024-12-16', '2024-12-01', '2024-07-11', '2025-02-25', '2025-02-15', '2024-11-20', '2024-06-13', '2025-03-31', '2024-09-01', '2024-10-25', '2025-04-02', '2024-12-22', '2024-08-06', '2024-09-23', '2024-10-15']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Korelasi stok and/dan pengunjung
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": [ 53.35, 104.13, 82.59, 82.67, 82.7, 67.42, 170.61, 166.08, 93.25, 185.35, 197.22, 184.58, 165.21, 70.55, 81.46, 184.71, 155.57, 90.51, 52.58, 178.41, 151.51, 170.83, 132.97, 78.73, 98.18, 199.2, 176.3, 79.95, 116.52, 156.41 ], "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": [ 0.060200000000000004, 0.061900000000000004, 0.066, 0.0217, 0.0776, 0.0763, 0.0931, 0.0945, 0.0722, 0.0412, 0.039400000000000004, 0.0176, 0.0587, 0.0419, 0.014100000000000001, 0.0316, 0.0494, 0.0443, 0.0703, 0.051000000000000004, 0.0123, 0.0567, 0.045700000000000005, 0.074, 0.07350000000000001, 0.06430000000000001, 0.0424, 0.0413, 0.0189, 0.0437 ], "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": [ "2025-03-23", "2025-03-24", "2025-03-25", "2025-03-26", "2025-03-27", "2025-03-28", "2025-03-29", "2025-03-30", "2025-03-31", "2025-04-01", "2025-04-02", "2025-04-03", "2025-04-04", "2025-04-05", "2025-04-06", "2025-04-07", "2025-04-08", "2025-04-09", "2025-04-10", "2025-04-11", "2025-04-12", "2025-04-13", "2025-04-14", "2025-04-15", "2025-04-16", "2025-04-17", "2025-04-18", "2025-04-19", "2025-04-20", "2025-04-21" ], "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": [ 4514.44, 4610.49, 4569.13, 4686.26, 4626.8, 4655.8, 4491.58, 4522.54, 4275.25, 4205.12, 4135.88, 4033.26, 4131.85, 4112.06, 4254.95, 4308.77, 4380.46, 4408.72, 4437.6, 4386.69, 4342.46, 4343.31, 4194.86, 4039.69, 3948.55, 3848.28, 3864.8, 3855.2, 3914, 3971.34 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": [ 224, 249, 137, 227, 255, 244, 101, 97, 88, 228, 69, 50, 160, 176, 161, 137, 210, 100, 278, 92, 180, 87, 97, 201, 236, 253, 253, 208, 210, 173 ] }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Date/Tanggal': ['2025-03-23', '2025-03-24', '2025-03-25', '2025-03-26', '2025-03-27', '2025-03-28', '2025-03-29', '2025-03-30', '2025-03-31', '2025-04-01', '2025-04-02', '2025-04-03', '2025-04-04', '2025-04-05', '2025-04-06', '2025-04-07', '2025-04-08', '2025-04-09', '2025-04-10', '2025-04-11', '2025-04-12', '2025-04-13', '2025-04-14', '2025-04-15', '2025-04-16', '2025-04-17', '2025-04-18', '2025-04-19', '2025-04-20', '2025-04-21'], 'Revenue/Pendapatan': [4514.44, 4610.49, 4569.13, 4686.26, 4626.8, 4655.8, 4491.58, 4522.54, 4275.25, 4205.12, 4135.88, 4033.26, 4131.85, 4112.06, 4254.95, 4308.77, 4380.46, 4408.72, 4437.6, 4386.69, 4342.46, 4343.31, 4194.86, 4039.69, 3948.55, 3848.28, 3864.8, 3855.2, 3914.0, 3971.34], 'Visitors/Pengunjung': [224, 249, 137, 227, 255, 244, 101, 97, 88, 228, 69, 50, 160, 176, 161, 137, 210, 100, 278, 92, 180, 87, 97, 201, 236, 253, 253, 208, 210, 173], 'Conversion Rate/Rasio Konversi': [0.0602, 0.0619, 0.066, 0.0217, 0.0776, 0.0763, 0.0931, 0.0945, 0.0722, 0.0412, 0.0394, 0.0176, 0.0587, 0.0419, 0.0141, 0.0316, 0.0494, 0.0443, 0.0703, 0.051, 0.0123, 0.0567, 0.0457, 0.074, 0.0735, 0.0643, 0.0424, 0.0413, 0.0189, 0.0437], 'Avg. Order Value/Nilai Pesanan Rata2': [53.35, 104.13, 82.59, 82.67, 82.7, 67.42, 170.61, 166.08, 93.25, 185.35, 197.22, 184.58, 165.21, 70.55, 81.46, 184.71, 155.57, 90.51, 52.58, 178.41, 151.51, 170.83, 132.97, 78.73, 98.18, 199.2, 176.3, 79.95, 116.52, 156.41]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Correlation analysis corr_matrix = df.corr(numeric_only=True) fig = px.imshow(corr_matrix, text_auto=True, title='Correlation Matrix') fig.show()
Optimalkan skor loyalitas jenis kelamin
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": [ 134.42, 121.18, 108.88, 97.22, 102.79, 184.62, 109.87, 101.36, 172.34, 167.19, 155.34, 84.45, 183.35, 140.92, 92.77, 156.45, 107.36, 55.67, 59.39, 78.26, 138.42, 190.19, 144.13, 122.89, 79.76, 79.39, 133.72, 84.41, 81.43, 98.14 ], "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": [ 0.0709, 0.0892, 0.020800000000000003, 0.0403, 0.0206, 0.0852, 0.029900000000000003, 0.0531, 0.0603, 0.07100000000000001, 0.052000000000000005, 0.0782, 0.066, 0.057100000000000005, 0.018500000000000003, 0.0671, 0.06720000000000001, 0.0741, 0.099, 0.08660000000000001, 0.091, 0.07440000000000001, 0.0596, 0.027600000000000003, 0.030500000000000003, 0.0545, 0.0351, 0.0801, 0.075, 0.08610000000000001 ], "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": [ "2025-03-23", "2025-03-24", "2025-03-25", "2025-03-26", "2025-03-27", "2025-03-28", "2025-03-29", "2025-03-30", "2025-03-31", "2025-04-01", "2025-04-02", "2025-04-03", "2025-04-04", "2025-04-05", "2025-04-06", "2025-04-07", "2025-04-08", "2025-04-09", "2025-04-10", "2025-04-11", "2025-04-12", "2025-04-13", "2025-04-14", "2025-04-15", "2025-04-16", "2025-04-17", "2025-04-18", "2025-04-19", "2025-04-20", "2025-04-21" ], "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": [ 4885.67, 4923.74, 5045.85, 5030.3, 5131.55, 5005.91, 5051.45, 5039.22, 4913.45, 4851.07, 4773.86, 4869.94, 4811.08, 4854.35, 4966.83, 5119.77, 5118.75, 5295.45, 5197.78, 5242.79, 5266.27, 5248.47, 5196.57, 5155.52, 4903.49, 4999.3, 5091.51, 5046.53, 5152.16, 5160.01 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": [ 73, 80, 226, 180, 186, 208, 112, 280, 62, 192, 158, 133, 185, 248, 145, 282, 292, 76, 303, 247, 214, 256, 49, 56, 288, 278, 238, 291, 159, 275 ] }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Date/Tanggal': ['2025-03-23', '2025-03-24', '2025-03-25', '2025-03-26', '2025-03-27', '2025-03-28', '2025-03-29', '2025-03-30', '2025-03-31', '2025-04-01', '2025-04-02', '2025-04-03', '2025-04-04', '2025-04-05', '2025-04-06', '2025-04-07', '2025-04-08', '2025-04-09', '2025-04-10', '2025-04-11', '2025-04-12', '2025-04-13', '2025-04-14', '2025-04-15', '2025-04-16', '2025-04-17', '2025-04-18', '2025-04-19', '2025-04-20', '2025-04-21'], 'Revenue/Pendapatan': [4885.67, 4923.74, 5045.85, 5030.3, 5131.55, 5005.91, 5051.45, 5039.22, 4913.45, 4851.07, 4773.86, 4869.94, 4811.08, 4854.35, 4966.83, 5119.77, 5118.75, 5295.45, 5197.78, 5242.79, 5266.27, 5248.47, 5196.57, 5155.52, 4903.49, 4999.3, 5091.51, 5046.53, 5152.16, 5160.01], 'Visitors/Pengunjung': [73, 80, 226, 180, 186, 208, 112, 280, 62, 192, 158, 133, 185, 248, 145, 282, 292, 76, 303, 247, 214, 256, 49, 56, 288, 278, 238, 291, 159, 275], 'Conversion Rate/Rasio Konversi': [0.0709, 0.0892, 0.0208, 0.0403, 0.0206, 0.0852, 0.0299, 0.0531, 0.0603, 0.071, 0.052, 0.0782, 0.066, 0.0571, 0.0185, 0.0671, 0.0672, 0.0741, 0.099, 0.0866, 0.091, 0.0744, 0.0596, 0.0276, 0.0305, 0.0545, 0.0351, 0.0801, 0.075, 0.0861], 'Avg. Order Value/Nilai Pesanan Rata2': [134.42, 121.18, 108.88, 97.22, 102.79, 184.62, 109.87, 101.36, 172.34, 167.19, 155.34, 84.45, 183.35, 140.92, 92.77, 156.45, 107.36, 55.67, 59.39, 78.26, 138.42, 190.19, 144.13, 122.89, 79.76, 79.39, 133.72, 84.41, 81.43, 98.14]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Analyze growth rate customer segment
{ "Age/Usia": [ 66, 34, 56, 69, 24, 60, 34, 21, 25, 57, 44, 24, 45, 24, 19, 60, 38, 26, 21, 39, 33, 18, 59, 25, 54, 36, 68, 63, 28, 63, 56, 22, 65, 22, 43, 67, 29, 47, 32, 42, 54, 52, 36, 46, 49, 66, 25, 57, 65, 30, 44, 45, 32, 28, 41, 49, 48, 31, 34, 44, 19, 48, 37, 37, 42, 32, 45, 63, 48 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053", "CUST_0054", "CUST_0055", "CUST_0056", "CUST_0057", "CUST_0058", "CUST_0059", "CUST_0060", "CUST_0061", "CUST_0062", "CUST_0063", "CUST_0064", "CUST_0065", "CUST_0066", "CUST_0067", "CUST_0068", "CUST_0069" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Male/Laki-laki", "Male/Laki-laki", "Other/Lainnya", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Other/Lainnya", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 6000, 6000, 4000, 10000, 7000, 8000, 5000, 7000, 4000, 2000, 7000, 7000, 6000, 10000, 9000, 4000, 6000, 8000, 7000, 5000, 2000, 5000, 4000, 7000, 4000, 10000, 10000, 4000, 3000, 2000, 8000, 5000, 7000, 6000, 6000, 5000, 3000, 2000, 2000, 3000, 8000, 10000, 4000, 9000, 8000, 6000, 4000, 6000, 5000, 5000, 4000, 3000, 4000, 5000, 7000, 8000, 9000, 3000, 2000, 1000, 5000, 5000, 5000, 9000, 6000, 5000, 3000, 3000, 9000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2024-10-21", "2024-10-31", "2024-07-11", "2024-10-27", "2024-08-07", "2024-10-16", "2024-12-11", "2024-09-14", "2024-06-12", "2024-08-23", "2024-08-24", "2024-07-22", "2024-09-29", "2024-12-02", "2024-08-20", "2024-11-29", "2024-12-09", "2024-05-19", "2024-11-19", "2025-04-20", "2025-02-02", "2024-07-09", "2024-05-26", "2024-08-25", "2024-10-31", "2024-08-01", "2025-01-19", "2025-04-15", "2024-06-05", "2024-11-14", "2025-01-10", "2024-12-19", "2025-03-15", "2025-02-10", "2025-04-06", "2024-10-24", "2024-09-26", "2024-05-02", "2024-10-11", "2024-04-24", "2024-05-03", "2024-05-21", "2025-04-03", "2025-01-11", "2025-01-04", "2024-08-26", "2024-08-26", "2024-10-03", "2025-01-10", "2024-10-09", "2024-07-20", "2025-02-01", "2024-05-31", "2024-12-28", "2024-11-05", "2024-09-13", "2024-09-12", "2024-11-24", "2025-02-10", "2024-12-14", "2024-08-07", "2024-10-14", "2024-10-03", "2024-11-27", "2024-11-15", "2024-04-22", "2024-10-25", "2024-08-10", "2024-12-22" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 23, 88, 22, 24, 66, 60, 91, 73, 55, 57, 16, 27, 78, 33, 76, 7, 38, 28, 89, 70, 15, 76, 65, 67, 77, 61, 53, 30, 96, 89, 66, 39, 98, 68, 83, 31, 89, 18, 71, 13, 22, 96, 71, 23, 56, 18, 66, 43, 52, 63, 24, 55, 71, 92, 96, 63, 66, 99, 44, 98, 71, 23, 87, 6, 5, 5, 50, 77, 23 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053', 'CUST_0054', 'CUST_0055', 'CUST_0056', 'CUST_0057', 'CUST_0058', 'CUST_0059', 'CUST_0060', 'CUST_0061', 'CUST_0062', 'CUST_0063', 'CUST_0064', 'CUST_0065', 'CUST_0066', 'CUST_0067', 'CUST_0068', 'CUST_0069'], 'Age/Usia': [66, 34, 56, 69, 24, 60, 34, 21, 25, 57, 44, 24, 45, 24, 19, 60, 38, 26, 21, 39, 33, 18, 59, 25, 54, 36, 68, 63, 28, 63, 56, 22, 65, 22, 43, 67, 29, 47, 32, 42, 54, 52, 36, 46, 49, 66, 25, 57, 65, 30, 44, 45, 32, 28, 41, 49, 48, 31, 34, 44, 19, 48, 37, 37, 42, 32, 45, 63, 48], 'Gender/Jenis Kelamin': ['Male/Laki-laki', 'Male/Laki-laki', 'Other/Lainnya', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Other/Lainnya', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki'], 'Income/Pendapatan': [6000, 6000, 4000, 10000, 7000, 8000, 5000, 7000, 4000, 2000, 7000, 7000, 6000, 10000, 9000, 4000, 6000, 8000, 7000, 5000, 2000, 5000, 4000, 7000, 4000, 10000, 10000, 4000, 3000, 2000, 8000, 5000, 7000, 6000, 6000, 5000, 3000, 2000, 2000, 3000, 8000, 10000, 4000, 9000, 8000, 6000, 4000, 6000, 5000, 5000, 4000, 3000, 4000, 5000, 7000, 8000, 9000, 3000, 2000, 1000, 5000, 5000, 5000, 9000, 6000, 5000, 3000, 3000, 9000], 'Loyalty Score/Skor Loyalitas': [23, 88, 22, 24, 66, 60, 91, 73, 55, 57, 16, 27, 78, 33, 76, 7, 38, 28, 89, 70, 15, 76, 65, 67, 77, 61, 53, 30, 96, 89, 66, 39, 98, 68, 83, 31, 89, 18, 71, 13, 22, 96, 71, 23, 56, 18, 66, 43, 52, 63, 24, 55, 71, 92, 96, 63, 66, 99, 44, 98, 71, 23, 87, 6, 5, 5, 50, 77, 23], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2024-10-21', '2024-10-31', '2024-07-11', '2024-10-27', '2024-08-07', '2024-10-16', '2024-12-11', '2024-09-14', '2024-06-12', '2024-08-23', '2024-08-24', '2024-07-22', '2024-09-29', '2024-12-02', '2024-08-20', '2024-11-29', '2024-12-09', '2024-05-19', '2024-11-19', '2025-04-20', '2025-02-02', '2024-07-09', '2024-05-26', '2024-08-25', '2024-10-31', '2024-08-01', '2025-01-19', '2025-04-15', '2024-06-05', '2024-11-14', '2025-01-10', '2024-12-19', '2025-03-15', '2025-02-10', '2025-04-06', '2024-10-24', '2024-09-26', '2024-05-02', '2024-10-11', '2024-04-24', '2024-05-03', '2024-05-21', '2025-04-03', '2025-01-11', '2025-01-04', '2024-08-26', '2024-08-26', '2024-10-03', '2025-01-10', '2024-10-09', '2024-07-20', '2025-02-01', '2024-05-31', '2024-12-28', '2024-11-05', '2024-09-13', '2024-09-12', '2024-11-24', '2025-02-10', '2024-12-14', '2024-08-07', '2024-10-14', '2024-10-03', '2024-11-27', '2024-11-15', '2024-04-22', '2024-10-25', '2024-08-10', '2024-12-22']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Customer segmentation using KMeans from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler # Select features and scale X = df[['Age/Usia', 'Income/Pendapatan', 'Loyalty Score/Skor Loyalitas']] scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # Cluster into 3 segments kmeans = KMeans(n_clusters=3, random_state=42) df['Segment/Segmen'] = kmeans.fit_predict(X_scaled) # Visualize segments fig = px.scatter_3d(df, x='Age/Usia', y='Income/Pendapatan', z='Loyalty Score/Skor Loyalitas', color='Segment/Segmen', title='Customer Segments') fig.show()
Forecast price for/untuk year
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": [ 177.15, 179.1, 89.85, 128.85, 51.62, 66.95, 169.7, 175.1, 130.86, 189.79, 158.87, 131.49, 91.56, 86.42, 169.2, 190.49, 76.62, 169.76, 187.07, 104.54, 188.65, 162.4, 173.82, 83.12, 56.45, 151.11, 75.32, 54.1, 104.02, 185.2 ], "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": [ 0.0309, 0.0692, 0.085, 0.08700000000000001, 0.012400000000000001, 0.07440000000000001, 0.09870000000000001, 0.0171, 0.045700000000000005, 0.032600000000000004, 0.0497, 0.0881, 0.0993, 0.0951, 0.037700000000000004, 0.0844, 0.0494, 0.028300000000000002, 0.0971, 0.0325, 0.042800000000000005, 0.0625, 0.0844, 0.058, 0.044, 0.0599, 0.0142, 0.0426, 0.09430000000000001, 0.0488 ], "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": [ "2025-03-23", "2025-03-24", "2025-03-25", "2025-03-26", "2025-03-27", "2025-03-28", "2025-03-29", "2025-03-30", "2025-03-31", "2025-04-01", "2025-04-02", "2025-04-03", "2025-04-04", "2025-04-05", "2025-04-06", "2025-04-07", "2025-04-08", "2025-04-09", "2025-04-10", "2025-04-11", "2025-04-12", "2025-04-13", "2025-04-14", "2025-04-15", "2025-04-16", "2025-04-17", "2025-04-18", "2025-04-19", "2025-04-20", "2025-04-21" ], "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": [ 2911.36, 3103.26, 3179.19, 3202.28, 3175.56, 3093.76, 3129.49, 2993.54, 2938.08, 2806.02, 2762.95, 2706, 2713.89, 2864.16, 2856.41, 3005.64, 3003.82, 3067.74, 3101.77, 3039.46, 2889.51, 2871.83, 2837.44, 2657.35, 2622.05, 2626.15, 2584.07, 2683.03, 2719.88, 2885.58 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": [ 122, 268, 223, 190, 228, 100, 148, 190, 141, 121, 51, 157, 225, 118, 247, 139, 230, 183, 74, 225, 247, 231, 191, 223, 205, 155, 239, 277, 265, 271 ] }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Date/Tanggal': ['2025-03-23', '2025-03-24', '2025-03-25', '2025-03-26', '2025-03-27', '2025-03-28', '2025-03-29', '2025-03-30', '2025-03-31', '2025-04-01', '2025-04-02', '2025-04-03', '2025-04-04', '2025-04-05', '2025-04-06', '2025-04-07', '2025-04-08', '2025-04-09', '2025-04-10', '2025-04-11', '2025-04-12', '2025-04-13', '2025-04-14', '2025-04-15', '2025-04-16', '2025-04-17', '2025-04-18', '2025-04-19', '2025-04-20', '2025-04-21'], 'Revenue/Pendapatan': [2911.36, 3103.26, 3179.19, 3202.28, 3175.56, 3093.76, 3129.49, 2993.54, 2938.08, 2806.02, 2762.95, 2706.0, 2713.89, 2864.16, 2856.41, 3005.64, 3003.82, 3067.74, 3101.77, 3039.46, 2889.51, 2871.83, 2837.44, 2657.35, 2622.05, 2626.15, 2584.07, 2683.03, 2719.88, 2885.58], 'Visitors/Pengunjung': [122, 268, 223, 190, 228, 100, 148, 190, 141, 121, 51, 157, 225, 118, 247, 139, 230, 183, 74, 225, 247, 231, 191, 223, 205, 155, 239, 277, 265, 271], 'Conversion Rate/Rasio Konversi': [0.0309, 0.0692, 0.085, 0.087, 0.0124, 0.0744, 0.0987, 0.0171, 0.0457, 0.0326, 0.0497, 0.0881, 0.0993, 0.0951, 0.0377, 0.0844, 0.0494, 0.0283, 0.0971, 0.0325, 0.0428, 0.0625, 0.0844, 0.058, 0.044, 0.0599, 0.0142, 0.0426, 0.0943, 0.0488], 'Avg. Order Value/Nilai Pesanan Rata2': [177.15, 179.1, 89.85, 128.85, 51.62, 66.95, 169.7, 175.1, 130.86, 189.79, 158.87, 131.49, 91.56, 86.42, 169.2, 190.49, 76.62, 169.76, 187.07, 104.54, 188.65, 162.4, 173.82, 83.12, 56.45, 151.11, 75.32, 54.1, 104.02, 185.2]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Time series forecasting from statsmodels.tsa.arima.model import ARIMA # Prepare data ts_data = df.set_index('Date/Tanggal')['Revenue/Pendapatan'] model = ARIMA(ts_data, order=(1,1,1)) model_fit = model.fit() forecast = model_fit.forecast(steps=7) print('Forecast for next 7 days:', forecast)
Analyze average order value product
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Electronics/Elektronik", "Electronics/Elektronik", "Electronics/Elektronik" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.01, 0.05, 0.27 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 41.59, 152.91, 175.27 ], "Product/Produk": [ "Headphones_1", "Laptop_2", "TV_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 246, 971, 721 ], "Stock/Stok": [ 162, 58, 44 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Headphones_1', 'Laptop_2', 'TV_3'], 'Sales/Penjualan': [246, 971, 721], 'Price/Harga': [41.59, 152.91, 175.27], 'Category/Kategori': ['Electronics/Elektronik', 'Electronics/Elektronik', 'Electronics/Elektronik'], 'Discount/Diskon': [0.01, 0.05, 0.27], 'Stock/Stok': [162, 58, 44]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Kelompokkan pangsa pasar kategori
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": [ 71.25, 111.18, 85.06, 129.36, 63.01, 187.63, 92.03, 189.45, 131.09, 161.71, 134.77, 128.22, 50.27, 74.57, 120.34, 178.23, 164.19, 171.93, 90.67, 142.15, 199.27, 95.58, 133.41, 132.34, 195.91, 77.9, 118.07, 75.04, 65.08, 151.97 ], "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": [ 0.0546, 0.09860000000000001, 0.0917, 0.0969, 0.09340000000000001, 0.07350000000000001, 0.0606, 0.0114, 0.089, 0.061700000000000005, 0.0442, 0.0891, 0.0859, 0.045700000000000005, 0.0823, 0.035500000000000004, 0.0762, 0.049, 0.0599, 0.0217, 0.0907, 0.0912, 0.0398, 0.07050000000000001, 0.0188, 0.079, 0.0171, 0.0776, 0.0268, 0.031400000000000004 ], "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": [ "2025-03-23", "2025-03-24", "2025-03-25", "2025-03-26", "2025-03-27", "2025-03-28", "2025-03-29", "2025-03-30", "2025-03-31", "2025-04-01", "2025-04-02", "2025-04-03", "2025-04-04", "2025-04-05", "2025-04-06", "2025-04-07", "2025-04-08", "2025-04-09", "2025-04-10", "2025-04-11", "2025-04-12", "2025-04-13", "2025-04-14", "2025-04-15", "2025-04-16", "2025-04-17", "2025-04-18", "2025-04-19", "2025-04-20", "2025-04-21" ], "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": [ 2424.36, 2543.69, 2630.15, 2622.91, 2724.41, 2570.61, 2558.62, 2512.34, 2415.35, 2336.93, 2255.42, 2313.75, 2325.81, 2343.68, 2470.08, 2505.31, 2585.32, 2606.36, 2610.37, 2580.67, 2596.07, 2590.04, 2376.33, 2330.5, 2245.88, 2267.9, 2148, 2273.95, 2389.22, 2443.11 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": [ 124, 192, 173, 114, 176, 166, 106, 137, 269, 262, 266, 57, 78, 289, 172, 271, 177, 160, 203, 99, 158, 83, 42, 202, 277, 216, 172, 252, 86, 246 ] }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Date/Tanggal': ['2025-03-23', '2025-03-24', '2025-03-25', '2025-03-26', '2025-03-27', '2025-03-28', '2025-03-29', '2025-03-30', '2025-03-31', '2025-04-01', '2025-04-02', '2025-04-03', '2025-04-04', '2025-04-05', '2025-04-06', '2025-04-07', '2025-04-08', '2025-04-09', '2025-04-10', '2025-04-11', '2025-04-12', '2025-04-13', '2025-04-14', '2025-04-15', '2025-04-16', '2025-04-17', '2025-04-18', '2025-04-19', '2025-04-20', '2025-04-21'], 'Revenue/Pendapatan': [2424.36, 2543.69, 2630.15, 2622.91, 2724.41, 2570.61, 2558.62, 2512.34, 2415.35, 2336.93, 2255.42, 2313.75, 2325.81, 2343.68, 2470.08, 2505.31, 2585.32, 2606.36, 2610.37, 2580.67, 2596.07, 2590.04, 2376.33, 2330.5, 2245.88, 2267.9, 2148.0, 2273.95, 2389.22, 2443.11], 'Visitors/Pengunjung': [124, 192, 173, 114, 176, 166, 106, 137, 269, 262, 266, 57, 78, 289, 172, 271, 177, 160, 203, 99, 158, 83, 42, 202, 277, 216, 172, 252, 86, 246], 'Conversion Rate/Rasio Konversi': [0.0546, 0.0986, 0.0917, 0.0969, 0.0934, 0.0735, 0.0606, 0.0114, 0.089, 0.0617, 0.0442, 0.0891, 0.0859, 0.0457, 0.0823, 0.0355, 0.0762, 0.049, 0.0599, 0.0217, 0.0907, 0.0912, 0.0398, 0.0705, 0.0188, 0.079, 0.0171, 0.0776, 0.0268, 0.0314], 'Avg. Order Value/Nilai Pesanan Rata2': [71.25, 111.18, 85.06, 129.36, 63.01, 187.63, 92.03, 189.45, 131.09, 161.71, 134.77, 128.22, 50.27, 74.57, 120.34, 178.23, 164.19, 171.93, 90.67, 142.15, 199.27, 95.58, 133.41, 132.34, 195.91, 77.9, 118.07, 75.04, 65.08, 151.97]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Hitung pendapatan segmen pelanggan
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Electronics/Elektronik", "Electronics/Elektronik", "Electronics/Elektronik" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.01, 0.1, 0.1 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 154.13, 126.38, 84.91 ], "Product/Produk": [ "Headphones_1", "Smartphone_2", "Laptop_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 907, 206, 648 ], "Stock/Stok": [ 121, 72, 82 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Headphones_1', 'Smartphone_2', 'Laptop_3'], 'Sales/Penjualan': [907, 206, 648], 'Price/Harga': [154.13, 126.38, 84.91], 'Category/Kategori': ['Electronics/Elektronik', 'Electronics/Elektronik', 'Electronics/Elektronik'], 'Discount/Diskon': [0.01, 0.1, 0.1], 'Stock/Stok': [121, 72, 82]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # z-score calculation result = df['Category/Kategori'].(df['{col}'] - df['{col}'].mean())/df['{col}'].std() print(result)
Bandingkan diskon kota
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Automotive/Otomotif", "Automotive/Otomotif", "Automotive/Otomotif" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.08, 0.21, 0.08 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 193.34, 83.85, 178.17 ], "Product/Produk": [ "Tires_1", "Accessories_2", "Tools_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 699, 105, 121 ], "Stock/Stok": [ 68, 183, 71 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Tires_1', 'Accessories_2', 'Tools_3'], 'Sales/Penjualan': [699, 105, 121], 'Price/Harga': [193.34, 83.85, 178.17], 'Category/Kategori': ['Automotive/Otomotif', 'Automotive/Otomotif', 'Automotive/Otomotif'], 'Discount/Diskon': [0.08, 0.21, 0.08], 'Stock/Stok': [68, 183, 71]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Compare discount time period
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Food/Makanan", "Food/Makanan", "Food/Makanan" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.05, 0.09, 0.14 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 181.55, 183.82, 137.98 ], "Product/Produk": [ "Fruits_1", "Snacks_2", "Dairy_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 586, 879, 682 ], "Stock/Stok": [ 75, 161, 174 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Fruits_1', 'Snacks_2', 'Dairy_3'], 'Sales/Penjualan': [586, 879, 682], 'Price/Harga': [181.55, 183.82, 137.98], 'Category/Kategori': ['Food/Makanan', 'Food/Makanan', 'Food/Makanan'], 'Discount/Diskon': [0.05, 0.09, 0.14], 'Stock/Stok': [75, 161, 174]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Optimalkan pengunjung negara
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": [ 147.47, 109.1, 98.65, 106.21, 89.72, 190.1, 198.44, 110.11, 174.24, 157.71, 198.41, 83.41, 131.77, 128.38, 140.52, 62.34, 170.6, 61.26, 52.11, 58.17, 148.89, 155.73, 166.45, 191.49, 62.3, 99.5, 54.25, 88.95, 53.35, 60.28 ], "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": [ 0.049600000000000005, 0.06620000000000001, 0.0709, 0.0694, 0.020900000000000002, 0.0267, 0.0639, 0.0341, 0.038, 0.08750000000000001, 0.0341, 0.0398, 0.0441, 0.0158, 0.0393, 0.0412, 0.0412, 0.0286, 0.0655, 0.0495, 0.06860000000000001, 0.08990000000000001, 0.0413, 0.0763, 0.024800000000000003, 0.0188, 0.0261, 0.027800000000000002, 0.07680000000000001, 0.036500000000000005 ], "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": [ "2025-03-23", "2025-03-24", "2025-03-25", "2025-03-26", "2025-03-27", "2025-03-28", "2025-03-29", "2025-03-30", "2025-03-31", "2025-04-01", "2025-04-02", "2025-04-03", "2025-04-04", "2025-04-05", "2025-04-06", "2025-04-07", "2025-04-08", "2025-04-09", "2025-04-10", "2025-04-11", "2025-04-12", "2025-04-13", "2025-04-14", "2025-04-15", "2025-04-16", "2025-04-17", "2025-04-18", "2025-04-19", "2025-04-20", "2025-04-21" ], "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": [ 1646.04, 1788.65, 1821.35, 1882.7, 1820.9, 1781.82, 1762.55, 1702.37, 1647.74, 1476.48, 1420.16, 1345.21, 1391.81, 1499.9, 1608.16, 1546.25, 1626.12, 1790.72, 1753.63, 1736.55, 1665.52, 1553.72, 1413.28, 1253.74, 1299.75, 1152.54, 1168.46, 1207.52, 1286.17, 1392.67 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": [ 287, 229, 304, 132, 144, 161, 179, 68, 198, 234, 68, 157, 190, 95, 104, 151, 191, 76, 247, 126, 91, 163, 227, 241, 204, 216, 128, 274, 115, 295 ] }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Date/Tanggal': ['2025-03-23', '2025-03-24', '2025-03-25', '2025-03-26', '2025-03-27', '2025-03-28', '2025-03-29', '2025-03-30', '2025-03-31', '2025-04-01', '2025-04-02', '2025-04-03', '2025-04-04', '2025-04-05', '2025-04-06', '2025-04-07', '2025-04-08', '2025-04-09', '2025-04-10', '2025-04-11', '2025-04-12', '2025-04-13', '2025-04-14', '2025-04-15', '2025-04-16', '2025-04-17', '2025-04-18', '2025-04-19', '2025-04-20', '2025-04-21'], 'Revenue/Pendapatan': [1646.04, 1788.65, 1821.35, 1882.7, 1820.9, 1781.82, 1762.55, 1702.37, 1647.74, 1476.48, 1420.16, 1345.21, 1391.81, 1499.9, 1608.16, 1546.25, 1626.12, 1790.72, 1753.63, 1736.55, 1665.52, 1553.72, 1413.28, 1253.74, 1299.75, 1152.54, 1168.46, 1207.52, 1286.17, 1392.67], 'Visitors/Pengunjung': [287, 229, 304, 132, 144, 161, 179, 68, 198, 234, 68, 157, 190, 95, 104, 151, 191, 76, 247, 126, 91, 163, 227, 241, 204, 216, 128, 274, 115, 295], 'Conversion Rate/Rasio Konversi': [0.0496, 0.0662, 0.0709, 0.0694, 0.0209, 0.0267, 0.0639, 0.0341, 0.038, 0.0875, 0.0341, 0.0398, 0.0441, 0.0158, 0.0393, 0.0412, 0.0412, 0.0286, 0.0655, 0.0495, 0.0686, 0.0899, 0.0413, 0.0763, 0.0248, 0.0188, 0.0261, 0.0278, 0.0768, 0.0365], 'Avg. Order Value/Nilai Pesanan Rata2': [147.47, 109.1, 98.65, 106.21, 89.72, 190.1, 198.44, 110.11, 174.24, 157.71, 198.41, 83.41, 131.77, 128.38, 140.52, 62.34, 170.6, 61.26, 52.11, 58.17, 148.89, 155.73, 166.45, 191.49, 62.3, 99.5, 54.25, 88.95, 53.35, 60.28]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Analyze income city
{ "Age/Usia": [ 70, 60, 54, 28, 39, 24, 54, 30, 30, 18, 53, 46, 34, 32, 40, 61, 34, 26, 67, 24, 18, 48, 49, 68, 48, 26, 39, 28, 50, 61, 44, 18, 54, 32, 70, 35, 23, 57, 66, 21, 45, 51, 50, 64, 36, 38, 23, 56, 34, 59, 69, 40, 24, 51, 47, 56, 20, 62, 70, 29, 30, 24, 52, 26, 24, 19, 38, 55, 67, 42, 58, 40, 43, 36, 23, 69, 57, 32, 36, 53, 36, 46 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053", "CUST_0054", "CUST_0055", "CUST_0056", "CUST_0057", "CUST_0058", "CUST_0059", "CUST_0060", "CUST_0061", "CUST_0062", "CUST_0063", "CUST_0064", "CUST_0065", "CUST_0066", "CUST_0067", "CUST_0068", "CUST_0069", "CUST_0070", "CUST_0071", "CUST_0072", "CUST_0073", "CUST_0074", "CUST_0075", "CUST_0076", "CUST_0077", "CUST_0078", "CUST_0079", "CUST_0080", "CUST_0081", "CUST_0082" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Other/Lainnya", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Other/Lainnya", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 9000, 6000, 7000, 4000, 7000, 5000, 4000, 9000, 4000, 1000, 5000, 6000, 9000, 4000, 10000, 2000, 4000, 3000, 9000, 8000, 1000, 1000, 5000, 7000, 3000, 2000, 6000, 3000, 8000, 2000, 5000, 8000, 9000, 6000, 2000, 2000, 4000, 5000, 8000, 6000, 7000, 4000, 6000, 8000, 8000, 5000, 5000, 9000, 10000, 2000, 6000, 7000, 9000, 7000, 9000, 1000, 5000, 5000, 1000, 5000, 1000, 4000, 3000, 10000, 10000, 2000, 9000, 9000, 8000, 3000, 9000, 10000, 5000, 6000, 9000, 9000, 3000, 5000, 10000, 2000, 4000, 10000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2024-12-09", "2025-02-26", "2025-04-11", "2024-11-22", "2024-10-23", "2025-01-08", "2024-05-06", "2024-10-23", "2025-01-24", "2024-09-01", "2025-03-25", "2024-11-03", "2024-04-21", "2024-09-18", "2025-01-04", "2024-07-11", "2024-12-18", "2024-11-29", "2025-02-27", "2024-07-05", "2024-06-14", "2024-05-14", "2025-03-02", "2025-02-05", "2024-06-08", "2024-09-07", "2025-03-17", "2025-03-17", "2025-01-04", "2024-10-18", "2024-09-17", "2024-10-19", "2024-08-11", "2024-11-03", "2024-06-27", "2025-02-17", "2024-06-16", "2024-05-03", "2024-09-06", "2024-06-22", "2024-06-01", "2024-09-18", "2025-03-09", "2024-09-02", "2025-02-08", "2025-03-22", "2024-11-24", "2024-09-18", "2025-04-03", "2025-01-18", "2024-09-23", "2024-04-27", "2025-01-07", "2024-07-30", "2025-02-01", "2024-05-03", "2024-11-12", "2024-08-15", "2024-08-30", "2024-05-08", "2024-11-29", "2024-11-06", "2024-05-23", "2024-05-17", "2024-07-18", "2024-08-13", "2024-06-04", "2024-11-08", "2024-09-29", "2025-02-03", "2024-05-28", "2024-12-06", "2024-04-29", "2024-07-04", "2024-10-24", "2024-11-14", "2024-09-09", "2024-09-14", "2024-12-17", "2025-03-01", "2024-06-06", "2024-06-25" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 9, 74, 11, 35, 37, 78, 62, 85, 88, 49, 2, 66, 58, 30, 87, 48, 2, 91, 56, 53, 62, 64, 31, 42, 63, 54, 14, 42, 96, 85, 3, 24, 26, 41, 19, 70, 45, 41, 89, 28, 44, 100, 48, 78, 69, 84, 54, 99, 24, 22, 45, 98, 10, 27, 45, 2, 34, 100, 28, 90, 10, 43, 56, 76, 87, 42, 50, 37, 78, 81, 40, 47, 8, 82, 85, 75, 53, 50, 94, 19, 46, 69 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053', 'CUST_0054', 'CUST_0055', 'CUST_0056', 'CUST_0057', 'CUST_0058', 'CUST_0059', 'CUST_0060', 'CUST_0061', 'CUST_0062', 'CUST_0063', 'CUST_0064', 'CUST_0065', 'CUST_0066', 'CUST_0067', 'CUST_0068', 'CUST_0069', 'CUST_0070', 'CUST_0071', 'CUST_0072', 'CUST_0073', 'CUST_0074', 'CUST_0075', 'CUST_0076', 'CUST_0077', 'CUST_0078', 'CUST_0079', 'CUST_0080', 'CUST_0081', 'CUST_0082'], 'Age/Usia': [70, 60, 54, 28, 39, 24, 54, 30, 30, 18, 53, 46, 34, 32, 40, 61, 34, 26, 67, 24, 18, 48, 49, 68, 48, 26, 39, 28, 50, 61, 44, 18, 54, 32, 70, 35, 23, 57, 66, 21, 45, 51, 50, 64, 36, 38, 23, 56, 34, 59, 69, 40, 24, 51, 47, 56, 20, 62, 70, 29, 30, 24, 52, 26, 24, 19, 38, 55, 67, 42, 58, 40, 43, 36, 23, 69, 57, 32, 36, 53, 36, 46], 'Gender/Jenis Kelamin': ['Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Other/Lainnya', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Other/Lainnya', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan'], 'Income/Pendapatan': [9000, 6000, 7000, 4000, 7000, 5000, 4000, 9000, 4000, 1000, 5000, 6000, 9000, 4000, 10000, 2000, 4000, 3000, 9000, 8000, 1000, 1000, 5000, 7000, 3000, 2000, 6000, 3000, 8000, 2000, 5000, 8000, 9000, 6000, 2000, 2000, 4000, 5000, 8000, 6000, 7000, 4000, 6000, 8000, 8000, 5000, 5000, 9000, 10000, 2000, 6000, 7000, 9000, 7000, 9000, 1000, 5000, 5000, 1000, 5000, 1000, 4000, 3000, 10000, 10000, 2000, 9000, 9000, 8000, 3000, 9000, 10000, 5000, 6000, 9000, 9000, 3000, 5000, 10000, 2000, 4000, 10000], 'Loyalty Score/Skor Loyalitas': [9, 74, 11, 35, 37, 78, 62, 85, 88, 49, 2, 66, 58, 30, 87, 48, 2, 91, 56, 53, 62, 64, 31, 42, 63, 54, 14, 42, 96, 85, 3, 24, 26, 41, 19, 70, 45, 41, 89, 28, 44, 100, 48, 78, 69, 84, 54, 99, 24, 22, 45, 98, 10, 27, 45, 2, 34, 100, 28, 90, 10, 43, 56, 76, 87, 42, 50, 37, 78, 81, 40, 47, 8, 82, 85, 75, 53, 50, 94, 19, 46, 69], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2024-12-09', '2025-02-26', '2025-04-11', '2024-11-22', '2024-10-23', '2025-01-08', '2024-05-06', '2024-10-23', '2025-01-24', '2024-09-01', '2025-03-25', '2024-11-03', '2024-04-21', '2024-09-18', '2025-01-04', '2024-07-11', '2024-12-18', '2024-11-29', '2025-02-27', '2024-07-05', '2024-06-14', '2024-05-14', '2025-03-02', '2025-02-05', '2024-06-08', '2024-09-07', '2025-03-17', '2025-03-17', '2025-01-04', '2024-10-18', '2024-09-17', '2024-10-19', '2024-08-11', '2024-11-03', '2024-06-27', '2025-02-17', '2024-06-16', '2024-05-03', '2024-09-06', '2024-06-22', '2024-06-01', '2024-09-18', '2025-03-09', '2024-09-02', '2025-02-08', '2025-03-22', '2024-11-24', '2024-09-18', '2025-04-03', '2025-01-18', '2024-09-23', '2024-04-27', '2025-01-07', '2024-07-30', '2025-02-01', '2024-05-03', '2024-11-12', '2024-08-15', '2024-08-30', '2024-05-08', '2024-11-29', '2024-11-06', '2024-05-23', '2024-05-17', '2024-07-18', '2024-08-13', '2024-06-04', '2024-11-08', '2024-09-29', '2025-02-03', '2024-05-28', '2024-12-06', '2024-04-29', '2024-07-04', '2024-10-24', '2024-11-14', '2024-09-09', '2024-09-14', '2024-12-17', '2025-03-01', '2024-06-06', '2024-06-25']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Kelompokkan nilai pesanan rata-rata jenis kelamin
{ "Age/Usia": [ 46, 39, 23, 18, 33, 41, 27, 66, 48, 69, 68, 68, 52, 37, 70, 46, 23, 58, 35, 21, 21, 25, 60, 25, 22, 23, 28, 69, 18, 28, 52, 67, 44, 28, 63, 32, 55, 67, 69, 66, 46, 30, 34, 43, 33, 23, 52, 36, 43, 67, 62, 65, 43, 25, 49, 26, 60, 26, 59, 39 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053", "CUST_0054", "CUST_0055", "CUST_0056", "CUST_0057", "CUST_0058", "CUST_0059", "CUST_0060" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Other/Lainnya", "Male/Laki-laki", "Other/Lainnya", "Female/Perempuan", "Other/Lainnya", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Other/Lainnya", "Male/Laki-laki", "Other/Lainnya", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Other/Lainnya", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 2000, 6000, 5000, 7000, 3000, 8000, 9000, 8000, 3000, 3000, 3000, 6000, 2000, 4000, 2000, 6000, 10000, 8000, 9000, 4000, 2000, 4000, 5000, 4000, 5000, 4000, 9000, 9000, 4000, 7000, 3000, 3000, 1000, 4000, 6000, 10000, 4000, 7000, 9000, 6000, 10000, 6000, 9000, 10000, 2000, 6000, 1000, 9000, 10000, 3000, 9000, 1000, 10000, 2000, 2000, 6000, 7000, 9000, 6000, 3000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2024-12-11", "2024-06-21", "2024-10-11", "2025-02-26", "2024-08-03", "2025-04-06", "2024-05-07", "2024-12-31", "2025-03-26", "2024-08-17", "2024-08-11", "2024-05-14", "2024-09-12", "2024-06-04", "2025-03-20", "2025-03-16", "2025-01-11", "2025-01-22", "2024-07-04", "2024-08-05", "2025-02-05", "2024-06-26", "2024-08-17", "2025-03-10", "2024-09-02", "2024-08-27", "2025-02-05", "2025-02-27", "2024-05-08", "2025-03-30", "2024-12-21", "2025-01-12", "2024-11-09", "2024-04-24", "2025-04-12", "2024-10-09", "2025-03-30", "2024-07-05", "2024-08-08", "2024-07-08", "2025-01-30", "2025-01-25", "2025-01-26", "2024-11-04", "2024-09-09", "2025-04-13", "2024-06-17", "2024-07-21", "2024-05-08", "2024-11-16", "2025-01-31", "2025-04-02", "2024-05-16", "2025-01-11", "2025-01-17", "2024-05-17", "2025-03-24", "2024-11-16", "2025-01-28", "2024-08-31" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 93, 12, 79, 96, 14, 41, 14, 46, 15, 66, 71, 10, 43, 92, 91, 25, 30, 4, 60, 92, 29, 77, 79, 49, 35, 1, 9, 41, 56, 65, 61, 83, 18, 66, 19, 86, 33, 52, 51, 3, 64, 17, 68, 81, 33, 97, 53, 20, 72, 85, 20, 95, 27, 92, 25, 15, 95, 36, 50, 90 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053', 'CUST_0054', 'CUST_0055', 'CUST_0056', 'CUST_0057', 'CUST_0058', 'CUST_0059', 'CUST_0060'], 'Age/Usia': [46, 39, 23, 18, 33, 41, 27, 66, 48, 69, 68, 68, 52, 37, 70, 46, 23, 58, 35, 21, 21, 25, 60, 25, 22, 23, 28, 69, 18, 28, 52, 67, 44, 28, 63, 32, 55, 67, 69, 66, 46, 30, 34, 43, 33, 23, 52, 36, 43, 67, 62, 65, 43, 25, 49, 26, 60, 26, 59, 39], 'Gender/Jenis Kelamin': ['Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Other/Lainnya', 'Male/Laki-laki', 'Other/Lainnya', 'Female/Perempuan', 'Other/Lainnya', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Other/Lainnya', 'Male/Laki-laki', 'Other/Lainnya', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Other/Lainnya', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan'], 'Income/Pendapatan': [2000, 6000, 5000, 7000, 3000, 8000, 9000, 8000, 3000, 3000, 3000, 6000, 2000, 4000, 2000, 6000, 10000, 8000, 9000, 4000, 2000, 4000, 5000, 4000, 5000, 4000, 9000, 9000, 4000, 7000, 3000, 3000, 1000, 4000, 6000, 10000, 4000, 7000, 9000, 6000, 10000, 6000, 9000, 10000, 2000, 6000, 1000, 9000, 10000, 3000, 9000, 1000, 10000, 2000, 2000, 6000, 7000, 9000, 6000, 3000], 'Loyalty Score/Skor Loyalitas': [93, 12, 79, 96, 14, 41, 14, 46, 15, 66, 71, 10, 43, 92, 91, 25, 30, 4, 60, 92, 29, 77, 79, 49, 35, 1, 9, 41, 56, 65, 61, 83, 18, 66, 19, 86, 33, 52, 51, 3, 64, 17, 68, 81, 33, 97, 53, 20, 72, 85, 20, 95, 27, 92, 25, 15, 95, 36, 50, 90], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2024-12-11', '2024-06-21', '2024-10-11', '2025-02-26', '2024-08-03', '2025-04-06', '2024-05-07', '2024-12-31', '2025-03-26', '2024-08-17', '2024-08-11', '2024-05-14', '2024-09-12', '2024-06-04', '2025-03-20', '2025-03-16', '2025-01-11', '2025-01-22', '2024-07-04', '2024-08-05', '2025-02-05', '2024-06-26', '2024-08-17', '2025-03-10', '2024-09-02', '2024-08-27', '2025-02-05', '2025-02-27', '2024-05-08', '2025-03-30', '2024-12-21', '2025-01-12', '2024-11-09', '2024-04-24', '2025-04-12', '2024-10-09', '2025-03-30', '2024-07-05', '2024-08-08', '2024-07-08', '2025-01-30', '2025-01-25', '2025-01-26', '2024-11-04', '2024-09-09', '2025-04-13', '2024-06-17', '2024-07-21', '2024-05-08', '2024-11-16', '2025-01-31', '2025-04-02', '2024-05-16', '2025-01-11', '2025-01-17', '2024-05-17', '2025-03-24', '2024-11-16', '2025-01-28', '2024-08-31']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Compare market share time period
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Food/Makanan", "Food/Makanan", "Food/Makanan" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.28, 0.04, 0.23 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 26.36, 50.69, 172.84 ], "Product/Produk": [ "Dairy_1", "Beverages_2", "Fruits_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 941, 715, 129 ], "Stock/Stok": [ 78, 96, 110 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Dairy_1', 'Beverages_2', 'Fruits_3'], 'Sales/Penjualan': [941, 715, 129], 'Price/Harga': [26.36, 50.69, 172.84], 'Category/Kategori': ['Food/Makanan', 'Food/Makanan', 'Food/Makanan'], 'Discount/Diskon': [0.28, 0.04, 0.23], 'Stock/Stok': [78, 96, 110]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Calculate average order value gender
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Food/Makanan", "Food/Makanan", "Food/Makanan" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.27, 0.28, 0.08 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 140.03, 118.54, 34.64 ], "Product/Produk": [ "Snacks_1", "Beverages_2", "Dairy_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 287, 139, 621 ], "Stock/Stok": [ 18, 151, 30 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Snacks_1', 'Beverages_2', 'Dairy_3'], 'Sales/Penjualan': [287, 139, 621], 'Price/Harga': [140.03, 118.54, 34.64], 'Category/Kategori': ['Food/Makanan', 'Food/Makanan', 'Food/Makanan'], 'Discount/Diskon': [0.27, 0.28, 0.08], 'Stock/Stok': [18, 151, 30]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # cumulative sum calculation result = df['Category/Kategori'].cumsum() print(result)
Segment price time period
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": [ "Tokyo", "Berlin", "Sydney", "London", "São Paulo" ], "Conversion Rate/Rasio Konversi": null, "Country/Negara": [ "Japan", "Germany", "Australia", "UK", "Brazil" ], "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": [ -0.08, 0.12, 0.02, 0.04, 0.01 ], "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": [ -40.4542, 0.07970000000000001, -41.4007, -45.3629, 64.7025 ], "Longitude/Bujur": [ 92.6457, 53.7816, -137.037, -5.8395, 20.3322 ], "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": [ 0.14, 0.2, 0.33, 0.26, 0.4 ], "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": [ "Asia", "Europe", "Oceania", "Europe", "South America" ], "Revenue/Pendapatan": [ 3319, 1729, 3170, 1230, 2884 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'City/Kota': ['Tokyo', 'Berlin', 'Sydney', 'London', 'São Paulo'], 'Country/Negara': ['Japan', 'Germany', 'Australia', 'UK', 'Brazil'], 'Region/Wilayah': ['Asia', 'Europe', 'Oceania', 'Europe', 'South America'], 'Latitude/Lintang': [-40.4542, 0.0797, -41.4007, -45.3629, 64.7025], 'Longitude/Bujur': [92.6457, 53.7816, -137.037, -5.8395, 20.3322], 'Revenue/Pendapatan': [3319, 1729, 3170, 1230, 2884], 'Market Share/Pangsa Pasar': [0.14, 0.2, 0.33, 0.26, 0.4], 'Growth Rate/Pertumbuhan': [-0.08, 0.12, 0.02, 0.04, 0.01]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Customer segmentation using KMeans from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler # Select features and scale X = df[['Age/Usia', 'Income/Pendapatan', 'Loyalty Score/Skor Loyalitas']] scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # Cluster into 3 segments kmeans = KMeans(n_clusters=3, random_state=42) df['Segment/Segmen'] = kmeans.fit_predict(X_scaled) # Visualize segments fig = px.scatter_3d(df, x='Age/Usia', y='Income/Pendapatan', z='Loyalty Score/Skor Loyalitas', color='Segment/Segmen', title='Customer Segments') fig.show()
Visualize market share gender
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": [ "Singapore", "Dubai", "São Paulo", "New York", "Paris" ], "Conversion Rate/Rasio Konversi": null, "Country/Negara": [ "Singapore", "UAE", "Brazil", "US", "France" ], "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": [ -0.06, 0.01, 0.17, 0.13, 0.18 ], "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": [ -57.54, 34.0661, 86.5975, 13.2216, -68.9136 ], "Longitude/Bujur": [ -41.8359, -14.2114, -69.3239, 36.8743, -173.3371 ], "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": [ 0.49, 0.39, 0.33, 0.19, 0.28 ], "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": [ "Asia", "Middle East", "South America", "North America", "Europe" ], "Revenue/Pendapatan": [ 2150, 2360, 4197, 2141, 1907 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'City/Kota': ['Singapore', 'Dubai', 'São Paulo', 'New York', 'Paris'], 'Country/Negara': ['Singapore', 'UAE', 'Brazil', 'US', 'France'], 'Region/Wilayah': ['Asia', 'Middle East', 'South America', 'North America', 'Europe'], 'Latitude/Lintang': [-57.54, 34.0661, 86.5975, 13.2216, -68.9136], 'Longitude/Bujur': [-41.8359, -14.2114, -69.3239, 36.8743, -173.3371], 'Revenue/Pendapatan': [2150, 2360, 4197, 2141, 1907], 'Market Share/Pangsa Pasar': [0.49, 0.39, 0.33, 0.19, 0.28], 'Growth Rate/Pertumbuhan': [-0.06, 0.01, 0.17, 0.13, 0.18]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Geospatial visualization fig = px.choropleth(df, locations='Country/Negara', locationmode='country names', color='Revenue/Pendapatan', hover_name='City/Kota', scope='world', title='Revenue by Country') fig.update_geos(showcountries=True) fig.show()
Analisis pengunjung negara
{ "Age/Usia": [ 23, 26, 18, 66, 41, 31, 59, 40, 27, 37, 46, 26, 58, 37, 18, 70, 63, 29, 19, 33, 68, 56, 49, 59, 41, 53, 65, 21, 66, 61, 34, 54, 68, 64, 62, 68, 55, 57, 48, 60, 65, 21, 70, 26, 25, 51, 20, 26, 59, 37, 42, 53, 18, 52, 31, 28, 22, 53, 27, 44, 55, 22, 59, 31, 43, 40, 55, 36, 26, 51, 60, 70, 31, 69, 68, 47, 68, 31, 36, 30, 28, 24, 26, 51, 41, 46, 23, 32, 31, 29, 50, 63, 65, 27, 40, 60, 58, 41, 59, 63 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053", "CUST_0054", "CUST_0055", "CUST_0056", "CUST_0057", "CUST_0058", "CUST_0059", "CUST_0060", "CUST_0061", "CUST_0062", "CUST_0063", "CUST_0064", "CUST_0065", "CUST_0066", "CUST_0067", "CUST_0068", "CUST_0069", "CUST_0070", "CUST_0071", "CUST_0072", "CUST_0073", "CUST_0074", "CUST_0075", "CUST_0076", "CUST_0077", "CUST_0078", "CUST_0079", "CUST_0080", "CUST_0081", "CUST_0082", "CUST_0083", "CUST_0084", "CUST_0085", "CUST_0086", "CUST_0087", "CUST_0088", "CUST_0089", "CUST_0090", "CUST_0091", "CUST_0092", "CUST_0093", "CUST_0094", "CUST_0095", "CUST_0096", "CUST_0097", "CUST_0098", "CUST_0099", "CUST_0100" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Male/Laki-laki", "Male/Laki-laki", "Other/Lainnya", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Other/Lainnya", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Other/Lainnya", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Other/Lainnya", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Other/Lainnya", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Other/Lainnya", "Male/Laki-laki", "Other/Lainnya", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Other/Lainnya", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 2000, 4000, 3000, 4000, 8000, 3000, 7000, 2000, 5000, 6000, 4000, 4000, 7000, 9000, 6000, 3000, 4000, 3000, 8000, 2000, 10000, 9000, 8000, 7000, 2000, 1000, 9000, 8000, 3000, 10000, 9000, 10000, 9000, 2000, 2000, 6000, 6000, 9000, 3000, 9000, 3000, 4000, 10000, 6000, 2000, 3000, 2000, 6000, 8000, 6000, 3000, 4000, 5000, 4000, 3000, 7000, 1000, 5000, 8000, 8000, 5000, 5000, 5000, 4000, 9000, 6000, 1000, 7000, 3000, 9000, 2000, 1000, 5000, 6000, 2000, 3000, 2000, 3000, 2000, 7000, 9000, 5000, 5000, 7000, 7000, 1000, 3000, 4000, 3000, 9000, 3000, 7000, 8000, 3000, 4000, 6000, 2000, 5000, 6000, 1000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2024-09-24", "2025-03-21", "2024-10-02", "2024-05-18", "2024-08-11", "2024-06-21", "2024-07-23", "2025-02-06", "2024-10-09", "2024-05-11", "2024-06-23", "2024-07-03", "2025-01-20", "2025-02-27", "2025-02-27", "2024-06-24", "2024-05-10", "2024-12-27", "2024-05-08", "2024-09-25", "2024-11-20", "2024-11-10", "2024-06-26", "2024-06-24", "2024-08-24", "2025-03-15", "2024-05-30", "2025-02-15", "2024-11-09", "2024-05-13", "2024-11-26", "2024-09-07", "2024-10-25", "2024-12-28", "2024-08-24", "2024-07-13", "2024-07-06", "2024-06-12", "2024-08-28", "2024-08-25", "2024-09-14", "2024-10-28", "2024-11-04", "2024-08-08", "2025-03-30", "2024-11-28", "2025-01-10", "2024-10-01", "2024-05-30", "2024-12-21", "2025-03-27", "2024-10-11", "2024-10-07", "2025-01-05", "2025-03-28", "2024-11-30", "2024-08-04", "2024-05-31", "2024-05-08", "2025-04-04", "2025-03-18", "2024-10-28", "2025-02-16", "2024-06-11", "2025-03-13", "2024-05-04", "2024-08-16", "2025-02-22", "2025-03-25", "2024-05-20", "2024-05-30", "2024-04-30", "2025-01-07", "2024-10-30", "2025-02-13", "2025-02-20", "2024-12-28", "2024-10-09", "2024-09-11", "2024-06-08", "2024-06-16", "2025-01-21", "2024-12-11", "2024-07-26", "2025-01-12", "2024-12-13", "2024-10-14", "2024-07-01", "2024-08-20", "2024-10-01", "2024-05-26", "2024-06-10", "2024-06-19", "2024-10-02", "2024-05-06", "2025-02-28", "2025-01-05", "2025-03-16", "2024-06-28", "2024-10-12" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 91, 79, 51, 37, 65, 64, 63, 1, 11, 96, 52, 28, 39, 92, 83, 65, 6, 21, 15, 96, 48, 31, 47, 31, 4, 81, 16, 11, 69, 16, 1, 6, 7, 57, 61, 96, 39, 33, 61, 4, 89, 15, 97, 86, 47, 35, 56, 57, 43, 33, 22, 46, 20, 2, 38, 57, 30, 66, 79, 57, 24, 9, 54, 9, 23, 69, 43, 47, 64, 40, 14, 48, 72, 7, 20, 48, 62, 82, 8, 36, 28, 91, 76, 18, 88, 14, 66, 60, 89, 82, 29, 84, 95, 54, 92, 20, 1, 76, 95, 43 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053', 'CUST_0054', 'CUST_0055', 'CUST_0056', 'CUST_0057', 'CUST_0058', 'CUST_0059', 'CUST_0060', 'CUST_0061', 'CUST_0062', 'CUST_0063', 'CUST_0064', 'CUST_0065', 'CUST_0066', 'CUST_0067', 'CUST_0068', 'CUST_0069', 'CUST_0070', 'CUST_0071', 'CUST_0072', 'CUST_0073', 'CUST_0074', 'CUST_0075', 'CUST_0076', 'CUST_0077', 'CUST_0078', 'CUST_0079', 'CUST_0080', 'CUST_0081', 'CUST_0082', 'CUST_0083', 'CUST_0084', 'CUST_0085', 'CUST_0086', 'CUST_0087', 'CUST_0088', 'CUST_0089', 'CUST_0090', 'CUST_0091', 'CUST_0092', 'CUST_0093', 'CUST_0094', 'CUST_0095', 'CUST_0096', 'CUST_0097', 'CUST_0098', 'CUST_0099', 'CUST_0100'], 'Age/Usia': [23, 26, 18, 66, 41, 31, 59, 40, 27, 37, 46, 26, 58, 37, 18, 70, 63, 29, 19, 33, 68, 56, 49, 59, 41, 53, 65, 21, 66, 61, 34, 54, 68, 64, 62, 68, 55, 57, 48, 60, 65, 21, 70, 26, 25, 51, 20, 26, 59, 37, 42, 53, 18, 52, 31, 28, 22, 53, 27, 44, 55, 22, 59, 31, 43, 40, 55, 36, 26, 51, 60, 70, 31, 69, 68, 47, 68, 31, 36, 30, 28, 24, 26, 51, 41, 46, 23, 32, 31, 29, 50, 63, 65, 27, 40, 60, 58, 41, 59, 63], 'Gender/Jenis Kelamin': ['Male/Laki-laki', 'Male/Laki-laki', 'Other/Lainnya', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Other/Lainnya', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Other/Lainnya', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Other/Lainnya', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Other/Lainnya', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Other/Lainnya', 'Male/Laki-laki', 'Other/Lainnya', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Other/Lainnya', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki'], 'Income/Pendapatan': [2000, 4000, 3000, 4000, 8000, 3000, 7000, 2000, 5000, 6000, 4000, 4000, 7000, 9000, 6000, 3000, 4000, 3000, 8000, 2000, 10000, 9000, 8000, 7000, 2000, 1000, 9000, 8000, 3000, 10000, 9000, 10000, 9000, 2000, 2000, 6000, 6000, 9000, 3000, 9000, 3000, 4000, 10000, 6000, 2000, 3000, 2000, 6000, 8000, 6000, 3000, 4000, 5000, 4000, 3000, 7000, 1000, 5000, 8000, 8000, 5000, 5000, 5000, 4000, 9000, 6000, 1000, 7000, 3000, 9000, 2000, 1000, 5000, 6000, 2000, 3000, 2000, 3000, 2000, 7000, 9000, 5000, 5000, 7000, 7000, 1000, 3000, 4000, 3000, 9000, 3000, 7000, 8000, 3000, 4000, 6000, 2000, 5000, 6000, 1000], 'Loyalty Score/Skor Loyalitas': [91, 79, 51, 37, 65, 64, 63, 1, 11, 96, 52, 28, 39, 92, 83, 65, 6, 21, 15, 96, 48, 31, 47, 31, 4, 81, 16, 11, 69, 16, 1, 6, 7, 57, 61, 96, 39, 33, 61, 4, 89, 15, 97, 86, 47, 35, 56, 57, 43, 33, 22, 46, 20, 2, 38, 57, 30, 66, 79, 57, 24, 9, 54, 9, 23, 69, 43, 47, 64, 40, 14, 48, 72, 7, 20, 48, 62, 82, 8, 36, 28, 91, 76, 18, 88, 14, 66, 60, 89, 82, 29, 84, 95, 54, 92, 20, 1, 76, 95, 43], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2024-09-24', '2025-03-21', '2024-10-02', '2024-05-18', '2024-08-11', '2024-06-21', '2024-07-23', '2025-02-06', '2024-10-09', '2024-05-11', '2024-06-23', '2024-07-03', '2025-01-20', '2025-02-27', '2025-02-27', '2024-06-24', '2024-05-10', '2024-12-27', '2024-05-08', '2024-09-25', '2024-11-20', '2024-11-10', '2024-06-26', '2024-06-24', '2024-08-24', '2025-03-15', '2024-05-30', '2025-02-15', '2024-11-09', '2024-05-13', '2024-11-26', '2024-09-07', '2024-10-25', '2024-12-28', '2024-08-24', '2024-07-13', '2024-07-06', '2024-06-12', '2024-08-28', '2024-08-25', '2024-09-14', '2024-10-28', '2024-11-04', '2024-08-08', '2025-03-30', '2024-11-28', '2025-01-10', '2024-10-01', '2024-05-30', '2024-12-21', '2025-03-27', '2024-10-11', '2024-10-07', '2025-01-05', '2025-03-28', '2024-11-30', '2024-08-04', '2024-05-31', '2024-05-08', '2025-04-04', '2025-03-18', '2024-10-28', '2025-02-16', '2024-06-11', '2025-03-13', '2024-05-04', '2024-08-16', '2025-02-22', '2025-03-25', '2024-05-20', '2024-05-30', '2024-04-30', '2025-01-07', '2024-10-30', '2025-02-13', '2025-02-20', '2024-12-28', '2024-10-09', '2024-09-11', '2024-06-08', '2024-06-16', '2025-01-21', '2024-12-11', '2024-07-26', '2025-01-12', '2024-12-13', '2024-10-14', '2024-07-01', '2024-08-20', '2024-10-01', '2024-05-26', '2024-06-10', '2024-06-19', '2024-10-02', '2024-05-06', '2025-02-28', '2025-01-05', '2025-03-16', '2024-06-28', '2024-10-12']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Calculate revenue gender
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Automotive/Otomotif", "Automotive/Otomotif", "Automotive/Otomotif" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.29, 0.05, 0.11 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 128.98, 155.41, 18.57 ], "Product/Produk": [ "Tools_1", "Tires_2", "Accessories_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 487, 734, 625 ], "Stock/Stok": [ 68, 190, 156 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Tools_1', 'Tires_2', 'Accessories_3'], 'Sales/Penjualan': [487, 734, 625], 'Price/Harga': [128.98, 155.41, 18.57], 'Category/Kategori': ['Automotive/Otomotif', 'Automotive/Otomotif', 'Automotive/Otomotif'], 'Discount/Diskon': [0.29, 0.05, 0.11], 'Stock/Stok': [68, 190, 156]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # cumulative sum calculation result = df['Discount/Diskon'].cumsum() print(result)
Segment growth rate product
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": [ "Mumbai", "Jakarta", "New York", "Paris", "Tokyo" ], "Conversion Rate/Rasio Konversi": null, "Country/Negara": [ "India", "Indonesia", "US", "France", "Japan" ], "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": [ 0.13, 0.23, 0.07, 0.27, 0.18 ], "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": [ 79.9486, 81.1343, 31.4768, -89.953, 36.8456 ], "Longitude/Bujur": [ 147.6153, 12.6877, -103.4012, 52.6226, -27.6525 ], "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": [ 0.12, 0.35000000000000003, 0.39, 0.36, 0.41000000000000003 ], "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": [ "Asia", "Asia", "North America", "Europe", "Asia" ], "Revenue/Pendapatan": [ 1683, 2342, 4361, 2948, 3607 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'City/Kota': ['Mumbai', 'Jakarta', 'New York', 'Paris', 'Tokyo'], 'Country/Negara': ['India', 'Indonesia', 'US', 'France', 'Japan'], 'Region/Wilayah': ['Asia', 'Asia', 'North America', 'Europe', 'Asia'], 'Latitude/Lintang': [79.9486, 81.1343, 31.4768, -89.953, 36.8456], 'Longitude/Bujur': [147.6153, 12.6877, -103.4012, 52.6226, -27.6525], 'Revenue/Pendapatan': [1683, 2342, 4361, 2948, 3607], 'Market Share/Pangsa Pasar': [0.12, 0.35, 0.39, 0.36, 0.41], 'Growth Rate/Pertumbuhan': [0.13, 0.23, 0.07, 0.27, 0.18]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Customer segmentation using KMeans from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler # Select features and scale X = df[['Age/Usia', 'Income/Pendapatan', 'Loyalty Score/Skor Loyalitas']] scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # Cluster into 3 segments kmeans = KMeans(n_clusters=3, random_state=42) df['Segment/Segmen'] = kmeans.fit_predict(X_scaled) # Visualize segments fig = px.scatter_3d(df, x='Age/Usia', y='Income/Pendapatan', z='Loyalty Score/Skor Loyalitas', color='Segment/Segmen', title='Customer Segments') fig.show()
Segment average order value customer segment
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Food/Makanan", "Food/Makanan", "Food/Makanan" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.09, 0.2, 0.25 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 132.38, 179.32, 131.21 ], "Product/Produk": [ "Dairy_1", "Beverages_2", "Snacks_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 377, 949, 233 ], "Stock/Stok": [ 60, 64, 115 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Dairy_1', 'Beverages_2', 'Snacks_3'], 'Sales/Penjualan': [377, 949, 233], 'Price/Harga': [132.38, 179.32, 131.21], 'Category/Kategori': ['Food/Makanan', 'Food/Makanan', 'Food/Makanan'], 'Discount/Diskon': [0.09, 0.2, 0.25], 'Stock/Stok': [60, 64, 115]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Customer segmentation using KMeans from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler # Select features and scale X = df[['Age/Usia', 'Income/Pendapatan', 'Loyalty Score/Skor Loyalitas']] scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # Cluster into 3 segments kmeans = KMeans(n_clusters=3, random_state=42) df['Segment/Segmen'] = kmeans.fit_predict(X_scaled) # Visualize segments fig = px.scatter_3d(df, x='Age/Usia', y='Income/Pendapatan', z='Loyalty Score/Skor Loyalitas', color='Segment/Segmen', title='Customer Segments') fig.show()
Korelasi penjualan and/dan diskon
{ "Age/Usia": [ 35, 52, 50, 28, 45, 39, 39, 57, 64, 63, 23, 25, 50, 26, 37, 40, 35, 28, 35, 57, 70, 69, 35, 48, 32, 45, 46, 19, 60, 45, 50, 67, 62, 43, 20, 66, 64, 21, 40, 33, 47, 28, 26, 38, 41, 36, 54, 55, 20, 44, 35, 25, 47, 43, 22 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053", "CUST_0054", "CUST_0055" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Other/Lainnya", "Male/Laki-laki", "Male/Laki-laki", "Other/Lainnya", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Other/Lainnya", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 2000, 2000, 6000, 4000, 2000, 3000, 6000, 2000, 5000, 3000, 5000, 4000, 2000, 1000, 8000, 4000, 8000, 8000, 4000, 3000, 10000, 3000, 9000, 4000, 7000, 9000, 6000, 4000, 7000, 2000, 9000, 2000, 5000, 7000, 9000, 2000, 3000, 4000, 3000, 3000, 4000, 9000, 8000, 5000, 2000, 2000, 7000, 10000, 5000, 4000, 7000, 2000, 3000, 4000, 2000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2024-06-12", "2024-09-17", "2024-06-14", "2025-02-09", "2025-03-03", "2024-10-21", "2024-06-13", "2025-03-12", "2025-01-10", "2024-10-29", "2024-06-02", "2024-07-15", "2024-11-15", "2024-11-29", "2024-05-26", "2024-08-17", "2024-06-25", "2024-04-23", "2024-09-13", "2025-02-09", "2024-05-14", "2024-08-20", "2024-09-18", "2025-01-04", "2024-11-26", "2024-10-29", "2025-01-07", "2025-03-13", "2024-09-02", "2024-05-30", "2024-08-21", "2024-07-08", "2025-04-02", "2024-12-30", "2024-11-01", "2024-04-23", "2025-01-18", "2024-12-30", "2024-09-04", "2024-05-26", "2024-08-21", "2024-07-15", "2024-06-14", "2025-03-27", "2024-10-08", "2024-06-17", "2024-12-04", "2024-06-16", "2024-09-19", "2024-08-13", "2025-01-14", "2025-02-03", "2024-10-07", "2024-11-08", "2024-05-12" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 96, 47, 24, 7, 3, 95, 37, 3, 96, 32, 83, 36, 35, 93, 63, 37, 41, 97, 95, 23, 19, 23, 9, 48, 58, 28, 89, 68, 36, 40, 88, 52, 79, 51, 29, 84, 67, 99, 27, 9, 23, 10, 41, 12, 64, 16, 76, 92, 45, 73, 93, 83, 15, 6, 73 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053', 'CUST_0054', 'CUST_0055'], 'Age/Usia': [35, 52, 50, 28, 45, 39, 39, 57, 64, 63, 23, 25, 50, 26, 37, 40, 35, 28, 35, 57, 70, 69, 35, 48, 32, 45, 46, 19, 60, 45, 50, 67, 62, 43, 20, 66, 64, 21, 40, 33, 47, 28, 26, 38, 41, 36, 54, 55, 20, 44, 35, 25, 47, 43, 22], 'Gender/Jenis Kelamin': ['Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Other/Lainnya', 'Male/Laki-laki', 'Male/Laki-laki', 'Other/Lainnya', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Other/Lainnya', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan'], 'Income/Pendapatan': [2000, 2000, 6000, 4000, 2000, 3000, 6000, 2000, 5000, 3000, 5000, 4000, 2000, 1000, 8000, 4000, 8000, 8000, 4000, 3000, 10000, 3000, 9000, 4000, 7000, 9000, 6000, 4000, 7000, 2000, 9000, 2000, 5000, 7000, 9000, 2000, 3000, 4000, 3000, 3000, 4000, 9000, 8000, 5000, 2000, 2000, 7000, 10000, 5000, 4000, 7000, 2000, 3000, 4000, 2000], 'Loyalty Score/Skor Loyalitas': [96, 47, 24, 7, 3, 95, 37, 3, 96, 32, 83, 36, 35, 93, 63, 37, 41, 97, 95, 23, 19, 23, 9, 48, 58, 28, 89, 68, 36, 40, 88, 52, 79, 51, 29, 84, 67, 99, 27, 9, 23, 10, 41, 12, 64, 16, 76, 92, 45, 73, 93, 83, 15, 6, 73], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2024-06-12', '2024-09-17', '2024-06-14', '2025-02-09', '2025-03-03', '2024-10-21', '2024-06-13', '2025-03-12', '2025-01-10', '2024-10-29', '2024-06-02', '2024-07-15', '2024-11-15', '2024-11-29', '2024-05-26', '2024-08-17', '2024-06-25', '2024-04-23', '2024-09-13', '2025-02-09', '2024-05-14', '2024-08-20', '2024-09-18', '2025-01-04', '2024-11-26', '2024-10-29', '2025-01-07', '2025-03-13', '2024-09-02', '2024-05-30', '2024-08-21', '2024-07-08', '2025-04-02', '2024-12-30', '2024-11-01', '2024-04-23', '2025-01-18', '2024-12-30', '2024-09-04', '2024-05-26', '2024-08-21', '2024-07-15', '2024-06-14', '2025-03-27', '2024-10-08', '2024-06-17', '2024-12-04', '2024-06-16', '2024-09-19', '2024-08-13', '2025-01-14', '2025-02-03', '2024-10-07', '2024-11-08', '2024-05-12']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Correlation analysis corr_matrix = df.corr(numeric_only=True) fig = px.imshow(corr_matrix, text_auto=True, title='Correlation Matrix') fig.show()
Optimalkan diskon kota
{ "Age/Usia": [ 34, 39, 68, 20, 44, 43, 65, 30, 46, 60, 42, 59, 22, 67, 21, 54, 53, 45, 55, 23, 40, 45, 27, 52, 55, 28, 25, 62, 22, 21, 54, 38, 31, 39, 30, 69, 25, 65, 39, 31, 63, 52, 22, 51, 24, 65, 58, 35, 35, 62, 21, 57, 61, 22, 60, 37, 49, 24, 32, 30, 34, 60, 21, 36, 44, 68 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053", "CUST_0054", "CUST_0055", "CUST_0056", "CUST_0057", "CUST_0058", "CUST_0059", "CUST_0060", "CUST_0061", "CUST_0062", "CUST_0063", "CUST_0064", "CUST_0065", "CUST_0066" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Other/Lainnya", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Other/Lainnya", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Other/Lainnya", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Other/Lainnya", "Male/Laki-laki", "Other/Lainnya", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Other/Lainnya", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 8000, 5000, 3000, 10000, 5000, 1000, 8000, 2000, 8000, 1000, 8000, 5000, 7000, 7000, 9000, 4000, 4000, 10000, 6000, 3000, 6000, 6000, 9000, 3000, 3000, 3000, 2000, 8000, 10000, 2000, 9000, 8000, 6000, 7000, 5000, 4000, 10000, 8000, 6000, 1000, 3000, 5000, 7000, 6000, 4000, 3000, 10000, 7000, 6000, 3000, 2000, 6000, 7000, 9000, 1000, 3000, 9000, 2000, 4000, 3000, 2000, 2000, 4000, 9000, 5000, 1000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2024-11-02", "2024-05-01", "2025-03-16", "2025-01-04", "2025-01-12", "2025-01-03", "2024-10-13", "2024-08-30", "2024-09-24", "2024-11-14", "2025-01-30", "2025-01-03", "2024-04-30", "2025-03-23", "2025-04-12", "2025-04-17", "2024-04-25", "2024-07-09", "2024-11-11", "2024-05-11", "2025-03-21", "2024-10-11", "2024-04-29", "2024-11-04", "2024-11-08", "2025-01-22", "2024-06-30", "2024-09-04", "2024-06-10", "2024-08-11", "2024-06-16", "2024-05-20", "2025-03-12", "2024-11-20", "2025-02-11", "2025-04-07", "2024-10-31", "2024-09-18", "2024-10-05", "2024-06-12", "2025-01-06", "2025-01-15", "2024-05-21", "2024-09-20", "2025-03-24", "2024-07-03", "2024-05-09", "2024-07-16", "2024-08-15", "2025-01-06", "2025-03-03", "2025-04-08", "2024-12-25", "2025-02-05", "2024-05-26", "2024-09-09", "2024-05-05", "2024-05-18", "2025-04-13", "2024-07-15", "2024-12-20", "2024-10-19", "2024-04-23", "2024-08-18", "2024-09-30", "2024-09-13" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 6, 57, 2, 50, 25, 60, 13, 48, 53, 9, 83, 4, 9, 6, 30, 56, 58, 20, 89, 85, 95, 93, 27, 41, 86, 24, 92, 19, 36, 50, 91, 87, 46, 76, 40, 35, 33, 27, 83, 60, 27, 4, 30, 62, 74, 14, 30, 94, 55, 59, 99, 66, 88, 50, 25, 15, 97, 58, 45, 62, 76, 47, 57, 83, 6, 4 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053', 'CUST_0054', 'CUST_0055', 'CUST_0056', 'CUST_0057', 'CUST_0058', 'CUST_0059', 'CUST_0060', 'CUST_0061', 'CUST_0062', 'CUST_0063', 'CUST_0064', 'CUST_0065', 'CUST_0066'], 'Age/Usia': [34, 39, 68, 20, 44, 43, 65, 30, 46, 60, 42, 59, 22, 67, 21, 54, 53, 45, 55, 23, 40, 45, 27, 52, 55, 28, 25, 62, 22, 21, 54, 38, 31, 39, 30, 69, 25, 65, 39, 31, 63, 52, 22, 51, 24, 65, 58, 35, 35, 62, 21, 57, 61, 22, 60, 37, 49, 24, 32, 30, 34, 60, 21, 36, 44, 68], 'Gender/Jenis Kelamin': ['Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Other/Lainnya', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Other/Lainnya', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Other/Lainnya', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Other/Lainnya', 'Male/Laki-laki', 'Other/Lainnya', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Other/Lainnya', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan'], 'Income/Pendapatan': [8000, 5000, 3000, 10000, 5000, 1000, 8000, 2000, 8000, 1000, 8000, 5000, 7000, 7000, 9000, 4000, 4000, 10000, 6000, 3000, 6000, 6000, 9000, 3000, 3000, 3000, 2000, 8000, 10000, 2000, 9000, 8000, 6000, 7000, 5000, 4000, 10000, 8000, 6000, 1000, 3000, 5000, 7000, 6000, 4000, 3000, 10000, 7000, 6000, 3000, 2000, 6000, 7000, 9000, 1000, 3000, 9000, 2000, 4000, 3000, 2000, 2000, 4000, 9000, 5000, 1000], 'Loyalty Score/Skor Loyalitas': [6, 57, 2, 50, 25, 60, 13, 48, 53, 9, 83, 4, 9, 6, 30, 56, 58, 20, 89, 85, 95, 93, 27, 41, 86, 24, 92, 19, 36, 50, 91, 87, 46, 76, 40, 35, 33, 27, 83, 60, 27, 4, 30, 62, 74, 14, 30, 94, 55, 59, 99, 66, 88, 50, 25, 15, 97, 58, 45, 62, 76, 47, 57, 83, 6, 4], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2024-11-02', '2024-05-01', '2025-03-16', '2025-01-04', '2025-01-12', '2025-01-03', '2024-10-13', '2024-08-30', '2024-09-24', '2024-11-14', '2025-01-30', '2025-01-03', '2024-04-30', '2025-03-23', '2025-04-12', '2025-04-17', '2024-04-25', '2024-07-09', '2024-11-11', '2024-05-11', '2025-03-21', '2024-10-11', '2024-04-29', '2024-11-04', '2024-11-08', '2025-01-22', '2024-06-30', '2024-09-04', '2024-06-10', '2024-08-11', '2024-06-16', '2024-05-20', '2025-03-12', '2024-11-20', '2025-02-11', '2025-04-07', '2024-10-31', '2024-09-18', '2024-10-05', '2024-06-12', '2025-01-06', '2025-01-15', '2024-05-21', '2024-09-20', '2025-03-24', '2024-07-03', '2024-05-09', '2024-07-16', '2024-08-15', '2025-01-06', '2025-03-03', '2025-04-08', '2024-12-25', '2025-02-05', '2024-05-26', '2024-09-09', '2024-05-05', '2024-05-18', '2025-04-13', '2024-07-15', '2024-12-20', '2024-10-19', '2024-04-23', '2024-08-18', '2024-09-30', '2024-09-13']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Optimize growth rate region
{ "Age/Usia": [ 20, 58, 22, 36, 23, 34, 60, 66, 49, 70, 70, 58, 31, 37, 53, 25, 19, 24, 59, 41, 64, 32, 57, 21, 50, 42, 48, 63, 40, 69, 37, 29, 62, 59, 21, 26, 64, 26, 64, 49, 61, 68, 18, 20, 65, 29, 39, 39, 69, 50, 18, 27, 61, 33, 48, 58, 43, 64, 24, 39, 49, 27, 35, 48, 56, 45, 27, 59, 58, 63, 28, 22, 32, 67, 61, 67, 27, 34, 26, 34, 63, 28, 48, 43, 54, 36, 41, 22, 47, 57, 24, 39, 48, 39, 20, 56, 35, 43 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053", "CUST_0054", "CUST_0055", "CUST_0056", "CUST_0057", "CUST_0058", "CUST_0059", "CUST_0060", "CUST_0061", "CUST_0062", "CUST_0063", "CUST_0064", "CUST_0065", "CUST_0066", "CUST_0067", "CUST_0068", "CUST_0069", "CUST_0070", "CUST_0071", "CUST_0072", "CUST_0073", "CUST_0074", "CUST_0075", "CUST_0076", "CUST_0077", "CUST_0078", "CUST_0079", "CUST_0080", "CUST_0081", "CUST_0082", "CUST_0083", "CUST_0084", "CUST_0085", "CUST_0086", "CUST_0087", "CUST_0088", "CUST_0089", "CUST_0090", "CUST_0091", "CUST_0092", "CUST_0093", "CUST_0094", "CUST_0095", "CUST_0096", "CUST_0097", "CUST_0098" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Other/Lainnya", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Other/Lainnya", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Other/Lainnya", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Other/Lainnya", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 1000, 7000, 3000, 8000, 10000, 7000, 3000, 7000, 10000, 4000, 7000, 9000, 7000, 7000, 6000, 9000, 2000, 5000, 10000, 5000, 4000, 6000, 8000, 8000, 7000, 3000, 3000, 8000, 4000, 7000, 1000, 3000, 2000, 5000, 4000, 8000, 5000, 4000, 4000, 2000, 4000, 9000, 8000, 2000, 5000, 4000, 7000, 10000, 2000, 6000, 4000, 9000, 9000, 7000, 2000, 6000, 1000, 9000, 2000, 3000, 3000, 2000, 5000, 4000, 3000, 3000, 7000, 5000, 8000, 3000, 9000, 2000, 5000, 10000, 7000, 10000, 9000, 7000, 5000, 9000, 7000, 3000, 10000, 7000, 3000, 5000, 5000, 10000, 7000, 8000, 1000, 4000, 5000, 6000, 7000, 4000, 9000, 8000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2025-03-19", "2024-08-22", "2024-12-04", "2025-02-28", "2025-01-14", "2024-08-24", "2025-01-09", "2024-12-01", "2024-09-09", "2024-12-25", "2024-06-15", "2024-08-05", "2024-05-10", "2025-03-08", "2025-04-06", "2024-05-21", "2024-07-01", "2024-09-15", "2025-02-14", "2024-11-01", "2024-12-10", "2024-05-24", "2025-04-09", "2024-07-29", "2024-09-12", "2025-01-24", "2024-11-27", "2024-12-24", "2024-05-31", "2024-12-31", "2024-11-06", "2024-11-10", "2025-01-01", "2024-12-28", "2025-02-04", "2024-10-27", "2024-09-29", "2024-05-11", "2024-06-03", "2025-04-02", "2024-07-19", "2025-01-22", "2024-09-28", "2025-04-15", "2025-04-19", "2025-04-09", "2024-06-25", "2025-01-11", "2024-08-23", "2024-11-07", "2024-10-31", "2024-12-20", "2024-06-01", "2024-11-02", "2024-10-10", "2024-11-11", "2024-09-16", "2024-11-20", "2024-11-07", "2024-06-10", "2024-08-05", "2024-06-03", "2024-10-07", "2024-11-01", "2025-03-18", "2024-07-11", "2024-05-27", "2024-10-07", "2024-07-01", "2024-07-06", "2024-07-05", "2024-06-14", "2024-11-24", "2024-05-11", "2024-06-26", "2024-07-07", "2024-08-18", "2024-08-22", "2025-03-13", "2024-10-25", "2025-02-15", "2024-12-14", "2025-02-12", "2024-05-31", "2024-08-09", "2024-12-05", "2024-09-09", "2024-11-12", "2024-10-24", "2024-11-23", "2024-09-06", "2024-04-21", "2025-04-16", "2024-06-07", "2025-01-30", "2024-05-13", "2025-03-11", "2025-04-08" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 84, 43, 49, 15, 12, 79, 9, 33, 66, 12, 48, 89, 87, 34, 72, 99, 72, 57, 61, 1, 66, 59, 77, 44, 48, 10, 34, 76, 99, 13, 94, 5, 46, 48, 49, 40, 13, 84, 8, 38, 54, 92, 22, 6, 44, 70, 18, 97, 92, 2, 19, 10, 18, 13, 66, 5, 14, 21, 72, 41, 65, 32, 4, 19, 47, 73, 97, 52, 93, 58, 94, 53, 1, 70, 65, 12, 91, 48, 74, 88, 27, 86, 43, 37, 47, 50, 94, 76, 25, 17, 68, 34, 44, 70, 54, 89, 91, 32 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053', 'CUST_0054', 'CUST_0055', 'CUST_0056', 'CUST_0057', 'CUST_0058', 'CUST_0059', 'CUST_0060', 'CUST_0061', 'CUST_0062', 'CUST_0063', 'CUST_0064', 'CUST_0065', 'CUST_0066', 'CUST_0067', 'CUST_0068', 'CUST_0069', 'CUST_0070', 'CUST_0071', 'CUST_0072', 'CUST_0073', 'CUST_0074', 'CUST_0075', 'CUST_0076', 'CUST_0077', 'CUST_0078', 'CUST_0079', 'CUST_0080', 'CUST_0081', 'CUST_0082', 'CUST_0083', 'CUST_0084', 'CUST_0085', 'CUST_0086', 'CUST_0087', 'CUST_0088', 'CUST_0089', 'CUST_0090', 'CUST_0091', 'CUST_0092', 'CUST_0093', 'CUST_0094', 'CUST_0095', 'CUST_0096', 'CUST_0097', 'CUST_0098'], 'Age/Usia': [20, 58, 22, 36, 23, 34, 60, 66, 49, 70, 70, 58, 31, 37, 53, 25, 19, 24, 59, 41, 64, 32, 57, 21, 50, 42, 48, 63, 40, 69, 37, 29, 62, 59, 21, 26, 64, 26, 64, 49, 61, 68, 18, 20, 65, 29, 39, 39, 69, 50, 18, 27, 61, 33, 48, 58, 43, 64, 24, 39, 49, 27, 35, 48, 56, 45, 27, 59, 58, 63, 28, 22, 32, 67, 61, 67, 27, 34, 26, 34, 63, 28, 48, 43, 54, 36, 41, 22, 47, 57, 24, 39, 48, 39, 20, 56, 35, 43], 'Gender/Jenis Kelamin': ['Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Other/Lainnya', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Other/Lainnya', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Other/Lainnya', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Other/Lainnya', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki'], 'Income/Pendapatan': [1000, 7000, 3000, 8000, 10000, 7000, 3000, 7000, 10000, 4000, 7000, 9000, 7000, 7000, 6000, 9000, 2000, 5000, 10000, 5000, 4000, 6000, 8000, 8000, 7000, 3000, 3000, 8000, 4000, 7000, 1000, 3000, 2000, 5000, 4000, 8000, 5000, 4000, 4000, 2000, 4000, 9000, 8000, 2000, 5000, 4000, 7000, 10000, 2000, 6000, 4000, 9000, 9000, 7000, 2000, 6000, 1000, 9000, 2000, 3000, 3000, 2000, 5000, 4000, 3000, 3000, 7000, 5000, 8000, 3000, 9000, 2000, 5000, 10000, 7000, 10000, 9000, 7000, 5000, 9000, 7000, 3000, 10000, 7000, 3000, 5000, 5000, 10000, 7000, 8000, 1000, 4000, 5000, 6000, 7000, 4000, 9000, 8000], 'Loyalty Score/Skor Loyalitas': [84, 43, 49, 15, 12, 79, 9, 33, 66, 12, 48, 89, 87, 34, 72, 99, 72, 57, 61, 1, 66, 59, 77, 44, 48, 10, 34, 76, 99, 13, 94, 5, 46, 48, 49, 40, 13, 84, 8, 38, 54, 92, 22, 6, 44, 70, 18, 97, 92, 2, 19, 10, 18, 13, 66, 5, 14, 21, 72, 41, 65, 32, 4, 19, 47, 73, 97, 52, 93, 58, 94, 53, 1, 70, 65, 12, 91, 48, 74, 88, 27, 86, 43, 37, 47, 50, 94, 76, 25, 17, 68, 34, 44, 70, 54, 89, 91, 32], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2025-03-19', '2024-08-22', '2024-12-04', '2025-02-28', '2025-01-14', '2024-08-24', '2025-01-09', '2024-12-01', '2024-09-09', '2024-12-25', '2024-06-15', '2024-08-05', '2024-05-10', '2025-03-08', '2025-04-06', '2024-05-21', '2024-07-01', '2024-09-15', '2025-02-14', '2024-11-01', '2024-12-10', '2024-05-24', '2025-04-09', '2024-07-29', '2024-09-12', '2025-01-24', '2024-11-27', '2024-12-24', '2024-05-31', '2024-12-31', '2024-11-06', '2024-11-10', '2025-01-01', '2024-12-28', '2025-02-04', '2024-10-27', '2024-09-29', '2024-05-11', '2024-06-03', '2025-04-02', '2024-07-19', '2025-01-22', '2024-09-28', '2025-04-15', '2025-04-19', '2025-04-09', '2024-06-25', '2025-01-11', '2024-08-23', '2024-11-07', '2024-10-31', '2024-12-20', '2024-06-01', '2024-11-02', '2024-10-10', '2024-11-11', '2024-09-16', '2024-11-20', '2024-11-07', '2024-06-10', '2024-08-05', '2024-06-03', '2024-10-07', '2024-11-01', '2025-03-18', '2024-07-11', '2024-05-27', '2024-10-07', '2024-07-01', '2024-07-06', '2024-07-05', '2024-06-14', '2024-11-24', '2024-05-11', '2024-06-26', '2024-07-07', '2024-08-18', '2024-08-22', '2025-03-13', '2024-10-25', '2025-02-15', '2024-12-14', '2025-02-12', '2024-05-31', '2024-08-09', '2024-12-05', '2024-09-09', '2024-11-12', '2024-10-24', '2024-11-23', '2024-09-06', '2024-04-21', '2025-04-16', '2024-06-07', '2025-01-30', '2024-05-13', '2025-03-11', '2025-04-08']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Forecast visitors for/untuk quarter
{ "Age/Usia": [ 55, 67, 49, 67, 70, 40, 46, 39, 57, 58, 52, 48, 47, 57, 29, 65, 66, 42, 67, 54, 23, 40, 54, 45, 52, 30, 19, 32, 26, 63, 55, 62, 40, 58, 44, 27, 25, 25, 30, 37, 24, 46, 51, 23, 57, 69, 51, 35, 29, 61, 64, 41, 44, 31, 28 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053", "CUST_0054", "CUST_0055" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Other/Lainnya", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Other/Lainnya", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Other/Lainnya", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 7000, 8000, 2000, 9000, 6000, 6000, 5000, 7000, 10000, 7000, 8000, 8000, 8000, 3000, 2000, 4000, 5000, 8000, 6000, 7000, 4000, 5000, 9000, 9000, 4000, 3000, 6000, 8000, 2000, 8000, 2000, 9000, 9000, 7000, 3000, 2000, 7000, 7000, 5000, 6000, 10000, 4000, 5000, 2000, 8000, 2000, 6000, 2000, 2000, 9000, 8000, 9000, 4000, 5000, 9000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2025-01-14", "2025-02-08", "2025-01-23", "2024-09-26", "2024-08-26", "2024-05-23", "2024-10-23", "2025-01-12", "2024-05-10", "2024-09-14", "2025-04-16", "2024-08-25", "2024-05-24", "2024-05-10", "2024-10-08", "2024-08-24", "2024-10-21", "2024-10-04", "2024-09-16", "2024-06-05", "2024-09-17", "2024-08-10", "2024-12-13", "2024-05-15", "2024-07-02", "2024-06-25", "2024-07-11", "2024-12-05", "2025-03-02", "2024-11-11", "2024-12-21", "2025-04-14", "2024-11-13", "2024-06-21", "2025-01-23", "2025-01-02", "2024-10-17", "2024-05-24", "2024-09-13", "2024-09-30", "2025-01-08", "2024-12-25", "2025-01-01", "2025-04-09", "2024-09-06", "2025-01-27", "2025-03-01", "2024-04-27", "2024-06-11", "2024-08-01", "2025-03-18", "2024-09-30", "2024-12-17", "2024-06-03", "2024-07-10" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 5, 60, 67, 17, 4, 21, 14, 59, 21, 58, 6, 30, 94, 36, 95, 30, 91, 52, 80, 100, 72, 99, 80, 21, 15, 31, 96, 100, 9, 13, 70, 27, 55, 9, 77, 64, 37, 49, 26, 71, 53, 69, 19, 88, 58, 52, 53, 77, 11, 80, 21, 26, 61, 63, 44 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053', 'CUST_0054', 'CUST_0055'], 'Age/Usia': [55, 67, 49, 67, 70, 40, 46, 39, 57, 58, 52, 48, 47, 57, 29, 65, 66, 42, 67, 54, 23, 40, 54, 45, 52, 30, 19, 32, 26, 63, 55, 62, 40, 58, 44, 27, 25, 25, 30, 37, 24, 46, 51, 23, 57, 69, 51, 35, 29, 61, 64, 41, 44, 31, 28], 'Gender/Jenis Kelamin': ['Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Other/Lainnya', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Other/Lainnya', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Other/Lainnya', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan'], 'Income/Pendapatan': [7000, 8000, 2000, 9000, 6000, 6000, 5000, 7000, 10000, 7000, 8000, 8000, 8000, 3000, 2000, 4000, 5000, 8000, 6000, 7000, 4000, 5000, 9000, 9000, 4000, 3000, 6000, 8000, 2000, 8000, 2000, 9000, 9000, 7000, 3000, 2000, 7000, 7000, 5000, 6000, 10000, 4000, 5000, 2000, 8000, 2000, 6000, 2000, 2000, 9000, 8000, 9000, 4000, 5000, 9000], 'Loyalty Score/Skor Loyalitas': [5, 60, 67, 17, 4, 21, 14, 59, 21, 58, 6, 30, 94, 36, 95, 30, 91, 52, 80, 100, 72, 99, 80, 21, 15, 31, 96, 100, 9, 13, 70, 27, 55, 9, 77, 64, 37, 49, 26, 71, 53, 69, 19, 88, 58, 52, 53, 77, 11, 80, 21, 26, 61, 63, 44], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2025-01-14', '2025-02-08', '2025-01-23', '2024-09-26', '2024-08-26', '2024-05-23', '2024-10-23', '2025-01-12', '2024-05-10', '2024-09-14', '2025-04-16', '2024-08-25', '2024-05-24', '2024-05-10', '2024-10-08', '2024-08-24', '2024-10-21', '2024-10-04', '2024-09-16', '2024-06-05', '2024-09-17', '2024-08-10', '2024-12-13', '2024-05-15', '2024-07-02', '2024-06-25', '2024-07-11', '2024-12-05', '2025-03-02', '2024-11-11', '2024-12-21', '2025-04-14', '2024-11-13', '2024-06-21', '2025-01-23', '2025-01-02', '2024-10-17', '2024-05-24', '2024-09-13', '2024-09-30', '2025-01-08', '2024-12-25', '2025-01-01', '2025-04-09', '2024-09-06', '2025-01-27', '2025-03-01', '2024-04-27', '2024-06-11', '2024-08-01', '2025-03-18', '2024-09-30', '2024-12-17', '2024-06-03', '2024-07-10']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Time series forecasting from statsmodels.tsa.arima.model import ARIMA # Prepare data ts_data = df.set_index('Date/Tanggal')['Revenue/Pendapatan'] model = ARIMA(ts_data, order=(1,1,1)) model_fit = model.fit() forecast = model_fit.forecast(steps=7) print('Forecast for next 7 days:', forecast)
Korelasi skor loyalitas and/dan nilai pesanan rata-rata
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Automotive/Otomotif", "Automotive/Otomotif", "Automotive/Otomotif" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.15, 0.12, 0.07 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 156.75, 106.13, 72.02 ], "Product/Produk": [ "Oil_1", "Accessories_2", "Tires_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 668, 1000, 174 ], "Stock/Stok": [ 31, 124, 80 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Oil_1', 'Accessories_2', 'Tires_3'], 'Sales/Penjualan': [668, 1000, 174], 'Price/Harga': [156.75, 106.13, 72.02], 'Category/Kategori': ['Automotive/Otomotif', 'Automotive/Otomotif', 'Automotive/Otomotif'], 'Discount/Diskon': [0.15, 0.12, 0.07], 'Stock/Stok': [31, 124, 80]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Correlation analysis corr_matrix = df.corr(numeric_only=True) fig = px.imshow(corr_matrix, text_auto=True, title='Correlation Matrix') fig.show()
Analisis pangsa pasar segmen pelanggan
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": [ "Mexico City", "Singapore", "Dubai", "Tokyo", "London" ], "Conversion Rate/Rasio Konversi": null, "Country/Negara": [ "Mexico", "Singapore", "UAE", "Japan", "UK" ], "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": [ -0.07, 0.26, 0.2, 0.14, 0.07 ], "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": [ 81.8079, -30.6587, 55.9382, -37.8074, 53.2723 ], "Longitude/Bujur": [ 106.2646, -19.9066, -107.6793, 29.0186, -97.2467 ], "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": [ 0.44, 0.42, 0.2, 0.23, 0.26 ], "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": [ "North America", "Asia", "Middle East", "Asia", "Europe" ], "Revenue/Pendapatan": [ 3333, 1303, 1706, 1441, 4412 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'City/Kota': ['Mexico City', 'Singapore', 'Dubai', 'Tokyo', 'London'], 'Country/Negara': ['Mexico', 'Singapore', 'UAE', 'Japan', 'UK'], 'Region/Wilayah': ['North America', 'Asia', 'Middle East', 'Asia', 'Europe'], 'Latitude/Lintang': [81.8079, -30.6587, 55.9382, -37.8074, 53.2723], 'Longitude/Bujur': [106.2646, -19.9066, -107.6793, 29.0186, -97.2467], 'Revenue/Pendapatan': [3333, 1303, 1706, 1441, 4412], 'Market Share/Pangsa Pasar': [0.44, 0.42, 0.2, 0.23, 0.26], 'Growth Rate/Pertumbuhan': [-0.07, 0.26, 0.2, 0.14, 0.07]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Identifikasi pendapatan negara
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Fashion", "Fashion", "Fashion" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.13, 0.04, 0.30000000000000004 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 194.49, 159.57, 38.84 ], "Product/Produk": [ "T-Shirt_1", "Jeans_2", "Shoes_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 693, 827, 495 ], "Stock/Stok": [ 139, 119, 24 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['T-Shirt_1', 'Jeans_2', 'Shoes_3'], 'Sales/Penjualan': [693, 827, 495], 'Price/Harga': [194.49, 159.57, 38.84], 'Category/Kategori': ['Fashion', 'Fashion', 'Fashion'], 'Discount/Diskon': [0.13, 0.04, 0.3], 'Stock/Stok': [139, 119, 24]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Optimize conversion rate customer segment
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": [ "Sydney", "Singapore", "Dubai", "New York", "Mumbai" ], "Conversion Rate/Rasio Konversi": null, "Country/Negara": [ "Australia", "Singapore", "UAE", "US", "India" ], "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": [ -0.03, 0.29, 0.25, 0.11, 0.26 ], "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": [ -3.7821, 21.9056, -72.378, -13.7583, 55.902 ], "Longitude/Bujur": [ -48.0211, -168.8784, -126.7716, 171.8496, 87.3951 ], "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": [ 0.22, 0.24, 0.15, 0.12, 0.36 ], "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": [ "Oceania", "Asia", "Middle East", "North America", "Asia" ], "Revenue/Pendapatan": [ 2918, 1044, 1830, 2451, 1321 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'City/Kota': ['Sydney', 'Singapore', 'Dubai', 'New York', 'Mumbai'], 'Country/Negara': ['Australia', 'Singapore', 'UAE', 'US', 'India'], 'Region/Wilayah': ['Oceania', 'Asia', 'Middle East', 'North America', 'Asia'], 'Latitude/Lintang': [-3.7821, 21.9056, -72.378, -13.7583, 55.902], 'Longitude/Bujur': [-48.0211, -168.8784, -126.7716, 171.8496, 87.3951], 'Revenue/Pendapatan': [2918, 1044, 1830, 2451, 1321], 'Market Share/Pangsa Pasar': [0.22, 0.24, 0.15, 0.12, 0.36], 'Growth Rate/Pertumbuhan': [-0.03, 0.29, 0.25, 0.11, 0.26]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Customer segmentation using KMeans from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler # Select features and scale X = df[['Age/Usia', 'Income/Pendapatan', 'Loyalty Score/Skor Loyalitas']] scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # Cluster into 3 segments kmeans = KMeans(n_clusters=3, random_state=42) df['Segment/Segmen'] = kmeans.fit_predict(X_scaled) # Visualize segments fig = px.scatter_3d(df, x='Age/Usia', y='Income/Pendapatan', z='Loyalty Score/Skor Loyalitas', color='Segment/Segmen', title='Customer Segments') fig.show()
Korelasi stok and/dan pangsa pasar
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": [ "Mumbai", "New York", "Jakarta", "Tokyo", "Dubai" ], "Conversion Rate/Rasio Konversi": null, "Country/Negara": [ "India", "US", "Indonesia", "Japan", "UAE" ], "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": [ 0.04, 0.1, 0.19, 0.03, 0.14 ], "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": [ -37.7819, -36.3422, -28.3427, -86.7913, 66.665 ], "Longitude/Bujur": [ -51.767, 109.1282, -87.7083, 112.206, 26.0203 ], "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": [ 0.33, 0.23, 0.26, 0.27, 0.44 ], "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": [ "Asia", "North America", "Asia", "Asia", "Middle East" ], "Revenue/Pendapatan": [ 4838, 3649, 3778, 1163, 2585 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'City/Kota': ['Mumbai', 'New York', 'Jakarta', 'Tokyo', 'Dubai'], 'Country/Negara': ['India', 'US', 'Indonesia', 'Japan', 'UAE'], 'Region/Wilayah': ['Asia', 'North America', 'Asia', 'Asia', 'Middle East'], 'Latitude/Lintang': [-37.7819, -36.3422, -28.3427, -86.7913, 66.665], 'Longitude/Bujur': [-51.767, 109.1282, -87.7083, 112.206, 26.0203], 'Revenue/Pendapatan': [4838, 3649, 3778, 1163, 2585], 'Market Share/Pangsa Pasar': [0.33, 0.23, 0.26, 0.27, 0.44], 'Growth Rate/Pertumbuhan': [0.04, 0.1, 0.19, 0.03, 0.14]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Correlation analysis corr_matrix = df.corr(numeric_only=True) fig = px.imshow(corr_matrix, text_auto=True, title='Correlation Matrix') fig.show()
Analyze visitors time period
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Electronics/Elektronik", "Electronics/Elektronik", "Electronics/Elektronik" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.09, 0.12, 0 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 20.08, 150.18, 126.77 ], "Product/Produk": [ "TV_1", "Headphones_2", "Smartphone_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 778, 283, 759 ], "Stock/Stok": [ 98, 13, 87 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['TV_1', 'Headphones_2', 'Smartphone_3'], 'Sales/Penjualan': [778, 283, 759], 'Price/Harga': [20.08, 150.18, 126.77], 'Category/Kategori': ['Electronics/Elektronik', 'Electronics/Elektronik', 'Electronics/Elektronik'], 'Discount/Diskon': [0.09, 0.12, 0.0], 'Stock/Stok': [98, 13, 87]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Analisis nilai pesanan rata-rata periode waktu
{ "Age/Usia": [ 26, 68, 28, 21, 54, 53, 20, 32, 59, 24, 53, 43, 55, 66, 35, 39, 43, 33, 36, 68, 30, 20, 70, 41, 64, 38, 53, 28, 53, 21, 63, 59, 52, 59, 61, 58, 46, 51, 20, 57, 68, 24, 51, 33, 59, 64, 38, 20, 30, 57, 33, 52, 26, 68, 64, 64, 51, 32, 55, 26, 28, 42, 42, 42, 24, 36, 38, 65, 31, 30, 45, 61, 38, 51, 67, 64, 21, 20, 47, 60, 29, 40, 26, 48, 32, 47, 66 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053", "CUST_0054", "CUST_0055", "CUST_0056", "CUST_0057", "CUST_0058", "CUST_0059", "CUST_0060", "CUST_0061", "CUST_0062", "CUST_0063", "CUST_0064", "CUST_0065", "CUST_0066", "CUST_0067", "CUST_0068", "CUST_0069", "CUST_0070", "CUST_0071", "CUST_0072", "CUST_0073", "CUST_0074", "CUST_0075", "CUST_0076", "CUST_0077", "CUST_0078", "CUST_0079", "CUST_0080", "CUST_0081", "CUST_0082", "CUST_0083", "CUST_0084", "CUST_0085", "CUST_0086", "CUST_0087" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Other/Lainnya", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Other/Lainnya", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 1000, 4000, 9000, 7000, 5000, 9000, 6000, 6000, 8000, 9000, 7000, 4000, 9000, 2000, 4000, 4000, 3000, 3000, 1000, 3000, 6000, 4000, 6000, 5000, 6000, 9000, 6000, 4000, 8000, 3000, 7000, 3000, 8000, 7000, 6000, 3000, 5000, 6000, 8000, 6000, 5000, 5000, 8000, 7000, 3000, 5000, 9000, 6000, 3000, 10000, 7000, 3000, 7000, 10000, 8000, 9000, 10000, 4000, 10000, 2000, 6000, 3000, 6000, 8000, 7000, 8000, 7000, 8000, 7000, 10000, 7000, 7000, 5000, 8000, 5000, 8000, 7000, 2000, 7000, 6000, 7000, 9000, 9000, 3000, 8000, 7000, 7000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2024-07-02", "2024-05-28", "2025-04-07", "2025-02-18", "2024-07-25", "2024-09-05", "2025-02-13", "2024-11-22", "2025-04-15", "2024-07-27", "2024-05-28", "2024-09-19", "2024-08-26", "2024-09-17", "2024-08-06", "2024-07-08", "2024-08-28", "2025-02-02", "2024-10-24", "2024-11-26", "2025-01-26", "2024-08-04", "2024-10-27", "2024-10-06", "2025-03-20", "2024-09-11", "2024-09-20", "2024-05-03", "2025-02-10", "2024-07-18", "2024-09-09", "2024-11-10", "2024-09-17", "2024-07-06", "2025-02-25", "2024-12-30", "2024-09-18", "2024-04-24", "2024-07-03", "2025-01-21", "2024-11-13", "2024-06-29", "2024-10-19", "2024-09-17", "2025-01-12", "2024-10-11", "2024-10-19", "2024-08-25", "2024-08-21", "2025-01-13", "2025-02-03", "2024-12-26", "2025-02-02", "2024-06-24", "2024-05-09", "2024-11-06", "2024-10-10", "2024-10-27", "2024-07-30", "2024-10-20", "2024-09-11", "2024-12-09", "2025-03-29", "2024-06-11", "2025-02-24", "2024-09-15", "2024-09-21", "2025-03-06", "2024-11-02", "2024-10-31", "2024-12-26", "2025-04-20", "2024-11-11", "2024-09-20", "2024-06-29", "2025-01-16", "2024-06-17", "2024-07-03", "2025-02-26", "2024-12-05", "2024-07-15", "2025-03-14", "2024-05-16", "2024-05-28", "2025-02-05", "2024-05-03", "2024-10-31" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 37, 94, 88, 73, 30, 54, 64, 50, 21, 5, 98, 58, 50, 85, 24, 45, 20, 40, 16, 88, 56, 59, 33, 83, 27, 62, 57, 2, 4, 47, 7, 39, 90, 9, 93, 23, 21, 94, 33, 74, 33, 72, 72, 14, 69, 33, 63, 8, 97, 47, 94, 86, 60, 29, 89, 77, 52, 48, 54, 77, 66, 34, 40, 29, 42, 62, 51, 73, 61, 93, 34, 48, 7, 74, 57, 15, 55, 92, 46, 79, 35, 18, 45, 54, 49, 41, 57 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053', 'CUST_0054', 'CUST_0055', 'CUST_0056', 'CUST_0057', 'CUST_0058', 'CUST_0059', 'CUST_0060', 'CUST_0061', 'CUST_0062', 'CUST_0063', 'CUST_0064', 'CUST_0065', 'CUST_0066', 'CUST_0067', 'CUST_0068', 'CUST_0069', 'CUST_0070', 'CUST_0071', 'CUST_0072', 'CUST_0073', 'CUST_0074', 'CUST_0075', 'CUST_0076', 'CUST_0077', 'CUST_0078', 'CUST_0079', 'CUST_0080', 'CUST_0081', 'CUST_0082', 'CUST_0083', 'CUST_0084', 'CUST_0085', 'CUST_0086', 'CUST_0087'], 'Age/Usia': [26, 68, 28, 21, 54, 53, 20, 32, 59, 24, 53, 43, 55, 66, 35, 39, 43, 33, 36, 68, 30, 20, 70, 41, 64, 38, 53, 28, 53, 21, 63, 59, 52, 59, 61, 58, 46, 51, 20, 57, 68, 24, 51, 33, 59, 64, 38, 20, 30, 57, 33, 52, 26, 68, 64, 64, 51, 32, 55, 26, 28, 42, 42, 42, 24, 36, 38, 65, 31, 30, 45, 61, 38, 51, 67, 64, 21, 20, 47, 60, 29, 40, 26, 48, 32, 47, 66], 'Gender/Jenis Kelamin': ['Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Other/Lainnya', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Other/Lainnya', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan'], 'Income/Pendapatan': [1000, 4000, 9000, 7000, 5000, 9000, 6000, 6000, 8000, 9000, 7000, 4000, 9000, 2000, 4000, 4000, 3000, 3000, 1000, 3000, 6000, 4000, 6000, 5000, 6000, 9000, 6000, 4000, 8000, 3000, 7000, 3000, 8000, 7000, 6000, 3000, 5000, 6000, 8000, 6000, 5000, 5000, 8000, 7000, 3000, 5000, 9000, 6000, 3000, 10000, 7000, 3000, 7000, 10000, 8000, 9000, 10000, 4000, 10000, 2000, 6000, 3000, 6000, 8000, 7000, 8000, 7000, 8000, 7000, 10000, 7000, 7000, 5000, 8000, 5000, 8000, 7000, 2000, 7000, 6000, 7000, 9000, 9000, 3000, 8000, 7000, 7000], 'Loyalty Score/Skor Loyalitas': [37, 94, 88, 73, 30, 54, 64, 50, 21, 5, 98, 58, 50, 85, 24, 45, 20, 40, 16, 88, 56, 59, 33, 83, 27, 62, 57, 2, 4, 47, 7, 39, 90, 9, 93, 23, 21, 94, 33, 74, 33, 72, 72, 14, 69, 33, 63, 8, 97, 47, 94, 86, 60, 29, 89, 77, 52, 48, 54, 77, 66, 34, 40, 29, 42, 62, 51, 73, 61, 93, 34, 48, 7, 74, 57, 15, 55, 92, 46, 79, 35, 18, 45, 54, 49, 41, 57], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2024-07-02', '2024-05-28', '2025-04-07', '2025-02-18', '2024-07-25', '2024-09-05', '2025-02-13', '2024-11-22', '2025-04-15', '2024-07-27', '2024-05-28', '2024-09-19', '2024-08-26', '2024-09-17', '2024-08-06', '2024-07-08', '2024-08-28', '2025-02-02', '2024-10-24', '2024-11-26', '2025-01-26', '2024-08-04', '2024-10-27', '2024-10-06', '2025-03-20', '2024-09-11', '2024-09-20', '2024-05-03', '2025-02-10', '2024-07-18', '2024-09-09', '2024-11-10', '2024-09-17', '2024-07-06', '2025-02-25', '2024-12-30', '2024-09-18', '2024-04-24', '2024-07-03', '2025-01-21', '2024-11-13', '2024-06-29', '2024-10-19', '2024-09-17', '2025-01-12', '2024-10-11', '2024-10-19', '2024-08-25', '2024-08-21', '2025-01-13', '2025-02-03', '2024-12-26', '2025-02-02', '2024-06-24', '2024-05-09', '2024-11-06', '2024-10-10', '2024-10-27', '2024-07-30', '2024-10-20', '2024-09-11', '2024-12-09', '2025-03-29', '2024-06-11', '2025-02-24', '2024-09-15', '2024-09-21', '2025-03-06', '2024-11-02', '2024-10-31', '2024-12-26', '2025-04-20', '2024-11-11', '2024-09-20', '2024-06-29', '2025-01-16', '2024-06-17', '2024-07-03', '2025-02-26', '2024-12-05', '2024-07-15', '2025-03-14', '2024-05-16', '2024-05-28', '2025-02-05', '2024-05-03', '2024-10-31']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Visualisasikan pendapatan segmen pelanggan
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": [ 112.78, 146.34, 114.85, 144.22, 161.49, 150.67, 101.69, 179.94, 77.52, 66.49, 150.08, 195.67, 91.44, 199.01, 100.35, 152.81, 57.23, 114.01, 160.31, 119.5, 80.17, 128.94, 101.74, 83.61, 98.9, 68.02, 105.6, 58.39, 167.79, 115.51 ], "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": [ 0.068, 0.07930000000000001, 0.038700000000000005, 0.049100000000000005, 0.0629, 0.0756, 0.0149, 0.041100000000000005, 0.0196, 0.021, 0.09480000000000001, 0.0175, 0.0165, 0.0279, 0.0874, 0.0241, 0.0921, 0.0198, 0.0863, 0.044, 0.0135, 0.09580000000000001, 0.019200000000000002, 0.0167, 0.0453, 0.061900000000000004, 0.0568, 0.026600000000000002, 0.063, 0.0347 ], "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": [ "2025-03-23", "2025-03-24", "2025-03-25", "2025-03-26", "2025-03-27", "2025-03-28", "2025-03-29", "2025-03-30", "2025-03-31", "2025-04-01", "2025-04-02", "2025-04-03", "2025-04-04", "2025-04-05", "2025-04-06", "2025-04-07", "2025-04-08", "2025-04-09", "2025-04-10", "2025-04-11", "2025-04-12", "2025-04-13", "2025-04-14", "2025-04-15", "2025-04-16", "2025-04-17", "2025-04-18", "2025-04-19", "2025-04-20", "2025-04-21" ], "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": [ 989.44, 1186.59, 1179.51, 1194.43, 1327.94, 1247.32, 1177.38, 1120.3, 1160.71, 959.04, 993.47, 900.88, 1026.22, 1068.18, 1217.52, 1193.29, 1336.55, 1428.41, 1481.92, 1432.88, 1407.49, 1387.8, 1261.78, 1160.59, 1144.16, 1144.28, 1195.16, 1300.82, 1251.21, 1493.75 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": [ 206, 181, 293, 65, 164, 245, 223, 66, 63, 154, 106, 142, 247, 60, 297, 77, 108, 212, 90, 220, 232, 159, 249, 218, 187, 271, 183, 204, 176, 286 ] }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Date/Tanggal': ['2025-03-23', '2025-03-24', '2025-03-25', '2025-03-26', '2025-03-27', '2025-03-28', '2025-03-29', '2025-03-30', '2025-03-31', '2025-04-01', '2025-04-02', '2025-04-03', '2025-04-04', '2025-04-05', '2025-04-06', '2025-04-07', '2025-04-08', '2025-04-09', '2025-04-10', '2025-04-11', '2025-04-12', '2025-04-13', '2025-04-14', '2025-04-15', '2025-04-16', '2025-04-17', '2025-04-18', '2025-04-19', '2025-04-20', '2025-04-21'], 'Revenue/Pendapatan': [989.44, 1186.59, 1179.51, 1194.43, 1327.94, 1247.32, 1177.38, 1120.3, 1160.71, 959.04, 993.47, 900.88, 1026.22, 1068.18, 1217.52, 1193.29, 1336.55, 1428.41, 1481.92, 1432.88, 1407.49, 1387.8, 1261.78, 1160.59, 1144.16, 1144.28, 1195.16, 1300.82, 1251.21, 1493.75], 'Visitors/Pengunjung': [206, 181, 293, 65, 164, 245, 223, 66, 63, 154, 106, 142, 247, 60, 297, 77, 108, 212, 90, 220, 232, 159, 249, 218, 187, 271, 183, 204, 176, 286], 'Conversion Rate/Rasio Konversi': [0.068, 0.0793, 0.0387, 0.0491, 0.0629, 0.0756, 0.0149, 0.0411, 0.0196, 0.021, 0.0948, 0.0175, 0.0165, 0.0279, 0.0874, 0.0241, 0.0921, 0.0198, 0.0863, 0.044, 0.0135, 0.0958, 0.0192, 0.0167, 0.0453, 0.0619, 0.0568, 0.0266, 0.063, 0.0347], 'Avg. Order Value/Nilai Pesanan Rata2': [112.78, 146.34, 114.85, 144.22, 161.49, 150.67, 101.69, 179.94, 77.52, 66.49, 150.08, 195.67, 91.44, 199.01, 100.35, 152.81, 57.23, 114.01, 160.31, 119.5, 80.17, 128.94, 101.74, 83.61, 98.9, 68.02, 105.6, 58.39, 167.79, 115.51]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Time series visualization fig = px.line(df, x='Date/Tanggal', y='Revenue/Pendapatan', title='Revenue Over Time', markers=True) fig.update_xaxes(rangeslider_visible=True) fig.show()
Korelasi penjualan and/dan pendapatan
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Electronics/Elektronik", "Electronics/Elektronik", "Electronics/Elektronik" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.28, 0.14, 0.2 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 103.51, 165.5, 121.25 ], "Product/Produk": [ "Smartphone_1", "Laptop_2", "TV_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 928, 390, 612 ], "Stock/Stok": [ 21, 60, 124 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Smartphone_1', 'Laptop_2', 'TV_3'], 'Sales/Penjualan': [928, 390, 612], 'Price/Harga': [103.51, 165.5, 121.25], 'Category/Kategori': ['Electronics/Elektronik', 'Electronics/Elektronik', 'Electronics/Elektronik'], 'Discount/Diskon': [0.28, 0.14, 0.2], 'Stock/Stok': [21, 60, 124]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Correlation analysis corr_matrix = df.corr(numeric_only=True) fig = px.imshow(corr_matrix, text_auto=True, title='Correlation Matrix') fig.show()
Visualisasikan pengunjung kategori
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Food/Makanan", "Food/Makanan", "Food/Makanan" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.1, 0.01, 0.02 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 179.79, 38.51, 49.73 ], "Product/Produk": [ "Fruits_1", "Dairy_2", "Beverages_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 990, 959, 563 ], "Stock/Stok": [ 166, 184, 133 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Fruits_1', 'Dairy_2', 'Beverages_3'], 'Sales/Penjualan': [990, 959, 563], 'Price/Harga': [179.79, 38.51, 49.73], 'Category/Kategori': ['Food/Makanan', 'Food/Makanan', 'Food/Makanan'], 'Discount/Diskon': [0.1, 0.01, 0.02], 'Stock/Stok': [166, 184, 133]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Scatter chart visualization fig = px.scatter(df, x=df.columns[1], y=df.columns[2], color=df.columns[3] if len(df.columns) > 3 else None, title='Visualisasikan pengunjung kategori') fig.show()
Korelasi pangsa pasar and/dan diskon
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": [ 145.37, 81.41, 97.64, 96.1, 157.2, 168.41, 121.35, 149.41, 53.62, 146.14, 111.57, 134.7, 73.83, 68.37, 191.61, 166.85, 70.77, 189.06, 179.58, 71.58, 110.1, 195.89, 104.63, 163.23, 145.02, 196.54, 101.64, 69.59, 82.53, 181.08 ], "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": [ 0.0495, 0.0205, 0.08850000000000001, 0.0495, 0.014400000000000001, 0.0974, 0.08750000000000001, 0.0775, 0.0847, 0.0115, 0.0669, 0.0868, 0.061200000000000004, 0.0978, 0.0407, 0.022600000000000002, 0.0172, 0.0726, 0.0582, 0.0264, 0.07200000000000001, 0.075, 0.0441, 0.0347, 0.0383, 0.0494, 0.0888, 0.0922, 0.0361, 0.043000000000000003 ], "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": [ "2025-03-23", "2025-03-24", "2025-03-25", "2025-03-26", "2025-03-27", "2025-03-28", "2025-03-29", "2025-03-30", "2025-03-31", "2025-04-01", "2025-04-02", "2025-04-03", "2025-04-04", "2025-04-05", "2025-04-06", "2025-04-07", "2025-04-08", "2025-04-09", "2025-04-10", "2025-04-11", "2025-04-12", "2025-04-13", "2025-04-14", "2025-04-15", "2025-04-16", "2025-04-17", "2025-04-18", "2025-04-19", "2025-04-20", "2025-04-21" ], "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": [ 2304.28, 2493.72, 2453.26, 2526.34, 2583.4, 2466.69, 2459.28, 2371.86, 2330.1, 2295.46, 2298.81, 2254.89, 2262.37, 2396.75, 2416.79, 2621.84, 2689.07, 2692.74, 2840.85, 2777.33, 2748.62, 2714.11, 2597.21, 2502.07, 2453.04, 2450.5, 2524.94, 2527.63, 2622.4, 2711.12 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": [ 106, 245, 235, 147, 193, 212, 194, 273, 272, 234, 157, 94, 286, 253, 263, 233, 272, 170, 59, 96, 159, 122, 230, 131, 281, 80, 88, 174, 198, 264 ] }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Date/Tanggal': ['2025-03-23', '2025-03-24', '2025-03-25', '2025-03-26', '2025-03-27', '2025-03-28', '2025-03-29', '2025-03-30', '2025-03-31', '2025-04-01', '2025-04-02', '2025-04-03', '2025-04-04', '2025-04-05', '2025-04-06', '2025-04-07', '2025-04-08', '2025-04-09', '2025-04-10', '2025-04-11', '2025-04-12', '2025-04-13', '2025-04-14', '2025-04-15', '2025-04-16', '2025-04-17', '2025-04-18', '2025-04-19', '2025-04-20', '2025-04-21'], 'Revenue/Pendapatan': [2304.28, 2493.72, 2453.26, 2526.34, 2583.4, 2466.69, 2459.28, 2371.86, 2330.1, 2295.46, 2298.81, 2254.89, 2262.37, 2396.75, 2416.79, 2621.84, 2689.07, 2692.74, 2840.85, 2777.33, 2748.62, 2714.11, 2597.21, 2502.07, 2453.04, 2450.5, 2524.94, 2527.63, 2622.4, 2711.12], 'Visitors/Pengunjung': [106, 245, 235, 147, 193, 212, 194, 273, 272, 234, 157, 94, 286, 253, 263, 233, 272, 170, 59, 96, 159, 122, 230, 131, 281, 80, 88, 174, 198, 264], 'Conversion Rate/Rasio Konversi': [0.0495, 0.0205, 0.0885, 0.0495, 0.0144, 0.0974, 0.0875, 0.0775, 0.0847, 0.0115, 0.0669, 0.0868, 0.0612, 0.0978, 0.0407, 0.0226, 0.0172, 0.0726, 0.0582, 0.0264, 0.072, 0.075, 0.0441, 0.0347, 0.0383, 0.0494, 0.0888, 0.0922, 0.0361, 0.043], 'Avg. Order Value/Nilai Pesanan Rata2': [145.37, 81.41, 97.64, 96.1, 157.2, 168.41, 121.35, 149.41, 53.62, 146.14, 111.57, 134.7, 73.83, 68.37, 191.61, 166.85, 70.77, 189.06, 179.58, 71.58, 110.1, 195.89, 104.63, 163.23, 145.02, 196.54, 101.64, 69.59, 82.53, 181.08]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Correlation analysis corr_matrix = df.corr(numeric_only=True) fig = px.imshow(corr_matrix, text_auto=True, title='Correlation Matrix') fig.show()
Calculate income gender
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Electronics/Elektronik", "Electronics/Elektronik", "Electronics/Elektronik" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.18, 0.13, 0.27 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 15.14, 173.53, 31.62 ], "Product/Produk": [ "Smartphone_1", "Laptop_2", "TV_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 684, 578, 655 ], "Stock/Stok": [ 64, 187, 94 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Smartphone_1', 'Laptop_2', 'TV_3'], 'Sales/Penjualan': [684, 578, 655], 'Price/Harga': [15.14, 173.53, 31.62], 'Category/Kategori': ['Electronics/Elektronik', 'Electronics/Elektronik', 'Electronics/Elektronik'], 'Discount/Diskon': [0.18, 0.13, 0.27], 'Stock/Stok': [64, 187, 94]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # moving average calculation result = df['Stock/Stok'].rolling(7).mean() print(result)
Cluster loyalty score product
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": [ 90.44, 129.78, 133.4, 69.49, 74.56, 152.69, 91.23, 192.64, 120.65, 169.61, 115.34, 105.25, 76.82, 51.93, 159.19, 60.39, 128.37, 132.5, 64.09, 94.58, 94.43, 54.32, 149.65, 165.13, 54.81, 68.78, 107, 142.14, 132.84, 114.37 ], "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": [ 0.0522, 0.0198, 0.043500000000000004, 0.0281, 0.0589, 0.012700000000000001, 0.012700000000000001, 0.016, 0.0359, 0.038200000000000005, 0.0506, 0.0391, 0.0529, 0.0902, 0.059000000000000004, 0.0558, 0.0187, 0.06720000000000001, 0.0636, 0.046400000000000004, 0.0984, 0.0392, 0.0256, 0.0219, 0.081, 0.016900000000000002, 0.0177, 0.06760000000000001, 0.0728, 0.0533 ], "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": [ "2025-03-23", "2025-03-24", "2025-03-25", "2025-03-26", "2025-03-27", "2025-03-28", "2025-03-29", "2025-03-30", "2025-03-31", "2025-04-01", "2025-04-02", "2025-04-03", "2025-04-04", "2025-04-05", "2025-04-06", "2025-04-07", "2025-04-08", "2025-04-09", "2025-04-10", "2025-04-11", "2025-04-12", "2025-04-13", "2025-04-14", "2025-04-15", "2025-04-16", "2025-04-17", "2025-04-18", "2025-04-19", "2025-04-20", "2025-04-21" ], "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": [ 1948.25, 2038.86, 2129.02, 2134.4, 2215.89, 2038.39, 2039.82, 2006.97, 1820.48, 1725.53, 1624.36, 1658.23, 1630.05, 1764.08, 1823.3, 1864.84, 1994, 2051.87, 1973.45, 1975.7, 2000.86, 1803.07, 1731.14, 1722.58, 1641.9, 1556.75, 1521.35, 1612.3, 1646.22, 1717.52 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": [ 160, 303, 62, 291, 128, 66, 270, 148, 50, 274, 241, 55, 132, 142, 92, 70, 72, 293, 189, 292, 67, 273, 144, 171, 242, 121, 282, 235, 232, 198 ] }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Date/Tanggal': ['2025-03-23', '2025-03-24', '2025-03-25', '2025-03-26', '2025-03-27', '2025-03-28', '2025-03-29', '2025-03-30', '2025-03-31', '2025-04-01', '2025-04-02', '2025-04-03', '2025-04-04', '2025-04-05', '2025-04-06', '2025-04-07', '2025-04-08', '2025-04-09', '2025-04-10', '2025-04-11', '2025-04-12', '2025-04-13', '2025-04-14', '2025-04-15', '2025-04-16', '2025-04-17', '2025-04-18', '2025-04-19', '2025-04-20', '2025-04-21'], 'Revenue/Pendapatan': [1948.25, 2038.86, 2129.02, 2134.4, 2215.89, 2038.39, 2039.82, 2006.97, 1820.48, 1725.53, 1624.36, 1658.23, 1630.05, 1764.08, 1823.3, 1864.84, 1994.0, 2051.87, 1973.45, 1975.7, 2000.86, 1803.07, 1731.14, 1722.58, 1641.9, 1556.75, 1521.35, 1612.3, 1646.22, 1717.52], 'Visitors/Pengunjung': [160, 303, 62, 291, 128, 66, 270, 148, 50, 274, 241, 55, 132, 142, 92, 70, 72, 293, 189, 292, 67, 273, 144, 171, 242, 121, 282, 235, 232, 198], 'Conversion Rate/Rasio Konversi': [0.0522, 0.0198, 0.0435, 0.0281, 0.0589, 0.0127, 0.0127, 0.016, 0.0359, 0.0382, 0.0506, 0.0391, 0.0529, 0.0902, 0.059, 0.0558, 0.0187, 0.0672, 0.0636, 0.0464, 0.0984, 0.0392, 0.0256, 0.0219, 0.081, 0.0169, 0.0177, 0.0676, 0.0728, 0.0533], 'Avg. Order Value/Nilai Pesanan Rata2': [90.44, 129.78, 133.4, 69.49, 74.56, 152.69, 91.23, 192.64, 120.65, 169.61, 115.34, 105.25, 76.82, 51.93, 159.19, 60.39, 128.37, 132.5, 64.09, 94.58, 94.43, 54.32, 149.65, 165.13, 54.81, 68.78, 107.0, 142.14, 132.84, 114.37]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Correlate average order value and/dan price
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Food/Makanan", "Food/Makanan", "Food/Makanan" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.22, 0.21, 0.22 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 92.95, 46.68, 162.54 ], "Product/Produk": [ "Fruits_1", "Snacks_2", "Dairy_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 503, 130, 660 ], "Stock/Stok": [ 131, 74, 193 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Fruits_1', 'Snacks_2', 'Dairy_3'], 'Sales/Penjualan': [503, 130, 660], 'Price/Harga': [92.95, 46.68, 162.54], 'Category/Kategori': ['Food/Makanan', 'Food/Makanan', 'Food/Makanan'], 'Discount/Diskon': [0.22, 0.21, 0.22], 'Stock/Stok': [131, 74, 193]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Correlation analysis corr_matrix = df.corr(numeric_only=True) fig = px.imshow(corr_matrix, text_auto=True, title='Correlation Matrix') fig.show()
Identify loyalty score gender
{ "Age/Usia": [ 19, 66, 22, 33, 61, 58, 26, 27, 67, 35, 39, 37, 46, 39, 61, 63, 66, 24, 25, 43, 69, 24, 29, 30, 65, 70, 45, 21, 51, 70, 27, 50, 57, 36, 68, 24, 41, 19, 56, 43, 23, 36, 64, 56, 32, 50, 70, 29, 46, 40, 29, 36, 21, 51, 56, 43, 26, 18, 38, 70, 39, 34 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053", "CUST_0054", "CUST_0055", "CUST_0056", "CUST_0057", "CUST_0058", "CUST_0059", "CUST_0060", "CUST_0061", "CUST_0062" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Other/Lainnya", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Other/Lainnya", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 9000, 7000, 5000, 1000, 1000, 5000, 8000, 8000, 6000, 9000, 4000, 1000, 6000, 4000, 5000, 4000, 2000, 7000, 1000, 9000, 7000, 9000, 7000, 8000, 5000, 7000, 1000, 3000, 10000, 9000, 6000, 9000, 7000, 6000, 5000, 6000, 4000, 2000, 5000, 3000, 1000, 7000, 6000, 10000, 1000, 5000, 10000, 6000, 4000, 6000, 7000, 9000, 6000, 2000, 4000, 7000, 2000, 4000, 8000, 6000, 9000, 3000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2024-09-23", "2024-07-05", "2024-08-28", "2024-05-21", "2024-05-26", "2025-04-10", "2024-11-17", "2024-07-15", "2024-08-27", "2024-06-01", "2025-03-12", "2025-01-11", "2024-06-24", "2025-01-13", "2024-05-26", "2025-02-28", "2024-12-25", "2024-05-06", "2024-08-13", "2025-04-04", "2024-09-13", "2024-08-19", "2024-11-05", "2024-08-06", "2024-08-23", "2024-12-08", "2024-08-04", "2025-04-19", "2024-09-07", "2025-03-24", "2024-11-14", "2024-06-07", "2025-01-01", "2024-11-07", "2025-04-09", "2024-07-11", "2024-05-10", "2024-11-22", "2024-12-16", "2025-04-06", "2024-08-28", "2024-09-13", "2025-01-30", "2024-07-11", "2024-12-13", "2024-09-12", "2024-10-05", "2024-07-20", "2025-01-08", "2024-10-12", "2024-10-16", "2025-01-07", "2024-09-10", "2024-09-29", "2024-06-03", "2025-03-08", "2024-11-18", "2025-03-05", "2024-05-05", "2024-08-14", "2024-05-13", "2024-10-16" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 40, 42, 14, 72, 59, 11, 84, 78, 88, 97, 64, 90, 69, 85, 35, 76, 61, 69, 3, 24, 61, 87, 12, 79, 6, 28, 64, 5, 25, 4, 92, 26, 28, 61, 58, 30, 43, 56, 99, 100, 17, 21, 32, 40, 85, 87, 30, 3, 60, 90, 35, 78, 46, 44, 53, 6, 43, 86, 12, 73, 52, 14 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053', 'CUST_0054', 'CUST_0055', 'CUST_0056', 'CUST_0057', 'CUST_0058', 'CUST_0059', 'CUST_0060', 'CUST_0061', 'CUST_0062'], 'Age/Usia': [19, 66, 22, 33, 61, 58, 26, 27, 67, 35, 39, 37, 46, 39, 61, 63, 66, 24, 25, 43, 69, 24, 29, 30, 65, 70, 45, 21, 51, 70, 27, 50, 57, 36, 68, 24, 41, 19, 56, 43, 23, 36, 64, 56, 32, 50, 70, 29, 46, 40, 29, 36, 21, 51, 56, 43, 26, 18, 38, 70, 39, 34], 'Gender/Jenis Kelamin': ['Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Other/Lainnya', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Other/Lainnya', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan'], 'Income/Pendapatan': [9000, 7000, 5000, 1000, 1000, 5000, 8000, 8000, 6000, 9000, 4000, 1000, 6000, 4000, 5000, 4000, 2000, 7000, 1000, 9000, 7000, 9000, 7000, 8000, 5000, 7000, 1000, 3000, 10000, 9000, 6000, 9000, 7000, 6000, 5000, 6000, 4000, 2000, 5000, 3000, 1000, 7000, 6000, 10000, 1000, 5000, 10000, 6000, 4000, 6000, 7000, 9000, 6000, 2000, 4000, 7000, 2000, 4000, 8000, 6000, 9000, 3000], 'Loyalty Score/Skor Loyalitas': [40, 42, 14, 72, 59, 11, 84, 78, 88, 97, 64, 90, 69, 85, 35, 76, 61, 69, 3, 24, 61, 87, 12, 79, 6, 28, 64, 5, 25, 4, 92, 26, 28, 61, 58, 30, 43, 56, 99, 100, 17, 21, 32, 40, 85, 87, 30, 3, 60, 90, 35, 78, 46, 44, 53, 6, 43, 86, 12, 73, 52, 14], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2024-09-23', '2024-07-05', '2024-08-28', '2024-05-21', '2024-05-26', '2025-04-10', '2024-11-17', '2024-07-15', '2024-08-27', '2024-06-01', '2025-03-12', '2025-01-11', '2024-06-24', '2025-01-13', '2024-05-26', '2025-02-28', '2024-12-25', '2024-05-06', '2024-08-13', '2025-04-04', '2024-09-13', '2024-08-19', '2024-11-05', '2024-08-06', '2024-08-23', '2024-12-08', '2024-08-04', '2025-04-19', '2024-09-07', '2025-03-24', '2024-11-14', '2024-06-07', '2025-01-01', '2024-11-07', '2025-04-09', '2024-07-11', '2024-05-10', '2024-11-22', '2024-12-16', '2025-04-06', '2024-08-28', '2024-09-13', '2025-01-30', '2024-07-11', '2024-12-13', '2024-09-12', '2024-10-05', '2024-07-20', '2025-01-08', '2024-10-12', '2024-10-16', '2025-01-07', '2024-09-10', '2024-09-29', '2024-06-03', '2025-03-08', '2024-11-18', '2025-03-05', '2024-05-05', '2024-08-14', '2024-05-13', '2024-10-16']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Correlate sales and/dan discount
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": [ 141.77, 115.13, 78.61, 73.1, 107.99, 150.88, 190.91, 160.75, 55.41, 86.53, 69.24, 131.66, 163.5, 94.94, 107.2, 64.27, 53.4, 68.59, 113.06, 91.56, 179.34, 66.58, 186.36, 103.43, 95.23, 181.17, 142.07, 184.7, 67.76, 103.29 ], "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": [ 0.0752, 0.09680000000000001, 0.023, 0.0766, 0.0146, 0.0429, 0.019200000000000002, 0.0632, 0.0848, 0.043000000000000003, 0.0526, 0.0543, 0.033100000000000004, 0.0877, 0.0325, 0.09680000000000001, 0.0287, 0.0252, 0.0316, 0.0546, 0.0155, 0.010100000000000001, 0.0357, 0.0391, 0.0978, 0.0391, 0.027, 0.030100000000000002, 0.0888, 0.057600000000000005 ], "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": [ "2025-03-23", "2025-03-24", "2025-03-25", "2025-03-26", "2025-03-27", "2025-03-28", "2025-03-29", "2025-03-30", "2025-03-31", "2025-04-01", "2025-04-02", "2025-04-03", "2025-04-04", "2025-04-05", "2025-04-06", "2025-04-07", "2025-04-08", "2025-04-09", "2025-04-10", "2025-04-11", "2025-04-12", "2025-04-13", "2025-04-14", "2025-04-15", "2025-04-16", "2025-04-17", "2025-04-18", "2025-04-19", "2025-04-20", "2025-04-21" ], "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": [ 3453.91, 3519.63, 3606.95, 3673.96, 3542.69, 3491.05, 3495.79, 3386.47, 3235.69, 3136.07, 3084.5, 3111.97, 3099.52, 3184.16, 3189.64, 3245.05, 3365.82, 3324.45, 3455.62, 3448.92, 3299.51, 3306.85, 3135.38, 3091.41, 2955.01, 2918.55, 2914.92, 2977.47, 2993.09, 3026.78 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": [ 253, 165, 267, 156, 95, 145, 198, 194, 270, 214, 187, 112, 249, 282, 145, 165, 110, 129, 187, 116, 130, 98, 119, 274, 175, 228, 106, 266, 208, 249 ] }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Date/Tanggal': ['2025-03-23', '2025-03-24', '2025-03-25', '2025-03-26', '2025-03-27', '2025-03-28', '2025-03-29', '2025-03-30', '2025-03-31', '2025-04-01', '2025-04-02', '2025-04-03', '2025-04-04', '2025-04-05', '2025-04-06', '2025-04-07', '2025-04-08', '2025-04-09', '2025-04-10', '2025-04-11', '2025-04-12', '2025-04-13', '2025-04-14', '2025-04-15', '2025-04-16', '2025-04-17', '2025-04-18', '2025-04-19', '2025-04-20', '2025-04-21'], 'Revenue/Pendapatan': [3453.91, 3519.63, 3606.95, 3673.96, 3542.69, 3491.05, 3495.79, 3386.47, 3235.69, 3136.07, 3084.5, 3111.97, 3099.52, 3184.16, 3189.64, 3245.05, 3365.82, 3324.45, 3455.62, 3448.92, 3299.51, 3306.85, 3135.38, 3091.41, 2955.01, 2918.55, 2914.92, 2977.47, 2993.09, 3026.78], 'Visitors/Pengunjung': [253, 165, 267, 156, 95, 145, 198, 194, 270, 214, 187, 112, 249, 282, 145, 165, 110, 129, 187, 116, 130, 98, 119, 274, 175, 228, 106, 266, 208, 249], 'Conversion Rate/Rasio Konversi': [0.0752, 0.0968, 0.023, 0.0766, 0.0146, 0.0429, 0.0192, 0.0632, 0.0848, 0.043, 0.0526, 0.0543, 0.0331, 0.0877, 0.0325, 0.0968, 0.0287, 0.0252, 0.0316, 0.0546, 0.0155, 0.0101, 0.0357, 0.0391, 0.0978, 0.0391, 0.027, 0.0301, 0.0888, 0.0576], 'Avg. Order Value/Nilai Pesanan Rata2': [141.77, 115.13, 78.61, 73.1, 107.99, 150.88, 190.91, 160.75, 55.41, 86.53, 69.24, 131.66, 163.5, 94.94, 107.2, 64.27, 53.4, 68.59, 113.06, 91.56, 179.34, 66.58, 186.36, 103.43, 95.23, 181.17, 142.07, 184.7, 67.76, 103.29]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Correlation analysis corr_matrix = df.corr(numeric_only=True) fig = px.imshow(corr_matrix, text_auto=True, title='Correlation Matrix') fig.show()
Analisis rasio konversi segmen pelanggan
{ "Age/Usia": [ 51, 26, 18, 20, 53, 54, 35, 52, 27, 55, 31, 25, 41, 34, 46, 41, 54, 56, 66, 46, 36, 54, 56, 49, 50, 31, 57, 45, 43, 44, 32, 47, 27, 20, 65, 23, 54, 54, 21, 56, 30, 29, 18, 27, 60, 38, 61, 55, 49, 51, 62, 70, 62, 46, 39, 48, 41, 47, 32, 38, 64, 48, 57, 44, 66, 50, 62, 49, 48, 32, 57, 26, 67, 50, 58, 30, 65, 66, 38, 32, 37, 48, 45, 51, 26, 63, 37, 58, 36, 21, 30, 66, 55, 38 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053", "CUST_0054", "CUST_0055", "CUST_0056", "CUST_0057", "CUST_0058", "CUST_0059", "CUST_0060", "CUST_0061", "CUST_0062", "CUST_0063", "CUST_0064", "CUST_0065", "CUST_0066", "CUST_0067", "CUST_0068", "CUST_0069", "CUST_0070", "CUST_0071", "CUST_0072", "CUST_0073", "CUST_0074", "CUST_0075", "CUST_0076", "CUST_0077", "CUST_0078", "CUST_0079", "CUST_0080", "CUST_0081", "CUST_0082", "CUST_0083", "CUST_0084", "CUST_0085", "CUST_0086", "CUST_0087", "CUST_0088", "CUST_0089", "CUST_0090", "CUST_0091", "CUST_0092", "CUST_0093", "CUST_0094" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Other/Lainnya", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Other/Lainnya", "Other/Lainnya", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Other/Lainnya", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Other/Lainnya", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Other/Lainnya", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 6000, 8000, 3000, 2000, 5000, 2000, 9000, 7000, 8000, 5000, 2000, 3000, 9000, 9000, 2000, 9000, 6000, 3000, 9000, 8000, 7000, 6000, 9000, 2000, 1000, 2000, 3000, 2000, 1000, 6000, 9000, 2000, 7000, 9000, 8000, 7000, 8000, 8000, 4000, 2000, 7000, 2000, 8000, 7000, 5000, 2000, 8000, 3000, 5000, 5000, 7000, 6000, 7000, 9000, 7000, 5000, 9000, 7000, 9000, 9000, 1000, 1000, 7000, 4000, 1000, 5000, 7000, 4000, 1000, 8000, 5000, 8000, 1000, 8000, 3000, 6000, 1000, 2000, 6000, 8000, 5000, 9000, 3000, 7000, 4000, 8000, 3000, 7000, 9000, 7000, 8000, 7000, 4000, 4000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2024-09-15", "2024-10-07", "2024-08-01", "2024-07-15", "2024-09-11", "2024-09-10", "2024-05-15", "2024-09-25", "2024-12-20", "2024-08-28", "2024-05-21", "2025-01-10", "2025-04-10", "2025-02-25", "2025-02-13", "2025-02-25", "2024-10-26", "2025-01-08", "2025-04-13", "2024-07-15", "2024-05-16", "2024-04-22", "2025-01-07", "2024-09-18", "2024-09-16", "2024-06-04", "2024-09-20", "2024-08-21", "2025-04-03", "2024-06-24", "2024-07-02", "2024-07-11", "2024-08-20", "2024-12-26", "2025-04-09", "2024-11-10", "2025-01-17", "2025-03-19", "2024-09-23", "2024-09-20", "2024-06-07", "2024-09-02", "2024-09-04", "2024-10-25", "2024-07-29", "2024-12-26", "2024-07-23", "2024-08-11", "2025-03-31", "2024-11-02", "2024-10-06", "2025-03-05", "2024-10-25", "2025-01-08", "2024-05-24", "2024-10-15", "2024-08-07", "2024-10-13", "2025-02-17", "2024-08-05", "2024-10-03", "2024-12-19", "2024-08-31", "2024-05-18", "2025-01-25", "2024-07-29", "2024-08-25", "2024-10-19", "2024-07-15", "2024-07-16", "2024-04-26", "2024-08-31", "2024-05-04", "2024-06-13", "2024-12-04", "2025-04-01", "2024-12-29", "2024-10-02", "2024-09-04", "2025-01-27", "2025-04-09", "2024-11-02", "2024-05-21", "2024-06-11", "2024-09-21", "2024-09-27", "2025-02-09", "2025-03-05", "2025-02-15", "2024-08-06", "2025-01-09", "2025-03-12", "2024-09-07", "2025-03-18" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 48, 100, 80, 25, 13, 59, 8, 92, 70, 100, 70, 82, 55, 94, 19, 29, 92, 53, 2, 63, 35, 37, 70, 86, 26, 92, 5, 96, 90, 37, 62, 64, 62, 71, 94, 93, 61, 77, 63, 49, 15, 95, 74, 19, 63, 56, 40, 45, 52, 7, 64, 99, 19, 45, 66, 3, 67, 22, 2, 64, 69, 100, 28, 91, 96, 73, 29, 81, 44, 47, 48, 89, 27, 28, 90, 30, 94, 84, 45, 88, 39, 99, 90, 37, 99, 97, 52, 75, 83, 43, 3, 52, 27, 22 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053', 'CUST_0054', 'CUST_0055', 'CUST_0056', 'CUST_0057', 'CUST_0058', 'CUST_0059', 'CUST_0060', 'CUST_0061', 'CUST_0062', 'CUST_0063', 'CUST_0064', 'CUST_0065', 'CUST_0066', 'CUST_0067', 'CUST_0068', 'CUST_0069', 'CUST_0070', 'CUST_0071', 'CUST_0072', 'CUST_0073', 'CUST_0074', 'CUST_0075', 'CUST_0076', 'CUST_0077', 'CUST_0078', 'CUST_0079', 'CUST_0080', 'CUST_0081', 'CUST_0082', 'CUST_0083', 'CUST_0084', 'CUST_0085', 'CUST_0086', 'CUST_0087', 'CUST_0088', 'CUST_0089', 'CUST_0090', 'CUST_0091', 'CUST_0092', 'CUST_0093', 'CUST_0094'], 'Age/Usia': [51, 26, 18, 20, 53, 54, 35, 52, 27, 55, 31, 25, 41, 34, 46, 41, 54, 56, 66, 46, 36, 54, 56, 49, 50, 31, 57, 45, 43, 44, 32, 47, 27, 20, 65, 23, 54, 54, 21, 56, 30, 29, 18, 27, 60, 38, 61, 55, 49, 51, 62, 70, 62, 46, 39, 48, 41, 47, 32, 38, 64, 48, 57, 44, 66, 50, 62, 49, 48, 32, 57, 26, 67, 50, 58, 30, 65, 66, 38, 32, 37, 48, 45, 51, 26, 63, 37, 58, 36, 21, 30, 66, 55, 38], 'Gender/Jenis Kelamin': ['Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Other/Lainnya', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Other/Lainnya', 'Other/Lainnya', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Other/Lainnya', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Other/Lainnya', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Other/Lainnya', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan'], 'Income/Pendapatan': [6000, 8000, 3000, 2000, 5000, 2000, 9000, 7000, 8000, 5000, 2000, 3000, 9000, 9000, 2000, 9000, 6000, 3000, 9000, 8000, 7000, 6000, 9000, 2000, 1000, 2000, 3000, 2000, 1000, 6000, 9000, 2000, 7000, 9000, 8000, 7000, 8000, 8000, 4000, 2000, 7000, 2000, 8000, 7000, 5000, 2000, 8000, 3000, 5000, 5000, 7000, 6000, 7000, 9000, 7000, 5000, 9000, 7000, 9000, 9000, 1000, 1000, 7000, 4000, 1000, 5000, 7000, 4000, 1000, 8000, 5000, 8000, 1000, 8000, 3000, 6000, 1000, 2000, 6000, 8000, 5000, 9000, 3000, 7000, 4000, 8000, 3000, 7000, 9000, 7000, 8000, 7000, 4000, 4000], 'Loyalty Score/Skor Loyalitas': [48, 100, 80, 25, 13, 59, 8, 92, 70, 100, 70, 82, 55, 94, 19, 29, 92, 53, 2, 63, 35, 37, 70, 86, 26, 92, 5, 96, 90, 37, 62, 64, 62, 71, 94, 93, 61, 77, 63, 49, 15, 95, 74, 19, 63, 56, 40, 45, 52, 7, 64, 99, 19, 45, 66, 3, 67, 22, 2, 64, 69, 100, 28, 91, 96, 73, 29, 81, 44, 47, 48, 89, 27, 28, 90, 30, 94, 84, 45, 88, 39, 99, 90, 37, 99, 97, 52, 75, 83, 43, 3, 52, 27, 22], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2024-09-15', '2024-10-07', '2024-08-01', '2024-07-15', '2024-09-11', '2024-09-10', '2024-05-15', '2024-09-25', '2024-12-20', '2024-08-28', '2024-05-21', '2025-01-10', '2025-04-10', '2025-02-25', '2025-02-13', '2025-02-25', '2024-10-26', '2025-01-08', '2025-04-13', '2024-07-15', '2024-05-16', '2024-04-22', '2025-01-07', '2024-09-18', '2024-09-16', '2024-06-04', '2024-09-20', '2024-08-21', '2025-04-03', '2024-06-24', '2024-07-02', '2024-07-11', '2024-08-20', '2024-12-26', '2025-04-09', '2024-11-10', '2025-01-17', '2025-03-19', '2024-09-23', '2024-09-20', '2024-06-07', '2024-09-02', '2024-09-04', '2024-10-25', '2024-07-29', '2024-12-26', '2024-07-23', '2024-08-11', '2025-03-31', '2024-11-02', '2024-10-06', '2025-03-05', '2024-10-25', '2025-01-08', '2024-05-24', '2024-10-15', '2024-08-07', '2024-10-13', '2025-02-17', '2024-08-05', '2024-10-03', '2024-12-19', '2024-08-31', '2024-05-18', '2025-01-25', '2024-07-29', '2024-08-25', '2024-10-19', '2024-07-15', '2024-07-16', '2024-04-26', '2024-08-31', '2024-05-04', '2024-06-13', '2024-12-04', '2025-04-01', '2024-12-29', '2024-10-02', '2024-09-04', '2025-01-27', '2025-04-09', '2024-11-02', '2024-05-21', '2024-06-11', '2024-09-21', '2024-09-27', '2025-02-09', '2025-03-05', '2025-02-15', '2024-08-06', '2025-01-09', '2025-03-12', '2024-09-07', '2025-03-18']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Bandingkan pendapatan kategori
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Food/Makanan", "Food/Makanan", "Food/Makanan" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.13, 0.11, 0.08 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 193.64, 30.01, 25.58 ], "Product/Produk": [ "Snacks_1", "Beverages_2", "Dairy_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 291, 161, 981 ], "Stock/Stok": [ 190, 125, 25 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Snacks_1', 'Beverages_2', 'Dairy_3'], 'Sales/Penjualan': [291, 161, 981], 'Price/Harga': [193.64, 30.01, 25.58], 'Category/Kategori': ['Food/Makanan', 'Food/Makanan', 'Food/Makanan'], 'Discount/Diskon': [0.13, 0.11, 0.08], 'Stock/Stok': [190, 125, 25]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Analyze income gender
{ "Age/Usia": [ 62, 56, 50, 63, 22, 36, 63, 45, 55, 66, 45, 59, 34, 58, 63, 61, 20, 33, 55, 57, 43, 52, 41, 56, 20, 53, 50, 31, 42, 60, 48, 57, 70, 51, 49, 47, 35, 56, 30, 57, 52, 59, 67, 18, 44, 69, 61, 53, 57, 23, 30 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Other/Lainnya", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Other/Lainnya", "Female/Perempuan", "Other/Lainnya", "Male/Laki-laki", "Male/Laki-laki", "Other/Lainnya", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 4000, 5000, 5000, 3000, 8000, 3000, 6000, 4000, 8000, 3000, 7000, 7000, 8000, 6000, 5000, 6000, 3000, 9000, 5000, 5000, 7000, 1000, 8000, 10000, 4000, 8000, 5000, 3000, 6000, 7000, 6000, 9000, 7000, 8000, 1000, 7000, 2000, 9000, 10000, 9000, 1000, 5000, 5000, 1000, 9000, 8000, 1000, 4000, 6000, 2000, 6000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2024-12-23", "2025-03-21", "2024-11-22", "2025-02-12", "2024-09-12", "2025-01-08", "2024-05-12", "2025-01-04", "2024-06-11", "2024-05-03", "2024-09-17", "2024-09-05", "2025-04-19", "2024-10-18", "2024-10-26", "2025-02-18", "2024-12-15", "2024-09-16", "2024-10-07", "2024-12-19", "2024-05-07", "2024-07-17", "2025-01-11", "2024-10-17", "2024-11-23", "2024-11-15", "2024-07-27", "2025-01-08", "2024-07-21", "2024-04-29", "2024-07-22", "2025-02-20", "2024-11-26", "2024-08-18", "2024-05-11", "2024-09-11", "2025-04-07", "2024-08-21", "2025-01-25", "2024-09-08", "2024-04-30", "2025-03-12", "2024-09-08", "2024-05-03", "2024-11-13", "2024-07-05", "2024-11-18", "2024-09-22", "2024-09-29", "2025-04-14", "2025-02-03" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 68, 89, 95, 57, 17, 25, 28, 1, 88, 88, 15, 42, 66, 87, 10, 62, 6, 65, 44, 33, 5, 74, 14, 71, 52, 43, 53, 9, 53, 22, 39, 95, 46, 57, 47, 74, 32, 29, 5, 74, 86, 13, 30, 32, 35, 24, 35, 89, 72, 76, 32 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051'], 'Age/Usia': [62, 56, 50, 63, 22, 36, 63, 45, 55, 66, 45, 59, 34, 58, 63, 61, 20, 33, 55, 57, 43, 52, 41, 56, 20, 53, 50, 31, 42, 60, 48, 57, 70, 51, 49, 47, 35, 56, 30, 57, 52, 59, 67, 18, 44, 69, 61, 53, 57, 23, 30], 'Gender/Jenis Kelamin': ['Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Other/Lainnya', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Other/Lainnya', 'Female/Perempuan', 'Other/Lainnya', 'Male/Laki-laki', 'Male/Laki-laki', 'Other/Lainnya', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki'], 'Income/Pendapatan': [4000, 5000, 5000, 3000, 8000, 3000, 6000, 4000, 8000, 3000, 7000, 7000, 8000, 6000, 5000, 6000, 3000, 9000, 5000, 5000, 7000, 1000, 8000, 10000, 4000, 8000, 5000, 3000, 6000, 7000, 6000, 9000, 7000, 8000, 1000, 7000, 2000, 9000, 10000, 9000, 1000, 5000, 5000, 1000, 9000, 8000, 1000, 4000, 6000, 2000, 6000], 'Loyalty Score/Skor Loyalitas': [68, 89, 95, 57, 17, 25, 28, 1, 88, 88, 15, 42, 66, 87, 10, 62, 6, 65, 44, 33, 5, 74, 14, 71, 52, 43, 53, 9, 53, 22, 39, 95, 46, 57, 47, 74, 32, 29, 5, 74, 86, 13, 30, 32, 35, 24, 35, 89, 72, 76, 32], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2024-12-23', '2025-03-21', '2024-11-22', '2025-02-12', '2024-09-12', '2025-01-08', '2024-05-12', '2025-01-04', '2024-06-11', '2024-05-03', '2024-09-17', '2024-09-05', '2025-04-19', '2024-10-18', '2024-10-26', '2025-02-18', '2024-12-15', '2024-09-16', '2024-10-07', '2024-12-19', '2024-05-07', '2024-07-17', '2025-01-11', '2024-10-17', '2024-11-23', '2024-11-15', '2024-07-27', '2025-01-08', '2024-07-21', '2024-04-29', '2024-07-22', '2025-02-20', '2024-11-26', '2024-08-18', '2024-05-11', '2024-09-11', '2025-04-07', '2024-08-21', '2025-01-25', '2024-09-08', '2024-04-30', '2025-03-12', '2024-09-08', '2024-05-03', '2024-11-13', '2024-07-05', '2024-11-18', '2024-09-22', '2024-09-29', '2025-04-14', '2025-02-03']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Correlate discount and/dan average order value
{ "Age/Usia": [ 40, 67, 37, 60, 37, 31, 66, 33, 32, 46, 49, 29, 36, 25, 70, 43, 40, 23, 65, 63, 39, 66, 35, 63, 26, 43, 27, 21, 69, 44, 66, 29, 54, 44, 31, 37, 42, 60, 66, 31, 37, 54, 45, 26, 60, 67, 20, 65, 47, 55, 23, 49, 23, 35, 19, 58, 20, 43, 31, 36, 19, 23, 43, 34, 41, 58, 33, 62, 29, 24, 70, 32, 70, 34, 52, 60, 66, 57, 29 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053", "CUST_0054", "CUST_0055", "CUST_0056", "CUST_0057", "CUST_0058", "CUST_0059", "CUST_0060", "CUST_0061", "CUST_0062", "CUST_0063", "CUST_0064", "CUST_0065", "CUST_0066", "CUST_0067", "CUST_0068", "CUST_0069", "CUST_0070", "CUST_0071", "CUST_0072", "CUST_0073", "CUST_0074", "CUST_0075", "CUST_0076", "CUST_0077", "CUST_0078", "CUST_0079" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Other/Lainnya", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 7000, 8000, 9000, 9000, 5000, 7000, 4000, 4000, 6000, 6000, 8000, 4000, 8000, 4000, 7000, 6000, 7000, 4000, 2000, 4000, 9000, 5000, 10000, 9000, 7000, 7000, 1000, 7000, 4000, 6000, 5000, 2000, 10000, 1000, 3000, 8000, 8000, 10000, 1000, 10000, 7000, 9000, 2000, 4000, 1000, 10000, 2000, 2000, 9000, 10000, 5000, 10000, 7000, 2000, 3000, 6000, 2000, 10000, 2000, 5000, 5000, 4000, 1000, 3000, 7000, 6000, 8000, 9000, 7000, 3000, 8000, 6000, 9000, 7000, 3000, 5000, 5000, 8000, 3000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2025-03-01", "2024-08-26", "2025-03-10", "2024-12-20", "2025-03-25", "2025-02-10", "2024-05-05", "2024-08-12", "2024-08-04", "2024-10-07", "2024-08-27", "2024-05-13", "2024-11-08", "2025-02-04", "2024-07-12", "2024-10-18", "2025-01-11", "2024-09-19", "2025-02-12", "2024-10-25", "2024-08-21", "2024-07-10", "2024-12-13", "2024-09-24", "2024-12-30", "2024-05-02", "2025-01-15", "2024-08-24", "2024-10-21", "2024-08-08", "2024-05-12", "2024-10-22", "2025-04-01", "2024-11-17", "2025-03-25", "2024-10-01", "2024-08-10", "2024-08-17", "2025-02-13", "2024-12-16", "2025-01-06", "2024-10-03", "2024-06-27", "2025-03-29", "2024-08-16", "2024-10-30", "2025-01-12", "2025-03-07", "2024-10-29", "2024-08-11", "2024-08-03", "2024-07-15", "2024-07-30", "2024-08-04", "2024-05-13", "2025-01-10", "2024-12-25", "2025-02-21", "2024-05-29", "2024-08-30", "2025-02-08", "2025-02-22", "2024-09-29", "2025-04-01", "2024-08-01", "2025-04-04", "2025-03-28", "2024-06-19", "2024-11-06", "2024-05-24", "2024-09-06", "2024-12-14", "2024-05-23", "2024-08-25", "2024-04-27", "2024-07-22", "2025-04-07", "2024-10-02", "2025-01-24" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 11, 11, 7, 97, 74, 88, 3, 72, 98, 76, 84, 2, 35, 58, 10, 90, 64, 85, 32, 7, 100, 98, 64, 87, 28, 71, 59, 81, 36, 99, 46, 65, 69, 14, 5, 67, 5, 6, 14, 43, 86, 4, 100, 64, 49, 40, 12, 39, 18, 89, 7, 84, 15, 88, 28, 96, 55, 52, 3, 75, 41, 47, 57, 2, 1, 10, 58, 77, 55, 67, 58, 71, 53, 66, 90, 75, 3, 77, 14 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053', 'CUST_0054', 'CUST_0055', 'CUST_0056', 'CUST_0057', 'CUST_0058', 'CUST_0059', 'CUST_0060', 'CUST_0061', 'CUST_0062', 'CUST_0063', 'CUST_0064', 'CUST_0065', 'CUST_0066', 'CUST_0067', 'CUST_0068', 'CUST_0069', 'CUST_0070', 'CUST_0071', 'CUST_0072', 'CUST_0073', 'CUST_0074', 'CUST_0075', 'CUST_0076', 'CUST_0077', 'CUST_0078', 'CUST_0079'], 'Age/Usia': [40, 67, 37, 60, 37, 31, 66, 33, 32, 46, 49, 29, 36, 25, 70, 43, 40, 23, 65, 63, 39, 66, 35, 63, 26, 43, 27, 21, 69, 44, 66, 29, 54, 44, 31, 37, 42, 60, 66, 31, 37, 54, 45, 26, 60, 67, 20, 65, 47, 55, 23, 49, 23, 35, 19, 58, 20, 43, 31, 36, 19, 23, 43, 34, 41, 58, 33, 62, 29, 24, 70, 32, 70, 34, 52, 60, 66, 57, 29], 'Gender/Jenis Kelamin': ['Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Other/Lainnya', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki'], 'Income/Pendapatan': [7000, 8000, 9000, 9000, 5000, 7000, 4000, 4000, 6000, 6000, 8000, 4000, 8000, 4000, 7000, 6000, 7000, 4000, 2000, 4000, 9000, 5000, 10000, 9000, 7000, 7000, 1000, 7000, 4000, 6000, 5000, 2000, 10000, 1000, 3000, 8000, 8000, 10000, 1000, 10000, 7000, 9000, 2000, 4000, 1000, 10000, 2000, 2000, 9000, 10000, 5000, 10000, 7000, 2000, 3000, 6000, 2000, 10000, 2000, 5000, 5000, 4000, 1000, 3000, 7000, 6000, 8000, 9000, 7000, 3000, 8000, 6000, 9000, 7000, 3000, 5000, 5000, 8000, 3000], 'Loyalty Score/Skor Loyalitas': [11, 11, 7, 97, 74, 88, 3, 72, 98, 76, 84, 2, 35, 58, 10, 90, 64, 85, 32, 7, 100, 98, 64, 87, 28, 71, 59, 81, 36, 99, 46, 65, 69, 14, 5, 67, 5, 6, 14, 43, 86, 4, 100, 64, 49, 40, 12, 39, 18, 89, 7, 84, 15, 88, 28, 96, 55, 52, 3, 75, 41, 47, 57, 2, 1, 10, 58, 77, 55, 67, 58, 71, 53, 66, 90, 75, 3, 77, 14], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2025-03-01', '2024-08-26', '2025-03-10', '2024-12-20', '2025-03-25', '2025-02-10', '2024-05-05', '2024-08-12', '2024-08-04', '2024-10-07', '2024-08-27', '2024-05-13', '2024-11-08', '2025-02-04', '2024-07-12', '2024-10-18', '2025-01-11', '2024-09-19', '2025-02-12', '2024-10-25', '2024-08-21', '2024-07-10', '2024-12-13', '2024-09-24', '2024-12-30', '2024-05-02', '2025-01-15', '2024-08-24', '2024-10-21', '2024-08-08', '2024-05-12', '2024-10-22', '2025-04-01', '2024-11-17', '2025-03-25', '2024-10-01', '2024-08-10', '2024-08-17', '2025-02-13', '2024-12-16', '2025-01-06', '2024-10-03', '2024-06-27', '2025-03-29', '2024-08-16', '2024-10-30', '2025-01-12', '2025-03-07', '2024-10-29', '2024-08-11', '2024-08-03', '2024-07-15', '2024-07-30', '2024-08-04', '2024-05-13', '2025-01-10', '2024-12-25', '2025-02-21', '2024-05-29', '2024-08-30', '2025-02-08', '2025-02-22', '2024-09-29', '2025-04-01', '2024-08-01', '2025-04-04', '2025-03-28', '2024-06-19', '2024-11-06', '2024-05-24', '2024-09-06', '2024-12-14', '2024-05-23', '2024-08-25', '2024-04-27', '2024-07-22', '2025-04-07', '2024-10-02', '2025-01-24']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Correlation analysis corr_matrix = df.corr(numeric_only=True) fig = px.imshow(corr_matrix, text_auto=True, title='Correlation Matrix') fig.show()
Korelasi pengunjung and/dan pendapatan
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": [ "Sydney", "Singapore", "New York", "Mumbai", "Dubai" ], "Conversion Rate/Rasio Konversi": null, "Country/Negara": [ "Australia", "Singapore", "US", "India", "UAE" ], "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": [ 0.02, -0.09, 0.02, 0.27, -0.07 ], "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": [ -88.4235, 85.2578, -26.927, -5.1132, 24.821 ], "Longitude/Bujur": [ -93.6849, 35.0648, -166.4055, -47.5911, -170.4995 ], "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": [ 0.34, 0.26, 0.22, 0.43, 0.19 ], "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": [ "Oceania", "Asia", "North America", "Asia", "Middle East" ], "Revenue/Pendapatan": [ 4831, 3062, 4960, 4305, 3474 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'City/Kota': ['Sydney', 'Singapore', 'New York', 'Mumbai', 'Dubai'], 'Country/Negara': ['Australia', 'Singapore', 'US', 'India', 'UAE'], 'Region/Wilayah': ['Oceania', 'Asia', 'North America', 'Asia', 'Middle East'], 'Latitude/Lintang': [-88.4235, 85.2578, -26.927, -5.1132, 24.821], 'Longitude/Bujur': [-93.6849, 35.0648, -166.4055, -47.5911, -170.4995], 'Revenue/Pendapatan': [4831, 3062, 4960, 4305, 3474], 'Market Share/Pangsa Pasar': [0.34, 0.26, 0.22, 0.43, 0.19], 'Growth Rate/Pertumbuhan': [0.02, -0.09, 0.02, 0.27, -0.07]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Correlation analysis corr_matrix = df.corr(numeric_only=True) fig = px.imshow(corr_matrix, text_auto=True, title='Correlation Matrix') fig.show()
Identify income gender
{ "Age/Usia": [ 24, 38, 67, 52, 26, 67, 60, 55, 67, 40, 49, 25, 68, 66, 39, 52, 20, 32, 58, 49, 20, 41, 45, 23, 49, 22, 47, 42, 43, 58, 43, 34, 41, 33, 41, 51, 24, 21, 21, 47, 54, 37, 54, 41, 47, 19, 54, 22, 63, 25, 25, 57, 63, 66, 19, 60, 41, 47, 38, 33, 47, 35, 27, 68, 32, 35, 67, 44, 49, 61, 44, 35, 46, 36, 26, 51, 39, 29, 35, 25, 36, 60, 47, 69, 57, 58, 51, 31, 26, 60 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053", "CUST_0054", "CUST_0055", "CUST_0056", "CUST_0057", "CUST_0058", "CUST_0059", "CUST_0060", "CUST_0061", "CUST_0062", "CUST_0063", "CUST_0064", "CUST_0065", "CUST_0066", "CUST_0067", "CUST_0068", "CUST_0069", "CUST_0070", "CUST_0071", "CUST_0072", "CUST_0073", "CUST_0074", "CUST_0075", "CUST_0076", "CUST_0077", "CUST_0078", "CUST_0079", "CUST_0080", "CUST_0081", "CUST_0082", "CUST_0083", "CUST_0084", "CUST_0085", "CUST_0086", "CUST_0087", "CUST_0088", "CUST_0089", "CUST_0090" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Other/Lainnya", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Other/Lainnya", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Other/Lainnya", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Other/Lainnya", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 5000, 3000, 4000, 4000, 8000, 5000, 4000, 4000, 2000, 6000, 7000, 7000, 2000, 2000, 7000, 4000, 1000, 2000, 4000, 7000, 5000, 7000, 7000, 6000, 10000, 9000, 6000, 7000, 3000, 4000, 6000, 1000, 6000, 5000, 6000, 5000, 2000, 2000, 7000, 2000, 8000, 7000, 6000, 1000, 3000, 6000, 3000, 6000, 4000, 9000, 7000, 6000, 5000, 2000, 8000, 6000, 6000, 1000, 1000, 6000, 10000, 5000, 10000, 5000, 7000, 2000, 2000, 8000, 10000, 6000, 9000, 2000, 2000, 5000, 6000, 4000, 2000, 7000, 2000, 5000, 2000, 4000, 10000, 8000, 2000, 8000, 7000, 8000, 9000, 3000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2024-07-29", "2025-03-26", "2025-03-04", "2024-11-17", "2025-02-21", "2024-10-14", "2025-01-06", "2025-04-10", "2024-05-27", "2024-07-20", "2025-01-07", "2024-08-22", "2025-03-03", "2025-02-09", "2024-12-07", "2024-06-27", "2024-06-01", "2024-12-19", "2024-06-06", "2024-06-02", "2024-11-17", "2024-08-30", "2024-11-06", "2024-05-24", "2025-03-12", "2024-12-22", "2025-03-18", "2024-04-30", "2024-12-08", "2024-04-22", "2025-02-06", "2024-05-11", "2024-12-27", "2025-01-20", "2024-06-03", "2024-07-20", "2024-09-16", "2025-04-10", "2025-01-10", "2024-06-30", "2024-10-23", "2024-05-07", "2024-05-23", "2024-07-12", "2025-02-25", "2025-04-02", "2025-01-17", "2025-04-12", "2024-05-10", "2025-03-14", "2025-04-13", "2024-09-15", "2024-06-28", "2024-08-29", "2025-01-16", "2024-09-14", "2024-05-12", "2025-04-17", "2024-05-03", "2025-03-26", "2024-11-04", "2024-12-22", "2025-02-19", "2024-09-28", "2024-08-18", "2024-12-16", "2024-12-15", "2025-03-17", "2024-12-15", "2024-07-23", "2024-08-21", "2025-03-13", "2024-08-13", "2024-06-16", "2024-11-28", "2024-07-15", "2025-03-15", "2024-05-27", "2024-09-09", "2024-05-30", "2024-09-03", "2024-04-27", "2025-03-22", "2024-10-03", "2024-06-26", "2025-02-10", "2024-08-11", "2025-02-21", "2024-12-27", "2024-08-30" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 97, 32, 34, 62, 24, 69, 90, 4, 11, 33, 33, 75, 3, 29, 74, 54, 49, 100, 2, 47, 42, 10, 37, 28, 45, 95, 71, 22, 26, 48, 3, 49, 76, 61, 14, 88, 94, 49, 79, 53, 99, 38, 54, 11, 58, 33, 48, 20, 77, 43, 40, 27, 15, 85, 23, 33, 16, 86, 61, 15, 59, 61, 24, 6, 64, 41, 41, 68, 4, 57, 18, 92, 66, 4, 19, 38, 96, 47, 33, 80, 95, 32, 50, 27, 87, 99, 21, 57, 8, 1 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053', 'CUST_0054', 'CUST_0055', 'CUST_0056', 'CUST_0057', 'CUST_0058', 'CUST_0059', 'CUST_0060', 'CUST_0061', 'CUST_0062', 'CUST_0063', 'CUST_0064', 'CUST_0065', 'CUST_0066', 'CUST_0067', 'CUST_0068', 'CUST_0069', 'CUST_0070', 'CUST_0071', 'CUST_0072', 'CUST_0073', 'CUST_0074', 'CUST_0075', 'CUST_0076', 'CUST_0077', 'CUST_0078', 'CUST_0079', 'CUST_0080', 'CUST_0081', 'CUST_0082', 'CUST_0083', 'CUST_0084', 'CUST_0085', 'CUST_0086', 'CUST_0087', 'CUST_0088', 'CUST_0089', 'CUST_0090'], 'Age/Usia': [24, 38, 67, 52, 26, 67, 60, 55, 67, 40, 49, 25, 68, 66, 39, 52, 20, 32, 58, 49, 20, 41, 45, 23, 49, 22, 47, 42, 43, 58, 43, 34, 41, 33, 41, 51, 24, 21, 21, 47, 54, 37, 54, 41, 47, 19, 54, 22, 63, 25, 25, 57, 63, 66, 19, 60, 41, 47, 38, 33, 47, 35, 27, 68, 32, 35, 67, 44, 49, 61, 44, 35, 46, 36, 26, 51, 39, 29, 35, 25, 36, 60, 47, 69, 57, 58, 51, 31, 26, 60], 'Gender/Jenis Kelamin': ['Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Other/Lainnya', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Other/Lainnya', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Other/Lainnya', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Other/Lainnya', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki'], 'Income/Pendapatan': [5000, 3000, 4000, 4000, 8000, 5000, 4000, 4000, 2000, 6000, 7000, 7000, 2000, 2000, 7000, 4000, 1000, 2000, 4000, 7000, 5000, 7000, 7000, 6000, 10000, 9000, 6000, 7000, 3000, 4000, 6000, 1000, 6000, 5000, 6000, 5000, 2000, 2000, 7000, 2000, 8000, 7000, 6000, 1000, 3000, 6000, 3000, 6000, 4000, 9000, 7000, 6000, 5000, 2000, 8000, 6000, 6000, 1000, 1000, 6000, 10000, 5000, 10000, 5000, 7000, 2000, 2000, 8000, 10000, 6000, 9000, 2000, 2000, 5000, 6000, 4000, 2000, 7000, 2000, 5000, 2000, 4000, 10000, 8000, 2000, 8000, 7000, 8000, 9000, 3000], 'Loyalty Score/Skor Loyalitas': [97, 32, 34, 62, 24, 69, 90, 4, 11, 33, 33, 75, 3, 29, 74, 54, 49, 100, 2, 47, 42, 10, 37, 28, 45, 95, 71, 22, 26, 48, 3, 49, 76, 61, 14, 88, 94, 49, 79, 53, 99, 38, 54, 11, 58, 33, 48, 20, 77, 43, 40, 27, 15, 85, 23, 33, 16, 86, 61, 15, 59, 61, 24, 6, 64, 41, 41, 68, 4, 57, 18, 92, 66, 4, 19, 38, 96, 47, 33, 80, 95, 32, 50, 27, 87, 99, 21, 57, 8, 1], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2024-07-29', '2025-03-26', '2025-03-04', '2024-11-17', '2025-02-21', '2024-10-14', '2025-01-06', '2025-04-10', '2024-05-27', '2024-07-20', '2025-01-07', '2024-08-22', '2025-03-03', '2025-02-09', '2024-12-07', '2024-06-27', '2024-06-01', '2024-12-19', '2024-06-06', '2024-06-02', '2024-11-17', '2024-08-30', '2024-11-06', '2024-05-24', '2025-03-12', '2024-12-22', '2025-03-18', '2024-04-30', '2024-12-08', '2024-04-22', '2025-02-06', '2024-05-11', '2024-12-27', '2025-01-20', '2024-06-03', '2024-07-20', '2024-09-16', '2025-04-10', '2025-01-10', '2024-06-30', '2024-10-23', '2024-05-07', '2024-05-23', '2024-07-12', '2025-02-25', '2025-04-02', '2025-01-17', '2025-04-12', '2024-05-10', '2025-03-14', '2025-04-13', '2024-09-15', '2024-06-28', '2024-08-29', '2025-01-16', '2024-09-14', '2024-05-12', '2025-04-17', '2024-05-03', '2025-03-26', '2024-11-04', '2024-12-22', '2025-02-19', '2024-09-28', '2024-08-18', '2024-12-16', '2024-12-15', '2025-03-17', '2024-12-15', '2024-07-23', '2024-08-21', '2025-03-13', '2024-08-13', '2024-06-16', '2024-11-28', '2024-07-15', '2025-03-15', '2024-05-27', '2024-09-09', '2024-05-30', '2024-09-03', '2024-04-27', '2025-03-22', '2024-10-03', '2024-06-26', '2025-02-10', '2024-08-11', '2025-02-21', '2024-12-27', '2024-08-30']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Identify loyalty score region
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Fashion", "Fashion", "Fashion" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.29, 0.01, 0 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 94.79, 195.26, 39.68 ], "Product/Produk": [ "Shoes_1", "T-Shirt_2", "Dress_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 931, 478, 389 ], "Stock/Stok": [ 17, 139, 19 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Shoes_1', 'T-Shirt_2', 'Dress_3'], 'Sales/Penjualan': [931, 478, 389], 'Price/Harga': [94.79, 195.26, 39.68], 'Category/Kategori': ['Fashion', 'Fashion', 'Fashion'], 'Discount/Diskon': [0.29, 0.01, 0.0], 'Stock/Stok': [17, 139, 19]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Compare price country
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Automotive/Otomotif", "Automotive/Otomotif", "Automotive/Otomotif" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.25, 0.15, 0.08 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 40.78, 92.48, 66.94 ], "Product/Produk": [ "Oil_1", "Tools_2", "Tires_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 486, 302, 181 ], "Stock/Stok": [ 103, 77, 56 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Oil_1', 'Tools_2', 'Tires_3'], 'Sales/Penjualan': [486, 302, 181], 'Price/Harga': [40.78, 92.48, 66.94], 'Category/Kategori': ['Automotive/Otomotif', 'Automotive/Otomotif', 'Automotive/Otomotif'], 'Discount/Diskon': [0.25, 0.15, 0.08], 'Stock/Stok': [103, 77, 56]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Korelasi penjualan and/dan pendapatan
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": [ "Jakarta", "Paris", "Dubai", "Sydney", "New York" ], "Conversion Rate/Rasio Konversi": null, "Country/Negara": [ "Indonesia", "France", "UAE", "Australia", "US" ], "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": [ -0.02, 0.06, 0.24, 0.22, 0.06 ], "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": [ 64.9689, 88.3034, -73.343, -20.3746, -72.4041 ], "Longitude/Bujur": [ 170.481, 8.1583, -41.3543, -167.0418, 141.9367 ], "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": [ 0.2, 0.46, 0.11, 0.35000000000000003, 0.21 ], "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": [ "Asia", "Europe", "Middle East", "Oceania", "North America" ], "Revenue/Pendapatan": [ 3004, 3032, 3550, 4381, 4084 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'City/Kota': ['Jakarta', 'Paris', 'Dubai', 'Sydney', 'New York'], 'Country/Negara': ['Indonesia', 'France', 'UAE', 'Australia', 'US'], 'Region/Wilayah': ['Asia', 'Europe', 'Middle East', 'Oceania', 'North America'], 'Latitude/Lintang': [64.9689, 88.3034, -73.343, -20.3746, -72.4041], 'Longitude/Bujur': [170.481, 8.1583, -41.3543, -167.0418, 141.9367], 'Revenue/Pendapatan': [3004, 3032, 3550, 4381, 4084], 'Market Share/Pangsa Pasar': [0.2, 0.46, 0.11, 0.35, 0.21], 'Growth Rate/Pertumbuhan': [-0.02, 0.06, 0.24, 0.22, 0.06]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Correlation analysis corr_matrix = df.corr(numeric_only=True) fig = px.imshow(corr_matrix, text_auto=True, title='Correlation Matrix') fig.show()
Optimize market share customer segment
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": [ "Tokyo", "São Paulo", "Singapore", "New York", "Sydney" ], "Conversion Rate/Rasio Konversi": null, "Country/Negara": [ "Japan", "Brazil", "Singapore", "US", "Australia" ], "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": [ 0.1, 0.25, 0.21, 0.30000000000000004, 0.16 ], "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": [ -35.5345, -8.5461, -14.5142, -11.0631, -54.8508 ], "Longitude/Bujur": [ 27.2884, 147.2505, -28.9529, 89.8145, -152.5137 ], "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": [ 0.37, 0.41000000000000003, 0.43, 0.43, 0.34 ], "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": [ "Asia", "South America", "Asia", "North America", "Oceania" ], "Revenue/Pendapatan": [ 1140, 1372, 3001, 4278, 4647 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'City/Kota': ['Tokyo', 'São Paulo', 'Singapore', 'New York', 'Sydney'], 'Country/Negara': ['Japan', 'Brazil', 'Singapore', 'US', 'Australia'], 'Region/Wilayah': ['Asia', 'South America', 'Asia', 'North America', 'Oceania'], 'Latitude/Lintang': [-35.5345, -8.5461, -14.5142, -11.0631, -54.8508], 'Longitude/Bujur': [27.2884, 147.2505, -28.9529, 89.8145, -152.5137], 'Revenue/Pendapatan': [1140, 1372, 3001, 4278, 4647], 'Market Share/Pangsa Pasar': [0.37, 0.41, 0.43, 0.43, 0.34], 'Growth Rate/Pertumbuhan': [0.1, 0.25, 0.21, 0.3, 0.16]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Customer segmentation using KMeans from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler # Select features and scale X = df[['Age/Usia', 'Income/Pendapatan', 'Loyalty Score/Skor Loyalitas']] scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # Cluster into 3 segments kmeans = KMeans(n_clusters=3, random_state=42) df['Segment/Segmen'] = kmeans.fit_predict(X_scaled) # Visualize segments fig = px.scatter_3d(df, x='Age/Usia', y='Income/Pendapatan', z='Loyalty Score/Skor Loyalitas', color='Segment/Segmen', title='Customer Segments') fig.show()
Optimalkan pendapatan kota
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": [ 132.44, 70.91, 109.81, 74.49, 126.92, 171.3, 173.45, 198.28, 124.9, 160.92, 55.64, 132.64, 170, 193.39, 132.39, 115.33, 140.15, 162.13, 169.97, 166.54, 99.65, 127.21, 115.01, 130.54, 163.79, 64.24, 190.02, 143.98, 89.06, 139.37 ], "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": [ 0.0261, 0.047900000000000005, 0.027800000000000002, 0.0618, 0.0409, 0.0383, 0.0882, 0.051000000000000004, 0.0106, 0.0567, 0.011600000000000001, 0.0313, 0.054, 0.044700000000000004, 0.0128, 0.0454, 0.08650000000000001, 0.043300000000000005, 0.0626, 0.06, 0.0723, 0.0341, 0.09630000000000001, 0.057800000000000004, 0.0181, 0.0568, 0.0729, 0.0658, 0.0679, 0.09720000000000001 ], "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": [ "2025-03-23", "2025-03-24", "2025-03-25", "2025-03-26", "2025-03-27", "2025-03-28", "2025-03-29", "2025-03-30", "2025-03-31", "2025-04-01", "2025-04-02", "2025-04-03", "2025-04-04", "2025-04-05", "2025-04-06", "2025-04-07", "2025-04-08", "2025-04-09", "2025-04-10", "2025-04-11", "2025-04-12", "2025-04-13", "2025-04-14", "2025-04-15", "2025-04-16", "2025-04-17", "2025-04-18", "2025-04-19", "2025-04-20", "2025-04-21" ], "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": [ 4016.54, 4063.13, 4145.97, 4205.44, 4165.05, 4141.48, 4075.21, 3977.46, 3888.97, 3864.29, 3742.99, 3792.21, 3721.44, 3905.74, 3951.98, 3974.54, 4004.43, 4060.04, 4094.78, 4054.88, 4100.36, 3927.9, 3972.4, 3809.92, 3762.6, 3606.27, 3620.15, 3694.61, 3786.58, 3887.17 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": [ 181, 266, 220, 219, 103, 282, 287, 143, 61, 248, 106, 114, 268, 230, 151, 215, 204, 189, 302, 153, 125, 266, 204, 211, 221, 178, 164, 267, 157, 75 ] }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Date/Tanggal': ['2025-03-23', '2025-03-24', '2025-03-25', '2025-03-26', '2025-03-27', '2025-03-28', '2025-03-29', '2025-03-30', '2025-03-31', '2025-04-01', '2025-04-02', '2025-04-03', '2025-04-04', '2025-04-05', '2025-04-06', '2025-04-07', '2025-04-08', '2025-04-09', '2025-04-10', '2025-04-11', '2025-04-12', '2025-04-13', '2025-04-14', '2025-04-15', '2025-04-16', '2025-04-17', '2025-04-18', '2025-04-19', '2025-04-20', '2025-04-21'], 'Revenue/Pendapatan': [4016.54, 4063.13, 4145.97, 4205.44, 4165.05, 4141.48, 4075.21, 3977.46, 3888.97, 3864.29, 3742.99, 3792.21, 3721.44, 3905.74, 3951.98, 3974.54, 4004.43, 4060.04, 4094.78, 4054.88, 4100.36, 3927.9, 3972.4, 3809.92, 3762.6, 3606.27, 3620.15, 3694.61, 3786.58, 3887.17], 'Visitors/Pengunjung': [181, 266, 220, 219, 103, 282, 287, 143, 61, 248, 106, 114, 268, 230, 151, 215, 204, 189, 302, 153, 125, 266, 204, 211, 221, 178, 164, 267, 157, 75], 'Conversion Rate/Rasio Konversi': [0.0261, 0.0479, 0.0278, 0.0618, 0.0409, 0.0383, 0.0882, 0.051, 0.0106, 0.0567, 0.0116, 0.0313, 0.054, 0.0447, 0.0128, 0.0454, 0.0865, 0.0433, 0.0626, 0.06, 0.0723, 0.0341, 0.0963, 0.0578, 0.0181, 0.0568, 0.0729, 0.0658, 0.0679, 0.0972], 'Avg. Order Value/Nilai Pesanan Rata2': [132.44, 70.91, 109.81, 74.49, 126.92, 171.3, 173.45, 198.28, 124.9, 160.92, 55.64, 132.64, 170.0, 193.39, 132.39, 115.33, 140.15, 162.13, 169.97, 166.54, 99.65, 127.21, 115.01, 130.54, 163.79, 64.24, 190.02, 143.98, 89.06, 139.37]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Optimalkan stok kategori
{ "Age/Usia": [ 51, 36, 20, 22, 24, 28, 41, 51, 26, 24, 47, 27, 45, 53, 58, 61, 52, 19, 55, 22, 59, 64, 43, 51, 52, 34, 20, 29, 25, 19, 45, 57, 49, 28, 44, 65, 48, 52, 69, 42, 65, 49, 60, 52, 63, 26, 63, 64, 51, 42, 42, 18, 27, 36 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053", "CUST_0054" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Other/Lainnya", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 5000, 1000, 8000, 1000, 6000, 2000, 8000, 4000, 3000, 2000, 7000, 9000, 8000, 8000, 9000, 2000, 9000, 2000, 10000, 10000, 9000, 4000, 8000, 2000, 6000, 6000, 2000, 1000, 2000, 6000, 8000, 10000, 9000, 2000, 5000, 6000, 9000, 5000, 4000, 2000, 2000, 6000, 6000, 1000, 1000, 8000, 1000, 10000, 8000, 2000, 4000, 2000, 8000, 5000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2024-09-24", "2025-04-16", "2024-06-05", "2024-07-27", "2025-01-14", "2025-03-20", "2024-08-28", "2024-06-19", "2024-11-02", "2025-03-24", "2025-01-09", "2024-07-29", "2024-09-22", "2024-12-11", "2024-04-28", "2024-08-23", "2024-12-12", "2024-07-09", "2025-03-20", "2025-01-31", "2024-10-14", "2024-08-29", "2024-07-25", "2024-10-09", "2025-01-18", "2025-03-13", "2025-02-11", "2024-05-29", "2024-11-18", "2025-04-13", "2024-07-14", "2024-12-16", "2024-12-15", "2024-06-10", "2025-02-18", "2025-01-05", "2024-08-08", "2025-03-02", "2024-08-17", "2024-08-18", "2025-01-12", "2024-07-04", "2025-02-10", "2024-12-30", "2024-11-07", "2024-08-25", "2025-03-31", "2024-12-30", "2025-02-24", "2025-02-12", "2024-09-05", "2024-08-22", "2024-09-04", "2025-01-02" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 82, 78, 51, 32, 10, 47, 99, 46, 96, 72, 27, 81, 27, 30, 40, 13, 46, 25, 10, 11, 57, 22, 58, 98, 26, 79, 28, 41, 67, 39, 93, 8, 32, 80, 34, 5, 39, 79, 41, 45, 15, 96, 74, 88, 15, 30, 44, 84, 75, 100, 27, 31, 68, 29 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053', 'CUST_0054'], 'Age/Usia': [51, 36, 20, 22, 24, 28, 41, 51, 26, 24, 47, 27, 45, 53, 58, 61, 52, 19, 55, 22, 59, 64, 43, 51, 52, 34, 20, 29, 25, 19, 45, 57, 49, 28, 44, 65, 48, 52, 69, 42, 65, 49, 60, 52, 63, 26, 63, 64, 51, 42, 42, 18, 27, 36], 'Gender/Jenis Kelamin': ['Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Other/Lainnya', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki'], 'Income/Pendapatan': [5000, 1000, 8000, 1000, 6000, 2000, 8000, 4000, 3000, 2000, 7000, 9000, 8000, 8000, 9000, 2000, 9000, 2000, 10000, 10000, 9000, 4000, 8000, 2000, 6000, 6000, 2000, 1000, 2000, 6000, 8000, 10000, 9000, 2000, 5000, 6000, 9000, 5000, 4000, 2000, 2000, 6000, 6000, 1000, 1000, 8000, 1000, 10000, 8000, 2000, 4000, 2000, 8000, 5000], 'Loyalty Score/Skor Loyalitas': [82, 78, 51, 32, 10, 47, 99, 46, 96, 72, 27, 81, 27, 30, 40, 13, 46, 25, 10, 11, 57, 22, 58, 98, 26, 79, 28, 41, 67, 39, 93, 8, 32, 80, 34, 5, 39, 79, 41, 45, 15, 96, 74, 88, 15, 30, 44, 84, 75, 100, 27, 31, 68, 29], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2024-09-24', '2025-04-16', '2024-06-05', '2024-07-27', '2025-01-14', '2025-03-20', '2024-08-28', '2024-06-19', '2024-11-02', '2025-03-24', '2025-01-09', '2024-07-29', '2024-09-22', '2024-12-11', '2024-04-28', '2024-08-23', '2024-12-12', '2024-07-09', '2025-03-20', '2025-01-31', '2024-10-14', '2024-08-29', '2024-07-25', '2024-10-09', '2025-01-18', '2025-03-13', '2025-02-11', '2024-05-29', '2024-11-18', '2025-04-13', '2024-07-14', '2024-12-16', '2024-12-15', '2024-06-10', '2025-02-18', '2025-01-05', '2024-08-08', '2025-03-02', '2024-08-17', '2024-08-18', '2025-01-12', '2024-07-04', '2025-02-10', '2024-12-30', '2024-11-07', '2024-08-25', '2025-03-31', '2024-12-30', '2025-02-24', '2025-02-12', '2024-09-05', '2024-08-22', '2024-09-04', '2025-01-02']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Forecast price for/untuk week
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": [ 92.23, 177.68, 136.39, 66.14, 104.57, 65.07, 156.06, 137.85, 134.79, 178.3, 60.41, 144.51, 60.44, 71.36, 82.55, 144.06, 91.44, 104.54, 135.04, 121.7, 94.92, 182.61, 109.86, 114.54, 192.17, 134.92, 159.2, 70.35, 96.29, 157.66 ], "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": [ 0.0574, 0.0388, 0.0148, 0.0432, 0.056100000000000004, 0.0912, 0.031100000000000003, 0.0949, 0.0804, 0.0862, 0.0536, 0.027200000000000002, 0.0129, 0.09620000000000001, 0.0437, 0.0506, 0.061700000000000005, 0.0424, 0.0375, 0.09960000000000001, 0.0378, 0.0954, 0.0858, 0.041, 0.06420000000000001, 0.09040000000000001, 0.0409, 0.09390000000000001, 0.07830000000000001, 0.0829 ], "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": [ "2025-03-23", "2025-03-24", "2025-03-25", "2025-03-26", "2025-03-27", "2025-03-28", "2025-03-29", "2025-03-30", "2025-03-31", "2025-04-01", "2025-04-02", "2025-04-03", "2025-04-04", "2025-04-05", "2025-04-06", "2025-04-07", "2025-04-08", "2025-04-09", "2025-04-10", "2025-04-11", "2025-04-12", "2025-04-13", "2025-04-14", "2025-04-15", "2025-04-16", "2025-04-17", "2025-04-18", "2025-04-19", "2025-04-20", "2025-04-21" ], "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": [ 4078.61, 4256.05, 4256.89, 4302.49, 4388.02, 4310.42, 4289.44, 4149.84, 4164.29, 4052.32, 4087.27, 4018.09, 4034.44, 4053.15, 4120.91, 4372.48, 4383.22, 4522.49, 4520.14, 4481.34, 4350.28, 4376.4, 4330.07, 4365.68, 4111.23, 4112.28, 4200.71, 4195.32, 4305.65, 4468.31 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": [ 159, 273, 224, 103, 88, 131, 206, 149, 48, 265, 65, 185, 130, 78, 84, 304, 217, 112, 272, 131, 153, 91, 42, 212, 237, 72, 95, 192, 273, 203 ] }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Date/Tanggal': ['2025-03-23', '2025-03-24', '2025-03-25', '2025-03-26', '2025-03-27', '2025-03-28', '2025-03-29', '2025-03-30', '2025-03-31', '2025-04-01', '2025-04-02', '2025-04-03', '2025-04-04', '2025-04-05', '2025-04-06', '2025-04-07', '2025-04-08', '2025-04-09', '2025-04-10', '2025-04-11', '2025-04-12', '2025-04-13', '2025-04-14', '2025-04-15', '2025-04-16', '2025-04-17', '2025-04-18', '2025-04-19', '2025-04-20', '2025-04-21'], 'Revenue/Pendapatan': [4078.61, 4256.05, 4256.89, 4302.49, 4388.02, 4310.42, 4289.44, 4149.84, 4164.29, 4052.32, 4087.27, 4018.09, 4034.44, 4053.15, 4120.91, 4372.48, 4383.22, 4522.49, 4520.14, 4481.34, 4350.28, 4376.4, 4330.07, 4365.68, 4111.23, 4112.28, 4200.71, 4195.32, 4305.65, 4468.31], 'Visitors/Pengunjung': [159, 273, 224, 103, 88, 131, 206, 149, 48, 265, 65, 185, 130, 78, 84, 304, 217, 112, 272, 131, 153, 91, 42, 212, 237, 72, 95, 192, 273, 203], 'Conversion Rate/Rasio Konversi': [0.0574, 0.0388, 0.0148, 0.0432, 0.0561, 0.0912, 0.0311, 0.0949, 0.0804, 0.0862, 0.0536, 0.0272, 0.0129, 0.0962, 0.0437, 0.0506, 0.0617, 0.0424, 0.0375, 0.0996, 0.0378, 0.0954, 0.0858, 0.041, 0.0642, 0.0904, 0.0409, 0.0939, 0.0783, 0.0829], 'Avg. Order Value/Nilai Pesanan Rata2': [92.23, 177.68, 136.39, 66.14, 104.57, 65.07, 156.06, 137.85, 134.79, 178.3, 60.41, 144.51, 60.44, 71.36, 82.55, 144.06, 91.44, 104.54, 135.04, 121.7, 94.92, 182.61, 109.86, 114.54, 192.17, 134.92, 159.2, 70.35, 96.29, 157.66]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Time series forecasting from statsmodels.tsa.arima.model import ARIMA # Prepare data ts_data = df.set_index('Date/Tanggal')['Revenue/Pendapatan'] model = ARIMA(ts_data, order=(1,1,1)) model_fit = model.fit() forecast = model_fit.forecast(steps=7) print('Forecast for next 7 days:', forecast)
Optimalkan harga wilayah
{ "Age/Usia": [ 29, 36, 21, 52, 46, 50, 64, 18, 24, 60, 52, 48, 23, 26, 66, 22, 58, 40, 63, 35, 56, 59, 23, 65, 31, 49, 50, 20, 47, 24, 40, 22, 46, 29, 24, 41, 26, 58, 65, 65, 40, 58, 29, 21, 32, 46, 31, 20, 20, 40, 70, 70, 63 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Other/Lainnya", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 2000, 5000, 3000, 10000, 3000, 4000, 4000, 2000, 4000, 7000, 5000, 9000, 5000, 1000, 3000, 9000, 8000, 8000, 7000, 5000, 3000, 2000, 4000, 4000, 7000, 3000, 2000, 5000, 5000, 8000, 7000, 4000, 8000, 5000, 2000, 3000, 8000, 9000, 3000, 5000, 5000, 2000, 5000, 2000, 4000, 5000, 5000, 8000, 6000, 4000, 8000, 5000, 7000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2025-01-20", "2024-11-24", "2024-08-10", "2024-12-31", "2024-11-16", "2024-11-05", "2024-10-16", "2024-09-21", "2024-12-18", "2024-08-28", "2025-01-31", "2024-10-25", "2025-04-03", "2024-12-02", "2024-12-20", "2024-08-27", "2024-06-29", "2024-06-04", "2024-08-26", "2024-07-02", "2024-08-08", "2025-03-26", "2024-10-10", "2024-11-30", "2024-05-10", "2024-09-28", "2025-03-09", "2025-03-10", "2025-04-03", "2025-01-13", "2024-07-04", "2024-11-20", "2024-05-10", "2024-11-10", "2024-07-23", "2024-05-16", "2024-12-16", "2024-08-25", "2024-05-14", "2024-08-28", "2024-12-24", "2025-03-08", "2024-11-14", "2024-05-31", "2024-10-06", "2024-11-08", "2024-08-26", "2024-06-24", "2024-11-06", "2025-02-13", "2024-09-23", "2024-05-13", "2024-06-24" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 53, 40, 85, 78, 44, 18, 52, 41, 78, 60, 35, 60, 81, 38, 38, 19, 31, 92, 81, 64, 100, 78, 28, 82, 74, 86, 64, 96, 57, 72, 16, 16, 24, 100, 63, 21, 33, 62, 68, 60, 33, 59, 3, 14, 25, 60, 93, 17, 65, 52, 70, 93, 79 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053'], 'Age/Usia': [29, 36, 21, 52, 46, 50, 64, 18, 24, 60, 52, 48, 23, 26, 66, 22, 58, 40, 63, 35, 56, 59, 23, 65, 31, 49, 50, 20, 47, 24, 40, 22, 46, 29, 24, 41, 26, 58, 65, 65, 40, 58, 29, 21, 32, 46, 31, 20, 20, 40, 70, 70, 63], 'Gender/Jenis Kelamin': ['Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Other/Lainnya', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki'], 'Income/Pendapatan': [2000, 5000, 3000, 10000, 3000, 4000, 4000, 2000, 4000, 7000, 5000, 9000, 5000, 1000, 3000, 9000, 8000, 8000, 7000, 5000, 3000, 2000, 4000, 4000, 7000, 3000, 2000, 5000, 5000, 8000, 7000, 4000, 8000, 5000, 2000, 3000, 8000, 9000, 3000, 5000, 5000, 2000, 5000, 2000, 4000, 5000, 5000, 8000, 6000, 4000, 8000, 5000, 7000], 'Loyalty Score/Skor Loyalitas': [53, 40, 85, 78, 44, 18, 52, 41, 78, 60, 35, 60, 81, 38, 38, 19, 31, 92, 81, 64, 100, 78, 28, 82, 74, 86, 64, 96, 57, 72, 16, 16, 24, 100, 63, 21, 33, 62, 68, 60, 33, 59, 3, 14, 25, 60, 93, 17, 65, 52, 70, 93, 79], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2025-01-20', '2024-11-24', '2024-08-10', '2024-12-31', '2024-11-16', '2024-11-05', '2024-10-16', '2024-09-21', '2024-12-18', '2024-08-28', '2025-01-31', '2024-10-25', '2025-04-03', '2024-12-02', '2024-12-20', '2024-08-27', '2024-06-29', '2024-06-04', '2024-08-26', '2024-07-02', '2024-08-08', '2025-03-26', '2024-10-10', '2024-11-30', '2024-05-10', '2024-09-28', '2025-03-09', '2025-03-10', '2025-04-03', '2025-01-13', '2024-07-04', '2024-11-20', '2024-05-10', '2024-11-10', '2024-07-23', '2024-05-16', '2024-12-16', '2024-08-25', '2024-05-14', '2024-08-28', '2024-12-24', '2025-03-08', '2024-11-14', '2024-05-31', '2024-10-06', '2024-11-08', '2024-08-26', '2024-06-24', '2024-11-06', '2025-02-13', '2024-09-23', '2024-05-13', '2024-06-24']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Forecast discount for/untuk month
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": [ "São Paulo", "Mumbai", "Dubai", "Sydney", "Berlin" ], "Conversion Rate/Rasio Konversi": null, "Country/Negara": [ "Brazil", "India", "UAE", "Australia", "Germany" ], "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": [ 0.12, -0.04, 0.06, 0.08, 0.05 ], "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": [ -27.0867, -45.0015, -62.9004, -31.8637, -55.4581 ], "Longitude/Bujur": [ -117.6781, -78.733, 72.2282, 138.1928, 161.9819 ], "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": [ 0.19, 0.45, 0.15, 0.44, 0.39 ], "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": [ "South America", "Asia", "Middle East", "Oceania", "Europe" ], "Revenue/Pendapatan": [ 3375, 3519, 3556, 3301, 2922 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'City/Kota': ['São Paulo', 'Mumbai', 'Dubai', 'Sydney', 'Berlin'], 'Country/Negara': ['Brazil', 'India', 'UAE', 'Australia', 'Germany'], 'Region/Wilayah': ['South America', 'Asia', 'Middle East', 'Oceania', 'Europe'], 'Latitude/Lintang': [-27.0867, -45.0015, -62.9004, -31.8637, -55.4581], 'Longitude/Bujur': [-117.6781, -78.733, 72.2282, 138.1928, 161.9819], 'Revenue/Pendapatan': [3375, 3519, 3556, 3301, 2922], 'Market Share/Pangsa Pasar': [0.19, 0.45, 0.15, 0.44, 0.39], 'Growth Rate/Pertumbuhan': [0.12, -0.04, 0.06, 0.08, 0.05]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Time series forecasting from statsmodels.tsa.arima.model import ARIMA # Prepare data ts_data = df.set_index('Date/Tanggal')['Revenue/Pendapatan'] model = ARIMA(ts_data, order=(1,1,1)) model_fit = model.fit() forecast = model_fit.forecast(steps=7) print('Forecast for next 7 days:', forecast)
Perkiraan pendapatan for/untuk tahun
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Electronics/Elektronik", "Electronics/Elektronik", "Electronics/Elektronik" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.14, 0.21, 0.28 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 101, 166.71, 92.88 ], "Product/Produk": [ "Headphones_1", "Laptop_2", "TV_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 243, 438, 359 ], "Stock/Stok": [ 70, 124, 135 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Headphones_1', 'Laptop_2', 'TV_3'], 'Sales/Penjualan': [243, 438, 359], 'Price/Harga': [101.0, 166.71, 92.88], 'Category/Kategori': ['Electronics/Elektronik', 'Electronics/Elektronik', 'Electronics/Elektronik'], 'Discount/Diskon': [0.14, 0.21, 0.28], 'Stock/Stok': [70, 124, 135]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Time series forecasting from statsmodels.tsa.arima.model import ARIMA # Prepare data ts_data = df.set_index('Date/Tanggal')['Revenue/Pendapatan'] model = ARIMA(ts_data, order=(1,1,1)) model_fit = model.fit() forecast = model_fit.forecast(steps=7) print('Forecast for next 7 days:', forecast)
Segment discount category
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Fashion", "Fashion", "Fashion" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.1, 0.1, 0.05 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 71.49, 24.93, 134.44 ], "Product/Produk": [ "T-Shirt_1", "Jeans_2", "Shoes_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 829, 436, 853 ], "Stock/Stok": [ 89, 129, 138 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['T-Shirt_1', 'Jeans_2', 'Shoes_3'], 'Sales/Penjualan': [829, 436, 853], 'Price/Harga': [71.49, 24.93, 134.44], 'Category/Kategori': ['Fashion', 'Fashion', 'Fashion'], 'Discount/Diskon': [0.1, 0.1, 0.05], 'Stock/Stok': [89, 129, 138]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Customer segmentation using KMeans from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler # Select features and scale X = df[['Age/Usia', 'Income/Pendapatan', 'Loyalty Score/Skor Loyalitas']] scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # Cluster into 3 segments kmeans = KMeans(n_clusters=3, random_state=42) df['Segment/Segmen'] = kmeans.fit_predict(X_scaled) # Visualize segments fig = px.scatter_3d(df, x='Age/Usia', y='Income/Pendapatan', z='Loyalty Score/Skor Loyalitas', color='Segment/Segmen', title='Customer Segments') fig.show()
Bandingkan pendapatan jenis kelamin
{ "Age/Usia": [ 49, 51, 61, 57, 62, 69, 41, 45, 67, 32, 24, 51, 33, 66, 54, 18, 42, 70, 49, 39, 20, 25, 59, 19, 44, 35, 45, 63, 68, 59, 40, 57, 31, 44, 18, 45, 67, 38, 61, 59, 38, 68, 18, 62, 28, 24, 53, 51, 61, 42, 38, 22, 66, 24 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053", "CUST_0054" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 4000, 9000, 2000, 9000, 3000, 5000, 7000, 1000, 2000, 10000, 5000, 5000, 4000, 3000, 3000, 3000, 6000, 7000, 6000, 4000, 9000, 5000, 8000, 8000, 5000, 1000, 5000, 8000, 7000, 2000, 6000, 7000, 5000, 9000, 9000, 10000, 1000, 7000, 7000, 9000, 1000, 9000, 9000, 1000, 7000, 6000, 5000, 10000, 10000, 4000, 6000, 10000, 1000, 1000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2024-07-05", "2024-09-27", "2024-11-30", "2024-07-28", "2024-10-22", "2024-11-28", "2025-01-30", "2024-10-05", "2025-02-10", "2024-12-10", "2025-01-28", "2025-01-22", "2024-10-25", "2024-04-24", "2024-09-09", "2024-09-30", "2024-04-30", "2024-08-11", "2024-08-24", "2024-09-12", "2025-02-26", "2025-04-06", "2024-05-12", "2024-05-19", "2024-06-06", "2025-02-19", "2024-05-04", "2024-06-10", "2024-05-13", "2025-02-02", "2025-01-27", "2024-12-12", "2025-01-21", "2025-01-15", "2024-08-29", "2024-08-16", "2024-09-07", "2024-07-25", "2024-05-22", "2024-08-05", "2024-10-25", "2024-11-05", "2025-04-08", "2024-11-04", "2024-11-23", "2024-12-11", "2024-07-01", "2024-12-01", "2024-09-20", "2024-12-23", "2025-01-02", "2025-03-31", "2024-09-15", "2024-10-22" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 68, 70, 75, 45, 92, 50, 25, 52, 47, 14, 44, 28, 62, 74, 37, 77, 74, 56, 91, 50, 64, 53, 4, 66, 41, 30, 39, 29, 82, 3, 81, 30, 77, 7, 67, 52, 5, 9, 92, 45, 34, 2, 51, 79, 31, 53, 91, 10, 69, 65, 7, 94, 79, 12 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053', 'CUST_0054'], 'Age/Usia': [49, 51, 61, 57, 62, 69, 41, 45, 67, 32, 24, 51, 33, 66, 54, 18, 42, 70, 49, 39, 20, 25, 59, 19, 44, 35, 45, 63, 68, 59, 40, 57, 31, 44, 18, 45, 67, 38, 61, 59, 38, 68, 18, 62, 28, 24, 53, 51, 61, 42, 38, 22, 66, 24], 'Gender/Jenis Kelamin': ['Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan'], 'Income/Pendapatan': [4000, 9000, 2000, 9000, 3000, 5000, 7000, 1000, 2000, 10000, 5000, 5000, 4000, 3000, 3000, 3000, 6000, 7000, 6000, 4000, 9000, 5000, 8000, 8000, 5000, 1000, 5000, 8000, 7000, 2000, 6000, 7000, 5000, 9000, 9000, 10000, 1000, 7000, 7000, 9000, 1000, 9000, 9000, 1000, 7000, 6000, 5000, 10000, 10000, 4000, 6000, 10000, 1000, 1000], 'Loyalty Score/Skor Loyalitas': [68, 70, 75, 45, 92, 50, 25, 52, 47, 14, 44, 28, 62, 74, 37, 77, 74, 56, 91, 50, 64, 53, 4, 66, 41, 30, 39, 29, 82, 3, 81, 30, 77, 7, 67, 52, 5, 9, 92, 45, 34, 2, 51, 79, 31, 53, 91, 10, 69, 65, 7, 94, 79, 12], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2024-07-05', '2024-09-27', '2024-11-30', '2024-07-28', '2024-10-22', '2024-11-28', '2025-01-30', '2024-10-05', '2025-02-10', '2024-12-10', '2025-01-28', '2025-01-22', '2024-10-25', '2024-04-24', '2024-09-09', '2024-09-30', '2024-04-30', '2024-08-11', '2024-08-24', '2024-09-12', '2025-02-26', '2025-04-06', '2024-05-12', '2024-05-19', '2024-06-06', '2025-02-19', '2024-05-04', '2024-06-10', '2024-05-13', '2025-02-02', '2025-01-27', '2024-12-12', '2025-01-21', '2025-01-15', '2024-08-29', '2024-08-16', '2024-09-07', '2024-07-25', '2024-05-22', '2024-08-05', '2024-10-25', '2024-11-05', '2025-04-08', '2024-11-04', '2024-11-23', '2024-12-11', '2024-07-01', '2024-12-01', '2024-09-20', '2024-12-23', '2025-01-02', '2025-03-31', '2024-09-15', '2024-10-22']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Hitung nilai pesanan rata-rata produk
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": [ 100.05, 164.48, 107.65, 92.07, 55.82, 106.24, 190.07, 100.59, 154.71, 55.14, 60.74, 174.77, 192.34, 112.99, 181.82, 151.33, 114.45, 99.02, 131.52, 142.67, 100.67, 153.33, 99.18, 113.93, 94.17, 151.17, 87.64, 105.59, 159.66, 163.53 ], "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": [ 0.040600000000000004, 0.0442, 0.0511, 0.0235, 0.0915, 0.0621, 0.0236, 0.0645, 0.0843, 0.0216, 0.0763, 0.019, 0.09280000000000001, 0.0239, 0.07350000000000001, 0.037, 0.0613, 0.06, 0.039400000000000004, 0.07780000000000001, 0.0184, 0.0472, 0.0745, 0.0632, 0.07, 0.0698, 0.0776, 0.0151, 0.033, 0.0223 ], "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": [ "2025-03-23", "2025-03-24", "2025-03-25", "2025-03-26", "2025-03-27", "2025-03-28", "2025-03-29", "2025-03-30", "2025-03-31", "2025-04-01", "2025-04-02", "2025-04-03", "2025-04-04", "2025-04-05", "2025-04-06", "2025-04-07", "2025-04-08", "2025-04-09", "2025-04-10", "2025-04-11", "2025-04-12", "2025-04-13", "2025-04-14", "2025-04-15", "2025-04-16", "2025-04-17", "2025-04-18", "2025-04-19", "2025-04-20", "2025-04-21" ], "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": [ 3029.28, 3169.31, 3123.16, 3173.11, 3309.43, 3344.6, 3145.88, 3144, 2982.08, 2976.37, 2879.88, 2885.55, 2942.06, 3102.08, 3135.3, 3249.93, 3341.09, 3518.11, 3393.99, 3375.07, 3401.58, 3205.46, 3238.14, 3186.8, 3175.34, 3189.35, 3238.73, 3194.02, 3252.27, 3316.67 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": [ 232, 168, 94, 207, 145, 57, 206, 135, 135, 204, 213, 241, 146, 133, 94, 298, 306, 240, 61, 164, 260, 69, 258, 71, 177, 100, 76, 142, 308, 91 ] }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Date/Tanggal': ['2025-03-23', '2025-03-24', '2025-03-25', '2025-03-26', '2025-03-27', '2025-03-28', '2025-03-29', '2025-03-30', '2025-03-31', '2025-04-01', '2025-04-02', '2025-04-03', '2025-04-04', '2025-04-05', '2025-04-06', '2025-04-07', '2025-04-08', '2025-04-09', '2025-04-10', '2025-04-11', '2025-04-12', '2025-04-13', '2025-04-14', '2025-04-15', '2025-04-16', '2025-04-17', '2025-04-18', '2025-04-19', '2025-04-20', '2025-04-21'], 'Revenue/Pendapatan': [3029.28, 3169.31, 3123.16, 3173.11, 3309.43, 3344.6, 3145.88, 3144.0, 2982.08, 2976.37, 2879.88, 2885.55, 2942.06, 3102.08, 3135.3, 3249.93, 3341.09, 3518.11, 3393.99, 3375.07, 3401.58, 3205.46, 3238.14, 3186.8, 3175.34, 3189.35, 3238.73, 3194.02, 3252.27, 3316.67], 'Visitors/Pengunjung': [232, 168, 94, 207, 145, 57, 206, 135, 135, 204, 213, 241, 146, 133, 94, 298, 306, 240, 61, 164, 260, 69, 258, 71, 177, 100, 76, 142, 308, 91], 'Conversion Rate/Rasio Konversi': [0.0406, 0.0442, 0.0511, 0.0235, 0.0915, 0.0621, 0.0236, 0.0645, 0.0843, 0.0216, 0.0763, 0.019, 0.0928, 0.0239, 0.0735, 0.037, 0.0613, 0.06, 0.0394, 0.0778, 0.0184, 0.0472, 0.0745, 0.0632, 0.07, 0.0698, 0.0776, 0.0151, 0.033, 0.0223], 'Avg. Order Value/Nilai Pesanan Rata2': [100.05, 164.48, 107.65, 92.07, 55.82, 106.24, 190.07, 100.59, 154.71, 55.14, 60.74, 174.77, 192.34, 112.99, 181.82, 151.33, 114.45, 99.02, 131.52, 142.67, 100.67, 153.33, 99.18, 113.93, 94.17, 151.17, 87.64, 105.59, 159.66, 163.53]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # cumulative sum calculation result = df['Date/Tanggal'].cumsum() print(result)
Identify average order value product
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Automotive/Otomotif", "Automotive/Otomotif", "Automotive/Otomotif" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.18, 0.19, 0.28 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 181.95, 32.51, 115.04 ], "Product/Produk": [ "Tools_1", "Oil_2", "Tires_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 500, 633, 458 ], "Stock/Stok": [ 93, 103, 85 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Tools_1', 'Oil_2', 'Tires_3'], 'Sales/Penjualan': [500, 633, 458], 'Price/Harga': [181.95, 32.51, 115.04], 'Category/Kategori': ['Automotive/Otomotif', 'Automotive/Otomotif', 'Automotive/Otomotif'], 'Discount/Diskon': [0.18, 0.19, 0.28], 'Stock/Stok': [93, 103, 85]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Calculate stock gender
{ "Age/Usia": [ 20, 55, 56, 47, 63, 37, 49, 28, 59, 64, 60, 23, 55, 36, 22, 20, 63, 52, 55, 54, 51, 18, 35, 44, 57, 31, 58, 59, 28, 19, 39, 56, 66, 20, 55, 69, 36, 38, 55, 33, 30, 23, 52, 22, 63, 36, 48, 66, 53, 48, 41, 39, 48, 21, 62, 69, 51 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053", "CUST_0054", "CUST_0055", "CUST_0056", "CUST_0057" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Other/Lainnya", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 4000, 7000, 3000, 6000, 7000, 1000, 5000, 2000, 9000, 1000, 7000, 10000, 5000, 5000, 6000, 5000, 6000, 1000, 3000, 3000, 8000, 3000, 5000, 6000, 2000, 1000, 10000, 6000, 2000, 1000, 2000, 6000, 6000, 6000, 2000, 7000, 6000, 7000, 3000, 8000, 6000, 3000, 2000, 2000, 2000, 3000, 4000, 1000, 9000, 5000, 1000, 7000, 10000, 2000, 10000, 3000, 4000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2024-10-29", "2025-02-24", "2024-09-26", "2024-07-31", "2025-01-14", "2025-03-25", "2024-06-12", "2025-01-26", "2025-01-16", "2024-08-21", "2024-06-10", "2024-05-18", "2024-08-06", "2025-04-05", "2025-02-09", "2024-08-17", "2024-08-04", "2024-11-12", "2025-01-02", "2025-02-12", "2025-02-02", "2024-05-19", "2024-07-18", "2024-11-06", "2024-09-23", "2024-07-02", "2024-06-09", "2024-10-10", "2024-06-29", "2024-07-30", "2025-04-05", "2024-10-10", "2024-05-10", "2024-06-30", "2024-06-10", "2024-10-05", "2024-11-06", "2024-12-29", "2024-08-12", "2024-05-02", "2024-11-03", "2024-09-28", "2024-09-18", "2024-10-03", "2024-05-05", "2025-01-03", "2024-11-26", "2024-09-29", "2024-05-03", "2024-12-04", "2025-03-25", "2024-06-01", "2024-10-04", "2025-02-27", "2025-04-10", "2024-05-15", "2024-06-16" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 63, 19, 18, 77, 40, 10, 94, 100, 2, 5, 39, 69, 98, 28, 46, 1, 71, 65, 65, 22, 15, 9, 5, 4, 78, 78, 66, 85, 28, 51, 41, 2, 93, 19, 48, 56, 82, 76, 66, 44, 32, 31, 100, 62, 28, 25, 34, 23, 20, 81, 15, 91, 49, 46, 62, 65, 90 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053', 'CUST_0054', 'CUST_0055', 'CUST_0056', 'CUST_0057'], 'Age/Usia': [20, 55, 56, 47, 63, 37, 49, 28, 59, 64, 60, 23, 55, 36, 22, 20, 63, 52, 55, 54, 51, 18, 35, 44, 57, 31, 58, 59, 28, 19, 39, 56, 66, 20, 55, 69, 36, 38, 55, 33, 30, 23, 52, 22, 63, 36, 48, 66, 53, 48, 41, 39, 48, 21, 62, 69, 51], 'Gender/Jenis Kelamin': ['Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Other/Lainnya', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan'], 'Income/Pendapatan': [4000, 7000, 3000, 6000, 7000, 1000, 5000, 2000, 9000, 1000, 7000, 10000, 5000, 5000, 6000, 5000, 6000, 1000, 3000, 3000, 8000, 3000, 5000, 6000, 2000, 1000, 10000, 6000, 2000, 1000, 2000, 6000, 6000, 6000, 2000, 7000, 6000, 7000, 3000, 8000, 6000, 3000, 2000, 2000, 2000, 3000, 4000, 1000, 9000, 5000, 1000, 7000, 10000, 2000, 10000, 3000, 4000], 'Loyalty Score/Skor Loyalitas': [63, 19, 18, 77, 40, 10, 94, 100, 2, 5, 39, 69, 98, 28, 46, 1, 71, 65, 65, 22, 15, 9, 5, 4, 78, 78, 66, 85, 28, 51, 41, 2, 93, 19, 48, 56, 82, 76, 66, 44, 32, 31, 100, 62, 28, 25, 34, 23, 20, 81, 15, 91, 49, 46, 62, 65, 90], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2024-10-29', '2025-02-24', '2024-09-26', '2024-07-31', '2025-01-14', '2025-03-25', '2024-06-12', '2025-01-26', '2025-01-16', '2024-08-21', '2024-06-10', '2024-05-18', '2024-08-06', '2025-04-05', '2025-02-09', '2024-08-17', '2024-08-04', '2024-11-12', '2025-01-02', '2025-02-12', '2025-02-02', '2024-05-19', '2024-07-18', '2024-11-06', '2024-09-23', '2024-07-02', '2024-06-09', '2024-10-10', '2024-06-29', '2024-07-30', '2025-04-05', '2024-10-10', '2024-05-10', '2024-06-30', '2024-06-10', '2024-10-05', '2024-11-06', '2024-12-29', '2024-08-12', '2024-05-02', '2024-11-03', '2024-09-28', '2024-09-18', '2024-10-03', '2024-05-05', '2025-01-03', '2024-11-26', '2024-09-29', '2024-05-03', '2024-12-04', '2025-03-25', '2024-06-01', '2024-10-04', '2025-02-27', '2025-04-10', '2024-05-15', '2024-06-16']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # cumulative sum calculation result = df['Last Purchase Date/Tanggal Pembelian Terakhir'].cumsum() print(result)
Compare visitors country
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Food/Makanan", "Food/Makanan", "Food/Makanan" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.02, 0.22, 0.03 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 193.32, 32.54, 176.28 ], "Product/Produk": [ "Fruits_1", "Beverages_2", "Dairy_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 678, 225, 485 ], "Stock/Stok": [ 107, 171, 141 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Fruits_1', 'Beverages_2', 'Dairy_3'], 'Sales/Penjualan': [678, 225, 485], 'Price/Harga': [193.32, 32.54, 176.28], 'Category/Kategori': ['Food/Makanan', 'Food/Makanan', 'Food/Makanan'], 'Discount/Diskon': [0.02, 0.22, 0.03], 'Stock/Stok': [107, 171, 141]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Segmentasi stok grup usia
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": [ "Food/Makanan", "Food/Makanan", "Food/Makanan" ], "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": [ 0.08, 0.1, 0.11 ], "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": [ 169.15, 156.44, 195.68 ], "Product/Produk": [ "Fruits_1", "Dairy_2", "Beverages_3" ], "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": [ 476, 253, 682 ], "Stock/Stok": [ 152, 21, 61 ], "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Product/Produk': ['Fruits_1', 'Dairy_2', 'Beverages_3'], 'Sales/Penjualan': [476, 253, 682], 'Price/Harga': [169.15, 156.44, 195.68], 'Category/Kategori': ['Food/Makanan', 'Food/Makanan', 'Food/Makanan'], 'Discount/Diskon': [0.08, 0.1, 0.11], 'Stock/Stok': [152, 21, 61]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Customer segmentation using KMeans from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler # Select features and scale X = df[['Age/Usia', 'Income/Pendapatan', 'Loyalty Score/Skor Loyalitas']] scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # Cluster into 3 segments kmeans = KMeans(n_clusters=3, random_state=42) df['Segment/Segmen'] = kmeans.fit_predict(X_scaled) # Visualize segments fig = px.scatter_3d(df, x='Age/Usia', y='Income/Pendapatan', z='Loyalty Score/Skor Loyalitas', color='Segment/Segmen', title='Customer Segments') fig.show()
Optimize income customer segment
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": [ 154.76, 50.67, 145.3, 83.4, 131.2, 99.75, 169.72, 122.08, 169.63, 132.9, 165.96, 111.98, 83.42, 185.62, 138.66, 158.74, 145.9, 152.57, 94.65, 67.98, 162.19, 141.95, 163.64, 180.44, 136.73, 134.44, 68.54, 105.17, 92.34, 77.83 ], "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": [ 0.0328, 0.055200000000000006, 0.0151, 0.0511, 0.0444, 0.0795, 0.049800000000000004, 0.0611, 0.0743, 0.0106, 0.048, 0.0392, 0.0134, 0.0385, 0.06760000000000001, 0.0279, 0.0896, 0.0636, 0.012400000000000001, 0.0522, 0.0392, 0.0688, 0.0751, 0.025900000000000003, 0.09240000000000001, 0.0949, 0.0639, 0.0233, 0.0599, 0.09620000000000001 ], "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": [ "2025-03-23", "2025-03-24", "2025-03-25", "2025-03-26", "2025-03-27", "2025-03-28", "2025-03-29", "2025-03-30", "2025-03-31", "2025-04-01", "2025-04-02", "2025-04-03", "2025-04-04", "2025-04-05", "2025-04-06", "2025-04-07", "2025-04-08", "2025-04-09", "2025-04-10", "2025-04-11", "2025-04-12", "2025-04-13", "2025-04-14", "2025-04-15", "2025-04-16", "2025-04-17", "2025-04-18", "2025-04-19", "2025-04-20", "2025-04-21" ], "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": [ 2691.11, 2831.59, 2825.23, 3049.85, 2935.52, 2997.61, 2902.61, 2863.59, 2709, 2705.98, 2599.71, 2742.79, 2767.35, 2712.49, 2965.07, 2929.2, 3198.26, 3179.75, 3241.61, 3207.1, 3207.83, 3021.73, 3059.83, 2904.97, 2910.77, 2949.97, 2911.07, 2977.72, 3105.66, 3175.03 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": [ 118, 94, 288, 144, 233, 196, 174, 176, 282, 42, 204, 58, 228, 122, 126, 199, 282, 305, 136, 52, 72, 164, 74, 216, 273, 187, 247, 196, 62, 282 ] }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Date/Tanggal': ['2025-03-23', '2025-03-24', '2025-03-25', '2025-03-26', '2025-03-27', '2025-03-28', '2025-03-29', '2025-03-30', '2025-03-31', '2025-04-01', '2025-04-02', '2025-04-03', '2025-04-04', '2025-04-05', '2025-04-06', '2025-04-07', '2025-04-08', '2025-04-09', '2025-04-10', '2025-04-11', '2025-04-12', '2025-04-13', '2025-04-14', '2025-04-15', '2025-04-16', '2025-04-17', '2025-04-18', '2025-04-19', '2025-04-20', '2025-04-21'], 'Revenue/Pendapatan': [2691.11, 2831.59, 2825.23, 3049.85, 2935.52, 2997.61, 2902.61, 2863.59, 2709.0, 2705.98, 2599.71, 2742.79, 2767.35, 2712.49, 2965.07, 2929.2, 3198.26, 3179.75, 3241.61, 3207.1, 3207.83, 3021.73, 3059.83, 2904.97, 2910.77, 2949.97, 2911.07, 2977.72, 3105.66, 3175.03], 'Visitors/Pengunjung': [118, 94, 288, 144, 233, 196, 174, 176, 282, 42, 204, 58, 228, 122, 126, 199, 282, 305, 136, 52, 72, 164, 74, 216, 273, 187, 247, 196, 62, 282], 'Conversion Rate/Rasio Konversi': [0.0328, 0.0552, 0.0151, 0.0511, 0.0444, 0.0795, 0.0498, 0.0611, 0.0743, 0.0106, 0.048, 0.0392, 0.0134, 0.0385, 0.0676, 0.0279, 0.0896, 0.0636, 0.0124, 0.0522, 0.0392, 0.0688, 0.0751, 0.0259, 0.0924, 0.0949, 0.0639, 0.0233, 0.0599, 0.0962], 'Avg. Order Value/Nilai Pesanan Rata2': [154.76, 50.67, 145.3, 83.4, 131.2, 99.75, 169.72, 122.08, 169.63, 132.9, 165.96, 111.98, 83.42, 185.62, 138.66, 158.74, 145.9, 152.57, 94.65, 67.98, 162.19, 141.95, 163.64, 180.44, 136.73, 134.44, 68.54, 105.17, 92.34, 77.83]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Customer segmentation using KMeans from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler # Select features and scale X = df[['Age/Usia', 'Income/Pendapatan', 'Loyalty Score/Skor Loyalitas']] scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # Cluster into 3 segments kmeans = KMeans(n_clusters=3, random_state=42) df['Segment/Segmen'] = kmeans.fit_predict(X_scaled) # Visualize segments fig = px.scatter_3d(df, x='Age/Usia', y='Income/Pendapatan', z='Loyalty Score/Skor Loyalitas', color='Segment/Segmen', title='Customer Segments') fig.show()
Kelompokkan skor loyalitas kota
{ "Age/Usia": [ 23, 51, 70, 43, 33, 48, 58, 22, 40, 38, 23, 52, 52, 67, 63, 18, 62, 42, 18, 18, 57, 21, 45, 41, 43, 52, 46, 53, 69, 59, 58, 45, 56, 53, 59, 63, 23, 18, 23, 61, 46, 49, 61, 44, 64, 66, 31, 63, 20, 30, 47, 50, 28, 54, 53, 50, 48, 33, 55, 46, 26, 38, 44, 32, 39, 43, 50, 35, 37, 51 ], "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": null, "Country/Negara": null, "Customer ID/ID Pelanggan": [ "CUST_0001", "CUST_0002", "CUST_0003", "CUST_0004", "CUST_0005", "CUST_0006", "CUST_0007", "CUST_0008", "CUST_0009", "CUST_0010", "CUST_0011", "CUST_0012", "CUST_0013", "CUST_0014", "CUST_0015", "CUST_0016", "CUST_0017", "CUST_0018", "CUST_0019", "CUST_0020", "CUST_0021", "CUST_0022", "CUST_0023", "CUST_0024", "CUST_0025", "CUST_0026", "CUST_0027", "CUST_0028", "CUST_0029", "CUST_0030", "CUST_0031", "CUST_0032", "CUST_0033", "CUST_0034", "CUST_0035", "CUST_0036", "CUST_0037", "CUST_0038", "CUST_0039", "CUST_0040", "CUST_0041", "CUST_0042", "CUST_0043", "CUST_0044", "CUST_0045", "CUST_0046", "CUST_0047", "CUST_0048", "CUST_0049", "CUST_0050", "CUST_0051", "CUST_0052", "CUST_0053", "CUST_0054", "CUST_0055", "CUST_0056", "CUST_0057", "CUST_0058", "CUST_0059", "CUST_0060", "CUST_0061", "CUST_0062", "CUST_0063", "CUST_0064", "CUST_0065", "CUST_0066", "CUST_0067", "CUST_0068", "CUST_0069", "CUST_0070" ], "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": [ "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Other/Lainnya", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Other/Lainnya", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Other/Lainnya", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Male/Laki-laki", "Male/Laki-laki", "Female/Perempuan", "Female/Perempuan", "Female/Perempuan" ], "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": [ 2000, 6000, 9000, 2000, 2000, 6000, 2000, 6000, 7000, 2000, 5000, 3000, 8000, 9000, 6000, 3000, 7000, 6000, 6000, 5000, 2000, 3000, 9000, 2000, 6000, 8000, 9000, 3000, 8000, 1000, 2000, 7000, 8000, 5000, 10000, 5000, 8000, 4000, 3000, 7000, 10000, 6000, 1000, 1000, 4000, 8000, 7000, 3000, 5000, 2000, 6000, 8000, 3000, 1000, 7000, 2000, 2000, 5000, 9000, 10000, 3000, 10000, 5000, 8000, 8000, 3000, 2000, 1000, 9000, 10000 ], "Last Purchase Date/Tanggal Pembelian Terakhir": [ "2025-01-24", "2024-06-11", "2024-06-15", "2024-08-29", "2025-02-03", "2024-09-06", "2024-07-08", "2024-06-04", "2024-10-12", "2024-12-30", "2024-12-15", "2024-05-07", "2024-10-18", "2024-08-27", "2025-03-08", "2025-02-09", "2025-04-08", "2025-03-23", "2024-04-27", "2024-11-09", "2025-02-07", "2024-06-07", "2024-09-06", "2024-04-30", "2024-11-05", "2024-10-12", "2024-05-25", "2025-01-10", "2024-08-25", "2025-03-09", "2024-09-01", "2024-08-07", "2025-01-17", "2024-05-24", "2025-03-02", "2024-12-03", "2024-09-12", "2024-04-24", "2025-04-13", "2024-12-09", "2024-06-07", "2024-12-23", "2024-10-20", "2025-04-05", "2025-02-24", "2024-10-26", "2025-04-17", "2024-08-16", "2024-10-29", "2024-12-03", "2024-05-30", "2025-01-03", "2024-09-22", "2024-09-09", "2024-10-29", "2024-12-15", "2024-12-31", "2024-09-29", "2024-07-26", "2024-08-23", "2024-06-27", "2024-10-16", "2024-06-07", "2025-02-15", "2024-10-13", "2024-05-31", "2024-10-14", "2024-10-31", "2024-09-22", "2025-01-26" ], "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": [ 10, 25, 54, 68, 43, 55, 85, 21, 63, 21, 99, 43, 29, 81, 89, 70, 23, 90, 48, 81, 6, 49, 62, 61, 98, 81, 20, 53, 91, 96, 50, 69, 78, 30, 97, 80, 18, 92, 58, 100, 48, 17, 28, 36, 93, 80, 67, 13, 45, 60, 87, 95, 37, 68, 58, 89, 27, 26, 21, 16, 56, 52, 81, 7, 25, 26, 70, 78, 89, 70 ], "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": null, "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Customer ID/ID Pelanggan': ['CUST_0001', 'CUST_0002', 'CUST_0003', 'CUST_0004', 'CUST_0005', 'CUST_0006', 'CUST_0007', 'CUST_0008', 'CUST_0009', 'CUST_0010', 'CUST_0011', 'CUST_0012', 'CUST_0013', 'CUST_0014', 'CUST_0015', 'CUST_0016', 'CUST_0017', 'CUST_0018', 'CUST_0019', 'CUST_0020', 'CUST_0021', 'CUST_0022', 'CUST_0023', 'CUST_0024', 'CUST_0025', 'CUST_0026', 'CUST_0027', 'CUST_0028', 'CUST_0029', 'CUST_0030', 'CUST_0031', 'CUST_0032', 'CUST_0033', 'CUST_0034', 'CUST_0035', 'CUST_0036', 'CUST_0037', 'CUST_0038', 'CUST_0039', 'CUST_0040', 'CUST_0041', 'CUST_0042', 'CUST_0043', 'CUST_0044', 'CUST_0045', 'CUST_0046', 'CUST_0047', 'CUST_0048', 'CUST_0049', 'CUST_0050', 'CUST_0051', 'CUST_0052', 'CUST_0053', 'CUST_0054', 'CUST_0055', 'CUST_0056', 'CUST_0057', 'CUST_0058', 'CUST_0059', 'CUST_0060', 'CUST_0061', 'CUST_0062', 'CUST_0063', 'CUST_0064', 'CUST_0065', 'CUST_0066', 'CUST_0067', 'CUST_0068', 'CUST_0069', 'CUST_0070'], 'Age/Usia': [23, 51, 70, 43, 33, 48, 58, 22, 40, 38, 23, 52, 52, 67, 63, 18, 62, 42, 18, 18, 57, 21, 45, 41, 43, 52, 46, 53, 69, 59, 58, 45, 56, 53, 59, 63, 23, 18, 23, 61, 46, 49, 61, 44, 64, 66, 31, 63, 20, 30, 47, 50, 28, 54, 53, 50, 48, 33, 55, 46, 26, 38, 44, 32, 39, 43, 50, 35, 37, 51], 'Gender/Jenis Kelamin': ['Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Other/Lainnya', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Other/Lainnya', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Other/Lainnya', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Male/Laki-laki', 'Male/Laki-laki', 'Female/Perempuan', 'Female/Perempuan', 'Female/Perempuan'], 'Income/Pendapatan': [2000, 6000, 9000, 2000, 2000, 6000, 2000, 6000, 7000, 2000, 5000, 3000, 8000, 9000, 6000, 3000, 7000, 6000, 6000, 5000, 2000, 3000, 9000, 2000, 6000, 8000, 9000, 3000, 8000, 1000, 2000, 7000, 8000, 5000, 10000, 5000, 8000, 4000, 3000, 7000, 10000, 6000, 1000, 1000, 4000, 8000, 7000, 3000, 5000, 2000, 6000, 8000, 3000, 1000, 7000, 2000, 2000, 5000, 9000, 10000, 3000, 10000, 5000, 8000, 8000, 3000, 2000, 1000, 9000, 10000], 'Loyalty Score/Skor Loyalitas': [10, 25, 54, 68, 43, 55, 85, 21, 63, 21, 99, 43, 29, 81, 89, 70, 23, 90, 48, 81, 6, 49, 62, 61, 98, 81, 20, 53, 91, 96, 50, 69, 78, 30, 97, 80, 18, 92, 58, 100, 48, 17, 28, 36, 93, 80, 67, 13, 45, 60, 87, 95, 37, 68, 58, 89, 27, 26, 21, 16, 56, 52, 81, 7, 25, 26, 70, 78, 89, 70], 'Last Purchase Date/Tanggal Pembelian Terakhir': ['2025-01-24', '2024-06-11', '2024-06-15', '2024-08-29', '2025-02-03', '2024-09-06', '2024-07-08', '2024-06-04', '2024-10-12', '2024-12-30', '2024-12-15', '2024-05-07', '2024-10-18', '2024-08-27', '2025-03-08', '2025-02-09', '2025-04-08', '2025-03-23', '2024-04-27', '2024-11-09', '2025-02-07', '2024-06-07', '2024-09-06', '2024-04-30', '2024-11-05', '2024-10-12', '2024-05-25', '2025-01-10', '2024-08-25', '2025-03-09', '2024-09-01', '2024-08-07', '2025-01-17', '2024-05-24', '2025-03-02', '2024-12-03', '2024-09-12', '2024-04-24', '2025-04-13', '2024-12-09', '2024-06-07', '2024-12-23', '2024-10-20', '2025-04-05', '2025-02-24', '2024-10-26', '2025-04-17', '2024-08-16', '2024-10-29', '2024-12-03', '2024-05-30', '2025-01-03', '2024-09-22', '2024-09-09', '2024-10-29', '2024-12-15', '2024-12-31', '2024-09-29', '2024-07-26', '2024-08-23', '2024-06-27', '2024-10-16', '2024-06-07', '2025-02-15', '2024-10-13', '2024-05-31', '2024-10-14', '2024-10-31', '2024-09-22', '2025-01-26']}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Bandingkan pendapatan grup usia
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": [ "New York", "Paris", "Mexico City", "Sydney", "São Paulo" ], "Conversion Rate/Rasio Konversi": null, "Country/Negara": [ "US", "France", "Mexico", "Australia", "Brazil" ], "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": [ 0.17, 0.08, 0.03, -0.07, 0.02 ], "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": [ 27.9175, 85.1983, 77.4074, -23.6537, 0.47800000000000004 ], "Longitude/Bujur": [ 80.8811, 126.1749, -162.9106, -9.6177, -112.4169 ], "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": [ 0.14, 0.42, 0.37, 0.22, 0.34 ], "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": [ "North America", "Europe", "North America", "Oceania", "South America" ], "Revenue/Pendapatan": [ 1737, 2029, 1575, 4623, 2820 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'City/Kota': ['New York', 'Paris', 'Mexico City', 'Sydney', 'São Paulo'], 'Country/Negara': ['US', 'France', 'Mexico', 'Australia', 'Brazil'], 'Region/Wilayah': ['North America', 'Europe', 'North America', 'Oceania', 'South America'], 'Latitude/Lintang': [27.9175, 85.1983, 77.4074, -23.6537, 0.478], 'Longitude/Bujur': [80.8811, 126.1749, -162.9106, -9.6177, -112.4169], 'Revenue/Pendapatan': [1737, 2029, 1575, 4623, 2820], 'Market Share/Pangsa Pasar': [0.14, 0.42, 0.37, 0.22, 0.34], 'Growth Rate/Pertumbuhan': [0.17, 0.08, 0.03, -0.07, 0.02]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Analyze conversion rate city
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": [ 146.18, 69.99, 136.88, 199.1, 73.31, 58.49, 123.39, 149.21, 91.01, 114.37, 153.42, 173.5, 65.95, 72.23, 199.07, 138.56, 50.34, 130.83, 71.59, 197.22, 116.69, 197.49, 175.43, 132.43, 185.26, 82.76, 133.41, 52.55, 112.02, 109.55 ], "Category/Kategori": null, "City/Kota": null, "Conversion Rate/Rasio Konversi": [ 0.0489, 0.09730000000000001, 0.017400000000000002, 0.028200000000000003, 0.09620000000000001, 0.057, 0.0702, 0.0371, 0.0954, 0.053200000000000004, 0.0443, 0.0281, 0.0412, 0.0205, 0.0897, 0.0182, 0.038900000000000004, 0.0285, 0.0463, 0.0771, 0.073, 0.0526, 0.0734, 0.0684, 0.013800000000000002, 0.0286, 0.0385, 0.026000000000000002, 0.0117, 0.0926 ], "Country/Negara": null, "Customer ID/ID Pelanggan": null, "Date/Tanggal": [ "2025-03-23", "2025-03-24", "2025-03-25", "2025-03-26", "2025-03-27", "2025-03-28", "2025-03-29", "2025-03-30", "2025-03-31", "2025-04-01", "2025-04-02", "2025-04-03", "2025-04-04", "2025-04-05", "2025-04-06", "2025-04-07", "2025-04-08", "2025-04-09", "2025-04-10", "2025-04-11", "2025-04-12", "2025-04-13", "2025-04-14", "2025-04-15", "2025-04-16", "2025-04-17", "2025-04-18", "2025-04-19", "2025-04-20", "2025-04-21" ], "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": null, "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": null, "Longitude/Bujur": null, "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": null, "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": null, "Revenue/Pendapatan": [ 1275.01, 1435.29, 1450.9, 1586.68, 1481.51, 1413.02, 1418.99, 1368.91, 1299.53, 1219.75, 1221.47, 1073.28, 1157.49, 1377.36, 1346.26, 1450.28, 1510.65, 1679.5, 1619.57, 1559.6, 1541.91, 1446.31, 1455.94, 1223.34, 1274.11, 1211.36, 1228.34, 1272.62, 1415, 1388.51 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": [ 210, 273, 212, 298, 307, 160, 131, 219, 190, 217, 257, 153, 83, 228, 129, 148, 154, 66, 232, 54, 110, 202, 121, 196, 290, 203, 279, 172, 287, 232 ] }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'Date/Tanggal': ['2025-03-23', '2025-03-24', '2025-03-25', '2025-03-26', '2025-03-27', '2025-03-28', '2025-03-29', '2025-03-30', '2025-03-31', '2025-04-01', '2025-04-02', '2025-04-03', '2025-04-04', '2025-04-05', '2025-04-06', '2025-04-07', '2025-04-08', '2025-04-09', '2025-04-10', '2025-04-11', '2025-04-12', '2025-04-13', '2025-04-14', '2025-04-15', '2025-04-16', '2025-04-17', '2025-04-18', '2025-04-19', '2025-04-20', '2025-04-21'], 'Revenue/Pendapatan': [1275.01, 1435.29, 1450.9, 1586.68, 1481.51, 1413.02, 1418.99, 1368.91, 1299.53, 1219.75, 1221.47, 1073.28, 1157.49, 1377.36, 1346.26, 1450.28, 1510.65, 1679.5, 1619.57, 1559.6, 1541.91, 1446.31, 1455.94, 1223.34, 1274.11, 1211.36, 1228.34, 1272.62, 1415.0, 1388.51], 'Visitors/Pengunjung': [210, 273, 212, 298, 307, 160, 131, 219, 190, 217, 257, 153, 83, 228, 129, 148, 154, 66, 232, 54, 110, 202, 121, 196, 290, 203, 279, 172, 287, 232], 'Conversion Rate/Rasio Konversi': [0.0489, 0.0973, 0.0174, 0.0282, 0.0962, 0.057, 0.0702, 0.0371, 0.0954, 0.0532, 0.0443, 0.0281, 0.0412, 0.0205, 0.0897, 0.0182, 0.0389, 0.0285, 0.0463, 0.0771, 0.073, 0.0526, 0.0734, 0.0684, 0.0138, 0.0286, 0.0385, 0.026, 0.0117, 0.0926], 'Avg. Order Value/Nilai Pesanan Rata2': [146.18, 69.99, 136.88, 199.1, 73.31, 58.49, 123.39, 149.21, 91.01, 114.37, 153.42, 173.5, 65.95, 72.23, 199.07, 138.56, 50.34, 130.83, 71.59, 197.22, 116.69, 197.49, 175.43, 132.43, 185.26, 82.76, 133.41, 52.55, 112.02, 109.55]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)
Visualize revenue gender
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": [ "Mumbai", "Jakarta", "Tokyo", "Dubai", "New York" ], "Conversion Rate/Rasio Konversi": null, "Country/Negara": [ "India", "Indonesia", "Japan", "UAE", "US" ], "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": [ 0.03, -0.1, 0, 0.21, 0.03 ], "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": [ -46.6167, 46.9083, -8.9655, -28.8306, -23.1585 ], "Longitude/Bujur": [ 21.3763, -61.1691, -96.5059, 55.064, -144.7706 ], "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": [ 0.48, 0.38, 0.13, 0.15, 0.27 ], "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": [ "Asia", "Asia", "Asia", "Middle East", "North America" ], "Revenue/Pendapatan": [ 1902, 1844, 1685, 2445, 4617 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'City/Kota': ['Mumbai', 'Jakarta', 'Tokyo', 'Dubai', 'New York'], 'Country/Negara': ['India', 'Indonesia', 'Japan', 'UAE', 'US'], 'Region/Wilayah': ['Asia', 'Asia', 'Asia', 'Middle East', 'North America'], 'Latitude/Lintang': [-46.6167, 46.9083, -8.9655, -28.8306, -23.1585], 'Longitude/Bujur': [21.3763, -61.1691, -96.5059, 55.064, -144.7706], 'Revenue/Pendapatan': [1902, 1844, 1685, 2445, 4617], 'Market Share/Pangsa Pasar': [0.48, 0.38, 0.13, 0.15, 0.27], 'Growth Rate/Pertumbuhan': [0.03, -0.1, -0.0, 0.21, 0.03]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Geospatial visualization fig = px.choropleth(df, locations='Country/Negara', locationmode='country names', color='Revenue/Pendapatan', hover_name='City/Kota', scope='world', title='Revenue by Country') fig.update_geos(showcountries=True) fig.show()
Optimize price age group
{ "Age/Usia": null, "Avg. Order Value/Nilai Pesanan Rata2": null, "Category/Kategori": null, "City/Kota": [ "São Paulo", "New York", "Sydney", "Tokyo", "Paris" ], "Conversion Rate/Rasio Konversi": null, "Country/Negara": [ "Brazil", "US", "Australia", "Japan", "France" ], "Customer ID/ID Pelanggan": null, "Date/Tanggal": null, "Discount/Diskon": null, "Gender/Jenis Kelamin": null, "Growth Rate/Pertumbuhan": [ 0.17, 0.12, 0.18, 0, 0.09 ], "Income/Pendapatan": null, "Last Purchase Date/Tanggal Pembelian Terakhir": null, "Latitude/Lintang": [ 71.5829, 25.0132, 58.4267, 3.5686999999999998, 69.8904 ], "Longitude/Bujur": [ 145.6496, 6.2671, -20.7972, 99.0281, -140.1458 ], "Loyalty Score/Skor Loyalitas": null, "Market Share/Pangsa Pasar": [ 0.29, 0.28, 0.17, 0.32, 0.36 ], "Price/Harga": null, "Product/Produk": null, "Region/Wilayah": [ "South America", "North America", "Oceania", "Asia", "Europe" ], "Revenue/Pendapatan": [ 2709, 4792, 2104, 2882, 3761 ], "Sales/Penjualan": null, "Stock/Stok": null, "Visitors/Pengunjung": null }
import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go # Load data df = pd.DataFrame({'City/Kota': ['São Paulo', 'New York', 'Sydney', 'Tokyo', 'Paris'], 'Country/Negara': ['Brazil', 'US', 'Australia', 'Japan', 'France'], 'Region/Wilayah': ['South America', 'North America', 'Oceania', 'Asia', 'Europe'], 'Latitude/Lintang': [71.5829, 25.0132, 58.4267, 3.5687, 69.8904], 'Longitude/Bujur': [145.6496, 6.2671, -20.7972, 99.0281, -140.1458], 'Revenue/Pendapatan': [2709, 4792, 2104, 2882, 3761], 'Market Share/Pangsa Pasar': [0.29, 0.28, 0.17, 0.32, 0.36], 'Growth Rate/Pertumbuhan': [0.17, 0.12, 0.18, 0.0, 0.09]}) # Basic data cleaning df = df.dropna() # Remove missing values df = df.drop_duplicates() # Remove duplicates # Comprehensive data analysis analysis_result = df.describe(include='all') print(analysis_result) # Additional insights print('\nTop performing items:') print(df.nlargest(3, df.columns[1])) print('\nTrend analysis:') if 'Date/Tanggal' in df.columns: df['Month/Bulan'] = pd.to_datetime(df['Date/Tanggal']).dt.month monthly_trend = df.groupby('Month/Bulan').mean(numeric_only=True) print(monthly_trend)